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INTRODUCTION

This thesis contributes to the explicit classification of Fano varieties of Picard number
one and two.

By a Fano variety we mean a normal projective variety X admitting an ample anticanon-
ical divisor —Kx. Smooth Fano varieties are well understood up to dimension three.
There is a single one-dimensional Fano variety, the projective line. In dimension two
the smooth Fano varieties are the classically known del Pezzo surfaces: The product of
two projective lines and the blow-ups of the projective plane in at most eight points in
general position. In dimension three we have the classifications by Iskovskikh [52,53]
and Mori-Mukai [63]. For higher dimensions there are partial results. For instance the
smooth toric Fano varieties are classified up to dimension nine [11,59,66,69]. In the
singular case, the situation is less explored. As a landmark, we have in dimension two the
classifications by Alexeev/Nikulin [1] and Nakayama [64] of the log terminal del Pezzo
surfaces X of Gorenstein index g < 2. Here, log terminal means discrepancies greater
than —1 and g is the smallest positive integer with g/iCx Cartier; so, ¢ = 1 merely means
that X is Gorenstein. In dimension three, the classification problem for singular Fano
varieties is still widely open. An intensely studied class are the Mori—Fano threefolds,
that means terminal Q-factorial Fano threefolds of Picard number one. See in particular
Prokhorov’s classifications for higher index and degree cases [71-74].

Once we restrict to Fano varieties with many symmetries, the singular case is more
accessible. An example class are toric Fano varieties. Here we mention Kasprzyk’s
classification of the canonical toric Fano threefolds [56], comprising in particular the toric
Mori-Fano threefolds. In Chapter 1 we consider fake weighted projective spaces. They are
the Q-factorial toric Fano varieties of Picard number one. Equivalently, a d-dimensional
fake weighted projective space is a quotient of C*1\{0} by a diagonal action of C*xT,
where T is a finite abelian group and the factor C* acts with positive weights. Via this
description, fake weighted projective spaces form a natural generalization of the well
known class of weighted projective spaces. They appear in toric Mori theory as the
fibers of elementary contractions; see [76], as well as [27,36]. Fake weighted projective
spaces form an interesting example class for the general question of effectively bounding



Introduction

geometric data of a Fano variety in terms of its singularities. For instance, in the case of
Gorenstein index g = 1, Nill [65] provides a sharp bound for the degree of a d-dimensional
fake weighted projective space, i.e. the self intersection number (—k)? of its anticanonical
divisor.

Our first result extends Nill’s bound to fake weighted projective spaces of any Gorenstein

index. For any integer g > 1 we define the g-Sylvester sequence sg1,542,... and the
truncated g-Sylvester sequence tg1,tg2,... as
Sg1 = g+ 1, Sgk+1 = Sg,k(sg,k - 1) +1, lok = Sgk — L

Moreover, for any g > 1 and any d > 2 we define a (d + 1)-tuple of positive integers by

2ty 4 2ty 4
Quag = <~‘7’ 9’,1,1).

) 9y
8971 ngdfl

Theorem 1. See Theorem 1.1.1. There are sharp upper bounds on the anticanonical
degree (—IKC)¢ of a fake weighted projective space Z, only depending on its dimension d
and its Gorenstein index g:
(i) If (d,g) = (2,1), then we have (—K)? < 9. Equality holds if and only if Z is
isomorphic to the projective plane P2.
(ii) In all other cases the anticanonical degree is bounded from above by

212
d g,d
(=) < e

Equality holds if and only if Z =P(3,1,1,1) or Z = P(Qq,4) holds.

The combinatorial counterpart to fake weighted projective spaces are the Fano simplices,
i.e. lattice simplices with primitive vertices, containing the origin in their interior. The
Goreinstein index of a Fano simplex A is the Gorenstein index of the corresponding
fake weighted projective space. It can be expressed combinatorially as the smallest
positive integer g such that the g-fold of the dual polytope A* is a lattice simplex. The
anticanonical degree of Z is precisely the normalized volume of A*, i.e. the d!-fold of the
euclidean volume of A*. Our second result concerns the volume of A itself. For simplices
of Gorenstein index one, i.e. reflezive simplices, Nill [65, Thm. A] provides sharp upper
bounds on the normalized volume in terms of the dimension d of the simplex. We extend
Nill’s bound to Fano simplices of arbitrary Gorenstein index. We write A = A(P) with
the d x (d + 1) matrix P having the vertices of A as its columns.

Theorem 2. See Theorem 1.1.2. There are sharp upper bounds on the normalized volume
of a Fano simplex A, only depending on its dimension d and its Gorenstein index g:

2
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(i) Assume (d,g) = (2,1). We have the following upper bound on the normalized
volume of A, which is attained if and only if A = A(P) holds:

11 -2
< =
Vol(A) < 9, P [0 5 _3].

(ii) In all other cases the normalized volume of A is bounded from above by
2

2t
vol(a) < =24,

g
Equality holds if and only if we have A = A(P), where P is one of the following:
1 1 1 -5
P=1022 —4],
0 0 6 —6
r (89.1—9) tg.d (89.119) tg.d T
1 0O ... 0 95571 97 — 95971 97
0 1 :
P — ; S, . ‘. . 0 .
1 (Sg,dflfg) tg]J _ (Sg,1+g) th
Sg,d—1 tg Sg,1 tg
] _lga
0 ... ... 0 e ol

Another invariant of a Fano simplex A is its multiplicity mult(A), i.e. the index of the
sublattice generated by the vertices of A. This is precisely the order of the torsion part
of the divisor class group of the fake weighted projective space Z associated with A. For
Fano simplices having only the origin as an interior lattice point Averkov, Kasprzyk,
Lehmann and Nill [3,55] provide sharp upper bounds on the multiplicity in terms of the
dimension. These simplices correspond to fake weighted projective space with at most
canonical singularities. Our third result provides multiplicity bounds for arbitrary Fano
simplices in terms of the Gorenstein index and the dimension.

Theorem 3. See Theorem 1.1.3. There are upper bounds on the multiplicity of any Fano
simplex A, only depending on its dimension d and its Gorenstein index g:
(i) Assume d =3 and g € {1,2}. We have the following upper bound on the multiplicity
of A, which is attained if and only if A = A(P) holds:

1 49g—-3 49—3 5—28yg
mult(A) < 16g2, P =0 4g 0 —4g
0 0 4g —4g

(ii) Assume (d,g) = (4,1). We have the following upper bound on the multiplicity of A,
which is attained if and only if A = A(P) holds:

—7
—6
-8
-8

mult(A) < 128, P =

o O O
S O N
S 0N
O N =
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(iii) In all other cases the multiplicity of A is bounded from above by

3t
mult(A) < Zgd-l
g
If equality holds, then we either have (d,g) = (3,3) and A = A(P) holds, where
11 5 =7

P=1]012 0 -12 |,
0 0 12 —12

or there are positive integers ay, . ..,aq—1 € Z>1 such that A = A(P) holds, where
P is the matriz:

i (5g,1—9) tg,d—1 . ((Sg,1+29) tgd—1 ) 7
1 0...0 Sl g ai Teel 9 + a1
0 1
.0
(8g,a—2—9) tg.a—1 _ ((Sg,d—2+29) tg,d—1
Sg,d—2 g ad_2 Sg,d—2 g + ad—2
tg,d—1 tg,d—1
0o ... ... 0 QT adq—1 g g + aq—1
0 ... 0 0 3tg,d_1 —3tg7d_1 ]

Moreover, if g is odd, then for k=1,...,d — 2 we may choose

(8g,6 — ) tg.d—1 tgd—1

9, 9, g,

ap = , ag—1 = :
Sg.k g g

For our fourth result we consider the Mahler volume [62] of a (not necessarily Fano)
rational IP simplex, i.e. a rational simplex A, that has the origin in its interior. The
Mahler volume of A is the product MV(A) := Vol(A)Vol(A*). We obtain sharp upper
bounds that only depend on the dimension and the Gorenstein index. For the Gorenstein
index of a rational IP simplex see Definition 1.2.3.

Theorem 4. See Theorem 1.1.4. Let A a d-dimensional IP simplex of Gorenstein index
g. Then we have
2
tg,d+1
gd+2 :

MV(A) <

Equality holds if and only if there is H € GL(d, Q) such that A = H - A(P) holds, where

tg,d+1
10 ... 0 —fen
P = 0
6 .0 1 taan
Sg7d
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We come to the explicit classification of Fano simplices. Conrads [28] provides an
algorithm for the classification of reflexive simplices, i.e. Fano simplices of Gorenstein
index one, and carries out the classification up to dimension four. Héttig, Hafner, Hausen
and Springer [39] present an efficient classification procedure without the restriction
on the Gorenstein index, but only for simplices of dimension two. This procedure is
completely automated and the authors carry out the classification of Fano triangles up to
Gorenstein index 200. We generalize and speed up the procedure from [39], which allows
us to efficiently classify Fano simplices of any dimension and any Gorenstein index. This
allows us to carry out the following classifications; the complete classification data, as
well as the Julia code [22] to produce these results can be found at [13].

Theorem 5. See Theorem 1.1.5. Up to isomorphy there are 2,992,229 Fano triangles of
Gorenstein index g < 1000. The number of triangles N(g) for given Gorenstein index g
develops as follows:

10
1.5 T T T T T T ‘ ‘ ‘
1.2 - |
0.9 et
—~ oo Ny
=) . .
- e e :i';"....""-
0 6 i ) .. . °‘ ® ".'::.- * ‘o..:"."o ..
. R L e AP M RO AR
L. 0o o%e 8 ooget ne .. %0 Sagdt, .
o *, fe :r"..;.!.'-." AR R -t
0.3 et e ..:.0 :3{.'"'-:! .‘..':.'l .0.:‘.. .o. S * .... .
. X o :...:‘. .?.Ot:?....:o ° ‘.o. L %o .‘.o h:“’ A‘*.?..‘
o R e R L e
Il v o % g L 20E WM NI
& I¥8 o4 .‘-V-,; PRV W )
0 - | |

| | | | |
0 100 200 300 400 500 600 700 800 900 1,000
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Theorem 6. See Theorem 1.1.6. Up to isomorphy there are 9,368,501 Fano simplices of
dimension three and Gorenstein index g < 30. The number of simplices N(g) for given
Gorenstein index g develops as follows:

g |1 2 3 4 5 6 7 8
N(g) |48 435 1,703 3,042 7,506 14,527 16,627 21,789
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g 9 10 11 12 13 14 15 16

N(g)| 39,288 61,295 54,404 100,670 59,500 157,071 269,037 121,530
g 17 18 19 20 21 29 23 24

N(g)|133,559 319,176 173,707 473,732 523,939 401,328 332,612 695,089
g 25 26 27 28 29 30

N(g)| 515,042 565,225 824,950 1,007,089 513,356 1,960,325

Theorem 7. See Theorem 1.1.7. Up to isomorphy there are 87,532 Fano simplices of
dimension four and Gorenstein index g < 2. Of those, 1,561 are of Gorenstein index
g = 1. The remaining 85,971 simplices are of Gorenstein index g = 2.

By the correspondence between Fano simplices and fake weighted projective spaces,
Theorems 5 — 7 are also classifications of fake weighted projective spaces of respective
dimension and Gorenstein index. Our classification procedure relies on the interplay
between d-dimensional Fano simplices of Gorenstein index g and partitions of 1/g into
d + 1 unit fractions. These unit fractions impose strong divisibility properties on the
data defining our simplices, making the procedure efficient. Theorems 1 — 4 are also es-
sentially a result of the connection between (lattice) simplices and unit fraction partitions.

We turn to varieties with a torus action of complexity one. We first consider threefolds
coming with an effective action of a two-dimensional torus. In this setting, the Mori—
Fano threefolds have been classified by Bechtold, Hausen, Huggenberger and Nicolussi
[21], using the so-called anticanonical complex: a generalization of the Fano polytope
associated with a toric Fano variety. Hische and Wrobel [48,49] successfully applied
this approach to the case of higher complexity as well. A classification algorithm for
Gorenstein canonical Fano varieties with a torus action of complexity one has been
proposed by Ilten, Mishna and Trainor [51], using the approach via polyhedral divisors [2].
However, already in the three-dimensional case, feasability becomes a serious question. In
Chapter 2 we classify the non-toric Q-factorial log terminal Gorenstein Fano threefolds X
of Picard number one that come with an effective action of a two-dimensional torus. We
use the Cox ring based approach to rational varieties with a torus action of complexity
one developed in [41,46]. The Cox ring of a normal projective variety X with finitely
generated divisor class group Cl1(X) is defined as

R(X) = @ T(X,0x(D)),
CI(X)

where we refer to [6] for the details. For our Fano threefolds X of Picard number one
acted on by a two-dimensional torus, the divisor class group Cl(X) is of the form Z & T’
with a finite abelian torsion part I" and the Cox ring R(X) is a finitely generated complete

6
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intersection ring with a very specific system of trinomial relations. The variety X can
be uniquely reconstructed from the list of generator degrees in C1(X) and the defining
relations of the Cox ring R(X) which allows us to encode X via these Cox ring data
in a compact manner. Moreover, our variety X comes with an embedding into a fake
weighted projective space, which dictates many geometrical properties of X. Similar to
the toric case, the Gorenstein property of X leads to identities involving unit fractions,
which eventually yield strong bounds on the Cox ring data, making a computational
treatment viable.

Theorem 8. See Classification 2.1.1. We obtain 538 families of non-toric, Q-factorial,
Gorenstein, log terminal Fano threefolds of Picard number one acted on effectively by a
two-dimensional torus. Listed according to the possible divisor class groups, we have:

Divisor class group | Sporadic varieties True families
Z 242 3 one-dimensional
7 xX7/27 163 4 one-dimensional
Z x (Z/27)? 46 5 one-dimensional,
1 two-dimensional
7 x (Z.]27)3 6 1 one-dimensional
7 X 7L]27 x 7./AZ 4 1 one-dimensional
Z X ZL]2Z X 7|67 1 0
Z x7)3Z 26 1 one-dimensional
Z x (2]37)? 1 0
Z X Z7/AZ 18 1 one-dimensional
7 x ZL/5Z 4 0
7 x Z/6Z 8 0
Z x 787 2 0

Moreover, every non-toric, Q-factorial, Gorenstein, log terminal Fano threefold of Picard
number one with an effective action of a two-dimensional torus is isomorphic to precisely
one member of these 538 families.

Note that being Gorenstein and log terminal, all varieties from Theorem 8 are canonical.
The overlap with the classification of non-toric Mori—Fano threefolds coming with an
action of a two-dimensisonal torus given in [21] consists precisely of the smooth quadric
in P4. The defining data of each of our 538 families are presented in the Classification lists
2.12.1 — 2.12.19 and can also be found in the file [15]. This file also contains geometric
invariants such as genus, codimension, anticanonical self intersection and Hilbert series.
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Finally we study Fano fourfolds with an effective action of a three-dimensional torus.
We focus on the case of Picard number two. In this situation, Kleinschmidt [58] gave a
complete description of all smooth toric varieties, which leads in particular to complete
classifications of the Fano ones in any dimension. Via linear Gale duality, Kleinschmidt’s
approach can be turned into a study of two-dimensional combinatorial structures, see
[19, Prop. 1.11]. The latter point of view applies as well to torus actions of higher
complexity, i.e. higher maximal orbit codimension [41,42,46]. This allows for instance to
extend Kleinschmidt’s description to smooth varieties with a torus action of complexity
one and gives complete classifications of smooth Fano varieties with torus action of
complexity one in any dimension [35]. Further work in this spirit concerns smooth
intrinsic quadrics, general arrangement varieties and intrinsic Grassmannians [34,42, 75].
We leave the smooth setting and consider more generally locally factorial varieties,
meaning that every Weil divisor is locally principal. Whereas in the toric case smoothness
and local factoriality coincide, the latter setting turns out to be much more general
for torus actions of complexity one; for instance, the varieties need not be log terminal
any more and we find infinite series of non-isomorphic Fanos in fixed dimensions. We
settle the case of dimension four, complexity one and a Cox ring defined by a single
relation. Our main result considerably extends the corresponding one in the smooth
case [35, Thm. 1.2].

Theorem 9. See Theorem 3.1.1. There are 447 sporadic cases and 106 infinite series of
locally factorial Fano fourfolds of Picard number two coming with an effective action of a
three-dimensional torus and a Cox ring defined by a single relation.

Our varieties in question are uniquely determined by the generator degrees and the
relation in their Cox ring. Classification lists 3.10.1 — 3.10.11 provide the complete
and redundancy free presentation of the specifying data for Theorem 3.1.1. A data file
containing the complete classification data is also available at [18].



CHAPTER
ONE

LATTICE SIMPLICES AND FAKE WEIGHTED PROJECTIVE
SPACES

We give sharp upper bounds on the anticanonical degree of fake weighted projective
spaces, only depending on the dimension and the Gorenstein index. Furthermore, we
present sharp upper bounds on the volume, Mahler volume and multiplicity for Fano
simplices, also only depending on dimension and Gorenstein index. These bounds rely
on the interplay between lattice simplices and unit fraction partitions. Moreover, we
present an efficient procedure for explicitly classifying Fano simplicies of any dimension
and Gorenstein index and we carry out the classification up to dimension four for various
Gorenstein indices. This chapter is organized as follows. In Section 1.1 we present the
main results of this chapter. Section 1.2 covers the basics on fake weighted projective
spaces and IP simplices. In Section 1.3 we associate with every IP simplex a unit fraction
partition of its Gorenstein index. The main result of this section is Proposition 1.3.3,
which relates the volume and the multiplicity of a (Fano) simplex to its unit fraction
partition. Section 1.4 is dedicated to providing sharp bounds on unit fraction partitions.
The main result of that section is Theorem 1.4.2, which is the foundation for proving
Theorems 1.1.1 — 1.1.4. Section 1.5 contains the proofs of Theorems 1.1.1 — 1.1.4. Section
1.6 contains our classification procedure for Fano simplices. In Section 1.7 we present
and discuss our classification results. The results of this chapter are published in [12,14].

1.1 Main results

A d-dimensional fake weighted projective space is a quotient Z = (C1\{0})/G by a
diagonal action of G := C* xI', where I is a finite abelian group and the factor C* acts
via positive weights. The case for trivial I' delivers the weighted projective spaces. If
moreover the weights are all equal to one, then Z is a classical projective space. Any fake
weighted projective space Z is normal, Q-factorial, of Picard number one and is a Fano
variety, i.e. its anticanonical divisor —/C is ample. Apart from the classical projective
spaces, all fake weighted projective spaces are singular, but have at most abelian quotient

9



Chapter 1. Lattice simplices and fake weighted projective spaces

singularities. In the case of Gorenstein index one, Nill [65] provides a bound for the
degree of a d-dimensional fake weighted projective space Z, i.e. the self intersection
number (—K)? of its anticanonical divisor. These degree bounds also hold more generally
for any toric Fano variety with at most canonical singularities, see [9].

For our first result in this chapter we extend Nill’s bound to fake weighted projective
spaces of any Gorenstein index. For any integer ¢ > 1 we define the g-Sylvester
sequence Sq4.1, 54,2, .. and the truncated g-Sylvester sequence ty1,tg2,... as

Sg1 = g+ 1, Sgk+1 = sg’k(sg,k - 1) +1, tg,k' = Sgk — 1.
For g = 1,2,3 the beginning of the sequences (s4)x are the following
(Sl,k)k = 2, 3, 7, e (82716)]€ = 3, 7, 43, . (SB,k)k = 4, 13, 157, e

Moreover, for any g > 1 and any d > 2 define a (d + 1)-tuple of positive integers by

2t 2t
Oy = <d11>

8971 ngd_l

For g =1,2,3 and d = 2,3 the corresponding (d + 1)-tuples Qg 4 are given by:

QZ,l = (27171)7 Q2,2 = (47171)7 Q2,3 = (63171)7
Q3,1 = (67471a1)7 Q3,2 = (287 127171)7 Q3,3 = (78>24a1a1)

Theorem 1.1.1. There are sharp upper bounds on the anticanonical degree (—K)% of a
fake weighted projective space Z, only depending on its dimension d and its Gorenstein
index g.

(i) If (d,g) = (2,1), then we have (—K)? < 9. Equality holds if and only if Z is

isomorphic to the projective plane P2.
(ii) In all other cases the anticanonical degree is bounded from above by
2¢2
(_’C)d = gdi’f :

Equality holds if and only if Z =P(3,1,1,1) or Z 2 P(Qqa,4) holds.

We turn to Fano simplices, ie. lattice simplices A with primitive vertices, containing
the origin in their interior. They form the combinatorial counterpart to fake weighted
projective spaces, see Proposition 1.2.1. The Goreinstein index of a Fano simplex A
is the Gorenstein index of the corresponding fake weighted projective space. It can be
expressed combinatorially as the smallest positive integer g such that the g-fold of the
dual polytope A* is a lattice simplex. The anticanonical degree of Z is precisely the
normalized volume of A*, i.e. the d!-fold of the euclidean volume of A*. Our second result
concerns the volume of A itself. For simplices of Gorenstein index g = 1, i.e. reflexive
simplices, Nill [65, Thm. A] provides sharp upper bounds on the normalized volume in
terms of the dimension of the simplex. We extend these bounds to Fano simplices of
arbitrary Gorenstein index. We write A = A(P) with the d x (d + 1) matrix P having
the vertices of A as its columns.

10



1.1. Main results

Theorem 1.1.2. There are sharp upper bounds on the normalized volume of a Fano
simplex A, only depending on its dimension d and its Gorenstein index g:

(i) Assume (d,g) = (2,1). We have the following upper bound on the normalized
volume of A, which is attained if and only if A = A(P) holds:

11 -2
< = .
Vol(A) < 9, P [ 0 3 —3 ]
(ii) In all other cases the normalized volume of A is bounded from above by
2 d
Vol(A) < g—gé.

Equality holds if and only if we have A = A(P), where P is one of the following:

1 1 1 -5
0 0 6 —6
i (5g,1—9) tg,d (5g,1+9) tg.d T
1 0 0 gsgl gg gsgl gg
0 1 :
P = 0
(Sq d—1—9) tgi,d (Sg 1+9) tg,d
Sg,d—1 tg Sg,1 tg
,d _ Ylg9.d
i 0O ... ... 0 57 gg i

Another invariant of a Fano simplex A is its multiplicity, ie. the order of the sublattice
generated by the vertices of A. This is also the order of the torsion part of the divisor class
group of the fake weighted projective space Z corresponding to A. For Fano simplices
having only the origin as an interior lattice point, for instance reflexive ones, [3, Thm. 1.1]
provides sharp upper bounds on the multiplicity in terms of the dimension. In our

third result we provide multiplicity bounds for arbitrary Fano simplices in terms of the
Gorenstein index and the dimension.

Theorem 1.1.3. There are upper bounds on the multiplicity of any Fano simplex A,
only depending on its dimension d and its Gorenstein index g:

(i) Assume d =3 and g € {1,2}. We have the following upper bound on the multiplicity
of A, which is attained if and only if A = A(P) holds:

1 49—-3 49—3 5—28g
0 4g 0 —4g
0 0 4g —4g

mult(A) < 16, P

11



Chapter 1. Lattice simplices and fake weighted projective spaces

(ii) Assume (d,g) = (4,1). We have the following upper bound on the multiplicity of A,
which is attained if and only if A = A(P) holds:

mult(A) < 128, P =

o O O

O O N

S 0N -

o O N =
%

(iii) In all other cases the multiplicity of A is bounded from above by

2

3t
mult(A) < Zgd-l
g

If equality holds, then we either have (d,g) = (3,3) and A = A(P) holds, where

1 1 5 -7
P=1012 0 -12 |,
0 0 12 —12

or there are positive integers ay,...,aq—1 € Z>1 such that A = A(P) holds, where
P is the matrix:
i (5g,1—9) tg,d—1 _ ((sg1429) tg.a—1 1
10 .0 lemdbe o, (Lt bodmt 4 g, )
0 1
0
.. (5g,d-2—9) tg.d—1 . ((sg,d—2+29) tg,d—1
’ 1 Sg,d—2 g ad_2 Sg,d—2 g +ad_2
0 ... ... 0 t’“% aqg—1 — (tg’z_l + aqg—1
0 ... .. 0 0 3ty q-1 —3tg4-1 |

Moreover, if g is odd, then for k=1,...,d — 2 we may choose

an = (Sg,k: - g) ZL/g,clflj ag.1 = ZL/g,clfl )
Sg.k g g
For our fourth result we consider the Mahler volume [62] of a (not necessarily Fano)
rational IP simplex, ie. a rational simplex A, that has the origin in its interior. The
Mahler volume of A is the product MV(A) := Vol(A)Vol(A*). We obtain sharp upper
bounds that only depend on the dimension and the Gorenstein index. For the Gorenstein
index of a rational IP simplex see Definition 1.2.3.

Theorem 1.1.4. Let A a d-dimensional IP simplex of Gorenstein index g. Then we

have

2
g,d+1
gd+2 .

MV(A) <

12
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Equality holds if and only if there is H € GL(d, Q) such that A = H - A(P) holds, where

tg,d+1
10 ... 0 —min
p— |9
: . .0 :
0 ... 0 1 —led
Sg,d

We come to the explicit classification of Fano simplices. Héattig, Hafner, Hausen and
Springer [39] present an efficient procedure for the classification of Fano triangles with
fixed Gorenstein index based on unit fraction partitions. This procedure is completely
automated and the authors carry out the classification of Fano triangles up to Gorenstein
index 200. We generalize and speed up their procedure, which allows us to efficiently
classify Fano simplices of any given dimension and Gorenstein index. This allows us to
carry out the following classifications; the complete classification data, as well as the
Julia code [22] to produce these results can be found at [13].

Theorem 1.1.5. Up to isomorphy there are 2,992,229 Fano triangles of Gorenstein
index g < 1000. The number of triangles N(g) for given Gorenstein index g develops as
follows:

-10*
1.5 T T T T T T T T T
1.2 * n
0.9 - R P
— o L o .
8 L] ° °
Z . .o.... . .o . o’:.;o :..'o:.
0.6 - . Py * '.' - .‘ . oo..::..b. .~o..-".°:' .!
. o . g.':.“'..’.:.":'.g ."."o‘t‘
i . o‘.. s *»° ..f'. oo o... ~.~=.' . ¢ 0o’
. o o LX) L o® . [
. . ’, =% Fo o € . ea% N o . .
0.31 ...'. & e :=‘..o...'-:£fo..:':.‘0..:‘.. -.-‘ . ..‘ e e .
‘ w:F YRR I 2L ottt
'.“.'-'-Z b o A
uPo ‘e M
_\..Ul :
0 ol

| | | | |
200 300 400 500 600 700 800 900 1,000
9

Theorem 1.1.6. Up to isomorphy there are 9,368,501 Fano simplices of dimension three
and Gorenstein index g < 30. The number of simplices N(g) for given Gorenstein index
g develops as follows:

13



Chapter 1. Lattice simplices and fake weighted projective spaces

g 1 2 3 4 5 6 7 8
N(g)| 48 435 1,703 3,042 7,506 14,527 16,627 21,789
g 9 10 11 12 13 14 15 16
N(g)| 39,288 61,295 54,404 100,670 59,500 157,071 269,037 121,530
g 17 18 19 20 21 22 23 24
N(g)|133,559 319,176 173,707 473,732 523,939 401,328 332,612 695,989
g 25 26 27 28 29 30
N(g)|515,042 565,225 824,950 1,007,089 513,356 1,960,325

Theorem 1.1.7. Up to isomorphy there are 87,532 Fano simplices of dimension four and
Gorenstein inder g < 2. Of those, 1,561 are of Gorenstein index g = 1. The remaining
85,971 simplices are of Gorenstein index g = 2.

1.2 Fake weighted projective spaces and simplices

We recall basic properties of fake weighted projective spaces and fix our notation, see
also [65, Sec. 3]. The reader is assumed to be familiar with the very basics of toric
geometry [30,37]. Throughout, N is a rank d lattice for some d € Z>s. Its dual lattice is
denoted by M = Hom(N,Z) with pairing (-,-): M x N — Z. We write Ng := N ®z Q
and Mg := M ®z Q. Polytopes A C Ng are assumed to be full-dimensional. The
normalized volume of a d-dimensional polytope A is Vol(A) = d!vol(A), where vol(A)
denotes its euclidean volume. Suppose the origin 0 € Ng is contained in the interior
of A. Then the dual of A is the polytope

A* = {u € Mg; (u,v) > —1forallve A} C My.

For a facet F' of A we denote by ur € Mg the unique linear form with (up,v) = —1 for
all v € F'. We have

A* = conv(up; F facet of A), A = {v € Ng; (up,v) > —1, F facet of A}.

A lattice polytope A C Ng is a polytope whose vertices are lattice points in N. An
IP polytope is a lattice polytope that contains the origin 0 € Ng in its interior. A
Fano polytope is an IP polytope whose vertices are primitive lattice points. We re-
gard two lattice polytopes A C Ng and A" C N@ as isomorphic if there is a lattice
isomorphism ¢: N — N’ mapping A bijectively to A’.

For an elementary proof of the following Proposition we refer to [39, Sec. 2].

14



1.2. Fake weighted projective spaces and simplices

Proposition 1.2.1. The fake weighted projective spaces are precisely the toric varieties
Z = Z(A) associated with the face fan of Fano simplices A C Ng.

Example 1.2.2. As a running example, we consider the two-dimensional Fano simplex A
with the vertices

vy = (1,0), V1 = (1,4), V2 = (—7, —12).
The corresponding fake weighted projective plane Z = Z(A) has the divisor class group
Cl(Z) =2 ZeoZ/AL.

Under this isomorphism the classes of the three torus-invariant divisors Dg, D1, Dy of Z
are given by
[DO] = (473)’ [Dl] = (37 1)7 [DQ] = (170)'

Denote by C'(4) C C the group of 4-th roots of unity. The variety Z can be realized as
the quotient of C3\{0} by the action of G = C* x C(4) given by

<t7 77) : (Z(), 21, 22) = (t4773207 t37’]2’1, tZQ)

Two fake weighted projective spaces are isomorphic if and only if the corresponding
Fano simplices are isomorphic. The weighted projective spaces among them correspond
to Fano simplices whose vertices generate the lattice. Many geometric properties of a
fake weighted projective space can be read off the corresponding simplex. Here we focus
our attention on the Gorenstein index and the anticanonical degree.

