Some Theoretical Perspectives on
Recent Challenges in Graph
Drawing

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultét
der Eberhard Karls Universitat Tiibingen
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von
Axel Kuckuk
aus Balingen

Tiibingen
2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultit
der Eberhard Karls Universitat Tiibingen.

Tag der miindlichen Qualifikation: 14.06.2024

Dekan: Prof. Dr. Thilo Stehle

1. Berichterstatter/-in: Prof. Dr. Michael Kaufmann
2. Berichterstatter/-in: Prof. Dr. Klaus-Jorn Lange

Abstract

Graph Drawing provides essential tools to visualize complex and extensive sys-
tems. In doing so it allows humans to see, learn and understand what would
otherwise remain unseen, unlearned and incomprehensible. As new areas of
application arise regularly, ranging from phylogenetic trees, displaying the evolu-
tionary history of all life on earth in biology, to flowcharts, visually representing
processes of virtually everything in schools, universities and business offices all
over the world, it is unsurprising that new challenges emerge constantly. In
this thesis we will investigate three recent challenges emanating from practical
applications, bringing them into the theoretical context and provide applicable
solutions.

The first problem concerns the representation of bipartite graphs whose vertex
set consists of two disjoint parts. Commonly bipartite graphs are displayed using
2-layer drawings, where each part is drawn on a distinct horizontal line. However,
unless the graph is relatively small, the representation does not fit on a single
computer screen. While this is inevitable, we would like to make sure one vertex
with all its neighbors still fits on a single screen. Typically the two parts of the
vertex set play considerably different roles in the data set, which leads to different
variants of the problem. This introduces the so-called Window Width problem,
where vertices are rearranged such that the smallest screen possible suffices.
We prove that one variant of the problem is polynomial time solvable, while
another one is NP-hard. Additionally, we provide an approximation algorithm
for the second variant and study relaxed problems. Further, some experiments
are performed, evaluating the practical impact of the implemented algorithms.
The second problem considers the display of multiple hierarchical structures at
once. Particularly, we investigate into the simultaneous embedding of multiple
trees, where the visualization requires a specific order of the leaf vertices. Such a
requirement is useful for many application, as it allows to show the data points
sorted, for instance alphabetically, to enable efficient lookup. Specifically, k
rooted, layered trees are provided whose leaves are all placed on the same layer,
in a required total order. The problem consists of finding orders for the vertices
of all other layers, such that the total number of crossings is minimal. While it
is known that this problem is NP-hard for arbitrarily many trees even on only
two layers, we provide an FPL-algorithm in & if the number of layers is two,
and an XP-algorithm in k if the number of layers is three. For arbitrarily many
layers we show that the problem is polynomial time solvable when restricting
the number of trees to two.

The third problem considers dynamic visualizations. While static visualizations
are still relevant for technical and analogue applications, the general public

ii

increasingly uses interactive visualizations. Thus, it is necessary to make known
drawing methods applicable for dynamic tasks. Specifically we consider ortho-
radial metro maps. These representations of public transportation networks
show the lines of transportation along concentric circles and on lines emanating
from the center point. We extend the drawing model to be suitable for dynamic
applications, proposing drawing strategies which are applicable for continuously
updating and geospatially augmented data. Further we introduce a hybrid visu-
alization model combining locally precise and globally schematic representations.
Finally, we briefly discuss five other recent challenges for which we provide
well-readable visualizations, before concluding the thesis with some interesting
open research problems.

Zusammenfassung

Graphenzeichnen stellt essenzielle Methoden zur Verfligung, um komplexe und
umfangreiche Systeme zu visualisieren. Dies ermoglicht dem Menschen, Dinge
zu sehen, zu lernen und zu verstehen, die ansonsten ungesehen, ungelernt und
unverstanden blieben. Da zunehmend neue Anwendungsbereiche entstehen, von
phylogenetischen Baumen, die in der Biologie die Evolutionsgeschichte allen
Lebens darstellen, bis hin zu Flussdiagrammen, die in Schulen, Universitdten und
in Unternehmen weltweit Ablaufe aller Art visualisieren, ist es nicht iiberraschend,
dass sich uns laufend neue Herausforderungen stellen. In dieser Arbeit werden
wir drei dieser aktuellen Herausforderungen aus der praktischen Anwendung
untersuchen, sie in einen theoretischen Kontext stellen und anwendbare Losungen
bieten.

Das erste Problem behandelt die Darstellung von zweistufigen Graphen, deren
Knotenmenge aus zwei disjunkten Teilen besteht. Ublicherweise werden zweistu-
fige Graphen mithilfe von 2-Layer-Zeichnungen dargestellt, bei denen jeder der
zwei Teile auf einer eigenen horizontalen Linie gezeichnet wird. Abgesehen von
ausgesprochen kleinen Graphen passt die Darstellung in aller Regel nicht auf
einen einzigen Computerbildschirm. Dies ist zwar unvermeidlich, allerdings
konnen wir versuchen sicherzustellen, dass jeder Knoten mit all seinen Nachbar-
knoten vollstdndig auf einen einzigen Bildschirm passt. Diese Aufgabenstellung
bezeichnen wir als das Window Width Problem, von dem wir mehrere Varianten
untersuchen werden. Dabei sollen die Knoten so angeordnet werden, dass die
Bedingung auch fiir einen kleinstmdglichen Bildschirm erfiillt ist. Wir beweisen,
dass eine Variante des Problems in Polynomialzeit losbar ist, wahrend eine andere
Variante NP-schwer ist. Auflerdem wird ein Approximationsalgorithmus fiir die
zweite Variante entwickelt und relaxierte Probleme untersucht. Dariiber hinaus
werden einige Experimente durchgefiihrt, um den praktischen Wirkungsgrad der
implementierten Algorithmen zu bewerten.

Das zweite Problem widmet sich der gleichzeitigen Darstellung mehrerer hierar-
chischer Strukturen. Insbesondere untersuchen wir die gleichzeitige Einbettung
von mehreren Baumen, bei denen die Visualisierung eine bestimmte Reihenfolge
der Blattpunkte erfordert. Eine solche Bedingung ist fiir viele Anwendungen
niitzlich, da sie es ermdglicht, die Datenpunkte sortiert darzustellen, zum Beispiel
alphabetisch, um ein effizientes Auffinden zu bewirken. Konkret werden k ver-
wurzelte, gestufte Baume vorgegeben, deren Blatter sich alle auf derselben Ebene
befinden, und zwar in einer geforderten Reihenfolge. Das Problem besteht darin,
Ordnungen fiir die Knoten aller anderen Stufen zu finden, sodass die Gesamtzahl
der Kreuzungen minimal ist. Es ist zwar bekannt, dass dieses Problem fiir be-
liebig viele Badume auch auf nur zwei Stufen NP-schwer ist, aber wir liefern einen

iii

v

FPL-Algorithmus in k, fiir den Fall mit zwei Stufen und einen XP-Algorithmus
in k fiir den Fall mit drei Stufen. Fiir beliebig viele Schichten zeigen wir, dass
das Problem in Polynomialzeit 16sbar ist, wenn man die Anzahl der Baume auf
zwei beschréankt.

Das dritte Problem behandelt dynamische Visualisierungen. Wéhrend statische
Darstellungen fiir technische und analoge Anwendungen noch immer relevant
sind, nutzt die breite Offentlichkeit zunchmend interaktive Visualisierungen.
Dabher ist es notwendig, bekannte Zeichenmethoden fiir dynamische Aufgaben
nutzbar zu machen. Konkret betrachten wir ortho-radiale Metrokarten. Diese
Abbildungen 6ffentlicher Verkehrsnetze zeigen die Verkehrslinien entlang konzen-
trischer Kreise und auf Linien, die vom Mittelpunkt ausgehen. Wir passen das
Zeichnungsmodell so an, dass es sich fiir dynamische Anwendungen eignet, und
schlagen konkrete Zeichenstrategien vor, die fiir kontinuierlich aktualisierende
und fur geordumliche Netzwerke nutzbar sind. Dariiber hinaus stellen wir ein
hybrides Visualisierungsmodell vor, das lokal exakte und global schematische
Darstellungen kombiniert.

Zuletzt widmen wir uns knapp fiinf weiteren aktuellen Herausforderungen, fiir
welche wir gut lesbare Visualisierungen préasentieren, bevor wir die Arbeit mit
einigen interessanten offenen Forschungsproblemen abschlieflen.

Acknowledgement

First of all, I would like to thank Michael Kaufmann, who opened up the most
exciting aspect of Computer Science to me and gave me the opportunity to write
this thesis as part of his working group.

I am also indebted to my other co-authors, Maximilian Pfister, Michalis Bekos,
Henry Forster, Stephen Kobourov, Miroslav Kryven, Julia Katheder, Lena
Schlipf and Johannes Zink. Michalis and Henry in particular have helped me a
lot, showing me the ropes of doing scientific work.

I would also like to thank my current and past colleagues Patrizio Angelini,
Michael Bekos, Henry Forster, Renate Hallmayer, Maxi Pfister, Lena Schlipf
and Thomas Schneck. Perhaps even more than the research field, you were the
reason why I stayed in science for so long.

I would especially like to emphasize the invaluable support of Lena Schlipf, Henry
Forster and Maxi Pfister in the form of deeply necessary and amazingly fast test
reading.

Of course, I would also like to thank my parents for their constant support, even
though I have so far been unable to convince them that Graph Drawing has any
real-world effects.

Finally, and most of all, my deepest thanks go to Sarah, without whom I would
never have made it to this point (or any other point, to be frank).

vi

Contents

1

[2__Preliminaries| 7
2.1 Graph Theoretic Foundations| 7
2.2 Graph Classes|. o o 9
2.3 Graph Drawing| oo 10
2.4 Graph Drawing Models| 12
2.5 Graph Drawing Beyond Planarityl. 15
2.6 Further Frequently Used Definitions| 16
T Window Widthl 19
3__Theoretical Results| 21
3.1 Window Width Minimization with Flexible Top Layer| 21
3.2 Window Width Sum Minimization with Flexible Top Layer| . . . 30
3.3 Window Width Minimization with Fixed Top Layer| 32
[3.4 _x-Distance Minimization with One Flexible Layer|. 42
3.5 x-Distance Sum Minimization wit ne Flexible Layer] 44

4 Experiments| 49
4.1 Experimental Setup| 0 0L 49
4.1.1 The Gilbert Graph Model 49

4.1.2 e Erdos—Reényi Gra odell 49

4.1.3 e Barabasi-Albert Grap odell 50

414 Sampling 51

A2 Experimental Results|. 51
(II Simultaneous Embedding of Multiple Upward Trees| 57
6 Limited Number of Trees| 61
bl CMUT for twotreesl 61
5.2 Generalizations of CMUT for two trees|. 72
[6 Limited Height| 75
[6.1 or Two Layers|. 75
[6.2 or Three Layers| 78

vii

viii

(LIl Ortho-Radial Morphing|

[8 Morphing Strategies|
[[1Definitions]

7.2 uality Metric

.3 Morphing Strategies|

[8 Hybrid Model|

8.1 echnica

0 Additional Work

[9.1 The Universe Beyond Planarity|

9.2 esthetic Experience Networ
9.3 rainkells Sag

9.4 Heuristic Crossing Minimization in upward drawings|

9.5 Heuristic Edge Length Ration Optimization|

10 Conclusion|

etails and Optional Techniques|.

CONTENTS

Chapter 1

Introduction

Graph Drawing is a research area that lies at the intersection of Computer
Science and Mathematics. It combines methods from information visualization
and geometric graph theory to provide (usually two-dimensional) geometric
representations of graphs. As humans rely heavily on visual perception, with
the visual cortex being the largest system in the human brain [131], a demand
for network visualization arises from many applications. Some examples among
countless others are: Flowcharts [64] (which receive increasing popularity since
1921), Sociograms [123] (representing social networks), State diagrams [I8] (visu-
alizing finite state machines), Data-flow diagrams [138] (showing software-system
processes) and visual analytics [I30] (enabling human-information discourse by
interactive visual interfaces).

As Graph Drawing methods provide the elementary tools for network visualiza-
tion, a particular focus is laid on the interworking of implementable algorithms
and theoretical advances.

For the same graph there exist widely different visual representations, however,
the properties of a specific visualization, characterized by the assignment of
vertices to coordinates and the representation of edges as curves connecting their
respective vertices, influence the readability [128], usability [L06], aesthetics [107]
but also realizability [TI8] and fabrication cost [40, [79].

While fundamental drawing styles and properties such as area [42] (55, [82],
bends [36], [120] and crossings [67) [8T], [92] have been extensively studied for many
graph classes, with the area of application being ever-evolving, adapting to the
technological advance and including continuously more fields, the demand for
theoretical advances follows suit.

Thus, in this work we will highlight exactly the point where demands by practical
applications and theoretical solutions meet and share some theoretical perspec-
tives on recent challenges. The thesis consists of three parts, each representative
of a major branch of Graph Drawing. For each part a theoretical problem will
arise through challenges encountered in applications of network visualization and
several new results will be derived to provide a solution to the problem. To this
end, we introduce the settings encountered in this thesis in order of appearance.
1

2 CHAPTER 1. INTRODUCTION

B lineage

ANKAZ
=

® AGR3

Y AXL

- AL

/ @ LA
® CADMY
@ oL
® oCcL4

.OCLS .
ELEVEN PLUS TWO? T N S o

lONE PLUS TWELVE

(a) A 2-layer drawing (b) Picture detail of a state-of-the-art visualiza-

representing an ana- tion tool for anatomical structures, taken from [34].

gram, generated by Blood cell types are shown on the left and biomarkers

dict.cc/shuffle [73]. on the right. This yields a 2-layer drawing, however
rotated by 90°. Note that only a small section of
the graph fits on the screen.

Figure 1.1

2-Layer. A well studied class of graphs are the hierarchical graphs, where
there exists an affiliation relationship between objects of the data. For instance,
hierarchical graphs appear in Genealogy, where any gene has one unique prede-
cessor [2], in Biology, where organs consist of specific cells, which in turn can
contain markers [20], or in source code, where any code block can be part of a
'parent’ code block [137].

A common way to represent this hierarchical information is to separate the
vertices into layers, corresponding to a group or level of the hierarchy. Edges
then represent affiliations. Each layer is displayed on a horizontal line, the edges
as line segments between the layers. Such a representation is called an upward
layered drawing and has been extensively studied [8] 48] 126]. The most simple,
yet still very common, case considers only two layers. One example of such a
representation places vertices representing organs of a biological system on one
line and vertices representing cell types on a second layer. This informs the
observer very clearly about the classification of each object and the inter-object
relationships [126]; see Figure for an example. Such a drawing is called a
2-layer drawing, which has received thorough study, especially in the context of

beyond planarity [T5], 43|, [49].

While for small graphs the representation of the full graph might fit on a regular
computer screen and drawings of medium sized graphs might be printed as a
large format poster, in practice users often only have a partial view of the graph.
In regards to a 2-layer drawing, where the layers correspond to horizontal lines,

the height of the representation is constant, thus not leading to immediate issues.
However, the width of the screen is limiting what can be seen of the graph at
once, assuming there is a fixed (minimum) distance in between vertices. For
instance, this problem becomes apparent in a recent state-of-the-art visualization
tool for anatomical structures [34]; see Figure While this problem seems
inevitable at first, for large enough graphs, the user might not need to see the
full graph all at once. However it is save to assume that the user is interested
in the associations, i.e. the edges of the graph. Thus two natural questions
come up: Does every edge fit completely on one screen/page (we denote this as
the z-Distance), i.e. there exists a section such that we can see both incident
vertices at once? Secondly, for a vertex of one of the layers, can we see all of its
neighbors and the vertex itself at once (we denote this as the Window Width),
i.e. can we see the vertex with its full closest context? Ideally ,we want to answer
the questions with a Yes even for the smallest screen sizes. Thus, the problem
studied in Part I is to construct a drawing such that the Window Width (or
x-Distance) is minimal.

Upward Trees. Many hierarchical structures however contain more than just
two levels. Thus automatic drawing of graphs with a more complex hierarchy has
also been extensively studied. One prominent state-of-the-art method doing so
is the Sugiyama framework [126], which represents hierarchical graphs in multi-
layer drawings, usually while minimizing the number of crossings. Unfortunately,
for general graphs, this minimization is NP-hard, even when considering only
two layers, where the vertices of one layer are fixed [50].

However, many hierarchical graphs encountered in real-world applications are
actually rooted trees. For instance consider phylogenetic trees [, [103]; see
Figure [I.2] for an example. These are trees representing the evolutionary history
of species, showing common ancestors, where the root of a tree corresponds
to a singular ancestor of a set of species. In recent years, the discipline of
phylogenetic comparative biology thrived, which uses a vast array of methods to
draw conclusions from comparison between multiple phylogenetic trees [25] [TT0]
1T5]. Therefore, instead of general hierarchical graphs, we study the problem of
drawing multiple layered trees (and some planar graphs). While it is trivially
possible to draw the trees crossing free side by side, for a direct comparison
it is often more effective to display them intertwined. Specifically we consider
the leaves to be sorted, for instance, ordered alphabetically to ensure efficient
lookup.

While this allows the visualization to convey more encoded information, it often
prevents a crossing-free drawing. Thus, the problem studied in Part II is to
minimize the number of crossings, while satisfying a required leaf order, encoding
additional information in the resulting visualization.

Ortho-Radial. Unsurprisingly, Graph Drawing and maps share a close and
long history [66] 108, 112]. In Graph Drawing, map applications motivate in-
corporating geospatial information [4}, 60, [121]. Map applications, on the other
hand, can utilize Graph Drawing methods to generate certain types of maps auto-
matically instead of manually [I00]. With the widespread use of mobile devices,
both disciplines are challenged to provide more dynamic and interactive methods.

4 CHAPTER 1. INTRODUCTION

$ 487, Vmmbmern dauTiiiudts,,.

%ﬂﬁ“’)‘;
b A R

.
as 0.
vo lenuiarer

2 Tty Coeg)
u;cg,:a.\@a...‘f/ ol

[Audobornuresr

[ager] i [imere]
L= = Comeme
~ é‘r@“;"/l

Figure 1.2: Ernst Haeckels ”Stammbaum der Primaten” from the 19th century,
showing the biological tree of life [68].

A very common visualization model at the intersection of both fields are metro
maps; see Figure for an example. Metro maps are widely used to schemati-
cally display public transportation systems by operators worldwide [30} 90} [91]
and there are also applications in hypergraph and set visualization [58] [80].
Usually metro maps visualize the network by showing the metro lines as a color-
coded path joining all stations a line traverses. However, the placement of the
stations only schematically correspond to their real-world placement, maintain-
ing orientations but relaxing correct distances in favour of a unified and simple
visualization. Often the lines only consist of horizontal, vertical or diagonal
(at angle of 45°) segments, which is called an octolinear drawing [41] [85] 127].
Another recently popular variant, called the ortho-radial drawing, displays the
metro map in a radial fashion, such that the lines either follow concentric circles
or lines emanating from the center point [6] [70, [97]. One benefit of this drawing
model is that the radial representation naturally induces a focus point at the
center point. So far, this has been used to emphasize some city layouts; see
Figure for an example. Here, we propose to use this style dynamically, i.e.
allowing for the center point to move, for instance following the position of a
user. Thus, in Part III we introduce several strategies extending the ortho-radial
model to be suitable for real-time updating geospatial data.

Overview of the thesis. The remainder of this thesis is structured as follows.
First we provide basic definitions and fundamental tools in Chapter

. - . . = Bahnen inKéIn
LINIENNETZPLAN STADTNETZ TUBINGEN —— - = Rail Services Cologne
. 2024

1 £t S S
W

<) TiiBus

(a) A metro map visualization of the public transportation (b) An ortho-radial metro map visualization of the public
system of Tiibingen, taken from [65]. transportation system of Cologne, taken from [39].

Figure 1.3

In Part I we formally introduce the Window Width problem and provide some
theoretical advances in Chapter Specifically we provide polynomial time
algorithms for the minimization of the Window Width, if the bottom layer is
fixed. We also provide a polynomial time algorithm for the sum of Window
Widths, if the bottom layer is fixed. If the top layer is fixed we prove that the
Window Width problem is NP-hard and provide a 2-approximation algorithm.
Further, polynomial time algorithms for minimizing the xz-Distance and the sum
of the z-Distances are given.

In Chapter [d] we perform some experiments, applying the implemented algo-
rithms on randomly generated bipartite graphs. We discuss the results and
observe that, depending on the graph densities and partition ratios, there are
significant improvements over a random vertex assignment.

In Part II we consider the simultaneous embedding of multiple trees with fixed
leaf order. We study the problem of minimizing the number of crossings while
preserving the given order. In Chapter [f] we study the case where the number of
trees is restricted to two, in which we can prove that the problem is polynomial
time solvable, providing a dynamic programming algorithm. In Chapter [6] we
take the number of trees, k, as additional input parameter, proving that the
problem is fixed parameter linear in k, if the trees are at most of height two
and in XP if the trees are at most of height three. The results are achieved by
reducing the problem to a shortest path problem on a k-dimensional weighted
cube graph and grid graph, respectively. Additionally some generalizations of
the results are provided in both Chapters [6] and [6]

In Part III we propose multiple strategies to construct an ortho-radial drawing
suitable for dynamic updating. In Chapter [§] we formally define morphing of
ortho-radial drawings and introduce strategies naturally supporting morphs.
Additionally, we introduce the octo-radial model, which extends the ortho-radial
model in a similar way as the octilinear model extends the orthogonal model.
We then experimentally evaluate the strategies with respect to well-established

6 CHAPTER 1. INTRODUCTION

quality metrics. To this end, the implemented strategies are applied to randomly
generated data, as well as to some real-world benchmarks. In Chapter |8|a hybrid
visualization model is proposed, utilizing the introduced methods.

Finally, we briefly discuss some practical application of network visualization
techniques in Chapter [J] to solve five concrete challenges and conclude the thesis
in Chapter by summarizing the main results and presenting some open
problems.

Chapter 2

Preliminaries

This section will provide the definitions and algorithmic basics necessary for
the understanding of the thesis. If not specified otherwise, these definitions are
based on Chapters 1 and 2 of [47].

2.1 Graph Theoretic Foundations

A graph G = (V, E) is a pair of sets. Specifically V is the set of vertices of the
graph G, where E C [V]? denotes the set of edges of G, thus every edge is a
set of two vertices. We will write an edge e € E as (v, w), where v and w are
vertices, even though e is formally a set. For better readability vertices might
also be denoted as nodes in some parts of this thesis. For easier readability we
might refer to a vertex v which is part of the vertex set v € V as v € G as well,
likewise we might write e € G synonymous to e € E for an edge e. Figure [2.1
gives an example of a graph.

The size of G corresponds to the cardinality of its vertex set and is written as
n := |V|. Likewise m denotes the cardinality of the edge set m := |E| we will
exclusively consider graphs of finite n (and thus of finite m as well) in this work.

A vertex v is incident to an edge e, when v is an element of e, i.e. v € e.
Symmetrically e is called incident to v. If two vertices v and w are incident to

1

Figure 2.1: A pictorial representation of a graph G = (V, E) with V' = {1,2,3,4}
and F ={(1,2),(2,3),(1,3),(1,4)}. Vertices are represented as dots and edges
as lines connecting adjacent vertices.

8 CHAPTER 2. PRELIMINARIES

the same edge e = (v, w), then v is adjacent to w and vice versa. In such a case
v and w are denoted as neighbors. We will refer to v and w as the end vertices
of e. If two edges e; and ey are incident to the same vertex v, then e; and es
join in v.

The subset of V' which includes all vertices that are neighbors to a vertex v is
denoted as the neighborhood of v and written as N (v).

The degree d(v) of a vertex v is the number of incident edges to v, which is
equivalent to the cardinality of N(v).

Generally we will consider undirected graphs, which adhere to the given definitions.
Particularly, any edge e is a set of two vertices. Thus edges are symmetrical,
i.e. if v is adjacent to w then w is also adjacent to v. However in some cases
we will instead consider directed graphs (or digraphs) where an edge is not a
set of two vertices, but an identifier. Two functions source: £ — V and target:
E — V assign a source and a target vertex to every edge. Let source(e) = v
and target(e) = w, then we call e to be directed from v to w. We will use the
notation e = (v, w) for the edge. Note that in this case e corresponds to an
ordered pair of vertices. We call e incoming to w and outgoing of v. Any vertex
without any incoming edges is called a source, while any vertex without any
outgoing edges is called a sink.

Further we will consider simple graphs if not stated otherwise. A directed graph
is simple if it has no self-loops and no multi-edges. We call an edge e a selfloop
if its source and target vertices are identical, source(e) = target(e). We call
at least two edges e; and ey a multi-edge, if e; = (v, w) = e3 holds, informally,
there must not be multiple copies of an identical edge. Whenever considering
directed graphs we will assume they are simple graphs unless stated otherwise.
Due to the definition of undirected graphs, these are naturally always simple.

In this work, a graph is considered to be undirected unless stated otherwise.

There are some special cases of graphs which come with their own notation. We
will introduce the most important ones, which are relevant for this paper. If all
vertices of a graph are pairwise adjacent, then the graph is a complete graph,
which is denoted as K,, where n is the number of vertices. A K3 is called a
triangle.

We denote the union of two graphs G and G’ as GUG' = (VUV/,EUE’) and
the intersection of G and G’ as GNG' = (VNV/,ENE’). f GNG' =) then we
call G and G’ disjoint. If we consider two graphs G = (V, E) and G' = (V', E')
where V/ C V and E’' C F then G’ is called a subgraph of G and G a supergraph
of G'. We write this as G’ C G. Naturally any graph G is a subgraph of the
complete graph K,,, where n is the size of G.

For a vertex subset V/ C V', we say that V' induces a subgraph G’ of G where
G’ = (V',E'). The induced edge set E’ is the edge subset of F where both end
vertices of e are elements of V',

A path P is a sequence of vertices vy, ..., v p| such that v; and v;y; are adjacent
for any 0 < 4 < |P| and all vertices of the path are distinct. We denote this as
a path from vy to v|p|, where we refer to vy as the start vertez and to v p| as
the end vertex of the path. The length of a path is |P| — 1. Note that a path of

2.2. GRAPH CLASSES 9

length 0 is possible and consists of only a single vertex. We might also refer to a
path as a sequence of edges, e1, ..., e pj—1 Where two consecutive edges e; and
ei+1 for 0 < i < |P|—1 join in vertex v;41. For undirected graphs it must hold
that an edge (v;,v;41) exists for subsequent vertices v; and v; 41 of the path.

If for a path P vy and v p| are incident, then the vertex sequence v1, ..., v p|,v1
is called a cycle.

A graph G is called acyclic if there exists no cycle within graph G.

The distance dist(v,w) from vertex v to vertex w is the length of the shortest
path from v to w. If there exists no such path, then dist(v,w) := occ.

A vertex subset V' is connected if for any pair of vertices v,w € V' there exists
a path from v to w. If V' is not connected we call it disconnected. If the same
holds for a vertex subset V' of a directed graph, then V' is strongly connected.
If V itself is connected, we call the graph G connected as well. The connected
components of a graph are a set of vertex subsets V7, ..., V. such that each vertex
subset V; for 1 <1 < ¢ is connected and c¢ is minimum. A graph is k-connected
if the graph remains connected when at most k — 1 vertices are removed from
the vertex set and the incident edges are removed from the edge set. Therefore
1-connected graph is the same as a connected graph. A 2-connected graph is
called biconnected. A 3-connected graph is called triconnected.

For some applications we will consider weighted graphs, which are graphs with
an additional weight function w : E — Ny, which assigns every vertex a weight.
The weighted length of a path P of a weighted graph is the sum of the weights
of all edges included in the path, i.e. > . pw(e). The weighted distance of two
vertices v and w is analogously defined as the minimum weighted length of all
paths from v to w.

2.2 Graph Classes

In the following we will define some graph classes, which are common and special
families of graphs.

If a connected graph is acyclic, we call it a tree, see Figure for an example. If
a graph is disconnected, but all graphs induced by the connected components are
trees, then we call the graph a forest as it consists of disjoint trees. Any vertex
of a tree of degree one is called a leaf. For any tree it holds, that it contains
exactly n — 1 edges. In this work, we will also encounter rooted trees which are
trees for which one vertex is fixed and the root of the tree denoted as r. The
root will not be considered to be a leaf even when it has degree one.

A graph G is bipartite, if V can be partitioned into two vertex sets A and B,
such that every edge of G is incident to both one vertex of A and one vertex of B.
This means, that no two vertices of the same part can be adjacent. Figure
displays an example of a bipartite graph. Often, when defining a bipartite
graph, the parts A and B are already given as part of the graph definition, as in
G=(AUB,E).

10 CHAPTER 2. PRELIMINARIES

Figure 2.2: A rooted tree consisting of 8 vertices and 7 edges. The vertices 4, 6,
7 and 8 are leafs. Root r is not a leaf.

1 a
9 b

C
s d
4e e

Figure 2.3: A bipartite graph consisting of vertex parts A = {1,2,3,4} and
B ={a,b,c,d,e}.

2.3 Graph Drawing

For a given graph G, a drawing I" of G is a function mapping every vertex v € V'
to a point I'(v) € R? in the Euclidian plane and each edge e € E,e = (u,v) to
an open Jordan curve I'(e) with endpoints I'(u) and I'(v). We will say, that a
graph G admits a drawing I" and that a curve I'(e) represents the edge e and
places vertex v at T'(v).

If for two edges e; and es the interior of their representations I'(eq) and T'(es)
have at least one point in common, then e; and e; cross in I'. The common
point is called an intersection.

A drawing is a simple drawing, if the following three conditions are met:
(i) Edges incident to one common vertex do not cross in T'.

(ii) Two crossing edges have at most one common intersection, i.e. they do not
cross multiple times.

(iii) Every edge is represented by a simple curve, i.e. it does not intersect itself.

Since every graph admits a simple drawing we will assume that all considered
drawings are simple drawings. Figure shows the forbidden configurations of
simple graphs.

We call ' a planar drawing if no pair of edges of G cross in I'. A graph G is
called a planar graph if it admits a planar drawing. A planar drawing subdivides
the plane R? into topologically connected regions. We refer to these regions as
faces. Note that there exists exactly one unbounded face, which is called the
outer face. We define a face f as a cyclic order of the vertices along the boundary
of the face (v1,...,vys)) where £(f) is chosen such that the order of vertices is
repeating after vyy)) and £(f) is minimum. We call £(f) the length of face f.
Figure provides an example.

2.3. GRAPH DRAWING 11

RO S
(a) (b) ()

Figure 2.4: (a), (b) and (c) show three forbidden configurations for simple
drawings. In (a) edge (1,2) intersects itself. In (b) edges (1,2) and (1, 3), cross,
although both are incident to vertex 1. In (c) edges (1,2) and (3,4) intersect
multiple times.

3
Figure 2.5: The face f = (1,2, 3,4) of length 4 is highlighted in red.

For any planar graph the Fuler characteristic holds which says that n—m—+ f = 2
for every planar embedding on the plane, where f denotes the number of faces
of the embedding.

Two planar drawings I'y and I's are topologically equivalent if there exists a
bijection ¢ from the set of faces Fy of I'; to the set of faces Fy of I's such
that for every face fi € F) the cyclic order of f; and ¢(f1) are identical. A
class of topologically equivalent drawings of G are called a planar embedding,
or embedding for short, of G denoted as €. Observe that for all drawings of
embedding € the cyclic order of edges incident to a vertex v are the same. We
refer to the tuple (G, ¢) as a plane graph. We might also call a graph G a plane
graph at times, implicitly assuming that a planar embedding € exists.

A graph is an outerplanar graph if it admits an outerplanar drawing, which
is a planar drawing where all vertices are on the boundary of the outer face.
Analogously as with planar embeddings an outerplanar embedding is a non-empty
class of topologically equivalent outerplanar drawings and an outerplane graph
is the tuple of a graph and an outerplanar embedding.

A graph is called mazimal for a given graph class, if the graph is element of
the graph class however no edge can be added to the edge set E such that the
resulting graph G’ is also element of the graph class. For instance a graph is
a maximal planar graph if it is a planar graph and cannot be augmented with
any edge such that the resulting G’ is a planar graph. A plane graph is called
triangulated if its embedding is a triangulation of the Euclidian space, i.e. all
faces of the graph are of length 3, thus all faces induce a triangle. Observe
that every maximal planar graph is triangulated and that every non-maximal
planar graph can be augmented with additional edges to be triangulated. A
planar graph with a given embedding with fixed outer face is called internally
triangulated if all faces which are not the outer face are of length 3.

The dual graph G* = (V*, E*) of an embedded planar graph G has a vertex for
every face of G, i.e. the set of faces of G denoted as F' is equivalent to the set

12 CHAPTER 2. PRELIMINARIES

f3

Jo

Figure 2.6: Graph G = ({1,2,3,4,5},{(1,2),(2,3)
with dual graph G* = ({ fo, f1, f2, f3}, {(f1, f2), (

shown in red. Face fj is the outer face.

1(3,4),(4,5),(5,1),(2,5),(2,4)})
2, 3)7 (f37f0)7 (f()a f1)7 (anfZ)})

of vertices of G*, V* = F. For two faces f1 and fa, the edge e = (f1, f2) is an
element of E* exactly if f; and fo share an edge in G. Observe that the dual
graph of the dual graph is identical to the original graph. Figure provides an
example for a dual graph. The weak dual graph of an embedded planar graph G
is the subgraph of G* induced by F'\ {fo} where f; denotes the outer face of
the embedding of G. For an outerplanar graph G, the weak dual graph is a tree.

2.4 Graph Drawing Models

We will introduce some common graph drawing models which restrict the repre-
sentation of edges and the placement of vertices. However we will first define
some useful tools which are essential for many of these drawing models.

Consider a graph G and two arbitrary vertices s and ¢t of G. An st-ordering
7 of a graph is a permutation 7 = (v1,...,v,) of the vertices of G such that
v; = s,v, = t and for every vertex v;,1 < j < m there exist vertices v; and
v, which are neighbors of v; and 1 <7 < j <k < n, i.e. every v; is sorted in
between two neighbors. Such an st-ordering exists for every 2-connected graph

An st-planar graph is a bipolar orientation of a plane graph (G, ¢) that is, G is
converted to a directed graph such that s and ¢t are two vertices on the outer
face of €, the edges of G are directed such that G is acyclic and s is the only
source while ¢ is the only sink of G [41].

Let m = (v1,...,v,) be a permutation of the vertices of G of a maximal planar
graph G. For a given embedding ¢ of G with (v, vs,v,) as the fixed outer face,
let Vi, := {v1,...v5} for 1 <k < n. Let C}, denote the outer face of £[V}] which
is the embedding induced by the vertices Vi. Then 7 is a canonical ordering if
and only if for 2 < k < n [3§]:

(i) Gy is internally triangulated and biconnected.

(ii) The neighborhood of vy which is part of Gx_1 appears consecutively on
Cr_1.

(iii) if & < n, vy has at least one neighbor v; such that k < .

A canonical order can be computed in linear time, even for graphs which are not
maximal planar, but planar and triconnected [82].

