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them. Verily, ... the extinction of craving is
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Preface
The significant portion of the work presented in this dissertation has been carried out
between August 2015 and August 2020 at the Max-Planck institute for Intelligent Systems,
Tübingen in the Empirical Inference Department headed by Dr. Bernhard Schölkopf.
A small but important portion of the work included in this dissertation has been done
while I was visiting the group led by Prof. Martin Jaggi at EPFL, Lausanne and by Prof.
Francis Bach at SIERRA-Inria, Paris to do research in the theory of convex/non-convex
optimization for machine learning.

This thesis is organized overall in 11 chapters out of which there are 3 main chapters
which contain introduction, objective and contribution made in this thesis. 8 of the
remaining chapters are included in the appendix which have been taken directly from my
research manuscripts.

• Chapter 1 is a brief introduction of the topic and provides background on coordinate
descent and stochastic gradient descent optimization methods. It also contains
a discussion on the major research challenges in mini batch stochastic gradient
descent and coordinate descent algorithms.

• Chapter 2 briefly discusses the objective of this thesis. It contains a concise descrip-
tion of the major research questions which have been partially/fully answered in
this thesis.

• Chapter 3 contains the specific contributions made in thesis. It further mentions all
the research manuscripts included in this thesis and describes the contribution made
by me in each manuscript. In the final part of this chapter starting from Chapter 3.4,
I discuss the background and main results of each manuscript in a concise manner.

• Appendix A contains the copy of manuscript titled “Screening Rules for Con-
vex Problems” which has been presented in Optimization for Machine Learning
Worksop at Neurips 2016, held in Barcelona.

• Appendix B contains the copy of the manuscript titled “Approximate Steepest
Coordinate Descent” published at ICML, 2017 held in Sydney, Australia.

• Appendix C contains the copy of the manuscript titled “Safe Adaptive Importance
Sampling” published at Neurips, 2017 held in USA.
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• Appendix D contains the copy of the manuscript titled “On Matching Pursuit and
Coordinate Descent” published at ICML, 2018 held in Stockholm, Sweden.

• Appendix E contains the copy of the manuscript titled “k-SVRG: Variance Reduc-
tion for Large Scale Optimization” which is an arXiv Manuscript.

• Appendix F contains the copy of the manuscript titled “A Simpler Approach to
Accelerated Stochastic Optimization” published at ICML, 2020 held online.

• Appendix G contains the copy of the manuscript titled “Importance Sampling via
Local Sensitivity” published at AISTATS, 2020 held online.

• Appendix H contains the copy of the manuscript titled “Explicit Regularization of
Stochastic Gradient Methods through Duality” submitted at AISTATS, 2021.
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Abstract
With the advent of massive datasets and increasingly complex tasks, modern machine
learning systems pose several new challenges in terms of scalability to high dimensional
data as well as to large datasets. In this thesis, we consider to study scalable descent
methods such as coordinate descent and stochastic coordinate descent which are based on
the stochastic approximation of full gradient.

In the first part of the thesis, we propose faster and scalable coordinate based opti-
mization which scales to high dimensional problems. As a first step to achieve scalable
coordinate based descent approaches, we propose a new framework to derive screening
rules for convex optimization problems based on duality gap which covers a large class
of constrained and penalized optimization formulations. In later stages, we develop new
approximately greedy coordinate selection strategy in coordinate descent for large-scale
optimization. This novel coordinate selection strategy provavbly works better than uni-
formly random selection, and can reach the efficiency of steepest coordinate descent
(SCD) in the best case. In best case scenario, this may enable an acceleration of a factor of
up to n, the number of coordinates. Having similar objective in mind, we further propose
an adaptive sampling strategy for sampling in stochastic gradient based optimization.
The proposed safe sampling scheme provably achieves faster convergence than any fixed
deterministic sampling schemes for coordinate descent and stochastic gradient descent
methods. Exploiting the connection between matching pursuit where a more generalized
notion of directions is considered and greedy coordinate descent where all the moving
directions are orthogonal, we also propose a unified analysis for both the approaches and
extend it to get the accelerated rate.

In the second part of this thesis, we focus on providing provably faster and scalable
mini batch stochastic gradient descent (SGD) algorithms. Variance reduced SGD methods
converge significantly faster than the vanilla SGD counterpart. We propose a variance
reduce algorithm k-SVRG that addresses issues of SVRG [98] and SAGA[54] by making
best use of the available memory and minimizes the stalling phases without progress. In
later part of the work, we provide a simple framework which utilizes the idea of optimistic
update to obtain accelerated stochastic algorithms. We obtain accelerated variance reduced
algorithm as well as accelerated universal algorithm as a direct consequence of this simple
framework. Going further, we also employ the idea of local sensitivity based importance
sampling in an iterative optimization method and analyze its convergence while optimizing
over the selected subset. In the final part of the thesis, we connect the dots between
coordinate descent method and stochastic gradient descent method in the interpolation
regime. We show that better stochastic gradient based dual algorithms with fast rate of
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convergence can be obtained to optimize the convex objective in the interpolation regime.
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Kurzfassung
Das Aufkommen massiver Datensätze und immer komplexerer Aufgaben stellt moderne
maschinelle Lernsysteme vor zahlreiche neue Herausforderungen bezüglich der Skalier-
barkeit für hochdimensionale Daten und große Datensätze. In dieser Arbeit betrachten wir
die Untersuchung skalierbarer Abstiegsmethoden wie den Koordinatenabstieg und den
stochastischen Koordinatenabstieg, die auf stochastischen Approximationen des vollen
Gradienten basieren. Im ersten Teil der Arbeit schlagen wir eine schnellere und skalierba-
re koordinatenba- sierte Optimierung vor. Als ersten Schritt zum Erreichen skalierbarer
koordinatenbasierter Abstiegsansätze schlagen wir einen neu- en Ansatz zur Ableitung
von Screening-Regeln für konvexe Optimierungsprobleme vor, der auf der Dualitätslücke
basiert und eine große Klasse Optimierungsproblemen mit Nebenbedingungen abdeckt.
Anschließend entwickeln wir eine neue Auswahlregel für die Koordinatenauswahl in
Koordinatenabstiegsverfahren für große Datensätze. Die Konvergenz dieses Algorithmus
ist nachweislich schneller als für stochastischen Koordinatenabstieg und kann die Konver-
genzrate des steilsten Koordinatenabstiegs (SCD) erreichen, was eine Beschleunigung um
einen Faktor von bis zu n, der Anzahl der Koordinaten, ermöglicht. Weiterhin schlagen
wir adaptive Sampling-Strategie für die stochastischen gradientenbasierten Optimierung
vor. Das vorgeschlagene safe Sampling erreicht nachweislich eine schnellere Konver-
genz als alle festen deterministischen Sampling-Strategien für Koordinatenabstiegs- und
stochas- tische Gradientenabstiegsmethoden. Unter Ausnutzung des Zusammenhangs
zwischen matching Pursuit, bei der ein verallgemeinerter Richtungsbegriff verwendet
wird, und greedy Koordinatenabstieg, bei dem alle Bewegungsrichtungen orthogonal
sind, schlagen wir eine einheitliche Analyse für beide Ansätze vor und erweitern sie,
um die bessere Konvergenzrate zu erhalten. Im zweiten Teil dieser Arbeit beschäftigen
wir uns mit der Diskussion von beweisbar schnelleren und skalierbaren Algorithmen
für den stochastischen Abstieg in Mini-Batches (SGD-Algorithmen). Varianzreduzierte
SGD-Methoden konvergieren deutlich schneller als das Standard SGD Pendant. Wir schla-
gen einen varianzreduzierenden Algorithmus k-SVRG vor, der die Probleme von SVRG
[99] und SAGA[54] angeht, indem er den verfügbaren Speicher optimal nutzt und die
Stalling-Phasen ohne Fortschritt minimiert. In einem späteren Teil der Arbeit diskutieren
wir ein einfaches Framework, das die Idee der optimistischen Updates nutzt, um schnel-
lere stochastische Algorithmen zu erhalten. So erhalten wir sowohl einen schnelleren
varianzreduzierten Algorithmus als auch einen schnelleren allgemeinen Algorithmus. Dar-
über hinaus untersuchen wir ein auf lokaler Sensitivität basierenden Sampling-Schemas
für eine iterative Optimierungsmethode und analysieren dessen Konvergenz während
der Optimierung über die ausgewählte Teilmenge. Im letzten Teil der Arbeit verbinden
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wir Koordinatenabstiegsmethoden und sto- chastische Gradientenabstiegsmethoden im
Interpolationsregime. Wir zeigen, dass wir auf stochastischen Gradienten basierende
Algorithmen für das duale Problem mit schnellerer Konvergenzrate definiren können, die
eine konvexe Funktion im Interpolationsregime minimieren.
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Chapter 1

Introduction
Intelligent systems and machines have become an integral part of the modern civiliza-
tion. These machines/systems are now being heavily utilized in various tasks which are
useful in our daily life for example search engines like google, recommendation systems,
autonomous cars and robots. The performance of these systems have improved a lot on
these tasks which were considered hard to perform for machines a decade ago. Modern
machine learning algorithms and the advent of modern data collection methods are the
most essential building blocks in building these intelligent systems. On a negative side,
modern intelligent systems are data hungry and require a huge amount to data to train the
predictive model. Hence, for the same reason, modern machine learning applications also
face new obstacles in terms of scalability and efficiency of the algorithms for huge scale
data, privacy of the data and other ethical concerns. Addressing these challenges is very
critical to the advancement of machine learning and artificial intelligence. There are two
major steps of developing modern machine learning applications : (i) choose a model
that approximately generates the observable data from underlying data distribution. (ii)
learn model parameters using the finitely observable data which are often obtained after
minimizing a finite sum objective. Numerical optimization lies at the heart of second step.
The goal of this thesis is to develop fast and efficient mathematical optimization meth-
ods especially first order stochastic gradient based optimization methods and coordinate
descent methods to address problems in modern ML applications.

1.1 Convex Machine Learning Problems
For the purpose of our discussion and introduction, let us consider the classical problem
of hinge loss SVM classification. The samples {(ai,yi)}n

i=1 where ai 2 Rd and yi 2
{�1,1} for all i 2 [n] are independent and identically distributed samples from the joint
data distribution which form the dataset where ai is referred to as feature vector and yi
the corresponding class label in the case of classification task or output in the case of
regression task. The optimization problem for hinge loss SVM classification is written as

min
x2Rd

1
n

n

Â
i=1

max(0,1� yia>i x)+ l
2
kxk2. (1.1)
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Chapter 1 Introduction

The term max(0,1� yia>i x) which is popularly known as hinge loss. It is the loss with
respect to the ith sample. The remaining term is referred as regularizer which controls
the capacity of the optimal solution. However, for different tasks, different loss functions
and different regularizers are used. The more general formulation of machine learning
optimization problem can be written as :

min
x2Rd

1
n

n

Â
i=1

`(yi,a>i x)+h(x) (1.2)

where ` is the loss function and `(yi,a>i x) measures the loss occurred in the prediction
of yi using the model parameter x and features zi. Further, the problem described in
Equation (1.2) can be seen as a subset of far more general optimization formulation given
below,

min
x2Rd

1
n

n

Â
i=1

fi(x). (1.3)

where fi : Rd!R. The optimization problem in Equation (1.3) is widely referred as finite
sum optimization problem. In this thesis, we focus on optimization problems with convex
objectives that means ` and f 0i s are convex functions. Our main focus is to optimize convex
functions because of the fact that convex problems are their ubiquitous in application and
are relatively easy to solve provably. Some examples of the problems which have convex
objectives are Logistic regression, least-squares, support vector machines, conditional
random fields and tree-weighted belief propagation. Also, the optimization techniques
developed to optimize convex function often works well for the task of non-convex
optimization as well. Even though, global convergence is NP-hard for non-convex
optimization, optimization methods developed for optimizing convex function often
provably reach stationary point of non-convex optimization as well. From the empirical
perspective, many optimization algorithms which have fast rate of convergence while
optimizing convex functions have also good empirical performance while optimizing
non-convex functions.

First-order numerical optimization methods (i.e., based on first order information of
the function) are particularly methods of choice while solving the optimzation problems
discussed in Equations (1.2) and (1.3) due to their scalable nature as well as for their
provable convergence guarantee. Gradient descent, stochastic gradient descent and ran-
domized coordinate descent methods are amongst the most widely used optimization
methods. As the modern data collection methods have improved, the size of dataset used
while training machine learning models have increased tremendously and more often than
not computing full gradient on the entire dataset for making single first order update is
computationally a very expensive task to perform. This computational difficulty boosted
the use of stochastic first order methods while optimizing the objective function given
in Equations (1.2) and (1.3). Stochastic Gradient Descent and Randomized Coorrdinate

2



1.2 Background

Descent based methods are the most widely used stochastic first order methods to optimize
the objectives arising while training machine learning models. The original stochastic
approximation approach was proposed by Robbins and Monro [206] and since then a
large amount of work has been done to understand and as well as to improve stochastic
first order optimization methods [see, e.g., 158, 165, 191, 192, and references therein]. In
past few years, Coordinate descent (CD) methods have become very popular and attracted
a vast interest in the optimization community [170, 204]. Due to their computational
efficiency, scalability, state of the art empirical performance as well as their ease of
implementation, stochastic gradient methods and coordinate descent methods are the
most commonly used optimization algorithms in machine learning and signal processing
applications [74, 93, 262]. In thesis, we will be mostly focussing on improved algorithms
for stochastic gradient descent algorithms and coordinate descent methods. Before going
into the detail of stochastic gradient methods and coordinate descent methods, we will
first discuss the relevant background.

1.2 Background
Before going into further details, we briefly review the background which will be required
to discuss for this thesis. This includes common assumptions, definitions and notations
which would be used in most part of the thesis except where it is mentioned otherwise.
As discussed previously, let us consider the general finite sum optimization problem as
presented in equation (1.3),

min
x2Rd

1
n

n

Â
i=1

fi(x) .

Throughout this thesis, we will be working with smooth functions until and unless
specified. We would first define the smoothness of the function as following:

Definition 1.2.0.1 (L-smooth functions [173]). We say a function f : Rd!R is L-smooth
if there exists constant L such that the gradient of the function f is L-Lipschitz i.e.

k— f (x)�— f (y)k  Lkx�yk 8 x,y 2 Rd.

Smoothness assumption is very common in the analysis of first-order optimization
methods. In some parts of the thesis, we will also require to assume that all the components
of finite sum optimization f 0i s are Li smooth for i 2 [n]. The definition in 1.2.0.1 also give
rise to the following condition which is utilized in the convergence analysis of first order
methods:

f (x) f (y)+ h— f (y),x�yi+ L
2
kx�yk2 .

3
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In the similar spirit, next we define the strong convexity of a function below.

Definition 1.2.0.2 (µ-strongly convex functions [173]). A function f : Rd ! R is said to
be µ-strongly convex if there exists a constant µ > 0 such that

f (x)� f (y)+ h— f (y),x�yi+ µ
2
kx�yk2 .

For an L-smooth and µ strongly function f , the quantity k = L
µ is known as the

condition number of f . When the strong convexity parameter µ is 0 then the function
f is said to be non-strongly convex. It is well studied that first order methods converge
faster on strongly convex and smooth function and the rate of convergence depends on the
condition number k . Many popular regularizers h(x) (Eq. (1.2)) used in machine learning
problem formulation are usually strongly convex in nature which essentially makes the
entire objective in Eq. (1.2) strongly convex and thus easier to optimize.

The proximal operator of a function g is defined as

proxhg := arg min
y2Rd

✓
g(y)+

1
2h
ky�xk2

◆

for some parameter h > 0. Proximal Operators are useful while dealing with nonsmooth
optimization i.e., problems where the objective function is not differentiable at finitely
many points. The non-differentiability usually comes from the regularization function
h(x). Proximal operators are the most easy to use in practice when (i) the objective
function can be written as a sum of smooth ( f (x)) and a nonsmooth function (h(x)) and
(ii) the computation of proximal operator of the non-smooth part is easy.

1.2.1 Convergence Criteria
In most part of thesis, we would be devising provably convergent optimization algorithms.
For convex functions, it is common practice to use primal optimality gap f (x)� f (x?)
or the distance between the iterate x to the optimal iterate x? i.e. kx�x?k as the conver-
gence criterion where x? = argmin f (x). In some cases, a Lyapunov function is defined
combining the two criteria discussed above ( f (x)� f (x?) and kx�x?k) which further is
used as a convergence criterion. However, any criterion which involves the global optimal
point x? can not be used for the non-convex case. It is suggested [76] to use k— f (x)k2 as
the convergence criteria while analyzing the convergence for non-convex functions.

Definition 1.2.1.1 (e-accurate point [198]). A point x is called e-accurate if k— f (x)k2 e .
For the stochastic iterative algorithm, we say a point xxx e-accurate if Ek— f (x)k2  e .

The e-accurate point based criterion is applicable to both while optimizing convex as
well non-convex objectives. However, another more conservative criterion can be used for
convex objectives which we define below.
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1.3 Coordinate Descent

Algorithm 1 Randomized Coordinate Descent[170]
Input: f , xxx0, T
for t = 0 to T do

Choose index it with uniform probability
Set xxxt+1 xxx�ht [— f (xxxt)]it eit for a > 0.

end for

Definition 1.2.1.2 (e-suboptimal point [198]). A point x is called e-suboptimal point if
f (x)� f (x?) e where x? = argminxX f (x) and X is the domain of x. For the stochastic
iterative algorithm, we say a point xxx e-accurate if E[ f (x)]� f (x?) e .

Now that we have discussed the general background to understand the result presented
in our paper, we will discuss coordinate descent and (mini batch) stochastic gradient
descent in the next two sections where the most of contributions are made in this thesis.

1.3 Coordinate Descent
Coordinate descent algorithms performs successive approximate minimization along co-
ordinate directions or coordinate hyperplanes to optimize an objective function. Recently,
the rate of convergence for randomized coordinate descent and randomized accelerated
coordinate descent was proved in Nesterov [170]. Let us consider the following uncon-
strained optimization problem,

x? = arg min
x2Rd

f (x) (1.4)

where f : Rd ! R is a continuous convex function. [x]i denotes the ith entry of vector x
and et denotes a d-dimensional vector with all the entries set to be zero except [e]t = 1. In
algorithm 1, we describe a simplest version of randomized coordinate descent method
for unconstrained optimization of smooth function f . The convergence analysis for the
Algorithm 1 was proposed in [170, 262]. For the analysis of Algorithm 1, coordinate
wise Lipschitz continuous gradient is define which is the main key in the analysis. A
convex function f : Rn ! R with coordinate-wise Li-Lipschitz continuous gradients
satisfies |—i f (xxx+heeei)�—i f (xxx)|  Li |h | , 8xxx 2 Rn,h 2 R for constants Li > 0, i 2
[n] := {1, . . . ,n} which essentially satisfies by the standard reasoning

f (xxx+heeei) f (xxx)+h—i f (xxx)+ Li
2 h2 (1.5)

for all xxx2Rn and h 2R. A function is coordinate-wise L-smooth if Li  L for i = 1, . . . ,n.
A simplified version of the result presented in Nesterov [170] was presented in Wright
[262] which we restate here below and discuss the implications before addressing the
challenges in coordinate descent algorithms.
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Theorem 1.3.0.1 (Theorem 1, [262]). Suppose that the function f is convex and uniformly
Lipschitz continuously differentiable, and attains its minimum value f ? on a set S . Also,
there exists a finite R0 such that the level set for f defined by x0 is bounded, that is

max
x?2S

max
x

{kx�x?k : f (x) f (x0)} R0

then given than ht =
1
L in Algorithm 1, we have

E[ f (xt)]� f ? 
2nLR2

0
t

.

When f is µ > 0-strongly convex as well then

E[ f (xt)]� f ? 
⇣

1� µ
nL

⌘t
( f (x0)� f ?).

Proof Sketch. The detailed proof is given in Wright [262]. However, the key aspect of
the proof comes from the coordinate wise Lipschitz condition.

f (xt+1) = f (xxx�ht [— f (xxxt)]it eit )

 f (xxx)+
1
L
[— f (xt)]

2
it �

1
2L

[— f (xt)]
2
it

 f (xxx)� 1
2L

[— f (xt)]
2
it .

Second last equation comes from using the coordinate wise smoothness condition and
putting ht =

1
L . Now, one can take expectation of both sides over random index it to get

E[ f (xt+1)] f (xxx)� 1
2nL
k— f (xt)k2 . (1.6)

Inequality in Equation (1.6) provides a lower bound on the decrease in the objective
function in each iteration. This expression resembles the gain in gradient descent. Rest of
the proof follows the proof technique for convergence of gradient descent as in [173].

Similar results can be obtained for randomized coordinate descent with composite
objective as well as for accelerated version of randomized coordinate descent. The above
described result holds when the sampling probability of each and every coordinate is kept
fixed and same which is 1

n . In Nesterov [170], the authors have provided the convergence
with Li-based sampling of coordinates that means probability of selecting ith coordinate
pi =

Li
Ân

i=1 Li
. Li-based sampling as studied in Nesterov [170] improves the performance of

randomized coordinate descent algorithm in theory and practice over uniformly random
sampling.
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1.4 Mini-Batch SGD

1.3.1 Challenges in Randomized Coordinate Descent
Now that we have discussed the background related to randomized coordinate descent,
we will now discussed the issues related to coordinate descent algorithms. Some of these
issues, we will try to address in this thesis.

It is clear from the result presented in Theorem 1.3.0.1 that the rate of convergence
depends on the number of active coordinates. Hence, as the number of active coordinates
increases, the algorithm converges slowly to the optimal solution. In the case of high
dimensional sparse optimization problem, the subspace where the optimal solution lies is
really small that means most of the entries in the optimal solution vector are zeros. If we
denote the number of non-negative entries in d-dimensional optimal solution vector as s
then more often than not s << d. In that case, paying for all the variables in computations
as well as in convergence bound is suboptimal as we know that only very few number
of variables are non-zero in the end. Hence, one essential goal of sparse optimization
problem while applying coordinate descent algorithm is to screen out as many variables as
possibles during the course of the optimization process or as a part of preprocessing step
which are guaranteed to be zero at the optimal point. The process is termed as Screening
of Variables [77] in the literature.

As discussed previously, it was shown in Nesterov [170] that Li-based sampling
achieves better rate of convergence in theory and in practice for coordinate descent
algorithms. However, another open question remains that can we design an improved
time dependent or fixed sampling scheme which would further improve the performance
of coordinate descent algorithm further ? If at all it is possible to design a better time
dependent coordinate sampling scheme for coordinate descent algorithm, would that be
a computationally efficient algorithms to run in practice ? Steepest coordinate descent
can also be seen as a time dependent sampling scheme for coordinate descent algorithm.
Steepest coordinate descent performs the coordinate selection by choosing the direction
which has the maximum coordinate wise absolute gradient value at any instant of time.
However, it is pretty clear that to choose the exact steepest coordinate, one has to compute
the full gradient and hence, steepest coordinate descent algorithm is a computationally ex-
pensive algorithm to run. It has been evident from the experiments that steepest coordinate
descent converges fastest to the optimal solution when compared with respect to number
of coordinate wise gradient updates has been made. One immediate research question
arises from here if one can design a deterministic coordinate selection or coordinate
sampling algorithm which carries the best properties from both of the two approaches (i)
steepest coordinate descent and (ii) randomized coordinate descent.

1.4 Mini-Batch SGD
Stochastic gradient descent (SGD) algorithms are amongst the most popular optimization
algorithms used while training machine learning models. Stochastic gradient descent

7
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(SGD) methods have enabled to run machine learning algorithm on huge scale dataset.
Unlike the full gradient methods, stochastic gradient methods does not require to compute
the full gradient to make an update instead one has to only compute a stochastic gradient
to make an update. Considering the following optimization problem as in equation (1.4)

x? = arg min
x2Rd

f (x).

At any iterate x, we represent g(x) as the stochastic gradient such that g(x) = E[— f (x)].
The update at ant time instant t, we have following first order update,

xt+1 = xt�htgt . (1.7)

Due the computational scalability of SGD, there has been a lot of works in understanding
the convergence guarantee of SGD methods [158, 165, 191, 192]. The variance of the
random vector vvv is defined by Var(vvv) = E[kvvvk2]�kE[vvv]k2. The rate of convergence of
SGD for Lipschitz convex function is given in the theorem below.

Theorem 1.4.0.1 (Moulines and Bach [158], Nemirovski et al. [165]). Let f : Rd ! R
be a L-Lipschitz convex function and x? = argminx f (x). Consider an iterate of of SGD
update where the estimator gt has a bounded variance for all t i.e. Var(gt) s2. Then
for any T > 1 and step size ht  1

L for all t, SGD satisfies the following guarantee ,

E[ f (x̄T )]� f (x?) kx0�x?k2

2hT T
+

1
T

t

Â
t=1

hT s2

2

where x̄t =
1
t Ât

i=1 xi for all t.

In the above presented theorem statement, if we choose ht ⇡O(1/
p

T ) then we would
have,

E[ f (x̄T )]� f (x?)⇡O(1/
p

T ).

Similarly, if the optimization objective function f is µ > 0 strongly convex function then
we get faster rate of convergence as compared to Lipschitz convex function.

Theorem 1.4.0.2 (Lacoste-Julien et al. [121]). Let f :Rd!R be a µ > 0-strongly convex
function and x? = argminx f (x). Consider all the stochastic gradients gt for all t > 0 are
bounded i.e. kgtk  G then for any T > 1, SGD with step size ht =

1
µt for all t satisfies,

E[ f (x̄T )]� f (x?) G2

µT
(1+ logT )

where x̄t =
1
t Ât

i=1 xi for all t.
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1.4 Mini-Batch SGD

In the case of finite sum optimization problem, the stochastic approximation of the
gradient gt is obtained by uniformly random selection of one component amongst n of
them (See Eq. (1.3)) with replacement. Another way to make the unbiased stochastic
approximation of the gradient is via importance sampling. In Zhao and Zhang [271], the
authors analyse the rate convergence of stochastic mirror descent for general sampling
distribution pt for all t. However, there was no new sampling approach proposed in [271]
which improves over the existing results of uniform sampling and is computationally
cheaper to compute at any time t. If the probability of sampling component i at time
instant t is denoted by p(t)i then SGD with importance sampling makes the following
update,

xt+1 = xt�ht
1

(np(t)it )
— fit (xt). (1.8)

Theorem 1.4.0.3 (Theorem 1, [271]). Let xt is be generated by Equation (1.8) and f
is L-smooth, µ � 0 strongly convex function then if ht =

1
a+µt

where a � L� µ the
following inequality holds for any T > 1,

E[ f (x̄T )]� f (x?) 1
T

"
akx0�x?k2 +E

"
T

Â
t=1

Vt

a +µt

##
(1.9)

where the variance is defined as Vt = Var[(np(t)it )�1— fit (xt)] = Ek(np(t)it )�1— fit (xt)�
— f (xt)k2.

For the maximum reduction in the objective function, one should choose p(t)i for i 2 [T ]
which solves the following optimization problem,

min
p(t)i ,Ân

i=1 p(t)i =1
Var[(np(t)it )�1— fit (xt)]. (1.10)

One can easily verify that the solution of the above optimization problem is

p(t)i =
k fi(xt)k

Ân
i=1 k fi(xt)k

. (1.11)

However, it is not practical to compute p(t)i for all i at any instant t as it requires the
computation of the full gradient which is computationally very expensive.

Variance Reduction in SGD: Stochastic gradient descent is the most widely used
algorithm for large scale optimization amongst all the optimization methods because of its
per iteration computational efficiency. However, the major drawback of SGD optimization
algorithm is that it has slow convergence asymptotically due to the inherent variance.

9



Chapter 1 Introduction

The major breakthrough to accelerate stochastic gradient descent method came when
Johnson and Zhang [99] proposed to introduce an explicit variance reduction method for
stochastic gradient descent by computing full gradient for snapshot points. This method
was named as stochastic variance reduced gradient (SVRG) method. Similar method
of variance reduction was proposed in SAGA [54]. SAGA improves upon the previous
variance reduced methods like SVRG and SAG by providing tight theoretical convergent
rate and extending the analysis to composite objectives where a proximal operator is used
on the regularizer. Variance reduced stochastic optimization works on the principle that
if the current iterate and previous iterates are close then the gradient information from
the previous iterates might be useful in providing better current gradient estimates which
will eventually reduce the variance. A unified framework for the variance reduced can be
written as in given below. Let x0,x1, . . . ,xT denote the iterates of the algorithm, where
x0 2 Rd is the starting point. For each component fi, i 2 [n], of the objective function, we
denote by qqq i 2 Rd the corresponding snapshot point. The updates of the algorithms take
the form

xt+1 = xt�hgit (xt) , with

git (xt) := — fit (xt)�— fit (qqq it )+
1
n

n

Â
i=1

— fi(qqq i) ,
(1.12)

where h > 0 denotes the stepsize, and it 2 [n] an index (typically selected uniformly at
random from the set [n]). We now reiterate the result from Defazio et al. [54] for strongly
convex finite sum optimization. For simplicity, we do not assume the proximal update in
this result however, the result also holds for proximal functions.

Theorem 1.4.0.4 (Theorem 1, [54]). With x? the optimal solution, define the Lyapunov
function T as:

Tk = T (xk,{qqq (k)
i }n

i=1) =
1
n

n

Â
i=1

fi(qqq (k))
i � f (x?)+ ckxk�x?k2.

Then with h = 1
2(µn+L) , c = 1

2h(1�hµ)n and k = 1
hµ , we have the following expected

change in the Lyapunov function between steps of the SAGA algorithm (conditioned on
Tk)

Tk+1 
✓

1� 1
k

◆
Tk.

The result presented in Theorem 1.4.0.4 holds for strongly convex function however,
the result can also be extended for smooth but non-strongly convex functions.

Sensitivity Based Sampling for Subset Selection: So far we have discussed that how
stochastic gradient methods can reduce the computation of a machine learning task.

10



1.4 Mini-Batch SGD

However, one can also choose to reduce the burden of solving a large scale finite sum
optmization by minimizing an approximation to the finite sum objective f formed by
independently subsampling data points with appropriate reweighting. Let us consider the
optimization objective similar to that of Equation (1.2),

min
x

1
n

n

Â
i=1

fi(a>i x) . (1.13)

Let us consider a target of sample size m and a probability distribution P = {p1, · · · , pn}
over simplex in n-dimension where pi is the probability of selecting ai, subsampled Finite
Sum Problem of the finite sum problem in Equation (1.13) can be defined as,

min
x

1
mn

m

Â
i=1

f (a>i j
x)

pi j| {z }
:= f (P,m)(x)

. (1.14)

Here i1, · · · , im has been selected i.i.d from P. It can be easily verify that for any x,
E[ f (P,m)(x)] = f (x). If the sampled function approximates f (x) uniformly well, then the
sampled function can serve as an effective proxy/surrogate for minimizing f . Trivially,
one can set P to be the uniform distribution. However, if the contribution of few large
fi(aT

i x) is the most in f (x) then uniform subsampling will miss these important data
points having large contributions and f (P,m)(x) will often underestimate f (x). A possible
solution to the drawbacks of uniform subsampling is to use importance sampling: sample
the functions fi(aT

i x) that contribute most significantly to f (x) with more probability and
normalize the sum with the probability. Typically the relative the importance of each
point, fi(aT

i x)
Ân

i=1 fi(aT
i x) , will depend on the choice of of the data point x. This motivates the

definition of sensitivity [126].

Definition 1.4.0.1 (Sensitivity [126]). For a1, . . . ,an 2 Rd , the sensitivity of point ai with
respect to a finite sum function f (Equation (1.3)) with domain X ✓ Rd is

s f ,X (ai) = sup
x2X

fi(aT
i x)

Ân
j=1 f j(aT

j x)
.

The total sensitivity is defined as G f ,X = Ân
i=1 s f ,X (ai).

The following general approximation theorem is presented in [159] for sensitivity
sampling with the notion of range space in place.

Theorem 1.4.0.5 (Theorem 9 [159]). Consider the setting of finite sum problem as in
Equation (1.13). For all i 2 [n], let si � s f ,X (ai), S = Ân

i=1 si, and P =
� s1

S , . . . ,
sn
S
 

. For
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some finite c and all e,d 2 (0,1/2), if

m� c · S
e2

✓
D logS+ log

✓
1
d

◆◆
,

then, with probability at least 1�d ,

(1� e) f (x) f (P,m)(x) (1+ e) f (x),8x 2 X

Here, D is an upper bound on the VC-dimension D(RF ) where F is the set
n

f1(aT
1 x)

mn·p1
, . . . , fn(aT

n x)
mn·pn

o
.

In this way, one has to optimize modified objective in Equation (1.14) to get the
approximately correct optimizer of f (x) which essentially reduce the computational
burden of optimizing the original objective.

1.4.1 Challenges in Stochastic Gradient Methods
We have discussed the backgrounds related to stochastic gradient methods we will now
discussed the issues related to Stochastic Gradient Methods. Some of these issues, we will
try to address in this thesis. Although, the distribution given in Equation (1.11) minimizes
the variance of the t-th stochastic gradient, the full gradient of n-components must be
computed in the process. In that sense, designing an efficient sampling algorithm for
importance samples is an important research problem. In [271], authors have suggested
static sampling schemes based on smoothness constant of each component and have
provided the rate of convergence for importance sampled SGD. However, the optimal
sampling scheme as in Equation (1.11) is dynamic. For the same reason, it is important
to design a sampling scheme which is dynamic, improves upon existing static sampling
scheme and is computationally cheaper to compute for every time steps.

SVRG is an iterative algorithm, where in each each iteration only stochastic gradients.
In order to attain variance reduction a full gradient, full gradient is computed at a snapshot
point in every few epochs. There are three issues with SVRG: i) the computation of
the full gradient requires a full pass over the dataset. No progress (towards the optimal
solution) is made during this time. On large scale problems, where one pass over the data
might take several hours, this can yield to wasteful use of resources; ii) the theory requires
the algorithm to restart at every snapshot point, resulting in discontinuous behaviour and
iii) on strongly convex problems, the snapshot point can only be updated every W(k)
iterations (cf. [34, 98]), where k = L/µ denotes the condition number (see (1.2.0.2)).
When the condition number is large, this means that the algorithm relies for a long time
on “outdated” deterministic information. In practice—as suggested in the original paper
by Johnson and Zhang [98]—the update interval is often set to O(n), without theoretical
justification. SAGA on the other hand, circumvents the stalling phases by treating every
iterate as a partial snapshot point. Hence, intuitively, in SAGA the gradient information at
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1.4 Mini-Batch SGD

partial snapshot point does have more recent information about the gradient as compared
to SVRG. A big drawback of this method is the memory consumption: unless there are
specific assumptions on the structure of the objective function. For large scale problems it
is impossible to keep all data available in fast memory (i.e. cache or RAM) which means
we can not run SAGA on large scale problems which do not have GLM structure. Also,
extension of variance reduction algorithms to get nestrov’s accelerated rate. However, the
analysis of variance reduced accelerated methods differs vastly from traditional analysis
of stochastic gradient methods. Hence, there is a need to obtain a unified but simpler
framework to understand accelerated stochastic gradient methods.

Theorem G.1.2.2 is quite important and powerful: it can be utilized to achieve approxi-
mation algorithms which are based on sensitivity-sampling and have provable guarantees
for a wide range of problems [65, 95, 146, 159]. However, two major issues of sensitivity
sampling which have hindered more widespread use of sensitivity sampling are following:
(i) Computation of the sensitivity score s f ,X (ai) for all i 2 [n] is a hard task as it is not
understood how to compute the supremum over all x 2 X in the expression of Definition
1.4.0.1. (ii) The sensitivity score considers the supremum of fi(aT

i x)
Ân

j=1 f j(aT
j x) over all x 2 X .

This also includes those x that may be very far from the true minimizer of f . Hence,
it is usually a high value and a very worst case importance metric. Now since all the
sensitivities are large, hence, the total sensitivity G f ,X is large which essentially makes
sample complexity too large to be useful in practice.

Coordinate descent and stochastic gradient descent, both the methods can be considered
under the umbrella of stochastic gradient methods. However, coordinate descent methods
converge faster than the stochastic gradient descent. Though, it is widely believed that
coordinate descent on the dual objective has some connection with primal stochastic
gradient update, however the connection is not explicitly well understood. One important
research aspect is to understand this connection while training machine learning models
especially overparametrized models as it has been studied that SGD converges faster in
the overparametrized regime.
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Chapter 2

Objectives
In the previous chapter, the general introduction of stochastic optimization methods and
it’s challenges were discussed. In this chapter, I would like to discuss the main objective
of this thesis. In a broader picture, the main objective of the works presented in this
thesis is to develop provably faster and improved optimization algorithms for optimizing
machine learning objectives. More precisely, the main objective of this thesis is to address
the research challenges in the following more broadly categorized areas of optimization
research.

1. Screening Rules: For most data-analysis and machine learning task, one often has
to work with optimization techniques in high dimensions. With the rise in advent
of big data, one of the major challenges of the optimization method is to scale the
optimization methods for very high dimensional data as the number of optimization
variables/size of parameters grows beyond the capacity of current computing sys-
tems. The idea of screening the variables/parameters refers to remove optimization
variables/parameters that for sure do not have any contribution to the optimal so-
lution and hence can be safely eliminated from the problem. An improvement in
the screening techniques can be hugely impactful in high dimensional optimization.
In first part of this thesis, a new framework is proposed which enables screening
on general convex optimization problems, using tools from convex duality such as
frank wolfe gap and duality gap, instead of any geometric arguments.

2. Sampling in Stochastic Optimization: Stochastic gradient methods relies on random
sampling of coordinates (in random coordinate descent) or data points (in stochastic
gradient descent). The general convention is to use fixed sampling scheme such as
uniform sampling or non-uniform sampling based on a fixed distribution. These
fixed sampling schemes depends on the input data but are not adaptive in nature.
That means the sampling distribution does not take into account of the current
parameters or the local curvature of the optimization landscape. In contrast to these
schemes, adaptive importance sampling schemes based on the current full gradient
information constantly re-evaluate the probability of sampling each data point/co-
ordinate and hence the relative importance of each data point during training is
updated at every step. Thereby, gradient based adaptive sampling schemes often

15
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surpass the performance of static algorithm. The major drawback of adaptive sam-
pling strategies is that often it is computationally expensive to compute the optimal
adaptive sampling distribution. In a part of this thesis, an efficient approximation
of the gradient-based sampling is proposed which can efficiently be computed in
each iteration and is provably better than uniform or any fixed importance sampling
scheme.

Greedy coordinate descent can also be considered as a special case of adaptive
gradient based sampling. An approximate greedy coordinate descent approach
is also proposed which is provably better than uniform random sampling and is
computationally more efficient than exact greedy coordinate descent.

3. Variance Reduction in Stochastic Gradient Descent: Stochastic gradient descent
(SGD) (Robbins and Monro [205]) is frequently used to solve large scale optimiza-
tion problems in machine learning due to its computation efficiency.However, one
major drawback of SGD is that the rate of convergence of SGD algorithm to the
optimal solution are often slow and far from the optimal on many problem classes.
Variance reduced methods have been introduced to overcome this challenge. The
variance reduced methods can roughly be divided in two classes, namely i) methods
that achieve variance reduction by computing (non-stochastic) gradients of f from
time to time at snapshot points, as for example done in SVRG, and ii) methods
that maintain a table of previously computed stochastic gradients, such as done
in SAGA. In a part of this thesis, we propose a variance reduction method which
has shorter stalling phases of only order O(n/k) at the expense of only Õ(kd)
additional memory where k can be chosen by the user. An accelerated version of
variance reduced method is also proposed under a unifying analysis of accelerated
stochastic gradient algorithms.

4. Faster Stochastic Gradient Methods: Stochastic gradient descent (SGD) is the
method of choice to perform the optimization on large scale machine learning
problems. However, the convergence of stochastic gradient descent is usually slow.
Optimization error while optimizing with stochastic gradient descent consists of
two terms (i) bias term : forgetting initialization point and (ii) variance term. In a
part of this thesis, a new optimization algorithm would be introduced which allows
the bias term to vanish quickly (accelerated rates).

Also, SGD is known to converge faster in the interpolation regime. Last part of this
thesis would be devoted to obtain faster, better and improved stochastic gradient
methods to perform optimization in the interpolation regime.
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Results and Contributions

3.1 Contributions Made in the Thesis
In Chapter 1, introduction and challenges for the problems considered in this thesis work
were discussed. Later in Chapter 2, the main objective of this thesis was addressed. In
this section, I specifically discuss the main contributions and results which resulted in this
thesis. The main contributions made in this thesis are as follows:

• In this thesis, a new framework to derive screening rules for a large class of problems
with a simple primal-dual structure is proposed. With the help of this framework,
we are able to derive screening rules for a large set of machine learning problems for
which no screening rules were known before. Furthermore, we were able to recover
many existing screening rules as the side products of our screening framework.
The proposed rules are dynamic in nature and are safe ( only eliminates truly
unimportant variables which does not contribute to the optimal solution) which
allows it to be used with any existing algorithm. These screening rules are most
suitable to use while using coordinate descent methods or frank-wolfe optimization
methods for optimizing the objective function. (Section 3.4)

• An approximate steepest coordinate descent (ASCD), a new scheme of coordinate
selection which combines ideas from the uniform coordinate descent (UCD) and
from the steepest coordinate descent (SCD) strategies is proposed in this work.
The existing convergence result for steepest coordinate descent for smooth and
strongly convex functions is extended to the setting of smooth non-strongly convex
functions. A novel lower bound which shows that the complexity estimates for
steepest coordinate descent and uniform coordinate descent can be equal in the
worst case is proved as well in this work. As the final algorithm, coordinate selection
rules under ASCD for composite functions is proposed in this work and we prove
that ASCD provable performs better than UCD and it can reach the performance of
SCD in the best case scenario. (Section 3.5)

• An efficient adaptive sampling scheme which is the approximation of the gradient-
based sampling is proposed in this work in the sense that it can be easily computed
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in each iteration for little computational cost, (ii) is provably better than all fixed
importance sampling including uniform sampling and (iii) behaves like the gradient-
based sampling in special case if the gradient information is known accurately.
Gradient-based sampling in CD methods are shown to outperform classical fixed
sampling theoretically in this work. In the best case, the the algorithm can be
faster up to a factor of the dimension n over the uniform sampling. As the main
contribution, we propose an efficient adaptive importance sampling strategy which
takes the approximate gradient information as the input to re-evaluate the sampling
distribution. This sampling approach can be applied in CD as well as in SGD
methods. (Section 3.6)

• An affine invariant convergence analysis for Matching Pursuit algorithms is pre-
sented in this work. The approach is tightly related to steepest coordinate descent
update with non-orthogonal basis. The convergence analysis we propose in this
work is also related to the analysis of coordinate descent and relies mostly on the
properties of the atomic norm in order to generalize from orthogonal coordinates
to non-orthogonal atoms. As a direct consequence of this analysis, a tighter rate
of convergence for steepest coordinate descent is obtained. Extending the work
to accelerated, we provide the first known accelerated MP algorithms as well as
semi-steepest coordinate descent algorithm which provably converges to the optimal
solution optimally. (Section 3.7)

• k-SVRG is variance reduced optimization algorithm which takes the good properties
of the algorithms SAGA and SVRG and can be efficiently implemented in limited
memory. The memory requirement of k-SVRG is of the order of Õ(kd) to store
Õ(k) vectors. The algorithm is flexible in the choice of k and one can choose k
depending on the available memory resource. We prove the convergence result for
two variants of k-SVRG algorithm. This algorithm removes the barrier constraints
of SAGA which requires to store n past gradient vectors. The propose algorithm
also removes long stalling phase unlike SVRG. We also improved the analysis of
SVRG in this work and show that SVRG algorithm converges for arbitrary sizes of
inner loops for strongly convex and smooth functions.(Section 3.8)

• In this work, we propose a direct and simple template to analyze accelerated
stochastic/deterministic convex optimization. We use the results from online learn-
ing literature and optimistic update for online learning to derive simple stochastic
algorithms with fast rate of convergence. We derive accelerated results for smooth
non-strongly convex as well strongly convex functions using the same template.
A new universal algorithm (in the sense of 174) is also derived in this work for
composite non-strongly-convex objectives using the same template. The new adap-
tive/universal algorithm simultaneously achieves the optimal rate of convergence
for smooth and non-smooth f . We further extend our framework to get accelerated
variance reduced algorithms with optimal rate of convergence. (Section 3.9)

18



3.2 List of Appended Papers (* denotes Joint First Authorship)

• In Section 1.4 of Chapter 1, the issues with sensitivity sampling have been discussed
which are (i) Computability and (ii) Pessimistic Bounds. In this work, a simple idea
of local sensitivity is proposed to overcome the above barriers. Instead of sampling
with the sensitivity over the full domain X , the proposed algorithm considers the
sensitivity over a small ball. Sampling by this local sensitivity gives a function
which approximates the true function f well on the entire ball. We also relate the
sensitivity scores of the second order approximation to a function with the leverage
scores of a slightly modified matrix. These sensitivity scores of the local second
order approximation are used to provide upper bound on the local sensitivity scores
of the actual objective. (Section 3.10)

• In this part of the work, theoretical results for stochastic optimization methods in the
interpolation regime for convex objectives are discussed. The main theoretical result
of this work is to relate dual convergence guarantees with the primal convergence
guarantees in terms of Bregman divergences of iterates via a generic equality. This
allows us to use dual stochastic algorithms more specifically dual coordinate based
algorithms for solving the primal objectives. The obtained vanilla dual coordinate
ascent algorithm has the strong similarity with the (non-averaged) stochastic mirror
descent on specific functions fi’s. The algorithm comes with the benefit of using
an explicit regularizer and the algorithm converges to the minimum value of the
regularizer which also interpolates the data. For accelerated coordinate ascent, a
new algorithm is obtained which has the same order of computational complexity
as that of SGD but has optimal rate of convergence in the interpolating regime.
(Section 3.11)

3.2 List of Appended Papers (* denotes Joint First
Authorship)

Here are the list of papers, manuscript and submitted papers which are appended in the
Appendix of this thesis.

1. Anant Raj, Olbrich, J., Gärtner, B., Schölkopf, B., and Jaggi, M. (2016). Screening
rules for convex problems. Optimization for Machine Learning Workshop (OPT
2016), arXiv preprint arXiv:1609.07478

2. Stich, S. U., Anant Raj, and Jaggi, M. (2017a). Approximate steepest coordinate
descent. In ICML 2017 - Proceedings of the 34th International Conference on
Machine Learning, volume 70 of PMLR, pages 3251–3259

3. Stich, S. U., Anant Raj, and Jaggi, M. (2017c). Safe adaptive importance sampling.
In Advances in Neural Information Processing Systems, pages 4381–4391
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4. Locatello*, F., Anant Raj*, Praneeth Karimireddy, S., Rätsch, G., Schölkopf, B.,
Stich, S., and Jaggi, M. (2018). On matching pursuit and coordinate descent. In
35th International Conference on Machine Learning (ICML), pages 3204–3213.
PMLR

5. Anant Raj and Stich, S. U. (2018). k-svrg: Variance reduction for large scale
optimization. arXiv preprint arXiv:1805.00982 (Manuscript)

6. Joulani*, P., Anant Raj*, György, A., and Szepesvari, C. (2020). A simpler
approach to accelerated stochastic optimization: Iterative averaging meets optimism.
In ICML 2020- Proceedings of the 37th International Conference on Machine
Learning, PMLR

7. Anant Raj, Musco, C., and Mackey, L. (2020). Importance sampling via local
sensitivity. In International Conference on Artificial Intelligence and Statistics,
pages 3099–3109. PMLR

8. Anant Raj and Bach, F. (2020). Explicit regularization of stochastic gradient
methods through duality. arXiv preprint arXiv:2003.13807 (Submitted to AISTATS
2021)

3.3 Delineation of Contribution to Collective Work
1. Screening Rules for Convex Problems [239]- Most of the theories in the paper were

developed by Anant Raj and Jakob. Anant derived screening rules for constrained
problem especially for L1 constrained problem, elastic net constrained problems and
simplex constrained problems. Jakob derived screening rules for box-constrained
problems and found applications of derived screening rules in multiple real world
problems. Illustrative experiment was set up by Anant. Most part of the paper was
written by Anant and Martin Jaggi. Other authors contributed in the discussion and
helped in writing the paper.

2. Approximate Greedy Coordinate Descent [231]- In this work, Anant derived the
rate of convergence for steepest coordinate descent when the objective is smooth
but non-strongly convex. Anant first provide the idea of approximate coordinate
wise gradient oracle using Hessian which was later used by Anant and Sebastian to
come up with the algorithm in the paper. Sebastian then proved the lower bound for
steepest coordinate descent and went on to prove the sandwich theorem which states
that the performance of our algorithm lies between uniformly random coordinate
descent and greedy coordinate descent. Experiments were performed by Anant.
The writing of the paper was done together by Anant, Sebastian and Martin. Martin
was involved in all the discussions.
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3. Safe Adaptive Importance Sampling [233]- In this work, Anant proved the con-
vergence of coordinate descent and stochastic gradient descent with importance
sampling. Later by joint effort of Sebastian and Anant, an optimization formulation
was done to come up with the best possible sampling scheme at any instant which
minimize the variance given the approximate gradient. Sebastian later proved lower
bound and properties of the sampling distribution. Experiments were performed by
Anant. The writing of the paper was done together by Anant, Sebastian and Martin.
Martin was involved in the discussions.

4. On Matching Pursuit and Coordinate Descent [144]- Most of the theoretical results
in this paper were jointly derived by Anant and Frenchesco while discussing on
the white board. Later Praneeth joined the effort in proving the accelerated rate
for greedy coordinate descent with the insights of decoupling the two updates of
Nestrov’s acceleration and use semi greedy sampling approach instead. Sebastian
provided important insights with his simpler existing proof for accelerated coordi-
nate descent. Toy experiment was performed by Franchesco in the paper. Most of
the paper was written by Anant and Franchesco. Other co-authors helped in writing
the paper and were involved in the discussing the ideas.

5. k-SVRG : Variance Reduction for Large Scale Optimization [238]- Theoretical
results related to convex problems in this paper were developed by Anant and
Sebatian jointly. Anant later proved convergence result for non-convex problems.
Experiments were jointly performed by Anant and Sebastian. Both the authors were
involved in writing the paper.

6. A Simple Approach to Accelerated Stochastic Optimization: Iterative Averaging
Meets Optimism [104]- Most of the theoretical results in this paper were jointly
derived by Anant and Pooria while discussing on the white board. Pooria later
derived results which came as a direct consequence of the result proved by Anant
and Pooria together. Anant later extend the framework to derived accelerated rate
of convergence for variance reduced methods. Andras and Csaba were involved in
the discussion throughout the paper. They also contributed significantly in writing
the paper.

7. Importance Sampling via Local Sensitivity [240]- Most of the theoretical results
in this paper were jointly derived by Anant and Cameron. Cameron derived result
about leverage score sampling. Anant derived the results related to optimization
(approximate proximal point method) in the paper. In the early discussion, it was
Lester who proposed to use local sensitivity instead. All the experiments were
performed in by Anant and most of the part of the paper was written by Anant.
Lester and Cameron also contributed in writing the paper.

8. Explicit Regularization of Stochastic Gradient Methods through Duality [237]-
Many results in this paper were derived jointly by Francis and Anant. Experiments
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were performed by Anant. Paper outline was written by Francis and then later
Anant completed the paper writing as well.

3.4 Results in “Screening Rules for Convex Problems
[239]”

3.4.1 Background

In this work, we consider the optimization problem of the form given in Equation (A)
which can also be written in the dual form as given in Equation (B). This primal-dual
relationships are very useful in theory and practice as it can be used for the computation of
duality gap. Duality gap acts as a certificate for the approximation quality of the optimal
solution. A vast range of machine learning optimization problems can be formulated as
(A) and (B), which are bind with the primal-dual relationship as discussed above (are dual
to each other):

min
xxx2Rn

h
OA(xxx) := f (Axxx) + g(xxx)

i
(A)

min
www2Rd

h
OB(www) := f ⇤(www) + g⇤(�A>www)

i
(B)

The matrix A 2Rd⇥n is known as data matrix, and the functions f : Rd!R and g : Rn!
R are arbitrary closed convex functions. The functions f ⇤,g⇤ in (B) represents the convex
conjugate functions of their corresponding counterparts f ,g in (A).

The duality gap is often considers as a strong optimality certificate as for the case of
convex functions, the duality gap a primal iterate and at its corresponding dual iterate
can only be zero iff the iterates are optimal iterates. Duality gap certificates plays an
important role in deriving the screening rules for convex problems. This basically allows
us to screen at the optimal point. The duality gap is defined as G(www,xxx) :=OA(xxx)+OB(www)
for any pair of primal and its corresponding dual variable.

Since, the duality gap is seen a certificate of approximation quality, hence, the true
optimal values OA(xxx⇤) and �OB(www⇤) always lie within the duality gap.

The Gap Function. Consider the case of differentiable function f . In this case, a
simpler duality gap can be studied

G(xxx) :=OA(xxx)+OB(www(xxx)) (3.1)

which is purely defined as a function of xxx, using the first order optimality relation www(xxx) :=
— f (Axxx).
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The Wolfe-Gap Function. General duality gap in the case of constrained optimization
problem defined over a bounded set C and xxx 2 C reduces to a specific kind of gap function
which is called the “Wolfe-Gap function”. The Wolfe gap function is defined as follows,

GW (xxx) := max
yyy2C

(Axxx�Ayyy)>— f (Axxx). (3.2)

One can easily see that for g being the indicator function of the constraint set C, and
www(xxx) := — f (Axxx), Wolfe gap function becomes the general duality gap.

3.4.2 Main Results
Simplex Constrained Problems: Optimization problems over unit simplex4 := {xxx2
Rn | xi � 0, Ân

i=1 xi = 1}are very important constrained optimization problems. This
class of problems includes all the optimization problems over any finite polytope. The
vertices are represented by the columns of A in this case, and xxx represents barycentric
coordinates corresponding to the point Axxx. Formally, g(xxx) can be seen as the indicator
function of the unit simplex C =4 in this case. In the following Theorem 3.4.2.1, we
provide our first main result of this work for screening on simplex constrained optimization
problems for any arbitrary iterate xxx without knowing xxx?. Function f are assumed to be
smooth and strongly convex so that the distance between the arbitrary iterate and the
optimal iterate can be related with the duality gap. Only main theorem statements will be
mentioned here and details of the proof and other results are provided in the Appendix.

Theorem 3.4.2.1 (Anant Raj et al. [239]). Let us consider f to be an L-smooth and
µ-strongly convex function over the unit simplex C =4. Then for simplex constrained
optimization problem minxxx24 f (Axxx), the screening rule can be stated as following for
any i 2 [n]

(aaai�Axxx)>— f (Axxx)> L

s
GW (xxx)

µ
kaaai�Axxxk ) x?i = 0 .

The screening rules for simplex constrained problems as in Theorem 3.4.2.1 is very
general and have a lot of practical implications. For example, one can easily verify that
new screening rules for squared loss SVM can be derived by a simple application of result
presented in Theorem 3.4.2.1.

Corollary 3.4.2.2 (Square Hinge-Loss SVM, Anant Raj et al. [239]). For the squared
hinge loss SVM, the screening rule can be stated as follows,

(aaai�Axxx)>Axxx >
q

max
i

(Axxx�aaai)>Axxxkaaai�Axxxk) x?i = 0. (3.3)

L1-Constrained Problems: L1-constrained optimization problems are again very pop-
ular in machine learning applications. This kind of optimization formulation are used
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in order to induce sparsity in the optimal solution. Here below, we state the results for
screening on general L1-constrained optimization problems. The L1-constrained optimiza-
tion can be written asminxxx2C f (Axxx) for C = L1 ⇢ Rn (or a scaled version of the L1-ball).
We provide screening rules only i terms of current iterate and does not involve the optimal
iterate. For a smooth and strongly function f , one can obtain the following screening rule
for L1-constrained optimization problem.

Theorem 3.4.2.3 (Anant Raj et al. [239]). Let us consider f to be an L-smooth and µ-
strongly convex function over the L1-ball. Then for L1-constrained optimization problem
minxxx2L1 f (Axxx), the screening rule can be stated as follows for any i 2 [n]

���aaa>i — f (Axxx)
���+(Axxx)>— f (Axxx)+L(kaaaik2 +kAxxxk2)

s
GW (xxx)

µ
< 0) xxx?i = 0 (3.4)

Going further in sparse optimization problem, elastic net constrained/regularization is
also very often used as an alternative to L1 constrained/regularization. At times, elastic
net based solution outperforms the Lasso and still has sparse representation [276]. The
expression for the elastic net is the following:

akxxxk1 +(1�a)1
2kxxxk

2
2 .

Here below we discuss the screening rule obtained for elastic net constrained optimization
problem using our framework. Similar to the previous optimization formulation, elastic
net constrained optimization formulation can be written as minxxx2C f (Axxx) for C being the
elastic net constraint, or a scaled version of it. We use only the current iterate xxx and not
optimal point in order to derive screening rule for elastic net constrained problem. Below
we provide the screening rule for elastic net constrained problem given the the function f
is smooth and strongly convex function.

Theorem 3.4.2.4 (Anant Raj et al. [239]). Let us consider f to be an L-smooth and
µ-strongly convex function over the elastic net norm ball. Then for elastic net constrained
optimization minxxx2LE f (Axxx), the screening rule can be stated as follows for any i 2 [n]

���aaa>i — f (Axxx)
���+(Axxx)>— f (Axxx)

⇥ 2a
3�a

⇤

+L(kaaaik2 +kAxxxk2
⇥ 2a

3�a
⇤
)

s
GW (xxx)

µ
< 0) xxx?i = 0 (3.5)

It can be easily verified that the results given in Theorem 3.4.2.4 recovers the result for
L1 constrained case as a special case, when a ! 1.

Box Constrained Problems: Box-constrained problems are another widely used
problem in several machine learning applications, including SVMs. It can very well be
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Figure 3.1: Simplex- vs L1-constrained Screening

screened as well using the framework discussed in this work. One can always assume
the constraint set C = 2 := {xxx 2 Rn | 0  xi  1} without the loss of generality. Our
framework provides screening rules to predict both if a variable will take the upper or
lower constraint.

Theorem 3.4.2.5 (Anant Raj et al. [239]). Let us consider f to be an L-smooth and
µ-strongly convex function. Then for box-constrained optimization minxxx22 f (Axxx), the
screening rule can be stated as follows for any i 2 [n]

aaa>i — f (Axxx)�kaaaik2
p

2LG(xxx)> 0 ) x?i = 0 , and

aaa>i — f (Axxx)+kaaaik2
p

2LG(xxx)< 0 ) x?i = 1 .

Hinge loss SVM can be seen as one of many special cased of box-constrained op-
timizaion problem. All the results provided above have been derived using the same
framework developed in the paper. The framework works in two stages. In first stage,
we obtain the relation between optimal primal and dual variable using the optimality
conditions ([239, Lemma 5]). In the later stage, we bound the distance between any (fea-
sible) current dual iterate and the optimal dual solution w?. This framework is much more
general and can be applied to a very wide range of problems as compared to the earlier
proposed problem specific geometric frameworks. Using similar tools and techniques,
dynamic screening rules can be derived for penalized problems as well which has also
been discussed in previous works.

Experiments: The main contribution of this work is on the theoretical generality to
derive new set of screneing rules for a wide range of constrained/non-constrained op-
timization problem. We also evaluate the performance of simplex constrained and L1-
constrained problems on a toy example. The fraction of active variables and the Wolfe-Gap
function as optimization algorithm progress are plotted for both the case. We provide
the details of the experimental setting and data generation process in the the main pa-
per (Appendix). In Fig 3.1, the blue curve represents the screening performance for
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the L1-constrained screening case, while the red curve represents the performance for
simplex constrained screening. The theorems 3.4.2.3 and 3.4.2.1 are well in line with the
phenomena in Fig 3.1. It can be seen in the plot that screening rule is not effective at the
start of the optimization as the duality gap is large. However, as the algorithm progress,
the duality gap becomes considerably smaller, and our screening rules start to screen out
the varibles. For both variants, screening becomes slow towards the end because of the
fact that gradient also becomes smaller.

3.5 Results in “Approximate Greedy Coordinate Descent
[231]”

3.5.1 Background
In this work, we consider the composite convex functions F : Rn! R of the form

F(xxx) := f (xxx)+Y(xxx) (3.6)

where f is coordinate-wise L-smooth and Y is convex and separable, that is that is
Y(xxx) = Ân

i=1 Yi([xxx]i). For simplicity, Y ⌘ 0 is assumed here however, . Coordinate
descent methods have the following update rule given constant step size:

xxxt+1 = xxxt� 1
L—it f (xxx)eeeit . (3.7)

In Uniform Coordinate Descent (UCD) the active coordinate it is selected uniformly
at random from the set [n], it 2u.a.r. [n]. Steepest Coordinate Descent (SCD) selects
the coordinate following the Gauss-Southwell (GS) rule which is a greedy selection
procedure:

it = argmax
i2[n]

—i | f (xxxt)| . (3.8)

Convergence of Steepest Coordinate Descent

Earlier, the notion of coordinate wise smoothness has been discussed. It implies

f (xxx+heeei) f (xxx)+h—i f (xxx)+ Li
2 h2 (3.9)

With the quadratic upper bound (3.9) and the coordinate descent update, one can easily
verify that we have the following lower bound on the one step progress

E [ f (xt)� f (xt+1) | xt ]� Eit

h
1

2L |—it f (xxxt)|2
i
. (3.10)
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Let us use tUCD(xxxt) and tSCD(xxxt) to denote the right hand side expressions For UCD and
SCD. The expression on the right hand for UCD and SCD evaluates to

tUCD(xxxt) := 1
2nLk— f (xxxt)k2

2

tSCD(xxxt) := 1
2Lk— f (xxxt)k2

•
(3.11)

By aoplying Cauchy-Schwarz inequality, one can find that

1
ntSCD(xxxt) tUCD(xxxt) tSCD(xxxt) . (3.12)

From the above expression, it is clear that one step progress of SCD is always at least as
good as that of one step UCD on average. Moreover, in the best case the gain of SCD
over UCD per iteration can be as large as by a factor of n. However, due to the technical
complexity, one can not prove this linear speed for more than one iteration as it is almost
impossible to track down the gain in expressions (3.12) which depend on the sequence of
iterates.

Let us consider the case of smooth but non-strongly convex function f . In this case,
the analysis of greedy coordinate descent from [180] does not apply as it only works for
smooth and strongly convex functions. In this work, we extend the analysis from [180] to
smooth non-strongly convex functions.

Theorem 3.5.1.1 (Stich et al. [232]). Let us assume f : Rn ! R to be a convex and
coordinate-wise L-smooth function. Then for the sequence of iterates {xxxt}t�0 generated
by SCD, the following convergence bound holds:

f (xxxt)� f (xxx?) 2LR2
1

t
, (3.13)

for R1 := max
xxx?2X?

⇢
max
xxx2Rn

[kxxx� xxx?k1 | f (xxx) f (xxx0)]

�
.

Note that the R1 is the diameter of the level set at f (xxx0) measured in the 1-norm. For
the case of UCS, R2

1 in (3.13) is replaced by nR2
2, where R2 is the diameter of the level at

f (xxx0) measured in the 2-norm (cf. Nesterov [170], Wright [262]). By simple application
of cauchy shwartz inequality, one can verify that

1
nR2

1  R2
2  R2

1 , (3.14)

Hence, the upper bound of the optimization error SCD can be tighter than that of UCD
and for the same reason we might loosely claim that SCD can have faster convergence up
to a factor of n over to UCD.
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3.5.2 Main Results
Lower Bound: So far we have discussed the best case scenario when steepest coor-
dinate descent can improve upon the uniform coordinate descent. Now, we show that
in the worst case scenario the convergence of SCD method is same as that of UCD. In
Theorem 3.5.2.1 below, we consider a function q : Rn ! R , for which the one step
progress of SCD and UCD update is approximately same i.e. tSCD(xxxt)⇡ tUCD(xxxt) up to
a constant factor, for all iterates {xxxt}t�0 generated by SCD.

By the same reasoning, it is also possible to construct a family of function where the
gain is maximum. For instance, let us consider a functions which is separable and has a
low dimensional structure. If we fix the integers s,n such that n

s ⇡ l , then one can define
the function f : Rn! R as

f (xxx) := q(ps(xxx)) (3.15)

where ps denotes the projection to Rs (being the first s out of n coordinates) and q : Rs!R
is the function from Theorem 3.5.2.1. In that case, it is very clear that

tSCD(xxxt)⇡ l · tUCD(xxxt) , (3.16)

for all iterates {xxxt}t�0 generated by steepest coordinate descent. Here below we state the
lower bound result.

Theorem 3.5.2.1 (Stich et al. [232]). Consider the function q(xxx) = 1
2hQxxx,xxxi for Q :=

In� 99
100nJn, where Jn = 1n1T

n , n > 2. Then there exists xxx0 2 Rn such that for the sequence
{xxxt}t�0 generated by SCD it holds

k—q(xxxt)k2
•  4

nk—q(xxxt)k2
2 . (3.17)

Algorithm and Complexity: It is very obvious that exact GS selection rule is a very
expensive task to compute and has the same computational complexity as that of gradient
descent. However, efficiency of coordinate descent comes from the fact that one needs to
compute the direction wise gradient only and hence each update is n-times cheaper than
that of gradient descent update (cf. Nesterov [170]). The same argument also holds for
SCD by Theorem 3.5.2.1. A class of functions which has this property and also is widely
used in machine learning domain can be represented by functions F : Rn! R

F(xxx) := f (Axxx)+
n

Â
i=1

Yi([xxx]i) (3.18)

where A is a d ⇥ n data matrix, and f : Rd ! R, and Yi : Rn ! R are convex and
simple functions which have linear time complexity of computing the gradient. This
class of functions includes most popular loss functions widely used in machine learning
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applications such as least squares, logistic regression, Lasso, and SVMs (when solved
in dual form). The main idea behind the algorithm proposed in this work is following:
we would like to track the evolution of the gradients along all the coordinate even though
we only compute the coordinate wise gradient. Once, we have this evolution with us for
all the coordinates, we can construct an active set which contains the coordinates that
have provably larger coordinate wise gradient and also contains the steepest coordinate.
Now in the coordinate selection step, one can choose the coordinate from the active set of
coordinates which provably has coordinates with large coordinate wise gradient. Selecting
coordinates from this active set uniformally at random will provably have faster rate
of convergence than UCD. This algorithm we refer as ASCD (approximately steepest
coordinate descent) in this work.

Convergence Rate Guarantee. The main result of this work is to prove that the per-
formance of ASCD is at least as good as that of UCD on avrage and can reach upto
SCD in the best case. As explained previously, one can think of this as the coordinates
with smaller value of coordinate wise gradient are left out of this active set and hence on
average per iterate gain in ASCD is more than as that of UCD. When, we know the exact
full gradient, then the active set contains only one coordinate which has the maximum
value of coordinate wise gradient in absolute. Here below, we state the sandwich theorem
of our work.

Theorem 3.5.2.2 (Stich et al. [232]). Consider f : Rn!R to be a convex and coordinate-
wise L-smooth function, let tUCD, tSCD, tASCD denote the expected one step progress (3.11)
of UCD, SCD and ASCD, respectively, and suppose all methods use the same step-size
rule. Then

tUCD(xxx) tASCD(xxx) tSCD(xxx) 8xxx 2 Rn . (3.19)

Experiments: Details about the heuristic variants of approximate steepest coordinate
descent (a-ASCD), data generation and experimental set-up are provided in the Appendix
(main paper). Here, the observations from the empirical evaluation are discussed.

Here are the highlights of the experimental study:
1. Irrespective of the initialization of the gradient vector, the algorithm performs well in

the task on learning the active set and eventually in optimizing the function.

2. Even with very crude gradient approximation obtained by the gradient oracle, the
algorithm performs very well and the convergence is excellent. The size of the active
set is also very small.
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(a) Convergence for l2 (b) Convergence for l1

(c) True vs No Initialization for l2 (d) Error Variation (ASCD)

Figure 3.2: Experimental results on synthetically generated datasets

3.6 Results in “Safe Adaptive Importance Sampling
[233]”

3.6.1 Background

Adaptive Sampling for Coordinate Descent: Let us again consider the optimization
problem minxxx f (xxx). We assume that the objective function f : Rn!R is a convex function
with coordinate-wise Li-Lipschitz continuous gradients. We have the following update for
coordinate descent,

xxxk+1 = xxxk� gk—ik f (xxxk)eeeik . (3.20)

The coordinate ik can either be selected in deterministic fashion (cyclic descent, steepest
descent) or in random picking fashion where ik is randomly picked according pppk 2 Dn

which assigns the sampling probabilities for each coordinates. Generally, the step size is
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chosen as gk = L�1
ik which also minimizes the quadratic upper bound. However, we set

gk = ak[pppk]
�1
ik where ak is not dependent on the direction ik in this work. This results

in directionally-unbiased updates as in the case of importance sampling SGD update. It
holds

Eik⇠pppk
[ f (xxxk+1) | xxxk]

(C.1)
 Eik⇠pppk

"
f (xxxk)�

ak

[pppk]ik
(—ik f (xxxk))

2 +
Lika2

k
2[pppk]

2
ik

(—ik f (xxxk))
2 | xxxk

#

= f (xxxk)�akk— f (xxxk)k2
2 +

n

Â
i=1

Lia2
k

2[pppk]i
(—i f (xxxk))

2 . (3.21)

While applying adaptive sampling strategies, one can select both variables ak and
pppk as one wishes to. Hence, to get the maximum per iterate average progress, both the
variables ak and pppk are selected in such a way that they give minimum value to the upper
bound (3.21) . The optimal choice of the probability vector pppk in (3.21) does not depend
on ak, however, the optimal ak parameter depends on the probability vector pppk. The
following observation is trivial to observe but is very important.

Lemma 3.6.1.1 (Stich et al. [233]). Assum that ak = ak(pppk) minimizes the upper bound
of (3.21), then xxxk+1 := xxxk� ak

[pppk]ik
—ik f (xxxk)eeeik satisfies

Eik⇠pppk
[ f (xxxk+1) | xxxk] f (xxxk)�

ak(pppk)

2
k— f (xxxk)k2

2 . (3.22)

Example 3.6.1.1 (Optimal sampling [233]). For probabilities [ppp?k ]i =
p

Li|—i f (xxxk)|
k
p

L— f (xxxk)k1
and

ak(ppp?k) =
k— f (xxxk)k2

2
k
p

L— f (xxxk)k2
1
, the upper bound in Equation (3.21) attends its minimum. This

immediately gives rise to the following observation, 1
Tr[L]  ak(ppp?k)

1
Lmin

, where Lmin :=
mini2[n]Li.

The ideal adaptive algorithm. The stepsize and the sampling distribution for CD under
gradient based adaptive sampling scheme are selected as in Example 3.6.1.1. This also
gives us new bound on the expected one-step progress of the CD under gradient based
adaptive sampling scheme which will be later used to derive rate of convergence of this
algorithm following the standard techniques in optimization literature.

SGD with Adaptive Sampling: SGD methods are widely used in practice to optimize
finite sum functions which decompose as a sum

f (xxx) = 1
n Ân

i=1 fi(xxx) (3.23)
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with each fi : Rd ! R be a convex function. Previously [185, 272, 273], the authors
argued that the following gradient-based sampling [p̃pp?k ]i =

k— fi(xxxk)k2
Ân

i=1k— fi(xxxk)k2
maximizes the the

expected progress (3.21) by minimizing the variance of the stochastic gradient estimate.

3.6.2 Main Results

Epochs

Uniform
Proposed (big step)
Proposed (small step)

0 1 2 5 6

1.00
0.99
0.98
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0.96
0.95
0.94 f(x )
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0
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-3
-4

(a) rcv1’, L1 reg.

Epochs0 1 2 5 6
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Optimal (small step)

1.00
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0.90

0.85
f(x )
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10

0
-1
-2
-3
-4

(b) rcv1’, L2 reg.

Figure 3.3: (CD, square loss) Fixed vs. adaptive sampling strategies.
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(b) real-sim’, L2 reg.

Figure 3.4: (CD, squared hinge loss) Function value vs. number of iterations for optimal
stepsize.

An Optimization Formulation of Sampling: We now discuss the main result of this
work. Before moving into the result, we first discribe one crucial assumption made in this
paper. We assume that in each iteration we have the access to two vectors `̀̀k,uuuk 2 Rn

�0
the contains the safe upper and lower bounds on the component wise gradient norms
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([`̀̀k]i  k— fi(xxxk)k2  [uuuk]i). for stochastic gradient descent or on the absolute value of
coordinate wise gradient([`̀̀k]i  |—i f (xxxk)| [uuuk]i) for coordinate descent algorithms.

One can minimize the upper bound (3.21) to get the following problem as in Stich et al.
[233],

min
ak

min
pppk2Dn


�akkccckk2

2 +
a2

k
2

V (pppk,ccck)

�
, min

pppk2Dn

V (pppk,ccck)

kccckk2
2

(3.24)

where ccck 2Rn is the unknown true gradient. That means, it is possible to write ccck 2Ck :=
{xxx 2 Rn : [`̀̀k]i  [xxx]i  [uuuk]i, i 2 [n]} with respect to the bounds `̀̀k,uuuk. Hence, we solve
the following min-max problem to obtain the best sampling strategy with respect to Ck.

vk := min
ppp2Dn

max
ccc2Ck

V (ppp,ccc)
kccck2

2
, and to set (ak, pppk) :=

� 1
vk
, p̂ppk
�
, (3.25)

where p̂ppk denotes a solution of (3.25).

Theorem 3.6.2.1 (Stich et al. [233]). Let (p̂pp, ĉcc) 2 Dn⇥Rn
�0 be a solution of the optimiza-

tion problem in (3.25). Then Lmin  vk  Tr [L] and

1. max
ccc2Ck

V (p̂pp,ccc)
kccck2

2
max

ccc2Ck

V (ppp,ccc)
kccck2

2
, 8ppp 2 Dn; (in the worst case)

2. V (p̂pp,ccc) Tr [L] ·kccck2
2, 8ccc 2Ck. (in the worst case)

Remark 3.6.2.1 (Stich et al. [233]). In the special case when all the coordinate wise
lipschitz constants are same i.e. Li = L for all i 2 [n], then Li-based sampling reduces to
uniform sampling strategy . From the above result it is clear that p̂pp is provably better than
uniform sampling even in the worst case: V (p̂pp,ccc) Lnkccck2

2, 8ccc 2Ck.

Optimization problem (3.25) can also be denotes aspvk =maxccc2Ck
k
p

Lccck1
kccck2

=maxccc2Ck
h
p

lll,ccci
kccck2

,
where [lll]i = Li for i 2 [n]. Hence, the maximum of the optimization objective is obtained
when vectors ccc 2Ck minimize the angle with the vector lll.

