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Abstract

Human activities are increasingly leading to the emission of greenhouse gases, altering the Earth’s climate

into an unprecedentedly warmer state, thus compromising our ability to devise effective adaptation strategies

to climate change impacts. Although paleoclimates are not perfect analogues for these warming trends,

understanding past climate dynamics provides valuable insights into future climate change. These past

climates span a tremendous range of hydroclimates, landscapes, and biodiversity distributions that can

contribute to our understanding of the key elements of the climate system and also serve as out-of-sample

validations for the strength and stability of climate sensitivity and feedbacks in climate models to ensure

accurate future projections. However, understanding the past is contingent upon the availability and accurate

interpretation of climate signals from paleoclimate records. Stable isotope ratios of oxygen (𝑂18/𝑂16
; 𝛿18𝑂𝑝)

and hydrogen (𝐷/𝐻; 𝛿𝐷𝑝) in water imprints in the hydrological cycle reflect many integrated processes

of the Earth’s system and form the basis of paleoclimate reconstruction. The interpretation of the isotopic

composition of precipitation (𝛿18𝑂𝑝) signals from paleoclimate records faces significant challenges and

uncertainties due to the wide range of large-scale and local climatic and environmental conditions that

control its spatio-temporal variability. This implies that the 𝛿18𝑂𝑝 signal requires the disentangling of climate

signals from non-climate signals and needs paleoclimate-constrained transfer functions to ensure accurate

interpretations. This thesis demonstrates how isotope-enabled General Circulation Models (iGCMs) can be

combined with paleoclimate records to enhance the interpretability of paleoclimate dynamics. Part 1 integrates

iGCMs with stable isotope paleoaltimetry to reconstruct the Miocene Central Alps paleoelevation. Through

topographic sensitivity and Middle Miocene climate experiments, the results show that using contemporary

isotopic lapse rates overestimates the paleoelevation by ~1.5 km, suggesting the need for refining the previous

estimates with iGCM-simulated paleoclimate-constrained isotopic lapse rates. Part 2 presents an extensive

suite of (paleo)climate experiments with iGCMs from present-day to Mid-Pliocene conditions to understand

how large-scale atmospheric modes of variability (i.e., North Atlantic Oscillation and East Atlantic Oscillation

patterns) and West African monsoon dynamics influence the regional hydroclimate and 𝛿18𝑂𝑝 patterns

across Europe and West Africa. Through statistical analysis (e.g., correlations and causality testing), the

results indicate that the causal links between the local isotopic proxy and large-scale patterns and regional

hydroclimate variables are significantly different under the varied past climates. This proposes the need

to understand the time and space-dependent relations between proxy systems and regional paleoclimate

dynamics to refine their transfer functions. Due to the computational cost of the proposed paleoclimate

reconstruction framework, Part 3 further explores the potential of using machine learning to emulate the

spatio-temporal variability of 𝛿18𝑂𝑝 values. The results indicated overall good performance that was at

least better than iGCM. Altogether, the findings indicate the importance of combining water isotopologue

information from observations, iGCMs, and isotopic paleoclimate records to provide robust statistical

and dynamical constraints on paleoclimate reconstructions, which has huge implications for reducing the

uncertainties of climate models and thus improving future climate projections.





Zusammenfassung

Menschliche Aktivitäten führen zunehmend zur Emission von Treibhausgasen, die das Klima der Erde in

einen noch nie dagewesenen wärmeren Zustand versetzen und unsere Fähigkeit beeinträchtigt, wirksame

Anpassungsstrategien für die Auswirkungen des Klimawandels zu entwickeln. Obwohl Paläoklimata keine

perfekten Analogien für diese Erwärmungstendenzen sind, bietet das Verständnis der Klimadynamik der

Vergangenheit wertvolle Einblicke in den künftigen Klimawandel. Diese vergangenen Klimata umfassen

eine enorme Bandbreite an Hydroklimata, Landschaften und Biodiversität, die zu unserem Verständnis

des Klimasystems beitragen können. Zudem können sie und auch als Out-of-Sample-Validierung für die

Stärke und Stabilität der Klimasensitivität und der Rückkopplungen in Klimamodellen dienen, um genaue

Vorhersagen für die Zukunft zu ermöglichen. Das Verständnis der Vergangenheit hängt jedoch von der

Verfügbarkeit und genauen Interpretation von Klimasignalen aus paläoklimatischen Aufzeichnungen ab.

Die stabilen Isotopenverhältnisse von Sauerstoff und Wasserstoff im hydrologischen Kreislauf spiegeln viele

Prozesse des Erdsystems wider und bilden die Grundlage für die Rekonstruktion des Paläoklimas. Die

Interpretation der Isotopenzusammensetzung des Niederschlags (𝛿18𝑂𝑝) aus paläoklimatischen Aufzeich-

nungen ist mit erheblichen Herausforderungen und Unsicherheiten verbunden, da ein breites Spektrum

großräumiger und lokaler Klima- und Umweltbedingungen ihre räumlich-zeitliche Variabilität bestimmt. Dies

bedeutet, dass das 𝛿18𝑂𝑝-Signal eine trennung von Klimasignalen von Nicht-Klimasignalen erfordert und

Paläoklima-Transferfunktionen benötigt, um genaue Interpretationen zu gewährleisten. Diese Arbeit zeigt,

wie isotopen-berücksichtigende allgemeine Zirkulationsmodelle (iGCMs) mit Paläoklimaaufzeichnungen

kombiniert werden können, um die Interpretierbarkeit der Paläoklimadynamik zu verbessern. In Teil 1 werden

iGCMs mit Paläoaltimetrie mit stabilen Isotopen kombiniert, um die miozäne Paläohöhe der Zentralalpen

zu rekonstruieren. Anhand von topographischen Sensitivitäts- und Klimaexperimenten aus dem mittleren

Miozän zeigen die Ergebnisse, dass die Verwendung moderner Isotopengradienten die Paläohöhe um ~1,5

km überschätzt, was auf die Notwendigkeit hinweist, die früheren Schätzungen mit iGCM-simulierten

Paläoklima-gebundenen Isotopengradienten zu verfeinern. Teil 2 präsentiert eine umfangreiche Reihe von

(Paläo-)Klimaexperimenten mit iGCMs in Zeiträumen von der Gegenwart bis zum mittleren Pliozän, um zu

verstehen, wie großräumige atmosphärische Variabilitätsmodi (d. h. nordatlantische Oszillationsmuster und

ostatlantische Oszillationsmuster) und die westafrikanische Monsun-Dynamik das regionale Hydroklima und

𝛿18𝑂𝑝-Muster in Europa und Westafrika beeinflussen. Durch statistische Analysen (z. B. Korrelations- und

Kausalitätstests) zeigen die Ergebnisse, dass die kausalen Beziehungen zwischen den lokalen isotopischen

Proxies und den großräumigen Mustern sowie den regionalen Hydroklimavariablen in den verschiedenen

Paläoklimazonen signifikant unterschiedlich sind. Daher ist es notwendig, die zeit- und raumabhängigen

Beziehungen zwischen den Proxies und der regionalen Paläoklimadynamik zu verstehen, um ihre Trans-

ferfuntionen zu verfeinern. Aufgrund der hohen Rechenkosten der Paläoklima-Rekonstruktionen wird das

Potenzial des maschinellen Lernens zur Nachahmung der räumlich-zeitlichen Variabilität von 𝛿18𝑂𝑝 in Teil 3

weiter erforscht. Insgesamt zeigen die Ergebnisse, wie wichtig die Kombination von Wasserisotopologie-

Informationen aus Beobachtungen, iGCMs und isotopischen Paläoklimaaufzeichnungen ist, um robuste

statistische und dynamische Einschränkungen für Paläoklima-Rekonstruktionen zu liefern, was enorme

Auswirkungen auf die Verringerung der Unsicherheiten von Klimamodellen und somit auf die Verbesserung

zukünftiger Klimaprojektionen hat.
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Notation

Acronyms & Abbreviations

E.g. or e.g. For example (exempli gratia)

Etc. or etc. And so on (et cetera)

I. e. or i. e. That is (id est)
pCO2 Atmospheric CO2 concentrations

𝛿18𝑂𝑝 isotopic composition of precipitation

𝛿18𝑂𝑤 isotopic composition of paleo-meteoric water

AGCM Atmospheric General Circulation Model

ARD Automatic Relevance Determination regression

AEJ African Easterly Jet

AMIP Atmospheric Model Intercomparison Project

CV Cross-Validation

CMIP Coupled Model Intercomparison Project

EOF Empirical Orthogonal Function

ENSO El Niño-Southern Oscillation

EA East Atlantic Oscillation

EA/WR East Atlantic-Western Russia circulation pattern

ExtraTree Extra Trees Regressor

GMST Global Mean Surface Temperature

GCMs General Circulation Models

GNIP Global Network of Isotopic Composition of Precipitation

iGCMs Isotope-enabled General Circulation Models

ITD Inter-Tropical Discontinuity

ITCZ Intertropical Convergence Zone

LIG Last Interglacial

LGM Last Glacial Maximum

LassoLarsCV LassoLars regression with cross-validation

ka kiloyears

Ma Million years

MAE Mean Absolute Error

ML Machine learning

MLR Multiple Linear Regression

MCO Middle Miocene Climate Optimum

MioMIP Miocene Modelling Intercomparison Project

MPI-ESM Max Planck Institute for Meteorology Earth System Model

NAO North Atlantic Oscillation patterns

PCA Principal Component Analysis

PI Pre-Indutrial

PMIP Paleoclimate Modelling Intercomparison Project

PP-ESD Perfect Prognosis Empirical Statistical Downscaling

RandomForest Random Forest Regressor

SCAND Scandinavian oscillation patterns

SMB Swiss Molasse Basin

SMC Shallow Meridional Cell

Stacking Stacked Generalization Ensemble

TEJ Tropical Easterly Jet



WAM West African Monsoon

XGBoost XGBoost Regressor (Gradient Boosting Ensemble Model)
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Introduction 1.
1.1 Paleoclimate as potential

analogues for future climate 2
1.2 Isotopic composition of

water reflects changes in
hydrological cycle . . . . . 4

1.3 Proxies for climate variables:
Challenges and Uncertain-
ties . . . . . . . . . . . . . 5

1.4 Water isotopologues in
climate models and proxies 7

1.5 Thesis structure . . . . . . 9

By the end of this century, without significant changes in human activities

to reduce greenhouse gas emissions, atmospheric CO2 concentrations

(pCO2) are projected to reach levels that are unprecedented on Earth

for over 30 million years (Ma) [5, 6]. Understanding the responses

of Earth’s systems to these elevated pCO2 conditions is imperative for

developing adaptation strategies and mitigation plans to counteract future

climate change impacts [7]. Geological materials preserve information

about past warmer periods and major climate transitions in Earth’s

geological history [8, 9]. Investigating these past climate states yields

insights into future climate scenarios and addresses crucial questions

directly affecting human well-being: How will global warming affect

regional hydroclimate variability, which has profound ecological and

societal consequences, such as droughts and floods? How sensitive is

the Earth’s surface temperature to the rapidly increasing pCO2? How

will this rapid rise in pCO2 influence atmospheric circulation patterns,

such as the North Atlantic Oscillation (NAO) or global monsoons (e.g.,
African monsoons) [10, 11], and their impacts on ecosystems [12]? How

long would it take for natural processes to reverse human-induced

climate changes? How will changes in land surface (e.g., topography)

influence biodiversity distribution [13, 14]? How reliable are future climate

projections, considering the relatively short historical observations for

their validations [15]?

Addressing these critical questions necessitates the integration of high-

resolution observational records across essential geological timescales

of climate transitions with climate models, such as General Circulation

Models (GCMs), that allow the exploration of physical processes. The in-

tegration of observations and GCMs is of mutual benefit since it provides

a robust assessment of model performance and provides constraints on

the missing processes in the climate models [16, 17]. GCMs are based

on a set of governing primitive equations that represent physical laws

(e.g., the first law of thermodynamics, Navier-Stokes equations for fluid

motion), and account for the conservation of mass, energy, and momen-

tum. These equations are numerically solved by discretising the Earth’s

surface and atmosphere, incorporating subgrid parameterisations for

specific processes (e.g., cloud microphysics, atmospheric turbulence),

based on recent observational records [18]. GCMs are utilised to project

future climates based on assumed greenhouse gas emission scenarios [19]

and to reconstruct past climates using appropriate paleoenvironmental

boundary conditions (e.g., past land-sea configurations, surface elevation,

vegetation, and climate forcings) [20, 21]. It is essential to validate climate

models to ensure their accurate projection of future climate changes.

However, validation based solely on recent historical observations is

insufficient due to the different external forcings and internal feedback

mechanisms in a much warmer world. This stresses the need for climate

modelling efforts to extend to deep-time warm periods to fully encom-

pass the range of variability and climate-forcing feedbacks expected in

future climates [22–25]. Additionally, the capability of climate models to
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accurately represent regional climate variability in response to different

environmental conditions compared to modern times can be assessed

through these paleoclimates.

Understanding past climate dynamics is contingent upon the availability

of paleoclimate records. These records play a crucial role in evaluating

the ability of GCMs to simulate the climate dynamics of past, present,

and future climate change. The records also reflect paleoenvironmental

conditions such as vegetation and paleotopography, which are used

to generate boundary conditions for paleoclimate experiments [25–

28]. Often, these records are sparse, complicating the interpretation of

past regional and global climate dynamics. Therefore, understanding

paleoclimate dynamics and associated paleoenvironmental conditions

requires the integration of paleoclimate records and climate models [29].

This thesis underscores the necessity of such integration by highlighting

the uncertainties associated with reconstructing past surface elevation

(specifically in the European Alps) and past atmospheric circulation and

dynamics (specifically Northern Hemisphere teleconnections and West

African monsoon variability).

1.1 Paleoclimate as potential analogues for
future climate

The Earth’s climate system has undergone significant changes in the past

due to changes in climate forcings and paleoenvironmental conditions.

Since the last 60 million years (Ma), the global climate has cooled, marked

by a general decline in pCO2, despite significant variability between

geological periods (Figure 1.1). Throughout Earth’s paleoclimatic history,

there have been several periods warmer than the Pre-Industrial era (PI;

the reference year 1850). These historical climates offer insights into

potential future climate conditions [9, 23]. Notably, the Eocene epoch

( 50 Ma) was characterised by substantially higher global mean surface

temperatures (GMST;∼10 - 16 °C warmer than PI) [22, 30–32] and reduced

meridional temperature gradients (∼38% lower than modern) [33] in a

world free of permanent ice sheets. The extreme global warming during

the Eocene was due to the highly elevated pCO2 levels (1200-25000

ppmv) [34–37], which is within the range of values projected for future

scenarios under “business-as-usual emissions” [23]. Paleoclimate records

from such deep time can be used as a reference period to constrain the

long-term equilibrium climate sensitivity of climate models in response

to the increasing pCO2 for future predictions [9, 16, 31, 32, 38].

The Middle Miocene (15.97-11.63 Ma) was characterized by significant

changes in climate dynamics, paleoenvironmental conditions (such as

topography, vegetation, and palaeogeography), and tectonic activity [25].

Particularly, the Middle Miocene Climate Optimum (MCO; 16.75-14.5

Ma) has emerged as an important intermediate deep-time analogue for

future climate. This is due to the significantly different palaeogeography

and vegetation distribution in the Eocene and already higher modern

pCO2 levels surpassing the Mid-Pliocene reconstructions. Global proxy

reconstructions have indicated a warmer and wetter climate during the

MCO, with an estimated GMST of∼8 °C warmer than present [21, 25]. This
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(Boateng et al. 2024)

Figure 1.1: Global mean surface temperature anomalies (relative to 1850-1900) variations for the past 65 Ma and future projection
(up to 2300) from climate models and proxy records. The temperature estimates from the geologic materials are from Andersen
et al. [39], Jouzel et al. [40], Lisiecki and Raymo [41], Zachos et al. [42], and Marcott et al. [43]. The future temperature estimates are
based on CMIP5 models ensemble for all Shared Socio-economics Pathways (SSP) [19] ((Meinshausen et al., 2020. The spatial maps
(Pre-Industrial; 1850, Mid-Holocene; ~6 k, Last Glacial Maximum; ~21 k, Mid-Pliocene; ~3 Ma, Middle Miocene Climatic Optimum;
~15 Ma) for the time slices are based on the ECHAM5-wiso simulation presented in this thesis (P3, P4). The figure was adapted from
Burke et al. [23]

warming is primarily attributed to elevated pCO2 as indicated through

climate sensitivity experiments [21, 44–46], ranging from 400 to 700

ppm [25, 47–49], with some estimates reaching as high as 1000 ppm [50,

51]. Climate sensitivity studies, considering various boundary conditions

in MCO, have highlighted the importance of non-pCO2 forcings—such

as changes in paleotopography, palaeogeography, and vegetation—in

driving regional climatic differences [21, 44, 52–54].

The Mid-Pliocene (∼3 Ma) is the most recent warm period with GMST of

∼1.8-3.6 °C warmer than PI and higher pCO2 levels (∼400 ppmv) [27, 55–

58]. In fact, the Mid-Pliocene climate can be considered as an analogue for

a near-future climate (e.g., “best-case scenario”) as predicted before 2030 if

emissions-reducing climate stabilization scenarios are implemented [23].

However, this is contingent on societies successfully meeting the targets

set out under the Paris Agreement to limit global temperature rise to

1.5°C-2°C, which currently seems improbable [59]. The unmitigated

greenhouse gas emissions scenarios would rapidly push the Earth’s

climate to a more vulnerable state beyond the Mid-Pliocene state, with

more destabilizing tipping elements such as glaciers, deserts, forests

and more [60]. However, the Mid-Pliocene provides useful insights into

climate feedbacks of the carbon cycle on geological timescales [61–64].

The Last Interglacial (LIG; 129-116 ka), the warmest period in the recent

glacial-interglacial cycle, experienced GSMT of ∼0.8 °C higher than

PI [65–67]. The slight warming was associated with amplified seasonal

variability, particularly due to strong summer solar irradiance in the

Northern Hemisphere, which resulted from differing orbital parameters
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compared to the present day [68]. The Mid-Holocene (∼6 ka), which was

mainly driven by the changes in the Earth’s orbital cycles, experienced

slight global warming, with GMST of ∼0.7 °C higher than the PI level [43,

69–71], accompanied by strong seasonal temperature variability and

enhanced monsoons in the Northern Hemisphere. Investigating these

past warmer climates has been instrumental in attributing the warming

due to natural forcings and anthropogenic emissions in modern and

future climate changes [9, 23]. This thesis contributes to the understanding

of paleoclimate dynamics in response to changes in global climate forcings

and paleoenvironmental conditions (e.g., paleotopography) in the past

20 million years (Ma).

While paleoclimates offer valuable insights, they are not perfect ana-

logues for future climate dynamics due to significant changes in their

paleoenvironmental conditions (e.g., palaeogeography) through geologi-

cal timescales. Additionally, most of these paleoclimate states represent

equilibrium conditions rather than the transient changes associated with

rapidly increasing greenhouse gas emissions in the present day [72]. How-

ever, they do not need to be perfect analogues to serve as benchmarks for

validating climate models. These past climates, including colder periods

such as the Last Glacial Maximum (∼21 ka; LGM), offer the opportunity

to conduct out-of-sample validations for the strength and stability of key

climate system feedbacks, large-scale responses of the hydrological cycle,

and, most importantly, climate sensitivity [73]. The LGM was significantly

colder and drier than the PI, characterised by extensive continental ice

sheets, lower pCO2 (∼185 ppmv), and reduced sea levels (∼115-130 m

below present) [74–76]. Since the LGM, the GMST has increased by 4-6

°C, which is of the same order of magnitude increase projected for the

future under high emission scenarios [77–79]. This positions the LGM

climate as a crucial benchmark for constraining climate models’ sensitiv-

ity, particularly in areas where thermodynamic and dynamic processes

significantly influence the magnitude and seasonality of precipitation

patterns [80–82]. Overall, analysing the hydrological responses offers

valuable insights to enhance climate models, ensuring accurate regional

projections.

1.2 Isotopic composition of water reflects
changes in hydrological cycle

The Earth’s hydrological cycle interconnects solid Earth, land surfaces,

oceans, the atmosphere, and biological processes, which are critical for

understanding the Earth’s system [83]. This suggests that information

regarding long-term changes in water cycle variability and dynamics

(e.g., moisture transport) and its biogeochemical properties (e.g., stable

water isotopologues) can aid in reconstructing past physiogeography

and climate [84]. However, gaps remain in our understanding of the

hydrological cycle and its response to changes in paleoenvironmental

conditions, radiative forcings such as the distribution of incoming solar

radiation and volcanic eruptions, and internal variability and feedback

mechanisms [85, 86]. Bridging these gaps requires interdisciplinary ap-

proaches (e.g., paleoclimate modelling, geodynamics, geochemistry, and

statistics) and robust efforts in model-data synthesis on both short- and
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long-term timescales. Stable isotope ratios of oxygen (𝑂18/𝑂16
; 𝛿18𝑂𝑝)

and hydrogen (𝐷/𝐻; 𝛿𝐷𝑝) in water were among the first tools used to

understand the hydrological cycle variability [87–89]. Since heavy and

light water isotopes transition between phases at different rates due to

their atomic masses, diffusivities [88], and vapour pressures, their ratios

offer insights into historical atmospheric processes through moisture

fluxes. These ratios track moisture exchanges between the land surface,

ocean, and atmosphere, thus linking various climate system components.

Water isotopes encapsulate integrated processes, providing an addi-

tional "degree of freedom" for understanding the hydroclimate system

and offering information beyond traditional variables like precipitation

amount or specific humidity [90–93]. To an extent, the distribution of

water isotopes reflects moisture transport trajectories, mixing of moisture

sources, and atmospheric circulation [94–96]. These validate the use

of 𝛿18𝑂𝑝 as a proxy variable for both local conditions and large-scale

variability patterns (e.g., North Atlantic Oscillation; NAO and El Niño-

Southern Oscillation; ENSO) [97–100]. Beyond tracking changes in the

hydrological cycle, water isotopes reflect the interactions between the

climate system and surface processes, enabling their use in reconstructing

paleoenvironments such as paleotopography [101–103]. Consequently,

isotopic compositions in water are the measured signal for numerous

geological archives, including pedogenic carbonates, marine and lake

sediments, speleothems, ice cores, and rocks [104]. This makes 𝛿18𝑂𝑝 the

"common currency" that bridges paleoclimate records with direct modern

observations, facilitating the evaluation of hydroclimate processes over

longer timescales in climate models [105]. This thesis leverages isotopic

signals from geological materials and their tracking in climate models

to demonstrate how effective the integration framework contributes to

reconstructing paleoclimate and paleoenvironment dynamics.

1.3 Proxies for climate variables: Challenges and
Uncertainties

The gaps in our understanding of the past hydrological cycle and potential

future climate changes are partly due to the short length of instrumental

records of proxy variables (e.g., 𝛿18𝑂𝑝 measurements). More specifi-

cally, validating paleoclimate simulations poses a challenge, as no direct

observed records of climate variables (e.g., precipitation amounts, tem-

peratures, wind speeds) existed before 1750. Primarily, indirect records of

climate signals (e.g., 𝛿18𝑂𝑝 signal), imprinted in various components of

the Earth system (climate proxies), are utilised as proxy variables to infer

past climate changes. Unlike direct observations, proxies do not record

single climate variables. Instead, they often reflect combined information

about different environmental conditions, necessitating the disentangling

of specific climate signals from others [106, 107]. Most often, the biogeo-

chemical compositions of geological archives (such as paleo-meteoric

𝛿18𝑂𝑝 values) are utilised to infer past climate changes [e.g. 105].

The reconstruction of paleoclimate dynamics faces significant challenges

and uncertainties, particularly due to the scarcity of proxy records both

spatially (e.g., across Africa) and temporally over extended time scales [58,
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108–111]. Typically, single-site proxy records are utilised to infer past re-

gional and global climate changes. However, these imprints may reflect

local changes rather than regional or global signals. The recent shift

towards compiling multi-proxy records from different regions and en-

hancing their accessibility and usability (e.g., SISAL [108, 109], iso2k [105]

databases) has resolved some of these issues. Furthermore, advanced

statistical techniques, such as Bayesian inference, have been employed

to quantify the uncertainties associated with proxy records, including

those related to sample collection, preparation, and analysis [112–114].

Nevertheless, even with well-collected and measured proxy variables,

two major issues persist, which are addressed in this thesis:

1. Disentangling Climate Signals from Non-Climate Signals: The rela-

tionship between proxy data and climate variables is often complex and

stochastic [115, 116], making it challenging to separate specific climate sig-

nals from other influences. Typically, proxies record climate information

during seasonal changes, and shifts in seasonality across different climate

states can bias these records. For instance, pollen proxy records reflecting

past vegetation variability are influenced by both climatic factors (e.g.,
seasonal temperature and moisture availability) and non-climatic factors

(e.g., plant competition, soil nutrients, light availability for photosynthe-

sis). Furthermore, the impact of climatic factors on vegetation dynamics

varies spatially and temporally, complicating the use of pollen as proxies

for climate variables such as precipitation or temperature. In regions

with complex atmospheric dynamics and teleconnections, such as West

Africa, additional uncertainties arise due to the intricate causal mech-

anisms between the proxy variables (e.g., 𝛿18𝑂𝑝) and specific climate

information [96, 117, 118]. Additionally, the variability 𝛿18𝑂𝑝 signals

from geologic materials (e.g., pedogenic carbonates) across mountainous

areas reflect the land surface-atmosphere interactions, controlled by the

changes in geodynamics and climate [101–103]. This necessitates the dis-

entanglement of climate signals from the reconstructed 𝛿18𝑂𝑝 signal to

attribute the remaining signal to changes in past surface elevation related

to the geodynamic evolution [e.g. 119, 120]. Therefore, in this thesis, I

explore whether the causal mechanism between 𝛿18𝑂𝑝 values and cli-

mate variables (both regional and large-scale variability patterns) remain

stationary through the Late Cenozoic and quantify the implications and

uncertainties in reconstructing paleoclimate dynamics.

2. Assumption of stationarity of transfer functions: Since proxies do not

directly measure climate variables, a conversion—commonly referred

to as calibration—is required to translate the reconstructed signal into

specific climate variables [121–124]. For example, the width of tree rings,

which is indicative of growth rates and climatic conditions at the time

(with faster growth in wet and warm conditions), is converted into specific

climate variables through this process [116, 125]. This calibration involves

the development of a transfer function between the proxy data and

historical direct observations of climate variables. This can be achieved

in several ways: (1) "calibrated-in-time" for high-resolution proxy records

at a specific region and (2) "calibration-in-space" for sparse proxy records

in varied environments to establish the transfer function, allowing the

location with no direct observation to use in reconstructing the past

climate variability. However, a fundamental challenge in proxy climate

variable reconstructions is the assumption that the established transfer
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function, based on historical direct observation, remains stationary

through time and space. This assumption is rarely met, as changes in

past climate are often accompanied by shifts in atmospheric circulation

and seasonality, affecting the relationship between proxies and climate

variables [91, 104, 126, 127]. This thesis delves into the implications of

this critical assumption, particularly in the context of reconstructing past

surface elevations using water isotopic proxy records.

1.4 Water isotopologues in climate models and
proxies

Integrating 𝛿18𝑂𝑝 signals reconstructed from proxies and simulated by

climate models can help address the above challenges [84, 128]. Climate

models are instrumental in exploring the large-scale drivers and internal

variability of past climate changes, alongside their associated 𝛿18𝑂𝑝

variability recorded in proxy materials. Moreover, climate models can

be used to fill the spatio-temporal gaps present in proxy records. More

importantly, simulating 𝛿18𝑂𝑝 values in climate models for past and

present climates enables direct model-proxy comparisons, providing

opportunities to assess the assumptions behind proxy reconstructions

and, simultaneously, to identify the limitations of the climate models [e.g.
129–134]. This implies that isotope-enabled GCMs (iGCMs) can explore

regional and global forcings affecting 𝛿18𝑂𝑝 signals in proxy records. They

also facilitate the refinement of climate models by evaluating complex

processes such as cloud microphysics, moisture transport, atmospheric

circulation, and precipitation dynamics [92, 93, 129, 135].

Modelling the spatio-temporal variability of 𝛿18𝑂𝑝 values provides the

means to evaluate the two mentioned major assumptions in proxy recon-

struction. Specifically, simulating 𝛿18𝑂𝑝 values in response to external

forcing and internal feedback across different paleoclimates can ascertain

whether the relationship between 𝛿18𝑂𝑝 signals and specific climate

variables (e.g., precipitation) remains constant over time and space, justi-

fying their reconstruction [e.g. 136–138]. This information can guide the

selection of specific proxies or locations optimal for reconstructing certain

climate variables. In this thesis, the non-stationarity of the relationship

between West African monsoon intensity and 𝛿18𝑂𝑝 values is examined

throughout the Late Cenozoic, which is critical given the complexity of

the region’s climate system—a complexity that current climate models

still struggle to accurately represent. Furthermore, this thesis investigates

how climate change influences the relationship between NAO and 𝛿18𝑂𝑝

values across Europe through changes in their teleconnections (other

modes of variability such as East Atlantic (EA) oscillation patterns) and

seasonality.

Simulated 𝛿18𝑂𝑝 values and regional climate variables can also aid in

evaluating the stationarity assumption of the proxy transfer function.

For example, modelling the 𝛿18𝑂𝑝 response to varying paleoenviron-

mental conditions (e.g., in the Middle Miocene) can determine if the

𝛿18𝑂𝑝-climate gradient changes through time and space. Specifically,

water vapour ascending over mountains preferentially precipitates heavy

isotopes, resulting in more depleted (more negative) 𝛿18𝑂𝑝 values in the
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remaining air mass trajectories [95, 103]. The global distribution of 𝛿18𝑂𝑝

values has shown a significant relationship with surface elevation. This

is due to the predominant topography-related atmospheric processes

(e.g., orographic precipitation; “amount effect”) that influence the 𝛿18𝑂

composition of rainwater [139]. The robust inverse 𝛿18𝑂𝑝-elevation gra-

dient, established either empirically [e.g. 139, 140] or theoretically via

thermodynamics principles (Rayleigh distillation) [95, 103], underpin

stable isotope paleoaltimetry—a method employed to reconstruct past

surface elevations of mountain ranges. The rarity of isotopic proxies

reflecting long-term climate and topography changes across mountains

has directed most studies to depend on modern constant 𝛿18𝑂𝑝-elevation

relationship (isotopic lapse rate) over time and space. This presupposes

that the isotopic lapse rate at the time of the proxy material’s formation

(e.g., pedogenic carbonate) remains unchanged over millions of years

compared to the present day. However, wide ranges of climatic pro-

cesses—including surface recycling, atmospheric circulation, variability

in moisture transport and sources, air mass mixing, and shifts in precip-

itation dynamics—can alter the isotopic lapse rate and complicate the

paleoelevation reconstruction [e.g. 1, 120, 141–143]. This thesis leverages

iGCMs to simulate time-specific paleo-meteoric 𝛿18𝑂𝑝 values in response

to paleoenvironmental conditions and integrates them with the isotopic

signal from geologic archives across the European Alps to determine the

uncertainties of paleoelevation estimates associated with the assumption

of the stationarity of isotopic lapse rate.

The modelling component of this thesis relies on ECHAM5-wiso, a global

three-dimensional atmospheric GCM with isotope tracking (𝐻16

2
𝑂,𝐻18

2
𝑂,

and 𝐻𝐷𝑂) capability [144]. The model’s ability to simulate the climate

and isotopic composition of precipitation has been validated for the

present-day [e.g. 1, 145] and the geological past [e.g. 146–148]. The model

includes diagnostics of water isotopes, which are treated as independent

tracers in the hydrological cycle and undergo equilibrium and kinetic

fractionation during phase transitions in the atmosphere (e.g., snow,

vapour, and clouds) [144, 149]. The model tracks vapour fluxes from the

sea surface and lakes with non-equilibrium fractionation, which depends

on surface temperature, seawater
18𝑂, relative humidity, near-surface

wind speed, and
18𝑂 vapour content at the atmosphere’s lower level.

However, the model does not consider fractionation for vapour fluxes

from the land surface, such as evapotranspiration, due to their negligible

effect on the isotopic composition [150, 151]. This simplification is common

in other state-of-the-art isotope tracking GCMs [e.g. 152–154] but must

be considered when interpreting the simulated regional isotopic patterns.

ECHAM5-wiso was used to simulate Late Cenozoic climates, addressing

a broad spectrum of challenges associated with paleoclimate dynamics

reconstruction. Given the complexity and computational demands of

incorporating water isotopologues tracers in climate models, this thesis

also explores the application of machine learning as a surrogate model for

predicting the spatio-temporal variability of 𝛿18𝑂𝑝 values. The machine

learning-based emulators for water isotopes are designed to complement

the capabilities of iGCMs, such as downscaling the simulated isotopes to

a higher resolution or filling the gaps in historical records.
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1.5 Thesis structure

The overall goal of this thesis is to demonstrate how water isotopologues

modelling with iGCM can be integrated with proxy signals from geologic

materials to improve their interpretation in reconstructing paleoclimate

dynamics. I used iGCM (ECHAM5-wiso) to simulate the response of

paleo-meteoric 𝛿18𝑂𝑝 values and global climate variables to Late Ceno-

zoic paleoenvironmental conditions. The simulated variables are used to

address challenges associated with proxy records for reconstructing past

climate dynamics and environmental conditions. More specifically, the

thesis demonstrates how the simulated 𝛿18𝑂𝑝 values can be integrated

with reconstructed proxy signals to understand paleoclimate dynamics,

such as atmospheric circulation (i. e., NAO) and West African monsoon

systems, and to reconstruct the evolution of paleotopography in the

European Alps. Additionally, since the tracking of water isotopic species

in iGCMs is computationally expensive and complex, this thesis explores

the potential use of machine learning algorithms to predict the spatio-

temporal variability of local 𝛿18𝑂𝑝 values. Such statistical modelling can

complement the iGCMs by generating high-resolution 𝛿18𝑂𝑝 distribu-

tions (i. e., downscaling). This can help in understanding the link between

isotopic proxies and climate variables and in developing their robust

transfer functions. The scientific motivation and questions addressed in

this thesis, along with the individual research objectives, are presented

in Part I and integrated into the main research hypothesis in Part II. The

main results, along with their discussions and significance, are presented

in Part III and concluded in Part IV with some future outlooks. The

reader is referred to the manuscripts (in Part VII) associated with the key

findings for more detailed results and methods used.
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Scientific Motivation & Questions
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This section outlines the research questions of this thesis and their respec-

tive scientific motivation. I highlight that the presented answers to these

questions go beyond the motivation for the thesis and further address the

research questions of the individual case studies (e.g., integrating iGCMs

with geologic materials to reconstruct the past surface elevation of the

European Alps). More specifically, this section highlights the individual

studies’ research questions and their importance beyond using iGCMs to

resolve the mentioned limitations of proxy reconstructions, which is the

focus of the thesis.

2.1 Reconstructing the paleoelevation of the
European Alps

Quantifying the past surface elevation of the Alps is essential for un-

derstanding its tectonic-geodynamic processes (e.g., crustal thickening,

lower crustal flow, subduction erosion, lithospheric delamination) and

post-collisional processes that contribute to the landscape evolution,

regional climate dynamics, and biodiversity distribution [14, 155–161].

Although the onset of the Alps’ topographic development—resulting

from the continent-continent collision between the Adriatic and Euro-

pean plates [162–165]—is well-understood and agreed upon, the timing

of its post-collisional processes and associated surface uplift histories

remain poorly constrained. Recent modelling studies suggest additional

geodynamic processes that may have influenced the surface uplift history

of the Alps [166, 167]. These processes include slab break-off ( 30 Ma)

and slab rollback of the subducting lithosphere, alongside lithospheric

mantle removal [168–170]. These may have contributed to west-to-east

variations in surface uplift, as suggested over the Central Alps. It has been

further suggested that slab break-off ( 20 Ma) occurred under the Eastern

Alps [171]. Based on these studies, current tectonic and geodynamic

reconstructions indicate that the entire Alps did not experience a uniform

rise but rather a diachronous surface uplift across different sections of

the Alps.

Stable isotope paleoaltimetry provides a framework for constraining

subsurface processes, given that surface elevation primarily reflects man-

tle and lithospheric dynamics. However, it remains an open question

whether such geodynamic processes would yield spatial differences

in 𝛿18𝑂𝑝 values that would be detectable from geologic archives. Ad-

dressing this question validates the use of stable isotope paleoaltimetry

reconstructions across the Alps to elucidate their topographic evolution.

iGCMs can be used to address these questions by conducting topographic

sensitivity experiments under varying Alps topographic scenarios. This

leads to this thesis’s first question:
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Q1: How much isotopic (𝛿18𝑂𝑝) and regional climate signal (and

where) would different west-to-east surface uplift scenarios of the

Alps produce?

To address this question, I used ECHAM5-wiso to simulate regional

climate changes (precipitation and temperature) and 𝛿18𝑂𝑝 values in

response to diachronous, along-strike surface uplift variations of the

Eastern and Western–Central Alps. The simulated 𝛿18𝑂𝑝 signal can

help determine if the changes are significant enough to be reflected in

paleoaltimetry records, which would ultimately help to understand the

geodynamic evolution of the Alps.

Most studies on major mountain ranges, including the Alps, assume the

𝛿18𝑂𝑝-elevation gradient (isotopic lapse rate) necessary for constraining

vertical displacement of topography remains constant since the forma-

tion of the proxy material [e.g. 140, 172, 173]. However, various climatic

processes—such as surface recycling, changes in atmospheric circulation,

moisture transport and source variability, air mass mixing, and precip-

itation dynamics—can affect the isotopic lapse rate Figure 2.1. Given

the complex atmospheric dynamics across Europe and the Alps’ geom-

etry, understanding the impacts of topography changes on large-scale

dynamics is crucial for evaluating the complications associated with the

assumption of stationarity in single-site stable isotope paleoaltimetry.

This leads to the second question:

Q2: To what extent do changes in the topography of the Alps affect

the atmospheric circulation, moisture transport, and tropospheric

dynamics of the regional climate across Europe?

In addressing this question, I analysed the changes in prominent Northern

Hemisphere teleconnection patterns, such as the NAO, EA, Scandinavian

(SCAN), and East Atlantic-Western Russia (EA/WR) circulation patterns,

in response to different Alps topographic configuration experiments. Ad-

ditionally, I conducted back-trajectory analysis to determine the influence

of topography on moisture transport pathways. The simulated vertical

wind velocity, cloud cover, and relative humidity along the strike of the

Alps were further examined to determine the influence of topography

on tropospheric dynamics.

Despite the European Alps being one of the most intensively studied

orogens globally, their surface elevation history remains scarce and

poorly constrained. Specifically, Campani et al. [140] combined a mod-

ern rainfall-based isotopic lapse rate of -2.0 ‰ km
-1

with reconstructed

isotopic signal less sensitive to climate change to estimate a paleoeleva-

tion of 2850 (±800) m for the Central Alps during the Miocene. Their

estimate relied on near-sea-level pedogenic carbonates’ paleo-meteoric

water oxygen isotopic composition (𝛿18𝑂𝑤 ; hereafter for reconstructed

𝛿18𝑂) values from the low-elevation Northern Alpine Foreland Basin

(Swiss Molasse Basin; SMB) to isolate regional climate changes from the

high-elevation isotopic signal. Recently, Krsnik et al. [173] refined the

paleoelevation estimates by applying clumped isotope (Δ47) paleother-

mometry to well-dated Middle Miocene sediments from two Miocene

Alpine foreland megafans to calculate the soil carbonates’ near-sea-level
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Figure 2.1: Simplified sketch of the conceptual framework of stable isotope paleoaltimetry method, which is based on coeval 𝛿18𝑂 of
paleo-meteoric water between proxies over low- and high-elevation sites along an air mass trajectory. The difference in the 𝛿18𝑂
signal is combined with the isotopic lapse rate to estimate the paleoelevation. The figure was adapted from Campani et al. [140]

𝛿18𝑂𝑤 values. Their reconstructed isotopic signal with modern isotopic

lapse rates estimated the Miocene Central Alps to be > 4400 (±770) m.

The high elevation estimate was interpreted to reflect the complicated

transition from pre- to mid-Miocene Central Alps, characterised by a

diverse landscape and complex topography, primarily driven by the

rapid exhumation of deep-seated core complexes and a subsequent re-

arrangement of the drainage system. However, if the answers to Q1-3
support the application of stable isotope paleoaltimetry across the Alps

to decipher the diachronous surface, then the above Middle Miocene

paleoelevation estimates, which are based on the assumption that global

and regional climate changes would not influence the spatial variability

of 𝛿18𝑂𝑝 values and therefore would not affect the isotopic lapse rate

through time and space, should be reassessed. Therefore, to evaluate

the associated uncertainties, I conducted Middle Miocene simulations

reflecting two pCO2 conditions (278 and 450 ppm) and topographic

configuration from Q1-2 using ECHAM5-wiso. This leads to the next

question:
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Q3: Does ECHAM5-wiso adequately simulate the Middle

Miocene regional climate and 𝛿18𝑂𝑝 well across the Alps and

Europe?

If the paleoclimate modelling is validated and appears feasible, the

subsequent question would be:

Q4: How much isotopic (𝛿18𝑂𝑝) signal would the changes in the

Alps topography and Middle Miocene climate produce?

If the answer to Q4 confirms that the combined influence of climate and

surface uplift still produces a significant isotopic signal to be reflected in

geologic material, the next logical question would be:

Q5: To what extent do Middle Miocene climate and surface uplift

affect the isotopic lapse rate across the Alps?

Using the simulated Middle Miocene isotopic lapse rate across the Alps,

I recalculated the previously reconstructed paleoelevation across the

Central Alps to quantitatively determine the magnitude of uncertainties

associated with the assumption of stationarity of the isotopic lapse rate

across the Alps. This leads to the crucial question:

Q6: Does using the contemporary isotopic lapse rate across

the Alps overestimate or underestimate the Middle Miocene

paleoelevation across the Alps?

Resolving these questions related to the Alps topography reconstruction

demonstrates how integrating 𝛿18𝑂𝑝 proxy data with their process-based

estimates from iGCM can help resolve the assumption of stationarity

of the transfer function and the causal mechanisms between the proxy

signal and climate variables.

2.2 West African monsoon dynamics and 𝛿18𝑂𝑝

changes in the Late Cenozoic

Understanding the seasonality, interannual variability, and teleconnec-

tions of West Africa’s climate represents one of the most challenging

issues in climate science. Most state-of-the-art climate models struggle to

accurately represent the region’s historical variability and demonstrate

little consensus regarding future projections [174–176]. Most importantly,

climate change in the region has significant environmental and socio-

economic consequences for West African countries due to their high vul-

nerability and over-dependence on the rainfed agriculture economy [177].

Hence, accurate climate change information is essential for their adapta-

tion and mitigation strategies, necessitating improved representation in

climate models. Studying past hydroclimate and atmospheric dynamics

changes beyond the historical period can help constrain the key features

of the West African Monsoon (WAM) system that require enhancement

in climate models.
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Figure 2.2: Long-term seasonal means (June-September) of present-day (1979-2022)(a) precipitation and near-surface winds showing
the monsoon rain-belt and low-level south-westerlies from the equatorial Atlantic and (b) near-surface temperature showing the
meridional temperature gradient based on ERA5 reanalysis [196, 197]. (c) Schematic sketch of the vertical-latitude profile of the
WAM system showing the location of the Africa Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), Inter-tropical Discontinuity (ITD),
Sahara Heat Low (SHL), and near-surface temperature (𝑇2𝑚 )and dew-point temperature (𝑇𝑑2𝑚 ) from Fischer et al. [198] (originally
inspired from Fink et al. [199]

The WAM is characterised by the seasonal reversal of moisture (winds)

transported from the equatorial Atlantic to the equator margins of the

Sahara and regulates the precipitation distribution of West Africa. Its

variability is influenced by complex mechanisms, including large-scale

teleconnections and local feedback mechanisms (Figure 2.2) [178–187].

The strong solar surface heating over the Sahara generates a heat-low

circulation (Sahara Heat Low) that induces a land-sea thermal gradi-

ent, driving the low-level southwesterly moisture convergence from the

equatorial Atlantic that deflects the dry northeasterlies (harmattan) of

the Sahara [188–191]. The latitude where both winds meet is called the

inter-tropical discontinuity (ITD). Above the planetary boundary layer,

the meridional temperature gradient also drives the African Easterly Jet

(AEJ), which spans across West Africa at altitude of ca. 500-700 hPa [184,

186, 187, 192], and beneath the upper tropospheric Tropical Easterly Jet

(TEJ). The TEJ is primarily driven by large-scale remote features such as

the convective heating of the North Indian Ocean and the outflow of the

South Asian Monsoon [193]. Nonetheless, the latent heat flux through

convection over the WAM region can amplify upper-level shear, thus

strengthening the TEJ. On interannual timescales, the sea surface temper-

ature of the tropical oceans influences the precipitation seasonality [174,

181]. At intraseasonal scales, the dynamics of the WAM are affected by

equatorial waves and interactions with the midlatitudes and the Mediter-

ranean, while land surface-atmospheric feedback additionally governs

the precipitation distribution [194, 195]. All these indicate the complexity

of the WAM system dynamics and its teleconnections.

The sensitivity of the WAM and its atmospheric dynamics to paleoenvi-

ronmental forcing and feedbacks (e.g., changes in pCO2, orbital forcing,

vegetation, and orography) can shed light on their representation in

climate models for future projections. For example, the response of WAM

dynamics to orbitally driven seasonal and latitudinal distributions of

incoming solar radiation can be examined under Mid-Holocene condi-

tions. The long-term (geological timescales) sensitivity of the WAM to

pCO2 levels similar to the present, along with surface conditions changes

over the Sahel-Sahara and a globally enhanced hydrological cycle, can

also be assessed under Mid-Pliocene paleoenvironmental conditions.

Numerous modelling studies, including those from the Paleoclimate
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Modelling Intercomparison Project (PMIP) [e.g. 76, 200–203], have sim-

ulated precipitation changes associated with the WAM in response to

various forcings and paleoclimates in the Late Cenozoic. However, differ-

ences in experimental design and model setup, such as spatial resolution,

paleoenvironmental conditions, and GCM complexity (e.g., some includ-

ing dynamic vegetation), make it difficult to identify the predominant

atmospheric dynamics influencing WAM precipitation changes. GCMs

with varied spatial resolutions and parameterisations of clouds, atmo-

spheric dynamics, hydrological cycles, and land-atmosphere interactions

simulate distinct responses of the WAM to different forcings, leading to

inconsistent patterns of WAM dynamics. For instance, monsoons and

associated dynamics, such as the Intertropical Convergence Zone (ITCZ),

are better resolved at higher spatial resolutions, thus impacting the inten-

sity and spatial distribution of precipitation across the WAM region due

to the effects of vegetation, topography, and coastlines [204–206]. More-

over, only a few studies have comprehensively explored past atmospheric

dynamics and teleconnections underlying the changes in precipitation

patterns and magnitudes under various paleoenvironmental conditions

throughout the Late Cenozoic. This leads to the question:

Q7: How did the WAM and associated atmospheric dynamics

respond to changes in paleoenvironmental conditions during the

Late Cenozoic?

I conducted climate experiments with the same iGCM ECHAM5-wiso

in a consistent modelling framework (e.g., spatio-temporal resolution)

with appropriate paleoenvironmental conditions from the present-day to

the Mid-Pliocene. Subsequently, I analysed the intensity and northward

migration of the WAM in response to different paleoenvironmental

conditions. Additionally, I investigated the atmospheric dynamics behind

the changes in the WAM, such as moisture transport (e.g., low-level

southwesterlies), the African Easterly Jet (AEJ), the Tropical Easterly Jet

(TEJ), the Sahara Heat Low (SHL), and surface heat fluxes.

The scarcity of paleohydrological records over Africa and the spatial

resolution of climate models hinder robust model-data comparisons

necessary for enhancing climate models [e.g. 58, 111]. Several issues

regarding data-model comparison persist in this region. For instance,

pollen-based precipitation reconstruction, past lake levels, leaf wax

isotopes, and other proxies suggest significantly wetter conditions across

the Sahel and Sahara during the Mid-Holocene compared to today [176,

207, 208]. However, most climate models fail to replicate the extent and

magnitude of precipitation changes indicated by these proxy records

despite incorporating factors such as increased insolation, changes in

land surface conditions (e.g., vegetation, lakes, orography, soil moisture),

reduced dust emissions, atmospheric-ocean interactions, and atmospheric

dynamics [175, 176, 209–213].

While proxy records suggest varying degrees of precipitation increases

over North Africa’s higher latitudes, climate models generally predict

a more moderate intensification of the WAM and underestimate both

the reconstructed northward extent and magnitude of precipitation in-

crease [70, 175, 181, 201, 214, 215]. If the proxy data are well preserved and

processed efficiently, two possible reasons for this disagreement can be:
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(1) The climate models may not adequately represent the atmospheric

processes in the region to accurately simulate their hydroclimate variabil-

ity. (2) The proxy system models, which facilitate the conversion of the

proxy signal into a paleoclimate signal (transfer function), may be biased.

Transfer functions are often calibrated on the historical records (e.g.,
regression gradients between water isotopes and precipitation), which

are not long enough to account for the long-term variability. This leads to

the assumption that the established gradients from the historical period

are constant over time and equally valid for reconstructing past climates.

Given that this thesis relies on iGCM, the simulated 𝛿18𝑂𝑝 responses un-

der different paleoclimates can be explored. This investigation allows for

testing the assumption of transfer function stationarity by examining the

relationship between 𝛿18𝑂𝑝 and climate variables (e.g., precipitation and

temperature). Additionally, simulated 𝛿18𝑂𝑝 in these paleoclimates facili-

tates direct model-isotope proxy comparisons and aids in understanding

the general causal mechanisms behind the variability in different proxy

materials. Thus, this thesis further addresses the question:

Q8: Does the relationship (or transfer function) between 𝛿18𝑂𝑝

and climate variables over the WAM region remain constant

through the different paleoclimates of the Late Cenozoic?

2.3 Optimal locations for reconstructing the past
variability of the North Atlantic Oscillation

In the North Atlantic region and continental Europe, the interannual to

multidecadal climate variability is predominantly controlled by large-

scale circulation patterns, among which the North Atlantic Oscillation

(NAO) is the primary mode of variability [136, 145, 216–219]. The NAO is

often defined as the meridional dipole pressure gradient over the North

Atlantic, consisting of a predominant low-pressure system over Iceland

(the Icelandic Low) and a high-pressure system over the Azores (the

Azores High). The strength of this dipole gradient, whether weak or

strong, provides the basis for constructing its index over time. The positive

phase of the NAO is associated with strong westerlies, and northerly

storm tracks that transport air masses from the eastern Atlantic toward

central Europe. This pressure system drives colder and drier conditions

across western Greenland, Canada, and southern Europe, including

the Mediterranean region, and warmer and wetter conditions across

northern Europe, the eastern United States, and parts of the Scandinavian

region [220, 221]. During its negative phase, the pressure gradient

weakens, which leads to a decrease in the strength of the westerlies

and a southward shift of the storm tracks, resulting in opposite climate

patterns. Although the influence of the NAO is strongest in boreal winter,

it also affects summer conditions [222]. Given that the NAO is a major

driver of European climate variability and has a significant influence on

marine and terrestrial ecosystems and regional socio-economic activity,

understanding its predictability and response to future climate conditions

is crucial. However, the relatively short instrumental record of the NAO

means that reconstructing its past long-term variability could provide
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valuable insights into its dynamics in past climates and serve as a reference

for future climates.

The phases of the NAO have been shown to control the variability and

distribution of 𝛿18𝑂𝑝 records across wide regions in the Northern Hemi-

sphere [136, 145, 218, 223–226]. As a result, many isotopic proxy records

(e.g., ice cores, speleothems, tree rings, and lacustrine carbonates) have

been utilised to reconstruct the past variability of the NAO [227, 228].

However, since direct measurements of 𝛿18𝑂𝑝 values have only been

available for the last few decades (since 1958) and have many spatial and

temporal gaps (e.g., Global Network of Isotopic composition of Precipita-

tion (GNIP) stations) [229], the NAO-𝛿18𝑂𝑝 transfer function relies on

the long-term assumption of stationarity on the influence of the atmo-

spheric teleconnection patterns on local 𝛿18𝑂𝑝 records. Nonetheless, the

relationship between the NAO and surface climate variables has proven

to be non-stationary, with previous studies attributing this to changes

in the meridional pressure gradient, North Atlantic air-sea dynamics,

and ocean circulation [136, 138, 230, 231]. Moreover, recent studies have

indicated shifts in the positions of the centres of action of the NAO dipole

structure in winter compared to the classical station-based indices [138,

232]. These migrations are linked to shifts in winter temperature and

precipitation anomalies in European mid-latitude regions. In addition,

the phases of other modes of variability, including the East Atlantic (EA)

pattern and the Scandinavian oscillation pattern (SCAN), have been

shown to affect the relationship between the NAO and regional climate

variables [136, 232–234]. For example, the Azores High shifts northeast

when the NAO and EA indices have the same polarity (e.g., both in

positive phases). Consequently, the line of no correlation between the

NAO and surface climate migrates to higher latitudes when the southern

high-pressure centre of action shifts closer to Europe. These shifts in the

NAO-winter climate relationship could also impact the spatial patterns

of 𝛿18𝑂𝑝 and complicate the 𝛿18𝑂𝑝-NAO transfer function.

Most often, the optimal location for selecting proxy records for recon-

structing the 𝛿18𝑂𝑝-based NAO can be identified by the 𝛿18𝑂𝑝 sensitivity

to the NAO using correlation distributions [218] or principal component

analysis [224]. Thus, identifying regions less sensitive to other North

Atlantic modes of climate variability can help reduce the uncertainties

associated with NAO reconstructions ( Figure 2.3). iGCMs can be used to

simulate historical climate conditions to assess areas where the observed

𝛿18𝑂𝑝-NAO relationship is not robust and also determine how the phases

of the EA affect the spatial distribution of 𝛿18𝑂𝑝 and regional climate

variables such as precipitation and temperature. Therefore, this thesis

explores the question:

Q9: How and where would the polarity of the East Atlantic

pattern phase affect the NAO-𝛿18𝑂𝑝 and climate variables across

Europe?

To answer this question, I perform an Empirical Orthogonal Function

(EOF) analysis [e.g. 236, 237] to construct the NAO and EA indices from

the mean sea level pressure anomalies from historical simulation (1979-

2014) using the iGCM ECHAM5-wiso. I then validated the model-based

indices by comparing them with observed station- and reanalysis-based
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Figure 2.3: Schematic illustration of finding the optimal locations of proxies for reconstructing the past variability of the NAO index.
The NAO index example shown is from Pinto and Raible [235]

NAO indices. Additionally, I conducted a composite analysis to group

periods with the same and opposite phases of the NAO and EA indices

and then performed a correlation analysis between the NAO index and

(1) 𝛿18𝑂𝑝 values, (2) temperature, and (3) precipitation within each of

the composites to determine how the concomitant phase changes affect

their spatial relationship. Furthermore, to investigate whether the winter

NAO indices influence the subsequent summer climate conditions and its

transfer function, I performed a Granger causality [238] analysis (e.g., in

[239–241]) to statistically determine the influence of the lag component

of the winter NAO indices on summer 𝛿18𝑂𝑝 values, temperature and

precipitation variability. Since recent efforts attempt to extend the NAO

reconstruction to the last millennium [e.g. 242, 243], I repeated the

analysis on the last 1k simulations using different iGCMs from previous

studies [132]. Such analysis helps determine if the changes in the corre-

lation structure and their causal mechanism are different in the past 1k

years.

2.4 Machine learning based emulators for
spatio-temporal variability of 𝛿18𝑂𝑝

Despite the advantages of using iGCMs to combine with natural archives

to reconstruct paleoclimate dynamics, the direct measurements of histor-

ical variability of water isotopologues are essential for understanding

the hydrological cycle in specific regions. The long-term observations of

𝛿18𝑂𝑝 distribution across a wide range of regions are needed to identify

the atmospheric and land surface processes that control their variabil-

ity. As explored in this thesis, the influence of the NAO on the spatial

distribution of 𝛿18𝑂𝑝 requires longer records to identify their long-term

co-variability and to develop their transfer function. Although desirable,

direct measurements of 𝛿18𝑂𝑝 values at high spatio-temporal resolution,

globally or regionally (e.g., at all weather stations), are expensive, time-

consuming, and logistically infeasible. Direct measurements of 𝛿18𝑂𝑝

values are often unavailable when and where needed [e.g. 244]. Moreover,
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the short-term availability of 𝛿18𝑂𝑝 records may bias their long-term

variability estimates. Collectively, these concerns have increased the

demand for methods that can accurately predict or interpolate 𝛿18𝑂𝑝

values from existing datasets or locations without historical records.

iGCMs can be used to predict 𝛿18𝑂𝑝 values globally instead of their mea-

surement. However, iGCMs are sensitive to initial boundary conditions

and stochastics; thus, while useful for exploring large-scale mechanisms,

they often do not accurately replicate historical variability [245]. Although

data assimilation methods can improve their prediction accuracy, they

are still insufficient compared to station measurements (e.g., GNIP) [246–

248]. Additionally, tracking isotopic tracers in the hydrological cycle in

GCMs doubles their computational demands, making it challenging to

apply them at the required resolution. In contrast, geostatistical models

or isoscapes have been used to statistically predict 𝛿18𝑂𝑝 values based

on their relationship with climate variables such as latitude, elevation,

and surface temperature [249–253]. While precipitation isoscapes have

been useful since their introduction, especially due to their availability,

they are developed with limited predictors and rely on linear regression

as their learning model, which questions their generalisability. Most im-

portantly, isoscapes do not consider the large-scale atmospheric mode of

variability indices (e.g. NAO) as predictors and only rely on strong linear

relationships with surface climate variables (e.g., temperature). However,

the causal mechanism between water isotopologues and surface climate

variables is much more complex and would require advanced modelling

pipelines to predict their variability. Together, these highlight the need

for a robust modelling framework that overcomes all these limitations to

accurately predict 𝛿18𝑂𝑝 values for a specific location.

The Perfect Prognosis Empirical Statistical Downscaling (PP-ESD) method,

which establishes transfer functions between observed large-scale vari-

ables (predictors) and local-scale observations (predictands) [e.g. 4,

254–259], can be used to predict the spatio-temporal variability of local

𝛿18𝑂𝑝 values (Figure 2.4). More specifically, PP-ESD methods rely on

reanalysis datasets to extract informative and relevant predictors that

explain the predictand’s variability and then use their relationships, nor-

mally learned with machine learning models, to predict their historical

or future variability. For instance, if the transfer function is well-trained

and validated, it can be combined with any GCM outputs to downscale

their future or past climate information to a point scale.

PP-ESD models have several advantages, including low computational

costs; they are bias-free since they rely on observed historical data and

can be combined with any GCM to downscale their outputs to higher

spatial resolution. However, the modelling routines of PP-ESD are labo-

rious and complex, with critical steps that determine the accuracy and

reliability of the predictions. These steps include data preprocessing,

predictor selection and construction, model selection, training, validation,

evaluation, and combining with GCMs for downscaling their predicted

outputs. For instance, selecting the most informative and relevant pre-

dictors generally increases the performance and robustness of PP-ESD

models. The selection should be guided by knowledge of the atmospheric
dynamics that govern a specific regional predictand and should not be
generalized everywhere [260, 261]. Additionally, several machine learning

algorithms have the ability to capture more complex links between pre-
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Figure 2.4: The main features and workflow of PP-ESD implemented in the pyESD package ( [4], P5) (highlighted by the dashed
red box). The station observation (e.g., DWD, GNIP) and reanalysis datasets (ERA5) are used to select the robust predictors for
model training and validation. The trained PP-ESD model can be combined with GCM to generate the past or future predictions of
the predictand. For instance, the combined predicted future climate information can be for climate change impact assessment (not
included in the pyESD package)

dictors and predictands and do not require an explicit assumption of the

distribution of observational data during the optimisation of the learn-

ing model. However, selecting the optimal machine learning algorithm

depends on the predictand variable (e.g., 𝛿18𝑂𝑝 values, precipitation,

and temperature), length of the observational records, spatiotemporal

variability, spatial coherence, regional setting, and temporal stationarity

of the learning model. All these factors make it challenging to use PP-ESD

easily to predict local variability of 𝛿18𝑂𝑝 values, which is very com-

plicated. This thesis explores its applicability by developing a PP-ESD

framework comprising these complex modelling routines. Therefore, as

a complementary methodological objective of this thesis, I developed an

open-source Python PP-ESD software (pyESD) that integrates all the steps

(see Figure 2.4 for an overview of the framework of pyESD) into an effi-

cient modelling pipeline to ensure robustness and accuracy of local-scale

climate predictions. I validated the model’s performance by generating

precipitation and temperature predictions for a sub-hydrological catch-

ment in complex mountainous terrain in southwestern Germany. To

ensure the efficiency of the developed modelling framework, this thesis

first explores the question:
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Q10: How well do the developed PP-ESD models predict temper-

ature and precipitation variability at stations?

After validating the new PP-ESD model for precipitation and temperature

observations, I further explored its potential in predicting the local

spatio-temporal variability of 𝛿18𝑂𝑝 values using the observed large-

scale climate variables, which is more challenging and useful for the

focus of this thesis. I applied developed PP-ESD model to the monthly

𝛿18𝑂𝑝 values from the GNIP stations across Europe with measurements

of more than 30 years. This leads to the question:

Q11: Can machine learning in the PP-ESD framework be used

to emulate the local spatio-temporal variability of 𝛿18𝑂𝑝 values

across Europe?

If the modelling framework performs as better as or more than the iGCM,

then it would have the potential to replace or complement the explicit

diagnostics of water isotopologues in the computationally expensive

climate models. Additionally, the PP-ESD can be combined with iGCMs to

downscale predicted low-resolution 𝛿18𝑂𝑝 values to a point scale where

proxy material is located and contribute to their interpretation. Besides,

the station-based PP-ESD can be used as an emulator to fill all the missing

𝛿18𝑂𝑝 values data in the GNIP stations by specifically including their

large-scale drivers and localised conditions instead of using generalized

interpolation techniques. Furthermore, the predictor selection method

used to select the robust predictors for each station 𝛿18𝑂𝑝 values can help

determine how large-scale climate variables control their variability.
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This thesis demonstrates the importance of integrating isotopic proxy

data with iGCMs model output for reconstruction of paleoclimate dy-

namics and paleoenvironmental conditions. Overall, this thesis shows

how iGCMs can resolve some of the uncertainties associated with proxy

reconstruction by proposing a new framework for using simulated cli-

mate variables to disentangle proxy signals from others and also evaluate

the non-stationarity of proxy transfer functions for reconstructing paleo-

climate dynamics. These are addressed with two main research objectives

(Part 1; Section 3.1 & Part 2; Section 3.2) on paleoclimate dynamics re-

construction and a complementary objective (Part 3; Section 3.3) that

explores a statistical modelling framework of emulating 𝛿18𝑂𝑝 values

that can replace or complement iGCMs. The complementary objective is

important since it addresses the high computational cost demand of per-

forming paleoclimate experiments with iGCMs and proposes a flexible

framework for simulating spatio-temporal variability of 𝛿18𝑂𝑝 values

with model outputs. Part 1 (Section 3.1) demonstrates how iGCMs can be

used to disentangle climate signals from topography (tectonic) isotopic

signals imprinted in proxy materials to accurately reconstruct the past

surface elevation of the European Alps. Part 2 (Section 3.2) demonstrates

how iGCMs can be used to understand the causal mechanisms between

(1) the large-scale atmospheric mode of variability (e.g., NAO) and (2)

the WAM system and its atmospheric dynamics and 𝛿18𝑂𝑝 values (as

the proxy variable reconstructed from natural archives). Altogether, this

thesis addresses the use of iGCMs to resolve the two main challenges

of using proxy records to reconstruct paleoclimate dynamics (i. e., disen-

tangling climate signals from non-climate signals and the assumption of

stationarity of transfer functions). Here, I outline the research objectives

and the strategies employed to address them. However, I highlight that

details of the methods can be referred from the respective manuscripts

in the Appendix (Part VII).

3.1 Part 1: Reconstructing the Paleoelevation of
the Alps

This part comprises topographic sensitivity experiments and Middle

Miocene climate simulations that address questions 1-6 (Q1-Q6) in three

manuscripts P1-P3 (in Part V). The buildup research questions and key

findings are:

Q1: How much isotopic (𝛿18𝑂𝑝) and regional climate signal (and

where) would different west-to-east surface uplift scenarios of the

Alps produce?

The topographic sensitivity experiments for the diachronous surface uplift
scenarios indicate Δ𝛿18𝑂𝑝 values (i. e., the difference between 𝛿18𝑂𝑝 values at
low- and high-elevation regions) of up to -8 % across the Alps, primarily due to
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changes in orographic precipitation and adiabatic lapse rate changes in surface
temperature (published in P1).

Q2: To what extent do changes in the topography of the Alps affect

the atmospheric circulation, moisture transport, and tropospheric

dynamics of the regional climate across Europe?

The simulated climate responses to changes in the Alps’ topography indicate
significant changes in synoptic-scale atmospheric pressure systems in the North-
ern Hemisphere (e.g., shifts of the pressure dipole axis and location of centres
of action of the pressure systems), changes in moisture transport distance and
pathways, and large-scale atmospheric dynamics that affected the precipitation
of adjacent far-field regions of the Alps (published in P1).

Q3: Does ECHAM5-wiso adequately simulate the Middle

Miocene regional climate and 𝛿18𝑂𝑝 well across the Alps and

Europe?

The Middle Miocene warming patterns simulated agree with the reconstruction
from paleobotanical temperature records, precipitation patterns are consistent
with herpetological fossil assemblages, and the 𝛿18𝑂𝑝 values agree with the
magnitude of paleo-meteoric water 𝛿18𝑂𝑝 from pedogenic carbonates and
phyllosilicates across Europe (published in P2).

Q4: How much isotopic (𝛿18𝑂𝑝) signal would the changes in the

Alps topography and Middle Miocene climate produce?

The diachronous surface uplift scenarios of the Alps with Middle Miocene
conditions still produceΔ𝛿18𝑂𝑝 values of range -4 to -8 ‰ across the Alps, which
is significant enough to be recorded by geological archives for reconstructing its
paleoelevation and also agrees with the proxy reconstructions (to be submitted
in P3).

Q5: To what extent does the Middle Miocene climate and surface

uplift affect the isotopic lapse rate across the Alps?

The simulated isotopic lapse rates become shallower or decrease by ~1.0 ‰ km-1

in response to the Middle Miocene conditions compared to the PI period and
vary within the range of ±1.5 ‰ km-1 for the diachronous surface uplifts of the
Alps, with spatial differences around the Alps (to be submitted in P3).

Q6: Does using the contemporary isotopic lapse rate across the

Alps overestimate or underestimate the Middle Miocene paleoel-

evation across the Alps?

Integrating the simulated Miocene lapse rates with proxy reconstructions
indicates an overestimation of the Central Alps’ paleoelevation by ~1.5 km
when the isotopic lapse rate is assumed stationary through time and space from
present-day (to be submitted in P3).

The above research questions enable the test of the hypothesis:
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Hypothesis (H1): Diachronous west-to-east surface uplift of the

Alps and Miocene global climate changes would impact the

regional climate and, therefore, influence the 𝛿18𝑂𝑝-elevation

gradient (i. e., the isotopic lapse rate).

If this is true, it will violate their assumption of stationarity in paleoel-

evation estimates using stable isotope paleoaltimetry. This would have

implications for interpreting the Alps’ topographic evolution and com-

plicate understanding its geodynamics evolution and surface processes.

To resolve hypothesis H1, the following research strategies were used.

3.1.1 Research strategies for H1

In this part of the thesis, I used ECHAM5-wiso to perform topographic

sensitivity and paleoclimate experiments to disentangle the climate

and topography effects on isotopic signals reconstructed from geologic

archives to estimate the past surface elevations of the Alps. Since the

kinematic framework of the geodynamic evolution of the Alps is still

debated and its surface uplift histories remain scarce, I generated a series

of topographic configurations with two free parameters: (1) the elevation

of the Western-Central Alps (Wx) and (2) the elevation of the Eastern Alps

(Ex), to account for all the possible diachronous surface uplift scenarios

through time. The elevations were set as a fraction of their present-

day value, incrementally ranging from 0 % to 200 %. The topographic

configuration W2E1, for example, therefore consists of the West-Central

Alps and Eastern Alps set to 200 % and 100 % of their modern elevation,

respectively (see P1 in Part V). The main focus of these experiments

was to quantify the effect of the specific topographic configurations on

𝛿18𝑂𝑝 values and regional climate variables to determine if the signals

are sufficient to be reflected in geologic archives (Q1). Hence, in the

model setup, all other boundary conditions were kept constant at PI

conditions (e.g., pCO2, orbital parameters, sea surface temperature). I

analyzed the effect of topography on regional climate surface variables,

moisture transport, atmospheric circulation patterns (NAO, EA, and

SCAN), atmospheric dynamics, and isotopic lapse rate (Q2).

Since the first set of experiments only considered topographic changes of

the Alps while keeping the global climate constant, I performed further

simulations to explore the combined effect of the elevation changes under

Middle Miocene conditions. I prescribed the realistic topographic con-

figurations (e.g., 200 % West-Central Alps) under two pCO2 conditions

(i. e.., 278 and 450 ppm) of the Middle Miocene paleoenvironments (i. e..,
vegetation, palaeogeography, sea surface temperatures, etc.). The Miocene

simulations were compared to paleoclimate and isotopic records across

continental Europe (Q3) to evaluate the model performance in repre-

senting the Miocene climate using the paleoenvironmental conditions.

The selected topographic configurations for the Miocene experiments are

based on previous paleoelevation estimates and geodynamic evolution

reconstructions. Specifically, the mean surface elevation of the Central

Alps in the Miocene has been suggested to be higher ( 200 % of mod-

ern; >4400 m) than its present-day value. Therefore, I considered the

topographic scenarios with 200 % West-Central Alps and incrementally
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increased the elevation of the Eastern Alps from 0 % to 200 % due to the

lack of paleoelevation estimates in the region. From these experiments, I

investigated the effect of the specific topographic scenarios and Middle

Miocene global changes on 𝛿18𝑂𝑝 values and regional climate variables

(Q4). I calculated the isotopic lapse rates for the different scenarios in

the Miocene and compared them to their respective estimates under the

PI conditions. With this, I estimated the changes in surface uplift and

Miocene paleoenvironment on the isotopic lapse rates around the Alps. I

used the simulated isotopic lapses to recalculate the paleoelevation of

the Central Alps from coeval proxy records and then quantified the un-

certainties associated with the assumption of stationarity for the isotopic

lapse rates from modern.

3.2 Part 2: Reconstructing Paleoclimate
Dynamics

This section presents time-slice (paleo)climate simulations with Present-

Day (PD), Pre-Industrial (PI), Mid-Holocene, Last Glacial Maximum

(LGM), and Mid-Pliocene environmental conditions. These simulations

analyse the hydroclimate and associated 𝛿18𝑂𝑝 patterns changes across

Europe driven by the large-scale atmospheric circulation patterns in the

Northern Hemisphere (NAO and EA) and across West Africa by the West

African Monsoon (WAM) dynamics. The analysis allows exploring the

causal links between local isotopic variability and large-scale drivers

and how these relationships change in past climates. Such information

is relevant for the accurate interpretation of proxy reconstruction. The

simulations address questions 7-9 (Q7-Q9) in a manuscript P4 (in Part VI)

and complementary results S1 (in Part VI). The specific questions and

key findings are:

Q7: How did the WAM and associated atmospheric dynamics

respond to changes in paleoenvironmental conditions during the

Late Cenozoic?

The simulated responses reveal the strongest strengthened and more northward
extent of the WAM during the Mid-Holocene, despite the enhanced hydrological
cycle in the Mid-Pliocene. This was due to the pronounced meridional temperature
gradient that drives the low-level westerlies, an increase in evaporative recycling
through the expansion of vegetation in the Sahel-Sahara, and the northward shift
of the African Easterly Jet (published in P4).

Q8: Does the relationship (or transfer function) between 𝛿18𝑂𝑝

and climate variables over the WAM region remain constant

through the different paleoclimates of the Late Cenozoic?

The analysis suggests that the estimated relationship between 𝛿18𝑂𝑝 values
and climate variables (temperature and precipitation) is non-stationary. This
suggests variations in the causal mechanism linking the proxy signal and climate
variable and affects the paleoclimate reconstructions (published in P4).
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Q9: How and where does the polarity of the East Atlantic (EA)

pattern phase affect the NAO-𝛿18𝑂𝑝 and climate variables across

Europe?

The findings indicate that the polarity of the EA indices influences the stationarity
of the transfer function (i. e., the spatial relationship between NAO-𝛿18𝑂𝑝 and
climate variables), which is crucial for reconstructing past NAO variability. The
causal analysis estimates also suggest that the winter NAO affects the subsequent
summer NAO-𝛿18𝑂𝑝 relationship (presented in S1).

Altogether, the above research questions enable the test of the hypothe-

sis:

Hypothesis (H2): The impact of atmospheric dynamics and large-

scale variability mechanism on local proxy variables (e.g., 𝛿18𝑂𝑝)

varies across different paleoclimates.

If this is valid, the contemporary transfer functions established on his-

torical records would be biased, leading to reconstructions that are

not entirely accurate. To resolve hypothesis H2, the following research

strategies were used.

3.2.1 Research Strategies for H2

This part of the thesis demonstrates how iGCMs can be used to determine

the changes in the relationship between large-scale atmospheric circu-

lation dynamics and local proxy signals (𝛿18𝑂𝑝 values) through time

and space. This is important since it helps determine to what extent the

proxy transfer function can be used in reconstructing past atmospheric

dynamics variability. Specifically, this part focuses on understanding

the causal mechanisms and the potential changes in the link between

𝛿18𝑂𝑝 values that are imprinted in proxy materials and hydroclimate

related to the (1) WAM variability through the Late Cenozoic and (2)
NAO index variability in the historical calibration period. The simulated

variability of 𝛿18𝑂𝑝 values in response to the different past environmental

conditions (from present-day to Mid-Pliocene) was used to investigate the

changes in its relationships with the large-scale atmospheric dynamics

patterns and regional hydroclimate variability (e.g., precipitation and

temperature). The historical simulations (1979-2014) performed following

the Atmospheric Model Intercomparison Project (AMIP) protocol were

used to validate the model performance against observations:

1. The simulated precipitation and temperature patterns and their

seasonality were compared with observed and reanalysis datasets

across the WAM region. Additionally, the associated 𝛿18𝑂𝑝 values

were compared to the available GNIP stations globally. The results

indicated that ECHAM5-wiso represents the WAM dynamics and

the 𝛿18𝑂𝑝 values’ spatio-temporal variability reasonably well (see

P4 in Part VI).

2. The comparison of the simulated hydroclimate patterns with ob-

servations and reanalysis datasets across Europe also indicated

similarly good performance. The model outputs were used to con-

struct the seasonal NAO and EA indices for winter and summer.
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These indices were computed as the first two leading principal com-

ponents of EOF analysis using the seasonal mean sea level pressure

(SLP) anomalies fields over the North Atlantic-European region

(20-80 °N, 80 °W-40 °E) (S1; Figure 1). Before the EOF analysis, a

spatial weighting of latitude was applied to geographically equalize

the pressure anomalies fields [262]. The simulated-based seasonal

NAO index and its associated covariance matrix of the principal

components’ time series were compared to their equivalent es-

timates from instrumental records and reanalysis datasets (i. e..,
ERA5 [196, 197] and NCEP/NCAR [263] reanalysis products) (S1;
Figure 1 and Figure 2). The station-based instrumental NAO index

was computed as the normalized SLP difference between Gibraltar

and Iceland stations [264]. Overall, the simulated and observed

NAO index comparison indicates good agreement and consistent

centres of action. However, the model-observed consistency was

more accurate in winter than in summer. This is partly due to

the predominant control of NAO on regional climate inter-annual

variability in winter than summer (see S1; Figure 3 and Figure 4 in

Part VII).

