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Summary

What constitutes the genetic basis of adaptation is a fundamental question in
evolutionary biology. Evolution of gene regulation is a major contributor to phenotypic
variation and as such plays a critical role in adaptation. In general, regulatory changes
can be facilitated through genetic changes in either cis-regulatory elements (CREs),
which modify gene expression of local genes on their own allele, or in trans-regulatory
factors such as transcription factors, which can affect any gene in the genome.
Pinpointing genetic variation facilitating expression changes is challenging, but current
evidence points to cis-regulatory changes being the main contributor to regulatory
evolution, though this is debated. However, much remains unknown about how gene
regulation at the chromatin, transcript and cellular level evolves in mammals,
especially at the crucial transition from individual to species-level differences. In this
thesis, | investigated cell-type specific regulatory evolution between several Mus
species with particular focus on the role of CREs. In the first chapter, | developed
easySHARE-seq, a single-cell technique simultaneously measuring gene expression
and chromatin accessibility. | show that easySHARE-seq generates high-quality
datasets and removes cost-prohibitive barriers, allowing diverse and flexible study
design. | further demonstrate how the simultaneous measurements can be exploited
to survey the cis-regulatory landscape of cell types and link CREs to their target gene.
In the second chapter, | apply easySHARE-seq to four different species and their F1
hybrids from Mus to investigate how gene regulation evolved across them. | find that
in all cell types cis-regulatory changes become pervasive with increasing evolutionary
divergence. However, between closer related species the majority of regulatory
changes occur in trans. Furthermore, | argue that some cell types might follow
common evolutionary trajectories independent of species, possibly due to similar
selective pressures. Lastly, | link CREs to their target gene in each species and cell
type and show that these linked CREs are generally under purifying selection yet those
linked to cis-regulated genes show signatures of adaptive evolution. These results
contribute to uncovering the genetic basis of adaptation by demonstrating that CREs
are the dominant driver of regulatory evolution across Mus. They also provide a novel

approach in identifying genetic variants underlying regulatory changes in CREs.



Zusammenfassung

Was genau die genetische Grundlage von Adaptation bildet ist eine grundlegende
Frage der Evolutionsbiologie. Die Evolution von Genregulation tragt maBgeblich zu
phanotypischer Variation bei und spielt deshalb eine wichtige Rolle in der Adaptation.
Generell kbnnen regulatorische Veranderungen durch genetische Veranderungen in
entweder cis-regulatorischen Elementen (CREs), welche Genexpression von lokalen
Genen auf ihrem Allele modifizieren, oder in trans-regulatorischen Faktoren wie
Transkriptionsfaktoren ermdglicht werden. Die exakten genetischen Varianten welche
regulatorische Verédnderungen auslésen zu lokalisieren ist herausfordernd, aber
aktuelle Studien deuten darauf hin, dass cis-regulatorische Verédnderungen den
Hauptbeitrag zu regulatorischer Evolution leisten, jedoch existiert dariber eine
lebhafte Debatte. Wenig ist dartiber bekannt wie Genregulation auf Chromatin,
Transkript oder =zellularer Ebene in Saugetieren evolviert, vor allem am
entscheidenden Ubergang von individuellen zu Spezies-spezifischen Unterschieden.
In dieser Thesis habe ich die Zelltyp-spezifische Evolution von Genregulation
zwischen verschiedenen Mausspezies untersucht mit speziellem Fokus auf die Rolle
von CREs. Im ersten Kapitel habe ich easySHARE-seq entwickelt, eine
Einzelzellmethode welche Genexpression und Chromatinzuganglichkeit gleichzeitig
misst. Ich zeige, dass easySHARE-seq mit geringem Kostenaufwand hochwertige
Datensatze generiert und somit vielféaltiges und flexibles Studiendesign ermdglicht.
Des Weiteren zeige ich, wie man die simultanen Messungen ausnutzen kann um die
cis-regulatorische Landschaft zu untersuchen und um CREs mit ihrem Zielgenen zu
verknupfen. Im zweiten Kapitel wende ich easySHARE-seq an vier verschiedenen
Mausarten und ihren F1 Hybriden an um zu untersuchen, wie Genregulation zwischen
diesen evolviert ist. Ich zeige, dass in allen Zelltypen cis-regulatorische
Veranderungen mit zunnehmender evolutiondrer Divergenz dominant werden jedoch
zwischen néher verwandten Spezies die Mehrheit an regulatorischen Veranderungen
in trans geschieht. AuBerdem deuten meine Ergebnisse darauf hin, dass manche
Zelltypen &hnlichen evolutiondren Dynamiken unabhdngig der Spezies folgen,
moglicherweise aufgrund von ahnlichem Selektionsdruck. Als letztes verknipfe ich
CREs mitihren Zielgenen in jeder Spezies und Zelltyp und zeige, dass die verknlpften
CREs generell unter negativer Selektion stehen jedoch diese welche mit cis-

regulierten Genen verknupft sind Merkmale von Adaptation aufweisen. Diese



Ergebnisse tragen dazu bei, die genetische Grundlage von Adaptation aufzudecken
indem sie zeigen, dass CREs die dominanten Antreiber von regulatorischer Evolution
in Mus sind. Sie zeigen auch eine neue Herangehensweise in der Identifizierung
genetischer Varianten auf, welche regulatorische Verénderungen durch CREs

verursachen.
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Introduction

What constitutes the genetic basis of phenotypic variation? This is a longstanding
question that has motivated genetics research for more than a century3. Many
researchers tackle this problem by investigating how heritable differences in gene
expression lead to phenotypic variation and thus provide a substrate for natural
selection. One of the most of debated aspects concerns the relative position of genetic
variation that ultimately confer expression changes: Do the proteins themselves
change or is it the non-coding DNA, thereby altering their regulation? These two
mechanisms differ strongly in their implications: If a proteins’ structure is changed,
besides resulting in the differential expression of the focal gene, this can lead to
pleiotropic regulatory changes of genes in every cell type the protein is expressed. In
contrast, since non-coding DNA elements are usually context specific, this type of
change should be more specific and come with potentially less deleterious pleiotropic
effects. Even though many studies investigated these questions, our knowledge about
regulatory evolution in mammalian systems is sparse. A further challenge limiting our
understanding of regulatory evolution is to determine if a gene expression change is
adaptive.

In this thesis, | use several species within the genus Mus to investigate the genetic
basis for the evolution of gene expression across these species, with particular focus
on the role of non-coding regulatory sequences called cis-regulatory elements. To
contextualize my work, | will briefly talk about our current understanding of how gene
regulation works, the theoretical framework upon which my work is built, introduce
core concepts needed to understand it and describe the enormous potential that
advancements in new methodologies hold. In Chapter One, | report a newly developed
single-cell method called easySHARE-seq, measuring both gene expression and
chromatin accessibility within single-cells. By measuring both simultaneously, we can
assess their intermolecular dynamics and establish links between these two
modalities. Additionally, this method significantly improves upon current single-cell
techniques as it provides a highly flexible framework, improves upon data quality and
reduces costs. In Chapter Two, | make use of easySHARE-seq to dissect the
evolutionary dynamics of regulatory evolution in Mus. | show what role cis-regulatory
elements (CREs) played in their evolution of gene expression, argue that a cell type
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can follow a common evolutionary trajectory even across several species, and show
how new genomic techniques can be used to connect cis-regulatory elements to their

target genes.

Overview of Gene Regulation

Over 60 years ago, Francis Crick formulated the ‘Central Dogma’4, stating that once
information has passed into a protein, it cannot get out again. James Watson then
further modified it into how we understand it today: That information from DNA gets
transcribed into mRNA, which is then translated into proteins®. The main purpose of
DNA is to store information, the main purpose of proteins is to fulfill their specific
function. What is a key aspect then is which and how much information is ultimately
turned into function, which is to a large degree (but not exclusively) controlled by
MRNA levels and thus, gene expression. The layers in which gene expression can be
regulated are manifold, but in broad terms there are two types of mechanisms, cis and
trans. Cis-regulation directly drives transcription itself and is linked to its own molecule
via cis-regulatory elements such as enhancers, promotors or silencers (for a review,
see Gasperini et al.?). These are stretches of non-coding DNA, typically a few hundred
basepair (bp) long and in proximity to their target gene’ but there have been reports
of cis-regulatory elements (CRESs) regulating genes over nearly 1 Mb distance (1x10°
bp)8. Trans-regulation covers all other mechanisms of gene regulation, including any
indirect mechanism, from amino acid changes in proteins, e.g. transcription factors
(TF), to long-non-coding RNA to DNA conformation to post-translational modification
of the protein itself and any other transcriptional or translational mechanism®-'2,
Therefore, cis- and ftrans-regulation together cover all types of gene regulatory
mechanisms and are intertwined into several regulatory layers.

First off, CREs can only be functional when they are free of histones and thereby
accessible for all kinds of proteins such as TFs'3. The current view is that so-called
‘pioneer factors’ bind to heterochromatin and open up the closed chromatin®. How
CREs exactly confer their function is subject of many studies and not entirely clear.
Often, CREs contain multiple TF binding sites consisting of lengths between 6-12 bp
to which then multiple TFs might bind simultaneously in a cooperative manner'>16.
This would suggest that the directionality, affinity, spacing and arrangement of these

TF binding sites can have a defined influence on CRE functionality, a concept which
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sometimes is summarized under the term of (enhancer) grammar'’. That might be of
particular importance within their native, cellular context since the use of enhancers in
transgenic assays suggest that they can function independent of their directionality 8.
One enticing discovery was that TF binding sites seem to be rarely optimized for
binding affinity. By examining millions of synthetic variants of a specific developmental
enhancer in the sea squirt Ciona intestinalis, Farley et al. could show that increased
binding affinity of TFs frequently leads to ectopic expression of the target gene'®. Thus,
the authors proposed that the general low-affinity binding in enhancers confers tissue
specificity by ensuring combinatorial control of gene expression?°.

Next, the bound TFs recruit general co-factors, which can function as either activators
or repressors'®. These co-factors can have diverse functions such as nucleosome
remodelers?!, histone modifiers??>, mediator complexes?® or function as a scaffold?*.
As diverse as their function as numerous their possibilities to influence and regulate
gene expression, far more than can be summarized here (for further reviews, see
16.23.25)  One intriguing study demonstrated how the rate of transcription directly
depends and changes with the presence or absence of TFs and thus co-factors at
CREs, showcasing the combinatorial nature of enhancers and how mutations in TF
binding sites might directly lead to gene expression changes®®. Through these
recruited co-factors, CREs then come into physical contact with their target gene
where in the case of enhancers, core transcriptional machinery is recruited and
transcription initiated. Lastly, CREs are imbedded in their 3D regulatory landscape
commonly known as Topologically Associated Domain (TAD)?7-28, which are genomic
regions that are interacting with themselves and are mostly insulated from neighboring
genomic regions. Therefore, they are presumed to shape which gene a CRE can
interact with. In general tough, much remains unknown about how gene regulation
functions. Therefore, conflicting ideas about different aspects of gene regulation exist,
which can only be resolved by further investigations.

The short overview of gene regulation given here is by no means exhaustive and there
are several aspects of gene regulation not discussed here. For example, the entire
range of post-translational modifications to proteins, which also serve regulatory
functions, especially in the context of TFs?. Additionally, there are many other
processes that either directly or indirectly can regulate transcriptional output of a gene,
such as chromatin state®°, how physical proximity between a CRE and its target gene

is established, modifications of the rate of transcription®', alternative splicing3? as well
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as a whole array of post-transcriptional modification such as modifying the rate of
mRNA decay®3 or miRNAs3*. Furthermore, several CREs can influence the same gene
simultaneously, adding an additional layer of complexity3®. In summary, gene
regulation is an interplay between several complex processes and by no means fully
understood. In consequence, investigation of gene regulation comprises one of the
most active fields in molecular biology, also because its dysregulation is implicated in
a plethora of diseases. In the year 2023 alone, 350 articles were published in the

journal Nature that contained the term ‘gene regulation’ in their title (www.nature.com).

However, measuring gene expression and possibly other layers of gene
regulation such as chromatin status allows to simultaneously capture cis- and trans-
regulatory modes. Since transcription is key in converting genetic variation into
functional changes, it strongly influences traits and ultimately plays a major role during
selection and adaptation. The systematic assessment of cis- and trans-regulatory
changes would therefore provide vital insight into how gene regulation may evolve —
either through genetic changes directly linked to transcriptional activity (cis) or through

other indirect means (trans).

Methodologies to investigate Gene Regulation

Scientific breakthroughs and discoveries are, among other things, often tied to
opportunity. To this end, the methodologies how gene expression and CREs and thus
gene regulation can be studied have improved and diversified tremendously in terms
of quality, power and modality they measure since genome-wide assays became
available. However, as | will describe down below, to gain a better understanding of
gene regulation further improvements are needed.

In general, we can distinguish between assays measuring gene expression
(transcriptomics) and those investigating epigenetic features such as chromatin
accessibility or histone marks (epigenomics). For transcriptomics, the most commonly
used method is RNA-seq. This measures the abundance of mRNA transcripts by
either capturing them at their polyA-tail, which results in a dataset that tends to be
enriched toward the 3’ end of the transcript, or by using random primers, which is often
used to capture full-length transcripts and thus investigate alternative splicing. In
addition, there are transcriptomic assays measuring different regulatory layers of gene

expression. For example, PRO-seq (and its successor ChRO-seq) measures nascent
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transcripts that are actively transcribed and therefore enables investigation of e.g.
polymerase pausing®. A further technique called Ribo-seq measures transcripts that
are actively translated, which allows assessment of the extent of post-transcriptional
regulation or buffering®’.

In contrast to transcriptomics, epigenomics and methods profiling CREs are far more
diverse, reflecting the multiple regulatory layers. The possibly most widely used class
of assays is measuring which parts of the genome are not occupied by histones. As
described above, CREs are only functional when chromatin is accessible so these
techniques provide a genome-wide readout of potentially active CREs, including
promotors of actively transcribed genes. However, it is important to keep in mind that
not all accessible regions are automatically CREs. Early types of these assays used
DNase® or MNase® to digest open chromatin regions, but nowadays the most popular
method is ATAC-seq*’, due to its great sensitivity, resolution and ease of use. ATAC-
seq has been used to profile the cis-regulatory landscape of a vast number of tissues
and developmental processes across diverse taxa*!'-#4, thereby underscoring the
context dependency and evolutionary importance of CREs. A second class of assays
investigates protein binding to regulatory DNA, the most common of which are ChIP-
seq or CUT&Tag. Both work similarly in that DNA to which the protein in question binds
is sequenced by enriching for it using an antibody. These methods revealed for
example that different classes of CREs are usually marked by different combinations
of histone modifications*S. Other applications include measuring which TFs binds to a
given CRE?*. More classes of assays investigating different regulatory layers exist.
For example, there is a whole array of methodologies (generally denoted by “C” as in
conformation) measuring the 3D landscape of the genome using so-called ‘contact-
maps’ 4=, This is useful for defining TADs or showcasing how differential TADs might
facilitate and accelerate evolutionary processes®®®'. Another exciting technology
relies on the CRISPR system to directly edit CREs in their native context and measure
resulting expression changes®?, potentially allowing the direct linking of a CRE to its
target gene.

Altogether, most described methods rose in popularity in the wake of high-throughput
sequencing in the early 2000s as this made them economically feasible. Over the
following years however, it became clear that their lack of resolution placed clear
hurdles for further scientific advancements. Namely, all these methods average their

signal over multiple cell types or even entire tissues, only occasionally singular cell
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populations can be assayed. This has clear limitations. For one, the averaged signal
might not be representative of any cell type within a tissue®3. Second, rare or infrequent
cell types are difficult to assay, especially if it is not possible to enrich for them.
However, these can have defining regulatory or developmental functions5455, Third,
interactions between cell types are very challenging to measure. And lastly,
developmental processes and cell fate decisions cannot be resolved properly since
cell types in these processes often exist in a continuum and cells from the same cell
type can display considerable heterogeneity®e.

Single-cell methodologies can overcome those limitations by providing readouts for
individual cells. These methodologies emerged around 15 years ago and matured
rapidly alongside a suite of computational tools®’. Today there are a large number of
protocols and platforms available, often several for each of the above-described
assays (e.g. RNA-seq, ATAC-seq etc.), both commercially and custom. Commercially,
the most widely-used platform is droplet-based, where individual cells are incapsulated
in droplets and barcoded. However, this comes with the drawbacks of high costs for
both instrumentation and kits as well as limited throughput, typically around 10.000
per reaction. Therefore, custom protocols have been developed, many of which rely
upon a concept called combinatorial indexing or ‘split-and-pool’. Here, a suspension
containing dissociated cells (or nuclei) is distributed onto multi-well plates (typically
96-well) where each well contains a different barcode, which is then attached to for
example cDNA molecules. Then, these cells are pooled and distributed across more
multi-well plates, again containing and attaching a different barcode within each well.
This approach scales exponentially and after three rounds of barcoding over 880.000
(963) combinations are possible. Therefore, the chance that two cells share the same
combination of barcodes is slim, effectively achieving single-cell resolution. Exploiting
this principle, it became possible to assay hundreds of thousands of cells in one
experiment at a fraction of commercial costs®8%°, which allowed the single-cell profiling
of entire embryos or developmental trajectories®®-63. Other important applications are
in the medical field, for example the profiling of cancer cells and discovery of their
mutations, which can differ from cell to cell®. Thus, single-cell technologies are of
major importance in both basic and applied research and likely will continue to be so
for the foreseeable future. However, their widespread application also showed that
these technologies are not able to resolve many open questions. More specifically, to

understand processes such as gene regulation or cell fate decisions, multiple layers
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of information (e.g. gene expression and chromatin accessibility) need to be measured
simultaneously in the same cell to directly query intermolecular dynamics between the
transcriptome and epigenome and how genetic variation impacts cellular function and
phenotype®s. For example, measuring chromatin accessibility and gene expression
within the same cell might allow to directly link a CRE to their target gene®.
Alternatively, directly measuring how shifts in histone modifications or TF binding
impact gene expression can advance our knowledge about CREs and how they
function®®. In short, measuring multiple layers of information in single cells is poised to
advance and transform our understanding of the genome in both health and disease.
These technologies are commonly known as ‘multiomic’ single-cell technologies and
only few are currently available. As these are early days, they still suffer from several
drawbacks. For one, commercial solutions are incredibly expensive, placing a limit on
sample size, throughput and study design. The few custom protocols that exist
produce data of suboptimal quality, have high cost or suboptimal throughput®”-¢¢ and
are thus not frequently used. The most advanced custom technology to date is called
SHARE-seg®, which is able to quantify gene expression and chromatin accessibility
in hundreds of thousands of cells simultaneously with reasonable data quality. Only,
its framework is very inflexible placing clear limitations on study design and resulting
in prohibitive costs. For example, analyzing allele-specific expression is very
challenging as the sequencing read has a maximum length of 100bp and thus less
frequently captures genetic variation needed to separate allelic signals. To conclude,
advancing these technologies by making them cheaper, more suited for a variety of
study designs and improving upon data quality would enable the scientific community

to harness their full power to address questions that have been asked for decades.

Investigating the Evolution of Gene Regulation

How can one quantify and characterize the relative contribution of cis- or trans-
regulatory changes to the evolution of gene regulation? There are two popular
approaches to investigate this between species, subspecies or populations.

The first makes use of F1 hybrids in diploid organisms. First, expression changes
between the parental species are measured for each gene. Next, gene expression
between the alleles in the F1 hybrids is measured and these two measurements are

then compared. The F1 hybrid context is important here: as both alleles are present in
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the same cell, any indirect effect from diffusible factors, such as the presence or
absence of a TF, IncRNA, etc. would affect both alleles. This is often referred to as a
‘common trans environment” and typically removes a portion of transcript level
differences between the parental species. However, if a difference in expression still
persists between F1 hybrid alleles (“allelic imbalance”), these remaining differences
must be due to changes in cis. This can be due to the presence or change of a CRE
on one parental allele, or differences in TADs due to specific diseases or (induced)
mutations”%”". This approach therefore allows to investigate each gene, determine if
evolved expression change is due to cis- or trans-regulatory changes as well as
directly quantify their net effect. It was first used in 200472 and has since been a
frequent choice to investigate regulatory evolution genome-wide”-7¢. However, this
approach also comes with several limitations. For one, since it can only measure net
expression change, it can’t determine how many regulatory changes have occurred.
A second major shortcoming is that it is not possible to identify potential loci or genetic
variants that might be responsible for observed expression changes.

The second approach in turn makes use of available genetic variation in populations
and is known as expression quantitative loci (eQTL) mapping. By measuring gene
expression across many individuals in a diverse population, one can then correlate
gene expression with their genetic variants and identify new functional loci mediating
expression change (eQTL) as well as estimate their effect sizes””. These loci are then
separated into cis- or trans-eQTL. However, the definition of cis in this approach is
often different compared to the first approach for several reasons: first, cis is solely
defined by distance of the eQTL to the gene, especially among the earliest studies’®.
Second, since gene expression is typically measured at the total expression level, as
opposed to the allele-specific expression level, eQTL studies typically cannot directly
determine cis regulation. Furthermore, this approach has less statistical power in
identifying trans-eQTL because of their higher multiple testing burden. Another major
drawback is that since eQTL mapping relies on populations with natural genetic
variation, it cannot be performed across as large evolutionary divergences as in the
F1 hybrid approach, limiting its potential for deciphering general patterns of regulatory
evolution.

In summary, both approaches are frequently used and come with their own set of
advantages and disadvantages. An ideal approach would combine the per-gene
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measure of the first approach with the identification of candidate genetic loci of the

second.

The cis-regulatory Hypothesis

What causes phenotypic variation that selection can act upon? What is the genetic
basis for adaptation? These are some of the oldest questions in evolutionary biology
and already have been asked by Darwin (only the former) and Fisher”®8°, Heritable
phenotypic variation must arise through genetic variation, which ultimately leads to
different phenotypes by altering e.g., developmental processes or behavior. Studying
how gene regulation and gene expression evolves is thus one approach to address
these questions, as gene expression is assumed to immensely influence a phenotype.
How cis- and trans-regulatory changes of gene regulation shape the evolution of gene
regulation is therefore an important question and extensive field of study and over the
decades, several hypotheses have been put forward. Today, one of the most
prominent, well-studied and well-supported idea on how gene regulation evolves to
produce phenotypic variation is called the ‘cis-regulatory hypothesis’. This states that
genetic variation in CREs plays a more important role in producing phenotypic
variation (and thus adaptation) than mutations in coding sequences®'82, Phrased more
broadly, the differential regulation of proteins is more important than changes in the
proteins themselves. While first formulated in the 2000s, the roots of the cis-regulatory
hypothesis lie in the 1960s and 1970s8%384, with several important discoveries
throughout the next decades leading up to it. First, King and Wilson discovered in their
landmark paper that differences in proteins between chimpanzees and humans cannot
be sufficient for the observed differences between the species but noted that a change
in expression may account for the major organismal differences®®. Second, the
discovery of Hox genes showed that a set of highly conserved genes makes up the
majority of known body plans in animals®?®’. Previously, it was thought that this
differed between different species®. Finally, the Human Genome Project at the time
revealed that the human genome only encodes around 24,500 genes, which was
notably less than expected and only around twice as much as a worm or a fly®. In
addition, this made clear that while the number of proteins does not increase according
to organismal complexity, the amount of non-coding DNA in the genome does.
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Altogether, these and further discoveries®°'! culminated in the formulation of the ‘cis
regulatory hypothesis’, which states several foundational principles®'82, First, because
CREs act in a modular, independent and additive fashion, they can precisely facilitate
gene expression change in a single cell type or developmental timepoint'6:9293, |n
comparison, a TF is usually implicated in several cell types or processes, so that a
change in its coding sequences lead to more pleiotropic, potentially negative effects.
For example, it could disrupt essential protein-protein interactions or abolish TF
binding to a promotor altogether, which can have catastrophic consequences®+9,
Second, coding sequences are often highly conserved between different species and
taxa® 9. Already in 2002, Aparicio et al. reported that three quarters of predicted
proteins in humans have a homolog in the pufferfish, despite around 450 million years
of evolutionary divergence®. This ‘deep homology’ 82 again emphasizes that proteins
do not arise newly at a rate comparable to the diversity of organismal complexity.
Lastly, the mutational target size for CREs is greater than for coding sequences®,
meaning that the chance of beneficial cis-regulatory mutations is higher. However, this
does depend upon the specific organism. For example, the baker's yeast
Saccharomyces cerevisiae has a highly condensed genome with 68% of the genome
consisting of coding sequences, potentially resulting in a higher target size for trans-
regulatory factors'00-102,

When this hypothesis was explicitly formulated, a limited number of case studies
provided experimental support for it, causing some initial pushback'%®. However, over
the following years many striking examples of major adaptive changes caused by cis-
regulatory changes were published. For example, one study examined progressive
limb loss in snakes. It identified snake-specific sequence changes in a long-range limb
enhancer of Shh, which otherwise is conserved across a wide range of vertebrates.
When they substituted the murine counterpart with the snake ortholog, this resulted in
severe limb reduction whereas substitution with the human or fish ortholog resulted in
normal limb development'®. Further probing revealed that the loss of a single TF
binding site in the enhancer resulted in this major change of body plan. Similarly,
stickleback fish (Gasterosteus aculeatus) repeatedly evolved pelvic reduction when
adapting to freshwater environments. The gene Pitx1 has been hypothesized to
mediate this effect, but its coding sequence remained unchanged in freshwater
stickleback fish'%. A further study could show that the repeated deletion of a tissue-

specific enhancer of Pitx1 is responsible for pelvic reduction'®. These and other
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studies showcased that even small regulatory changes can result in strong phenotypic
variation and lead to new adaptive alleles. More evidence came from studies that
concentrated on more genome-wide patterns of regulatory evolution'®’. For example,
two studies showed that between yeast species or sister species of Drosophila the
majority of expression differences are due to cis-regulatory changes'98.199,

Now, 15 years later, where does the cis-regulatory hypothesis stand? In general, it is
accepted by many that cis-regulatory changes play a major, if not the major role in
regulatory evolution and adaptation. Several principles or trends, that are however not
without prominent exceptions, seem to have emerged. For example, one recurring
conclusion has been that gene expression generally is under stabilizing selection. This
is suggested because it has been repeatedly shown that cis- and trans-regulatory
changes act frequently upon the same gene in opposing directions, effectively
compensating each other’278110-112" Next, when comparing evolution of gene
expression within and between species, it has often been found that trans-regulatory
changes contribute more to changes within species’®'113.114|n contrast to this, with
increasing evolutionary divergence, cis-regulatory changes then seem to become
pervasive, especially between species 7475111.115,

However, opposing theories have also been put forward, most prominently the so-
called ‘Omnigenic Model’ ''6. This partitions genes influencing a trait into ‘core genes’
and ‘peripheral genes’ and postulates that core genes have a large direct effect on a
trait but peripheral genes explain the majority of heritability via indirect trans-effects’'2.
This theory is mostly the consequence of Genome-Wide Association Studies (GWAS)
repeatedly showing that the majority of heritability of a trait or disease is explained by
large numbers of small-effect variants'17:118,

Lastly, | want to note two open questions which when addressed, might progress our
understanding of regulatory evolution and adaptation and open up new avenues for
future studies. For one, the overwhelming majority of available studies investigated
regulatory evolution on a tissue-level by averaging expression data over all cell types.
However, regulatory changes are likely adaptive in a distinct cell type, therefore
expanding our knowledge how individual cell types evolve regulatory changes might
reveal previously undetectable evolutionary patterns. Second, it is curious to note that
the majority of all above-described studies have been performed in either plants,
yeast, flies or fish and only very few are investigating how evolution of gene regulation
proceeds in mammals or to what extent they follow the described trends. In fact, even
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in the house mouse, one of the most studied animals to date, our knowledge is
fragmentary. Given the differences between other taxa, it is entirely possible that

mammals might show unique evolutionary dynamics''%12%in their regulatory evolution.

The genus Mus and its Application in Evolutionary Biology

Because of their phylogenetic history and subsequent widespread use in biological
sciences, the genus Mus (more specifically its subgenus Mus) is an excellent system
for studying evolution. The most frequently used mouse strains in these types of study
originate from the house mouse, Mus musculus. House mice are spread across all
inhabited continents; however, they have evolved into several main subspecies,
namely Mus musculus musculus, Mus musculus domesticus and Mus musculus
castaneus. These three subspecies likely started to diverge around 0.5 million years
ago in the Indo-valley in current-day India'?'-'23 and from there colonized Eurasia and
evolved into their respective subspecies’#12%, In the present day, M. m. castaneus is
mainly found in India and Southeast Asia, M. m. musculus is spread across most of
north Eurasia and M. m. domesticus is found in western Europe, Africa and by means
of human travel, throughout all of North and South America. Molecular data indicates
that M. m. castaneus and M. m. musculus are more closely related than either to M.
m. domesticus'19:120.123.126 though these relationships are not entirely clear. Indicative
of how distinct the subspecies are, a stable hybrid zone between M. m. domesticus
(east) and M. m. musculus (west) has been identified which runs through Central
Europe, from Scandinavia through Germany up to the black sea'?”.'2, Additionally,
several other subspecies of M. musculus are identified or hypothesized'?®, for example
M. m. molossinus in Japan'®®. However, these will not be described further in this
thesis. Other frequently used mouse strains in evolutionary research stem from
different Mus species, the most prominent of which from Mus spretus. Also known as
the ‘Algerian Mouse’, this is the closest related species to Mus musculus, with
estimates of these species diverging around 1-3 million years ago'?%13'. It inhabits
south-western Europe as well as the mediterranean coast of Africa’3? and thus lives
sympatrically with M. m. domesticus '33. Again, many more species in the subgenus
Mus exist, some of which like Mus caroli are also used in evolutionary research.

However, these will not be described further.
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In the 20" century, mice as laboratory organisms soared in popularity and the first
inbred mouse strains were created from Mus musculus'3*. However, partially because
it wasn’'t known at the time, partially because the original mice stock before was
crossed and selected for its appearance, these early mouse lines upon which all
‘classical’ strains today are based, did not come from a single subspecies of Mus
musculus'® but rather were a mix. The most widely-used mouse strain in all of
biological and medical science, C57BL/6 (BL6), originated at this time and genetic
studies showed that the majority of its genome derives from M. m. domesticus with
smaller contributions from M. m. musculus and M. m. castaneus'?13%,

These classical mouse strains were used in many important scientific and medical
discoveries and continue to be incredibly useful today. However, they offered little
opportunity in researching evolutionary biology as the phenotypic variation between
them is minimal. Therefore, over several decades new strains from pure M. musculus
subspecies as well as several other Mus species were derived, which are now known
as so-called ‘wild-derived’ strains'36, For all these strains, several mice were caught in
the wild and over many generations inbred mouse strains were derived. For example,
the mouse strains PWD/Ph (PWD) or PWK/Ph (PWK) were derived from the Mus
musculus musculus subspecies by trapping pairs of wild mice in 1972 in the central
part of the Czech Republic'3”. Similarly, the strain CAST/Ei (CAST) was derived from
wild-caught M. m. castaneus mice in Thailand and the strain SPRET/Ei (SPRET) from
wild-caught M. spretus mice. Together, these strains form an excellent basis for the
investigation of evolutionary processes for multiple reasons. First, they have ample
genetic and phenotypic variation between them. Thus, they are commonly used to
study speciation, the molecular basis of phenotypic variation or the genetics of
complex traits'®8. Second, all these wild-derived strains can form viable interspecific
F1 hybrid crosses with BL6 mice, which makes them an invaluable tool for e.g. genetic
mapping or investigating regulatory evolution3®-141. Perhaps most extraordinary, it
was possible to derive F1 hybrid embryonic stem cells from these crosses'#?, opening
up the possibility to assess evolutionary changes in developmental processes.
Regarding research into regulatory evolution across Mus, and more specifically into
how cis- and trans-regulatory changes contribute to the evolution of gene regulation,
very few studies have been published. For example, when using F1 hybrids to assess
cis- or trans-regulatory changes in whole testis between PWK/PhJ and LEWES/EIJ (a

wild-derived strain of M. m. domesticus), it was found that cis-changes contribute more
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to expression divergence than changes in trans'3. A second study assessing liver
concluded that only 2% of differentially expressed genes changed due to trans-
regulatory changes alone compared to 43% of genes with cis-acting changes''°.
Lastly, the most thorough study so far over several tissues and strains suggested that
over 80% of genes have cis-regulatory variation. However, what is missing is an
overarching thorough description how gene regulation evolved between the different
species and subspecies. As described, singular data points between few comparisons
do exist, but these are not enough to extrapolate a more global view or to compare it
with known patterns of regulatory evolution in other taxa.

Altogether, the unique phylogenetic history of Mus paired with extensive phenotypic
as well as genetic variation'20.134  the availability of inbred strains from different species
and subspecies and the viability of interspecific crosses makes the genus Mus an

excellent system for probing evolutionary processes.

Objectives

The study of regulatory evolution addresses some of the oldest questions in
evolutionary biology. In this thesis, | have combined the latest technologies in
transcriptomics and epigenomics with a classical F1 hybrid design to investigate how
gene expression evolves across Mus and what role cis-regulatory elements play in
facilitating it.

In Chapter One, | developed a single-cell multiomic technique called easySHARE-seq
measuring both gene expression (RNA-seq) and chromatin accessibility (ATAC-seq)
within single cells'. This method provides an incredibly flexible framework and
eliminates cost-prohibitive barriers, opening up multiomic single-cell techniques to a
wide variety of study designs and applications. | showcase the utility and quality of this
method by profiling murine liver nuclei. | then connect CREs to their target genes using
the simultaneous measurements and lastly identify novel marker genes and CREs
displaying a morphogen-dependent dosage effect (zonation).

In Chapter Two, | investigate cell-type specific regulatory across Mus by applying this
method to liver nuclei from four different subspecies and species as well as their F1
hybrids. | show that with increasing evolutionary divergence, cis-regulatory changes
become pervasive but that between closer related species, trans-regulatory changes

account for the majority of expression differences. | then describe how patterns of
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regulatory evolution can differ strongly between cell types and also suggest that some
cell types might follow a common evolutionary trajectory, even across different
species. Lastly, | connect CREs to their target genes within each cell type and species
and find that those connected to genes differentially regulated in cis show signatures
of adaptive evolution.

Additionally, | was involved in a collaboration investigating regulatory evolution
between chimpanzee and human by fusing embryonic stem cells from both species to
create allotetraploid (4n) stem cells and measuring their gene expression’#®. This
study can be found in the Appendix lII.

Lastly, | recapitulate the developments and findings from Chapter One and Two in the
Discussion where | describe their impacts, especially in context of our current
understanding of regulatory evolution, to what degree they agree with the cis-
regulatory hypothesis and what this contributes to our understanding of the genetic
basis of phenotypic variation. | also propose future directions based on these results

that might help shed further light onto underlying evolutionary principles.