Theorem 3.6.2.2 (Stich et al. [233]). Let ccc 2 Ck, ppp =
p

Lccc
k
p

Lccck1
and denote m = kccck2

2 ·
k
p

Lccck�1
1 . If

[ccc]i =

8
><

>:

[uuuk]i if [uuuk]i 
p

Lim ,

[`̀̀k]i if [`̀̀k]i �
p

Lim ,
p

Lim otherwise,
8i 2 [n] , (3.26)

then (ppp,ccc) is a solution to (3.25). This solution is computable in O(n logn) time.
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Experiments: Details about the experimental set-up and data generation are given in
the main paper. The main findings of the experimental study can be summarized as
follows:

• From the empirical evaluations it is clear that the proposed sampling converges
almost as good as the optimal gradient-based sampling in terms of number of
iterations. However, optimal gradient-based sampling is computationally infeasible
to compute due to the requirement of computation of full gradient information.
The computational overhead of computing sampling probability vector for our
algorithms is small and hence it performs better than fixed importance sampling in
terms of computation time.

• Algorithm with the adaptive stepsize strategies converges much faster than fixed-
stepsize strategies.

• To compute the safe lower and upper bound on the gradient, we only need approxi-
mate gradient oracle which provides reasonably good estimates of the gradient. It
does need to be very precise.

3.7 Results in “On Matching Pursuit and Coordinate
Descent [144]”

3.7.1 Background
In this work, we consider the problem of optimizing convex function over linear spaces.
More pontifically, we have following optimization problem:

min
x2lin(A)

f (x) , (3.27)

where f is a convex function and lin(A) denotes the linear space formed by the linear
combination of the elements of A. These elements of set A are popularly known as
atoms. Generally, A is a compact but not necessarily finite subset of Hilbert space. In the
literatures, this problem is addressed with the name of matching pursuit. This can be seen
as a generalization of coordinate descent where the coordinates do not form orthogonal
basis and hence it is allowed for the coordinates/atoms to be linearly dependent. Consider
an Hilbert space H which is associated with inner product hx,yi, 8x,y 2H. The norm
is induced by the inner product as follows, kxk2 := hx,xi, 8x 2 H. We also assume
that A ⇢H is a compact and symmetric set, f : H! R is a convex function which is
L-smooth.We assume the existence of a linear minimization oracle (LMO) from which
MP queries to find the steepest descent direction among the elements of set A In each
iteration:

LMOA(y) := argmin
z2A

hy,zi , (3.28)
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for a vector y 2H. Each update looks like the following,

xt+1 := xt�
h— f (xt),zti

Lkztk2 zt

where zt := LMOA(— f (xt)). However, the above presented algorithm in not affine
invariant. We call a method affine invariant if the algorithm is invariant under affine
transformation of the input. One can use the atomic norm to define an affine invariant
notion of smoothness as follows

LA := sup
x,y2lin(A)

y=x+gz
kzkA=1,g2R>0

2
g2

⇥
f (y)� f (x)�h— f (x),y�xi

⇤
(3.29)

an update of the algorithm looks like

xt+1 := xt�
h— f (xt),zti

LAkztk2 zt

where zt := LMOA(— f (xt)). Following the similar ideas as that of affine invariant
smoothness, we can also define the affine invariant notion of strong convexity similarly
which is defined below,

µA := inf
x,y2lin(A)

x6=y

2
ky�xk2

A
D(y,x) .

where D(y,x) := f (y)� f (x)�h— f (x),y�xi. Based on above defined notion of smooth-
ness, each update of the affine invariant algorithm looks as following,

xt+1 = xt�
h— f (xt),zti

LA
zt . (3.30)

We have already mentioned that the matching pursuit algorithm is generalized greedy
coordinate descent algorithm. This perspective allows us to use the analysis from ac-
celerated coordinate descent method and extend it for matching pursuit algorithm. In
the process, we obtain an accelerated matching pursuit algorithm. The major difficulty
however is that it is not known that if accelerate greedy coordinate descent even converges
to the global optimum. Hence, we need to make further slight modification in the existing
greedy scheme to accelerate matching pursuit algorithm. This is achieved by decoupling
the updates for x and bbb allowing them to be selected from different distributions. Here in
this work, we propose to update x using the greedy update (or the MP update), and use a
random direction selected uniformaly at random to update bbb.
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3.7.2 Main Results
In the previous section, the relevant background was discussed on the relationship between
and coordinate descent. Now, the convergence rate for affine invariant matching pursuit is
provided and later will be extended this result to accelerated matching pursuit.

Theorem 3.7.2.1 (Locatello* et al. [144]). Consider A⇢H to be a closed and bounded
set and k · kA to be norm over lin(A). Let f be a convex function which is LA-smooth
w.r.t. the norm k ·kA over lin(A), and let RA be the radius of the level set of x0 measured
with the atomic norm. Then, the optimization error after t � 0 iterations goes down as
following

f (xt+1)� f (x?)
2LAR2

A
d 2(t +2)

,

where d 2 (0,1] is the relative accuracy parameter of the employed approximate LMO.

The rates for coordinate descent can be recovered as a direct corollary from the above
theorem statement. Let us consider the case when A is the L1-ball in an n dimensional
space, then the rate of convergence obtained from Theorem 3.7.2.1 with no approximation
in the oracle (exact oracle) can be written as:

f (xt+1)� f (x?) 2L1R2
1

t +2
 2L2R2

1
t +2

 2L2nR2
2

t +2
,

where the first inequality is the rate obtained in this paper, the second inequality is the rate
obtained in Stich et al. [231] and the last inequality is the rate of vanilla coordinate descent
given in [171]. L2 here denotes the global Lipschitz constant. Therefore, it is clear from
the previous argument that measuring the smoothness in atomic norm directly provides a
tighter convergence bound. Now, with the notion of affine invariant smoothness and affine
invariant strong convexity, one can similarly derive the linear rate of convergence for the
matching pursuit algorithm.

Theorem 3.7.2.2 (Locatello* et al. [144]). Consider A⇢H to be a closed and bounded
set. Let us assume that k ·kA is a norm, f be µA-strongly convex and LA-smooth function
w.r.t. the norm k ·kA, both over lin(A). Then, optimization error after t � 0 iterations
goes down as following

et+1 
�
1�d 2 µA

LA

�
et .

where et := f (xt)� f (x?).

Accelerated Rates

As we already have discussed the non-accelerated rates, we will now focus on getting
accelerated matching pursuit algorithm. So far we have established the insights on the
relationship between matching pursuit and coordinate descent algorithm. This insight will
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be helpful to us to derive accelerated rate for matching pursuit. Before going directly into
discussing the result for accelerated matching pursuit, we first discuss the rate for greedy
accelerated coordinate descent algorithm. The rate for greedy accelerated coordinate
descent method was not known in the literature. In this work, we propose a semi greedy
accelerated coordinate descent by decoupling the two updates of nestrov and choosing
one update with the greedy selection while the other one with random selection. Let us
assume that the atoms are distributed according to a distribution Z defined over A. Let us
define

P̃ := Ez⇠Z [zz>] .

Generally here we assume that the distribution Z is such that lin(A) ✓ range(P̃). This
condition basically is equivalent to assuming that the probability to sample z⇠ Z along
the direction of every atom zt 2A is not zero for any z i.e.

Pz⇠Z [hz,zti> 0]> 0, 8zt 2A .

Further, we denote P = P̃† as the pseudo-inverse of P̃. With the new psd matrices P̃ and P,
the space can be equipped with the new dot product h·,P·i which results in the following
norm k·kP. With this new inner product in picture, we have

Ez⇠Z [hz,Pdiz] = Ez⇠Z [zz>]Pd = P†Pd = d .

The entire algorithm is discussed in the main paper (appendix) and the rate of convergence
of the accelerated matching pursuit algorithm is discussed here below.

Theorem 3.7.2.3 (Locatello* et al. [144]). Let f be a convex function and A be a symmet-
ric compact set. Then the output of (semi-greedy) accelerated matching pursuit algorithm
for any t � 1 converges with the following rate:

E[ f (xt)]� f (x?) 2Ln
t(t +1)

kx?�x0k2
P .

On similar note, one can derive the convergence rate of the randomized version which
is discussed below.

Theorem 3.7.2.4 (Locatello* et al. [144]). Let f be a convex function and A be a sym-
metric set. Then the output of the randomized version of accelerated matching pursuit
algorithm for any t � 1 converges with the following rate:

E[ f (xt)]� f (x?) 2Ln 0

t(t +1)
kx?�x0k2

P ,

where
n 0  max

d2lin(A)

E
⇥
(z>t d)2kztk2

P
⇤

E
⇥
(z>t d)2/kztk2

2
⇤ .
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3.8 Results in “k-SVRG [238]”

3.8.1 Background
We consider empirical risk minimization problem

x? := argmin
x

f (x) , with f (x) :=
1
n

n

Â
i=1

fi(x) , (3.31)

where each fi : Rd!R is L-smooth. Relevant background for variance reduced optimiza-
tion has been discussed in the chapter 1.4. However, for the sake of completeness, we
again discuss here the variance reduced update. Afterwards, we will discuss the the result
of approach k-SVRG. A unified framework of variance reduced update can be seen as
(discussed in [238]) following. Consider x0,x1, . . . ,xT as the iterates of the algorithm,
where x0 2 Rd is the initial point. For each fi, i 2 [n], the corresponding snapshot point is
denoted by qqq i 2 Rd . We have the following update,

xt+1 = xt�hgit (xt) , with

git (xt) := — fit (xt)�— fit (qqq it )+
1
n

n

Â
i=1

— fi(qqq i) ,
(3.32)

where h > 0 denotes the stepsize, and it 2 [n] an index (typically selected uniformly at
random from the set [n]). SVRG and SAGA both can be seen as a special case of the
general template given above.

SVRG As we know that SVRG works by maintaining only one snapshot point x, i.e.
qqq i = x and its corresponding gradient to the memory. Hence, all the gradient
component at this snapshot point can be computed in a cost of one stochastic
gradient computation. Hence, this makes the computation cost slightly worse (more
by 2-3 times then that of SGD).

SAGA SAGA also takes the same form as given in Equation (3.32). We have qqq i 6= qqq j for
i 6= j in general. Thus all qqq i needs to be stored. Hence, the memory requirement of
SAGA is large but recomputation can be avoided.

k-SVRG In k-SVRG, we propose to interpolate between SVRG and SAGA by main-
taining few snapshot points and saving those gradients at memory. Hence, the
memory requirement of k-SVRG is not as worse as that of SAGA. Precisely, we
need to maintain few snapshot points qqq ⇢ Rd of cardinality Õ(k logk) for k-SVRG.
Therefore, it is sufficient to only keep qqq in the memory, and a mapping from each
index i to its corresponding element in qqq .

In this work, Two variants of k-SVRG are proposed in this work. These variants differ in
the way how the snapshot points qqq m

i are updated at the end of each inner loop.
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V1 In k-SVRG-V1, The snapshot points are updated as follows, before moving to the
(m+1)th outerloop:

qqq m+1
i :=

(
qqq m

i , if i 62Fm,
x̃m+1, otherwise.

(3.33)

The set Fm is used to keep track of the selected indices in the inner loop. This
avoids the storage of |Fm| copies of the the snapshot point x̃m+1 in memory/ Only
one point is sufficient.

V2 In k-SVRG-V2(q), q indices are sampled without replacement from [n] at the end of
the mth outer loop, which form the set Fm, and then update the snapshot points as
before in (3.33). The suggested choice of q is O(n/k), and whenever the argument
is dropped, q is simply set to be q = `= dn/ke.

3.8.2 Main Results
Convex Problems

We consider the µ-strongly convex function f for µ > 0. We study the convergence of
the algorithm k-SVRG by studying a suitable Lyapunov function [238]. The Lyapunov
function is defined as follows,

L(x,H) := kx�x?k2 + gsH , (3.34)

with g := hn
L and 0 s  1 a constant parameter. We define a sequence of parameters Hm

that are updated at the end of each outer loop iteration xm. Let us also define Hm
i with the

property Hm
i � kaaam

i �— fi(x?)k2, and thus their sum we call as Hm, i.e. Hm := 1
n Ân

i=1 Hm
i

is an upper bound on Ekaaam
i �— fi(x?)k2. Now, we can properly write Hm as with the

help of hm
i : Rd ! R defined below

hm
i (x) := fi(x)� fi(x?)�hx�x?,— fi(x?)i . (3.35)

aaa0
i is initialized as 0 i.e. aaa0

i = 0 and H0
i = k— fi(x?)k2 for i 2 [n], and then the bounds

Hm
i are updated as follows,

Hm+1
i =

(
2Lhm

i (x̃m+1), if i 2Fm,

Hm
i , otherwise.

(3.36)

Fm are the set of indices that are used to compute x̃m+1. We now provide the convergence
result for both the versions of k-SVRG.
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Theorem 3.8.2.1 (Anant Raj and Stich [238]). Let {xm}m�0 denote the iterates in the
outer loop of k-SVRG-V2(q). If µ > 0, parameter q� `

3 , and step size h  1
3(µn+2L) then

E0q,mL(xm+1,Hm+1)
�
1�hµ

�`L(xm,Hm) . (3.37)

Theorem 3.8.2.2 (Anant Raj and Stich [238]). Let {xm}m�0 denote the iterates in the

outer loop of k-SVRG-V1. If µ > 0, and step size h  2
�

1� `�1
2n

�

5(µn+2L) < 1
5(µn+2L) then

EmL(xm+1,Hm+1) (1�hµ)`L(xm,Hm) . (3.38)

Remark 3.8.2.1 (Anant Raj and Stich [238]). The convergence rate of k-SVRG has the
same factor of (1�hµ) as that of SVRG and SAGA. For SAGA, any time convergence
can be show. Thus, after ` steps, SAGA achieves a decrease of (1�hµ)`, i.e. of the
same order as k-SVRG. On the other hand, the proof for SVRG shows decrease by a
constant factor after k iterations. The same improvement is attained by k-SVRG after
min{dn/`e,dk/`e} inner loops, i.e. min{n,k} total updates. Hence, our rates do not
fundamentally differ from the rates of SVRG and SAGA (in case n� k we even improve
compared to the former method), but they provide an interpolation between both results.

Non-Convex Problems

For the analysis of non-convex case, the Lyapunov function is chosen as

Lm(x) := f (x)+ cm

n

n

Â
i=1
kxm

0 �qqq m
i k2 , (3.39)

where {cm}M
m=0 denotes a sequence of parameters. If the sequence {cm}M

m=0 is defined
such that it holds cM = 0 then LM(xM) = f (xM). Quantities Hm := 1

n Ân
i=1 Hm

i are defined
with Hm

i := kxm
0 �qqq m

i k2. The sequence {cm}M
m=0and an auxiliary sequence {Gm}M

m=1 are
is initialized that will be used in the proof:

cm := cm+1�1� `

n
+ gh`+4b1h2L2`2�+2b1h2L3` , (3.40)

Gm := h� cm+1 h
g
�b1h2L�2b1cm+1h2` , (3.41)

with b1 := (1� 2L2h2`2)�1 and g � 0 a parameter that will be specified later. As
mentioned, cM = 0 will be set to 0 and (3.40) provides the values of cm for m = M�
1, . . . ,0. Let us also define the following notation,

Emk—Fmk2
F =

`�1

Â
t=0

Et+1,mk— f (xm
t )k2 =

`�1

Â
t=0

Et,mk— f (xm
t )k2 . (3.42)
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Now that Lypapunov function has been defined, the main theoretical result for this
section is provided below which show that the algorithm k-SVRG converges to a stationary
point for non-convex problems.

Theorem 3.8.2.3 (Anant Raj and Stich [238]). Let {xm
t }

`�1,M
t=0,m=0 denote the iterates of

k-SVRG-V2. Let {cm}M
m=0 be defined as in (3.40) with cM = 0 and g � 0 and such that

Gm > 0 for m = 0, . . . ,M�1. Then:

M�1

Â
m=0

Ek—Fmk2
F 

f (x0
0)� f ?

G
, (3.43)

where G := min0mM�1 Gm. In particular, for parameters h = 1
5Ln2/3 , g = L

n1/3 and
`= 3

2n1/3 and n > 15 it holds:

M�1

Â
m=0

Ek—Fmk2
F  15Ln2/3 � f (x0

0)� f ?
�
. (3.44)

3.9 Results in “A Simple Approach to Accelerated
Stochastic Optimization [104]”

3.9.1 Background
We consider the following composite optimization

find x? = argmin
x2X

`(x) = f (x)+f(x) , (3.45)

where X is a convex constraint set in the d-dimensional Euclidean space, f is con-
vex and smooth, and f is a (possibly non-smooth) convex function. Online linear
optimization (OLO) algorithms have been populary used to analyze iterative optimiza-
tion method. An OLO algorithm aims to maintain a small cumulative composite loss
ÂT

t=1 at (hut ,xt�xi+f(xt)�f(x)), a.k.a. its regret compared to a competitor point x
where xt is prediction at time step t and hatut , ·i is the linear loss function. Here ut 2 Rd

is unknown to the algorithm before selecting xt , but the non-negative weights at are
known for all time step t. One can convert an OLO algorithm to an iterative optimization
algorithm by using yt = xt to query the oracle, using ut = gt where gt represents the first
order gradient information in the linear loss to the OLO algorithm, and employing the
average x̄T = ÂT

t=1
at

a1:T
xt as the final estimate of x?.

An alternative, elegant online-to-batch conversion (algorithm 2) was recently proposed
by Cutkosky [50], which uses the “online” average x̄t = Ât

s=1
as

a1:t
xs as the query point, i.e.,

yt = x̄t . Cutkosky [50, Theorem 1] showed similar reduction holds under this conversion
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Algorithm 2 Anytime Online-to-Batch [50]
1: Input: Stochastic gradient oracle, non-negative weights (at)

T
t=1 with a1 > 0, online

linear optimization algorithm A
2: Get the initial point x1 2 X from A and let x̄1 x1
3: for t = 1 to T �1 do
4: Get stochastic gradient gt at the average iterate x̄t
5: Send hatgt , ·i as the next linear loss to A
6: Let xt+1 be the next iterate from A
7: Let x̄t+1 Ât+1

s=1 asxs
a1:t+1

8: end for
9: return the average iterate x̄T

scheme as well. Next,the tighter results obtained in the framework of algorithm 2 is
discussed that enables to prove accelerated rates.

3.9.2 Main Results
So far, the background and framework have been discussed for this section where the
results will be provided. Now, the main results presented in this work will be discussed.
The result provided below is crucial in proving all the further results.

Lemma 3.9.2.1 (Joulani* et al. [104]). For t = 1,2, . . .T , let at > 0 and xt 2 Rd, and
define x̄t = (Ât

s=1 asxs)/a1:t , Bt = atB f (x?, x̄t), and B̄ f
t = a1:t�1B f (x̄t�1, x̄t), t > 1. Then,

if f is convex,

a1:T (`(x̄T )� `?)
T

Â
t=1

at
�⌦

f 0(x̄t),xt�x?
↵
+f(xt)�f(x?)

�
�B1:T � B̄ f

2:T , (3.46)

where Bregman-divergence Bh : D⇥Do ! R is defined as Bh(x,y) = h(x)� h(y)�
hh0(y),x�yi.

The lemma immediately gives rise to the following generic error bound, which improves
upon Theorem 1 of Cutkosky [50] by keeping around the aforementioned �B̄ f

t and �Bt
terms which allow to prove accelerated rates for online averaging.

Corollary 3.9.2.2 (Generic Error Bound [104]). Under the assumptions of Lemma 3.9.2.1,
if for all t = 1,2, . . . ,T , gt 2 Rd satisfies Egt |x̄t = f 0(x̄t) and then

T

Â
t=1

at (hgt ,xt�x?i+f(xt)�f(x?))RT (x?) (3.47)
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for some upper-bound RT (x?), then

E`(x̄T )� `(x?) E
RT (x?)�B1:T �B̄ f

2:T
a1:T

. (3.48)

The main idea behind deriving accelerated rates is combining the regret bound of
optimistic AO-FTRL update withthe generic error bound obtained in the previous lemma,
and selecting at and g̃t appropriately so that the negative terms �B̄ f

t in (3.48) offset the
contribution of significant positive term in the final error bound of x̄T . More formal result
is given in the next theorem:

Theorem 3.9.2.3 (Joulani* et al. [104]). In algorithm 2, let the base method A generate
its iterates by the AO-FTRL update, using g̃t = gt�1 as the optimistic prediction of gt for
t > 1 and arbitrary g̃1. Suppose that f and f are convex, and there exists a norm k ·k such
that f is 1-smooth w.r.t. k ·k over Rd for all x,y 2 X . Further suppose that for all t 2 [T ],
rt�1 � 0 is convex, the AO-FTRL update is well-defined with finite value at the optimum
xt , and there exist bt > 0 and a norm k ·k(t) such that a1:tf + r0:t�1 is 1-strongly-convex
w.r.t. bt

2 k ·k
2 + 1

2k ·k
2
(t). Then, if a2

t b�1
t  a1:t�1 for all t > 1, then

E`(x̄T )� `? 
T

Â
t=1

Ert�1(x?)� rt�1(xt)�Bt

a1:T
+

T

Â
t=1

E
a2

t kst�st�1k2
(t)⇤

2a1:T
+Ea2

1k f 0(x̄1)� g̃1k2
⇤

2b1a1:T
,

(3.49)

where st = gt� f 0(x̄t), t 2 [T ], and s0 = 0.

The theorem statment discussed above is very important and will be utilized to in
most of the results discussed in the paper. This result also provide an intuitive but
simple explanation of nestrov’s accelerated gradient method. In the next corollary, with
appropriately setting at and ht , one can obtain the optimal accelerated rates for the
proximal dual averaging update.

Corollary 3.9.2.4 (Accelerated Proximal Dual-Averaging [104]). Let f and f be convex
and assume that either f is L-smooth over Rd. Consider the online-averaged (stochastic)
proximal dual averaging algorithm, given by Algorithm 2 with proximal SGD update
using g̃t = gt�1 as the optimistic prediction of gt for t > 1, and g̃1 = 0, where the gradient
estimates gt are unbiased, that is, E[gt |x̄t ] = f 0(x̄t). Let s2

⇤ = maxT
t=1Ekstk2

2, where
st = gt � f 0(x̄t), and let D = max{kx?k2,kx1� x⇤f k2}, where x⇤f is the minimizer of f
over Rd. Then the following error bounds hold:

(i) If ht = 4L+hat
p

t for some h > 0 and at = t, then

E[`(x̄T )]� `? 
�
4L+ L

4 +hT
p

T
�

D2 + 4s2
⇤

h T
p

T

T (T +1)
=O

✓
LD2

T 2 +
hD2 +h�1s2

⇤p
T

◆
.
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(ii) If ft is µ-strongly-convex then using ht = 4L and at = t, then

E[`(x̄T )]� `? 
�
4L+ L

4
�

D2 + 8s2
⇤T

µ
T (T +1)

=O
✓

LD2

T 2 +
s2
⇤

µT

◆
.

(iii) If gt = f 0(xt) (i.e., the noiseless case) and f is µ-strongly-convex, then for ht = 0
and any sequence of at > 0, t 2 [T ] satisfying

p
ck � a1:t

at
�
p

2k t > 1 , (3.50)

for some c� 2 where k = (L+µ)/µ denotes the condition number, then

`(x̄T )� `? 
k f 0(x1)k2

⇣
1� 1p

ck

⌘T�1

2µ
. (3.51)

Next, the universal convergence of algorithm 2 is presented with AdaGrad-style step
sizes.

Theorem 3.9.2.5 (Joulani* et al. [104]). Suppose that the iterates xt are given by AO-
FTRL with AdaGrad step sizes, i.e., using AO-FTRL update with r0 = 0,

rt(x) = g
d

Â
j=1

ht, j�ht�1, j

2
(x j� xt, j)

2, t � 1 ,

where g > 0, ht, j =
p

Ât
s=1 a2

s (gs, j� g̃s, j)2, t > 0 and h0 = 0. Further suppose that gt
are unbiased estimates of f 0(x̄t), and g̃t = gt�1, t > 1 as well as g̃1 = 0. Let R be an
upper-bound on |x?j � xt, j|2. Then the following hold:

(i) If Eg2
t, j  G2

j for all t 2 [T ], then

E`(x̄T )� `? 
d

Â
j=1

E

2

4

⇣
gR2

2 + 2
g

⌘

a1:T

s
T

Â
t=1

a2
t G2

t, j

3

5=O
 

RÂd
j=1 G jp

T

!
,

for g = 2/R, where Gt, j := (gt, j� g̃t, j).

(ii) If f is L-smooth over Rd, and Es2
t, j  s2

j for all t 2 [T ] (recall that st = gt� f 0(x̄t)),
then

E`(x̄T )� `?  1
a1:T

d

Â
j=1

6L
✓

gR2

2
+

2
g

◆2
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+
1

a1:T

✓
gR2

2
+

2
g

◆ 
D+

d

Â
j=1

s
T

Â
t=1

6a2
t s2

j

!

=O
✓

LdR2 +DR
T 2 +

max j s jdRp
T

◆
,

for g = 2/R, where D = Âd
j=1
p

2E| f 0(x1, j)|2.

Accelerated Variance-Reduced Methods: The framework is applied to the variance
reduced setting. In this setting, f = E[F(·,x )] is assumed to be the expected value of
functions F :Rd⇥X!R, where x is a random variable from some set X, with distribution
PX. At time step t, the algorithm receives a realization zt ⇠ PX, and can query the gradient
oracle F 0(·,zt) at (potentially multiple) points in X . In addition, the algorithm can query
the exact (non-stochastic) gradient oracle f 0 from time to time as discussed in Variance
Reduced Method section (Section 1.4).

Theorem 3.9.2.6 (Joulani* et al. [104]). Suppose that f , as well as F(·,z ) for all z 2 X,
are a) convex; and, b) either L-smooth w.r.t. k · k2 over Rd. Further suppose that
variance reduced gradient estimate is unbiased. Assume that variance reduction update
(Section 1.4) is run with epoch lengths Ts = min{t,2s�1} for some maximum epoch length
t after which snapshot is updated x̃ = x̄t+1 and full gradient is computed, at = t, and
A selected as AO-FTRL with regularizer r1:t�1 =

ht
2 k ·k

2
2 for ht = 8Lt2 and optimistic

gradient estimates g̃1 = 0 and g̃t = f 0(x̃t�1), t > 1. Then, for any T > t ,

E`(x̄T )� `(x?)
8Lt2kx?k2

2 +
k f 0(x̄1)k2

2
8Lt2

T (T +1)
.

3.10 Results in “Importance Sampling via Local
Sensitivity [240]”

3.10.1 Background
In this work, finite sump optimization of specific form (empirical risk minimization)
is considered. Let us consider the data points a1, . . . ,an 2 Rd , non-negative convex
functions f1, . . . , fn : R! R+, and a non-negative function g : Rd ! R+ which usually
the regularizer. We have following optimization problem formulation which would be
minimized over x 2 X ✓ Rd

f (x) :=
1
n

n

Â
i=1

fi(aT
i x)+ g(x). (3.52)
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However, for large data sets, the task of optimizing the finite sum objective given above is
computationally cumbersome. Hence, it is necessary to come up with the approximation
of f which is easier to minimize and whose minimizer is not very far from the true
minimizer of f . This approximation of the finite sum function f can be obtained by
independently subsampling data points ai with some fixed probability weights and sum
the weighted fi(aT

i x) for all the subsampled points. More formally, if we have a target
sample size m, a probability distribution P = {p1, . . . , pn} over [n], {1, . . . ,n}, then we
select i1, ..., im i.i.d. from P to form the approximation of the true function which can be
written as follows,

F(P,m)(x) :=
1

mn

m

Â
j=1

fi j(aT
i j

x)
pi j

+ g(x). (3.53)

We minimize the objective function F(P,m)(x) over x 2 X ✓ Rd to get the approximately
optimal solution. This has been discussed already in the section1.4 of Chapter 1 that
for any x, we have E[F(P,m)(x)] = f (x). If the sampled function stays close to the true
function f (x) for all x, then it can serve effectively as a surrogate for minimizing f . One
trivial idea to form such approximation is by choosing the data points uniformly at random
from the dataset to form the approximate objective function F(P,m)(x). However, uniform
sampling assigns same probability weights to all the data points and it is very likely that
uniform sampling will miss those data points which have higher contributions in the loss
functions. A possible solution to this problem was proposed in the form of sensitivity
sampling which we discussed in section 1.4 of Chapter 1. However, there are two major
issues which stops this approach from being widely used in practice:

1. It is almost impossible to compute or even approximate the sensitivity s f ,X (ai) for
most of the loss functions due to the fact that the supremum over all x 2 X in the
expression of Definition 1.4.0.1 can not be computed for most of the loss functions.
The knowledge of close form expression of the sensitivity is only limited to few
loss functions such as least squares regression.

2. Since, usually the domain X is huge, the supremum over all x2X of fi(aT
i x)

Ân
j=1 f j(aT

j x)+ng(x)
is a large quantity. Because of this ‘worst case’ importance metric, the sensitivity
scores for all the data points are usually high which results in higher sum of total
sensitivity which essentially make the sample complexity bound worse i.e. large
sampling requirement for better approximation.

3.10.2 Main Result
In this work, the idea of local sensitivity is proposed to overcome the above bariers. Local
sensitivity considers the idea to approximate the function in a small ball of the domain X .
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This is achieved by considering the definition of the sensitivity over a small ball instead
of the full domain X as in Definition 1.4.0.1. This approach has two major advantages
over the previous sensitivity based sampling approach:
1. Each function f can be often locally approximated by a simple function for which
one can can compute the local sensitivities in closed form. This will result to get the
approximation of the true local sensitivities. In this work, we considet a local quadratic
approximation to f due to the fact that the sensitivities of a quadratic function can be given
in closed form by the leverage scores of a modified matrix which is trivial to compute.
2. The value of local sensitivity s f ,X\B(r,y) is always smaller in number than global
sensitivity s f ,X , and hence the sum of local sensitivities will also be much smaller in
comparison to the sum of local which we call as the total sensitivity G f ,X . Since, the
number of samples required to find a good approximation directly depends on the sum
of sensitivities, hence we need to sample fewer samples to approximately minimize F
locally over B(r,y).

Once, we have computed the local sensitivities for all the data points, we would use in
the conjunction an iterative optimization algorithm to get the desired rate of convergence.
The iterative method presented in this work uses a proximal function, and thus in this
section we consider the proximal function function defined below in definition 3.10.2.1.
Proximal function reduces to f when l = 0:

Definition 3.10.2.1 (Proximal Function). For a function f : X ! R, define fl ,y(x) =
f (x)+lkx�yk2

2.

Using the ideas from leverage score sampling, the following result is established.

Theorem 3.10.2.1 (Sensitivity of Quadratic Approximation, [240]). Consider f as a
finite sum function (Equation (3.52)) with the quadratic approximation to the proximal
function fl ,y around y 2 X denoted by f̃l ,y(x). If A 2 Rn⇥d is the data matrix with ith

row equal to ai, then

f̃l ,y(x) :=
1
n

n

Â
i=1

⇥
fi(aT

i y)+aT
i (x�y) · f 0(aT

i y) +1
2
(aT

i (x�y))2 · f 00(aT
i y)
�
+ g(x)+lkx�yk2

2

:= f (y)+(x�y)T AT ay +
1
2
(x�y)T AT HyA(x�y)+ g(x)+lkx�yk2

2

(3.54)

where [ay]i =
1
n f 0i (aT

i y), and Hy is the diagonal matrix with [Hy]i,i =
1
n f 00(aT

i y). Assuming
that Hy is nonnegative, the sensitivity scores of f̃l ,y with respect to B(r,y) can be bounded
as

s f̃l ,y,B(r,y)(ai) b · `l
i (C)+

fi(aT
i y)

h
, (3.55)
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where C = [H1/2
y A, 1

d H�1/2
y ay], `l

i (C) is the leverage score, h = min
x2B(r,y)

f̃l ,y(x), d =

min
x2B(r,y)

g(x), and b = max
✓

1,1�
f (y)� 1

n Ân
i=1

f 0(aT
i y)2

4 f 00(aT
i y)

h

◆
.

If we consider the size of the ball where we are approximating fl ,y with f̃l ,y small
enough then the approximation quality of fl ,y by f̃l ,y is very good. In such cases, we
hope the following to hold: h = min

x2B(r,y)
f̃l ,y(x) = Q( f (y)). For this reason, the additive

fi(aT
i y)

h term will contribute a very little additive factor of Â fi(aT
i y)

Q( f (y)) = O(1) in the total sum
of sensitivities which essentially will not affect the final sample complexity bound by a
lot.

If the approximation of the fl ,y by f̃l ,y is good enough then on the ball B(r,y) then
one can apply the result of Theorem 3.10.2.1 to approximate the true local sensitivity
s fl ,y,X\B(r,y)(ai). Let’s discuss the assumption made to get the rest of the results in this
work. For a function f which has a C Lipschitz-Hessian, we have:

f (x) f (y)+(x�y)>A>ay +(x�y)>A>HyA(x�y)+ g(x)+ C
6
kx�yk3

2. (3.56)

After the C Lipschitz-Hessian assumption made, the next result to obtain an upper bound
on the local sensitivity is discussed below.

Theorem 3.10.2.2 (Anant Raj et al. [240]). Consider f as as a finite sum function, fl ,y
as in 3.10.2.1, y 2 X , a radius r, and a = min

x2B(r,y)
fl ,y(x). Then, 8 i 2 [n],

s fl ,y,B(r,y)(ai) s f̃l ,y,B(r,y)(ai)+min
✓

Cir
6nl

,
Cir3

6na

◆
.

From the above result, we have the bound on true local sensitivities which can be utilized
to independently sample components resulting to obtaining a (1+e) approximation of the
function fl ,y(x). This approximation will be used repetitively in the sense of approximate
proximal point method to find the optimal point x? upto d accuracy for some d > 0 which
depends on e . Each black box optimization oracle look like the following while applying
approximate proximal point methods.

xt  Pflt ,xt�1
(x)

where Pflt ,xt�1
(x) is defined below.

Definition 3.10.2.2 (Anant Raj et al. [240]). An algorithm P f is called multiplicative
e-oracle for a given function f if f (x?) f

�
P f (x)

�
 (1+ e) f (x?) where x? if the true

minimizer of f .
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Now that algorithm has been defined, convergence bounds for Approximate Proximal
Point Method would be stated below with a blackbox multiplicative e-oracle.

Theorem 3.10.2.3 (Anant Raj et al. [240]). For µ-strongly convex f , consider e1, . . .eT 2
(0,1) and x0, . . . ,xT 2Rd such that xt =Pflt ,xt�1

(xt�1) where Pflt ,xt�1
is an et -oracle. Then

if et  µ
µ+lt
8t 2 [T ], we have f (xt)� f ? 1

1�et
lt

µ+lt
( f (xt�1)� f ?)+ et

1�et
f ? 8t 2 [T ] and

f (xT )� f ?  r( f (x0)� f ?)+d f ?

where r = ’T
t=1

1
1�et

lt
µ+lt

and d = ÂT
t=1

⇣
et

1�et
’T

j=t+1
1

1�et

l j
µ+l j

⌘
.

Theorem 3.10.2.4 (Anant Raj et al. [240]). For a smooth convex function f , let e1, . . . ,eT =
e where e 2 (0,1/2) and x0, . . . ,xT 2 Rd be as in Theorem 3.10.2.3. Then, we have

f (xT )� f ?  2
(1� e)

kx?�x0k2
2

ÂT
t=1

2
lt

+
3e

1� e
f ?.

3.11 Results in “Explicit Regularization of Stochastic
Gradient Methods through Duality [237]”

3.11.1 Background
In the interpolation regime, we have the following finite sum objective

f (x) = 1
n

n

Â
i=1

fi(x)

with respect to x 2 Rd , where the global minimizer of f is also a global minimizer of all
functions fi, for i 2 {1, . . . ,n}. Hence, our goal in the interpolation regime reduces to find
a point x 2 Rd in the intersection of all sets of minimizers

Ki = arg min
h2Rd

fi(h),

for all i 2 {1, . . . ,n}. Hence, we can enforce a geometric constraint of our own choice
on the optimal solution in the form of explicit regularization which has the following
optimization problem formulation:

min
x2Rd

y(x) such that 8i 2 {1, . . . ,n}, x 2Ki, (3.57)

where y is a regularization function. In the optimization problem formulation given in
Eq. (3.57), explicit regularization in the solution can be introduced via the function y .
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Considering the case of finite data , one can rewrite more specific version of the problem
as following:

min
x2Rd

Y(x) such that 8i 2 {1, . . . ,n}, a>i x 2 Yi, (3.58)

where:

• Regularizer / mirror map: y : Rd ! R[ {+•} is a differentiable as well as µ-
strongly convex function with respect to some norm k ·k (which is not in general
the `2-norm). The associated Bregman divergence with respect to y is [33] defined
as

DY(x,h) = y(x)�y(h)�y 0(h)>(x�h).

• Data: ai 2 Rd⇥k, Yi ⇢ Rk are closed convex sets, for i 2 {1, . . . ,n}.

• Feasibility / interpolation regime: It is assumed that there exists x 2 Rd such that
y(x)< • and 8i 2 {1, . . . ,n}, a>i x 2 Yi.

3.11.2 Main Results
The support function sYi of the convex set Yi would be needed which is defined as, for
aaa i 2 Rk [30],

sYi(aaa i) = sup
yi2Yi

y>i aaa i.

By Fenchel duality:

min
x2Rd

y(x) such that 8i 2 {1, . . . ,n}, a>i x 2 Yi (3.59)

= min
x2Rd

y(x)+ 1
n

n

Â
i=1

max
aaa i2Rk

n
aaa>i a>i x�sYi(aaa i)

o

= max
8i, aaa i2Rk

�1
n

n

Â
i=1

sYi(aaa i)�y?
⇣
� 1

n

n

Â
i=1

aiaaa i

⌘
, (3.60)

with, at optimality,

x? = x(aaa?) = —y?
⇣
� 1

n

n

Â
i=1

aiaaa i

⌘
.

G(aaa) denotes the dual objective function above. In this work, dual algorithms are consid-
ered to solve the problem discussed earlier. The first and main result in this work is to
provide some primal guarantees from x(aaa).
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Proposition 3.11.2.1 (Anant Raj and Bach [237]). With the assumption, for any aaa 2
Rn⇥k, it gives:

DY(x?,x(aaa))6 gap(aaa).

As a direct consequence of previous proposition and coordinate descent result, the
following holds

E
h
DY(x?,x(aaa(t)))

i
6 E

h
gap(aaa(t))

i
6 maxi Li

t
max{kaaa?k2,R(0)2}

n
, (3.61)

where Li is smoothness constant and R(aaa)=maxy maxaaa?2A? {ky�aaa?k : G(y)� G(aaa)}.

Relationship to Least Square: Least-squares in the overparametrized regime where
the we obtain zero training error (interpolation regime) can be written as a finite sum
objective as follows,

min

"
1
2n

n

Â
i=1
kyi�a>i xk2

2 =
1

2n

n

Â
i=1

d(a>i x,Yi)
2

#
. (3.62)

It is evident that primal stochastic mirror descent with constant step-size applied to the
problem of least square given in Eq. (3.62) and the formulation of least square provided
in Section 3.11.2 are equivalent, as is shown below.

Lemma 3.11.2.2 (Anant Raj and Bach [237]). The mirror descent updates using the
mirror map y for the least-squares problemprovided in Eq. (3.62) converges to minimum
y solution.

Accelerated Rates: One can also consider to use accelerated proximal randomized
coordinate ascent [11, 88, 139] instead of non-accelerated randomized coordinate descent.
For the problem, it leads to:

E
h
DY(x?,x(aaa(t)))

i
6 E

h
gap(aaa(t))

i
6 4maxi Li

t2

⇢
G(aaa?)�G(0)

maxi Li
+

1
2
kaaa?k2

�
.

(3.63)

The above written bound in Eq. (3.63) is used in analyzing the general perceptron and
details of which was provided in the main paper (Appendix).

As a direct implication of the result provided in Proposition 3.11.2.1, we have the
convergence result for SDCA [216] and accelerated stochastic dual coordinate ascent [218]
which is provided in Corollary 3.11.2.3 and Corollary 3.11.2.4. For the next two results,
xk is denoted as x(aaak).

Corollary 3.11.2.3 (Stochastic Dual Coordinate Ascent [237]). Consider the regularized
empirical risk minimization problem, then if SDCA [216] algorithm is run starting from
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aaa0 2 Rn with a fix step size 1/maxi Li where Li =
kxik2

ln2 , primal iterate after k iterations
converges as following:

l
2
kxk+1�x?k2  D(aaak+1)

✓
1� gl

maxi kxik2

◆k
(SD(aaa0)�SD(aaa?)).

Corollary 3.11.2.4 (Accelerated Stochastic Dual Coordinate Ascent [237]). Consider
the regularized empirical risk minimization problem, then if Accelerated SDCA [218]
algorithm is run starting from aaa0 2 Rn, the following convergence rate for the primal
iterates holds:

l
2
kxk+1�x?k2  D(aaak+1) 2

 
1�

p
glp

maxi kxik2

!k

(SD(aaa0)�SD(aaa?)).
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Abstract
We propose a new framework for deriving screening rules for convex optimization
problems. Our approach covers a large class of constrained and penalized optimiza-
tion formulations, and works in two steps. First, given any approximate point, the
structure of the objective function and the duality gap is used to gather information
on the optimal solution. In the second step, this information is used to produce
screening rules, i.e. safely identifying unimportant weight variables of the optimal
solution. Our general framework leads to a large variety of useful existing as well as
new screening rules for many applications. For example, we provide new screening
rules for general simplex and L1-constrained problems, Elastic Net, squared-loss
Support Vector Machines, minimum enclosing ball, as well as structured norm
regularized problems, such as group lasso.

A.1 Introduction
Optimization techniques for high-dimensional problems have become the work-horses for
most data-analysis and machine-learning methods. With the rapid increase of available
data, major challenges occur as the number of optimization variables (weights) grows
beyond capacity of current systems.
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The idea of screening refers to eliminating optimization variables that are guaranteed
to not contribute to any optimal solution, and can therefore safely be removed from
the problem. Such screening techniques have received increased interest in several
machine learning related applications in recent years, and have been shown to lead to very
significant computational efficiency improvements in various cases, in particular for many
types of sparse methods. Screening techniques can be used either as a pre-processing
before passing the problem to the optimizer, or also interactively during any iterative
solver (called dynamic screening), to gradually reduce the problem complexity during
optimization.

While existing screening methods were mainly relying on geometric and problem-
specific properties, we in this paper take a different approach. We propose a new frame-
work allowing screening on general convex optimization problems, using simple tools
from convex duality instead of any geometric arguments. Our framework applies to a very
large class of optimization problems both for constrained as well as penalized problems,
including most machine learning methods of interest.

Our main contributions in this paper are summarized as follows:

1. We propose a new framework for screening for a more general class of optimization
problem with a simple primal-dual structure.

2. The framework leads to a large set of new screening rules for machine learning
problems that could not be screened before. Furthermore, it also recovers many
existing screening rules as special cases.

3. We are able to express all screening rules using general optimization complexity
notions such as smoothness or strong convexity, getting rid of problem-specific
geometric properties.

4. Our proposed rules are dynamic (allowing any existing algorithm to be additionally
equipped with screening) and safe (guaranteed to only eliminate truly unimportant
variables).

Related Work. The concept of screening in the sense of eliminating non-influential
data points to reduce the problem size has originated relatively independently in at least
two communities. Coming from computational geometry, [3] has proposed a screening
technique for the minimum enclosing ball problem for a given set of data points. Here
screening can be interpreted as simply removing points which are guaranteed to lie in
the strict interior of the final ball. Later [107] improve the threshold for this rule in the
minimum enclosing ball setting.

Independently, the breakthrough work of [77] gave the first screening rules for the
important case of sparse regression, as given in the Lasso. Since then, there have been
many extensions and alterations of the general concept. While [77] exploits geometric
quantities to bound the Lasso dual solution within a compact region, we recommend
the survey paper by [264] for an overview of geometric methods for Lasso screening.
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Sphere-region based methods differ from dome-shaped regions as used in [77] in choosing
different centers and radii to bound the dual optimal point. Apart from being geometry
specific, most existing approaches such as [77, 141, 182, 256, 257] are not agnostic to
the regularization parameter used, but instead are restricted to perform screening along
the entire regularization path (as the regularization parameter changes). This is known as
sequential screening, and restricts its usability to optimization algorithms obtaining paths.
In contrast, our proposed framework here allows any internal optimization algorithms to
be equipped with screening.

Despite the importance of constrained problems in many applications, much less is
known about screening for constrained optimization, in contrast to the case of penalized
optimization problems. For the dual of the hinge loss SVM, which is a box-constrained
optimization problem, [183] proposed a geometric screening rule based on the intersection
region of two spheres, in the sequential setting of varying regularizer. More recently, [275]
provided new screening rules for that case in the dynamic setting using a method similar
to our approach. However their method is restricted to the SVM case.

As a first step to allow screening for more general optimization objectives, [66, 161,
162] have developed more systematic duality gap based screening rules for several prob-
lems, including group lasso, multi-task and multi-class problems (in the penalized setting)
under a wider class of objectives f . While the earlier work of [66, 161] assumed sepa-
rability of f over the group structure, later extensions of [162, 220], have generalized
the applicability, but still rely on geometric and application-specific quantities in order
to perform screening. The approach of [220] allows screening rules for (sparse) SVM
problems on both dimensions, the features as well as the datapoints, but is limited in
terms of generality of this specific sparse problem structure. We here provide screening
rules for a more general framework of box constrained optimization, while hinge-loss
SVM happens to be a special case of this. Our approach here is most similar to the Blitz
framework of [100], which provides a general possibility to exploit piece-wise linear
structure in an optimization problem in order to do screening. The method of [100] is
however tied to a specific L1 algorithm, leading to very efficient active set methods on
this smaller problem class. Further, exploitation of peicewise linearity is also discussed in
paper [101] by selectively replacing piecewise terms in the objective with corresponding
linear subfunctions which is easier to solve. Our proposed approach aims at capturing the
largest possible general class of optimization problems allowing for screening. It can be
shown to recover many of the other existing rules including e.g. [66, 161, 162] and [275],
but significantly generalizing the method to general objectives and constraints as well as
regularizers.

The rest of the paper is organized as follows: In Section A.2, we discuss our framework
for screening. Section A.3 is devoted to deriving the information about optimal points in
terms of gap functions. Sections A.4 and A.5 utilizes the framework and tools derived
in previous sections to provide screening rules for the constrained and penalized case
respectively. In the end, we provide a small illustrative experiment for screening on
simplex and L1-constrained and also discuss that which of the existing results can be
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recovered using our algorithm in Section A.6.

A.2 Setup and Primal-Dual Structure
In this paper, we consider optimization problems of the following primal-dual structure.
As we will see, the relationship between primal and dual objectives has many benefits,
including computation of the duality gap, which allows us to have a certificate for
approximation quality.

A very wide range of machine learning optimization problems can be formulated as
(A) and (B), which are dual to each other:

min
xxx2Rn

h
OA(xxx) := f (Axxx) + g(xxx)

i
(A)

min
www2Rd

h
OB(www) := f ⇤(www) + g⇤(�A>www)

i
(B)

The two problems are associated to a given data matrix A 2 Rd⇥n, and the functions f :
Rd!R and g :Rn!R are allowed to be arbitrary closed convex functions. The functions
f ⇤,g⇤ in formulation (B) are defined as the convex conjugates of their corresponding
counterparts f ,g in (A). Here xxx 2 Rn and www 2 Rd are the respective variable vectors. For
a given function h : Rd ! R, its conjugate is defined as

h⇤(vvv) := max
uuu2Rd

vvv>uuu�h(uuu) .

The association of problems (A) and (B) is a special case of Fenchel Duality. More
precisely, the relationship is called Fenchel-Rockafellar Duality when incorporating the
linear map A as in our case, see e.g. [29, Theorem 4.4.2] or [21, Proposition 15.18],
see the Appendix A.8 for a self-contained derivation. The two main powerful features
of this general duality structure are first that it includes many more machine learning
methods than more traditional duality notions, and secondly that the two problems are
fully symmetric, when changing respective roles of f and g. In typical machine learning
problems, the two parts typically play the roles of a data-fit (or loss) term as well as a
regularization term. As we will see later, the two roles can be swapped, depending on the
application.

Optimality Conditions. The first-order optimality conditions for our pair of vectors
www 2 Rd,xxx 2 Rn in problems (A) and (B) are given as

www 2 ∂ f (Axxx) , (A.1a)
Axxx 2 ∂ f ⇤(www) , (A.1b)

�A>www 2 ∂g(xxx) , (A.2a)

xxx 2 ∂g⇤(�A>www) (A.2b)
see e.g. [21, Proposition 19.18]. The stated optimality conditions are equivalent to xxx,www
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being a saddle-point of the Lagrangian, which is given as L(xxx,www) = f ⇤(www)�hAxxx,wwwi�
g(xxx) if xxx 2 dom(g) and www 2 dom( f ⇤), see Appendix A.8 for details.

The Constrained Case. Any constrained convex optimization problem of the form

min
xxx2C

f (Axxx) (A.3)

for a constraint set C can be directly written in the form (A) by using the indicator function
of the constraint set as the penalization term g. (The indicator function iiiC of a set C ⇢ Rn

is defined as iiiC(xxx) := 0 if xxx 2 C and iiiC(xxx) :=+• otherwise.)

The Partially Separable Case. A very important special case arises when one part of
the objective becomes separable. Formally, this is expressed as g(xxx) = Ân

i=1 gi(xi) for
univariate functions gi : R! R for i 2 [n]. Nicely in this case, the conjugate of g also
separates as g⇤(yyy) = Âi g⇤i (yi). Therefore, the two optimization problems (A) and (B)
write as

OA(xxx) := f (Axxx)+Âi gi(xi) (SA)
OB(www) := f ⇤(www)+Âi g⇤i (�aaa>i www) , (SB)

where aaai 2 Rd denotes the i-th column of A.
Crucially in this case, the optimality conditions (A.2a) and (A.2b) now become separa-

ble, that is

�aaa>i www 2 ∂gi(xi) 8i . (A.4a)

xi 2 ∂g⇤i (�aaa>i www) 8i . (A.4b)

Note that the two other conditions (A.1a) and (A.1b) are unchanged in this case.

A.3 Duality Gap and Certificates
The duality gap for our problem structure provides an optimality certificate for our
class of optimization problems. It will be the most important tool for us to provide
guaranteed information about the optimal point (as in Section A.3.2), which will then be
the foundation for the second step, to perform screening on the optimal point (as we will
do in the later Sections A.4 and A.5).

A.3.1 Duality Gap Structure
For the problem structure (A) and (B) as given by Fenchel-Rockafellar duality, the
duality gap for any pair of primal and dual variables xxx 2 Rn and www 2 Rd is defined as
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G(www,xxx) :=OA(xxx)+OB(www). Non-negativity of the gap – that is weak duality – is satisfied
by all pairs.

Most importantly, the duality gap acts as a certificate of approximation quality — the
true optimum values OA(xxx⇤) and �OB(www⇤) (which are both unknown) will always lie
within the (known) duality gap.

The Gap Function. For the special case of differentiable function f , we can study a
simpler duality gap

G(xxx) :=OA(xxx)+OB(www(xxx)) (A.5)

purely defined as a function of xxx, using the optimality relation (A.1a), i.e. www(xxx) :=— f (Axxx).

The Wolfe-Gap Function. For any constrained optimization problem (A.3) defined
over a bounded set C and xxx 2 C, the Wolfe gap function (also known as Hearn gap or
Frank-Wolfe gap) is defined as the difference of f to the minimum of its linearization
over the same domain. Formally,

GW (xxx) := max
yyy2C

(Axxx�Ayyy)>— f (Axxx). (A.6)

It is not hard to see that the convenient Wolfe gap function is a special case of our above
defined general duality gap G(xxx) :=OA(xxx)+OB(www(xxx)), for g being the indicator function
of the constraint set C, and www(xxx) := — f (Axxx). For more details, see Appendix A.9.1, or
also [122, Appendix D].

A.3.2 Obtaining Information about the Optimal Points
As we have mentioned, any type of screening will crucially rely on first deriving safe
knowledge about the unknown optimal points of our given optimization problem. Here,
we will use the duality gap to obtain such knowledge on the optimal points xxx? 2 Rn and
www? 2 Rd of the respective optimization problems (A) and (B) respectively. Proofs are
provided in Appendix A.9.2.

Our first lemma shows how to bound the distance between any (feasible) current dual
iterate and the solution www? using standard assumptions on the objective functions.

Lemma A.3.2.1. Consider the problem (B) with optimal solution www? 2 Rd. For f being
µ-smooth, we have

kwww�www?k2  2
µ
( f ⇤(www)� f ⇤(www?)) (A.7)

The following corollary will be important to derive screening rules for penalized
problems in Section A.5, as well as box-constrained problems (Section A.4.4).
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Corollary A.3.2.2. We consider the problem setup (A) and (B), and assume f is µ-smooth.
Then

kwww�www?k2  2
µ

G(xxx). (A.8)

Here G(xxx) is the duality gap function as defined in equation (A.5).

The following two results hold for general constrained optimization problems of the
form (A.3), where g is the indicator function of a constraint set C ⇢ Rn and hence are
useful for deriving screening rules for such problems.

Lemma A.3.2.3. Consider problem (A) and assume that f is µ-strongly convex over a
bounded set C. Then it holds that

kAxxx�Axxx?k2
2 

1
µ

GW (xxx), (A.9)

where xxx? is an optimal solution and GW is the Wolfe-Gap function of f over the bounded
set C.

Corollary A.3.2.4. Assuming f is L-smooth as well as µ-strongly convex over a bounded
set C, we have

k— f (Axxx)�— f (Axxx?)k  L
pµ

p
GW (xxx) (A.10)

A.4 Screening Rules for Constrained Problems
In the following, we will develop screening rules for constrained optimization problems
of the form (A.3), by exploiting the structure of the constraint set for a variety of sparsity-
inducing problems. First of all, we give a general lemma which we will be using in rest
of the paper to derive screening rules when any of the function in A and B is indicator
function.

Lemma A.4.0.1. For general constrained optimization minxxx2C f (Axxx), the optimality
condition (A.2a) gives rise to the following optimality rule at the optimal point:

(Axxx?)>www? = min
zzz2C

(Azzz)>www? (A.11)

The above equation (A.11) also suggest that xxx? = argminzzz2C(Azzz)>www?. Lemma A.4.0.1
is very crucial in further deriving screening rules for constrained optimization problem as
well as norm penalized problems whose conjugate is indicator function of the dual norm.

A.4.1 Simplex Constrained Problems
Optimization over unit simplex 4 := {xxx 2 Rn | xi � 0, Ân

i=1 xi = 1} is a important
class of constrained problems (A.3), as it includes optimization over any finite polytope.
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In this case, the columns of A describe the vertices, and xxx are barycentric coordinates
representing the point Axxx. Formally, g(xxx) is the indicator function of the unit simplex
C =4 in this case.

The following two theorems provide screening rules for simplex constrained problems.
We provide all proofs in Appendix A.10.1.

Theorem A.4.1.1. For general simplex constrained optimization minxxx24 f (Axxx), the opti-
mality condition (A.2a) gives rise to the following screening rule at the optimal point, for
any i 2 [n]

(aaai�Axxx?)>www? > 0 ) x?i = 0 . (A.12)

In the following Theorem A.4.1.2 we now assume smoothness and strong convexity
of function f to provide screening rules for simplex problems, in terms of an arbitrary
iterate xxx, without knowing xxx?.

Theorem A.4.1.2. Let f be L-smooth and µ-strongly convex over the unit simplex C =4.
Then for simplex constrained optimization minxxx24 f (Axxx) we have the following screening
rule, for any i 2 [n]

(aaai�Axxx)>— f (Axxx)> L

s
GW (xxx)

µ
kaaai�Axxxk ) x?i = 0 .

Our general screening rules for simplex constrained problems as in Theorem A.4.1.2
allows many practical implications. For example, new screening rules for squared loss
SVM and minimum enclosing ball problem come as a direct consequence.

Squared Hinge Loss SVM. The squared hinge-loss SVM problem in its dual form is
formulated as

min
xxx24

⇥
f (Axxx) := 1

2xxx>A>Axxx
⇤

(A.13)

over a unit simplex constraint xxx 24⇢ Rn. Here for given data examples āaa1, . . . , āaan 2 Rd

and corresponding labels yi 2 ±1, the matrix A collects the columns aaai = yiāaai, see e.g.
[247]. We obtain the following novel screening rule for square loss SVM:

Corollary A.4.1.3. For the squared hinge loss SVM (A.13) we have the screening rule

(aaai�Axxx)>Axxx >
q

max
i

(Axxx�aaai)>Axxxkaaai�Axxxk

) x?i = 0. (A.14)
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Minimum Enclosing Ball. The primal and dual for the minimum enclosing ball prob-
lem is given as the following pair of optimization formulations (A.15) and (A.16) respec-
tively.

min
ccc2Rd ,r2R

r2 s.t. kccc�aaaik2
2  r2 8i 2 [n] (A.15)

min
xxx24⇢Rn

xxx>A>Axxx+ ccc>xxx , (A.16)

where ccc is a vector whose ith element ci is �aaa>i aaai, see for example [150] or our Ap-
pendix A.10.1. Given a set of n points, aaa1 to aaan in Rd , the minimum enclosing ball is de-
fined as the smallest ball Bccc,r with center ccc and radius r, i.e.: Bccc,r := {xxx2Rd | kccc�xxxk r},
such that all points aaai lie in its interior. In this set-up, screening means to identify points
aaai lying in the interior of the optimal ball Bccc?,r? . Removing those points from the problem
does not change the optimal ball.

Corollary A.4.1.4. For the minimum enclosing ball problem (A.15) we have the screening
rule

(eeei� xxx)>(2A>Axxx+ ccc)>

2
r

1
2 max

i
(xxx� eeei)>(2A>Axxx+ ccc)kaaai�Axxxk) x?i = 0 . (A.17)

Our result improves upon the known rules by [3, 107] by providing a broader selection
criterion (A.17).

A.4.2 L1-Constrained Problems
L1-constrained formulations are very widely used in order to induce sparsity in the vari-
ables. Here below we provide results for screening on general L1-constrained problems,
that is minxxx2C f (Axxx) for C = L1 ⇢ Rn (or a scaled version of the L1-ball). Proofs are
provided in Appendix A.10.2.

Theorem A.4.2.1. For general L1-constrained optimization minxxx2L1 f (Axxx), the optimality
condition (A.2a) gives rise to the following screening rule at the optimal point, for any
i 2 [n] ���aaa>i www?

���+(Axxx?)>www? < 0 ) x?i = 0 . (A.18)

Using only a current iterate xxx instead of an optimal point, we obtain screening for
general smooth and strongly convex function f :

Theorem A.4.2.2. Let f be L-smooth and µ-strongly convex over the L1-ball. Then for
L1-constrained optimization minxxx2L1 f (Axxx) we have the following screening rule, for any
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i 2 [n]

���aaa>i — f (Axxx)
���+(Axxx)>— f (Axxx)+L(kaaaik2 +kAxxxk2)

s
GW (xxx)

µ
< 0

) xxx?i = 0 (A.19)

A.4.3 Elastic Net Constrained Problems

Elastic net regularization as an alternative to L1 is often used in practice, and can outper-
form the Lasso, while still enjoying a similar sparsity of representation [276]. The elastic
net is given by the expression

akxxxk1 +(1�a)1
2kxxxk

2
2 .

Here below we provide novel result for screening on general elastic net constrained
problems, that is minxxx2C f (Axxx) for C being the elastic net constraint, or a scaled version
of it. Proofs are provided in Appendix A.10.3.

Theorem A.4.3.1. For general elastic net constrained optimization minxxx2LE f (Axxx) where
LE := {xxx 2 Rn | akxxxk1 +

(1�a)
2 kxxxk2

2  1}, the optimality condition (A.2a) gives rise to
the following screening rule at the optimal point, for any i 2 [n]

|aaa>i www?|+(Axxx?)>www?
h a

1+ (1�a)
2 kxxx?k2

2

i
< 0) x?i = 0

Using only a current iterate xxx instead of an optimal point, we obtain screening for
general smooth and strongly convex function f :

Theorem A.4.3.2. Let f be L-smooth and µ-strongly convex over the elastic net norm
ball. Then for elastic net constrained optimization minxxx2LE f (Axxx) we have the following
screening rule, for any i 2 [n]

���aaa>i — f (Axxx)
���+(Axxx)>— f (Axxx)

⇥ 2a
3�a

⇤

+L(kaaaik2 +kAxxxk2
⇥ 2a

3�a
⇤
)

s
GW (xxx)

µ
< 0

) xxx?i = 0 (A.20)

Note that both above results also recover the L1 constrained case as a special case,
when a ! 1.
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A.4.4 Screening for Box Constrained Problems

Box-constrained problems are important in several machine learning applications, in-
cluding SVMs. After variable rescaling, w.l.o.g. we can assume the constraint set
C = 2 := {xxx 2 Rn | 0  xi  1}. We derive screening rules for predicting both if a
variable will take the upper or lower constraint.

Theorem A.4.4.1. Let f be L-smooth. Then for box-constrained optimization minxxx22 f (Axxx),
we obtain the following screening rules, for any i 2 [n]

aaa>i — f (Axxx)�kaaaik2
p

2LG(xxx)> 0 ) x?i = 0 , and

aaa>i — f (Axxx)+kaaaik2
p

2LG(xxx)< 0 ) x?i = 1 .

Box constrained opptimization problems arise very often in machine learning probelm.
Hinge loss SVM happens to one of many special cases of box-constrained optimizaion
problem.

Hinge Loss SVM. The dual of the classical support vector machine with hinge loss,
when not using a bias value, is a box-constrained problem. As a direct consequence of
Theorem A.4.4.1 we therefore obtain screening rules for SVM with hinge loss and no
bias. The primal formulation of the SVM in this setting, for a regularization parameter
C > 0, is

min
www2Rd ,eee2Rn

1
2www>www+C1>eee

s.t. www>aaai � 1� ei 8i 2 [n]
ei � 0 8i 2 [n]

(A.21)

Corollary A.4.4.2. For SVM with hinge loss and no bias as given in (A.21), we have the
screening rules

aaa>i Axxx�kaaaik2
p

2G(xxx)> 0 ) x?i = 0 , and

aaa>i Axxx+kaaaik2
p

2G(xxx)< 0 ) x?i =C .

where xxx 2 Rn is any feasible dual point.

We get similar screening rules for hinge loss SVM as in [275] as well as in [220]. The
closest known result to our Corollary A.4.4.2 for screening in hinge loss SVM is given in
[275] and [220]. The work of [275] also covers the kernelized SVM case, and improves
the threshold given in our Corollary A.4.4.2 by a constant of

p
2. In Appendix A.10.4, we

show that our more general approach here can also be adjusted to gain this constant factor.
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A.5 Screening for Penalized Problems
In this section we will develop screening methods for general penalized convex optimiza-
tion problems of the form (A) and (B). The cornerstone application are L1 regularized
problems, for which we now develop screening rules with general cost function f . We
show in Appendix A.11.1 that our method can reproduce the screening rules of [161] as
special cases, whereas their method does not directly extend to general f . Beyond L1
problems, we also describe new screening rules for elastic net regularized problems, as
well as the important case of structured norm regularized optimization.

A.5.1 L1-Penalized Problems
The next theorem describes a screening rule for general L1-penalized problems, under a
smoothness assumption on function f . Proofs for are given in Appendix A.11.1.

Theorem A.5.1.1. Consider an L1-regularized optimization problem of the form

min
xxx2Rn

f (Axxx)+lkxxxk1 (A.22)

If f is L-smooth, then the following screening rule holds for all i 2 [n]:
���aaa>i — f (Axxx)

���< l �kaaaik2
p

2LG(xxx) ) xxx?i = 0

By careful observation of the expression in Theorem A.5.1.1, it is easy to find a
connection between our screening rule and the geometric sphere test method based
screening [264]. The general idea behind the sphere test is to consider the maximum value
of the objective function in a spherical region which contains the optimal dual variable.
We discuss this connection in more detail in section A.5.4.

Here, we also discuss the special cases of squared loss regression and logistic loss
regression with L1 penalization. These results are presented in Corollaries A.5.1.2 and
A.5.1.3 as direct consequences of Theorem A.5.1.1. Both of the corollaries can also be
derived from the framework discussed in the paper [161] and produce similar screening
rules. Proof of both of the corollaries are discussed in Appendix A.11.1.

Corollary A.5.1.2. Consider an optimization problem of the form:

min
xxx2Rn

1
2kAxxx�bk2

2 +lkxxxk1

Then the screening rule is given by:��aaa>i (Axxx�bbb)
��< l �kaaaik2

p
2G(xxx) ) xxx?i = 0.

In the Appendix A.11.1, we also discuss how to improve the screening threshold for
squared loss penalized regression by a constant factor.
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Corollary A.5.1.3. The optimization problem for logistic regression with L1 regularizer
can be written in the form of:

min
xxx2Rn

n

Â
i=1

log(exp([Axxx]i)+1)+lkxxxk1 (A.23)

And screening rule for above problem can be written as :
����aaa
>
i

✓
exp(Axxx)

exp(Axxx)+1

◆����< l �kaaaik2
p

2G(xxx) ) xxx?i = 0

where
⇣

exp(Axxx)
exp(Axxx)+1

⌘
is element wise vector whose ith element is

⇣
exp([Axxx]i)

exp([Axxx]i)+1

⌘

A.5.2 Elastic-Net Penalized Problems
In the next corollary, we present a novel screening rule for the elastic net squared loss
regression problem.

Corollary A.5.2.1. Consider the elastic net regression formulation

min
xxx2Rn

1
2kAxxx�bbbk2

2 +l2kxxxk2
2 +l1kxxxk1 (A.24)

The following screening rule holds for all i 2 [n]:
���(aaa>i A+2l2eee>i )xxx�aaa>i bbb

���<

l1�
q

2(aaa>i aaai +2l2)G(xxx) ) x?i = 0.

We also recover existing screening rules for elastic net regularized problem with more
general objective f using our framework,

Theorem A.5.2.2. If we consider the general elastic net formulation of the form

min
xxx

f (Axxx)+(1�a)1
2kxxxk

2
2 +akxxxk1 (A.25)

If f is L-smooth, then the following screening rule holds for all i 2 [n]:
���aaa>i — f (Axxx)

���< a�kaaaik2
p

2LG(xxx) ) xxx?i = 0 .

This rule has been derived earlier in [220], but can also be seen as a special case of our
framework, see Appendix A.11.1. In the proof, we derive screening rules from both the
formulation (B.17) and (SB) using optimality condition (A.4a) and (A.4b) which is novel
as well as help us to understand the property useful in deriving screening rules for elastic
net penalized problems.
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A.5.3 Structured Norm Penalized Problems
Here in this section we present screening rules for non-overlapping group norm regularized
problems. Group-norm regularization is widely used to induce sparsity in terms of groups
of variables of the the solution of the optimization problem. The most prominent example
is the group lasso (`2/`1-regularization). Here in this section we mostly discuss screening
for general objectives with an `2/`1-regularization. Proofs are provided in Appendix
A.11.2.

Group Norm - `2/`1 Regularization. In the following, we use the notation {xxx1 · · ·xxxG}
to express a vector xxx as a partition of non-overlapping groups g 2 G of variables, such that
xxx> =

⇥
xxx>1 ,xxx

>
2 · · ·xxx>G

⇤
. Correspondingly, the matrix A can be denoted as the concatenation

of the respective column groups A = [A1 A2 · · ·AG], and Âg2G |g|= n.

Theorem A.5.3.1. For `2/`1-regularized optimization problem of the form

min
xxx

f (Axxx)+
G

Â
g=1

prgkxxxgk2

Assuming f is L-smooth, then the following (group-level) screening rule holds for all
groups g:

kA>g — f (Axxx)k2 +
p

2L
��Ag

��
Fro <

prg ) xxx?g = 000 2 R|g| .

Corollary A.5.3.2. Group Lasso Regression with Squared Loss - For the group lasso
formulation

min
xxx

1
2kAxxx�bbbk2

2 +l
G

Â
g=1

prgkxxxgk2

we have the following screening rule for all groups g:

kA>g (Axxx�bbb)k2 +
p

2G(xxx)
��Ag

��
Fro < lprg ) xxx?g = 000 .

Group lasso regression is widely used in applications as a working example case of
structured norm penalization. For the squared-loss special case, group lasso screening
rules were recently developed by [162]. Similarly, [130] is also restricted to least-squares
f objective.

A.5.4 Connection with Sphere Test Method
The general idea behind the sphere test method [264] is to consider the maximum value
of desired function in a spherical region which contains the optimal dual variable. In
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context of our general framework (A) and (B), we obtain this case when considering an
`1 penalty or `2/`1 penalty. That means g is a norm and hence from Lemma A.9.2.1, g⇤

becomes the indicator function of the dual norm ball of A>www. The dual norm function
for `1 norm is of the form maxi |aaa>i www| and for `2/`1 norm, it is maxg kA>g wwwk. Hence,
we try to find maximum value of the function of the forms maxqqq2S(qqq,r) aaa>i qqq where
S(qqq,r) = {z : kzzz� qqqk2  r} the ball S also contains the optimal dual point www?. If the
maximum value of aaa>i qqq is less than some particular value for all the qqq in the ball hence
aaa>i www will also be less than that particular value and that is the main reason we try to find
maximum of aaa>i qqq over the ball S .

max
qqq2S(qqq,r)

aaa>i qqq = aaa>i (qqq �qqq+qqq) = aaa>i (qqq �qqq)+aaa>i qqq

 kaaaik2kqqq �qqqk+aaa>i qqq rkaaaik2 +aaa>i qqq

Similar arguments can be given in the `2/`1-norm case. A variety of existing screening
test for lasso and group lasso are of this flavor of sphere tests. The difference between
these approaches mainly lie in the way of choosing the center and bounding the radius
of the sphere, such that the optimal dual variables lie inside the sphere. Our method can
be seen as a general framework for such a sphere test based screening with dynamic
screening rules. Our method can be interpreted as a sphere test with the current iterate of
the dual variable www as a center of the ball, and we obtain the bound on the radius in terms
of duality gap function.

A.6 Illustrative Experiments

While the contribution of our paper is on the theoretical generality and the collection of
new screening applications, we will still briefly illustrate the performance of some of the
proposed screening algorithms, for the classical examples of simplex constrained and
L1-constrained problems. We compare the fraction of active variables and the Wolfe-Gap
function as optimization algorithm progress.

We consider the optimization problem of the form min
xxx2BL1

kAxxx�bbbk2
2. BL1 is a scaled L1-

ball with radius 35. A 2 R3000⇥600 is a random Gaussian matrix and a noisy measurement
bbb = Axxx? where xxx? is a sparse vector of +1 and �1 with only 70 non zeros entries. We
solve the above optimization problem using the Frank-Wolfe algorithm (pair-wise variant,
see [119]). Before putting this optimization problem into the solver we convert this
problem into the barycentric representation which is min

xxx424
kA4xxx4� bbbk2

2. The relation

between the transformed variable and original variable can be given by A4 = [A |�A]
and xxx = [In |� In]xxx4. For more details see [97].
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Figure A.1: Simplex- vs L1-constrained Screening

Dataset/ No Screening Screening
No. of Samples (Simplex) (Simplex)

Synth1 5000 13.1 sec 11.7sec
Synth2 10000 28.3 sec 23.1 sec
RCV1 20242 18.6 min 13.5 min

news20B 19996 33.4 min 25.2 min
Table A.1: Simplex-constrained screening, clock time

Dataset/ No Screening Screening
No. of Samples (`1-constr.) (`1-constr.)

Synth1 5000 13.1 12.2 sec
Synth2 10000 28.3 sec 24.7 sec
RCV1 20242 18.6 min 14.9 min

news20B 19996 33.4 min 27.1 min
Table A.2: L1-constrained screening, clock time

Now we apply our Theorems A.4.2.2 and A.4.1.2 on variable of xxx and xxx4 respectively
to screen, in order to compare the two alternative screening approaches on the same
problem. Note that the Wolfe gap is identical in both parameterizations, for any xxx. One
important point to note here is that dimension of xxx4 is the double of the dimension of xxx,
and any L1-coordinate value xi is zero if and only if both “duplicate” variables x4,i and
x4,n+i are zero, where n is the dimensionality of xxx.

Therefore, the simplex variant (with more variables) performs a more fine-grained
variant of screening, where we can screen each of the sign patterns separately for each vari-
able. In Fig A.1, the blue curve illustrates the screening efficiency for the L1-constrained
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screening case, while the red curve illustrate simplex constrained screening. Our theorems
A.4.2.2 and A.4.1.2 are well in line with the phenomena in Fig A.1. For the L1-constrained
case, the screening starts relatively at later stage than simplex case due to the fact that in
Equation (A.19), two out of three terms are absolute values of some quantity and hence
it is very tough to compensate both of them by the third quantity, in order for the entire
sum to become negative. Hence in the beginning this rule can often be ineffective. As
algorithm progresses, the duality gap becomes smaller and screening starts but at the same
time the gradient (and therefore gap) also starts to decay which brings the trade-off shown
in the plot. For both variants, screening becomes slow towards the end.

We also report the time taken to reach a duality gap of 10�7 with both the approaches
mentioned above (simplex constrained and L1-constrained) on for different datasets. The
first two datasets (Synth1 and Synth2) are generated under the same setting described
earlier but Synth1 with 5000 samples and Synth2 with 10000 samples. RCV1 is a real
world dataset having 20,242 samples and 47,236 data dimensions. news20Binary is also
a real world dataset having 19,996 entries and 1,355,191 dimensions. Below in Tables
A.1 and A.2, we describe the running time of the optimization methods to reach a duality
gap threshold of 10�7 with or without screening. On RCV1 dataset we try the feature
learning with L1-norm ball constraint of 200 and on news20Binary we use L1-norm ball
constraint of 35. In the case of RCV1 and news20Binary, A is the data matrix and bbb is
the label of each instance in the dataset. From Tables A.1 and A.2 it is also evident that
simplex screening rule is more tighter than the L1-constrained screening rule.

A.7 Discussion
We have presented a unified way to derive screening rules for general constrained and
penalized optimization problems. For both cases, our framework crucially utilizes the
structure of piece-wise linearity of the problem at hand. For the constrained case, we
showed that screening rules follow from the piece-wise linearity of the boundary of the
constraint set.
The crucial property is that at non-differentiable boundary points, the normal cone – i.e.
the sub-differential of the indicator function of the constraint set – becomes a relatively
large set. Under moderate assumptions on the objective function, we are able to guarantee
that also the gradient of an optimal point must lie in this same cone region, leading to
screening.
On the other hand for penalized optimization problems, we are able to derive screening
rules from either piece-wise linearity of the penalty function, or as well from exploiting
piece-wise linearity of the constraint set arising from the dual (conjugate) of the penalty
function.
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Proofs for Main Results

A.8 Primal Dual Structure (Proofs for Section A.2)

The relation of our primal and dual problems (A) and (B) is standard in convex analysis,
and is a special case of the concept of Fenchel Duality. Using the combination with the
linear map A as in our case, the relationship is called Fenchel-Rockafellar Duality, see e.g.
[29, Theorem 4.4.2] or [21, Proposition 15.18]. For completeness, we here illustrate this
correspondence with a self-contained derivation of the duality.