To determine the WAM and its atmospheric dynamics changes through

the Late Cenozoic, I computed the long-term seasonal anomalies of the

relevant climate variables of the different past climates compared to PI.

Specifically, I analyzed the changes in the low-level southwesterlies flow,

meridional temperature gradient across the WAM region, surface heat

fluxes, Africa Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), Intertropical

Discontinuity (ITD), and Shallow Meridional Cell (SMC) in the past

climates. Additionally, I compared the simulations by ECHAM5-wiso to

the model outputs of the PMIP4 experiments. Furthermore, model-based

mean annual precipitation (MAP) estimates were compared to available

proxy-based MAP reconstruction across Africa. Most importantly, the

higher magnitude of precipitation increase and northward extent of

pollen-based MAP estimates in the Mid-Holocene across West Africa were

compared to the model estimates. To evaluate the potential changes in the

relationship between proxy signals (here 𝛿18𝑂𝑝 values) and local-scale

(grid box) surface climate variables (here precipitation and temperature),

I computed their correlations in the different past climates. This would

help determine the potential non-stationarity of the relationship between

the proxy signal and surface climate variables that would not be reflected

in the proxy transfer functions. However, I highlight that the statistical

estimates are only used as surrogates for the potential changes in their

causal mechanism and acknowledge the limitations of such analysis.

Furthermore, to determine how the polarity of the EA index influences the

NAO-𝛿18𝑂𝑝 relationship, I performed a composite analysis by grouping

the monthly datasets into two subsets based on the relative polarity of

the NAO and EA indices. More specifically, the first set consists of equal

phases (hereafter "EQ"), which comprises seasons with NAO and EA

indices of the same sign (e.g., winters with positive NAO and EA indices),

and the second set is opposite phases (hereafter "OP"), which comprises

seasons with NAO and EA indices of opposite signs (e.g., winters with

positive NAO index and negative EA index). Within each set, I computed

the inter-annual correlation between the NAO index and 𝛿18𝑂𝑝 values

to determine if the polarity of the EA index influences the NAO-𝛿18𝑂𝑝
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relationship. Additionally, I computed the seasonal, long-term difference

of 𝛿18𝑂𝑝 values, temperature, and precipitation between the EQ and OP

groups to understand the causes of the changes. I also evaluated how

the polarity and intensity of the winter NAO index affect the subsequent

summer NAO-𝛿18𝑂𝑝 relationship using Granger causality statistical

analysis (see S2 in Part VII for more details). The analysis collectively

reveals the sensitivity of the relationship between the NAO index and

the local proxy signal (transfer function) to other atmospheric modes of

variability and seasonality.

3.3 Part 3: Machine Learning Framework for
Predicting the Variability of local 𝛿18𝑂𝑝

values

This section comprises method development that explores whether the

explicit diagnostics of water isotopologues in iGCMs can be emulated

with machine learning models to statistically predict the local 𝛿18𝑂𝑝

values variability using large-scale variables. The proposed statistical

framework is first validated and evaluated on precipitation and temper-

ature weather stations in P5 (in Part VII). The modelling pipelines are

implemented into well-structured, easy-to-use, robust, and open-access

Python software (pyESD; published in P5). Subsequently, in a comple-

mentary analysis, the developed model is used to explore its potential

for predicting 𝛿18𝑂𝑝 variability for GNIP stations in Europe (S2). The

specific questions addressed and key findings are:

Q10: How well do the developed PP-ESD models predict temper-

ature and precipitation variability at stations?

The developed modelling pipelines in the empirical statistical downscaling
framework show significant performance with explained variance, 𝑅2 of > 0.7 for
precipitation and 𝑅2 of > 0.9 for temperature stations. Combining the established
transfer functions of the stations with GCM output for future projections
generates robust and high-resolution climate change information at the point
scale in the hydrological catchment (published in P5).

Q11: Can machine learning in the PP-ESD framework be used

to emulate the local spatio-temporal variability of 𝛿18𝑂𝑝 across

Europe?

The findings suggest that the machine learning framework can predict the
spatio-temporal variability of 𝛿18𝑂𝑝 across Europe, outperforming the iGCM
ECHAM5-wiso to a significant extent. The chosen predictors highlight the
importance of large-scale synoptic circulation patterns as key drivers of local-
scale 𝛿18𝑂𝑝 variability (presented in S2).

These questions are resolved in a complementary objective of this thesis:
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Objective (O1): To investigate whether machine learning can

complement or substitute the stable water isotopes explicit in

iGCMs for predicting the spatio-temporal variability of local

𝛿18𝑂𝑝 values using large-scale atmospheric variables.

3.3.1 Research Strategies for O1

Here, I developed a new framework for using machine learning to

downscale climate information to a point scale. The Python-based PP-ESD

was first validated in a complex, mountainous hydrological catchment

(Neckar) in southwestern Germany for downscaling future climate model

outputs of precipitation and temperature. I used observations from

German weather stations (DWD) and ERA5 reanalysis [196, 197] to

construct the predictors, which included large-scale circulation pattern

indices (e.g., NAO, EA, and SCAN). The predictive skills of these potential

predictors were evaluated before selecting the robust predictors for the

individual stations. This helps explain the physical dynamics of how

the large-scale variables control the station 𝛿18𝑂𝑝 values. After testing

the developed modelling routines and validating their performance on

the weather stations, I then used the same framework to predict the

spatio-temporal variability of 𝛿18𝑂𝑝 values of 39 GNIP stations in Europe

based on their sufficient data availability (S2; Figure 1). To evaluate the

added value of using machine learning, I compared the GNIP records

with the present-day 𝛿18𝑂𝑝 simulations by the ECHAM5-wiso presented

in Part 2. Overall, the results show good agreement between the GNIP

and simulated 𝛿18𝑂𝑝 values, although varies among the stations (see

S2 in Part VII). The models were trained for each station and were

done in many experiments with different algorithms to determine the

best framework for predicting the 𝛿18𝑂𝑝 values. In total, more than

390 station-based models were generated to explore the applicability

of the PP-ESD to station 𝛿18𝑂𝑝 values. Note that this is the first time
localized conditions and separate machine learning based-models are
developed for the considered GNIP stations. The models were trained

with a “time series split” cross-validation (CV) setting and employed

mean absolute error (MAE) as the optimization metric. This implies that

in each CV iteration of the model training, subsequent blocks of data

(validation period) that do not go into training are used to validate model

performance. Aside from validation in the training period, the models

were independently evaluated on data from 2013 to 2018 (which was

never part of the training, if available) for each station (S2; Figure 1). I then

compared the predictions for the training period (using CV predictions)

and testing period to the actual observed GNIP measurements and

ECHAM5-wiso simulated 𝛿18𝑂𝑝 values using the Pearson correlation

coefficient (PCC) and MAE.
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This section comprises the summary and discussion of the specific objec-

tives outlined in Part II, highlighting their significance and implications.

Section 4.1.1 summarises the main findings of Part 1 (on reconstruct-

ing the paleoelevation of the Alps) from manuscripts P1 to P3, which

are discussed comprehensively in their respective manuscripts (Part V).

Section 4.2.1 presents the main conclusions of Part 2 (on reconstructing

paleoclimate dynamics) from manuscript P4 on West African monsoon

(details in Part VI), and complementary analyses on the influence of

the EA on NAO-𝛿18𝑂𝑝 relationship and its seasonality changes (sup-

plementary results in Part VI). Section 4.3.1 summarises the modelling

framework of using machine learning algorithms to predict the spatio-

temporal variability of 𝛿18𝑂𝑝 values across Europe (Part 3) from model

development manuscript P5 (Part VII) and complementary analyses on

GNIP stations (supplementary results S2 in Part VII).

4.1 Part 1: Reconstructing the Paleoelevation of
the Alps

4.1.1 Summary and Discussion

Q1: How much isotopic (𝛿18𝑂𝑝) and regional climate signal (and

where) would different west-to-east surface uplift scenarios of the

Alps produce? (details in Boateng et al. [1] (P1))

The topographic configurations of the Alps result in significant changes

in 𝛿18𝑂𝑝 values, mainly due to associated changes in orographic pre-

cipitation (“amount effect”) and adiabatic lapse rate-driven localised

changes in near-surface temperature (“altitude effect”). The impact of the

topographic changes on precipitation (up to 125 𝑚𝑚/𝑚𝑜𝑛𝑡ℎ increase)

affected farther regions adjacent to the high-elevation region of the Alps,

especially when the Western-Central Alps are uplifted by 200 % of

modern topography. These far-field precipitation changes are due to

the topographic-induced changes in large-scale atmospheric dynamics

across Europe. On the other hand, the temperature changes (up to 10

°C cooling) are only significant in regions of modified topography. Al-

together, the topographic-induced regional climate changes resulted in

distinct profiles of 𝛿18𝑂𝑝 values across the Alps. The isotopic profiles

indicate a decrease in 𝛿18𝑂𝑝 values from west to east and from south

to north. Such patterns highlight the influence of increasing distance

away from the oceanic source (“continentality effect”) on 𝛿18𝑂𝑝 spatial

distribution. The difference in 𝛿18𝑂𝑝 values along the profiles is estimated

to be less than -2 ‰ in low-elevation regions adjacent to the mountains

and up to -8 ‰ between the low- and high-elevation (Δ𝛿18𝑂𝑝) regions

of the modified topography experiments. These imply that the 𝛿18𝑂𝑝

values are highly sensitive to topographic variations to produce distinct
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isotopic profiles that would reflect the diachronous surface uplift (i. e.,
west-to-east surface uplift propagations). These simulated magnitudes

of Δ𝛿18𝑂𝑝 values suggest that the expected isotopic signal would be

significant enough to be preserved and measured in geologic archives.

Moreover, the simulated slight 𝛿18𝑂𝑝 differences of 1 ‰ -2 ‰ across the

low-elevation sites support the use of the 𝛿-𝛿 paleoaltimetry approach

and highlight the importance of sampling far-field low-elevation sites to

differentiate between the different surface uplift scenarios.

Q2: To what extent do changes in the topography of the Alps affect

the atmospheric circulation, moisture transport, and tropospheric

dynamics of the regional climate across Europe? (details in
Boateng et al. [1] (P1))

Despite the Alps being a relatively small orogen, different surface uplift

scenarios result in changes to the large-scale atmospheric dynamics,

thereby driving changes in far-field precipitation patterns. Back-trajectory

analyses indicate a greater influence of topography changes on moisture

transport distance and pathways, particularly towards the eastern and

southern flanks of the Alps, compared to the western and northern

localities. The results suggest a predominant transport of summer air

masses from the North Atlantic, along with some continental sources

from Western Europe, depending on the topographic configuration and

the target location. Topographic configurations with higher elevation

over the Western-Central Alps (W2) result in shorter moisture transport

distances from the North Atlantic. Such scenarios cause air masses

to ascend over the Western Alps at a higher vertical level due to the

orographic barrier before descending towards the eastern transects. The

air mass trajectories towards the eastern flank of the Alps tend to travel a

shorter distance at higher altitudes when the topography of the Eastern

Alps is elevated but travel a longer distance towards the southern flank.

These changes in vapour transport are expected, as mountain barriers

force the air to rise, and depending on the strength of the flow, the

cross-barrier flow could be blocked or deflected towards precipitation

regions. The atmospheric conditions of the moisture source region also

influence the precipitation type and amount in the target regions.

The altitude cross-sections of vertical wind velocities (omega), relative

humidity, and cloud cover across the Alps suggest that the different

surface uplift scenarios would induce sufficient orographic lifting to

create notable updrafts, leading to the formation of thick clouds in the

troposphere. The W2 experiments show a more significant influence

on the vertical atmospheric structure than the W1 (i. e.., experiments

with 100 % West-Central Alps) experiments, especially at the upper

tropospheric levels. The W2 cross-sections exhibit strong ascent velocity

in the Western-Central Alps up to the upper troposphere, with low-level

subsidence in the Eastern Alps. Overall, due to the size and orientation

of the Alpine orogen relative to the dominant wind fields, the regional

precipitation dynamics’ response to diachronous surface uplift results

in a pattern that is unique and highly sensitive to the altitude of the

Western-Central Alps.

The response of atmospheric circulation patterns suggests that changes

in topography can induce alterations in the synoptic-scale atmospheric
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pressure systems in the Northern Hemisphere. Different topographic

configurations lead to changes in the NAO patterns by shifting its centres

of action and pressure dipole axis and altering its pressure gradient

strength, thereby affecting moisture transport to the continent. Such

large-scale changes would modify moisture and heat transport pathways,

wind patterns, and the intensity of storms and precipitation patterns

across the North Atlantic and surrounding continents. For instance, the

eastward shift and intensification of positive anomalies over Central

Europe in response to the W2 configurations could likely reduce rainfall

across central and southern parts of Europe due to northward moisture

flow. However, such decadal modes of variability would not be reflected

in low-resolution geologic archives used for stable isotope paleoaltimetry

but would rather provide insights into the potential impact on the spatial-

temporal variability of 𝛿18𝑂𝑝 values. Changes in large-scale patterns can

also influence the seasonality of hydroclimate variability, affecting the

timing of carbonate formation across the Alps ( [e.g. 265]). Altogether,

the results indicate that different topographic configurations yield unique

atmospheric dynamics responses, which should be considered when

investigating past 𝛿18𝑂𝑝 changes.

Q3: Does ECHAM5-wiso adequately simulate the Middle

Miocene regional climate and 𝛿18𝑂𝑝 well across the Alps and

Europe? (details in Botsyun et al. [2] (P2))

The simulated near-surface mean annual temperature (MAT) and mean

annual precipitation (MAP) patterns across continental Europe are com-

pared to proxy reconstructions. These include plant fossil-derived MAT

(using the coexistence approach) and MAP estimates based on the pale-

obotanical and ecophysiological structures of herpetological assemblages.

The simulations estimate an MAT of 12.0 °C for Mio278 conditions and 15

°C for Mio450 conditions. The continental response to Miocene conditions

shows greater warming across the high elevations (> 1 km) of the Alps,

with temperature increases of 3.4 °C and 7.2 °C warmer than the PI for

Mio278 and Mio450, respectively. The MAT estimates from the Mio450

experiment align well with the plant fossil reconstructions, whereas the

Mio278 estimates suggest a colder MAT than the proxies indicate. This

discrepancy implies that increased pCO2 conditions contribute to better

alignment between MAT estimates from models and proxy data.

The simulated MAP distribution across Europe indicates bidirectional pat-

terns, with increases over Northern Europe (up to 50 𝑚𝑚/𝑚𝑜𝑛𝑡ℎ) and de-

creases towards Western and Southern Europe (down to 60 𝑚𝑚/𝑚𝑜𝑛𝑡ℎ).

This shift in precipitation anomalies is more pronounced under Mio450

than Mio278 conditions. The strong latitudinal gradient in paleopre-

cipitation has also been suggested by proxy reconstructions during the

warm Miocene, indicating warm and dry conditions with subdesertic

vegetation over the northwestern Mediterranean and a humidity-adapted

plant environment to the north ( [e.g. 266–268]. Despite the strong lati-

tudinal gradient, most European regions experienced less precipitation

than in the PI period, aligning with herpetofauna fossil reconstructions.

However, paleobotanical MAP estimates suggest wetter conditions in the

Miocene than in the PI. Comparisons of the Miocene simulations with

other GCMs that participated in the first phase of Miocene inter-model

comparison experiments (MioMIP1) show consistent MAT and MAP
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Figure 4.1: Annual mean 𝛿18𝑂𝑝 values are longitudinal (a) and latitudinal (b) spatial profiles for the different topographic
configurations in the Middle Miocene and its comparison to 𝛿18𝑂𝑤 from geologic materials (proxies) across low- and high-elevation
sites. The black lines represent the control (i. e., W1E1) topographic scenario with Pre-Industrial (PI: solid) and Middle Miocene
(Mio278: dotted, Mio450: dashed) boundary conditions. Modern topographic profiles are shown along the swaths (shown in c). The
proxy-based 𝛿18𝑂𝑤 estimates (shown with boxplot) are from pedogenic carbonates over the Northern Alpine foreland basin (Swiss
Molasse Basin; Krsnik et al. [173]) and the Digne-Valensole basin; Cojan et al. [269]) and contained clay minerals from the Swiss
and Bavaria freshwater Molasse basin; Bauer et al. [270]). The high-elevation sites are based on hydrogen isotopes from syntectonic
high-Alpine fault zone silicates from the Simplon Fault Zone ( Campani et al. [140] and Mancktelow et al. [271]). The coloured circles
represent the reconstructed 𝛿18𝑂𝑤 error. Note that the proxies’ locations are extrapolated onto the profiles to compare them with the
simulated magnitudes.

estimates.

The simulated 𝛿18𝑂𝑝 values are in agreement with the reconstructed

𝛿18𝑂 of paleo-meteoric water (𝛿18𝑂𝑤) from pedogenic carbonates [173,

269] and contained clay minerals (i. e.., bentonites and smectite-rich

tuffs) [270] over the low-elevation regions around the Alps (Fig 6). Most

of the reconstructed 𝛿18𝑂𝑤 values fall within the simulated 𝛿18𝑂𝑝 range

of -3 to -8 ‰ across the low-elevation regions adjacent to the Alps for

all Middle Miocene experiments. However, some of the clay mineral-

based 𝛿18𝑂𝑤 values slightly exceed the simulated range and show the

widest spread of 𝛿18𝑂𝑤 values and the highest reconstruction 𝛿18𝑂𝑤

error of up to ±3 ‰. At high-elevation sites, 𝛿18𝑂𝑤 values (-12 to -15 ‰)

calculated from hydrogen isotope (𝛿𝐷) reconstructions from syntectonic

high-Alpine fault zone silicates [140, 271] align only with model estimates

from higher topography scenarios (Figure 4.1). This indicates that the

paleoelevation across the Central Alps during the Middle Miocene

was significantly higher than present. Overall, the consistency between

modelled and reconstructed 𝛿18𝑂𝑤 supports the integration of both

GCMs and proxy material to ensure accurate reconstruction of past

surface elevations.

Q4: How much isotopic (𝛿18𝑂𝑝) signal would the changes in the

Alps topography and Middle Miocene climate produce? (details
in Boateng et al. [to be submitted] (P3))
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The different topographic configurations under Miocene conditions re-

sulted in greater changes in 𝛿18𝑂𝑝 values in areas of modified topography

and slight changes in adjacent low-elevation regions (< 2 ‰) (see P3).

Specifically, 𝛿18𝑂𝑝 differences of up to -10 ‰ and -8 ‰ are estimated

across the high-elevation modified regions for the Mio278 and Mio450

conditions (Figure 4.1). These estimates are similar to the topography-

induced isotopic signal using PI conditions in Q1. The Δ𝛿18𝑂𝑝 values

(difference between the low-elevation regions and high-elevation regions)

are ~2 ‰ less in the Middle Miocene compared to the PI climate. The

Δ𝛿18𝑂𝑝 values range from -4 to -6 ‰ for the topographic configurations

in Miocene but reach -8 ‰ in PI. This implies that changing topography

still produces an isotopic signal significant enough to be reflected in geo-

logical material under a warmer past climate. The simulated changes in

𝛿18𝑂𝑝 values can mainly be attributed to localized adiabatic temperature

changes, orographic precipitation, and the associated large-scale precipi-

tation changes. The distinct 𝛿18𝑂𝑝 profiles across the Alps highlight the

sensitivity of meteoric water isotopes to both direct (altitude) and indirect

global forcings (e.g., palaeogeography and pCO2). The sensitivity of the

European climate to the Alps’ topography on the local to regional scale,

as demonstrated in this thesis, stresses the importance of an accurate

representation of past mountain elevations in climate models. Although

topographic changes caused by rifting processes often have a second-

order forcing factor on global climate responses, their impacts affect the

gradients of regional climatic variables, biodiversity, and landscape.

Q5: To what extent do Middle Miocene climate and surface uplift

affect the isotopic lapse rate across the Alps? (details in Boateng
et al. [to be submitted] (P3))

The estimated annual isotopic lapse rate for the topographic configura-

tions under Miocene conditions for the western and northern transects

around the Alps indicates notable spatio-temporal changes. The linear

regression used to estimate the lapse rate shows a statistically significant

relationship between 𝛿18𝑂𝑝 values and elevation, with a coefficient of

determination (𝑟2
) of 0.85-0.99. The lapse rate estimates shallow (or

decrease) by ~1.0 ‰ km
-1

and 0.5 ‰ km
-1

in the Mio450 and Mio278

conditions, respectively, compared to the PI. Moreover, different topo-

graphic configurations result in lapse rate variations of up to ±1.5 ‰

km
-1

differences compared to the unmodified topographic configuration.

The estimated lapse rates in the PI were 0.19 ‰ km
-1

higher over the

western transect than over the northern transect of the Alps. These spatial

differences increase further (by up to 0.4 ‰ km
-1

more than in PI) in the

Middle Miocene, due to the more depleted 𝛿18𝑂𝑝 values over the Western

Alps in the Middle Miocene compared to the northern foreland basin

of the Alps. The spatial changes can be attributed to the seasonal distri-

bution of moisture from the North Atlantic and the increasing distance

from the moisture source, leading to more depleted air masses toward

the northern and eastern transects. Moreover, moisture redistribution

around the Alps due to orographic blocking and rainout across the high

topography of the Western-Central Alps also contributes to the spatial

variability of the isotopic lapse rates. Overall, the significant changes in

isotopic lapse rate in response to different surface uplift scenarios and

global climate changes highlight the huge implications of its assumption
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of stationarity for stable isotope paleoaltimetry.

Q6: Does using the contemporary isotopic lapse rate across the

Alps overestimate or underestimate the Middle Miocene paleoele-

vation across the Alps? (details in Boateng et al. [to be submitted]
(P3))

Even though previous studies have suggested that using a modern iso-

topic lapse rate might result in inaccurate estimates of paleoelevation [119,

120], no study has quantitatively determined the magnitude of uncer-

tainties related to this issue across the Alps. The simulated 𝛿18𝑂𝑝 values

in response to Miocene conditions provide an opportunity to use the

paleoclimate-constrained simulated and modern observed isotopic lapse

rates with reconstructed isotopic signals (Δ𝛿18𝑂𝑤) from proxies, to calcu-

late their respective paleoelevation to determine their differences. Hence,

I recalculated the recent Miocene Central Alps paleoelevation based on

𝛿-𝛿 paleoaltimetry by Krsnik et al. [173]. Their Δ𝛿18𝑂𝑤 values were

reconstructed from pedogenic carbonate from three different sections

(i. e.., Fontanen, Jona, Aabach) of the Northern Alpine Foreland Basin

(Swiss Molasse Basin; SMB) and high-Alpine phyllosilicate hydrogen

isotope (𝛿𝐷) values from the Simplon Fault Zone (SFZ). The Δ𝛿18𝑂𝑤

values between the three reference sites and the high-elevation SFZ site

(𝛿18𝑂𝑤 values of -14.6 ± 0.3; Campani et al. [140]) were -8.1 ‰, -8.8 ‰

and -11.5 ‰, respectively. The simulated Miocene Δ𝛿18𝑂𝑝 values (in the

range of -4 to -8 ‰) between the low- (< 500 m) and high-elevation (> 1000

m) regions agree with the estimates from the proxy reconstructions.

The isotopic lapse rates calculated from the Miocene experiments for

the 278 and 450 ppm pCO2 conditions and topographic scenarios (-2.02

to -4.65 ‰ km
-1

), from modern precipitation-based measurements at

weather stations across the northern slope of the Alps (-2.0 ‰ km
-1

;

Campani et al. [140], and from surface rivers globally (-2.8 ‰ km
-1

; Poage

and Chamberlain [139]) were used with the reconstructed Δ𝛿18𝑂𝑤 values

to estimate the Miocene paleoelevation of the Central Alps. The results

indicate that using the local observed modern precipitation-based lapse

rate (-2.0 ‰ km
-1

) overestimates the Miocene Central Alps paleoelevation

by ~1.5 km (Figure 4.2). The median of the paleoelevation estimates using

the varied simulated Miocene lapse rates agrees with the global surface-

water-based isotopic lapse rate (Figure 4.2). The agreement might be due

to the fact that isotopic distribution in global river catchments integrates

long-term climatic processes from different environmental conditions

globally [102, 139, 272] and, therefore, might reflect similar long-term

changes in the Miocene and surface uplift scenarios. The deviations in the

rainfall-based estimates can be due to the sparse distribution of weather

stations (< 10) across the Alps and based on the fact that their records are

event-specific, reflecting only short-term climatic processes. Hence, the

results suggest modern global river-based lapse rate is more efficient than

the rainfall-based lapse rate in the absence of paleoclimate-constrained

lapse rates for reconstructing past surface elevation of orogens.
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Figure 4.2: Paleoelevation estimates of Miocene Central Alps with isotopic lapse rates from (1) Middle Miocene pCO2 scenarios (278
ppm (Mio278); 450 ppm (Mio450)), (2) topographic sensitivity experiments, (3) modern station-based observed precipitation across
the north slope of the Alps (-2.0 ‰ km-1; Campani et al. [140]), and (4) global surface waters (-2.8 ‰ km-1; Poage and Chamberlain
[139]). The calculated ranges of paleoelevations for the different topographic configurations with the lapse rate considered along the
northern and western flanks of the Alps are shown as distribution (boxplot) for the different foreland basin locations shown in (b).
The Δ𝛿18𝑂𝑤 values between the low-elevation foreland basins (i. e., Fontannen (both from Campani et al. [140] and Krsnik et al.
[173]), Jona, and Aabach) and high-elevation site (Simplon Fault Zone; Campani et al. [140]) are from recent reconstructions by
Krsnik et al. [173].

4.1.2 Significance and Implications

This part of the thesis presents the first series of topographic and paleocli-

mate sensitivity experiments that determine the impact of diachronous

surface uplift scenarios of the Alps on regional climate and 𝛿18𝑂𝑝 values.

The goal is to determine whether the isotopic signal imprinted in geologic

materials would be significant enough to reflect the complex diachronous

west-to-east surface uplift scenarios across the Alps. This would enable

the use of stable isotope paleoaltimetry to reconstruct the topographic

evolution of the Alps through time and space. Overall, the results indicate

how iGCMs can be used to isolate the climate signals from non-climate

signals imprinted in proxy records through sensitivity experiments to

improve their interpretation. These findings significantly contribute to
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our understanding of the climate-tectonic interactions within the Earth

system, which are pertinent for simulating past climate variability and

gaining insights into future climate change. The results indicate that

𝛿18𝑂𝑝 values across the Alps are sensitive enough to changes in Alps

topography and global past climates to be reflected in proxy records. This

would facilitate the reconstruction of the Alps’ complex diachronous

surface uplift histories. Such estimates can be used as constraints for

geodynamic and landscape evolution models, aiding in understanding

deep-seated geodynamic and climate-driven surface processes [158, 161,

166, 167, 171].

Additionally, the simulated 𝛿18𝑂𝑝 values in response to paleoenviron-

mental changes reveal spatio-temporal variations in isotopic lapse rates

across the Alps compared to modern values. This highlights the necessity

for refinements in previously published paleoelevation estimates of the

Alps to ensure accurate reconstructions of their geodynamic evolution.

The results also indicated that modern global river-based isotopic lapse

rates are more appropriate than rainfall-based ones when 𝛿18𝑂𝑝 val-

ues of paleo-meteoric waters can not be simulated with iGCMs. The

reason is that the 𝛿18𝑂𝑝 values of the surface rivers reflect long-term

climate changes compared to the 𝛿18𝑂𝑝 values in rain waters since it

is event-specific and does not reflect long-term climate variability. This

finding is more important for stable isotope paleoaltimetry since not

all paleoelevation estimates across different mountain ranges can be

combined with such computationally expensive topographic sensitivity

and paleoclimate experiments.

In essence, accurate estimates of paleoelevations are crucial for achieving

realistic representations of surface conditions in paleoclimate simulations.

This might potentially resolve some of the persistent model-proxy dis-

agreements, such as the controversies regarding wetter or drier Middle

Miocene conditions across Europe. Overall, the results of Part 1 have

demonstrated that iGCMs can be used to isolate climate signals from

tectonic signals of isotopic signatures in geological material to improve

their interpretation in reconstructing paleoenvironmental conditions.

Altogether, the presented studies in Part 1 highlight the importance of

employing paleoclimate-constrained transfer functions, such as isotopic

lapse rates, in reconstructing paleoclimate dynamics and paleoenviron-

mental conditions.

4.2 Part 2: Reconstructing Paleoclimate
Dynamics

4.2.1 Summary and Discussion

Q7: How did the WAM and associated atmospheric dynamics

respond to changes in paleoenvironmental conditions during the

Late Cenozoic? (details in Boateng et al. [3] (P4))

The simulated Mean Annual Precipitation (MAP) anomalies in the

Late Cenozoic revealed the most strengthened WAM conditions in the

Mid-Holocene despite the highest global warming and an enhanced
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Figure 4.3: ECHAM5-wiso simulated mean annual precipitation anomalies relative to (c) Pre-Industrial conditions for (a) Mid-
Pliocene, and (b) Mid-Holocene across Africa. Proxy reconstructions are displayed as filled circles (showing green for wetter and
brown for drier conditions). The Mid-Holocene proxy data are pollen-inferred ( Bartlein et al. [208]; black edge colour) and leaf
wax-inferred ( Tierney et al. [176]; red edge colour) precipitation estimates and the Mid-Pliocene proxy data are based on hydroclimate
multi-proxy compilation by Feng et al. [276].

hydrological cycle in the Mid-Pliocene (Figure 4.3). The WAM seasonal

precipitation anomalies in the Mid-Holocene exhibit bidirectional latitu-

dinal patterns, with an increase of ~150𝑚𝑚/𝑚𝑜𝑛𝑡ℎ over most parts of the

Sahel-Sahara regions (7°N - 30°N) and a decrease of about 30 𝑚𝑚/𝑚𝑜𝑛𝑡ℎ

over the tropical southern coastal regions (2°N - 6°N)(Figure 4.3). The

atmospheric dynamics and surface heat fluxes associated with MAP

anomalies indicate that the orbitally induced pronounced meridional

temperature gradient across the WAM region and the high vegetation

fraction across the Sahara in the Mid-Holocene strengthened the WAM.

More specifically, the strengthened conditions were associated with a

northward shift of the core of the AEJ, a higher altitudinal reach of

the monsoon (deeper monsoon depth), increased moisture recycling

through latent and sensible heat fluxes, and a higher position of the

ITD. Additionally, the changes in atmospheric dynamics suggest that the

weakening of the AEJ is not solely responsible for the strengthening of the

WAM [178, 273–275], especially when the global climate is predominantly

controlled by orbital forcings. However, the northward shift of the AEJ

plays a crucial role in determining the intensity of the WAM.

The comparison of the simulated MAP anomalies with PMIP4 model

outputs for the Mid-Holocene indicated a consistent increase for all mod-

els but with the highest intensification of the WAM by ECHAM5-wiso.

This might partly be due to the fact that I used higher spatial resolution

(~80 km vs 200 km) than the PMIP4 models and also prescribed realistic

Mid-Holocene vegetation with BIOME6000 [277–280] compared to the

maintained PI vegetation in the PMIP4 Mid-Holocene experiments [20,

68]. Overall, the results underscore the importance of vegetation feedback

and land-atmosphere interactions in climate models for representing

WAM dynamics and variability. Moreover, the comparison of the sim-

ulated MAP anomalies from all the models to pollen-based [208] and

leaf wax-based [176] MAP anomalies across Africa indicates good agree-

ment with ECHAM5-wiso in the magnitude of MAP increase across

Sahel-Sahara region (Figure 4.3 and Figure 4.4). However, all models

underestimate the northward extent of the WAM increase over the Sahara
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Figure 4.4: Comparison of the mean annual precipitation (MAP) anomalies of the latitudinal extent of WAM in the Mid-Holocene for
all models (ECHAM5-wiso (black) and PMIP4 models) to pollen-inferred ( Bartlein et al. [208]; blue circles) and leaf wax-inferred
( Tierney et al. [176]; 1189 magenta stars) precipitation reconstruction. The black shadings denote one standard deviation value from
the regional means of the ECHAM5-wiso simulation. The error bars of the proxies represent the standard errors of the precipitation
reconstructions.

(Figure 4.4). The discrepancy between the models and proxies over the

Sahara can be attributed to some missing processes (e.g., dust loadings,

interactive vegetation, and paleolake conditions) and feedback mecha-

nisms not well represented in the climate models [175, 176, 209–212, 281,

282] or biases in the proxy transfer functions that do not account for the

regional changes caused by significant orbital conditions compared to

the historical calibration period.

Q8: Does the relationship (or transfer function) between 𝛿18𝑂𝑝

and climate variables over the WAM region remain constant

through the different paleoclimates of the Late Cenozoic? (details
in Boateng et al. [3] (P4))

The simulated 𝛿18𝑂𝑝 value anomalies in the WAM season indicate the

most depleted conditions in the Mid-Holocene across the Sahel (de-

creased by -6 ‰). The decrease in 𝛿18𝑂𝑝 values in the Mid-Pliocene
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across the Sahel was insignificant (< 2 ‰) and showed more depleted pat-

terns towards the east. Even though the decrease in 𝛿18𝑂𝑝 values in the

Mid-Holocene and Mid-Pliocene followed their respective strengthening

of the WAM, the spatial patterns between 𝛿18𝑂𝑝 values and precipitation

anomalies differ in the WAM season despite the predominant control of

the “amount effect” on 𝛿18𝑂𝑝 spatio-temporal variability in the region [96,

117, 118]. This suggests changes in the regional climate control on the

isotopic composition of water in the different past climates. The inter-

annual relationships between the simulated monthly means of 𝛿18𝑂𝑝

values and (1) precipitation and (2) near-surface temperature during the

WAM season reveal significantly varied patterns in the Mid-Holocene

compared to the PI, LGM, and Mid-Pliocene. Overall, the PI simulation

shows a north-south bidirectional relationship between precipitation and

𝛿18𝑂𝑝 values, with significant negative correlation coefficients from the

Sahel to the Guinea coast and positive values over the Sahara (significant

up to 25°N). The LGM and Mid-Pliocene show similar patterns but

differ in the strength of the relationship compared to PI. The negative

relationship between the precipitation and 𝛿18𝑂𝑝 values, which implies

that an increase in precipitation amount results in more depletion of

heavy oxygen isotopes, is partly due to (1) the increase in rainfall amount

moistening the atmosphere, reducing rainfall re-evaporation and diffu-

sive fluxes, and ultimately resulting in more negative 𝛿18𝑂𝑝 values in

raindrops; and (2) intense convective activity increasing vertical mixing

in the form of unsaturated downdrafts, which results in more negative

𝛿18𝑂 values of the low-level vapour feeding into subsequent convective

systems with more depleted 𝛿18𝑂𝑝 values [96, 117].

In the Mid-Holocene, the precipitation-𝛿18𝑂𝑝 relationship changes to

overall negative correlation coefficients over the entire continent in the

WAM season (Figure 4.5). Additionally, the strength of the positive

temperature-𝛿18𝑂𝑝 relationship across the Sahel increases compared

to PI (Figure 4.5). The changes can be attributed to the northward

migration of the WAM caused by the pronounced temperature gradient

and evaporative recycling due to the vegetation cover in the Sahara, which

differs from the desert condition in the PI. In general, the significant

changes in the correlation patterns in the different climates, which are

more significant in the Mid-Holocene, suggest the non-stationarity of

the controlling mechanism between 𝛿18𝑂 values and regional climate

dynamics over West Africa. This explains the reason for the model-proxy

disagreement in the Mid-Holocene due to the potential bias of the transfer

functions calibrated on the historical periods. Although the relationships

are only based on empirical evidence and do not reflect the physical

causal mechanisms or multivariate covariance, the results clearly indicate

non-stationarity of the relationship between 𝛿18𝑂 and climate variables

through the different paleoclimate periods of the Late Cenozoic.

Q9: How and where does the polarity of the East Atlantic (EA)

pattern phase affect the NAO-𝛿18𝑂𝑝 and climate variables across

Europe? (supplementary results in S1)

The correlation maps between NAO and EA indices and local-scale

(grid box) climate variables (including 𝛿18𝑂𝑝 values) indicate stronger

relationships in winter than in summer (S1; Figure 4 and Figure 5) and

are consistent with previous studies [e.g. 136, 218, 223, 225, 226, 232, 283].
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Figure 4.5: Spearman correlation coefficients for the inter-annual relationship between the simulated monthly means of 𝛿18𝑂𝑝 and
precipitation amount (right panel) and temperature (left panel) during the WAM months (JJAS). The dot stippling represents the
regions with significant correlation coefficients with a 95 % confidence interval.

This is attributed to the predominant influence of large-scale atmospheric

circulation patterns on the inter-annual climate variability and dynamics

in the North Atlantic-European region in the winter season [216, 217, 220,

221]. For instance, the winter NAO-𝛿18𝑂𝑝 correlation demonstrates a

strong positive relationship across most parts of continental Europe, with

a shift toward a weaker relationship over the Mediterranean region (S1;
Figure 4 and Figure 5). The strong positive correlation can be attributed to

contrasting moisture sources and trajectories associated with the phases

of the NAO. Conditions during the negative phase reflect an increased

frequency of cold easterlies transporting
18𝑂-depleted moisture, while

positive NAO winters are dominated by warmer westerly air masses

transporting
18𝑂-enriched vapour from the North Atlantic Ocean and

the Mediterranean Sea into Central Europe [136, 218, 224, 225, 234]. The

correlation over Iceland indicates strong negative values, leading to a

northeast line of zero correlation, or an axis of polarity, over which the

correlation changes in the North Atlantic (S1; Figure 4).

On the other hand, the winter EA-𝛿18𝑂𝑝 correlation shows strong neg-

ative values over the Mediterranean and parts of Eastern Europe and

positive values over the eastern part of the North Atlantic (S1; Figure 5).

Overall, the opposite correlation patterns of NAO-𝛿18𝑂𝑝 and EA-𝛿18𝑂𝑝

suggest the potential influence of the polarity of the EA (and other tele-

connections) on the NAO-climate relationship. However, in summer, both
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the NAO and EA indices indicate similarly weak positive correlations

over most parts of Europe with 𝛿18𝑂𝑝 values (S1). The varied correlation

patterns between the EA and 𝛿18𝑂𝑝 from summer to winter suggest

possible changes in how the EA influences regional hydroclimate across

different seasons. Additionally, the winter NAO-temperature relationship

indicates similar patterns compared to the winter NAO-𝛿18𝑂𝑝 , highlight-

ing their predominant influence on the 𝛿18𝑂𝑝 distribution across Europe.

The winter NAO-precipitation correlations indicate significantly varied

patterns with a north-south bidirectional gradient, showing a positive

relationship over northern Europe (> 50°N) and negative values over

the southern latitudes (S1; Figure 4). Interestingly, the meridional dipole

gradient of winter NAO-precipitation switches to a west-to-east dipole

gradient for EA-precipitation correlation, with strong positive values

towards southeastern Europe (S1; Figure 4). Altogether, the pronounced

differences in the NAO and EA indices’ relationships with climate vari-

ables and their seasonal changes underscore the complexity of using a

generalized transfer function to construct their past variability.

Evaluating how and where the polarity of the EA affects the relationship

between the NAO and 𝛿18𝑂𝑝 values through composite analysis (i. e.,
time periods with equal (“EQ”) and opposite (“OP”) polarity of the

NAO and EA indices sign (+ or -)) indicated significant changes in the

correlation structure. Overall, EQ conditions shift the winter polarity

axis (i. e., where the correlation sign changes for NAO-climate variables

relationships) more northward and further south for the OP conditions

(Figure 4.6). For instance, in the EQ seasons, the northward shift weakens

the winter NAO-𝛿18𝑂𝑝 correlation in the Mediterranean region, with

some nearby regions even shifting to negative correlation coefficients.

On the other hand, the southward shift of the anti-correlation line in

OP winter season weakens the positive NAO-𝛿18𝑂𝑝 correlation over

the British Isles and shifts the strong positive relationship over Central

Europe further to southern and eastern Europe (Figure 4.6). The winter

seasons characterized by OP (NAO-EA) phases exhibit more depleted

𝛿18𝑂𝑝 values (up to -2 ‰) from the North Atlantic towards Central Europe

and enriched 𝛿18𝑂𝑝 values (1.5 ‰) over the Southern Alps, Iceland, and

most of the Scandinavian regions compared to EQ conditions (Figure 4.6).

The winter relationship between NAO and temperature, as well as

precipitation, also indicates a similar impact from the polarity of the

EA index. The spatial changes in regional hydroclimate patterns due to

the shifts in the polarity of the NAO and EA imply that periods with

different conditions compared to the calibration period of the transfer

function will introduce uncertainties in their reconstruction. Analysis of

summer months did not reveal any discernible trends but overall showed

a relatively stronger correlation of the NAO with climate variables in

EQ seasons than OP (S1; Figure 6). In total, the results indicate that the

relationship between the NAO and regional climate over Central Europe

and the Alps is less sensitive to the polarity of the EA index. The analysis

with the last millennium simulation from different models Bühler et al.

[132] also reveals similar results, indicating the temporal variability of the

changes in the correlation structure between the large-scale patterns and

regional climate (S1; Figure 7). Additionally, the local- and regional-scale

statistical estimates using Granger causality testing on the influence

of the past winter NAO and EA indices on the subsequent summer

𝛿18𝑂𝑝 values, temperature and precipitation spatio-temporal variability
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(a) NAO-δ18Op (EQ) (b) NAO-δ18Op (OP) (c) δ18Op (OP-EQ)

(d) NAO-Temp (EQ) (e) NAO-Temp (OP) (f) Temp (OP-EQ)

(g) NAO-Prec (EQ) (h) NAO-Prec (OP) (i) Prec (OP-EG)

Figure 4.6: Spearman correlation between winter 𝛿18𝑂𝑝 -NAO index (a-b), 𝛿18𝑂𝑝 -temperature (d-e), and 𝛿18𝑂𝑝 -precipitation (g-h)
for yearly winters (1979-2014) with the same (EQ) and opposite (OP) phases of NAO and EA indices, including OP, EQ, and the
difference between OP and EQ. Dot stippling represents regions with significant correlation coefficients within a 95 % confidence
interval. Composite differences between OP and EQ regional climate variables are depicted for (c) 𝛿18𝑂𝑝 values, (f) temperature, and
(i) precipitation.

indicate regional scale variations of the probability of causal mechanism

between the two seasons. For instance, the results indicate the most likely

causal link between winter and summer for NAO-𝛿18𝑂𝑝 and more regions

(including Central Europe) for precipitation and temperature. Overall, the

regional estimates indicate the Alps to have a high probability of inferring

past NAO index independent of the proxy signal (S1; Figure 8). The

regional scale variability and shift in correlation structure suggest the use

of multi-proxy sites in reconstructing the past NAO index variability.

4.2.2 Significance and Implications

This part of the thesis focuses on how iGCMs can be used to explore

the non-stationarity of the relationship between large-scale atmospheric

circulation patterns (e.g., NAO index and WAM patterns) and regional cli-

mate variables (e.g., precipitation) variability. The extensive paleoclimate

experiments (from PD to Mid-Pliocene) using iGCM ECHAM5-wiso indi-

cate significant changes in the relationship between 𝛿18𝑂𝑝 and regional

climate dynamics, highlighting potential changes in their causal mecha-

nisms. More specifically, the pronounced differences in the relationship

between 𝛿18𝑂𝑝 and precipitation across West Africa in the Mid-Holocene
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compared to other paleoclimates (PI, LGM and Mid-Pliocene) suggest

the potential biases and associated uncertainties from modern calibrated

transfer function used for reconstructing paleoclimate dynamics. This

implies that the MAP model-proxy discrepancies in the Mid-Holocene

across the Sahara can be due to the biases in the pollen-based transfer

function and not entirely due to the limitation of the climate models. The

results presented in this study serve as the first step that highlights the

need to reevaluate the magnitude of uncertainties of the pollen-based

MAP reconstruction (based on the assumption of their transfer function),

which has been the basis for the controversies (Green Sahara conundrum)

between proxy and climate models [175, 211, 281, 282].

The stationarity of the relationship between the NAO index and 𝛿18𝑂𝑝

or any climate variable proxy signal is crucial for reconstructing the past

variability of the NAO index. Exploring the stationarity of the correlation

structure between the NAO index and 𝛿18𝑂𝑝 values across Europe and

the North Atlantic region indicates that the second mode of variability

(EA index) affects how NAO influences regional hydroclimate variability.

The results help identify optimal locations (e.g., Alps) that are less

sensitive to the polarity of the EA index and have a strong NAO-𝛿18𝑂𝑝

relationship. Such regions with the least non-stationarities can be used

as optimal locations of proxy records to ensure accurate reconstruction

of paleoclimate dynamics. Additionally, the high regional variability

of probability estimates on the impact of the past winter atmospheric

state on summer climate dynamics highlights the potential issues of

generalising proxy transfer functions. This implies that time-specific

regional paleoclimate dynamics must be studied with climate models

before seasonal or annual proxy transfer functions to reconstruct past

climate variability. The extensive water isotopes modelling and statistical

estimates presented in this study reveal that using the traditional two

centre-of-action locations [e.g. 217, 264] to reconstruct the past NAO

variability might not be efficient due to their potential migration and

recommend the use of multiple proxies from different regions (identified

in this study such as Alps, Central Europe, British Isles). Altogether, the

results indicate that combining iGCMs with isotopic proxies for climate

variables can help identify the extent of the stationarity of the transfer

function used for reconstructing paleoclimate dynamics.

4.3 Part 3: Machine Learning Framework for
Predicting the Variability of local 𝛿18𝑂𝑝

values

4.3.1 Summary and Discussion

Q10: How well do the developed PP-ESD models predict tempera-

ture and precipitation variability at stations? (details in Boateng
and Mutz [4](P5))

In total, 126 precipitation and 63 temperature models were tested across

22 weather stations using 7 different learning models and 3 predictor

selection methods. The results indicated overall good performance, with
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a mean CV 𝑅2
of ≥ 0.5 for precipitation and ≥ 0.8 for temperature

stations. Based on the results from the model and predictor selection

method experiments, the recursive feature elimination predictor selection

method, along with stacking regressor base models of LassoLars, ARD,

RandomForest, and Bagging, and an ExtraTree model as meta-learner (more

details about these models in P5) were selected as the final model for

generating predictions for the stations. The final model was trained over

the period 1958-2010 using K-Fold CV with a number of splits set at 10

and was then tested on independently retained data from 2011-2020. The

performance of the final model was generally good but varied notably

between different stations. The prediction skill estimates were higher for

temperature than for precipitation. For temperature, the CV 𝑅2
values

ranged from 0.84 to 0.98 (𝜇=0.93), while for precipitation, the CV 𝑅2

values ranged from 0.54 to 0.72 (𝜇=0.65). The evaluation of the testing

data indicated an 𝑅2
of up to 0.95 for temperature and up to 0.74 for pre-

cipitation stations. The discrepancy in performance between temperature

and precipitation models is unsurprising, given that the thermodynam-

ics and atmospheric dynamics controlling precipitation variability are

more difficult to represent [e.g. 284]. Nevertheless, the overall perfor-

mance supports the application of this study’s approach to downscaling

midlatitude climate in complex terrain. Moreover, the models’ similar

performance during CV and the final evaluation suggests that the models

were not overfitted and that the predictand-predictor relationships hold

outside the observed period. Finally, it is worth noting that the stacking

regressor performed better than the individual base models, even when

all potential regressors from the initial experiments were combined into

a meta-regressor. Such improvements demonstrate the advantage and

ease of experimentation with the developed framework.

Q11: Can machine learning in the PP-ESD framework be used

to emulate the local spatio-temporal variability of 𝛿18𝑂𝑝 across

Europe? (supplementary results in S2)

The developed PP-ESD framework demonstrates promising results in

predicting station-based 𝛿18𝑂𝑝 values for 39 GNIP stations across Europe

using machine learning (Figure 4.7). Before generating ML-based predic-

tions, the spatial distribution and seasonality of the GNIP observations

were compared to simulated 𝛿18𝑂𝑝 values using ECHAM5-wiso. This

comparison indicates good agreement between their long-term annual

means and seasonal trends (Figure 4.7). The model and GNIP stations

reasonably represented the relatively depleted 𝛿18𝑂𝑝 values in winter

and enriched values in summer. Moreover, the "continentality effect,"

which indicates more negative 𝛿18𝑂𝑝 values towards Central Europe

from the North Atlantic, was also reflected in both the modelled and

observed 𝛿18𝑂𝑝 values.

The correlation between the selected large-scale potential predictors and

station 𝛿18𝑂𝑝 values shows significant relationships (p-values ≤ 0.001),

implying high predictive skills for these predictors in emulating the

spatio-temporal variability of 𝛿18𝑂𝑝 values ((S2; Figure 2)). For example,

most stations exhibit a significant positive correlation (PCC > 0.5) between

temperature and 𝛿18𝑂𝑝 values, suggesting that large-scale temperature

increases contribute to the enrichment of 𝛿18𝑂𝑝 values at the stations (S2;
Figure 2). Additionally, the atmospheric circulation indices demonstrate
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Figure 4.7: (a) Long-term (1979-2020) seasonal and annual climatologies of 𝛿18𝑂𝑝 values for the selected 39 GNIP stations, and (b)
their comparison (filled coloured circles) with the present-day (1979-2014) simulation using ECHAM5-wiso (background map). The
comparison of the time series, Mean Absolute Error (MAE), and Pearson correlation coefficient (PCC) between example stations and
ECHAM5-wiso are depicted in (c-e).

strong relationships, highlighting their predominant influence on the

spatial distribution of 𝛿18𝑂𝑝 values.

In the model training routine, a tree-based predictor selection method was

employed to select robust predictors for the individual stations. Sorting

the predictor importance for all 39 stations, near-surface temperature,

mid-tropospheric geopotential height, NAO, and EA emerged as the

most predominant predictors (S2; Figure 2). Their inclusion as predictors

is physically reasonable due to their influence on hydroclimate variability

across Europe and therefore the 𝛿18𝑂𝑝 values.

The ten different machine learning estimators tested across the stations

exhibited a median validation (1979-2012) performance with a CV MAE of

1.4 - 2 ‰ for all stations (Figure 4.8). Among these estimators, LassoLarsCV,

ARD, RidgeCV, and Random Forest performed the best. Consequently,

a stacking regressor was employed to combine predictions from these

models as base models, with Random Forest as the meta-learner. The

validation of the stacking regressor indicates a median CV MAE of 1.6

‰, although two stations performed relatively poorly with CV MAE >

2.5 ‰ (Figure 4.8). The evaluation of the final trained model for stations

with data available from 2013-2018 (outside the training and validation

period) shows similar results compared to the CV MAE. Additionally, a

PCC of >0.7 was estimated between the predicted and observed values

for some stations (Figure 4.8).

Comparing the predicted monthly 𝛿18𝑂𝑝 values time series for the sta-

tions to the ECHAM5-wiso simulations and GNIP observations reveals

that the machine learning-based estimates are more consistent with the

observed values than with the simulated values (S2; Figure 3). Moreover,



54 Chapter 4 Results and Discussion

Figure 4.8: (a) Overview of the modelling framework of IsoPP (Isotope Modelling with Perfect Prognosis Approach), and (b)
time-series split cross-validation (CV) settings used for training and validating the machine learning models. (c) CV Mean Absolute
Error (MAE) ranges and distribution (depicted as violin plots) of all stations (represented by circles) for different machine learning
models. The white rows within the black boxplot denote the median, with the lower and upper boundaries indicating the 25th and
75th percentiles, respectively. The lower and upper error lines represent the 10th and 90th percentiles, respectively.

estimating the PCC and MAE between the predicted and simulated

𝛿18𝑂𝑝 values with the GNIP stations further supports the higher perfor-

mance of the statistical prediction over the iGCM simulations. Overall,
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Figure 4.9: (a) Cross-validation (CV) Mean Absolute Error (MAE) ranges of the final model (stacking regressor) for all stations, and
(b) prediction examples (GNIP stations 8, 14, and 39; refer to Figure 12) along with the evaluation of testing data not included in
the model training process. The first column of (b) illustrates the linear relationship between the d18Op predictions and observed
values, along with the Pearson correlation coefficient (PCC) for the testing data (2013-2018). The bottom panels (c, d) display the
1-year moving average of the observed (green, solid) and ERA5-driven predictions for the training period (blue, dash-dotted) and the
testing period (red, dashed)

the results highlight the potential of using the developed PP-ESD in a

statistical framework to emulate the local-scale 𝛿18𝑂𝑝 values. The devel-

oped transfer functions for the individual GNIP stations can be combined

with iGCMs or GCMs to downscale or emulate 𝛿18𝑂𝑝 values based

on the simulated large-scale predictors used for training the transfer

functions.

4.3.2 Significance and Implications

Understanding the spatio-temporal variability of water isotopologues is

crucial for numerous hydrological studies and paleoclimate reconstruc-

tion [1, 84, 90, 92–94, 96, 102, 132, 285]. However, direct measurements

of 𝛿18𝑂𝑝 values at high spatio-temporal resolutions, either globally or

regionally, are costly, time-consuming, and often logistically impractical

and are mostly not available when needed ( [e.g. 244]. This issue is

particularly problematic for the isotope-based proxy reconstruction of

paleoclimate dynamics, where the transfer function requires sufficient

information to accurately interpret the climate processes influencing

𝛿18𝑂𝑝 variability in a specific region.

The results presented here demonstrate that machine learning can effec-

tively learn the patterns between historical observations of large-scale

atmospheric variables and station-specific 𝛿18𝑂𝑝 values. This capability

enables the development of a transfer function that can predict past

and future variations in 𝛿18𝑂𝑝 values. Despite adopting a complex ap-

proach of generating models for specific stations based on their short

historical records—without assuming the generalizability of predictors

and by aggregating all observations into a single time series, as in prior

studies [249–253]—our findings indicate generally better performance.
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Typically, precipitation isoscapes are constructed by aggregating monthly

or annual observations across a region to develop a single transfer func-

tion based on geostatistical relationships, thereby generating spatially

continuous 𝛿18𝑂𝑝 maps. Despite the benefits of isoscapes, their transfer

functions are calibrated under the assumption that predictors uniformly

influence 𝛿18𝑂𝑝 values across the region and are thus assigned a con-

sistent weight. This assumption can lead to biases in areas with fewer

stations since their information will be less represented in the trained

model and will be determined by how the predictors relate to the 𝛿18𝑂𝑝

values at the more densely stations regions.

Moreover, the spatial relationships between predictors and regional

𝛿18𝑂𝑝 values are not temporally constant, as the atmospheric process and

moisture trajectories pathways condition affect the spatial distribution

of 𝛿18𝑂𝑝 values. The framework proposed in this thesis incorporates

localized conditions into the individual trained models and does not

propagate it spatially to generate the spatial continuous map. The added

value for this approach is that the trained model can be used to fill the

missing 𝛿18𝑂𝑝 values of the station without necessary interpolating but

considers the atmospheric conditions of the unavailable periods. The

transferability of the developed models can be further explored in future

by assessing how they perform at more distant stations to determine

their limitations. Such evaluations will also be useful in assessing the

generalizability of proxy transfer functions for reconstructing past climate

variability.
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5.1 Summary

The Earth’s climate system has undergone significant changes over

past geological timescales due to variations in climate forcings (such as

pCO2) and paleoenvironmental conditions (such as paleotopography,

palaeogeography, vegetation, etc.). Understanding paleoclimate dynam-

ics provides insights into future climate changes and offers long-term

constraints on equilibrium climate sensitivity, transient response, and

feedbacks in climate models [9, 16, 21, 31, 32, 38]. These insights help

project accurate climate information in response to future climate forc-

ings. The spatio-temporal variability of stable water isotopes (e.g., 𝛿18𝑂𝑝

values) in the hydrological cycle reflects integrated climatic, geologic,

and biochemical processes in the Earth system, providing a basis for

reconstructing paleoclimate and paleoenvironmental dynamics. Such

isotopic signals are imprinted in various geologic materials, such as

speleothems, ice cores, carbonates, and leaf waxes [e.g. 105], and are

widely used in paleoclimate reconstruction.

However, interpreting isotopic signals from geologic archives presents sig-

nificant challenges and uncertainties due to the wide range of large-scale

climate and local conditions influencing their spatio-temporal variability.

Specifically, the integrated Earth system processes imprinted in isotopic

proxy records require disentangling climate signals from non-climate

signals to ensure robust interpretations. Additionally, the conversion of

reconstructed isotopic signals from various proxy materials to climate

variables (e.g., temperature or precipitation) requires calibration func-

tions, often established under recent historical conditions and assumed

to be stable through time and space. The sparsity and short-term records

of direct measurements of water isotopologues (e.g., GNIP) also hin-

der understanding the causal mechanisms between isotopic variability

and regional climate dynamics, which is essential for developing their

transfer functions. Overall, understanding the processes that influence

water isotopes in specific regions under different climatic conditions is

crucial. The modelling of water isotopologues in climate models (iGCMs)

provides a means to explore large-scale drivers and can help evaluate

the extent of the stationarity of transfer functions.

Here, I illustrate how water isotopologue modelling with iGCMs and

machine learning can be combined with isotopic proxy data to enhance

their interpretability. The findings indicate the need to combine water

isotope information from modern monitoring, iGCM outputs, and iso-

topic proxy data to provide robust statistical and dynamic constraints on

paleoclimate variability reconstruction.

This dissertation encompasses extensive climate sensitivity experiments

(topographic and paleoclimate) with the iGCM ECHAM5-wiso and

machine learning based modelling of 𝛿18𝑂𝑝 spatio-temporal variability,

presented in five (5) manuscripts (P1-P5) and two complementary results

(S1-S2) (provided in Part VII), contributing to the understanding of
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past and present regional climate dynamics’ controls on 𝛿18𝑂𝑝 patterns.

Specifically, the dissertation demonstrates how iGCMs can resolve some

of the uncertainties associated with proxy reconstruction by proposing

a new framework for using simulated climate variables to disentangle

proxy signals and evaluate the non-stationarity of proxy transfer functions

for reconstructing paleoclimate dynamics.

These are addressed through a series of research questions (Q1-Q11)

discussed in Chapter 4. These questions test two hypotheses (H1 and H2)

on paleoelevation (Section 3.1) and paleoclimate dynamics reconstruction

(Section 3.2) and a complementary objective (O1) (Section 3.3) that

explores a statistical modeling framework of 𝛿18𝑂𝑝 values prediction

that can replace or complement the iGCMs. I highlight that the details of

the results and discussion of the individual studies are summarised in

Chapter 4 and presented in detail in Part VII. In the following sections,

I only present the key findings that provide an answer to the tested

hypotheses and the complementary objective with some future outlooks

in Section 5.2.

Integrating iGCM with stable isotope paleoaltimetry to reconstruct
paleoelevation

Here, I used iGCMs ECHAM5-wiso to explore the atmospheric processes

influencing the 𝛿18𝑂𝑝 spatial distribution across the Alps and Europe and

investigated the impacts of topographic and Middle Miocene regional

climate changes on isotopic lapse rates. Through extensive topographic

sensitivity experiments that consider diachronous surface uplift scenar-

ios of the Alps (the first of its kind) and Miocene climate sensitivity

experiments addressing questions (Q1-Q7) in three manuscripts (P1-P3),
I determined the uncertainties associated with the assumption of station-

arity of the modern isotopic lapse rate across the Alps over time and

explored the regional climate dynamics causing lapse rate variability.

Specifically, the research questions addressed in P1-P3 test the following

hypothesis:

Hypothesis (H1): Diachronous west-to-east surface uplift of the

Alps and Miocene global climate changes would impact the

regional climate and, therefore, influence the 𝛿18𝑂𝑝-elevation

gradient (i. e., the isotopic lapse rate).

The topographic sensitivity experiments for the diachronous surface up-

lift scenarios indicate Δ𝛿18𝑂𝑝 values of up to -8 ‰ across the Alps under

pre-industrial (PI) conditions, primarily due to changes in orographic

precipitation and adiabatic lapse rate changes in surface temperature. The

simulated climate responses to changes in the Alps’ topography indicate

significant alterations in synoptic-scale atmospheric pressure systems

in the Northern Hemisphere (e.g., shifts in the pressure dipole axis and

locations of pressure system centres), changes in moisture transport

distances and pathways, and large-scale atmospheric dynamics affecting

precipitation in adjacent far-field regions of the Alps. The diachronous

surface uplift in the Middle Miocene climate still producesΔ𝛿18𝑂𝑝 values

ranging from -4 to -8 ‰ across the Alps, significant enough to be recorded

by geological archives for reconstructing paleoelevation, and consistent
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with proxy reconstructions. The simulated isotopic lapse rates become

shallower or decrease by approximately 1.0 ‰ km
-1

in response to the

Middle Miocene conditions compared to the PI period and vary within

the range of ±1.5 ‰ km
-1

for the diachronous surface uplifts of the Alps,

with spatial differences around the region.

Integrating the simulated Miocene lapse rates with proxy reconstructions

indicates an overestimation of the Central Alps’ paleoelevation by ~1.5

km when the isotopic lapse rate is assumed to be stationary through time

and space from the present day. Therefore, the simulated patterns of

𝛿18𝑂 of paleo-meteoric waters in response to topographic and Miocene

climate changes confirm the hypothesis that Miocene climate changes

and diachronous surface uplift of the Alps result in isotopic lapse rates

that significantly deviate from modern estimates (-2.0 ‰ km
-1

; Campani

et al. [140]) and vary spatially around the Alps. These findings suggest

the need to recalculate previous paleoelevation estimates across the

Alps (and even globally) using paleoclimate-constrained isotopic lapse

rates from iGCMs. Alternatively, the findings also suggest that using

modern isotopic lapse rates from surface rivers of diverse hydrological

catchments globally [139] is suitable in the absence of paleoclimate-

constrained, rather than using modern precipitation-based lapse rates.

Therefore, the findings emphasize the variability of isotopic lapse rates in

past climates and highlight the advantage of using iGCMs to understand

paleoclimate dynamics and regional climate patterns. This approach

helps disentangle climate and tectonic signals in paleoaltimetry proxy

materials and derive more accurate paleoelevation estimates.

Evaluating the stationarity of transfer function for reconstructing
paleoclimate dynamics

Here, I used iGCM ECHAM5-wiso to evaluate the stationarity of the

relationship between isotopic proxy signals and regional atmospheric

processes over longer time scales to highlight the potential uncertainties

associated with paleoclimate reconstruction from geologic materials.

Specifically, I conducted time slice paleoclimate sensitivity experiments

from Pre-Industrial (PI) to Mid-Pliocene to understand the West African

Monsoon (WAM) system dynamics and how it controls the 𝛿18𝑂𝑝 patterns

in the different paleoclimates. This is particularly important due to the

complexity of the region’s climate dynamics and the persistent struggles

of most climate models in representing its past and future hydroclimate

variability (see Section 2.2 for more details).

Additionally, I performed historical (1979-2014) simulations to understand

how the second mode of atmospheric variability (EA index) influences

the stationarity of the relationship between isotopic proxy signals and

the NAO index in the winter and summer seasons. The importance

of reconstructing past NAO variability is presented in Section 2.3. I

also explored the dynamical processes causing the non-stationarity of

the NAO-𝛿18𝑂𝑝 relation and examined if the polarity and intensity

of the NAO and EA indices in the previous winter season influence

the subsequent summer climate dynamics to compromise the NAO-

𝛿18𝑂𝑝 relationship. Altogether, I explored the causal links between local

isotopic variability and large-scale teleconnections to understand how

their relationships can change in past climates. These are addressed in
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Q7-Q9 in manuscript (P4) and supplementary results in S1, which overall

test the hypothesis:

Hypothesis (H2): The impact of atmospheric dynamics and large-

scale variability mechanism on local proxy variables (e.g., 𝛿18𝑂𝑝)

varies across different paleoclimates.

The simulated 𝛿18𝑂𝑝 values in response to the different paleoclimates

in the Late Cenozoic reveal the most depleted 𝛿18𝑂𝑝 conditions in the

Mid-Holocene (with up to -6 ‰ across the Sahel) compared to the PI. This

is due to the highest intensification and northward extent of the WAM,

which contributed to a significant increase in precipitation across the

WAM region. The 𝛿18𝑂𝑝 values in the Mid-Pliocene also indicate more

depleted conditions than the PI, but of less significantly compared to the

Mid-Holocene, which is consistent with the precipitation anomalies

patterns. However, the 𝛿18𝑂𝑝 values in the Last Glacial Maximum

(LGM) indicate more enriched conditions in most parts of the WAM

region than the PI due to colder conditions. The simulation of 𝛿18𝑂𝑝

patterns and magnitudes and associated WAM dynamics reveals the non-

stationarity of 𝛿18𝑂𝑝-hydroclimate variables relationship throughout the

Late Cenozoic, suggesting the need to understand the causal mechanisms

for each proxy system and refine their transfer functions to ensure accurate

proxy-based reconstructions.

The analysis of the NAO-𝛿18𝑂𝑝 relationship reveals that the polarity of

the EA index influences their link, which is crucial for reconstructing

past NAO variability due to the instability of the NAO-𝛿18𝑂𝑝 transfer

function. The Granger causal testing also suggests that the winter NAO

and EA indices affect the subsequent summer NAO-𝛿18𝑂𝑝 relationship.

This additional instability in the proxy-NAO relationship implies the

need to understand what controls proxy signals in different regions. Al-

together, the results suggest optimal locations with a robust NAO-𝛿18𝑂𝑝

relationship that are less sensitive to the EA index for reconstructing the

past variability of the NAO index.

Collectively, the results confirm the hypothesis that the complex causal

mechanisms between atmospheric dynamics and large-scale circulation

patterns influence local proxy signals differently through time and

require paleoclimate-constrained transfer functions to ensure accurate

paleoclimate dynamics reconstruction.

Exploring the potential of using machine learning to predict the
spatial-temporal variability of 𝛿18𝑂𝑝

Here, I explored the potential of using machine learning to emulate

the spatio-temporal variability of 𝛿18𝑂𝑝 values across Europe using

large-scale predictors such as the NAO, EA, atmospheric winds, etc..
Due to the complexity and difficulty of such a task, given the variety

of atmospheric processes and local conditions that control local 𝛿18𝑂𝑝

variability, I first developed the Perfect-Prognosis empirical statistical

downscaling (PP-ESD) framework in a new open-source Python software

called pyESD ( Boateng and Mutz [4]).
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pyESD implements the entire downscaling cycle, including routines for

data preparation, predictor selection and construction, model selection

and training, evaluation, utility tools for relevant statistical tests, visual-

ization, and a collection of well-established machine learning algorithms.

It allows users to choose various estimators, cross-validation schemes,

objective function measures, and hyperparameter optimization with

relatively few lines of code. Believing that science would be more en-

joyable if all research outputs were easily reproducible, I implemented

extensive documentation (pyESD website) to help users benefit from the

full applicability of the PP-ESD routines. This enables quick and repro-

ducible downscaling of any climate information, such as precipitation,

temperature, wind speed, etc.

I demonstrated the use and effectiveness of the new PP-ESD framework

by (1) generating weather-station-based downscaling products for precip-

itation and temperature in complex mountainous terrain in southwestern

Germany [4] and (2) for precipitation for all synoptic weather stations in

Ghana [286]. The results indicated that the established PP-ESD frame-

work is robust and can be combined with GCM output to generate

high-resolution future climate change information.

Specifically, in this thesis, I used the developed framework in a comple-

mentary objective:

Objective (O1): To investigate whether machine learning can

complement or substitute the stable water isotopes explicit in

iGCMs for predicting the spatio-temporal variability of local

𝛿18𝑂𝑝 values using large-scale atmospheric variables.

The findings suggest that the machine learning framework can predict

the spatio-temporal variability of 𝛿18𝑂𝑝 across Europe, significantly

outperforming the iGCM ECHAM5-wiso. The chosen predictors high-

light the importance of large-scale synoptic circulation patterns as key

drivers of local-scale 𝛿18𝑂𝑝 variability. Evaluating the performance of

the trained station-based models on the testing period indicated PCC

of > 0.7 (with MAE < 1.6 ‰ for most GNIP stations) between the pre-

dicted and observed 𝛿18𝑂𝑝 values. Despite the challenging approach

of generating models for individual GNIP stations based on their short

historical records—without assuming the generalizability of predictors

and by aggregating all observations into a single time series—the results

indicate impressive performance.

The next logical step is to combine the developed models with iGCMs

to downscale the simulated 𝛿18𝑂𝑝 values to high resolution or use the

simulated predictors from GCM outputs to emulate the spatio-temporal

variability of 𝛿18𝑂𝑝 values by leveraging the cost-effectiveness of the

developed Perfect Prognosis isotope modelling (IsoPP).

5.2 Future outlook

The extensive suite of modelling and broad range of research presented in

this thesis open numerous avenues for future investigations. Some of these

avenues are already highlighted in the respective manuscripts (P1-P5).

https://dan-boat.github.io/PyESD/
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These range from extending the modelling framework with fully coupled

atmosphere-ocean isotope-enabled models with dynamic vegetation to

compiling various hydroclimate proxies from the suggested optimal

regions to reconstruct past NAO variability, among other topics. While

numerous research directions could stem from this interdisciplinary

work, I will focus on one particularly promising and important direc-

tion: extending the correlation analysis between large-scale atmospheric

teleconnections and regional climate variables and isotopic variability to

causal inference methods [287–289].

Despite the usefulness of correlation methods applied to understand the

links between large-scale processes and regional climate, they do not en-

tirely reveal the causal interpretation of the established relationships that

emerged from their physical interactions. Even though the application of

Granger causality [238] contributes to understanding the memory effect

of previous winter NAO and EA indices on summer climate dynamics

across Europe and the North Atlantic region, the approach is limited

to lagged causal dependencies [287, 290]. However, causal discovery

methods leverage the assumption of the underlying processes to account

for common causes and reconstruct the causal links of the teleconnec-

tions [288, 291]. For instance, the conditional independence-based causal

discovery method, which relies on the assumptions of causal sufficiency,

time order, the causal Markov condition, and faithfulness [287, 288], can

be used to identify and quantify the causal interactions between various

teleconnections of the West African monsoon system or the Northern

Hemisphere teleconnections and the 𝛿18𝑂𝑝 patterns in present and past

climate conditions. This approach would provide the opportunity to

assess model performance [e.g. 292, 293] and evaluate which climatic

processes cause the disagreement between the model and proxy data,

thereby improving the interpretation of proxy reconstructions.
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Abstract. This study presents the simulated response of regional climate and the oxygen isotopic composition
of precipitation (δ18Op) to different along-strike topographic evolution scenarios. These simulations are con-
ducted to determine if the previously hypothesized diachronous surface uplift in the Western and Eastern Alps
would produce δ18Op signals in the geologic record that are sufficiently large and distinct to be detected us-
ing stable isotope paleoaltimetry. We present a series of topographic sensitivity experiments conducted with the
water-isotope-tracking atmospheric general circulation model (GCM) ECHAM5-wiso. The topographic scenar-
ios are created from the variation of two free parameters, (1) the elevation of the Western–Central Alps and
(2) the elevation of the Eastern Alps. The results indicate 1δ18Op values (i.e., the difference between δ18Op
values at the low- and high-elevation sites) of up to −8 ‰ along the strike of the Alps for the diachronous uplift
scenarios, primarily due to changes in orographic precipitation and adiabatic lapse rate driven localized changes
in near-surface variables. These simulated magnitudes of 1δ18Op values suggest that the expected isotopic sig-
nal would be significant enough to be preserved and measured in geologic archives. Moreover, the simulated
slight δ18Op differences of 1 ‰–2 ‰ across the low-elevation sites support the use of the δ–δ paleoaltimetry
approach and highlight the importance of sampling far-field low-elevation sites to differentiate between the dif-
ferent surface uplift scenarios. The elevation-dependent rate of change in δ18Op (“isotopic lapse rate”) varies
depending on the topographic configuration and the extent of the surface uplift. Most of the changes are signif-
icant (e.g., −1.04 ‰ km−1 change with slope error of ±0.09 ‰ km−1), while others were within the range of
the statistical uncertainties (e.g., −0.15 ‰ km−1 change with slope error of ±0.13 ‰ km−1). The results also
highlight the plausible changes in atmospheric circulation patterns and associated changes in moisture transport
pathways in response to changes in the topography of the Alps. These large-scale atmospheric dynamics changes
can complicate the underlying assumption of stable isotope paleoaltimetry and therefore require integration with
paleoclimate modeling to ensure accurate reconstruction of the paleoelevation of the Alps.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

The topographic evolution of orogens over geological time is
controlled by geodynamic processes (e.g., crustal thickening,
lower crustal flow, subduction erosion, and lithospheric de-
lamination) and climate-driven surface processes (e.g., ero-
sion, denudation, and other earth surface processes) (e.g.,
Valla et al., 2021; Whipple, 2009; Ehlers and Poulsen, 2009).
Knowledge of past topography contributes to the under-
standing of climate–tectonic interactions, the tectonic evo-
lution of collisional domains, and the distribution of bio-
diversity (Allen, 2008; Clark, 2007; Mulch, 2016; Rowley
and Garzione, 2007; Antonelli et al., 2018; Mulch et al.,
2018). Paleoelevations have been reconstructed for numerous
high mountain ranges such as the Himalayas and the Tibetan
Plateau (e.g., Garzione et al., 2000; Quade et al., 2011; Gébe-
lin et al., 2013; Rowley and Currie, 2006; Ding et al., 2022;
Spicer et al., 2021), the North American Cordillera (e.g.,
Huntington et al., 2010; Chamberlain et al., 2012; Mulch et
al., 2006), the Andean Plateau (e.g., Garzione et al., 2008,
2014; Barnes and Ehlers, 2009; Mulch et al., 2010; Pingel
et al., 2016; Sundell et al., 2019), and areally smaller oro-
gens such as the Pyrenees (Huyghe et al., 2012), the Sierra
Nevada Mountains of California (e.g., Mulch et al., 2006,
2008), the Southern Alps of New Zealand (Chamberlain et
al., 1999), the Taurides of Turkey (Meijers et al., 2018),
and the European Alps (Campani et al., 2012; Fauquette
et al., 2015; Krsnik et al., 2021). Past surface elevations
have been inferred using a variety of methods, such as fo-
liar physiognomy (Forest et al., 1999), stomatal density in
fossil leaves (McElwain, 2004), vesicularity of basaltic flows
(Sahagian and Maus, 1994), and water isotopologues from
lacustrine and pedogenic carbonates and authigenic minerals
(e.g., Kohn and Dettman, 2007; Quade et al., 2007; Rowley
and Garzione, 2007; Mulch and Chamberlain, 2007). Among
these techniques, stable isotope paleoaltimetry is the most
widely used due to the robust systematic inverse relationships
between elevation and oxygen (δ18O) and hydrogen (δD) iso-
topic composition of meteoric waters reflected in geologic
archives such as paleosol carbonates. This δ18O–elevation re-
lationship (or isotopic lapse rate) is commonly attributed to
the preferential rainout of heavy isotopologues of water from
air masses ascending over topography and is described phys-
ically as Rayleigh distillation (Gat, 1996). However, numer-
ous climatic processes, such as surface recycling, aridity, va-
por mixing, variability in moisture source, and precipitation
dynamics, can also influence the isotopic lapse rate and thus
complicate stable isotope paleoaltimetry estimates (Ehlers
and Poulsen, 2009; Insel et al., 2010; Feng et al., 2013; Lee
and Fung, 2008; Risi et al., 2013; Botysun and Ehlers, 2021).
Furthermore, studies of surface uplift in orogens, such as the
Andes, Himalayas, and Tibet, have demonstrated the impacts
of topographic evolution on atmospheric circulation patterns
and the spatial distribution of δ18O in precipitation (δ18Op)
in a more complicated way than single-site stable isotope pa-

leoaltimetry studies commonly assume (e.g., Takahashi and
Battisti, 2007; Yao et al., 2013; Mulch, 2016). This highlights
the need for a better quantitative understanding of how to-
pography and regional climate influence the variations of the
isotopic composition of ancient waters (Ehlers and Poulsen,
2009; Botsyun et al., 2020; Insel et al., 2012). This study
comprises a series of climate model experiments that address
this need for the European Alps.