24



Chapter One

Flexible and high-throughput simultaneous profiling of gene
expression and chromatin accessibility in single cells

Volker Soltys, Moritz Peters, Dingwen Su, Marek Ku¢ka, Yingguang Frank Chan
bioRxiv  2024.02.26.581705; doi:  htips://doi.org/10.1101/2024.02.26.581705.

Published as pre-print in bioRxiv, under review in Nature Communications.

see Thesis Appendix |

Abstract

Gene expression and chromatin accessibility are highly interconnected processes.
Disentangling one without the other provides an incomplete picture of gene regulation.
However, simultaneous measurements of RNA and accessible chromatin are
technically challenging, especially when studying complex organs with rare cell-types.
Here, we present easySHARE-seq, an elaboration of SHARE-seq, providing
simultaneous measurements of ATAC- and RNA-seq within single cells, enabling
identification of cell-type specific cis- regulatory elements (CREs). easySHARE-seq
retains high scalability, improves RNA-seq data quality while also allowing for flexible
study design. Using 19,664 joint profiles from murine liver nuclei, we linked CREs to
their target genes and uncovered complex regulation of key genes such as Gata4. We
further identify de novo genes and cis-regulatory elements displaying zonation in Liver
sinusoidal epithelial cells (LSECs), a challenging cell type with low mRNA levels,
demonstrating the power of multimodal measurements. EasySHARE-seq therefore
provides a flexible platform for investigating gene regulation across cell types and

scale.
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Contributions

V.S. and Y.F.C. designed the experiments. V.S. and M.P. developed the barcoding
framework for easySHAREseq. V.S. developed the rest of the protocol and performed
experiments. V.S. performed the computational analyses advised by Y.F.C. V.S.
drafted the manuscript. M.P., D.S., M.K. and Y.F.C. helped with experimental or
computational support. All authors reviewed the manuscript. Y.F.C. directed the study

with input from all authors.
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Chapter Two

The evolutionary dynamics of cell-type specific regulatory
evolution in Mus

Volker Soltys, Moritz Peters, Dingwen Su, Yingguang Frank Chan
Manuscript ready to submit.
see Thesis Appendix Il

Abstract

Evolution of gene regulation plays a critical role in adaptation and can occur through
gene regulatory changes acting in cis or trans, yet how this differs between individual
cell types is poorly understood. Here, we applied single-cell multiomics to 63,551
primary liver nuclei in a set of four closely-related mouse species and their F1 hybrids
and profile both gene expression and chromatin accessibility simultaneously at single-
cell resolution to investigate cell-type specific regulatory changes as well as linking
118,344 putative cis-regulatory elements (pCRESs) to their target genes. Between the
closest related species, 31.8% of regulatory changes occurred solely in frans
compared to only 14.8% in cis, but the proportion of cis-regulated genes increases
with both increasing evolutionary divergence and expression difference. However, we
find considerable differences in the patterns of regulatory evolution between cell types
and that some show consistent regulatory changes independent of species. Lastly, we
show that linked pCREs are under purifying selection yet those linked to cis-regulated
genes show increased genetic divergence, consistent with adaptive evolution. This
approach therefore dissects regulatory evolution between cell types and not only
allows identification of cis-regulated genes but also of possible pCREs facilitating the
regulatory change.
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Contributions

V.S. and Y.F.C. designed the experiments. V.S. performed the experiments. V.S.
performed computational analyses with input from Y.F.C, M.P. and D.S. V.S. wrote
the manuscript. M.P., D.S., M.K. and Y.F.C. helped with experimental or computational
support. All authors reviewed the manuscript. Y.F.C. directed the study with input from

all authors.
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Discussion

The assessment of regulatory evolution in order to understand how genetic variation
translates into phenotypic variation is a long-standing research topic with the ultimate
aim to understand adaptive evolution. Efforts to disentangle cis- from trans-regulatory
changes using F1 hybrids at a genomic scale have started with the advent of Next-
Generation Sequencing in 200472 and since proved an informative and popular study
design. However, as much as was discovered using this approach, little progress has
been made in refining or advancing this design. As a result, while there are plenty of
case studies, they all suffer from similar limitations and therefore restrict the potential
for scientific discovery.

In contrast to that, the breadth of available methodologies to survey general or specific
aspects of gene regulation is immense. Most likely, there are more techniques
available and established today than at any time before in molecular biology and
importantly, these are incredibly diverse. Perhaps most influential have been single-
cell techniques, allowing for readouts of single cells and assessment of cell types.
They promise enormous advancements in both health and disease and thus are

probably one of the most frequently used assays in academic and corporate science.

This thesis aimed to combine the classical F1 hybrid design with new cutting-edge
technology to generate new insights when investigating regulatory evolution. By first
developing easySHARE-seq, we had a single-cell assay measuring gene expression
and surveying the regulatory landscape whose framework suited the requirements of
this study. By applying easySHARE-seq to multiple mouse species and their F1
hybrids, we were able to conduct the first study that not only used this design to
investigate regulatory evolution in mammals and do so on a cell-type level but also
provided an approach to identify cis-regulatory elements that possibly facilitated
differential gene expression on a per-gene basis. As this immensely expands the
possibilities of this design, we expect that similar studies in diverse systems will be
conducted following this thesis and its publications.
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The impact of easySHARE-seq

The future of single-cell techniques is bright. Already a staple and cornerstone of
various fields, including basic research, drug discovery or cancer biology'46:147,
continuous drop of costs and increasing ease of use will make these techniques even
more widespread. The same applies to multiomic single-cell techniques, which
promise to transform our insight into interconnected processes such as gene
regulation. However, these come with additional challenges such as the need for more
refined cell isolation (and potentially fixation) protocols, more complicated molecular
biology and most of all, not yet matured methodologies, showing a clear need for
improvement in these areas. The original SHARE-seq®® methodology is a major step
toward making multiomic techniques widely available but it still suffered from
drawbacks making it impracticable and economically not feasible for many study
designs. Many of these drawbacks have been resolved by the development of
easySHARE-seq. For one, it is compatible with standard lllumina sequencing. In
contrast, SHARE-seq needs 99bp of sequencing within Index 1, which almost always
requires a private and expensive sequencing run. EasySHARE-seq libraries however
can be sequenced in concert with other lllumina libraries, even at commercial
sequencing services, decreasing the expenses immensely. This comes with the
additional advantage of sequencing up to 300bp of the insert (read), which allows for
identification and discovery of genetic variants. In this thesis, this was particularly
important since many analyses in Chapter Two rely on allele-specific expression.
Other fields where variant discovery is vital include cancer biology since cancer cells
potentially harbor private variants. Paired with a more flexible framework, we expect

easySHARE-seq to be the prominent choice for many, but not all study designs.

Global trends of regulatory evolution in Mus

We found several general trends when investigating regulatory evolution in Mus. With
increasing evolutionary divergence, the fraction of genes whose expression changes
are mediated in cis increased. This observation was consistent across all cell types.
This trend is well documented across other genera such as Drosophila,
Saccharomyces or Gasterosteus "47>111 put has not been shown before in mammals.
Additionally, we could convincingly show that the stronger an evolved expression

difference is, the more likely itis regulated in cis. However, between the closest related
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species (BL6 & CAST/PWD), the majority of expression differences were mediated in
trans. Here, it is important to keep in mind that CAST, PWD and BL6 are subspecies
(I refer to them as separate species for the sake of readability) whereas SPRET is a
fully separate species. Here again, many previous studies (but not all) described that
more genes are differentially regulated in trans within species’#108.148-151 compared to
between species, where cis-regulatory changes are the primary source of regulatory
variation’419%.199 However, all these studies were either performed in yeast or flies
and it was not known if mammals, who have a vastly higher fraction of non-coding
DNA in their genome %2, would follow these trends. Interestingly, as shown in Appendix
Ill, the majority of regulatory variation between chimp and human is also mediated in
cis'®, underlining the generality of these trends. These observations lead us to
conclude that while during initial divergence most expression differences are due to
trans-regulatory factors, cis-regulatory changes are the dominant driver of regulatory
evolution in Mus. Therefore, CREs are of major importance during regulatory evolution
and presumably, adaptation.

A further observation in Chapter Two is that cis- and trans-regulatory changes often
have opposing effects onto a given gene, effectively resulting in little or no expression
change. The fraction of genes with opposing cis and trans effects were the highest in
CAST (compared to BL6), followed by PWD and then SPRET. First, the general
observation of frequent opposing cis and trans effects has been well documented,
even within mice”4110111.143_This has led to the hypothesis that gene expression is
generally under stabilizing selection, resulting in the maintenance of a mean, non-
extreme phenotype’®. However, here it is again important to distinguish within and
between species comparisons. Between species, the genetic variants leading to
opposing cis- and trans-regulatory effects are co-inherited. Within species however,
there is no guarantee that this is the case, yet the fraction of genes displaying these
effects are high. As of yet, no mechanism has been proposed that explains these
observations. It is possible that the genetic variants conferring the opposing cis- and
trans-regulatory effects are frequently closely linked, though it seems unlikely that this
can explain these widespread effects in within-species comparisons. One study
suggested that the high fraction of opposing cis- and trans-effects is overestimated
due to experimental bias and could therefore be an artifact'®3. Lastly, the high
frequency of opposing cis- and trans-effects also showcase how diverged the Mus

musculus subspecies have become. These contradictory regulatory changes can
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cause misexpression in the hybrid, which reduces interbreeding and thus gene flow
between the subspecies, ultimately causing each subspecies to evolve into fully

separate species.

As mentioned before, studies investigating regulatory evolution in Mus species are few
but some have been conducted. First, Goncalves et al.''® assessed regulatory
evolution in liver between BL6 and CAST using F1 hybrids. They reported that only
0.6% of genes show expression differences in trans and 14% in cis. This stands in
stark contrast to the results of this study where 31.7% of genes had trans-regulatory
changes and 14.8% in cis. There are several possibilities that might explain the
discrepancy. Goncalves et al. was published in 2012 and thus limited by the
sequencing capabilities of its time, resulting in lower total transcript number and less
statistical power. Potentially then, their results are enriched for highly expressed and
highly diverged genes, which in turn are enriched for cis-regulated genes (see above).
Additionally, as this study design relies on identification of genetic variants to analyze
allele-specific expression, the set of identified genetic variation between BL6 and
CAST was far less complete in 2012. A second study investigated regulatory evolution
between PWK and LEWES mice (a wild-derived strain from Mus musculus
domesticus) in whole testis and also concluded that cis-regulatory changes are more
frequent than trans-regulatory changes (24% compared to 9%). This is most likely a
tissue-specific effect. Testes show the highest rate of transcriptome change of any
organ or tissue in mammals when comparing between species’®*'% and as described
before, higher expression changes are more likely to be mediated in cis. In addition,
multiple other studies indicate that a high frequency of cis-regulatory changes is a
testes-specific effect’*!.156, Altogether, our results and previous studies highlight that
while general trends do exist and CREs are the dominant driver of regulatory evolution,
patterns of evolution of gene regulation are highly species and tissue specific and thus
dependent on evolutionary and demographic history of the species assayed. This is
exemplified by the differing patterns of regulatory evolution in CAST and PWD, despite

sharing similar evolutionary divergence and number of genetic variants.
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Cell-type specific evolutionary dynamics

We also analyzed evolution of gene regulation on a cell-type level. While several
studies before analyzed regulatory evolution in cell types using eQTL analysis, this
study is the first to use the F1 hybrid design and therefore assess larger evolutionary
divergences. Assessing regulatory evolution on a cell-type level is essentially a trade-
off between cellular resolution and statistical power'®”. The less frequent a cell-type
is, the less statistical power and thus genes can be analyzed simply because of lower
transcript numbers. This can potentially bias rare cell types toward showing increased
cis-regulatory changes since higher expression changes are more likely to be detected
and as describe above, more frequently regulated in cis.

Our analysis revealed that cell types generally follow similar evolutionary trajectories
within a species. For example, between BL6 and CAST, all cell types had a higher
proportion of trans-regulated genes compared to cis. However, there are numerous
cell-type specific differences within a species. Kupffer Cells in CAST for example had
a substantially higher frequency of genes with compensatory gene regulation and thus
no net expression change. This could potentially reflect increased stabilizing selection
due to conserved and important immunological functions of this cell type'%8.

More intriguing however were cell types that showed consistent patterns across
species in their regulatory evolution. We show that hepatocytes consistently had the
highest proportion of differentially expressed genes of any cell type and those genes
also consistently evolved the highest expression changes of any cell type. This was
true across all species and perhaps not surprising given that hepatocytes fulfill the
main metabolic functions in the liver. In addition though, we found that hepatocyte-
specific ATAC-seq peaks, which are highly enriched for hepatocyte-specific CREs,
harbored significantly increased genetic variation compared to other cell-type specific
peaks. Again, this was consistent across all species. Since the fixation of genetic
variants is ultimately the result of selection (and chance), this can hardly be explained
by biases in methodology or differences in statistical power. We speculate on two
possible, non-exclusive explanations for this observation. First, it is possible that some
cell types are predisposed toward certain types of regulatory change by their function,
hierarchy or interaction within a tissue. More intriguingly though, it could be that similar
strengths and durations of selective pressures can cause similar regulatory responses

and that in this case, hepatocytes simply experienced similar selective pressures

33



across all species. This has already been predicted by Stern & Orgogozo®® in a
landmark paper describing predictions and consequences of the cis-regulatory
hypothesis. In short, they argue that strong or weak selection and differing durations
of selection result in the selection of different types of mutations. They make their case
comparing domesticated populations, which they presume to have experienced strong
selective pressures, to wild populations and show that the types of regulatory changes
that are more likely fixed varies between these two categories. | propose that our
observations might fit into this theoretical framework. Since this study is the first to
assess cell-type specific regulatory evolution, previous studies were not able to detect
these evolutionary dynamics. This might also explain substantial differences between
organs and tissues, since those likely experience differing selective pressures.
However, | also want to note that more studies across diverse taxa and organs are

needed before any confidence can be placed in this proposition.

Linking CREs to their target gene

In this study, we showcase the use of multiomic measurements to link CREs to their
target gene. Connecting CREs to target genes is usually laborious and time-intensive
and this approach potentially streamlines this effort. More intriguingly though, this
provides a defined starting point for the identification of genetic variants underlying
expression change, especially for genes who are differentially regulated in cis. This
therefore directly addresses some long-standing questions in evolutionary biology and
to a degree, incorporates one of the major advantages of eQTL mapping into the F1
hybrid design. However, it is limited by several aspects. For one, the identification of
links depends on data quality and amount, rendering it difficult to link CREs in rare cell
types. Second, these links are only correlations. To definitively connect a CRE to a
gene, additional assays are needed. Lastly, the statistical framework for these links is
novel and likely to improve in the future. Nevertheless, we argue that this approach
identifies true links between CREs and their target gene, mainly because of three
datapoints. For one, we found that links to cis-regulated genes are the least conserved
between species. This is expected since cis-regulated genes are defined by a change
in cis, including the functional loss of a CRE, whereas links to trans-regulated genes
should be more conserved. Second, links between differentially regulated genes and

differentially accessible ATAC-seq peaks scale according to the fraction of genes
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regulated in cis. This again follows expectations since a change in expression of a cis-
regulated gene should be accompanied by a change in a CRE. Third, pCREs linked
to cis-regulated genes have a higher rate of genetic variation than pCREs linked to
genes with different regulatory changes, indicating that we might also capture pCREs
with functional, potentially adaptive genetic variation. To summarize, these described
datapoints provide evidence that using multiomic measurements to link CREs to target
genes identifies some true biological connections, providing a defined starting point to

identify genetic variants underlying expression change and thus, phenotypic variation.

An updated cis-regulatory hypothesis?

We could show that CREs play a major role during regulatory evolution in Mus and
thus, in their adaptation. This can be seen by an increasing number of cis-regulatory
changes with increasing evolutionary divergence and also by the observation that
stronger expression changes are more likely to be mediated in cis. We could also show
that CREs linked to cis-regulated genes have increased genetic variation compared
to those linked to other genes, which is consistent with adaptive evolution. But how
does the high frequency of trans-regulatory changes within species fit into this picture?
One aspect of the cis-regulatory hypothesis that has been rethought is the higher
target size for cis-regulatory elements. While it is true that the fraction of non-coding
DNA is far larger than coding DNA, the effective target size for cis-regulatory changes
at a gene is likely smaller. To evolve expression change in a gene, many other genes
(more precisely, their proteins and other trans-factors) which influence this focal gene
can be modified or e.g. increased in concentration. In contrast, in a given cellular
context only few CREs can be modified to differentially regulate the focal gene. Thus,
the effective target size is often much higher for trans-regulatory changes'®!, which
may result in an initial increase of trans-regulated genes within species as mutations
resulting in trans-regulatory changes are more likely to occur. Over time, subspecies
become fully different species and more beneficial cis-regulatory mutations arise and
can be fixed, leading to CREs becoming the dominant driver of regulatory evolution.
As described above, this study was not the first to observe this trend and these
dynamics have been proposed before''".

Curiously though, this might also provide the groundwork for unifying seemingly

opposite models of regulatory evolution, namely the cis-regulatory hypothesis and the
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omnigenic model. As a reminder, the omnigenic model partitions genes influencing a
phenotype into ‘core genes’, which are few and have a large effect, and ‘peripheral
genes’, which explain the majority of the phenotype through small trans-effects'. This
was mainly the result of GWAS studies, which repeatedly identified a few large effect
loci and many small effect loci influencing a trait. However, what exactly do GWAS
studies measure? They statistically correlate a genetic variant with a trait, relying on
large natural populations. In other words, they only compare genetic variation within
species, not between. As described above, studies using the F1 hybrid design
repeatedly find more trans-regulatory changes within species and cis-regulatory
changes to be dominant between species. Therefore, both approaches might identify
similar trends, but across different evolutionary scales since GWAS is not applicable
to investigate evolutionary divergences as large as the F1 hybrid design. A supporting
aspect is that even within species, the largest expression changes are usually
mediated in cis, which is also consistent with the ‘core genes’ in the omnigenic model.
Thus, these two seemingly opposing models of regulatory evolution might be unifiable.
However, there are other theoretical aspects of these models that are still in

opposition, therefore caution is advised against overinterpreting this speculation.

Closing Remarks

This study comprehensively surveys regulatory evolution across Mus and provides
further evidence that cis-regulatory elements are the major contributor to evolution of
gene regulation, also in mammals. It also describes regulatory differences between
cell types and an approach to link CREs to their target gene.

In the future, we hope that similar designs will be used to survey regulatory evolution
across a diverse array of organs, species, taxa and kingdoms to expand our
knowledge about regulatory evolution and how the underlying dynamics depend on
selective pressures. We also hope that further studies might expand, improve or
modify this design to suit their needs. Ultimately, this will shed light onto some of the
oldest questions of evolutionary biology and how life generated the vast diversity of
past and present forms.
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e.g.:
bp:

Mb:
mRNA
cDNA:
DNA:
polyA:
CRE:
eQTL:
GWAS:
CRISPR:

ATAC-seq:

ChlIP-seq:

ChRO-seq:

CUT&Tag:
RNA-seq:

SHARE-seq:

TAD:
TF:

Glossary

from Latin exempli gratia or “for example
base pair

megabase bair

messenger- ribonucleic acid
complementary deoxyribonucleic acid
deoxyribonucleic acid

poly-adenylated

cis-regulatory element

expression quantitative trait loci

genome-wide association study

clustered regularly interspaced short palindromic repeats
Assay for Transposase-Accessible Chromatin using sequencing

chromatin immunoprecipitation sequencing

chromatin run-on and sequencing
cleavage under targets and tagmentation

ribonucleic acid sequencing

simultaneous high-throughput ATAC and RNA expression sequencing

topologically associated domain

transcription factor
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Abstract

Gene expression and chromatin accessibility are highly interconnected processes.
Disentangling one without the other provides an incomplete picture of gene regulation.
However, simultaneous measurements of RNA and accessible chromatin are technically
challenging, especially when studying complex organs with rare cell-types. Here, we present
easySHARE-seq, an elaboration of SHARE-seq, providing simultaneous measurements of
ATAC- and RNA-seq within single cells, enabling identification of cell-type specific cis-
regulatory elements (CREs). easySHARE-seq retains high scalability, improves RNA-seq data
quality while also allowing for flexible study design. Using 19,664 joint profiles from murine
liver nuclei, we linked CREs to their target genes and uncovered complex regulation of key
genes such as Gata4. We further identify de novo genes and cis-regulatory elements
displaying zonation in Liver sinusoidal epithelial cells (LSECs), a challenging cell type with low
mRNA levels, demonstrating the power of multimodal measurements. EasySHARE-seq
therefore provides a flexible platform for investigating gene regulation across cell types and
scale.



Introduction

Gene expression and chromatin state together influence fundamental processes such as gene
regulation or cell fate decisions '~*. A better understanding of these mechanisms and their
interactions will be a major step toward decoding developmental trajectories or reconstructing
cellular taxonomies in both health and disease. However, to fully capture these complex
relationships, multiple information layers need to be measured simultaneously. For example,
prior studies have argued that chromatin state is often predictive of gene expression and can
also prime cells toward certain lineage decisions or even induce tissue regeneration®®.
However, these studies depend on the computational integration of separately measured
modalities. By assuming a shared biological state, this restricts the discovery of novel and
potentially fine-scale differences and renders it challenging to identify the root cause of
erroneous cell states’.

The last decade has seen an explosive growth in single-cell methodologies, with new assays,
increasing throughput and a suite of computational tools®. Most non-commercial high-
throughput methodologies rely on combinatorial indexing for single-cell barcoding, where
sequential rounds of barcodes combine to create unique cellular barcode combinations °1°.
Compared to single-modality assays, multi-omic technologies, which capture two or more
information layers, are relatively new. Therefore, they are still limited in sensitivity and
throughput and commercial kits can be expensive such that multi-omic studies tend to have
limited sample sizes '""'2.

To address these problems, we built upon the previously published protocol called SHARE-
seq™ and developed easySHARE-seq, a protocol for simultaneously measuring gene
expression and chromatin accessibility within single cells using combinatorial indexing. Major
improvements include easySHARE-seq’'s barcoding framework, which allows for expanded
and flexible study design, all while being compatible with standard lllumina sequencing,
thereby removing economic hurdles. Importantly, easySHARE-seq retains the scalability and
improves upon RNA-seq sensitivity of the original SHARE-seq protocol. Here, we used
easySHARE-seq to profile 19,664 murine liver nuclei and show that we can recover high
quality data in both RNA-seq and ATAC-seq channels, which are highly congruent and share
equal power in classifying cell types. We then surveyed the cis-regulatory landscape of Liver
Sinusoidal Endothelial Cells (LSECs), leveraging the simultaneous measurements of gene
expression and chromatin accessibility and identified 40,957 links between expressed genes
and nearby ATAC-seq peaks. Notably, genes with the highest number of links were enriched
for transcription factors and regulators known to control important functions within LSECs.
Lastly, we show that easySHARE-seq can be used to investigate micro-scale changes in
accessibility and gene expression by identifying novel markers and open chromatin regions
displaying zonation in LSECs. This technology improves our toolkit of multi-omic protocols
needed for advancing our knowledge about gene regulation and cell fate decisions.



Results

easySHARE-seq reliably labels both transcriptome and accessible chromatin in
individual cells

To develop a multi-omic single-cell (sc) RNA and scATAC-seq protocol that allows for flexible
study design while being highly scalable, we built upon SHARE-seq' to create easySHARE-
seq, which uses two rounds of ligation to simultaneously label cDNA and DNA fragments in
the same cell (Fig. 1A). Due to a much more streamlined barcoding structure, easySHARE-
seq allows 300bp sequencing of the insert. This longer read-length leads to a higher recovery
of DNA variants, thus increasing the power to detect allele-specific signals or cell-specific
variation, e.g., in hybrids or cancer cells™.

To generate libraries, fixed and permeabilized cells or nuclei (we will use “cells” afterwards to
refer to both) are transposed by Tn5 transposase carrying a custom adapter with a single-
stranded overhang (Fig. 1B). Next, mRNA is reverse transcribed (RT) using a biotinylated
poly(T) primer with an identical overhang. Subsequently, the cells are individually barcoded in
two rounds of combinatorial indexing with 192 barcodes in each round, creating a total of
36,864 possible barcode combinations.The first barcode is ligated onto the already present
overhang and itself contains a second single-stranded overhang, onto which the second
barcode can be ligated. Importantly, in the easySHARE-seq design, we have kept the total
length of the barcode within 17nt (“Index 1” read; Fig. 1B, Suppl. Fig. 1A), allowing for
multiplexing of easySHARE-seq libraries with standard Illumina libraries. In contrast, in the
original publication, SHARE-seq libraries required Index 1 lengths of 99nt, a highly custom
configuration which would require a costly private sequencing.

After barcoding, the cells are aliquoted into sub-libraries of approximately 3,500 cells each
and reverse crosslinked. A streptavidin pull-down of the biotinylated RT-primer is performed
to separate the cDNA molecules from the chromatin (“fragments”). Each sub-library is then
prepared for sequencing and amplified using matched indexing primers to allow identification
of paired cellular scRNA- and scATAC-seq profiles. By scaling up the numbers of sub-libraries,
this barcoding strategy therefore allows for high-throughput experiments of hundreds of
thousands of cells, only limited by the availability of indexing primers. For a detailed description
of the flexibility of easySHARE-seq, instructions on how to modify and incorporate the
framework into new designs as well as critical steps to assess when planning to use
easySHARE-seq see Supplementary Notes.

To evaluate the accuracy and cell-specificity of the barcoding, we first performed easySHARE-
seq on a mixed pool between human and murine cell lines (HEK and OP-9 respecitvely). This
design allows us to identify two or more cells sharing the same barcode (‘doublets’; Fig. 1C,
left). After sequencing, we recovered a total of 3,808 cells. Both chromatin and transcriptome
profiles separated well within each cell (Fig. 1C, middle), with cDNA showing a lower accuracy
with increasing transcript counts, likely due to less precise read mapping. We identified a total
of 124 doublets (Fig, 1C, right), which gives a final doublet rate of 6.34% factoring in the
undetectable intra-species doublets. For comparison, a 10X Chromium Next GEM experiment
with 10,000 cells has a doublet rate of ~7.9% (www.10xgenomics.com). Importantly,
easySHARE-seq doublet rates can be lowered further by aliquoting fewer cells within each
sub-library. To summarise, easySHARE-seq provides a high-throughput and flexibility
framework for accurately measuring chromatin accessibility and gene expression in single
cells.



Simultaneous scATAC-seq and scRNA-seq profiling in murine primary liver cells

To assess data quality and investigate the relationship between gene expression and
chromatin accessibility, we focused on murine liver. The liver consists of a diverse set of
defined primary cell types, ranging from large and potentially multinucleated hepatocytes to
small non-parenchymal cell types such as Liver Sinusoidal Endothelial Cells' (LSECs).

We generated matched high-quality chromatin and gene expression profiles for 19,664 adult
liver cells across four age-matched mice (2 male, 2 female), amounting to a recovery rate of
70.2% (28,000 input cells). Each nuclei had on average 3,629 UMIs and 2,213 fragments
(74% of all RNA-seq reads were cDNA, 55.9% mean ATAC-seq fragments in peaks; Suppl.
Fig. 1B & D). In terms of UMIs per cell, easySHARE-seq therefore out-performed other
previously published multi-omic and representative single channel assays (Fig. 2B; see figure
legend for tissue type and study). Consistent with nuclei as input material, the majority of cDNA
molecules were intronic (69.6%, Suppl. Fig. 1C & H). Regarding DNA fragments per cell,
easySHARE-seq performed similarly to other published multi-omic assays (Fig. 2C) and
scATAC-seq libraries displayed the characteristic banding pattern with reads being highly
enriched at transcription start sites (TSS; Suppl. Fig. 1 E, F, H).

To visualise and identify cell types, we first projected the ATAC- and RNA-seq modalities
separately into 2D Space and then used Weighted Nearest Neighbor'® (WNN) integration to
combine both modalities into a single UMAP visualisation (Fig. 2A). Importantly, the same
cells independently clustered together in the scRNA- and scATAC-seq UMAPs, showcasing
high congruence between the two modalities (Suppl. Fig. 2A&B). We then annotated
previously published cell types based on gene expression of previously established marker
genes '"'®_ Marker gene expression was highly specific to the clusters (Fig. 2D, Suppl. Fig.
2F) and we recovered all expected cell types (Suppl. Fig.2C). Importantly, the same cell types
were identified using each modality independently, showcasing high congruence between the
scATAC- and scRNA-seq modalities (Fig. 2E). Altogether, our results show that easySHARE-
seq generates high quality joint cellular profiles of chromatin accessibility and gene expression
within primary tissue, expanding our toolkit of multi-omic protocols.

Uncovering the cis-regulatory landscape of key regulators through peak-gene
associations

As easySHARE-seq simultaneously measures chromatin accessibility and gene expression,
it allows to direct investigation of the relationship between them to potentially connect cis-
regulatory elements (CREs) to their target genes. To do so, we adopted the analytical
framework from Ma et al.’®, which queries if an increased expression within a cell is
significantly correlated with chromatin accessibility at a peak while controlling for GC content
and accessibility strength. Focusing on LSECs (1,501 cells), we calculated associations
between putative CREs (pCREs, defined as peaks with a significant peak—gene association)
and each expressed gene, considering all peaks within £ 500kb of the TSS. We identified
40,957 significant peak—gene associations (45% of total peaks, P < 0.05, FDR = 0.1) with
15,061 genes having at least one association (76.8% of all expressed genes, Suppl. Fig.
3A,C). Conversely, some rare pCREs (2.9%) were associated with five or more genes (0.03%
when considering only pCREs within + 50 kb of a TSS (Suppl. Fig. 3B,D)). These pCREs
tended to cluster to regions of higher expressed gene density (2.15 mean expressed genes
within 50kbp vs 0.93 for all global peaks) and their associated genes were enriched for
biological processes such as mRNA processing, histone modifications and splicing (Suppl.
Fig. 3H), possibly reflecting loci with increased regulatory activity.



Focusing on genes, we ranked them based on their number of associated pCREs (Fig. 2F).
Within the top 1% genes with the most pCRE associations were many key regulators and
transcription factors. Examples include Taf5, which directly binds the TATA-box' and is
required for initiation of transcription, or Gata4, which has been identified as the master
regulator for LSEC specification during development as well as controlling regeneration and
metabolic maturation of liver tissue in adult mice 2*2'. As such, it incorporates a variety of
signals and its expression needs to be strictly regulated, which is reflected in its many pCREs
associations (Fig. 2H). Similarly, Igf1 also integrates signals from many different pCREs??
(Suppl. Fig. 3G). Notably, pCRES are significantly enriched at transcription start sites (TSS),
even relative to background enrichment (Fig. 2G).

To summarise, easySHARE-seq allows the direct investigation of the relationship between
chromatin accessibility and gene expression and identify putative cis-regulatory elements at
genomic scale, even in small cell types with relatively low mRNA contents (Suppl. Fig. 2D).

De novo identification of open chromatin regions and genes displaying zonation in
LSECs

We next investigated the process of zonation in LSECs. The liver consists of hexagonal units
called lobules where blood flows from the portal vein and arteries toward a central vein 2>
(Fig. 3A). The central-portal (CP) axis is characterised by a morphogen gradient, e.g. Wnt2,
secreted by central vein LSECs, with the resulting micro-environment giving rise to spatial
division of labour among hepatocytes 2%, Studying zonation in non-parenchymal cells such
as LSECs is challenging as these are small cells with low mRNA content (Suppl. Fig. 2D,E),
lying below the detection limit of current spatial transcriptomic techniques. As a result, only
very few studies assess zonation in LSECs on a genomic level 2. However, LSECs are critical
to liver function as they line the artery walls, clear and process endotoxins, play a critical role
in liver regeneration and secrete morphogens themselves to regulate hepatocyte gene
expression 2°' rendering their understanding a prerequisite for tackling many diseases.

We therefore asked if we can recover known zonation gradients and potentially identify novel
marker genes and open chromatin regions displaying zonation. We noticed that LSECs
clustered in a distinct linear pattern in our UMAP projection and therefore divided them into
equal bins along UMAP2 coordinates (Suppl. Fig. 4A, number of cells per bin 80-260, median:
128). We then calculated mean normalised expression and mean normalised accessibility
within each bin. This recovered gene expression and chromatin accessibility gradients for
major known zonation marker genes® (Fig. 3B,C). For example, Wnt2 expression decreased
strongly along the CP axis as did chromatin accessibility of all three peaks at the Wnt2 locus
(Fig. 3B). We also recovered the zonation profiles for the majority of known pericentral
(increasing along the CP-axis), periportal (decrease along the CP-axis) and non-monotonic
markers (decrease toward both ends) as well as their associated chromatin regions (Fig. 3C).
Gene expression zonation profiles can also be recovered by ordering LSECs along
pseudotime (Suppl. Fig. 4C,D). In contrast, simply subclustering LSECs and comparing
expression between these clusters was too broad for the assessment of zonation (Suppl. Fig.
4A,B).

Next, we sought to identify novel marker genes and open chromatin regions displaying
zonation in LSECs based on the decrease or increase of mean expression or accessibility
along the previously established bins. In total, we classified 153 genes and 381 open
chromatin regions as pericentral and 209 genes and 465 open chromatin regions showed
periportal zonation profiles (Fig. 3D). The list of markers contained many genes regulating
epithelial growth and angiogenesis (e.g. Efna1, Nrg2, Zfom1, Zfpm2, Bmpr2)**=**, related to



regulating hepatocyte functions and communication (e.g. DIl4, Foxo1, Sp1, Snx3)**=" as well

as immunological functions (e.g. Sirt2, Cd59a)***°, suggesting that these processes show
variation along the PC axis. As dysregulation of LSEC zonation is implicated in multiple
illnesses such as liver cirrhosis or non-alcoholic fatty liver disease “°4!, these genes are
potential new biomarkers for their identification and the open chromatin regions starting points
for investigating the role of gene regulation in their emergence.

Discussion

Understanding complex processes such as gene regulation or disease states requires the
integration of multiple layers of information. Here, we show that easySHARE-seq provides a
high-quality, high-throughput and flexible platform for joint profiling of chromatin accessibility
and gene expression within single cells. We show that both modalities are highly congruent
with one another and we leverage their simultaneous measurements to identify peak—gene
interactions and survey the cis-regulatory landscape of LSECs. We also show that
easySHARE-seq can be used to assess micro-scale changes such as zonation in LSECs
across both gene expression and chromatin accessibility. These cells have low mRNA content
and we recovered zonation profiles of many transcription factors, which are often lowly
expressed, further demonstrating the power of easySHARE-seq.