2.4. GRAPH DRAWING MODELS 13

)

Figure 2.7: A planar orthogonal drawing of graph
G = ({1’ 27 37 47 5}7 {(17 2)’ (27 3)7 (3’ 4)7 (47 5)’ (57]‘)’ (2’ 5)7 (2’ 4)})

B3]
2

A7

)

Figure 2.8: A planar octilinear drawing of graph
G=({1,2,3,4,5},{(1,2),(2,3),(3,4), (4,5),(5,1),(2,5),(2,4)}).

With these tools in mind, we define some common graph drawing models.

If T represents all edges as straight-line segments, then I' is called a straight-line
drawing. If T' places all edges on points with integer coordinates, then I' is
called a grid drawing. If T' represents all edges as sequences of straight-line
segments, then we call I a polyline drawing and the points where two subsequent
straight-line segments join bends.

An orthogonal drawing I of a graph G represents every edge e € E as a sequence
of horizontal and vertical line segments I'(e). Thus any orthogonal drawing is a
polyline drawing. Additionally for a vertex v we define four ports called north,
south, west and east. Let edge e be incident to v, then I'(e) has a straight line
segment with v as one endpoint, depending on v being the bottom (top, left,
right) endpoint of the segment, we say that e uses the north (south, west, east)
port of v. Figure provides an example of an orthogonal drawing. For a
more detailed overview on orthogonal graphs see [41], 85 127]. One main benefit
of orthogonal drawings is the optimal angular resolution, which denotes the
minimal angle between incident edges of a vertex.

An octilinear drawing " of a graph G represents every edge e € E as a sequence of
horizontal, vertical and diagonal (at 4°) segments. Informally octilinear drawings
add diagonals to the orthogonal drawing model. Accordingly for every vertex v of
an octilinear drawing there exist 8 ports called north, north-east, east, south-east,
south, south-west, west and north-west. The north port corresponds to straight
line segments on the grid line eminating from ¢ traversing through v, where v is
the centermost point of the segment. All other ports follow in clockwise order.
Figure [2.§ provides an example for an octilinear drawing. Octilinear drawings
are common for the display of metro-maps and map schematization [75] [125].

An ortho-radial drawing I' of a graph G can be considered as a translation of
orthogonal drawings in polar coordinates. The graph is drawn on a ortho-radial
grid consisting of M concentric circles and IV spokes, which are half-lines with the

14 CHAPTER 2. PRELIMINARIES

S

3

)

Figure 2.9: A planar ortho-radial drawing of graph

G = ({1,2,3,4,5},{(1,2),(2.3). (3,4), (4,5), (5, 1), (2,5), (2,4)}). The grid with
M =3 and N = 3 is shown in gray and the inner face is highlighted. ¢ is usually
not shown in the final drawing.

center point ¢ as an endpoint. Edges of G are represented as sequences of circular
segments which are segments of a concentric circle and spoke segments which are
segments of a spoke. The junction of two subsequent segments is called a bend or
bend point. Contrasting the notion of the outer face, the face which includes the
center point is called the inner face. Ortho-radial drawings are a more recent
model than the orthogonal drawings, however they received increasing attention
[6, (70, @7]. Figure provides an example for an ortho-radial drawing.

An upward drawing T' of a directed graph G places every vertex such that for
every e = (v,w) € E it holds that the y-coordinate of I'(v) is strictly lower than
the y-coordinate of I'(w). We say that v is placed below w. Note that a directed
graph admits a upward drawing if and only if it is acyclic.

A layered drawing (also sometimes known as a hierarchical drawing) I' of a
directed graph G is an upward drawing of G where vertices are placed on a
sequence of horizontal lines (L1, ..., Ly) which are ordered increasingly by their
y-coordinate. These lines are called layers and every vertex is placed on one
layer. Every edge is represented by a curve in between the layers of its two
endpoints. The maximal index ¢ denotes the height of the drawing. Often the
height of a layered drawing should be minimal [§]. Trivially every acyclic graph
admits a layered drawing on at most £ = n layers. If a given directed graph does
not admit an upward drawing, it has at least one cycle. Thus often the first step
of the algorithm removes edges to make the graph acyclic. However minimizing
the number of edges to be removed is a NP-hard problem called the feedback arc
set problem [I7) [86]. Minimizing the number of crossings in a layered drawing is
also NP-hard, however many heuristic algorithms exist [22] 126, 127].

One well studied subclass of the layered drawings restricts the number of layers
to 2. These drawings are called 2-layer drawings [15], 43], [119]. Observe that for
2-layer drawing with fixed assignment of vertices to the layers, edge crossings
depend only on the order of the vertices within each layer. This is only true since
the edges are limited to be represented between the two layers and we consider
a simple drawing. Considering a connected graph in a two layer drawing, the
assignment of the vertices to the layers is unique, apart from interchanging the
two layers. This is due to the restriction that edges cannot exist between two
vertices of the same layer. If the graph is not connected the same holds for
every connected component and for most applications, the components can be
solved separately. It has been shown that even for this restricted case minimizing

2.5. GRAPH DRAWING BEYOND PLANARITY 15

Figure 2.10: A 2-layer drawing preserving upwardness. Since the direction of
the edges is implied by the drawing style, displaying the arrows is optional.

(a) (b)

Figure 2.11: (a) A 2-planar drawing, where the edge (1,3) has the maximum
of two intersections. (b) An instance showing the forbidden configuration of
2-planar drawings, where the red edge has 3 crossings.

the number of crossings is NP-hard [61]. Moreover minimizing the number of
crossings remains NP-hard when the vertices of one layer are given in a fixed
order [B0]. Figure provides an example for a 2-layer drawing.

2.5 Graph Drawing Beyond Planarity

In recent years a research direction has shown increasing popularity which studies
the beyond planar graphs. Beyond planar graphs are graphs where the idea
of planarity is extended by allowing some specific crossings. This is done by
defining forbidden crossing configurations which are not allowed in a beyond
planar drawing. This line of research was motivated by experimental findings
which suggested that while crossings affect the readability of a drawing, the
specific properties of crossings have a higher impact than just the quantity
[76, 99]. As a consequence a large number of beyond planar graph classes were
introduced and studied in recent years. Here we will show some common classes,
for a more extensive overview we refer to [46].

A Ek-planar drawing T of a graph G is a drawing for which each edge is crossed
by at most k other edges, where k > 1. Figure 2.11] provides an example for a
2-planar drawing and its forbidden configuration. k-planar graphs were already
considered in the 1960s [I11].

A h-quasiplanar drawing I' of a graph G is a drawing for which no A > 1 pairwise
crossing edges exist. Note that 2-quasiplanar drawings are the same as 1-planar
drawings. Figure [2.12] provides an example for a 3-quasiplanar drawing and its
forbidden configuration.

A fan-planar drawing T’ of a graph G is a drawing for which no three edges
e, e1, e exist such that e crosses both e; and e; but e; and e; share no common
endpoint [84]. Also, when e; and ey share a common endpoint v, then e must not
cross e; and es with different orientation regarding to v. Figure [2.13| provides
an example for a 2-planar drawing and the forbidden configurations.

16 CHAPTER 2. PRELIMINARIES

(a) (b)

Figure 2.12: (a) A 3-quasiplanar drawing, while both (2,5) and (2,4) cross (1, 3),
(2,5) and (2,4) do not cross. (b) An instance showing the forbidden configuration
of 3-quasiplanar drawings, with 3 pairwise crossing edges.

(o N

(a) (b) (c)

Figure 2.13: (a) A fanplanar drawing, both edges crossing (1, 3) share a common
vertex 2. (b) A forbidden configuration of fanplanar drawings, where both blue
edges are crossed by the red edge, but they are not incident to a common vertex.
(c) Another forbidden configuration of fanplanar drawings, the red edge is crossed
by two edges with a common vertex, but with different orientations.

A RAC drawing ' of a graph G is a straight drawing for which all edge crossings
occur at a right angle [44].

2.6 Further Frequently Used Definitions

A matching of a graph G = (V, E) of size n := |V| is a subset of edges M C E
such that every vertex of V' is incident to at most one edge of M. A vertex which
is incident to one edge of M is called matched. If the vertex is not incident to
any edge of M it is called unmatched. The size of a matching corresponds to
the cardinality of M. If for a matching M, there exists no edge e € E for which
M U{e} is a matching, then M is a mazimal matching. If for a matching M there
exists no other matching M’ of G of larger size, then M is a mazimum matching.
A matching M is a perfect matching if every vertex of V' is matched, i.e. the
size of M is exactly 5. A weighted matching is a matching M on a weighted
graph, the weighted size of M is the sum of the weights of all edges of M, i.e.
> e w(e). A weighted mazimum matching is likewise a weighted matching M
such that the weighted size of no other weighted matching M’ is larger. Note
that a weighted maximum matching is not necessarily a maximum matching. A
mazimum weight mazimum matching is a weighted matching M with maximum
weighted size out of the set of maximum matchings of G. Likewise a minimum
weight maximum matching is a weighted matching M with minimum weighted
size out of the set of maximum matchings of G.

A Delaunay triangulation of a point set P in the plane is a triangulation of P
such that for every triangle (p1,p2, p3) of the triangulation the circle defined by

2.6. FURTHER FREQUENTLY USED DEFINITIONS 17

the three points p1, ps and ps is empty, i.e. there is no other vertex of P in the
interior of this triangle. A Delaunay triangulation can be used to compute an
internally triangulated graph, when a drawing of a vertex set without any edges
is provided. Further, if the convex hull of P is a triangle, the graph corresponding
to the Delaunay triangulation is a maximal planar graph and fully triangulated.
Delaunay triangulations maximize the minimum angle of all triangles in the
triangulation over all triangulations. A Delaunay triangulation can be computed
in running time O(|P|log|P]) [8Y].

An FPT or fized parameter tractable problem, is a problem which can be solved
in time f(k) - n®®, for a computable function f, where k is a parameter of
the input independent of n. Therefore the class of FPT algorithms allows for a
more fine-grained classification of NP-hard problems, describing problems which
become polynomial time solvable, when k is bound by a constant. One special
subclass of FPT-problems are FPL or fixed parameter linear problems, for which
an algorithm exists, such that the running time is linear, if k is constant, i.e.
the problems can be solved in time f(k) - n. For example the SAT or Vertex
Cover problems are in FPL. Lastly, XP is the class of problem, for which an
algorithm of running time nf(*®) exists, where f is a computable function, clearly
XP is a superclass of FPT and FPL. Still, when k is constant, a polynomial
time algorithm exists for XP problems.

18

CHAPTER 2. PRELIMINARIES

Part 1

Window Width

19

Chapter 3

Theoretical Results

In this chapter of the thesis we will introduce the notion of window width for
bipartite graphs and study different variants of the window width minimization
problem, where the vertices of one of the layers of the given 2-layer drawing
have to be replaced such that the maximum distance spanned by any vertex of
the top layer and its neighborhood is below a given threshold. We observe that
this problem can be solved efficiently when the bottom layer is fixed and the
top vertices can be freely placed on integer coordinates and NP-complete when
the top layer is fixed and the bottom vertices can be freely placed. However
we will provide a 2-approximation algorithm for this case. Additionally we
consider the closely related notion of z-Distance, where the maximum difference
in x-coordinate between any adjacent vertices has to be minimized, as well as
a summed variation of both the window width and the x-Distance problems,
where the accumulated Window Widths or z-Distances have to be minimized
and provide polynomial time algorithms solving both.

Some results of this chapter also appeared in [Q]E] which received the Best Student
Paper Award.

3.1 Window Width Minimization with Flexible
Top Layer

Acyclic directed graphs are common for many real-world networks such as
organizational charts [72], function trees [I16] or parse trees [28], as these graphs
describe a hierarchy between elements. Such graphs are sometimes also called
hierarchical graphs. State of the art algorithms use a layer by layer approach, thus
considering only two subsequent layers at a time, to construct a representation
of hierarchical graphs [126]. Therefore the 2-layer case is of special importance.
Such drawing models are even used for directed graphs which are not acyclic,
were a few non-upward edges are accepted.

Moreover 2-layer drawings are widely used to visualize bipartite graphs for any
data set, where there are two groups or communities and their inter-group

1All collaborators contributed to equal parts to the results of this paper.

21

22 CHAPTER 3. THEORETICAL RESULTS

relationship is studied. A state of the art visualization directly motivating
this research is the ASCT+B REPORTER, displaying anatomical structures,
biomarkers and cell types in a 2-layer drawing [34]. While the visualization
succeeds at compactly conveying medical knowledge, it is cumbersome to find
all biomarkers belonging to a cell type, as a considerable amount of scrolling is
necessary. Many similar visualizations exist, such as tanglegrams for phylogenetic
trees [122]37][24][54] where the leaf layers of two separate phylogenetic trees are
opposed and edges between the layers display matching taxa, thus the two leaf
layers are visualized using a 2-layer drawing.

An essential task in exploration of most visualizations is to identify the neigh-
borhood of a vertex. In the example stated above this corresponds to identifying
all biomarkers belonging to a cell type, or all cell types belonging to an organ.
Many interactive graph visualizations even highlight the incident edges and
according neighbors when selecting (or hovering over) a vertex. Clearly, for
easy readability, the highlighted section should be visible in full, thus the vertex
and its neighborhood must fit into the display window of the application. This
motivates the definition of a new optimization criteria, which will be studied in
this chapter.

Let G = (AU B, E) be a bipartite graph which is directed such that any vertex is
directed from its incident vertex in A to its incident vertex in B. Let n4 denote
the number of vertices of A, ng the number of vertices of B, n := n4 + np
the total number of vertices and m := |F| the total number of edges. Let I'
be a 2-layer drawing of GG, observe that all vertices of A are on layer Ly, and
all vertices of B on layer Li. As there are only two layers we will also refer to
Ly as the bottom layer and to Lo as the top layer. For a connected bipartite
graph this orientation and subsequent assignment to layers is unique apart from
interchanging A and B. For vertex v of a 2-layer drawing I" the z-coordinate of v
is denoted as z(I'(v)). As all vertices are assigned to one layer, the y-coordinate
of all vertices is clear. Therefore we might refer to the z-coordinate simply as the
position of v in I'. We will only consider positions on integer coordinates. The
x-Distance denoted as xsr(v, w) between two vertices v, w in a 2-layer drawing I'
is the difference of z-coordinate of v and w, i.e. zsp(v,w) := |z(T'(v)) — (T (w))|.
If the placement of some vertices is provided by a function p (as it mostly
will be in this chapter) we instead denote the z-coordinate of v as p(v). The
Window Width of vertex v € A in respect of a given drawing I" is the maximum
z-Distance between any two vertices of {v} U N(v), i.e. between vertices of the
neighborhood of v including v. We denote the Window Width of a vertex v as
ww(v) == Mazy ye{vyun, rsr (U, v). We denote the Window Width of a drawing
I" as wwr and define it as the maximum Window Width of any vertex of A,
WWr 1= MaTyc AWwW(v). Figureshows an example illustrating the x-Distance,
the Window Width of a vertex and the Window Width of a drawing. Finally the
Window Width of a graph is denoted as wwg = minpe.wwr where € denotes
the set of 2-layer drawings on integer coordinates of bipartite graph G. Note
that we will restrict the set of drawings € in the following further by taking the
positions of all vertices of one vertex set A or B as part of the input. Such a
restricted Window Width will be denoted as ww4(G) or wwp(G) respectively.
Only the vertices of the B or A respectively can be replaced.

3.1. WW MINIMIZATION WITH FLEXIBLE TOP LAYER 23

Ly
Ly m
x-Distance
(a)
L2 v
L,
ww(v
(b)
Ly
L,
wwr

(c)

Figure 3.1: (a) The z-Distance between two vertices u and v. (b) The Window
Width of vertex v € A. (c) The Window Width of I, which is the maximum
Window Width for any vertex of A.

Given a partial 2-layer drawing, where the x-coordinates of the vertices of B on
the bottom layer L, are fixed and the vertices of A can be freely assigned, we
provide an efficient algorithm to construct a 2-layer drawing of G with minimum
Window Width.

Theorem 3.1. Given a bipartite graph G = (AU B, E) as well as a vertex
placement p : B — Z. A 2-layer drawing I' of G with x(I'(v)) = pg(v)Vv € B
and minimum Window Width wwp can be constructed in O(nlog(wwg) + m)
time.

Proof. As an outline, the algorithm will first reduce the problem to an equivalent
but (generally) smaller problem, then calculate a lower bound for the Window
Width and set it as temporary Window Width. We will then try to construct a
drawing satisfying the temporary Window Width with a sweep line algorithm by
placing vertices of A within intervals which satisfy the Window Width. If this
fails, the intervals are enhanced and the temporary Window Width increased.
The algorithm can continue after increasing the Window Width without having
to start again. A final pass will compute the correct placements for the vertices
of A satisfying the final temporary Window Width which equates to the optimal
Window Width.

Reducing the Problem. We first observe that the instance can be reduced to
the critical part of G. For any vertex v € A only the leftmost neighbor denoted
as £(v) at position p(¢(v)) and the rightmost neighbor denoted as r(v) at position
p(r(v)) are potentially relevant for Window Width of v. For any 2-layer drawing
of G complying with placement p, the Window Width of the critical part of G is

24 CHAPTER 3. THEORETICAL RESULTS

L,

Ly

Figure 3.2: The running example for this section.

L,

Ly

Figure 3.3: The equivalent critical part of the running example. Note that every
vertex of A has at most degree 2.

equivalent to the Window Width of G. To show this, assume first that v will be
placed at an z-coordinate which is inside the interval [p(£(v)),p(r(v))]. Then
ww(v) = p(r(v)) — p(£(v)), thus any other neighbors can be omitted. Secondly
assume that v will be placed at z-coordinate x outside of [p(¢(v)),p(r(v))].
W.lo.g. assume that > p(r(v)), then ww(v) = x — p(£(v)) thus again, all other
neighbors are inconsequential. Therefore we can remove all intermediate edges in
O(m) time resulting in a critical part with O(ny4) vertices. Note that £(v) = r(v)
is possible. Vertices of B without incident edges are irrelevant for the placement
of A, similarly any vertices of A without incident edges are neglected, as those
can be placed on any free x-coordinate. In the following, we assume that the
graph G has already been reduced to its critical part. Figure [3.2] provides a
running example. In the following, only the critical part of the example will be
considered, shown in Figure |3.3

Computing a Lower Bound. The algorithm does begin with a temporary
Window Width denoted as k., which is incremented during the algorithm,
whenever the algorithm fails to construct a drawing of k., until the optimal
Window Width is achieved. Observe that the maximum z-Distance between
¢(v) and 7(v), i.e. p(r(v)) —p(£(v)) for any v € A, is a natural lower bound for
wwp as placing v within the interval [p(£(v)), p(r(v))] yields exactly this Window
Width and placing v outside of the interval yields a strictly higher Window
Width. Thus initially k.., is set to max,eca p(r(v)) — p(¢(v)). Figure shows
the lower bound and initial k,,,, for the running example.

Lo

L

Figure 3.4: The lower bound for the Window Width (in this case ww(v)) defines
the initial k..

3.1. WW MINIMIZATION WITH FLEXIBLE TOP LAYER 25

Ly

Ly : ‘
Kww' Ko
—4

Figure 3.5: The interval I(v) of vertex v, observe that it is of size 2k, —

xs(l(v),r(v)).

v]

v | []
v3 L]
V4 L]
Vs D

Vg C]

Figure 3.6: Showing the initial intervals of all vertices of A as a new (smaller)
running example. Note that it suffices to observe the intervals corresponding to
the vertices. Vertex placements are displayed as point within the interval at a
given coordinate. Each coordinate can only be assigned once. The sweep-line
shown in red is empty at initiation.

Constructing the Intervals. Let I(v) := [p(r(v)) — kww, P(£(v)) + Kuww] be
the interval of any vertex v which defines the set of positions where vertex v can
be placed, such that the Window Width of vertex v is at most k.. Note that
there is at least one vertex with interval size of exactly k.., and all intervals have
at most size 2 - ky.y, see Figure Let min I(v) denote the leftmost coordinate
in I(v) and max I(v) the rightmost coordinate in I(v). Now it is necessary and
sufficient to find a unique position of every vertex of A within I(v) to construct
a I' such that wwr = k.. To solve this efficiently, we introduce a sweep-line
algorithm which allows for k,,,, to be increased during the sweep.

The Sweep-Line. The intervals of the vertices of A will be swept from left to
right by a vertical sweep-line denoted as L. L is a data-structure maintaining the
set of currently active intervals. The active intervals are all intervals of vertices
of A which are intersected by L and whose vertex in A has not been assigned
a position yet. In the data structure, these active intervals are sorted by their
right endpoints, which can be achieved by a min-heap [35]. During the sweep
we distinguish between three types of events, denoted as start, placement and
end event. It is possible that multiple events occur at the same z-coordinate,
in that case start events take priority, placement events are handled only when
there are no start events and end events are only resolved when no other events
exist on the given coordinate. Figure|3.6| provides an example, the intervals have
been constructed before the sweep-line starts. In the following the event types
are described in detail:

26

U3] U3 0]
v [o
Us] Vs]

V6] V6]

(a)

(b)

CHAPTER 3. THEORETICAL RESULTS

Figure 3.7: Showing the sweep-line (a) before and (b) after two start events
adding I(vs) and I(v4) as active intervals.

v [U

Vs 1] °

Vg 0] Vg 0]
(a) (b)

Figure 3.8: Showing the sweep-line (a) before a placement event, where L =
(I(vs),I(ve),I(vs)) as they are sorted by their endpoints and (b) after the
placement event occurred, assigning vs to the current position and marking its
interval as inactive.

Start event. A start event adds an active interval to L at, such that it can be
considered by the other events.

This event type occurs for any vertex v € A at the position of the left endpoint
of I(v). The event inserts I(v) to L. If there is no placement event at the current
position, there is a new one added. Figure shows a start event in the running
example.

Placement event. A placement determines the ideal candidate for placement at
the current position out of all active intervals and places it.

This event type occurs whenever the data structure of L is non-empty, i.e. there
are active intervals. In this case we can assign one vertex of A to the current
x-coordinate x, so p(v) := x where v is the first active interval of L. I(v) is then
marked as inactive and removed from L. If L is non-empty, a placement event
at i 4+ 1 is added. Note that there are exactly ns placement events in total, as
any placement event assigns exactly one vertex to a z-coordinate. Figure |3.8
shows a placement event in the running example.

End event. An end event controls that each vertex is assigned within its interval.
If an interval ends although its vertex has not been placed yet, the temporary
Window Width k., is incremented.

This event type occurs whenever L coincides with the right endpoint = of an
interval I(v). To construct a drawing with Window Width of k., the interval
has to be inactive, i.e. its vertex has already been assigned to a position within
the interval, so that zp(v) < x holds. If L is inactive we can proceed, otherwise

3.1. WW MINIMIZATION WITH FLEXIBLE TOP LAYER 27

V4 L]

Vg]

Figure 3.9: Showing an end event which does not increment k., I(vs) is ending,
but I(vs) is inactive, thus nothing has do be done.

v] v B

(a) (b)

Figure 3.10: Showing the sweep-line (a) before an end event for vy and (b) after
an end event for vy. The temporary Window Width k.., is incremented as I(v4)
is still active. Observe that all intervals are increased by 1 in each direction and
the assignments which already have been made are shifted by 1 to the left. Thus
the current position becomes free.

we failed to find a position of v within its interval I(v). Thus a drawing with
the temporary Window Width cannot be realized, k.., has to be incremented,
which extends all intervals by one on each side. All already placed vertices of A
and all start events are moved one to the left and all end events one to the right
along the r—axis. Then all placement events are removed and a new placement
event at x introduced. Note that due to this shift there might be unresolved
start events at current position x. This is the case when there was a start event
at x + 1 before the shift. Therefore the next event handled is either a start or a
placement event, still at position x. Since all placements already made have been
shifted to the left, position z is free and can be assigned a vertex. Figure [3.9]
shows an end event in the running example where the interval is inactive and
Figure m an event, where the interval is active and thus k., is incremented.

Before the sweep begins, all start events and end events are placed in the event
queue in O(n 4) time. Note that to efficiently handle the increments of k., start
events and end events are kept in separate event queues which are processed
synchronously. The order of the events within the separate queues are maintained
naturally when k., changes, as all start events are shifted by the same fixed
amount of 1 to the left and all end events by 1 to the right. Also we observe that
there are at most 2 placement events at any point during the algorithm, there
can be one at current position x and one at the next position x 4+ 1. Thus it is
best to realize the placement event queue as two booleans instead of a regular
queue.

28 CHAPTER 3. THEORETICAL RESULTS

X T
I(v) [I(v) @1
[[T 1
Sz [] Se 0T
[] T 1
(a) (b)

Figure 3.11: Observe that the right boundaries of the intervals of P, are strictly
left of the right boundaries of the intervals of S, before (a) and after (b)
incrementing K.,

Correctness. Clearly, by definition of the vertex intervals, when the algorithm
terminates, all vertices have been assigned a unique position and the correspond-
ing drawing I' has Window Width wwr = k., where k., is the temporary
Window Width at algorithm termination. Further we observe, that when the
algorithm fails to place a vertex within its interval and as a result k,,, is in-
creased, the partial solution up to this point shifted by one unit to the left
is identical to the partial solution which would be obtained by restarting the
algorithm with an incremented k. Since the order of end events and start
events remains the same respectively the following property holds: Assume the
placement of vertex v € A within its interval I(v) = [¢, 7] fails at z-coordinate
x. Let P, C A denote the set of vertices which were already placed by the
algorithm. Further let S, be the vertices whose start event occurs at position
x + 1, therefore after increasing k.., it occurs at x. Then after resolving the end
event, it holds that max I(p) < maxI(s) for any p € P,,s € S,. This is true
since max I(p) <r =2z 41 and x = min I(s) < max I(s) unless ky, = 0 which
is impossible, as k,,,, was just incremented. This proves that all vertices of P,
will be placed at positions left of « + 1 and all vertices of S, at positions right of
x4+ 1 (as position x + 1 is assigned to v or a vertex with an equivalent interval).
The order of placements is unaffected by the increment of k.. Figure [3.11
visualizes this property.

Thus it only remains to show that k., is only increased if necessary, i.e. when
a drawing of Window Width k., is impossible. If a free coordinate within
I(v) exists, then v would have been placed at this position contradicting our
assumption, as I(v) was the only active interval at this coordinate. Therefore all
of the coordinates of I(v) were assigned to previously placed vertices of A. Let
¢ denote the largest z-coordinate < r which has not been assigned a vertex of
A, ie. (' is free. Clearly ¢/ < £. Let A, C A be the set of vertices placed within
interval I, := [¢/ 4+ 1,7]. It must hold that for a solution of Window Width k.,
all vertices of A, must be placed within interval I,,. Assume for a contradiction
that vertex a € A, exists which can be placed outside of I,, while maintaining
Window Width of k.. This is only possible, if the vertex a is placed within
I(a). However max I(a) < r since a has been assigned a coordinate previous to
v by the algorithm. Also minI(a) > ¢ otherwise a would have been placed at
¢ as it was an active interval at this position. Thus all vertices of A, as well

3.1. WW MINIMIZATION WITH FLEXIBLE TOP LAYER 29

Ayl a2
[]
Al =
)
I(v) _r

Figure 3.12: Schematic representation of the proof showing that a drawing of
Window Width k.., is impossible, as the interval [¢ r] is overfull.

as v must be placed within interval I, in a drawing with Window Width k..,
however there are only |A,| coordinates in I, to place |A4,| 4+ 1 vertices, which is
a contradiction. Figure [3.12]illustrates this proof. O

Time complezity. Reducing G to its critical part takes O(n + m) time. As there
are exactly one start, one end and one placement event per vertex of A plus one
end event per increment of k,,,, there are O(ns +wwpg) = O(na) events in total,
since there are at most ©(n4) increments as wwp has a trivial upper bound of
max{max,ec4 p(r(v)) — p(l(v)),na} (recall that max,ec4 p(r(v)) — p(¢(v)) is the
lower bound of wwpg).

To keep track of the unresolved events, two sorted event queues for start and
end events suffice, there are at most two placement event at any algorithm step.
In L all active intervals have to be sorted. Observe, that there can be at most
O(wwp) many active intervals at any algorithm step, more precisely at most
2wwp + 1. We show this by contradiction. Assume that at some z-coordinate
x there are 2wwp + 2 intervals maintained in L. Since any vertex must be
placed on a unique integer coordinate, there must exist one vertex v with interval
I(v) = [¢,r] which is placed earliest at x-coordinate = + 2wwpg + 1. Note that
¢ <z as I(v) is an active interval at position . From the interval definition it
follows that p(r(v)) = £ + wwp < + wwp. Any interval is of maximum size, if
r(v) = £(v), therefore p(¢(v)) + wwp < p(r(v)) + wwp < x + 2wwpg. Thus if v
is assigned z-coordinate = + 2wwp + 1, it is placed outside its interval, yielding
a Window Width of wwp + 1, which is a contradiction.

Thus L can be maintained by a min heap holding at most O(wwpg) intervals,
therefore any event can be resolved in O(log(wwg)) time.

We store an offset value which corresponds to the number of increments of k.,
from its initial value (the lower bound) until the termination of the algorithm.
This offset corresponds to the shift of start and placement events to the left and
of end events to the right, therefore the intervals do not have to be adjusted
whenever k,,, increments. For all events it suffices to add (or subtract) the
offset value. Still one additional pass over all vertices of A after the sweep line
terminated is necessary to adjust all placement events, shifting x(v) by this offset
value wwp — maxyea xs(r(v),£(v)) to the left for every vertex v € A. Thus
realizing all increments of k., can be done in linear time.

30 CHAPTER 3. THEORETICAL RESULTS

3.2 Window Width Sum Minimization with Flex-
ible Top Layer

While minimizing the maximum Window Width over all vertices can increase the
readability of the drawing significantly, for some constellations we observe some
undesired results. Specifically if there exists one vertex which prominently defines
the maximum Window Width, the algorithm provided in the previous section
may yield unnecessarily long edges for all other vertices. We remark that this is
due to the greedy nature of the sweep-line algorithm, which, informally, places the
vertices leftmost possible. This can also be observed in the experimental results
in Chapter [Thus, instead of focusing on the maximum Window Width of
every single vertex a natural variant of the problem is derived by minimizing the
average Window Width of all vertices. Note that this is equivalent to minimizing
the sum of Window Widths of all vertices of A. In the following, we show that
this variant of the problem is also solvable in polynomial time, when the vertices
of B are given with a fixed placement.

Theorem 3.2. Given a bipartite graph G = (AU B, E) as well as a vertex
placement p: B — Z. A 2-layer drawing T' where the sum of Window Widths of
all vertices of A is minimized while preserving the given vertex placement for B
can be constructed in O(n® +m) time.

Proof. We will show this by providing a polynomial time algorithm with the
stated running time. The algorithm models the instance of our problem as a
bipartite matching problem. This can be efficiently solved by the well known
Hungarian algorithm to find a minimum weight maximum matching [109]. Re-
mark, that the size of the problem can still be reduced by removing unnecessary
edges as in Theorem Therefore after reducing the problem to its critical part,
the primary step of the algorithm is to construct a weighted bipartite graph,
denoted as G* = (4%, B*).

Before discussing the construction of G*, we observe two important properties:
For any vertex v € A the optimal placement of v is within the interval spanned
by the z-coordinates of ¢(v) and r(v), as p(r(v)) — p(¢(v)) is a general lower
bound for wwr(v) for any I" respecting p. Further for any positions outside of
this interval, the Window Width of v increases linearly with the distance to
the interval. As the coordinates assigned by p must not be linear, we argue
in the following, that the number of positions we have to consider is still
limited. We do so by defining an extended interval for every vertex v which
has size > n 4, thus at least one position within the interval must be free, as
there are only ns — 1 other vertices of A. Further all positions outside of the
extended interval yield a higher Window Width for v. Specifically we define
the extended interval as [p(£(v)) — %, p(r(v)) + %] if p(r(v)) — p(£(v)) < na.
As the Window Width of v increases with distance to the [p(¢(v)), p(r(v))] all
positions outside of the extended interval clearly yield a higher Window Width
for v, also, as p(£(v)) < p(r(v)) the extended interval is clearly of size at least
na. If p(r(v)) — p(€(v)) > n4 it suffices to define the extended interval as any
subinterval of [p(¢(v)), p(r(v))] of size exactly n4. For instance let the extended
interval be [p(¢(v)),p(€(v)) + na]. Clearly the interval is of size na, further
all coordinates within the interval yield the same, minimal, Window Width

3.2. WW SUM MINIMIZATION WITH FLEXIBLE TOP LAYER 31

p(r(v)) — p(£(v)) for v.
Thus we have shown that it suffices to consider O(n4) positions per vertex. Now
for the construction of G*.

Constructing G*. For each vertex v we construct the extended interval of relevant
placements, as defined above, each of size n 4. Then, for each position z, which is
element of at least one such interval, we introduce a node denoted as v, to node
set A*. Additionally for each vertex v of A, we introduce a node v* to B*, v*
can be considered a copy of v. The edge set corresponds to introducing an edge
connecting every vertex of A with all positions within its extended interval. The
edge weights are then defined such that they correspond to the Window Width
resulting from placing vertex v at the incident position. Thus formally edge set
E* contains an edge e = (v, v*) exactly if x € [p(£(v)) — 5, p(r(v)) + 5], in
case p(r(v)) — p(f(v)) < na and exactly if x € [p(¢(v)),p(¢(v)) + N4, in case
p(r(v)) — p(€(v)) > na. The weight w((v,,v*)) is defined as the z-coordinate
distance between z and the interval [p(¢(v)), p(r(v))] plus p(r(v)) — p(€(v)), that

is
p(r(v)) — z,if © < p(L(v))
w((vz,v")) = { = — p(l(v)),if 2 > p(r(v))
p(r(v)) — p(€(v)),if p(t(v)) <z < p(r(v)).

Observe that the constructed G* consists of n4 nodes of B* and at most n?
nodes of A*, as there are exactly na extended intervals each of size n 4, thus
O(n?) nodes in total. Note however, that when the coordinates assigned with p
are linearly bounded by n 4, there are only O(n4) nodes. As any vertex of B*
has a degree of n 4, there are O(n%) edges in total.

Now as G* is constructed, any known algorithm can be used to compute a
minimum weight maximum matching M* of G*. Since |B*| = n4 and any node
of B* has degree n 4, clearly any maximum matching of G* is of size ny4, i.e. in
the resulting matching M* all nodes of B* are matched. If an edge e = (v,,v*) is
an element of M*, we consider vertex v of A to be placed at position p. Observe,
that the weight of e corresponds exactly to the Window Width of v when placing
v at position p. Thus M* corresponds to a drawing I', optimally positioning all
vertices of A, minimizing the sum of Window Widths . , wwr(v).

Correctness. First we verify that M* corresponds to a valid coordinate assignment
of the vertices of A. As M™* is a matching, no node v* € B* has two incident
edges in M*, thus no vertex of A is assigned two positions. Similarly, as no
node v, € A* has two incident edges, no two vertices of A are assigned the same
z-coordinate. As any node v* € B* has a degree of n4 it trivially holds that
|M*| =na, i.e. all vertices of A have been assigned.

