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Abstract

The ever increasing demand for software in an ever increasing number of different
domains leads to an ever increasing complexity of programs. To scale the size and
complexity of software, programmers compose programs out of individual, reusable
parts. These parts are discovered to be commonly useful and shared as libraries. To
enable this sharing and reuse, programming languages must offer a way to abstract
over patterns of code and to concretize the pattern to specific use cases. Moreover, as
the scale of software increases, it becomes more and more important that programmers
are able to ascertain themselves of the correctness of one part of the program without
looking at all the other parts.

Effects are a class of language features that makes programs interact with their con-
text in a non-trivial way. Examples are file system access, mutable state, exceptions,
generators, and more. Most languages include some of these features in one form or
another, which speaks to their usefulness. However, it is widely agreed upon that
undisciplined use of effects leads to programs that are hard to get correct, hard to
understand, and hard to maintain. Moreover, each of these individual features must
be built into a programming language and while doing so their combination must be
carefully considered. Finally, programmers cannot abstract over these features and
therefore not share them nor extend them in ways unforseen by the programming
language implementor.

Effect handlers are a relatively recent programming language feature that subsumes
many existing language features for effects, and even goes beyond what most pro-
gramming languages offer. With effect handlers, effects like mutable state, exceptions,
or generators are user-defined. This allows for abstraction over repeated patterns in-
volving different kinds of effects. Naturally, programmers can share and reuse these
abstractions in different contexts and even invent their own effects which opens up a
whole new design space. Moreover, effect handlers delimit the extent of effects, which
gives programmers certain guarantees without inspecting the entire program. In other
words, they enforce a disciplined use of effects.

In this thesis we present a compilation technique for effect handlers, which will
help this programming language feature to move from theory to practice. Compiled
programs do not need any runtime support, which makes it widely deployable. It
enables aggressive compile-time optimizations, which makes it efficient. It supports
programs using more exotic effects like non-determinism, which makes it general. It is
also of theoretical interest, because it targets well-known and well-studied languages.

In summary, our compilation technique enables new kinds of abstractions without
regret for programs using effect handlers.
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Zusammenfassung

Der ständig steigende Bedarf an Software in immer unterschiedlicheren Bereichen führt
zu einer immer größeren Komplexität der Programme. Um die Größe und Komplex-
ität von Software zu skalieren, setzen Programmierer die Programme aus einzelnen,
wiederverwendbaren Teilen zusammen. Diese Teile werden als allgemein nützlich
erkannt und als Software-Bibliotheken geteilt. Um diese gemeinsame Nutzung und
Wiederverwendung zu ermöglichen, müssen Programmiersprachen Möglichkeiten bi-
eten, über Code-Muster zu abstrahieren und diese später wieder zu konkretisieren.
Außerdem wird es mit zunehmendem Umfang der Software immer wichtiger, dass die
Programmierer in der Lage sind, sich von der Korrektheit eines Teils des Programms
zu überzeugen, ohne sich alle anderen Teile anzuschauen.

Effekte sind eine Klasse von Sprachkonstrukten, die Programme auf nicht-triviale
Weise mit ihrem Kontext interagieren lässt. Beispiele sind der Zugriff auf das Dateisys-
tem, veränderliche Referenzen, Ausnahmen, Generatoren und mehr. Die meisten
Sprachen enthalten eine Auswahl dieser Konstrukte in unterschiedlichen Variationen,
was für ihre Nützlichkeit spricht. Es besteht jedoch weitgehend Einigkeit darüber, dass
undisziplinierte Verwendung von Effekten zu Programmen führt, die schwer korrekt
zu erstellen, schwer zu verstehen und schwer zu pflegen sind. Des Weiteren muss jedes
einzelne dieser Konstrukte in jede einzelne Programmiersprache eingebaut werden, und
dabei muss ihre Kombination sorgfältig bedacht werden. Schließlich können Program-
mierer nicht über diese Konstrukte selbst abstrahieren und sie daher nicht gemeinsam
nutzen oder in einer Weise erweitern, die der Implementierer der Programmiersprache
nicht vorhergesehen hat.

Effekt-Handler sind ein relativ neues Sprachkonstrukt, das viele bestehende Kon-
strukte für Effekte ausdrücken kann und sogar über das hinausgeht, was die meisten
Programmiersprachen anbieten. Mit Effekt-Handlern können Effekte wie veränderliche
Referenzen, Ausnahmen oder Generatoren von Benutzern der Programmiersprache
definiert werden. Dies ermöglicht die Abstraktion über wiederholte Muster, die Ef-
fekte verwenden. Natürlich können die Programmierer diese Abstraktionen in ver-
schiedenen Kontexten gemeinsam nutzen und wiederverwenden und sogar ihre eigenen
Effekte erfinden, was ganz neue Gestaltungsmöglichkeiten eröffnet. Darüber hinaus
grenzen Effekt-Handler den Kontext von Effekten ab, was dem Programmierer gewisse
Garantien gibt, ohne dass er das gesamte Programm inspizieren muss. Mit anderen
Worten, sie erzwingen einen disziplinierten Gebrauch von Effekten.

In dieser Thesis stellen wir eine Kompilierungstechnik für Effekt-Handler vor, welche
dabei hilft, dieses Sprachkonstrukt von der Theorie in die Praxis zu bringen. Kom-
pilierte Programme benötigen keine Laufzeitunterstützung, was sie weithin einsetzbar
macht. Sie ermöglicht aggressive Optimierungen zur Kompilierzeit, was sie effizient
macht. Sie unterstützt Programme, die exotischere Effekte wie Nicht-Determinismus
verwenden, was sie allgemein einsetzbar macht. Sie ist auch von theoretischem Inter-
esse, da sie in bekannte und gut untersuchte Programmiersprachen übersetzt. Zusam-
menfassend: Unsere Kompilierungstechnik ermöglicht neue Arten von Abstraktion
ohne Bedauern in Programmen, die Effekt-Handler verwenden.
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1 Introduction

Computation is interaction between a program and its context. Pure programs interact
with their context in a trivial way: they return a value when they are done. Their
meaning is independent of their context. This observation directly manifests in the
semantics of pure programming languages as a congruence rule. Effectful programs,
in contrast to pure programs, depend on or modify the context they run in [Wright
and Felleisen, 1994]. In other words, the interaction between effectful programs and
their contexts is much richer. Examples of language features that make programs
effectful are exceptions, mutable state, and filesystem access. Throwing an exception
discards a part of the context, mutable state modifies the content of a reference cell,
and filesystem access affects the user’s hard drive.

From a programmer’s point of view, reasoning about effectful programs is more dif-
ficult, because their context must be taken into account. It is possible to make the
context, which is usually left implicit, explicit. For example, instead of using excep-
tions, programs can match on error values. Instead of using mutable state, programs
can pass along the current value. However, some programs are more understandable
when things that are clear from the context are left implicit. Spelling out every little
detail is cumbersome. Moreover, interaction with the outside world cannot be emu-
lated like this. Therefore, completely banning all effects is impractical as programs
must interact with the world in a non-trivial way.

Effect handlers [Plotkin and Pretnar, 2009, 2013] are an attractive language feature
for working with a broad range of effects. With effect handlers, programs can be locally
effectful, but handlers delimit the interaction between the program and its context. In
a language with effect handlers, effectful programs use abstract effect operations and
effect handlers locally provide meaning to them. Handlers delimit the extent of the
context that has to be taken into account when reasoning about effectful programs.

For example, a programmer might want to locally use an exception to structure
control flow, but also be sure that the exception is always caught and never crashes
the program. Or she might want to locally use mutable state in an algorithm, but also
be sure that intermediate states are never visible to other parts of the program. File
system effects are always global as they affect the context outside of the program, but
it might still be useful for a programmer to know if a part of a program might affect
the file system or not.

Effect systems [Nielson et al., 1999] track not only the types of values, but also the
effects of programs. It is useful to know which effects a program does and does not
have. In languages with effect handlers, effect systems enforce the locality of effects.
They extend the guarantees of programming languages from type safety to effect safety:
all effects are delimited by a corresponding handler. In other words, the effects cannot
affect the context outside of the handler. From the outside the program is pure.

1



1 Introduction

For example, for exceptions effect safety means that all exceptions are caught and
do not propagate to the user of the program. As another example, a function may
internally use mutable state but it is guaranteed that it behaves like a pure function
which means local reasoning applies to its uses. Finally, all global effects, like file
system access, show up in the signature of the entry point of the program.

1.1 Effect Handlers by Example

The following examples make these intutitions concrete. They are written in Effekt, a
language with lexical effect handlers which will be the starting point of this thesis.

Effect signatures define the type of interaction between effectful programs and their
context. The following example defines an effect signature which enables effectful
programs to emit integer values to their context.

effect Emit(x: Int): Unit

This signature defines the Emit effect with a single effect operation Emit which takes
a parameter of type Int and returns a result of type Unit.

Effect operations are program statements that directly depend on or modify the
evaluation context, making programs effectful. The following example generates a
stream of numbers.

def generate(n: Int): Unit / Emit = {

def loop(i: Int) =

if(i < n) {

do Emit(i); loop(i + 1)

} else { () };

loop(0)

}

The recursive function loop uses the effect operation do Emit(i) to emit the current
value i. In effectful programs the order of operations matters, therefore statements
are sequenced. The type signature of generate expresses that it takes a parameter
of type Int and returns a result of type Unit. Moreover, it has the Emit effect whose
meaning depends on the context.

Effect handlers provide meaning to effect operations. The following example handles
the Emit effect by gathering all emitted values into a list.

def gather { prog: () ⇒ Unit / Emit }: List[Int] =

try {

prog(); Nil()

} with Emit { (x) ⇒
val xs = resume(()); Con(x, xs)

}

2



1.1 Effect Handlers by Example

The higher-order function gather takes a program prog which has the Emit effect.
It calls prog() under a handler for the Emit effect and returns the empty list Nil().
The handler implementation of Emit takes the emitted value as a parameter x. It
resumes the program with the unit value resume(()) to get the rest of the list xs and
constructs a list Con(x, xs).

Putting these pieces together, the following example generates five values and gathers
them into a list.

gather { generate(5) }

We call gather with a program that calls generate(5). Here the effectful function
generate, which has the Emit effect, and the handler function gather, which handles
the Emit effect, meet. All effects are handled and the overall program is pure. It
evaluates to the list [0,1,2,3,4].

Effect handlers make effecful programs compositional. The following example trans-
forms a stream of numbers.

def transform { func: Int ⇒ Int } { prog: () ⇒ Unit / Emit }:

Unit / Emit =

try {

prog()

} with Emit { (x) ⇒
do Emit(func(x)); resume(())

}

The function transform takes a function func and a program prog. The handler
implementation takes the parameter x, applies the function func to it, emits the
result, and resumes the computation. The function transform has the Emit effect,
and also handles the Emit effect in the given program.

The following example generates five numbers, uses transform to square each of
them, and gathers the results into a list.

gather { transform { (y) ⇒ y * y } { generate(5) } }

All effects are handled and the program evaluates to [0,1,4,9,16]. The meaning of
the same Emit effect is different, depending on the context. The program generate(5)

is used under two different handlers of the same Emit effect: an outer handler installed
by gather and an inner handler installed by transform.

This running example demonstrates how it is possible to define and work with gener-
ators using effect handlers. Generators are usually built into programming languages,
but with effect handlers they can be defined by users and shared in a library. The
usefulness of effect handlers goes far beyond this simple example and generators. They
subsume a number of useful language features [Pretnar, 2015, Dolan et al., 2015, Lei-
jen, 2017a, Dolan et al., 2017, Kammar et al., 2013, Hillerström and Lindley, 2016,
Piróg et al., 2018, Bračevac et al., 2018b]. Moreover, they enable less common pro-
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1 Introduction

gramming patterns with non-trivial control flow. These more advanced control-flow
abstractions are also user-definable and can be shared as libraries. It is naturally pos-
sible to combine these libraries and the corresponding domain-specific abstractions in
one program.

Effect handlers are not merely an academic exercise. At the time of writing, they are
starting to gain traction in industry as, indeed, effect handlers have many practically
relevant applications.

1.2 Contributions

In this thesis we develop a compilation technique for lexical effect handlers. It rests
on three key ideas: explicit capability passing, iterated continuation passing, and
subregion evidence passing. The general theme is to make more and more information
explicit throughout compilation. A compiler can then use this explicit information
to optimize programs, sometimes completely eliminating all effect handlers and their
associated runtime cost.

As we have seen, the meaning of effectful programs depends on their evaluation con-
text. In languages with support for effect handlers, the handler implementations are
part of this evaluation context. In prior work, language runtimes perform a dynamic
lookup to find a matching handler implementation for an effect operation. These dy-
namic lookups incur a run-time penalty and they preclude compile-time optimizations.

To evaluate the call to an effect operation typically includes two tasks at runtime:
firstly, performing a linear lookup through the evaluation context to find the corre-
sponding effect handler and, secondly, capturing a segment of the context delimited
by that very handler. In general, the full evaluation context can only be known at
runtime. However, if certain information about the context is available at compile
time, we can use it to specialize effectful programs.

1.2.1 Explicit Capability Passing

Chapter 2 presents our understanding of effects as capabilities. Effect handlers intro-
duce term-level capabilities and effectful programs use these capabilities to perform
effects. This first ingredient of our compilation technique makes the connection be-
tween effect operations and their corresponding handlers explicit.

The following example shows the result of transforming the above program to explicit
capability-passing style.

gather({ emit1⇒ transform(emit1, { y⇒ y ∗ y }, { emit2⇒ generate(emit2, 5) }) })

The function gather introduces a capability emit1 which is passed to transform. The
function transform introduces a capability emit2 which is passed to generate. Explicit
capability passing makes it possible to know which effect operation corresponds to
which handler by lexical reasoning. This understanding helps programmers and com-
pilers alike.

This chapter presents the following results:

4



1.2 Contributions

– A formal presentation of the language Effekt which has lexical effect handlers
and gurantees effect safety.

– An algorithmic effect system, which is rooted in our understanding of effects as
capabilities.

– A calculus System Ξ in explicit capability-passing style, and a semantics that
generates a fresh label for each handler instance at runtime.

– The type system of System Ξ does not include effects or effect types. Effect safety
is established by treating capabilities as second class.

– A definition of the semantics of Effekt, a language with effect handlers, by trans-
lation into System Ξ, a language in explicit capability-passing style.

– A mechanized proof of soundness of System Ξ, a proof of well-typedness preser-
vation of the translation, and a proof of effect safety of Effekt.

1.2.2 Iterated Continuation Passing

Chapter 3 develops a translation to iterated continuation-passing style in a typed
setting from first principles. In iterated continuation-passing style, effectful programs
receive not one but potentially multiple continuations. This second ingredient of our
compilation technique makes complex control flow explicit.

The following example shows the function gather translated to explicit capability-
passing style and to iterated continuation-passing style.

let gather prog = \k0 ⇒
let emit x = \k1 ⇒ \k2 ⇒ k1 () (\xs ⇒ k2 (Con x xs))

in prog emit (\u ⇒ \k ⇒ k Nil) k0

The effectful function emit takes a parameter x and two continuation k1 and k2. The
program prog receives the capability emit and two continuations. In continuation-
passing style capturing the current continuation is immediate. The more general iter-
ated continuation-passing style accounts for the nesting of handler.

This chapter presents the following results:

– A reconstruction of the well-known higher-order one-pass continuation-passing
style translation which avoids generating administrative beta redexes.

– A generalization of this translation to iterated continuation-passing style and
shows how to avoid administrative beta- and eta redexes in this more general
setting.

– The concept of a stack shape, which is the list of answer types at delimiters,
from innermost to outermost.

– Different parts of the program can take a different number of continuations,
whereas previous work fixed the number of continuations for the whole program.

– The meta-language, as well as our object languages, are all typed and the trans-
lations preserve well-typedness by construction.

5



1 Introduction

1.2.3 Subregion Evidence Passing

Chapter 4 draws a connection between effects and regions. Effect safety is ensured
by type-level regions. Effect-polymorphic functions become region-polymorphic func-
tions. This third ingredient of our compilation technique makes the nesting of handlers
explicit.

The following example shows the function generate in explicit capability-passing
style with explicit regions and explicit subregion evidence.

def generate[r, r1; n1 : r ³ r1](emit : Emit[r1], n : Int) : Unit at r {
def loop[r2; n2 : r2 ³ r1](i : Int) at r2 {
if(i < n) {
do emit[n2](i); loop[r2; n2](i + 1)
} else { return () }
};
loop[r; n1](0)
}

It explicitly abstracts over regions (i.e., r, r1, and r2) and subregion evidence (i.e., n1
and n2). The capability emit can only be used in subregions of r1. The local definition
loop uses the capability emit. Therefore loop can only be used in subregions of r1,
which is expressed as the constraint r2 ³ r1.

This chapter presents the following results:

– A formal presentation of ΛCap, a language with lexical effect handlers, first-class
functions, and a type-and-effect system based on regions.

– An operational semantics for ΛCap as an abstract machine that generates a fresh
label for each handler instance at runtime.

– Mechanized proofs of Progress and Preservation for this abstract machine. Effect
safety follows as a simple corollary.

– A translation of ΛCap to pure System F in iterated continuation-passing style. The
translation takes well-typed programs in ΛCap to well-typed terms in System F.
This entails effect safety of ΛCap in yet another way.

– A proof that translated terms simulate terms under the operational semantics.
This is surprising, since the operational semantics uses labels to find handlers
on the stack, while the translation targets pure System F, without any labels,
mutable state, or recursive types.

– Our compilation technique with explicit capability passing and iterated continua-
tion passing correctly works in the presence of effect polymorphism and first-class
functions.

1.2.4 Compiling Effect Handlers

Chapter 5 evaluates the compilation technique for lexical effect handlers presented in
this thesis both theoretically and practically. It demonstrates that a compiler can
exploit the information that we have made explicit to aggressively optimize programs
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1.2 Contributions

at compile time. Indeed, under some conditions, we show that it is always possible to
completely remove all handler abstractions. It also provides benchmark results, which
are quite encouraging and have been independently reproduced by Karachalias et al.
[2021].

The following example is the overall result of compiling the motivating program,
which generates a list of squares, to simply-typed lambda calculus with the compilation
technique presented in this thesis.

letrec loop i k1 k2 =

if (i < 5)

then loop (i + 1) k1 (\xs ⇒ k2 (Con (i * i) xs))

else k1 () k2

in loop 0 (\u ⇒ \k ⇒ k Nil) (\z ⇒ z)

The program still evaluates to [0,1,4,9,16]. It consists of the recursive function
loop. All capabilities, operations, and handlers are gone. The function loop receives
two continuations k1 and k2 corresponding to the two handlers. The function func

which squares its parameter has been inlined. No intermediate data structure is allo-
cated.

This example demonstrates that stream fusion [Coutts et al., 2007, Kiselyov et al.,
2017] emerges naturally from our compilation technique. Our compiliation technique
is not specific to streams and does not treat streams specially. Other effect operations
and their combinations fuse in a similar way.

This chapter presents the following results:

– The combination of explicit capability passing with iterated continuation passing
and subregion evidence as a compilation technique for lexical effect handlers.

– A formal presentation of λCap a language in explicit capability-passing style with
a type-and-effect system where effects are stack shapes.

– A translation of λCap to STLC, simply-typed lambda calculus.
– A refinement of λCap to a subset λλCap, for which full elimination of all handler

abstractions is guaranteed.
– A translation of λλCap to 2STLC, a two-level lambda calculus.
– Both translations never fail, always terminate, and the generated programs are

well-typed. Effect safety follows as a corollary.
– Benchmarks of the implementations of λCap and λλCap, which suggest that the

code we generate is competitive with or faster than Koka, Multicore OCaml, and
Chez Scheme using control effects.
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2 Capability Passing

Abstract. In this chapter we introduce Effekt, a language with lexical effect

handlers. We start with an informal introduction of programming with effect

handlers in Effekt, before introducing it formally. We then formally introduce

System Ξ, a language with lexical effect handlers in explicit capability-passing

style. We define the semantics of Effekt as a translation to System Ξ. This

translation makes the flow of capabilities explicit. We present a mechanized

proof of soundness, which entails effect safety.

Explicit capability passing is the first ingredient of the compilation technique

presented in this thesis.

Effect handlers need access to the current continuation. The semantics of System Ξ,

presented in this chapter, is defined using multi-prompt delimited control. Each

handler generates a fresh label at runtime. Effect operations use this label to

capture the correct part of the runtime stack. In Chapter 3 we introduce iterated

continuation-passing style, an alternative way of getting access to the current

continuation.

To guarantee effect safety, in this chapter, we separate functions from values and

treat all functions as second-class. While it is possible for functions to abstract

over other functions, they can never be returned. In Chapter 4 we lift this

restriction, and guarantee effect safety with a region system and explicit subregion

evidence. Moreover, we show that the semantics with multi-prompt delimited

control presented in this chapter is correctly simulated by a translation to iterated

continuation-passing style.

In Chapter 5 we evaluate the compilation technique presented in this thesis. We

start from a language in explicit capability-passing style as presented in this chap-

ter. Being explicit about the flow of capabilities helps us to specialize programs

to concrete handlers at compile time.

This chapter is based on the following publication: Jonathan Immanuel Brachthäuser, Philipp
Schuster, and Klaus Ostermann. 2020. “Effects as capabilities: Effect handlers and lightweight
effect polymorphism”. Proc. ACM Program. Lang., 4 (OOPSLA). DOI: https://doi.org/10.
1145/3428194
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2.1 Programming with Effect Handlers

In this section we introduce programming with effect handlers [Plotkin and Pretnar,
2013] in Effekt. In general, when programming with effect handlers, programs are
structured into three components: Effect signatures that define available effect op-
erations, effectful programs that use effect operations, and effect handlers that give
meaning to effect operations.

As a running example, we adopt the example by Leijen [2016] and implement a
parser combinator library using effect handlers. Our goal is to parse a list of numbers,
while assembling the parser from individual reusable components.

2.1.1 The Fail Effect

Effect signatures provide the interface of effect operations, but not their implementa-
tion. In Effekt, effect signatures are declared as follows:

effect Fail[A](msg: String): A

The effect operation Fail aborts the current computation with a given message. It
is polymorphic in its return type A so we can use it in any expression position. The
following effectful function converts a string to an integer. It uses the Fail effect to
signal that the conversion failed.

def stringToInt(str: String): Int / { Fail } = toInt(str) match {

case Some(n) ⇒ n

case None() ⇒ do Fail("cannot convert input to integer")

}

In case the value returned by the builtin function toInt is None(), we use the effect
operation Fail to signal an error. We can freely compose programs that use effects. For
instance, we can use the function stringToInt to convert and then add two numbers:

def perhapsAdd(): Int / { Fail } = stringToInt("1") + stringToInt("2")

The type of perhapsAdd communicates that it requires the calling context to handle
the Fail effect, although perhapsAdd does not use the Fail effect directly. This
requirement arises from the uses of stringToInt.

Handling effects is syntactically and conceptually similar to handling exceptions:

try { perhapsAdd() } with Fail { (msg) ⇒ 0 }

In case any conversion fails, this effect handler for the Fail effect returns 0 from the
overall computation. The type of the program is Int / {}, it has no unhandled effects,
and we can run it to get the result 3.
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2.1.2 The Read Effect

Effect handlers not only generalize exceptions, but can express many more effects.
Another example is the Read effect that we will use to work with a pull-based stream
of string values:

effect Read(): String

Using Read and Fail, we can express a parser that recognizes a number in an input
stream:

def number() : Int / { Read, Fail } = stringToInt(do Read())

The return type of number communicates that we can only call it in a context that
provides implementations for both Read and Fail.

We can handle the Read effect, for example, by always returning the string "42":

def always42[R] { prog: () ⇒ R / { Read } }: R / {} =

try { prog() } with Read { () ⇒ resume("42") }

This handler implementation illustrates the additional power of effect handlers over
exception handlers: in an effect handler we can call resume to transfer control back to
the call-site of the effect operation. While the handler for Fail did not use resume,
in this example we resume the computation with "42". Since Read returns a string,
resume has type String ⇒ R / {}. The type signature of always42 communicates
that it will handle the Read effect of prog. The empty effect set in the return type
signals that always42 itself does not require any effects. Since it is polymorphic in
the result type R, we know that it will call prog and handle the Read effect.

The block passed to always42 can have additional effects that need to be handled at
the call-site of always42. However, the implementation of always42 cannot interfere
with these additional effects.

try { always42 { number() } } with Fail { (msg) ⇒ 0 }

In this example, we handle the two effects Read and Fail that number requires with
different handlers. Running it results in the integer 42.

Effect handlers grant flexibility in the interpretation of effect operations. We can
define another handler for the Read effect that reads from a given list.

def feed[R](input: List[String]) { prog: () ⇒ R / { Read } } = {

var remaining = input;

try { prog() } with Read { () ⇒ remaining match {

case Nil() ⇒ do Fail("End of input")

case Con(elem, rest) ⇒ remaining = rest; resume(elem)

}}

}
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2 Capability Passing

This alternative handler for Read shows two interesting things: Firstly, it itself uses
the Fail effect to signal an unexpected end of the input stream. The inferred type
and effect are R / { Fail }. Secondly, it uses a mutable variable remaining to keep
track of the position in the input stream. Mutable variables in Effekt are conceptually
stack allocated, which guarantees a well-defined interaction with control effects.