Definition 1.2.3. Let A C Ng an IP polytope.
(i) The index of rationality of A is the positive integer

go(A) = min{k € Z>1; kA is a lattice polytope }.
ii) The Gorenstein index of A is the positive integer
(i) g
9(A) = go(A) - go(A").

(iii) Assume A is a lattice simplex. Denote by uo,...,uq € Mg the vertices of the dual
A* C Mg. We call uy the k-th Gorenstein form of A. We define the k-th local
Gorenstein indezx g of A as the smallest positive integer such that gpug € M holds.

Remark 1.2.4. If A C Ng is an IP lattice simplex with local Gorenstein indices go, . . ., g,
then we have g(A) = lem(go, - .., 94)-

Lemma 1.2.5. The Gorenstein indez of any fake weighted projective space Z = Z(A)
coincides with the Gorenstein index g(A) of the corresponding Fano simplex A C Ng.

Proof. The dual polytope A* coincides with the polytope A(_x associated with —K:
Ax) = conv(m € Mg; x™ € I'(X,0x(-K)) ).

The assertion thus follows from [30, Thm. 4.2.8]. O
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Chapter 1. Lattice simplices and fake weighted projective spaces

Lemma 1.2.6. See for instance [37, p. 111]. Let Z = Z(A) a d-dimensional fake
weighted projective space. Then we have (—Kz)¢ = Vol(A*).

Example 1.2.7. We continue Example 1.2.2. The dual of A is the rational simplex A*
with the vertices

1 2
up = (152>) uy = <1a3)a Uz = (7170)

Thus A has local Gorenstein indices (go, g1,92) = (2,3,1) and Gorenstein index g(A) =
lem(go, g1,92) = 6. The group of Cartier divisor classes of Z is the intersection of the
subgroups of Cl(Z) generated by the torus-invariant divisor classes:

([Do]) N{[D1]) N{[D2]) = ((48,0)) € CUZ) = Z®ZL/4Z.

An anticanonical divisor of Z is given by the sum of the torus-invariant divisors. In Cl(Z)
we have

[=K] = [Do] + [D1] + [D2] = (8,0).
The 6-fold of /C is the smallest multiple that is Cartier. Thus Z has Gorenstein index g = 6.

Any weighted projective space P(qo,...,qq) is up to an isomorphism uniquely de-
termined by its weights (qo,...,qq). More generally we assign weights to any IP sim-
plex A C Ng.

Definition 1.2.8. See [28,65]. A weight system @ of length d is a (d + 1)-tuple of
positive rational numbers @ = (qo, . .., qq). The total weight of a weight system @ is the
rational number |Q| := go + - - + q4. A weight system @ is called reduced if it consists of
integers and ged(qo, - . .,q4) = 1 holds. A reduced weight system is called well-formed
if ged(gj; j=0,...,d, j #1) =1 holds for all i =0,...,d. Any weight system () can be
written as A(Q) - Q"¢ with a unique reduced weight system Q™ and a unique positive
rational number A(Q). We call A\(Q) the factor of Q and Q™9 the reduction of Q.

Definition 1.2.9. See [28,65]. To any IP simplex A C Ng with vertices vy, ..., vq we
associate a weight system by

Qa = (q0,---:qa), @ = |det(vj; j=0,....d, j#1i)l

Remark 1.2.10. Let A C Ng a d-dimensional IP simplex with vertices vy, ..., v and
weight system Qa = (qo,- - -, qd)-
(i) For the total weight we have |Qa| = Vol(A).
(ii) If A is a Fano simplex, then Q% is well-formed.
(iii) We have Z;-izo q;v; = 0 and Qfd =(qp. - --,q}) is the unique reduced weight system
satisfying 3%, ¢jv; = 0.
(iv) For any H € GL(d, Ng) we have Qua = |det(H)|Qa. In particular, the weight
systems of isomorphic IP simplices coincide up to order.
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1.2. Fake weighted projective spaces and simplices

For an IP lattice simplex A C Ng we denote by N(A) C N the sublattice generated
by the vertices of A. If A C Ng is any IP simplex and A’ := gp(A) A, then we have

[N : N(A)]
go(A)® -
In case A is a Fano simplex, we write mult(A) := A(A) and call it the multiplicity

of A. It coincides with the cardinality of the torsion part of the class group Cl(Z) of the
associated fake weighted projective space Z = Z(A).

AMA) == AMQa) =

Example 1.2.11. For the two-dimensional Fano simplex A from Example 1.2.2 and
Example 1.2.7 we have

Qa = (16,12,4),  |Qa] = 32,  AQa) = 4, QK = (4,3,1).
For the sublattice N(A) C Z?2, generated by the vertices of A, and it’s index we have
N(A) = ((1,0), (0,4)),  AA) = [22:N(Q)] = 4.

The following Proposition is a reformulation of [23, Prop. 2]. Compare also [28, 4.4—
4.6).

Proposition 1.2.12. To any reduced weight system @ of length d there exists a d-
dimensional IP lattice simplex A(Q) C Q%, unique up to an isomorphism, with Qa) = Q-
For any IP simplex A € Q% with (QA)red = Q there is a linear map H € GL(d, Q) whose
determinant satisfies |det(H)| = A(A), such that A = H A(Q) holds.

Restricting to well-formed weight systems, we obtain the following Corollary to
Proposition 1.2.12. Compare also [10, Thm. 5.4.5].

Corollary 1.2.13. To any well-formed weight system Q of length d there exists a d-
dimensional Fano simplexr A(Q) C Ng, unique up to an isomorphism, with Qa(q) = Q-
Any fake weighted projective space Z = Z(A) with Qg’d = @ 1is isomorphic to the
quotient of the weighted projective space P(Q) by the action of the finite group N/N(A)
corresponding to the inclusion N(A) C N.

As an immediate consequence, we can relate the Gorenstein index and the anticanon-
ical degree of a fake weighted projective space Z(A) to those of the weighted projective

space P(Q%Y).

Corollary 1.2.14. Let Z = Z(A) a d-dimensional fake weighted projective space and let
7' = P(Q‘Xd) the corresponding weighted projective space. Then the Gorenstein index of
Z is a multiple of the Gorenstein index of Z'. Moreover we have A\(A)(=Kz) = (=K z)2.
In particular, (—=Kz)? = (=K z)? holds if and only if Z is isomorphic to Z'.

Proof. By Proposition 1.2.12 there is a square matrix H in a lattice basis of N with
determinant A(A) such that A = HA(Q) holds. Dualizing yields A(Q)* = H*A*,
where H* denotes the transpose of H. Applying Lemma 1.2.5 and Lemma 1.2.6 yields
the assertions. O
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Example 1.2.15. We continue Example 1.2.11. The vertices v(, v, v5 of the Fano
simplex A’ associated with the weighted projective plane Z' = P(4,3,1) = P(Qid) and
the vertices wuy, u), uy of it’s dual simplex (A’)* are given by

U(I) = (]"0)7 U/I = (071)7 ’Ué = (74773)7

5
W= (1,-1), o = (-1,3), Wy = (—1,-1).

Thus A’ has Gorenstein index g(A’) = 3. The Gorenstein indices of A and A’ satisfy
g(A) =6 =2-3 =2¢g(A’). The simplex A is the image of A’ under the linear map
72 — 7 given by the matrix
11
- [ bl ] |

We can recover Z = Z(A) as the quotient of P(4,3,1) by the action of the group C(4) of
4-th roots of unity given in homogeneous coordinates by

77'[20,21,22] = [77320,77Z1722]-

Using Lemma 1.2.6, for the degrees of Z and Z’ we obtain

() = VOl((A)) = 3 = 45 = AANVOI(A) = A(A)(~Kz)"

1.3 Unit fraction partitions

We associate with every IP simplex a unit fraction partition of its Gorenstein index, see
Proposition 1.3.2. The main result of this section is Proposition 1.3.3, which relates the
volume and the factor of an IP simplex to its unit fraction partition.

Definition 1.3.1. Let g € Z>;. A tuple A = (ay,...,ap) € 7Y, is called a unit fraction
partition (ufp for short) of g of length n, if the following holds:

1 2”: 1

-
A tuple A = (a1,...,q,) € 7%, is called a unit fraction partition if it is a ufp of g for
some g € Z>;. For a unit fraction partition A = (aq,...,ay) of g we call

ta = lem(aq,...,ap), AMA) = ged(g,an,...,0n), Al = A/A(A)
the total weight, the factor and the reduction of A, respectively. A unit fraction partition A
is called reduced if it coincides with its reduction. It is called well-formed if «a; |

lem(ay; j # 1) holds for all i =1,...,n.
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Proposition 1.3.2. Let A C Ng a d-dimensional IP simplex of Gorenstein index g with
weight system Qa = (qo,---,q4). Then

AA) — (91Qal  9lQa]
(2) ( @ = )

is a unit fraction partition of g of length d + 1. We call it the unit fraction partition of g
associated with A.

Proof. The entries of A(A) are positive. We show that they are integers. Denote by
0, - - .,vq € Ng the vertices of A. For 0 <i < d let F; = conv(vo,...,0;,...,vq) the i-th

facet of A, where ©; means that v; is omitted. For all i = 0,...,d we have
d d
0 = > aqglur,vy) = glup,va —g Y. @ = (glur,vi) +1)g — glQal-
j=0 i=o,
i#i

By definition of the Gorenstein index, g(ur,,v;) = (go(A*)ur,, go(A)v;) is an integer.
Thus ¢; divides g|@Qa|, which means that A(A) consists of integers. Now summing over
the reciprocals of A(A) we see that it is in fact a ufp of g. O]

The following Proposition establishes a connection between geometric properties of
an IP simplex A and its associated unit fraction partition. It can be seen as an extension
of [65, Prop. 4.5] to the case of non-reflexive IP simplices.

Proposition 1.3.3. Let A C Ng a d-dimensional IP simplex of Gorenstein index g(A) =
g with associated unit fraction partition A(A) = (o, ...,aq) of g. Then A(A) = A(A*)
holds and we have:

(i)

Vol(A)Vol(A*) = 0y,

— ao .
gd—i-l

MAYVOI(A) = A(AVOI(AY) = — %00

g% lem(ag, ..., aq)’

MANAY) = L oo

g% 1lem(ag, ..., aq)%

Note that the left hand side of equations (i)—(iii) in Proposition 1.3.3 only depends on
the simplex A, while the right hand side only depends on the unit fraction partition A(A).

Example 1.3.4. We continue Example 1.2.15. The Fano simplex A has Gorenstein
index g = 6 and weight system Qa = (16,12,4). It’s unit fraction partition is given by

A(A) = (12,16,48).
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This is a unit fraction partition of g = 6. Indeed, we have

1 1 1 1

6 - 12 16 1w

The IP simplices A and A have normalized volumes and factors

4 1

Vol(A) = 32, AA) = 4, Vol(A*) = 3 AMA¥) = G

Plugging these values into the formulas given in Proposition 1.3.3, we obtain
N 4 128 1 1

1 1 12-16-4 1
MAVOI(A) = AAVol(a®) — 6 _ 1 12-16:48 Qo

3 62 48 g?lem(ag, - . ., oq)’
1 2 1 12-16-48 1 g0y
AMANAY) = 4.2 = 2 = L1 — .
(A)A(A7) 6 3 63 482 g1 lem(ay, . .., aq)?

For the proof of Proposition 1.3.3, we need the following Lemma 1.3.6, which is
originally [65, Prop. 3.6].

Definition 1.3.5. See [65, Def. 3.4]. For any weight system @ = (qo, ..., qq) set

Q1"

q0 " 44

Lemma 1.3.6. See [65, Prop. 3.6]. For any d-dimensional IP simplex A we have

Qax = mg,Qa.

Proof of Proposition 1.3.3. By Lemma 1.3.6 the weight systems Qa and Qa« differ only
by a factor. Moreover, the simplices A and A* have the same Gorenstein index. Thus the
associated unit fraction partitions A(A) and A(A*) coincide. Item (i) is an immediate
consequence of (ii) and (iii). We prove (ii). Remark 1.2.10 (i) together with Lemma 1.3.6
yields
d
Vol(A*) = |Qa+| = :

|Qa
q0 - qd
We multiply this by the multiplicity A(A) and use the identity A\(A) = g|Qa|/ta(a) to

obtain

AAWol(AY) = 919al 1Qal® 1 ag--ag

tan) @ qa  g%lem(ag, ... 00)
Switching the roles of A and A* and using the fact that they have the same unit fraction
partition, we obtain A(A)Vol(A*) = A(A*)Vol(A). We prove (iii). Let Q%% = (gf), ..., q})-
With Lemma 1.3.6 we obtain:

Qe _ 1 jes't | 1
= = mQrAed,

9 qd AA) qp---qy AA)

AAT) = MA)mg, = A(A)
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Multiplying both sides by A(A) yields the identity A(A)A(A*) = Mred. We obtain:

1 ‘Qzed|d+1 _ A(A)2 Qa4 _ 1 - oy
‘Qfd|2 a0 dg |Qal? qo---qa g1 lem(ayp, ..., aq)

m d =
Qx

5
O]

It will be convenient to assign unit fraction partitions directly to weight systems and
vice versa.

Definition 1.3.7. The index of a weight system Q = (qo, - - .,qq) is the positive integer
9(Q) = min (k € Z>1; k|Q|/qi € Z for all i =0,...,d).

Remark 1.3.8. The index g(Qa) of the weight system QA of an IP simplex A is always
a divisor of it’s Gorenstein index g(A). They might coincide, however frequently g(Qa)
is a true divisor of g(A).

Example 1.3.9. We continue Example 1.3.4. The weight system of A is Qa = (16, 12,4).
It has index g(Qa) = 3, which is a proper divisor of the Gorenstein index of A.

Proposition 1.3.10. Let Q = (qo,...,q4) a weight system of length d and let A =
(o, . ..,aq) a unit fraction partition of g € Z>1 of length d+ 1. Set

AQ) = (%?‘%?) Q(A) = (Zf]f;;)

Then A(Q) is a reduced unit fraction partition of g(Q) and Q(A) is a reduced weight
system of length d and indezx g(Q(A)) = g/A(A). Moreover, we have

QAQ) = @™, A(Q(A)) = A
and this correspondence respects well-formedness.

Example 1.3.11. We continue Example 1.3.9. We have the weight system and the
uf-partition of g(A) = 6:

Q = Qa = (16,12,4), A = A(A) = (12,16,48).

The weight system @ has index g(Q) = 3. Total weight, factor and reduction of A are
given by
ta = 48, Ag = 2, Area = (6,8,24).

With respect to Proposition 1.3.10, we obtain the unit fraction partition and the weight
system

A(Q) = (678724) = Ared: Q(A) = (4737 1) = Qred'

For the proof of Proposition 1.3.10 we need the following Lemmas.
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Lemma 1.3.12. For g,aq,...,q, € Z set

[ (o1 —g) -9 —g

G(g;an,...,ap) =

Then

n
det(G(g; a1,...,a)) = a1 ay —gZHaj.
i=1 j#i
Proof. We prove the Lemma by induction on n. The cases n = 1 and n = 2 are

verified by direct computation. Let n > 3. Subtracting the second to last row of
G :=G(g;a1,...,a,) from the last row, we obtain

det(G) = oy, det(G') + ap—1 det(G"),

where G' = G(g; a1, ...,a,-1) and G”" = G(g; a1, ...,an—2,0). By the induction hypoth-
esis we have

n—1
det(G') = ai1--an_1—9g Z H aj, det(G") = —gay - ay_a.

i=1 j#i
Plugging these into the equation for det(G) yields the assertion. O
Lemma 1.3.13. For any unit fraction partition (aq,...,an) of g and any 1 < k < n we

have
det(G(g; a1,...,a)) > 1.

Proof. For any 1 < k < n we have 1/aj + -+ + 1/ag < 1/g. Multiplying both sides
by g aq - - - ap and subtracting the left hand side we obtain

k
i=1 j#1

Since the determinant of G(g;ayq,...,ay) is an integer, it must be at least one. O
Proof of Proposition 1.3.10. We show that A(Q) is a reduced unit fraction partition of
9(Q). As ¢; divides g(Q) |Q|, the tuple A(Q) consists of positive integers. Summing over
the reciprocals of A(Q) shows that it is a ufp of g(@). Assume A(Q) is not reduced

and let A’ its reduction. Then A’ is a ufp of ¢’ for some ¢’ < g(Q). This means that
each ¢; divides ¢'|Q|, which contradicts the minimality of the index ¢(Q). Thus A(Q)
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is reduced. The fact that Q(A) is a reduced weight system of index g/A(A) follows
directly from the definition of ¢t4. We prove the last assertion of Proposition 1.3.10. Let
Q = (qo, - .., qq) a weight system of length d and index g and write A(Q) = (ao, ..., aq).
To show that Q(A(Q)) = Q™! holds we consider the matrix G = G(g; ao, ..., aq) as
defined in Lemma 1.3.12. Both @ and Q(A(Q)) are contained in its kernel and the latter
weight system is reduced. So it suffices to show that G is of rank d. This follows from
Lemma 1.3.13, as the minor of G, obtained by deleting the last row and column, equals
det(G(g; a0, ..., q-1)). Now let A = (ag,...,aq) a ufp of g of length d + 1. Write
Q(A) = (qo, - -, qq) and let A(Q) = (o), ..., a};). This is a ufp of g(Q). Note that each
g; divides ¢ |Q| as well as ¢(Q)|Q]|. The minimality of the index of @) implies that g(Q)
divides g. With \ := ¢g/g(Q) we obtain

t i
o = 9 9@QIRl _ gtai _ o,

9@ g gta)

which yields A = MA(Q). As A(Q) is reduced, we obtain A(Q) = A™. Now let
Q = (qo,---,qq) a reduced weight system of length d and write A(Q) = (ap, ..., aq). We
have q; = t4(g)/a;. The weight system @ is well-formed if and only if for all i = 0,...,d

we have
HO&j = tA(Q)ng ( H (097 j 751) .
ji kg
This in turn is equivalent to the well-formedness of A(Q). O

1.4 Sharp bounds on unit fraction partitions

For a unit fraction partition A = (a1, ..., a,) of length n we consider
al PR an
Fir.(A) = .
k(4) lem(ay, ..., ap)" "k

For k =n —2,n — 1,n these are the right hand side expressions in the identities from
Proposition 1.3.3. We give sharp bounds on these expressions among all unit fraction
partitions of g and completely describe the unit fraction partitions attaining those bounds.

Definition 1.4.1. The g-Sylvester sequence Sy = (Sg.1,54,2,-..) and the truncated g-
Sylvester sequence Tg = (tg1,t4,2,...) for a positive integer g are given by

Sg1 ‘= g+ 1, Sgk+1 = Sg,k(sg,k - 1) +1, tg,k = Sgk — 1.

Theorem 1.4.2. Let g > 1 and let n > 3. Let A = (a1,...,qn) a unit fraction partition
of g with ay < --- < ay,. For the value of Fy, on A the following hold:
(i) Fu(A) <t2,/g and equality holds if and only if A= (sg1,...,8gn1,tgn)-
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Chapter 1. Lattice simplices and fake weighted projective spaces

(ii) Assume k =n—1. If (n,g) = (3,1), then we have F,,_1(A) <9 and equality holds
if and only if A =(3,3,3). In all other cases we have
262, 4

F,_1(A4) <
1(A) p

Equality holds if and only if A is one of the following unit fraction partitions:
(67676>7 (2767676>7 (39717 s 7Sg,’n—272tg,n—172tg,n—1)~

(iii) Assume k =n —2. If n =4 and g € {1,2}, then we have F,_3(A) < 16¢> and
equality holds if and only if A = (4¢9,4¢9,4¢9,49). If (n,g) = (5,1), then we have
F,—2(A) < 128 and equality holds if and only if A = (2,8,8,8,8). In all other
cases we have

3t§,n—2

P

Equality holds if and only if A is one of the following unit fraction partitions:

Fn_Q(A) <

(12,12,12,12),  (Sg1s---»Sgm—3) 3tgm_2, 3tgm_2, Btgm_2)-

Remark 1.4.3. In the literature the sequence S; = (s1,1, 512, ... ) is known as Sylvester’s

sequence, see for instance [67]. Our naming for the sequences S; and Ty is derived from

that. We list some properties of the sequences S; and T}, that we will use frequently.
(i) For any n > 1 we have

1 1 1 1
= 4t N
g 8971 Sg7n_1 tgvn
(ii) For any n > 1 we have
g 1 1
tgn Sg,1 Sgmn—1 .

(iii) For any g,n > 1 we have sy p11 > Sgn and Sg41.n > Sgn-
(iv) For i # j we have gcd(sg, 5¢,5) = 1.

The strategy for the proof of Theorem 1.4.2 is as follows: For given g and n we
define a certain compact subset Ay C R", which has the property that for any unit
fraction partition A = (aq,...,ay) of g with a3 < -+ < oy, the point (1/aq,...,1/ay)
is contained in Aj. For k € {n —2,n —1,n} we minimize the function f(z) := 1z
on Ay and show that it attains its minimum precisely at the points corresponding to the
unit fraction partitions listed in Theorem 1.4.2. This strategy for minimizing functions
on unit fraction partitions was first used by Izhboldin and Kurliandchik in [54], see
also [4,65] for generalizations. In [4] the authors call this type of optimization problems
Izhboldin- Kurliandchik problems. In the following we adopt their naming convention.

Definition 1.4.4. Let g,n > 1. We denote by A7 C R" the compact set of all
points (z1,...,x,) € R™ that satisfy the following conditions:
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1.4. Sharp bounds on unit fraction partitions

(A1) 1 >+ >xy, > 0.

(A2) 21+ -+, =1/g.

(A3) o1+ xp < g(zpy1+---+ap) forallk=1,...,n—1.

For z € R™ we denote by SUM(g) the equality x1 +---+x, = 1/g, by ORD(k) we denote
the inequality xy > xp41 and by PS(g, k) the inequality 1 - 2 < g(ap41 + ... + xn).
Thus the set Aj consists of the points (71, ...,2,) € RS, that satisfy the equality SUM(g)
and the inequalities ORD(k) and PS(g, k) for all k =1,...,n — 1.

Lemma 1.4.5. Let g > 1 and n > 1. For any unit fraction partition A = (a1, ..., qn,)
of g with an < -+ < ay, the point (1/cu,...,1/an) is contained in Ay.

Proof. The tuple (1/aq,...,1/ay) fulfills conditions (A1) and (A2). For the third
condition let 1 < k <n — 1. Then we have

k
1 1 1 1 ar o — g (251 [ligy i
g( +...+> = 1_g<+...+> = ( J 7 )
Q41

79 a1 Qg Q- Qg

The numerator on the right hand side is at least one by Lemma 1.3.13. This yields the
desired inequality. O

In the following Proposition we gather important properties of the set A7. It is a
generalization of [4, Lemma 4.1].

Proposition 1.4.6. Let g > 1 and n > 3. For any point x € Ay the following hold:
(i) We have 1/g > x1 >z, > 0.
(ii) The inequalities ORD(k) and PS(g, k) cannot simultaneously be fulfilled with equal-
1ty.
(iii) If for some 1 < k < n—1 the inequality PS(g,1) is fulfilled with equality for all i < k,
then x; = 1/s4; holds for alli=1,... k.

Proof. We prove (i). Since the z; are all non-negative, the equality SUM(g) implies
that z7 < 1/g holds. Assume z;, = 0. Then by the inequality PS(g,n — 1) we
have x - -+ xp_1 = 0. Thus ; = 0 holds for some i = 1,...,n— 1. The inequality ORD(j)
thus implies that x; = 0 holds for all j = ¢,...,n. We can repeat this argument to
obtain z1 = - -+ = x, = 0, which contradicts the equality SUM(g). Thus z, > 0 holds.
We prove (ii). Assume that for some k the inequalities ORD(k) and PS(g, k) hold
simultaneously with equality. Using xp1 = z, we may then write

0 = g1+ +an)—z1- 2k = g(@Thyo2+ -+ on) +xp(g— 21 Tp—1).

The first summand on the right hand side is non-negative, the second summand is positive.
This means that they cannot add to zero, a contradiction. Thus ORD(k) and PS(g, k)
cannot simultaneously be fulfilled with equality. We prove (iii) by induction on i. In
case i = 1, if PS(g, 1) holds with equality, we get

1
T = gl@a+-+x,) =g ;M)
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Chapter 1. Lattice simplices and fake weighted projective spaces

Solving this equation for x; yields z1 = 1/3971. Now assume 7 > 1 and z; = 1/397j holds
for all 7 <i. If PS(g,7) holds with equality, we obtain

g 1 1
735@':1'1"'-%:g($i+1+"'+xn) =g9g|l—-——T1—"—Z;| = g|— —x; |-
tg,i g g

Solving this equation for z; yields z; = 1/s,4;. This completes the proof. O

Definition 1.4.7. Let ¢ > 1 and n > 3. For k =1,...,n we define a function f; by
kaZ —>R, T = 1 Tk.

Moreover, for g,n and k as above, we set

( k) 1 1 1 1

k) = — ..., , gy, —————————— |
v\g g1 Sgk—1  (n—k+ 1)ty (n—Fk4+ 1ty
Note that the point y(g,n, k) belongs to Ajy.

Proposition 1.4.8. Let g > 1, n >3 and k € {1,...,n}. Lety = (y1,...,yn) € A}
such that fi, attains its minimum at y. Then y = y(g,n,io) holds for some iy < k.

The major part of the proof of Proposition 1.4.8 is governed by the following Lemma.

Lemma 1.4.9. Letn >3 and k € {1,...,n}. Lety = (y1,...,yn) € Ay such that fy
attains its minimum at y. Denote by ig the minimal index such that y;, = yn holds. Then
the following hold:
(i) io < k.
(ii) The inequality ORD(7) is strict for all 1 <i < iy — 1.
(iii) The inequality PS(g,i) holds with equality for all 1 < i <ig— 1.

Proof. The strategy for proving (i)-(iii) is the same in each of the three cases. We will
assume that the assertion is false and this will allow us to construct a point y’ € Ay
with fx(y") < fx(y), which contradicts the choice of y. Thus the assertion must be true.
We prove (i). For k = n there is nothing to prove. Let k& < n. Assume that ig > k holds.
Let jo maximal with y; = y;,. By assumption jy < i9 holds. The entries of y satisfy

Y1 2 e 2 Yp = .. = Yjo = Yjo+1 > ... > Yio—1 > Yig = --- = Yn-

We first consider the case ig = n. In that case we have y,_1 > y,. Let

0 < ¢ < min (yjo—i-l — Yjo Yn—1 — Yn ) 7

2 20jo—k+1)

y/ = (yh'"uyk*luyk_67"'7ij _eayj0+17"'7yn—17yn+g)7

where € = (jo — k + 1)e. We show that y’ lies in Aj. By the choice of ¢ and ¢, the
equality SUM(g) holds for 3 and the inequality ORD(4) holds for ' for all i. Moreover,
for all i <n — 1 we have

vioyi < gy < gyt yn) < g+ ),
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1.4. Sharp bounds on unit fraction partitions

thus PS(g,¢) holds as well. This shows that ¢’ lies in Ay. Evaluating f on Yy’ we obtain

@) = v ye = yioyk1 (we—€) < fxly),

which contradicts the choice of y. Now assume that i9 < n holds. Note that since ORD(%)
holds with equality for all i > ig, by Proposition 1.4.6 (ii) the inequality PS(g,?) is strict
for y. Thus for each i > iy we can find §; > 0, such that

Y1 Yio—1 - Wio +0i) - (¥i +0i) < g(Wix1 + -+ yn) — g(n —0)d;.

We denote by § the minimum of all the §;. Let

0 < €< min(ijJrl_ij’yiol_yio n—i0+15>7

2 2 jo—k+1

y/ = (ylv-- S Yk—1,Yk — € -5 Yjo — € Yjo+1s - - -5 Yig—15 Yig +E?' -5 Yn +E)7
where € = % e. Again, € and € are chosen such that 3’ satisfies equality SUM(g) and
the inequality ORD(7) for all i. We show that PS(g,4) holds for ¢'. This is clear for

1 < ig. For i > ig note that ¢ < § < ¢; holds. Thus we have
Vit <y Yigr s Wi +00) - (Wi +60) < (Wi o )

This shows that y’ belongs to Ay. Evaluating fx on y' we again obtain the inequality
fx(y) < fr(y), which contradicts the choice of y. Thus ig < k holds, which proves (i).

We prove (ii). Note that by definition of iy we have y;,—1 < yi,, so for ig < 2 there is
nothing to show. Assume iy > 3 holds. This also means we have n > k£ > 3. We show
that ORD(%) is strict for all ¢ < iy — 2. Assume on the contrary that y; = y;+1 holds for
some ¢ < ig — 2. Let jo < ¢ maximal with y;, = y; and j; > ¢ minimal with y; = y;,. We
have 1 < jg <1 < j1 <1ig— 1. For the entries of y we have:

Yjo—1 > Yjo = -+ = Yi = .. = Yji > Yj+1 > ... > Yio—1 > Yig-

By Proposition 1.4.6 The inequality PS(g,[) is strict for all jo < I < ji. There is
thus § > 0 such that the following inequality holds for all jy <1 < j1:

Y- Yjo—1 - Wjo +0)  Yjor1- U < 9Wis1 + -+ yn — 0)

With this value 6 we may choose an € > 0 as follows and define a point 3’ depending on
this e:

0 < € < min (yjol — yjo, Yin — yj11,5> )

2 2

/

v o= (W, Yjo+ € Ui — € Yn) .

We show that y' lies in A}. Clearly 3y satisfies SUM(g) and ORD(I) for all I. By the
choice of €, the inequality PS(g,1) holds for 3’ for I < j;. For [ > j; note that

2
Yie - YUy = Wio T Wi —€) = Yjohjn —€ < YjoUi-
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Chapter 1. Lattice simplices and fake weighted projective spaces

Thus in this case PS(g,[) holds for 3 as well. This shows that y’ belongs to Ay As
before, we have fi(y') < fx(y), which contradicts the choice of y. Thus ORD(i) is strict,
which proves (ii).

We prove (iii). First we assume there is ¢ < ig — 2 such that PS(g, ) is strict. Then
there is § > 0 such that the following inequality holds:

Y1 Yot (i +90) < gWir1 + -+ Yn — 0).