Proof. Starting with the original formulation (A), we introduce a helper variable vector
vvv 2 Rd representing vvv = Aaaa . Then optimization problem (A) becomes:

min
aaa2Rn

f (vvv)+g(aaa) such that vvv = Aaaa . (A.26)

Introducing Lagrange multipliers www 2 Rd , the Lagrangian is given by:

L(aaa,vvv;www) := f (vvv)+g(aaa)+www> (Aaaa� vvv) .

The dual problem of (A) follows by taking the infimum with respect to both aaa and vvv:

inf
aaa,vvv

L(www,aaa,vvv) = inf
vvv

n
f (vvv)�www>vvv

o
+ inf

aaa

n
g(aaa)+www>Aaaa

o

=�sup
vvv

n
www>vvv� f (vvv)

o
� sup

aaa

n
(�www>A)aaa�g(aaa)

o
(A.27)

=� f ⇤(www)�g⇤(�A>www) . (A.28)

We change signs and turn the maximization of the dual problem (A.28) into a mini-
mization and thus we arrive at the dual formulation (B) as claimed:

min
www2Rd

h
OB(www) := f ⇤(www)+g⇤(�A>www)

i
.

The Partially Separable Case. For g(xxx) is separable, i.e. g(xxx) = Ân
i=1 gi(xi) for uni-

variate functions gi : R! R for i 2 [n], the primal-dual structure remains the separable.
In this case, the conjugate of g also separates as g⇤(yyy) = Âi g⇤i (yi). Therefore, in terms of
the the primal-dual structure (A) and (B) we obtain the separable special case (B.17) and
(SB).
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Optimality Conditions. The first-order optimality conditions follow from the standard
definition of the conjugate functions in the Fenchel dual problem, see also e.g. [21, 29].

Proof. The first-order optimality conditions for our pair of vectors www 2 Rd,xxx 2 Rn in
problems (A) and (B) are given by equations (A.1a), (A.2a), (A.1b) and (A.2b). The
proof directly comes from equation (A.27) by separately writing optimizing conditions
for two expressions www>vvv� f (vvv) and (�www>A)aaa�g(aaa) in equation (A.27).

Crucially in the partially separable case, the optimality conditions (A.2a) and (A.2b)
become separable. Comparing the expressions (B.17) and (A), we see that g(xxx) =Âi gi(xi)
and hence

g⇤(xxx) = Â
i

g⇤i (xi)

Hence by applying (A.2a) and (A.2b) we obtain the separable optimality conditions (A.4a)
and (A.4b).

A.9 Duality Gap and Objective Function Properties

A.9.1 Wolfe Gap as a Special Case of Duality Gap
Proof. To see this as a special case of general duality gap of the problem formulation, we
consider the constraint as indicator function of set C such that g(xxx) = iiiC(xxx). Now from
the definition of the Wolfe gap function

GW (xxx) := max
yyy2C

(Axxx�Ayyy)>∂ f (Axxx)

Here ∂ f (Axxx) is an arbitrary subgradient of f at the candidate position xxx, and iii⇤C(yyy) :=
supsss2Chsss,yyyi is the support function of C. Now writing the general duality gap G(xxx) as

G(xxx) :=OA(xxx)+OB(www(xxx))

:= f (Axxx)+ iiiC(xxx)+ f ⇤(www(xxx))+ iii⇤C(�(A>www(xxx)))

the last term disappears since we assumed xxx 2 C. Using the definition of the Fenchel
conjugate, one has the Fenchel-Young inequality, i.e.

f ⇤(www) := max
uuu2Rd

www>uuu� f (uuu) ) f ⇤(www)+ f (uuu)� www>uuu

The above holds with equality if www is chosen as a subgradient of f at uuu = Axxx. Therefore,
using our first-order optimality mapping www(xxx) := ∂ f (Axxx), we have

G(xxx) = (Axxx)>∂ f (Axxx)+ iii⇤C(�(A>www(xxx))) = GW (xxx)

This derivation is adapted from [122, Appendix D].
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A.9.2 Obtaining Information about the Optimal Points
Lemma A.9.2.1 (Conjugates of Indicator Functions and Norms). i) The conjugate of

the indicator function iiiC of a set C ⇢ Rn (not necessarily convex) is the support
function of the set C, that is iii⇤C(xxx) = supsss2Chsss,xxxi

ii) The conjugate of a norm is the indicator function of the unit ball of the dual norm.

Proof. [31, Example 3.24 and 3.26]

Lemma A.9.2.2. Assume that f is a closed and convex function then f ⇤ is µ-strongly
convex with respect to a norm k·k if and only if f is 1/µ-Lipschitz gradient with respect
to dual norm k·k⇤.

Proof. [106, Theorem 3]

Proof of Lemma A.3.2.1. From the definition of µ-strongly convex function, we know
that

f ⇤(www)� f ⇤(www?)+(www�www?)>— f ⇤(www?)+
µ
2
kwww�www?k2

2

� f ⇤(www?)+
µ
2
kwww�www?k2

2

The first inequality follows directly by using the first order optimality condition for www?

being optimal. For any optimal point www? and another feasible point www,

(www�www?)>— f ⇤(www?)� 0.

Hence, kwww?�wwwk2
2  2

µ ( f ⇤(www)� f ⇤(www?))

Proof of Corollary A.3.2.2. This statement directly comes from (A.3.2.1) and the defini-
tion of the duality gap. By definition we know that the true optimum values OA(xxx⇤) and
�OB(www⇤) respectively for primal (A) and dual formulation (B) will always lie within the
duality gap which implies

G(xxx)�OB(www)�OB(www?)

By equation (B), we know that OB(www) = f ⇤(www)+g⇤(�A>www?)
Now since f ⇤ is µ-strongly convex function and g⇤ is convex hence,

f ⇤(www)� f ⇤(www?)+— f ⇤(www?)>(www�www?)+
µ
2
kwww�www?k2

2 (A.29)

g⇤(�A>www)� g⇤(�A>www?)+—g⇤(�A>www?)>(�A>www+A>www?) (A.30)

Hence by adding equation (A.29) and (A.30), we get

OB(www)�OB(www?)+(— f ⇤(www?)�A—g⇤(�A>www?))>(www�www?)+
µ
2
kwww�www?k2

2
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)OB(www)�OB(www?)+—OB(www?)>(www�www?)+
µ
2
kwww�www?k2

2

At optimal point www?, —OB(www?)>(www�www?)� 0.
Hence,

G(xxx)�OB(www)�OB(www?)� µ
2
kwww�www?k2

2

Proof of Lemma A.3.2.3. From the definition of µ-strong convexity of f and using opti-
mality condition,

µkAxxx�Axxx?k2  (Axxx�Axxx?)>(— f (Axxx)�— f (Axxx?)) (A.31)
 (Axxx�Axxx?)>— f (Axxx) (A.32)
 GW (xxx) (A.33)

Equation (A.31) comes from the definition of µ-strong convexity.
Equation (A.32) is first order optimality condition for xxx? being optimal which implies

(Axxx�Axxx?)>— f (Axxx?)� 0

The inequality (A.33) follows by the definition of the gap function given in (A.6).

Proof of Corollary A.3.2.4. This comes by definition of L-smooth functions and Lemma
A.3.2.3. From the definition,

k— f (Axxx)�— f (Axxx?)k  LkAxxx�Axxx?k

 L
pµ

p
GW (xxx)

Second inequality directly comes from Lemma A.3.2.3.

A.10 Screening on Constrained Problems
Lemma A.10.0.1. Let C be a convex set, and iiiC be its indicator function, then

1. For xxx /2 C, ∂ iiiC(xxx) = /0
2. For xxx 2 C, we have that www 2 ∂ iiiC(xxx) if www>(zzz� xxx) 0 8zzz 2 C

Proof. Let C ✓ Rn be a closed convex set. Then subgradient of indicator function iiiC(xxx)
at xxx will be vectors uuu which satisfy

iiiC(zzz)� iiiC(xxx)+uuu>(zzz� xxx) 8zzz 2 dom(iiiC)
) iiiC(zzz)� iiiC(xxx)+uuu>(zzz� xxx) 8zzz 2 Rn (A.34)
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If int(C) represents the interior of the set C such that it contains n-dimensional ball of
radius r > 0, and Bd(C) represents boundary of the set C. Now we have to assume various
cases for proving Lemma A.10.0.1.

Case 1 We evaluate Equation (A.34) when xxx 2 int(C). Equation (A.34) becomes

iiiC(zzz)� uuu>(zzz� xxx) 8zzz 2 Rn

Now since the above equation is satisfied for all zzz 2 Rn , we assume zzz 2 int(C) such
that (zzz� xxx) can be anywhere in the ball. Hence uuu needs to be 0 in this case.

Case 2 In this case we assume xxx 2 Bd(C). That gives

iiiC(zzz)� uuu>(zzz� xxx) 8zzz 2 Rn

If we take zzz 2 C then uuu satisfies uuu>(zzz� xxx) 0 8zzz 2 C
If zzz 62 C then uuu can take all the value. Hence taking intersection, uuu satisfies

uuu>(zzz� xxx) 0 8zzz 2 C

Case 3 When we assume xxx 62 C, we get

iiiC(zzz)�+•+uuu>(zzz� xxx) 8zzz 2 Rn

If we again take zzz 2 C then no finite uuu can satisfy the equation iiiC(zzz)�+•+uuu>(zzz�
xxx) 8zzz 2 C because iiiC(zzz) = 0 if zzz 2 C.
And if zzz 62 C ) iiiC(zzz) = +• then again nothing can be said about the vector uuu.
Hence by convention it is assumed that xxx 62 C ) uuu 2 /0

By the above arguments we conclude that,

1. For xxx /2 C, ∂ iiiC(xxx) = /0

2. For xxx 2 C, we have that www 2 ∂ iiiC(xxx) if www>(zzz� xxx) 0 8zzz 2 C

Hence the claim made in Lemma A.10.0.1 is proved.

Proof of Lemma A.4.0.1. From Lemma A.10.0.1, we know the expression for subgradi-
ent of the indication function iiiC

∂g(xxx?) =
n

sss | 8zzz 2 C sss>(zzz� xxx?) 0
o

=
n

sss | 8zzz 2 C sss>zzz sss>xxx?
o

(A.35)

Now, by the optimality condition (A.2a), �A>www? 2 ∂g(xxx?) and since this holds, hence
�A>www? should satisfy the required constrained which is needed to be in the set of
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subgradients of ∂g(xxx?) according to conditions in equation (A.40). Hence,

(�A>www?)>zzz (�A>www?)>xxx? 8zzz 2 C (A.36)

) (A>www?)>xxx?  (A>www?)>zzz 8zzzC (A.37)

) (A>www?)>xxx? min
z
(A>www?)>zzz s.t zzz 2 C (A.38)

) (Axxx?)>www? min
zzz2C

(Azzz)>www? s.t zzz 2 C (A.39)

Since xxx? is a feasible point hence (Axxx?)>www? = min
zzz2C

(Azzz)>www? s.t xxx?,zzz 2 C.

A.10.1 Screening on Simplex Constrained Problems (Section A.4.1)
General Simplex Constrained Screening
Proof of Theorem A.4.1.1. In the simplex case, we have g(xxx) = iii4(xxx) and by Lemma
A.10.0.1

∂g(xxx?) =
n

sss | 8zzz 24 sss>(zzz� xxx?) 0
o

=
n

sss | 8zzz 24 sss>zzz sss>xxx?
o

(A.40)

Now, by the optimality condition (A.2a), �A>www? 2 ∂g(xxx?) and since this holds, hence
�A>www? should satisfy the required constrained which is needed to be in the set of
subgradients of ∂g(xxx?) according to conditions in equation (A.40). Hence,

(�A>www?)>zzz (�A>www?)>xxx? 8zzz 24 (A.41)

) (A>www?)>xxx?  (A>www?)>zzz 8zzz 24 (A.42)

) (A>www?)>xxx? min
z
(A>www?)>zzz s.t zzz 24 (A.43)

) (A>www?)>xxx? min
i

aaa>i www? (A.44)

) (Axxx?)>www? min
i

aaa>i www? (A.45)

) (Axxx?)>www? = min
i

aaa>i www? (A.46)

Equation (A.44) is due to the fact that zzz lie in the simplex, hence minimum value of
(A>www?)>zzz is min

i
aaa>i www? and equation (A.46) also comes from the same fact that xxx? lie in

the simplex and hence (Axxx?)>www? can not be smaller than min
i

aaa>i www?. That implies these
two quantities need to be equal and all the i’s where this equality doesn’t hold refers to
x?i = 0 for all such i’s.

aaa>i www? > (A>www?)>xxx? ) xi = 0
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(aaai�Axxx?)>www? > 0 ) xi = 0

Proof of Theorem A.4.1.2. From the optimality condition (A.1a), we have www?=— f (Axxx?)
since f is differentiable. Hence,

(aaai�Axxx?)>www? = (aaai�Axxx?)>— f (Axxx?) (A.47)

= (aaai�Axxx?+Axxx�Axxx)>— f (Axxx?) (A.48)

= (aaai�Axxx)>— f (Axxx?)+(Axxx�Axxx?)>— f (Axxx?) (A.49)

� (aaai�Axxx)>— f (Axxx?) {From the optimality of f (Axxx)} (A.50)

= (aaai�Axxx)>— f (Axxx)� (aaai�Axxx)>(— f (Axxx)�— f (Axxx?)) (A.51)

� (aaai�Axxx)>— f (Axxx)�kaaai�Axxxkk— f (Axxx)�— f (Axxx?)k (A.52)

� (aaai�Axxx)>— f (Axxx)�L

s
GW (xxx)

µ
kaaai�Axxxk (A.53)

Eq. (A.50) comes from the fact that at the optimal point xxx?, the inequality (Axxx�
Axxx?)>— f (Axxx?)� 0 holds 8 xxx. Equation (A.53) comes from Corollary A.3.2.4 for smooth
function f over a constrained set C.
Hence from Theorem A.4.1.1, we obtain the screening rule

(aaai�Axxx)>— f (Axxx)> L

s
GW (xxx)

µ
kaaai�Axxxk ) x?i = 0

Screening for Squared Hinge Loss SVM.

Proof of Corollary A.4.1.3. Theorem A.4.1.2 is directly applicable to problems of the
form (A.13). The objective function f (yyy) = f (Axxx) = 1

2xxx>A>Axxx is strongly convex with
parameter µ = 1. Also the derivative — f is Lipschitz-continuous with parameter L = 1.
To obtain an upper bound on the distance between any approximate solution and the
optimal solution kAxxx� Axxx?k, we employ Lemma A.3.2.3. Since the constrained of
the optimization problem is unit simplex and hence the value of Wolfe gap function
GW (xxx) := maxyyy2C (Axxx�Ayyy)>— f (Axxx) as defined in Section A.3 will be attained on one
of the vertices. So, GW (xxx) = maxi21...m (Axxx�aaai)>Axxx. Finally, Theorem A.4.1.2 gives us
the screening rule for squared hinge loss SVM:

(aaai�Axxx)>Axxx >
r

max
i21...m

(Axxx�aaai)>Axxxkaaai�Axxxk ) x?i = 0 (A.54)
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Screening on Minimum Enclosing Ball.

Proof of Corollary A.4.1.4. The minimum enclosing ball problem can be formulated as
an optimization problem of the form given in Equation (A.15):

min
ccc,r

r2 s.t.kccc�aaaik2
2  r2 8i 2 [n]

As we have seen, the dual formulation can be written in the form of Equation (A.16) as
given in [150, Chapter 8.7]:

min
xxx

xxx>A>Axxx�
p

Â
j=1

aaa>j aaa jx j s.t. xxx 24

Now the function xxx>A>Axxx�Âp
j=1 aaa>j aaa jx j is strongly convex in Axxx with parameter µ = 2.

Since the constrained of the optimization problem is unit simplex and hence the value
of the Wolfe gap function GW (xxx) := max

yyy2C
(Axxx� Ayyy)>— f (Axxx) as defined in Section

A.3 will be attained at one of the vertices of unit simplex. Hence Corollary A.3.2.4
gives GW (xxx) =

q
1
2 maxi(xxx� eeei)>(2A>Axxx+ ccc0). Now applying the findings of Theorem

A.4.1.2, we get a sufficient condition for aaai to be non-influential, i.e. aaai lies in the interior
of the MEB. But before that we will simplify the left hand side of the theorem A.4.1.2 a
bit. (aaai�Axxx)>— f (Axxx) can we written as (eeei� xxx)>A>— f (Axxx). Hence we get our result
claimed in Corollary A.4.1.4.

(eeei�xxx)>(2A>Axxx+ccc0)> 2
r

1
2max

j
(xxx� eeei)>(2A>Axxx+ ccc0)kaaai�Axxxk ) x?i = 0 (A.55)

That means aaai is non influential.

A.10.2 Screening on L1-ball Constrained Problems
Proof of Theorem A.4.2.1. In the constrained Lasso case, we have g(xxx) = iiiBL1

(xxx) and
by Lemma A.10.0.1

∂g(xxx?) =
n

sss | 8zzz 2 BL1 sss>(zzz� xxx?) 0
o

=
n

sss | 8zzz 2 BL1 sss>zzz sss>xxx?
o

(A.56)

Now, by the optimality condition (A.2a), �A>www? 2 ∂g(xxx?) and since this holds, hence
�A>www? should satisfy the required constrained which is needed to be in the set of
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subgradients of ∂g(xxx?) according to conditions in equation (A.71). Hence,

(�A>www?)>zzz (�A>www?)>xxx? 8zzz 2 BL1 (A.57)

) (A>www?)>xxx?  (A>www?)>zzz 8zzz 2 BL1 (A.58)

) (A>www?)>xxx? min
z
(A>www?)>zzz s.t zzz 2 BL1 (A.59)

) (A>www?)>xxx? �max
i

���aaa>i www?
��� (A.60)

) (Axxx?)>www? �max
i

���aaa>i www?
��� (A.61)

) (Axxx?)>www? =�max
i

���aaa>i www?
��� (A.62)

Equation (A.60) is due to the fact that zzz lie in the L1-ball and hence minimum value
of (A>www?)>zzz is �max

i

��aaa>i www?
�� and Equation (A.62) also comes from the same fact that

xxx? lie in the L1-ball and hence (Axxx?)>www? can not be smaller than �max
i

��aaa>i www?
��. That

implies these two quantities need to be equal and all the i’s where this equality doesn’t
hold refers to x?i = 0 for all such i’s. Hence whenever these two quantities are not equal
this holds:

�
���aaa>i www?

���> (Axxx?)>www? ) x?i = 0

)
���aaa>i www?

���+(Axxx?)>www? < 0 ) x?i = 0

Proof of Theorem A.4.2.2. Using optimality condition (A.1a), we know that www? 2 ∂ f (Axxx)
���aaa>i www?

���+(Axxx?)>www? =
���aaa>i — f (Axxx?)

���+(Axxx?)>— f (Axxx?) (A.63)

=
���aaa>i (— f (Axxx)�— f (Axxx)+— f (Axxx?))

���+(Axxx?)>— f (Axxx?) (A.64)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���

+(Axxx?�Axxx+Axxx)>— f (Axxx?) (A.65)

=
���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���

+(Axxx)>— f (Axxx?)� (Axxx�Axxx?)>— f (Axxx?) (A.66)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���+(Axxx)>— f (Axxx?)

(A.67)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���
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+(Axxx)>(— f (Axxx?)�— f (Axxx)+— f (Axxx)) (A.68)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���+(Axxx)>— f (Axxx)

+(Axxx)>(— f (Axxx?)�— f (Axxx)) (A.69)


���aaa>i — f (Axxx)

���+(Axxx)>— f (Axxx)+L(kaaaik+kAxxxk)

s
GW (xxx)

µ
(A.70)

Eq. (A.66) comes from the fact that at the optimal point xxx?, the inequality (Axxx�
Axxx?)>— f (Axxx?)� 0 holds 8xxx. Hence using Theorem A.4.2.1, Lemma A.3.2.3 and Corol-
lary A.3.2.4, we get the screening rule for L1 constrained as whenever,
��aaa>i — f (Axxx)

��+(Axxx)>— f (Axxx)+L(kaaaik+kAxxxk)
q

GW (xxx)
µ < 0 ) xxx?i = 0

A.10.3 Screening on Elastic Net Constrained Problems

Proof of Theorem A.4.3.1. Formulation :

min
xxx

f (Axxx)

s.t akxxxk1 +
(1�a)

2
kxxxk2

2  1

) a
n

Â
i=1

|xxxi|+
(1�a)

2

n

Â
i=1

xxx2
i  1

In the elastic net constrained case, we have g(xxx) = iiiBLE
(xxx) where iiiBLE

is elastic net norm
ball. That implies

xxx 2 iiiBLE
: akxxxk1 +(1�a)kxxxk2

2  1

From the subgradient of indicator function and optimality condition for A and B framework

∂g(xxx?) =
n

sss | 8zzz 2 BL1 sss>(zzz� xxx?) 0
o

=
n

sss | 8zzz 2 BL1 sss>zzz sss>xxx?
o

(A.71)

Now, by the optimality condition (A.2a), �A>www? 2 ∂g(xxx?) and since this holds, hence
�A>www? should satisfy the required constrained which is needed to be in the set of
subgradients of ∂g(xxx?) according to conditions in equation (A.71). Hence,

(�A>www?)>zzz (�A>www?)>xxx? 8zzz 2 BLE (A.72)

) (A>www?)>xxx?  (A>www?)>zzz 8zzz 2 BLE (A.73)
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) (A>www?)>xxx? min
z
(A>www?)>zzz s.t zzz 2 BLE (A.74)

Since xxx? is a feasible point hence (A>www?)>xxx? = min
z
(A>www?)>zzz s.t xxx?,zzz 2 BLE . At

the point where above equaliy hold xxx? would be same as optimal zzz. Hence the problem
reduces to,

min (A>www?)>zzz

s.t akzzzk1 +
(1�a)

2
kzzzk2

2  1

) a
n

Â
i=1

|zzzi|+
(1�a)

2

n

Â
i=1

zzz2
i  1

Without the loss of generality let us assume that for i 2 {1 . . .m}, zi � 0 and i 2 {m+
1 . . .n}, zi  0. Hence the optimization problem can be written as :

min (A>www?)>zzz (A.75)

s.t a
� m

Â
i=1

zzzi�
n

Â
i=m+1

zzzi
�
+

(1�a)

2

n

Â
i=1

zzz2
i  1

� zi  0 f or i 2 {1 . . .m}
zi  0 f or i 2 {m+1 . . .n}

Writing lagrangian for optimization problem (A.75)

L(zzz,l ,u) = (A>www?)>zzz�
m

Â
i=1

lizi +
n

Â
i=m+1

lizi +u
⇣

a
� m

Â
i=1

zzzi�
n

Â
i=m+1

zzzi
�
+

(1�a)

2

n

Â
i=1

zzz2
i �1

⌘

Also optimization conditions are li � 0, lizi = 0 and a
�

Âm
i=1 zzzi�Ân

i=m+1 zzzi
�
+ (1�

a)Ân
i=1 zzz2

i = 1. Also we conclude from above that if li > 0) zi = 0. From first order
optimality condition,
For i 2 {1 . . .m}

aaa>i www?�li =�u
�
a +(1�a)|zi|

�
(A.76)

For i 2 {m+1 . . .n}

aaa>i www?+li =�u
�
a +(1�a)|zi|

�
(A.77)

Now in equations (A.76) and (A.77) we multiply by zi and add them. We get:

(A>www?)>zzz+u[1+
(1�a)

2
kzk2

2] = 0 (A.78)
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From equations (A.76), (A.77), (A.78) and optimality conditions discussed above we get:

|aaa>i www?|+(A>www?)>z
ha +(1�a)|zi|

1+ (1�a)
2 kzk2

2

i
< 0) zi = 0

As discussed above xxx? share same solution as optimal z. Hence

|aaa>i www?|+(A>www?)>xxx?
h a

1+ (1�a)
2 kxxx?k2

2

i
< 0) x?i = 0

Proof of Theorem A.4.3.2. Using optimality condition (A.1a), we know that www? 2 ∂ f (Axxx)

|aaa>i www?|+(A>www?)>xxx?
h a

1+ (1�a)
2 kxxx?k2

2

i
 |aaa>i www?|+(A>www?)>xxx?

⇥ 2a
3�a

⇤
(A.79)

=
���aaa>i — f (Axxx?)

���+(Axxx?)>— f (Axxx?)
⇥ 2a

3�a
⇤

(A.80)

=
���aaa>i (— f (Axxx)�— f (Axxx)+— f (Axxx?))

���

+(Axxx?)>— f (Axxx?)
⇥ 2a

3�a
⇤

(A.81)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���

+(Axxx?�Axxx+Axxx)>— f (Axxx?)
⇥ 2a

3�a
⇤

(A.82)

=
���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���

+(Axxx)>— f (Axxx?)
⇥ 2a

3�a
⇤
� (Axxx�Axxx?)>— f (Axxx?)

⇥ 2a
3�a

⇤

(A.83)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���

+(Axxx)>— f (Axxx?)
⇥ 2a

3�a
⇤

(A.84)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���

+(Axxx)>(— f (Axxx?)�— f (Axxx)+— f (Axxx))
⇥ 2a

3�a
⇤

(A.85)


���aaa>i — f (Axxx)

���+
���aaa>i (— f (Axxx?)�— f (Axxx))

���
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+(Axxx)>— f (Axxx)
⇥ 2a

3�a
⇤
+(Axxx)>(— f (Axxx?)�— f (Axxx))

⇥ 2a
3�a

⇤

(A.86)


���aaa>i — f (Axxx)

���+(Axxx)>— f (Axxx)
⇥ 2a

3�a
⇤

+L(kaaaik+kAxxxk
⇥ 2a

3�a
⇤
)

s
GW (xxx)

µ
(A.87)

Eq. (A.83) comes from the fact that at the optimal point xxx?, the inequality (Axxx�
Axxx?)>— f (Axxx?)� 0 holds 8xxx. Hence using Theorem A.4.2.1, Lemma A.3.2.3 and Corol-
lary A.3.2.4, we get the screening rule for L1 constrained as whenever,

���aaa>i — f (Axxx)
���+(Axxx)>— f (Axxx)

⇥ 2a
3�a

⇤
+L(kaaaik2+kAxxxk2

⇥ 2a
3�a

⇤
)

s
GW (xxx)

µ
< 0) xxx?i = 0

A.10.4 Screening for Box Constrained Problems
Screening for General Box Constrained Problems (Section A.4.4)

Proof of Theorem A.4.4.1. The box-constrained case can be seen in the form of the
partially separable optimization problem pair (B.17) and (SB). According to optimality
condition (A.4a) for this case, we have

�aaa>i www? 2 ∂gi(x?i ) 8i (A.88)

Now from the definition of subgradient for an indicator function as given in Lemma
A.10.0.1. Also since xi is a number now, we will get rid of the transpose here.

∂g(x?i ) ={s | 0 zC, s(z� x?i ) 0 }
={s | 0 zC, sz sx?i } (A.89)

Now, by the optimality condition (A.4a), �aaa>i www? 2 ∂g(x?i ) and since this holds,
hence �aaa>i www? should satisfy the required constrained which is needed to be in the set of
subgradients of ∂g(x?i ) according to conditions in Equation (A.89). Hence,

(�aaa>i www?)z (�aaa>i www?)x?i 8z s.t 0 zC,

) min
z
(aaa>i www?)z� (aaa>i www?)x?i s.t 0 zC (A.90)

Now (A.90) can be manipulated in two ways
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Case 1

aaa>i www? > 0) min
z
(aaa>i www?)>z� (aaa>i www?)x?i s.t 0 zC

) 0� (aaa>i www?)>x?i

But since aaa>i www? > 0 and also x?i � 0 hence (aaa>i www?)x?i 6< 0. This implies (aaa>i www?)x?i =
0 and hence if aaa>i www? > 0 ) x?i = 0

Case 2

aaa>i www? < 0) min
z
(aaa>i www?)z� (aaa>i www?)x?i s.t 0 zC

) (aaa>i www?)C � (aaa>i www?)x?i

But since aaa>i www? < 0 and also x?i  C hence (aaa>i www?)x?i 6< (aaa>i www?)C. This implies
(aaa>i www?)x?i = (aaa>i www?)C and hence if aaa>i www? < 0 ) x?i =C

Final optimality arguments can be given as

aaa>i www? > 0 ) x?i = 0

aaa>i www? < 0 ) x?i =C (A.91)

Now

aaa>i www? = aaa>i (www
?+www�www) = aaa>i www+aaa>i (www

?�www)

aaa>i www�kaaaik2kwww�www?k2  aaa>i www?  aaa>i www+kaaaik2kwww�www?k2 (A.92)

Since f is L-Lipschitz gradient hence f ⇤ is 1/L-strongly convex, hence using Lemmas
A.3.2.1 and A.9.2.2, Equation (A.91) becomes

aaa>i www�kaaaik2
p

2LG(xxx) aaa>i www?  aaa>i www+kaaaik2
p

2LG(xxx) (A.93)

Hence using equation (A.93) and earlier arguments we get,

aaa>i www? > 0 ) x?i = 0

)aaa>i www�kaaaik2
p

2LG(xxx)> 0 ) x?i = 0

And if

aaa>i www? < 0 ) x?i =C

)aaa>i www+kaaaik2
p

2LG(xxx)> 0 ) x?i =C
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Screening on SVM with hinge loss and no bias
Proof of Corollary A.4.4.2. Here the primal problem is given by:

min
www,eee

1
2www>www+C1>eee

s.t. www>aaai � 1� ei 8i 2 {1 : p}
ei � 0 8i 2 {1 : p}

(A.94)

A dual formulation of the problem can be written as:

min
xxx
� xxx>1+ 1

2xxx>A>Axxx

s.t. 0 xxxC1
(A.95)

Theorem A.4.4.1 is applied on the dual formulation. The objective function 1
2xxx>A>Axxx�

xxx>1 is strongly convex with parameter 1 and its derivative Lipschitz continuous with
parameter 1. The duality gap between primal and dual feasible points G(www,eee,xxx) is now
used as suboptimality certificate which can play the role of the upper bound kwww�www?k
using Lemma A.3.2.2. For a given xxx a primal feasible point can be obtained by setting
www = Axxx and eee minimal such that the first constraint of the primal problem is satisfied.
Using the obtained point for the duality gap, it only depends on the point xxx. All together
this gives the screening rule:

aaa>i Axxx+1 > kaaaik
p

2G(xxx) ) x?i = 0 (A.96)
aaa>i Axxx+1 <�kaaaik

p
2G(xxx) ) x?i =C (A.97)

Note - Since the primal and dual of hinge loss SVM have very nice structure with
smooth quadratic function with an addition to piece-wise linear convex function, hence it
is not hard to show that both primal and dual function is 1 strongly convex as shown in
[275]. For more detailed proof, we recommend to go through [275]. Now for an instance,
if we write duality gap function as a function of www then

G(www)� G(www?)+—G(www?)>(www�www?)+kwww�www?k2
2

Since strong duality hold in SVM case, hence at optimal point www?, G(www?) = 0. Finally we
get,

G(www)� kwww�www?k2
2

Hence the screening rule comes out as given in [275]:

aaa>i Axxx+1 > kaaaik
p

G(xxx) ) x?i = 0 (A.98)
aaa>i Axxx+1 <�kaaaik

p
G(xxx) ) x?i =C (A.99)
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A.11 Screening on Penalized Problems

A.11.1 Screening L1-regularized Problems
Lemma A.11.1.1. Considering general L1-regularized optimization problems

min
xxx2Rp

f (Axxx)+lkxxxk1 (A.100)

At optimum points xxx? and dual optimal point www?, the following rule is satisfied for the
above problem formulation (A.100) :

���aaa>i www?
���< l ) x?i = 0

Proof . Since the optimization problem (A.100) comes under the partially separable
framework and we can use the first order optimality condition (A.4a) as well as (A.4b)
to derive screening rules for the problem. Also we know that, the conjugate of the norm
function is the indicator function of its dual norm ball. By the optimality condition (A.4b),
we know that

xi 2 ∂g⇤i (�aaa>i www)

here g⇤i is the indicator function written as iiiL•(�aaa>i www). Hence for the indicator function
g⇤ by Lemma A.10.0.1

∂g⇤i (�aaa>i www?) =

⇢
s| 8zzz s.t

����
aaa>i zzz
l

���� 1 ; s(�aaa>i zzz+aaa>i www?) 0
�

=
n

s| 8zzz s.t
���aaa>i zzz

��� l ; s(aaa>i zzz)� s(aaa>i www?)
o

Since the optimality condition (A.4b) holds hence �x?i should satisfy the required con-
strained which is needed to be in the set of subgradients of ∂g⇤i (�aaa>i www?) according to
conditions given above. That is

� x?i (aaa
>
i zzz)�x?i (aaa

>
i www?) 8zzz s.t

���aaa>i zzz
��� l (A.101)

x?i (aaa
>
i zzz)� x?i (aaa

>
i www?) 8zzz s.t

���aaa>i zzz
��� l (A.102)

) x?i (aaa
>
i www?)min

z
(x?i (aaa

>
i zzz)) s.t

���aaa>i zzz
��� l

(A.103)

Case 1: x?i > 0.

x?i (aaa
>
i www?)min

z
(x?i (aaa

>
i zzz)) s.t

���aaa>i zzz
��� l
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) x?i (aaa
>
i www?)�lx?i

) (aaa>i www?)�l
) (aaa>i www?) =�l (A.104)

Equation (A.104) comes from the fact that
��aaa>i www?

�� l
Case 2: x?i < 0.

x?i (aaa
>
i www?)min

z
(x?i (aaa

>
i zzz)) s.t

���aaa>i zzz
��� l

) x?i (aaa
>
i www?) lx?i

) (aaa>i www?)� l
) (aaa>i www?) = l (A.105)

Equation (A.104) comes from the fact that
��aaa>i www?

�� l
Case 3: x?i = 0.

Since if we assume f as a continuous smooth function then aaa>i www? is also continuous.
Now if we consider arguments given for x?i < 0 and x?i > 0 we conclude that��aaa>i www?

�� = l in all of the above two cases. Since x?i = 0 is in the domain of the
function (A), hence at x?i = 0, aaa>i www? will lie in the open range of �l to l . Which
implies whenever

��aaa>i www?
��< l , then x?i = 0

Another view on the proof can be derived from the optimality condition (A.4a).
The optimization problem (A.100) can be taken as partially separable problem and

from the optimality condition (A.4a) kk

�aaa>i www? 2 ∂gi(x?i ) (A.106)

∂gi(x?i ) 2
(

l x?i
|x?i |

if xi 6= 0

[�l ,l ] if xi = 0
(A.107)

From equations (A.114) and (A.115) we conclude that if
���aaa>i www?

���< l ) x?i = 0

Proof of Theorem A.5.1.1. From Equation (A.1a), we know that www? 2 ∂ f (Axxx?). Hence
from Lemma A.11.1.1,

���aaa>i www?
���=
���aaa>i (www?�www+www)

���


���aaa>i www

���+
���aaa>i (www?�www)

���
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���aaa>i www

���+kaaaik2kwww?�wwwk2


���aaa>i www

���+kaaaik2
p

2LG(xxx) (A.108)

Eq. (A.108) comes from Corollary A.3.2.2. Now using Lemma A.11.1.1 and equation
(A.108), we get

���aaa>i — f (Axxx)
���< l �kaaaik2

p
2LG(xxx) ) xxx?i = 0

Penalized Lasso. Screening in this case can be derived from the existing “gap safe”
approach [66, 161]. For completeness we here show that the same result follows from our
Theorem A.5.1.1:

Proof of Corollary A.5.1.2. By observing the cost function for penalized lasso it can be
concluded that

f (Axxx) = 1
2kAxxx�bbbk2, www = Axxx�bbb, and L = 1

Now results from Theorem A.5.1.1 can be directly applied here and hence the screening
rule becomes

���aaa>i (Axxx�bbb)
���< l �kaaaik

p
2G(xxx) ) xxx?i = 0.

This result is known in the literature [161], and we recover it using our proposed general
approach in this paper by using Theorem A.5.1.1.

Also, by applying same trick as mentioned after the end of proof of Corollary A.4.4.2,
we can show that we can get rid of the factor 2 here also. Here also it is not hard to see that
primal and dual ((A) and (B)) both are 1 strongly convex in the dual variable www. Hence by
the same argument as made in the proof of Corollary A.4.4.2, we get that

G(www)� kwww�www?k2
2

And the improved screening rule comes out to be
���aaa>i (Axxx�bbb)

���< l �kaaaik
p

G(xxx) ) xxx?i = 0.
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Logistic Regression with L1-regularization

Proof. By observation we know that in equation (A.23)

f (Axxx)=
n

Â
i=1

log(exp([Axxx]i)+1) and www is elementwise vector of wi s.t wi =
exp([Axxx]i)

exp([Axxx]i)+1

According to [223, Lemma 5], we get that the function f (Axxx) is 1-smooth. Hence L = 1
Now from theorem A.5.1.1, we derive the screening rule for logistic regression with
L1-regularization which is

����aaa
>
i

✓
exp(Axxx)

exp(Axxx)+1

◆����< l �kaaaik2
p

2G(xxx) ) xxx?i = 0

where
⇣

exp(Axxx)
exp(Axxx)+1

⌘
is element wise vector whose ith element is

⇣
exp([Axxx]i)

exp([Axxx]i)+1

⌘
This result

is also known in the literature in [161] (or see also [257] for a similar approach) and we
recover it using our prosed general approach in this paper by using Theorem A.5.1.1.

Elastic-net regularized regression

Proof of Corollary A.5.2.1.

1
2
kAxxx�bbbk2

2 +l2kxxxk2
2 +l1kxxxk1

=
1
2
[xxx>A>Axxx�2bbb>Axxx+bbb>bbb]+l2xxx>xxx+l1kxxxk1

=
1
2
[xxx>(A>A+2l2I)xxx�2bbb>Axxx+bbb>bbb]+l1kxxxk1 (A.109)

Now consider A>A+2l2I = Q>Q and choose vector mmm such that A>bbb = Q>mmm. Hence
line (A.109) can be written as

1
2
⇥
xxx>(A>A+2l2I)xxx�2bbb>Axxx+bbb>bbb

⇤
+l1kxxxk1

= 1
2
⇥
xxx>Q>Qxxx�2mmm>Qxxx+mmm>mmm�mmm>mmm+bbb>bbb

⇤
+l1kxxxk1

= 1
2kQxxx�mmmk2

2 +
1
2
⇥
bbb>bbb�mmm>mmm

⇤
+l1kxxxk1

Now the optimization problem (A.24) can be written as

min
xxx

1
2kQxxx�mmmk2

2 +l1kxxxk1 (A.110)

Now results from Corollary A.5.1.2 can be directly applied to (A.110).
From observation, we know that f (Qxxx) = 1

2kQxxx�mmmk2, www = Qxxx�mmm, and L = 1
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Simplification,
���qqq>i (Qxxx�mmm)

���=
���qqq>i Qxxx�qqq>i mmm

���

=
���qqq>i Qxxx�aaa>i bbb

���

=
���(aaa>i A+2l2eee>i )xxx�aaa>i bbb

��� (A.111)

|qqqi|
p

2G(xxx) =
q

aaa>i aaai +2l2
p

2G(xxx)

=
q

2(aaa>i aaai +2l2)G(xxx) (A.112)

Now using results from Corollary A.5.1.2, equations (A.111) and (A.112), we get screen-
ing rules for elastic norm regularization regression problem as:

���(aaa>i A+2l2eee>i )xxx�aaa>i bbb
���< l1�

q
2(aaa>i aaai +2l2)(G(xxx)) ) x?i = 0.

Lemma A.11.1.2 (Conjugate of the Elastic Net Regularizer [Lemma 6 [223]). ] For
a 2 (0,1], the elastic net function g(xxx) = 1�a

2 kxxxk
2
2 +akxxxk1 is the convex conjugate of

g⇤(xxx) = Â
i

h 1
2(1�a)

�⇥
|xi|�a

⇤
+

�2
i
= Â

i
g⇤i (xi)

where gi(bi) =
⇥1�a

2 b 2
i +a|bi|

⇤
and [.]+ is the positive part operator, [s]+ = s f or s > 0

, and zero otherwise. Furthermore, this g⇤ is is smooth, i.e. has Lipschitz continuous
gradient with constant 1/(1�a).

Proof. The complete proof has been given in [223, Lemma 6] but we also provide proof
here below.
From the definition of convex conjugate function,

g⇤(xxx) = sup
bbb
[xxx>bbb �g(bbb )]

= sup
bbb

⇥
xxx>bbb �

�1�a
2
kbbbk2

2 +akbbbk1
�⇤

= sup
bi

⇥
Â

i
xibi�

�
Â

i

�1�a
2

b 2
i +a|bi|

��⇤
8 i 2 [n]

= Â
i

sup
bi

⇥
xibi�

�1�a
2

b 2
i +a|bi|

�⇤
8 i 2 [n]

89



Appendix A Screening Rules for Convex Problems

= Â
i

g⇤i (xi) , where gi(bi) =
1�a

2
b 2

i +a|bi|

Now,

g⇤i (xi) = sup
bi

⇥
xibi�

�1�a
2

b 2
i +a|bi|

�⇤

Consider three cases now :

Case 1: b > 0.

g⇤i (xi) = sup
bi

⇥
xibi�

�1�a
2

b 2
i +abi

�⇤

) bi =
(xi�a)

(1�a)
that also implies xi > a

Hence, g⇤i (xi) =
(xi�a)2

2(1�a)
whenevr xi > a

Case 2: b < 0.

g⇤i (xi) = sup
bi

⇥
xibi�

�1�a
2

b 2
i �abi

�⇤

) bi =
(xi +a)

(1�a)
that also implies xi <�a

Hence, g⇤i (xi) =
(xi +a)2

2(1�a)
whenevr xi <�a

Case 3: b = 0.

g⇤i (xi) = 0 that also implies |xi| a

Hence,

g⇤i (xi) =
1

2(1�a)

�⇥
|xi|�a

⇤
+

�2

From all of the above arguments, g⇤(xxx) = Âi

h
1

2(1�a)

�⇥
|xi|�a

⇤
+

�2
i
= Âi g⇤i (xi)
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Theorem’ A.5.2.2. If we consider the general elastic net formulation of the form

min
xxx

f (Axxx)+(1�a)1
2kxxxk

2
2 +akxxxk1 (A.113)

If f is L-smooth, then the following screening rule holds for all i 2 [n]:
���aaa>i — f (Axxx)

���< a�kaaaik2
p

2LG(xxx) ) xxx?i = 0

Proof. Since the optimization problem (A.113) comes under the partially separable
framework and we can use the first order optimality condition (A.4a) as well as (A.4b) to
derive screening rules for the problem.

By optimality condition (A.4b), we know that

xi 2 ∂g⇤i (�aaa>i www)

From lemma A.11.1.2, g⇤i (�aaa>i www?) = 1
2(1�a)

�⇥
|aaa>i www?|�a

⇤
+

�2 and also ∂g⇤i (�aaa>i www) = 0
whenever

��aaa>i www
�� a

Hence whenever
��aaa>i www

�� a ) xi = 0.

The same screening rule for elastic net regularized problem can be derived from the
optimality condition (A.4a). The optimization problem (A.113) can be taken as partially
separable problem and from the optimality condition (A.4a)

�aaa>i www? 2 ∂gi(x?i ) (A.114)

∂gi(x?i ) 2
(

a x?i
|x?i |

+(1�a)xi if xi 6= 0

[�a,a] if xi = 0
(A.115)

Hence, whenever
��aaa>i www

�� a ) xi = 0.

The above arguments also show the significance of symmetry in our formulation as
structure (A) and (B). This formulation provides our framework more flexibility to be
used in larger class of problem.
Now,

���aaa>i www?
���=
���aaa>i (www?�www+www)

���


���aaa>i www

���+
���aaa>i (www?�www)

���


���aaa>i www

���+kaaaik2kwww?�wwwk2


���aaa>i www

���+kaaaik2
p

2LG(xxx) (A.116)
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Equation (A.116) comes directly from Corollary A.3.2.2. Hence finally we get the
screening rules for general elastic net penalty problem which is very similar to screening
for L1� penalized problems:

���aaa>i — f (Axxx)
���< a�kaaaik2

p
2LG(xxx) ) xxx?i = 0

Now the above mentioned rule can be made a bit tighter under some condition which is
not very interesting to discuss here.

A.11.2 Screening for Structured Norms
We use the same notation as mentioned in Section A.5.3 i.e., we use the notation
{xxx1 · · ·xxxG} to express a vector xxx as a partition of non-overlapping groups g 2 G of vari-
ables, such that xxx> =

⇥
xxx>1 ,xxx

>
2 · · ·xxx>G

⇤
. Correspondingly, the matrix A can be denoted as

the concatenation of the respective column groups A = [A1 A2 · · ·AG], and Âg2G |g|= n.

Lemma A.11.2.1. Now if we consider an optimization problem of the form

argmin
xxx

f (Axxx)+
G

Â
g=1

prgkxxxgk2

At the optimal point xxx? and dual optimal points www?, we get rules according to the following
equation:

kA>g www?k2 <
prg ) xxx?g = 0

Proof. Dual of the problem is given by

OB(www) = f ⇤(www)+Â
g

prgiiiL•(
kA>g wwwk2
prg

) (A.117)

Hence for the indicator function g⇤g by Lemma A.10.0.1

∂g⇤g(�A>g www?) =

(
sss| 8zzz s.t k

A>g zzz
prg
k2  1 ; sss>(�A>g zzz+A>g www?) 0

)

=
n

sss| 8zzz s.t kA>g zzzk2 
prg; sss>(A>g zzz)� sss>(A>g www?)

o

Now, by the optimality condition (A.4b) xxxg 2 ∂g⇤g(�A>g www?), and since this holds, hence
xv?g should satisfy the required constrained which is needed to be in the set of subgradients
of ∂g⇤(�A>g www?) according to conditions given above. Hence,
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� xxx?g
>(A>g zzz)�xxx?g

>(A>g www?) 8zzz s.t kA>g zzzk2 
prg

) xxx?g
>(A>g zzz)� xxx?g

>(A>g www?) 8zzz s.t kA>g zzzk2 
prg

) xxx?g
>(A>g www?)min

z
xxx?g
>(A>g zzz) s.t kA>g zzzk2 

prg

) xxx?g
>(A>g www?)min

z
kxxxgk2kA>g zzzk2 s.t kA>g zzzk2 

prg

) xxx>g (A
>
g www?)�kxxx?gk2

prg

)kA>g www?k2 =
prg (A.118)

Equation (A.118) comes from the cauchy inequality and true 8xxx?g : xxx?g 6= 0. Whenever
kA>g www?k2 <

prg then xxx?g = 0
Another view on the screening of above optimization problem can be seen from the

optimality condition (A.4a). The optimization problem in Lemma A.11.2.1 can be taken
as partially separable problem and from the optimality condition (A.4a)

�A>g www? 2 ∂g(xxx?g) (A.119)

∂g(xxx?g) 2
( prg

xxxg
kxgk2

if xxxg 6= 0
B2 if xxxg = 0 and B2 is norm ball of radiusprg

(A.120)

From Equations (A.119) and (A.120), we conclude that if

kA>g www?k2 <
prg ) xxx?g = 0

Theorem’ A.5.3.1. For `2/`1-regularized optimization problem of the form

min
xxx

f (Axxx)+
G

Â
g=1

prgkxxxgk2

Assuming f is L-smooth, then the following (group-level) screening rule holds for all
groups g:

kA>g — f (Axxx)k2 +
p

2L
��Ag

��
Fro <

prg ) xxx?g = 000 2 R|g| .

Proof. From Equation (A.1a), we know that www 2 — f (Axxx). Now

kA>g www?k2 = kA>g (www+www?�www)k2  kA>g wwwk2 +kA>g (www?�www)k2

= kA>g wwwk2 +
q

tr((A>g (www?�www))((www?�www)>)Ag)>
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 kA>g wwwk2 +
q

tr((www?�www)>(www?�www))
q

tr(A>g Ag)

= kA>g wwwk2 +kwww?�wwwk2
��Ag

��
Fro (A.121)

Using Corollary A.3.2.2 with Equation (A.121), we get

kA>g www?k2  kA>g — f (Axxx)k2 +
p

2LG(xxx)
��Ag

��
Fro

Hence using previous Lemma A.11.2.1,

kA>g — f (Axxx)k2 +
p

2LG(xxx)
��Ag

��
Fro <

prg ) xxx?g = 0

Proof of Corollary A.5.3.2. This is an explicit case of the optimization problem men-
tioned in Lemma A.11.2.1, see also [162]. By observation we know that,

f (Axxx) = 1
2kAxxx�bk2, www = Axxx�b and L = 1

Now applying the findings of Theorem A.5.3.1, we get

kA>g (Axxx�bbb)k2 +
p

2G(xxx)
��Ag

��
Fro < lprg ) xxx?g = 0

In Lemma A.11.2.2 mentioned below, we show that the structured norm setting of
[161] can be derived from our more general (A) and (B) structure.

Lemma A.11.2.2. Sparse Multi-Task and Multi Class Model [161] - If we consider
general problem of the form

min
X2Rp⇥q

n

Â
i=1

fi(aaa>i X)+lW(X) (A.122)

where the regularization function W : Rp⇥q! R+ is such that W(X) = Âp
g=1 kxxxgk2 and

X = [xxx1,xxx2 · · ·xxxG]. We write W = [www1,www2 · · ·wwwG] for variable of the dual problem. Then
the screening rule becomes

kaaa(g)>Wk2 < l �kaaa(g)k2 kW �W ?k2 ) xxx?g = 0

Here aaa(g) is the vector of the gth element group of each vector aaai.

Proof. Equations pair (A) and (B) can be used interchangeably by replacing primal with
dual and f with g. Hence the partial separable primal-dual pair (B.17) and (SB) can
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also be used interchangeably. By comparing Equation (A.122) with (B.17) and (SB), we
observe that separable function Ân

i=1 fi(aaa>i X) takes the place of separable g⇤ in (SB) and
lW(X) takes the place of f ⇤. Hence we apply the optimality condition (A.1b) to get (with
exchanged primal dual variable)

AW ? 2 ∂lW(X?)

Hence if,

kaaa(g)>W ?k2 < l ) xxxg = 0 (A.123)

Now,

kaaa(g)>W ?k2 = kaaa(g)
>
(W ?�W +W )k2

 kaaa(g)>Wk2 +kaaa(g)
>
(W ?�W )k2

 kaaa(g)>Wk2 +kaaa(g)k2k(W ?�W )k2 (A.124)

Using equations (A.123) and (A.124), the screening rule comes out to be

kaaa(g)>Wk2 < l �kaaa(g)k2 kW �W ?k2 ) xxx?g = 0

Corollary A.11.2.3. If for all i 2 [n], fi is L-Lipschitz gradient then screening rule for
equation (A.122) is

kaaa(g)>Wk2 < l �kaaa(g)k2
p

2LG(X) ) xxx?g = 0

Proof. Using Lemma A.11.2.2 and Corollary A.3.2.2, we get the desired expression.

95



Appendix B

Approximate Steepest Coordinate
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Sebastian U. Stich1, Anant Raj2, Martin Jaggi1

1 – EPFL, Lausanne
2 – MPI for Intelligent Systems, Tübingen

Abstract
We propose a new selection rule for the coordinate selection in coordinate descent
methods for huge-scale optimization. The efficiency of this novel scheme is provably
better than the efficiency of uniformly random selection, and can reach the efficiency
of steepest coordinate descent (SCD), enabling an acceleration of a factor of up to
n, the number of coordinates. In many practical applications, our scheme can be
implemented at no extra cost and computational efficiency very close to the faster
uniform selection. Numerical experiments with Lasso and Ridge regression show
promising improvements, in line with our theoretical guarantees.

B.1 Introduction
Coordinate descent (CD) methods have attracted a substantial interest the optimization
community in the last few years [170, 204]. Due to their computational efficiency,
scalability, as well as their ease of implementation, these methods are the state-of-the-art
for a wide selection of machine learning and signal processing applications [74, 93, 262].
This is also theoretically well justified: The complexity estimates for CD methods are in
general better than the estimates for methods that compute the full gradient in one batch
pass [170, 176].

In many CD methods, the active coordinate is picked at random, according to a
probability distribution. For smooth functions it is theoretically well understood how the
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sampling procedure is related to the efficiency of the scheme and which distributions give
the best complexity estimates [11, 170, 176, 193, 272]. For nonsmooth and composite
functions — that appear in many machine learning applications — the picture is less clear.
For instance in [71, 72, 215, 217] uniform sampling (UCD) is used, whereas other papers
propose adaptive sampling strategies that change over time [49, 184, 185, 189].

A very simple deterministic strategy is to move along the direction corresponding to the
component of the gradient with the maximal absolute value (steepest coordinate descent,
SCD) [31, 252]. For smooth functions this strategy yields always better progress than
UCD, and the speedup can reach a factor of the dimension [180]. However, SCD requires
the computation of the whole gradient vector in each iteration which is prohibitive (except
for special applications, cf. Dhillon et al. [57], Shrivastava and Li [221]).

In this paper we propose approximate steepest coordinate descent (ASCD), a novel
scheme which combines the best parts of the aforementioned strategies: (i) ASCD
maintains an approximation of the full gradient in each iteration and selects the active
coordinate among the components of this vector that have large absolute values — similar
to SCD; and (ii) in many situations the gradient approximation can be updated cheaply
at no extra cost — similar to UCD. We show that regardless of the errors in the gradient
approximation (even if they are infinite), ASCD performs always better than UCD.

Similar to the methods proposed in [252] we also present variants of ASCD for com-
posite problems. We confirm our theoretical findings by numerical experiments for Lasso
and Ridge regression on a synthetic dataset as well as on the RCV1 (binary) dataset.

Structure of the Paper and Contributions. In Sec. B.2 we review the existing theory
for SCD and (i) extend it to the setting of smooth functions. We present (ii) a novel lower
bound, showing that the complexity estimates for SCD and UCD can be equal in general.
We (iii) introduce ASCD and the safe selection rules for both smooth (Sec. B.3) and to
composite functions (Sec. B.5). We prove that (iv) ASCD performs always better than
UCD (Sec. B.3) and (v) it can reach the performance of SCD (Sec. B.6). In Sec. B.4 we
discuss important applications where the gradient estimate can efficiently be maintained.
Our theory is supported by numerical evidence in Sec. B.7, which reveals that (vi) ASCD
performs extremely well on real data.

Notation. Define [xxx]i := hxxx,eeeii with eeei the standard unit vectors in Rn. We abbreviate
—i f := [— f ]i. A convex function f : Rn!R with coordinate-wise Li-Lipschitz continuous
gradients1 for constants Li > 0, i 2 [n] := {1, . . . ,n}, satisfies by the standard reasoning

f (xxx+heeei) f (xxx)+h—i f (xxx)+ Li
2 h2 (B.1)

for all xxx2Rn and h 2R. A function is coordinate-wise L-smooth if Li  L for i = 1, . . . ,n.
For an optimization problem minxxx2Rn f (xxx) define X? := argminxxx2Rn f (xxx) and denote by

1|—i f (xxx+heeei)�—i f (xxx)| Li |h | , 8xxx 2 Rn,h 2 R.
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xxx? 2 Rn an arbitrary element xxx? 2 X?.

B.2 Steepest Coordinate Descent
In this section we present SCD and discuss its theoretical properties. The functions of
interest are composite convex functions F : Rn! R of the form

F(xxx) := f (xxx)+Y(xxx) (B.2)

where f is coordinate-wise L-smooth and Y convex and separable, that is that is Y(xxx) =
Ân

i=1 Yi([xxx]i). In the first part of this section we focus on smooth problems, i.e. we assume
that Y⌘ 0.

Coordinate descent methods with constant step size generate a sequence {xxxt}t�0 of
iterates that satisfy the relation

xxxt+1 = xxxt� 1
L—it f (xxx)eeeit . (B.3)

In UCD the active coordinate it is chosen uniformly at random from the set [n], it 2u.a.r. [n].
SCD chooses the coordinate according to the Gauss-Southwell (GS) rule:

it = argmax
i2[n]

—i | f (xxxt)| . (B.4)

B.2.1 Convergence analysis
With the quadratic upper bound (C.1) one can easily get a lower bound on the one step
progress

E [ f (xt)� f (xt+1) | xt ]� Eit

h
1

2L |—it f (xxxt)|2
i
. (B.5)

For UCD and SCD the expression on the right hand side evaluates to

tUCD(xxxt) := 1
2nLk— f (xxxt)k2

2

tSCD(xxxt) := 1
2Lk— f (xxxt)k2

•
(B.6)

With Cauchy-Schwarz we find

1
ntSCD(xxxt) tUCD(xxxt) tSCD(xxxt) . (B.7)

Hence, the lower bound on the one step progress of SCD is always at least as large as the
lower bound on the one step progress of UCD. Moreover, the one step progress could be
even lager by a factor of n. However, it is very difficult to formally prove that this linear
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speed-up holds for more than one iteration, as the expressions in (B.7) depend on the (a
priori unknown) sequence of iterates {xxxt}t�0.

Strongly Convex Objectives. Nutini et al. [180] present an elegant solution of this
problem for µ2-strongly convex functions2. They propose to measure the strong convexity
of the objective function in the 1-norm instead of the 2-norm. This gives rise to the lower
bound

tSCD(xxxt)� µ1
L ( f (xxxt)� f (xxx?)) , (B.8)

where µ1 denotes the strong convexity parameter. By this, they get a uniform upper bound
on the convergence that does not directly depend on local properties of the function, like
for instance tSCD(xxxt), but just on µ1. It always holds µ1  µ2, and for functions where
both quantities are equal, SCD enjoys a linear speedup over UCD.

Smooth Objectives. When the objective function f is just smooth (but not necessarily
strongly convex), then the analysis mentioned above is not applicable. We here extend the
analysis from [180] to smooth functions.

Theorem B.2.1.1. Let f : Rn! R be convex and coordinate-wise L-smooth. Then for
the sequence {xxxt}t�0 generated by SCD it holds:

f (xxxt)� f (xxx?) 2LR2
1

t
, (B.9)

for R1 := max
xxx?2X?

⇢
max
xxx2Rn

[kxxx� xxx?k1 | f (xxx) f (xxx0)]

�
.

Proof. In the proof we first derive a lower bound on the one step progress (Lemma B.9.1.1),
similar to the analysis in [170]. The lower bound for the one step progress of SCD can
in each iteration differ up to a factor of n from the analogous bound derived for UCD
(similar as in (B.7)). All details are given in Section B.9.1 in the appendix.

Note that the R1 is essentially the diameter of the level set at f (xxx0) measured in the
1-norm. In the complexity estimate of UCD, R2

1 in (B.9) is replaced by nR2
2, where R2

is the diameter of the level at f (xxx0) measured in the 2-norm (cf. Nesterov [170], Wright
[262]). As in (B.7) we observe with Cauchy-Schwarz

1
nR2

1  R2
2  R2

1 , (B.10)

i.e. SCD can accelerate up to a factor of n over to UCD.

2A function is µp-strongly convex in the p-norm, p� 1, if f (yyy)� f (xxx)+ h— f (xxx),yyy� xxxi+ µp
2 kyyy� xxxk2

p,
8xxx,yyy 2 Rn.
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B.2.2 Lower bounds
In the previous section we provided complexity estimates for the methods SCD and UCD
and showed that SCD can converge up to a factor of the dimension n faster than UCD.
In this section we show that this analysis is tight. In Theorem B.2.2.1 below we give
a function q : Rn ! R, for which the one step progress tSCD(xxxt) ⇡ tUCD(xxxt) up to a
constant factor, for all iterates {xxxt}t�0 generated by SCD.

By a simple technique we can also construct functions for which the speedup is exactly
equal to an arbitrary factor l 2 [1,n]. For instance we can consider functions with a
(separable) low dimensional structure. Fix integers s,n such that n

s ⇡ l , define the function
f : Rn! R as

f (xxx) := q(ps(xxx)) (B.11)

where ps denotes the projection to Rs (being the first s out of n coordinates) and q : Rs!R
is the function from Theorem B.2.2.1. Then

tSCD(xxxt)⇡ l · tUCD(xxxt) , (B.12)

for all iterates {xxxt}t�0 generated by SCD.

Theorem B.2.2.1. Consider the function q(xxx) = 1
2hQxxx,xxxi for Q := In� 99

100nJn, where
Jn = 1n1T

n , n > 2. Then there exists xxx0 2 Rn such that for the sequence {xxxt}t�0 generated
by SCD it holds

k—q(xxxt)k2
•  4

nk—q(xxxt)k2
2 . (B.13)

Proof. In the appendix we discuss a family of functions defined by matrices Q := (a�
1)1

nJn + In and define corresponding parameters 0 < ca < 1 such that for xxx0 defined as
[xxx0]i = ci�1

a for i = 1, . . . ,n, SCD cycles through the coordinates, that is, the sequence
{xxxt}t�0 generated by SCD satisfies

[xxxt ]1+(t�1 mod n) = cn
a · [xxxt�1]1+(t�1 mod n) . (B.14)

We verify that for this sequence property (B.13) holds.

B.2.3 Composite Functions
The generalization of the GS rule (B.4) to composite problems (B.2) with nontrival Y
is not straight forward. The ‘steepest’ direction is not always meaningful in this setting;
consider for instance a constrained problem where this rule could yield no progress at all
when stuck at the boundary.

Nutini et al. [180] discuss several generalizations of the Gauss-Southwell rule for
composite functions. The GS-s rule is defined to choose the coordinate with the most
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negative directional derivative [263]. This rule is identical to (B.4) but requires the
calculation of subgradients of Yi. However, the length of a step could be arbitrarily small.
In contrast, the GS-r rule was defined to pick the coordinate direction that yields the
longest step [252]. The rule that enjoys the best theoretical properties (cf. Nutini et al.
[180]) is the GS-q rule, which is defined as to maximize the progress assuming a quadratic
upper bound on f [252]. Consider the coordinate-wise models

Vi(xxx,y,s) := sy+ L
2 y2 +Yi([xxx]i + y) , (B.15)

for i 2 [n]. The GS-q rule is formally defined as

iGS�q = argmin
i2[n]

min
y2R

Vi(xxx,y,—i f (xxx)) . (B.16)

B.2.4 The Complexity of the GS rule

So far we only studied the iteration complexity of SCD, but we have disregarded the fact
that the computation of the GS rule (B.4) can be as expensive as the computation of the
whole gradient. The application of coordinate descent methods is only justified if the
complexity to compute one directional derivative is approximately n times cheaper than
the computation of the full gradient vector (cf. Nesterov [170]). By Theorem B.2.2.1 this
reasoning also applies to SCD. A class of function with this property is given by functions
F : Rn! R

F(xxx) := f (Axxx)+
n

Â
i=1

Yi([xxx]i) (B.17)

where A is a d⇥n matrix, and where f : Rd!R, and Yi : Rn!R are convex and simple,
that is the time complexity T for computing their gradients is linear: T (—yyy f (yyy),—xxxY(xxx) =
O(d +n). This class of functions includes least squares, logistic regression, Lasso, and
SVMs (when solved in dual form).

Assuming the matrix is dense, the complexity to compute the full gradient of F is
T (—xxxF(xxx)) = O(dn). If the value www = Axxx is already computed, one directional derivative
can be computed in time T (—iF(xxx)) = O(d). The recursive update of www after one step
needs the addition of one column of matrix A with some factors and can be done in time
O(d). However, we note that recursively updating the full gradient vector takes time
O(dn) and consequently the computation of the GS rule cannot be done efficiently.

Nutini et al. [180] consider sparse matrices, for which the computation of the Gauss-
Southwell rule becomes traceable. In this paper, we propose an alternative approach.
Instead of updating the exact gradient vector, we keep track of an approximation of the
gradient vector and recursively update this approximation in time O(n logn). With these
updates, the use of coordinate descent is still justified in case d = W(n).
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Algorithm 3 Approximate SCD (ASCD)
Input: f , xxx0, T , d -gradient oracle g, method M
Initialize [g̃gg0]i = 0, [rrr0]i = • for i 2 [n].
for t = 0 to T do

For i 2 [n] define compute u.-and l.-bounds
[uuut ]i := max{|[g̃ggt ]i� [rrrt ]i| , |[g̃ggt ]i +[rrrt ]i|}
[`̀̀t ]i := miny2R{|y| | [g̃ggt ]i� [rrrt ]i  y [g̃ggt ]i +[rrrt ]i}

av(I) := 1
|I| Âi2I [`̀̀t ]2i compute active set

It := argminI
���I ✓ [n] | [uuut ]2i < av(I),8i /2 I

 ��

Pick it 2u.a.r. argmaxi2It
{[`̀̀]i} active coordinate

(xxxt+1, [g̃ggt+1]it , [rrrt+1]it ) :=M(xxxt ,—it f (xxxt))

gt := [xxxt+1]it � [xxxt ]it update — f (xxxt+1) estimate
Update [g̃ggt+1] j := [g̃ggt ] j +git j(xxxt), j 6= it
Update [rrrt+1] j := [rrrt ] j + gtdit j, j 6= it

end for

B.3 Algorithm
Is it possible to get the significantly improved convergence speed from SCD, when

one is only willing to pay the computational cost of only the much simpler UCD? In this
section, we give a formal definition of our proposed approximate SCD method which we
denote ASCD.

The core idea of the algorithm is the following: While performing coordinate updates,
ideally we would like to efficiently track the evolution of all elements of the gradient, not
only the one coordinate which is updated in the current step. The formal definition of the
method is given in Algorithm 5 for smooth objective functions. In each iteration, only one
coordinate is modified according to some arbitrary update rule M. The coordinate update
rule M provides two things: First the new iterate xxxt+1, and secondly also an estimate g̃ of
the it-th entry of the gradient at the new iterate3. Formally,

(xxxt+1, g̃,r) :=M(xxxt ,—it f (xxxt)) (B.18)

such that the quality of the new gradient estimate g̃ satisfies

|—it f (xxxt+1)� g̃| r . (B.19)

The non-active coordinates are updated with the help of gradient oracles with accuracy
d � 0 (see next subsection for details). The scenario of exact updates of all gradient
entries is obtained for accuracy parameters d = r = 0 and in this case ASCD is identical

3For instance, for updates by exact coordinate optimization (line-search), we have g̃ = r = 0.
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to SCD.

B.3.1 Safe bounds for gradient evolution
ASCD maintains lower and upper bounds for the absolute values of each component of
the gradient ([`̀̀]i  |—i f (xxx)| [uuu]i). These bounds allow to identify the coordinates on
which the absolute values of the gradient are small (and hence cannot be the steepest one).
More precisely, the algorithm maintains a set It of active coordinates (similar in spirit as
in active set methods, see e.g. Kim and Park [113], Wen et al. [261]). A coordinate j is
excluded from It if the estimated progress in this direction (cf. (B.5)) is lower than the
average of the estimated progress along coordinate directions in It , [uuut ]2j <

1
|It | Âi2It [`̀̀t ]2i .

The active set It can be computed in O(n logn) time by sorting. All other operations take
linear O(n) time.

Gradient Oracle. The selection mechanism in ASCD crucially relies on the following
definition of a d -gradient oracle. While the update M delivers the estimated active entry
of the new gradient, the additional gradient oracle is used to update all other coordinates
j 6= it of the gradient; as in the last two lines of Algorithm 5.

Definition B.3.1.1 (d -gradient oracle). For a function f : Rn!R and indices i, j 2 [n], a
(i, j)-gradient oracle with error di j � 0 is a function gi j : Rn!R satisfying 8xxx 2Rn,8g 2
R:

��— j f (xxx+ geeei)�gi j(xxx)
�� |g|di j . (B.20)

We denote by a d -gradient oracle a family {gi j}i, j2[n] of di j-gradient oracles.

We discuss the availability of good gradient oracles for many problem classes in more
detail in Section B.4. For example for least squares problems and general linear models, a
d -gradient oracle is for instance given by a scalar product estimator as in (B.24) below.
Note that ASCD can also handle very bad estimates, as long as the property (B.20) is
satisfied (possibly even with accuracy di j = •).

Initialization. In ASCD the initial estimate g̃gg0 of the gradient is just arbitrarily set to
000, with uncertainty rrr0 = •. Hence in the worst case it takes Q(n logn) iterations until
each coordinate gets picked at least once (cf. Dawkins [53]) and until corresponding
gradient estimates are set to a realistic value. If better estimates of the initial gradient are
known, they can be used for the initialization as long as a strong error bound as in (B.19)
is known as well. For instance the initialization can be done with — f (xxx0) if one is willing
to compute this vector in one batch pass.

Convergence Rate Guarantee. We present our first main result showing that the perfor-
mance of ASCD is provably between UCD and SCD. First observe that if in Algorithm 5
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the gradient oracle is always exact, i.e. di j ⌘ 0, and if g̃gg0 is initialized with — f (xxx0), then
in each iteration |—it f (xxxt)|= k— f (xxxt)k• and ASCD identical to SCD.

Lemma B.3.1.1. Let imax := argmaxi2[n] |—i f (xxxt)|. Then imax 2 It , for It as in Algo-
rithm 5.

Proof. This is immediate from the definitions of It and the upper and lower bounds.
Suppose imax /2 It , then there exists j 6= imax such that [`t ] j > [ut ]imax, and consequently��— j f (xxxt)

��> |—imax f (xxxt)|.

Theorem B.3.1.2. Let f : Rn!R be convex and coordinate-wise L-smooth, let tUCD,tSCD,tASCD
denote the expected one step progress (B.6) of UCD, SCD and ASCD, respectively, and
suppose all methods use the same step-size rule M. Then

tUCD(xxx) tASCD(xxx) tSCD(xxx) 8xxx 2 Rn . (B.21)

Proof. By (B.5) we get tASCD(xxx) = 1
2L|I| Âi2I |—i f (xxx)|2, where I denotes the corre-

sponding index set of ASCD when at iterate xxx. Note that for j /2 I it must hold that��— j f (xxx)
��2  [uuu]2j <

1
|I| Âi2I [`̀̀]

2
i  1

|I| Âi2I |—i f (xxx)|2 by definition of I.

Observe that the above theorem holds for all gradient oracles and coordinate update
variants, as long as they are used with corresponding quality parameters r (as in (B.19))
and di j (as in (B.20)) as part of the algorithm.

Heuristic variants. Below also propose three heuristic variants of ASCD. For all these
variants the active set It can be computed O(n), but the statement of Theorem B.3.1.2
does not apply. These variants only differ from ASCD in the choice of the active set in
Algorithm 5:

• u-ASCD: It := argmaxi2[n][uuut ]i
• `-ASCD: It := argmaxi2[n][`̀̀t ]i

• a-ASCD: It :=
�

i 2 [n] | [uuut ]i �maxi2[n][`̀̀t ]i
 

B.4 Approximate Gradient Update
In this section we argue that for a large class of objective functions of interest in machine
learning, the change in the gradient along every coordinate direction can be estimated
efficiently.

Lemma B.4.0.1. Consider F : Rn!R as in (B.17) with twice-differentiable f : Rd!R.
Then for two iterates xxxt ,xxxt+1 2Rn of a coordinate descent algorithm, i.e. xxxt+1 = xxxt +gteeeit ,
there exists a x̃xx 2 Rn on the line segment between xxxt and xxxt+1, x̃xx 2 [xxxt ,xxxt+1] with

—iF(xxxt+1)�—iF(xxxt) = gthaaai,—2 f (Ax̃xx)aaait i 8i 6= it (B.22)

104



B.4 Approximate Gradient Update

where aaai denotes the i-th column of the matrix A.

Proof. For coordinates i 6= it the gradient (or subgradient set) of Yi([xxxt ]i) does not change.
Hence it suffices to calculate the change — f (xxxt+1)�— f (xxxt). This is detailed in the
appendix.

Least-Squares with Arbitrary Regularizers. The least squares problem is defined as
problem (B.17) with f (Axxx) = 1

2kAxxx�bbbk2
2 for a bbb 2 Rd . This function is twice differen-

tiable with —2 f (Axxx) = In. Hence (B.22) reduces to

—iF(xxxt+1)�—iF(xxxt) = gthaaai,aaait i 8i 6= it . (B.23)

This formulation gives rise to various gradient oracles (B.20) for the least square
problems. For for i 6= it we easily verify that the condition (B.20) is satisfied:
1. g1

i j := haaai,aaait i; di j = 0,
2. g2

i j :=max
�
�kaaaikkaaa jk,min

�
S(i, j),kaaaikkaaa jk

  
; di j = ekaaaikkaaa jk, where S : [n]⇥ [n]

denotes a function with the property

��S(i, j)�haaai,aaa ji
�� ekaaaikkaaa jk , 8i, j 2 [n] (B.24)

3. g3
i j := 0; di j = kaaaikkaaa jk,

4. g4
i j2u.a.r. [�kaaaikkaaa jk,kaaaikkaaa jk]; di j = kaaaikkaaa jk.

Oracle g1 can be used in the rare cases where the dot product matrix is accessible to
the optimization algorithm without any extra cost. In this case the updates will all be
exact. If this matrix is not available, then the computation of each scalar product takes
time O(d). Hence, they cannot be recomputed on the fly, as argued in Section B.2.4. In
contrast, the oracles g3 and g4 are extremely cheap to compute, but the error bounds are
worse. In the numerical experiments in Section B.7 we demonstrate that these oracles
perform surprisingly well.

The oracle g2 can for instance be realized by low-dimensional embeddings, such as
given by the Johnson-Lindenstrauss lemma (cf. Achlioptas [1], Matoušek [151]). By
embedding each vector in a lower-dimensional space of dimension O

�
e�2 logn

�
and

computing the scalar products of the embedding in time O(logn), relation (B.24) is
satisfied.

Updating the gradient of the active coordinate. So far we only discussed the update
of the passive coordinates. For the active coordinate the best strategy depends on the
update rule M from (B.18). If exact line search is used, then 0 2 —it f (xxxt+1). For other
update rules we can update the gradient —it f (xxxt+1) with the same gradient oracles as
for the other coordinates, however we need also to take into account the change of the
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gradient of Yi([xxxt ]i). If Yi is simple, like for instance in ridge or lasso, the subgradients
at the new point can be computed efficiently.

Bounded variation. In many applications the Hessian —2 f (Ax̃xx) is not so simple as in the
case of square loss. If we assume that the Hessian of f is bounded, i.e. —2 f (Axxx)�M · In
for a constant M � 0, 8xxx 2 Rn, then it is easy to see that the following holds :

�Mkaaaikkaaa jk  haaai,—2 f (Ax̃xx)aaait i Mkaaaikkaaa jk .

Using this relation, we can define gradient oracles for more general functions, by taking
the additional approximation factor M into account. The quality can be improved, if we
have access to local bounds on —2 f (Axxx).

Heuristic variants. By design, ASCD is robust to high errors in the gradient estimations
– the steepest descent direction is always contained in the active set. However, instead
of using only the very crude oracle g4 to approximate all scalar products, it might be
advantageous to compute some scalar products with higher precision. We propose to use
a caching technique to compute the scalar products with high precision for all vectors in
the active set (and storing a matrix of size O(It⇥n)). This presumably works well if the
active set does not change much over time.