2.1.3 The Fork Effect

The handler for Fail discarded the resumption, the handler for Read called it exactly
once. This third example effect illustrates that it can be useful to call the resumption
more than once. For this, we define the effect Fork, which returns a boolean value to
model the outcome of a (potentially) non-deterministic choice:

effect Fork(): Bool

In Effekt, we can mix effect operations with other imperative language constructs like
loops and references. For example, we can define a higher-order function many that
calls a given program an unknown number of times, controlled by the Fork effect:

def many { prog: () ⇒ Unit / {} }: Unit / { Fork } =

while (do Fork()) { prog() }

We use many to define a parser that reads arbitrarily many numbers and adds them.
Note how using many feels as natural as using the built-in control operator while:

def numbers() = { var res = 0; many { res = res + number() }; res }

The inferred return type of numbers is Int / { Fork, Fail, Read }. One possible
example handler performs a backtracking search to find the first success:

def backtrack[R] { prog: () ⇒ R / { Fail, Fork } }: Result[R] / {} =

try { Success(prog()) }

with Fail { (msg) ⇒ Failure(msg) }

with Fork { () ⇒ resume(true) match {

case Failure(msg) ⇒ resume(false)

case Success(res) ⇒ Success(res)

}}

The handler uses a data type that represents a potentially negative outcome.

type Result[R] { Success(res: R); Failure(msg: String) }

The handler backtrack handles two effects: Fail and Fork. At each choice, it first
resumes with true and in case of failure resumes a second time with false. Any use
of the Fail effect aborts the current search path with Failure. Different handlers for
Fork and Fail would correspond to different search strategies.
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2.1.4 Parsing

Parsers like numbers use the effects Fail, Read, and Fork that we group under an
effect alias:

effect Parser = { Fail, Read, Fork }

To handle the Parser effect, we compose the handler implementations from this sec-
tion:

def parse[R](input: List[String]) { prog: () ⇒ R / Parser } =

backtrack { feed(input) { prog() } }

A parser handles Read by reading from the given list of strings. It handles all failures
in prog and in feed using the implementation of backtracking search. By nesting
feed inside of backtrack, the position in the input stream is automatically correctly
backtracked when a choice is resumed a second time. The inferred return type and
effect of parse is Result[R] / {}, the set of unhandled effects is empty. Running the
program parse(["1", "2"]) { numbers() } results in Success(3).

2.1.5 Section conclusion

Effect handlers generalize exception handlers and offer additional expressivity. This
way, the advanced control flow in programs like numbers can be modularly described
with user-defined combinators. Our backtracking implementation corresponds roughly
to a hand-written recursive descent parser with the advantage that the decision for a
parsing algorithm is not hard coded into parsers like numbers. The imperative parser
combinators can easily be combined with other effects like mutable state, exceptions,
or let-insertion. Abstractions like the many combinator can be shared in a library and
reused across different domains.
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2.2 The Language Effekt

In this section we formally introduce Effekt. In Section 2.3 we formally introduce
System Ξ, a language where effectful programs are in explicit capability-passing style
and in Section 2.4 we present a translation of Effekt to System Ξ. This translation
makes the flow of capabilities explicit and is the first step of the compilation technique
presented in this thesis.

2.2.1 Syntax

Statements s ::= val x = s; s sequencing
| e expressions
| def f (x : τ , g : σ) : τ / ε = s; s block definition
| f (e, g) block call
| effectF (x : τ) : τ ; s effect declaration
| doF (e) effect call
| try { s }withF { (x : τ)⇒ s } effect handling

Expressions e ::= x | v

Values v ::= () | 0 | 1 | . . . | true | false | . . . primitives

Value Types τ ::= Int | Bool | . . .

Block Types σ ::= (τ , σ)→ τ / ε

Effect Sets ε ::= {F1, . . ., Fn }

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Effect Environment Σ ::= ∅ | Σ, F : τ→ τ

Expression Variables x , y ∈ x, y

Block Variables f , g ∈ f, g

Operations F ∈ Fail, Fork, . . .

Figure 2.1: Syntax of the source language Effekt.

Figure 2.1 defines the syntax of Effekt. Like other languages with effect handlers [Hiller-
ström et al., 2017] it is presented in fine-grain call-by-value [Levy et al., 2003]. That
is, we syntactically distinguish between statements, which can have control effects,
and expressions, which can not. In this sense, our statements are “serious” while
expressions are “trivial” [Reynolds, 1972].
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Statements

We sequence two statements with val x = s0; s1, where the result of s0 will be bound
to the variable x in s1. The syntactic form def f (x : τ , g : σ) : τ / ε = s0; s defines
a block f , binding a fixed, but arbitrary number of value variables x as well as block
variables g . Calling blocks is denoted f (e, g), providing potentially multiple value
arguments as expressions e and block arguments as block variables g . Without loss of
generality, we do not allow passing anonymous blocks and require that all blocks are
named, before passing them to a call. This convention significantly simplifies the pre-
sentation of the typing rules and the translation. Effect declarations are statements
of the form effectF (x : τ) : τ ; s, which means that effects can be declared locally.
Effect calls (i.e., doF (e)) only take a single expression argument. While the restric-
tion to one argument is insignificant, it is important that effect operations only take
expressions as arguments and never blocks. Otherwise blocks could escape their scope
through the effect operation [Brachthäuser et al., 2020], violating effect safety. Fi-
nally, the statement try { s0 }withF { (x : τ)⇒ s } expresses that effect calls to F in
the handled statement s0 will be handled by the handler { (x : τ)⇒ s }. The special
block variable resume is available in the handler implementation s.

Expressions

Effect safety of Effekt rests on the property that all functions (blocks) are second class.
Consequently, blocks are syntactically neither values nor expressions. Only primitive
constants are values. Similarly, we distinguish syntactically between variables that
stand for values (x, y, . . . ) and variables that stand for blocks (f, g, . . . ). As usual,
we follow Barendregt [1992] and require that all expression variables, block variables,
and operation names are globally unique.

Types

The meta variable τ describes value types, which we use to type expressions. The meta
variable σ describes block types, which we use to type blocks. Expressions are first-class,
while blocks are second-class [Osvald et al., 2016]. A block type (i.e., (τ , σ)→ τ / ε)
takes expressions of types τ and blocks of types σ as parameters. The return type τ of a
block indicates that only values (and not blocks) can be returned. The block type also
mentions the effects ε that need to be handled by the caller. Effects ε = {F1, . . ., Fn }
are (closed) sets of operation names Fi . This is different from languages that base their
effect systems on row polymorphic records where effect operations can occur multi-
ple times [Leijen, 2017b] or effects are annotated with presence/absence information
[Hillerström and Lindley, 2016]. Modeling effects as sets greatly simplifies typing as
no special unification rules are needed [Leijen, 2005].

2.2.2 Typing

Figure 2.2 defines the typing rules of Effekt. Effekt features lexical effect handlers.
Consequently, effect types express which capabilities a computation requires from its
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Statement Typing

Γ
↑

∆
↑

Σ
↑

¢ s
↑

: τ
↓

ε
↓

Γ ∆ Σ ¢ s0 : τ0 ε0 Γ, x : τ0 ∆ Σ ¢ s1 : τ1 ε1

Γ ∆ Σ ¢ val x = s0; s1 : τ1 ε0 ∪ ε1
[Val]

Γ ¢ e : τ

Γ ∆ Σ ¢ e : τ ∅
[Expr]

Γ, x : τ ∆, g : σ Σ ¢ s0 : τ0 ε′
0

Γ ∆, f : (τ , σ)→ τ0 / ε0 Σ ¢ s : τ ε

Γ ∆ Σ ¢ def f (x : τ , g : σ) : τ0 / ε0 = s0; s : τ (ε′
0
\ ε0) ∪ ε

[Def]

Γ ¢ e : τ ∆(g) = σ ∆(f ) = (τ , σ)→ τ / ε

Γ ∆ Σ ¢ f (e, g) : τ ε
[BlockCall]

Γ ∆ Σ, F : τ1→ τ0 ¢ s2 : τ2 ε2 F ̸∈ ftv(ε2)

Γ ∆ Σ ¢ effectF (x1 : τ1) : τ0; s2 : τ2 ε2
[Effect]

Σ(F ) = τ1→ τ0 Γ ¢ e1 : τ1

Γ ∆ Σ ¢ doF (e1) : τ0 {F }
[EffectCall]

Σ(F ) = τ1→ τ0 Γ ∆ Σ ¢ s0 : τ ε0
Γ, x1 : τ1 ∆, resume : (τ0)→ τ / ∅ Σ ¢ s : τ ε

Γ ∆ Σ ¢ try { s0 }withF { (x1 : τ1)⇒ s } : τ (ε0 \ {F }) ∪ ε
[Try]

Expression Typing

Γ
↑

¢ e
↑

: τ
↓ Γ ¢ n : Int

[Lit] Γ(x ) = A

Γ ¢ x : A
[Var]

Figure 2.2: Typing rules of the source language Effekt.
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context. This intuition will be useful when we discuss the details of the typing rules.
There are two judgments, one for expressions and one for statements.

Expression Typing

The judgment for expressions Γ ¢ e : τ assigns a value type τ to an expression e in
value environment Γ. Typing of expressions only requires a value environment, since
expressions cannot mention any blocks or effects. Furthermore, since expressions do
not have control effects, expression typing computes a value type τ without any effects.
The typing rules for expressions are completely standard.

Statement Typing

The judgment for statements Γ ∆ Σ ¢ s : τ ε computes a value type τ and a set
of required capabilities ε for the statement s. It uses three environments, a value
environment Γ, a block environment ∆, and an effect environment Σ.

Rule Val types sequencing of statements. It accumulates all required capabilities
of the statements s0 and s1 by taking the union of the corresponding effect sets ε0 and
ε1. Rule Expr types an expression statement by assigning the empty set of effects.

Rule Def types block definitions. It is a bit more involved and requires some
explanation. The capabilities a block requires can be provided in two different ways.
Firstly, the block can mention a required effect in its type, which means that the
effect is handled dynamically and the capability needs to be provided by the caller.
Secondly, all capabilities that are not part of the annotated type need to be provided
by the context at the definition site of the block. This can be seen in analogy to term-
level variables: free variables in a function body can either be bound as parameters of
the function, or they are bound in the context of the definition site. Because of this
analogy, this form of effect handlers are called lexical.

Programmers can control which effects are handled at the call-site (i.e., ε0), and
which effects are free (i.e., ε′

0
\ ε0) and need to be handled at the definition site of a

block. Operationally, as we will see in Section 2.4, the block will close over the free
effects.

Since all complications are part of rule Def, typing block calls (rule BlockCall)
takes a familiar form, simply checking whether the argument types conform to the an-
notated parameter types. The decision whether effects of block arguments are handled
dynamically or lexically is clear from the types at their definitions.

Example 1. The following example illustrates how the Def rule works with our
desugaring of anonymous blocks:

def optionally { prog: () → Int / { Fail } }: Option[Int] / {} = ...

optionally { () ⇒ if (do Fork()) do Fail("failed") else 42 }

We desugar this example to bind the block to a fresh name anon with exactly the type
of the block parameter of optionally.
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def optionally { prog: () → Int / { Fail } }: Option[Int] / {} = ...

def anon(): Int / { Fail } = if (do Fork()) do Fail("failed") else 42;

optionally(anon)

The example program has the overall type Option[Int] / { Fork }. The required
capability Fail is provided by function optionally, while Fork is free and has to be
provided by the context of the definition of anon.

The last three rules are concerned with effect declaration, use, and handling. Rule
Effect extends the effect environment Σ, bringing the effect operation F into scope.
The side-condition F ̸∈ @ftv(ε2) corresponds to the standard check that type vari-
ables should not leave the scope in which they are defined [Eisenberg et al., 2018].
Symmetrically, rule EffectCall requires the effect signature to be lexically in scope
when an effect operation is used. Interestingly, in our capability-oriented formaliza-
tion, this simple check suffices to express locally defined effects, where other languages
require sophisticated use of existential quantification [Biernacki et al., 2019a].

Lastly, rule Try types handling of effects. The handled statement s0 is assigned
return type τ and effects ε0. In Effekt, after typing s0, the handled effect is subtracted
from the resulting set of effects ε. This, again, is an important difference compared to
languages based on row polymorphism [Leijen, 2017b] where, by unification, the effect
type of s0 would necessarily include F . The body of the handler s can assume that
the variable x1 has type τ1 and that the block variable resume has type (τ0)→ τ / ∅.
The latter might come with surprise: one might expect that the continuation still has
effects. However, we can see that all effects in resume must be handled outside the
corresponding try statement. In particular, the body of the operation clause does not
have to (and even cannot) handle any effects in resume. Typing the continuation with
the empty set of effects is safe since it is a block and cannot leave the scope of its
definition. Finally, the resulting set of effects is the set of effects ε0 of the handled
statement, without F , but including all effects ε used by the effect operation.

2.3 The Core Language System Ξ

To specify the semantics of Effekt, we translate it to a core language: System Ξ.
This section presents its syntax and type system, sketches its operational semantics,
and states semantic soundness. Section 2.4 then defines the translation of Effekt to
System Ξ and shows it preserves well-typedness. Effect safety of Effekt follows as a
corollary. We provide a detailed discussion of the operational semantics of a more
general language with lexical effect handlers in Section 4.2.

We have mechanized the type system and operational semantics of System Ξ in the
dependently typed programming language Idris [Brady, 2013].
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Statements s ::= val x = s; s sequencing
| return e returning
| def f = b; s block definition

| b(e, b) block call
| handle {F ⇒ s }with { (x , k)⇒ s } handler

Expressions e ::= x | v

Expression Values v ::= () | 0 | 1 | . . . | true | false | . . . constants

Blocks b ::= f | w

Block Values w ::= { (x : τ , f : σ)⇒ s }

Value Types τ ::= Int | Bool | . . .

Block Types σ ::= (τ , σ)→ τ

Value Environment Γ ::= ∅ | Γ, x : τ

Block Environment ∆ ::= ∅ | ∆, f : σ

Expression Variables x , y ∈ x, y Block Variables f , g , k , F ∈ f, g, k, Fail, Fork, . . .

Figure 2.3: Syntax of System Ξ.

2.3.1 Syntax

Figure 2.3 defines the syntax of System Ξ. Like Effekt, the core language is in fine-
grain call-by-value. Also like Effekt, it distinguishes between expressions e and blocks b.
Unlike Effekt, however, the core language supports effect handlers in explicit capability-
passing style. That is, effect operations are represented by blocks, which are introduced
by the corresponding handler and passed as additional arguments. As a consequence,
System Ξ does not distinguish between named blocks (that is, function definitions),
anonymous blocks, and effect operations – all three are represented by the syntactic
category of blocks b.

Blocks b can either be block values w of the form { (x : τ , f : σ)⇒ s } or block
variables f . Note how block variables (e.g., Fork or Fail) in System Ξ may have the
names of effect operations in Effekt. Local blocks are defined with def f = b; s, bind-
ing block b to the name f in scope of the statement s. Block calls in System Ξ, of
the form b(e, b), subsume block and effect calls of Effekt. Arguments can be an arbi-
trary number of value arguments and block arguments. Finally, the handle statement
handle {F ⇒ s0 }with { (x , k)⇒ s } binds the block variable F in the handled state-
ment s0. The value parameter x and the continuation block k are bound in the handler
implementation s.

2.3.2 Typing

The typing rules of System Ξ are defined in Figure 2.4. Like the source language,
System Ξ distinguishes between two kinds of types: value types τ and block types σ.
Importantly, block types now do not mention any effects, but only map value- and
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Statement Typing

Γ ∆ ¢ s : τ Γ ∆ ¢ s0 : τ0 Γ, x : τ0 ∆ ¢ s1 : τ1

Γ ∆ ¢ val x = s0; s1 : τ1
[Val]

Γ ¢ e : τ

Γ ∆ ¢ return e : τ
[Ret]

Γ ∆ ¢ b : σ Γ ∆, f : σ ¢ s : τ

Γ ∆ ¢ def f = b; s : τ
[Def]

Γ ∆ ¢ b : (τ , σ)→ τ0 Γ ¢ e : τ Γ ∆ ¢ b : σ

Γ ∆ ¢ b(e, b) : τ0
[Call]

Γ ∆, F : τ1→ τ0 ¢ s0 : τ Γ, x : τ1 ∆, k : τ0→ τ ¢ s : τ

Γ ∆ ¢ handle {F ⇒ s0 }with { (x , k)⇒ s } : τ
[Handle]

Block Typing

Γ ∆ ¢ b : σ

∆(f ) = σ

Γ ∆ ¢ f : σ
[BlockVar]

Γ, x : τ ∆, f : σ ¢ s0 : τ0

Γ ∆ ¢ { (x : τ , f : σ)⇒ s0 } : (τ , σ)→ τ0
[Block]

Expression Typing

Γ ¢ e : τ Γ(x ) = τ

Γ ¢ x : τ
[Var] Γ ¢ n : Int

[Lit]

Figure 2.4: Type system of System Ξ.
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block parameter types to a resulting value type τ . Furthermore, inspecting the type
system of System Ξ, we can see that it does not include an effect system. Effect safety
is established by treating blocks as second class.

The type system of System Ξ has three judgments, one for each syntactic category.
Statements and blocks are typed against two environments: environment Γ for value
variables and environment ∆ for block variables. Since effects are translated to blocks,
the signature environment Σ is not required anymore.

Besides distinguishing between values and blocks and using separate environments,
the typing rules for sequencing (Val), returning (Ret), block definitions (Def), and
block calls (Call) are completely standard. They correspond to the rules of Effekt

but without any tracking of effects.

Rule Handle is central to the calculus. We handle statement s0 with the handler
implementation s. The handler introduces a capability and binds it to the operation
name F , which is brought into scope as a block variable in the handled statement s0.
In the handler implementation s, the parameter of the effect operation x has type τ1
and the continuation k is an ordinary block variable of type τ0→ τ . The (answer)
type τ appears four times in this rule: As the return type of the overall statement,
the return type of the handled statement, the result type of the continuation, and the
return type of the handler implementation – all have to agree.

2.3.3 Operational Semantics

We give the semantics of System Ξ as a small-step operational semantics using evalua-
tion contexts [Wright and Felleisen, 1994]. To allow capturing and resuming continu-
ations, the semantics of System Ξ follows the generative semantics presented by Bier-
nacki et al. [2019b], who in turn present a variant of multi-prompt delimited con-
trol [Gunter et al., 1995]. Like previous presentations of effect handlers [Kammar
et al., 2013], capturing a continuation removes the corresponding delimiter and resum-
ing reinstalls the delimiter. This corresponds to a multi-prompt variant of the control
operator shift0 [Danvy and Filinski, 1989]. Our presentation requires two additional
runtime constructs that only appear during evaluation: delimiters and capabilities.

Labels Both runtime constructs refer to unique runtime labels l , generated during
reduction. We only require that labels can be compared for equality and that we are
able to generate fresh labels at runtime. We represent concrete labels as hexadecimal
number (e.g., @a5f) to highlight that they are created at runtime.

Delimiters The additional statement #l { s } represents a delimiter that delimits a
statement s at a given label l (or prompt in the terminology of Felleisen [1988], Sitaram
[1993], and Gunter et al. [1995]).

Capabilities The additional block value capl { (x , k)⇒ s } represents a capability,
which is a pair of a label l and a handler implementation s [Brachthäuser and Schuster,
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2 Capability Passing

2017]. Calling a capability captures the stack segment up to the next dynamically
enclosing delimiter for the label l , reifies it as a continuation, and binds it to k .

Reduction Rules

This presentation of the operational semantics follows Gunter et al. [1995] and is based
on delimited evaluation contexts Hl where the label l does not appear in any delimiters
in Hl . It is used to guarantee that captured continuations are always delimited by the
dynamically closest delimiter for a label.

Handling introduces delimiters Rule (handle) creates a fresh runtime label l , delim-
its the handled statement s0 with this label, and substitutes a capability that refers
to l for the block variable F .

(handle) handle {F ⇒ s0 }with { (x , k)⇒ s } −→
#l { s0[F 7→ capl { (x , k)⇒ s }] } l fresh

Since the label is fresh, the capability is only valid in the dynamic region delimited
by #l . Calling the capability outside of the region will lead to a stuck term. Our
semantics is generative: reducing the same handle statement twice will introduce two
distinct runtime labels [Biernacki et al., 2019b].

Capabilities capture the continuation The most interesting rule (capture) captures
part of the context:

(capture) #l {Hl [ (capl { (x , k)⇒ s })(v) ] } −→
s[x 7→ v , k 7→ { y⇒ #l {Hl [ return y ] } }]

The application of a capability to a value (e.g., (capl { (x , k)⇒ s})(v)) itself is not a
redex. This highlights the essence of effects: they depend on (and modify) the context
they are evaluated in. The application of a capability with label l is only meaningful in
a context, which is delimited at label l . This becomes visible in rule (capture), where
the delimiter #l , the delimited context Hl , and the capability application together
form a redex. We reify this context as a continuation and substitute it (as well as
the argument v) in the body of the handler implementation. Effect safety means that
applications of a capability with label l only occur in a context with a delimiter at l

(Theorem 4).

Only values can leave delimiters Once a statement is reduced to a value, delimiters
are discarded:

(ret) #l { return v } −→ return v

Since blocks and capabilities are no expression values, they cannot be returned.
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Example 2. The following example illustrates the operational semantics of capturing
continuations. We assume the effect operation Yield has type Int→ Int.

handle {Yield⇒ val x = Yield(20); return x ∗ 2 }with { (x, k)⇒ k(x + 1) }

Reducing handle introduces a fresh label (e.g., @a1) and uses it to delimit the handled
program. It also introduces a capability and substitutes it for Yield:

#@a1 { val x = (cap@a1 { (x, k)⇒ k(x + 1) })(20); return x ∗ 2 }

Applying rule (capture), we obtain (captured stack segment highlighted in gray ):

k(20 + 1) where k = { y⇒ #@a1 { val x = return y; return x ∗ 2 } }

Further reducing the application results in

#@a1 { val x = return 21; return x ∗ 2 }

where we proceed to reduce under the delimiter to obtain #@a1 { return 42 }, and finally
remove the delimiter to get the result 42. As can be seen from the example, capturing
the continuation removes the corresponding delimiter #@a1 and calling the continuation
reinstalls it. This treatment of delimiters together with capability passing models deep
handlers [Kammar et al., 2013].

2.3.4 Soundness

In our mechanized formalization, we represent System Ξ terms by their typing deriva-
tions [Benton et al., 2012] and show progress constructively by implementing the se-
mantics as a total step function. One important class of stuck terms are capability
applications without a corresponding delimiter.

Definition 3 (Undelimited Label). A statement s contains an undelimited label l , if
it has the form Hl [(capl { (x , k)⇒ s ′ })(v)].

In our operational semantics, reducing a redex never produces a newly undelim-
ited label. In the type system for System Ξ extended with runtime constructs, we
add an additional label context Ξ to the typing judgement, which now has the form
Γ ∆ Ξ ¢ s : τ . All typing rules in Figure 2.4 ignore Ξ and simply pass it to the

premises. We use this label context in our proof to formally capture the invariant that
there are no undelimited labels.

Starting from an empty label context, closed and well-typed System Ξ programs
either are values or we can take a step. Here the relation 7−→ describes congruence,
that is, reduction under a context.

Theorem 4 (Progress of System Ξ).
If ∅ ∅ ∅ ¢ s : τ , then s is of the form return v or s 7−→ s ′.

Our mechanized formalization establishes preservation by indexing System Ξ programs
with their type. Performing a reduction step on a statement preserves its type:
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T J (τ , σ)→ τ0 / {F1, . . ..Fn } K = (τ , T JσK, T JF1K, . . ., T JFnK)→ τ0
T JF K = (τ1)→ τ0

where Σ(F ) = τ1→ τ0
T J {F1, . . ., Fn} K = F1 : T JF1K, . . ., Fn : T JFnK

SJ val x = s0; s1 K = val x = SJ s0 K; SJ s1 K

SJ e K = return e

SJdef f (x , g) : τ0 / ε0 = s0; s K = def f = { (x , g , F1, . . ., Fn)⇒SJ s0 K }; SJ s K
where ε0 = {F1, . . ..Fn }

SJ f (e, g) K = f (e, g , F1, . . .Fn)
where f : (τ , σ)→ τ0 / {F1, . . .Fn }

SJ effectF (x1 : τ1) : τ0; s K = SJ s K

SJdoF (e1) K = F (e1)

SJ try { s0 }with {F (x )⇒ s } K = handle {F ⇒SJ s0 K }with { (x , resume)⇒SJ s K}

Figure 2.5: Translation of Effekt to System Ξ.

Theorem 5 (Preservation of System Ξ).
If ∅ ∅ ∅ ¢ s : τ and s 7−→ s ′ then ∅ ∅ ∅ ¢ s ′ : τ .

In particular, reduction also preserves the (empty) label context. That is, from progress
and preservation follows effect safety: programs are never stuck on an undelimited
label.

2.4 Translation of Effekt to System Ξ

Having introduced both Effekt and System Ξ formally, we now show how to make
the flow of capabilities explicit by translating Effekt into System Ξ, i.e. into explicit
capability-passing style. The translation is type directed and operates on typing deriva-
tions. Intuitively, where in Effekt the effect types indicate that a computation requires
capabilities to be available in its context, in System Ξ we explicitly pass such capabil-
ities as additional arguments. Figure 2.5 defines the translation. The translation is
defined on types and on statements. We neither translate expressions, nor their types,
since the language of expressions is the same in Effekt and System Ξ.

Translation of types We translate blocks that require a set of effects {F1, . . ., Fn }
to blocks that receive n additional block arguments – one for each member of the set.
The translation of effect sets to additional arguments can be seen in the translation
of block types, of block definitions, and of block calls. Names of operations in Effekt

are now names of block variables in System Ξ. For the translation, we assume a
canonical ordering of effects in each ε. In our implementation, it suffices to choose an
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2.4 Translation of Effekt to System Ξ

arbitrary but fixed ordering for each type signature. The translation of types extends
to environments and sets of effects. In particular, we translate the sets of effects ε
of Effekt into block environments ∆ of System Ξ translating each effect operation to
a binding in the block environment. We assume that names of blocks and names of
effect operations are disjoint and no name conflicts arise.