With this value 0 we may choose an € > 0 as follows and define a point 3’ depending on
this e:

0 < € < min<yil_yijyi_yi+175>’

2 2

y/ = (y17 YL Y T €Y — €Y, ayn)

With the same arguments as in (i) and (ii) we see that y' lies in A and again f(y') < fx(y)
holds, contradicting the choice of y. Thus PS(g,) holds with equality. Now assume
that PS(g,i9 — 1) is strict. For ¢t € R consider the points

ZN/(t) = (ylv e Yig—2, Yig—1 1 Yig — %7 <oy Yn — %)7

where £ = Note that §(0) = y holds. We define a function f: R — R by

t
n—ig+1"°
F#&) = fe(@®) = y1--Yio—2(Yio—1 + ) (yio — O H.
The derivative of f is given by

k—ip+1

ki
f,(t) = Y1 ‘yiof2(yiofl - t) ‘0 {<yio - m

yl) (ko1 2)7] .
Note that for ¢ close to zero, the factor before the square brackets is positive. The
behaviour of f close to t = 0 is thus governed by the term

k—ip+1

S = vy — ——  —
Yio n—1+1

Yig—1-

If § is negative, then f is monotone decreasing in a neighborhood of ¢ = 0. We can
thus find ¢ > 0 with §(t) € A} such that f(¢) < f(0) holds. On the other hand, if ¢ is
positive, then f is monotone decreasing in a neighborhood of ¢ = 0 and we can find ¢t < 0
with §(t) € A7 and f(t) < f(0). If § = 0, then f has a local maximum at ¢ = 0. There
is thus a neighborhood of ¢ = 0 with §(t) € A and we have f(t) < f(0) for all £ # 0
in that neighborhood. In all cases there is a point g(t) € Ay with fi(9(t)) < fu(y). A
contradiction to the choice of y, thus PS(g,io — 1) holds with equality for y. O

Proof of Proposition 1.4.8. Let y = (y1,...,yn) € Ay such that fj, attains its minimum
at y. Let ¢p minimal such that y;, = y, holds. By Lemma 1.4.9 (i) we have ig < k. We
show that y = y(g, n,ip) holds. By Lemma 1.4.9 (ii) the inequality PS(g, ) holds with
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1.4. Sharp bounds on unit fraction partitions

equality for all ¢ = 1...4i9p — 1. Proposition 1.4.6 (iii) then tells us that y; = 1/s4; holds.

Now using y;, = --- = y» and the fact that PS(g,i9p — 1) holds with equality, we obtain
g 1 1 .
= = 9Wio + - +yn) = g(n —io+ Dyi.
9,%0 Sg,1 Sg,io—1
This shows that y = y(g,n, i) holds, which completes the proof. O

Proposition 1.4.10. Let g > 1, n >3 and let k € {1,...,n}. Let y € Ay such that fj,
attains its minimum at y.

(i) Assume k =n. Then we have fu(y) = g/t2, and y = y(g,n,n) holds.

(ii)) Assume k =n—1. If (n,g) = (3,1), then we have fa(y) = 1/9 and y is the point
y(1,3,1). In all other cases we have

fo1(y) = 7

and the point y is one of the following:

y(2a371)7 y(1a472)7 y(ganan_l)‘

(iii) Assume k =n—2. Ifn =4 and g € {1,2}, then we have fo(y) = 1/(16¢?) and
y=19(g,4,1) holds. If (n,g) = (5,1), then we have f3(y) =1/128 and y = y(1,5,2)
holds. In all other cases we have

g
fn—2 (y) =
3t§7n_2

and either y = y(3,4,1) ory = y(g,n,n — 2).
For the proof of Proposition 1.4.10 we need the following Lemma.

Lemma 1.4.11. Let g > 1 and n > 3. Then the following hold:
(i) For all 1 <r <n we have

rietl L <t
Equality holds if and only if r = 1.
(ii) Assume (n,g) # (3,1). Then for all 1 <r <n —1 we have
(r4+ 1)t < 22 .

gn—r — g,n—

Equality holds if and only if r =1 or (g,r,n) equals (1,2,4) or (2,2,3).
(iii) Assume (n,g) & {(4,1),(4,2),(5,1)}. Then for all1 <r <n —2 we have
(7’ + 2)7}2;177“71 < 3t52],n—2'

Equality holds if and only if r =1 or (g,r,n) = (3,2,4).
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Chapter 1. Lattice simplices and fake weighted projective spaces

Proof. We prove the assertions (i)—(iii) by induction on r and n. Note that for r = 1 the
inequalities in (i)—(iii) even hold with equality for any n > 3. We may thus assume r > 2.
Moreover, we will use the following, which can be verified by direct computation:

(a) (r+1)/r < sgn holds for all values of g,n and r.

(b) If n >3, then (r +1)?/r < 54,n holds for all g and all 1 <r < n.

(¢) If n>4,0orn>3and g > 2, then (r+1)?/r < sy,_1 holds for all 1 <7 < n.

(d) If n>6,0orn >4 and g > 2, then (r +1)2/r < sy,2 holds for all 1 <7 < n.
We prove (i). The cases (r,n) = (2,3) and (r,n) = (3, 3) are verified by direct computation.
In these two cases, the inequality is strict. Assume the assertion is true for a fixed
pair (r,n). Then we have:

(r+1)7“+1t(7'+1)+1 — pryrtl (T+1) r+1 Tt
(n+1)—(r+1)+1 — gn—r+1 r g,n—r+1

g7
r+1\"

IN

2
< tgmsg,nsg,n—l T Sg,n—r—l—ltg,n—r—‘rl

2
- tg,ntg:"+1

2
< tg7n+l.

In the second step we used the induction hypothesis for the pair (r,n) and in the third
step we used (a) and (b). Thus the inequality (i) holds for the pair (r + 1,7+ 1) and it
is strict in this case.

We prove (ii). The cases (g,r,n) = (1,2,4) and (g,7,n) = (1,3,4) as well as the
cases (g,7m,n) = (g,2,3) for all ¢ > 2 are verified by direct computation. Here (ii) holds
with equality for (g,r,n) = (1,2,4) and for (g,r,n) = (2,2,3) and is strict otherwise.
Assume the assertion is true for a fixed pair (r,n). Then we have:

+1)+1 r+2\"
@+ 1+ G = g+ ()t

g (rt2)? <r+2>r_1t _
= Ton=l a1 \r+1 g
< 2t37n_13g,n—18g,n—2 o Sgn—rtgn—r
= ztgyn_ltg,n

< 2,

2

In the second step we used the induction hypothesis for the pair (r,n) and in the third
step we used (a) and (c). Thus the inequality (ii) holds for the pair (r + 1,n + 1) and it
is strict in this case.

We prove (iii). For n = 3 there is nothing to prove. The cases (g,7,n) = (g,2,4)
for ¢ > 3, as well as (g,7,n) = (2,r,5) and (g,7,n) = (1,7,6) for 2 < r < n — 2 are
verified by direct computation. Here (iii) holds with equality for (g,r,n) = (3,2,4) and
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1.4. Sharp bounds on unit fraction partitions

is strict otherwise. Assume the assertion is true for a fixed pair (r,n). We may assume
that g > 2 and n >4, or g =1 and n > 6. Then we have:

(( +1)+2)r+1t(7'+1)+1 _ ( +2)Ttr+1 ( +3) r+3 rt
" g.(n+)—(r+1)-1 = T gn—r—1\" gn—r-1

r+2
a2 (43)° (7’+3>’"_1t
U 42 \r 42 gn=r=l
< 3t7 28gm-25gm-3" " Sgn—r—1tgnr1
= 3], olgn-1
< 3t),

2
3tg,(n+1)72'

In the second step we used the induction hypothesis for the pair (r,n) and in the third
step we used (a) and (d), thus (iii) holds for the pair (r+ 1,n + 1) and it is strict in this
case. O

Proof of Proposition 1.4.10. We compare the values of the function f, on the points
y(g,n, k) and y(g,n,l) for 1 <1 < k. On y(g,n,l), the value of fy is given by

g
,n,l)) = .

We prove (i). Let 1 <1 <n and set r:=n — [+ 1. Then we have

fn(y(g7nvl)) _ fn(y(g7n7n_r+1)) t?]’n

faly(ginin)) —  falylgimom)) et

By Lemma 1.4.11 (i) this ratio is at least one for all 1 < r < mn — 1 and equality holds if
and only if » = 1, ie. if and only if [ = n. This proves (i).
We prove (ii). Let k=n —1. Let 1 <[ <mn —1 and set r :=n —[. Then we have

fn—l(y(g;n,l» _ fn—l(y(ganan_r)) 2t52],n—1

fn—l(y(ga n,n— 1)) B fn—l(y(gv n,n— 1)) (1" + 1)7“75;,21—7“ .

Assume (n,g) # (3,1). Then this ratio is at least one for all 1 < r < n — 1 by
Lemma 1.4.11 (ii). Moreover it is equal to one if and only if r =1 or (g,7,n) = (1,2,4)
or (g,m,n) = (2,2,3). This means that f,_; attains its minimum on y(g,n,[) if and only
if (g,1,n) = (1,2,4) or (g,1,n) = (2,1,3) or l =n — 1. In the case (n,g) = (3,1) we have

fZ(y(L 3, 1)) > f2<y(17 3, 2))

Thus in this case fo attains its minimum at y = y(1,3, 1) and we have fa(y) = 1/9.
We prove (iii). Let k =n—2. Let 1 <l <n—2andset r:=n—1[—1. Then we have

fn—Q(y(g7 n, l)) _ fn—z(y(g, nn—-r- 1)) St.‘QJ:n*Q

fn—Q(y(ga n,n — 2)) fn—?(y(gv n,n — 2)) B (7" + 2)Tt2j7_1177“71 .
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Chapter 1. Lattice simplices and fake weighted projective spaces

Assume (n,g) ¢ {(4,1),(4,2),(5,1)}. Then by Lemma 1.4.11 (iii) this ratio is at least
one for all 1 <r < mn —2 and it is equal to one if and only if r = 1 or (g,7,n) equals
(3,2,4), ie. if and only if l =n — 2 or (g,l,n) = (3,1,4) holds. For the three cases that
were excluded, plugging in the actual values, we obtain

f2(y(1a471)) < f2(y(1a4a 2))7
fQ(y(2a4al)) < fQ(y(2a4a 2))7
fS(y(1a5a2)) < fS(y(laE)al)) < fS(y(175a3))'

This completes the proof of Proposition 1.4.10. O

Proof of Theorem 1.4.2. Let A = (ay,...,ay) a unit fraction partition of g and as-
sume o < -+ < ap holds. Let y(A) := (1/a1,...,1/ay). This point belongs to Ay by
Lemma 1.4.5. For 1 < k <n we have

al...an

Fp(4) = < anap = fi N (y(A))

lem(av, ..., ap)"~

We prove (i). Using Proposition 1.4.10 (i) for the point y(A) we obtain

1 2,
B < Fom)y < g

Equality holds if and only if y(A) = y(g,n,n), ie. if and only if A is the unit fraction
partition (sg1,...,Sgn—1,tgn). We prove (ii). We use Proposition 1.4.10 (ii) for the
point y(A). If (n,g) = (3,1) holds, then we have

and equality holds if and only if y(A) = y(1,3,1), ie. if and only if A = (3,3,3).
If (n,g) # (3,1), then we have

1 2t37n_1

<
T faw(4) T g
Checking the points where f,_1 attains its minimium, we see that equality holds if and
only if A= (6,6,6) or A= (2,6,6,6) or A= (sg.1,...,5gn-2,2tgn—1,2tgn-1). We prove
(iii). We use Proposition 1.4.10 (iii) for the point y(A) and distinguish three cases:

(a) If n =4 and g € {1,2}, then we have

Fn.-1(4)

1 2
FQ(A) < m < 16g

and equality holds if and only if y(A) = y(g,4,1), ie. A = (4¢g,49,49,49).
(b) If (n,g9) = (5,1), then we have

< 128
and equality holds if and only if y(A) = y(1,5,2), ie. A=(2,8,8,8,8).
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(¢) If (n,9) & {(4,1), (4,2), (5,1)}, then

1 3t3,n_2

= fr—2(y(4)) = g

Equality holds if and only if y(A) = y(3,4,1) or y(A) = y(g,n,n — 2), ie. if and
only if A is one of

F, 2(A)

(12,12,12,12),  (Sg1+- -+ Sgm3> 3tgn—2, 3tgn—2, 3tgn_2)-

1.5 Proofs of Theorems 1.1.1 — 1.1.4

Proof of Theorem 1.1.1. Let Z a d-dimensional fake weighted projective space of Goren-
stein index g. Let A C Ng a d-dimensional Fano simplex with Z(A) = Z. Then A
has Gorenstein index g. Let A := A(A) = (ao, ..., aq) the unit fraction partition of g
associated to A. We may assume that A is ordered non-decreasingly. By Lemma 1.2.6
and Proposition 1.3.3 we have

Qg Qg

(—z)! = Vol(A*) < A(A)Vol(A*) = gldlcm L
For d = 1 there is only one fake weighted projective space, namely P!, which has
anticanonical degree —Kp1 = 2. Let d > 2. In case g = 1 and d = 2 the right hand side
of the inequality is bounded from above by 9 and P? is the only Gorenstein fake weighted
projective plane whose degree attains that value, see [65, Ex. 4.7]. If (d, g) # (2, 1), then
Theorem 1.4.2 (ii) provides the upper bound

1 ag - oy 2t37d

~ gllem(ag, ..., q) T gt

Equality in the first case holds if and only if Z is a weighted projective space, see
Corollary 1.2.14. By Theorem 1.4.2 (ii) equality in the second case holds if and only if
one of the following holds:

(i) (d,9) =(2,2) and A = (6,6,6).

(ii) (d,g) =(3,1) and A = (2,6,6,6).

(111) A= (Sg?l, e 7sg,d—17 2tg,d7 2tg7d)-
Note that the unit fraction partition in (i) is not reduced. In particular, there is no
weighted projective plane Z(A) of Gorenstein index 2 with A(A) = (6,6,6). The unit
fraction partitions in (ii) and (iii) are reduced and well-formed. By Corollary 1.2.13 and
Proposition 1.3.10 the unit fraction partition A = (2,6,6,6) corresponds to the three-
dimensional Gorenstein weighted projective space X = P(3,1,1,1) and the unit fraction
partition A = (sg.1,...,5gd—1,2tg.4,2t5q) corresponds to the d-dimensional weighted
projective space Z = P(Qa,q)- O
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The following Lemmas will be used in the proof of Theorem 1.1.2.

Lemma 1.5.1. For any d-dimensional Fano simplex A of Gorenstein index g the
product g9~ \(A*) is an integer.

Proof. Let A a d-dimensional Fano simplex of Gorenstein index g. For the weight
system of its dual we write Qa- = (g5, ..., ¢q;). We show that gd_qu is an integer for
all i = 0,...,d. Denote by vy,...,vq the vertices of A and by wuy,...,us the vertices
of A*, ordered in such a way that (u;,v;) = —1 holds whenever i # j. We have

q; = |det(ug,...,Uj...,uq)l
Let i € {0,...,d} and extend (v;) to a basis (v; = by, ba,...,bg) of Z%. Denote by

C = (c1,...,c¢q) the dual basis. For j # i we write u; as a linear combination of the basis
C with coefficients p;1,..., 1 € %Z. We have

d
Hi1 = ZNjk(ckab1> = (uj,v) = —L
k=1
Using this presentation of u; with respect to the basis C' = (c1,...,cq), we obtain for ¢;:
-1 ... -1
G = [det(uo,. @y oug)| = [det | 10 P 2 gdKl
:U'Od M;ld

for some K € Zsg. Thus g9 'Q(A*) is an integral weight system, which shows
that g~ ' A\(A*) is an integer. O

For a simplex A € Q% we write A = A(P) with the d x (d + 1) matrix P having the
vertices of A as its columns.

Lemma 1.5.2. Let A a Fano simplex of dimension d > 2 and Gorenstein index g. Let
A(A) = (a, . .., aq) the associated unit fraction partition. Write A = A(P), where

1 a2 -+ alqg —b

0 ax -+ agqg —b
P = .

o --- 0 Qadd —bd

1s in Hermite normal form. Then the following hold:
(i) agk divides a1 for allk =2,...,d.
(i) age divides .
(iii) If ged(ay, ag—1) = 1 holds for all i =0,...,k — 2, then we have ag, = 1.
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Proof. For item (i) we refer to the proof of Proposition 1.6.2. We prove (ii). Denote the
columns of P by v, ...,vq. For the first and the last Gorenstein form of A we have

1
7u03a"-7u0d> € —Z,
g

) a2 —1 aag
w = (21, =

g a2 az29g

ajg — 1 1
Ug = (—1, 12 ,Udg,...,’Lde> e —Z.
a22 g

Taking their difference, we see that aj2cp/aze must be an integer. Since aj2 and agy are
coprime, this means that age divides cg. We prove (iii). Assume that ged(ag, ..., ar) =1
holds. We show by induction on [ that a; = 1 holds for all [ < k. For [ = 1 there is
nothing to prove. Let [ = 2. By item (i), age divides a1 and by item (ii), agy divides
. As they are coprime, we obtain ass = 1. Now assume [ > 2 and a; = 1 for all ¢ < [.
Then the ith Gorenstein form for i < I and the last Gorenstein form of A are given by

(a7 ] 1
U; = (—1,..., u —1,...,—1,uil,...,uid> € -7,
g g
1
ug = (=1,...,—Lug,...,udqq) € ;Z,

where the entry a;—1/g — 1 of u; is at the ith position. Evaluating their difference on the
vector vi_1 = (ay,...,ay,0,...,0) shows that a; divides «;_1a;. Since ay divides ag_1
by item (i), it is coprime to «;_1. Thus ay divides a;. This is only possible if a; = 0.
Now, the column v;_; is a primitive point in Z%. This yields ay = 1. ]

Proposition 1.5.3. Let A a Fano triangle of Gorenstein index g. If QrAGd =(1,1,1)
holds then g is odd.

Proof. Let A a Fano triangle with even Gorenstein index g and assume that Q‘Z’d =(1,1,1)
holds. The unit fraction partition of g associated with A is

A(A) = (O[O;Oll;OZZ) = (39,39,39)

Let P € Mat(2,3;Z) such that A(P) = A holds. We may write

|1 a —(a+1)
b= [0 b —b

for some non-negative a,b € Z. Note that for the columns of P to all be primitive, b
must be odd. The Gorenstein forms ug, u1, us of A are given by

2a +1 a+2 a—1
R O I e M Gy

Thus the local Gorenstein indices gg, g1, g2 of A all divide b. In particular, the Gorenstein
index g = lem(go, g1, g2) divides b. Since g is even, this contradicts the fact that b is odd.
Thus Q%4 cannot be equal to (1,1,1). O
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Proof of Theorem 1.1.2. Let A a d-dimensional IP lattice simplex of Gorenstein in-
dex g and associated unit fraction partition A(A) = («g,...,aq). We may assume
that g < ... < ag holds. By Lemma 1.5.1, the product g4~ '\(A*) is an integer.
In particular g4~ 'A\(A*) > 1 holds. With Proposition 1.3.3 (ii) we obtain the following
volume bound for A:

1 ap--ayg

Vol(A) < g IA(A%)Vol(A) = g lom(an o) (1.5.3.1)

Equality holds if and only if A\(A*) = 1/¢g%~!, which by Proposition 1.3.3 (iv) is equivalent

to
ao...ad

AA) = .
(&) lem(a, . .., aq)?
We use Theorem 1.4.2 (ii) to bound the right hand side of Equation 1.5.3.1 from above.
In case (d,g) = (2,1) we have

1 O{O ... ad ao ... ad

Vol(A) < - = < 9.
ol(A) = glem(ag, ..., aq) lem(ag, ..., aq) —

If equality holds, then we have A(A) = (3,3,3), ie. @ = (1,1,1). Thus A is isomorphic
to HA(1,1,1) for some 2 x 2 integer matrix H with det(H) = A(A) = 3. We may assume
that H is in Hermite normal form. Thus we have A = A(P) with

|1 a —(a+1)
b= [O 3 -3

for a € {1,2}. The two choices of a lead to isomorphic simplices. We may choose a = 1,

which yields
11 =2
P= [ 0 3 -3 ] '

Now assume (d, g) # (2,1) holds. Then by Theorem 1.4.2 (ii) we have

2
glem(ag,...,aq) — g2

Vol(A) <

If equality holds, then we have A(A) = A, where A is one of the following:
A = (6,6,6), A = (2,6,6,6), A = (8g.1,---+5gd—1,2tg.d,2tg.q)-

Note that by Proposition 1.5.3 there is no Fano simplex A with associated unit fraction
partition A(A) = (6,6,6). The other two cases give the following reduced weight systems

2t 2t
Q = (3717171)7 Q = ( g,dw"a 97d7171>

Sg,1 Sg,d—1
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and A is isomorphic to HA(Q), where @ is one of the reduced weight systems above
and H is a square integer matrix in Hermite normal form with det(H) = A(A). We first
consider the case

A(A) = (2,6,6,6), g(A) = 1, QR4 =(3,1,1,1), MA) = 12.

We consider the diagonal entries (ai1,a99,as3). Since A has primitive vertices, we
have a1; = 1. Moreover, Propositions 1.6.1 and 1.6.2 tell us that ase and ags are both
divisors of 6. As we have

a2 - a3z = det(H) = )\(A) = 12,

this leaves for the diagonal of H only the two possibilities (ai1,a2,as3) = (1,2,6)
and (ai1,a22,as3) = (1,6,2). The second case can be transformed into the first by
switching the second and third column of H and bringing it in Hermite normal form
again. Thus there are 0 < a,b < 5 such that A = A(P), where

1 1 a —(4+a)
P=1021b —(2+b)
0 0 6 —6

The Gorenstein forms of A are then given by

—a—1 —3h—1
ug = (17_17l)z>7 uy = (_1)37(136())7

5 1
uy = (—1,0,2“), us = (—1,0,a6>.

Since A is of Gorenstein index 1, all its Gorenstein forms are integral. The last entry of us
thus dictates a = 1. Plugging this into P, we obtain u; = (—1,3,b/2). We obtain b = 2
and P is the first matrix from Theorem 1.1.2 (ii). Now consider the case

A(A) - (Sg,l) ey Sg,d—lv 2tg,da 2tg,d)a g(A) = g,
2t 2t t
Qd = < od ., g’d,1,1>, AA) = 24,
8971 Sg’d_l g
We have A = H - A(Q%4) = A(P), where the matrices H and P are given by
1 a2 - aug 1 a2 -+ alg —h
0 az -+ az 0 az -+ ad —ba
H = ; = .
0 -+ 0 ayq 0 -+ 0 agg —by
The entries by, ..., by in the last column of P can be expressed via the a;; by solving the

linear system P - Qfd = 0. The determinant of H satisfies

det(H) = MA) = 2% = 551+ 844-1.
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We first consider the case d = 2. Then asy = s41 = g + 1 holds. The last Gorenstein

and we have 0 < a2 < g + 1. The entries of us are in %Z. Thus a2 — 1 is a multiple
of g+ 1. This is only possible for a;9 = 1, which yields

(5g,1—9) tg2 _ (8g,1+9) tg2
P _ 1 1 —(29+1) _ 1 793%1 e 75’5971 r ‘
0 g+1 —(g+1) 0 tg.2 _te2
g g
Now assume d > 2. Note that the entries «g,...,aq_o of the ufp A(A) are pairwise
coprime. By Lemma 1.5.2 (iii) we have ag, = 1 for all k = 2,...,d — 1. Moreover we
obtain agq = det(H) = sg1---5g4—1. We now show that arq = (Sgs#;g)t"?’d holds for
9,
all 1 <k <d—1. Weset m:=ajg+ -+ ag-1)qg — 1. The Gorenstein forms of A are
given by
1
wp_y = (—1,...,‘99”“—1,...,—1,m—w> e -z,
g Qdd g add g
1
ug = (—1,...,—1,m) e -7,
Qdd g

where k = 1,...,d and the entry sg,k/g — 1 of up_q is at the kth position. Note that agq
is coprime to g. The last entry of ug thus dictates that a4y divides m. Moreover, by the
last entry of uj_1, the integer arq is a multiple of sg1 -84 % - 544—1, Where 3, ;, means,
that s is omitted in the product. There is thus Ay, € Z with

ardg = Apsg1---5gk " Sg.d—1-
Using these Ay, we can write the integer m as

alg+ -+ ag_1g—1 A Ay
m = 1d (d—1)d S dl_i'
Add Sg,1 Sgd-1  tgd

We now treat the Aq,...,Aqy_1 as indeterminates. Note that they only appear in the
last entry of the Gorenstein forms wug, ..., uq, whereas they appear only in the first d — 1
entries of the last column v, of P. Evaluating uy,...,uq_2 on vg thus gives a system
of d — 1 linear equations in the d — 1 variables puq, ..., uq—1, which are independent since
the Gorenstein forms uyg,...,uq_o are linearly independent. This system thus has at
most one solution. A direct computation shows that the choice Ay = s, — g is a solution
for that system. This shows that P is the second matrix in Theorem 1.1.2 (ii), which
completes the proof of the Theorem. ]

Proof of Theorem 1.1.3. Let A a d-dimensional Fano simplex of Gorenstein index g and
associated unit fraction partition A(A) = (ap,...,aq). We may assume that the entries
of A(A) satisfy ap < -+ < ay. By Proposition 1.3.3 (iv) and Lemma 1.5.1 we have

AA) < gmINA)A(AY) = lcmg{(’o":f"dadp. (1.5.3.2)
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We prove (i). Let d = 3 and g € {1,2}. By Theorem 1.4.2 (iii) the right hand side of
Equation 1.5.3.2 is bounded by 16¢g2. Assume A(A) = 16g2 holds. Then we have

A(A) = (49,49,49,49), red = (1,1,1,1)

and there is a 3 x 3 integer matrix H in Hermite normal form with determinant equal
to A(A) = 16g?, such that A = H - A(1,1,1,1) holds. Thus we can write A = A(P) with

1 a2 a3 —(ag+aiz+1)
P = 0 a9 ao3 —(ag2 + ag3)
0 0 ass —ass

in Hermite normal form. By Lemma 1.5.2 (i), a2 and ags each divide 4g. Moreover
we have ags - ags = det(H) = 16¢. Thus agy = az3 = 4¢g holds. The difference of the
Gorenstein forms u; and ug of A is given by

€ —Z.

1
up—ug = |0,—,— P

as3 + 49) 1
g 442

Thus 4¢ divides as3. This is only possible for asg = 0. The last Gorenstein form of A

then reads
( a2 —1 a3 — 1)
uz = _17 ’ ’
4g 4g

which yields a19 = 4k + 1 and a13 = 4l + 1 for some k,l € Z. Taking the restrictions
on a2 and a3 into account we obtain 0 < k,l < g—1. In case g = 1 we have £k =0
and [ = 0. In case g = 2 the different choices for k£ and [ lead to isomorphic simplices.
We may thus assume k = [ = 0 and P is of the form stated in Theorem 1.1.3 (i).

We prove (ii). Let (d,g) = (4,1). By Equation 1.5.3.2 and Theorem 1.4.2 (iii) we
have A\(A) < 128. If equality holds, then we have

A(A) = (2,8,8,8,8), QRd = (4,1,1,1,1), MA) = 128.

There is a 4 x 4 integer matrix H in Hermite normal form with determinant equal
to AM(A) = 128, such that A = H - A(4,1,1,1,1) holds. Thus A = A(P) holds with

1 a2 a1z aig —(4+ a2 + a3+ aiq)
p_ 0 aze a3 az —(ag2 + a3 + ag4)
0 0 azz as —(as3 + asa)
0 0 O aq4 — Q44

in Hermite normal form. By Lemma 1.5.2 we have ags | 2 and ass, as4 | 8. Moreover the
product of the diagonal entries is the determinant of H. The only possibility for the
diagonal is thus (ag2, ass,as4) = (2,8,8). Calculating the Gorenstein forms of A and
using the fact that A is of Gorenstein index 1, we obtain

a2 = a1z = a4 = 1, a3 = a = 2, agzs = 8.
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This shows that P is the matrix from Theorem 1.1.3 (ii).
We prove (iii). Assume that (d, g) is neither of (3, 1), (3,2), (4,1). By Equation 1.5.3.2
and Theorem 1.4.2 (iii) we have
2
A) < ot
B g

If equality holds, then we have A(A) = A, where A is one of the following unit fraction
partitions:

A = (12,12,12,12), A = (Sg1- .- Sgd—2:3tgdo1,3tgd—1:3tgd_1)-
In the first case we are in the situation (d, g) = (3,3) and we have
AA) = (12,12,12,12), Q¥4 = (1,1,1,1),  A(A) = 144.
Again, we have A = A(P) with

1 aip2 a3 —(1 + a9 + a13)
P = 0 a2 ass —(az2 + ag3)
0 0 ass —as3

in Hermite normal form. By Lemma 1.5.2 both ase and ass are divisors of 12. Moreover
we have agg - ags = A(A) = 144. Thus age = aszz = 12 holds. Calculating the Gorenstein
forms of A and using the fact that A is of Gorenstein index 3, we obtain

azs = 0, alo = 4k +1, a3 = 4l+1,

where 0 < k,1 < 2. The cases k = 2 and [ = 2, as well as (k,l) = (0,0) lead to a
non-primitive column of P. Thus these cases are excluded. All other choices for k,I lead
to isomorphic matrices. We may thus choose (k,1) = (0,1) and P is the first matrix from
Theorem 1.1.3 (iii). We now consider the second possible unit fraction partition for A, ie.
we have (d, g) # (3,3) and

A(A) = (5971, ey Sg,d—Qy 3tg,d—17 3tg,d—17 3tg7d_1),

3tya- 3ty 3t2 4
Qud = ( adl .., el 1,1,1,1), AA) = Zodl
Sg,1 Sg,1 g

As before, we can write A =2 A(P), where

1 a2 - aqg —br

0 az -+ ay —b
p =

o --- 0 Qadd —bd
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is in Hermite normal form. The entries b, of the last column of P can be computed from
the entries ay, ; by solving the linear system P - QrAed = 0. Moreover we have

M,
a9+ Qgd = A(A) = ’T = 3tg,d—1 “8g.1°"* Sg,d—2-

Note that the entries ap, . .., g3 of A(A) are pairwise coprime. Thus for the diagonal en-

tries of P Lemma 1.5.2 (iii) yields ags = - -+ = a(4_2)(4—2) = 1. Moreover both a(q_1)41)

and aqq are divisors of 3t, 41 by Lemma 1.5.2 (i). Comparing this to the product
of the diagonal entries we obtain that both ag_1)4-1) and a4q are multiples of the
product sg1---544-2 and that

A(d—1)(d—1) * @dd = Sg1°"*Sgd—2" 39" Sg1° " Sgd—2

holds. We can thus write a(g_1)@g—1) = Asg1 - Sg,4—2 for some divisor A of 3g. We show
that A =1 holds. Set m := ay4_1) + - + a(g—2)(4—1) — 1. The Gorenstein forms uq as
well as ug for k=0,...,d — 3 of A are given by

_ 1
wp = (-1, % _q g M MEGDED ) e 2
g A(d—1)(d—1) 9a(d—1)(d—-1) g
1
Uqg = (—1,...,—1,m,udd> € 7.
A(d—1)(d—1) g

Here the entry ai/g — 1 is at the position k£ + 1 of uy. Let 1 < k < d — 2. Comparing
the second to last entries of up_1 and ug and using the fact that they are in %Z, we must
have that a(g_1y(g—1) divides ag_1ayg—1) = Sgkak(d—1)- Thus we can write

ap(d—1) = Apsg1---Sgk - Sgd—2

for some Ay € Z>1. Here 5,4 means that s is omitted. Note that since Sg.kQk(d—1) 1S &
multiple of a(q_1)(4—1), the number Ay is a multiple of A. So in order for the column vg_o
to be primitive, A must be equal to 1. We thus have

A(d-1)(d—1) = Sg,1° " Sgd—2; agq = 3lgd-1-

It remains show that Ay = (sqx — ¢) holds for all £ = 1,...,d — 2. The situation is
very similar to the last part of the proof of Theorem 1.1.2. However, as we do not have
information about the entries a4, ..., a(3-1)q of P, we need to employ a different strategy.
Note that a(g_1)g—1) is coprime to g. Considering again the last Gorenstein form uq4
of A, its entry

m ayg-1)+ -+ a@-2)@-1) —1
Ud(d—1) = =
A(d—1)(d—1) A(d—1)(d—1)
must be an integer. In particular, s, ;. divides m for all k =1,...,d — 2. Since a;4_y) is

a multiple of s, ;, for [ # k, this means that we have
Sgk | AkSg1---Sgk- - Sga—2— 1.
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As sg; =tg;+ 1 and sy | ty; holds for [ > k, this implies that we have

Sgk | Sg1 - Sgk—1Ak — 1.

