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Abstract
Efficient transportation of resources is critical for network functionality
at all scales. However, while natural systems adapt over time to achieve
optimal structures for transportation, man-made networks are not built with
a comparable evolutionary mechanism. Consequently, these structures
frequently fall short of meeting their intended design criteria.

This thesis presents adaptation rules rooted in biological systems that
enable the design of plausible man-made infrastructures. Specifically, we
extrapolate mathematical models classically used to study, for instance,
the transport of nutrients in plants or the human body and extend them to
model different problems with a paradigm shift: Use such equations to get
instrumental insight on how to build artificial networks.

We connect adaptation rules and optimality with Optimal Transport (OT)
theory. Initially, we formulate adaptation equations tailored to the problem
at hand. Then, we aim to find a well-defined Lyapunov functional for these
equations, which is interpretable as the cost to transport mass along the
edges of a network. This is the cost minimized in OT. This link allows us
to leverage optimization insights and methods to enhance performance and
validate our adaptation schemes.

While this mechanism is established for greedy routing problems, we
extend it to more complex scenarios.

First, we consider a multicommodity problem where different immiscible
mass types move in a shared network. By interacting in one infrastructure,
the mass types contribute to minimizing a unique cost. We observe that
thoughtfully devising the coupling of mass types is pivotal to producing
optimal networks. We also explore traffic congestion regimes controlled
through a critical exponent entering the adaptation rules and its correspond-
ing optimization formulation. The multicommodity adaptation equations
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are used to study the routing of passengers in the Paris Métro and the streets
of Bordeaux. These applications showcase which stations are crucial to
alleviating traffic under targeted node failures and that trams are a valuable
alternative to reduce bus congestion. Furthermore, we employ this method
for ameliorating supervised image classification with OT. Here, mass types
are RGB color distributions of images, and the OT cost is used as a proxy
to assess their similarity.

Second, we study optimal designs of transportation networks with time-
dependent input mass loads. Our fundamental assumption is to model
the slow evolution of the network infrastructure, which is governed by
periodic and fast-fluctuating mass entering its nodes. By postulating the
existence of these two different time scales, we derive closed-form adaptation
rules that reduce the transport cost upon convergence. Additionally, they
enable connecting analytical properties of the mass loads—their Fourier
coefficients—with the topology of optimal networks. We use this method
to study the robustness of Bordeaux’s bus network.

Third, we frame the competition of a network manager and greedy
passengers competing in a bilevel optimization problem. The first aims to
minimize traffic by tolling roads, while the second move to reduce their
travel costs. To solve the problem, we devise a scheme where adaptation
rules for greedy routing are alternated with closed-form Projected Stochastic
Gradient Descent for tuning edge weights. Our study on the international
E-road network demonstrates that an informed tolling of roads effectively
trades off travel time against congestion and can help reduce the carbon
footprint of roads.

To make our results reproducible, we complement our methods with
open-source codes.

In summary, our models provide a systematic approach to designing
optimal transportation networks for different tasks. These tools are valuable
for practitioners interested in these problems, for example, policymakers
aiming to assess whether a transport infrastructure effectively meets user
demand.
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Zusammenfassung
Ein effizienter Ressourcentransport ist für die Funktionalität von Netzen
auf allen Ebenen von entscheidender Bedeutung. Während sich natür-
liche Systeme im Laufe der Zeit anpassen, um optimale Strukturen für
den Transport zu erreichen, werden vom Menschen geschaffene Infras-
trukturen nicht mit einem vergleichbaren Evolutionsmechanismus gebaut.
Infolgedessen erfüllen diese Strukturen häufig nicht die ihnen zugedachten
Gestaltungskriterien.

In dieser Arbeit werden Anpassungsregeln vorgestellt, die in biologischen
Systemen verwurzelt sind und den Entwurf plausibler vom Menschen
geschaffener Infrastrukturen ermöglichen. Konkret werden mathematische
Modelle, die klassischerweise zur Untersuchung des Nährstofftransports in
Pflanzen oder im menschlichen Körper verwendet werden, extrapoliert und
durch einen Paradigmenwechsel zur Modellierung verschiedener Szenarien
erweitert: Wir nutzen solche Gleichungen, um instrumentelle Erkenntnisse
über den Aufbau künstlicher Netzwerke zu gewinnen.

Wir ziehen eine Verbindung zwischen Anpassungsregeln und Optimal-
ität mit der Optimal Transport (OT) Theorie. Zunächst formulieren wir
Anpassungsgleichungen, die auf das jeweilige Problem zugeschnitten sind.
Dann versuchen wir, ein wohldefiniertes Lyapunov-Funktional für diese
Gleichungen zu finden, das als die Kosten für den Transport von Masse
entlang der Kanten eines Netzwerks interpretiert werden kann. Dies sind
die Kosten, die in OT minimiert werden. Diese Verbindung ermöglicht
es uns, Erkenntnisse und Methoden der Optimierung zu nutzen, um die
Leistung zu verbessern und unsere Anpassungsschemata zu validieren.

Während dieser Mechanismus für gierige Routing-Probleme etabliert ist,
erweitern wir ihn auf komplexere Szenarien.
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Zunächst betrachten wir ein Multicommodity-Problem, bei dem sich
verschiedene nicht mischbare Massenarten in einem gemeinsamen Netz
bewegen. Indem sie in einer Infrastruktur interagieren, tragen die Massen-
typen dazu bei, die einmaligen Kosten zu minimieren. Wir stellen fest, dass
eine durchdachte Kopplung der Massentypen für die Schaffung optimaler
Netze von zentraler Bedeutung ist. Wir untersuchen auch Verkehrsüber-
lastungsregime, die durch einen kritischen Exponenten in den Anpas-
sungsregeln kontrolliert werden, sowie die entsprechende Optimierungsfor-
mulierung. Die Multicommodity-Anpassungsgleichungen werden verwen-
det, um die Beförderung von Fahrgästen in der Pariser Métro und in den
Straßen von Bordeaux zu untersuchen. Diese Anwendungen zeigen, welche
Stationen entscheidend sind, um den Verkehr bei gezielten Knotenausfällen
zu entlasten, und dass Straßenbahnen eine wertvolle Alternative sind, um
die Überlastung der Busse zu verringern. Außerdem setzen wir diese
Methode zur Verbesserung der überwachten Bildklassifizierung mit OT ein.
In diesem Fall sind die Massentypen RGB-Farbverteilungen von Bildern,
und die OT-Kosten werden als Proxy für die Bewertung ihrer Ähnlichkeit
verwendet.

Zweitens untersuchen wir die optimale Gestaltung von Transportnetzen,
in welche Massen zeitabhängig eingeführt werden. Unsere Hauptan-
nahme ist die Modellierung der langsamen Entwicklung der Netzinfras-
truktur, die durch periodische und schnell schwankende Massen, die in die
Knoten eintreten, bestimmt wird. Indem wir die Existenz dieser beiden
unterschiedlichen Zeitskalen postulieren, leiten wir Anpassungsregeln in
geschlossener Form ab, die die Transportkosten bei Konvergenz reduzieren.
Außerdem ermöglichen sie es, analytische Eigenschaften der Massen—ihre
Fourier-Koeffizienten—mit der Topologie optimaler Netze zu verbinden.
Wir verwenden diese Methode, um die Robustheit des Busnetzes von
Bordeaux zu untersuchen.

Drittens stellen wir den Wettbewerb zwischen einem Netzmanager und
gierigen Fahrgästen dar, die in einem zweistufigen Optimierungsproblem
konkurrieren. Der erste versucht, das Verkehrsaufkommen durch die Erhe-
bung von Straßenbenutzungsgebühren zu minimieren, während der zweite
versucht, seine Reisekosten zu senken. Zur Lösung des Problems entwickeln
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wir ein Schema, bei dem sich Anpassungsregeln für gieriges Routing mit
einem in geschlossener Form projizierten stochastischen Gradientenabstieg
zur Abstimmung der Kantengewichte abwechseln. Unsere Studie über das
internationale E-Road-Netz zeigt, dass eine informierte Mauterhebung für
Straßen einen wirksamen Ausgleich zwischen Reisezeit und Staus schafft
und dazu beitragen kann, den CO2-Fußabdruck von Straßen zu verringern.

Um unsere Ergebnisse reproduzierbar zu machen, ergänzen wir unsere
Methoden mit Open-Source-Codes.

Zusammenfassend lässt sich sagen, dass unsere Modelle einen system-
atischen Ansatz für die Gestaltung von Verkehrsnetzen bieten, die für
verschiedene Aufgaben optimal sind. Diese Werkzeuge sind wertvoll für
Personen, die sich für diese Probleme interessieren, z.B. für politische
Entscheidungsträger, die beurteilen wollen, ob eine Verkehrsinfrastruktur
die Nachfrage der Nutzer effektiv erfüllt.

vii





Acknowledgments
First and foremost, I wish to thank my advisor Caterina De Bacco for her
scientific and personal guidance over the last years. I do not know what
my future career endeavors are going to be, but I am very happy and feel
fortunate that they started with our teamwork. Your tenacity and fervor
in doing good science before seeking recognition is an inspiration. Also,
thanks to Caterina for fostering the development of my left-hand technique
at table soccer. If today my midfielders shoot stronger than ever, it is all
thanks to you!

I extend my gratitude to my collaborators (in alphabetical order), Diego
Baptista, Enrico Facca, Abdullahi Ibrahim, Mario Putti, Nicolò Ruggeri,
and Michael Szell. Your scientific advice and contribution were essential to
this thesis and my growth as a researcher. A special thanks goes to Mario,
who first presented me with the opportunity to work with science at the end
of my Master’s degree.

Furthermore, I am grateful to Peter Ochs for reviewing this thesis and for
being part of my thesis advisory committee, alongside Anna Levina and
Michael Muehlebach, whom I thank in turn. I am grateful again to Peter
Ochs, Anna Levina, as well as Georg Martius for forming my examination
committee.

I also want to thank all the past and current members of the Physics
for Inference and Optimization Group at the Max Planck for Intelligent
Systems in Tübingen. Countless hours spent in the office would have not
been the same without your encouragement.

My PhD was supported by the International Max Planck Research School
for Intelligent Systems (IMPRS-IS) and entirely carried out at the Max
Planck for Intelligent Systems. Many dedicated people work to make the
school and the institute a wonderful place to make science. I truly appreciate
your effort.

viii



On a personal note, I want to thank my friends from back home and every
corner of the world. If what you are is the nest where you lay, then thanks
for helping me, in one way or another, tearing my nest down and pushing
me to be a bit more.

My most heartfelt gratitude is for my family. In particular, I thank our
fantastic new additions Gianluca and Pietro, who always spark joy in my
life. Then, my polar opposite sister, Valeria. You are and will always be a
pillar for my serenity, growing up with you as a model is one of my biggest
fortunes. Finally, I wish to thank my Mum and my Dad. I owe you every
bit of good that is in me, thank you “for not telling me how to live, but to
live and let me watch you do it”1.

Valeria, Mamma e Papà, questo traguardo è dedicato a voi.
My last thank you goes to Asia. I would like to tell you a million words

but thanks for when “I picture myself in a boat on a river, with tangerine
trees and marmalade skies, somebody calls me, I answer quite slowly. A
girl with kaleidoscope eyes!”2.

1Adapted from Clarence Budington “Bud” Kelland (July 11, 1881 - February 18, 1964).
2Adapted from “Lucy in the Sky with Diamonds” by the Beatles (1967).

ix







Preface
The work presented in this thesis is based on the following peer-reviewed
publications and preprints. Papers in each category are listed in chronologi-
cal order of publication, and asterisks denote equal contributions.

Peer-reviewed publications:

1. Ibrahim et al. [1]
Optimal Transport in Multilayer Networks for Traffic Flow Optimiza-
tion
Abdullahi Adinoyi Ibrahim, Alessandro Lonardi, Caterina De Bacco
Algorithms, 14(7), 189 (2021) · arXiv · GitHub

2. Lonardi et al. [2]
Designing optimal networks for multicommodity transport problem
Alessandro Lonardi, Enrico Facca, Mario Putti, Caterina De Bacco
Physical Review Research 3, 043010 (2021) · arXiv · GitHub

3. Lonardi et al. [3]
Multicommodity routing optimization for engineering networks
Alessandro Lonardi, Mario Putti, Caterina De Bacco
Scientific Reports 12, 7474 (2022) · arXiv · GitHub

4. Lonardi et al. [4]
Infrastructure adaptation and emergence of loops in network routing
with time-dependent loads
Alessandro Lonardi, Enrico Facca, Mario Putti, Caterina De Bacco
Physical Review E 107, 024302 (2023) · arXiv · GitHub

5. Lonardi et al. [5]
Immiscible Color Flows in Optimal Transport Networks for Image

x

https://www.mdpi.com/1999-4893/14/7/189
https://arxiv.org/abs/2106.07202
https://github.com/cdebacco/MultiOT
https://link.aps.org/doi/10.1103/PhysRevResearch.3.043010
https://arxiv.org/abs/2010.14377
https://github.com/aleable/McOpt
https://www.nature.com/articles/s41598-022-11348-9
https://arxiv.org/abs/2110.06171
https://github.com/aleable/McOpt
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.107.024302
https://arxiv.org/abs/2112.10620
https://github.com/aleable/N-STARK


Classification
Alessandro Lonardi*, Diego Baptista*, Caterina De Bacco
Frontiers in Physics 11:1089114 (2023) · arXiv · GitHub · Poster ·
CO2 compensation

6. Lonardi and De Bacco [6]
Bilevel Optimization for Traffic Mitigation in Optimal Transport
Networks
Alessandro Lonardi, Caterina De Bacco
Physical Review Letters 131, 267401 (2023) · arXiv · GitHub

Throughout my doctorate, I also contributed to additional work, which is
not included in the thesis.

Additional preprint:

1. Ruggeri et al. [7]
Message-Passing on Hypergraphs: Detectability, Phase Transitions,
and Higher-Order Information
Nicolò Ruggeri*, Alessandro Lonardi*, Caterina De Bacco
Journal of Statistical Mechanics: Theory and Experiment (4), 043403
(2024) · arXiv · GitHub

Additional manuscript in preparation:

1. Lonardi et al. [8]
Cohesive urban bicycle infrastructure design through optimal trans-
port routing in multilayer networks
Alessandro Lonardi, Michael Szell, Caterina De Bacco

My scientific contribution to each paper is outlined in Table 1, and it follows
the designation:

• Primary Contributor (PC > 50%), for leading research contributions;
• Major Contributor (25% ≲ MC ≤ 50%), for significant shared

contributions that play a substantial role in the research;
• Co-contributor (CC ≲ 25%), for meaningful but lesser co-authorship

contributions.

xi

https://www.frontiersin.org/articles/10.3389/fphy.2023.1089114/abstract
https://arxiv.org/abs/2205.02938
https://github.com/aleable/MODI
https://github.com/aleable/MODI/blob/main/misc/POSTER_MODI.pdf
https://www.treedom.net/en/page/register?id=49Z-KEWX
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.267401
https://arxiv.org/abs/2306.16246
https://github.com/aleable/BROT
https://iopscience.iop.org/article/10.1088/1742-5468/ad343b
https://iopscience.iop.org/article/10.1088/1742-5468/ad343b
https://arxiv.org/abs/2312.00708
https://github.com/nickruggeri/hypergraph-message-passing


Table 1: Outline of the scientific contribution.

Paper Model Exps Discussion Writing
Ibrahim et al. [1] CC – CC CC
Lonardi et al. [2] MC PC PC MC
Lonardi et al. [3] MC PC PC MC
Lonardi et al. [4] PC PC PC PC
Lonardi et al. [5] MC MC MC MC
Lonardi and De Bacco [6] PC PC PC PC
Ruggeri et al. [7] MC CC MC MC
Lonardi et al. [8] PC PC MC PC

xii





Table of Contents
Abstract iii

Zusammenfassung v

Acknowledgments viii

Preface x

1 Introduction 1
1.1 The problem of network modeling . . . . . . . . . . . . . 2
1.2 Design of networks with adaptation rules . . . . . . . . . 6
1.3 Optimal Transport . . . . . . . . . . . . . . . . . . . . . . 8

2 Goals 11
2.1 Overall aim and contribution . . . . . . . . . . . . . . . . 11
2.2 Scientific contributions and their organization . . . . . . . 12

3 Results and discussion 17
3.1 Development of the adaptation rules . . . . . . . . . . . . 17

3.1.1 Standard unicommodity routing . . . . . . . . . . 18
3.1.2 Multicommodity routing . . . . . . . . . . . . . . 22
3.1.3 Routing with time-dependent loads . . . . . . . . 28
3.1.4 Bilevel optimization for traffic mitigation . . . . . 35

3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Paris Métro . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Bordeaux’s trams and buses . . . . . . . . . . . . 43
3.2.3 International E-road network . . . . . . . . . . . . 46
3.2.4 Image classification . . . . . . . . . . . . . . . . . 49



4 Conclusion and future perspectives 53

Appendix A Published works 57

Bibliography 119







1 Introduction
Content

Section 1.1 — 1. Connection between adaptation rules and opti-
mization problems;

2. Central question: Can we leverage optimization
to design and study principled (with theoretical
guarantees) and flexible (applicable to disparate
problems) adaptation rules?

3. Optimal Transport is our framework of choice,
we harness its power to formalize the problem
and boost computational performance;

4. We apply our models to engineering and machine
learning tasks.

Section 1.2 — 1. Functioning principles of adaptation rules;
2. Literature review of adaptive systems;
3. Details on the real-world applications of the

thesis.
Section 1.3 — 1. Description of Optimal Transport;

2. Targeted literature review Optimal Transport;
3. Optimal Transport and its connection to adapta-

tion rules.
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1 Introduction

1.1 The problem of network modeling
Designing the “Topology of the Fittest Transportation Network” [9] is
indispensable for preserving life in nature and advancing our society’s
primary infrastructures.

Paradigms of such a task in the natural world include intricate venation
patterns on leaves [10–12], which enable the adequate circulation of nutrients
or the universal profiles of plants, emerging from the trade-off between
hydraulic resistance and carbon cost minimization [13]. Other remarkable
examples are given by rivers [14–17], where water tides form many meanders
folding into one another and giving rise to complex morphologies, and by
the Physarum polycephalum, a single-celled multinucleate myxomycete
(slime mold) that shaped research on adaptive network formation since the
early 2000s [18].

The slime mold offered an ideal test bed for designing seminal in vitro
experiments and mathematical modeling, which led to the groundbreaking
emulation of artificial transportation networks with a biological organism
[19, 20]. Remarkably, the organism’s evolutionary mechanism can be
explained using minimal biological adaptation rules that yield a natural
algorithm [21] with a desirable convergence property: The slime mold
transports nutrients by morphing into a network that connects food sources
with minimum total length [22, 23].

The connection between adaptation mechanisms and optimization princi-
ples provided by the slime mold pinpoints the first overarching question of
this thesis:

Question 1: Is it possible to formulate principled adaptation rules suit-
able for a range of tasks, resulting in optimal network designs?

Posing this problem naturally leads to a cascade of follow-up interro-
gations, which are essential to narrow the domain of investigation and,
therefore, to make the formulation of a satisfactory answer feasible.

We need to specify what optimality refers to within different contexts. Its
definition can essentially change, and it is intimately dependent on the target
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1 Introduction

of the system’s evolution. For example, while many plants’ leaves contain
venation with dense loops, some ancient plant species such as the Ginkgo
biloba organize their vascular pattern in tree topologies [24]. This evidence
underscores that optimal transportation networks are potentially very diverse
and can emerge from a non-trivial interplay between evolutionary vectors
even within the same scientific domain. In the specific case of leaves,
optimization may be sought for resilience to external damage [10], among
several factors.

The development of many other systems can be explained using different
optimization mechanisms. A biological example is the islets of Langerhans
in the pancreas, where specialized cells release insulin and glucagon into
the bloodstream [25, 26]. Here, optimizing the time to transport these
substances allows replicating topologies compatible with those in the
pancreatic islets [27].

The mathematical framework we employ to model optimization and
to measure optimality is Optimal Transport (OT) theory [28]. Optimal
Transport formalizes the problem of finding the best strategy to ship
resources from one or multiple origins to one or multiple destinations.
More in detail, the goal is to find the transport path that optimally moves
every unit of a source mass distribution to any other unit of a target mass
distribution. Once again, optimality has been introduced with a broad
connotation. However, in OT, the objective function to minimize is typically
the product between the so-called ground cost one must pay to move mass
units along a path between two locations and the amount of mass traveling
onto it. The solution to this problem, which is the minimum of the objective
function, is referred to as 1-Wasserstein distance (or Kantorovich-Rubinstein
metric) if the ground cost corresponds to the distance between the source
and target points.

Optimal Transport is applied across many domains of science, with a large
body of literature devoted to establishing a formal bridge between OT and
adaptive networks [22, 23, 29–37]. These works develop a robust scientific
foundation to answer Question 1. Particularly, they study and formulate the
connection between adaptation rules and optimal network design under a
dynamical system’s perspective. Here, network topologies evolve in time
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1 Introduction

and adapt their structure to obey Ordinary Differential Equations (ODE)
systems. The goal is to design such dynamical systems so that the trajectory
drawn by the network’s evolution falls down a potential well, reaching a
stable and optimal configuration. Crucially, the minimum of the potential
well is the 1-Wasserstein distance.

This connection is useful to prescribe a constructive scheme for adaptation
rules that follow a minimum energy principle measured in the OT sense.
We use this approach in all the works we discuss in this thesis, and as a
further driver to develop our models, we pose a second central question:

Question 2: How do adaptation rules profit from optimization problems,
and vice versa?

In attempting to answer Question 2, we mainly focus on two aspects of
the link between OT and dynamical systems for network design.

The first is validating the minimum energy principle followed by adapta-
tion rules via OT. In detail, we use OT theory to prove in what terms and
under what conditions the networks extracted at convergence of adaptation
are to be considered optimal. We identify that certain aspects of the prob-
lems’ setup, such as the objective’s convexity or the initial configurations
of the transported mass, are pivotal in controlling the efficiency of trans-
portation networks. Exploring a large variety of parameter configurations
unveils a myriad of transportation networks, each with different features best
suited for specific operating functions. By establishing this connection, we
also reinterpret OT under a complementary physical perspective where, for
example, mass moving along transport paths becomes the current flowing
in a resistor network.

The second aspect is computational complexity. With the continually
expanding amount of big data we benefit from, devising scalable algorithms
for many scientific research tasks has become paramount. Mathematical
optimization, particularly OT, is the perfect embodiment of the collec-
tive effort aimed at unburdening the computational cost of algorithms.
OT garnered popularity in computationally intensive disciplines such as
machine learning and deep learning [38] thanks to the development of
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1 Introduction

high-performing algorithms, for instance, the widely celebrated Sinkhorn’s
algorithm [39].

There are plenty of questions we wish to explore in this direction. For
example, how do OT-based adaptation rules perform against other OT
algorithms? How can they be improved to become faster? Also, what is
the difference in efficiency between adaptation algorithms and traditional
pathfinding ones, such as Dĳkstra’s [40]?

Besides focusing on technical developments of adaptation equations,
our studies have a second fundamental target: Addressing real-world
applications. We tackle this problem from an orthogonal point of view
compared to most of the literature. Instead of studying natural systems that
adapt to execute their operating functions, we focus on artificial systems
where an external agent designs the networks, and we ask ourselves if the
design task can be enhanced by employing insight taken from adaptation
rules. In other words,

Question 3: Can we leverage adaptation rules for constructing artificial
optimal transportation networks?

The Physarum polycephalum’s natural algorithm has been employed to
study engineering problems such as road and railway design [20, 41–43]
and wireless sensor routing [44]. The core idea of this body of work is
to understand the structural properties of artificial networks by framing
and analyzing biologically plausible adaptation mechanisms that guide the
slime mold’s evolution.

In this thesis, we follow a similar strategy to answer Question 3. In
particular, we first posit the problem we wish to address, then formulate
adaptation rules for solving it and aim to prove their optimality. The
adaptation equations we develop do not necessarily need to be biologi-
cally plausible but rather give constructive insight into how transportation
networks can be built better.

Our primary focus of application lies in urban transportation networks,
such as railway systems, roads, and bike lanes. Within this domain,
we simulate different real-world scenarios, for example, assuming that
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1 Introduction

passengers traveling across the network interact with each other and trigger
congestion, taking entry and exit rates of metro users that change in time,
or making a network manager regulate road tolls that influence optimal
routing. These analyses aim to develop a methodology for simulating
various critical transportation network scenarios, with the ultimate broad
objective of aiding policymakers in designing improved urban services.

We also apply adaptation equations to supervised image classification,
showing how accuracy can be boosted with an ad hoc adaptation algorithm
that uses, at its advantage, samples’ color information.

1.2 Design of networks with adaptation rules
Adaptation rules are powerful mathematical tools to model the evolution of
transportation networks. The idea at their core is that networks evolve in
time and organize their structure to allocate mass traveling along their links
optimally.

Specifically, mass enters and exits network nodes, moving along the
network’s edges. The mass displacement between sources (entry nodes)
and sinks (exit nodes) generates a flux that obeys local conservation laws,
expressing flux conservation at each node, and global conservation laws.
The latter formalize that all mass entering the network must also exit. The
primary modeling assumption is that edges are endowed with capacities
(also referred to as conductivities) that evolve in time to enable efficient
mass transfer; namely, they adapt according to a feedback mechanism where
edges for which allocating more mass is convenient have large capacities,
and conversely, those with less mass have small capacities.

Models using adaptation rules are well-established in the scientific
literature. From the first slime mold-inspired equations [18–20, 45, 46],
these methods have evolved to tackle several mathematical challenges arising
in real-world problems. For example, adaptation rules with stochastic mass
loads are used to model leaf vascular structures and blood vessels [10, 47–
49]. Spatially distributed loads [50], expanding leaf tissues [51], and
external resilience to external damage [10] can also be integrated to achieve
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1 Introduction

accurate modeling of leaves. To simulate the growth of trees’ conduits,
approaches where capacities depend on the distance from plants’ stems
have been developed [13].

Complementing these research efforts, OT-based adaptation rules have
been extensively studied [22, 23, 29–37, 52–57] with applications ranging
from community detection [54], to network extraction from continuous data
[35, 57] and noise-induced transportation topologies [55, 56].

Our theoretical focus is to develop adaptation rules for the following case
studies. First, we want to investigate a setup where multiple types of mass
travel in the same shared infrastructure and collectively contribute to the
transportation cost by congesting the edges. To tackle this problem, we
develop multicommodity adaptation equations that route fluxes of different
mass types (the commodities) by tuning a unique capacity [1–3]. Second,
we develop a method for network adaptation with time-varying time loads.
By delving into this problem, we discover that leveraging mass load’s
periodicity properties permits efficient transportation network design with
low computational effort [4]. Third, we frame a bilevel optimization problem
where adaptation equations that regulate greedy passengers’ routing are
coupled with edge-cost tuning to mitigate traffic. Such a method can
effectively alleviate road congestion [6].

We apply these models to different datasets. Using the multicommodity
adaptation equations, we design the optimal infrastructure for Bordeaux’s
bus and tram multilayer network [1] and for the Paris Métro [3]. Multi-
commodity adaptation equations enable simulations of different congestion
levels for such systems. Additionally, we observe that trams decongest
streets by offering greener alternative routes to passengers who would
otherwise travel on buses. Applying equations with time-dependent loads to
Bordeaux buses shows that optimal routes strongly depend on the evolution
of entry-exit inflow over time [4]. The bilevel optimization-adaptation
equations model the competition between greedy passengers and a network
manager. The first aim is to minimize travel time, and the second is to
reduce traffic. Optimal network topologies resulting from such a competi-
tion trade-off travel time against congestion; hence, they give an effective
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1 Introduction

strategy to guarantee transport efficiency while lowering carbon emissions
on the International European highways [6].

One further application of the multicommodity adaptation equations
deals with supervised image classification [5]. In more detail, we integrate
color information of different samples into the adaptation setup by assuming
that the types of mass to be transported are RGB color distributions of
images. These contribute to a unique cost, with RGB-color differences
that better distinguish between samples with different labels than other
OT-based methods.

1.3 Optimal Transport
Optimal Transport theory endured a long and intricate journey to modern
days. Its original development [58] dates back to 1781, when Gaspard
Monge formalized the problem of moving most efficiently piles of material
from mines to factories. Naturally, its current formulation [28] abstracts
from any practical interpretation, primarily thanks to the work of A.N. Tolstoi
[59] (1930), Frank L. Hitchcock [60] (1941), and Leonid Kantorovich [61]
(1942).

To further lay a sound foundation for what we briefly mentioned, the
goal of OT is to find a transport path (also referred to as a transport plan)
that connects a source and a target distribution with the least effort. More
formally, given two probability distributions lying in a suitable metric
space, we want to find the push forward of one source distribution to a
target distribution to minimize the transportation cost. In this context, the
transportation cost is often defined as the product between a ground cost,
which is the effort needed to move a single unit of mass along a trajectory,
and the mass moving onto this trajectory. If the ground cost is a distance
for the metric space, then the solution of this problem is also a distance,
referred to as 1-Wasserstein distance [28, 62]. However, even when this
theoretical guarantee is not met, the minimum OT cost may still be used as
an interpretable measure of the effort needed to push one distribution into
the other.
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One of the most significant benefits of OT is that its formulation is
well-suited to deal with different mathematical frameworks. Its continuous
formulation is connected to variational problems and partial differential
equations of physics [28, 63], while its discrete version is growing in
popularity thanks to many algorithmic applications [38].

In this thesis, we focus on the latter discrete case. We establish a
connection between OT and adaptation systems as follows. Adaptive
networks’ entry and exit mass inflows are the atomic origin and target
distributions to be transported in OT. These are supported on the network
nodes and move along the network edges. Each edge is associated with a cost,
which is the ground cost entering the transportation cost of OT. Transport
paths correspond precisely to the fluxes specifying the displacement of
mass along edges, and the goal of OT (respectively for adaptation rules)
is to extract transport paths that move source and target distributions
(respectively, entry and exit mass inflows) optimally. The capacities
introduced in adaptation rules serve as critical variables for reinterpreting
the OT problem from a physical perspective and help improve computational
performance.

Thanks to its great flexibility to model all kinds of different problems
and its excellent computational properties, OT is employed across all
fields of science, spanning genomics [64–67], computer vision [68–73], and
stochastic thermodynamics [74], among many others. Notable developments
of OT stem from machine learning and deep learning [38], with efficient
algorithms for the OT problem being the core of such advancements.
In particular, substantial effort is put into Sinkhorn’s algorithm [39], its
improvements [75–79], and its open sourcing [80–82]. Optimal transport
is also at the foundation of landmark deep learning architectures such as
Wasserstein GANs [83–85].

Finally, OT is bridged to adaptation rules thanks to its dynamical system’s
interpretation [22, 23, 29–37]. This framework builds upon the idea that
adaptive networks evolve their shape to minimize their energy expenditures,
hinting that mathematical optimization is the natural setup to describe
such physical systems [9, 24, 27, 49, 86–90]. Therefore, adaptation is
an instrument to achieve optimality of network topologies asymptotically.

9
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The role of OT is to be the tool with which optimality is measured and to
provide a rigorous basis to connect energy minimization with the functional
optimality of networks.
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2 Goals
Content

Section 2.1 — The recipe used to achieve the goals of the thesis.
Section 2.2 — Organization of the contributions into sections with

references to their respective papers.

2.1 Overall aim and contribution
The main goal of the research presented in this thesis is to answer Question
1, Question 2, and Question 3 discussed in Section 1.1. These are:

Question 1: Is it possible to formulate principled adaptation rules suit-
able for a range of tasks, resulting in optimal network designs?

Question 2: How do adaptation rules profit from optimization problems,
and vice versa?

Question 3: Can we leverage adaptation rules for constructing man-made
optimal transportation networks?

We achieve this goal by developing an OT-based framework for construct-
ing adaptation rules that generate provably optimal networks. The recipe
we follow to do so is as follows.

First, we extend traditional adaptation equations to address the task at
hand effectively. For example, when modeling multicommodity problems
where several mass types share a single infrastructure, we must choose an
adequate coupling for commodities. Similarly, when taking time-varying
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loads, we must make assumptions on the mass inflow profiles to make the
problem analytically tractable.

Then, we study the optimality properties of our adaptation rules by
seeking a well-defined Lyapunov functional. This function is the energy
well into which adaptive networks fall. Optimal Transport assists us in this
step by providing an interpretation of the Lyapunov functional, which we
connect to the minimum transportation cost needed for mass to move from
entry nodes to exit ones.

Remarkably, we implement the adaptation equations in efficient numerical
schemes by exploiting several OT and dynamical systems insights. We
release all our algorithms open-source [91–95].

We employ our models to address applications in engineering and machine
learning. The primary objective of our empirical analyses is to simulate
diverse scenarios that may arise in real-world problems. For example, we
address the impact of gridlocks on the functioning of public transportation,
or we use bilevel optimization to develop methods to make car traveling
environmentally sustainable. We conduct such analyses both at a coarse
scale by considering the global efficiency of transport and at a finer level,
all the way down to city neighborhoods. Adaptation rules for supervised
image classification tasks boost accuracy by meaningfully integrating color
information of images.

2.2 Scientific contributions and their
organization

Scientific contributions are discussed in detail in Chapter 3. Here, we
divide them into theoretical developments in Section 3.1 and applications
in Section 3.2. However, it is worth remembering that the approach used to
build our models is largely application-driven, and theory and practice are
strongly intertwined in all the research work we present.

For this reason, in the following content outline, we reference each
theoretical model to its corresponding applications and vice versa. This
should facilitate understanding the connection between these two aspects of
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the thesis. The outline also serves as a TL;DR summarization to navigate
single sections easily.

Theory (Section 3.1)
Standard unicommodity routing (Section 3.1.1)

Main findings Adaptation rules are an efficient mechanism for
network design. They can be carefully developed
to connect the minimum energy spent to move
mass inflows to the OT cost. Here, we provide a
theoretical foundation to understand such systems.

Research papers Bonifaci et al. [22], Facca et al. [29], among others

Multicommodity routing (Section 3.1.2)
Main findings We develop adaptation rules for multicommodity

OT, a method to extract optimal networks when
multiple mass types move in a shared infrastructure.
We prove that asymptotic networks are optimal
by finding a suitable Lyapunov functional. We
formalize several other connections between multi-
commodity adaptation and mathematical optimiza-
tion and find that the interaction of commodities
triggers the formation of loops in optimal networks.
Our algorithm is tested against different competi-
tors: Dĳkstra [40], Sinkhorn [39], and Gradient
Descent (GD).

Applications Paris Métro (Section 3.2.1), Bordeaux’s trams
and buses (Section 3.2.2), Image classification
(Section 3.2.4)

Algorithm McOpt: Multicommodity Optimal Transport [91]
Research papers Lonardi et al. [2, 3]
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Routing with time-dependent loads (Section 3.1.3)
Main findings We study the problem of non-stationary entry and

exit mass inflows by assuming the existence of
two time scales for adaptation. A fast one is for
mass fluxes, and a slow one is for capacities. This
leads to closed-form adaptation rules that allow
us to connect analytical properties of the mass
loads with optimal topologies. Our method offers
a computationally efficient alternative to extract
adaptation-asymptotic topologies.

Application Bordeaux’s trams and buses (Section 3.2.2)
Algorithm N-STARK: Non-stationary Loads Routing on Net-

works [94]
Research paper Lonardi et al. [4]

Bilevel optimization for traffic mitigation (Section 3.1.4)
Main findings We frame the competition between a network man-

ager and greedy passengers in a bilevel optimiza-
tion problem. The first minimizes traffic jams, and
the second reduce transportation costs. We find
closed-form adaptation equations alternating the
update of edge capacities and weights to solve the
problem. The equations employ ODE integrators
and Projected Stochastic GD to return networks
that trade-off transport efficiency against edges’
saturation.

Application International E-road network (Section 3.2.3)
Algorithm BROT: Bilevel Routing on Networks with Optimal

Transport [95]
Research paper Lonardi and De Bacco [6]

Applications (Section 3.2)
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Paris Métro (Section 3.2.1)
Main findings We model multicommodity routing within the

Paris Métro using a well-suited formulation of
the multicommodity adaptation equations. Our
investigation focuses on congested routing and
its impact on the overall network performance.
Additionally, we study passengers’ rerouting in the
event of station failures by selectively eliminating
crucial nodes from the network.

Theory Multicommodity routing (Section 3.1.2)
Research paper Lonardi et al. [3]

Bordeaux’s trams and buses (Section 3.2.2)
Main findings First, we examine the effect of congested transport

on the multilayer network of roads and tram lines
in Bordeaux using the multicommodity adaptation
equations. With these, we quantify the impact of
trams in providing a green and efficient alterna-
tive to city trips. Then, we explore the effect of
synchronization of passengers’ inflows in relation
to the presence of loops in the optimal transport
network.

Theory Multicommodity routing (Section 3.1.2), Routing
with time-dependent loads (Section 3.1.3)

Research papers Lonardi et al. [4], Ibrahim et al. [1]

International E-road network (Section 3.2.3)
Main findings We employ our adaptation rules for bilevel opti-

mization to simulate the routing of cars on the
International E-road network. We assume a net-
work manager assigns road tolls to mitigate grid-
locks, whereas greedy passengers move along the
shortest paths. Trading off transport costs against
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traffic mitigation effectively alleviates congestion
while still outputting convenient origin-destination
routes. If the network manager assigns road tolls
without periodically accounting for passengers’
rerouting, traffic congestion increases, giving an
effect opposite to what is intended.

Theory Bilevel optimization for traffic mitigation (Sec-
tion 3.1.4)

Research paper Lonardi and De Bacco [6]

Image classification (Section 3.2.4)
Main findings We use multicommodity adaptation equations for

supervised image classification. We strategically
design the transport network by employing insights
from computer vision [68, 69] and unbalanced OT
[96, 97] to obtain fast performances and robust
results. By taking the RGB color distributions as
the mass types to be transported and using the OT
cost as a proxy for image similarity, we get higher
accuracy than image classification carried out by
competitor algorithms.

Theory Multicommodity routing (Section 3.1.2)
Research paper Lonardi et al. [5]
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3 Results and discussion
Content

Section 3.1 — Refer to Section 2.2 (Theory).
Section 3.2 — Refer to Section 2.2 (Applications).

3.1 Development of the adaptation rules
In this section, we develop OT-based adaptation rules for different network
designing tasks and study their analytical properties. Our methods are built
upon complex networks, which we briefly formalize to provide a sufficient
mathematical framework.