Translation of terms The translation of block definitions uses type information to
add additional capability parameters to the block f . Symmetrically, the translation of
application adds additional arguments. Assuming Σ(Fail) = (String)→ Int, the pro-
gram of Example 1 translates to:

def optionally = { (prog : ((String)→ Int)→ Int)⇒ . . . }

def anon = { (Fail : (String)→ Int)⇒ if (Fork()) thenFail(”failed”) else 42 }
optionally(anon)

Effect calls translate to ordinary block calls, where the name of the called block is the
same as the name of the effect operation (e.g., Fork or Fail). The effect system of Effekt
and the translation guarantee that a block with the name of the effect operation is in
scope. Effect types and their declarations disappear during translation. Translating
the try statement of Effekt into the handle statement of System Ξ makes two things
explicit: Firstly, the handle statement now explicitly binds the capability F as a block
in the handled statement s0. Secondly, the continuation resume is bound explicitly as
a block variable in the body s.

2.4.1 Well-Typedness Preservation

The translation of Effekt to System Ξ in explicit capability-passing style preserves well-
typedness:

Theorem 6 (Translation preserves well-typedness).
If Γ ∆ Σ ¢ s : τ ε , then Γ T J∆K, T JεK ∅ ¢ SJsK : τ .

Proof. Straightforward induction over the typing derivations. □

The translated program SJ s K is valid under the empty label context Ξ = ∅, i.e. does
not contain any undelimited labels. This is obvious as the translation (Figure 2.5)
never introduces any labels, delimiters, or capabilities. Those are only introduced at
runtime by reducing handle statements.

2.4.2 Semantic Soundness of Effekt

We define the semantics of Effekt as the composition of the translation to System Ξ
and the semantics of System Ξ. This presentation emphasizes our capability-based
understanding of effects by translating them to explicitly passed blocks. Semantic
soundness of Effekt directly follows from preservation of well-typedness (Theorem 6)
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and soundness of System Ξ. Effect safety follows immediately. We can identify two
potential sources of runtime errors that would violate effect safety:

Unhandled effects Effects in Effekt might be unhandled, that is there is no enclosing
effect handler that would handle the effect. In our translation, effect operations are
translated to block calls. Unhandled effects thus would correspond to unbound block
variables. The type-system of System Ξ and well-typedness preservation guarantees
that such programs cannot be expressed.

Escaping capabilities Effects are translated to capabilities and those contain labels.
Those capabilities could leave the region of the corresponding delimiter, leading to a
runtime error. However, this is ruled out by preservation (Theorem 5) of System Ξ.
Furthermore, the translation does not introduce any delimiters or uses runtime labels
in any other way.

2.5 Related Work

In this chapter we introduced Effekt, a language with lexical effect handlers, and
System Ξ, a language in explicit capability-passing style. Effect safety is guaranteed by
all capabilities and blocks being second class. In this section we compare to work on
dynamic effect handlers, lexical effect handlers, capability-passing style, and second-
class values.

2.5.1 Dynamic Effect Handlers

In languages with dynamic effect handlers, effect operations are handled by the dy-
namically closest handler [Plotkin and Pretnar, 2013, Dolan et al., 2014, Hillerström
and Lindley, 2016, Leijen, 2017b, Lindley et al., 2017]. Operationally, they search the
runtime stack for the first handler for the effect operation, whereas in our operational
semantics we search the current runtime stack for the first matching label. Con-
sequently, these languages have a different type-and-effect system, usually based on
effect rows [Leijen, 2017b, Lindley et al., 2017, Hillerström and Lindley, 2016] whereas
thanks to our restriction to second-class blocks we don’t need an effect system at all.
To prevent accidental handling of effect operations, and to encapsulate effects, they
feature term-level lifting constructs [Biernacki et al., 2017, Leijen, 2018, Convent et al.,
2020, Saleh et al., 2018] whereas with explicit capability passing effect operations are
lexically associated to their handler.

In summary, in comparison to these languages with dynamic effect handlers, Effekt
uniquely guarantees effect safety, avoids accidental capture, and establishes effect en-
capsulation without lifts with a very lightweight effect system.
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2.5.2 Lexical Effect Handlers

Our compilation technique with explicit capability-passing style implements lexical
effect handlers.

The language Effekt that we presented in this chapter is based on a series of library
implementations of lexical effect handlers published under the name Effekt [Brachthäuser
and Schuster, 2017, Brachthäuser et al., 2018, 2020]. All of them are based on
capability-passing style. They do not present a formal calculus but use capability
passing in their library embeddings of effect handlers. To capture the continuation,
they use a monadic implementation of multi-prompt delimited continuations [Dybvig
et al., 2007]. Their capabilities are pairs of the handler implementation and a prompt.
Passing capabilities explicitly facilitates optimizations by the JVM.

Brachthäuser and Schuster [2017] present a Scala [Odersky, 2019] library which
reuses Scala’s implicit parameters features to pass capabilities implicitly. It does not
have an effect system and does not guarantee effect safety. Brachthäuser et al. [2018]
present a Java [Gosling et al., 1996] library where capabilities are passed explicitly.
It uses a bytecode transformation to continuation-passing style. Programs are writ-
ten in direct style. It does not have an effect system and does not guarantee effect
safety. Brachthäuser et al. [2020] present a Scala library where effect safety is guaran-
teed. It reuses Scala’s path-dependent types and intersection types to track the set of
capabilities each method uses.

With dynamic effect handlers, when a higher-order function uses its function argu-
ment under a handler, the effects of the function argument will be handled by this
handler. This is not always desired. Zhang et al. [2016] observe this problem with
Java checked exceptions. As a solution, they translate methods that throw exceptions
to receive and pass along an additional parameter that will be a label at runtime.
Their solution essentially makes exceptions lexically scoped. Zhang and Myers [2019]
generalize this problem and its solution from exceptions to effect handlers. By estab-
lishing a lexical binding, lifting annotations are not required while guaranteeing effect
parametric reasoning. Zhang et al. [2020] generalize lexical effect handlers to sup-
port bidirectional control flow. Bidirectional handlers can resume with a computation
which will run in the context of the call-site of the effect operation.

Bauer and Pretnar [2015] explicitly pass effect instances. Without a static effect
system, their language does not guarantee effect safety. In contrast to our capabilities,
effect instances are first-class. Bauer and Pretnar [2013] present an effect system for a
language with effect handlers. They assume a statically fixed set of effect instances,
which are term-level constants. In some cases the instances a program uses are not
known statically, and thus the handler cannot remove the instance from the effect type
of the handled expression.

Biernacki et al. [2019b] present Helium, a language with lexical effect handlers and
effect safety similar to the one in [Zhang and Myers, 2019]. They argue that lexically
scoped effects improve reasoning. Explicitly binding effects also allows to refer to one
particular effect instance in the presence of multiple copies of the same effect. Their
operational semantics does not employ capability passing as they look up handler
implementations based on a label when an effect operation is called. They use multi-
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prompt delimited control to get access to the current continuation. To guarantee effect
safety, they index functions with sets of runtime labels. To relieve the programmer
from passing effect instances manually, the implementation of Helium sometimes does
this passing implicitly, but they do not describe when and how this happens.

2.5.3 Second class values

Effect safety of System Ξ and consequently of Effekt rests on the restriction of blocks to
be second class. Hannan [1998] were the first to present a type-based escape analysis.
They distinguish between functions whose parameters are first class and functions
whose parameters are second class with two different types. In contrast to this, in
Effekt parameters of value type are always first class and parameters of block type are
always second class. Osvald et al. [2016] directly inspired our treatment of functions as
second-class values. They use second class functions to establish a type-based escape
analysis and present case studies for exceptions, memory regions, and well-scopedness
in program generation. We generalize their calculus to effect handlers, and present a
language design around this insight.

2.6 Conclusion

In this chapter we have introduced Effekt, a language with lexical effect handlers.
Effect types express which capabilities a computation requires from its context. We
have presented System Ξ a language with lexical effect handlers in explicit capability-
passing style, and a translation of Effekt to System Ξ. While programming in Effekt is
convenient, the flow of capabilities is explicit in System Ξ. In the rest of this thesis we
will build on and exploit this explicitness.

All blocks in Effekt and in System Ξ are restricted to be second class. This makes it
possible to guarantee effect safety without any effect system and the associated cere-
mony. We believe that the vast majority of programs uses functions and capabilities in
a second-class way. However, in the future we would like to investigate how to lift this
restriction and offer first-class functions in a language like Effekt. It is important to
us, though, that in the case where functions and capabilities are used in a second-class
way the ergonomics are retained.
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Abstract. In Chapter 2 we have seen that effect handlers get access to the cur-
rent continuation. They are useful to express complex control flow, a property
they share with classical control operators like shift and shift0. Effect han-
dlers are nested. Each handler introduces a delimiter and operationally effect
operations capture the current continuation up to this delimiter.

In this chapter we revisit and combine classical work on continuation-passing
style. Translating programs to continuation-passing style (CPS) is a well-known
implementation technique for control operators. To account for the nesting of de-
limiters, we translate programs into the CPS hierarchy, where functions receive
not one but potentially multiple continuations corresponding to multiple delim-
iters. While the original introduction of the CPS hierarchy works with an untyped
language, in this chapter we present an implementation of the CPS hierarchy as
a typed embedding into a dependently-typed language. We index effectful terms
by the list of answer types they require from their context: the stack shape.
Each type in this list corresponds to one level of the CPS hierarchy. We also use
types to distinguish between two stages: static and dynamic. Our translation
avoids administrative beta- and eta-redexes at all levels of the CPS hierarchy, by
iterating well-known techniques for the non-iterated CPS translation.

Iterated continuation passing is the second ingredient of the compilation tech-
nique presented in this thesis.

In Chapter 4 we will account for effect-polymorphic functions by abstracting over
type-level regions and term-level subregion evidence. Operationally, subregion
evidence lifts a computation to run in a different context with a larger stack
shape. We show that typed lexical effect handlers do not need the full power of
multi-prompt delimited control, but can use iterated continuation passing instead.

In Chapter 5 we demonstrate how the combination of iterated continuation pass-
ing and explicit capability passing allows us to eliminate handler abstractions.
Being explicit about continuations allows us to specialize uses of effect operations
to their surrounding context.

This chapter is based on the following publication: Philipp Schuster and Jonathan Immanuel
Brachthäuser. 2018. “Typing, Representing, and Abstracting Control.” Proceedings of the Work-

shop on Type-Driven Development, (TyDe). DOI: https://doi.org/10.1145/3240719.3241788
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fail : Stm (String :: RS)A
fail = Shift0 (λk⇒do

Pure ”no”)

fork : Stm (R :: RS)Bool
fork = Shift0 (λk⇒do

Resume k True
Resume k False)

emit : A→Stm (List A :: RS)Unit
emit a = Shift0 (λk⇒do

as←Resume k ()

Pure (Con a as))

Figure 3.1: Examples of effectful functions.

3.1 Programming with Control Operators

In this section, we motivate programming with control operators in the CPS hierarchy
and give an overview over our source language as an embedding into the dependently
typed programming language Idris [Brady, 2013].

3.1.1 Example: Non-Deterministic Programming

We start with an example implementation of the non-deterministic programming state-
ments fail and fork in terms of the control operator Shift0 in Figure 3.1, adopted
from Danvy and Filinski [1990]. It might be instructive to compare with the original
presentation. Both implementations capture the current continuation k with Shift0.
In the implementation of fail we never resume and immediately return the string ”no”
instead. We do so with Pure, which embeds a pure value into a computation. In the
implementation of fork we resume the continuation with both True and False. We write
our programs in do-notation to sequence effectful statements: Each line after the do

is a statement. We explicitly resume continuations with Resume. The blue overbars
and red underbars are staging annotations and can safely be ignored for now – we will
explain them later.

The types of both fork and fail show that they are (effectful) statements Stm. State-
ments are parametrized by the stack shape and their immediate result. The stack shape
is the list of answer types at enclosing delimiters from innermost to outermost. It intu-
itively corresponds to the computational context that needs to be provided to execute
the statement. Every element in the list marks a position of the runtime stack with the
expected type. We will use these positions as targets to transfer the control-flow to.
The immediate result of fail is A for all A, expressing that fail never returns anything
(it could be the empty type Void). To allow for aborting the computation with the
string ”no”, fail requires the stack shape to start with String. In contrast, fork is both
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polymorphic in its (top-most) answer type R and the rest of the answer types RS. It
captures the continuation using Shift0 and resumes it twice, discarding the first result
of type R. It executes both alternatives for their side effects. The immediate result of
fork is Bool, hence the continuation k takes a boolean value to resume execution.

Because Shift0 is a delimited control operator it will capture the continuation only
up to the closest delimiter Reset. In consequence, the following example will return
the string ”Answer was : no” and not terminate the execution as a whole to return with
the string ”no”.

delimitFail : StmRS String
delimitFail = do

a←Reset fail
Pure (concat ”Answer was : ” a)

Here we delimit the statement fail with Reset. Thus, fail will not discard the entire
continuation but only up to the closest delimiter Reset. Since Reset immediately
surrounds fail, the captured continuation happens to be empty. The variable a will be
bound to the string ”no” which is the immediate result of the delimited computation
Reset fail. The type of the immediate result fits with the top-most answer type of fail
whose stack shape is String :: RS.

In contrast, the following example will not type check:

perhapsFail : Stm (String :: RS) Int
perhapsFail = ifthenelse (18< 0) fail (Pure 9)

wontTypecheck : StmRS String
wontTypecheck = do

a←Reset perhapsFail
Pure (concat ”Answer was : ” a)

It is not clear (to the compiler) whether the computation perhapsFail delimited by
Reset will abort with string ”no” or return normally with integer 9. When we delimit
a statement with Reset the answer type and the immediate result type have to agree.

As another example, consider the effectful function emit in Figure 3.1 that yields a
value to the surrounding context. It takes a value to emit as its argument a. It uses
Shift0 to capture the current continuation k and resumes k with the unit value to get
a list of results as. Finally, it prepends its argument a to the front of the other results
as. Since we expect resuming the continuation to return a list, the effectful function
emit only works when the top-most answer type is a list.

To gather the list of emitted values we define the function gather:

gather : Stm (List A :: RS)B→StmRS (List A)
gather prog = Reset (do

prog
PureNil)

The function gather runs a computation that has List A as its top-most answer type
and an arbitrary result type B. It runs the computation, ignores its result and then
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choice : Int→Stm (String :: RS) Int
choice = defrec (λrecurse⇒λn⇒do

ifthenelse (n< 1)
fail
(do

b← fork
ifthenelse b
(recurse (n− 1))
(Pure n)))

triple : Int→ Int→Stm (String :: RS) (Int, Int, Int)
triple n m = do

a ← choice n
b ← choice (a− 1)
c ← choice (b− 1)
ifthenelse ((a+ b+ c)≡m)
(Pure ( a , b , c ))

fail

Figure 3.2: Effectful functions for choosing an integer, and finding triples.

returns the empty list. It also acts as a delimiter for all calls to Shift0 in prog such
as the one in emit. In consequence, emit will suspend and resume the computation at
the surrounding call to gather, prepending the emitted values to the empty list after
the delimited continuation returns.

3.1.2 Example: Collecting Triples

We now present a bigger example also adopted from Danvy and Filinski [1990]. The
task is to generate all distinct positive integers a, b and c less than or equal to a given
integer n that sum to a given integer m. Our strategy is to use the non-deterministic
choice statement fork to generate candidate triples and the abortive statement fail to
filter those that do not have the desired property.

Equipped with the operators fork and fail, in Figure 3.2 we define a recursive function
choice that non-deterministically chooses an integer between 1 and a given integer n.
We then use choice to define a function triple that chooses integers a, b and c and fails
if they do not sum up to the given integer m. To be able to use fail, the types of choice
and triple must express that they use control effects with top-most answer type String,
but are polymorphic in the remaining answer types RS.

To gather all triples produced by triple into a list, we might want to use emit and
gather. However, when trying to do so, we already notice on the type-level, that the
two effects interfere. We cannot have a top-most answer type of both String and of
List (Int, Int, Int) at the same time. The solution is to introduce a second level of control
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and use the emit operation on that level. To do so, we use the operator Lift that lifts
a computation from one level to the next. We will define it later.

emitTriples : Stm (String :: List (Int, Int, Int) :: RS) String
emitTriples = do

res← triple 9 15
Lift (emit res)
Pure ”done”

emittedTriples : Stm • (List (Int, Int, Int))
emittedTriples = gather (Reset emitTriples)

In emittedTriples, we choose the stack shape RS to be the empty list •. As a result,
emittedTriples cannot have any further control effects itself – making it a pure expres-
sion. The effects of emitTriples (that is, those of choice and fail) are delimited by Reset

and the effects of emit are delimited by gather.
An alternative to collecting all triples is to abort the computation early and only

get the first triple. To this end, we define an effectful function first that, when called
with an argument a, gets the current continuation, but never resumes it. Instead it
immediately returns Just a.

first : A→Stm (Maybe A :: RS) ()
first a = Shift0 (λk⇒do

Pure (Just a))

Running triple with first instead of emit follows the same pattern as before.

firstOfTriples : Stm (String :: Maybe (Int, Int, Int) :: RS) String
firstOfTriples = do

res← triple 9 15
Lift (first res)
Pure ”done”

firstTriple : Stm • (Maybe (Int, Int, Int))
firstTriple = Reset (do

Reset firstOfTriples
PureNothing)

The effectful function first requires an answer type of Maybe A. We can use it on the
result of triple by lifting it, just like we did before with emit. However, we now discard
the result of Reset firstTriples and return Nothing whenever triple fails to return a
value.

Effect handlers allow us to abstract over the difference between emittedTriples and
firstTriple. The effectful program defines the search space using fork and fail and the
handler defines the strategy used to explore this space.

Figure 3.3 shows the result of pretty printing the program that we generate from
emittedTriples. All control operators are eliminated and evaluating the expression
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letrec f0 n = \k1 ⇒ \k2 ⇒
if (n < 1)

then k2 "no"

else f0 (n - 1) k1 (\x4 ⇒ k1 n k2)

in f0 9 (\x0 ⇒ \k3 ⇒
letrec f2 n = \k1 ⇒ \k2 ⇒

if (n < 1)

then k2 "no"

else f2 (n - 1) k1 (\x6 ⇒ k1 n k2)

in f2 (x0 - 1) (\x1 ⇒ \k4 ⇒
letrec f4 n = \k1 ⇒ \k2 ⇒

if (n < 1)

then k2 "no"

else f4 (n - 1) k1 (\x8 ⇒ k1 n k2)

in f4 (x1 - 1) (\x2 ⇒ \k5 ⇒
if ((x0 + x1 + x2) == 15)

then (Con (x0, x1, x2) (k5 "done"))

else k5 "no") k4) k3) (\x0 ⇒ Nil)

Figure 3.3: Result of pretty printing the expression emittedTriples.

results in a pure list of triples. It is specialized to use two levels of CPS internally.
The CPS transformation only introduced beta-redexes in-between recursive definitions.
The resulting program is free of administrative beta- and eta-redexes. It consists of
three nested loops.

We have shown how to use our embedded language to compose programs with
control operators. Since our embedding is typed, we were able to prevent some errors
and for instance reject the function wontTypecheck. We have shown and discussed the
code in CPS that we generate. In the next section we start building up the necessary
machinery with an easy first step.

3.2 Basics: Continuation-Passing Style

Our goal is to embed a language with control operators into the dependently typed
language Idris. In this section, we start with the translation of control operators
Shift0 and Reset into CPS and show how to enable do-notation for terms in CPS.

We introduce the following type alias to represent terms in CPS with return type A
and answer type R.

Cps : Type→Type→Type
CpsR A = (A→R)→R

We can also view a term of type CpsR A as potentially having control effects up to a

34



3.2 Basics: Continuation-Passing Style

delimiter that expects type R. In this section, a context from type A to type R is a
function (A→R). We will use the terms context and continuation interchangeably.

Following Materzok and Biernacki [2011], we define the control operator Shift0.
Given a body, it returns a term in CPS. The body takes the captured continuation
from immediate result type A to answer type R and returns R.

Shift0 : ((A→R)→R)→CpsR A
Shift0m = m

We define Shift0 to be the identity function - it is just a shift in perspective so to say.
It is important to note that Shift0 removes the corresponding Reset delimiter and
that both the continuation and the body of Shift0 have to be pure. Neither of them
can have any control effects as those would be undelimited. This is also reflected in
the type of the body and the continuation: both return a pure value of type R.

The control operator Shift0 also has an inverse that we will call RunIn0. It is the
dollar operator from Kiselyov and Shan [2007] but with its arguments swapped. Given
a term in CPS and a context, it runs the term in the context, delimiting any control
effects the term might have.

RunIn0 : CpsR A→ (A→R)→R
RunIn0m = m

The result of RunIn0 is a pure value of type R, it does not have any control effects.
We will later see how Shift0 and RunIn0 make it very natural to walk up and down
the CPS hierarchy.

To recover the classical delimiter Reset we run the computation in the empty
context, which is the identity function.

Reset : CpsA A→A
Resetm = RunIn0m (λx⇒ x)

The return type A and the answer type need to agree. Again, the type makes it clear
that Reset delimits all control effects. The result is a pure value.

To translate pure values into CPS we define the function Pure and to compose terms
in CPS we define the function Bind. The reader might recognize the continuation
monad. And indeed, these are the two combinators that allow us to use do-notation
for our embedded language.

Pure : A→CpsR A
Pure a = λk⇒ k a

Push : (A→CpsR B)→ (B→R)→ (A→R)
Push f k = λa⇒ f a k

Bind : CpsR A→ (A→CpsR B)→CpsR B
Bindm f = λk⇒m (push f k)
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3 Continuation Passing

The operator Pure calls the current continuation with the given value. We define an
auxiliary function Push to push an effectful function (A→CpsR B) onto a context
(B→R) to get a new context (A→R). We call it “push” to emphasize the analogy
between computational contexts and the runtime stack. In Bind we run the given
term in CPS with the given effectful function pushed onto the current continuation.

Let us summarize what we have so far in a small example:

example : Int
example = 1 + Reset (do

x←Shift0 (λk⇒ k (k 100))
Pure (10 + x))

The example evaluates to 121. With Reset we delimit the effectful term to get a value
of type Int and add the value 1. In the argument of Reset we use our control operator
Shift0 to capture the current continuation as k and apply it twice to the value 100.
Like all the continuations that we capture with Shift0, k is pure. We bind the result
of Shift0 to x and return this result after adding 10. Again, the type of example tells
us that it is pure i.e. it does not have any control effects observable from the outside.
All side effects have been encapsulated.

3.3 Representing Control: Staging CPS Expressions

In the previous section, we embedded the control operators Shift0 and RunIn0 into
our meta language Idris. Now we want to reify terms in the embedded language into
our target language: a typed embedding of lambda calculus. In Section 3.6, we will
then extend the target language with primitive operations, defrec and ifthenelse. The
data type Exp represents an expression in lambda calculus in HOAS [Pfenning and
Elliot, 1988] which simplifies the implementation considerably. This was observed
before in a similar setting by Thiemann [1996].

data Exp : Type → Type where

Lam : (Exp a → Exp b) → Exp (a → b)

App : Exp (a → b) → Exp a → Exp b

We write type applications of data type Exp with a red underbar, as in A, to represent
a target language expression of type A. For example, a term in the target language
with function type has type (A→B), but a function in the meta language between
expressions in the target language has type A→B. Additionally, we write an applica-
tion of the one-argument constructor Lam to a function as λx⇒ and the two-argument
constructor App infix as @.

We follow Danvy and Filinski [1992] and add staging annotations to the type of
terms in CPS, that we have introduced in Section 3.2:

Cps : Type→Type→Type
CpsR A = (A→R)→R
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We have two stages: present and future. We also call the present stage static and the
future stage dynamic and use types to distinguish terms in different stages. Present-
stage values of type A have type A and future-stage values of type A have type A.

Notational Conventions The naming convention of writing a type in blue and with
an overbar (like Cps) indicates that we statically know the control flow of a term.
In contrast, a red type with an underbar is the type of an expression in the target
language, which means that the term will only be known dynamically. A black type
is a type in the meta language Idris. Similarly, on the term level, we have a naming
convention where we use red with an underbar for constructors of target language
expressions and black for terms in the meta language Idris.

In this chapter we conflate types and terms in the present stage with types and
terms in the meta language to reduce notational overhead. In Chapter 5 we use a
more precise notation.

We are ready to define staged variants of Shift0, RunIn0 and Reset. The defi-
nitions are exactly the same as in Section 3.2, however, using staging annotations we
can give them more specific types. The types express the fact that we are composing
(dynamic) target language expressions.

Shift0 : ((A→R)→R)→CpsR A
Shift0m = m

RunIn0 : CpsR A→ (A→R)→R
RunIn0m = m

Reset : CpsA A→A
Resetm = RunIn0m (λx⇒ x)

To compose programs in CPS, we define staged variants of Pure and Bind with
auxiliary function Push just like in Section 3.2. Again, on the term level they are
exactly the same, but we give them more specific types.

Pure : A→CpsR A
Pure a = λk⇒ k a

Push : (A→CpsR B)→ (B→R)→ (A→R)
Push f k = λa⇒ f a k

Bind : CpsR A→ (A→CpsR B)→CpsR B
Bindm f = λk⇒m (Push f k)

Expressions that are built using the above functions are meta level functions over
terms of the target language. Eventually, we want to completely reify such expressions
to one expression in the target language. To this end, we define the two symmetric
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functions Reify and Reflect:

Reify : CpsR A→CpsR A
Reifym = λk⇒m (λa⇒ k @ a)

Reflect : CpsR A→CpsR A
Reflectm = λk⇒m @ (λa⇒ k a)

We naturally avoid any administrative beta redexes that would have to be post-reduced
as explained by Danvy and Filinski [1992]. To translate a term in a dynamic context
k, the function reify takes a term where the control flow is known statically but values
are only known dynamically and produces a term in the target language. The function
reflect takes a term in the target language and makes it possible to use it in the source
language.