Besides improving upon RNA-seq data quality, we argue that easySHARE-seq has many
advantages, especially in terms of the sequencing flexibility due to the barcode design, which
can help remove hurdles for incorporating multi-omic single-cell assays into study designs.
Combined with shorter experimental times (~12h total), easySHARE-seq might be particularly
suited for studies where higher sample sizes are required or ones that rely on identification of
genomic variants, e.g., in diverse, non-inbred individuals or in cancer. In terms of costs per
cell, easySHARE-seq performs similarly to standard SHARE-seq with ~0.056 cents/cell, a
fraction of the costs (<25%) of commercially available platforms, even before factoring in the
specialized instrument costs. A comparison between technologies can be found in Table 1.
We envision easySHARE-seq as another technological step toward ultimately understanding
gene regulation in health and disease, surveying cis-regulatory landscapes during
differentiation and lineage commitment and determining genetic variants affecting those
processes.
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Figure 1: easySHARE-seq enables highly-accurate simultaneous scATAC-seq and
scRNA-seq profiling

(A) Schematic workflow of easySHARE-seq.

(B) Generation and structure of the single-cell barcoding within Index 1.

(C) Principle of a species-mixing experiment. Cells are mixed prior to easySHARE-seq
and sequences associated with each cell barcode are assessed for genome of origin
(left panel). Unique ATAC fragments per cell aligning to the mouse or human genome
(middle left). Cells are coloured according to their assigned origin (red: human; blue:
mouse; orange: doublet). Middle right: Same plot but with RNA UMIs. Right:
Percentage of ATAC fragments or RNA UMIs per cell relative to total sequencing reads
mapping uniquely to the human genome. 3.17% of all observed cells classified as
doublets. Accounting for same-species doublets, this results in a doublet rate of 6.34%.

(D) Aggregate chromatin accessibility (red) and expression-seq (blue) profile of OP-9 cells
at the Hprt locus.
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Figure 2: Joint expression and chromatin accessibility profiling in primary liver nuclei

(A) UMAP visualisation of WNN-integrated scRNAseq and scATACseq modalities of
19,664 liver nuclei. Nuclei are coloured by cell types.

(B) Comparison of UMlIs/cell across different single-cell technologies. Red shading
denotes all multi-omic technologies. Datasets are this study, SHARE-seq'® (murine
skin cells), sci-CAR"! (murine kidney nuclei), SNARE-seq'? (adult & neonatal mouse
cerebral cortex nuclei), 10x 3' Expression'” (murine liver nuclei) and sci-RNAseq3
(E16.5 mouse embryo nuclei).

(C) Comparison of unique fragments per cell across different single-cell technologies.
Colouring as in (B). Datasets differing to (B) are 10x 3'scATAC*? (murine liver nuclei)
and sciATAC-seq*® (murine liver nuclei).

(D) Normalised gene expression of representative marker genes per cell type.

(E) Aggregate ATAC-seq tracks at marker accessibility peaks per cell type.

(F) Genes ranked by number of significantly correlated pCREs (P < 0.05, FDR = 0.1) per
gene (£500kbp from TSS) in LSECs. Marked are transcription factors & regulators
within the top 1% of genes with a critical role in LSECs.

(G) Significantly correlated pCREs are enriched for TSS proximity. Normalised density of
all peaks versus pCREs within £50kbp of nearest TSS.

(H) Aggregate scATAC-seq track of LSECs at the Gata4 locus and 500kbp upstream
region. Loops denote pCREs significantly correlated with Gata4 and are coloured by
Spearman correlation of respective pPCRE—Gata4 comparison
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Figure 3: Zonation profiles in LSECs across gene expression and chromatin
accessibility

(A) Schematic of a liver lobule. A liver lobule has a ‘Central-Portal Axis’ starting from the
central vein to the portal vein and portal artery. The sinusoidal capillary channels are
lined with LSECs.

(B) Changes along the Central-Portal Axis at the Whnt2 locus. Top: Aggregate scATACseq
profile (red) of LSECs at Wnt2 locus. Grey bars denote identified peaks. Bottom: In
blue, loess trend line of mean normalised Wnt2 gene expression along the Central—
Portal-Axis (central vein, CV; portal vein, PV; split into equal 10 bins). In red, loess
trend line of mean normalised chromatin accessibility in peaks at the Wnt2 locus along
the CP-axis.

(C)Loess trend line of mean normalised expression (blue) and mean normalised
accessibility along the Central-Portal axis for pericentral markers (top, increased
toward the central vein, Dkk3, Kit and Thbp), non-monotonic markers (middle,
increased between the veins, Lyvel, Lama4 and Bmp2) and periportal markers
(increased toward the portal vein, Efnb2, Meis1 & Ltbp4)

(D) Left: Zonation profiles of 362 genes along the Central-Portal axis. Right: Zonation
profiles of 846 open chromatin regions along the Central-Portal axis. All profiles are
normalised by their maximum.
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Table 1

Comparison of single-cell techniques

Cost / Cell Throughput Multiomic? Special equipment? Std. sequencing? Potential insert length?
This study 5.6 ct > 200.000 Yes No Yes > 200bp
SHARE-seq 4.33 ct > 200.000 Yes No No 100bp
10x Multiome 25.8 ct 80.000 Yes Yes No 100bp
sci-RNA-seq3 1ct > 200.000 No No Yes > 200bp

Table 1: Comparison between different single-cell technologies
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Supplementary Figure 1: Barcode structure and summary of quality control measures
in liver nuclei

(A) Structure of a scATAC-seq and scRNA-seq sequencing read. Created with
Biorender.com

(B) Percentage of total scRNAseq sequencing reads containing cDNA fragments.

(C) Percentage of de-duplicated scRNAseq sequencing reads overlapping an exon or
intron.

(D) Distribution of fraction of reads in peaks (FRIP) per cell in the scATAC-seq data (mean:
0.55).

(E) Mean TSS enrichment score per cell in relation to distance from nearest TSS in the
scATACseq data.

(F) Histogram of fragment length in scATAC sequencing reads

(G) Expressed genes and accessible peaks per cell (mean expressed genes: 1,798; mean
accessible peaks: 1,983)

(H) Top: Aggregate scRNA-seq (blue) and scATAC-seq (red) of all liver nuclei at
Nop2/Iffo2/Gapdh locus. Bottom: Chromatin accessibility profiles of 100 individual
cells.
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Supplementary Figure 2: easySHAREseq robustly separates cell types

(A) UMAP visualisation of merged and integrated scRNA-seq data. Nuclei are coloured
according to their cell type.

(B) UMAP visualisation of merged and integrated scATAC-seq data. Nuclei are coloured
according to their cell type.

(C) Fraction of cell types recovered relative to total cells

(D) Distribution of UMIs per cell split by cell type. Some cell types (e.g. LSECs) consistently
yield less UMIs.

(E) Distribution of unique fragments per cell split by cell types. Some cell types (e.g.
LSECs) consistently yield less fragments.

(F) WNN-UMAPs with cells coloured according to the mean expression strength of a given
marker gene. Red circles indicate the position of the cell population showing elevated
expression for this marker gene.
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Supplementary Figure 3
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Supplementary Figure 3: Summary of peak—gene correlations

(A) Number of significantly correlated pCREs (P < 0.05, FDR = 0.1) per gene, considering
all peaks +500kbp of the TSS

(B) Number of genes a given pCREs is significantly correlated with (P < 0.05, FDR = 0.1),
considering all peaks +500kbp of the TSS

(C) Number of significantly correlated pCREs (P < 0.05, FDR = 0.1) per gene, considering
all peaks +50kbp of the TSS

(D) Number of genes a given pCREs is significantly correlated with (P < 0.05, FDR = 0.1),
considering all peaks +50kbp of the TSS

(E) Histogram of Spearman correlations of all significant peak—gene correlations (P < 0.05)

(F) Histogram of Spearman correlations of all non-significant peak—gene correlations (P >
0.05)

(G) Aggregate scATAC-seq track of LSECs at the Igff locus and its upstream region.
Loops denote significantly correlated pCREs with Igf1 and are coloured by their
respective Spearman correlation. Shaded grey area denotes potentially LSEC-specific
cis-regulatory element regulating Igf1 expression.

(H) Gene Ontology enrichment analysis of genes whose associated pCREs are associated
with five or more genes.
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Supplementary Figure 4
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Supplementary Figure 4: Investigation of LSEC zonation

(A) Subclustering LSECs reveals three distinct clusters.

(B) Comparison of marker gene expression across the three identified LSEC subclusters
does not allow for fine-scale cell-type assignments.

(C) Subclustered LSECs coloured by pseudotime.

(D) Loess-Curve of marker gene expression of pericentral, non-monotonic and periportal
marker genes along pseudotime.
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Methods
Animal Model & Tissue preparation

Mice

All animal experimental procedures were carried out under the licence number EB 01-21M at
Friedrich Miescher Laboratory of the Max Planck Society in Tlibingen, Germany. The
procedures were reviewed and approved by the Regierungsprasidium Tubingen, Germany.
Liver was collected from both male and female wild-type C57BL/6 and PWD/PhJ mice aged
between 9 to 11 weeks.

Study design

From each strain, we generated easySHARE-seq libraries for one male and one female mice
from each strain (four total). For each individual, we sequenced two sub-libraries, resulting in
8 easySHAREseq libraries.

Cell Culture

For the species-mixing experiment, HEK Cells were cultured in media containing DMEM/F-12
with GlutaMAX™ Supplement, 10% FBS and 1% Penicillin-Streptomycin (PenStrep) at 37°C
and 5% CO.. Cells were harvested on the day of the experiment by simply pipetting them off
the plate and were then spun down for 5 min at 250G.

For the second cell line, murine OP9-DL4 cells were cultured in alpha-MEM medium
containing 5% FBS and 1% PenStrep. On the day of the experiment, the cells were harvested
by aspirating the media and adding 4 ml of Trypsin, followed by an incubation at 37°C for 5
min. Then, 5ml of media was added and cells were spun down for 5 min at 250G.

After counting both cell lines using TrypanBlue and the Evos Countess Il, equal cell numbers
were mixed.

Liver Nuclei

The liver was extracted, rinsed in HBSS, cut into small pieces, frozen in liquid nitrogen and
stored in the freezer at -80 °C for a maximum of two weeks. On the day of the experiment, 1
ml of ice cold Lysis Solution (0.1% Triton-X 100, 1mM DTT, 10mMM Tris-HCI pH8, 0.1mM
EDTA, 3mM Mg(Ac),, 3mM CaCl; and 0.32M sucrose) was added to the tube. The cell
suspension was transferred to a pre-cooled Douncer and dounced 10x using Pestle A (loose)
and 15x using Pestle B (tight). The solution was added to a thick wall ultracentrifuge tube on
ice and topped up with 4ml ice cold Lysis Solution. Then 9 ml of Sucrose solution (10mM Tris-
HCI pH8.0, 3mM Mg(Ac)., 3mM DTT, 1.8M sucrose) was carefully pipetted to the bottom of
the tube to create a sucrose cushion. Samples were spun in a pre-cooled ultracentrifuge with
a SW-28 rotor at 24,400rpm for 1.5 hours at 4 °C. Afterwards, all supernatant was carefully
aspirated so as not to dislodge the pellet at the bottom and 1 ml ice cold DEPC-treated water
supplemented with 10ul SUPERase & 15ul Recombinant RNase Inhibitor was added. Without
resuspending, the tube was kept on ice for 20 min. The pellet was then resuspended by
pipetting ~15 times slowly up and down followed by a 40 uym cell straining step. Counting of
the nuclei using DAPI and the Evos Countess Il was immediately followed up by fixation.
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easySHARE-seq protocol

Preparing the barcoding oligonucleotides

There are two barcoding rounds in easySHARE-seq with 192 unique barcodes distributed
across two 96-well plates in each round (see Suppl. Table 1 for a full list of oligonucleotide
sequences). Each barcode (BC) is pre-annealed as a DNA duplex for improved stability. The
first round of barcodes contains two single-stranded linker sequences at its ends as well as a
5 phosphate group to ligate the different barcodes together. The first single-stranded
overhang links the barcode to a complementary overhang at the 5’ end of the cDNA molecule
or transposed DNA molecule, which originates either from the RT primer or the Tn5 adapter.
The second overhang (3bp) is used to ligate it to the second round of barcodes (Fig.1B). Each
duplex needs to be annealed prior to cellular barcoding, preferably on the day of the
experiment. No blocking oligos are needed.

The Round1 BC plates contain 10ul of 4uM duplexes in each well and Round2 BC plates
contain 10pl of 6uM barcode duplexes in each well, all in Annealing Buffer (10mM Tris pH8.0,
1mM EDTA, 30mM KCI). Pre-aliquoted barcoding plates can be stored at -20 °C for at least
three months. On the day of the experiment, the oligo plates were thawed and annealed by
heating plates to 95 °C for 2 min, followed by cooling down the plates to 20 °C at a rate of -2
°C per minute. Finally, the plates were spun down. Until the annealed barcoding plates are
needed, they should be kept on ice or in the fridge.

This barcoding scheme is very flexible and currently supports a throughput of ~350,000 cells
(assuming 96 indexing primers) per experiment, limited only by sequencing cost and
availability of indexing primer. The barcodes were designed to have at least a Hamming
distance of 2. See Supplementary Notes for further details on the barcoding system and
flexibility.

TnS preparation

Tn5 was expressed in-house as previously described *. Two differently loaded Tn5 are
needed for easySHARE-seq, one for the tagmentation, loaded with an adapter for attaching
the first barcodes (termed Tn5-B2S), and one for library preparation with a standard illumina
sequencing adapter (termed Tn5-A-only). See Supplementary Table 1 for all sequences.

To assemble Tn5-B2S, two DNA duplexes were annealed: 20 uM Tn5-A oligo with 22 yM Tn5-
reverse and 20 uM Tn5-B2S with 22 uM Tn5-reverse, all in 50 mM NaCl and 10mM Tris pH8.0.
Oligos were annealed by heating the solution to 95 °C for 30 s and cooling it down to 20 °C at
a rate of 2 °C/min. An equal volume of duplexes was pooled and then 200 ul of unassembled
Tn5 was mixed with 16.5 pl of duplex mix. The Tn5 was then incubated at 37 °C for 1 hour,
followed by 4 °C overnight. The Tn5 can then be stored at -20 °C. In our hands, Tn5 did not
show a decrease in activity after 10 months of storage.

To assemble Tn5-A-only, 10 uM of Tn5-A and 10.5 uM Tn5-reverse was annealed using the
same conditions as described above. Again, 200 pl of unassembled Tn5 was mixed with 16.5
pl of Tn5-A duplex and incubated at 37 °C for 1 hour, followed by 4 °C overnight. The Tn5 can
then be stored for later and repeated use for more than 10 months at -20 °C.

We observed an increase in all Tn5 activity during the first months of storage, possibly due to
continued transposome assembly in storage.

Fixation

One million liver nuclei (“cells” for short) were added to ice-cold PBS for 4 ml total. After mixing,
87 ul 16% formaldehyde solution (0.35%; for liver nuclei) or 25 ul 16% formaldehyde solution
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(0.1%; for HEK and OP9 cells) was added and the suspension was mixed by pipetting up and
down exactly 3 times with a P1000 pipette set to 700 pl. The suspension was incubated at
room temperature for 10 min. Fixation was stopped by adding ice-cold Stop-Mix (224 ul 2.5M
glycine, 200 pl 1M Tris-HCI pH8.0, 53 ul 7.5% BSA in PBS). The suspension was mixed
exactly 3 times with a P1000 pipette set to 850 ul and incubated on ice for 3 min followed by
a centrifugation at 500G for 5 min at 4°C. Supernatant was removed and the pellet was
resuspended in 1 ml Nuclei Isolation Buffer (NIB; 10mM Tris pH8.0, 10mM NaCl, 2mM MgCl.,
0.1% NP-40) and kept on ice for 3 min followed by straining the suspension with a 40 um cell
strainer. It was then spun down at 500G for 3 min at 4°C and re-suspended in ~100-200ul
PBSi (1x PBS + 0.4 U/ul Recombinant RNaselnhibitor, 0.04% BSA, 0.2 U/ul SUPERase,
freshly added), depending on the amount of input cells. Cells were then counted using DAPI
and the Countess Il and concentration was adjusted to 2M cells/ml using PBSi.

Tagmentation

In a typical easySHARE-seq experiment for this study, 8 tagmentation reactions with 10,000
cells each followed by 3 RT reactions were performed. This results in sequencing libraries for
around 30,000 cells. To increase throughput, simply increase the amount of tagmentation and
RT reactions accordingly. No adjustment is needed to the barcoding. Each tube and PCR strip
until the step of Reverse Crosslinking was coated before use by rinsing it with PBS+0.5%
BSA.

For each tagmentation reaction, 5 pl of 5X TAPS-Buffer, 0.25ul 10% Tween, 0.25ul 1%
Digitonin, 3 pul PBS, 1 ul Recombinant RNaselnhibitor and 9ul of H20 was mixed. TAPS Buffer
was made by first making a 1M TAPS stock solution in H>O, followed by adjustment of the pH
to 8.5 by titrating 10M NaOH. Then, 4.25ml H,O, 500ul 1M TAPS pH8.5, 250ul 1M MgCl, and
5ml N-N-Di-Methyl-Formamide (DMF) was mixed on ice and in order. When adding DMF, the
buffer heats up so it is important to be kept on ice. The resulting 5X TAPS-Buffer can then be
stored at 4°C for short term use (1-2 months) or for long-term storage at -20°C (> 6 months).
Then, 5 pl of cell suspension at 2M cells/ml in PBSi was added to the tagmentation mix for
each reaction, mixed thoroughly and finally 1.5ul of Tn5-B2S was added. The reaction was
incubated on a shaker at 37°C for 30 min at 850 rpm. Afterwards, all reactions were pooled
on ice into a pre-cooled 15ml tube. The reaction wells were washed with ~30 yl PBSi which
was then added to the pooled suspension in order to maximize cell recovery. The suspension
was then spun down at 500G for 3 min at 4°C. Supernatant was aspirated and the cells were
washed with 200pul NIB followed by another centrifugation at 500G for 3 min at 4°C.

We only observed cell pellets when centrifuging after fixation and only when using cell lines
as input material. Therefore, when aspirating supernatant at any step it is preferable to leave
around 20-30ul liquid in the tube. Additionally, it is recommended to pipette gently at any step
as to not damage and fracture the cells.

Reverse Transcription

As stated above, three tagmentation reactions were combined into one RT reaction. When
increasing cells to more than 30,000 per RT reaction, we observed a steep drop in reaction
efficiency.

The Master Mix for one RT reaction contained 3ul 100uM RT-primer, 2ul 10mM dNTPs, 6pl
5X MaximaH RT Buffer, 4.5yl 50% PEG6000, 1.5 pl H20, 1.5yl SUPERase and 1.66pl
MaximaH RT. The RT primer contains a polyT tail, a 10bp UMI sequence, a biotin molecule
and an adapter sequence used for ligating onto the first round of barcoding oligos.
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The cell suspension was resuspended in 10ul NIB per RT reaction and added to the Master
Mix for a total of 30ul. As PEG is present, it is necessary to pipette ~30 times up and down to
ensure proper mixing. The RT reaction was performed in a PCR cycler with the following
protocol: 52°C for 12 min; then 2 cycles of 8°C for 12s, 15°C for 45s, 20°C for 45s, 30°C for
30s, 42°C for 2min and 50°C for 3 min. Finally, the reaction was incubated at 52°C for 5 more
minutes. All reactions were then pooled on ice into a pre-cooled and coated 15ml tube and
the reaction wells were washed with ~40pl NIB, which was then added to the pooled cell
suspension in order to maximise cell recovery. The suspension was then spun down at 500G
for 3 min at 4°C. Supernatant was aspirated and the cells were washed in 150ul NIB and spun
down again at 500G for 3min at 4°C. This washing step was repeated once more, followed by
resuspension of the cells in 2ml Ligation Mix (400ul 10x T4-Buffer, 40ul 10% Tween-20,
1460ul Annealing Buffer and 100ul T4 DNA Ligase, added last).

Single-cell barcoding

Using a P20 pipette, 10ul of cell suspension in the ligation mix was added to each well of the
two annealed Round1 BC plates, taking care as to not touch the liquid at the bottom of each
well. The plates were then sealed, shaken gently by hand and quickly spun down (~ 8s)
followed by an incubation on a shaker at 25°C for 30 min at 350 rpm. After 30 min, the cells
from each well were pooled into a coated PCR strip using a P200 multichannel pipette set to
30ul. In order to pool, each row was pipetted up and down three times before adding the liquid
to the PCR strip. After 8 columns were pooled into the strip, the suspension was transferred
into a coated 5ml tube on ice. This process was repeated until both plates were pooled, taking
care to aspirate most liquid from the plates. The cell suspension was then spun down for 3min
at 500G at 4°C. Supernatant was aspirated and the cells were resuspended thoroughly in 2
ml new Ligation Mix. Now, 10ul of cell suspension was added into each well of the annealed
Round2 barcoding plates using a P20 pipette, taking care as to not touch the liquid within each
well. The plates were sealed, shaken gently by hand and spun down quickly followed by
incubating them on a shaker at 25°C for 45 min at 350 rpm. The cells were then pooled again
using the above described procedure into a new coated 15ml Tube. The cells were spun down
at 500G for 3 min at 4°C. Supernatant was aspirated, the cells were washed with 150ul NIB
and spun down again. Finally, the cells were resuspended in ~60ul NIB and counted. For
counting, 5ul of cells were mixed with 5ul of NIB and 1x DAPI and counted on the Evos
Countess I, taking the dilution into account. Sub-libraries of 3,500 cells were made and the
volume was adjusted to 25ul by addition of NIB.

Using 3,500 cells results in a doublet rate of ~6.3%. The recovery rate of cells after
sequencing depends on the input material (and QC thresholds), with cell lines recovering
around 80% of input cells (~2,800-3,000 cells) and liver nuclei around 70% (~2,300-2,500
cells).

Reverse-Crosslinking

To each sub-library of 3,500 cells, 30ul 2x Reverse Crosslinking (RC) Buffer (0.4% SDS,
100mM NacCl, 100mM Tris pH8.0) as well as 5ul ProteinaseK was added. The sub-libraries
were mixed and incubated on a shaker at 62°C for one hour at 800 rpm. Afterwards, they were
transferred to a PCR cycler into a deep well module set to 62°C (lid to 80°C) for an additional
hour. Afterwards, each sub-library was incubated at 80°C for 10 min and finally Syl of 10%
Tween-20 to quench the SDS and 35pl of NIB was added for a total volume of 100ul.

The lysates can be stored at this point at -20°C for at least two days, which greatly simplifies
handling many sub-libraries at once. Longer storage has not been extensively tested.
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Streptavidin Pull-Down

Each transcript contains a biotin molecule as the RT primers are biotinylated which is used to
separate the scATAC-seq libraries from the scRNA-seq libraries. For each sublibrary, 50pl
M280 Streptavidin beads were washed three times with 100ul B&W Buffer (5mM Tris pH8.0,
1M NaCl, 0.5mM EDTA) supplemented with 0.05% Tween-20, using a magnetic stand.
Afterwards, the beads were resuspended in 100ul 2x B&W Buffer and added to the sublibrary,
which were then shaken at 25°C for one hour at 900 rpm. Now all cDNA molecules are
attached to the beads whereas transposed molecules are within the supernatant. The lysate
was put on a magnetic stand to separate supernatant and beads.

It likely is possible to reduce the number of M280 beads in this step, significantly reducing
overall costs. However, this has not been extensively tested.

ScATAC-seq library preparation

The supernatant from each sub-library was cleaned up with a Qiagen MinElute Kit and eluted
twice into 30ul 10mM Tris pH8.0 total. PCR Mix containing 10ul 5X Q5 Reaction Buffer, 1ul
10mM dNTPs, 2ul 10uM i7-TruSeq-long primer, 2ul 10uM Nextera N5XX Indexing primer,
4.5ul H20 and 0.5ul Q5 Polymerase was added (All Oligo sequences in Suppl. Table 1).
Importantly, in order to distinguish the samples, each sub-library needs to be indexed with a
different N5XX Indexing primer. The fragments were amplified with the following protocol:
72°C for 6 min, 98°C for 1 min, then cycles of 98°C for 10s, 66°C for 20s and 72°C for 45s
followed by a final incubation at 72°C for 2 min. The number of PCR cycles strongly depends
on input material (Liver: 17 PCR cycles, Cell Lines: 15 PCR cycles). The reactions were then
cleaned up with custom size selection beads with 0.55X as upper cutoff and 1.4X as lower
cutoff and eluted into 25ul 10mM Tris pH8.0. Libraries were quantified using the Qubit HS
dsDNA Quantification Kit and run on the Agilent 2100 bioanalyzer with a High Sensitivity DNA
Kit.

cDNA library preparation

The beads containing the cDNA molecules were washed three times with 200ul B&W Buffer
supplemented with 0.05% Tween-20 before being resuspended in 100ul 10mM Tris ph8.0 and
transferred into a new PCR strip. The strip was put on a magnet and the supernatant was
aspirated. The beads were then resuspended in 50ul Template Switch Reaction Mix: 10ul 5X
MaximaH RT Buffer, 2ul 100uM TS-oligo, 5ul 10mM dNTPs, 3ul Enzymatics RNaseln, 15ul
50% PEG6000, 14ul H20 and 1.25ul MaximaH RT. The sample was mixed well and incubated
at 25°C for 30 min followed by an incubation at 42°C for 90 min. The beads were then washed
with 100ul 10mM Tris while the strip was on a magnet and resuspended in 60ul H2O. To each
well, 40ul PCR Mix was added containing 20ul 5X Q5 Reaction Buffer, 4ul 10uM i7-Tru-Seq-
long primer, 4ul 10uM Nextera N5XX Indexing primer, 2ul 10mM dNTPs, 9ul H20 and 2ul Q5
Polymerase. The resulting mix can be split into two 50ul PCR reactions or run in one 100l
reaction. The PCR involved initial incubation at 98°C for 1 min followed by PCR cycles of 98°C
for 10s, 66°C for 20s and 72°C for 3 min with a final incubation at 72°C for 5 min. Importantly,
in order to distinguish the samples, each sub-library needs to be indexed with a different N5XX
Indexing primer. The number of PCR cycles strongly depends on input material (Liver: 15
cycles, Cell lines: 13 cycles).

The PCR reactions were cleaned up with custom size selection beads using 0.7X as a lower
cutoff (70ul) and eluted into 25ul 10mM Tris pH8.0. The cDNA libraries were quantified using
the Qubit HS dsDNA Quantification Kit.
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ScRNA-seq library preparation

As the cDNA molecules are too long for sequencing (mean length > 700bp), they need to be
shortened on one side. To achieve this, 25ng of each cDNA library was transferred to a new
strip and volume was adjusted to 20ul using H-O. Then 5ul 5X TAPS Buffer and 0.8pl Tn5-A-
only was added and the sample was incubated at 55°C for 10 min. To stop the reaction, 25ul
1% SDS was added followed by another incubation at 55°C for 10 min. The sample was then
cleaned up with custom size selection beads using a ratio of 1.3X and eluted into 30ul. Then
20ul PCR mix was added containing 10ul 5X Q5 reaction buffer, 1yl 10mM dNTPs, 2ul 10uM
i7-Tru-Seq-long primer, 2ul 10uM Nextera N5SXX Indexing primer (note: each sample needs
to receive the same index primer as was used in the cDNA library preparation), 4.5ul H2O and
0.5ul Q5 Polymerase. The PCR reaction was carried out with the following protocol: 72°C for
6 min, 98°C for 1 min, followed by 5 cycles of 98°C for 10s, 66°C for 20s and 72°C for 45s
with a final incubation at 72°C for 2 min. Libraries were purified using custom size selection
beads with a ratio of 0.5X as an upper cutoff and 0.8X as a lower cutoff. The final sScRNA-seq
libraries were quantified using the Qubit HS dsDNA Quantification Kit and run on the Agilent
2100 bioanalyzer with a High Sensitivity DNA Kit.

Sequencing

Both scATAC-seq and scRNA-seq libraries were sequenced simultaneously as they were
indexed with different Index2 indices (N5XX). All libraries were sequenced on the Nova-seq
6000 platform (lllumina) using S4 2x150bp v1.5 kits (Read 1: 150 cycles, Index 1: 17 cycles,
Index 2: 8 cycles, Read 2: 150 cycles). Libraries were partly multiplexed with standard lllumina
sequencing libraries.

Custom Size selection beads

To make custom size selection beads, we washed 1ml of SpeedBeads on a magnetic stand
in 1ml of 10mM Tris-HCI pH8.0 and re-suspended them in 50ml Bead Buffer (9g PEG8000,
7.3g NaCl, 500ul 1M Tris HCI pH8.0, 100ul 0.5M EDTA, add water to 50ml). The beads don’t
differ in their functionality from other commercially available ready-to-use size selection beads.
They can be stored at 4°C for > 3 months.

Analysis

Gene annotations and Genomic variants

The reference genome and the Ensembl gene annotation of the C57BL/6J genome (mm10)
were downloaded from Ensembl (Version GRCm38, release 102). Gene annotations for
PWD/PhJ mice were downloaded from Ensembl. A consensus gene annotation set in mm10
coordinates was constructed by filtering for genes present in both gene annotations.

easySHARE-RNA-seq pre-processing

Fastq files were demultiplexed using a custom C-script, allowing one mismatch within each
barcode segment. The reads were trimmed using cutadapt*®. UMIs were then extracted from
bases 1-10 in Read 2 using UMI-Tools*® and added to the read name. Only reads with TTTTT
at the bases 11-15 of Read 2 were kept (> 96%), allowing one mismatch. Lastly, the barcode
was also moved to the read name.
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Species-Mixing Experiments

RNA-seq reads were aligned to a composite hg38-mm10 genome using STAR*. The resulting
bamfile was then filtered for uniquely mapping reads and reads mapping to chrM, chrY or
unmapped scaffolds or containing unplaced barcodes were removed. Finally, the reads were
deduplicated using UMItools**. ATAC-seq reads were also aligned to a composite genome
using bwa*’. Duplicates were removed with Picard tools and reads mapping to chrM, chrY or
unmapped scaffolds were filtered out. Additionally, reads that were improperly paired or had
an alignment quality < 30 were also removed.

The reads were then split depending on which genome they mapped to and reads per barcode
were counted. Barcodes needed to be associated with at least 700 fragments and 500 UMIs
in order to be considered a cell for the analysis. A barcode was considered a doublet when
either the proportion of UMIs or fragments assigned to a species was less than 75%. This
cutoff was chosen to mitigate possible mapping bias within the data.

easySHARE-RNA-seq processing and read alignment

We only used Read 1 for all our RNA-seq analyses as sequencing quality tends to drop after
a polyT tail is sequenced in R2. Each sample was mapped to mm10 using the twopass mode
in STAR?* with the parameters --outFilterMultimapNmax 20 --outFilterMismatchNmax 15. We
then processed the bamfiles further by moving the UMI and barcode from the read name to a
bam flag, filtering out multimapping reads and reads without a definitive barcode. To determine
if a read overlapped a transcript, we used featureCounts from the subread package*®. UMI-
Tools was used to collapse the UMIs of aligned reads, allowing for one mismatch and de-
duplication of the reads. Finally, (single-cell) count matrices were created also using UMI-
Tools.

easySHARE-ATAC-seq pre-processing and read alignment

Fastq files were demultiplexed using a custom C-script, allowing one mismatch within each
barcode segment. The paired reads were trimmed using cutadapt*® and the resulting reads
were mapped to the mm10 genome using bwa mem*’. Reads with alignment quality < Q30,
unmapped, undetermined barcode, or mapped to mtDNA were discarded. Duplicates were
removed using Picard tools. Open chromatin regions were called by subsampling the bamfiles
from all samples to a common depth, merging them into a pooled bamfile and using the peak
caller MACS2%° with the parameters -nomodel -keep-dup -min-length 100. The count matrices
as well as the FRiP score was generated using featureCounts from the Subread package*®
together with the tissue-specific peak set.

Filtering, Integration & Dimensional reduction of scRNAseq data

The count matrices were loaded into Seurat®® and cells were then filtered for >200 detected
genes, >500 UMIs and < 20.000 UMIs. The sub-libraries coming from the same experiment
were then merged together and normalised. Merged experiments from the same species (one
from male mouse, one from female mouse) were then integrated by first using SCTransform®?
to normalise the data, then finding common features between the two experiments using
FindIntegrationAnchors() and finally integrated using IntegrateData(). Lastly, the integrated
datasets from C57BL/6 and PWD/PhJ were again integrated using IntegrateData(). To
visualise the data, we projected the cells into 2D space by UMAP using the first 30 principal
components and identified clusters using FindClusters().
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Filtering, Integration & Dimensional reduction of scATACseq data

Fragments per cell were counted using sinto and the resulting fragment file was loaded into
Signac® alongside the count matrices and the peakset. We calculated basic QC statistics
using base Signac and cells were then filtered for a FRiP score of at least 0.3, > 300 fragments,
< 15.000 fragments, a TSS enrichment > 2 and a nucleosome signal < 4. Again, sublibraries
coming from the same experiment were merged. We then integrated all four experiments
(C57BL/6 & PWD/PhJ, one male & one female mouse each) by finding common features
across datasets using FindIntegrationAnchors() using PCs 2:30 and then integrating the data
using IntegrateEmbeddings(). To visualise the data, we projected the cells into 2D space by
UMAP.

Weighted-Nearest-Neigbor (WNN) Analysis & Cell type identification

In order to use data from both modalities simultaneously, we created a multimodal Seurat
object and used WNN'® clustering to visualise and leverage both modalities for downstream
analysis. Afterwards, we assigned cell cycle scores and excluded clusters consisting of nuclei
solely in the G2M-phase (2 clusters, 121 nuclei total). Cell types were assigned via expression
of previously known marker genes, which allows subsetting the data into cell types.

Calculating Peak—Gene Associations

Peak—gene associations were calculated following the framework described by Ma et al'. In
short, Spearman correlation was calculated for every peak—gene pair within a +-500kb window
around the TSS of the expressed gene. To obtain a background estimation, we used
chromVAR?®* (getBackgroundPeaks()) to generate 100 background peaks matched in GC bias
and chromatin accessibility but randomly distributed throughout the genome. We calculated
the Spearman correlation between every background-gene comparison, resulting in a null
distribution with known population mean and standard deviation. We then calculated the z-
score for the peak—gene pair in question ((correlation - population mean)/ standard deviation)
and used a one-sided z-test to determine the p-value. This functionality is also implemented
in Signac under the function LinkPeaks(). Increasing the number of background peaks to 200,
350 or 500 for each peak—gene pair does not impact the results (data not shown).