To argue that the placement is optimal, assume for a proof by contradiction
there exists a solution in which the sum of Window Widths of all vertices of A is
strictly smaller than the one corresponding to the minimum maximal matching
M*. Clearly, this optimal positioning can be expressed as a matching M’ of G*
with w(M') < w(M*), which is also maximal as it is of size n4. By definition of
the edge weights this implies that M ™ is not minimum, which is a contradiction.

Time complexity. As in Theorem the critical part of G can be computed
in O(na + m) time. Any node of B* has degree n4, B* consists of ng nodes

32 CHAPTER 3. THEORETICAL RESULTS

and A* consists of O(n?) nodes. There are O(n?) edges in G*. Computing the
weight of an edge takes constant time, thus in total O(n?) time for all edges.
Thus in total, the construction of G* takes O(n%) time. The minimum weight
maximum matching of G* can be computed by the Hungarian algorithm in time
O(n3) [109]. Therefore the total time complexity is O(n? + m). O

3.3 Window Width Minimization with Fixed
Top Layer

Since the Window Width defined as the maximum Window Width of any vertex
of vertex set A, the Window Width is not a symmetrical property. Therefore
having the positions of the top vertices fixed, while placing the vertices of B is an
entirely different problem. In fact unless N = NP deciding whether ww4(G) < k
for a fixed k can not (deterministically) be done in polynomial time. We denote
this as the WiNDOwW WIDTH problem.

Theorem 3.3. Given a bipartite graph G = (AU B, E), an integer k and a
vertex placement p : A — Z, it is NP-complete to decide whether there exists a
2-layer drawing T of G with x(I'(v)) = p(v),Yv € A, such that ww(T) < k.

Proof. 1t is obvious that the problem is a member of NP. The hardness proof
can be adapted from a proof by Papadimitriou, reducing from the Exact 3-SAT
problem, to the BANDWIDTH problem [104]. In preparation, the concept of the
reduction by Papadimitriou will be briefly described first. For the BANDWIDTH
problem, a graph G = (V,E) is given and the vertices have to be assigned
on a line with unique integer positions f : V — Z, such that the distance
spanned by any edge is bound by a given k, called the Bandwidth. Formally
|f(v) B f(w)‘ < k,V(v,w) €E.

The Exact 3-SAT problem is a NP-complete variation of the SAT problem,
where a Boolean formula ¢ is given, where ¢ consists of n variables and m
clauses, where any clause consists of exactly 3 different literals. The problem is
to decide, whether ¢ is satisfiable.

Papadimitriou’s reduction The core concept in the reduction from EXACT
3-SAT to BANDWIDTH is the construction of an instance graph G for which the
BANDWIDTH problem is true for a fixed k exactly if there exists a solution to the
Boolean formula of the EXACT 3-SAT problem. To do so, G is constructed such
that it consists of blocks, which are subgraphs H, each containing a literal-vertex
for all literals of ¢, i.e. both ¢, and ¢, for each variable . Further H includes
two vertices denoted by M and M’. The subgraphs are constructed in such a way,
that exactly n literal-vertices can be placed left of M and M’ while the other
n literal-vertices must be placed right of M and M’. The set of literal-vertices
on the left are denoted as P and the one on the right as Q. If a solution of
Bandwidth k exists, the set of literal-vertices included in P corresponds to the
set of satisfied literals, while the literal-vertices included in @ correspond to the
unsatisfied literals.

To construct G n 4+ m copies of the subgraph H are combined. These are
adapted such that a ’consistency’ of literals is assured, by that we mean that
any literal-vertex which is in P in any one copy of H should be in P in all other

3.3. WW MINIMIZATION WITH FIXED TOP LAYER 33

copies of H. This automatically ensures that the same holds for literal-vertices
in Q. This can be achieved by using the bandwidth constraint. By adding edges
to G it becomes impossible to have a vertex both in P and @ for different copies
of H without violating the bandwidth constraint. Further, the first n copies of
‘H are adjusted to ensure that every variable x of ¢ has exactly one literal ¢, or
=/, in P while the other literal is in). Finally the clauses of ¢ are implemented
by the last m copies of H where a vertex is introduced which is incident to all
literals of a given clause and ensures that at most two of its vertices can be in
Q, so that ¢ is fulfilled, else the bandwidth constraint is violated.

Our reduction Observe that the WINDOW WIDTH problem differs greatly
from the BANDWIDTH problem, as the BANDWIDTH problem consists of a
single layer instead of two and all edges are considered individually instead
of neighborhoods as in the Window Width problem. Further in the WiNDOW
WIDTH all vertices of the top layer have fixed positions, while in the BANDWIDTH
problem all vertices can be freely assigned z-coordinates. However we are able
to utilize the main concept of Papadimitrious algorithm to reduce the EXACT
3-SAT problem to the WINDOW WIDTH problem. Since the vertices of A are
given as an input, it is easier to fix vertices of vertex set B to specific positions,
simplifying the construction of some gadgets. However these constraints make the
flexibility of this model, which is necessary to show NP-hardness, less apparent.

In our reduction, we construct a graph G = (AU B, E) and a x-coordinate
assignment p : A — Z, such that ww4(G) = 6n+3 if and only if Boolean formula
(is satisfiable. Recall that n denotes the number of variables and m the number
of clauses of ¢. We introduce a number of gadgets, which will be subgraphs of
G, achieving similar behavior as their counterparts in Papadimitriou’s reduction.
Thus, when appropriate, we maintain the nomenclature of Papadimitriou’s proof.

To construct sequences in which the literals are separated into P and @), i.e. into
satisfied and unsatisfied literals, we introduce H-gadgets, where the block-gadget
Bs-block corresponds to M and M’ in Papadimitriou’s construction.

Similarly the ’consistency’ of literals of our construction is ensured by intro-
ducing vertices in A in a propagation gadget. Analogously to Papadimitriou’s
construction, the first n copies of the H-gadget realize variable-gadgets ensuring
that either the positive or the negated literal is satisfied, while the last m copies
realize the clauses via clause-gadgets.

In the following, we will describe the construction of these gadgets in detail.
Each gadget introduces one or two vertices to A with appropriate positions
p. Block-gadgets and ‘H — gadgets, the ’building blocks’ of our construction,
additionally introduce vertices to B. Without loss of generality we assume that
there are at least five variables, i.e. n > 5.

Block-gadget. A Block-gadget introduces a number of § vertices to B which are
by construction fixed to a sequence of x-coordinates i,...,7 + 8 — 1, therefore
making it impossible for any other vertex of B to be placed on any of these
coordinates. We call these vertices the block-vertices, as they informally block
positions which can no longer be assigned to any flexible vertices. To achieve
this property, two vertices denoted as a, and a,, are introduced to A with
plag) :==1— (k—p+1) and p(a,) := i + k. Both vertices are incident to all

34 CHAPTER 3. THEORETICAL RESULTS

8. vertices

k+3

(oL 3

B Bl P By Q BY{BV\B] P By, (Q B{B"
ba, oy lo, oy
k

k

Figure 3.14: A H-gadget and propagation-gadget.

block-vertices, see Figure [3.13]for a depiction of the block-gadget construction.
Clearly a Window Width of k can only be admitted if any block-vertex is placed
at a position with z-Distance at most k to both ay and a,. This is only fulfilled
exactly when every block-vertex is placed within the interval [i,i+ 8 — 1] in B,
which only consists of exactly positions. Note that within this interval, the
block-vertices can be freely reordered.

In our construction of G, two types of block-gadgets are used. A Bj-block
consisting of 81 = 2n + 3 block-vertices and a Bs-block consisting of 85 =n + 1
block-vertices. Further, the block-vertices of any Bj-block are partitioned into
three vertex sets, BY, BY* and B]. B} consists of n block-vertices and will be
placed in the middle, due to constraints of the H-block. B consists of | 23
vertices, while B} consists of the remaining f”T'H"] block-vertices. See Figure
for a depiction.

Bs-blocks serve to separate the P-blocks from the @Q-blocks. Left of any Bs-block
(except for the first), there is a P-block and right of any Bs-block (except for the
last), there is a @-block. Both the P- and @-blocks span over n x-coordinates,
so that they provide enough positions for n literal-vertices each. Bj-blocks then
separate the copies of these sequences of P, By, @-blocks. Thus any Bj-block
has a @-block on its left and a P block on its right. conversely to the By blocks.
In total there are n +m + 1 Bs-blocks and n + m Bj-blocks which alternate.
Note that combining one full sequence of these blocks, i.e. a By-,P-,B5- and a
Q@-block (in exactly this order) results in a total amount of 5n + 4 vertices of
vertex set B. Thus this gives us the size v := 5n + 4 of one cycle of blocks which
defines the coordinates of all blocks of our construction as in Table 3.1l

Note that for the i-th Bji-block, this results in a placement of vertex a, at
p(ag) := - (i —2) +n+ 4, which corresponds to the position above the n + 4-th

3.3. WW MINIMIZATION WITH FIXED TOP LAYER 35

Table 3.1: Block Coordinates

Block Type First z-coordinate Last z-coordinate
Bj-block Y-(i—1)+1 p-(i—1)+2n+3
P-block Y(i—1)+2n+4 Y-(i—1)+3n+3
Bs-block Y-(i—1)+3n+4 Y(i—1)+4n+4
Q@-block v-i—1)+4n+5 ¢-(i—1)+5n+4

The z-coordinate of the i-th By-, P-, Bs-, and ()-blocks enumerated from left to
right with ¢ > 1.

vertex of the previous Bj-block, while a, is placed at p(a,) := % - i + n, which
corresponds to the n-th vertex of the next Bj-block, in a left-to-right manner
respectively. Analogously for the i-th Bs-block, this results in a placement of
vertex ayg at p(ag) := - (i—2)43n+5, which corresponds to the position above the
second vertex of the previous Bs-block, while a,. is placed at p(a,) := ¢-i+4n+3,
which corresponds to the n-th vertex of the next Bs-block, in a left-to-right
manner respectively.

H-gadget. These gadgets introduce the literal vertices to B. For any variable
x; of Boolean formula ¢, two vertices are introduced, corresponding to literals
l;, and (_,, respectively. Hence, there are 2n vertices. Further, each H-gadget
includes one Bs-block denoted as b, which separates the P-block preceding
b from the @Q-block succeeding b. Any two consecutive H-gadgets are then
separated by a Bi-block, limiting the placement of all literal-vertices to exactly
the before-mentioned P- and @-blocks. See Figure for a depiction of two
consecutive H-gadgets. An H-gadget can be constructed as follows: For any
Bs-block b we introduce an H-gadget H which consists of one vertex h € A
and 2n literal-vertices of B. h is incident to all vertices of b and the introduced
literal-vertices. Further, it is incident to the B*- and B7 vertices of the preceding
Bi-block and the Bf- and B} vertices of the succeeding Bj-block. Bf- and
B denote all vertices of a Bi-block, excluding Bf" separated into two equal
parts, if n is odd. If n is even, we define B to include one vertex more than BY.
Note that two consecutive H-gadgets share n vertices incident to their respective
h vertex, namely B]". For the H-gadget associated with the i-th Ba-block b,
p(h) .= -(i—1)+3n+4, ie. his placed above the leftmost vertex of Ba-block
b. Since the leftmost vertex of BJ* preceding b and the rightmost vertex of Bf"
succeeding b are at distance exactly k, all vertices incident to h must be placed
in between these two B{" blocks. Otherwise the resulting Window Width is
greater than k. Note that in the following construction, block-vertices receive no
further incident edges, therefore Window Width & can only be obtained, if the
vertices of BY are placed left of B]" and the vertices of B] are placed right of
B for all By-blocks. Also note, that the literal vertices are only restricted to
be in either the i-th P-block or the i-th Q-block for the i-th H-gadget so far.
There are not yet any restrictions on the partition of the vertices into P and Q)
or the order of these vertices within the P- and ()-blocks.

We will assume that the vertices in P-blocks correspond to satisfied literals while
the vertices in @)-blocks correspond to unsatisfied literals in the following.

36 CHAPTER 3. THEORETICAL RESULTS

Figure 3.15: A variable-gadget.

Propagation-gadget. So far the literal vertices must be placed in the P or @
blocks of the respective copy of the H-gadget, but they can be completely
freely assigned. The propagation-gadget now aims to maintain ’consistency’ of
satisfied and unsatisfied literals. To achieve this, for every copy of By a vertex
is introduced for every literal of ¢. Considering variable z; we introduce two
propagation-vertices p;, and p-,,;. Let H; and H;.1 denote two consecutive
‘H-gadgets. Both H; and H;.; are incident to a common vertex set B". Let
b be the Bi-block of B{". Then vertex p,; is connected to ¢, in both H; and
H, 1, while vertex Pz 18 connected to sz in both H; and H; ;. Note that b
is the 4-th By-block. Vertex p,; is placed at position p(ps,) :=¢-(i—1)+(j—1)
and vertex p-., is placed at position p(p-.,) ;=1 - (i — 1) + (n +4) + j. This
ensures that all propagation-vertices assigned to negated literals are placed to
the right of the ay vertex above b, while all propagation-vertices assigned to
positive literals are placed to the left of the a, vertex above b. This implies, that
the leftmost propagation-vertex is placed above the rightmost literal-vertex of
the @Q-block preceding b, while the rightmost propagation-vertex is placed above
the leftmost literal-vertex of the P-block succeeding b.

Therefore, the Window Width of these propagation-vertices is determined only
by the placement of their two incident literal-vertices and is unaffected by the
placement of the propagation-vertex itself. Further, we observe that the rightmost
position of the P-block of H; has distance kK — n + 1 to the rightmost position
of the P-block of H;;1. This allows for any reordering of the vertices of the P
block between H; and H;;1. The same holds for the @Q-blocks of H; and H; 1.
However, we also observe that the rightmost position of the P-block of H; has
distance k43 to the leftmost position of the Q-block of H;, 1, thus literal-vertices
corresponding to the same literal cannot be part of P in H; and part of @) in
H; ;1. It must remain part of the P-block, otherwise the Window Width of the
propagation-vertex is greater than k. Since this holds for any literal-vertex in P,
all n positions existing in the P-block of H;;1 are occupied by a literal-vertex
and thus all literals represented in a (Q-block of H; have to be represented in a
@-block in H;, 1 as well. This achieves ’consistency’ in propagation of literals
from H; to H;41.

The construction so far guarantees that each literal is either consistently satisfied
(it is part of a P-block) or unsatisfied (it is part of a -block) for any H-block.
We are still missing the encoding of clauses and the consistency of variables, i.e.
only exactly one of £, or £, is satisfied.

Variable-gadget. This gadget ensures that for each variable x of ¢ at most one of
its literal-vertices ¢, or ¢—, can be placed in a @Q-block. Since there exists one

3.3. WW MINIMIZATION WITH FIXED TOP LAYER 37

K
P

BBy P By Q B{BY|Bf P B, Q BiBy
ézl eﬁacl eml éﬁzl
k

k

Figure 3.16: A clause-gadget.

gadget for each of the n variables, there is at least one literal of each variable
in the P-block. However there exist only n positions in a P-block, therefore
there must also be one literal of each variable in the respective @-block. Thus,
exactly one of £, or ¢—, is in the P-block while the other literal-vertex is in the
Q-block, which is then propagated by the propagation-gadget in all H-gadgets.
To achieve this, the leftmost n H-gadgets are augmented by a variable-gadget.
For each variable z, we introduce a variable-verter v, to A. The variable-vertex
is incident to the literal vertices ¢, and /-, of the corresponding H-gadget. Let
the variable-gadget be associated with H-gadget H. Vertex v, is placed such
that it is at z-Distance k to the leftmost position of the @-block which is part
of H. Specifically p(vy) := 1% - (i —2) + 3n+ 6 if H is the i-th H-gadget. This
corresponds to the position above the third leftmost block-vertex of the Ba-block
preceding H. Clearly, the rightmost neighbor of v, can be placed at the leftmost
position of the @-block, otherwise the Window Width of v, is greater than k.
Thus, only one of v, neighbors can be placed in the @-block and necessarily
at least one must be placed in the P-block. As argued before, this is sufficient
to ensure that each variable is consistently either true of false in all H-blocks.
Figure depicts the construction of a variable-gadget.

Clause-gadget. To encode a clause of ¢, a similar construction to the variable-
gadget construction can be used. Again one clause-gadget augments one H-
gadget. Since there exist m clauses in ¢, the rightmost m H-gadgets are
augmented. Now consider a clause K = (A1 V A3 V A3) where A1, Ay and A3 are
literals. Note that due to the definition of ExAcT 3-SAT these are exactly three
unique literals. The clause-gadget for x will admit a drawing of Window Width at
most k if and only if at least one literal of A1, Ay and A3 is placed in P and, thus,
satisfied. To assure this, clause-vertex ¢, is introduced to A in H-gadget H. The
clause-vertex ¢, is connected to the three literal vertices associated to A1, Ao and
As3. Vertex ¢, is positioned at z-coordinate p(c,;) := ¢+ (i — 2) +3n+ 7, assuming
that H is the i-th leftmost H-gadget. This corresponds to the position above
the fourth leftmost block-vertex of the Bs-block preceding H, see Figure [3.16
Since the vertex ¢, is at z-Distance k to the second leftmost literal vertex of @,
at most two out of A1, Ay and A3 can be placed within the Q-block. Thus, at
least one of A1, Ao and A3 must be placed within the P-block of H. Therefore at
least one of A1, Ay and A3 must be satisfied.

A full example of a construction for a small ExacT 3-SAT instance is shown in
Figure

38 CHAPTER 3. THEORETICAL RESULTS

000000 Oeeece

I0S0000000000000
By

Q 1

{1 ~ []
. s
]
A
.
: 8
. O
. Q
8 - g .
53 S
o o 8
° S
Q O
8 .
<& : O
o, L] 5 ~
H S
[] L]
QL
. .
. .
: : S
: H g
O -
89q
Q Q Q
o o O
[o] o] 8
3 S S o w
a2 8 8 s 3
& IS
kS| s T
. g fa &
2 ! H ° B !
[}
9] g L4 o 7]
o0 1 =]
2 = 3
50 ® 3 H : I
3 & 3 H e Z
9 8 © — © g~]
A g N 2T g
— g @ 8 8 i)
© g g 3 8 <
N . 8 8 g =
3O T S §e o
), 2 Py
/ v IR\ y N ISRy
fONER = [§0 —
g{_ﬁﬂ. ° ° Dﬂ
EESKe
Ve i I o
\‘I’/\\\ : g s g _
WX B IR 9
/‘6’\//5 8 g 8 g
:z»'A\,///,//: g g g g
NV 8 . T8 -
N o
s o M
%é”" N -
=%
{3~ $ B
: 8

(e}
//44
B
o
000000000000
B

3.3. WW MINIMIZATION WITH FIXED TOP LAYER

(mx1 Vo Vas)A(—xe Vs Vaes)A(xV-oxgVas)

L. The Literal-vertices of x1, 2, x3, 4 and x5 are shown in colors blue,

red, green, yellow and pink, respectively, and filled white if associated with the positive or black if associated with the negative literal. For

=
b=t
E
S I
>
_|
Fo
>
-
i
0o
>z o0
5 g
c
> f
g1 o
Ly 3
< K I
L~
SERCEe]
=
>
g g
>
g
L
I
- S

clarity this figure is separated into subfigures. Subfigure (a) shows only the B-blocks. Subfigure (b) omits the edges of the B-blocks but
adds the propagation- and H-gadgets. In subfigure (c) all variable- and clause-gadgets are shown, alongside the vertices introduced in the
previous subfigures. Subfigure (d) shows the full construction with all edges. Note that Subfigures (¢) and (d) are split into two rows at

Figure 3.17: Example of the construction of our NP-hardness reduction for the instance ¢
the Bi-block indicated by the dashed lines.

which is satisfied by assignment 7 = 3 = x5 =T and x5 = x4

39

40 CHAPTER 3. THEORETICAL RESULTS

To complete the construction, we have to show that the assignment of vertices
to x-coordinates introduced by the gadgets is without contradiction. Clearly the
placement of vertices of B is possible as discussed above. Note that only the
literal-vertices and block-vertices are elements of B. As for the vertex set A, the
placement of vertices is fixed, so we can verify that no pair of vertices v and
w € A exists with p(v) = p(w), by inspecting the placement of the gadget-vertices
as in Table [3.2] These coordinates are given relative to the alternating By and
Bs-blocks, except for the very first a; and v, vertices which are placed left of all
other vertices. It can easily be verified that none of these positions coincide if
n > 5, which we assumed at the beginning of this proof.

Table 3.2: Placement Coordinates

block J vertex
By-block [1,n —1] Dass - - - » Dz, Of Propagation-gadget
n a, of preceding Bj-block
n+4 a; of succeeding Bj-block
[n+5,2n+3] | pazys---,Pz,_, of propagation-gadget
P-block 1 P-z, of propagation-gadget
Bs-block 1 h of associated H-gadget
2 ay of succeeding Bs-block
3 v, associated with the next H-gadget
4 ¢y associated with the next H-gadget
n a, of preceding Bs-block
Q-block n P—z, of propagation-gadget

Placements of vertices of A in reference to the block they are placed above. Note
that the position of a vertex x above the j-th vertex of the i-th Bi-block is at
p(x) =1 - (i — 1) + j while the position of x above the j-th vertex of the i-th
By-block is at p(z) = - (i — 1) + 3n + 3 + j. Further, the position of x above
the j-th vertex of the i-th P-block is at p(x) = - (i — 1) +2n + 3+ j and for
the i-th @Q-block p(z) =1 - (i — 1) + 4n + 4 + j respectively. Note that naturally
none of these intervals overlap.

Equivalence of instances. To prove that ¢ is satisfiable if and only if there exists
a drawing I' of G where z(I'(a)) = p(a),Va € A and ww(T") < k, we first assume
that ¢ is satisfiable. A drawing with wwr = k can be constructed by placing all
satisfied variables in the P-block and all unsatisfied variables in the Q-block of
each H-gadget. Further the literal-vertices are ordered such that the vertices
incident to the variable- or clause-gadget are placed leftmost in their respective
P- or @-blocks. The resulting drawing has the desired Window Width wwr < k.
Now assume that ¢ is not satisfiable, however there exists a drawing I' of G
where z(I'(a)) = p(a),Va € A and wwr < k. By construction, each variable of ¢
must be either consistently true or false, i.e. within P or @ and for each clause
at least one of its literals must be true. Thus, a truth assignment for ¢ can be
obtained by observing any P-block of I'. If a variable is part of the P-block as
a positive literal, then the variable is T, otherwise the variable must be 1. By
construction of G this assignment satisfies ¢ which contradicts the assumption.
This concludes the proof.

3.3. WW MINIMIZATION WITH FIXED TOP LAYER 41

Polynomial time of reduction. Observe that each H-gadget and propagation-
gadget consists of O(n) vertices, while the variable- and clause-gadgets consist
of only one additional vertex. Since there are m + n many H—gadgets overall
the graph consists of O((n + m) - n) vertices and can be constructed also in time
O((n +m) - n) which is polynomial. O

Since the WINDOW WIDTH decision problem is NP-complete, the next natural
step is to investigate in approximation algorithms. Indeed it turns out, that the
result of Theorem which we will receive in the next section, can be used
to obtain a 2-approximation algorithm solving the optimization variant of this
problem.

Theorem 3.4. Given a bipartite graph G = (AU B, E) as well as a vertex
placement p: A — Z. A 2-layer drawing I' of G with Window Width wwr < 2 -
wwa(G) and z(T'(v)) = p(v),Yv € A, can be constructed in O(nplog(ww4(G))+
m) time.

Proof. We obtain the result by applying the algorithm of Theorem which
minimizes the maximum z-Distance of all pairs of adjacent vertices, where
the positions of vertices of A are fixed. The algorithm has a running time of
O(nplog(k*) + m) where k* is the minimum maximum z-Distance between
any adjacent vertices. Note that we interchanged vertex sets A and B before
applying the algorithm. Let k denote the Window Width wwr of the drawing I'
obtained by the algorithm.

In the following, we show that k < 2ww,(G). First, as shown in Theorem
the z-Distance of the longest edge in I" is bound by k*. Clearly it holds that
k < 2k*. Equality occurs only if a vertex v € A is placed exactly in the middle
between its leftmost and rightmost neighbor, having distance exactly z-Distance
k* to both. If k > 2k*, then at least one of the neighbors must have z-Distance
> k* which is a contradiction.

On the other hand, if we consider the optimal 2-layer drawing of G T'*, where
wwrx = ww4(G), necessarily the longest edge in I'™ spans a z-Distance of
< wwa(G) otherwise the vertex of A incident to this edge would have a
Window Width strictly larger than wwa(G), contradicting the optimality of
I'*. Thus, k* < wwa(G) must hold, otherwise k* would not be optimal.
Combining this with the first argument, we obtain k& < 2k* < 2wwy(G),
proving the 2-approximation. Also, by the same argument, we have shown
that the time complexity of the algorithm O(nplog(k*) + m) is equivalent to
O(nplog(wwa(G))+m). Note that the drawing obtained in I is a corresponding
solution with Window Width wwr < 2ww4(G). O

42 CHAPTER 3. THEORETICAL RESULTS

3.4 z-Distance Minimization with One Flexible
Layer

We continue with considering another natural variant of the optimization problem.
Where in the previous sections the Window Width problem is motivated by the
exploration of the neighborhood of a vertex, now we consider the case where
only a single edge is explored and/or highlighted. Again, naturally this edge
should fit on one screen for good readability. Analogously to the Window Width
problem, we first consider the longest of all edges, in respect to their x-Distance,
as this restricts the overall resolution or screen size, necessary. Thus we are
interested in minimizing the maximum distance of xz-coordinates between any
adjacent vertices by assigning vertices to integer coordinates on their layer. Note
that this problem is closely related to the well studied mazimum edge-length
property [93][I17], however we are still considering 2-layer bipartite graphs only.
Note that we will simplify the length-metric, considering only the length in
regard of the x-coordinate difference between two vertices, while for the original
maximum edge-length problem, the Euclidean distance between the two layers
is significant. However both metrics correlate (although non-linearly), thus the
result in Theorem holds for the maximum edge-length as well. As with
the Window Width, let zsr denote the x-Distance of drawing I', which is the
maximum z-Distance of any edge. Figure shows the z-Distance of the
running example. zs(G) denotes the minimal z-Distance of any 2-layer drawing
of G with integer coordinates.

First, we consider the case where the positions of vertices of one layer are fixed,
while the vertices of the other layer can be assigned arbitrarily. We denote
this as the z-Distance zs4(G) or zsp(G), depending on whether A or B is
fixed. Observe that in contrast to the Window Width problem, this problem is
symmetrical, i.e. A and B can be interchanged for an equivalent problem. This
is due to the z-Distance being dependent on the individual edges. However, we
obtain a similar result to Theorem [3.11

Lo

14 >
PREFEILEN

Figure 3.18: Calculating the maximum z-Distance xsp of the provided 2-layer
drawing.

Theorem 3.5. Given a bipartite graph G = (AU B, E) as well as a vertex
placement p: B — Z. A 2-layer drawing I of G of minimum mazimum x-
Distance k* between any pair of adjacent vertices, preserving the given vertex
placement p, can be constructed in O(n 4 log(k*) +m).

Proof. To prove this we provide an O(n4logna + m) time algorithm, solving
the problem. To this end we adjust the algorithm described in the prove of

3.4. z-DISTANCE MINIMIZATION 43
L,

Ly

Figure 3.19: Showing the lower bound for the maximum z-Distance zsg(G).
Note that the vertices of A are not yet assigned a position and therefore placed
randomly. The dashed black line marks the optimal placement of v, at the mean

of p(£(v)) and p(r(v)).

Theorem such that the z-Distance instead of the Window Width is optimized.
As in the proof of Theorem [3.1] the first step is to identify the critical part of G.
Although we consider the maximum of all x-distances, it suffices to consider only
the edge of vertex v € A to its leftmost and rightmost neighbors, i.e. the vertices
with maximum and minimum z-coordinate respectively, as any neighbors in
between yield a smaller z-Distance to v. Thus the critical part consists of O(n4)
vertices and edges.

We propose an algorithm, which finds an optimal placement of all vertices v € A
such that the maximum z-Distance between any pair of adjacent vertices in the
critical part is minimized. We denote this maximum z-Distance as k*. Note
that the maximum z-Distance of the critical part is equivalent to the maximum
z-Distance of G, thus k* is also the optimal maximum z-Distance of G.

As in the proof of Theorem [3.1] for each vertex v we define an interval I(v), which
consists of all z-coordinates where v can be placed, such that the z-Distance of
v to any neighbor is at most k, for a fixed k € N. If we achieve this, then the
resulting drawing I' has maximum z-Distance zsp < k. Specifically an interval
of vertex v is defined as I(v) = [p(r(v)) — k, p(¢(v)) + k]. Note that this interval
is only well-defined for a large enough k. We observe that there exists a natural
lower bound for the maximum z-Distance £* which we denote as ko := (k“;’ﬂ,
where kpax := max,ca(p(r(v)) — p(€(v))), i-€. kmax coincides with the lower
bound of the Window Width wwpg(G). Clearly the z-Distance (in the critical
part) of vertex v € A is optimal when placed exactly at the mean position
of ¢(v) and r(v). See Figure for the lower bound of the example graph.
The algorithm will use this lower bound as an initial choice of the temporary
maximum z-Distance k := kg. Note that this k is large enough that all intervals
are well defined. However in contrast to the proof of Theorem [3.1]the intervals are
initially of smaller size. Incidentally there exists at least one interval consisting
of at most two positions. While 2k is the largest possible initial size. Figure [3.20
shows the interval construction. As in the proof of Theorem the algorithm
might conclude that the current value of k£ is smaller than £* while running,
which implies that no drawing with maximum z-Distance < k exists. Thus k is
incremented before proceeding.

Observe that the algorithm provided for Theorem after the initial interval
construction, solely consists of assigning all vertices of A to positions within
their respective intervals. Only increasing the interval sizes, when necessary.
While the initial interval construction is different for this problem variation,

44 CHAPTER 3. THEORETICAL RESULTS

“TTIS
VDV

Figure 3.20: Showing the construction of an interval I(v). While very similar to
the interval construction in the initial intervals differ significantly.

the subproblem is equivalent. Thus this part of the previous algorithm can be
completely adopted. Also both the correctness and time complexity proofs of
this algorithm follow analogously to the correctness and time complexity proofs
of Theorem B.11 O

3.5 x-Distance Sum Minimization with One Flex-
ible Layer

Similar to the minimization of the maximum Window Width, minimizing the
maximum z-Distance over all edges might not provide the desired result. While
it does give a hard bound on the necessary screen size or resolution to display
every edge completely on one screen, we might be inclined to accept a few long
edges in practice, when we can achieve a much better result for the average
edge. Particularly in the algorithm provided for Theorem if there exists one
edge prominently defining the maximum z-Distance, then all other edges tend
to be equally long, as informally, the vertices of A are placed leftmost possible,
making the edges to their rightmost neighbor often of length (close to) xsg(G).
This is also clearly visible in the experimental results in Chapter [Therefore
we investigate the natural variant of minimizing the average x-Distance of all
edges. Note that this problem is equivalent to the problem of minimizing the
sum of z-Distance. Also it is closely related, but not equivalent to the average
edge length minimization, which is a known problem in Graph Drawing [10] [102].
Observe that, in contrast to Theorem there is no simple correlation between
the minimum sum of edge lengths and the minimum sum of z-Distances, unless
the distance between top and bottom layers is 0.

As the problem is indifferent of interchanging A and B, we observe the problem
where w.l.o.g. the vertices of B are assigned to fixed positions, while the vertices
of A can be freely assigned. Note that if the vertices of A are fixed, then the
vertex sets A and B can be interchanged.

Theorem 3.6. Given a bipartite graph G = (AUB, E) as well as a partial vertex
placement p: B — Z. A 2-layer drawing I' of G where the sum of x-Distances
of all edges is minimized, while preserving the given vertex placement, can be
constructed in O(n? + m)-time.

Proof. The structure of this algorithm follows closely the structure of the proof
of Theorem with some small but significant changes. The problem instance
can be expressed as a bipartite matching problem, which then can be solved by

3.5. x-DISTANCE SUM MINIMIZATION 45

L,

Ly

Figure 3.21: The running example with random vertex placements of the vertices
of A in Lo on consecutive coordinates. For this drawing zspr = 9.

the Hungarian algorithm, finding a minimum weight maximum matching [109].
Note that in contrast to the algorithm of Theorem [3.2] the problem can not be
reduced to a critical part, as all edges have to be considered. Thus, the first step
of the algorithm is to construct a weighted bipartite graph G* = (A*, B*). See
Figure for the running example.

We make two important observations: the optimal placement of a vertex v € A
is at the median of the positions of its neighbours {p(b)|(v,b) € E}. This
is true, as whenever placing v at z-coordinate x, when moving v by one to
position x + 1 (x — 1), all edges incident to v where the other endpoint is at
position < z increase (decrease) their z-Distance by exactly one. Analogously,
all incident edges where the other endpoint is at position > z decrease (increase)
their z-Distance by exactly one. Therefore the summed z-Distance of incident
edges of v is optimal, when v is positioned such that the number of neighbors
positioned left of v is equal to the number of neighbors positioned right of v, thus
exactly at the median of the positions of neighbors. Let m, denote the median
z-coordinate of N(v). Further, observe that it suffices to consider a limited
number of positions for placement of any vertex v. Specifically, the extended
interval [|m,| — na, [m,] + na] describes the set of positions to consider. We
know that the sum of the z-Distances of all edges incident to vertex v increase
monotonically with the distance of v from m,. This follows from the observation
of the optimal placement. Let N,(x) denote the set of neighbors of v which are
positioned left of x and N,.(z) the set of neighbors positioned right of x. At
the median it holds that Ny(m,) = N,.(m,), however for all x < m,, (z > m,)
it holds that Ny(z) < N,.(x) (Ng(z) > N,.(x)). However at each increment,
moving x further from m, the sum of z-Distances of incident edges is increased
by |Ne(x) — Ny(x)| > 0, therefor the sum increases monotonically.

Note that there are only n4 — 1 other vertices of vertex set A to be placed in
total, however the best n4 positions of v regarding the summed z-Distances are
included in the extended interval. Thus positions outside of the interval yield a
solution which is no smaller than the one found by the algorithm. Further the
extended interval [[m, | —na, [m,| 4+ na] consists of exactly 2n4 + 1 or 2n4 + 2
positions, thus they are bound in size.

Constructing G*. The construction of the node and edge sets of G* is analogously
to the construction in the proof of Theorem i.e. each position x, which is
part of at least one interval is represented by node v, in A*. Also each vertex v
of A is represented by a copy denoted v* to B*. Further, Vv, € A* v* € B*:
e = (Vg,v*) € E* exactly if € [[my| —na, [my] +na). An edge e = (v, v*) is
weighted by the accumulated xz-Distances of all edges incident to v, when placing
v at position z.