Given the previous definitions, we can now embed application and abstraction. Ap-
plication takes a term in CPS whose result is an effectful function and a term in CPS
whose result is a value of type A and applies the function to the value. This makes
it necessary to first evaluate both the function and the value and finally reflect the
result of the application. To embed lambda abstractions we take a function (again in
HOAS) and return an abstraction in the target language where we reify the body of
the function applied to the argument.

apply : CpsR (A→CpsR B)→CpsR A→CpsR B
apply mfma = do

f←mf
a←ma
Reflect (f @ a)

lambda : (A→CpsR B)→CpsR (A→CpsR B)
lambda f = Pure (λa⇒Reify (f a))

These definitions coincide with the ones by Danvy and Filinski [1992]. All we did was
to inline the translation meta-function and factor parts into reusable combinators.

Let’s consider the example term from Section 3.2, but with the types presented in
this section.

example : Int
example = 1+ (Reset (do

x←Shift0 (λk⇒ k (k 100))
Pure (10+ x)))

When we pretty print the expression example we get the following:

1 + (10 + (10 + 100))

All control flow is statically known and does not appear in the result.
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To make this example more interesting, let’s abstract the subterm with the call to
Shift0 into its own function resumeTwice.

resumeTwice : Cps Int (Int→Cps Int Int)
resumeTwice = lambda (λn⇒Shift0 (λk⇒ k (k n)))

example′ : Int
example′ = 1+ (Reset (do

x← apply resumeTwice (Pure 100)
Pure (10+ x))))

Pretty printing this term now yields:

1 + (\n ⇒ \k ⇒ k (k n)) 100 (\x ⇒ 10 + x)

With lambda we reify an effectful function into the target language. To use it in the
source language with apply, we have to reflect it. This introduces beta-redexes.

In this section we refined the definitions of Section 3.2 by giving more specific types
and thereby adding staging annotations. We reify terms written in CPS in the source
language into terms in CPS in the target language. The generated lambda expressions
are free of administrative beta-redexes unless we specifically ask for a term to be reified
and reflect it later. In the next section, we will again refine the basic definitions of
Section 3.2, but in a different way.

3.4 Abstracting Control: The CPS Hierarchy

In this section, we will explore a second variation of the basic definitions of Section 3.2.
Instead of adding staging annotations, this time we follow Danvy and Filinski [1990]
and iterate the CPS translation to obtain a hierarchy of control operators. Later,
in Section 3.5, we will combine the extensions of this and the previous section. The
present section only uses terms in the meta language and therefore you will not see
any colors.

The CPS hierarchy [Danvy and Filinski, 1990, Kameyama, 2004, Biernacka et al.,
2011, Materzok and Biernacki, 2012] allows us to use different control effects in the
same program. We can obtain the CPS hierarchy by iterating the CPS transformation.
Since the CPS transformation transforms both types and terms, we will have to iterate
it on both types and terms. As a consequence, we will have multiple answer types,
one for each iteration of the CPS transformation. Concretely this means that the
answer type of the first CPS transformation is again a term in CPS, whose answer
type is then again in CPS and so on. For example using our definition of Cps from
Section 3.2, the type of a term of type A in CPS whose answer types are P, Q and
R would have type Cps (Cps (CpsR Q)P)A. As a shorthand, Figure 3.4 defines the
type of statements StmRS A with a stack shape RS and a return type A. The stack
shape is the list of answer types. Here we can see the power of using dependent types.
We index statements by a list and thus statically track all intermediate answer types
on the type level. We type members of the CPS hierarchy of level n at type StmRS A
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Stm : List Type→Type→Type
Stm (•)A = A
Stm (R :: RS)A = Cps (StmRS R)A

(a) Type of effectful statements, indexed by answer types.

Pure : A→StmRS A
Pure(RS= •) a = a
Pure(RS=(Q :: QS)) a = λk⇒ k a

Push : (A→Stm (R :: RS)B)→ (B→StmRS R)→ (A→StmRS R)
Push f k = λa⇒ f a k

Bind : StmRS A→ (A→StmRS B)→StmRS B
Bind(RS= •) m f = f m
Bind(RS=(Q :: QS)) m f = λk⇒m (Push f k)

(b) Iterated variant of monadic operations.

Lift : StmRS A→Stm (R :: RS)A
Lift = Bind

(c) Lift operation to move between layers of the hierarchy.

Shift0 : ((A→StmRS R)→StmRS R)→Stm (R :: RS)A
Shift0m = m

RunIn0 : Stm (R :: RS)A→ (A→StmRS R)→StmRS R
RunIn0m = m

Reset : Stm (A :: RS)A→StmRS A
Resetm = RunIn0mPure

(d) Iterated variant of control operations.

Figure 3.4: Iterated variant.
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for a stack shape with length n. A statement with an empty stack shape cannot have
any control effects and is a pure value. Because different parts of a program can have
different stack shapes this will allow us to avoid CPS transforming sub-programs when
it is unnecessary.

Again, Figure 3.4 implements Shift0, RunIn0 and Push exactly like in Section 3.2.
We just give them more specific types, replacing R by StmRS R. However, for Pure

and Bind (Figure 3.4) we now have two cases to consider: one where we have an
empty stack shape and one where we have a non-empty stack shape. For an empty
stack shape i.e. pure expressions, in Pure we directly return the given value and in
Bind we apply the second argument to the first. For a non-empty stack shape the
implementation is exactly the one in Section 3.2. Furthermore, Reset does not use the
identity function as empty context, but instead resets with Pure which corresponds
to the function θ of Danvy and Filinski [1990].

The definitions given so far only work with the top-most answer type, but we want a
hierarchy of control operators. While the CPS hierarchy is usually used to implement
a family of control operators based on shift and reset, in this chapter we use it to
construct a family of control operators Shift00, Shift01, Shift02, etc. based on
Shift0 and Reset. Rather than defining them directly we will first define a useful
function Lift (Figure 3.4) that lifts any statement with answer types RS into a larger
context with one more answer type R :: RS. Its implementation is just Bind and the
reader might be surprised that the types just happen to match.

We obtain a family of shifts by iterating the lifting:

Shift00 : ((A→StmRS R)→StmRS R)→Stm (R :: RS)A
Shift00m = Shift0m

Shift01 : ((A→StmRS R)→StmRS R)→Stm (Q :: R :: RS)A
Shift01m = Lift (Shift0m)

Shift02 : ((A→StmRS R)→StmRS R)→Stm (P :: Q :: R :: RS)A
Shift02m = Lift (Lift (Shift0m))

The body of each Shift0i has the same type, since the control operator Shift0i
removes i + 1 delimiters. It thus can only make use of control effects outside of the
(i + 1)th delimiter. This also becomes visible in the result type: the answer type R
has to match the answer type at the corresponding level of the outer computation.
For example in Shift01, the answer type R occurs in the second position in the stack
shape Q :: R :: RS.

Similarly, we can iterate Reset to obtain a family of resets that delimits multiple
levels of control effects at once.

Reset1 : Stm (A :: A :: RS)A→StmRS A
Reset1m = Reset (Resetm)

All answer types have to agree.
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3 Continuation Passing

Equipped with Lift and Reset we can recover the classical control operator shift.

Shift : ((A→Stm (R :: RS)R)→Stm (R :: RS)R)→Stm (R :: RS)A
Shift body = Shift0 (λk⇒Reset (body (λx⇒Lift (k x))))

The difference shows in the type signature for Shift where the body and continuation
live at the same level of the hierarchy as the rest. To implement Shift, we capture
the continuation with Shift0, but delimit the body with Reset. Since the body now
can have the same control effects, we also lift the continuation before passing it to the
body.

An example of using multiple levels of control effects is the partition function. Given
an integer a, it partitions a list of integers into two lists: one containing all integers
less than a and on containing all integers greater or equal to a. We use emit on two
levels of the hierarchy to emit values to the respective partition.

partition : Int→ List Int→Stm [List Int, List Int]Unit
partition a list = case list of

Nil⇒do

Pure ()
Con hd tl⇒ if (a < hd)
then (do

emit hd
partition a tl)

else (do

Lift (emit hd)
partition a tl)

Having seen how to walk down the hierarchy with Reset and walk it up with Lift,
in the next section we will combine Section 3.3 and Section 3.4 in order to reify terms
in the CPS hierarchy.

3.5 Representing and Abstracting Control

Combining the two variations of the previous two sections, we add staging annotations
to the CPS hierarchy. We use the same definition of expressions as before. Our type
of statements with staging annotations now marks the immediate result as well as all
intermediate answer types as dynamic by wrapping them in Exp (Figure 3.5). When
compared to Section 3.4, for the monadic operations (Figure 3.5), control operators
(Figure 3.5) and Lift (Figure 3.5) we only change the types to be more specific
– the implementation is exactly the same. All abstractions and applications that
we introduce are on the meta level which means in using these functions we do not
generate any beta redexes in the target language. The control flow in the CPS hierarchy
is completely static.

Just like in Section 3.3, we want to reify terms. The only difference is, that the
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Stm : List Type→Type→Type
Stm • A = A
Stm (R :: RS)A = (A→StmRS R)→StmRS R

(a) Type of effectful statements, indexed by intermediate answer types.

Pure : A→StmRS A
Pure(RS= •) a = a
Pure(RS=(Q :: QS)) a = λk⇒ k a

Push : (A→Stm (R :: RS)B)→ (B→StmRS R)→ (A→StmRS R)
Push f k = λa⇒ f a k

Bind : StmRS A→ (A→StmRS B)→StmRS B
Bind(RS= •) m f = f m
Bind(RS=(Q :: QS)) m f = λk⇒m (Push f k)

(b) Iterated and staged variant of monadic operations.

Lift : StmRS A→Stm (R :: RS)A
Lift = Bind

(c) Lift operation to move between layers of the hierarchy.

Shift0 : ((A→StmRS R)→StmRS R)→Stm (R :: RS)A
Shift0m = m

RunIn0 : Stm (R :: RS)A→ (A→StmRS R)→StmRS R
RunIn0m = m

Reset : Stm (A :: RS)A→StmRS A
Resetm = RunIn0mPure

(d) Iterated and staged variant of control operations.

Figure 3.5: Iterated and staged variant.
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source level terms live in the CPS hierarchy at an arbitrary level.

Reify : StmRS A→StmRS A
Reify(RS= •) m = m
Reify(RS=(Q :: QS)) m = λk⇒ReifyQS (m (λa⇒ReflectQS (k @ a)))

Reflect : StmRS A→StmRS A
Reflect(RS= •) m = m
Reflect(RS=(Q :: QS)) m = λk⇒ReflectQS (m @ (λa⇒ReifyQS (k a)))

The functions Reify and Reflect are mutually recursive. To reify a pure statement
we don’t need to do anything. It already is an expression in the target language. If
we reify a statement with at least one answer type, we build an abstraction for the
continuation and recursively reify the body after passing the reflected continuation
to it. The body is one level lower in the hierarchy. Symmetrically, to reflect a pure
expression into a statement without any answer types we don’t have to do anything.
If the expression has at least one answer type, we abstract the continuation and reflect
the body after passing the reified continuation to it.

For example, let’s define a function that emits the same value on two levels of control.

emitTwice : Int→Stm (List Int :: List Int :: RS)Unit
emitTwice a = do

emit a
Lift (emit a)

We have made emitTwice polymorphic in the rest of the stack shape RS. In choosing
RS before reification we choose the level of the CPS hierarchy the reified term is in.
For example, when we choose RS to be the empty list •, reify and pretty print the
function emitTwice we get:

(\a ⇒ \k1 ⇒ \k2 ⇒
Con a (k1 () (\as ⇒ k2 (Con a as))))

If we choose RS to be the singleton list containing type unit [Unit], we obtain one more
level of CPS:

(\a ⇒ \k1 ⇒ \k2 ⇒ \k3 ⇒
k1 () (\as ⇒ \k4 ⇒

k2 (Con a as) (\x1 ⇒ k4 x1)) (\as ⇒
k3 (Con a as)))

With the abstraction (\x1 ⇒ k4 x1), we have introduced an eta-redex that when
reduced exposes another eta-redex.

We have shown how to combine the ideas of Section 3.3 and Section 3.4 to take terms
in our source language that use control operators at different levels and generate terms
in our target language in the CPS hierarchy. While we could post-reduce those eta-
redexes, it is advisable to not generate them in the first place, which we will do in
the next section. This is important since the size of fully expanded types in the CPS
hierarchy is exponential in the number of levels.
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3.6 Preventing Eta-Redexes

In the previous section, we generated code for terms in the CPS hierarchy. But the code
generated for statements with multiple answer types contains eta-redexes as observed
by Danvy and Filinski [1992]. They also propose a solution to this problem: they
distinguish whether the context is dynamic or static, avoiding unnecessary reflection
and later reification of an already dynamic context. We can easily translate their
solution to the iterated setting by distinguishing for every context in the CPS hierarchy
whether it is static or dynamic. This will be our final version of the translation.

In Figure 3.6, we introduce a type of contexts CtxRS AB that corresponds to an
effectful function A→StmRS B from A to B with answer types RS. The two variants
of type Ctx let us statically distinguish between static and dynamic contexts. A static
context is an effectful function, like in Section 3.5. A dynamic context is an expression
in the target language of type (A→StmRS B) where Stm is from section 3.4. A
statement now takes a context instead of an effectful function as its continuation.
This makes our type of statements and our type of contexts mutually recursive.

With the distinction between static and dynamic context, Reify and Reflect

are more complicated and use an auxiliary function ReifyCtx. Their definition is
translated from [Danvy and Filinski, 1992], but where they have two mutually recursive
functions that do the translation, we have two cases in ReifyCtx: one for static and
one for dynamic continuations.

Reify : StmRS A→StmRS A
Reify(RS= •) m = m
Reify(RS=(Q :: QS)) m = λk⇒ReifyQS (m (Dynamic k))

Reflect : StmRS A→StmRS A
Reflect(RS= •) m = m
Reflect(RS=(Q :: QS)) m = λk⇒ReflectQS (m @ (ReifyCtx k))

ReifyCtx : CtxRS AR→ (A→StmRS R)

ReifyCtx (Static k) = λa⇒Reify (k a)
ReifyCtx (Dynamic k) = k

While in Section 3.5, in Reify we reflected the context before passing it to the state-
ment m, we now wrap it in the Dynamic constructor. In Reflect, where we previously
generated a lambda term to reify the context, we now call the function ReifyCtx in-
stead. This will avoid generating a lambda abstraction when the context is dynamic.

In previous sections, continuations were functions and therefore we could apply them
to a value to run them. Now we need a function Resume to run a continuation with
a given value.

Resume : CtxRS AR→ (A→StmRS R)
Resume (Static k) = k
Resume (Dynamic k) = λa⇒Reflect (k @ a)
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Symmetrically to ReifyCtx, in Resume we reflect the context when it is dynamic
but do nothing if it is static.

Once again, the definitions for Shift0 and RunIn0 do not change (Figure 3.6).
Their types express that they now operate on contexts. In Pure, Push and Bind

(Figure 3.6) we now have to resume the continuation with Resume instead of directly
calling it. In Reset, we reset the computation into a context that is statically known
to be Pure. Similarly, Push creates a static context.

With this definition of Bind we can’t use do-notation anymore. So we define seq to
call bind with its second argument wrapped in the Static constructor.

seq : StmRS A→ (A→StmRS B)→StmRS B
seq m f = Bindm (Static f)

Monadic composition in do-notation uses static contexts and still does not produce
beta-redexes. In Reify and Reflect we take advantage of our ability to also pass
dynamic contexts to statements to avoid eta-redexes.

3.6.1 Primitives, Branching and Recursion

Using this final version of our language, we now show how to add primitives, ifthenelse
and defrec. In Section 3.3, we defined apply and lambda in the same way as Danvy and
Filinski [1992]. However, it turns out that those definitions don’t fit nicely with the
rest of the language. We rather propose the following more symmetrical definitions.

apply : (A→StmRS B)→ (A→StmRS B)

apply f = λa⇒Reflect (f @ a)

lambda : (A→StmRS B)→ (A→StmRS B)

lambda f = λa⇒Reify (f a)

Here, the definition of apply does not take statements that evaluate to the function
and the argument, respectively. Instead, it assumes they are already values and simply
reflects the application. Likewise, the definition of lambda does not return a statement
that then evaluates to the created lambda abstraction. Instead, the result of lambda
is immediately the reified lambda abstraction.

In similar spirit, we do not CPS transform pure primitives like +. While such a
translation is possible as the following shows, we rather ask the user to explicitly use
do-notation and bind.

(+) : StmRS Int→StmRS Int→StmRS Int
(+)mx my = do

x←mx
y←my
Pure (x+ y)

This helps us to exploit the type-level distinction between pure expressions and effectful
statements.
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Stm : List Type→Type→Type
Stm • A = A
Stm (R :: RS)A = CtxRS AR→StmRS R

dataCtx : List Type→Type→Type→Typewhere
Static : (A→StmRS B)→CtxRS AB
Dynamic : (A→StmRS B)→CtxRS AB

(a) Mutually recursive types of statements and contexts.

Pure : A→StmRS A
Pure(RS= •) a = a
Pure(RS=(Q :: QS)) a = λk⇒Resume k a

Push : Ctx (R :: RS)A B→CtxRS BR→CtxRS AR
Push f k = Static (λa⇒Resume f a k)

Bind : StmRS A→CtxRS AB→StmRS B
Bind(RS= •) m f = Resume f m
Bind(RS=(Q :: QS)) m f = λk⇒m (Push f k)

(b) Iterated and staged variant of monadic operations.

Lift : StmRS A→Stm (R :: RS)A
Lift = Bind

(c) Lift operation to move between layers of the hierarchy.

Shift0 : (CtxRS AR→StmRS R)→Stm (R :: RS)A
Shift0m = m

RunIn0 : Stm (R :: RS)A→CtxRS AR→StmRS R
RunIn0m = m

Reset : Stm (A :: RS)A→StmRS A
Resetm = RunIn0m (StaticPure)

(d) Iterated and staged variant of control operations without eta-redexes.

Figure 3.6: Iterated and staged variant avoiding eta-redexes.
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Assuming the target language has a primitive if_then_else of type Bool→A→A→A,
we define ifthenelse for statements with an arbitrary stack shape.

ifthenelse : Bool→StmRS A→StmRS A→StmRS A
ifthenelse(RS= •) b mtme = if b thenmt elseme
ifthenelse(RS=(Q :: QS)) b mtme = λk⇒ ifthenelse b (mt k) (me k)

In case the stack shape is empty, we are already operating on values and can directly
use the target language’s if_then_else. In the other case, we abstract over the
current context and recurse, passing the context to both the then-branch and the
else-branch. This duplicates the static context and might result in a blow up of the
size of the generated code. To avoid this duplication we can reify the context, give
it a name and pass the reflected name to the two branches. Also, to generate the
code in Figure 3.3 we performed a bit of partial evaluation (not shown here) to avoid
generating an if_then_else, when the dynamic condition happens to be statically
known to be True or False.

To implement defrec, we assume the target language has a letrec primitive of type
((A→B)→A→B)→ (A→B).

defrec : ((A→StmRS B)→A→StmRS B)→A→StmRS B
defrec body = λa⇒Reflect (letrec (λf⇒λx⇒
Reify (body (λy⇒Reflect (f @ y)) x)) @ a)

Granted, the implementation of defrec is rather complicated, but luckily we have the
types to guide us with the insertion of staging annotations. The outermost call to
Reflect allows us to use defrec with statically known control flow. We necessarily
need to reify the body in order to use it in letrec. Finally, the innermost Reflect

call reflects the recursive application to be used by body.
To summarize, in this section we have introduced a new type of contexts that allows

us to statically distinguish between static and dynamic contexts. This helps us to avoid
eta-redexes in the generated code. We have shown how to add primitives, ifthenelse
and defrec to the source language, given that the target language has corresponding
features.

3.7 Related Work

The amount of work on delimited continuations and on two-stage lambda calculus is
vast, therefore we only compare the most closely related publications.

We base our basic control operator Shift0 and its CPS translation on prior work
by Materzok and Biernacki [2011] who introduce a type system with subtyping, type
inference and implicit coercions. In contrast, we require users to explicitly use Lift.
Additionally, they support answer type modification while we do not. Our statements
are indexed by the stack shape, which is the list of answer types. Generally, to support
answer type modification, effectful programs would have to be indexed by a tree of
types.
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3.8 Conclusion

We implement the CPS hierarchy first presented by Danvy and Filinski [1990]. How-
ever, our family of control operators is based on shift0 instead of shift. They trans-
late the entire program at a fixed level n of the CPS hierarchy, while we allow for
different subterms of a program to live on different levels. While they provide types to
ease understanding, their source language and meta language are untyped. We have
types in the source language, use a typed meta language, and show how the two type
systems cooperate.

This chapter is explicitly based on the classical work by Danvy and Filinski [1992].
The authors explain how to avoid administrative beta- and eta-redexes during a CPS
transformation, by writing the translation itself in CPS. They also show the importance
of distinguishing static from dynamic application and abstraction. In this chapter, we
embrace many important insights from their work and extend them to iterated CPS.

3.8 Conclusion

In this chapter we have reimplemented and combined shift0 [Materzok and Biernacki,
2011], abstracting control [Danvy and Filinski, 1990], and representing control [Danvy
and Filinski, 1992] in a typed language combining different techniques and tradeoffs
to ease the implementation. We are now able to write programs in a typed language
using a family of control operators and generate code in any language that supports
first-class functions. We extended our source language with primitives, ifthenelse
and defrec and show how they interact nicely with our embedding. To get there,
we reconstructed well known techniques and translated them to Idris and the typed
setting. The individual steps were simple and guided by the types.

Prior work on the CPS hierarchy fixes a level of n control operators for the entire
program upfront. Since we want to implement effect handlers, which are nested, we
want to allow different parts of the program to live at different levels. It turns out
that taking shift0 rather than shift as the basis for the family of control operators
is essential for this.
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Abstract. In Chapter 2 we have seen effect handlers in explicit capability-
passing style. The semantics of lexical effect handlers as well as their imple-
mentations use multi-prompt delimited control. They rely on freshly generated
labels at runtime, which associate effect operations with their handlers.

In Chapter 3 we have revisited classical work on continuation-passing style (CPS).
In iterated continuation-passing style functions receive not one but potentially
multiple continuations. This allows us to translate nested delimiters and move
between different levels of control.

The use of labels and multi-prompt delimited control as an implementation tech-
nique for lexical effect handlers is theoretically and practically unsatisfactory. In
this chapter we show that typed lexical effect handlers do not need the full power
of multi-prompt delimited control. We present a CPS translation for lexical ef-
fect handlers to pure System F in iterated CPS. It preserves well-typedness and
simulates the traditional operational semantics. Importantly, it does so without
any labels.

We introduce type-level regions and term-level subregion evidence. To find the
correct delimiter, we interpret subregion evidence constructively. Whenever an
effect operation is used, there must be evidence that a handler with the corre-
sponding label is on the stack. We observe that this evidence does not merely
tell us whether a label is on the stack, but exactly where it is.

Subregion evidence passing is the third ingredient of the compilation technique
presented in this thesis.

In Chapter 5 we will evaluate our implementation technique for lexical effect han-
dlers as a translation to STLC in iterated CPS. This translation uses monomor-
phisation and specialization of effect-polymorphic functions to achieve high per-
formance of generated programs.

This chapter is based on the following publication: Philipp Schuster, Jonathan Immanuel
Brachthäuser, Marius Müller, and Klaus Ostermann. 2022. “A Typed Continuation-Passing
Translation for Lexical Effect Handlers”. Proc. ACM Conference on Programming Language

Design and Implementation, (PLDI) DOI: https://doi.org/10.1145/3519939.3523710
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4.1 Programming with Regions and Evidence

In this section we informally introduce ΛCap, a language with lexical effect handlers,
regions, and subregion evidence. We motivate the key ideas in this chapter by example.
In Section 4.2 we formally define the syntax, typing, and operational semantics of ΛCap.
In Section 4.3 we define a CPS translation from ΛCap to System F that preserves the
operational semantics.

4.1.1 Using Lexical Effects

The purpose of an effect system is to guarantee effect safety. Intuitively effect safety
means that every effect operation is eventually handled. More concretely, in the case
of lexical effect handlers, it means that every capability is used in the extent of the
corresponding handler. We call this dynamic extent a region [Tofte and Talpin, 1997,
Grossman et al., 2002]. To guarantee effect safety, we keep track of the regions in
which a computation can safely run.

As a starting point, consider the following simple example in System Ξ (Chapter 2)
in explicit capability-passing style, which asks for two numbers and adds them:

effectAsk : Unit→ Int

def askTwice(ask1 : Ask, ask2 : Ask) {
do ask1(()) + do ask2(())
}

We explicitly abstract over and pass two different capabilities ask1 and ask2 of the
same effect Ask. The function askTwice has the following type:

(Ask, Ask)→ Int

It receives two capabilities of the effect Ask and returns an Int. In System Ξ all ca-
pabilities and blocks were second class. Naturally, this restriction ensures that all
capabilities follow a stack discipline, since they cannot be returned. In this chapter we
lift this restriction with an explicit region system.