The European Alps have been extensively studied, but
only a few studies have addressed the reconstruction of
its surface uplift histories with stable isotope paleoal-
timetry (e.g., Sharp et al., 2005; Campani et al., 2012;
Krsnik et al., 2021). Recent studies have suggested that the
Alps experienced diachronous surface uplift in response to
the post-collisional slab break-off and continuing rollback
of the lithosphere and its associated mantle delamination
(Schlunegger and Kissling, 2018; Handy et al., 2015). Stable-
isotope-based reconstructions of past surface topography can
help to constrain such subsurface processes, given that sur-
face elevation is primarily an expression of mantle and litho-
spheric dynamics. However, whether such geodynamic pro-
cesses would yield (spatial) differences in δ18Op values by
a magnitude that would be detectable in the geologic record
remains an open question. Resolving such a question would
justify the use of stable isotope paleoaltimetry reconstruc-
tions across the Alps to understand their topographic evolu-
tion.

In this study, we simulate changes in regional climate and
the oxygen isotopic composition of precipitation (δ18Op) that
would occur in response to diachronous, along-strike sur-
face uplift variations of the Eastern and Western–Central
Alps. We address the question of to what extent (and where)
different scenarios of differentiated west-to-east surface up-
lift would be reflected in δ18O of meteoric water. In answer-
ing these questions, we test two hypotheses. We hypothesize
that different topographic configurations for the Eastern and
Western–Central Alps result in regional climate and δ18Op
patterns that are significantly different from (1) those of to-
day and (2) those produced by scenarios of bulk surface up-
lift of the entire Alps. We test these hypotheses through a
series of sensitivity experiments with two free parameters
including variations in the elevation of the Western–Central
Alps and the elevation of the Eastern Alps. The experiments
are conducted with the isotopic-tracking atmospheric general
circulation model (GCM) ECHAM5-wiso and provide quan-
titative estimates of the expected δ18Op signal that could be
recorded in geological archives used in stable isotope pale-
oaltimetry. The simulated δ18Op signal can help determine if
the changes are significant enough to be reflected in paleoal-
timetry records, which would ultimately help to reconstruct
the geodynamic evolution of the Alps. The study therefore
also represents an important step toward answering the ques-
tion of whether the eastward propagation of surface uplift (or
different east–west topographic configurations) would be de-
tectable in paleo-δ18Op records.
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2 Background

2.1 Geodynamics of the European Alps

The European Alps are a midlatitude orogenic belt extend-
ing over a longitudinal area (∼ 1000 km2) subdivided into
the Western, Central, and Eastern Alps (Schmid et al., 2004).
The onset of their topographic development is attributed to
the continent–continent collision of the European and Adri-
atic plates in the late Eocene. This event was followed by pro-
tracted convergence and subduction of oceanic lithosphere
(Frisch, 1979; McCann, 2008; Schmid et al., 1996; Stampfli
et al., 1998). Major rock exhumation started ∼ 35 Ma or
earlier, predominantly in response to crustal thickening and
associated erosion (Kuhlemann et al., 2002; Schmid et al.,
2004, 1996) and drainage reorganization (Lu et al., 2018).
Recent modeling studies have suggested additional geody-
namic processes that may have influenced the surface up-
lift history (Kissling and Schlunegger, 2018; Schlunegger
and Kissling, 2015). These processes include slab break-off
(∼ 30 Ma) and slab rollback of the subducting lithosphere,
as well as lithospheric mantle removal that may have con-
tributed to west-to-east variations in surface uplift as pro-
posed for the Central Alps (Davies and von Blanckenburg,
1995; Schlunegger and Castelltort, 2016; Ustaszewski et al.,
2008). Subsequently, it has been suggested that slab break-
off (∼ 20 Ma) occurred under the Eastern Alps (Handy et
al., 2015). Based on previous studies, current tectonic and
geodynamic reconstructions suggest that the entire Alps did
not rise monotonically but through diachronous surface up-
lift across different sections of the orogen. This study ex-
plores such a scenario and evaluates changes in δ18Op values
that would be expected to be preserved in the geologic record
within the region.

2.2 Paleoaltimetry estimates of the European Alps

Few studies have attempted to quantify the surface eleva-
tion history of the Alps. Pollen data suggest that the south-
western Alps reached their maximum mean elevation of
more than ∼ 1900 m at the early stage after the collision
in the early Oligocene (ca. 30 Ma) (Fauquette et al., 2015).
Stable-isotope-based paleoelevation estimates for the middle
Miocene Central Alps range from 2.5 to 6 km (e.g., Cam-
pani et al., 2012; Kocsis et al., 2007; Sharp et al., 2005),
and the higher end of these estimates for the Central Alps
was confirmed recently with surface elevations of > 4 km
being attained not later than the middle Miocene (Krsnik
et al., 2021). Collectively, these reconstructions suggest that
the Western and Central Alps were already at high eleva-
tions in the middle Miocene, and surface uplift must have oc-
curred in the Oligocene to Miocene. In contrast, no long-term
quantitative past surface elevation estimates are available for
the Eastern Alps. However, geodynamic modeling and geo-
morphic analysis suggest that the orogenic development of

the Eastern Alps initiated only during the middle Miocene
(∼ 15–10 Ma), with a major phase at ∼ 5 Ma (Bartosch et
al., 2017; Hergarten et al., 2010). These previous findings
suggest that surface uplift in the Central Alps predates sur-
face uplift in the Eastern Alps. If the isotopic signal cre-
ated by west-to-east surface uplift propagation is preserved
in geological materials (e.g., pedogenic carbonates or hy-
drous shear zone silicates) and deemed detectable according
to the climate modeling studies, then stable isotope paleoal-
timetry may be used to address this research gap. Therefore,
we use different topographic configurations in sensitivity ex-
periments to quantify the expected isotopic signal. With a
present-day mean elevation of peaks of ca. 2500 m across the
Alps, increasing their elevation by 200 % would reflect the
paleoelevation reconstructions across the Western–Central
Alps in the middle Miocene (Campani et al., 2012; Krsnik
et al., 2021). However, due to the lack of quantitative pale-
oelevation estimates across the Eastern Alps, we conduct a
stepwise increase in the elevation across that transect to ex-
plore all the potential surface uplift magnitudes back in time
(see Sect. 3.2 for more details about topographic configura-
tion).

2.3 Climate of the Alps

The interannual and seasonal variability of regional climate
in Europe is predominantly controlled by large-scale circu-
lation patterns (Bartolini et al., 2009; Hurrell, 1995). The
topography of the Alps greatly impacts mesoscale temper-
ature, precipitation, moisture transport, wind, and other at-
mospheric elements (e.g., Schmidli et al., 2002). The Alps
act as an orographic barrier, which affects convective and
orographic precipitation formation and the associated spa-
tial effects like leeward rain shadows (Bartolini et al., 2009;
Beniston, 2005). Today, the Alps experience maximum pre-
cipitation rates in summer due to (1) the shifting of pres-
sure fronts to the south and (2) high convective heat trans-
port from oceanic sources and continental evapotranspiration
(Schmidli et al., 2002). Most atmospheric moisture received
across the Alps, especially over the northern flanks, is trans-
ported via the westerlies from the North Atlantic. Regional
precipitation histories can thus be explained primarily by
variations in atmospheric circulation patterns over the North
Atlantic and western Europe (Baldini et al., 2008; Comas-
Bru et al., 2016; Langebroek et al., 2011; Rozanski et al.,
1982). Therefore, δ18O values in ancient meteoric waters can
only be quantitatively evaluated with knowledge about the
dominant large-scale atmospheric flows and the locations of
associated pressure systems (i.e., quasi-stable systems with
high and low sea level pressure), which can shift over time
(e.g., Deininger et al., 2016) due to global and regional pale-
oenvironment changes, such as topography.

Advances in climate modeling allow the use of high-
resolution isotope-tracking atmospheric general circulation
models (AGCMs) to investigate the impacts of topography
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and regional climate change on δ18Op values (e.g., Botsyun
et al., 2020, 2019; Botsyun and Ehlers, 2021; Li et al., 2016;
Mutz et al., 2016; Sturm et al., 2010). AGCMs are developed
based on atmospheric physical processes. They can simulate
climates that are in dynamic equilibrium with prescribed or-
bital, environmental, and topographic boundary conditions.
While GCMs have some deficiencies in predicting precip-
itation in mountain regions due to model-specific parame-
terization (e.g., cloud microphysics and the hydrostatic ap-
proximation), they have been shown to adequately reproduce
important patterns of climate and precipitation δ18O values
over orogens, including the Alps (e.g., Botsyun et al., 2020;
Werner et al., 2011). Previous studies have used GCMs to
perform topographic sensitivity experiments to help improve
paleoaltimetry estimates (e.g., Botsyun et al., 2019; Shen
and Poulsen, 2019; Ehlers and Poulsen, 2009; Poulsen et al.,
2010; Feng et al., 2013; Feng and Poulsen, 2016; Huyghe
et al., 2018; Insel et al., 2012). More recently, Botsyun et
al. (2020) performed GCM experiments designed to estimate
the δ18Op response to bulk surface elevation changes in the
whole Alps. This study builds on their findings by consider-
ing diachronous surface uplift (stepwise surface uplift from
west to east) as different topographic scenarios.

3 Data and methods

3.1 General circulation model (ECHAM5-wiso)

The hypotheses tested in this study are addressed with a se-
ries of experiments conducted with the isotope-tracking cli-
mate model ECHAM5-wiso. ECHAM5 is the fifth version
of a well-established atmospheric GCM that is developed
and maintained by the Max Planck Institute for Meteorol-
ogy (MPIM) based on the spectral weather forecast model
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Roeckner et al., 2003). ECHAM5 has been
expanded to include an isotope-tracking module that sim-
ulates the isotopic composition of water at every step of
the simulated hydrological cycle in the model (Werner et
al., 2011). The water isotopologues (i.e., H16

2 O, H18
2 O, and

HDO) are treated as independent tracers (Hoffmann et al.,
1998; Werner et al., 2011) that undergo kinetic and equi-
librium fractionation during phase transitions in the atmo-
sphere (e.g., snow, vapor, clouds). The semi-Lagrangian ad-
vection scheme is used for the transport of the passive trac-
ers through all the water components (Lin and Rood, 1996).
The resulting isotope-tracking GCM (ECHAM5-wiso) has
been demonstrated to reproduce global- and regional-scale
isotopic observations well, including for present-day δ18Op
values across Europe (Botsyun et al., 2020; Werner et al.,
2011; Langebroek et al., 2011). Compared to its predecessor,
the version applied in this study has an improved representa-
tion of the land surface and considers orographic drag forces.
However, the model does not track isotopic fractionations
from surface waters (Hagemann et al., 2006). The model sim-

ulates clouds using the stratiform cloud scheme that consists
of the prognostic equations of all the water phase dynamics,
bulk cloud microphysics by Lorenz and Lohmann (2004),
and statistical cloud cover parameterization by Tompkins
(2002). Comprehensive details about the model physics and
parameterization are described in Werner et al. (2011) and
Roeckner et al. (2003).

3.2 Topography experiments

We investigate the effects of specific topographic configu-
rations on δ18Op values and regional climate by perform-
ing sensitivity experiments with two free parameters, (1) the
elevation of the Western–Central Alps (43–48◦ N, 5–10◦ E)
and (2) the elevation of the Eastern Alps (45–48◦ N, 10–
17◦ E). For brevity, a two-part notation is used in this study
for individual topographic configurations: the first part de-
notes the elevation of the Western–Central Alps and assumes
the formWx, where x expresses the elevation as a fraction of
its present-day value. The second part analogously expresses
the elevation of the Eastern Alps in the form of Ex. The to-
pographic configuration W2E0, for example, therefore con-
sists of the Western–Central and Eastern Alps set to 200 %
and 0 % of their modern elevation, respectively. The con-
figurations with 0 % topography use 250 m as a mean min-
imum topography to avoid unrealistic artifacts in the simula-
tions, such as extreme wind speeds due to a completely flat
low-elevation surface. The topographic boundary conditions
for the different experiments are prepared as follows: we
modify the GTOPO30 digital elevation model (DEM) pro-
vided by the US Geological Survey, which has a resolution of
30 arcsec (ca. 1 km). Afterward, the modified high-resolution
DEMs are interpolated to the ECHAM5-wiso model resolu-
tion (i.e., T159, horizontal resolution of ∼ 80 km). The asso-
ciated subgrid orographic variables are calculated from the
higher-resolution DEM. These variables include orographic
standard deviation (i.e., the variability of the heights of the
mountain range), anisotropy, peak elevations, valley eleva-
tion, mean slope, and orientation within a grid cell. Such
related information is used for the subgrid-scale parameter-
ization that estimates the effect of mountain-induced wave
drag on the atmosphere and mountain blocking in the model
(Stevens et al., 2013; Roeckner et al., 2003).

We elaborate on two topographic scenarios, each consist-
ing of several topographic configurations (see Table 1 for a
complete overview).

Scenario 1. The first scenario considers the diachronous
west-to-east surface uplift hypothesized from tectonic recon-
structions of the Alps (e.g., Bartosch et al., 2017; Fauquette
et al., 2015; Handy et al., 2015). Consequently, the Western–
Central and Eastern Alps are varied separately. First, the el-
evation of the Western–Central Alps was kept at its present-
day value (W1), and the elevation of the Eastern Alps was
incrementally increased from 0 % to 200 % of its present-
day value. Following this, the Western–Central Alps were set
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to 200 % (W2) of their present-day elevation, and the East-
ern Alps were raised incrementally again. W2 was chosen to
represent a plausible middle Miocene altitude of more than
4000 m, which is close to 200 % of the modern mean eleva-
tion of the Central Alps (Krsnik et al., 2021). However, the
resolution of the model underrepresents the magnitude of the
orographic mean elevation due to dampening of maximum
peak elevations across the Alps in the interpolation process.

Scenario 2. For the second scenario, the topography of
the entire Alps, including the Western–Central and Eastern
Alps, was increased to 200 % (W2E2) and reduced to 0 %
(W0E0) of its present-day height. These topographic config-
urations allow for a comparison of the climatic response to
diachronous surface uplift (scenario 1) and bulk surface up-
lift. Since the W1E1 configuration simply represents modern
topography, it is used as the control experiment and given the
special designation CTL.

3.3 Model setup and boundary conditions

All experiments were performed for 18 model years on a
high-spatial-resolution grid to represent the Alps’ topogra-
phy adequately. Specifically, the T159 spectral resolution
(which corresponds to ∼ 0.75◦ or ∼ 80 km in latitude and
longitude) and 31 vertical pressure levels (up to 10 hPa) were
used for the simulations. The output frequency was set to 6
model hours to allow the performance of a trajectory anal-
ysis (Sect. 3.6). We only consider the last 15 years of the
model output and remove the first 3 years of the simulation
to account for the spin-up period, i.e., the time needed for
the simulated climate to reach dynamic equilibrium. Since
this study aims to quantify and isolate the effects of differ-
ent topographic configurations (Sect. 3.2) on regional cli-
mate and δ18Op values, all other boundary conditions are
kept constant at pre-industrial (PI) levels. These include or-
bital configurations, greenhouse gas concentrations, sea sur-
face variables, and insolation. For model validation purposes,
we additionally conduct a present-day (PD) simulation of 43
model years and analyze the last 30 years (1979–2014). We
use the annual mean variations of the sea surface temper-
ature (SSTs) and sea ice concentrations (SICs) from the At-
mospheric Model Intercomparison Project (AMIP) as bound-
ary conditions. The simulated PD climate and isotopic pat-
terns are compared with observed values across Europe. The
reader is referred to Mutz et al. (2016, 2018) for more details
about the PD and PI boundary conditions used in this study.

3.4 Model–data comparison

Modern station-based δ18Op data from the Global Network
of Isotopes in Precipitation (GNIP) in Europe (accessible
at https://www.iaea.org, last access: 5 November 2023) are
used as our first validation dataset (Edwards et al., 2002).
The precipitation-weighted δ18Op values from GNIP sta-
tions were compared to the PD simulation to assess the per-

formance of ECHAM5-wiso. Specifically, we compute and
compare long-term annual means of precipitation-weighted
δ18Op for the period covered by the GNIP station measure-
ments across the European continent. The ERA5 climate re-
analysis, produced and managed by the ECMWF, is our sec-
ond validation dataset. The reanalysis is a state-of-the-art,
globally gridded dataset produced from both physical mod-
els and observations (e.g., ocean buoys, aircraft, and other
platforms) that is dynamically interpolated using the four-
dimensional variational (4D-Var) data assimilation scheme
(Hersbach et al., 2020). Compared to its predecessor ERA-
Interim (Dee et al., 2011), the dataset has improved in both
temporal (hourly throughout) and spatial resolution (31 km
or TL639) and expanded its data coverage from 1950 on-
wards (Bell et al., 2021). We use this dataset to construct
Northern Hemisphere teleconnection patterns and compare
them to their equivalents constructed from topographic sce-
narios simulations.

3.5 Postprocessing and analysis of simulation

Long-term seasonal and annual arithmetic means were cal-
culated from the 6 h model output. The deviations of these
means from the CTL mean were calculated by subtracting
the CTL mean from the topography scenarios. The result-
ing anomalies are referred to as “ID–CTL mean differences”
hereafter, where ID is an experiment ID such as W2E1 (see
Sect. 3.2 and Table 1 for an overview). Two-tailed Student’s
t tests with a defined confidence interval threshold of 95 %
were applied to assess the statistical significance of these dif-
ferences against simulated interannual climate variability. In
this study, we mainly discuss summer (JJA) estimates since
numerous studies use pedogenic carbonates, which are pref-
erentially formed during soil drying when evaporation ex-
ceeds precipitation (e.g., Gallagher et al., 2019; Breecker et
al., 2009; Zamanian et al., 2016) as a proxy for stable iso-
tope paleoaltimetry. However, since there are uncertainties
about the extent of the seasonal bias in pedogenic carbonate
formation (e.g., Kelson et al., 2020), the annual means are
also provided. The elevation–δ18Op relationships, further re-
ferred to as the isotopic lapse rates (ILRs), were estimated for
different geographic areas around the Alps (Fig. 1a) by per-
forming ordinary least-squares (OLS) linear regressions on
the grid point values within each region. We use the notation
−1 ‰ km−1 (instead of 1 ‰ km−1) to report a decrease of
1 ‰ for an elevation increase of 1 km. We highlight that the
aim of the analysis is to determine if the elevation–δ18Op re-
lationship over a specific transect would change in response
to the different topographic configurations. The estimated
lapse rates are not intended to serve as a predictive model
for calculating paleoelevation but as a comparison among
the topographic configurations to highlight the need to con-
sider the potential changes in lapse rate through space and
time. This is because the estimated lapse rates only reflect
the scenarios of changes in surface uplift through time with-
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Table 1. Summary of ECHAM5-wiso sensitivity experiments and their topographic configurations and boundary conditions.

Model setup Experiment
name

Topography configuration Boundary conditions

Present day (1979–2000) PD 100 % of the present-day elevation Present-day
(e.g., CO2 = 348 ppm)

Control CTL 100 % of the present-day elevation Pre-industrial
(e.g., CO2 = 280 ppm)

Scenario 2 (bulk
topographic change)

W2E2 200 % of the present-day elevation same as CTL

W0E0 The Alps reduced to 250 m same as CTL

Scenario 1 (W1) W1E0 100 % of the present-day elevation of
the Western–Central Alps and reduction
of the Eastern Alps to 250 m

same as CTL

W1E1.5 100 % of present-day elevation of the
Western–Central Alps and 150 % of the
Eastern Alps

same as CTL

W1E2 100 % of the present-day elevation of
the Western–Central Alps and 200 % of
the Eastern Alps

same as CTL

scenario 1 (W2) W2E0 200 % of the present-day elevation the
Western–Central Alps and reduction of
the present-day elevation of the Eastern
Alps to 250 m

same as CTL

W2W1 200 % of the present-day elevation of
the Western–Central Alps and 100 % of
the Eastern Alps

same as CTL

out changes in the associated global climate and are therefore
not realistic enough to constrain past vertical changes of the
Alps. The statistical uncertainties of the calculated lapse rate
are determined using the 95 % confidence interval around the
calculated OLS slope using a t distribution with n− 2 de-
grees of freedom where the standard deviation of the slope
is the point estimate for n data points. Additionally, the co-
efficient of determination (R2), a measure of the fraction of
the variability of the δ18Op values that can be explained by
the best-fitted OLS estimates, is also reported. We further
show the 95 % confidence and prediction interval around the
regression-fitted model to highlight the uncertainties around
the individual topographic configuration if it was meant to be
used to calculate the paleoelevation for reconstructed δ18Op
values under the assumption of no changes in global climate
over time. In such a case, however, it would not be appro-
priate to compare the error limits around the regression line
for the different scenarios, since their estimates are based on
samples from different distributions. We refer the reader to
Montgomery and Runger (2010) for more details about the
mathematical derivation of the reported metrics.

The prominent Northern Hemisphere teleconnection pat-
terns (i.e., North Atlantic Oscillation – NAO, as well as

the East Atlantic – EA, Scandinavian – SCAN, and East
Atlantic–Western Russia – EA/WR – patterns) were ex-
tracted from the model output to investigate the influence
of surface uplift on synoptic-scale atmospheric variability,
which in turn affects atmospheric moisture transport and
δ18Op values. These were captured by conducting a princi-
pal component analysis (PCA) or empirical orthogonal func-
tion (EOF) analysis (e.g., von Storch and Zwiers, 2001; Han-
nachi et al., 2007) on the summer (JJA) mean sea level
pressure (slp) fields in the North Atlantic–European domain
(20–80◦ N, 80◦W–40◦ E). Before the EOF analysis, a spa-
tial weighting of the latitude of the pressure anomalies was
applied to equalize the atmospheric field geographically, as
North et al. (1982) recommended. The patterns extracted
from present-day ERA5 mean sea level pressure data were
used as a reference to help group the modes of variability
from the topography experiments.

For further analysis of the effects of changing topogra-
phy on regional climate across the orogen, we extracted vari-
ations in vertical wind velocity (omega), cloud cover, and
relative humidity along-strike (west to east) of the Alps.
Since the position of the Alps is approximately parallel to
the present-day prevailing wind direction, along-strike vari-
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ations in these climate elements can provide insight into the
potential evolution of air parcels originating from the west.
This analysis is complemented by trajectory analyses (see
Sect. 3.6).

3.6 Trajectory analysis

Kinetic back-trajectory analyses were performed to investi-
gate the impacts of the topography scenarios on moisture
sources and transport across the Alps. Specifically, the La-
grangian analysis tool LAGRANTO (Sprenger and Wernli,
2015) was used with the three-dimensional wind fields (i.e.,
zonal u, meridional v, and vertical – omega – wind veloci-
ties) of the 6 h model outputs for the trajectory analysis. The
tool uses a robust numerical scheme with efficient spatial
interpolation (bilinear and linear interpolation for the hori-
zontal and vertical directions, respectively). The trajectories
were backtracked for 5 d from a receptor point at the 850 hPa
vertical level defined at four different locations (i.e., Graz at
47.06◦ N, 15.44◦ E; Munich at 48.14◦ N, 11.53◦ E; Bologna
at 44.49◦ N, 11.38◦ E; Lyon at 45.81◦ N, 4.82◦ E).

4 Results

This section summarizes the simulated changes in regional
climate and δ18Op values in response to the different topo-
graphic configurations across the Alps (Sect. 3.2, Fig. S1 in
the Supplement). More specifically, the presentation of re-
sults focuses on δ18Op values, isotopic lapse rate, precipi-
tation amount, near-surface temperature, moisture transport,
and atmospheric circulation patterns. The section comprises
present-day model validation with observed δ18Op values
(Sect. 4.1), a summary of the CTL experiment (Sect. 4.2),
and the changes mentioned above relative to the CTL sim-
ulation (Sect. 4.3–4.10). Unless stated otherwise, the results
are presented for the summer (JJA) season. The annual-scale
changes are included in the Supplement to this paper.

4.1 Present-day (PD) simulation and model validation

The simulated annual mean δ18Op values decrease from the
North Atlantic Ocean towards eastern Europe and over the
Alps by 10 ‰ to 12 ‰ and deviate from the observed GNIP
data slightly (∼ 1–2 ‰; Fig. 1b). The annual means of near-
surface temperature and precipitation across the Alps are 0–
4 ◦C and ∼ 150–200 mm month−1, respectively. Low-level
winds originating from the North Atlantic travel toward Eu-
rope and show slight deflections across the Alps (Fig. 1d).
Overall, comparing the annual long-term means of the model
outputs to observed GNIP stations δ18Op values and ob-
served PD precipitation and temperature patterns indicates
that the model reasonably represents δ18Op values and the
regional climate across Europe. The topography used as an
input parameter for the model moderately represents the to-

pography of the Alps with a dampened elevation of the high-
est peaks (Fig. 1a).

4.2 Control simulation (CTL) δ18Op values,
near-surface temperature, and precipitation

The simulation with pre-industrial (PI) boundary conditions
and PD topography did not show a significant difference
in predicted δ18Op values compared to the PD simulation.
Overall, the CTL experiment shows decreasing patterns of
summer δ18Op values towards northeastern Europe and pre-
dicts 18O-depleted δ18Op values in the range of −10 ‰ to
−12 ‰ across the Alps (Fig. 2a). However, the δ18Op val-
ues slightly increase towards the east of the Alps (∼ 20◦ E),
yielding values from −10 ‰ to −6 ‰. Near-surface temper-
atures are estimated to be more than 10 ◦C across Europe,
with minimum values across the Alps (2–6 ◦C) and a cooling
gradient towards the north (Fig. 3a). Moreover, the predicted
patterns show maximum near-surface temperatures across
the Mediterranean region. The simulated precipitation pat-
terns decrease towards the south, with the Mediterranean re-
gion having the driest climate (Fig. 4a). However, the topog-
raphy of the Alps coincides with higher precipitation (an av-
erage of summer months of ∼ 125 mm month−1) compared
to estimates across central Europe. On the western flanks of
the Alps, low-level westerly winds are deflected in a north–
south bifurcation pattern (Fig. 4a).

4.3 Changes in δ18Op values for the different
topographic scenarios

The simulated regional patterns of δ18Op values show sig-
nificant changes in response to the different topography sce-
narios, especially in regions of modified topography. Overall,
the δ18Op values decrease with increasing elevation. This de-
crease is accentuated when the topography of the Western–
Central Alps is higher (i.e., for the W2 configurations of sce-
nario 1). More specifically, the W2E1 experiment predicts a
significant decrease in δ18Op values across the Alps in the
range of 2 ‰ to 8 ‰ with minimum δ18Op values in the
Western–Central Alps (Fig. 2b). The W2E0 experiment pre-
dicts a more localized significant decrease of 2 to 6 ‰ in the
Western–Central Alps (Fig. 2d). In contrast, the W1E2 con-
figuration results in a decrease of 2 to 6 ‰ over the extended
east flank of the Alps (Fig. 2e), and the W1E0 simulation
does not predict any statistically significant changes in δ18Op
values across the orogen (Fig. 2c). The W2E2 configuration
(of scenario 2) results in a decrease in δ18Op values in the
range of 2 ‰ to 6 ‰ across the Alps and the adjacent low-
elevation regions (Fig. 2f). However, the W2E2 experiment
also predicts a substantial increase in δ18Op values across
northwestern Europe (i.e., over Ireland and the United King-
dom – UK). The experiment with no Alps (W0E0) predicts
an increase in δ18Op up to 8 ‰ (not shown) and is similar
to the results presented in Botsyun et al. (2020). We do not
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Figure 1. Present-day (PD) simulation topography (a) with simulated (shading on map) and observed (circles) annual means of δ18Op values.
Colored circles represent observed δ18Op values obtained from GNIP stations (b), simulated near-surface temperature (c), and precipitation
amount (colored shading) with near-surface wind patterns (arrows: length of arrows indicates wind speed, m s−1) (d).

further discuss this result and refer the reader to Botsyun et
al. (2020) for more details. All experiments predict changes
in δ18Op values of 1 ‰ to 2 ‰ across Europe independent
of direct topographic changes. However, these independent
changes are only statistically significant for the W2 experi-
ments. On the annual scale, the predictions show similar pat-
terns, but changes are more localized and reduced in magni-
tude by ∼ 2 ‰ (Fig. S5).

4.4 Changes in near-surface temperature for the
topographic scenarios

The topographic scenarios predict significant localized cool-
ing or warming where the topography is raised or low-
ered, respectively. The W2E1 experiment predicts a signif-
icant decrease of 5 to 12 ◦C in the Western–Central Alps
(Fig. 3b). The W2E0 simulation predicts similar changes in
the Western–Central Alps, but with a corresponding increase
of ∼ 5 ◦C in the Eastern Alps in response to the reduced
elevation (Fig. 3d). On the other hand, the W1E2 simula-
tion predicts a significant decrease in near-surface temper-
ature by 2 to 7 ◦C in the Eastern Alps and shows a slight
increase of ∼ 1 ◦C over southeastern Europe (Fig. 3e). The
W1E0 experiment also estimates an increase of 2 to 5 ◦C in
the Eastern Alps (Fig. 3c). In total, the topographic config-
urations with a steeper gradient across the Alps (e.g., W2E0

and W1E0) result in a decrease in near-surface temperatures
of ∼ 1 ◦C in parts of northeastern Europe. The W2E2 con-
figuration (of scenario 2) results in a significant temperature
decrease of 5 to 10 ◦C across the Alps from west to east and
shows larger affected low-elevation areas around the Alps
(Fig. 3f). Specifically, the changes show a decreasing pattern
towards the eastern flank of the Alps. The simulated patterns
on the annual scale are very similar to the summer estimates
(Fig. S6).

4.5 Changes in precipitation for the topographic
scenarios

For all scenarios, an increase in elevation results in an in-
crease in precipitation across the orogen. The W2 experi-
ments of scenario 1 predict more important changes in the
orogen and other parts of Europe than the W1 experiments.
The W2E1 experiment predicts a significant increase in pre-
cipitation of up to 125 mm month−1 across the Alps and a
decrease of 25 mm month−1 over eastern and central Eu-
rope around the Alps (Fig. 4b). Moreover, the W2E0 ex-
periment predicts an increase of up to 100 mm month−1 in
the Western–Central Alps and shows a more widespread
decrease in the surrounding regions (Fig. 4d). In con-
trast, the W1E2 experiment estimates an increase of <
80 mm month−1 across the Alps from the west, which peaks
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Figure 2. Seasonal (JJA) long-term mean of δ18Op values of the CTL experiment (a) and seasonal (JJA) mean difference of δ18Op values
for the different topography scenarios, i.e., W2E1-CTL (b), W1E0-CTL (c), W2E0-CTL (d), W1E2-CTL (e), and W2E2-CTL (f). Red color
ranges represent heavy isotope depletion, and blue color ranges represent an enrichment in heavy isotopes relative to the CTL experiment.
Regions that experience changes that are statistically significant, as indicated by a Student’s t-test analysis with a 95 % confidence level, are
marked with black slashed stippling.

in the Eastern Alps (Fig. 4e), and the W1E0 experiment pre-
dicts a decrease of ∼ 25 mm month−1 in the Eastern Alps
(Fig. 4c). The W2E2 configuration of scenario 2 results in
a significant increase of up to 125 mm month−1 across the
Alps from west to east and a decrease toward northern and
eastern Europe (Fig. 4f). However, only precipitation in-
creases in northwestern Russia and northern Europe for ex-
periments W2E1 and W2E0, respectively, are notable and
statistically significant changes far from the orogen. Over an-
nual timescales, changes are more localized and restricted to
regions with modified topography (Fig. S7).

4.6 Spatial profiles of δ18Op values across the Alps

Spatial mean oxygen isotopic profiles across the Alps in the
longitudinal (46–47◦ N) and latitudinal (11–15◦ E) directions
reveal varied responses to the different topographic scenar-
ios. Overall, the isotopic profiles show a decrease in δ18Op
values across the Alps from west to east and from south to
north. The difference in δ18Op values along the profiles is
estimated to be less than −2 ‰ in low-elevation regions ad-
jacent to the mountains and up to −8 ‰ between the low-

and high-elevation ( 1δ18Op) regions of the modified topog-
raphy experiments (Fig. 5). The W1E2, W1E1.5, and W1E0
configurations of scenario 1 result in locally low δ18Op val-
ues down to −11 ‰, −9 ‰, and −6 ‰, in the Eastern Alps,
respectively (Fig. 5a, b). However, the W1 experiments pre-
dict no significant changes in the Western–Central Alps and
the north–south direction. In contrast, the W2E1 and W2E0
experiments of scenario 1 predict a decrease down to−14 ‰
in the Western–Central Alps. The isotopic values gradually
increase up to−8 ‰ and−6 ‰ in the Eastern Alps for W2E1
and W2E0, respectively.

The comparison of the isotopic profiles for scenarios 1
and 2 (i.e., between the diachronous and bulk surface up-
lift experiments) reveals a significant difference along the
strike of the Alps. The differences in response to the topo-
graphic forcing of both scenarios are more visible across the
Eastern Alps. They are greater by −0.5 ‰ to −2 ‰ for sce-
nario 2 (Fig. S8a). However, the scenario 2 experiments show
less negative δ18Op values across the Western–Central Alps
(Fig. S8b).
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Figure 3. Seasonal (JJA) long-term mean of the near-surface temperature of the CTL experiment (a) and seasonal (JJA) mean difference of
near-surface temperature for the different topography scenarios, i.e., W2E1-CTL (b), W1E0-CTL (c), W2E0-CTL (d), W1E2-CTL (e), and
W2E2-CTL (f). Red color ranges represent warmer temperatures, and blue color ranges represent colder temperatures than in the CTL
experiment. Regions that experience changes that are statistically significant, as indicated by a Student’s t-test analysis with a 95 % confidence
level, are marked with black slashed stippling.

4.7 Changes in isotopic lapse rate in response to
different scenarios

The isotopic lapse rates (ILRs) estimated for the differ-
ent geographical windows around the Alps (Fig. 1a) show
varied responses to the different topographic configura-
tions. In relation to CTL experiment ILR estimates (i.e.,
−2.32 ‰ km−1, −2.18 ‰ km−1, and −3.11 ‰ km−1 with
uncertainties ranging from 0.11 ‰ km−1–0.24 ‰ km−1 for
the west, north, and south transects, respectively), the W1
experiments predict a decrease in ILRs for the western and
southern transects (Fig. 6), and the W2 experiments pre-
dict an increase in the west and north transects (Fig. 7).
Note that the W1E0 experiment estimates a dampened ILR
due to the simultaneous increase in δ18Op values of the
low-elevation areas (i.e., −2.08 (±0.22) ‰ km−1 for the
west, −2.01 (±0.14) ‰ km−1 for the north, and −2.17
(±0.13) ‰ km−1 for the south transect) (Fig. 6). The W1E2
simulation predicts a steeper ILR for the north (−2.61
(±0.12) ‰ km−1) and a shallower ILR for the west (−1.83
(±0.24) ‰ km−1) and south (−2.96 (±0.13) ‰ km−1) tran-
sects (Fig. 6). The W2E1 and W2E0 experiments predict

steeper ILRs for both the western (−2.78 (±0.15) and
−2.68 (±0.14) ‰ km−1) and northern (−3.37 (±0.09) and
−3.22 (±0.09) ‰ km−1) flanks and a dampened ILR for the
south (−2.91 (±0.13) and −2.88 (±0.11) ‰ km−1) transect
(Fig. 7). On the other hand, the W2E2 experiment estimated
a shallower ILR of −1.49 (±0.23) ‰ km−1 for the west and
−2.39 (±0.16) ‰ km−1 for the south transect but a steeper
ILR of−2.59 (±0.14) ‰ km−1 for the north transect (Fig. 7).
The r2 values associated with the ILRs exceeded 0.85. The
estimated ILR changes using annual means are comparable
to the patterns of summer means but with generally steeper
gradients (see Figs. S9 and S10 in the Supplement).

4.8 Changes in moisture source and transport

The back-trajectory analyses demonstrate that the topo-
graphic scenarios have a significant influence on air (and
therefore moisture) transport towards target regions on the
eastern and southern flanks of the Alps. Therefore, the pre-
sentation of results (and the associated discussion in Sect. 5)
focuses on regions around the cities of Graz (Fig. 8) and
Bologna (Fig. 9), which represent locations in the east and
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Figure 4. Seasonal (JJA) long-term mean of precipitation amount (shading) with near-surface wind patterns (arrows) of the CTL experiment
(a) and mean difference of precipitation amount for the different topography scenarios, i.e., W2E1-CTL (b), W1E0-CTL (c), W2E0-CTL
(d), W1E2-CTL (e), and W2E2-CTL (f). Green color ranges represent wetter conditions, and brown color ranges represent drier conditions
than in the CTL experiment. Regions that experience changes that are statistically significant, as indicated by a Student’s t-test analysis with
a 95 % confidence level, are marked with black slashed stippling.

south, respectively. The reader is referred to the Supplement
for the back trajectories for the regions around Lyon (in the
west) and Munich (to the north) (Figs. S11 and S12).

Overall, the model tracks most summer air masses back
to the North Atlantic and some to a continental moisture
source in western Europe, depending on the topography sce-
nario and target location. The W2 experiments of scenario 1
(i.e., W2E1 and W2E0) show moisture ascending over the
Western–Central Alps at a higher vertical level before fi-
nally descending to the target location in Graz (Fig. 8b, d).
Moreover, the W2 experiments also show slight moisture
sources from the southern flank of the Alps and predict a
shorter moisture transport distance from the North Atlantic
relative to the CTL experiment. However, the W1E0 exper-
iment trajectories deviate slightly from the CTL experiment
(Fig. 8c). Overall, the W1E2 and W2E2 trajectories toward
Graz (Fig. 8e, f) show significant deviations from the CTL
trajectories (Fig. 8a). W1E2 and W2E2 backtrack low-level
air masses over northwestern Europe, showing a gradual as-
cent over the Alps towards the east at a shorter distance.
However, the W1E2 trajectories show air mass transport at
a higher level (∼ 700 hPa) directly from the North Atlantic

to the target region on the east flank of the Alps without any
orographic barrier deflection (Fig. 8e).

For the CTL experiment, the air mass transport and dis-
tance to the southern location (i.e., Bologna, Fig. 9a) are sim-
ilar to the results for Graz, but the moisture originates from a
higher atmospheric level. The W2 experiments of scenario 1
also predict a significant influence on air mass trajectories to
the southern flanks of the Alps. Specifically, the air masses
from experiments W2E1 and W2E0 originate from the North
Atlantic at a higher atmospheric level (∼ 750 hPa or less) and
then divert towards the southeast at the western flank of the
Alps before being transported to Bologna (Fig. 9b, d). More-
over, part of the air mass is transported across the Northern
Alps and then diverted downwards through the eastern flank
to the receptor location in the south. The W2E0 experiment
shows a shorter moisture transport distance than the W2E1
trajectories. For the W1 experiments, W1E0 shows no signif-
icant difference in moisture transport compared to the CTL
trajectories (Fig. 9c). W1E2 predicts a longer moisture trans-
port distance from the North Atlantic at a higher atmospheric
level and an ascent over the Alps towards the southern flanks
(Fig. 9e). On the other hand, the results from the W2E2 ex-
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Figure 5. Regional seasonal (JJA) means of spatial δ18Op values across the Alps in the longitudinal (averaged between 46 and 47◦ N)
(a, c) and latitudinal (averaged between 11 and 15◦ E) (b, d) direction in response to different topographic scenarios (CTL in black, W1E0
in blue, W1E2 in red, W1E1.5 in green, W2E1 in gold, and W2E2 in purple). Colored shading represents topography profiles extracted from
the W1 (a, b) and W2 (c, d) scenario 1 experiments. The latitudinal and longitudinal transects are indicated on the original topography used
for the topographic modifications (e).

Figure 6. Summer isotopic lapse rate (ILR) estimates for the W1 topography scenario (i.e., W1E0 in red, W1E2 in green, and CTL in black)
experiments for the different transects around the Alps as shown in panel (d) (west: 44–47◦ N, 1–8◦ E; south: 43–47◦ N, 8–15◦ E; north: 47–
50◦ N, 5–16◦ E). The ILRs are estimated as the δ18Op elevation gradients using linear regression. The lapse rate uncertainties are determined
using the 95 % confidence interval around the calculated OLS slope using a t distribution with n− 2 degrees of freedom where the standard
deviation of the slope is the point estimate, the coefficient of determination (r2) is the measure of the fraction of the variability of the δ18Op
values that can be explained by the best-fitted OLS estimates, and the 95 % confidence and prediction intervals around the regression-fitted
model highlight the uncertainties around the individual topographic configuration if it was meant to be used to calculate the paleoelevation
for reconstructed δ18Op values.

periment show air masses from western Europe descending
towards the south (Fig. 9f). Moreover, the W2E2 experiment
also shows some trajectories from the eastern side of the Alps
for the calculated 5 d back trajectories. Overall, the target
regions at the north and west flanks show fewer significant

changes in air mass transport and source in response to the
different topographic forcings (Figs. S11 and S12).
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Figure 7. Summer isotopic lapse rate (ILR) estimates for the W2 topography scenario (i.e., W2E0 in purple, W2E1 in gold, CTL in black, and
W2E2 in blue) experiments for the different transects around the Alps as shown in Fig. 6e (west: 44–47◦ N, 1–8◦ E; south: 43–47◦ N, 8–15◦ E;
north: 47–50◦ N, 5–16◦ E). The ILRs are estimated as the δ18Op elevation gradients using linear regression. The lapse rate uncertainties are
determined using the 95 % confidence interval around the calculated OLS slope using a t distribution with n− 2 degrees of freedom where
the standard deviation of the slope is the point estimate, the coefficient of determination (r2) is the measure of the fraction of the variability
of the δ18Op values that can be explained by the best-fitted OLS estimates, and the 95 % confidence and prediction intervals around the
regression-fitted model highlight the uncertainties around the individual topographic configuration if it was meant to be used to calculate the
paleoelevation for reconstructed δ18Op values.

4.9 Vertical structure of vertical wind velocity, cloud
cover, and relative humidity across the Alps

The vertical cross-sections of the Alps reveal important
changes in the tropospheric climate structure in response
to the different topographic configurations. The CTL ex-
periment shows negative omega values, indicating wind di-
rections away from the ground, up to the ∼ 600 hPa atmo-
spheric level in the Western–Central Alps and positive omega
values towards the Eastern Alps (Fig. 10a). These regions
of updraft (and subsidence) coincide with regions of high
(and low) cloud formation (Fig. 10d). Moreover, the CTL
experiment predicts a general decrease in relative humid-
ity from low to high altitude levels (and from west to east)
across the Alps but also predicts more humidity near the
tropopause (Fig. 10g). Overall, the W1E0 experiment sim-
ulates a similar atmospheric structure in the Western–Central
Alps (Fig. 10b, e, and h). However, the W1E2 atmospheric
structure shows alternating moisture ascent and subsidence
across the Alps. More specifically, another area of ascent
is introduced over the elevated peak of the Eastern Alps
(Fig. 10c). Cloud formation and relative humidity mimic this
pattern, with high cloud cover and high relative humidity co-
inciding with negative omega (Fig. 10e, i). The W2 experi-
ments show a more significant influence on the vertical atmo-
spheric structure than the W1 experiments, especially at the
upper-tropospheric levels (Fig. 11). The W2E1 and W2E0
cross-sections show a strong ascent velocity in the Western–
Central Alps up to the upper troposphere and low-level subsi-
dence in the Eastern Alps (Fig. 11a, b). A vertically extended
region of strong cloud formation and high relative humidity
spatially coincides with the area of ascent over the Western–

Central Alps (Fig. 11d, e, g, and h). The high topography in
scenario 2 (W2E2) results in an alternating pattern of positive
and negative omega values that correspond to topographic
troughs and peaks, respectively (Fig. 11c). Ascent (subsi-
dence) spatially coincides with strong (weak) cloud forma-
tion and high (low) relative humidity (Fig. 11f, i).

4.10 Changes in atmospheric pressure systems in
response to different topographic scenarios

Overall, the different topographic configurations explored in
this study impact Northern Hemisphere atmospheric telecon-
nection patterns. These impacts include geographical shifts
and changes in the intensity of quasi-stationary pressure
systems (centers of action). The leading mode of atmo-
spheric pressure variability, determined by empirical orthog-
onal function (EOF) analyses, explains 22 %–35 % of the to-
tal pressure variance and is characterized by negative anoma-
lies across Iceland and Greenland, a strong positive anomaly
in the midlatitude North Atlantic Ocean near the Azores, and
a weak positive anomaly over midlatitude continental Eu-
rope. (Fig. 12). These north–south dipole patterns are compa-
rable to the leading mode constructed from ERA5 data (see
Fig. S13a in the Supplement). The topographic configura-
tions with high elevation gradients (i.e., W1E0 and W2E0)
result in maximum positive anomalies over continental Eu-
rope (Fig. 12b, d). The W1E2 experiment shifts the main cen-
ters of action of the positive anomaly eastwards by ∼ 20◦ E
and the nodal line of the dipole axis (i.e., the line that sepa-
rates the positive and negative pressure anomalies) northward
by ∼ 10◦ N (Fig. 12c). W2E1 and W2E2 show two well-
defined regions of maximum pressure positive anomalies
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Figure 8. 5 d summer back trajectories with the receptor location set to the 850 hPa level above Graz (47.06◦ N, 15.44◦ E). The colored lines
represent the vertical pressure level of the trajectories. The trajectories were estimated with the 6 h wind fields (i.e., u, v, and omega) from
the topographic experiments using the LAGRANTO tool.

over the North Atlantic and northeastern Europe (Fig. 12e, f).
In summary, topographic configurations with high topogra-
phy in the Western–Central Alps (i.e., W1E0, W2E0, W2E1)
result in an intensification of positive anomalies over conti-
nental Europe, while experiments forced with higher topog-
raphy in the Eastern Alps (i.e., W1E2) shift the maximum
positive anomalies region to the eastern Atlantic (Fig. 12c).

The pressure systems with the second mode of variability
show a monopole pattern of positive anomalies spread across
northern (> 50◦ N) Europe for most of the topographic con-
figurations. This is comparable to the second EOF pattern
extracted from ERA5 data (Fig. S13b). The CTL experi-
ment shows two well-defined regions of maximum positive
anomalies over the North Atlantic, western Russia, and the
Baltic states (Fig. 13a). The W1E0 simulation predicts a sim-
ilar spatial pattern as the CTL experiment but intensifies the
eastern anomaly (Fig. 13b). The W1E2 and W2E0 configu-
rations significantly intensify the positive anomalies over the
eastern Atlantic (Fig. 13c, d). The W2E1 and W2E2 experi-
ments predict a slight (∼ 5◦) northward shift of the band of
positive anomalies over the eastern Atlantic Ocean and west-

ern Europe. Additionally, the W2E2 experiment also results
in a northward shift of positive anomalies in eastern Europe.
The spatial patterns of the third and fourth EOFs are similar
to the ERA5 patterns but are not as clearly defined or sensi-
tive to changes in topographic forcing (Figs. S14 and S15).

5 Discussion

In the following sections, the impacts of diachronous surface
uplift on regional climate (e.g., near-surface temperature,
precipitation dynamics, moisture transport, low-level circu-
lation patterns) and their implications for δ18Op values and
isotopic lapse rates (ILRs) are discussed. While the δ18Op
response is created by the combined effects of all the climate
variables previously discussed, we discuss the individual im-
pacts to disentangle the total signal and explain plausible pro-
cesses for each signal component. Finally, we highlight the
study’s limitations and implications for stable isotope pale-
oaltimetry across the Alps (Sect. 5.6 and 5.7).
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Figure 9. 5 d summer back trajectories with the receptor location set to the 850 hPa level above Bologna (44.49◦ N, 11.38◦ E). The colored
lines represent the vertical pressure level of the trajectories. The trajectories were estimated with the 6 h wind fields (i.e., u, v, and omega)
from the topographic experiments using the LAGRANTO tool.

5.1 Impacts of diachronous surface uplift on
near-surface temperatures

The topography sensitivity experiments show significant lo-
calized changes in the near-surface temperature. For all to-
pographic configurations, maximum changes were estimated
for regions of modified topography, while changes in re-
gions farther from the orogen are less pronounced. The less
pronounced regional changes farther from the modified to-
pography areas might be due to associated large-scale at-
mospheric changes and therefore caused by a non-adiabatic
mechanism. However, these small and insignificant tempera-
ture differences may simply be due to modeling artifacts. On
the other hand, the significant changes in regions of modified
topography can mainly be attributed to the adiabatic tempera-
ture lapse rate, which defines how temperature changes with
altitude. Although previous studies have indicated the pos-
sibility of non-adiabatic mechanisms (e.g., changes in tro-
pospheric dynamics, local atmospheric humidity, and atmo-
spheric circulation patterns) contributing to changes in addi-
tion to the adiabatic lapse rate changes (Ehlers and Poulsen,
2009; Feng and Poulsen, 2016; Kattel et al., 2015), an in-

depth quantification of the relative contributions would be
required to confidently attribute the changes to non-adiabatic
processes.

5.2 Impacts of diachronous surface uplift on
precipitation

Topography affects the environment in which precipitation
occurs in response to thermodynamic and atmospheric dy-
namics changes (Beniston, 2005; Houze, 2012; Insel et al.,
2010; Poulsen et al., 2010). Our results indicate a system-
atic increase in precipitation amount in response to surface
uplift due to orographic airlifting and associated cloud for-
mation and condensation. For instance, the high-elevation
scenarios on the Western–Central Alps focus precipitation
on the western flank of the Alps and show a decreasing
trend towards the Eastern Alps. Moreover, our results also
show a threshold of the magnitude of elevation change (i.e.,
ca. 200 % of modern topography increase) that triggers sig-
nificant regional changes across Europe. More specifically,
our W2 experiments of scenario 1 show significant changes
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Figure 10. Seasonal (JJA) means of vertical wind velocity (omega) (a–c), cloud cover (d–f), and relative humidity (g–i) averaged between
45 and 48◦ N across the Alps for the W1 (i.e., W1E0, W1E2) and CTL experiments. The black shading represents the cross-section of
topography for each scenario. The omega values represent the speed of air motion in the upward or downward direction. Since vertical
pressure decreases with height, negative values indicate upward or ascent velocity, and positive values indicate downward or subsidence
velocity.

(drier conditions) across northern Europe and an extension
of a rain shadow region on the eastern flanks of the Alps,
whereas changes in the W1 experiments are comparatively
mild. These spatial patterns are expected since the rainout
on the western flanks of the Alps extracts moisture from
the vapor masses on the windward slopes and leads to drier
air masses crossing to the northern and eastern flanks of the
Alps. The Alps are a relatively small orogen, positioned par-
allel to moisture transport, which should lead to more moist
air mass spill-over and flow around the Alps to the east and
less distinct changes in precipitation amount (Sturm et al.,
2010). Nevertheless, our calculations of vertical wind veloc-
ities (omega), relative humidity, and cloud cover (Figs. 10
and 11) suggest that our uplift scenarios induce enough oro-
graphic lifting to create notable updrafts that lead to the for-
mation of thick clouds in the troposphere (Houze, 2012). The
higher along-strike terrain created by bulk surface uplift in
the W2E2 experiment even results in a clearly defined ∼
500 km wavelength pattern of interchanging moisture uplift
and subsidence, which corresponds to high and low cloud

cover and relative humidity (Fig. 11c, f, and i). Note that the
local precipitation changes induced by varying the topogra-
phy of the Eastern Alps are very different from those induced
by varying the topography of the Western–Central Alps (e.g.,
Fig. 4e vs. Fig. 4b). In summary, due to the size and orienta-
tion of the Alpine orogen with respect to the dominant wind
fields, the regional precipitation response to diachronous sur-
face uplift is unique and highly sensitive to the altitude of the
Western–Central Alps in particular.

5.3 Impacts of diachronous surface uplift on moisture
source and transport

The back-trajectory analyses for the topography experiments
reveal notable changes in air mass transport distance and
pathways even though the predominant moisture source re-
mains the North Atlantic Ocean (Rozanski et al., 1982). Our
simulations demonstrate that diachronous surface uplift im-
pacts the target regions located on the southern and eastern
flanks of the Alps in particular compared to western and
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Figure 11. Seasonal (JJA) means of vertical wind velocity (omega) (a–c), cloud cover (d–f), and relative humidity (g–i) averaged between
45 and 48◦ N across the Alps for W2 of scenario 1 (i.e., W2E1, W2E1), scenario 2 (i.e., W2E2), and CTL experiments. The black shading
represents the cross-section of topography for each scenario. The omega values represent the speed of air motion in the upward or downward
direction. Since vertical pressure decreases with height, negative values indicate upward or ascent velocity, and positive values indicate
downward or subsidence velocity.

northern localities. More specifically, the air mass trajecto-
ries towards the eastern flank of the Alps tend to travel a
shorter distance when the topography of the Eastern Alps is
higher (Fig. 8e, f) but travel a longer distance towards the
southern flank (Fig. 9e). On the other hand, the trajectories
towards the eastern flank originate from higher atmospheric
levels when the surface topography of the Western–Central
Alps is raised due to the increased orographic barrier but
with slight changes in transport distance. For example, our
trajectory analysis for the city of Graz in the W2 experiments
(i.e., W2E1 and W2E0) indicates that moisture originates at
higher atmospheric levels over the east of the North Atlantic
and travels a shorter path to its destination (Fig. 8b, d). On
the other hand, the W1E2 and W2E2 configurations signifi-
cantly shorten the moisture transport distance and originate
from lower altitudes (Fig. 8e, f). This indicates that the air
mass would most likely experience less rainout due to the
shorter period to reach condensation, yielding slightly higher
δ18Op values compared to long-distance air mass transport.
Furthermore, the W2 experiments deflect moisture from the

Atlantic to the Mediterranean region before redirecting it to
the Southern Alps. These changes in vapor transport are not
surprising since mountain barriers would force the air to rise,
and, depending on the strength of the flow, the cross-barrier
flow would be blocked or deflected towards the regions of
precipitation (Colle, 2004; Grossman and Durran, 1984). The
atmospheric conditions of the moisture source region would
also influence the precipitation type and amount in the tar-
get regions (Feng et al., 2013). Therefore, our results stress
the importance of considering the unique impacts of differ-
ent topographic configurations on the moisture source and
pathways when investigating past changes in precipitation
(or δ18Op).

5.4 Impacts of the diachronous surface uplift on
atmospheric flow and pressure systems

Atmospheric teleconnections control much of the synoptic-
scale atmospheric variability that is also important for the
climate in mountain ranges (Barnston and Livezey, 1987;
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Figure 12. The spatial patterns and explained variance of the first empirical orthogonal function (EOF) extracted from the topography
experiments. These resemble the leading mode of variability extracted from the ERA5 data (see Fig. S13 in the Supplement) and the patterns
associated with the North Atlantic Oscillation. The patterns are calculated from summer mean sea level pressure (slp) anomalies and represent
the covariance matrix of the principal component time series and the EOFs.

Rogers, 1990; Wallace and Gutzler, 1981). These patterns
influence climate over a large geographic area and affect
processes such as precipitation dynamics, storm tracks, jet
stream location, atmospheric waves, and temperature (Hur-
rell, 1995; Woollings et al., 2010). Giorgi et al. (1997) in-
dicate that altitude plays a significant role in determining
the regional climate response to large-scale patterns like the
North Atlantic Oscillation (NAO). Moreover, Wallace and
Gutzler (1981) suggest that the high-pressure anomalies that
persisted across the Alps during the 1980s were due to shift-
ing of the upper-level jet stream (i.e., the north–south dipole
axis associated with the polar front) to the north. Therefore,
the nonstationarity of these recurrent pressure patterns (espe-
cially in summer) (Deininger et al., 2016) requires that any
attempt to reconstruct past hydrological cycles quantitatively
be done with knowledge about the potential changes in at-
mospheric pressure patterns.

Our simulation results indicate a persistent leading mode
of variability that is consistent with the NAO (Fig. 12) (Hur-
rell, 1995; Hurrell and Van Loon, 1997). The modern (non-
simulated) NAO exists in all seasons (Craig and Allan, 2022)
but is more prominent and stable in winter. A well-developed

dipole pressure gradient between the Icelandic Low and
Azores High in its positive phase induces strong westerlies
and northerly storm tracks that transport air masses from the
eastern Atlantic towards central Europe. Such a pressure sys-
tem drives colder and drier conditions across western Green-
land and the Mediterranean region and warmer and wetter
conditions across northern Europe and some portions of the
Scandinavia region. During its negative phase, the pressure
gradient is reduced, which causes a decrease in the strength
of the westerlies and a southward shift of the storm tracks.
This mechanism leads to more precipitation across southern
Europe and the Mediterranean and colder and drier climates
across northern Europe (Barnston and Livezey, 1987; Hur-
rell and Van Loon, 1997). Overall, our topography experi-
ments suggest a northeastward shift of the positive anomaly
center of the action close to Ireland and the UK when the
Eastern Alps (W1E2) are uplifted and more eastward stretch
with intensification across eastern Europe when the Western–
Central Alps are at a maximum elevation (e.g., W2E1). The
shifts of the NAO dipole axis, intensification, and location of
the center of action in response to topography changes would
alter the moisture and heat transport pathways, wind pat-
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Figure 13. The spatial patterns and explained variance of the empirical orthogonal functions (EOFs) that resemble the second mode of
variability extracted from the ERA5 data (see Fig. S13 in the Supplement). The patterns are calculated from summer mean sea level pressure
(slp) anomalies and represent the covariance matrix of the principal component time series and the EOFs.

terns, and the intensity of storms and precipitation patterns
across the North Atlantic and its surrounding continents. For
instance, the eastward shift and intensification of the posi-
tive anomalies over central Europe in response to higher to-
pography in the Western–Central Alps would likely lead to a
reduction of rainfall across the central and southern parts of
Europe due to the northward flow of moisture.

The pressure patterns of the second mode of variability in
response to the topography changes resemble the East At-
lantic (EA) pattern, as originally identified by Wallace and
Gutzler (1981). The exact nature of the EA pattern is still de-
bated. While some studies define it as a southward shift of the
NAO, showing the north–south dipole pressure gradient with
centers of action across the North Atlantic from east to west
(Bastos et al., 2016; Chafik et al., 2017), others define it as
a well-defined monopole pressure anomaly close to Ireland
(Comas-Bru and McDermott, 2014; Josey and Marsh, 2005;
Moore et al., 2013; Zubiate et al., 2017). Our simulated pat-
tern matches the latter description best. Such a pattern would
lead to wetter conditions across eastern Europe and a drier
climate over western Europe (Barnston and Livezey, 1987).
The E0 configurations (Fig. 13b, d) result in the most signif-
icant changes to the second mode of variability, which high-

lights the potentially significant impact of delayed Eastern
Alps uplift on atmospheric pressure patterns and associated
changes in precipitation across Europe. An example of such
an influence on precipitation is the extensive drying across
eastern Europe in response to the W2E0 topography config-
uration (Fig. 4d)

The second and third modes of variability show some
similarity to the Scandinavian (SCAN) pattern and the East
Atlantic–Western Russia (EA/WR) pattern as described in
other studies (Barnston and Livezey, 1987; Comas-Bru and
McDermott, 2014; Ionita, 2014; Lim, 2015). The simulated
patterns do not show any clear trends or large and systematic
changes in response to the different topographic forcings.

In summary, our results suggest that different topographic
configurations, including those describing diachronous sur-
face uplift, can induce significant changes to synoptic-scale
atmospheric pressure systems in the Northern Hemisphere.
Quantifying the impacts of these changes on regional climate
would require an in-depth investigation of atmospheric dy-
namics and scale interactions in the region and is beyond the
scope of this study. Our results highlight plausible changes
in atmospheric pressure patterns that would significantly af-
fect the spatial distribution of precipitation across Europe
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and change the source region and pathways for moisture
carried onto the continent. However, we acknowledge that
changes in such a decadal mode of variability would not
be reflected in such low-resolution geologic archives used
for stable isotope paleoaltimetry. Nevertheless, assessing the
role of topography in changing the atmospheric dynamics of
such large-scale circulation patterns sheds light on the possi-
bility of its impact on the spatial variability and distribution
of δ18Op. For instance, this has been highlighted by Meth-
ner et al. (2020) regarding the possibility of the reorganiza-
tion of the midlatitude atmospheric circulation in the middle
Miocene that led to seasonal changes in the timing of carbon-
ate formation across central Europe.

5.5 Impact of regional climate changes on δ18Op and
isotopic lapse rates

The sensitivity experiments show that the topographic con-
figurations describing diachronous surface uplift (scenario 1)
affect δ18Op values across the Alps. Specifically, the W2 ex-
periments predict a decrease in δ18Op values of∼ 8 ‰ on the
western flanks of the Alps and a less significant change of
∼ 1 ‰ to 2 ‰ in the adjacent low-elevation regions around
the Alps (Fig. 2). Moreover, the simulations predict an ex-
pansion of the area of low δ18Op values (adjacent to the
western side of the orogen) when a high elevation (W2) is
assumed for the Western–Central Alps (or the complete oro-
gen). This is not surprising since the predominant moisture
transport from west to east would be blocked or deflected by
the steeper topography, creating an “isotopic rain shadow.”
In contrast, the moderate (present-day) height allows more
spill-over of moisture over and around the Western Alps, es-
pecially since the Alps are positioned parallel to wind tra-
jectories (Sturm et al., 2010). The decrease in δ18Op values
over the Northern Alps, on the other hand, could be a re-
sult of the cross-over flow of moisture transported from the
Mediterranean Sea. However, our trajectory analysis did not
indicate a plausible moisture source from the Mediterranean
in summer, which might be due to the limited model reso-
lution to capture all the relevant air mass sources. Neverthe-
less, the Late Cretaceous to Paleogene closure of the Tethys
Ocean, which led to the surface uplift of the Alps, might have
influenced the transport of moisture from the Mediterranean
in a past climate. Botsyun et al. (2022) simulate the global
climate with middle Miocene paleoenvironment conditions
while considering the Paratethys Sea extent in their land–sea
mask to determine the impacts of the marine transgression on
the regional climate. Their results indicate an increase in pre-
cipitation up to 400 mm yr−1 around the regions adjacent to
the Paratethys Sea with anticyclonic circulation situated over
the Mediterranean in the winter season. Note, however, that a
fully coupled ocean–atmosphere GCM would be needed for
a realistic assessment of the contribution of ocean circulation
to the distribution of δ18Op patterns across Europe.

In general, the modeled differences in δ18Op values in re-
sponse to changes in topography can be attributed to changes
in orographic precipitation and adiabatic-lapse-rate-driven
near-surface temperature. These can, in turn, be explained by
direct altitude-related differences between our topographic
scenarios, as well as by indirect effects related to changes
in the wind trajectories, changes in the vertical tropospheric
structure in an orogen located in a westerlies-dominated
wind field, and changes in synoptic-scale atmospheric dy-
namics (Sect. 5.1–5.4). These changes differ significantly
between the topographic configurations and ultimately re-
sult in different ILRs. More specifically, the annual ILRs are
more negative (steeper) than the summer ILRs (Figs. S9 and
S10). These changes in ILRs are likely due to two effects:
(1) the increase in isotopic fractionation with decreasing tem-
perature (Dansgaard, 1964; Gat, 1996) affects the winter
(and thus the annual) ILR, and (2) evaporative recycling of
warmer surface waters in the summer leads to a different iso-
topic composition of the continental moisture source (Risi et
al., 2013).

Overall, this study’s experiments outline the fact that di-
achronous surface uplift (i.e., the west-to-east surface uplift
propagation) across the Alps would have produced distinct
spatial profiles of δ18Op due to both direct (altitudinal) and
indirect climatic effects. If the magnitude of change in δ18Op
values presented here for different topographic scenarios is
preserved in geologic archives such as paleosol carbonate
nodules or hydrous silicates, then the stable isotope record
of these changes holds the potential to reconstruct the hy-
pothesized diachronous surface uplift history of the Alps. We
highlight that a magnitude of 1δ18Op value of −8 ‰, which
is significant enough to be preserved in geologic archives,
would only be achieved when the mean topography is higher
than the modern Alps. Furthermore, our results suggest that
the ILR, which for the lack of tracking it through time is often
assumed to be constant in stable isotope paleoaltimetry stud-
ies, may change across the Alps depending on the specific to-
pographic configuration. For instance, the W2E1 topographic
configuration, which best matches the paleoelevation recon-
struction in the middle Miocene by Krsnik et al. (2021),
would correspond to an increase of 0.46 (±0.15–0.24) and
1.19 (±0.09–0.11) ‰ km−1 across the western and north-
ern flanks (Fig. 7a, b) compared to present-day topography.
However, the estimated difference between W2E1 and the
CTL across the southern flank is 0.2 (±0.13–0.16) ‰ km−1

(Fig. 7c). This indicates that the impact on the isotopic lapse
rate changes depends on the topographic rise and configu-
ration, as well as the transect considered. In this scenario,
the northern transect lapse rates estimate a higher magnitude
of change in lapse rate since the higher topography estab-
lished across the Western–Central Alps redistributes precipi-
tation due to the orographic barrier to the moisture trajectory
paths from the North Atlantic, which cause dryness toward
the north (Fig. 4b).

Earth Syst. Dynam., 14, 1183–1210, 2023 https://doi.org/10.5194/esd-14-1183-2023



D. Boateng et al.: The effects of diachronous surface uplift of the European Alps 1203

5.6 Model limitations and implications

The modeled present-day climate conditions are in good
agreement with observational data and the expected climate
patterns across Europe, as also indicated by other studies
(Langebroek et al., 2011; Werner et al., 2011). The slight de-
viations across the Alps are likely a result of the model’s un-
derrepresentation of the subgrid topographic features (e.g.,
ridges and slopes in the Alps). Nevertheless, the reader
should carefully consider further limitations of the model
and this study. ECHAM5-wiso, like other GCMs, has several
deficiencies in parameterization schemes and simplifications
of the underlying physics (Roeckner et al., 2003; Werner et
al., 2011). Most importantly for this study, the model simpli-
fies complex topography by smoothing high-elevation peaks,
which leads to an underestimation of δ18Op values at higher
elevations. Furthermore, it uses the hydrostatic approxima-
tion, which generally results in a relatively poor representa-
tion of precipitation dynamics in mountain regions with steep
topographic gradients (e.g., Steppeler et al. 2003). On top
of that, ECHAM5-wiso does not simulate the oceanic vari-
ables dynamically but uses prescribed sea surface tempera-
tures (SSTs) and sea ice concentrations (SICs) from a cou-
pled ocean–atmosphere GCM, which complicates our EOF
analysis to construct the atmospheric teleconnections. The
model underestimates summer precipitation across the Eu-
ropean Alps due to the parameterization of convective pro-
cesses that contribute to summer rainfall (Langbroeck et
al., 2011). Moreover, ECHAM5-wiso has a simple land sur-
face scheme that does not allow for proper consideration of
the isotopic fractionation of surface waters (Werner et al.,
2011). Since water vapor from evaporative recycling of sur-
face waters and evapotranspiration influence the δ18Op val-
ues across Europe (Rozanski et al., 1982), the reader is ad-
vised to consider this limitation when applying our model
results. Furthermore, we note that the trajectory analyses of
this study track air masses by disregarding their moisture
content. Therefore, changes in air mass trajectories do not in-
herently lead to significant changes in δ18Op if, for example,
all changes in atmospheric transport only affect air masses
that are moisture-depleted. The reader is also made aware
that this study uses fixed pre-industrial paleoenvironmental
boundary conditions for the GCM topographic sensitivity ex-
periments to isolate the topography-related δ18Op signal of
simplified diachronous surface uplift scenarios for the Alps.
The reader is advised that these conditions do not represent
the realistic global paleoclimate condition of the time of the
Cenozoic major surface uplift, which is why we refer to our
results as a sensitivity analysis of potential signals. However,
despite these limitations, the results of this sensitivity analy-
sis indicate good potential for detecting and reconstructing a
diachronous elevation history in the Alps. Given this, future
time-intensive efforts such as stable-isotope-based paleoal-
timetry data collection and more paleogeographically realis-

tic GCM studies are considered likely to be worthy endeav-
ors.

5.7 Implications for paleoaltimetry reconstructions and
hypothesis evaluation

Stable isotope paleoaltimetry exploits the systematic rela-
tionship between δ18Op and elevation to infer past eleva-
tion across orogens (e.g., Chamberlain et al., 1999; Kohn
and Dettman, 2007; Mulch, 2016; Quade et al., 2007; Row-
ley and Garzione, 2007; Sharp et al., 2005). The present-
day δ18Op lapse rate in the Central Alps is ∼ 0.2 ‰ 100 m−1

(Campani et al., 2012). The present study estimates a simi-
lar range of δ18Op lapse rates across the western and north-
ern flanks of the Alps for present-day topography con-
ditions (−0.23 ‰ 100 m−1 and −0.22 ‰ 100 m−1, respec-
tively) and a higher value (−0.31 ‰ 100 m−1) for the south-
ern flanks (Fig. 6). The W2E1 scenario is the closest to a
plausible, albeit very simplified, scenario for the Miocene
since the Alps are suggested to have reached their maximum
peaks during that period. The simulation for this topography
scenario estimates δ18Op lapse rates of −0.28 ‰ 100 m−1,
0.34 ‰ 100 m−1, and −0.29 ‰ 100 m−1 for the west, north,
and south transects, respectively (Fig. 7). These results dif-
fer from our predictions of lapse rates produced by bulk sur-
face uplift experiments (i.e., W2E2). In other words, the di-
achronous surface uplift of the Western–Central and Eastern
Alps (scenario 1) creates distinct isotopic patterns that differ
from those produced by the control simulation (CTL) or the
bulk surface uplift (scenario 2) experiments. We can there-
fore accept our hypotheses that (1) different topographic con-
figurations for the Eastern and Western–Central Alps result
in regional climates and spatial distributions of δ18Op that are
significantly different from those of today and that (2) differ-
ent topographic configurations for the Eastern and Western–
Central Alps result in regional climate and spatial distribu-
tions of δ18Op that are significantly different from those pro-
duced by scenarios of bulk surface uplift of the whole Alps.
Therefore, if the signals produced by diachronous surface up-
lift are preserved in the geological record, diachronous sur-
face uplift should be reflected in the associated δ18Op values.
This suggests that hypothesized west-to-east surface uplift
propagation could be reconstructed with stable isotope pale-
oaltimetry that takes advantage of these archives.

The topographic changes produce less pronounced δ18Op
values changes at low-elevation sites adjacent to the Alps,
which is consistent with findings from experiments presented
by Botsyun et al. (2020). The affected area of 18O deple-
tion expands geographically when high elevation is assumed
on the western flanks of the Alps. Since the δ–δ paleoal-
timetry approach is based on the premise that low-elevation
sites record background climate change unrelated to topo-
graphic changes, our results stress the importance of also
sampling low-elevation regions at some distance from the
orogen, especially for times when the orogen had likely
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reached significant elevation. However, sampling at low ele-
vation near the orogenic front may underestimate rather than
overestimate the past elevation (because of low-elevation
δ18Op values that are lower than far-field sampling sites un-
affected by nearby Alpine topography). Therefore, we rec-
ommend that this study’s δ18Op maps be consulted when
devising a sampling strategy to ensure that the target low-
elevation sampling location lies outside the region in which
topographic changes significantly impact δ18Op values. Pa-
leoclimate modeling with realistic paleoenvironmental con-
ditions may provide important support for future paleoal-
timetry studies. Due to the demonstrated link between to-
pographic configurations and the atmospheric teleconnection
patterns governing European climate, estimates of past cli-
mate and δ18Op lapse rates should also consider the hypoth-
esized uplift scenarios as part of the paleogeographic and pa-
leoelevation boundary conditions for climate models (e.g.,
Zhang et al., 2015).

6 Conclusions

The European Alps are hypothesized to have experienced di-
achronous surface uplift in response to post-collisional pro-
cess such as slab break-off. Understanding the geodynamic
and geomorphic evolution of the Alps requires knowledge of
its surface uplift history. This study employs a model-based
sensitivity analysis to investigate the response of regional cli-
matic and δ18Op values to diachronous surface uplift across
the Alps. Overall, our results let us accept the hypotheses that
the diachronous surface uplift of the Western–Central and
Eastern Alps would result in distinct regional climates and
meteoric δ18Op patterns that differ from (1) present-day con-
ditions and (2) conditions produced when the whole Alps are
uplifted. If this signal is not lost during the formation of geo-
logical proxy material like paleosol carbonates, these records
can be used in a stable isotope paleoaltimetry approach to
test the hypothesis of eastward propagation of surface uplift
in the Alps. We summarize the results as follows.

1. The diachronous surface uplift across the Alps sig-
nificantly decreases δ18Op values up to ∼ 8 ‰ over
the modified areas, mainly due to an increase in oro-
graphic precipitation and adiabatic temperature lapse
rate. The topographic scenarios with higher elevations
in the Western–Central Alps produce a greater decrease
in δ18Op values and an expansion of the affected geo-
graphical domain surrounding the Alps when compared
to present-day topography. The different topographic
scenarios resulted in a less significant change in δ18Op
values of 1 ‰–2 ‰ over the adjacent low-elevation ar-
eas around the Alps.

2. The δ18Op value changes were predominantly driven
by the significant increase in precipitation amount of
up to ∼ 125 mm month−1 in response to surface uplift

due to orographic airlifting and changes in precipitation
dynamics. The surface uplift scenarios with higher to-
pography in the Western–Central Alps resulted in sig-
nificantly drier conditions (rain shadow) over northern
Europe and towards the eastern flanks.

3. Surface uplift resulted in a localized decrease in near-
surface temperature that also contributed to the decrease
in δ18Op values. The temperature changes were only
significant over the modified topographic areas, where
they can be primarily explained by adiabatic tempera-
ture lapse rates. Smaller changes of up to −2 ◦C over
regions farther from the Alps may be attributed to non-
adiabatic processes, such as changes in atmospheric cir-
culation.

4. The changes in elevation–δ18Op relationship (i.e., iso-
topic lapse rate) among the different topographic sce-
narios depend on the transect around the Alps and the
magnitude of elevation changes. Some changes were
small and within the statistical uncertainty range. The
differences in isotopic lapse rates are in the ranges
of −0.24 to −0.83 (with the highest uncertainty of
±0.24), −0.17 to −1.19 (±0.14), and −0.15 to −0.94
(±0.16) ‰ km−1 for the western, northern, and south-
ern transect, respectively. The differences in these esti-
mates might be attributed to a different redistribution of
precipitation and changes in moisture transport distance
and pathways along specific transects.

Note that this study only quantifies the topographic sig-
nal while keeping paleoenvironmental conditions constant.
Further experiments are needed to investigate the synergis-
tic effects of combined topographic and paleoenvironmental
changes and move towards plausible reconstructions of the
topography and paleoclimate of Alps at specific times in the
past. Furthermore, the next logical step to close the gap be-
tween the predicted meteoric δ18O response and isotopic ra-
tios extracted from archives is to employ proxy system mod-
els to investigate the signal transformation that takes place
between these steps. This would allow for a more accurate
back transformation that can ultimately refine paleoelevation
estimates for the Alps.