A network [98] G = (V,E) is a tuple of nodes v ∈ V and edges
e = (u, v) ∈ E, which join pairs of nodes. Connections of nodes and
edges can be stored in the signed incidence matrix of the network, whose
elements are Bve = ±1 if v is the head or the tail of e, and Bve = 0 when
it is none of the two. We assume that edges have positive weights we > 0.
Such weights potentially hold different domain-dependent interpretations,
for example, the Euclidean length between node coordinates or the amount
of money to pay to travel on the road. Additionally, we define the network
x-Laplacian as the matrix with elements Luv(x) =

∑
e BueBvexe for any

xe ≥ 0.
Networks often are stacked into multilayer structures [99]. A multilayer

network is made of L layers where nodes lie. Edges connecting nodes
within the same layer a = 1, . . . , L are called intra-layer edges, whereas
those between any layers a ̸= b are called inter-layer edges.
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3.1.1 Standard unicommodity routing
We present OT-based adaptation rules for unicommodity routing similar to
those introduced in the literature [22, 23, 29, 30]. These are equations that,
at convergence, output the shortest path fluxes between entry and exit nodes.
Initially, we describe their functioning and then formalize their connection
with OT. To distinguish this first model from the multicommodity one in
Section 3.1.2, we refer to it as unicommodity routing. Additionally, since
multicommodity routing is a generalization of the unicommodity one, it is
often sufficient to restrict proofs developed for the former setup to the latter.
For this reason, we often refer to literature on multicommodity routing
[2, 5, 22] when establishing connections between unicommodity adaptation
rules and its corresponding optimization framework.

Adaptation rules aim to control a network’s time evolution to optimally
allocate the entry and exit mass flowing through its nodes. We represent
mass using two non-negative arrays gv and hv with identical total mass∑

v gv =
∑

v hv. The first array is the mass distribution inflowing from
nodes, and the second is the one flowing out.

Our primary modeling assumption is that edges are endowed with non-
negative capacitiesµe ≥ 0. These variables admit a straightforward physical
interpretation: They can be thought of as the physical space allocated on
edges to accommodate mass fluxes. For example, they can be the width of
roads where passengers travel or the size of tubular veins where nutrients
are transported in plants and the human body.

Fluxes on edges are denoted withFe and obey Kirchhoff’s law, formalizing
the local conservation of mass at every node. Namely, the difference in
entering and exiting flux at each node v must equal its net inflow of mass
Sv = gv − hv . In formula,

∑

e

BveFe = Sv ∀v ∈ V . (3.1)

Typically, the number of edges is larger than the number of nodes; hence,
Eq. (3.1) is undetermined. To make the fluxes well-defined, we assume that
they are related to the difference of a scalar pressure potential pv by the
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following relation, often referred to as Hagen-Poiseuille equation in fluid
dynamics [100],

Fe =
µe

we
(pu − pv) ∀e = (u, v) ∈ E . (3.2)

Substituting Eq. (3.2) into Eq. (3.1) allows us to find the potential

pv =
∑

u

L(µ/w)†vuSu ∀v ∈ V , (3.3)

where † denotes the Moore-Penrose inverse of the (µ/w)-Laplacian. The
system in Eq. (3.3) has a solution since

∑
v Sv = 0 [101], which is

guaranteed by construction from global conservation of mass, specifically,
the entry and exit arrays gv and hv sum to the same value. Importantly,
through Eq. (3.3), the potential, hence the potential-based fluxes of Eq. (3.1),
become solely a function of the capacities, which are the only independent
variable of our model.

With this construction, we can build the unicommodiy OT adaptation
equations. These establish a feedback mechanism between fluxes and
capacities: The more the flux to be accommodated on an edge, the larger
its capacity becomes; conversely, edges where there is no flux shrink. The
unicommodity adaptation rules are

dµe

dt
=

|Fe|2
µe

− µe ∀e ∈ E . (3.4)

By coupling the closed-form potential in Eq. (3.3) with Eq. (3.4), we
can solve the adaptation equations and find asymptotic capacities µ⋆

e =
limt→+∞ µe(t). These are useful to extract asymptotic fluxesF ⋆

e = Fe(µ
⋆),

representing mass distribution over the network edges at convergence.
The critical properties of this model are the following. The adaptation

rules in Eq. (3.4) asymptotically converge to the minimum of a convex
Lyapunov functional. The functional can be interpreted in physical terms.
Indeed, it is the sum of the energy dissipated by the mass moving through
the edges and the cost of building the network infrastructure. Furthermore,
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the functional’s minimum is the 1-Wasserstein distance between entry and
exit mass inflows, and the asymptotic flux converging to such a minimum is
exactly the transport path that solves the OT problem [2, 5, 22, 23, 31, 34].

The Lyapunov functional reads [31]

L(µ) = 1

2

∑

v

pvSv +
1

2

∑

e

weµe . (3.5)

Its first addend is equivalent to J = (1/2)
∑

e weF
2
e /µe, which is, anal-

ogously to Joule’s first law in electromagnetism where the fluxes are the
currents moving in a resistor network, the dissipated energy. The energy
J is also the objective function in unicommodity optimization setups
to design optimal transportation networks [9, 87]. The second addend
W =

∑
e weµe corresponds to the cost needed to design the infrastructure.

If we were to interpret the weights as physical lengths and the capacities as
widths of edges, such a term in Eq. (3.5) would be the total volume of the
network.

To precisely map the adaptation rules to an optimization setup, we show
that stationary solutions of Eq. (3.4) are minimizers of the constrained
energy minimization problem

min
µ,F

{
J =

1

2

∑

e

we

µe
F 2
e

}
(3.6)

s.t.
∑

e

weµe = K > 0 (3.7)

∑

e

BveFe = Sv ∀v ∈ V (3.8)

in that optimal solutions of both obey the relation µe ∼ |Fe|. Here, K > 0
is an arbitrary constant.

By restricting the search space of Eq. (3.6) with this scaling and oppor-
tunely adding Lagrange multipliers for the constraints in Eqs. (3.7)-(3.8),
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we get that solving the auxiliary constrained energy minimization problem
is equivalent to seeking solutions of the convex problem [9]

min
F

{
C =

∑

e

we|Fe|
}

(3.9)

s.t.
∑

e

BveFe = Sv ∀v ∈ V (3.10)

with fluxes that scale linearly with capacities.
Importantly, the connection with OT can be completed using Eqs. (3.9)-

(3.10). In detail, we formulate the OT minimization problem in its so-called
primal Kantorovich formulation. This is,

min
π∈Π(g,h)

∑

uv

wuvπuv , (3.11)

where Π(g, h) is the set of feasible transport paths π, expressing the
probability of moving mass from u to v while satisfying conservation of
mass

∑
v πuv = gu and

∑
u πuv = hv . We show the equivalence between

Eq. (3.11) and Eqs. (3.9)-(3.10) by setting wuv = we for each e = (u, v)
and we = +∞ if u and v are disconnected. This way, we prove that the
objective function C in Eq. (3.9) and the OT cost in Eq. (3.11) are equal, as
well as the search spaces yielded by Π(g, h) and by Kirchhoff’s law.

In summary, by solving the adaptation equations in Eq. (3.4) and extracting
their asymptotic fluxes, we find minimizers of C for the optimization
problem in Eqs. (3.9)-(3.10). Such minimizers are exactly the OT paths
solving the OT minimization problem in Eq. (3.11). Recall that if w satisfies
the properties of a distance, then the minimum OT cost C⋆ = C(F ⋆) is the
1-Wassertein distance between entry and exit mass inflows [28, 62].

The connection between optimization and adaptation at the core of the
thesis is depicted schematically in Fig. 3.1.
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A
daptation

Adaptation
t = 0 t = + ∞

F

Source
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(b)(a)

Figure 3.1: Schematic depiction of adaptation equations for unicommodity
(greedy) routing. (a) The convex cost C(F ) is minimized at convergence of
Eq. (3.4). The adaptation rules return the stationary capacities µ⋆ with which we
can compute F ⋆, hence, the optimal cost C⋆ = C(F ⋆) (in orange). (b) Example
network where mass enters one source node and exits three sinks. Capacities and
their corresponding fluxes (in green) adapt in time. At convergence, the optimal
transport network is a tree [9, 87, 89].

3.1.2 Multicommodity routing
Multicommodity routing [102] deals with the problem of simulating optimal
transport paths forM distinguishable types of mass moving through a unique
network. Such models are necessary for a variety of applied tasks. For
example, to obtain realistic paths of passengers using public transport
[1, 3, 34, 52], or to simulate data packets’ routing in communication
networks [103].

To address these problems, practitioners can rely on a variety of methods,
from greedy heuristics [102] to belief propagation [103–108]. However,
these algorithms often lead to suboptimal results for dense networks and
suffer from scalability issues. Here, we present multicommodity adaptation
rules developed in Lonardi et al. [2, 3], providing an efficient and optimal
alternative to address multicommodity routing.

First, we illustrate the model in relation to its unicommodity counterpart
of Section 3.1.1, mainly focusing on the critical modeling assumptions
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and their central differences. Then, we discuss the connection between
multicommodity congested transport (which is introduced through the
adaptation equations) and the generation of loops in optimal transportation
networks. Lastly, we perform an analytical and computational comparison
between OT-based adaptation rules and other algorithms.

We model commodities i = 1, . . . ,M by introducing indistinguishable
mass types stored in entry and exit distributions giv and hi

v , respectively. The
M commodities generate as many fluxes, F i

e , obeying Kirchhoff’s law in
Eq. (3.1), but where conservation of mass is enforced between each i-th flux
and each mass matrix entry Si = giv − hi

v . Similarly to the unicommodity
case, to make the fluxes well-defined, we introduce a scalar potential on
nodes, with the difference that now the potential is commodity-dependent,
namely, it is of the form piv .

We want to model the scenario where M commodities travel in one
unique network infrastructure. Therefore, our first important modeling
assumption is that capacities are commodity-independent. This is enforced
by setting

µe = µi
e ∀e ∈ E, ∀i = 1, . . . ,M . (3.12)

With Eq. (3.12), we impose that no mass moving in the network is
prioritized; an example of such a scenario is a data routing network where
users have access to equal bandwidth. The Hagen-Poiseuille law becomes
F i
e = µe(p

i
u − piv)/we for all edges e = (u, v) and commodity indexes

i = 1, . . . ,M .
Our second crucial modeling choice is establishing the coupling between

commodities in the adaptation rules, i.e., the mechanism determining the
optimal network’s topology. We define multicommodity adaptation rules as

dµe

dt
=

fe(F )

µγ
e

− µe ∀e ∈ E (3.13)

fe(F ) =
∑

i

(F i
e)

2 ∀e ∈ E , (3.14)
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thus taking the fluxes’ squared 2-norm over the commodities. Other choices
can be made, as taking the 1-norm of fluxes [3], the whole spectrum
of p-norms, or a sigmoid function as done for biological modeling [45].
However, as discussed below, the 2-norm allows us to establish desirable
theoretical connections between multicommodity adaptation rules and a
suitable optimization framework.

Importantly, in Eq. (3.13), we also introduce a critical exponent 0 <
γ < 1. This allows us to simulate different levels of traffic congestion
by concentrating fluxes over fewer edges when γ < 1 and enforcing their
distribution over the network when γ > 1. The case γ = 1 gives shortest
path-like networks. Restricting Eqs. (3.13)-(3.14) to the unicommodity
problem where M = 1 and γ = 1 returns precisely the shortest path fluxes
connecting exit and entry mass inflows.

We find a Lyapunov functional for the multicommodity adaptions rules,
which can be interpreted as the total transportation cost, the sum of the
energy dissipated by the multicommodity fluxes and the cost used to build
the network infrastructure. This reads

LM
γ (µ) =

1

2

∑

iv

pivS
i
v +

1

2γ

∑

e

weµ
γ
e . (3.15)

Conversely to Eq. (3.5), the functional in Eq. (3.15) is not strictly convex.
The presence of multiple commodities combined with the critical exponent
γ makes the cost profiles highly non-trivial. In particular, if γ < 1, the Lγ

is strictly convex, and its unique global minimizer is the optimal transport
network. If γ > 1, the infrastructure cost WM

γ =
∑

e weµ
γ
e/2γ exhibits

multiple local minima, each corresponding to a different locally optimal
network topology.

Again, we stress that multicommodity adaptation rules can be modified
by setting arbitrary coupling f between fluxes. However, the specific choice
of the 2-norm in Eq. (3.14) allows us to find a well-defined Lyapunov
functional and thus to establish a formal connection with OT.
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The choice of this coupling lets us formulate a constrained multicom-
modity energy minimization problem that generalizes Eqs. (3.6)-(3.7). This
is

min
µ,F

{
JM =

1

2

∑

ei

we

µe
(F i

e)
2

}
(3.16)

s.t.
∑

e

weµ
γ
e = Kγ > 0 (3.17)

∑

e

BveF
i
e = Si

v ∀v ∈ V,∀i = 1, . . . ,M . (3.18)

Minimizers of Eqs. (3.16)-(3.18) and stationary solutions of Eqs. (3.13)-
(3.14) satisfy the scaling µe =

[∑
i(F

i
e)

2
]1/(1+γ), which leads to the

definition of a multicommodity OT cost finalizing the connection between
adaptation and OT for multicommodity routing. In particular, we derive
the minimization problem

min
F

{
CM

γ =
∑

e

wefe(F )Γ(γ)

}
(3.19)

s.t.
∑

e

BveFe = Sv ∀v ∈ V , (3.20)

where fe(F ) =
∑

i(F
i
e)

2 as in Eq. (3.14) and Γ(γ) = γ/(1 + γ). Solving
the adaptation rules in Eqs. (3.13)-(3.14) and the optimization problem in
Eqs. (3.19)-(3.20) is equivalent, meaning that the two setups, given identical
inputs, output the same transportation networks.

Noticeably, at optimality, stationary solutions F ⋆ of the multicommodity
dynamics lie in a Pareto front that can be expressed in closed-form as

JM (F ⋆)

WM
γ (F ⋆)

= γ . (3.21)
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(a)
t → + ∞ t → + ∞
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Figure 3.2: Schematic depiction of adaptation equations for multicommodity
routing. (a) The convexity of the transportation cost CM

γ (F ) depends on the
critical exponent γ. The cost is strictly convex for γ ≥ 1, whereas if γ < 1, then
the minimization landscape becomes rugged. This causes adaptation rules to fall in
any of the local minima of the transportation cost (in orange). (b) Example network
where there are different types of mass (commodities) being transported. Here,
nodes can be sources for one type of mass, e.g., the green one, but sinks for the pink
one, and vice versa. The colored fluxes F i (green) and F j (pink) are coupled by a
commodity-independent capacity µ. The critical exponent γ concentrates fluxes
together if γ < 1. Conversely, fluxes are more distributed if γ > 1.

This relation arises in various applied problems, ranging from urban trans-
portation [3] to biology [13]. Exploring its connection with the topologies
of transport networks allows us to interpret the driving evolutionary vectors
traded off by the multicommodity equations to design optimal infrastruc-
tures. Precisely, we measure the number of edges unused during transport
and the Gini coefficient [109] of the multicommodity fluxes, which mea-
sures traffic congestion over the edges. This study shows dense transport
networks (high γ) are energy-expensive but robust against edge failure. On
the contrary, sparse networks (low γ) are energy-efficient but not resistant
to failures.

We schematically outline the connection between multicommodity adap-
tation rules and their optimization setup in Fig. 3.2.
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One important consequence of having multiple commodities moving
in a unique infrastructure is that they trigger the generation of loops in
non-trivial congestion regimes. In particular, it is established that for γ ≤ 1,
the unicommodity adaptation rules in Eq. (3.4) converge to trees [9, 87, 89].
However, if, for example, mass loads change location stochastically, loops
can be observed even at γ ≤ 1 [10, 49, 50].

Similarly, the multicommodity adaptation rules output networks with
loops when optimal unicommodity transport networks are trees. However,
the mechanism prompting the formation of such loops is different than
those classically explored in the literature. In fact, the multicommodity
problem is entirely deterministic, and loops emerge only because multiple
mass types simultaneously occupy the same edges, rather than being a
product of random mass fluctuations. The absence of stochasticity in the
problem setup allows us to extend classical arguments [89] to analytically
demonstrate that loops may be optimal for γ ≤ 1. We also validate our
argument with several experiments.

Concerning computational aspects of our model, we numerically inte-
grate the multicommodity adaptation equations using the forward Euler
method. This is coupled with a sparse direct solver for the M linear system
in Kirchhoff’s law, the Unsymmetric MultiFrontal sparse LU Factorization
(UMFPACK) method [110]. The forward Euler method exhibits remark-
able convergence properties, this is because Eqs. (3.13)-(3.14) yield a
mirror-descent dynamics for Lγ in Eq. (3.15) [34], i.e., they automatically
preserve positiveness of the capacities, enabling the usage of large numerical
integration steps.

The solution of adaptation rules has been made faster in the unicommodity
case and on sparse networks by using Multigrid solvers of Kirchhoff’s law
[111], and the inexact Newton-Raphson methods for updating the capacities
[33].

We compare our solver against GD with momentum for the fluxes and
without the capacities in the problem formulation and Dĳkstra’s algorithm.
The multicommodity adaptation dynamics outperforms competitors. Here,
one should note that the multicommodity OT cost in Eq. (3.19) is non-linear
with respect to the commodities. Therefore, multicommodity optimal
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transport networks are not equivalent to those returned by Dĳkstra, where
M independent shortest paths overlap. Our analysis highlights the difference
between multicommodity networks and Dĳktra’s network.

In the literature, Monte Carlo algorithms are also employed [87]. However,
these require restricting the search space of optimal networks to trees to
become feasible. Such an assumption cannot be made in multicommodity
setups, where we show that loops can arise optimally for any congestion
regime.

3.1.3 Routing with time-dependent loads
All the formulations discussed so far assumed a constant set of mass loads
on nodes entering and exiting the system. This is fixed as an input to the
models. For instance, in urban transportation one can use average travel
demands at stations at any given day.

This section aims to present the model of Lonardi et al. [4], which deals
with the problem of finding optimal transport networks when entry and exit
mass loads on nodes change in time. This scenario arises in many case
studies. For example, blood vessels adapt their structures to accommodate
time-varying metabolic demands [47, 112–114], or passengers in urban
transportation travel in periodical irregular intervals [115].

Despite numerous experimental evidence, most of the adaptation models
presented in the literature only consider stationary loads [22, 23, 29–
32, 50, 51]. However, remarkable changes in optimal network topologies
occurs when, for example, studying a network’s evolution with respect to the
ensemble average of its position changing loads [10, 47–49]. Remarkably,
this yields a classically unobserved (in setups with stationary loads) phase
transition for the loops present in the network, which now emerge to provide
routes to accommodate mass fluctuations. As discussed in Section 3.1.2,
loops also show up in non-trivial regimes in multicommodity routing
because of the interaction of multiple mass types over the network edges.
To complement these approaches, we develop adaptation rules for non-
stationary mass distributions.
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Figure 3.3: Model construction for adaptation equations with time-dependent
loads. (a) Loads change rapidly in time, and their values are stored in S(t). (b) We
assume the existence of two time scales. The first is a fast scale t that dictates the
evolution in time of mass and fluxes. We also assume that loads are periodic in the
short period T . The second is a slow characteristic time τ that regulates adaptation,
the evolution of capacities. The integration window ∆ is large in t but small in τ .

Our method is based on a crucial underlying assumption: Two different
time scales, a fast (t) and a slow (τ ) one. Mass loads, and therefore
their fluxes, change fast. On the other hand, capacities adapt slowly to
the flux changes. One could interpret this as the case where passengers
move in a transportation network with daily or weekly rates, but changes
in the infrastructure happen at a much coarser scale, e.g., months. We
schematically draw the model setup in Fig. 3.3.

By making this modeling assumption, we derive closed-form adaptation
rules and analytical conditions on the mass matrix under which optimal
topologies are trees or contrarily, may have loops. We propose a candidate
Lyapunov functional for the adaptation rules, prove its optimality for a
particular class (formalized later) of input mass loads, and numerically show
its monotonically decreasing profile over time under looser assumptions.
Although not evidently, our model also connects with long-run solutions
of other adaptation rules where capacities change fast. Therefore, it
provides a computationally cheap alternative to finding optimal networks that
would otherwise be extracted by numerically integrating a time-dependent
dynamical system at long times.
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We consider the case of unicommodity routing, that is, when only one type
of mass moves across the network, as in Section 3.1.1. However, now we
take the mass matrix to be time-dependent, with its entries being Sv(t) > 0
for entry inflows and Sv(t) < 0 for exit ones. Global mass conservation
is always satisfied, formally

∑
v Sv(t) = 0 for all t ≥ 0. Similarly, flux

conservation in Kirchhoff’s law becomes
∑

e BveFe(t) = Sv(t) for all
t ≥ 0. These relations put into equations the dependence on fast times of
fluxes.

We develop closed-form adaptation equations for slow time-varying
capacities by starting from the fast time-varying dynamical system,

dµe(t)

dt
=

Fe(t)
2

µe(t)γ
− µe(t) ∀e ∈ E , (3.22)

where we write explicitly all time dependencies. As in Eq. (3.13), we
introduce a critical exponent γ to control fluxes concentration over the
edges. Specifically, γ < 1 encourages mass concentration over fewer links,
γ > 1 its distribution, and γ = 1 gives shortest path-like networks.

To model the evolution of slow capacities, we first formalize the relation
between the time scales as τ = Kt, with K ≫ 1. Secondly, we assume that
in a time window ∆, small for τ but large for t, slow evolving capacities
obey

µ̂e(τ + t′) ≈ µ̂e(τ) ∀t′ ∈ [0,∆),∀e ∈ E,∀τ ⩾ 0 . (3.23)

We couple these two hypotheses with a third one, namely, slow capacities
evolve with the time integral over the window ∆ of the product of the mass
loads. Formally, we define the slow dynamics

dµ̂e(τ)

dτ
= Φ̂e(µ̂(τ), τ) ∀e ∈ E

(3.24)
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Φ̂e(µ̂, τ) =
µ̂2−γ
e

w2
e

∑

uv

Aeu(µ̂)Aev(µ̂)
1

∆

∫ t+∆

τ

Su(t)Sv(t) dt− µ̂e ∀e ∈ E ,

(3.25)

where we also introduced the auxiliary matrix Aev(µ̂) =
∑

u BeuL(µ̂)
†
vu

for all e ∈ E, v ∈ V . It can be proved that the forcing term defined
in Eq. (3.25) is the natural approximation of the dynamics for the fast
time-varying capacities in Eq. (3.22) under the three stated assumptions for
the slow capacities. In principle, one could use a numerical integrator to
solve the time integral in Eq. (3.25), and therefore solve Eq. (3.24) until
convergence. However, we wish to carry out analytical calculations further,
and for this task, we restrict the class of functions S(t).

In particular, we assume the mass matrix to be changing periodically fast
in time, which in formulas reads

Sv(t+ T ) = Sv(t), for T/∆ ≪ 1 ∀v ∈ V,∀t ⩾ 0 . (3.26)

By further decomposing the mass loads with their Fourier decomposition
Sv(t) =

∑
nv∈Z c

nv
v exp(iωnvt), with ω = 2π/T , and then substituting

Eq. (3.26) into Eq. (3.25), we obtain the central result of our derivations.
This is

1

∆

∫ τ+∆

τ

Su(t)Sv(t) dt = Cuv +O(∆) ∀u, v ∈ V (3.27)

Cuv =
∑

nv∈Z
(cnu

u )∗cnv
v ∀u, v ∈ V , (3.28)

with O(∆) containing small terms ε decaying as lim∆→∞ ε/∆ = 0. The
asterisk indicates complex conjugation.

Using Eqs. (3.27)-(3.28), we define a second slow dynamical system,
which dictates the slow time evolution of a second set of capacities as

dµ̄e(τ)

dτ
= Φ̄e(µ̄) ∀e ∈ E (3.29)
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Φ̄e(µ̄) =
µ̄2−γ
e

w2
e

∑

uv

Aeu(µ̄)Aev(µ̄)Cuv − µ̄e ∀e ∈ E . (3.30)

Contrarily to Eqs. (3.24)-(3.25), the slow dynamical system in Eqs. (3.29)-
(3.30) does not explicitly depend on τ . Thus, its asymptotic solutions can be
efficiently extracted by numerically integrating its right-hand side without
needing to calculate the integral over ∆ of the product at each time step
between the mass load components. We also note that the adaptation rules
in Eqs. (3.29)-(3.30) are not equivalent to the fast ones of Eq. (3.22), with
the time loads that are integrated over a T . This latter case would imply that
Cuv = S̃uS̃v , where S̃v are mass load entries integrated on a period. This
is a particular case of the more general expression introduced in Eq. (3.28).

We characterize solutions of the fast dynamics Eq. (3.22) with respect to
those of Eqs. (3.29)-(3.30) using semi-analytical arguments.

We experimentally observe that fast capacities µe(t) undergo two distinct
phases when evolving in time. First, there is a transient interval where
they largely change their average value; then, they stabilize around a steady
value and oscillate. We label with tSTAB the transition time between these
two regimes, and upon experimental inspection of both the fast and slow
long-run capacities, we propose for t > tSTAB the ansatz

µe(t) = ae + be(t) ∀e ∈ E (3.31)
ae = µ̄⋆

e := lim
τ→+∞

µ̄e(τ) ∀e ∈ E (3.32)

be(t) = be(t+ T ) ∀e ∈ E . (3.33)

The fast time-varying fluxes also oscillate in times after stabilizing, i.e.,
for t > tSTAB. We use this evidence to deduce that capacities’ oscillatory
modes are resonant with the squared fluxes precisely

be(t) =
∑

n,m∈N
bme bne exp[iω(n+m)t] ∀e ∈ E , (3.34)

where N = {nv} is the set of Fourier modes of the mass inflows. These
findings also validate Eq. (3.23) since they suggest that we may neglect
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fast oscillatory terms when studying the average properties of asymptotic
solutions of Eq. (3.22).

To connect stationary solutions of adaptation equations with optimality
conditions, we adopt the same recipe we have followed in the rest of the
thesis. This is, we seek a candidate Lyapunov functional for the adaptation
rules at hand and, analytically and numerically, show its well-posedness.
Here, we propose

L̄γ(µ̄) =
1

2

∑

e

we

µ̄e
F̄ 2
e (µ̄) +

1

2γ

∑

e

weµ̄
γ
e , (3.35)

where the fluxes F̄e(µ̄) =
(
µ̄2
e/w

2
e

)∑
uv Aeu(µ̄)Aev(µ̄)Cuv have been

introduced.
In our experiments, we experimentally demonstrate that for a wide variety

of input mass loads, and therefore matrixes C, the functional in Eq. (3.35) is
monotonically decreasing with respect to the dynamics in Eqs. (3.29)-(3.30).
Furthermore, if rank(C) = 1, the functional has a provably negative (zero
at convergence) Lie derivative along solutions of Eqs. (3.29)-(3.30). As
discussed below, such a rank condition on C is pivotal in determining the
emergence of loops in stationary network topologies. A particular case
where C has unitary rank is when the input loads are stationary. Here,
L̄γ(µ̄) becomes LM=1

γ (µ), i.e., the functional of Eq. (3.15) evaluated for
M = 1.

A key observation is that the functional Eq. (3.35) converges to the
long-run running average of

⟨L1
γ(µ)⟩T =

1

T

∫ t+T

t

(
1

2

∑

v

pv(µ)Sv(t
′) +

1

2γ

∑

e

weµ
γ
e

)
dt′ .

(3.36)

Such a consideration is essential since it allows us to link, under an
optimization perspective, networks returned by the dynamics in Eqs. (3.29)-
(3.30) to optimal long-run networks that are outputted on average by
Eq. (3.22). This connection highlights that our newly derived adaptation

33



3 Results and discussion

equations are a computationally convenient scheme for finding optimal
networks that would otherwise require solving fast dynamic systems for
a long time. Numerically integrating Eqs. (3.29)-(3.30) requires the
calculation of C only once, at the beginning of the dynamics, which then
has a constant right-hand side.

The last part of the theoretical model development is devoted to answering
whether and how the profile of Sv(t) influences the emergence of loops in
optimal transport networks. We analytically prove that the optimal transport
network is a tree if rank(C) = 1 and γ ≤ 1. This condition is satisfied, for
example, when the mass inflows are stationary, but it also holds in many
other less trivial case studies.

We examine the case study where loads are sums of decoupled harmonic
oscillators, namely

Sv(t) =

Nv∑

i=1

Ai
v cos(ω ni

v t+ ϕi
v) + dv ∀v ∈ V , (3.37)

with ω = 2π/T ; ni
v, Nv ∈ N; Ai

v, dv ∈ R. By construction, Eq. (3.37)
returns input loads that are periodic in T ; hence, we equate them with their
Fourier series expansion Sv(t) = a0v/2 +

∑
nv≥1 a

nv
v cos(ωnvt+ φnv

v ).
Putting these two expressions together gives the important relation

cnv
v =

Ai
v

2
exp(iϕi

v) δnvni
v

∀v ∈ V,∀nv ∈ N , (3.38)

where we conventionally set ϕ0
v = 0 for all v ∈ V and where only a finite

set of Fourier coefficients is non-zero since the sum in Eq. (3.37) is finite.
Our main result is translating the condition rank(C) = 1 to a relation

written with the harmonic oscillators’ amplitudes, modes, and phases.
Starting from Eq. (3.37), we find the that for γ ≤ 1, stationary solutions of
Eqs. (3.29)-(3.30) are trees if

1. ϕi
v = ϕi

u + kπ for k ∈ Z and for all u, v ∈ V , i.e., sources and sinks
are in phase;

34



3 Results and discussion

2. Ai
vδnvni

v
= λ(−1)kAi

uδnuni
u

for λ ̸= 0 and all u, v ∈ V (yielding
Nv = N ), i.e., amplitudes are non-zero for the same modes.

Numerically, we also show that the rank of C can be employed as
a proxy for the total number of loops in the optimal transport network
and, therefore, quantify its robustness. In fact, by examining a series of
semisynthetic experimental setups, we see that the dimension of the cycle
basis monotonically increases with the rank, where a basis for cycles is a
minimal collection of cycles that allows expressing any other cycle as an
“exclusive or” of the edges.

3.1.4 Bilevel optimization for traffic mitigation
The models introduced above assume one main objective in designing the
transportation network. This takes into account the cost to operate the
network and that to build it, with their relative contribution tuned by a
parameter. From a network manager’s point of view this is a meaningful
trade-off that allows to select globally optimal networks. In practice though,
individual passengers may not follow the ideal scenario represented by
optimal flows at convergence. Rather, they may move greedily from multiple
entry nodes to multiple exit ones, as in the shortest path-like unicommodity
routing model of Section 3.1.1. This routing mechanism potentially triggers
traffic congestion since the total flux on some edges may be larger than a
prefixed threshold. Therefore, how do we model the competition between
greedy mass routing and an agent that tunes edge weights to reroute fluxes
to mitigate congestion? Additionally, what effect does this competition
have on optimal network topologies?

An answer is provided by bilevel optimization, as proposed in Lonardi
and De Bacco [6], the work we discuss. To hone the intuition on the model
setup, one could think of it as the competition between greedy passengers
wanting to reach their destinations on a highway while lowering expenses
(a behavior that is experimentally observed and referred to as Wardrop’s
first principle [116–119]), and a road manager that sets road tolls to avoid
traffic.

35



3 Results and discussion

These types of problems have been tackled in the literature with a
variety of methods, including message passing [103, 120–122], Markov
chain Monte Carlo [123], cellar automata [124, 125], and heuristic routing
strategies [126].

Our approach is to develop adaptation rules for extracting fluxes that
balance transport efficiency with link congestion. In detail, we alternate the
unicommodity adaptation equations with a Projected Stochastic Gradient
Descent (PSGD) scheme to update the weights. Remarkably, we can
derive closed-form gradients for the PSGD by making physics-inspired
assumptions. We study the networks’ profiles at convergence and examine
how they relate to global network metrics, such as the transportation and
congestion costs or the Gini coefficient of fluxes over the edges. We also
empirically observe that the uncoordinated action of the agent (network
manager) and the greedy routing of mass (passengers) increases the Price
of Anarchy [127], measured as the total travel time needed to move from
every entry node to every destination.

We frame the optimization problem for greedy routing using its formula-
tion in Eqs. (3.9)-(3.10). However, in the following discussion, we introduce
a slight change of notation that does not change the underlying model but
can aid in understanding the mathematical framework when considering
the case study of passenger routing in a transportation network. In detail,
we introduce Origin-Destination (OD) indexes r = 1, . . . , R to specify
different mass inflows that travel each from their origin to their destination
greedily. It is essential to distinguish fluxes F r

e , which represent the dis-
placement of mass of type r and are independent for r′ ̸= r, and fluxes
F i
e of Section 3.1.2. The latter are components of multicommodity fluxes

that jointly minimize a unique objective, as in Eq. (3.19). This distinction
highlights a crucial conceptual difference between commodity indexes and
OD ones. Commodity indexes are more general than the second, being, in
principle, commodities not only represent the entry and exit nodes of mass
but also any relevant information about the problem at hand. For example,
commodities can be wavelengths in optical communication networks [103]
or RGB color channels of images [5].
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Thus, we seek for fluxes minimizing the convex cost C =
∑

e,r we|F r
e |,

while satisfying Kirchhoff’s law,
∑

e BveF
r
e = Sr

v for all r = 1, . . . , R.
The cost C is convex; its solution is the overlap of the R shortest path
between all OD pairs.

The crucial difference with all models considered in the rest of the thesis is
that the greedy routing task is only the lower-level problem in a larger bilevel
optimization setup, where the agent’s action on the weights is formalized in
the upper-level problem. We assume that fluxes trigger congestion if larger
than a critical value, i.e.,

∑
r |F r

e | ≥ θ. Hence, we conveniently introduce
the variable ∆e =

∑
r |F r

e | − θ and quantify congestion by defining the
minimization problem

min
w≥ε

{
Ω =

1

2

∑

e

∆2
eH(∆e)

}
, (3.39)

where H is the Heaviside step function, and ε > 0 is a small threshold that
guarantees the network’s Laplacian well-posedness. The multiple solutions
of Eq. (3.39) are edge weights that minimize the quadratic loss Ω, thus
lowering congestion. Other congestion costs are studied in the literature,
for example, the Hinge loss [120, 128].

The upper and lower-level problems are put together into a unique bilevel
minimization problem, reading

min
w≥ε

Ω(w; µ̃) (3.40)

s.t. µ̃ = argmin
µ≥0

C(µ;w) , (3.41)

where we made explicit all the problem’s variables (before the semicolon)
and parameters (after the semicolon), and with the equality in Eq. (3.41)
coming from the convexity of C.

With Eqs. (3.40)-(3.41), we prescribe the optimization task we introduced
in words and wish to model. This is, Eq. (3.41) is optimized by µ̃e, linked
to its respective greedy fluxes. The capacities µ̃e implicitly constrain the
upper-level problem in Eq. (3.40), where edge weights are tuned to minimize
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Upper-level problem Lower-level problem
Bilevel optimization

Figure 3.4: Sketch of the bilevel optimization problem. The optimal solutions
of a bilevel optimization simultaneously minimize the upper- and lower-level
optimization problems. For the specific case of traffic mitigation, the optimal
capacities µ⋆ (dark blue) are minimizers of the transport cost C and return the
shortest path fluxes. These enter as constraints in Ω, which is minimized by w⋆

(orange). In turn, the weights parametrize the profile of C. Given the rugged
landscape of Ω, we update the weights stochastically to converge to different local
minima of Ω (red), which are associated with their optimal capacity (light blue).

congestion caused by the fluxes. The edge weights re-enter the lower-level
problem of Eq. (3.41) as a constraint. Solutions of this joint minimization
process are optimal minimizers of Eqs. (3.40)-(3.41). We schematically
represent the model setup in Fig. 3.4.

The method we use to search for minimizers is alternating adaptation rules
to update µe and the PSGD scheme for we. As explained in Section 3.1.1,
greedy routing can be solved using a set of equations as in Eq. (3.4), which
update the edge capacities, giving the fluxes F r

e = F r
e (µ

r). Here, we
update R independent adaptation rules at all time steps, corresponding to
the R OD indexes.

We derive closed-form gradients of Ω to update the weights. In particular,
we exploit linear algebra insights to treat non-trivial dependencies on the
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network Laplacian [129], and make use of Hagen-Poiseuille law in Eq. (3.2)
to find

∂Ω

∂we
=
∑

e′∈E′

∆e′

∑

r

F r
e

we

(
µr
e′

we′
sgn(F r

e′)G
r
e′e − sgn(F r

e )δe′e

)
∀e ∈ E ,

(3.42)

where E′ is the set of congested edges with ∆e > 0, and Gr
e′e =∑

vu Bve′Bue(L(µ
r/wr)†)vu.

The weight update is performed using a dropout mask that sets to zero a
random number of entries of the gradients in Eq. (3.42). We add stochasticity
to explore the rugged minimization landscape of the bilevel optimization
problem. Moreover, we apply a projection step to SGD to constrain the
weights to their feasibility set defined by we ≥ ε for all e ∈ E. For this,
we clip the weights since such a simple expedient is effective in the case of
linear constraints as in Eq. (3.40). If one had to deal with complex non-linear
constraints, a possibility would be to add a cleverly designed momentum
term to the adaptation equations to satisfy the problem’s constraints at
infinite times [130, 131].

We validate our method for bilevel optimization on different synthetic
networks. Our findings show that the algorithm effectively trades off
traffic congestion, encoded by Ω, against the transport efficiency, encoded
by C. By choosing different dropout masks for the stochastic update of
the weights, we can explore this trade-off and showcase several transport
network topologies that counterweight less over-trafficking with higher
transport costs and vice versa.

We delve deeper into the nature of traffic congestion by computing the
Gini coefficient of the flux distribution and estimating the total travel time
using an affine latency model, which sets an affine dependence between
fluxes and travel time on edges [120, 132]. An essential finding of this
analysis is the observation that the total travel time and the Gini coefficient
are worse when the network manager tunes the weight but does not cooperate
with the passengers than when they do not take any action. This happens
because, by excessively lowering the cost of an edge, passengers may
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largely reroute onto it, triggering more congestion than they would have had
initially. Such a phenomenon is similar to Braess’s paradox [133], which is
theoretically explained and empirically verified in many physical systems
from power grids [134, 135] to urban transportation [136, 137].

3.2 Applications
After developing the mathematical foundations for various approaches
to address optimal transport problems on networks through the lens of
adaptation equations, we proceed to describe several concrete applications.
Here, the problem’s variables assume different interpretations that may
broadly differ based on the task. Therefore, to clarify the modeling setup,
we discuss such interpretations for each application before going into the
details of our experiments. We also stress once more that these applications
are the primary motivator for the theoretical developments presented in
Sections 3.1.1-3.1.4, with their connection precisely outlined in Section 2.2.
For this reason, the thesis has enriched significance when these two parts
are taken in unison.

Our experiments mainly deal with engineering problems, specifically de-
signing urban transportation networks. In particular, we apply our methods
to the Paris Métro [138, 139], the bus and tram system of Bordeaux [138],
and the International E-road network [43]. In the last part of the discussion,
we shift our focus to machine learning, and we use multicommodity adapta-
tion equations for supervised image classifications on two image datasets
[140, 141].

3.2.1 Paris Métro
We use multicommodity routing to study passengers’ trajectories in the Paris
Métro [138, 139]. The network used for our experiments has |V | = 302
nodes and |E| = 359 edges. The central modeling assumption of this
application is that the commodity index i distinguishes groups of passengers
entering from different stations, therefore, i ∈ V . The passengers’ groups
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are the commodities that interact along the network edges and trigger traffic
congestion. Naturally, other modeling choices can be made. However,
separating passengers by their origin station allows us to effectively capture
congestion phenomena in real-world setups where unicommodity adaptation
equations fall short of achieving that.