B.5 Extension to Composite Functions
The key ingredients of ASCD are the coordinate-wise upper and lower bounds on the
gradient and the definition of the active set It which ensures that the steepest descent
direction is always kept and that only provably bad directions are removed from the active
set. These ideas can also be generalized to the setting of composite functions (B.2). We
already discussed some popular GS-⇤ update rules in the introduction in Section B.2.3.

Implementing ASCD for the GS-s rule is straight forward, and we comment on the
GS-r in the appendix in Sec. B.12.2. Here we exemplary detail the modification for the
GS-q rule (B.16), which turns out to be the most evolved (the same reasoning also applies
to the GSL-q rule from [180]). In Algo. 4 we show the construction — based just on
approximations of the gradient of the smooth part f — of the active set I. For this we
compute upper and lower bounds vvv,www on miny2RV (xxx,y,—i f (xxx)), such that

[vvv]i min
y2R

V (xxx,y,—i f (x) [www]i 8i 2 [n] . (B.25)

The selection of the active coordinate is then based on these bounds. Similar as in
Lemma B.3.1.1 and Theorem B.3.1.2 this set has the property iGS�q 2 I, and directions
are only discarded in such a way that the efficiency of ASCD-q cannot drop below the
efficiency of UCD. The proof can be found in the appendix in Section B.12.1.
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Algorithm 4 Adaptation of ASCD for GS-q rule
Input: Gradient estimate g̃gg, error bounds rrr.
For i 2 [n] define: compute u.-and l.-bounds
[uuu]i := [g̃gg]i +[rrr]i, [`̀̀]i := [g̃gg]i� [rrr]i
[uuu?]i := argminy2RV (xxx,y, [uuu]i) minimize the model
[`̀̀?]i := argminy2RV (xxx,y, [`̀̀]i)

compute u.-and l. bounds on miny2RV (xxx,y,—i f (xxx))
[wwwu]i :=V (xxx, [uuu?]i, [uuu]i)+max{0, [uuu?]i([`̀̀]i� [uuu]i)}
[www`]i :=V (xxx, [`̀̀?]i, [`̀̀]i)+max{0, [`̀̀?]i([uuu]i� [`̀̀]i)}
[vvv]i := min{V (xxx, [uuu?]i, [uuu]i),V (xxx, [`̀̀?]i, [`̀̀]i)}
[www]i := min{[wwwu]i, [www`]i,Yi([xxx]i)}
av(I) := 1

|I| Âi2I [www]i compute active set

It := argminI |{I ✓ [n] | [vvv]i > av(I),8i /2 I}|

B.6 Analysis of Competitive Ratio
In Section B.3 we derived in Thm. B.3.1.2 that the one step progress of ASCD is between
the bounds on the onestep progress of UCD and SCD. However, we know that the
efficiency of the latter two methods can differ much, up to a factor of n. In this section we
will argue that in certain cases where SCD performs much better than UCD, ASCD will
accelerate as well. To measure this effect, we could for instance consider the ratio:

rt :=

���i 2 It | |—i f (xxxt)|� 1
2k— f (xxxt)k•

 ��
|It |

, (B.26)

For general functions this expression is a bit cumbersome to study, therefore we restrict
our discussion to the class of objective functions (B.11) as introduced in Sec. B.2.2. Of
course not all real-world objective functions will fall into this class, however this problem
class is still very interesting in our study, as we will see in the following, because it will
highlight the ability (or disability) of the algorithms to eventually identify the right set of
‘active’ coordinates.

For the functions with the structure (B.11) (and q as in Thm. B.2.2.1), the active set falls
into the first s coordinates. Hence it is reasonable to approximate rt by the competitive
ratio

rt :=
|It \ [s]|
|It |

. (B.27)

It is also reasonable to assume that in the limit, (t ! •), a constant fraction of the [s]
will be contained in the active set It (it might not hold [s] ✓ It 8t, as for instance with
exact line search the directional derivative vanishes just after the update). In the following
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Figure B.1: Competitive ratio rt (blue) in comparison with r• (B.28) (red) and the lower
bound r• � 1� n�s

T•
(black). Simulation for parameters n = 100, s = 10, c = 1 and

T• 2 {50,100,400}.

theorem we calculate rt for (t! •), the proof is given in the appendix.

Theorem B.6.0.1. Let f : Rn ! R be of the form (B.11). For indices i /2 [s] define
Ki := {t | i /2 It , i 2 It�1}. For j 2Ki define T i

j := min
�

t� j | i 2 I j+t
 

, i.e. the number

of iterations outside the active set, T i
• := limt!•E j2Ki

h
T i

j | j > k
i
, and the average

T• := Ei/2[s]
⇥
T i

•
⇤
. If there exists a constant c > 0 such that limt!• |[s]\It | = cs, then

(with the notation r• := limt!•E [rt ]),

r• �
2cs

cs+n� s�T• +
p

q
, (B.28)

where q ⌘ q := n2 + (c� 1)2s2 + 2n((c� 1)s� T•) + 2(1 + c)sT• + T 2
• . Especially,

r• � 1� n�s
T•

.

In Figure B.1 we compare the lower bound (B.28) of the competitive ratio in the limit
(t! •) with actual measurements of rt for simulated example with parameters n = 100,
s = 10, c = 1 and various T• 2 {50,100,400}. We initialized the active set I0 = [s], but
we see that the equilibrium is reached quickly.

B.6.1 Estimates of the competitive ratio
Based on this Thm. B.6.0.1, we can now estimate the competitive ratio in various scenarios.
On the class (B.11) it holds c⇡ 1 as we argued before. Hence the competitive ratio (B.28)
just depends on T•. This quantity measures how many iterations a coordinate j /2 [s] is in
average outside of the active set It . From the lower bound we see that the competitive
ratio rt approaches a constant for (t!•) if T• = Q(n), for instance r• � 0.8 if T• � 5n.

As an approximation to T•, we estimate the quantities T j
t0 defined in Thm. B.6.0.1. T j

t0
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(a) Convergence for l2 (b) Convergence for l1

(c) True vs No Initialization for l2 (d) Error Variation (ASCD)

Figure B.2: Experimental results on synthetically generated datasets

denotes the number of iterations it takes until coordinate j enters the active set again,
assuming it left the active set at iteration t0�1. We estimate T j

t0 � T̂ , where T̂ denotes
maximum number of iterations such that

t0+T̂

Â
t=t0

gtdii j 
1
s

s

Â
k=1

���—k f
⇣

xxxt0+T̂

⌘��� 8 j /2 [s]. (B.29)

For smooth functions, the steps gt = Q(|—it f (xxxt)|) and if we additionally assume
that the errors of the gradient oracle are uniformly bounded di j  d , the sum in (B.29)
simplifies to d Ât0+T̂

t=t0 |—it f (xxxt)|.
For smooth, but not strongly convex function q, the norms of the gradient changes very

slowly, with a rate independent of s or n, and we get T̂ = Q
� 1

d
�
. Hence, the competitive

ratio is constant for d = Q
�1

n
�
.

For strongly convex function q, the norm of the gradient decreases linearly, say
k— f (xxxt)k2

2 µ ekt for k ⇡ 1
s . I.e. it decreases by half after each Q(s) iterations. Therefore
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(a) Convergence for l2 (b) Convergence for l1

(c) Line search for l1 (d) Error Variation (ASCD)

Figure B.3: Experimental results on the RCV1-binary dataset

to guarantee T̂ = Q(n) it needs to hold d = e�Q( n
s ). This result seems to indicate that the

use of ACDM is only justified if s is large, for instance s� 1
4n. Otherwise the convergence

on q is too fast, and the gradient approximations are too weak. However, notice that we
assumed d to be an uniform bound on all errors. If the errors have large discrepancy the
estimates become much better (this holds for instance on datasets where the norm data
vectors differs much, or when caching techniques as mentioned in Sec. B.4 are employed).

B.7 Empirical Observations

In this section we evaluate the empirical performance of ASCD on synthetic and real
datasets. We consider the following regularized general linear models:

min
xxx2Rn

1
2kAxxx�bbbk2

2 +
l
2 kxxxk

2
2 , (B.30)
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min
xxx2Rn

1
2kAxxx�bbbk2

2 +lkxxxk1 , (B.31)

that is, l2-regularized least squares (B.30) as well as l1-regularized linear regression
(Lasso) in (B.31), respectively.

Datasets. The datasets A 2Rd⇥n in problems (B.30) and (B.31) were chosen as follows
for our experiments. For the synthetic data, we follow the same generation procedure as
described in [180], which generates very sparse data matrices. For completeness, full de-
tails of the data generation process are also provided in the appendix in Sec. B.13. For the
synthetic data we choose n = 5000 for problem (B.31) and n = 1000 for problem (B.30).
Dimension d = 1000 is fixed for both cases.
For real datasets, we perform the experimental evaluation on RCV1 (binary,training),
which consists of 20,242 samples, each of dimension 47,236 [135]. We use the un-
normalized version with all non-zeros values set to 1 (bag-of-words features).

Gradient oracles and implementation details. On the RCV1 dataset, we approximate
the scalar products with the oracle g4 that was introduced in Sec. B.4. This oracle is
extremely cheap to compute, as the norms kaaaik of the columns of A only need to be
computed once.
On the synthetic data, we simulate the oracle g2 for various precisions values e . For this,
we sample a value uniformly at random from the allowed error interval (B.24). Figs. B.2d
and B.3d show the convergence for different accuracies.
For the l1-regularized problems, we used ASCD with the GS-s rule (the experiments
in [180] revealed almost identical performance of the different GS-⇤ rules).
We compare the performance of UCD, SCD and ASCD. We also implement the heuristic
version a-ASCD that was introduced in Sec. B.3. All algorithm variants use the same step
size rule (i.e. the method M in Algorithm 5). We use exact line search for the experiment
in Fig. B.3c, for all others we used a fixed step size rule (the convergence is slower for
all algorithms, but the different effects of the selection of the active coordinate is more
distinctly visible).
ASCD is either initialized with the true gradient (Figs. B.2a, B.2b, B.2d, B.3c, B.3d) or
arbitrarely (with error bounds d = •) in Figs. B.3a and B.3b (Fig. B.2c compares both
initializations).
Fig. B.2 shows results on the synthetic data, Fig. B.3 on the RCV1 dataset. All plots show
also the size of the active set It . The plots B.3c and B.3d are generated on a subspace of
RCV1, with 10000 and 5000 randomly chosen columns, respectively.

Here are the highlights of our experimental study:
1. No initialization needed. We observe (see e.g. Figs. B.2c,B.3a, B.3b) that initializa-

tion with the true gradient values is not needed at beginning of the optimization process
(the cost of the initialization being as expensive as one epoch of ASCD). Instead, the
algorithm performs strong in terms of learning the active set on its own, and the set
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converges very fast after just one epoch.
2. High errors toleration. The gradient oracle g4 gives very crude approximations,

however the convergence of ASCD is excellent on RCV1 (Fig. B.3). Here the size of
the true active set is very small (in the order of 0.1% on RCV1) and ASCD is able to
identify this set. Fig. B.3d shows that almost nothing can be gained from more precise
(and more expensive) oracles.

3. Heuristic a-ASCD performs well. The convergence behavior of ASCD follows
theory. For the heuristic version a-ASCD (which computes the active set slightly faster,
but Thm. B.3.1.2 does not hold) performs identical to ASCD in practice (cf. Figs. B.2,
B.3), and sometimes slightly better. This is explained by the active set used in ASCD
typically being larger than the active set of a-ASCD (Figs. B.2a,B.2b, B.3a, B.3b).

B.8 Concluding Remarks
We proposed ASCD, a novel selection mechanism for the active coordinate in CD methods.
Our scheme enjoys three favorable properties: (i) its performance can reach the perfor-
mance steepest CD — both in theory and practice, (ii) the performance is never worse
than uniform CD, (iii) in many important applications, the scheme it can be implemented
at no extra cost per iteration.

ASCD calculates the active set in a safe manner, and picks the active coordinate
uniformly at random from this smaller set. It seems possible that an adaptive sampling
strategy on the active set could boost the performance even further. Here we only
study CD methods where a single coordinate gets updated in each iteration. ASCD can
immediately also be generalized to block-coordinate descent methods. However, the exact
implementation in a distributed setting can be challenging.

Finally, it is an interesting direction to extend ASCD also to the stochastic gradient
descent setting (not only heuristically, but with the same strong guarantees as derived in
this paper).
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Proofs for Main Results

B.9 On Steepest Coordinate Descent

B.9.1 Convergence on Smooth Functions

Lemma B.9.1.1 (Lower bound on the one step progress on smooth functions). Let
f : Rn! R be convex and coordinate-wise L-smooth. For a sequence of iterates {xxxt}t�0
define the progress measure

D(xxxt) :=
1

E [ f (xxxt+1)� f (xxx?) | xxxt ]
� 1

f (xxxt)� f (xxx?)
. (B.32)

For sequences {xxxt}t�0 generated by SCD it holds:

DSCD(xxxt)�
1

2Lkxxxt� xxx?k2
1
, t � 0 , (B.33)

and for a sequences generated by UCD:

DUCD(xxxt)�
1

2nLkxxxt� xxx?k2
2
, t � 0 . (B.34)

It is important to note that the lower bounds presented in Equations (B.33) and (B.34)
are quite tight and equality is almost achievable under special conditions. When comparing
the per-step progress of these two methods, we find — similarly as in (B.7) — the relation

1
n

DSCD(xxxt) DUCD(xxxt) DSCD(xxxt) , (B.35)

that is, SCD can boost the performance over the random coordinate descent up to the factor
of n. This also holds for a sequence of consecutive updates, as show in Theorem B.2.1.1.

Proof of Lemma B.9.1.1. Define f ? := f (xxx?). From the smoothness assumption (C.1),
we get

f (xxxt+1)
(B.5)
 f (xxxt)�

1
2L
k— f (xxxt)k2

•

)
�

f (xxxt+1)� f ?
�

�

f (xxxt)� f ?
�
� 1

2L
k— f (xxxt)k2

• (B.36)
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Now from the property of a convex function and Hölder’s inequality:

f (xxxt)� f ?  h— f (xxxt),xxxt� xxx?i  k— f (xxxt)k•kxxxt� xxx?k1 (B.37)

Hence,
�

f (xxxt)� f ?
�2  k— f (xxxt)k2

•kxxxt� xxx?k2
1

) k— f (xxxt)k2
• �

�
f (xxxt)� f ?

�2

kxxxt� xxx?k2
1

(B.38)

From Equations (B.36) and (B.38),

1�
f (xxxt+1)� f ?

� � 1�
f (xxxt)� f ?

� � 1
2Lkxxxt� xxx?k2

1
(B.39)

Which concludes the proof.

We like to remark, that the one step progress for UCD can be written as [170, 262]:

1�
E[ f (xxxt+1)|xxxt ]� f ?

� � 1�
f (xxxt)� f ?

� � 1
2Lnkxxxt� xxx?k2

2
(B.40)

Proof of Theorem B.2.1.1. From Lemma B.9.1.1,

1�
f (xxxt+1)� f ?

� � 1�
f (xxxt)� f ?

� � 1
2Lkxxxt� xxx?k2

1

Now summing up the above equation for t = 0 till t�1, we get:

1�
f (xxxt)� f ?

� � 1�
f (xxx0)� f ?

� � 1
2L

t�1

Â
i=0

1
kxxxt� xxx?k2

1

) 1�
f (xxxt)� f ?

� � 1
2L

t�1

Â
i=0

1
kxxx0� xxx?k2

1

) 1�
f (xxxt)� f ?

� � t
2LR2

1

) f (xxxt)� f ?  2LR2
1

t

Which concludes the proof.
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Figure B.4: SCD on the function from Theorem B.9.2.1 in dimension n = 20 with xxx0 = 111n
(i.e. not the worst starting point constructed in the proof of Theorem B.9.2.1). On the
right the (normalized and sorted) components of — f (xxxt).

B.9.2 Lower bounds
In this section we provide the proof of Theorem B.2.2.1. Our result is slightly more general,
we will proof the following (and Theorem B.2.2.1 follows by the choice a = 0.01 < 1

3).

Theorem B.9.2.1. Consider the function q(xxx) = 1
2hQxxx,xxxi for Q := (a�1)1

nJn+ In, where
Jn = 111n111T

n and 0 < a < 1
2 , n > 2. Then there exists xxx0 2 Rn such that for the sequence

{xxxt}t�0 generated by SCD it holds

k—q(xxxt)k2
• 

3+3a
n
k—q(xxxt)k2

2 . (B.41)

In the proof below we will construct a special xxx0 2 Rn that has the claimed property.
However, we would like to remark that this is not very crucial. We observe that for
functions as in Theorem B.9.2.1 almost any initial iterate (xxx not aligned with the coordinate
axes) the sequence {xxxt}t�0 of iterates generated by SCD suffers from the same issue,
i.e. relation (B.41) holds for iteration counter t sufficiently large. We do not prove this
formally, but demonstrate this behavior in Figure B.4. We see that the steady state is
almost reached after 2n iterations.

Proof of Theorem B.9.2.1. Define the parameter ca by the equation
✓

1+
a�1

n

◆
cn�1

a =

✓
1�a

n

◆
Sn�1(ca) (B.42)

cn�1
a =

✓
1�a

n

◆
Sn(ca) (B.43)

where Sn(ca) = Ân�1
i=0 cn

a ; and define xxx0 as [xxx0]i = ci�1
a for i = 1, . . . ,n. In Lemma B.9.2.2

below we show that ca � 1� 3
na .
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We now show that SCD cycles through the coordinates, i.e. the sequence {xxxt}t�0
generated by SCD satisfies

[xxxt ]1+(t�1 mod n) = cn
a · [xxxt�1]1+(t�1 mod n) . (B.44)

Observe — f (xxx0) = Qxxx0. Hence the GS rule picks i1 = 1 in the first iteration. The iterate
is updated as follows:

[xxx1]1
(B.3)
= [xxx0]1�

[Qxxx0]1
Q11

(B.45)

= 1�
(a�1)1

nSn(ca)+1
(a�1)1

n +1
(B.46)

=
(a�1)1

n (1�Sn(ca))

(a�1)1
n +1

(B.47)

=
(a�1)1

n (c
n
a � caSn(ca))

(a�1)1
n +1

(B.48)

(B.42)
=

(a�1)1
ncn

a + cn
a

(a�1)1
n +1

= cn
a (B.49)

The relation (B.44) can now easily be checked by the same reasoning and induction.
It remains to verify that for this sequence property (B.41) holds. This is done in

Lemma B.9.2.3. Note that — f (xxx0) = Qxxx0 = ggg, where ggg is defined as in the lemma, and
that all gradients — f (xxxt) are up to scaling and reordering of the coordinates equivalent to
the vector ggg.

Lemma B.9.2.2. Let 0 < a < 1
2 and 0 < ca < 1 defined by equation (B.42), where

Sn(ca) = Ân�1
i=0 cn

a . Then ca � 1� 4
na for a 2 [0, 1

2 ].

Proof. Using the summation formula for geometric series, Sn(ca) =
1�cn

a
1�ca

we derive

a (B.42)
= 1� ncn�1

a
Sn(ca)

= 1� n(1� ca)cn�1
a

1� cn
a| {z }

:=Y(ca )

. (B.50)

With Taylor expansion we observe that

Y
✓

1� 3a
n

◆
� a , Y

✓
1� 2a

n

◆
 a (B.51)

where the first inequality only hold for n> 2 and a 2 [0, 1
2 ]. Hence any solution to (B.50)

must satisfy ca � 1� 3
na .
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Lemma B.9.2.3. Let ca as in (B.42). Let ggg 2 Rn be defined as

[ggg]i =
(a�1)1

nSn(ca)+ ci�1
a

1+ a�1
n

(B.52)

Then

max
i2[n]

kgggk2
•

1
nkgggk2

2
 3+3a . (B.53)

Proof. Observe

[ggg]i =
(a�1)1

n
�
Sn�1(ca)+ cn�1

a
�
+ cn�1

a +(ci�1
a � cn�1

a )

1+ a�1
n

(B.54)

(B.42)
=

ci�1
a � cn�1

a
1+ a�1

n
(B.55)

Thus [ggg]1 > [ggg]2 > · · ·> [ggg]n and the maximum is attained at

w(ggg) :=
[ggg]21

1
n Ân

i=1[ggg]2i
=

c2
a
�
c2

a �1
��

1� cn�1
a
�2 n

2cn+1
a +2cn+2

a �2c2n+1
a +(n�1)c2n+2

a � c2
a �nc2n

a
(B.56)

For ca � 1� 3
na and a  1

2 , this latter expression can be estimated as

w(ggg) 3+3a (B.57)

especially w(ggg) 4 for a  1
3 .

B.10 Approximate Gradient Update
In this section we will prove Lemma B.4.0.1. Consider first the following simpler case,
where we assume f is given as in least squares, i.e. f (xxx) := 1

2kAxxx�bbbk2.
In the tth iteration, we choose coordinate it to optimize upon and the update from xxxt+1

to xxxt can be written as xxxt+1 = xxxt + gteeeit . Now for any coordinate i other than it , it is fairly
easy to compute the change in the gradient of the other coordinates. We already observed
that [xxxt ] j does not change, hence the sub-gradient set of Y j([xxxt ] j) and Y j([xxxt+1] j) are
equal. For the change in — f , consider the analysis below:

—iF(xxxt+1)�—iF(xxxt) = aaa>i (Axxxt+1�b)�aaa>i (Axxxt�b) (B.58)

= aaa>i
�
A(xxxt+1� xxxt)

�
(B.59)

= aaa>i
�
A(xxxt + gteeeit � xxxt)

�
(B.60)
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= aaa>i
�
gAeeeit

�
= gtaaa>i aaait (B.61)

Equation (B.60) comes from the update of xxxt to xxxt+1.
By the same reasoning, we can now derive the general proof.

Proof of Lemma B.4.0.1. Consider a composite function F as given in Lemma B.4.0.1.
By the same reasoning as above, the two sub-gradient sets of Y j([xxxt ] j) and Y j([xxxt+1] j)
are identical, for every passive coordinate j 6= it . The gradient of F can be written as:

—iF(aaa t) = aaa>i — f (Aaaa t)

For any arbitrary passive coordinate j 6= it the change of the gradient can be computed as
follows:

— jF(xxxt+1)�— jF(xxxt) = aaa>j — f (Axxxt+1)�aaa>j — f (Axxxt)

= aaa>j (— f (Axxxt+1)�— f (Axxxt)) (B.62)

= aaa>j
⇣

— f
�
A(xxxt + gteeeit )

�
�— f

�
Axxxt
�⌘

⇤
=
⌦
A>—2 f (Ax̃xx)aaa j,xxxt+1� xxxt

↵

=
⌦
gt—2 f (Ax̃xx)aaa j,A(xxxt+1� xxxt)

↵

= gtaaa>j —2 f (Ax̃xx)aaait (B.63)

Here x̃xx is a point on the line segment between [xxxt ]it and [xxxt+1]it which can be found by the
Mean Value Theorem.

B.11 Algorithm and Stability

Proof of Theorem B.6.0.1. As we are interested to study the expected competitive ration
E [rt ] for t! •, we can assume mixing and consider only the steady state.

Define at 2 [0,1] s.t. at(n� s) = |{i 2 It | i > s}|. I.e. at(n� s) denotes the number
of indices in |It | which do not belong to the set [s].

Denote a• := limt!• at . By equilibrium considerations, the probability that an index
i /2 [s] gets picked (and removed from the active set), i.e. 1�r•, must be equal to the
probability that an index j /2 [s] enters the active set. Hence

(1�a•)(n� s)
T•

= 1�r• =
a•(n� s)

a•(n� s)+ cs
. (B.64)
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We deduce the quadratic relation a•T• = (1�a•)(a•(n� s)+ cs) with solution

a• =
n� (1+ c)s�T• +

p
n2 +(c�1)2s2 +2n((c�1)s�T•)+2(1+ c)sT• +T 2

•
2(n� s)

.

(B.65)

Denote q := n2 +(c�1)2s2 +2n((c�1)s�T•)+2(1+ c)sT +T 2
• . Hence,

r•
(B.64)
=

cs
a•(n� s)+ cs

(B.65)
=

2cs
cs+n� s�T• +

p
q
. (B.66)

We now verify the provided lower bound on r•:

r•
(B.64)
= 1� (1�a•)(n� s)

T•
� 1� n� s

T•
. (B.67)

This bound is sharp for large values of T•, (T• > 2n, say), but trivial for T•  n� s.

B.12 GS rule for Composite Functions

B.12.1 GS-q rule
In this section we show how ASCD can be implemented for the GS-q rule. Define the
coordinate-wise model

Vi(xxx,y,s) := sy+
L
2

y2 +Yi(xi + y) (B.68)

The GS-q rule is defined as (cf. Nutini et al. [180])

i = argmin
i2[n]

min
y2R

V (xxx,y,—i f (xxx)) (B.69)

First we show that the vectors vvv and www defined in Algorithm 4 gives valid upper and
lower bounds on the value of miny2RV (xxx,y,—i f (xxx)). We start with the lower bound vvv:

Suppose we have upper and lower bounds, ` —i f (xxx) u on one component of the
gradient. Define a 2 [0,1] such that —i f (xxx) = (1�a)`+au. Note that

(1�a)Vi(xxx,y,`)+aVi(xxx,y,u) =Vi(xxx,y,—i f (xxx)) (B.70)

Hence,

min
⇢

min
y

Vi(xxx,y,u),min
y

Vi(xxx,y,`)
�
min

y
Vi(xxx,y,—i f (xxx)) . (B.71)
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The derivation of the upper bounds www is a bit more cumbersome. Define `? := argminy2RVi(xxx,y,`),
u? := argminy2RVi(xxx,y,u) and observe:

Vi(xxx,u?,—i f (xxx)) =Vi(xxx,u?,u)� (u�—i f (xxx))u? Vi(xxx,u?,u)�uu?+max{uu?,`u?}=: wu
(B.72)

Vi(xxx,`?,—i f (xxx)) =Vi(xxx,`?,`)� (`�—i f (xxx))`? Vi(xxx,`?,`)� ``?+max{u`?,``?}=: w`

(B.73)
Vi(xxx,0,—i f (xxx)) = Yi([xxx]i) (B.74)

Hence minyVi(xxx,y,—i f (xxx))min{w`,wu,Yi([xxx]i)}.
Note

wu =Vi(xxx,u?,u)+max{0,(`�u)u?} (B.75)
w` =Vi(xxx,`?,`)+max{0,(u� `)`?} (B.76)

which coincides with the formulas in Algorithm 4.
It remains to show that the computation of the active set is safe, i.e. that the progress

achieved by ASCD as defined in Algorithm 4 is always better than the progress achieved
by UCD. Let I be defined as in Algorithm 4. Then

1
|I| Âi2I

min
y2R

Vi(xxx,y,—i f (xxx)) 1
n Â

i2[n]
min
y2R

Vi(xxx,y,—i f (xxx)) (B.77)

=
1
n

min
yyy2Rn Â

i2[n]
Vi(xxx,y,—i f (xxx)) . (B.78)

Using this observation, and the same lines of reasoning as given in [129, Section H.3],
it follows immediately that the one step progress of ASCD is at least as good as the for
UCD.

B.12.2 GS-r rule
With the notation [yyy?]i := argminy2RVi(xxx,y,—i f (xxx)), the GS-r rule is defined as (cf. Lee
and Seung [129])

i = argmax
i2[n]

|[yyy?]i| . (B.79)

In order to implement ASCD for GS-r, we need therefore to maintain lower and upper
bounds on the values |[yyy?]i|.

Suppose we have upper and lower bounds, `  —i f (xxx)  u on one component of
the gradient. Define `? := argminy2RVi(xxx,y,`), u? := argminy2RVi(xxx,y,u), then y? is
contained in the line segment between `? and u?. Hence as in Algorithm 5, the lower and
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upper bounds can be defined as

[uuut ]i := max
y2R

{`?  y u?} (B.80)

[`̀̀t ]i := min
y2R

{`?  y u?} (B.81)

However, note that in [180] it is established that GS-r rule can be worse than UCD
in general. Hence we cannot expect that ASCD for the GS-r rule is better than UCD in
general. However, the by the choice of the active set, the index chosen by the GS-r rule is
always contained in the active set, and ASCD approaches GS-r for small errors.

B.13 Experimental Details
We generate a matrix A 2 Rm⇥n from the standard normal N (0,1) distribution. m is kept
fixed at 1000 but n is chosen 1000 for the l2 regularized least squares regression and
5000 for l1 regularized counterpart. 1 is added to each entry (to induce a dependency
between columns), multiplied each column by a sample from N (0,1) multiplied by ten
(to induce different Lipschitz constants across the coordinates), and only kept each entry
of A non-zero with probability 10log(n)

n . This is exactly the same procedure which has
been discussed in [180].
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Abstract
Importance sampling has become an indispensable strategy to speed up optimiza-
tion algorithms for large-scale applications. Improved adaptive variants—using
importance values defined by the complete gradient information which changes
during optimization—enjoy favorable theoretical properties, but are typically com-
putationally infeasible. In this paper we propose an efficient approximation of
gradient-based sampling, which is based on safe bounds on the gradient. The
proposed sampling distribution is (i) provably the best sampling with respect to
the given bounds, (ii) always better than uniform sampling and fixed importance
sampling and (iii) can efficiently be computed—in many applications at negligible
extra cost. The proposed sampling scheme is generic and can easily be integrated
into existing algorithms. In particular, we show that coordinate-descent (CD) and
stochastic gradient descent (SGD) can enjoy significant a speed-up under the novel
scheme. The proven efficiency of the proposed sampling is verified by extensive
numerical testing.

C.1 Introduction
Modern machine learning applications operate on massive datasets. The algorithms
that are used for data analysis face the difficult challenge to cope with the enormous
amount of data or the vast dimensionality of the problems. A simple and well established
strategy to reduce the computational costs is to split the data and to operate only on
a small part of it, as for instance in coordinate descent (CD) methods and stochastic
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gradient (SGD) methods. These kind of methods are state of the art for a wide selection
of machine learning, deep leaning and signal processing applications [74, 93, 219, 262].
The application of these schemes is not only motivated by their practical preformance,
but also well justified by theory [12, 172, 176].

Deterministic strategies are seldom used for the data selection—examples are steepest
coordinate descent [31, 180, 252] or screening algorithms [141, 163]. Instead, randomized
selection has become ubiquitous, most prominently uniform sampling [71, 72, 215, 217,
219] but also non-uniform sampling based on a fixed distribution, commonly referred to
as importance sampling [12, 48, 164, 172, 176, 194, 203, 234]. While these sampling
strategies typically depend on the input data, they do not adapt to the information of
the current parameters during optimization. In contrast, adaptive importance sampling
strategies constantly re-evaluate the relative importance of each data point during training
and thereby often surpass the performance of static algorithms [49, 87, 184, 185, 189, 209].
Common strategies are gradient-based sampling [185, 272, 273] (mostly for SGD) and
duality gap-based sampling for CD [49, 189].

The drawbacks of adaptive strategies are twofold: often the provable theoretical guaran-
tees can be worse than the complexity estimates for uniform sampling [16, 189] and often
it is computationally inadmissible to compute the optimal adaptive sampling distribution.
For instance gradient based sampling requires the computation of the full gradient in each
iteration [185, 272, 273]. Therefore one has to rely on approximations based on upper
bounds [272, 273], or stale values [4, 185]. But in general these approximations can again
be worse than uniform sampling.

This makes it necessary to develop adaptive strategies that can efficiently be computed
in every iteration and that come with theoretical guarantees that show their advantage
over fixed sampling.

Our contributions. In this paper we propose an efficient approximation of the gradient-
based sampling in the sense that (i) it can efficiently be computed in every iteration,
(ii) is provably better than uniform or fixed importance sampling and (iii) recovers the
gradient-based sampling in the full-information setting. The scheme is completely generic
and can easily be added as an improvement to both CD and SGD type methods.

As our key contributions, we

1. show that gradient-based sampling in CD methods is theoretically better than the clas-
sical fixed sampling, the speed-up can reach a factor of the dimension n (Section C.2);

2. propose a generic and efficient adaptive importance sampling strategy that can be
applied in CD and SGD methods and enjoys favorable properties—such as mentioned
above (Section C.3);

3. demonstrate how the novel scheme can efficiently be integrated in CD and SGD on
an important class of structured optimization problems (Section C.4);
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4. supply numerical evidence that the novel sampling performs well on real data (Sec-
tion C.5).

Notation. For xxx 2 Rn define [xxx]i := hxxx,eeeii with eeei the standard unit vectors in Rn. We
abbreviate —i f := [— f ]i. A convex function f : Rn ! R with L-Lipschitz continuous
gradient satisfies

f (xxx+huuu) f (xxx)+h huuu,— f (xxx)i+ h2Luuu
2 kuuuk

2 8xxx 2 Rn,8h 2 R , (C.1)

for every direction uuu 2 Rn and Luuu = L. A function with coordinate-wise Li-Lipschitz
continuous gradients1 for constants Li > 0, i 2 [n] := {1, . . . ,n}, satisfies (C.1) just along
coordinate directions, i.e. uuu = eeei, Leeei = Li for every i 2 [n]. A function is coordinate-wise
L-smooth if Li L for i = 1, . . . ,n. For convenience we introduce vector lll = (L1, . . . ,Łn)>

and matrix L = diag(lll). A probability vector ppp 2 Dn := {xxx 2 Rn
�0 : kxxxk1 = 1} defines a

probability distribution P over [n] and we denote by i⇠ ppp a sample drawn from P .

C.2 Adaptive Importance Sampling with Full
Information

In this section we argue that adaptive sampling strategies are theoretically well justified,
as they can lead to significant improvements over static strategies. In our exhibition we
focus first on CD methods, as we also propose a novel stepsize strategy for CD in this
contribution. Then we revisit the results regarding stochastic gradient descent (SGD)
already present in the literature.

C.2.1 Coordinate Descent with Adaptive Importance Sampling
We address general minimization problems minxxx f (xxx). Let the objective f : Rn ! R
be convex with coordinate-wise Li-Lipschitz continuous gradients. Coordinate descent
methods generate sequences {xxxk}k�0 of iterates that satisfy the relation

xxxk+1 = xxxk� gk—ik f (xxxk)eeeik . (C.2)

Here, the direction ik is either chosen deterministically (cyclic descent, steepest descent),
or randomly picked according to a probability vector pppk 2 Dn. In the classical literature,
the stepsize is often chosen such as to minimize the quadratic upper bound (C.1), i.e.
gk = L�1

ik . In this work we propose to set gk = ak[pppk]
�1
ik where ak does not depend on

the chosen direction ik. This leads to directionally-unbiased updates, like it is common

1|—i f (xxx+heeei)�—i f (xxx)| Li |h | , 8xxx 2 Rn,8h 2 R.
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among SGD-type methods. It holds

Eik⇠pppk
[ f (xxxk+1) | xxxk]

(C.1)
 Eik⇠pppk

"
f (xxxk)�

ak

[pppk]ik
(—ik f (xxxk))

2 +
Lika2

k
2[pppk]

2
ik

(—ik f (xxxk))
2 | xxxk

#

= f (xxxk)�akk— f (xxxk)k2
2 +

n

Â
i=1

Lia2
k

2[pppk]i
(—i f (xxxk))

2 . (C.3)

In adaptive strategies we have the freedom to chose both variables ak and pppk as we
like. We therefore propose to chose them in such a way that they minimize the upper
bound (C.3) in order to maximize the expected progress. The optimal pppk in (C.3) is
independent of ak, but the optimal ak depends on pppk. We can state the following useful
observation.
Lemma C.2.1.1. If ak =ak(pppk) is the minimizer of (C.3), then xxxk+1:= xxxk� ak

[pppk]ik
—ik f (xxxk)eeeik

satisfies

Eik⇠pppk
[ f (xxxk+1) | xxxk] f (xxxk)�

ak(pppk)

2
k— f (xxxk)k2

2 . (C.4)

Consider two examples. In the first one we pick a sub-optimal, but very common [172]
distribution:
Example C.2.1.1 (Li-based sampling). Let pppL 2 Dn defined as [pppL]i =

Li
Tr[L] for i 2 [n],

where L = diag(L1, . . . ,Ln). Then ak(pppL) =
1

Tr[L] .
The distribution pppL is often referred to as (fixed) importance sampling. In the special

case when Li = L for all i 2 [n], this boils down to uniform sampling.
Example C.2.1.2 (Optimal sampling2). Equation (C.3) is minimized for probabilities
[ppp?k ]i =

p
Li|—i f (xxxk)|

k
p

L— f (xxxk)k1
and ak(ppp?k) =

k— f (xxxk)k2
2

k
p

L— f (xxxk)k2
1
. Observe 1

Tr[L]  ak(ppp?k) 
1

Lmin
, where

Lmin := mini2[n]Li.
To prove this result, we rely on the following Lemma—the proof of which, as well

as for the claims above, is deferred to Section C.7.1 of the appendix. Here |·| is applied
entry-wise.

Lemma C.2.1.2. Define V (ppp,xxx) := Ân
i=1

Li[xxx]2i
[ppp]i

. Then argminppp2Dn V (ppp,xxx) = |
p

Lxxx|
k
p

Lxxxk1
.

The ideal adaptive algorithm. We propose to chose the stepsize and the sampling
distribution for CD as in Example C.2.1.2. One iteration of the resulting CD method
is illustrated in Algorithm 5. Our bounds on the expected one-step progress can be
used to derive convergence rates of this algorithm with the standard techniques. This is

2Here “optimal” refers to the fact that ppp?k is optimal with respect to the given model (C.1) of the objective
function. If the model is not accurate, there might exist a sampling that yields larger expected progress
on f .
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exemplified in Appendix C.7.1. In the next Section C.3 we develop a practical variant of
the ideal algorithm.

Efficiency gain. By comparing the estimates provided in the examples above, we see
that the expected progress of the proposed method is always at least as good as for the fixed
sampling. For instance in the special case where L = Li for i 2 [n], the Li-based sampling
is just uniform sampling with ak(pppunif) =

1
Ln . On the other hand ak(ppp?k) =

k— f (xxxk)k2
2

Lk— f (xxxk)k2
1
,

which can be n times larger than ak(pppunif). The expected one-step progress in this extreme
case coincides with the one-step progress of steepest coordinate descent [180].

C.2.2 SGD with Adaptive Sampling
SGD methods are applicable to objective functions which decompose as a sum

f (xxx) = 1
n Ân

i=1 fi(xxx) (C.5)

with each fi : Rd ! R convex. In previous work [185, 272, 273] is has been argued
that the following gradient-based sampling [p̃pp?k ]i =

k— fi(xxxk)k2
Ân

i=1k— fi(xxxk)k2
is optimal in the sense

that it maximizes the expected progress (C.3). Zhao and Zhang [272] derive complexity
estimates for composite functions. For non-composite functions it becomes easier to derive
the complexity estimate. For completeness, we add this simpler proof in Appendix C.7.2.

C.3 Safe Adaptive Importance Sampling with Limited
Information

In the previous section we have seen that gradient-based sampling (Example C.2.1.2) can
yield a massive speed-up compared to a static sampling distribution (Example C.2.1.1).
However, sampling according to ppp?k in CD requires the knowledge of the full gradient
— f (xxxk) in each iteration. And likewise, sampling from p̃pp?k in SGD requires the knowledge
of the gradient norms of all components—both these operations are in general inadmissi-
ble, i.e. the compute cost would void all computational benefits of the iterative (stochastic)
methods over full gradient methods.

However, it is often possible to efficiently compute approximations of ppp?k or p̃pp?k instead.
In contrast to previous contributions, we here propose a safe way to compute such
approximations. By this we mean that our approximate sampling is provably never worse
than static sampling, and moreover, we show that our solution is the best possible with
respect to the limited information at hand.

C.3.1 An Optimization Formulation for Sampling
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Algorithm 5 Optimal sampling
(compute full gradient)

Compute — f (xxxk)
(define optimal sampling)

Define (ppp?k ,a?
k ) as in Exam-

ple C.2.1.2
ik ⇠ ppp?k

xxxk+1 := xxxk�
a?

k
[ppp?k ]ik

—ik f (xxxk)

Algorithm 6 Proposed safe sam-
pling

(update l.- and u.-bounds)

Update `̀̀, uuu
(compute safe sampling)

Define (p̂ppk, âk) as in (C.7)
ik ⇠ p̂ppk

Compute —ik f (xxxk)

xxxk+1 := xxxk� âk
[p̂ppk]ik

—ik f (xxxk)

Algorithm 7 Fixed sampling

(define fixed sampling)
Define (pppL, ā) as in Exam-
ple C.2.1.1
ik ⇠ pppL

Compute —ik f (xxxk)

xxxk+1 := xxxk� ā
[pppL]ik

—ik f (xxxk)

Figure C.1: CD with different sampling strategies. Whilst Alg. 5 requires to compute the
full gradient, the compute operation in Alg. 6 is as cheap as for fixed importance sampling,
Alg. 7. Defining the safe sampling p̂ppk requires O(n logn) time.

Formally, we assume that we have in each iteration access to two vectors `̀̀k,uuuk 2 Rn
�0

that provide safe upper and lower bounds on either the absolute values of the gradient
entries ([`̀̀k]i  |—i f (xxxk)|  [uuuk]i) for CD, or of the gradient norms in SGD: ([`̀̀k]i 
k— fi(xxxk)k2  [uuuk]i). We postpone the discussion of this assumption to Section C.4, where
we give concrete examples.

The minimization of the upper bound (C.3) amounts to the equivalent problem3

min
ak

min
pppk2Dn


�akkccckk2

2 +
a2

k
2

V (pppk,ccck)

�
, min

pppk2Dn

V (pppk,ccck)

kccckk2
2

(C.6)

where ccck 2 Rn represents the unknown true gradient. That is, with respect to the bounds
`̀̀k,uuuk, we can write ccck 2Ck := {xxx 2 Rn : [`̀̀k]i  [xxx]i  [uuuk]i, i 2 [n]}. In Example C.2.1.2
we derived the optimal solution for a fixed ccck 2Ck. However, this is not sufficient to find
the optimal solution for an arbitrary ccck 2Ck. Just computing the optimal solution for an
arbitrary (but fixed) ccck 2Ck is unlikely to yield a good solution. For instance both extreme
cases ccck = `k and ccck = uuuk (the latter choice is quite common, cf. [189, 272]) might be
poor. This is demonstrated in the next example.

Example C.3.1.1. Let `̀̀ = (1,2)>, uuu = (2,3)>, ccc = (2,2)> and L1 = L2 = 1. Then
V
�

`̀̀
k`̀̀k1

,ccc
�
= 9

4kccck
2
2, V

� uuu
kuuuk1

,ccc
�
= 25

12kccck
2
2, whereas for uniform sampling V

� ccc
kccck1

,ccc
�
=

2kccck2
2.

The proposed sampling. As a consequence of these observations, we propose to solve
the following optimization problem to find the best sampling distribution with respect to

3Although only shown here for CD, an equivalent optimization problem arises for SGD methods, cf. [272].
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Algorithm 8 Computing the Safe Sampling for Gradient Information `̀̀,uuu
1: Input: 000n  `̀̀  uuu, L, Initialize: ccc = 000n, u = 1, `= n, D = /0.
2: `̀̀sort := sort_asc(

p
L�1 `̀̀), uuusort := sort_asc(

p
L�1uuu), m = max(`̀̀sort)

3: while u ` do
4: if [`̀̀sort]` > m then (largest undecided lower bound is violated)
5: Set corresponding [ccc]index := [

p
L`̀̀sort]`; ` := `�1; D := D[{index}

6: else if [uuusort]u < m then (smallest undecided upper bound is violated)
7: Set corresponding [ccc]index := [

p
Luuusort]u; u := u+1; D := D[{index}

8: else
9: break (no constraints are violated)

10: end if
11: m := kccck2

2 ·k
p

Lccck�1
1 (update m as in (C.9))

12: end while
13: Set [ccc]i :=

p
Lim for all i /2 D and Return

⇣
ccc, ppp =

p
Lccc

k
p

Lccck1
,v = k

p
Lccck2

1
kccck2

2

⌘

Ck:

vk := min
ppp2Dn

max
ccc2Ck

V (ppp,ccc)
kccck2

2
, and to set (ak, pppk) :=

� 1
vk
, p̂ppk
�
, (C.7)

where p̂ppk denotes a solution of (C.7). The resulting algorithm for CD is summarized in
Alg. 6.

In the remainder of this section we discuss the properties of the solution p̂ppk (Theo-
rem C.3.2.1) and how such a solution can be efficiently be computed (Theorem C.3.2.2,
Algorithm 8).

C.3.2 Proposed Sampling and its Properties

Theorem C.3.2.1. Let (p̂pp, ĉcc) 2 Dn⇥Rn
�0 denote a solution of (C.7). Then Lmin  vk 

Tr [L] and

1. max
ccc2Ck

V (p̂pp,ccc)
kccck2

2
max

ccc2Ck

V (ppp,ccc)
kccck2

2
, 8ppp 2 Dn; (p̂pp has the best worst-case guarantee)

2. V ( p̂pp,ccc) Tr [L] ·kccck2
2, 8ccc 2Ck. (p̂pp is always better than Li-based sampling)

Remark C.3.2.1. In the special case Li = L for all i 2 [n], the Li-based sampling boils
down to uniform sampling (Example C.2.1.1) and p̂pp is better than uniform sampling:
V (p̂pp,ccc) Lnkccck2

2, 8ccc 2Ck.

Proof. Property (i) is an immediate consequence of (C.7). Moreover, observe that the
Li-based sampling pppL is a feasible solution in (C.7) with value V (pppL,ccc)

kccck2
2
⌘ Tr [L] for all
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ccc 2Ck. Hence

Lmin 
k
p

Lccck2
1

kccck2
2

C.2.1.2
= min

ppp2Dn

V (ppp,ccc)
kccck2

2
 V (p̂pp,ccc)
kccck2

2

(⇤)
 V (p̂pp, ĉcc)
kĉcck2

2

(C.7)
 max

ccc2Ck

V (pppL,ccc)
kccck2

2
= Tr [L] ,

(C.8)

for all ccc 2 Ck, thus vk 2 [Lmin,Tr [L]] and (ii) follows. We prove inequality (⇤) in the
appendix, by showing that min and max can be interchanged in (C.7).

A geometric interpretation. We show in Appendix C.8 that the optimization prob-
lem (C.7) can equivalently be written aspvk = maxccc2Ck

k
p

Lccck1
kccck2

= maxccc2Ck
h
p

lll,ccci
kccck2

, where
[lll]i = Li for i 2 [n]. The maximum is thus attained for vectors ccc 2Ck that minimize the
angle with the vector lll.

Theorem C.3.2.2. Let ccc 2Ck, ppp =
p

Lccc
k
p

Lccck1
and denote m = kccck2

2 ·k
p

Lccck�1
1 . If

[ccc]i =

8
><

>:

[uuuk]i if [uuuk]i 
p

Lim ,

[`̀̀k]i if [`̀̀k]i �
p

Lim ,
p

Lim otherwise,
8i 2 [n] , (C.9)

then (ppp,ccc) is a solution to (C.7). Moreover, such a solution can be computed in time
O(n logn).

Proof. This can be proven by examining the optimality conditions of problem (C.7). This
is deferred to Section C.8.1 of the appendix. A procedure that computes such a solution
is depicted in Algorithm 8. The algorithm makes extensive use of (C.9). For simplicity,
assume first L = In for now. In each iteration t , a potential solution vector ccct is proposed,
and it is verified whether this vector satisfies all optimality conditions. In Algorithm 8,
ccct is just implicit, with [ccct ]i = [ccc]i for decided indices i 2 D and [ccct ]i = [

p
Lm]i for

undecided indices i /2 D. After at most n iterations a valid solution is found. By sorting
the components of

p
L�1 `̀̀k and

p
L�1uuuk by their magnitude, at most a linear number

of inequality checks in (C.9) have to be performed in total. Hence the running time is
dominated by the O(n logn) complexity of the sorting algorithm. A formal proof is given
in the appendix.

Competitive Ratio. We now compare the proposed sampling distribution p̂ppk with the
optimal sampling solution in hindsight. We know that if the true (gradient) vector c̃cc 2Ck
would be given to us, then the corresponding optimal probability distribution would
be ppp?(c̃cc) =

p
Lc̃cc

k
p

Lc̃cck1
(Example C.2.1.2). Thus, for this c̃cc we can now analyze the ratio

V (p̂ppk,c̃cc)
V (ppp?(c̃cc),c̃cc) . As we are interested in the worst case ratio among all possible candidates
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c̃cc 2Ck, we define

rk := max
ccc2Ck

V (p̂pp,ccc)
V (ppp?(ccc),ccc)

= max
ccc2Ck

V (p̂pp,ccc)
k
p

Lccck2
1
. (C.10)

Lemma C.3.2.3. Let wk := minccc2Ck
k
p

Lccck2
1

kccck2
2

. Then Lmin  wk  vk, and rk  vk
wk
( vk

Lmin
).

Lemma C.3.2.4. Let g � 1. If [Ck]i\ g[Ck]i = /0 and g�1[Ck]i\ [Ck]i = /0 for all i 2 [n]
(here [Ck]i denotes the projection on the i-th coordinate), then rk  g4.

These two lemma provide bounds on the competitive ratio. Whilst Lemma C.3.2.4
relies on a relative accuracy condition, Lemma C.3.2.3 can always be applied. However,
the corresponding minimization problem is non-convex. Note that knowledge of rk is not
needed to run the algorithm.

C.4 Example Safe Gradient Bounds
In this section, we argue that for a large class of objective functions of interest in machine
learning, suitable safe upper and lower bounds `̀̀,uuu on the gradient along every coordinate
direction can be estimated and maintained efficiently during optimization. A similar
argument can be given for the efficient approximation of component wise gradient norms
in finite sum objective based stochastic gradient optimization.

As the guiding example, we will here showcase the training of generalized linear
models (GLMs) as e.g. in regression, classification and feature selection. These models
are formulated in terms of a given data matrix A 2 Rd⇥n with columns aaai 2 Rd for i 2 [n].

Coordinate Descent - GLMs with Arbitrary Regularizers. Consider general objec-
tives of the form f (xxx) := h(Axxx)+Ân

i=1 yi([xxx]i) with an arbitrary convex separable reg-
ularizer term given by the yi : R! R for i 2 [n]. A key example is when h : Rd ! R
describes the least-squares regression objective h(Axxx) = 1

2kAxxx�bbbk2
2 for a bbb 2Rd . Using

that this h is twice differentiable with —2h(Axxx) = In, it is easy to see that we can track the
evolution of all gradient entries, when performing CD steps, as follows:

—i f (xxxk+1)�—i f (xxxk) = gkhaaai,aaaiki , 8i 6= ik . (C.11)

for ik being the coordinate changed in step k (here we also used the separability of the
regularizer).

Therefore, all gradient changes can be tracked exactly if the inner products of all
datapoints are available, or approximately if those inner products can be upper and
lower bounded. For computational efficiency, we in our experiments simply use Cauchy-
Schwarz |haaai,aaaiki| kaaaik ·kaaaikk. This results in safe upper and lower bounds [`̀̀k+1]i 
—i f (xxxk+1) [uuuk+1]i for all inactive coordinates i 6= ik. (For the active coordinate ik itself
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one observes the true value without uncertainty). These bounds can be updated in linear
time O(n) in every iteration.

For general smooth h (again with arbitrary separable regularizers yi), (C.11) can
readily be extended to hold [232, Lemma 4.1], the inner product change term becoming
haaai,—2 f (Ax̃xx)aaaiki instead, when assuming h is twice-differentiable. Here x̃xx will be an
element of the line segment [xxxk,xxxk+1].

Stochastic Gradient Descent - GLMs. We now present a similar result for finite sum
problems (C.5) for the use in SGD based optimization, that is f (xxx) := 1

n Ân
i=1 fi(xxx) =

1
n Ân

i=1 hi(aaa>i xxx).

Lemma C.4.0.1. Consider f : Rd!R as above, with twice differentiable hi : R!R. Let
xxxk,xxxk+1 2Rd denote two successive iterates of SGD, i.e. xxxk+1 := xxxk�hk aaaik—hik(aaa

>
ik xxxk) =

xxxk+gk aaaik . Then there exists x̃xx2Rd on the line segment between xxxk and xxxk+1, x̃xx2 [xxxk,xxxk+1]
with

— fi(xxxk+1)�— fi(xxxk) = gk —2hi(aaa>i x̃xx) haaai,aaaiki aaai , 8 i 6= ik . (C.12)

This leads to safe upper and lower bounds for the norms of the partial gradient, [`̀̀k]i 
k— fi(xxxk)k2  [uuuk]i, that can be updated in linear time O(n), analogous to the coordinate
case discussed above.4

We note that there are many other ways to track safe gradient bounds for relevant
machine learning problems, including possibly more tight ones. We here only illustrate
the simplest variants, highlighting the fact that our new sampling procedure works for any
safe bounds `̀̀,uuu.

Computational Complexity. In this section, we have demonstrated how safe upper
and lower bounds `̀̀,uuu on the gradient information can be obtained for GLMs, and
argued that these bounds can be updated in time O(n) per iteration of CD and SGD. The
computation of the proposed sampling takes O(n logn) time (Theorem C.3.2.2). Hence,
the introduced overhead in Algorithm 6 compared to fixed sampling (Algorithm 7) is
of the order O(n logn) in every iteration. The computation of one coordinate of the
gradient, —ik f (xxxk), takes time Q(d) for general data matrices. Hence, when d = W(n),
the introduced overhead reduces to O(logn) per iteration.

4Here we use the efficient representation — fi(xxx) = q(xxx) ·aaai for q(xxx) 2 R.
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Epochs

Uniform
Proposed (big step)
Proposed (small step)

0 1 2 5 6

1.00
0.99
0.98
0.97
0.96
0.95
0.94 f(x )

vk

k

10

0
-1
-2
-3
-4

(a) rcv1’, L1 reg.

Epochs0 1 2 5 6

Optimal (big step)
Optimal (small step)

1.00

0.95

0.90

0.85
f(x )

vk

k

10

0
-1
-2
-3
-4

(b) rcv1’, L2 reg.

Figure C.2: (CD, square loss) Fixed vs. adaptive sampling strategies, and dependence
on stepsizes. With “big” ak = v�1

k and “small” ak =
1

Tr[L] .
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Figure C.3: (CD, squared hinge loss) Function value vs. number of iterations for optimal
stepsize ak = v�1

k .
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Figure C.4: (CD, logistic loss) Function value vs. number of iterations for different sam-
pling strategies. Bottom: Evolution of the value vk which determines the optimal stepsize
(âk = v�1

k ). The plots show the normalized values vk
Tr[L] , i.e. the relative improvement

over Li-based importance sampling.
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Figure C.5: (CD, square loss) Function value vs. number of iterations on the full datasets.
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Figure C.6: (CD, square loss) Function value vs. clock time on the full datasets. (Data
for the optimal sampling omitted, as this strategy is not competitive time-wise.)
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Figure C.7: (SGD, square loss) Function value vs. number of iterations.
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Figure C.8: (SGD, square loss) Function
value vs. number of iterations.
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Figure C.9: (SGD square loss) Function
value vs. clock time.

C.5 Empirical Evaluation

In this section we evaluate the empirical performance of our proposed adaptive sampling
scheme on relevant machine learning tasks. In particular, we illustrate performance on
generalized linear models with L1 and L2 regularization, as of the form (C.5),
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min
xxx2Rd

1
n

n

Â
i=1

hi(aaa>i xxx)+l · r(xxx) (C.13)

We use square loss, squared hinge loss as well as logistic loss for the data fitting terms
hi, and kxxxk1 and kxxxk2

2 for the regularizer r(xxx). The datasets used in the evaluation are
rcv1, real-sim and news20.5 The rcv1 dataset consists of 20,242 samples with 47,236
features, real-sim contains 72,309 datapoints and 20,958 features and news20 contains
19,996 datapoints and 1,355,191 features. For all datasets we set unnormalized features
with all the non-zero entries set to 1 (bag-of-words features). By real-sim’ and rcv1’ we
denote a subset of the data chosen by randomly selecting 10,000 features and 10,000
datapoints. By news20’ we denote a subset of the data chose by randomly selecting 15%
of the features and 15% of the datapoints. A regularization parameter l = 0.1 is used for
all experiments.

Our results show the evolution of the optimization objective over time or number of
epochs (an epoch corresponding to n individual updates). To compute safe lower and
upper bounds we use the methods presented in Section C.4 with no special initialization,
i.e. `̀̀0 = 000n, uuu0 = •••n.

Coordinate Descent. In Figure C.2 we compare the effect of the fixed stepsize ak =
1

Ln
(denoted as “small”) vs. the time varying optimal stepsize (denoted as “big”) as discussed
in Section C.2. Results are shown for optimal sampling ppp?k (with optimal stepsize ak(ppp?k),
cf. Example C.2.1.2), our proposed sampling p̂ppk (with optimal stepsize ak(p̂ppk) = v�1

k ,
cf. (C.7)) and uniform sampling (with optimal stepsize ak(pppL) =

1
Ln , as here L = LIn, cf.

Example C.2.1.1). As the experiment aligns with theory—confirming the advantage of the
varying “big” stepsizes—we only show the results for Algorithms 5–7 in the remaining
plots.

Performance for squared hinge loss, as well as logistic regression with L1 and L2
regularization is presented in Figure C.3 and Figure C.4 respectively. In Figures C.5
and C.6 we report the iteration complexity vs. accuracy as well as timing vs. accuracy
results on the full dataset for coordinate descent with square loss and L1 (Lasso) and L2
regularization (Ridge).

Theoretical Sampling Quality. As part of the CD performance results in Figures C.2–
C.6 we include an additional evolution plot on the bottom of each figure to illustrate
the values vk which determine the stepsize (âk = v�1

k ) for the proposed Algorithm 6
(blue) and the optimal stepsizes of Algorithm 5 (black) which rely on the full gradient
information. The plots show the normalized values vk

Tr[L] , i.e. the relative improvement
over Li-based importance sampling. The results show that despite only relying on very
loose safe gradient bounds, the proposed adaptive sampling is able to strongly benefit
from the additional information.

5All data are available at www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
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Stochastic Gradient Descent. Finally, we also evaluate the performance of our ap-
proach when used within SGD with L1 and L2 regularization and square loss. In Fig-
ures C.7–C.8 we report the iteration complexity vs. accuracy results and in Figure C.9
the timing vs. accuracy results. The time units in Figures C.6 and C.9 are not directly
comparable, as the experiments were conducted on different machines.

We observe that on all three datasets SGD with the optimal sampling performs only
slightly better than uniform sampling. This is in contrast with the observations for CD,
where the optimal sampling yields a significant improvement. Consequently, the effect of
the proposed sampling is less pronounced in the three SGD experiments.

Summary. The main findings of our experimental study can be summarized as follows:

• Adaptive importance sampling significantly outperforms fixed importance sam-
pling in iterations and time. The results show that (i) convergence in terms of
iterations is almost as good as for the optimal (but not efficiently computable) gradient-
based sampling and (ii) the introduced computational overhead is small enough to
outperform fixed importance sampling in terms of total computation time.

• Adaptive sampling requires adaptive stepsizes. The adaptive stepsize strategies of
Algorithms 5 and 6 allow for much faster convergence than conservative fixed-stepsize
strategies. In the experiments, the measured value vk was always significantly below
the worst case estimate, in alignment with the observed convergence.

• Very loose safe gradient bounds are sufficient. Even the bounds derived from the
the very naïve gradient information obtained by estimating scalar products resulted in
significantly better sampling than using no gradient information at all. Further, no
initialization of the gradient estimates is needed (at the beginning of the optimization
process the proposed adaptive method performs close to the fixed sampling but
accelerates after just one epoch).

C.6 Conclusion
In this paper we propose a safe adaptive importance sampling scheme for CD and SGD
algorithms. We argue that optimal gradient-based sampling is theoretically well justified.
To make the computation of the adaptive sampling distribution computationally tractable,
we rely on safe lower and upper bounds on the gradient. However, in contrast to previous
approaches, we use these bounds in a novel way: in each iteration, we formulate the
problem of picking the optimal sampling distribution as a convex optimization problem
and present an efficient algorithm to compute the solution. The novel sampling provably
performs better than any fixed importance sampling—a guarantee which could not be
established for previous samplings that were also derived from safe lower and upper
bounds.
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The computational cost of the proposed scheme is of the order O(n logn) per iteration—
this is on many problems comparable with the cost to evaluate a single component
(coordinate, sum-structure) of the gradient, and the scheme can thus be implemented at
no extra computational cost. This is verified by timing experiments on real datasets.

We discussed one simple method to track the gradient information in GLMs during
optimization. However, we feel that the machine learning community could profit from
further research in that direction, for instance by investigating how such safe bounds can
efficiently be maintained on more complex models. Our approach can immediately be
applied when the tracking of the gradient is delegated to other machines in a distributed
setting, like for instance in [4].
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Proofs for Main Results

C.7 Efficiency of Adaptive Importance Sampling
In this section of the appendix we present the missing proofs from the main text and also
add some additional comments.

C.7.1 In Coordinate Descent
In Section C.2 we only discussed the expected progress that can be proven using the
quadratic upper bound (C.1). Here we show how to derive the convergence rate by the
standard arguments.
Lemma C.7.1.1 (Proposed CD on strongly convex function—one step progress). Let
f : Rn! R µ-strongly convex with coordinate-wise Li-Lipschitz continuous gradient. Let
xxxk,xxxk+1 2Rn denote two successive iterates generated by Algorithm 5, i.e. satisfying (C.2)
and (C.4). Then

E [ f (xxxk+1)� f ? | xxxk] ( f (xxxk)� f ?) · (1�µak) (C.14)

where f ? = minxxx2Rn f (xxx) and ak = ak(pppk) as in Lemma C.2.1.1.

Proof. By strong convexity

1
2µ
k— f (xxxk)k2

2 � f (xxxk)� f ? , (C.15)

and the claim follows directly from (C.4).

For example for Li-based importance sampling, ak ⌘ 1
Tr[L] (Example C.2.1.1) and the

statement simplifies to

E [ f (xxxk+1)� f ? | xxxk] ( f (xxxk)� f ?) ·
✓

1� µ
Tr [L]

◆
(C.16)

in alignement with the results in [172, 230]. For the optimal sampling from Exam-
ple C.2.1.2 it holds ak(ppp?k) =

k— f (xxxk)k2
2

k
p

L— f (xxxk)k2
1
. For instance for L = L · In equation (C.14)

simplifies to

E [ f (xxxk+1)� f ? | xxxk] ( f (xxxk)� f ?) ·
✓

1� µk— f (xxxk)k2
2

Lk— f (xxxk)k2
1

◆
. (C.17)
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By Cauchy-Schwarz k— f (xxxk)k2
2  k— f (xxxk)k2

1  nk— f (xxxk)k2
2, hence the expected one

step progress (C.17) is always as least as good as for uniform sampling (C.16) (we
assumed L = L · In), but the optimal sampling could yield an n times larger progress.

In Section C.2 we argued that it is natural to always chose the best possible stepsize
in (C.3), i.e. ak = ak(pppk). Interestingly, even with a fixed stepsize (the worst case
ak =

1
Tr[L]) the optimal sampling ppp?k has a slight advantage over the fixed importance

sampling pppL. (This effect is also demonstrated in the experiments, cf. Figure C.2).

Remark C.7.1.1. Let ppp?k as in Example C.2.1.2. Then for suboptimal ak =
1

Tr[L] it holds

Eik⇠pppk
[ f (xxxk+1) | xxxk] f (xxxk)�

1
2Tr [L]

k— f (xxxk)k2
2 ·
 

2� k
p

L— f (xxxk)k2
1

Tr [L]k— f (xxxk)k2
2

!
. (C.18)

The expression in the big bracket is bounded between 1 and 2� 1
n . Hence the progress

is always better then for the fixed distribution pppL, but the speed-up is limited to a factor
less than 2. In contrast, with the optimal ak(ppp?k) the speed-up can reach a factor of n.

Proof. It suffices to just evaluate (C.3) with ppp?k and ak =
1

Tr[L] .

Proof of Lemma C.2.1.1. For c,d � 0 consider mina�ac+ 1
2a2d. This function is mini-

mized for a? = c
d with value � c2

2d =�a?c
2 .

Proof of Example C.2.1.1. We evaluate (C.3) with pppL and find

Eik⇠pppk
[ f (xxxk+1) | xxxk] f (xxxk)�akk— f (xxxk)k2

2 +
1
2

a2
k Tr [L]k— f (xxxk)k2

2 (C.19)

which is minimized for ak =
1

Tr[L] as claimed.

Proof of Example C.2.1.2. This is an immediate consequence of Lemma C.2.1.2. The
provided estimates follow from kyyyk2

2  kyyyk2
1  1

Lmin
k
p

Lyyyk2
1 and k

p
Lyyyk2

1  Tr [L]kyyyk2
2

by Cauchy-Schwarz, for yyy 2 Rn.

Proof of Lemma C.2.1.2. Without loss of generality, assume L = I. The claim is verified
by checking the optimality conditions: �[xxx]2i +l [ppp]2i = 0 for all i 2 [n] and Lagrange
multiplier l � 0. Thus l =

[xxx]2i
[ppp]2i

for all i2 [n] and this is satisfied for the proposed solution
|xxx|
kxxxk1
2 Dn.

C.7.2 In SGD

SGD methods are applicable to objective functions which decompose as a sum

f (xxx) = 1
n Ân

i=1 fi(xxx) . (C.20)
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Previous work [185, 272, 273] has argued that the gradient based sampling [p̃pp?k ]i =
k— fi(xxxk)k2

Ân
i=1k— fi(xxxk)k2

is also optimal in this setting. For the sake of completeness, we will now
exhibit how this can be derived in the simplified setting where we assume f to be µ-
strongly convex. The proof presented here is adapted from [166].

Theorem C.7.2.1. Let X 2 Rd be a convex set, f : X ! R µ-strongly convex with the
structure f (xxx) = 1

n Ân
i=1 fi(xxx). Let {xxxk}k�0 denote a sequence of iterates satisfying

xxxk+1 := PX

✓
xxxk�

hk

(n[pppk]ik)
— fik(xxxk)

◆
(C.21)

for stepsize hk =
1

µk , where index ik is chosen at random ik ⇠ pppk for probability vector
pppk 2 Dn and PX denotes the orthogonal projection onto X .

1. If [pppk]i ⌘ 1
n for all i 2 [n] and k (uniform sampling), then

E
"

f

 
1
T

T

Â
k=0

xxxk

!
� f ?

#
 B2

µ2T
(1+ logT ) . (C.22)

2. If [pppk]i =
k— fi(xxxk)k2

Ân
i=1 k— fi(xxxk)k2

= [ p̃pp?k ]i, for i 2 [n] (optimal adaptive sampling), then

E
"

f

 
1
T

T

Â
k=0

xxxk

!
� f ?

#
 B2

1
µ2T

(1+ logT ) . (C.23)

Where B1 and B2 are constants such that

Ân
i=1 k— fi(xxx)k2

n
 B1

Ân
i=1 k— fi(xxx)k2

2
n

 B2 8xxx 2 X . (C.24)

It is clear that B2
n  B2

1  B2 from Cauchy-Schwarz. Comparing the upper bound we
see that the importance sampling based approach might be n-times faster in convergence.

Proof. As orthogonal projections contract distances we have

kxxxk+1� xxx?k2
2  kxxxk�hk

1
n[pppk]ik

— fik(xxxk)� xxx?k2
2 (C.25)

= kxxxk� xxx?k2
2�

2hk

n[pppk]ik
hxxxk� xxx?,— fik(xxxk)i+

h2
k

n2[pppk]
2
ik

k— fik(xxxk)k2
2 . (C.26)

Thus

E
⇥
kxxxk+1� xxx?k2

2 | xxxk
⇤
 kxxxk� xxx?k2

2�2hkhxxxk� xxx?,— f (xxxk)i (C.27)
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+
n

Â
i=1

h2
k

n2[pppk]ik
k— fik(xxxk)k2

2 . (C.28)

It can be observed that the right hand side is minimized for probabilities given as follows:

[p̃pp?k ]i :=
k— fi(xxxk)k2

Ân
i=1 k— fi(xxxk)k2

. (C.29)

This justifies why these probabilities are denoted as optimal (cf. Section C.3 and [185,
272, 273]).

Hence the expression becomes :

E
⇥
kxxxk+1� xxx?k2

2 | xxxk
⇤
 kxxxk� xxx?k2

2�2hkhxxxk� xxx?,— f (xxxk)i

+h2
k

✓
(
Ân

i=1 k— fi(xxxk)k2

n

◆2 (C.30)

 kxxxk� xxx?k2
2�2hk

h
f (xxxk)� f ?+

µ
2
kxxxk� xxx?k2

2

i

+h2
k

✓
Ân

i=1 k— fi(xxxk)k2

n

◆2 (C.31)

where the last inequality follows from strong convexity. Now we rearrange the terms and
utilize the choice of the step size hk := 1

µk :

2hk
⇥

f (xxxk)� f ?
⇤
 h2

k

✓
Ân

i=1 k— fi(xxxk)k2

n

◆2
+(1�µhk)kxxxk� xxx?k2

2

�E
⇥
kxxxk+1� xxx?k2

2 |xxxk]

(C.32)

⇥
f (xxxk)� f ?

⇤
 1

2hk

✓
Ân

i=1 k— fi(xxxk)k2

n

◆2
+

1�µhk

2hk
kxxxk� xxx?k2

2

� 1
2hk

E
⇥
kxxxk+1� xxx?k2

2 |xxxk]

(C.33)

⇥
f (xxxk)� f ?

⇤
 1

2µk

✓
Ân

i=1 k— fi(xxxk)k2

n

◆2
+

µ(k�1)
2

kxxxk� xxx?k2
2

� µk
2
E
⇥
kxxxk+1� xxx?k2

2 |xxxk]

(C.34)

If we compare the last equation and corresponding expression for uniform sampling then
we see that the per iterate gain by the optimal sampling is approximately of the order

of n due to the term
⇣

Ân
i=1 k— fi(xxxk)k2

n

⌘2
in our case and 1

n Ân
i=1 k— fi(xxxk)k2

2 in the uniform
sampling.

We now take the expectation and sum the equation (C.34) for k = 0, . . .T and we get
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the claim (this step is analogous as in [120]).

C.8 Sampling

In this section we provide the remaining technical details regarding our proposed sampling
scheme.

C.8.1 On the solution of the optimization problem

In the proof of Theorem C.3.2.1 we claimed that min and max in (C.7) can be interchanged.
We will prove this now. This result will also be handy to describe the optimiality conditions
of problem (C.7) in the proof of Theorem C.3.2.2 below.

Lemma C.8.1.1. It holds

vk = min
ppp2Dn

max
ccc2Ck

V (ppp,ccc)
kccck2

2

(⇤)
= max

ccc2Ck
min
ppp2Dn

V (ppp,ccc)
kccck2

2
= max

ccc2Ck

k
p

Lccck2
1

kccck2
2

. (C.35)

Proof. The third equality follows directly from Lemma C.2.1.2. By transformation of the
variable [yyy] := [ccc]2i for i 2 [n] we can write the objective function as

V (ppp,ccc)
kccck2

2
=

1
kyyyk1

·
n

Â
i=1

Li[yyy]i
[ppp]i

=: y(ppp,yyy) . (C.36)

Let Y ⇢ Rn
�0 denote appropriately transformed set of constraints, Y :=C2

k . To prove (⇤)
we will now rely on Sion’s minimax theorem [116, 222]. The function y(·,yyy) is convex
in ppp 2 Dn and Dn is a compact convex subset of Rn. Clearly, Y is convex, and in order to
apply the theorem it remains to show that y(ppp, ·) is quasi-concave. For establish this, it is
enough to show that the level sets of y(ppp, ·) are convex. Let uuu,vvv 2 Y with y(ppp,uuu)� b ,
y(ppp,vvv)� b for some b � 0. Then for any l 2 [0,1] it holds y(ppp,luuu+(1�l )vvv)� b
as is verified as follows:

0 l

" 
n

Â
i=1

[uuu]iLi

[ppp]i

!
�bkuuuk1

#

| {z }
�0

+(1�l )

" 
n

Â
i=1

[vvv]iLi

[ppp]i

!
�bkvvvk1

#

| {z }
�0

(C.37)

=

 
n

Â
i=1

l [uuu]iLi +(1�l )[vvv]iLi

[ppp]i

!
�b

0

B@lkuuuk1 +(1�l )kvvvk1| {z }
=kluuu+(1�l )vvvk1

1

CA . (C.38)

This proves the claim.
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Proof of Theorem C.3.2.2 – Part I: Structure of the solution. We will now proof that ccc 2
Ck of the form

[ccc]i =

8
><

>:

[uuuk]i if [uuuk]i 
p

Lim ,

[`̀̀k]i if [`̀̀k]i �
p

Lim ,
p

Lim otherwise,
8i 2 [n] , (C.9)

where m = kccck2
2 · k
p

Lccck�1
1 and probabilities ppp =

p
Lccc

k
p

Lccck1
solve the optimization prob-

lem (C.7). By Lemma C.8.1.1 is suffices to consider

argmax
ccc2Ck

k
p

Lccck2
1

kccck2
2

= argmax
ccc2Ck

k
p

Lccck1

kccck2
. (C.39)

We now write the Lagrangian of the problem on the right:

L(ccc,lll ,µµµ) = k
p

LLLccck1

kccck2
+

n

Â
i=1

[lll ]i([uuuk]i� [ccc]i)+
n

Â
i=1

[µµµ]i([ccc]i� [`̀̀k]i) (C.40)

and derive the KKT conditions:

∂L
∂ [ccc]i

=

p
Likccck2

2� [ccc]ik
p

Lccck1

kccck3
2

� [lll ]i +[µµµ i] 0; [ccc]i � 0; [ccc]i
∂L

∂ [ccc]i
= 0;

(C.41)
∂L

∂ [lll ]i
= [uuuk]i� [ccc]i � 0; [lll ]i � 0; [lll ]i

∂L
∂ [lll ]i

= 0;

(C.42)
∂L

∂ [µµµ]i
= [ccc]i� [`̀̀k]i � 0; [µµµ]i � 0; [µµµ]i

∂L
∂ [µµµ]i

= 0;

(C.43)

For all non-binding constraints, the Lagrange multipliers are zero, and hence from the
topmost equation see that it must hold

p
Likccck2

2� [ccc]ik
p

Lccck1 = 0 (or equivalently [ccc]i =p
Lim) for all variables with non-binding constraints. Furthermore if [ccc]i <

p
Lim), then

[lll ]i must be positive, and hence the upper bound must be binding. And vice versa for the
lower bounds. Clearly, the given ccc in (C.9) satisfies these conditions. By Lemma C.2.1.2
we also have ppp = ppp(ccc) =

p
Lccc

k
p

Lccck1
as claimed.