Analysis of LSEC zonation markers

To analyse gene expression and chromatin accessibility along LSEC zonation, we subsetted
our data for LSECs only, extracted expression values and wnnUMAP coordinates and binned
the data along the wnnUMAP_2 axis into 10 equal sized bins. We then calculated the mean
expression/accessibility for each gene/peak in each bin, excluding cells that contained a zero
count. To identify novel marker genes, we excluded genes with low expression and calculated
the moving average (for three bins) across the bins. We then required the moving average to
continuously decrease (for pericentral marker genes) or increase ( for periportal marker
genes), allowing two exceptions. Lastly, we divided the means for each gene by their
maximum to normalise the values. Identification of cis-regulatory elements displaying zonation
effects had equal requirements.

Imputation of pseudotime was performed in Monocle3%® with standard parameters. Gene
expression was smoothed over both bins and pseudotime (separately) with local polynomial
regression fitting (loess).
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Gene Ontology Analysis
Gene Ontology Analysis was done using the R package clusterProfiler®® with standard
parameters.

Data Availability
All data can be accessed using the accession number GSE256434. All code used in data
analysis is available at https://github.com/vosoltys/easySHARE _seq.git.
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Flexibility and applicability of the easySHARE-seq framework

EasySHARE-seq uses a flexible barcoding framework that can be tailored to various
experimental designs. As mentioned in the main text, it allows for sequencing of fragment
lengths of > 200bp, which can be critical in e.g. studies investigating patterns of allele-specific
expression or profiling of individual cancer cells and their mutations. However, in study designs
not dependent on SNP Coverage, sequencing costs can be cut with no downside by only
sequencing 100bp per fragment.

The entire barcoding can also be easily adapted into other protocols, such as scTCR-seq
(CITR-seq; unpublished), allowing for paired investigation of T-cell receptor chains in millions
of cells. It is also straightforward to adapt easySHARE-seq to a scRNA-seq only protocol with
equal or even increased throughput as well as sample indexing, allowing to run a single
experiments for e.g. multiple replicates. To achieve this, the tagmentation step can simply be

skipped and the RT-primer can be switched out for
/5Phos/GGGCTCGGAGATGTGTATAAGAGACAGNNNNNNNNNN-[8bp-Sample-Index]-
MoiodT/TTTTTTTTTTTTTTTTTTTTTTTTTVN. Before the first 10bp UMI in R2 an individual sample

is now represented with an 8bp barcode. Alternatively, this 8bp barcode can function as an
additional cell barcode, which allows for increasing sub-library cell numbers and thereby
increasing throughput. All other protocol steps remain. Switching to a scATAC-seq only
protocol is done by simply excluding the RT step. This will significantly cut experimental cost
as no RT, RNase Inhibitors or Streptavidin beads are required, bringing the cost per cell down
to ~2.5 cents/cell (in a 100.000 cell experiment). However, sample indexing is not possible in
the current framework.

Throughput of easySHARE-seq is only limited by the availability of Nextera N5XX Indexing
Primers, theoretically enabling the simultaneous profiling of up to a million cells.

Lastly, to cut further costs on easySHARE-seq, it is possible to perform only a single ligation
step. Leaving out the first ligation (in the BC plates 1) still produces easySHARE-seq libraries
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as the initial overhang is 8bp long and therefore can theoretically form a stable hybridization
at room temperature.

Critical optimization steps for using easySHARE-seq efficiently

The general molecular steps of easySHARE-seq are quite robust. However, in order to use
easySHARE-seq efficiently, some prior optimizations should be performed.

As with most scRNA-seq experiments, sample preparation and fixation have the highest
impact on success and quality of the experiment. As sample preparation can be quite different
between tissues, general good practice is including a sufficient amount of RNase Inhibitor,
especially when input material is concentrated in small volumes.

The strength of fixation has a direct impact on data quality of both the scATAC-seq and
scRNA-seq. In general, higher fixation leads to an increase of data quality in the scRNA-seq
but makes the tagmentation in the scATAC-seq less efficient. Therefore, fixation parameters
can to some extent be adjusted based on the requirements and importance of the respective
output modality. Fixation strength should also be optimized in a tissue-specific manner. For
example, fixing cell lines in 0.15% PFA was generally sufficient for data quality and maintaining
cell integrity throughout the protocol. Liver nuclei needed a higher fixation of 0.35% and Bone
Marrow Cells (not shown) needed to be fixed in 1% PFA as they are both fragile and contain
low amounts of mMRNA molecules. Another critical factor is the fixation volume, e.g. fixation
with 1% PFA in 1 ml leads to a different outcome than fixation in 4 ml. Generally, it is advisable
to fix input material in higher volumes and with a low concentration of cells (~1M/ml) as this
leads to more consistent results and less clumping. For initial experiments to devise fixation
strength, we advise to simply skip the barcoding step. This can be done by using a standard
Tn5 for ATAC-seq and the following RT-primer:
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG/biodT/TTTTTTTTTTITTTTITTTTTTTTTTVN.
Using these modifications ensures that both the scATAC-seq and scRNA-seq can be amplified
with standard Nextera N7XX and N5XX primers, allowing for cost-efficient testing of
easySHARE-seq parameters. Additionally, cell integrity should be periodically checked to
detect cell clumps and assess cell integrity.

Another critical aspect is minimizing freeze-thaw cycles for barcoding oligos, especially for
oligos containing phosphorylation modifications. Repeated freezing and thawing leads to a
strong decline in protocol efficiency. Please feel free to contact the First Author for further
questions.

Example workflow of easySHARE-seq library generation of 200.000 cells

To perform an experiment with a yield of ~200.000 cells, one needs to perform ~48
tagmentation reactions with 10.000 cells per reaction. After tagmentation, those get distributed
into 16 RT reactions. Barcoding is then performed as described in one reaction. Afterwards,
96 sublibraries of ~3.500 cells are aliquoted and can be further processed. After Reverse
Crosslinking, the samples can be stored at -20C until the next day.

To simplify the cleanup of the lysate for the scATAC-seq library preparation, they can be
cleaned-up with size selection beads by adding 150ul per well.
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Evolution of gene regulation plays a critical role in adaptation and can occur through gene
regulatory changes acting in cis or trans, yet how this differs between individual cell types is
poorly understood. Here, we applied single-cell multiomics to 63,551 primary liver nuclei in a
set of four closely-related mouse species and their F1 hybrids and profile both gene
expression and chromatin accessibility simultaneously at single-cell resolution to investigate
cell-type specific regulatory changes as well as linking 118,344 putative cis-regulatory
elements (pCREs) to their target genes. Between the closest related species, 31.8% of
regulatory changes occurred solely in trans compared to only 14.8% in cis, but the proportion
of cis-regulated genes increases with both increasing evolutionary divergence and
expression difference. However, we find considerable differences in the patterns of regulatory
evolution between cell types and that some show consistent regulatory changes independent
of species. Lastly, we show that linked pCREs are under purifying selection yet those linked
to cis-regulated genes show increased genetic divergence, consistent with adaptive
evolution. This approach therefore dissects regulatory evolution between cell types and not
only allows identification of cis-regulated genes but also of possible pCREs facilitating the
regulatory change.



Introduction

Heritable changes in gene expression contribute to phenotypic differences and adaptation,
and can be in either cis-regulatory elements or trans-regulatory factors'?. Mutations in cis-
regulatory elements are thought to be an important substrate for adaptive evolution as they
tend to be specific to the gene, cell type or timepoint and therefore might be able to precisely
alter gene expression in cell types or during developmental processes®™. In contrast, changes
in trans-regulatory factors®*® might lead to pleiotropic, potentially deleterious effects since
they usually affect many genes across several cell types. A common approach to assess the
contribution of cis- and trans-regulatory effects on expression changes is by comparing
differential expression between parental species to allele-specific expression in their F1
Hybrids®’. Studies employing this design surveyed regulatory evolution across several taxa
within and between species®''. Across Saccharomyces, Drosophila and Arabidopsis, these
studies repeatedly showed that with increasing evolutionary divergence, cis-regulatory
changes become pervasive though in closer related species the majority of regulatory
differences are mediated in trans®®'2. Surprisingly, although mice are one of the most widely
used laboratory animals, how regulatory evolution proceeded in this genus has not been
investigated comprehensively. Additionally, a common shortcoming of these studies is the
assessment of regulatory changes on a tissue level, yet adaptive gene expression changes
likely take effect in individual cell types'®'*. Thus, how regulatory evolution is influenced by
individual cell types that may need to adapt in different ways and potentially experience
different selective pressures is currently unknown.

Another challenge in understanding regulatory evolution is identifying regulatory elements or
even particular genetic variants underlying expression change as linking those together is
challenging. While approaches such as expression quantitative locus (€QTL) mapping can
correlate sets of variants with gene expression change, with recent studies doing so even
within cell types'®'>'®, distinguishing between cis- and trans-regulatory divergence is defined
solely by proximity and they fall short of implicating specific regulatory elements'.
Additionally, they have limited power in detecting trans-eQTLs due to the need to correct for
a larger number of statistical tests.

Here we combine a F1 hybrid system in four strains and species across Mus with a single-
cell multiomic assay measuring both gene expression and chromatin accessibility
simultaneously to investigate cell-type specific regulatory evolution in mammals using liver.
We find that while increasing cis-regulation with increasing evolutionary divergence is a
common trend, regulatory changes differ substantially between cell types. Additionally, we
argue that some cell types might be biased toward certain regulatory changes regardless of
species. We then link putative cis-regulatory elements (pCREs) to their target genes by
correlating the simultaneous single-cell measurements of gene expression and chromatin
accessibility. This approach therefore not only allows to investigate if a gene is differentially
regulated in a cell type and by what mechanism (cis, trans,..) but also identifies candidate
pCREs causing potentially adaptive regulatory change.



Results

Global differences in gene expression and regulatory landscape reflect evolutionary
divergence

In order to investigate cell-type specific regulatory evolution, we profiled liver nuclei of several
subspecies and species with increasing evolutionary divergence across Mus as well as their
F1 hybrids using easySHARE-seq (Fig. 1A), which we previously showed measures gene
expression and chromatin accessibility simultaneously in single cells'®. Specifically, we used
C57BL/6 mice (BL6; mostly Mus musculus domesticus) in combination with the wild-derived
CAST/EiJ (CAST; Mus musculus castaneus), PWD/PhJd (PWD; Mus musculus musculus) and
SPRET/EiJ strains (SPRET; Mus spretus). The CAST, PWD and SPRET strains represent an
increasing evolutionary divergence to BL6 mice (Suppl. Fig. 1A), with BL6, CAST and PWD
originating from different subspecies of Mus musculus. For convenience, we will refer to all
mice as separate species from now on. Additionally, we included BL6xCAST, BL6xPWD and
BL6XSPRET F1 hybrids in the design (BL6 was the dam in all cases), allowing us to
disentangle cis- from trans-regulatory effects as described above.

In total, we recovered 63,551 liver nuclei (after quality control, using the expression data;
Suppl. Fig. 2A-E). We clustered the nuclei and annotated cell types using expression of
previously identified marker genes'®? (Fig. 1B) and identified a total of 8 distinct cell types
with hepatocytes representing the majority of the nuclei (~77%, Suppl. Fig. 2I).

We then sought to assess global differences in gene expression and chromatin accessibility
between the species. Using principal component analysis (PCA) on the aggregated scRNA-
and scATAC-seq data, we found that global transcriptome and chromatin accessibility
profiles were primarily separated by species, with F1 hybrids consistently clustering in
between the focal species and BL6 (Fig. 1C). Next, we identified differentially expressed (DE)
genes and differentially accessible (DA) peaks in the aggregated datasets between BL6 and
each wild-derived strain (Fig. 1D). The proportion of DE genes scaled with evolutionary
divergence (25.12% in CAST, 33.4% in PWD and 40.2% in SPRET), as did the proportion of
DA peaks (27.1% in CAST, 33.7% in PWD and 44% in SPRET). The same trend was observed
when comparing DE genes and DA peaks between F1 hybrid alleles (Suppl. Fig. 1E). Notably,
PWD mice differed substantially stronger from BL6 than CAST mice, even though they
harbour comparable genetic variation®', perhaps reflecting an increased rate of adaptation in
liver of PWD mice.

We next identified DE genes between BL6 and each wild-derived strain within cell types
(Suppl. Fig. 1F). In each cell type, SPRET had the highest proportion of DE genes and across
cell types, hepatocytes were the most diverged. However, because they represent ~77% of
all nuclei, increased power in detecting DE genes might exaggerate differences. In all cell
types except hepatocytes, the differences between CAST and PWD were far less pronounced
compared to the global difference and in some cases (e.g., LSECs & Neurons), CAST mice
had a higher proportion of DE genes than PWD mice.

To summarise, single-cell methodologies reveal that differences in both gene expression and
regulatory landscape increase with evolutionary divergence across several Mus species.
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Fig. 1: Single-cell multiomics recovers evolutionary divergences across Mus

(A) Overview of the study design and data.

(B) UMAP visualisation of 63,551 liver nuclei using scRNA-seq data. Nuclei are coloured by cell types.

(C) Principal components analysis of pseudobulk scRNA-seq or scATAC-seq modality. Samples are
coloured by genotype. Both modalities separate genotypes.

(D) Percentage of differentially expressed genes or differentially accessible peaks between BL6 and CAST,
PWD or SPRET. Differences scale with evolutionary divergence.



Cell-type specific regulatory evolution reveals a shift from trans- to cis- dominance with
increasing divergence

To investigate how gene regulation evolves across our species and cell types, we classified
genes into regulatory categories by comparing expression differences between the different
species (CAST/PWD/SPRET to BL6) and the F1 hybrid alleles. In the F1 hybrid, both alleles
are subject to the same trans environment and thus are regulated by a common set of trans
factors (e.g., transcription factors). Therefore, if a difference that was detected between the
parental species is not detectable between the F1 hybrid alleles anymore, trans-acting
changes cause this gene expression difference’. However, if any allelic imbalance persists,
this must be due to a cis-acting variant, which can only interact with loci on its own allele.
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Fig. 2: Cell-type specific regulatory evolution across Mus

(A) Scatterplot of pseudobulk log2 fold-change (FC) in expression between the parental species vs. F1
hybrid alleles for BL6 vs. CAST (left), PWD (middle) and SPRET (right). Each dot is a gene. Genes are
coloured based on the regulatory category they were assigned to (see Methods). Horizontal line
represents 100% trans effects, diagonal line 100% cis effects.



(B) Frequency of regulatory changes across the different Mus species from (A). With increasing evolutionary
divergence, cis-regulatory changes become more frequent whereas trans-regulatory changes decrease
in frequency.

(C) Percentage of genes whose gene regulation is conserved split by species and cell type. Despite CAST
having the least differentially expressed genes (Fig. 1D), it has the least conserved gene regulation in all
cell types but hepatocytes.

(D) Percentage of genes who have been classified as compensatory split by species and cell type. CAST
have the highest frequency of compensatory genes in all cell types but hepatocytes.

(E) Frequency of regulatory changes as in (B) calculated by excluding conserved genes for each cell type.
Each coloured line corresponds to a different species contrast. Grey lines correspond to different
percentages.

We first focused on global trends along increasing evolutionary divergence and aggregated
all expression data on a species level. First, we found that the number of genes without
evidence for regulatory changes decreased with increasing evolutionary divergence (27.1%
in CAST, 20.5% in PWD and 16.1% in SPRET, Fig. 2A,B) whereas comparable fractions were
classified as compensatory, where opposing cis- and trans-effects lead to no net difference
in gene expression between the species (7.44% in CAST, 6.72% in PWD and 7.45% in
SPRET). Between BL6 and CAST, 31.7% of genes purely had trans-regulatory changes
whereas only 14.8% had regulatory changes solely due to cis-acting variation. However, with
increasing divergence, the fraction of genes with trans-regulatory changes decreased and
simultaneously, cis-regulatory changes became more dominant (25.5% trans & 20.1% cis in
PWD; 18.2% trans & 26.5% cis in SPRET). Lastly, both cis and trans-regulatory changes can
act simultaneously on the same gene, either in the same direction (cis+trans) or in opposing
directions (cis-trans). Cis-trans effects did not differ substantially between the contrasts
(15.15, 16.8% & 17.6% in CAST, PWD & SPRET) whereas cis+trans changes increased in
frequency (3.8%, 10.4% & 14.2% in CAST, PWD & SPRET). Importantly, our results are
independent of data filtering or P-value cut off as we obtained similar results when varying
those parameters (Suppl. Fig. 3A,B). In both PWD and SPRET, genes with cis-regulatory
changes had a larger effect size (absolute log2 fold-change of expression) than those with
trans-regulatory changes (PWD: 0.95 mean effect size for cis-regulated genes, 0.72 for trans;
SPRET: 1.11 mean effect size for cis-regulated genes, 0.79 in trans). Surprisingly, the
opposite is true in CAST (0.88 mean effect size for cis-regulated genes, 0.96 in trans, Suppl.
Fig. 3C). Lastly, we asked how inheritance patterns change with increasing evolutionary
divergence and found that with increasing divergence, genes that are inherited additively
increased in frequency (CAST 9.8% of genes, PWD: 18%, SPRET 23.3%; Suppl. Fig. 3D).

When species adapt to a new environment, selection pressure can differ between cell types
and together with chance might cause each cell type to adapt differently. To therefore
investigate how regulatory evolution differs on a cell type level, we leveraged our previously
identified cell types (Fig. 1B). We excluded cell types with low cell counts and insufficient
data (Suppl. Fig. 4B) and split genes again into regulatory categories. In all cell types but
hepatocytes, CAST had the lowest fraction of genes with conserved gene regulation (Fig. 2C)
despite having the overall least number of DE genes (Fig. 1D). However, two opposing
regulatory changes can effectively compensate for one another, leading to detectable
regulatory changes without expression changes. In agreement with this, in all cell types but
hepatocytes, CAST had the highest fraction of genes with compensatory regulatory changes
(Fig. 2D).



In order to compare evenly across cell types, we then focused on genes for which we
identified regulatory changes (Fig. 2E). The fraction of regulatory categories in hepatocytes
resembled the aggregated data (‘pseudobulk’) the most (pearson's r: 0.99, mean fold-
change: 1.07), consistent with them being the most abundant cell type. Next, we found that
the overall global trends could still be observed (Suppl. Fig. 4C). For one, in every cell type
the proportion of cis-regulatory changes increased with increasing evolutionary divergence
and second, CAST had a higher frequency of trans-regulatory changes compared to cis in all
cell types. However, cell types also showed both cell type and genotype specific differences.
For example, in Liver Sinusoidal Endothelial Cells (LSECs), SPRET had the highest proportion
of cis-regulatory changes across all cell types (48.35% of genes with regulatory change, 1.37-
fold increase compared to pseudobulk). Also, CAST and PWD nearly had a similar frequency
of trans-regulatory changes (CAST: 45.6% of gene with regulatory changes, PWD: 43.9%).
Notably, in all cell types other than Hepatocytes, the fraction of genes in the ‘cis-trans’
category was strongly decreased (mean 20.2% of genes in Hepatocytes, mean 9.6% of
genes across all other cell types). In general, the fraction of genes regulated in cis tended to
have the strongest change in SPRET compared to pseudobulk, with a 1.41-fold increase on
average (PWD: 1.18-fold, CAST: 0.81-fold) as did trans-regulated genes (CAST: 1.03-fold,
PWD: 1.32-fold, SPRET: 1.44-fold).

To summarise, between the closest related species regulatory changes occurred mostly in
trans, but with increasing evolutionary divergence, cis-regulation becomes more dominant.
Additionally, patterns of regulatory evolution not only differ by species but also by cell type.

The proportion of cis-regulated genes increases with expression divergence

We next asked what characteristics of a gene shape how its regulation evolves. We first
wondered about a relationship between expression divergence (evolved expression change
between the species) and regulatory mode since we found that cis-regulatory changes had
higher effect sizes than trans (absolute log2 fold-change in expression, see above & Suppl.
Fig. 3C). To do so, we split genes into percentiles of increasing expression divergence and
calculated the frequency of types of regulatory changes in each percentile. We found that
with increasing expression divergence between the species, genes are more likely to be
differentially regulated in cis compared to trans (Fig. 3A). Indeed, the fraction of trans-
regulated genes dropped steeply among the top 5 percentiles of genes with the highest
expression divergence (mean decrease of 13.9% compared to previous 50 percentiles). Both
these trends are observed across every species and cell type (Suppl. Fig. 5A). This indicates
that during regulatory evolution in Mus, stronger expression changes are more likely to be
mediated by cis-regulatory elements, possibly due to increased pleiotropic consequences
caused by a trans factor.

We also asked if there is a relationship between the regulatory mode and gene expression
variance since cis- and trans-regulatory changes might alter expression with different
degrees of precision. To eliminate a possible relationship between total level of expression
of a gene and gene expression variance, we applied a variance stabilising transformation
before calculating gene expression variance and then split genes into increasing percentiles
along it. We found that cis and trans-regulated genes do not consistently differ in their extent



of gene expression variance (Suppl. Fig. 5B). Across species, there is also no relationship
between magnitude of expression variance and patterns of regulatory evolution. However,
with increasing evolutionary divergence, genes with higher expression variance were less
likely to evolve expression changes between the species (Suppl. Fig. 5C).
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Fig. 3: The proportion of cis-regulated genes scales with expression divergence

(A) Frequency of regulatory categories along absolute expression divergence between the species (BL6 vs.
CAST/PWD/SPRET). Genes are grouped into percentiles of increasing expression divergence.

Transcription factors are more frequently regulated in trans

We next asked if transcription factors (TF) showed different patterns of regulatory evolution
compared to all other genes. These regulators tend to be placed more centrally in gene
regulatory networks and therefore directly influence a large number of genes®. In
consequence, a change in trans could potentially lead to stronger pleiotropic effects. We
define TFs using the gene ontology annotation GO:0003700 (“DNA-binding transcription
factor activity”), which defines 2,669 genes as TF, 775 of which are expressed in each species
on average (in the pseudobulk data). We then compared the ratio of cis- and trans-regulatory
changes in expressed TFs to all other expressed genes by combining numbers across all cell
types. We found that with increasing evolutionary divergence, TFs remain more frequently
regulated in trans than all other genes (CAST: not significant, PWD: P < 0.001, SPRET: P<
0.001, Fisher’s exact test; Suppl. Fig. 6A). This pattern is consistent across all but one cell
type (Suppl. Fig. 6B). When using different criteria to subset transcription factors, we could
confirm this pattern (GO:0010468 (“regulation of gene expression”) or curated lists from Zhou
et al.®® or from Hammelman et al.*; Suppl. Fig. 6D). When subsetting genes into other,
unrelated categories (GO:0046907 “Intracellular transport” or GO:0051246 “regulation of
protein metabolic process”), we did not find any enrichment in trans-regulation (Suppl. Fig.
6C).

Altogether, this shows that between our closest related species, TFs are equally likely being
trans-regulated as other genes. However, when cis-regulation gets more dominant with
greater evolutionary distances, regulation of TFs changes at a slower rate.



Stronger gene expression changes correlate with increased genetic variation in cell-
type specific cis-regulatory elements

So far, we showed that with increasing evolutionary divergence and magnitude of expression
difference, the proportion of cis-regulated genes increases in all cell types. However, we
wondered if cell types also show specific evolutionary patterns independent of species and
evolutionary divergence. As each cell type fulfils distinct roles within the liver but highly similar
roles across species, we reasoned that if a cell type shows bias toward certain patterns of
regulatory evolution, they should do so across all species.
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Fig. 4: High gene expression changes correlate with increased genetic variation in cell-type
specific cis-regulatory elements

(A) Mean percentage difference of regulatory categories within a cell type compared to pseudobulk,
averaged across the three species contrasts. Proportion of genes in each regulatory category were
compared to pseudbulk using Fisher’s exact test (*: P < 0.05, ***: P < 0.001).

(B) Ranked effect size of top 1,800 genes (absolute log2FC in expression compared to BL6) for each cell
type. For each cell type, we selected the top 2,000 genes with the highest effect size in each species
contrast (BL6 vs. CAST/PWD/SPRET). Top right: Boxplot of plotted effect size. Tested for significant
differences in effect size using Welch’s t-test (**: P < 0.001). Mean effect sizes: 2.05 (Hepatocytes), 1.21
(LSECs), 1.03 (HSCs).

(C) SNPs/kb in cell type specific ATAC-seq peaks (Hepatocytes 36,660 peaks, LSECs 13,833 peaks, HSCs
7,563 peaks). Mean SNPs/kb: 11.24 (Hepatocytes), 9.19 (LSECs), 8.93 (HSCs), median: 10.19
(Hepatocytes), 7.83 (LSECs), 7.65 (HSCs). Tested for differences in using Welch’s t-test ( ***: P < 0.001).

First, we asked if we can detect consistent differences in how gene regulation evolves for
each cell type (Fig. 4A). We found that both LSECs and Hepatic Stellate Cells (HSCs)
consistently have a higher proportion of cis-regulated genes (+4.6% & +7.2%, Fisher’s exact
test: P < 0.001) as well as compensatory genes (+6.1% & 9.4%, Fisher’s exact test: P < 0.001)
compared to pseudobulk. Hepatocytes did only differ slightly from pseudobulk, in line with
being the most abundant cell type, with the exception of a subtle increase of trans-regulated



genes (+2.8%, P < 0.05), which is also detected in the other two cell types (LSECs +6.7%,
HSCs +2%, P < 0.001). To summarise, cell types exhibit specific and consistent patterns of
regulatory evolution, even across differing evolutionary divergence.

Next, we wondered to what extent cell-type identity can shape specific regulatory changes
independent of species. More precisely, given the higher frequency of cis-regulatory changes
with higher magnitudes of expression divergence (Fig. 3), we reasoned that cell types which
consistently evolve stronger gene expression changes might show higher rates of genetic
variation in their cis-regulatory elements.

To examine this, we calculated the effect size for differentially expressed genes in each cell
type in each species (absolute log2 fold-change in expression between BL6 and
CAST/PWD/SPRET). We then combined the top 2,000 most differentially expressed genes in
each species per cell type. We found that differentially expressed genes in hepatocytes had
a substantially higher effect size compared to the other cell types (P > 0.001, two-tailed t-
test; mean effect size 2.05 + 1.21 standard deviation in Hepatocytes vs. 1.21 + 0.86 in LSECs
& 1.03 ¥ 0.81 in HSCs; Fig. 4B). This finding was consistent independently for each species
and independent of total expression level of each cell type (Suppl. Fig. 7A,C). We then
identified ATAC-seq peaks that are consistently cell-type specific in all three species and
assessed their rate of genetic variation (in SNPs/kb, Fig. 4C). Surprisingly, we found that
hepatocyte-specific peaks have a strongly increased rate of genetic variation compared to
the other cell types (+24.1%, t-test: P < 0.001). This observation was again confirmed
independently for each species (Suppl. Fig. 7B). This shows that hepatocytes consistently
evolved a higher fraction of DE genes (Suppl. Fig. 1G) and stronger expression changes than
other cell types, which in turn correlates with consistently higher rates of genetic variation in
their cis-regulatory elements.

Taken together, this could point to hepatocytes having experienced increased selective
pressure compared to the other cell types, which resulted in a higher frequency of possibly
adaptive genetic variation in cis.

Linking putative cis-regulatory elements to their target genes

We next sought to leverage our simultaneous measurements of gene expression and
chromatin accessibility and link putative cis-regulatory elements (pCREs) to their target gene.
While using F1 hybrids is effective in identifying if a cis-acting variant differentially regulates
a gene, determining which regulatory element most likely functionally evolved is difficult.
However, as we measure gene expression and chromatin accessibility simultaneously within
the same cell, this enables us to directly test for correlations between increased gene
expression and chromatin accessibility at a focal peak (Fig. 5A) and potentially identify a set
of pCREs that changed during cis-regulatory evolution of each species and investigate their
properties.

To achieve this, we first integrated scATAC- and scRNA-seq modalities using Weighted-
Nearest-Neighbor Analysis®. This resulted in matched profiles of gene expression and
chromatin accessibility for 53,257 nuclei (Suppl. Fig. 2H). In order to calculate the peak-gene
links, we followed the analytical framework from Ma et al.?®, which additionally controls for
GC content and accessibility strength, and calculated links within +- 500kb of each
transcription start site (TSS) for each species in each cell type. We identified a total of 118,344
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links (34.9% of total ATAC-seq peaks are linked, P < 0.05, FDR = 0.1. From here on, ‘pCRE’
refers to a linked ATAC-seq peak), ranging from 11,760 in CAST to 41,971 in BL6, both
summed across all cell types (Suppl. Fig. 8A). When comparing between cell types, we found
that LSECs had on average the most links per gene (P < 0.001 using two-tailed t-test; 4.39
vs. 3.89 in Hepatocytes, Fig. 5B), possibly indicating a more active regulatory landscape. We
then ranked genes based on their number of linked pCREs by combining links across all
species and cell types (Fig. 5C). Among the top 100 genes with the most links were many
housekeeping genes (e.g. Atp5b, Atp5d, Rnh1, Rexol or Rps15), general regulators of
transcription (e.g. Ell, Eef2 or Atf5) or genes involved in other core cell functions (e.g. Map2k2),
since most of these genes are important to a cells’ function independent of its cell type
identity. When assessing links per gene separately for each cell type (Suppl. Fig. 8B), we
additionally found many cell-type specific genes and regulators (e.g. Cyp2e1, Alb (Fig. 5D),
Mst1?" in Hepatocytes, Stat3 in LSECs?).
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Fig. 5: Leveraging multiomic measurements to link pCREs to their target genes at scale
(A) Schematic depicting the conceptual framework for linking pCREs to their target genes

(B) Mean links per gene for each cell type. In LSECs, genes have significantly more links on average than in
the other cell types (two-tailed Welch’s t.test, P < 0.001).
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(C) Genes ranked by combined links per gene across all species and cell types. Several important regulators
or housekeeping genes are highlighted.

(D) Aggregated ATAC-seq data for each species from hepatocytes at the Alb locus. Loops denote identified
links to Alb, their colour signifies z-score (see Methods). Right: Violin plot of Alb expression per
hepatocyte.

(E) Rate of shared links across species and cell types, split by the regulatory mode of the genes they are
linked to. Each data point denotes a cell type, shape signifies the different species. Only cell types with
more than 200 identified links were plotted. For even comparison, rates are normalised by their
background expectation (see Methods or main text).

(F) Percentage of DE genes linked to DA peaks for each species.

To summarise, we leveraged our single-cell multiomic measurements to identify links
between pCREs and target genes at scale in each species within each cell type. Genes with
the most links were either essential to a cell’s function or key cell-type specific regulators. As
such, their expression needs to be strictly regulated and having a high number of links likely
reflects increased regulatory activity.

Links to cis-regulated genes are the least shared across species

Having identified links between regulatory elements and genes, we next asked if these links
might capture pCREs that facilitated expression change during the regulatory evolution of
each species.

First, if we capture true biological connections to ‘causal’ CREs, links to cis-regulated genes
should be less shared between species as a CRE for example becomes non-functional in one
species. To assess this, we compared per cell type how many links identified in BL6 are still
identified in the other species. We then separated the links based on the regulatory category
of their target genes, calculated their frequency and normalised it by the initial frequency (for
example, if 50% of links in BL6 are to genes that are trans-regulated between BL6 and CAST,
the expectation would be that 50% of shared links between these species have a trans-
regulated target gene). We found that links to cis-regulated genes are less shared between
BL6 and the other species (Fig. 5E). For example, in LSECs links to cis-regulated genes were
on average 22% less likely to be shared than those to trans-regulated genes (1.06 cis vs. 1.36
trans). We found the same trend in hepatocytes (0.88 cis vs. 0.93 trans), HSCs (0.79 cis vs.
0.97 trans) and Kupffer Cells (1.11 cis vs. 1.23 trans). Next, we tested how often DA peaks
are linked to DE genes and found that with increasing evolutionary divergence and thus
increasing cis-regulation (Fig. 2), the percentage of DE genes being linked to DA peaks
increases (Fig. 5F, CAST: 40.8%, PWD:45.7%, SPRET: 55.9%, links from all cell types
combined).

Altogether, this suggests that the identified links between pCREs and target genes to some
extent capture pCREs that facilitated expression change during cis-regulatory evolution of
each species.

PCREs linked to cis-regulated genes show signatures of adaptive evolution

Lastly, we reasoned that if we identify true biological connections, we might detect signatures
of selection in our identified pCREs. We first compared the overall rate of genetic variation



(SNPs per kb) in different genomic features (Fig. 6A, compared to BL6). We found that
compared to the genomic background, ATAC-seq peaks have lower rates of genetic variation
in all three species (P < 0.001 in all comparisons, two-tailed t-test, mean decrease: CAST -
5.5%, PWD -7.4%, SPRET-5.1%). However, pCREs have even further decreased genetic
variation (P < 0.001, two-tailed t-test; mean decrease: CAST 14.5%, PWD 18.1%, SPRET
11.9%). This indicates for one, that even compared to ATAC-seq peaks, pCREs might be
highly enriched for functional elements as sequence evolution is more constrained. Second,
pCREs are likely under purifying selection.

Next, we reasoned that if pCREs are highly enriched for functional elements that facilitated
expression changes during cis-regulatory evolution, we might be able to detect signatures of
adaptive evolution in their genomic sequence. To do so, we separated pCREs based on the
regulatory category of their target genes and again assessed their rates of genetic variation
(Fig. 6B). This revealed that pCREs linked to cis-regulated genes have higher rates of genetic
variation than those linked to trans-regulated genes (CAST: + 9.65%, P < 0.05, 8.02 SNPs/kb
for cis vs. 7.32 SNPs/kb for trans-regulated genes; PWD: +3.37%, P= 0.06, 6.74 SNPs/kb
vs.6.52 SNPs/kb, SPRET: +2.1%, P < 0.05, 14.3 SNPs/kb vs. 14.0 SNPs/kb, two-tailed t-test
in all cases). This is consistent across all but one cell type (Suppl. Fig. 9A).

Taken together, exploiting simultaneous measurements of gene expression and chromatin
accessibility in single cells to link regulatory elements to their target genes most likely
captures functional relationships as well as pCREs that facilitated expression changes during
regulatory evolution. In general, these pCREs are under purifying selection. However, those
linked to cis-regulated genes show an increased rate of genetic variation, a signature of
adaptive evolution. This shows that the combination of study design and methodology not
only allows to determine if a gene is differentially regulated in cis but also captures which
regulatory elements are likely candidates causing the differential gene expression.
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Fig. 6: Genetic variation is higher in pCREs linked to cis-regulated genes compared to trans-
linked pCREs

(A) Rates of genetic variation in CAST/PWD/SPRET compared to BL6 in either the genomic background,
gene bodies, ATAC-seq peaks, pCREs or exons. pCREs consistently have lower rates of genomic
variation than non-linked ATAC-seq peaks (two-tailed Welch’s t.test, P < 0.001). All pCREs across
different cell types were combined per species.