Under this assumption, the variables entering the multicommodity adap-
tation equations can be interpreted as physical quantities directly connected
to transportation networks. In detail, the mass matrix Si

v contains the rates
of passengers entering and exiting stations, which are the network nodes.
Specifically, the mass matrix has positive entries in i = v, negative ones
for all v ̸= i where passengers exit, and zero otherwise. Passengers move
in between stations and generate a multicommodity flux F i

e ; components
of the flux represent displacements of passengers entering from i along e.
Crucially, the commodity-independent capacity µe = µi

e for all i couples
the passengers together and separates the multicommodity dynamics from
the unicommodity dynamics with multiple sources and multiple sinks of
Section 3.1.1. One can think of such a capacity as the capability of the
infrastructure, e.g., the rails, to allocate passengers traveling in the network.
In this application, the weights we are the Euclidean lengths between the
nodes’ geographical coordinates.

We use the multicommodity dynamics of Eqs. (3.13)-(3.14) by both
coupling commodities with their 2-norm as in Eq. (3.14), and by using
their 1-norm squared, fe(F ) = (

∑
e |F i

e |)2. We adopt two different
couplings because the former (the 2-norm) gives a series of theoretical
guarantees, as discussed in Section 3.1.2, which allows us to prove that
networks outputted by adaptation rules are provably optimal. Meanwhile,
the latter (the 1-norm) is arguably a more natural choice to measure the
total occupancy of a link, which is the total number of users traveling onto
it rather than the sum of its squares. The 1-norm is squared since, by
doing so, we can formalize a mapping to a minimization setup admitting
a constrained and an unconstrained formulation as in Eqs. (3.16)-(3.17)
and Eqs. (3.19)-(3.20), respectively. The critical difference between the
two norms is that for the 2-norm, we find a suitable Lyapunov functional
associated with the multicommodity dynamics, while for the 1-norm, we do
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not draw this connection; hence, we cannot analytically prove the optimality
of its asymptotic networks. Nevertheless, we experimentally observe that
the multicommodity cost CM

γ in Eq. (3.19), with fe being the squared
1-norm, decreases along trajectories of the multicommodity dynamics, and
converges to an energy plateau.

We study optimal transportation networks returned by different passen-
gers’ input configurations. Particularly, we extract real passengers’ entry
and exit data [139] and use them to create semisynthetic mass matrixes Si

v

with inflows interpolated between the real ones taken from the data and
homogeneous ones. Passengers entering each node i = v are assigned to
outflow u with the same rate as the inflowing passengers of u, with a proper
renormalization to ensure mass conservation. This way, passengers exit at
high rates from stations where they enter at high rates, and vice versa for
small ones.

In our experiments, we observe that the 1-norm and the 2-norm output
comparable transport networks when the critical exponent γ of Eq. (3.13)
distributes fluxes, i.e., γ > 1. However, their transport networks differ if
fluxes are aggregated γ < 1, with the 1-norm congesting more fluxes over
a smaller amount of edges than the 2-norm. To better quantify the extent of
congestion, we measure the Gini coefficient [109] of the flux distribution
over the edges. A higher Gini coefficient corresponds to transport networks
where passengers primarily concentrate on a few links, a low one to those
where fluxes homogeneously distribute on the whole infrastructure. The
1-norm returns a higher Gini than the 2-norm for the same mass matrix and
with the same γ.

We also measure the fraction of idle edges, i.e., the number of tracks
unused by passengers, which exhibits a sharp first-order phase transition
at γ = 1. This metric stays constant at zero for all γ > 1 and starts to
grow from γ ≤ 1. Such a profile further confirms the effect of the critical
exponent γ on the dynamics, i.e., concentrating and distributing passengers
over the network edges. While we observe a phase transition for a fraction of
idle edges, it is important to remark that for γ > 1, the interaction between
commodities still prompts loops’ formation. This effect is unobserved for
unicommodity adaptation rules.
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We conclude our study on the Paris Métro by probing its robustness to
structural failures. Precisely, we iteratively remove the four largest stations
of the network in descending order, measured by their number of yearly
entry passengers. These are: Châtelet, Gare du Nord, Saint-Lazare, and
Gare de Lyon. For each network with failures, we posit that passengers
who would have entered a now-removed station instead enter neighboring
stations, with their entry rates set to be proportional to the size of the
respective neighboring station. The main takeaway of our analysis is that
when γ is low, and thus when traffic congestion is mainly caused by node
removal, stations trigger traffic with varying levels.

In detail, removing the Châtelet station causes the fluxes’ Gini coefficient
to abruptly jump, i.e., passengers concentrate more than in the original net-
work. Removing Gare du Nord does not affect congestion since passengers
entering it now move to its neighboring station, Gare de l’Est, and do not
majorly change their trajectories. Removing the station of Saint-Lazare
causes the Gini coefficient to jump again. This station appears crucial for
linking the city center with the city’s North area. Conversely, removing
Gare de Lyon does not critically affect congestion.

3.2.2 Bordeaux’s trams and buses
Multicommodity routing

The transportation network of Bordeaux considered in this first application
is a multilayer network with L = 2 layers [138]. The first layer, a = 1,
corresponds to the city’s roads where buses move, and it consists of
E1 = 2347 intra-layer bus edges. The second layer, a = 2, represents the
city’s tram rails and comprises E2 = 112 intra-layer tram edges.

We study this network using a variation of the multicommodity adaptation
equations, which generalizes the model described in Section 3.1.2 to
multilayer networks. There are two important modeling assumptions we
make. The first is taking a layer-dependent critical exponent γa, whose value
may differ on layers a = 1 and a = 2. For instance, we could concentrate
fluxes on the tram by taking γ2 < 1 while diluting them on the bus layer
with γ1 > 1 (for inter-layer edges, we fix γ = 1). The second is that we
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assign edge weights as the Euclidean length between nodes’ geographical
coordinates, ℓe, multiplied by a layer-dependent coefficient representing
vehicles’ (inverse) velocity, νa. In equations, this is we = νaℓe for all
e ∈ Ea, with a = 1, 2. Concretely, suppose νa is set to a lower value on
layer a = 2 than on a = 1 to signify the higher speed of trams relative to
buses. In that case, passengers find it more convenient to cover the same
geographical distance on layer a = 2 than on layer a = 1. The weights
of inter-layer edges are set to be negligible compared to the others, so
passengers move between layers without additional costs. This choice can
be thought of as not adding extra cost for commuting between buses and
trams.

These modeling assumptions translate to the minimization setup asso-
ciated with the adaptation rules. In particular, we map the multilayer-
multicommodity adaptation rules to a suitable optimization framework
using the scheme of Section 3.1.2. This is, we formulate energy mini-
mization constrained and unconstrained problems that are solved by the
adaptation rules, which asymptotically converge to the minimum of a Lya-
punov functional, being exactly the unconstrained minimization problem’s
objective. The mapping leads us to find [1]

CM
γa

=

L∑

a=1

∑

e∈Ea

νaℓefe(F )Γ(γa) (3.43)

with fe(F ) =
∑

i(F
i
e)

2 and Γ(γa) = γa/(1 + γa), which is the natural
generalization of the multicommodity cost in Eq. (3.10) under the assump-
tions for multilayer networks discussed above. Minimizers of Eq. (3.43) are
found by solving the multilayer-multicommodity adaptation equations and
by using its asymptotic capacities to extract the fluxes as F i

e
⋆
= F i

e(µ
⋆).

We run our algorithm by inputting a mass matrix S that contains mono-
centric passenger inflows. This means that we simulate the scenario where
passengers uniformly enter the network nodes and exit from a single exit at
the center of the city [142]. Practically, we assign positive entries Si

v = +1
to a different node v per commodity i, which is the station passengers of
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type i enter, and negative entries Si
u = −1 to a node u that is identical for

all commodities.
Our experiments are performed with νa=2 = 0.2, i.e., supposing that

traveling by tram is faster than traveling by bus. Additionally, we fix
γ2 = 0.5 and γ1 = 1.5. We observe that passengers distribute over the
whole bus infrastructure while predominantly concentrating on a few central
tram lines.

We compare the multilayer network of the city with a single-layer network
where only the bus edges are present. The latter experimental setup is
obtained by setting we to a large value for all e ∈ E1. Our central finding is
that the tram lines are crucial for decongesting the city’s roads. In particular,
we observe that adding the tram to the city’s transportation infrastructure
allows for reducing the total number of passengers traveling with buses
by 17%. We also measure the Gini coefficient of the flux distribution on
the bus network. This increases when trams are added to the system since
passengers do not use many previously largely and uniformly populated
edges.

Routing with time-dependent loads

In this second application, we consider Bordeaux’s bus network a single-
layer network. The goal is to test and explore the loop formation mechanism
derived in Section 3.1.3 on real-world data. That is, we want to validate
that loops emerge in the transport network when passenger entry and exit
time-dependent inflows are not in phase with each other.

To this end, we devise a first experimental setup to randomly extract
two sources, v1 and v2 and five sinks among the network nodes. Then, we
design the loads’ profiles Sv(t) so that their Fourier transforms produce the
forcing matrix C in Eq. (3.28) so that, in one case, (i) rank(C) = 1, and in
another case (ii) rank(C) = 2. For the two case studies, we set the sources
to be (i) Sv1(t) = Sv2(t) = 100 cos(ωt), with ω = 2π, and (ii) Sv1(t) =
100 cos(ω1t) for one source and Sv2(t) = 100 cos(ω2t) for the other, with
ω1 = 2π and ω2 = 4π. We set in both cases Sv(t) = −[Sv1(t)+Sv2(t)]/5
to ensure conservation of mass at all times. Notice that the terms “sources”
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and “sinks” here are misused since the values attained by the mass matrix
on these nodes oscillate between positive and negative. However, at each
time t when the sources’ loads are positive, the sinks’ are negative, and vice
versa.

When running the slow dynamics in Eqs. (3.29)-(3.30) with γ < 1,
we expect the transport network at convergence to be a tree for (i) and to
possibly contain loops for (ii). Our numerical experiments confirm the
theory with γ = 0.9.

We perform a second larger validation experiment by setting Sv(t) =∑n
k=1 S

k
v (t) where Sk

v (t) = (100/|Qn|) cos(ωkt) on a set of Qn of
randomly extracted nodes, while Sk

v (t) = −[100/(|V | − |Qn|)] cos(ωkt)
on the remaining ones. The modes range as n = 1, . . . , 6, while the number
of nodes extracted for each mode is |Qn| = {1, 5, 10, 20}. Again, ω =
2π. This particular problem’s construction produces Fourier coefficients’
matrixes C for which 1 ≤ rank(C) ≤ 6.

Numerically integrating the adaptation rules in Eqs. (3.29)-(3.30) with
γ = 0.9 on this setup shows that the fraction of basis loops generated by the
passengers’ fluxes is monotonically increasing with rank(C). Furthermore,
consistently with our theory, no loops are present when rank(C) = 1. This
experiment hints that C can be employed as a proxy to infer the number of
loops in the optimal transport network, i.e., its robustness.

3.2.3 International E-road network
We apply the adaptation scheme for bilevel optimization, as discussed in
Section 3.1.4, to the International E-Road network [43]. In our study, we
simulate the action of a network manager tasked with assigning tolls to the
network edges by adjusting their weights (we) to alleviate traffic bottlenecks.
This task prompts competition with greedy passengers who aim to travel
from their origin nodes to their destinations by minimizing travel costs.
The two problems are coupled into a bilevel optimization formulation, as in
Eqs. (3.40)-(3.41).

The solution to this problem is found by alternating adaptation equations
for capacity updates, which are controlled by passengers, with edge weights
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tuning. The capacities enter as parameters into the PSGD scheme devised
to minimize traffic congestion. In turn, the weights get updated and prompt
passengers’ rerouting.

All variables entering the problem have similar physical interpretation
to what is discussed in Section 3.2.1 or Section 3.2.2. However, here, it is
helpful to think of the edge weights as tolls the users have to pay to travel
on a road; additionally, each capacity µr

e (the capacities now are R, one per
greedy group of passengers) may be interpreted as the space one should
allocate on a road to let passengers of group r flow freely. We stress that the
theory developed in Section 3.1.4 is independent of such choices, and it is
valid for different modeling tasks, significantly far apart from engineering.

The E-Road network connects cities around Europe with highways; in
total, it comprises |V | = 541 nodes and |E| = 712 links. We assume
that passengers are divided into R = 15 greedy groups, each entering the
network from a different large city, with rates proportional to the city’s
population. Similarly to what is done in Section 3.2.1, for a particular entry
node r, we assign outflows to be proportional to the exit cities’ populations.
This way, if a node has a high volume of passengers entering it, it also has a
large volume of passengers exiting. The total number of passengers to be
routed is approximately 30 million.

We compare our bilevel optimization scheme algorithm against two
baseline methods. The first consists of routing the greedy passengers using
R independent systems of adaptation rules as in Eq. (3.4), with fixed edge
weights that arewe = ℓe, where ℓe are the Euclidean distance between cities’
geographical coordinates. This method simulates the scenario where the
network manager does not act on the system. The second scheme involves
tuning the edge tolls after assigning fixed shortest path capacities to the
edges. Practically, we find the shortest path fluxes connecting passengers’
entry and exit nodes with Dĳkstra’s algorithm [40]. Then, we use the
optimal capacities associated with such fluxes as parameters and run the
PSGD scheme for updating weights until convergence. We extract the
final passengers’ fluxes with adaptation equations using the weights at
convergence as parameters. The scope of this procedure is to simulate the
action of an uninformed network manager that tunes the edge weights while
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disregarding passengers’ rerouting. Indeed, information on passengers’
paths enters the manager’s problem only as an initial condition.

Our findings highlight that adequately considering traffic rerouting in
the edge tuning task of the network manager is crucial to trade off traffic
congestion against the efficiency of transport efficiently. In particular,
solving Eqs. (3.40)-(3.41) by alternating a PSGD scheme and adaptation
equations returns distributed networks where passengers can move efficiently
while traffic is mitigated. In contrast, both setups with no action from
the network manager and where the network manager is uninformed give
transport networks with high congestion levels.

We quantify congestion by computing the average travel time of users
using an affine latency model [120, 132]. In equations, the average travel
time is defined as ⟨Tθ(s)⟩ =

∑
er tθ,e(s)|F r

e |/
∑

er |F r
e |, where the over-

trafficked edges for which
∑

r |F r
e | > θ take tθ,e = ℓe[1 + s(

∑
r |F r

e | −
θ)/θ]/v∞ to be traversed, and the non-congested ones tθ,e(s) = ℓe. Here,
s is a sensitivity parameter, while v∞ = 100 (km/h) is the free flow speed
of passengers. To dimensionalize the model properly, all quantities are to
be multiplied by unitary constants.

The time traveled by passengers whose routes are extracted by alternating
adaptation rules and the PSGD scheme is substantially lower than that
found with the other two baseline methods. In particular, for low sensitivity
(s = 1) the bilevel optimization scheme gives ⟨Tθ(s)⟩ ≃ 1.7 (hours). The
greedy routing method with no intervention from the network manager
returns ⟨Tθ(s)⟩ ≃ 2.3 (hours). In contrast, the scheme with the uninformed
network manager outputs ⟨Tθ(s)⟩ ≃ 3.1 (hours). The differences in travel
time become even starker for a high sensitivity value (s = 5).

We also observe that travel time is higher when the network manager
tunes the edge weights while being uninformed about the passengers’ routes,
as opposed to when there is no intervention. As discussed in Section 3.1.4,
this evidence can be interpreted similarly to Braess’s paradox. Specifically,
it shows that the Price of Anarchy, which measures how much a system
degrades due to the greedy behavior of its users, is higher when the network
manager intervenes and gets an effect opposite to what was initially intended.
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3.2.4 Image classification
In this last part of our discussion, we shift the focus from engineering
problems to machine learning. More in detail, we employ adaptation
equations to perform supervised image classification. Our main goal is
to accurately categorize images into their classes, assigning them a label.
To do so, we compare them with other pictures of which we know the
label, hence, the category they belong to. Using the multicommodity
adaptation equations of Section 3.1.2 together with a thoughtfully devised
experimental setup that allows us to leverage color information of images
to boost classification performance, we carry out such a task using the
optimal multicommodity transport cost CM

γ (F ⋆) in Eq. (3.19) as a measure
of similarity between images.

Optimal Transport-based schemes are widely used for image classification
[39, 68, 69, 79, 143–145]. The underlying idea of these methods is to
extract the 1-Wasserstein distance between two distributions efficiently—
representing the two images that are compared—and use it as a proxy to
measure their similarity: If the distance is lower, then the images are similar
since intuitively “it does not take much effort to move one distribution into
the other”. This approach proved itself to be accurate and holds several
technical advantages. For instance, the 1-Wasserstein distance is more
robust over domain shift for train and test data than other metrics, such as
the Kullback-Leibler divergence [68]. Additionally, it provides well-defined
and meaningful gradients to learn data on non-overlapping domains, which
is the crucial feature at the core of Wasserstein GANs [83]. Because of these,
and many other desiderata, a lot of effort has been put into reducing the
computational cost for computing the 1-Wasserstein distance on large-scale
problems [75–79].

Our experiments complement these approaches by integrating image
colors directly in the OT formulation. In particular, we assess whether
leveraging the physical intuition of using colors as immiscible fluxes can
boost classification performance.

Our experimental setup is as follows. We consider M = 3 commodities,
denoting the RGB color distributions composing each colored image. In
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detail, g1v are the vectorized entries of the red pixels’ intensity of an
image, and similarly, g2v and g3v are the green and blue ones. These color
distributions must be transported through a network that connects all pixels
of one image to all the pixels of another. The crucial modeling assumption
is constructing the network connecting the two pictures and, more in detail,
the weights we assigned to its edges. These have to be chosen so that
comparing images of the same class gives low transport cost, i.e., high
image similarity, and vice versa for images of different classes.

To build the transport network’s topology between two images, giv and
hi
v , that are transported one into the other, we start from a complete bipartite

network between their pixels. In principle, this network already allows us to
solve the adaptation rules of Eqs. (3.13)-(3.14) to find the multicommodity
transport cost. However, this would come at a high computational price
since the number of edges of the network scales poorly as |E| = O(|V |2).

For this reason, we use two expedients; the first is to remove transport
edges whose cost is above a tunable threshold τ > 0 [68, 69]. There are
various advantages to doing so; from an intuitive standpoint, humans per-
ceive distances as saturated distances [146]; therefore, using a thresholded
ground cost could produce results that arguably match human intuition.
Most importantly, many color distributions of images are noisy and heavy-
tailed. Thus, thresholding leads to discarding better outliers. Moreover,
thresholding boosts the accuracy and speed of OT [69]. To integrate this
expedient into the model construction, we assign weights

we={u,v} = min{(1− θ)||vu − vv||2 + θ||gu − hv||1; τ} (3.44)

to those edges that are not removed from the bipartite network. In Eq. (3.44),
we take the 2-norm of the pixels’ coordinates and the 1-norm of the
images’ color distributions. We weigh these two quantities in a convex
combination controlled by a parameter θ, which we choose with cross-
validation. Importantly, this construction gives |E| = O(|V |).

The second expedient is to relax the optimization problem in Eq. (3.19)
with a penalty for unbalanced OT as in [69]. The idea is to allow
the total masses

∑
vi g

i
v and

∑
vi h

i
v to be different and to penalize
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images’ pairs proportionally to their net difference in color, namely,
P = (maxe we/2)

∑
i |
∑

v g
i
v −

∑
v h

i
v|. This way, images with largely

different color distributions, e.g., dark and light ones, are unlikely labeled
with the same class. This penalty is embedded into the network construction
by adding an auxiliary “transshipment” edge with cost we = max′e w

′
e/2

(the maximum is taken over the edges of Eq. (3.44)) that is connected to
all images’ pixels. A mass equal to the net difference between the images’
color intensities exits from such a node so that the final network is isolated.

We test our methods on two datasets with images of flowers in an unsu-
pervised environment and fruits in a supervised one (white background)
[140, 141]. We compare our multicommodity algorithm against its uni-
commodity counterpart, where the distributions to be transported are the
gray-scale intensities of the images. Also, we benchmark performance
against a stabilized implementation of Sinkhorn’s algorithm [147] executed
on gray-scale and RGB images. For colored images, we average the M = 3
OT costs outputted by Sinkhorn’s algorithm, one per color channel, to
measure the images’ similarity.

Our findings highlight that the multicommodity adaptation rules allow
us to classify images better than their competitors. In particular, they give
a substantial improvement in terms of classification accuracy. As one
could expect, we also observe that methods that classify colored images
have higher accuracy than those that classify gray-scale ones. We assess
the stability of our methods’ prediction by measuring its sensitivity on
flower images. The sensitivity is the ratio of true positive samples over
the sum of true positive and false negatives. Our results exhibit how the
multicommodity adaptation rules have higher sensitivity than Sinkhorn’s
algorithm for most classes.

We perform additional experiments where we focus on a subset of all
the classes of the fruit images. Here, our results are tailored to show how
the multicommodity adaptation equations can better cluster images with
similar colors and shapes. This task is more challenging when colors are
aggregated and not considered by the OT setup, i.e., in the unicommodity
formulation. Additionally, we observe that when the shapes of fruits play
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a central role in distinguishing samples, both the unicommodity and the
multicommodity equations give good classification results.
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perspectives

Content

Chapter 4 — 1. Broad summary of the contributions;
2. Detailed scientific advancements;
3. Limitations and possible future research direc-

tions.

The efficiency of transport networks is pivotal in numerous real-world
applications, emphasizing the importance of devising systematic approaches
to address this challenge.

This thesis tackles the problem by formulating a series of methods
rooted in biologically-inspired adaptation rules. Specifically, we frame
ordinary differential equations that, together with conservation laws, control
the temporal evolution of transport networks to return optimal networks
upon convergence. We use OT theory to measure optimality. Specifically,
we seek a well-defined Lyapunov functional for our dynamical systems-
representing the energy well into which adaptive networks fall, and link
it to the cost associated with transporting mass along the network edges.
This cost is the objective minimized in OT. Such a connection is not only
of theoretical significance, allowing us to prove that adaptive networks are
provably optimal at convergence, but it also facilitates the connection and
validation of adaptation equations with and against classical OT algorithms.

In detail, we extend classical adaptation equations for unicommodity
(greedy) mass routing to various modeling setups. First, we consider
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the multicommodity scenario, where different types of mass move along
the edges of a network. These contribute to minimizing one unique cost
being coupled with a shared capacity. To guarantee that multicommodity
adaptation equations are well posed, i.e., they reduce the cost of transporting
mass so that a formal connection with OT can be drawn, choosing an
adequate coupling for the mass types is crucial. We apply this model to study
traffic on the Paris Métro and the streets of Bordeaux. Among other findings,
our studies exhibit what stations are essential to alleviating congestion in
Paris when targeted node failures occur and showcase how the trams of
Bordeaux decongest the city’s bus network. We also use multicommodity
adaptation rules to perform supervised image classification. Our methods
outperform other OT-based algorithms in terms of classification accuracy.

We then formulate adaptation rules to model networks’ evolution with
time-varying mass loads. Here, we consider two time scales for the
problem’s variables. Namely, we assume mass loads to evolve rapidly in
time, whereas capacities, i.e., the network infrastructure, change slowly.
This assumption is crucial for deriving closed-form adaptation equations
to govern the evolution of the optimal networks. By further assuming that
mass loads are periodic, we formally connect the temporal profiles of mass
loads with the properties of optimal networks. In particular, we show how
the resonance of loads prompts loop formation. We apply this method to
Bordeaux’s bus network.

We conclude by modeling the competition between greedy passengers
and a network manager controlling traffic mitigation in a bilevel optimization
problem. We couple adaptation rules with a Projected Stochastic Gradient
Descent scheme that tunes edge weights to enforce decongesting edges. By
applying our method to passengers’ routing on the International E-road
network, we demonstrate how an informed tuning of tolls can shorten travel
times, consequently reducing carbon emissions from car travel.

Our methods are all complemented by open-source codes, which make
the results presented in this thesis fully reproducible [91–95].

Naturally, our analyses spark many future research questions in disparate
directions, of which we present only a few. First, it is essential to remark
that while our models offer a principled mechanism to design transport
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networks, in reality, passengers move unpredictably, and the theoretical
assumptions made in our works may not hold when validating our methods
against traffic data. Extending our models to integrate other real-world
assumptions and understanding the difference between networks predicted
by our methods and traffic flows extracted, for instance, with digital traces,
is an avenue for future research.

Additionally, the broader scope of this thesis is to build a set of tools for
optimal network design. These can be relevant to policymakers interested
in understanding whether an infrastructure meets the needs of its users.
To make such studies robust, it is crucial to complement the insights
of our methods with detailed knowledge of the urban development of a
geographical area. We aim to bridge this gap in Lonardi et al. [8], focusing
on the city of Copenhagen.

Going more in detail into the technical aspects of the models presented
in the thesis, we propose the following ideas for future research questions.
Multicommodity routing has been addressed with several methods, among
which belief propagation [103–108]. In particular, in Tai and Yeung [104]
the authors showed that coordinated passengers’ routing reduces travel costs
by 66% on the England highway network with respect to the case where
passengers travel greedily. We could ask ourselves if a similar result can be
recovered with adaptation equations. Particularly, by comparing against
each other multicommodity adaption equations, that allow us to optimize
the joint cost of all mass types moving along the network, and standard
unicommodity (greedy) ones.

A possible extension for the routing model with time-dependent loads
would be to drop the assumption that the input loads and the edge capacities
change with two different time scales, and instead assume the same time
scale for both quantities. Renouncing to such a modeling assumption would
mutate the traditional idea of optimization on a fixed fitness landscape to
one of a “seascape”—a concept largely diffused, for example, in genetics—
where the landscape’s parameter change as the optimization procedure gets
carried out. This would add several technical difficulties since the analytical
derivations performed in our model could no longer be performed, and one
should resort to different mathematical and numerical tools.
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As for the bilevel optimization routing scheme, it would be interesting to
tackle particular engineering challenges through adjustments to the estab-
lished method. For instance, one might consider a particular relationship
between edge costs and road tolls, and therefore derive a scheme where op-
timization is performed by directly adjusting tolls. Alternatively, one could
explore different upper-level costs that involve not only edge over-trafficking
but also incorporate additional metrics for the global functioning of the
network, such as an estimation for the carbon emissions of transportation.

Concerning supervised image classification, our methods naturally do not
attain the highest accuracy compared to more complex competitors. How-
ever, our study serves a different purpose. Similar ideas to multicommodity
adaptation could be incorporated into deep architectures to enhance their
state-of-the-art performance. For example, the multicommodity equations
could include other image features, such as edges, shapes, and contours, to
facilitate classification.
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Abstract: Modeling traffic distribution and extracting optimal flows in multilayer networks is of the
utmost importance to design efficient, multi-modal network infrastructures. Recent results based on
optimal transport theory provide powerful and computationally efficient methods to address this
problem, but they are mainly focused on modeling single-layer networks. Here, we adapt these results
to study how optimal flows distribute on multilayer networks. We propose a model where optimal
flows on different layers contribute differently to the total cost to be minimized. This is done by
means of a parameter that varies with layers, which allows to flexibly tune the sensitivity to the traffic
congestion of the various layers. As an application, we consider transportation networks, where each
layer is associated to a different transportation system, and show how the traffic distribution varies as
we tune this parameter across layers. We show an example of this result on the real, 2-layer network
of the city of Bordeaux with a bus and tram, where we find that in certain regimes, the presence of
the tram network significantly unburdens the traffic on the road network. Our model paves the way
for further analysis of optimal flows and navigability strategies in real, multilayer networks.

Keywords: optimal transport; networks; multilayer networks; routing optimization

1. Introduction

Investigating how a network operates and assessing an optimal network design in
interconnected networks is a critical problem in several areas [1]. Examples of these
include economics [2], climate systems [3], epidemic spreading [4–6] and transportation
networks [7]. The main challenge of these problems is to account for the various types
of connections that nodes can use to travel through the network efficiently. For example,
in transportation networks, the main application considered here, passengers can travel
using various means of transport within the same journey. The different transportation
modes can operate in significantly different ways [8,9]. For instance, traveling along a rail
network (e.g., by tram or subway) is usually faster than along a road network (e.g., by
car or bus). The rail network is less sensitive to traffic congestion but the road network
has wider coverage and thus allows to reach more destinations. The question is how to
combine all these different features to design optimal networks and predict the optimal
trajectories of passengers.

Multilayer networks [1,10–12] are a powerful tool to study multi-modal transporta-
tion networks [13–15]. Transport in a multilayer network, where layers correspond to
transport modes, is often studied using diffusion or spreading processes [1,16–18]. Many
of these works use shortest-path minimization [14,19–21] as the main method to extract
the passengers’ trajectories. However, this can be a restrictive choice: on one side, this
assumes that different layers share the same cost function to be minimized; on the other
side, shortest-path minimization is not sensitive to traffic congestion and thus, may not
be realistic in certain scenarios. Empirical studies [22] have also indicated that passengers
may not necessarily choose the shortest paths.
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Here, instead, we propose a model that considers more general transport cost min-
imization, based on a regularized version of the Monge–Kantorovich optimal transport
problem [23]. The regularization is obtained via a parameter β that allows to flexibly tune
the cost between settings where traffic is penalized or consolidated. Optimal transport is a
proven, powerful tool to model traffic in networks and optimal network design [24–39].
Recent works [30,40] extended this formalism to a multi-commodity case that properly
accounts for passengers with different origins and destinations. All these studies consider
the case of a single-layer network, i.e., one transportation mode. The existence of multiple
connections on different layers invites a generalization of these recent results of optimal
transport to cope with multilayer networks.

Here, we make this effort and propose a model that uses optimal transport theory to
design optimal multilayer networks and finds optimal path trajectories on them. We show
how such networks operate under various transport costs tuned by β on both synthetic
and real data. We see how the traffic evolves from being more homogeneous to a more
unbalanced traffic distribution when a second layer is present and the cost to travel through
it changes.

In summary, the goal of this work is to propose an efficient optimal transport-based
method for modeling optimal network flows in multilayer networks. Our model finds
optimal flows by naturally incorporating the different nature of transportation modes and is
computationally efficient. While here, we focus on transportation networks, our method is
applicable to a broader set of practical applications involving flows on multilayer networks.

What Makes Multilayer Networks Different Than Single-Layer in Transportation

Having given the broader context for our work, we now highlight the main features
of transport on multilayer networks. The presence of edges between layers (inter-layer
edges) makes a multilayer network fundamentally distinct from a standard single-layer
one, as these edges allow passengers to switch between transportation modes. However,
this is not the only difference. In fact, in a multilayer network, the various layers have
different characteristics. The main one is that the type of transportation cost varies across
layers. For example, the cost to build and maintain the infrastructure differs depending
on the transportation mode, with subway or rail tracks costing more than a road network.
Moreover, the cost assigned to traffic congestion is also different, as road networks are
more sensitive to traffic bottlenecks than rail ones. In addition, the power dissipated differs
depending on the means of transportation, as running a tram generally produces fewer
CO2 emissions than running a bus. All these different features impact the results of an
optimal transport problem, as the network features contributing to the cost function to be
optimized vary with layers, and thus also the optimal solution.

Finally, the network topologies themselves vary with layers [41], as a bus network has
many edges with short lengths, while a rail network tends to have fewer but longer edges.
In addition, the weights assigned to each edge differ based on the layer, which can induce
coupling between layers [42].

2. Materials and Methods
2.1. Multilayer Transportation Networks

In general, a multilayer network is represented as a graph G({Vα}α, {Eα}α, {Eαγ}α,γ),
where Vα and Eα are the set of nodes and edges in layer α, respectively, and Eαγ is the set of
edges between nodes in layer α and nodes in layer γ. Here, α = 1, . . . , L, where L is the
number of layers. We denote with Nα = |Vα| the number of nodes in layer α, and with
Eα = |Eα| the number of edges in layer α, Eαγ = |Eαγ| is the number of edges between
nodes in layer α and γ. Finally, we denote with V0 = ∪αVα the total set of nodes, with
E0 = (∪αEα) ∪ (∪αγEαγ) the total set of edges, and with N0 = |V0| and E0 = |E0|, their
cardinalities. We assume that edges have lengths le > 0, which determine the cost to travel
through them.
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Transportation networks are relevant examples of this type of structure, where nodes
are stations, edges are connections between stations and layers are transportation modes,
for instance, rails or bus routes. A convenient way to represent a multilayer network is
with two tensors [43]: (i) an intra-layer adjacency tensor A with entries Aα

uv = 1 if there is
an edge between nodes u and v in layer α, and 0 otherwise. We refer to this type of edge as
an intra-layer edge; (ii) an inter-layer adjacency tensor Â with entries Âαγ

uv = 1 if there is an
edge between node u in layer α and node v in layer γ, and 0 otherwise. Without loss of
generality, in our applications, we have Âαγ

uv = 0 if u 6= v, meaning that different layers are
connected solely by shared nodes. We refer to edges connecting nodes in different layers
as inter-layer edges. In the case of transportation networks, the main application studied
here, a station could have a bus stop, a train platform and a subway entrance, which allows
passengers to switch between communication modes within the same station. For example,
one can think of an inter-layer edge as the stairs connecting the subway entrance with
the entrance to the train station. Typically, inter-layer edges are, thus, much shorter than
intra-layer edges.

In the case of multilayer networks, we need to be careful with how stations connecting
multiple transportation modes are represented. In fact, if an entry station connects more
than one layer, we may not be able to distinguish in what layer a passenger enters. In other
words, if a node u belongs to more than one layer, i.e., a node uα exists for more than one
value of α, we may not be able to tell whether the passengers entering u entered from uα, uγ

or from any of the other instances of node u in the various layers. To alleviate this problem,
we build auxiliary super nodes u, which do not belong to any layer in particular but instead
connect the various instances of the same node in the various layers together. Specifically,
we remove all the inter-layer edges (uα, uγ) and replace them with auxiliary inter-super
edges (uα, u), connecting all the instances uα of node u with the super node u, as in a star
graph, so that the original edge (uα, uγ) is replaced by a two-edge path {(uα, u), (uγ, u)}.

This auxiliary structure allows the model to allocate in an optimal way the passengers
along the inter-super edges when they enter from a station with connections to more than
one layer, thereby avoiding the selection of arbitrary entrances a priori. This becomes
relevant in applications where the cost to travel along inter-layer edges is non trivial, for
instance, in situations where changing connection impacts the comfort of the passengers.

Moreover, the introduction of super nodes and edges facilitates how we represent
the multilayer network. In fact, by adding these auxiliary super nodes and inter-super
edges, we only need to consider an individual network adjacency matrix A, instead of two
separate tensors. This matrix has entries Auv = 1 if an edge exists between nodes u and v
and 0 otherwise, where a node u can be a node uα in layer α or a super node u. The set of
nodes is then V = V0 ∪ Vsuper, where Vsuper is the set of super nodes, and |Vsuper| = Nsuper
is their number, which corresponds to the number of nodes that belong to more than
one layer. Similarly, the new set of edges is E = (∪αEα) ∪ Esuper, where Esuper is the set
of inter-super edges. The final numbers of nodes and edges are N = |V| = N0 + Nsuper
and E = |E | ≥ E0. Notice that this construction is equivalent to assume that the network
has L + 1 layers, where the extra layer is made of inter-super edges Esuper and all nodes
incident to them (without loss of generality, we assume that all the inter-super edges are
treated equally). We denote it as the super layer and this corresponds to α = L + 1, so that
EL+1 ≡ Esuper. We show an example of this structure in Figure 1.

Finally, we consider a coupling between layers as in [42] that controls how the layers
are linked. Specifically, we multiply the lengths of each edge by a factor wα ∈ [0, 1] that
depends on what layer the edge belongs to. For convenience, we introduce qe ≡ qe(α)
taking values qe = α for each e ∈ Eα and with α = 1, . . . , L + 1. Using this, we define the
resulting length as `e := wqe le. This ensures that edges in different layers can be navigated
differently. If we interpret wα as the inverse of a velocity, then `e is proportional to the time
needed to travel along edge e, which can be seen as an “effective” length. When wα < 1
and wγ = 1, a passenger takes less time to travel along an edge of length le in α than one in
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γ. Typically, `e are small for inter-super edges. Nevertheless, one can tune the cost to travel
along them by tuning wL+1.

Figure 1. Example of multilayer structure. We show an example of a 2-layer network with N = 18
(N1 = 10, N2 = 4 and Nsuper = 4). (Left) adjacency matrix A, colors denote the layer type: blue is
layer 1, red is layer 2 and green is the super layer. (Right) the 2-layer network with layer 1 on the
bottom, layer 2 on top, and the super nodes in between.

2.2. The Model

We consider the formalism of optimal transport theory, and in particular, recent works
that map the setting of solving a standard optimization problem into that of solving a
dynamical system of equations [24–30,40]. Specifically, we model two main quantities
defined on network edges: (i) fluxes Fe of passengers traveling through an edge e; and
(ii) conductivities µe, which are quantities determining the flux passing through an edge
e. Intuitively, the conductivity µe of an edge can be seen as proportional to the size of
the edge e. To keep track of the different routes that passengers have, we consider multi-
commodity formalism as in [40], i.e., we distinguish passengers based on their entry station
a ∈ S , where S ⊆ V is the set of stations where passengers enter, and we denote with
M = |S| the number of passenger types. With this formalism, we have that the fluxes Fe
are M-dimensional vectors, where the entries Fa

e denote a number of passengers of type
a traveling on edge e. The important modeling choice is that the conductivities µe are
shared between passengers, thus they are scalar numbers contributing to the cost for all
passenger types traveling through e. This formalism can be equally applied to both edge
types: intra-layer and inter-super edges.

We assume that fluxes are determined by pressure potentials pa
u defined on nodes

as follows:
Fa

e :=
µe

`e
(pa

u − pa
v), e = (u, v) . (1)

We model the number of passengers entering a station a with a positive real number
ga. For notational convenience, we define a N ×M dimensional matrix of entries ga

u such
that ga

u := 0 if u 6= a, and ga
u := ga if u = a. Similarly, we define with ha

u the number of
passengers of type a exiting at node u. Here, the only constraint is that ha

u = 0 if u = a to
avoid unrealistic situations where passengers entering in one station exit from the same
station. Finally, we define the N×M-dimensional source matrix with entries Sa

u = ga
u − ha

u,
which indicates the number of passengers of type a entering or exiting a station. Notice that
for each a ∈ S we have ∑u Sa

u = 0, meaning the system is isolated, i.e., all the passengers
of a certain type who enter the network also exit.

With this in mind, we enforce mass conservation by imposing Kirchhoff’s law on
nodes. To properly enforce this constraint, we need to consider all the edges, both intra-
layer and inter-layer edges. This can be compactly written by considering the multilayer
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network signed incidence matrix B with entries Bve = 1,−1, 0 if node v ∈ V is the start,
end of edge e ∈ E , or none of them, respectively. With this in mind, Kirchhoff’s law can be
written as follows:

∑
e

BveFa
e = Sa

v, ∀a ∈ S , ∀v ∈ V . (2)

Finally, we assume that the conductivities follow the following dynamics:

µ̇e = µ
βqe
e

∑a∈S (pa
u − pa

v)
2

`2
e

− µe, ∀e ∈ E , (3)

where qe encodes the type of edge, as defined in Section 2.1. The parameter 0 < βqe < 2
is important, as it determines the type of optimal transport problem that we aim to solve,
which we describe in more detail later. Interpreting the conductivities as quantities pro-
portional to the size of an edge, this dynamics enforces a feedback mechanism such that
the edge size increases if the flux through that edge increases, it decreases otherwise. This
feedback mechanism was observed in biological networks, such as the one made by slime
mold Physarum polycephalum [24,44], which adapts its body shape to optimally navigate the
space, searching for food.