Code availability. The ECHAM5 model is available under the
MPI-M Software License Agreement (https://code.mpimet.mpg.de/
attachments/download/26986/MPI-ESM_SLA_v3.4.pdf, last ac-
cess: 5 November 2023), and the isotope-tracking implementation
part (ECHAM5-wiso) is available upon request from the Alfred
Wegner Institute (AWI), Germany (https://gitlab.awi.de/mwerner/
mpi-esm-wiso, last access: 5 November 2023). The LAGRANTO
model used for the back-trajectory analysis can be downloaded
from https://iacweb.ethz.ch/staff/sprenger/lagranto/ (last access: 5
November 2023). The scripts used for postprocessing, data analysis,
and visualization are based on a Python package (pyClimat) avail-
able at https://doi.org/10.5281/zenodo.7143044 (Boateng, 2022).
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1. Introduction
The Middle Miocene (15.99–11.65  Ma) was a time of major climatic, tectonic, environmental, and vegeta-
tion change (Herold et al., 2008; Steinthorsdottir et al., 2021). Proxy records, including global compilations of 
benthic δ 18O and δ 13C values (e.g., Foster & Rohling, 2013; Wright et al., 1992), indicate a shift from a period 
of relatively warm global conditions during the Miocene Climatic Optimum (MCO) (16.75–14.5 Ma) to the less 
warm Middle Miocene Climate Transition (MMCT) starting at ∼14.7 Ma. Paleoclimate proxy records document 
sub-modern to moderately high atmospheric pCO2 values (∼180–600 ppm) during the Middle Miocene (Foster 
& Rohling, 2013; Pagani et al., 1999), with possibly elevated pCO2 levels of 350–630 ppm (Cui et al., 2020; 
Greenop et al., 2014; Sosdian et al., 2018; Steinthorsdottir et al., 2021) or up to ∼600 ppm with over 1,000 ppm 
permissible (Rae et al., 2021) during the MCO. In addition, during the MCO, sea surface temperatures (SSTs) 
were 8°C–10°C warmer than today in the high southern latitudes (Shevenell et al., 2008) and 10°C–15°C warmer 
in the high northern latitudes (Super et al., 2018, 2020). In contrast, the MMCT was a period when SSTs were 
similar to present-day (Steinthorsdottir et al., 2021). Middle Miocene glaciation was unipolar, with a substantial 
reduction in Antarctic ice volume during the MCO (Feakins et al., 2012; Westerhold et al., 2005) and a large 
expansion of the Antarctic ice sheet volume, comparable to the present-day, during the MMCT (Langebroek 
et al., 2009, 2010). The aforementioned climate changes during the Middle Miocene had diverse implications for 
terrestrial settings globally, including Europe, which is the focus of this study.

Abstract The Middle Miocene (15.99–11.65 Ma) of Europe witnessed major climatic, environmental, 
and vegetational change, yet we are lacking detailed reconstructions of Middle Miocene temperature 
and precipitation patterns over Europe. Here, we use a high-resolution (∼0.75°) isotope-enabled general 
circulation model (ECHAM5-wiso) with time-specific boundary conditions to investigate changes in 
temperature, precipitation, and δ 18O in precipitation (δ 18Op). Experiments were designed with variable 
elevation configurations of the European Alps and different atmospheric CO2 levels to examine the influence 
of Alpine elevation and global climate forcing on regional climate and δ 18Op patterns. Modeling results 
are in agreement with available paleobotanical temperature data and with low-resolution Middle Miocene 
experiments of the Miocene Model Intercomparison Project (MioMIP1). However, simulated precipitation rates 
are 300–500 mm/yr lower in the Middle Miocene than for pre-industrial times for central Europe. This result 
is consistent with precipitation estimates from herpetological fossil assemblages, but contradicts precipitation 
estimates from paleobotanical data. We attribute the Middle Miocene precipitation change in Europe to shifts 
in large-scale pressure patterns in the North Atlantic and over Europe and associated changes in wind direction 
and humidity. We suggest that global climate forcing contributed to a maximum δ 18Op change of ∼2‰ over 
high elevation (Alps) and ∼1‰ over low elevation regions. In contrast, we observe a maximum modeled 
δ 18Op decrease of 8‰ across the Alpine orogen due to Alpine topography. However, the elevation-δ 18Op lapse 
rate shallows in the Middle Miocene, leading to a possible underestimation of paleotopography when using 
present-day δ 18Op—elevation relationships data for stable isotope paleoaltimetry studies.
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Although global climate change during the Miocene is relatively well documented for the marine realm (Gaskell 
et al., 2022), limited information is available concerning terrestrial climate change (Steinthorsdottir et al., 2021). 
Moreover, the Miocene has been proposed as a potential analog for future climate scenarios (Steinthorsdottir 
et  al.,  2021), making Miocene climate reconstructions from both proxies and models strategically important. 
However, the mechanisms behind climate change around the Middle Miocene are poorly understood for Europe 
and warrant further investigation. Although the Miocene climate of Europe has been extensively investigated (e.g., 
Bruch et al., 2007 and references herein; Bouchal et al., 2018; Methner et al., 2020; Worobiec et al., 2021), pale-
oclimate data are in parts still controversial. For example, estimates of Middle Miocene precipitation from herpe-
tological fossil assemblages (Böhme et al., 2011) suggest lower precipitation amounts around 300–500 mm/yr 
less than today. However, these estimates are at odds with plant proxy data showing wetter conditions than today 
in Central and Eastern Europe with precipitation rates up to 1,400 mm/yr (Bruch et al., 2011). Despite recent 
advances in simulating Miocene climate (Burls et  al.,  2021), models have difficulty reproducing the magni-
tude of warming (Burls et al., 2021), and high-resolution regional studies that better capture orographic effects 
(Acosta & Huber, 2017, 2020) are still lacking. Moreover, little is known about the dynamics of the hydrological 
cycle and atmospheric circulation (Eronen et al., 2012; Methner et al., 2020; Quan et al., 2014). Therefore, new 
high-resolution modeling studies are essential to reconcile different proxy data with each other and with modeling 
results.

The Miocene was a period of continued mountain building and surface uplift for the European Alps (e.g., 
Eizenhöfer et al., 2021; Handy et al., 2010; Schmid et al., 1996; Valla et al., 2021). Surface uplift of the Alps 
has previously been suggested to influence European climate (Botsyun et al., 2020; Campani et al., 2012; Krsnik 
et al., 2021; Boateng et al., 2022), but detailed time-specific studies quantifying the magnitude of spatial and 
temporal variations and dynamics of regional climate change are still lacking. Moreover, the timing and rate of 
the surface uplift of the Alps is still controversial and ranges from reconstructed elevations of 1,900 ± 1,000 m 
(Schlunegger & Kissling, 2015) to elevations >4,000 m (Jäger & Hantke, 1984; Krsnik et al., 2021; Sharp, 2005). 
Thus, in order to reconstruct past climate in Europe, the elevation history of the Alps plays a key role.

Among the methods developed to determine the uplift history of orogens, stable isotope paleoaltimetry is the 
most commonly used. This method is based on a systematic relationship between the oxygen or hydrogen isotopic 
ratios of precipitation (δ 18Op, δDp) and elevation (Poage & Chamberlain, 2001; Rowley et al., 2001). However, 
both global and regional climate change as a consequence of mountain uplift may contribute to δ 18Op patterns used 
in paleoelevation reconstructions (Botsyun & Ehlers, 2021; Botsyun et al., 2016, 2019; Ehlers & Poulsen, 2009; 
Insel et al., 2012; Mulch, 2016; Poulsen et al., 2010). The sensitivity of δ 18Op to regional, global, and topographic 
variations in paleotemperature, environmental conditions of an air mass prior to orographic ascent, evapotranspi-
ration, vegetation changes, water vapor recycling, and changes in vapor source have been shown to contribute to 
the uncertainty of elevation reconstructions (Botsyun & Ehlers, 2021; Botsyun et al., 2020; Kukla et al., 2019; 
Mulch, 2016). Therefore, a rigorous reconstruction of the elevation history of the Alps requires careful consider-
ation of both regional and global climate drivers.

Modeling strategies using high-resolution isotope-enabled general circulation model (GCMs) together 
with time-specific boundary conditions have become a powerful tool not only for reconstructing global and 
regional paleoclimates but also for enhancing elevation reconstructions from δ 18Op proxy data (Botsyun & 
Ehlers, 2021). In this study, we complement previous work by providing high-resolution (T159, ∼0.75° per grid 
cell) isotope-enabled GCM experiments with Middle Miocene boundary conditions and investigate temperature, 
precipitation, and the δ 18Op pattern over the European continent. We compare model predictions with inde-
pendent sources of information—first, with the result from models within the Miocene Model Intercomparison 
Project (MioMIP1), and second, with climate characteristics derived from proxy data. In our experiments, we 
investigate not only the effects of long-term global cooling during the MMCT, including a drop of atmospheric 
CO2 concentration and the impact of an expanded Antarctic ice sheet on climate in Europe, but also the contri-
bution of local geographic changes, such as the uplift of the Alps and the retreat of the Paratethys Sea. We test 
the hypothesis that global and regional forcing resulted in temperature, precipitation, and humidity changes that 
in turn affect δ 18Op changes across Europe. We pursue two goals that are closely related, since there is a close 
relationship between mountain elevations, climate, and δ 18Op. We aim to: (a) investigate Middle Miocene climate 
in Europe under global and regional forcing and to explain the inconsistencies between different terrestrial proxy 
records in Europe, and (b) demonstrate the link between regional δ 18Op patterns and paleoclimatic changes in 
Europe and show consequences for paleoelevation estimates of the Alps. We discuss (a) the large-scale drivers of 
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climate change in Europe, (b) the sources of discord between GCM predictions of European climate change and 
different terrestrial proxy records, (c) the implications of global climate change and Alpine surface uplift on the 
δ 18O records and paleoclimate proxy records in Europe, and (d) the consequences of changes in paleoclimate and 
δ 18Op for paleoelevation estimates of the Alps.

2. Background
Tectonic uplift of mountain belts (Raymo & Ruddiman, 1992; Ruddiman & Kutzbach, 1989), as well as smaller 
orogens, such as the European Alps (Botsyun et al., 2020; Boateng et al., 2022) have been shown to be important 
for global and regional climate. The Late Cretaceous to Paleogene closure of the Alpine Tethys, the collision 
between the Adriatic and the European continental plates (Handy et  al.,  2010; Schmid et  al., 1996; Stampfli 
et  al.,  1998) and subsequent post-collisional convergence (e.g., Schmid et  al.,  1996) ultimately resulted in 
the surface uplift of the Alps. However, the timing and rate of this uplift is still controversial, with Miocene 
stable-isotope-based paleoelevation estimates ranging from mean elevations of 1,900 ± 1,000 m (Schlunegger 
& Kissling,  2015) and 2,300  ±  650  m (Kocsis et  al.,  2007) to 2,850  +  800/-600  m (Campani et  al.,  2012), 
and >4,000 m (Krsnik et al., 2021; Sharp, 2005). Based on combined evidence from sediment budget curves, 
thermochronology, and sediment facies, the maximum elevation of the Western and central Alps has been esti-
mated at 2,500–3,000 m for the middle Miocene (Kuhlemann, 2007). Very high Alps (>5,000 m) already at the 
Oligocene-Miocene boundary were inferred by Jäger and Hantke (1984) based on large erratic boulders found 
at great distances from their place of origin. These estimates, however, contradict geomorphologic and sediment 
budget-based modeling studies suggesting that present-day elevations of the Alps were attained only at ∼5–6 Ma 
while Miocene topography was still much lower (Hergarten et al., 2010). Depending on its topographic structure, 
the impact of the Alpine orogen on regional climate would be different, thus quantitative estimates of the surface 
elevation of the Alps are extremely important.

Modern efforts to model Miocene climate have recently been combined into a multi-model ensemble of 
MioMIP1 and are critically reviewed in Burls et  al.  (2021) and summarized in Steinthorsdottir et  al.  (2021). 
Elements other than CO2, such as Miocene paleogeography and ice sheets, have been shown to contribute to 
the global mean temperature increase of ∼2°C (Burls et al., 2021) compared to pre-industrial times. In general, 
previous models with realistic CO2 concentrations have had difficulty to reproduce the magnitude of warming 
indicated by proxy data. The models used in MioMIP1 represent the state-of-the-art in modeling of the Miocene 
epoch, however, they are inhomogeneous (in terms of both experimental design and model physics/parameteri-
zation) and not ideal for formal inter-model comparison, as Burls et al. (2021) acknowledge. Furthermore, these 
model simulations were performed at low spatial resolution (T31 or T42, corresponding to a grid spacing of 
∼3.75° or ∼2.79°, respectively), since high-resolution paleoclimate simulations are timely and computationally 
expensive, and do not focus specifically on interpreting climate variations across Europe.

3. Methods
3.1. Model and Experimental Design

We apply the isotope-enabled version (ECHAM5-wiso; Werner et al., 2011) of the atmospheric GCM ECHAM5 
developed at Max Planck Institute for Meteorology (Roeckner et al., 2003). The ECHAM5 model incorporates 
the Subgrid Scale Orographic Parameterization developed by Lott  (1999) and Lott and Miller  (1997). This 
parameterization represents the effects of orographic variations at scales smaller than the horizontal resolution of 
the grid (Roeckner et al., 2003). As an integral part of the climate simulation, the water isotopes (HDO, H2 16O, 
and H2 18O) in ECHAM5-wiso undergo kinetic and equilibrium fractionation during phase transitions (e.g., vapor, 
cloud, snow, etc.) in the atmosphere (Werner et al., 2011). The climate component of ECHAM5-wiso, employed 
without isotopes, has been shown to capture the large-scale features of global climate reasonably well (e.g., 
Knorr et al., 2011; Mutz et al., 2018). For the present-day climate, high-resolution ECHAM5-wiso experiments 
successfully reproduce observed precipitation, temperature, and δ 18Op patterns on both annual and seasonal 
scales in Europe (Botsyun et al., 2020; Langebroek et al., 2011). However, the model tends to underestimate the 
present-day precipitation over the Alpine region, especially in summer. ECHAM5-wiso has also been success-
fully used for paleoclimate simulations (Pliocene and Last Glacial Maximum) and validated for the European 
region (Botsyun et al., 2020).
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We used three ECHAM5-wiso topography sensitivity experiments with pre-industrial boundary conditions 
described in detail in Botsyun et al. (2020) and performed nine new ECHAM5-wiso experiments with Middle 
Miocene boundary conditions. The summary of the experiments is shown in Table 1. The control simulation 
(pre-industrial, PI) is the same as in Botsyun et al. (2020) and Mutz et al. (2018) (their Alps100 experiment) 
and used pre-industrial boundary conditions (e.g., insolation, greenhouse gases, SSTs) and present-day Alpine 
topography. This experiment was forced by monthly mean climatology of SSTs and sea ice concentrations (SICs), 
derived from a low-resolution transient coupled ocean-atmosphere simulation (Lorenz & Lohmann,  2004) 
conducted for the same time period with a pCO2 level set to 280 ppm. Land surface parameters for the PI simula-
tion, including vegetation are based on Hagemann (2002).

Three steps underlie our analysis. First, we used the sensitivity experiments of topographic changes of the Euro-
pean Alps from Botsyun et al. (2020). All boundary conditions, including albedo, surface roughness length, and 
vegetation distribution, are identical to those in the PI simulation, but in one simulation elevation is reduced to 
250 m in the area covering the Alps and Alpine foreland (PI_noAlps; equivalent to Alps0 in Botsyun et al., 2020) 
and in one simulation increased to 150% of the present elevations in the same region (PI_plusAlps; equivalent to 
Alps150 in Botsyun et al., 2020). The PI_plusAlps experiment was conducted to test the sensitivity of the climate 
in Europe to significantly higher-than-present Alpine elevations, as suggested by Krsnik et al. (2021).

Second, we conducted two experiments with Middle Miocene boundary conditions reflecting two pCO2 settings 
(278 and 450 ppm; Mio_278 and Mio_450 experiments) within current estimates of the Middle Miocene pCO2 
(Foster & Rohling, 2013; Sosdian et al., 2018; Steinthorsdottir et al., 2021). These two pCO2 settings approxi-
mately reflect MCO and MMCT climatic states, with Mio_450 ppm representing the MCO and Mio_278 repre-
senting the MMCT. We highlight that we chose the Mio_450 experiment conservatively to rather underestimate 
pCO2 conditions during the MCO. In addition to greenhouse gas concentrations (pCO2, pCH4, pN2O), the paleo-
climate simulations account for changing terrestrial ice sheets, vegetation cover, albedo, orbital variations, SSTs, 
and SICs (Table 1). We use the SSTs and SICs, generated by the low-resolution fully coupled atmosphere-ocean 
COSMOS model experiments with Middle Miocene boundary conditions (Huang et al., 2017; Stärz et al., 2017; 
their Mio_278 and Mio_450 experiments). Corresponding COSMOS experiments were part of the MioMIP1 
comparison (Burls et al., 2021). Physical soil properties, such as soil albedo and maximum water holding field 
capacity are derived by adapting vegetation-related parameters computed by a dynamic vegetation module 
(Brovkin et al., 2009) of the global land surface and carbon cycle model JSBACH (Raddatz et al., 2007) as part 
the fully coupled atmosphere-ocean model COSMOS. Orography-related variables were derived from the pale-
ogeographic reconstruction of Herold et al. (2008). Although geography of the Middle Miocene and present are 
remarkably similar, the Middle Miocene reconstruction has several notable modifications, including rotation of 
continents, altered ocean gateways, and height of major orogens (Figure 1a). For ECHAM5-wiso simulations, the 
δ 18O values of ocean surface waters have to be prescribed as a model boundary condition. The lack of seawater 
δ 18O from COSMOS coupled simulations and sparse observational data have prevented us from the construc-
tion and use of a comprehensive global gridded data set of δ 18O for the Middle Miocene. For the Mio_450 and 
Mio_278 simulations, the seawater δ 18O values were set identically to present-day. In order to test the sensitiv-
ity of Middle Miocene δ 18Op in Europe to changes of ocean surface waters δ 18O, we performed two additional 
simulations (Mio_278_iniwiso, Mio_450_iniwiso) in which, the δ 18O values of ocean surface waters have been 
computed from the salinity of the upper ocean level of corresponding COSMOS coupled simulations using 
the relationships from Paul et al. (1999) (Figure S1 in Supporting Information S1). Close agreement between 
model-simulated δ 18O of ocean surface water and δ 18O values derived from water salinity is shown by Gaskell 
et al. (2022) (their Sup Figure 7).

Third, for both Middle Miocene pCO2 settings, we conduct three sensitivity experiments to investigate the effects 
of Alpine topography and marine transgression/regression in Europe (Table 1, Figure 1). We study the effects 
of surface uplift of the Alps by increasing and decreasing their elevation, similar to the pre-industrial sensitivity 
experiments. We reduce the elevation in the area covering the Alps and the Alpine forelands to 250 m elevation 
(Mio_278_noAlps, Mio_450_noAlps; Figure 1d) and increase the elevation to twice the reconstructed height 
(Mio_278_plusAlps, Mio_450_plusAlps; Figure 1e) compared to the original paleogeographic reconstruction of 
Herold et al. (2011) (used in Mio_278 and Mio_450 experiments), which reflects recent hypotheses of very high 
Alpine elevations in the Middle Miocene (Krsnik et al., 2021). We also tested the influence of a marine transgres-
sion and regression within Europe on regional climate and stable water isotopes. For this purpose, we performed 
two additional experiments (Mio_278_SeaLand and Mio_450_SeaLand) with modified land-sea distributions 
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Experiment name
Greenhouse gases 

concentration Orbital parameters Surface conditions Alps elevation

PI CO2 280 ppm, CH4 760 ppb, 
N2O 270 ppb.

Eccentricity = 0.016804, 
obliquity = 23.4725, 

longitude of 
perihelion = 278.734

Sea surface temperature and sea ice are taken 
from a transient low-resolution coupled ocean-
atmosphere simulation (Dietrich et al., 2013; 
Lorenz & Lohmann, 2004). Land surface 
parameters, including vegetation are based on 
(Hagemann, 2002).

100% of present

PI_noAlps Same as PI Same as PI Same as PI Reduced to 250 m

PI_plusAlps Same as PI Same as PI Same as PI Increased by 50%

Mio_278 CO2 278 ppm, CH4 650 ppb, 
N2O 270 ppb.

Eccentricity = 0.016724, 
obliquity = 23.4468, 

longitude of 
perihelion = 272.157

Sea surface temperature, sea ice and vegetation from 
Middle Miocene COSMOS (278 ppm) simulations 
(Stärz et al., 2017). Paleogeography from Middle 
Miocene reconstruction (Herold et al., 2011). 
The height of the Antarctic ice-sheet is reduced 
compared to present-day (Herold et al., 2008) 
and the Greenland ice-sheet is absent. Seawater 
δ 18O values were set identical to present-day. 
Physical soil characteristics, such as soil albedo and 
maximum water holding field capacity, derived by 
adapting vegetation related parameters based on 
(Stärz et al., 2017).

100% of present

Mio_278_noAlps Same as Mio_278 Same as Mio_278 Same as Mio_278 Reduced to 250 m

Mio_278_plusAlps Same as Mio_278 Same as Mio_278 Same as Mio_278 Increased by 100%

Mio_278_iniwiso Same as Mio_278 Same as Mio_278 Same as Mio_278, except for seawater δ 18O values, 
which were computed from upper-level ocean 
salinity from COSMOS (278 ppm) simulations 
(Stärz et al., 2017) using the relationships from 
(Paul et al., 1999).

100% of present

Mio_278_LanSea Same as Mio_278 Same as Mio_278 Same as Mio_278, except for the Paratethys Sea area, 
which extends in accordance to Popov et al. (2004).

100% of present

Mio_450 CO2 450 ppm, CH4 650 ppb, 
N2O 270 ppb.

Eccentricity = 0.016724, 
obliquity = 23.4468, 

longitude of 
perihelion = 272.157

Sea surface temperature, sea ice and vegetation from 
Middle Miocene COSMOS (450 ppm) simulations 
(Stärz et al., 2017). Paleogeography from Middle 
Miocene reconstruction (Herold et al., 2011). 
The height of the Antarctic ice-sheet is reduced 
compared to present-day (Herold et al., 2008) 
and the Greenland ice-sheet is absent. Seawater 
δ 18O values were set identical to present-day. 
Physical soil characteristics, such as soil albedo and 
maximum water holding field capacity, derived by 
adapting vegetation related parameters based on 
(Stärz et al., 2017).

100% of present

Mio_450_noAlps Same as Mio_450 Same as Mio_450 Same as Mio_450 Reduced to 250 m

Mio_450_plusAlps Same as Mio_450 Same as Mio_450 Same as Mio_450 Increased by 100%

Mio_450_iniwiso Same as Mio_450 Same as Mio_450 Same as Mio_450, except for seawater δ 18O values, 
which were computed from upper-level ocean 
salinity from COSMOS (450 ppm) simulations 
(Stärz et al., 2017) using the relationships from 
(Paul et al., 1999).

100% of present

Mio_450_LandSea Same as Mio_450 Same as Mio_450 Same as Mio_450, except for the Paratethys Sea area, 
which extends in accordance to Popov et al. (2004).

100% of present

Note. PI, pre-industrial.

Table 1 
ECHAM5-wiso Experiments Summary
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over Europe (Figure 1f), corresponding to the mid-Middle Miocene recon-
struction (14 Ma) from the Paleogeographic Atlas of the Paratethys region 
(Popov et al., 2004).

All experiments were performed at high resolution (T159 L31, corresponding 
to a grid spacing of ∼0.75°, or ∼80 km in latitude and longitude at the equator, 
with 31 vertical levels up to 10 hPa). A further increase in model resolution, 
which would be required for a better representation of the topography, was 
not possible due to limited computing resources. Each model experiment was 
run for 13 model years. For lower resolutions of the model, simulation in an 
atmosphere-only setup forced with SST and SIC, has been shown to quickly 
bring the model into quasi-equilibrium, not instantaneously, but within the 
first two to three model years (Stepanek & Lohmann, 2012). Therefore, we 
consider the results of the experiments from the fourth model year onwards. 
In the Mio_278 and Mio_450 experiments, the climate appears to deviate 
slightly from radiative equilibrium, with an average net energy imbalance 
of  ∼−4.2  W/m 2 and ∼−6.7  W/m 2. Since the atmosphere cannot generate 
energy, the SSTs, provided to the model from a quasi-equilibrium simulation 
of the model that has been coupled at lower resolution to an ocean model, 
are too warm for the high-resolution atmosphere standalone model in combi-
nation with the prescribed radiative forcing. This is a common problem in 
atmosphere standalone simulations (e.g., Stepanek & Lohmann, 2012). The 
year-to-year fluctuations of temperatures for both Mio_278 and Mio_450 
are of the same order of magnitude as in the modern observations (by up to 
0.1°C–0.2°C per year), and the trends (decreasing for Mio_278 and increas-
ing for Mio_450) are small (∼0.01°C/yr), therefore, we consider our model 
experiment to be sufficiently equilibrated. We analyzed computed climato-
logical values and inter-annual variations of the last 10 model years for each 
experiment.

3.2. Post-Processing

Our analyses are based on daily and seasonal averages of temperature, 
precipitation, evaporation, humidity, sea level pressure (SLP), winds, vertical 
velocity (ω) at 500 hPa level, δ 18O in vapor (δ 18Ov), and δ 18Op values. These 
outputs are presented after calculating arithmetic means of the 6-hourly 
ECHAM5-wiso output. In the analysis of vertical motion of air, high subsid-
ence areas were detected by positive ω as well as low relative humidity. We 
provide a detailed analysis for three regions in Europe (Figure  2a, black 
rectangles): (a) central Europe including the Alpine region (from 40°N 
to 55°N and from 2°W to 25°E), (b) a low-elevation region (from 48°N 
to 51°N and from 2°E to 16°E; all grid cells lower than 500 m), and (c) a 
high-elevation region (from 42°N to 48°N and from 2°E to 16°E; all grid 
cells higher than 1,000 m).

3.3. Proxy Data Compilation of Terrestrial Temperature and 
Precipitation

GCM model predictions are compared to a literature compilation of Middle 
Miocene terrestrial proxy data for paleotemperature and paleoprecipitation 
from Europe provided by various previous publications (Tables S1 and S2). 
We use the compilation of European mean annual temperature (MAT) proxy 
data from Burls et  al.  (2021) for the Middle Miocene (Table  S1). These 
values were supplemented with estimates of the mean temperature of the 
warmest month (WMT) and mean temperature of the coldest month (CMT) 

Figure 1. (a) Global Middle Miocene paleogeography of Herold et al. (2008) 
at T159 model resolution, used in the following experiments: Mio_278, 
Mio_450, Mio_278_iniwiso, and Mio_450_iniwiso experiments; (b) 
present-day topography of Europe at T159 model resolution, (c) same as 
subplot (a) but for the European region; (d) modified Middle Miocene 
paleogeography with Alpine elevation reduced to 250 m compared to 
the original reconstruction of Herold et al. (2008), applied in Mio_278_
noAlps and Mio_450_noAlps experiments; (e) modified Middle Miocene 
paleogeography with increased Alpine elevation by 100% compared to the 
original reconstruction of Herold et al. (2008), applied in the Mio_278_
plusAlps and Mio_450_plusAlps experiments; (f) modified Middle 
Miocene paleogeography, with the land-sea distribution in the European 
region according to Popov et al. (2004), applied in Mio_278_LandSea and 
Mio_450_LandSea experiments; (g) topography from ERA5-Land data set 
(Muñoz-Sabater et al., 2021).
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when available from the original publications. Paleotemperature estimates (Table S1) presented here come from 
fossil plant data and are based on the coexistence approach. This method uses the modern climatic range of a 
fossil taxon's nearest living relative to determine the climatic parameters of its habitat and in a second step deter-
mines the climatic envelope of coexisting species of an entire fossil assemblage (Mosbrugger & Utescher, 1997; 
Utescher et al., 2014).

Figure 2.
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The compilation of mean annual precipitation (MAP) is presented separately in two tables (Tables S1 and S2) 
depending on the estimation approach. Table  S1 contains MAP values reconstructed from fossil plant data 
using the coexistence approach. This table additionally contains estimates of monthly mean precipitation of the 
driest month (highest monthly precipitation, LMP) and monthly mean precipitation of the wettest month (lowest 
monthly precipitation, HMP) when available from the original publications. Table S2 contains the herpetological 
assemblages presented in Böhme et al. (2007, 2011), with addition of new sites from Böhme and Vasilyan (2014). 
For both the paleotemperature and the paleoprecipitation databases, all site coordinates were rotated to their 
position in the middle Miocene using the GPLATES online tool (http://portal.gplates.org/service/) based on 
individually averaged age estimates for each data point.

3.4. Comparison to Reanalysis and to Previous Models

To evaluate our ECHAM5-wiso PI experiment, we compare our results with the ERA-Interim reanalysis (Dee 
et al., 2011) for the European region. With this comparison, we aim to show (a) the similarity of the present-day 
and PI spatial patterns across Europe at the annual-mean and seasonal scale, and (b) the changes between PI and 
modern conditions. To evaluate our simulations of the Middle Miocene, we compare our simulated tempera-
ture and temperature difference between the Middle Miocene and the PI experiments with the simulated values 
reported in Burls et al. (2021) for MioMIP1. We caution readers that this is not a formal model intercomparison, 
because the experiments presented in Burls et al. (2021) and our experiments are inhomogeneous. Apart from 
the obvious differences in CO2 forcing, the differences lie in (a) the length of the analysis periods, ranging from 
10 years (ECHAM5-wiso) to >100 years in Burls et al. (2021), (b) the model complexity, from atmosphere-only 
(ECHAM5-wiso) to fully coupled (e.g., CCSM3, HadCM3L, COSMOS, IPSLCM), and (c) the model resolution, 
from low-resolution (T31 or T42) experiments in Burls et al. (2021) to high-resolution (T159) ECHAM5-wiso 
experiments.

3.5. Comparison of Model Predictions and Proxy Data

We provide a simple statistical analysis in order to compare proxy data and model outputs. With this aim, we 
adjust the parameters of a model function (y = f(x)) to a data set, where x is MAT, WMT, CMT, MAP, LMP, 
and or HMP, respectively, from our proxy data compilation, and y is MAT, WMT, CMT, MAP, LMP, or HMP, 
respectively, simulated by ECHAM5-wiso. Then, for each pair of x and y, the residual standard error (RSE) is 
calculated, which permits us to identify the optimal model-data fit, which occurs when the RSE is minimized.

4. Results
4.1. Comparison of Simulated Temperature With Models Participating in MioMIP1

We compare our simulated Middle Miocene temperature (Figure  2) and the temperature difference between 
Middle Miocene and PI runs with the simulated values reported in Burls et al. (2021). From this publication, 
we choose the experiments with CO2 concentrations in the range of 200–280 and 400–450 ppm to compare with 
our Mio_278 and Mio_450 experiments, respectively. For brevity in the main text, we include the comparison of 
our simulations with the MioMIP1 simulations in the supplementary material (Figures S2 and S3 in Supporting 
Information S1).

Figure 2. Maps of mean annual temperature (MAT) for (a) PI, (b) Mio_278 and (c) Mio_450 experiments. Shaded circles on (b and c) show Middle Miocene MAT (as 
the mean between MAT max and MAT min), compiled from terrestrial paleobotany proxy data (see Table S1). Isolines show topography for experiments PI, Mio_278 
and Mio_450; isolines are with a 500 m contour interval. Black rectangles on subplot (a) show selected regions: (i) central Europe and Alpine region (from 40°N to 
55°N and from 2°W to 25°E; grid cells over the continent only), (ii) low-elevation region (from 48°N to 51°N and from 2°E to 16°E; all grid cells lower than 500 m), 
(iii) high-elevation region (from 42°N to 48°N and from 2°E to 16°E; all grid cells higher than 1,000 m). Subplot (d) model mean annual temperature (MAT), (e) model 
coldest month temperature (CMT) and (f) model warmest month temperature (WMT) model vs. corresponding values reconstructed using the coexistence approach 
on paleofloral data. For the comparison with the two Miocene simulations (Mio_278 and Mio_450), the corresponding data (without subdivision by age) are taken 
from Table S1. Model values in subplots (d–f) are taken at sample locations. The bluish colors show all points data when compared to the Mio_278 temperatures and 
the reddish colors when compared to the Mio_450 temperatures. Color intensity corresponds to the averaged absolute age of the data point (see Table S1): light blue 
and light red—younger age, dark blue and dark red—older age. The red line shows a 1:1 model-data fit. RSE, residual standard error between proxy data and model 
temperature. Points restored to their paleo coordinates by means of GPLATES online tool (http://portal.gplates.org/service/).
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Results indicate that ECHAM5-wiso reproduces global MATs compared to the Middle Miocene model exper-
iments involved in MioMIP1 (Burls et  al., 2021; Figures S2 and S3 in Supporting Information S1; Table S3 
in Supporting Information  S1). For the Mio_278 simulation, the global mean annual surface temperature is 
2.5°C higher than for PI (Table S3 in Supporting Information S1). This is higher than values reported in Burls 
et al. (2021) for experiments with CO2 concentration of 200–280 ppm, which provide the multi-model mean of 
1.5°C (Table S3 in Supporting Information S1). For the Mio_450 experiment, the global mean annual surface 
temperature is 5.9°C higher than for PI (Table S3 in Supporting Information S1). This lies in the high-end of 
values presented in Burls et al. (2021) for experiments with CO2 concentration of 400–450 ppm (Table S3 in 
Supporting Information S1). We note that our modeled temperature anomaly is within the uncertainty range of 
the MioMIP1 simulations. Particularly pronounced (positive) anomalies are found with respect to simulations 
based on the HadCM3L model. This model has been shown, however, to produce comparatively cold simulations 
within the MioMIP1 ensemble (Figure 4a by Burls et al., 2021).

At a regional scale, over central Europe and the Alpine region, (region (i) in Figure 2a), the mean temperature 
difference between Mio_278 and the multi-model mean temperature from MioMIP1 experiments at 200–280 
ppm is 2.7°C (Table S3 in Supporting Information  S1). The regional mean temperature difference between 
Mio_450 and the multi-model mean temperature from MioMIP1 experiments at 400–450 ppm is 1.9°C. For both 
CO2 setups, ECHAM5-wiso systematically shows higher temperatures (up to max. 4°C) over the low-elevation 
region (region (ii) in Figure 2a). Lower temperatures (up to max. 10°C) are simulated over the high-elevation 
region (region (iii) in Figure 2a), and also over Carpathians, Dinarids and other mountainous regions in Europe 
(Figures S2 and S3 in Supporting Information S1).

4.2. ECHAM5-Wiso Simulated Middle Miocene MAT

We first discuss the simulated near-surface MAT in the Middle Miocene control experiments (Mio_278 and 
Mio_450) and compare those with European plant fossil-derived MAT (based on coexistence approach, see 
Section 3.3). Finally, we examine changes in simulated near-surface MAT of the Middle Miocene experiments 
that result from varied elevation of the European Alps.

The simulated MAT over the central Europe and the Alpine region (Figure 2a, region (i)) is 12.0°C and 15.0°C 
in the Mio_278 and Mio_450 experiments, respectively (Figures 2a–2c; Table S4 in Supporting Information S1). 
The largest difference relative to PI is over the high-elevation region (elevations >1,000 m), which is 3.4°C and 
7.2°C warmer in the Mio_278 and Mio_450 experiments, respectively. The Mio_450 simulation shows good 
agreement with MAT reconstructed by the coexistence approach on fossil plants, while the Mio_278 simulation 
shows generally lower temperatures than predicted by the coexistence approach (Figure 2d, Table S4 in Support-
ing Information S1). The model-proxy data fit estimated using the RSE method is 4.4°C for the Mio_278 and 
3.5°C for Mio_450 (Table S5 in Supporting Information S1). Thus, the simulation with higher pCO2 concentra-
tion shows a better fit to fossil plant data.

Experiments with varied elevation of the Alps show that most temperature changes are restricted to the Alpine 
region itself (Figures  3a–3d). Experiments with higher Alpine elevations (Mio_278_plusAlps, Mio_450_
plusAlps) show 4.1°C and 3.3°C lower temperatures over high-elevation region of the Alps, compared to 
Mio_278 and Mio_450, respectively (Table S4 in Supporting Information S1). In contrast, over the low-elevation 
regions, this decrease is minimal with 0.9°C and 0.1°C, respectively. The temperature increase in the experi-
ments with reduced Alpine elevation (Mio_278_noAlps, Mio_450_noAlps) compared to Mio_278 and Mio_450 
is less than 1°C for the central Europe region and the low-elevation region, but is up to 4.4°C (Mio_278) and 
4.3°C (Mio_450) for the high-elevation region. The temperature change over both the low-elevation and the 
high-elevation region in the Mio_278_LandSea and Mio_450_LandSea simulations compared to the Miocene 
control simulation (Mio_278 and Mio_450, respectively) is less than 1°C (Figure 3e; Table S4 in Supporting 
Information S1).

Taken together, these results suggest a warmer-than-PI Miocene climate across Europe, in a good agreement with 
temperature estimates derived from fossil flora. The experiment with higher pCO2 (Mio_450) shows better agree-
ment. Different Alpine elevations contribute to temperature changes restricted to the Alpine region and a different 
land-sea distribution in Europe has only minor effects on the regional temperature pattern.
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4.3. ECHAM5-Wiso Simulated Middle Miocene MAP

Simulations predict lower MAP for both Mio_278 and Mio_450 experiments than for PI over most of Western 
and Southern Europe (compare Figures 4c and 4d–4f). Meanwhile, an increase of 50–400 mm/yr is simulated for 
the MAP over Scandinavia and northwestern Russia. On average, for central Europe and the Alpine region, MAP 
for both the Mio_278 run and the Mio_450 run is less than for the PI (Table S4 in Supporting Information S1). 
Over the European Alps, MAP decreases across both the low-elevations and the high-elevation regions in both 
Miocene experiments compared to PI (Figures 4b–4d).

Investigation of the paleobotanic proxy data indicates larger precipitation amounts than predicted in the Mio_278 
and Mio_450 experiments (Figure 4g; Table S5 in Supporting Information S1). However, the simulated MAP in 
the Mio_278 and Mio_450 runs is consistent with precipitation estimates from the ecophysiological structure of 
herpetological assemblages (herpetofaunal fossils; Figure 4h; Table S5 in Supporting Information S1).

Figure 3. Temperature (at 2 m) change for the following simulation comparisons: (a) Mio_278_plusAlps relative to 
Mio_278, (b) Mio_450_plusAlps relative to Mio_450, (c) and Mio_278_noAlps relative to Mio_278, (d) Mio_450_noAlps 
relative to Mio_450, (e) Mio_278_LandSea relative to Mio_278, and (f) Mio_450_LandSea relative to Mio_450.
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Figure 4. Mean annual precipitation (MAP) and mean annual winds at 10 m for ERA-Interim reanalysis (a) and ECHAM5-wiso experiments (b–f). (b) PI, (c, e) 
Mio_278, and (d, f) Mio_450 simulations. Vectors show near-surface winds. In subplots (c and d), the shaded circles show Middle Miocene MAP (as the mean between 
MAP max and MAP min correspondingly) reconstructed from fossil plant data using the coexistence approach (CA see Table S1). In subplots (e and f), the shaded 
circles show Middle Miocene MAP, reconstructed from the ecophysiological structure of the herpetological assemblages (HA; see Table S2). Subplot (g) shows 
the model MAP vs. MAP, reconstructed using the plant coexistence approach, subplot (h) shows the model MAP vs. MAP, reconstructed from the ecophysiological 
structure of the herpetological assemblages. The bluish colors for the points on subplots (g, h) correspond to the Mio_278 experiment and the reddish colors to the 
Mio_450 experiments. For the comparison with the two simulations, the corresponding data of all available ages are taken from Table S1 (g) and from Table S2 (h). The 
bluish colors show all points data when compared to the Mio_278 precipitation and the reddish colors—to the Mio_450 precipitation. Color intensity corresponds to 
the averaged absolute age of the data point (see Tables S1 and S2): light blue and light red—younger age, dark blue and dark red—older age. The red line shows a 1:1 
model-data fit. Points restored to their paleo coordinates by means of GPLATES online tool (http://portal.gplates.org/service/).

 25724525, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004442 by Freie U
niversitaet B

erlin, W
iley O

nline Library on [25/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Paleoceanography and Paleoclimatology

BOTSYUN ET AL.

10.1029/2022PA004442

12 of 30

Surface uplift of the Alps has both a regional and a far-field impact on European precipitation: with mountain 
growth, precipitation increases over the Alps and precipitation decreases across Eastern Europe (Figures 5a–5d). 
On average, experiments with higher Alpine elevation (Mio_278_plusAlps, Mio_450_plusAlps) suggest a precip-
itation increase by 141 and 57.2 mm/yr, respectively, for central Europe compared to the Mio_278 and Mio_450 
simulations, respectively (Table S4 in Supporting Information S1). This increase is the most pronounced for the 
high-elevation region of the Alps. In contrast, experiments with reduced Alpine elevation (Mio_278_noAlps, 
Mio_450_noAlps) show a decrease in precipitation, which is most prominent over the high-elevation region. The 
precipitation change in the Mio_278_LandSea and Mio_450_LandSea simulations relative to the Mio_278 and 
Mio_450 runs, respectively is below 130 mm/yr over regions adjacent to the Alps (Figures 5e and 5f; Table S4 
in Supporting Information S1). Higher changes in precipitation, up to 400 mm/yr, are simulated only for regions 
adjacent to the Paratethys Sea.

In summary, the key feature identified for the Miocene is a “bi-directional” precipitation change compared to PI 
conditions: an increase in precipitation over Scandinavia and Northern Europe and a decrease in precipitation 
over central Europe, Southern Europe, and the Mediterranean. Increased surface elevation of the Alps leads to 

Figure 5. Precipitation change for (a) Mio_278_plusAlps relative to Mio_278, (b) Mio_450_plusAlps relative to Mio_450, 
(c) Mio_278_noAlps relative to Mio_278, (d) Mio_450_noAlps relative to Mio_450, (e) Mio_278_LandSea relative to 
Mio_278, and (f) Mio_450_LandSea relative to Mio_450.

 25724525, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004442 by Freie U
niversitaet B

erlin, W
iley O

nline Library on [25/10/2022]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Paleoceanography and Paleoclimatology

BOTSYUN ET AL.

10.1029/2022PA004442

13 of 30

increased orographic precipitation rates restricted to the Alps region, with most prominent changes over Alpine 
high elevations. Simulated precipitation rates for both pCO2 setups are consistent with precipitation estimates 
from the ecophysiological structure of herpetological assemblages. However, MAP estimates based on the coex-
istence approach exceed those from the herpetological assemblages and the Miocene model results.

4.4. ECHAM5-wiso Simulated Middle Miocene Mean Annual δ 18Op

The simulated mean annual δ 18Op patterns for both the Mio_278 and the Mio_450 experiments are qualitatively 
similar to the predicted PI δ 18Op pattern across Europe. Predicted δ 18Op values generally decrease from south 
to north, from continental margins to the continental interior and from low-to high-elevation regions (Figure 6; 
Figure S4 in Supporting Information S1). The most negative values are simulated over Scandinavia, NW Russia, 
and the Alps. The average annual δ 18Op value for central Europe and the Alpine region in the Mio_278 and 
Mio_450 simulations is 0.5‰ and 1‰ higher than in the PI, respectively (Table S4 in Supporting Informa-
tion  S1). Averaged over the low-elevation region, δ 18Op is 0.6‰ higher for Mio_450 than for the PI, while 
Mio_278 is approximately the same as in the PI. For the high-elevation region, the mean δ 18Op value is 0.7‰ 
(Mio_278) and 1.5‰ (Mio_450) higher than for the PI. Our simulations with modified seawater δ 18O (Mio_278_
iniwiso and Mio_450_iniwiso) show low sensitivity of the δ 18Op over central Europe to this parameter (Figure 6; 
Table S4 in Supporting Information S1).

Figure 6. Annual mean δ 18Op from the International Atomic Energy Agency (IAEA) Global Network of Isotopes in 
Precipitation (GNIP) observations (a) and ECHAM5-wiso simulated annual mean δ 18Op values for: (b) the PI, (c) the 
Mio_278, (d) Mio_278_iniwiso, (e) the Mio_450, and (f) Mio_450_iniwiso experiment.

(c) Mio_278

(e) Mio_450

(b) PI

(f) Mio_450_iniwiso

(d) Mio_278_iniwiso
‰

(a) GNIP data
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Over the Alps, the δ 18Op values for the PI show a clear decrease from the foothills to the summit across both 
South-North (averaged between 9°E and 10°E) and East-West (averaged between 46°N and 47°N) profiles 
(Figures 7c and 7f). For the PI simulation this change is −0.25‰/100 m in the Northern Alps for annual mean 
values, which is consistent with the modern precipitation-weighted isotopic lapse rate (−0.2‰/100 m in the 
Northern Alps; Campani et  al.,  2012) and close to the empirically determined global river-based average of 
(−0.28 ‰/100 m; Poage & Chamberlain, 2001). For both Mio_278 and Mio_450 experiments the annual mean 
isotopic lapse rate along the North Alpine flank is −0.2‰/100 m.

In the experiments with increased topography (Mio_278_plusAlps and Mio_450_plusAlps) δ 18Op values are on 
average 2.3‰ and 3.0‰ lower than in the Mio_278 and Mio_450 simulations over the high-elevation region 
(Figure 8; Figure S4 in Supporting Information S1; Table S4 in Supporting Information S1). The maximum 
changes are −5.3% and −5.8‰ for the Mio_278_plusAlps minus Mio_278 and Mio_450_plusAlps minus 
Mio_450, respectively, for high-elevation region. The differences between these simulations are within 0.6‰ for 
the central Europe region and for the low-elevation region. In experiments with reduced topography (Mio_278_
noAlps and Mio_450_noAlps) δ 18Op values are on average 1.5‰ and 1.3‰ higher relative to Mio_278 and 
Mio_450, respectively. Note that the maximum change in δ 18Op values occurs over the highest Alpine topography, 
while over the foothills the magnitude of the difference between experiments with modern and modified topog-
raphy is within 1–2‰ (Figure 7).

Taken together, our predicted mean annual δ 18Op values differ by less than 1.5‰ from the PI mean annual δ 18Op 
values for both pCO2 setups in the Miocene. Removal of Alpine topography contribute to an increase in δ 18Op 
of up to 5.8‰ relative to the Miocene experiment with 100% of the Alps topography and up to 8‰ relative to 
an experiment with doubling of Alpine topography. Warmer Miocene climate contributes almost imperceptibly 
(0.03‰/100 m) to shallowing of the oxygen isotope lapse rate at annual scale. In the following, we investigate 
seasonal variations of selected variables in order to better understand seasonal bias in annual-mean values.

Figure 7. Annual mean temperature (a, d), precipitation (b, e), and δ 18Op (c, f) gradients across the Alps: (a–c) averaged between 9°E and 10°E and (d–f) between 
46°N and 47°N for topographic sensitivity experiments with pre-industrial (PI_NoAlps, PI, PI_plusAlps) and Middle Miocene (Mio_278, Mio_450, Mio_278_noAlps, 
Mio_450_noAlps, Mio_278_plusAlps, Mio_450_plusAlps, Mio_278_iniwiso, Mio_450_iniwiso) boundary conditions and for ERA5 reanalysis time averaged from 
1959 to 2021. Selected data points (for MAT [Table S1], MAP [Table S1 and Table S2], and δ 18Op [Campani et al., 2012; Krsnik et al., 2021]) between 8°E and 11°E 
(a–c) and between 45°N and 49°N (d–f) extrapolated to the section line are shown in black.
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4.5. Seasonality of Temperature, Precipitation, Relative Humidity, Evaporation, δ 18O in Vapor and δ 18O 
in Precipitation

In this section, we report intra-annual variations in simulated near-surface temperature, precipitation, evapora-
tion, near-surface relative humidity, δ 18Ov and δ 18Op values, averaged over central Europe and the Alpine region 
(Figure 9). The same variables averaged for the low-elevation region and for the high-elevation region (regions as 
shown in Figure 2a), are shown in Figures S5 and S6 in Supporting Information S1. We also compare the simu-
lated seasonality of temperature and precipitation with seasonal temperature and precipitation signals derived 
from proxy data (CMT, WMT, HMP, LMP). We present the intra-annual variations in temperature, precipitation, 
evaporation and near-surface relative humidity to explain simulated δ 18Ov and δ 18Op signals.

4.5.1. Near-Surface Temperature

The seasonal cycles of near-surface temperature in Mio_278 and Mio_450 simulations are similar to those in 
the PI. The minimum monthly mean temperature (CMT) is simulated in January for PI, Mio_278, and Mio_450 
and a maximum monthly mean temperature (WMT)—in July for PI and Mio_273 and in August for Mio_450 

Figure 8. Stable oxygen isotopes change for (a) Mio_278_plusAlps relative to Mio_278, (b) Mio_450_plusAlps relative to 
Mio_450, and (c) Mio_278_noAlps relative to Mio_278, (d) Mio_450_noAlps relative to Mio_450, (e) Mio_278_LandSea 
relative to Mio_278, and (f) Mio_450_LandSea relative to Mio_450.
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(Figure 9a). However, the mean annual range of temperature increases in Miocene relative to PI (Table S4 in 
Supporting Information S1). Both Mio_278 and Mio_450 experiments show agreement with the data from the 
coexistence approach in WMT (RSE is 3.8°C and 5.4°C, respectively; Figures 2e and 2f; Table S5 in Supporting 
Information S1). The Mio_278 experiment shows a lower fit to CMT derived from proxy data, with RSE values 
of 4.7°C, while the Mio_450 experiment shows a better fit of 4.4°C. The best fit in the WMT and the CMT is 
found for the sites located in Southern Europe (Figure S7 in Supporting Information S1).

4.5.2. Precipitation

Results indicate December as the month with the highest monthly precipitation (HMP) for PI, Mio_278, and 
Mio_450; the driest month (LMP) is August for PI and September for Mio_278 and Mio_450 (Figure 9b). The 

Figure 9. Intra-annual variations of (a) near-surface temperature, (b) total precipitation, (c) low-level relative humidity, (d) surface evaporation, (e) δ 18Ov values, and 
(f) δ 18Op values. All variables are averaged for continental central Europe. Blue color corresponds to the PI experiment, green—Mio_278 experiment, red—Mio_450 
experiment, black—ERA5 reanalysis from 1959 to 2021. Solid lines show multi-annual mean, shade shows interannual variability within one standard deviation for the 
corresponding variable.
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precipitation seasonality over central Europe increases in the Miocene simulations compared to the PI simulation. 
For January, February, and March precipitation is similar in the PI and Mio_450 simulations, whereas there is 
slightly less precipitation in the Mio_278 experiment. However, the summer months (from May to October) are 
drier in the Mio_278 and Mio_450 simulations compared to the PI. The November and December precipitation 
is again similar in the PI, Mio_278, and Mio_450 simulations.

When compared to fossil plant data, both the Mio_278 and Mio_450 simulations have a low fit for HMP 
(RSE is 54.7 mm/month and 33.6 mm/month, respectively) and LMP (RSE = 37.0 mm/month for Mio_278 
and RSE = 37.7 mm/month for Mio_450) (Table S5 in Supporting Information S1; Figure S8 in Supporting 
Information S1).

4.5.3. Relative Humidity

For the PI simulation, the relative humidity reaches its maximum of 88% in December and its minimum of 73% in 
August (Figure 9c). The seasonal cycle is different in simulations Mio_278 and Mio_450 relative to the PI. While 
winter values are slightly lower in the Miocene simulations, in summer months a significant drop of humidity 
is predicted, with the maximum decrease occurring for August–September. The difference in relative humidity 
between the Mio_278, Mio_450, and PI results is 8%–12% for May–June and 18%–20% for August–September.

4.5.4. Evaporation

For PI the maximum evaporation (100 mm/month) occurs is in June and July, with a gradual decrease starting in 
August toward its yearly minimum (14 mm/month) in November and December (Figure 9d). The peak in annual 
evaporation for both Mio_278 and Mio_450 simulations is in June, with a continuous decrease toward the yearly 
minimum in November (12  and 13 mm/month, respectively) starting in July.

4.5.5. δ 18O in Vapor, δ 18O in Precipitation

For the PI simulation both the δ 18Ov and δ 18Op have minimum values in January (−18.9‰ for δ 18Ov and −9.4‰ 
for δ 18Op). The values then increase from February to June, toward their maximum in June (−14.2‰ for δ 18Ov 
and −5.5‰ for δ 18Op). From midsummer to September relatively high values occur with a subsequent smooth 
decrease starting in October (Figures 9e and 9f). Intra-annual variations in δ 18Ov and δ 18Op for the Mio_450 
simulation are different from the PI, while δ 18Ov and δ 18Op values of the Mio_278 simulation are different from 
those of the PI only for November–April, but largely overlap with PI during May–October. For example, mini-
mum δ 18Ov and δ 18Op occur in December with values of −17.6‰ for δ 18Ov in the Mio_278 and −17.2‰ in the 
Mio_450 simulations, and −8.1‰ and −7.5‰ for δ 18Op for the Mio_278 and the Mio_450. Maximum values are 
predicted for May and June (−14.6‰ and −13.5‰ for δ 18Ov for Mio_278 and Mio_450, respectively; −5.6‰ 
and −4.2‰ in δ 18Op for Mio_278 and Mio_450, respectively) with an abrupt decrease in July.

In summary, the seasonal cycle of δ 18Ov and δ 18Op values differs between PI and Miocene simulations, but are 
similar between the two Miocene simulations. Thus, changes in Miocene CO2 concentration have less impact on 
the seasonality change in δ 18Ov and δ 18Op.

4.6. SLP Shifts

We analyzed sea-level pressure shifts for February–March, May–June, August–September, and November–
December. We chose these months rather than “classic” seasons (e.g., December–January–February or June–
July–August), because we aim to explain the previously described δ 18Op changes, which are most pronounced for 
these months (Figure 9). In February–March, we find an increase in sea-level pressure over Turkey, Italy and the 
Balkans, with a maximum increase of 3  and 1 hPa over Italy for the Mio_278 and Mio_450 simulations, respec-
tively (Figures 10a and 10b; Figure S9 in Supporting Information S1). This sea-level pressure increase is accom-
panied by a sea-level pressure decrease over the North Atlantic (from 20°W to 0° and 45°N to 65°N) up to 6 hPa 
in both cases. In May–June and August–September, the sea-level pressure for both the Mio_278 and Mio_450 
simulations is lower than in the PI simulation (Figures 10c and 10f). The most pronounced changes (>10 hPa) 
for these months occur over Northeast Africa, the Red Sea, and the North Atlantic, while the sea-level pressure 
change over central Europe is smaller, ranging from 3 to 5 hPa. For November-December, the high Miocene SLP 
remains over Southern Europe, with a maximum increase of 1  and 3 hPa for the Mio_278 and Mio_450 simula-
tions, respectively (Figures 10a and 10b).
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Figure 10. Differences in the mean sea level pressure (SLP) and winds between Mio_278 and PI (a, c, e, j) and between 
Mio_450 and PI (b, d, f, h) simulations averaged over selected months: February–March (a, b), May–June (c, d), August–
September (e, f), November–December (j, h). The isolines show the SLP difference with an interval of 1 hPa; the black solid 
line corresponds to zero difference.
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5. Discussion
In the following sections, we provide explanations for the simulated humidity and precipitation change in the 
Middle Miocene compared to the PI (Section 5.1). Following this, we assess the potential sources of model-data 
mismatch in terms of precipitation by comparing the fit of climatic conditions based on different proxy-data 
reconstruction methodologies to those derived from our model outputs (Section 5.2). In Section 5.3, we explain 
the simulated δ 18Op on annual and intra-annual scale and examine the impact of global and regional Middle 
Miocene climate change that is linked to Alpine surface uplift and Paratethys retreat on carbonate δ 18O records. In 
Section 5.4, we conclude by discussing the consequences of these results for stable isotope paleoaltimetry studies.

5.1. Large-Scale Drivers of Humidity and Precipitation Change in Europe

For the Middle Miocene we simulate a bi-directional precipitation change pattern in Europe. More specifically, 
Scandinavia and northern Russia become wetter, while Southern and South-Eastern Europe become drier. This 
pattern persists for all seasons, but is most pronounced for late summer (Figures 11a–11c). This Middle Miocene 
bi-directional precipitation change in Europe is similar to the precipitation trends over the past century and the 
model predictions for future climate from Knutti and Sedláček (2013) and the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC, 2013). The similarity between precipitation changes during 
the Middle Miocene (independent of CO2 levels) and future climate is consistent with the idea that past warm 
climates represent analogs for the future climate and can anticipate how European precipitation might respond 
to global warming. In the following, we discuss possible driving mechanisms for changes in precipitation and 
humidity in Middle Miocene Europe.

In our Middle Miocene simulations, an anticyclonic circulation is centered over the Mediterranean and Southern 
Europe in winter (Figures S9k–S9m in Supporting Information S1). In addition, the Icelandic Low gets stronger 
during summer months (Figures S9d–S9j in Supporting Information S1) and promotes a northward shift of the 
Atlantic storm track with a deflection of storms north of the Mediterranean to higher latitudes. This mechanism 
has also been predicted for future climate change in Europe, according to Giorgi and Lionello (2008), who also 
note that increased high pressure and anticyclonic conditions generally lead to greater atmospheric stability and 
thus less favorable conditions for storm generation. As a result of these circulation changes, Southern Europe and 
the Mediterranean region show a general decrease in precipitation in the Middle Miocene, while the northern 
European regions show an increase.

Anticyclones are generally associated with atmospheric subsidence. During the modern summer, the Mediter-
ranean is directly under the descending branch of the Hadley circulation which is caused by deep convection in 
the tropics (Lelieveld et al., 2002). Our Middle Miocene simulations show an extended area of positive vertical 
velocity (ω) over the eastern Mediterranean and the Balkans (Figures 11h and 11j; Figures S11h and S11j in 
Supporting Information S1), which is a direct indication of subsiding air masses. Compared to the PI (Figure 
S11g in Supporting Information S1), this area of positive ω is larger, especially for late summer, and extends 
toward central Europe and the Alps (Figures 10g–10j). This large-scale subsidence from upper to lower trop-
osphere during the Middle Miocene, accompanied by advection and limited divergence for the largest part of 
the tropospheric column, explains the descending relative humidity structures and the dry surface hydroclimate. 
Sustained subsidence aloft, combined with a cool lower-level marine flow, results in a semi-permanent inversion 
that suppresses vertical growth of low clouds, and hence inhibits precipitation (Saaroni & Ziv, 2000).

The enhanced subsidence could possibly be related to the remote forcing of tropical circulation. Both the Asian 
summer monsoon (Rodwell & Hoskins, 2001; Tyrlis et al., 2013; Ziv et al., 2004) and the West African monsoon 
(Gaetani et al., 2011) have been suggested to influence the subsidence in the Mediterranean region. Rodwell 
and Hoskins (2001) demonstrated that the diabatic heating in the Asian monsoon region can induce a Rossby 
wave pattern to the west. They also found that the interaction between the Rossby waves and the mid-latitude 
westerlies produces an adiabatic descent over the Mediterranean and the subtropical Atlantic Ocean. Gaetani 
et al. (2011) reported a strong link between the summer Euro-Atlantic circulation and the convective activity of 
the West African monsoon. They show that the intensification of the Azores High, the northward shift of the West 
African Intertropical Convergence Zone and a Rossby wave from tropical America have a direct impact on the 
Euro-Atlantic circulation subsidence pattern. A detailed analysis of the causes of the subsidence change in the 
Middle Miocene would certainly be worthwhile, but is beyond the scope of this paper.
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Figure 11. Precipitation amount (a–c), relative humidity (d–f), vertical velocity (omega) at 500 hPa (g–j), δ 18Ov (k–m), and δ 18Op (n–p) for PI (a, d, g, k, n), Mio_278 
(b, e, h, l, o), Mio_450 (c, f, j, m, p) simulations. Variables averaged for August–September.
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In addition to the enhanced subsidence, reduced moisture transport from the Northern Atlantic, low precipitation 
rates and low relative humidity in Southern Europe (Figure S10 in Supporting Information S1) could be further 
amplified by reduced land evaporation and precipitable water. A reduction in precipitation leads to a depletion 
of soil moisture, which reduces the contribution of land evaporation to precipitable water, further reducing the 
precipitation simulated in our Middle Miocene experiments.

5.2. Wetter or Drier Europe in the Middle Miocene?

Our Middle Miocene control experiments (Mio_278 and Mio_450) show lower MAP for most parts of Central 
and Southern Europe than in the PI simulation. This is consistent with the results of Böhme et al. (2011), who 
suggest lower precipitation, up to 300–500 mm/yr less than today, for the Southwest (Calatayud-Teruel basin) 
and central Europe (Western and Central Paratethys) during the late Langhian (∼14.40–13.65 Ma) and Serrav-
allian (13.82–11.63 Ma). These results are also supported by the coeval occurrence of evaporites in the Spanish 
basins (Abdul Aziz et  al.,  2003). Moreover, abundant soil carbonate formation in the North Alpine Molasse 
basin during the Middle Miocene (Campani et al., 2012; Krsnik et al., 2021; Methner et al., 2020; Schlunegger 
et al., 2007) indicate precipitation rates not higher than 800 mm/yr (Breecker et al., 2009) or even 500 mm/yr 
(Zamanian et al., 2016) as well as pronounced precipitation seasonality. However, these reconstructions, taken 
together with our modeling results and herpetological proxy estimates, are at odds with plant proxy data showing 
wetter than present conditions in Central and Eastern Europe during the Serravallian (∼13.8 to ∼11.6 Ma; Bruch 
et al., 2011), with precipitation rates of up to 1,400 mm/yr. The paleobotanical data come from more than a dozen 
different authors and papers (Table S1), whereas the herpetological data come from only from two publications 
(Table S2). Nevertheless, all paleobotanic papers use the same method (Mosbrugger & Utescher, 1997) and the 
same reference for the Nearest Living Relative (NLR) of a fossil taxon, that is, they are internally consistent as 
are the herpetofaunal data. The discrepancies between the paleobotanical records and other geologic proxies as 
well as our modeling can be explained by: (a) difficulties in reconstructing dry climates with botanical methods; 
(b) uncertainties linked to the coexistence approach; and (c) climate model-related uncertainties.

First, problems arising when reconstructing dry conditions from plant fossils are already well known (e.g., in 
Böhme et al., 2007, 2011; Bruch et al., 2011). Ultimately, the lack of fossil floras preserved under dry conditions 
leads to a strong bias in the data with gaps toward southern Europe, where plant proxy data are only available 
from wetter regions of Spain (North-East coast) and northern Italy (Bruch et al., 2011). Moreover, faunal and 
floral remains from Central and Eastern Europe usually come from different stratigraphic levels and taphonomic 
settings (Bruch et al., 2011). This could mean that paleobotany proxy data do not have the necessary resolution 
and taphonomic capability to detect dry climates. On the other hand, the formation of carbonates can occur under 
overall (annual) rather wet conditions as long as a necessary precipitation seasonality is given. For instance, 
pedogenic carbonates are known to form under monsoonal climate (Breecker et al., 2009; Quade et al., 2007). As 
such, pedogenic carbonates can inherit a strong seasonal bias (e.g., Kelson et al., 2020).

Second, most botanical paleoclimate data are derived from the coexistence approach (Mosbrugger & 
Utescher, 1997). However, concern has been raised about the reliability of climate reconstructions, especially 
outside the warm-temperate climatic window (see Grimm & Denk, 2012 for detailed discussions). Moreover, the 
coexistence approach is strongly taxon dependent. In contrast, the herpetological method refers to the relative 
diversity (taxon count) of eco-physiologic groups of ectothermic animals at a given locality and is therefore 
largely taxon independent (especially below family levels). As highlighted earlier, the temperature records from 
palaeobotanical proxies are in a good agreement with the model, unlike the precipitation records. Further model 
simulations with regional geographic adjustments could help reconcile the herpetological data, botanical data, 
and modeling results.

Third, in terms of accurate simulation of paleoprecipitation, the application of ECHAM5-wiso has several limita-
tions, related to (a) model resolution, (b) model parameterizations, for example, convective and evapotranspiration 
schemes, (c) no ocean feedback in an atmosphere-only GCM, (d) uncertainties in the choice of boundary condi-
tions (e.g., vegetation, SSTs, etc.), (e) uncertainties in simulation of higher temporal and spatial scale atmospheric 
circulations (e.g., Shields et al., 2021), and (f) uncertainties in simulation equator-to-pole SST gradient (Burls 
et al., 2021). Compared to a coarse model resolution, for example, the experiments participating in MioMIP1 
(T31 or T42, corresponding to a grid spacing of ∼3.75° or ∼2.79°, respectively), we find two dominant patterns 
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in which the ECHAM5-wiso simulations (T159 resolution, corresponding to a grid spacing of ∼0.75°) differ: 
generally a cold bias over mountain ranges such as the European Alps, which could be related to differences in 
orography between low- and high-resolution models (with higher elevation in our high-resolution simulations), 
and a warm bias over the continents. Models with higher resolution have been shown to have higher climate 
sensitivity, but this effect is not present in all models (e.g., Ingram & Bushell, 2021 and references therein). 
Whether the higher climate sensitivity due to resolution contributes to the relative warmth over the continents 
needs further investigation based on additional simulations.

We refer the reader to Botsyun and Ehlers (2021) for a further discussion of the uncertainties relevant to precipita-
tion and δ 18Op values. In addition, major uncertainties are related to the choice of regional topographic configura-
tions in Europe. Simulations with increased Alpine elevation suggest an increase in precipitation over the Alpine 
region and a better fit to paleobotany proxy data over these regions. However, for Spanish basins, the Pannonian 
Basin, the Carpathian region, Crimea, Romania, and Turkey, models with increased Alpine elevation still show 
lower precipitation amounts comparable to the prediction of the paleobotany data. In our simulations, however, 
we do not test different uplift scenarios for mountains other than the Alps in Europe or a differentiated uplift 
history of the Eastern and Western Alps, which could potentially lead to a redistribution of precipitation. Our 
model resolution is still not high enough to capture microenvironments existing along inland water bodies, which 
could harbor many flora and fauna species characteristic of wetter climates, even if overall larger scale climate is 
(sub-)arid. Moreover, such environments have high preservation rates, biasing geologic records toward sheltered 
locations (Chandler et al., 1992).

In summary, despite some model-related limitations, our modeling results, in accord with herpetological proxy 
estimates and geological observations (evaporites, soil carbonates) indicate lower than pre-industrial precipita-
tion rates for Central and Southern Europe during the Middle Miocene. High precipitation rates predicted by the 
coexistence approach are not supported by the model results here.

5.3. Implications of Global Climate Change and Alpine Surface Uplift on Water Stable Isotope Records 
and Paleoclimate Proxy Records in Europe

Changes in terrestrial paleo-δ 18Op patterns are typically linked to both mountain uplift and global climate change 
(Caves et al., 2015; Licht et al., 2014; Methner et al., 2020; Mulch, 2016; Quade et al., 2011). Isotope-enabled 
GCMs provide a tool for distinguishing the processes impacting δ 18Op values at both regional and local scales 
(Botsyun & Ehlers, 2021). Comparing pre-industrial and Middle Miocene simulations (Mio_278 and Mio_450) 
allows us to isolate the effect of global climate on the δ 18Op pattern in Europe. Further comparison of Middle 
Miocene simulations (Mio_278 and Mio_450) and simulations with a varied Paratethys Sea extent (Mio_278_
LandSea and Mio_450_LandSea) allows us to isolate the effect of regional climate change associated with the 
effect of marine transgressions on the δ 18Op pattern. Finally, comparison of simulations with varied elevation 
(Mio_278, Mio_450, Mio_278_plusAlps, Mio_450_plus_Alps, Mio_278_noAlps, and Mio_450_noAlps) 
contributes to our understanding of the potential δ 18Op signal associated with topographic uplift. In the following, 
we organize our discussion around the implications of model-predicted changes in Middle Miocene δ 18Op, the 
different drivers behind these changes (global change vs. surface uplift) and their effect on interpretations of δ 18O 
records preserved in paleosol carbonates.

5.3.1. Changes in δ 18Op Linked to Global Climate Forcing

Variations in temperature, humidity, precipitation, and wind directions are often considered as first-order vari-
ables contributing to the distribution pattern of δ 18Op values (Dansgaard, 1953; Gat,  1996). The temperature 
increase in the Middle Miocene simulations shifts δ 18Op values toward less negative values as a direct conse-
quence of the Raleigh distillation process (Dansgaard, 1953; Gat, 1996). Both δ 18Ov and δ 18Op reach their maxi-
mum in May–June, which coincides with the warm season. However, in the case of Middle Miocene Europe, the 
temperature effect is largely counterbalanced by changes in relative humidity. This is because δ 18Ov decreases 
with decreasing relative humidity during condensation through Rayleigh distillation. Our model results suggest 
that relative humidity decreases in Southern and central Europe during the Middle Miocene, which drives δ 18Ov 
toward more negative values. This mechanism is most efficient in August–September when relative humidity 
drops by ∼20% (Figure 9c).
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A decrease in relative humidity further contributes to changes in δ 18Op by enhancing post-condensation effects, 
for example, raindrop evaporation. Since  16O evaporates more easily, rain re-evaporation leads to an increase in 
δ 18Op values of raindrops reaching the Earth surface. Therefore, the more re-evaporation occurs, the greater the 
difference between δ 18Ov and δ 18Op values (see e.g., Lee & Fung, 2008). The pronounced difference between 
δ 18Ov and δ 18Op from July to October in the Mio_278 and Mio_450 simulations is an indication of enhanced 
post-condensation effects occurring after initial condensation (Figures 9e and 9f).

Simulated Middle Miocene decrease in δ 18Ov in the late summer is most pronounced over the Balkans, which 
coincides with an area of enhanced atmospheric subsidence (Figure S10 in Supporting Information S1). The 
effect of subsidence in decreasing δ 18Ov has previously been shown by Frankenberg et al. (2009) and by Galewsky 
and Hurley (2010). Our results suggest (Figure 11) that the subsidence is located broadly over the Mediterranean, 
but drying and its isotopic effect occurs primarily over land. This is because over the ocean the boundary layer is 
efficiently separated from the free troposphere by an inversion, allowing it to be replenished by unlimited surface 
evaporation (Benetti et al., 2015). In contrast, over land, surface evaporation is limited, so that surface evaporation 
cannot compensate for the drying effect of subsidence.

5.3.2. Change in δ 18Op Linked to the Regional Climate

In addition to the impact of global climate, δ 18Op is influenced by regional changes of climate, land-sea cover, and 
topography. However, in our simulations, δ 18Op values over the Alpine region are not sensitive to for example, the 
retreat of the Paratethys. The simulated changes between the control experiment and the experiment with modi-
fied land-sea distribution are below 1‰ (Figures 8e and 8f). These small changes could be explained by the fact 
that the Paratethys lies outside of major wind directions for Europe (Figure S10 in Supporting Information S1). 
However, this result is potentially linked to limitations of our modeling methodology, that is, the application of 
an atmospheric-only, not a fully coupled atmosphere-ocean GCM. Application of a GCM with a comprehensive 
simulation of marine circulation might result in higher SSTs over the Paratethys region and thus increase evapo-
ration and contribution of this moisture source to the local hydroclimate in Europe.

Differences in δ 18Op values between pairs of simulations with different topography within each pCO2 setup are 
up to 8‰ (e.g., Figures 7c and 7f). The maximum changes are found between experiments with doubling of 
present Alpine elevation (Mio_278_plusAlps, Mio_450_plus_Alps) and an elevation that is reduced to 250 m 
(Mio_278_noAlps, Mio_450_noAlps). However, δ 18Op changes between the experiments with varied topography 
are strongly limited to the area where the topography has been actually modified by the experimental setup. These 
findings for the Middle Miocene climate simulations are consistent with results of sensitivity experiments with 
pre-industrial boundary conditions but varied Alpine elevation (Botsyun et al., 2020). Given this limited-area 
impact, we hypothesize that δ 18Op increase/decrease for experiments with higher/lower topography is mainly due 
to changes in local temperature and orographic precipitation.

5.4. Consequences for Paleoelevation Estimates

Our results for Middle Miocene seasonality changes in temperature and precipitation in Europe may have impacts 
for the interpretation of paleosol carbonate δ 18O or other isotope proxy data used for paleoelevation reconstructions 
of the Alps. When pedogenic carbonates are used to assess low-elevation δ 18Op estimates, the MAT has typically 
been assumed for carbonate-water fractionation temperatures (e.g., Cerling et al., 1993; Garzione et al., 2000; 
Quade et al., 2011; Xu et al., 2013). This is based on the assumption that pedogenic carbonates form during 
conditions reflective of the mean growing season environment, which would typically imply soil temperature 
conditions between average and the maximum annual soil temperature (Cerling et al., 1993). However, changes 
in precipitation seasonality and the amplitude of seasonal temperature variation impacts the growth season of soil 
carbonates (Breecker et al., 2009; Burgener et al., 2016; Gallagher & Sheldon, 2016; Kelson et al., 2020; Peters 
et al., 2013). With the growing amount of paleosol carbonate formation temperature estimates based on clumped 
isotope (Δ47) analyses, the timing of carbonate formation during the annual cycle becomes key (e.g., Gallagher 
et al., 2019; Kelson et al., 2020; Passey et al., 2010; Peters et al., 2013; Quade et al., 2013). Previous work has 
documented that carbonate in modern soils can precipitate at times of excessive dryness when climate conditions 
differ strongly from the mean growing season conditions (Breecker et al., 2009). However, carbonate precipita-
tion may occur at different times of the year under different climate regimes and a complicated seasonal bias may 
strongly affect the formation and isotopic composition of pedogenic carbonate (e.g., Gallagher & Sheldon, 2016).
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For the case of the European Alps in the Middle Miocene, prolonged warm seasons might bias carbonate δ 18O 
toward annual mean values, while stronger precipitation seasonality with very dry summers might bias carbonate 
δ 18O toward spring or autumn values. Our model-derived seasonal temperature shifts of >16°C (summer/JJA 
minus winter/DJF) predicted in the Mio_278 and Mio_450 simulations are similar to the observed Δ47-based 
carbonate formation temperature change in the North Alpine Foreland Basin (Methner et al., 2020). These authors 
attributed this large shift in paleosol carbonate Δ47-temperatures to at least partly reflect a shift in carbonate 
formation/preservation seasonality in conjunction with global cooling across the MMCT. They suggest a modifi-
cation in rainfall seasonality across the MMCT and reorganization of mid-latitude atmospheric circulation across 
central Europe to account for hypothesized shift in carbonate formation/preservation seasonality.

Recently, Krsnik et al. (2021) used a combined pedogenic carbonate δ 18O value and Δ47 temperature (30°C ± 4°C) 
to reconstruct a near sea level δ 18Op value of −5.6 ± 0.2‰ during the Middle Miocene (∼14.5 Ma). In combi-
nation with a high-Alpine meteoric water δD record these results suggest that the central Alps attained surface 
elevations of >4,000 m no later than the mid-Miocene. The results of our new Middle Miocene experiments 
indicate that δ 18O varies on an annual scale between −4.9 and −7.6‰ (depending on the experimental setup) for 
the Northern Alps Foreland Basin. We suggest that only 1–2 ‰ of this variation is linked to changes in global 
climate. Thus, high elevation of the central Alps in the Middle Miocene is highly possible and supported by the 
results presented here. However, caution is needed regarding the timing of the carbonate formation and its poten-
tial bias on reconstructed δ 18Op values. Moreover, our Middle Miocene experiments indicate a shallowing of the 
elevation-δ 18Op gradient in the Middle Miocene Alps, permitting a possible underestimation of elevations derived 
from paleo-δ 18Op data using present-day relationships.