(B) Genetic variation in pCREs split by regulatory mode of their target gene. pCREs linked to cis-regulated
genes have a higher rate of variation than those linked to trans-regulated genes (CAST & SPRET: P <
0.05, PWD: P = 0.06; one-tailed Welch's t.test).
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Discussion

When species adapt to new environments, gene regulation changes individually for each cell
type. To understand cell-type specific evolution of gene regulation across Mus, we combine
single-cell transcriptomics and epigenomics with a classical F1 hybrid design across several
species. We find that with increasing evolutionary divergence, cis-acting changes become
more dominant but we also uncovered cell-type specific regulatory patterns. Our
experimental strategy further enabled us to link regulatory elements to their target genes for
each cell type and species, finding that regulatory elements linked to cis-regulated genes
show signatures of adaptive evolution.

Our study is the first to survey evolution of gene regulation across several species in a
mammalian genus. We identify pervasive cis-regulation with increasing evolutionary
divergence, a pattern consistent across several previous studies®'%?°° . However, between
closer related species, the majority of expression differences are mediated by changes in
trans. This stands in direct contrast with previous results involving similar or identical mouse
strains®"*. For example, a 2012 study between BL6 and CAST in the liver concluded that
only around 2% of genes are differentially regulated in tfrans. Yet, studies across similar
evolutionary divergences in different organisms are consistent with our results®. We
additionally found that gene expression and chromatin accessibility in PWD was substantially
more diverged from BL6 than CAST, even though they harbour comparable genetic
variation®'. They also differed in how differential gene regulation evolved.

Altogether, this leads us to conclude, like others®****, that while cis-regulatory differences will
become pervasive with increasing divergence, factors such as tissue combined with
evolutionary as well as demographic history of a species can have strong individual effects
and result in differences in how gene regulation evolves.

Our study also is the first to investigate evolution of gene regulation on a cell type level using
F1 hybrids. This allowed us to confirm that increasing cis-regulation with both increasing
divergence and expression difference is a common trend throughout all cell types that we
investigated. We also found that cell-type specific differences in how gene regulation evolves
are common and mostly influenced by species. However, we also identified some cell types
that show consistent patterns in their regulatory evolution, regardless of species. In our case,
hepatocytes which are fulfilling the main metabolic function of the liver, consistently had the
highest proportion of DE genes and highest gene expression changes. These were possibly
facilitated by a higher frequency of cis-regulatory adaptive changes, as evidenced by an
increased rate of genetic variation in their potential regulatory elements compared to other
cell types and suggested by the trends described above.

This could imply two possible explanations. First, some cell types are predisposed toward
certain types of regulatory change by their function and hierarchy within a tissue. For
example, LSECs tend to have a more controlling function by maintaining immune
homeostasis or by maintaining hepatic stellate cell quiescence®?®. Thus, they might
disproportionally express genes toward the top of signalling cascades. Hepatocytes in turn
fulfil the metabolic functions and thus express many metabolic enzymes, which might be
toward the bottom of signalling cascades®’.
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Second, differing strengths and durations of selective pressures might cause different
regulatory responses and in these particular species, hepatocytes simply happened to
experience similar selective pressures. These dynamics have already been predicted in Stern
& Orgogozo? in their landmark paper on cis-regulatory evolution. Cell types of the liver might
be particularly subject to differing selective pressures. The liver is responsible for metabolic
homeostasis as well as processing toxins, processes which change significantly when
changing the environment or diet (and thus are likely under selection)®, yet not all cell types
are involved in these processes. Exemplifying the strong selection pressures that can act
upon the liver, a study showed Mus musculus acquired an adaptive allele conferring
rodenticide resistance from Mus spretus via introgression®, This allele was adaptive due to
polymorphisms in Vkorc1, which encodes for an enzyme that is a crucial part of the vitamin
K cycle which is needed for coagulation factors, which are produced in the liver®.

However, without further analysis of more tissues across a wider range of organisms, we
caution against overinterpreting these results.

Using simultaneous single-cell transcriptomics and epigenomics to link regulatory elements
is a powerful approach in the context of evolutionary studies. Our results demonstrate that
links between putative regulatory elements and their target genes are capturing cis-regulatory
elements that confer differential gene expression across species. Combining this approach
with a F1 hybrid design, this thus allows not only to determine which genes are differentially
regulated in cis but also provides a narrow starting point for the identification of causal
regulatory elements and variants, which traditionally is challenging. However, it is important
to note several limitations.

First, while single-cell sequencing provides cellular resolution, here the trade-off is statistical
power, leading to the need for high sample sizes, especially in rare cell types. Second, the
list of pCREs for a gene is likely not exhaustive and external factors such as data quality and
relative abundance of a cell type do influence the number of identified links. Lastly, with this
approach it is currently difficult to detect pCREs mediating weaker expression changes as
these links do not become non-functional between species. In the future though, we expect
this approach to become even more powerful with further increases in precision, higher
sample sizes and more advanced linking frameworks.

Collectively, our results provide a comprehensive survey of cell-type specific regulatory
evolution across Mus. We identify cis-regulatory changes as the dominant driver of gene
expression changes and elucidate how cell-type specific adaptations are driven by both cell
type identity and underlying species.

15



Methods

Mice

All animal experimental procedures were carried out under the licence number EB 01-21M at
Friedrich Miescher Laboratory of the Max Planck Society in Tlbingen, Germany. The
procedures were reviewed and approved by the Regierungspréasidium TUbingen, Germany.
Liver was collected from both male and female wild-type C57BL/6NCrl, CAST/EiJ, SPRET/EiJ
and PWD/PhJ mice as well as from C57BL/6NCrIxCAST/EiJ, C57BL/6NCrIxSPRET/EiJ, and
C57BL/6NCrixPWD/PhJ F1 Hybrids, all aged between 9 to 11 weeks. In the case of F1
Hybrids, the dam was always a C57BL/6NCrl mouse. All samples were collected between
6:30-7AM on the day of the experiment to minimise the influence of circadian effects.

Study design

We generated easySHARE-seq libraries for one male and one female mouse from each
genotype (seven genotypes, fourteen mice). From each individual, we sequenced two sub-
libraries, the only exception being C57BL/6NCrIxCAST/EiJ F1 Hybrids, from which we
sequenced three, resulting in 30 total easySHAREseq libraries,

Liver Nuclei

The liver was extracted, rinsed in HBSS, cut into small pieces, frozen in liquid nitrogen and
stored in the freezer at -80 °C for a maximum of two weeks. On the day of the experiment, 1
ml of ice cold Lysis Solution (0.1% Triton-X 100, 1mM DTT, 10mMM Tris-HCI pH8, 0.1mM
EDTA, 3mM Mg(Ac)., 3mM CaCl. and 0.32M sucrose) was added to the tube. The cell
suspension was transferred to a pre-cooled Douncer and dounced 10x using Pestle A (loose)
and 15x using Pestle B (tight). The solution was added to a thick wall ultracentrifuge tube on
ice and topped up with 4ml ice cold Lysis Solution. Then 9 ml of Sucrose solution (10mM
Tris-HCI pH8.0, 3mM Mg(Ac)., 3mM DTT, 1.8M sucrose) was carefully pipetted to the bottom
of the tube to create a sucrose cushion. Samples were spun in a pre-cooled ultracentrifuge
with a SW-28 rotor at 24,400rpm for 1.5 hours at 4 °C. Afterwards, all supernatant was
carefully aspirated so as not to dislodge the pellet at the bottom and 1 ml ice cold DEPC-
treated water supplemented with 10pul SUPERase & 15ul Recombinant RNase Inhibitor was
added. Without resuspending, the tube was kept on ice for 20 min. The pellet was then
resuspended by pipetting ~15 times slowly up and down followed by a 40 pm straining step.
Counting of the nuclei using DAPI and the Evos Countess Il was immediately followed up by
fixation.

Fixation

One million liver nuclei were added to ice-cold PBS for 4 ml total. After mixing, 87 pl 16%
formaldehyde solution (0.35%) was added and the suspension was mixed by pipetting up
and down exactly 3 times with a P1000 pipette set to 700 pl. The suspension was incubated
at room temperature for 10 min. Fixation was stopped by adding ice-cold Stop-Mix (224 pl
2.5M glycine, 200 pl 1M Tris-HCI pH8.0, 53 ul 7.5% BSA in PBS). The suspension was mixed
exactly 3 times with a P1000 pipette set to 850 ul and incubated on ice for 3 min followed by
a centrifugation at 500G for 5 min at 4°C. Supernatant was removed and the pellet was
resuspended in 1 ml Nuclei Isolation Buffer (NIB; 10mM Tris pH8.0, 10mM NaCl, 2mM MgCl,,
0.1% NP-40) and kept on ice for 3 min followed by straining the suspension with a 40 pm
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strainer. It was then spun down at 500G for 3 min at 4°C and re-suspended in ~100-200ul
PBSi (1x PBS + 0.4 U/ul Recombinant RNaselnhibitor, 0.04% BSA, 0.2 U/ul SUPERase,
freshly added), depending on the amount of input nuclei. Nuclei were then counted using
DAPI and the Countess Il and concentration was adjusted to 2M nuclei/ml using PBSi.

easySHARE-seq

EasySHARE-seq was performed as previously described [REF]. In short, per mouse 9
reactions of 10,000 nuclei each were tagmented. For each tagmentation reaction, 5 pl of 5X
TAPS-Buffer, 0.25ul 10% Tween, 0.25pl 1% Digitonin, 3 pyl PBS, 1 pl Recombinant
RNaselnhibitor and 9ul of H20 was mixed. TAPS Buffer was made by first making a 1M TAPS
stock solution in H,O, followed by adjustment of the pH to 8.5 by titrating 10M NaOH. Then,
4.25ml H,O, 500ul 1M TAPS pH8.5, 250ul 1M MgCl, and 5ml N-N-Di-Methyl-Formamide
(DMF) was mixed on ice and in order. Then, 5 pl of nuclei suspension at 2M nuclei/ml in PBSi
was added to the tagmentation mix for each reaction, mixed thoroughly and finally 1.5pl of
Tn5 (produced in-house as previously described [PICELLI]) loaded with a custom adapter
was added (for all oligo and adapter sequences, see Suppl. Table 1). The reactions were
incubated on a shaker at 37°C for 30 min at 850 rpm. Afterwards, all reactions were pooled
on ice. The suspension was then spun down at 500G for 3 min at 4°C. Supernatant was
aspirated and the nuclei were washed with 200pl NIB followed by another centrifugation at
500G for 3 min at 4°C.

Three tagmentation reactions were then combined into one Reverse Transcription (RT)
reaction for a total of three Rt reactions. The Master Mix for one RT reaction contained 3l
100uM RT-primer (custom), 2ul 10mM dNTPs, 6ul 5X MaximaH RT Buffer, 4.5ul 50%
PEG6000, 1.5 pl H20, 1.5ul SUPERase and 1.66pl MaximaH RT. The nuclei suspension was
resuspended in 10pl NIB per RT reaction and added to the Master Mix for a total of 30ul and
pipetted ~30 times up and down to ensure proper mixing. The RT reaction was performed in
a PCR cycler with the following protocol: 52°C for 12min; then 2 cycles of 8°C for 12s, 15°C
for 45s, 20°C for 45s, 30°C for 30s, 42°C for 2min and 50°C for 3 min. Finally, the reaction
was incubated at 52°C for 5 more minutes. All reactions were then pooled on ice. The
suspension was spun down at 500G for 3 min at 4°C, supernatant was aspirated and the
nuclei were washed in 150pl NIB and spun down again at 500G for 3min at 4°C. This washing
step was repeated once more, followed by resuspension of the nuclei in 2ml Ligation Mix
(400pl 10x T4-Buffer, 40ul 10% Tween-20, 1460ul Annealing Buffer (10mM Tris pH8.0, 1mM
EDTA, 30mM KCI) and 100ul T4 DNA Ligase, added last).

We then performed single-cell barcoding, which consists of two sequential rounds of ligation
with 192 pre-aliquoted barcodes (BC; 2x 96-well plates) in each round (For a detailed
description, see [REF]).

10ul of nuclei suspension in the ligation mix was added to each well of the two annealed
Round1 BC plates. The plates were then sealed and incubated on a shaker at 25°C for 30
min at 350 rpm. Afterwards, all nuclei were pooled into a 5ml tube on ice. The nuclei
suspension was then spun down for 3min at 500G at 4°C. Supernatant was aspirated and
the nuclei were resuspended thoroughly in 2ml new Ligation Mix. Now, 10pl of nuclei
suspension was added into each well of the Round2 BC plates and incubated on a shaker at
25°C for 45 min at 350 rpm. The nuclei were then pooled into a 15ml Tube and spun down
at 500G for 3 min at 4°C. Supernatant was aspirated, the nuclei were washed with 150ul NIB
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and spun down again. Finally, the nuclei were resuspended in ~60ul NIB and counted. Sub-
libraries of 3,500 nuclei were made and the volume was adjusted to 25ul by addition of NIB.
To each sub-library of 3,500 nuclei, 30ul 2x Reverse Crosslinking (RC) Buffer (0.4% SDS,
100mM NaCl, 100mM Tris pH8.0) as well as 5ul ProteinaseK was added. The sub-libraries
were mixed and incubated on a shaker at 62°C for one hour at 800 rpm. Afterwards, they
were transferred to a PCR cycler into a deep well module set to 62°C (lid to 80°C) for an
additional hour. Lastly, each sub-library was incubated at 80°C for 10 min and 5pl of 10%
Tween-20 to quench the SDS and 35l of NIB was added for a total volume of 100pl.

Each transcript contains a biotin molecule which is now used to separate the scATAC-seq
libraries from the scRNA-seq libraries. For each sublibrary, 50ul M280 Streptavidin beads
were washed three times with 100pl B&W Buffer (5mM Tris pH8.0, 1M NaCl, 0.5mM EDTA)
supplemented with 0.05% Tween-20, using a magnetic stand. Afterwards, the beads were
resuspended in 100pl 2x B&W Buffer and added to the sublibrary, which were then shaken
at 25°C for one hour at 900 rpm.

SCATAC-seq library preparation

The supernatant from each sub-library was cleaned up with a Qiagen MinElute Kit and eluted
twice into 30ul 10mM Tris pH8.0 total. PCR Mix containing 10ul 5X Q5 Reaction Buffer, 1pl
10mM dNTPs, 2ul 10pM i7-TruSeg-long primer, 2ul 10uM Nextera N5XX Indexing primer,
4.5ul H20 and 0.5ul Q5 Polymerase was added. Importantly, in order to distinguish the
samples, each sub-library needs to be indexed with a different N5SXX Indexing primer. The
fragments were amplified with the following protocol: 72°C for 6 min, 98°C for 1 min, then
cycles of 98°C for 10s, 66°C for 20s and 72°C for 45s followed by a final incubation at 72°C
for 2 min. The reactions were then cleaned up with custom size selection beads with 0.55X
as upper cutoff and 1.4X as lower cutoff and eluted into 25pul 10mM Tris pH8.0. Libraries were
quantified using the Qubit HS dsDNA Quantification Kit and run on the Agilent 2100
bioanalyzer with a High Sensitivity DNA Kit.

cDNA & scRNA-seq library preparation

The beads containing the cDNA molecules were washed three times with 200pl B&W Buffer
supplemented with 0.05% Tween-20 before being resuspended in 100pl 10mM Tris pH8.0
and transferred into a new PCR strip. The beads were then resuspended in 50ul Template
Switch Reaction Mix: 10ul 5X MaximaH RT Buffer, 2yl 100pM TS-oligo, 5yl 10mM dNTPs,
3ul Enzymatics RNaseln, 15ul 50% PEG6000, 14ul H20 and 1.25ul MaximaH RT. The sample
was mixed well and incubated at 25°C for 30 min followed by an incubation at 42°C for 90
min. The beads were then washed with 100ul 10mM Tris while the strip was on a magnet and
resuspended in 60pl H-O. To each well, 40ul PCR Mix was added containing 20ul 5X Q5
Reaction Buffer, 4ul 10uM i7-Tru-Seqg-long primer, 4ul 10uM Nextera N5XX Indexing primer,
2ul 10mM dNTPs, 9ul H20 and 2pl Q5 Polymerase. The PCR involved initial incubation at
98°C for 1 min followed by PCR cycles of 98°C for 10s, 66°C for 20s and 72°C for 3 min with
a final incubation at 72°C for 5 min. Importantly, in order to distinguish the samples, each
sub-library needs to be indexed with a different N5XX Indexing primer.

The PCR reactions were cleaned up with custom size selection beads using 0.7X as a lower
cutoff (70pl) and eluted into 25pl 10mM Tris pH8.0. The cDNA libraries were quantified using
the Qubit HS dsDNA Quantification Kit.
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As the cDNA molecules are too long for sequencing (mean length > 700bp), they need to be
shortened on one side. To achieve this, 25ng of each cDNA library was transferred to a new
strip and volume was adjusted to 20ul using H.O. Then, 5ul 5X TAPS Buffer and 0.8ul Tn5
loaded with exclusively one sequencing adapter was added and the sample was incubated
at 55°C for 10 min. To stop the reaction, 25ul 1% SDS was added followed by another
incubation at 55°C for 10 min. The sample was then cleaned up with custom size selection
beads using a ratio of 1.3X and eluted into 30ul. Then 20ul PCR mix was added containing
10ul 5X Q5 reaction buffer, 1yl 10mM dNTPs, 2pl 10uM i7-Tru-Seqg-long primer, 2ul 10uM
Nextera N5XX Indexing primer (note: each sample needs to receive the same index primer
as was used in the cDNA library preparation), 4.5ul H.O and 0.5l Q5 Polymerase. The PCR
reaction was carried out with the following protocol: 72°C for 6 min, 98°C for 1 min, followed
by 5 cycles of 98°C for 10s, 66°C for 20s and 72°C for 45s with a final incubation at 72°C for
2 min. Libraries were purified using custom size selection beads with a ratio of 0.5X as an
upper cutoff and 0.8X as a lower cutoff. The final scRNA-seq libraries were quantified using
the Qubit HS dsDNA Quantification Kit and run on the Agilent 2100 bioanalyzer with a High
Sensitivity DNA Kit.

Sequencing

ScATAC-seq and scRNA-seq libraries were sequenced simultaneously as they were indexed
with different Index2 indices (N5XX). All libraries were sequenced on the Nova-seq 6000
platform (lllumina) using S4 2x150bp v1.5 kits (Read 1: 150 cycles, Index 1: 17 cycles, Index
2: 8 cycles, Read 2: 150 cycles).

Analysis

Gene annotations and Genomic variants

The reference genome and the Ensembl gene annotation of the C57BL/6J genome (mm10)
were downloaded from Ensembl (Version GRCm38, release 102). Gene annotations for
PWK/PhJ, SPRET/EiJ and CAST/EiJ mice were downloaded from Ensembl. VCF files
containing SNPs and InDels of PWK/PhJ, SPRET/EiJ and CAST/EiJ mice compared to mm10
were downloaded from the Mouse Genomes Project website (www.mousegenomes.org). A
consensus GTF in mm10 coordinates was constructed by filtering for genes present across
all gene annotations.

Since there is no available PWD/PhJ SNP or InDel set, we started with the PWK/PhJ variant
files. PWD/Phd and PWK/PhJ mice are highly similar wild-derived mouse strains from the
Mus musculus musculus subspecies and originated in 1972 from a pair of wild caught mice
trapped in the central part of Czechia*'. We pooled all our available PWD/PhJ data (ScATAC-
& scRNA-seq) and filtered the PWK/PhJ VCF file for variants also detected in our dataset, to
which we will from hereon refer to as PWD/PhJ variants. Over 85% of variants with coverage
were also detectable in our dataset, highlighting the similarity between the two mouse strains.

easySHARE-RNA-seq pre-processing

Fastq files were demultiplexed using a custom C-script, allowing one mismatch within each
barcode segment. The reads were trimmed using cutadapt®. UMIs were then extracted from
bases 1-10 in Read 2 using UMI-Tools* and added to the read name. Only reads with TTTTT
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at the bases 11-15 of Read 2 were kept (> 96% of all reads), allowing one mismatch. Lastly,
the barcode was also moved to the read name.

easySHARE-ATAC-seq pre-processing
Fastq files were demultiplexed using a custom C-script, allowing one mismatch within each
barcode segment. The paired reads were trimmed using cutadapt.

easySHARE-RNA-seq read alignment

We only used Read 1 for all our (sc)RNA-seq analyses as sequencing quality tends to drop
after a polyT tail is sequenced in R2. In order to mitigate the possible effects of mapping bias
(some species mapping better or worse to the mm10 genome) and since there is no publicly
available PWD/PhJ reference genome, we modified the approach from Gao et al and crowley
et al. ***. In short, the vcf2diploid* tool was used to construct ‘Artificial Genomes’ (AG) for
CAST/EiJ, PWD/Phd and SPRET/EiJ by incorporating the respective SNPs and InDels into
the mm10 genome. Additionally, vcf2diploid reports a chain file as output. scRNA-seq data
from each species or F1 hybrids was mapped to both mm10 and the respective AG using the
two-pass mode in STAR* with the parameters --outFilterMultimapNmax 20 --
outFilterMismatchNmax 15. Mapping Quality (MAPQ) of each read was compared across the
two alignments and the better mapping location was kept. In case of equal MAPQ, we kept
the mm10-mapped read. We then generated UMI-collapsed count matrices for each mapped
genome using featureCounts* from the Subread package and UMItools. A detailed
description and verification of this approach can be found in the Supplementary Notes.

easySHARE-ATAC-seq read alignment

All reads were mapped to the mm10 genome using bwa mem™. Reads with alignment quality
< Q30, unmapped, undetermined barcode, or mapped to mtDNA were discarded. Duplicates
were removed using Picard tools. Open chromatin regions were called by subsampling the
bamfiles from all samples to a common depth, merging them into a pooled bamfile and using
the peakcaller MACS2*° with the parameters -nomodel -keep-dup -min-length 100. All peaks
on the chromosome X or Y were removed. The count matrices as well as the FRiP score was
generated using featureCounts. For any single-cell analysis involving the ATAC-seq data, we
did not correct for potential mapping bias since we observed highly similar mapping
efficiencies across all species (between 98.03%-99.45% of reads mapped). Additionally, any
potential bias would only decrease our power for analyses such as linking peaks to genes.

Assigning reads to allele of origin in F1 Hybrids

In order to assign each read from the F1 Hybrids to the respective allele of origin, we first
used samtools®’ mpileup inputting the sample bamfiles and our variant (VCF) files containing
SNP data with the parameters -A -B -C 0 -Q 0 -R --output-extra QNAME. The resulting output
file contained a list of readnames overlapping each SNP as well as information about having
either the REF or ALT variant. Using a custom python script, we then filtered for reads
overlapping either only REF or only ALT position. Reads overlapping no variant or containing
REF and ALT variants were discarded.

Principal Component Analysis
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For PC analysis, we used a count matrix generated from pseudobulk sample bamfiles for
RNA- and ATAC-seq. The matrix was loaded into DESeq2*? and prefiltered by requiring at
least 10 counts per gene across all samples combined. We then performed variance
stabilizing transformation and did PC analysis using the stats R package.

Filtering, Integration & Dimensional reduction of scRNAseq data

The count matrices were loaded into Seurat®® and cells were then filtered for >100 detected
genes, >250 UMIs and < 20.000 UMIls. The sub-libraries coming from the same experiment
were then merged together. Merged experiments from the same genotype (one from male
mouse, one from female mouse) were then integrated by first using SCTransform then finding
common features between the two experiments using FindIntegrationAnchors() and finally
integrated using IntegrateData(). Lastly, the integrated datasets from all genotypes were
sequentially integrated onto one another. To visualise the data, we projected the cells into
2D space by UMAP using the first 30 principal components and identified clusters using
FindClusters(). Afterwards, we assigned cell cycle scores and excluded clusters consisting
of nuclei solely in the G2M-phase. Cell types were assigned via expression of previously
known marker genes. We extracted the barcodes for each cell type and subsetted the
bamfiles from each genotype into separate bamfiles for each cell type.

Filtering, Integration & Dimensional reduction of scATACseq data

Fragments per cell were counted using sinto and the resulting fragment file was loaded into
Signac®™ alongside the count matrices and the peakset. We calculated basic QC statistics
using base Signac and cells were then filtered for a FRiP score of at least 0.3, > 150
fragments, < 15.000 fragments. Again, sub-libraries coming from the same experiment were
merged. We then integrated all experiments at once by finding common features across
datasets using FindIntegrationAnchors() using PCs 2:30 and then integrating the data using
IntegrateEmbeddings(). To visualise the data, we projected the cells into 2D space by UMAP.

Weighted-Nearest-Neigbor (WNN) Analysis & Cell type identification

In order to use data from both modalities simultaneously, we created a multimodal Seurat
object and used WNN? clustering to visualise and leverage both modalities for downstream
analysis such as calculating Peak-Gene Associations.

Differential Gene Expression

Differentially expressed (DE) genes between pseudobulk samples, cell types or alleles were
analysed using the edgeR®* package. Genes were required to have at least 30 total counts
across all samples. DE Genes were calculated by fitting a negative binomial generalised linear
model and performing a Quasi likelihood (QL) F-test. We corrected for multiple testing by
using a Benjamini-Hochberg correction with an FDR of 0.05.

Differential Chromatin Accessibility

Differentially chromatin accessibility was calculated between pseudobulk samples or alleles
using the DiffBind® package. Peaks were required to have at least 20 total counts across all
samples to be considered. We applied a mapping bias correction for all species except
C57BL/6 in the form of species- and peak-specific correction factors, calculated by directly
measuring the extent of mapping bias on each peak. Lastly, we normalised by full library size
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and used the default settings for calculating differentially accessible peaks (DESeq2
workflow, Wald test, FDR=0.1). For a detailed description of our mapping bias correction, see
Supplementary Notes.

Categorization of genes into regulatory modes

To assign the mode of gene regulation, we used the approach from Metzger et al®. In each
contrast, we combined the raw read counts from all four experiments for both parental
species (e.g. 4x C57BL/6 vs 4x SPRET/EiJ) as well as the allele-specific reads from the F1
Hybrids (e.g. 4x C57BL/6 allele vs 4x SPRET/EiJ allele, from a total of four F1 Hybrids). Genes
on the X chromosome or showing sex biased gene expression across all species (52 genes)
were removed. Then, total counts for both comparisons (parentals and alleles) were
downsampled to equal read counts using Fisher’s noncentral hypergeometric distribution,
implemented in the BiasedUrn R package {CITATION}. For analysis with pseudobulk counts,
genes with less than 20 total reads were removed. For cell-type specific analyses, genes with
less than 10 total reads were removed. We then tested for differences in total expression (DE)
between the parental species per gene using the binomial exact test. To test for significant
cis-regulatory differences (‘cis-effects’), allele-specific counts from F; hybrids were
compared using a binomial exact test for each gene. Lastly, to detect significant trans-
regulatory differences (‘trans-effects’), Fisher’s exact test was used to compare the ratio of
allele-specific counts in the parental species with the ratio of allele-specific counts in the F;
hybrids for each gene. We then categorised each gene into regulatory modes using the
following criteria:

- Conserved: No significant cis-effect, no significant DE, no significant trans-
effect

- Compensatory: Significant cis-effect, no significant DE, significant trans-effect

- cis: Significant cis-effect, significant DE, no significant trans-effect

- trans: No significant cis-effect, significant DE, significant trans-effect

- cis+trans: significant cis-effect, significant DE, significant trans-effect and
log2(Species1/Species?2) / log2(Allele1/Allele2) > 1

- cis-trans: significant cis-effect, significant DE, significant trans-effect and
log2(Species1/Species?2) / log2(Allele1/Allele2) < 1

- Ambiguous: All other patterns

For all tests, a false discovery rate (FDR) corrected p-value of 0.05 was used. Effect sizes for
each gene were calculated using the absolute log2 fold change between the parental species.

Categorization of genes into mode of inheritance

To assign the mode of inheritance, we again used the approach from Metzger et al®. In each
contrast, we combined the raw read counts from all four experiments for both parental
species (e.g. 4x C57BL/6 vs 4x SPRET/EiJ) as well as the total reads from the F1 Hybrids
(e.g. 4x C57BL/6xSPRET/EiJ) and down-sampled each dataset to a common read count
using Fisher’s noncentral hypergeometric distribution within the R package biasedUrn. Genes
with a total read count of less than 20 were removed in each contrast. We then used a
binomial exact test to compare the total expression between the parental species as well as
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between each parental species and the F1 hybrid. We then categorised each gene into
modes of inheritance using the following criteria:

- Dominance: Significant difference between the parental species and between one
parental species and the F1 hybrid.

- Additive: Significant difference between the parental species and between each
parental species and the F1 hybrid. Additionally, the F1 hybrid read count is in
between the read counts of the parental species.

- Conserved: No significant difference between the parental species or between any
parental species and the F1 hybrid.

- Over/Underdominance: Significant difference between the parental species and
between each parental species and the F1 hybrid. Additionally, the F1 hybrid read
count is either greater or lesser than both read counts from the parental species.

For all tests, a false discovery rate (FDR) corrected p-value of 0.01 was used.

Calculating Gene Expression Variance

In order to calculate gene expression variance, we aggregated gene expression data per sub-
library per cell type for each species contrast and filtered out genes with less than 10 total
reads across all samples. To ensure there is no relationship between total expression of a
gene and its expression variance, we then performed a variance stabilising transformation
using the DESeq2 R package and extracted the variance values.

Defining transcription factors

For Suppl. Fig. 6, we defined TFs using the gene ontology annotation GO:0003700 (“DNA-
binding transcription factor activity”). For alternative definitions in Suppl. Fig. 6D we used the
term GO:0010468 (“regulation of gene expression”) and the curated lists of TFs from Zhou et
al.®® and from Hammelman et al*.

Calculating effect sizes per gene per cell type

For calculating the effect sizes per gene in each cell type, made use of the already identified
differentially expressed genes per cell type and species contrast (see above, ‘Differential
Gene Expression’). We then ranked the genes by the absolute log2FC in expression (effect
size) in each contrast. In order to have equal contribution from each species, we then
combined and plotted the top 2,000 genes from each contrast per cell type. In order to
compare total expression level across cell types, we normalised read counts across
experiments within each strain using the DESeq2 standard workflow.

Identifying cell-type specific ATAC-seq peaks

Cell-type specific ATAC-seq peaks were identified in Seurat / Signac by comparing each cell
type against all other cell types utilising a logistic regression framework combined with a
likelihood ratio test (standard workflow, FindMarkers()). We then subset for peaks with an
adjusted p-value lower than 0.05 and a average log2 fold-change higher than 1.

Gene Ontology Analysis
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Gene Ontology Analysis was done using the R package clusterProfiler’” with standard
parameters.

Calculating Links (Peak-Gene Associations)

Peak-gene associations were calculated following the framework described by Ma et al*®. In
short, Spearman correlation was calculated for every peak—gene pair within a +-500kb
window around the TSS of the expressed gene. To obtain a background estimation, we used
chromVAR (getBackgroundPeaks() to generate 100 background peaks matched in GC bias
and chromatin accessibility but randomly distributed throughout the genome. We calculated
the Spearman correlation between every background-gene comparison, resulting in a null
distribution with known population mean and standard deviation. We then calculated the z-
score for the peak—gene pair in question ((correlation - population mean)/ standard deviation)
and used a one-sided z-test to determine the p-value. This functionality is also implemented
in Signac under the function LinkPeaks().

When calculating the rate of shared links between BL6 and CAST/PWD/SPRET for each
regulatory category, we first extracted all shared links and calculated the percentages of
linked genes that fall into each regulatory category (e.g. cis, trans,..). We then normalised
them by their initial frequency. For example, 9.44% of all shared links between BL6 and
SPRET LSECs are to trans-regulated genes. However, in total only 6.48% of all links in BL6
are to trans-regulated genes. This results in a normalised rate of shared links of 1.42.
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Suppl. Fig. 1: General overview and trends of the data

(A) Number of genomic variants of each species compared to mm10.

(B) Percentage of total reads assignable to alleles in the F1 Hybrids.

(C) Percentage of reads assigned to the BL6 allele in the F1 Hybrids.

(D) Total number of expressed genes and accessible peaks in each species contrast.

(E) Percentage of genes with allele-specific expression and allele-specific chromatin
accessibility between the F1 Hybrid alleles.

(F) Percentage of DE genes in each species contrast within each cell type.

(G) Aggregated scATAC- and scRNA-seq track at the Map2k2 locus. Tracks are coloured
by species. The first four tracks are depicting ATAC-seq, the last four tracks are
expression data.

(H) Gene ontology analysis of the top 1000 most differentially expressed genes in each
species contrast.
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Suppl. Fig. 2: Single-cell data quality control and cell type markers

(A) Boxplots depicting detected numbers of UMIs (transcripts; mean: 3.056, median:
1.948) and Fragments (ATAC-seq; mean: 1.890, median:1.321) per cell recovered
from the respective modalities as well as the number of expressed genes (mean:
1.488, median :1.231) and accessible peaks (mean: 1.720, median:1.249) per cell.

(B) Fraction of cDNA reads overlapping exons (30.36%) or introns (69.64%).

(C) Violin plot of Fraction of Reads in Peaks (FRIiP) per cell in the scATAC-seq (mean:
0.53)

(D) Histogram of fragment length in scATAC-seq sequencing reads.

(E) Mean TSS enrichment score per cell in relation to distance from nearest TSS in the
SCATAC-seq data.

(F) Normalised gene expression of representative marker genes per cell type

(G) Aggregate scATAC-seq tracks at marker accessibility peaks per cell type.

(H) UMAP-visualisation of Weighted-Nearest-Neigbour (WNN) integrated scRNA-seq and
ScATAC-seq modalities of 53.257 liver nuclei. Nuclei are coloured by cell type.

(I) Fraction of cell types recovered relative to total cells.

(J) Total number of cells recovered for each genotype.
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Suppl. Fig. 3: Frequency of regulatory categories is independent of filtering cutoffs

SPRET

(A) Top: Fraction of genes assigned to regulatory categories with conserved genes exclud-
ed in all three species contrasts when using different filtering cutoffs per gene after
normalisation (low (cutoff used in this study): 20 total reads across all samples, inter-
mediate: 50 total reads, high; 100 total reads) and using an adjusted p-value cutoff of
0.05 in all statistical tests (Fisher’s exact & 2x Binomial Exact Test). Bottom: The frac-
tion of genes classified as conserved with different filtering cutoffs.

(B) Same as (A) but using an adjusted P-value cutoff of 0.01 in all statistical tests.

(C) Boxplots of effect sizes per gene (abs. log2(BL6 count / Species2 count)) split by regu-
latory mode and coloured by species contrast. Difference in effect sizes between cis
and frans regulatory categories within each species were tested with a two-tailed
Welch’s t-test (***: P <0.001, *: P < 0.05).