Thus there is B € Z with Bsg, = 841---5¢k—1Ar — 1. Since P is in Hermite normal
form, Ay is in the range 0 < Ay, < s4. Thus B is at least one, but less than sg1--- 54 1.
Moreover, we obtain the identity

Sg,1° e Sg,k:—lAk: = Bngc +1 = B(thk + 1) + 1,

and since ¢,y is a multiple of s41,..., 84,1, this equation is only fulfilled if 551 - - - 54 x—1
divides B+1. Comparing this to the possible values of B, we obtain B = 541 -+ 54 x—1—1.
Plugging this in for B and solving for Ay, we obtain Ay = s, — g. This shows that P is
the second matrix from Theorem 1.1.3. Finally assume g is odd. We plug in the values
for ayg, ..., a(g—1)q provided in Theorem 1.1.3 (iii) and check that the resulting matrix
has primitive columns. This shows that this is a valid choice for ay4, ..., ag—1)q, which
completes the proof.

Proof of Theorem 1.1.4. Let A a d-dimensional IP simplex of Gorenstein index g and
associated unit fraction partition A(A) = (ap, ..., aq). We may assume that A is ordered,
ie. that ap < --- < ag holds. By Proposition 1.3.3 (i) we have

ao PR ad
Vol(A)Vol(A*) = ———

(A)Vol(A™) s
By Theorem 1.4.2 (i) the numerator of the right hand side is bounded by t;d +1/9- Thus
we obtain

* t2d 1
Vol(A)Vol(A*) < ggvd;.

If equality holds, then by Theorem 1.4.2 (i) we have A(A) = (sq,1,...,5g.d,tg,d+1), Which
is equivalent to

Q5! = QA(A)) = (tg’“l,...,tgvd*l,l).

Sg,1 Sg,d
On the other hand, assume that Q%Y is of this form. Let A’ = A(Q%d). There

is H € GL(d + 1,Q) such that A = H - A’ holds. For the Mahler volume of A we thus
obtain

2

*Y / #\—1/ A/\¥Y / 1\ * _tg,d+1
Vol(A)Vol(A*) = Vol(HA") Vol((H*)""(A")*) = Vol(A")Vol((A)*) = P
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1.6 A classification procedure for IP lattice simplices

Throughout this section we develop a procedure for the classification of all IP lattice
simplices of given dimension and Gorenstein index, see Algorithm 1.6.7. It is easily
adapted to only classify Fano simplices, see Remark 1.6.8.

Proposition 1.6.1. Fiz an integer d > 2 and d + 2 positive integers g, qgo,-- -, 94

with g = lem(go,...,g9q4). Let A= (ag,...,aq) € Z?{l a unit fraction partition of g, ie.
1 1 1
o= e
g Qg Qq

Denote by w = (wo, ..., wq) = Q(A) the weight system associated with A. Consider the
d x (d+ 1) integer matrices of the form

a1 aiz -+ ayg —bi
0 ap -+ axy —bo

P = [’U()...vd] = : ] ) . .
0 oo 00 agg —by

such that for all k = 1,...,d the entries of P satisfy
(i) agk € Z>1, agk | o1,
(ii) 0 < aj < agg for all1 <i <k,
(ili) bpwq = agkwr—1 + - + ApqW4—1.
Let A := A(P) the convex hull of the columns of P. Then A is a d-dimensional IP
lattice simplexr whose associated weight system satisfies Qzed = (wo,...,wq). The k-th
Gorenstein form ug, = (ug1,...,urq) of A is explicitly given by

j—1
wW|—Wg 1 QUKL p -
w2 WU gy,

Uk = @i Wk i1 ajj
/ —1-3 ) Gk
)

ajj

(1.6.1.1)

otherwise.

If each of grui is a primitive vector in Z¢, then A is of Gorenstein index g with local
Gorenstein indices gy, where k =0,...,d.

Proof. As P is of rank d, the polytope A is full-dimensional. Its vertices are precisely
the columns vy, ..., vq. It is thus a lattice simplex. By condition (iii) we have P -w = 0.
With By := wg/|w| we can write

0 = Bovo + -+ Bava,

which is a convex combination of vg, ..., vy with non-vanishing coefficients. Thus the
origin is contained in the interior of A, making it an IP lattice simplex. By Remark
1.2.10 (iii) we have Qfd = w. Let up = (ug1,...,upq) the k-th Gorenstein form of A.
Let 1 < j <d. If j # k+1, then (u,v;) = —1 holds and for j = k + 1 we have
(uk,vj) = |w|/wy — 1. Solving these equations for uy; produces the identities in Equation
1.6.1.1. The last assertion is just the definition of the Gorenstein index and the local
Gorenstein indices of A. O
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Proposition 1.6.2. Let A a d-dimensional IP lattice simplex of Gorenstein index g.
Then A = A(P) holds with a matriz P as provided by Proposition 1.6.1.

Proof. Write w := Q%4 = (wo, ..., wy) and let A = A(A) = (ay, ..., aq) the unit fraction
partition of g associated with A. By Proposition 1.3.10 the reduced weight systems w
and Q(A(A)) coincide. Let P the d x (d + 1) integer matrix whose columns are the
vertices of A. By bringing P in Hermite normal form, we may assume

ail a2z - aig —b
0 agp -+ ayq —b
P:[Uo...vd] = . ) . )
0 cee 0 Qadd —bd
where ay, € Z>1 holds for all k = 1,...,d as well as 0 < a;; < ay for all 1 <7 < k.

Solving P - w = 0 for the entries by, we obtain the identity
brwia = aprwg—1 + -+ ApdWd—1

It thus remains to show that for all £ the diagonal entry ag divides 1. Consider the
following sequence of rational numbers
1 _ I taya - tai0

qQ = ——, q; =
ail a]]

Let k > 1 and let uj, the k-th Gorenstein form of A. For each 1 < j < k we have (uy,v;) =
—1. Solving this for uy; we get ug; = ¢j. In particular g gy is an integer. Evaluating
Ug_1 on vy, we obtain

jw|

a1kqr + -+ QDG F GREU—1)k = (Uk—1,Vk) = s L.

With the definition of ¢, we can rewrite this equation as

B (0

ark(U—1)k — qx) =

Wr—1

Note that the g-fold of both w(,_1), and g is an integer. Multiplying both sides by g wg—1
thus shows that agrwi_1 is a divisor of glw| = ag_jwg_1. Clearing wi_1 on both sides,
we see that agy divides ay_1. O

Propositions 1.6.1 and 1.6.2 provide us with a procedure to enumerate up to isomorphy
all IP lattice simplices A with a given constellation of local Gorenstein indices (go, - - - , 94)
and given reduced weight system w. The list produced may contain redundancies, ie.
matrices P and P’ that give isomorphic simplices A(P) and A(P’). In practice, we want
the list to be redundancy free without having to check each pair of matrices for isomorphy.
The solution to this problem is to define a normal form NF(P) for these matrices P,
which has the property that two matrices P and P’ give isomorphic simplices if and only
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if their normal forms coincide. The normal form we present in Definition 1.6.3 is similar
to the PALP normal form for lattice polytopes described in [61], see also [38]. To fix
some notation, if B is a m X n integer matrix with columns by,...,b, and o € S, is a
permutation of {1,...,n}, then we denote by B, the matrix with columns b, (1), ..., by(n)-
Moreover, by HNF(B) we denote the hermite normal form of B.

Definition 1.6.3. Let P a d x (d + 1) integer matrix whose columns generate Q¢ as a
convex cone. Let w = (wo, ..., wy) the reduced weight system and (go, ..., gq4) the local
Gorenstein indices of the IP lattice simplex A(P). We denote by Sp the subset of Sy
consisting of all permutations o € Syy1 with the following properties:
(i) If o(i) < o(j) holds, then wy(;) > w
(ii) If O'(Z) < O’(]) and wa(i) = wo(j)
We define the normal form of P as

()"
holds, then g, ;) > go(j)-

NF(P) := min{HNF(F,); o € Sp},

where the minimum is taken lexicographically, ie. we write the entries of the ma-
trix HNF(F,) = (hij)i; as a list of integers (hi1, ..., k14, ha1, ..., hg11)a) and take the
lexicographic minimum among those lists.

Proposition 1.6.4. For d x (d + 1) integer matrices P and P’, whose columns generate
Q? as a convex cone, we have A(P) = A(P') if and only if their normal forms NF(P)
and NF(P') coincide.

Proof. Assume A(P) = A(P’) holds. Then there is a permutation o € Sg1 and a d x d
unimodular matrix S such that S- P, = P’ holds. A quick comparison shows Sp = 0 Spr.
Thus the sets of hermite normal forms, among which the lexicographic minimum is chosen,
coincide. We obtain NF(P) = NF(P’). On the other hand, if NF(P) = NF(P’) holds,
then there are 0,0’ € Sg1 and unimodular d x d matrices S and S’ with S- P, = 5" P.,.
Thus A(P) and A(P’) are isomorphic. O

We translate Proposition 1.6.1 into a classification procedure realized in Algo-
rithm 1.6.5. As input it takes a unit fraction partition A = (ag,...,aq) of g and
a tuple (go, ..., gq) of positive integers with g = lem(go, ..., g4). It then produces a list
of matrices P corresponding to IP lattice simplices A(P) with associated unit fraction
partition A and local Gorenstein indices (go, ..., gq). This list is complete, ie. every IP
lattice simplex A with associated unit fraction partition A and local Gorenstein indices
(90, - - -, 9q) is isomorphic to some A(P) with P from that list, and the list is redundancy
free, ie. two different matrices P and P’ from the list give non-isomorphic simplices A(P)
and A(P').

Algorithm 1.6.5. ClassifySimp( A4, [go,---,94] )
Input: — A unit fraction partition A = [ag, ..., a4 € ZZT of g,
— A list of positive integers [go, ..., g4] € Z’;‘{l with g = lem(go, ..., 94)
1 L[]
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2: w4 Q(A)
3: divy < {Divisors of oy} for k=0,...,d -1
4: for all (an,alg, 22, .. .,QA1d, - - -, add) with app € divi_1 and 0 < a4 < apr do
5: by (akkwk_lJr---qLakdwd_l)/wd fork=1,...,d
ain a2z - alg —h

0 azx -+ ayq —bo
6: P+

0 -+ 0 agq —bg
7 ug < k-th linear form as in Equation 1.6.1.1 for £k =0,...,d
8: if b, € Z and gjuy, is a primitive point in Z? and NF(P) ¢ L then
9: add NF(P) to L
10: end if
11: end for

12: return L

With Algorithm 1.6.5 we can classify the d-dimensional IP lattice simplices with a
fixed constellation of local Gorenstein indices and fixed unit fraction partition. To obtain
the classification of all d-dimensional IP lattice simplices of Gorenstein index g, we thus
need a list of all length d + 1 unit fraction partitions of g. This is done by the following
Algorithm, which takes as input a reduced positive rational number p/q and a natural
number n > 1 and produces a list of all ordered unit fraction partitions aq < --- < «, of
p/q of length n. For two unit fraction partitions A and A’ we write A ~ A’, if they only
differ by order.

Algorithm 1.6.6. UFP( p/q, n )
Input: — A reduced positive rational p/q € Q<¢
— A positive integer n € Z>1

1: if n=1and p=1 then

2: return [(p/q)]

3: end if

4: L + [ ]

5. for k= [q/p],...,|ng/p] do

6: Ly < UFP(p/q—1/k,n—1)

7 for all (1/ag,...,1/ay) € Lo do

8: if (1/k,1/a1,...,1/a,) # A for all A’ € L then
9: sort (1/k,1/aq,...,1/a,) decreasingly and add it to L
10: end if

11: end for

12: end for

13: return L

The following Algorithm takes as input integers d > 2 and g > 1 and performs the
classification of all d-dimensional IP lattice simplices of Gorenstein index g. As in the
case of Algorithm 1.6.5, the output list of matrices P is complete and redundancy free.
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Algorithm 1.6.7. ClassifyAllSimp( d, g )
Input: — An integer d > 2
— An integer g > 1

1: L+ [ ]

2: for all A € UFP(1/g,d+ 1) do

3: Lo + [ ]

4: for all (go,...,gq) with g | g such that g = lem(go, ..., g4) do
5: for all P e ClassifySimp(A4, (go, ..., 94)) do
6: if P ¢ Ly then

7: add P to Lo

8: end if

9: end for

10: end for

11: Append Ls to L

12: end for

13: return L

Remark 1.6.8. To classify only the Fano ones among the IP lattice simplices of given
dimension d and Gorenstein index g, we perform the following two modifications:
(i) In Algorithm 1.6.5 line 6 we consider those matrices P whose columns are all
primitive vectors in Z<.
(ii) In Algorithm 1.6.7 line 2 we only loop over well-formed unit fraction partitions of
g, see Remark 1.2.10 (ii) and Proposition 1.3.10.

1.7 Classification results

We discuss our classification results for Fano simplices; the complete classification data,
as well as the Julia code [22] to produce these results can be found at [13]. We start in
dimension two.

Theorem 1.7.1. See Theorem 1.1.5. Up to isomorphy there are 2,992,229 Fano triangles
of Gorenstein index g < 1000.

The following table contains for each g < 1000 the number N(g) of Fano triangles
of Gorenstein index g. The sequence (N(g))s>1 is OEIS sequence A145582, available at
(68].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5 7 18 13 33 26 45 27 51 51 67 53 69 74 133 48 89 81 102 110 178 105 124 109
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
161 119 164 135 142 187 140 105 274 159 383 169 145 166 329 221 177 266 180 230 404 189 220 213
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
315 264 384 233 225 260 573 298 420 241 276 393 216 252 593 202 607 394 247 321 540 560 310 353
73 74 75 76 77 78 79 80 81 82 83 84 8 8 87 88 89 90 91 92 93 94 95 96
283 701 336 783 458 316 439 464 318 341 557 764 307 638 464 363 612 816 389 639 368 914 432
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
341 551 893 549 352 583 385 539 1377 383 409 536 377 840 756 580 377 642 1058 512 1010 462 1191 807
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
702 402 811 478 888 876 416 406 869 946 480 868 1202 483 1321 680 450 772 505 1172 931 522 1395 707
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

1204 482 1319 540 518 997 499 745 1261 1204 1308 965 493 543 1088 919

2o |z2e|2e|Z2e|2e|2e|2e
o
(3
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g| 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
N | 1477 748 517 670 2128 590 635 1160 895 1211 1395 613 562 962 2017 907 1156 646 689 1285
g| 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
N | 554 1338 1119 864 1442 963 1710 762 1864 1307 655 865 579 661 2507 1025 647 1319 651 1169
g | 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
N |1206 665 1781 1236 1642 690 1756 1009 1971 1937 599 787 1350 736 1799 1137 1736 710 1353 1845
g | 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
N | 1812 1127 743 1266 2152 709 727 1348 721 1578 2935 1088 733 1510 1915 926 1528 1862 886 1632
g | 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
N | 685 1175 1443 815 2812 1221 2046 1056 1580 1431 894 1818 2264 805 3043 802 753 1291 2020 2038
g | 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
N |[1989 856 885 1782 2056 1897 1625 929 912 1947 838 1363 3391 879 3055 1642 818 917 2210 2424
g | 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
N | 790 1377 856 1071 3460 2076 2391 1453 1484 1877 1681 948 904 2012 2383 1249 2850 976 2588 2103
g | 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
N | 2271 927 1793 1426 2250 1972 938 2473 1860 2026 1005 2087 926 1025 4488 1081 928 1569 2796 1812
g | 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
N | 1927 2271 2713 1586 3203 973 1919 1446 2760 2926 936 1200 2361 1107 2620 2310 963 1589 1995 2600
g | 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
N |2811 2142 2250 1409 4063 1052 1037 2026 1083 3030 3339 1922 981 1748 2795 1338 4351 1206 1286 2648
g | 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
N |1840 1106 3122 2561 2555 1646 1068 1677 2638 2301 2894 2000 1091 2691 3684 1651 3009 2783 1105 2855
g | 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
N |2155 1200 1203 1768 6332 1141 2799 1285 1219 3465 3270 2295 2265 1239 3054 2866 1105 1249 4731 2305
g | 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
N |1116 1885 2957 1390 3915 2826 3158 2565 1115 2555 2287 1358 3398 2556 3205 2165 2492 2949 1431 4108
g | 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
N |1094 1217 3078 1760 4164 2023 3040 1500 5493 2644 1378 2278 1219 2933 4870 1425 3631 2018 1358 3754
g | 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
N | 4423 3008 1237 2359 3292 1353 2650 2466 1379 3274 3514 1447 2560 1414 7089 2848 1253 1398 4114 3378
g | 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 4T6  4T7T 478 479 480
N | 1373 4169 1293 2138 5160 1406 1421 3172 3335 2915 2590 2064 3658 2278 4860 3652 3369 1547 1588 3338
g | 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
N |3188 1401 5700 2548 3406 2281 1344 1830 2754 4192 1404 2668 3902 3328 6896 2038 3814 2330 1416 3011
g | 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
N |2913 1613 1657 3799 3520 3272 4384 1576 1494 4305 3575 1640 4517 1503 3701 2737 4273 3403 2996 4267
g | 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
N | 1478 3104 1466 1802 7509 1634 4037 3564 2789 3212 3868 3678 3737 2476 3887 2106 3155 1718 6181 4065
g | 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
N | 1420 1575 3027 2885 3867 4836 1465 1770 3682 4529 4392 3504 4015 1618 6008 1820 1620 3368 4072 4936
g | 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
N |6390 1592 1552 2965 3889 1689 5544 2333 1652 4795 1602 4434 3271 3852 5863 2908 1549 2706 3169 4176
g | 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
N 4269 2612 4576 2233 7696 1736 1722 4184 4322 3590 3298 2372 1718 4234 9257 1951 3366 3875 1881 4389
g | 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
N | 1574 3728 3972 1866 6423 2696 1722 3098 6950 3522 4622 4139 1644 1836 6694 5131 1649 2773 1736 4341
g | 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
N | 5618 1870 4809 4156 4346 1802 7274 1959 4514 6352 1612 2433 3333 1823 4371 3354 6323 4188 4520 3635
g | 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
N |1715 2916 1823 4506 7074 4319 1933 3365 5292 5106 6968 1946 1741 2920 4675 2804 4320 4422 2027 6340
g | 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
N | 1778 1907 7743 2702 10245 3736 5199 2225 3779 4070 5059 4770 1785 1975 7115 3138 1800 3010 4765 5302
g | 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
N | 3703 4377 1932 4516 4614 3880 3765 2694 4884 5691 1879 2204 9817 2016 4935 4245 4979 2058 3967 6113
g | 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
N | 2006 4880 4827 3846 7448 1979 4874 3689 1899 4258 4962 2968 5426 6400 10949 2430 4126 2273 2346 5396
g | 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
N |4971 3142 3797 2211 6642 4539 2031 5772 4310 4074 5131 3557 1995 2170 10340 3594 5315 4129 2017 4953
g | 741 742 743 744 745 746 74T 748 749 750 751 752 753 754 755 756 757 758 759 760
N |8510 4641 2029 4253 5087 2140 5199 5744 5462 5214 2016 3193 4254 4889 5371 5749 1994 2193 8978 5904
g | 761 762 763 764 765 766 767 768 769 770 771772 773 774 TT5 776 77T 778 779 780
N | 1980 3312 5242 2458 9606 2233 5766 3489 2119 8985 4011 2268 2107 4317 7042 2956 8393 2360 5875 7332
g | 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
N |6100 5006 6667 4496 5100 3398 2075 2481 4397 4630 5611 5867 4901 2220 8460 2466 2260 6880 6078 4896
g | 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
N | 5314 2253 5600 3984 12112 4939 4437 3058 2309 5814 2171 5646 4392 5038 5581 5234 5700 2350 11102 5643
g | 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
N | 2153 3545 2238 3159 11531 5398 2283 5397 2187 4884 4469 4285 8861 3765 6056 6464 7017 2620 2694 8441
g | 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
N | 3965 2269 4384 2431 8326 4714 8833 3382 4553 6596 5856 4319 2288 5164 10993 3328 2356 7478 2312 5801
g | 81 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
N |9136 2547 2497 4697 5718 2446 6730 5484 6534 6917 5540 3252 5557 5321 10713 4270 2334 2542 4902 7522
g | 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
N | 2460 6670 2344 6160 9235 2471 2423 5080 5915 5214 8441 2714 6693 4007 6512 4990 10773 2695 6610 6814
g | 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
N | 6272 5506 9442 3258 5816 3838 2399 2809 5908 10177 2550 5709 6829 2558 9287 2764 6498 6340 2496 7013
g | 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
N 4939 2718 6713 9004 7724 2584 6153 4575 2529 7322 9182 2842 5078 2779 13868 6796 2430 5740 4960 6454
g | 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960
N | 2449 4071 6991 4101 14187 5486 2486 4802 5801 7129 5081 7792 2524 5155 6491 3133 10846 2883 6745 6675
g | 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
N | 4205 5672 6246 2775 6352 8171 2564 5300 10330 5464 2671 4823 6707 2774 13411 3500 2540 4188 7462 8759
g | 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
N |6201 2733 2678 5591 6671 6360 10574 6643 7241 9723 2559 4449 5145 6171 6583 5017 2633 2858 8000 6407
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Figure 1.1: Volume of Fano triangles plotted against their Gorenstein index.

In Figure 1.1 we plot the volume of all Fano triangles against their Gorenstein index.
The bounding curve on top is the curve y = 2(x + 1)2. The one right below is the curve
y = 3/2(x + 1)2. In fact, all the points in Figure 1.1 that lie above the first limiting
curve, i.e. the first curve where they seem to accumulate, lie on a curve of the form

k+1

vy = (z +1)2

These are precisely the Fano triangles described by the following Construction.

Construction 1.7.2. For g,k € Z>; with k| (g + 1) let
_ |t 1 I=(k+D(g+1) _

Then A = Ay (g, k) has Gorenstein index g(A) = ¢g and we have

1

Qxt = ((h+ Do k1), MA) = L= Vola) =
Remark 1.7.3. In [57, Example 4.2] the authors describe a family of Fano triangles of
Gorenstein index g whose volume grows as O(g%/®). For the family Ay (g, 1) from 1.7.2
the volume grows as O(g?). This shows that the volume of Fano polygons grows at least

as O(g?).

k+1

5 (g+1)2

Plotting the normalized volume of the dual, the multiplicity or the Mahler volume of
all Fano triangles against their Gorenstein index, we obtain very similar pictures, see
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(a) Volume of dual: Vol(A*)  (b) Multiplicity: A(A)  (c) Mahler volume: MV(A)

Figure 1.2: Volume of dual (a), multiplicity (b) and Mahler volume (c) of Fano triangles
plotted against their Gorenstein index.

Figure 1.2. Construction 1.7.4 is the analog of Construction 1.7.2 for the volume of the
dual, providing the Fano triangles that describe the curves in the upper half of Figure
1.2 (a).

Construction 1.7.4. For g,k € Z>; with k| (g + 1) let

1 0 —(k+1
PV*(g7k) = lo 1 (—k )g ‘|7 AV*(g7k) = A(PV*(g7k))
Then A = Ay+(g, k) has Gorenstein index g(A) = g and we have
k+1 1)2
Q' = (4 Dk, AB) = 1 Veia = EELEED

Our final observation in dimension two is that there are no Fano triangles A with
even Gorenstein index and reduced weight system Qfd = (1,1,1). This observation is
proved in Proposition 1.5.3. We restate the classification results in dimensions three and
four.

Theorem 1.7.5. See Theorem 1.1.6. Up to isomorphy there are 9,368,501 Fano simplices
of dimension three and Gorenstein index g < 30. The number of simplices N(g) for given
Gorenstein index g develops as follows:

g 1 2 3 4 5 6 7 8
N(g)| 48 435 1,703 3,042 7,506 14,527 16,627 21,789
g 9 0 11 12 13 14 15 16
N(g)|39,288 61,295 54,404 100,670 59,500 157,071 269,037 121,530
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g 17 18 19 20 21 22 23 24
N(g)|133,559 319,176 173,707 473,732 523,939 401,328 332,612 695,989
g 25 26 27 28 29 30
N(g)|515,042 565,225 824,950 1,007,089 513,356 1,960,325

Theorem 1.7.6. See Theorem 1.1.6. Up to isomorphy there are 87,532 Fano simplices
of dimension four and Gorenstein index g < 2. Of those, 1,561 are of Gorenstein index
g = 1. The remaining 85,971 simplices are of Gorenstein index g = 2.

Remark 1.7.7. By the correspondence between Fano simplices and fake weighted
projective spaces, Theorems 1.1.5 - 1.1.7 are also classifications of fake weighted projective
spaces of corresponding dimension and Gorenstein index.

Let us compare our results to existing classifications. In dimension two, Theorem 1.1.5
encompasses in particular the classification by Dais [32] of fake weighted projective
planes of Gorenstein index at most three and the toric part of the classification in [39].
In dimension three we mention [56], where Kasprzyk classifies the three-dimensional
canonical Fano polytopes, ie. those with a single interior lattice point. The overlap with
Theorem 1.1.6 consists of precisely 204 canonical Fano simplices of Gorenstein index
at most 30. There are only 21 three-dimensional canonical Fano simplices that have
Gorenstein index larger than 30. The largest Gorenstein index among those is g = 420.
This data has been taken from [25]. In dimension four we have the classification of
the 1561 reflexive simplices by Kreuzer and Skarke [60], which correspond to the 1561
Fano simplices of Gorenstein index one from Theorem 1.1.7. Note that there is no overlap
between Theorem 1.1.7 and the classification of empty 4-simplices by Iglesias-Valino and
Santos [50] as our simplices have at least one interior lattice point. Let us also mention
Balletti’s recent extensive classification of lattice polytopes by their volume [8], where
the polytopes are classified up to affine unimodular equivalence, ie. also allowing for
translations. As this does not leave the Gorenstein index invariant, their results are not
immediately comparable to Theorems 1.1.5 - 1.1.7.

Remark 1.7.8. Whereas the bounds in Theorems 1.1.2 and 1.1.4 are all sharp, we
obtain sharpness in Theorem 1.1.3 (iii) for odd Gorenstein indices only. Indeed, for even
Gorenstein index g, the values provided for ay,...,a4—1 in Theorem 1.1.3 (iii) result in
a matrix P with the last column being non-primitive. In fact our classification results
suggest, that for even Gorenstein index the multiplicity bound in Theorem 1.1.3 (iii) is
too high. We conjecture that in this case, apart from (d, g) = (3, 2), (3,4), the multiplicity
is bounded by

22 4

mult(A) <
(A) P
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Chapter 1. Lattice simplices and fake weighted projective spaces

and this bound is sharp, ie. there is a Fano simplex of dimension d and Gorenstein index
g that attains this bound.
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CHAPTER
TWO

GORENSTEIN FANO THREEFOLDS OF PICARD NUMBER
ONE

We classify the non-toric, Q-factorial, Gorenstein, log terminal Fano threefolds of Picard
number one that admit an effective action of a two-dimensional algebraic torus. The
chapter is organized as follows. In Section 2.1 we present our classification results.
Section 2.2 serves to provide the necessary background on the approach to rational
projective varieties X with a torus action of complexity one via the Cox ring based
on [41,46]. In Picard number one, this approach represents any family of Q-factorial
varieties X in terms of an integral matrix P. Very first constraints arise from log
terminality: Proposition 2.2.24, originally due to [21], shows that log terminality leaves
us with eight types of matrices P to consider. These eight cases are treated in Sections
2.4 to 2.11. The classification tables are presented in Section 2.12. In Section 2.13, we
compute the Hilbert—Poincaré series of our varieties. The results of this chapter have
been achieved under the supervision of Jiirgen Hausen and are published in [16].