The important property of this dynamics is that its stationary solutions minimize a
multilayer transport cost function:

Jβ =
L+1

∑
α=1

∑
e∈Eα

`e||Fe||Γ(βα)
2 , (4)

where Γ(βα) = 2(2− βα)/(3− βα) for all α and the 2-norm is calculated over the M entries
of each Fe. This means that solving the systems of Equations (1)–(3) is equivalent to finding
the optimal trajectories of passengers in a multilayer network, where optimality is given
with respect to the cost in Equation (4). An extended discussion and a formal derivation of
this property can be found in [32,40].

The parameter βqe (taking value βα on layer α) regulates how the fluxes should
distribute in each of the layers. In fact, according to Equation (4), when βα > 1, the fluxes
are encouraged to consolidate into few edges of a layer α, being Γ(βα) < 1, and thus the
cost in Equation (4) is sub-linear. In the opposite scenario, when 0 < βα < 1, we have
that the fluxes are encouraged to distribute over more edges and with lower values in
order to keep traffic congestion low. Finally, when βα = 1, we obtain the shortest path-like
minimization. The consequence of having different βα in different layers is that the optimal
trajectories have different topologies in each of the layers. At the same time, layers are
coupled together, thus the final trajectories are a complex combination of the weights
wα and the βα. We give an example of optimal flows for various combinations of these
parameters in Figure 2.

2.3. The Algorithmic Implementation

The numerical implementation consists of initializing the µe > 0 at random. Then,
one iterates between (i) extracting the pressure potentials (or the fluxes) using Equations (1)
and (2), and (ii) using these to recompute the µe by means of Equation (3), which can be
solved numerically with finite difference discretization. The iteration is repeated until
convergence. In our experiments, we terminate a run of the algorithm when the difference
J(t+1)
β − J(t)β between two successive updates is lower than a threshold (the superscript (t)

is the iteration step). The cost Jβ in Equation (4) is not strictly convex in general, hence
the solution of Algorithm 1 may converge to a local optima. One should then run the
algorithm several times, each time initializing to a different random initial realization of
µe > 0. A possible choice for a final optimal solution is the one that has lower Jβ. We give
the pseudocode for this in Algorithm 1; this is complemented with the block diagram in
Figure 3. Most of the computational effort required by Algorithm 1 is in the solution of
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M linear systems as in Equation (2). In our implementation, this is performed by a sparse
direct solver (UMFPACK), performing a LU decomposition of each column of the right
hand side of Equation (2), and having complexity scaling as O(M N2).

Figure 2. Example of optimal paths. We show an example of optimal paths obtained with: p = 0.2
and (top) w1 = 0.2, (bottom) w1 = 0.8. Values of β1, β2 are those reported on top of each network.
The statistics Gini1 and f2 are those defined in Section 3.1. The width of edges is proportional to the
optimal ||Fe||2. Blue and red edges are for layers 1 and 2, respectively. The two layers are plotted
individually on the rightmost column.

Start

Input: G(V , E), S, βa

Initialize µe :
µe ∼ Uni f (0, 1)

Is
convergence
achieved?

Return: optimal {Fe}

Solve Equation (2)
using Equation (1)

Solve Equation (3)

Stop

yes

no

Figure 3. Block diagram of Algorithm 1. We give a pictorial representation of the pseudocode in
Algorithm 1. Here, rectangular blocks are action blocks, corresponding to the update of a variable,
to an input initialization, or to the output of the fluxes at convergence. Conditional blocks are
diamond-shaped; elliptical blocks denote the start and stop points.
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Algorithm 1 Multilayer optimal transport.

1: Input: multilayer network G(V , E), source matrix S, βα

2: Initialize: {µe} (e.g., sampling as i.i.d. µe ∼ Uni f (0, 1))
3: while convergence not achieved do
4: use Equation (1) to solve Kirchhoff’s law as in Equation (2)→ {pa

u}
5: solve the dynamics in Equation (3): {µt

e} → {µt+1
e }

6: end while
7: Return: fluxes {Fe} at convergence, computed using Equation (1)

The resulting {Fe} capture how passengers travel along the network via optimal
trajectories. The norms ||Fe||2 measure the total number of passengers along an edge e.

3. Results
3.1. Results on Synthetic Data

We show how the model works on synthetic data where each layer is planar, to mimic
realistic scenarios of transportation networks in space. We generate 2-layer networks and
the source matrix S as done in [42]. Specifically, we generate one layer by randomly placing
N nodes in the square [0, 1]× [0, 1] and then extract their Delaunay triangulation [45]. We
then select a subset of nodes and use this to build the second layer with an analogous
procedure. An example of this is given in Figure 2. After having constructed the network
topology, we assign entry and exit stations to each node in the network, starting from a
monocentric scenario where all passengers exit from a central station, regardless of their
origin. We then randomly re-assign with a probability p ∈ [0, 1] the exit station of each set
of passengers. When p = 0, all the passengers travel to the city center, while when p = 1,
the destinations are assigned completely at random.

We generate 20 networks with N1 = 100 and N2 = 10, so that layer 1 has, on average,
shorter edges than layer 2. For each sampled network, we take 50 random samples of
S. We consider p ∈ {0.2, 0.8} to study two opposite situations of having a majority or a
minority of the passengers directed to a common central node. Then, we fix w1 = 1 and
vary w2 ∈ {0.2, 0.8} to mimic a scenario where traveling on the second layer is faster.

Overall, with these combinations of parameters, we obtain 2-layer networks that
resemble a road–rail network. With this in mind, we run our model with the following com-
bination of parameters for the dynamics: (β1, β2) ∈ {(0.5, 1.1), (0.5, 1.3), (0.5, 1.5), (1, 1)}.
This is because we expect to penalize traffic congestion in a road network, hence β1 = 0.5. In-
stead, a rail network is less sensitive to traffic but it may cost more to build connections, thus
once should consolidate traffic along fewer edges, hence β2 > 1. The case (β1, β2) = (1, 1)
is used as a baseline for comparison with the shortest path-like optimization.

We measure how passengers distribute along the optimal trajectories to assess how
the network operates under various regimes of w and β. For this, we consider ||Fe||2 and
measure the distribution of this quantity along the edges to see how this varies across
parameters’ values and in each of the two layers. In addition, we calculate the current
flow edge betweenness centrality (FBC) [46], which captures how important an edge is
based on how many passengers travel through it. This is different than the standard
edge betweenness centrality [47] in that it considers random paths connecting two points,
instead of only the shortest paths. We argue that FBC is more appropriate in our case, as the
shortest paths may not be the optimal trajectories where passengers travel. We calculate
the weighted version of FBC, where the edge weight is ||Fe||2, so that the random paths are
more likely to follow edges with higher flux. We use the Gini coefficient Gini ∈ [0, 1] to
characterize the disparity in the flow assignment along edges. We consider the following
definition [48]:

Gini :=
1

2E2 x̄ ∑
r,q
|xr − xq| , (5)
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where r, q denote edges, x is the quantity that we want to measure this coefficient with, and
x̄ = ∑e xe/E is its average value. Here, we use xe = ||Fe||2 and xe = FBCe. When Gini is
close to one, most of the flow passes through few edges, whereas when Gini is small, the
flows are distributed evenly across the edges.

Looking at Figure 4, we see that Gini increases with β2 and thus the network usage
becomes more hierarchical, as expected in this case (we report here results for Gini w.r.t.
the flux, but similar results are observed for FBC, see Figure A1). The exact value of Gini
depends on the travel demand, as for p = 0.2, i.e., when the central node is a destination
in 80% of the journeys, Gini is higher than when p = 0.8. This is because with fewer
destinations, there are also fewer possible path trajectories, and thus more passengers
use the same part of the network. We can also see how Gini decreases for higher w2, i.e.,
when traveling by tram is not much faster than traveling on the road network. Finally, we
can notice the drop in Gini compared to the shortest path-like scenario β1 = β2 = 1. In
this case, the traffic distribution is the most hierarchical, suggesting that possible traffic
congestion can be avoided by setting lower values of β1.

Figure 4. Results on synthetic data. We show the Gini w.r.t. the optimal ||Fe||2 (y axis) vs. β2 (x axis)
for synthetic 2-layer networks generated as in Section 3.1. Blue and red markers denote p = 0.2, 0.8,
respectively, w1 = 1 in all cases, while w2 = 0.2 (left) and w2 = 0.8 (right); β1 = 0.5 in all cases,
except for the case where β2 = 1 for which β1 = 1. This case is the shortest path-like baseline.
Markers are averages over 20 network samples and 50 source matrix samples (for a total of 1000
individual samples).

Our model can be used to simulate traffic distributions under various conditions.
In fact, tuning p, {wα} and {βα}, one can simulate disparate scenarios. For instance, in
Figure 2 we show results for different parameters’ choices on a particular realization of a
2-layer synthetic network. Several conclusions can be drawn from this simple experiment.
For instance, the second layer, which ideally can represent a tram network, is only partially
used when β2 = 1.5. This value encourages traffic to consolidate on fewer main connections,
simulating the scenario where building the rail infrastructure is expensive. Our model
can guide a network manager to decide what edges should be prioritized when designing
the network. In this example, we can distinguish which set of edges are the most utilized.
These are mainly central edges, but the exact set can change depending on the other
parameters. For example, if the travel demand, tuned by p, switches from a monocentric to
a more heterogenous set of entry-exit stations, one of the main central edges changes from
connecting a periphery to the center, to connecting two locations in the periphery.

3.2. Results on Real Data

We illustrate our model on a real 2-layer network of the city of Bordeaux, where the
two layers are the bus and tram, respectively. Data are taken from [49]. We simulate a
monocentric source matrix S, i.e., p = 0.0, to asses the scenario where all the passengers
travel to the city center; however, the results are similar for other values of p (not reported
here). Optimal paths are extracted using our model for β1 = 0.5, β2 = 1.5, w2 = 0.2 and
compared against the case where the tram network is absent. This can be simulated by
setting a high value of w2, so that the cost on the tram edges makes it extremely unlikely to
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use any tram connection (here, we use w2 = 100). We measure the total percentage flux
f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 + ∑e∈E2

||Fe||2) passing through layer 2. Remarkably, in
this scenario, the tram network absorbs f2 = 17% of the total flow of passengers, even
though the tram network contains only E2 = 112 edges, compared to E1 = 2347 bus edges.
This allows to reduce significantly the traffic along the road network, as can be seen in
Figure 5, and the road edges, and, in particular, those parallel to the tram line and close to
the city center get thinner as more passengers use the tram. This also results in a higher
Gini1 = 0.26 (calculated on edges in layer 1 w.r.t. ||Fe||2), compared to the Gini1 = 0.23
when the tram is absent: as the passengers use the tram, they decrease traffic on many road
edges. While the traffic distribution on layer 1 gets more hierarchical (higher Gini1), this
does not necessarily lead to more traffic congestion. In fact, the total percentage flow f1
decreases, as we saw above. Additional plots can be seen in Figure A2.

Figure 5. Example of optimal paths in the city of Bordeaux for a bus and tram network. The paths
are obtained with (left) and without (right) the tram layer. Here, β1 = 0.5 in both cases, while
β2 = 1.5 in the second case. The width of the edges is proportional to the optimal ||Fe||2. The
reported Gini1 coefficient for the bus network (layer 1) is calculated using ||Fe||2. The total percentage
flux f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 + ∑e∈E2

||Fe||2) = 0.17, distributed over E2 = 112 tram edges,
compared to E1 = 2347 bus edges.

4. Discussion

We have presented a model that extracts optimal flows on multilayer networks based
on optimal transport theory. Our models accounts for different contributions from different
layers to the total transport cost by means of a parameter βα. Our modeling choice is
relevant in scenarios where passengers can travel using different transport modalities on
an interconnected transportation network. We have shown how the optimal distribution
of passenger flows on network edges is influenced by different factors. In fact, a complex
combination of the parameter βα on each layer, the coupling between layers and the
distribution of the origin and destination pairs determine how heterogeneous the flow
distributions are inside the various layers. In particular, when βα < 1 in one layer and
βα > 1 in another layer, the network topologies are significantly different in the two layers,
as in one, the traffic is more balanced and distributed along many edges, while in the other,
the traffic is consolidated along a few main arteries. To show the potential of our model,
we considered an application to the 2-layer bus and tram network of Bordeaux, showing
how the presence of the tram changes the traffic distribution on the road network.

5. Conclusions

In this work, we proposed a model that uses optimal transport theory to find optimal
path trajectories on multilayer networks. By means of the regularization parameter βα,
we were able to take into account different contributions from the different layers for the
total transportation cost. We illustrated the model on both synthetic and real data and
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showed how the optimal distribution of passenger flows on network edges is influenced
by different parameters used for the construction of the model (i.e., w, p, βα).

In the absence of real data, we simulated the entry and exit destination of passengers.
However, if travel demands are known, for instance, using mobile data [50], it would be
interesting to investigate the distribution of traffic obtained with our model and compare
it with real usage data as done in [51]. We considered a cost assigned on edges where βα

tunes the impact of traffic on them, but one can generalize this to include penalties on
nodes based on their degrees, as considered in [52]. Our model can be used to extract
the main features of multilayer transportation networks [53] or to study the existence
of several congestion regimes in both synthetic and real data [21] and investigate how
this changes, varying βα. Finally, in our experiments, we fixed the weight of inter-super
nodes to be small. Potentially, one could suitably increase this to account for the cost of
changing transportation modes within a journey and use our model to see how optimal
trajectories change. This would be relevant in scenarios where the passengers’ comfort
contributes to the total transport cost. To facilitate future analysis, we provide an open
source implementation of our code at https://github.com/cdebacco/MultiOT (accessed
on 28 May 2021).
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Appendix A

Figure A1. Additional results on synthetic data. We show the Gini w.r.t. the optimal FBC (top)
and the total percentage flux f2 on layer 2 (bottom) vs. β2 (x axis), for synthetic 2-layer networks
generated as in Section 3.1; w2 = 0.2, 0.8 (left,right), β1 = 0.5 in all cases, except for the case where
β2 = 1, for which β1 = 1. This cases is a shortest path-like baseline. Markers are averages over 20
network samples and 50 source matrix samples.
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Figure A2. Additional example of optimal paths in the city of Bordeaux for a bus and tram network.
Here p = 0.0, w2 = 0.2, β1, β2 = (0.5, 1.1), (1.0, 1.0) (left,right). The width of the edges is proportional
to the optimal ||Fe||2. Gini1 is calculated w.r.t. to the flux on layer 1; f2 = ∑e∈E2

||Fe||2/(∑e∈E1
||Fe||1 +

∑e∈E2
||Fe||2).
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49. Kujala, R.; Weckström, C.; Darst, R.K.; Mladenović, M.N.; Saramäki, J. A collection of public transport network data sets for

25 cities. Sci. Data 2018, 5, 1–14. [CrossRef] [PubMed]
50. Alexander, L.; Jiang, S.; Murga, M.; González, M.C. Origin–destination trips by purpose and time of day inferred from mobile

phone data. Transp. Res. Part C Emerg. Technol. 2015, 58, 240–250. [CrossRef]
51. Wang, P.; Hunter, T.; Bayen, A.M.; Schechtner, K.; González, M.C. Understanding road usage patterns in urban areas. Sci. Rep.

2012, 2, 1001. [CrossRef]
52. Gao, L.; Shu, P.; Tang, M.; Wang, W.; Gao, H. Effective traffic-flow assignment strategy on multilayer networks. Phys. Rev. E 2019,

100, 012310. [CrossRef]
53. Orozco, L.G.N.; Battiston, F.; Iniguez, G.; Szell, M. Extracting the multimodal fingerprint of urban transportation networks.

Transp. Find. 2020, 13171. [CrossRef]



PHYSICAL REVIEW RESEARCH 3, 043010 (2021)

Designing optimal networks for multicommodity transport problem
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Designing and optimizing different flows in networks is a relevant problem in many contexts. While a number
of methods have been proposed in the physics and optimal transport literature for the one-commodity case,
we lack similar results for the multicommodity scenario. In this paper we present a model based on optimal
transport theory for finding optimal multicommodity flow configurations on networks. This model introduces a
dynamics that regulates the edge conductivities to achieve, at infinite times, a minimum of a Lyapunov functional
given by the sum of a convex transport cost and a concave infrastructure cost. We show that the long-time
asymptotics of this dynamics are the solutions of a standard constrained optimization problem that generalizes
the one-commodity framework. Our results provide insights into the nature and properties of optimal network
topologies. In particular, they show that loops can arise as a consequence of distinguishing different flow types,
complementing previous results where loops, in the one-commodity case, were obtained as a consequence of
imposing dynamical rules on the sources and sinks or when enforcing robustness to damage. Finally, we provide
an efficient implementation of our model which converges faster than standard optimization methods based on
gradient descent.

DOI: 10.1103/PhysRevResearch.3.043010

I. INTRODUCTION

Optimizing networks for the distribution of quantities such
as passengers in a transportation network or data packets in
a communication network is a relevant matter for network
planners. Similar problems arise in natural systems such as
river basins and vascular networks. A variety of models have
been proposed to study these systems within an optimization
framework [1–4]. The standard goal is to find the values of
flow and the network topology that minimize a transportation
cost. A common choice for this cost is the total power dis-
sipation [1,2,5–9], but alternatives can be adopted depending
on the application; see, for instance, Ref. [10]. More recently,
different approaches based on a dynamical adaptation of net-
work properties coupled with conservation laws have been
proposed [5,6]. These models can be reformulated within the
framework of optimal transport theory, following the work in
Refs. [11–17]. Very efficient computational techniques have
been developed for solving such optimal transport-based mod-
els [13–15].

In all these systems there is a unique indistinguishable flow
traveling through the network. However, it may occur that

*alessandro.lonardi@tuebingen.mpg.de
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flows of different types compete in the network infrastructure;
yet all the physical models mentioned above have been devel-
oped for one type of flow only. One could use these methods
to analyze multicommodity problems either by aggregating
together all flow types or by treating them independently.
In either case, one loses the important information of how
interacting commodities affect the flow, which constitutes the
multicommodity character of these settings. Multicommodity-
specific methods that rely on standard optimization suffer
from high computational costs caused by the simultaneous
assignment of multiple interacting paths to minimize a global
cost function. As a consequence, existing multicommodity
flow algorithms rely on ignoring these interactions, or use
greedy heuristics and approximations that lead to suboptimal
solutions [18]. Approaches based on statistical physics and
message-passing algorithms have improved results [19,20] but
remain computationally costly.

In this paper, we propose a model to design the topol-
ogy of optimal networks where multiple resources are moved
together. This is based on principles of optimal transport
theory similar to those studied in Refs. [16,17]. Assuming
potential-driven flows, this optimal design problem is posed
as that of finding the distribution of multicommodity fluxes
that minimize a global cost functional, or equivalently, as that
of finding the optimal edge conductivities. The cost functional
is the multicommodity extension of the optimal transport Lya-
punov functional proposed in Refs. [14,15]. It is given by
the sum of the convex cost incurred in transporting all the
commodities across the network, summed to a concave cost
proportional to the total flux on the network. This second term
can be interpreted as the cost of building and maintaining the
transport infrastructure and controls traffic congestion on the

2643-1564/2021/3(4)/043010(12) 043010-1 Published by the American Physical Society
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network edges either by distributing fluxes on many edges or
by concentrating them on fewer edges following a principle of
economy of scale.

Additionally, we show that the problem of minimizing the
proposed cost functional is equivalent to a constrained opti-
mization problem that generalizes the one-commodity case.
The optimal distribution of fluxes is used to identify the
optimal network topology by discarding edges where con-
ductivities are small. Within this optimization framework,
numerical experiments supported by analytical evidence lead
to the important result that optimal network topologies may
have loops as a consequence of distinguishing flow types.
Generally, loops are pervasive in both natural and anthropic
networks [7,21–24]. However, in one-commodity settings,
several studies have shown that trees are often optimal [1,2],
while few results show that loops can be obtained by
fluctuating flows or by aiming at increased robustness to
damage [3,5,7]. This implies either changing the type of cost
function or introducing stochasticity in the sources and sinks.
Instead, in our multicommodity model, loops emerge natu-
rally as a consequence of the presence of different flow types.

In order to minimize the highly nonlinear and nonconvex
cost functional mentioned before, we propose a particular
set of dynamical equations for the edge conductivities, gen-
eralizing to a multicommodity scenario those proposed in
Refs. [16,17], and find their stationary solution. We demon-
strate that the cost functional is indeed a Lyapunov functional
(i.e., it is strictly decreasing along the solution trajectories)
for the proposed dynamics. Altogether, our results extend the
theoretical insights of two separate lines of literature, optimal
transport and network dynamics. Two principled algorithms
for solving the multicommodity problem are proposed. They
have similar computational complexity that largely improves
on that of techniques based on gradient descent or Monte
Carlo methods, thus making the model scalable to large data
sets and the only computationally viable optimization alterna-
tive for large problems.

II. MODEL

Consider a graph G made of a set of N nodes V intercon-
nected by a set E of E edges. We want to model transport
through the network of M � 1 commodities, each identified
by a color. The inflow-outflow rate of each commodity is
given by a vector Si ∈ RN such that

∑
v Si

v = 0 for all i =
1, . . . , M to ensure global mass preservation. Let the “colored
flux” Fe = (F 1

e , . . . , F M
e ) be a vector with entries F i

e , which
represent the commodities flux passing through edge e. In
standard one-commodity cases, the flux per unit time could
represent a water or an electrical current and typically is
“colorless”, i.e., Fe is a scalar quantity. In turn, the components
F i

e can be thought of as fluxes of immiscible substances travel-
ing through the same edge. Denote with B the signed network
incidence matrix, with entries Bve = +1,−1 if node v ∈ V
is the starting or ending point of edge e ∈ E , respectively, and
zero otherwise. We require the flux to obey the “colored” local
Kirchhoff’s law:∑

e∈E
Bve F i

e = Si
v, ∀v ∈ V, ∀i = 1, . . . , M, (1)

FIG. 1. Multicommodity problem illustration for M = 3. Left:
topology of the graph; numbers inside nodes correspond to their in-
dices v. Right: an admissible configuration of fluxes. Here, numbers
inside nodes correspond to their mass inflow, and we assume each
commodity to have its mass concentrated in a single vertex; in the
gray node, no mass is entering or exiting, i.e., Si

3 = 0 for every i.
Widths of edges are drawn proportional to F i

e , and in the case where
all F i

e = 0, links are not drawn; arrows denote the direction of the col-
ored fluxes F i

e . Notice how blue mass and orange mass share the same
edges, thus creating possible traffic congestion. The inflow-outflow
rates of each color are S1 = (1, 0, 0, −1) (blue), S2 = (0, 3, 0,−3)
(green), and S3 = (−2, 0, 0, 2) (orange).

where each edge e = (u, v) has length �e > 0. We could as-
sume that the components (colors) of the flux derive from
differences in a colored potential (pressure) defined on nodes
pi

v , and a colored conductivity μi
e:

F i
e = μi

e

�e

(
pi

u − pi
v

)
. (2)

The commodity index i can be any arbitrary attribute of
the mass traveling through the network without impacting
the validity of our model. In fact, the important idea behind
multicommodity optimization is that different types of mass
interact while being transported in a shared infrastructure, and
a suitable cost needs to be minimized. In Fig. 1 we show a
simple example of the model construction.

Up to this point, we have a set of independent one-
commodity flows, one per color i. Taking them separately and
then superimposing each individual flux or conductivity a pos-
teriori would be a naive strategy, neglecting possible complex
interactions. For example, it may be more convenient to gather
multiple flows through one channel with high capacity (the
conductivity μi

e). More generally, the optimal network design
mechanism must take into account all commodities at once.
Deciding how this should be done is an open problem in the
context of optimal transport theory, the approach we take here.

A. Introducing a shared conductivity

Our first model assumption is that all the conductivities
must be equal, namely,

μi
e

!= μ̂e, ∀e ∈ E, ∀i = 1, . . . , M. (3)

The quantity μ̂e plays the role of a colorless conductivity.
Given that the conductivity can be seen as proportional to
the size of an edge, Eq. (3) can be interpreted as allocat-
ing the same edge capacity for the different colors. This is
a reasonable assumption in systems for which there is no
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priority between commodity types or users. In communication
networks such as the Internet, this captures the situation where
all users share the same bandwidth, and no privileged user
exists who has access to more bandwidth, which is often the
case. Notice, however, that the flux F i

e still depends on the
color, because the difference in potential does. This implies
that users can transfer different amounts of data packages,
with potential for traffic congestion when they overload the
network, e.g., when streaming videos. This is one of the many
possible alternatives of coupling between colors. Other more
complex choices could be made, for instance, by introduc-
ing an explicit coupling involving the fluxes or opting for
controlling some global functions of the conductivities, e.g.,
their sum or the magnitude of their fluctuations across colors.
However, we find that our choice, while being analytically
convenient, allows for a rigorous generalization of the one-
commodity case with fixed and fluctuating loads [1–3,5,7] and
leads to rich topological behaviors, as we show below.

B. The dynamics

Having defined how colors move through the network, we
now turn our attention to describing the mechanism to design
the network. Formally, we propose the following dynamics for
the colorless conductivity:

˙̂μe(t ) = μ̂β
e (t )

||�Puv||22
�2

e

− μ̂e(t ), ∀e = (u, v) ∈ E, (4)

where we define �Puv as a vector of pressure differences
with entries �Pi

uv = pi
u − pi

v and ||�Puv||22 = ∑M
i=1(pi

u −
pi

v )2. Note that pi, and thus �Puv , are implicit functions of
μ̂(t ) because of Eqs. (1) and (2).

The parameter β determines the type of optimization as-
sociated with this dynamics. In the standard one-commodity
case, for β < 1 one aims at minimizing traffic congestion
and obtains loopy topologies; for β > 1 the aim is to con-
solidate paths, and optimal networks are trees. The case β =
1 is shortest-path-like. This dynamics describes a feedback
mechanism. If the total flux through an edge is large, its
conductivity increases. If the flux decreases, the conductivity
decreases over time and becomes negligible when no flux
occurs. The system of Eqs. (1)–(4) represents our model for
multicommodity flow optimization.

In the presence of only one commodity, our model is sim-
ilar to the dynamics used to solve the basis pursuit problem
on networks [15] and as a principled mechanism for filtering
networks from redundancies [16]. However, both cases are
limited to one-commodity scenarios. A similar dynamics is
also proposed in Ref. [5], where the authors focus on the
average time evolution of a stochastic model with fluctuating
loads. Analogously to these one-commodity cases, one can
efficiently solve the system in Eqs. (1)–(4) using optimized
numerical methods; however, in our case the complexity in-
creases with the number of colors (see Appendix E 2 for
more details). Our model also bears a close mathematical
relationship to a recent work, where similar ideas have been
studied in a multicommodity setup [17]. Beyond the fact that
this work focuses on the case β = 1 (i.e., shortest-path-like)
and thus on a convex optimization scenario, there is one other
main conceptual difference compared with our model. Notice

that Eq. (4) couples together the various colors by means of
f (�Puv ) = ||�Puv||22, i.e., the 2-norm squared of the pressure
difference. Instead, they consider the 1-norm and 2-norm (not
squared). Analyzing the solutions of the dynamics under dif-
ferent f (�Puv ) is an interesting avenue for future work.

The key insight of optimal transport theory is that Eq. (4)
admits a a Lyapunov functional (a functional decreasing in
time along solution trajectories) having the nice interpretation
of being the transportation cost:

Lβ ({μ̂e}) = 1

2

∑
i,v

pi
v ({μ̂e})Si

v +
∑

e �eμ̂
2−β
e

2(2 − β )
, (5)

where pi
v ({μ̂e}) is a function implicitly defined as the solution

of Eqs. (1) and (2) when imposing Eq. (3). The first term cor-
responds to the energy dissipated during transport, and it can
be interpreted as the operating costs, whereas the second term
is the cost of designing the infrastructure. The equilibrium
point of μ̂e is stationary at the previous Lyapunov functional,
and for β � 1 it acts also as the global minimizer due to its
convexity. For β > 1, while the first term (operating cost) is
convex, the second (infrastructural cost) is not. As a conse-
quence, the transportation cost is not convex; thus in general
the functional will present a rich landscape with several local
minima towards which the dynamics will be attracted.

We formally show that Eq. (5) defines a well-defined
Lyapunov functional for the dynamics of Eq. (4) in
Appendix A 1, following similar arguments as in Ref. [17].
This extends the work of Bonifaci et al. [11], where a similar
functional has been proposed to complete the characterization
of the dynamics regulating slime molds’ evolutionary feed-
back mechanism.

C. Mapping to standard optimization setups

Although not evident, our dynamics is connected with an
optimization problem analogous to previous models for the
one-commodity case [1,2]. Specifically, the stationary solu-
tions of our system minimize the network total transportation
cost J = 1

2

∑
e∈E

�e
μ̂e

||Fe||22 subject to the global constraint of

constant material cost
∑

e∈E �e μ̂2−β
e = K2−β and local Kirch-

hoff’s law on nodes as in Eq. (1) [using Kirchhoff’s law, one
can show that J is equivalent to the first term in Eq. (5); for
more details, see Appendix A 2]. Formally, the optimization
problem is

{μ̂∗
e}, {F ∗

e } = arg min{μ̂e},{Fe}

{
1

2

∑
e∈E

�e

μ̂e
||Fe||22

}
, (6)

such that ∑
e∈E

�e μ̂2−β
e = K2−β, (7)

∑
e∈E

Bve F i
e = Si

v, ∀v ∈ V, ∀i = 1, . . . , M. (8)

This optimization problem is analogous to that in Ref. [2],
except here the flux appears in terms of its 2-norm. As in the
one-commodity case, this leads to an optimal configuration
where the conductivities similarly scale with the fluxes,

μ̂e ∼ ||Fe||2/(3−β )
2 , (9)

043010-3



LONARDI, FACCA, PUTTI, AND DE BACCO PHYSICAL REVIEW RESEARCH 3, 043010 (2021)

and the proportionality constant can be fully determined an-
alytically (see Appendix B for detailed derivations). Using
Eq. (9), we can rewrite the total transportation cost in terms
of the flux as

J� =
∑
e∈E

�e ||Fe||�2 , (10)

where � = 2 (2 − β )/(3 − β ), which is analogous to the op-
timization problem of Banavar et al. [1], where there was no
conductivity in the setup. Notice that all these results gener-
alize the one-commodity case [1,2] by means of the 2-norm
||Fe||2 of the colored flux. If there were only one color, and
thus ||Fe||22 = F 2

e , our model would reduce exactly to them.
Similar relations can be obtained with a stochastic approach
such as the one proposed in Refs. [3,7,8], but by considering
ensemble averages instead of the 2-norm of the fluxes. In these
works, the authors study a setup where sources’ and sinks’
positions are extracted randomly from a distribution on the
network nodes. They also find loops in nontrivial regimes.
While the mathematical formulations show some similarities,
there are main conceptual differences between these models
and ours. These approaches are stochastic; thus the main
quantities are calculated with ensemble averages, and loops
arise as a consequence of stochastic fluctuations or when
randomly cutting edges in the network. Instead, our problem
is deterministic, and loops arise as a result of an optimization
process while assuming a shared conductivity.

Solving this optimization problem directly by means
of gradient descent is computationally expensive (see
Appendix E 1). Methods relying on Monte Carlo schemes [2]
can also be computationally demanding, and they are valid
only when the optimal topology is known to be a tree. Instead,
we derive update rules which have similar complexity to that
of finding the steady states of our dynamics, and can be
implemented with efficient numerical solvers. They consist in
iterating between updating conductivities and fluxes as

μ̂e = ||Fe||2/(3−β )
2( ∑

e �e ||Fe||2(2−β )/(3−β )
2

)1/(2−β ) K, (11)

F i
e = μ̂e

�e

(
pi

u − pi
v

)
, (12)

complemented with Kirchhoff’s law in Eq. (1), and can be
put within the framework of fixed-point iterations. This gen-
eralizes results obtained adopting a similar approach for the
one-commodity case [2,3]. We make available an open-source
implementation of the two approaches which we summarize
here: finding the steady state of the dynamics by solving the
system of Eqs. (1)–(4) (Dynamics) and extracting the solu-
tion of the optimization problem with the iterative updates of
Eqs. (11) and (12) (Optimization). We provide a pseudocode
for each of these in Algorithms 1 and 2 in Appendix E. They
have similar computational complexity that scales as O(M N2)
and are much faster than techniques based on gradient de-
scent; see Appendix E 1.

III. ANALYSIS OF THE OPTIMAL TOPOLOGIES

A. Optimal topologies may have loops

Now, we address the important question of which net-
work topologies are optimal for the cost in Eq. (10). For
the analogous models in the one-commodity case, there is a
phase transition at β = � = 1 where optimal networks pass
from being trees (1 < β < 2, 0 < � < 1) to containing loops
(0 < β < 1, 1 < � < 4/3) [1,2]; see Ref. [9] for a thorough
investigation of this transition. Remarkably, we obtain that in
the multicommodity case, loopy structures can be optimal also
in the regime where trees were optimal in the previous models,
depending on the values and locations of sources Si

v and on the
edge lengths �e.

The loopy structures in what was previously a treelike
regime arise from the colored Kirchhoff’s law (1), distinguish-
ing different commodities entering and exiting a node. Had
we imposed a similar but colorless constraint

∑
i

∑
e BveF i

e =∑
i Si

v , trees would have been optimal.

B. Phase diagram tree-loops (S fixed)

To illustrate this, we consider the simple triangular loop
G(V = {1, 2, 3}, E = {a, b, c}) represented in Fig. 2, with
M = 2 commodities moving in the network and lengths � =
(�a, �b, �c). For simplicity we focus on the phase diagram in
{�e} by fixing S, but similar reasoning applies when doing
the opposite. We set S1 = (+1,−1, 0), S2 = (−1,+2,−1).
For this simple case, Kirchhoff’s law allows only for three
possible tree topologies Ti, i = 1, 2, 3; these are shown at
the bottom right of Fig. 2. By solving Kirchhoff’s law,

FIG. 2. Toy model where loops are optimal. Here, M = 2;
hence only two colors move though the network. The triangle
network has source vectors S1 = (+1, −1, 0), S2 = (−1,+2, −1),
�a = �b = 1.5, �c = 1. The gray patches denote the net loads of
each node when ignoring the colors. At the bottom we show
one loopy solution on the left and three trees on the right. The
green and blue arrows denote the orientation of the loop defined
in Appendix D and of the edges, respectively. In detail, the loop
has fluxes Fa = (0, −1), Fb = (0, −1), Fc = (−1, 0), the leftmost
tree has Fa = (0, 0), Fb = (0, −2), Fc = (−1, +1) (similarly for the
other two). The green star refers to the topology of the toy model
used in Fig. 3.
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FIG. 3. Phase diagram in �. �crit denotes the minimum value of � above which loops are optimal. The setup is the same as for the toy model
in Fig. 2. Values of �crit are found by solving Eq. (13); �c = 1. The area under the triangular surface with white background is not allowed
as the triangular geometry is not defined there. One can notice that there is an entire region where �crit � 1; inside it, loops are optimal. On
the right-hand side of the figure we show three different topologies, i.e., choices of �a, �b for which optimal solutions can be loopy; these are
associated with the markers drawn on the heat map, and the green star is the configuration of the toy model in Fig. 2. In particular, running our
dynamics on the pink-diamond graph (respectively, the yellow-plus graph) leads to a loopy configuration for � > �crit or to a tree if � < �crit .
Running our dynamics on the blue-cross graph returns always since its �crit is equal to 1. Widths of the edges are proportional to the final
||Fe||2, and edges that are not visible have negligible fluxes; nodes’ dimensions are proportional to their inflowing mass. In the bottom right
portion of the panel we report the values of �crit obtained solving Eq. (13) fixing �a, �b as given by the markers.

we can write all the fluxes as a function of Fa = (F 1
a , F 2

a ).
Then, by choosing two arbitrary values of F 1

a , F 2
a we pro-

pose a loopy solution GL to compare against the trees; this
is the leftmost bottom triangle in Fig. 2. We show that there
are values of 0 < � < 1 for which this loopy solution has
lower transportation cost than any of the trees. One can
compute all the costs using Eq. (10) (see Appendix C for
details) and then find values of {�∗ = (�∗

a, �
∗
b, �

∗
c ), F ∗

a , �∗} for
which

J� (GL; �∗, F ∗
a , �∗) � min{J� (Ti; �

∗, F ∗
a , �∗) : i = 1, 2, 3}

(13)

holds. To find an example solution, one could fix certain val-
ues for these parameters and then numerically solve Eq. (13);
for a few simple cases this can also be done analytically.
We show an example phase diagram obtained by varying �

in Fig. 3, where we plot the values of �crit such that for
� � �crit , the cost J� (GL ) is optimal, i.e., we have a phase
transition between trees to loopy optimal topologies. Notice
that such values of �crit depend on the selected values of
(�, Fa) and that optimal loopy solutions are not guaranteed
to exist for any arbitrary configuration of these values. This
can be numerically investigated using similar reasoning to that
used for the case above. The important point here is that we
could find at least one setting of (�, Fa) for which we have
loopy solutions in the nontrivial regime 0 < � < 1. Similar
arguments can be used to find phase diagrams in S when fixing
� (see Appendix C, Fig. 5).

C. Phase diagram tree-loops (lengths fixed)

To make more clear the consequences of the implicit in-
teraction between different fluxes when imposing a shared
conductivity and the optimization process is run, we show
results on a simple synthetic toy model where we vary the
load of one color while keeping the others fixed.

Specifically, we study the triangle topology of Fig. 2 and
consider two different configurations of S. The first has S1

1 =
−S1

3 = 1 for the yellow commodity, i.e., one unit of mass of
type i = 1 is moving from node 1 to node 3, while the purple
commodity has S2

2 = +2 and S2
3 = S2

1 = −1, i.e., two units of
mass of type i = 2 are injected in node 2 and are equally split
between destination nodes 1 and 3. This corresponds to the
green triangle in the phase diagram of Fig. 4(a). The second
configuration has the same sources and sinks for the yellow
commodity, while the purple mass is doubled, i.e., S2

2 = +4
and S2

3 = S2
1 = −2. This corresponds to the red triangle in

Fig. 4(a). As we can see from Fig. 4(b), both the optimal
network topologies and the fluxes of individual colors differ
in the two configurations. The important point here is that
the fluxes of the yellow commodity change, even though its
forcing S1 does not change between the two configurations.
This is a consequence of having distinct commodities sharing
a common infrastructure: Acting solely on the purple mass
impacts also the path taken by the yellow mass and, conse-
quently, the overall optimal network topology.