This can be efficiently calculated by placing the neighborhood of v in an array of

46 CHAPTER 3. THEORETICAL RESULTS

A*

Figure 3.22: G* for the summed z-Distance minimization of the running example.
The edges weights are shown above the vertices of B* in left to right order.

1 3 1

B*

Y
7 NS SN

Figure 3.23: M* for the summed z-Distance minimization of the running example.
The corresponding edges weights are shown. This directly implies the optimal
placement of the vertices of A.

size 2n 4 + 1, if there is an odd number of neighbors, or 2n 4 4 2, if the number of
neighbors is even, according to the z-coordinates relative to [|m,| —na, [m,] +
nal. If the z-coordinate of a neighbor are not within the interval, then the
neighbor is considered to be permanently left or right of v. There are exactly
deg(v) neighbors to consider. Then we traverse the array keeping counters for
the number of neighbors left (N;(x)) and right (N, (z)) to the current position z,
the weights between two positions change by Ny(x) — N,.(z). Deriving Ny(z + 1)
and N, (xz + 1) from Ny(z) and N,.(z) can be done in constant time by checking
the entries of the array at position z and « 4+ 1. Thus in total O(n4 + deg(v))
time suffices to calculate the weights of all incident edges of one node in B*.
Figure [3.22] shows the constructed G* for the running example.

Now that G* is constructed, we compute a minimum weight maximum matching
M* of G*. Since the degree of any node of B* is exactly 2n4 + 1 or 2n4 + 2
and |B*| = ny, it holds that |M*| = ny4, matching all nodes of B*. If an
edge e = (v, v*) € M*, this corresponds to placing v at z-coordinate x. The
weight of e correspond exactly to the sum of the z-Distances of incident edges.
Thus, M* corresponds to the optimal assignment of the vertices of A to unique
z-coordinates minimizing the sum of xz-Distances of all edges. Figure shows
M* for the running example and Figure the resulting optimal drawing.

Correctness. Clearly M* corresponds to a valid position assignment of the
vertices of A, as due to M* being a maximum matching, any vertex of A is
assigned exactly one position and every position is assigned to at most one
vertex of A. Now, assume that there exists an assignment of the vertices of A

L

Ly

Figure 3.24: The optimal 2-layer drawing of G with fixed positions of B, mini-
mizing the sum of z-Distances. We can see that zsp(G) = 6.

3.5. x-DISTANCE SUM MINIMIZATION 47

to positions, such that the sum of the z-Distances is smaller than the sum of
z-Distances in the algorithm solution. This optimal positioning corresponds to
a matching M’ on G* which consists of n4 edges. By the assumtion and the
definition of the weight function it must hold that w(M’) < w(M*). However
this is a contradiction, as M* is the minimum weight maximum matching of G*.

Time complezity. Constructing G* can be done in O(n?) time, as |E*| € O(n?)
due to the interval definition. Computing the edge weights of all edges incident
to a node v* € A* can be done in O(n4 + deg(v)) time. Thus, over all vertices
of A this yields O(n?% + m) time. Using the Hungarian algorithm to compute
the minimum weight maximum matching takes O(n?) time. Thus in total, the
algorithm has a total time complexity of O(n3 + m). O

48

CHAPTER 3. THEORETICAL RESULTS

Chapter 4

Experiments

4.1 Experimental Setup

We proceed to implement these algorithms and apply them on randomly generated
graphs. We study the difference on the respective metric between randomized
and optimal placement. Our intend is to evaluate for which graphs the Window
Width, Window Width sum, z-Distance and z-Distance sum are suitable opti-
mization criteria and whether parameters exist for which there is no significant
improvement between randomized and optimal placements. We use several well
established graph generation algorithms to create the sample set, varying the
size and density of the graphs. To this end the number of vertices of A is denoted
as n4, the number of vertices of B as np and the expected number of edges as
m*. First we shortly introduce the graph generation models used.

4.1.1 The Gilbert Graph Model

We denote the random graph model first described by Edgar Gilbert [63] as the
Gilbert model. In the Gilbert model two parameters n and p are taken as input,
n € N corresponds to the total number of vertices, while 0 < p < 1 gives the
independent probability for any edge to exist in the randomly sampled graph.
Thus, the number of edges m varies, and any one specific graph with m edges
has total probability of p™(1 — p) (Z)fm[29].

As we are interested in generating bipartite graphs, this model has to be adjusted
accordingly. To do so, we take the two parameters ns and np instead of n as
input. The probability of an edge to exists is still independently defined by
p, however restricted to bipartite edges. Thus, edges with both endpoints in
either A or B have probability 0. The expected number of edges of a randomly
generated graph with fixed parameters na,ng and pisp-na-n B: As we have a

given expected number of edges m* as input, we define p := n:’?nB accordingly.

4.1.2 The Erd6és—Rényi Graph Model

The Erdés—Rényi model [53] takes two parameters n and m as inputs where
n is the number of vertices and m the number of edges. The graph is chosen

49

50 CHAPTER 4. EXPERIMENTS

uniformly out of the set of all graphs satisfying both n and m. Such a graph can
be generated by initially starting with n vertices and no edges and iteratively
adding an edge, which is uniformly chosen out of the set of all edges not in
the edge set of the graph. In total m edges are selected. Again, as we are
studying algorithm on bipartite graphs, we have to adjust the model. Thus we
take two parameters n4 and np instead of n as input. The iterative steps can
be performed analogously to the general case, however the edges are selected
from the edge set only containing bipartite edges, i.e. edge with one endpoint
in A and one in B. By setting m := m*, all generated graphs have exactly the
expected number of edges.

4.1.3 The Barabasi-Albert Graph Model

The Barabdsi-Albert model aims to model natural and human-made networks.
Those kind of networks are not satisfyingly modelled by the previous graph
generation models [I]. To achieve this, the model uses the preferential attachment
method, where edges are more likely to be connected to vertices which already
are of high degree. In contrast to the other discussed models a power-law
distribution of the vertex degrees is achieved, replicating that of most real-world
networks. The algorithm takes two parameters n € N and & € N,k < n, as
inputs. It starts with a minimal connected vertex set consisting of at least k
vertices and then iteratively adds vertices until the total number of vertices
reaches n. When adding a new vertex v, a fixed number of k incident edges are
introduced simultaneously. The edges are not distributed uniformly, instead the
probability that an edge is incident to vertex w is defined as

. degu
s EuEV’degu

where V'’ denotes the set of vertices, which were already introduced. As before,
the algorithm has to be adjusted to generate bipartite graphs. To this end we
generate the initial graph by creating a path of 2k alternating between vertices
of A and B.

For the iterative construction as before one vertex is added at a time until there
are n vertices in total. However when adding a vertex v we randomly decide,
whether v is added to A or B. A Bernoulli trial is used for that decision, where
the chances are Z; :Z, so that the expected number of vertices assigned to A
and B corresponds to ny and ng. In total n — 2k vertices are added to the
initial graph. W.l.o.g. assume that v is assigned to B, then the preferential
attachment method is used to distribution the incident edges of v, however using
the probability distribution

degy

Pu =5 Vw e A

ueA’ degu

where A’ is the set of all vertices of A, which were already introduced.

Note that for a fixed k, every iteratively added vertex introduced k new edges,
thus the total number of edges is k- (ng +np —2k) + 2k — 1. Since k has to be a
natural number, the number of total edges can diverge from m™* due to rounding.

4.2. EXPERIMENTAL RESULTS 51

4.1.4 Sampling

Observe, that graphs generated by the Gilbert and the Erdés—Rényi model can
contain isolated vertices. The chance for isolated vertices increases for lower m*
and higher total number of vertices. The Barabasi-Albert model however does
always generate a connected graph.

If there exist isolated vertices after a graph generation, these are removed in
a preprocessing step as their placement is independent of the studied metrics
(they have no neighbors and no incident edges).

For the experimental evaluation, graphs of different sizes are generated. Specif-
ically n4 € [10,50,100] and vertex set B is chosen relative to ny4, specifically
np € [0.5n4,n4,2n4]. The edge densities are chosen according to linear, logarith-
mic and quadratic magnitudes. In detail, for linear many edges m* = 2(na+ng),
for a logarithmic number of edges m* = log(na+np)(na+np) and for a quadratic
density m* = "4*2 edges are expected. For each tuple of parameters, we ran-
domly sample 1000 graphs according to each random graph model, which are
then evaluated according to the metrics. First we evaluate the initial drawings,
where the vertex positions are assigned consecutively in a random permutation.
We remark that if vertex sets A and B are of different cardinality the vertex
placements are centered, i.e. both A and B have the same average z-coordinate.
We evaluate the metrics for the these initial drawings.

We then apply the respective optimization and approximation algorithms and
evaluated the metric for the resulting drawing.

We evaluated the Window Width, the z-Distance, the Window Width sum and
the z-Distance sum before and after optimization.

4.2 Experimental Results

We discuss findings for the four different metrics in the following, drawing a
conclusion for each.

Window Width The experimental results for the Window Width before and
after optimization are shown in Figure As expected, the variance decreases
with increasing graph size. The expected improvements in Window Width also
clearly correlates with the ratio n4 to ng. If ng = 2n4 almost no improvement
is visible, when optimizing the Window Width over random vertex placement.
The Window Width can only improved if for the largest Window Width (at
vertex v) at random vertex placement, both £(v) and r(v) are to the same side
of v, however for larger graphs, this gets increasingly unlikely.

The biggest improvements were possible for graphs where ny = 2ng, with
an average improvement of approximately 1.4. The differences between graph
generation models is minor except for the variance, which is significantly higher
for Gilbert graphs. The edge density seems to correlate negatively with the mea-
sured improvement, noticeably for quadratic densities, where the improvement
decreased for larger graphs.

Overall, we find that significant improvements are possible if there are more
vertices of n4 than of npg, otherwise there are likely other optimization criteria
with greater impact on the readability.

52 CHAPTER 4. EXPERIMENTS

Window Width Sum The experimental results for the sum of all Window
Widths before and after optimization are shown in Figure We observe similar
behavior as for the maximum Window Width. However, while the improvement
is still reduced, when the ratio n4 to np decreases, the effects are not nearly
as extreme. Overall the average improvement is approximately 1.2. While this
is lower than the improvement of maximum Window Width for graphs with
2n4 = np, it is significantly higher for other ratios. Again, a negative correlation
with the graph density is visible. Surprisingly, for larger graphs with quadratic
density very little improvement is possible. While for a single edge the same
argument as for the maximum Window Width holds, considering the sum of
Window Widths, the constellation, where the random placement of v is already
in between £(v) and r(v) has to happen for all vertices v € n4 independently.
However with a large enough average degree this becomes increasingly likely.
Overall, optimization decreases the Window Width sum significantly for most
instances. Only for high edge density and relatively large graphs, the improvement
becomes insignificant compared to random vertex assignment.

z-Distance The experimental results for the maximum z-Distance before and
after optimization are shown in Figure Again, as expected, the variance
decreases with larger sizes of graphs. Overall the z-Distance improvement for
linear edge density is higher than for denser graphs, reaching up to 2.1 on average
for graphs with n4 = 100 and np = 50. There is only a weak negative correlation
with the ratio n4 to np. For quadratic edge density the z-Distance improvement
is reduced with increasing graph size. Generally, it appears that for large enough
graphs the improvements for graphs generated by the Gilbert model are slightly
but consistently greater compared to the other models.

Overall it appears that optimization improves the x-Distance significantly for
all graphs with sparse to logarithmic density. For quadratic edge density, an
optimization still strongly affects the z-Distance if the graph is relatively small.

z-Distance sum Lastly, the experimental results for the z-Distance sum
before and after optimization are shown in Figure We observe very similar
behavior as for the maximum z-Distance. There is a correlation between the
improvement and the ratio na4 to ng. With logarithmic and quadratic density
the improvement is reduced for larger graphs. The comparison between graph
generation models is less clear here, graphs generated by Erdés—Rényi and
Barabési-Albert behave almost identical, graphs generated by the Gilbert model
differ, however depending on the graph size and the density they yield a greater
or smaller improvement. Overall the best improvement is possible for graphs
with linear density, n4 = 100 and ng = 50. Again, for graphs of quadratic
density and increasing graph size the z-Distance sum for an optimal and a
random vertex placement seem to converge.

Overall optimizing the z-Distance sum is significant for most instances. Only
large graphs with high density can only be minorly improved by optimization.

4.2. EXPERIMENTAL RESULTS

53

g g =
ES o ®

Window Width Improvement

I
N

(a) Linear density

= g I
[o ~

Window Width Improvement
= -
v »

-
N
-

=
A

(b) Logarithmic density

N N
N] EN

g
o

Window Width Improvement
= [
o oo

I
ES

- I
o [N]
==

(¢) Quadratic density

Figure 4.1: The plots in (a), (b) and (c) show the improvement of the Window
Width on graphs generated with the respective models. Gilbert graphs are shown

in yellow, Erdés—Rényi in red and Barabdsi-Albert in blue.

54

CHAPTER 4. EXPERIMENTS

= = g = Iy
[N} W I e o

Window Width Sum Improvement

=
A

© o “ o o o N o
o A e 4V ra ~° P N A
N Q Q Q Q 7 Q 4 7
< < N N Q <& Q Q
A N NS < o o O o o
& ¥ ¥ ¥ ¥ i % P >

;

N & & N X ¥ & &

(a) Linear density

= g
w >

Window Width Sum Improvement
—
b [N)

- I
=) =
——
—Em—
-

|

|

——

——

(=2

|

|

—a—
——

——
o

=2

13

|

|

© o o ‘ N N 1y N o
e & & W 5 S 5 s A
RS A o8 o8 N & N & o & & &
o & N 5 5 oS $ &
< N & Na Na ¥ ¥ & &
(b) Logarithmic density
3.5
1
£3.04
[
>
o
£
=254
£
=3
(]
s
°
£2.04
z
o
he]
<
2151
104 Ld Pes Bee . Fee . ___
T T T T e S s e .
o & e & A S Q,,/": S P
»Q'o o o o o & o & &
7 > IS > 2 o S o .
8 4 4 7 7 b N S o
< & Ra & & & & & 2 ,\\V)

(c) Quadratic density

Figure 4.2: The plots in (a), (b) and (c) show the improvement of the Window
Width Sum on graphs generated with the respective models. Gilbert graphs are
shown in yellow, Erd6s—Rényi in red and Barabési-Albert in blue.

4.2. EXPERIMENTAL RESULTS 55

N
>

g
N

N
=)

g
o

x-Distance Improvement
=
o

-
S
——
—a—
—a—
—a—

1.2
1.0
M S
& S LS S LSS LSS S
o o8 o o5 o° & o O o
& A S S o RS & &
N N N N ¥ ¥ 2 s
o o ,\\V (\V“
(a) Linear density
2.4
2.2
I
@ 2.0
£
[
3
S1.8
E
Q
21.64
5
o
o
%14 % %%
12l : 4!
1.0
N s s~
& %ﬁ Gﬂ Gﬂ P ;9 Gﬁ » ;9
o & & & & & & & K
o PO & FOS K & &
& ¥ ¥ ¥ ¥ 4 4 7 7
o S < A \al \gl 4
o N & &
(b) Logarithmic density
4.0
3.5
€
o
£
23.0
o
a
E
025
8
g
5
a
22.04
x
i i
I T %% %§§ %?% %§§ éee
1.0
e
&7 6» gﬂ ®ﬂ’ v ;9 ®f yb ;9
oL S S N & N K &
& P > B & OIS &
N ¥ ¥ ¥ ¥ 4 4 / /
N N N & ¥ ¥ 4 4
A\ N & &

(¢) Quadratic density

Figure 4.3: The plots in (a), (b) and (c) show the improvement of the a-Distance
on graphs generated with the respective models. Gilbert graphs are shown in
yellow, Erdés—Rényi in red and Barabési-Albert in blue.

56

CHAPTER 4. EXPERIMENTS

N
o

=
©

=
kS

x-Distance Sum Improvement
[
o

=
[N]

N
o

x-Distance Sum Improvement

-
©

Iy
o

=
kS

I
N

w
wn

w
o

N
5}

N
=

x-Distance Sum Improvement

=
wn

e
/ ~ > % 3 S 5 S o
Q& 7 7 7 7 N 7 o
¢ & & ¢ & & ¥ & ¢
~ > %) o ' o o
% 7 7 7 b > N N
¥ ¥ ¥ ¥ 4 4 >
o B < < Na & & &
(a) Linear density
T M S~
/ N > % P2 S 3 s o
& 7 7 7 7 ~ 7 Y Vv
AR & & F SR ¥ ¢
A “ <> I N N
7 % 7 7 b) - Q Q
¥ \ ¥ ¥ 4 4 A
N N N N ¥ & & o‘{/
(b) Logarithmic density
) 44
I %% b fes Fes foe
T T T T T T Ty e e
& ‘b//” Q’/f’ Q’/f" Py » Q’/f’ N »
y o N N o O o & &
A5 ~ <> 6; o > o o
4 7 % 7 ho) N N N
¥ ¥ ¥ ¥ 4 4 I A
R N R R ¥ ¥ 7 4
N N & Na

(c) Quadratic density

Figure 4.4: The plots in (a), (b) and (c) show the improvement of the x-Distance
Sum on graphs generated with the respective models. Gilbert graphs are shown
in yellow, Erdés—Rényi in red and Barabdsi-Albert in blue.

Part 11

Simultaneous Embedding of
Multiple Upward Trees

o7

59

Embedding of Multiple Upward Trees

In this part of the thesis we will study rooted trees with an upward layered
drawing, where a total order of all leaves is given. The problem consists of
finding an ordering of the vertices of all other layers such that the resulting draw-
ing is crossing minimal. The problem is motivated by having multiple disjoint
hierarchical structures, such as phylogenetic trees or organizational diagrams,
which, however, are shown intertwined.

Most hierarchical structures take the form of trees, this is the case, whenever
one object has a unique affiliation. For instance this is true for most business
hierarchies as any employee has one direct supervisor. It is also true for evolu-
tionary taxonomy, where no two species can be ancestor of another species.
Thus, it is not surprising that a diverse set of tools for the visualization of
trees exists. However most of these techniques assign vertex positions freely,
such that a adequate representation is achieved. For multiple hierarchical struc-
tures at once, this usually means placing them side by side, to avoid any edge
crossings. However practical applications arise, where the visualization imposes
requirements on the vertex placement. For instance if species should be ordered
alphabetically, to allow for efficient look-up, or employees which should be are
arranged by income. This requires a fixed order of all leave vertices. Still
the hierarchical structure above should be maintained and be easily readable.
Observe that due to the additional requirement, a crossing free representation
is generally no longer possible. Thus, we aim to find a representation which
minimizes the number of edge crossings, which is known to be a good indicator
for the readability of a drawing [106].

Note that the problem closely relates to the Sugiyama framework [126], which is
a state-of-the-art method of visualizing general hierarchical system structures,
usually while minimizing the number of crossings. However without any restric-
tion on the graph structure, most application of the Sugiyama framework rely
heavily on heuristics. This is because finding a crossing minimal solution is
NP-hard, even on a layer by layer approach, where only two consecutive layers
are considered and the vertex placement of one is assumed to be fixed. However
utilizing the fact that our graph is a forest, we can achieve more promising
results. For this purpose we introduce the Crossing Minimization of Upward
Trees or CMUT problem as follows: Given a forest F' of k rooted trees T7,..., Ty
with all leaves in layer L, each with a layered upward embedding ¢4, ...¢g, as
well as a fixed order of all leaves in L; denoted as <;. What is the minimal
number of crossings to draw F' respecting ¢1, . ..&, and <;. Figure shows an
exemplary problem instance.

It is a known result, that this problem is NP-complete for an arbitrary number
of trees, even on just two layers, when a total order of the leaves is given [05].
Thus, we split this part into two chapters, where Chapter [6] restricts the problem
to two trees, presenting a polynomial time optimization algorithm as well as
results for some variations of the problem. Chapter [6]studies the problem for any
number of trees, however on 2 and 3 layers only. As the problem is NP-complete
for an arbitrary number of trees, an FPL-algorithm will be presented, for the
case of two layers and an XP-algorithm if the number of layers is restricted
to three. Some further results considering variations of the problem are also

60

Figure 5.1: Upward drawing of k directed rooted trees T1,...T}) on £ layers. The
total order of layer one is given, indicated by the filled disks, while there are
no (partial) orders for layers 2 and 3. In the following figures, arrow heads are
omitted as an upward direction can be assumed.

discussed. Note that there is a gap in between the two (main) results, which
remains an open problem.

Some results of this chapter also appeared in ﬂg{lﬂ

1All collaborators contributed to equal parts to the results of this paper.

Chapter 6

Limited Number of Trees

We start by studying the case where the given forest F' consists of only two
rooted trees, since we denote the number of trees in F' as k, we assume that
k = 2 for this chapter. We denote the two trees as T} and T5. Their roots are
called r; and ro respectively. All leaves are on the same, bottommost layer L1,
which we will also refer to as the leaf layer. Layered upward planar drawings
€1, €9 are given for both T7 and T» respectively, where vertices are assigned to
a layer. The (arbitrary) maximum layer out of both drawings will be denoted
as layer ¢ or Ly. We will assume that there exist no edges spanning more than
one layer, i.e. for any non-root vertex v in T} or 15, it holds that, if v is in layer
L;, then its parent must be in layer L; + 1. If a graph has edges spanning more
than one layer, dummy vertices can be introduced in a preprocessing step to
subdivide the edges such that the resulting edges span exactly one layer each.
Note that planarity can easily be maintained during this preprocessing step and
the subdivisions are unique. Let ny and ny denote the number of vertices of T}
and T5 respectively after the preprocessing.

5.1 CMUT for two trees

In this section we will present a polynomial time algorithm optimally solving the
CMUT-problem for two trees. However to show its correctness, we first need to
introduce some notation and discuss preliminary results.

First we observe that it is sufficient to add the non-leaf vertices of T5 to the
drawing of T7 given by &1 such that the number of crossings is minimized, thus,
in the following we will assume the drawing of T} to be fixed and only construct
an according drawing of T5.

Consider layer j € {2,...,¢} of the graph. V;(T1) denotes the set of vertices of
T in layer L;. In the following we will assign all vertices of V;(71) an integer
value such that they are indexed from left to right, i.e. numbers 1,...,n;; are
assigned, where 1|j is denotes the number of vertices of T7 in layer j. Now
the placement of a vertex of 75 can be described by its position relative to the
vertices of T7. For a vertex v € V;(T3), its position p is defined by the index of
the closest vertex w € T; to the left of v. Note that it is possible, that no such

61

62 CHAPTER 6. LIMITED NUMBER OF TREES

Figure 5.2: An example showing the positions 0 to 1|j in layer j in red. The
positions are defined according to the next vertex of 77 to the left.

Figure 5.3: An example showing the nomenclature of the children C, of v € Ty,
ordered left to right. They are indexed in anti-clockwise order. all vertices of C,
are in layer j — 1.

w exists, in which case p := 0. Observe that the position corresponds to the
number of vertices of T, which are left of v in layer j. Figure [5.2]illustrates this
definition with an example.

Further let C,, = (c1,¢2,...,¢|c,|) denote the set of children of vertex v, ordered
by their left to right positions. Necessarily these vertices are in layer j — 1.
Figure provides an example.

We solve the CMUT problem for two trees using a dynamic program, which
constructs optimal partial solutions for any subtree of T5 rooted at vertex v for
any position p of v. To achieve this we define a function o which takes vertex v
as first and position p as second parameter and returns the number of crossings
of an optimal partial solution, assuming that v is placed at p. According to the
dynamic algorithm principle these optimal partial solutions are calculated only
once by considering the layers in a bottom-up fashion and storing the partial
results in a look-up table. As usual for dynamic algorithms a witness can be
constructed by back-tracking. To simplify this final step we save the recursive
dependency in the bottom-up pass. Thus, a witness drawing can be constructed
with a single top-down pass at the end. For j > 3, o is defined as follows.

olv,p] = Z mmqe{o,...,nm,l}(O[CuQ] +crj-1(q,p))
c;,€Cy

where cry,(y, z) denotes the crossing function which is defined as the number
of crossings of an edge e spanning between layers h and h + 1 if the endpoint
of e in layer h is placed at position y and the other endpoint in layer A + 1 at
position z. See Figure for an example.

The function thus consists of a sum, where each summand corresponds to one
child vertex ¢;. Then, the optimal position g for p; is selected and the resulting
number of crossings are added up. These crossings comprise of the crossings of
the subgraph rooted at ¢;, explicitely o[c;, ¢] and the crossings of the edge (v, ¢;),
which is accounted for in +cr;j_1(q, p).

5.1. CMUT FOR TWO TREES 63

I8

Lptq | | | N |

L, m mn nu = m =

Y

Figure 5.4: Example of the crossing function ¢ (y, z) returning the number of
crossings an edge from position y in layer h to position z in layer h + 1 would
yield.

v

Lj,1

olei, 2]=1
cj—1(2,p)=1

Figure 5.5: Example illustrating the tie-breaker strategy. When computing
o[v, p], all children of v are considered separately. Regarding child ¢; of v all
positions where o[¢;, g] + ¢rj—1(q, p) is not minimal are greyed out, they cannot
result in an optimal (partial) solution. Using the tiebreaker rule, among the
remaining solutions the one is chosen, where cr;_1(g,p) is maximal, marked in
dark red.

To finalize the recursive function we define the case for layer j = 2. As the
order <7 of all leaf vertices is fixed, the position of all children of any vertex
v € Vo(T3) is fixed. Thus, we obtain the following simplified case.

ofv,p) = Y cipe,p))

c; €Cy
pe, denotes the position of child vertex ¢; as defined by <.

To compute the total number of crossings o* of the optimal solution it suffices
to find the optimal placement for the root of T5, i.e. 75, using the pre-calculated
partial solutions.

0" = mi”pe{o,i..nm(,.y}0[7"27p]

It only remains to find a witness, by constructing a drawing corresponding to
o*. As stated before, we store the recursive dependencies during the bottom-up
computation. However we implement an important tie-breaker rule. Specifically,
when computing o[v, p|, if for some child vertex ¢; of v there exist multiple
positions {qi, ..., ¢} which minimize o[v, p], i.e. o[c;, ¢;] +crj—1(g:, p) is minimal
for all ¢ € {1,...,r}, position g € {¢1,...,q-} is chosen such that cr;_1(q, p)
is maximized. Informally this corresponds to selecting the placement where
crossings occur between the highest possible layers, while the global minimum
is maintained. See Figure for an example of this tiebreaker rule. With this
tie-breaker rule, the positions of all vertices of T5 yielding 0* crossings in total
are defined. If multiple vertices of T5 within the same layer j share the same
position p, they are arranged (within the boundaries of the position) according
to the order provided by 5. Figure [5.6| provides a full example of the algorithm
application on a problem instance.

64 CHAPTER 6. LIMITED NUMBER OF TREES

(e) ()

Figure 5.6: A full example applying the dynamic program. Subfigure (a) shows
g1 and ey side by side. Subfigure (b) shows the optimal partial solutions of the
left vertex of Ts in layer 2. Note that its only child has a fixed position as it is a
leaf. Subfigure(c) shows the optimal partial solutions of the right vertex of Ty in
layer 2, the optimal partial solutions of the left vertex are still depicted in light
red. Subfigure (d) shows the optimal partial solutions of the only vertex of T
in layer 3, utilizing the optimal partial solutions of its children. Note that the
crossings of the partial solutions and the crossings between layers 2 and 3 have
to be added. Subfigure (e) shows the same for the root ro. In (d) the witness
drawing with minimal number of crossings is constructed. There are 3 crossings
in total.

5.1. CMUT FOR TWO TREES 65

Before proving the correctness, we shortly analyze the running time of the
algorithm.

Lemma 5.1. The algorithm can be applied in O(n? - ny) € O(n3) time.

Proof. First we can pre-compute all values of cr;(g,p) in quadratic time O(n?)
as any layer consists of at most n; positions. To do this efficiently assume p is
fixed. There exists one p* for which c¢r;(g,p*) = 0, the crossings for all other
positions p can now be easily computed as cr;(g,p) = |p — p*|, in constant time
each, see Claim Thus, overall O(n?) is obtained.

Clearly, there exist overall O(ny - ns) entries of ofv, p]. Observe that to compute
o[v, p] the position ¢ of each children ¢ € C, is determined individually, such
that o[c, ¢] + ¢r;j—1(g, p) is minimized. Thus, every entry is accessed O(n) times,
once for all positions of its parent. As the crossings are already pre-computed,
computing all entries o[v, p] takes total time O(n? - ny). Selecting the optimal
root placement takes linear time O(ny) as there O(ny) positions of the root r.
Since each entry ofv, p] already sets a pointer to the optimal partial solutions of
its children at computation, construction of the witness drawing can be efficiently
done in linear time.

Thus, the overall complexity is O(n? - ny) € O(n3). Note that if the sizes of
both trees differ significantly, interchanging 77 and 75 can improve the running
time. O

Now we prove the correctness of the given algorithm. First we make an essential
observation. Due to the tree structure of 77, for position p on layer j there exists
exactly one position p* for which cr;_1(p*,p) = 0 holds, i.e. if an edge of T3 is
drawn with endpoints placed at p and p* respectively, the edge is crossing free.
We denote such a position p* as ideal. Further, if we observe two positions p and
q, both on layer j and p < ¢ holds, then it also holds that both ideal positions
p* and ¢* of p and ¢ respectively are ordered analogously: p* < ¢* on layer j — 1.
Informally p and ¢ correspond to faces (however these faces are open at the
leaf layer), p* and ¢* are placed in the same respective faces, although in layer
j — 1. Clearly this means there exist positions which are never ideal. Figure [5.7]
illustrates the concept of ideal positions.

In the following claim, this observation is extended. For simplicity both o[v, p]
and cr; are assumed to simply return oo if called with parameters outside of
their domain.

Claim 5.1. Let p € {0,...,ny);} be a position on layer j € {2,...,L(r1)} and
p* €{0,...,nqj_1} its corresponding ideal position on layer j — 1. It holds that
cri—1(p* £a,p) =z and crj_1(p*,p£ (x + 1)) > crj_1(p*,p £ (x)) > x for any
r € Np.

Proof. Consider an ideally placed edge e = (u,v) of T, where both incident
vertices are assigned positions p and p* respectively. As observed previously
this edge is crossing free, in respect to T1. Thus, crj_1(p*,p) = 0. Now if the
position of u is increased or decreased, for any incrementation (decrementation)
the vertex u interchanges the order with one vertex w of T7. As w cannot be the
root, it has exactly one parent, i.e. there is exactly one incident upward edge of w
which was uncrossed before but due to the interchange is now crossed. Thus, the
number of crossings is increased by exactly one. This occurs for x vertices of T}

66 CHAPTER 6. LIMITED NUMBER OF TREES

Ly
L3
Lo

L

Figure 5.7: The areas corresponding to mutual ideal positions are marked by
color for this instance. Specifically for any vertex v at a position of a given area,
the ideal position of a child of v is within the same area on the layer below. We
can see, that these areas closely resemble faces, however they are not closed at
the leaf layer.

independently. Thus, there are exactly x crossings in total. Analogously, consider
incrementing (decrementing) the position of v in layer j. Every incrementation
(decrementation) interchanges v with one vertex of w. Since w cannot be a
leaf, it has at least one child, which means at least one incident incoming edge.
Thus, the number of crossings is increased by at least one, more precisely by
indeg(w) > 0. Therefore in total the number of crossings is increased by at least
x. By the same argument cr;_i(p*,p £+ (z + 1)) > crj_1(p*,p = (x)) holds, as
there is one additional interchange, adding at least one crossing. O

Considering vertex v € V;(T3) on layer j, we call the set of positions p where
o[v, p] is minimum as optimal positions, denoted Ppp,(v). Accordingly min P,
denotes the leftmost vertex of the vertex set Ppp(v). Analogously max P,
denotes the rightmost position.

In the following we claim, that the optimal positions consist of a connected
interval of natural numbers. Further, for positions outside of P,,; the number
of crossings strictly increases with distance to the interval. Also we claim that
the intervals are ordered left to right according to €, however the intervals can
overlap.

Claim 5.2. Let vy, va,...,Un,, be the vertices € V;(Ts) of layer j € {2,..., L(ra2)}
in order of e5. For every v € V;(T2), Popi(v) is an interval of natural numbers.
For x € Ny it holds that olv, min P, (v) — (x + 1)] < o[v,min Py, (v) — 2] > z
and o[v,max P, (v) + (+ 1)] > o[v, max Pyp(v) + 2] > .

Further min Py, (v1) < min Popi(v2) < -+ < min Popt(vnm) and max Pop(v1) <
max P, (v2) < --- < max Popt(Vn,,;) holds.

Proof. We prove the claim by induction over layers j = 2,3, For the base case
(4 =2), let v € V;(T2). We observe that all children of v have a fixed position as
they are in the leaf layer. Therefore the partial optimal solution o[v, p] is solely
dependent on the number of crossings implied by position p € {0,...,n;} of v.
Figure provides an example. We continue with showing that P, (v) is an
interval. To do so, we observe that the function o[v,p] = >__ .o c1(pe;,p) where
pe; denotes the position of ¢; in the leaf layer. Therefore it is the sum of |C,|

5.1. CMUT FOR TWO TREES 67

»
»

»
>

cr1(pe; ,p)
cr1(pey, p)

» »
> -

p p

(a) The crossing numbers for a fixed (b) The crossing numbers for a
leaf child ¢; with parent position p fixed leaf child ¢z with parent posi-
as variable. tion p as variable.

o[v, p]

»

cr(peg,p)

A
. p
p

(d) The resulting function ofv, p],

(c) The crossing numbers for a fixed combining the functions (a)-(c) as
leaf child c3 with parent position p summands, with position p as vari-
as variable. able.

Figure 5.8: An example, depicting how o[v, p| corresponds to a unimodal function
with p as the variable, which is the sum of multiple unimodal functions.

68 CHAPTER 6. LIMITED NUMBER OF TREES

many discrete functions, with p as a variable. Each of these functions admits
its minimum for at most two neighboring positions. Further these functions are
unimodal, i.e. they have exactly one global minimum and increase monotonously
with increased distance to that minimum. Specifically, when incrementing or
decrementing p by one, all functions either decrease or increase their value by
the same amount, which is the number of children of the p-th vertex. Unless
both p and p+1 (p — 1) form the minimum of the function.

To find the minimum of o[v, p] we start at position p = 0. Now if p is incremented,
then all summand functions, which have not yet reached their minimum decrease
by some fixed amount z. Analogously, all functions which already passed their
minimum increase the sum by z. Thus, this sum is minimal exactly where the
number of minimas of the summands are balanced, i.e. there are equally many
minimas, weighted by the vertex degree, left and right of p. Naturally this forms
an interval on the domain. Outside of this interval P, for each position which
is further distanced from the interval, the sum increases by at least one, as the
number of minimas is inbalanced, which means the number of children of the p-th
vertex of T3 in layer 2 is added at least once. Since this vertex cannot be a leaf, it
has at least one child. therefore o[v, min Py, (v)—(2+1)] < o[v, min Py (v)—x] >
x and ofv, max P,y (v) + (z 4+ 1)] > o[v, max Py (v) +] > x holds.