2.1 Classification results

We work over an algebraically closed field K of characteristic zero. By a Fano variety we
mean a normal projective variety X over K admitting an ample anticanonical divisor —Kx.
We classify the non-toric, Q-factorial, log terminal, Gorenstein, Fano threefolds X of
Picard number one that come with an effective action of a two-dimensional torus. Here,
log terminal means discrepancies greater than —1 and Gorenstein means that —Kx is
Cartier. We use the Cox ring based approach to rational varieties with a torus action of
complexity one developed in [41,46]. The Cox ring of a normal projective variety X with
finitely generated divisor class group Cl(X) is defined as

Cl(X)

where we refer to [6] for the details. For our Fano threefolds X of Picard number one
acted on by a two-dimensional torus, the divisor class group Cl(X) is of the form Z & T
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Chapter 2. Gorenstein Fano threefolds of Picard number one

with a finite abelian torsion part I" and the Cox ring R(X) is a finitely generated complete
intersection ring with a very specific system of trinomial relations. Moreover, the variety
X can be reconstructed from the list of generator degrees in Cl(X) and the defining
relations of the Cox ring R(X) which allows us to encode X via these Cox ring data in a
compact manner.

Classification 2.1.1. We obtain 538 families of non-toric, Q-factorial, Gorenstein, log
terminal Fano threefolds of Picard number one acted on effectively by a two-dimensional
torus. Listed according to the possible divisor class groups, we have:

Divisor class group | Sporadic varieties True families

Y/ 242 3 one-dimensional
Z x 727 163 4 one-dimensional
7 x (Z.]27)? 46 5 one-dimensional,
1 two-dimensional
Z x (2]27)3 6 1 one-dimensional
7 X Z/27 x Z]AZ 4 1 one-dimensional
7 x 7.)27. x 7,/67 1 0
Z x 737 26 1 one-dimensional
Z x (Z/37)? 1 0
Z x Z/AZ 18 1 one-dimensional
7 x 7/5Z 4 0
Z x 167 8 0
7 x 7./, 2 0

Moreover, every non-toric, Q-factorial, Gorenstein, log terminal Fano threefold of Picard
number one with an effective action of a two-dimensional torus is isomorphic to precisely
one member of these 538 families.

The defining data of each of our 538 families are stored in the file [15]. Moreover,
we store in this file geometric invariants such as genus, codimension, anticanonical self
intersection, Hilbert series, etc., which allows to extract varieties with given properties.

Note that being Gorenstein and log terminal, all varieties from Classification 2.1.1 are
canonical. The overlap with the classification of non-toric Mori—Fano threefolds coming
with an action of a two-dimensisonal torus given in [21] consists precisely of the smooth
quadric in P4. As mentioned before, the main tool of [21], which settles the terminal case,
is the anticanonical complex AS associated with X, a polyhedral complex extending
directly the features of the Fano polytope from toric geometry: X is terminal if and
only if A% has only the origin as an interior lattice point. This allows to bound the
possible Cox ring data via the volumes of suitable lattice polytopes constructed out of the
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2.1. Classification results

complex. In the log terminal Gorenstein case, one could think of proceeding analogously
by using canonicity, which, however, appears to end in overflowing computations, even
when building on the classification of canonical threefold singularities with action of a
two-dimensional torus provided in [24]. Instead we can benefit in a completely different
way and much more directly from the Gorenstein property: It gives rise to unit fraction
identities involving the Cox ring data that admit only a finite number of integral solutions;
see Proposition 2.9.3 (i) for an example. Moreover, the computation of these integral
solutions turns out to be easily feasible, which in the end makes the classification possible.

Remark 2.1.2. The following figure shows how the 538 families from the classifi-
cation 2.1.1 are distributed over the genus-codimension landscape of Fano threefolds
presented in [26, Figure 1]. Here the genus of a Fano threefold X is h%(X, —Kx) — 2 and
the codimension is taken with respect to embedding into a weighted projective space by
means of a minimal system of homogeneous generators of the anticanonical ring

Ax = @ T'(X,—nKx).
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Chapter 2. Gorenstein Fano threefolds of Picard number one

2.2 Torus actions of complexity one

We recall the necessary background on rational varieties with a torus action of complexity
one and fix our notation. The reader is assumed to be familiar with the very basics
of toric geometry, in particular the correspondence between fans and toric varieties;
see [30,33,37]. We restrict ourselves to spending just a few words on Cox’s quotient
presentation [29] of a toric variety arising from a fan.

Construction 2.2.1. Let Z be the toric variety defined by a fan ¥ in a lattice N
such that the primitive generators vy, ..., v, of the rays of ¥ span the rational vector
space Ng = N ®z Q. We have a linear map

P:7"— N, e; — ;.

In case N = Z", we also speak of the generator matriz P = [v1,...,v,] of ¥. The divisor
class group and the Cox ring of Z are

QZ) = K = Z'/m(P), R(Z) = K[I\,....T}],  deg(T}) = Q(e).

where P* denotes the dual map of P and Q: Z" — K the projection. Now, one defines a
fan ¥ in Z" consisting of faces of the positive orthant of Q" by

= {00 2 Q%¢; P(do) € o for some o € X}.

The toric variety Z associated with ¥ is an open toric subset in Z :=K". As P is a map
of the fans ¥ and ¥, it defines a toric morphism p: Z — Z. The quasitorus

H = SpecK[K] = ker(p) C T" = (K*)"

acts as a subgroup of the torus T" on Z and the morphism p: Z — Z turns out to be a
good quotient with respect to the H-action.

The quotient presentation of toric varieties is a central piece in the Cox ring based
approach to rational varieties with a torus action of complexity one provided by [41,46];
see also [6, Section 3.4]. The first step, however, is the following purely algebraic
construction of a certain class of graded algebras; see [6, Construction 3.4.2.1] and more
generally [42, Constructions 3.5 and 6.3].

Construction 2.2.2. Fix r € Z>1, a sequence ng,...,n, € Z>1, set n:=ng + -+ n,,
and fix integers m € Z>p and 0 < s < n +m — r. The input data are matrices

L 0

A = [ag,...,a)] € Mat(2,r+ LK), P = ld 0

] € Mat(r+ s,n+m;Z),
where A has pairwise linearly independent columns and P is built from an (s x n)-block d,
an (s x m)-block d’" and an (r x n)-block L of the shape

—lop 4 ... O
L = A i = (i, lin;) € 2%
—lp 0 ... I
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2.2. Torus actions of complexity one

such that the columns v;j, vy, of P are pairwise different primitive vectors generating Q"+*
as a cone. Consider the polynomial algebra

K[T”,Sk] = K[T%j,sk; Oéif’l“, 1§j§nz,1§k‘§m]

Denote by J the set of all triples I = (i1, i2,13) with 0 < iy <o < i3 < r and define for
any I € J a trinomial

L l; L

T T2 T l; l; ling

91 = Giyjig,iz = det “ b2 43 ) 1" = Tzilell
ail ai2 ai3

Consider the factor group K := Z"™™ /im(P*) and the projection Q: Z"*™ — K. We
define a K-grading on K[T;;, Si] by setting

deg(Tij) = Wy = Q(Cz‘j), deg(Sk) = W = Q(ek)

Then the trinomials g; just introduced are K-homogeneous and they all share the
same K-degree. In particular, we obtain a K-graded factor algebra

R(A,P) = K[Ty;, S)/{gr: 1 €3).

Example 2.2.3. We choose r = 2, moreover ng = 2, n; = no = 1 and m = 1 and,
finally s = 2. In this setting, consider the defining matrices

-1 -1 4 0 0

011 -1 -1 0 2 0
A‘_[1101’ P= 0 0 -3 11
0 -2 4 00

The algebra R(A, P) arising from these matrices comes due to r = 2 with a single
trinomial relation and is explicitly given by

R(A,P) = K[To1, Toz, Ti1, Tor, S1]/{TorToz + Tty + T5y)-
We have K = Z°/im(P*) = Z © Z/27Z & Z/2Z and the degrees of the T;; and S; are the

columns of the degree matriz

Q =

N
N
= Ol =
=N
OOl =

Theorem 2.2.4. See [6, Theorem 3.4.2.3|, also [42, Theorems 3.10 and 6.5]. The
ring R(A, P) produced by Construction 2.2.2 is a normal complete intersection ring and
its ideal of relations is generated by the trinomials g; = gi it+1,i+2, where i =0,...,r — 2.

Remark 2.2.5. We call a defining matrix P irredundant if we have [;1n; > 2 for
all i = 0,...,r. Each R(A,P) is isomorphic as a graded algebra to some R(A’, P’)
with P irredundant. Note that for » > 2 and an irredundant P, the ring R(A, P) is not
a polynomial ring.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Remark 2.2.6. Consider a defining matrix P as in Construction 2.2.2. By an admissible
operation on the matrix P we mean one of the following:
(i) adding a multiple of one of the upper r rows to one of the lower s rows,
(ii) applying a unimodular matrix from the left to the (d,d’) block,
(ili) swapping two columns v;;, and v;j, inside a leaf v;1,. .., vip,,
(iv) swapping two leafs vj1, ..., vin, and vj1,...,v;n; and rearranging the L-block by
elementary row operations into its required shape,
(v) swapping two columns vy, and vy, of the d’-block.
If P’ arises from P via admissible operations, then with a suitable A’, the graded
rings R(A, P) and R(A’, P") are isomorphic.

Remark 2.2.7. The matrix A of a ring R(A, P) is responsible for the coefficients of
the defining trinomials g; = ¢;i+1,i+2. By rescaling variables we can always reduce to
defining relations of the shape

To 4 Th p 7l NTH TR 4T AT T+ T

with pairwise distinct 1 # \; € C*. In particular, in case of a single defining relation,
there is no need to care about the coefficients. The matrix A is motivated by the geometry
behind R(A, P), see Remark 2.2.12.

We enter the second step, producing rational normal varieties X with a torus ac-
tion T® x X — X of complexity one. Each of the resulting X comes embedded in a toric
variety Z, is defined in homogeneous coordinates by the above trinomials g, ..., gr—1
and the torus T® acting on X is a subtorus of the acting torus T"™* of Z. The origi-
nal references are again [41,46]; see also [6, Construction 3.4.3.6] as well as the more
general [42, Constructions 3.5 and 6.13].

Construction 2.2.8. In the situation of Construction 2.2.2, assume r > 2 and that P is
irredundant. Consider the common zero set of the defining relations of R(A, P):

X = V(g;; 1€3) C Z := K""™,

Let X be any fan in N = 7"+ having the columns of P as the primitive generators of its
rays. Then X := X N Z and Construction 2.2.1 yield a commutative diagram

>l
N

<
ul Ul
X—=7Z

//Hlp p|/H
X

*>Z,

where X := X (A, P,X) := p(X) is a non-toric, closed subvariety of the toric variety Z
arising from ¥. Dimension, divisor class group and Cox ring of X are

dim(X) = s+1, CX) @ K, R(X) = R(A,P).
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2.2. Torus actions of complexity one

The subtorus T¢ C T"*¢ of the acting torus of Z associated with the sublattice Z% C Z"T$
leaves X invariant and the induced T-action on X is of complexity one.

Example 2.2.9. We continue Example 2.2.3. Let 3 be the fan in Z* having P as its
generator matrix and the maximal cones

cone(voz, v11,v21,v1),  cone(vor, vi1,v21,v1),  cone(vot, Vo, V21, V1),
cone(vo1, Vo2, V11, V1), cone(vo1, Vo2, V11, V21).

The associated toric variety Z is a four-dimensional fake weighted projective space with
divisor class group

Cl(Z) =K =Z®7/2Z & 7./27.

Moreover, H = K* x {1} x {1} acts on Z = K® via the weights given by the columns
of the degree matrix () and Construction 2.2.8 becomes

V(ToiToo +TL +T3) = X ¢ Z = K
Ul Ul Ul Ul
X\ {0} = X—7 =K°\{o}.
pale ol
X —7

Theorem 2.2.10. See [6, Theorem 4.4.1.6] and [42, Theorems 3.10 and 6.18]. Every
non-toric rational normal projective variety with a torus action of complexity one is
equivariantly isomorphic to some X (A, P,X) arising from Construction 2.2.2.

Any variety X = X (A, P,Y) inherits many geometric properties from its ambient
toric variety Z. A first observation concerns the restriction of the invariant divisors from
Z to X; see [6, Proposition 3.2.4.5].

Remark 2.2.11. Consider X = X (A, P,X) as in Construction 2.2.8. The columns v;;
and vy, of P define prime divisors D;; = Vz(T;;) and Dy, = Vz(T}) on Z. The restrictions
of them Di)]{» = Vx(T};) and Djf = Vx(Sk) are prime divisors on X and in the class
group Cl(Z) = K = Cl(X), we have

[Dij) = deg(Ty) = [Di],  [Di] = deg(Ty) = [Dy].

We recover the divisors Di)]{ as the components of the critical values ¢; € P; of a
certain quotient map; see [42, Proposition 3.16] for a general treatment.

Remark 2.2.12. Consider X = X (A4, P,¥) as in Construction 2.2.8. Consider the open
sets of points having finite isotropy groups with respect to the T®-action:

Zy = {z € Z; T} is finite}, Xo = XNZy = {x € X; T; is finite}.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Then Zy C Z is invariant under the torus T"** and Xy C X is invariant under T®.
Moreover, we have a commutative diagram

X < Z

Ul Ul
Xo—— 2
//TS\LT"X 71'Z\L//'JI‘S

]Pl HPT?

where wx and my are categorical quotients with respect to the actions of T® on X and Z
respectively and 7z is a toric morphism. Moreover, we obtain

- ng
' (e) = U ij C X, 7' (C;) = |UDiy; CZ
j=1 j=1

with the toric divisors Cy, ..., C P, and the points ¢; € P; having the i-th column of
A as its homogeneous coordinates. Finally,

T3, = U

holds for the order of the isotropy group T3, of the action of the torus T* at any general
point x;; € Df](

The divisors from Remark 2.2.12 also allow an explicit presentation of an anticanonical
divisor; see [6, Proposition 3.4.4.1].

Remark 2.2.13. Let X = X (A, P,Y) arise from Construction 2.2.8. Then the anti-
canonical divisor class of X is given as

no
—Kx =Y deg(Ty;) + ) deg(Sk) — (r—1)) lo;deg(Tp;) € K = CI(X).
i, k i=1
In particular, due to deg(7;;) = [Df]( ] and deg(T)) = [Di], we have the following
anticanonical divisor on X:
no
Dy = > D + > DY — (r—1)> loiDg;.
i, k j=1

Example 2.2.14. For the variety X from Example 2.2.9, we can compute the anticanon-
ical class as

—Kx = deg(Th1) + deg(Ts1) +deg(S1) = (4,0,0) € Z®Z/2Z®7Z/27Z = CI(X).

In particular, we see that the anticanonical class is ample and, consequently, X is a Fano
variety.
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2.2. Torus actions of complexity one

Remark 2.2.15. Let X = X (A, P,¥) arise from Construction 2.2.8. We call 0 € ¥
an X -cone if the corresponding toric orbit T" "¢ - z, C Z meets X C Z. A cone 0 € ¥ is
an X-cone if and only if one of the following holds:

(i) o is a big cone, that means vgj,, ..., v, € o for some jo, ..., jr,

(ii) o is a leaf cone, that means o C cone(v;1, ..., Vin,, V1, - - ., Upy) for some i.
Every X-cone o € ¥ defines an affine open subvariety X, =: X N Z, in X by cutting
down the corresponding affine toric chart Z, C Z. Note that X is covered by the X,,
where ¢ runs through the X-cones of 3.

Example 2.2.16. Consider again the variety X from Example 2.2.9. Then the fan X
has exactly four maximal X-cones, namely

cone(voz, V11, V21, V1), cone(vo1, V11, V21, V1),

cone(vo1, Vo2, V11, U21), cone(vo1, Vo2, U1).

The first three are big cones, whereas the fourth one is a leaf cone. Thus, X is covered
by four open affine subvarieties, given by the maximal X-cones of X.

Let us see how to detect Cartier divisors, that means locally principal Weil divisors,
on a variety X = X (A, P,3) in terms of the defining data.

Proposition 2.2.17. Let X = X (A, P,X) arise from Construction 2.2.8. Consider on Z
and X the Weil divisors

D = ZaijDij—{—Zaka, DX = ZaijDZ?j{—l-ZakaX.

In K = Cl(Z) = CI(X) consider the classes w = [D] = [DX], w;j = [Dyj] = [Dz)ﬂ
and wy = [Dy] = [DiY] and let ¢ € ¥ an X-cone. Then the following statements are
equivalent:

(i) The divisor DX is Cartier on X,-.

(ii) The divisor D is Cartier on Z,.

(iii) We have D = div(x") on Z, with a character x* of T"*5.

(iv) There is u € Z™* with (u,vij) = a;; and (u,v) = ay for all vij,vi € 0.

(v) We have w € (wij,wk; vij, v, € o) in K = CI(X).
In particular, D is a Cartier divisor on X if and only if one of these conditions holds for
all mazimal X -cones o € X.

Proof. The equivalence of (i), (ii) and (v) follows from Proposition [6, Proposition 3.3.1.5].
The rest is basic toric geometry. O

A normal variety X is Q-factorial if every Weil divisor D on X admits a Cartier
multiple nD with n € Z>;.

Corollary 2.2.18. A variety X = X (A, P,Y) as in Construction 2.2.8 is Q-factorial if
and only if each X -cone o € X is simplicial.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Now, recall that a variety is Gorenstein if its canonical class is Cartier. Combining
Remark 2.2.13 and Proposition 2.2.17, we obtain the following characterization.

Corollary 2.2.19. Consider X = X (A, P,Y) and let DX = EaiijJ{ + S arDil be an
anticanonical divisor on X. Then X is Gorenstein if and only if for every mazimal X -
cone o, there is a linear form u € Z" 5 with

(w,vi5) = agj, (u,vp) = ag for all wvij,v, € o.

Example 2.2.20. Consider again the variety X from Example 2.2.9 and the four
maximal X-cones given in Example 2.2.16. Listed accordingly, we have linear forms

(2,0,1,-1),  (0,0,1,1),  (=2,2,-3,0),  (-~1,1,1,0)

representing the anticanonical divisor D())( on the corresponding affine open subvarieties
of X. In particular, X is Gorenstein.

If X is a Q-factorial Fano variety of Picard number one, then the divisor class
group Cl(X) allows a positive splitting into a free cyclic part and its torsion part I', that
means that we have an isomorphism

Cl(X) = Za&T

such that for the anticanonical class wx = (wx,nx), the Z-part wx is positive. Note
that in this setting the Z-part of any divisor class w = (w,n) does not depend on the
particular choice of the splitting.

Corollary 2.2.21. Let X = X (A, P,Y) be Q-factorial, Gorenstein, Fano and of Picard
number one. Then, for every maximal X -cone o, the Z-parts w;;, wy, of the generator
degrees and wx of the anticanonical class satisfy

ged(wij, wy; vij € o,v, € 0) | wx.

Proof. As X is Gorenstein, the canonical class wy represents a Cartier divisor. Propo-
sition 2.2.17 tells us that for every maximal X-cone o, the wx lies in the subgroup
of CI(X) = K generated by the classes w;j, wy, where v;; € o, v, & 0. Thus, the Z-
part wx lies in the ideal of Z generated by the Z-parts w;;, wy, where v;; € o, v, € 0.
The assertion follows. O

Finally, we discuss log terminality. Recall that given any resolution of singulari-
ties m: X’ — X of a normal variety, we have the ramification formula

r
ICX/—W*ICX = ZaiEi
=1

with canonical divisors on X’ and X and the exceptional divisors F, ..., E,. Then X
is called log terminal if we have a; > —1 for ¢ = 1,...,r. We characterize log ter-
minality of a given Q-factorial Fano variety X = X (A, P,X). A platonic tuple is a
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2.2. Torus actions of complexity one

tuple (lp,...,1,) of positive integers such that after re-ordering the /; decreasingly, we
obtain a tuple (a,b, ¢, 1,...,1) with (a,b, c) one of

(z,y,1), (y,2,2), (5,3,2), (4,3,2), (3,3,2).

Proposition 2.2.22. See [5, Theorem 3.13]. A Q-factorial Fano variety X = X (A, P,X)
has at most log terminal singularities if and only if for any X -cone o = cone(vyjq, - - - , Urj,)
the exponents lyjy, ..., 15, form a platonic tuple.

Example 2.2.23. For the variety X = X(A4, P,¥) from Example 2.2.9 we have to
consider the X-cones

cone(vg2, V11, V21 ), cone(vg1, V11, V21).

Both of them yield the exponent tuple (1,4,2) which is platonic. Consequently, X is log
terminal.

Log terminality leads to the following first constraints on the defining matrix P of
our Fano varieties X = X (A, P, X).

Proposition 2.2.24. See 21, Lemma 5.2]. Let X = X(A, P,X) a non-toric, Q-factorial,
log terminal Fano threefold of Picard number one, where P is irredundant. Then, after
suitable admissible operations, P fits into one of the following cases:

(i) m —0 r=2andn=2>5, where ng =ny =2, ny =1,

(ii) 0,r=3andn =6, wherenyg=n1 =2, ng =n3z =1,

(iii) ,T:4andn:7,wheren0:n1:2,n2:n3:n4:1,

(iv) 0,r=2andn =25, where ng =3, n1 =ng = 1,
(v) 0,r:3andn:6 where ng =3, N1 =ng =ng = 1,

)

)

) m

(vi =1, r=2andn =4, whereng=2,n1 =ng =1,
(vii =1, r=3andn=>5, wherenyg =2, ny =ng =ng =1,
(viii =2, r=2andn =3, where ng =ny =no = 1.

333333

Remark 2.2.25. Every rational Gorenstein del Pezzo surface has at most canonical
singularities and thus is in particular log terminal; see [47]. For Gorenstein Fano varieties
of higher dimension even the latter property need not hold. For instance,

-3 -1 3 1 O

-3 -1 0 0 &

P -4 -1 1 0 k
1 000 -1

defines for each k > 4 a Q-factorial Fano threefold X = X (A, P,X) of Picard number
one, which is not log terminal by Proposition 2.2.22. More explicitly, > consists of all

pointed cones generated by columns of P and we have
X = V(T3 Too + TETio + TS) C Pig—s1,6-31,

[-Kx] = k—3 € Z = CI(X).
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Chapter 2. Gorenstein Fano threefolds of Picard number one

This example series shows moreover that the Gorenstein and Fano condition together are
even in the specific setting of threefolds with an action of a two-dimensional torus not
enough to guarantee finiteness in fixed dimension and Picard number.

2.3 Proof of Classification 2.1.1: Preparation

Proposition 2.2.24 divides the proof of the classification theorem into cases (i) to (viii).
These cases are treated in Sections 2.4 to 2.11. The strategy in each of these eight cases
is very formulaic. The pattern is as follows.

(i) Using log terminality and the Gorenstein property, we obtain constraints on the
entries of the defining matrix P, such that each row of P admits at most one entry
which is not bounded by other entries of P. See 2.9.2 for an example.

(ii) We establish unit fraction identities involving the Cox ring data, which bound the
entries of the Z-part of the degree matrix @Q°. See 2.9.3 for an example.

(iii) Combining items (i) and (ii), and using the fact that P annihilates the transpose
of Q°, we determine the remaining entries of P. This produces a finite list of
candidates for defining matrices P.

(iv) From the resulting list of explicit matrices P we remove those not defining a
Gorenstein Fano variety and remove redundancies, ie. matrices defining isomorphic
varieties.

For item (iv) we need criteria to decide computationally whether or not given defining
data lead to isomorphic varieties. For this, we say that a defining matrix P as in
Construction 2.2.8 has ordered exponents if we have

(i) no = 2Ny,

(i) ljz > -+ > lip, for each i = 0,...,r and

(iii) if n; = nj4q then lj; > li+171.

If P has ordered exponents, then we call the data (ng,...,n,,m) the format of P.
Note that via admissible column operations, we can always assume that P has ordered
exponents.

Proposition 2.3.1. Let (A, P,X) and (A, P',Y) be as in Construction 2.2.8 such that
the associated varieties X and X' are isomorphic to each other.
(i) There is an isomorphism p: X — X' which is equivariant with respect to the torus

actions.
(ii) If P and P’ have ordered exponents, then they share the same format and for each i
there is an i’ with ny = n; and (L, ..., lin,) = (liry, -, lisy,,) such that

holds for the subgroups in Cl(X) and Cl(X"), respectively, generated by the corre-
sponding degrees.

Proof. For the first assertion, observe that for any isomorphism ¢: X — X' of varieties,
we can install a torus action on X’ making ¢ equivariant. Now, any torus action of
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complexity one on the non-toric X’ corresponds to a maximal torus in the affine algebraic
group Aut(X'); see for instance [7, Theorem 2.1]. Thus, the assertion follows from the
fact that any two maximal tori in an affine algebraic group are conjugate. The second
assertion follows from the first one and the fact that any equivariant isomorphism respects
the data described in Remark 2.2.12. O

The following Lemma is a combination of Proposition 2.2.17 and Corollary 2.2.21.
Its specific formulation will be used numerous times throughout Sections 2.4 — 2.11.

Lemma 2.3.2. Let X = X(A, P,X) as in Construction 2.2.8. Assume X is non-toric,
Q-factorial, Gorenstein, Fano and of Picard number one.
(i) If there is 0 < ig < r with n;, > 1, then for every 1 < jo < n;, the cone

Oigjo = COHe(’Uij,Uk; (Za.]) 75 (,L'O)jO)a k= 15-' . 7m)

is a mazimal X -cone. In this case the Z-part w;j, is a divisor of wx. Moreover,
if =K = Zaiij]{ + ZakaX is an anticanonical divisor on X, then there is a
linear form u € Z™* with
wx
(,vigjo) = @igjo — ——5  (w,035) = ag,  (u,vp) = ax
Wigjo
for all (i,7) # (i0,J0) and allk =1,...,m.
(ii) If m > 1 holds, then for every 1 < kg < m the cone

Oky = COHe(Ujj,Uk;OSiST, 1§]§n17 k‘)#k‘O)

is a mazximal X -cone. In this case the Z-part wy, is a divisor of wx. Moreover,
if =K = ZaijD%{ + ZakaX s an anticanonical divisor on X, then there is a
linear form u € 2™ with

= ap, — —; (u,vij) = ag, (u,v) = ag

forall 0 <i<r, 1<j<mn; and all k # k.

Proof. We prove (i), Item (ii) is proved similarly. The assumption n;, > 1 guarantees
that o;,;, is a big cones, see Remark 2.2.15. Its dimension equals that of X, thus
it is a maximal X-cone. We use Corollary 2.2.21 to see that wx is divisible by w;j,.
Let =K =) aiij]{ +> akaX an anitcanonical divisor on X. Applying Proposition 2.2.17
to the X-cone 0;,j,, we obtain a linear form u with (u, v;;) = a;; for all (4, j) # (i0, jo)
and (u,vg) = ay for all k = 1,...,m. Note that the defining matrix P annihilates the
transpose of the Z-part Q° of the degree matrix. Thus we have

0 = uP Q)" = Z(u,vij>wij+z<uavk>wk
k

ihj
We solve this equation for (u,v;,j,) to obtain the assertion. O
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The second tool that we will use extensively throughout Sections 2.4 — 2.11 is an
upper bound on sums of unit fractions. It involves Sylvester’s sequence, which we
already encountered in Chapter 1, see Definition 1.4.1. We state the relevant part of that
definition, the sequences for g = 1.

Definition 2.3.3. See Definition 1.4.1. We define two integer sequences, Sylvester’s
sequence S = (s1, S2, 83, ...) and the truncated Sylvester sequence T = (t1,ta,t3...) via

S1 = 27 S = Sk(Sk—1)+1 tk = Sk—l-

Lemma 2.3.4. See [31, Thm. I] and [54, Thm. 1]. For any positive integers ai, ..., an
the following hold.
(i) If Yo a% < 1 holds, then we have

— <) — =1

1 @i i—o Si tni1

(ii) If i, a% =1 holds, then we have
a; < tp, foralli = 1...,n.

Example 2.3.5. We describe how we use Lemma 2.3.4 to obtain effective bounds on
the denominators of unit fractions. The first six terms of Sylvester’s sequence are

§s1=2, s3=3, s3=17, s4=43, s5=1807, sg=3,263,443.

Assume we have four positive integers a1, as, as, a4 satisfying 1/a; +---+1/ag = 1. Then
Lemma 2.3.4 (ii) provides the bound a; < 42 for all & and we can use the computer to
easily enumerate all possible solutions (a1, ..., a4). Looking at the members of Sylvester’s
sequence shows that the effectiveness of this strategy deteriorates quickly with the
number of summands. Already for six summands, there are in the order of 1038 possible
constellations for (aq,...,as). Nevertheless, this strategy is still effective, if we have more
information about the summands. Assume for example that we are interested in the
positive solutions for the equation

1 1 1 3

—+—+—+— =1

al a9 as ayg
Naively, splitting the last summand into a sum of three unit fractions, we run into the
problem of computational complexity described above. Instead, we can split off the last

summand, to obtain the inequality

1 1 1

—+—+— < 1L

aq a9 as
Lemma 2.3.4 (i) tells us, that the sum is at most 41/42. We can apply this bound to
the summand that was split off, to get the bound a4 < 126. In this way we are able to
obtain bounds on the denominators which allow us to enumerate all possible solutions
via computer in a reasonable time frame.
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2.4 Proof of Classification 2.1.1: Case 1 - format (2,2,1,0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (i). The setting is as follows.

Setting 2.4.1. Let X = X (A, P,Y) a Q-factorial threefold of Picard number one of
format (2,2,1,0). Then

—lo1 —lo2 11 2 0
—lo1  —lo2 0 0 I
do11  do21 di1n di21 donn
do12  do22 di12 dize  doi2

P = [vo1,v02, 011,012, V21] =

holds with pairwise different primitive columns vg1, vo2, vi1, v1i2 and v generating Q* as
a cone. We assume P to have ordered exponents. The maximal X-cones of the fan X
of Z are given by

o1 = Cone(U02aU117U12aU21)7 g02 = COHG(U01,U11,U127U21)>

o11 = cone(vo1, Vo2, V12, V21), o12 = cone(vo1, Vo2, V11, V21)-

We have K = Z @ I' with the torsion part I" and denote deg(T;;) = (wij,n:5) as well
as deg(Ty) = (wg, ni) accordingly. In particular, we write

Q% = [wor, woa, w11, w12, Wa1]

for the free part of the degree matrix Q). Note that the vector (wo1, wo2, w11, w12, we1) is
primitive in Z° and generates ker(P).

Very first constraints on the exponents of the defining relation g come from log
terminality of X.