C.8.2 Algorithm
Here we argue on the correctness of Algorithm 8.
Proof of Theorem C.3.2.2 – Part II: Algorithm. We now show that Algorithm 8 indeed

144



C.8 Sampling

computes a solution of the form (C.9). For this, we have to show that performed optimiza-
tion steps—the sorting in line 2 and the efficient comparisons in line 4 and 6—do not
hamper the correctness for the algorithm. For clarity, we now introduce iteration indices
for the quantities ccct (see main text), and mt .

Suppose the check in line 4 is true, i.e. [`̀̀sort]` > mt , where mt =
kccctk2

2
k
p

Lccctk1
. Now we show

mt+1 2 [mt , [`̀̀
sort]`]. The claim can easily be checked. Let Lt denote the corresponding

Li-value, i.e. it holds
p

Lt [`̀̀
sort]` = [`̀̀k]t .

By assumption [`̀̀sort]` >
kccctk2

2
k
p

Lccctk1
, thus [`̀̀sort]` ·k

p
Lccctk1+Lt [`̀̀

sort]2` > kccctk2
2+Lt [`̀̀

sort]2`

and consequently mt+1 =
kccctk2

2+Lt [`̀̀
sort]2`

k
p

Lccctk1+Lt [`̀̀
sort]`

< [`̀̀sort]`. For to show mt+1 > mt we make use

of the assumption [`̀̀sort]` >
kccctk2

2
k
p

Lccctk1
in a similar way. Clearly, Lt [`̀̀

sort]2` · k
p

Lccctk1 >

Lt [`̀̀
sort]` · kccctk2

2 and thus k
p

Lccctk1 · kccctk2
2 + Lt [`̀̀

sort]2` · k
p

Lccctk1 > k
p

Lccctk1 · kccctk2
2 +

Lt [`̀̀
sort]` ·kccctk2

2 which implies mt+1 =
kccctk2

2+Lt [`̀̀
sort]2`

k
p

Lccctk1+Lt [`̀̀
sort]`

>
kccctk2

2
k
p

Lccctk1
= mt .

The inequality mt+1  [`̀̀sort]` implies that the chosen update does not interfere with any
previously made decisions regarding lower bounds, as mt+1  [`̀̀sort]i for i = `+1, . . . ,n
(with this notation, n+ 1, . . . ,n just denotes the empty set). The opposite inequality
mt+1 � mt implies that the chosen update does not interfere with any previously made
decisions regarding upper bounds, as mt+1 � [uuusort]i for i = 1, . . . ,u�1.

If line 6 is executed and the check is true, i.e. [uuusort]u < mt , then it can be shown that
mt+1 2 [[uuusort]u,mt ] by analogous arguments.

C.8.3 Competitive Ratio
Proof of Lemma C.3.2.3. The proof of this lemma is immediate from the definition:

rk = max
ccc2Ck

V (p̂pp,ccc)
kccck2

2
· kc

cck2
2

k
p

Lccck2
1
max

ccc2Ck

V (p̂pp,ccc)
kccck2

2
·max

ccc2Ck

kccck2
2

k
p

Lccck2
1
 vk

wk
. (C.44)

where wk :=minccc2Ck
k
p

Lccck2
1

kccck2
2

. The claimed upper bound wk vk follows by the observation

vk
(C.35)
= maxccc2Ck

k
p

Lccck2
1

kccck2
2

.

Proof of Lemma C.3.2.4. As we have relative accuracy, it holds [Ck]i \ g[Ck]i = /0 and
g�1[Ck]i\ [Ck]i = /0, for all i 2 [n]. Let ccc? 2Ck denote the vector for which the maximum
is attained and let ĉcc 2 Ck be such that p̂pp =

p
Lĉcc

k
p

Lĉcck1
. It holds V (p̂pp,ccc?)  V (p̂pp,ccc) for

all ccc 2 gCk by monotonicity in each coordinate, especially V (p̂pp,ccc?)  V (p̂pp,g ĉcc). And
similarly k

p
Lccc?k2

1 � kg�1
p

Lĉcck2
1. Thus

rk 
V (p̂pp,g ĉcc)
kg�1
p

Lĉcck2
1
=

g2V (p̂pp, ĉcc)
g�2k
p

Lĉcck2
1
=

g2

g�2 . (C.45)
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which proves the claim.

C.9 Safe Gradient Bounds in the Proximal Setting
Proof of Lemma C.4.0.1. Observe

— fi(xxxk+1)�— fi(xxxk) = —xhi(aaa>i xxxk+1)�—xhi(aaa>i xxxk)

= aaai
�
—hi(aaa>i xxxk+1)�—hi(aaa>i xxxk)

�

= aaai
�
aaa>i xxxk+1�aaa>i xxxk

�
—2hi(aaa>i x̃xx) (C.46)

= aaai
�
aaa>i (xxxk+1� xxxk)—2hi(aaa>i x̃xx)

�

= aaai
�
aaa>i gkaaaik—2hi(aaa>i x̃xx)

�

= gk—2hi(aaa>i x̃xx)haaai,aaaikiaaai 8 i 6= ik ,

Equation (C.46) comes from the mean value theorem which says for continuous function
f in closed intervals [a,b] and differentiable on open intervals (a,b), there exists a point c
in (a,b) such that :

f 0(c) =
f (b)� f (a)

b�a
. (C.47)

In Section C.4 we have discussed practical safe upper and lower bounds uuu, `̀̀ that can be
maintained efficiently during optimization, also for the SGD setting (finite sum objective).
We now argue that such bounds can also be extended to proximal SGD settings.

We see from Lemma C.4.0.1 that tracking the norm of the gradient of each function can
be done easily for simple updates as given in Lemma C.4.0.1. The approximate update of
the component wise gradient norms for more composite problems can also be done by a
little modification, but it is definitely not as trivial as in the case of coordinate descent. For
example, consider a proximal type of update as xxxk+1 = proxhkg

�
xxxk�hk ·aaaik— fik(aaa

>
ik xxxk)

�

which implies that xxxk+1 2 xxxk�hk ·aaaik— fik(aaa
>
ik xxxk)�hk∂g(xxxk+1) and thus xxxk+1 2 xxxk + gk ·

aaaik �hk∂g(xxxk+1). If we denote the progress made in the k-th iteration of the algorithm
as dk then the progress equals dk = gk aaaik�hkaaak where aaak 2 ∂g(xxxk+1). To approximate
the gradient we will need to compute two dot products. The first one is haaai,aaaiki and the
second one is haaaik ,aaaki. Since aaak is usually small, hence even approximating haaaik ,aaaki
with kaaaikkkaaakk doesn’t affect the upper and bounds too much and the main contribution
in error comes from the approximation of the scalar product haaai,aaaiki.
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Abstract
Two popular examples of first-order optimization methods over linear spaces are
coordinate descent and matching pursuit algorithms, with their randomized variants.
While the former targets the optimization by moving along coordinates, the latter
considers a generalized notion of directions. Exploiting the connection between
the two algorithms, we present a unified analysis of both, providing affine invariant
sublinear O(1/t) rates on smooth objectives and linear convergence on strongly
convex objectives. As a byproduct of our affine invariant analysis of matching
pursuit, our rates for steepest coordinate descent are the tightest known. Furthermore,
we show the first accelerated convergence rate O(1/t2) for matching pursuit and
steepest coordinate descent on convex objectives.

D.1 Introduction
In this paper we address the following convex optimization problem:

min
x2lin(A)

f (x) , (D.1)
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where f is a convex function. The minimization is over a linear space, which is
parametrized as the set of linear combinations of elements from a given set A. These
elements of A are called atoms. In the most general setting, A is assumed to be a compact
but not necessarily finite subset of a Hilbert space, i.e., a linear space equipped with
an inner product, complete in the corresponding norm. Problems of the form (D.1) are
tackled by a multitude of first-order optimization methods and are of paramount interest
in the machine learning community [154, 155, 211, 212, 241].

Traditionally, matching pursuit (MP) algorithms were introduced to solve the inverse
problem of representing a measured signal by a sparse combination of atoms from an
over-complete basis [149]. In other words, the solution of the optimization problem
(D.1) is formed as a linear combination of few of the elements of the atom set A –
i.e. a sparse approximation. At each iteration, the MP algorithm picks a direction
from A according to the gradient information, and takes a step. This procedure is not
limited to atoms of fixed dimension. Indeed, h(iA) can be an arbitrary linear subspace
of the ambient space and we are interested in finding the minimizer of f only on this
domain, see e.g. [78]. Conceptually, MP stands in the middle between coordinate descent
(CD) and gradient descent, as the algorithm is allowed to descend the function along
a prescribed set of directions which does not necessarily correspond to coordinates.
This is particularly important for machine learning applications as it translates to a
sparse representation of the iterates in terms of the elements of A while maintaining the
convergence guarantees [122, 142].

The first analysis of the MP algorithm in the optimization sense to solve the tem-
plate (D.1) without incoherence assumptions was done by [143]. To prove convergence,
they exploit the connection between MP and the Frank-Wolfe (FW) algorithm [68], a
popular projection-free algorithm for the constrained optimization case. On the other
hand, steepest coordinate descent is a special case of MP (when the atom set is the L1
ball). This is particularly important as the CD rates can be deduced from the MP rates.
Furthermore, the literature on coordinate descent is currently much richer than the one on
MP. Therefore, understanding the connection of the two classes of CD and MP-type algo-
rithms is a main goal of this paper, and results in benefits for both sides of the spectrum.
In particular, the contributions of this paper are:

• We present an affine invariant convergence analysis for Matching Pursuit algorithms
solving (D.1). Our approach is tightly related to the analysis of coordinate descent and
relies on the properties of the atomic norm in order to generalize from coordinates to
atoms.

• Using our analysis, we present the tightest known linear and sublinear convergence
rates for steepest coordinate descent, improving the constants in the rates of [181, 231].

• We discuss the convergence guarantees of Random Pursuit (RP) methods which we
analyze through the lens of MP. In particular, we present a unified analysis of both
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MP and RP which allows us to carefully trade off the use of (approximate) steepest
directions over random ones.

• We prove the first known accelerated rate for MP, as well as for steepest coordinate
descent. As a consequence, we also demonstrate an improvement upon the accelerated
random CD rate by performing a steepest coordinate update instead.

Related Work: Matching Pursuit was introduced in the context of sparse recovery [149],
and later, fully corrective variants similar to the one used in Frank-Wolfe [90, 112, 119]
were introduced under the name of orthogonal matching pursuit [41, 245]. The classical
literature for MP-type methods is typically focused on recovery guarantees for sparse
signals and the convergence depends on very strong assumptions (from an optimization
perspective), such as incoherence or restricted isometry properties of the atom set [52, 245].
Convergence rates with incoherent atom sets are predented in [82, 178, 235, 236]. Also
boosting can be seen as a generalized coordinate descent method over a hypothesis
class [154, 197].

The idea of following a prescribed set of directions also appears in the field of derivative
free methods. For instance, the early method of Pattern-Search [55, 92, 244] explores
the search space by probing function values along predescribed directions (“patterns” or
atoms). This method is in some sense orthogonal to the approach here: by probing the
function values along all atoms, one aims to find a direction along which the function
decreases (and the absolute value of the scalar product with the gradient is potentially
small). MP does not access the function value, but computes the gradient and then picks
the atom with the smallest scalar product with the gradient, and then moves to a point
where the function value decreases.

The description of random pursuit appears already in the work of Mutseniyeks and
Rastrigin [160] and was first analyzed by Karmanov [109, 110], Zieliński and Neumann
[274]. More recently random pursuit was revisited in [228, 229].

Acceleration of first-order methods was first developed in [168]. An accelerated CD
method was described in [171]. The method was extended in [131] for non-uniform
sampling, and later in [228] for optimization along arbitrary random directions. Recently,
optimal rates have been obtained for accelerated CD [13, 176]. A close setup is the
accelerated algorithm presented in [63], which minimizes a composite problem of a
convex function on Rn with a non-smooth regularizer which acts as prior for the structure
of the space. Contrary to our setting, the approach is restricted to the atoms being linearly
independent. Simultaneously at ICML 2018, Lu et al. [145] propose an accelerated rate
for the semi-greedy coordinate descent which is a special case of our accelerated MP
algorithm.

Notation: Given a non-empty subset A of some Hilbert space, let conv(A) be the
convex hull of A, and let lin(A) denote its linear span. Given a closed set A, we call
its diameter diam(A) = maxz1,z22A kz1� z2k and its radius radius(A) = maxz2A kzk.
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kxkA := inf{c > 0: x 2 c · conv(A)} is the atomic norm of x over a set A (also known as
the gauge function of conv(A)). We call a subset A of a Hilbert space symmetric if it is
closed under negation.

D.2 Revisiting Matching Pursuit
Let H be a Hilbert space with associated inner product hx,yi, 8x,y2H. The inner product
induces the norm kxk2 := hx,xi, 8x 2H. Let A ⇢H be a compact and symmetric set
(the “set of atoms” or dictionary) and let f : H!R be convex and L-smooth (L-Lipschitz
gradient in the finite dimensional case). If H is an infinite-dimensional Hilbert space,
then f is assumed to be Fréchet differentiable. In each iteration, MP queries a linear

Algorithm 9 Generalized Matching Pursuit
1: init x0 2 lin(A)
2: for t = 0 . . .T
3: Find zt := (Approx-)LMOA(— f (xt))

4: xt+1 := xt� h— f (xt),zti
Lkztk2 zt

5: end for

minimization oracle (LMO) to find the steepest descent direction among the set A:

LMOA(y) := argmin
z2A

hy,zi , (D.2)

for a given query vector y 2 H. This key subroutine is shared with the Frank-Wolfe
method [68, 96] as well as steepest coordinate descent. Indeed, finding the steepest
coordinate is equivalent to minimizing Equation D.2. The MP update step minimizes a
quadratic upper bound gxt (x) = f (xt)+ h— f (xt),x� xti+ L

2kx� xtk2 of f at xt on the
direction z returned by the LMO, where L is an upper bound on the smoothness constant
of f with respect to the Hilbert norm k · k. For f (x) = 1

2ky� xk2, y 2H, Algorithm 9
recovers the classical MP algorithm [149].

The LMO. Greedy and projection-free optimization algorithms such as Frank-Wolfe
and Matching Pursuit rely on the property that the result of the LMO is a descent
direction, which is translated to an alignment assumption of the search direction returned
by the LMO (i.e., zt in Algorithm 9) and the gradient of the objective at the current
iteration (see [142], [188, third premise] and [244, Lemma 12 and proof of Proposition
6.4]). Specifically, for Algorithm 9, a symmetric atom set A ensures that h— f (xt),zti<
0, as long as xt is not optimal yet. Indeed, we then have that minz2Ah— f (xt),zi =
minz2conv(A)h— f (xt),zi < 0 where the inequality comes from symmetry as z = 000 2
conv(A). Note that an alternative sufficient condition instead of symmetry is that A is the
atomic ball of a norm (the so called atomic norm [39]).
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Steepest Coordinate Descent. In the case when A is the L1-ball, the MP algorithm
becomes identical to steepest coordinate descent [171]. Indeed, due to symmetry of A, one
can rewrite the LMO problem as it = argmaxi |—i f (x)| , where —i is the i-th component
of the gradient, i.e. h— f (x),eii with ei being one of the natural vectors. Then the update
step can be written as:

xt+1 := xt+1�
1
L

—it f (xt)ei .

Note that by assuming a symmetric atom set and solving the LMO problem as defined
in (D.2) the steepest atom is aligned with the negative gradient, therefore the positive
stepsize �h— f (xt),zti

L decreases the objective.

Approximate linear oracles. Exactly solving the LMO defined in (D.2) can be costly
in practice, both in the MP and the CD setting, as A can contain (infinitely) many atoms.
On the other hand, approximate versions can be much more efficient. Algorithm 9 allows
for an approximate LMO. Different notions of such a LMO were explored for MP and
OMP in [149] and [245], respectively, for the Frank-Wolfe framework in [96, 122] and
for coordinate descent [231]. For given quality parameter d 2 (0,1] and given direction
d 2H, the approximate LMO for Algorithm 9 returns a vector z̃ 2A such that:

hd, z̃i  d hd,zi , (D.3)

relative to z = LMOA(d) being an exact solution.

D.2.1 Affine Invariant Algorithm
In this section, we will present our new affine invariant algorithm for the optimization
problem (D.1). Hence, we first explain in Definition D.2.1.1 that what does it mean for an
optimization algorithm to be affine invariant:

Definition D.2.1.1. An optimization method is called affine invariant if it is invariant
under affine transformations of the input problem: If one chooses any re-parameterization
of the domain Q by a surjective linear or affine map M : Q̂!Q, then the “old” and “new”
optimization problems minx2Q f (x) and minx̂2Q̂ f̂ (x̂) for f̂ (x̂) := f (Mx̂) look the same
to the algorithm.

In other words, a step of the algorithm in the original optimization problem is the same
as a step in the transformed problem. We will further demonstrate in the appendix that
the proposed Algorithm 10 which we discuss later in detail is indeed an affine invariant
algorithm. In order to obtain an affine invariant algorithm, we define an affine invariant
notion of smoothness using the atomic norm. This notion is inspired by the curvature
constant employed in FW and MP, see [96, 143]. We define:
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LA := sup
x,y2lin(A)

y=x+gz
kzkA=1,g2R>0

2
g2

⇥
f (y)� f (x)�h— f (x),y�xi

⇤
. (D.4)

This definition combines the complexity of the function f as well as the set A into a
single number, and is affine invariant under transformations of our input problem (D.1). It
yields the same upper bound to the function as the one given by the traditional smoothness
definition, that is LA-smoothness with respect to the atomic norm k ·kA, when x,y are
constrained to the set lin(A):

f (y) f (x)+ h— f (x),y�xi+ LA
2
ky�xkA ,

For example, if A is the L1-ball we obtain f (x+ gz) f (x)+ gh— f (x),zi+ g2 L1
2 where

kzk1 = 1. Based on the affine-invariant notion of smoothness defined above, we now
present pseudocode of our affine-invariant method in Algorithm 10.

Algorithm 10 Affine Invariant Generalized Matching Pursuit
1: init x0 2 lin(A)
2: for t = 0 . . .T
3: Find zt := (Approx-)LMOA(— f (xt))

4: xt+1 = xt� h— f (xt),zti
LA

zt
5: end for

The above algorithm looks very similar to the generalized MP (Algorithm 9), however,
the main difference is that while the original algorithm is not affine invariant over the
domain Q= lin(A) (Def D.2.1.1), the new Algorithm 10 is so, due to using the generalized
smoothness constant LA.

Note. For the purpose of the analysis, we call x? the minimizer of problem (D.1). If the
optimum is not unique, we pick the one with largest atomic norm as it represent the worst
case for the analysis. All the proofs are deferred to the appendix.

New Affine Invariant Sublinear Rate

In this section, we will provide the theoretical justification of our proposed approach for
smooth functions (sublinear rate) and its theoretical comparison with existing previous
analysis for special cases. We define the level set radius measured with the atomic norm
as:

R2
A := max

x2lin(A)
f (x) f (x0)

kx�x?k2
A . (D.5)
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When we measure this radius with the k ·k2 we call it R2
2, and when we measure it with

k ·k1 we call it R2
1. Note that measuring smoothness using the atomic norm guarantees

that for the Lipschitz constant LA the following holds:

Lemma D.2.1.1. Assume f is L-smooth w.r.t. a given norm k ·k, over lin(A) where A is
symmetric. Then,

LA  L radiusk·k(A)2 . (D.6)

For example, in the coordinate descent setting we measure smoothness with the atomic
norm being the L1-norm. Lemma D.2.1.1 implies that LA  L1  L2 where L2 is the
smoothness constant measured with the L2-norm. Note that the radius of the L1-ball
measured with k · k1 is 1. Therefore, we put ourselves in a more general setting than
Algorithm 9, showing convergence of the affine invariant Algorithm 10

We are now ready to prove the convergence rate of Algorithm 10 for smooth functions.

Theorem D.2.1.2. Let A⇢H be a closed and bounded set. We assume that k ·kA is a
norm over lin(A). Let f be convex and LA-smooth w.r.t. the norm k · kA over lin(A),
and let RA be the radius of the level set of x0 measured with the atomic norm. Then,
Algorithm 10 converges for t � 0 as

f (xt+1)� f (x?)
2LAR2

A
d 2(t +2)

,

where d 2 (0,1] is the relative accuracy parameter of the employed approximate LMO (D.3).

Discussion. The proof of Theorem D.2.1.2 extends the convergence analysis of steepest
coordinate descent. As opposed to the classical proof in [171], the atoms are here not
orthogonal to each other, do not have the same norm and do not correspond to the
coordinates of the ambient space. Indeed, lin(A) could be a subset of the ambient space
and the only assumptions on A are that is closed, bounded and k · kA is a norm over
lin(A). We do not make any incoherence assumption. The key element of our proof is the
definition of smoothness using the atomic norm. Furthermore, we use the properties of
the atomic norm to obtain a proof which shares the spirit of the Nesterov’s one without
having to rely on strong assumptions on A.

Relation to Previous MP Sublinear Rate. The sublinear convergence rate presented in
Theorem D.2.1.2 is fundamentally different in spirit from the one proved in [143]. Indeed,
their convergence analysis builds on top of the proof technique used for Frank-Wolfe
in [96]. They introduce a dependency from the atomic norm of the iterates as a way to
constrain the part of the space in which the optimization is taking place which artificially in-
duce a notion of duality gap. They do so by defining r :=max{kx?kA,kx0kA . . . ,kxTkA}<
•. [143] also used an affine invariant notion of smoothness, thus obtaining an affine
invariant rate. On the other hand, their notion of smoothness depends explicitly on r .

153



Appendix D On Matching Pursuit and Coordinate Descent

While this constant can be further upper bounded with the level set radius, it is not known
a priori, which makes the estimation of the smoothness constant problematic as it is
needed in the algorithm and the proof technique more involved. We propose a much
more elegant solution, which uses a different affine invariant definition of smoothness
which explicitly depend on the atomic norm. Furthermore, we managed to get rid of the
dependency on the sequence of the iterates by using only properties of the atomic norm
without any additional assumption (finiteness of r).

Relation to Steepest Coordinate Descent. From our analysis, we can readily recover
existing rates for coordinate descent. Indeed, if A is the L1-ball in an n dimensional space,
the rate of Theorem D.2.1.2 with exact oracle can be written as:

f (xt+1)� f (x?) 2L1R2
1

t +2
 2L2R2

1
t +2

 2L2nR2
2

t +2
,

where the first inequality is our rate, the second inequality is the rate of [231] and the last
inequality is the rate given in [171], both with global Lipschitz constant. Therefore, by
measuring smoothness with the atomic norm, we have shown a tighter dependency on the
dimensionality of the space. Indeed, the atomic norm gives the tightest norm to measure
the product between the smoothness of the function and the level set radius among the
known rates. Therefore, our rate for steepest coordinate descent is the tightest known1.

Coordinate Descent and Affine Transformations. But what does it mean to have an
affine invariant rate for coordinate descent? By definition, it means that if one applies an
affine transformation to the L1-ball, the coordinate descent algorithm in the natural basis
and on the transformed domain Q̂ are equivalent. Note that in the transformed problem,
the coordinates do not corresponds to the natural coordinates anymore. Indeed, in the
transformed domain the coordinates are êi = M�1ei where M�1 is the inverse of the affine
map M : Q̂! Q. If one would instead perform coordinate descent in the transformed
space using the natural coordinates, one would obtain not only different atoms but also a
different iterate sequence. In other words, while Matching Pursuit is fully affine invariant,
the definition of CD is not, as the choice of the coordinates is not part of the definition
of the optimization problem. The two algorithms do coincide for one particular choice
of basis, the canonical coordinate basis for A.

Sublinear Rate of Random Pursuit

There is a significant literature on optimization methods which do not require full gradient
information. A notable example is random coordinate descent, where only a random

1Note that for coordinate-wise L our definition is equivalent to the classical one. LA  L2 if the norm is
defined over more than one dimension (i.e. blocks), otherwise there is equality. For the relationship of
L1-smoothness to coordinate-wise smoothness, see also [108, Theorem 4 in Appendix].
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component of the gradient is known. As long as the direction that is selected by the LMO
is not orthogonal to the gradient we have convergence guarantees due to the inexact oracle
definition. We now abstract from the random coordinate descent setting and analyze
a randomized variant of matching pursuit, the random pursuit algorithm, in which the
atom z is randomly sampled from a distribution over A, rather than picked by a linear
minimization oracle. This approach is particularly interesting, as it is deeply connected to
the random pursuit algorithm analyzed in [229]. For now we assume that we can compute
the projection of the gradient onto a single atom h— f ,zi efficiently. In order to present
a general recipe for any atom set, we exploit the notion of inexact oracle and define the
inexactness of the expectation of the sampled direction for a given sampling distribution:

d̂ 2 := min
d2lin(A)

Ez2Ahd,zi2

kdk2
A⇤

. (D.7)

This constant was already used in [228] to measure the convergence of random pursuit
(b 2 in his notation). Note that for uniform sampling from the corners of the L1-ball, we
have d̂ 2 = 1

n . Indeed, Ez2Ahd,zi2 = 1
n for any d. This definition holds for any sampling

scheme as long as d̂ 2 6= 0. Note that by using this quantity we do not get the tightest
possible rate, as at each iteration, we consider how much worse a random update could
be compared to the optimal (steepest) update.

We are now ready to present the sublinear convergence rate of random matching pursuit.

Theorem D.2.1.3. Let A⇢H be a closed and bounded set. We assume that k ·kA is a
norm. Let f be convex and LA-smooth w.r.t. the norm k ·kA over lin(A) and let RA be the
radius of the level set of x0 measured with the atomic norm. Then, Algorithm 10 converges
for t � 0 as

Ez
⇥

f (xt+1)
⇤
� f (x?)

2LAR2
A

d̂ 2(t +2)
,

when the LMO is replaced with random sampling of z from a distribution over A.

Gradient-Free Variant. If is possible to obtain a fully gradient-free optimization
scheme. In addition to having replaced the LMO in Algorithm 9 by the random sampling
as above, as can additionally also replace the line search step on the quadratic upper
bound given by smoothness, with instead an approximate line search on f . As long as the
update scheme guarantees as much decrease as the above algorithm, the convergence rate
of Theorem D.2.1.3 holds.

Discussion. This approach is very general, as it allows to guarantee convergence for
any sampling scheme and any set A provided that d̂ 2 6= 0. In the coordinate descent
case we have that for the worst possible gradient for random has d̂ 2 = 1

n . Therefore,
the speed-up of steepest can be up to a factor equal to the number of dimensions in the
best case. Similarly, if z is sampled from a spherical distribution, d̂ 2 = 1

n [229]. More
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examples of computation of d̂ 2 can be found in [228, Section 4.2]. Last but not least, note
that d̂ 2 is affine invariant as long as the sampling distribution over the atoms is preserved.

Strong Convexity and Affine Invariant Linear Rates

Similar to the affine invariant notion of smoothness, we here define the affine invariant
notion of strong convexity.

µA := inf
x,y2lin(A)

x6=y

2
ky�xk2

A
D(y,x) .

where D(y,x) := f (y)� f (x)�h— f (x),y�xiWe can now show the linear convergence
rate of both the matching pursuit algorithm and its random pursuit variant.

Theorem D.2.1.4. Let A ⇢ H be a closed and bounded set. We assume that k · kA is
a norm. Let f be µA-strongly convex and LA-smooth w.r.t. the norm k · kA, both over
lin(A). Then, Algorithm 10 converges for t � 0 as

et+1 
�
1�d 2 µA

LA

�
et .

where et := f (xt)� f (x?). If the LMO direction is sampled randomly from A, Algo-
rithm 10 converges for t � 0 as

Ez [et+1|xt ]
�
1� d̂ 2 µA

LA

�
et .

Relation to Previous MP Linear Rate. Again, the proof of Theorem D.2.1.4 extends
the convergence analysis of steepest coordinate descent using solely the affine invariant
definition of strong convexity and the properties of the atomic norm. Note that again we de-
fine the strong convexity constant without relying on r =max{kx?kA,kx0kA . . . ,kxTkA}<
• as in [143]. We now show that our choice of the strong convexity parameter is the
tightest w.r.t. any choice of the norm and that we can precisely recover the non affine
invariant rate of [143]. Let us recall their notion of minimal directional width, which is
the crucial constant to measure the geometry of the atom set for a fixed norm:

mDW(A) := min
d2lin(A)

d6=0

max
z2A

D d
kdk ,z

E
.

Note that for CD we have that mDW(A) = 1p
n . Now, we relate the affine invariant notion

of strong convexity with the minimal directional width and the strong convexity w.r.t.
any chosen norm. This is important, as we want to make sure to perfectly recover the
convergence rate given in [143].
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Lemma D.2.1.5. Assume f is µ-strongly convex w.r.t. a given norm k ·k over lin(A) and
A is symmetric. Then:

µA �mDW(A)2 µ .

We then recover their non-affine-invariant rate as:

et+1 
⇣

1�d 2 µ mDW(A)2

L radiusk·k(A)2

⌘
et .

Relation to Coordinate Descent. When we fix A as the L1-ball and use an exact oracle
our rate becomes:

et+1 
✓

1� µ1

L1

◆
et 

⇣
1� µ1

L

⌘
et 

⇣
1� µ

nL

⌘
et ,

where the first is our rate, the second is the rate of steepest CD [181] and the last is the
one for randomized CD [171] (n is the dimension of the ambient space). Therefore, our
linear rate for coordinate descent is the tightest known.

D.3 Accelerating Generalized Matching Pursuit
As we established in the previous sections, matching pursuit can be considered a gen-
eralized greedy coordinate descent where the allowed directions do not need to form
an orthogonal basis. This insight allows us to generalize the analysis of accelerated
coordinate descent methods and to accelerate matching pursuit [131, 176]. However it
is not clear at the outset how to even accelerate greedy coordinate descent, let alone the
matching pursuit method. Recently Song et al. [224] proposed an accelerated greedy
coordinate descent method by using the linear coupling framework of [8]. However the
updates they perform at each iteration are not guaranteed to be sparse which is critical
for our application. We instead extend the acceleration technique in [229] which in turn
is based on [131]. They allow the updates to the two sequences of iterates x and bbb to be
chosen from any distribution. If this distribution is chosen to be over coordinate directions,
we get the familiar accelerated coordinate descent, and if we instead chose the distribution
to be over the set of atoms, we would get an accelerated random pursuit algorithm. To
obtain an accelerated matching pursuit algorithm, we need to additionally decouple the
updates for x and bbb and allow them to be chosen from different distributions. We will
update x using the greedy coordinate update (or the matching pursuit update), and use
a random coordinate (or atom) direction to update bbb.

The possibility of decoupling the updates was noted in [228, Corollary 6.4] though
its implications for accelerating greedy coordinate descent or matching pursuit were not
explored. From here on out, we shall assume that the linear space spanned by the atoms
A is finite dimensional. This was not necessary for the non-accelerated matching pursuit
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and it remains open if it is necessary for accelerated MP. When sampling, we consider
only a non-symmetric version of the set A with all the atoms in the same half space. Line
search ensures that sampling either z or �z yields the same update. For simplicity, we
focus on an exact LMO.

D.3.1 From Coordinates to Atoms
For the acceleration of MP we make some stronger assumption w.r.t. the rates in the
previous section. In particular, we will not obtain an affine invariant rate which remains
an open problem. The key challenges for an affine invariant accelerated rate are strong
convexity of the model, which can be solved using arguments similar to [51] and the fact
that our proof relies on defining a new norm which deform the space in order to obtain
favorable sampling properties as we will explain in this section. The main difference
between working with atoms and working with coordinates is that projection along
coordinate basis vectors is ’unbiased’. Let ei represent the ith coordinate basis vector.
Then for some vector d, if we project along a random basis vector ei,

Ei2[n][hei,diei] =
1
n

d .

However if instead of coordinate basis, we choose from a set of atoms A, then this is no
longer true. We can correct for this by morphing the geometry of the space. Suppose we
sample the atoms from a distribution Z defined over A. Let us define

P̃ := Ez⇠Z [zz>] .

We assume that the distribution Z is such that lin(A) ✓ range(P̃). This intuitively
corresponds to assuming that there is a non-zero probability that the sampled z⇠ Z is
along the direction of every atom zt 2A i.e.

Pz⇠Z [hz,zti> 0]> 0, 8zt 2A .

Further let P = P̃† be the pseudo-inverse of P̃. Note that both P and P̃ are positive
semi-definite matrices. We can equip our space with a new inner product h·,P·i and the
resulting norm k·kP. With this new dot product,

Ez⇠Z [hz,Pdiz] = Ez⇠Z [zz>]Pd = P†Pd = d .

The last equality follows from our assumption that lin(A)✓ range(P̃).

D.3.2 Analysis
Modeling explicitly the dependency on the structure of the set is crucial to accelerate MP.
Indeed, acceleration works by defining two different quadratic subproblems, one upper
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Algorithm 11 Accelerated Random Pursuit
1: init x0 = bbb0 = y0, b0 = 0, and n 0
2: for t = 0,1 . . .T
3: Solve a2

t+1Ln 0 = bt +at+1
4: bt+1 := bt +at+1
5: tt := at+1

bt+1
6: Compute yt := (1� tt)xt + ttbbbt
7: Sample zt ⇠ Z
8: xt+1 := yt� h— f (yt),zti

Lkztk2
2

zt

9: bbbt+1 := bbbt�at+1h— f (yt),ztizt
10: end for

Algorithm 12 Accelerated Matching Pursuit
1: init x0 = bbb0 = y0, b0 = 0, and n
2: for t = 0,1 . . .T
3: Solve a2

t+1Ln = bt +at+1
4: bt+1 := bt +at+1
5: tt := at+1

bt+1
6: Compute yt := (1� tt)xt + ttbbbt
7: Find zt := LMOA(— f (yt))

8: xt+1 := yt� h— f (yt),zti
Lkztk2

2
zt

9: Sample z̃t ⇠ Z
10: bbbt+1 := bbbt�at+1h— f (yt), z̃tiz̃t
11: end for

bound given by smoothness, and one lower bound given by a model of the function. The
constraints on the set of possible descent direction implicitly used in MP influence both
these subproblems. While the smoothness quadratic upper bound contains information
about A in its definition (y = x+ gz and kzkA = 1), the model of the function needs
explicit modeling of A. This is particularly crucial when sampling a direction in the
model update, which can be thought as a sort of exploration part of the algorithm. In both
the algorithms, the update of the parameter bbb corresponds to optimizing the modeling
function y which can be given as :

yt+1(x) = yt(x)+at+1

⇣
f (yt)+ hz̃>t — f (yt), z̃>t P(x�yt)i

⌘
, (D.8)

where y0(x) = 1
2kx�x0k2

P.

Lemma D.3.2.1. The update of bbb in Algorithm 11 and 12 minimizes the model
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bbbt 2 argmin
x

yt(x) .

We will be first discussing the theory for the greedy accelerated method in detail. As
evident from the algorithm 12, another important constant which is required for both the
analysis and to actually run the algorithm is n for which:

n  max
d2lin(A)

E
⇥
(z̃>t d)2kz̃tk2

P
⇤
kz(d)k2

2
(z(d)>d)2 ,

where z(d) is defined to be
z(d) = LMOA(�d) .

The quantity n relates the geometry of the atom set with the sampling procedure in a
similar way as d̂ 2 in Equation (D.7) but instead of measuring how much worse a random
update is when compared to a steepest update.

Theorem D.3.2.2. Let f be a convex function and A be a symmetric compact set. Then
the output of algorithm 12 for any t � 1 converges with the following rate:

E[ f (xt)]� f (x?) 2Ln
t(t +1)

kx?�x0k2
P .

Proof. We extend the proof technique of [131, 229] to allow for general atomic updates.
The analysis can be found in Appendix D.8.1

Once we understand the convergence of the greedy approach, the analysis of accelerated
random pursuit can be derived easily. Here, we state the rate of convergence for accelerated
random pursuit:

Theorem D.3.2.3. Let f be a convex function and A be a symmetric set. Then the output
of the algorithm 11 for any t � 1 converges with the following rate:

E[ f (xt)]� f (x?) 2Ln 0

t(t +1)
kx?�x0k2

P ,

where
n 0  max

d2lin(A)

E
⇥
(z>t d)2kztk2

P
⇤

E
⇥
(z>t d)2/kztk2

2
⇤ .

Discussion on Greedy Accelerated Coordinate Descent. The convergence rate for
greedy accelerated coordinate descent can directly be obtained from the rate from acceler-
ated matching pursuit. Let the atom set A consist of the standard basis vectors {ei, i 2 [n]}
and Z be a uniform distribution over this set. Then algorithm 11 reduces to the accelerated
randomized coordinate method (ACDM) of [131, 176] and we recover their rates. Instead
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if we use algorithm 12, we obtain a novel accelerated greedy coordinate method with a
(potentially) better convergence rate.2

Lemma D.3.2.4. When A = {ei, i 2 [n]} and Z is a uniform distribution over A, then
P = nl, n 0 = n and n 2 [1,n].

D.4 Empirical Evaluation
In this section we aim at empirically validate our theoretical findings. In both experiments
we use 1 and the intrinsic dimensionality of lin(A) as n and n 0 respectively. Note that a
value of n smaller than n 0 represents the best case for the steepest update. We implicitly
assume that the worst case in which a random update is as good as the steepest one never
happens.

Toy Data: First, we report the function value while minimizing the squared distance
between the a random 100 dimensional signal with both positive and negative entries and
its sparse representation in terms of atoms. We sample a random dictionary containing
200 atoms which we then make symmetric. The result is depicted in Figure D.1. As
anticipated from our analysis, the accelerated schemes converge much faster than the
non-accelerated variants. Furthermore, in both cases the steepest update converge faster
than the random one, due to a better dependency on the dimensionality of the space.

Real Data: We use the under-sampled Urban HDI Dataset from which we extract the
dictionary of atoms using the hierarchical clustering approached of [79]. This dataset
contains 5’929 pixels, each associated with 162 hyperspectral features. The number of
dictionary elements is 6, motivated by the fact that 6 different physical materials are
depicted in this HSI data [78]. We approximate each pixel with a linear combination of
the dictionary elements by minimizing the square distance between the observed pixel and
our approximation. We report in Figure D.2 the loss as an average across all the pixels:

min
xi2lin(A)

1
N

N

Â
i=1
kxi�bik2

We notice that as expected, the steepest matching pursuit converges faster than the
random pursuit, but as expected both of them converge at the same regime. On the other
hand, the accelerated scheme converge much faster than the non-accelerated variants.
Note that the acceleration kicks in only after a few iterations as the accelerated rate
has a worse dependency on the intrinsic dimensionality of the linear span than the non
accelerated algorithms. We notice that the speedup of steepest MP is much more evident
in the synthetic data. The reason is that this experiment is much more high dimensional
than the hyperspectral data. Indeed, the span of the dictionary is a 6 dimensional manifold
in the latter and the full ambient space in the former and the steepest update yields a better
dependency on the dimensionality.

2Simultaneously (and independently) [145] derived the same accelerated greedy coordinate algorithm.
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Figure D.1: loss for synthetic data
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Figure D.2: loss for hyperspectral data

D.5 Conclusions
In this paper we presented a unified analysis of matching pursuit and coordinate descent
algorithms. As a consequence, we exploit the similarity between the two to obtain the
best of both worlds: tight sublinear and linear rates for steepest coordinate descent and the
first accelerated rate for matching pursuit and steepest coordinate descent. Furthermore,
we discussed the relation between the steepest and the random directions by viewing
the latter as an approximate version of the former. An affine invariant accelerated proof
remains an open problem.
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Proofs for Main Results

D.6 Sublinear Rates
Theorem’ D.2.1.1. Assume f is L-smooth w.r.t. a given norm k ·k, over h(iA) where A
is symmetric. Then,

LA  L radiusk·k(A)2 . (D.9)

Proof. Let D(y,x) := f (y)� f (x)+ gh— f (x),y�xi By the definition of smoothness of
f w.r.t. k ·k,

D(y,x) L
2
ky�xk2 .

Hence, from the definition of LA,

LA  sup
x,y2h(iA)
y=x+gz

kzkA=1,g2R>0

2
g2

L
2
ky�xk2

= L sup
z s.t.kzkA=1

ksk2

= L radiusk·k(A)2 .

The definition of the smoothness constant w.r.t. the atomic norm yields the following
quadratic upper bound:

LA = sup
x,y2h(iA)
y=x+gz

kzkA=1,g2R>0

2
g2 [ f (y)� f (x)+ h— f (x),y�xi] . (D.10)

Furthermore, let:
R2
A = max

x2h(iA)
f (x) f (x0)

kx�x?k2
A . (D.11)

Now, we show that the algorithm we presented is affine invariant. An optimization method
is called affine invariant if it is invariant under affine transformations of the input problem:
If one chooses any re-parameterization of the domain C by a surjective linear or affine map
M : Ĉ! C, then the “old” and “new” optimization problems minx2C f (x) and minx̂2Ĉ f̂ (x̂)
for f̂ (x̂) := f (Mx̂) look the same to the algorithm. Note that — f̂ = MT — f .
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First of all, let us note that LA is affine invariant as it does not depend on any norm.
Now:

Mx̂t+1 = M
✓

x̂t +
h— f̂ (x̂t), ẑti

LA
ẑt

◆

= Mx̂t +
h— f̂ (x̂t), ẑti

LA
Mẑt

= xt +
h— f̂ (x̂t), ẑti

LA
zt

= xt +
hMT — f (xt), ẑti

LA
zt

= xt +
h— f (xt),Mẑti

LA
zt

= xt +
h— f (xt),zti

LA
zt

= xt+1 .

Therefore the algorithm is affine invariant.

D.6.1 Affine Invariant Sublinear Rate

Theorem’ D.2.1.2. Let A ⇢H be a closed and bounded set. We assume that k · kA is
a norm over h(iA). Let f be convex and LA-smooth w.r.t. the norm k ·kA over h(iA),
and let RA be the radius of the level set of x0 measured with the atomic norm. Then,
Algorithm 10 converges for t � 0 as

f (xt+1)� f (x?)
2LAR2

A
d 2(t +2)

,

where d 2 (0,1] is the relative accuracy parameter of the employed approximate LMO (D.3).

Proof. Recall that z̃t is the atom selected in iteration t by the approximate LMO defined
in (D.3). We start by upper-bounding f using the definition of LA as follows:

f (xt+1)  min
g2R

f (xt)+ gh— f (xt), z̃ti+
g2

2
LAkzk2

A

= min
g2R

f (xt)+ gh— f (xt), z̃ti+
g2

2
LA

 f (xt)�
h— f (xt), z̃ti2

2LA

164



D.6 Sublinear Rates

= f (xt)�
h—k f (xt), z̃ti2

2LA

 f (xt)�d 2 h—k f (xt),zti2

2LA
.

Where —k f is the parallel component of the gradient wrt the linear span of A. Note that
kdkA⇤ := sup{hz,di,z 2A} is the dual of the atomic norm. Therefore, by definition:

h—k f (xt),zti2 = k�—k f (xt)k2
A⇤ ,

which gives:

f (xt+1) f (xt)�d 2 1
2LA
k—k f (xt)k2

A⇤

 f (xt)�d 2 1
2LA

�
�h—k f (xt),xt�x?i

�2

R2
A

= f (xt)�d 2 1
2LA

�
h—k f (xt),xt�x?i

�2

R2
A

 f (xt)�d 2 1
2LA

( f (xt)� f (x?))2

R2
A

,

where the second inequality is Cauchy-Schwarz and the third one is convexity. Which
gives:

et+1 
2LAR2

A
d 2(t +2)

.

D.6.2 Randomized Affine Invariant Sublinear Rate

For random sampling of z from a distribution over A, let

d̂ 2 := min
d2hAi

Ez2Ahd,zi2

kdk2
A⇤

. (D.12)

Theorem’ D.2.1.3. Let A ⇢H be a closed and bounded set. We assume that k · kA is
a norm. Let f be convex and LA smooth w.r.t. the norm k · kA over h(iA) and let RA
be the radius of the level set of x0 measured with the atomic norm. Then, Algorithm 10
converges for t � 0 as

Ez
⇥

f (xt+1)
⇤
� f (x?)

2LAR2
A

d̂ 2(t +2)
,
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when the LMO is replaced with random sampling of z from a distribution over A.

Proof. Recall that z̃t is the atom selected in iteration t by the approximate LMO defined
in (D.3). We start by upper-bounding f using the definition of LA as follows

Ez f (xt+1)  Ez


min
g2R

f (xt)+ gh— f (xt),zi+
g2

2
LAkzk2

A

�

= Ez


min
g2R

f (xt)+ gh— f (xt),zi+
g2

2
LA

�

 f (xt)�
Ez
⇥
h— f (xt),zi2

⇤

2LA

= f (xt)�
Ez
⇥
h—k f (xt),zi2

⇤

2LA

 f (xt)� d̂ 2 h—k f (xt),zti2

2LA
.

The rest of the proof proceeds as in Theorem D.2.1.2.

D.7 Linear Rates

D.7.1 Affine Invariant Linear Rate

Let us first the fine the affine invariant notion of strong convexity based on the atomic
norm:

µA := inf
x,y2hAi

x6=y

2
ky�xk2

A
[ f (y)� f (x)�h— f (x),y�xi] .

Let us recall the definition of minimal directional width from [143]:

mDW(A) := min
d2h(iA)

d6=0

max
z2A
h d
kdk ,zi .

Then, we can relate our new definition of strong convexity with the mDW(A) as follows.

Theorem’ D.2.1.5. Assume f is µ strongly convex wrt a given norm k ·k over h(iA) and
A is symmetric. Then:

µA �mDW(A)2 µ .
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Proof. First of all, note that for any x,y 2 h(iA) with x 6= y we have that:

h— f (x),x� yi2  k— f (x)k2
A⇤kx�yk2

A .

Therefore:

µA = inf
x,y2hAi

x6=y

2
ky�xk2

A
D(x,y)

� inf
x,y,d2hAi
x6=y,d6=0

kdk2
A⇤

hd,x�yi2 2D(x,y)

� inf
x,y,d2hAi
x6=y,d6=0

kdk2
A⇤

hd,x�yi2 µkx�yk2

� inf
x,y,d2hAi
x6=y,d 6=0

kdk2
A⇤

hd, x�y
kx�yki2

µ

� inf
x,y,d2hAi
x6=y,d6=0

kdk2
A⇤

kdk2 µ

� inf
d2hAi
d 6=0

max
z

hd,zi2
kdk2 µ

= mDW(A)2 µ .

Theorem’ D.2.1.4. (Part 1). Let A ⇢H be a closed and bounded set. We assume that
k ·kA is a norm. Let f be µA-strongly convex and LA-smooth w.r.t. the norm k ·kA, both
over h(iA). Then, Algorithm 10 converges for t � 0 as

et+1 
�
1�d 2 µA

LA

�
et .

where et := f (xt)� f (x?).

Proof. Recall that z̃t is the atom selected in iteration t by the approximate LMO defined
in (D.3). We start by upper-bounding f using the definition of LA as follows

f (xt+1)  min
g2R

f (xt)+ gh— f (xt), z̃ti+
g2

2
LAkzk2

A

= min
g2R

f (xt)+ gh— f (xt), z̃ti+
g2

2
LA
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 f (xt)�
h— f (xt), z̃ti2

2LA

= f (xt)�
h—k f (xt), z̃ti2

2LA

 f (xt)�d 2 h—k f (xt),zti2

2LA

= f (xt)�d 2 h�—k f (xt),zti2

2LA
.

Where kdkA⇤ := sup{hz,di,z 2A} is the dual of the atomic norm. Therefore, by defini-
tion:

h�—k f (xt),zti2 = k—k f (xt)k2
A⇤ ,

which gives:

f (xt+1) f (xt)�d 2 1
2LA
k—k f (xt)k2

A⇤ .

From strong convexity we have that:

f (y)� f (x)+ h— f (x),y�xi+ µA
2
ky�xk2

A .

Fixing y = xt + g(x?�xt) and g = 1 in the LHS and minimizing the RHS we obtain:

f (x?)� f (xt)�
1

2µA

h— f (xt),x?�xti
kx?�xtk2

A

� f (xt)�
1

2µA
k—k f (xt)k2

A⇤ ,

where the last inequality is obtained by the fact that h— f (xt),x?�xti= h—k f (xt),x?�
xtiand Cauchy-Schwartz. Therefore:

k— f (xt)kA⇤ � 2et µA ,

which yields:

et+1  et�d 2 µA
LA

et .
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D.7.2 Randomized Affine Invariant Linear Rate

Theorem’ D.2.1.4. (Part 2). Let A ⇢H be a closed and bounded set. We assume that
k ·kA is a norm. Let f be µA-strongly convex and LA-smooth w.r.t. the norm k ·kA, both
over h(iA). Then, Algorithm 10 converges for t � 0 as

Ez [et+1|xt ]
�
1� d̂ 2 µA

LA

�
et ,

where et := f (xt)� f (x?), and the LMO direction z is sampled randomly from A, from
the same distribution as used in the definition of d̂ .

Proof. We start by upper-bounding f using the definition of LA as follows

Ez [ f (xt+1)]  Ez


min
g2R

f (xt)+ gh— f (xt), z̃ti+
g2

2
LAkzk2

A

�

= Ez


min
g2R

f (xt)+ gh— f (xt), z̃ti+
g2

2
LA

�

 f (xt)�Ez


h— f (xt), z̃ti2

2LA

�

 f (xt)� d̂ 2 h— f (xt),zti2
2LA

= f (xt)� d̂ 2 h—k f (xt), z̃ti2

2LA

= f (xt)� d̂ 2 h�—k f (xt), z̃ti2

2LA
.

The rest of the proof proceeds as in Part 1 of the proof of Theorem D.2.1.4.

D.8 Accelerated Matching Pursuit

Our proof follows the technique for acceleration given in [131, 169, 176, 229]

D.8.1 Proof of Convergence

We define kxk2
P = x>Px. We start our proof by first defining the model function yt . For

t = 0, we define :
y0(x) =

1
2
kx�bbb0k2

P .
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Algorithm 13 Accelerated Matching Pursuit
1: init x0 = bbb0 = y0, b0 = 0, and n
2: for t = 0,1 . . .T
3: Solve a2

t+1Ln = bt +at+1
4: bt+1 = bt +at+1
5: tt =

at+1
bt+1

6: Compute yt = (1� tt)xt + ttbbbt
7: Find zt := LMOA(— f (yt))

8: xt+1 = yt� h— f (yt),zti
Lkztk2

2
zt

9: sample z̃t ⇠ Z
10: bbbt+1 = bbbt�at+1h— f (yt), z̃tiz̃t
11: end for

Then for t > 1, yt is inductively defined as

yt+1(x) = yt(x)+at+1

⇣
f (yt)+ hz̃>t — f (yt), z̃>t P(x�yt)i

⌘
. (D.13)

Proof of Lemma D.3.2.1. We will prove the statement inductively. For t = 0, y0(x) =
1
2kx�bbb0k2

P and so the statement holds. Suppose it holds for some t � 0. Observe that the
function yt(x) is a quadratic with Hessian P. This means that we can reformulate yt(x)
with minima at bbbt as

yt(x) = yt(bbbt)+
1
2
kx�bbbtk2

P .

Using this reformulation,

argmin
x

yt+1(x) = argmin
x

n
yt(x)+at+1

⇣
f (yt)+ hz̃>t — f (yt), z̃>t P(x�yt)i

⌘o

= argmin
x

n
yt(bbbt)+

1
2
kx�bbbtk2

P +at+1

⇣
f (yt)+ hz̃>t — f (yt), z̃>t P(x�yt)i

⌘o

= argmin
x

n1
2
kx�bbbtk2

P +at+1hz̃>t — f (yt), z̃>t P(x�bbbt)i
o

= bbbt�at+1h— f (yt), z̃tiz̃t

= bbbt+1 .

Lemma D.8.1.1 (Upper bound on yt(x)).

E[yt(x)] bt f (x)+y0(x) .

Proof. We will also show this through induction. The statement is trivially true for t = 0
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D.8 Accelerated Matching Pursuit

since b0 = 0. Assuming the statement holds for some t � 0,

E[yt+1(x)] = E
h
yt(x)+at+1

⇣
f (yt)+ hz̃>t — f (yt), z̃>t P(x�yt)i

⌘i

= E
h
yt(x)

i
+at+1E

h⇣
f (yt)+ hz̃>t — f (yt), z̃>t P(x�yt)i

⌘i

 bt f (x)+y0(x)+at+1

⇣
f (yt)+— f (yt)

>E
h
z̃t z̃>t

i
P(x�yt)i

⌘

= bt f (x)+y0(x)+at+1

⇣
f (yt)+— f (yt)

>P�1P(x�yt)i
⌘

= bt f (x)+y0(x)+at+1

⇣
f (yt)+— f (yt)

>(x�yt)i
⌘

 bt f (x)+y0(x)+at+1 f (x) .

In the above, we used the convexity of the function f (x) and the definition of P.

Lemma D.8.1.2 (Bound on progress). For any t � 0 of algorithm 13,

f (xt+1)� f (yt)�
1

2Lkztk2
2

— f (yt)
>
h
ztz>t

i
— f (yt) .

Proof. The update xt+1 along with the smoothness of f (x) guarantees that for gt+1 =
h— f (yt),zti

Lkztk2 ,

f (xt+1) = f (yt + gt+1zt)

 f (yt)+ gt+1h— f (yt),zti+
Lg2

t+1
2
kztk2

= f (yt)�
1

2Lkztk2
2

— f (yt)
>
h
ztz>t

i
— f (yt) .

Lemma D.8.1.3 (Lower bound on yt(x)). Given a filtration Ft upto time step t,

E[min
x

yt(x)|Ft ]� bt f (xt) .

Proof. This too we will show inductively. For t = 0, yt(x) = 1
2kx�bbb0k2

P � 0 with b0 = 0.
Assume the statement holds for some t � 0. Recall that yt(x) has a minima at bbbt and can
be alternatively formulated as yt(bbbt)+

1
2kx�bbbtk2

P. Using this,

y?
t+1 = min

x

h
yt(x)+at+1

⇣D
z̃>t — f (yt), z̃>t P(x�yt)

E
+ f (yt)

⌘i

= min
x


yt(bbbt)+at+1

✓D
z̃>t — f (yt), z̃>t P(x�yt)

E
+

1
2at+1

kx�bbbtk2
P + f (yt)

◆�
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= y?
t +at+1 f (yt)+at+1 min

x

D
Pz̃t z̃>t — f (yt),x�yt

E
+

1
2at+1

kx�bbbtk2
P

�
.

Since we defined yt = (1� tt)xt + ttbbbt , rearranging the terms gives us that

yt�bbbt =
1� tt

tt
(xt�yt) .

Let us take now compute E[y?
t+1|Ft ] by combining the above two equations:

E[y?
t+1|Ft ] = y?

t +at+1 f (yt)+
at+1(1� tt)

tt

D
PEt [z̃t z̃>t ]— f (yt),yt�xt

E

+at+1Et min
x

D
Pz̃t z̃>t — f (yt),x�bbbt

E
+

1
2at+1

kx�bbbtk2
P

�

= y?
t +at+1 f (yt)+

at+1(1� tt)

tt
h— f (yt),yt�xti

+at+1Et min
x

D
Pz̃t z̃>t — f (yt),x�bbbt

E
+

1
2at+1

kx�bbbtk2
P

�

= y?
t +at+1 f (yt)+

at+1(1� tt)

tt
h— f (yt),yt�xti

�
a2

t+1
2

— f (yt)
>Et

h
z̃t z̃>t PP�1Pz̃t z̃>t

i
— f (yt)

= y?
t +at+1 f (yt)+

at+1(1� tt)

tt
h— f (yt),yt�xti

�
a2

t+1
2

— f (yt)
>Et

h
z̃t z̃>t Pz̃t z̃>t

i
— f (yt) .

Let us define a constant n � 0 such that it is the smallest number for which the below
inequality holds for all t,

n— f (yt)
>
⇥
ztz>t

⇤

2Lkztk2
2

— f (yt)� — f (yt)
>E
h
z̃t z̃>t Pz̃t z̃>t

i
— f (yt) .

Also recall from Lemma D.8.1.2 that

f (xt+1)� f (yt)�
1

2Lkztk2
2

— f (yt)
>
h
ztz>t

i
— f (yt) .

Using the above two statements in our computation of y?
t+1, we get

E[y?
t+1|Ft ] = y?

t +at+1 f (yt)+
at+1(1� tt)

tt
h— f (yt),yt�xti
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�
a2

t+1
2

— f (yt)
>Et

h
z̃t z̃>t Pz̃t z̃>t

i
— f (yt)

� y?
t +at+1 f (yt)+

at+1(1� tt)

tt
h— f (yt),yt�xti

�
a2

t+1n
2

— f (yt)
>
h
ztz>t

i
— f (yt)

� y?
t +at+1 f (yt)+

at+1(1� tt)

tt
h— f (yt),yt�xti

+a2
t+1Ln( f (xt+1)� f (yt))

� y?
t +at+1 f (yt)+

at+1(1� tt)

tt
( f (yt)� f (xt))

+a2
t+1Ln( f (xt+1)� f (yt)) .

Let us pick at+1 such that it satisfies a2
t+1nL= bt+1. Then the above equation simplifies

to

E[y?
t+1|Ft ]� y?

t +
at+1

tt
f (yt)�

at+1(1� tt)

tt
f (xt)+bt+1( f (xt+1)� f (yt))

= y?
t �bt f (xt)+bt+1 f (yt)�bt+1 f (yt)+bt+1 f (xt+1)

= y?
t �bt f (xt)+bt+1 f (xt+1) .

We used that tt = at+1/bt+1. Finally we use the inductive hypothesis to conclude that

E[y?
t+1|Ft ]� y?

t �bt f (xt)+bt+1 f (xt+1)� bt+1 f (xt+1) .

Lemma D.8.1.4 (Final convergence rate). For any t � 1 the output of algorithm 13
satisfies:

E[ f (xt)]� f (x?) 2Ln
t(t +1)

kx?�x0k2
P .

Proof. Putting together Lemmas D.8.1.1 and D.8.1.3, we have that

btE[ f (xt)] E[y?
t ] E[yt(x?)] bt f (x?)+y0(x?) .

Rearranging the terms we get

E[ f (xt)]� f (x?) 1
2bt
kx?�x0k2

P .

To finish the proof of the theorem, we only have to compute the value of bt . Recall that

a2
t+1Ln = bt +at+1 .
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We will inductively show that at � t
2Ln . For t = 0, b0 = 0 and a1 =

1
2Ln which satisfies

the condition. Suppose that for some t � 0, the inequality holds for all iterations i  t.
Recall that bt = Ât

i=1 ai i.e. bt � t(t+1)
4Ln . Then

(at+1Ln)2�at+1Ln = btLn � t(t +1)
4

.

The positive root of the quadratic x2� x� c = 0 for c� 0 is x = 1
2
�
1+
p

4c+1
�
. Thus

at+1Ln � 1
2

⇣
1+
p

t(t +1)+1
⌘
� t +1

2
.

This finishes our induction and proves the final rate of convergence.

Lemma D.8.1.5 (Understanding n).

n  max
d2h(iA)

E
⇥
(z̃>t d)2kz̃tk2

P
⇤
kz(d)k2

2
(z(d)>d)2 ,

Proof. Recall the definition of n as a constant which satisfies the following inequality for
all iterations t

n— f (yt)
>
⇥
ztz>t

⇤

2Lkztk2
2

— f (yt)� — f (yt)
>E
h
z̃t z̃>t Pz̃t z̃>t

i
— f (yt) .

which then yields the following sufficient condition for n :

n  max
d2h(iA)

E
⇥
(z̃>t d)2kz̃tk2

P
⇤
kz(d)k2

2
(z(d)>d)2 ,

where z(d) is defined to be
z(d) = LMOA(�d) .

Proof of Theorem D.3.2.3. The proof of Theorem D.3.2.3 is exactly the same as that of
the previous except that now the update to bbbt is also a random variable. The only change
needed is the definition of n 0 where we need the following to hold:

n 0— f (yt)
> 1

2L
Et

h
ztz>t /kztk2

2

i
— f (yt)� — f (yt)

>E
h
ztz>t Pztz>t

i
— f (yt) .

Proof of Lemma D.3.2.4. When A= {ei, i 2 [n]} and Z is a uniform distribution over
A, then P̃ = 1/nl and P = nl. A simple computation shows that n 0 = n and n 2 [1,n].
Note that here n could be upto n times smaller than n 0 meaning that our accelerated
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greedy coordinate descent algorithm could be
p

n times faster than the accelerated random
coordinate descent. In the worst case n = n 0, but in practice one can pick a smaller n
compared to n 0 as the worst case gradient rarely happen. It is possible to tune n and n 0
empirically but we do not explore this directio
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k-SVRG: Variance Reduction for Large
Scale Optimization
Anant Raj1, Sebastian U. Stich2

1 – MPI for Intelligent Systems, Tübingen

2 – EPFL, Lausanne

Abstract
Variance reduced stochastic gradient (SGD) methods converge significantly faster
than the vanilla SGD counterpart. However, these methods are not very practical
on large scale problems, as they either i) require frequent passes over the full data
to recompute gradients—without making any progress during this time (like for
SVRG), or ii) they require additional memory that can surpass the size of the input
problem (like for SAGA).

In this work, we propose k-SVRG that addresses these issues by making best use
of the available memory and minimizes the stalling phases without progress. We
prove linear convergence of k-SVRG on strongly convex problems and convergence
to stationary points on non-convex problems. Numerical experiments show the
effectiveness of our method.

E.1 Introduction
We study optimization algorithms for empirical risk minimization problems f : Rd ! R
of the form

x? := argmin
x

f (x) , with f (x) :=
1
n

n

Â
i=1

fi(x) , (E.1)
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where each fi : Rd ! R is L-smooth.
Problems with this structure are omnipresent in machine learning, especially in super-

vised learning applications [26].
Stochastic gradient descent (SGD) [205] is frequently used to solve optimization

problems in machine learning. One drawback of SGD is that it does not converge at
the optimal rate on many problem classes (cf. [121, 165]). Variance reduced methods
have been introduced to overcome this challenge. Among the first of these methods were
SAG [127], SVRG [98], SDCA [217] and SAGA [54]. The variance reduced methods can
roughly be divided in two classes, namely i) methods that achieve variance reduction by
computing (non-stochastic) gradients of f from time to time, as for example done SVRG,
and ii) methods that maintain a table of previously computed stochastic gradients, such as
done in SAGA.

Whilst these technologies allow the variance reduced methods to converge at a faster
rate than vanilla SGD, they do not scale well to problems of very large scale. The reasons
are simple: i) not only is computing a full batch gradient — f (x) almost inadmissible when
the number of samples n is large, the optimization progress of SVRG completely stalls
while this expensive computation takes place. This is avoided in SAGA, but ii) at the cost
of O(dn) additional memory. When the data is sparse and the stochastic gradients — fi(x)
are not, the memory requirements can thus surpass the size of the dataset by orders of
magnitude.

In this work we address these issues and propose a class of variance reduced methods
that have i) shorter stalling phases of only order O(n/k) at the expense of only Õ(kd)
additional memory. Here k is a parameter that can be set freely by the user. To get short
stalling phases, it is advisable to set k such as to fit the capacity of the fast memory of the
system. We show that the new methods converge as fast as SVRG and SAGA on convex
and non-convex problems, but are more practical for large n. As a side-product of our
analysis, we also crucially refine the previous theoretical analysis of SVRG, as we will
outline in Section E.1.2 below.

E.1.1 SVRG, SAGA and k-SVRG
SVRG is an iterative algorithm, where in each each iteration only stochastic gradients,
i.e. — fi(x) for a random index i 2 [n], are computed, much like in SGD. In order to
attain variance reduction a full gradient — f (x) is computed at a snapshot point in every
few epochs. There are three issues with SVRG: i) the computation of the full gradient
requires a full pass over the dataset. No progress (towards the optimal solution) is made
during this time (see illustration in Figure E.1). On large scale problems, where one pass
over the data might take several hours, this can yield to wasteful use of resources; ii) the
theory requires the algorithm to restart at every snapshot point, resulting in discontinuous
behaviour (see Fig. E.1) and iii) on strongly convex problems, the snapshot point can only
be updated every W(k) iterations (cf. [34, 98]), where k = L/µ denotes the condition
number (see (E.9)). When the condition number is large, this means that the algorithm
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method complexity additional in situ no full
memory — fi comp. pass

Gradient Descent O(nk log 1
e ) O(d) O(n) 7

SAGA O((n+k) log 1
e ) O(dn) O(1) 3

SVRG O((n+k) log 1
e ) O(d) O(n) 7

SCSG O((k
e ^n+k) log 1

e ) O(d) < n 3
k-SVRG O((n+k) log 1

e ) O((dk+n) logk) O(n
k ) 3

Table E.1: Comparison of running times and (additional) storage requirement for different
algorithms on strongly convex functions, where k = L/µ denotes the condition number.
Most algorithms require in situ computations of many — fi(x) for the same x without
making progress. The longest such stalling phase is indicated, sometimes amounting to a
full pass over the data (also indicated).

relies for a long time on “outdated” deterministic information. In practice—as suggested
in the original paper by Johnson and Zhang [98]—the update interval is often set to O(n),
without theoretical justification.

SAGA circumvents the stalling phases by treating every iterate as a partial snapshot
point. That is, for each index i 2 [n] a full dimensional vector is kept in memory and
updated with the current value — fi(x) if index i is picked in the current iteration. Hence,
intuitively, in SAGA the gradient information at partial snapshot point does have more
recent information about the gradient as compared to SVRG.

A big drawback of this method is the memory consumption: unless there are specific
assumptions on the structure1 of f , this requires O(dn) memory (sparsity of the data does
not necessarily imply sparsity of the gradients). For large scale problems it is impossible
to keep all data available in fast memory (i.e. cache or RAM) which means we can
not run SAGA on large scale problems which do not have GLM structure. Although
SAGA can sometimes converge faster than SVRG (but not always, cf. [54]), the high
memory requirements prohibit it’s use. One main advantage of this algorithm is that
the convergence can be proven for every single iterate2—thus justifying stopping the
algorithm at any arbitrary time—whereas for SVRG convergence can only be proven for
the snapshot points.

We propose k-SVRG, a class of algorithms that addresses the limitations of both,
SAGA and SVRG. Compared to SVRG the proposed schmes have a reduced memory
footprint of only Õ(kd) and therefore allow to optimally use the available (fast) memory.
Compared to SVRG the schemes avoid long stalling phases on large scale applications
(see Fig. E.1). The methods do not require restarts and show smoother convergence
than SVRG (see Fig. E.1). As for SVRG, the convergence can only be guaranteed for

1Cf. the discussion in [54, Sec. 4].
2More precisely, convergence is not directly shown on the iterates, but in terms of an auxilarly Lyapunov

function.
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Figure E.1: Convergence behavior of SAGA, SVRG and k-SVRG. Left & Middle: SVRG
recomputes the gradient at the snapshot point which yields to stalling for a full epoch both
with respect to computation (left) and memory access (middle). SAGA requires only one
stochastic gradient computation per iteration (left), but also one memory access (middle:
roughly the identical performance as SVRG w.r.t. memory access). Right: k-SVRG does
not reset the iterates at a snapshot point and equally distributes the stalling phases.

snapshot points. However, unlike as in the original SVRG, the proposed 1-SVRG updates
the snapshot point every single epoch (n iterations) and thus provides more fine grained
performance guarantees than the original SVRG with W(k) iterations between snapshot
points.

E.1.2 Contributions
We present k-SVRG, a limited memory variance reduced optimization algorithm that
combines several good properties of SVRG as well as of SAGA. We propose two variants
of k-SVRG that require to store Õ(k) vectors and enjoy the theoretical convergence
guarantees, and one (more practical) variant that requires only 2k additional vectors in
memory. Some key properties of our proposed approaches are:
• Low memory requirements (like SVRG, unlike SAGA): We break the memory barrier

of SAGA. The required additional memory can freely be chosen by the user (parameter
k) and thus all available fast memory (but not more!) can be used by the algorithm.

• Avoiding long stalling phases (like SAGA, unlike SVRG): This is in particular useful
in large scale applications.

• Refinement of the SVRG analysis. To the best of our knowledge we present the first
analysis that allows arbitrary sizes of inner loops, not only W(k) as was supported by
previous results.

• Linear convergence on strongly-convex problems (like SVRG, SAGA), cf. Table E.1.

• Convergence on non-convex problems (like SVRG, SAGA).

Outline. We informally introduce k-SVRG in Section E.2 and give the full details in
Section E.3. All theoretical results are presented in Section E.4, the proofs can be found
in Appendix E.9 and E.10. We discuss the empirical performance in Section H.4.
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E.1.3 Related Work
Variance reduction alone is not sufficient to obtain the optimal convergence rate on
problem (E.1). Accelerated schemes that combine the variance reduction with momentum
as in Nesterov’s acceleration technique [168] achieve optimal convergence rate [6, 137].
We do not discuss accelerated methods in this paper, however, we assume that it should
be possible to accelerate the presented algorithm with the usual techniques.

There have also been significant efforts in developing stochastic variance reduced
methods for non-convex problems [7, 10, 186, 199, 200, 213]. We will especially build
on the technique proposed in [200] to derive the convergence analysis in the non-convex
setting.

Recent work has also addressed the issue of making the stalling phase of SVRG shorter.
In [132, 133] the authors propose SCSG, a method that makes only a batch gradient
update instead of a full gradient update. However, this gives a slower rate of convergence
(cf. Table E.1). In another line of work, there was an effort to combine the SVRG and
SAGA approach in an asynchronus optimization setting [199] (HSAG) to run different
updates in parallel. HSAG interpolates between SAGA and SVRG “per datapoint” which
means snapshot points corresponding to indices in a (fixed) set S are updated like in
SAGA, whereas all other snapshot points are updated after each epoch. This is orthogonal
to our approach: we treat all datapoints “equally”. All snapshot points are updated in the
same, block-wise fashion. Also, convergence of HSAG is not guaranteed for every value
of k. In another line of work Hofmann et al. [89] studied a version of SAGA with more
than one update per iteration.

E.2 k-SVRG: A Limited Memory Approach
In this section, we informally introduce our proposed limited memory algorithm k-
SVRG. For this, we will first present a unified framework that allows us to describe the
algorithms SVRG and SAGA in concise notation. Let x0,x1, . . . ,xT denote the iterates
of the algorithm, where x0 2 Rd is the starting point. For each component fi, i 2 [n], of
the objective function (E.1) we denote by qi 2 Rd the corresponding snapshot point. The
updates of the algorithms take the form

xt+1 = xt�hgit (xt) , with

git (xt) := — fit (xt)�— fit (qit )+
1
n

n

Â
i=1

— fi(qi) ,
(E.2)

where h > 0 denotes the stepsize, and it 2 [n] an index (typically selected uniformly at
random from the set [n]). The updates of SVRG and SAGA can both be written in this
general form, as we will review now.

SVRG As mentioned before, SVRG maintains only one active snapshot point x, i.e.
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qi = x for all i 2 [n]. Instead of storing all components — fi(x) separately, it suffices to
store one single snapshot point x as well as — f (x) in memory, as all components of the
gradient — fi(x) can be recomputed when applying the update (E.2). This results in a
slight increase in the computation cost, but in drastic reduction in the memory footprint.

SAGA The update of SAGA takes exactly the form (E.2). In general qi 6= q j for i 6= j.
Thus all qi parameters need to be kept in memory. In practice often — fi(qi) is stored
instead, as this avoids recomputation of — fi(qi).

k-SVRG As a natural interpolation between those two algorithms we propose the follow-
ing: instead of maintaining just one single snapshot point or n of them, just maintain a
few. Precisely, the proposed algorithm maintains a set of snapshot points Q⇢ Rd of
cardinality Õ(k logk), with the property qi 2Q for each i 2 [n]. Therefore, it suffices
to store only Q in the memory, and a mapping from each index i to its corresponding
element in Q. This needs Õ((dk + n) logk) memory. Opposed to SAGA, it is not
adviced to store — fi(qi) directly, as this would require O(dn) memory.

k2-SVRG We also propose a heuristic variant of k-SVRG that maintains at most 2k
snapshot points. This method comes without theoretical convergence rates, however, it
shows quite good performance in practice.

We will give a formal definition of the algorithm in the next Section E.3. Below we
introduce some notation that will be needed later.

E.2.1 Notation
Our algorithm consists of updates of two types: updates of the iterates as in (E.2),
performed in the inner loop and the updates of the snapshot points at the end of the inner
loops (thus constituting the outer loop). We denote the iterates of the algorithm by xm

t ,
where t denotes the counter of the inner loop (consisting of ` iterations), and m� 0 the
counter of the outer loop. For our algorithm (unlike in SAGA), the iterate at the end of an
inner loop coincides with the first iterate of the next inner loop, xm

` = xm+1
0 . Whenever we

only consider the iterates xm
0 we will drop the index zero for convenience.

For clarity, we will also index the snapshot points by m, that is we write q m
i for the

snapshot point corresponding to the component fi in the mth outer loop. And consequently,
Qm := {q m

i : i 2 [n]}. Thus the update (E.2) now reads

xm
t+1 = xm

t �hgm
it (x

m
t ) , with

gm
it (x

m
t ) = — fit (x

m
t )�— fit (q m

it )+
1
n

n

Â
i=1

— fi(q m
i ) .

(E.3)
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It will be convenient to define

am
i := — fi(q m

i ) , ām :=
1
n

n

Â
i=1

am
i . (E.4)

Notation for Expectation. E denotes the full expectation with respect to the joint
distribution of all chosen data points. Frequently, we will only consider the updates within
one outer loop, and condition on the past iterates. Let Im

t := {i0, . . . , it�1} denote the set
of chosen indices in the mth outer loop until the tth inner loop iteration. Then Et,m = EIm

t
denotes the expectation with respect to the joint distribution of all indices in Im

t . The
algorithm k-SVRG-V2 samples additional q indices, independent of Im

` and we denote
the expectation over those samples by E0q. Finally, we also denote E`,mE0q as E0q,m and
E`,m as Em.

E.3 The Algorithm
In this section, we present k-SVRG in detail. The pseudecode is given in Algorithm 14.
k-SVRG consist of inner and outer loops similar to SVRG, however the size of the inner
loops is much smaller. Recall that t = 0, . . . ,`�1 denotes the counter of the inner loop
(where `= dn/ke), and m� 0 denotes the counter of the outer loop. Similar as in SVRG,
a new snapshot point (denoted by x̃m+1) is computed as an average of the iterates xm

t .
However, in our case is a weighted average

x̃m+1 :=
1
S`

`�1

Â
t=0

(1�hµ)`�1�txm
t , (E.5)

where the normalization S` is defined in the algorithm. Note that µ = 0 for non-convex
functions and the weighted average in (E.5) reduces to a uniform average.

In Algorithm 14, we describe two variants of k-SVRG. These variants differ in the way
how the snapshot points q m

i are updated at the end of each inner loop.
V1 In k-SVRG-V1, we update the snapshot points as follows, before moving to the
(m+1)th outerloop:

q m+1
i :=

(
q m

i , if i 62Fm,
x̃m+1, otherwise.

(E.6)

The set Fm keeps track of the selected indices in the inner loop. Hence, we don’t need
to store |Fm| copies of the the snapshot point x̃m+1 in memory, it suffices to store one
copy and the set Fm, as mentioned in Section E.2 before.