For the induction step j > 2. As previously, o[v,p] corresponds to a sum,
however the summands now consist of two parts, namely cr;_1(g, p) and o|c, ¢]
for child ¢ of v at position g. Considering one such function we observe that this
function is minimal for all positions p for which p* € P,,:(c) and strictly increases
monotonously outside of the interval, both due to the induction hypotheses.
Thus, o[c, g] increases monotonically if ¢ is outside of P,y (c) and due to Claim
crj—1(g, p) increases monotonically if ¢ is not p*. Thus, considering the sum, the
previous argument holds, proving the properties of the claim. O

We define a natural position denoted as prqt(u, p) for every vertex u € To \ {ra}
and a position p of its parent vertex. The natural position is min P,,;(u) if
p* < min P, (u), it is p* if p* € Pypi(u) and it is max Py, () if p* > max Py (u).
Informally the natural position is the position closest to p* within F,;.

We claim that for v € Ty at position p, placing all child vertices at their natural
position yields the optimal solution for o[v, p]. Further we claim, that the natural
positions of all children of v are ordered as in e5.

Claim 5.3. Considering a verter v € Vj(Ts) on position p € {0,...,ny;} in

layerj. It holds that O[’U,p] = Zciecv(O[Chpnat(ciap)] +crj—1(pnat(ciap)ap)) and
Pnat(c1,p) < -+ < Pratc|c, |), where ci1, ..., ¢c,| are the children of v.

Proof. Observing vertex v € Ty, we subdivide its child vertices C, into three
sets, corresponding to the three cases of the natural position definition. If
p* < min P, (¢;), i.e. p* is left of the interval, position g; of child ¢; is set
to the leftmost position in the interval g; := min Pyp;(c;). Symmetrically, we
do the same if p* > max P,,(c;), i.e. the ideal position is to the right of
P,yi(ci), thus, we set ¢; := max Py (¢;) rightmost within the interval. If the
ideal position is a member of the optimal positions, p* € P,p(c;), we set the
position ¢; := p* exactly as the ideal position. Figure [5.9] provides an example
for this definition. As p* is the same for all children of v, Claim directly
implies that ¢, < --- < ¢¢,| thus, ppai(c1,p) < - < Prat(cic, |, p) holds.

5.1. CMUT FOR TWO TREES 69

L, A
/PUPA
Lj_10 i o . o o m o
'.. -“ : p*'.. -“

Pnat.

Figure 5.9: Illustrating the definition of p,,; shown in blue. The position p
of parent v in layer j is known, thus, directly implying an ideal position p*.
The positions for which o[¢;, ¢] is minimal form the (connected) interval P,,(c;)
highlighted in light red. Since for this instance p* is strictly right of P, (c;), the
natural position ppq:(c;,p) corresponds to the right bound of P, (¢;).

We show equality of o[v, p] and . . (0[ci, Pnat(ci, p)] + crj—1(Pnat(ci, p), p))
by contradiction. Therefore assume that o[v,p] # >, cc. (0[ci, Prat(ci, p)] +
crj—1(Pnat(ci,p),p)), i.e. placing the children at their natural position does
not yield an optimal solution. Then for at least one child ¢; it must hold that
O[Ci7pnat(ciap)] + CTj—l(Pnat(Ci,p)m) > minq'e{07...n1‘j,1}(O[Cm (]’] + CTj—l(q/»P))'
Let ¢ € {0,...,n1)-1, ¢ # Pnat(cs, p) be one such placement, with a strictly lower
crossing number o[¢;, §|+crj—1(4, p) < o[¢i, Pnat(¢i, P)]+crj—1(Pnat(ci, p), p). Due
to the definition of pyq and P,y it must hold that ofc;, ¢ > o[ci, Pnat(ci, p)], as
Prat(Ci, p) is within Py

Therefore it follows that ¢r;—1(¢,p) < crj—1(Pnat(ci, p), p).

We first observe that p* ¢ P,y (c;) otherwise pnqt(ci, p) = p*, so that ppai(ci, p)
would both minimize the crossings of edge (v,¢;) and o independently, i.e.
crj—1(g,p) > crj—1(Pnat(ci, p), p) which would be a contradiction.

Thus, prat(c;, p) is one of the boundaries of the interval Py (c;), i.e. prat(ci,p) €
{min P,p¢(c;), max Popi(c;)}. W.lo.g. assume that ppas(ci, p) = min P,pi(c;). It
follows that § < prat(ci, p), otherwise crj_1(q,p) > crj—1(Pnat(ci,p), p) which
would again be a contradiction. Also this implies that ¢ ¢ P,,:(c;). We will
distinct between two cases next.

In the first case it holds that § < p* < ppat(ci,), i.e. § is further left than the
ideal position. By Claim it holds that crj_1(pnat(ci, p),p) = Prat(ci, p) — p*
and cr;_1(¢, p) = p* —§. Combining both equations, we get c¢r;_1(Pnat(ci,), p) +
crj—1(q, p) = Pnat(ci,p)—§. By Claimit holds that o[¢;,] —o[c;, Prat(ci, p)] >
Dnat(¢i, p) — . Reinserting the first equation into the second results in oc;, §] —
O[Ciapnat(ciap)] Z CTj—l(pnat(ciap)ap) + CTj_1((j,p)- Reformulation giVGS us
o[ci, 4] — crj—1(4,p) > olci, Pnat(ci,)] + crj—1(Pnat(ci,p),p). Since crj_1 > 0
this 1mphes O[Cia Cj] + erfl((jvp) > O[Civpnat(ci7p)] + erfl(pnat(civp%p) which
directly contradicts the initial assumption.

For the second case it holds that p* < § < ppat(ci, p), i.e. G is strictly closer to
the ideal position than p,.:(c;, p). Using Claim we get crj—1(Pnat(ci, p),p) —
crj—1(q,p) = Pnat(ci, p) — 4.

By Claim it still holds that o[c;, §] — o[¢i, Prat(¢iy D)] = Drat(ci, p) — §. Again,
reinserting the first equation into the second results in oc;,] — o[ci, Prat(ci, p)] >
crj—1(Pnat(ci, p), p)—crj—1(4g, p), which can be reformulated as o[c;, §]+crj—1(g, p)
> 0[¢i, Prat(€i, D)) +crj—1(Pnat(ci,), p) directly contradicting the initial assump-
tion. O

70 CHAPTER 6. LIMITED NUMBER OF TREES

Next we claim, that the proposed algorithm does position every vertex at its
natural position for the witness.

Claim 5.4. Considering vertex v € V;(T3) at position p € {0,...,nq);} on layer
J, the dynamic program does assign positions pnat(c1,p), - -, Pnat(c|c,|,P) to the
children c1, ..., c|c,| of v respectively.

Proof. Recall, that as a tie-breaker rule, if the algorithm had multiple positions
to place a child vertex ¢; of v, all minimizing o[v, p|, the position ¢ is chosen such
that ¢rj_1(q,p) > crj—1(¢’,p) for all optimal ¢’, i.e. the position ¢ maximizes
crj—1(g,p) among all optimal placements. Observe that if ppa:(c;,p) = p* then
p* is the unique placement leading to a minimum value, as both o[c;, ¢] is minimal
at this positions and the edge (¢;,v) is crossing free, but yields at least one
crossing for any position other than p*. Thus, in this case the claim holds.

Now consider that ppq:(c;,p) € {min P,,:(¢;), max Py, (c;)}. W.lo.g. assume
that prat(ci, p) = min P,y (c;), the case for max Ppp(c;) follows symmetrically.
Let position p’ # prat(ci, p) be different position of child ¢;, also leading to a
minimum value of o[v, p]. Observe that p’ ¢ P (c;) as any position in Py (c;)
other than p,q:(c;, p) yields a larger value than p,q¢(c;, p). For all other positions
in P,,, the number of crossings of edge (v, ¢;) would be strictly higher due to
Claim [5.1] while o[¢;, p'] = o[ci, Pnat(ci, p)].-

Positions to the right of P (c;) clearly would yield even higher values, thus,
P < DPnat(ci,p)]. Further, positions p’ < p* also clearly yield non-minimal
values, therefore p* < p’ < ppat(c;, p)] must hold. Using Claim we get
olci, p'] —o[¢iys Prat(¢i, P)] = P —Pnat(ci, p). Thus, increasing the distance between
p’ and ppat(ci,p) increases o[c;,p’] by at least one, while, due to Claim [5.1}
decreasing cr;_1(p’, p) by exactly one. Therefore the algorithm chooses position
Pnat(Cis D) as ¢rj_1(Pnat(ci, p),p) > crj—1(p, p) for all positions yielding minimal
crossings. O

Using these intermediate results enables us to prove the key lemma of this
section.

Lemma 5.2. The drawing constructed by the dynamic program embeds Th
according to €.

Proof. We prove this by induction over layer j, beginning with layer j = L(rs),
showing that the dynamic program assignes positions to the vertices of 75 in
layer j, so that they satisfy e5.

For the base case j = L(ry) there is only one vertex of T5 on layer j, namely 7.
Therefore the proposition trivially holds.

For the induction case 0 < j < L(rz), we assume the proposition is true for all
layers > j by induction. Let v1,... vy, ,, denote the vertices of the consecutive
layer j + 1. Using Claims and considering vertex v; in layer j + 1, the
children C,, of v; on layer j are assigned to positions respecting the order <?.
As v; and C,,; describe a star, its edges are crossing free. Thus, all edges sharing
an endpoint are crossing free.

However it remains to show, that no pair of crossing edges between layers j
and j + 1 exists. which do not have any common endpoint. Let v; and v;

5.1. CMUT FOR TWO TREES 71

be two vertices of layer j + 1, w.l.o.g. ¢ < i’. By the induction hypothesis v;
and vy are ordered according to -<? 1. Thus, p; < p;r where p; and p; denote
the positions of v; and v;; respectively. By Claim it holds, that the ideal
positions of the children of v; and v;; are also ordered accordingly, i.e. p; < pj.
Additionally, by Claim the min and max values of P, of vy, ... Uny, ., AT€
ordered correspondingly. Thus, by Claim and the definition of p,4; it holds
that ¢; < ¢;» where g; denotes the position of a child of v; and g;» the position of
a child of v;s for any pair of child vertices in layer j. Clearly this also implies,
that all edges between layers j and j + 1 are crossing free, thus, €5 is satisfied in
layer j. O

As each layer satisfies €5 the full drawing respects 5. Finally, to conclude the
correctness prove, it remains to show the optimality of the provided algorithm.
To do so, we state the following.

Lemma 5.3. The constructed drawing minimizes in the number of edge crossings.

Proof. Again we use induction to prove this property, specifically we induce over
the layers j with j = 2 as the base case. For layer j we show that for vertex v at
position p, o[v, p] is exactly the minimum number of crossings between edges of
Ty and edges of the tree T, which is the subtree of T, rooted at vertex v. Since
the algorithm assumes a fixed placement of T} according to £; and Lemma [5.3
showed, that no two edges of T5 cross in the constructed drawing, o[v, p] denotes
the total number of crossings of the drawing induced by T3 U T,.

For j = 2 the proposition clearly holds as o[v, p] is the sum of crossings between
incident edges to v and Tj.

Now consider j > 3. For the children c1, ... c|¢,| of v we know that the algorithm
assigns positions ppat(c1,P), - - -, Pnat(¢|c, |» P), Tespectively, as shown in Claim
By the induction hypothesis it holds that for each ¢; € C, the drawing of T,
with ¢; at position pa¢(c;, p), with minimum number of crossings has exactly
olci, Pnat(ci, p)] crossings. Additionally the crossings cr;_1(p, pnat(ci,p)) are
added, corresponding to the number of crossings of edges between layers 7 — 1

and j. By the formulation of the dynamic program, the positions of ¢i,...c|c,|
are assigned such that the total number of crossings induced by T, given in
o[v, p] is minimal. O

Combining the Lemmas to we have proven the final theorem.

Theorem 5.4. Given a forest F' of n vertices, which consists of exactly two trees
F = {T1, Ty} with layered upward-planar drawings 1 and 2 respectively, where
all leaves in layer 1. A total order <1 of all leaves is given. The crossing minimal
drawing of F, preserving 1,2 and <1 can be computed in O(n3) asymptotic
time.

72 CHAPTER 6. LIMITED NUMBER OF TREES

5.2 Generalizations of CMUT for two trees

Additionally we remark that this algorithmic solution can be extended to solve
several other general problems.

The first generalization adds further requirements to the drawing. Specifically
the CMUT problem is augmented with additional (partial) orders for layers
2,...,¢ denoted as <, ..., <y, which have to be satisfied in the resulting drawing.
This variation can solve cases where layers other than the leaves should also be
sorted by some criteria, to encode additional information in the visualization.
Clearly the original CMUT problem is included in this broader definition, also it
does not suffice to use the solution provided by the proof of Theorem [5.4] and
replace the vertices in a second pass, to fulfill <o,..., <y, as this will generally
increase the total number of crossings.

Remark 5.1. Given a forest F' of n vertices, which consists of exactly two trees
F = {T1, T} with layered upward-planar drawings 1 and 9 respectively, where
all leaves in layer 1. Additionally a total order <1 of all leaves and (partial)
orders <a, ..., =<y for all other layers are given. The crossing minimal drawing of
F, preserving e1,€2 and <1, ..., =y can be computed in O(n3) asymptotic time.

Proof. The algorithm as provided in the proof of Theorem can be applied,
however for any v € T3 in layer j, for any position p in layer j, contradicting <,
we set o[v, p] := oo instead of the recursive definition. This can be done during
the bottom-up process. This ensures that such positions are chosen only when no
position exists satisfying the given (partial) orders. Thus, a final check whether
the resulting optimal number of crossings is lower than oo states, whether a
valid solution exists. The proof of this algorithm variation follows analogously
to the proof of Theorem O

So far, the problem required that all leaves to be placed in layer 1, as well as a
total order of layer 1. In the following we will relax this requirement to further
extend the provided results. However note that the restriction of T to €3 has
to be dropped. Also the crossings which are minimized will be specified by the
crossings between 77 and 75 only, i.e. crossings between a pair of edges where
one edge belongs to 17 and one edge to T5. Moreover we remark, that minimizing
the total number of crossings for this setting is NP-complete, as we can easily
reduce the NP-complete problem of minimizing the number of crossings for stars
on 2 layers [95] to it. We do this by setting 77 to be a tree without vertices.
Ty is a tree with two layers, the leaves are all in layer 1, those correspond to
the leave vertices of the NP-complete problem. The leaves are fixed in position
by providing a total order of <;. No order is provided for layer 2. Therefore
the vertices corresponding to the center points of stars can be freely rearranged.
Layer 3 consists of only ry. Clearly all incident edges to o are crossing free, thus
rearranging the center points in layer 2 minimizes the total number of crossings.

Remark 5.2. Given a forest F' of n wvertices, which consists of exactly two
trees F' = {T1,T>2} and a layered planar upward drawings € of Ty. The vertices
of Ty are assigned to layers. Additionally (partial) orders <i,...,=<y for all
layers 1,...,¢ are given. The drawing of F with minimal number of crossings,
preserving € and <1, ..., =y can be computed in O(n3) asymptotic time.

5.2. GENERALIZATIONS OF CMUT FOR TWO TREES 73

Proof. Note that in contrast to Theorem the leaves of Ty are not necessarily
assigned to layer 1, nor must there be a total order for layer 1 as part of the
input. However, as the drawing of T is fixed, the algorithm as in Remark
can still be applied. Although, since the leaves in layer 1 are no longer fixed
by a complete order, the positions of the leaves have to be computed. Setting
olv, p] = 0 for every position p satisfying <1 and o[v, p] = oo for every position p
not satisfying <; allows us to use the general definition for layers > 2 instead of
> 2. The proofs provided for Theorem and Remark still hold, except for
the proof of planarity of 75 in the resulting drawing. The proofs of correctness
and running time remain the same.

Note that if all leaves are on layer 1 and <; is a total order, the problem is
equivalent to the CMUT problem. O
We lastly remark, that this approach can also be extended to solve the problem
for a set of one tree and one planar graph.

Remark 5.3. Given a planar graph G with a layered upward-planar drawing
eg and a tree T, with a layered upward-planar drawing ep where all leaves of

T are in layer 1. Further a total order <1 as well as partial orders <a,- -+ <
for the vertices in layers 1, ...,k are given. The crossing minimal drawing of
F preserving g, er and <1, -+ < can be computed in O(n3) asymptotic time,

where n denotes the total amount of vertices.

Proof. Only small adaptions of the dynamic programming algorithm are neces-
sary. G will be considered fixed according to ¢, similar as 77 in the original
algorithm. T will then be drawn according to the optimization algorithm, re-
sembling T3 in the original algorithm. All possible positions are considered to
calculate the optimal partial solutions and the optimal placement of the root
can be found in linear time. The crossings occurring between 7" and G are
independent of the structure of G, as the original dynamic program does not
utilize the restriction that T3 is a tree. Correctness and time complexity follow
analogously. O

74

CHAPTER 6. LIMITED NUMBER OF TREES

Chapter 6

Limited Height

In this chapter, we relax the number of trees. While it is known that for an
unbounded number of trees this problem is NP-complete, even for two layers
only, when taking the number of layers as part of the input we propose an
FPL-algorithm if the number of layers is limited to two and an XP-algorithm if
the number of layers is limited to three.

Before we delve into the results, we make a quick observation. It is impossible to
solve this problem by finding pairwise optimal drawings using Theorem for
two trees at a time and then combining the drawings into one. This is clear from
the NP-hardness of the problem even for two layers (but an arbitrary number of
trees).

6.1 CMUT for Two Layers

Theorem 6.1. Given a forest F' of k directed rooted and layered trees with n
vertices in total, where all roots are on the second layer while all the leaves are
on the first layer in a fized total order <y. A minimum crossing drawing of
F preserving <1 can be computed in O(2Fk? 4+ nk) time. The problem is fized
parameter linear.

Remark that the trees correspond to stars with center points in layer 2 due to
the layer restriction. We will still refer to them as trees to keep it consistent
with the rest of this chapter.

We will present an algorithm which determines a total order -!<2 of all vertices
of the second layer, such that the number of total crossings is minimal. The
algorithm will solve the problem instance by constructing an equivalent shortest
path problem on a k-dimensional cube graph. To describe the algorithm, some
further notation is helpful. Let o denote an arbitrary but fixed order of the
vertices of layer two, then the position of a vertex v € Vo(F) relative to any
given tree ¢ € {1,...,k} will be denoted as pfj’g. Since all vertices in layer 2 are
roots pfm € {0,1}, where 0 corresponds to the case where v is left of r; and 1
corresponds to the case where v is right of r; according to . Thus, the (total)
position of a vertex in the drawing, resembling o can be uniquely described by

(6]

76 CHAPTER 6. LIMITED HEIGHT

its positions relative to all other & — 1 roots.

We observe, that in a drawing using o as the order of the roots, every crossing
can be charged to exactly two vertices of Vo(F) as a crossing between two edges
e1 and es will be charged to the two roots incident to e; and es.

Claim 6.1. The crossings of a root r; depend solely on pl. ,,Vj € {1,...k}\{i}.
Proof. Consider the individual drawing of a tree T, along with all leaves of layers
1. The total order of the leaves is known. Now when root r; with all incident
edges is inserted at position pr o» all resulting crossings are charged to root ;.
We denote the resulting number of crossings crﬁ‘i’p, where p = p{m Note that
ch',hp corresponds to all crossings between tree j and tree ¢. The total number
of crossings charged to r; is denoted as cry, » = Zje{l R} cr{i p- Thus, the
total number of crossings of the drawing obtained by o is cr, = ’e“f”cmﬂ
as every crossing is charged twice, once for each incident root. O

Further we observe that these charged crossings can be efficiently computed.

Claim 6.2. The values cr}. , for all combinations of i,j € {1,...,k},i# j and
p € {0,1} can be computed in total time O(k - n).

Proof. There are O(k) trees in total. Fixing one tree and iterating through all
leaves lets us calculate crf , for all j edge by edge, as any edge Which is not

part of T} belongs to one tree J, for which the two values cr}. , and cr, .1 have
do be determined. Depending on the position of the leaves in "the total order of
layer 1, the number of crossings follows directly. Thus, calculating all cr’. . p for
a fixed ¢ can be done in O(n). As there are k trees, we get O(k - n) in total. [

‘We now reduce the problem to a shortest-path problem utilizing our observations.
To do so, we construct a weighted directed acyclic st-graph H, see Figure
for a full example. The st-paths of H represent all permutations of the roots.
Furthermore H is constructed such that an st-path denoted as m which represents
a total order o of layer 2 has a summed weight of twice cr,, i.e. twice the number
of crossings the drawing implementing ¢ has.

Construction of H: Let H be the k-dimensional cube graph whose edges are
directed from the corner (0,...,0) to the corner (1,...,1). Specifically H has
the node set {(z1,...,2r) | z1 € {0,1},..., 2, € {0,1}}. The edge set consists
of all edges {(z1,...,2x), (y1,...,yx)} where z; + 1 = y; holds for exactly one
j €40,...,k}, while z; = y; holds otherwise. Thus, any edge corresponds to the
traversal from one cube corner to another along an outer edge (as there are no

diagonals). Observe that the corner node (0, ...,0) is the unique source, while
(1,...,1) is the unique sink. We denote (0,...,0) as s and (1, ., 1) ast.
For an edge of the edge set, let this edge be from node (z1, ..) (Y1, Yk)s

where z; + 1 = y;, the edge be weighted by Zje{l K\ }ch ; Note that
x; must be 0 while y; = 1. Traversing along this edge in an st- path represents
placing the root of T; left of the root r; of T} if ; = 0 and right of r; if x; = 1.
The weight of the edge corresponds to the number of crossings charged to 7;
when placing it at this relative position.

6.1. CMUT FOR TWO LAYERS 7

1 5 7 3 4 6 2 8

(a) Three trees (stars) are given, with the roots
(centerpoints) on layer 2. The trees are shown side
by side, however the order of the leaves is fixed as
indicated by the labels.

T1 To T3

1 2 3 4 5 6 7 8

(b) Crossing minimal drawing of the forest preserving (¢) Cube graph H whose st-

the order of the leaf layer. The roots are placed paths represent all permuta-
according to the shortest weighted st-path of H, tions of the roots. The st-path
highlighted in orange in (c). highlighted in orange is the

shortest weighted st-path with
total weight 18, corresponding
to a drawing with 9 crossings.

Figure 6.1: Reducing the problem of finding a crossing minimal drawing on two
layers to a shortest-path problem in a weighted k-dimensional cube.

Traversing an st-path informally corresponds to incrementally placing the roots
strictly from left to right. We start at s with no placed roots, and when
advancing in the dimension ¢ representing tree T; we place the root of T; until,
when reaching t all roots have been placed, thus, we have determined a total
order of layer 2. Clearly, any st-path w of H is of length k. As the weight of
an edge corresponds to the number of crossing the root induces at this position,
finding a crossing-minimal total order of the roots is equivalent to finding a
shortest st-path in H. Note that, since we have a k-dimensional cube graph, any
st-path in H of minimal length traversed exactly one edge 'in’ each dimension.
However all permutations of the order in which the different dimensions are
traversed are represented by st-paths. Thus, there is a bijection between the set
of st-paths and the set of valid total orders o.

We obtain an FPL-algorithm by construction of H and applying a shortest
st-path algorithm on H.

Claim 6.3. The algorithm has a time complexity of O(2Fk? + kn).

Proof. Since H is a k-dimensional cube it consists of 2¥ nodes. As the in degree
of any node is at most &, one incoming edge corresponding to each dimension,
the total number of edges is E(H) < 2Fk. For every edge the weight has to
be computed by summing k — 1 values of crf},p, which can be pre-computed in
O(n - k) time, as shown in Thus, constructing H including the edge weights
can be done in O(2Fk2 + kn).

78 CHAPTER 6. LIMITED HEIGHT

Finding the shortest weighted st-path in H can be done in O(2Fk) time by
using topological ordering[35]. The optimal drawing can be constructed in linear
time once the shortest weighted st-path is known. Thus, the construction of

H dominates the running time yielding a total asymptotical running time of
O(2%k? + kn). Therefore the problem is in FPL. O

6.2 CMUT for Three Layers

Increasing the number of layers to three we obtain the following result:

Theorem 6.2. Given a forest F' of k directed rooted and layered trees with
corresponding embeddings, where all roots are on the third layer while all leaves
are on the first layer in a fixed order <1, a minimum crossing drawing of F
preserving the embeddings and <, can be computed in O(k*n*) time, where n is
the total number of vertices.

Observe that in contrast to Theorem there are linearly many vertices in
layer 2, which are restricted by the embeddings of the individual trees. Further
an order of the roots in layer 3 has to be determined. However, we can utilize
the same basic idea as in Theorem to reduce the problem to a shortest path
problem, which provides an XP-algorithm. However significant changes have
to be made to the approach to accommodate for the additional layer. Thus, in
the following, we will describe the algorithm in detail. Particularly H will no
longer describe a cube graph, but a general k-dimensional grid graph, where the
st-paths correspond to permutations of the second layer.

First, we observe that the third layer consists of only the roots, thus, of exactly
k vertices. Therefore k! permutations for the total order of layer 3 exist. The
algorithm will handle all of these k! cases individually and select the case with
the lowest number of crossings as optimal solution. Thus, in the following we

!

will consider not only the leaves as having a fixed order <;==1, but the roots
!

as well. Let <3 denote the total order of the third layer. Thus, it suffices to find

a total order ég of all vertices of the second layer, respecting the planarity of
all trees individually, which can be ensured by preserving the given embeddings.
We denote the additional partial orders, which are directly implied by the order
of the leaves of all trees as <3, ..., <5 for trees T},. .., Ty respectively.

For comprehensibility of the algorithm we introduce some further notation.
Let o denote an arbitrary but fixed order of the vertices of layer 2 consistent
with <3,...,<5. The position of a vertex v € Va(F) relative to any given tree
i €{1,...,k} will be denoted as p, ,. We define p, , as the position in left-to-
right manner within the vertex set V2(T;) U {v} according to o and starting at
0, i.e. the number of vertices of T; of layer 2 which are left of v. Note that in
contrast to Theorem there can be linearly many positions. The position of a
vertex in the drawing implied by ¢ can be uniquely described by its positions
relative to all other £ — 1 trees. Similar in Theorem for a drawing implied by
o, every crossing can be charged to exactly two vertices of V5(F'), by charging a
crossing between two edges e; and es to the two out of four endpoints, which are
on layer two. Note that in contrast to the CMUT problem on two layers, crossings
appearing both between layers 1 and 2 as well as crossings between layers 2 and

6.2. CMUT FOR THREE LAYERS 79

3 are charged to the vertices in layers 2. Their order only is determined by the
algorithm, all other vertices are considered fixed. This means, that we construct
a H for every permutation of the roots.

Claim 6.4. The crossings of a vertex v € T; of layer two depend solely on pf;’a

forall j € {1,... k}\ {i}.

Proof. Consider the individual drawing of T}, along with all vertices of layers 1
and 3, for which the order is fixed. Now when vertex v with all incident edges
(describing a star, with exactly one edge between layers 2 and 3 and all other
edges between layers 1 and 2) is inserted at position p{,ya, all resulting crossings
are charged to vertex v. We denote the resulting number of crossings by crg’p,
where p = p{w. Note that cr{;m corresponds to all crossings between tree T} and
incident edges of v. The total number of crossings charged to v is denoted as
Cly,c = Eje{l,“.,k}\{j} cr{;’p. Thus, the total number of crossings of the complete

. . . >, cry,
drawing, when using o, is ¢r, = =220 27 O

Again, we show that these crossings can be pre-computed, although not as
efficiently as in Theorem [6.1

Claim 6.5. The values cr, for all combinations of j € {1,...,k}, v € Va(F)\

Va(Ty) and p € {0,...,|Va(T})|} can be computed in total time O(n?).

Proof. Observe that every vertex v € Vo(F) with its incident edges and adjacent
neighbors forms a star, which we denote as 5,. S,, has one edge between layers
2 and 3 and all other edges between layers 1 and 2. As F' is a forest, all stars
can be constructed and saved in O(n) time in total. Now we consider vertex
v € Vo(T;) and tree Tj, i,j € {1,...,k},i # j to be fixed. We compute cry
by inserting v as the leftmost vertex in the second layer and considering all
pairs of edges of S, and T}, returning, whether they cross. Now we increment
p=1,...,|Va(T;)| and update the number of crossings accordingly. Note that it
suffices to update crossings occurring between .S, and the star induced by the
p-th vertex of Vo(T;) and its neighborhood. We observe, that overall any pair of
crossing edges is considered at most four times, thus, the total running time is

O(n?). O

We now reduce the problem to a shortest-path problem. To do so we construct
a weighted directed acyclic st-graph H, for a running example see Figure .
Note that H represents the placements of the inner vertices of F instead of the
roots, as in Naturally this increases the structural size of H significantly.
The set of all st-paths of H represent exactly all total orders of Va(F) respecting
the partial orders <3,...,<5. Furthermore, an st-path denoted as m which
represents a total order o of layer 2 has a summed edge weight of twice cry, i.e.
twice the number of crossings the drawing defined by o yields.

Construction of H. Let H be the k-dimensional grid graph of side lengths
[Va(Ty)| x -+ x |Va(Tk)| whose edges are directed from the corner (0,...,0)
to the corner (|Va(T4)|,...,|Va(Tk)|). Specifically H consists of the node set
{1, 20) |21 € {0, Va(T) b -k € {0, ., [Va(Ti)[}}. The edge set
consists of all edges {(z1,...,2x), (y1,...,yx)} for which z; + 1 = y; holds for

80 CHAPTER 6. LIMITED HEIGHT

z
2R
x
. t
1 5 7 3 4 6 2 8 I 10 1
(a) Three trees on three layers are given 11 |5 8 |9 10 {0
as input. The trees are shown side by side, > >
however the total order of the vertices on the A 7 A 6 A
first layer is fixed (indicated by the indices 9 6 4
of the leaves), while all permutations of the - 2
third layer are tested. For this example we 7
: : g 6 415 6 15
consider the permutation as indicated by > >
the indices of the roots. A 4 A 4 A
4 3 3
6 2
9 6 8
m; - -
P 3 4

- (c¢) Grid graph H whose st-paths de-
1 2 3 4 5 6 7 8 scribe the total orders of the vertices

(b) Crossing minimal drawing of the forest, ~ on the second layer preserving the given
preserving the orders of layer 1. The order embeddings. The st-path highlighted in
of the vertices in layer 2 corresponds to the orange is the shortest weighted st-path
shortest weighted st-path of H, highlighted with total weight 12, corresponding to
in orange in (c). 6 crossings in the optimal drawing.

Figure 6.2: Reducing the problem of finding a crossing minimal drawing on three
layers to a shortest-path problem in a weighted k-dimensional grid graph.

exactly one j € {0,...,k}, while z; = y; holds otherwise. Thus, any edge
informally corresponds to an intermediate step at placing the vertices of layer 2
from left to right. Specifically it correponds to the placement of the z; + 1-th
vertex of T}, let this vertex be denoted as v. The node corresponds placing v
such that x; vertices of T} are placed left of v, o vertices of T left of v and so
forth. A node corresponds to an intermediate state having saved for any tree T;
how many vertices of T; already have been placed, which is encoded in x;.
Observe that the corner node (0, ...,0) is the unique source while corner node
(IVa(Th)], - - -, [Va(Tx)|) is the unique sink of H. We denote (0,...,0) as s and
(Va(T), .. [Va(T3)]) s .

Let e be an edge of the edge set, where e is an edge from node (z1,...,2x) to
(y1,.--,yk), with z; + 1 = y;. Then e is weighted by Zie{17‘__,k}\{j} crijxq_’. Let
the z; + 1-th vertes of T} be denoted as v. Thus, the weight of e corresponds
to the number of crossings charged to v when placing it such that exactly x;
vertices are left of v for every tree T # Tj.

Again any st-path informally corresponds to incrementally placing the vertices
of layer 2 strictly from left to right starting at s with no placed vertices, and
when advancing in the dimension ¢ representing tree T;, we place the next vertex
of T; in left to right order, according to its planar embedding. When reaching ¢

6.2. CMUT FOR THREE LAYERS 81

all vertices (of layer two) of all trees have been placed, thus we determined a
total order of the vertices of layer 2.

Clearly, any st-path m of H is of length ns, where ns denotes the number of
vertices in layer 2. As the weight of an edge corresponds to the number of
crossing the vertex induces at this placement, finding the crossing-minimal total
order of layer two is equivalent to finding a shortest st-path in H. Note that,
since we have a k-dimensional grid graph, any st-path in H traverses |Va(T1)|
edges ’in’ the first dimension, |V2(T3)| edges ’in’ the second dimension, and so
forth. The vertices corresponding to the trees can be interleaved arbitrarily,
thus, there is a bijection between the set of st-paths and the set of valid total
orders o.

The total order is naturally consistent with the given planar embeddings, as the
vertices of every tree can be only placed in a fixed order, described by <3, ..., <5,
With this we obtain an XP-algorithm finding an optimal solution.

Claim 6.6. The algorithm has a time complexity of O(k*n*).
Proof. Grid graph H is constructed once for each permutation of the roots, thus
H is constructed O(n!) times.

For the running time of the shortest path algorithm, we need to determine the
number of edges in H, which is

k
= V(T I[I v+

i=1 Je{l RN
k
]'[|v2)| +1)
=

<k(3) -

The edge weights can be computed by summing k — 1 values of cr! . We can
be pre-compute all values of crv)p in O(n?) time, as shown in Claim [6 . Thus,

v,p°

constructing H including edge weights can be done in O(k?*(%)¥). A shortest
st-path of H can be found in O(k(%)*) time by using topological ordering [35].
The crossing minimal drawing of F is obtained by constructing and solving H
for all (k!) permutations and choosing the crossing-minimal. With a known total
order of layer 2, the drawing can be constructed in linear time. Thus, the total
time complexity is O(k!k?(2)¥) C O(k*n¥). O

As with the CMUT problem for two trees, the problem can be generalized to
some extend while still obtaining the same results. We do so by making small
adjustments to the provided algorithms.

First, we accept (partial) orders for layers 2 and 3 as part of the input, which
have to be preserved in the final drawing. Simultaneously the restriction on leaf
vertices being in layer 1 and roots being in layer 3 can be dropped. Thus, we
get the slightly stronger result:

Remark 6.1. Given a forest F' of k directed rooted and layered trees with
corresponding embeddings, where the order of layer 1 is fixred and partial orders

82 CHAPTER 6. LIMITED HEIGHT

for layers 2 and 3 are given as <1, <2 and <3, a minimum crossing drawing of
F preserving the embeddings and given orders can be computed in O(k>n¥) time,
where n is the total number of vertices.