Proposition 2.4.2. Consider X = X(A, P,X) as in Setting 2.4.1. Assume that X is
non-toric, Fano and log-terminal. Then the tuple (lo1,l11,1l21) fits into precisely one of
the following constellations:

—~

z,ly), =>1,y>2; (3,2,2), 3<z<5;
(2,2,y), y=>2; (2,2,3), 4<2z<5;
(¥,2,2), y=>3; (2,3,2), 3<z<

Proof. We apply Proposition 2.2.22 to the X-cone cone(vo1, v11, v21) to see that (lo1, l11, l21)
is a platonic tuple. As P has ordered exponents, lp; > [11 holds. Moreover, since X
is non-toric, we have lo; > 2. This leaves us with the six constellations for (lp1, 111, l21)
stated in the Proposition. ]

The next series of constraints arises from log terminality and the Gorenstein property
and directly aims for the entries of the defining matrix P.
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Proposition 2.4.3. Consider X = X (A, P,X) as in Setting 2.4.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein. Then the following hold:
(i) An anticanonical divisor on X is explicitly given by

—K = D@ + D§ + DX 4+ D + (1 —191)Day.

(ii) The weights w1, wo2, w11 and wiy are divisors of wx .

(iii) We have 1 S 111 S 3 and l12 § 111.

(iv) Admissible row operations turn the defining matriz P into one of the following
forms, according to the possible values of l11 and li3:

[ —lo1 —lopo lii 1 0 1<i1<3,
P _ —lor —loo 0 0 Iy OSdo11Sl21%, OSd012S%,
do11 doo1 di11 0 dorn ’ 1§d111S111—1+;071X1,
| doi2  do22 0 0 doa | 0<da11,d212<l21,
[ —lgr =l l 0] 2513,
wx wx
P —lo1 —lp2 O 0 o 1=lo1— g <do11<lo1—1+ 5,
do11 doo1 1 1 do1r |’ 0<do12<! l01+l02<%—1)37
L dorz dozz 0 dizo dono J 0<do21,do22<lo2, 1Sd122§%,
[ —lo1 —lpo 3 2 0
p —lo1 —lp2 0 O 2 —lo1— X <do12< X
1 - % 11 -1’ 0<d212<1.
| doi2 dozz 0 0 da2

Proof. Ttem (i) follows immediately from Remark 2.2.13. Item (ii) follows from applying
Corollary 2.2.21 to the four X-cones 091,002,011 and o12. Item (iii) is a consequence of
Proposition 2.4.2. We prove (iv). There are six possible constellations for (I11,l12), which
we group into three cases as follows:

(a) l12 = 1. The possible constellations are (I11,l12) = (1,1),(2,1),(3,1).

(b) 111 =l21 > 1. The possible constellations are (I11,l12) = (2,2), (3, 3).

(c) (li1,h2) = (3,2).
We start with case (a). Assume /12 = 1. By adding multiples of the first row to the
third and fourth row of P we achieve di91 = di22 = 0. Moreover, applying a suitable
unimodular 2 x 2 matrix to the d-block, we may assume dy1; > 0 and dy12 = 0. Multiplying
the last row of P by —1 if necessary, we may assume that dy1o > 0 holds. We add multiples
of the second row of P to the third and fourth to guarantee 0 < dyo1,d120 < l21. The
matrix P is now of the form

—lor —lo2  I11 1 0
—lo1  —lo2 0 0 In
do11  do21 dii1 O donn |’
do12  do2z2 0 0 da

P pr—

with dg12 > 0, d111 > 0 and 0 < da11,d212 < l21. We make use of the Gorenstein property.
Consider the X-cone 011 = cone(vo1, vo2, V12, v21). By Lemma 2.3.2 there is a linear
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form u € Z* with
Wx
<u,v11> = 1- —_—, <U,’012> = 1.
w1y
The second equation yields u; = 1. Plugging this into the first equation and solving

for dy11 we obtain
wx
1—ln—— = dinus.
w11
Note that the left hand side of this equation is strictly negative. Thus us # 0 holds

and dj11 is a divisor of [11 — 1 + % In particular, we get the bound

1 < din < l11—1+w7X-
w11

Now consider the X-cones o¢; = cone(vpz, v11,v12,v21) and og2 = cone(voi, V11, V12, V21).
By Lemma 2.3.2 there are linear forms u’,u” € Z* with

(ulvv(]1> = 1- :11,}75(11 <ul>v02> = 1> <U”,U01> = 1> <’LL”,U02> = 1- :57;;7
(W', v11) = 1, (u',v12) = 1, (W o11) = 1, (u",v12) = 1,
(u',v91) = 1—1la1. (W va1) = 1—lo.
Consider their difference u := v’ — «”. Evaluating v on the columns of P yields
<u? U01> = _%7 <U7U02> = %7
<’LL, U11> = 0, <U,U12> = 0, (2.4.3.1)
(u, 1)21> = 0.

Combining the third and fourth equation of 2.4.3.1 we obtain u; = uz = 0. Plugging this
into the first equation and multiplying by lo1, we obtain

wx
_l21w701 = —loiloruz + walordorz = wa(lordaiz + lordor2). (2.4.3.2)
In the second step we used the identity usloy = —u4doi2, which we obtain from the last

equation in 2.4.3.1. Note that the left hand side of Equation 2.4.3.2 is strictly negative.
Thus ug # 0 and lp1da12 + la1do12 # 0 holds and lpidaiz + I21do12 is a divisor of Iy X
Using the bounds on d212, we obtain

0 < doi2 < —.

Finally, to get bounds on dyi1, consider the following 4 x 4 integer matrix:

1 0 0 0

0 1 0 0
S —

0 —doi2 1 lIn

0 0 0 1
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It leaves the first two rows of P unchanged and has determinant det(S) = 1. It thus
consists of admissible row operations of P. Multiplying P from the left by multiples of S,
we achieve
wx
0 < donn < lordore + l21dor2 < lo1——.
Wo1
Thus the matrix P is of the first form described in Proposition 2.4.3 (iv).
We treat case (b). Assume l3; = l12 > 1 holds. Let [ := [y, this is either 2
or 3. Applying a suitable unimodular 2 x 2 matrix to the d-block we achieve di15 = 0.
Primitivity of v1; ensures that di11 # 0. Adding multiples of the first row of P to the
third row and multiplying by —1 if necessary, we achieve di111 = 1. Multiplying the last
row by —1 if necessary, we may assume that dioe > 0 holds. The matrix P is now of the
form

—lor —lgo I l 0

P _ —lo1 —lo2 0O 0 In
do1n do21 1 digr donn |
do12  doz2 0 dio2 dor2

with d1go > 0. We make use of the Gorenstein property. Consider the X-cone cone(vi1, v12).
By Lemma 2.3.2 there is a linear form u € Z* with

(wv11) = 1, (u,v12) = L. (2.4.3.3)

The first equation ensures that us is coprime to [. In particular us # 0 holds. Linear
independence of v1; and vi2 guarantees that dijoo > 0 holds. We show that via admissible
row operations we can achieve di21 = 1. We write di22 = [°d2, where e € Z>¢ is chosen
such that dy is not divisible by /. Combining the two equations from 2.4.3.3 we obtain

us(dior — 1) = —1°uyds.

As wug is not divisible by [, and [ is prime, there is di; € Z such that dio; = [°d; 4+ 1 holds.
Let ¢ = ged(ldy,dg). There are «, 3,7,0 € Z with

c = aldy+pdy, 1 = ay+ 39,
yc = ld]_, (50 — d2,

As dy is not divisible by [, neither are 6 and c¢. Thus ~ is divisible by I. We write v = I/
and 6 = [0’ + f, where f = +1. Consider the 4 x 4 integer matrix

1 0 0 0

g — 01 0 0
S| =S80 fo —fY
—a 0 la 15}

The matrix S leaves the first two rows of P unchanged and it has determinant
det(S) = f(ay+p0) = %1
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It thus consists of admissible row operations of P. Multiplying P from the left by S
transforms it into the matrix

o1 —lgo 1 l 0
p_ —lpr —lp2 0 0 2

doir door 1 1 doir |’

doi2  do22 0 [°c doio

which we again call P. We also write again dj22 for [°c. The entries d;;; are understood
to be indeterminates. Transforming P by S changes their actual values. Consider
the X-cone 012 = cone(vo1, Vo2, V11, v21). By Lemma 2.3.2 there is a linear form u € Z*
with

<U, 7)01> - ]-7 <U, U02> = ]-a

_ _ w
<u, ’U11> = 1, (u, Um) =1- T;lXQ’ (2.4.3.4)
<u, ’021> = 1- l21.

Combining the third and fourth equation of 2.4.3.4 we obtain

——— = ugdiz2.
w12
The left hand side is strictly negative. Thus uyq # 0 holds and dq99 is a divisor of % In
particular we get the bounds
1 < dip2 < ox
w12
We treat the remaining entries of the d-block. We add multiples of the second row
of P to the third and fourth row to achieve 0 < dgo1,dge2 < lp2. Consider the X-

cone g1 = cone(voz, V11, V12, V21). By Lemma 2.3.2 there is a linear form u € Z* with

<’LL, UOl) = 1- %;(1) <’LL, ’U02> = 1a
<U, Ull) = ]-7 <U, Ul?) = ]-7 (2435)
<’LL, 021> =1

Combining the third and fourth equation of 2.4.3.5 we obtain u4 = 0 plugging this into
the first equation and multiplying by lgo yields

w
lo2 (1 — on1> = —loiloa(u1 + u2) + usloadonn = lo1 + us(lo2doir — loido21). (2.4.3.6)

In the second step we used the identity lp2(u; + u2) = ugdpa1 — 1, which we obtain from
the second equation in 2.4.3.5. Not that both us and lyedg11 — lp1dp21 are non-trivial.

Subtracting lp; on both sides in Equation 2.4.3.6 and using the bounds on dgo; we obtain
w w
1—lpg — — < donp < lop =1+ —.
wo1 wo1

To get bounds on dy12 consider the 4 x 4 integer matrix

1 0 0 0

0 1 0 0

§ = 0 0 1 0
—lo2  ldo21 +1lo2 llp2 1
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It leaves the first two rows of P unchanged and has determinant det(S) = 1. It thus
consists of admissible row operations of P. Note that S also leaves the columns wvgs, v11
andve unchanged. Multiplying P from the left by multiples of S we achieve

wx

0 < doiz < |l(lo2do1r — lordo21)| < 1 <l01 + lo2 (w(n - 1)> .

This shows that the matrix P is of the second form described in Proposition 2.4.3 (iv).

We treat case (c). Assume (l11,012) = (3,2) holds. Note that by Proposition 2.4.2
we then also have lyy = 2. Consider the X-cone oga = cone(vo1,v11,v12,v921). By
Lemma 2.3.2 there is a linear form u € Z* with

(w,om) = 1,  (u,v02) = 1— X,
(u,v11> = 1, (u,v12> = 1, (2.4.3.7)
(u,v91) = —1.

Consider the 4 x 4 integer matrix

1 0 0 0
g — 0 1 0 0
U1 U9 us U4

di11di22 — di12di21 0 2dy12 — 3di22  3di21 — 2d111
It leaves the first two rows of P unchanged and has determinant
det(S) = (3d121 — 2d111)U3 + (3d122 + 2d112)U4 = 3<u,v12> — 2<u,v11> = 1.

The matrix S thus consists of admissible row operations of P. Multiplying P from the
left by S transforms it into the matrix

—lp1 —lgg 3 2 0
—lo1 —lg2o 0 O 2
P 1 — Z;% 11 -1’

do12 do22 0 0 doar2

which we again call P. The entries d;;; are understood to be indeterminates. Transform-
ing P by S changes their actual values. We add multiples of the second row of P to the
fourth row to achieve

0 < doi2 < L

Consider now the X-cone o1 = cone(vpz, v11, V12, v21). By Lemma 2.3.2 there is a linear
form u € Z* with

<’U,, UOl) = 1- %7 <’LL, UOQ) == 17
<ua Ull) = 17 <U, U12> = 11 (2438)
(u,v91) = —1.

Combining the third and fourth equation yields u; = 0 and usz = 1. Plugging this into
the first equation and multiplying by 2, we obtain

w
2 — 2w7X = 2— 2[01U2 + 2U4d012 = 2+ U4(2d012 + l01d212)- (2'4'3'9)
01
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In the second step we used the identity 2us = —u4do12, which we obtain from the last
equation of 2.4.3.8. Note that both uy and 2dyi2 + lp1d212 are non-trivial. Subtracting 2
on both sides of Equation 2.4.3.9 and using the bounds on ds12 we obtain

—lo1 — oX < dp12 < ox

Wo1 wo1
This shows that the matrix P is of the third form described in Proposition 2.4.3 (iv),
which completes the proof. O

The final series of constraints shows that all entries of the Z-part of the degree matrix
Q° = [wo1, wo2, w11, w12, w21] are bounded.

Proposition 2.4.4. Consider X = X (A, P,X) as in Setting 2.4.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) For any four positive integers g1, a2, @11 and aqa consider the 6 X 5 matrix

_1—0401 1 1—[11 1—112 1
1 1—0(02 1—l11 1—l12 1
G L 1 1 1—[11—0{11 1—l12 1
' 1 1 1—1 1—l12—0412 1
=l —lo2 I l12 0

L —lo1 —lo2 0 0 lo1 |

The matriz G is of rank at least four. Moreover, rank(G) = 4 holds if and only
Zf Q01, p2, X111, X12 and l()l, log, l11, 112, 121 satisfy the identities

l l l l
(01+02> _ (11+12> .
Qo1 02 11 12
11 11 l l 1
++++<“+ 12) (—1) - 1L
Qor o2 011 Qa2 a;r aig/ \l

(ii) There are unique a1, oz, 01, @12 € Z>1 with ai;w;; = wx for all0 < i <1 and
all 1 < 5 <2 and the corresponding matriz G from (i) satisfies

ker(G) = ker(P) = Z- (wo1,wo2, w11, w12, Ww21).

(iii) According to the possible constellations of (lp1,111,121) from Proposition 2.4.2 we
have the following upper bounds on the entries of the matriz G from (ii):

lor lo2 111 lio la1 a1 g2 opnr g
@1,y |83 42 1 1 12 21 21 42 6
(2,2,9)| 2 2 2 2 24 42 42 42 42
1,2,2)|23 12 2 2 2 6 6 12 3
3.2,2)|3 3 2 2 5 21 21 2 21
(,2,3)|5 5 2 2 3 21 21 4 21
(2,3,2)| 5 5 3 3 2 903 35 15 28
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Proof. We prove (i). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting rows 5 and 6 and column 1:

1 1—-1I1 1 -1 1
1—0(02 1—l11 1—l12 1

G234)2345 = det | | |y — a1 -l | | = acaiia # 0.
1 1—l11 1—l12—0&12 1

Moreover, G is of rank exactly four if and only if all its 5-minors vanish. Rearranging these
six equations and removing redundancies, we arrive at the identities in agq, e, @11, @12
and lo1, lo2, 111, 112, l21.

We prove (ii). By Proposition 2.4.3 (ii) there are positive integers c;; for 0 <i <1
and 1 < j <2 with

Qijwij = wor + wo2 + (1 —lir)win + (1 = li2)wiz + war.
Moreover, by homogeneity of the defining relation g we have
lonwor + logwoz = liiwir + liswiz = la1wa.

The matrix G from (i) is the coefficient matrix of the corresponding system of linear
equations. In particular, the integral matrix G has kernel generated by the primitive
vector (w01, wp2, W11, W12, w21) € 75.

We prove (iii). We treat the configuration (lp1,011,021) = (x,1,y). In this case the
identities from (i) read

I 11
x| o ( L ) " (2.4.4.1)
Qap1 Qp2 i1 12
11 1 11
1 < n ) P (2.4.4.2)
Yy \a11 12 ap1 ap2

The first summand on the left hand side of Equation 2.4.4.2 is positive. The rest of the
sum is thus strictly smaller than one. We can thus apply Lemma 2.3.4 (i) to obtain

1 1 5 1 ( 1 1 ) 1
—+— < -, -+ = -
Qo1 Q2 6 y \ai1p a1 6
Since l11 and l12 are equal, we may assume a1 > «aq2. Moreover we have x > lps > 1
and y > 2. From this we get the bounds aj9 < 6 and y < 12. On the other hand, we can
apply Lemma 2.3.4 (ii) to Equation 2.4.4.2 directly, to obtain yag1, yape, @11 < 42. As y
is at least two, this gives the bounds ag1, age < 21. With these bounds on «;;, we can
rewrite Equation 2.4.4.1 to obtain
1 1 T l 1
2> — 4 — = —+-2 > —(z+lp).
a11 a2 apl 02 42
Since lgo is at least one and bounded from above by x, we obtain the bounds x < 83
and ZOQ S 42.
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We treat the configuration (lo1,l11,l21) = (2,2,y). In this case the identities from (i)

read
2 l 2 l
<+0ﬂ<4m>: 0, (2.4.4.3)

a1 Qp2 a11 a2
1 1 1 1 2 l 1
++++<+02><—1> = 1 (2.4.4.4)
Q1 @2 11 12 a1 a2 Yy

Combining these two equations we obtain the following identity

21 2—1 L/2 1
Lo 2l 12+(+tm), (2.4.4.5)
209 20019 Yy N1 Qp2

As the last summand on the right hand side is positive, the rest of the sum is strictly
smaller than one. Note that the numerators of the first two summands are either 0
or 1, since we have 1 < lgo,l12 < 2. Thus each one either vanishes or is a unit fraction.
Applying Lemma 2.3.4 (i) to the first two summands, we thus obtain

2*l02+2*ll2<5 1<2+l02>

209 20019 T 6’ Yy

o1 @2

1
> —.
6

With the second inequality we can give an upper bound on y by
2 l
1/36(+(”)
Qo1 @p2

In order to obtain bounds on «g; and aps we rearrange Equation 2.4.4.5. Combining the
fractions that contain «go in the denominator, we get

24.

IN

21 2py  2—1 2
= Boloo)yt+2ey  2-h 2 (2.4.4.6)
2y a2 2002 yam

The first summand on the right hand side is positive, so the remaining sum is strictly
smaller than one. As it consists of at most three unit fractions, we apply Lemma 2.3.4 (i)
to obtain

2—112+ 1 N 1 < 4i’ (2 — lo2)y + 2lo2 > i
20012 Yool Yool 42 2y 42

We solve the second inequality for agz, using y > 2 to obtain agy < 42. Instead of
splitting off the first summand in Equation 2.4.4.6, we can split off the last summand
and again invoke Lemma 2.3.4 (i) to obtain

(2—l02)y+2l02 4 2—[12 < 41 2 1
2ya2 20010 T 42’ Y1 42°

The second inequality gives the bound ag; < 42. Note that the equations 2.4.4.3
and 2.4.4.4 are invariant under switching ag; with aq1 and agpe with ajs. We thus get
the same bounds a1 < 42 and a9 < 42.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

We treat the configuration (lo1,l11,l21) = (y,2,2). In this case the identities from (i)

read
l 2 l
(y n 02) _ ( n 12) " (2.4.4.7)
apl ap2 a1l o2
1 1 2 —
11 he _ (2.4.4.8)
(gl Qo2 2012

Note that the numerator of the last summand in Equation 2.4.4.8 is either 0 or 1. It
is thus a sum of at most three unit fractions. Applying Lemma 2.3.4 (ii) we get the
bounds g1, a2 < 6 and a2 < 3. Using these bounds on ag; and age, we rearrange
Equation 2.4.4.7 to obtain

—

2 l l
4> 422 = LR Sy ).
a1 12 apl Qo2 6
Since lgo is at least one and bounded from above by y, we get the bounds y < 23
and lpo < 12. Now solving Equation 2.4.4.7 for a1 and applying the bounds that we
already established, we obtain a7 < 12.

We treat the configuration (lp1,l11,l21) = (3,2, 2). In this case the identities from (i)

read
! 2 1
(3 n 02) _ ( n 12) — 0, (2.4.4.9)
ap1 Q02 a1 12
1 1 1 1 31 1
++++<+O2)<_1) = 1. (2.4.4.10)

a1 Qo2 a1 Q12 o1 a2 z

We combine these two equations to obtain the following identity:

6—=z (2—l02)2+2l02+2—l12
 2zag 220002 2012

We determine the possible values of the numerators of the three summands on the right.
We have 3 < z < 5. In this range 2z is divisible by 6 — z. The first summand is thus
a unit fraction. The exponent lgpo can be either 1,2 or 3. The numerator of the second
summand thus evaluates to z + 2, 4 or 6 — 2. In all cases the second summand can be
written as a sum of at most two unit fractions. The numerator of the last summand is
either 0 or 1. Thus the right hand side is a sum of at most four unit fractions and their
denominators are each at least 2c;;. We apply Lemma 2.3.4 (ii) to obtain the bounds
o1, a2, a1 < 21. Now solving Equation 2.4.4.9 for o171 and applying the bounds already
established, we obtain a1 < 2.

We treat the configuration (l1,l11,l21) = (2,2,3). In this case the identities from (i)

read
l 2 l
(Z N 02) _ ( L 12) _— (2.4.4.11)
ap1 Q02 a1 12
1 1 1 1 2 2 l
+++_( +12> - 1L (2.4.4.12)
ap1 o2 Q11 Q12 3 \aqr Qg2
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We combine these two equations to obtain the following identity:

6 — 6—1 2-1
z 0z 12

1 = .
6ap1 602 2012

Just as in the previous case, the right hand side is a sum of at most four unit fractions
with the denominators at least 2c;;. We apply Lemma 2.3.4 (ii) to obtain the bounds
ap1, 2,12 < 21. Solving Equation 2.4.4.11 for «;1, using the bounds we already
obtained, we get a1 < 4.

We treat the configuration (lo1,l11,l21) = (2,3,2). In this case the identities from (i)
read

l 3 l
(z N 02) _ ( n 12) " (2.4.4.13)
ap1 Q02 aq1 12
1 1 1 1 1 l
+++_(z+02> = 1. (2.4.4.14)
ap1 o2 Q11 Q12 2 \agr Qg2

We combine these two equations to obtain the following identity:

6—z 6 — log 3— l12
1 = . 2.4.4.15
604()1 + 6a02 + 30412 ( )

Note that the denominator of the second summand can take the values 1 through 5.
Thus, in contrast to the previous two cases, in this case the bounds on «;; we obtain
from directly applying Lemma 2.3.4 (ii) are too large to be useful: The right hand side
is a sum of at most 5 unit fractions. Their denominators are thus bounded from above
by sg — 1, which is of order 107. Instead we adapt the strategy from the earlier cases.
Note that each summand is non-negative. Splitting off the second summand, the rest is
a sum of at most three unit fractions. Lemma 2.3.4 (i) yields

6—z 3—[12 41 6—[02 1
n < = .
6a01 a0 T 42 6a2 42

From the second inequality we get the bound ago < 35. Splitting off the first summand
in Equation 2.4.4.15 instead of the second, the remainder is a sum of at most four unit
fractions and we obtain ag; < 903. Splitting off the last summand, we obtain aje < 28.
Now we solve Equation 2.4.4.13 for a1 and use the bounds on the a;; we obtained to
get 11 < 15. O

Corollary 2.4.5. There is a list of 262 explicitly given matrices P of format (2,2,1,0),
each of them defining a non-toric Q-factorial, Gorenstein, log terminal Fano three-
fold X(A, P, X)) of Picard number one.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Z Z+Zy Z+Z3 Z+Zs Z+Zs ZAZ¢ ZAZE Z+Zs+Zs Z+Z3 Z+Z3 | sum

(x,1,y)| 94 24 8 3 1 1 2 1 1 135
(2,2,9) 9 9 1 3 1 23
(y,2,2) | 31 25 2 4 62
(3,2, 2) 6 1 7
(2,2,3) 5) 5
(2,3,2) | 21 8 1 30
sum | 166 67 9 6 1 1 9 1 1 1] 262

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2,2,1,0) is isomorphic to an X = X (A, P,%) with P from the list.

Proof. Proposition 2.4.4 allows us to write down explicitly all possible matrices G and
hence to determine all possible QY = [wo1, wo2, w11, w12, we1] by computer. Now, recall
that P annihilates the transpose of Q°. This enables us to determine in the matrix P,
adjusted according to Proposition 2.4.3 (iv), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P. Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we obtain the list presented in the assertion. O

2.5 Proof of Classification 2.1.1: Case 2 - format (2,2,1,1,0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (ii). The setting is as follows.

Setting 2.5.1. Let X = X (A, P,¥) a Q-factorial threefold of Picard number one of
format (2,2,1,1,0). Then

—lor —lo2 11 iz O 0
—lo1 —lge O 0 lo1 0
P = [vo1,v02,v11,v12,v21,031] = | —lor —lp2 O 0 0 s
do11  do21 di11 dizr donn dsin
do12  doz2 di12 diz2 doi2 dsi2

holds with pairwise different primitive columns vo1, vo2, v11, V12, V21 and v3; generating Q°
as a cone. We assume P to have ordered exponents. The maximal X-cones of the fan X
of Z are given by

oo1 = cone(voz, V11, V12, V21, V31), ooz = cone(vor, V11, V12, V21, V31),

o = cone(vot, Vo2, V12, V21, U31), o12 = cone(vo1, Vo2, V11, V21, V31)-
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2.5. Proof of Classification 2.1.1: Case 2 - format (2,2,1,1,0)

We have K = Z @ I' with the torsion part I" and denote deg(T;;) = (w;j,n:;) as well
as deg(Ty) = (wg, ni) accordingly. In particular, we write

Q% = [wor,woa, w11, W12, War, W31]

for the free part of the degree matrix Q). Note that the vector (wo1, wo2, w11, w12, Wa1, W31)
is primitive in Z® and generates ker(P).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P.

Proposition 2.5.2. Consider X = X(A, P,X) as in Setting 2.5.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) We have 111 = li2 = 1 and the tuple (lo1,l11,121,131) fits into precisely one of the
following constellations:

(]-a]-ax)y)u nyZQ, (27]—7273)7 SSZSE)’
(2,1,9,2), y=2 (3,1,2,2), 3<z<5;
(v,1,2,2), y>3; (2,1,3,2), 4<z<5.

(ii) —K = (1 —lo1) D + (1 — lo2) D, + D3S + DS is an anitcanonical divisor on X.
In particular, the free part of the anticanonical class is given by

wy = (1 —1lp)wor + (1 — lo2)woz + wa1 + ws3s.

(iii) Admissible row operations turn the defining matriz P into the form

—lo1 —lpo 1 1 0 0 lo1>lo2>1, l21>131>2,
—lp1 —lpo O 0 lo1 0 0<do11,do12<lo1,
P = —lpr —lo2 O 0 0 31 |, 0§d021<l01%7
doir  do21 0 di21 dain dan — X Sdoga <loa+ X
doiz  do22 0O 0 dor2 d3i2 1<din <3, 0<d3i1,ds12<la1,

where woa | wx and wis | wx.

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(vo1,v11, v21,v31)
to see that (lo1,l11,121,131) is a platonic tuple. As P has ordered exponents, lo1 > l11
and l91 > [31 holds. Moreover, since X is non-toric, we have 31 > 2. Thus we have [;; =1
and consequently [y = 1. This leaves us with the six constellations for (Ip1, 011, l21,131)
stated in the assertion. Item (ii) follows immediately from Remark 2.2.13 and homogeneity
of the defining relations gy and g¢;.

We prove (iii). Adding multiples of the first row of P to the fourth and fifth row, we
achieve di11 = di12 = 0. We apply a suitable unimodular 2 x 2 matrix to the d-block
to ensure dios = 0 and di2; > 0. By linear independence of v1; and vis the entry dis;
is positive. By adding multiples of the second row to the fourth and fifth row, we
may assume 0 < dg11,do12 < lp1- We make use of the Gorenstein property. Consider
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Chapter 2. Gorenstein Fano threefolds of Picard number one

the X-cone 012 = cone(vo1, vo2, V11, V21, v31). By Lemma 2.3.2 we have wis | wx and
there is a linear form u € Z° with

(u,vo1) = 1—lo1, (u,vo2) = 1—lo2,
<U,U11> - 07 <’U,71)]_2> - _%7
(u,v21> = 1, <u,v31> = 1.

By the third equation u; = 0 holds. Plugging this into the fourth equation, we obtain

——— = uydi2.
w12

Thus dy91 divides Z)’—f; In particular, we get the bounds 1 < dy91 < %f; Now consider

the X-cone og2 = cone(vo1, v11, V12, V21, v31). By Lemma 2.3.2 we have wpy | wx and
there is a linear form u € Z° with

(w,vo1) = 1—lo1, (w,v02) = 1—lo2 — 3=,
<u,v11> = O, <u,v12> = 0, (2.5.2.1)
(u,v91) = 1, (u,v31) = 1.

Again, by the third equation, u; = 0 holds. Plugging this into the fourth equation now
yields uqs = 0. Plugging this into the second equation and multiplying by lp1, we obtain

w
lo1 (1 —lo2 — wo);) = —lo2lo1(u2 +ug) +uslordoze = us(lo1dozz — lo2doi2) +lo2(1 —lo1)-

In the second step we used the identity o1 (u2 + ug) = lo1 + usdpr2 — 1, which we obtain
from the firs equation in 2.5.2.1. We subtract lpa(1 — lp1) on both sides to obtain

w
us(lo1do22 — lo2do12) = lot (1 — X) — lp2.
Wo2

As the right hand side is negative, the left hand side thus not vanish. Thus we have us # 0
as well as (101(1022 — l02d012) 75 0 and (101(1022 — logd()lg) is a divisor of l01 (1 — 1157;(2) — log.
Solving for dgoo und using the bounds on dyi2, we obtain

wx wx
——— < dp2 < loo+—
wo2 wWo2

Adding the dgi2-fold of the third row and the ly;-fold of the fifth row of P to the fourth
row leaves the first, second and third entry unchanged. We repeat this to achieve

wx wx
0 < doz1 < |loido2z2 — lo2doiz] < Il (—1> +lopo < loi——.
wo2 wo2

Finally we add multiples of the difference of the second and third row of P to the fourth
and fifth row to obtain 0 < dg11,d312 < l31. ]

Our second series of constraints shows that all entries of the Z-part of the degree
matrix QY = [wo1, w2, w11, W12, wo1,ws31] are bounded.
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2.5. Proof of Classification 2.1.1: Case 2 - format (2,2,1,1,0)

Proposition 2.5.3. Consider X = X (A, P,X) as in Setting 2.5.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) For any four positive integers g1, o2, @11 and aqa consider the T X 6 matrix

_1*l01*0501 1*l02 0 0 1 1
1—[01 1—[02—&02 0 0 1 1
1-— l01 1-— l02 —Qa11 0 1 1
G = 1-— l()l 1-— 102 0 — Q12 1 1
—lo1 —lo2 1 1 0 0
—101 —l02 0 0 I 0

i —lo —log 0 0 0 I3 |

The matrix G is of rank at least 5. Moreover, rank(G) = 5 holds if and only
Zf 01, p2, 11, X12 and l01, log, lgl, l31 satz’sfy the identities

lUil n lo2 1 1
apl 2 Q11 Q12
1 1 l l 1 1
++<01+02> <+—1) "
a1l 02 apgr  ap2/ \la1 I3

ii) There are unique g1, a2, 11, @12 € Z>1 with a;;w;; = wx for all 0 <i <1 and
> JWij
all 1 < j <2 and the corresponding matriz G from (i) satisfies

ker(G) = ker(P) = Z- (wo1, wo2, w11, Wiz, W1, W31).