(D) The fraction of genes classified by their mode of inheritance within each pseudobulk
species contrast.
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Suppl. Fig. 4: Overview of cell type specific regulatory patterns

(A) Scatterplot of log2FC in expression between the parental species vs. F1 hybrid alleles
for CAST (left), PWD (middle) and SPRET (right) compared to BL6. Each dot is a
gene. Genes are coloured based on the regulatory category they were assigned to
(see Methods). Top row are the scatterplots for the most abundant cell type (Hepato-
cytes) and bottom row for the cell type with the least amount of cells recovered (Kupffer
Cells). Horizontal line represents 100% trans effects, diagonal line 100% cis effects.

(B) Number of genes passing filtering and considered for analysis of regulatory mode
within each cell type and contrast. Dotted line depicts cutoff for cell types considered.

(C) Overview of percentages of genes classified into regulatory modes. Dots are repre-
senting individual cell types and are coloured by species contrast. Triangle represents
pseudobulk fractions from Fig. 2B.
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Suppl. Fig. 5: Relationship of regulatory categories with expression divergence and
expression variance

(A) Frequency of regulatory categories along genes grouped into percentiles of absolute
expression divergence between BL6 and SPRET for each cell type.
Comparison of gene expression variance between cis- and trans-regulated genes for
each species contrast. Each dot is a gene. Expression variance for a gene was calcu-
lated within each cell type separately and all cis- or trans-regulated genes across all

(B) cell types are shown. We tested for significant differences using a two-tailed Welch’s
t-test (**: P < 0.01).

(C) Frequency of regulatory categories along genes grouped into percentiles of increasing
expression variance between all three species contrasts.
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Suppl. Fig. 6: Transcription factors are more frequently regulated in trans

(A) The ratio of cis- and trans-regulated genes combined across all cell types for either
transcription factors (TF) or all genes. We tested for significant differences in the ratios
between the different groups using Fisher’s exact test (n.s.: P > 0.05, *: P <0.05, **: P

<0.01, *™*: P <0.001).

(B) The ratio of cis- and trans-regulated genes in different cell types for either transcription
factors (TF) or all genes. Statistical tests as in (A).

(C) The ratio of cis- and trans-regulated genes in each cell type for groups of genes based
on other GO annotations (see axis labels). Statistical tests as in (A).

(D) The ratio of cis- and trans-regulated genes in each cell type using different definitions
for defining TFs (see Methods). Statistical tests as in (A).
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Suppl. Fig. 7: Cell type specific effect sizes and genetic variation

(A) Boxplot of gene expression effect sizes per cell type split by species contrast. Tested
for significant differences using a two-tailed Welch’s t-test (***: P < 0.001).

(B) SNPs/kb in cell type specific ATAC-seq peaks split by species. Tested for differences
using a two-tailed Welch’s t-test (***: P < 0.001, *: P < 0.05).

(C) Total expression level of cell types within each species of genes plotted in (A). Reads
are normalized using DESeq2.
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Suppl. Fig. 8: Cell-type specific gene-pCRE links

(A) Total number of links recovered per species, summed across all cell types.
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the right side of each plot displays 10 relevant genes out of the top20 with the most

links.
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Supplementary Notes

Mitigating mapping bias in the scRNA-seq

In order to minimise the potential effect of mapping bias onto our data and to circumvent the
lack of reference genome for the PWD/PhJ strain, we modified the approach from Crowley et
al." and Gao et al 2. For each species (except C57BL/6, since mm10 is the proper reference
genome), we constructed “Artificial Genomes” (AG) using the vcf2diploid tool® (Suppl. Fig.
1A). Vcf2diploid incorporates SNPs and InDels of each species into the mm10 genome and
additionally outputs a chain file for lifting genome coordinates over from mm10. This allows us
to map reads from each species to both genomes (mm10 and the appropriate AG), compare
mapping quality across them and keep the better mapping read, which is especially useful in
the case of F1 hybrids. Even though reference genomes are available for CAST/EiJ and
SPRET/EiJ mice, we used this approach for all three species in order to generate consistent
results. Additionally, this allowed us to use mm10 gene annotations.

After mapping each sample using STAR*, we compare the mapping quality (MAPQ) for each
read in both alignments and discard the alignment with lower MAPQ. In case of an equal
MAPQ, we kept the mm10 mapping read. We then discard multimapping reads, reads not
overlapping a gene and non-primary alignments. Next, we merge corresponding bamfiles and
use UMI-tools® to remove transcript duplicates. Importantly, since easySHARE-seq relies on
fragmentation after a first PCR, transcript duplicates do not necessarily have the same
genomic sequence. However, by de-duplicating on a gene level using the —per-gene flag, UMI-
tools still accurately identifies and removes transcript duplicates. Lastly, we use UMI-tools to
generate a (single-cell) count matrix for each sample.

To verify our approach, we made use of our scRNA-seq SPRET/EiJ data since it is the most
evolutionarily distant species from C57BL/6 and thus mapping bias should have the highest
effects. Additionally, a reference genome SPRET/EiJ is available at www.mousegenomes.org.
We mapped this data three different ways: to mm10 only, using the AG approach or to the
SPRET/EiJ reference genome. Using the AG approach, we recovered 5.2% more UMIs than
compared to mm10 only (Suppl. Fig. 2B) and nearly identical UMI counts compared to the
SPRET/EiJ reference genome (< 0.5% difference). Interestingly, 69% of reads additionally
mapping to the AG (compared to mm10) are classified as unplaced when mapping to mm10.
We then compared mapping efficiency for the top 10.000 expressed genes and calculated
how many UMIs per gene are recovered when mapping to mm10 or using the AG approach,
both compared to the SPRET/EiJ reference genome (Suppl. Fig. 2C). Mapping using the AG
approach outperforms mapping to mm10 and is highly similar compared to mapping to the
SPRET/EiJ reference genome (median mapping efficiency: 0.9516 (mm10) vs. 0.9976 (AG)
vs. 1 (SPRET/EiJ)). For example, mapping using the AG approach recovers 97.5% of UMIs
for Lsg1 compared to mapping to SPRET/EiJ, compared to 91.36% in mm10 (Suppl. Fig.
1D). Next, we calculated differentially expressed (DE) genes between all three differently
mapped SPRET/EiJ datasets and the pseudobulked C57BL/6 scRNA-seq dataset generated
for this study (Suppl. Fig. 1E). Mapping to mm10 only recovers 93% of DE genes whereas
mapping using the AG approach recovers 96.6% of DE genes. Additionally, using the AG
approach falsely classifies only 223 genes as DE (1.2% of expressed genes).

Lastly, we investigated the drivers of mapping bias. We ordered genes by total amount of
recovered UMIs (mapped with the AG approach vs mm10) and subsetted for the top genes

39



that collectively have 50% of the recovered UMIs (1.193 total genes). We then calculated
SNPs/kilobase (kb) and base pairs (bp) in InDels/kb for these genes and compared them to
all genes (Suppl. Fig. 1F). While the frequency of SNPs did not differ, the genes with 50% of
recovered UMIs were highly enriched for bp in InDels (p < 0.001, Welch'’s t-test), indicating
that these are the main driver of mapping bias.

To summarise, we show that using the AG approach provides accurate mapping and mitigates
the majority of mapping bias effects. While we cannot exclude the possibility that underlying
mapping bias still influences some of our analysis, we presume it to play a very minor role,
especially when comparing across species.

Correcting for Mapping Bias in the ATAC-seq

In order to minimise the impact of mapping bias onto comparative analyses involving the
ATAC-seq data (e.g. differentially accessible peaks), we directly measured mapping bias for
each species at each peak, allowing us to correct for it. To do so, we made use of three publicly
available reference genomes for CAST/EiJ, SPRET/EiJ and PWK/PhJ, using PWK/PhJ as a
proxy for PWD/PhJ (see main article). All genomes as well as gDNA sequencing data used to
construct them and C57BL/6 gDNA sequencing data were downloaded from
www.mousegenomes.org and mapped to the appropriate reference genome (e.g. CAST/EiJ
gDNA data to the CAST/EiJ reference genome).

We then calculated per species peak-specific correction factors (Suppl. Fig. 2A). First, we
transferred peaks from mm10 coordinates to e.g. the CAST/EiJ reference genome using blat.
We filtered out blat hits with more than 80 mismatches, lower than 90% of the sequence
aligned or hits on a different chromosome. If multiple hits were retained, we chose the one
with the highest score, resulting in 85.2% of peaks confidently transferred to CAST/EiJ
coordinates (85.1% or 82.8% for PWK/PhJ and SPRET/EiJ, respectively). Next, we extracted
an equal number of reads overlapping each peak from C57BL/6 and gDNA sequencing data
of the second species (e.g. 100 CAST/EiJ and 100 C57BL/6 reads for the same peak). Peaks
with less than 25 reads extracted were excluded from further analysis. We then remapped
these reads to mm10. If a focal peak has no mapping bias, the ratio of mapped C57BL/6 and
e.g. CAST/EiJ gDNA reads will be 1. If it differs from 1, it is due to mapping bias. Therefore,
we use this ratio directly as peak-specific correction factors and multiply e.g. CAST/EiJ peak
counts before analysing differentially accessible peaks.

The majority of peak-specific correction factors were between 0.95 and 1.05, with SPRET/EiJ
having slightly higher average correction factors, consistent with being the most evolutionarily
distant species (Suppl. Fig. 2B, mean correction factors: 1.0136 (CAST/EiJ), 1.012933
(PWD/PhJ) and 1.0221 (SPRET/EiJ)). We then analysed differentially accessible peaks
between CAST/EiJ and C57BL/6 samples and compared the results with and without applying
the mapping bias correction. Applying the correction leads to balanced log2 fold changes
(Suppl. Fig. 2C). Without correcting for mapping bias, 51.7% of differentially accessible peaks
have higher accessibility in C57BL/6. However, after correcting for mapping bias, differentially
accessible peaks are evenly balanced between the species with only 50.4% of peaks having
higher accessibility in C57BL/6 (Suppl. Fig. 2D), showcasing the validity and effectiveness of
our approach to correct for mapping bias.

To summarise, we developed a simple approach to directly measure mapping bias and show
that it is appropriate when correcting mapping bias.
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Supplementary Figure 1: Using the AG Approach for scRNA-seq mapping mitigates the majority of
mapping bias effects

(A) Schematic overview of the major steps in the analytical pipeline.

(B) Total UMIs recovered when SPRET/EiJ scRNA-seq data is mapped to the mm10 genome (red), using the AG Approach
(blue) or to the SPRET/EiJ genome (green). Using the AG approach recoveres nearly identical to UMIs compared to
SPRET/EiJ ( < 0.5% difference).

(C) Relative mapping efficiency per gene compared to SPRET/EiJ mapped data. Number of UMIs recovered per gene in
relation to number of UMIs recovered when the data is mapped to the SPRET/EiJ genome. Red: mapped to mm10.
Blue: using the AG approach.

(D) Representative tracks of the differently mapped scRNA-seq data at the Lsg7 locus. Red: mapped to mm10. Blue: using
the AG approach. Top track is the mm10 track, bottom is the Artificial Genome track. Green: mapped to SPRET/EiJ
genome. Right: Number of UMIs recovered for Lsg? per mapping approach.

(E) Results of differential expression (DE) analysis between C57BL/6 data and differently mapped SPRET/EiJ data.
Colours indicate how the SPRET/EiJ data has been mapped. Top: DE analysis with mm10-mapped SPRET/EiJ data
against C57BL/6 data only recovers 93% of DE genes compared to SPRET/EiJ-mapped SPRET/EiJ data. Bottom:
Mapping the SPRET/EiJ data using the AG approach recovers 97% of DE genes.

(F) Number of bp/kb in InDels or SNPs. Red: All Genes. Blue: 1.193 genes which cumulatively recover 50% of total UMIs
when using the AG approach compared to mm10 mapping. Top genes are significantly enriched for InDels but not for
SNPs compared to all genes (t-test, p < 0.001).
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Supplementary Figure 2: Mapping Bias Correction in ATAC-seq analysis

(A) Schematic overview of the major steps in the analytical pipeline

(B) Distribution of correction factors for each species

(C) Absolute log2 fold-changes with and without correction when calculating differentially accessible peaks between BL6
and CAST. Split by directionality of higher accessibility.

(D) Percentage of differentially accessible with higher accessibility in BL6 vs CAST, either with or without mapping bias
correction.
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Complete genome sequencing has identified millions of DNA
changes that differ between humans and chimpanzees. Although
a subset of these changes likely underlies important phenotypic
differences between humans and chimpanzees, it is currently
difficult to distinguish causal from incidental changes and to map
specific phenotypes to particular genome locations. To facilitate
further genetic study of human-chimpanzee divergence, we have
generated human and chimpanzee autotetraploids and allote-
traploids by fusing induced pluripotent stem cells (iPSCs) of each
species. The resulting tetraploid iPSCs can be stably maintained
and retain the ability to differentiate along ectoderm, mesoderm,
and endoderm lineages. RNA sequencing identifies thousands
of genes whose expression differs between humans and chim-
panzees when assessed in single-species diploid or autotetraploid
iPSCs. Analysis of gene expression patterns in interspecific al-
lotetraploid iPSCs shows that human-chimpanzee expression dif-
ferences arise from substantial contributions of both cis-acting
changes linked to the genes themselves and trans-acting changes
elsewhere in the genome. To enable further genetic mapping of
species differences, we tested chemical treatments for stimulating
genome-wide mitotic recombination between human and chim-
panzee chromosomes, and CRISPR methods for inducing species-
specific changes on particular chromosomes in allotetraploid cells.
We successfully generated derivative cells with nested deletions
or interspecific recombination on the X chromosome. These stud-
ies confirm an important role for the X chromosome in trans regu-
lation of expression differences between species and illustrate the
potential of this system for more detailed cis and trans mapping
of the molecular basis of human and chimpanzee evolution.

human-chimpanzee evolution | tetraploid | cis/trans gene regulation |
genetic mapping

umans have had a long-standing interest in the features that

distinguish our species from other animals (1, 2). Compara-
tive studies have characterized many morphological, physiologi-
cal, and behavioral similarities and differences among great apes
(3). Paleontological studies have traced the origin and timing of
the appearance of various human features in the fossil record
(4). More recently, advances in sequencing technologies have
allowed for the comparative genomic analysis of humans, chim-
panzees, other nonhuman primates, and even extinct archaic
human lineages such as Neanderthals and Denisovans (5).

Whole-genome comparisons indicate that ~4% of the base
pairs in the human genome differ from those in chimpanzees.
Sifting through this set of ~125 million DNA changes to sepa-
rate the causal mutations contributing to phenotypic differences
between humans and chimpanzees from inconsequential or neu-
tral changes is a daunting problem, and has been compared to
searching for needles in a haystack (3).

In evolutionary studies of other organisms, genetic crosses be-
tween different lineages have helped localize and prioritize chro-
mosome regions that influence different traits. The formation
of F1 hybrids, followed by chromosome recombination during
meiosis, can be used to produce F2 offspring that inherit different
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combinations of alleles from the parental lineages. By compar-
ing different genotypes and phenotypes across a large panel of
meiotic mapping progeny, it has now been possible to map some
evolutionary traits to particular chromosome regions in yeast,
fruit flies, butterflies, sticklebacks, mice, and other organisms (6).

Traditional meiotic mapping approaches are limited to or-
ganisms that can be crossed to produce viable and fertile off-
spring. However, related approaches have also been developed
for comparing genotypes and phenotypes in somatic cells without
meiosis, when traditional crosses are not possible. Cells of even
distantly related organisms can be fused in vitro to produce
somatic cell hybrids that contain the genetic information from
both lineages. The fused cells sometimes lose chromosomes of
one or the other starting species, producing progeny cell lines that
can be used to assign genes or cellular phenotypes to particular
chromosomes (7). Hybrids can also be irradiated to fragment
chromosomes and stimulate additional segregation of genetic
information, an approach that has been used for fine mapping of
genomic linkage relationships (8). Mitotic recombination within
cultured cells can also be stimulated by mutations in DNA path-
ways, by chemicals that damage DNA, or by targeted breaks

Significance

Comparative studies of humans and chimpanzees have re-
vealed many anatomical, physiological, behavioral, and molec-
ular differences. However, it has been challenging to map
these differences to particular chromosome regions. Here, we
develop a genetic approach in fused stem cell lines that makes
it possible to map human-chimpanzee molecular and cellular
differences to specific regions of the genome. We illustrate
this approach by mapping chromosome regions responsible for
species-specific gene expression differences in fused tetraploid
cells. This approach is general, and could be used in the future
to map the genomic changes that control many other human-
chimpanzee differences in various cell types or organoids in
vitro.
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induced by Cas9 and guide RNAs (gRNAs) designed to alter
particular locations in the genome. Mutations and chemical in-
hibitors of the Bloom Syndrome helicase gene (BLM ) have been
used to recover homozygous mutants in somatic cell gene screens
(9, 10) or to induce recombination between chromosomes of
distantly related mouse strains for studies of the genomic basis
of evolutionary differences (11). The ability to induce breaks
at particular loci with CRISPR-Cas9 has also made it possible
to choose both the location and the direction of recombination
between genomes in nonmeiotic cells, enabling high-resolution
mapping without traditional crosses in yeast (12).

Development of similar approaches for human and chim-
panzee cells would be very useful for studying the genomic
basis of evolutionary differences that have evolved in hominids.
Many molecular and cellular phenotypes that can be assayed and
scored under cell culture conditions are known to differ between
humans and chimpanzees. Recent studies have generated well-
matched sets of human and chimpanzee induced pluripotent
stem cell (iPSC) lines (13), and have shown that human and
chimpanzee iPSCs can be fused to produce hybrids useful for
comparing species-specific expression in cortical spheroids and
neural crest cells (14, 15). Here we generate both autotetraploid
(same species) and allotetraploid (different species) fusion lines
from human and chimpanzee iPSCs, and use them to identify
whether gene expression differences are due to cis- or trans-
acting differences between species. We also test both random and
targeted methods for stimulating DNA breaks and chromosome
exchanges in allotetraploid iPSCs, providing a general method
for further localizing the specific genomic changes that underlie
human and chimpanzee differences in vitro.

Results

Generation and Initial Characterization of Autotetraploid and
Allotetraploid iPSC Lines. To generate autotetraploids and allote-
traploids, we labeled human and chimpanzee iPSClines (13) with
diffusible fluorescent dyes and fused them using electrofusion
(Fig. 14 and Materials and Methods). Tetraploid cells were
enriched by either fluorescence-activated cell sorting (FACS)
or manual inspection and grown clonally. Successful fusion in
expanded clones was confirmed by FACS analysis for DNA
content using propidium iodide and by karyotyping. In total, we
generated two human autotetraploid lines (“H1H1” lines, from
human iPSC line H23555 [H1]); five chimpanzee autotetraploid
lines (“C1C1” lines from chimpanzee iPSC line C3649 [C1]); and
22 human—chimpanzee allotetraploid lines from different fusion
events including 12 “H1C1” lines derived from H1 and C1 and 10
“H2C2” lines derived from human iPSC line H20961 (H2) and
chimpanzee iPSC line C8861 (C2) (Dataset S1).

Tetraploid iPSCs were larger than diploid cells but had
normal morphology and could be routinely propagated under
the same conditions as diploid iPSCs (SI Appendix, Fig. S1). We
performed G-banded karyotyping on the initial diploid parental
lines, as well as the newly generated autotetraploid and allote-
traploid lines to examine their genome stability (Dataset S1).
Fusion lines showed the tetraploid karyotypes expected from
fusing their originating diploid lines. However, some of the
tetraploid lines contained additional chromosomal abnormal-
ities, including aneuploidies common to diploid human iPSC
cultures (16) such as deletion of human chrl8q (asterisk in
Fig. 1B).

To assess the pluripotency and differentiation potential of the
tetraploid iPSC lines, we differentiated representative diploid
(H1, H2, C1, C2), autotetraploid (H1Hla, H1IH1b, C1Cla,
Cl1Clc), and allotetraploid (H1Cla, H1C1lb, H2C2a, H2C2b)
lines into ectoderm, mesoderm, and endoderm (Materials and
Methods). Quantitative PCR (qPCR) for the expression of
pluripotency (NANOG, DNMT3B), ectoderm (PAX6, RAX),
mesoderm (TBXT, HANDI), and endoderm (FOXA2, SOX17)
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markers showed specific differentiation of tetraploid lines
into all three lineages (Fig. 1C, Dataset S3, and SI Appendix,
Supplemental Materials and Methods). For endoderm differen-
tiation, a subset of lines (H1, C1Clc, H1C1b) showed lower
expression of endoderm markers compared to all other cell lines,
as well as persistent expression of pluripotency marker genes.
Tetraploid cells thus retain broad differentiation abilities, but
conditions may need to be optimized for particular cell lines or
differentiation endpoints.

Diploid and Autotetraploid iPSC Lines Have Similar Gene Expression
Profiles. To examine whether tetraploidization altered normal
gene expression patterns, we used RNA sequencing (RNAseq)
to characterize transcriptional differences due to ploidy, but
not to species differences (i.e., H1 vs. HIH1 and CI1 vs.
C1C1). At a false discovery rate (FDR) of 5%, we detected
189 differentially expressed genes between H1 and HIHI,
and 181 differentially expressed genes between C1 and C1Cl1,
with at least a twofold change in expression (Dataset S4 and
SI Appendix, Supplemental Materials and Methods). Neither set
of differentially expressed genes was enriched for gene ontology
categories  (SI Appendix, Supplemental Materials and Methods),
and only 13 genes were differentially expressed in both H1
compared to HIH1 and C1 compared to C1C1. We conclude
that the creation of tetraploid cells alone does not activate a
coordinated set of gene expression changes.

To assess gene expression variability between different cell
lines from the same species, we also profiled global RNA patterns
from a second set of human and chimpanzee diploid iPSC lines.
We detected 410 differentially expressed genes between H1 and
H2 and 181 differentially expressed genes between C1 and C2
at an FDR of 5% with at least a twofold change in expression
(Dataset S4). Using principal component analysis, we found that
global transcriptional profiles grouped by species, with human-
derived lines clustering separately from chimpanzee-derived
lines, and that diploid lines clustered more closely with their
derived autotetraploid line than another diploid line of the same
species (Fig. 24). These results indicated that the transcriptional
profiles of the diploid lines and their derived autotetraploid lines
were at least as similar as the transcriptional profiles of two
diploid lines from the same species. Taken together, our data
suggest that tetraploid iPSCs behave similarly to diploid iPSCs
at the level of gene expression.

Differential Gene Expression and Allele-Specific Gene Expression
Reveal Human- and Chimpanzee-Specific Gene Expression Profiles.
We next used our RNAseq data to identify gene expression differ-
ences between human and chimpanzee iPSCs (Dataset S5). Dif-
ferential gene expression (DE) analysis between human-only and
chimpanzee-only iPSC lines identified 5,984 genes differentially
expressed between species. There were no significant gene ontol-
ogy enrichments for DE genes with at least a twofold change in
expression (SI Appendix, Supplemental Materials and Methods).
Allele-specific expression (ASE) comparisons between the
human allele and the chimpanzee allele in allotetraploid iPSC
lines identified 4,540 allele-specific expressed genes. ASE
results from this study and the ASE results from a previous
study (14) that independently generated human—chimpanzee
allotetraploid fusions from similar diploid iPSC lines were
highly concordant (Pearson’s r = 0.72; SIAppendix, Fig. S2),
suggesting that human—chimpanzee gene expression differences
are robust and reproducible across laboratories.

cis- and trans-Acting Regulatory Changes Are Both Important
Contributors to Human-Chimpanzee Gene Expression Differences.

Determining whether gene expression differences between two
species are due to cis-acting or frans-acting regulatory changes
is possible when gene expression can be compared between
each single species and a hybrid (17). We therefore leveraged
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Fig. 1. Generation and differentiation of autotetraploid and allotetraploid iPSC lines. Autotetraploid and allotetraploid cells contain the expected number
of chromosomes and express expected marker genes after trilineage differentiation. (A) Human and chimpanzee diploid iPSC lines were labeled with
diffusible dyes and subjected to electrofusion to generate autotetraploid and allotetraploid iPSC lines. (B) Tetraploid lines (H2C2a shown) exhibit karyotypes
with four copies of each chromosome. Asterisk denotes location of a common iPSC human chr18q deletion (16), present in a subset of our cell lines. See
Dataset S1 for detailed karyotype description of all lines. (C) Relative expression of pluripotency (NVANOG, DNMT3B), ectoderm (PAX6, RAX), mesoderm
(TBXT, HAND1), and endoderm (FOXA2, SOX17) marker genes tested via qRT-PCR after incubating cell lines under trilineage differentiation conditions. Cell
lines tested are two human diploid lines (H1, H2), two human autotetraploid lines (H1H1a, H1H1b), two chimpanzee diploid lines (C1, C2), two chimpanzee
autotetraploid lines (C1C1a, C1C1c), four allotetraploid lines (H1C1a, H1C1b, H2C2a, H2C2b), and one fluorescently marked allotetraploid line (H1C1a-X1).
Gene expression is plotted relative to a human diploid undifferentiated iPSC line (H2). Error bars represent the SD of N = 3 cell culture replicates maintained
as iPSCs or differentiated independently; 146 of 156 gene expression differences between undifferentiated cells and the tissue type in which a marker is

expected to be expressed are significant by two-tailed Student’s t test at 5% FDR (see Dataset S3 for complete P value list).

the RNAseq data from human-only, chimpanzee-only, and
human-chimpanzee allotetraploid iPSC lines to determine the
regulatory type for genes that were differentially expressed
between human-only and chimpanzee-only iPSCs (Materials and
Methods). Specifically, when a cis-acting regulatory change causes
a gene to be differentially expressed, the expression difference
should be maintained in allotetraploid cells where both human
and chimpanzee alleles are in the same frans-acting environment.
Conversely, when a frans-acting regulatory change causes a gene
to be differentially expressed, the expression difference should
disappear in allotetraploid cell lines.

Our regulatory type classifications identified 5,956 genes
with no net regulatory changes between our human-only and
chimpanzee-only iPSC lines. Of these, 92.6% (5,515 genes) were
classified as conserved between human and chimpanzee, and
7.4% (441 genes) were classified as compensatory (cis- and trans-
regulatory differences acting in opposite directions resulting in
no net expression difference between species) (Fig. 2C).

Song et al.
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Of 4,671 genes with regulatory changes between human-only
and chimpanzee-only iPSClines, 44.4% (2,073 genes) were regu-
lated primarily in cis, 31.4% (1,465 genes) were regulated pri-
marily in trans, and the remaining 1,133 genes were regulated
both in cis and in frans (Fig. 2C). This final category was further
broken down into a cis+trans category (cis- and trans-regulatory
changes acting in the same direction) and a cis—trans category
(cis- and trans-regulatory changes acting in opposite directions).
This yielded 20.6% (961 genes) and 3.7% (172 genes) regulated
in cis+trans and cis—trans, respectively. Other genes that did
not satisfy the conditions for any category (3,515 genes) were
classified as ambiguous.

Genes with primarily cis-regulatory changes had a larger
median effect size than genes with primarily frans-regulatory
changes (median |log2(FC)| of 1.09 vs. 0.64, P <107°¢ by
two-tailed Mann-Whitney U test; Fig. 2D). Genes classified
as cis+trans had the highest effect size of any regulatory type
category (median |log2 (FC)| of 1.21).
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Fig. 2. Gene expression profiling of human and chimpanzee diploid, autotetraploid, and allotetraploid iPSC lines. Tetraploidization does not result in
coordinated gene expression changes, but thousands of genes are expressed differently between human and chimpanzee iPSCs due to a mixture of cis- and
trans-regulatory changes. (A) Principal component analysis (PCA) of RNAseq of H1, H2, C1, C2, H1H1, and C1C1 diploid and autotetraploid iPSC lines. The cell
lines cluster by species along PC1 and by cell line along PC2. Autotetraploid lines cluster with their cognate diploid line. (B) PCA of RNAseq of H1C1 and H2C2
allotetraploid lines. Allotetraploid lines are each represented by two dots, one for reads mapping to the human transcriptome and one for reads mapping
to the chimpanzee transcriptome (Materials and Methods). Expression from human alleles (triangles) cluster separately from chimpanzee alleles (circles) in
allotetraploid lines along PC1. PC2 separates the two sets of allotetraploid cell lines. (C) Each gene's expression pattern was classified by regulatory type (cis,
trans, cis+trans, cis-trans, compensatory, conserved, or ambiguous) by comparing DE between human- and chimpanzee-only iPSCs (x axis) and allele-specific
gene expression between human and chimpanzee alleles within allotetraploid iPSCs (y axis). (Left) Data for all genes. (Upper Right) Zoom-in of dense center
region. (Lower Right) Bar graph indicating number of genes per category and relative contribution (percentage) of each category to genes with human-
chimpanzee regulatory differences. (D) Box plot showing distribution of effect sizes for gene expression changes in each regulatory category. Median
effect size is indicated by thick horizontal lines, and mean effect size is indicated by triangles. All pairwise comparisons are statistically significant (adjusted
P < 0.012 by two-tailed Mann-Whitney U test). (E) Density plot (smoothed histogram) showing the distribution of body parts influenced by genes [according
to the Gene ORGANizer database (20)] in each regulatory category. For genes classified as cis, trans, and cis+trans, only genes with |log,(FC)|>1 are plotted.
The cis-trans category is not included because only five genes have |log,(FC)|>1. Note that genes classified as cis or cis+trans tend to influence fewer
body parts than conserved genes (median 18 body parts for both cis and cis+trans genes compared to median 30 body parts for conserved genes, adjusted
P =0.00028 and P = 0.0035 by two-tailed Mann-Whitney U test after FDR correction). This trend is not observed for trans and compensatory regulatory types
(median 24 and 27 body parts, adjusted P =0.11 and P = 0.21, respectively).

Gene ontology enrichments for genes classified as trans
included processes related to the skeletal, cartilage, and muscular
systems (Dataset S6). Although we did not assess gene expression
differences in skeletal, cartilage, or muscle cells, previous
studies that assessed regulatory differences between human
and chimpanzee embryonic stem cells similarly found gene
ontology enrichments associated with differentiated tissues,
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including the vocal tract (18). The enrichments seen in the
current experiments suggest that some of the dramatic skeletal
and muscular differences between humans and chimpanzees
may be driven by frans-acting regulatory changes. Additionally,
genes classified as conserved had gene ontology enrichments
related to voltage-gated ion channels (Dataset S6), which are
important for maintaining critical features of iPSCs, including
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proliferation capacity and differentiation potential (19). Finally,
genes classified as compensatory had enrichments related to
ligase activity, neurexin protein binding, and phosphatidylserine
binding, while all other regulatory type classifications had no
significant gene ontology enrichments.

We also used the Gene ORGANizer database (20), which
links genes to the body parts they affect based on phenotypes
associated with Mendelian disorders, to test whether genes that
were differentially expressed between humans and chimpanzees
tend to influence more or fewer biological systems than con-
served genes. We found that genes with primarily cis-regulatory
changes and at least a twofold change in expression influenced
a median of 18 body parts compared to a median of 30 body
parts influenced by conserved genes (adjusted P =2.8 x 10~*
by two-tailed Mann—Whitney U test; Fig. 2F). Interestingly, the
greater the expression differences between human and chim-
panzee as indicated by higher |log2(FC')|, the fewer body parts
a gene with primarily cis-regulatory changes tended to influence
(SI Appendix, Fig. S3). Similar trends were observed for genes
classified as cis+trans but not other regulatory categories.

Removing reads mapping to genes on chromosomes that were
karyotypically abnormal in any of our iPSC lines did not sig-
nificantly change our regulatory type classification or effect size
results (SI Appendix, Fig. S4). Together, our results indicate that
both cis- and trans-acting regulatory changes are important con-
tributors to the widespread gene expression differences between
humans and chimpanzees in iPSCs, with cis-regulatory changes
tending to be larger and to act on genes affecting fewer biological
systems (Fig. 2 C-E).

Prospects for Genetic Mapping. Further localization of both cis-
and trans-regulatory differences would be greatly aided if it were
possible to generate mapping panels that carry different dosages
of human and chimpanzee alleles at known locations throughout
the genome. Previous studies in yeast, Drosophila, and cultured
mammalian cell lines have used mitotic recombination to gen-
erate useful mapping panels from somatic cells (11, 12, 21, 22).
To boost the rate of mitotic recombination, common strategies
have been to treat cells with small molecules that promote DNA
damage (23, 24), or to induce targeted recombination at specific
loci using CRISPR-Cas9 (12, 21).

To assess whether small molecules could stimulate mitotic
cross-overs in iPSCs, we performed sister chromatid exchange
(SCE) assays by incubating cells with BrdU for two cell cycles
(25). Chromosomes where both strands incorporate BrdU stain
lighter than chromosomes where only one strand has incor-
porated BrdU, making it possible to visualize SCE events in
mitotic chromosome spreads (Fig. 34). We tested camptothecin,
a topoisomerase inhibitor previously found to induce SCE events
iniPSCs (23). Consistent with prior findings, treatment of 100 nM
camptothecin for 1 h induced a 4.5-fold increase in SCE events in
both autotetraploid and allotetraploid iPSCs (P < 10~ by one-
tailed Student’s ¢ test; Fig. 3B).

We also tested ML216, a BLM inhibitor, which has been
found to induce SCE events in cultured human cells (9, 10, 24).
However, we found that treatment with ML216 over a range of
concentrations from 12.5 uM to 150 uM did not increase the
rate of SCE events in iPSCs. We additionally tested mitomycin
C, which cross-links DNA and is known to induce SCE events
in yeast and fungi (26). Treatment of 4 ng/mL mitomycin C for
24 hin tetraploid iPSCs increased the rate of SCE events twofold
(P < 107° by one-tailed Student’s t test; Fig. 3B). Although SCE
assays can only reliably assess intraspecific cross-over events,
these results suggest that the application of camptothecin or
mitomycin C to allotetraploid iPSCs has the potential to similarly
increase the rate of interspecific mitotic recombination.

An alternate approach is to induce targeted cross-overs us-
ing CRISPR-Cas9. This strategy has previously been used to
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induce recombination in yeast and Drosophila (12, 21). To de-
termine the rate of interspecific recombination events at target
loci, we used a recently developed technique called haplotag-
ging to directly detect recombinant junctions by barcoding DNA
molecules prior to sequencing (27, 28). Following sequencing,
reads were aligned to a composite human—chimpanzee genome
and comparatively assigned to their species of origin. Reads
derived from the same DNA molecule were tagged with the same
barcode, enabling molecule reconstruction (Materials and Meth-
ods). Barcoded molecules that mapped to orthologous intervals
in human and chimpanzee and showed switched runs of variants
from one species to the other (human to chimpanzee, or vice
versa) were scored as likely interspecific recombination events
within the corresponding genomic interval.