Proof. We have to make small adjustments to the algorithm provided in the
proof of Theorem to accommodate for the additional requirements. Relaxing
the layering of leaves and roots does not effectively affect the algorithm, as leaves
in layer two can be handled exactly like inner vertices in layer two. They have
no incoming edges, thus, less crossings are possible, however this does not affect
the crossing calculation for any fixed position. Observe that <% for T; still is
a complete order regarding the vertices of T; in layer 2.The partial order <}
directly follows from a planar embedding, implying also the order of leaves in
layer 2. Leaves in layer three coincide with roots and are thus isolated vertices
which are trivially handled. Roots in layer two are also ordered by the shortest
path problem on H, computing the optimal order of all vertices of layer 2. This
reduces the number of vertices in layer 3, which in turn reduces the number of
permutations which have to be considered, however the permutations are clearly
still bounded by k!. Roots in layer 1 coincide with leaves and can be trivially
handled.

Regarding the given (partial) orders <2 and <3, the (partial) order <3 can easily
preserved by discarding any permutation of the roots of layer 3 contradicting
<3, which can be verified in time O(k).

To preserve (partial) order <2, the weights of edges of H have to be adapted.
If an edge, corresponding to a relative placement of some vertex v of layer 2
contradicts <, the edge weight is set to co. Clearly this implies the crossings

of an order ¢ are cr, = oo exactly if -I<2 corresponding to o contradicts <s.
Therefore it can easily verified if a valid solution exists. As the compatibility of
an edge in H with <9 can be checked in linear time, its running time is dominated
by that of the edge weight computation. Thus, correctness and running time
follow analogously to the proof of Theorem O

As the algorithm provided relied heavily on layer 1 and 3 being fixed, but not on
the specific graph structure, F must not be a forest for the provided algorithm
to be applicable. However the number of vertices in layer 3 must be small to
bound the running time.

Remark 6.2. The result also holds for k upward-planar graphs if there are O(k)
vertices on layer 3.

The correctness of this claim directly follows from the proof of Theorem [6.1] as
the tree properties are not used in the proof.

Part 111

Ortho-Radial Morphing

83

85

Ortho-Radial Morphing

Orthogonal drawings are among the best studied drawing models in Graph
Drawing research [41] 85 [127], with frequent use in practical applications, such
as diagramming in software engineering [56] or VLSI design [62]. A drawing is
orthogonal if edge segments are either drawn horizontally or vertically, with all
vertices and edges being placed on a rectangular grid. One extension of this
drawing model, which received growing attention recently, are the ortho-radial
drawings [0 [70, 97].

An ortho-radial drawing is a graph drawing where all vertices and edges are drawn
on a grid consisting of concentric circles and spokes, intersecting the center point.
Naturally all edge intersections appear in orthogonal or co-linear fashion. Thus,
informally, one can think of a ortho-radial drawing as a translation of orthogonal
drawings into polar coordinates. To this end, an ortho-radial drawing can be
interpreted as an orthogonal drawing on a cylinder, which is projected back onto
the plane by connecting two opposing sides of the grid [71]; see Figure This
results in a radial grid, formed by concentric circles and spokes emanating from
a center point, where no grid point lies within the innermost circle. Note that
the extension of the plane grid allows to reduce the number of total bends [96],
which is a frequently applied quality criterion, especially for orthogonal graph
drawings [106].

Ortho-radial drawings find their main applications in metro maps [0, [114],
displaying transportation networks to the public, while also being used for
hypergraph and set visualization [58, [80]. Metro maps are traditionally drawn
manually, see Figure for a hand-crafted visualization of the New York metro
map; however recently the automatic creation of such metro maps has been
studied [7, 26], 27, 08, (101}, [136].

In our work, we consider the related research area of morphings, that has
been extensively studied for orthogonal drawings but has not previously been
investigated for ortho-radial drawings.

A morph of a drawing is a transformation of one drawing of a graph into another
drawing of the same graph, by defining a series of continual intermediate drawings.
This is necessary when a visualization is not only automatically generated, but
should be interactive and dynamic, allowing for (partial) rotation, translation
and resizing.

In Chapter |8] we will propose different morphing strategies and study their
properties. We observe that for many practical applications, octo-linear drawings
are chosen over orthogonal drawings. Thus, analogously, we will extend the

Figure 7.1: A 4 by 6 grid projected to (a) a cylinder,(b) the plane, where it is
drawn as an ortho-radial grid.

86

Key fo Symbols

" QUEENS

BROOKLYN

STATEN
ISLAND

Figure 7.2: An ortho-radial drawing of the New York metro by Maxwell J.
Roberts, taken from [113].

ortho-radial model to allow for 45° angle between crossing segments at the
intersection, which is achieved by allowing curve segments on logarithmic spirals.
In Section [7.4] we compare the performance of the different proposed strategies.
To do so, we perform statistical analysis on several quality metrics on provided
benchmarks and randomized datalll

Lastly in Chapter [§] we propose a hybrid visualization model utilizing these
techniques.

IThe resulting visual animations and the source code are provided at https://github.com/
TheAnonymousSubmitter/MorphingOrthoradialDrawings.

https://github.com/TheAnonymousSubmitter/MorphingOrthoradialDrawings
https://github.com/TheAnonymousSubmitter/MorphingOrthoradialDrawings

Chapter 8

Morphing Strategies

7.1 Definitions

Given a graph G = (V, E), for a time interval ¢ € [0,1] a morph between two
drawings 'y and I'y of the same graph G is a series of drawings, where for
any point ¢ in the time interval a drawing I'; is defined. A drawing I" of G is
denoted as ortho-radial, if all edge segments are drawn on the grid consisting of
concentric circles and spokes emanating from the center point. All vertices must
be placed on grid points. Note that, to enable completely continuous morphs, we
consider drawings on ortho-radial grids with infinite resolution. If the placement
of vertices is continuous, the morph is called smooth.

Analogously to octilinear drawings [41], 85], [127], which extend the orthogonal
drawing model to allow for more slopes, by introducing grid lines which cross the
other grid lines at 45° angle, i.e. by adding diagonals to the grid, we introduce
the model of octo-radial drawings. Recall, that the logarithmic spiral, also known
as the equiangular spiral, is of constant slope angle. A drawing is octo-radial, if
all edge segments are drawn on the grid consisting of concentric circles, spokes
emanating from the center point and logarithmic spirals, as defined by r = ae*?,
where r is the radius, e is Euler’s number, ¢ is the angle in polar coordinates,
a > 0 is a real constant and k is € {—1,1}. Thus all intersections between the
spiral and concentric circles or spokes are at 45° angle if k is set to one or minus
one; see Figure for an octo-radial grid. Note that if the grid is of finite
size, the concentric circles can no longer be equidistant, as it is common in the
ortho-radial model, instead, the distance between subsequent concentric circles
grows exponentially. However, as with the ortho-radial model, we will consider
grids of infinite resolution to enable smooth morphs.

For simplicity, let spoke segment denote any segment drawn on a ray emanating
from the concentric center point ¢, let circular segment denote any segment
drawn on a circle with ¢ as center point and let spiral segment denote any segment
drawn on the logarithmic spiral with k € {—1,1}.

For all proposed morphing strategies the positions of all vertices are considered

87

88 CHAPTER 8. MORPHING STRATEGIES

Figure 7.3: An example of the octo-radial finite grid, here with 3 concentric
circles shown in orange and 4 spokes in black. Spirals with £ = 1 are shown in
red, while spirals with £ = —1 are shown in blue. Observe that the distance
between subsequent concentric circles grows exponentially.

to be part of the inpuﬂ This is motivated by the fact that ortho-radial drawings
are commonly used for displaying geospatial data. For a morph between I' and
I, we linearly interpolate the position of the vertices for every point ¢ in the
time interval, i.e. for vertex v the position at point ¢ is (1 —¢) - pr + ¢ - pr» where
pr, pr- denote the position of v in drawing I', T respectively. However every
edge connecting adjacent vertices v and w has to be represented by a sequence of
at most three segments satisfying the constraints for ortho-radial or octo-radial
drawings respectively to ensure that at most two bends are used. The individual
strategies will construct these sequences. This construction is solely dependent
on the relative positions of v, w and the center point c.

7.2 Quality Metrics

In this section, we consider several quality metrics, some of which are well
established, others follow naturally from the problem statement. This provides
us with a guideline for the design of ortho-radial (and octo-radial) drawing
strategies in the following sections. For some metrics, the performance of the
individual strategies with regard to the metric is determined solely by design. For
other metrics the performance of the strategies are evaluated in the experiment

in Chapter [7.4]

Bends. One of the most studied quality metric for planar orthogonal drawings
is the number of bends [45, 51, [I35]. While an integer-linear program solution
exists for minimizing the total number of bends in ortho-radial drawings [96],
the algorithm requires the vertices to be freely placeable, which contradicts
the geospatial property. Thus we instead consider the number of bends per
edge, which has also been extensively studied for planar orthogonal drawings [23]
51, 105]. As we do not restrict the drawings to be crossing-free, one bend per
edge suffices for any graph with geospatial data. However using more than
one bend can be aesthetically more pleasing, as it allows for more symmetrical
representations and beneficial in regards to the other quality metrics.

LIf geospatial information is not part of the input, any state-of-the-art algorithm (such as
spring embedding) can be applied to assign positions to the vertices.

7.2. QUALITY METRICS 89

Thus, we will consider one strategy using only one bend per edge and several
strategies using at most two bends per edge.

Fréchet distance. For some applications, the straight line representation does
inherit some geospatial information, as for instance in metro maps. Thus we
investigate the edge-wise similarity between the straight-line and the ortho- or
octo-radial representation, as defined by the proposed strategies. A measurement
of this similarity is an indicator on how much of this information is preserved
during the morph.

One well known measurement for the similarity of curves is the Fréchet distance [3]
52, [69]. Observe that for the edge representations considered, the Fréchet
distance between the straight-line-segment and the curve given by the strategies
is equivalent to the Hausdorff distance.

Remark 7.1. Forv,w € V with given positions p,,py. Let £ be the straight
line segment from p, to p, and s any simple curve with endpoints in p, and p,,.
The Fréchet distance between £ and s is equal to the Hausdorff distance between
¢ and s.

Proof. As shown by De Berg et al. [13] the Fréchet Distance between a straight
line segment ¢ from p, to p,, and any curve s is equivalent to

max{d(py, $), (Pw, s), hausdorff (¢, s)}

where §(p, ¢) denotes the minimum distance between point p, and curve ¢, while
hausdorff(ep, c2) denotes the Hausdorff distance between two curves ¢; and cs.
As both £ and s share both endpoints p,,, p., it holds that §(p,, s) = d(pw, s) = 0.
Therefore we have shown the equality

frechet (¢, s) = hausdorff (¢,)

concluding the proof. O

Flips. In a smooth morph the position of vertices and bend points described
as a function taking time ¢ € [0, 1] as input is continuous. However, depending
on the drawing strategy, there can exist discontinuities in the placement of bend
points. We denote such a discontinuity as a flip. Flips impede the tracking of an
edge by a user during the morph. Additionally as a flip causes an abrupt visual
motion, the user might be distracted and potentially irritated, as such a motion
naturally draws the focus of an observer [57]. Thus, the number of flips in a
morph should be minimized.

We distinguish between two fundamentally different types of flips, which can
occur. Face flips occur when the center point passes a straight line segment
connecting two adjacent vertices, as this corresponds to a switch of faces in the
underlying straight-line drawing. Note that for the proposed strategies a face flip
corresponds to a mirroring of the representation of the crossed edge along the
axis defined by its straight-line segment. Style flips occur each time the drawing
style of an edge changes, i.e. any discontinuity which is not connected to a face
flip. Figure illustrates both types.

90 CHAPTER 8. MORPHING STRATEGIES

JT

X X

X
X

Figure 7.4: An example of a face flip shown in (a) before and (b) after the flip,
using the oneBend strategy as well as an example of a style flip shown (c) before
and (d) after the flip, using the uniform strategy.

Port Usage. We also consider the port usage. Generally we consider a stricter
limit of available ports as unfavorable, as this increases the number of overlaps
and reduces otherwise clear distinction between different edges. However, heavily
depending on the application, edge bundling is common for many applications,
in which case this quality metric might be of less significance.

Crossings. Finally, we investigate the number of edge crossings. The number
of crossings in a graph drawing is well-known to have negative correlation with
task performance on the graph [I06] [132]. Note, that we do not require the
strategies to produce crossing-free drawings. Minimizing the number of crossings
during the morph or maintaining planarity should be considered a separate
research direction. The vertex placement given might not even allow for a
crossing-free drawing and especially the straight-line drawing of the given graph
might be non-planar, e.g., in the Sydney graph. Further note that even when
the initial drawing is planar, small local or global vertex movements can already
prevent a crossing-free drawing, if the number of bend points is limited, see
Figure [7.5]

However, depending on the strategy, crossings are more or less likely, thus
we evaluate the number of crossings in the experiment. Note that only true
crossings are considered by the evaluation, i.e. segment overlaps and segment
endpoints placed directly on another segment are not considered crossings, as
these deliberately occur in many metro map visualizations.

7.3 Morphing Strategies

Now that we have defined a guiding set of quality metrics, which should be
considered in the algorithm design, we will propose several strategies for con-
structing ortho-radial morphs and one strategy for constructing octo-radial
morphs, starting with the ortho-radial strategies.

7.3.1 Ortho-radial

Considering the edge e = (v, w), in polar coordinates let a,, and «,, denote the
angles of v and w relative to ¢ and r,,r,, denote the radii of v and w relative
to ¢, respectively. W.l.o.g. let a,, < ay and @y, — ay < 7. Further, we assume
w.l.o.g. that r, < ry.

Describing the morphing strategies we differentiate between two types of drawing
styles for any given edge with two bends. A spoke step denotes an edge repre-
sentation of e, where the sequence of segments consists of two spoke segments
and one circle segment. In this case let r. denote the radius of the circular

7.3. MORPHING STRATEGIES 91

Figure 7.5: The schematic representation of a constellation, where any transpo-
sition of the vertices would imply a drawing requiring additional bends per edge
to be crossing free. This construction can be repeated.

Te
Qe
T'U

Tw Qo
(a) (b)

Figure 7.6: A spoke step shown in (a) with radii shown and a circular step shown
in (b) with angles shown.

segment. A circular step denotes an edge representation of e, where the sequence
of segments consists of two circle segments and one spoke segment. In this case
let o, denote the angle of the spoke segment. See Figure for instances of a
spoke and a circular step.

It suffices to give a definition for r. and a. respectively to conclusively describe
the sequence of segments, as the positions of v and w are known and the sequence
must be consecutive, ending in both v and w.

The two-bend strategies are thus defined by giving a rule to decide which drawing
style is used, i.e. whether an edge is represented by circular or spoke steps and
a definition for r. and a.

One-bend The most straight-forward drawing style however uses only one
bend per edge, thus consisting of only two segments, namely one circular and
one spoke segment joined at a bend point, see Figure As the positions of
both v and w are fixed, there exist exactly two options to place the segments,
such that at most 180° are spanned. W.l.o.g suppose that v is closer to the
center point, i.e. r, < r,. Now one option is to start with a circular segment
incident to v, while the spoke segment is incident to w, the other option reverses
the order of the segments. We observe the following.

92 CHAPTER 8. MORPHING STRATEGIES

L

Figure 7.7: Edge representation with oneBend.

w

(a) Schematic showing the distances be- (b) Schematic showing how the distance
tween bend points and straight line seg- of the circular segment correlates to the
ment depending on whether v or w is radius, if angle between the straight line
incident to the circular segment. The segment and the spoke segment at v is
distance is shown in red. greater than 90°.

Figure 7.8

Lemma 7.1. The Fréchet distance between a one-bend drawing of an edge e
and its straight line representation is minimal if the circular segment is incident
to the vertex closer to the center point.

Proof. As we have shown in Remark Hausdorff and Fréchet distances are
equal for these instances. Thus we will use the definition of the Hausdorff
distance for this proof.

Note, that there exist two extreme-point candidates defining the Hausdorff
distance: either the bend point, joining both segments, or an interior point of the
circular segment. Assuming that the circular segment contributes the defining
point, the point must be interior as one of the endpoints coincides with either v
or w, thus having a distance of 0 to the straight-line segment while the other
coinciding with the bend point, which contradicts the assumption. Observe that
the maximum distance of the circular segment to the straight line segment is the
point where the straight-line segment is parallel to the tangent of the circular
segment, see Figure Thus, the distance directly correlates with the radius
of the circular segment. As r, < r,, this is minimal, exactly if the circular
segment is incident to r,,.

Next assume that the bend point defines the Hausdorff distance. We denote
the angle v, as the angle defined by the spoke segment and the straight line
segment incident to v. Analogously we denote 7,,. See Figure[7.8a]for an instance
displaying these definitions. We observe that, due to r, < 7y, it holds that
Yo > Y. Further we observe that if v, < 90° the distance between straight line
segment and bend point is

Sin(%)) (Tw - Tv)

where 7 is v or w, depending on whether the spoke segment is incident to v or w

7.3. MORPHING STRATEGIES 93

(a) (b)

Figure 7.9: Edge representations with uniform steps: (a) circular step (b)
spoke step.

respectively. Thus, using vy, > 7., it holds that
sin(yy) - (1w = o) > sin(y) - (rw = 70).

Therefore the distance is minimized if the spoke segment is incident to w.
If 7, > 90° the distance is exactly (r, — 1), which is an upper bound for
sin(7y) « (roy — 1), thus the distance is trivially minimal. This concludes the
proof. [

We continue with several strategies using two bends per edge.

Uniform steps. While the additional bend per edge increases the total number
of bends of the drawing, it also allows for a more adaptable edge representation.
One of the most notable psychological aesthetics is symmetry [I33], as it is
seen as a powerful indicator for beauty. Thus in the uniform strategy the
edges are represented such that they follow a uniform and symmetric design
principle. Additionally, for a more balanced overall aesthetic, the drawing style
(between circular and spoke step) is chosen such that the segments are split in
a way that a small ratio between largest and shortest segment is maintained.
Specifically, for a given edge e = (v,w), the drawing style is a circular step
exactly if re - (@ — @) > 1y — 1, which is true exactly if the sum of the lengths
of circular segments is larger than the sum of the lengths of spoke segments.

To realize the concept of symmetry, let o, := %, i.e. . is the angle of the
bisector of the spokes v and w are placed on, see Figure For spoke steps,
let re := “*T“ﬁ i.e. . is the average radius of the two vertices, see Figure

Fréchet steps. Using the Fréchet steps strategy for a given edge e = (v, w),
the drawing style is decided by minimizing the Fréchet distance. Thus, the
drawing style is a circular step exactly if the circular step yields a lower Fréchet
distance than the spoke step, a spoke step exactly if the spoke step yields a lower
Fréchet distance than the circular step and the drawing style of the previous
drawing of the morph is maintained, in case of equality.

For circular and spoke steps both 7. and «, are defined such that the resulting
edge representations have minimum Fréchet distance to the straight line segment
from v to w. Recall, that for the edge representations considered, the Fréchet
distance is equivalent to the Hausdorff distance between the curve and the straight
line segment representing an edge, as shown in Remark Thus, we use the
simpler definition of the Hausdorff distance to make optimality arguments.

Observe that the spoke steps are more flexible than in the uniform step strategy,
since 1, < 1, < Ty can be true, i.e. the radius of the circular segment is not in

94 CHAPTER 8. MORPHING STRATEGIES

between the radii of the endpoints. In particular this is always the case if 7, = 74,
as a re > 1, would yield a significantly higher Fréchet distance, see Figure
Figure displays all variants of Fréchet steps and additionally shows the
points on the edge representation which determine the Fréchet distance.

We observe that in many cases the Fréchet distance obtained by optimal circular
steps and optimal spoke steps is the same:

Lemma 7.2. If the triangle defined by the vertices v, w and center point ¢ has
a > 90° angle at corner v, then the Fréchet distances of both the circular and
spoke step are the same.

Proof. We first consider circular steps. Note that the Fréchet distance is minimal
if both bend points are at the same distance to the straight line segment, denoted
as s. All other points on the sequence are closer to s. This is the case exactly if
the the spoke segment is split halfway, i.e. it intersects with the straight line

segment s from v to w exactly at half length of the spoke segment. Thus for the
(rw="v)To
Tw+Ty

circular step the Fréchet distance is d = sin(a,) -
Now for the spoke steps, the Fréchet distance is defined by the distance of the
two bend points to s. Since the triangle is obtuse at v the points on the line
passing through v and w which are closest to the bend points are part of the
straight line segment s. Therefore the Fréchet distance d* of the spoke step is
optimal, when both bend points have the same distance to s, thus we get two
definitions for the distance d* = 4, sin(«,) and d* = §,, sin(a,), where 4, and
0w denote the differences in radius |r. — r,| and |r,, — r¢| respectively. We can
combine both definitions to §, = r, — r, — d,,, to replace 6, with:

d* = (ry — 1y — Oy) sin(ay).
Replacing 6., by the second definition given for d*:
d*
d* = <rw — 7y —) sin(ay,)
sin(o,)

(Tw - Tv) SiIl(OéU)
sin(a,) +1

sin(auy)

d =

We aim to show equivalence between d and d*, thus we replace sin(c,,) with
"o sin(ay,):

Tw

d* = (Tw - rv) Sin(av) o (Tw - rv)rv Sin(av) —d
B e 4] B Tw + T B

Ty

which concludes the proof. Note that this observation also holds for triangles
where v is non-obtuse, however in those cases the definitions given for d and d*
do no longer necessarily correspond to the Fréchet distance between the edge
representation and s, for example see Figure O

Due to this property the case of equality often occurs in the implementation,
this is resolved by keeping the drawing style of the previous discrete time step
in case of equality for any but the first drawing and choosing the drawing style
by random in case of equality for the initial drawing of the morph.

7.3. MORPHING STRATEGIES 95

%@\/\/mm

(a) (b) (c) ()

Figure 7.10: Edge representations using the frechet strategy: (a) circular step
in blue, spoke case in black (b)-(c) spoke cases (d) circular case.

Single style variants. While the number of occurrences depends on the
specific strategy, generally some style flips occur when applying the strategies
denoted as uniform and frechet. We already discussed, why style flips are
unfavourable, thus we will additionally consider variants which are restricted
to one drawing style each, thus preventing all style flips. Namely uniformcirc
and frechetcirc use only circular steps, and uniformspoke and frechetspoke
use only spoke steps as defined in uniform and frechet respectively. We will
discuss in Chapter [7.4] whether these restricted cases show significant drawbacks
in terms of crossings or Fréchet distance.

Port by Angle. We further study a strategy inspired by orthogonal algo-
rithms [I4], where the slope between incident vertices determines the ports used.
We denote this strategy as port by angle.

Considering an edge e = (v, w). To decide which one of the four ports is used,
the straight line segment between v and w is considered. For one of the vertices,
w.l.o.g. v, the plane is divided into four sectors, where the boundaries are
lines with 45° and —45° angle in relation to spoke grid line v is placed on, see
Figure Depending on the sector e is part of the south, west, north or east
port is assigned at to e at vertex v. Informally, the edge is assigned the port it is
most similar to in a straight line representation. This is done for both endpoints
of e individually, resulting in four possible cases.

1. Edge e uses uses the east port at v and the west port at w: In this case we
use the circular step construction of the frechet step strategy to draw
the segment, as it ensures circular segments at both ports, see Figure

2. Edge e uses the east port at v and the south port at w: In this case we
construct a sequence of two segments consisting of one circular segment
with v as its left endpoint, thus, with radius r, and spanning from «, to
@, and one spoke segment, spanning from radius r, to radius 7, at au,,
thus, having w as an endpoint. Informally, this step resembles the shape

of an inverted L, see Figure

3. Edge e uses the north port at v and the south port at w: In this case we
use the spoke step construction of the frechet step strategy to draw the
segments. This ensures that both endpoints are incident to spoke segments,

see Figure [7.11d]

4. Edge e uses the south port at both v and w: Informally this case occurs
when v and w are on opposite sides of the center point. Necessarily there
must be at least a difference in angle of 90° between «,, and «,,. To fulfil the

96 CHAPTER 8. MORPHING STRATEGIES

s 4 N \ﬂ
(a) (b) (c) (d) (e)

Figure 7.11: Edge representations with port by angle strategy: (a) The sectors
indicating which port to use. The center point is shown in gray (b) e uses the
east port at v and the west port at w. (c) e uses the east port at v and the
south port at w. (d) e uses the north port at v and the west port at w. (e) e
uses the south port at both v and w.

port constraints, both v and w must be incident to spoke segments, whose
endpoints are closer to ¢. Therefore both spoke segments are assigned
endpoints at radius r. << r, < 7. A circle segment at radius r. from
a, to a,, then joins both segments, see Figure Note that in the
experimental implementation we appointed r. a fixed value.

We observe that no other constellation of designated ports can occur with the
given port assignment strategy.

7.3.2 Octo-radial

As with the ortho-radial model, we distinguish two edge drawing styles, however
they are slightly adapted to fit the octo-radial model. A spoke step consists of
two spoke segments and one spiral segment. A circular step consists of two circle
segments and one spiral segment.

However, since for any edge e = (v,w) the position of the vertices v and w
is given, the drawing style representing e is directly implied. This is due to
the spiral segment having a fixed slope angle, thus the angle spanned by the
spiral segment and the radius spanned by the spiral segment strictly correlate.
Therefore, a spiral segment which spans a,, — a,, spans a fixed radius relative
to r,. Let r. denote this radius. If r. < r, — r, then a spoke step can be
constructed, however a circular step is impossible. If r. > r,, — r, vice versa.
Both cases are shown in Figure and For circular steps, the sequence
is constructed such that the circle segments are of equal angle. For spoke steps,
the sequence is constructed such that the spoke segments are of equal length.

™ —

(a) (b)

Figure 7.12: (a) The circular octo-radial case and (b) the spoke octo-radial case.

7.4 Experimental Setup

In this section we experimentally evaluate the proposed algorithm, such that,
alongside the theoretical observations, an informative comparison between the

7.4. EXPERIMENTAL SETUP 97

strategies can be made. We implemented all nine strategies using Python and
analyzed their performance on the four real world benchmarks as well as the
randomly generated data. We remark that the morph animations resulting from
all eight strategies were computed in real-time on a desktop PC with 6 cores at
2.8GHz CPU and 16GB RAM. Thus all proposed strategies are suitable for use
in practical real-time applications.

We construct several benchmarks on real world data. Additionally we generate
random data analyse the resulting morphs under the set of quality metrics
introduced in Section But first we present a common use-case which will
provide a framework for the experiment.

Use-Case

In digital state-of-the-art navigation tools, the shown detail of a map or trans-
portation network is not static but dynamically adapts to the users position.
Thus in our hypothetical use-case we consider the movement of the user, i.e. the
center point of the visualization, within a network with fixed vertex positions,
as bus stations or similar landmarks are static relative to each other. Note that
this resembles a transposition of all vertex positions, if the center point is fixed
at the origin.

Note that while state-of-the-art applications also support re-scaling and rotation
of the displayed network, with an ortho-radial or octo-radial model, both opera-
tions are trivial. Regarding the analysis moving the center point has multiple
benefits. The lack of (partial) re-scaling allows for comparability between the
individual drawings throughout the whole morph, while the transposition of the
full network does enforce an update of every edge representation between any
two subsequent drawings of the morph.

7.4.1 Real-World Data

For the evaluation, we construct four benchmarks on real-world data, specifically
on the Sydney metro map and the Vienna metro map. The networks are chosen
to display different characteristics found in real world transportation networks.
Sydney. The network consists of 34 vertices and 41 edges. The vertex placement
is generally more widespread than in the Vienna graph and there exist more
large faces in the provided drawing. However there exists one crossing in the
straight-line drawing, as two metro lines cross. Vienna. The network consists
of 24 vertices and 37 edges. The vertex placement results in a generally more
condensed drawing than the Sydney graph and includes a dense city center. Note
that the network drawn straight-line is planar and that, apart from the outer
face, all faces are quadrangles or triangles.

As described in the use-case, the center point is considered to be moving, which
is dual to the transposition of the network. Therefore we define two types of
trajectories per data set along which the center point moves. A polyline path and
a Bézier curve. Specifically, the polyline paths move the center point along the
routes of metro lines, thus representing a traversal through the cities using the
metro, while the Bézier Curve represent schematic walks from one landmark to
another without using the metro. All four benchmarks are shown in Figure [7.13]

Specifically the polyline paths traverse the cities from north to south. On the

98 CHAPTER 8. MORPHING STRATEGIES

(a) (b)

Figure 7.13: The benchmarks (a) SYDNEY and (b) VIENNA with the respective
BEZIER and POLYLINE benchmark trajectories.

Sydney graph the polyline path represents a ride from station Berowra to station
Sutherland using the the lines T1, T9 and T4. On the Vienna graph the polyline
path represents a ride from station Floriansdorf to station Simmering using the
lines U6 and U3.

The Bézier curves connect two landmarks of the cities each. On the Sydney
graph the Bézier curve represents a walk from the Sydney Zoo to the Opera
House. On the Vienna graph the Bézier curve represents a walk from Schloss
Schénbrunn to the Prater.

For the evaluation, the individual data points are sampled by moving the center
point along the trajectories, constructing the drawings for 201 consecutive
positions, using the respective morphing strategy. As every edge representation
has to be updated between any pair of frames and the centerpoint visits no
position twice there are 8241 different edge representations per benchmark
for SYDNEY benchmarks , while for VIENNA there are 7437 different edge
representations per benchmark.

7.4.2 Spatial Graph Sampling

Additional to the benchmarks using real-world data we introduce a randomized
experimental setup which allows for a larger sample size on unbiased data for
a more in-depth analysis. In this section we propose a generator model for
randomized spatial networks, random trajectories and explain the details of the
respective experimental setup, as we are not aware of any pre-existing framework.

Graph generation The algorithm first generates a set number of n—3 vertices,
n > 3, by placing them on the plane, such that their positions are uniformly
sampled within the boundaries of an isocles right triangle. To do so, we first
uniformly sample positions in a square and mirror their position along the
diagonal if they are outside of the triangle described by three vertices of the
square. The three vertices of the bounding triangle are added to the vertex set.

7.4. EXPERIMENTAL SETUP 99

Next the vertex set is triangulated without crossings El To provide a general
data set we uniformly sampled the inner triangulation of the vertex set. To
do so, a random permutation of all n(n — 1) edges of the complete graph is
generated, then all edges are considered iteratively. If an edge is planar (drawn
straight line) considering the current edge set, it is added to the edge set, if it
crosses at least one of the edges of the current edge set it is discarded. Note
that while this takes O(n?) time, the resulting graphs are internally triangulated.
Since the vertices of the boundary triangle are included in the vertex set, the
outer face is a triangle as well, corresponding to the bounding triangle. Thus
there are exactly 3n — 6 edges. Naturally the sampled graph is a maximum
planar graph. While random removal of edges would technically represent a more
diverse sample of general planar graphs, decreasing the density would reduce
the number of edge representations to study and generally lower the number of
crossings. Thus we studied maximum planar graphs only. Further note that due
to the definition of the boundary triangle all sampled graphs span the same area
and thus resolutions and distances between sampled graphs are comparable.

Trajectory generation As with the networks based on real world data we
study two types of trajectories based on two different aspects of the use-case.

Edge path trajectories are motivated by the user utilizing the network for move-
ment, i.e. their movement follows the straight line segments of the network. To
construct such a trajectory we randomly sample a pair of vertices s and ¢. Using
a breadth-first search a shortest path from s to ¢ on the network is computed.
Note that the graph distance is considered, not the Euclidian distance. This
path corresponds to a polyline connecting all traversed vertices with straight
line segments. This is the sampled edge path trajectory.

In contrast face path trajectories are motivated by the user travelling off-grid,
i.e. explicitly not using the provided network. To sample such a trajectory we
randomly sample a pair of faces fs; and f; from the set of all faces of the drawing,
except for the outer face. We then construct a weak dual graph and find a
shortest path from f; and f; in the weak dual using breadth-first search. The
sampled trajectory is defined by the polyline representing this path, where any
bend or end point corresponding to a face f is placed at the geometric center
point of f.

For the analysis 100 graphs are sampled, where every graph consists of n = 100
vertices and m = 294 edges. For every graph one edge path trajectory and one
face path trajectory is generated. All morphs are calculated with 101 steps. We
then applied all nine strategies on the generated data.

2We considered using a Delaunay triangulation to define an edge set for the network,
as common use-cases resort to the geospatial properties of the drawing. The Delaunay
triangulation corresponds to the fully triangulated network with the minimum aggregated
edge length which is a reasonable criteria for the construction of a public transportation
network. However, to provide a more general data set we opted to uniformly sample the inner
triangulation of the vertex set instead.

100 CHAPTER 8. MORPHING STRATEGIES

Table 7.1: Properties of the morphing strategies

. . Ports/

Strategy Face flips | Style flips vertex
oneBend Yes X No v 3
uniform Yes X Yes X 4
uniformcirc Yes X No v 2
uniformspoke Yes X No v 2
frechet No v Yes X 4
frechetcirc Yes X No v/ 2
frechetspoke No v No v 2
octoradial Yes X No v 4
portByAngle Yes X Yes X 4

Lists whether a strategy can cause face flips or style flips and the maximum
number of ports used per vertex. These properties directly follow from the
strategy definitions.

7.5 Results and Discussion

For an impression of the visuals the different strategies produce, see Figure
where the same frame of an animation is represented using all nine strategies.
The full animations and still frames are provided at https://github.com/
TheAnonymousSubmitter/MorphingOrthoradialDrawings. First we observe
that the performance in regards to some quality metrics follows directly from
the definitions of the strategies. These results are stated in Table and are
independent of the experimental findings. Fréchet distances, crossings as well as
the exact number of style flips are evaluated using the experimental data, in the
following we will discuss the findings in detail.

Style Flips. Figure lists the total number of style flips obtained for every
combination of real world benchmark and strategy while Figure shows the
style flips for the randomly sampled data. Observe that six of nine strategies
prevent style flips altogether, as shown in Table however, some of them
do this naively by restricting the styles to one (frechetcirc, frechetspoke,
uniformcirc and uniformspoke) while others do so while maintaining several
styles (oneBend, octoradial). Ounly considering the drawings causing style
flips, uniform performs best. We observe that frechet shows noticeably higher
numbers of style flips for POLYLINE benchmarks than for BEZIER benchmarks,
however this conspicuity should be regarded with caution, as annotated in the
discussion below.

Crossings. The experimental results for the number of crossings are shown in
Figure and Figure respectively. The average number of crossings per
drawing is listed per strategy. We observe that both octoradial and oneBend
perform especially well. Surprisingly frechetcirc and frechetspoke perform
better than frechet. The uniform strategy and its variations underperform,
resulting in significantly higher numbers of crossings than oneBend.

https://github.com/TheAnonymousSubmitter/MorphingOrthoradialDrawings
https://github.com/TheAnonymousSubmitter/MorphingOrthoradialDrawings

7.5. RESULTS AND DISCUSSION 101

;N

(a) (b) (c)
(d) (e) (f)
(2) (h) (i)
Figure 7.14: Frame 125 of the morph on the Vienna network along a Bézier path

using (a) frechet, (b) frechetcirc, (c¢) frechetspoke, (d) octoradial, (e)
portByAngle, (f) uniform, (g) uniformcirc, (h) uniformspoke, (i) oneBend.