(iii) According to the possible constellations of (lo1,111,121,131) from Proposition 2.5.2 (i)
we have the following upper bounds on the entries of the matriz G from (ii). An
empty line indicates that this exponent configuration does not occur.

lor loo lin li2 o1 l31 apr a2 a1 aia
ALyl 1 1 1 42 4 21 2 21 2
21,422 2 1 1 6 2 12 3 3 3
1,223 3 1 1 2 2 2 2 1 1
(2,1,2,3)
31,223 1 1 15 2 3 1 1 1
(27]‘73’2)

Proof. We prove (i). In order to see that G is of rank at least five, we just compute the
minor obtained by deleting rows 5 and 7 and column 1:

1 — los 0 0 1 1
1-— l02 — Q2 0 0 1 1
det 1— log —Q11 0 1 1 = —040204110&12l21 7é 0.
1— Iy 0 —a1p 1 1
—loo 0 0 lo1 O
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Moreover, G is of rank exactly five if and only if all its 6-minors vanish. Rearranging these
seven equations and removing redundancies, we arrive at the identities in a1, cgo, 11, @12
and lo1, lo2, l21,131.

We prove (ii). Applying Corollary 2.2.21 to the four maximal X-cones og1, 092, 011,
and o012 we see that each of wg1, woo, wi1, and wiy is a divisor of wy and hence we
obtain positive integers o;; for 0 <7 <1 and 1 < j <2 with

ajjwi; = (1 —lo1)wor + (1 — lo2)woz + w21 + wsy.
Moreover, by homogeneity of the defining relations gg and g; we have
lorwor + lopwo2 = wi1 +wiz2 = larwar = I31ws;.

The matrix G is the coefficient matrix of the corresponding system of linear equations. In
particular, ker(G) is generated by the primitive vector (wo1, wo2, w11, w12, way,ws1) € ZS.

We prove (iii). We treat the configuration (lo1,l11,l21,131) = (1,1, 2,y). In this case
the identities from (i) read

_t— - ——-— =0, (2.5.3.1)
Qo1 Qap2 a1l 12

1 1 1 1
( N ) ( n ) _ o1 (2.5.3.2)
Q1 @02 r Yy

Since lg1 = lg2 and l17 = l12 we may assume oy > g and aq1 > a12. Moreover we have
x > y. With these assumptions, Equation 2.5.3.2 immediately gives the bounds age < 2
and y < 4. Moreover, we may expand Equation 2.5.3.2 into a sum of four unit fractions.
Lemma 2.3.4 (ii) then gives the bounds ap; < 21 and z < 42. We use Equation 2.5.3.1
and the bounds on ag; and agy to obtain a1 < 21 and a2 < 2.

We treat the configuration (lp1,11,l21,131) = (2,1,¥,2). In this case the identities
from (i) read

Qo1 02 i1 12
2—1 1/ 2 l
02 1 ( n 02> -1 (2.5.3.4)
209 Y \ 001 ap2

We use Equation 2.5.3.3 to replace the term in the brackets in 2.5.3.4 and obtain
2-lpp 1 1
2000 yon  yoaa
which is a sum of at most 3 unit fractions. We can thus apply Lemma 2.3.4 (ii) to get the
bounds a11, @12 < 3 and y < 6. Combining this equation with 2.5.3.3 and considering
the two cases lypo = 1 and lgpo = 2, we obtain the bounds ap; < 12 and ago < 3.
We treat the configuration (lp1,11,l21,131) = (y,1,2,2). In this case the identities
from (i) read

= 1,

_t— — —— — — 0,
ap1 ap2 aq1 12
1 1
—+ — = 1.
ap1 ap2
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The second equation immediately yields ag; = age = 2. Plugging this into the first
equation yields y = 3, lpg = 1 and a1 = a3 = 1.

We treat the configuration (lp1,11,l21,131) = (2,1,2,3). In this case the identities
from (i) read

o1 02 11 a12

6— =z (3 — 2[02)2 + 3lp2
4
3zag 3za2

= 1 (2.5.3.6)

Since l17 = l12 we may assume aj] > a12. We have 3 < z < 5 In this range, 6 — z is a
divisor of z. Thus the first summand of Equation 2.5.3.6 is at most 1/3. For the second

summand this means
(3 - 2l02)2 + 3lp2 > 2

3za2 - 3

This inequality is only fulfilled for z = 3, lgo = 1 and ag2 = 1 and in this case equality
holds. Thus we also have ag; = 1. Plugging these values into Equation 2.5.3.5, we obtain

1 1
_—t— = 3’
o1 o2
which is a contradiction. Thus, the exponent configuration (lo1,l11,l21,031) = (2,1, 2,3)
does not occur.
We treat the configuration (lo1,l11,121,131) = (3,1, 2,2). In this case the identities
from (i) read

—_—t— - — - — = 0, (2.5.3.7)
ap1 Qp2 aq1 12

6—=z (2—[02)2—}—2[02
+
220[01 22(102

= 1 (2.5.3.8)

As before, 6 — z is a divisor of z for 3 < z < 5, thus the first summand in Equation 2.5.3.8
is at most 1/2. For the second summand this means.

(2 — 102)2 + 212 > 1

\)

220[02

This inequality is only fulfilled for age = 1. The second summand in Equation 2.5.3.8 is
a sum of at most two unit fractions. Applying Lemma 2.3.2 (i), we obtain

6—z 1

2za01 6’

which gives the bound ag; < 3. Plugging these into Equation 2.5.3.7, we get the
bounds lps =1, a1 = 1 and aqo = 1.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

We treat the configuration (lg1,111,l21,131) = (2,1,3,2), where z > 4. In this case the
identities from (i) read

Qo1 Q02 aq1 12
6— 2z 6 — l02

1. 2.5.3.10

6o 6ao2 ( )

The left hand side of Equation 2.5.3.10 is a sum of at most three unit fractions, each with
denominator at least 2a;;. We apply Lemma 2.3.2 (ii) to obtain the bounds agq, ap2 < 3.
Combining Equations 2.5.3.9 and 2.5.3.10, we get the identity

1 1 1 1
—+— =6l—+—-1).
a1l o192 Qo1 @2

This equation is only fulfilled if exactly one of ap; and agz is equal to one , the other one

is equal to three and a;; = a2 = 1. Plugging this into Equation 2.5.3.9, we obtain

l 4 1 7

2= —+-2 > — 4= >

apr Qo2 apr Qo2 3
which is a contradiction. Thus, the exponent configuration (lo1,l11,l21,1031) = (2,1,3,2)
does not occur. This completes the proof. O

Corollary 2.5.4. There is a list of 10 explicitly given matrices P of format (2,2,1,1,0),
each of them defining a non-toric Q-factorial, Gorenstein, log terminal Fano three-
fold X(A, P, X)) of Picard number one.

Z Z+4Zy Z+Zs Z+Zy Z+ZE  ZAZo+Z4 | SUID

(L,1,z,y) | 1 1 1 1 1 5
(2,1,9,2) | 1 2 1 4
(y,1,2,2) 0
(3,1,2,2) | 1 1
sum 3 3 1 1 1 1 10

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2,2,1,1,0) is isomorphic to an X = X (A, P,X) with P from the list.

Proof. Proposition 2.5.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q° = [wo1, wo2, w11, W12, W21, w31] by computer. Recall
that P annihilates the transpose of Q°. This enables us to determine in the matrix P,
adjusted according to Proposition 2.5.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P. Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we obtain the list presented in the assertion. ]
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2.6 Proof of Classification 2.1.1: Case 3 - format (2,2,1,1,1,0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (iii). The setting is as follows.

Setting 2.6.1. Let X = X (A, P,X) a Q-factorial threefold of Picard number one of
format (2,2,1,1,1,0). Then

—lor —lo2 L1 lLiz O 0 0
—lon —loo 0 0 I91 0 0

—lo1 —lo2 0 0 0 131 0
P = [vo1,v02, V11, V12, V21, V31, V41] = Sl s 0 0 0 0 Iy
do11  do21 diin di21 donn dain dann
doi2  doo2 di12 dizz d2i2 dzi2 darn |

holds with pairwise different primitive columns vy, vg2, V11, V12, V21, v31 and v4 generat-
ing QY as a cone. We assume P to have ordered exponents. The maximal X-cones of the
fan ¥ of Z are given by

001 = COHe(vo271111,@12,1)217?131,1141), 002 = COHG(UOMUH,UU,U%U31,?}41),

o1 = cone(vo1, Vo2, V12, V21, V31, V41 ), o12 = cone(vo1, Vo2, V11, V21, V31, V41 ).

We have K = Z @ I' with the torsion part I' and denote deg(T};) = (w;j, ;) as well
as deg(Ty) = (wg, mi) accordingly. In particular, we write

0
Q" = [wo1, w2, wi1, Wiz, W21, W31, Wa1]

for the free part of the degree matrix Q. Note that the vector (wo1, wo2, w11, wi2, wa1, w31, Wa1)
is primitive in Z7 and generates ker(P).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P.

Proposition 2.6.2. Consider X = X (A, P,%) as in Setting 2.6.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) We have lo1 = lo2 = 1 as well as l11 = lia = 1. Moreover, the tuple of expo-
nents (lo1,111,121,131,141) fits into precisely one of the following constellations:

(1,1,9,2,2), y>2; (1,1,2,3,2), 3<z2<5.

(ii) —K = (1 —I21) D3 + D + D3 is an anticanonical divisor on X. In particular,
the free part of the anticanonical divisor class of X is given by

wyxy = (1—l21)wa1 + w31 + wai.

85



Chapter 2. Gorenstein Fano threefolds of Picard number one

(iii) Admissible row operations turn the defining matriz P into the form

-1 -1 1 1 0 0 0
-1 =1 0 0 o 0 0
0 0 0 I3 0
0 0 0 0 Iy |’
0 do21 0 dig1 do11 d3in dan
0 diz2 d212 dzi2 dar2 |

lo1>1312>141>1,
U)X
1Sd021§r()2,
wx
0<d121<d122< wig’
0<ds11,d312<I31,
0<d411,da12<l41,

where wo2 | wx and wis | wx.

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(vo1, v11, V21, V31, V41)
to see that (lp1,l11,l21,131,041) is a platonic tuple. As P has ordered exponents, we
have lgp; > l11, lo1 > 31 and l3; > l41. Moreover, since X is non-toric, 47 > 2 holds. Thus
we have lg; = 1 as well as I3 = 1 and consequently lgo = l12 = 1. This leaves us with
the two constellations for (lo1,111, 021,131, 141) stated in the assertion. Item (ii) follows
immediately from Remark 2.2.13 and homogeneity of the defining relations gg, g1 and gs.

We prove (iii). We add multiples of the first row of P to the fifth and sixth row to
achieve di11 = d112 = 0 and we add multiples of the second row to the fifth and sixth
row to achieve dg11 = dg12 = 0. Multiplying the d-block by a suitable 2 x 2 unimodular
matrix, we may assume that dgos = 0 and dgo; > 0 holds. Linear independence of vy
and vge ensures that dys; is positive. Multiplying the last row by —1 if necessary, we
may assume dijoo > 0. We make use of the Gorenstein property. Consider the X-
cone opg = cone(vg1, V11, V12, V21, V31, V41). By Lemma 2.3.2 we have wpe | wx and there
is a linear form u € Z% with

(u, 1}01> = O, <u, ’1)02> = —%,
(u, U11> = 0, (u, U12> = O,

(u, U21> = 1- 121, <u, 1)31> = 1,

(u, U41> = 1.

Combining the first two equations shows that dgo; is a divisor of wX /wge. In particular,
we get the bound

1 < doo1 < ox
wo2
Applying Lemma 2.3.2 to the X-cone o12 = cone(vo1, Vo2, V11, V21, V31, V41), We see
that w2 | wx holds and we obtain a linear form u € Z% with
<U,’U0]_> - O) <U7U02> = 07
(u,v11) = 0, (u,v12) = =%,
(u,v21) = 1—1o1, (u,v31) = 1,
(u,v41> = 1.

Combining the first three equations yields u; = 0 and us = 0. Plugging this into the
fourth equation shows that dj92 is a divisor of wx /wi2. We add multiples of the sixth
row of P to the fifth row to obtain the bounds

wx

0 < diz1 < dizg < —.
w12
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Finally we add multiples of the difference of the second and third row to the fifth and
sixth row, to achieve 0 < d311, d312 < l31 and we add multiples of the difference of rows
two and four to rows five and six to achieve 0 < d4q1,da12 < l47. O

Our second series of constraints shows that all entries of the Z-part of the degree

matrix QY = [wo1, w2, W11, W12, Wa1, W31, w41] are bounded.

Proposition 2.6.3. Consider X = X(A, P,X) as in Setting 2.6.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i)

(iii)

For any four positive integers ag1, agz, 11 and ais consider the 8 X 7 matrix

—Q1 0 0 0 1-—1I9 1 1
0 —Qp2 0 0 1-— l21 1 1
0 0 —Q11 0 1-— 121 1 1
G = 0 0 0 —Q12 1— l21 1 1
’ —1 —1 1 1 0 0 O
-1 -1 0 0 I91 0 0
—1 —1 0 0 0 Ilsy O
i -1 —1 0 0 0 0 In ]

The matriz G is of rank at least 6. Moreover, rank(G) = 6 holds if and only
if ap1, a2, 11, @12 and lo1,l31,1l41 satisfy the identities

1 1 1 1
+

a1 Q02 11 12
1 1 1 1 1
— (1) = L
agr a2/ \la1 31 la

There are unique o1, 2, 11, 012 € Z>1 with a;jw;; = wx for all 0 < i <1 and
all 1 < 5 <2 and the corresponding matrix G from (i) satisfies

ker(G) = ker(P) = 7Z - (wo1,woz2, W11, W12, W21, W31, W41 ).

According to the possible constellations of the exponents (lo1, 11,121,131, 141) from
Proposition 2.6.2 (i) we have the following upper bounds on the entries of the
matriz G from (ii). An empty line indicates that this exponent configuration does
not occur.

‘101 log i1 12 o1 1 la ao1 a2 oa1 oaa
,2) 1 11 1 2 2 2 1 1 1 1
2
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Proof. We verify (i). In order to see that G is of rank at least six, we just compute the
minor obtained by deleting rows 5 and 8 and column 1:

[ 0 0 0 1-—1Is 1 17
—Qp2 0 0 1- l21 1 1
0 —Q11 0 1-— 121 1 1 o
det 0 0 —ap 1-ly 1 1] = ageariaialalzr # 0.
-1 0 0 I 0 0
L -1 0 0 0 I3 0]

Moreover, G is of rank exactly six if and only if all its 7-minors vanish. Rearrang-
ing these eight equations and removing redundancies, we arrive at the two identities
in ao1, ap2, @11, 12 and laq, 131, l41.

We prove (ii). Applying Corollary 2.2.21 to the four maximal X-cones og1, 092, 011,
and o012 we see that each of wg1, woo, wi1, and wig is a divisor of wyx and hence we
obtain positive integers a;; for 0 <7 <1 and 1 < j <2 with

ajjwi; = (1 —la1)war + w31 + waq.
Moreover, by homogeneity of the defining relations gg, g1 and go we have
w1 + w2 = wi1 +wiz = larwer = 31wz = lyywa.

The matrix G is the coefficient matrix of the corresponding system of linear equa-
tions. In particular, the kernel of the matrix G is generated by the primitive vec-
tor (wor, woz, w11, Wiz, Wa1, w31, wa1) € Z".

We prove (iii). We treat the configuration (lo1,l11,l21,131,141) = (1,1,,2,2). In this
case the identities from (i) read

1(1 1)
- — 4+ — = 1.
Y \ Qo1 02

By the second equation we immediately get y = 2 and a1 = a2 = 1. Plugging this into
the first equation, we obtain a1 = a2 = 1.

We treat the configuration (lp1, 111,021,131, 141) = (1,1, 2,3,2). In this case the identi-
ties from (i) read

— - = =,
Qo1 Qo2 011 o2
6— 2z < 1 1 )
—F—) = 1
6z \aor  ao2
The second equation implies 2 > 66_22, which is only possible for z = 1. This is a

contradiction to the assumption z > 3. Thus this exponent configuration does not
occur. 0
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Corollary 2.6.4. For every choice A\1 € K* and Ao € K*\{\1} the matriz P of for-
mat (2,2,1,1,1,0) given by

-1 -1 11 00 0
-1 -1 00 200
p_ |-l -100 020
-1 -1 00 00 2
0 100 -3 11
0 001 -3 1 1|

defines a non-toric Q-factorial, Gorenstein, log terminal Fano threefold X = X (A, P,3)
of Picard number one with divisor class group and Cox ring

R(X) = K[To1,To2, Th1, Ti2, To1, T31, Tu1] /{90, 91, 92),

g0 = ToiToo + TuTio+ T3, ¢ = MTuTio+Th+T5, g = MNT5 +T5 + T4,

I

Cl(X) = Z&Z/2Z & L/2Z, Q =

= Ol =
= Ol =
= Ol =
= Ol =
Ol = =
[enliNenliy g

1
Every non-toric, Q-factorial, log terminal and Gorenstein Fano threefold of Picard number

one of format (2,2,1,1,1,0) is isomorphic to X = X(A, P,X) for a choice of \1 and Ao

as above with that matriz P.

Proof. Proposition 2.6.3 provides a single matrix GG, namely

-1 0 0 0 -1 1 1

0 -1 0 0 -1 11

0 0 -1 0 -1 11

a - 0 0 0 -1 -1 11

-1 -1 1 1 000

-1 -1 0 0 2 00

-1 -1 0 0 020

| -1 -1 0 0 0 0 2|

Its kernel is generated by the primitive vector
Q" = [wor, woz, w11, w12, wor,w31] = [1,1,1,1,1,1,1].

Recall that P annihilates the transpose of Q°. This enables us to determine in the matrix
P, adjusted according to Proposition 2.6.2 (iii), all the remaining variables. Checking
the list of possible matrices P for the necessary properties by means of [43] and reducing
via Proposition 2.3.1 to data defining pairwise non-isomorphic varieties, we end up with
the single matrix P presented in the assertion. The description of the Cox ring and the
class group follow from Construction 2.2.2. O
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2.7 Proof of Classification 2.1.1: Case 4 - format (3,1,1,0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (iv). The setting is as follows.

Setting 2.7.1. Let X = X (A, P,Y) a Q-factorial threefold of Picard number one of
format (3,1,1,0). Then

—lo1 —lo2 —loz 111 O
—lo1 —lo2 —los 0 In
do11 do21 dozr dinn doin
do12  do22  doz2  diiz  d2i2

P = [vo1,v02,v03, V11, 21] =

holds with pairwise different primitive columns vg1, voz, vo3, v11 and v generating Q* as
a cone. We assume P to have ordered exponents. The maximal X-cones of the fan X
of Z are given by

oo1 = cone(vp2, Vo3, V11, V21), 002 = cone(vo1, Vo3, Vi1, V21),

003 = cone(vo1, Vo2, V11, V21), To = cone(vo1, Vo2, V03)-

We have K = Z @ I' with the torsion part I' and denote deg(T;;) = (w;j,nij) as well
as deg(Ty) = (wk, nk) accordingly. In particular, we write

Q" = [wo1,woe, wo3, w11, w1

for the free part of the degree matrix Q. Note that the vector (wg1, wo2, wos, w11, wa1) is
primitive in Z° and generates ker(P).

Very first constraints on the exponents of the defining relation g come from log
terminality of X.

Proposition 2.7.2. Consider X = X(A, P,X) as in Setting 2.7.1. Assume that X is
non-toric, Fano and log-terminal. Then the tuple (lp1,111,1l21) fits into precisely one of
the following constellations:

(Lz,y), z>y>2 (2,23), 3<z<5
(y7272)7 y=>2 (3,2, 2), 3
(2ay72)7 ) > 3, (Z,3, 2), 4

The following Lemma treats the exponents (lo1, lo2, loz) of the first monomial of the
defining relation g.
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Lemma 2.7.3. Consider X = X(A,P,X) as in Setting 2.7.1. Assume that X is
Gorenstein. If the exponents lo1, lo2 and lgs coincide, then they must all be equal one.

Proof. Let [l :=lp1 = lpg = lp3. Assume [ > 1 holds. We apply a suitable unimodular 2 x 2
matrix to the d-block and add multiples of the first row of P to the third row, so that P
is of the shape

-1 —1 -1 I 0
-1 -1 -1 0 9
do11 do21 dozr dinn do1n
0 doz2 doz2 dir2 doio

where 0 < dp11 < I. Consider the X-cone 179 = cone(vo1, vo2,v03). An anticanonical
divisor on X is given by

—K = Dy + Dgsy + Dy + D75 + (1 — 121) Dy
By Lemma 2.3.2 there is thus a linear form v € Z* with
(u,vp1) = 1, (u,vp2) = 1, (u,vp3) = 1.
This implies dgao # 0, since otherwise we had vg; = vgo. We expand the first equation
1 = (u,vo1) = —l(u1 +u2) + do11us.

Thus [ and ug are coprime. In particular, since [ > 0, we have ug # 0. We combine this
with the second and third equation to obtain

ug(dog1 — do11) + wadp22 = 0,
uz(dos1 — do11) + uadose =

Combining these two together, we obtain the following identity

ug(do22(do31 — do11) — doza(do21 — do11)) = 0.

As ug # 0, the second factor must vanish. This contradicts the fact that the first three
columns vg1, vg2, vo3 of P are linearly independent. Thus we have [ = 1, which completes
the proof. O

We deviate from the formula established in the other parts of the proof by first
treating the Z-part of the degree matrix Q¥ = [wo1, wo2, wo3, w11, w21]. This is our second
series of constraints.
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Proposition 2.7.4. Consider X = X (A, P,%) as in Setting 2.7.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.

(i) =K = (1 —1lo1) D + (1 —lo2) D, + (1 — log) D& + DX + D2\ is an anticanonical
divisor on X . In particular, the free part of the anticanonical class is given by

wy = (1 —1lp1)wor + (1 — loz)woz + (1 — lo3)wos + w11 + wa.

(ii) For any three positive integers a1, gy and gz consider the 5 X 5 matrix

1—[01—0&01 1—[02 1—[03 1 1
1—l01 1—102—0502 1—l()3 1 1
G = 1—[01 1—l02 1—103—0103 1 1
—ln —lo2 —lo3 ln O
—ln —lo2 —los 0 Ixn

The matriz G is of rank at least four. Moreover, we have det(G) = 0 if and only
Zf 01, p2, (03 and l01, log, log, 111, l21 satisfy the identity

1 1 1 l l l 1 1

+++<01+02+°3) (+—1) — 1.

aor a2 Qp3 apr  ap2 o3/ \li1 Iz

(iii) There are um’que 01, 02, 003 € ZZl with ap1Wo1 — pWp2 — p3Wp3 — Wx, and
the corresponding matrix G from (iii) satisfies

ker(G) = ker(P) = Z-(w01,w02,w03,w11,w21).

(iv) According to the possible constellations of (lp1,111,l21) from Proposition 2.7.2 we
have the following upper bounds on the entries of the matrix G from (ii):

lor lo2 los i1 lo1 apr a2 aps
dz,y| 1 1 1 126 6 30 10 3
@w.2.2)(10 5 1 2 2 6 6 6
(2,94,2)| 2 2 1 30 2 1806 1806 1806
2.23)|2 2 1 5 3 602 28 28
3,223 3 2 5 2 903 35 35
(3,2)|5 5 4 3 2 602 35 35

Proof. We prove (i). We have r = 1 and the defining relation g of the Cox ring is given
by

_ mplorplo2los l11 lo1
g = To1 Ty To3" + 11" + 1ot

Thus, deg(g) = lo1 deg(To1) + lo2 deg(To2) + los deg(Tp3) holds and Remark 2.2.13 shows
that the anticanonical divisor —/C is as claimed.
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We prove (ii). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting row 5 and column 1:

1— 1y 1—lps 1 1
. 1—[02—0&02 1—l03 1 1 .
Gs1 = det | | los | dos—oos 1 1] — agzagslin # 0.
—lp2 —lo3 lip 0

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity in ap1, Xp2, X3 and l01, log, l03, 111, l21.

We prove (iii). Applying Corollary 2.2.21 to the three maximal X-cones og1, 0p2
and og3 we see that each of w1, woe and wyz divides wx and hence we obtain positive
integers ag1, apz and g3 with

agiwor = oapawo2 = apzwoz = (1 —lo1)wor + (1 — lo2)woz + (1 — log)wos + w11 + wa.
Moreover, by homogeneity of the defining relation g we have
lorwor + logwoz + logwoz = liiwir = l21woy.

The matrix G from (i) is the coefficient matrix of the corresponding system of linear
equations. In particular, the integral matrix GG has kernel generated by the primitive
vector (’LU()l, wWp2, W11, W12, wgl) € 7.

We prove (iv). We treat the configuration (lp1,111,l21) = (1, 2z,y). In this case the

identity from (ii) reads

1 1 1 1 1

< T ) ( + > = 1. (2.7.4.1)
Qo1 Qo2 @03/ \T Y

Since lp1 = lg2 = lp3 holds, we may assume g1 > ag2 > ap3. We can then directly infer
that ag3 < 3 and y < 6 holds. Note that we have x > y > 2. We distinguish two cases.
If x =y = 2, then Equation 2.7.4.1 reduces to

1 1 1
—t— 4+ — =1
o1 a2 Qo3

Applying Lemma 2.3.4 (ii) yields ag1,ap2 < 6. If z > then the second factor in

3,
Equation 2.7.4.1 is strictly smaller than one. Lemma 2.3.4 (i) says that the second factor
is at most 5/6 and we get the inequality

6 1 1 1 2
< —+—+— < —+1
5 Qo1 Qo2 Qo3 02

This gives the bound agy < 10. To obtain an upper bound for z, we rearrange Equa-

tion 2.7.4.1 to obtain . . .
aor T oo Vo
1— ( 1,1, 1 )

Yyao1 Yyao2 Yyao3

Tr =
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As we are looking for positive solutions, the denominator on the right hand side must be
positive. We can thus invoke Lemma 2.3.4 (i) to obtain

1 1 1 41
f—r— < —.
yoor  Yop2 Y3 42

Plugging this into the equation for x gives the upper bound =z < 126. Finally we
solve Equation 2.7.4.1 for ap; and use the established bounds on x,y and «g2, a3 to
obtain an1 < 30.
We treat the configuration (lp1,11,721) = (v, 2,2). In this case the identity from (ii)
reads 1 ! 1
—_—+ — 4+ — =1 (2.7.4.2)
Qo1 Q02 &03
This yields a1, ao2, ap3 < 6 according to Lemma 2.3.4 (ii). Additionally, since lop1 = lg2
holds, we have wi; = wa;. We apply Corollary 2.2.21 to the fourth maximal X-
cone 79 = cone(uvgi, Vo2, vo3) to see that there is v € Z>; with wx = ywi1 = yway.
Homogeneity of the defining relation g yields the identity
Yol s 2 (2.7.4.3)
Qo1 Qo2 Op3 Y

With the bounds that we obtained for agp1, ago, ags we get the chain of inequalities

2 l l 1
2>~ = L 4 24 B 5 Dyt il + o).

Y Qo1 Qo2 (03 6
Using y > lgo and lpg > ly3, this inequality gives the bounds y < 10 and lgpo < 5. We also
obtain the inequality

l l 1 1 1
2 > l+£+ﬁ > 503(++> = los,
Qo1 Qo2 Qo3 Qo1 Qo2 Qo3
which shows that lgpg < 2 holds. If lyj3 = 2 holds, then these must all be equalities, thus
in this case v = 1 holds. Plugging v = 1 and ly3 = 2 into Equation 2.7.4.3, we obtain
y—2  lo2—2

+ = 0.
ao1 @02

Note that both summands on the left are non-negative. This is only possible if we
have y = lgo = 2. This is a contradiction to Lemma 2.7.3, thus lp3 = 1 holds.

We treat the configuration (lo1,l11,021) = (2,y,2). Note that by Lemma 2.7.3 we
immediately get lp3 = 1. We rearrange the identity from (ii) to obtain

2 l 1 2—1 1
1 = ( 2 4 ) + ( 2 4 > . (2.7.4.4)
a0y o2y o3y 2002 2a03
The first bracket is positive and the second bracket is a sum of at most two unit fractions.
Lemma 2.3.4 (ii) yields

2l 1 5 P log 1 1
+ -~ S ) + + 2 .
2002 203 6 aply oy 3y 6
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The inequality on the right gives the bound y < 30. To obtain bounds on agi, ap2
and g3 we rearrange Equation 2.7.4.4 in three different ways, each time separating the
term involving a different a;:

2 l 2—1 1 1
1 = + ( e )
o1y o2y 20102 ap3y 203
2lp0 + (2 — 1 2 1 1
02 + ( 02)Y n ( n n )

2yao2 aoly o3y 203
24+ 2 l 2—1

_ v ( LI 02) .
2yaos aoly  Qo2y 2002

Note that in each of the three cases, the first summand is positive and the second
summand is a sum of at most four unit fractions. Applying Lemma 2.3.4 (i) we obtain

2 > 1 2l02—|—(2—l02)y > 1 2—|—y > 1
aply 1806° 292 ~ 1806’ 2yap3 1806°

Solving these inequalities for g1, ape and ag3 we obtain the bounds
ap1 S 1806, ap2 S 1806, Q03 S 1806.