Additionally, the way the topology changes between these
two configurations depends on the exponent �. In this simple
scenario, we can have either a tree or a loop at � = 0.6
(� < �crit � 0.77) or � = 0.8 (� > �crit), respectively; see
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(a) (b) (c)

FIG. 4. Interaction between commodities. The figure shows how changing the load of one commodity influences the path taken by others.
(a) We plot the heat map of �crit obtained using Eq. (13), with S1

1 = −S1
3 = +1 and for different configurations of the purple commodity

(i = 2): (i) S2
2 = +2, S2

3 = S2
1 = −1; (ii) S2

2 = +4, S2
3 = S2

1 = −2. The areas under the white surface correspond to regions where node 1 is
a sink, respectively, nodes 2 and 3 are sources, for the purple mass. The green and the red triangular markers denote the configurations we
discuss in Sec. III C and in the rest of the panel. (b) Optimal graphs for the green and the red triangle, fixing � = 0.6 and � = 0.8. The width
of each edge e is proportional to |F i

e | for each color. (c) One-commodity solutions obtained injecting only the yellow or the purple mass in the
triangle network.

Fig. 4(b). In particular, the case of � = 0.8 is a simple ex-
ample of how the routing mechanism is responsible for the
generation of loops in a multicommodity setting. Finally, if
we were to consider two separate unicommodity scenarios and
solve the optimization for the two colors independently, we
would have obtained a different result, as shown in Fig. 4(c).
In this case, the yellow remains the same in the two configu-
rations, while the purple would simply double the amount of
fluxes along edges, but the set of edges being used would stay
the same.

In addition to the numerical analysis presented to study
the generation of loops, in Appendix D we adapt to our
colored case the proof of Proposition 2.1 given by Xia [25],
where it was demonstrated that one-commodity (i.e., color-
less Kirchhoff’s law) optimal transport paths are trees. Here,
we show that for our model, optimal networks may contain
loops.

IV. CONCLUSIONS

Although we have a rigorous theoretical understanding of
the behavior of one-commodity flows in networks, compara-
ble theoretical insights for flows of different types have been
lacking. Here, we propose a model for multicommodity flows
that extends and generalizes various results obtained for the
one-commodity case. It assumes that all the commodities have
the same priority by imposing their conductivities to be equal
and that their dynamics is regulated by the 2-norm squared
of the fluxes. By drawing from theoretical results of optimal
transport theory, the equilibrium solutions of our dynamics are
also stationary points of a cost function that can be interpreted
as the sum of operating and infrastructural costs. As we tune a
parameter β, our dynamics can solve various types of routing
optimization problems. Its numerical implementation is effi-
cient and scalable to large systems.

Remarkably, our model shows how optimal loopy topolo-
gies can arise from simple dynamical rules. We explain how
this emerges as a consequence of the colored Kirchhoff’s law
and how the theoretical proof valid in the one-commodity
case fails when fluxes are vectors. We provide example phase
diagrams on a simple toy model that illustrates how optimal
topologies evolve from being trees to containing loops.

Our model is applicable to all situations where it is relevant
to distinguish flow types and to consider how these interact.
One important example of such an instance is in commu-
nication networks where packets of information need to be
delivered at different destinations.

In our formulation the underlying network topology is
given in terms of sets of nodes and edges. While our model
allows for edge removal (and node removal as a consequence),
it does not provide a mechanism for adding new connections.
In order to allow for this, the natural modification of our
approach would be to consider a continuous formulation as
in Refs. [15,16]. In this case, we would have no underlying
topology to start with, except the presence of source and
sink nodes at given locations in space. This is an interesting
direction for future work.

In addition to solving multicommodity problems, our
model allows us to draw a rigorous mapping between two
different formalisms. In fact, while both the physics and op-
timal transport communities are actively investigating these
systems, we still miss a clear connection between them, even
for the one-commodity case. We make a first attempt to fill this
gap by showing how our dynamics maps to a standard opti-
mization setup while also generalizing to the multicommodity
case. Furthermore, we deploy two numerical methods that
have lower computational complexity compared with others
based on gradient descent.

We expect that our formalism can be further extended
in the future to accommodate more sophisticated interaction
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between commodities or in multilayer networks [26] thus
better representing specific application scenarios. Similarly,
modifying the dependence of the fluxes in driving the
dynamics and investigating possible mappings to suitable op-
timization setups are natural next steps.

We foresee that the insights gained into the structure of
optimal topologies and in combining principles of optimal
transport and physics will open the way to further studies
targeting these systems. To facilitate this, we provide an open-
source implementation of our code [27].
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APPENDIX A: THE LYAPUNOV FUNCTIONAL

1. The Lyapunov functional is well defined

Here, we prove that the functional proposed in Eq. (5) is
a Lyapunov for the dynamics in Eq. (4) for 0 < β < 2. To
do that, we follow the derivations proposed in Ref. [17] for a
similar problem. We need to show that (i) Lβ � 0, (ii) L̇β � 0
and L̇β = 0 if and only if {μ̂e} is a stationary point for the
dynamics. The first condition is trivial. In order to prove the
second one, we first define the quantity

Lvu =
∑

e

Bve(μ̂e/�e)Bue, (A1)

which is the entry (u, v) of the Laplacian of a graph with
adjacency matrix with entries Auv = μ̂uv/�uv . We can thus
rewrite Eqs. (1)–(3) as

∑
e,u

Bve
μ̂e

�e
Bue pi

u = Si
v, ∀v ∈ V, ∀i = 1, . . . , M, (A2)

∑
u

Lvu pi
u = Si

v, ∀v ∈ V, ∀i = 1, . . . , M. (A3)

Now, we claim that for each edge

∂μ̂eLβ = 1

2

[
�eμ̂

1−β
e + ∂μ̂e

(∑
i,u

Si
u pi

u

)]
(A4)

claim= �e

2

(
μ̂1−β

e − ||�Pe||22
�2

e

)
. (A5)

This identity can be obtained differentiating for μ̂e both sides
of Eq. (A3). This yields for all e, v, i the following:∑

u

(∂μ̂e Lvu) pi
u +

∑
u

Lvu
(
∂μ̂e pi

u

) = 0, (A6)

∑
u

Lvu
(
∂μ̂e pi

u

) = −
∑

u

Bve(1/�e)Bue pi
u. (A7)

Multiplying both sides of Eq. (A7) by pi
v , summing over

v, and exploiting again Eq. (A3) on the left-hand side, we

obtain ∑
v,u

pi
vLvu

(
∂μ̂e pi

u

) = −
∑
v,u

pi
vBve(1/�e)Bue pi

u, (A8)

∂μ̂e

(∑
u

Si
u pi

u

)
= −�e

(
�Pi

e

)2

�2
e

, (A9)

with �Pe being an M-dimensional vector of entries �Pi
e =

�Pi
uv = pi

u − pi
v , with e = (u, v). Summing over i gives

∂μ̂e

(∑
i,u

Si
u pi

u

)
= −�e

||�Pe||22
�2

e

; (A10)

notice that the term in parentheses on the left-hand side is
exactly the “operating cost” of Eq. (5). Using Eq. (A10),
the claim in Eq. (A5) immediately follows. It is in force of
Eq. (A5) that we see that the Lie derivative of Lβ is not
positive. Namely,

L̇β =
∑

e

(∂μ̂eLβ ) ˙̂μe (A11)

= −
∑

e

�e

2
μ̂β

e

(
μ̂1−β

e − ||�Pe||22
�2

e

)2

� 0, (A12)

where ˙̂μe has been substituted with the right-hand side of
Eq. (4). Moreover, L̇β = 0 if and only if μ̂e = 0 or μ̂3−β

e =
μ̂2

e ||�Pe||22/�2
e = ||Fe||22. This exact condition can be recov-

ered setting ˙̂μe = 0 in Eq. (4) and exploiting Eq. (2). In
particular, for each e edge we get

μ̂1−β
e =

∑
i

(
pi

u − pi
v

)2

�2
e

=
∑

i

(
�e F i

e

μ̂e

)2 1

�2
e

, (A13)

μ̂3−β
e = ||Fe||22. (A14)

2. Equivalence between the Lyapunov transportation
cost and the dissipated energy

We prove that the transportation cost J = 1
2

∑
e

�e
μ̂e

||Fe||22
is indeed identical to the first term of the Lyapunov functional
of Eq. (5). In fact, combining Eqs. (1)–(3), we can rewrite
Kirchhoff’s law as∑

e,u

Bve
μ̂e

�e
Bue pi

u = Si
v, ∀v ∈ V, ∀i = 1, . . . , M. (A15)

Multiplying both sides of the equation for pi
v and summing

over i and v yields∑
e

�e

μ̂e
||Fe||22 =

∑
i,v

pi
vSi

v, (A16)

which is the equality we wanted to show.

APPENDIX B: MAPPING THE DYNAMICS TO AN
OPTIMIZATION PROBLEM

We show that a constrained optimization problem with a
cost function representing the total dissipated energy over the
whole network has a solution with the same scaling as in
Eq. (9).
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Formally, consider the constrained optimization problem
of Eqs. (6)–(8). This can be turned into an unconstrained
optimization problem by introducing Lagrange multipliers:

Jβ ({μ̂e}, {Fe}) = 1

2

∑
e

�e

μ̂e
||Fe||22

+ λ

2(2 − β )

(∑
e

�eμ̂
2−β
e − K2−β

)

+
∑
v,i

χ i
v

(∑
e

Bve F i
e − Si

v

)
. (B1)

Here, we introduced a multiplicative factor 1/2(2 − β ) for the
Lagrange multiplier λ to ease calculations. Taking the partial
derivatives with respect to μ̂e and setting them to zero (the
optimality condition on the derivative of Jβ with respect to Fe

will be treated later on) yields, for each edge,

λ μ̂3−β
e = ||Fe||22 → μ̂e = 1

λ1/(3−β )
||Fe||2/(3−β )

2 . (B2)

This is the same scaling relationship obtained from the sta-
tionary state of the dynamics in Eq. (9), up to a multiplicative
constant. It is also the natural colored generalization of the
one-commodity case presented in Refs. [1,2,10], where in-
stead of having ||Fe||2 one has the absolute value |Fe|, as Fe

is a scalar quantity there. Imposing the global constraint in
Eq. (7) allows us to determine the value of the multiplier λ:

∑
e

�eμ̂
2−β
e =

∑
e

�e
||Fe||2(2−β )/(3−β )

2

λ(2−β )/(3−β )
= K2−β, (B3)

yielding

λ = 1

K3−β

(∑
e

�e ||Fe||2(2−β )/(3−β )
2

)(3−β )/(2−β )

. (B4)

Substituting back into Eq. (B2), we obtain

μ̂e = ||Fe||2/(3−β )
2(∑

e �e ||Fe||2(2−β )/(3−β )
2

)1/(2−β ) K. (B5)

Setting γ = 2 − β, we get the scaling

μ̂e ∼ (||Fe||22
)1/(1+γ )

, (B6)

which is analogous to that of the one-commodity case in
Eq. (5) of Ref. [2]. The same exact scaling can be recovered
from our dynamics by setting ˙̂μe = 0 as shown in Eqs. (A13)
and (A14).

The total dissipation is obtained by substituting Eq. (B5)
inside Eq. (6), leading to

Jβ = 1

2K

(∑
e

�e ||Fe||2(2−β )/(3−β )
2

)(3−β )/(2−β )

(B7)

= 1

2K

(∑
e

�e ||Fe||2γ /(1+γ )
2

)(1+γ )/γ

. (B8)

This cost is again analogous to that of the one-commodity
case: Eq. (6) of Ref. [2] for γ = 2 − β. Using similar argu-
ments, i.e., noticing that the function x(3−β )/(2−β ) = x(1+γ )/γ

is monotonically increasing for 0 < γ = 2 − β < 2, the orig-
inal minimization problem reduces to that of minimizing with
respect to {Fe} the cost of Eq. (10):

J� ({Fe}) =
∑

e

�e ||Fe||2(2−β )/(3−β )
2 =

∑
e

�e ||Fe||�2 , (B9)

where � = 2(2 − β )/(3 − β ) = 2γ /(1 + γ ), which is analo-
gous to the model of Banavar et al. [1]. Lastly, we can set to
zero also the derivative with respect to F i

e in Eq. (B1):

∂Jβ

∂F i
e

= �e

μ̂e
F i

e + Bue χ i
u + Bve χ i

v (B10)

= �e

μ̂e
F i

e + Bue
(
χ i

u − χ i
v

) != 0, (B11)

→ F i
e = − μ̂e

�e
Bue

(
χ i

u − χ i
v

)
, (B12)

recovering the classical result stating that the pressure p is
(minus) the Lagrange multiplier obtained when we minimize
the dissipated energy Jβ ({μ̂e}, {Fe}) under the Kirchhoff’s law
constraints.

APPENDIX C: PHASE DIAGRAM FOR A TOY MODEL

Here, we discuss in more detail the computations described
in Sec. III B to enforce the claim that networks with loops can
be optimal for 0 < � < 1. The simple triangular loop of Fig. 2
(top) admits three possible tree topologies Ti, i = 1, 2, 3,
drawn at the bottom right of Fig. 2. Exploiting Kirchhoff’s
law, we write the fluxes as a function of Fa = (F 1

a , F 2
a ). Then,

computing all the costs using Eq. (10), we get

J� (T1) = 2� �b + 2�/2 �c, (C1)

J� (T2) = 2� �a + 2�/2 �c, (C2)

J� (T3) = (�a + �b) 2�/2, (C3)

J� (GL ) = [(
F 1

a

)2 + (
F 2

a

)2]�/2
�a

+ [(
F 1

a

)2 + (
F 2

a + 2
)2]�/2

�b

+ [(
F 1

a − 1
)2 + (

F 2
a + 1

)2]�/2
�c. (C4)

Thus we need to find values of {�∗ = (�∗
a, �

∗
b, �

∗
c ), F ∗

a , �∗} for
which Eq. (13) is satisfied. In practice, the lengths are usually
given in input, and thus we set �a = �b = 3

2 �c, �c = 1; we
then propose F ∗

a = (0,−1). Thus

J� (T1) = J� (T2) = 3

2
× 2� + 2�/2, (C5)

J� (T3) = 3 × 2�/2, (C6)

J� (GL ) = 4. (C7)

Analytically from Eqs. (C5)–(C7) or numerically solving
Eq. (13) (fixing F ∗

a as proposed for GL) one can show that
�∗ � 0.83. Notice that such �∗ is not optimal, in the sense
that for other choices of Fa we may find lower values of the
exponent � enabling loopy networks to be optimal; we denote
the minimum of these values as �crit . Numerically solving
Eq. (13) for the toy model just discussed returns �crit � 0.77,
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FIG. 5. Phase diagram in S. This can be numerically found by
fixing {�e} as in Fig. 2, S1

2 = −1 − S1
3, S2

1 = −2 − S2
3 , while varying

S1
3 and S2

3 . The color bar denotes the value of �crit above which opti-
mal solutions can be loopy. The green star denotes the configuration
of S used in Fig. 2.

as shown in Fig. 3 (green star). However, notice that the
key point of this derivation is that we could find at least
one choice of (�, Fa) for which we have loopy solutions in
the nontrivial regime 0 < � < 1. Indeed, at � = �∗ we have
J� (GL; �) = J� (T1) = J� (T2) = J� (T3) = 4.

The same procedure can be used to find the phase di-
agram of Fig. 5; here, the costs {J (G), J (Ti )} have been
computed fixing the lengths as �a = �b = 3

2 �c, �c = 1, and
using (Fa, S1

3, S2
3 ) as independent variables.

APPENDIX D: TRIMMING LOOPS TO OBTAIN TREES

Any configuration of the edge fluxes {Fe} satisfying the
colored Kirchhoff’s law (1) can be associated with a weighted
graph G(V, E,W ) with weights we = ||Fe||2, where V and
E are the set of nodes and edges of the original input net-
work. Denote with T the optimal tree topologies among these
weighted graphs, i.e., loopless topologies with weights mini-
mizing J� as defined in Eq. (10). These trees (not necessarily
unique) can be obtained by taking a weighted graph GL with
a single loop denoted as L, cutting the loop by trimming one
of its edges, and then redistributing the fluxes passing through
the trimmed edge over the remaining links of L. We assign an
arbitrary orientation ê� to the edges of L so that 〈ê�, ê〉 = ±1,
where the direction ê of each link of a graph is uniquely
determined by its incidence matrix. The edge to be cut is
the one with smallest weight over the edges in the loop with
a negative direction with respect to the graph’s orientation.
Its flux is redistributed over the remaining edges, which now
make a tree. Formally, we assign to the edges of T fluxes F ∗

e
such that their entries are(
F i

e

)∗ = F i
e + 〈ê�, ê〉 F i

min, ∀e ∈ E, ∀i = 1, . . . , M, (D1)

where Fmin = (F 1
min, . . . , F M

min) = arg mine{ �e||Fe||�2 : 〈ê�, ê〉
= −1} and Fe are the fluxes of GL. The orientation of L can
be switched in case the set of edges with negative orientation
is empty. In the one-commodity case, as given by Xia [25],
there is a similar trimming, but with scalar weights on the
tree being F ∗

e = Fe + 〈ê�, ê〉 Fmin, where now all the fluxes are

FIG. 6. Sketch of the trimming procedure described in
Appendix D, on the toy model of Fig. 2. The tree obtained in the
colored case is not optimal, while the one obtained in the colorless
case has lower cost but violates Kirchhoff’s law.

numbers. The key effect of having a scalar trimming is that F ∗
e

can become zero as a result of having a negative orientation
〈ê�, ê〉; in other words, the flux Fmin adds negatively to the
fluxes originally present in GL along the edges in the loop
with negative orientation: If Fmin = Fe, then F ∗

e = 0. Here,
instead, in Eq. (D1) we add a vector. While we might have
that for certain components the flux cancels out, the norm
of the whole vector Fe might not be zero, because not all
the components (colors) cancel. This results from imposing
a colored Kirchhoff’s law.

We illustrate this procedure on the triangle network in
Fig. 2. In particular, Fig. 6 shows how this trimming applies
in the colored case (our case) against a colorless case. The
tree obtained in the colored case is not optimal, while the one
obtained in the colorless case has lower cost but is not valid,
as it violates the constraints enforced by Kirchhoff’s law. The
consequence is that now loops can be the optimal solutions
while in the one-commodity case optimal networks were trees.
Specifically, there exists a �crit ∈ (0, 1) [or βcrit ∈ (1, 2)] such
that we have a phase transition between trees and loopy struc-
tures. The value of �crit depends on (S, {�e}).

APPENDIX E: NUMERICAL IMPLEMENTATION

1. Implementation details and gradient descent

We propose two approaches to solve our problem that are
the natural multicommodity generalization of the approaches
used in Refs. [2,3,5]. One is based on finding the steady
state of the conductivities using Eq. (4) (Dynamics), and one
is based on implementing the iterative update of Eqs. (11)
and (12) (Optimization). The implementations of these meth-
ods are summarized in Algorithms 1 and 2.

These pseudocodes outline our methods; however, prac-
titioners can make further arbitrary choices about what
numerical routines to use in the various steps. In our imple-
mentation, we solved M ordinary differential equations as in
Eq. (4) by means of an explicit Euler method; thus at each
step the local truncation error is approximately proportional
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Algorithm 1. Dynamics.

1: Input: G(V, E ) = adjacency list, nodes coordinates; M;

inflows; 0 < β < 2

2: Initialize: (i) S and (ii) {μ̂e} [e.g., sampling as i.i.d. μ̂e ∼ U (0, 1)]

3: while convergence not achieved do

4: solve Kirchhoff’s law as in Eq. (1) → {Pi
v}

5: update conductivities with a finite difference

discretization of Eq. (4): {μ̂t
e} → {μ̂t+1

e }
6: end while

7: Return: fluxes {F i
e } at convergence, computed using

F i
e = μ̂e(pi

u − pi
v )/�e, e = (u, v)

to �t2, with �t being the difference between two consecutive
time steps, which can be arbitrarily set in the input. Solutions
of Kirchhoff’s law have been computed using a sparse direct
solver.

Lastly, we impose the following convergence criteria (con-
vergence is achieved when these conditions are satisfied):

Dynamics: max
e

∣∣μ̂t+1
e − μ̂t

e

∣∣/�t < τdyn, (E1)

Optimization: max
e

∣∣||Fe||t+1
2 − ||Fe||t2

∣∣ < τopt, (E2)

where τdyn, τopt > 0 are parameters arbitrarily set in the in-
put. In our experiments we use τdyn = 10−3, τopt = 10−5.
To test our methods, we developed a momentum-based gra-
dient descent as a baseline algorithm. This consists in the
component-wise iterative update of the fluxes using(

V i
e

)t = η
(
∂Jβ/∂F i

e

)t + δ
(
V i

e

)t−1
, (E3)(

F i
e

)t+1 = (
F i

e

)t + (
V i

e

)t
, (E4)

with η, δ > 0 fixed increment rates and (V i
e )0 = F i

e . We fixed
the convergence criteria analogously to what done for the
other two methods: maxe |||Fe||t+1

2 − ||Fe||t2|/η < τgd , with
τgd > 0 being a parameter that needs to be set in the input.
In our experiments we set it to τgd = 10−2. From a theoret-
ical point of view, the comparison with a standard gradient
descent method was proposed in light of the equivalence of
our dynamics and a mirror-descent approach for the Lyapunov
functional, as proved for β = 1 in Ref. [28]. The dynamics au-
tomatically preserves positiveness of the conductivities {μ̂e},

Algorithm 2. Optimization.

1: Input: G(V, E ) = adjacency list, nodes coordinates; M;

inflows; 0 < β < 2

2: Initialize: (i) S and (ii) {μ̂e} [e.g., sampling as i.i.d. μ̂e ∼ U (0, 1)]

3: while convergence not achieved do

4: solve Kirchhoff’s law as in Eq. (1) → {Pi
v}

5: update fluxes using Eq. (12)

6: compute μ̂e(Fe) using Eq. (11)

7: end while

8: Return: fluxes {F i
e } at convergence

and thus a large time step can be used. In contrast, using
purely gradient descent approaches, the time step size must
be reduced when some entries of the vector {μ̂e} go to zero.
After running our algorithms until convergence, the original
network is trimmed by removing edges with negligible fluxes.
Formally, we remove links for which ||Fe||2 < τ , with τ > 0
arbitrarily fixed. Typically, as we empirically found, the distri-
bution of ||Fe||2 over the edges is divided into two sets having
values differing by several orders of magnitude. It is thus
straightforward to distinguish which edges are to be trimmed,
i.e., those that have negligible values compared with the rest
of the distribution.

2. Computational complexity

Each temporal step executed in our algorithms requires the
approximate solution of M linear systems of dimension N .
This operation has been carried out by means of a sparse
direct solver (UMFPACK) that performs a LU decomposition
for each column of the right-hand side of Eq. (1). The total
computational complexity of this process scales as O(MN2).
To have a better understanding of this, we tested our models
with several synthetic Waxman networks obtained by placing
N nodes uniformly at random in a square domain of size
1. Nodes are connected with probability p = A exp(−d/αL),
where A, α, L are parameters that we fix arbitrarily to A =
1/4, α = 1/4, and L = 1; d is the Euclidean distance between
a pair of nodes. The matrix S is constructed assigning a total
inflowing mass of 104 at random to M nodes and redistributing
on the nodes of the network proportionally to their inflows.

We test the efficiency of our schemes by measuring the
total running time (in seconds) to reach convergence for differ-
ent values of β, M, N . Results are shown in Fig. 7. We notice
that the two algorithms, Dynamics and Optimization, have
similar computational complexity. Their small running-time
differences are negligible and only due to how convergence
is precisely defined, i.e., how the corresponding parameters
τdyn and τopt are set. The running time is shorter for β < 1
(traffic optimization, loopy) than in the opposite scenario of
β > 1 (minimization of infrastructural cost, treelike). The
case β = 1 is more nuanced, as the cost transitions between
two opposite situations. In this case, Optimization fails to
converge for M/N < 1, if convergence is defined in terms of
variations of ||Fe||2 between iteration steps. This is because
the algorithm gets lost in degenerate local minima, configura-
tions with the same cost but different sets of fluxes. This lack
of convergence suggests that, for β = 1, the energy landscape
around these minima is flat, i.e., there are many configurations
with the same cost but non-negligible differences in their
fluxes. The Optimization routine keeps switching between
these different states. In this case, one can simply pick one
of these many possible solutions as an example local opti-
mum. The dynamics does instead converge. This suggests that
Dynamics is biased towards one of these degenerate solu-
tions. For M/N = 1, Optimization converges with the same
running time as Dynamics, suggesting that as we enlarge M,
the landscape becomes less flat. A possible cause is that by
increasing M the system has more constraints to be satisfied
via Kirchhoff’s law, which reduces the number of possible
degenerate solutions. This claim is also supported by the
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FIG. 7. Computational complexity. (a) Running time (in seconds) as a function of system size N . (b) Running time as a function of the
ratio M/N between the number of commodities and system size. GD denotes gradient descent, implemented with Eqs. (E3) and (E4); we only
show it for β = 0.5 as for the other values it fails to converge within a reasonable time. Similarly, for β = 1 and M/N < 1, Optimization fails
to converge, and hence we only report Dynamics.

behavior of Dynamics’ running time, which does not mono-
tonically increase with M/N in this case, as shown in Fig. 7(b).
These behaviors highlight relevant differences between the

two implementations. Finally, we note that the computational
complexity could in principle be further reduced to O(MN )
using multigrid methods [29]; we do not explore this here.
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[7] E. Katifori, G. J. Szöllősi, and M. O. Magnasco, Damage and
Fluctuations Induce Loops in Optimal Transport Networks,
Phys. Rev. Lett. 104, 048704 (2010).

[8] H. Ronellenfitsch and E. Katifori, Phenotypes of Vascular Flow
Networks, Phys. Rev. Lett. 123, 248101 (2019).

[9] F. Kaiser, H. Ronellenfitsch, and D. Witthaut, Discontinu-
ous transition to loop formation in optimal supply networks,
Nat. Commun. 11, 5796 (2020).

[10] J. B. Kirkegaard and K. Sneppen, Optimal Transport Flows for
Distributed Production Networks, Phys. Rev. Lett. 124, 208101
(2020).

[11] V. Bonifaci, K. Mehlhorn, and G. Varma, Physarum can com-
pute shortest paths, J. Theor. Biol. 309, 121 (2012).

[12] F. Santambrogio, Optimal channel networks, landscape func-
tion and branched transport, Interfaces Free Boundaries 9, 149
(2007).

[13] E. Facca, F. Cardin, and M. Putti, Towards a stationary
Monge-Kantorovich dynamics: The Physarum polycephalum
experience, SIAM J. Appl. Math. 78, 651 (2016).

[14] E. Facca, S. Daneri, F. Cardin, and M. Putti, Numerical solution
of Monge-Kantorovich equations via a dynamic formulation,
J. Sci. Comput. 82, 68 (2020).

[15] E. Facca, F. Cardin, and M. Putti, Branching structures emerg-
ing from a continuous optimal transport model, J. Comput.
Phys. 447, 110700 (2021).

[16] D. Baptista, D. Leite, E. Facca, M. Putti, and C. De Bacco, Net-
work extraction by routing optimization, Sci. Rep. 10, 088702
(2020).

[17] V. Bonifaci, E. Facca, F. Folz, A. Karrenbauer, P. Kolev,
K. Mehlhorn, G. Morigi, G. Shahkarami, and Q. Vermande,
Physarum multi-commodity flow dynamics, arXiv:2009.01498.

[18] K. Salimifard and S. Bigharaz, The multicommodity network
flow problem: State of the art classification, applications, and
solution methods, Oper. Res. Int. J. (2020).

[19] C. H. Yeung, D. Saad, and K. Y. M. Wong, From the physics
of interacting polymers to optimizing routes on the London
Underground, Proc. Nat. Acad. Sci. 110, 13717 (2013).

[20] C. H. Yeung and D. Saad, Networking - A statistical physics
perspective, J. Phys. A: Math. Theor. 46, 103001 (2011).

[21] T. Nelson and N. Dengler, Leaf vascular pattern formation,
Plant Cell 9, 1121 (1997).

[22] C. B. Schaffer, B. Friedman, N. Nishimura, L. F. Schroeder,
P. S. Tsai, F. F. Ebner, P. D. Lyden, and D. Kleinfeld,

043010-11



LONARDI, FACCA, PUTTI, AND DE BACCO PHYSICAL REVIEW RESEARCH 3, 043010 (2021)

Two-photon imaging of cortical surface microvessels reveals
a robust redistribution in blood flow after vascular occlusion,
PLoS Biol. 4, e22 (2006).

[23] A. Nardini, G. Pedà, and N. L. Rocca, Trade-offs between
leaf hydraulic capacity and drought vulnerability: Morpho-
anatomical bases, carbon costs and ecological consequences,
New Phytol. 196, 788 (2012).

[24] J. R. Banavar, A. Maritan, and A. Rinaldo, Size and form in
efficient transportation networks, Nature (London) 399, 130
(1999).

[25] Q. Xia, Optimal paths related to transport problems, Commun.
Contemp. Math. 5, 251 (2003).

[26] A. A. Ibrahim, A. Lonardi, and C. De Bacco, Optimal transport
in multilayer networks for traffic flow optimization, Algorithms
14, 189 (2021).

[27] https://github.com/aleable/McOpt.
[28] V. Bonifaci, A Laplacian approach to �1-norm minimization,

Comput. Optim. Appl., 79, 441 (2021).
[29] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid

Tutorial (SIAM, Philadelphia, 2000).

043010-12



1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7474  | https://doi.org/10.1038/s41598-022-11348-9

www.nature.com/scientificreports

Multicommodity routing 
optimization for engineering 
networks
Alessandro Lonardi1*, Mario Putti2 & Caterina De Bacco1

Optimizing passengers routes is crucial to design efficient transportation networks. Recent results 
show that optimal transport provides an efficient alternative to standard optimization methods. 
However, it is not yet clear if this formalism has empirical validity on engineering networks. We 
address this issue by considering different response functions—quantities determining the interaction 
between passengers—in the dynamics implementing the optimal transport formulation. Particularly, 
we couple passengers’ fluxes by taking their sum or the sum of their squares. The first choice naturally 
reflects edges occupancy in transportation networks, however the second guarantees convergence to 
an optimal configuration of flows. Both modeling choices are applied to the Paris metro. We measure 
the extent of traffic bottlenecks and infrastructure resilience to node removal, showing that the two 
settings are equivalent in the congested transport regime, but different in the branched one. In the 
latter, the two formulations differ on how fluxes are distributed, with one function favoring routes 
consolidation, thus potentially being prone to generate traffic overload. Additionally, we compare our 
method to Dijkstra’s algorithm to show its capacity to efficiently recover shortest-path-like graphs. 
Finally, we observe that optimal transport networks lie in the Pareto front drawn by the energy 
dissipated by passengers, and the cost to build the infrastructure.

Finding optimal flow configurations in transport networks is an important problem in many real-world applica-
tions. While natural systems like river basins1–5, leaf venations6–9, or slime molds10–17 involve transport of one 
type of mass only, e.g. water, this may not be the case in several engineering systems. For instance, routing data 
packets in communication networks, or passengers in urban transportation networks, requires multicommod-
ity approaches where mass of different types interacts in a shared infrastructure, contributing to minimize one 
unique cost.

Despite their practical significance, multicommodity algorithms based on optimization routines are bur-
dened by high computational complexity, caused by the simultaneous assignment of multiple commodities. 
Therefore, practitioners often rely on heuristics and approximations that lead to suboptimal solutions18. Dis-
tributed approaches like message-passing algorithms have demonstrated encouraging results19–24, but remain 
computationally costly in scenarios where there is a large number of origin-destination pairs to be routed, or 
when the network is not sparse.

A promising approach is that of optimal transport theory. Recent studies25,26 have shown that this theoretical 
formalism can be adapted to address multicommodity scenarios, generalizing well-established results for uni-
commodity models27–33. The works of Lonardi et al.25 and Bonifaci et al.26 focus on a theoretical characterization 
of the problem, drawing a formal connection between optimal transport and an equivalent dynamical system 
that is formulated in terms of physical quantities like conductivities and fluxes. While preliminary results on 
multilayer transportation networks34 suggest an empirical validity of this choice, questions remain open about 
its applicability in settings involving the transport of passengers.

In this work, we address this concern by studying the behavior of optimal transport approaches for multicom-
modity routing on urban transportation networks, with an empirical analysis on the Paris metro network. Our 
goal is to evaluate how different cost functions impact the distribution of passenger flows. In detail, we search for 
stationary solutions of a dynamics where edge capacities—conductivities—grow as an increasing function of the 
total amount of passengers traveling on the edges. We investigate numerically the cases where the dependence 
between conductivities and fluxes is either the sum of the passengers traveling on an edge (its 1-norm), or the 
sum of their squares (its 2-norm). The first choice is more intuitive, since counting the total number of users in 

OPEN

1Max Planck Institute for Intelligent Systems, Cyber Valley, Tübingen  72076, Germany. 2Department of 
Mathematics “Tullio Levi‑Civita”, University of Padua, Via Trieste 63, Padua, Italy. *email: alessandro.lonardi@
tuebingen.mpg.de



2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:7474  | https://doi.org/10.1038/s41598-022-11348-9

www.nature.com/scientificreports/

a network is a natural metric to evaluate its occupancy. However, in the second case it is possible to prove that 
the companion gradient flow used in the numerical solver admits a unique stationary solution25,26.

We design several experiments to investigate the main properties of optimal network configurations in the 
two cases. First, we observe that the 2-norm tends to dilute more substantially passengers on the network, avoid-
ing heavily trafficked routes. Second, we compare our model with Dijkstra’s algorithm35, a popular approach for 
shortest-path minimization. We find that our method is a robust and efficient alternative to reproduce shortest-
path-like networks. Furthermore, we test resilience to infrastructural failures, i.e., node and edge removal. Results 
show that the geographical locations of stations together with their degree, are decisive factors. Finally, we observe 
that optimal networks lie in the Pareto front drawn by two fundamental driving forces: the energy dissipated by 
passengers’ flows and the network infrastructural cost.

Results and discussion
Multicommodity routing on networks.  We design a routing optimization problem on a network 
G(V ,E) , where V and E are the sets of nodes and edges, and each edge has length ℓe > 0 . The edges are given a 
conventional orientation stored in a signed incidence matrix, with elements Bve = {+1,−1, 0} if v is the head, 
the tail, or neither of them for edge e , respectively. We model transportation of M ≥ 1 commodities through the 
network, each identified by an index i . We use them to differentiate passengers entering the network from dif-
ferent stations ( i ∈ V  ), so that multiple users sharing the same path catalyze traffic congestion. Suppose that a 
commodity i has a mass rate Siv flowing into node v and outflows Siu ∀u �= v , with 

∑
v S

i
v = 0 , ∀i ∈ V  , to ensure 

that the system is isolated.
The main quantities of interest are the edge conductivities µe ≥ 0 , which can be thought of as capacities. 

These regulate how passengers flow on the network, as higher conductivity is allocated to edges that are more 
utilized, while low-conductivity edges are those with fewer passengers. Hence, determining the values of µe , 
∀e ∈ E , implies determining the flows of passengers, and therefore of traffic on the network. The distribution of 
conductivities is regulated by the following dynamics and main equations of our model:

Here L is the weighted Laplacian matrix of the network, with entries Lvu :=
∑

e (µe/ℓe)Bue Bve ; piv are pressure 
potentials generated by a commodity i on the nodes; f is a non-negative function of the fluxes Fe , M-dimensional 
vectors with entries Fie := µe(p

i
u − piv)/ℓe , for e = (u, v) . A visualization of the main model’s variables is shown 

in Fig. 1.
Equation (1) is Kirchhoff ’s law, expressing conservation of mass; Eq. (2) regulates the time evolution of con-

ductivities by means of a feedback mechanism where the higher the flux on an edge, the larger its conductivity 
µe . All commodities share one unique infrastructure, so we follow25 and assume that µe is the same for all i. 
This particular modeling choice corresponds to not prioritize any commodity in particular, i.e. having all users 
sharing the metro infrastructure without any hierarchy. However, one could consider imposing a set of rules for 
traffic regulation by explicitly accounting for different µi

e terms.
The growth of µe is governed by the function f, that is typically an increasing and differentiable function of 

some norm of the fluxes25,26. The aim of our work is to investigate how different expressions of f result in dif-
ferent distributions of passengers flows, thus we focus on the following two choices: (i) f (x) = ||x||22 (2-norm), 
and (ii) f (x) = ||x||21 (1-norm). The first captures intuition in contexts as plant biology, where nutrients travel 
independently in conduits which are held together in fibers, contributing to growth of branches. However, it may 
not be the most appropriate one in applications involving transport of passengers, as the 2-norm does not have 
a straightforward interpretation. On the contrary, the latter is arguably a more natural choice, backed up by the 

(1)
∑

u

Lvup
i
u = Siv ∀v ∈ V , ∀i = 1, . . . ,M

(2)
dµe

dt
= µβ−2

e f (Fe)− µe ∀e ∈ E.

μ
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Figure 1.   Schematic problem visualization. In brown we draw the edge capacities, green is used to highlight the 
length of one edge. From the central node a positive inflow of two commodities enters (orange and light blue), 
these move towards their destinations—the colored minuses—sharing an edge. Thus, multiple colored fluxes 
generate traffic congestion. In pink we represent the pressure potentials of a third commodity. Differences of 
pressure along an edge trigger F3.
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intuition that edge capacities are controlled by the number of passengers traveling on them (instead of the sum of 
squares). Both norms are taken squared, this is motivated by an analogy between our dynamics and Joule’s law in 
electrical circuits, that we discuss in "Connection with optimal transport" section. We remark that other possible 
choices of f can be used, e.g. the complete spectrum of p-norms, or a tunable sigmoid profile as in13, these can 
be interesting subjects for future work. The effect of f is balanced by a negative linear term in the conductivities, 
determining their exponential decay in time if no mass is moving through an edge. Note that our dynamics is 
highly non-linear in µe , since least-square solutions of Kirchhoff ’s law are of the form piv =

∑
u L

†
vuS

i
u , with † 

denoting the Moore-Penrose inverse. Finally, the role of the free parameter 0 < β < 2 is to capture different 
transportation mechanisms: β > 1 consolidates passengers on fewer edges, following a principle of economy 
of scale; β < 1 enforces passengers to distribute more broadly along the network; β = 1 is shortest-path like.

Connection with optimal transport.  The dynamics introduced in "Multicommodity routing on net-
works" section has a strong connection with optimal transport theory. In fact, in25 it is shown that stationary 
solutions of Eqs. (1) and (2) are also stationary points of the minimization problem:

for a fixed constant K > 0 and where J is the dissipation cost. This is also equivalent to minimizing 
JŴ :=

∑

e ℓef (Fe)
Ŵ , with Ŵ = (2− β)/(3− β) , generalizing Banavar et al.36.