In the allotetraploid line H1Cla, we targeted genomic loci
on chr20q13.33, chr21q22.3, and chrXq28 with CRISPR gRNAs
and then performed haplotagging to over 200x molecular cov-
erage (SI Appendix, Figs. S5 and S6). Based on a recent study
suggesting that ML216 acts synergistically with CRISPR-Cas9 to
induce loss of heterozygosity at targeted loci in human iPSCs
(22), we also assessed whether the addition of 25 uM of the
BLM inhibitor ML216 starting 12 h before gRNA targeting and
ending 48 h posttargeting would affect the rate of interspecific
recombination. We did not observe an enrichment in interspecific
recombination events at any of the target loci with or with-
out ML216 treatment (SI Appendix, Fig. S6). However, genome-
wide interspecific recombination events trended 1.35-fold higher
when comparing ML216-treated samples against samples that
were only treated with CRISPR-Cas9 (P = 0.052 by one-tailed
paired Student’s ¢ test; Fig. 3B). After ML216 treatment for 60
h (approximately three cell divisions), we detected a total of
878 interspecific recombination events in ~83 million analyzed
molecules. This translates to an endogenous rate of ~0.8 recom-
bination events per cell per generation and an increased rate
of approximately one recombination event per cell per gener-
ation after ML216 treatment. These apparent rates in allote-
traploid cells are substantially higher than previously reported
mitotic recombination rates in diploid mouse embryonic stem
cells [0.01 to 0.04 recombination events per cell per generation
after ML216 treatment; ST Appendix, Supplemental Materials and
Methods (10, 11, 29)]. Further investigation will be required to
assess whether ML216 significantly increases the rate of interspe-
cific recombination and whether other small molecules such as
camptothecin can also increase the rate of recombination events
between human and chimpanzee chromosomes in allotetraploid
iPSCs.

Targeted cis- and trans-Mapping on the X Chromosome. To further
enrich for cells that may contain interspecific mitotic recombina-
tion events at specific loci, we fluorescently marked allotetraploid
cells at distal chromosome ends. This allowed us to use FACS to
isolate cells with expected signatures of recombination (Fig. 44).
The gene density and enrichment of disease-related genes on
distal chrX, particularly chrXq28, made the distal region of chrX
a particularly attractive target for further study (30). Through two
rounds of CRISPR-Cas9-mediated homologous recombination
(HR), we generated five allotetraploid lines derived from H1Cla
and one from H2C2b, each carrying GFP on the human chrX and
mCherry on the chimpanzee chrX (SI Appendix, Fig. S7). Some
allotetraploid cells that underwent two rounds of CRISPR-Cas9
HR insertion maintained largely normal karyotypes, while others
showed more extensive aneuploidies (Dataset S1).

We then targeted the double fluorescently marked lines with
species-specific gRNAs to induce interspecific recombination
events on the X chromosome. Because the allotetraploids were
derived from fusions of male cells, only one X chromosome
was present from each species. In the double fluorescently
marked lines, cells with no recombination events on chrX should
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Fig. 3. Effect of small molecules on chromosome recombination frequencies in allotetraploid cells. The small molecules camptothecin, ML216, and mitomycin
C were assessed for their effect on intraspecific and interspecific recombination. (A) Allotetraploid cells (Center) were treated with BrdU and small molecules
to measure intraspecific SCE events by microscopy (Left), or treated with Cas9 and gRNAs with or without ML216 followed by haplotagging to identify
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are mean + SEM.

carry both human and chimpanzee fluorescent markers, while
recombinant cells should carry two copies of a single marker
from either human or chimpanzee chrX. We treated the double
fluorescently marked allotetraploid line H1Cla-X1 with either
a chimpanzee-specific gRNA targeting chrXq28 or a human-
specific gRNA targeting chrXq22.1, in combination with 25 pM
ML.216 (SI Appendix, Fig. S8 and Materials and Methods).

Cells targeted with the chimpanzee-specific gRNA were sorted
for the absence of mCherry, which marks the chimpanzee chrX,
and increased intensity of GFP, to select for likely recombina-
tion events that result in two human alleles on the distal end
of chrXq. Because we observed higher fluorescence intensity
of the human chrX marker GFP in untreated cells during the
G2/M cell cycle phase, we also used Hoechst DNA staining
to sort specifically from G1 cells in the experiments with the
chimpanzee-specific gRNA (SI Appendix, Fig. S9 and Materials
and Methods). Similarly, cells targeted with the human-specific
gRNA were sorted for the absence of GFP, which marks the
human chrX, and increased intensity of mCherry. For the human-
specific gRNA sorts, we also incorporated an additional marker
by staining for a linked cell-surface protein, TSPANG6. Located on
chrXq, TSPANG has 1.4-fold higher cis-regulated expression from
the chimpanzee allele compared to the human allele (adjusted
P =1.4 x 10~* by Welch’s ¢ test); protein staining of TSPAN6
showed a similar difference (SI Appendix, Fig. S9 and Materials
and Methods). Cells targeted with human-specific gRNA were
thus sorted for absence of human marker GFP and increased
intensity of both chimpanzee marker mCherry and of TSPANG.

A total of 951 allotetraploid candidate colonies were grown
from single cells after FACS. Additional genotyping confirmed
that 172 colonies carried distal chrXq from a single species
(Dataset S7). As expected, in 172/172 (100%) of these cases,
the missing chrXq corresponded to the species targeted by
the gRNA (79/79 for the human gRNA, and 93/93 for the
chimpanzee gRNA). To distinguish between deletion and
recombination events, we determined the relative dosage
of chrXq in these colonies by performing qPCR assays on
genomic DNA at chr6p, chrXp, and chrXq (Dataset S2 and
SI Appendix, Supplemental Materials and Methods). We found
that 171/172 (99.4%) colonies had lost the distal end of chrX of
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one species without altering the chrX dosage of the other species,
as expected if targeting of the X chromosome had produced a
species-specific deletion in these colonies.

We also identified one colony (0.6%) that had not only lost
the distal end of the chimpanzee chrX but also doubled the
dosage of the distal end of human chrX, consistent with a
possible recombination event. Whole-genome sequencing of this
putative recombinant line confirmed that it was an interspecific
recombinant, with the first 140.1 Mb of human chrX fused to
the distal 27.6 Mb of chimpanzee chrX (Xrecl in Fig. 4 B and C
and ST Appendix, Fig. S10). Sequence reads that span the precise
junction between the human and chimpanzee sequences show
that recombination did not occur in a region of large-scale
homology between the two X chromosomes. Instead, a 4 bp
microhomology occurs directly at the junction site, suggest-
ing that the recombination event was likely produced by
microhomology-mediated end joining and not by HR (31).
No other human—chimpanzee recombinant chromosomes were
found in the sequenced Xrecl line when compared to an
untreated control line, suggesting that recombination events else-
where in the genome are rare in cells that survive chrX targeting,
FACS, and plating and growth of colonies from single cells.

We next leveraged the species-specific targeted lines as a panel
of deletion lines for fine-mapping studies. We performed bulk
RNAseq on seven lines with partial chimpanzee chrX deletions,
eight lines with partial human chrX deletions, and nine control
lines without chrX deletions (Dataset S1). We identified the
approximate breakpoint of each deletion by examining the ratio
of reads that uniquely map to either the human or the chim-
panzee genome along chrX (Fig. 4B, SI Appendix, Fig. S11, and
Materials and Methods). In every case, mapped breakpoints were
consistent with our results from genomic PCR and qPCR assays
(Dataset S7). Three of the seven chimpanzee chrX deletions
mapped within 1 Mb of the chimpanzee-specific gRNA target
site, and two of the eight human chrX deletions mapped within
1 Mb of the human-specific gRNA target site (Fig. 4B). The
remaining lines had a range of breakpoints that were up to
80 Mb away from the species-specific guide targeting sites, and
one cell line appeared to have lost the targeted X chromosome
completely (Fig. 4B).
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Fig. 4. X chromosome targeting generates recombinant and deletion lines for genetic mapping. Cell lines with recombination and deletion events on the
X chromosome were isolated by FACS and used for further mapping of regulatory sequences. (A) Allotetraploid cells marked with GFP on the distal human
chrX and mCherry on the distal chimpanzee chrX were treated with ML216, Cas9, and species-specific chrX gRNAs, followed by FACS for expected signatures
of deletion or recombination (loss of fluorescent marker on targeted chrX, or retention or gain of fluorescent marker from homologous, untargeted chrX).
(B) Cell lines recovered from sorting contained either a recombinant chrX or species-specific distal chrX deletions. Breakpoint locations for the recombinant
(Xrec1), human deletions (hXdel#), and chimpanzee deletions (cXdel#) are shown relative to human chrX. Positions of species-specific gRNAs are shown. Red
diamond symbol indicates the distal portion of chimpanzee chrX that is recombined onto the first 140.1 Mb of human chrX in Xrec1. Yellow diamond symbol
indicates the position of MECP2 on human chrX. (C) Whole-genome DNA sequencing of Xrec1 and a control sample (X1-S; Materials and Methods) showed
an increase in chimpanzee read depth ratio along the X chromosome and identified human-chimpanzee spanning sequence reads at the point of transition,
locating the precise point of cross-over for a human-chimpanzee recombinant X chromosome (position along chrX shown in hg38 coordinates; bracket
indicates 4 bp of microhomology found in both human and chimpanzee chrX at the indicated coordinates). (D) Expression of autosomal genes MEGF10 and
TFPI2 was significantly different in four lines that have lost distal chimpanzee chrX sequences (cXdel4-cXdel7) when compared to nine control lines without
deletions or to five lines that have lost distal human chrX sequences (hXdel3-hXdel7), as expected if a trans-regulatory factor that differs between humans
and chimpanzees maps to distal chrX (S/ Appendix, Supplemental Materials and Methods).

To further characterize the breakpoints in X chromosome
deletion lines, we performed whole-genome DNA sequencing
of cXdel5 and c¢Xdel6, which were plated and expanded from
single cells after FACS selection. DNA sequencing indicated
that cXdel5 cells had lost chimpanzee sequences distal to
147 Mb, retained chimpanzee sequences proximal to 140 Mb,
and likely contained a subclonal mixture of deletion breakpoints
in between. The cXdel6 cells had lost chimpanzee sequences
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distal to 148 Mb, retained sequences proximal to 147 Mb, and
likely contained a subclonal mixture of insertions in between
(SI Appendix, Fig. S124). CRISPR targeting can thus induce
terminal chromosome deletions, with staggered endpoints
forming in the region around the breakpoints.

The X chromosome breakpoints in cXdel5 and cXdel6 cells
were located near the genes FMRI and AFF2. To test whether
species-specific chromosome deletions cause species-specific
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changes in gene expression near the breakpoints, we examined
the level of expression of the human and chimpanzee alleles of
FMRI and AFF2 in cXdel4, cXdel5, cXdel6, cXdel7, and control
cells. The human alleles of FMRI and AFF2 showed normal
expression in the chimpanzee chrX deletion lines compared
to control cells. In contrast, the chimpanzee alleles of FMRI
and/or AFF2 were not expressed when the genes were located
distal to the deletion breakpoint in cXdel4, showed reduced or
absent expression when the genes were located in the region of
staggered deletions in cXdel5, and showed normal expression
when the genes were located proximal to the terminal deletions
in c¢Xdel6 and cXdel7 (SI Appendix, Fig. S12B). Chimpanzee-
specific chrX deletions thus can disrupt gene expression in
cis without resulting in compensatory up-regulation of the
corresponding human allele on the remaining X chromosome.

If the X chromosome encodes frans regulators of autosomal
gene targets, partial deletions of either the human or chimpanzee
X chromosome could result in significant gene expression
changes for genes located on autosomes. Indeed, 42 autosomal
genes showed significant changes in expression in the four
deletion lines that removed regions on the chimpanzee X
chromosome distal to breakpoints around 148 Mb when
compared to control lines without chrX deletions, and even
more autosomal genes (147) showed significant changes in
expression in the five cell lines that removed regions on the
human X chromosome distal to breakpoints around 95 Mb
(Dataset S8). Interestingly, seven of the genes altered by
loss of distal chimpanzee chrX regions were not significantly
different in the cell lines that had lost even larger regions of the
human X chromosome. These genes also showed the expected
signatures of a species-specific trans effect when comparing gene
expression levels among the different deletion lines (SI Appendix,
Supplemental Materials and Methods). The autosomal genes
included MEGF10 and TFPI2, which were both classified as
having a significant frans component in our studies of intact
diploid, autotetraploid, and allotetraploid cells (Fig. 4D and
Dataset S5). The magnitude of differential expression seen after
species-specific removal of the distal X chromosome ranged
from 60 to 80% of the overall expected frans component.
Thus, trans regulators encoded on the X chromosome may
contribute to a fraction of the species-specific frans-expression
differences observed in these autosomal genes. Extensions of this
approach could be used to further localize the responsible trans
factors on the X chromosome, as well as trans factors on other
chromosomes.

Discussion

Understanding the molecular basis of human evolution is a grand
and ambitious challenge in biological research. At the molecular
level, researchers have cataloged the DNA sequence changes
between humans and nonhuman primates (5) and identified
many RNA expression differences between humans and chim-
panzees across multiple tissues and developmental stages (13, 32,
33). However, it has been difficult to map the exact sequence
changes that cause particular gene expression differences or
other species-specific traits. Here, we have used intraspecific
and interspecific iPSC fusions to determine whether human—
chimpanzee gene expression changes are controlled in cis or
trans, and have developed genetic methods for further mapping
both cis and trans effects to particular locations in the genome.
Regulatory changes appear to be a key driver of evolution in
humans and other systems (34), and we and others have worked
to determine the relative contribution of cis- and trans-acting reg-
ulatory changes to gene expression differences between species.
As in previous studies with human and chimpanzee iPSCs (13,
14), we found thousands of genes with species-specific expression
differences. By comparing DE in single-species and cross-species
fusions, we found that 1) both cis- and trans-regulatory changes
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are key contributors to human—chimpanzee differences, and 2)
genes with cis-regulatory changes had, on average, more diver-
gent expression than genes with trans-regulatory changes. Both
of these findings are consistent with previous genome-wide stud-
ies of human-chimpanzee tetraploid cortical spheroids, human—
chimpanzee tetraploid cranial neural crest cells, and interspecific
hybrids of mice, maize, Arabidopsis, and yeast (14, 15, 17, 35).

We also found that genes with cis-regulatory changes tended to
influence fewer body parts than genes conserved between human
and chimpanzee iPSCs. Furthermore, the number of body parts
affected by a gene declines as the expression difference between
humans and chimpanzees increases. cis-regulatory changes are
often thought to be favored in evolution because of their ability
to avoid negative pleiotropy and restrict changes to particular
tissues (34, 36). Our data suggest that genes that influence fewer
biological processes are also more likely to evolve large expres-
sion differences as species diverge during evolution.

To facilitate further genetic mapping of human—chimpanzee
differences, we examined multiple strategies to induce recom-
bination events in allotetraploid iPSCs, including both genome-
wide and targeted approaches. The BLM inhibitor ML216 has
been successfully used to induce interchromosomal recombina-
tion in other systems (11, 22). In our experiments, ML216 treat-
ments did not cause a measurable increase in intrachromosomal
exchange events scored by SCE assays, but may have stimulated
a modest ~35% increase in the number of human—chimpanzee
recombinant molecules identified by haplotagging (Fig. 3). These
differences could be nonsignificant, or might result from molecu-
lar differences between intraspecific and interspecific recombina-
tion events; confounding effects of BrdU, which promotes DNA
damage and differentiation (S Appendix, Fig. S13), in the SCE
assay (37); or synergistic effects with CRISPR-Cas9 targeting,
as previously reported for other mitotic recombination assays
in human iPSCs (22). Further varying BLM activity by either
pharmacological or genetic strategies (9, 10) or by treating with
MI 216 for multiple passages could be tested for larger effects on
the overall rate of recombination. Camptothecin and mitomycin
C treatments are also promising candidates for further study,
given their strong promotion of SCE events in allotetraploid
iPSCs (Fig. 3B).

We also tested the ability of Cas9 and gRNAs to stimulate
interspecific chromosome exchange events at particular locations
in the genome. In contrast to prior work in yeast, Drosophila, and
human iPSCs (12, 21, 22), we did not observe an enrichment in
interspecific recombination events at the site of targeting with or
without ML216 by analyzing bulk populations with haplotagging.
We also did not recover recombination events at the site of
CRISPR targeting in the fluorescently marked lines that we
sorted to enrich for signatures of rare recombination events
on the X chromosome. We did recover many lines that carried
species-specific X chromosome deletions with breakpoints near
the site of CRISPR targeting. We further recovered a single
line carrying a confirmed human—chimpanzee recombinant X
chromosome. However, the cross-over junction in the recombi-
nant line was located tens of megabases away from the CRISPR
targeting site and may be the result of a spontaneous or ML216-
induced, rather than a CRISPR-induced, breakpoint on the X
chromosome.

Our overall rates of recovering targeted X chromosome
changes in allotetraploid lines were low (from ~78 million
input cells, 951 colonies survived FACS selection and plating,
of which a single colony contained a recombinant chromosome
and 171 colonies contained deletion chromosomes). We note
that estimated rates of interspecific recombination appeared
orders of magnitude higher when bulk cells were analyzed by
haplotagging shortly after ML216 treatment (approximately
one genome-wide interspecific recombination event per cell per
generation). Interspecific recombination rates in allotetraploid
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cells may be overestimated by haplotagging, due to barcode
sharing between DNA molecules or errors in assigning reads
to the correct species when comparing allotetraploid cells with
reference genomes. Alternatively, high rates of interspecific
recombination may be incompatible with long-term growth
and survival in allotetraploid cells such that only cells with low
numbers of recombinant chromosomes survive FACS selection,
plating, and growth at clonal density after treatments. Despite
the low overall rate of recovering useful cells in the targeting
experiments, our experiments show that informative panels can
be successfully generated by treating large numbers of cells and
selecting for changes on particular chromosomes.

A variety of strategies may make it possible to increase the
rate of homology-directed interspecific recombination. Follow-
ing induction of double-strand breaks by small molecules or Cas9,
homology-directed repair (HDR) pathways compete with several
other pathways, including nonhomologous end joining (NHEJ)
(38). Studies in other systems have shown that the HDR pathway
can be stimulated by expressing a plasmid with RADIS, a gene
involved in the DNA damage response, or by treating cells with
the small-molecule RS-1 which increases the activity of the HDR-
promoting protein RADS51 (39, 40). Conversely, the competing
NHE]J pathway can be suppressed using the small-molecule Scr7
to inhibit DNA Ligase IV, a key component of NHEJ (39). Stud-
ies in yeast show that tethering Cas9 to Spoll, a DSB-inducing
protein with a key role in initiating meiotic recombination, can
stimulate cross-overs in naturally recombination-cold regions
(41). These and other approaches can now be tested for their
ability to stimulate targeted recombination between human and
chimpanzee chromosomes in allotetraploid cells.

Like genetic mapping using recombinants, deletion mapping
has also been used to map phenotypes to specific genomic regions
in many organisms (42, 43). Our targeting and sorting strategies
have already successfully produced a panel of deletion lines
useful for further mapping of cis effects and frans-acting factors
on the X chromosome. The fraction of the genome removed
by the induced chrX deletions is similar to the fraction of the
genome removed by typical deficiency mapping chromosomes
in Drosophila [0.2% of the genome deleted, on average (43)].
The staggered deletions that form after chromosome targeting,
both in different colonies and within the same colony (e.g.,
cXdelS) after FACS selection, could be harnessed for further
fine mapping of cis-regulatory effects in a chromosomal region
of interest.

Panels of chromosome deletion lines can also be used to
map species-specific trans regulators. trans effects appear to con-
tribute to more than 50% of the gene expression differences
identified between humans and chimpanzees in iPSCs (Fig. 2C),
and are similarly pervasive in other systems (14, 15, 17, 35, 44).
Our targeted X chromosome deletion lines suggest that human—
chimpanzee differences in the autosomal genes MEGF10 and
TFPI2 are controlled, in part, by species-specific trans effects that
map to the most distal ~8 Mb of the X chromosome. One of
the genes located in this distal X chromosome region is MECP2,
which encodes a methyl DNA-binding protein that can activate
or repress expression of target genes (45). Loss-of-function mu-
tations in MECP2 lead to Rett syndrome, a severe neurodevelop-
mental disorder. Intriguingly, prior research has identified both
MEGF10 and TFPI2 as genes regulated by MeCP2 in human cells
(46, 47). Further, both MEGF10 and MeCP2 have been linked
to the pruning of neural synapses by astrocytes (48, 49), a cell
type that has undergone changes in number, spatial organiza-
tion, and function during human evolution (50, 51). Given that
gene regulation in iPSCs cells has been shown to be similar to
that in somatic tissues in some contexts (52), it is tempting to
speculate that this potential frans regulation might contribute to
human-chimpanzee astrocyte differences or changes in neural
processes and circuits pruned by astrocytes. Future experiments
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to selectively knock out either the human or chimpanzee MECP2
allele could test whether MeCP2 indeed regulates the species-
specific expression of MEGFI0 and TFPI2 in iPSCs, as well as
potentially identify other species-specific trans targets for this key
transcriptional regulator.

We have focused most of our current studies on gene expres-
sion differences that are detectable in undifferentiated iPSCs.
It is possible that tetraploidization will disrupt gene expression
or limit the differentiation potential of autotetraploid and al-
lotetraploid iPSC lines. However, previous studies have shown
that tetraploid mouse embryos can form most major organs,
and rare humans with tetraploid karyotypes have been reported
to survive for up to 2 y after birth (53, 54). In addition, our
global RNA profiling experiments showed no large-scale gene
expression disruptions between diploid and autotetraploid lines.
We also find that diploid lines are more similar to their cognate
autotetraploid lines than to other diploid lines of the same
species. Thus, diploid and tetraploid iPSCs appear remarkably
similar at the gene expression level. Future studies will be needed
to determine whether this similarity is maintained under a variety
of differentiation conditions. Our initial experiments show that
diploid, autotetraploid, and allotetraploid cells can all express
characteristic gene markers of ectoderm, mesoderm, or endo-
derm under appropriate differentiation conditions (Fig. 1C and
Dataset S3), and other tetraploid fusion lines have recently been
differentiated into cortical spheroids or neural crest cells in
vitro (14, 15). We caution that some of the lines in our own
experiments showed incomplete endoderm differentiation, and
previously reported allotetraploid lines showed substantial ex-
pression of mesenchymal markers when incubated under condi-
tions that stimulate cortical spheroid formation in diploids (14).
In vitro differentiation protocols may thus need to be altered
or optimized for tetraploid iPSCs to find conditions suitable for
formation of particular cell types of interest.

We have found that tetraploid iPSCs can be grown, repeatedly
passaged, tagged with fluorescent markers, and subcloned while
maintaining grossly normal karyotypes. Whole-genome sequenc-
ing of Xrecl after CRISPR-Cas9 targeting of chrX shows that
induced changes also occur specifically on the targeted chro-
mosome of interest. However, we have also found karyotypic
abnormalities in some cell lines when multiple subclones are
expanded from a particular cell fusion or treatment (Dataset S1).
DNA sequencing further shows that heterogeneity may exist
within a colony grown from single cells, such as the staggered
breakpoints occurring on the X chromosome in cXdel5 and
cXdel6 (SI Appendix, Fig. S12). At times, it may be possible to
put such heterogeneity to experimental advantage. For example,
the staggered deletions occurring within cXdel5 cells may make
it possible to establish a larger panel of subclones that could be
used for additional fine mapping of cis and #rans factors on the X
chromosome, all derived from a single initial round of targeting.
However, further study of karyotypic and chromosomal stability
in tetraploid iPSC lines is clearly warranted, and we recommend
that interested researchers continue to monitor key cell lines
and derivatives using periodic karyotyping and whole-genome
sequencing approaches.

Beyond mapping the cis and trans regulators of species-specific
gene expression differences, we envision that allotetraploid iPSC
lines will also be useful for mapping cellular and tissue differ-
ences between humans and chimpanzees. For example, many
metabolic differences have evolved alongside major changes in
diet between humans and chimpanzees (55). These changes are
likely accompanied by cellular changes in enzyme levels and
metabolite production that could be scored under appropriate
in vitro conditions. In addition, neural progenitors in humans
have been shown to have a longer prometaphase and longer
metaphase compared to those in chimpanzees (56). These and
other cellular traits can be assessed in culture and are compelling

PNAS | 9of 11
https://doi.org/10.1073/pnas.2117557118

GENETICS



Downloaded from https://www pnas.org by MAX-PLANCK-INSTITUT FUER BIOLOGIE TUEBINGEN on April 2, 2024 from IP address 192.124.26.253.

candidates for allotetraploid genetic mapping approaches. Re-
cent advances in organoid technology also make it possible to
study organ-level phenotypes that differ between humans and
chimpanzees, including differences in organ size, connectivity,
and cell type composition (33). Just as meiotic mapping panels
have propelled our understanding of evolution in other or-
ganisms, further development of mapping methods in human-
chimpanzee allotetraploids should provide powerful new genetic
approaches for our quest to understand what makes us human.

Materials and Methods

Generation and Maintenance of Tetraploid iPSC Lines. Human and chim-
panzee diploid iPSC lines were labeled with diffusible fluorescent dyes
and fused on an Eppendorf Multiporator at 4-V AC for 80 s, 16-V DC
for 20 us, and 6-V post-AC for 95 s (S/ Appendix, Supplemental Materials
and Methods). Tetraploid lines were confirmed by propidium iodide stain-
ing and karyotyping (Dataset S1). Diploid and tetraploid iPSC lines were
routinely propagated feeder-free (S/ Appendix, Supplemental Materials
and Methods).

Trilineage Differentiation. Diploid and tetraploid iPSC lines were differ-
entiated with the STEMdiff Trilineage Differentiation Kit according to
the manufacturer’s instructions (STEMCELL Technologies, catalog #05230).
Differentiation was assessed using qRT-PCR for pluripotency, ectoderm,
mesoderm, and endoderm gene markers (Dataset S2 and S/ Appendix,
Supplemental Materials and Methods).

RNAseq Analysis. Sequencing reads were aligned to a composite human-
chimpanzee genome (hg38 and pt6), and the number of uniquely mapped
reads that overlap each gene was determined using a curated exon
annotation (S/ Appendix, Supplemental Materials and Methods). DE analy-
sis between diploids and autotetraploid iPSCs was performed with DE-
Seq2 (57), and genes with an adjusted P < 0.05 and at least a twofold
change in expression were called as significant (S/ Appendix, Supplemental
Materials and Methods).

DE between single-species iPSCs, ASE in allotetraploids, and regulatory
type classifications were carried out as a combination of previously described
methods (35, 44). Genes were classified as cis, trans, cis+trans, cis-trans, com-
pensatory, conserved, or ambiguous based on different combinations of sig-
nificant DE, significant ASE, significant /og, (FC) difference between DE and
ASE (“trans effects”), and direction of cis contribution and trans contribution
to the DE /og, (FC) (S/ Appendix, Supplemental Materials and Methods).

SCE Assay. Camptothecin (Sigma Aldrich, catalog #C9911-100MG), ML216
(Cayman Chemical, catalog #15186), and mitomycin C (Sigma Aldrich,
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catalog #M4287-2MG) were applied to iPSCs with 10 uM BrdU (S/ Appendix,
Supplemental Materials and Methods). The SCE assay was then performed
as previously described (25).

Haplotagging. Haplotagging was performed as previously described (28).
Reads were aligned to a composite human-chimpanzee genome (hg38
and pt6) and assigned to their molecule of origin by barcode. Variants
between hg38 and pt6 were identified for each read and filtered by multi-
ple criteria (S/ Appendix, Supplemental Materials and Methods). Molecules
were scored as recombinant if they contained one interspecific event and
approximately five supporting variants per species.

FACS of Fluorescently Marked Allotetraploid Lines. Using two rounds of HR,
we inserted an EF1a-EGFP-IRES-PuroR cassette at human chrXq28 and an
EF1a-mCherry-IRES-NeoR cassette at chimpanzee chrXq28 in allotetraploid
iPSCs  (SI Appendix,  Fig. S7 and Supplemental Materials and Methods).
Double-marked iPSCs were treated with 25 uM ML216 starting 12 h
before nucleofection of CRISPR-Cas9 and gRNA and continuing until
48 h postnucleofection. We then employed multiple sorting strategies to
enrich for chrX recombination or deletion events (S/ Appendix, Fig. S9 and
Supplemental Materials and Methods).

DNA Sequencing Analysis of chrX Recombinant and Deletion Lines. DNA
sequencing reads from the recombinant allotetraploid cell line, two
chimpanzee chrX deletion lines, and a control allotetraploid line were
aligned to a composite human—-chimpanzee (hg38-pt6) reference genome
(S Appendix, Supplemental Materials and Methods). The read counts in the
recombinant or deletion lines were normalized to read counts in the control
line (SI Appendix, Figs. S10 and S12).

Data Availability. Data supporting the findings of this study are included in
the main text and S/ Appendix or deposited in publicly available databases.
RNAseq data generated in this study are available at Gene Expression
Omnibus (GSE184768) (58), and the DNA sequence containing the recom-
bination site for H1C1a-X1-Xrec1 is available at GenBank (OK283040) (59).
Additional materials will be made available upon request.
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Supporting Information Text
Supplemental Materials and Methods

Cell culture maintenance. The induced pluripotent stem cell lines H23555 (H1), H20961 (H2), C3649 (C1), and C8861 (C2)
were provided by the Gilad laboratory (1). Cultures were tested for and maintained mycoplasma free. Diploid and tetraploid
lines were routinely propagated feeder-free in mTeSR1 or mTeSR Plus media (STEMCELL Technologies, cat #85850 and cat
#100-0276) on cell culture plastics coated with Geltrex basement membrane matrix (Gibco, cat #A1413302). When confluent,
cells were passaged using Accutase (Millipore, cat #SCR005) with 1uM thiazovivin (Tocris, cat #3845) or using 0.5mM EDTA
as previously described (2, 3). Cells were imaged on the EVOS FL microscope (Thermo Fisher) at 4X magnification, unless
otherwise noted.

Generation of tetraploid iPSC lines. One diploid iPSC line was labeled with CellTracker Green CMFDA Dye (1:667) (Thermo
Fisher, cat #C7025) and the other diploid iPSC line was labeled with CellTracker Blue CMAC dye (1:500) (Thermo Fisher,
cat #C2110) or CellTracker Red CMTPX Dye (1:1000) (Thermo Fisher, cat #C34552) per the manufacturer’s instructions.
Cells were washed multiple times to remove excess dye and allowed to recover after labeling in mTeSR1 + 1uM thiazovivin for
at least 1 hour prior to fusion. 7210° cells from each line were combined, washed twice in 1ml fusion buffer, resuspended in
350l fusion buffer, and fused in the helix fusion chamber of an Eppendorf Multiporator at 4V AC for 80s, 16V DC for 20us,
6V post-AC for 95s. After 10 minutes at room temperature, 1ml of mTeSR1 + 1uM thiazovivin was added to the helix fusion
chamber. Fusion buffer was hypoosmolar electrofusion buffer (Eppendorf, cat #940002150) diluted in water (normally, 60%
hypoosmolar electrofusion buffer and 40% water).

Tetraploid clones were then selected in one of two ways. In the first method, 250-350u] of the resulting suspension after
fusion was immediately plated in a 10-cm plate. Double-labeled cells were screened the following day under a fluorescent
microscope and marked on the plate. The diffusible dyes were only visible for 2 days after fusion. Surrounding diploid cells were
removed on each subsequent day by manual scraping. When the originally identified double-labeled cells grew into colonies,
they were picked into a 96-well plate and screened as described below.

In the second method, 7-15 fusions were performed on the same day using the helix fusion chamber as described above and
collected in a large volume of mTeSR1 + 1uM thiazovivin for fluorescence-activated cell sorting (FACS). For increased viability
in the second method, we used only CellTracker Green CMFDA and CellTracker Blue CMAC dyes. Cells were gently pipetted
every hour to avoid CellTracker dye diffusion and undesired labeling of nearby non-fused cells. Prior to FACS, cells were
resuspended in 500ul FACS buffer (0.5% BSA fraction V, 5mM EDTA, 1% Penicillin/Streptavidin, and 1uM thiazovivin in 1X
PBS) and strained through a 30um filter. Double-labeled cells were collected into 1 well of a 96-well plate by FACS. After 3
days, cells were collected and seeded at 1-5z10% cells in 10-cm plates. Individual colonies were then picked into 96-well plates.

To identify tetraploid colonies, we performed propidium iodide staining (Invitrogen, cat #P3566) on fixed cells to examine
ploidy via FACS analysis. Briefly, cells were fixed in 80% EtOH overnight at 4°C. The next day, cells were washed twice in
1X PBS and stained at 37°C for 10 minutes in 20ug/ml RNase A, 40ug/ml of propidium iodide, and 0.1% Triton X-100 in
1X PBS. Cells with both 4N and 8N DNA content by FACS, suggesting that they contain tetraploid cells, were expanded.
Expanded colonies were further screened for DNA content by karyotyping as described previously (4). Colonies that contained
only tetraploid cells were maintained as stocks. G-banded karyotyping was also performed by WiCell (Table S1).

T™M

Trilineage differentiation. Diploid and tetraploid iPSC lines were seeded in 12-well plates and differentiated with the STEMdiff
Trilineage Differentiation Kit according to the manufacturer’s instructions (STEMCELL Technologies, cat #05230). Additionally,
untreated cells were collected two days after seeding. Three replicate wells of cells per cell line were collected per condition.
Differentiation was assessed using reverse transcription quantitative PCR (RT-qPCR) for pluripotency, ectoderm, mesoderm,
and endoderm gene markers (Quantitative PCR SI Methods).

Quantitative PCR (qPCR). RT-qPCR was used to assess differentiation potential for trilineage differentiation samples, and
qPCR was used to study DNA marker dosage in chrX targeted cell lines. All reactions were performed using Brilliant IT SYBR
Green Low ROX qPCR Master Mix (Agilent, cat #600830) on a QuantStudio 5 Real-Time PCR System (Thermo Fisher).

For trilineage differentiation, three replicate wells of cells per condition were collected in Trizol and applied to the Direct-Zol
RNA Miniprep kit (Zymo Research, cat #R2051) for RNA extraction per the manufacturer’s instructions. cDNA was
synthesized from RNA with the SuperScript™ VILO™ ¢DNA Synthesis Kit (Thermo Fisher, cat #11754250). To assess
differentiation potential of trilineage differentiation samples, qPCR was performed in triplicate on all samples with two marker
genes each for pluripotency (NANOG, DNMT3B), ectoderm (PAX6, RAX), mesoderm (TBXT, HAND1), endoderm (FOXAZ2,
S0X17), and housekeeping (GAPDH, YWHAZ) (5-11). All primer pairs span a large intron, have efficiencies between 90-110%,
bind identical sequences in humans and chimpanzees, produce PCR products of identical length in both species, and were
chosen from the literature or designed in-house (Table S2). For each sample, the quantity of each marker gene was calculated
by comparing to a standard curve of pooled samples. This quantity was normalized by dividing by the geometric mean of
the quantities of the two housekeeping genes (GAPDH, YWHAZ) in the same sample and then divided by the normalized
quantity of the marker gene in undifferentiated iPSCs from the H2 human diploid line. Two-tailed Student’s t-tests were used
to determine statistically significant differences in marker gene expression between differentiated and undifferentiated iPSCs at
5% Benjamini-Hochberg FDR.
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For determination of chrXq dosage relative to other chromosomes, cells were harvested from 96-well plates using Accutase
(Millipore, cat #SCR005), and DNA was extracted using the DNeasy 96 Blood & Tissue Kit (Qiagen). Reactions were
performed either in duplicate or in triplicate with primers for chromosomes 6p, Xp and Xq (Table S2).