6. Summary and Conclusions
We present high-resolution isotope-enabled ECHAM5-wiso experiments to study Middle Miocene climate and 
related δ 18Op signals in Europe. Previous modeling efforts simulating the Middle Miocene climate have been 
recently joined in MioMIP1 and summarized in Burls et al. (2021). However, low resolution of MioMIP1 simu-
lations (T31 or T42) do not provide a good representation of mountain topography in Europe, leading to: (a) an 
underestimation of surface temperature in mountain regions, and (b) an underestimation of precipitation. Moreo-
ver, it has been previously shown that the low resolution (e.g., T31), typical of past global coupled paleoclimate 
simulations, are unlikely to properly capture humidity behavior (Sherwood et al., 2010).

We have tackled this problem in generating much higher resolution (grid spacing of ∼0.75°) simulations using the 
ECHAM5-wiso atmosphere GCM. Our new Middle Miocene simulations show 3.4°C–6.2°C higher temperatures 
in central Europe when compared to the pre-industrial, depending on the CO2 setup. This result is in good agree-
ment with temperatures derived using the proxy data, however, these results have a warm bias for low-elevation 
areas when compared to the Middle Miocene experiments participating in the MioMIP1 project. The simulated 
Middle Miocene precipitation is 300–500 mm/yr lower than in the pre-industrial times, which is consistent with 
estimates from herpetofaunal fossil proxy data. However, it is lower than predicted by paleobotanical (coexistence 
approach) proxy data. We attribute this precipitation change in Europe to shifts in large-scale pressure patterns 
in the North Atlantic and over Europe, namely an anticyclonic circulation centered over the Mediterranean and 
Southern Europe in winter, in addition to a deepened Icelandic Low in the summer. These ultimately result in 
a northward shift of the Atlantic storm track with a deflection of storms north of the Mediterranean into higher 
latitudes.

The simulated annual mean δ 18Op pattern for the Middle Miocene is consistent with pre-industrial δ 18Op across 
Europe in both its pattern and magnitude. The Middle Miocene global climate forcing has contributed to a maxi-
mum δ 18Op increase of ∼2‰ over the high Alpine elevation and to ∼1‰ over low elevation. However, differ-
ences between PI and Middle Miocene simulations at seasonal scale are stronger (∼3‰), especially when higher 
pCO2 concentration is considered. The most striking difference is the δ 18Op decrease in the late summer, driven 
by a drop of relative humidity, which coincides with enhanced atmospheric subsidence. Experiments with varied 
elevations of the Alps show that doubling of Alps elevation causes a maximum δ 18Op decrease, up to 8‰ when 
compared to the experiment with non-changed topography. However, the isotope lapse rate in the central Alps 
shallows by 0.03‰/100 m for Middle Miocene setting.
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We conclude that higher-resolution paleoclimate modeling is critical to capture regional paleoclimate variability. 
We suggest that Alpine paleoclimate and paleoaltimetry research would benefit from future studies focusing on 
(a) using proxies to constrain not only surface temperature and precipitation amount, but also relative humidity 
(e.g., using triple oxygen isotopic composition of phytoliths [Outrequin et al., 2021]) or the average chain length 
of n-alkanes (Eley & Hren, 2018), (b) studying the Miocene climate on orbital time scales, given the Miocene 
climate has been shown to be sensitive to the orbital forcing (Marzocchi et al., 2015) and the insolation changes 
have a potential impact on temperature in warmer climate (Samakinwa et al.,  2020), (c) multi-model isotope 
enabled studies to avoid warm/cool bias in individual models, and (d) coupling of δ 18O proxy records and outputs 
of isotope-enabled GCM forced by constrained paleogeography (e.g., time appropriate land-sea distribution and 
different scenarios for orogens) and atmospheric pCO2 for specific geological time periods investigated. This 
combination could help refine calibration of paleo δ 18Op-elevation relationships and refining paleoelevation 
estimates.
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Key Points:12

• Miocene conditions and topographic changes led to a shallower isotopic lapse rate13

across the Alps compared to the present.14

• Simulated isotopic lapse rates show an overestimation of Miocene Central Alps pa-15

leoelevation by 1.5 km when using the modern rainfall lapse rate.16

• A global river-based lapse rate is more appropriate than a rainfall-based rate when17

paleoclimate-constrained lapse rates are available.18

Corresponding author: Daniel Boateng, daniel.boateng@uni-tuebingen.de

–1–



manuscript submitted to Earth Surface

Abstract19

Estimates of past surface elevations using isotopic imprints in geologic archives are es-20

sential for understanding the evolution of the Earth’s physiography and biodiversity dis-21

tribution. Stable isotope paleoaltimetry is the most widely used method to infer quan-22

titative paleoelevations due to the robust systematic inverse relationship between ele-23

vation and oxygen isotopic composition (δ18O) of meteoric waters (i.e., isotopic lapse rate).24

The difference in δ18O of paleo-meteoric water (∆δ18O) reconstructed from coeval proxy25

materials between adjacent low- and high-elevation sites is transformed into paleoele-26

vation changes using the isotopic lapse rate (δ-δ approach). Most often, the isotopic lapse27

rate is assumed to be stationary through time and space and, therefore, relies on mod-28

ern estimates to constrain the paleoelevation changes. This study employs model-based29

sensitivity analysis to assess the spatio-temporal variability of the isotopic lapse rate of30

the European Alps and to quantify the magnitude of uncertainties in paleoelevation es-31

timates associated with the use of the modern isotopic lapse rate. We used the high-resolution32

isotope-tracking ECHAM5-wiso General Circulation Model to simulate the δ18O in pre-33

cipitation (δ18O) response to Middle Miocene global paleoenvironmental changes (e.g.,34

atmospheric CO2, palaeogeography), and diachronous west-to-east surface uplift prop-35

agating along the alpine orogen. The results indicate a ∆δ18O range of -4 to -8 ‰ be-36

tween the low- and high-elevation regions and agree well with Miocene proxy reconstruc-37

tions. The δ18O values from the model-data comparison only agree in topographic sce-38

narios where the West-Central Alps were uplifted by 200% of the modern mean eleva-39

tion, implying that the Miocene Alps were higher than today. The simulated isotopic40

lapse rates become shallower by ∼1.0 ‰ km-1 in response to the Middle Miocene con-41

ditions compared to the Pre-Industrial period and vary within the range of ±1.5 ‰ km-1
42

for the diachronous surface uplift scenarios of the Alps. Applying the simulated lapse43

rate with Miocene proxy reconstructions indicates an overestimation of the Central Alps’44

paleoelevation by ∼1.5 km when the lapse rate is assumed to be constant from the time45

of the proxy formation to the present day.46

1 Introduction47

Reconstructing past surface elevations of mountain ranges is essential for under-48

standing many interrelated geological, climatic, and biological processes. More specif-49

ically, paleoelevation estimates contribute to understanding tectonic-geodynamic drivers50

of surface uplift such as crustal thickening, lithospheric delamination, and post-collisional51

processes and ultimately, the interactions between the Earth’s surface, climate, and dis-52

tribution of biodiversity (Cloetingh et al., 2023; S. Huang et al., 2019; Mulch, 2016; Row-53

ley, 2007; Salles, Husson, Rey, et al., 2023; Salles, Husson, Lorcery, & Hadler Boggiani,54

2023). Despite the use of sedimentological, geochemical, and palaeontological approaches55

to reconstruct paleoelevation, the scarcity and often reduced resolution of the geolog-56

ical record inevitably result in a fragmented spatio-temporal representation of the Earth’s57

past physiography. This hampers the accurate and realistic reconstruction of sediment58

transport dynamics, geochemical cycles, nutrient fluxes from continents to oceans, land-59

scape evolution, and climate-tectonics interactions.60

Despite the European Alps being one of the most intensively and longest-studied61

orogens globally, its surface elevation history remains understudied. The onset of Alpine62

topographic development was driven by isostatic compensation of crustal and lithospheric63

deformation through plate convergence caused by the continent-continent collision of the64

European and Adriatic plates (Beaumont et al., 1996; Schmid et al., 1996; Stampfli et65

al., 1998; Willett et al., 1993). Recent studies have suggested additional post-collisional66

processes that contributed to diachronous surface uplift, resulting in west-to-east topo-67

graphic variations (Handy et al., 2010; Kissling & Schlunegger, 2018; Schlunegger & Kissling,68

2015). These post-collisional processes include slab break-off (at ca. 30 Ma) of the Eu-69

ropean slab, continuing slab rollback of the subducting lithosphere under the Alpine arc,70
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and lithospheric mantle removal (Huw Davies & von Blanckenburg, 1995; Handy et al.,71

2015; Schlunegger & Castelltort, 2016). Global and regional Cenozoic climate change also72

contributed to the development of transient topography through variations in climate-73

driven surface processes such as denudation and erosion intensity (Mey et al., 2016; Valla74

et al., 2021). Understanding and validating the relative roles of geodynamic processes75

and landscape evolution requires quantitative paleoelevation estimates of the European76

Alps through space and time. Stable isotope paleoaltimetry potentially allows us to in-77

form about the rates and magnitudes of these e subsurface processes, provided the sur-78

face elevation history reflects the interplay among the deep-seated mantle and lithospheric79

dynamics and regional climate changes.80

Stable isotope paleoaltimetry has been used to infer past surface elevations of the81

Alps (e.g., Campani et al., 2012; Krsnik et al., 2021; Sharp et al., 2005). The approach82

relies on the robust systematic inverse relationship between stable oxygen and hydro-83

gen isotopic composition of meteoric water and elevation (referred to as the isotopic lapse84

rate) that is recorded in geologic materials such as pedogenic carbonates, hydrous sil-85

icates, fossil tooth enamel or long-chain n-alkanes. Application of such isotopic lapse rates86

assumes preferential rainout of heavy water isotopologues from air masses ascending over87

topography and is estimated physically by the Rayleigh distillation model (Gat, 1996;88

Rowley & Currie, 2006) or empirically from observations (e.g., rainfall or surface waters) (e.g.,89

Poage & Chamberlain, 2001). As the potential change in isotopic lapse rates in the ge-90

ologic past is difficult to ascertain precisely, most studies assume that the isotopic lapse91

rate remains constant through time and, therefore, relies on present-day calibrations (Campani92

et al., 2012; Gébelin et al., 2013; Krsnik et al., 2021; Huyghe et al., 2018; Meyer, 2007;93

Rowley, 2007; Poage & Chamberlain, 2001).94

In the case of the European Alps, Campani et al. (2012) used a local, present-day95

station-based isotopic lapse rate of -2.0 ‰ km-1 to estimate a paleoelevation of 2850 (±800)96

m for the Miocene Central Alps. Their approach contrasts near-sea-level pedogenic car-97

bonates paleo-meteoric water oxygen isotopic composition (δ18O) values from the low-98

elevation Northern Alpine Foreland Basin (Swiss Molasse Basin; SMB) with high ele-99

vation paleo-meteoric water records from syntectonic fluid flow to disentangle the com-100

peting contributions of elevation and regional climate change on the rainfall isotopic sig-101

nal (e.g., Garzione et al., 2000; Mulch et al., 2006; Rowley & Currie, 2006). Recently,102

Krsnik et al. (2021) refined these paleoelevation estimates by applying clumped isotope103

(∆47) paleothermometry on the foreland basin pedogenic carbonate record from differ-104

ent Miocene Alpine foreland megafan systems to calculate the near-sea-level soil water105

δ18O values. Their reconstructed isotopic signal with modern isotopic lapse rates places106

the Miocene Central Alps at >4400 (±770) m. However, despite best efforts to isolate107

the surface elevation signal, numerous climatic processes such as mixing and rerouting108

of air masses, evaporation recycling, moisture transport source and pathway changes, and109

precipitation dynamics that are driven by global climate changes and surface uplift can110

influence the spatio-temporal variability of the isotopic lapse rates and thus compromise111

paleoelevation estimates (e.g., Boateng et al., 2023; Ehlers & Poulsen, 2009; Galewsky,112

2009; Insel et al., 2010; Poulsen & Jeffery, 2011).113

The use of Isotope-enabled General Circulation Models (iGCMs) to simulate the114

impact of Cenozoic climate forcings (e.g., atmospheric CO2 levels; pCO2) and the im-115

pact of surface uplift on atmospheric circulation and surface heating have demonstrated116

the non-stationarity of isotopic lapse rates through space and time (Poulsen & Jeffery,117

2011). Through topographic sensitivity experiments, Boateng et al. (2023) suggested plau-118

sible changes in isotopic lapse rates across the Alps in response to different diachronous119

surface uplift scenarios and confirmed that the expected isotopic signal difference due120

to elevation changes is large enough to be reflected in geologic archives. This study sim-121

ulates the Middle Miocene δ18Ow values and regional climate to refine the previous pa-122
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leoelevation estimates and quantify the magnitude of uncertainties associated with the123

use of modern isotopic lapse rate.124

The Middle Miocene (15.97-11.63 Ma) was characterized by significant climate dy-125

namics, changes in paleoenvironmental conditions (such as topography, vegetation, and126

palaeogeography), and tectonic activity (Steinthorsdottir et al., 2021). Global proxy re-127

constructions have indicated a warmer and wetter climate during the Middle Miocene128

Climatic Optimum (MCO; 16.9-14.7 Ma), with an estimated global mean surface tem-129

perature 8 °C warmer than present-day (Burls et al., 2021; Steinthorsdottir et al., 2021).130

This warming is primarily attributed to elevated pCO2 as indicated through climate sen-131

sitivity experiments (e.g., Acosta et al., 2024; Burls et al., 2021; Hossain et al., 2023; Knorr132

et al., 2011), ranging from 400 to 700 ppm (Foster & Rohling, 2013; Kürschner et al.,133

2008; Sosdian et al., 2018; Steinthorsdottir et al., 2021), with some estimates reaching134

as high as 1000 ppm (Rae et al., 2021; Retallack, 2009). Climate sensitivity studies, con-135

sidering various boundary conditions, have highlighted the importance of non-pCO2 forc-136

ings—such as changes in paleotopography, palaeogeography, and vegetation—in driving137

regional climatic differences (e.g., Acosta et al., 2024; Brierley & Fedorov, 2016; Burls138

et al., 2021; Farnsworth et al., 2019; Jung et al., 2016). In particular, proxy data recon-139

structions and climate modelling indicate a pronounced latitudinal gradient in paleopre-140

cipitation over European mid-latitudes, with drier conditions at lower latitudes, which141

is attributable to changes in atmospheric circulation and the paleotopography of the Alps (Böhme142

et al., 2006; Botsyun et al., 2022; Costeur & Legendre, 2008; Jiménez-Moreno & Suc, 2007).143

These regional hydroclimatic changes, coupled with global warming effects—such as mid-144

tropospheric moistening and reduced vertical temperature stratification—would have led145

to a shallower isotopic lapse rate than today (Poulsen & Jeffery, 2011). Consequently,146

using contemporary isotopic lapse rates could lead to overestimating paleoelevation. Thus,147

simulating the δ18Ow values in response to Middle Miocene paleoenvironmental condi-148

tions is crucial for generating accurate paleoelevation reconstructions and quantifying149

the uncertainties associated with the assumption of a static isotopic lapse rate.150

In this study, we employ the high-resolution ECHAM5-wiso isotope-tracking GCM151

to simulate the regional climate and δ18Op values responses to Middle Miocene condi-152

tions alongside various surface uplift scenarios of the Alps. While Botsyun et al. (2022)153

simulated the impact of the Alps’ topography changes under Middle Miocene conditions,154

their designed experiments were based on bulk surface uplift scenarios that did not in-155

clude west-to-east diachronous surface uplift. Boateng et al. (2023) simulated the effects156

of diachronous surface uplift on δ18Op values and regional climate; however, they only157

considered topographic changes while keeping other boundary conditions (i.e. climate)158

constant. We build on these experiments by prescribing diachronous surface uplift sce-159

narios under two pCO2 conditions (i.e., 278 and 450 ppm) for the Middle Miocene. Through160

these combined topographic and pCO2 sensitivity experiments, we aim to elucidate the161

combined effects of climatic and tectonic influence on δ18Op values, which would be re-162

flected in proxy records. The model results are consistent with isotopic lapse rates that163

(1) significantly deviate from present-day values, (2) significantly deviate from values that164

arise from changing only topography, and (3) exhibit spatial variability across the Alps.165

Furthermore, we document how the simulated isotopic lapse rates impact previous pa-166

leoelevation estimates in the Alps (Krsnik et al., 2021), thereby quantifying the uncer-167

tainties associated with applying contemporary lapse rates. We also analyse the global168

hydroclimate and change in regional δ18Op values in response to the different paleoen-169

vironmental conditions. Overall, this study introduces a robust framework for reconstruct-170

ing past surface elevations by integrating δ-δ paleoaltimetry and paleo-meteoric water-171

isotopic composition model using the iGCM ECHAM5-wiso.172
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2 Methods: Middle Miocene climate modelling and topographic sen-173

sitivity experiment174

2.1 ECHAM5-wiso General Circulation Model175

The modelling component of this study relies on ECHAM5-wiso, a global three-176

dimensional atmospheric GCM with water isotopologue tracking (H16
2 O, H18

2 O, and HDO)177

capability (Werner et al., 2011). The model’s ability to simulate climate and the isotopic178

composition of precipitation has been validated for the present-day (e.g., Boateng et al.,179

2023; Langebroek et al., 2011) and the geological past (e.g., Botsyun et al., 2022; Feng180

et al., 2013; Mutz et al., 2018). The model includes diagnostics of stable oxygen and hy-181

drogen (δD) isotopes of water, which are treated as independent tracers in the hydro-182

logical cycle and undergo equilibrium and kinetic fractionation during phase transitions183

in the atmosphere. The model tracks vapour fluxes from the sea surface and lakes with184

non-equilibrium fractionation, which depends on surface temperature, δ18O (and δD)185

of moisture source and vapour content at the atmosphere’s lower level, relative humid-186

ity, and near-surface wind speed. However, the model does not consider the fractiona-187

tion of vapour fluxes from the land surface, such as evapotranspiration, due to their neg-188

ligible effect on the isotopic composition (Bariac et al., 1994; Zimmermann et al., 1967).189

This simplification is common in other state-of-the-art isotope tracking GCMs (e.g., Lee190

et al., 2007; Risi et al., 2010; Tindall et al., 2009) but must be considered when inter-191

preting the simulated regional isotopic patterns.192

We used ECHAM5-wiso to simulate the Middle Miocene global climate and sta-193

ble water isotopic composition in response to its paleoenvironmental conditions (e.g., changes194

in pCO2, paleogeography, oceanic and land surface conditions) and diachronous surface195

uplift scenarios across the European Alps. Recently, Botsyun et al. (2022) demonstrated196

that the global large-scale features simulated for the Middle Miocene are consistent with197

results from other state-of-the-art Earth system models of the Miocene Model Intercom-198

parison Project (MioMIP1) (Burls et al., 2021). Moreover, their simulated regional hy-199

droclimate patterns across Europe generally agree with proxy-based reconstructions. This200

study builds on their Middle Miocene climate experiments with updated boundary con-201

ditions and simulations of the combined effects of global climate change and diachronous202

surface uplift across the Alps on the δ18Op values. We focus on how the simulated δ18Op203

patterns compare to geologic reconstructions and can be used to increase the accuracy204

of paleoelevation estimates in the Middle Miocene in the Alps.205

2.2 Boundary conditions and experimental design206

We conducted two sets of Middle Miocene climate experiments to reflect the cli-207

matic conditions of the MCO (16.9-14.7 Ma) and Middle Miocene Climate Transition208

(MCT; 14.7-13.8 Ma). The MCO was a time of pCO2 (∼400-600 ppm) that resulted in209

a climate warmer than today. In contrast, during the MCT, pCO2 levels declined towards210

Pre-Industrial (PI) values, accompanied by global cooling and expansion of East Antarc-211

tic ice sheets. We conservatively chose pCO2 levels of 450 ppm (Mio450) and 278 ppm212

(Mio278) for the MCO and MCT, respectively, to reflect the average of the range of sug-213

gested pCO2 reconstructions from multiple proxy systems. These values fall within the214

range of suggested recent pCO2 reconstructions (e.g., Steinthorsdottir et al., 2021; Sos-215

dian et al., 2018; Foster & Rohling, 2013; Kürschner et al., 2008). The defined pCO2 val-216

ues are most closely aligned with the 400-500 ppm range at ca. 15.5 Ma and decrease217

to ∼280 ppm at 14 Ma (Kürschner et al., 2008). However, we highlight that other stud-218

ies (e.g., Rae et al., 2021; Retallack, 2009) suggested pCO2 values of up to 1000 ppm dur-219

ing the MCO. Our simulations may, therefore, underestimate MCO temperatures and220

result in bias in the precipitation patterns.221

To reflect Middle Miocene conditions, we integrate the palaeogeographic and bathy-222

metric boundary conditions from Herold et al. (2008), including continent distribution,223
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land surface elevation, and shelf seas. Overall, the mean elevation of major mountain ranges224

such as the Andes, the Tibetan Plateau, ranges in East Africa, and the Rocky Moun-225

tains, together with the height of the Antarctic ice sheet, is reduced compared to present-226

day. Greenland was ice-free with reduced topography. Furthermore, ocean gateways, such227

as the Canadian archipelago and Bering Strait, were closed during the Middle Miocene,228

while the Panama gateway, the Indonesian seaway, and the Tethys seaway were open (Herold229

et al. (2008); Fig. 1 (a)). The timing of the closure of the Tethys gateway is still debated,230

with most studies suggesting its terminal closure during the Middle Miocene (e.g., Rögl,231

1999; Ramsay et al., 1998). In this study, we maintained it open, resulting in a connec-232

tion between the Parathethys and the global ocean, as defined in previous studies (e.g.,233

Stärz et al., 2017; Botsyun et al., 2022; Herold et al., 2011). Moreover, our decision is234

based on findings from Botsyun et al. (2022), who conducted sensitivity experiments on235

the land-sea distribution in open or closed Tethys configurations and found no signifi-236

cant impact on European hydroclimate. However, other studies suggest that the closure237

of the Tethys gateway contributes significantly to changes in the ocean and atmospheric238

circulation in the Middle Miocene (Hamon et al., 2013; Ramstein et al., 1997). We em-239

phasize that exploring the Tethys/Parathethys configurations is beyond the scope of this240

study, and sufficiently accounting for the narrow ocean passages and their dynamics would241

require high-resolution ocean grids with fully coupled GCMs.242

We also explored the potential influence of recent Middle Miocene paleoenviron-243

mental reconstructions by Frigola et al. (2018) on global climate changes in the MCO244

and MCT. The simulation of Herold et al. (2008) indicates a relatively colder global cli-245

mate of -0.78 °C (down to -10 °C across Antarctica) during the MCO and slightly warmer246

of 0.17 °C (up to 8 °C across Antarctica) during the MCT when compared to the sim-247

ulations of Frigola et al. (2018) (Fig. S8). Since our analysis primarily focuses on the Alps248

and European regional climate (Fig. S8), which exhibited fewer changes with both bound-249

ary conditions, we decided to maintain the boundary conditions from Herold et al. (2008)250

to be consistent with previous studies (e.g., Stärz et al., 2017; Botsyun et al., 2022).251

Rather than undertaking computationally expensive fully coupled atmosphere-ocean252

GCM experiments at the spatial resolution required for accurate topographical repre-253

sentation, we prescribed sea surface temperatures (SSTs) and sea ice concentrations (SICs)254

patterns as the interface between the oceans and the atmosphere. We used SST and SIC255

patterns from a low-resolution fully coupled atmosphere-ocean-sea ice-vegetation Earth256

system model COSMOS (Jung et al., 2016) that was conducted with the same bound-257

ary conditions as Mio278 and Mio450 scenarios (X. Huang et al., 2017; Stärz et al., 2017).258

The land-surface conditions, including vegetation changes and physical soil properties259

such as the total water holding capacity of soils and soil albedo, were also adopted from260

the COSMOS experiments. The latter were coupled to the dynamic vegetation model261

JSBACH to take into account Middle Miocene vegetation reconstructions (Micheels et262

al., 2007).263

In all our experiments, we set the initial isotopic conditions of the ocean and at-264

mosphere to PI conditions, as done in previous palaeoclimate simulations with isotope-265

enabled GCMs (e.g., Werner et al., 2016; Cauquoin et al., 2019). More specifically, we266

used the H18
2 O and HDO values of the ocean from the equilibrium 3000-year simula-267

tion with the MPI-OM-wiso model by Xu et al. (2012) and initialized the atmosphere268

with constant values of δ18O and δD of -10 and -80 ‰, respectively (c.f., Werner et al.,269

2016; Cauquoin et al., 2019). The decision to use PI values was made for the following270

reasons:271

1. The sparse availability of oceanic δ18O proxy reconstructions in the Middle Miocene272

hampers the construction of adequate global gridded δ18O values of ocean waters.273

2. The lack of isotope-enabled fully coupled atmosphere-ocean-vegetation model out-274

put, simulated with the same Middle Miocene boundary conditions of this study,275
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also hindered us from accounting for the spatial variability of the δ18O values of276

the ocean surface in our boundary conditions.277

3. Sensitivity experiments with the prescribed Middle Miocene δ18O values of the278

ocean surface, calculated based on their relationship with the salinity of the up-279

per ocean level (Paul et al., 1999) from corresponding COSMOS experiments (Botsyun280

et al., 2022), indicated no significant changes in the oxygen isotopic composition281

of precipitation values in Europe when compared to the simulations with prescribed282

present-day conditions.283

We employed ECHAM5-wiso simulated PI climate (reference year 1850) that serves284

as the reference climate for computing “climate anomalies.” Throughout this study, we285

report these anomalies as “increases” or “decreases” with reference to the PI estimates.286

For all simulations, we used a high-resolution T159 spectral spatial resolution (∼80287

x 80 km) and 31 vertical levels up to 10 hPa for all experiments. This resolution is es-288

sential to ensure a realistic representation of the spatial and seasonal variations of δ18O289

values across the Alps. On a large scale, Werner et al. (2011) demonstrated that a T159290

resolution resulted in a better representation of the deuterium excess over the Antarc-291

tic continent. This is particularly important in our Middle Miocene experiments due to292

the expansion of Antarctic ice sheets during the MCT. All experiments were run for 18293

years with a 6-hour model output. Atmosphere-only GCMs require relatively little time294

(<3 years) to reach quasi-equilibrium, leaving 15 years for analysis.295

2.3 Topographic sensitivity experiments296

We conducted topographic sensitivity experiments for the two Middle Miocene pCO2297

scenarios (Mio278 and Mio450) to disentangle the impacts of changes in surface eleva-298

tion and paleoenvironmental conditions on δ18Op values across Europe, including the Alps.299

These experiments build upon those by Boateng et al. (2023), which revealed significant300

changes in the spatial patterns of δ18Op values due to variations of topography that re-301

flected the diachronous west-to-east surface uplift across the Alps. In this study, we specif-302

ically focus on more realistic topographic configurations of the Alps in the Miocene, based303

on previous paleoelevation estimates (Campani et al., 2012; Kocsis et al., 2007; Sharp304

et al., 2005; Krsnik et al., 2021) and geodynamic reconstruction (Kissling & Schluneg-305

ger, 2018; Handy et al., 2015; Schlunegger & Kissling, 2015) that suggest a generally higher306

surface elevation (ca. 2.5 - 6 km) across the West-Central Alps than present. Therefore,307

we increased the West-Central Alps elevation of the original paleotopography of Herold308

et al. (2008) by 200% (Fig. 1) to reflect the suggested high elevation in the Middle Miocene.309

Since no long-term quantitative past surface elevation estimates are available for the East-310

ern Alps, we incrementally increased its surface elevation from 0% to 200% in steps of311

50% of the original Middle Miocene topography to account for all the possible surface312

uplift scenarios.313

A total of four topographic configurations (Fig. 1a-e) were constructed and used314

with the Mio278 and Mio450 paleoenvironmental conditions, resulting in eight exper-315

iments in total. Note that this study’s experiments differ from the topographic sensitiv-316

ity experiments by Botsyun et al. (2022), which only account for the bulk surface up-317

lift of the entire Alps and do not consider the diachronous uplift of the eastern and west-318

ern Alps. We highlight that associating the individual topographic configurations with319

a specific time or tectonic event is impossible due to the ongoing debate on the kinematic320

framework of the topographic evolution of the Alps and the lack of widespread paleoel-321

evation estimates across the Alps. Despite the reasonable representation of Alpine to-322

pography in our experiments, the dampening of maximum peaks through the interpo-323

lation process results in an underestimation of mean elevation. To address this, we cal-324

culated subgrid-scale orographic variables (e.g., peak elevations, mean slopes, valley el-325

evations, and orographic standard deviation and anisotropy) with interpolated higher326
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e.g., W1E1 (100% West-Central 
Alps-100% Eastern Alps)

Central Europe transect
Western transect
Northern transect
Southern transect

(a) W1E1

(c) W2E1

(d) W2E1.5

(b) W2E0

(e) W2E2

Figure 1. Palaeogeographic and topographic boundary conditions of the Middle Miocene

experiments for the (a) Middle Miocene from Herold et al. (2018). (b-e) Modified topographic

configurations with a 200% increase in elevation across the West-Central Alps (W2) and incre-

mental change in the original Eastern Alps elevation (Ex) by factors of 0%: W2E0 (b), 100%:

W2E1 (c), 150%:W2E1.5 (d), and 200%: W2E2 (e). For the configuration with 0% topography

of the Eastern Alps, we use 250m as the minimum elevation to avoid unrealistic artefacts in the

simulation, such as extreme wind speeds. The different regions shown in (b) are used for regional

means estimates of δ18Op values and isotopic lapse rates estimates across the Alps. All paleogeo-

graphic and topographic configurations were run for pCO2 = 278 ppm (Mio278) and pCO2 = 450

ppm (Mio450) ppm.

–8–



manuscript submitted to Earth Surface

resolution of the paleotopography. This information is used in the subgrid parameter-327

ization schemes and improves the estimates of orographic precipitation and mountain328

blocking effect in the model (Stevens et al., 2013; Roeckner et al., 2003).329

2.4 Post-processing and statistical analysis330

We focus on the long-term annual climatologies, which are arithmetic means cal-331

culated from the 6-hour model output. The individual experiments with an unmodified332

topography (W1E1) with Middle Miocene boundary conditions (Mio278 and Mio450)333

are used as references for the individual adjusted topographic configuration experiments334

nested in each of the Miocene experiments (e.g., W2E1 - W1E1 for Mio278). The sta-335

tistical significance of the estimated mean climatic differences is evaluated with two-tailed336

Student’s t-tests, assuming a confidence interval of 95%. We express the simulated iso-337

topic composition of the precipitation in the δ-notation relative to Vienna Standard Mean338

Ocean Water (V-SMOW):339

δ18O =

( ([
H18

2 O
]
/
[
H16

2 O
])

sample

([H18
2 O] / [H16

2 O])V−SMOW

− 1

)
× 1000 (1)

Throughout our analysis, the δ18O values are calculated as precipitation-weighted340

long-term means. The isotopic lapse rates across the different geographic areas of the341

Alps (Fig. 1b) are estimated for the different topographic scenarios using the ordinary342

least-squares (OLS) linear regression. The statistical uncertainties of the calculated iso-343

topic lapse rates are calculated with the Monte Carlo bootstrapping technique to account344

for complex topographic structures, such as valley systems within high elevations. The345

coefficient of determination (R2), which measures the fraction of the variance of the data346

points that the best-fit model can explain, is also reported. This approach assesses the347

changes in isotopic lapse rates in response to changing paleoenvironmental conditions.348

Moreover, the estimated isotopic lapse rates are used to refine the previously estimated349

paleoelevations across the Alps (Campani et al., 2012; Krsnik et al., 2021) to quantify350

the potential uncertainties of assuming stationarity of the Alpine isotopic lapse rate through351

time and space. Furthermore, we perform Spearman correlation analysis to determine352

the relationship between δ18Op values and precipitation as well as temperature across353

Europe and evaluate if paleoenvironmental changes lead to different spatial correlation354

patterns between climate variables and δ18Op values. This would imply the potential changes355

in the causal mechanism between δ18Op values and regional climate dynamics, which would356

explain the changes in the isotopic lapse rates.357

3 Results358

3.1 Simulated global anomalies of near-surface temperature, precipita-359

tion, and δ18Op values for Middle Miocene paleoenvironmental con-360

ditions361

We estimate the deviation of Mio278 and Mio450 temperature, precipitation, and362

associated δ18Op values from the PI climate (Fig. 2). Maps of absolute temperature, pre-363

cipitation and δ18Op values are presented in the supplementary material (Fig. S1). Over-364

all, Mio278 and Mio450 simulation results indicate warmer and wetter conditions com-365

pared to PI climate (Fig. 2). More specifically, warmer and wetter regional patterns are366

more enhanced under Mio450 than Mio278, as highlighted in previous studies (e.g., Acosta367

et al., 2024; Burls et al., 2021; Hui et al., 2018; Pound et al., 2011). However, both Mio278368

and Mio450 climate simulations indicate continental warming and detect enhanced pre-369

cipitation over the ocean. The paleoclimate simulations estimate global mean annual tem-370

peratures of 16.3 °C for Mio278 (Fig. S1f) and 19.9 °C for Mio450 (Fig. S1i) conditions,371

indicating climates that are 2.5 °C and 6 °C warmer, respectively. These estimates are372
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MIO 450 ppm - PIMIO 278 ppm - PI

(a) (b)

(c) (d)

(e) (f)

Figure 2. Annual mean anomalies relative to Pre-Industrial (PI) for δ18Op values (a, b), pre-

cipitation (c, d) and near-surface temperature in response to two Middle Miocene pCO2 scenarios

(278 ppm (Mio278), left panel; 450 ppm (Mio450), right panel). The global climate indicates

more pronounced warm and wet patterns under Mio450 conditions than PI and Mio270.

within the high-end range of the multi-model mean estimates of MioMIP1 by Burls et373

al. (2021). Continental temperatures are 2.6 °C (Mio278) and 3.7 °C (Mio450), higher374

than the ocean temperatures (Fig. 2 e-f). The highest temperatures (>10 °C higher than375

PI) are simulated across Antarctica, Africa, the Andes, and the Arctic area (i.e., part376

of Greenland, Alaska, and Hudson Bay). These relatively warm regions were more pro-377

nounced in the Mio450 than in the Mio278 simulation. Overall, large-scale Middle Miocene378

temperature patterns show polar amplification, exacerbated in the Mio450 climate sim-379

ulation, and a weakened meridional temperature gradient, as indicated in previous stud-380

ies (e.g., Burls et al., 2021).381

Mio278 and Mio450 climate simulations result in global mean annual precipitation382

(and associated mean δ18Op values) estimates of 92 mm/month (-6.2 ‰) (Fig. S1 d-383

e) and 99 mm/month (-5.6 ‰) (Fig. S1 g-h), respectively. Overall, the global mean pre-384

cipitation is 1.6% and 9% higher (Mio278 and Mio450, respectively) compared to PI con-385

ditions. Precipitation anomalies show notable regional changes that, in part, were driven386

by non-pCO2 forcing (e.g., palaeogeography). For example, the decrease in precipitation387

over Central America is unlikely caused by the warming but more due to the opening388

of the Panama gateway (Brierley & Fedorov, 2016). The magnitudes of regional precip-389

itation anomalies further increase under the Mio450 run compared to the Mio278 run390

(Fig. 2 c-d). Across the tropical regions, precipitation anomalies are particularly pro-391

nounced. For instance, the equatorial Atlantic Ocean along West Africa’s southern coast392
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receive >150 mm/month more compared to PI, which leads to bidirectional anomalies393

over West Africa with drier conditions across the Sahel.394

Compared to PI, most oceans received more precipitation in the Middle Miocene395

climate simulations (Fig. 2 c-d), including the subtropical North Pacific, Arabian Sea,396

Bay of Bengel, and the southern gateways around Indonesia towards Australia, as in-397

dicated by the multi-model means of MioMIP1 (Acosta et al., 2024). However, the In-398

dian Ocean received less precipitation of ∼100 mm/month in Mio278 and -120 mm/month399

in Mio450 compared to PI, which is contrary to the multi-model means of MioMIP1. The400

North Atlantic was drier due to its overall regional cooling in the Middle Miocene. The401

precipitation anomalies across Europe indicate bi-directional patterns with more rain-402

fall over Northern Europe and less rainfall towards the Mediterranean region compared403

to PI. These latitudinal precipitation gradients are more pronounced in Mio450 than in404

Mio278 climate runs. Overall, regional average precipitation anomalies increase across405

higher latitudes due to amplified warming patterns.406

To some extent, the simulated δ18Op anomalies are larger across warmer (“tem-407

perature effect”) and drier (“amount effect”) regions (Fig. 2 a-b). The global mean of408

δ18Op anomalies increases with higher pCO2. Specifically, the simulation results show409

an increase of 0.7 ‰ and 1.31 ‰ in the Mio278 (Fig. 2a) and Mio450 (Fig. 2b) climate410

runs, respectively. Most regions show higher δ18Op values (more 18O-enriched rainfall)411

with some exceptions, such as Tropical Atlantic, Sahel-Sahara, and Indonesia areas to-412

wards Australia. The polar regions experience greater enrichment in the Middle Miocene413

with an increase of >5 ‰ due to the amplified polar warming. Across Europe, the sim-414

ulated δ18Op patterns indicate depleted δ18Op values across Western Europe and a tran-415

sition into enriched δ18Op values across Eastern Europe. The different bi-directional anoma-416

lies between precipitation (north-south gradient) and δ18Op values (west-east gradient)417

suggest a more complex influence of the regional climate on the δ18Op patterns.418

3.2 Middle Miocene spatial profiles of δ18Op values for different topo-419

graphic configurations420

The simulated δ18Op values agree with reconstructed δ18O values of meteoric wa-421

ter (refer to as δ18Ow for proxy reconstruction hereafter) from pedogenic carbonates (Cojan422

et al., 2013; Krsnik et al., 2021) and clay minerals (i.e., bentonites and smectite-rich tuffs) (Bauer423

et al., 2016) over the low-elevation regions around the Alps. Most of the reconstructed424

δ18Ow values were within the simulated range of -3 to -8 ‰ across the adjacent low-elevation425

regions along the profiles for all Middle Miocene experiments (Fig. 3). However, some426

of the clay minerals-based δ18Ow values are slightly outside the simulated δ18Op range427

and indicated the widest spread of δ18Ow values and the largest uncertainty of up to ±3428

‰. On the high-elevation sites, δ18Ow values of -12 to -15 ‰ calculated from δD of syn-429

tectonic high-Alpine fault zone silicates (Campani et al., 2012; Mancktelow et al., 2015)430

only agree with model estimates for higher topography scenarios (Fig. 3). This supports431

the findings that the Middle Miocene elevation of the Central Alps was higher than present-432

day (Sharp et al., 2005; Krsnik et al., 2021).433

The δ18Op profiles across the Alps indicate a decreasing trend of up to -12 ‰ (W2E2434

scenario) from the foothills towards the peak heights and show varied responses to the435

different topographic and climate scenarios (Fig. 3). The differences between the exper-436

iments over the low-elevation areas adjacent to the Alps are small (less than -2 ‰), while437

the greatest differences are seen across the high-elevation regions (Fig. 3 and 4). For in-438

stance, the reduced topography scenario of the Eastern Alps (W2E0) resulted in a slight439

increase in δ18Op of 0.5 ‰ and the uplift scenario in W2E2 resulted in a decrease down440

to -10 ‰ compared to the topographic control run (W1E1). The unmodified topographic441

scenario (W1E1) in PI results in ∼1.5 ‰ more depleted δ18Op values over the eastern442

(Fig. 3a) and northern (Fig. 3b) transects than in both Miocene climates. Among the443

–11–



manuscript submitted to Earth Surface

ba'

b

a

b

(a) (b)

5°W 0° 5°E 10°E 15°E 20°E 25°E

40°N

45°N

50°N

55°N

−4000 −2000 0 2000 4000

Topography

b'

b

a'a

δ18Op error  

a

pr
ed

ict
ed

 lo
w-

ele
va

tio
n 

ra
ng

e (
Mi

dd
le 

Mi
oc

en
e)Bauer et al. 2016

Krsnik et al. 2021Cojan et al. 2013

W1E1
W2E1

W2E0
W2E2

W2E1.5

MIO 278 ppm MIO 450 ppm PI (W1E1) low-elevation sites high-elevation sites

(c)

aCampani et al. 2012
bMancktelow et al. 2015

a b'

Figure 3. Annual mean δ18Op longitudinal (a) and latitudinal (b) spatial profiles for the

different topographic configurations in the Middle Miocene and PI and its comparison to δ18Op

proxy reconstructions across low- and high-elevation sites. The black lines represent the control

(i.e., W1E1) topographic scenario with pre-industrial (PI: solid) and Middle Miocene (Mio278:

dotted, Mio450: dashed) boundary conditions. The present-day elevation (in km) of the swaths

(c) is plotted to show the topography variations along the profiles (a-a’, b-b’). The Middle

Miocene low-elevation site proxies are shown as a distribution box plot, including maximum, min-

imum, median, and quartile values of individual samples. These are based on δ18O of meteoric

water reconstructed from pedogenic carbonates over the Northern Alpine foreland basin (Swiss

Molasse Basin; (Krsnik et al., 2021)) and the Digne-Valensole basin (Cojan et al., 2013). And

δ18O of meteoric water that is in isotopic equilibrium with contained clay minerals (i.e., ben-

tonites and smectite-rich tuffs) from the northern Alpine foreland basin from Swiss and Bavaria

freshwater Molasse basin (Bauer et al., 2016). The high-elevation sites are based on hydrogen iso-

topes from syntectonic high-Alpine fault zone silicates from the Simplon Fault Zone (Campani et

al., 2012; Mancktelow et al., 2015). The coloured circles represent the reconstructed δ18O error.

Note that the proxies’ locations are extrapolated onto the profiles to compare them with the sim-

ulated magnitudes. Overall, the simulated δ18Op values over the low-elevation regions are within

the magnitudes of reconstructed δ18Op values. The δ18Ow reconstruction from the high-elevation

sites only matches simulated δ18Op values when Miocene Alpine topography was higher than

modern
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(b)

MIO 278 ppm MIO 450 ppmPI MIO 278 ppm MIO 450 ppmPI

(a)

Figure 4. Violin plots illustrating the distribution of annual means of δ18Op values over the

(a) low (i.e., areas of < 500 m) and (b) high (i.e., areas of > 1000 m) regions (region shown

in Fig. 1a; black rectangle) for the different topographic configuration experiments under Pre-

Industrial (PI) and the Middle Miocene climatic conditions (pCO2 = 278 ppm (Mio278) and

pCO2 = 450 ppm (Mio450)). Overall, the distribution of δ18Op values over the low-elevation

regions are similar for all topographic and climatic scenarios but show greater differences over the

high-elevation regions depending on the topography and climate scenario.

Middle Miocene experiments, the Mio278 conditions result in a higher depletion of δ18Op444

than Mio450 conditions, especially over the Eastern Alps. Furthermore, the W2E2 ex-445

periments create the largest difference (∼2 ‰) between Mio278 and Mio450 runs.446

3.3 Regional annual means of δ18Op values over low- and high-elevation447

regions of the Alps448

The δ-δ approach relies on δ18Op values from low-elevation sites (e.g., foreland basins)449

adjacent to high-elevation regions to track the isotopic signal contribution from regional450

climate changes through time. Therefore, the sensitivity of the δ18Op values over the low-451

and high-elevation regions in response to the different topographic scenarios and Miocene452

climate change would help validate the δ-δ application across the Alps. We therefore es-453

timate the ranges of the simulated δ18Op values across the low- and high-elevation re-454

gions around the Alps (Fig. 1a).455

Overall, the Miocene simulations show an increase of δ18Op values compared to PI456

experiments, with the exception of W2E2, which indicates the most depleted δ18Op val-457

ues under the Mio278 conditions over the high-elevation regions (Fig. 4b). The δ18Op458

ranges across the low-elevation regions for the topography scenarios in PI, Mio278 and459

Mio450 indicate slight variations of less than 2 ‰ (Fig. 4a). Specifically, the median (of460

all grid-box data points in the defined region) for the individual topographic scenarios461

in the PI and Mio278 are similar, but are less negative in Mio278. Over the high-elevation462
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regions, most of the topographic configurations result in a uniform increase from PI to463

Mio450 (Fig. 4b). For instance, the W1E1 configuration leads to an increase of 2 ‰ be-464

tween the PI and Mio450. Similarly, the modified topographies (W2E0 to W2E2) lead465

to greater differences over the high-elevation regions. Specifically, the W2E1 results in466

an increase of ∼ 2.5 ‰ from PI to Mio278 and of ∼ 4 ‰ to Mio450 (Fig. 4b). More-467

over, the W2E2 shows a similar distribution of δ18Op values between the PI and Mio450468

but indicates a decrease of 2 ‰ from PI to Mio278. This highlights that global climatic469

changes across the high-elevation regions are much greater than over the low-elevation470

sites. However, such impacts are not uniform due to varied moisture redistribution that471

depends on the topographic configuration.472

The differences between the low- and high-elevation regions (referred to as ∆δ18Op)473

are ∼2 ‰ less in Mio278 and Mio450 compared to the PI climate (Fig. 4). The ∆δ18Op474

values range from -4 to -6 ‰ for the topographic configurations in Mio278 and Mio450,475

but reach -8 ‰ in PI. Note that the Miocene ∆δ18Op values are still significant enough476

to be reflected in geologic material, and therefore, suitable for the δ-δ approach across477

the Alps.478

3.4 Topography-related changes in δ18Op values in the Middle Miocene479

The difference between the simulated δ18Op response to the varied topographic sce-480

narios and the control experiment (i.e., W1E1) are calculated to quantify the contribu-481

tion of Middle Miocene surface elevation changes to the isotopic signals. All simulated482

annual means of δ18Op values indicate a decreasing gradient towards Northern and East-483

ern Europe (Fig. S2). Such patterns highlight the “continentality effect” from the oceanic484

sources toward the Alps. Overall, the δ18Op values responses indicate larger changes in485

areas of modified topography (up to -10 ‰ and -8 ‰ for the Mio278 and Mio450 con-486

ditions, respectively) and slight changes in adjacent low-elevation regions (<-2 ‰) (Fig.487

S3). These estimates are similar to the topography-induced isotopic signal using pre-industrial488

conditions by Boateng et al. (2023). This implies that changing topography still produces489

an isotopic signal that is significant enough to be reflected in geologic material under a490

warmer past climate.491

In this study, we determine the magnitude of the isotopic signal that would be mis-492

represented in the Middle Miocene if a present-day lapse rate is assumed by calculating493

the difference between the simulated (shown in Fig. S3) and expected (shown in Fig. S4)494

changes due to topography changes alone (Fig. 5). We first estimate the expected δ18Op495

response to a certain topographic rise by using the modern GNIP data-based lapse rate496

of -2.0 ‰ km-1 from Campani et al. (2012) (Fig. S4). This was done by multiplying the497

elevation changes by the lapse rate (e.g., a 2 km elevation change would result in a δ18Op498

difference of -4 ‰). We then subtract the expected δ18Op changes from the simulated499

δ18Op changes for the different topographic scenarios in the Mio278 and Mio450 simu-500

lations. The residual δ18Op signal (Fig. 5) indicates the fraction of δ18Op changes that501

would account for a paleoelevation signal if based on modern ILR but rather originates502

from the adjustment of the ILR under Middle Miocene climate conditions. For instance,503

a negative difference, as observed over the Alps (brown colours in Fig. 5), indicates that504

in the paleoclimate simulations, the δ18Op values are more depleted than when calcu-505

lated by combining the modern alpine isotopic lapse rate (-2.0 ‰ km-1) and forced to-506

pographic changes. This ultimately results in an overestimation of Miocene paleoeleva-507

tion estimates if based on the modern ILR. As a consequence, this indicates that the ILRs508

of the paleoclimate simulations should, in general, be steeper to account for the intro-509

duced paleoelevation (c.f. section 4.5).510

Overall, the estimates indicate greater affected regions for the Mio278 than the Mio450511

simulation. Specifically, a δ18Op difference of -5 ‰ over the peak elevations and -3 ‰512

to -2 ‰ over the 300 km range adjacent to the Alps would be (falsely) attributed to Mid-513
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MIO 278 ppm MIO 450 ppm
(a) W2E0-W1E1 (b) W2E0-W1E1

(c) W2E1-W1E1 (d) W2E1-W1E1

(e) W2E1.5-W1E1 (f) W2E1.5-W1E1

(g) W2E2-W1E1 (h) W2E2-W1E1

Figure 5. Mean annual δ18Op difference between the total simulated changes and expected

changes due to the changes of topography (i.e., W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and

W2E2 (g, h)) in Middle Miocene conditions with pCO2 of 278 ppm (Mio278; left) and 450 ppm

(Mio450; right). The expected changes are calculated with observed precipitation modern-day

isotopic lapse rate of 2.0 ‰ km-1 (Campani et al., 2012). The ash colour range represents more

enriched conditions, and the brown colour ranges indicate more depleted conditions, as expected

when using the modern alpine lapse rate to estimate topography-related changes in δ18Op values.

Regions of statistically significant difference are marked with black dot stippling. The δ18Op

difference highlights the misrepresentation of the isotopic signal when the isotopic lapse rate is

assumed stationary. The decrease in δ18Op values across the Alps suggests the potential overesti-

mation of its paleoelevation in the Middle Miocene.
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dle Miocene paleoelevation changes, if the modern ILR were applied. On the regional514

scale, the δ18Op differences in Mio278 indicate more enriched patterns of 2 ‰ across East-515

ern Europe, with some regions showing significant signals (Fig. 5; left panel). Contrar-516

ily, the regional scale δ18Op differences under Mio450 conditions indicate less enriched517

patterns of 1 ‰ over the Southern Alps and the Mediterranean (Fig. 5; right panel). Such518

remote impacts independent of the surface uplift indicate the large-scale implication of519

assuming stationarity of lapse rate through space and time.520

3.5 Variations of isotopic lapse rates in response to changing topogra-521

phies and Middle Miocene climates522

The estimated mean annual isotopic lapse rate (ILR) for the different experiments523

and regions around the Alps (Fig. 1b) indicate notable spatio-temporal changes (Fig.524

6). The linear regressions used to estimate ILRs indicate a statistically significant rela-525

tionship between δ18Op values and elevation with the coefficients of determination (R2)526

of 0.85-0.99 (Fig. 6). Overall, global climate changes with Mio278 and Mio450 condi-527

tions contribute to ILR changes of ∼1.0 ‰ km-1 and 0.5 ‰ km-1, respectively, compared528

to PI. The estimated ILR differences caused by topographic changes reached values of529

up to 1.5 ‰ km-1. ILR estimates for the PI run with the unmodified Alps topography530

(W1E1) are -3.12 (±0.21) ‰ km-1 for the western transect and -2.93 (±0.21) ‰ km-1
531

for the northern transect, respectively (Fig 6 a & b). These estimates agree with the global532

modern ILR of -2.8 ‰ km-1 based on δ18O values of global surface waters (Poage & Cham-533

berlain, 2001). However, our ILR estimates are higher than the present-day ILR of -2.0534

‰ km-1 for the northern slope of the Central Alps, estimated from rainfall δ18Op val-535

ues collected from several weather stations across the Alps (GNIP data; Campani et al.536

(2012)). Note that the number of weather stations used for the latter ILR estimate was537

smaller (<10), so it may not represent the spatial variation of δ18Op over the Alps. The538

W1E1 scenario with Mio278 conditions results in ILRs of 2.02 (±0.21) ‰ km-1 and 2.43539

(±0.14) ‰ km-1 for the western and northern transect, respectively, and the same to-540

pographic configuration produces steeper ILRs of 2.18 (±0.19) ‰ km-1 (northern tran-541

sect) and 2.48 (±0.16) ‰ km-1 (western transect) in the Mio450 run (Fig 6 a & b). Over-542

all, ILRs of the modern-day topography become shallower under warmer Middle Miocene543

conditions, as suggested by previous studies (Poulsen & Jeffery, 2011; Rowley, 2007), but544

with shallowest slopes under Mio278 climate conditions. The shallowing of ILR in the545

warmer climates was -0.5 ‰ km-1 greater across the western transect than for the north-546

ern transect. This is due to the more depleted δ18Op values over the Western Alps in547

the Middle Miocene compared to the northern foreland of the Alps (Fig. 2 a & b).548

For the topographic sensitivity experiments, most of the ILR estimates across the549

western transect indicate the steepest ILR in the PI climate, except in the case of us-550

ing the W2E2 topography, which results in the steepest ILR with the Mio278 conditions.551

For instance, the W2E1 which indicated the highest ILR estimate of -3.71 (±0.15) ‰552

km-1, -2.81 (±0.16) ‰ km-1, and -2.36 (±0.14) ‰ km-1 for PI, Mio278, and Mio450,553

respectively, along the western transect (Fig. 6e). The ILR changes among these climates554

for W2E1 was up to -1.35 ‰ km-1. The W2E1 experiment produces the steepest ILR555

of -4.17 (±0.12) ‰ km-1 with Mio278 and -4.10 (±0.11) ‰ km-1 and -3.85 (±0.11) ‰556

km-1 for Mio450 and PI climates (Fig 6f). The ILR changes over the northern transect557

were <-0.32 ‰ km-1 and lower than those ILR changes over the western transects (<-558

1.35 ‰ km-1). Overall, significant changes of ILR in response to the different surface559

uplift scenarios and global climate changes highlight the huge implications of the assump-560

tion of its stationarity for stable isotope paleoaltimetry.561
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Figure 6. Annual isotopic lapse rates (ILRs) estimate for the different topographic scenarios

under Pre-Industrial (PI; black), Miocene conditions with pCO2 of 278 ppm (Mio278; red) and

450 ppm (Mio450; green), respectively, over the western (left panels) and northern transect (right

panels) as shown in Fig 1b. The ILRs are estimated using linear regression as the δ18Op-elevation

gradient or ordinary least squares coefficient. The 95% confidence intervals of the mean predic-

tion using the fitted line are shown as coloured shading around the optimised model to highlight

the ranges of paleoelevation values.

–17–



manuscript submitted to Earth Surface

3.6 Changes in precipitation and near-surface temperature in response562

to the topographic scenarios with Middle Miocene conditions563

Here, we present the changes in precipitation (Fig. 7) and near-surface tempera-564

ture (Fig. S6) in response to the different topographic scenarios under Middle Miocene565

climatic conditions. The simulated annual climatologies for the individual experiments566

are presented in the supplementary material (i.e., temperature in Fig. S5 and precip-567

itation in Fig. S7).568

The precipitation changes indicate both localised and far-field changes, with the569

magnitude and spatial patterns of precipitation changes depending on the topographic570

scenario and climatic boundary conditions (PI, Mio278, Mio450). The localised changes571

indicate a general increase in precipitation amounts, scaling with elevation. Specifically,572

increasing the West-Central Alps topography by 200% (W2) induces a precipitation in-573

crease of >60 mm/month in both Mio278 and Mio450, paleoclimate configurations (Fig.574

7). Overall, the simulated magnitudes of changes are greater under Mio278 than under575

Mio450 conditions. On the regional scale of the Mio278 simulations, the modification of576

alpine topography results in north-south bi-directional precipitation changes with an in-577

crease of 15 mm/month over the southern transects to the Mediterranean and a decrease578

of 20 mm/month over the northern transects (> 50 °N) of the Alps (Fig. 7; left panel).579

However, the Mio450 simulations show west-east bi-directional changes with wetter con-580

ditions (an increase of up to 30 mm/month) over the North Atlantic towards Central581

Europe and drier conditions (< 30 mm/month) over Eastern Europe (Fig. 7; right panel).582

Among these changes, the W2E1.5 experiment produces the wettest conditions over the583

western transects towards the Alps under Mio450 and the driest condition over the north-584

ern transects of the Alps under Mio278 conditions (Fig. 7 f).585

The near-surface temperature changes show more localised cooling or warming in586

response to the elevation increase or decrease scenarios. More specifically, the W2 ex-587

periments cause a cooling of -10 °C over the West-Central Alps and a uniform decrease588

down to -4 °C over the Eastern Alps for the incremental increase in elevations (Fig. S6).589

However, the magnitudes of cooling are greater with Mio278 than with Mio450 condi-590

tions. The reduction of Eastern Alps topography (E0) induces warming of up to 3 °C591

with Mio278 and 5 °C with Mio450 conditions. The far-field regions experience slight592

changes of -1 to 2 °C with warmer patterns in the Mio450 climate. Overall, the similar593

localised changes in temperature compared to the localised changes in δ18Op values sug-594

gest the predominant influence of temperature at the local scale rather than precipita-595

tion. However, the topography-induced far-field regional changes of δ18Op values are mostly596

likely driven by the atmospheric dynamics processes associated with the precipitation597

changes.598

3.7 Inter-annual relationships of δ18Op with precipitation and temper-599

ature for pre-industrial and Middle Miocene climates600

The relationship between water isotopologue distribution at a specific region or glob-601

ally and climate variables (e.g., precipitation) in the present day is often used as a trans-602

fer function (e.g., δ18Op-precipitation gradient) for reconstructing paleoenvironment changes.603

Hence, we calculate the inter-annual relationships of monthly δ18Op values with precip-604

itation and temperature using Spearman correlation for the different climates. The fo-605

cus is to determine if the relationship changes under different climatic conditions. Most606

regions indicate a significant (i.e., ≥95% CI) negative correlation between δ18Op values607

and precipitation and a positive correlation of δ18Op values with temperature across Eu-608

rope and the North Atlantic (Fig. 8). However, the strength and spatial patterns of these609

relationships vary among the different climate scenarios (PI, MIO278, MIO450). In the610

PI climate, the correlation of δ18Op with precipitation over Scandinavia to western Rus-611

sia shows positive values of up to 0.4 (Fig. 8a). However, the correlation patterns over612
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(b) W2E0-W1E1
MIO 278 ppm MIO 450 ppm

(a) W2E0-W1E1

(c) W2E1-W1E1 (d) W2E1-W1E1

(e) W2E1.5-W1E1 (f) W2E1.5-W1E1

(g) W2E2-W1E1 (h) W2E2-W1E1

Figure 7. Mean annual difference of precipitation in response to the different topographic

scenarios (i.e., W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and W2E2 (g, h)) relative to control

scenario (W1E1) with Middle Miocene boundary conditions (Mio278; left panel and Mio450;

right panel)). The green color ranges indicate wetter and the brown color ranges indicate drier

conditions than in the W1E1 scenario. Regions that experience significant differences based on

students’ t-tests with a 95% confidence interval (CI) are marked with dot stipplings. The results

show that precipitation patterns across Europe depend on the topographic scenario and global

climate changes
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Figure 8. Spearman correlation coefficients of the inter-annual relationship between monthly

δ18Op values and precipitation (top panel), as well as temperature (bottom panel) for pre-

industrial (PI; a, b) and Miocene pCO2 levels of 278 (Mio278; b,e) and 450 ppm (Mio450; c,f).

Regions showing significant correlation with a 95% confidence interval are marked with dot stip-

plings. The correlation coefficients and spatial patterns suggest that the spatial inter-annual

relationship between δ18Op values and regional climate variables (temperature, precipitation)

change in response to the different paleoenvironmental conditions.

these regions progressively shift to negative values from the Mio278 (Fig. 8b) to the Mio450613

(Fig. 8c) climate. Moreover, the negative values across the southern coastal regions of614

the Mediterranean in the PI (Fig. 8a) shift to positive values under Middle Miocene cli-615

mate conditions (Fig. 8 b-c).616

For the δ18Op-temperature relationship, the PI simulation estimates a higher pos-617

itive correlation across continental Europe than the North Atlantic (Fig. 8d). However,618

the strength of this relationship reduces in the Middle Miocene simulations, with the south-619

ern coastal regions of the Mediterranean showing negative correlation values (Fig. 8 e-620

f). In the Mio278 simulation, some regions of the Scandinavian mountains indicate neg-621

ative values (Fig. 8e), while PI and Mio450 runs show positive correlation values.622

4 Discussion623

4.1 Global hydroclimate response to the Middle Miocene climatic and624

paleogeographic conditions625

Our Middle Miocene simulations point to pCO2 as the main driver of global cli-626

matic changes (Acosta et al., 2024; Burls et al., 2021; Hossain et al., 2023; Knorr et al.,627

2011), while the pCO2-unrelated forcing controls some of the regional-scale changes (Acosta628

et al., 2024; Burls et al., 2021; Brierley & Fedorov, 2016; Farnsworth et al., 2019; Jung629

et al., 2016). More specifically, the Middle Miocene Mio278 simulation with the same630

pCO2 as PI simulation predicts a global warming of ∼2 °C, which is consistent with pre-631

vious studies (Burls et al., 2021; Knorr et al., 2011; Krapp & Jungclaus, 2011). For in-632

stance, Knorr et al. (2011) estimated global warming shares of ∼0.7 °C due to changes633

in topography and 2.5 °C due to vegetation changes. Moreover, Herold et al. (2011) also634
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estimated global warming of 1.5 °C due to the combined effect of the changes in Miocene635

paleogeography and vegetation. These studies suggest that the majority of the Middle636

Miocene global climate changes are driven by pCO2 and land cover changes that are linked637

to the global energy balance (e.g., planetary albedo, emissivity of longwave radiation) (Burls638

et al., 2021).639

4.1.1 Middle Miocene Temperatures640

Increasing pCO2 to 450 ppm in the Middle Miocene resulted in a global mean an-641

nual temperature (MAT) increase of 5.9 °C, which is amplified over the continents (8.6642

°C), and is in agreement with previous modelling studies (Burls et al., 2021; Frigola et643

al., 2018; Goldner et al., 2014; Hossain et al., 2023; Krapp & Jungclaus, 2011; Stärz et644

al., 2017). The multi-model mean of the MioMIP1 simulations with a pCO2 of 400-450645

ppm predicts a MAT increase of 4.1 °C (Burls et al., 2021), which is ∼1.8 °C cooler than646

our Mio450 MAT estimate. Aside from the higher model complexity of fully coupled atmosphere-647

ocean GCMs participating in MioMIP1, the key difference compared to our simulation648

is their lower spatial resolution (i.e., T31 or T42, which is up to ∼300 km at the equa-649

tor compared to our ∼80 km grid cell width). This suggests that model resolution may650

affect the magnitude of warming estimated by climate models in the Middle Miocene.651

For instance, Hossain et al. (2023) conducted Middle Miocene simulations with pCO2652

of 280-720 ppm using AWI-ESM2.1, which has a similar atmospheric component (ECHAM6)653

as our model. Their simulations used a spatial resolution of T63 (∼180 km at the equa-654

tor) for the atmosphere, which is coarser than our simulation with T159 (∼80 km at the655

equator). Overall, their simulations with pCO2 of 280-720 ppm indicate MATs of 17.5-656

20.0 °C, which is within the 16.3-19.9 °C range estimated from our simulation with pCO2657

of 278-450 ppm. Specifically, their experiment with 450 ppm estimated a MAT increase658

of ∼3.1 °C with the increase of pCO2 (∆pCO2) contributing to +1.4 °C warming. The659

MAT increase estimated from our Mio450 simulation (i.e., 5.9 °C) is 2.8 °C higher than660

their estimate. Moreover, the ∆pCO2 warming (i.e., +3.6 °C) from Mio450 is also 2.2661

°C higher than their estimates. The comparison of our simulation with the equivalent662

Middle Miocene experiments with low-resolution MPI-ESM by Krapp and Jungclaus (2011)663

indicated similar magnitudes of additional warming from our high spatial resolution es-664

timates. These suggest that the low resolution used by the fully coupled models may un-665

derestimate the warming through the pCO2 feedback. A comparison to proxy-based tem-666

perature reconstructions supports this.667

Overall, the simulated MAT anomalies (i.e., deviation from PI) only agree with the668

lower range of the 7.6 ∼ 2.3 °C increase estimated from the various temperature prox-669

ies (Burls et al., 2021; Goldner et al., 2014; Hui et al., 2018). However, all models with670

moderate pCO2 and Middle Miocene paleoenvironmental boundary conditions still strug-671

gle to simulate the extent of warming suggested by the temperature proxies (Burls et672

al., 2021; Goldner et al., 2014). Mostly, this is because of the far too low high-latitude673

temperatures and strong meridional temperature gradient estimated by the models, which674

is a common problem for modelling studies spanning the Cenozoic era (e.g., Haywood675

et al., 2020; Huber & Caballero, 2003; Steinthorsdottir et al., 2021). Moreover, most mod-676

els underestimate the warming in the extratropics (specifically across the North Atlantic),677

which is required to maintain the reduced meridional temperature gradient suggested678

by proxy data (Herbert et al., 2020, 2022; Super et al., 2020). Recent studies suggest that679

increasing pCO2 to up to 1100 ppm provides a better agreement between climate mod-680

els and proxy reconstructions (Herbert et al., 2022). Moreover, the stationarity assump-681

tion of transfer function between proxy signal and climate variables for deep-time pa-682

leoclimate reconstruction (Boateng et al., 2024; Ho & Laepple, 2016) and under-representation683

of certain climatic feedbacks such as cloud-aerosol interactions (Feng et al., 2019; Zhu684

et al., 2019), ocean mixing (Green & Huber, 2013), and orbital forcing (Ladant et al.,685

2014) in the climate models can also be reasons for the discrepancies between the proxy686

data and climate models.687
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4.1.2 Middle Miocene Hydroclimate688

The simulations indicate an amplified hydroclimate with warmer and wetter con-689

ditions for the Middle Miocene (Fig. 2), in agreement with paleobotanical records in-690

dicating wetter than modern conditions and an expansion of megathermal forests and691

habitable regions for leaf-eating mammalians (Acosta et al., 2024; Pound et al., 2011;692

Steinthorsdottir et al., 2021). Our simulations (Fig. 2) indicate an overall increase in mean693

annual precipitation (MAP) with elevated pCO2 (Mio450), resulting in a rainfall increase694

of 9%. This is generally consistent with other modelling studies with similar pCO2 ranges,695

but most of these studies predict slightly smaller changes in precipitation (e.g., Acosta696

et al., 2024; Frigola et al., 2018; Krapp & Jungclaus, 2011). The MioMIP1 experiments697

with pCO2 of 400 and 560 ppm estimate a multi-model mean MAP of 1129.5 and 1161.1698

mm/year (Acosta et al., 2024), which is less than our Mio450 estimates of 1188.2 mm/year.699

The MCO simulation with pCO2 of 400 ppm by Frigola et al. (2018) also estimates lower700

MAP amounts (1095 mm/year). The MCO simulation with a fully coupled atmosphere-701

ocean model using pCO2 of 720 ppm by Krapp and Jungclaus (2011) also indicates a702

MAP increase of 5% compared to PI. These suggest that the high spatial resolution adopted703

in our simulations, at least to some extent, enhances the Middle Miocene precipitation704

response since even the increase of pCO2 of up to 720 ppm (MIOMIP) produces a smaller705

increase of MAP than our Mio450 simulation. Reasons for this may involve a better rep-706

resentation of certain climate features such as large-scale condensation, land-sea inter-707

action, topography and climate feedbacks at high resolution. For instance, previous stud-708

ies have highlighted that monsoons are better resolved at high resolution (Gao et al., 2006;709

Sperber et al., 1994).710

Even though Middle Miocene simulations indicate wetter and warmer global con-711

ditions, the regional MAP responses are more variable. This is mostly due to pCO2-unrelated712

changes (e.g., paleogeography, paleoelevation, vegetation, and land ice) and the indirect713

response of the hydrological cycle to pCO2-unrelated warming (i.e., 2.3 °C > PI) (Acosta714

et al., 2024; Burls et al., 2021). For instance, the precipitation decrease across South Amer-715

ica and Central Asia in the Mio278 simulation (Fig. 2c) can be attributed to the reduced716

paleoelevation of the Andes and Tibetan Plateau (Acosta et al., 2024; Farnsworth et al.,717

2019). Similarly, the decrease in precipitation across southern Central Africa can be at-718

tributed to the reduced Miocene elevation of the East African Rift system (Jung et al.,719

2016; Sepulchre et al., 2006). Brierley and Fedorov (2016) suggested that the precipi-720

tation changes across the equatorial Atlantic and Central America were caused by the721

opening of the Panama gateway rather than global warming. These regional changes fur-722

ther intensify under elevated pCO2 conditions. The ∆pCO2 contributed to a MAP in-723

crease of 80 mm/year (7.3%) in the Mio278 experiment. This is close to the ∆pCO2 in-724

duced MAP increase of 50 mm/year from the MioMIP1 models (Acosta et al., 2024).725

Overall, our simulations indicate a hydrological cycle sensitivity of 2.05% precipitation726

increase per 1 °C warming. This is similar to what has been estimated for the Eocene727

Modeling Intercomparison Project (Cramwinckel et al., 2023), Miocene (Acosta et al.,728

2024) and the Pliocene Modeling Intercomparison Project (Han et al., 2021).729

4.2 Latitudinal gradient of precipitation and δ18Op over Europe in the730

Middle Miocene731

The simulated precipitation and δ18Op patterns across Europe (Figs. 2) indicate732

a more pronounced meridional gradient during the Middle Miocene that intensifies with733

increased pCO2 (278 vs. 450 ppm). The strong Miocene latitudinal gradient of paleo-734

precipitation has also been suggested from proxy data reconstructions (Böhme et al., 2006;735

Costeur & Legendre, 2008; Jiménez-Moreno & Suc, 2007). For instance, Jiménez-Moreno736

and Suc (2007) indicated warm and dry conditions with subdesertic vegetation over the737

northwestern Mediterranean and humidity-adapted plants environment towards the north.738

Despite the strong latitudinal precipitation gradient, most European regions experienced739
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less precipitation compared to PI conditions (Fig. 2), which agrees with proxy reconstruc-740

tions (e.g., Abdul Aziz et al., 2003; Böhme et al., 2011). Overall, the simulated precip-741

itation decreases from Central Europe towards Southern Europe and the Mediterranean.742

The decrease in precipitation and the significant increase in temperature over these lower743

latitude regions results in less negative δ18Op values. Future climate projections in re-744

sponse to increasing pCO2 forcing indicate similar precipitation latitudinal gradients (Rajczak745

et al., 2013; Rajczak & Schär, 2017). This is partly due to the changes in the atmospheric746

dynamics (e.g., European atmospheric teleconnections) that influence regional climate747

patterns under global warming (Fereday et al., 2018; Giorgi & Lionello, 2008; McKenna748

& Maycock, 2022; Zappa et al., 2015). Botsyun et al. (2022) indicated expanded anti-749

cyclonic circulation over southern Europe and the Mediterranean region in the Middle750

Miocene due to the strengthening of the dipole pressure gradient across the North At-751

lantic. Giorgi and Lionello (2008) suggested that such anticyclonic conditions induce at-752

mospheric stability that inhibits more precipitation over the northern latitudes due to753

the northward migration of the Atlantic storm track. Moreover, the pronounced dipole754

pressure gradient (i.e., Icelandic Low and Azores High) would induce strong westerlies755

that would transport more moisture toward the northern latitudes from the North At-756

lantic, leading to drier conditions in the lower latitudes of Europe (Barnston & Livezey,757

1987; Hurrell, 1995).758

4.3 Influence of changes of Alps topography on regional climate and δ18Op759

patterns during the Middle Miocene760

The topographic sensitivity experiments indicate significant local (i.e., areas of mod-761

ified topography) cooling (warming) in response to the increase (decrease) of topogra-762

phy across the Alps. This is mainly due to the adiabatic lapse rate (Boateng et al., 2023;763

Botsyun et al., 2020, 2022). The regions adjacent to the modified areas experienced slight764

changes that are too insignificant to explain any potential additional non-adiabatic lapse765

rate influence. The precipitation patterns (Fig. 7) experienced greater spatial impacts766

due to the topographic changes since thermodynamic and dynamic processes that reg-767

ulate precipitation formation are more altitude-dependent (Insel et al., 2010; Poulsen et768

al., 2010; Sepulchre et al., 2006). Even though topographic rise resulted in a similar in-769

crease in orographic precipitation compared to Boateng et al. (2023), the intensification770

of the drier conditions across the Alps for high pCO2 suppressed their impact in the Mio450.771

This resulted in more precipitation changes in Mio278 than in Mio450 experiments. The772

topography-induced precipitation changes across the far-field regions adjacent to the Alps773

indicate varied responses depending on the topographic scenario and climate conditions.774

For instance, changes in topography under Mio278 conditions induce a north-south gra-775

dient with wetter conditions over the southern region of the Alps and drier conditions776

over the northern region of the Alps (Fig 7). This is partly due to moisture redistribu-777

tion by deflecting more moisture towards the southern transect due to the orographic778

barrier caused by the surface uplift of the West-Central Alps by 200% (Fig. S9). On the779

other hand, precipitation patterns across the regions outside the Alps in response to to-780

pographic changes under Mio450 show a west-to-east gradient with wetter conditions across781

the western areas of the Alps and slightly drier conditions towards the northern and south-782

ern areas of the Alps. This can be due to the fact that higher pCO2 levels intensify the783

dipole pressure gradient over the North Atlantic, which then increases the strength of784

the westerlies, leading to more moisture transport towards the northern latitudes of Eu-785

rope. Hence, the reduced moisture transport towards the Alps prevents the spillover of786

more moisture towards the eastern flanks of the Alps and focuses the orographic precip-787

itation across the western flanks of the Alps. In total, the varied moisture redistributions788

of the Alps in response to the surface uplift scenarios suggest the potential of the non-789

stationarity of the isotopic lapse rate through space and time due to the associated dif-790

ferences of the fractionation process of air mass transport from the oceanic sources. More-791

over, non-linear effects of surface uplift can also influence the seasonal distribution of pre-792
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cipitation, which may strongly affect the pedogenic carbonate formation and its isotopic793

composition (e.g., Burgener et al., 2016; Peters et al., 2013).794

The simulated changes in δ18Op values (Fig. S3) can mainly be attributed to lo-795

calised adiabatic temperature changes, orographic precipitation and the associated large-796

scale precipitation changes. The distinct δ18Op profiles across the Alps (Fig. 3) high-797

light the sensitivity of the meteoric water isotopes to both the direct (altitude) and in-798

direct global forcings (e.g., paleogeography and pCO2). Moreover, estimated δ18Op dif-799

ferences of up to -10 ‰ across the Alps in response to changing topography in the Mid-800

dle Miocene are substantial enough to be recorded by the geologic archives such as this801

and that for paleoelevation reconstructions. However, assuming stationarity of the iso-802

topic lapse rate and applying a localised ILR, such as the modern northern slope rainfall-803

based IRL of -2.0 ‰ km-1 (Campani et al., 2012) can result in missing a δ18Op signal804

of up to -5 ‰ (Fig. 5), which is significant enough to cause large errors in paleoeleva-805

tion estimates.806

The sensitivity of the European climate to the Alps’ topography on the local to re-807

gional scale demonstrated from our experiments stresses the importance of an accurate808

representation of past elevations of mountains in climate models. Even though topographic809

changes caused by tectonic processes often have a second-order forcing factor on global810

climate responses, their impacts affect the gradients of regional climatic variables, bio-811

diversity and landscape (e.g., Herold et al., 2009; Sepulchre et al., 2006). The simulated812

isotopic patterns across the high-elevation region of the Alps agree with the reconstructed813

isotopic water of phyllosilicates from the Simplon Fault Zone (Campani et al., 2012; Manck-814

telow et al., 2015), only if the topography of the West-Central Alps is increased by 200%815

of its modern height. This implies that under-representing the Alps’ paleoelevation in816

Middle Miocene simulations would lead to regional biases of the topography-dependent817

climate variables such as precipitation, moisture patterns, and local temperature. The818

transfer functions for proxy reconstruction calibrated with modern climate observations819

would also misrepresent the associated regional climate changes due to paleoelevation820

changes. For instance, paleobotanical proxies across Europe suggest the overall precip-821

itation increase in the Middle Miocene independent of their location (Bruch et al., 2007).822