Fréchet Distances. The experimental results for the Fréchet distances are
displayed in Figure and Figure [T.17c We observe that frechetcirc,
frechetspoke and frechet perform very well, with only fractional differences
among themselves. The uniform strategy and its variations underperform.
Even though octoradial and portByAngle do not optimize curve similarity by
construction, they also achieve good results. Notably oneBend performs clearly
worst regarding the Fréchet distance. Additionally the Fréchet distances were
studied in more detail in Figure where the variance of a fixed edge is
observed during the entirety of a morph. Moreover Figure displays the
mean Fréchet distances of fixed graphs, aggregated over the morph. As expected
the variance correlates directly the Fréchet distances in Figure thus, all of
the strategies achieve reasonably stable results.

102 CHAPTER 8. MORPHING STRATEGIES

Number of style flips

style flips

sydney polyline
300 A O sydney bezier
vienna polyline
250 O vienna bezier
2001
150 A
100 o
o o
50 ° 8
090 o o o o]
2 ¢ & e <& <
F S S F 4 & & &
& OF L T
& S P & ©
o SR PO LS
< ‘(o" NN S

~
o

o
o

sydney polyline
sydney bezier
vienna polyline
vienna bezier

v
o
|}

Fréchet distance
= N w B
o o o o
1 ——
n

o

I

strategy

()

Figure 7.15: (a) The number of style flips, (b) the number of average crossings
and (c) the Fréchet distances per strategy and real world benchmark. Note that
outliers are not shown for better readability.

Discussion. As observed above, the number of style flips increases significantly

when considering a polyline trajectory with the frechet strategy. Note that

with a polyline trajectory the center point is on top of a straight line segment

representing an edge at any point during the morph. It is likely that this caused

a random toggle of the edge style, adding a high number of erroneous style flips.
Thus, this entry should be considered with caution.

Considering the performances overall, we propose that oneBend and frechetspoke
are the most versatile and well performing strategies. The simplest approach is

the oneBend strategy using only one bend per edge and achieving good results

regarding the number of crossings while utilizing three ports (the north port

is unused). However, it does underperform notably in regard to the Fréchet

distance and does not prevent face flips. The frechetspoke strategy on the

other hand provides completely smooth morphs, while also achieving very good

results regarding both the Fréchet distance and the average number of crossings.
The primary downside of this strategy is its low port usage. The octoradial

7.5. RESULTS AND DISCUSSION 103

strategy receives an honorable mention as it achieves outstanding results in
the metrics, however it does not fully utilize the eight available ports of the
octo-radial model and due to the spiral segments, users might be less accustomed
to the visualization.

As both oneBend and frechetspoke have unique strengths and drawbacks, they
are incomparable. It depends heavily on the application, whether smooth morphs
or minimal use of bends and a high port usage are of priority.

40 1

“ L

w
vl
s

Standard deviations of edges during morph
= = N N
w o w o w
RS S

T

"
@ 3 & < & &
S & &S D & &
< & 5§ s
& R & & s
& & & & & & ©
$ & B N

Figure 7.16: (a) The standard deviations of the Fréchet distances of a single edges
during the morph. (b) The mean Fréchet distances of all graphs (aggregated
over the respective morph).

104 CHAPTER 8. MORPHING STRATEGIES

® alongEdges
2000 m alongFaces
& 1500
£
@
@
°
© 1000
500
2> 3 5 3 & 3 < >
&° & & & & N ¢ & &
& \a & SR N S K & &L
&S) < & & N & O &
o & & & O S
< « R
strategy
80 ® alongEdges

-
o

Ml

Fréchet distance
N IS
o o o
o | HEE——

2> 2 > & 2 & '
& & N R
K RS & & & N S & &
°(§° (&* < & & N < & &
© N &
Q0 « N >
strategy

(c)

Figure 7.17: (a) The number of style flips, (b) the number of average crossings
and (c¢) the Fréchet distances per strategy on the randomly sampled data. Note
that outliers are not shown for better readability.

Chapter 8

Hybrid Model

The strategies proposed in Chapter [§ are quite general and can be applied in a
vast number of use-cases. Here, we study a specific use-case motivated by the
everyday problem of using geospatial data for orientation.

State-of-the-art solutions to solve this problem include a Google Maps style rep-
resentation, where a scalable map is (generally) centered at the user to allow for
easy and intuitive orientation, or the more schematic metro-map visualizations
widely used to inform about public transportation systems. These models not
only aim to provide the user with an efficient way to (manually or digitally)
query for common tasks but also provide general information and context to
the query result. Thus, ideally the user is not only achieving a short time
goal (reaching their destination) but also meanwhile learning about the network
(memorizing the local area). In case of public transport and on-foot travelling,
static metromaps, as found on bus stops or metro stations and dynamic tools, like
Google Maps or Open Street Maps are arguably the most common orientation
supporting systems. We denote the former as metro-map and the latter as
interactive map in the following. We omit traditional analogue maps as those
are rarely used nowadays.

Comparing those two systems quickly highlights different strengths and weak-
nesses, as shown in Table

While the interactive map does provide for interactivity, queries and off-the-grid
orientation, i.e. it helps the user find its way to the public transportation
stations, it depicts the map along with the public transportation stations non-
schematically. Thus, either the scope of the visualization only shows the very

Table 8.1: Model Comparison

‘ interactive map ‘ metro-map ‘ concentric model
off-grid orientation Yes No Yes (close to the center)
Interactive Yes No Yes
Schematic No Yes Yes (outside of the center)

Lists the limitations of the two common models interactive map and
metro-map as well as the proposed hybrid concentric model.

105

106 CHAPTER 8. HYBRID MODEL

Figure 8.1: The Sydney metro network with correct geospatial proportions.
Observe that some parts of the network are not easily readable.

close-by surroundings of the user, omitting much of the public transportation
system or the scope is adjusted such that large parts on the transportation system
are shown, however this decreases the scale of the displayed map significantly,
making it troublesome for the user to gain any local information, especially
considering the common screen sizes of hand-held digital devices. Additionally
the public transportation system is shown in full detail, showing every twist
and turn, which decreases the ability to memorize and learn the system [19].
An additional observation is the unbalanced scale of many real-world public
transportation system, as displayed in Figure where metro lines leaving the
city center can travel great distances, making metro lines in the city center
especially hard to read.

In contrast, the metro-map provides almost the opposite usability. It does
not show the geospatial distances proportionally, however it does maintain the
qualitative geospatial information. This schematic representation of the public
transportation network is of good resolution and consists of simpler shapes, thus,
it can be viewed completely and can be more easily memorized. However, it is a
static visualization, therefore it clearly does not support interactivity or queries.
More so, it does not provide any information which could be used for pedestrian
orientation. Most importantly it does not provide any support on finding a route
to the next (suitable) station.

8.1. TECHNICAL DETAILS AND OPTIONAL TECHNIQUES 107

Based on these observations we propose a hybrid visualization model which aims
to combine the benefits of both models while minimizing the shortcomings. We
denote this model as the concentric model. The model combines a local geospa-
tially exact representation with a globally schematic representation. Specifically
it consists of two nested concentric circles. The inner circle provides a sector
of the city map, centered at the users position. Public transportation lines are
displayed with correct spatial properties within this circle. The outer circle
displays only the schematic public transportation network, which seamlessly
joins with the lines visible within the inner circle. The network does contain
qualitative but not proportionally exact geospatial information, similar to the
metro-map visualization.

A visualization of our proposed hybrid model is shown in Figure [8:2]

Thus, the model provides precise information for the local, close-by area, in-
cluding off-the-grid orientation, while only showing the simplified schematic
transportation system for global orientation. As the model is dynamically cen-
tered at the users current position, the detailed local information appears and
disappears as the user enters and leaves an area. The model also allows for
queries, where shortest paths are highlighted as common in the interactive
map model.

In this chapter, we only propose our hybrid model and discuss technical details
and required algorithmic solutions for practical implementation. It is left to
future research to conduct user studies on the model to evaluate its practical
performance in contrast to the state-of-the-art models. Note that this model
directly motivated the research in the previous Chapter |8 The model requires
some additional algorithmic steps on top of the previously discussed results, as
the morphing strategies are only applied to the (partial) network in the outer
circle. We will discuss these technical details along with some optional techniques
in the following section.

8.1 Technical Details and Optional Techniques

Split edges. While the ortho-radial model is used to display all network edges
which are contained in the outer circle and all edges contained in the inner circle
are drawing according to the geospatial information, some public transportation
lines might be partially represented in the inner and partially in the outer circle,
for instance see lines 2 and 6 in Figure[8:2] For these edges a continuous transition
must be guaranteed. Recall that the morphing strategies take the positions of
all vertices as an input and preserve these positions, thus the required property
can easily be implemented by introducing dummy vertices to every intersection
between an edge and the boundary between inner and outer circle. The dummy
vertex splits the edge and is positioned exactly at the geospatially exact position
of the intersection.

Additionally we propose optional techniques which can be utilized to extend the
hybrid model further.

Fisheye. Asshown in Figure[8.1]not only the overload of details in the spatially
correct visualization causes problems, but also the resolution. However this issue

108 CHAPTER 8. HYBRID MODEL

Departure Time for Line 2

Departure Time for Line 6

%

" Drosselweg
-
H
L
L. 4
'\?V Sand
Y 15 min
\ Ursula.weg 12kmy
(]
7 Stuttgarter StraRe
7 22 23 826 828

1

Figure 8.2: The concentric model with UI elements.

8.1. TECHNICAL DETAILS AND OPTIONAL TECHNIQUES 109

is not yet addressed by the concentric model. As the model aims to provide
the most detailed information for the region which is currently closest to the user,
we propose a technique which we denote as a fisheye processing, which keeps both
the resolution as well as the geospatial accuracy of the close-to-center region high,
while relaxing both for the network at higher distance. The fisheye preprocessing
takes the coordinates of a vertex as an input, converts it to polar coordinates
and assigns the vertex a new radius by a fisheye function f : Rf — R{ taking
the original radius as an input. The fisheye function should be monotone and
continuous. The continuousness ensures that the smoothness provided by the
morphing is maintained. The monotonicity ensures that the correlation between
distance to the center point and actual distance is maintained. Additionally
the derivation of the fisheye function should be monotonically decreasing to
achieve the desired accuracy. Some natural candidates for the fisheye function
are logarithmic functions.

Curve Approximation. For the ortho-radial visualization the proposed algo-
rithms take positions of vertices as input, those positions are preserved. However,
so far it is undefined what these vertices resemble in the real-world data, as
there are multiple natural options. The simplest one takes every station of the
transportation network as a vertex, however this can result in a large number of
bends as one or two bends in between any two incident vertices are expected,
depending on the strategy. Instead it is also possible to define vertices only
corresponding to either important stations or stations/points along the route
where the direction of the line significantly changes. The stations which do
not have a corresponding vertex are then displayed along the visualized path.
However the selection of important or significant points along one line would be
a manual process.

Instead one can use common curve approximation algorithms from computational
geometry, for instance the algorithm by Imai and Iri [78] to select significant
points on the lines which are represented by vertices. Even more so, following
the motivation of the visualization such an approximation can be adapted dy-
namically, such that the approximation uses more bends for segments closer to
the center point and less bends for further away segments, analogously to the
fisheye processing.

Real-time Data. One key feature of the interactive map model, making it
a state-of-the-art visualization model is the broad support of queries, which the
users can easily access. As the proposed hybrid visualization is fundamentally
dynamic, it is only natural to support dynamic queries, such as route search
and display. Additionally some real-time data should be displayed without the
active request by a user, such as the next departure times and lines for close-bye
stations. This in combination with the general visualizations provides the user
with a large amount of relevant information without the need of any direct user
interaction.

Adding an Outer Cycle. Due to the assumptions made by the proposed
morphing algorithms they can be straight-forward adapted such that a continuous
(however not generally smooth) interlinking with other visualizations is possible,
as described in the paragraph ”Split Edges”. However, this can also be used to

110 CHAPTER 8. HYBRID MODEL

combine more than just two visualization models. For instance, if the displayed
network is very large and complex, even the schematic visualization might lack in
readability. One method to solve this is to add one more concentric circle outside
of the ortho-radial circle, which is continuously connected to the ortho-radial
model. This outer visualization is even more simplified, such as a labeling of
every leaving line, listing all its important stations and omitting any geospatial
data.

Chapter 9

Additional Work

In the following we will highlight three practical applications of information
visualizations, emphasizing more on the design and the translation of theoretic
results to real-world problems and two Graph Drawing challenges, which we solve
on a technical, implementation-driven level. Note that all three visualizations
are created on real world data, more specifically the second two were entries to
the annual Graph Drawing Contest E] where one won first place in 2022. The
first graph presents the findings of a survey of densities of Beyond Planarity
classes as a poster, winning the best poster award of the 29th Symposium on
Graph Drawing and Network Visualization.

Lastly we will discuss an heuristical approach to multi-criterial optimization,
which won in live challenge contests of the annual Graph Drawing Contest 2019,
2020 and 2021. We will shortly describe the techniques used and the approach
chosen, while also presenting the achieved results.

9.1 The Universe Beyond Planarity

This work visually presents an overview of the current statues of the research
field of beyond planarity as a poster. It displays common beyond planarity
classes with known edge density results, inclusion as well as incomparability-
relationships between classes as well as recognition algorithms. The poster was
elected best poster of the 29th International Symposium on Graph Drawing and
Network Visualization. The poster provides a compact and aesthetic summary
of the current literature to enable fast lookup of current boundaries, providing
an overview and serving educational purposes.

The common classes of beyond-planar graphs are observed in two additional
settings, which function as additional requirements to the visualization: The
2-layer setting, where vertices are required to be placed on either of two parallel
lines and edges are drawn in between as well as the outer setting, where all
vertices have to lie on the outer face. Both settings have received significant
study. The classes displayed are the following:

IThe results of the annual Graph Drawing Contest are archived at
https://mozart.diei.unipg.it/gdcontest/

111

112 CHAPTER 9. ADDITIONAL WORK

e k-planar graphs which are graphs for which a drawing exists such that each
edge is crossed at most k > 1 times.

e k-quasiplanar graphs which are graphs for which a drawing exists such that
there exist no k > 1 pairwise crossing edges.

e fan-planar graphs which are graphs for which a drawing exists such that no
edge is crossed by two edges without a common vertex or by two adjacent
edges crossing from different directions.

e RAC graphs which are graphs for which a drawing exists such that every
edge crossing occurs at 90° angle.

o [C-planar graphs are a sub-class of 1-planar graphs. IC-planar graphs are
graphs for which a drawing exists such that no two crossing edges share
an endpoint, thus they are called independent.

e NIC-planar graphs are also a sub-class of 1-planar graphs. NIC-planar
graphs are graphs for which a drawing exists such that no two pairs of
crossing edges share two vertices, thus they are called nearly independent.

In the representation, denoted as the Universe Beyond Planarity, the three
settings are represented by three solar systems. The general setting is yellow,
the outer blue and the 2-layer red. Note that the suns themselves represents the
ordinary classes of planar, outerplanar and 2-layer planar graphs respectively.
The beyond planar graph classes however are represented as planets, where
both the orbit and the size of the planet correlate with the known density of
the graph class. If several graph classes share the same density aside from
additive constants they are shown on the same orbit. Comets represent graph
classes with a density nearly identical to the plants they are next too. If the
optimal version of a class is known, which is the subclass of the class where
the number of edges exactly coincides with the density, the optimal subclass is
represented as rings circling the corresponding planets. Inclusion relationships
between different graph classes are shown with directed edges between planets,
while incomparabilities are shown with dashed edges. If an efficient recognition
algorithm exists for a graph class, the corresponding representation is shown as
being illuminated. This is true for optimal subclasses as well. Additionally there
exists one case, where the optimal subclasses of two beyond planar graph classes
are identical, which is represented as a connection between the two planet rings.

Figure [9.1] shows the poster.

9.1. THE UNIVERSE BEYOND PLANARITY 113

-

Planarity

Aaueue|

Figure 9.1: A visualization displaying the densities of many known Beyond-
Planarity classes for the general, the 2-layer and the outerplanar setting.

114 CHAPTER 9. ADDITIONAL WORK

9.2 Aesthetic Experience Network

For the 29th Graph Drawing Contest the dataset consisted of the findings of
Specker et al. presented in their paper ” Associating With Art: A Network Model
of Aesthetic Effects” regarding the aesthetic experience of modern artworks [124].
Specker et al. investigated the relation of aesthetic effects, which are measured
in sets of two polar characteristics. Subjects considered these characteristics
while observing pieces of modern art. The list of effects consisted of: positive —

negative, active — passive, still — lively, sad — happy, peaceful — aggressive, hard
— soft, cold — warm, light — heavy, rough — smooth, spiritual — bodily, feminine
— masculine, cautious — intrusive, like — dislike, interesting — uninteresting.

Their research studied the conditional dependence relations between the different
effects. Especially it evaluated how (and how much) the relations between effects
differ from one painting to the other. Besides the general task to represent
the data in a graphical way, the authors were especially interested in ”"how to
visualize this data set for an art historical audience or other audience that does
not know about network theory” [33].

Thus besides accurately representing the given data, the visualization aims
to encourage the observers to interact in a playful and curious manner with
the information without relying on any prior knowledge. To achieve this, we
observe the structure of the given data. For any artwork, there exists a complete
graph of the characteristics, where the edges are weighted by the correlation
between the two characteristics. Note that it suffices to choose one of any
pair of characteristics to represent both, as the other characteristic has inverse
correlations. We observed that these correlation networks are largely similar
between paintings, but show deviations, thus we aim for a dense visualization of
every correlation network to enable observers to efficiently perceive and compare
the differences between artworks. Also we did not aim to answer the question
ourselves, whether there is significant deviation between the networks of different
paintings, but provide the tools and prepare the data such that observers can
contemplate this question themselves. We were also inspired by the concept of
graphical inference as discussed by Wickham et al. in their paper ”Graphical
Inference for Infovis”, where protocols are proposed to compare a visualization
against a visualization of random noise to evaluate whether the visualization
actually contains information or whether it is just apophenia, where patterns
are perceived where there are none and misinformation, which is an important
question to be asked in information visualization [134].

For that purpose we implemented a framework which, given a weighted complete
graph and a color-scheme, creates a heat-map displaying the corresponding
correlation network. Specifically it creates a 2 dimensional grid heat-map, where
every weighted edge, i.e. correlation between two characteristics, corresponds to
one cell of the grid which is represented as a color-coded pixel. Thus all data of
one painting is represented as one cohesive image.

However, there are multiple pre-processing steps necessary to enhance the
readability of the representation. One central step is to reorder the rows and
columns of the heat-map to achieve more organic large shapes which highlight
clusters. Analyzing the data we find four such clusters, A=(Cautious, Soft,
Warm, Light), B=(Like, Interesting, Positive), C=(Peaceful, Smooth, Feminine,
Happy), D=(Still, Inactive) while ”Spiritual” remains separate. Note that these

9.2. AESTHETIC EXPERIENCE NETWORK 115

five groups of aesthetic effects display high intragroup correlation. Note that
some characteristics were inverted (displaying ”warm” instead of ”cold” for
example) such that within clusters the coefficients are (generally) strongly
positive. Otherwise high color contrasts within clusters would appear, strongly
misleading the observer. Additionally, the average correlation between any pair
of characteristics was calculated, including the standard deviation across all
networks. In the resulting network high standard deviations of the correlations
clearly coaligned with a high average correlation, thus we can assume that
the average network represents the typical correlation network appropriately.
Therefore the visualization consists of 9 heatmaps, one for each of the 8 artworks
and a additional one showing the average of all pictures. This presents the data
in a way which is visually evocative of an art gallery, fitting the subject of the
visualization.

One additional point to remark is the choice of the color scheme. Clearly a
color scheme should ideally be a continual transition between a series of colors,
such that the colors at both extreme points are clearly distinct and for all
colors in between the appeared color closeness corresponds to the numerical
closeness. Optimally the color scheme further serves the aesthetic and thematic
demand of the visualization. Furthermore recall that protan and deutan color
vision deficiencies are relatively widespread (around 8% of the male population
combined [94], thus we desist from using the popular gradient from red over
green to blue. Instead the color gradient chosen goes from yellow (representing a
strong positive correlation) over magenta to blue (representing a strong negative
correlation). We also made sure to choose the gradient such that a correlation
of 0 is represented by a neutral grey.

Figure [0.2) shows the final result, It can be observed that often there is a light
negative correlation between Cluster A and D, however for some artworks (both
paintings of Paul Klee and Wassily Kandinsky, Untitled) this negative correlation
is much stronger. Another example: In Paul Klee, Blick aus Rot, Cluster A is
by far weaker correlated than in the other works, while the Cluster C rather
corresponds to a K5 o (which is displayed by the yellow ring in the corresponding
heatmap) instead of a full K. Lastly we observe that in comparison with the
average heat map, the correlation network of the painting by Miro and Mortensen,
lot 729 appears to be the painting invoking the most average aesthetic experiences
within the audience.

The poster achieved first place in the 29th Annual Graph Drawing Contest in
the Creative Topic category.

ADDITIONAL WORK

CHAPTER 9.

116

Interesting
positive
Peeeful

mastive

spiritual

Aesthetic Experience

0.6942

-0.463 -0.4 -0. 00

Richasd Polensen, Drcbasilybihen, 1122
Bumen Brsmcsten lfiamess it 720

Figure 9.2: A visualization displaying the experience of an audience

observing modern

visual art.

9.3. HRAFNKELLS SAGA 117

9.3 Hrafnkells Saga

For the 28th International Symposium on Graph Drawing and Network Visu-
alization the data set provided for the Graph Drawing Contest was based on
the Hrafnkell saga. Hrafnkells saga is an icelandic saga which takes place in the
east of Iceland in the 10th century and tells of Hrafnkell who arrives in Iceland
as a settler and the events he endures over the years, becoming an atheist and
obtaining the rank of a respected chieftain. The provided data consists of one
set of actors along with some meta-data like the name, gender and first mention
of the character and a set of edges, which represent interactions between two
characters, where the source corresponds to the acting person and the sink to
the other involved person, as well as a chapter, page and action description. The
aim is to present this data visually to the general public [31].

As the data set corresponds to a chronological sequence of events, we decided to
use a storyline visualization model [129] to represent the data. In a storyline
visualization the actors (characters) of the story are represented by z-monotone
curves, which are neighboring at each interaction. The interactions are displayed
in time-wise order regarding their xz-coordinate. While observing the story in
chronological order we make several useful observation.

e Some interactions in the data set serve to describe family relationships
between characters instead of actions during the story. We display these
interactions separately in the well-known family tree style, where the
characters appearing during the course of the story emerge from the family
trees.

e Since the set of edges is defined as interactions between two characters,
actions which naturally would be considered one action (for instance the
scene where Hrafnkell is tortured by Sam and Thorgeirr) consists of several
edges ("Person 31 to Person 9, 21-hostility_non-lethal” and ”Person 18 to
Person 9, 21-hostility_non-lethal”). To enhance readability we merge such
actions to interactions involving more than two characters.

e There exist characters which appear in at most two scenes. As those
do not really add to the structure conveyed by the storyline, they are
not represented by a separate curve but instead are mentioned in the
appropriate interactions directly.

e In the data provided, the network was disconnected as there exist characters
(for instance Person 27 - milking women) which do not have any incident
edges. To resolve this we supplemented the provided data with additional
interactions on the basis of the saga.

e Additionally we included more scenes which are essential for the story
but did not appear in the provided data. For instance a scene at the
start of Chapter 8 in which Thorbjorn considers giving up his case against
Hrafnkell, however he is assured in the case by Sam, even though Sam was
reluctant at the beginning.

e We rearranged the provided action types, as some of the action types
given do not appear in the data (25 - request information”) others appear
mostly in pairs (" 10 - provide information” and ”11 - discover information”),

118 CHAPTER 9. ADDITIONAL WORK

others appear very rarely (714 - accusation” appears a total of three times).
The actions are reordered such that there exist eight clearly distinct
categories, specifically: Exchange of Information, Hereditary Information,
Peaceful Death, Physical Assault, Providing Gifts, Providing Support,
Verbal Assault, Violent Death. These categories are each assigned a
graphically mark.

e Lastly, we omitted the page information, as the storyline visualization
already depicts the chronological order.

After applying these changes the final data set contained 117 scenes and family
relations. Further many curve intersections can be prevented by the orders of
appearance and disappearance of the characters.

As the graphical aesthetic plays significant part in sparking the interest of the
general public, we choose an unusual design for the storyline representation
based on the icelandic theme of the story by presenting it on a runestone. There
exist about 3000 runestones in Scandinavia, mostly dated between the 9th and
12th century. The visualization is designed such that the runestone can be folded
and glued by interested viewers themselves, if the visualization is printed on a
poster. The illustration style imitates that of original runestones, including the
use of a strong red color as many original runestones are colored with Falu red.
Some additional remarks regarding the visualization: Figure [9.3] shows the final
storyline visualization of the Hrafnkell saga.

e To clearly and simply convey the structure of the story each face of the
runestone corresponds to one chapter of the story (as well as two additional
faces, one for illustrative purposes and one to show the initial family tree
of the ruler of Norway at the time of the story).

e These faces are designed such their size is proportional to the number
of scenes in the corresponding chapter as well as the importance of the
chapter within the context of the story.

e Due to the geometric nature of the runestone, there are faces corresponding
to non-consecutive chapters which are still adjacent. This is used to
create shortcuts between scenes for characters, which do not appear in
intermediate chapters. For instance Chapter 3 is incident to Chapter 13.
Multiple characters do appear in Chapter 3 and then again in Chapter 14
without intermediate involvement. This reduces the length of their paths
significantly and frees up space within intermediate chapters.

e As most historic runestones are monochrome, using distinct colors to mark
the curves representing characters does not fit the intended aesthetic, also
such a color-coding relies heavily on the use of a legend, which has to be
frequently accessed by the audience. Instead we used a continuous labeling
of the curves representing the characters by the character name, which
efficiently identifies the character while also resembling the inscription style
of some historic runestones.

e To finalize the runestone aesthetic we decided on using runic characters
for the lettering. However, the contemporary audience is likely used to
the Latin alphabet which makes many runic characters misleading. For
instance, the sound of modern day’s G can be written as an X. Thus we

9.3. HRAFNKELLS SAGA 119

Figure 9.3: A visualization displaying the story of the Hrafnkell saga, a well
known icelandic folk saga.

120 CHAPTER 9. ADDITIONAL WORK

decided on only using specific characters from the Elder Futhark while
using a stylized representation of the Latin alphabet otherwise. Note
that in some cases this leads to the repurposing of some Elder Futhark
characters. For instance to represent the letter P the rune P (wunjo) is
used in the visualization. However I is originally pronounced like a V or W.
Lastly we reintroduced one common runic character, which is b (thurisaz)
representing a th-sound. This character appears in many icelandic names
and is still used today in the icelandic language, however with a slightly
altered appearance and name (thorn). However we abstained from using
the character within non-name words, as to not confuse the modern-day
audience.

9.4 Heuristic Crossing Minimization in upward
drawings

For the 26th and 27th International Symposium on Graph Drawing and Net-
work Visualization the automatic live challenge was to provide a time-efficient
algorithm to reduce the number of crossings within an upward drawing of a
given graph. Upward planarity is a useful requirement for visualisation in many
use cases, while crossing minimization is one of the most common optimization
criteria for Graph Drawing algorithms, as it has been shown that a high crossing
number decreases the task performance on a Graph Drawing significantly [106].
Note that the general optimization problem of minimizing edge crossings is
NP-hard [74], thus most exact algorithm and heuristics focus on more restrictive
cases. One commonly algorithm which is familiar to the provided problem is the
Sugyiama framework [126], however this framework requires vertices to be fixed
on layers, further it permits bends.

The algorithm we developed and implemented to solve this problem became part
of a more general heuristic optimization framework, which can easily adapted to
optimize other criteria like crossing resolution, angular resolution and stress and
also allows for multicriterial optimization.

The iterative algorithm takes an input of a graph G consisting of n vertices and
m edges, then it iteratively creates a series of k valid drawings I'y, ..., 'y, within
a bounding box of width W and height H. Every graph is evaluated based on
an objective function, corresponding to the optimization criterion, in this case
the number of crossings. Step i > 1 of the algorithm is based on the vertex
movement paradigm [59] and works the following: The drawing T';_; is already
known. Suppose the drawing is not crossing free, then there exist crossing edges.
All vertices incident to crossing edges are considered the vertez-pool as locally
adjusting their position could reduce the total number of crossings.

Then one such vertex v is selected from the vertex-pool at random. The position
of this vertex will be locally changed to create drawing I';. All other vertices
will be unchanged from I';_;. Next we will decide on a set of candidate positions
which will be considered for the placement of v. This is done by creating a
constant number of rays emanating from the current position of v. Then for
each ray a random length is chosen (a maximum length is given and might be
depending on ¢, decreasing for later steps of the algorithm), this gives vectors

9.4. HEURISTIC CROSSING MINIMIZATION IN UPWARD DRAWINGS121

which determine the candidate positions of v. For every candidate position the
validity of the drawing is checked, i.e. whether there is no vertex overlap and
no vertices are placed outside of the bounding box, if the drawing is invalid the
candidate position is discarded. Additionally, for every candidate position the
changes in the objective function are evaluated. The best solution is selected if
it improves the optimization criterion or is equal to the current solution. Thus
we constructed I';. Note that with a small chance, we also allow for a candidate
position to be taken which is strictly worse than the solution of I';_;. This allows
the algorithm to overcome local optimal solutions.

Note that the performance of the algorithm depends on very efficient iterative
steps. Thus some implementation details are crucial to achieve good results.
The most important technical improvements we made are the following:

e As the evaluations of the candidate positions are independent, this is an
opportunity to use multi-threading. Specifically choosing the number of
rays based on the number of processors available greatly increases the
performance by parallelization.

e In some cases, if the candidate positions can be evaluated very quickly, it
can be more efficient to omit the concept of the vertex-pool altogether and
iterate through all vertices repeatedly. This is due to the use of pipelining,
which increases the speed significantly, if the vertices which are to be moved
are in a fixed order and thus parts of the program can be pre-loaded and
even pre-evaluated for a I';, while I';, 4 < j is not constructed yet. This is
not possible, if the vertices are selected by chance.

e For this specific optimization objective crossing calculation makes up

a significant part of the running time. Thus it is worthwhile to study
the crossing calculation in more detail. Note that the naive algorithm,
calculating all edge crossings takes time O(m?). One initial optimization
is using a sweep line algorithm to calculate the crossings of the initial
drawing in O((m + ¢)log(m)) time, where ¢ denote the total number of
crossings [I1]. Yet, this would only slightly improve the iterative steps of
the algorithm.
However, we can make two important observations. For the evaluation
of one candidate position only the edges incident to the moved vertex
have to be considered (although they can cross with any other edge) and
this change is local and often only affects a fraction of the bounding box,
especially for large graphs. Thus we utilize an R-tree data-structure [12],
which allows for quick query for overlapping rectangles to find all edges
which can possibly be affected by the local change. All other edges do not
have to be evaluated. Note that this results in a query-time of O(log(m)+o0)
for edges which might be crossed or no longer crossed, where o denotes the
output size while the actual crossing calculation takes O(deg(v) - 0) time,
which is significantly faster if o is small.

Remark that while the algorithm works for any computed valid initial drawing I'y
the final result and the rate of improvement in regard of the number of iterations
depends on the initial drawing. Thus we placed special importance on generating
initial drawings which were random and diverse. We further preprocessed those
drawings such that the iterative algorithm could work best. To achieve this we

122 CHAPTER 9. ADDITIONAL WORK

used several versions of the Sugiyama framework, while assigning the vertices
as uniformly as possible to the layers. We introduced algorithms minimizing
the total number of layers the edges span to realize the layer assignment. Note
however, that multi-layer edges are not well handled by the Sugiyama framework.
Separately we introduced multiple new algorithms based on topological sorting
and ear decompositions of the input graphs to generate initial drawings. The
preprocessing focused on uniformly distributing the vertices, such that dense
areas of the drawing are prevented, as those quickly constrain a central vertex,
effectively ”locking” it in place, limiting the functionality of the iterative steps.

The algorithm won in the live challenge of the annual Graph Drawing Contests
2019 and 2020.

9.5 Heuristic Edge Length Ration Optimization

For the 28th International Symposium on Graph Drawing and Network Visual-
ization the task of the automatic live challenge was changed. The new objective
was to minimize the planar polyline edge-length ratio of a given graph on a
fixed grid [32]. The planar edge-length ratio of a drawing is the ratio between
the Euclidian distance of the most distant adjacent vertices and the Euclidian
distance between the closest adjacent vertices of a planar drawing. Note that for
the drawings the edges have to be straight-line, thus the ratio corresponds to
the ratio of the length of the longest and the shortest edge.

The planar polyline edge-length ratio is a variation of the problem, where edges
can be drawn as polylines, where the maximum number of bends is given. The
ratio is the ratio between the length of the longest polyline and the length of
the shortest polyline of the planar drawing. Multiple recent papers study this
problem [16], 2], 87].

The heuristical optimization framework described in Section [9.4] can easily be
adjusted to optimize the planar polyline edge-length ratio instead. However
there are some adjustments to be made:

e The data structure has to be generalized, such that bends are also consid-
ered by the algorithm. Note that the movement of a bend only affects the
length of one edge.

e As the given graph might not initially contain bends, the algorithm should
be able to introduce bends. We decided on only introducing bends, when
no further improvement takes place over a set amount of iterations. Note
that the algorithm does not remove bends at any points. We observe that
the removal of bends on edges is only considerable if the corresponding
edge is very short, which is already undesirable given the optimization
criterion.

e If an edge has at least one bend, it is no longer possible to change the
embedding of the graph by moving one of the incident vertices, as a non-
crossing-free intermediate drawing would be necessary. Thus the algorithm
included methods of moving full edges instead of single vertices.

However it has to be remarked, that the algorithmic framework is less suited for

9.5. HEURISTIC EDGE LENGTH RATION OPTIMIZATION 123

this optimization problems, as the planarity constrained, combined with bends,
restrict the iterative steps considerably. This was evident by the algorithm
rarely changing the initial embedding, even though the additional strategy did
allow for this. Even more significantly the objective function is at each step of
the algorithm defined only by exactly two edges. This either constraints the
candidate-pool extremely, which very often leads to local optimal solutions or all
vertices have to be considered. However in this case, for all but the candidate-
pool vertices, no local objective function exists, as the incident edges of the
vertices are independent of the planar polyline edge-length ratio unless they
become the longest or shortest edge. While introducing a secondary objective
function which locally optimizes the edge-length ratio of all incident edges does
improve results in some cases, there is generally much more randomness involved
than for other objective functions.

Still, the algorithm won in the live challenge of the annual Graph Drawing
Contest 2021.

124 CHAPTER 9. ADDITIONAL WORK

Chapter 10

Conclusion

In this thesis we made contributions to several theoretical problems, providing
algorithmic solutions to some recent challenges in Graph Drawing. To conclude
this, we will summarize the results of the thesis and raise related open problems.