Library preparation for RNA sequencing. Samples were flash frozen and stored at -80°C as a pellet. RNA extraction, library
preparation, and sequencing for the chrX deletion samples were performed by Genewiz. All other RNA sequencing samples
were prepared in-house before sequencing on the Illumina HiSeq 4000 with Novogene. Briefly, samples were resuspended in
Trizol and directly applied to the Direct-Zol RNA Miniprep kit (Zymo Research, cat #R2051) for RNA extraction per the
manufacturer’s instructions. Technical replicates for each line were collected from thaws of different frozen vials. Only samples
with RIN > 9 were used for RNA sequencing.

1ug of RNA was used for library preparation. RNA sequencing libraries were prepared with the TruSeq Stranded mRNA
Library Prep (Illumina, cat #20020595) using the IDT for Illumina — TruSeq RNA UD Indexes (96 Indexes, 96 Samples)
(Illumina, cat #20022371) according to the manufacturer’s instructions with one modification. Prior to PCR amplification,
10% of a subset of samples were run under the recommended PCR. conditions with SybrGreen on the QuantStudio 5 Real-Time
PCR System. We identified the number of PCR cycles required to reach the crossing point by qPCR and used that number
of cycles for PCR amplification on the entire set of samples. We ran 8 PCR cycles. Libraries were pooled and sequenced to
around 10 million reads per sample for the diploid and auto-tetraploid lines and around 20 million reads per sample for the
allo-tetraploid lines. Five independently-derived C1C1 auto-tetraploid lines, two independently-derived H1H1 auto-tetraploid
lines (two technical replicates each), twelve independently-derived H1C1 allo-tetraploid lines, and ten independently-derived
H2C2 allo-tetraploid lines were sequenced. Three technical replicates were sequenced for each diploid line.

Alignment of RNA sequencing to composite human-chimpanzee genome. Sequencing reads were trimmed for adapter sequences
using cutadapt v1.8.1 (12), and read quality was confirmed using fastqc v0.11.9 (13). Reads were aligned using STAR v2.7.1a
with two-pass mapping (14). Samples were mapped to a composite human-chimpanzee genome (hg38 and pt6). The number
of uniquely-mapped reads (M APQ = 255) that overlap each gene was counted using featureCounts from the subread v1.6.0
package (15).

To generate the gene annotations used in featureCounts, GRCh38.94 human exon annotations from Ensembl (16) were
mapped from hg38 to pt6 using pslMap (17). After removing mappings where the number of bases that map is less than half
of the query exon size, we retained only exons that uniquely mapped from humans to chimpanzees. We then removed genes
for which exons map to opposite DNA strands, different scaffolded chromosomes, or where consecutive exons map more than
800kb apart. We further filtered out exons where more than 10% of reads from diploid or auto-tetraploid lines map to the
incorrect species when mapped to the composite genome. This resulted in 48,735 annotated genes that contain at least 1 exon
(byexon-gene). We also used a second set of annotations. We identified SNPs that differed between the human and chimpanzee
cell lines using the GATK RNA variant pipeline (18, 19) and assigned SNPs to genes annotated in humans. We also filtered
out SNPs where more than 10% of reads from diploid or auto-tetraploid lines map to the incorrect species when mapped
to the composite genome. This resulted in 14,333 annotated genes with at least 1 SNP (bysnp-gene). Read counts for the
byexon-gene annotation were also adjusted for feature length to account for differences between feature length in the human
and chimpanzee genomes. Results were very similar across both annotations, and results are reported for the byexon-gene
annotation in the current study.

Gene expression analysis of diploids and auto-tetraploid iPSC lines. After sequencing reads were aligned to the composite
human-chimpanzee genome as described above, differential gene expression analysis was performed with DESeq2 (20) using
default parameters. We called genes as significant if they had an adjusted p < 0.05 after Benjamini-Hochberg FDR correction
and at least a 2-fold change in expression.

Differential gene expression, allele-specific gene expression, and cis/trans analysis between humans and chimpanzees in
diploid, auto-tetraploid, and allo-tetraploid iPSC lines. Differential expression (DE) between single-species iPSCs, allele-specific
expression (ASE) in allo-tetraploids, and regulatory type classifications were carried out as a combination of previously described
methods (21, 22).

After RNA sequencing reads were aligned to the composite human-chimpanzee genome as described above, reads mapping to
genes on human chromosome 18 (and the orthologous chimpanzee genes) were removed. Next, each sample was downsampled
t0 9,711,244 reads (for DE) or 11,490,119 reads (for ASE), and genes with fewer than 10 reads assigned to both the human
and the chimpanzee orthologs were excluded. For each gene, log2(FC) was calculated between each human-only and each
chimpanzee-only sample (for DE) or between the human allele and the chimp allele in each allo-tetraploid cell line (for ASE).
Genes with significantly different log2 (F'C) between human and chimpanzee were determined to be DE or ASE. Each gene
was tested for significant “¢rans-effects” by testing for a significant log: (FC) difference between single-species iPSCs and
allo-tetraploid iPSCs. Significance for all logs(FC) differences was determined by Welch’s t-test at 5% Benjamini-Hochberg
FDR . Importantly, only half of the allo-tetraploid samples were used to determine whether a gene is significantly ASE, and
the other half were used to determine significant “trans-effects” since this has been reported to reduce false classification as
compensatory (23).

Finally, the cis-contribution (C) and trans-contribution (7') to the observed DE log2(FC) (D) was calculated for each gene.
Specifically, the cis-contribution (C) was equal to the ASE log2(FC), and the trans-contribution was calculated as T'= D — C.
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Genes were classified by regulatory type based on the following criteria:

cis: significant DE, significant ASE, no significant “trans-effects,”

in the same direction

cis-contribution and trans-contribution to DE logz (F'C')

trans: significant DE, not significant ASE, significant “trans-effects”

cis+trans: significant DE, significant ASE, significant “trans-effects,” cis-contribution and ¢rans-contribution to DE
log2(FC) in the same direction

)

cis-trans: significant DE, significant ASE, significant “trans-effects,” cis-contribution and trans-contribution to DE

log2(FC) in opposite directions
compensatory: not significant DE, significant ASE, significant “trans-effects”
conserved: not significant DE, not significant ASE, no significant “trans-effects”

ambiguous: all other patterns

All results reported in this paper used the “by-exon-gene” annotation as described in the “Alignment of RNA sequencing
to composite human-chimpanzee genome” section above (except for TSPANG, which was not included in the “byexon-gene”
annotation and was assessed using the “bysnp-gene” annotation).

Gene ontology enrichments. Significant gene ontology enrichments (adjusted p < 0.05 after Benjamini-Hochberg FDR correc-
tion) were determined using the R package clusterProfiler’s enrichGO function (24) for the annotation data sets “Biological
Process,” “Molecular Function,” and “Cellular Component.” The set of analyzed genes was used as the background reference
list.

Gene expression analysis of X chromosome deletion lines. RNA sequencing reads were aligned to the composite human-
chimpanzee genome as described above. To identify the approximate location of X chromosome deletions, we computed the
ratio of human read counts to chimpanzee read counts for each deletion line normalized to control (non-deletion) lines. A count
of 1 was added to any sample with allele counts of zero, and ratios were calculated for genes with more than 10 counts on
average and where at least half of the samples had at least 5 counts. Approximate deletion breakpoints were then determined
by visual inspection.

To identify autosomal genes whose expression may be affected by trans-regulators on the X chromosome, we carried out
differential gene expression analysis of control and human and chimpanzee chrX targeted deletion lines using DESeq2 (20) with
the Wald test at 5% Benjamini-Hochberg FDR. Trans-regulated candidates were identified by the following five criteria: (1)
Genes on autosomes that showed significant expression changes when comparing the four lines with deletion breakpoints of the
chimpanzee chrX around 148Mb (cXdel4-cXdel7) to the nine control lines that lack deletions; (2) Genes on autosomes that did
not show significant expression changes when comparing the five lines with deletion breakpoints of the human chrX around
95Mb (hXdel3-hXdel7) to the nine control lines that lack deletions; (3) Genes that met the first two criteria whose expression
level was also significantly different in comparisons between the chimpanzee (cXdel4-cXdel7) and human (hXdel3-hXdel7)
terminal deletions; (4) Genes that also showed the same direction of change in cell lines carrying shorter (cXdeld-cXdel7) and
larger chimpanzee chrX deletions (cXdell-cXdel3) compared to control lines; and (5) Genes where the hXdel8 line which has
a human deletion breakpoint near the distal chimpanzee chrX deletion lines maintained expression within the range of the
control lines.

Sister chromatid exchange (SCE) assay. Cells were passaged the day before testing. For camptothecin (Sigma Aldrich, cat
#C9911-100MG), camptothecin and 10uM BrdU were applied to cells for 1 hour before being replaced with fresh media
containing 10uM BrdU overnight. For ML216 (Cayman Chemical, cat #15186) and mitomycin C (Sigma Aldrich, cat
#M4287-2MG), cells were incubated with the small molecule and 10uM BrdU for 24-48 hours with a media change every 24
hours. Cells were then moved to fresh media containing 10uM BrdU and 0.1ug/ml colcemid for 4 hours and subsequently
collected for sister chromatid exchange (SCE) assay as previously described (25). Cells were alternatively first collected into
a 1.5ml tube before adding new media containing 10uM BrdU and 0.1ug/ml colcemid, with no obvious change in results.
Multiple metaphase spreads were imaged at 100X, and recombination events were counted using the ImageJ Cell Counter
function. P-values were calculated using the 1-tailed Student’s t-test.

Haplotagging. Haplotagging was performed as previously described (26). Briefly, genomic DNA from each sample was mixed
with individually barcoded magnetic beads containing bead-immobilized active Tn5 transposase for tagmentation with up to 21
million barcode diversity. Tagged DNA was then PCR amplified, size selected, and sequenced on a NovaSeq 6000 instrument
(Illumina).

Reads were aligned to a composite human-chimpanzee genome (hg38 and pt6) using EMA, a barcode-first variant of the
bwa aligner (27). For the analysis, we focused on regions that reciprocally and uniquely mapped between the two species
assemblies, with the mapping based on the hg38 to pt6 chain files from the UCSC Genome Browser (28) and pslMap (17).
500bp orthologous regions with greater than 2-fold difference in read coverage were excluded from further analysis. Each read
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was also assigned to a molecule based on its barcode (retained as the BX beadTag). For each read, we identified variants
between hg38 and pt6 (SNPs and indels). The variant annotation file was generated by first parsing the maf file between hg38
and pt6 from the UCSC Genome Browser (28). We also included variants identified by running the GATK variant pipeline
(18, 19) on reads that map uniquely to either hg38 or pt6 and where all reads assigned to a given barcode map to only one
species. If no variants in our resulting annotation file were identified in a read but the read uniquely mapped to either hg38 or
pt6, the read itself was considered as a variant.

Along each molecule, we coded the species assignment (e.g H-H-H-H-H-C-C-C where H is a human variant and C is a
chimpanzee variant). We then applied the following strict filters to identify a high-confidence set of recombinant molecules: (1)
Identified SNPs must have a phred quality score of at least 30; (2) Given the low rate of mitotic recombination, multiple “switch”
events (e.g. H-H-H-C-H-H-H) are likely artifacts and such variants were removed; (3) We also excluded possible mapping
artifacts where particular variants were found at the boundary of multiple recombination events; (4) Variants contained in
500bp regions with greater than 2-fold difference in the directionality of switch events (e.g. switch events were predominantly
H — C instead of C' — H) were removed; (5) We included only paired recombinant molecules that could be “reciprocal events”
to further account for biases in the directionality of switch events; (6) We excluded any variants that are in ENCODE blacklist
regions (29); (7) All recombinant molecules must contain only 1 switch event and > 5 supporting variants per species.

To calculate the genome-wide recombination rate, we divided the number of recombination events by the approximate
number of analyzed human-chimpanzee tetraploid genomes (molecular coverage of molecules that passed the above filters). To
compare the inter-specific recombination rate from haplotagging to previously reported recombination rates in the literature,
we examined previous reports that selected for recombination events near single-locus, drug-selectable markers following ML216
treatment in mouse embryonic stem cells (30-32). To extrapolate single-locus marker rates to genome-wide estimates, we
calculated the genomic distance between the centromere and the drug-selectable marker, and estimated the genome-wide
recombination rate as (size of diploid genome / genomic distance studied) * reported recombination rate.

To assess the effect of CRISPR targeting to specific loci, we examined the recombination rate in the 250kb interval
surrounding the target loci with and without filters, with no difference in the relative enrichment at the target loci. Data
visualizations were generated with ggplot2 (33) and karyoploteR (34). In Fig. S6, samples were plotted with their experimental
batch due to differences in read and molecular coverage.

Generation of fluorescently-tagged allo-tetraploid lines. We cloned two plasmids, one with homology arms (chrX:153,850,316-
153,851,493, hg38) flanking a EF1a-EGFP-IRES-PuroR cassette to target human chrX and the second with homology arms
(chrX:149,205,726-149,208,867, pt6) flanking a EFla-mCherry-IRES-NeoR cassette to target chimpanzee chrX (Fig. S7), into
the pMAXGFP plasmid backbone (Lonza). Guide RNAs (gRNAs) were designed to linearize the plasmid containing the
insertion cassette and cut the target insertion site (HR_X_gRNA_1 and HR_ X gRNA_ 2 in Table S2). gRNAs were then in
vitro transcribed as described above.

2.5ul of 40uM Cas9-NLS purified protein (QB3, UC Berkeley) was mixed with 2.5ug each of both gRNAs for 10 minutes
at room temperature. This complex and 1.875ug of the plasmid targeting human chrX were nucleofected into 3z10° cells
using the Nucleofection Stem Cell Kit 2 (Lonza, cat #VPH-5022) and program A-33 on the Nucleofector 2b Device (Lonza).
Immediately after nucleofection, 1ml of pre-warmed media (mTeSR1 + 1uM thiazovivin) was added to the reaction. The
reaction was allowed to recover for 20 minutes at room temperature, and 5 separate reactions were pooled and plated on one
10-cm plate. We also nucleofected pMAXGFP separately as a positive control for nucleofection efficiency.

After cells recovered and expanded (~5 days post-nucleofection), cells with insertion events were selected by multiple days
of puromycin treatment. We examined selection efficacy via fluorescence under an EVOS FL microscope. After multi-day
selection, we picked colonies into 96-well plates. When colonies reached confluency, they were split and screened for proper
insertion events by PCR, using primer pairs where one primer targets nearby genomic DNA and a second primer targets the
insertion construct. We verified target-site insertion events using primer sets at both the 5’ and 3’ ends and separately with
species-specific primers (Table S2). We confirmed the insertion sequence via PCR followed by Sanger sequencing with primers
chrX-F2 and chrX-R2 (Table S2). To confirm that the insertion was inserted into the target locus and nowhere else in the
genome, we expanded promising colonies for Southern blot analysis. Colonies verified by both PCR and Southern blot were
then subject to a second round of nucleofection to insert the mCherry cassette into chimpanzee chrX. Double-marked colonies
were selected for using Geneticin (Thermo Fisher, cat #10131035) and puromycin (Sigma-Aldrich cat #P8833). Double-marked
lines were confirmed by PCR, Southern blot, and visual inspection of fluorescence.

CRISPR/Cas9 treatment of iPSC lines. Guide RNAs were designed (Table S2) and in vitro transcribed (IVT) as previously
described (35). Briefly, CRISPR, IVT target oligos containing the gRNA and the CRISPR IVT scaffold oligo (HPLC-purified)
were synthesized by Integrated DNA Technologies. 40 cycles of PCR were performed between the CRISPR IVT scaffold oligo
using Phusion DNA polymerase (Thermo Scientific, cat #F530L) and the CRISPR IVT target oligo, and the PCR product
was purified using the QIAquick PCR Purification Kit (Qiagen, cat #28104). The PCR product was then in vitro transcribed
using the MEGAscript T7 transcription kit (Thermo Fisher, cat #AM1334) for 16 hours at 37°C. The reaction was treated
with DNase, and transcribed gRNA was extracted with phenol/chloroform and precipitated with isopropanol. Transcribed
gRNA was resuspended to approximately 2ug/ul.

To select the highest efficiency guides, we tested performance in 96-well plate format. For each guide, 1ul of 40uM Cas9-NLS
purified protein (QB3, UC Berkeley) was complexed with 2ug of gRNA for 10 minutes at room temperature. We performed
nucleofection of 2210° cells per reaction using the P3 Primary Cell 96-well Nucleofector Kit (Lonza, cat #V4SP-3096) on
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the Amaxa 96-well Shuttle Device (Lonza) with program CA-137. Two days post-nucleofection, cells were collected for DNA
extraction using phenol/chloroform. We used primers bracketing the target cut site (Table S2) and Sanger sequenced the
products for analysis using TIDE (36) to determine guide efficiency. For a subset of guides, we further confirmed cutting events
by cloning the gel-extracted PCR product into the TOPO TA vector (Life Technologies, cat #450641) and performing colony
PCR followed by Sanger sequencing to identify lesions at the target cut site.

For targeted recombination, we nucleofected cells with CRISPR/Cas9 and gRNA using the same nucleofection conditions as
described above in the “Generation of fluorescently-tagged allo-tetraploid lines” section. For CRISPR+ML216 conditions, we
treated cells with 25uM ML216 starting 12 hours before nucleofection, as previously described (37). After recovering for 1
hour, nucleofected cells were plated directly into media with ML216, and ML216 media was replaced again after 24 hours. At
48 hours post-nucleofection, cells were collected for FACS or haplotagging experiments.

Fluorescence activated cell sorting (FACS). Allo-tetraploid cells with fluorescently-marked chrX were subjected to CRISPR+
ML216 treatment as described above.

For cells treated with chimpanzee-specific gRNA, we selected for loss of mCherry (from the chimpanzee chrX insertion)
and possible duplication of GFP (from the human chrX insertion) by sorting for mCherry-negative, high-intensity-GFP cells.
To eliminate cells with high GFP due to duplicated DNA content at the G2/M phase of the cell cycle, we stained cells with
Hoechst 33342 (Thermo Fisher, cat #62249) for 30 minutes at 37°C to sort only from cells in the G1 cell cycle phase.

For cells treated with human-specific gRNA, we selected for loss of GFP (from the human chrX insertion) and possible
duplication of mCherry (from the chimpanzee chrX insertion) by sorting for GFP-negative, high-intensity-mCherry cells. As a
second marker of two copies of chimpanzee chrX downstream of the gRNA cutsite, we chose a cell-surface protein, TSPANG,
that has cis-regulatory changes with 1.4-fold higher expression in chimpanzee relative to human (adjusted p = 1.4210™% by
Welch’s t-test after Benjamini-Hochberg FDR correction). Because this human-chimpanzee gene expression difference can also
be observed at the level of protein expression by antibody staining, sorting for high TSPANG6 protein acted as a second marker
to potentially sort for two copies of chimpanzee chrX downstream of the gRNA cutsite (Fig. S9).

Treated cells were stained with either Hoechst 33342 at 10ug/mL for 30 minutes at 37°C, or with TSPANG primary antibody
(1:10; LS Bio, cat #LS-C160272-400) for 1 hour at 4°C followed by 30 minutes at 4°C with a goat anti-rabbit secondary
antibody conjugated with APC fluorophore (1:500; Thermo Fisher, cat #A-10931). Cells were sorted single-cell into 96-well
plates on a BD Influx cell sorter at the Stanford Shared FACS Facility. Representative sorting gating schemes are shown in Fig.
S9.

DNA sequencing analysis of chrX recombinant and deletion lines. DNA from the recombinant allo-tetraploid cell line (H1Cla-
X1-Xrecl), two chimpanzee chrX deletion lines (H1Cla-X1-cXdel5 and H1Cla-X1-cXdel6), and a control allo-tetraploid line
(H1C1a-X1-S) (Table S1) were extracted and sequenced to 30X coverage with 150bp paired-end reads by GeneWiz. Illumina
adapters were removed using Picard Tools (http://broadinstitute.github.io/picard/), and reads were then aligned to a composite
human-chimpanzee (hg38-pt6) reference genome using BWA-MEM with the -M flag (38). Duplicate reads were marked
with Picard Tools and removed using samtools (39). We filtered out reads with M APQ < 30 and reads that did not lift
over between hg38 and pt6 using pslMap (17). For the recombinant line (Fig. S10) or the deletion lines (Fig. S12), we
normalized observed read counts to the read counts in the control H1C1la-X1-S over 10kb sliding windows to account for any
sequencing or mapping bias and visualized this ratio along human chrX coordinates. For the recombinant line, inspection of
reads at the likely recombination site revealed the exact junction site as a 4bp microhomology (CACC) found at both human
chrX:140133478-140133481 (hg38) and chimpanzee chrX:124020937-124020940 (pt6).
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Fig. S1. Morphologies of auto- and allo-tetraploid iPSC lines are similar to those of diploid iPSC lines. Representative brightfield images of human diploid (H1), human
auto-tetraploid (H1H1a), chimpanzee diploid (C1), chimpanzee auto-tetraploid (C1C1a), allo-tetraploid (H1C1a), and chrX-marked allo-tetraploid (H1C1a-X1) lines are shown.

Scale bars are Tmm.
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Fig. S2. Allele-specific expression in human-chimpanzee allo-tetraploid iPSCs is reproducible across studies. Allele-specific expression (ASE) logs (F'C') values
from RNAseq generated by Agoglia et al. 2021 (40) (x-axis) and ASE log» (F'C') values from the RNAseq data reported in this study (y-axis) are highly concordant (Pearson’s
r = 0.72). Allo-tetraploid cells were derived from independent human-chimpanzee iPSC fusion events in the two studies, and different pipelines were used for mapping reads,
assigning reads to the human or chimpanzee version of a gene, and calling genes with significant ASE. ASE differences in human-chimpanzee allo-tetraploid iPSCs are thus
highly reproducible and robust to different analysis methods.
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Fig. S3. Genes with increasingly divergent expression between human and chimpanzee iPSCs influence fewer body parts for cis and cis+trans regulatory types.
Density plots (smoothed histograms) showing the distribution of body parts influenced by genes (according to the Gene ORGANizer database (41)) with human-chimpanzee
expression differences due to cis (upper left), trans (upper right), and cis+trans (lower left) regulatory changes at increasing |logs (F'C)| cutoffs. The cis-trans category
is not included because only 5 genes have |logs (F'C)>1|. For genes classified as cis and cis+trans, the median number of body parts influenced decreases with higher
|loga (FC)| cutoffs (22, 18, 17, 15, 15 body parts and 22.5, 18, 16, 14, 14 body parts, respectively, for |logs (F'C)|>0.5, 1, 1.5, 2, 2.5). All comparisons between the median
number of body parts influenced by conserved genes (median of 30 body parts influenced) and by cis or cis+trans genes at the various |logz (F'C)| cutoffs are statistically
significant (adjusted p < 0.04 by two-tailed Mann-Whitney U test after FDR correction). This trend does not hold for gene expression differences due to trans-regulatory
changes (adjusted p > 0.19 for all comparisons between conserved genes and trans genes at the various |log» (F'C)| cutoffs).

J.H.T. Song, R.L. Grant, V.C. Behrens, M. Kucka, G.A. Roberts Kingman, V. Soltys, Y.F. Chan, D.M. Kingsley 9 of 22



t

) >

uman read coun
chimp read count

(h
log,

Y

uman read coun
chimp read count

h

Iogz(
diploids & auto-tetraploids

allo-tetraploids

e Cis
1014 trans
® cis+trans
¢ cis-trans
51 + compensatory
» conserved
ambiguous
0
T k_'wi}
4
_5‘ ; 5‘\ L
_10<
-10 -5 0 5 10
I (human read count)
2\ _chimp read count
diploids & auto-tetraploids
6<
5<
4<
3<
2<
' 5
ol &
e © 6 ® o b
@) “0(\‘ )(“na(\ o (a(\ . 9‘0(\1(\56(\]6
oV 9 © o)
00((\9 ¢

Cis

~ trans
cisttrans
cis-trans
compensatory
conserved
ambiguous

= CIS
0.020 = trans
= = ciS+frans
0.015 compensatory
- == conserved
0.010
0.005
0.000 S

0 20 40 60 80 100
# of body parts affected by a gene

Fig. S4. Cis and trans analysis results are robust to aneuploidies. Removing chromosomes with aneuploidies or abnormalities in any of the cell lines used for RNAseq
does not meaningfully change the observed cis and trans trends demonstrated in Fig. 2C-D. In addition to genes on human chromosome 18 and their orthologous genes in
chimpanzee (deletion of one copy of human chr18q is shared by a subset of cell lines and was removed for the cis and trans analysis shown in Fig. 2C-E), genes on human
chromosomes 7, 12, 20, and Y (and orthologous genes in chimpanzee) and chimpanzee chromosomes 1, 2A, 2B, 11, 13, 14, 17, 19, 20, and Y (and orthologous genes in
human) were removed prior to analysis. (A) See Fig. 2C legend. (B) See Fig. 2D legend. All pairwise comparisons are statistically significant by two-tailed Mann-Whitney
U test after FDR correction with adjusted p < 10~ except trans compared to cis-trans (p = 0.28). (C) See Fig. 2E legend. Genes classified as cis, trans, or cis+trans
tend to influence fewer body parts than conserved genes (median 19, 20, 19.5 body parts, respectively, compared to median 29 body parts for conserved genes, adjusted
p = 0.0029, 0.024, 0.024 by two-tailed Mann-Whitney U test after FDR correction). Note that the comparison between the trans and conserved categories is not statistically
significant in Fig. 2E.
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Fig. S5. Distribution of genome-wide inter-specific recombination events identified by haplotagging. Representative chromosome plots showing locations of inter-
specific molecules detected by haplotagging after genome-wide sequencing and filtering. Green: cells treated with gRNA-chr20 (g20). Orange: cells treated with gRNA-chr20
and ML216 (g20+ML216).
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Fig. S6. CRISPR targeting does not elevate inter-specific recombination rates at target loci. Plot of inter-specific recombination events in the 250 kb window surrounding
CRISPR target loci on chr20 (A), chrX (B), chr21 (C), or a second guide location on chrX (D). Each horizontal rectangle represents the boundaries of an inter-specific
recombination event detected by haplotagging. Vertical lines indicate the gRNA target site. Events are filtered for molecules that contain only 1 inter-specific event and have
> 5 supporting variants per species but are otherwise pre-filtering. The lack of enrichment at the target sites does not change with different filters (SI Methods).
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Fig. S7. Generation of fluorescently-marked allo-tetraploid lines. Construct diagram and microscopy images for fluorescently-marked line. (A) Constructs containing
EGFP or mCherry were inserted onto the human or chimpanzee chrX, respectively, using CRISPR-guided homologous recombination (Materials and Methods). Coordinates
show locations of human and chimpanzee homology arms used in the constructs. (B) Allo-tetraploid H1C1a-X1 shown in brightfield, GFP, and mCherry. Cells marked with both
GFP and mCherry appear yellow.
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Fig. S8. CRISPR/Cas9 gRNA editing efficiency and indel spectra for human and chimpanzee chrX guides. (A) For human- and chimpanzee-specific gRNAs, the
spectrum and frequency of small insertions and deletions, gRNA efficiency, and (B) aberrant sequence signal plots are shown. Plots generated with Sanger sequence data in
TIDE (Tracking of Indels by DEcomposition) (36).
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Fig. S9. Fluorescence activated cell sorting (FACS) plots for chrX targeting. (A) Cell cycle phase determined by Hoechst peaks shows that G2/M cells exhibit higher
GFP fluorescence than G1 cells. (B) Staining for TSPANG cell-surface protein with APC secondary antibody shows that chimpanzee TSPAN6-APC fluorescence intensity is
higher than human TSPAN6-APC fluorescence intensity, with allo-tetraploid cells intermediate between human and chimpanzee values. (C) After G1 gating, cells treated
with chimpanzee-specific gRNA are sorted for negative mCherry and high GFP fluorescence. (D) Cells treated with human-specific gRNA are sorted for negative GFP, high
mCherry, and high TSPAN6-APC.
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Fig. S10. DNA sequencing identifies the site of recombination between human and chimpanzee X chromosomes. Whole-genome DNA sequencing data from the
recombinant allo-tetraploid line H1C1a-X1-Xrec1 (Xrec1). (A) Read counts that align to either the human or chimpanzee allele along chrX were normalized to read counts for
H1C1a-X1-S (X1-S), a control sample also sequenced in parallel (see Materials and Methods). This ratio was plotted along the X chromosome in hg38 coordinates. Blue
bracket: region with no human read counts in Xrec1. Red bracket: larger region with twice as many chimpanzee read counts in Xrec1. (B) Reads that span the inter-specific
recombination site in Xrec1 align to the appropriate locations in human chrX and chimpanzee chrX. The recombination site is a 4bp microhomology (highlighted region in
close-up) that is found in both human chrX and chimpanzee chrX at the indicated coordinates.

16 of 22

J.H.T. Song, R.L. Grant, V.C. Behrens, M. Kucka, G.A. Roberts Kingman, V. Soltys, Y.F. Chan, D.M. Kingsley



hXdel1 hXdel2 hXdel3
104 104 i 104 T
5 5 5
Y bl 4 . T i
i o i el Dl “-‘4‘:'1'--'#?**-‘-}“:-:"" | Oy e g
31 iii’.h rM - &Fﬂ‘ 4| S F'iq?”
-1u‘l ¥ L) -1.011 ¥ L3 II 1‘qu ¥ |3 i 1
0 50 100 150 0 50 100 150 0 50 100 50
m hXdel4 hXdel5 hXdel6
T 104 104 104 '
-}
S | 8 5 54
I et L ot [l
o Lot 3 EE "-::'ﬁa - ch
S = %ifﬁ"! Y r?. o fay
E '“'i-. T |r T -1.“.'! ¥ ¥ T 104 T |p T
'_g i 50 00 180 0 50 0 150 0 50 100 150
- hXdel7 hXdel8 cXdel1
% 104 104 104 7
§ 51 . | 5. 54 113'_..{5!.?_‘ ]:‘h?""‘lf
= = ﬂléiﬁ?u:haﬁtf!“ﬁ""i ﬂ1qﬁl-=§r*H¢qeﬁ ' - "ﬁ-r-.q‘n -,---r..-r. Ly :.
g 54 E:h"i ;}1 5 ‘* 54
% et ¥ ' T 10, T T 101 Y T J
c 0 L) 100 150 0 50 100 150 i 50 100 150
2 cXdel2 cXdel3 cXdel4
‘g;‘ 104 104 ] 104 i
B P ER o 8
© o gl b i G b | 0 Sl nge abe il b | m-ﬁ-r g e L
T 5 54 54 x
=
6 -1“ql ¥ 1 ¥ .1ﬁ-l T ¥ | .1G-l T .3 N
c a 56 100 150 o 50 100 180 0 50 100 150
cXdel5 cXdel6 cXdel7
104 ] 104 104
1 : F 51 {1 5 4

04 et s i e inlnniily 1}

A=

- m‘ﬂﬁum&wh.%

e

04 a1 wig alms irihaiae
ooy -

-

Fig. S11. RNAseq of chrX lines localizes terminal deletion breakpoints. The relative allelic expression of genes along chromosome X is plotted for each of the chrX
deletion lines (Table S1). The y-axis is the ratio of reads that map to the human or chimpanzee allele in the deletion line (black) normalized to the ratio of reads that map to the
human or chimpanzee allele in the control (non-deletion) lines (gray) (see S| Methods). Each dot represents a gene on chromosome X plotted along the x-axis at its hg38
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coordinate. The vertical line is the species-specific gRNA target site used to generate each deletion line.
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Fig. S12. Mapping chromosome breakpoints and gene expression levels in chrX deletion lines. (A) Whole-genome DNA sequencing was performed for two chimpanzee
chrX deletion lines, cXdel5 and cXdel6. The ratio of the read counts that align to the chimpanzee allele for each deletion line was normalized to a control line, X1-S, and
plotted along the X chromosome in hg38 coordinates (S| Methods). Colored bars above each plot indicate regions showing evidence of staggered deletions in cXdel5 (pink)
or staggered insertions in cXdel6 (dark red), likely arising from a mixture of endpoints within the cell lines. Yellow line: location of FMR1. Green line: location of AFF2. (B)
Expression of human alleles of FMR1 or AFF2 in the four chimpanzee chrX deletion lines is similar to control lines, as expected. Expression of the chimpanzee alleles of FMR1
and AFF2 is missing in cXdel4, whose terminal deletion includes both genes. Expression of chimpanzee FMR1 is lower in cXdel5, likely corresponding to heterogeneous
deletion of the gene in approximately ~75% of cells (panel A above). Expression of chimpanzee FMR1 and AFF2 appears normal in cXdel6 and cXdel7, whose terminal
deletions do not include these loci. Red: regions of chimpanzee chrX present in line. Pink: region in cXdel5 containing non-clonal deletions. Dark red: region in cXdel6
containing non-clonal insertions. Gray: regions containing deletion breakpoints based on PCR assays and gene expression profiling (Materials and Methods).
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untreated 10 uM BrdU

Fig. S13. BrdU induces differentiation of iPSCs. After passaging, iPSCs treated with 10.:.M of BrdU (right panel) are flatter and more spread out compared to untreated
iPSCs (left panel). BrdU-treated cells also do not form the colonies typical of iPSCs and fail to divide, suggesting that they have terminally differentiated. Scale bars are Tmm.
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SI Dataset S1 (Table S1)
iPSC lines used and generated in the current study.

SI Dataset S2 (Table S2)
Primers and gRNAs.

SI Dataset S3 (Table S3)
Trilineage differentiation results.

SI Dataset S4 (Table S4)
Differential gene expression analysis of diploid and auto-tetraploid iPSC lines.

SI Dataset S5 (Table S5)
Differential gene expression, allele-specific gene expression, and regulatory type (cis/trans) analysis between humans and
chimpanzees in diploid, auto-tetraploid, and allo-tetraploid iPSC lines.

SI Dataset S6 (Table S6)
Gene ontology enrichments for regulatory type (cis/trans) categories.

SI Dataset S7 (Table S7)
gPCR and PCR results on chrX for sorted colonies treated with CRISPR+ML216.

SI Dataset S8 (Table S8)
Differential gene expression analysis of chrX deletion iPSC lines.
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