It is not required that the set of indices that are used to update the q m
i are identical with

the indices used to compute x̃m+1 in the inner loop. Moreover, also the number points
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Algorithm 14 k-SVRG-V1 / k-SVRG-V2(q)
1: goal minimize f (x) = 1

n Ân
i=1 fi(x)

2: init x0
0, `, h , µ , a0

i 8i 2 [n], ā0 1
n Ân

i=1 a0
i

3: S` Â`�1
i=0 (1�hµ)i

4: for m = 0 . . .M�1
5: init Fm /0
6: for t = 0 . . .`�1
7: pick it 2 [n] uniformly at random
8: am

it  — fit (q m
it )

9: xm
t+1 xm

t �h
�
— fit (xm

t )�am
it + ām�

10: Fm Fm[{it}
11: end for
12: x̃m+1 1

S` Â`�1
t=0(1�hµ)`�1�txm

t

13: xm+1
0  xm

`
14: if variant k-SVRG-V2(q)
15: Fm sample without replacement (q,n)
16: end if

17: q m+1
i  

(
x̃m+1, if i 2Fm

q m
i , otherwise

18: ām+1 ām + 1
n Âi2Fm — fi(q m+1

i )� 1
n Âi2Fm — fi(q m

i )
19: end for
20: return x̃M

does not need to be the same. The following version of k-SVRG makes this independence
explicit.

V2 In k-SVRG-V2(q), we sample q indices without replacement from [n] at the end of the
mth outer loop, which form the set Fm, and then update the snapshot points as before
in (E.6). The suggested choice of q is O(n/k), and whenever we drop the argument,
we simply set q = `= dn/ke.

Memory Requirement. To estimate the memory requirement we need to know the
number of different elements in the set Q of snapshot points. The well-studied Coupon-
Collector problem (cf. [91]) tells us that in expectation there are O(n logn) uniform
samples needed to pick every index of the set [n] at least once. In Algorithm 14 precisely `
samples are picked in each iteration of the inner loop, which implies each single index in
[n] gets picked after O(k logk) outer loops. Thus there are in expectation only O(k logk)
different different snapshot points at any time (n k`). These statements do also hold with
high probability at the expense of additional poly-log factors in n. Thus, Õ((dk+n) logk)
memory suffices to invoke Algorithm 14.
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We can enforce a hard limit on the memory by slightly violating the random sampling
assumption: instead of sampling without replacement in k-SVRG-V2, we just process all
indices according to a random permutation, and reshuffle after each epoch (the pseudocode
is given in Algorithm 15 in Appendix E.7). Clearly, as we process the indices by the order
given by random permutations, each index gets picked at least once every 2n iterations,
i.e. at least once after 2n/`  2k outer loops. Therefore, there are at most 2k distinct
snapshot points at any time.

k2-SVRG k2-SVRG deviates from k-SVRG-V2 on sampling of snapshot points. Instead
of sampling q = ` distinct indices in each outer loop independently, we process the
indices by blocks. Concretely, every kth outer loop we sample a random partition
[n] = Pm

0 [ · · ·[Pm
k�1, |Pi|= ` for i = 0, . . . ,k�1 independently at random, and then

process the indices of the sets Pi the (m+ i)th outer loop (to not clutter the nation we
assumed here n = k`). We give the pseudocode for k2-SVRG in Appendix E.7.

Remark E.3.0.1 (Implementation). One of the main advantages of k-SVRG is that no
full pass over the data is required at the end of an outer loop. The update of x̃m+1 can be
computed on the fly with the help of an extra variable. To implement the update of the
qi’s, we use the compressed representation of the set Q as discussed above. The update of
ām+1 requires 2` gradient computations for k-SVRG-V2, but only ` for k-SVRG-V1, as

1
n Â

i2Fm
— fi(q m

i ) =
1
n Â

i2Fm
am

i . (E.7)

for computed values am
i for i 2Fm.

E.4 Theoretical Analysis
In this section, we provide the theoretical analysis for the proposed algorithms from the
previous section. We will first discuss the convergence in the convex case in Section E.4.1
and then later will discuss the convergence in the non-convex setting in Section E.4.2. For
both cases we will assume that the functions fi, i 2 [n], are L-smooth. Let us recall the
definition: A function f : Rd ! R is L-smooth if it is differentiable and

k— f (x)�— f (y)k  Lkx� yk , 8x,y 2 Rd. (E.8)

E.4.1 Strongly Convex Problems
In this subsection we additionally assume f to be µ-strongly convex for µ > 0, i.e. we
assume it holds:

f (y)� f (x)+ h— f (x),y� xi+ µ
2
ky� xk2 , 8x,y 2 Rd. (E.9)
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It will also become handy to denote f d (x) := f (x)� f (x?), following the notation in [89].

Lyapunov Function. Similar as in [54] and [89], we show convergence of the algorithm
by studying a suitable Lyapunov function. In fact, we are using the same family of
functions as in [89] where L : Rn⇥R! R is defined as follows:

L(x,H) := kx� x?k2 + gsH , (E.10)

with g := hn
L and 0 s  1 a constant parameter that we will set later. We will evaluate

this function at tuples (xm,Hm), where xm = xm
0 are the iterates of the algorithm. In

order to show convergence we therefore also need to define a sequence of parameters Hm

that are updated in sync with xm. Clearly, if Hm! 0 for m! •, then convergence of
L(xm,Hm)! 0 implies xm! x?. We will now proceed to define a sequence Hm with this
property. It is important to note that these quantities do only show up in the analysis, but
neither need to be be computed nor updated by the algorithm.

Similar as in [89], we will define quantities Hm
i with the property Hm

i � kam
i �

— fi(x?)k2, and thus their sum, Hm := 1
n Ân

i=1 Hm
i is an upper bound on Ekam

i �— fi(x?)k2.
Let us now proceed to precisely define Hm

i . For this let hm
i : Rd ! R be defined as

hm
i (x) := fi(x)� fi(x?)�hx� x?,— fi(x?)i . (E.11)

We initialize (conceptually) a0
i = 0 and H0

i = k— fi(x?)k2 for i 2 [n], and then update the
bounds Hm

i in the following manner:

Hm+1
i =

(
2Lhm

i (x̃
m+1), if i 2Fm,

Hm
i , otherwise.

(E.12)

Here Fm denotes the set of indices that are used to compute x̃m+1 in either k-SVRG-V1
or k-SVRG-V2, see Algorithm 14.

Convergence Results. We now show the linear convergence of k-SVRG-V1 (Theo-
rem E.4.1.2) and k-SVRG-V2 (Theorem E.4.1.1).

Theorem E.4.1.1. Let {xm}m�0 denote the iterates in the outer loop of k-SVRG-V2(q).
If µ > 0, parameter q� `

3 , and step size h  1
3(µn+2L) then

E0q,mL(xm+1,Hm+1)
�
1�hµ

�`L(xm,Hm) . (E.13)

Proof Sketch. By applying Lemmas E.4.1.3 and E.4.1.4, we directly get the following
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relation:

Emkxm+1� x?k2 + gsE0q,mHm+1  (1�hµ)`kxm� x?k2 + p2Hm� r2Em f d (x̃m+1) ,

(E.14)

where p2 and r2 are constants that will be specified in the proof. From this expression it
becomes clear that we get the statement of the theorem if we can ensure p2  (1�hµ)`
and r2 � 0. These calculations will be detailed in the proof in Appendix E.9.

Theorem E.4.1.2. Let {xm}m�0 denote the iterates in the outer loop of k-SVRG-V1. If

µ > 0, and step size h  2
�

1� `�1
2n

�

5(µn+2L) < 1
5(µn+2L) then

EmL(xm+1,Hm+1) (1�hµ)`L(xm,Hm) . (E.15)

Proof. The proof of Theorem E.4.1.2 is very similar to the one of Theorem E.4.1.1. A
detailed proof is provided in the Appendix E.9.

Let us state a few observations:

Remark E.4.1.1 (Convergence rate). Both results show convergence at a linear rate. The
convergence factor (1�hµ) is the same that appears also in the convergence rates of
SVRG and SAGA. For SAGA a decrease by this factor can be show in every iteration for
the corresponding Lyapunov function. Thus, after ` steps, SAGA achieves a decrease of
(1�hµ)`, i.e. of the same order3 as k-SVRG. On the other hand, the proof for SVRG
shows decrease by a constant factor after k iterations. The same improvement is attained
by k-SVRG after min{dn/`e,dk/`e} inner loops, i.e. min{n,k} total updates. Hence, our
rates do not fundamentally differ from the rates of SVRG and SAGA (in case n� k we
even improve compared to the former method), but they provide an interpolation between
both results.

Remark E.4.1.2 (Relation to SVRG). For k = 1 and q = `= n, our algorithms resemble
SVRG with geometric averaging. However, our proof gives the flexibility to prove con-
vergence of SVRG with inner loop size n, instead of W(n+k) as in [98]. The analysis of
SVRG is further strengthened in many subtle details, for instance we don’t require xm = x̃m

as in vanilla SVRG, we have shorter stalling phases (for k� 1) and the possibility to
choose q and ` differently opens more possibilities for tuning.

Remark E.4.1.3 (Relation to SAGA). In SAGA, exactly one snapshot point is updated
per iteration. The same number of updates are performed (on average) per iteration
for the setting q = `. Hofmann et al. [89] study a variant of SAGA that performs more
updates per iteration (q� `), but there was no proposal of choosing q < `.

3Note, the decrease is not exactly identical if different stepsizes are used.

186



E.4 Theoretical Analysis

Remark E.4.1.4 (Dependence of the convergence rate on q and k). For ease of presenta-
tion we have state here the convergence results in a simplified way, omitting dependence
on k entirely (see also Remark E.4.1.1). However, some mild dependencies can be ex-
tracted from the proof. For instance, it is intuitively clear that choosing a larger q in
Theorem E.4.1.1 should yield a better rate. This is indeed true. Moreover, also setting
q < `/3 smaller will still give linear convergence, but at a lower rate. For our application
we aim to choose q as small as possible (reducing computation), without sacrificing too
much in the convergence rate.

In the rest of this subsection, we will give some tools that are required to prove
Theorems E.4.1.1 and E.4.1.2. The proof of both statements is given in Appendix E.9.
Lemma E.4.1.3 establishes a recurrence relation between subsequent iterates in the outer
loop.

Lemma E.4.1.3. Let {xm}m�0 denote the iterates in the outer loop of Algorithm 14. Then
it holds:

Emkxm+1
0 � x?k2  (1�hµ)`kxm

0 � x?k2�2h(1�2Lh)S`Em

h
f d (x̃m+1)

i

+2h2S`E{i}kam
i �— fi(x?)k2 , (E.16)

where x̃m+1 = 1
S` Â`�1

t=0(1�hµ)`�1�txm
t and S` = Â`�1

t=0(1�hµ)t .

We further need to bound the expression kam
i �— fi(x?)k2 that appears in the right

hand side of equation (E.16). Recall that we have already introduced bounds Hm
i �

kam
i �— fi(x?)k2 for this purpose. We now follow closely the machinery that has been

developed in [89] in order to show how these bounds decrease (in expectation) from one
iteration to the next.

Lemma E.4.1.4. Let the sequence {Hm}m�0 be defined as in Section E.4.1 and updated
according to equation (E.12) and let {x̃m}m�0 denote the sequence of snapshot points in
Algorithm 14. Then it holds:

EmHm+1 =
2LQ`

n
Em f d (x̃m+1)+

⇣
1� 1

n

⌘`
Hm , (for k-SVRG-V1) (E.17)

E0q,mHm+1 =
2Lq

n
Em f d (x̃m+1)+

⇣
1� q

n

⌘
Hm , (for k-SVRG-V2) (E.18)

where Q` = Â`�1
t=0

⇣
1� 1

n

⌘t
.

E.4.2 Non-convex Problems
In this section, we discuss the convergence of the proposed algorithm for non-convex
problems. In order to employ Algorithm 14 on non-convex problems we use the setting
µ = 0. We limit our analysis for only non-convex smooth functions.
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Throughout the section, we assume that each fi is L-smooth (E.8), and provide the
convergence rate of algorithm k-SVRG-V2 only. However, convergence of the algorithm
k-SVRG-V1 for the non-convex case can be shown in the similar way as for k-SVRG-V2.
The convergence also extends to the class of gradient dominated functions by standard
techniques (cf. [10, 200]). We follow the proof technique from [200] to provide the
theoretical justification of our approach. However, the proof is not straight forward,
due to the difficulty that is imposed by the block wise update of the snapshot points in
k-SVRG-V2.

Lyapunov Function. For the analysis of our algorithms, we again choose a suitable
Lyapunov function similar to the one chosen in [200]. In the following, let M denote the
total number of outer loops performed. For m = 0, . . . ,M define Lm : Rd⇥R as:

Lm(x) := f (x)+
cm

n

n

Â
i=1
kxm

0 �q m
i k2 , (E.19)

where {cm}M
m=0 denotes a sequence of parameters that we will introduce shortly (note the

superscript indices). By initializing q 0
i = x0 we have L0(x0) = f (x0). If we define the

sequence {cm}M
m=0 such that it holds cM = 0 then LM(xM) = f (xM). These two properties

will be exploited in the proof below.
Similar to the previous section, we define quantities Hm := 1

n Ân
i=1 Hm

i with Hm
i :=

kxm
0 � q m

i k2. With this notation we can equivalently write Lm(x) = f (x)+ cmHm. We
now define the sequence {cm}M

m=0 and an auxiliary sequence {Gm}M
m=1 that will be used

in the proof:

cm := cm+1�1� `

n
+ gh`+4b1h2L2`2�+2b1h2L3` , (E.20)

Gm := h� cm+1 h
g
�b1h2L�2b1cm+1h2` , (E.21)

with b1 := (1� 2L2h2`2)�1 and g � 0 a parameter that will be specified later. As
mentioned, we will set cM = 0 and (E.20) provides the values of cm for m=M�1, . . . ,0. It
will be convenient to denote the update in the mth outer loop and tth inner loop with vm

t , that
is xm

t+1 = xm
t �hvm

t . Then we can define a matrix V m that consists of the columns vm
t for t =

0, . . . ,`�1 and a matrix —Fm that consists of columns — f (xm
t ) for t = 0, . . . ,`�1. Here k ·

kF denotes the Frobenius norm. By the notation just defined we have kV mk2
F =Â`�1

t=0 kvm
t k2

and by the tower property of conditional expectations EmkV mk2
F = Â`�1

t=0 Et+1,mkvm
t k2. By

similar reasoning

Emk—Fmk2
F =

`�1

Â
t=0

Et+1,mk— f (xm
t )k2 =

`�1

Â
t=0

Et,mk— f (xm
t )k2 . (E.22)
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E.4 Theoretical Analysis

Convergence Results. Now we provide the main theoretical result of this subsection.
Theorem E.4.2.1 shows sub-linear convergence for non-convex functions.

Theorem E.4.2.1. Let {xm
t }

`�1,M
t=0,m=0 denote the iterates of k-SVRG-V2. Let {cm}M

m=0 be
defined as in (E.20) with cM = 0 and g � 0 and such that Gm > 0 for m = 0, . . . ,M�1.
Then:

M�1

Â
m=0

Ek—Fmk2
F 

f (x0
0)� f ?

G
, (E.23)

where G := min0mM�1 Gm. In particular, for parameters h = 1
5Ln2/3 , g = L

n1/3 and
`= 3

2n1/3 and n > 15 it holds:

M�1

Â
m=0

Ek—Fmk2
F  15Ln2/3 � f (x0

0)� f ?
�
. (E.24)

Proof Sketch. We need to rely on some technical results that will be presented in Lem-
mas E.4.2.2, E.4.2.3 and E.4.2.4 below. Equation (E.23) can be readily be derived from
Lemma E.4.2.4 by first taking expectation and then using telescopic summation. Since
G = min0mM�1 Gm, we get:

G
M�1

Â
m=0

Ek—Fmk2  EL0(xm
0 )�ELM(xm+1

0 ) . (E.25)

By setting q 0
i = x0

0 for i = 1, . . . ,n we have L0(x0
0) = f (x0

0) and as cM = 0 clearly
LM(xM

0 ) = f (xM
0 ). We find a lower bound on G as a final step in our proof. Details

about all the constants are given in detail in the Appendix E.10.

Remark E.4.2.1 (Upper bound on `). It is important to note here that unlike in the convex
setting, Theorem E.4.2.1 does not allow to set the number of steps in the inner loop, i.e. `,
arbitrarily large. That essentially means that the number of snapshot points cannot be
reduced below a certain threshold in k-SVRG-V2 for non-convex problems. The limitation
on ` occurs due to the fact that we cannot work with a Lyapunov function which only
depends on the inner loop iteration as done in [201] and hence the expected variance
keeps on adding itself to the next variance term which finally gives an extra dependence of
the order `2. But we do believe that the limitation on ` can be improved further. Besides
that limitation on `, we get the same convergence rate for our method as that of non-convex
SVRG and non-convex SAGA.

Now we discuss the lemmas which are helpful in proving Theorem E.4.2.1. The proofs
of these lemmas are deferred to Appendix E.10. Lemma E.4.2.2 establishes the recurrence
relation between the second term of the Lyapunov function, Hm+1, with Hm.
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Figure E.2: Residual loss on mnist for SVRG, k-SVRG-V1 (left), k-SVRG-V2 (middle)
and k2-SVRG (right) for k = {10,1000}.

Lemma E.4.2.2. Consider the setting of Theorem E.4.2.1. Then, conditioned on the
iterates obtained before the mth outer loop, it holds for g > 0:

E0`,mHm+1  h2` E`,mkV mk2
F +

✓
1� `

n

◆
h
g
E`,mk—Fmk2

F +(1+ gh`)

✓
1� `

n

◆
Hm .

(E.26)

This result suggests that we now should relate the variance of the stochastic gradient
update with the expected true gradient and the Lyapunov function. This is done in
Lemma E.4.2.3, with the help of the result from Lemma E.10.0.2 which is provided in
Appendix E.10.

Lemma E.4.2.3. Consider the setting of Theorem E.4.2.1. Upon completion of the mth

outer loop it holds:

(1�2L2h2`2)EmkV mk2
F = 2Emk—Fmk2 +4L2`Hm . (E.27)

Finally, we can proceed to present the most important lemma of this section from which
the main Theorem E.4.2.1 readily follows.

Lemma E.4.2.4. Consider the setting of Theorem E.4.2.1, that is cm,cm+1 and g > 0 are
such that Gm > 0. Then:

Gm ·Emk—Fmk2  Lm(xm
0 )�E0`,mLm+1(xm+1

0 ) . (E.28)

E.5 Experiments

To support the theoretical analysis, we present numerical results on `2-regularized logistic
regression problems, i.e. problems of the form

f (x) =
1
n

n

Â
i=1

log(1+ exp(�bi hai,xi)+
l
2
kxk2 . (E.29)
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Figure E.3: Residual loss on covtype (train) for SVRG, k-SVRG-V1 (left), k-SVRG-V2
(middle) and k2-SVRG (right) for k = {10,1000}.

Dataset d n L
covtype (test) 54 58 102 1311

covtype (train) 54 522 910 43 586
mnist 784 60 000 38 448

Table E.2: Summary of datasets used for experiments. We use L = 1
4 maxi kaik2, where ai

represents the ith data point. The factor of 4 is due to the use of the logistic loss.

The regularization parameter l is set to 1/n, as in [179]. We use the datasets cov-
type(train,test) and MNIST(binary)4. Some statistics of the datasets are summarized in
Table E.2. For all experiments we use x0 = 0 and perform a warm start of the algorithms,
that is we provide — f (x0) as input. Several cold start procedures (where — fi are injected
one by one) have been suggested (cf. [54]) but discussing the effects of these heuristics is
not the focus of this paper.

We conduct experiments with SAGA, SVRG (we fix the size of the inner loop to n) and
the proposed k-SVRG for k = {1,10,100,1000} in all variants (k-SVRG-V1, k-SVRG-V2
and k2-SVRG). For simplicity we use the parameters l = q = dn/ke throughout.

The running time of the algorithms is dominated by two important components: the
time for computation and the time to access the data. The actual numbers depend on the
hardware and problem instances.

Gradient Computations (#GC). Fig. E.1 (left). We count the number of gradient eval-
uations of the form — fi(x). In SAGA, each step of the inner loop only comprises one
computation, whereas for SVRG, two gradients have to be computed in the inner loop.
The figure nicely depicts the stalling of SVRG after one pass over the data (when a full
gradient has to be computed in situ).

Effective Data Reads (#ER). Fig. E.1 (middle). We count the number of access to the
data, that is when a d-dimensional vector needs to be fetched from memory. In the
SVRG variants this is one data point in each iteration of the inner loop, and O(dn/ke)
data points when updating the gradients (see Remark E.3.0.1). For SAGA in each

4All datasets are available at http://manikvarma.org/code/LDKL/download.html
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Algorithm/Dataset covtype (test) mnist covtype (train)
SVRG 2.0/L 18.5/L

5.7/Lk-SVRG-V1 (1.2,1.3,1.7,1.5)/L (�,17,17,14)/L
k-SVRG-V2 (1.8,1.7,1.7,1.8)/L (�,18,17,17.5)/L

k2-SVRG (1.9,1.9,1.8,1.8)/L (�,19,18,17.5)/L
Table E.3: Determined optimal stepsizes h for the datasets covtype (test) and mnist and
parameters k = (1,10,100,1000).

iteration two values have to be fetched. For the k-SVRG variants the stalling phases are
more equally distributed (for k large). Moreover, there is no big jump in function value
as the current iterate does not have to be updated (a difference to SVRG).

E.5.1 Illustrative Experiment, Figure E.1
For the results displayed in Figure E.1 in Section E.1.1 we set the learning rate to an
artificially low value h = 0.1/L for all algorithms. This allows to emphasize the distinctive
features of each method. Figure E.4 in the appendix depicts additional k-SVRG variants
for the same setting.

E.5.2 Experiments on Large Datasets
Due to the large memory constrained of SAGA, we do not run SAGA on large scale
problems. Even though for every method there is a theoretical safe stepsize h , it is
common practice to tune the stepsize according to the dataset (cf. [54, 210]). By extensive
testing we determined the stepsizes that achieve the smallest training error after 10n #ER
for covtype (test) and after 30n #ER for mnist.5 The determined optimal learning rates
are summarized in Table E.3. For covtype (train) we figured h = 5.7/L is a reasonable
setting for all algorithms.

In Figure E.2 we compare all algorithms on mnist. We observe that k2-SVRG performs
best on mnist, followed by the other k-SVRG variants which perform very similar to
SVRG. In Figure E.3 we compare all algorithms on covertype (train) and the picture
is similar: k2-SVRG works the best, followed by k-SVRG-V1, then k-SVRG-V2 and
all variants of k-SVRG outperform SVRG. We observe that the parameter k seems to
affect the performance only by a small factor on these datasets. However, it is not easy
to predict the best possible k without tuning it but larger values of k do not seem to
make performance worse; allowing to choose k as large as supported on the system used.
Additional results are displayed in Appendix E.11.

5We like to emphasize that the optimal stepsize crucially depend on the maximal budget. I.e. the optimal
values might be different if the application demands higher or lower accuracy.
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E.6 Conclusion

E.6 Conclusion
We propose k-SVRG, a variance reduction technique suited for large scale optimization
and show convergence on convex and non-convex problems at the same theoretical rates
as SAGA and SVRG. Our algorithms have a very mild memory requirement compared to
SAGA and the memory can be tuned according to the available resources. By tuning the
parameter k, one can pick the algorithm that fits best to the available system resources. I.e.
one should pick a picking large k for systems with fast memory, and smaller k when data
access is slow (in order that the additional memory still fits in RAM). This can provide a
huge amount of flexibility inn distributed optimization as we can choose different k on
different machine. We could also imagine that automatic tuning of k as the optimization
progresses, i.e. automatically adapting to the system resources, might yield the best
performance in practice. However, this feature needs to be investigated further.

For future work, we plan to extend our analysis of k2-SVRG using tools along the line
of the recently proposed analysis of reshuffled SGD [86]. From the computational point
of view, it is also important to investigate if the gradients at the snapshot points could be
replaced with inexact approximations of the gradients which are computationally cheaper
to compute.
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Proofs for Main Results

E.7 Pseudo-code for k2-SVRG
We provide the pseudo code k2-SVRG in Algorithm 15 below. For simplicity we assume
here n (mod) `= 0, i.e. n = k`.

Algorithm 15 k2-SVRG
1: goal minimize f (x) = 1

n Ân
i=1 fi(x)

2: init x0
0, `, h , µ , a0

i 8i 2 [n] and ā0 1
n Ân

i=1 a0
i

3: S` Â`�1
t=0(1�hµ)t

4: k n
`

5: for m = 0 . . .M�1
6: ind randperm(n)
7: for j = 0 . . .k�1
8: init Fm /0
9: for t = 0 . . .`�1

10: pick it 2 [n] uniformly at random
11: am

it  — fit (q m
it )

12: xm
t+1 xm

t �h
�
— fit (xm

t )�am
it + ām

�

13: Fm Fm[{ind[ j ⇤ `+ t]}
14: end for
15: x̃m+1 1

S` Â`�1�t
t=0 (1�hµ)`�txm

t

16: xm+1
0  xm

`

17: q m+1
i  

(
x̃m+1, if i 2Fm

q m
i , otherwise

18: end for
19: ām+1 ām + 1

n Âi2Fm — fi(q m+1
i )� 1

n Âi2Fm — fi(q m
i )

20: end for

Like in Algorithm 14, no full pass over the data is required at the end of the outer loop.
In particular, this requires only ` gradient computations, as explained in Remark E.3.0.1.

E.8 Definitions and Notations
We reiterate some definitions here again before proving the main results of this paper.
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Function classes. A a differentiable convex function f : Rd ! R is L-smooth if:

f (y) f (x)+ h— f (x),y� xi+ L
2
kx� yk2 8x,y 2 Rd , (E.30)

which is equivalent to

k— f (x)�— f (y)k  Lkx� yk 8x,y 2 Rd . (E.31)

A differentiable non-convex function is L-smooth if (E.31) holds. A differentiable convex
function f : Rd ! R is µ-strongly convex if

f (y)� f (x)+ h— f (x),y� xi+ µ
2
kx� yk2 8x,y 2 Rd . (E.32)

Frequently, we will be denoting f ? := f (x?).

Series Expansion. The following observation will be useful in the analysis later. For
any integer k and real number z < 1 we have

(1�z )k = 1� kz +
k(k�1)

2!
z 2� k(k�1)(k�2)

3!
z 3 +O(z 4) , (E.33)

and it is easily verified that whenever z  1
k :

(1�z )k � 1� kz , (E.34)

(1�z )k  1� kz +
k(k�1)

2
z 2 . (E.35)

Frequently used Inequalities. For a,b 2 Rd we have:

ka+bk2
2  (1+b�1)kak2

2 +(1+b )kbk2
2 , 8b > 0 . (E.36)

For for b = 1 this simplifies to:

ka+bk2
2  2kak2

2 +2kbk2
2 . (E.37)

Also the following inequality holds:

�ha,bi  g
2
kak2

2 +
1
2g
kbk2

2 , 8g > 0 . (E.38)
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Notation for Non-Convex Proofs (see Section E.10). As defined in equation (E.3), we
have the following optimization updates:

xm
t+1 = xm

t �h

 
— fit (x

m
t )�— fit (q m

it )+
1
n

n

Â
i=1

— fi(q m
i )

!
= xm

t �hvm
t (E.39)

where vm
t = — fit (xm

t )�— fit (q m
it )+

1
n Ân

i=1 — fi(q m
i ) as defined in Section E.4.2. Note that

E{it}vm
t = — f (xm

t ). As defined earlier in Section E.4.2,

kV mk2
F :=

`�1

Â
t=0
kvm

t k2 and k—Fmk2
F :=

`�1

Â
t=0
k— f (xm

t )k2 . (E.40)

Also, we will be using the following relations which immediately follow by taking
expectation:

EmkV mk2
F =

`�1

Â
t=0

Et+1,mkvm
t k2 (E.41)

Emk—Fmk2
F =

`�1

Â
t=0

Et+1,mk— f (xm
t )k2 =

`�1

Â
t=0

Et,mk— f (xm
t )k2 . (E.42)

E.9 Proofs for Convex Problems
In this section we provide the proof of Theorems E.4.1.1 and E.4.1.2. We first mention an
important lemma from [89] which relates the two consecutive iterates for SAGA.

Lemma E.9.0.1 ([89]). For the iterate sequence of any algorithm that evolves solutions
according to equation (E.2), the following holds for a single update step, in expectation
over the choice of it given xt:

E{it}kxt+1� x?k2  (1�hµ)kxt� x?k2 +2h2E{it}kait �— fit (x
?)k2�2h(1�2hL) f d (xt) .

The result in Lemma E.9.0.1 is the initial step towards proving a similar result to relate
the iterates of two consecutive outer loops, as stated in Lemma E.4.1.3.

Proof of Lemma E.4.1.3. With Lemma E.9.0.1, we obtain

E`,mkxm
` � x?k2  (1�hµ)E`�1,mkxm

`�1� x?k2�2h(1�2Lh)E`�1,m f d (xm
`�1)

+2h2E`,mkam
it �— fit (x

?)k2

= (1�hµ)E`�1,mkxm
`�1� x?k2�2h(1�2Lh)E`�1,m f d (xm

`�1)

+2h2E{i}kam
i �— fi(x?)k2
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We now apply Lemma E.9.0.1 recursively to find the following:

E`,mkxm
` � x?k2  (1�hµ)E`�1,mkxm

`�1� x?k2�2h(1�2Lh)E`�1,m f d (xm
`�1)

+2h2E{i}kam
i �— fi(x?)k2

 (1�hµ)2E`�2,mkxm
`�2� x?k2�2h(1�2Lh)

h
E`�1,m f d (xm

`�1)

+(1�hµ)E`�2,m f d (xm
`�2)

i
+2h2E{i}kam

i �— fi(x?)k2 [1+(1�hµ)]

 (1�hµ)`kxm
0 � x?k2�2h(1�2Lh)

`�1

Â
t=0

(1�hµ)tE`�t,m f d (xm
`�t�1)

+2h2E{i}kam
i �— fi(x?)k2 ·

`�1

Â
t=0

(1�hµ)t

= (1�hµ)`kxm
0 � x?k2�2h(1�2Lh)E`�1,m

"
`�1

Â
t=0

(1�hµ)t f d (xm
`�t�1)

#

+2h2S`E{i}kam
i �— fi(x?)k2

= (1�hµ)`kxm
0 � x?k2�2h(1�2Lh)S`E`�1,m

"
`�1

Â
t=0

(1�hµ)t

S`
f d (xm

`�t�1)

#

+2h2S`E{i}kam
i �— fi(x?)k2

= (1�hµ)`kxm
0 � x?k2�2h(1�2Lh)S`E`,m

"
`�1

Â
t=0

(1�hµ)t

S`
f d (xm

`�t�1)

#

+2h2S`E{i}kam
i �— fi(x?)k2

= (1�hµ)`kxm
0 � x?k2�2h(1�2Lh)S`E`,m

"
`�1

Â
t=0

(1�hµ)`�t�1

S`
f d (xm

t )

#

+2h2S`E{i}kam
i �— fi(x?)k2 (E.43)

Since f is a convex function, we have by Jensen’s inequality for weights ai � 0, Â`
i=1 ai =

1,

f

 
`

Â
i=1

aixi

!


`

Â
i=1

ai f (xi) . (E.44)

By definition x̃m+1 = 1
S` Â`�1

t=0(1�hµ)`�t�1xm
t and xm

` = xm+1
0 . Hence from equations (E.43)

and (E.44), we get the result:

Emkxm+1
0 � x?k2  (1�hµ)`kxm

0 � x?k2�2h(1�2Lh)S`Em f d (x̃m+1)

+2h2S`E{i}kam
i �— fi(x?)k2 .
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Proof of Lemma E.4.1.4. Recall that we defined hm
i (x)= fi(x)� fi(x?)�hx�x?,— fi(x?)i.

It is important to note

E{i}[hm
i (x)] = f (x)� f ? = f d (x) . (E.45)

We need to derive an upper bound on Hm+1. By the update equation (E.12) we have
Hm+1

i = Hi for i /2Fm and Hm+1
i = 2Lhm

i (x̃
m+1) for i 2Fm. As x̃m+1 is not known until

the inner loop has terminated, we will now proof a slightly more general statement.
Define Hm+1(x) := Âi/2Fm Hm

i +Âi2Fm 2Lhm
i (x). We will now proof that the claimed

statements hold for Hm+1(x) and we will put x̃m+1 in place of x at the end of the proof.

k-SVRG-V1 The process can be seen as doing sampling with replacement ` number of
times. Define the auxiliary quantities Hm,0

i (x) := Hm
i and Hm,t(x) by the following

equation

Hm,t
i (x) =

(
2Lhm

i (x), if ith data point is chosen in tth inner loop iteration.
Hm,t�1

i (x), otherwise.

Now for any fixed but arbitrary x, we have:

E`,mHm+1(x) = E`,mHm,`(x) = E`,m

"
1
n

n

Â
i=1

Hm,`
i (x)

#
=

1
n

n

Â
i=1

E`,mHm,`
i (x)

=
2L
n
E`,m[hm

i (x)]+
✓

1� 1
n

◆
E`�1,mHm,`�1

i (x)

=
2L
n

f d (x)+
✓

1� 1
n

◆
2L
n
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where Q` = Â`�1
t=0
�
1� 1

n
�t . Now if we replace x by x̃m+1 we get the claimed result:
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k-SVRG-V2 Finding the relation between Hm+1 and Hm is much more simpler for
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k-SVRG-V2 as a set of independet q points are used for the update of Hm+1.

E`,mE0qHm+1 = E`,mE0qHm,` = E`,mE0q

"
1
n

n

Â
=1

Hm,`
i

#
=

1
n

n

Â
i=1

E`,mE0qHm,`
i

=
2Lq

n
E`,mE0q[hm

i (x̃
m+1)]+

⇣
1� q

n

⌘
Hm

=
2Lq

n
E`,m f d (x̃m+1)+

⇣
1� q

n

⌘
Hm , (E.48)

which is the claimed bound.

Using the results obtained in Lemmas E.4.1.3 and E.4.1.4, we are now ready to prove
the main theoretical results of the Section E.4.1.

Proof of Theorem E.4.1.1. We apply the results from Lemma E.4.1.3 and Lemma E.4.1.4
for k-SVRG-V2 to estimate the Lyapunov function:
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Now in equation (E.49), we need to find parameters such that
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Condition 1: If we choose h  s q
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calculations below:
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After division by h
⇣
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L +

2
µ

⌘
, the right hand side reads as 1� sq
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by the observation in (E.34) we see that the condition is satisfied for h  s q
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which can be equivalently stated as 2Lh  1�s q
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using the definition of S`. Observe
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Hence, the condition in equation (E.52) is satisfied if
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as claimed.
Finally, if we choose q � `

3 and s = `
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⌘�1
then choosing h 

1
2(µn+2L) satisfies both the constraints.

Proof of Theorem E.4.1.2. We apply the result from Lemma E.4.1.3 and Lemma E.4.1.4
for k-SVRG-V1 to estimate the Lyapunov function:
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Now in equation (E.55), we need to find parameters such that

p1 = gs
✓

1� 1
n

◆`

+2h2S`  gs(1�hµ)` , (Condition 1)

r1 = 2h(1�2Lh)S`� gs 2LQ`

n
� 0 . (Condition 2)

Condition 1: If we choose h  s(1� `�1
2n )

µn+2L then (Condition 1) is satisfied. We show the
calculations below:

gs
✓

1� 1
n

◆`

+2h2S` = gs
✓

1� 1
n

◆`

+2h (1�hµ)`

µ

= h

 
s n

L

✓
1� 1

n

◆`

+
2
µ

⇣
1� (1�hµ)`

⌘!

201



Appendix E k-SVRG: Variance Reduction for Large Scale Optimization

 h
✓

s n
L

✓
1� `

n
+

`(`�1)
2n2

◆
+

2
µ

⇣
1� (1�hµ)`

⌘◆
(E.56)

with (E.35). Hence, (Condition 1) is satisfied if it holds:
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We now finish the proof similarly as the proof of (Condition 1) in the proof of Theo-

rem E.4.1.1 above. With the help of equation (E.34) we derive that h  s(1� `�1
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µn+2L is a
sufficient condition to imply (Condition 1).

Condition 2: If we choose h min

(
1

2L

 
1�

2s
⇣

n+2 L
µ

⌘

2n�`(1� `�1
2n )+4 L

µ

!
,

s(1� `�1
2n )

µn+2L

)
then (Con-

dition 2) is satisfied. By the definition of Q` and S`, the condition can equivalently be
written as

2h(1�2Lh)S`� gs 2L
n

`

Â
t=1

✓
1� 1

n

◆t�1
= 2h(1�2Lh)

1� (1�hµ)`

hµ

�gs 2L
n

1� (1� 1
n)

`

1
n

� 0 . (E.58)

From equation (E.34), we have
�
1� 1

n
�` � 1� `

n . Hence it suffices to choose h such that
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We simplify the above equation further to get:
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with (E.35). We will now derive a condition on h such that s1 � 0. By rearranging the
terms in s1 we see that it suffices to hold
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(E.62)
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where we used the assumption h  s(1� `�1
2n )

µn+2L in the last inequality. Thus it suffices if
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Finally, we see that if we choose h  2(1� `�1
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5(µn+2L) and s =
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(which is of the same order as the s in the theorem E.4.1.1 upto a constant factor) then
(Condition 1) and (Condition 2) both hold simultaneously.

E.10 Proofs for Non-Convex Problems
In this section we derive the proof of Theorem E.4.2.1. First of all, we mention a result
from [200] which is not directly applicable to our case as the setting is different, but which
served as an inspiration for the proof.

Lemma E.10.0.1 ([200]). Consider the SAGA updates for non-convex optimization prob-
lem where each fi is L-smooth and vt = — fit (xt)�— fit (qit )+

1
n Ân
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We will now derive a similar statement that holds for our proposed algorithm.

Lemma E.10.0.2. Consider the setting of Theorem E.4.2.1. Then it holds:
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Proof. We use the following notation, x m
t := (— fit (xm
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Hence, finally we have
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Lemma E.10.0.3. Consider the iterates {xm
t } of Algorithm 14 and the new snapshot point

at the end of the mth outer loop, x̃m+1 = 1
` Â`�1
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t . Then the following relation holds:
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Applying Cauchy-Schwarz in (E.68) gives,
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from which the final expression follows:
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Proof of Lemma E.4.2.2. We take the expectation of the Lyapunov function:
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Note that we here only analyze k-SVRG-V2 for which the samples to update the snapshot
point are independent of the samples used to generate the sequence xm

t . Also recall that
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From Lemma E.10.0.3, we know that:
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We consider now the second term in (E.71), keeping in mind that xm+1
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Combining equation (E.73) and Lemma E.10.0.3, we get:

1
n

n

Â
i=1

E0`,mkxm+1
0 �q m+1

i k2  h2(`+1)(2`+1)
6n

`�1

Â
t=0

Et+1,mkvm
t k2 +

✓
1� `

n

◆
h2`

`�1

Â
t=0

Et+1,mkvm
t k2

206



E.10 Proofs for Non-Convex Problems

+

✓
1� `

n

◆"
(1+ gh`)

n

n

Â
i=0
kxm

0 �q m
i k2 +

h
g

`�1

Â
t=0

Et,m k— f (xm
t )k2

#

= h2
`�1

Â
t=0

Et+1,mkvm
t k2

✓
(`+1)(2`+1)

6n
+

`(n� `)

n

◆

+

✓
1� `

n

◆
h
g

`�1

Â
t=0

Et,mk— f (xm
t )k2 +(1+ gh`)

✓
1� `

n

◆
1
n

n

Â
i=0
kxm

0 �q m
i k2

(E.67)
 h2`

`�1

Â
t=0

Et+1,mkvm
t k2 +

✓
1� `

n

◆
h
g

`�1

Â
t=0

Et,mk— f (xm
t )k2

+(1+ gh`)

✓
1� `

n

◆
1
n

n

Â
i=0
kxm

0 �q m
i k2

= h2`E`,mkV mk2
F +

✓
1� `

n

◆
h
g
E`,mk—Fmk2

F

+(1+ gh`)

✓
1� `

n

◆
1
n

n

Â
i=0
kxm

0 �q m
i k2 . (E.74)

Hence, we have:
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Proof of Lemma E.4.2.3. From Lemma E.10.0.2, we have:

Et+1,mkvm
t k2  2Et,m

��— f (xm
t )
��2

+4L2h2t
t�1

Â
j=0

E j+1,mkvm
j k2 +

4L2

n

n

Â
i=1
kxm

0 �q m
i k2 .

(E.75)

We sum the equation (E.75) for t = 0 to t = `�1 to get the following:
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Since, Â`�1
t=0 Et+1,mkvm

t k2 = EmkV mk2
F , we get the following relation:
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Hence, finally we have:

(1�2L2h2`2)EmkV mk2
F  Emk—Fmk2

F +4L2`Hm . (E.78)

Remark E.10.0.1. Unfortunately, equation (E.78) limits us to choose ` as large as we
would like (e.g. `= n in case k = 1), as otherwise the term (1�2L2h2`2) would become
too small. In the proof of Theorem E.4.2.1 we will choose h = O( 1

Ln2/3 ) and hence `

should be less than of the order of O(n2/3).

Proof of Lemma E.4.2.4. The Lyapunov function is of the form:
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First we analyze the term E`,m f (xm+1
0 ) in the Lyapunov function. By the smoothness

assumption:
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Now if we take expectation conditioned on xm
t , we get:
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In equation (E.81), we apply the property of tower of conditional expectations and sum
equation (E.81) from t = 0 to t = `�1 in the mth outer loop to get the following:
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Hence, we have:
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We now analyze the complete Lyapunov function by using the results from Lemmas E.4.2.2
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and E.4.2.3.
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Let b1 := 1
1�2L2h2`2 , as in the main text. Hence from Lemma E.4.2.3, we get:
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We finally get:

GmE`,mk—Fmk2  Lm(xm
0 )�E0`,mLm+1(xm+1

0 ) , (E.86)

and the claim follows.

Proof of Theorem E.4.2.1. We add equation (E.28) from Lemma E.4.2.4 for m = 0 to
m = M�1 and take expecation with respect to the joint distribution of all the selection so
far which gives:
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Since G = min0mM�1, we get
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from (E.87) and the first part of the theorem follows. To show the second part we need to
derive a lower bound on G for the given parameters h = 1

5Ln2/3 , g = L
n1/3 and `= 3

2n1/3.
Observe that for these parameters b1  2.
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for all m = 0, . . . ,M. Now we are ready to derive a lower bound on Gm.
Using h
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Now we consider the term g1. As b1  2 we have

g1  2h2L+4cm+1h2`

 2
25Ln4/3 +

3
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1
30Ln2/3 , . (E.91)

where the last inequality is due to n > 15. By combining (E.90) and (E.91) we get
Gm � 1

15Ln2/3 for m = 0, . . . ,M. Hence, G� 1
15Ln2/3 .

E.11 Additional Experimental Results

E.11.1 Illustrative Experiment with more k-SVRG variants
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Figure E.4: Illustrating the different convergence behavior of SAGA, SVRG and k-SVRG-
V1 for k = {1,10,100,1000}.

E.11.2 Dataset: covtype (test)
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Figure E.5: Evolution of residual loss on
covtype (test) for SVRG and k-SVRG-V1
for k = {1,10,100,1000}.
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Figure E.6: Evolution of residual loss on
covtype (test) for SVRG and k-SVRG-V2
for k = {1,10,100,1000}.
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Figure E.7: Evolution of residual loss on
covtype (test) for SVRG and k2-SVRG for
k = {1,10,100,1000}.
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Figure E.8: Evolution of residual loss on
covtype (test) for SVRG, 1-SVRG-V1, 1-
SVRG-V2 and 12-SVRG.
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Figure E.9: Evolution of residual loss on
covtype (test) for SVRG, 10-SVRG-V1, 10-
SVRG-V2 and 102-SVRG.
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Figure E.10: Evolution of residual loss on
covtype (test) for SVRG, 100-SVRG-V1,
100-SVRG-V2 and 1002-SVRG.
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Figure E.11: Evolution of residual loss on
covtype (test) for SVRG, 1000-SVRG-V1,
1000-SVRG-V2 and 10002-SVRG.
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E.11.3 Dataset: mnist
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Figure E.12: Evolution of residual loss on
mnist for SVRG, 10-SVRG-V1, 10-SVRG-
V2 and 102-SVRG.
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Figure E.13: Evolution of residual loss
on mnist for SVRG, 100-SVRG-V1, 100-
SVRG-V2 and 1002-SVRG.
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Figure E.14: Evolution of residual loss on
mnist for SVRG, 1000-SVRG-V1, 1000-
SVRG-V2 and 10002-SVRG.
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Figure E.15: Evolution of residual loss on mnist for SVRG and k-SVRG-V1 for k =
{10,100,1000}.
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Figure E.16: Evolution of residual loss on mnist for SVRG and k-SVRG-V2 for k =
{10,100,1000}.
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Figure E.17: Evolution of residual loss on mnist for SVRG and k2-SVRG for k =
{10,100,1000}.
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E.11.4 Dataset: covtype (train)
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Figure E.18: Evolution of residual loss on
covtype (train) for SVRG, 10-SVRG-V1,
10-SVRG-V2 and 102-SVRG.
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Figure E.19: Evolution of residual loss on
covtype (train) for SVRG, 100-SVRG-V1,
100-SVRG-V2 and 1002-SVRG.
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Figure E.20: Evolution of residual loss on
covtype (train) for SVRG, 1000-SVRG-V1,
1000-SVRG-V2 and 10002-SVRG.
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Figure E.21: Evolution of residual loss on covtype (train) for SVRG and k-SVRG-V1 for
k = {10,100,1000}.
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Figure E.22: Evolution of residual loss on covtype (train) for SVRG and k-SVRG-V2 for
k = {10,100,1000}.
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Figure E.23: Evolution of residual loss on covtype (train) for SVRG and k2-SVRG for
k = {10,100,1000}.
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Abstract
Recently there have been several attempts to extend Nesterov’s accelerated al-
gorithm to smooth stochastic and variance-reduced optimization. In this paper,
we show that there is a simpler approach to acceleration: applying optimistic on-
line learning algorithms and querying the gradient oracle at the online average of
the intermediate optimization iterates. In particular, we tighten a recent result of
Cutkosky [50] to demonstrate theoretically that online iterate averaging results in a
reduced optimization gap, independently of the algorithm involved. We show that
carefully combining this technique with existing generic optimistic online learning
algorithms yields the optimal accelerated rates for optimizing strongly-convex and
non-strongly-convex, possibly composite objectives, with deterministic as well
as stochastic first-order oracles. We further extend this idea to variance-reduced
optimization. Finally, we also provide “universal” algorithms that achieve the opti-
mal rate for smooth and non-smooth composite objectives simultaneously without
further tuning, generalizing the results of Kavis et al. [111] and solving a number
of their open problems.
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F.1 Introduction
Our goal in this paper is to obtain algorithms with optimal convergence rates for the
following problem:

find x? = argmin
x2X

`(x) = f (x)+f(x) , (F.1)

where X is a convex constraint set in the d-dimensional Euclidean space, f is convex and
smooth, and f is a (possibly non-smooth) convex function. When f = 0, and given access
to (noise-free) gradients of f , Nesterov’s accelerated gradient algorithms [175]achieve
optimal rates of convergence for Problem (F.1). Several recent papers, summarized in
table F.1, have attempted to obtain similarly accelerated rates that improve upon the
sub-optimal rates of Stochastic Gradient Descent (SGD) when the gradients of f are
corrupted by noise and/or when f 6= 0.

Despite the major effort to obtain these extensions, existing results suffer from several
limitations such as: (a) inhibiting noise in the gradient [9, 258]; (b) potentially querying
the gradient oracle outside the constraint set [50, 134] (c) not providing optimal rates for
strongly-convex objectives [50]; (d) extra logarithmic terms appearing in the error bounds
[50, 134]; (e) not handling proximal updates when f 6= 0 [50, 111, 134] or (f) relying on
prior knowledge of problem parameters [24, 42, 94, 123, 250, 266].

In this paper, we demonstrate a simple direct approach to deriving accelerated rates:
following Cutkosky [50], we propose running an online learning algorithm and feeding
it with (possibly noisy) first-order information obtained at the weighted average of its
iterates. Then, building on the recent simple, tight modular analysis techniques of
generic optimistic online learning algorithms [102, 103], we are able to alleviate all
the aforementioned limitations, design new accelerated algorithms with straightforward
convergence analyses, and solve a number of problems left open in previous work.

F.1.1 Contributions and Related Work
Our main contributions can be summarized as follows: 1. We provide a direct, simple
template for deriving and analyzing accelerated algorithms for stochastic and deterministic
convex optimization with composite objectives. We further extend the above framework
to variance-reduced stochastic non-strongly-convex optimization.
2. For composite non-strongly-convex objectives, we provide a new universal algorithm
(in the sense of 174): given only access to the proximal projection oracle of f onto the
constraint set, without prior knowledge of the smoothness or noise level, the new algorithm
simultaneously achieves the optimal rate of convergence for smooth and non-smooth f .
This, together with the fact that the algorithm uses coordinate-wise adaptive step-sizes,
resolves two problems left open by Kavis et al. [111].

In particular, in theorems F.3.0.1 and F.3.0.2, we tighten the recent analysis of online
iterate averaging by Cutkosky [50]. Compared to their Theorem 1, theorem F.3.0.2
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X f f Oracle Universal Notes

Tseng [250] Any Non-SC X D -

Beck and Teboulle [24] Rd Non-SC X D -

Hu et al. [94] Rd SC / Non-SC X S+D - Assumes bounded trajectory

Xiao [266] Any Non-SC X S + D - Dual-Averaging

Lan [123] Any Non-SC X S+D - Not utilizing prox-map of f

Chen et al. [42] Any SC / Non-SC X S+D -
Any SC X S+D - Exponential noise-free rate

Allen-Zhu and Orecchia [9] Any Non-SC - D - Linear-coupling
Any SC - D - Exponential rate

Wang and Abernethy [258] Any Non-SC X D - Primal-dual view
Any SC - D - Exponential rate

This paper (theorem F.4.1.1) Any SC / Non-SC X S + D -
Any SC X D - Exponential rate

Cutkosky [50] Compact Non-SC - S+D X Accessing f outside X

Levy et al. [134] Compact Non-SC - S+D X Accessing f outside X

Kavis et al. [111] Compact Non-SC - S + D X

This paper (theorem F.4.2.1) Compact Non-SC X S + D X

Table F.1: Summary of previous work obtaining accelerated rates of convergence. Cutkosky [50] analyses
strongly-convex optimization as well, but the rates are sub-optimal (i.e., non-accelerated). Here, “Non-SC”
means non-strongly convex (that is, strong-convexity of f is not required), “SC” means strongly convex,
“D” and “S” stand for deterministic and stochastic oracles, respectively. Universality means the algorithm
achieves the smooth and non-smooth rates simultaneously without requiring the knowledge of the problem’s
smoothness and noise level. The “bounded-trajectory” assumption means that the error bound scales with
the maximum distance of the iterates from the optimum x?, but the algorithm does not enforce this to be
bounded (e.g., through projection to a compact set). See also the survey by Bubeck [35] and the recent book
of Nesterov [175].

exposes additional terms that reduce the optimization gap. These terms, whose absence
prevented Cutkosky [50, Theorem 3] from getting the optimal accelerated rates, are
similar to what Wang and Abernethy [258] obtained through an indirect formulation of
acceleration as a two-player game.

Next, we show how to utilize the aforementioned reduction to obtain accelerated
rates. This is achieved by using properly-tuned optimistic online learning algorithms
[157, 195, 196] as the underlying optimization machinery. Importantly, this tuning can be
done somewhat independently of the assumptions on the objective (such as the presence of
noise, strong convexity, or a non-zero f ) or the algorithmic techniques (such as proximal
updates or adaptive learning rates), thanks to the recent modular analyses of online
learning algorithms by Joulani et al. [102, 103]. This results in a simple, straightforward
acceleration framework.

Furthermore, we extend the analysis to variance-reduced optimization for smooth non-
strongly-convex functions. We show that incorporating negative momentum (common
in the accelerated SVRG literature, see, e.g., 6, 125) in our framework introduces an
additional reduction in the optimization gap, enabling us to obtain the optimal convergence
rate. We also analyze a simpler version of the variance reduced algorithm without negative
momentum, which enjoys a variance-reduced, though still sub-optimal rate of convergence
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for the last iterate.
Finally, we provide a universal algorithm for non-strongly-convex composite optimiza-

tion, extending the works of Cutkosky [50], Kavis et al. [111], Levy et al. [134] to the
case when f 6= 0. The new algorithm features proximal updates and coordinate-wise
adaptive step-sizes, thus solving two problems left open by Kavis et al. [111]. Unlike Levy
et al. [134] and Cutkosky [50], the new algorithm does not query the optimization oracle
outside the constraint set X , and does not suffer from extra log terms in the bound. Unlike
the algorithm of Kavis et al. [111] (which is based on mirror-descent) our algorithm is
based on dual-averaging, which is better suited to sparse learning with a proximal `1
penalty [152, 265].

Notation. R denotes the set of real numbers. For any positive integer n, [n] = {1, . . . ,n}.
Let h : D! R where D ⇢ Rd for some positive integer d. The gradient or a subgradient
of h is denoted by h0. When h is convex, the Bregman-divergence Bh : D⇥Do! R is
defined as Bh(x,y) = h(x)�h(y)�hh0(y),x� yi, where Do denotes the interior of D. We
say that h is µ-strongly convex with respect to (w.r.t.) a norm k ·k if for all x 2D,y 2Do,
µ
2 kx� yk2  Bh(x,y), and it is µ-strongly convex w.r.t. a function n : D⇥Do! [0,•)
if µ · n(x,y)  Bh(x,y) for all x 2 D,y 2 Do (note that h is µ-strongly convex w.r.t. a
norm k ·k if it is µ-strongly convex w.r.t. the function k ·k2/2). For non-negative integers
a,b and a sequence of numbers or vectors x0,x1, . . ., we let xa:b = Âb

s=a xs if a b and 0
otherwise. With a slight abuse of notation, for a vector x 2 Rd , we denote its coordinates
as x = (x1, . . . ,xd); whether the subscript refers to a coordinate or a time index is usually
clear from the context (to reduce the possible ambiguity, we normally use xi and x j to
index coordinates of x, and xt and xs to indicate a quantity corresponding to time steps t
or s). For an event E, I{E} denotes its indicator function, that is I{E} = 1 if E is true,
otherwise I{E}= 0. The base-2 logarithm of x 2 (0,+•) is denoted by log(x).

F.2 Preliminaries

For simplicity, we assume that an optimizer x? 2 X of Problem (F.1) exists, i.e., `? :=
`(x?) `(x) for all x 2 X .1

Smoothness of functions. When f is differentiable over Rd , given a norm k · k, the
following are equivalent definitions of smoothness of f [175, Theorem 2.1.5]: f is L-
smooth if
1. for all x,y 2 Rd , B f (x,y) L

2kx� yk2;
2. for all x,y 2 Rd , k f 0(x)� f 0(y)k⇤  Lkx� yk ;

1We do not require X to be closed or compact, which are normally assumed to ensure x? exists.
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3. for all x,y 2 Rd ,

k f 0(x)� f 0(y)k2
⇤  (2L)B f (x,y) . (F.2)

Throughout the paper, we only require2 that f is differentiable over X , and use (F.2),
holding for all x,y 2 X , as the notion of smoothness under which accelerated rates are
obtained. Alternatively, assuming smoothness assumption holds only for x,y 2 X , one
can still obtain the same rates with a very similar analysis as we provide, at the expense
of an additional gradient oracle call per step of the algorithms; we leave the details for an
extended version of the paper.

Iterative optimization. We consider first-order sequential optimization procedures with
access to a stochastic gradient oracle that returns unbiased estimates of f 0. A sequential
optimization method then, in iteration t, queries the oracle at a point yt 2 X , receives
a gradient estimate gt such that Egt |Ht = f 0(yt) where Ht = s

⇣
(gs)

t�1
s=1 ,(ys)

t
s=1

⌘
is the

sigma-algebra generated by all the information used by the algorithm before making the
query at yt to the gradient oracle. In case f 6= 0, we also assume that the optimization
method has access to the prox-function of f (cf. Eq. F.6). After T iterations, the algorithm
produces an estimate x̄T of x?, based on all the information it has seen, where the quality
of the estimate is measured by the error E`(x̄T )� `?.

Online linear optimization. One way to design and analyze iterative optimization
methods is through online linear optimization (OLO) algorithms. An OLO algorithm
sequentially comes up, at each time step t 2 [T ], with a prediction xt , then receives a
linear loss function hatut , ·i, with the aim of maintaining a small cumulative composite
loss ÂT

t=1 at (hut ,xt� xi+f(xt)�f(x)), a.k.a. its regret compared to a competitor point
x. Here ut 2 Rd is unknown to the algorithm before selecting xt , but the non-negative
weights at are known ahead of time. One can convert an OLO algorithm to an iterative
optimization algorithm by using yt = xt to query the oracle, using ut = gt in the linear loss
to the OLO algorithm, and employing the average x̄T = ÂT

t=1
at

a1:T
xt as the final estimate

of x?.
The appeal of this “vanilla online-to-batch” approach (algorithm 16), is that it reduces

the convergence analysis of x̄T for convex f and f to the regret analysis of the underlying
OLO algorithm. In particular, by Jensen’s inequality,

E`(x̄T )� `? 
T

Â
t=1

Eat (h f 0(xt),xt� x?i+f(xt)�f(x?))
a1:T

= EÂT
t=1 at (hgt ,xt� x?i+f(xt)�f(x?))

a1:T
 ERT (x?)

a1:T
, (F.3)

2Extensions when f is non-differentiable at boundary points are straightforward.
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Algorithm 16 Vanilla Online-to-Batch
1: Input: Stochastic gradient oracle, non-negative weights (at)

T
t=1 with a1 > 0, online

linear optimization algorithm A
2: Get the initial point x1 2 X from A
3: for t = 1 to T �1 do
4: Get stochastic gradient gt at the current iterate xt
5: Send hatgt , ·i as the next linear loss to A
6: Let xt+1 be the next iterate from A
7: end for
8: return the average iterate ÂT

t=1 at xt
a1:T

.

Algorithm 17 Anytime Online-to-Batch [50]
1: Input: Stochastic gradient oracle, non-negative weights (at)

T
t=1 with a1 > 0, online

linear optimization algorithm A
2: Get the initial point x1 2 X from A and let x̄1 x1
3: for t = 1 to T �1 do
4: Get stochastic gradient gt at the average iterate x̄t
5: Send hatgt , ·i as the next linear loss to A
6: Let xt+1 be the next iterate from A
7: Let x̄t+1 Ât+1

s=1 asxs
a1:t+1

8: end for
9: return the average iterate x̄T

where RT (x?) is an upper-bound for the regret of the OLO algorithm. Thus, to analyze
the convergence of x̄T , one can simply plug-in an off-the-shelf regret bound (reviewed at
the end of this section) for the underlying OLO algorithm.

Anytime online-to-batch. An alternative, elegant online-to-batch conversion (algo-
rithm 17) was recently proposed by Cutkosky [50], which uses the “online” average
x̄t = Ât

s=1
as

a1:t
xs as the query point, i.e., yt = x̄t . Cutkosky [50, Theorem 1] showed (with

f = 0) that (F.3) holds under this conversion scheme as well. In the next section, we
show that in fact algorithm 17 enjoys a tighter version of (F.3) that enables us to prove
accelerated rates.

Generic regret bound. Next, we recall the regret bound for a general family of OLO
algorithms known as “adaptive optimistic follow the regularized leader” or AO-FTRL

220



F.3 Acceleration with Anytime Online-to-Batch

[157, 195, 196]. At time t, AO-FTRL makes its t-th prediction as

xt = argmin
x2X

*
t�1

Â
s=1

asgs +at g̃t ,x

+
+a1:tf(x)+ r0:t�1(x) , (F.4)

where, the rt : X ! R are convex regularizer functions, and for every t, g̃t , the optimistic
part of the update, is interpreted as a prediction of gt before it is received.

It is straightforward to see that AO-FTRL captures a wide range of algorithms used
in optimization [153, 265]. For example, the dual-averaging algorithm of Xiao [265]
corresponds to the case when f = 0 and r0:t�1 =

ht
2 k ·k

2
2 for ht > 0, in which case it is

easy to verify that

xt = PX

 
�Ât�1

s=1 asgs +at g̃t

ht

!
, (F.5)

where PX denotes Euclidean projection onto set X . More generally, allowing coordi-
natewise step sizes ht 2 [0,•)d and a possibly non-zero f , with r0:t�1(x) = 1

2 Âd
j=1 ht, jx2

j
we recover the proximal (a.k.a. “composite-objective” or “regularized”) dual-averaging
update [265]:

xt = proxa1:tf ,ht

 
�

t�1

Â
s=1

asgs�at g̃t

!

= argmin
x2X

a1:tf(x)+
1
2

d

Â
j=1

ht, j

✓
x j�

zt�1, j

ht, j

◆2
, (F.6)

where proxa1:tf ,ht is the prox-function of a1:tf with coordinatewise step sizes ht, j and
zt�1 =�

�
Ât�1

s=1 asgs +at g̃t
�
. Note that AdaGrad-style updates [60] can be recovered by

setting ht based on the past gradient estimates gs, g̃s (for s < t). If rt � 0, the cumulative
regularizer a1:tf + r0:t�1 is 1-strongly convex w.r.t. a norm k · k(t), and the AO-FTRL
update is well-defined, that is, the minimizer xt 2 X exists and

⌦
Ât�1

s=1 asgs +at g̃t ,xt
↵
+

a1:tf(xt)+ r0:t�1(xt) is finite, then Theorem 6 of Joulani et al. [103] gives the following
regret bound (see appendix F.11):

RT (x?) = r0:T�1(x?)+
T

Â
t=1

1
2

a2
t kgt� g̃tk2

(t)⇤. (F.7)

F.3 Acceleration with Anytime Online-to-Batch
First, we present a lemma that generalizes the regret decomposition of Joulani et al. [102]
to work with the averaging scheme of Cutkosky [50]. Crucially, the decomposition keeps
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track of some negative Bregman-divergence terms, which are instrumental in reducing the
contribution of the OLO regret to the error of x̄T .

Lemma F.3.0.1. For t = 1,2, . . .T , let at > 0 and xt 2Rd, and define x̄t =(Ât
s=1 asxs)/a1:t ,

Bt = atB f (x?, x̄t), and B̄ f
t = a1:t�1B f (x̄t�1, x̄t), t > 1. Then, if f is convex,

a1:T (`(x̄T )� `?)
T

Â
t=1

at
�⌦

f 0(x̄t),xt� x?
↵
+f(xt)�f(x?)

�
�B1:T � B̄ f

2:T . (F.8)

The lemma immediately gives rise to the following generic error bound, which improves
upon Theorem 1 of Cutkosky [50] by keeping around the aforementioned �B̄ f

t and �Bt
terms. While the Bt are the usual Bregman-divergence terms (also appearing in the vanilla
online-to-batch) that are utilized to get fast rates for strongly convex functions (and can
be dropped in general as long as the function is star-convex; see 103), the important
new terms here are the �B̄ f

t terms, which allow us to prove accelerated rates for online
averaging.

Corollary F.3.0.2 (Generic Error Bound). Under the assumptions of Lemma F.3.0.1, if
for all t = 1,2, . . . ,T , gt 2 Rd satisfies Egt |x̄t = f 0(x̄t) and we have

T

Â
t=1

at (hgt ,xt� x?i+f(xt)�f(x?))RT (x?) (F.9)

for some upper-bound RT (x?), then

E`(x̄T )� `(x?) E
RT (x?)�B1:T �B̄ f

2:T
a1:T

. (F.10)

The corollary follows since gt is a conditionally unbiased estimate of f 0(x̄t), so the first
term on the r.h.s. of (F.8) is, in expectation, equal to the term on the l.h.s. of (F.9), and
hence upper-bounded by ERT (x?). Next, we prove the lemma.

Proof of Lemma F.3.0.1. Writing f (x̄T ) as a telescoping sum,

f (x̄T )� f (x?) =� f (x?)+
a1 f (x̄1)

a1:T
+

T

Â
t=2

a1:t f (x̄t)�a1:t�1 f (x̄t�1)

a1:T

=
T

Â
t=1

at ( f (x̄t)� f (x?))
a1:T

+
T

Â
t=2

a1:t�1( f (x̄t)� f (x̄t�1))

a1:T

=
T

Â
t=1

at h f 0(x̄t), x̄t� x?i�Bt

a1:T
+

T

Â
t=2

a1:t�1 h f 0(x̄t), x̄t� x̄t�1i� B̄ f
t

a1:T

=
T

Â
t=1

at h f 0(x̄t), x̄t� x?i�Bt

a1:T
+

T

Â
t=2

at h f 0(x̄t),xt� x̄ti� B̄ f
t

a1:T
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=
ÂT

t=1 at h f 0(x̄t),xt� x?i�B1:T � B̄ f
2:T

a1:T
,

where the third step follows since by the definition of Bregman divergence, f (z)�
f (y) = h f 0(z),z� yi�B f (y,z), the fourth step follows since by the definition of x̄t , for
t = 2,3, . . . ,T we have at(x̄t � xt) = a1:t�1(x̄t�1� x̄t), and the last step uses x̄1 = x1.
The proof is completed by f(x̄T )� f(x?)  ÂT

t=1
at

a1:T
(f(xt)�f(x?)), which holds by

Jensen’s inequality.

Acceleration. The main idea behind deriving accelerated rates is combining (F.7) with
(F.10), and selecting at and g̃t appropriately so that the negative terms �B̄ f

t in (F.10)
offset the contribution of the terms a2

t
2 kgt� g̃tk2

(t)⇤ in (F.7) to the final error bound of x̄T .
For example, let f be L-smooth over Rd or assume otherwise that (F.2) holds with the
norm k ·k= k ·k2. Suppose the optimization algorithm uses the dual averaging update
(F.5) with at = t, ht = h = 2L, deterministic gradients gt = f 0(x̄t), and g̃t = gt�1. Then,
r0:t�1 is 1-strongly convex w.r.t. the norm Lk ·k2

2, and the norm terms a2
t

2 kgt� g̃tk2
(t)⇤ in

(F.7) can be bounded as

a2
t

2
kgt� g̃tk2

(t)⇤ = a2
t

1
4L
k f 0(x̄t)� f 0(x̄t�1)k2

2 
a2

t
2a1:t�1

B̄ f
t =

t2

t(t�1)
B̄ f

t  B̄ f
t ,

where the first inequality follows using (F.2). Hence, RT (x?)�B̄ f
2:T Lkx?k2

2+
1

4Lk f 0(x1)k2
2.

Noticing that a1:T = W(T 2) gives the well-known accelerated O(1/T 2) rate for the error
of x̄T . The next theorem, proved in appendix F.7, makes this argument precise for the
general setting with noise, non-zero f and generic AO-FTRL.

Theorem F.3.0.3. In algorithm 17, let the base method A generate its iterates by the
AO-FTRL update (F.4), using g̃t = gt�1 as the optimistic prediction of gt for t > 1 and
arbitrary g̃1. Suppose that f and f are convex, and there exists a norm k · k such that
either f is 1-smooth w.r.t. k ·k over Rd or otherwise (F.2) holds with L = 1 for all x,y 2X .
Further suppose that for all t 2 [T ], rt�1 � 0 is convex, the AO-FTRL update (F.4) is well-
defined with finite value at the optimum xt , and there exist bt > 0 and a norm k ·k(t) such
that a1:tf + r0:t�1 is 1-strongly-convex w.r.t. bt

2 k ·k
2 + 1

2k ·k
2
(t). Then, if a2

t b�1
t  a1:t�1

for all t > 1, we have

E`(x̄T )� `? 
T

Â
t=1

Ert�1(x?)� rt�1(xt)�Bt

a1:T
+

T

Â
t=1

E
a2

t kst�st�1k2
(t)⇤

2a1:T

+Ea2
1k f 0(x̄1)� g̃1k2

⇤
2b1a1:T

, (F.11)

where st = gt� f 0(x̄t), t 2 [T ], and s0 = 0.
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F.4 Applications
In this section we use the framework of the previous section, and Theorem F.3.0.3 in
particular, to obtain accelerated convergence rates with proximal updates, noisy gradients,
and universal algorithms.

F.4.1 Accelerated Proximal Dual-Averaging

First, we show that with appropriately setting at and ht , one can obtain the optimal
accelerated rates for the proximal dual averaging update (F.6). In particular, we consider
the case of a single step size for all coordinates (with a slight abuse of notation, ht,i = ht
for all i) and r0:t�1 =

ht
2 k ·k

2
2. Then, under the conditions of theorem F.3.0.3, we have

E`(xT )� `? 
T

Â
t=1

E
a2

t kst�st�1k2
(t)⇤

2a1:T
+EhTkx?k2

2�ÂT
t=1(ht�ht�1)kxtk2

2�2Bt

2a1:T

+E a2
1

2b1a1:T
k f 0(x1)� g̃1k2

⇤ . (F.12)

Thus, the optimal rates follow immediately by properly setting ht and at , as captured by
the following corollary.

Corollary F.4.1.1 (Accelerated Proximal Dual-Averaging). Let f and f be convex and
assume that either f is L-smooth over Rd or otherwise (F.2) holds for all x,y 2 X .
Consider the online-averaged (stochastic) proximal dual averaging algorithm, given by
Algorithm 17 with update (F.6) using g̃t = gt�1 as the optimistic prediction of gt for t > 1,
and g̃1 = 0, where the gradient estimates gt are unbiased, that is, Egt |x̄t = f 0(x̄t). Let
s2
⇤ = maxT

t=1Ekstk2
2, where st = gt� f 0(x̄t), and let D = max{kx?k2,kx1�x⇤f k2}, where

x⇤f is the minimizer of f over Rd. Then we have the following error bounds:

(i) If ht = 4L+hat
p

t for some h > 0 and at = t, we have

E`(x̄T )� `? 
�
4L+ L

4 +hT
p

T
�

D2 + 4s2
⇤

h T
p

T

T (T +1)
=O

✓
LD2

T 2 +
hD2 +h�1s2

⇤p
T

◆
.

(ii) If ft is µ-strongly-convex then using ht = 4L and at = t, we have

E`(x̄T )� `? 
�
4L+ L

4
�

D2 + 8s2
⇤T

µ
T (T +1)

=O
✓

LD2

T 2 +
s2
⇤

µT

◆
.

(iii) If gt = f 0(xt) (i.e., the noiseless case) and f is µ-strongly-convex, then for ht = 0 and
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any sequence of at > 0, t 2 [T ] satisfying

p
ck � a1:t

at
�
p

2k t > 1 , (F.13)

for some c� 2 where k = (L+µ)/µ denotes the condition number, we have

`(x̄T )� `? 
k f 0(x1)k2

⇣
1� 1p

ck

⌘T�1

2µ
. (F.14)

Remark F.4.1.1. The above rates of O
�
1/T 2� for a non-strongly-convex f are optimal

in T when there is no noise (st = 0), and the bound (F.14) also almost matches the
optimal O

�
(1�1/

p
k)T� rate for the noiseless strongly-convex case. When there is

noise, the worst-case rate of O
�
1/
p

T
�

(for non-strongly-convex f ) and O (1/T ) (for
strongly-convex f ) are unavoidable, according to the lower-bounds of Nemirovsky and
Yudin [167]: when the noise dominates, there is no hope of exploiting the smoothness in
the signal (i.e., the gradient). Therefore, similarly to our paper, all previous work obtain
only a lower-order improvement, e.g., from 1/T +s/

p
T (of smooth non-strongly-convex

SGD) to 1/T 2 +s/
p

T . If the noise is small, the latter rate is closer to the noise-free
optimal rate of 1/T 2, and determines the convergence speed of the algorithm in the initial
stages of optimization. In contrast, the former bound (for SGD) is sub-optimal in the noise-
free case. The possible improvements are lower-order in case of noisy strongly-convex
optimization as well.

Proof of theorem F.4.1.1. First, notice that with any step size ht = 4L+ gt , the algorithm
is equivalent to algorithm 17 with AO-FTRL as the base algorithm, using regularizers
r0:t�1 =

4L+gt
2 k ·k

2
2, which satisfy the conditions of theorem F.3.0.3 with bt = 4, k ·k2 =

Lk ·k2
2, and k ·k2

(t) = (gt +a1:t µ)k ·k2
2, where µ is the strong-convexity parameter of f

(i.e, µ = 0 in part (i), and µ > 0 in parts (ii) and (iii)). Hence, starting from (F.12), with
at = t we have

E`(x̄T )� `(x?)
T

Â
t=1

t2Ekst�st�1k2
2

(gt +a1:t µ)T (T +1)
+

(4L+ gT )kx?k2
2

T (T +1)
� ÂT

t=1(gt� gt�1)Ekxtk2
2

T (T +1)

+
Ek f 0(x̄1)k2

2
4T (T +1)L

.

In the above, Ekst�st�1k2
2  4s2

⇤ . In addition, since f is convex and satisfies (F.2), we
have 1

2Lk f 0(x̄1)k2
2  B f (x1,x⇤f ) 

L
2kx1� x⇤f k2 where x⇤f is the minimizer of f over Rd .

Then, plugging in gt = hat
p

t (respectively, gt = 0) and dropping the non-positive terms
�(gt� gt�1)kxtk2

2 immediately gives part (i) (respectively, part (ii)).
To prove part (iii), first recall that for ht, j > 0, (F.6) is equivalent to the AO-FTRL update

(F.4) with r0:t�1(x) = 1
2 Âd

j=1 ht, jx2
j . For ht = 0, we define the update to be AO-FTRL with
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r0:t�1 = 0, hence the update will be of the form xt = argminx2X hzt�1,xi+a1:tf(x) (recall
that zt�1 =�Ât�1

s=1 asgs�at g̃t). Then, since f is strongly-convex, despite having rs = 0
for all s, we have that a1:tf + r0:t�1 is strongly-convex w.r.t. bt

L
2k · k

2
2 with bt = a1:t

µ
L .

Hence, by theorem F.3.0.3,3 we have

a1:T (`(x̄T )� `(x?)) a1

2µ
k f 0(x1)� g̃1k2 , (F.15)

as long as for all t > 1, the assumption a2
t b�1

t  a1:t�1 of theorem F.3.0.3 is satisfied:
that is, we have

a2
t

a1:ta1:t�1
 µ

L
=

1
k�1

. (F.16)

It remains to show that (F.16) is satisfied, and simplify the bound (F.15). To that end,
note that on the one hand, by (F.13) we have a1:t�1/at �

p
2k�1, which in turn implies

a1:ta1:t�1
a2

t
� 2k�

p
2k � k�1, proving (F.16). On the other hand, (F.13) implies a1:t�1 

(1� 1p
ck )a1:t for all t > 1; therefore a1  a1:T

⇣
1� 1p

ck

⌘T�1
. Putting this back into

(F.15) finishes the proof.