Window Width. In Part I of the thesis we introduced the Window Width
minimization problem as well as the x-Distance minimization problem. We proved
that the Window Width minimization problem is polynomial time solvable if
the bottom layer is fixed, providing a sweep-line-algorithm of running time
O(nalog(ww) + m). A similar algorithm was used to show that the z-Distance
minimization problem is polynomial time solvable if one layer is fixed, yielding a
running time of O(n4logna + m). Both the Window Width sum minimization
and z-Distance sum minimization were shown to be polynomial time solvable as
well, reducing the problem to a weighted matching problem with running time
O(n3 + m) each.

In contrast, we proved that the Window Width minimization problem is NP-
complete if the top layer is fixed, by reduction from the Exact 3-SAT problem.
Additionally we provided a polynomial time 2-approximation algorithm for
this problem. In Chapteifd] we implemented the algorithms and evaluated their
improvements on the respective optimization criteria for randomly generated
data. We found that there is significant improvement for graphs where there
are more vertices of ny than npg, especially for sparse graphs. However if nA is
smaller than np there are rarely significant improvements, implying that other
other criteria should be optimized instead.

While the results presented in Part I provided a thorough first attempt to answer
the most important questions regarding Window Width and z-Distance in 2
layered drawings, there are still many open questions remaining. The most basic
is whether the Window Width can be optimized in polynomial time if no vertices
are preassigned to any position. Also a symmetrical definition of Window Width,
where not only the Window Widths of vertices of A but also of B should be
optimized simultaneously would be a natural variant of the studied problem.
Further relaxing the restrictions of the preassigned vertices, where only an order
of vertices for each layer, but not a fixed placement is given may be worthwhile.
Especially for the NP-hard problem with fixed top layer, one might consider the

125

126 CHAPTER 10. CONCLUSION

bottom layer to be ordered but not placed and ask whether this problem is still
NP-hard.

Simultaneous Embedding of Multiple Trees. In Part II of the thesis the
Crossing Minimization of Upward Trees (CMUT) problem was introduced, where
the leaves of k layered rooted trees have to obtain a fixed order. While it is a
known result that the problem is NP-complete for an arbitrary number of trees
even on just two layers, we proved that the problem is fixed parameter linear
for the number of trees k in Chapter [6] To do so, we reduced the problem to a
shortest path problem on a k-dimensional weighted cube graph. By extending
the algorithmic concept we further proved that the CMUT problem is in XP
taking the number of trees k as parameter when considered on three layers.
The proposed algorithm reduced the problem to a shortest path problem on a
k-dimensional weighted grid graph. Several generalizations of the problem were
provided, taking partial orders for the second and third layer as part of the input
and extending the result to k& planar upward graphs if the third layer is sparse.
In Chapter [6] an arbitrary number of layers was considered, however, limiting the
number of trees strictly to two. Doing so, we were able to prove that the number
of crossings can be minimized in polynomial time O(n? - ny), where n; and no
denote the number of vertices of the two trees respectively. We generalized this
result, taking partial orders as input for all layers, instead of a total order of all
leaves. Further we extended the result to one tree and one upward planar graph.

The results approached the CMUT problem from two directions, by restricting
either the height or the number of trees. However there is a gap between the
two main results which remains the central open question, specifically: is the
problem for 3 trees on 4 layers NP-hard? If it is polynomial time solvable,
what are the parameters such that the problem transitions into an NP-hard
problem? Another open question regards the prerequisites of the drawing. If it
is possible to show that the crossing minimal drawing is always planar regarding
the individual trees (assuming that the leaf order allows for a planar drawing)
the results would be more general. While we conjecture this to be true, so far
we were unable to prove it.

Relaxing the prerequisites for a forest to allow for multiple planar or general
graphs is also a direction worth studying, as results would potentially influence
the state-of-the-art for Sugyiama style drawings.

Ortho-Radial Morphing. In Part III of the thesis we made several advances
to make the ortho-radial model suitable for dynamic use. We proposed eight
strategies taking geospatial networks as input and constructing ortho-radial repre-
sentations which allow for continuous updates. In Chapter [§ we introduced those
strategies in detail, discussing their theoretical advantages and disadvantages in
regards of several well-established quality metrics. Additionally, we introduced
the octo-radial model, allowing for 45° spiral segments, extending the the circular
and straight line segments of the ortho-radial model which makes the model
more flexible and closer to the common octilinear metro map representation. An
octo-radial morphing strategy was provided as well. In Chapter [7.4] we put these
strategies to the test, applying them to both benchmarks utilizing real-world
data and randomly generated data. The resulting number of flips, crossings and
the Fréchet distances in respect to the straight line segments were presented

127

and discussed. Considering their overall performances, we proposed the oneBend
and the frechetspoke strategies as the most versatile and capable solutions. In
Chapter [§| a hybrid visualization model was introduced combining schematic and
exact geospatial representations utilizing the results of the previous chapters.

As the results can be considered the first advance towards morphing of ortho-
radial drawings, there remains much to be studied. One challenge is to find
algorithms which preserve simplicity and planarity during the morph, assuming
that start and end embeddings are equivalent and planar. Considering both the
morphing models and the proposed hybrid visualization model a user study would
allow a direct comparison with the state-of-the-art models and an investigating
into the readability of the resulting drawings and morphs. Regarding the new
octo-radial model, strategies utilizing all eight ports may be beneficial for some
use-cases and thus form an intriguing open problem.

128 CHAPTER 10. CONCLUSION

Bibliography

(1]

[10]
[11]
[12]

[13]

Albert, R., Barabdasi, A.L.: Statistical mechanics of complex networks. Reviews
of modern physics 74(1), 47 (2002)

Altenhoff, A.M., Gil, M., Gonnet, G.H., Dessimoz, C.: Inferring hierarchical
orthologous groups from orthologous gene pairs. PloS one 8(1), e53786 (2013)

Aronov, B., Har-Peled, S., Knauer, C., Wang, Y., Wenk, C.: Fréchet distance for
curves, revisited. In: Algorithms-ESA 2006: 14th Annual European Symposium,
Zurich, Switzerland, September 11-13, 2006. Proceedings 14. pp. 52-63. Springer
(2006)

de Assis Mota, A., Mota, L.T.M.: Drawing meshed one-line diagrams of electric
power systems using a modified controlled spring embedder algorithm enhanced
with geospatial data. Journal of Computer Science 7(2), 234-241 (2011)

Barth, L.: Drawing metro maps on concentric circles. Unpublished doctoral
dissertation, Master’s thesis|. Fakultat fiir Informatik, Karlsruher Institut fiir
(2016)

Barth, L., Niedermann, B., Rutter, 1., Wolf, M.: Towards a topology-shape-
metrics framework for ortho-radial drawings. arXiv preprint arXiv:1703.06040
(2017)

Bast, H., Brosi, P., Storandt, S.: Metro maps on flexible base grids. In:
Hoel, E., Oliver, D., Wong, R.C., Eldawy, A. (eds.) Proceedings of the
17th International Symposium on Spatial and Temporal Databases, SSTD
2021, Virtual Event, USA, August 23-25, 2021. pp. 12-22. ACM (2021).
https://doi.org/10.1145/3469830.3470899, https://doi.org/10.1145/3469830.,
3470899

Bastert, O., Matuszewski, C.: Layered drawings of digraphs. In: Drawing Graphs:
Methods and Models, pp. 87-120. Springer (2001)

Bekos, M.A., Férster, H., Kaufmann, M., Kobourov, S., Kryven, M., Kuckuk, A.,
Schlipf, L.: On the 2-layer window width minimization problem. In: International
Conference on Current Trends in Theory and Practice of Computer Science. pp.
209-221. Springer (2023)

Bennett, C., Ryall, J., Spalteholz, L., Gooch, A.: The aesthetics of graph
visualization. In: CAe. pp. 57-64 (2007)

Bentley, Ottmann: Algorithms for reporting and counting geometric intersections.
IEEE Transactions on computers 100(9), 643-647 (1979)

Bentley, J.L., et al.: Decomposable searching problems. Inf. Process. Lett. 8(5),
244-251 (1979)

de Berg, M., Mehrabi, A.D., Ophelders, T.: Data structures for Fréchet queries
in trajectory data. In: Gudmundsson, J., Smid, M.H.M. (eds.) Proceedings of

129

https://doi.org/10.1145/3469830.3470899
https://doi.org/10.1145/3469830.3470899

130

BIBLIOGRAPHY

the 29th Canadian Conference on Computational Geometry, CCCG 2017, July
26-28, 2017, Carleton University, Ottawa, Ontario, Canada. pp. 214-219 (2017)

Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Computa-
tional Geometry 9(3), 159-180 (1998)

Binucci, C., Chimani, M., Didimo, W., Gronemann, M., Klein, K., Kratochvil, J.,
Montecchiani, F., Tollis, I.G., et al.: Algorithms and characterizations for 2-layer
fan-planarity: From caterpillar to stegosaurus. Journal of Graph Algorithms and
Applications 21(1), 81-102 (2017)

Blazej, V., Fiala, J., Liotta, G.: On the edge-length ratio of 2-trees. In: Inter-
national Symposium on Graph Drawing and Network Visualization. pp. 85-98.
Springer (2020)

Bodlaender, H.L., Fomin, F.V., Koster, A.M., Kratsch, D., Thilikos, D.M.: A

note on exact algorithms for vertex ordering problems on graphs. Theory of
Computing Systems 50(3), 420-432 (2012)

Booth, T.L.: Sequential machines and automata theory. (No Title) (1967)

Borkin, M.A., Vo, A.A., Bylinskii, Z., Isola, P., Sunkavalli, S., Oliva,
A., Pfister, H.: What makes a visualization memorable? IEEE Transac-
tions on Visualization and Computer Graphics 19(12), 2306-2315 (2013).
https://doi.org/10.1109/TVCG.2013.234

Borner, K., Teichmann, S.A., Quardokus, E.M., Gee, J.C., Browne, K., Osumi-
Sutherland, D., Herr, B.W., Bueckle, A., Paul, H., Haniffa, M., et al.: Anatomical
structures, cell types and biomarkers of the human reference atlas. Nature cell
biology 23(11), 1117-1128 (2021)

Borrazzo, M., Frati, F.: On the planar edge-length ratio of planar graphs. arXiv
preprint arXiv:1908.03586 (2019)

Brandes, U., Kopf, B.: Fast and simple horizontal coordinate assignment. In:
International Symposium on Graph Drawing. pp. 31-44. Springer (2001)

Bruckdorfer, T., Kaufmann, M., Montecchiani, F., et al.: 1-bend orthogonal
partial edge drawing. J. Graph Algorithms Appl. 18(1), 111-131 (2014)
Buchin, K., Buchin, M., Byrka, J., Néllenburg, M., Okamoto, Y., Silveira, R.I.,
Wolff, A.: Drawing (complete) binary tanglegrams: hardness, approximation,
fixed-parameter tractability. Algorithmica 62, 309-332 (2012)

Butler, M.A., King, A.A.: Phylogenetic comparative analysis: a modeling ap-
proach for adaptive evolution. The american naturalist 164(6), 683-695 (2004)
Chan, H.Y., Xu, Y., Chen, A., Liu, X., Cheung, K.K.C.: Drawing metro maps

in concentric circles: A designer-in-the-loop approach with visual examples.
Transactions in GIS (2022)

Chang, Y.: Ortho-radial drawing in near-linear time. CoRR
abs/2305.00425 (2023). https://doi.org/10.48550/arXiv.2305.00425,
https://doi.org/10.48550/arXiv.2305.00425

Chiswell, I., Hodges, W.: Mathematical logic. OUP Oxford (2007)

Chung, F.R., et al.: Probabilistic Combinatorics and Its Applications, vol. 44.
American Mathematical Soc. (1991)

Ciudad, S.B.A.: Buenos aires: Network map (2023), https://buenosaires.gob|
ar/subte/mapa-del-subte-y-combinaciones| [Accessed on: 2023-12-31]

Committe, G.D.C.: 28th graph drawing contest - creative topics
(2021), https://mozart.diei.unipg.it/gdcontest/contest2021/index.php?
id=creative-topicsl [Accessed on: 2023-12-12]

https://doi.org/10.48550/arXiv.2305.00425
https://buenosaires.gob.ar/subte/mapa-del-subte-y-combinaciones
https://buenosaires.gob.ar/subte/mapa-del-subte-y-combinaciones
https://mozart.diei.unipg.it/gdcontest/contest2021/index.php?id=creative-topics
https://mozart.diei.unipg.it/gdcontest/contest2021/index.php?id=creative-topics

BIBLIOGRAPHY 131

32]

[33]

34
35]
136]
37)
38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

[50]

Committe, G.D.C.: 28th graph drawing contest - live challenge
(2021), https://mozart.diei.unipg.it/gdcontest/contest2021/index.php?
id=live-challengel [Accessed on: 2023-12-12]

Committe, G.D.C.: 29th graph drawing contest - creative topics (2022), https:
//mozart.diei.unipg.it/gdcontest/contest2022/topics.html. [Accessed on:
2023-12-12]

Consortium, H.: CCF ASCT+B Reporter (2010), https://hubmapconsortium|
github.io/ccf-asct-reporter/. [Accessed on: 2023-12-19]

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms.
MIT press (2022)

Cornelsen, S., Karrenbauer, A.: Accelerated bend minimization. In: International
Symposium on Graph Drawing. pp. 111-122. Springer (2011)

Czabarka, E., Székely, L.A., Wagner, S.G.: A tanglegram Kuratowski theorem. J.
Graph Theory 90(2), 111-122 (2019). https://doi.org/10.1002/jgt.22370

De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41-51 (1990)

Design, B.S.V., DIEINFORMATIONSDESIGNER: Bahnen in kdln (2023), https!
//www.kvb.koeln/fahrtinfo/liniennetzplaene.html. [Accessed on: 2023-12-
31]

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry 4(5), 235-282
(1994)

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph drawing: algorithms
for the visualization of graphs. Prentice Hall PTR (1998)

Di Battista, G., Tamassia, R., Tollis, I.G.: Area requirement and symmetry
display in drawing graphs. In: Proceedings of the fifth annual symposium on
Computational geometry. pp. 51-60 (1989)

Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing
drawings. Algorithmica 68(4), 954-997 (2014)

Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In:
Algorithms and Data Structures: 11th International Symposium, WADS 2009,
Banff, Canada, August 21-23, 2009. Proceedings 11. pp. 206-217. Springer (2009)

Didimo, W., Kaufmann, M., Liotta, G., Ortali, G.: Computing bend-minimum
orthogonal drawings of plane series—parallel graphs in linear time. Algorithmica
pp- 1-62 (2023)

Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Computing Surveys (CSUR) 52(1), 1-37 (2019)
Diestel, R.: Graph Theory, 5th Edition, vol. 173. Springer (2017)
Dujmovié¢, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C.,
Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., et al.: On the parame-
terized complexity of layered graph drawing. In: Algorithms—ESA 2001: 9th

Annual European Symposium Arhus, Denmark, August 28-31, 2001 Proceedings
9. pp. 488-499. Springer (2001)

Dujmovic, V., Fellows, M., Hallett, M., Kitching, M., Liotta, G., McCartin, C.,
Nishimura, N., Ragde, P., Rosamond, F., Suderman, M., et al.: A fixed-parameter
approach to 2-layer planarization. Algorithmica 45, 159-182 (2006)

Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs.
Algorithmica 11, 379-403 (1994)

https://mozart.diei.unipg.it/gdcontest/contest2021/index.php?id=live-challenge
https://mozart.diei.unipg.it/gdcontest/contest2021/index.php?id=live-challenge
https://mozart.diei.unipg.it/gdcontest/contest2022/topics.html
https://mozart.diei.unipg.it/gdcontest/contest2022/topics.html
https://hubmapconsortium.github.io/ccf-asct-reporter/
https://hubmapconsortium.github.io/ccf-asct-reporter/
https://www.kvb.koeln/fahrtinfo/liniennetzplaene.html
https://www.kvb.koeln/fahrtinfo/liniennetzplaene.html

132

[51]

[59]

BIBLIOGRAPHY

Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Draw-
ing Graphs: Methods and Models, pp. 121-171. Springer (2001)

Eiter, T., Mannila, H.: Computing discrete fréchet distance (1994)

Erdés, P., Rényi, A., et al.: On the evolution of random graphs. Publ. math. inst.
hung. acad. sci 5(1), 17-60 (1960)

Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via cross-
ing minimization. J. Comput. Syst. Sci. 76(7), 593-608 (2010).
https://doi.org/10.1016/j.jcss.2009.10.014

Forster, H., Kaufmann, M.: On compact rac drawings. In: 28th Annual European
Symposium on Algorithms (ESA 2020). Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik (2020)

Foster, E., Towle Jr, B.: Software engineering: a methodical approach. Auerbach
Publications (2021)

Franconeri, S.L., Simons, D.J.: Moving and looming stimuli capture attention.
Perception & psychophysics 65(7), 999-1010 (2003)

Frank, F., Kaufmann, M., Kobourov, S., Mchedlidze, T., Pupyrev, S., Ueckerdt,
T., Wolff, A.: Using the metro-map metaphor for drawing hypergraphs. In:
International Conference on Current Trends in Theory and Practice of Informatics.
pp. 361-372. Springer (2021)

Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undi-
rected graphs (extended abstract and system demonstration). In: Graph Drawing:
DIMACS International Workshop, GD’94 Princeton, New Jersey, USA, October
10-12, 1994 Proceedings 2. pp. 388-403. Springer (1995)

Gansner, E.R., Hu, Y., Kobourov, S.G.: Gmap: Drawing graphs as maps. In:
Graph Drawing: 17th International Symposium, GD 2009, Chicago, IL, USA,
September 22-25, 2009. Revised Papers 17. pp. 405-407. Springer (2010)

Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. STAM Journal on
Algebraic Discrete Methods 4(3), 312-316 (1983)

Geiger, R.L., Allen, P.E., Strader, N.R.: Vlsi design techniques for analog and
digital circuits (1990)

Gilbert, E.N.: Random graphs. The Annals of Mathematical Statistics 30(4),
1141-1144 (1959)

Gilbreth, F.B., Gilbreth, L.M.: Process charts: First steps in finding the one
best way to do work. Journal of Fluids Engineering 43, 1029-1043 (1921)

GmbH, V.N.A.D.: Liniennetzplan stadtnetz tiibingen (2023), https://www|
swtue.de/oepnv/fahrplan-und-liniennetz/liniennetz.html. [Accessed on:
2023-12-31]

Goldberg, A.V., Harrelson, C.: Computing the shortest path: A search meets
graph theory. In: SODA. vol. 5, pp. 156-165 (2005)

Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization
heuristics. In: Graph Drawing: 11th International Symposium, GD 2003 Perugia,
Italy, September 21-24, 2003 Revised Papers 11. pp. 13-24. Springer (2004)

Haeckel, E.H.P.A.: Systematische phylogie, vol. 3. G. Reimer (1895)

Har-Peled, S., Raichel, B.: The fréchet distance revisited and extended. ACM
Transactions on Algorithms (TALG) 10(1), 1-22 (2014)

Hasheminezhad, M., Hashemi, S.M., Tahmasbi, M.: Ortho-radial drawings of
graphs. Australas. J Comb. 44, 171-182 (2009)

https://www.swtue.de/oepnv/fahrplan-und-liniennetz/liniennetz.html
https://www.swtue.de/oepnv/fahrplan-und-liniennetz/liniennetz.html

BIBLIOGRAPHY 133

[71]

[72]
73]
[74]
[75]
[76]
[77]

(78]

[79]

[80]

[81]

[82]

[83]

[84]
[85]
[86]
[87]

[88]

[89]

Hasheminezhad, M., Hashemi, S.M., Tahmasbi, M.: Ortho-radial drawings of
graphs. Australas. J Comb. 44, 171-182 (2009), http://ajc.maths.uq.edu.au/
pdf/44/ajc_v44_pl71.pdf

Haskell, A.C., Breaznell, J.G.: Graphic charts in business: How to make and use
them. Codex Book Company, Incorporated (1922)

Hemetsberger, P.: Anagram generated by dict.cc/shuffle (2023), https://m.dict|
cc/shuffle/. [Accessed on: 2023-12-31]

Hlinény, P.: Crossing number is hard for cubic graphs. Journal of Combinatorial
Theory, Series B 96(4), 455-471 (2006)

Hong, S.H., Merrick, D., do Nascimento, H.A.: Automatic visualisation of metro
maps. Journal of Visual Languages & Computing 17(3), 203-224 (2006)

Huang, W.: Using eye tracking to investigate graph layout effects. In: 2007 6th
International Asia-Pacific Symposium on Visualization. pp. 97-100. IEEE (2007)

Huelsenbeck, J.P.; Bollback, J.P., Levine, A.M.: Inferring the root of a phyloge-
netic tree. Systematic biology 51(1), 3243 (2002)

IMAI, H., IRI, M.: Polygonal approximations of a curve — formulations and
algorithms. In: TOUSSAINT, G.T. (ed.) Computational Morphology, Machine
Intelligence and Pattern Recognition, vol. 6, pp. 71-86. North-Holland (1988).
https://doi.org/https://doi.org/10.1016 /B978-0-444-70467-2.50011-4, https://
www.sciencedirect.com/science/article/pii/B9780444704672500114

Inbar, O., Tractinsky, N., Meyer, J.: Minimalism in information visualization:
attitudes towards maximizing the data-ink ratio. In: Proceedings of the 14th
European conference on Cognitive ergonomics: invent! explore! pp. 185-188
(2007)

Jacobsen, B., Wallinger, M., Kobourov, S., Nollenburg, M.: Metrosets: Visual-
izing sets as metro maps. IEEE Transactions on Visualization and Computer
Graphics 27(2), 1257-1267 (2020)

Jinger, M., Mutzel, P.: 2-layer straightline crossing minimization: Performance
of exact and heuristic algorithms. In: Graph Algorithms and Applications I, pp.
3-27. World Scientific (2002)

Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16,
4-32 (1996)

Katheder, J., Kobourov, S.G., Kuckuk, A., Pfister, M., Zink, J.: Simultane-
ous drawing of layered trees. In: International Conference and Workshops on
Algorithms and Computation. pp. 47-61. Springer (2024)

Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. arXiv preprint
arXiv:1403.6184 (2014)

Kaufmann, M., Wagner, D.: Drawing graphs: methods and models. Springer
(2003)

Lawler, E.: A comment on minimum feedback arc sets. IEEE Transactions on
Circuit Theory 11(2), 296-297 (1964)

Lazard, S., Lenhart, W.J., Liotta, G.: On the edge-length ratio of outerplanar
graphs. Theoretical Computer Science 770, 88-94 (2019)

Leach, G.: Improving worst-case optimal delaunay triangulation algorithms. In:
4th Canadian Conference on Computational Geometry. vol. 2, p. 15. Citeseer
(1992)

Lempel, A.: An algorithm for planarity testing of graphs. In: Theory of Graphs:
International Symposium. pp. 215-232. Gorden and Breach (1967)

http://ajc.maths.uq.edu.au/pdf/44/ajc_v44_p171.pdf
http://ajc.maths.uq.edu.au/pdf/44/ajc_v44_p171.pdf
https://m.dict.cc/shuffle/
https://m.dict.cc/shuffle/
https://www.sciencedirect.com/science/article/pii/B9780444704672500114
https://www.sciencedirect.com/science/article/pii/B9780444704672500114

134
[90]
[91]

[92]

[93]

[94]

[100
[101

[102]

[103]
[104]
(105]

[106]

BIBLIOGRAPHY

Limited, M.C.: Hong kong: Metro map (2024), https://www.mtr.com.hk/en/
customer/services/system_map.html. [Accessed on: 2023-12-31]

for London, T.: London: Tubemap (2023), https://tfl.gov.uk/maps/track/
tubel [Accessed on: 2023-12-31]

Masuda, S., Nakajima, K., Kashiwabara, T., Fujisawa, T.: Crossing minimization
in linear embeddings of graphs. IEEE Transactions on Computers 39(1), 124-127
(1990)

Miller, Z., Orlin, J.B.: Np-completeness for minimizing maximum edge length in
grid embeddings. Journal of algorithms 6(1), 10-16 (1985)

Modarres, M., Mirsamadi, M., Peyman, G.A.: Prevalence of congenital color
deficiencies in secondary-school students in tehran. International ophthalmology
20, 221-222 (1996)

Munoz, X., Unger, W., Vrt’o, I.: One sided crossing minimization is np-hard
for sparse graphs. In: Graph Drawing: 9th International Symposium, GD 2001
Vienna, Austria, September 23-26, 2001 Revised Papers 9. pp. 115-123. Springer
(2002)

Niedermann, B., Rutter, I.: An integer-linear program for bend-minimization in
ortho-radial drawings. In: Auber, D., Valtr, P. (eds.) Graph Drawing and Network
Visualization - 28th International Symposium, GD 2020, Vancouver, BC, Canada,
September 16-18, 2020, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 12590, pp. 235-249. Springer (2020). https://doi.org/10.1007/978-3-
030-68766-3_19, https://doi.org/10.1007/978-3-030-68766-3_19

Niedermann, B., Rutter, I., Wolf, M.: Efficient algorithms for ortho-radial graph
drawing. arXiv preprint arXiv:1903.05048 (2019)

Niedermann, B., Rutter, 1., Wolf, M.: Efficient algorithms for ortho-radial graph
drawing. In: Barequet, G., Wang, Y. (eds.) 35th International Symposium on
Computational Geometry, SoCG 2019, June 18-21, 2019, Portland, Oregon,
USA. LIPIcs, vol. 129, pp. 53:1-53:14. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik (2019). https://doi.org/10.4230/LIPIcs.SoCG.2019.53, https:
//doi.org/10.4230/LIPIcs.S0CG.2019.53

Nishizeki, T., Rahman, M.S.: Planar graph drawing, vol. 12. World Scientific
(2004)

Néllenburg, M.: Automated drawing of metro maps. Citeseer (2005)

Nollenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps
by mixed-integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626—
641 (2011). https://doi.org/10.1109/TVCG.2010.81, https://doi.org/10.1109/
TVCG.2010.81

Ohrhallinger, S., Mudur, S., Wimmer, M.: Minimizing edge length to connect
sparsely sampled unstructured point sets. Computers & graphics 37(6), 645-658
(2013)

Page, R.D.: Tree view: an application to display phylogenetic trees on personal
computers. Bioinformatics 12(4), 357-358 (1996)

Papadimitriou, C.H.: The np-completeness of the bandwidth minimization
problem. Computing 16(3), 263-270 (1976)

Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings.
Computational Geometry 9(1-2), 83-110 (1998)

Purchase, H.C.: Which aesthetic has the greatest effect on human understanding?
In: Battista, G.D. (ed.) Graph Drawing, 5th International Symposium, GD 97,
Rome, Italy, September 18-20, 1997, Proceedings. Lecture Notes in Computer

https://www.mtr.com.hk/en/customer/services/system_map.html
https://www.mtr.com.hk/en/customer/services/system_map.html
https://tfl.gov.uk/maps/track/tube
https://tfl.gov.uk/maps/track/tube
https://doi.org/10.1007/978-3-030-68766-3_19
https://doi.org/10.4230/LIPIcs.SoCG.2019.53
https://doi.org/10.4230/LIPIcs.SoCG.2019.53
https://doi.org/10.1109/TVCG.2010.81
https://doi.org/10.1109/TVCG.2010.81

BIBLIOGRAPHY 135

[107]

108

[109]

[110]

[111]

[112]

[113]
[114]

[115]

[116]

[117)
[118]
[119]
[120]

[121]

[122]

[123]
[124]

[125]

Science, vol. 1353, pp. 248-261. Springer (1997). https://doi.org/10.1007/3-540-
63938-1_67, https://doi.org/10.1007/3-540-63938-1_67

Purchase, H.C., Cohen, R.F., James, M.I.: Validating graph drawing aes-
thetics. In: Brandenburg, F. (ed.) Graph Drawing, Symposium on Graph
Drawing, GD ’95, Passau, Germany, September 20-22, 1995, Proceedings.
Lecture Notes in Computer Science, vol. 1027, pp. 435-446. Springer (1995).
https://doi.org/10.1007/BFb0021827, https://doi.org/10.1007/BFb0021827

Purchase, H.C., Hoggan, E., Gérg, C.: How important is the “mental map”?—an
empirical investigation of a dynamic graph layout algorithm. In: Graph Drawing:
14th International Symposium, GD 2006, Karlsruhe, Germany, September 18-20,
2006. Revised Papers 14. pp. 184-195. Springer (2007)

Ramshaw, L., Tarjan, R.E.: On minimum-cost assignments in unbalanced bi-
partite graphs. HP Labs, Palo Alto, CA, USA, Tech. Rep. HPL-2012-40R1 20
(2012)

Revell, L.J., Schliep, K., Valderrama, E., Richardson, J.E.: Graphs in phyloge-
netic comparative analysis: Anscombe’s quartet revisited. Methods in Ecology
and Evolution 9(10), 2145-2154 (2018)

Ringel, G.: Ein sechsfarbenproblem auf der kugel. In: Abhandlungen aus dem
Mathematischen Seminar der Universitat Hamburg. vol. 29, pp. 107-117. Springer
(1965)

Ringel, G.: Map color theorem, vol. 209. Springer Science & Business Media
(2012)

Roberts, M.J.: Tube map central (2022), http://www.tubemapcentral.com
Roberts, M.J., Newton, E.J., Canals, M.: Radi(c)al departures. Information
Design Journal (IDJ) 22(2) (2016)

Robinson, D.F., Foulds, L.R.: Comparison of phylogenetic trees. Mathematical
biosciences 53(1-2), 131-147 (1981)

Romli, F.I., Rafie, A.S.M., Wiriadidjaja, S.: Conceptual product design method-
ology through functional analysis. Advanced Materials Research 834, 1728-1731
(2014)

Ruzzo, W.L., Snyder, L.: Minimum edge length planar embeddings of trees. In:
VLSI Systems and Computations, pp. 119-123. Springer (1981)

Schaefer, M.: Realizability of graphs and linkages. In: Thirty Essays on Geometric
Graph Theory, pp. 461-482. Springer (2012)

Schneck, T.: New Parameters for Beyond-Planar Graphs. Ph.D. thesis, Univer-
sitdt Tibingen (2020)

Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the first
annual ACM-STAM symposium on Discrete algorithms. pp. 138-148 (1990)
Schottler, S., Yang, Y., Pfister, H., Bach, B.: Visualizing and interacting with
geospatial networks: A survey and design space. In: Computer Graphics Forum.
vol. 40, pp. 5-33. Wiley Online Library (2021)

Scornavacca, C., Zickmann, F., Huson, D.H.: Tanglegrams for rooted phylogenetic
trees and networks. Bioinformatics 27(13), i248-i256 (2011)

Scott, J.: Network analysis: A handbook. Sage Publications (1992)

Specker, E., Fried, E.I., Rosenberg, R., Leder, H.: Associating with art: A
network model of aesthetic effects. Collabra: Psychology 7(1), 24085 (2021)
Stott, J., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro

map layout using multicriteria optimization. IEEE Transactions on Visualization
and Computer Graphics 17(1), 101-114 (2010)

https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/BFb0021827
http://www.tubemapcentral.com

136

[126]

[127]
[128]

[129]

[130]
[131]

[132]

[133]
[134]

[135]

[136]

[137]

[138]

BIBLIOGRAPHY

Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Transactions on Systems, Man, and Cybernetics
11(2), 109-125 (1981)

Tamassia, R.: Handbook of graph drawing and visualization. CRC press (2013)

Tamassia, R., Battista, G.D., Batini, C.: Automatic graph drawing and read-
ability of diagrams. IEEE Trans. Syst. Man Cybern. 18(1), 61-79 (1988).
https://doi.org/10.1109/21.87055, https://doi.org/10.1109/21.87055

Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visual-
izations. IEEE Transactions on Visualization and Computer Graphics 18(12),
2679-2688 (2012)

Thomas, J.J.: Illuminating the path:[the research and development agenda for
visual analytics]. IEEE Computer Society (2005)

Wandell, B.A., Dumoulin, S.O., Brewer, A.A.: Visual cortex in humans. Ency-
clopedia of neuroscience 10, 251-257 (2009)

Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive
measurements of graph aesthetics. Inf. Vis. 1(2), 103-110 (2002).
https://doi.org/10.1057 /palgrave.ivs.9500013, https://doi.org/10.1057/
palgrave.ivs.9500013

Weyl, H.: Symmetry, vol. 104. Princeton University Press (2015)

Wickham, H., Cook, D., Hofmann, H., Buja, A.: Graphical inference for infovis.
IEEE transactions on visualization and computer graphics 16(6), 973-979 (2010)

Wolf, M.: Bend Minimization of Ortho-Radial Graph Drawings. Ph.D. thesis,
Informatics Institute (2016)

Xu, Y., Chan, H., Chen, A.: Automated generation of concentric circles metro
maps using mixed-integer optimization. Int. J. Geogr. Inf. Sci. 36(12), 23862411
(2022). https://doi.org/10.1080,/13658816.2022.2102636, https://doi .org/10)
1080/13658816.2022.2102636

Yau, S.S., Grabow, P.C.: A model for representing programs using hierarchical
graphs. IEEE Transactions on Software Engineering (6), 556-574 (1981)

Yourdon, E.: Structured programming and structured design as art forms. In:
Proceedings of the May 19-22, 1975, national computer conference and exposition.
pp. 277277 (1975)

https://doi.org/10.1109/21.87055
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1080/13658816.2022.2102636
https://doi.org/10.1080/13658816.2022.2102636

	Introduction
	Preliminaries
	Graph Theoretic Foundations
	Graph Classes
	Graph Drawing
	Graph Drawing Models
	Graph Drawing Beyond Planarity
	Further Frequently Used Definitions

	I Window Width
	Theoretical Results
	Window Width Minimization with Flexible Top Layer
	Window Width Sum Minimization with Flexible Top Layer
	Window Width Minimization with Fixed Top Layer
	x-Distance Minimization with One Flexible Layer
	x-Distance Sum Minimization with One Flexible Layer

	Experiments
	Experimental Setup
	The Gilbert Graph Model
	The Erdős–Rényi Graph Model
	The Barabási-Albert Graph Model
	Sampling

	Experimental Results

	II Simultaneous Embedding of Multiple Upward Trees
	Limited Number of Trees
	CMUT for two trees
	Generalizations of CMUT for two trees

	Limited Height
	CMUT for Two Layers
	CMUT for Three Layers

	III Ortho-Radial Morphing
	Morphing Strategies
	Definitions
	Quality Metrics
	Morphing Strategies
	Ortho-radial
	Octo-radial

	Experimental Setup
	Real-World Data
	Spatial Graph Sampling

	Results and Discussion

	Hybrid Model
	Technical Details and Optional Techniques

	Additional Work
	The Universe Beyond Planarity
	Aesthetic Experience Network
	Hrafnkells Saga
	Heuristic Crossing Minimization in upward drawings
	Heuristic Edge Length Ration Optimization

	Conclusion