Example 7. Consider the same function written in ΛCap. Each capability (e.g., ask1
and ask2) is typed in their own type-level region (e.g., r1 and r2).

def askTwice[r, r1, r2 ; n1 : r ³ r1, n2 : r ³ r2](ask1 : Ask[r1], ask2 : Ask[r2]) at r {
do ask1[n1](()) + do ask2[n2](())
}

In ΛCap functions explicitly abstract over three things:

1. Functions abstract over regions (e.g., r, r1, and r2). Inspired by the Single Effect
Calculus [Fluet and Morrisett, 2004], in ΛCap there are no compound effects (such
as e.g. [r1, r2]). Instead, a function like askTwice always only runs in a single
region (e.g., r).
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2. Functions abstract over subregion evidence (e.g., n1 and n2). We say that a region
r subsumes another region r1 (written r ³ r1) if all capabilities that can be used
in r1 can also be used in r. Subregion evidence witnesses this subsumption.

3. Functions abstract over capabilities (e.g., ask1 and ask2). Every capability has
a region where it is safe to use. When a capability like ask1 is used, we require
explicit evidence (e.g., n1) that the current region subsumes the region of the
capability.

Consequently, the function askTwice has the following type:

∀[r, r1, r2 ; r ³ r1, r ³ r2](Ask[r1], Ask[r2])→r Int

This type is very explicit about capabilities, regions and subregion evidence. It guar-
antees effect safety.

4.1.2 Handling Lexical Effects

Lexical effect handlers in explicit capability-passing style introduce a name for each
capability. Consider the following example in System Ξ:

handle { ask1⇒
handle { ask2⇒

askTwice(ask1, ask2)
}with { (u, k)⇒ k(42) }
}with { (u, k)⇒ k(43) }

In this example ask1 and ask2 are the names of two different capabilities for the Ask
effect. We explicitly pass these capabilities to askTwice. Within askTwice there are
two uses of the ask operation. Each of them will be handled by a different handler.
The example evaluates to 85. It is possible to swap capabilities or to pass the same
capability twice.

Example 8. Now consider the same program in ΛCap. Each handler introduces three
things: firstly, a fresh region (e.g., r1) the handled program will run in. Secondly,
evidence (e.g., n1 : r1 ³ ¦) that the fresh region subsumes the outer one. Thirdly, a
term-level capability (e.g., ask1 : Ask[r1]) containing the handler implementation. The
capability’s region is the freshly introduced region.

handle { [r1 ; n1 : r1 ³ ¦](ask1 : Ask[r1])⇒
handle { [r2 ; n2 : r2 ³ r1](ask2 : Ask[r2])⇒

askTwice[r2, r1, r2 ; n1, 0](ask1, ask2)
}with { (u, k)⇒ k(42) }
}with { (u, k)⇒ k(43) }

In ΛCap, each statement is checked in a region. In this example, the overall program is
checked in region ¦, the statement inside of the first handler is checked in region r1,
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and the call to askTwice is checked in region r2. The evidence each handler introduces
witnesses that the freshly introduced region subsumes the outer region.

In comparison with System Ξ, the call to askTwice is more explicit. We explicitly
apply functions to regions, evidence, and capabilities. Notably, the first evidence
argument (i.e., n1) witnesses that r2 subsumes r1, and the second evidence argument
(i.e., 0) witnesses that r2 subsumes r2 itself, that is reflexivity. It is possible to swap
capabilities or to pass the same capability twice, in which case the region- and evidence
arguments must be adjusted accordingly.

4.1.3 Lexical Reasoning

Lexical handlers are not only useful to disambiguate different instances of the same
effect [Bračevac et al., 2018a]. They also offer improved reasoning tools in the presence
of higher-order functions [Zhang et al., 2016, Zhang and Myers, 2019]. Consider the
following example, again in System Ξ:

handle { exc1⇒
def abort() {do exc1(()) };
handle { exc2⇒

abort()
}with { (u, k)⇒ ”aborted two” }
}with { (u, k)⇒ ”aborted one” }

We install an exception handler and then define a function abort, which immediately
fails. Because handlers in System Ξ are lexical, we know that the function abort will
always abort to the handler which introduced the capability exc1. This is the case,
even if it is used under another exception handler and even if this handler was installed
inside of another function. Hence the name “lexical” effect handler. As we have seen,
operationally, abort closes over a fresh label that is bound to exc1.

Example 9. Again, the same example in ΛCap is more explicit:

handle { [r1, n1 : r1 ³ ¦](exc1 : Exc[r1])⇒
def abort[r, n : r ³ r1]() at r {do exc1[n](()) };
handle { [r2, n2 : r2 ³ r1](exc2 : Exc[r2])⇒

abort[r2, n2]()
}with { (u, k)⇒ ”aborted two” }
}with { (u, k)⇒ ”aborted one” }

The function abort is region polymorphic. It abstracts over its region r. However, since
it uses the capability exc1 it is only safe to call abort in region r1 or subregions of it.
Therefore we have to constrain the region polymorphism and require that r subsumes
r1. Effectively, this makes sure that we only use abort in the dynamic extent of the
handler that introduced exc1. Concretely, to express constrained effect polymorphism,
we abstract over evidence n that witnesses r ³ r1. We provide this evidence at the
use of exc1.

54



4.1 Programming with Regions and Evidence

4.1.4 Operational Semantics and CPS Translation

Before going into the technical details of ΛCap, here we offer a high-level overview over
the operational semantics of ΛCap and illustrate our CPS translation to System F.

Step One: Handler Passing

We present a typed CPS translation for lexical effect handlers to pure System F. To
do so, it is necessary to get rid of runtime-generated labels. At first sight, this seems
rather difficult, since labels are crucial to distinguish between different instances of the
same effect at runtime and play an important role in the semantics of closures. After
all, lexical reasoning is established by closing over labels.

The operational semantics of ΛCap is based on an abstract machine for multi-prompt
delimited control. It generates fresh labels at runtime to disambiguate effect instances,
and pushes frames with these labels onto a runtime stack to delimit the extent of effect
operations. As mentioned in the introduction, we pass the handler implementation
down to where it is used instead of allocating it on the runtime stack.

In Example 8, after taking a few steps and having handled the use of ask1, the state
of the machine is the following.

ï do cap@3a1 { (u, k)⇒ k(42) }[•](()) ∥
43 + □ :: #@3a1 {□ } :: #@b29 {□ } :: • ð

It consists of a statement and a stack, separated by ∥. Since we already executed
the call to ask1, the stack contains the frame 43 + □. It also contains two de-
limiters, one for the inner handler (marked with @3a1) and one for the outer han-
dler (marked with @b29). The statement performs an effect and uses the capability
cap@3a1{ (u, k)⇒ k(42) }. The capability consists of the runtime label @3a1 as well as
the handler implementation.

Our CPS translation does not rely on runtime labels to find the correct handler
implementation, because we pass the handler implementation down to its use-site
(Chapter 2). The translation of this machine state is the following.

((λu⇒λk⇒ k 42) ())
(λx⇒ (λx1 ⇒λk1 ⇒ k1 x1) (43 + x)) (λx2 ⇒λk2 ⇒ k2 x2) done

The first line shows the translation of the statement which uses the capability. We
simply translate a capability by translating its handler implementation. The second
line shows the translation of the stack. In this example the two delimiters partition
the stack into three segments which we translate to three continuation arguments on
the second line. The label of the capability is associated with the first delimiter. The
handler implementation will correctly capture the first of the three continuations.

Step Two: Constructive Evidence

The operational semantics of ΛCap compares the labels at delimiters to capture the
correct part of the stack when an effect operation is used. To guarantee that the search
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for a label is always successful, we let regions and subregion evidence be lists of labels.
This is important for our proof of effect safety (Theorem 12), but neither regions nor
evidence play any role computationally. But, as mentioned in the introduction, in our
CPS translation we give computational meaning to evidence, and use evidence terms
to find the correct handler. Surprisingly, this also works in the presence of higher-order
functions and closures.

In Example 9, we used abort under a different handler for the same exception effect.
Furthermore, we instantiated its region r with r2 and passed evidence n2 witnessing
that r2 ³ r1. After taking a few steps, the state of our abstract machine looks like
this:

ï do cap@44c { (u, k)⇒ ”aborted one” }[@8ab :: • ](()) ∥
#@8ab {□ } :: #@44c {□ } :: • ð

In this example, the label @44c of the capability is associated with the second (that
is, outer) delimiter on the stack. It is crucial that the continuation k is bound to the
entire context up to this delimiter. Our abstract machine achieves this by comparing
labels until the matching delimiter is found. How can we achieve the same in our CPS
translation where no labels exist?

We observe that in this example the evidence @8ab :: • contains exactly the labels
of the delimiters we have to skip. More generally, following [Xie et al., 2020], we will
show that this is always the case (Theorem 13). The central idea is to take advantage
of this fact and give computational content to subregion evidence in order to capture
the correct part of the stack.

Concretely, we translate this machine state to the following term in System F:

(λm⇒λk⇒λj⇒m (λx⇒ k x j)) ((λu⇒λk⇒λk3 ⇒ k3 ”aborted one”) ())
(λx1 ⇒λk1 ⇒ k1 x1) (λx2 ⇒λk2 ⇒ k2 x2) done

The first line corresponds to the statement that uses the capability. As before, the
translated handler implementation is applied to the argument (). Importantly, we
translate the singleton evidence @8ab :: • to the first term, called Lift (Chapter 3).
Intuitively, it will capture the first continuation and push it onto the second one. This
way, although there are no labels, the program executes correctly. In the next section,
we start formalizing these ideas by introducing ΛCap.

4.2 The Language ΛCap

In this section, we formally introduce our source language ΛCap, a basic calculus with
lexical effect handlers, regions, and subregion evidence. We define a type system and
specify the operational semantics as an abstract machine.

The ΛCap calculus is sound and effect safe: we prove the usual theorems of Progress
(Theorem 10) and Preservation (Theorem 11). Effect safety then follows as a corollary:
whenever we use an effect, the corresponding handler is on the stack (Corollary 12).
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Moreover, we establish the correspondence between type-level regions and term-level
evidence (Corollary 13).

We have mechanized the formalization of ΛCap and its operational semantics in the
Coq theorem prover [Bertot and Castéran, 2004], including the theorems of Progress
and Preservation. The mechanization also includes the translation to System F as well
as a proof of well-typedness preservation (Theorem 14).

4.2.1 Syntax

Figure 4.1 defines the syntax of ΛCap. We use fine-grain call-by-value [Levy et al.,
2003] and syntactically distinguish between statements, which can have effects, and
pure values.

Syntax of Statements Since statements can have effects, it makes for a clearer pre-
sentation to explicitly sequence them and to explicitly return values. Calling functions,
performing effects, and handling effects are statements. We apply a function to a list
of regions ρ, a list of evidence terms e, and a list of values v . We use a capability
to perform an effect with do v0[e](v), where v0 is the capability, e is evidence, and v

is the argument. We handle a statement with handle { . . . }with { . . . }. The handled
statement receives a region r , evidence n, and a capability c. The handler receives an
argument x and a continuation k .

Syntax of Values Functions (i.e., { [r ; n : γ](x : τ) at ρ⇒ s}) abstract over a list of
type-level region parameters (i.e., r), a list of evidence variables (i.e., n : γ), and a
list of term-level value parameters (i.e., x : τ). Importantly, each function is defined
to run exactly in a region ρ. The list of region parameters scopes over the evidence
parameter types, the parameter types, the return type, the annotated region ρ, and
the body s of the function. We omit type abstraction from this presentation since it
is orthogonal to the rest of the calculus. Our mechanized formalization includes type
abstraction and application.

Syntax of Evidence Evidence expressions are either an evidence variable n, the
empty evidence 0 witnessing reflexivity of subregioning, or the composition of evi-
dence e · e, witnessing the transitivity of subregioning.

Syntax of Types Apart from the standard base and function types, ΛCap includes a
type of capabilities. The type Cap ρ τ1 τ2 indicates that a capability of this type can
be used in a region ρ or any subregion and can be applied to an argument of type τ1
to get a result of type τ2.

Syntax of Regions and Constraints Regions ρ are either region variables r or the
top-level region ¦. Intuitively, the top-level region signals that no effect operations
can be used. Constraints γ express subregion relationships.

57



4 Evidence Passing

Statements
s ::= val x = s; s sequencing of statements

| return v returning values
| v [ρ ; e](v) calling functions
| do v [e](v) performing effects
| handle { [r ; n](c)⇒ s }

with { (x , k)⇒ s } handling effects
Values
v ::= x , f , c, . . . variables

| () | 0 | 1 | . . . | true | . . . primitives
| { [r ; n : γ](x : τ) at ρ⇒ s} closures

Evidence
e ::= n, . . . evidence variables

| 0 reflexive evidence
| e · e transitive evidence

Types
τ ::= Int | Bool | . . . primitives

| ∀[r ; γ](τ)→ρ τ functions
| Cap ρ τ τ capabilities

Regions
ρ ::= r region variable

| ¦ top-level region

Constraints
γ ::= ρ ³ ρ subregion

Γ ::= ∅ empty environment
| Γ, r region binding
| Γ, n : γ evidence binding
| Γ, x : τ value binding

Figure 4.1: Syntax of ΛCap.
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Statement Typing

Γ
↑

ρ
↑

¢ s
↑

: τ
³

Γ ρ ¢ s0 : τ0 Γ, x0 : τ0 ρ ¢ s : τ

Γ ρ ¢ val x0 = s0; s : τ
[Val]

Γ ¢ v : τ

Γ ρ ¢ return v : τ
[Ret]

Γ ¢ v0 : ∀[r ; γ](τ)→ρ0 τ0 Γ ¢ e : γ[r 7→ ρ] Γ ¢ v : τ [r 7→ ρ] ρ = ρ0[r 7→ ρ]

Γ ρ ¢ v0[ρ ; e](v) : τ0[r 7→ ρ]
[App]

Γ ¢ v0 : Cap ρ′ τ1 τ2 Γ ¢ e : ρ ³ ρ′ Γ ¢ v : τ1

Γ ρ ¢ do v0[e](v) : τ2
[Do]

Γ, r , n : r ³ ρ, c : Cap r τ1 τ2 r ¢ s0 : τ Γ, x : τ1, k : τ2→ρ τ ρ ¢ s : τ

Γ ρ ¢ handle { [r ; n](c)⇒ s0 }with { (x , k)⇒ s } : τ
[Handle]

Value Typing

Γ
↑

¢ v
↑

: τ
³

Γ(x ) = τ

Γ ¢ x : τ
[Var] Γ ¢ 1 : Int

[Lit]

Γ, r , n : γ, x : τ ρ ¢ s0 : τ0

Γ ¢ { [r ; n : γ](x : τ) at ρ⇒ s0 } : ∀[r ; γ](τ)→ρ τ0
[Fun]

Evidence Typing

Γ
↑

¢ e
↑

: γ
³

Γ(n) = ρ1 ³ ρ2

Γ ¢ n : ρ1 ³ ρ2
[EviVar] Γ ¢ 0 : ρ ³ ρ

[Reflexive]

Γ ¢ e1 : ρ ³ ρ′ Γ ¢ e2 : ρ′ ³ ρ′′

Γ ¢ e1 · e2 : ρ ³ ρ′′
[Transitive]

Figure 4.2: Type system of ΛCap.

4.2.2 Typing

Figure 4.2 defines the typing rules of ΛCap. We type statements, values, and evidence
with different judgement forms. While all three are typed in an environment Γ contain-
ing region-, evidence-, and value bindings, only statements are typed in a given region
ρ. Statements may perform effectful (that is, serious in the terminology of Reynolds
[1972]) computation, which is only safe in certain contexts. In contrast, values are
pure (that is, trivial) and can be used in any context.

Typing of Statements Rule Val types sequencing of statements. We type the two
statements s0 and s in the same region ρ of the compound statement. Returning a
result from a computation (rule Ret) can be typed in any region. In rule App we
apply a function v0 to a list of regions ρ, a list of evidence e, and a list of arguments v .
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l ::= @a5f | @4b2 | . . .

v ::= . . . | capl { (x , k)⇒ s } | resume(H)

M ::= ïs ∥Kð executing
| ïdo v [w ](v) ∥K ∥Hð unwinding
| ïresume(H)(v) ∥Kð rewinding

K ::= • | F :: K

H ::= • | F :: H

F ::= val x = □; s
| #l {□ }

Figure 4.3: Syntax of the abstract machine for ΛCap.

The type of v0 is a function type annotated with a region ρ0. The overall statement
is typed in a region ρ. The premise ρ = ρ0[r 7→ ρ] requires that, after substituting the
regions ρ for the region variables r , both have to syntactically be the same. Note that
we do not have any implicit subtyping here or elsewhere. Subregioning exclusively
occurs through the passing of explicit subregion evidence. In rule Do, we type the
use of a capability v0 with evidence e and argument v . When a capability is used, we
require explicit evidence that it is safe to do so. The evidence e witnesses that the
region ρ of the statement subsumes the region of the capability ρ′. Again, there is no
implicit subtyping and no subsumption rule. In rule Handle, the delimited statement
s0 is typed in a fresh region r . The evidence variable n witnesses that the fresh region
r subsumes the outer region ρ of the whole statement. The capability c can be used
in region ρ or any subregion. The statement s in the handler clause is typed in the
same region as the overall statement. It receives a parameter x and a continuation k .
The latter is a function which can only be called in precisely region ρ. This is because
the continuation is itself effectful, and we want to ensure that calling it is safe.

Typing of Values The typing rules for variables Var and primitives Lit are standard.
Rule Fun types functions. We type the body s0 of the function in an environment
extended with region parameters r , evidence parameters n : γ, and value parameters
x : τ . Every function is annotated with a region ρ that specifies exactly the region
that the function has to be called in. This region ρ is also the region in which we type
the body s0. The region parameters r may appear in the parameter types, the return
type, the function’s region ρ, and body s0. This allows us to write region-polymorphic
functions that can run in any region. As we have seen in Example 9, evidence param-
eters allow us to write region-polymorphic functions that are constrained to only run
in a subregion of a given region.

Typing of Evidence Evidence variables are looked up in the typing environment. Re-
flexivity evidence 0 witnesses that every region is a subregion of itself, and transitivity
evidence e1 · e2 witnesses the transitivity of subregioning, which is reflected in their
typing rules.
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(return) ïreturn v ∥ val x = □; s :: Kð →
ïs[x 7→ v ] ∥Kð

(push) ïval x = s0; s ∥Kð →
ïs0 ∥ val x = □; s :: Kð

(call) ï{ [r ; n : γ](x : τ) at ∗ ⇒ s0 }[∗ ; ∗](v) ∥Kð →
ïs0[r 7→ ∗,n 7→ ∗, x 7→ v ] ∥Kð

(handle) ïhandle { [r ; n](c)⇒ s0 }with { (x , k)⇒ s } ∥Kð →
ïs0[r 7→ ∗,n 7→ ∗, c 7→ capl { (x , k)⇒ s }] ∥#l {□ } :: Kð

where l = generateFresh()

(pop) ïreturn v ∥#l {□ } :: Kð →
ïreturn v ∥Kð

(perform) ïdo capl { (x , k)⇒ s }[∗](v) ∥Kð →
ïdo capl { (x , k)⇒ s }[∗](v) ∥K ∥ • ð

(unwind) ïdo capl { (x , k)⇒ s }[∗](v) ∥ val x = □; s :: K ∥Hð →
ïdo capl { (x , k)⇒ s }[∗](v) ∥K ∥ val x = □; s :: Hð

(forward) ïdo capl { (x , k)⇒ s }[∗](v) ∥#l′ {□ } :: K ∥Hð →
ïdo capl { (x , k)⇒ s }[∗](v) ∥K ∥#l′ {□ } :: Hð

where l ̸= l ′

(capture) ïdo capl { (x , k)⇒ s }[∗](v) ∥#l′ {□ } :: K ∥Hð →
ïs[x 7→ v , k 7→ resume(#l′ {□ } :: H)] ∥Kð

where l = l ′

(rewind) ïresume(F1 :: F2 :: H)(v) ∥Kð →
ïresume(F2 :: H)(v) ∥F1 :: Kð

(resume1) ïresume(val x = □; s :: • )(v) ∥Kð →
ïs[x 7→ v ] ∥Kð

(resume2) ïresume(#l {□ } :: • )(v) ∥Kð →
ïreturn v ∥Kð

Figure 4.4: Steps of the abstract machine for ΛCap.
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4.2.3 Operational Semantics

Figure 4.3 lists the syntax and Figure 4.4 lists the reduction rules of the abstract
machine semantics of ΛCap.

Labels As in Section 2.3.3, the semantics of ΛCap is given as a machine for multi-
prompt delimited control. Our operational semantics uses labels l , which are freshly
generated at runtime. Later in the CPS translation (Section 4.3), we will see how to
avoid using runtime labels.

Runtime Values In order to specify the operational semantics, we extend the syn-
tax of values with two additional runtime constructs. Firstly, runtime capabilities
capl { (x , k)⇒ s } which consist of a label l and a handler implementation. Secondly,
continuations resume(H) which contain a resumption H.

Machine States There are three different kinds of machine states. The component
they all have in common is a runtime stack K which is a list of frames. A frame is
either a sequencing frame val x = □; s or a delimiter frame #l {□ } with a label l . The
executing state has the form ïs ∥Kð. It consists of the statement s under evaluation
and the runtime stack K. The unwinding state consists of a performing statement, the
runtime stack K, and a resumption H. In the unwinding state we unwind the stack K
and push frames onto the resumption. The rewinding state consists of a resumption
H, an argument v , and the runtime stack K. In the rewinding state we push frames
from the resumption back onto the stack.

Reduction Rules The rules of the abstract machine in Figure 4.4 are mostly standard.
While in ΛCap, we are very explicit about regions and evidence, we omit regions and
evidence from this presentation of the operational semantics (i.e., write ∗), because
they are operationally irrelevant. But as we will see, they play an important role in
our safety proof, in our CPS translation, and in our proof of simulation. The first rule
(return) returns to the next frame on the stack. The (push) rule focuses on s0 and
pushes a frame on the stack. Rule (call) performs reduction by simultaneously sub-
stituting region arguments ρ for region variables r , evidence arguments e for evidence
variables n, and values v for value parameters x . Rule (handle) generates a fresh label
and pushes a delimiter frame with this label onto the stack. The capability variable
c is substituted by a capability that contains this label l and the handler implemen-
tation. Rule (pop) pops a delimiter off the stack upon normal return. Rule (perform)
transitions from normal execution to unwinding. Rules (unwind) and (forward) move
the next frame from the runtime stack onto the resumption. Rule (capture) executes
the handler statement s with argument v . The continuation k is a resumption that
rewinds the stack when called. This resumption must contain the delimiter frame
#l′ {□ }. Rule (rewind) repushes the resumption onto the stack frame-by-frame until
it is empty and rules (resume1) and (resume2) resume execution by returning the
argument v to the stack.
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e ::= . . . | w evidence value
ρ ::= . . . | u runtime region

w ::= • | l :: w evidence values
u ::= • | l :: u runtime regions

RJ · K : K→ u

RJ • K = •
RJ val x = □; s :: K K = RJK K
RJ#l {□ } :: K K = l :: RJK K

N J · K : e→w

N J0 K = •
N J e1 · e2 K = N J e1 K++N J e2 K
N Jw K = w

∅ RJK K ¢ s : τ ¢ K : τ

¢ ïs ∥Kð ok
[Machine]

u0 = w ++ u1

∅ ¢ w : u0 ³ u1
[Evidence]

Γ, x : τ1, k : τ2→u τ u ¢ s : τ

∅ ¢ capl { (x , k)⇒ s } : Cap (l :: u) τ1 τ2
[Capability]

Figure 4.5: Proof invariants of the abstract machine.

4.2.4 Soundness

ΛCap satisfies the standard soundness properties.

Theorem 10 (Progress).
If ¢ M ok , then either M is of the form ïreturn v ∥ • ð for some value v , or M→M

′

for some machine M
′.

Theorem 11 (Preservation).
If ¢ M ok and M→M

′ then ¢ M
′ ok .

In order to prove Progress and Preservation, we need to establish invariants, which
are maintained by machine reduction. Figure 4.5 lists the most important concepts
needed for our proofs.

Extended syntax We extend the syntax of values with evidence values w , and the
syntax of regions with runtime regions u. Both are lists of labels. The top-level region
¦ is the empty runtime region •.

Connecting regions, evidence, and the stack To establish the connection between
type-level regions ρ and the concrete runtime stack K, we define a semantic function
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RJ · K which computes the ordered list of labels of delimiters on the stack. This is
the runtime region of a stack. We define a semantic function N J · K, which normalizes
evidence expressions to a list of labels.

Runtime typing In the typing of machine states, we type the statement s with the
runtime region of the current stack K. In the typing of evidence values, we ensure
that the evidence value w is the precise difference between runtime regions u0 and u1.
In the typing of capabilities, the region of the capability is a runtime region where
the label of the capability is the first element. In the handler implementation of the
capability, the continuation is a function which has to run exactly in the rest of the
runtime region of the capability.

Maintaining Invariants To maintain these invariants throughout reduction, in the full
version of our reduction semantics, we substitute runtime regions for region variables
and evidence values for evidence variables. For example, in step (handle) we substitute
l :: RJK K for the region variable r and we substitute the singleton evidence value
l :: • for the evidence variable n. In rule (forward) the evidence that occurs in the
statement must be of the form l ′ :: RJK K before the step and just RJK K after the
step.

4.2.5 Additional Properties

The runtime typing rules are designed to precisely reflect the invariants of the opera-
tional semantics. They very tightly constrain the possible machine states that can be
encountered during execution. Effect safety follows as a corollary:

Corollary 12 (Effect Safety).
If ïdo capl { (x , k)⇒ s }[e](v) ∥Kð ok , then l is in RJK K.

Whenever we use a capability, a delimiter with the corresponding label is on the
runtime stack.

However, we can prove an even stronger property. Whenever we use a capability,
the evidence value precisely reflects the runtime stack. This corollary is inspired by
the similarly named theorem of Xie et al. [2020].