Aside from the difficulties of plant-based proxies in reconstructing dry climates (e.g., Böhme823

et al., 2011), the misrepresentation of the precipitation gradients induced by the differ-824

ent topographic scenarios in their transfer function (e.g., coexistence method) might be825

the reason for these discrepancies.826

4.4 Non-stationarity of isotopic lapse rate in response to Middle Miocene827

climate and surface uplift of the Alps828

So far, most stable isotope paleoaltimetry studies rely on the assumption of sta-829

tionarity of isotopic lapse rate through time and space (e.g., Campani et al., 2012; Gébelin830

et al., 2013; Krsnik et al., 2021). This implies that the spatial gradient of paleo-meteoric831

water isotopic composition across mountain ranges and their adjacent areas (e.g. fore-832

lands) at the time of formation of the proxy material (e.g., pedogenic carbonate and vol-833

canic glass) remains unchanged until the present day. However, previous modelling stud-834

ies have demonstrated that various climatic processes, such as surface water recycling,835

atmospheric circulation changes, variability in moisture transport and sources, air mass836

mixing, and changes in precipitation dynamics caused by global and regional climate change837

and surface uplift of orogens can complicate the use of modern ILRs for paleoelevation838

reconstruction (Boateng et al., 2023; Botsyun et al., 2019; Ehlers & Poulsen, 2009; In-839

sel et al., 2010; Poulsen & Jeffery, 2011). Our simulated ILRs decrease by ∼1.0 ‰ km-1
840

in the Middle Miocene (e.g., -3.12 (PI) to -2.18 (Mio450) ‰ km-1 over the western flank841

of the Alps; Fig. 6a) and deviate by up to 1.5 ‰ km-1 for the different surface uplift sce-842

narios of the Alps. Moreover, the estimated ILRs in the PI runs were 0.19 ‰ km-1 higher843

or steeper over the western transect than the northern transect of the Alps. These spa-844
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tial differences are larger (up to 0.4 ‰ km-1) in the Middle Miocene simulations. The845

spatial changes can be attributed to the seasonal variability of moisture transport from846

the North Atlantic and the increased distance from the moisture source, leading to more847

depleted air masses towards the northern and eastern flanks of the Alps (Boateng et al.,848

2023). Moreover, the moisture redistribution around the Alps due to orographic block-849

ing and rainout across the high topography of the Western-Central Alps also contributes850

to the spatial variability of the isotopic lapse rates (e.g., ∼1.5 ‰ km-1 steeper in north-851

ern flanks than western flanks of the Alps for W2E1). Such spatial variability has also852

been identified for other orogens. For instance, the windward side of the Sierra Nevada853

(CA, USA) has a significantly steeper isotopic lapse rate (e.g., -3.1 ‰ km-1 over the South-854

ern Sierra) than the leeward side (e.g., -0.9 ‰ km-1 over western slopes of Sierra Nevada (Lechler855

& Niemi, 2011) and the interior of the Great Basin of western North America (e.g., -0.2856

‰ km-1 over Ruby Mts.) (Mulch, 2016). The greater decrease in isotopic lapse rate with857

an increase in moisture transport distance from the Pacific Ocean was attributed to the858

closed hydrological system with continental recycling of all moisture through evapotran-859

spiration over the leeward side of the Sierra Nevada (Ingraham & Taylor, 1991). More-860

over, the modern river-based ILR along the central-eastern Andean Cordillera shows a861

progressive decrease towards the southern latitudes (i.e., -1.7 ‰ km-1 for 22° to 24°S,862

-0.9 ‰ km-1 for 24° to 26°S and -0.2 ‰ km-1 for 26° to 28°S) (Rohrmann et al., 2014).863

This variability was attributed to convective instabilities rather than orographic lifting-864

induced precipitation gradients. The deep convection events drive more precipitation,865

shifting the predominant control on δ18Op values to precipitation amount instead of tem-866

perature (Mulch, 2016).867

Furthermore, the δ18Op-elevation gradient has also been shown to be sensitive to868

global climate forcings such as pCO2 (Poulsen et al., 2007; Poulsen & Jeffery, 2011), SSTs (Sturm869

et al., 2007), sea level fluctuations (Poulsen et al., 2007) and palaeogeography (Botsyun870

et al., 2022; Roe et al., 2016; Sewall & Fricke, 2013). iGCM simulations with elevated871

pCO2 indicate significant warming and moistening in the mid-troposphere, reducing the872

vertical stratification, which causes a shallower isotopic lapse rate (Poulsen & Jeffery,873

2011). The modelling study of Li et al. (2016) revealed notable differences in the precipitation-874

weighted annual mean δ18Op lapse rates across the Tibetan plateau, with an increase875

of ∼0.4 ‰ km-1 during the Middle Holocene and a decrease of 0.2 ‰ km-1 during the876

Last Glacial Maximum compared to pre-industrial levels. These studies, together with877

our new IRL estimates for the European Alps under different climate scenarios, high-878

light the spatial and temporal variability of ILR of major mountain ranges. Our results879

indicate significant IRL variability to influence the accuracy of paleoelevation estimates880

of the Alps.881

4.5 Implications of the non-stationarity of isotopic lapse rates on pa-882

leoelevation estimates across the Alps883

To quantitatively assess the potential uncertainties in estimating the Alps’ pale-884

oelevation using modern δ18Op lapse rates, we recalculated the recent reconstruction of885

Miocene Central Alps paleoelevation by (Krsnik et al., 2021) based on the δ-δ approach (Mulch,886

2016). We use the simulated Miocene δ18Op lapse rates with the ∆δ18Ow values of pe-887

dogenic carbonate from the Northern Alpine Foreland Basin (Swiss Molasse Basin; SMB)888

and high-Alpine phyllosilicate hydrogen isotope (δD) values from the Simplon Fault Zone889

(SFZ) (Krsnik et al., 2021). More specifically, Krsnik et al. (2021) refined paleoaltime-890

try estimates for the Alps by determining low-elevation δ18Ow values through the com-891

bination of δ18O values of pedogenic carbonates with clumped isotope-based soil carbon-892

ate formation temperatures (∆47) for the different sections of the SMB (Fig. 9b). The893

δ18Oc values combined with ∆47 temperatures at which carbonates formed estimate δ18Ow894

values (first quartile mean) of -6.5 (∼0.0) ‰ -5.8 (∼0.2) ‰ and -3.1(∼0.3) ‰ for Fonta-895

nen, Jona and Aabach (Krsnik et al. (2021); Table S1). Using these δ18Ow values of the896

foreland basin sections with the high-Alpine SFZ δ18Ow value of -14.6 (∼0.3) (Campani897
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et al., 2012) results in ∆δ18Ow values of -8.1 ‰ -8.8 ‰ and -11.5 ‰ respectively. The898

simulated ∆δ18Op range (-4 to -8 ‰ ) between the low- and high-elevation regions agree899

with this reconstruction (Fig. 3). More specifically, this agreement suggests that more900

than 200% of the modern West-Central Alps topography is required to induce signifi-901

cant orographic rainout that would cause the depletion of the paleo-meteoric waters dur-902

ing the formation of the proxy materials.903

We then calculate the mean paleoelevation around the SFZ with the modern precipitation-904

based isotopic lapse of the meteorological stations along the northern slopes of the Alps905

(-2.0 ‰ km-1; Campani et al. (2012)), surface-water-based isotopic lapse rate estimated906

from global observations (-2.8 ‰ km-1; Poage and Chamberlain (2001)), and this study’s907

Miocene isotopic lapse rates for different topographic configurations (Fig. 6). Overall,908

the paleoelevation estimates using the simulated Miocene lapse rates over the Alps (in-909

cluding estimates over the northern, and western flanks of the Alps) are lower than the910

estimates using the modern lapse rate of -2.0 ‰ km-1 (Fig. 9). This suggests an over-911

estimation of Central Alps topography in the Middle Miocene by previous studies (Campani912

et al., 2012; Krsnik et al., 2021) that relied on the modern ILR of the northern slopes913

of the Alps. The paleoelevation estimates with the modern -2.0 ‰ km-1 only agree with914

the estimates based on the western transect lapse rates for the unmodified topographic915

configuration (W1E1) experiments with Mio278 (-2.02 ‰ km-1) and Mio450 (-2.18 ‰916

km-1) climates (Table 1). This might be due to their similar topography and predom-917

inant moisture path from the North Atlantic towards the Western Alp. The paleoele-918

vation estimates based on the western transect lapse rates were greater than those based919

on the northern transect rates (Fig. 9 and Table S1). For instance, if we consider the920

Jona section, i.e. the most conservative near-sea level δ18Ow values estimate among the921

foreland basin sections (Krsnik et al., 2021), the western transect modelled isotopic ILRs922

(with ∆δ18Ow of -8.8 ‰) produces elevations that are up to 1443 m higher than the el-923

evations estimated from the northern transect modelled ILRs. Therefore, we propose that924

ignoring spatial variability of lapse rate through time can contribute significantly to the925

inaccuracy of reconstructing past surface elevations.926

On the other hand, the median of Middle Miocene constrained ranges of paleoel-927

evations of the Central Alps (based on our modelled Miocene ILRs) are more consistent928

with the modern global surface-water ILR (Poage & Chamberlain, 2001) (Fig. 9). Specif-929

ically, the modern global ILR of -2.8 ‰ km-1 with the ∆δ18Ow of -8.8 ‰ for the Jona930

section yields a paleoelevation of 3143 m. Using the more realistic topographic config-931

uration of W2E1 in the Middle Miocene, the simulated IRLs compared to the global mod-932

ern ILR indicate paleoelevations differences (i.e., simulation-observed) of -1033 m and933

-857 m for the northern transect and -11 m and +586 m for the western transect for the934

Mio278 and Mio450 climates, respectively. Compared to the modern -2.0 ‰ km-1 ILR935

of the northern slope of the Alps, the paleoelevation estimates with the W2E1 differ by936

-2290 m and -2114 m (and -1268 m and -671 m) for the Mio278 and Mio450 climates cal-937

culated across the northern (and western) transects (Table S1). These estimates imply938

that using a global river-based lapse rate would be efficient in the absence of paleoclimate-939

constrained isotopic lapse rates. As meteorological stations for collecting precipitation940

for δ18Ow measurements are often sparsely distributed and mostly reflect the short-term941

processes of specific precipitation events conditions, the δ18Op-gradient along river sys-942

tems are more reliable, predictable and robust (Mulch, 2016; Poage & Chamberlain, 2001;943

Rowley et al., 2001; Rowley, 2007). In this case, the global river-based ILR is consistent944

with most of the range of modelled ILR-based paleoelevations estimates because it in-945

tegrates long-term climatic processes by averaging the precipitation seasonality over the946

varied hydrological catchments globally. Moreover, it also integrates the spatial variabil-947

ity of the interactions between climatic and topographic changes on the timescales rel-948

evant for the isotopic proxy formation (Mulch, 2016). The key point demonstrated here949

with our paleoelevation refinements is that the Middle Miocene climate change associ-950

ated with Alps topography changes is significant, and not accounting for its influence951
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Figure 9. Paleoelevation estimates of Miocene Central Alps with isotopic lapse rates from

Middle Miocene pCO2 scenarios (278 ppm (Mio278); 450 ppm (Mio450)) and topographic sensi-

tivity experiments and modern observed precipitation across the Alps (-2.0 ‰ km-1; (Campani

et al., 2012)) and global surface waters (-2.8 ‰ km-1; (Poage & Chamberlain, 2001)). The

calculated ranges of paleoelevations for the different topographic configurations with the lapse

rate considered along the northern and western transects of the Alps are shown as distribution

(boxplot) for the different foreland basin locations shown in (b). The ∆δ18Ow values between

the paleo-meteoric water reconstructed from the low-elevation foreland basins (i.e., Fontannen

(both from Campani et al. (2012) and Krsnik et al. (2021), Jona, and Aabach) and high-elevation

(Simplon Fault Zone; Campani et al. (2012) are based on the recent reconstruction from Krsnik

et al. (2021)
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temporally would lead to overestimation of the Alps topography by up to 2 km (local952

ILR) or less than 1 km (global river ILR). Moreover, assuming a constant spatial iso-953

topic lapse rate across the Alps would also lead to paleoelevation inaccuracy of ∼1.5 km954

for the Middle Miocene paleoelevation of the Alps.955

5 Conclusions956

This study demonstrates a robust framework for reconstructing paleoelevations by957

integrating simulated δ18O in precipitation (δ18Op) in response to Middle Miocene pa-958

leoenvironmental conditions with reconstructed δ18O of paleo-meteoric water from co-959

eval proxy materials across the Alps. The results indicate that the warmer and wetter960

conditions across the Alps in the Miocene, together with the diachronous surface uplift961

across the Alps, affect the δ18Op distribution, which can compromise the δ-δ stable wa-962

ter isotope paleoaltimetry estimates by up to 1.5 km when the paleoclimate changes as-963

sociated with the topographic evolution are not accounted for. Therefore, the simulated964

patterns of δ18O of paleo-meteoric waters in this study lead us to accept the hypothe-965

sis that the changes in the Miocene climate and diachronous surface uplift of the Alps966

result in isotopic lapse rates that significantly deviate from modern estimates (-2.0 ‰967

km-1; Campani et al. (2012)) and vary spatially around the Alps. Our approach empha-968

sises the isotopic lapse rate variability in past climates and highlights the advantage of969

using isotope-enabled GCM to understand paleoclimate dynamics and regional climate970

patterns, to disentangle the climate and tectonic signals in paleoaltimetry proxy mate-971

rials, and to derive more accurate paleoelevation estimates. We summarise the key find-972

ings as follows:973

1. The Middle Miocene simulations suggest warmer and wetter conditions globally,974

with a mean annual surface temperature increase of 2.5 °C and 6 °C and a mean975

annual precipitation increase of 1.6% and 9% in response to pCO2 of 278 and 450976

ppm compared to PI climate. The simulations indicate pCO2 as the main driver977

for the global climate and non-pCO2 factors for the regional hydroclimate changes.978

These climate patterns result in more enriched global annual mean δ18Op values979

of up to 1.3 ‰ compared to PI estimates.980

2. The European hydroclimate patterns indicate a pronounced meridional gradient981

with drier conditions over Central Europe towards the Mediterranean region and982

wetter conditions over northern Europe than the PI climate. The continental warm-983

ing across Europe (up to 8 °C), together with the precipitation gradients, results984

in more varied δ18Op patterns that show a west-to-east gradient, contributing to985

the spatial variability of isotopic lapse rate around the Alps.986

3. The simulations estimate ∆δ18Op values (i.e., the difference of δ18Op values be-987

tween low- and high-elevation regions) range from -4 to -8 ‰ (but are higher in988

pCO2 of 278 ppm) in Miocene and show distinct isotopic profiles across the Alps989

for the diachronous surface uplift scenarios. These imply that the isotopic imprints990

in proxy material would be significant enough to decipher the variations in the west-991

to-east surface uplift propagation across the Alps.992

4. The simulated isotopic lapse rates become shallow by ∼1.0 ‰ km-1 in the Mid-993

dle Miocene and deviate by up to 1.5 ‰ km-1 for diachronous surface uplift sce-994

narios of the Alps. The varied precipitation redistribution in the Miocene resulted995

in spatial differences in isotopic lapse rates of up to 0.4 ‰ km-1.996

5. The refinement of previous paleoelevation estimates (Krsnik et al., 2021) from ∆δ18Ow997

reconstructed between the near-sea level pedogenic carbonate from the Northern998

Alpine Foreland Basin (Swiss Molasse Basin; SMB) and high-Alpine phyllosilicate999

hydrogen isotope (δD) from the Simplon Fault Zone (SFZ) with the simulated iso-1000

topic lapse rates indicates an overestimation of the Central Alps’ paleoelevation1001

by ∼1.5 km when the isotopic lapse rate is assumed stationary through time and1002
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space from present-day (local ILR). However, in the absence of paleoclimate-constraint,1003

modelled ILR, the usage of the global river-based ILR is sufficient and favourable.1004

6 Open Research1005

The ECHAM5 model is available under the MPI-M Software License Agreement1006

(https://code.mpimet.mpg.de/attachments/download/26986/MPI-ESM SLA v3.4.pdf,1007
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berger, J. (2023, July). Coupled surface to deep Earth processes: Perspectives1138

from TOPO-EUROPE with an emphasis on climate- and energy-related so-1139

cietal challenges. Global and Planetary Change, 226 , 104140. Retrieved1140

2023-10-01, from https://www.sciencedirect.com/science/article/pii/1141

S0921818123001133 doi: 10.1016/j.gloplacha.2023.1041401142

Cojan, I., Bialkowski, A., Gillot, T., & Renard, M. (2013, November). Paleoenviron-1143

nement and paleoclimate reconstruction for the early to middle Miocene from1144

stable isotopes in pedogenic carbonates (Digne-Valensole basin, southeastern1145
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Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M.,1549

. . . Tompkins, A. (2003, November). The atmospheric general circula-1550

tion model ECHAM 5. PART I: Model description. Retrieved 2022-04-24,1551

from https://pure.mpg.de/pubman/faces/ViewItemOverviewPage.jsp1552

?itemId=item 995269 (Publisher: Max-Planck-Institut für Meteorologie) doi:1553

10.17617/2.9952691554

Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D., Pingel, H.,1555

. . . Montero, C. (2014, December). Can stable isotopes ride out the storms?1556

The role of convection for water isotopes in models, records, and paleoaltime-1557

try studies in the central Andes. Earth and Planetary Science Letters , 407 ,1558

187–195. Retrieved 2023-08-10, from https://www.sciencedirect.com/1559

science/article/pii/S0012821X14005767 doi: 10.1016/j.epsl.2014.09.0211560

Rowley, D. B. (2007, October). Stable Isotope-Based Paleoaltimetry: Theory and1561

Validation. Reviews in Mineralogy and Geochemistry , 66 (1), 23–52. Retrieved1562

2023-06-11, from https://doi.org/10.2138/rmg.2007.66.2 doi: 10.2138/1563

rmg.2007.66.21564

Rowley, D. B., & Currie, B. S. (2006, February). Palaeo-altimetry of the late1565

Eocene to Miocene Lunpola basin, central Tibet. Nature, 439 (7077), 677–1566

681. Retrieved 2022-04-24, from https://www.nature.com/articles/1567

nature04506 (Number: 7077 Publisher: Nature Publishing Group) doi:1568

10.1038/nature045061569

Rowley, D. B., Pierrehumbert, R. T., & Currie, B. S. (2001, May). A new approach1570

to stable isotope-based paleoaltimetry: implications for paleoaltimetry and pa-1571

leohypsometry of the High Himalaya since the Late Miocene. Earth and Plan-1572

etary Science Letters , 188 (1), 253–268. Retrieved 2022-04-24, from https://1573

www.sciencedirect.com/science/article/pii/S0012821X01003247 doi:1574

10.1016/S0012-821X(01)00324-71575
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Miocene: The Future of the Past. Paleoceanography and Paleoclima-1641

tology , 36 (4), e2020PA004037. Retrieved 2022-04-28, from https://1642

onlinelibrary.wiley.com/doi/abs/10.1029/2020PA004037 ( eprint:1643

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020PA004037) doi:1644

10.1029/2020PA0040371645

Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S.,1646

. . . Roeckner, E. (2013). Atmospheric component of the MPI-M1647

Earth System Model: ECHAM6. Journal of Advances in Modeling1648

Earth Systems , 5 (2), 146–172. Retrieved 2023-06-09, from https://1649

onlinelibrary.wiley.com/doi/abs/10.1002/jame.20015 ( eprint:1650

https://onlinelibrary.wiley.com/doi/pdf/10.1002/jame.20015) doi: 10.1002/1651

jame.200151652

Sturm, C., Hoffmann, G., & Langmann, B. (2007, August). Simulation of the Stable1653

Water Isotopes in Precipitation over South America: Comparing Regional to1654

Global Circulation Models. Journal of Climate, 20 (15), 3730–3750. Retrieved1655

2024-02-17, from https://journals.ametsoc.org/view/journals/clim/20/1656

–40–



manuscript submitted to Earth Surface

15/jcli4194.1.xml (Publisher: American Meteorological Society Section:1657

Journal of Climate) doi: 10.1175/JCLI4194.11658

Stärz, M., Jokat, W., Knorr, G., & Lohmann, G. (2017, June). Threshold in1659

North Atlantic-Arctic Ocean circulation controlled by the subsidence of the1660

Greenland-Scotland Ridge. Nature Communications , 8 (1), 15681. Retrieved1661

2022-12-20, from https://www.nature.com/articles/ncomms15681 (Num-1662

ber: 1 Publisher: Nature Publishing Group) doi: 10.1038/ncomms156811663

Super, J. R., Thomas, E., Pagani, M., Huber, M., O’Brien, C. L., &1664

Hull, P. M. (2020). Miocene Evolution of North Atlantic Sea1665

Surface Temperature. Paleoceanography and Paleoclimatology ,1666

35 (5), e2019PA003748. Retrieved 2024-01-27, from https://1667

onlinelibrary.wiley.com/doi/abs/10.1029/2019PA003748 ( eprint:1668

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019PA003748) doi:1669

10.1029/2019PA0037481670

Tindall, J. C., Valdes, P. J., & Sime, L. C. (2009). Stable water iso-1671

topes in HadCM3: Isotopic signature of El Niño–Southern Oscilla-1672

tion and the tropical amount effect. Journal of Geophysical Re-1673

search: Atmospheres , 114 (D4). Retrieved 2023-10-23, from https://1674

onlinelibrary.wiley.com/doi/abs/10.1029/2008JD010825 ( eprint:1675

https://onlinelibrary.wiley.com/doi/pdf/10.1029/2008JD010825) doi:1676

10.1029/2008JD0108251677

Valla, P. G., Sternai, P., & Fox, M. (2021, February). How Climate, Uplift and Ero-1678

sion Shaped the Alpine Topography. Elements , 17 (1), 41–46. Retrieved 2022-1679

04-24, from https://doi.org/10.2138/gselements.17.1.41 doi: 10.2138/1680

gselements.17.1.411681

Werner, M., Haese, B., Xu, X., Zhang, X., Butzin, M., & Lohmann, G. (2016,1682

February). Glacial–interglacial changes in H2
18O, HDO and deuterium ex-1683

cess – results from the fully coupled ECHAM5/MPI-OM Earth system model.1684

Geoscientific Model Development , 9 (2), 647–670. Retrieved 2023-06-12, from1685

https://gmd.copernicus.org/articles/9/647/2016/gmd-9-647-2016.html1686

(Publisher: Copernicus GmbH) doi: 10.5194/gmd-9-647-20161687

Werner, M., Langebroek, P. M., Carlsen, T., Herold, M., & Lohmann, G. (2011,1688

August). Stable water isotopes in the ECHAM5 general circulation model:1689

Toward high-resolution isotope modeling on a global scale. Journal of Geo-1690

physical Research, 116 (D15), D15109. Retrieved 2022-04-25, from http://1691

doi.wiley.com/10.1029/2011JD015681 doi: 10.1029/2011JD0156811692

Willett, S., Beaumont, C., & Fullsack, P. (1993, April). Mechanical model for the1693

tectonics of doubly vergent compressional orogens. Geology , 21 (4), 371–374.1694

Retrieved 2024-03-04, from https://doi.org/10.1130/0091-7613(1993)1695

021<0371:MMFTTO>2.3.CO;2 doi: 10.1130/0091-7613(1993)021⟨0371:1696

MMFTTO⟩2.3.CO;21697

Xu, X., Werner, M., Butzin, M., & Lohmann, G. (2012, June). Water isotope vari-1698

ations in the global ocean model MPI-OM. Geoscientific Model Development ,1699

5 (3), 809–818. Retrieved 2023-06-12, from https://gmd.copernicus.org/1700

articles/5/809/2012/ (Publisher: Copernicus GmbH) doi: 10.5194/1701

gmd-5-809-20121702

Zappa, G., Hoskins, B. J., & Shepherd, T. G. (2015, October). The dependence1703

of wintertime Mediterranean precipitation on the atmospheric circulation re-1704

sponse to climate change. Environmental Research Letters , 10 (10), 104012.1705

Retrieved 2024-01-31, from https://dx.doi.org/10.1088/1748-9326/10/10/1706

104012 (Publisher: IOP Publishing) doi: 10.1088/1748-9326/10/10/1040121707

Zhu, J., Poulsen, C. J., & Tierney, J. E. (2019, September). Simulation of Eocene1708

extreme warmth and high climate sensitivity through cloud feedbacks. Sci-1709

ence Advances , 5 (9), eaax1874. Retrieved 2024-03-07, from https://1710

www.science.org/doi/10.1126/sciadv.aax1874 (Publisher: American1711

–41–



manuscript submitted to Earth Surface

Association for the Advancement of Science) doi: 10.1126/sciadv.aax18741712
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Figure S1. Annual means of δ18Op values (first column), precipitation (second column)

and near-surface temperature (third column) in response to Pre-Industrial (PI) and two Middle

Miocene pCO2 scenarios (278 ppm (Mio278), 450 ppm (Mio450)).
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Figure S2. Annual means of δ18Op values in response to the topographic configurations (i.e.,

W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and W2E2 (g, h)) in Middle Miocene conditions with

pCO2 of 278 ppm (Mio278; left) and 450 ppm (Mio450; right)

May 20, 2024, 10:10pm



X - 4 :

(h) W2E2-W1E1(g) W2E2-W1E1

(f) W2E1.5-W1E1(e) W2E1.5-W1E1

(d) W2E1-W1E1(c) W2E1-W1E1

(b) W2E0-W1E1(a) W2E0-W1E1
MIO 278 ppm MIO 450 ppm

Figure S3. Mean annual difference of δ18Op values in response to the different topographic

scenarios (i.e., W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and W2E2 (g, h)) relative to control

scenario (W1E1) with Middle Miocene boundary conditions (Mio278; left panel and Mio450;

right panel)).
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(h) W2E2-W1E1(g) W2E2-W1E1

(f) W2E1.5-W1E1(e) W2E1.5-W1E1
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Figure S4. Expected δ18Op values due to changes in topography using modern rainfall-based

isotopic lapse rate (Campani et al. (2012))
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Figure S5. Annual means of temperature in response to the topographic configurations (i.e.,

W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and W2E2 (g, h)) in Middle Miocene conditions with

pCO2 of 278 ppm (Mio278; left) and 450 ppm (Mio450; right).
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(b) W2E0-W1E1(a) W2E0-W1E1
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Figure S6. Mean annual difference of temperature in response to the different topographic

scenarios (i.e., W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and W2E2 (g, h)) relative to control

scenario (W1E1) with Middle Miocene boundary conditions (Mio278; left panel and Mio450;

right panel))
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(h) W2E2-W1E1(g) W2E2-W1E1

(f) W2E1.5-W1E1(e) W2E1.5-W1E1

(d) W2E1-W1E1(c) W2E1-W1E1

(b) W2E0-W1E1(a) W2E0-W1E1
MIO 278 ppm MIO 450 ppm

Figure S7. Annual means of precipitation in response to the topographic configurations (i.e.,

W2E0 (a, b), W2E1 (c, d), W2E1.5 (e, f), and W2E2 (g, h)) in Middle Miocene conditions with

pCO2 of 278 ppm (Mio278; left) and 450 ppm (Mio450; right)
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Figure S8. Annual mean difference between simulations with boundary conditions from Herold

et al 2011 and Frigola et al 2018 for δ18Op values, precipitation and temperature in response to

two Middle Miocene pCO2 scenarios (278 ppm (Mio278), left panel; 450 ppm (Mio450))
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X - 10 :

High-ele ation site

(Phyllosilicates)

Low-ele ation sites (Paedogenic carbonate)

SFZ SMB

(Fontannen

2012)

SMB

(Fontan-

nen)

SMB (Jona) SMB

(Aabach)

δ18Ow(‰, vsSMOW) -14.6 -9.4 -6.5 -5.8 -3.1

Error δ18Ow(±;‰) 0.3 0.01 0.01 0.20 0.30

∆(δ18Ow)(‰, vsSMOW) - -5.2 -8.1 -8.8 -11.5

Isotopic Lapse Rate (‰/km)

Paleoele ation (∆z) calculation (m)

Campani et al. (2012) -2.0 2600 4050 4400 5750

Poage and Chamberlain (2001) -2.8 1857 2893 3143 4107

Northern transect

W1E1 (Mio278) -2.43 2140 3333 3621 4733

W1E1 (Mio450) -2.48 2097 3266 3548 4637

W2E1 (Mio278) -4.17 1247 1942 2110 2758

W2E1 (Mio450) -3.85 1351 2104 2286 2987

Western transect

W1E1 (Mio278) -2.02 2574 4010 4356 5693

W1E1 (Mio450) -2.18 2385 3716 4037 5275

W2E1 (Mio278) -2.81 1851 2883 3132 4093

W2E1 (Mio450) -2.36 2203 3432 3729 4873

Table S1. Summary of Miocene Central Alps paleoelevation estimates based on simulated

and observed isotopic lapse rates
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West African Monsoon Dynamics and Its Control on the
Stable Oxygen Isotopic Composition of Precipitation in the
Late Cenozoic
Daniel Boateng1 , Jeffrey N. A. Aryee2 , Michael Baidu3, Frank Arthur4 , and
Sebastian G. Mutz5

1Department of Geosciences, University of Tübingen, Tübingen, Germany, 2Department of Meteorology and Climate
Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 3Institute for Climate and Atmospheric
Science, School of Earth and Environment, University of Leeds, Leeds, UK, 4Department of Natural Sciences and
Environmental Health, University of South‐Eastern Norway, Bø i Telemark, Norway, 5School of Geographical and Earth
Sciences, University of Glasgow, Glasgow, UK

Abstract This study presents an overview of the Late Cenozoic evolution of the West African Monsoon
(WAM), and the associated changes in atmospheric dynamics and oxygen isotopic composition of precipitation
(δ18Op). This evolution is established by using the high‐resolution isotope‐enabled GCM ECHAM5‐wiso to
simulate the climatic responses to paleoenvironmental changes during the Mid‐Holocene (MH), Last Glacial
Maximum (LGM), and Mid‐Pliocene (MP). The simulated responses are compared to a set of GCM outputs
from Paleoclimate Model Intercomparison Project Phase 4 (PMIP4) to assess the added value of a high
resolution and model consistency across different time periods. Results show WAM magnitudes and pattern
changes that are consistent with PMIP4 models and proxy reconstructions. ECHAM5‐wiso estimates the highest
WAM intensification in the MH, with a precipitation increase of up to 150 mm/month reaching 25°N during the
monsoon season. The WAM intensification in the MP estimated by ECHAM5‐wiso (up to 80 mm/month) aligns
with the mid‐range of the PMIP4 estimates, while the LGM dryness magnitude matches most of the models.
Despite an enhanced hydrological cycle in MP, MH simulations indicate a ∼50% precipitation increase and a
greater northward extent of WAM than the MP simulations. Strengthened conditions of the WAM in the MH
and MP result from a pronounced meridional temperature gradient driving low‐level westerly, Sahel‐Sahara
vegetation expansion, and a northward shift of the Africa Easterly Jet. The simulated δ18Op values patterns and
their relationship with temperature and precipitation are non‐stationarity over time, emphasizing the
implications of assuming stationarity in proxy reconstruction transfer functions.

Plain Language Summary We use a global climate model to simulate how the West African
Monsoon and related climate elements changed over the Late Cenozoic (from ca. 3 million years ago to now).
We use a single, high‐resolution model to calculate these changes for the Mid‐Holocene, Last Glacial Maximum
and Mid‐Pliocene time periods. We then compare our results to already existing simulations to find out if there
are any benefits to using a single, high‐resolution model set‐up. Overall, our simulations are similar to previous
simulations and other climate reconstructions. However, our results also yield two important new findings: (a)
our simulations reproduce some aspects of the monsoon better than previous simulations; (b) the chemical
composition of rainwater, which is used by geologists to reconstruct climate, is impacted by more factors than
previously assumed. This makes it more challenging to create reliable reconstructions of climate from
geological records of rainwater composition.

1. Introduction
Understanding the complex climate dynamics and variability over West Africa has been a pertinent concern due
to its strong environmental and socio‐economic impacts. This is especially important since most West African
countries rely on a rainfed agriculture economy (Sultan et al., 2005). Most importantly, the long‐lasting multi-
decadal wet and dry periods during the 20th century emphasize the need to understand the long‐term and future
variability of the West African Monsoon (WAM) system. This requires knowledge about the response of the
WAM dynamics to changes in internal feedbacks and external forcings, such as orbital parameters, atmospheric
greenhouse gases, and vegetation distribution. Considering past climate change outside the recent observational
period can provide valuable insights into that. More specifically, time periods with atmospheric CO2
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concentrations (pCO2) and paleogeography similar to the present day can serve as analog for a possible future
climate in which all forcings have had their full effect. This would require looking back 3 million years in Earth's
history (Burke et al., 2018). Therefore, this study focuses on a model‐based exploration of the evolution of the
WAM from the Mid‐Pliocene (MP: ∼3 Ma) to the present‐day, considering the Last Glacial Maximum (LGM:
∼21 ka), and Mid‐Holocene (MH: ∼6 ka) as important intermediate time steps.

Due to the complicated dynamics and teleconnections of the WAM, state‐of‐art General Circulation Models
(GCMs) still fall short in accurately reproducing its past variability and providing consistent future projections
(Biasutti, 2013; Pausata et al., 2016; Tierney et al., 2017). Improving the representation of the WAM system in
climate models requires knowledge about its sensitivity to various global and regional paleoenvironment forcings
and feedbacks. This knowledge can help identify the elements that need improvement in GCMs to ensure more
reliable predictions of the WAM in the future. For instance, the response of the WAM dynamics to orbitally
driven seasonal and latitudinal distribution of incoming solar radiation can be evaluated under MH conditions
(Joussaume et al., 1999; Kutzbach & Liu, 1997). The LGM provides an opportunity to study the response of the
WAM to the most recent global cold extreme, characterized by extensive ice sheet coverage and low pCO2

concentrations (e.g., Bereiter et al., 2015). The long‐term sensitivity of the WAM to pCO2 concentrations similar
to the present, along with a less arid Sahara and a globally enhanced hydrological cycle, can also be assessed
under MP paleoenvironment conditions (Corvec & Fletcher, 2017; Dowsett et al., 2010; Haywood et al., 2020;
Salzmann et al., 2008).

Despite the challenges in replicating the entirety of past climate changes with GCMs under appropriate paleo-
environmental conditions (Braconnot et al., 2012; Harrison et al., 2015), comparing the simulated responses from
different climate models would shed more light on the inadequate representation of feedbacks and model biases
that can be improved for future climate predictions (e.g., Zheng & Braconnot, 2013). Furthermore, such inter‐
model comparison across multiple past climates would help determine if the systematic model biases affect
the overall strength of the responses and feedbacks in the different climates and help evaluate if such biases are
GCM‐specific or exist independently of the GCM that is used.

Numerous modeling studies have simulated the precipitation changes associated with the WAM in response to
multiple forcings and climate states during the Late Cenozoic (e.g., Berntell et al., 2021; Weldeab et al., 2011;
Zheng & Braconnot, 2013). However, the differences between the simulations, such as spatial resolution,
boundary conditions, and the complexity of the GCM, make it difficult to identify the predominant atmospheric
dynamics behind the WAM precipitation changes. For instance, model‐dependent uncertainties of the individual
GCMs that simulated these climates in previous studies may not fully capture certain components of the WAM
system, which can amplify the systematic biases related to the sensitivity to various forcings or external per-
turbations across different climates. Moreover, GCMs with varied spatial resolutions and parameterizations of
clouds, atmospheric dynamics, hydrological cycles, and atmosphere‐land surface interactions would simulate
distinct responses of the WAM to different forcings, leading to inconsistent patterns of WAM dynamics. Aside
from these, only a few studies have comprehensively delved into atmospheric dynamics and teleconnections
behind the changes in precipitation patterns and magnitudes under different paleoenvironmental conditions
throughout the Late Cenozoic (e.g., Bosmans et al., 2012; Gaetani et al., 2017; Patricola & Cook, 2007; Su &
Neelin, 2005). Furthermore, previous studies have highlighted that monsoons and related circulations, such as the
Inter Tropical Convergence Zone (ITCZ), are better resolved at higher resolutions, including improved topo-
graphical representation and model parameterization (Bosmans et al., 2012; Gao et al., 2006; Jungandreas
et al., 2021). This study addresses the points above by providing details about the WAM atmospheric dynamics
across these past climates using a consistent modeling framework with a high‐resolution isotope‐enabled GCM.

Geological archives can record information about various paleoenvironmental changes in the climate system over
time. They can therefore be used for model‐data comparisons and as a benchmark for climate models (Braconnot
et al., 2012; Harris et al., 2014; Harrison et al., 2015). However, the scarcity of palaeohydrological records over
Africa and the spatial resolution of climate models preclude the robust model‐data comparison necessary for
improving climate models (e.g., Salzmann et al., 2008, 2013). Several problems for data‐model persist in this
region. For instance, proxy‐based reconstructions using pollen, past lake levels, leaf wax isotopes, and other
records have suggested significantly wetter conditions across the Sahel and Sahara during the MH (Ait Brahim
et al., 2023; Bartlein et al., 2011; Tierney et al., 2017). However, most climate models struggle to replicate the
extent and magnitude of precipitation changes indicated by these proxy records despite accounting for factors like
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increased insolation, altered land surface condition (e.g., vegetation, lakes, orography, soil moisture), reduced
dust emissions, atmospheric‐ocean interactions, and atmospheric dynamics (deMenocal et al., 2000; Harrison
et al., 2014; Hopcroft & Valdes, 2019, 2022; Pausata et al., 2016; Tierney et al., 2017).

While proxy records point to varying increases in precipitation levels over North Africa's higher latitudes, climate
models estimate a more moderate WAM intensification, underestimating both the northward extent and
magnitude of precipitation increase suggested by the proxies. If the proxy data is a well‐collected, representative
sample, there are two possible model‐related reasons for this mismatch: (a) The climate models simply do not
capture the atmospheric processes in the region well enough to accurately model said hydroclimate changes. (b)
Proxy system models, which allow the conversion of the proxy signal to a paleoclimate signal, are flawed. Proxy
system models rely on calibrations based on modern‐day observations, such as the spatial correlation between
water isotopes and precipitation. These are used to establish a transfer function that allows a proxy‐to‐climate
signal conversion. This signal transformation assumes that the transfer functions are stationary in time, that is,
that modern correlations are equally valid for past climates. This study uses an isotope‐enabled GCM to decipher
atmospheric dynamics driving WAM changes and to explore their impacts on water isotopologues under various
past global changes. This allows for the testing of this assumption of the stationarity of the transfer function.
Furthermore, such an analysis facilitates a direct model‐isotope proxy comparison and contributes to under-
standing the general causal mechanisms behind the variability in different proxy materials (Bühler et al., 2022;
Phipps et al., 2013; Risi et al., 2012; Werner et al., 2000).

This study provides the first overview of the changes of the WAM and its associated atmospheric dynamics in
response to multiple forcings and feedbacks during the Late Cenozoic, using the high‐resolution isotope‐enabled
GCM ECHAM5‐wiso. More specifically, the study addresses the following specific objectives: (a) systematically
simulating the responses of the WAM patterns and magnitude to the various paleoenvironment conditions,
including changes in vegetation, orbital forcings, ice sheet extent, and atmospheric CO2 concentrations; (b)
investigating the atmospheric dynamics driving the simulated WAM changes, such as moisture transport (e.g.,
low‐level southwesterlies), Africa Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), Sahara Heat Low (SHL) and
surface heat fluxes; and (c) exploring the simulated δ18Op values and how they are influenced by near‐surface
temperature and precipitation in response to the different boundary conditions. We further compare the simu-
lated changes of the WAM to some of the state‐of‐the‐art models that participated in the Paleoclimate Model
Intercomparison Project (PMIP4) Phase 4 to evaluate the added values of using a consistent, high‐resolution
modeling framework to understand the complex climate system over West Africa and improve its representa-
tion in Earth system models.

2. Background
2.1. On the Intensification and Northward Extent of the West African Monsoon During the Mid‐Holocene

During the early‐to‐middle Holocene, spanning from 11,000 to 5,000 years before the present, the arid landscapes
of the Sahel and Sahara regions transformed into shrubs, grasslands, and water bodies like rivers and lakes
(Armitage et al., 2015; Claussen et al., 1999; deMenocal et al., 2000; Holmes, 2008; Kohfeld & Harrison, 2000).
The development of this “Green Sahara” was attributed to changes in the insolation cycle, which intensified the
equator‐to‐pole gradient and land‐sea thermal contrasts and ultimately lead to an increase in rainfall across the
Sahel‐Sahra. The associated pressure gradient facilitated the moisture transport from the equatorial Atlantic into
the continent. Overall, the changes in the orbital cycles and expansion of vegetation across the Sahel‐Sahara
caused the strengthening of the WAM and its northward extent (Gaetani et al., 2017; Hopcroft &
Valdes, 2022; Patricola & Cook, 2007). This WAM intensification and northward migration have been reflected
in many proxy systems such as paleo‐lake levels (Hoelzmann et al., 1998; Prentice et al., 2000), leaf wax, and
aeolian deposits in sedimentary cores from the Eastern Atlantic (deMenocal et al., 2000; Tierney et al., 2017) and
archeological findings that indicate human habitation (Cremaschi & Di Lernia, 1999; Dunne et al., 2012;
Gabriel, 1987; Hoelzmann et al., 2001; Manning & Timpson, 2014; Sereno et al., 2008). However, state‐of‐art
climate models still struggle to replicate the level of intensification and the northward reach as suggested by
the different proxies, even when appropriate boundary conditions are prescribed (deMenocal et al., 2000; Har-
rison et al., 2014; Hopcroft & Valdes, 2019; Kutzbach & Liu, 1997; Pausata et al., 2016; Tierney et al., 2017). For
instance, MH simulations in PMIP3‐CMIP5 experiments estimate a precipitation increase of ∼400 mm/year over
West Africa, with a northward shift that is underestimated by 20°N when compared to proxy reconstructions
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(Perez‐Sanz et al., 2014). Thompson et al. (2021) utilized a water isotope‐enabled Earth system model (iCESM1)
that exhibited enhanced MH precipitation compared to PI conditions, and a northernmost WAM shift of
approximately 24°N, which aligns with reconstructions from pollen and dust records (23–28°N). Most of these
models, however, lack vegetation feedback or appropriate prescribed MH vegetation reconstruction, which is
crucial for sustaining the WAM's northward extension through vegetation‐precipitation feedback (Otto‐Bliesner
et al., 2017; Pausata et al., 2016; Tierney et al., 2017). Rachmayani et al. (2015) demonstrated that using dynamic
vegetation‐coupled GCMs enhances the orbitally‐induced precipitation increase by 20% over West Africa
compared to fixed vegetation GCMs.

Recent studies have also highlighted that accounting for dust feedbacks related to the Green Sahara during the MH
can further intensify and expand the WAM, aligning it more with proxy reconstructions (e.g., Egerer et al., 2018;
Hopcroft & Valdes, 2019; Pausata et al., 2016; Thompson et al., 2019). These findings indicate that the dis-
crepancies between the model and proxy reconstructions are due to the inadequate representation of certain at-
mospheric physics, such as inaccurate cloud representation, energy fluxes, subgrid‐scale convection, and surface
conditions in the GCMs. Moreover, the coarse spatial resolution of GCMs fails to capture meso‐to‐local‐scale
processes like mesoscale convective systems (e.g., Baidu et al., 2022; Crook et al., 2019; Marsham
et al., 2013), potentially contributing to further biases. Thus, understanding the mechanics and dynamics un-
derlying vegetation feedback and natural variability in insolation cycles driving the WAM's northward migration
during the MH is crucial for evaluating GCM performance in future projections. While these forcing mechanisms
are not linked to anthropogenic emissions, evaluating and improving the GCMs' representation of climate system
dynamics and feedbacks is vital for future climate change projections.

2.2. Large‐Scale Feature of the Last Glacial Maximum and Its Influence on the West African Monsoon

The LGM (∼21,000 years BP) is a time period that is suitable for assessing the capabilities of state‐of‐the‐art
models due to its starkly different conditions from the present, such as lower atmospheric CO2 levels (∼185
ppm) and eustatic sea levels (∼115–130 m below present) (Lambeck et al., 2014; Peltier & Fairbanks, 2006). The
extensive continental ice sheets led to significant perturbations in atmospheric radiative forcing and circulation
patterns, contributing to alterations in precipitation and temperature that were generally drier and colder than pre‐
industrial conditions (Clark et al., 2009; D’Agostino et al., 2019, 2020). Since the LGM, the Earth's global mean
temperature has risen by approximately 4–6°C (Annan & Hargreaves, 2013, 2015; Friedrich et al., 2016), which is
of the same order of magnitude increase projected under moderate to high emission scenarios for near‐future
climate change. Due to this similarity in global forcing and temperature response from the LGM to the pre-
sent, and the present to the near future, the LGM is a relevant period to examine (e.g., Brady et al., 2013;
Yoshimori et al., 2009). The LGM represents a test bed to conduct the out‐of‐sample evaluation of the strength
and stability of key climate system feedbacks and large‐scale responses to regional hydroclimate changes.
Furthermore, the interactions between temperature‐driven and circulation‐driven regional precipitation patterns
in response to LGM conditions would help evaluate the ability of climate models to project precipitation under
future scenarios, where both thermodynamic and dynamic phenomena contribute to changes in the magnitude and
seasonality of precipitation patterns (e.g., Boos, 2012; Lora, 2018; Scheff & Frierson, 2012).

Prior studies have indicated a high sensitivity of Africa's climate to rapid recurring ice sheet instabilities during
the last glacial period (Adegbie et al., 2003; Stager et al., 2002, 2011; Weldeab et al., 2011). For example, the cold
air temperatures over Greenland (Dansgaard‐Oeschger stadials) and the influx of meltwater into the North
Atlantic during Heinrich events correlated with the rapid decline in precipitation across much of Africa (Blunier
& Brook, 2001; Dansgaard et al., 1993; McManus et al., 2004). Previous modeling studies of PMIP phases 1 to
four indicated weakened atmospheric circulation and associated decreased precipitation over West Africa
(Kageyama et al., 2021). However, a good understanding of the dynamics leading to the dryness across the WAM
region is still lacking. The comparison of the atmospheric dynamics changes of the LGM to other warmer climates
will help reveal the predominant atmospheric processes relevant to the variability of the WAM and help improve
their representation in climate models for future climate projections.

Pollen‐based reconstructions across the WAM and nearby offshore regions generally depict colder and drier
conditions than the present (Bartlein et al., 2011). Although fully coupled atmosphere‐ocean models can
reasonably reproduce large‐scale features of the LGM, several challenges remain with regard to the recon-
struction of LGM topography and the assessment of inter‐model biases for various climate feedbacks (Kageyama
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et al., 2021; Werner et al., 2018). Additionally, the spatial resolution of simulations has been identified as a crucial
factor for the inter‐model variabilities in LGM simulations, primarily due to the representation of ice sheet
topography (Kim et al., 2008; Shi et al., 2020). Overall, the complexity and diverse paleoenvironment of LGM
conditions offers the opportunity to decipher the relative contributions of individual climate factors that influence
precipitation changes across West Africa. The response of reginal δ18O in precipitation distribution in the LGM
would contribute to the interpretation of proxy signals to ensure robust model‐data comparison that can be used to
constrain the sensitivity of climate models.

2.3. Changes of the WAM in the Mid‐Pliocene

The MP (∼3 Ma) is an important warm period for understanding the atmospheric dynamics of near‐future climate
change, because the Earth's geography was similar to the present and pCO2 approached present‐day values (∼400
ppm) (Badger et al., 2013; Bartoli et al., 2011; Dowsett et al., 2016; Haywood et al., 2020; Salzmann et al., 2013;
de la Vega et al., 2020). Additionally, the MP provides useful insights into climate feedbacks through the impact
of the carbon cycle on geological times and is often considered an analog for a near‐future climate (Burke
et al., 2018; Jiang et al., 2005). Climate models that participated in the PlioMIP (Pliocene Modeling Intercom-
parison Project) phases 1 and 2 indicate an increase of 1.4–4.7°C in global mean near‐surface anomalies above the
pre‐industrial levels, along with an enhanced hydrological cycle and strengthened global monsoons (Haywood
et al., 2013, 2020; Zhang et al., 2016).

Proxy reconstructions suggest warm and humid conditions, and fewer deserts during the MP. Boreal forests and
grasslands expanded into high northern latitude regions that are currently covered by tundra (Salzmann
et al., 2008). Dust records along the coast of West Africa indicate a strengthened WAM and wetter conditions over
the Sahara (Kuechler et al., 2018; Salzmann et al., 2008). Palynological records also suggest an expansion of
vegetation over the WAM region, with high tree cover density and widespread woodland and savanna over the
Sahara (Bonnefille, 2010; Salzmann et al., 2008).

Although previous modeling studies indicated that high‐latitude warming could lead to a decreased meridional
temperature gradient and a weakened tropical circulation, the warming experienced in the Sahara region, along
with the corresponding Sahara heat low, actually caused an increased influx of moisture from the tropical Atlantic
Ocean, strengthening WAM (Corvec & Fletcher, 2017; Haywood et al., 2020). More specifically, the PlioMIP2
models estimate an increase in precipitation anomalies in the range of 60–120 mm/month (Berntell et al., 2021),
compared to a lesser increase of 30–60 mm/month from the PlioMIP1 (R. Zhang et al., 2016). Even though
similar magnitude of changes are predicted for the future, models are still limited in capturing rainfall variability
over West Africa, and future projections of it are referenced with less confidence (Biasutti, 2013; Cook, 2008;
Roehrig et al., 2013). Further work and model development is needed to understand climate feedback over West
Africa under high atmospheric CO2 conditions.

2.4. Stable Oxygen Isotopic Signal as Proxy for Reconstructing the West African Monsoon

Stable water isotopes serve as integrated tracers for diverse climate processes, and reflect changes in the water
cycle (Craig & Gordon, 1965; Dansgaard et al., 1993). Consequently, they have been extensively used to
investigate historical climate changes and characterize the current hydrological cycle. Reconstructions of the
water cycle from proxy materials typically rely on modern calibrations. The modern spatial correlation between
water isotopes and climate variables, such as precipitation amount or surface temperature, is used as a transfer
function for reconstructing past climatic variations from proxies. However, these paleoclimate reconstructions
from isotopic archives are compromised by changes in the transfer functions due to various non‐linear climatic
processes influencing the spatiotemporal variability of water isotopes, such as monsoon dynamics, evaporative
recycling, moisture transport pathways, source variation, vapor mixing, and precipitation dynamics (Bony
et al., 2008; Risi et al., 2008, 2013). For example, the oxygen isotopic composition of precipitation (δ18Op)
reconstructed from calcite in speleothems from (sub)tropical regions is used to reconstruct past monsoon changes
(e.g., Wang et al., 2001). However, the relationship between the cave δ18O record and monsoon dynamics is
complex and changes across different timescales (e.g., East Asia summer monsoon intensity controls the past cave
δ18O in orbital timescales (Cheng et al., 2016) while summer precipitation amount is suggested to reflect the cave
δ18O in centennial‐decadal timescales (Tan et al., 2009, 2018; H. Zhang et al., 2019)). Hence, GCMs with explicit
diagnostics of stable water isotopes can contribute to understanding their controlling mechanisms under different
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climatic conditions to ensure accurate paleoclimate reconstructions. Additionally, modeling the spatial repre-
sentation of water isotopes in response to distinct past climate states aids in identifying potential non‐stationarities
in their relationships with climate elements like monsoon characteristics or precipitation amounts. While previous
studies have employed water isotopes to understand present precipitation seasonality in West Africa (e.g., Risi
et al., 2010) and even during the MH (Shi et al., 2023; Thompson et al., 2021), none have explored δ18Op changes
in response to Late Cenozoic paleoenvironmental conditions or assessed how water isotopes correspond to the
spatial variability of precipitation and temperature during the WAM season.

3. Data and Methods
3.1. ECHAM5‐wiso General Circulation Model

Global climate changes in response to late Cenozoic paleoenvironmental conditions (i.e., PI, MH, LGM, and MP)
and present‐day (PD) conditions were simulated using the isotope‐tracking climate model ECHAM5‐wiso.
ECHAM5 is the fifth generation of the well‐established atmospheric general circulation model developed by the
Max Planck Institute for Meteorology (Roeckner et al., 2003). It is based on the spectral forecast model of the
European Center of Medium Range Weather Forecast (ECMWF) (Simmons et al., 1989) and represents the
climate system with prognostic equations and parameterizations. Compared to its previous version, the fifth
version has improved the representation of land surfaces, shortwave radiation, cumulus convection, and other
factors relevant to atmospheric dynamics across the monsoon region. Specifically, the model employs an implicit
scheme for the coupling of land surfaces and the atmosphere, enabling synchronous calculation of surface fluxes
due to unconditional stability (Roeckner et al., 2003). It also employs land surface parameters that effectively
portray the global distribution of major ecosystem types (Hagemann, 2002). Furthermore, the model simulates
clouds using prognostic equations for all water phases (vapor, liquid, and solid), bulk microphysics, and statistical
cloud cover parameterization (Lohmann & Roeckner, 1996; Tompkins, 2002). The version employed in this study
has been expanded to include isotope tracking capabilities, enabling the simulation of the water's isotopic
composition as part of the hydrological cycle (Werner et al., 2011). The incorporated water isotopologues (i.e.,
H2

16O, H2
18O, and HDO) function as independent tracers that undergo both kinetic and equilibrium fractionation

during phase transitions in the atmosphere. Comparing the simulated annual mean δ18Op values with observed
GNIP stations for present‐day (1979–2014) indicates very similar patterns globally and a linear fit with coeffi-
cient of determination (R2) of 0.88 and mean squared error (MSE) of 1.39‰ (Figure S11 in Supporting Infor-
mation S1). This model‐data agreement of ECHAM5‐wiso has also been demonstrated in previous studies
(Hagemann et al., 2006; Werner et al., 2011), highlighting that the model adequately represents the global hy-
drological cycle and stable isotopic composition. We further compare the model's present‐day simulations with
observed and reanalysis precipitation and near‐surface temperature data sets across West Africa to assess its
capability in representing WAM patterns and their seasonality.

3.2. Model Experiments and Boundary Conditions

Previous simulations of Late Cenozoic climate were conducted with different models and model setups. Varied
parameterization schemes, spatial resolution, and prescribed boundary conditions complicate the comparison of
the regional climates across the considered time periods. We therefore conducted (paleo)climate simulations for
PD, PI, MH, LGM, and MP boundary conditions using only ECHAM5‐wiso, while maintaining the same spatial
resolution. All climate simulation experiments were performed using a high T159 spectral resolution
(∼80 × 80 km around the equator) and 31 vertical levels up to 10 hPa. The model uses prescribed sea surface
temperature (SST) as the interface between the ocean and atmosphere and, therefore, requires less time to reach
dynamic equilibrium than fully coupled atmosphere‐ocean models. However, the prescribed SSTs disregard
oceanic decadal variability, making the simulated response inevitably biased by the specific SST reconstructions
used. The paleoclimate experiments were run for 18 years with a 6‐hr model output and only considered the last
15 years for the analysis. The first 3 years of the model serve as the spin‐up period, which is the time required for
the model to reach dynamic equilibrium. Given the study's aim to understand the WAM response to the diverse
paleoenvironmental conditions, the different experimental set‐ups accounting for variations in orbital parameters,
greenhouse gases concentration, SSTs, sea ice concentrations (SICs), and land surface cover (e.g., ice sheet and
vegetation) were devised for the different climates. The prescribed boundary conditions for the experiments are
similar to the Late Cenozoic simulations presented by Mutz et al. (2018) and Botsyun et al. (2022). We build on
those by simulating and analyzing the isotopic compositions for all paleoclimates.
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To validate the model's ability to represent WAM dynamics, we compared the present‐day (PD) simulation
conducted by Boateng et al. (2023) with observed and reanalysis precipitation and near‐surface temperature data
sets. The PD simulation setup follows the Atmospheric Model Intercomparison Project (AMIP) protocol, using
prescribed annual means of SST and SIC from 1979 to 2014. The pre‐industrial simulation (the reference year
1850) was also obtained from Boateng et al. (2023). The model was simulated with prescribed SST and SIC from
a transient coupled ocean‐atmosphere model (Lorenz & Lohmann, 2004). It used an atmospheric CO2 concen-
tration of 280 ppm in accordance with Dietrich et al. (2013), which was derived from the ice‐core record
(Etheridge et al., 1996, 1998). Land surface parameters were taken from Hagemann (2002). The initial isotopic
composition of the atmosphere was adopted from global gridded data of 18O composition of seawater provided by
LeGrande and Schmidt (2006). In this study, the climate change signals are defined as deviations from the PI
estimates. Therefore, all reported anomalies (e.g., MH‐PI) throughout the paper, described as either “increases” or
“decreases,” use the simulated PI values as a reference. We also represent the H2

18O composition using the δ‐
notation and calculate it as precipitation‐weighted means using the Vienna Standard Mean Ocean Water (V‐
SNOW).

The SST and SIC boundary conditions prescribed for the MH experiments were derived from transient MH
simulation of a low‐resolution ocean‐atmosphere coupled model (Etheridge et al., 1996, 1998; Lohmann
et al., 2013; Wei & Lohmann, 2012). The GHG concentrations (e.g., CO2 of 280 ppm) are based on ice‐core
reconstructions (Etheridge et al., 1996, 1998), and the orbital forcing parameters are taken from Dietrich
et al. (2013). On the other hand, the LGM simulation was forced with sea surface variables from reconstructions
for the Atlantic, Pacific, and Indian oceans based on the GLAMAP (Sarnthein et al., 2003) and CLIMAP (1981)
projects. Moreover, the GHG concentrations (CO2 of 185 ppm) and orbital parameters follow Otto‐Bliesner
et al. (2006). The paleogeography and ice sheet extent and thickness are based on the PMIP3 experimental
protocol (Abe‐Ouchi et al., 2015). The vegetation distribution maps for both the LGM and MH are based on the
reconstruction of plant functional types from BIOME 6000 of the paleovegetation mapping project (Bigelow
et al., 2003; Harrison et al., 2001; Pickett et al., 2004; Prentice et al., 2000). The MP paleoenvironment conditions
prescribed in the ECHAM5 model were based on the Pliocene Research, Interpretation, and Synoptic Mapping
(PRISM) project (Dowsett et al., 2010; Haywood et al., 2016). More specifically, GHG concentration (e.g., CO2

of 405 ppm), orbital parameters, land surface variables (e.g., topography, ice cover, and land‐sea mask), and sea
surface variables (SST, and SIC) were derived from PRISM3D. The vegetation distribution map was regenerated
with JSBACH plant functional types using the PRISM reconstruction (Stepanek & Lohmann, 2012). A summary
of the major boundary conditions used in this study is presented in Table 1.

Due to the sparse availability of isotopic composition records for the past climates, all the initial conditions of the
ocean and the atmosphere were kept the same. The H2

18O and HDO starting conditions for the ocean were taken
from the equilibrium 3000‐year run with MPI‐OM‐wiso (Xu et al., 2012), and the atmosphere was initialized with
δ18O and δD of −10 and −80‰, respectively, similar to previous studies (e.g., Cauquoin et al., 2019; Werner
et al., 2011).

3.3. Observed and Simulated Data Comparison

Reanalysis products are used as validation data sets to assess how ECHAM5‐wiso simulates the climatologies and
seasonality of precipitation and near‐surface temperature across the WAM region. More specifically, the ERA5
climate reanalysis, produced and maintained by ECMWF, is compared to the simulated long‐term seasonal means
of the PD climate. ERA5 consists of globally interpolated observations (e.g., ocean buoys, satellites, aircraft,
weather stations, and other platforms) and numerical simulations using a four‐dimensional variational (4D‐var)
data assimilation scheme (Hersbach et al., 2020). It has hourly output, an approximately 31 km spatial resolution,
and extends back to 1959 (Bell et al., 2021). We only extract the monthly long‐term mean for the period 1979–
2014 due to the simulated time range of the PD experiment. Moreover, the CRU (Climate Research Unit gridded
Time series) high‐resolution data set (i.e., 0.5° × 0.5° over land regions except for Antarctica), maintained at the
University of East Anglia, UK, was used to compare the PD precipitation simulation. CRU relies on the extensive
network of global weather stations, which are interpolated using angular‐distance weighting (ADW). This data set
extends back to 1901 (more details in Harris et al., 2014, 2020).
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3.4. Comparison to PMIP4 Simulations

Simulated model outputs from various climate models that participated in the fourth phase of the Paleoclimate
Model Intercomparison Project (PMIP4), which is a component of the current Coupled Model Intercomparison
Project (CMIP6) (Eyring et al., 2016), were analyzed to further compare our simulated responses to paleo-
environmental conditions with the current state‐of‐the‐art models. However, we emphasize that our analysis does
not constitute a formal inter‐model comparison since different experimental protocols were used for the simu-
lations in this study. For instance, we rely on a high‐resolution atmosphere‐only model with prescribed forcings,
in contrast to the fully coupled atmosphere‐ocean GCMs used in the PMIP4 experiments. Furthermore, the
ECHAM5‐wiso simulation time is shorter than that of the PMIP4 models (>100 years) due to the longer period
required for fully coupled ocean‐atmosphere models to reach quasi‐equilibrium and avoid drifts in climate
variables. The boundary conditions and experimental setup protocols for the PMIP4 models simulating the MH,
LGM, and MP are described in Kageyama et al. (2018) and Otto‐Bliesner et al. (2017). We analyzed the last
100 years of monthly precipitation amounts for each model, with climate anomalies estimated using their
respective PI control simulations. Moreover, we highlight that the individual PMIP4 models' spatial resolutions
were kept for our analysis to disentangle the impact of the model resolution in representing the WAM dynamics.

Table 1
Summary of Boundary Conditions for the ECHAM5‐Wiso Experiments (This Study) and the List of PMIP4 Models That Simulated the Coeval Climates

Experiment name
Greenhouse gas
concentrations

Orbital forcing
parameters Surface conditions PMIP4 models considered

Pre‐industrial (PI):
year 1850

CO2: 280 ppm, CH4:
760 ppb, N2O: 270 ppb.

e: 0.016804, o:
23.4725, lop:

278.734

The SST and SIC data are taken from a low‐
resolution coupled ocean‐atmosphere

simulation by Dietrich et al. (2013) and Lorenz
and Lohmann (2004). Vegetation distribution

data was adopted from Hagemann (2002).

All models

Mid‐Holocene
(MH): ∼6 ka

CO2: 280 ppm, CH4:
650 ppb, N2O: 270 ppb.

e: 0.018682, o:
24.1048, lop:

180.918

SSTs and SICs are obtained from a transient,
low‐resolution coupled ocean‐atmosphere

simulation of the Mid‐Holocene (Lohmann
et al., 2013; Wei & Lohmann, 2012). Vegetation
reconstructions from the BIOME 6000 data set

(Bigelow et al., 2003; Harrison et al., 2001;
Pickett et al., 2004; Prentice et al., 2000)

converted into plant functional types.

AWI‐ESM‐1‐1‐LR, CESM2, EC‐Earth3‐LR,
GISS‐E2‐1‐G, HadGEM3‐GC31‐LL, IPSL‐

CM6A‐LR, MIROC‐ES2L, NorESM1‐F

Last Glacial
Maximum
(LGM): ∼21 ka

CO2: 185 ppm, CH4:
350 ppb, N2O: 200 ppb.

e: 0.018994, o:
22.949, lop: 294.42

SSTs and SICs were derived from GLAMAP
reconstructions for the Atlantic Ocean
(Sarnthein et al., 2003) and CLIMAP

reconstructions for the Pacific and Indian
Oceans (CLIMAP, 1981). Land‐sea

distribution, ice sheet extent, and thickness were
based on PMIP3 data (Abe‐Ouchi et al., 2015).
Vegetation patterns were reconstructed using

maps of plant functional types from the BIOME
6000 Paleovegetation Mapping Project

(Bigelow et al., 2003; Harrison et al., 2001;
Pickett et al., 2004; Prentice et al., 2000) and

model predictions provided by Arnold
et al. (2009).

AWI‐ESM‐1‐1‐LR, CESM2‐WACCM‐FV2,
MIROC‐ES2L, MPI‐ESM1‐2‐LR, INM‐CM4‐8

Mid‐Pliocene
(MP): ∼3 Ma

CO2: 405 ppm, CH4:
760 ppb, N2O: 270 ppb.

e: 0.016804, o:
23.4725, lop:

278.734

SSTs, SICs, land‐sea mask, topography, and ice
cover data were sourced from PRISM3D

(Dowsett et al., 2010; Haywood et al., 2010;
Sohl et al., 2009). The vegetation boundary
condition was established by converting the

PRISM vegetation reconstruction into JSBACH
plant functional types, following the method
outlined by Stepanek and Lohmann (2012).

CESM2, EC‐Earth3‐LR, GISS‐E2‐1‐G,
HadGEM3‐GC31‐LL, IPSL‐CM6A‐LR,

NorESM1‐F

Note. e stands for eccentricity, o for obliquity, and lop for longitude of perihelion.
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3.5. West African Monsoon Anomalies and Statistical Test

Long‐term seasonal means of the WAM months (JJAS) were estimated using the 6‐hr model output from the
ECHAM5‐wiso experiments and the monthly means from the PMIP4 models. The statistical significance of the
long‐term anomalies is evaluated using a student t‐test with a confidence interval threshold of 95%. It is important
to note that the analysis is based on uncorrected time, even though orbits were modified in the time slice ex-
periments. However, this does not influence the analysis since climatological means are considered. As the WAM
seasonality is zonally distributed (Janicot et al., 2011; S. E. Nicholson & Palao, 1993), three different latitudinal
transects were delineated for further analysis. Specifically, zonal averages over the Sahara (30–20°N, 20°W–
30°E), Sahel (20–10°N, 20°W–30°E), and Guinea coast (10–5°N, 20°W–30°E) were used to understand the
meridional variations of the simulated rain belt across the WAM region.

4. Results
4.1. Present‐Day Simulation and Comparison to Observations

Comparisons of the simulated and the observed spatial patterns and seasonality of precipitation and near‐surface
temperature revealed that ECHAM5‐wiso represents the climate across the WAM region well. More specifically,
the simulated and observed precipitation in the monsoon season shows a similar rain belt, that is, a latitudinal band
of maximum precipitation of approximately 400 mm/month across Africa. There are only slight deviations in
magnitude between ECHAM5‐wiso and ERA5 (Figures 1a–1c): ERA5 shows a higher magnitude of precipita-
tion, with ∼40 mm/month more than predicted by the simulation. However, comparing the simulated patterns to
the CRU data sets reduces these slight differences in precipitation patterns and magnitudes (Figure S1 in Sup-
porting Information S1). Moreover, the simulated near‐surface temperature indicates similar spatial patterns with
a pronounced meridional gradient, indicating high temperatures of up to 40°C across the Sahara region
(Figures 1d–1f).

Figure 1. Long‐term annual means (1979–2014) of ERA5 and ECHAM5‐wiso precipitation (a and b) and near‐surface temperature (d and e) during the monsoon season
(JJAS), and the differences in precipitation and near‐surface temperature between the data sets (c and f). The green color range in the precipitation difference indicates a
wet bias, while the brown colors indicate a dry bias in the model. The red color range also represents a warm bias, and the blue colors indicate a cold bias in the model.
Overall, the simulated patterns of the rain belt and meridional temperature gradient during the monsoon season demonstrate a reasonable model performance. The
demarcated regions in (a) are used for estimating the regional means.
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The migration of the WAM drives different seasonal precipitation patterns across West Africa. Consequently, we
analyze the seasonal trends using regional monthly means across the Sahara, Sahel, and the coast of Guinea.
Overall, the model simulates an accurate seasonal distribution and intensity across most of the transects
(Figure 2). Specifically, the observed and the modeled seasonal cycle shows a precipitation increase of >3 mm/
month during the winter in the Sahara region (Figure 2a). Moreover, the model also simulates a realistic unimodal
monthly distribution across the Sahel, with maximum precipitation of ∼100 mm/month in August (Figure 2b).
However, ECHAM5‐wiso predicts the expected bimodal precipitation seasonality across the Guinea coast, with
peak months in June (∼225 mm/month) and September (∼200 mm/month), while ERA5 indicates wider
unimodal patterns of maximum precipitation of ∼250 mm/month in June (Figure 2c). Despite the adequate
precipitation representation of ERA5 over West Africa, previous studies have indicated their underestimation
over the coast of Guinea (e.g., Quagraine et al., 2020). Overall, the present‐day simulation results confirm
ECHAM5‐wiso's ability to represent the hydroclimate of the WAM and its associated teleconnections, validating
its use for paleoclimate simulations.

4.2. Simulated Changes of the WAM in the Late Cenozoic

The simulated regional patterns of the WAM in the MH, LGM, and MP deviate significantly from PI conditions.
Overall, the model estimates an intensification of the WAM in the MH and MP, with the MH showing a more
significant intensification than the MP. On the other hand, the model estimates a pattern of extensive dryness
during the WAM season in the LGM (Figure 3). The estimated precipitation anomalies during the WAM season in
the MH indicate bidirectional latitudinal patterns. The MH experiment estimates an increase of ∼150 mm/month
from 7° to 30°N, with statistical significance below 27°N. Conversely, the model indicates a decrease of ∼30 mm/
month toward the coastal regions (2–6°N) (Figure 3a). Overall, the LGM simulation indicates a precipitation
decrease of up to 150 mm/month across the WAM region, with significant anomalies along the coastal regions
(Figure 3b). Lastly, MP estimates an increase of ∼100 mm/month in precipitation anomalies during the WAM
season, with patches of a slight decrease in precipitation along the coast of Guinea, Nigeria, and Cameroon
(Figure 3c). The simulated patterns of precipitation anomalies indicate a higher magnitude of the latitudinal extent
of the WAM toward the Sahara region in the MH compared to the MP. To assess the relative importance and
added value of using ECHAM5‐wiso to simulate all the studied periods, we compare our model estimates to those
of other models from the CMIP6‐PMIP4 experiments (Table 1) that simulate the same periods. We focus our
analysis on regional means of precipitation anomalies across the Sahel and also evaluate the latitudinal distri-
bution of the WAM. The simulated WAM seasonal climatologies of the different climates (i.e., MH, LGM, and

Figure 2. Comparison of ERA5 (red) and ECHAM5‐wiso (black) monthly precipitation changes across the (a) Sahara (30–20ºN, 20ºW–30ºE), (b) Sahel (20–10ºN,
20ºW–30ºE), and (c) Coast of Guinea (10–5ºN, 20ºW–30ºE) (see Figure 1a). For the Sahara and the Sahel, the modeled evolution of the WAM is consistent with ERA5.
However, the model produces the expected bimodal precipitation seasonality across the Guinea coast, while ERA5 only shows a unimodal pattern.
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MP) and their respective control means (PI) are presented in the supplementary material (Figures S2, S3, S4, and
S5 in Supporting Information S1).

Overall, the inter‐model comparison reveals consistent estimates in the direction and magnitude of change in
response to different paleoenvironmental conditions, with the exception of CESM2‐WCCM‐FV2. Surprisingly,
this model estimates an increase in precipitation anomalies across the Sahel in the LGM (Figure 4b). However,
Zhu et al. (2021) have indicated that this unrealistic sensitivity to colder climates may be attributed to exaggerated
shortwave cloud feedback or an unrepresented physical mechanism countering such cloud feedback. Specifically,
ECHAM5‐wiso estimates the maximum increase in precipitation anomalies of ∼90 mm/month across the Sahel in
the MH for the WAM season, followed by MPI‐ESM1‐2‐LR (with ∼80 mm/month), while GISS‐E2‐1‐G shows
the lowest precipitation anomalies of ∼35 mm/month (Figure 4a). Alternatively, AWI‐ESM‐1‐1‐LR estimates a
maximum precipitation decrease of 55 mm/month across the Sahel in the LGM (Figure 4b). The precipitation
decreases (∼20 mm/month) estimated by ECHAM5‐wiso is similar to the estimates by the INN‐CM4‐8 and
MIROC‐ES2L models. In the MP, the WAM response across the Sahel exhibits a wider range of precipitation
anomalies, with EC‐Earth3‐LR, indicating the maximum increase of ∼160 mm/month and GISS‐E2‐1‐G showing
the lowest increase of ∼10 mm/month (Figure 4c). However, ECHAM5‐wiso estimates fall within a mid‐range of
∼50 mm/month, which is closer to the estimates by HadGEM3‐GC31‐LL, IPSL‐CM6A‐LR, and NorESM1‐F
models. Even though ECHAM5‐wiso indicates a maximum intensification of the WAM across the Sahel in
the MH rather than in the MP, other models (e.g., EC‐Earth3‐LR) suggest the reverse trend. Consequently, the
longitudinal regional means of the latitudinal distribution of precipitation anomalies during the WAM season are
evaluated to compare the northward migration of the WAM in response to the different paleoenvironments
(Figure 4).

In total, most of the PMIP4 models suggest a higher meridional migration of the WAM in the MP than in the MH,
while the magnitude of changes in the latitudinal band of maximum precipitation varies among the individual
models (Figure 5). Specifically, EC‐Earth3‐LR estimates maximum latitudinal precipitation of 200 mm/month
with a greater northward extent in MP than the ∼100 mm/month rain belt in the MH (Figures 5a and 5c).
However, GISS‐E2‐1‐G suggests a higher intensification of the WAM with an increase in precipitation by 50 mm/
month in the MH, and a relatively modest increase of ∼10 mm/month in the MP (Figures 5a and 5c). The
ECHAM5‐wiso experiments suggest a slight northward extent of the WAM in the MH and a higher intensification
(∼80 mm/month more) than in the MP (Figures 5a and 5c). Despite the estimated differences, all the models,
including ECHAM5‐wiso, indicate a similar meridional distribution in the MH and MP. However, CESM2‐
WCCM‐FV2 and INM‐CM4‐8 distinctively suggest an increased distribution of meridional precipitation
anomalies across the WAM areas and toward the equatorial Atlantic in the LGM (Figure 5b), respectively, despite
the general decreasing trend estimated by the other models.

Figure 3. Precipitation anomalies during the WAM season (JJAS) for the (a) Mid‐Holocene (MH), (b) Last Glacial Maximum (LGM), and (c) Mid‐Pliocene (MP), as
simulated by ECHAM5‐wiso. The green color range represents wetter conditions, while the brown color range represents drier conditions compared to the Pre‐Industrial
(PI) estimates. The black dot stippling indicates regions with statistically significant differences, assuming a confidence interval of 95% based on a student t‐test
analysis. The precipitation anomalies patterns indicate the highest intensification of the WAM and its northward reach in the MH despite the enhanced hydrological
cycle in the MP.
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Figure 4. Regional means of precipitation anomalies during the WAM season estimated for the Sahel region (see Figure 1a)
using ECHAM5‐wiso (labeled in blue) and the PMIP4 models considered (Table 1) for the (a) Mid‐Holocene (MH), (b) Last
Glacial Maximum (LGM), and (c) Mid‐Pliocene (MP) paleoenvironmental conditions. The individual precipitation
anomalies are estimated based on their respective pre‐industrial (PI) runs.

Figure 5. Latitudinal regional, seasonal means (JJAS) of precipitation anomalies across the WAM region (averaged between
20°W and 30°E) estimated for the ECHAM5‐wiso and PMIP4 models for (a) Mid‐Holocene (MH), (b) Last Glacial
Maximum (LGM), and (c) Mid‐Pliocene (MP) simulations. ECHAM5‐wiso estimates show a latitudinal distribution that is
consistent with most of the PMIP4 models. ECHAM5‐wiso estimates for LGM and MP fall into the PMIP4 model range,
while ECHAM5‐wiso estimates for the intensification of the WAM in the MH exceed the PMIP4 model range.
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4.3. Seasonality of the Simulated WAM in the Late Cenozoic

The meridional migration of the WAM is investigated by analyzing the evolution of latitudinal regional means
(Hovmöller diagram) (Figure 6) and regional means over the coast of Guinea, Sahel, and Sahara (Figure 7).
Generally, the seasonal cycle of the WAM progresses from two rainy season regimes across the coastal areas to a
single rainy event across higher latitudes (Figure 2). The progression of the WAM is classically defined in three
phases: (a) the onset period (March‐May), driven by the low‐level south‐westerlies moist transport from the South
Atlantic toward the coastal regions up to 4°N and the abrupt shift of the ITCZ from the quasi‐stationary zone
between 5 and 8°N to 8–10°N, (b) the high rain period (June–August), which abruptly shifts the rain belt up to
10°N (also known as monsoon jump), marking the start of the high rainfall events in the Sahel and the end of the
first rainy regime across the coast, and (c) the southward retreat (September‐October), reflecting the last phase of
the WAM annual cycle and the second rainfall region across the coast (Barbé et al., 2002; Sultan et al., 2003;
Sultan & Janicot, 2003).