The crucial distinction between the 1-norm and 2-norm dynamics is that the latter admits the Lyapunov 
function

which enables to prove that asymptotics of the dynamics minimize J25 for β ≤ 1 . We remark that for β ≤ 1 the 
Lyapunov admits a unique minimum although possibly multiple minimizers, while for β > 1 the functional has 
several local minima. Noticeably, the first sum in Eq. (6) is equivalent to J = (1/2)

∑

e ℓe||Fe||
2
2/µe (see Methods 

"Lyapunov and dissipation cost equivalence").
The second term in Eq. (6) is W := (

∑

e ℓeµ
γ
e )/2γ with γ = 2− β , interpretable as the cost to build the 

network. With this in mind, the Lyapunov functional becomes the sum of dissipation and infrastructural costs.
As mentioned before theoretical guarantees cannot be recovered for the 1-norm dynamics, where a Lyapunov 

functional is not straightforward to derive. While solving the dynamics may still result in meaningful flows, we 
cannot guarantee that these solutions minimize the cost JŴ , i.e. to have optimal transport.

However, we find empirically that on the metro network of Paris—our case of study—JŴ decreases along 
solution trajectories of the dynamics, with stationary solutions lying in a basin of the cost. This empirical result 
is valid here, but this may not be true for other configurations of the network or initial conditions of the dynam-
ics, hence practitioners should first validate their model (see Methods "Preprocessing", "Validation" for a more 
detailed explanation; a listing of the variables introduced in "Multicommodity routing on networks", "Connection 
with optimal transport" sections can be found enclosed as Supplementary Information).

Results on the Paris metro network.  In this work, we investigate the applicability of the dynamics in 
Eqs. (1) and (2) on the Paris metro. Topology data are taken from37, the network is preprocessed to have a total 
of |V | = 302 nodes and |E| = 359 edges, coherently with the observed metro of Paris (Methods "Preprocess-
ing"). As anticipated, we define commodities as stations where passengers enter. This means that each vector Si 
has only one positive element in v = i (where the passengers of type i enter), while the remaining elements of Si 
contain the outflows of passengers who travel from v . Other choices can also be made based on the application, 
but this will not impact the validity of the model. Lastly, we introduce the parameter 0 ≤ ρ ≤ 1 . This averages 
the passenger inflows as Siv=i(ρ) = Siv=i − ρ(Siv=i − �Si�) , with �·� average over the nodes. When ρ tends to 1 
passengers distribute uniformly on the network, while ρ approaching 0 means passengers enter and exit station 
more heterogeneously, see Methods "Validation".

We test the two response functions f. Optimal fluxes resulting in the two cases can be seen in Fig. 2a, where 
the thickness of each edge is proportional to the fraction of passengers traveling through it. As expected, for 
β < 1 optimal transport networks are loopy, with many densely connected edges having fairly uniform fluxes. 
On the contrary, for β > 1 optimal topologies are more tree-like, with few central arteries where traffic is highly 
concentrated. This applies to both cases.

We notice two distinct behaviors, depending on β . For β < 1 ( β = 0.1 in Fig. 2a), solutions cannot be dis-
tinguished. This is explained by the Lyapunov functionals Lβ being strictly convex in this case, with stationary 
conductivities that are their only minimum. This observation suggests that in the congested transportation 
regime ( 0 < β < 1 ), where one aims at minimizing traffic congestions, using the 2-norm is equivalent to the 

(3)min
F∈R|E|×M

J :=
1

2

∑

e

ℓe

µe
f (Fe)

(4)s.t.
∑

e

ℓeµ
2−β
e = K2−β
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∑

e

BveF
i
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∑
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more intuitive 1-norm formulation. This is not the case for β > 1 , where the two dynamics favor different local 
minima. These correspond to optimal networks with distinct central arteries where passengers are directed. The 
differences are further accentuated in Fig. 2b, where edges are colored with flux differences in these two cases, 
and where we highlight with markers instances of highly traversed stations. In detail, we can see that two routes 
branch from Charles de Gaulle-Étoile, the upper one passing by Place de Clichy is favored by the 1-norm, and 
the lower one reaching Saint-Lazare is preferred by the 2-norm. As for the connection between Châtelet and 
Gare de Lyon, we observe that the 1-norm tends to favor the shortest path between the two stations, with most 
passengers travelling in a straight line. On the contrary, the path selected by the 2-norm has a deflection.

Stimulated by these qualitative differences, we investigate different metrics for an in-depth quantitative evalu-
ation for the case β = 1.5 . First, analyzing the sorted distributions of the fluxes ||Fe||1 in Fig. 2c, we notice that 
the 1-norm dynamics has a more pronounced fat-tailed distribution with a sharper and higher peak. This means 
that the 1-norm tends to concentrate fluxes on fewer edges. Such effect becomes starker for more homogene-
ous distributions of passengers entering the stations, i.e. setting ρ = 0.5, 1.0 (see Supplementary Figs. 1 and 2).

We quantify this using the Gini coefficient38:

for a quantity x, with x̄ =
∑

e xe/|E| being its mean, and m, n denoting edges. In our analysis we set xe = ||Fe||1 . 
Results are shown in Fig. 3a, where the Gini coefficient is plotted against β for different values of ρ.

As expected, the Gini coefficient increases with β , as users’ paths are more concentrated along fewer edges. 
The values for the two dynamics are similar for β < 1 , for the reasons mentioned above. Instead, for β > 1 , mark-
ers progressively separate as β increases. The 2-norm has always smaller values than their counterparts, further 
demonstrating the tendency of the 2-norm to dilute fluxes on a larger area of the network.

We study the behavior of the fraction of idle edges, i.e. the number of edges with negligible fluxes, divided by 
the total number of edges |E|, see Fig. 3b. This quantity manifests a sudden phase transition at β = 1 , where the 
dynamics switches from an homogeneous distribution of passengers on the entire network infrastructure, to a 
distribution progressively more concentrated on a smaller fraction of edges, as β increases. Finally, the 2-norm 
dynamics returns fewer idle edges than the 1-norm, as paths are less concentrated. Notably, such abrupt phase 
transitions are typical of capacitated models on networks36, and emerging in routing strategies involving a critical 
exponent regulating efficient transportation39.

To summarize, we observe two main findings. First, we noticed that in the regime of β < 1 the 1-norm and 
the 2-norm produce identical optimal networks. This result does not hold for β > 1 , where many local minima 
of Lβ generate different optimal paths. Second, analyzing the fraction of idle edges, the Gini coefficient of the 
fluxes, and their distribution, we found that in the regime of branched transportation ( 1 < β < 2 ), the 2-norm 
tends to limit more traffic congestion, as paths are less consolidated into fewer edges compared to the 1-norm.
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Figure 2.   Optimal transport networks panel. (a) Optimal transport networks with β = 0.1, 1.0, 1.5 for the 
1-norm and 2-norm. Edge thickness and color are proportional to ||Fe||1 , normalized to sum to 1; node sizes 
are proportional to the number of passengers entering them. All the quantities are averaged over 100 runs of 
the dynamics with µe(0) ∼ U(0, 1) . (b) Network colored using the difference of the fluxes obtained with the 
1-norm and with the 2-norm. Results are displayed for β = 1.5 , and using the data of (a). Widths of edges are 
proportional to the absolute value of the flux difference, so that by matching the color and size information it 
is possible to distinguish differences in networks generated by the two response functions. Marked stations are 
those discussed in "Results on the Paris metro network" section. (c) Sorted flux distribution over the edges for 
β = 1.5 . All quantities have been computed with ρ = 0.0 , i.e. S(ρ = 0.0) = S (see Methods "Preprocessing", 
"Validation"). Similar panels for ρ = 0.5 and ρ = 1.0 can be found in Supplementary Figs. 1 and 2.
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Comparison with Dijkstra algorithm.  As discussed, the main property connecting our 2-norm dynam-
ics with optimal transport is that its stationary solutions are minimizers of the cost JŴ =

∑
e ℓe||Fe||

2Ŵ
2  , with 

Ŵ = (2− β)/(3− β)25. This cost, for β = 1 and M = 1 is equivalent to that of15,16 and has optimal fluxes taking 
the shortest path from their source to their sink. A theoretical generalization of this result to the multicommod-
ity setup is not trivial. In fact, for the 2-norm case the cost reads JŴ =

∑

e ℓe
√

∑

i(F
i
e)
2 , that is not linear in the 

commodities, i.e. searching for its minimizer does not correspond to solving M unicommodity problems, one 
for each i , and then overlapping them. As for the 1-norm, the dissipation cost with β = 1 is JŴ =

∑
e

∑
i ℓe|F

i
e| , 

and therefore its unique global minimum corresponds to that obtained overlapping M shortest paths.
We can numerically compare our methods with a shortest path routine using Dijkstra’s algorithm35. Precisely, 

we iterate over the commodities and assign a flux Fie equal to the fraction of passengers moving from the source 
v to the sink u , to each edge belonging the shortest path between v and u—the latter computed with Dijkstra’s 
algorithm.

We compare the optimal transport networks obtained using our methods with β = 1 (Fig. 4a) with the net-
works returned by Dijkstra’s algorithm (Fig. 4b). The three graphs are visibly similar but not identical. Particularly, 
we focus on the four highlighted areas in Fig. 4b, containing the main branches departing from the central area 
of the city of Paris. We see that the more trafficked routes in the pink South-West region are identical for our 
methods and for Dijkstra’s one. Traffic in the Nort-West blue region seems to be more diluted for our methods, 
with the 2-norm optimal network being slightly more similar to Dijkstra’s. As for the North green region, both 
our algorithms concentrate traffic in a curved branch covering a large portion of the Northside of the city. This 
route is not prioritized in Fig. 4b, as traffic in the green portion is more distributed. Finally, in the South-East 
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metro users moving along the network may travel using the fastest route (that for paths of the same length is the 
one with more frequent trains) to reach their destination; this may not correspond to the geographically shortest 
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yellow area, there is only one main route branching from the city center, while its shape is straight for Dijkstra’s, 
our methods favor a slight deflection.

We attribute these differences in the optimal topologies to the high complexity of the energy landscape of JŴ . 
In fact, while Dijkstra’s algorithm computes and overlaps each source-sink shortest path separately, our methods 
treat all the commodities at once. This may lead to convergence in suboptimal points, in particular around β = 1 , 
where the cost transitions from being strictly convex ( β ≤ 1 ) to strongly non-convex ( β > 1 ). While our method 
in this case may not always reach an optimal solution, it has the practical advantage of having a worst-case 
complexity of O(M|V |2)25. In principle, this can be further reduced using a backward Euler scheme combined 
with the inexact Newton-Raphson method for the discretization of Eq. (2), and using a Multigrid solver for the 
solution of Eq. (1) in O(M|V|) steps40. By contrast, Dijkstra’s has a worst-case complexity of O(|E| + |V | log |V |)
41, with the algorithms that needs to be executed M2 (in our application to the Paris metro there are M2 = |V |2 
source-destination pairs) times to solve a multicommodity problem.

Lastly, we test the deviation of the cost of our methods from Dijkstra’s one. In Fig. 4c we plot the relative cost 
difference taken in absolute value, that is �J := |JŴ − JDijkstra|/JDijkstra , with Dijkstra’s network cost calculated 
as JDijkstra =

∑

e ℓe||Fe||1 . This has a sharp drop at β = 1 , where traffic is not favored nor penalized, with the 
cost of our network that is similar to the one of the shortest path returned by Dijkstra’s algorithm. For β < 1 we 
have JŴ > JDijkstra , showing that penalizing traffic congestion has the drawback of producing more expensive 
infrastructures. We observe the opposite behavior for β > 1 , where JŴ < JDijkstra , with congested networks that 
are progressively cheaper as β increases.

Network robustness to failures.  We now showcase a possible relevant application of our model by 
analyzing network’s robustness to structural failures as nodes removal. Network managers interested in find-
ing which stations are crucial for alleviating potential traffic overload can look at the congested transportation 
regime (we set β = 0.1 to favor homogeneous fluxes) and investigate how fluxes resulting from our model dis-
tribute along the network.

In detail, we remove sequentially a total of four stations from the network: Châtelet, Gare du Nord, Saint-
Lazare, and Gare de Lyon. The last three are those with the largest number of inflowing passengers, while 
Châtelet has a central position and a high node degree d = 8 . Once each station was removed, its passengers 
were redirected to its neighboring nodes, and then solutions of the dynamics were found with this setting, as 
depicted in Fig. 5.

In Fig. 5a we display the 1+ 4 networks obtained removing none, and the stations indicated in Fig. 5b. In 
Fig. 5c we plot the Gini coefficients of the optimal transport networks against β . We notice that for β > 1 all the 
points collapse together, regardless of the number of failures. This scenario, however, is of little interest for the 
situation we want to address, being flux aggregation already favored by β > 1 . As for β < 1 , the difference in Gini 
coefficient gets wider the lower the β , with the largest gap at β = 0.1 , we thus investigate this case.

Removing Châtelet from the network causes a considerable jump in the Gini coefficient, thus increasing the 
possibility of traffic jams. In fact, as we see from the second plot in Fig. 5a, all the passengers who were traveling 
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number passengers entering in it. All quantities are averaged over 100 runs of the dynamics with random 
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on the South-West route branching from the city center are redirected in a way that congests southern arter-
ies of the network. Removing Gare du Nord is not as crucial for traffic rerouting. Indeed, the main difference 
between the second and the third network of Fig. 5a is that passengers who were departing from Gare du Nord 
move to its southern neighboring station, Gare de l’Est, and modify only slightly their path. A large jump in the 
Gini coefficient is visible after removing Saint-Lazare, which seems to be fundamental for connecting the central 
area of Paris to its north side. In the fourth plot in Fig. 5a, we can see that traffic becomes highly congested in 
the northern branch directed from east to west. Gare de Lyon causes a negligible change in the Gini coefficient, 
associated to a modest traffic rerouting in the South-East part of the network.

Pareto front.  To conclude our analysis of the multicommodity routing problem it is possible to verify that 
stationary solutions of Eqs. (1) and (2) lie in the Pareto front (Fig. 6), which can be expressed in closed form as:

with γ = 2− β (see Methods "Pareto front derivation").
The emergence of a Pareto front between J and W is not limited to engineering networks like the ones studied 

here. A similar trade-off has been observed in the widened pipe model for plants of Koçillari42, where minimiza-
tion of hydraulic resistance and of carbon cost compete for natural selection.

Moreover, looking at the inset of Fig. 3 and Fig. 6 we can observe that the Gini coefficient and the fraction 
of idle edges can be interpreted as driving forces responsible for the design of the optimal transport network, 
counterbalancing its cost. In fact, congested transport networks obtained for low values of beta β have a high cost, 
but are more resilient to damage—low Gini and no idle edges—being their infrastructure densely connected. On 
the contrary, setting β large has the effect of producing sparse networks. These infrastructures have the benefit 
of being cheaper, but they are less resistant to node and edge failures, as mentioned in "Network robustness to 
failures" section.

Conclusions
Multicommodity routing is a powerful tool to model optimal network configurations in transportation systems18. 
In this work, we developed a robust and efficient model able to perform this task by finding stationary solutions 
of a dynamical system controlling fluxes and conductivities of edges. Our dynamics extends previous works 
focusing solely on the unicommodity15,27,28,30,43, and on the multicommodity setup25,26,34.

Precisely, we propose two different response functions regulating the growth of conductivities, whose evolu-
tion is dictated by the passengers moving in the metro. We performed a thorough empirical study of the optimal 
transport networks resulting in the two cases. Using metrics like the fraction of idle edges and the Gini coef-
ficient of the fluxes, we found that the two functions behave similarly in the congested transportation regime, 
but differently in the branched transportation one. In this case, the 1-norm dynamics produces flows that are 
more concentrated on fewer edges, potentially leading to traffic overload. We addressed the capability of our 
method to recover shortest path networks by comparing it with Dijkstra’s routine. Such comparison showed that 
our approach is a viable computational alternative to perform this task, achieving accurate results and being, in 
principle, scalable for large networks. Additionally, we performed an experiment to measure network robustness 
to infrastructural failures, revealing that the stations of Châtelet and Saint-Lazare are crucial to ease congestion 
of metro routes. Finally, we showed that solutions of our model lie in the Pareto front drawn by the energy dis-
sipated during transport and the network infrastructural cost.
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Altogether, our findings extend the current research in multicommodity routing problems using optimal 
transport principles and help to understand the mechanism underlying passenger flows in transportation systems.

Our formalism can be further extended to other possible applications related to the flow of passengers in 
transport networks. An example could be to incorporate time dependences in the passengers’ inflows, modeling 
scenarios where stations are subject to different loads during a day, thus generalizing44. One could also compare 
the extent of traffic jams in multicommodity settings to that of other routing strategies for urban transport dis-
playing notable phase transitions and scaling laws39,45,46.

We would like to remark that our approach is applicable to a variety of practical problems unrelated to trans-
portation systems. A practitioner may then consider response functions for the dynamics alternative to those 
studied in this work. The analysis performed in this work show how such a problem can be addressed and paves 
the way for further research beyond urban transportation networks.

Methods
Lyapunov and dissipation cost equivalence.  Here we show that the first term of the Lyapunov func-
tional in Eq. (6) is identical to the 2-norm dissipation cost J = (1/2)

∑

e ℓe||Fe||
2
2/µe , we follow25. Multiplying 

both sides of Eq. (1) for piv and summing over i and v yields

where we made explicit the network Laplacian entries Lvu :=
∑

e (µe/ℓe)Bue Bve , and we used the definition of 
the fluxes Fie := µe(p

i
u − piv)/ℓe , for e = (u, v) , and ∀i . Equation (10) is the identity we wanted to prove.

Preprocessing.  The original dataset in37 is provided as a multilayer network embedded with different trans-
portation types, thus we performed a preprocessing to extract the metro network. First, we trimmed nodes 
belonging to other layers and then merged redundant stations having the same name by collapsing them 
together. This redundancy was due to the presence of stations with two entrances located in slightly different 
geographical positions; their coordinates displacement was always negligible compared to the physical extension 
of the whole network. The trimmed graph reflects consistently the real topology of the Paris metro. For conveni-
ence, the longitude and the latitude of nodes are rescaled within the range [0, 1].

We did not have access to the exact travel routes data, so we assigned the entries of S based on the “impor-
tance” of each station. In fact the number of users validating their tickets when entering a station, the only data 
at disposal, is easier to track than the number of exiting users together with their entrance station. In practice, 
we assigned N − 1 positive “influence factors” to each station i , one for each node u  = i where the users enter-
ing in i can potentially exit: riu = gu/

∑

w �=i g
w , instead riv=i = 0 , where gv is the amount of users entering the 

metro from v = i . Note that 0 ≤ riv ≤ 1 for all v nodes, and 
∑

v  =i r
i
v = 1 . Thus, we can estimate the number of 

(9)
∑

i,v,u,e

(µe/ℓe)Bue Bvep
i
up

i
v =

∑

i,v

pivS
i
v

(10)
∑

e

ℓe

µe
||Fe||

2
2 =

∑

i,v

pivS
i
v ,

0 50 100
0.9

1.0

= 0.5

time step
0 50 100

0.95

1.00

time steptime step

J

= 1.0

0 50 100

0.9

1.0

= 1.5
= 0.0
= 0.1
= 0.2
= 0.3
= 0.4

= 0.5
= 0.6
= 0.7
= 0.8
= 0.9
= 1.0

Figure 7.   Validation of the dynamics with the 1-norm.  We show the dissipation cost evolution along solution 
trajectories of Eqs. (1) and (2). Results are displayed for different combinations of ρ and β , and are averaged 
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minima.
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people exiting from a station u  = i by assigning Siu = −riu g
v=i , while Siv=i = gv . The intuition is that a station 

with a high entering volume of passengers, i.e. high gv , should have a large amount of exiting users, thus its 
“influence” value r should be high.

Validation.  We validate Eqs. (1) and (2) with the 1-norm for several combinations of β and of the input loads 
S(ρ) , with 0 ≤ ρ ≤ 1 progressively smoothing the passengers inflows data collected in47. In detail, users entering 
stations are regulated as gv(ρ) = gv − ρ(gv − �g�) where gv are inflows in v as in47, and �·� averages over the 
nodes. Using this procedure, we build S(ρ) following the “influence assignment” described in Methods “Preproc-
essing”. Thus, S(ρ = 0) = S corresponds to the originally extrapolated mass matrix, while Siv=i(ρ = 1) = �g� 
and Siu(ρ = 1) = −�g�/(|V | − 1) for all u  = v = i . Meaning that for ρ = 1 passengers move with uniform rates 
from each—and to—all stations. In Fig. 7 we plot the time-evolution of JŴ , which decreases over time.

Pareto front derivation.  To obtain the Pareto form in closed form as in Eq. (8) it is sufficient to exploit the 
scaling µe ∼ (Fe)

δ , δ = 3− β , valid for stationary solutions of the multicommodity dynamics25. In particular, it 
is immediate to recover Eq. (8) by rewriting J in Eq. (3) as a function of the conductivities µe.

Data availability
All data used for the experiments on the Paris metro network are publicly available37,47.

Code availability
An open-source implementation of the code is accessible at https://​github.​com/​aleab​le/​McOpt.
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Network routing approaches are widely used to study the evolution in time of self-adapting systems. However,
few advances have been made for problems where adaptation is governed by time-dependent inputs. In this work
we study a dynamical systems where the edge conductivities of a network are regulated by time-varying mass
loads injected on nodes. Motivated by empirical observations, we assume that conductivities adapt slowly with
respect to the characteristic time of the loads. Furthermore, assuming the loads to be periodic, we derive a
dynamics where the evolution of the system is controlled by a matrix obtained with the Fourier coefficients
of the input loads. Remarkably, we find a sufficient condition on these coefficients that determines when the
resulting network topologies are trees. We show an example of this on the Bordeaux bus network where we tune
the input loads to interpolate between loopy and tree topologies. We validate our model on several synthetic
networks and provide an expression for long-time solutions of the original conductivities.

DOI: 10.1103/PhysRevE.107.024302

I. INTRODUCTION

Optimized transport of resources is a pivotal contributing
factor in determining the structural evolution of real-world
networks. Archetypes for self-organizing systems that ram-
ify into networks in order to optimize energy expenditure
rates are xylem conduits in leaves [1–4], river basins [5–9],
and slime molds [10–19]. These formations are not only re-
stricted to the natural realm but can also be generated by
anthropogenic processes. A prominent example is that of
transportation networks such as railway and metro systems,
which are designed to jointly optimize traffic overload and
infrastructural cost [20–22].

Typically, optimal transport of mass in networks is set
as a minimization problem where resources moving through
the edges have to satisfy a set of constraints, e.g., conserva-
tion of mass, while minimizing a suitable transportation cost
[1,3,19,23–30]. Several efficient methods have been proposed
to solve this problem. A popular approach is that of message-
passing algorithms [31], where sources of mass are matched
in sender-receiver pairs and messages encode mass transfer
between them [22,32–36]. Promising results have also been
obtained with optimal transport theory [2,15,20,27,37–42],
the approach we consider in this work. The general idea
behind this method is to describe the transport of mass as a
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process being regulated by edge capacities, quantities evolv-
ing with a dynamical system to allocate mass fluxes.

Despite their usage in modeling transportation problems
across domains, a common drawback of all these methods
is to consider only stationary loads, i.e., resources that are
injected and travel through the network do not change with
time. This assumption may not be valid in certain scenar-
ios. For instance, blood vessels are known for adapting their
structure continuously to meet changing metabolic demands
[25,43–45]. Similarly, passengers in transportation systems
enter stations with hourly, weekly, and seasonal time-varying
rates [46].

A viable approach to model these systems is to control
the network evolution considering an ensemble average of
the stress generated by the loads [24,25,37]. This relies on
assuming stationary loads on nodes but with their positions
varied stochastically. The ensemble average over the loads’
locations is then computed as a proxy of a system with loads
of fixed locations but time-varying amounts. This technique
has also been employed to study network resilience to edge
cutting [3] or for routing problems with spatially correlated
loads [2].

Remarkably, adding stochasticity in the loads may lead
to the emergence of loops in the resulting optimal networks
topologies [2,3,24,25,37]. This result is complementary to the
hierarchical formation of trees since loops provide alternative
routes to accommodate fluctuations or guarantee robustness
against broken links. Recently, loop formation has also been
observed in multicommodity setups [27,28], where the loads
are deterministic inputs of the problem. In this case loop
generation is a consequence of having different commodities
interacting in a unique shared infrastructure.

In all these works, the time-varying character of the trans-
port network loads is neglected because the main problem

2470-0045/2023/107(2)/024302(11) 024302-1 Published by the American Physical Society
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variables are taken on average. Here we develop a model that
considers the explicit time dependence of the mass inflows
and investigate, both analytically and numerically, the long-
term behavior of time-varying transport networks. This allows
us to show that it is not the process uncertainty, inherent in any
stochastic framework, but the nonstationarity of the loads that
promotes loops, which is fundamentally different from what
can be concluded using stochastic formulations.

In particular, we generalize the routing problem in the
work of Facca et al. [41] by considering periodic mass loads
on nodes. We postulate an analytical relationship connecting
physical quantities as the edge conductivities and the coeffi-
cients of the Fourier series expansion of the loads. We then
define a dynamics that rapidly converges to the long-run aver-
age solutions of the original dynamics.

Our model relies on the idea of distinguishing slow-varying
variables from fast ones. The first are capacities of edges that
are regulated by the Fourier coefficients of the forcing; the
second are, for example, loads of passengers entering and
exiting network nodes. The physical intuition is that, while
fluxes of passengers in a transportation system have the same
rate of change of the network loads, roads do not. In fact, it
is reasonable to assume that a network manager has a coarser
observation scale of a transportation system than the users,
whose paths rapidly fluctuate. In practice, this means that
modifications in the network infrastructure occur on a much
larger timescale than that of daily passengers’ fluctuations.

Remarkably, we find that the Fourier decomposition of the
loads yields a sufficient condition to determine whether the
resulting optimal networks will contain loops or be a tree. Per-
forming a numerical validation of our dynamics on synthetic
networks, we are also able to provide an analytical expression
for the long-run conductivities. Precisely, we find that the
conductivities start oscillating around constant values at large
timescales and at certain frequencies that can be expressed in
terms of those of the input loads. Furthermore, we define a
Lyapunov functional for our dynamical formulation, allowing
us to interpret stationary topologies as optimal networks, i.e.,
structures minimizing the global cost to build the graph. Fi-
nally, we examine a case study with loads that are the sum
of decoupled harmonic oscillators, finding that the condition
on the Fourier coefficients can be equivalently reformulated
in terms of the loads’ amplitudes and phases. We numerically
investigate this last setup on the Bordeaux bus network.

II. TIME-VARYING LOADS IN ROUTING
OPTIMIZATION ON NETWORKS

Consider a network G with nodes v ∈ V and edges e ∈ E ,
each of length �e > 0. The orientation of the edges is conven-
tionally assigned by the signed incidence matrix of the graph,
with entries Bve = ±1 if node v is the tail or the head of edge
e, and Bve = 0 otherwise. We consider a routing optimization
problem on G setting time-varying mass loads S(t ) = {Sv (t )}
on nodes being the amount of mass either injected in (Sv (t ) >

0) or extracted from (Sv (t ) < 0) node v. Concretely, one could
think of S(t ) as a time-dependent origin-destination vector of
passengers moving in a transportation network, where mass
entries correspond to the fraction of passenger flowing though
stations. This allows us to write Kirchhoff’s conservation law

as

∑
u

Lvu(μ)pu(t ) = Sv (t ) ∀ v ∈ V ∀ t � 0, (1)

where μ = {μe} are the non-negative edge conductivi-
ties, p(t ) = {pv (t )} are pressure potentials on nodes, and
Lvu(μ) := ∑

e Bve(μe/�e)Bue are the entries of the weighted
Laplacian of the network [47]. The conductivities can be in-
terpreted as the capacities that the edges must have to allocate
the mass loads acting on the nodes; thus we can consider them
proportional to the edges’ sizes. When considering passengers
moving along a transportation network, μ can be seen as the
width of a road or more generally a measure of the infrastruc-
ture’s resources used to carry traffic flows.

We propose a model in which the forcings S(t ) dictate the
time evolution of the conductivities by means of a feedback
dynamics. In particular, we couple Eq. (1) with the system of
ordinary differential equations (ODEs)

dμe(t )

dt
= F 2

e (t )

μ
γ
e (t )

− μe(t ) ∀ e ∈ E , (2)

μe(0) = me ∀ e ∈ E , (3)

with me > 0 initial values. For a solution trajectory μ(t ),
we define the fluxes Fe(t ) ≡ Fe(μ(t ), S(t )) := μe(t )[pu(t ) −
pv (t )]/�e for e = (u, v), with pv (t ) ≡ pv (μ(t ), S(t )) :=∑

u L†
vu(μ(t ))Su(t ) the solution of Eq. (1), where L† denotes

the Laplacian pseudoinverse. We assume that the system is
isolated, namely,

∑
v Sv (t ) = 0 ∀ t � 0, so p(t ) is a well-

defined potential (see [47], Lemma 0). Specifically, Klein
and Randić [47] showed that L generally is not invertible,
but Eq. (1) can be solved by the pseudoinverse within the
subspace orthogonal to the unitary vector, that is, when∑

v Sv (t ) = 0.
In Eq. (2) the growth in time of the conductivities is

proportional to the flux forcing term F 2
e (t ) with μ decaying

exponentially when no flux flows though an edge. In practice,
this corresponds to enlarging a road when many passengers
travel along it and reducing it when there is no traffic. We il-
lustrate this intuition with a schematic representation in Fig. 1.

The free parameter 0 < γ < 2 tunes between dif-
ferent transportation mechanisms [27,38,41]. The case
γ<1 encourages mass consolidation on a few edges,
γ=1 is shortest-path-like, and 1 < γ < 2 penalizes traffic
congestion.

Our dynamical formulation assumes continuous variables
for fluxes and conductivities, but the mass S(t ) could be ar-
bitrarily continuous or discrete. While this is valid in many
scenarios (e.g., when modeling a large number of individu-
als), it may be limiting in cases where a discrete (or atomic)
representation is necessary to capture fine-grain differences
in the number of passengers. For this, one should consider
alternative formulations and approaches, for instance, using
message passing or belief propagation as in [22,32–36].

Finally, we remark that Eq. (2) can be made scale
independent with respect to the model variables by an op-
portune nondimensionalization that we describe in detail in
Appendix A.

024302-2
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FIG. 1. Schematic visualization of the problem. We highlight
conductivities (brown), the length of an edge (green), and the differ-
ence of pressure (purple) along an edge that triggers their fluxes. In
the rightmost blue and yellow panels we depict two scenarios where
the time-dependent loads S(t ) generate fluxes that move from the
central part of the network to its periphery (t = t1) and vice versa
(t = t2 �= t1). Node and edge widths are proportional to S(t ) and
F (t ), respectively.

III. MODEL CONSTRUCTION

A. Slow adaptation of conductivities

In several biological systems the adaptation time of organ-
isms is much slower (weeks) than the characteristic time of
the mass injected in the system (seconds) [25,43–45]. In order
to describe these organisms, a common approach is that of
approximating the fast time-varying input loads with com-
binations of open and closed switchlike nodes with constant
inflows and to assume that the conductivities are regulated by
an ensemble average of the pressures over different states of
the loads [3,24,25,37].

Instead, here we want to model the evolution of these
slow adapting conductivities taking in account the time depen-
dence of the loads. We formalize this hypothesis by assuming
(i) the existence of a slow timescale τ , with τ = Kt and
K � 1, and that (ii) in a fixed time window �, small with
respect to the slow variable τ but large with respect to the
time t ,

μ̂e(τ + t ′) ≈ μ̂e(τ ) ∀ e ∈ E ∀ t ′ ∈ [0,�) ∀ τ � 0 (4)

holds for some conductivities μ̂ = {μ̂e} with the natural time
of evolution being τ . Timescales are depicted in Fig. 2. We
can interpret t as seconds, � as days, and τ as months. Such
distinction between different natural timescales is observed in
the interplay of rivers and tide loads in coastal delta formation
[9], where the assumption is that tides cycle much faster than
the river channel adaptation, a distinction analogous to that
between t and τ .

Finally, we assume that (iii) the evolution in τ of μ̂ is
determined by the time integral average of the product of the
mass loads. Assumptions (i), (ii), and (iii) together lead to the

tt… …

/ << 1

FIG. 2. Schematic representation of the different time variables.
The two arrows denote timescales t and τ . The time windows �,
large with respect to t , are denoted with blue curved brackets and the
fast period T in orange. Each window � along which we integrate
the dynamics (1)–(3) contains a large number of periods T .

definition of

�̂e(μ̂, τ ) := μ̂
2−γ
e

�2
e

∑
uv

Aeu(μ̂)Aev (μ̂)

× 1

�

∫ τ+�

τ

Su(t )Sv (t )dt − μ̂e (5)

for all e ∈ E and τ � 0, where we introduced Aev (μ̂) :=∑
u BeuL†

vu(μ̂) ∀ e ∈ E ∀ v ∈ V . The functional �̂ is the nat-
ural approximation of the right-hand side of Eq. (2), as shown
in Appendix B.

We define then a trajectory μ̂(τ ) as a solution of the dy-
namics

dμ̂e(τ )

dτ
= �̂e(μ̂(τ ), τ ) ∀ e ∈ E , (6)

μ̂e(0) = m̂e ∀ e ∈ E , (7)

with m̂e > 0 initial conditions. In general, �̂ is difficult to
manipulate as the loads S(t ) may assume any arbitrary ex-
pression, possibly preventing the exact computation of the
time integrals. For this reason, we investigate its behavior for
a particular class of functions S(t ) that allows for analytical
tractability.

B. Periodicity of the loads

We consider periodic loads S(t ), with period T small
with respect to the fixed integration window � introduced in
Sec. III A:

Sv (t + T ) = Sv (t ), T/� 	 1 ∀ v ∈ V ∀ t � 0. (8)

This allows us to express each Sv (t ) using its Fourier series
Sv (t ) = ∑

nv∈Z cnv
v exp(iωnvt ), with ω = 2π/T . Substituting

this into Eq. (5) yields the pivotal result

1

�

∫ τ+�

τ

Su(t )Sv (t )dt = Cuv + O(�), (9)

holding for all u, v ∈ V and τ � 0. The matrix C has entries
Cuv := ∑

nv
(cnv

u )∗cnv
v ∀ u, v ∈ V , with c∗ denoting the com-

plex conjugation of c. The term O(�) contains all negligible
contributions ε, decaying as ε/� → 0 for � → +∞. For a
detailed derivation of this result, one can refer to Appendix C.
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FIG. 3. Characterization of the fast conductivities μ(t ). All results are computed on a synthetic network with |V | = 8 and setting γ = 1.0.
(a) Fast conductivities μ(t ) and fluxes F (t ) are drawn with solid lines, stationary solutions μ̄∞ are dashed. Labels on the x axis correspond
to the number of iterations of the numerical discretization of Eqs. (1)–(3). Conductivities are depicted in two time windows, before and after
their stabilization time tSTAB. Fluxes are drawn only for t � tSTAB. Colors denote different edges. (b) Evolution of L̄γ and of 〈Lγ 〉T in time.
The green and the red circles denote tSTAB and tSTOP, respectively.

C. Periodic-load dynamics

Combining Eqs. (5) and (9), we can build a dynamics for
some new conductivities μ̄ = {μ̄e}, which evolve in the slow
timescale τ . Precisely, we ignore negligible contributions in
Eq. (9) and define

dμ̄e(τ )

dτ
= �̄e(μ̄e(τ )) ∀ e ∈ E , (10)

μ̄e(0) = m̄e ∀ e ∈ E , (11)

with m̄e > 0 initial conditions. The right-hand side of Eq. (10)
is such that �̂ � �̄ for � � 1 and reads

�̄e(μ̄) := μ̄
2−γ
e

�2
e

∑
uv

Aeu(μ̄)Aev (μ̄)Cuv − μ̄e ∀ e ∈ E . (12)

An important point is that the problem in Eqs. (10) and (11)
is not equivalent to the dynamics Eqs. (1)–(3) with each Sv (t )
integrated over T . The latter case would imply that Cvu had
the form Cuv = S̃uS̃v , where S̃v is the integral of Sv (t ) over
the period. This is only a particular case of the dynamics in
Eqs. (10) and (11).

Noticeably, in this case the condition rank(C) = 1 holds,
i.e., since C is symmetric, there exists a vector y ∈ R|V | such
that Cuv = yu yv ∀ u, v ∈ V. This is a sufficient condition for
Eqs. (10) and (11) to return a loopless network at convergence
(see Appendix D for a proof) and confirms previous results
observed for constant loads [23,26,29].

However, this condition does not hold generally for any
arbitrary choice of the loads, as C may have a more general
expression, in particular rank(C) > 1. Moreover, the case of
constant loads is not the only one where rank(C) = 1. We
provide an example of this in Sec. V B, where we explore
the case of each Sv (t ) being the sum of a finite number of
harmonic oscillators.

IV. CHARACTERIZATION OF THE FAST DYNAMICS

Finding an analytical expression for the fast conductivities
μ(t ) solutions of Eqs. (1)–(3) cannot be done by directly
solving the dynamics, because of the nonlinear dependence

on μ(t ) in the Laplacian pseudoinverse. Nevertheless, here we
propose an argument to characterize their long-time behavior.

We support our findings with an empirical validation on
synthetic networks built taking the Delaunay triangulation
of |V | nodes placed at random in the unit square. In our
experiments, we set |V | = 2i, with i = 3, . . . , 9. The vector
of loads S(t ) is S(t ) := 20 S1(t ) + 10 S4(t ) + 5 S8(t ), where
each factor is defined as Sn(t ) := qn cos(ωnt ), with ampli-
tudes extracted at random from a |V |-dimensional Dirichlet
distribution as qn ∼ D(α = 1) − 1/|V | [so that

∑
v Sv (t ) =

0 ∀ t � 0] and n = 1, 4, 8. The period has been conventionally
set to have ω = 2π .

We observe that the evolution of the fast conductivities
is typically divided in two phases, as shown in Fig. 3(a).
First, the conductivities undergo a stabilization transient for
t < tSTAB, where they strongly depend on their initial condi-
tions me and significantly change their mean values. Then,
when t > tSTAB, the conductivities reach a plateau and os-
cillate around fixed values. More precisely, either they move
around mean values that are far from zero and preserve their
oscillatory nature for all times or they decay to zero with
negligible oscillations that are progressively damped as t
increases. These experimental observations suggest the fol-
lowing ansatz for the stabilized solutions, for all t > tSTAB and
e ∈ E :

μe(t ) = ae + be(t ) s.t. ae = const, be(t + T ) = be(t ).

(13)

We compare solutions of the new dynamics (10) and (11)
with those of Eqs. (1)–(3) [see Fig. 3(a) for an example]. In
the figure the conductivities μ(t ) are oscillating around the
constant values of μ̄(τ ) reached at convergence, which we
denote with μ̄∞ = {μ̄∞

e }. Motivated by this empirical obser-
vation, we set

ae = μ̄∞
e ∀ e ∈ E . (14)

We experimentally notice that also the fluxes start to os-
cillate around a constant value after a first stabilization time
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interval [see Fig. 3(a)]. We use this evidence to deduce (see
Appendix E) that the main oscillatory modes of the conduc-
tivities are resonant with the squared fluxes and have the form

be(t ) =
∑

n,m∈N
bm

e bn
e exp[iω(n + m)t] ∀ e ∈ E , (15)

with N := {nv} the set of the Fourier modes of the loads.
Hence, the conductivities oscillate with modes determined
by those of the loads. This result is supported by several
numerical experiments (see Appendix E for details).