Corollary 13 (Evidence Correspondence).
If ïdo v0[e](v) ∥Kð ok , then RJK K = N J e K++(l :: u) where l is the label of v0 and
u is some runtime region.

This means that runtime evidence on the one hand and the labels in delimiters on the
stack on the other hand are operationally redundant. The unwinding can either use
evidence terms, or labels on the stack, since the two agree. Our proof uses both and
establishes this fact. In the operational semantics we erase evidence terms as they
do not have any significance at runtime. In the next section we are going to do the
opposite: Erase labels in delimiter frames and purely rely on evidence terms to have
the correct content at runtime.
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4.3 Translation of ΛCap to System F

We now present the CPS translation of ΛCap to pure System F. Notably, in System F

there are no labels. As a main result, by translating ΛCap into pure System F, we show
that labels, recursive data types, or mutable state are not necessary to implement
statically typed, lexical effect handlers.

We start from ΛCap in explicit capability-passing style (Chapter 2) without the re-
striction to second-class blocks, but with explicit regions and evidence. We translate
into iterated continuation-passing style (Chapter 3). Every stack segment, delimited
by a label, is represented by its own continuation argument. In Chapter 5 we evaluate
our compilation technique and show that it enables compile-time optimizations for
significant performance improvements. Since we target pure System F our compila-
tion technique can target any language that supports first-class functions without any
runtime support.

Figure 4.6 defines the translation of ΛCap to System F. A CPS translation is a
translation of types and of terms. Our translation is defined over typing derivations of
ΛCap (such as, SJΓ ρ ¢ s : τ K, abbreviated SJ s K) to well-typed terms in System F.

Translation of Types

Base types, such as Int are left unchanged by the translation. Functions are translated
to functions that abstract over a list of region variables at the type level, and over
a list of evidence terms and a list of values at the term level. While evidence was
computationally irrelevant in the operational semantics, it now plays a key role in
finding the correct handler.

Interestingly, regions become answer types [Thielecke, 2003]. We use the familiar
meta-definition CpsRA, defined as the type (A→R)→R of computations in CPS
with return type A and answer type R. Capabilities are translated to functions in
CPS.

We translate region variables to type variables in System F and the top-level region
to the empty type Void. Evidence terms are functions between effectful computations,
as can be seen from the translation of evidence types. Since regions become answer
types, region-polymorphic functions translate to answer-type polymorphic functions
in CPS. Evidence terms adjust these answer types. They are constructive witnesses
that we can move a computation from one region to a different one.

Translation of Terms

We translate variables, primitives, and functions in the obvious way. We translate
evidence to functions that lift a computation to be compatible with a different region,
i.e. answer type. The reflexivity evidence is translated to the polymorphic identity
function, and transitivity of evidence amounts to function composition.

Return statements are translated to calls to the current continuation, and sequencing
of statements is translated to push a frame onto the current continuation k , that is,
the continuation first runs s and then continues with k . We translate function calls
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T J Int K = Int

T J∀[r , γ](τ)→ρ τ0 K = ∀r . T JcK→ T JτK→Cps T JρK T Jτ0K

T JCap ρ τ1 τ2K = T Jτ1K→Cps T JρK T Jτ2K

T J r K = r

T J¦K = Void

T J ρ ³ ρ′ K = ∀a. Cps T Jρ′K a→Cps T JρK a

VJ x K = x

VJ 1 K = 1

VJ { [r ,n : γ](x : τ) at ρ⇒ s } K = Λr ⇒λn ⇒λx ⇒SJsK

EJn K = n

EJ0 K = Λa ⇒λm ⇒m

EJ e1 · e2 K = Λa ⇒λm ⇒EJe1K a (EJe2K a m)

SJ return v K = λk ⇒ k (VJvK)

SJ val x = s0; s K = λk ⇒SJs0K (λx ⇒SJsK k)

SJ v0[ρ, e](v) K = VJv0K T JρK EJeK VJvK

SJdo v0[e](v) K = EJeK T Jτ2K (VJv0KVJvK)

SJhandle { [r , n](c)⇒ s0 }with { (x , k)⇒ s } K =
Reset ((Λr ⇒λn ⇒λc ⇒SJs0K)

(Cps T JρK T JτK) (Lift) (λx ⇒λk ⇒SJsK))

CpsRA = (A→R)→R

Reset : Cps (CpsRA)A→CpsRA

Reset = λm ⇒m (λx ⇒λk ⇒ k x )

Lift : ∀a. CpsR a→Cps (CpsRR′) a
Lift = Λa ⇒λm ⇒λk ⇒λj ⇒m (λx ⇒ k x j )

Figure 4.6: Translation of ΛCap to System F.

66



4.3 Translation of ΛCap to System F

to curried function application. The region arguments are type arguments, and the
evidence- and value arguments are term arguments.

The two most complicated statements to translate are performing and handling.
We translate the use of a capability v0 with an argument v to an application of the
capability to the argument. We then use the translated evidence e to adjust the
resulting computation to run with the correct answer type. We translate handling
statements to an application of the handled statement to three arguments: the answer
type Cps T JρK T JτK, the singleton evidence Lift, and the capability λx ⇒λk ⇒SJsK.
We use the meta function Reset to apply the whole term to an empty continuation
argument.

4.3.1 Typability Preservation

We translate well-typed programs in ΛCap to well-typed programs in System F.

Theorem 14 (Well-typedness of Translated Terms).
If Γ ρ ¢ s : τ , then T JΓ K ¢ SJ s K : Cps T J ρ K T J τ K

Proof. Straightforward induction over the typing derivation. □

This theorem entails that, under the CPS translation, well-typed programs never get
stuck, and that they always terminate. We mechanized the translation as well as the
proof of Theorem 14 in the Coq proof assistant.

Example 15. To understand how regions in the source language and types in the
target language are related, consider the following simple example where we install a
handler and immediately use the capability it introduces.

handle { [r ; n](exc)⇒do exc[0](()) }
with { (x, k)⇒ return 1 }

This source statement is typed with ∅ ¦ ¢ . . . : Int, and we translate it to the
following term in System F with overall type CpsVoid Int.

(Λr⇒λn⇒λexc⇒ (Λa⇒λm⇒m) Int (exc ()))
(CpsVoid Int) (Lift) (λx⇒λk1 ⇒λk2 ⇒ k2 1)
(λx⇒λk⇒ k x)

The translation of the handled statement abstracts over a type and two terms. Maybe
surprisingly, we apply it to four arguments. So how can this be welltyped? Recall
that the handled statement (that is, do exc[0](())) is typed in region r and conse-
quently is translated to a term in CPS of type Cps r Int. We instantiate the poly-
morphic answer type r with the type CpsVoid Int, which results in the overall type
Cps (CpsVoid Int) Int with two levels of control. This makes the application to the
evidence, the capability, and the empty continuation type check. The capability has
type Unit→Cps (CpsVoid Int) Int. It discards the first continuation k1 and returns to
the second one k2.
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4.3.2 Simulation

In Section 4.2, we defined an operational semantics of ΛCap. In this section, we defined
a CPS translation to System F. We now prove that the CPS translation simulates the
operational semantics. To this end, we define a translation MJ · K of intermediate
machine states M to well-typed terms in System F.

For each step the machine takes, there is a corresponding (possibly empty) sequence
of steps between the translated terms.

Theorem 16 (Simulation).
If M→M

′, then MJM K→∗MJM
′ K.

Proof. By considering each case of the stepping relation. The (perform) step needs
its own lemma, which we prove by induction on evidence terms. □

We translate statements to terms and stacks to evaluation contexts [Danvy, 2004]. We
then define the translation of the machine in its executing state, which consists of a
statement s and a stack K, as the plugging of the translation of the statement into the
translation of the stack. The translation of the other machine states follows the same
idea. We translate the empty stack to a special primitive function done, which will
return the overall result of the program. It is called exactly once, when the machine
is in its final state and we return to the empty stack.

The following corollary follows from Theorem 16. When we start from a closed,
well-typed statement s and reduction of the machine results in a value v , then the
translation of s applied to done evaluates to done applied to the translated result v .

Corollary 17 (Evaluation).
If ∅ ¦ ¢ s : Int and ïs ∥ • ð →∗ ïreturn v ∥ • ð
then SJ s K done →∗

done VJ v K.

Although we do not have any labels generated at runtime, the CPS semantics exactly
mimics the behavior of the operational semantics, which does have them.

We have not mechanized the proof of Theorem 16, because our mechanized transla-
tion introduces administrative reductions. Our mechanization includes a proof of the
following weaker theorem (∼βη denotes βη-equivalence):

Theorem 18 (Equivalence).
If ¢ M ok and M→M

′, then MJM K ∼βη MJ M
′ K.

Corollary 17 still follows from this weaker theorem.

Example 19. Figure 4.7 lists a sequence of steps of the abstract machine and the
corresponding sequence of steps of the translated machine states. In the example,
we use a capability which is associated to an outer handler. It illustrates how the
statement under reduction (highlighted in gray), the stack, and the resumption are
translated, and how the translated term captures the correct number of continuations
and reinstalls them.

The first steps are (perform), (forward), and (capture). The evidence value @3a1 :: •
is precisely the offset we have to skip to get to the correct delimiter (Theorem 13).
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(1) ï do cap@b29{ (u, k1)⇒ k1(43) }[@3a1 :: • ](()) ∥ #@3a1 {□ } :: #@b29 {□ } :: • ð→

(2) ï do cap@b29{ (u, k1)⇒ k1(43) }[@3a1 :: • ](()) ∥ #@3a1 {□ } :: #@b29 {□ } :: • ∥ • ð→

(3) ï do cap@b29{ (u, k1)⇒ k1(43) }[•](()) ∥ #@b29 {□ } :: • ∥ #@3a1 {□ } :: • ð→

(4) ï resume(#@b29 {□ } :: #@3a1 {□ } :: • )(43) ∥ • ð→

(5) ï resume(#@3a1 {□ } :: • )(43) ∥ #@b29 {□ } :: • ð→

(6) ï return 43 ∥ #@b29 {□ } :: • ð→

(7) ï return 43 ∥ • ð

(1) (Lift ((λu ⇒λk1 ⇒λk2 ⇒ k1 43 k2) ())) (λx ⇒λk ⇒ k x) (λx ⇒λk ⇒ k x) done →

(2) (λk ⇒λj ⇒ (λk1 ⇒λk2 ⇒ k1 43 k2) (λy ⇒ k y j)) (λx ⇒λk ⇒ k x) (λx ⇒λk ⇒ k x) done →

(3) (λk1 ⇒λk2 ⇒ k1 43 k2) (λy ⇒ (λx ⇒λk ⇒ k x) y (λx ⇒λk ⇒ k x) ) done →

(4) (λy ⇒ (λx ⇒λk ⇒ k x) y (λx ⇒λk ⇒ k x)) 43 done →

(5) (λx ⇒λk ⇒ k x) 43 (λx ⇒λk ⇒ k x) done →

(6) (λk ⇒ k 43) (λx ⇒λk ⇒ k x) done →

(7) (λk ⇒ k 43) done

The statement under reduction is highlighted in gray , the first stack segment high-

lighted in blue , the second stack segment highlighted in yellow , and the bottom of

the stack highlighted in red .

Figure 4.7: Example of step-by-step simulation.
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· · ·
Ret

∅ @b29 :: • ¢ return 43 : Int

Exit
¢ • : Int

Handler

¢ #@b29{ □ } :: • : Int
Machine

¢ ï return 43 ∥ #@b29{ □ } :: • ð ok

· · ·

¢ λk ⇒ k 43 : (Int → Cps Void Int) → Cps Void Int

· · ·

¢ λx ⇒ λk ⇒ k x : Int → Cps Void Int

¢ (λk ⇒ k 43) (λx ⇒ λk ⇒ k x) : Cps Void Int . . .

¢ (λk ⇒ k 43) (λx ⇒ λk ⇒ k x) done : Void

Figure 4.8: Typing derivations for state (6).

We translate it to the function Lift which takes the first continuation and pushes it
onto the second continuation. In state (3), after pushing the first delimiter onto the
resumption, the stack consists of two segments. Therefore the translated term is ap-
plied to two continuations. The first continuation contains the translated resumption
as a subterm. In step (5) we have pushed a delimiter back onto the stack and the
translated term is again applied to two continuation arguments. This rewinding is
achieved by the definition of Lift and our translation of resumptions.

In Figure 19, we provide the typing derivations for machine state (6) and its transla-
tion. The machine state consists of a statement and a stack. The statement return 43
has type Int. It is typed in runtime region @b29 :: • , which is the runtime re-
gion RJ#@b29 {□ } :: • K of the stack. The stack contains a delimiter with label
@b29 at type Int. Therefore the statement is translated to the term λk ⇒ k 43 at
type Cps (CpsVoid Int) Int. It is applied to two continuations. The first continuation
λx ⇒λk ⇒ k x corresponds to the delimiter and will return the given value of type
Int to the next continuation which expects a value of type Int. The second continua-
tion done corresponds to the empty stack and will return the overall result once the
program is done.

4.4 Related Work

We presented a CPS translation for lexical effect handlers. We first review and compare
to existing work on lexical effect handlers, then we discuss related work on implement-
ing dynamic effect handlers by CPS translation, on explicitly passing evidence, and on
the relationship between regions and control effects.

4.4.1 Lexical Effect Handlers

There are a number of implementations of lexical effect handlers which do not guar-
antee effect safety. For example for OCaml [Kiselyov and Sivaramakrishnan, 2016],
Scala [Brachthäuser and Schuster, 2017], and Java [Brachthäuser et al., 2018]. All of

70



4.4 Related Work

these use multi-prompt delimited control [Dybvig et al., 2007] under the hood, there-
fore their operational semantics is comparable to ours given in Section 4.2. However,
because they do not have an effect system, they can generally express more programs.
Of course this means that they can not guarantee effect safety and programs may crash
because no delimiter with a corresponding label was found.

There are a number of languages with lexical effect handlers and an effect system
which do guarantee effect safety [Zhang and Myers, 2019, Brachthäuser et al., 2020,
Biernacki et al., 2019b]. All of these define effects as sets of effect instances a compu-
tation might use. In our type system in Section 4.2 we deviate from this presentation
in two ways. Firstly, we avoid types depending on terms and introduce a fresh type-
level region variable for each term-level capability. Secondly, like in the Single Effect
Calculus [Fluet and Morrisett, 2004], we require the region of each function to be a
single region variable. Operationally, all of these use some form multi-prompt delim-
ited control, except for the open semantics, also presented by Biernacki et al. [2019b],
which uses reduction under binders.

4.4.2 Dynamic Effect Handlers

Hillerström et al. [2017, 2020] present an implementation technique for dynamic effect
handlers by CPS transformation. They present an abstract machine and a simulation
result. In their abstract machine as well as in their CPS translated terms, each handler
matches on tags at run time to decide whether it should handle an effect operation or
forward it to an outer handler. In contrast, we present a CPS translation for lexical
effect handlers in explicit capability-passing style. While our abstract machine searches
for a matching label, our CPS translated terms do not. They produce untyped terms,
where our CPS translation produces well-typed System F terms. They sketch how a
typed and curried CPS translation might look like in Appendix B of [Hillerström et al.,
2017], but do not present a fully worked out proof of well-typedness, which we do.

Leijen [2017b] presents a compilation technique for dynamic effect handlers by CPS
translation. Their target language is untyped lambda calculus with a builtin handler
construct which must be implemented by a runtime system on each target platform.
In contrast, we present a translation for lexical effect handlers to well-typed System F,
without any runtime system.

4.4.3 Explicit Evidence

Saleh et al. [2018] present a language with dynamic effect handlers where subeffect
coercions are explicit. Their goal is to use the explicit information in these coercions to
optimize effectful programs [Karachalias et al., 2021]. In a similar spirit, the language
ΛCap that we present is very explicit about subregion evidence. While their coercions
can be applied to arbitrary effectful expressions, we pass subregion evidence down to
where effect operations are used and never coerce statements directly.

Xie et al. [2020, 2021] present an implementation of dynamic effect handlers where
they explicitly pass evidence vectors. They translate programs to monadic style and
use a monad for multi-prompt delimited control to capture resumptions. Their concept
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of evidence vectors is very different from the evidence that we have presented in this
chapter. Their goal is for tail-resumptive handlers to not capture a resumption at
all. Their source language features effect polymorphism based on effect rows [Leijen,
2014]. Guided by the effect types, they translate programs to explicitly pass evidence
vectors, which are lists of pairs of labels and handler implementations. When an effect
operation is used, they look up the corresponding handler in the evidence vector instead
of on the stack. This is very similar to explicit capability-passing style. They prove
that on a subset of programs their semantics correctly simulates dynamic handlers.
The subset is characterized by scoped resumptions, intuitively that every resumption
is invoked in the same context it was captured. They dynamically check this property,
while we enforce the same property statically. Xie and Leijen [2021] lift the restriction
of programs to only use scoped resumptions. Again, let us stress that their concept
of evidence is very different from what we present in this chapter. Nevertheless, our
formal treatment of the operational semantics is inspired by their concept of evidence
correspondence.

4.4.4 Control Effects and Regions

Thielecke [2003] presents a language with call/cc and a type-and-effect system where
effects are regions. He presents a CPS translation where regions become answer types
and consequently region-polymorphic functions become answer-type polymorphic func-
tions just as in our work. We expand upon his work by considering lexical effect
handlers and delimited control instead of call/cc. The nesting of handlers makes it
necessary to translate programs to iterated CPS. It is surprising that the same idea of
regions as answer types also works in this setting.

Schuster et al. [2022] build upon the same idea and combine region-based resource
management and lexical exception handlers in CPS. They guarantee cleanup of re-
sources even when exceptions are thrown. While the problem they solve is different,
their solution is the same as ours. They make subregion evidence explicit and endow
it with computational content in their CPS translation. However, in comparison to
exception handlers, effect handlers are more general because they can resume compu-
tation. Consequently, our formalization is more challenging because we have to reify
resumptions as values. We leave combining their approach to resource management
with lexical effect handlers to future work.

4.5 Conclusion

In this chapter we have presented a CPS translation from ΛCap to well-typed System F

with neither labels nor runtime constructs. It simulates the standard operational se-
mantics which does use labels and special runtime constructs. It works in the presence
of constrained effect-polymorphism and first-class functions.

There is room for improvement. The effect operations supported by ΛCap must have
monomorphic types. In the future, it would be interesting to extend the approach
to more advanced forms. While we believe that type-polymorphic effect operations
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are a straightforward extension, effect-polymorphic effect operations or bidirectional
effects [Zhang et al., 2020] could hold some interesting challenges.

Moreover, we statically enforce the property of scoped resumptions [Xie et al., 2020],
which means that resumptions must be called in exactly the same region they were
based in. This rules out programs where an effect operation dynamically changes how
operations in the rest of the program are to be handled. A useful example would be
the interleaving of two push streams. While we believe that programs like these go
against the spirit of lexical effect handlers, in the future we would like to investigate
how to support these use cases as well.
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Abstract. In Chapter 2 we have seen that effect handlers encourage program-

mers to abstract over repeated patterns of complex control flow. This abstraction,

however, comes at a significant price in performance. Moreover, we have seen a

translation to explicit capability-passing style, and a semantics with multi-prompt

delimited control which requires special runtime support.

In Chapter 3, effectful programs are indexed by their stack shape, which is the

list of answer types from innermost to outermost. Guided by these stack shapes,

we translate programs to iterated continuation-passing style, making the flow

of continuations explicit. We have used a two-level lambda calculus to avoid

generating administrative beta redexes, and we have explained how to avoid

generating administrative eta redexes.

In Chapter 4, starting from a language in explicit capability-passing style, we

have seen an operational semantics with multi-prompt delimited control, a trans-

lation to iterated continuation-passing style, and a proof of simulation between

the two. The source language supports constrained effect polymorphism with ex-

plicit subregion evidence. Our translation can target any language with first-class

functions, without any special runtime support.

In this chapter, we finally put everything together and evaluate the performance

of our compilation technique both theoretically and practically. There are two

different aspects to the performance of abstractions like effect handlers: enabling

compile time optimization and optimizing the language runtime. In this chapter,

we are only concerned with the former. We show that, under some conditions, we

are able to fully eliminate the abstraction overhead of effect handlers at compile

time. To evaluate the practical performance, we present benchmarks where we

compare generated code with Koka, Multicore OCaml, and Chez Scheme. The

benchmarks indicate that our translation offers significant speedups for programs

which heavily use effect handlers and shows competitive performance for examples

with only simple uses of effect handlers.

Both, our theoretical and practical results crucially rely on the combination of

explicit capability-passing style, iterated continuation-passing style, and explicit

subregion evidence. By making all this information explicit, it is possible to

aggressively specialize effectful programs to their context, simply by monomor-

phizing effectful functions, inlining capabilities, continuations, and evidence, and

reducing the resulting program.

This chapter is based on the following publication: Philipp Schuster, Jonathan Immanuel
Brachthäuser, and Klaus Ostermann. 2020. “Compiling Effect Handlers in Capability-Passing
Style.” Proc. ACM Program. Lang., 4 (ICFP), DOI: https://doi.org/10.1145/3408975
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5.1 Capabilities, Continuations, and Evidence

In this section we describe how we use the compilation technique presented in this
thesis to generate high-performance code. In previous chapters we have made more
and more information explicit. Now we use this explicit information to specialize
effectful programs to their context.

Figure 5.1 shows an example program, again adapted from Danvy and Filinski [1990]
and written in λCap, which will introduce in this chapter. The effectful function choice
uses two effects Fork and Fail. The signatures of these effect operations are given by
the following two global signatures.

effectFork : Unit→Bool effectFail : Unit→Void

The function choice chooses a number between the given argument n and 1. If n is
smaller than 1, it fails. Otherwise it forks the computation to decide if it immediately
returns n or recursively calls itself with a decremented argument.

Handling effects The meaning of the effects Fork and Fail in choice is left open. It
is written in explicit capability-passing style (Chapter 2). It abstracts over capabil-
ities fork and fail and uses them to perform the corresponding effects. The function
handledChoice handles Fork and Fail. It gathers all results into a list. The handler for
Fork calls the continuation k twice, once with True and once with False. It expects the
results of these two calls to be lists, appends them, and answers with the appended
list. The implementation for fail ignores k and immediately answers with the empty
list. The two handlers introduce capabilities which we explicitly pass to the effectful
function choice.

Effect safety To guarantee effect safety and to guide our translation we index effectful
computations with their stack shape (Chapter 3). In our example, both handlers
have the same answer type IntList and the stack shape at the call-site of choice is
thus [IntList, IntList]. To achieve answer-type safety (i.e., capturing and applying the
continuation is type safe) and effect safety (i.e., all effects are eventually handled),
the type system of λCap indexes the types of capabilities and the types of effectful
functions by the stack shape they assume. We write the type of the choice function at
this call-site as:

capabilities
︷ ︸︸ ︷

Fork[IntList, IntList] → Fail[IntList, IntList] →

effectful function type
︷ ︸︸ ︷

Int → [IntList, IntList] Int

The function choice is an effectful function that takes a capability for Fork, a capability
for Fail, and an Int, and returns an Int. It assumes a stack shape IntList, IntList. To
safely invoke an effect operation, the stack shape of the computation at the invocation
site and the stack shape of the capability have to agree.
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5.1 Capabilities, Continuations, and Evidence

def choice[fork : Fork, fail : Fail](n) {
if (n < 1)do fail()
else if (do fork())
return n

else choice(n − 1)
}

def handledChoice(n) {
handle { fork⇒
handle { fail⇒

Con(choice[lift fork, fail](n), Nil)
}with { (u, k)⇒Nil }
}with { (u, k)⇒

append(do k(True), do k(False)) }
}

(a) Source program written in λCap in capability-passing style.

let choice = λfork⇒λfail⇒
letrec loop = λn⇒λk1 ⇒λk2 ⇒
if (n < 1) then fail () k1 k2
else fork () (λx⇒λk3 ⇒
if x then k1 n k3 else loop (n − 1) k1 k3)
k2

in loop

let handledChoice = λn⇒
let fork = λu⇒λk⇒

append (k True) (k False) in
let fail = λu⇒λk1 ⇒λk2 ⇒ k2 Nil in
let liftedFork = λu⇒λk1 ⇒λk2 ⇒

fork () (λx⇒ k1 x k2) in
choice liftedFork fail n

(λx1 ⇒λk2 ⇒ k2 (Con x1 Nil))
(λx2 ⇒ x2)

(b) Code generated from λCap in iterated CPS.

letrec choiceForkFail =
λn⇒λk1 ⇒λk2 ⇒
if (n < 1) then k2 Nil
else

let x1 = k1 n k2 in

let x2 = choiceForkFail (n − 1) k1 k2 in

append x1 x2

let handledChoice = λn⇒
choiceForkFail n
(λx1 ⇒λk2 ⇒ k2 (Con x1 Nil))
(λx2 ⇒ x2)

(c) Code generated from λλCap with inlined handlers (highlighted in gray).

Figure 5.1: Running example in our language λCap and its translation into CPS.
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5 Compiling Handlers

Lifting capabilities Each handler introduces a fresh region and the regions of nested
handlers are related by subregion evidence (Chapter 4). Here we view regions as
stack shapes. To exploit the information we get from the static context of effect-
ful programs, we implement region polymorphism by monomorphization2, a common
technique in performance-oriented compilers [Stroustrup, 1997, Alexandrescu, 2010,
Anderson et al., 2016]. This specializes effectful programs to their stack shape. Since
we created the capability fork at the outer handler, its type is Fork[IntList]. To use it
inside of the inner handler, as an argument to choice, we have to explicitly adapt it
with lift. This way, the capability can be used in a context with the larger stack shape
[IntList, IntList].