F.4.2 A Proximal Adaptive Universal Algorithm
Next, we present the universal convergence of algorithm 17 with AdaGrad-style step sizes,
proved in appendix F.8.

Theorem F.4.2.1. Suppose that the iterates xt are given by AO-FTRL with AdaGrad step
sizes, i.e., using (F.4) with r0 = 0,

rt(x) = g
d

Â
j=1

ht, j�ht�1, j

2
(x j� xt, j)

2, t � 1 ,

where g > 0, ht, j =
p

Ât
s=1 a2

s (gs, j� g̃s, j)2, t > 0 and h0 = 0. Further suppose that gt
are unbiased estimates of f 0(x̄t), and we use g̃t = gt�1, t > 1 and g̃1 = 0. Let R be an
upper-bound on |x?j � xt, j|2. Then the following hold:

(i) If Eg2
t, j  G2

j for all t 2 [T ], then

E`(x̄T )� `? 
d

Â
j=1

E

⇣
gR2

2 + 2
g

⌘

a1:T

s
T

Â
t=1

a2
t G2

t, j =O
 

RÂd
j=1 G jp

T

!
,

3Note that instead of using a norm, here we set k ·k(t) in theorem F.3.0.3 to be zero. While this is not a
valid choice, an inspection of the proof of the theorem verifies that the theorem still holds in this case if
the dual norm is set to zero and st = 0 for all t.
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for g = 2/R, where Gt, j := (gt, j� g̃t, j).

(ii) If f is L-smooth over Rd or otherwise (F.2) holds for all x,y 2 X , and Es2
t, j  s2

j for
all t 2 [T ] (recall that st = gt� f 0(x̄t)), then

E`(x̄T )� `?  1
a1:T

d

Â
j=1

6L
✓

gR2

2
+

2
g

◆2

+
1

a1:T

✓
gR2

2
+

2
g

◆ 
D+

d

Â
j=1

s
T

Â
t=1

6a2
t s2

j

!

=O
✓

LdR2 +DR
T 2 +

max j s jdRp
T

◆
,

for g = 2/R, where D = Âd
j=1
p

2E| f 0(x1, j)|2.

Remark F.4.2.1. Both bounds above are achieved by the same algorithm, without further
prior knowledge about f or the values of L and s . The first bound is a data-adaptive
bound that holds even if f is non-smooth, and is optimal when the data is sparse [61].
The second bound is of the optimal rate O(1/T 2 +s/

p
T ) when f is smooth.

Remark F.4.2.2. The bound R required by the theorem is enforced, e.g., when X is
compact. This implies that in the unconstrained optimization setting, similarly to Levy
et al. [134], we assume that we are still given a compact set X containing x? and project
to that set in the algorithm.

F.5 Accelerated Variance-Reduced Methods
In this section, we apply our framework to the variance reduced setting. In this setting,
we assume f = EF(·,x ) is the expected value of functions F : Rd⇥X! R, where x is
a random variable from some set X, with distribution PX. At time step t, the algorithm
receives a realization zt ⇠ PX, and can query the gradient oracle F 0(·,zt) at (potentially
multiple) points in X . In addition, the algorithm can query the exact (non-stochastic)
gradient oracle f 0 from time to time. Then, the gradient estimate gt at x̄t is calculated as

gt = F 0(x̄t ,zt)�F 0(x̃t ,zt)+ f 0(x̃t) , (F.17)

where x̃t is the snapshot point at time t, i.e., the most recent point at which f 0 has been
queried prior to time t.

The underlying operational assumption in computing gt is that calls to F 0 are computa-
tionally cheaper than calls to f 0, and hence the latter is queried less frequently. This is
in particular the case in finite sum minimization problems, where f = 1

n Ân
i=1 fi for some

functions fi : X ! R, F(x, i) = fi(x) for all i 2 [n], and zt has a uniform distribution over
[n]. In this case, the computational complexity of an algorithm is measured by the number
of times the gradient of any fi is computed, so a single access to the full gradient oracle
f 0 has a computation cost of O(n).
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Appendix F A Simpler Approach to Accelerated Stochastic Optimization

Let H1 = /0 and Ht = {z1,z2, . . . ,zt�1} for t > 1, i.e., Ht is the history of random
realizations up to time t. To ensure gt is an unbiased estimate of f 0(x̄t), i.e., Egt |Ht =
f 0(x̄t), we assume that for any t and any Ht-measurable x,

EF 0(x,zt)|Ht = f 0(x) ,and,
EF(x,zt)|Ht = f (x) .

(F.18)

This is ensured, e.g., if zt , t = 1,2, . . . is an i.i.d. sequence.
Algorithm. In this setting, instead of defining the query point x̄t as the average of the

previous outputs of the underlying online optimization algorithm A, we define it as

x̄t =
a1:t�1x̄t�1 +atxt + pt x̃t

a1:t + pt
(F.19)

where the at > 0 are the averaging weights as before, and pt � 0 incorporates a negative
momentum (first introduced by Allen-Zhu [6]) towards the current snapshot point x̃t . If
pt = 0, (F.19) reduces back to x̄t =

1
a1:t

Ât
s=1 asxs.

The resulting algorithm, presented in algorithm 18, extends Algorithm 1 of Joulani et al.
[103] to the anytime averaging scheme with negative momentum. algorithm 18 operates
in epochs (the outer loop in the algorithm goes over the epochs): At the beginning of
epoch s, the gradient snapshot is calculated. Then, in the sth run of the inner loop, from
time T1:s�1 +1 to T1:s, an optimization algorithm A is run for Ts steps with the variance
reduced gradient estimates (F.17) and averaging (F.19). Finally, the snapshot point is
updated at the end of the epoch; the exact form of the update is given later for the different
variants we consider.

Algorithm 18 Variance-Reduced Anytime Online-to-Batch with Negative Momentum
1: Input: Gradient oracle F 0 and f 0, non-negative weights (at)

T
t=1 with a1 > 0, epoch

lengths T1,T2, . . . ,TS, online linear optimization algorithm A
2: Get the initial point x1 2 X from A
3: x̃ x1, x̄1 x1
4: for s = 1 to S do
5: Compute and store the full gradient f 0(x̃)
6: for t = T1:s�1 +1 to T1:s do
7: Get the gradient estimate gt at x̄t by (F.17)
8: Send hatgt , ·i as the next linear loss to A
9: Let xt+1 be the next iterate from A

10: Let x̄t+1 a1:t x̄t+at+1xt+1+pt+1x̃
a1:t+1+pt+1

11: end for
12: Update the snapshot point x̃.
13: end for
14: return the average iterate x̄T and the latest snapshot x̃.
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F.5 Accelerated Variance-Reduced Methods

F.5.1 Warm-Up: No Negative Momentum

First, we consider a version of our accelerated variance-reduced method without negative
momentum (pt = 0 for all t), using the first iterate of each epoch (i.e., the last iterate of
the previous epoch s�1 for s > 1) as the snapshot point: We let x̃ = x̄t+1, so that in every
epoch s 2 [S], x̃t = x̄T1:s�1+1 for all t 2 [T1:s�1+1,T1:s]. We use AO-FTRL with regularizer
r1:t�1 =

ht
2 k ·k

2
2 as the underlying algorithm A, with the snapshot used as the optimistic

gradient estimate: g̃t = f 0(x̃t�1). Then, we have the following bound on the performance
of the algorithm:

Theorem F.5.1.1. Suppose that f , as well as F(·,z ) for all z 2 X, are a) convex; and,
b) either L-smooth w.r.t. k · k2 over Rd or otherwise satisfying (F.2) for all x,y 2 X .
Further suppose that (F.18) holds. Assume that algorithm 18 is run with epoch lengths
Ts = min{t,2s�1} for some maximum epoch length t , snapshot update x̃ = x̄t+1, at = t,
and A selected as AO-FTRL with regularizer r1:t�1 =

ht
2 k ·k

2
2 for ht = 8Lt2 and optimistic

gradient estimates g̃1 = 0 and g̃t = f 0(x̃t�1), t > 1. Then, for any T > t ,

E`(x̄T )� `(x?)
8Lt2kx?k2

2 +
k f 0(x̄1)k2

2
8Lt2

T (T +1)
.

Proof. By theorem F.11.0.1 in appendix F.11,

RT (x?) =
hT

2
kx?k2

2 +
T

Â
t=1

a2
t

2ht
kgt� g̃tk2

2

bounds the linearized composite-objective regret of A. Combining with theorem F.3.0.2
and using B1:T � 0,

E`(x̄T )� `(x?) 1
a1:T

EhT

2
kx?k2

2 +
T

Â
t=1

a2
t

2ht
kgt� g̃tk2

2� B̄ f
2:T .

theorem F.9.0.1 in Appendix F.9 shows that

T

Â
t=2

a2
t kgt� g̃tk2

2  16Lt2B̄ f
2:T ,

which then can be used to cancel all terms but kg1� g̃1k2
2/(2h1) from the summation

above. Using g1 = f 0(x̄1) and g̃1 = 0, and substituting ht finishes the proof.
In the finite sum optimization setting, by selecting t = n, our algorithm achieves

e error after O
⇣

n logn+n
q

L
e

⌘
individual gradient evaluations, via a simple direct

approach. More complicated methods, such as Catalyst [138], RPDG [124], Katyusha [6]
and related papers achieve an iteration complexity of O

⇣
n log 1

e +
q

nL
e

⌘
, which has a
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better dependence on n in the dominant second term. However, these methods use an
indirect approach (as termed by Allen-Zhu [6]), where non-strongly-convex functions
are optimized by adding strongly-convex perturbations, and yet do not achieve the near-
optimal rate of Lan et al. [125], which is obtained using negative momentum and epoch
averaging. In the next section, we obtain this near-optimal bound.

F.5.2 Improved Variance-Reduced Acceleration

In this section, we use negative momentum to achieve a near-optimal accelerated variance-
reduced rate: we set pt > 0 in algorithm 18. In addition, unlike theorem F.5.1.1, the
snapshot point at the end of epoch s is now given by an average:

x̃s+1 =
1

ÂT1:s
t=T1:s�1+1 pt

T1:s

Â
t=T1:s�1+1

pt x̄t . (F.20)

For simplicity, we assume f = 0, so that `= f .
A consequence of computing x̄t via (F.19) with pt > 0 is that for all t = 1,2, . . . ,T ,

at(x̄t� xt) = a1:t�1(x̄t�1� x̄t)+ pt(x̃t� x̄t) . (F.21)

Then, we will have the following error decomposition.

Lemma F.5.2.1 (Regret Decomposition). For t 2 [T ], let at , pt > 0, xt , x̃t 2 Rd, and
define x̄t as in Equation (F.19), Bt = atB f (x?, x̄t) and B̄ f

t = a1:t�1B f (x̄t�1, x̄t). Then, for
all x? 2 Rd,

f (x̄T )� f ? =
1

a1:T

"
T

Â
t=1
hat f 0(x̄t),xt� x?i�B1:T �

T

Â
t=2

B̄ f
t

+
T

Â
t=1

pt( f (x̃t)� f (x̄t)�B f (x̃t , x̄t))

#
(F.22)

The above error decomposition, proved in appendix F.10, is similar to theorem F.3.0.1,
but has an extra term due to the negative momentum, which will be helpful in further
reducing the error. Then, the next theorem, proved in appendix F.10, provides the improved
convergence rate.

Theorem F.5.2.2. Consider the conditions of theorem F.5.1.1, but instead suppose that
the snapshot update in appendix F.5 of algorithm 18 is given by (F.20), g̃t = gt�1, t > 1,
we use pt such that 0 < p1  1 and pt � 15La2

t
ht

, t � 1, and we set ht = 1860LTs(t) log(2t),
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where s(t) denotes the epoch containing iteration t. Then, for any T � 1,

E`(x̄T )� `(x?)
3720LTs(T )kx?k2

2 +
k f 0(x̄1)k2

2
930L log2 +4( f (x̃1)� f ?)

T 2 log(2T ).

The rate provided in Theorem F.5.2.2 is optimal up to a logarithmic factor. In particular,
for the finite sum setting, with t = n, the algorithm needs Õ

⇣
n logn+

q
nL
e

⌘
individual

gradient evaluations to reach e error, matching the rate recently obtained by Lan et al.
[125]. Unlike in previous work, our convergence guarantee holds for the last iterate
instead of a snapshot point or the average of the last epoch.

F.6 Conclusions
We demonstrated that online iterate averaging combined with optimistic online learning
can lead to accelerated rates in several scenarios. The resulting algorithms and their
analyses are surprisingly simple and often yield the optimal rates. Exploring the full
power of this method is left for future work. In particular, it would be interesting to extend
this approach to obtain accelerated exponential rates for variance-reduced optimization of
strongly-convex objectives, and remove the extra logarithmic terms in the non-strongly-
convex variance-reduction case.
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Proofs for Main Results

F.7 Proof of theorem F.3.0.3

Proof of theorem F.3.0.3. First, we bound the linear composite regret

T

Â
t=1

at (hgt ,xt� x?i+f(xt)�f(x?))

by a bound RT that results in slightly better constants compared to (F.7). For t 2 [T ], let
ut ,vt be any two vectors such that gt � g̃t = ut + vt , and define Dt = rt�1(x?)� rt�1(xt).
Then, theorem F.11.0.1 bounds the regret of the AO-FTRL updates made by A as follows:

T

Â
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(hatgt ,xt� x?i+atf(xt)�atf(x?))�D1:T
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�
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✓
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(t)⇤
2

+
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a2
t kutk2

⇤
2bt

, (F.23)

where the second step uses the strong-convexity of a1:tf +r0:t�1, and the third step follows
by the Fenchel-Young inequality hz,xi� b

2 kxk
2  1

2b kzk
2
⇤. Now, let u1 = f 0(x1)� g̃1,

ut = f 0(xt)� f 0(xt�1), t = 2, . . . ,T , and vt = st �st�1, t 2 [T ], and notice that for all
t = 2, . . . ,T ,

a2
t kutk2

⇤
2bt

 a1:t�1kutk2
⇤

2
=

a1:t�1

2
k f 0(xt)� f 0(xt�1)k2

⇤

 a1:t�1B f (xt�1,xt) = B̄ f
t , (F.24)

using the assumption of a2
t b�1

t  a1:t�1 and (F.2) with L = 1. Plugging the definitions
of ut and vt into (F.23) and using (F.24), we obtain

T

Â
t=1
hatgt ,xt� x?i 

T

Â
t=1

(Dt +atf(xt)�atf(x?))
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+
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(t)⇤
2

+
a2

1k f 0(x1)� g̃1k2
⇤

2b1
+ B̄ f

2:T . (F.25)

Applying theorem F.3.0.2, combining with (F.25), and cancelling the matching B̄2:T terms
concludes the proof.

F.8 Proof of theorem F.4.2.1

Proof of theorem F.4.2.1. Starting from theorem F.3.0.1, we plug-in the bound of com-
posite AO-FTRL from Mohri and Yang [157, Theorem 3] (using ft  hatgt , ·i):
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where the first inequality follows from Mohri and Yang [157, Theorem 3] with the norm
kyk(t)⇤=Âd

j=1
1

ght, j
(y j)2, the second from the definitions using r0:T ÂT

t=1 Âd
j=1

gR2

2 (ht, j�

ht�1, j) = Âd
j=1

gR2

2 hT, j, and the third from the standard inequality that ÂT
t=1 at/

p
a1:t 

2
p

a1:T .
Putting back into theorem F.3.0.2, we obtain
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gR2
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s
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t (gt, j� g̃t, j)2� B̄ f

2:T . (F.26)

Dropping the negative terms B̄ f
2:T , using Jensen’s inequality to take the expectation under

the square-root, using at = t and applying the bound G j completes the proof of the first
part of the theorem.

To prove the second part, observe that for t > 1, because g̃t = gt�1, we have

|gt, j� g̃t, j|= | f 0j(xt)+st, j� f 0j(xt�1)�st�1, j| |st, j|+ |st�1, j|+ | f 0j(xt)� f 0j(xt�1)| .

Now, denote D1, j = | f 0j(x̄1)| and Dt, j = | f 0j(xt)� f 0j(xt�1)|, t > 1. By Jensen’s inequal-
ity, (a+ b+ c)2  3(a2 + b2 + c2) for any real numbers a,b,c. In addition, for t > 1,
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Âd
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on the one hand, and on the other hand
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Next, using a1 = 1 and g̃1 = 0, we have a2
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inequality. Putting back into (F.26),
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using in the second step the concavity of the square root, Jensen’s inequality and the
upper-bound Es2

s, j  s j,s � 1, and in the last step at = t and the fact that for t > 1,
a2

t
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 4. Next, we note that for a,b� 0, 2
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Separating the first square-root and using D = Âd
j=1

q
2ED2

1, j completes the proof of the
second part.
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F.9 Variance reduction for smooth functions

Lemma F.9.0.1. Suppose the assumptions of theorem F.5.1.1 hold. Then
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t Ekgt� g̃tk2

2  16Lt2B̄ f
2:T .

Proof. Fix time step t > 1 within epoch s > 1 (recall there is only one step, t = 1, in
epoch s = 1). We consider two cases:

a) Time step t is the first time step in epoch s:
This implies that t = T1:s�1 +1. In addition, x̃t = x̄t by definition, and x̃t�1 = x̄t 0 where

t 0 = T1:s�2 +1 is the first iterate of epoch s�1. Then,
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where the first inequality follows by Jensen’s inequality and the convexity of k ·k2, and
the second inequality follows because the smoothness assumption on that implies (F.2)
holds for f and any x,y 2 X , and we substitute t̃t := Ts�1.

b) Time step t is not the first time step in epoch s:
In this case, let t̃t = t� (T1:s�1 +1)> 0 denote the number of time steps elapsed since

the beginning of the epoch, so that x̃t�1 = x̃t = xt�t̃t . Then,

Ekgt� g̃tk2
2|Ht = E

��F 0(xt ,zt)�F 0(x̃t ,zt)+ f 0(x̃t)� f 0(x̃t�1)
��2

2 |Ht

= E
��F 0(xt ,zt)�F 0(xt�t̃t ,zt)

��2
2 |Ht

= E

������

t

Â
k=t�t̃t+1

�
F 0(xk,zt)�F 0(xk�1,zt)

�
�����

2

2

������
Ht

 t̃t

t

Â
k=t�t̃t+1

Ek
�
F 0(xk,zt)�F 0(xk�1,zt)

�
k2

2|Ht
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 2t̃tL
t

Â
k=t�t̃t+1

EBF(·,zt)(xk�1,xk)|Ht

= 2t̃tL
t

Â
k=t�t̃t+1

B f (xk�1,xk) ,

where the last inequality follows from the smoothness assumption that ensures (F.2) holds
for F(·,zt) and any x,y 2 X , and the last equality follows by (F.18). Multiplying by a2

t
and summing up for all t, we get

T

Â
t=2

a2
t t̃t

t

Â
k=t�t̃t+1

B f (xk�1,xk) =
T

Â
k=2

B f (xk�1,xk)
T

Â
t=2

a2
t t̃t I{t� t̃t +1 k  t} .

Next, recall that by definition, Ts = min(t,2s�1)  T1:s�1 +1 for any s � 1. Therefore,
in case (a) above, t = T1:s�2 +Ts�1 +1  2T1:s�2 +2 = 2(t� t̃t). Similarly, in case (b)
above, t  T1:s  2T1:s�1 +1 2(t� t̃t). Thus, using at = t,

T

Â
t=2

a2
t t̃t I{t� t̃t +1 k  t} a2

2k�2

T

Â
t=2

t̃t I{k  t  k+ t̃t�1} 4t2(k�1)2  8t2a1:k�1 ,

using in the first step the fact that t  2(t� t̃t) 2(k�1) by the argument above and the
condition inside the indicator (which we also re-arranged), and in the second step at = t
and t̃t  Ts  t . Combining the above, we get

T

Â
t=2

a2
t Ekgt� g̃tk2

2  16Lt2
T

Â
t=2

a1:t�1B f (xt�1,xt) = 16Lt2B̄ f
2:T ,

finishing the proof.

F.10 Improved variance-reduced rate for smooth
functions

Proof of Lemma F.5.2.1. The proof follows similar steps as the proof of theorem F.3.0.1,
with the difference that we need to handle the negative momentum term as well:

f (xT )� f ? =
1

a1:T

T

Â
t=1

at f (xt)� f ?+

:=eTz }| {

f (xT )�
1

a1:T

T

Â
t=1

at f (xt)

=
1

a1:T

T

Â
t=1

at( f (xt)� f ?)+ eT
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=
1

a1:T

2

4
T

Â
t=1
hat f 0(xt),xt� x?i�

T

Â
t=1

:=Btz }| {
atB f (x?,xt)

3

5+ eT

=
1

a1:T

"
T

Â
t=1
hat f 0(xt),xt� x?i+

T

Â
t=1
hat f 0(xt),xt� xti�B1:T

#
+ eT

=
1

a1:T

"
T

Â
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hat f 0(xt),xt� x?i�B1:T

#
+

:=D̃Tz }| {
1

a1:T

T

Â
t=1
hat f 0(xt),xt� xti+ eT

(F.28)

Before evaluating D̃T , we consider the term,

DT =
1

a1:T

"
T

Â
t=2
h f 0(x̄t),a1:t�1(x̄t�1� x̄t)i

#
+ eT

=
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"
T

Â
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� 1
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a1:t�1B f (x̄t�1, x̄t)| {z }
:B̄ f
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(F.29)

Let us now evaluate D̃T . We have :

D̃T =
1

a1:T

T

Â
t=1
hat f 0(xt),xt� xti+ eT

(F.21)
=

1
a1:T

T

Â
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+
1

a1:T
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1
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T

Â
t=2
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=
1
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pt( f (x̃t)� f (xt)�B f (x̃t ,xt))�
1
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T

Â
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B̄ f
t

(F.30)
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The second last equation comes directly from Equation F.29. Hence, finally we have:

f (xT )� f ? =
1

a1:T

"
T

Â
t=1
hat f 0(xt),xt� x?i�B1:T �

T

Â
t=2

B̄ f
t +

T

Â
t=1

pt( f (x̃t)� f (xt)�B f (x̃t ,xt))

#

(F.31)

The following variance bound is standard in the literature (e.g., Allen-Zhu 6, Lemma 2.4).
For completeness, we provide a proof using our assumptions and notation.

Lemma F.10.0.1. Fix t � 1 and assume that (F.18) holds, and gt is given by (F.17).
Further assume that for all z , F(·,z ) is convex and L-smooth w.r.t. the 2-norm k·k over
Rd or otherwise satisfies (F.2) for all x,y 2 X . Then,

E[kgt� f 0(xt)k2] EkF 0(x̄t ,zt)�F 0(x̃t ,zt)k2  2LEB f (x̃t ,xt) .

Proof. By the smoothness assumption on F(·,z ), which implies (F.2), we have

kF 0(x,z )�F 0(x0,z )k2  2L
�
F(x,z )�F(x0,z )�hF 0(x0,z ),x� x0i

�
, (F.32)

for all x,x0 2 X . Now, thanks to EkU�EUk2  EkUk2 which holds for any random
vector U , and noticing that x̃t and xt are determined by Ht by construction, we have

Ekgt� f 0(xt)k2 | Ht = EkF 0(xt ,zt)� f 0(xt)� (F 0(x̃t ,zt)� f 0(x̃t))k2 | Ht

 EkF 0(xt ,zt)�F 0(x̃t ,zt)k2 | Ht

 2LEF(x̃t ,zt)�F(xt ,zt)�hF 0(xt ,zt), x̃t�xti | Ht (by (F.32))
= 2L

⇥
f (x̃t)� f (xt)�h f 0(xt), x̃t�xti

⇤
.

Taking the expectation of both sides finishes the proof.

Proof of Theorem F.5.2.2. Note that B f (x̃1,x1) = 0. Also since, f = 0, `(x) = f (x) for
all x, hence we will be using f instead of ` in the proof. Let s(t) represents the epoch
containing iteration t. From Lemma F.5.2.1, we have :

f (xT )� f ? =
1

a1:T

"
T

Â
t=1
hat f 0(xt),xt� x?i�B1:T �

T

Â
t=2

B̄ f
t +

T

Â
t=1

pt( f (x̃t)� f (xt)�B f (x̃t ,xt))

#
.

(F.33)
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Now we have:

1
a1:T

"
T

Â
t=1
hat f 0(xt),xt� x?i

#
=

1
a1:T

"
T

Â
t=1
hat f 0(xt)�atgt +atgt ,xt� x?i

#

=
1

a1:T

"
T

Â
t=1
hatgt ,xt� x?i+d1:T

#
,

where dt = ath f 0(x̄t)� gt ,xt � x?i. By (F.18), we have E[dt ] = 0 for all t 2 [T ]. By
theorem F.11.0.1 in the appendix,

1
a1:T

E
"

T

Â
t=1
hatgt ,xt� x?i

#
RT (x?) =

hT

2
kx?k2

2 +
T

Â
t=1

a2
t

2ht
E [[]kgt� g̃tk2

2] .

Putting back in (F.33), and using the fact that due to convexity of f , B1:T � 0, we have:

E f (x̄T )� f (x?) 1
a1:T

EhT

2
kx?k2

2 +
T

Â
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a2
t

2ht
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2� B̄ f
2:T +

T

Â
t=1

pt( f (x̃t)� f (x̄t)�B f (x̃t , x̄t)) .

(F.34)

Next, using g̃t = gt�1, t > 1, and applying theorem F.10.0.1, we have
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a2
t

2ht
Ekgt� g̃tk2 =

T

Â
t=2

a2
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E2LB f (x̃t , x̄t)+2LB f (x̃t�1, x̄t�1)+2LB f (x̄t�1, x̄t)


T

Â
t=1

3L(a2
t +a2

t+1)

ht
EB f (x̃t , x̄t)+

T

Â
t=2

12L
ht

EB̄ f
t ,

where the second step uses Jensen’s inequality and the convexity of k ·k2, the third step
follows by the smoothness assumption on f and theorem F.10.0.1, and the fourth step
follows by ht+1 � ht and a2

t
a1:t�1

 4. Putting back into (F.34) with g̃1 = 0,

E f (x̄T )� f (x?) 1
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EhT
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1
2h1
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+
T

Â
t=1

 
3L(a2

t +a2
t+1)

ht
� pt

!
EB f (x̃t , x̄t)+

T

Â
t=2

✓
12L
ht
�1
◆
EB̄ f

t .

(F.35)

Noticing that pt � 15La2
t

ht
� 3L(a2

t +a2
t+1)

ht
and ht � 12L, the last two terms in (F.35) vanish.

In the rest of the proof, we will bound the term GT and use induction to get the final
convergence rate. Let us denote E[ f (x̄t)� f ?] with Dt and E[ f (x̃t)� f ?] with D̃s(t). Let
us also represent the snapshot point for epoch s by x̃s. Hence, D̃(s) = E[ f (x̃s)]� f ?. We
also assume that T1:S < T  T1:S+1. Then

T

Â
t=1

pt( f (x̃t)� f (x̄t)) =
T

Â
t=1

pt(D̃s(t)�Dt)
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�
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ptDt

!

.
(F.36)

From the definition of x̃s, we can apply Jensen’s inequality to get

T

Â
t=1

pt( f (x̃t)� f (x̄t)) p1D̃(1)+
S

Â
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:=Qs

.
(F.37)

Let us assume that for pt =
a2

t
gtTs(t)

8 t 2 [T1:s�1 + 1,T1:s] where at = t and gt is an
increasing sequence of positive numbers. We rewrite the term Qs.
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!
.

We let s0 be the smallest index for which Ts = t for all s > s0. Hence, for s > s0 we have
following bound for Qs:
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!
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 t2(2T1:s�1 +3t)
(T1:s�1 +1)2t

 t(2T1:s�1 +3(T1:s�1 +1))
(T1:s�1 +1)2  5

t
T1:s�1 +1

= 5
Ts

T1:s�1 +1
,

using in the last step the fact that s0< s implies t = Ts T1:s�1+1 (which follows because
if Ts�1 = 2s�2, then T1:s�1 +1 = 2s�1 � Ts, and is trivial if otherwise Ts�1 = t). Now let
us consider the case when s s0. In that case, Ts+1  2s = 2Ts, which can be used to show

Â
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Hence,
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(F.38)

In the above equation, we can choose gt = 124log(2t) then we have:
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T 2

"
hTkx?k2 +

1
ĥ
k f 0(x1)k2 +2p1D̃(1)+

S

Â
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124log(2t) Ts
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#
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(F.39)

Now, it is important to remember that pt � 15La2
t

ht
, which is satisfied if ht = 1860LTs(t) log(2t).

We now use (F.39) to prove the following statement by induction:

DT 
Ts(T ) log(2T )

T 2


3720Lkx?k2 +

2
h1
k f 0(x1)k2 +4p1D̃(1)

�
=

CTs(T ) log(2T )
T 2 ,

where C = 3720Lkx?k2 + 2
h1
k f 0(x1)k2 +4p1D̃(1).

For T = 1, the bound is satisfied trivially, since C � 2D1 by (F.35). Next, let T > 1,
and assume the induction hypothesis holds for all t  T �1. Then, we have:
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where the second step uses the induction hypothesis on Dt for t < T . Then, on the one
hand, if S s0, we have:
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where in the first step we use Ts  TS, the earlier bound Qs  31 for s  s0, and S =
log2(2S�1)+1 = log2(TS)+1, and in the second step we use 1 = log2(2). On the other
hand, if S > s0:
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In the derivations above, the second step follows because by the definition of s0, s0 
log(t) + 1 and also T1:s0 + 1 = 2s0 � Ts0+1 = t . The third step uses 1 = log2(2) and
ÂS

s=s0+1 1/(s�s0)=ÂS�s0
j=1 1/ j log(S�s0+1). The fourth step uses log( j+1) 6log( j)

for any j > 1. The fifth step uses (S� s0)t  T1:S < T .

Hence, in both cases, we have
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CTs(T ) log(2T )

T 2 ,

using that TS  TS+1 = Ts(T ). This concludes the proof.

F.11 Regret bounds for online linear optimization
In this section, we provide the conditions and regret-bound RT for vanilla AO-FTRL,
which is used by theorems F.3.0.3 and F.4.2.1, as well as the SVRG results. The analysis
is based on Joulani et al. [102, 103].
Theorem F.11.0.1. Let f : X !R be a convex function. For t 2 [T ], let rt : X !R,at >
0,gt , g̃t 2 Rd,xt 2 X be such that the AO-FTRL update (F.4) is well-defined and xt is
given by (F.4) for all t 2 [T ]. Suppose that for all t 2 [T ], rt�1 is convex and the objective
in the AO-FTRL update (F.4) has finite value at the optimum xt. Then, for any x 2 X ,
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Â
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T
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rt�1(x)� rt�1(xt)�Ba1:tf+r0:t�1(xt+1,xt)

�

+
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at hgt� g̃t ,xt� xt+1i . (F.40)

If, in addition, for all t 2 [T ], Ba1:tf+r0:t�1(xt+1,xt)� 1
2k ·k

2
(t) for some norm k ·k(t), then
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T

Â
t=1

(rt�1(x)� rt�1(xt))+
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Â
t=1

a2
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2
kgt� g̃tk2

(t)⇤ .

(F.41)

Proof. The assumption that f and rt are real-valued and defined on X ensures that they
are proper, which, together with convexity ensures that a1:tf + r0:t�1 is directionally
differentiable [22, Prop. 17.2]. Together with the assumption that the AO-FTRL objective
in (F.4) is finite-valued, we guarantee Assumption 1 of Joulani et al. [103], while their
Assumption 5 is satisfied given that the combined linear-composite function at(hgt , ·i+f)
is convex. The first bound (F.40) then follows from the intermediate bound C.1 in the proof
of Theorem 6 of Joulani et al. [103], using x⇤  x, gt  atgt , g̃T+1 0, pt  0, t 2 [T ],
q̃t  rt +at+1f , t 2 {0}[ [T �1], and q̃T  0. The second bound (F.41) follows from
the statement of Theorem 6 of Joulani et al. [103], using using x⇤  x, pt  0, t 2 [T ],
and q̃t  rt +at+1f , t 2 {0}[ [T �1], noting that Assumption 8 of Joulani et al. [103] is
the extra condition we have assumed in the second part of the theorem.
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Abstract
Given a loss function F : X ! R+ that can be written as the sum of losses over a
large set of inputs a1, . . . ,an, it is often desirable to approximate F by subsampling
the input points. Strong theoretical guarantees require taking into account the
importance of each point, measured by how much its individual loss contributes to
F(x). Maximizing this importance over all x 2 X yields the sensitivity score of ai.
Sampling with probabilities proportional to these scores gives strong guarantees,
allowing one to approximately minimize of F using just the subsampled points.

Unfortunately, sensitivity sampling is difficult to apply since (1) it is unclear how
to efficiently compute the sensitivity scores and (2) the sample size required is
often impractically large. To overcome both obstacles we introduce local sensitivity,
which measures data point importance in a ball around some center x0. We show
that the local sensitivity can be efficiently estimated using the leverage scores of a
quadratic approximation to F and that the sample size required to approximate F
around x0 can be bounded. We propose employing local sensitivity sampling in an
iterative optimization method and analyze its convergence when F is smooth and
convex.
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G.1 Introduction
In this work we consider finite sum minimization problems of the following form.

Definition G.1.0.1 (Finite Sum Problem). Given data points a1, . . . ,an 2Rd , nonnegative
functions f1, . . . , fn : R! R+, and a nonnegative function g : Rd ! R+, minimize over
x 2 X ✓ Rd

F(x) :=
1
n

n

Â
i=1

fi(aT
i x)+ g(x). (G.1)

Definition G.1.0.1 captures a number of important problems, including penalized
empirical risk minimization (ERM) for linear regression, generalized linear models, and
support vector machines. When n is large, minimizing F(x) can be expensive. In some
cases, for example, it may be impossible to load the full dataset a1, . . . ,an into memory.

G.1.1 Function Approximation via Data Subsampling
To reduce the burden of solving a finite sum problem, one commonly minimizes an
approximation to F formed by independently subsampling data points ai (and hence
summands fi(aT

i x)) with some fixed probability weights. More formally:

Definition G.1.1.1 (Subsampled Finite Sum Problem). Consider the setting of Definition
G.1.0.1. Given a target sample size m and a probability distribution P = {p1, . . . , pn} over
[n], {1, . . . ,n}, select i1, ..., im i.i.d. from P and minimize over x 2 X ✓ Rd

F(P,m)(x) :=
1

mn

m

Â
j=1

fi j(a
T
i j

x)

pi j

+ g(x). (G.2)

We can see that for any x, E[F(P,m)(x)] = F(x). If the sampled function concentrates
well around F(x), then it can serve effectively as a surrogate for minimizing F . Most
commonly, P is set to the uniform distribution. Unfortunately, if F(x) is dominated by the
values of a relatively few large fi(aT

i x), unless m is very large, uniform subsampling will
miss these important data points and F(P,m)(x) will often underestimate F(x). This can
happen, for example, when a1, ...,an fall into clusters of non-uniform size. Data points in
smaller clusters are important in selecting an optimal x but are often underrepresented in
a uniform sample.

G.1.2 Importance Sampling via Sensitivity
A remedy to the weakness of uniform subsampling is to apply importance sampling:
preferentially sample the functions fi(a>i x) that contribute most significantly to F(x). If,
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for example, we set pi µ fi(aT
i x)

Ân
i=1 fi(aT

i x)+g(x) for each i 2 [n], then a standard concentration

argument would imply that (1� e)F(x)  F(P,m)(x)  (1+ e)F(x) with probability at
least 1�d if m = Q

⇣
log(1/d )

e2

⌘
. However, typically the relative the importance of each

point, fi(aT
i x)

Ân
i=1 fi(aT

i x)+g(x) , will depend on the choice of x. This motivates the definition of
sensitivity [126].

Definition G.1.2.1 (Sensitivity). For a1, . . . ,an 2 Rd , the sensitivity of point ai with
respect to a finite sum function F (Definition G.1.0.1) with domain X ✓ Rd is

sF,X (ai) = sup
x2X

fi(aT
i x)

Ân
j=1 f j(aT

j x)+ng(x)
.

The total sensitivity is defined as GF,X = Ân
i=1 sF,X (ai).

A standard concentration argument yields the following approximation guarantee for
sensitivity sampling.

Lemma G.1.2.1. Consider the setting of Definition G.1.0.1. For all i 2 [n], let si �
sF,X (ai), S = Ân

i=1 si, and P =
� s1

S , . . . ,
sn
S
 

. There is a fixed constant c such that, for any
e,d 2 (0,1), any fixed x 2 X , and m� c·S log(2/d )

e2 ,

(1� e)F(x) F(P,m)(x) (1+ e)F(x)

with probability � 1�d .

That is, subsampling data points by their sensitivities approximately preserves the
value of F for any fixed x 2 X with high probability. It can thus be argued that F can be
approximately minimized by minimizing the sampled function F(P,m). We first define:

Definition G.1.2.2 (Range Space). A range space is a pair R= (F , ranges), where F is
a set and ranges is a set of subsets of F . The VC dimension D(R) is the size of the largest
G✓ F such that G is shattered by ranges: i.e., |{G\R|R 2 ranges}|= 2|G|.

Let F be a finite set of functions mapping Rd ! R+. For every x 2 Rd and r 2 R+, let
rangeF (x,r) = { f 2 F| f (x) � r} and ranges(F) = {rangeF (x,r)|x 2 Rd,r 2 R+}. We
say RF = (F , ranges(F)) is the range space induced by F .

With the notion of range space in place, we can recall the following general approxima-
tion theorem.

Theorem G.1.2.2 (Theorem 9 [159]). Consider the setting of Definition G.1.0.1. For
all i 2 [n], let si � sF,X (ai), S = Ân

i=1 si, and P =
� s1

S , . . . ,
sn
S
 

. For some finite c and all
e,d 2 (0,1/2), if

m� c · S
e2

✓
D logS+ log

✓
1
d

◆◆
,
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then, with probability at least 1�d ,

(1� e)F(x) F(P,m)(x) (1+ e)F(x),8x 2 X

Here, D is an upper bound on the VC-dimension D(RF ) where F is the set
n

f1(aT
1 x)

mn·p1
, . . . , fn(aT

n x)
mn·pn

o

.

Munteanu et al. [159] show that D = d +1 suffices for logistic regression where d is
the dimension of the input points. If all fi are from the class of invertible functions, then a
similar bound on D can be expected.

Barriers to the Sensitivity Sampling in Practice

Theorem G.1.2.2 is quite powerful: it can be used to achieve sensitivity-sampling-based
approximation algorithms with provable guarantees for a wide range of problems [65, 95,
146, 159]. However, there are two major barriers that have hindered more widespread
practical adoption of sensitivity sampling:
Computability: It is difficult to compute or even approximate the sensitivity sF,X (ai)
since it is not clear how to take the supremum over all x2X in the expression of Definition
G.1.2.1. Closed form expressions for the sensitivity are known only in a few special cases,
such as least squares regression (where the sensitivity is closely related to the well-studied
statistical leverage scores).
Pessimistic Bounds: The sensitivity score is a very ‘worst case’ importance metric, since
it considers the supremum of fi(aT

i x)
Ân

j=1 f j(aT
j x)+ng(x) over all x 2 X , including, e.g., x that may

be very far from the true minimizer of F . In many cases, it is possible to construct, for
each ai, some worst case x that forces this ratio to be high. Thus, all sensitivities are large
and the total sensitivity GF,X is large. The sample complexities in Lemma G.1.2.1 and
Theorem G.1.2.2 depend on S � GF,X and so will be too large to be useful in practice.
See Figure G.1 for a simple example of when this issue can arise.

G.1.3 Our Approach: Local Sensitivity
We propose to overcome the above barriers via a simple idea: local sensitivity. Instead
of sampling with the sensitivity over the full domain X as in Definition G.1.2.1, we
consider the sensitivity over a small ball. Specifically, for some radius r and center y we
let B(r,y) = {x 2 Rd : kx� yk< r} and consider sF,X\B(r,y)(ai). Sampling by this local
sensitivity will give us a function F(P,m) that approximates F well on the entire ball B(r,y).
Thus, we can approximately minimize F on this ball. We can approximately minimize F
globally via an iterative scheme: at each step we set xi to the approximate optimum of F
over the ball B(ri,xi�1) (computed via local sensitivity sampling). This approach has two
major advantages:
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Figure G.1: Consider a classification problem with two classes A1,A2, shown in blue and
green. Let fi(aT

i x) be any loss function with fi(aT
i x) = 0 if ai is correctly classified by

the hyperplane defined by x. Since for each ai, there is some x (e.g., corresponding to the
black line shown) that misclassifies only ai, we have sF ,Rd(ai) = 1 for all ai. Thus, the
total sensitivity is GF,X = n and so the sampling results of Lemma G.1.2.1 and Theorem
G.1.2.2 are vacuous – they require sampling � n points, even for this simple task.

1. We can often locally approximate each F by a simple function, for which we can
compute the local sensitivities in closed form. This will yield an approximation to the
true local sensitivities. Specifically, we will consider a local quadratic approximation to
F , whose sensitivities are given by the leverage scores of an appropriate matrix.
2. By definition, the local sensitivity sF,X\B(r,y) is always upper bounded by the global
sensitivity sF,X , and typically the sum of local sensitivities will be much smaller than the
total sensitivity GF,X . This allows us to take fewer samples to approximately minimize F
locally over B(r,y).

G.1.4 Related Work
The sensitivity sampling framework has been successfully applied to a number of prob-
lems, including clustering [18, 65, 146], logistic regression [95, 159], and least squares
regression, in the form of leverage score sampling [45, 58, 148]. In these works, upper
bounds are given on the sensitivity of each data point, and it is shown that the sum of
these bounds, and thus the required sample size for approximate optimization, is small.
We aim to expand the applicability of sensitivity-based methods to functions for which a
bound on the sensitivity cannot be obtained or for which the total sensitivity is inherently
large.

The local-sensitivity-based iterative method that we will discuss is closely related to
quasi-Newton methods [56], especially those that approximate the Hessian via leverage
score sampling [267, 269]. In each iteration, we estimate local sensitivities by considering
the sensitivities of a local quadratic approximation to F . As shown in Section G.2,
these sensitivities can be bounded using the leverage scores of the Hessian, and thus our
sampling probabilities are closely related to those used in the above works. Unlike a
quasi-Newton method however, we use the sensitivities to directly optimize F locally,
rather than the quadratic approximation itself. In this way, our method is closer to a trust
region method [40] or an approximate proximal point method [73].
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Recently, [2] and [43] have suggested iterative algorithms for regularized least squares
regression and ERM for linear models that sample a subset of data points by their leverage
scores (closely related to sensitivities) in each step. These works employ this sampling in
a different way than us, using the subsample to precondition each iterative step. While
they give strong theoretical guarantees for the problems studied, this technique applies to
a less general class of problems than our method.

The sensitivity scores for `2 regression are commonly known as leverage scores, and
a long line of work [14, 208, see, e.g.,] has focused on approximating these scores
more quickly. These approximation techniques do not extend to general sensitivity score
approximation however. Additionally, our paper in no way attempts to develop a faster
algorithm for leverage score sampling. We focus on introducing the notion of local
sensitivity, which allows leverage score based methods to be applied to optimization
problems well beyond `2 regression.

G.1.5 Road Map
Our contributions are presented as follows. In Section G.2 we show that the sensitivity
scores of a quadratic approximation to a function are given by the leverage scores of an
appropriate matrix. We use these scores to bound the local sensitivity scores of the true
function. In Section G.3 we discuss how to subsample using these approximate local
sensitivities with the aim of approximately minimizing the function over a small ball. We
describe how to use this approach to iteratively optimize the function. In Section G.4 we
give an analysis of this iterative method for convex functions.

G.2 Leverage Scores as Sensitivities of Quadratic
Functions

We start by showing how to approximate the local sensitivity sF,X\B(r,y) over some
ball by approximating F with a quadratic function on this ball. F’s sensitivities can be
approximated by those of this quadratic function, which we in turn bound in closed form
by the leverage scores of an appropriate matrix (a rank-1 perturbation of F’s Hessian at y).
The leverage scores are given by:

Definition G.2.0.1 (Leverage Scores [5, 46]). For any C 2 Rn⇥p with ith row ci, the ith

l -ridge leverage score is the sensitivity of F(z) = kCzk2
2 +lkzk2

2:

`l
i (C) := max

{z2Rp:kzk2>0}

[Cz]2i
kCzk2

2 +lkzk2
2
.

We have `l
i (C) = cT

i (C
TC+l I)�1ci. (See Lemma G.8.0.1 in Appendix G.8).
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Our eventual iterative method will employ a proximal function, and thus in this section
we consider this function, which reduces to F when l = 0:

Definition G.2.0.2 (Proximal Function). For a function F : X ! R, define Fl ,y(x) =
F(x)+lkx� yk2

2.

Using Definition G.2.0.1 and the associated Lemma G.8.0.1 we establish the following
in Appendix G.8.

Theorem G.2.0.1 (Sensitivity of Quadratic Approximation). Consider F as in Def.
G.1.0.1 along with the quadratic approximation to the proximal function Fl ,y (Def.
G.2.0.2) around y 2 X . If A 2 Rn⇥d is the data matrix with ith row equal to ai, then

F̃l ,y(x) :=
1
n

n

Â
i=1

⇥
fi(aT

i y)+aT
i (x� y) · f 0(aT

i y) +
1
2
(aT

i (x� y))2 · f 00(aT
i y)
�
+ g(x)+lkx� yk2

2

:= F(y)+(x� y)T AT ay +
1
2
(x� y)T AT HyA(x� y)+ g(x)+lkx� yk2

2

(G.3)

where [ay]i =
1
n f 0i (a

T
i y), and Hy is the diagonal matrix with [Hy]i,i =

1
n f 00(aT

i y). Assuming
that Hy is nonnegative, the sensitivity scores of F̃l ,y with respect to B(r,y) can be bounded
as

sF̃l ,y,B(r,y)(ai) b · `l
i (C)+

fi(aT
i y)

h
, (G.4)

where C = [H1/2
y A, 1

d H�1/2
y ay], `l

i (C) is the leverage score of Def. G.2.0.1, h = min
x2B(r,y)

F̃l ,y(x),

d = min
x2B(r,y)

g(x), and b = max
✓

1,1�
F(y)� 1

n Ân
i=1

f 0(aT
i y)2

4 f 00(aT
i y)

h

◆
.

Note that if we consider a small enough ball, where F̃l ,y well approximates Fl ,y, we

expect h = min
x2B(r,y)

F̃l ,y(x) = Q(F(y)). Thus, the additive fi(aT
i y)

h term on each sensitivity

will contribute only a Â fi(aT
i y)

Q(F(y)) = O(1) additive factor to the total sensitivity bound and
sample size.

G.2.1 Efficient Computation of Leverage Score Sensitivities
The sensitivity upper bound (G.4) of Theorem G.2.0.1 can be approximated efficiently as
long as we can efficiently approximate the leverage scores `l

i (C) = cT
i (C

TC+l I)�1ci,
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where C = [H1/2
y A, 1

d H�1/2
y ay]. We can use a block matrix inversion formula to find that

(CTC+l I)�1 =


AT HyA+l I 1

d AT ay
1
d aT

y A kayk2
2 +l

��1

=


A1 A2
A>2

1
k

�

where A1 =(AT HyA+l I)�1+ 1
k (A

T HyA+l I)�1AT ayaT
y A(AT HyA+l I)�1, k= kayk2

2+

d 2l �aT
y A(AT HyA+l I)�1AT ay , and A2 =�d

k (A
T HyA+l I)�1AT ay.

Thus, if we have a fast algorithm for applying (AT HyA+l I)�1 to a vector we can
quickly apply (CTC + l I)�1 to a vector and compute the leverage scores `l

i (C) =
cT

i (C
TC+l I)�1ci. Via standard Johnson-Lindenstrauss sketching techniques [226] it

in fact suffices to apply this inverse to O(logn/d ) vectors to approximate each score up
to constant factor with probability � 1�d . In practice, one can use traditional iterative
methods such as conjugate gradient, iterative sampling methods such as those presented
in [45, 46], or fast sketching methods [44, 59].

G.2.2 True Local Sensitivity from Quadratic Approximation

As long as the quadratic approximation F̃l ,y approximates Fl ,y sufficiently well on
the ball B(r,y), we can use Theorem G.2.0.1 to approximate the true local sensitiv-
ity sFl ,y,X\B(r,y)(ai). We start by discussing our approximation assumptions. Defining ay

as in Theorem G.2.0.1, for some By(x) which itself is a function of x we have:

F(x) = F(y)+(x� y)>A>ay +(x� y)>A>HyA(x� y)+ g(x)+By(x)kx� yk3
2.

Without loss of generality, we assume that By(x)> 0 for x in the above equation or we just
shift the overall function vertically by adjusting g(·) to have the quadratic appropriator be
an under approximation of the true function. If the function F has a C Lipschitz-Hessian
then we have:

F(x) F(y)+(x� y)>A>ay +(x� y)>A>HyA(x� y)+ g(x)+ C
6
kx� yk3

2. (G.5)

For simplicity, we also assume that (G.5) holds componentwise with Lipschitz Hessian
constant Ci for i 2 [n]. Adding the second order approximation of F(x) to lkx�yk2

2 gives
the approximate function F̃l ,y(x) as defined in (G.3). Theorem G.2.0.1 shows how to
bound the sensitivities of F̃l ,y(x). Using (G.5) we prove a bound on the local sensitivities
of Fl ,y(x) itself in Appendix G.9:

Theorem G.2.2.1. Consider Fl ,y as in Defs. G.1.0.1, G.2.0.2, y 2 X , a radius r, and
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a = min
x2B(r,y)

Fl ,y(x). Then, 8 i 2 [n],

sFl ,y,B(r,y)(ai) sF̃l ,y,B(r,y)(ai)+min
✓

Cir
6nl

,
Cir3

6na

◆
.

Using this sensitivity bound, we can independently sample components with the com-
puted scores as in Definition G.1.1.1, obtaining a (1+ e) approximation of the function
Fl ,y(x). That is, letting Fs

l ,y(x) represent the subsampled empirical loss function (sampled

as in Theorem G.1.2.2), for Õ
⇣

D
e2

⌘
samples, we have Fs

l ,y(x) 2 (1± e)Fl ,y(x) 8 x 2
B(y,R) with high probability.

G.3 Optimization via Local Sensitivity Sampling
In Theorem G.2.2.1 we showed how to bound the local sensitivities of a function F :=
Ân

i=1 fi(aT
i x)+ g(x) using the local sensitivities of a quadratic approximation to F , which

are given by the leverage scores of an appropriate matrix (Theorem G.2.0.1). These
sensitivities are only valid in a sufficiently small ball around some starting point y,
roughly, where the quadratic approximation is accurate. In this section we show how they
can be used to optimize F beyond this ball, specifically as part of an iterative method that
locally optimizes F until convergence to a global optimum.

In the optimization literature, there are two popular techniques that iteratively optimize
a function via local optimizations over a ball: (i) trust region methods [47] and (ii)
proximal point methods [187]. Local sensitivity sampling can be combined with both of
these classes of methods. We first focus on proximal point methods, discussing a related
trust region approach in Section G.5. In the proximal point method, the idea is in each
step to approximate a regularized minimum:

x?lt ,y = argminFlt ,y(x) = argmin
⇥
F(x)+ltkx� yk2

2
⇤

and F?
lt ,y = Flt ,y(x

?
lt ,y).

(G.6)

Here lt is a regularization parameter depending on the iteration t. As discussed below,
minimizing this regularized function is equivalent to minimizing F on a ball of a given
radius.

G.3.1 Equivalence between Constrained and Penalized Formulation

When F is convex it is well known that for any l minimizing the proximal function Fl ,y
is equivalent to minimizing F constrained to some ball around y. Consider the constrained
optimization problem given in equation (G.7) where B(r,y) is the ball of radius r centered
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at y:

x?r,y = argmin
x2B(r,y)

F(x). (G.7)

Lemma G.3.1.1. Let x? = argminx2Rd F(x) for a convex function F. If x? does not lie
inside B(r,y) then x?r,y also solves the following optimization problem:

x?r,y = argmin
x2Rd

F(x)+
k—F(x?r,y)k

2r
·kx� yk2

2. (G.8)

Comparing equations (G.6) and (G.8), se see that l =
k—F(x?r,y)k

2r ) r = k—F(x?r,y)k
2l . While

it is not directly possible to compute radius r in closed form without computing x?r,y itself,
we can give a computable upper bound on r which will be crucial for our analysis.

Lemma G.3.1.2. Consider the optimization problem (G.6) and its corresponding con-
strained counterpart (G.7) where F is a µ strongly convex function. Then, x?l ,y falls

within a ball of radius r = k—F(y)k
2l+µ around y.

Proofs for this sections are provided in the Appendix G.10.

Using the local sensitivity bound of Section G.2.2 we can approximate Fl ,y on a ball
of small enough radius. In applying sensitivity sampling to a proximal point method, it
will be critical to ensure that lt is not too small. This will ensure that, by Lemma G.3.1.2,
x?ly

falls in a sufficiently small radius, and so an approximate minimum can be found via
local sensitivity sampling.

G.3.2 Algorithmic Intuition

By Theorem G.1.2.2 if we subsample the proximal function Flt ,y using the local sensitivity
bound of Theorem G.2.2.1 for a sufficiently large radius r (as a function of lt via Lemma
G.3.1.2), optimizing this function will return a value within a 1+ e factor of the true
minimum x?lt ,y with high probability. Abstracting away the sensitivity sampling technique,
our goal becomes to analyze the convergence of the approximate proximal point method
(APPM) when the optimum is computed up to 1+ e error in each iteration. We give
pseudocode for this general method in Algorithm 19.
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Algorithm 19 APPM
1: input x0 2 Rd , lt > 0 8t 2 [T ].
2: input Black-box e-oracle PFl1,x0
3: for t = 1 . . . T do
4: xt  PFlt ,xt�1

(x)
5: end for
6: output xT

Definition G.3.2.1. An algorithm P f is called multiplicative e-oracle for a given function
F if F(x?) F

�
PF(x)

�
 (1+ e)F(x?) where x? if the true minimizer of F .

In Algorithm 19, we provide the pseudocode for APPM under the access of a multi-
plicative e-oracle at each iterate. In our setting, PF employs local sensitivity sampling.

G.4 Convergence Analysis for Smooth Convex Functions
In this section, we analyze the convergence of Algorithm 19 with an e oracle obtained
via local sensitivity sampling. We demonstrate how to set the regularization parameters
lt in each step and then in the end provide a complete algorithm. Let F? denote F(x?).
Throughout we make the following assumption about F(x):
• F is µ-strongly convex, i.e., for all x,y2Rd , F(y)�F(x)+h—F(x),y�xi+ µ

2 ky�xk2
2.

G.4.1 Approximate Proximal Point Method with Multiplicative
Oracle

We first state convergence bounds for Approximate Proximal Point Method (Algorithm
19) with a blackbox multiplicative e-oracle. Our first bound assumes strong convexity,
our second does not. Proofs are given in Appendix G.11.
Theorem G.4.1.1. For µ-strongly convex F, consider e1, . . .eT 2 (0,1) and x0, . . . ,xT 2
Rd such that xt = PFlt ,xt�1

(xt�1) where PFlt ,xt�1
is an et -oracle (see Algorithm 19). Then if

et  µ
µ+lt
8t 2 [T ], we have F(xt)�F?  1

1�et
lt

µ+lt
(F(xt�1)�F?)+ et

1�et
F? 8t 2 [T ] and

F(xT )�F?  r(F(x0)�F?)+dF?

where r = ’T
t=1

1
1�et

lt
µ+lt

and d = ÂT
t=1

⇣
et

1�et
’T

j=t+1
1

1�et

l j
µ+l j

⌘
.

Theorem G.4.1.2. For a smooth convex function F, let e1, . . . ,eT = e where e 2 (0,1/2)
and x0, . . . ,xT 2 Rd be as in Theorem G.4.1.1. Then, we have

F(xT )�F?  2
(1� e)

kx?� x0k2
2

ÂT
t=1

2
lt

+
3e

1� e
F?.
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G.4.2 Local Sensitivity Sampling

We now discuss how to choose the parameters for Algorithm 19 when using local sen-
sitivity sampling to implement the e-oracle in each step. From Lemmas G.3.1.1 and
G.3.1.2 it is clear that if lt goes down, the corresponding radius rt goes up. However, in
Theorem G.2.2.1, we bound the true local sensitivity at iteration t by a quantity depending
on rt

lt
, which comes from the error in the quadratic approximation. Thus, if we choose lt

very small, the term rt
lt

will dominate in the local sensitivity approximation, and we won’t
see any advantage from local sensitivity sampling over, e.g., uniform sampling. Making
lt large will improve the local sensitivity approximation but slow down convergence.

To balance these factors, we will choose lt of the order of rt . In particular, con-
sidering Lemma G.3.1.2, we choose lt =

p
k—F(xt�1)k2. The lemma then gives that

rt  k—F(xt�1)kp
k—F(xt�1)k+µ


p
k—F(xt�1)k2. We here now provide an end to end algorithm

which utilizes local sensitivity sampling in the approximate proximal point method frame-
work presented in Algorithm 19. The pseudo-code and details of the algorithm are given in
Algorithm 20 where we denote Fs

lt ,xt�1
(x) as the importance sampled subset of Flt ,xt�1(x)

which has been obtained via local sensitivity sampling. Line 9 of Algorithm 20 can
be considered as a black-optimization problem which is apparently a strongly-convex
optimization problem and can be optimized exponentially fast.

On Convergence: With this choice of lt , the convergence rate of APPM under our

strong convexity assumption will be O
✓
k
p

—̃F(x)k2
µ log(1/e)

◆
where

q
k—̃F(x)k

2
rep-

resents 1
T ÂT�1

i=0
p
k—F(xi)k2. If F is smooth with smoothness parameter L, we have:

k—F(x)k2  Lkx� x?k2. For the smooth but non-strongly convex problem, if we assume
lt  e for some e for all t then, k—F(xt)k2

2 2O(1/T ) in the worst case. Hence, the rate
of for non-strongly convex smooth function will behave like O(1/T 5/4).

G.5 An Adaptive Stochastic Trust Region Method
Related to the proximal point approach, sensitivity sampling can be used to obtain an
adaptive stochastic trust region. In each iteration t, we approximately minimize a quadratic
approximation to F over a ball, using local sensitivity sampling and directly applying the
sensitivity score bound of Theorem G.2.0.1. At iteration t the center of the ball is at

xt�1 and the radius is set to rt =
k—F(xt�1)k2

lt+µ . We provide pseudocode in Algorithm 22
and a proof of a convergence bound in Appendix G.12. Here we just state the main result.

Theorem G.5.0.1. For a given set of constants Ck, dk 2 (0,1), and ẽk = dk
µ

lk+µ which is
an error tolerance for the quadratic approximation of the function Flk,xk�1(x) for all k, if
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Appendix G Importance Sampling via Local Sensitivit

Algorithm 20 APPM with Local Sensitivity Sampling
1: input x0 2 Rd , et , and µ .
2: Compute k—F(x0)k2, F(x0), and C0
3: for t = 1 . . . T do
4: Compute regularizer lt  

p
k— f (xt�1)k2.

5: Compute radius rt  k— f (xt�1)k2p
k— f (xt�1)k2+µ

.

6: Get F̃lt ,xt�1 via Taylor Expansion.
7: Compute the local sensitivity for Flt ,xt�1 using Theorem G.2.2.1.
8: Local sensitivity based sampling of Fs

lt ,xt�1
(x) from Flt ,xt�1(x).

9: xt  argminx2B(rt ,xt�1)Fs
lt ,xt�1

(x).
10: Compute k—F(xt)k2.
11: end for
12: output xT

lk+1 is chosen of O(
p
k—F(xk)k2) then at iteration k+1 Algorithm 22 satisfies:

F(xk+1)�F?  (1+2ek+1)
2lk+1

2lk+1 +µ
(F(xk)�F?)+2ek+1F?, (G.9)

where ek+1 = 2ẽk+1
�
1+ 1

m
�
, m and c are positive constants.

Comparing equation (G.9) in Theorem G.5.0.1 with the bound in Theorem G.4.1.1, we
can see that we have obtained a similar recursive relation in both equations, and hence the
trust region method will have a similar convergence rate to APPM in the presence of an
e-multiplicative oracle.

G.6 Experiments
We conclude by giving some initial experimental evidence to justify the performance
of our proposed algorithm in practice. We provide the experiments for Approximate
Proximal Point Method with Local Sensitivity Sampling (Algorithm 20). We run our
algorithm on the following four datatsets1 : (a) Synthetic Data (b) Letter Binary [70]
(c) Magic04 [28] and (d) MNIST Binary [128]. Prefix ‘Train’ or ‘Test’ denotes if the
train or test split was used for the experiment. The Synthetic Data was generated by first
generating a matrix A of size 3000⇥300 drawn from a 300 dimensional standard normal
random variable. Then another vector x0 of size 300 was fixed which is also drawn from
a normal random variable to obtain ŷ = Ax0 +h where h ⇠ 0.1 ⇤N (0,1). Finally, the
classification label vector y was chosen as sign(ŷ). We perform all our experiments for

1Datasets can be downloaded from: manikvarma.org/code/LDKL/download.html.
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G.6 Experiments

(a) Synthetic Data (b) Letter-Binary Train (c) Magic04 Test

(d) MNIST Test (e) Synthetic Data (f) Letter-Binary Test

Figure G.2: (a-d) Local sensitivity sampling vs. uniform random sampling and leverage
score sampling on four datasets: (a) Synthetic Data (3000 points), (b) Letter Binary Train
(12000 points), (c) Magic04 Test (4795 points), and (d) MNIST Test (10000 points). (e-f)
Local Sampling Method is compared with Full Batch Gradient for (e) Synthetic and (f)
Letter Binary Test.

logistic regression with an `2
2 regularization parameter of 0.001. For the experiments

plotted in the Figure G.2, we have considered a fixed sample size of 100 data points
for every iteration of the proximal algorithm. In the first four subfigures of Figure G.2,
we compare compare local sensitivity sampling with two base lines: uniform random
sampling and sampling using the leverage scores of the data matrix A. On the horizontal
axis, we report the total number of iterations which is the number of times the sampling
oracle is called (outer loop in Algorithm 20) multiplied by number of times the gradient
call to solve the optimization problem given in Line 9 in Algorithm 20. We report the
optimization error on vertical axis.

From the plots in Figures G.2a, G.2b, G.2c and G.2d, it is evident that our method
outperforms uniform random sampling with a large margin on the synthetic and real
datasets. It also often performs much better than leverage score sampling. Since the local
sensitively approximations of Theorems G.2.0.1 and G.2.2.1 are the leverage scores of a
matrix with essentially the same dimensions as A, these methods have the same order of
computational cost.

We perform a second set of experiments to compare our sampling technique with full
batch gradient iteration for each proximal point iteration on Synthetic and Letter Binary
Test which we plot in Figures G.2e and G.2f. We can see in Figures G.2e and G.2f that our
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Appendix G Importance Sampling via Local Sensitivit

sampling method outperforms the full gradient just with 10% of total points. In both plots,
the sampling method needs just half of the number of iterations taken by full gradient to
saturate to similar value.

In both of the experiments, we set the number of inner loop iteration (number of calls to
the gradient oracle for solving Line 9 in Algorithm 20) in advance to let the optimization
error saturate for that particular outer loop; however the plots demonstrate that it can be
set to a much smaller number or can be set adaptively to achieve gains of multiple folds.

G.7 Conclusion
In this work, we study how the elegant approach of function approximation via sensi-
tivity sampling can be made practical. We overcome two barriers: (1) the difficulty of
approximating the sensitivity scores and (2) the high sample complexities required by
theoretical bounds. We handle both by considering a local notion of sensitivity, which we
can efficiently approximate and bound. We demonstrate that this notion can be combined
with methods that globally optimize a function via iterative local optimizations, including
proximal point and trust region methods.

Our work leaves open a number of questions. Most importantly, since local sensitivity
approximation incurs some computational overhead (a leverage score computation along
with some derivative computations), we believe it will be especially useful for functions
that are difficult to optimize, e.g., non-strongly-convex functions. Understanding how
our theory extends and how our method performs in practice on such functions would
be very interesting. It would be especially interesting to compare performance to related
approaches, such as quasi-Newton and other trust region approaches.
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G.8 Leverage Scores as Sensitivities of Quadratic Functions

Proofs for Main Results

G.8 Leverage Scores as Sensitivities of Quadratic
Functions

We here start by stating Lemma G.8.0.1 and giving its proof. This lemma is helpful in
proving Theorem G.2.0.1. Lemma G.8.0.1 is a relatively well known characterization of
the leverage scores of a matrix, see e.g, [17]; however for completeness we give a proof
here.
Lemma G.8.0.1 (Leverage Scores as Sensitivities). For any C 2 Rn⇥p with ith row ci,

`l
i (C) = max

{z2Rp:kzk>0}

[Cz]2i
kCzk2

2 +lkzk2
2
= cT

i (C
TC+l I)�1ci.

Proof. Write s(z)= [Cz]2i
kCzk2

2+lkzk2
2
, f (z)= [Cz]2i =(cT

i z)2, g(z)= kCzk2
2+lkzk2

2 = zT (CTC+

l I)z. We can compute the gradient of s(z) as:

— js(z) =
— j f (z) ·g(z)�— jg(z) · f (z)

g(z)2 .

At the minimium this must equal 0 and so since g(z)> 0 for z with kzk2 > 0, we must have
— f (z) · g(z)�—g(z) · f (z) = 0. We have — f (z) = 2cT

i z · ci and —g(z) = 2(CTC+l I)z.
We thus have at optimum:

ci ·
�
2cT

i z · zT (CTC+l I)z
�
�2(CTC+l I)z · (cT

i z)2 = 0.

Dividing by 2(cT
i z)2 we must have:

�ci ·
zT (CTC+l I)z

cT
i z

= (CTC+l I)z.

For this to hold we must have (CTC+l I)z equal to a multiple of ci and so z = a · (CTC+
l I)�1ci for some a . Note that the value of a does not change the value of s(z) since it
simply scales the numerator and denominator in the same way. So we have that

z? = argmax
{z2Rd :kzk2>0}

[Cz]2i
kCzk2

2 +lkzk2
2
= (CTC+l I)�1zi.

Plugging in we have:
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max
{z2Rd :kzk2>0}

[Cz]2i
kCzk2

2 +lkzk2
2
=

�
cT

i (C
TC+l I)�1ci

�2

cT
i (CTC+l I)�1(CTC+l I)(CTC+l I)�1ci

= cT
i (C

TC+l I)�1ci,

which completes the proof.

Proof of Theorem G.2.0.1. Letting z = x� y and h = minx2B(r,y) F̃l ,y(x) we can write:

F̃l ,y(x) =


1
2
kH1/2

y Az+H�1/2
y ayk2 +lkzk2 + g(z+ y)

�

| {z }
:G(z)=Ân

i=1 gi(z)+lkzk2+g(z+y)

+


F(y)� 1

4
kH�1/2ayk2

�

| {z }
D=Ân

i=1 Di

.

(G.10)

where gi(z) = 1
2(H

1/2
y Az+H�1/2

y ay)2
i and Di = fi(aT

i y)� 1
4

⇣
H�1/2

y ay

⌘2

i
. Noting that

G(z) is nonnegative, we can write the sensitivity as:

sF̃l ,y,B(r,y)(ai) = max
{z:kzkr}

gi(z)+Di

G(z)+D
= max

{z:kzk<r}


gi(z)
G(z)

· G(z)
G(z)+D

+
Di

G(z)+D

�

max
z2Rd


gi(z)
G(z)

· G(z)
G(z)+D

�
+

fi(aT
i y)

h
(G.11)

since G(z)+D= F̃l ,y(y+z)�h for h =minx2B(r,y) F̃l ,y(x) and since fi(aT
i y)�Di. When

D� 0, G(z)
G(z)+D  1. When D < 0:

G(z)
G(z)+D

= 1� D
G(z)+D

= 1� D
F̃l ,y(x)

 1� D
h
.

Overall we have:

sF̃l ,y,Wh (ai)max
✓

1,1� D
h

◆
· max
{z:z+y2Wh}


gi(z)
G(z)

�
+

fi(aT
i y)

h
. (G.12)

Letting d = min
x2B(r,y)

g(x) = min
z:kzkr

g(z+ y), C 2 Rn⇥d+1 be the matrix [H1/2
y A, 1

d H�1/2
y ay]

and z̄ = [z,�d ] we have:

gi(z)
G(z)

=
(Cz̄)2

i
kCz̄k2 +lkzk2 + g(z+ y)

=
(Cz̄)2

i
kCz̄k2 +lkz̄k2�d + g(z+ y)

(G.13)

We can bound this ratio using Lemma G.8.0.1. Specifically, since g(z+ y)�d � 0 the

260
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ratio by `l
i (C). Plugging back into (G.12) we have:

sF̃l ,y,Wh (ai)max
✓

1,1� D
h

◆
· `l

i (C)+
fi(aT

i y)
h

,

which completes the proof.

G.9 Local Sensitivity Bound via Quadratic
Approximation

We next prove Theorem G.2.2.1, which bounds the local sensitivities of a function in
terms of the sensitivities of a quadratic approximation to that function, which can in term
be bounded using the leverage scores of an appropriate matrix (Theorem G.2.0.1).

Theorem’ G.2.2.1. Consider Fl ,y as in Defs. G.1.0.1 and G.2.0.2, y 2 X , radius r, and
a = min

x2B(r,y)
Fl ,y(x). We have:

sFl ,y,B(r,y)(ai) sF̃l ,y,B(r,y)(ai)+min
✓

Cir
6nl

,
Cir3

6na

◆
, 8 i 2 [n].

Proof. From the local quadratic approximation, we have :

Fl ,y(x) = F̃l ,y(x)+By(x)kx� yk3, where F̃l ,y(x) =
1
n

n

Â
i=1

f̃i(a>i x)+ g(x)+lkx� yk2.

From the previous Theorem G.2.0.1, we have a bound on the sensitivity for quadratic
approximation,

sF̃l ,y,B(r,y)(ai) = sup
x2B(r,y)

1
n f̃i(a>i x)
F̃l ,y(x)

We can bound the local sensitivity of the true function Fl ,y by:

sFl ,y,B(r,y)(ai) = sup
x2B(r,y)

1
n fi(a>i x)
Fl ,y(x)

= sup
x2B(r,y)

1
n

h
f̃i(a>i x)+B(i)

y (x)kx� yk3
i

Fl ,y(x)

We have assumed that By(x) = 1
n Ân

i=1 B(i)
y (x) is positive for x 2 B(r,y) and that B(i)

y (x)
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1
6Ci for all i. This gives:

sFl ,y,B(r,y)(ai) = sup
x2B(r,y)

1
n

h
f̃i(a>i x)+B(i)

y (x)kx� yk3
i

Fl ,y(x)

 sup
x2B(r,y)

1
n
⇥

f̃i(a>i x)
⇤

Fl ,y(x)
| {z }

:= term 1

+ sup
x2B(r,y)

Ci

6n
kx� yk3

Fl ,y(x)
| {z }

:=term 2

.

For term 1 we have:

sup
x2B(r,y)

1
n
⇥

f̃i(a>i x)
⇤

Fl ,y(x)
= sup

x2B(r,y)

1
n
⇥

f̃i(a>i x)
⇤

F̃l ,y(x)+By(x)kx� yk3  sF̃l ,y,B(r,y)(ai),

where the inequality comes from assumption that By(x) > 0 for x 2 B(r,y). For term 2
we simply bound Fl ,y(x)� a := minx2B(r,y)Fl ,y(x) or alternatively, Fl ,y(x)� lkx� yk2

giving:

Ci

6n
kx� yk3

Fl ,y(x)
min

✓
Cir
6nl

,
Cir3

6na

◆
,

which completes the theorem.

G.10 Constrained Penalized Connection

Proof of Lemma G.3.1.1. Given, x? = argminx2Rd F(x). We assume that F is a convex
function. From KKT conditions, if x? does not lie inside the ball than the optimal solution
will exist on the boundary of the ball. Hence, the inequality in the equation can be replaced
with the equality given that x? doesn’t lie inside the ball represented by the equations
kx� yk2 = r2. The optimization problem then becomes:

x?r,y = argmin
x2rd

F(x) such that kx� yk2 = r2 (G.14)

The Lagrangian of equation (G.14) is: L(x,n) = F(x)+ n
2
�
kx� yk2� r2� . First order op-

timality condition for the above equation implies —F(x?r,y)+n?(x?r,y�y) = 0) x?r,y�y =
�1
n? —F(x?r,y). Now from the constrained we have, k�1

n? —F(x?r,y)k= r ) n? =
k—F(x?r,y)k

r .
Hence, it is clear from the above arguement that x?r,y also optimize the following optimiza-
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tion problem:

x?r,y = argmin
x2Rd

"
F(x)+

k—F(x?R̂,y)k
2r

kx� yk2

#
(G.15)

Proof of Lemma G.3.1.2. As we have:

Fl ,y(x) = F(x)+lkx� yk2

From the property of strongly convex function:

k—Fl ,y(y)k= k—F(y)k � (µ +2l )ky� x?l ,yk (G.16)

Now from the first order optimality of Fl ,y, we have:

—Fl ,y(x?l ,y) = —F(x?l ,y)+2l (x?l ,y� y) = 0

Hence,

k—F(x?l ,y)k= 2lkx?l ,y� yk (G.17)

From the equations (G.16) and (G.17), we have:

k—F(x?l ,y)k 
2l

µ +2l
k—F(y)k

From the equation (G.15), we know that

R =
k—F(x?l ,y)k

2l
 k—F(y)k

2l +µ

If the optimal point x? of the function F lie in the ball then the radius will be further
less.

Corollary G.10.0.1. After running one step of line 4 of the Algorithm 19 for the parame-
ters xt�1, lt , et and µ , we have the following bound:

kxt� xt�1k 

s
2et

2lt +µ
F(xt�1)+

k—F(xt�1)k
2lt +µ

kxt� xt�1k � r?t �

s
2et

2lt +µ
F(xt�1)
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where r?t = kxt�1� x?lt
k.

Proof. As from Lemma G.3.1.2, we have

kx?2lt ,xt�1
� xt�1k 

k—F(xt�1)k
2lt +µ

.

Let us denote kx?lt ,xt�1
� xt�1k as rt . Now, let us try to bound kxt� x?lt ,xt�1

k. From the
strong convexity and aproximation argument:

kxt� x?lt ,xt�1
k2  2

2lt +µ

⇣
Flt ,xt�1(xt)� f ?lt ,xt�1

⌘
ł 2et

2lt +µ
f ?lt ,xt�1

Now we can apply strong convexity argument one more time.

f ?lt ,xt�1
 F(xt�1)�

2lt +µ
2

r2
t

Hence finally we have:

kxt� x?lt ,xt�1
k2  2et

2lt +µ
F(xt�1)� et r2

t (G.18)

Hence finally:

rt�

s
2et

2lt +µ
F(xt�1) kxt� xt�1k 

s
2et

2lt +µ
F(xt�1)+ rt



s
2et

2lt +µ
F(xt�1)+

k—F(xt�1)k
2lt +µ

G.11 Approximate Proximal Point Method

The following Lemma from G.11.0.1 is useful in proving the Theorem G.4.1.1.