Remarkably, these numerical experiments also serve as a
validation for hypothesis (ii) in Sec. III A. In fact, for any
sufficiently slow time τ , the conductivities fluctuate around
a constant value, suggesting the possibility of neglecting
their fast oscillatory nature when studying asymptotics of
Eqs. (1)–(3).

Candidate Lyapunov functional

We empirically observe [see Fig. 3(b)] that our new dy-
namics (10) and (11) admits a candidate Lyapunov functional
reading

L̄γ (μ̄) := 1

2

∑
e

�e

μ̄e
F̄ 2

e (μ̄) + 1

2γ

∑
e

�eμ̄
γ
e , (16)

where for each edge e we define the squared slow fluxes F̄ 2
e :=

(μ̄2
e/�

2
e )

∑
uv Aeu(μ̄)Aev (μ̄)Cuv . Noticeably, if rank(C) = 1

holds, it is possible to formally prove that L̄γ (μ̄) is a well-
defined Lyapunov functional for Eqs. (10) and (11) (see
Appendix D for detailed derivations). In addition, we can
interpret the functional as in Ref. [27] for multicommodity
optimal transport. Namely, the Lyapunov is the sum of a dissi-
pation cost, the first addend in Eq. (16), with an infrastructural
cost, the price needed to build the transport network.

We notice empirically that the functional reaches a plateau
at tSTOP, defined as the time for which �L̄γ /δ̄t < ε is sat-
isfied, with �L̄γ := |(L̄γ )τ+1 + (L̄γ )τ |/(L̄γ )τ+1, where the
upper indices are consecutive iterations in the finite-difference
discretization of Eqs. (10) and (11). In all our experiments, we
set δ̄t = 0.1 as time step of a forward Euler method and the
convergence threshold to ε = 10−5.

Additionally, we observe that the candidate Lyapunov
functional L̄γ converges to a value that is the same achieved
by the running average functional over the period T :

〈Lγ 〉T := 1

T

∫ t+T

t

(
1

2

∑
v

pv (μ)S(t ′) + 1

2γ

∑
e

�eμ
γ
e

)
dt ′,

(17)

with μ that is evaluated along solution trajectories of Eqs. (1)–
(3). The functional (17) reaches a plateau at the stabilization
time tSTAB, when the fast conductivities μ(t ) start oscillating
around constant values. Remarkably, in Fig. 3(b) we see that
tSTAB � tSTOP, which is due to the fact that the time step δt for
the numerical discretization of Eqs. (1)–(3) has to be set much
lower than δ̄t in order to capture the oscillatory nature of the
loads. In our experiments we set it to δt = δ̄t/10. A practical
consequence of this is that the discretization of Eqs. (10) and
(11) is a fast and scalable alternative to extract the conductivi-
ties around which long-run solutions of Eqs. (1)–(3) stabilize.

Because of this analogy between an optimal transport
(functional minimization) setup and the solutions of our dy-
namical system, we can interpret the networks determined
from the dynamics in Eqs. (10) and (11) as optimal topologies
minimizing the infrastructural and dissipation cost. These net-
works can also be obtained by averaging long-run solutions of
the original dynamics in Eqs. (1)–(3). In fact, as discussed
in Sec. IV, long-run trajectories of Eqs. (1)–(3) oscillate
around asymptotics of the newly defined dynamical system
in Eqs. (10) and (11).

V. GENERATION OF LOOPS

A. Conditions for the generation of loops in closed form

If C has rank(C) = 1, i.e., Cvu = yu yv for some y ∈ R|V |,
the dynamics (10) and (11) produces trees at convergence.
One trivial case where this holds is when the loads S(t ) are
static, i.e., constant for all times. However, this is not the only
setting where rank(C) = 1 is satisfied. In particular, there are
cases where such a condition holds but S do change in time.

Here we explore a case of study proposing an ansatz where
the loads are the sum of decoupled harmonic oscillators

Sv (t ) =
Nv∑
i=1

Ai
v cos

(
ωni

vt + φi
v

) + dv ∀ v ∈ V, (18)

with ω = 2π/T , ni
v, Nv ∈ N, and Ai

v, dv ∈ R. By construc-
tion, these loads are periodic in T ; hence we compare
them with their Fourier series representation Sv (t ) = a0

v/2 +∑
nv�1 anv

v cos(ωnvt + ϕnv
v ). Equating this expression with

Eq. (18) yields

cnv

v = Ai
v

2
exp

(
iφi

v

)
δnvni

v
∀ nv ∈ N, (19)

where we conventionally set φ0
v = 0 ∀ v ∈ V and where only

a finite number of Fourier coefficients are different from zero,
given that the sum in Eq. (18) is finite.

The goal here is to express rank(C) = 1 in terms of {Ai
v},

{ni
v}, and {φi

v}, amplitudes, modes, and phases of the harmonic
oscillators, respectively. To do that, we start by noting that
rank(C) = 1 is satisfied if and only if Cuv = yuyv ∀ u, v ∈ V ,
with yv = ±√

Cvv , and where the plus or minus signs have to
be determined among 2|V | possible choices in such a way that∑

v yv = 0 (see Appendix F).
Defining the complex vectors νv = {cnv

v } with entries
of the Fourier coefficients in Eq. (19), we rewrite Cuv =
±√

Cuu
√

Cvv as νu · νv = ±‖νu‖‖νv‖, where the centered dot
denotes the complex dot product and ‖ · ‖ is its correspondent
norm. Thus, the rank condition on C can be reformulated in
terms of an equivalent linear dependence condition of the form
νv = λνu between the vectors νv , v ∈ V , and for λ �= 0. Fi-
nally, substituting Eq. (19) in this linear dependence condition
leads to the following main result.

Proposition 1. Let the time-dependent loads S(t ) injected
in the network nodes be as in Eq. (18). If the following hold,
then, for any γ � 1, a stationary solution of Eqs. (10) and
(11) is a tree: (a) φi

v = φi
u + kπ, k ∈ Z, i.e., sources and sinks

are in phase, and (b) Ai
vδnvni

v
= λ(−1)kAi

uδnuni
u

(implying that
Nv = N for all v),

For a formal justification of this result see Appendix F.
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FIG. 4. Bordeaux bus optimal transport network. (a) Network visualization. Input loads have been built as described in Sec. V B. The tree
network originated by C with rank 1 is plotted in blue, the loopy topology in orange. The yellow and the magenta stars denote the geographical
location of the two loads, the green squares those of the sinks. Here the width of edges corresponds to slow conductivities at convergence μ̄∞

e .
Results are plotted for γ = 0.9. (b) Basis loop fraction against rank(C). Points correspond to averages over 100 runs of the experiments where
positions of the sources and sinks are extracted at random. Shaded regions denote their standard deviations. Results are displayed for γ = 0.5.

B. Numerical tests on the Bordeaux bus

In order to test the rank condition on C we design two
experiments on the real network of the buses of Bordeaux. The
network topology has been constructed focusing on a central
region of the city and using data collected from [48]. Here
we assume that the loads, representing passengers entering or
exiting the network, vary much faster than the conductivities.
These latter quantities can be thought of as the size of the
roads that a network manager needs to design; thus we can
safely assume their evolution to happen on a larger timescale
with respect to that of S(t ).

First, we design a simulation with two source nodes v1 and
v2 [the stars in Fig. 4(a)] and five sinks [the green squares in
Fig. 4(a)] that we extract at random among the nodes of the
network. Then we consider two cases where the sources are
built in such a way that (i) rank(C) = 1 and (ii) rank(C) =
2. These are, respectively, (i) Sv1 (t ) = Sv2 (t ) = 100 cos(ωt ),
with ω = 2π , and (ii) Sv1 (t ) = 100 cos(ω1t ), with ω1 = 2π ,
and Sv2 (t ) = 100 cos(ω2t ), with ω2 = 4π . All the sinks u �=
v1, v2 have loads Su(t ) = −[Sv1 (t ) + Sv2 (t )]/5 in both cases,
to ensure conservation of mass.

We expect that in the first case the network extracted from
Eqs. (10) and (11) with γ � 1 is a tree. In the second case
the network can possibly contain loops. We run the dynamics
setting γ = 0.9 and we display our findings in Fig. 4(a).
The empirical results reflect our predictions: the blue network
(the first case) is a tree. In contrast, in the orange network
(the second case) loops emerge.

We further validate our results on the bus network of
Bordeaux with a second experiment. We assign the loads
Sv (t ) = ∑n

i=1 Si
v (t ), with Si

v = (100/|Qn|) cos(ωit ), to a set
Qn of randomly extracted nodes and Si

v = −[100/(|V | −
|Qn|)] cos(ωit ) to the remaining ones. The modes are n =
1, . . . , 6, while the number of nodes which are randomly
extracted for each n are Q := |Qn| = {1, 5, 10, 20}. We set
again ω = 2π .

Exploiting the exact relation that the matrix C has with
the modes of the loads (see Sec. V A), it is possible to see
that our particular construction of S(t ) gives ranks ranging in

1 � rank(C) � 6. We show our results in Fig. 4(b), where we
plot the fraction of basis loops of the network against the rank
of C. The dynamics is executed for γ = 0.5 and the random
extraction of the forcings has been varied over 100 runs. In the
plot, it is clearly visible that for all values of Q, the fraction
of basis loops is zero at rank(C) = 1. Moreover, we can see
that when we increase the complexity of the problem, i.e.,
when rank(C) grows, the values attained on the y axis also
increase. This suggests that the rank of the C can be used as a
qualitative proxy to predict the number of loops in the optimal
transport network. Finally, as one could intuitively expect, the
basis loop fraction increases with Q, i.e., with the number of
nodes where mass is injected or extracted.

VI. CONCLUSION AND OUTLOOK

Routing models on networks are relevant to study many
real-world problems. While most of the works in the current
literature consider stationary setups, i.e., the inflows injected
in the network do not change in time [2,15,20,27,37–42], few
recent works investigate time-varying loads and the majority
of these models study solely the averaged evolution of the
networks’ variables [3,9,24,37].

In this work we analyzed a dynamical system where the
conductivities are regulated by time-varying mass inflows.
Motivated by empirical observations [25,43–45], we assumed
the existence of auxiliary conductivities that have response
times which are much slower than those of the loads. Further-
more, in order to make the problem analytically tractable, we
supposed that all the loads injected in nodes are periodic, in a
period that is substantially smaller than the adaptation time of
the new conductivities. These two hypothesis together allowed
us to deduce a dynamics where the evolution of the systems
is solely regulated by an input matrix constructed using the
Fourier series expansion of the loads.

The resulting dynamics allowed us to derive the main
findings of our work. In detail, combining theoretical argu-
ments with empirical evidence on synthetic networks, we
found an expression for the long-run solutions of the original
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dynamics, which cannot otherwise be obtained by simply
solving the original dynamics. These long-run solutions are
the sum of stationary components, equal to the asymptotics
of the dynamics we constructed, and an oscillatory one. This
second contribution can be expressed as the sum of periodic
signals, with modes related to those of the loads. Moreover,
we discussed a sufficient condition on the loads that de-
termines when optimal transport networks can be loopless.
Such a condition was numerically validated on the Bordeaux
bus network. Finally, our dynamics can be connected to an
optimization setup, as shown by the proposed candidate Lya-
punov functional. As a result, asymptotic trajectories of our
dynamics minimize the total cost needed to build the network
infrastructure.

Importantly, the numerical discretization of the dynamics
we proposed in this work can be used as an efficient method to
rapidly converge to average long-run solutions of the original
dynamics.

Our results can be extended in several ways. For in-
stance, it would be interesting to investigate different types
of input loads that relax the periodicity hypothesis and use
this to analyze the behavior of the conductivities in differ-
ent problems’ settings. Similarly, it would be interesting to
explore how this formalism adapts to multilayer networks,
where passengers can enter different stations correspond-
ing to different transportation modes [20]. Another relevant
application could be that of integrating our findings with
the recent work of Baptista and De Bacco [19], where
the authors studied how topological properties of the trans-
port network change in time, as we approach stationary
configurations, and how these reflect on the shape of the
conductivities.

While our work constitutes a step towards extending the
formalism of capacitated networks to time-dependent loads,
it is important to remark that our findings are valid in a
particular time limit. Specifically, this is the scenario where
conductivities slowly evolve with the integral average of
periodic forcings, as introduced in Sec. III. It is not clear
how the theoretical analysis presented in this work could be
adapted to scenarios where loads and conductivities evolve
with the same timescale. This could be an interesting av-
enue for future work. Another interesting direction could be
that of considering additional constraints on the evolution of
the conductivities, which are not currently included in our
model. For instance, one could introduce a threshold capacity
above which the edge traffic saturates, causing blockage of
roads.

Altogether, we believe that our results enrich the current
knowledge on network routing problems with time-varying
input loads and have immediate practical implications. In fact,
our model is deterministic, since there is only one single
realization of the inputs and thus adequate to model real-world
scenarios where time-dependent loads are measured quanti-
ties, e.g., the amount of passengers traveling in a metro (which
can be easily tracked), without the need of stochastic formula-
tions that require the introduction of probability distributions
that are hard to characterize.

To facilitate practitioners in using our model, we have
made the algorithmic implementation publicly available [49].
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APPENDIX A: NONDIMENSIONALIZATION
OF THE MODEL

Here we show how our model can be made dimension-
less, i.e., constants can be removed by appropriately rescaling
dimension-dependent quantities. We start from the dimension-
dependent ODEs

dμ̃e(t̃ )

dt̃
= a

F̃ 2
e (t̃ )

μ̃
γ
e (t̃ )

− bμ̃e(t̃ ) ∀ e ∈ E , (A1)

with a and b coefficients with appropriate dimensions. We
then choose the nondimensionalization

t := t̃/tc, (A2)

μe := μ̃e/μc ∀ e ∈ E , (A3)

Sv (t ) := S̃v (t̃ )/Sc ∀ v ∈ V, (A4)

where Sc is the characteristic unit of S. Substituting Eqs. (A2)–
(A4) in Kirchhoff’s law yields Fe(t ) = F̃e(t̃ )/Sc ∀ e ∈ E , with
F (t ) adimensional fluxes.

Recasting all adimensional variables in Eq. (A1), we get

dμe(t )

dt
= a

(
tcS2

c

μ
γ+1
c

)
F 2

e (t )

μ
γ
e (t )

− btc μe(t ) ∀ e ∈ E , (A5)

showing that, to recover Eq. (2), we can set

tc = 1/b, (A6)

μγ+1
c /S2

c = a/b. (A7)

We note that a procedure for the nondimensionalization of
a model similar to ours can be found in [2] (Supplemental
Material Sec. II).

APPENDIX B: DERIVATION OF (5)

In order to define Eq. (5), we perform the calculations on
the right-hand side of Eq. (2),∫ τ+�

τ

�e(μ(t ), t )dt := 1

�

∫ τ+�

τ

μ−γ
e (t )F 2

e (t ) − μe(t )dt

(B1)

= 1

�

∫ τ+�

τ

(
μ

2−γ
e (t )

�2
e

∑
uvmn

BmeBneL†
um(μ(t ))L†

vn(μ(t ))

× Su(t )Sv (t ) − μe(t )

)
dt (B2)

t ′= t−τ= 1

�

∫ �

0

(
μ

2−γ
e (τ + t ′)

�2
e

∑
uvmn

BmeBneL†
um(μ(τ + t ′))

× L†
vn(μ(τ+ t ′))Su(τ+ t ′)Sv (τ + t ′)−μe(τ + t ′)

)
dt ′

(B3)
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(ii)≈ μ
2−γ
e (τ )

�2
e

∑
uv

Aeu(μ(τ ))Aev (μ(τ ))
1

�

∫ �

0
Su(τ + t ′)

× Sv (τ + t ′) − μe(τ + t ′) dt ′ (B4)

t=t ′+τ= μ
2−γ
e (τ )

�2
e

∑
uv

Aeu(μ(τ ))Aev (μ(τ ))
1

�

∫ τ+�

τ

Su(t )

× Sv (t ) − μe(t ) dt (B5)

=: �̂e(μ(τ ), τ ), (B6)

which are valid for all e ∈ E . In detail, in Eq. (B2) we used the
definition of the fluxes Fe(t ) := μe(t )[pu(t ) − pv (t )]/�e ∀ e ∈

E and evaluated the pressure solving Kirchhoff’s law, i.e.,
pv (t ) := ∑

u L†
vu(μ(t ))Su(t ) ∀ v ∈ V . The second important

step is in Eq. (B4), where we used hypothesis (ii) in Sec. III A,
namely, the approximation in Eq. (4), to carry the conductiv-
ities out of the time integral, and we introduced Aev (μ(t )) :=∑

u BeuL†
vu(μ(t )) ∀ e ∈ E ∀ v ∈ V .

APPENDIX C: DERIVATION OF (9)

We enforce the hypothesis of periodicity of the loads, i.e.,
Sv (t ) = Sv (t + T ), with T/� 	 1, and we parametrize the
integration window � as � = KT , K � 1. This allows us to
split the integral in Eq. (9) into two separate contributions.
In detail, making the reasonable hypothesis that Su(t )Sv (t ) is
bounded by M < +∞ for all t � 0 and for all u, v ∈ V , we
can write

1

�

∫ τ+�

τ

Su(t )Sv (t ) dt = 1

�

∫ τ+�

τ

∑
nunv

(
cnu

u

)∗
cnv

v exp[iω(nv − nu)t]dt (C1)

=
∑
nunv

(
cnu

u

)K
cnv

v

( �K�∑
k=1

Ik (nu, nv ) + IK (nu, nv )

)
, (C2)

Ik (nu, nv ) := 1

�

∫ τ+kT

τ+(k−1)T
exp[iω(nv − nu)t]dt ∀ k = 1, . . . , �K�, (C3)

IK (nu, nv ) := 1

�

∫ τ+KT

τ+�K�T
exp[iω(nv − nu)t]dt . (C4)

Hence, we separate the first �K� integrals over the period T
from the last one in (�K�T, KT ). Since K � 1, the first �K�
contributions can be evaluated as

∑
nunv

(cnu
u )∗cnv

v

�K�∑
k=1

Ik (nu, nv ) = �K�
K

∑
nunv

(
cnu

u

)∗
cnv

v δnunv
(C5)

=
∑

nv

(
cnv

u

)∗
cnv

v + O(�), (C6)

with δi j being the Kronecker delta for two indices i and j. As
for the second term, in the limit K � 1 we can write∣∣∣∣∣∣

∑
nunv

(
cnu

u

)∗
cnv

v IK (nu, nv )

∣∣∣∣∣∣ � K − �K�
K

M ∼ O(�), (C7)

showing that integrals over the small interval (�K�T, KT ) are
negligible for a large integration window.

APPENDIX D: SUFFICIENT CONDITION
ON THE RANK FOR OPTIMAL TREES

We discuss in detail the sufficient condition rank(C) = 1 to
obtain loopless optimal networks running the dynamics (10)
and (11). Our argument proceed as follows.

The matrix C is symmetric by construction; thus if its
rank is 1 its eigenvalue decomposition is of the form C =

∑N
i=1 λixix�

i , with all the eigenvalues equal to zero except
one. We conventionally choose it to be λ1 = ∑

v Cvv > 0,
with a unit norm eigenvector x1. Defining y := √

λ1x1 and
substituting the eigendecomposition of C in Eq. (12), we get
that �̄e is proportional to F̂e := (μ̄e/�e)

∑
v Bev p̂v , with p̂v :=∑

u L†
vu(μ̄)yu. In order to conclude, we need to show that p̂ is

a well-defined solution of Kirchhoff’s law
∑

u Luv (μ̄) p̂u = yv ,
i.e., y is a zero-sum vector [47]. This comes as a conse-
quence of conservation of mass. Indeed, since for all times∑

v Sv (t ) = 0 holds, we have
∑

v Su(t )Sv (t ) = 0 ∀ u ∈ V . Us-
ing Eq. (9) and ignoring negligible terms of O(�), this yields∑

v Cuv = 0 ∀ u ∈ V . Finally, substituting the eigendecompo-
sition of C in this last relation gives

∑
v yuyv = 0 ∀ u ∈ V .

This is satisfied only if
∑

v yv = 0, i.e., y is a zero-sum vector.
In this case, Eqs. (10) and (11) correspond to the standard dy-
namics (1)–(3) with constant loads, which are S(t ) = y ∀ t �
0, and we recover the well-known result that optimal networks
are trees for γ � 1 [23,26,29].

Noticeably, if rank(C) = 1, it is possible to prove that
the functional L̄γ (μ̄) proposed in Eq. (16) is a well-defined
Lyapunov functional. This means that for any μ̄(τ ) solution
trajectory of Eqs. (10) and (11), we have dL̄γ (μ̄(τ ))/dτ �
0, with stationarity achieved only by asymptotics of the
dynamics. Having established that p̂ is a well-defined po-
tential, we can write the Lyapunov functional as L̄γ (μ̄) =
(1/2)

∑
v p̂v (μ̄)Sv + (1/2γ )

∑
e �eμ̄

γ
e . This last expression is

useful to conclude the proof, which follows that in Ref. [27].
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APPENDIX E: DERIVATION OF (15)

In order to discern the nature of the fast oscillating com-
ponent be(t ) of the stabilized solutions, we need to investigate
further the original dynamics Eqs. (1)–(3). From our numer-
ical validation we observe that the fluxes start to oscillate
around a constant value after a first stabilization time inter-
val [see Fig. 3(a)], analogously to the conductivities. This
suggests the ansatz Fe(t ) = ∑

ne∈Z F ne
e exp(iωnet ) ∀ e ∈ E for

all times t sufficiently larger than tSTAB and with the terms
F ne

e amplitudes of the Fourier series decomposition. We ar-
gue that pairing this expression with Kirchhoff’s law, i.e.,∑

e BveFe(t ) = Sv (t ), yields

Fe(t ) =
∑
n∈N

F n
e exp(iωnt ) ∀ e ∈ E , (E1)

with N := {nv} the set of Fourier modes of the loads injected
in the network. Our argument is the following.

Assuming the ansatz Fe(t ) = ∑
ne∈Z F ne

e exp(iωnet ) ∀ e ∈
E , we separate the contributions

Fe(t ) = ϕe(t ) + ψe(t ), (E2)

ϕe(t ) =
∑

ne∈N
F ne

e exp(iωnet ), (E3)

ψe(t ) =
∑

ne /∈N
F ne

e exp(iωnet ). (E4)

Substituting Eqs. (E2)–(E4) in Kirchhoff’s law returns the
conditions ∑

e

Bveϕe(t ) = Sv (t ), (E5)

∑
e

Bveψe(t ) = 0, (E6)

valid for all v ∈ V . Now, in order to guarantee that the fluxes
{ϕe(t ), ψe(t )} are well defined, we suppose the existence
of two time-dependent potentials α(t ) = {αv (t )} and β(t ) =
{βv (t )}. These are defined on the network nodes and such that
for all e ∈ E we have

ϕe(t ) := μe

�e

∑
v

Bveαv (t ), (E7)

ψe(t ) := μe

�e

∑
v

Bveβv (t ). (E8)

Note that these definitions lead to Fe(t ) being a potential-
based flux and yield pv (t ) = αv (t ) + βv (t ) ∀ v ∈ V . Substi-
tuting Eqs. (E7) and (E8) in Eqs. (E5) and (E6), respectively,
implies that ψe(t ) = 0 ∀ e ∈ E and for sufficiently large times.
Hence, the only nonzero terms in the Fourier decomposition
of Fe(t ) have modes in N .

This result is particularly useful to describe the behavior
of μ(t ) at large times. First, we recall that μe(t ) = μ̄∞

e +
be(t ) ∀ e ∈ E , as discussed in Sec. IV. Moreover, we observe
that in our numerical experiments [see Fig. 3(a)] the size of
the amplitude of the oscillatory term be(t ) is negligible in size
with respect to μ̄∞

e , unless μe(t ) decays to zeros. This allows
us to approximate Eq. (2) as

dμe(t )

dt
� F 2

e (t )(
μ̄∞

e

)γ − μe(t ) ∀ e ∈ E . (E9)

Finally, substituting Eq. (E1) in Eq. (E9), we get the desired
results, i.e., the main oscillatory modes of the conductivities,
hence of be(t ), are resonant with the squared fluxes. Thus we
obtain Eq. (15).

Validation on synthetic networks

We test these expressions numerically on networks
generated as described in Sec. IV. We compute Pe :=∫
R |F[be]( f )|2df , the total spectral density of the os-

cillatory components be(t ), after the conductivities μ(t )
stabilize. Here F[·]( f ) is the Fourier transform opera-
tor. Additionally, we calculate PN , obtained summing the
atomic contributions of the spectral density on the modes
k ∈ K := {k s.t.k = n + m for n, m ∈ N }, namely, PN ,e :=∑

k∈K
∫
R |F[be]( f )|2δ( f − k)df ∀ e ∈ E .

From Eq. (15) we expect to have most of the spec-
tral density of be(t ) concentrated on the modes in K, i.e.,
the ratio Pe/PN ,e should be close to 1 for each edge. In
Fig. 5(a) we plot P = {Pe} versus PN = {PN ,e} for the
example network considered in Fig. 3. The plot supports
Eq. (15); indeed, the elementwise ratio P/PN is close to 1
for all points (each correspondent to a different edge) with a
slight deviation only for small (thus negligible) values of the
conductivities.

We further validate this result on an additional synthetic
example network. We construct the Delaunay networks de-
scribed in Sec. IV considering 100 combinations of seeds
for the nodes’ positions and for the random input loads.
Then we compute the spectral densities P and plot them
against δP, with entries δPe := (PN ,e − Pe)/Pe. We show in
Fig. 5(b) results for γ = 0.5, 1, 1.5 on 100 random graphs
of size |V | = 8. Here we clearly see that δP are negligible
for any edge with P larger than a threshold α (in our ex-
periments we set α = 10−3), further supporting the result in
Fig. 5(a).

It is worth mentioning how the points cluster in different
regions of the plot for different values of γ . The green points,
corresponding to γ = 0.5, are divided into two clusters: one
around P small and δP = 1 and another with P large and δP
negligible. This reflect the tendency of γ < 0.5 to aggregate
fluxes on few edges. The blue points, corresponding to γ =
1.5, are instead concentrated around a region with P large and
δP small, since in this case fluxes are distributed on more
edges. Finally, the orange points, corresponding to γ = 1,
represent a transition between the two cases and are located
in a cluster placed in between the other two. This result is
consistent with the behavior of γ mentioned in Sec. II.

We test the scalability of our result by running the same
validation just described, but increasing the graphs sizes. We
plot our results in Fig. 5(c). Here we show the compatibility
of δPα := ∑

e δPeI(δPe > α)/E ′ with zero. Here I(·) is the
indicator function and E ′ the number of the edges that do not
get trimmed by α. We see that all values attain values close
to δPα = 0 and all error bars (expressing standard deviations
over 100 random graph realizations) are always intersecting
the line highlighting δPα = 0. The decreasing trend of δPα for
γ = 0.5 can be attributed to the fact that we fixed the cutoff
threshold α a priori and thus we do not have a precise trim for
P for larger networks.
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FIG. 5. Spectral density validation. (a) Plot of PN versus P for the example network of Fig. 3. Each point corresponds to an edge; the color
scale is that of Fig. 3(a). (b) Plot of P versus δP. Each point corresponds to an edge; marker color denotes γ = 0.5, 1, 1.5. The dashed line is
the cutoff used to build δPα . (c) Compatibility of δPα with δPα = 0 for different networks’ sizes. Markers and bars correspond to averages and
standard deviations over 100 random configurations of the problem, respectively. The networks have been obtained pairing ten seeds for node
coordinate generation and ten seeds for mass and conductivity initialization μe ∼ U (0, 1).

APPENDIX F: HARMONIC-OSCILLATOR CONDITIONS

We already established that if rank(C) = 1, then there ex-
ists a zero-sum vector y such that Cuv = yuyv ∀ u, v ∈ V (see
Appendix D). Inspecting the diagonal elements of C, it is
immediate to get yv = ±√

Cvv ∀ v ∈ V . Here the choice of
the plus or minus sign is constrained among 2|V | possibilities,
to those for which

∑
v yv = 0 holds. The right-to-left impli-

cation comes naturally from the definition of C. Namely, if
we suppose that Cuv = yuyv ∀ u, v ∈ V , we are imposing that
all the columns of C are scalar multipliers of each other, i.e.,
rank(C) = 1.

Substituting Eq. (19) in νv = λνu leads to

Ai
v exp

(
iφi

v

)
δnvni

v
= λAi

u exp
(
iφi

u

)
δnuni

u
, (F1)

which needs to be satisfied for each pair of nu, nv ∈ N. This
is valid if the phases are such that φi

v = φi
u + kπ, k ∈ Z, i.e.,

condition (i) in Sec. V A holds. Substituting this last equality
in Eq. (F1), we get

Ai
v exp

(
iφi

v

)
δnvni

v
= λAi

u exp
(
iφi

v

)
(−1)kδnuni

u
, (F2)

Ai
vδnvni

v
= λAi

u(−1)kδnuni
u
, (F3)

which is precisely (ii) in Sec. V A. In conclusion, fixing the
input loads in such a way that (i) and (ii) hold leads to
rank(C) = 1, which is sufficient to get optimal tree topologies,
as shown in Appendix D.
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Immiscible color flows in optimal
transport networks for image
classification

Alessandro Lonardi*†, Diego Baptista*† and Caterina De Bacco

Physics for Inference and Optimization Group, Max Planck Institute for Intelligent Systems, Cyber Valley,
Tübingen, Germany

In classification tasks, it is crucial tomeaningfully exploit the information contained in
the data. While much of the work in addressing these tasks is focused on building
complex algorithmic infrastructures to process inputs in a black-box fashion, little is
known about how to exploit the various facets of the data before inputting this into
an algorithm. Here, we focus on this latter perspective by proposing a physics-
inspired dynamical system that adapts optimal transport principles to effectively
leverage color distributions of images. Our dynamics regulates immiscible fluxes of
colors traveling on a network built from images. Instead of aggregating colors
together, it treats them as different commodities that interact with a shared
capacity on the edges. The resulting optimal flows can then be fed into standard
classifiers to distinguish images in different classes. We show how our method can
outperform competing approaches on image classification tasks in datasets where
color information matters.

KEYWORDS

network flow optimization, image classification, network optimization, optimal transport,
self-adapting dynamical systems

1 Introduction

Optimal transport (OT) is a powerful method for computing the distance between two data
distributions. This problem has a cross-disciplinary domain of applications, ranging from
logistics and route optimization [1–3] to biology [4, 5] and computer vision [6–10], among
others. Within this broad variety of problems, OT is largely utilized in machine learning [11]
and deployed for solving classification tasks, where the goal is to optimally match discrete
distributions that are typically learned from data. Relevant usage examples are also found in
multiple fields of physics, as in protein fold recognition [12], stochastic thermodynamics [13],
designing transportation networks [14, 15], routing in multilayer networks [16], or general
relativity [17]. A prominent application is image classification [18–23], where the goal is to
measure the similarity between two images. OT solves this problem by interpreting image pairs
as two discrete distributions and then assessing their similarity via the Wasserstein (W1)
distance ([24], Definition 6.1), a measure obtained by minimizing the cost needed to transform
one distribution into the other. UsingW1 for image classification carries many advantages over
other similarity measures between histograms. For example, W1 preserves all properties of a
metric [9, 24], it is robust over domain shift for train and test data [22], and it provides
meaningful gradients to learn data distributions on non-overlapping domains [25]. Because of
these and several other desirable properties, much research effort has been put into speeding up
algorithms to calculate W1 [12, 19, 20, 26, 27]. However, all these methods overlook the
potential of effectively using image colors directly in the OT formulation. As a result,
practitioners have access to increasingly efficient algorithms, but those do not necessarily
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improve accuracy in predictions, as we lack a framework that fully
exploits the richness of the input information.

Colored images originally encoded as three-dimensional
histograms—with one dimension per color channel—are often
compressed into lower dimensional data using feature extraction
algorithms [9, 23]. Here, we propose a different approach that
maps the three distinct color histograms to multicommodity flows
transported in a network built using images’ pixels. We combine
recent developments in OT with the physics insights of capacitated
network models [1, 5, 28–31] to treat colors as masses of different
types that flow through the edges of a network. Different flows are
coupled together with a shared conductivity to minimize a unique cost
function. This setup is reminiscent of the distinction between
modeling the flow of one substance, e.g., water, and modeling the
flows of multiple substances that do not mix, e.g., immiscible fluids,
which share the same network infrastructure. By virtue of this
multicommodity treatment, we achieve stronger classification
performance than state-of-the-art OT-based algorithms in real
datasets where color information matters.

2 Problem formulation

2.1 Unicommodity optimal transport

Given twom- and n-dimensional probability vectors g and h and a
positive-valued ground cost matrix C, the goal of a
standard—unicommodity—OT problem is to find an optimal
transport path P+ satisfying the conservation constraints ∑jPij =
gi∀i and ∑iPij = hj∀j, while minimizing J(g, h) = ∑ijPijCij.

Entries P+
ij can be interpreted as the mass transported from gi to hj

when paying a cost Cij, while J+, i.e., J evaluated at P+, encodes the
minimum effort needed to transport g to h. Notably, if all entries Cij are
distances between i and j, then J+ is the W1 distance between g and h
(see [24] for a standard proof and [9] for derivations focusing on the
discrete case).

2.2 Physics-inspired multicommodity optimal
transport

Interpreting colors as masses traveling along a network built from
images’ pixels (as we define in detail below), unicommodity OT could
be used to capture the similarity between grayscale images. However, it
may not be ideal for colored images, when color information matters.
The limitation of unicommodity OT in Section 2.1 is that it does not
fully capture the variety of information contained in different color
channels as it is not able to distinguish them. Motivated by this, we
tackle this challenge and move beyond this standard setting by
incorporating insights from the dynamics of immiscible flows into
physics. Specifically, we treat the different pixels’ color channels as
masses of different types that do not mix but rather travel and interact
on the same network infrastructure, while optimizing a unique cost
function. By assuming capacitated edges with conductivities that are
proportional to the amount of mass traveling through an edge, we can
define a set of ODEs that regulate fluxes and conductivities. These are
optimally distributed along a network to better account for color
information while satisfying physical conservation laws. Similar ideas

have been successfully used to route different types of passengers in
transportation networks [2, 16, 32].

Formally, we couple together the histograms of M = 3 color
channels, the commodities, indexed with a = 1, . . ., M. We define
ga and ha as m- and n-dimensional probability vectors of mass of type
a. More compactly, we define the matrix G with entries Gia � ga

i

(respectively,H for h), each containing the intensity of color channel a
in pixel i of the first (respectively, second) image. These regulate the
sources and sinks of mass in our setting. We then enforce the
conservation of mass for each commodity index a ∑ig

a
i � ∑jh

a
j .

This ensures that all the color mass in the first image is accounted
for in the second image, and vice versa. This should be valid for each
mass type.

Moreover, we define the set Π(G, H) containing (m × n × M)-
dimensional tensors P with entries Pa

ij being transport paths between
ga and ha. These regulate how fluxes of colors of different types travel
along a network. We enforce the interaction between transport paths
for different commodities by introducing a shared cost.

JΓ(G,H) � ∑
ij

‖Pij‖Γ2Cij, (1)

where ‖Pij‖2 � (∑aP
a
ij2)1/2 is the 2-norm of the vector Pij �

(P1
ij, . . . , P

M
ij ) and 0 < Γ < 4/3 is a regularization parameter. We

take Γ > 0 since a negative exponent would favor the proliferation of
loops with infinite mass [28]. Instead, we conventionally consider Γ <
4/3 (see Section 3.2) since the cost JΓ exhibits the same convexity
properties for any Γ > 1, i.e., it is strictly convex, and OT paths do not
change substantially with Γ in this regime [2]. We can thus formulate
its corresponding multicommodity OT problem as that of finding a
tensor P+ solution of

J+Γ G,H( ) � min
P∈Π G,H( )

JΓ G,H( ). (2)

It should be noted that for M = 1 and Γ = 1, we recover the
standard unicommodity OT setup.

The problem in Eq. 2 admits a precise physical interpretation. In
fact, it can be recast as a constrained minimization problem with the
objective function being the energy dissipated by the multicommodity
flows (Joule’s law) and a constant total conductivity. Furthermore,
transport paths follow Kirchhoff’s law enforcing conservation of mass
[2, 32, 33] (see Supplementary Material for a detailed discussion).

Noticeably, JΓ is a quantity that takes into account all the different
mass types, and the OT paths P+ are found through a unique
optimization problem. We emphasize that this is fundamentally
different from solving M-independent unicommodity problems,
where different types of mass are not coupled together as in our
setting, and then combining their optimal costs to estimate images’
similarity. Estimating J+Γ (G,H) directly gives a quantitative and
principled measure of the similarity between two images G and H.
The lower this cost, the higher the similarity of the two images. While
this is valid also for the unicommodity cost in Section 2.1, the
difference here is that we account differently for the color
information as we distinguish different colors via the M-
dimensional vector Pij. The cost in Eq. 2 then properly couples
colors by following physical laws regulating immiscible flows. The
idea is that if this information matters for the given classification task,
incorporating it into the minimization problem would output a cost
that helps to distinguish images better, e.g., with higher accuracy.
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3 Materials and methods

3.1 Optimal transport network on images

Having introduced the main ideas and intuitions, we now explain
in detail how to adapt the OT formalism to images. Specifically, we
introduce an auxiliary bipartite network Km,n(V1,V2, E12), which is the
first building block of the network where the OT problem is solved. A
visual representation of this is shown in Figure 1. The images 1 and
2 are represented as matrices (G and H) of sizes m × M and n × M,
respectively, where M is the number of color channels of the images
(M = 3 in our examples). The sets of nodes V1 and V2 of the network
Km,n are the pixels of images 1 and 2, respectively. The set of edges E12
contains a subset of all pixel pairs between the two images, as detailed
further. We consider the cost of an edge (i, j) as

Cij θ, τ( ) � min 1 − θ( )‖vi − vj‖2 + θ‖Gi −Hj‖1, τ{ }, (3)
where the vector vi = (xi, yi) contains the horizontal and vertical
coordinates of pixel i of image 1 (similarly vj for image 2). The quantity
θ ∈ [0, 1] is a hyperparameter that is given in input and can be chosen
with cross-validation. It acts as a weight for a convex combination
between the Euclidean distance between pixels and the difference in
their color intensities, following the intuition in [9, 23]. When θ = 0,
the OT path P+ is the one that minimizes only the geometrical
distance between pixels. Instead, when θ = 1, pixels’ locations are
no longer considered, and transport paths are only weighted by color
distributions. The parameter τ is introduced following [22, 23] with
the scope of removing all edges with cost Cij(θ, τ) = τ, i.e., those for
which (1 − θ)‖vi − vj‖2 + θ‖Gi −Hj‖1 > τ. These are substituted bym + n
transshipment edges e ∈ E′, each of which has a cost of τ/2 and is
connected to one unique auxiliary vertex u1. Thresholding the cost
decreases significantly the computational complexity of OT, making it
linear with the number of nodes |V1| + |V2| + 2 = m + n + 2 (see
Supplementary Material).