Compilation of λCap We translate our source language λCap to STLC (with letrec).
Directed by the statically known stack shape, our translation introduces one continua-
tion argument for every delimiting handler. Figure 5.1 shows the result of specializing
choice to the stack shape [IntList, IntList] at its call-site. The generated code uses two
continuations corresponding to the two delimiters for Fork and Fail. At its call-site
we supply five arguments to choice: two capabilities, the argument n, and two con-
tinuations corresponding to the two delimiters. The first continuation represents the
context around choice at its call-site. It is itself in CPS and takes a continuation. The
second continuation is the empty continuation. The capability fork has been translated
at stack shape [IntList] and so abstracts over only one continuation. Here we see that
lift has computational content as it adjusts fork to be compatible to a context with
two continuations by composing them.

If we were using the same choice function at a different call-site, within for example
three enclosing handlers, it would be typed at a different stack shape and consequently
specialized differently:

let choice = λfork⇒λfail⇒
letrec loop = λn⇒λk1 ⇒λk2 ⇒ λk3 ⇒
if (n < 1) then fail () k1 k2 k3
else fork () (λx⇒λk4 ⇒ λk5 ⇒
if x then k1 n k4 k5 else loop (n − 1) k1 k4 k5 ) k2 k3

in loop

We abstract over one more continuation and apply functions to one more continuation
(highlighted in gray). Through monomorphization we have created a second specialized
version of the same function. Operationally, only the number of elements in the stack
shape, i.e. the number of continuations, matters. In a typed setting, though, we
have to specialize to the types contained in the stack shape. While this translation
specializes choice to different stack shapes, it still abstracts over capabilities fork and
fail.

2http://mlton.org/Monomorphise
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Compilation of λλCap Our running example does not treat capabilities as first class [Os-
vald et al., 2016] and so can be typed under the more restrictive rules of λλCap, which
enforce a second-class usage of capabilities. Consequently, we can use our second trans-
lation, which works for λλCap only, to also specialize the code to the concrete handler
implementations. In this translation we distinguish between static and dynamic ab-
stractions and reduce capability abstractions and applications statically. This way, the
implementations of Fork and Fail provided by the corresponding handlers are inlined
into the body of choice. Figure 5.1 shows the final code we generate for this exam-
ple. We chose the name choiceForkFail to reflect the specialization to these handler
implementations. The cost of the handler abstraction has been fully removed and
the function is specialized to both the effect operation implementations and the stack
shape at its call-site.

There is no runtime search for a matching handler like in Koka [Leijen, 2017b],
Eff [Plotkin and Pretnar, 2013], Frank [Lindley et al., 2017], Multicore OCaml [Dolan
et al., 2014], or Helium [Biernacki et al., 2019b]. Instead, the implementations of the
effect operations have been inlined into the body of choice. Correspondingly, the call-
site in handledChoice does not provide capabilities anymore, it only delimits the control
effects. Furthermore, there is no search for a delimiter with a matching prompt on the
stack, like in the operational semantics of for example Scala Effekt [Brachthäuser and
Schuster, 2017], Java Effekt [Brachthäuser et al., 2018], Olaf [Zhang and Myers, 2019],
or newer versions of Koka [Xie et al., 2020, Xie and Leijen, 2021]. We directly invoke
the corresponding continuation.

To sum up our approach: We start with a program in explicit capability-passing
style. Effectful functions and capabilities are indexed by the stack shape. Capabilities
need to be explicitly lifted to adjust them to the stack shape. Using this information,
we specialize functions written in λCap to work with the correct number of contin-
uations. For a refined sub-language λλCap, we guarantee that capabilities are always
inlined. We specialize functions to their context and remove the cost associated with
handler abstractions. In the following sections we will formally develop these ideas.

5.2 The Language λCap

In this section we formally introduce λCap, a language in explicit capability-passing
style (Chapter 2), where effectful programs are indexed by stack shapes (Chapter 3),
and where lifting of capabilities is explicit (Chapter 4).

5.2.1 Syntax

Figure 5.2 defines the syntax of λCap. Like other presentations of languages with effect
handlers [Pretnar, 2015, Kammar and Pretnar, 2017, Hillerström et al., 2017], our
language is based on a fine-grain call-by-value lambda calculus [Levy et al., 2003]. That
is, we syntactically distinguish between statements and expressions. Only statements
can have effects. We also syntactically distinguish between expressions and capabilities.
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5 Compiling Handlers

Statements

s ::= val x = s; s sequencing
| return e returning
| e(e) calling
| do h(e) performing
| handle { c⇒ s }with h handling

Expressions

e ::= True | False | . . . primitive constants
| x term variables
| (x : τ)⇒ s lambda abstraction
| fix f (x : τ)⇒ s recursive abstraction
| [c : F [ξ] ]⇒ e capability abstraction
| e[h] capability application

Capabilities

h ::= c | k capability variables
| { (x , k)⇒ s } handler implementation
| lift h lifted capability

Types

τ ::= Int | Bool | . . . base types
| τ→ξ τ effectful function type
| F [ξ]→ τ capability function type

Operation Names

F ::= Fork | Fail | Emit | Resumei | . . .

Operation Signatures

Σ ::= ∅ | Σ, F : τ→ τ ′

Type Environment

Γ ::= ∅ | Γ, x : τ

Capability Environment

Θ ::= ∅ | Θ, c : F [ξ]

Stack Shape

ξ ::= • | τ :: ξ

Figure 5.2: Syntax of λCap.
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Statements Both, calling functions (i.e., e(e ′)) and using capabilities (i.e., do h(e))
are considered effectful. The latter performs the effect of the capability. Expressions
are embedded into statements with return e and we use the syntax val x = s0; s to
sequence the evaluation of the two statements s0 and s. The result of s0 is available in
s under the name x . Finally, we handle effectful programs with handle { c⇒ s }with h.
The capability variable c will be bound to the handler implementation h in the state-
ment s. The handler also installs a delimiter for the continuation which is captured
when c is used.

Expressions As usual, the syntax of expressions includes primitive constants (like 5,
True, and Nil), function abstraction (i.e., (x : τ)⇒ s), and recursive function abstrac-
tion (i.e. fix f (x : τ)⇒ s). Additionally, capability abstraction (i.e., [c : F [ξ] ]⇒ e)
binds a capability c for effect operation F , which is usable in the expression e in a
context with stack shape ξ. Calling an effectful function with an argument can have
control effects and thus is not an expression but a statement. In contrast, capabil-
ity application (i.e., e[h]) is pure and results in an expression. Similarly, primitive
operators (like append(e, e)) cannot have control effects and are trivial expressions.

Capabilities We separate expression variables from capability variables. The latter
are drawn from a different namespace (e.g., fork, fail, or k). Similarly, we use the meta-
variables x for term variables and c and k for capability variables. This stratification
into expressions and capabilities is not strictly necessary in λCap, but it will become
important in λλCap. To facilitate comparison we use the same syntax of terms for both
languages. The lift h construct adjusts a capability h to be compatible with a larger
stack shape. Capabilities are handler implementations constructed with { (x , k)⇒ s }.
The argument x and the continuation k are bound in the implementation of the effect
operation given by s. As we will see, we model continuations as capabilities and thus
k has to be invoked with do k(e).

5.2.2 Typing

Types include base types (e.g., Int and Bool), effectful function types τ1→ξ τ0, and
capability abstractions [F [ξ] ]→ τ . Effectful function types should be read as follows.
Given τ1, the function can only be called in a context with stack shape ξ to produce
a result of type τ0. Stack shapes are comma separated lists of types τ , representing
the types at the delimiters (i.e. handlers) from innermost to outermost. They serve
a similar purpose like effect rows of Koka [Leijen, 2017b] or Links [Hillerström and
Lindley, 2016]. Like effect rows in Koka and Links, our stack shapes guarantee that
our control effects are handled and all continuations are correctly delimited. However,
unlike effect rows, stack shapes are ordered. As an example, the stack shape [Int, String]
describes a context with an inner handler at type Int and an outer handler at type
String.

Capability abstractions take a capability parameter. Like effectful functions, the
type of each capability parameter F [ξ] is restricted to a specific stack shape ξ. We use
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5 Compiling Handlers

the meta-variable F to denote a globally fixed set of operation names and assume a
global signature environment Σ that maps operation names to their input and output
types. We model continuations as capabilities and include a family Resumei in the set
of operation names. Each syntactic occurrence of handle . . .with . . . induces a distinct
operation name Resumei . The typing of the corresponding handle statement fully
determines the signature of Resumei in Σ.

Following the distinction between expressions and capabilities, we also assume two
separate environments. A type environment Γ that assigns variables x to types τ and a
capability environment Θ that associates capability variables c with operation names
F and stack shapes ξ. This separation, again, is not necessary in λCap but will be in
λλCap.

Typing Rules

The typing rules in Figure 5.3 are defined by three mutually recursive typing judge-
ments – one for each syntactic category. The judgement form Θ Γ ξ ¢ s : τ assigns
a type τ to the statement s. Moreover, the statement s is checked in a stack shape ξ.

The typing rules include standard rules for variables (Var), abstractions (Lam), re-
cursive abstractions (Fix), and applications (App). Sequencing with rule Val requires
that the stack shapes of the two statements s0 and s agree. Similarly in rule Do the
stack shape of the used capability and the do statement have to agree. In rule Ret,
the resulting statement is compatible with any stack shape ξ.

The rules for capability abstraction (CapLam) and application (CapApp) are sim-
ilar to the corresponding rules for value abstraction and application. However, capa-
bility abstraction introduces the capability variable c in the capability environment Θ
and capability application uses the capability typing judgement Θ Γ ¢ h : F [ξ] to
check h against operation name F in stack shape ξ.

The three most interesting rules are Handle, CapLift, and CapHandler. They
require some detailed explanation. Handlers introduce delimiters for the continuations
captured by the effect operation they handle. This becomes visible in rule Handle.
While in the conclusion, we type a statement handle { c⇒ s }with h against a stack
shape ξ, the premises can assume a larger stack shape τ :: ξ. By installing a delimiter,
the statement s can safely use the capability c, which has additional control effects at
answer type τ . To guarantee answer type safety, the return type τ of the delimited
statement s and the innermost answer type of the larger stack shape τ :: ξ have to
agree.

Our type system does not support implicit effect subtyping. Instead, capabilities
need to be lifted explicitly. Take the following ill-typed example:

handle { c1⇒handle { c2⇒do c1(x ) }with h2 }with h1

We bind a capability variable c1 at an outer handler, but want to use it inside of a
nested inner handler. While using the capability within the inner handler would be
safe, the stack shapes do not match up. To account for this, we allow explicit lifting
of capabilities with lift h. In the example, we could thus invoke do (lift c1)(x ). Rule
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Expression Typing

Θ Γ ¢ e : τ
Γ(x) = τ

Θ Γ ¢ x : τ
[Var]

Θ Γ, x : τ1 ¢ s : τ0 ξ

Θ Γ ¢ (x : τ1)⇒ s : τ1 →ξ τ0
[Lam]

Θ Γ, f : τ1 →ξ τ0, x : τ1 ¢ s : τ0 ξ

Θ Γ ¢ fix f (x : τ1)⇒ s : τ1 →ξ τ0
[Fix]

Θ, c : F [ξ] Γ ¢ e : τ

Θ Γ ¢ [c : F [ξ] ]⇒ e : F [ξ]→ τ
[CapLam]

Θ Γ ¢ e : F [ξ]→ τ Θ Γ ¢ h : F [ξ]

Θ Γ ¢ e[h] : τ
[CapApp]

Statement Typing

Θ Γ ¢ s : τ ξ
Θ, c : F [τ :: ξ] Γ τ :: ξ ¢ s : τ Θ Γ ¢ h : F [τ :: ξ]

Θ Γ ξ ¢ handle { c⇒ s }with h : τ
[Handle]

Θ Γ ξ ¢ s0 : τ0 Θ Γ, x : τ0 ξ ¢ s : τ

Θ Γ ξ ¢ val x = s0; s : τ
[Val]

Θ Γ ¢ e : τ

Θ Γ ξ ¢ return e : τ
[Ret]

Θ Γ ¢ e : τ ′ →ξ τ Θ Γ ¢ e′ : τ ′

Θ Γ ξ ¢ e(e′) : τ
[App]

Θ Γ ¢ h : F [ξ] Σ(F ) = τ ′ → τ Θ Γ ¢ e : τ ′

Θ Γ ξ ¢ do h(e) : τ
[Do]

Capability Typing

Θ Γ ¢ h : F [ξ]
Θ Γ ¢ h : F [ξ]

Θ Γ ¢ lift h : F [τ :: ξ]
[CapLift]

Θ(c) = F [ξ]

Θ Γ ¢ c : F [ξ]
[CapVar]

Θ, k : Resumei [ξ] Γ, x : τ1 ¢ s : τ ξ Σ(F ) = τ1 → τ0 Σ(Resumei ) = τ0 → τ i fresh

Θ Γ ¢ { (x , k)⇒ s } : F [τ :: ξ]
[CapHandler]

Figure 5.3: Type system of λCap.
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CapLift adjusts a capability h typed against F [ξ] to be compatible with a larger stack
shape F [τ :: ξ]. This is in spirit similar to adaptors in the language Frank [Convent
et al., 2020], to lift in Helium [Biernacki et al., 2019a], and to inject in Koka [Leijen,
2018]. However, instead of adjusting arbitrary effectful expressions, we only perform
the adjustments on capabilities. As we will see, this allows us to guarantee that
the lifting itself is performed at compile time. Finally, rule CapHandler checks
the body of a handler implementation { (x , k)⇒ s } against a stack shape τ :: ξ. A
handler implementation for an effect operation F takes an argument of type τ1 and
a continuation k , which can be thought of as an effectful function τ0→ξτ . We model
resumptions as effect operations. The body s of the handler is evaluated in stack shape
ξ, that is, outside of the delimiter that introduced it.

5.2.3 Translation

In this subsection, we describe the translation of λCap to simply-typed lambda calculus
(STLC) [Barendregt, 1992], extended with a standard letrec operator to express fix.
In the translation of λCap capabilities are still present at runtime. Later, in the trans-
lation of λλCap (Section 5.3.2), we will use a two-level lambda calculus as the target,
marking some abstractions as static and others as dynamic. This allows us to prevent
administrative redexes and, more importantly, to eliminate all abstractions related to
handlers and capabilities.

Figure 5.4 defines the translation on types and mutually recursive translations of
the different syntactic categories of terms. We translate programs to iterated CPS.
Theorem 20 shows that our translation takes well-typed λCap programs to well-typed
STLC programs.

Target Language

The target of our translation is a call-by-value STLC extended with letrec, base
types, and primitive operations. As usual, we write lambda abstraction as λx ⇒ e,
but use the infix notation e0 @ e1 for application [Nielson and Nielson, 1996]. We
sometimes use let bindings in the target language assuming the standard shorthand:
let x = e in e′

.
= (λx⇒ e′)@ e.

Translation of Types

The translation of types T J · K maps base types to base types in STLC and effectful
function types τ1→ξ τ0 to functions from τ1 to effectful computations CJ τ0 Kξ. Capa-
bility function types are translated to function types in the target language. Capability
parameters of type F [ξ] are translated like an effectful function of type τ1→ξ τ0 for
Σ(F ) = τ1→ τ0.

The meta function CJ τ Kξ computes the type in STLC corresponding to an effectful
computation with return type τ in stack shape ξ. Programs with an empty stack
shape cannot use any control effects and consequently are not CPS translated. The
translation of non-empty stack shapes recursively translates the rest of the stack shape.
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T J Int K = Int
T J τ1→ξ τ0 K = T J τ1 K→CJ τ0 Kξ

T JF [ξ]→ τ K = T JF [ξ] K→T J τ K
T JF [ξ] K = T J τ1 K→CJ τ0 Kξ

where Σ(F ) = τ1→ τ0

CJ τ K
∅

= T J τ K
CJ τ Kτ0 :: ξ = (T J τ K→CJ τ0 Kξ)→CJ τ0 Kξ

SJ e0(e1) Kξ = EJ e0 K @ EJ e1 K

SJ val x = s0; s K
•

= let x = SJ s0 K
•

inSJ s K
•

SJ val x = s0; s Kτ :: ξ = λk ⇒SJ s0 Kτ :: ξ @ (λx ⇒SJ s Kτ :: ξ @ k)

SJ return e K
•

= EJ e K
SJ return e Kτ :: ξ = λk ⇒ k @ EJ e K

SJdo h(e) Kξ = HJ h Kξ @ EJ e K

SJhandle { c⇒ s }with h Kξ = (λc ⇒SJ s Kτ :: ξ) @ (HJ h Kτ :: ξ) @ (λx ⇒SJ return x Kξ)

where Θ Γ ξ ¢stm handle { c⇒ s }with h : τ

EJTrue K = True
EJ x K = x

EJ (x : τ1)⇒ s K = λx ⇒SJ s Kξ
where Θ Γ ¢exp (x : τ1)⇒ s : τ1→ξ τ0

EJfix f (x : τ1)⇒ s K = letrec f = (λx ⇒SJ s Kξ) in f

where Θ Γ ¢exp fix f (x : τ1)⇒ s : τ1→ξ τ0

EJ [c : F [ξK⇒ e K = λc ⇒EJ e K
EJ e[h] K = EJ e K @ HJ h Kξ

where Θ Γ ¢cap h : F [ξ]

HJ c Kξ = c

HJ { (x , k)⇒ s } Kτ :: ξ = λx ⇒λk ⇒SJ s Kξ

HJ lift h Kτ :: •
= λx ⇒λk ⇒ k @ (HJ h K

•
@ x )

HJ lift h Kτ0 :: τ1 :: ξ = λx ⇒λk ⇒λj ⇒HJ h Kτ1 :: ξ @ x @ (λy ⇒ k @ y @ j )

Figure 5.4: Translation of λCap to STLC.
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It adds one layer of CPS translation with this recursively translated type as the answer
type. For example, we have the following translations:

CJBool K
•

.
= Bool

CJBool K [Int]
.
= (Bool→ Int)→ Int

CJBool K [Int, String]
.
= (Bool→CJ Int K[String])→CJ Int K[String].
= (Bool→ ((Int→ String)→ String))→ ((Int→ String)→ String)

We can see that our translation performs a CPS transformation for each entry in the
stack shape ξ.

Translation of Statements

The translation of statements SJ s Kξ is indexed by a stack shape ξ. Source statements
s with return type τ in stack shape ξ are translated to effectful computations of type
CJ τ Kξ. In the case of a pure statement without effects, the stack shape is empty and we
do not perform a CPS translation. Returning translates to just the returned expression
and, to preserve sharing of results, sequencing translates to a let binding. In the case
where the stack shape is non-empty, we perform a single layer of CPS-translation. We
translate the use of capabilities (do h(e)) to function applications. The translation
of handle { c⇒ s }with h binds c to the translation of h in the translated body s.
Importantly, it also delimits effects by applying the translated body to the empty
continuation.

Translation of Expressions

In the translation of expressions, we map capability abstraction to ordinary function
abstraction and capability application to ordinary function application. The trans-
lation of function abstraction and capability application is type directed: the stack
shape ξ guides the translation of the function body and the handler, respectively.

Translation of Capabilities

To translate handler implementations, the body s is translated as a statement with
a smaller stack shape ξ. This models the fact that the handler implementation is
evaluated outside of the delimiter it introduces. The translation of a handler imple-
mentation is only defined for non-empty stack shapes τ :: ξ. Our typing rules make
sure that this is always the case. The translation of lifted capabilities looks a bit
involved. The goal is to make capability h, typed against a stack shape ξ, usable
with an extended stack shape τ :: ξ. Since the number of elements in the stack shape
corresponds to the number of continuation arguments, we have to adapt the capability
to take one more continuation. In the case of a stack shape with at least two elements,
the translation abstracts over the argument x and the first two continuations k and
j . It then applies the translated capability to the argument and a single continuation
that is the composition of k and j . The case of a singleton stack shape never occurs
in a closed well-typed program and is purely listed for our formalization.
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Example Let us translate the following example in the empty stack shape:

SJhandle { c⇒ val x = do c(True); return e }with h K
•

Assuming an answer type of Int, we obtain:

(λc ⇒SJ val x = do c(True); return e KInt) @ (HJ h KInt) @ (λx ⇒SJ return x K
•
)

︷ ︸︸ ︷

λk ⇒SJ do c(True) KInt @ (λx ⇒SJ return e KInt @ k)
︷ ︸︸ ︷

c @ True
︷ ︸︸ ︷

λj ⇒ j @ EJ e K

By SJ return x K
•
= x , the overall example translates to:

(λc ⇒λk ⇒ c @ True @ (λx ⇒ (λj ⇒ j @ EJ e K) @ k)) @ (HJ h KInt) @ (λx ⇒ x )

This illustrates that capability passing translates to normal function abstraction and
application and that we support control effects by translating to iterated CPS.

5.3 The Language λλCap

We now refine λCap to a sub-language λλCap. On this sub-language we are able to
fully eliminate the overhead introduced by handler abstractions. We present a second
translation, this time to 2-level lambda calculus. This allows us to prove that all
abstractions and applications related to effect handlers will be statically reduced at
compile time.

5.3.1 Syntax and Typing

Figure 5.5 lists the syntax of types of λλCap. The syntax of terms is exactly the same
as the one for λCap. In the syntax of types we now distinguish between dynamic types
and static types, similar to the syntactic separation of expressions and capabilities (this
difference is highlighted in gray). Static types are sequences of capability parameters
ending in a dynamic type, which ensures that all capability arguments come before
any other arguments. This is the only difference to λCap in Figure 5.2. Later in this
section, we will see that terms of static types will be eliminated (due to inlining and
specialization) during translation while terms of dynamic types will appear in the
generated program.

Changes to the typing rules for λλCap (Figure 5.5) compared to λCap (Figure 5.3) are
also highlighted in gray. Importantly, while the judgement form Θ Γ ¢ e : σ may
assign a static type σ to expressions, the typing rules for statements and capabilities
remain unchanged. Their premises still require expressions to be typed against a
dynamic type τ . This way, we make sure that all effectful functions are always fully
applied to the corresponding capabilities.

We treat capabilities as second class [Osvald et al., 2016]. That is, they cannot be
returned from a function. This becomes evident in the typing rules. In the rule Ret

(Figure 5.3):
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Dynamic Types

τ ::= Int | Bool | . . . base types
| τ →ξ τ effectful function type

Static Types

σ ::= F [ξ]→σ capability function type

| τ dynamic type

Operation Names

F ::= Fork | Fail | Emit | Resumei | . . .

Operation Signatures

Σ ::= ∅ | Σ, F : τ1 → τ0

Type Environment

Γ ::= ∅ | Γ, x : τ

Capability Environment

Θ ::= ∅ | Θ, c : F [ξ]

Stack Shape

ξ ::= • | τ :: ξ

Expression Typing

Θ Γ ¢ e : σ
Γ(x) = τ

Θ Γ ¢ x : τ
[Var]

Θ Γ, x : τ1 ξ ¢ s : τ0

Θ Γ ¢ (x : τ1)⇒ s : τ1 →ξ τ0
[Lam]

Θ Γ, f : τ1 →ξ τ0, x : τ1 ξ ¢ s : τ0

Θ Γ ¢ fix f (x : τ1)⇒ s : τ1 →ξ τ0
[Fix]

Θ, c : F [ξ] Γ ¢ e : σ

Θ Γ ¢ [c : F [ξ] ]⇒ e : F [ξ]→ σ
[CapLam]

Θ Γ ¢ e : F [ξ]→ σ Θ Γ ¢ h : F [ξ]

Θ Γ ¢ e[h] : σ
[CapApp]

Figure 5.5: Difference in syntax of types and expression typing rules for λλCap.

Θ Γ ¢ e : τ

Θ Γ ξ ¢ return e : τ
[Ret]

The returned pure expression e has to be typed against a dynamic type τ . Expressions
thus are always fully specialized (that is, applied to capabilities) before they can be
returned. Similarly, argument expressions in rule App are required to be of a dynamic
type τ1, which means that we cannot abstract over capability abstractions.

We model resumptions as capabilities, which makes them second class. This is in
order to guarantee full elimination of the handler abstraction at compile time. Since
capabilities will be inlined, so will resumptions.

5.3.2 Translation

The programs generated by the translation of λCap in Figure 5.4 abstract over handler
implementations and pass them along at runtime. In the translation of λλCap, we
avoid this passing of capabilities at run time and statically specialize functions to the
capabilities that they use. Maybe more importantly, we also specialize the inlined
capabilities to the context they are used in. This enables optimizations across effect
calls.
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We want to guarantee that certain redexes never occur in the generated program.
In particular, there are two classes of redexes that we want to avoid. Firstly, we avoid
generating administrative beta redexes in our CPS translation. This standard use of
multi-level lambda calculi in the translation of control operators has been introduced
by Danvy and Filinski [1992]. Even though not listed in Figure 5.4, in our bench-
marks we also do this for the unrestricted language in Figure 5.2. Secondly, we avoid
generating redexes associated with the effect handler abstraction. The significant con-
tribution is that handling effects, calling effect operations, and lifting capabilities does
not introduce any redexes in the generated program.

Figure 5.6 presents the refined translation from λλCap to 2-level lambda calculus [Taha
and Sheard, 2000, Nielson and Nielson, 1996, Jones et al., 1993]. The translation is
the same as the one in Figure 5.4 except for annotations to distinguish static from
dynamic program fragments. The annotations are automatically inserted as part of
the definition of our translation. In Theorem 22 we prove “stage-time correctness”,
i.e., that we never confuse static and dynamic functions. This is only possible because
the type system of λλCap restricted the use of capabilities, making them second class.