Lemma G.11.0.1 (Lemma 2.7 [73]). For all y 2 Rd and l � 0:

F(x?l ,y)�F?  F?
l ,y�F?  2l

µ +2l
(F(y)�F?) .

Proof of Theorem G.4.1.1. Let us assume that x?l ,x = argminy2Rd Fl ,x(y), then from the
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Lemma G.11.0.1,

F?
l ,x�F?  2l

µ +2l
(F(x)�F?)

) F(x?l ,x)�F?  2l
µ +2l

(F(x)�F?)

(G.19)

Last equation comes from the fact that F?
l ,x = F(x?l ,x)+lkx?� xk2.

We know that

Fl ,y(x?l ,y) f
�
PFl ,y(x)

�
 (1+ e)Fl ,y(x?l ,y) 8 y 2 Rd.

We can get the upper bound on the true minimizer using this black-box oracle in terms of
the approximate solution. We have:

F?
lT ,xt�1

 FlT ,xt�1(xt) (G.20)

From Lemma G.11.0.1 and black-box oracle , for any t 2 [T ] we have

Flt ,xt�1(xt)�F? = Flt ,xt�1(xt)�F?
lt ,xt�1

+F?
lt ,xt�1

�F?

 et F?
l ,xt�1

+
2lt

µ +2lt
(F(xt�1)�F?)

 et Flt ,xt�1(xt)+
2lt

µ +2lt
(F(xt�1)�F?)

(G.21)

which leads us to

(1� et)Flt ,xt�1(xt)�F?  2lt

µ +2lt
(F(xt�1)�F?)

) (1� et)Flt ,xt�1(xt)� (1� et)F?  2lt

µ +2lt
(F(xt�1)�F?)+ etF?

) Flt ,xt�1(xt)�F?  1
1� et

2lt

µ +2lt
(F(xt�1)�F?)+

et

1� et
F?

(G.22)

Now since,
Flt ,xt�1(xt) = F(xt)+ltkxt� xt�1k2 � F(xt)

Hence, finally we have:

F(xt)�F?  1
1� et

2lt

µ +2lt
(F(xt�1)�F?)+

et

1� et
F?

 (1+2et)
2lt

µ +2lt
(F(xt�1)�F?)+2etF? (G.23)
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whenever et  1/2. Now we can do recursion on the equation (G.23):

F(xT )�F? 
"

T

’
t=1

(1+2et)
2lt

µ +2lt

#

| {z }
:linear rate

(F(x0)�F?)+F?

2

64
T

Â
t=1

2et

T

’
j=t+1

(1+2e j)
2l j

µ +2l j

3

75

| {z }
:=d

(G.24)

Algorithm 21 Proximal-Point Method
1: input x0 2 Rd , lt > 0 8 t 2 [T ].
2: for t = 1 . . . T do
3: x?lt ,xt�1

 argminF(x)+ltkx� xt�1k2

4: xt  x?lt ,xt�1
5: end for
6: output xT

Lemma G.11.0.2 (Proposition 3.1.6 [243]). Let F be lower semi-continuous convex
function then for any x in the domain and for any t � 1 following relation holds for
iterates in Algorithm 21:

1
lt

⇣
F(x)�F(x?lt ,xt�1

)
⌘
� kxt�1� x?lt ,xt�1

k2 +kx� x?lt ,xt�1
k2�kx� xt�1k2.

In the next lemma, we characterize the result provided in lemma G.11.0.2 for the
e-approximate oracle.

Lemma G.11.0.3. Let F be lower semi-continuous convex function then for x?, the
minimizer of F and for any t � 1 and e  1/2, following relation holds for iterates in
Algorithm 19:

1
lt

�
Flt ,xt�1(xt)�F?� 2

lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

et

(1� et)lt
F?

 2kx?� xt�1k2�2kx?� x?lt ,xt�1
k2 +

et

(1� et)lt
F?

Proof. We have xt = Pflt ,xt�1
(x) as defined in line 3 of Algorithm 19 where P f is multi-

plicative et-oracle.
From the oracle we know that Fl ,xt�1(x

?
lt ,xt�1

)  Fl ,xt�1(xt)  (1+ et)Fl ,xt�1(x
?
lt ,xt�1

).
Next we use the result from Lemma G.11.0.2 where we use x = x? = argminx F(x). We

266



G.11 Approximate Proximal Point Method

denote F? with F(x?).

1
lt

⇣
F?�F(x?lt ,xt�1

)
⌘
� kxt�1� x?lt ,xt�1

k2 +kx?� x?lt ,xt�1
k2�kx?� xt�1k2

� kxt�1� x?lt ,xt�1
k2 +kx?� xt + xt� x?lt ,xt�1

k2�kx?� xt�1k2

(G.25)

The last equation essentially tells us the following:

1
lt

⇣
F?�Flt ,xt�1(x

?
lt ,xt�1

)
⌘
� kx?� x?lt ,xt�1

k2�kx?� xt�1k2 (G.26)

From the et-oracle we do have:
⇣

Flt ,xt�1(xt)�Fl ,xt�1(x
?
lt ,xt�1

)
⌘
 etFl ,xt�1(x

?
lt ,xt�1

)

Hence

1
lt

�
Flt ,xt�1(xt)�F?�= 1

lt

⇣
Flt ,xt�1(xt)�Flt ,xt�1(x

?
lt ,xt�1

)+Flt ,xt�1(x
?
lt ,xt�1

)�F?
⌘

=
1
lt

h⇣
Flt ,xt�1(xt)�Flt ,xt�1(x

?
lt ,xt�1

)
⌘
+
⇣

Flt ,xt�1(x
?
lt ,xt�1

)�F?
⌘i

 1
lt

h
etFlt ,xt�1(x

?
lt ,xt�1

)+
⇣

Flt ,xt�1(x
?
lt ,xt�1

)�F?
⌘i

 1
lt

h
etFlt ,xt�1(xt)+

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘i

(G.27)

From equations (G.26) and (G.27), we have:

1
lt

�
(1� et)Flt ,xt�1(xt)�F?� 1

lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘

) 1(1� et)

lt

�
Flt ,xt�1(xt)�F?� 1

lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

et

lt
F?

) 1
lt

�
Flt ,xt�1(xt)�F?� 1

(1� et)lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

et

(1� et)lt
F?

If et  1/2, then from equations (G.26) and (G.27), we have:

1
lt

�
Flt ,xt�1(xt)�F?� 2

lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

et

(1� et)lt
F?

267



Appendix G Importance Sampling via Local Sensitivit

 2kx?� xt�1k2�2kx?� x?lt ,xt�1
k2 +

et

(1� et)lt
F?

Lemma G.11.0.4. For a lower semi-continuous convex function F at any and for any
t � 1 and e  1/2, following relation holds for iterates after T iterations in Algorithm 19:

T

Â
t=1

1
lt

�
Flt ,xt�1(xt)�F?� 2

(1� e)
kx?� x0k2 +

T

Â
t=1

3e
((1� e))lt

F?

Proof. We know that:

1
lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
 kx?� xt�1k2�kx?� x?lt ,xt�1

k2 (G.28)

We can however sum the equation (G.28) for t = 1 till T and we get:

T

Â
t=1

1
lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘


T

Â
t=1

h
kx?� xt�1k2�kx?� x?lt ,xt�1

k2
i

= kx?� x0k2 +
T�1

Â
t=1

h
kx?� xtk2�kx?� x?lt ,xt�1

k2
i

�kx?� x?lt ,xT�1
k2

 kx?� x0k2 +
T

Â
t=1

h
kx?� xtk2�kx?� x?lt ,xt�1

k2
i

(G.29)

In equation (G.29), we can use Corollary G.10.0.1,

kx?� xtk2�kx?� x?lt ,xt�1
k2  et

lt
Flt ,xt�1(x

?
lt ,xt�1

).

Hence,

T

Â
t=1

1
lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
 kx?� x0k2 +

T

Â
t=1

et

lt
Flt ,xt�1(x

?
lt ,xt�1

)

)
T

Â
t=1

1
lt

⇣
(1� et)Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
 kx?� x0k2

)
T

Â
t=1

(1� et)

lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
 kx?� x0k2 +

T

Â
t=1

et

lt
F?
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Now, if we choose et = e for all t then we have:

T

Â
t=1

1
lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
 1

(1� e)
kx?� x0k2 +

T

Â
t=1

e
((1� e))lt

F? (G.30)

From the previous lemma G.11.0.3, we have

1
lt

�
Flt ,xt�1(xt)�F?� 2

lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

et

(1� et)lt
F? (G.31)

Summing up the equation (G.31) for t = 1 to T and for et = e , we have:

T

Â
t=1

1
lt

�
Flt ,xt�1(xt)�F?�

T

Â
t=1

2
lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

T

Â
t=1

e
(1� e)lt

F? (G.32)

Now from equations (G.30) and (G.32),

T

Â
t=1

1
lt

�
Flt ,xt�1(xt)�F?�

T

Â
t=1

2
lt

⇣
Flt ,xt�1(x

?
lt ,xt�1

)�F?
⌘
+

T

Â
t=1

e
(1� e)lt

F? (G.33)

 2
(1� e)

kx?� x0k2 +
T

Â
t=1

3e
((1� e))lt

F? (G.34)

Proof of Theorem G.4.1.2. From the previous Lemma G.11.0.4, we have:

T

Â
t=1

1
lt

�
Flt ,xt�1(xt)�F?� 2

(1� e)
kx?� x0k2 +

T

Â
t=1

3e
((1� e))lt

F?

We assume that F(xt) F(xt�1) for all t. This is fine to assume as we can always do the
resampling if failed once. And also:

1
lt

(F(xt)�F?) 1
lt

�
Flt ,xt�1(xt)�F?� for all t.

Hence,

F(xT )�F?  2
(1� e)

kx?� x0k2

ÂT
t=1

1
lt

+
3e

1� e
F?.
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G.12 Adaptive Stochastic Trust Region Method

Algorithm 22 Adaptive Stochastic Trust Region Method
1: input x0 2 Rd , e0, µ and m > 0.
2: Compute k—F(x0)k, F(x0) and C0
3: for t = 1 . . . T do
4: Compute regularizer lt using k— f (xt�1)k, lt and µ .
5: Compute radius rt using k— f (xt�1)k, f (xt�1) and Ct�1.
6: Computer error parameter et using lt and µ , the strong convexity of F .
7: Get F̃lt ,xt�1 via Taylor Expansion.
8: Compute the sensitivity for F̃lt ,xt�1 using Theorem G.2.0.1.
9: Local sensitivity based sampling of F̃s

lt ,xt�1
(x) from F̃lt ,xt�1(x).

10: xt  argminx2B(rt ,xt�1)Fs
lt ,xt�1

(x).
11: Compute k—F(xt)k, F(xt) and Ct .
12: end for
13: output xT

We here now provide the detailed statemnt of Theorem G.5.0.1 and then provide the
proof for it.

Theorem’ G.2.2.1. For a given set of constants Ck, dk and ẽk = dk
µ

lk+µ which is error
tolerance for the square approximation of the function Flk,xk�1(x) for all k 2 [T ], if lk+1
is chosen as :

2lk+1 = max

0

@
vuut 4Ckk—F(xk)k3

1
4c2k—F(xk)k2 +4d̃k+1µ F(xk)

3m

�µ,µ

1

A ,

then with probability � 1/2 the following holds:

F(xk+1)�F?  (1+2ek+1)
2lk+1

2lk+1 +µ
(F(xk)�F?)+2ek+1F?, (G.35)

where ek+1 = 2ẽk+1
�
1+ 1

m
�
8 k, m and c are positive constants.

Proof of Theorem G.5.0.1. Let us first reiterate the notations:

F̃lk+1,xk(x) = f (xk)+(x� xk)
>A>axk +

g
2
kxk2 +(x� xk)

>A>HxkA(x� xk)+lkx� xkk2.

and Flk+1,xk(x) = F̃lk+1,xk(x)+Bxk(x)kx�xkk3. We can write F̃lk+1,xk(x) =
1
n Ân

i=1 f̃i(xT ai)

where f̃i(xT ai) is the quadratic approximation of fi(xT ai) around the point xk. We also
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define the upper bound on the radius rk+1 =
k—F(xk)k
2lk+1+µ . Contribution in Bxk comes from

each term fi i.e. Bxk(x) =
1
n Ân

i=1 B(i)
xk (x). Let us assume that xk+1 is the point, we

get after minimizing the subset after sampling from the sensitivity of the quadratic
approximation. To make proof simpler in this section, we assume C(i)

k as the upper
bound on the absolute value of B(i)

xk (x) 8 i 2 [n] in the ball B(xk,rk+1) i.e. C(i)
k · r3

k+1 �
maxx2B(xk,rk+1)

�� fi(xT ai)� f̃i(xT ai)
�� 8 i 2 [n] where C(i)

k is a positive real number. We

have Ck =
1
n Ân

i=1C(i)
k .

As we have already defined for all x:
��F̃lk+1,xk(x)�Flk+1,xk(x)

��Ckkx� xkk3.

So if F̃s
lk+1,xk

(x) is sampled by sensitivities with error parameter ẽk+1 we have by
triangle inequality:

���F̃s
lk+1,xk

(x)�Flk+1,xk(x)
���
���F̃s

lk+1,xk
(x)� F̃lk+1,xk(x)

���+
��F̃lk+1,xk(x)�Flk+1,xk(x)

��

Ckkx� xkk3 + ẽk+1F̃lk+1,xk(x)

Ckkx� xkk3 +
ẽk+1

1� ẽk+1
· F̃s

lk+1,xk
(x). (G.36)

Hence, with very high probability, we do have :

Flk+1,xk(x)Ckkx� xkk3 +
ẽk+1

1� ẽk+1
· F̃s

lk+1,xk
(x)+ F̃s

lk+1,xk
(x)

=Ckkx� xkk3 +
1

1� ẽk+1
F̃s

lk+1,xk
(x)

(G.37)

Now, we would like to show that letting xs
k = argminx2B(xk,rk+1) F̃s

lk+1,xk
(x), the error

can still be controlled.
If, we let xs

k be the minimizer of F̃s
lk+1,xk

(x) and x?lk+1,xk
be the minimizer of Flk+1,xk(x).

We assume that rk+1
c  kx̃

s
k� xkk  rk+1 and kx?lk+1,xk

� xkk  rk+1 for some positive real
constant c > 1. We have :

Flk+1,xk(x
s
k)

1
1� ẽk+1

F̃s
lk+1,xk

(x)+Ckkxs
k� xkk3

 1
1� ẽk+1

Fs
lk+1,xk

(x?lk+1,xk
)+Ckkxs

k� xkk3 (G.38)

where the second line follows the fact that xs
k minimizes F̃s

lk+1,xk
(x).
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Hence, if we set ẽk+1  1/2 plugging back everything together:

Flk+1,xk(x
s
k) (1+4ẽk+1)F?

lk+1,xk
+4Ckr3

k+1. (G.39)

where in the last line we use that both kx̃s
k� xkk  rk+1 and kx?lk+1,xk

� xkk  rk+1.
We have from Lemma G.11.0.1 that:

F?
lk+1,xk

 2lk+1

µ +2lk+1
(F(xk)�F?)+F?.

Plugging this bound into (G.39) gives:

Flk+1,xk(x
s
k)

(1+4ẽk+1)2lk+1

µ +2lk+1
(F(xk)�F?)+F?+4Ckr3

k+1. (G.40)

Now consider if we make the update xs
k = xk+1. Then we have using the simple bound

that F(x) Flk+1,xk(x) for all x:

F(xk+1) = Flk+1,xk(xk+1)�lk+1kxk+1� xkk2

) F(xk+1)
(1+4ẽk+1)2lk+1

µ +2lk+1
(F(xk)�F?)+F?+4Ckr3

k+1�lk+1kxk+1� xkk2

 (1+4ẽk+1)2lk+1

µ +2lk+1
(F(xk)�F?)+F?+4Ckr3

k+1�
lk+1

c2 r2
k+1

In the last line we have used kxk+1 � xkk � rk+1
c . Now, we do want to choose our

parameters such that the following holds for some positive constant m > 0:

4Ckr3
k+1�

lk+1

c2 r2
k+1 

2lk+1

2lk+1 +µ
4ẽk+1

m
(F(xk)�F?)+4ẽk+1

✓
1+

1
m

◆
F? (G.41)

We provide the condition on l in the next lemma:
Now if the condition given in equation (G.41) holds then the following recursion holds:

F(xk+1)�F? 
✓

1+4ẽk+1

✓
1+

1
m

◆◆
2lk+1

2lk+1 +µ
(F(xk)�F?)+4ẽk+1

✓
1+

1
m

◆
F?

(G.42)

We can compare the recursion equations given in equations (G.43) and (G.23). If we
choose ek+1 = 2ẽk+1

�
1+ 1

m
�
, then we have:

F(xk+1)�F?  (1+2ek+1)
2lk+1

2lk+1 +µ
(F(xk)�F?)+2ek+1F? (G.43)
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which also confirms coreset conditions for the original function F .

Lemma G.12.0.1. For a given set of constants C(i)
k � |B(i)

xk (x)|, x 2 B(xk,rk+1) such that
Ck =

1
n Ân

i=1C(i)
k , and ek = dk

µ
2lk+µ for dk 2 (0,1/2) and 8 k 2 [T ], we have ,

4Ckr3
k+1�

l
c2 r2

k+1 
2lk+1

2lk+1 +µ
4ẽk+1

m
(F(xk)�F?)+4ẽk+1

✓
1+

1
m

◆
F?

is satisfied if for positive constants c and m:

2lk+1 = max

0

@
vuut 4Ckk—F(xk)k3

1
4c2k—F(xk)k2 +4d̃k+1µ F(xk)

3m

�µ,µ

1

A .

Proof. We need to ensude the following condition:

4Ckr3
k+1�

l
c2 r2

k+1 
2lk+1

2lk+1 +µ
4ẽk+1

m
(F(xk)�F?)+4ẽk+1

✓
1+

1
m

◆
F? (G.44)

Let us assume that there exist a positive real number qk+1.

• Consider the case when F(xk) � qk+1F?. Hence to ensure the condition given in
equation (G.44), we can just ensure that the following holds:

4Ckr3
k+1�

lk+1

c2 r2
k+1 

2lk+1

2lk+1 +µ
4ẽk+1

m

✓
1� 1

qk+1

◆
F(xk) (G.45)

• Consider the case when F(xk)  qk+1F?. Then, to ensure the condition given in
equation (G.44), we can just ensure that the following holds:

4Ckr3
k+1�

lk+1

c2 r2
k+1  4ẽk+1

✓
1+

1
m

◆
F(xk)

qk+1
(G.46)

In equations (G.45) and (G.46), we use qk+1 = 1 + (m + 1)2lk+1+µ
2lk+1

then we get the
following condition to be satisfied:

4Ckr3
k+1�

lk+1

c2 r2
k+1  4ẽk+1

✓
1+

1
m

◆
F(xk)

qk+1

) 4Ckr3
k+1 

lk+1

c2 r2
k+1 +4ẽk+1

✓
1+

1
m

◆
F(xk)

qk+1

) 4Ck
k—F(xk)k3

(2lk+1 +µ)3 
1

2c2
2lk+1

2lk+1 +µ
k—F(xk)k2

2lk+1 +µ
+4ẽk+1

✓
1+

1
m

◆
F(xk)

qk+1

(G.47)
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Now we assume that 2lk � µ 8 k) 2lk
2lk+µ �

1
2 and ẽk+1 = d̃k+1

µ
2lk+1+µ . Hence the

condition given in the equation (G.47) is satisfied when:

4Ck
k—F(xk)k3

(2lk+1 +µ)3 
1

4c2
k—F(xk)k2

2lk+1 +µ
+4d̃k+1

µ
2lk+1 +µ

✓
1+

1
m

◆
F(xk)

qk+1

) 2lk+1 +µ �

vuut 4Ckk—F(xk)k3

1
4c2k—F(xk)k2 +4d̃k+1µ

�
1+ 1

m
� F(xk)

qk+1

Now in the above equation we put the value of qk+1 = 1+(m+1)2lk+1+µ
2lk+1

 2m+3. We
also use the fact that m+1 � 1

3(2m+3). That means the other conditions on lk+1 are
satisfied when

2lk+1 +µ �

vuut 4Ckk—F(xk)k3

1
4c2k—F(xk)k2 +4d̃k+1µ F(xk)

3m

Hence, given

2lk+1 = max

0

@
vuut 4Ckk—F(xk)k3

1
4c2k—F(xk)k2 +4d̃k+1µ F(xk)

3m

�µ,µ

1

A ,

the conditions mentioned in the lemma are satisfied.
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Explicit Regularization of Stochastic
Gradient Methods through Duality
Anant Raj1, Francis Bach2
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Abstract
We consider stochastic gradient methods under the interpolation regime where a
perfect fit can be obtained (minimum loss at each observation). While previous work
highlighted the implicit regularization of such algorithms, we consider an explicit
regularization framework as a minimum Bregman divergence convex feasibility
problem. Using convex duality, we propose randomized Dykstra-style algorithms
based on randomized dual coordinate ascent. For non-accelerated coordinate de-
scent, we obtain an algorithm which bears strong similarities with (non-averaged)
stochastic mirror descent on specific functions, as it is is equivalent for quadratic
objectives, and equivalent in the early iterations for more general objectives. It
comes with the benefit of an explicit convergence theorem to a minimum norm
solution. For accelerated coordinate descent, we obtain a new algorithm that has
better convergence properties than existing stochastic gradient methods in the inter-
polating regime. This leads to accelerated versions of the perceptron for generic
`p-norm regularizers, which we illustrate in experiments.

H.1 Introduction
With the recent advancement in machine learning and hardware research, the size and
capacity of training models for machine learning tasks have been consistently increasing.
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For many models which are widely used in practice, e.g., deep neural networks [81]
and non-parametric regression models [25, 136], the training process achieves zero error,
which means that such models are expressive enough to interpolate the training data
completely. Hence, it is important to understand the interpolation regime to improve the
training and prediction of such complex and over-parameterized models used in machine
learning.

It is a well known fact that regularization, either explicit or implicit, plays a crucial role
in achieving better generalization. While Tikhonov regularization is amongst the most
famous form of regularization [80, 260] for linear or non-linear problems, several other
methods can induce regularization in form of computational regularization when training
machine learning models [207, 227, 268]. Apart from explicitly induced regularization
in machine learning models, optimization algorithms like (stochastic) gradient descent
which is widely used in practice while training large machine learning models, also induce
implicit regularization in the obtained solution. In many cases, (stochastic) gradient
descent converges to minimum Euclidean norm solutions. Recent series of papers [15,
84, 117, 225] present result about introducing implicit regularization/bias by (stochastic)
gradient descent in different set of convex and non-convex problems.

In this paper, we address the following question: instead of relying on implicit regular-
ization properties of stochastic algorithms, can we introduce an explicit regularization/bias
while training over-parameterized models in the interpolation regime?

In optimization terms, the interpolation regime corresponds to the minimization of an
average of finitely many functions of the form

F(q) = 1
n

n

Â
i=1

fi(q)

with respect to q 2 Rd , where there is a global minimizer of F , which happens to be a
global minimizer of all functions fi, for i 2 {1, . . . ,n} (instead of only minimizing their
average). In the interpolation regime, we are thus looking for a point q 2 Rd in the
intersection of all sets of minimizers

Ki = arg min
h2Rd

fi(h),

for all i 2 {1, . . . ,n}.
We can thus explicitly regularize the problem by solving the following optimization

problem:

min
q2Rd

y(q) such that 8i 2 {1, . . . ,n}, q 2Ki, (H.1)

where y is a regularization function (typically a squared norm). In the reformulated
problem given in Eq. (H.1), explicit regularization can be induced in the solution via the
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structure of the function y . Note also that the above problem can be seen as problem of
generalized projection onto sets, which are convex if the original functions fi’s are convex,
which we assume throughout this paper.

To address the problem defined in Eq. (H.1), we use the tools from convex duality
and accelerated randomized coordinate ascent, which result in Dykstra-style projection
algorithms [32, 75, 270]. In this paper, we make the following contributions:

(a) We provide a generic inequality going from dual guarantees in function values to primal
guarantees in terms of Bregman divergences of iterates.

(b) For non-accelerated coordinate ascent, we obtain an algorithm which bears strong
similarities with (non-averaged) stochastic mirror descent on specific functions fi’s.
Our algorithm comes with the benefit of an explicit convergence theorem to a minimum
value of the regularizer.

(c) For accelerated coordinate ascent, we obtain a new algorithm that has better convergence
properties than existing stochastic gradient methods in the interpolating regime. While
we indeed use the classical accelerated randomized coordinate descent algorithm to
get accelerated rates, we show that we do not need any of the strong assumption that
previous attempts at acceleration were needing (e.g.,Vaswani et al. [253]) for SGD in
interpolation regime.

(d) This leads to accelerated versions of the perceptron for generic `p-norm regularizers
(this is already an improvement for the `2-regularizer).

H.1.1 Related work
Stochastic gradient methods. First order stochastic gradient based iterative approaches
[54, 60, 114, 165, 259] are the most efficient methods to perform optimization for machine
learning problems with large datasets. There has been a large amount of work done in
the area of stochastic first order optimization methods [see, e.g., 158, 165, 191, 192, and
references therein] since the original stochastic approximation approach was proposed by
Robbins and Monro [206].

Primal SGD in the interpolation regime. To address the optimization problem in the
interpolation regime, Vaswani et al. [253] provide faster convergence rates for first order
stochastic methods in the Euclidean geometry. They propose a strong growth condition,
and a more widely applicable weak growth condition, under which stochastic gradient
descent algorithm achieves fast convergence rate while using constant learning rate (a side
contribution of our paper is to extend the latter algorithm to stochastic mirror descent).
Vaswani et al. [254] propose to use line-search to set the step-size while training over-
parameterized models which can fit completely to data. Several other works propose to
use constant learning rate for stochastic gradient methods [20, 37, 140, 147] while training
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extremely expressive models which interpolate. However, all of the above mentioned
works are primal-based algorithms.

Dysktra’s projection algorithms. Dykstra-type projection algorithms [32, 75] are sim-
ple modifications of the classical alternating projections methods [85, 255] to project
on the intersection of convex sets. A key interpretation is the connection between Dyk-
stra’s algorithm and block coordinate ascent [22, 23, 242], which we use in this paper.
Chambolle et al. [38] provide accelerated rates for Dykstra projection algorithm when
projecting on the intersection of two sets.

Coordinate descent. Coordinate descent has a long history in the optimization literature
[248, 249, 251]. Rates for accelerated randomized coordinate descent were first proved
by Nesterov [171]. Since then, various extensions of the accelerated coordinate descent
including proximal accelerated coordinate descent and non-uniform sampling have been
proposed by Allen-Zhu et al. [11], Hendrikx et al. [88], Lin et al. [139], Nesterov and
Stich [177]. Dual coordinate ascent can also be used to solve regularized empirical risk
minimization problem [216, 218]. We recover some of their results as a by-product in
this paper.

Perceptron. The perceptron is one of the oldest machine learning algorithms [27, 156].
Since then, there has been a lot of work on theoretical and empirical foundations of
perceptron algorithms [69, 214, 246], in particular, with related extensions to ours, to `p-
norm perceptron through mirror maps [83, 115]. However, none of the above mentioned
work forces structure to the optimal solution in an explicit way.

H.2 Optimization Algorithms for Finite Data
We consider the finite data setting, that is, we will give bounds on training objectives (or
distances to the minimum norm interpolator on the training set). We thus consider the
problem:

min
q2Rd

Y(q) such that 8i 2 {1, . . . ,n}, x>i q 2 Yi, (H.2)

where:

• Regularizer / mirror map: y : Rd ! R[{+•} is a differentiable µ-strongly convex
function with respect to some norm k ·k (which is not in general the `2-norm). We will
consider in this paper the associated Bregman divergence [33] defined as

DY(q ,h) = y(q)�y(h)�y 0(h)>(q �h).
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• Data: xi 2 Rd⇥k, Yi ⇢ Rk are closed convex sets, for i 2 {1, . . . ,n}.

• Feasibility / interpolation regime: we make the assumption that there exists q 2 Rd

such that y(q)< • and 8i 2 {1, . . . ,n}, x>i q 2 Yi.

This is a general formulation that includes any set Ki like in the introduction (by having
k = d, xi = I, and Yi = Ki), with an important particular case k = 1 (classical linear
prediction).

In this paper, we consider primarily the `p-norm set-up, where y(q) = 1
2kqk

2
p for

p 2 (1,2], which is (p� 1)-strongly convex with respect to the `p-norm [19, 62]. The
simplex with the entropy mirror map, which is 1-strongly convex with respect to the
`1-norm, could also be considered.

H.2.1 From dual guarantees to primal guarantees
We can use Fenchel duality to obtain a dual problem for the problem given in Eq.(H.2).
We will need the support function sYi of the convex set Yi, defined as, for ai 2 Rk [30],

sYi(ai) = sup
yi2Yi

y>i ai.

We have, by Fenchel duality:

min
q2Rd

y(q) such that 8i 2 {1, . . . ,n}, x>i q 2 Yi (H.3)

= min
q2Rd

y(q)+ 1
n

n

Â
i=1

max
ai2Rk

n
a>i x>i q �sYi(ai)

o

= max
8i, ai2Rk

�1
n

n

Â
i=1

sYi(ai)�y?
⇣
� 1

n

n

Â
i=1

xiai

⌘
, (H.4)

with, at optimality,

q ? = q(a?) = —y?
⇣
� 1

n

n

Â
i=1

xiai

⌘
.

We denote by G(a) the dual objective function above. With our assumptions of feasibility
and strong-convexity of y , there is a unique minimizer q ? 2 Rd . The dual problem is
bounded from above, and we assume that there exists a maximizer a? 2 Rn⇥k.

In this paper, we will consider dual algorithms to solve the problem disccused earlier
in this section, that naturally leads to guarantees on gap(a) = G(a?)�G(a). Our first
result is to provide some primal guarantees from q(a).

Proposition H.2.1.1. With our assumption, for any a 2 Rn⇥k, we have:

DY(q ?,q(a))6 gap(a).
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In the above statement, we also assume that y is differentiable everywhere, since
Bregman divergences are well defined for differentiable functions. However, if we want to
relax the above statement for a general function y which might not be differentiable, we
would need to replace the term DY(q ?,q(a)) in Eq. (H.2.1.1) with y(q ?)�y(q(a)))�
h∂y(q(a))),q ?�q(a))iwhere ∂y(q(a))) is a specific sub-gradient of y at point q(a).
In the proof of Proposition H.2.1.1, we simply use the duility structure of the problem
with Fenchel-Young inequality. See the detailed proof in Appendix H.6.

This result relates primal rate of convergence and dual rate of convergence, and holds
true irrespective of the algorithm used to optimize the dual objective. Using it, we can
recover convergence guarantees for stochastic dual coordinate ascent (SDCA) [216] and
accelerated SDCA [218]. Compared to their analysis, our result directly provides rates of
convergence from existing results in coordinate descent, but in terms of primal iterates.
Details are provided in Appendix H.8.

Overall, we limit our discussion to convex functions however there is no requirement
of the linear model to be used. Generalization of Proposition 1 (Proposition 2) holds for
general convex objective and can be extended to non-linear models without extra effort.

H.2.2 Randomized coordinate descent

This result relates primal rate of convergence and dual rate of convergence, and holds
true irrespective of the algorithm used to optimize the dual objective. Using it, we can
recover convergence guarantees for stochastic dual coordinate ascent (SDCA) [216] and
accelerated SDCA [218]. Compared to their analysis, our result directly provides rates of
convergence from existing results in coordinate descent, but in terms of primal iterates.
Details are provided in Appendix H.8.

Overall, we limit our discussion to convex functions however there is no requirement
of the linear model to be used. Generalization of Proposition 1 (Proposition 2) holds for
general convex objective and can be extended to non-linear models without extra effort.

H.2.3 Randomized coordinate descent

Given our relationship between primal iterate sub-optimality and dual sub-optimality
gap gap(a) for any dual variable a and its corresponding primal variable q(a), we can
leverage good existing algorithms on the dual problem. One such well known method is
randomized dual coordinate descent, where a and thus q(a) will be random.

The algorithm is initialized with a(0)
i = 0 for all i 2 {1, . . . ,n}, and at step t > 0, an

index i(t) 2 {1, . . . ,n} is selected uniformly (for simplicity) at random. The update for
proximal randomized coordinate ascent [202] is obtained in the following lemma (whose
proof is given in Appendix H.6.1).
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Algorithm 23 Proximal Random Coordinate Ascent
1: Input: a0, q0 q(a0) and xi,Yi for i 2 [n].
2: Initialize: z0 a0, qz0  q0, v0 a0 and g0 1

n .
3: for t = 1 to T do
4: Choose it 2 {1,2, · · · ,n} randomly.
5: b(prev) = a(t�1)

i(t) .

6: zt = PYi

⇣
Li(t)

n a(t�1)
i(t) + x>i(t)qt�1

⌘
.

7: ai(t) = a(t�1)
i(t) + n

Li(t)
x>i(t)qt�1� n

Li(t)
zt .

8: Db = ai(t)�b(prev).
9: Update qt+1 q(at+1) {Use Db ,xi(t)}.

10: end for
11: return qT+1 and aT+1.

Lemma H.2.3.1. For any uniformly randomly selected coordinate i(t) at time instance t,
the update for randomized proximal coordinate ascent is equal to

ai(t) = a(t�1)
i(t) +

n
Li(t)

x>i(t)q(a
(t�1))� n

Li(t)
PYi

⇣Li(t)

n
a(t�1)

i(t) + x>i(t)q(a
(t�1))

⌘
,

where PYi is the orthogonal projection on Yi, and Li is equal to Li =
1
µ
kxik2

2!? =

1
µ

sup
kbik2=1

kxibik2
?.

Here, we implicitly assume that the individual projections on convex set Yi for all
i 2 {1, · · · ,n} are easy to compute, leading to Algorithm 23. For uniformly random
selection of the datapoint xi(t) at time t, Li(t) can simply be replaced by maxi Li in the
algorithm.

Proximal randomized coordinate descent is a well studied problem [177, 202], and has
a known rate of convergence for smooth objective functions. The set of optimal solutions
of the dual problem in Equation (H.4) is denoted by A? and a? is an element of it. Define,

R(a) = max
y

max
a?2A?

{ky�a?k : G(y)� G(a)} .

Since we assumed that y is µ-strongly convex, y? is ( 1
µ )-smooth, and we get

E
h
DY(q ?,q(a(t)))

i
6 E

⇥
gap(a(t))

i
6 maxi Li

t
max{ka?k2,R(0)2}

n
, (H.5)

where Li is defined in Lemma H.2.3.1. The convergence rate given in Eq. (H.5) can further
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be improved with non-uniform sampling based on the values Li, and then maxi Li can be
replaced by 1

n Ân
i=1 Li [202]. However, taking inspirations from Cutkosky [50], Kavis et al.

[111] the convergence for averaged iterate of coordinate descent when Yi is a singleton
set for all i can be obtained which only depends on ka?k.

H.2.4 Relationship to least-squares
We now discuss an important case of the above formulation when Yi is a singleton set,
i.e., Yi = {yi}. This problem has been addressed recently by Calatroni et al. [36] and we
recover it as a special case of our general formulation.

We will make a link with least-squares in the interpolation regime, which can be written
as a finite sum objective as follows,

min

"
1
2n

n

Â
i=1
kyi� x>i qk2

2 =
1

2n

n

Â
i=1

d(x>i q ,Yi)
2

#
. (H.6)

It turns out that primal stochastic mirror descent with constant step-size applied to
Eq. (H.6) and our formulation provided in Appendix H.2.1 are equivalent, as we now
show.

Lemma H.2.4.1. Consider the stochastic mirror descent updates using the mirror map y
for the least-squares problem provided in Eq. (H.6). Then, the corresponding stochastic
mirror descent updates converges to minimum y solution.

Proof. Consider the primal-dual formulation given in Eq. (H.3) and Eq. (H.4), with
Yi = {yi}. The randomized dual coordinate ascent has the following update rule:

a(t)
i(t) = a(t�1)

i(t) +
n

Li(t)
(x>i(t)q(a

(t�1))� yi(t)). (H.7)

From the first order optimality condition, the update in Eq. (H.24) translates into, with
q (t) = q(a(t)),

y 0(q (t)) = y 0(q (t�1))� 1
Li(t)

xi(t)(x
>
i(t)q(a

(t�1))� yi(t)),

which is exactly stochastic mirror descent on the least-squares objective with mirror map
y . Hence the result.

The rate of convergence can be obtained by the use of Eq. (H.5).

General case (beyond singletons). For any set Yi, if a(t�1)
i(t) = 0, for example, if i(t)

has never been selected, then, by Moreau’s identity, we also get a stochastic mirror descent
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Algorithm 24 Accelerated Proximal Coordinate Ascent (Dual Perceptron) [88, 139]
1: Input: a0, q0 q(a0), xi for i 2 [n] and µ = 0.
2: Initialize: z0 a0, qz0  q0, v0 a0 and g0 1

n .
3: for t = 1 to T �1 do
4: Choose it 2 {1,2, · · · ,n} randomly.
5: rt = 1�q>zt xit
6: at+1 = ut+1 = at +

rt
ngtLit

.

7: a(t+1)
i(t) = max(a(t+1)

i(t) ,0).
8: Update qt+1 q(at+1). (Algorithm 25)
9: gt+1 =

1
2

⇣p
g4

t +4g2
t � g2

t

⌘
.

10: vt+1 = zt +ngt(at+1�at).
11: zt+1 = (1� gt+1)vt+1 + gt+1at+1.
12: Update qzt+1  q(zt+1). (Algorithm 26
13: end for
14: return qT+1 and aT+1.

step for 1
2n Ân

i=1 d(x>i q ,Yi)2. However, this is not true anymore when an index is selected
twice.

H.2.5 Accelerated coordinate descent

In the previous sections, we discussed randomized coordinate dual ascent to optimize the
problem in Eq. (H.3). We can also consider accelerated proximal randomized coordinate
ascent [11, 88, 139]. For our problem, it leads to:

E
h
DY(q ?,q(a(t)))

i
6 E

h
gap(a(t))

i
6 4maxi Li

t2

⇢
G(a?)�G(0)

maxi Li
+

1
2
ka?k2

�
. (H.8)

We will use the bound in Eq. (H.8) to analyze the general perceptron in the next section.
We also provide the proximal accelerated randomized coordinate ascent algorithm [88,
139] with uniformly random sampling of coordinates to optimize the dual objective of
`p-perceptron in Algorithm 25. However, the algorithm can easily be updated for the
general case of Eqs. (H.3) and (H.4).

Note here that accelerated stochastic method for over-parametrized models in Algo-
rithm 25 achieves Nesterov’s fast rate without making explicit assumptions on the growth
condition of the function and have the same computational overhead as that of primal
SGD.

283



Appendix H Explicit Regularization of Stochastic Gradient Methods through Duality

Algorithm 25 Update qqq t+1

1: Input: xit ,at+1 , X>at , at and it .
2: X>at+1 = X>at +(a(t+1)

i(t) �a(t)
i(t))xit .

3: Compute qt+1 from X>at+1.
4: return qt+1 and X>at+1.

Algorithm 26 Update qqq zt+1

1: Input: xit , at+1, X>at , X>at+1, X>zt , at , gt , gt+1.
2: X>vt+1 = X>zt +ngtX>(at+1�at).
3: X>zt+1 = (1� gt+1)X>vt+1 + gt+1X>at+1.
4: Compute qzt+1 from X>zt+1.
5: return qqq zt+1 and X>zt+1.

H.2.6 Baseline: Primal Mirror Descent
We will compare our dual algorithms to existing primal algorithms. They correspond to
the minimization of

F(q) = 1
2n

n

Â
i=1

d(x>i q ,Yi)
2. (H.9)

Vaswani et al. [253] showed convergence of stochastic gradient descent for this problem.
We extend their results to all mirror maps. Mirror descent with the mirror map y selects
i(t) at random and the iteration update is

y 0(q (t)) = y 0(q (t�1))� gxi(t)(PYi(x
>
i(t)q

(t�1))� x>i(t)q
(t�1)). (H.10)

Note that we have already encountered it in Lemma H.2.4.1, for least-squares regression,
where we provided a convergence rate on the final iterate.

In Theorem H.2.6.1 below, we prove an O(1/t) convergence rate for stochastic mirror
descent update with mirror map y , for a constant step-size and the average iterate, directly
extending the result of Vaswani et al. [253] to all mirror maps.

Theorem H.2.6.1. Consider the stochastic mirror descent update in Eq. (H.10) for the
optimization problem in Eq. (H.9) with g = µ/supi kxik2

2!?, the expected optimization
error after t iterations the for averaged iterate q̄t behaves as,

0 6 E[F(q̄ (t))]6 maxi Li

t
y(q ?).

We provide the proof in Appendix H.6.3. The result is also applicable to general
expectations and any form of convex objectives in the interpolation regime. We use this
extension as one of our baseline in our experiments. In practice, as mentioned earlier, the
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update for mirror descent in Eq. (H.10) is similar to randomized dual coordinate ascent
update in Lemma H.2.3.1, in particular in early iterations (and not surprisingly, they
behave similarly). Note here the difference in guarantees for the final iterates (which we
get through a dual analysis) and the guarantees for the averaged iterate (which we get
through a primal analysis).

H.3 `p-perceptrons

So far, we have discussed very general formulations for optimization problems in the
interpolation regime. In this section, we discuss a specific problem which is widely used
for linear binary classification, known as the perceptron algorithm, which is guaranteed to
converge for linearly separable data. Here, we view the generalized `p-norm perceptron
algorithm from the lens of our primal-dual formulation.

We consider (xi,yi) 2 Rd⇥{�1,1} for i 2 {1, · · · ,n}, and the problem of minimizing
y(q) such that 8i,yix>i q > 1, which can be written as x̃>i q > 1, where x̃i = yixi for all i 2
{1, . . . ,n}. For this section, we will be limiting ourselves to y(q) = 1

2kqk
2
p for p 2 (1,2].

We know that y(q) = 1
2kqk

2
p for p 2 (1,2] is (p�1)-strongly convex with respect to the

`p-norm. In this section, we denote X 2 Rn⇥d the data matrix X = (x̃>1 ; x̃>2 ; · · · ; x̃>n ). Our
generic primal optimization problem turns into:

min
q2Rd

1
2
kqk2

p such that Xq > 1, (H.11)

The dual problem is here

max
a2Rn

+

�1
2

����
�1
n

n

Â
i=1

xiai

����
2

q
+

1
n

n

Â
i=1

ai, (H.12)

where k ·kq is dual norm of k ·kp, with 1/p+1/q = 1. At optimality, q can be obtained
from X>a as

q j =
1
n
kX>ak2�q

q (X>a)q�1
j ,

where we define uq�1 = |u|q�1sign(u).
The function a 7! 1

2kX
>ak2

q is smooth, and the regular smoothness constant with
respect to the i-th variable which is less than Li =

1
p�1kxik2

q. We can apply here the results
from Proposition H.2.1.1 to get the convergence in primal iterates for the the general
`p-norm perceptron formulation in Eq. (H.11), while optimizing the dual function via
accelerated coordinate ascent in Eq. (H.12).

Corollary H.3.0.1. For the generalized `p-norm perceptron described in our primal-dual
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framework in Equations (H.11) and (H.12), we have

E
h
kq(a)�q ?kp

i


s
2E[gap(a)]

p�1
.

Proof. The result comes from the application of Proposition H.2.1.1 in the generalized
`p-norm perceptron from setting Eq. (H.11), with D 1

2k·k2
p
(q ?,q)� p�1

2 kq �q ?k2
p.

If we use accelerated randomized coordinate descent to optimize dual objective given
in Eq. (H.12), then after t number of iterations, we get:

E
h
kqt�q ?kp

i


2
p

2maxi kxikqp
(p�1)t

s
G(a?)�G(0)

maxi kxikq
+

1
2
ka?k2, (H.13)

where qt = q(at).

Mistake bound. Since, we have the bound on the distance between primal iterate to its
optimum, we can simply derive the mistake bound for our algorithm which we prove in
Appendix H.7.

Lemma H.3.0.2. For the generalized `p-norm perceptron described in our primal-dual
framework in Equations (H.11) and (H.12), we make no mistakes on training data on
average after

t >
2
p

2R2
p

p�1

r
G(a?)�G(0)

R
+

1
2
ka?k2

steps where R = maxi kxikq and k ·kq is the dual norm of k ·kp.

The accelerated coordinate descent algorithm to solve the `p-perceptron is given in
Algorithm 25. More details about the relationship between primal and dual variables, as
well as dual ascent update for random coordinate descent for general `p-norm perceptron,
e.g., the dual problem in Eq. (H.12), is given in Appendix H.7. Mistake bounds for the
classical `p-perceptron are also recalled in Appendix H.7.

Baseline: primal mirror descent. We consider the finite sum minimization with
stochastic mirror descent update and mirror map y = 1

2k ·k
2
p as discussed in Section H.2.6,

that is, the finite sum minimization in Eq. (H.9) with fi(q) = 1
2(1�q>xi)2

+.

Corollary H.3.0.3. Consider the finite sum minimization of f (q) = 1
2n Ân

i=1(1�q>xi)2
+

via stochastic mirror descent with mirror map y(·) = 1
2k · k

2
p, then on average, the

proportion of mistakes on the training set is less than
r
kq?k2

pR2

(p�1)t where R = maxi kxikq.
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Proof. The proof comes directly from Theorem H.2.6.1 and from the fact that the propor-
tion of mistakes on the training set is less than the square root of the excess risk.

Similar bounds on the proportion of mistakes can also be obtained while optimizing
f (q) = 1

n Ân
i=1(1�x>i q)+ via stochastic mirror descent with mirror map 1

2k ·k
2
p. However,

while tuning the step size, it requires the knowledge of kq ?kp, hence we do not include it
in our base line.

We can compare the minimum number of iterations required to achieve no further
mistakes while training in Lemma H.3.0.2 and Corollary H.3.0.3 to get the conditions on
optimal primal and dual optimal variables under which our method (which has a better
dependence in the number of iterations t) performs better than the baseline. We discuss
these in the Appendix H.7. In our empirical evaluationin Section H.4, dual accelerate
coordinate ascent significantly outperforms primal mirror descent.

Special Case of `1-perceptron. Our goal in this specific case is to solve the following
sparse problem,

q0 = argmin
q2Rd

1
2
kqk2

1 such that Xq > 1. (H.14)

k ·k1 is not strongly convex, hence we can not fit this problem to our formulation. However,
following Duchi et al. [62], we solve the problem in (H.11) with p = 1+ 1

logd where d is
the dimension.

(a) Number of mistakes on the training test (in
log scale).

(b) Number of mistakes on the test (in log
scale).

Figure H.1: Experimental results for `2-perceptron
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(a) Number of mistakes on the training (in log
scale).

(b) Number of mistakes on the test (in log
scale).

Figure H.2: Experimental results for sparse perceptron.

H.4 Experiments
In this section, we provide empirical evaluation for the methods discussed in this paper
with the `p-perceptron. We generate data from a Gaussian distribution in dimension
d = 2000, which we describe below. We consider two settings of p for our experiments,
p = 2 which is usual perceptron, and p = 1+ 1

logd , which is the sparse perceptron setting.

Data generation. We generate n = 1000 inputs xi 2 Rd , i = 1, . . . ,n with d = 2000
from a Gaussian distribution centered at 0 and covariance matrix S which is a diagonal
matrix. Similarly, we generate a random d = 2000 prediction vector q sampled again
from the normal distribution.

For `2-perceptron, the i-th eigenvalue for S is 1/i3/2 and for sparse perceptron i-th
eigenvalue for S, is 1/i. We compute the prediction vector yi for xi as follows, yi =
sign(x>i q + b) where we fix b = 0.005. We also remove those pair of (xi,yi) from the
data for which we have x>i q +b 0.1. We generate 1000 train examples and 1000 test
examples for both settings. For the sparse perceptron case, we make the prediction vector
q sparse by randomly choosing 50 entries to be non zero. We then compute the prediction
vector similar to the `p-perceptron case, yi = sign(x>i q +b) where we fix b = 0.005 and
remove those pair of (xi,yi) from the data for which we have, x>i q +b 0.1.

Baseline. For the `2-perceptron, we compare accelerated coordinate descent and ran-
domized coordinate descent with the perceptron and primal SGD [253]. For the sparse
perceptron, we compare the accelerated coordinate descent and randomized coordinate
descent with extension of primal SGD to stochastic mirror descent case (discussed in
section H.2.6 with fi =

1
2(1�x>i q)2

+) with mirror map y(·) = 1
2k ·k

2
p where p = 1+ 1

logd .
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Note that we compare to non-averaged SGD (for which we provide a new proof), which
works significantly better than averaged SGD.

Comparisons for the `2-perceptron and sparse perceptron are given in Figures H.1 and
H.2 respectively.

We can make the following observations:

(a) From both the training plots (Figure H.1a and Figure H.2a), it is clear that we gain
significantly in training performance over primal SGD and the perceptron if we optimize
the dual with accelerated randomized coordinate ascent method, which supports our
theoretical claims made in Section H.3.

(b) For testing errors, we also see gains for our accelerated perceptron, which is not sup-
ported by theoretical arguments. This gives motivation to further study this algorithm
for general expectations.

(c) Note that in the semi-log plots, we observe an affine behavior of the training errors,
highlighting exponential convergence. This can be explained by a strongly convex
dual problem (since the matrix XX> is invertible), and could be quantified using usual
convergence rates for coordinate ascent for strongly-convex objectives.

H.5 Conclusion
In this paper, we proposed algorithms that are explicitly regularizing solutions of an
interpolation problem. This is done through a dual approach, and, with acceleration, it
improves over existing algorithms. Several natural questions are worth exploring: (1) Can
we explicitly characterize linear convergence in the dual (like observed in experiments),
with or without regularization? (2) How are our algorithms performing beyond the
interpolation regime, where the dual become unbounded but some primal information can
typically be recovered in Dykstra-style algorithms [23]? (3) Can we extend our approach
to saddle-point formulations such as proposed by Kundu et al. [118]? Can we prove any
improvement in the general population regime, where we aim at bounds on testing data?

In a recent series of papers [64, 190], it was shown that strong duality holds for different
neural network architecture and there might be a possibility to extend our approach for
those architectures which are beyond the convexity assumptions. It is a promising future
research direction and needs to be investigated further.
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Proofs for Main Results

H.6 Primal-Dual Structure
Apart from the notations discussed in the main paper, we would further use the following
notation for data matrix X 2Rn⇥d such that X =

⇥
x>1 ; · · · ;x>n

⇤
. We consider the following

general primal and its corresponding dual problem which appear very frequently in
machine learning domain.

min
q2Rd

"
OP(q) := y(q)+ 1

n

n

Â
i=1

fi(x>i q)

#
(H.15)

max
a2Rn

"
OD(a) :=�y⇤

✓
�1

n
X>a

◆
� 1

n

n

Â
i=1

f⇤i (ai)

#
. (H.16)

Here, we assume that f : Rd ! R and y : Rd ! R are smooth convex function for all i.
We have the following first order optimality conditions for the equivalent problems given
in Equations (H.15) and (H.16):

x>i q 2 ∂f⇤i (ai),

q 2 ∂y⇤
✓
�1

n
X>a

◆
,

and
ai 2 ∂fi(x>i q),

� 1
n

X>a 2 ∂y(q).
(H.17)

From the duality, q(a) = ∂y⇤
�
�1

n Ân
i=1 aixi

�
. We can recall Fenchel’s Inequality: For

any convex function f , the inequality f (x)+ f ⇤(q)� x>q holds for all x 2 dom( f ) and
q 2 dom( f ⇤). Equality holds if the following is satisfied q 2 ∂ f (x).

From Fenchel’s inequality, we have:

Proposition H.6.0.1. Consider the general primal dual problem given in equations (H.15)
and (H.16), dual sub-optimlaity gap gap(a) = [OD(a?)�OD(a)] at some a provides the
upper bound on the Bregman divergence of y between q ? and q(a) i.e. DY(q ?,q(a))6
gap(a).

Proof. The Bregman divergence with respect to mirror map y is

DY(x,y) = y(x)�y(y)�h—y(y),x� yi.

Now, we have:

gap(a) =�y⇤
✓
�1

n
X>a?

◆
+y⇤

✓
�1

n
X>a

◆
� 1

n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai). (H.18)
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In the proof we would again use Fenchel’s inequality which we used in the proof of
previous theorem. From the optimality condition, we know that �1

nX>a 2 ∂y(q(a)).
Hence,

Hence,

gap(a) =�y⇤
✓
�1

n
X>a?

◆
+y⇤

✓
�1

n
X>a

◆
� 1

n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

=�
✓
�
⌧

1
n

X>a?,q ?

�
�y(q ?)

◆
+

✓
�
⌧

1
n

X>a,q(a)

�
�y(q(a))

◆

� 1
n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= y(q ?)�y(q(a))+

⌧
1
n

X>a?,q ?

�
�
⌧

1
n

X>a,q(a)

�

� 1
n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= y(q ?)�y(q(a))+

⌧
1
n

X>a?,q ?

�
�
⌧

1
n

X>a,q(a)

�

� 1
n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= y(q ?)�y(q(a))+

⌧
1
n

X>a?,q ?

�
+

⌧
1
n

X>a,q ?

�
�
⌧

1
n

X>a,q ?

�

�
⌧

1
n

X>a,q(a)

�
� 1

n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= y(q ?)�y(q(a))�
⌧

1
n

X>a,q(a)�q ?

�
+

⌧
1
n

X>a?� 1
n

X>a,q ?

�

� 1
n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= y(q ?)�y(q(a))�h—y(q(a)),q ?�q(a)i| {z }
:=DY(q?,q(a))

+

⌧
1
n

X>a?� 1
n

X>a,q ?

�

� 1
n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= DY(q ?,q(a))+

⌧
1
n

a?� 1
n

a,Xq ?

�
� 1

n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= DY(q ?,q(a))+
1
n

n

Â
i=1

(a?
i �ai) · x>i q ?� 1

n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)
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= DY(q ?,q(a))� 1
n

n

Â
i=1

(ai�a?
i ) ·—f⇤(a?

i )�
1
n

n

Â
i=1

f⇤i (a?
i )+

1
n

n

Â
i=1

f⇤i (ai)

= DY(q ?,q(a))+
1
n

n

Â
i=1

Df⇤i (ai,a?
i )� DY(q ?,q(a)). (H.19)

After we provide the general result in Proposition H.6.0.1, we now provide the proof
for proposition H.2.1.1 below. The result in statement is a useful result and can be useful
in several ways. For example, the guarantees for SDCA [216, 218]. We provide the details
in the Appendix H.8.

Proof of Proposition H.2.1.1. We can just use the result in Proposition H.6.0.1 to prove
Proposition H.2.1.1. Let’s recall once again the primal dual formulation of the problem
which we have in Equation (H.3) and Equation (H.4).

min
q2Rd

Dy(q ,q (0)) such that 8i 2 {1, . . . ,n}, x>i q 2 Yi (H.20)

= min
q2Rd

y(q)+ 1
n

n

Â
i=1

max
ai2Rk

n
a>i x>i q �sYi(ai)

o

= max
8i, ai2Rk

�1
n

n

Â
i=1

sYi(ai)�y?
⇣
� 1

n

n

Â
i=1

xiai

⌘
(H.21)

= max
a2Rn⇥k

G(a),

Let Ki represents that set for all q such that x>i q 2 Yi and the indicator function iKi

for a convex set Ki for all 2 {1, . . . ,n} is defined as iKi(x
>
i q) = 0 if x>i q 2 Yi and

iKi(x
>
i q) = +•, otherwise for all 2 {1, . . . ,n}. We can write Equation (H.20) in the form

of generalized equation given in Equation (H.15) considering fi(x>i q) = iKi(x
>
i q). It

is easy to see that f⇤i (ai) = sYi(ai). Hence, now the statement follows from Proposi-
tion H.6.0.1.

H.6.1 Coordinate Descent Update: Proof of Lemma H.2.3.1
We have:

a(t)
i(t) = argmax

ai(t)
�1

n
sYi(t)(ai)+

1
n

—y?
⇣
� 1

n

n

Â
i=1

xia(t�1)
i

⌘>
xi(t)[ai(t)�a(t�1)

i(t) ]

�
Li(t)

2n2 kai�a(t�1)
i(t) k

2
2
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= argmax
ai(t)
�1

n
sYi(t)(ai)+

1
n

q(a(t�1))>xi(t)[ai(t)�a(t�1)
i(t) ]�

Li(t)

2n2 kai�a(t�1)
i(t) k

2
2

= argmin
ai(t)

sYi(t)(ai)+
Li(t)

2n
kai�a(t�1)

i(t) �
n

Li(t)
x>i(t)q(a

(t�1))k2
2. (H.22)

The minimization problem in Equation (H.22) can be written as follows:

min
ai(t)

"
sYi(t)(ai)+

Li(t)

2n
kai�a(t�1)

i(t) �
n

Li(t)
x>i(t)q(a

(t�1))k2
2

#

=min
ai(t)

"
sYi(t)(ai)� sup

z

"
(ai�a(t�1)

i(t) �
n

Li(t)
x>i(t)q(a

(t�1)))>z+
n

2Li(t)
kzk2

##

= sup
z2Yi(t)

"
� n

2Li(t)
kzk2 + z>

 
n

Li(t)
x>i(t)q(a

(t�1))+a(t�1)
i(t)

!#
(H.23)

The above maximization problem has a solution at z?=PYi(t)

⇣
x>i(t)q(a

(t�1))+
Li(t)

n a(t�1)
i(t)

⌘
.

However, z? is also the solution of the following optimization formulation:

z? = argmax
z

"
(ai�a(t�1)

i(t) �
n

Li(t)
x>i(t)q(a

(t�1)))>z+
n

2Li(t)
kzk2

#

Comparing both the value of z?, we get the following update in ai(t) in alternative form

ai(t) = a(t�1)
i(t) +

n
Li(t)

x>i(t)q(a
(t�1))� n

Li(t)
PYi

⇣Li(t)

n
a(t�1)

i(t) + x>i(t)q(a
(t�1))

⌘
,

where PYi is the orthogonal projection on Yi.

H.6.2 Implicit Regularization of Stochastic Mirror Descent : Proof
of Lemma H.2.4.1

Proof. Consider the primal-dual formulation given in Eq. (H.3) and Eq. (H.4), with
Yi = {yi}. The randomized dual coordinate ascent has the following update rule:

a(t)
i(t) = a(t�1)

i(t) +
n

Li(t)
(x>i(t)q(a

(t�1))� yi(t)). (H.24)

293



Appendix H Explicit Regularization of Stochastic Gradient Methods through Duality

From the first order optimality condition, the update in Eq. (H.24) translates into, with
q (t) = q(a(t)),

y 0(q (t)) = y 0(q (t�1))� 1
Li(t)

xi(t)(x
>
i(t)q(a

(t�1))� yi(t)),

which is exactly stochastic mirror descent on the least-squares objective with mirror map
y . Hence the result.

H.6.3 Mirror Descent: [Proof of Theorem H.2.6.1]

The convergence rate does depend on y(q ?) but this is not an explicit regularization. The
proof goes as follows:

Mirror descent with the mirror map y selects i(t) at random and the iteration is

y 0(q (t)) = y 0(q (t�1))� gxi(t)(PYi(x
>
i(t)q

(t�1))� x>i(t)q
(t�1)).

Following the proof of Flammarion and Bach [67], we have for any q 2 Rd:

Dy(q ,q (t)) = Dy(q ,q (t))�Dy(q (t),q (t�1))+ g f 0t (q (t�1))>(q (t)�q)

6 Dy(q ,q (t))� µ
2
kq (t)�q (t�1)k2 + g f 0t (q (t�1))>(q (t�1)�q)

+gk f 0t (q (t�1))k?kq (t�1)�q (t)k

6 Dy(q ,q (t))� g f 0t (q (t�1))>(q (t�1)�q)+ g2

2µ
k f 0t (q (t�1))k2

?.

For q = q ? and using E
⇥
k f 0t (q (t�1))k2

?

⇤
6 supi kxik2

2!?

⇥
f (q)� f (q ?)

⇤
, we get and taking

expectations, we get:

�
1� g

kxik2
2!?

2µ
�
E
⇥

f (q (t�1))� f (q ?)
⇤
6 1

g

⇣
E[Dy(q ?,q (t))]�E

⇥
Dy(q ?,q (t�1))

⇤⌘
.

Thus, with g = µ/supi kxik2
2!?, we get

E
⇥

f (q (t�1))� f (q ?)
⇤
6 2

g

⇣
E[Dy(q ?,q (t))]�E

⇥
Dy(q ?,q (t�1))

⇤⌘
.

This leads to
E
⇥

f (q̄t)� f (q ?)
⇤
6 2

gt
Dy(q ?,q (0)).
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H.7 `p-perceptron

In this section, we provide proofs for the claims made in Section H.3.
We start with the proof of Lemma H.3.0.2.

Proof. For all i, x>i q ? � 1. Hence,

x>i qt = x>i qt� x>i q ?+ x>i q ? = x>i q ?� x>i (q ?�qt)

� 1� x>i (q ?�qt)� 1�kxikqkqt�q ?kp

� 1�Rkqt�q ?kp.

Assuming a0 = 0, from Equation (H.13), we have

E
h
kqt�q ?kp

i


2
p

2maxi kxikqp
(p�1)t

s
G(a?)�G(0)

maxi kxikq
+

1
2
ka?k2

Now for on average for no mis-classification for all i 2 {1, · · · ,n},

1� RE
h
kqt�q ?kp

i
) t � 2

p
2R2

p
p�1

r
G(a?)�G(0)

R
+

1
2
ka?k2. (H.25)

Mistake Bound `p-primal perceptron. If we apply mirror descent with the mirror map
y = 1

2k ·k
2
p to the minimization of 1

n Ân
i=1(1�q>xi)+, then the iteration is

y 0(qt) = y 0(qt�1)� g11�q>t�1xi(t)>0xi(t),

and we have
1
n

n

Â
i=1

(1� q̄>t xi)+ 6
kq?k2

p

2gt
+ g

maxi kxik2
q

2(p�1)
.

The best g is equal to g =
kq?kp

maxi kxikq

p
p�1p

t , which does depend on too many things, and
leads to a proportion of mistakes on the training set less than

kq?kp maxi kxikqp
p�1

p
t

.
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H.7.1 Update for Random Coordinate Descent

We have:

min
q2Rd

1
2
kqk2

p such that Xq > 1

= min
q2Rd

max
a2Rn

1
2
kqk2

p +a>(1�Xq)

= max
a2Rn

�1
2
kX>ak2

q +a>1,

where, at optimality, q can be obtained from X>a as

q j = kX>ak2�q
q (X>a)q�1

j ,

where we define uq�1 = |u|q�1sign(u).
The function 1

2kX
>ak2

p is smooth, and the regular smoothness constant with respect to
the i-th variable which is less than

Li =
1

p�1
kxik2

q.

A dual coordinate ascent step corresponds to choosing i(t) and replacing (at�1)i(t) by

(at)i = max
n

0,(at�1)i(t) +
1

Li(t)

�
1�kX>at�1k2�q

q

d

Â
j=1

[(X>at�1) j]
q�1Xi(t) j

o
,

which can be interpreted as:

(at)i = max
n

0,(at�1)i(t) +
1

Li(t)

�
1�q>t�1xi(t)

�o
.

H.7.2 `2-perceptron

The primal problem has the following dual form under the interpolation regime

max
a�0,a2Rn

a>1� 1
2
kXak2.

We denote Sv as the set of support vectors i.e. Sv is the set of indices where a?
j 6= 0.

Hence, we also have x̃>j q ? = 1 for j 2 Sv. aSv denotes the vector of non-zero entries in a .
Correspondingly, XSv denotes the feature matrix for support vectors. From the first order
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suboptimality condition we have,

q(a) =
1
n

Xa.

We also know that for support vectors, yi · x>i q ? = x̃>i q ? = 1 for all i 2 Sv. Also q ? =
1
nXSva?

Sv
. Hence,

1
n

X>Sv XSva
?
Sv = 1) a?

Sv = n(X>Sv XSv)
�11.

From Lemma H.3.0.2, we should have t � 2
p

2R2
p

p�1

q
G(a?)�G(0)

R + 1
2ka?k2, for no training

mistakes.
We now use Corollary H.3.0.3 to get mistake bound on the perceptron. To have no

mistakes on average, the proportion of mistakes should be less than 1/n. Hence,

Rkq ?kp
t
 1

n
) t � R2kq ?k2n2. (H.26)

We already have a?
Sv
= n(X>Sv

XSv)
�11.

q ? =
1
n

Xa? =
1
n

XSva
?
Sv = XSv(X

>
Sv XSv)

�11.

Finally we have the following:

ka?k= ka?
Svk= nk(X>Sv XSv)

�11k
kq ?k2 = kXSv(X

>
Sv XSv)

�11k2 = 1>(X>Sv XSv)
�11.

(H.27)

Hence, one can compare the number of minimum iteration required by both the ap-
proaches.

H.8 (Accelerated) Stochastic Dual Coordinate Descent

Stochastic dual coordinate ascent [216] is a popular approach to optimize regularized
empirical risk minimize problem. For this section, let f1, · · · ,fn be a sequence of 1

g -
smooth convex losses and let l > 0 be a regularization parameter then consider following
regularized empirical risk minimization problem:

min
q2R

"
SP(q) :=

l
2
kqk2 +

1
n

n

Â
i=1

fi(X>i q)

#
. (H.28)
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Corresponding dual problem of the minimization problem given in equation (H.28) can
be written similarly as:

max
a2Rn

"
SD(a) :=�l

2
k 1

ln
X>ak2� 1

n

n

Â
i=1

f⇤i (�ai)

#
(H.29)

There is one to one relation between the smoothness constant and strong convexity
parameter of primal and corresponding dual function. We prove the following result
from Kakade et al. [105].

Theorem H.8.0.1 (Theorem 6, [105]). Assume that f is a closed and convex function.
Then f is b -strongly convex w.r.t. a norm k ·k if and only if f ⇤ is 1

b -smooth w.r.t. the dual
norm k ·k⇤.

From the above theorem it is clear that f⇤i are g-strongly convex. Hence the term
1
n Ân

i=1 f⇤i (�ai) is g
n strongly convex. Similary coordinate wise smoothness Li =

kxik2

ln2 .
Now, just as a direct implication of the result provided in Proposition H.6.0.1, we have the
convergence result for SDCA [216] and accelerated stochastic dual coordinate ascent [218]
which we provide in Corollary H.8.0.2 and Corollary H.8.0.3. For the next two results,
we denote qk as q(ak).

Corollary H.8.0.2 (Stochastic Dual Coordinate Ascent). Consider the regularized em-
pirical risk minimization problem given in equation (H.28), then if we run SDCA [216]
algorithm starting from a0 2 Rn with a fix step size 1/maxi Li where Li =

kxik2

ln2 , primal
iterate after k iterations converges as following:

l
2
kqk+1�q ?k2  D(ak+1)

✓
1� gl

maxi kxik2

◆k
(SD(a0)�SD(a?)).

Proof. From Allen-Zhu et al. [11], it is clear that for µ-strongly convex and Li-coordinate
wise smooth convex function SD(a) where a 2 Rn, randomized coordinate descent has
the following convergence guarantee:

D(ak+1)
✓

1� µ
nmaxi Li

◆k
(SD(a0)�SD(a?)).

Here, µ = g
n . First part of the inequality directly comes from Proposition H.6.0.1 by the

observation that here y(·) = l
2 k ·k

2 and bregman divergence are always positive.

Corollary H.8.0.3 (Accelerated Stochastic Dual Coordinate Ascent). Consider the reg-
ularized empirical risk minimization problem given in equation (H.28), then if we run
Accelerated SDCA [218] algorithm starting from a0 2Rn, we have following convergence
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rate for the primal iterates:

l
2
kqk+1�q ?k2  D(ak+1) 2

 
1�

p
glp

maxi kxik2

!k

(SD(a0)�SD(a?)).

Proof. From Allen-Zhu et al. [11], it is clear that for µ-strongly convex and Li-coordinate
wise smooth convex function SD(a) where a 2 Rn, accelerated randomized coordinate
descent has the following convergence guarantee:

D(ak+1) 2
✓

1�
pµ

n
p

maxi Li

◆k
(SD(a0)�SD(a?)).

First part of the inequality directly comes from Proposition H.6.0.1 by the observation
that here y(·) = l

2 k · k
2 and bregman divergence are always positive. Here µ = g

n and

Li =
kxik2

ln2 .

Discussion. Let us denote duality gap at dual variable a as D(a). From the definition
of the duality gap D(a) = SP(q(a))�SD(a). However, D(a) is an upper bound on the
primal sub-optimality gap as well on dual sub-optimality gap. The main difference in
the analysis presented in our work with the works of Shalev-Shwartz and Zhang [216]
and Shalev-Shwartz and Zhang [218] is that the we provide the guarantee in term of the
iterate. However Shalev-Shwartz and Zhang [216] and Shalev-Shwartz and Zhang [218]
provide convergence in terms of duality gap D(a). Another main difference is that we use
constant step size in each step and the output of our algorithm doesn’t need averaging of
the past iterates. Our analysis holds for the last iterate.
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Notations

f ? Until and unless specified f ? = minx2X f (x).
x? argminx2X f (x).
ei Vector of appropriate dimension with all the entries set to 0 except

ith entry set to 1.
xi ith entry of vector x.
ML Machine Learning
SGD Stochastic Gradient Descent.
CD Coordinate Descent
SCD Steepest Coordinate Descecnt
RCD Randomized Coordinate Descent
UCD Uniformly Random Coordinate Descent
ASCD Approximately Steepest Coordinate Descent
MP Matching Pursuit
LMO Linear Minimization Oracle
OLO Online Linear Optimization
FTRL Follow the Regularized Leader
AO-FTRL Adaptive Optimistic Follow the Regularized Leader
MD Mirror Descent
AO-MD Adaptive Optimistic Mirror Descent
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[3] Ahipas, aoğlu, S. D., Sun, P., and Todd, M. (2008). Linear Convergence of a Modi-
fied Frank–Wolfe Algorithm for Computing Minimum-Volume Enclosing Ellipsoids.
Optimization Methods and Software, 23(1), 5–19.

[4] Alain, G., Lamb, A., Sankar, C., Courville, A., and Bengio, Y. (2015). Variance
Reduction in SGD by Distributed Importance Sampling. arXiv.org.

[5] Alaoui, A. and Mahoney, M. W. (2015). Fast randomized kernel ridge regression
with statistical guarantees. In Advances in Neural Information Processing Systems 28
(NeurIPS), pages 775–783.

[6] Allen-Zhu, Z. (2017). Katyusha: The first direct acceleration of stochastic gradient
methods. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 1200–1205.

[7] Allen-Zhu, Z. and Hazan, E. (2016). Variance reduction for faster non-convex
optimization. In International Conference on Machine Learning, pages 699–707.

[8] Allen-Zhu, Z. and Orecchia, L. (2014). Linear Coupling of Gradient and Mirror
Descent: A Novel, Simple Interpretation of Nesterov’s Accelerated Method. arXiv.org.

[9] Allen-Zhu, Z. and Orecchia, L. (2017). Linear Coupling: An Ultimate Unification
of Gradient and Mirror Descent. In C. H. Papadimitriou, editor, 8th Innovations in
Theoretical Computer Science Conference (ITCS 2017), volume 67, pages 3:1–3:22.

[10] Allen-Zhu, Z. and Yuan, Y. (2016). Improved SVRG for non-strongly-convex or
sum-of-non-convex objectives. In International Conference on Machine Learning,
pages 1080–1089.

306

http://arxiv.org/abs/1711.08426


Bibliography

[11] Allen-Zhu, Z., Qu, Z., Richtárik, P., and Yuan, Y. (2016a). Even faster accelerated
coordinate descent using non-uniform sampling. In International Conference on
Machine Learning, pages 1110–1119.

[12] Allen-Zhu, Z., Qu, Z., Richtárik, P., and Yuan, Y. (2016b). Even Faster Accelerated
Coordinate Descent Using Non-Uniform Sampling. In ICML 2017 - Proceedings of
the 34th International Conference on Machine Learning, pages 1110–1119.

[13] Allen-Zhu, Z., Qu, Z., Richtárik, P., and Yuan, Y. (2016c). Even faster accelerated
coordinate descent using non-uniform sampling. In ICML 2016 - Proceedings of The
33rd International Conference on Machine Learning, volume 48 of PMLR, pages
1110–1119. PMLR.

[14] Altschuler, J., Bach, F., Rudi, A., and Weed, J. (2018). Massively scalable sinkhorn
distances via the nystr\" om method. arXiv preprint arXiv:1812.05189.

[15] Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit regularization in deep
matrix factorization. In Advances in Neural Information Processing Systems, pages
7411–7422.

[16] Atsushi Shibagaki, I. T. (2017). Stochastic Primal Dual Coordinate Method with
Non-Uniform Sampling Based on Optimality Violations. arXiv.org.

[17] Avron, H., Kapralov, M., Musco, C., Musco, C., Velingker, A., and Zandieh, A.
(2017). Random Fourier features for kernel ridge regression: Approximation bounds
and statistical guarantees. In Proceedings of the 34th International Conference on
Machine Learning (ICML), pages 253–262.

[18] Bachem, O., Lucic, M., and Krause, A. (2015). Coresets for nonparametric
estimation-the case of DP-means. In Proceedings of the 32nd International Con-
ference on Machine Learning (ICML).

[19] Ball, K., Carlen, E. A., and Lieb, E. H. (1994). Sharp uniform convexity and
smoothness inequalities for trace norms. Inventiones mathematicae, 115(1), 463–482.

[20] Bassily, R., Belkin, M., and Ma, S. (2018). On exponential convergence of sgd in
non-convex over-parametrized learning. arXiv preprint arXiv:1811.02564.

[21] Bauschke, H. H. and Combettes, P. L. (2011a). Convex Analysis and Monotone
Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer New York,
New York, NY.

[22] Bauschke, H. H. and Combettes, P. L. (2011b). Convex analysis and monotone
operator theory in Hilbert spaces. Springer Science & Business Media.

307



Bibliography

[23] Bauschke, H. H. and Koch, V. R. (2015). Projection methods: Swiss army knives for
solving feasibility and best approximation problems with halfspaces. Contemp. Math,
636, 1–40.

[24] Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM journal on imaging sciences, 2(1), 183–202.

[25] Belkin, M., Rakhlin, A., and Tsybakov, A. B. (2018). Does data interpolation
contradict statistical optimality? arXiv preprint arXiv:1806.09471.

[26] Bishop, C. M. (2016). Pattern Recognition and Machine Learning. Springer-Verlag
New York.

[27] Block, H.-D. (1962). The perceptron: A model for brain functioning. i. Reviews of
Modern Physics, 34(1), 123.

[28] Bock, R., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jiřina, M., Klaschka,
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