Furthermore, we relax the conservation of mass by allowing ∑iGia

≠ ∑jHja. The excess mass ma = ∑jHja − ∑iGia is assigned to a second

auxiliary node, u2. We connect it to the network with n additional
transshipment edges, e ∈ E′, each penalizing the total cost by c =
maxijCij/2. This construction improves classification when the
histograms’ total masses largely differ [22]. Intuitively, this can
happen when comparing “darker” images against “brighter” images
more precisely, when entries of ga and ha are further apart in the RGB
color space.

Overall, we obtain a network K with nodes V � V1 ∪ V2 ∪ u1, u2{ }
and edges E = E12 ∪ E′, i.e., the original bipartite graphKm,n, together with
the auxiliary transshipment links and nodes. It should be noted that in its
entirety, the system is isolated, i.e., the total mass is conserved. See
Supplementary Material for a detailed description of the OT setup.

Given this auxiliary graph, the OT problem is then solved by
injecting the color mass contained in image 1 in nodes i ∈ V1, as
specified by G, and extracting it from nodes j ∈ V2 of image 2, as
specified by H. This is carried out by transporting mass using either i)
an edge in E12 or ii) a transshipment one in E′. In the following section,
we describe how this problem is solved mathematically.

3.2 Optimizing immiscible color flows: The
dynamics

We solve the OT problem by proposing the following ODEs for
controlling mass transportation:

∑
j∈zi

Lij x[ ]ϕa
j � Sai ∀i ∈ V, a � 1, . . . ,M, (4)

dxe

dt
� xβ

e

‖ϕi − ϕj‖22
C2

e

− xe, ∀e � i, j( ) ∈ E, (5)

which constitute the pivotal equations of our model. Here, we
introduce the shared conductivities xe ≥ 0 and define
Sai � Gia −Hia, taking values Sau1 � 0 and Sau2 � ma on the auxiliary
nodes. With Lij[x] =∑e(xe/Ce)BieBje, we denote the weighted Laplacian
of K, where B is its signed incidence matrix and zi is the neighborhood
of node i. Lastly, ϕai is the scalar potential acting on nodes for a given

FIGURE 1
Bipartite network representation for multicommodity OT. The two images (shown on the leftmost and rightmost sides of the panel) are encoded in the
RGBmatrices G and H, which regulate the flow traveling on the network K. The graph is made ofm + n + 2 nodes, i.e., the total number of pixels plus the two
auxiliary vertices introduced in Section 3.1. Gray edges (belonging to the set E12) connect nodes in image 1 to nodes in image 2; these edges are trimmed
according to a threshold τ. We highlight the entries of the matrix C in red if these are larger than τ. Transshipment and auxiliary edges used to relax mass
conservation (which belong to E′) are colored in brown and magenta.
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commodity a. The least-square solutions of Eq. 4 are
ϕai [x] � ∑jL

†
ij[x]Sai , where † denotes the Moore–Penrose inverse.

The critical exponent 0 < β < 2 [Γ = 2(2 − β)/(3 − β)] is a
hyperparameter that needs to be chosen before solving Eqs 4 and
5. Depending on the modeling task, its value can be fixed a priori (e.g.,
β = 1 for the shortest path problem [34], β ≃ 5/3 for river networks
[35], and β → 2− for the Steiner tree problem [36]) or cross-validated
as we do here for image classification. The exponent aggregates paths
using the principle of economy of scale if 1 < β < 2. It dilutes them
along the network otherwise, with the goal of reducing traffic
congestion. This behavior is a direct consequence of the
subadditivity of JΓ in Eq. 2 for β > 1 (Γ < 1), and, respectively,
superadditivity for β < 1 (Γ > 1). It has been theoretically discussed and
empirically observed, for example, in [32, 37, 38].

The feedback mechanism of Eq. 5 defines multicommodity fluxes
(Pa

e ) that are admissible for the minimization problem introduced in Eq.
2. Particularly, for color of type a on edges e = (i, j), we couple potentials
(ϕai ) that are the solutions of Eq. 4 and shared conductivities (xe) to define

Pa
e t( ) � xe t( ) ϕ

a
i x t( )[ ] − ϕa

j x t( )[ ]
Ce

, ∀e ∈ E, a � 1, . . . ,M. (6)

This also highlights another physical interpretation; i.e., by
interpreting the ϕai as pressure potentials, the fluxes are seen to
arise from a difference in pressure between two nodes as in
hydraulic or electrical networks. Crucially, this allocation is
governed by one unique conductivity for all commodities, whose
dynamics depends on the 2-norm over a of differences in
potentials, as in Eq. 5. In analogy with immiscible flows, this
ensures that flows of different types share the same infrastructure,
and in practice, it couples them into a unique optimization problem.

In the case of only one commodity (M = 1), variants of this
dynamics have been used to model transport optimization in various
physical systems [1, 5, 29–31].

The salient result of our construction is that the asymptotic
trajectories of Eqs 4 and 5 are equivalent to the minimizers of Eq.
2, i.e., limt→+∞P(t) = P+ (see Supplementary Material for derivations
following [32, 33]). Therefore, numerically integrating our dynamics
solves the multicommodity OT problem. In other words, this allows us
to estimate the optimal cost in Eq. 2 and use that to compute
similarities between images. A pseudo-code of the algorithmic
implementation is shown in Algorithm 1.

3.3 Computational complexity

In principle, our multicommodity method has a computational
complexity of order O(M|V|2) for complete transport network
topologies, i.e., when edges in the transport network K are assigned to
all pixel pairs. Nonetheless, we substantially reduce this complexity to
O(M|V|) by sparsifying the graphwith the trimming procedure of [22, 23].
More details are given in SupplementaryMaterial. Empirically, we observe
that by running Eqs 4 and 5, most of the entries of x decay to zero after a
few steps, producing a progressively sparser weighted Laplacian L[x]. This
allows for faster computation of the Moore–Penrose inverse L†[x] and
least-square potentials ϕai � ∑jL

†
ij[x]Saj . A thorough experimental

analysis of the convergence properties of the OT dynamics has been
carried out in [39].

4 Results and discussion

4.1 Classification task

We provide empirical evidence that our multicommodity dynamics
outperforms competing OT algorithms on classification tasks. As
anticipated previously, we use the OT optimal cost J+Γ as a measure
of similarity between two images and perform supervised classification
with a k-nearest neighbor (k-NN) classifier as described in [20].
Alternative methods (e.g., SVM as in [19]) could also be used for
this task. However, these may require the cost J+Γ to satisfy the distance
axioms to properly induce a kernel. While it is not straightforward to
verify these conditions for the OT cost in Eq. 2, this is not necessary for
the k-NN classifier, which requires looser conditions on J+Γ .

We compare the classification accuracy of our model against i) the
Sinkhorn algorithm [19, 40] (utilizing the more stable Sinkhorn scheme
proposed in [41]); ii) a unicommodity dynamics executed on grayscale
images, i.e., with color information compressed into one single
commodity (M = 1); and iii) the Sinkhorn algorithm on grayscale
images. All methods are tested on the following two datasets: the Jena
Flowers 30 Dataset (JF30) [42] and the Fruit Dataset (FD) [43]. The first
consists of 1,479 images of 30 wild-flowering angiosperms (flowers).
Flowers are labeled with their species, and inferring them is the goal of the
classification task. The second dataset contains 15 fruit types and
163 images. Here, we want to classify fruit types. The parameters of

Algorithm 1. Multicommodity dynamics.
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the OT problem setup (θ and τ) and regularization parameters (β and ε,
which enforce the entropic barrier in the Sinkhorn algorithm [19]), have
been cross-validated for both datasets (see Section 3 and Section 4 in
Supplementary Material). All methods are then tested in their optimal
configurations (see Supplementary Material for implementation details).

Classification results are shown in Table 1. In all cases, leveraging
colors leads to higher accuracy (about an 8% increase) with respect to
classification performed using grayscale images. This signals that in the
datasets under consideration, color information is a relevant feature for
differentiating image samples. Remarkably, we get a similar increase in
performance (about 7%–8%) on both colored datasets when comparing
our multicommodity dynamics against the Sinkhorn algorithm. As the
two algorithms use the same (colored) input, we can attribute this
increment to the effective usage of color that our approach is capable of.

In addition, by analyzing results in more detail, we first observe
that on JF30, all methods perform best when θ = 0.25, i.e., 25% of the
information used to build C comes from colors. This trend does not
recur on the FD, where both dynamics favor θ = 0 (Euclidean C).
Hence, our model is able to leverage color information via the
multicommodity OT dynamical formulation.

Second, on JF30, both dynamics perform best with τ = 0.125,
contrary to Sinkhorn-based methods that prefer τ = 0.05. Thus,
Sinkhorn’s classification accuracy is negatively affected both by low
τ—many edges of the transport network are cut—and by large τ

—noisy color information is used to build C. We do not observe this
behavior in our model, where trimming fewer edges is advantageous.
All optimal values of τ are lower on the FD since the color distributions
in this dataset are naturally light-tailed (see Supplementary Material).

Lastly, we investigate the interplay between θ and β. We notice that
θ = 0 (FD) corresponds to higher β = 1.5. Instead, for larger θ = 0.25
(JF30), the model prefers lower β (β = 1 and 1.25 for the
multicommodity and unicommodity dynamics, respectively). In the
former case (θ = 0, Cij is the Euclidean distance), the cost is equal to
zero for pixels with the same locations. Thus, consolidation of
transport paths—large β—is favored on cheap links. Instead,
increasing θ leads to more edges with comparable costs as colors
distribute smoothly over images. In this second scenario, better

performance is achieved with distributed transport paths, i.e., lower
β (see Supplementary Material).

4.2 Performance in terms of sensitivity

We assess the effectiveness of our method against benchmarks by
comparing the sensitivity of our multicommodity dynamics and that of
the Sinkhorn algorithm on the colored JF30 dataset. Specifically, we set all
algorithm parameters to their best configurations, as shown in Table 1.
Then, for each of the 30 classes in JF30, we compute its one-to-all
sensitivity, i.e., the true positive rate. This is defined for any class c as

S c( ) � TP c( )
TP c( ) + FN c( ), (7)

where TP(c) is the true positive rate, i.e., the number of images in c that
are correctly classified; FN(c) is the false negative rate, i.e., the number of
c-samples that are assigned a label different from c. Hence, Eq. 7 returns
the probability that a sample is assigned label c, given that it belongs to c.

We find that our method robustly outperforms the Sinkhorn
algorithm. Specifically, the multicommodity dynamics has the
highest sensitivity 50% of the times—15 classes out of a total of
30—as shown in Figure 2. For nine classes, Sinkhorn has higher
sensitivity, and for six classes, both methods give the same values of
S.Furthermore, we find that in 2/3 (20 out of 30) of the classes, the
multicommodity dynamics returns S(c) ≥ 1/2. This means that our
model predicts the correct label more than 50% of the time. In only
three out of these 20 cases, Sinkhorn attains higher values of S, while in
most instances where Sinkhorn outperforms our method, it has a
lower sensitivity of S < 1/2. Hence, this is the case in classes where both
methods have difficulty distinguishing images.

4.3 The impact of colors

To further assess the significance of leveraging color information,
we conduct three different experiments that highlight both
qualitatively and quantitatively various performance differences
between the unicommodity and multicommodity approaches. As
the two share the same principled dynamics based on OT with the
main difference being that multicommodity does not compress the
color information, we can use this analysis to better understand how
fully exploiting the color information drives better classification.

Experiment 1: Landscape of optimal cost. Here, we focus on a
qualitative comparison between the cost landscapes obtained with the
two approaches. We consider the example of an individual image taken
from the FD test set and plot the landscape of optimal costs J+Γ when
comparing it to the train set. Results for the multicommodity dynamics
(M = 3) and the unicommodity dynamics (M = 1) on grayscale images are
shown in Figure 3. Here, we highlight the five lowest values of the cost and
mark them in green if they correspond to correctly classified train samples
and in red otherwise. At first glance, one may conclude that their
performance is identical (as both dynamics classify correctly three
samples out of five), and we notice how the multicommodity dynamics
consistently clusters them at the bottom of the cost landscape, thus ranking
them in a better order. This may explain why the cross-validated best value
of k (the number of nearest neighbors in the k-NN classifier) is higher for
unicommodity methods in this dataset. On a larger sample of data, this
results in better overall classification performance, as shown in Table 1.

TABLE 1 Classification task results. With multicommodity, Sinkhorn RGB,
unicommodity, and Sinkhorn GS, we label methods on colored images (the first
two) and grayscale images (the second two). The optimal parameters in the
central columns are selected with a 4-fold cross-validation; k is the number of
nearest neighbors used in the classifier. The rightmost column shows the fraction
(in percentage) of correctly classified images. Results are ordered by
performance, and we highlight the best ones in bold.

Algorithm Hyperparameters Class accuracy

θ τ β ε k [%] (↑)

JF30 Multicommodity 0.25 0.125 1 — 1 62.2

Sinkhorn RGB 0.25 0.05 — 100 1 58.4

Sinkhorn GS 0.25 0.05 — 500 1 54.3

Unicommodity 0.25 0.125 1.25 — 1 53.6

FD Multicommodity 0 0.04 1.5 — 2 75.0

Sinkhorn RGB 0.5 0.06 — 750 1 69.6

Unicommodity 0 0.06 1.5 — 5 64.3

Sinkhorn GS 0.25 0.06 — 500 4 60.7
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Experiment 2: Controlling for shape. We further mark this tendency
with a second experiment where we select a subset of the FD composed of
images belonging to three classes of fruits that have similar shapes but
different colors such as red apples, orange apricots, and yellowmelons. As
we expect shape to be less informative than colors in this custom set, we
can assess the extent to which color plays a crucial role in the classification
process. Specifically, the test set is made of three random samples, each
drawn from one of these classes (top row of the rightmost panel) in

Figure 3, while the train set contains the remaining instances of the classes.
We plot the cost landscape J+Γ for the train set and draw in the red,
orange, and yellow values of J+Γ that correspond to the samples that are
compared against the test apple, apricot, andmelon, respectively. We also
sort the train samples so that they are grouped in three regions
(highlighted by the background color in Figure 3), which correspond
to train melons, apricots, and apples. With this construction, if the
minimum cost among the yellow markers falls in the yellow region, it

FIGURE 2
Sensitivity on the JF30 dataset. Sensitivity values are shown for the multicommodity dynamics (blue circles) and for Sinkhorn RGB (red triangles). Markers
are sorted in descending order of S, regardless of themethod. Background colors are blue, red, and gray, when S is higher for themulticommoditymethod, the
Sinkhorn algorithm, or none of them, respectively. In green, we plot frequency bars for all classes in the test set.

FIGURE 3
Evaluating the effect of colors. Experiment 1: The top black-framed image is the one to be classified. Predictions given by the multicommodity and
unicommodity dynamics (those with lower J+Γ ) are shown on the right side of the panel and are displayed in a sorted fashion fromworst to best (from bottom
to top). Experiment 2: The top right samples are the three test images to be classified. Middle and bottom rows are predictions given by the two dynamics.
Markers, backgrounds, and test images shared a color code: red for apples, orange for apricots, and yellow for melons. In both panels, green circles and
red crosses are used to highlight classified andmisclassified images, respectively. All algorithms are executedwith their optimal configurations listed in Table 1.
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will correspond to a correctly classified sample (respectively, for orange
and red). We further mark the yellow, orange, and red minima in green if
the test and train labels correspond, i.e., the marker’s and background
colors are the same, and in red otherwise. Train and test samples are also
in Figure 3. The multicommodity dynamics correctly label each test
image. In contrast, unicommodity dynamics fails at this task, labeling a
melon as an apricot. This suggests that the multicommodity approach is
able to use the color information in datasets where this feature is more
informative than others, e.g., shape.

Experiment 3:When shapematters.Having shown results on a custom
dataset where shape was controlled to matter less, we now do the opposite
and select a dataset where this feature should be more informative. The
goal is to assess whether a multicommodity approach helps in this case as
well, as its main input information may not be as relevant anymore.
Specifically, we select as a test sample a cherry, whose form is arguably
distinguishable from that of many other fruits in the dataset. One can
expect that comparing it against the train set of the FDwill result in having
both unicommodity andmulticommodity dynamics able to assign low J+Γ
to train cherries and higher costs to other fruits. This intuition is confirmed
by the results in Figure 4. Here, train cherries (in green) strongly cluster in
the lower portion of the cost landscape, whereas all the other fruits have
higher costs. In Figure 4, we also plot some of the correctly classified train
samples. These results suggest that when color information is negligible
compared to another type of information (e.g., shape), unicommodity and
multicommodity formulations perform similarly. In light of this, we
reinforce the claim that our multicommodity formulation can boost
classification in contexts where color information does matter but may
not give any advantage when other types of information are more
informative. We encourage practitioners to evaluate when this is the
case based on domain knowledge when available.

5 Conclusion

Wepropose a physics-informedmulticommodityOT formulation for
effectively using color information to improve image classification. We
model colors as immiscible flows traveling on a capacitated network and
propose equations for its dynamics, with the goal of optimizing flow
distribution on edges. Color flows are regulated by a shared conductivity

to minimize a unique cost function. Thresholding the ground cost as in
[22, 23] makes our model computationally efficient.

We outperform other OT-based approaches such as the Sinkhorn
algorithm on two datasets where color matters. Our model also assigns a
lower cost to correctly classified images than its unicommodity counterpart,
and it is more robust on datasets where items have similar shape. Thus,
color information is distinctly relevant. We note that for some datasets,
color information may not matter as much as another type of information
(e.g., shape), which has stronger discriminative power. However, while we
focused here on different color channels as the different commodities in our
formulation, the ideas of this study can be extended to scenarios where
other relevant information can be distinguished into different types. For
instance, one could combine several features together, e.g., colors, contours,
and objects’ orientations when available.

Our model can be further improved.While it uses the thresholding of
[22, 23] to speed up convergence (as mentioned in Section 3.1), it is still
slower than Sinkhorn-based methods. Hence, investigating approaches
aimed at improving its computational performance is an important
direction for future work. Speed-up can be achieved, for example, with
the implementation of [39], where the unicommodity OT problem on
sparse topologies is solved in O(|E|0.36) time steps. This bound has been
found using a backward Euler scheme combined with the inexact
Newton–Raphson method for the update of x and solving Kirchhoff’s
law using an algebraic multigrid method [44].

Our main goal is to frame an image classification task into that of
finding optimal flows of masses of different types in networks built from
images. We follow physics principles to assess whether using colors as
immiscible flows can give an advantage compared to other standard OT-
based methods that do not incorporate such insights. The increased
classification performance observed in our experiments stimulates the
integration of similar ideas into deep network architectures [45] as a
relevant avenue for future work. Combining their prediction capabilities
with our insights on how to better exploit the various facets of the input
data has the potential to push the performance of deep classifiers even
further. For example, one could extend the state-of-the-art architecture of
Eisenberger et al. [45], which efficiently computes implicit gradients for
generic Sinkhorn layers within a neural network, by including edge, shape,
and contour information for Wasserstein barycenter computation or
image clustering.

FIGURE 4
Evaluating the importance of colors: when shapesmatter most. Experiment 3: The top black-framed image is the one to be classified. The best three (out
of 10) predictions returned by the two dynamics are shown on the right. Wemark the training samples belonging to the same class as the test imagewith green
circles. All algorithms are executed with their optimal configurations listed in Table 1.
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Global infrastructure robustness and local transport efficiency are critical requirements for transportation
networks. However, since passengers often travel greedily to maximize their own benefit and trigger traffic
jams, overall transportation performance can be heavily disrupted. We develop adaptation rules that
leverage optimal transport theory to effectively route passengers along their shortest paths while also
strategically tuning edge weights to optimize traffic. As a result, we enforce both global and local
optimality of transport. We prove the efficacy of our approach on synthetic networks and on real data. Our
findings on the international European highways suggest that thoughtfully devised routing schemes might
help to lower car-produced carbon emissions.
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Introduction.—Transport networks are ubiquitous in
nature and engineering, spanning from living organisms
to cities and telecommunications. Many of these systems
can be modeled by adaptation rules that follow the principle
of minimum energy, regulating edge flows to optimize
transportation costs. Examples in biology are plants, whose
profiles emerge from a trade-off between minimization of
hydraulic resistance and carbon cost [1], and leaves, shaped
by the interplay of nutrients’ transport efficiency and
robustness to damage [2–4].
Similarly, adaptation rules have been employed to model

traffic flows in urban transportation by jointly minimizing
the energy dissipated by the passengers and the construc-
tion cost of the infrastructure [5–11]. While these models
set forth a first approach to simulate traffic flows using
adaptation, they crucially neglect that passengers in a
transportation network do not move cohesively to minimize
a unique cost. Instead, they choose their routes greedily to
maximize their benefit (Wardrop’s first principle) [12–14].
As a consequence, transport networks may be globally
inefficient.
In this Letter, we propose a set of adaptation equations to

find traffic flows that mitigate congestion, considered as a
proxy for global efficiency, while trading off against the
shortest routes.
We frame the problem in a bilevel optimization setup,

which poses a competition between greedy passengers
and a network manager. The passengers minimize their

origin-destination path cost seeking for the user equilib-
rium [15] (lower-level problem), whereas the network
manager guarantees global efficiency by mitigating traffic
bottlenecks on edges to achieve the system optimum
(upper-level problem), while implicitly accounting for
passengers’ shortest path. We tackle the optimization
problem by alternating optimal transport- (OT) inspired
adaptation rules for the lower-level optimization and a
projected stochastic gradient descent (PSGD) scheme for
the upper-level optimization.
In detail, greedy passenger flows are found by solving a

dynamical system that governs the evolution of edge
capacities, variables that control passenger allocation, so
that these travel on their shortest paths.Adaptation rules are a
well-established mechanism for route assignment on net-
works [3,5–11,16–21] and in continuous domains [22–26].
Classically, user equilibrium greedy flows can be found with
the Frank-Wolfe algorithm [27] or, alternatively, with recent
methods accounting for passengers’ travel budgeting [28].
Here, we propose a model that exploits OT theory to prove
that, at convergence, passengers move along the shortest
path. Particularly, our dynamical system admits a Lyapunov
functional [24] that asymptotically converges to the shortest
path (Wasserstein) distance between entry and exit distribu-
tions of passengers [16,17,29].
Traffic mitigation is performed by minimizing a quadratic

loss function that penalizes edges whose traffic exceeds a
prefixed threshold. The minimization problem can be
treated analytically by assuming that the network edges
are endowed with capacities and weights (resistances) and
their flows are the gradient of a scalar potential, as for
electrical networks. We derive closed-form gradients for the
weights, which can be interpreted as the cost that passengers
pay for traveling. In practice, network managers would
implement these weights by strategically designing incen-
tives or disincentives, e.g., assigning road tolls, to encourage
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passengers to relocate from jammed edges. The task of
traffic mitigation has been addressed using several methods.
These include belief propagation [30–32], adaptive dynami-
cal networks [33], Markov chainMonte Carlo schemes [34],
cellar automata [35,36], and heuristic routing models [37].
A bilevel optimization problem similar to the one studied

here was solved using message passing [38]. While the
problem’s setting is similar to ours, the methodologies
differ since we alternate adaptation rules for the capacities
with global descent for the weights, whereas message
passing uses local updates for flows. Our approach outputs
individual passengers’ optimal paths, whereas the formu-
lation in Li et al. [38] can only extract aggregate routes.
We find that our method effectively trades off traffic

mitigation against the shortest passenger routes. Namely,
both on synthetic topologies and real roads, it returns
optimal transport networks where congestion is heavily
reduced. We argue that this result is beneficial for reducing
the carbon footprint of roads. We also show that the
uncoordinated actions of the network manager and pas-
sengers can be counterproductive, i.e., they may increase
traffic, with an outcome opposite to that intended.
Problem.—We take a network GðV; EÞ where M ≥ 1

groups of greedy passengers i can travel from origin nodes
Oi (one node per group) to possibly multiple destination
nodes Di. Stationary numbers of entry and exit passengers
are stored in a mass matrix with entries S̃iv > 0 for each
v ¼ Oi, S̃iv < 0 for v∈Di, and S̃iv ¼ 0 otherwise. We
assume that the system is isolated, i.e., that passengers
entering the network must also exit. This condition isP

v S̃
i
v ¼ 0 for all i. When traveling along an edge, pas-

sengers pay a cost w̃e > 0, and finally, each edge is equipped
with a capacity that controls the rate at which passengers i
are allocated along each edge e; c̃ie ≥ 0. Intuitively,
one could think of capacities as the space occupied by
passengers of type i, i.e., larger space accommodates more
passengers. All problem variables have been introducedwith
units, however, these can be nondimensionalized to derive
scale-independent adaptation rules (see Supplemental
Material [39]). We denote dimensional quantities with a
tilde and dimensionless ones without.
Lower-level optimization.—The lower-level problem

allows us to find the cheapest routes from Oi to Di. In
order to model traffic flows, we introduce the fluxes Fi

e,
specifying the displacement of Si along an edge e. In
analogy with electrical networks, we assume that there
exists an auxiliary pressure potential pi

v on each node v due
to index i. We interpret them as the travel demand from
passengers traveling from v. With this, we define the
potential-based fluxes for all e ¼ ðu; vÞ and i, i.e.,
Poiseuille’s law, as

Fi
e ¼

cie
we

ðpi
u − pi

vÞ: ð1Þ

Fluxes must obey Kirchhoff’s law. We can write it asP
e BveFi

e ¼ Siv, where B is a conventionally oriented
incidence matrix of the network. Substituting Eq. (1) in
Kirchhoff’s law, the potential becomes a function of c and
w, namely, pi

v ¼
P

uðLi†ÞvuSiu, where † denotes the
Moore-Penrose inverse and Li

uv ¼
P

eðcie=weÞBueBve are
entries of the network weighted Laplacian. With this
substitution, F≡ Fðc; wÞ is also a function of only c
and w, the only independent problem’s variables.
For any fixed set of weights, we write the lower-level

problem as

Jðc; wÞ ¼
X
ei

wejFi
ej; ð2Þ

min
c≥0

Jðc; wÞ: ð3Þ

The convex OT cost J in Eq. (2) is the sum overM indexes
of the w shortest path costs Ji ¼ P

e wejFi
ej [16,17]. Its

only minimizer is the overlap of M shortest paths from all
Oi to Di, which are found with c using Eq. (1) and
Kirchhoff’s law.
Upper-level optimization.—The upper-level problem

formalizes the task of the network manager of tuning w
to mitigate traffic jams triggered by the passengers. We
measure traffic by penalizing congested links whereP

i jFi
ej exceeds a threshold θ ≥ 0, above which infra-

structural failures may occur. Conveniently, we intro-
duce Δe ¼

P
i jFi

ej − θ.
Analogously to Eqs. (2) and (3), for any set of capacities,

the upper-level optimization is

Ωðc; wÞ ¼ 1

2

X
e

Δ2
eHðΔeÞ; ð4Þ

min
w≥ϵ

Ωðc; wÞ; ð5Þ

where H is the Heaviside step function. In Eq. (4),
other objective functions, e.g., the hinge loss, can be
utilized [38,46]; we do not explore this here. Furthermore,
the weights are constrained to be larger than a small ϵ > 0.
This means that passengers cannot profit (w < 0) or travel
for free (w ¼ 0). Practically, this ensures that the Laplacian
L is well defined.
Bilevel optimization.—We combine the two optimization

problems into one. Suppose that the network manager is
regularly informed of the passengers’ routes and, using
such information, the weights are tuned to mitigate traffic.
After each update, passengers reroute according to the
updated weights.
Formally, this translates into the problem

min
w≥ϵ

Ωðw; ĉÞ; ð6Þ

such that ĉ ¼ argmin
c≥0

Jðc;wÞ; ð7Þ
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where the equality in Eq. (7) comes from the convexity
of J [16,17]. In Eq. (6) we explicitly state the dependence
on w as a variable and on c as a parameter [conversely
for Eq. (7)].
Optimal transport dynamics.—To find the shortest paths

required for the lower-level problem, we couple fluxes and
capacities with the ordinary differential equations

dcie
dt

¼ Fi2
e

cie
− cie; ð8Þ

where fluxes obey Kirchhoff’s law. In Eq. (8), edges with
high flux enlarge, whereas those where the negative
decaying term prevails shrink. Crucially, asymptotic sol-
utions converge to the minimum OT cost J in Eq. (2), being
the Wasserstein distance between passengers’ entry and
exit distributions [39] and whose minimizers are origin-
destination shortest paths. Beside Kirchhoff’s law and
positivity, capacities in Eqs. (2) and (3) are otherwise
unconstrained. One can potentially add additional con-
straints, e.g., a limited budget, by employing recent ideas in
the context of adaptation equations [40]. We do not explore
this here.
Projected stochastic gradient descent.—Minimization of

Eq. (6) is performed using stochastic gradient descent with
a projection step to enforce w ≥ ϵ. Importantly, we can
derive a closed-form expression for the gradients Ψe ¼
∂Ω=∂we [39]. To explore the nonconvex landscape of the
minimization in Eqs. (6) and (7), we update the weights
with dropout at each step, i.e., setting to zero jEjð1 − qÞ
random gradients, where 0 ≤ q ≤ 1. For q ¼ 1 we get
vanilla gradient descent.
Bilevel optimization scheme.—In order to find the

optimal c and w, and hence F, we iterate between Eq. (8)
and PSGD recursively. The scheme is repeated until J and
Ω converge. A diagram outlining the optimization method
is in Fig. 1; we also provide an open-source code (Bilevel
routing on networks with optimal transport, BROT) [47].
Experimental setup.—We analyze BROT’s optimal net-

works against two baselines. The first, referred to as OT,
consists of finding passengers’ shortest paths without any
intervention from the network manager. We assume a
unitary cost per unit of length fare, i.e., we set w ¼ l
with l the Euclidean lengths of the edges, and numerically
integrate Eq. (8). The second, referred to as PSGD, reflects
the scenario of a network manager that tunes w only relying
on the shortest paths taken when w ¼ l and that disregards
how fluxes redistribute while updating w. In practice, this
corresponds to running PSGD only, with initial conditions
being wð0Þ ¼ lþ ξ and cie ≃ jFi

Dij;ej [39], and then to
integrating Eq. (8), with w ¼ w⋆

PSGD being the optimal
weights returned by the network manager. Here, ξ is a small
zero-sum uniform noise, FDij are the shortest path fluxes
computed with Dijkstra’s algorithm, and the approximation
arises because, to avoid numerical instabilities, a small

nonzero cie is allocated to all edges. We fix BROT’s initial
conditions to wð0Þ ¼ lþ ξ and cieð0Þ ¼ SiOi .
Synthetic experiments.—First, we study a network of size

jVj ¼ 300, jEj ¼ 864, with nodes placed uniformly at
random in the unitary disk and edges extracted from their
Delaunay triangulation. Entry and exit inflows are SiOi ¼þ1

on an origin node at the center, and SiDi ¼ −1=D, onD ¼ 4,
8 destinations Di on the disk edge. Since M ¼ 1, there is
only a single index i. Here we discuss results forD ¼ 8, for
experiments with varying q for D ¼ 4, 8; see Supplemental
Material [39].
We evaluate J andΩ at convergence for all methods with

different q and ranging θ from θ ¼ 0 to a large value θ⋆

where few edges are congested. Results are in Fig. 2(a).
Since for OT the network manager does not intervene, J

is constant for all θ, and it is the origin-destination shortest
length. Its profile changes when the network manager
influences passengers’ routes by tuning the weights.
Specifically, for PSGD J drops when reducing θ, making
it cheaper for the passengers to move. On the contrary,
lower θ corresponds to a larger J for BROT. This behavior
seemingly favors an uninformed network manager (PSGD)
over an informed one (BROT). However, the profile of Ω
shows that, even though the traveling cost of PSGD is
cheaper, all transport networks at convergence are highly
congested (largeΩ). BROT successfully trades off the cost of
traveling against traffic, outputting low values ofΩ for all θ,
with only a mild increase as θ approaches zero. This is
clarified in Fig. 2(c), where BROT generates ramified loopy
networks.
The dropout parameter q allows us to explore the

minimization landscape of Eqs. (6) and (7). By decreasing
q, i.e., setting more gradients to zero, BROT returns lower Js
at all θ, whereas PSGD gives higher ones, conversely forΩ.
This impacts the network topologies, which are less
ramified and akin to OT trees [48], when q is lower and
for the same θ [39]. The trade-off between J and Ω is
further laid out in Fig. 2(b) where we show J − JOT against
Ω −Ω0, Ω0 ¼ 0. We highlight in red the nondominated
points (also referred to as maximal points) at four values of
θ, computed over all q [as in Fig. 2(a)] and 25 random

FIG. 1. Bilevel optimization scheme on a lattice. Entry and exit
inflows are the red and blue nodes, respectively. Initially, (green)
fluxes distribute minimizing the travel cost weðt ¼ 0Þ ¼ le,
being the length of an edge. If they exceed θ they get penalized;
hence, the network manager tunes the weights to encourage
rerouting over more expensive (red) or cheaper (blue) edges (for a
companion figure, see Supplemental Material [39]).
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initializations of BROT. Such points are the best J-Ω trade-
off attained by the experimental runs [39].
For all q and sufficiently low θ, the price of anarchy

(PoA) [49] is greater for PSGD than for OT, i.e., the
network manager’s intervention increases traffic conges-
tion, having the opposite effect to that intended. We
illustrate exemplary networks at convergence in Fig. 2(c).
The parameter ρ ¼ w⋆

X − l (X ¼ BROT, PSGD), express-
ing the variation of cost, indicates that the uninformed
network manager naively—and significantly—decreases
the cost of a small fraction of edges [square in Fig. 2(d)].
This encourages fluxes to largely concentrate on them, thus
creating congestion.
To further discern the nature of congestion, we propose

two additional metrics. First, the Gini coefficient of the
fluxes, Gini¼P

mn jxm−xnj=2jEj2x̄, where x̄¼
P

e xe=jEj
and xe ¼

P
i jFi

ej. Gini ¼ 0 corresponds to uniformly
distributed fluxes and larger Gini corresponds to high
congestion. Second, the total travel time TθðsÞ ¼P

ei tθ;eðsÞjFi
ej, computed with an affine latency function

for overtrafficked edges [38,50], namely, tθ;eðsÞ ¼ leð1þ
sΔe=θÞ=v∞ if

P
i jFi

ej ≥ θ, and tθ;eðsÞ ¼ le=v∞ otherwise.
Here v∞ ¼ 1 is a (conventionally fixed) free-flow velocity,
and s is a sensitivity coefficient to penalize traffic. Results
are in Fig. 3.
The Gini coefficient of PSGD fluctuates slightly around

the high values attained by the congested shortest path
network of OT. For BROT, as θ decreases—more flux gets
penalized—Gini sharply drops, yielding progressively
distributed networks. The total travel time reveals once
again that the uncoordinated action of passengers and the
network manager may be detrimental compared to having
no tuning of w. In fact, times for PSGD are higher than
those for OT. BROT keeps TθðsÞ small for any value of θ and
for both low and high sensitivity. Finally, as θ increases,
traffic gradually mitigates, with limθ→þ∞TθðsÞ ¼ T∞
(T∞ ¼ JOT) being the travel time for infinite capacities,
when all passengers flow freely.

The E-road network.—We study the methods on a graph
extracted from the international European highways
(E-road) [51,52], of size jVj ¼ 541 and jEj ¼ 712. Entry
inflows of passengers are populations of 15 large cities. We
assume that all passengers travel from one city to another.
Thus, we set forOi and v∈Di (being also origin nodesOj)
the exiting number of passengers S̃v to be proportional to
the product rv ¼ S̃Oi S̃Oj , properly normalized to ensure
conservation of mass. In this way, cities with high inflows
have large outflows, and vice versa for small ones. The total
number of passengers to be routed is

P
i S̃Oi ≃ 3 × 107. We

fix θ̃ (dimensionalized by Sc) so that 43% of the passengers
reroute from their congested shortest path, found with
Dijkstra’s and w ¼ l.
Results are in Fig. 4. We observe that, in the shortest path

configuration of OT, a large volume of passengers travels
between the two most populous cities, Madrid and Berlin,
on the southernmost region of the network. The uninformed
network (PSGD) heavily increases the price of the con-
nections to Milan [39]. This causes a heavy rerouting from
Madrid to the north and congests the roads connecting
Madrid to Paris and then from Paris to Berlin. In contrast,
BROT distributes traffic over a ramified road network.

FIG. 2. Overview of the routing schemes. (a) J andΩ against θ. (b) Trade-off J − JOT vsΩ − Ω0 with varying ðθ; q; ξÞ. Nondominated
points for θ=θ⋆ ≃ f0.06; 0.2; 0.3; 0.4g are in red. (c) BROT’s networks at different θ. Edge widths are proportional to the average fluxes in
50 runs of the algorithm. Gray edge contours are fluxes’ standard deviations. (d) Cost (left) and flux (right) networks for all methods and
θ=θ⋆ ¼ 0.4. Flux networks are as in (c), whereas edges in the cost networks are colored with ρ and their widths are proportional to the
fluxes. The black rectangle frames a region where the network manager triggers high congestion. We conveniently normalize θ⋆ and ρ.

FIG. 3. Measuring traffic congestion, D ¼ 8. (a) Gini coeffi-
cient against θ. (b) TθðsÞ against θ. Solid lines correspond to low
sensitivity s ¼ 1 and dashed ones to s ¼ 50; in red we draw T∞
(free flow). Shades are standard deviations over 50 realizations of
the algorithms.
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We study the average travel time for all routing
schemes. This is hT̃ θ̃ðsÞi ¼

P
ei t̃e;θ̃ðsÞjF̃i

ej=
P

ei jF̃i
ej,

where t̃θ̃ is a dimensionalized latency function computed
using el, the Euclidean distance between cities, and
v∞ ¼ 100 ðkm=hÞ.
Results for s ¼ 1, 5 in Fig. 4 show that the average travel

time of BROT is substantially lower than that of OT and
PSGD. Particularly, for low sensitivity BROT’s hT̃ θ̃ðsÞi is
approximately 1.7 h), while OT’s and PSGD’s are 2.3 and
3.1 h. Here, BROT leads to a reduction in traveled time of
approximately 26% and 45% compared to OT and PSGD.
This result becomes starker if the sensitivity increases, here
BROT reduces hT̃ θ̃ðsÞi of 48% compared to OT—from 5 to
2.6 h—and of 74% compared to PSGD—whose heavy
congestion gives hT̃ θ̃ðsÞi ≃ 10 h. Once again, the PoA (the
travel time) is higher if the network manager’s intervention
is uncoordinated with the passengers (PSGD), as opposed
to when there is no intervention (OT).
Experiments on the E-road network for q ¼ 0.25, 0.5,

and 0.75 are in the Supplemental Material [39].
Conclusion.—BROT relies on theoretical assumptions that

can be challenging to meet in real-world traffic control [53],
e.g., passengers rerouting more unpredictably than
expected by theoretical models. Nevertheless, our analysis
on the E-road network demonstrates how an informed
tuning of road tolls—where the network manager factors in
passengers’ rerouting—can be beneficial for reducing the
carbon footprint of roads, since traffic jams, and hence
longer travels, critically impact greenhouse gas emissions
of vehicles [54–56].

To facilitate practitioners using our algorithms, we open
source our code [47].
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