2-level Lambda Calculus

The general idea of multi-level lambda calculi [Nielson and Nielson, 1996] is to mark
some abstractions and applications as static and some as residual. Static redexes
will be reduced during translation, while residual redexes will be generated, that is,
residualized. We adopt the terminology of Taha and Sheard [1997] and refer to the
annotations as staging annotations. We use standard notation that we briefly review.
On the type level we use red color and an underline for types of residual terms (i.e.
terms that will be residualized). For example Int→ Int is the type of a generated
function from integers to integers. We write types of static (i.e. stage time) terms in
blue with an overbar. For example Int→ Int is the type of a static function between
residualized integers. Similarly, on the term level we write residual terms in red with
an underline. For example, 1+2 is the term that adds the integer one and the integer
two. This redex will occur in the generated program. We write terms that we evaluate
during translation in blue with an overbar. For example (λx ⇒ x ) @ 5 will statically
evaluate to the term 5. We use CJ τ Kξ to describe the type of residual effectful compu-
tations. The whole computation type CJ τ Kξ as defined in Figure 5.4 is residualized.

The type CJ τ Kξ represents static computations. Importantly, while the answer types
are residual (e.g., τ) the structure of the computation is static.

Reify and Reflect

To mediate between residual effectful computations and static effectful computations,
we define two mutually recursive meta functions Reify and Reflect.
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T J Int K = Int
T J τ1→ξ τ0 K = T J τ1 K→ CJ τ0 Kξ

T JF [ξ]→σ K = T JF [ξ] K→ T Jσ K
T JF [ξ] K = T J τ1 K→ CJ τ0 Kξ

where Σ(F ) = τ1→ τ0

CJ τ K
•

= T J τ K
CJ τ Kτ0 :: ξ = (T J τ K→ CJ τ0 Kξ)→ CJ τ0 Kξ

CJ τ K
•

= T J τ K
CJ τ Kτ0 :: ξ = (T J τ K→ CJ τ0 Kξ)→ CJ τ0 Kξ

SJ e0(e1) Kξ = Reflectξ (EJ e0 K @ EJ e1 K)

SJ val x = s0; s K
•

= let x = SJ s0 K
•

in SJ s K
•

SJ val x = s0; s Kτ :: ξ = λk ⇒SJ s0 Kτ :: ξ @ (λx ⇒SJ s Kτ :: ξ @ k)

SJ return e K
•

= EJ e K

SJ return e Kτ :: ξ = λk ⇒ k @ EJ e K

SJdo h(e) Kξ = HJ h K @ EJ e K

SJhandle { c⇒ s }with h Kξ = (λc ⇒SJ s Kτ :: ξ) @ (HJ h Kτ :: ξ) @ (λx ⇒SJ return x Kξ)

where Θ Γ ξ ¢stm handle { c⇒ s }with h : τ

EJTrue K = True
EJ x K = x

EJ (x : τ1)⇒ s K = λx ⇒Reifyξ SJ s Kξ
where Θ Γ ¢exp (x : τ1)⇒ s : τ1→ξ τ0

EJfix f (x : τ1)⇒ s K = letrec f = (λx ⇒Reifyξ SJ s Kξ) in f

where Θ Γ ¢exp fix f (x : τ1)⇒ s : τ1→ξ τ0

EJ [c : F [ξ] ]⇒ e K = λc ⇒EJ e K

EJ e[h] K = EJ e K @ HJ h Kξ
where Θ Γ ¢cap h : F [ξ]

HJ c Kξ = c

HJ{ (x , k)⇒ s } Kτ :: ξ = λx ⇒λk ⇒SJ s Kξ

HJ lift h Kτ :: •
= λx ⇒λk ⇒ k @ (HJ h K

•
@ x )

HJ lift h Kτ0 :: τ1 :: ξ = λx ⇒λk ⇒λj ⇒HJ h Kτ1 :: ξ @ x @ (λy ⇒ k @ y @ j )

Figure 5.6: Translation of λλCap to 2-level lambda calculus.
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Reify ξ : CJ τ Kξ→CJ τ Kξ
Reify • s

.
= s

Reify (τ :: ξ) s
.
= λk ⇒Reifyξ (s @ (λx ⇒Reflectξ (k @ x )))

Reflect ξ : CJ τ Kξ→CJ τ Kξ
Reflect • s

.
= s

Reflect (τ :: ξ) s
.
= λk ⇒Reflectξ (s @ (λx ⇒Reifyξ (k @ x )))

The meta function Reify converts a static computation of type CJ τ Kξ to a residual
computation of type CJ τ Kξ. In other words, it residualizes the statement. It is defined
by induction over the stack shape, introducing one continuation argument for every
type in the stack shape. Dually, the meta function Reflect converts a residual com-
putation of type CJ τ Kξ to a static computation of type CJ τ Kξ. For every type in the
stack shape, it generates one application to a reified continuation. This way, functions
always abstract over and are always applied to all arguments and continuations.

Translation of Statements

We translate statements typed in a stack shape ξ with result of type τ to static com-
putations of type CJ τ Kξ. We want to preserve function applications, so we generate
an application and reflect the resulting statement. To preserve sharing, we translate
sequenced pure statements to a residual let binding. When translating sequencing and
returning of effectful statements, we mark all continuation abstractions and applica-
tions as static. This allows us to avoid administrative beta-redexes. We translate the
binding of capability variables in handlers and the use of capabilities to static binding
and application. This ensures that capabilities are fully inlined at their call-site.

Translation of Expressions

We always translate constants, variables and effectful functions to residual terms.
The translation of effectful functions and effectful recursive functions requires us to
reify function bodies. While we do not reduce function applications present in the
original program, we want to perform capability passing at compile time. Therefore,
we translate capability functions to static abstractions and capability application to
static application. This ensures that they are reduced at compile time and no redexes
involving capability passing will be generated.

Translation of Capabilities

Handler implementations translate to static functions that take a static argument and
a static continuation. In contrast to effectful functions, we do not reify the bodies
of handler implementations. This way, the context of a call to a capability will be
inlined into the handler implementation, which leads to the optimization across effect
operations that we want to achieve. Lifting a capability to be compatible with a larger
stack shape is fully static as well: the composition of contexts is performed at compile
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time. By inspecting the translation of do, handle and handlers, we can observe that
they only introduce static abstractions and applications. The translation is designed
to not generate any redexes associated with effect handlers.

Example Applying the translation to 2-level lambda calculus to the example from
Section 5.2.3, we obtain

(λc ⇒λk ⇒ c @ True @ (λx ⇒ (λk ′ ⇒ k ′ @ EJ e K) @ k)) @ (HJ h K[Int]) @ (λx ⇒ x )

which reduces statically to:

HJ h K[Int] @ True @ (λx ⇒EJ e K)

This illustrates that the handler implementation is inlined at the position of the call
to the effect operation. Furthermore, the continuation λx ⇒EJ e K will be inlined into
the handler implementation at compile time.

Example We specialize recursive functions to the handler implementations that they
use at their call-site. For example, we translate the expression

EJ [h : Fail[ Int ] ]⇒fix f (x : Int)⇒ val y = do h(); f(x) K

to the following static capability abstraction:

λh⇒ letrec f = λx⇒

ReifyInt (λk⇒ h @ () @ (λy⇒ (ReflectInt (f @ x)) @ k))
in f

At the call-site, the translated function will be statically applied to a capability. This
way, the function and all its recursive calls will be specialized to this capability. This
also entails that the recursive call can only occur in a context with the same stack
shape and the same capabilities.

5.3.3 Abstracting over Handlers

Other than in λCap, capabilities in λλCap are second class [Osvald et al., 2016]. This
allows us to prove that they never appear in translated programs, but prevents us
from writing certain kinds of programs in λλCap. In particular, we cannot abstract over
handlers as handler functions, a common idiom in Koka for example. Consider the
following example written in λCap following this idiom:

def handleFailList(prog : Fail[ IntList ]→Unit→[IntList] Int) {
handle { fail⇒ prog[fail]() }with { (u, k)⇒Nil }
}

We define a handler function that handles the Fail effect by discarding the continuation
and answering with the empty list. This handler is useful and such a definition might
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be part of the standard library. However, this example is ruled out by the more
restrictive type system of λλCap. Being a parameter, prog has a dynamic type, but
capability application prog[fail] demands that prog has a static type. We thus cannot
define handlers as handler functions in λλCap.

We can, however, still define and reuse handlers in multiple places. Consider the
following example using a hypothetical language construct defhandler:

defhandler handleFailList = { ((), k)⇒Nil } in
. . .
handle { fail⇒ . . . }with handleFailList
. . .

This language construct is macro-expressible in λλCap as

defhandler c = h in e
.
= ([c]⇒ e) h

Because capability abstractions are reduced statically, the newly defined handler will
be inlined at all of its call sites, maintaining the guarantee that functions are specialized
to the effect handlers.

5.4 Evaluation

We implemented λCap and λλCap as shallow embeddings into the dependently typed
programming language Idris [Brady, 2013]. We use typed HOAS [Pfenning and El-
liot, 1988] and represent the AST of residualized programs of type τ as values of a
data type indexed by the type τ . We use the host language Idris to both express
source programs, as well as to express static abstractions and applications. For exam-
ple, the type Int→ Int would correspond to the Idris type Exp (Int → Int) and the
type Int→ Int would correspond to the Idris type Exp Int → Exp Int. Throughout
our implementation, we use dependent types to index source and target programs by
their types, including stack shapes, which we represent as a type-level list of types.
For example the λCap type Int→[String, Int]Bool would correspond to the Idris type
Exp (Int → Stm [String,Int] Bool). Our translation follows the inductive struc-
ture of this type-level list.

5.4.1 Theoretical Results

Our translations satisfy a few meta-theoretic properties. In our implementation we
were careful to make these properties hold by construction. Firstly, our unstaged
translation of λCap (as presented in Figure 5.4) preserves well-typedness.

Theorem 20 (Typability of translated terms – unstaged).

Θ Γ ξ ¢ s : τ implies T JΘK, T JΓK¢ SJ s Kξ : CJ τ Kξ
Θ Γ ¢ h : F [ξ] implies T JΘK, T JΓK¢ HJ h K : T JF [ξ] K
Θ Γ ¢ e : τ implies T JΘK, T JΓK¢ EJ e K : T J τ K
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Proof. By induction over the typing derivations and case distinction on the stack
shapes. □

Importantly, we obtain effect safety as corollary.

Corollary 21 (Effect safety). Given a closed statement s, if ∅ ∅ • ¢ s : τ , then
evaluating SJ s K

•
will not get stuck.

Effect safety immediately follows from Theorem 20 and soundness of STLC. Well-
typedness is also preserved by the staged translation (Figure 5.6).

Theorem 22 (Typability of translated terms – staged).

Θ Γ ξ ¢ s : τ implies T JΘK, T JΓK¢ SJ s Kξ : CJ τ Kξ
Θ Γ ¢ h : F [ξ] implies T JΘK, T JΓK¢ HJ h K : T JF [ξ] K
Θ Γ ¢ e : σ implies T JΘK, T JΓK¢ EJ e K : T Jσ K

Proof. By induction over the typing derivations and case distinction on the stack
shapes. □

Our translation thus takes well-typed source programs to well-typed 2-level lambda
calculus programs. From Theorem 22 and soundness of the 2-level lambda calculus
follows stage-time correctness: the translation only applies static functions statically
and residualizes applications of residual functions. In our implementation, we ensure
this by distinguishing static and residual expressions on the type level.

Stage time correctness means that code generation does not fail for well-typed pro-
grams:

Theorem 23 (Full residualization). Given a closed statement s, if ∅ ∅ • ¢ s : τ
then its translation SJ s K

•
can be fully reduced to a residualized term.

Proof. By Theorem 22, we have that ¢ SJ s K
•
: CJ τ K

•
. Now CJ τ K

•
= T J τ K. By

induction on the rules of T J · K, we get that translation of dynamic types τ results in a
residual type τ ′. Soundness of the 2-level lambda calculus guarantees that stage-time
reduction will not get stuck. Our translation does not introduce any static letrec,
which guarantees termination. □

By Corollary 23 and soundness of the 2-level lambda calculus, it is easy to see that
effect safety (Corollary 21) also extends to the staged translation. That is, reducing
the residualized term will not get stuck.

Our careful separation of capability abstractions and applications from function
abstractions and applications in λλCap allows us to guarantee that abstracting over
effect operations with handlers does not incur any runtime overhead.

Theorem 24 (Full elimination). The translations of capability abstraction, capability
application, do h(e), handle { c⇒ s }with h, { (x , k)⇒ s }, and lift h do not introduce
any residual lambda abstractions or applications, except for those in the translation of
their subterms.
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Proof. By inspection of our translation with staging annotations in Figure 5.6. All
abstractions and applications that the translations immediately introduce are marked
as static. □

In particular, capability passing is performed statically, handlers are fully inlined, local
continuations are fully inlined, and continuations at the call-site of effect operations
are inlined in the (already inlined) handler implementations.

While our translation guarantees the elimination of effect handlers, there is still a
cost that originates from the use of control effects. Handled statements are translated
with one more element in the stack shape. To support continuation capture, effectful
function abstractions are CPS transformed and receive one additional continuation
argument per stack shape entry, that is, for every enclosing handler. In other words, the
only additional cost per handler is induced by the number of continuation arguments
and materializes in Reify and Reflect.

5.4.2 Performance Results

We assess the performance of the code generated from λCap and λλCap and compare
it to existing languages with effect handlers and control effects. The benchmarked
programs (Triple, Queens, Count, and Generator) can be expressed in both λCap and
λλCap. All except for Generator are taken from the literature.

The results are shown in Figure 5.7. All benchmarks were executed on a 2.60GHz
Intel(R) Core(TM) i7 with 11GB of RAM. We compare our implementations with
Koka (0.9.0) [Leijen, 2017b], Multicore OCaml (4.06.1) [Dolan et al., 2014], and an
implementation of delimited control operators in Chez Scheme (9.5.3) [Dybvig et al.,
2007]. For each comparison, we generate code in CPS in the corresponding language
(that is, JavaScript, OCaml, and Scheme) and make sure to use the same primitive
functions and data structures that the baseline uses. For each of the example functions
we generate code using the translations of λCap (Figure 5.4) and λλCap (Figure 5.6). In
our implementation of both translations, we additionally apply standard techniques
[Danvy and Filinski, 1992, Schuster and Brachthäuser, 2018] to avoid generating ad-
ministrative eta redexes, although these are not shown in Figure 5.4. We report the
mean and standard deviation of the runtime of the programs under consideration.

We report numbers for four example programs. The Triple program is inspired
by the example in Danvy and Filinski [1990]. It uses the running example choice
from Section 5.1 to find triples of numbers that sum up to a given target number.
The Queens example places queens on a chess board and is taken from Kiselyov and
Sivaramakrishnan [2018]. The Count benchmark appears in Kammar et al. [2013],
Kiselyov and Ishii [2015], and Wu and Schrijvers [2015] and counts down recursively
using a single state effect. The Generator benchmark uses an effect operation to yield
numbers which are summed up by a calling function using a state effect.

We now discuss the setup and observations specific to each of the baselines we
compare against.
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Time in ms (Standard Deviation)

Benchmark Baseline λCap λλCap Native

Koka

Triple 2504.1±19.5 66.2±2.2 23.9±0.6 6.2±0.2

Queens (18) 403.4±9.3 170.8±1.7 171.4±1.2 161.9±4.1

Count (2K) 56.0±1.8 0.4±0.0 0.2±0.0 0.0±0.0

Generator (1K) 43.9±1.8 0.4±0.0 0.1±0.0 0.0±0.0

Chez Scheme

Triple 68.6±1.1 3.7±0.1 3.7±0.1 1.8±0.0

Queens (18) 93.7±3.5 89.6±0.6 88.1±1.0 89.5±1.2

Count (1M) 445.2±27.2 10.5±0.6 10.5±0.8 1.9±0.0

Generator (1M) 664.2±14.6 17.6±0.5 17.7±0.5 2.1±0.0

Multicore OCaml

Triple 25.0±2.4 4.5±0.1 2.4±0.1 2.0±0.1

Queens (18) 57.9±2.2 33.1±0.7 33.7±0.6 34.8±2.7

Count (1M) 72.5±0.9 19.4±0.5 7.5±0.2 2.8±0.0

Generator (1M) 93.9±1.3 18.3±0.5 10.3±0.3 3.9±0.1

Primes (1K) 32.2±0.6 29.0±0.6 22.8±0.4 N/A
Chameneos 26.7±0.6 32.7±1.0 28.7±0.9 N/A

Figure 5.7: Comparing the performance of λCap and λλCap with Koka, Multicore OCaml,
and Chez Scheme.

Comparison with Koka Koka compiles to JavaScript and uses a standard library
of builtin functions and data types also compiled to JavaScript. In our comparison
with Koka, we do not generate Koka but JavaScript code in CPS and use the same
compiled standard library. Benchmarks were executed using the JavaScript library
benchmark.js3 on node.js4 version 12.11.1. For the Count and Generator bench-
marks, we had to use a smaller initial state than in the other comparisons because
the code generated by Koka as well as the code generated by our translation leads to
a stack overflow for larger numbers. Koka already performs a selective CPS transfor-
mation. However, removing the runtime search for handler implementations causes
significant speedups.

Comparison with Multicore OCaml Multicore [Dolan et al., 2014] is a fork of the
OCaml compiler [Leroy et al., 2017] that adds support for effect handlers. We compile
the Multicore OCaml programs with the multicore variant and our generated code with
the standard variant of the ocamplopt compiler (4.06.1). Each program is compiled to
a standalone executable, and we measure the running time with the bench program5.
In our comparison with Multicore OCaml, we benchmarked two additional examples

3https://benchmarkjs.com/
4https://nodejs.org
5http://hackage.haskell.org/package/bench
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from an online repository of Multicore OCaml examples6: Chameneos and Primes.
These two benchmarks exercise the use-case that Multicore OCaml was designed for,
that is, resuming continuations only once. Our translation always supports resuming
continuations multiple times, but still offers competitive performance. The two addi-
tional examples use native side effects like for example mutating a global queue which
we make execute in the right order by inserting let bindings as part of our translation.

Comparison with Monadic Delimited Control on Chez Scheme We also assess
the performance of our generated code relative to a fast implementation of delim-
ited continuations without any effect handling code. For this comparison, we imple-
mented the examples using ordinary functions that capture the current continuation
via shift0 [Danvy and Filinski, 1989]. We use the library described by [Dybvig
et al., 2007] and compile the example programs as well as our generated code with the
Chez Scheme compiler [Dybvig, 2006]. In all four benchmarks we do not observe any
speedup of the code generated from the translation of λCap over the code generated
from the translation of λλCap where we eliminate redexes during translation. We have
investigated Chez Scheme’s intermediate representation and confirmed that, after op-
timization, the code is indeed the same for λCap and λλCap, except that sometimes a
subexpression is let bound. Does this make the restriction of λλCap and its transla-
tion in Figure 5.6 unnecessary? No, on the contrary: the type system of λλCap is an
important conceptual tool that guided us to a well-performing implementation where
optimal compilation is guaranteed. The fact that Chez Scheme can optimize the pro-
gram similar to our improved translation can be seen as additional practical evidence
for Theorem 24.

Benchmark results The benchmark results are generally encouraging. They indicate
that the code we generate for λλCap (and λCap) is significantly faster than the languages
we compare against. For the Triple benchmark, we can observe speedups of 105x
(λCap 38x) compared to Koka, 11x (λCap 6x) compared to Multicore OCaml, and 19x
for both implementations compared to Chez Scheme. For the Count benchmark we
observe speedups of 297x (λCap 150x) compared to Koka, 10x (λCap 4x) compared to
Multicore OCaml, and 42x (λCap 43x) compared to Chez Scheme. For the Generator
benchmark we observe speedups of 409x (λCap 118x) compared to Koka, 9x (λCap 5x)
compared to Multicore OCaml, and 38x (λCap 38x) compared to Chez Scheme. All
three benchmarks extensively use control effects and yield optimization opportunities
across effect operations for us to exploit. In the other benchmarks, we observe some
speedups as well. Interestingly, in the Queens benchmark we do not observe any
speedup between our unstaged translation and our staged translation. It uses one
effect operation in a single place and handles it as a loop, which our staged translation
immediately residualizes.

Comparison with hand-written code using native effects As another point of ref-
erence, we have implemented the benchmark examples and manually restructured the

6https://github.com/kayceesrk/effects-examples
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programs to avoid effect handlers and use native effects instead. For example, we used
native mutable state instead of effect handlers. We were careful to keep the same
number of library calls (for example append on lists). The results are listed in column
“Native” in Figure 5.7. In the benchmarks for Koka, where we compare with the gen-
erated code in JavaScript, the time for the native benchmarks is below 0.05 and thus
displayed as 0.0. The results indicate that there is still an order of magnitude differ-
ence between the code we generate as the translation of λλCap and the hand-written
code using native effects.

5.5 Related Work

In this chapter we combined explicit capability passing with an implementation of con-
trol effects by iterated CPS transformation and specialization of programs with regard
to evidence terms. This combination allows us to exploit static information and en-
ables compile-time optimizations of lexical effect handlers. Applying some restrictions
in λλCap, we are able to guarantee that all overhead introduced by the handler abstrac-
tion is eliminated. In this section, we relate our compilation technique to existing work
on compile-time optimization of effect handlers.

Kammar et al. [2013] present multiple translations of effect handlers into Haskell.
They translate handler implementations to type class instances, turning handlers into
dictionary parameters of effectful functions. This can be seen as some form of capability
passing. Furthermore, they present a translation that uses nested applications of the
continuation monad for multiple handlers. This translation is very similar to the
translation of λCap to iterated CPS that we present here. However, they rely on
GHC to optimize the abstractions they introduce. They do not explicitly state their
assumptions for efficient code generation, while with λλCap we make such assumptions
explicit.

Wu and Schrijvers [2015] consider effectful programs as a free monad over a signature
of effect operations. They fuse multiple handlers to avoid building and then folding any
intermediate free monad structure in memory. They achieve excellent performance on a
number of benchmarks, which validates their optimization method. Their optimization
crucially relies on inlining and function specialization. Since their implementation uses
Haskell and GHC, they use Haskell type classes to trigger function specialization, but
do not state the conditions for when this may or may not happen. To get access
to the current continuation, they use nested layers of the codensity monad which
is operationally the same as the continuation monad. This is a similarity to our
translation to nested layers of CPS.

Karachalias et al. [2021] present a compile-time optimization technique for dynamic
effect handlers. They use the explicit effect coercions inferred by [Saleh et al., 2018].
While their approach is to apply semantics preserving rewrite rules, we translate effect
handlers to a 2-level lambda calculus in CPS and apply beta-reductions at compile
time. Our approach has the advantage that our optimizations are semantics-preserving
by construction. As a downside, our translation might miss optimization opportunities
that are specific to effect handlers and only become apparent in a language where they
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are explicitly represented. They compare their approach to the compilation technique
presented in this thesis [Karachalias et al., 2021] in Table 2. Our technique is still
competitive, sometimes even with hand-written code.

5.6 Conclusion

In this chapter we have evaluated our compilation technique. We have presented λCap,
and a second language λλCap, whose type system restricts programs to make it possible
to always statically know handler implementations. We have given a translation of
λCap to STLC that generates fast code. The translation of λλCap exploits the explicit-
ness of our compilation technique to eliminate all overhead introduced by abstracting
over effect operations. The crucial ingredients are explicit capability passing, iterated
continuation passing, and explicit subregion evidence.

However, we see potential for improvement in the future. We generate code in CPS,
which can be disadvantageous for some languages or virtual machines. Targeting a
language with support for the delimited control operator shift0, we could instead use
shift0 directly instead of translating to iterated CPS. However, implementing delimited
control in terms of iterated CPS is crucial to achieve compile-time optimization. It
allows us to make use of the static knowledge of the context around the invocation
of effect operations. In the future we want to investigate a direct-style translation
that transforms programs in iterated CPS back to direct style, inserting the control
operator shift0 only where necessary.

It is common practice to compile to CPS [Kennedy, 2007], an explicit representation
of join points [Maurer et al., 2017], or both [Cong et al., 2019]. In the future, we want
to target an intermediate language with an explicit representation of continuations
and treat continuations differently from functions at compile time and run time. For
example, we could extend the intermediate language presented in [Kennedy, 2007]
generalizing from two continuations to an arbitrary number.

Implementing programming languages involves a series of tradeoffs, usually on a
spectrum between dynamic and static. This is no different for the implementation
of effect handlers. By using explicit capability passing, iterated continuation passing,
and monomorphizing effect-polymorphic function, we have explored the static end of
this spectrum in detail and offer two data points in the design space of effect han-
dlers. Other tradeoffs are possible. More experimentation with different designs and
implementations of languages with effect handlers will help to inform these.
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6 Conclusion

In this thesis we presented a compilation technique for lexical effect handlers. The key
ideas are capability passing, continuation passing, and evidence passing. To summa-
rize, the compilation technique presented in this thesis has the following advantages:

– It does not require a runtime system. It can target any language that supports
first class functions, making it widely deployable.

– It does not reify computation as a value of a recursive data type. Generated
programs are completely tagless.

– It produces programs in continuation-passing style, a well-studied intermediate
representation in compilers. Generated programs are easily optimizable using
well-known techniques.

– It produces well-typed programs in System F, a well-studied language. We do
not introduce any sources of non-termination into the target language.

– In this thesis we prove multiple theorems of correctness about it. Most of these
proofs are straight-forward, as we are careful to make them hold by construction.

It has the following disadvantages:

– It produces programs in continuation-passing style, which allocates stack frames
on the heap.

– It increases the number of parameters of functions and makes extensive use of
currying which might confuse arity analysis in existing compilers.

– It works for lexical effect handlers only which are less powerful than dynamic
effect handlers.

– It is not clear if and how it is possible to support shallow effect handlers.

At the time of writing, we are investigating several improvements, extensions, and
applications of the compilation technique presented in this thesis. Indeed, there is a
lot to do.
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