The latitudinal evolution of the WAM in the PI indicates maximum precipitation of up to 320 mm/month during
the onset period (from March to May) along the coast, followed by a monsoonal jump up to 15°N in the Sahel with
≤40 mm/month of precipitation (Figure 6a). Moreover, the southward retreat toward the coast at the end of the
annual cycle records half of the precipitation (i.e., ∼160 mm/month) during the onset period. The MH evolution
exhibits similar phases, but with higher precipitation and a greater northward extent. Specifically, the onset period
records precipitation of ∼360 mm/month and a higher northward shift up to ∼25°N with higher precipitation rates
of up to 320 mm/month across the Sahel (Figure 6b). The southward retreat phase in the MH is also characterized
by higher precipitation rates of up to 240 mm/month. Overall, the MP seasonal trend shows an inverted V‐shape
distribution that is similar to the MH pattern, but flatter and with a higher rainfall in the onset and southward

Figure 6. Hovmöller diagram (space‐time) showing the latitudinal seasonal migration of precipitation across the WAM region (averaged between 20°W and 30°E) for
the (a) Pre‐industrial (PI), (b) Mid‐Holocene (MH), (c) Last Glacial Maximum (LGM), and (d) Mid‐Pliocene (MP) experiments using ECHAM5‐wiso. The MH
seasonal distribution indicates the highest precipitation rate during the high‐rainfall period (June‐August), while the MP indicates more precipitation in the onset
(March‐May) and southward retreat (September‐October) periods.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD040748

BOATENG ET AL. 13 of 35

 21698996, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JD

040748, W
iley O

nline Library on [21/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



retreat phases along the coast. The onset and southward retreat phases are characterized by precipitation rates of
∼400 mm/month and 300 mm/month across the coast of Guinea and the equatorial Atlantic, respectively
(Figure 6d). However, the high‐rainfall period is characterized by less rainfall (∼250 mm/month) across the Sahel
and a lower latitudinal extent (≤18°N) when compared to MH. On the other hand, the LGM simulations predict
drier conditions in all seasons, with a rainfall increase of only up to 160 mm/month in the Sahel during the high‐
rain period (Figure 6c).

The seasonal cycle across the different climate zones is assessed through their regional means. The seasonal
precipitation cycle exhibits pronounced variations in magnitude, but few changes in precipitation distribution
(Figure 7). Among those few changes are variations in peak precipitation months estimated for the Sahara. While
the PI estimates indicate higher precipitation (∼4 mm/month) in November‐February, the MH estimates suggest
more precipitation from July to October, with peak precipitation rates of 12 mm/month in September. Overall, the
LGM estimates indicate persistently drier conditions across all seasons in the Sahara. The MP also indicates a
higher precipitation record in the pre‐onset period across the Sahara, with a peak month in February (∼7 mm/
month). Regarding the bimodal monthly distribution along the coastal regions, all climates show similar patterns.
For the MH, the precipitation peaks are highest, that is, a ∼300 mm/month peak in June and a ∼260 mm/month
peak in October. The estimates across the Sahel also exhibit a unimodal distribution and precipitation peak in
August. The MH simulation produces the highest peak, with an increase of more than 100% relative to the PI.

4.4. Changes of Stable Oxygen Isotopic Composition in Precipitation Associated With Late Cenozoic
Changes in the West African Monsoon

In this section, we explore the simulated seasonal climatological anomalies of the precipitation‐weighted stable
oxygen isotopic composition of precipitation (δ18Op) during the WAM season (Figure 8). Even though δ18Op

values are closely linked to precipitation due to the “amount effect", the simulated spatial patterns of precipitation
and δ18Op values are different. Overall, the warmer climates (i.e., MH and MP) estimate a decrease in δ18Op

values across the WAM region when compared to the PI patterns during the monsoon season (Figures 8a and 8c).
In contrast, the δ18Op anomalies increase across many parts of the WAM region in response to the colder con-
ditions in the LGM (Figure 8b). The MH is characterized by a significant decrease of δ18Op values by ∼ −5‰
between 10 and 20°N, which spatially coincides with the region of the rain belt (Figure 8a). The decrease becomes

Figure 7. Seasonal cycle of precipitation across the (a) Sahara (30–20°N, 20°W–30°E), (b) Sahel (20–10°N, 20°W–30°E), and (c) Guinea coast (10–5°N, 20°W–30°E)
(See Figure 1a) estimated for the Pre‐industrial (PI; black), Mid‐Holocene (MH; red), (c) Last Glacial Maximum (LGM; blue), and (d) Mid‐Pliocene (MP; green)
simulation using ECHAM5‐wiso. The seasonal distribution of precipitation across the Sahara shows different peak months for the different past climates, while the
Sahel and Coast of Guinea show a more consistent seasonality.
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less pronounced (∼−1‰) toward the Sahara region, and shows small areas that experience a slight increase
(∼1‰) toward the east. Moreover, the equatorial Atlantic region also experiences a slight δ18Op decrease of about
1‰. The δ18Op anomalies during the MP also decrease across the continent, but show an increase of up to −6‰
across the Sahara (Figure 8c). Furthermore, the decrease of δ18Op values across the Sahel is less significant than
the increase in precipitation anomalies in the MP. On the other hand, the LGM simulation indicates a significant
increase in δ18Op values of ∼3‰ across the Atlantic Ocean and the adjacent coastal regions (Figure 8b).

4.5. Changes in the Atmospheric Dynamics Behind the Simulated WAM Changes

Here, we analyze the atmospheric dynamics behind the simulated changes in the WAM. Specifically, we use near‐
surface temperature, mean sea level pressure, wind patterns at different atmospheric levels, and surface heat
fluxes to investigate how these dynamics change in response to different late Cenozoic boundary conditions. Due
to our current understanding of WAM dynamics (Section 2.1), we focus on the spatial and intensification changes
of the surface temperature and pressure gradients, AEJ, TEJ, and the low‐level south‐westerly winds as the
dynamic feedback contributing to the simulated changes in the WAM. Additionally, we evaluate the changes in
the WAM due to land surface conditions (e.g., prescribed vegetation) in the experiments through the responses of
surface latent and sensible heat fluxes.

4.5.1. Changes in Near‐Surface Temperature

The warmer climate experiments (i.e., MH and MP) produce a north‐south near‐surface temperature gradient with
an increase in the Sahara region, a decrease in the Sahel, and smaller regions of increases (MP) or no (MH)
changes at the southern coast (Figure 9). Overall, the MH indicates a pronounced meridional gradient with a
significant increase in temperature anomaly of up to 10°C across the Sahara and a significant decrease of down to
−8°C toward the Guinea coast (Figure 9a). The MP anomalies indicate similar patterns, but with less pronounced
gradients and significant changes only toward Central and East Africa. More specifically, the MP shows an
increase of up to 5°C across the Sahara and a decrease of about −3°C across the Sahel, transitioning into a slight
increase of up to 2°C in the equatorial Atlantic (Figure 9c). This spatial variability is consistent with the pre-
cipitation patterns. Moreover, the mean sea level pressure patterns also indicate the deepening of the low‐pressure
area across the Sahara in MH compared to the MP (Figure S6 in Supporting Information S1). However,
comparing the cyclonic flow across the Sahara and the strengthened south‐westerlies moist transport from the
equatorial Atlantic at 850 hPa between the MH and MP reveals no noticeable changes (Figure S6 in Supporting
Information S1). Contrarily, the temperature anomalies in the LGM indicate overall colder conditions across the
continent with a significant decrease of up to −5°C.

4.5.2. Changes in the Vertical Structure of Zonal and Meridional Wind Speeds

We analyzed the latitudinal‐altitude cross‐sections of zonal and meridional wind speeds across the WAM region
to understand the atmospheric circulation associated with the simulated precipitation dynamics. The zonal wind

Figure 8. Simulated changes in δ18Op in the WAM season (JJAS) for the (a) Mid‐Holocene (MH), (b) Last Glacial Maximum (LGM), and (c) Mid‐Pliocene (MP). The
pink color range represents heavy isotope depletion, and the green color range represents an enrichment in the heavy isotopes in relation to Pre‐industrial (PI) values.
The black dot stippling indicates regions with a statistically significant difference, assuming a confidence interval of 95%, using a student t‐test analysis.
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patterns reveal a higher altitudinal reach of the low‐level southwesterlies and a greater northward propagation in
the MH and MP when compared to the PI and LGM (Figure 10). The westerlies reach a latitudinal extent of 17°N
and stay below 800 hPa atmospheric level in the PI and LGM, while in the MH and MP, the flows extend over
20°N and up to the 700 hPa level (Figures 10a–10d). The MH and MP simulations estimate a higher northward
reach of the winds, but the latter predicts slightly higher wind shear at the core of the low‐level flow. Consistently,

Figure 9. Simulated temperature anomalies of the WAM season (JJAS) estimated in response to the (a) Mid‐Holocene (MH), (b) Last Glacial Maximum (LGM), and
(c) Mid‐Pliocene (MP) paleoenvironmental conditions using ECHAM5‐wiso. The blue color ranges represent colder conditions, and the red color ranges represent
warmer conditions compared to the pre‐industrial estimates. The black dot stippling indicates regions with a statistically significant difference, assuming a confidence
interval of 95% using a student t‐test analysis.

Figure 10. Latitudinal vertical cross‐sectional for zonal (top panel) patterns, where positive (negative) values indicate westerly (easterly) winds, and for meridional
patterns (bottom panel), where positive (negative) values indicate southerly (northerly) wind speeds estimated for the WAM season (JJAS) in response to (a) Pre‐
industrial (PI), (b) Mid‐Holocene (MH), (c) Last Glacial Maximum (LGM), and (d) Mid‐Pliocene (MP) paleoenvironmental conditions. The approximate locations of
the African Easterly Jet (AEJ), Tropical Easterly Jet (TEJ), Intertropical Discontinuity (ITD), low‐level westerlies and Shallow Meridional Cell (SMC) are shown in a
and e. The low‐level westerlies reach the highest latitude and altitude in the MH. The strengthened WAM conditions are more associated with the northward position of
the Africa Easterly Jet (AEJ) than its intensity.
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the AEJ is located between 10 and 15°N at approximately 600 hPa in the PI and LGM. However, the LGM
indicates a more intense AEJ than the PI despite overall drier conditions. In the MH and MP, the AEJ experiences
a greater northward shift between 15 and 20°N, and its core shifts to a higher altitude than in the PI. In contrast to
the LGM and PI, the AEJ in the MH indicates higher intensification than the MP.

The latitudinal‐altitude cross‐section of winds also indicates higher vertical wind shear (inferred from the tran-
sition from the low‐level westerlies to the mid‐level easterlies) in the MH and MP compared to the PI. Stronger
southwesterlies (and, therefore, a deeper monsoon depth) are also identified in the MH and MP. The monsoon
depth defines the altitudinal reach of moisture transport from the equatorial Atlantic into the continent. In contrast,
the LGM experiment estimates a shallow monsoon depth compared to the PI. More specifically, the monsoon
depth reaches an altitude of 600 hPa in the MH and MP, and only up to 700 hPa in the PI and LGM (Figures 10e–
10h). Moreover, the patterns in the MH and MP indicate a more northward location of the ITD (i.e., the location
where the moist southwesterlies deflect the dry northeasterlies from the Sahara) at approximately 20° and 19°N,
respectively. For the PI and LGM, the ITD is located further south (<17°N). The intensity of the low‐level
moisture transport, TEJ, AEJ, and the location of the ITD coincide with the latitudinal band of negative
omega values (wind directions away from the ground; updraft) up to 200 hPa and the associated subsidence
(positive omega values) across the Sahara (Figure S7 in Supporting Information S1). Overall, the tropospheric
structure of the winds reveals stronger southwesterlies moisture transport from the tropical Atlantic, a higher
monsoon depth, the northward position of the AEJ, and the intensification of the TEJ, consistent with the
increased intensity of the WAM and its northward migration in the MH and MP.

4.5.3. Changes in Sensible and Latent Heat Fluxes

Generally, high vegetation cover yields more water availability through evapotranspiration, which increases
latent heat (LH) flux. Moreover, moisture availability due to the increased LH flux leads to a rainfall‐induced
cooling effect, reducing sensible heat (SH) flux into the atmosphere. Specifically, for the WAM region, the
recycling of water vapor through evaporative fluxes also contributes to the northward extent of precipitation.
Therefore, the response of the WAM to different surface conditions is described here through the analysis of SH
and LH fluxes. However, we highlight that diagnosing the causes of the changes in terrestrial water balance (i.e.,
precipitation minus evaporation) through moisture budget analysis (Seager & Henderson, 2013) will help better
quantify the contribution of the atmospheric circulation and surface moisture fluxes to the precipitation changes
(e.g., Feng et al., 2022) and will be addressed in future study.

The paleoclimate experiments indicate varied responses to the surface heat fluxes (Figure 11). In the MH
experiment, the results indicate pronounced negative LH anomalies (i.e., upward flux) of up to −80 Wm−2 across
the Sahel, gradually reducing in magnitude towards the Sahara (Figure 11a). Regions with more upward LH
fluxes coincide with regions of a significant increase in precipitation the MH. The LGM reveals overall positive
(downward) LH flux anomalies across the Sahel and coastal regions, with no changes towards the Sahara due to
colder and drier conditions (Figure 11b). In the MP, the estimated patterns reveal a slight increase in upward
fluxes with negative LH anomalies down to −30 Wm−2 across the Sahel, and no changes in the Sahara
(Figure 11c). Such simulated patterns of releasing LH are consistent with higher enhanced evaporation over
vegetated surfaces through radiative forcing (Figure S8 in Supporting Information S1) in the MH. The SH flux
anomalies also show consistent results with more downward fluxes and colder surface conditions associated with
increased precipitation. The MH experiment estimates negative SH anomalies down to −60 Wm−2 across the
Sahara, reaching 15°N and positive SH anomalies across the Sahel towards the coastal regions (Figure 11d). The
zonal band of the downward SH anomalies is also consistent with the simulated rain belt in both the MH and MP.
The MP experiment estimates a similar, albeit less pronounced, north‐south gradient of SH. The LGM experiment
estimates negative SH anomalies across most regions on the continent, which is consistent with less availability of
water to evaporate. The simulated SH flux patterns are consistent with the near‐surface temperature anomalies,
with a more pronounced meridional gradient in the MH relative to the MP.
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5. Discussion
5.1. Simulated Changes of the WAM in Response to the Large‐Scale Forcings

5.1.1. Mid‐Holocene (~6 ka)

Overall, the analyzed climate model outputs consistently indicate the intensification and expansion of the WAM
during the MH, specifically during the boreal summer. These simulated patterns align with findings from previous
modeling studies (e.g., Bosmans et al., 2012; Gaetani et al., 2017; Patricola & Cook, 2007; Zhao & Harri-
son, 2012) and proxy reconstructions (e.g., Bartlein et al., 2011). The increase in precipitation during the WAM
season is not surprising, given that the orbital configurations of the MH lead to stronger insolation during the
boreal summer and autumn, and to weaker insolation during the winter when compared to PI forcings (Joussaume
et al., 1999; Kutzbach & Liu, 1997). These orbital precision variations with stronger seasonal thermal amplitudes
also result in more pronounced equator‐to‐pole and land‐sea thermal gradients, contributing to moisture redis-
tribution across the continents (Brierley et al., 2020). Specifically, the stronger thermal gradients and associated
continental warming during the WAM season (JJAS) deepen the low‐pressure cells over the Sahara. This in-
tensifies the advection of moist air masses from the equatorial Atlantic Ocean, thereby amplifying and expanding
the WAM. Moreover, the redistribution of moisture associated with the seasonal insolation distribution can be
observed as a weakening of the annual‐scale range of precipitation over the ocean and a strengthening over the
continent, as suggested in previous studies (e.g., Braconnot et al., 2004). The MH precipitation anomalies in the
inter‐annual scale are less pronounced than the seasonal changes. These changes reflect that the seasonal vari-
ations in insolation primarily drive the MH global climate changes (Kageyama et al., 2013). The ECHAM5‐wiso
model estimates global warming of approximately ∼0.3°C compared to the PI control run (Figure S9 in Sup-
porting Information S1). The bidirectional precipitation anomalies, with drier conditions toward the coastal re-
gions, are also consistent with the rainfall dipole patterns of the African Humid Period (AHP). This phenomenon
is explained by the northward shift of the ITCZ during the boreal summer in response to the insolation in the
Northern Hemisphere (Braconnot et al., 2007; Coe & Harrison, 2002; deMenocal et al., 2000).

Compared to the model outputs from the PMIP4‐CMIP6 experiments, ECHAM5‐wiso predicts the highest
intensification and greatest northward reach of the WAM. The precipitation anomalies estimated with ECHAM5‐
wiso indicate a maximum rain belt of approximately 150 mm/month across the Sahel (10–20°N) and less rainfall
reaching 30°N. Out of all considered models, ECHAM5‐wiso estimates predict the highest regional precipitation

Figure 11. Latent (top panel) and Sensible (bottom panel) heat flux anomalies during the WAM months (JJAS) for the (a) Mid‐Holocene (MH), (b) Last Glacial
Maximum (LGM), and (c) Mid‐Pliocene (MP). The purple ranges represent net upward fluxes, and the green color ranges represent downward fluxes.

Journal of Geophysical Research: Atmospheres 10.1029/2024JD040748

BOATENG ET AL. 18 of 35

 21698996, 2024, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JD

040748, W
iley O

nline Library on [21/07/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



means (∼95 mm/month), followed by the MPI‐ESM‐LR, which has a similar atmospheric model component (i.e.,
ECHAM6). This also further validates the ability of models in the ECHAM family to reproduce the atmospheric
dynamics and hydrological cycle across the African continent. The relatively high precipitation rates predicted by
our ECHAM5‐wiso simulations might be partly due to the following:

1. The representation of MH vegetation feedbacks. The experimental design for the PMIP4‐CMIP6 MH simu-
lation keeps vegetation from the PI, using prescribed surface conditions or dynamic vegetation models.
However, previous studies have suggested a “Green Sahara”, characterized by steppe, savanna, and shrub
vegetation, and fewer deserts than today (Dallmeyer et al., 2020; Hoelzmann et al., 1998; Jolly et al., 1998).
Such vegetation is required to sustain the enhancement and northward extent of the WAM during the MH. The
simulation with ECHAM5‐wiso used MH vegetation patterns provided by the BIOME6000 vegetation re-
constructions (Bigelow et al., 2003; Harrison et al., 2001; Pickett et al., 2004; Prentice et al., 2000), where the
Sahara desert was drastically reduced, and the Sahelian vegetation belt, consisting of steppe, tropical dry
forest, and xerophytic woods/shrubs, was extended northward (Jolly et al., 1998; Prentice et al., 2000).
Through positive feedback, vegetation has been suggested to increase orbitally driven precipitation across
North Africa due to the warming effect caused by reduced albedo (Bonfils et al., 2001) and increased
evapotranspiration as a result of increased latent heat fluxes (Levis et al., 2004; Texier et al., 2000). Overall,
moisture recycling through evapotranspiration and induced surface warming increases convection and inland
moisture flux and intensifies the WAM. However, previous studies have also indicated a plausible negative
vegetation feedback on precipitation at the annual scale due to a larger contribution of soil evaporation than the
albedo feedback under wetter conditions (Notaro et al., 2008; Y. Wang et al., 2008).

2. The lower values of greenhouse gas (GHG) concentrations used for the PMIP4‐CMIP6 MH experiments.
Lower pCO2 would result in a slightly colder climate than that produced by the ECHAM5‐wiso simulation.
This has been shown for the PMIP3‐CMIP5 MH experiments that used GHG concentrations that are similar to
those used for our ECHAM5‐wiso experiment. The differences between PMIP4‐CMIP6 and PMIP3‐CMIP5
were due to the simulated difference in effective radiative forcing of −0.3 Wm−2 (Otto‐Bliesner et al., 2017).
Generally, the slightly colder climate would reduce the temperature meridional gradient across the African
continent that drives low‐level south‐westerly moist air masses from the equatorial Atlantic Ocean.

3. The use of the high spatial resolution for the ECHAM5‐wiso simulation. Several studies have demonstrated
that monsoons are better resolved when resolution is increased, even though the magnitude changes are more
susceptible to the model's parameterization (e.g., Gao et al., 2006; Sperber et al., 1994). The higher spatial
resolution consequently reproduces the MH patterns through improved representation of important processes,
such as large‐scale condensation, land‐sea interaction, and topographic forcings (Boyle & Klein, 2010).
Bosmans et al. (2012) showed that using a high‐resolution (T159) for EC‐Earth GCM resulted in an increased
intensity and a greater northward reach of the WAM in the MH when compared to the low‐resolution PMIP2
ocean‐atmosphere coupled models. The inter‐model variabilities can also be attributed to the differences in
complexities and the models' sensitivity to the parameterization of clouds, atmospheric dynamics, and the
hydrological cycle in general. We highlight that determining the influence of resolution and model parame-
terization is beyond the scope of this manuscript. Overall, all the models estimate similar latitudinal precip-
itation patterns across the WAM region, but the predicted northward reach and regional precipitation amounts
are too low to sustain the plant types that exited during the MH (Braconnot et al., 2007; Joussaume et al., 1999).

5.1.2. Last Glacial Maximum (~21 ka)

Generally, the global climate during the LGM was characterized by large‐scale cooling due to radiative per-
turbations linked to the extensive continental ice sheets and lower atmospheric greenhouse gas (GHG) concen-
trations (Clark et al., 2009). These large‐scale drivers were further modified by internal feedbacks in the climate
system involving factors like sea ice, snow, and water vapor (e.g., Braconnot et al., 2007). ECHAM5‐wiso
simulates realistic patterns of temperature anomalies, indicating maximum cooling of approximately −15°C
across regions with ice sheets in the Northern Hemisphere, and moderate cooling (−2 to −5°C) over tropical areas
(Figure S9 in Supporting Information S1). These patterns are similar to the results of PMIP4‐CMIP6 experiments
and align with findings from previous modeling studies (e.g., Cao et al., 2019; Kageyama et al., 2021). The large
perturbations in the atmospheric radiative balance due to albedo feedbacks also result in significant changes in
atmospheric circulation patterns, contributing to comprehensive changes in precipitation patterns (e.g., Liakka
et al., 2016; Liakka & Lofverstrom, 2018). Large ice sheets covering North America and Fennoscandia redirect
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low‐level winds, which strongly influences moisture transport and regional precipitation. Additionally, the
associated thermodynamics, as indicated through specific humidity, can contribute to regional precipitation
changes (D’Agostino et al., 2019, 2020). Most of the precipitation on land was substantially decreased due to the
large‐scale cooling and its associated reduction in evapotranspiration (e.g., Braconnot et al., 2007). The lower
SSTs led to reduced evaporation over the oceans, which in turn reduced the surface's moisture flux into the at-
mosphere. This eventually led to a decreased inland moisture flux, leading to overall large‐scale drying. Apart
from surface cooling, tropospheric cooling also decreased the amount of atmospheric water vapor by limiting its
water‐holding capacity through the Clausius‐Clapeyron relation. However, in both hemispheres, other regions
across the mid‐latitudes experienced an increase in precipitation, mainly in areas corresponding to the positions of
the North Pacific, North Atlantic, and Southern Ocean storm tracks (Figure S9 in Supporting Information S1).
The simulated temperature patterns indicate overall cooling across the African continent, suggesting that the
meridional temperature and pressure gradient that drives northward moisture flux from the Atlantic Ocean are
suppressed, thereby reducing moisture availability across the WAM areas. Furthermore, the surface cooling over
the oceans was more intense than over land, indicating a decrease in the land‐sea thermal contrast, which would
result in an additional reduction in inland moisture transport.

5.1.3. Mid‐Pliocene (~3 Ma)

Simulating the MP climate provides the opportunity to evaluate the long‐term response of the climate system to
currently raised atmospheric GHG concentrations. This period is often considered an analog for future climate
change (Burke et al., 2018) due to its similarities to modern paleogeography and high pCO2 (400 ppm). As such, the
modeling framework of the MP helps assess how important climatic components of the Earth system, such as the El
Niño‐Southern Oscillation, the global hydrological cycle and monsoon systems, respond to the ongoing rise in CO2

concentrations. The simulated temperature patterns predict a global mean near‐surface temperature increase of
approximately 3°C, primarily due to direct CO2 forcing. The overall warming exhibits polar amplification, with
temperature anomalies increasing by more than 10°C due to associated changes in albedo at higher latitudes
(Chandan & Peltier, 2020; de Nooijer et al., 2020; Samakinwa et al., 2020; Tindall et al., 2022). The simulated
global mean temperature increase predicted by ECHAM5‐wiso falls within the range of model estimates (1.4–
4.6°C) from the PlioMIP Phase 1 and 2 experiments (Haywood et al., 2013, 2020). The significant warming in high
latitudes reduces the meridional temperature gradient, weakening the tropical atmospheric circulation, specifically
the Hadley circulation (Corvec & Fletcher, 2017; Haywood et al., 2013). Previous studies also indicated a poleward
shift of mid‐latitude westerly winds (Li et al., 2015), increased intensity of tropical cyclones (Yan et al., 2016), and
strengthening and poleward extension of the global land monsoon system (Li et al., 2018). The enhanced hy-
drological cycle intensifies the East Asian and West African summer monsoons (R. Zhang et al., 2013, 2016).
These changes resemble future climate projections (e.g., Erfanian et al., 2016; Seth et al., 2019) and require detailed
understanding from a modeling perspective.

Through sensitivity experiments, (Stepanek et al. (2020) determined that MP paleogeography contributes to
increased rainfall across the WAM areas. The closure of the Arctic gateway and enhanced topography have also
been suggested to strengthen the Atlantic Meridional Overturning Circulation (AMOC), thereby warming the
North Atlantic Ocean (Z. Zhang et al., 2021), which impacts the WAM (Mulitza et al., 2008). These findings
highlight the importance of other boundary conditions in regulating the WAM. As mentioned earlier, land surface
conditions, such as vegetation, contribute to the variability and spatial extent of the WAM through evaporative
fluxes. Proxy reconstructions from previous studies suggest more humid conditions across northern Africa, which
facilitates an expansion of vegetation. More specifically, palynological records suggest high tree cover density
and broadening of woodlands and savannas at the expense of deserts across the Sahara (Bonnefille, 2010; Sal-
zmann et al., 2008). ECHAM5‐wiso was set up with converted PRISM3 vegetation reconstructions, which
indicate the expansion of grass and forests across North Africa toward the Mediterranean (Figure S10 in Sup-
porting Information S1). Such patterns are also consistent with the COSMOS dynamic vegetation results pre-
sented in Stepanek et al. (2020), which estimated an increase in precipitation by 70 mm/month across the WAM
region. The PlioMIP2 models with prescribed MP vegetation also indicate a strengthened WAM, with an
ensemble mean of precipitation showing an increase by ∼76 (60–120) mm/month (Berntell et al., 2021). The
previous modeling inter‐comparison project (i.e., PlioMIP1) estimates a lower magnitude of increase within a
range of 30–60 mm/month (R. Zhang et al., 2016). The PlioMIP1 experimental protocol (Haywood et al., 2010)
was similar to the model setup used for the ECHAM5‐wiso simulation. These findings suggest that ECHAM5‐
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wiso simulates a higher magnitude of WAM precipitation in the MP than the PlioMIP1 models. This may be due
to the higher spatial resolution used for ECHAM5‐wiso, which improves representation of land surface conditions
(e.g., orography and vegetation) and model parameterization. Overall, PlioMIP1 and PlioMIP2 models suggest
that the updated MP boundary conditions from PRISM3 to PRISM4 contribute to the strengthening of the WAM.
Samakinwa et al. (2020) confirm this with a sensitivity experiment using COSMOS, which indicated that the
updated paleogeography was the main reason for the changes in the large‐scale features between PlioMIP1 and
PlioMIP2.

The precipitation simulated with ECHAM5‐wiso shows an increase of up to 120 mm/month and an intensification
toward the east (Figure 3). However, regional means of precipitation across the Sahel increase by only ∼50 mm/
month, which falls within the broader range of PMIP4‐CMIP6 estimates (10–160 mm/month) (Figure 4). The
CESM2 and EC‐Earth3‐LR models estimate significant increases of 90 and 160 mm/month, respectively. The
HadGEM3‐GC31‐LL, IPSL‐CM6A‐LR, and NorESM1‐F estimate a moderate increase of ∼50 mm/month, with
GISS‐E2‐G estimating the lowest increase of only ∼10 mm/month. The magnitude of the precipitation response
simulated by the individual models across the WAM is consistent with the global response. For instance, GISS‐
E2‐1‐G indicates a low global response to the MP boundary conditions and consistently estimates the lowest
WAM precipitation anomalies. On the contrary, models with large land‐sea rainfall anomalies (e.g., EC‐Earth3‐
LR and CESM2) also simulate a strengthened WAM. Even though the updated boundary conditions contributed
to the inter‐model variabilities, Haywood et al. (2020) suggested model parameterization and initial conditions as
the main factors for the varied predictions. Moreover, later model versions tend to have a higher sensitivity than
earlier versions when used with the same boundary and initial conditions. These findings suggest that using
ECHAM6‐wiso (Cauquoin et al., 2019) and even updated PRISM4 reconstructions (Dowsett et al., 2016; Hay-
wood et al., 2016) would increase the strengthening of the WAM in the model.

5.2. Control of the Precipitation and Temperature on Stable Oxygen Isotope in the WAM Season in
Response to the Different Past Climates

The stable oxygen isotopic composition of tropical precipitation provides information about the hydrological
cycle and can be used to reconstruct past tropical climates. Several studies have employed stable isotopes to
understand the intraseasonal water cycle variability in western Africa (e.g., Risi et al., 2008, 2010). These studies
have revealed that the integrated convective activity in the monsoon season is spatially and temporally reflected in
the δ18O values in precipitation and vapor records. On a broader scale, previous studies have used isotopic
patterns to identify the strengthening of the Northern Hemisphere monsoon in response to warmer climates, both
through modeling (e.g., Cauquoin et al., 2019; Shi et al., 2023; Thompson et al., 2021) and proxy records (Bartlein
et al., 2011; Wang et al., 2008). Simulating the isotopic composition allows for a direct comparison of model
simulations to isotopic archives and contributes to the understanding of the causal mechanisms behind various
proxy archives (Bühler et al., 2022; Phipps et al., 2013; Risi et al., 2012; Werner et al., 2000). Here, we explore the
response of simulated δ18Op to varied paleoenvironmental conditions during the WAM season. The results
suggest that meteoric water was more negative in past warmer climates and less negative in colder climates.
Similar patterns have been reported in previous isotope‐enabled GCM modeling studies (e.g., Cauquoin
et al., 2019; Risi et al., 2010). Specifically, the oxygen isotopes are most depleted during the MH, indicating the
role of seasonal insolation distribution and associated precipitation dynamics in the isotopic patterns (Thompson
et al., 2021). Importantly, the magnitude and spatial patterns, to some extent, are inconsistent with the simulated
precipitation anomalies despite the expected dependence of the isotopic composition on convective activity, as
suggested in previous studies (e.g., Bony et al., 2008; Lawrence et al., 2004). These changes reveal the plausibility
of additional factors controlling δ18Op in different climates. Therefore, we further explore the relative influence of
precipitation and temperature on the simulated δ18Op patterns to better understand what controls the oxygen
isotopes during the monsoon season.

We evaluate the control of precipitation and temperature on δ18Op values in different time periods by calculating
their linear relationship during the WAM season using Spearman correlation analysis. The PI simulation yields
north‐south bidirectional correlation patterns between precipitation and δ18Op values, with significant negative
correlations (≥−0.8) over the Guinea Coast up to the Sahel (0–15°N) and positive correlations (≥0.7) across the
Sahara (Figure 12). The strong negative relationship along the coastal region toward the Sahel indicates the
amount effect, as is expected based on previous studies (Lawrence et al., 2004; Rozanski et al., 1993). Convective
activity has been well established as the main factor driving the spatial and temporal patterns of the isotopic
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composition of precipitation and vapor (Bony et al., 2008; Lawrence et al., 2004; Risi et al., 2008). The reasons
why an increase in precipitation amount results in the depletion of the heavy oxygen isotope across the WAM
might be partially due to the fact that (a) the increase in rainfall amount moistens the atmosphere, which reduces
rainfall re‐evaporation and diffusive fluxes, and ultimately results in lower δ18Op values in raindrops; (b) intense
convective activity increases vertical mixing in the form of unsaturated downdrafts, so that the associated
depletion of low‐level vapor feeds into subsequent convective systems with lower δ18Op values (Lawrence

Figure 12. Spearman correlation coefficients for the interannual relationship between the simulated monthly means of δ18Op
and precipitation amount (right panel) and temperature (left panel) during the WAM months (JJAS). The dot stippling
represents the regions with significant correlation coefficients with a 95% confidence interval. The correlations' magnitude
and spatial patterns are not stationary in response to the different climates. For example, the bi‐directional north‐south δ18Op‐
precipitation relation transitions to an overall negative relationship in the Mid‐Holocene (MH).
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et al., 2004; Risi et al., 2008). The change in correlation direction over the Sahara indicates that the “amount
effect" is limited across the Sahel region, where the maximum rain belt is situated during the monsoon season.
These changes are unsurprising, as the rainout of the moisture transported from the equatorial Atlantic Ocean
would deplete the remaining air masses of heavy oxygen isotopes. However, during the retreat of the WAM,
evaporative recycling provides a moist air mass with relatively enriched heavy oxygen isotopes that condense to
rainfall. These changes suggest the influence of continental recycling on the isotopic patterns across the Sahel.
Surface evaporative fluxes through continental recycling result in air masses that are less negative than oceanic
fluxes (Risi et al., 2013). Moreover, the warmer and drier conditions across the Sahara would contribute to more
re‐evaporation of falling vapor, leading to an enrichment in the heavier isotope in relation to the source (Risi
et al., 2008). The LGM and MP simulations indicate similar correlation dipole patterns across the WAM, but the
positive relationship across the Sahara in the MP is less significant (Figure 12). Nevertheless, the correlation
patterns in the MH indicate an overall negative link across the whole WAM region, suggesting that the amount
effect predominantly controls the oxygen isotopic patterns. The changes in the correlation structure across
different past climates suggest the non‐stationarity of the controlling mechanism across the WAM areas.

The correlation analyses for δ18Op and temperature yield fewer regions with significant correlation due to the
predominant influence of precipitation amount on δ18Op during the WAM season. The analysis indicates positive
correlation patterns over the Sahara, which extends further northward in the MP. The expanded area of positive
correlation in the MP highlights the importance of continental recycling during the retreat of the WAM. These
patterns also validate the wider spread of precipitation during the retreat months in the MP (Figure 6d), which has
also been suggested in previous studies (Berntell et al., 2021). We highlight that the estimated interannual re-
lationships from the simulated paleoclimate time slices only serve as a surrogate to evaluate the non‐stationarity
of the relationship between the δ18Op and surface climate variables and do not necessarily reflect the causal
mechanisms of the interannual variability of the proxy record. Although this analysis is limited to empirical
evidence that does not consider causal mechanisms, the results clearly indicate that proxy reconstructions must
efficiently understand the regional climatic influence on various proxy records. This would help resolve the
inaccuracies in paleoclimate and paleoenvironment reconstructions that assume the stationarity of the calibrated
transfer function (e.g., Kolstad & Screen, 2019; Raible et al., 2014). The comparison of the simulated isotopic
values to proxy records and the investigation of the causal mechanisms leading to the available proxy records is
beyond the scope of this study.

5.3. Atmospheric Dynamics Driving the Simulated WAM Changes

Overall, the response of the WAM to GHG forcing, vegetation changes, and orbital forcing is mostly associated
with the changing meridional temperature gradient. A more pronounced gradient drives the increased intensity
and higher altitude reach of the low‐level southwesterlies and a more northward position of the ITD and AEJ. On
the other hand, the weakening of the WAM in response to colder conditions can be attributed to the weak or non‐
existent meridional temperature and pressure gradient. This less pronounced gradient would lead to moisture
transport into the continent and into the troposphere to suppress the wind shear of the AEJ. We discuss these
simulated dynamics in the context of what has been suggested in previous studies, while also highlighting the new
findings.

The pronounced summer meridional temperature and pressure patterns in the MH and MP climates are consistent
with the PMIP4 model results (e.g., Berntell et al., 2021; Brierley et al., 2020; Kageyama et al., 2021). These
temperature anomalies reflect the patterns of increased precipitation, namely wetter conditions across the Sahel to
coastal regions in the MH and MP. The warming over the high latitudes deepened the Sahara Heat Low, inducing
low‐level moisture convergence and strengthening the south‐westerly flow that transports moisture from the
equatorial Atlantic into the continent (Lavaysse et al., 2009). In the MH, the warming across the Sahara and the
cooling over the Sahel are more intense than in the MP. The increased insolation across the Northern Hemisphere
was the main driver of the intense warming across the Sahara. On the other hand, the cooling over the Sahel is
partly due to the cloudiness associated with increased precipitation due to enhanced moisture flux into the Sahel
areas. Another factor may be the increased evaporative fraction (Figure S8 in Supporting Information S1) and
upward latent heat flux (Figure 11), which moisten the soil and reduce the energy available to heat the near‐
surface air through sensible heat flux. These mechanisms (a) cool the surface where precipitation increases
and (b) further strengthen the north‐south gradient to drive moisture advection into the WAM region. This
feedback indicates that moisture advection strengthens the WAM more than local recycling does (Marzin &
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Braconnot, 2009; Y. Zhao et al., 2005). However, the internal feedback reinforces the pressure gradient and
determines the northward migration of the WAM through evaporative recycling. In the MP, the seasonal pre-
cipitation distribution indicates a delayed WAM retreat with more precipitation during the southward retreat
months than in the MH. Such precipitation seasonality highlights the role of internal feedback since the evap-
orative recycling supplies more moisture during the retreat months. Furthermore, cooling across the Sahel in the
MP is more significant toward the east. These patterns coincide with the relative increase in upward latent heat
flux toward the east, suggesting more moisture availability through local feedback to strengthen the cooling
(Figure 11). Even though the MP has higher atmospheric CO2 with an enhanced hydrological cycle, this study
reveals that the orbital forcing and expanded vegetation in the MH produces the highest intensity of the WAM.
These imply that GCMs must adequately represent these features to ensure accurate projections of the WAM in
response to future climate change. In the LGM climate, the overall cooling and drying conditions prevent the
initiation of a meridional pressure gradient to drive moisture into the continent. This resulted in continuous wind
patterns from the Tropical Atlantic into the North Atlantic Ocean without diverging into the continent, as sug-
gested in previous studies (e.g., Jiang et al., 2015; Kageyama et al., 2021; Otto‐Bliesner et al., 2006). Overall, the
strengthening of the meridional temperature and pressure gradient determines the intensity of the southwesterlies,
northward migration of the WAM, and its altitudinal reach, which affects the location of the ITD and AEJ.

The simulated intensity and location of the AEJ and its relationship to the strengthening of the WAM suggest a
complex causal mechanism. More specifically, the simulated core of the AEJ is situated at higher latitudes (15–
20°N) and altitudes (600–500 hPa) in summer during the MH and MP than in the PI and LGM. These patterns are
not surprising since the strengthened WAM in these climates is associated with a more northward position of the
ITD and deeper monsoon depth (Janicot et al., 2011; Nicholson, 2009). Moreover, the surface temperature
gradient maintains the AEJ, along with two meridional circulations forced by the dry convection of the Sahara
Heat Low to the north and the moist convection driven by the ITCZ to the south (Thorncroft & Blackburn, 1999;
Wu et al., 2009). Usually, the monsoonal flow of the low‐level southwesterlies reaches far into the mid‐
troposphere to weaken the shear of the AEJ and shift it to higher latitudes (Patricola & Cook, 2007; Texier
et al., 2000). However, the simulated intense monsoonal flow due to the pronounced meridional temperature
gradient in the MH induces high AEJ intensity when compared to the MP. On the other hand, the reduced
monsoonal flow simulated in the LGM also results in an AEJ intensity that is higher than PI. These causal
relationship patterns indicate that the weakening of the AEJ is not entirely associated with the strengthening of the
WAM, especially when orbital forcings mainly control large‐scale climatic features. Therefore, the atmospheric
dynamics response simulated in this study confirms that the position of the AEJ is more important in strength-
ening the WAM than its intensity, as suggested in previous studies (Jenkins et al., 2005; Nicholson, 2008;
Nicholson & Grist, 2001; Nicholson & Webster, 2007). These suggest that the intensity of the AEJ is an effect
rather than a cause (Newell & Kidson, 1984). The complexity of the causal relationship between AEJ and Sahel
rainfall and its varied feedback, as reported by some studies, might be due to its sensitivity to localised conditions,
which is represented differently in GCMs. For instance, Texier et al., 2000; Patricola & Cook, 2007 reveal that the
decrease or even disappearance of the AEJ is achieved when the GCM is coupled to a dynamic vegetation model.
Contrarily, Texier et al., 2000 produced an increased AEJ located further north without dynamic vegetation
feedback in the model.

The simulated TEJ intensity shows consistent patterns of increasing shear due to wetter conditions, as indicated by
previous studies (e.g., Nicholson and Klotter 2021). The simulated intensity in the MH and MP revealed no
significant changes, but was higher than LGM and PI (Figure 10). The TEJ is mostly driven by large‐scale remote
features such as convective heating over the North Indian Ocean and the Himalayan‐Tibetan plateau (Gill, 1980).
However, Redelsperger et al. (2002) indicate that the latent heat release through convection over the WAM can
enhance upper‐level shear, thereby intensifying the TEJ. The causal mechanisms through which the intensified
TEJ increases the Sahel rainfall have been proposed in many studies (Lemburg et al., 2019). These include upper‐
level divergence (Nicholson & Grist, 2003), vertical and horizontal shear and how it affects dynamic instabilities
(Grist, 2002; Nicholson, 2008), and the modulation of the equatorial Rossby wave activity (Yang et al., 2018).

The results reveal both the localised and large‐scale impacts of vegetation on precipitation over the WAM areas in
response to different climates. Generally, vegetation influences the exchange of mass and energy between the
land surface and the atmosphere through the modulation of (a) surface albedo, influencing surface radiation, and
(b) evapotranspiration, influencing the partitioning of net radiation into surface heat fluxes. These imply that land
cover does not only affect surface climate but also influences atmospheric convection and large‐scale circulations
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and moisture fluxes, which create further feedback and influence soil moisture and vegetation (Charney
et al., 1977; Sylla et al., 2016). In this study, we focus on analyzing the influence of surface conditions through
surface heat flux anomalies. Previous modelling studies have highlighted the role of soil moisture and evapo-
transpiration in the vegetation‐precipitation feedback due to their effect on low‐level moist static energy,
convective instability, and surface latent heat flux anomalies (Patricola & Cook, 2007; Rachmayani et al., 2015).
These feedback mechanisms have been shown to strengthen the response of the WAM to external forcing in past
warmer climates (e.g., Messori et al., 2019). The expanded vegetation over the Sahara in the MH resulted in a
pronounced upward latent heat flux, further strengthening the WAM and the moisture influx through the
vegetation‐albedo feedback (e.g., Bonfils et al., 2001; Levis et al., 2004). The less expanded vegetation in the MP
also strengthened the WAM and contributed to the increased precipitation in the retreat months of the WAM, even
though the meridional pressure gradient was weaker than in the MH. Previous studies have indicated wetter
conditions and a northward migration of the WAM that is driven by the cyclonic moisture flux anomaly over
North Africa due to expanded vegetation into the Sahara region (Chandan & Peltier, 2020; Pausata et al., 2020;
Swann et al., 2014). Since the various atmospheric dynamics and surface conditions had a unidirectional influence
on the WAM, isolating the impact of vegetation, a local amplifier forced by other large‐scale features (e.g., Klein
et al., 2017; Messori et al., 2019), would require further sensitivity experiments.

5.4. Comparison of Model Estimates to Proxies

Comparing modeled paleoclimate to proxy reconstructions over Africa is often challenging, because of the
varying representation of relevant atmospheric processes in different GCMs, and high spatial variability of proxy
signals (e.g., deMenocal et al., 2000; Harrison et al., 2014; Hopcroft & Valdes, 2019; Pausata et al., 2016; Tierney
et al., 2017). Moreover, the relatively low availability of paleohydrological records over Africa precludes a robust
model‐data comparison (e.g., Salzmann et al., 2008, 2013). The sparsity of proxies also prevents the merited
direct comparison of simulated isotopic composition with past isotopic archives. Here, we focus on the MH
model‐data comparison due to the relatively large number of proxy reconstructions available (Figure S12a in
Supporting Information S1) and the ongoing debate about the northward migration and intensification of the
WAM during the African Humid Period (e.g., Pausata et al., 2020). The sparse tropical African proxy records for
the LGM reported in previous studies have shown consistent cooling and drying conditions (Figure S12b in
Supporting Information S1; Bartlein et al., 2011). It has been suggested that the dryness induced a downward
elevational shift of broadleaved evergreen or warm mixed forest and the enrichment of steppe into regions now
occupied by tropical forests (e.g., Elenga et al., 2000). The reconstructed proxy records over North Africa during
the MP consistently suggested more humid conditions (Figure S12c in Supporting Information S1; Feng
et al., 2022). More specifically, palynological data reveals denser tree cover and expanded woodland and savanna
at the expense of deserts over North Africa (Bonnefille, 2010; Salzmann et al., 2008). Such vegetation expansion
patterns are consistent with the only dynamic vegetation GCM output participating in PlioMIP2 (Stepanek
et al., 2020). Moreover, multi‐proxy records, including plant wax and dust from marine sediment cores from
offshore West Africa (Figure S12c in Supporting Information S1), suggest consistent wetter conditions in the MP
(deMenocal, 2004; Feng et al., 2022; Kuechler et al., 2018). These reconstructed patterns are consistent with the
more humid and dryness simulated for the LGM and MP in this study.

In the remainder of this section, we compare the simulated latitudinal variation of Mean Annual Precipitation
(MAP) during the MH to pollen‐based reconstructions by Bartlein et al. (2011) and leaf wax isotope‐based
reconstruction by Tierney et al. (2017). Overall, the simulated MAP magnitudes and latitudinal distribution by
ECHAM5‐wiso are closer to the proxy reconstructions than the PMIP4 models (Figure 13). More specifically, the
ECHAM5‐wiso inter‐annual means of the WAM's northward extent compare well to the lower latitudes of the
proxy data over the Sahara with regards to the magnitude of changes and the patterns from the Sahel towards the
tropical ocean. However, all models (i.e., PMIP4 models and ECHAM5‐wiso) failed to match the magnitudes of
the proxy‐based MAP increase over the high latitudes of the Sahara. The simulated MAP increase over the Sahara
was 100–300 mm/year less than the proxy reconstruction. It is important to note that the calculated MAP
anomalies of the pollen‐inferred precipitation proxy records used present‐day CRU observation data as a refer-
ence period, while the GCMs used their PI simulations. Although the different reference periods can contribute
slightly to the discrepancies, the magnitude of the difference is large enough to acknowledge significant de-
viations and thus potential limitations of either the GCMs or the proxy‐based reconstructions. The simulated
ECHAM5‐wiso anomalies during the monsoon season indicated wetter conditions up to 25°N, with increased
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precipitation anomalies of approximately 700 mm/year (Figure 3). This suggests a potential overestimation of
precipitation anomalies from the pollen‐based records on the annual scale due to their potentially biased repre-
sentation of the dry seasons across the Sahara. In addition to the pollen‐based reconstructions, other diverse
archives over West Africa estimate precipitation differences in the range of 300–500 mm/month, which are within
the range of our model estimates (Harrison et al., 2014; Kröpelin et al., 2008; Tierney et al., 2017). On the other
hand, recent reconstructions of leaf wax‐alkane records off the coast of northern Africa suggest MAP increase of
up to 600 mm/year (compared to PI) as far north as 31°N (Figure 13), implying an expansion of the WAM in the
MH to 15–20° north of its present‐day extent (Sultan & Janicot, 2003; Tierney et al., 2017). Sha et al. (2019)
interpreted their Moroccan speleothem at 31°N with high negative δ18O of carbonate records as a high rainfall
signal created by the expansion of the WAM during the MH. Paleoenvironment reconstructions also reflect wetter
conditions in the MH with higher lake levels and moisture‐demanding biomes across North Africa (Kohfeld &
Harrison, 2000; Peyron et al., 2006; H. Wu et al., 2007). Vegetation reconstructions suggest a northward shift of
montane forest and a major extension of the tropical rainforest over North Africa (Jolly et al., 1998; Prentice
et al., 2000).

Overall, the model‐proxy comparison reveals that all the adopted GCMs show limited skill in reproducing the
northward migration of the WAM and associated rainfall increase over the Sahara. This suggests that the
shortcomings leading to these discrepancies are shared by all models and are not GCM‐specific. The WAM
dynamics are sensitive to the representation of climate physics in the GCMs. Their limitations include inac-
curacies in representing clouds, surface conditions (e.g., lakes and wetlands), energy fluxes, and subgrid‐scale
convection parameterisation. Additionally, the coarse spatial resolution of GCMs weakens their ability to
reproduce the mesoscale convection systems that are the main driver for the WAM. Previous studies have also
indicated that fully coupled models exhibit biases in reproducing the tropical Atlantic dynamics, leading to
elevated sea surface temperatures and a weakened monsoonal circulation (Roehring et al., 2013). In this study, the
high spatial resolution of the ECHAM5‐wiso experiment contributed to a better representation of surface

Figure 13. Comparison of the mean annual precipitation (MAP) anomalies of the latitudinal extent of WAM in the Mid‐
Holocene for all models (ECHAM5‐wiso (black) and PMIP4 models) to pollen‐inferred (Bartlein et al., 2011; blue circles)
and leaf wax‐inferred (Tierney et al., 2017; magenta stars) precipitation reconstruction. The black shadings denote one
standard deviation value from the regional means of the ECHAM5‐wiso simulation. The error bars of the proxies represent
the standard errors of the precipitation reconstructions.
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conditions, such as orography. Furthermore, the model was prescribed MH vegetation reconstruction. Contrarily,
the PMIP4 models are fully coupled (atmosphere‐ocean), incorporating ocean variability feedback, and some
consider dynamic vegetation feedback. Since all models, that is, both ECHAM5‐wiso and the PMIP models,
exhibit the above‐mentioned deviations from proxy reconstructions, we propose that the limitations are neither
related solely to spatial resolution nor the use of fully coupled models. Harrison et al. (2015) suggests the
simulated biases of the PI control experiments of the PMIP4‐CMIP6, which indicate a more equatorward
ensemble mean of the global monsoon when compared to observations. Previous models have also shown that
atmosphere‐vegetation feedback contributes to the northward extent of the WAM, but still underestimates the
higher latitude precipitation amount from the leaf wax n‐alkanes (Dallmeyer et al., 2020; Pausata et al., 2016;
Thompson et al., 2019). Rachmayani et al. (2015) demonstrated that dynamic vegetation enhances the orbitally
driven increase in precipitation anomalies over West Africa by 20% when compared to models using fixed
vegetation. However, their models with terrestrial and ocean feedback still did not reach the level of vegetation
coverage suggested by proxies.

Recent studies have demonstrated that incorporating dust feedbacks associated with the Green Sahara in the MH
orbitally driven climate further enhances the northward reach and intensification of the WAM (e.g., Egerer
et al., 2018; Hopcroft & Valdes, 2019; Pausata et al., 2016; Thompson et al., 2019) and better matches the
paleoclimate reconstructions. This is because the albedo‐related feedback causes a reduction of dust concentration
and changes in soil properties over the vegetated Sahara, which induce an increase in incoming shortwave ra-
diation on the land surface, strengthening the warming over the Sahara. This further strengthens the meridional
temperature gradient and tropical circulation and then intensifies the WAM (Chandan & Peltier, 2020; Pausata
et al., 2016). Pausata et al. (2016) demonstrated the northward extent of the WAM up to 31°N in the MH with a
model forced with prescribed vegetation and reduced dust concentrations, while the prescribed vegetation only
reached ∼26°N. These suggest that simulating vegetation feedback with interactive dust dynamics on a high
spatial resolution grid would improve the representation of the MH. However, the state‐of‐art GCMs would
require improvement of their physical representation of dust dynamics, since they fail to reproduce dust emission
and transport (Evan et al., 2014; Kok, 2010; Leung et al., 2023; A. Zhao et al., 2022). On the other hand, the
plausible non‐stationarity of the pollen‐precipitation transfer function due to changes in past climate dynamics
from present conditions can also contribute to the mismatch between climate simulation and paleoclimate re-
constructions. Therefore, using a multi‐proxy system with varied causal mechanisms could ensure an accurate
representation of the WAM complex dynamics.

6. Conclusions
This study presents new and existing climate model simulations of the WAM and associated features in the Late
Cenozoic (i.e., the PI, MH, LGM and MP). More specifically, the study presents an overview of the hydroclimate
changes over West Africa and highlights the components of the regional climate system that are important for
generating accurate projections of future climate. The paleoclimate experiments were conducted using the
isotope‐tracking model (ECHAM5‐wiso). The simulated results are similar to the CMIP6‐PMIP4 experiments
and proxy reconstructions over West Africa. However, our simulations also show some improvement over
previous experiments, and yield new insights. We summarize the key results as follows:

1. A comparison between the present‐day ECHAM5‐wiso simulation and observation‐based data sets (i.e., ERA5
and CRU precipitation and temperature data sets) demonstrates the model's ability to represent the atmospheric
dynamics over West Africa reasonably well.

2. The ECHAM5‐wiso paleoclimate simulations produce the most intense WAM during the MH, despite the
MP's more enhanced hydrological cycle. In comparison, some of the CMIP6‐PMIP4 models suggest the
highest intensification of the WAM in the MH (e.g., GISS‐E2‐1‐G), while others suggest the MP (e.g., EC‐
Earth3‐LR).

3. The intensification of the WAM is associated with a pronounced meridional gradient, northward position of
the ITD, northward reach of the core of the AEJ, higher altitudinal reach of the WAM (deeper monsoon depth),
and higher moisture recycling through surface heat fluxes due to vegetation across the Sahel‐Sahara region.
Most importantly, the AEJ is not entirely responsible for the strengthening of the WAM, especially when
large‐scale features are predominantly controlled by orbital forcings, as is the case in the MH. This needs to be
well‐represented in GCMs to ensure realistic and accurate future projections.
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4. The simulation of the patterns and magnitude of δ18Op values and associated regional climate elements (e.g.,
temperature and precipitation) during the monsoon season reveal a non‐stationarity of their relationship
throughout the late Cenozoic. Their changing relationships stress the need to understand the causal mecha-
nisms for each proxy system and refine their transfer function to ensure accurate proxy‐based reconstructions.

5. ECHAM5‐wiso simulates the higher precipitation rates over the WAM region in the MH than the CMIP6‐
PMIP4 models. Since our model uses a more accurate vegetation reconstruction and a higher resolution,
we propose that a greater consideration of vegetation feedbacks, and sub‐grid processes will increase other
models' representation of West African climate during the MH.

6. All models still underestimate the northward extent of the WAM, as reconstructed with proxies. If proxy
reconstructions are taken as accurate, this suggests that the representation of additional climate processes, such
as dust loading, interactive vegetation, and surface conditions, such as lakes, will have to be improved to
ensure a more realistic prediction of the WAM's northward extent.

Data Availability Statement
The postprocessed model output variables required to reproduce the figures of this study are available in NetCDF
format at https://doi.org/10.5281/zenodo.10455772 (Boateng, 2024). The CMIP6‐PMIP4 (Eyring et al., 2016)
models output are available at https://esgf‐node.llnl.gov/projects/esgf‐llnl/ (last access: 03 January 2024). The
Climate Research Unit (CRUv4.01) (Harris et al., 2020) precipitation data were obtained from https://crudata.uea.
ac.uk/cru/data/hrg/cru_ts_4.01/ (last access: 03 January 2024).

The ERA5 reanalysis products (Hersbach et al., 2020) were obtained from the Copernicus Climate Data Store at
https://cds.climate.copernicus.eu/cdsapp#!/home (last access: 03 January 2024).

Code availability statement: The ECHAM model code is available under a version of the MPI‐M software license
agreement (https://www.mpimet.mpg.de/en/science/models/license/, last access: 03 January 2024). The code of
the isotopic version ECHAM5‐wiso (Werner et al., 2011) is available upon request on the Alfred Wegner In-
stitute's GitLab repository (https://gitlab.awi.de/mwerner/mpi‐esm‐wiso, last access: 03 January 2024). The
scripts used for postprocessing, analysis, and visualisation are based on a Python package (pyClimat) available at
https://doi.org/10.5281/zenodo.7143044 (Boateng, 2022) and also on Github: https://github.com/Dan‐Boat/
pyClimat (last access: 03 January 2024).
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2 S1: supporting results for NAO-𝛿18𝑂𝑝

non-stationarity

Supplementary results for NAO-𝛿18𝑂𝑝 non-stationarity analysis (S1)
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Figure 1: The spatial maps and explained variance of the first (NAO) and second (EA) leading modes of variability of the EOFs

(eigenvectors or covariance matrix of the Principal component time series and the EOFs) of the winter and summer monthly sea-level

pressure (SLP) anomalies for the North Atlantic region. These are calculated with SLP anomalies data from (top panel) ERA5 and

(bottom panel) ECHAM5-wiso model outputs.



Figure 2: Comparison of the time series of the NAO index calculated using the SLP from ECHAM5-wiso model output (blue), reanalysis

datasets (black; ERA5; Hersbach et al. [196] and green; CDC (NOAA); Kistler et al. [263]) and instrumental NAO index (red; Gibraltar)

are based on standardized SLP data from Gibraltar and Iceland stations (Jones et al. [264]) in winter

Figure 3: Comparison of the time series of the NAO index calculated using the SLP from ECHAM5-wiso model output (blue), reanalysis

datasets (black; ERA5; Hersbach et al. [196] and green; CDC (NOAA); Kistler et al. [263]) and instrumental NAO index (red; Gibraltar)

are based on standardized SLP data from Gibraltar and Iceland stations (Jones et al. [264]) in summer
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Figure 4: Correlation coefficients between winter 𝛿18𝑂𝑝 , temperature and precipitation and (top) NAO and (bottom) EA using the

ECHAM5-wiso model output (1979-2014). Dot stipplings indicate areas with a significance level of 95%.
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Figure 5: Correlation coefficients between summer 𝛿18𝑂𝑝 , temperature and precipitation and (top) NAO and (bottom) EA using the

ECHAM5-wiso model output (1979-2014). Dot stipplings indicate areas with a significance level of 95%.
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Figure 6: Spearman correlation between winter 𝛿18𝑂𝑝 -NAO index (a-b), 𝛿18𝑂𝑝 -temperature (d-e), and 𝛿18𝑂𝑝 -precipitation (g-h)
for yearly winters (1979-2014) with the same (EQ) and opposite (OP) phases of NAO and EA indices, including OP, EQ, and the
difference between OP and EQ. Dot stippling represents regions with significant correlation coefficients within a 95 % confidence
interval. Composite differences between OP and EQ regional climate variables are depicted for (c) 𝛿18𝑂𝑝 values, (f) temperature, and
(i) precipitation.

Figure 7: Spearman correlation between winter 𝛿18𝑂𝑝 -NAO index (a-b), 𝛿18𝑂𝑝 -temperature (d-e), and 𝛿18𝑂𝑝 -precipitation (g-h) for
yearly winters (Last millennium; simulations from Bühler et al. [132]) with the same (EQ) and opposite (OP) phases of NAO and EA
indices, including OP, EQ, and the difference between OP and EQ. Dot stippling represents regions with significant correlation
coefficients within a 95 % confidence interval. Composite differences between OP and EQ regional climate variables are depicted for
(c) 𝛿18𝑂𝑝 values, (f) temperature, and (i) precipitation.
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Figure 8: Probability of no Granger from winter (NAO, EA) to summer (a) 𝛿18𝑂𝑝 , temperature, and precipitation of the regional means

over Iceland, British Isles, Central Europe, Scandinavian, Eastern Europe, Mediterranean, Alps, France, and Iberian Penninsula. The red,

blue and magenta lines represent the probability of 0.1, 0.33, and 0.66. Details of the multivariate predictive model used to estimate the

causal links are based on Mosedale et al. [240]. The p-values from 0-10% indicate a very likely causal mechanism from Y to X.
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Abstract. The nature and severity of climate change im-
pacts vary significantly from region to region. Consequently,
high-resolution climate information is needed for meaning-
ful impact assessments and the design of mitigation strate-
gies. This demand has led to an increase in the application
of empirical-statistical downscaling (ESD) models to gen-
eral circulation model (GCM) simulations of future climate.
In contrast to dynamical downscaling, the perfect progno-
sis ESD (PP-ESD) approach has several benefits, including
low computation costs, the prevention of the propagation of
GCM-specific errors, and high compatibility with different
GCMs. Despite their advantages, the use of ESD models and
the resulting data products is hampered by (1) the lack of
accessible and user-friendly downscaling software packages
that implement the entire downscaling cycle, (2) difficulties
reproducing existing data products and assessing their cred-
ibility, and (3) difficulties reconciling different ESD-based
predictions for the same region. We address these issues
with a new open-source Python PP-ESD modeling frame-
work called pyESD. pyESD implements the entire down-
scaling cycle, i.e., routines for data preparation, predictor se-
lection and construction, model selection and training, eval-
uation, utility tools for relevant statistical tests, visualiza-
tion, and more. The package includes a collection of well-
established machine learning algorithms and allows the user
to choose a variety of estimators, cross-validation schemes,
objective function measures, and hyperparameter optimiza-
tion in relatively few lines of code. The package is well-
documented, highly modular, and flexible. It allows quick
and reproducible downscaling of any climate information,
such as precipitation, temperature, wind speed, or even short-
term glacier length and mass changes. We demonstrate the

use and effectiveness of the new PP-ESD framework by gen-
erating weather-station-based downscaling products for pre-
cipitation and temperature in complex mountainous terrain
in southwestern Germany. The application example covers
all important steps of the downscaling cycle and different
levels of experimental complexity. All scripts and datasets
used in the case study are publicly available to (1) ensure the
reproducibility and replicability of the modeled results and
(2) simplify learning to use the software package.

1 Introduction

The impacts of anthropogenic climate change are far-
reaching and spatially heterogeneous. Consequently,
regional- and local-scale predictions of 21st century climate
evolution are needed to help guide the design of adapta-
tion measures, vulnerability assessments, and resilience
strategies (Field and Barros, 2014; Weaver et al., 2013).
General circulation models (GCMs) are well-established
tools for simulating climate trends in response to different
anthropogenic and natural forcings, such as atmospheric
CO2 concentrations, land cover, and orbital changes. They
are process-driven models based on our understanding of
atmospheric physics. They are commonly used to predict
future trends of climate change by prescribing predicted fu-
ture forcings described by the Representative Concentration
Pathways (RCPs). RCPs are greenhouse gas concentration
scenarios that quantify the radiative forcing of plausible
demographic and technological developments, as well as
anthropogenic activities (Meinshausen et al., 2011; Pachauri
et al., 2014). While GCMs can produce useful estimates of
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many climate system elements on the global and synoptic
scale (such as circulation patterns), mesoscale atmospheric
processes, clouds, and specific climate variables like precip-
itation are still relatively poorly represented (e.g., Steppeler
et al., 2003). Moreover, GCM simulations are affected by
systematic biases on the local and regional scale due to
their coarse resolutions and model parameterization (e.g.,
Errico et al., 2001). These can lead to inaccurate predictions
on the spatial scales that are relevant for regional climate
change impact assessments, such as studies investigating
the impacts on the hydrological cycle (Boé et al., 2009),
mountain glaciers (Mutz et al., 2016; Mutz and Aschauer,
2022), air quality (e.g., Colette et al., 2012), and agriculture
(e.g., Shahhosseini et al., 2020). Therefore, GCM-based
predictions are downscaled by performing dynamical down-
scaling or statistical downscaling, with empirical-statistical
downscaling (ESD) being one type of statistical downscaling
(Murphy, 2000; Schmidli et al., 2007; Wilby and Dawson,
2013).

Dynamical downscaling involves the nesting of regional
climate models (RCMs) into coarse-resolution GCM simula-
tions to produce higher-resolution regional estimates. While
RCMs allow an easy exploration of physical processes lead-
ing to the predicted climate, they are computationally costly.
Furthermore, slight changes in the model domain and bound-
ary conditions require the repetition of the whole process,
thereby limiting their application in many climate impact
studies (e.g., Giorgi and Mearns, 1991; Xu et al., 2019). ESD
is computationally less costly and implicitly considers local
conditions, such as topography and vegetation, without the
need to parameterize them explicitly. It is widely used for cli-
mate change impact studies and relies on establishing empir-
ical transfer functions to relate large-scale atmospheric vari-
ables (predictors) to a local-scale observation (predictand).
ESD models can be directly coupled to GCMs (e.g., Mutz et
al., 2021) or RCMs (e.g., Sunyer et al., 2015; Laflamme et
al., 2016; Jakob Themeßl et al., 2011) in a one-way coupling
or pipeline with no feedback into the climate models. ESD
can be broadly categorized into perfect prognosis (PP) and
model output statistics (MOS) approaches (Maraun and Wid-
mann, 2018; Marzban et al., 2006). MOS uses simulated pre-
dictors from the GCM or RCM to find the transfer function
and generate a predictand time series with bias corrections
(e.g., Sachindra et al., 2014; Wilby et al., 1998). Therefore,
the MOS-ESD transfer functions are specific to a particular
GCM or RCM and not easily transferable to other models. In
contrast, the PP-ESD approach is GCM- and RCM-agnostic:
ESD models are obtained from observational data for both
the predictand and predictors and can therefore be coupled
to any GCM or RCM (e.g., Hertig et al., 2019; Mutz et al.,
2021; Ramon et al., 2021; Tatli et al., 2004). Therefore, this
paper, and the software package presented in it, focuses pri-
marily on the PP-ESD approach.

The PP-ESD modeling framework consists of four critical
steps to establish and evaluate the empirical transfer func-

tions that constitute an ESD model (e.g., Maraun et al., 2010;
Maraun and Widmann, 2018): (1) the first step involves the
selection and construction of predictors. The selection of the
most informative and relevant predictors generally increases
the performance and robustness of PP-ESD models. Prelim-
inary predictor selection should be guided by knowledge of
the atmospheric dynamics that govern a specific regional cli-
mate. This selection may be refined using statistical depen-
dency measures such as correlation analysis (e.g., Wilby et
al., 2002; Wilby and Wigley, 2002), regularization regres-
sion (e.g., Hammami et al., 2012), stepwise multi-linear re-
gression (e.g., Mutz et al., 2021), and decision tree selection
(e.g., Nourani et al., 2019). The selected predictors should
be able to explain most of the predictand’s variability and
must be represented well by the GCMs (Maraun and Wid-
mann, 2018; Wilby et al., 2004). (2) The second step involves
the selection of the learning algorithms (i.e., the learning
model used for training the ESD model). These range from
classical regressions and analog models, including paramet-
ric and nonparametric models (Gutiérrez et al., 2013; Zorita
and Storch, 1999; Lorenz, 1969), to advanced machine learn-
ing (ML) algorithms (e.g., Sachindra et al., 2018; Xu et al.,
2020). The various techniques vary in complexity, scalabil-
ity, interpretability, and underlying assumptions. For exam-
ple, classical regressions and analog models allow better in-
terpretations of the simulated results and are usually simpler
to implement. On the other hand, several ML algorithms have
the ability to capture more complex links between predictors
and predictands and do not require an explicit assumption of
the distribution of observational data during the optimization
process (Jordan and Mitchell, 2015; Raissi and Karniadakis,
2018). The choice of the optimal PP-ESD training technique
depends on the predictand variable (e.g., precipitation and
temperature), length of the observational records, spatiotem-
poral variability, spatial coherence, regional setting, and tem-
poral stationarity of the transfer functions. (3) The third step
involves the actual training and validation of the PP-ESD
models, and (4) the final step is the PP-ESD model evalu-
ation.

The high demand for climate change information on the
regional and local scale has led to the widespread use of
ESD methods and an overwhelming body of research to
sort through in order to select the most suitable technique
for a specific problem. In the past, generalized linear mod-
els (GLMs) (e.g., Fealy and Sweeney, 2007), regularization
models (e.g., Li et al., 2020), Bayesian regression models
(Das et al., 2014; e.g., Zhang and Yan, 2015), support vec-
tor machines (SVMs) (e.g., Chen et al., 2010; Ghosh and
Mujumdar, 2008), artificial neural networks (ANNs) (e.g.,
Sachindra et al., 2018; Vu et al., 2016; Xu et al., 2020),
homogeneous (e.g., random forest) and heterogeneous (e.g.,
stacking) ensemble learning models (e.g., Massaoudi et al.,
2021; Pang et al., 2017; Zhang et al., 2021), and others have
been used to construct PP-ESD models and downscale cli-
mate information. However, there is no universal protocol to
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help choose a robust model for a specific region and climate
variable (Gutiérrez et al., 2019), thus making the selection of
the most suitable learning algorithm challenging. Moreover,
the recent increase in ML algorithms and platforms (e.g.,
programming languages and software) exacerbates the prob-
lem by creating an even wider range of PP-ESD techniques
without well-defined protocols. These have shifted the fo-
cus toward the establishment of standardized user-friendly
tools that would resolve most of the issues related to the
development of PP-ESD models. Such tools exist in vari-
ous forms and tackle a certain aspect of the inherent ESD
modeling complexities to ensure fast and efficient climate-
impact-related studies. For example, the R-package esd, de-
veloped and maintained by the Norwegian Meteorological
Institute (MET Norway), comprises many utility functions
for data retrieval, manipulation and visualization, commonly
used statistical tools, and implementations of GLM and re-
gression techniques for generating ESD models (Benestad et
al., 2015b). Moreover, an interactive web-based downscal-
ing tool developed as part of the EU-funded ENSEMBLES
project (van der Linden and Mitchell, 2009) provides an end-
to-end framework through data access, computing resources,
and ESD model alternatives (Gutiérrez et al., 2012). The de-
cision support tool sdsm (Wilby et al., 2002) provides aux-
iliary downscaling routines like predictor screening, regres-
sion, model evaluation, and visualization for near-surface
weather variables on a daily scale. Most recently, the cli-
mate analysis tool Climate4R has been extended with sta-
tistical downscaling functionalities (downscaleR) that pro-
vide a wide range of MOS and PP techniques (Bedia et
al., 2020). While these tools provide specialist solutions,
there is no single tool or modeling framework that provides
a wide range of contemporary (and commonly used) algo-
rithms and implements all downscaling steps (i.e., predic-
tor selection and construction, learning algorithm selection,
training and validation of ESD models, GCM–ESD model
coupling, model evaluation, visualization, and relevant sta-
tistical tools). Moreover, there is no user-friendly ESD tool
written in a widely used programming language like Python,
which would remove barriers for the use of ESD techniques
in research and teaching. Many of the Python-based tools
currently available are primarily designed for bias correc-
tion in MOS downscaling, and extending these tools to the
PP-ESD framework would diversify the publicly available
downscaling tools (e.g., xclim, Bourgault et al., 2023; ibi-
cus, Spuler et al., 2023; CCdowncaling, Polasky et al., 2023).
A complete, user-friendly, robust, and efficient open-source
downscaling framework would contribute significantly to cli-
mate change impact assessment studies by (a) empowering
researchers through accessible software and easy switches
between alternative methods, (b) allowing for efficient up-
dating of predictions in a consistent modeling framework,
(c) increasing the transparency and reproducibility of results,
and (d) removing barriers in teaching in order to familiarize
future generations of researchers with the ESD approach.

Here, we introduce a new PP-ESD framework that ad-
dresses the gaps highlighted above. It is the thoroughly
tested, heavily documented, efficient, and user-friendly open-
source Python Empirical-Statistical Downscaling (pyESD)
package. pyESD adopts an object-oriented programming
(OOP) style and treats the predictand data archives (e.g.,
the weather station) as objects with many functionalities and
attributes relevant to ESD modeling. It is flexible with re-
gards to the training dataset and predictand variable. For ex-
ample, pyESD’s predecessors were successfully applied for
the prediction of local temperatures (Mutz et al., 2021) and
glacier mass balance (Mutz and Aschauer, 2022) in South
America. Here, we additionally demonstrate its capabilities
in downscaling precipitation in complex terrain in south-
western Germany. pyESD comprises a collection of utilities
and methods for data preparation, predictor selection, data
transformation, predictor construction, model selection and
training, evaluation, statistical testing, and visualization. Un-
like existing packages, pyESD also includes common ma-
chine learning algorithms (i.e., different estimators, cross-
validation schemes, objective function measures, hyperpa-
rameter optimizers, etc.) that can be experimented with in
a few lines of code.

In the first part of this paper (Sect. 2), we provide de-
tailed descriptions of the model structure and the theoretical
background for the implemented methods. In the second part
(Sect. 3), we demonstrate the package’s functionalities with
an illustrative case study for a hydrological subcatchment
in mountainous terrain in southwestern Germany. Here, we
walk the reader through a typical downscaling process with
pyESD. More specifically, we generate station-based down-
scaling products for precipitation and temperature changes in
response to different RCPs. When discussing downscaling-
related tasks, we list the corresponding pyESD routines as
italicized function names. We only use publicly available
data for a set of weather stations to ensure the reproducibility
and replicability of the results (see Sect. 3). Moreover, all the
scripts used for the case study are provided and can be easily
adapted to suit the researcher’s focus. We discuss the appli-
cation example in Sect. 4 and conclude with a summary and
important remarks in Sect. 5.

2 Model structure

The PP-ESD downscaling cycle involves technical and la-
borious steps that must be carefully addressed to ensure the
robustness and accuracy of local-scale climate predictions.
The pyESD package implements all these steps in an efficient
modeling pipeline for an easier workflow. In this section, we
describe this workflow (Fig. 1) along with the main features
of the package.
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Figure 1. The main features and workflow of PP-ESD implemented in the pyESD package (highlighted by the dashed red box). The weather
station and reanalysis datasets are used to select the robust predictors for model training and validation. The trained PP-ESD model is then
coupled to GCM simulations forced with different scenarios to predict the local-scale future estimates that can be used for climate change
impact assessment (not included in the pyESD package).

2.1 Data structure and preprocessing

PP-ESD modeling requires (1) predictand data from weather
stations or other observational systems, (2) reanalysis
datasets for the construction of predictors, and (3) GCM or
RCM output for the construction of simulated predictors if
the PP-ESD models are used for downscaling simulated cli-
mates. To understand the workflow demonstrated in later sec-
tions, the reader needs to be aware of few important package
design choices related to data structure and preprocessing.

– The package adopts the OOP paradigm and treats every
predictand data archive (e.g., weather station or glacier)
as an object. Since the current version of the pack-
age focuses only on station-based downscaling, we will
henceforth describe it only as the weather station ob-
ject. The package accepts the (typical for weather sta-
tions) comma-separated value (CSV) file format. These
files contain the predictand time series, such as a tem-
perature record, as well as weather station attributes
like the weather station’s name, ID, and location. The
read_station_csv from the pyESD.weatherstation mod-
ule initiates each weather station as a separate object us-

ing the StationOperator that features all the other func-
tionalities. The weather station object is associated with
at least one predictand dataset (i.e., the values of at least
one climate variable recorded at that particular station).
Furthermore, the initialized object includes all attributes
and methods required for the complete downscaling cy-
cle. For instance, the package adopts the fit and pre-
dict framework of the scikit-learn Python package (Pe-
dregosa et al., 2011) that can be directly applied to the
weather station object.

– The data needed for predictor construction are read from
files in the network Common Data Form (netCDF) for-
mat with the Xarray toolkit (Hoyer and Hamman, 2017).
Due to the size of these datasets and the computations
required to construct the predictors, the memory de-
mand can be very high, and repeating this step every
time a new model is trained or applied becomes com-
putationally very costly. This problem is circumvented
by storing the constructed predictors for each weather
station in pickle files. At the next runtime, these can
quickly be read (or unpacked) to reduce the computa-
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tional costs and facilitate faster experimentation with
the package.

– Since reanalysis datasets, climate model output, and
weather station data are provided by different data cen-
ters and have varied structures and attributes, it is well
outside the scope of our project to write and include a
unified data processing function for all. Instead, the pre-
processing functions of the current version of pyESD
are written for state-of-the-art, representative, and pub-
licly available datasets. More specifically, they work
with weather station data from the German Weather Ser-
vice (Deutscher Wetterdienst, DWD) and the ERA5 re-
analysis product (Hersbach et al., 2020). These prepro-
cessing functions are provided as part of the package
utilities (pyESD.data_preprocess_utils) and can easily
be adapted to work for researchers’ preferred datasets.
The functions will be expanded in the future to allow
experimentation with other popular datasets and assess
the sensitivity of ESD model performance to the choice
of reanalysis datasets (e.g., Brands et al., 2012).

2.2 Predictor selection and construction

The PP-ESD approach is highly sensitive to the choice of
predictors and learning models (Maraun et al., 2019a; Gutiér-
rez et al., 2019). Moreover, since PP-ESD models are em-
pirical in nature, the predictors serve as proxies for all the
relevant physical processes and must be informative enough
to account for the local predictand variability (Huth, 1999,
2004; Maraun and Widmann, 2018). Therefore, the selection
of potential predictors should be informed by our knowl-
edge of the atmospheric dynamics that control the climate
variability of the study area. For example, synoptic-scale cli-
mate features, such as atmospheric teleconnection patterns,
control much of the regional-scale climate variability. It is
therefore recommended to consider these as potential pre-
dictors. Statistical techniques, such as methods for feature
selection or dimension reduction, may then be applied to re-
duce the list of physically relevant potential predictors to a
smaller selection of predictors that have a robust statistical
relationship with the predictand. These steps contribute to the
performance of the models and also resolve some of the is-
sues related to multicollinearity and overfitting (e.g., Mutz et
al., 2016). The pyESD package adopts three different wrap-
per feature selection techniques that can be explored for dif-
ferent models: (1) recursive feature elimination (Chen and
Jeong, 2007), (2) tree-based feature selection (Zhou et al.,
2021), and (3) sequential feature selection (Ferri et al., 1994).
The methods are included in pyESD.feature_selection as Re-
cursiveFeatureElimination, TreeBasedSelection, and Seque-
tialFeatureSelection, respectively. Furthermore, classical fil-
ter feature selection techniques, such as correlation analyses,
are also included as a method of the weather station object.

Predictors are typically constructed by (1) computing the
regional means of a physically relevant climate variable or
(2) constructing index time series for relevant synoptic-scale
climate phenomena. The package allows the user to consider
a few important aspects for each type of predictor.

1. The area over which the climate variable is averaged
can significantly affect model performance. In complex
terrain with high-frequency topography, for example,
choosing a smaller spatial extent may result in the pre-
dictor having a higher explanatory power. Therefore,
a radius (with a default value of 200 km) around the
weather station may be defined by the user to determine
the size of the area used for the computation of the re-
gional means.

2. Empirical orthogonal function (EOF) analysis is a well-
established tool for capturing atmospheric teleconnec-
tion patterns and reducing high-dimensional climate
datasets to index time series that represent the variabil-
ity of prominent modes of synoptic-scale climate phe-
nomena (Storch and von Zwiers, 2002). The current ver-
sion of pyESD includes functions for the extraction of
EOF-based index time series for dominant extratropi-
cal teleconnection patterns in the Northern Hemisphere
(pyESD.teleconnections). More specifically, it allows
the computation of index values for the North Atlantic
Oscillation (NAO) as well as the East Atlantic (EA),
Scandinavian (SCAN), and East Atlantic–Western Rus-
sian (EAWR) oscillation patterns (e.g., Boateng et al.,
2022). It will be expanded to consider Southern Hemi-
sphere patterns in future versions.

After the selection and construction of predictors, their
raw values can be transformed before model train-
ing. For instance, MonthlyStandardizer implemented in
pyESD.standardizer can be used to remove the seasonal
trends in each predictor by centering and scaling the data.
Such transformation can reduce biases toward high-variance
predictors, ensure generalization, and improve the represen-
tation of predictors constructed from GCM output (e.g., Be-
dia et al., 2020; Benestad et al., 2015a). Principal component
analysis (PCA) is another transformation tool included in the
package (pyESD.standardizer.PCAScaling). It can be applied
to (a) reduce the raw predictor values to information that is
relevant to the predictand and (b) prevent multicollinearity-
related problems during model training (e.g., Mutz et al.,
2016).

2.3 Learning models

The empirical relationship between local predictand and
large-scale predictors is often complicated due to the com-
plex dynamics in the climate system. However, ML algo-
rithms have been demonstrated to perform well in extracting
hidden patterns in climate data that are relevant for build-

https://doi.org/10.5194/gmd-16-6479-2023 Geosci. Model Dev., 16, 6479–6514, 2023



6484 D. Boateng and S. G. Mutz: pyESDv1.0.1

ing more complex transfer functions (e.g., Raissi and Kar-
niadakis, 2018). Specifically, neural networks have been ex-
plored for downscaling climate information due to their abil-
ity to establish a complex and nonlinear relationship between
predictands and predictors (e.g., Nourani et al., 2019; Gard-
ner and Dorling, 1998; Vu et al., 2016). Moreover, support
vector machine (SVM) models have been used to capture
the links between predictors and predictands by mapping the
low-dimensional data into a high-dimensional feature space
with the use of kernel functions (e.g., Anandhi et al., 2008;
Tripathi et al., 2006). Previous studies have also applied
multi-model ensembles due to their ability to reduce model
variance and capture the distribution of the training data (e.g.,
Xu et al., 2020; Massaoudi et al., 2021; Gu et al., 2022).

Selecting the most appropriate model or algorithm for a
specific location or predictand can be challenging because
one needs to consider many case-specific factors like data di-
mensionality, distribution, temporal resolution, and explain-
ability. This problem is exacerbated by the lack of well-
established frameworks for climate information downscaling
(Gutiérrez et al., 2019). The pyESD package addresses this
challenge with the implementation of many ML models that
are different with regard to their theoretical paradigms, as-
sumptions, and model structure. The implementation of com-
monly used models in the same package allows researchers
to experiment with different learning models and to repli-
cate and update their research based on emerging recommen-
dations for specific predictands and geographical locations.
The implementation of statistical and ML models in pyESD
mainly relies on the open-source scientific framework scikit-
learn tool (Pedregosa et al., 2011). In the following subsec-
tions, we briefly explain the principles behind the ML meth-
ods that are included in the pyESD package.

2.3.1 Regularization regressors

Regularization models are penalized regression techniques
that shrink the coefficients of uninformative predictors to im-
prove model accuracy and prediction interpretability (Hastie
et al., 2001; Tibshirani, 1996; Gareth et al., 2013). The co-
efficients of non-robust predictors are set to zero by mini-
mizing the absolute values of regression coefficients or min-
imizing the sum of squares of the coefficients. The former
is referred to as L1 regularization and adopted by the least
absolute shrinkage and selection operator (LASSO) method.
The latter is referred to as L2 regularization and adopted by
the ridge regression method. The regularization term (R) and
the updated cost function for a linear equation of p indepen-
dent variables or predictors, Xi , are defined as

R(β)=

p∑
i=1

|βi | (1)

for L1 regularization and

R(β)=

p∑
i=1

β2
i (2)

for L2 regularization. Therefore, the updated cost function is
defined as

cost=
n∑
j=1

(
yj −

p∑
i=1

Xijβi

)2

+ λR (β), (3)

where λ is the tuning parameter that controls the severity
of the penalty defined in Eqs. (1) and (2), and βi represents
the coefficients. The package features implementations of the
LASSO and ridge regression using a cross-validation (CV)
scheme with random bootstrapping to iteratively optimize λ.
These are included as LassoCV and RidgeCV, respectively.
The optimization of the cost function in Eq. (3) is usually
based on the coordinate descent algorithm to fit the coeffi-
cients (Wu and Lange, 2008). The pyESD package also in-
cludes an implementation of LassoCV that uses a less greedy
version of the optimizer (LassoLarsCV). It is computation-
ally more efficient by using the least angle regression (Efron
et al., 2004) for fitting the coefficients.

2.3.2 Bayesian regression

Bayesian regression employs a type of conditional model-
ing to obtain the posterior probability (p) of the target vari-
able (y), given a combination of predictor variables (X), re-
gression coefficients (w), and random variables (α) estimated
from the data (Bishop and Nasrabadi, 2006; Neal, 2012). In
its simplest form, the normal linear model, the predictand
yi (given the predictors Xj ), follows a Gaussian distribution
N(µ,σ). Therefore, to estimate the full probabilistic model,
yi is assumed to be normally distributed around Xijw:

p(yi |X,w,α)=N
(
yi |Xijw,α

)
. (4)

This approach also permits the use of regularizers in the op-
timization process. The Bayesian ridge regression procedure
(BayesianRidge) estimates the regression coefficients from a
spherical Gaussian and L2 regularization (Eq. 2). The reg-
ularizer parameters (α,λ) are estimated by maximizing the
log marginal likelihood under a Gaussian prior over w with
a precision of λ−1 (Tipping, 2001; MacKay, 1992):

p(w|α)=N
(
w|0,λ−1

|p

)
. (5)

This means that the parameters (α, λ, and w in Eqs. 4 and
5) are estimated jointly in the calibration process. Automatic
relevance determination regression (ARD) is an alternative
model included in the package. It differs from BayesianRidge
in estimating sparse regression coefficients and using cen-
tered elliptic Gaussian priors over the coefficients w (Wipf
and Nagarajan, 2007; Tipping, 2001). Previous studies have
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used sparse Bayesian learning (relevance vector machine –
RVM) for downscaling climate information (e.g., Das et al.,
2014; Ghosh and Mujumdar, 2008).

2.3.3 Artificial neural network

The multilayer perceptron (MLP) is a classical example of
a feed-forward ANN, meaning that the flow of data through
the neural network is unidirectional without recurrent con-
nections between the layers (Gardner and Dorling, 1998; Pal
and Mitra, 1992). MLP is a supervised learning algorithm
that consists of three layers (i.e., an input, hidden, and out-
put layer) connected by transformation coefficients (weights)
using nonlinear activation such as the hyperbolic function.
More specifically, the learning algorithm with one hidden
layer for the training sets (X1,y1), (X2,y2), . . . , (Xn,yn),
where XiεRn and yiε {0,1}, can be defined as

f (X)=W2θ
(
W T

1 X+ b1

)
+ b2, (6)

where θ is the activation function, and b1 and b2 are the
model biases added to the hidden and output layer. The
weights connecting the layers are optimized with the back-
propagation algorithm (Hecht-Nielsen, 1992; Rumelhart et
al., 1986) with a mean squared error loss function. More-
over, the L2 regularization (Eq. 2) method is applied to avoid
overfitting by shrinking the weights with higher magnitudes.
Therefore, the optimized squared error loss function is de-
fined as

Loss
(
ŷ,y,W

)
=

1
2

∥∥ŷ− y∥∥2
2+

α

2
‖W‖22, (7)

where α
2 ‖W‖

2
2 is the L2 penalty that shrinks the model com-

plexity. Often, the derivative of the loss function with respect
to the weights is determined until the residual error of the
model is satisfactory. The stochastic gradient descent algo-
rithm (Bottou, 1991; Kingma and Ba, 2014) is used as a
solver for updating the weights (defined in Eq. 6) in a maxi-
mum number of iterations until a satisfactory loss (Eq. 7) is
achieved. Moreover, the choice of the parameters, such as the
size of hidden layers, activation function, and learning algo-
rithm, is relevant to the performance of the model (Diaz et
al., 2017). The exhaustive search algorithm with CV boot-
strapping is a simple and efficient method for parameter op-
timization (Pontes et al., 2016) and therefore included in the
pyESD package (GridSearchCV).

2.3.4 Support vector machine

Support vector regression (SVR) uses the principles of SVM
as a regression technique. The learning algorithms are based
on Vapnik–Chervonenkis (VC) theory and empirical risk
minimization that is designed to solve linear and nonlin-
ear problems. This is achieved by applying kernel functions
to map low-dimensional data to higher- or even infinite-
dimensional feature space (Vapnik, 2000; Cristianini and

Shawe-Taylor, 2000). In principle, the model creates a hyper-
plane in a vector space containing groups of data points. This
hyperplane is a linear classifier that maximizes the group
margins. Given finite predictor and predictand data points
(X1,y1), (X2,y2), . . . , (Xn,yn), whereXiεRn and yiεR, the
regressor can be defined as

f (X,w)= wT φ (X)+ b, (8)

where the support vectors w and model bias b are the optimal
parameters that minimize the cost function in Eqs. (9):

cost=
1
2
wTw+C

n∑
i=1

(
ξi + ξ̂i

)
, (9)

subject to{
yi − f (Xi,w)≤ ε+ ξ̂i, f (Xi,w)− yi ≤ ε+ ξi,

}
where ξi , ξ̂i ≥ 0, and i = 1. . .n are the slack variables (the
upper and lower training errors) subject to the error tolerance
of ε that prevents overfitting. C represents a regularization
term that determines the balance between minimal loss and
maximal margins. The cost function in Eq. (9) is solved us-
ing Lagrange’s formula (Balasundaram and Tanveer, 2013)
to obtain the optimized function:

f (X)=

n∑
i=1

(
αi − α̂i

)
φ
(
Xi,Xj

)
+ b, (10)

where αi and α̂i are Lagrange multipliers, and φ
(
Xi,Xj

)
is

the kernel function which implicitly maps the training vec-
tors in Eq. (8) into a higher-dimensional space. The SVR
method of the pyESD package includes linear, polynomial,
sigmoid, and Gaussian radial basis function (RBF) kernels
(Hofmann et al., 2008). Moreover, the degree of regulariza-
tion (C) and the coefficient of the kernels (γ ) is given a range
of values so that the hyperparameter optimization algorithm
can determine the best model. Due to the expensive nature
of SVR, the package uses a randomized search algorithm in
a CV setting for the hyperparameter optimization (Bergstra
and Bengio, 2012). However, hyperparameters optimization
algorithms, such as Bayesian and grid search (Snoek et al.,
2012; Pontes et al., 2016; Bergstra et al., 2011) methods, are
also provided as alternatives. Previous downscaling projects
have taken advantage of the SVR method due to its ability to
map data into higher-dimensional space and exclude outliers
from the training process (Ghosh and Mujumdar, 2008; Chen
et al., 2010; Sachindra et al., 2018; Anandhi et al., 2008; Tri-
pathi et al., 2006).

2.3.5 Ensemble machine learning

Each ML technique is associated with challenges that arise
from the method’s limitations and underlying assumptions.
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These have to be considered carefully in the evaluation of the
resulting downscaling product. Some of these challenges can
be overcome by an integration of different ML models for a
specific task (Dietterich, 2000; Zhang and Ma, 2012). Inte-
grated ML models have been suggested to outperform single
ML models in downscaling climate information (e.g., Liu et
al., 2015). Ensemble models typically use different ML algo-
rithms (base learners) to extract information from the training
data, then use a second set of ML algorithms (meta-learners)
that learn from the first and combine the individual predic-
tions into an ensemble. Ensemble models can be categorized
by (a) the selection of base learners and (b) the method of
combining the individual predictions from the base learners.
Here, we summarize the more prominent ensemble models
that are included in the pyESD package.

Bagging

Bagging ensemble models consist of ML algorithms that
generate several instances of base learners using random sub-
sets of the training data and then aggregate the informa-
tion for the final estimates (Breiman, 1996a; Quinlan, 1996).
Such algorithms integrate randomization into the learning
process and thereby often ensure the reduction of the vari-
ance of the individual base learners (e.g., decision trees).
Moreover, bagging techniques constitute a simple way to
improve model performance without the need to adapt the
underlying base algorithm. Since bagging works well with
complex algorithms like decision trees, we also consider tree-
based ensembles for the pyESD package. More specifically,
we include implementations of the random forest (Random-
Forest) and extremely randomized tree (ExtraTree) methods
in addition to classical bagging.

The RandomForest algorithm builds multiple independent
tree-based learners. The trees can be constructed with the full
set of predictors or a random subset. Each tree is constructed
from a random sample of the training data in a bootstrapping
process (Breiman, 2001). The algorithm uses the remaining
training data (i.e., out-of-bag data) to estimate the error rate
and evaluate the model’s robustness. In contrast, the Extra-
Tree algorithm considers the discriminative thresholds from
each predictor rather than the subset of predictors (Geurts et
al., 2006). This usually adds more weight to the variance re-
duction and slightly improves the model bias. Tree-based en-
sembles are particularly suitable for establishing a nonlinear
relationship between predictors and predictands (e.g., Pang
et al., 2017; He et al., 2016).

Boosting

In recent years, boosting models have also been applied
for the downscaling of climate information (e.g., Fan et
al., 2021; Zhang et al., 2021). Boosting models are meta-
estimators that are built sequentially from multiple base
learners with the primary objective of reducing the model

bias and variance. In principle, the method “boosts” weaker
base learners (i.e., estimators that perform only slightly bet-
ter than random guessing) by converting them into strong
ones in an iterative process. The technique assumes that the
base learning model is distribution-free (Schapire, 1999) and
iteratively improves the weaker base learners by applying
weights to the training data through the adjustment of the
input points with prediction errors from the previous predic-
tion (Schapire, 2003; Schapire and Freund, 2013). There are
many boosting algorithms due to the many possible meth-
ods of weighting the training data and tuning the weaker
base learners. In the pyESD package, we include (1) adap-
tive boosting (Adaboost), (2) gradient tree boosting (Gra-
dientBoost) with a gradient boosting algorithm by Fried-
man (2001), and (3) extreme gradient boosting (XGBoost).
A brief summary of each is provided below.

1. The Adaboost algorithm is a well-established model for
improving the accuracy of weak base learners (Freund
and Schapire, 1997). The model is adaptive in the sense
that the training data are sequentially adjusted based
on the previous performance of the weaker model. The
model uses a weighted majority vote (or sum) to com-
bine the individual prediction from the weaker learners
and produce a robust final prediction. The implemented
version uses a decision tree algorithm as the base esti-
mator to develop the boosted ensemble predictions.

2. The GradientBoost algorithm considers the boosting
process to be a numerical optimization problem that
minimizes a loss function in a stage-wise additive model
by adding weaker learners using a gradient descent pro-
cedure. This generalization allows the tuning of an arbi-
trary differentiable loss function which can be selected
based on a specific problem. Specifically, in pyESD,
squared errors are used in the minimization of the loss
function.

3. XGBoost, a recent extension of the GradientBoost al-
gorithm, is designed to reduce computational time and
improve model performance (Chen and Guestrin, 2016).
The model uses regularization terms to penalize the final
weights and prevent overfitting. The algorithm also uses
shrinkage and column subsampling techniques to avoid
overfitting. Moreover, the model can handle sparse data
by using a sparsity-aware split function.

Stacked generalization

The stacked generalization method (or “stacking”) has pre-
viously been used for the downscaling climate information
and has shown improved prediction robustness over singu-
lar models (e.g., Massaoudi et al., 2021; Gu et al., 2022).
It is designed to enhance prediction accuracy and general-
ity by taking advantage of the mutual complementarity of
the base-model predictions. The approach was introduced by
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Wolpert (1992) and demonstrated for regression tasks and
unsupervised learning by Breiman (1996b) and Leblanc and
Tibshirani (1996), respectively. In principle, the following
process is implemented: in the first step, the training data
and base models, referred to as level-0 data and level-0 mod-
els by Wolpert (1992), are used to generate the first set of
predictions. Then a meta-learning model (level-1 general-
izer) is used to optimally combine the previous predictions
(level-1 data) into final estimates. Lastly, the method applies
a cross-validation technique and generates new “stacked”
datasets for a final learning step. Generally, the performance
of stacked generalization is constrained by the attributes used
to generate the level-1 data and the type of algorithm used
for higher-level learning (Ting and Witten, 1999). We con-
sider these limitations by providing a wide range of models
that can be used as the level-0 models and the level-l gener-
alizer. The base learners can be selected from the different
ML models presented in the previous sections. The reader
is advised that previous studies (e.g., Reid and Grudic, 2009)
suggest the use of a more restrictive model like LassoCV and
ExtraTree as the meta-learner to prevent overfitting.

2.4 Model training

The process of training and testing the PP-ESD models is
the most critical stage in the downscaling procedure, since
it determines much of the robustness of the final models, as
well as the accuracy of the predictions they generate. The
process typically involves the following steps: (1) the ob-
servational records are separated into training and testing
datasets. (2) The training datasets are used to establish the
transfer functions that make up the PP-ESD models. (3) The
trained models are then evaluated on the independent test-
ing datasets (Sect. 2.5). In the model training process, hyper-
parameter optimization techniques (e.g., GridSearchCV) are
used to fine-tune the transfer function parameters, such as re-
gression coefficients, to optimize model performance. Cross-
validation (CV) techniques are applied to split the whole
training dataset into smaller training and validation data sec-
tions and allow the assessment and iterative improvement of
the model parameters during training while also preventing
overfitting (Moore, 2001; Santos et al., 2018). In this cate-
gory of techniques, the k-fold framework is the most used
for climate information downscaling models. It partitions the
training data into k equally sized and mutually exclusive sub-
samples, which are also referred to as folds (Stone, 1976;
Markatou et al., 2005). More specifically, for each iteration
step, one fold is used for model validation, and the remain-
ing k−1 folds are used for model training. The leave-one-out
CV technique (Lachenbruch and Mickey, 1968) is an alterna-
tive and has been used for the development of ESD models
(e.g., Gutiérrez et al., 2013). Cross-validation techniques rely
on the fundamental assumption of independent and identi-
cally distributed (i.i.d) data. They, therefore, treat the data
as a result of a generative process that has no memory of

previously generated samples (Arlot and Celisse, 2010). The
assumption of i.i.d might not be valid for time series data
(e.g., Bergmeir and Benítez, 2012) due to seasonal effects,
for example. To circumvent this problem, monthly boot-
strapped resampling and time series splitters are included in
the pyESD package. The pyESD.splitter module contains all
CV frameworks available for model training, including the
k-fold, leave-one-out, and other CV schemes. The validation
metrics used for optimizing the model parameters include the
coefficient of determination (R2) (Eq. 11), root mean squared
error (RMSE) (Eq. 13), mean absolute error (MAE) (Eq. 14),
and others that are summarized in Sect. 2.5. The final values
for the validation metrics, which reflect the model perfor-
mance during training, are arithmetic means of the individual
values for each iteration. In this paper, we refer to them as
CV performance metrics (i.e., CV R2, CV RMSE, and CV
MAE).

2.5 Model evaluation

In the process of downscaling climate information, best prac-
tice involves the use of stringent model evaluation schemes
with independent data outside the training data range (Wilby
et al., 2004). Retaining a section of the data as a testing
dataset (Sect. 2.4) is recommended if longer records (e.g.,
≥ 30 years) are available. It allows (a) a completely inde-
pendent evaluation of the trained model’s performance and
(b) an assessment of the sensitivity of the model to the cho-
sen training dataset. In the case of time series, the latter can
provide insights into the model’s sensitivity to the calibration
period and the temporal stationarity of the model’s transfer
functions. If the records are short (e.g., < 30 years), the CV
metrics (Sect. 2.4) can be used, albeit with caveats, as non-
ideal estimates for the model’s performance (e.g., Mutz et al.,
2021). For the remainder of this section, however, we will as-
sume that longer records and completely independent testing
datasets are available.

The PP-ESD model is evaluated on the basis of the model’s
predictions ŷ and the observed values y. In pyESD, the fol-
lowing performance metrics are implemented.

1. The coefficient of determination (R2) represents the
fraction of the predictand’s observed variance that can
be explained by the predictors. It can be seen as a mea-
sure of how well the model predicts the unseen data
(Wilks, 2011). The R2 for the predicted values ŷi in re-
lation to the observed data yi for i = 1, . . . , n samples
is defined as

R2 (y, ŷ)= 1−

n∑
i=1

(
yi − ŷi

)2
n∑
i=1
(yi − ȳ)

2
, (11)

where ȳ is the mean of the observed data,
n∑
i=1

(
yi − ŷi

)2 is the sum of squared residuals (SSR),
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and
n∑
i=1
(yi − ȳ)

2 is the total sum of squares (SST). R2

can range from −∞ to 1, where 1 is the best possible
score and negative values are indicative of an arbitrary,
worse model. An R2 value of 0 is indicative of a model
that would always predict the ȳ. In this case, the model
represents no improvement over simply using the mean
ȳ as a model.

Pearson’s correlation coefficient (PCC) evaluates the
linear correlation between the model predictions yi and
observed data xi . The PCC of 1 indicates a perfect pos-
itive correlation, −1 indicates a perfect anticorrelation,
and 0 indicates no correlation between the predicted and
observed values. The PCC for n samples is defined as

PCCxy =

n∑
i=1
(xi − x̄) (yi − ȳ)√

n∑
i=1
(xi − x̄)

2

√
n∑
i=1
(yi − ȳ)

2

, (12)

where the x̄ and ȳ are the means of the xi and xi values,
respectively.

The root mean squared error (RMSE) estimates the
mean magnitude of error between the predictions and
observations. The RMSE is given in the physical units
of the observed data and not standardized. Smaller val-
ues indicate better model performance. The RMSE for
predictions ŷi and observations yi of n samples is cal-
culated as

RMSE
(
y, ŷ

)
=

√√√√1
n

n∑
i=1

(
ŷi − yi

)2
. (13)

The mean absolute error (MAE) is a scale-dependent
accuracy measure that also provides information on the
errors between the predictions and observations. The
MAE is estimated as the sum of absolute errors nor-
malized by the sample size (n). The MAE is calculated
as

MAE
(
y, ŷ

)
=

1
n

n∑
i=1

∣∣ŷi − yi∣∣ . (14)

Additional metrics such as the mean squared error (MSE),
mean absolute percentage error (MAPE), maximum error,
adjusted R2 (Miles, 2014), and Nash–Sutcliffe efficiency
(NSE) (Nash and Sutcliffe, 1970) are included in pyESD.
However, the predicted values from the trained model and
their corresponding observed values can be evaluated using
other metrics not included in pyESD. For example, addi-
tional metrics like the model skill score E and the revised R2

(RRS), which combines correlation, bias measure, and the
capacity to capture variability, can be used (Onyutha, 2021).

We highlight that the limitations and assumptions underpin-
ning these metrics should be considered when interpreting
performance metrics. For example, the RMSE is sensitive to
outliers because the squaring of errors assigns more weight
to large errors. This implies that a single outlier can bias
its estimate and lead to a misinterpretation of extreme data
points in the predictand. Although MAE is less sensitive to
outliers compared to RMSE, its treatment of all errors with
equal weight may not adequately account for the impact of
extreme errors on model performance. Consequently, both
metrics should be interpreted with respect to the mean of the
observed values. On the other hand, the Pearson correlation
coefficient (PCC) assumes a linear relationship between the
predicted and observed values and a bivariate normal distri-
bution. However, distance correlation (Székely et al., 2007),
which is more computationally demanding and makes no as-
sumptions about the relationship or distribution, can be con-
sidered. Chaudhuri and Hu (2019) demonstrated a fast algo-
rithm that can be used to compute the distance correlation.

2.6 GCM–ESD coupling and local-scale predictions

The developed and tested PP-ESD model can finally be
coupled to coarse-scale climate information. If the PP-ESD
model was developed with the intention to downscale predic-
tions of future climate change, the next logical step is to cou-
ple it to GCM simulations forced with different greenhouse
gas concentration scenarios. Since PP-ESD is the bias-free
downscaling alternative to MOS-ESD, PP-ESD models may
be coupled to all GCMs, provided that the predictors are ad-
equately represented by the GCMs. This condition may be
alleviated to an extent by standardizing the simulated predic-
tor (Bedia et al., 2020). An analysis of the distribution simi-
larity between the observed and simulated predictors can be
conducted to test the assumption of representation. For ex-
ample, the Kolmogorov–Smirnov (KS) test, which is imple-
mented as part of the pyESD package utilities, is a nonpara-
metric statistical hypothesis test that can be used to evaluate
the null hypothesis (H0) that the observation-based predic-
tors and simulated predictors are of the same theoretical dis-
tribution.

The first step in ESD–GCM coupling is to utilize the GCM
output to recreate the predictors used in the training of the
ESD model. This may involve anything from constructing
simple temperature regional means to reconstructing multi-
variate indices for more complex climate phenomena. In the
case of index-based predictors such as NAO, EA, SCAN, and
others, the simulated indices are reconstructed by projecting
the pressure anomalies of the GCM onto the EOF loading
patterns of the predictors (e.g., Mutz et al., 2016). This en-
sures that the physical meaning of the index values is main-
tained. The ESD model then takes these simulated predictors
as input and generates local-scale predictions according to
the model’s transfer functions. The added value of the re-
sulting downscaling product can be evaluated by comparing
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the downscaled values to the raw outputs of different GCMs
and RCMs. Finally, the high-resolution local-scale predic-
tions can be used to drive climate change impact assessment
models to predict flood frequency (e.g., Padulano et al., 2021;
Hodgkins et al., 2017), agricultural changes (e.g., Mearns et
al., 1996), changes in water resources (e.g., Dau et al., 2021),
and more.

3 Illustrative case study: Neckar catchment

We demonstrate the complete downscaling workflow and
highlight most of the functionalities of the pyESD package
in an illustrative case study. The study uses the PP-ESD ap-
proach and is set in the Neckar catchment, a hydrological
catchment in southwestern Germany that consists of com-
plex mountainous terrain with topographic elevations be-
tween 200 and 1000 m above sea level (Fig. 2). The region
is climatically complex, since local climates are influenced
by atmospheric teleconnection patterns (e.g., NAO, EA, and
SCAND), orographic effects (e.g., Kunstmann et al., 2004),
and the Mediterranean climate (Bárdossy, 2010; Ludwig et
al., 2003). The catchment experiences maximum precipita-
tion (80–120 mm per month) and temperature (15–18 ◦C)
in the summer months (Fig. 3). The catchment serves as a
water supply for drinking and agricultural activities (Selle et
al., 2013). We use this catchment for our case study because
(a) it is a suitable region to test the strengths and limitations
of the pyESD downscaling package, and (b) generating 21st
century climate change estimates can contribute to regional
climate impact assessments and adaptation.

In this case study, we apply pyESD to predict local tem-
perature and precipitation changes for 22 weather stations lo-
cated in the catchment (Table 1) and demonstrate the pack-
age’s flexibility by performing experiments with the differ-
ent modeling alternatives. We show most of the PP-ESD
steps required for generating robust downscaling products.
These steps include (1) predictor selection and construction;
(2) model selection, training, and cross-validation; (3) model
evaluation; and (4) generating future predictions through
ESD–GCM coupling (see Sect. 3.2 for details). We note that
the focus of the case study is more on demonstrating the
pyESD workflow and functionality and less on detailed dis-
cussions of the downscaled results and their implications. In
order to allow readers to reproduce and learn from this ap-
plication example, we only use public and freely available
datasets (see Sect. 3.1 for more details about the data). More-
over, all scripts used in this study (i.e., data preprocessing,
modeling, and visualization scripts) are provided in the code
and data availability section.

3.1 Datasets

3.1.1 Weather station data

Monthly precipitation and temperature station data from the
German Weather Service (Deutscher Wetterdienst, DWD ac-
cessible from https://cdc.dwd.de/portal/, last access: 30 Oc-
tober 2023) served as the predictand time series in this study.
We considered all weather station records that (a) origi-
nated from measurements in the Quelle–Enz subcatchment,
(b) covered the time period of 1958 to 2020, and (c) were
at least 30 years in length. Even though there is no well-
established and universally valid recommendation for the
minimum record length in a PP-ESD approach (e.g., Hewit-
son et al., 2014), we chose a conservative 30-year threshold
to ensure the models can be evaluated with truly independent,
retained data (see Sect. 2.5). The remaining weather stations
are summarized in Table 1. These were loaded into predic-
tand station objects (SOs) as follows.
1 from pyESD.Weatherstation import
read_station_csv
2 variable = "Temperature" #or
'Precipitation'
3 SO = read_station_csv(filename,
variable)

3.1.2 Reanalysis datasets

The ERA5 reanalysis products, produced and managed by
the European Centre for Medium-Range Weather Forecast-
ing (ECMWF), were used to construct the predictors in this
study. ERA5 is based on historical records from various ob-
servational systems (e.g., oceans buoys, aircraft, weather sta-
tions) that are dynamically interpolated with numerical fore-
casting models in a four-dimensional variational (4D-Var)
data assimilation scheme to generate global, homogeneous,
spatially gridded datasets (Bell et al., 2021). It has a spatial
resolution of approximately 31 km (or TL639) and is avail-
able as hourly data, covering 1950 to the present day with a
5 d lag of data availability (Hersbach et al., 2020). For this
study, however, mean monthly values were used in the con-
struction of potential predictors (Table 2). These are publicly
available from the Copernicus Climate Data Store (CDS) (ac-
cessible at https://cds.climate.copernicus.eu, last access: 30
October 2023).

3.1.3 GCM simulation datasets

For the ESD–GCM coupling, the predictors were recon-
structed from an MPI-ESM (Max Planck Institute Earth Sys-
tem Model) GCM simulation that follows the protocols of
the World Climate Research Programme’s (WCRP) Cou-
pled Model Intercomparison Project phase 5 (CMIP5) (Tay-
lor et al., 2012). We highlight that CMIP5 model output was
chosen in this illustrative study to enable consistent com-
parison with previous regional climate models over the re-
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Table 1. IDs (specific to this study), names, coordinates, and elevation (m) for weather stations recording (a) precipitation and (b) tempera-
ture.

(a) ID Name Longitude Latitude Elevation

1 Baltmannsweiler–Hohengehren 9.45 48.76 457
2 Boll Bad 9.62 48.64 423
3 Eschbronn–Mariazell 8.47 48.19 716
4 Fellbach 9.27 48.81 280
5 Goeppingen–Jebenhausen 9.63 48.69 368
6 Haigerloch–Weildorf 8.77 48.37 524
7 Hechingen 8.98 48.38 518
8 Heubach Ostalb 9.94 48.80 450
9 Horb–Betra 8.66 48.41 544
10 Klippeneck 8.75 48.11 973
11 Lorch Kreis Ostalb–Waldhausen 9.64 48.78 296
12 Metzingen 9.27 48.54 354
13 Oberndorf Neckar 8.58 48.29 516
14 Rosenfeld–Bickelsberg 8.69 48.29 676
15 Stoetten 9.86 48.67 734
16 Stuttgart–Echterdingen 9.22 48.69 371
17 Stuttgart (Schnarrenberg) 9.20 48.83 314
18 Winterbach Rems–Murr–Kreis 9.47 48.80 240

(b) ID Name Longitude Latitude Elevation

1 Hechingen 8.98 48.38 518
2 Klippeneck 8.75 48.11 973
3 Lenningen–Schopfloch 9.53 48.54 758
4 Murrhardt 9.57 48.97 344
5 Rottweil 8.64 48.18 588
6 Schwaebisch Gmuend–Strassdorf 9.80 48.78 415
7 Stoetten 9.86 48.67 734
8 Stuttgart–Echterdingen 9.22 48.69 371
9 Stuttgart (Schnarrenberg) 9.20 48.83 314

Table 2. Potential predictors considered for PP-ESD models and the frequency of their selection for (a) precipitation and (b) temperature
stations (based on the final predictor selection method).

Name Description (a) (b)

1 t2m Near-surface temperature 8 8
2 tp Total precipitation 18 9
3 msl Mean sea level pressure 4 6
4 v10 Near-surface meridional wind 7 7
5 u10 Near-surface zonal wind 10 7
6 NAO North Atlantic Oscillation index 9 5
7 EAWR East Atlantic–Western Russian oscillation index 11 3
8 SCAN Scandinavian oscillation patterns 11 5
9 EA East Atlantic patterns 10 4
10 v_plev Meridional wind at pressure levels 250, 500, 700, 850, and 1000 hPa 9, 7, 7, 10, 8 7, 3, 8, 5, 7
11 u_plev Zonal wind at pressure levels 250, 500, 700, 850, and 1000 hPa 4, 9, 7, 6, 11 7, 5, 5, 5, 8
12 r_plev Relative humidity at pressure levels 250, 500, 700, 850, and 1000 hPa 7, 8, 15, 7, 11 7, 4, 5, 5, 6
13 z_plev Geopotential height at pressure levels 250, 500, 700, 850, and 1000 hPa 3, 6, 4, 6, 5 4, 6, 5, 7, 5
14 t_plev Temperature at pressure levels 250, 500, 700, 850, and 1000 hPa 10, 9, 7, 7, 6 5, 5, 6, 8, 9
15 d2m Near-surface dew-point temperature 6 5
16 dtd Dew-point temperature depression at pressure levels 250, 500, 700, 850, and 1000 hPa 7, 6, 13, 7, 11 4, 2, 2, 3, 1
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Figure 2. Weather station locations and elevations in the Neckar catchment. The red circles represent temperature stations (ID corresponds
to Table 1b), and the black circles represent precipitation stations (ID corresponds to Table 1a). The color map shows the elevation and
delineates the extent of the catchment.

gion and any GCM outputs (e.g., CMIP6) can be combined
with pyESD. For the case study, we consider several sim-
ulations (accessible at https://cds.climate.copernicus.eu, last
access: 30 October 2023) forced with different RCP scenar-
ios (Moss et al., 2010) to predict the local-scale response
to the plausible range of forcings. In order to highlight the
added value of the downscaled product, the local-scale fu-
ture estimates are compared to the coarser predictions of sev-
eral GCMs (i.e., MPI-ESM, CESM1-CAM5 of the National
Center for Atmospheric Research – NCAR, Kay et al., 2015,
and HadGE2-ES of the Hadley Centre of the UK Met Office,
Collins et al., 2008) and RCMs (CORDEX-Europe simula-
tion with MPI-CSC-REMO2009 driven with boundary con-
ditions from MPI-ESM).

3.2 Methods

3.2.1 Predictor selection and construction

The considered predictors must be large-scale climate ele-
ments that are both physically and empirically relevant to
predicting the local-scale climate variability in the vicinity
of the weather station. The physical relevance of considered

predictors (Table 2) is established through previous studies
and general climatological merit. We then apply a monthly
standardizer transformer to remove the seasonality trends and
scale the individual predictors. The empirical relationship
with the predictand is then evaluated with PCCs defined in
Eq. (12). Finally, first estimates of their predictive skills are
obtained through the application of the package’s recursive,
sequential, and tree-based algorithms in a CV setting. These
preliminary experiments are conducted to refine the selec-
tion of predictors further. After the predictor selection pro-
cess, each weather station and predictand is associated with
a particular subset of predictors (Table 2) that are later used
to train the final ESD model for the station (Sect. 3.2.2).

The steps above are implemented with pyESD as follows.

1. We create a list (predictors) of all considered pre-
dictors with physical relevance to the predictand. We
then use the set_predictors method of the station ob-
ject (SO) to read the data in the local directory (pre-
dictordir) and construct regional means with a de-
fined radius of 200 km around the station location.
These are regional means of relevant climate variables
and serve as the simplest type of predictor. For the
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Figure 3. Long-term (1958–2020) monthly means of (a) precipitation and (b) temperature, averaged over all stations in the catchment. The
error bars are the standard deviations that represent inter-station variability. The maximum precipitation and temperature in the catchment
are recorded in the summer season (JJA).

construction of indices for atmospheric teleconnection
patterns (i.e., NAO, EA, SCAN, and EAWR), which
serve as further predictors, the package automatically
calls the pyESD.teleconnections module if the pattern’s
acronym is included in the list of predictors.
1 predictors = ["t2m", "tp", "NAO"
,..., "nth predictor"]
2 SO.set_predictors(variable,
predictors, predictordir,
radius=200) # radius in km

2. We apply the monthly standardizer and then use the pre-
dictor_correlation method to estimate the PCC between
the predictand and predictors.
1 SO.set_standardizer(variable,
standardizer = MonthlyStandardizer
(detrending=True, scaling=True))
2 df_corr = SO.predictor_correlation
(variable, predictor_range,
ERA5Data, fit_predictors=True,
fit_predictand=True,
method="pearson")

3. The final refinement of the predictor list is implemented
as part of the fit method. We use the set_model method
to define the ARD regressor, TimeSeriesSplitter CV
setting, and call the fit method in a loop through the
three types of selector methods.
1 SO.set_model(variable,
method="ARD",
cv=TimeSeriesSplit(n_splits=10))
2 selector_methods = ["Recursive",
"TreeBased", "Sequential"]
3 for selector_method in
selector_methods:
4 SO.fit(variable, predictor_range,
ERA5Data, fit_predictors=True,
predictor_selector=True,
selector_method =
selector_method, select_regressor)

3.2.2 Model training and validation

Model training and validation are performed separately for
each predictand and weather station. The models are trained
in a CV setting for the period 1958–2010 and then assessed
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on independent retained data for the period 2011–2020. In
the training process, we use seven different methods before
deciding on an estimator for the final model. These methods
include at least one representative for each of the families of
ML algorithms (see Sect. 2.3) except SVR. We exclude SVR
due to its high computational demands for optimization and
to ensure the easy reproducibility of the illustrative example
on less powerful computers. We perform the initial model
training and validation with the LassoLarsCV, ARD, MLP,
RandomForest, XGBoost, bagging, and stacking regressors
using a KFold(n_splits=10) validation scheme for hyperpa-
rameter optimization. For the stacking regressor, we use all
the other regressors as base estimators (i.e., level-0 learners)
and ExtraTree as the meta-learner. The final ESD model is
then selected based on the CV metrics (i.e., CV R2 and CV
RMSE) of the individual models.

The steps above are implemented with pyESD as follows:
the models are trained with the fit method as described
within Sect. 3.2.2. The cross_validate_and_predict method
is applied to calculate the CV metrics and generate the
predictions for the training period 1958–2010. The predict
method is then used to generate predictions for the 2011–
2020 period from the models trained in the 1958–2010
period. Finally, the evaluate method is used to obtain
the model performance metrics based on the 2011–2020
predictions and retained data. The R2, RMSE, and MAE
(see Sect. 2.5) are used as both CV and evaluation metrics in
this study. The ERA5 reanalysis product is specified as the
predictor dataset for all these methods.
1 cv_score_1958to2010,
predict_1958to2010 =
SO.cross_validate_and_predict(variable,
from1958to2010, ERA5Data)
2 predict_2011to2020 =
SO.predict(variable, from2011to2020,
ERA5Data)
3 scores_2011to2020 =
SO.evaluate(variable, from2011to2020,
ERA5Data)

3.2.3 Future prediction

Future predictions are generated by coupling the final ESD
models to GCM simulations for the 21st century. In the il-
lustrative example, we use MPI-ESM simulations that were
forced with greenhouse gas concentration scenarios RCP2.6,
RCP4.5, and RCP8.5. This coupling is achieved as fol-
lows: the predictors selected during model training are re-
constructed from the GCM output. These simulated predic-
tors are standardized with the MonthlyStandardizer param-
eters obtained from the reanalysis predictors to ensure data
homogenization. Prediction anomalies are calculated using
the training period 1958–2010 as a reference. The result-
ing RCP-specific 21st century prediction anomaly time se-
ries are then used to calculate the annual means (2020–2100),

as well as the seasonal (DJF, MAM, JJA, SON) and annual
30-year climatologies for the mid-century (2040–2070) and
the end of the century (2070–2100). The predicted anomalies
are then back-transformed to their respective absolute values
for all stations and compared to the raw outputs of GCMs
(i.e., CESM1-CAM5, HadGE2-ES, EURO-CORDEX, and
MPI-ESM; see Sect. 3.1.3) using the nearest grid point. In
pyESD, a future prediction can be generated by using the
predict method (Sect. 3.2.2) and specifying the GCM output
as the predictor data source.

The PP-ESD approach relies on the assumption that the
predictors are well-represented by the GCM. We therefore
perform KS tests to evaluate the distribution similarity be-
tween GCM and ERA5 predictors for the datasets’ tempo-
ral overlap. The KS statistic lies within the 0–1 range, with
lower values indicating greater distribution similarity. For
our two-sided tests, we reject the null hypothesis (H0 means
the datasets have identical underlying distributions) in the
case of p values being smaller than 0.05. We perform the
test on the raw monthly time series, monthly anomalies, and
standardized anomalies in order to isolate the distributional
differences of the first and second moments error propaga-
tion (Bedia et al., 2020). The KS_stat function implemented
in the pyESD.utils module is used to test several of the infor-
mative predictors (such as tp, t2m, r850, u850, and v850).

4 Results and discussion

In this section, we present and discuss the results of the illus-
trative case study. The discussion places more emphasis on
the functionalities of the package than the climatological im-
plications. Specifically, we discuss the results of the predictor
selection step (Sect. 4.1), the training and validation of the
model (Sect. 4.2), the final model performance (Sect. 4.3),
and the future predictions generated through the ESD–GCM
coupling (Sect. 4.4).

4.1 Predictor selection

All implemented predictor selection methods demonstrated
merit, and the correlation analyses revealed strong linear
dependencies between the predictand variables and poten-
tial predictors (Figs. A1 and A2). For example, precipita-
tion records are highly correlated (PCC ≥ 0.5) with large-
scale total precipitation (tp), atmospheric relative humidity
(r), and zonal wind velocity (u) up to the mid-tropospheric
level (i.e., 500–1000 hPa) (Fig. A1). The temperature records
are highly correlated (PPC ≥ 0.7) with near-surface tem-
perature (t2m), atmospheric temperature (t on all levels),
and dew-point temperature depression (dtd) up to the mid-
troposphere (Fig. A2). Both predictands also show a good
correlation (PCC≥ 0.25) with the indices of the atmospheric
teleconnection patterns (i.e., NAO, EA, EAWR, and SCAN).
The predictor selection methods (i.e., recursive, tree-based,
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Figure 4. Cross-validation R2 and RMSE for the predictor selection methods (recursive in red, tree-based in green, and sequential in black)
for precipitation (a, c) and temperature (b, d) station records. The individual methods performed similarly well, suggesting that each of the
implemented methods may be used to refine the list of potential predictors.

and sequential) perform similarly for all the precipitation
and temperature stations (Fig. 4). More specifically, the three
methods yield CV R2 values of 0.5 to 0.75 (Fig. 4a), CV
RMSE values of ≤ 25 mm per month (Fig. 4c) for precipita-
tion, CV R2 values of ≥ 0.95 (Fig. 4b), and CV RMSE val-
ues of 0.3 to 0.6 ◦C (Fig. 4d) for temperature stations. Since
the methods did not show a significant difference in perfor-
mance, the recursive method was applied for the refinement
of the set of predictors, since it allows more flexibility and
a stepwise iteration of several combinations of potential pre-
dictors (e.g., Mutz et al., 2021; Hammami et al., 2012; Li
et al., 2020). The frequencies with which specific predictors
were selected using the recursive method are listed in Ta-
ble 2.

The predictors tp and t2m were included for most of the
precipitation and temperature station records, respectively.
This indicates that variations in the larger-scale precipita-
tion and temperature fields already explain much of the local-
scale predictand variability in the vicinity of the weather sta-
tions. Many of the refined predictor sets also included indices
of the NAO (9 of 18 precipitation stations, 5 of 9 temperature
stations), SCAN (11 of 18 precipitation stations, 5 of 9 tem-
perature stations), EA (10 of 18 precipitation stations, 4 of 9

temperature stations), and EAWR (11 of 18 precipitation sta-
tions, 3 of 9 temperature stations). This confirms the strong
manifestation of Northern Hemisphere atmospheric telecon-
nection patterns in the local-scale precipitation and temper-
ature in the catchment (e.g., Bárdossy, 2010; Ludwig et al.,
2003). Their exclusion from the other stations is likely due
to the fact that their variability might already be captured by
zonal and meridional wind speeds and synoptic pressure vari-
ables like geopotential height (z) and mean sea level pressure
(slp) (Hurrell and Van Loon, 1997; Hurrell, 1995; Barnston
and Livezey, 1987; Maraun and Widmann, 2018). Relative
humidity was selected as a predictor for most of the precip-
itation stations. This is consistent with the results of many
other studies (e.g., Gutiérrez et al., 2019; Hammami et al.,
2012) and our physical understanding of it as a measure of
humidity that takes saturation vapor pressure into considera-
tion.

4.2 Performance of individual estimators

We experimented with seven different regressors before de-
ciding on the regressor that would be used to establish the
final ESD models (see Sect.3.2.2). A total of 126 precipita-
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Figure 5. Cross-validation R2 and RMSE box plots comparing the experimental regressors’ performance for all the precipitation (a, c) and
temperature (b, d) stations. The red lines inside the box represent the median, the lower and upper box boundaries indicate the 25th and 75th
percentiles, and the lower and upper error lines show the 10th and 90th percentiles, respectively. The black plus marks show the outliers
outside the range of the 10th and 90th percentile.

tion and 63 temperature experimental models were generated
with the seven regressors. Overall, most of the experimen-
tal models performed reasonably well with a mean CV R2

of ≥ 0.5 for precipitation and ≥ 0.9 for temperature stations
(Fig. 5). The MLP models, on the other hand, performed
relatively poorly with CV R2 values of ≤ 0.4 for precipita-
tion and ≤ 0.9 for temperature. This is due to the fact that
MLP model calibration requires longer records and a more
complex architecture to capture most of the informative pat-
terns in the training data. This study, however, uses a sim-
plified architecture to make the results reproducible without
higher computational requirements. The result can likely be
improved with more data (e.g., by using daily values) and
an increase in hidden layers (Sect. 2.2.3). The overall perfor-
mance of the experimental models underlines the methods’
suitability for downscaling.

Among the better-performing precipitation models, the
LassoLarsCV and ARD methods yielded the best results (CV
R2
= 0.55–0.75, CV RSME= 20–23 mm per month), fol-

lowed by the RandomForest and bagging ensembles (CV
R2
= 0.48–0.70, CV RSME= 21 to 25 mm per month), as

well as the XGBoost ensemble regressor (CV R2
= 0.39–

0.65, CV RMSE= 22–27 mm per month). Stacking all ex-
perimental models into a meta-regressor also yields good
results (CV R2

= 0.45–0.7, CV RMSE= 20–26 mm per
month) despite the poor performance of the MLP regressors.
Based on these results, the LassoLarsCV, ARD, RandomFor-
est, and bagging regressors were selected as the final base
learner for the stacking model. ExtaTree was chosen as the
final meta-learner to prevent overfitting issues by placing an
additional discriminative threshold on all the base regressor’s
predictions (Geurts et al., 2006).

The experimental temperature models showed similar pat-
terns in performance but performed better overall. Lasso-
LarCV and ARD emerge as the best-performing models
(CV R2

= 0.85–0.98, CV RMSE= 0.2–0.6 ◦C), followed by
the RandomForest and bagging regressors (CV R2

= 0.8–
0.96, CV RMSE= 0.3–0.7 ◦C), as well as the XGBoost
and stacking ensemble regressors (CV R2

= 0.75–0.96, CV
RMSE= 0.3–0.8 ◦C). Therefore, we also selected stacking
(with LassoLarsCV, ARD, RandomForest, bagging) for the
final temperature models, too.
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Figure 6. Prediction example for the Hechingen station using the final regressor for precipitation (a, c) and temperature (b, d). The top
panels (a, b) show the linear relationship between the predictions and observed values, as well as the PCC (R value) for the testing data
(blue-colored circles). The bottom panels (c, d) show the 1-year moving average of the observed (green, solid) and ERA5-driven predictions
for the training period (blue, dash-dotted) and the testing period (red, dashed).

4.3 Performance of the final estimator

Following the analysis of the seven experimental models
(Sect. 4.2), the recursive predictor selection method and
stacking learning model (with LassoLarsCV, ARD, Random-
Forest, and bagging) were selected for the generation of the
final ESD models. The models were trained on the 1958–
2010 data in a CV setting and evaluated on the retained
data in the 2011–2020 period. R2, RMSE, and MAE were
used as performance metrics for the CV setting and the fi-
nal evaluation (Tables 3 and 4). The models’ performance
was good overall but varied notably between different sta-
tions. The prediction skill estimates were higher for temper-
ature than for precipitation. For temperature (Table 4), the
explained variance estimates (“Fit R2”) are in the range of

0.81–0.98 (µ= 0.94), and CV R2 values are in the range of
0.84 to 0.98 (µ= 0.93), whereas for precipitation (Table 3),
the explained variance estimates are in the range of 0.58–0.84
(µ= 0.71), and CV R2 values are in the range of 0.54–0.72
(0.65). The accuracy measures display a similar discrepancy
with CV RMSE of 0.3–0.6 ◦C (µ= 0.42 ◦C) and CV MAE
of 0.2–0.50 ◦C (µ= 0.34 ◦C) for temperature, as well as CV
RMSE of 20–24 mm per month (µ= 21 mm per month) and
CV MAE of 14–18 mm per month (µ= 16 mm per month)
for precipitation.

The final model evaluation using independent, retained
data from 2011–2020 yielded R2 values of up to 0.95 as well
as average RMSE and MAE of ∼ 1.0 ◦C for temperature and
R2 values of up to 0.74, average RMSE of 22 mm per month,
and MAE of 17 mm per month for precipitation. The discrep-
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Table 3. Model performance metrics (i.e., R2, RMSE, and MAE) for all the precipitation stations. The final ESD models were trained in a
CV setting on datasets from 1958–2010 and evaluated on independent, retained data from 2011–2020.

ID Name (Fit) R2 CV R2 CV RMSE CV MAE R2 RMSE MAE

1 Baltmannsweiler–Hohengehren 0.71 0.67 20 15 0.63 22 18
2 Boll Bad 0.70 0.69 21 15 0.60 24 19
3 Eschbronn–Mariazell 0.74 0.69 20 16 0.59 23 18
4 Fellbach 0.61 0.57 20 15 0.59 20 15
5 Goeppingen–Jebenhausen 0.71 0.68 21 16 0.62 23 18
6 Haigerloch–Weildorf 0.64 0.62 20 15 0.74 17 13
7 Hechingen 0.63 0.61 20 15 0.74 17 13
8 Heubach Ostalb 0.78 0.65 24 18 0.65 25 21
9 Horb–Betra 0.84 0.72 21 16 0.74 21 16
10 Klippeneck 0.67 0.63 21 16 0.70 21 17
11 Lorch Kreis Ostalb–Waldhausen 0.79 0.72 21 15 0.64 24 20
12 Metzingen 0.79 0.61 20 16 0.64 20 16
13 Oberndorf Neckar 0.75 0.71 23 17 0.66 28 22
14 Rosenfeld–Bickelsberg 0.70 0.69 20 15 0.70 21 16
15 Stoetten 0.75 0.72 23 17 0.68 25 20
16 Stuttgart–Echterdingen 0.61 0.56 20 14 0.68 16 13
17 Stuttgart (Schnarrenberg) 0.58 0.54 20 14 0.50 21 15
18 Winterbach Rems–Murr–Kreis 0.72 0.66 20 15 0.61 23 18

Table 4. Model performance metrics (i.e., R2, RMSE, and MAE) for all the temperature stations. The final ESD models were trained in a
CV setting on datasets from 1958–2010 and evaluated on independent, retained data from 2011–2020.

ID Name Train R2 CV R2 CV RMSE CV MAE R2 RMSE MAE

1 Hechingen 0.96 0.96 0.30 0.30 0.93 1.3 1.2
2 Klippeneck 0.94 0.94 0.40 0.30 0.94 1.3 1.2
3 Lenningen–Schopfloch 0.95 0.93 0.50 0.40 0.91 0.9 0.7
4 Murrhardt 0.81 0.84 0.60 0.50 0.77 1 0.8
5 Rottweil 0.94 0.92 0.50 0.40 0.92 1.1 1
6 Schwaebisch Gmuend–Strassdorf 0.89 0.85 0.60 0.50 0.91 0.5 0.4
7 Stoetten 0.98 0.98 0.30 0.20 0.94 1.4 1.4
8 Stuttgart–Echterdingen 0.98 0.97 0.30 0.20 0.94 1.5 1.4
9 Stuttgart (Schnarrenberg) 0.98 0.96 0.30 0.30 0.95 1.6 1.5

ancy in temperature and precipitation model performance is
unsurprising, since the thermodynamics and atmospheric dy-
namics controlling precipitation variability are more difficult
to represent (e.g., Shepherd, 2014). Regardless, the overall
performance speaks in favor of applying the study’s approach
to downscale midlatitude climate in complex terrain. More-
over, the models’ similar performance during CV and the fi-
nal evaluation indicates that the models were not overfitted
and that the predictand–predictor relationships hold outside
the observed period. Finally, it is worth noting that the stack-
ing regressor performed better than the individual base mod-
els, even when all the potential regressors of the initial exper-
iments (Sect. 4.2) were stacked into a meta-regressor. Such
improvements demonstrate the advantage of the ease of ex-
perimentation through a package like pyESD.

We visualize a prediction example (Fig. 6) to (a) provide a
less abstract presentation of these results and (b) demonstrate

the type of figure generated by the plotting utility functions
in the pyESD.plot module. The figure depicts the predictions
generated by the final ESD model for the Hechingen station,
a station that records precipitation and temperature (station
ID 7 and 1, respectively). The observed and predicted val-
ues for 2011–2020 are highly correlated, with PCCs of 0.85
(Fig. 6a) for precipitation and 0.97 (Fig. 6b) for tempera-
ture. The time series comparisons also demonstrate the mod-
els’ abilities to predict the variability of the observed val-
ues in both the training and testing period (Fig. 6a and b).
Prior to this study, PP-ESD models had not been directly ap-
plied to the weather stations in the catchment. However, our
models are among the best performing for temperature and
precipitation when we compare them to models from other
studies across Europe (e.g., Gutiérrez et al., 2019; Hertig et
al., 2019; Schmidli et al., 2007). For instance, Gutiérrez et
al. (2019) performed an intercomparison of statistical down-
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Figure 7. Predicted regional annual means of precipitation in response to (a) RCP2.6 (black), (b) RCP4.5 (red), and (c) RCP8.5 (blue). The
solid lines represent the values averaged over all stations, and the shaded boundaries indicate the corresponding variability range (1 standard
deviation). The time series are smoothed with a 1-year moving average with a centered mean.

scaling model performance for 86 stations across Europe us-
ing the MOS, PP, and WG methods. The Spearman correla-
tion of the downscaled and observed values yielded R val-
ues in the range of ∼ 0.0–0.7 (with many stations ≤ 0.5) for
precipitation and 0.3–0.95 for temperature. These compar-
isons also underline the suitability of the pyESD methods for
downscaling climate information even in complex mountain-
ous regions.

4.4 Prediction of local responses to 21st century
climate change

The predictions of local precipitation and temperature re-
sponses to 21st century climate change were generated by
coupling the final ESD models to MPI-ESM simulations
forced with greenhouse gas concentration scenarios RCP2.6,
RCP4.5, and RCP8.5 (Sect. 3.2.3). The results are presented
as deviations from the monthly long-term means of the train-
ing period (1958–2010) and referred to as “anomalies” here-
after. The annual mean anomaly time series were computed
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Figure 8. (a) Observed precipitation (1958–2100) as well as seasonal (i.e., spring – MAM, summer – JJA, autumn – SON, and winter – DJF)
and annual end-of-century (30-year) precipitation climatologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Brown (green) indicates a
decrease (increase) in precipitation relative to the observed means (1958–2010).

with a 1-year moving average with a centered mean (Figs. 7
and 9).

The precipitation predictions (Fig. 7) for RCP8.5
(RCP4.5) show a strong (weak) positive trend towards the
end of the century. This trend is even more pronounced for
the predicted temperatures (Fig. 9) in the catchment. The pre-
dicted precipitation changes vary greatly between weather
stations. Furthermore, the RCPs change the magnitude but
not the pattern of the predictions for each station. For in-
stance, stations that show an increase (decrease) in precip-
itation for the RCP2.6 predict a greater increase (decrease)
in response to RCP4.5 and RCP8.5. The annual and sea-
sonal 30-year end-of-century climatologies show an over-
all increase in precipitation in response to both RCP2.6 and
RCP4.5 (Fig. 8) for most of the stations. The annual end-of-
century climatologies deviate from the present day (1958–
2010) by ca. −5 to 20 mm per month for RCP8.5 and ca. ≤
5 mm per month for RCP2.6. Overall, the ESD models pre-
dict a precipitation increase of ca. 10 %–20 % until the end of
the century. Furthermore, the seasonal climatologies reveal a

shift of maximum precipitation away from the summer sea-
son for some stations. Such shifts in seasonality and an over-
all decrease in summer precipitation have previously been
predicted (e.g., Gobiet et al., 2014; Paparrizos et al., 2017;
Feldmann et al., 2013). Prior to this study, no ESD–GCM-
based predictions of the 21st century precipitation changes
had been developed for the weather stations of the catch-
ment. However, the models’ predictions of the precipitation
response to higher greenhouse gas concentration scenarios
are comparable to coarser predictions by other studies using
RCMs or ESD models (Feldmann et al., 2013; Kunstmann et
al., 2004; Paparrizos et al., 2017; Lau et al., 2013). The pre-
cipitation predictions generated in this case study can be used
further for climate impact assessments, such as assessments
of the probability of flooding and drought across the hydro-
logical catchment. The projected shifts in seasonality across
the catchment represents potentially valuable information for
agricultural planning.

The predicted temperature anomalies (Fig. 9) reveal a
strong (weak) positive trend for RCP8.5 (RCP4.5). The end-
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Figure 9. Predicted regional annual means of the temperature in response to (a) RCP2.6 (black), (b) RCP4.5 (red), and (c) RCP8.5 (blue). The
solid lines represent the values averaged over all stations, and the shaded boundaries indicate the corresponding variability range (1 standard
deviation). The time series are smoothed with a 1-year moving average with a centered mean.

of-century climatologies reveal only moderate warming of
ca. −0.5 to 1 ◦C for RCP2.6 and significant warming (ca. 2–
4 ◦C) for all seasons in response to RCP8.5 (Fig. 10). More
specifically, the investigated region is predicted to experience
the most warming (≥ 3 ◦C) in the summer season. There are
few differences in predicted warming between the stations of
the catchment. Generally, the estimated magnitude of warm-
ing towards the end of the century is in agreement with the
IPCC report (IPCC, 2021) and other downscaled estimates
(e.g., Kunstmann et al., 2004; Gutiérrez et al., 2019). The

predicted warming would likely implicate societal and eco-
logical systems and stresses the need for efficient adaptation
and mitigation strategies.

The case study highlights the efficiency and robustness
of the downscaling steps implemented in the pyESD pack-
age. However, as noted in previous sections, the accuracy
of the predictions generated by a GCM–ESD model cou-
pling relies on the predictors being adequately represented by
the GCMs. KS tests were performed to evaluate this for the
temporal overlap (1979–2000) between the ERA5 reanalysis
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Figure 10. (a) Observed temperature (1958–2100) as well as sea-
sonal (i.e., spring – MAM, summer – JJA, autumn – SON, and win-
ter – DJF) and annual end-of-century (30-year) temperature clima-
tologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Blue
(red) indicates a decrease (increase) in temperature relative to the
observed means (1958–2010).

product and the MPI-ESM GCM output (Sect. 3.2.3). Results
from these tests show significant differences in the distribu-
tion of ERA5 and MPI-ESM when the raw monthly time
series are considered, thus violating the assumptions of the
PP-ESD approach. However, this issue does not persist for
monthly standardized anomalies of precipitation and temper-
ature (Fig. 11). Previous studies yielded similar results when
using seasonal standardizers (Bedia et al., 2020) and princi-
pal component transformations (Benestad et al., 2015a), both
of which are included in the pyESD package.

4.5 Comparison of GCM and ESD-based predictions

A comparison of the ESD-generated annual 20-year clima-
tologies for the mid-century (2040–2060) and the end of
the century (2080–2100) to the model output of GCMs and
RCMs (i.e., EURO-CORDEX) reveals several differences.

The GCMs (MPI-ESM and HadGEM2) predict ∼ 20 mm
per month (∼ 30 %) higher precipitation rates than the ESD
models and RCMs. The ESD-based precipitation predictions
of this study are closest to the RCM estimates but ∼≥ 5 mm
per month higher in magnitude for most of the stations
(Fig. 12). The closeness of the ESD-based and RCM-based
estimates underlines the added value of our ESD approach
for downscaling precipitation. However, there are signifi-
cant (∼ 4 ◦C) differences between the ESD-based and RCM-
based temperature estimates (Fig. 13). The ESD-based tem-
perature predictions were higher than those of the RCM but
lower than those of the GCM. Both the RCM and ESD mod-
els used boundary conditions from the same GCM (MPI-
ESM). The RCM reduced the GCM temperatures by more
(∼ 8 ◦C) than the ESD models (∼ 4 ◦C or less). This may be
a reflection of both (a) the selection of GCM near-surface
temperatures as predictors in the ESD models and (b) the
shrinking of regression coefficients when the ESD transfer
functions are determined.

5 Summary and conclusion

Contemporary climate change and its impacts increase the
demand for high-resolution, regional- and local-scale pre-
dictions. These can be generated in a most cost-effective
way through the application of the PP-ESD (perfect progno-
sis empirical-statistical downscaling) approach. The pyESD
Python package we introduce here is a well-developed tool
and modeling framework for applying and experimenting
with PP-ESD for any climate variable (e.g., precipitation,
wind speed, and temperature). The package complements
existing tools through the following key specialties and
strengths.

1. The package is well-structured and designed in OOP
style that treats the weather stations as objects with
many functionality attributes that cover all the PP-ESD
modeling routines. As a result, all modeling steps can
be executed on the initialized station objects with a few
lines of code.

2. The package is designed in a way that knowing its
API (Application Programming Interface), which is in-
troduced in the package’s extensive documentation, is
sufficient to implement all downscaling steps. In other
words, no advanced knowledge of Python (or program-
ming) is required to use the package for research pur-
poses. On the other hand, the package’s design is modu-
lar and flexible enough to allow advanced users to build
on it or adjust it to their needs.

3. The package implements different predictor selection
techniques (i.e., recursive, tree-based, and sequential)
that can be manually selected and experimented with.
The package allows the user to include a variety of
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Figure 11. The KS two-sided statistical testing score maps the ERA5 reanalysis product and MPI-ESM GCM output for precipitation (a–c)
and temperature (d–f). The KS test was applied to raw values, anomalies (centered with zero means), and standardized anomalies with unit
variance values (columns from left to right, respectively). The grid boxes with black cross stippling represent low p values (p < 0.05),
suggesting statistically significant differences in distribution between the ERA5 and MPI-ESM time series.

Figure 12. Comparison of 20-year annual precipitation climatologies predicted by the ESD models of this study (black), GCMs (i.e., MPI-
ESM in green, CESM5 in red, HadGEM2 in gold), and RCMs (i.e., and CORDEX in purple) for RCP2.6 (a, b) and RCP8.5 (c, d).
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Figure 13. Comparison of 20-year annual temperature climatologies predicted by the ESD models of this study (black), GCMs (i.e., MPI-
ESM in green, CESM5 in red, HadGEM2 in gold), and RCMs (i.e., and CORDEX in purple) for RCP2.6 (a, b) and RCP8.5 (c, d).

predictors, ranging from regional near-surface temper-
atures to synoptic-scale teleconnection patterns. The
package features many transformation techniques such
as MonthlyStandardizer and PCAScalling that can be
used to reduce biases towards specific predictors.

4. The package includes a variety of machine learning
techniques with different underlying principles and the-
orems. The package also features many ensemble mod-
els (Sect. 2.3), cross-validation schemes, and hyperpa-
rameter optimization techniques that can easily be ex-
perimented with in a few lines of code.

5. The package’s core modules are accompanied by utility
functions for data preprocessing, post-processing, and
serialization to save computational resources, as well as
visualization tools and ESD-relevant statistical methods
like EOF analysis, correlation, and distribution similar-
ity tests.

We demonstrated some of the package’s functionalities by
developing and applying ESD models to generate precip-
itation and temperature predictions for a sub-hydrological
catchment in complex mountainous terrain in southwestern
Germany. The models were evaluated with different metrics

and were found to perform well (e.g., R2
≥ 0.7 for precipita-

tion and R2
≥ 0.9 for temperature). In order to ensure the re-

producibility of the results and allow easy practical entry for
potential users, the application example uses publicly avail-
able datasets, and all the scripts used for this study are made
available.

Despite the promising results of the illustrative case study,
the reader is informed of the following important limitations:
generally, the PP-ESD approach to predictions relies on the
assumption that the empirical relationships between predic-
tor and predictand remain valid through time. While statisti-
cal downscaling models have successfully been used for the
past climate of the pre-industrial era (Reichert et al., 1999)
and Last Glacial Maximum (Vrac et al., 2007), the merit of
this assumption must be evaluated on a case-by-case basis.
For example, geographical boundary conditions that affect
the local climate, such as topography or vegetation cover, are
only implicitly considered in the empirical transfer functions.
The empirical relationship between predictors and predic-
tands may break down if these boundary conditions change
significantly (e.g., Mutz and Aschauer, 2022). Furthermore,
the performance of PP-ESD models also depends on the ac-
curacy of the GCMs they are coupled to. In our case study,
the developed ESD models were coupled to a single, albeit
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well-established, GCM (MPI-ESM). However, we generally
recommend the use of GCM ensembles to prevent biases to-
wards a specific GCM.

The current version of the package includes all func-
tions needed to develop, evaluate, and apply station-based
ESD models and generate predictions of local-scale cli-
mate change. Nevertheless, the package remains under ac-
tive development to expand upon its functionality. Planned
improvements include an extension of functions to make
pyESD suitable for downscaling gridded datasets or satel-
lite observations. The grid-based analysis would contribute
to the design of spatial downscaling models (e.g., Chen et
al., 2012; Jia et al., 2011). Moreover, we intend to expand
the selection of machine learning techniques by including
deep learning models that have been proven useful in down-
scaling (e.g., Baño-Medina et al., 2020; Quesada-Chacón et
al., 2022). Finally, we intend to build a graphical, web-based
interface to make the package more accessible and easy to
use for researchers, students, and people outside the scien-
tific community.
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Appendix A: Supplementary results of the illustrative
case study

Figure A1. Correlation between the precipitation predictand and the potential predictors listed in Table 2, expressed as PCCs.

Figure A2. Correlation between the temperature predictand and the potential predictors listed in Table 2, expressed as PCCs.
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Figure A3. (a) Observed precipitation (1958–2010) as well as seasonal (i.e., spring – MAM, summer – JJA, autumn – SON, and winter –
DJF) and annual mid-century (30-year) precipitation climatologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Brown (green) indicates
a decrease (increase) in precipitation relative to the observed means (1958–2010).

Figure A4. Observed temperature (1958–2010) as well as seasonal (i.e., spring – MAM, summer – JJA, autumn – SON, and winter – DJF)
and annual mid-century (30-year) temperature climatologies as a result of RCP2.6 (b) and RCP8.5 (c) forcing. Blue (red) indicates a decrease
(increase) in temperature relative to the observed means (1958–2010).
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Figure A5. The KS two-sided statistical testing score maps the ERA5 reanalysis product and MPI-ESM GCM output for relative humidity (a–
c), zonal wind velocity (d–f), and meridional wind velocity (g–i) at 850 hPa. The KS test was applied to raw values, anomalies (centered with
zero means), and standardized anomalies with unit variance values (columns from left to right, respectively). The grid boxes with black cross
stippling represent low p values (p < 0.05), suggesting statistically significant differences in distribution between the ERA5 and MPI-ESM
time series.
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Code and data availability. The study’s illustrative case study
relies on publicly available datasets. More specifically, the
precipitation and temperature datasets are accessible through
the Climate Data Centre of the DWD (Deutscher Wetter-
dienst, version V21.3). The subcatchment datasets used in
this study are interactively available through https://cdc.dwd.
de/portal/shortlink/425267fe-e4fd-4fff-9969-14c7d3aa25de
(Deutscher Wetterdienst, 2023) and https://cdc.dwd.de/portal/
shortlink/da6f555d-d6f6-426a-a8ba-b96683c76ea9 (last access:
30 October 2023) for precipitation and temperature stations,
respectively. The ERA5 reanalysis datasets can also be down-
loaded through the Copernicus Climate Data Store (CDS) at
https://doi.org/10.24381/cds.6860a573 (Hersbach et al., 2023) for
pressure level and https://doi.org/10.24381/cds.68d2bb30 (Muñoz
Sabater, 2019) for surface-level variables. However, the processed
weather stations and the serialized pickle files of the regional
means of the predictors for all the stations are provided as part of
the supporting material (https://doi.org/10.5281/zenodo.7767681,
Boateng and Mutz, 2023). The MPI-ESM GCM datasets
used as simulated predictors can also be downloaded from
the CDS by selecting MPI-ESM-LR as the model for the
AMIP as well as the RCP2.6, 4.5, and 8.5 experiments: see
https://doi.org/10.24381/cds.3b4b5bc9 (Copernicus Climate
Change Service, Climate Data Store, 2018a) for pressure-level
variables and https://doi.org/10.24381/cds.9d44a987 (Copernicus
Climate Change Service, Climate Data Store, 2018b) for surface
variables. Moreover, the station-based downscaling estimates of
future climate scenarios for all the stations are also included in
the supporting material (https://doi.org/10.5281/zenodo.7767681,
Boateng and Mutz, 2023).

The pyESD (version 1.0.1) software, including the documenta-
tion website source files, is available through many platforms, in-
cluding the following.

– GitHub: https://github.com/Dan-Boat/PyESD (last access: 30
October 2023)

– Python package index (PyPI): https://pypi.org/project/PyESD/
(last access: 30 October 2023)

– Zenodo (v1.0.1 release):
https://doi.org/10.5281/zenodo.7767629 (Boateng, 2023)

Developer: Daniel Boateng, University of Tübingen
Hardware requirements: general-purpose computer
Programming language: Python (version 3.7 or later)
The installation of the package and its required dependencies

are highlighted on the documentation website: https://dan-boat.
github.io/PyESD/ (last access: 30 October 2023). The usage of
the package and its functionalities are also presented in the
documentation. The control scripts of the study’s illustrative
case study are also provided as part of the supporting mate-
rial (https://doi.org/10.5281/zenodo.7767681, Boateng and Mutz,
2023) and also presented in the example section of the documen-
tation.
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Figure 1: Data availability of the selected 39 GNIP stations across Europe. The dark shadings represent months with missing 𝛿18𝑂𝑝

values. The models were trained and validated using time series split cross-validation for 1979-2013 and independently tested on

2013-2018 if available for a specific station
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Figure 2: Predictor importance distribution for all stations using mean decrease impurity from the Tree-based selection method. From

top to bottom, the rank of the predictive skill of the predictors for learning the relationship between the d18Op values and large-scale

predictors is indicated. (b) Correlation between the 𝛿18𝑂𝑝 values and the potential predictors selected. See Boateng and Mutz [4] for the

details about the predictors’ construction
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Figure 3: Comparison between the distribution of MAE calculated between the GNIP 𝛿18𝑂𝑝 values and predicted values from (a)

ECHAM5-wiso and (b) final Stacking regressor model.
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