We treat the configuration (lp1,l11,021) = (2,2,3). Note that by Lemma 2.7.3 we
immediately get lgps3 = 1. The identity from (ii) reads

6—2 32+(3-22)lpa 3+2z2
+
32&01 320402 320&03

Note that the numerator of the second summand is positive for all permitted values of z
and lp2. We have 3 < z < 5. In this range 3z is divisible by 6 — z. The first summand is
thus a unit fraction. Similarly we see that the second and third summand are each a
sum of at most two unit fractions. Moreover, each of the three summands is positive.
We can thus apply Lemma 2.3.4 (i) for each of the three summands to obtain

6—z S 1 3z 4+ (3 —22)ln2 S 1 3+2 - 1

3zagr — 1806’ 3zaq2 42’ 3zagy 42

Solving these inequalities for agi, age and agps, we get the bounds ap; < 602, age < 28
and a3 < 28.

We treat the configuration (lp1,011,021) = (3, 2,2). Using Lemma 2.7.3 we get the
bound lp3 < 2. The identity from (ii) reads

6—2 224+ ((2—-2)o2 224 (2—2)los

= 1.
22&01 220&02 2ZO£03

Note that the numerators are all positive. Moreover, the first summand is a unit fraction,
as 6 — z divides 2z, and the second and third summand are each a sum of at most two
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unit fractions. Each of the three summands is positive, so we can apply Lemma 2.3.4 (i)
to obtain

6— 2z N 1 224+ (2 — 2)lo2 S 1 224 (2 — 2)los S 1

2za01 1806° 2za2 T 427 2zap3 T 42

Solving these inequalities for agi, age and agps, we get the bounds ap; < 903, age < 35
and ap3 < 35.

We treat the configuration (lo1,l11,021) = (2,3,2). Using Lemma 2.7.3 we get the
bound ly3 < 4. The identity from (ii) reads

6—z 6—l02+6—l03
60&01 6&02 60403

The first summand is a unit fraction, the second and third summand are each a sum of
at most two unit fractions. Moreover, each of the three summands is positive. We invoke
Lemma 2.3.4 (i) to obtain

6—=z S 1 6 — lp2 S 1 6 —los . 1

61 1806’ 6o T 42’ 6apy 42°

Solving these inequalities for ag;, age and aps, we get the bounds ap; < 602, age < 35
and apz < 35. ]

Proposition 2.7.5. Consider X = X (A, P,%) as in Setting 2.7.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein. Then the following hold:

(i) An anticanonical divisor on X is given by
—K = D + Dgy+ D + DY + (1 — lo1) Dy,

(ii) The weights wo1, woz and wos are divisors of wx .
(iii) The exponents lo1, lo2 and lps fit into precisely one of the following cases:
(a) lo3 =1,
(b) 103 > 1 and l()Q = 103 + 1,
(c) (lo2,l03) = (2,2) or (lo2,l03) = (3,3),
(d) (lo2,l03) = (4,2),
(e) (lo1,loz2,l03) = (5,5,2).
(iv) Admissible row operations turn the defining matriz P into one of the following
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forms, according to the cases (a) through (e) from item (ii):

—lor —lo2 =1 ©Lix 0 lo1>lo2>1, 111 >lo1>2,

p _ —lor —lp2 =1 0 Iy 0<doi1 <X, 0<do12< 3,
doir do21 O diin dorr | 0<doz1< 5%,
doi2 0 0 di2 d2i2 0<da11,d212<l21,

“lo —(los+1) —los In 0 lor>los 1, 11123,

p — —lo1 —(log + 1) —lo3 0 2 wy
= ,  1<do12< =,
1 L L di don 0<darr dan<1
do12 0 0 di2 d212 S
[~y =1 1l Iy 0 2<1<3, 11,>3,
w w
p - —lpr -1 -l 0 2 1= 3 <don <X +4,
do11 1 1 dyin dorp |’ Ogdomﬁl(%—l +lo1,
| doiz 0 dozz dirz dor2 1<dos2 < 2, 0<da11,d212<1,
[ =l -4 -2 3 0 4<l1 <5,
p = —lpr -4 -2 0 2 *%Sdsz%JrL
-3 1 1 1 -1} 0<do2<1,
i do12 doz2 0 di2 dor2 0<d212<1,
-5 -5 -2 3 0 1<d<2, 0<dona< %,
w w
P — -5 -5 =2 0 2 *ngﬁdomﬁrgg,
d d dozi din donn |’ 0<dosa <5 X 3,
0 do22 doz2 di12 dai2 0<do11,d212<1.

Proof. Ttem (i) follows from Proposition 2.7.4 (i) and homogeneity of the defining rela-
tion g. Item (ii) is part of Proposition 2.7.4 (iii). We prove (iii). The cases (a) to (e)
are mutually exclusive. We consider the bounds on lg3 that we obtained in Proposi-
tion 2.7.4. For the first four constellations of (lo1,l11,l21) we have lgp3 = 1. Thus, they
all fall under case (a). Assume lgp3 > 1 holds. Then either (lp1,l11,l21) = (3,2,2)
with 3 < 2z < 5 or (lp1,l11,0l21) = (2,3,2) with 4 < z < 5. For the constella-
tions (lo1, lo2, lo3) = (5,4,4), (5,5,3) and (5,5,4) the identity from Proposition 2.7.4 (ii)
is never fulfilled. The possible constellations for (Ip1,lp2,lo3) are thus

( ( ( ( (
(5,2,2), (5,3,2), (5,3.3), (5,4,2), (5,4,3), (5,5,2).

In this arrangement, columns one and three fall under case (c), columns two and five fall
under case (b), column four is case (d) and column six is case (e).

We prove (iv). We start with case (a). Assume lg3 = 1 holds. We add multiples of the
first row of P to the third and fourth row to achieve dg3; = dg32 = 0. Applying a suitable
unimodular 2 x 2 matrix to the d block, we may assume that dgee = 0 and dgo; > 0
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holds. Linear independence of vgo and vg3 ensures that dgo; is positive. Furthermore,
by linear independence of the first three columns of P, we have dpj2 # 0 and we may
assume dgi2 > 0 by multiplying the last row of P by —1 if necessary. We add multiples
of the fourth row of P to the third row to achieve 0 < dp11 < dg12. Now P is of the form

—lor —lo2 =1 lin O

—lo1 —lo2 =1 0 I
do11  do2r 0 di11 donn
do12 0 0 di2 doi2

with do12, dgo1 > 0and 0 < dp11 < dgi2. Let u’, u” € 7* the linear forms that Lemma 2.3.2
pI‘OVidGS for the X-cones opg1 = COHG(UOQ, ’U03,7)11,2}21) and g0 = COIle(’UQl,Uog, ’011,1)21).
For their difference u := v — u” we have

<U, UOl) = _%;(17 <U, ’()02) = %7
<’LL, UO3> - 07 <’LL, Ull) == 07
<u, U21> = 0.

Combining the second and third equation, we see that dgg; is a divisor of wyx /wgz. In
particular we obtain
w
0 < dog1 < —.
Wo2
Let u" € Z* the linear form provided by Lemma 2.3.2 for the X -cone 79 = cone(vo1, Vo2, v03)-
It evaluates to one on each of vg1, vgo and vg3. For the difference u := u' — u””, where as
before v is the linear form for the X-cone og1, we have
Wo1
(u,vo1) = ———, (u,vo2) = 0, (u,v03) = 0.
wx
By the second and third equation we have u; + us = uz = 0. The first equation then
tells us that dpj2 is a divisor of wx /wp; and in particular we obtain
wx

0 < doi2 < —.
wo1

Finally we add multiples of the difference of the first two rows of P to the third and
fourth row to achieve 0 < ds11, d212 < l21. This shows that P is of the first form described
in Proposition 2.4.3 (iv).

We consider case (b). Assume lpz > 1 and lpa = lp3 + 1. Note that we have ly; = 2.
Consider the X-cone 79 = cone(vo1, Vo2, vo3). Lemma 2.3.2 provides us with a linear form
u € Z* that evaluates to 1 on each of vy, vo2 and vp3. Consider the 4 x 4 integer matrix

1 0 0 0
g — 0 1 0 0
up U2 ug Uq

dozadoz1 — do21doz2 0 losdo2z — (los + 1)dos2  (loz + 1)doz1 — lozdo2t
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It leaves the first two rows of P unchanged and has determinant
det(S) = (103 + 1)<u,v03> — l03<u, Uog) = 1.

Thus S consists of admissible row operations on P and multiplying P from the left by S
we obtain the matrix

—lor —(los+1) —loz Inn 0
—lo1 —(log + 1) —lo3 0 2

1 1 1 dinn donn
do12 0 0 di2 doi2

which we again call P. Here the entries d;j;x are understood to be indeterminates. Their
actual values are affected by transforming P by S. Multiplying the last row of P by —1
if necessary we may assume that dpi2 is non-negative. Moreover we add multiples of the
difference of the first two rows of P to the third and fourth row to ensure 0 < ds11, d212 < 1.
Consider the X-cone o1 = cone(vp2, Vo3, V11, v21). Lemma 2.3.2 provides us with a linear
form v € Z* with

<U, UOl) = 1- %;(1) <U)U02> - ]-a
(U, UO3> = 17 <U,'l)11> == 17
(u,v91) = —1.

The second and third equation yield u; + ug = 0 and ug = 1. Plugging this into the first
equation, we see that dgy2 is a divisor of wy /wgi. In particular we obtain the bounds
wx

0 < doi2 < —.
wo1

This shows that P is of the second form described in Proposition 2.4.3 (iv).

We consider case (c¢). Assume lgo = lp3 = [ where | = 2 or [ = 3. Note that we
have lo; = 2. Applying a suitable unimodular 2 x 2 matrix to the d-block, we may
assume dgoo = 0 and dgo; > 0. Primitivity of vge ensures that dge; > 0 holds. By adding
multiples of the first row of P to the third row and multiplying by —1 if necessary, we
achieve dga1 = 1. We write dop32 = [°d2, where we choose e € Z>( such that ds is not
divisible by I. Applying Corollary 2.2.19 to the X-cone cone(vgz,vg3), we obtain a linear
form u € Z* with (u,v02) = 1 and (u,vo3) = 1. The first equation ensures that us is
coprime to l. In particular, us # 0 holds. Combining the two equations we get the
identity

U3(d031 — 1) = —’U,4led2.

As w3 is not divisible by [, and [ is prime, there is d; € Z such that doz; = [§3d1 + 1 holds.
Let ¢ = ged(ldy,ds). There are «, 3,7,0 € Z with

c = aldy+ pdy, 1 = ay+ 39,
ye = ldy, dc = da,
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As dy is not divisible by [, neither are 6 and c. Thus « is divisible by I. We write v = I/
and 0 = [0’ + f, where f = 1. Consider the 4 x 4 integer matrix

10 0 0
01 0 0
S S .
—a 0 lo 15}

S =

The matrix S leaves the first two rows of P unchanged and it has determinant
det(S) = f(ay+p0) = %1

It thus consists of admissible row operations of P. Multiplying P from the left by S
transforms it into the matrix

—ln =l -1 i1 0
[ 0 2
doin 1 1 dinn donn
doi2 0 [°c di1z2 doro

which we again call P. We also write again do32 for the entry [°c. Here the entries d; ;i
are understood to be indeterminates. Their actual values are affected by transforming P
by S. Note that linear independence of vgy and wvg3 ensures dpze # 0 and by multiplying
the last row of P by —1 if necessary, we may assume that dgzo > 0 holds. Consider
the X-cone og3 = cone(vo1, Vo2, V11, v21). By Lemma 2.3.2 there is a linear form u € Z*
with

(U, UOl) = 17 <"LL, 'U()Q> == 17

_ w _
éua UO3; =1 I wé) <U, U11> - 1a
u,v21) = —1.

Combining equations two and three we see that dysz is a divisor of wx /wps. In particular,
we obtain the bounds

wx

wo3”

We apply Lemma 2.3.2 to the X-cone o¢; = cone(vgz, vo3, V11, v21) to obtain a linear
form u € Z* with

1 < dp32 <

<’LL,U01> = 1*%’ <’LL,U02> = 1a
(u,v03) = 1, (u,v11) = 1,
<u,021> = —1.

Equations two and three yield uqy = 0. Plugging this into the first equation and multiplying
by I, we obtain

w
l (1 — w;i) = —loll(U1 + UQ) + ugldor1 = lo1 + U3(ld011 — 101).
Note that this implies us # 0 and (Idp11 — lp1) # 0. Subtracting lp; on both sides we see

that (Ido11 — lo1) is a divisor of I(1 — ;Lu%) — lg1. Using the bounds on lp;, we obtain

w w
1-—=X < doyy < =X +4
wo1 wo1
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Now consider the 4 x 4 integer matrix

0
0
1
l

— o O =
OO~ O
_ oo o o

It leaves the first two rows of P unchanged and it has determinant one. It thus consists
of admissible row operations on P. Multiplying P from the left by multiples of S leaves
the columns vge and vg3 unchanged and we can achieve

0 < doiz < |ldo1r —loa| <1 <wX - 1) + lo1-
Wo1

Finally, we add multiples of the difference of the first two rows of P to the fourth and
fifth row to ensure 0 < ds11,d212 < 1. This shows that P is of the third form described
in Proposition 2.4.3 (iv).

We consider case (d). Assume (lp2,l03) = (4,2). Note that we have {17 = 3 and l9; = 2.
Lemma 2.3.2 applied to the X-cone 01 = cone(vgz, vo3, V11, v21) provides us with a linear
form v € Z* with

<’LL,U01> = 1_%’ <U7U02> = 1a
(u,v03) = 1, (u,v11) = 1,
<u,021> = —1.

Let d = d022d031 — d021d032 and consider the 4 x 4 integer matrix

1 0 0 0
g — 0 1 0 0
u1 U2 usg Ug

—duy  —duz do2 — 2dozz — duz  2dp31 — do21 — duy
It leaves the first two rows of P unchanged and it has determinant

det(S) = wug(2dos1 — do21) + ua(2do3z2 — do22)
= 2(u,vo3) — (u,v02)
= 1.

Multiplying P from the left by S transforms it into the matrix

oy —4 -2 3 0
B g —4 -2 0 2
P=ly_w v 1 1 1|

wo1

doiz2 d 0 di2 doi2

which we again call P. We also write again dpo2 for the entry d. Here the entries d;;i
are understood to be indeterminates. Their actual values are affected by transforming P
by S. Adding multiples of the second and the two-fold of the third row of P to the fourth
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row, we achieve 0 < dgo2 < 1. Consider the X-cone 091 = cone(vga, vo3,v11,v21). By
Lemma 2.3.2 there is a linear form v € Z* with

— w —
<U,U()1> - I_Ti7 <’U/,’U()2> - 17
<U,U()3> = 17 <U,U11> = 11
(u,v91) = —1.

Combining equations two and three, we obtain ug = doous and 2(u; + ug) = doouy.
Note that this implies u4 # 0. Plugging this into equation one, we obtain

w
2 (1 - X) = u4(do22(1 — lo1) + 2dp12).

wo1

This shows that dgaa(1 — lo1) + 2dp12 is a divisor of 2 ( — w—g(l) Using the bounds on Iy

w;
and dga2, we obtain
1- X < dor2 < OX 4
wWo1 wo1
Finally we add multiples of the difference of the first and second row of P to the fourth
row to achieve 0 < dy1o < 1. This shows that P is of the fourth form described in
Proposition 2.4.3 (iv).

We consider case (e). Assume (lo1,lo2,l03) = (5,5,2). We have I = 3 and l2; = 2.
Applying a suitable unimodular 2 x 2 matrix to the d-block, we achieve dy12 = 0 and
do11 > 0. By primitivity of vg; we have m := dy11 > 0. We add multiples of the first row of
P to the third row to achieve 1 < m < 4. We write dy22 = 5°d2, where we choose e € Z>
such that ds is not divisible by 5. Consider the X-cone 19 = cone(vp1, voz2, vo3). Corollary
2.2.19 provides us with a linear form u € Z* with

(w,v01) = 1, (u,v92) = 1, (u,vp3) = 1.

The first equation implies that ug is coprime to 5. In particular ug # 0 holds. Combining
the first and second equation, we obtain

ug(do21 —m) = ugh®ds.

There is thus dy € Z with dy2; = 5°dy + m. Let ¢ = ged(5d1, d2). There are «, 3,7,0 € Z
with

c = abd; 4+ Bdy, 1 = ay+ B9,

ye = 5dy, dc = do,

As dy is not divisible by 5, neither are § and c¢. Thus ~ is divisible by 5. We write v = 57/
and § = 58’ + f, where 1 < f < 4. Consider the 4 x 4 integer matrix

10 0 0

01 o0 0

5= dm 0 & —
am 0 b« I3
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The matrix S leaves the first two rows of P unchanged and it has determinant det(S) = 1.
It thus consists of admissible row operations of P. Multiplying P from the left by S
transforms it into the matrix

-5 -5 =2 3 0
-5 -5 =2 0 2
mf mf do31 diin don

0 5% dog2 di2 doio

P:

which we again call P. Moreover we again write dg22 for the entry 5°c. The entries d; ;i
are understood to be indeterminates. Their actual values are affected by transforming P
by S. We add multiples of the first row to the third row and multiply by —1, if
necessary, to replace the entry mf by d, where 1 < d < 2. Consider the maximal X-
cone oy = cone(vgt, Vo3, V11, v21). By Lemma 2.3.2 there is a linear form u € Z* with

(w,om) = 1,  (u,v02) = 1— &,
<U>U03> = 17 <U7U11> = 1>
<u,1121> = —1.

Combining the first and second equation we see that dgoo divides wyx /wog2. In particular
we obtain the bounds w
1 < dogy < —.
wo2
Now consider the X-cone g3 = cone(vo1, Vo2, v11,v21). Lemma 2.3.2 provides a linear

form u € Z* with

<’LL,U01> = 1a <U7U02> = 1a

— _w —
EU,Uosi = 11 ey (o) = 1,
u,v21) = —L.

Combining the first and second equation, we obtain us = 0 and 5(u; + u2) = dug — 1.
Plugging this into the third equation and multiplying by 5, we get

5 (1 — ZjX> = —10(u1 + 'LLQ) + 5U3d031 = 2— U3(5d031 — Qd).
03

Note that this implies ug # 0 as well as 5dpz1 — 2d # 0 and that (5dp31 — 2d) is a divisor
of 5% — 3. For dpz1 we thus obtain the bounds

1——— < doz1 < —.
wo3 wo3
Adding the d-fold of the first row and the 5-fold of the third row of P to the fourth row
leaves the first two entries unchanged. Repeating this we achieve
0 < dpz2 < ’5d031 — 2d’ < 5w7X - 3.
wo3

Finally we add multiples of the difference of the first and second row of P to the third
and fourth row to achieve 0 < dsy1,d212 < 1. This shows that P is of the fifth form
described in Proposition 2.4.3 (iv), which completes the proof. O
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Corollary 2.7.6. There is a list of 87 explicitly given matrices P of format (3,1,1,0),
each of them defining a non-toric Q-factorial, Gorenstein, log terminal Fano three-
fold X (A, P, X)) of Picard number one.

Z Z+Zy Z+Z3 Z+Zs Z+Ls Z+Zs Z+Zg ZAZo+Zy ZAZo+Za Z+Z2+Ze | SUM

Lo,y | 5 4 4 4 2 3 2 1 1] 26
(y,2,2) 3 3
2,9,2)| 9 13 1 3 2%
(2,2,3) 1 1
3,22)| 7 6 1 14
(,3,2) |15 2 17
sum | 36 28 6 ) 2 3 2 3 1 1| 87

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log terminal and Gorenstein Fano threefold of Picard number one of for-
mat (3,1,1,0) is isomorphic to an X = X (A, P,%) with P from the list.

Proof. Proposition 2.7.4 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q¥ = [wo1, wo2, wo3, w11, wa1] by computer. Recall that P
annihilates the transpose of Q. This enables us to determine in the matrix P, adjusted
according to Proposition 2.7.5 (iv), all the remaining variables. So, we are left with a
finite list of explicitly given possible defining matrices P. Checking for the necessary
properties by means of [43] and reducing via Proposition 2.3.1 to data defining pairwise
non-isomorphic varieties, we obtain the list presented in the assertion. ]

2.8 Proof of Classification 2.1.1: Case 5 - format (3,1,1,1,0)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (v). The setting is as follows.

Setting 2.8.1. Let X = X (A, P,Y) a Q-factorial threefold of Picard number one of
format (3,1,1,1,0). Then

—lot —lo2 —los 11 O 0
—lor —lo2 —lo3 O lo1 O
P = [vo1,v02,v03,v11,v21,v31] = | —lot —lo2 —lo3 0 0 I3
do11  do21 dozr dinn d21n d3in
do12  do22 doz2 di12 d212 dsi2

holds with pairwise different primitive columns vg1, vo2, vos, V11, v21 and vs; generating Q°
as a cone. We assume P to have ordered exponents. The maximal X-cones of the fan X
of Z are given by

001 = COHe(vo2,003,1)117?121,1131)7 002 = COHe(Uo1,Uo3,U11,U2l,U31),
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op3 = cone(vo1, Vo2, V11, V21, V31), To = cone(vo1, V2, V03)-

We have K = Z & I' with the torsion part I" and denote deg(T};) = (wsj,n:;) as well
as deg(Ty) = (wg, nr) accordingly. In particular, we write

Q% = [wor,woz, wo3, w11, War, W31]

for the free part of the degree matrix (). Note that the vector (wo1, woz2, wos, w11, w21, w31)
is primitive in Z® and generates ker(P).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P.

Proposition 2.8.2. Consider X = X (A, P,%) as in Setting 2.8.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) We have lo1 = lp2 = lpg = 1. Moreover, the tuple of exponents (lo1,l11,l21,131) fits
into precisely one of the following constellations:

(17y7272>7 y227 (1,273,2), 3SZS5

(ii) —K = (1 — 1) D5 + D2\ + D3 is an anticanonical divisor on X. In particular,
the free part of the anticanonical class of X is given by

wx = (1 —10L1)wi +wa + ws;.

(iii) Admissible row operations turn the defining matriz P into the form

-1 -1 -1 l11 0 0 l1121212131>1,
—1 -1 -1 0 I91 0 0<d021§%7
P = -1 -1 -1 0 0 I3 |, 0§d031<d032§%,
0 do21 doz1 dinn donn dan 0<da11,d212<la1,
0 0 dos2 di12 do12 d3i2 0<da11,d312<l31,

where woz | wx and wos | wx.

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(vg1, v11, v21,v31) to
see that (lp1, 111,021, 131) is a platonic tuple. As P has ordered exponents, we have l11 > la;
and lo1 > l31. Moreover, since X is non-toric, I37 > 2 holds. Thus we have [p; = 1 and
consequently lgpo = lp3 = 1. This leaves us with the two constellations for (lo1, 11, l21,l31)
stated in the assertion. Item (ii) follows immediately from Remark 2.2.13 and homogeneity
of the defining relations gg and g .

We prove (iii). Adding multiples of the first row of P to the fourth and fifth row,
we achieve dp11 = dgi2 = 0. Multiplying the d-block by a suitable unimodular 2 x 2
matrix, we may assume dpe = 0 and dpe; > 0. Linear independence of vg; and wgo
ensures that dgo1 is positive. Multiplying the last row of P by —1 if necessary, we
may assume that dpza > 0 holds. We make use of the Gorenstein property. Consider
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the X-cone og2 = cone(vo1, vo3, V11, V21, v31). By Lemma 2.3.2 we have wpy | wx and
there is a linear form u € Z° with

<U,U01> = 07 <U)U02> = _%7
(u,v03) = 0, (u,v11) = 1 -1,
<u,v21> = 1, (u,v31> = 1.

By the first equation, uj + ug + ug = 0 holds. Plugging this into the second equation, we
see that dgop is a divisor of wy /wge. In particular, we obtain the bound
w
1< dom < —.
Wo2
Applying Lemma 2.3.2 to the X-cone op3 = cone(vo1, vo2, V11, V21, v31) We see that wos is
a divisor of wx and we obtain a linear form u € Z° with

<U7U01> = 07 <U>U02> = 07

_ w _
(usv03) = —, (w,vn1) = 1—1lu,
(u,v21> = 1, <u,v31> = 1.

Combining the first two equations, we obtain uj + us + uz = 0 and us = 0. Plugging this
into the third equation, we see that dpsz is a divisor of wx /wp3. We add multiples of the
last row of P to the fourth row to achieve

0 < dog1 < dogo < —>.

wo3
Finally we add multiples of the difference of the first and second row of P to the fourth
and fifth row to get 0 < da11, d212 < l21 and we do the same for the first and third row to

get 0 < d311,d312 < l31. O

Our second series of constraints shows that all entries of the Z-part of the degree
matrix QY = [wo1, wo2, Wo3, W11, Wa1, w31] are bounded.

Proposition 2.8.3. Consider X = X(A, P,X) as in Setting 2.8.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) For any three positive integers o1, a2 and ags consider the 6 X 6 matriz

i —Qp1 0 0 1-— l11 1 17
0 — Q2 0 1-— 111 1 1
G — 0 0 —Q3 1-— l11 1 1
' -1 -1 -1 lin 0 0O
-1 -1 —1 0 lsg O

-1 -1 -1 0 0 I3 |

The matriz G is of rank at least 5. Moreover, we have det(G) = 0 if and only
if ao1, a2, aps and 11,191,131 satisfy the identity

1 1 1 1 1 1
— —+— ) [ —+——1) = L
apr ap2  ap3/ \lit  lan 31
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(ii) There are unique o1, 2, o3 € Z>1 with apiwer = p2we2 = QW = wWx and
the corresponding matrix G from (i) satisfies

ker(G) = ker(P) = Z- (wo1, wo2, Wo3, W11, W1, W31).

iii) According to the possible constellations of the exponents (lo1, 111,121, 131) from Propo-

(i) 9 p P i1 o, p
sition 2.8.2 (i), we have the following upper bounds on the entries of the matriz G
from (ii). An empty line indicates that this exponent configuration does not occur.

[lor lo2 los lix l21 ls1 a1 o2 s
,2)l1 11 3 2 2 2 2 1
2

Proof. We verify (i). In order to see that G is of rank at least five, we just compute the
minor obtained by deleting row 6 and column 1:

0 0 1—-1;; 1 1
—Qp2 0 1-— lu 1 1
G671 = det 0 —Q03 1-— lll 11 = 04020403l11l21 75 0.
-1 -1 lti 0 O
—1 —1 0 Is1 O

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on a1, cge, s and Iq1, l21, I31.

We prove (ii). Applying Corollary 2.2.21 to the three maximal X-cones oq1, og2 and
o3 we see that each of wg1, woe and wpz is a divisor of wx and hence we obtain positive
integers ag1, g2 and gz with

apgiwer = apwoz = ap3woez = (1 —Ili1)wir + war + w3y,
Moreover, by homogeneity of the defining relations gy and g; we have
wo1 + wo2 +woz = lnnwir = loywa = l31wss.

The matrix G is the coefficient matrix of the corresponding system of linear equations. In
particular, ker(G) is generated by the primitive vector (wo1, wo2, wo3, w11, wa1,ws1) € ZS.
We prove (iii). We treat the configuration (lp1,l11,l21,131) = (1,9,2,2). In this case

the identity from (i) reads
1/ 1 1 1
=+ —=—+—=—) =1
Y \aor Qo2 Qo3

Since we have lg1 = lgo = lp3, we may assume that agy > g2 > aps holds. We
immediately get the bounds ag3 = 1 and y < 3. Plugging the two possible values for y
into the equation yields apgy, cge < 2.

107



Chapter 2. Gorenstein Fano threefolds of Picard number one

We treat the configuration (lp1,l11,1l21,131) = (1, 2,3,2). In this case the identity from

(i) reads
6—z 1 1 1
— +—+—) =1
6z \ao1  ap2 Qo3

This equation can only be fulfilled for z > 2, which is a contradiction to the assumption
z > 3. Thus this exponent configuration does not occur. O

Corollary 2.8.4. For every choice \y € K* the matriz P of format (3,1,1,1,0) given by

-1 -1 -1 2 00

-1 -1 -1 0 20

P = -1 -1 -1 0 0 2
0 2 0 -3 11

0 0 1 -3 11

defines a non-toric Q-factorial, Gorenstein, log terminal Fano threefold X = X (A, P, )
of Picard number one with divisor class group and Cox ring

R(X) = K[To1,To2, Tos, Ti1, To1, T31] /{90, 91),

g0 = TorTooTos + TH + T3y, g = MTH +T5 + T3,

Cl(X) 2 ZoZ/2Z ®Z/2Z, Q =

ol =
enl ey
DN
Ol =N
R
Il =l )

Every non-toric, Q-factorial, log terminal and Gorenstein Fano threefold of Picard number
one of format (3,1,1,1,0) is isomorphic to X = X (A, P,X) for a choice of A1 as above
with that matriz P.

Proof. Proposition 2.6.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q° = [wo1, wo2, w11, w12, wo1,ws1]. Excplicitly, there are
the following two possibilities for Q°:

(2,2,2,2,3,3), (1,1,2,2,2,2).

The matrix P annihilates the transpose of QY. This enables us to determine in the
matrix P, adjusted according to Proposition 2.8.2 (iii), all the remaining variables. So,
we are left with a finite list of explicitly given possible defining matrices P. We check
for the necessary properties by means of [43] and reduce via Proposition 2.3.1 to data
defining pairwise non-isomorphic varieties. The first candidate for Q° does not produce
any valid matrices P. For the second candidate, there is up to admissible operations only
one matrix P, namely the one presented in the assertion. The description of the Cox
ring and the class group follow from Construction 2.2.2. O
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2.9 Proof of Classification 2.1.1: Case 6 - format (2,1,1,1)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (vi). The setting is as follows.

Setting 2.9.1. Let X = X (A, P,Y) a Q-factorial threefold of Picard number one of
format (2,1,1,1). Then

—lot —loo lLin O 0

P = [vor, vo, vi1, van, v1] = —lor —lo2 0 lx O
01, 702, F1l» 21y T do11  do21 diin donn din

doi2  do22 di12 dor2  di2

holds with pairwise different primitive columns wvg1, vg2, V11, v21 and vy generating Q* as
a cone. We assume P to have ordered exponents. The maximal X-cones of the fan X
of Z are given by

cone(vo1, V11, V21, V1),

oo1 = cone(vo2, V11, V21,01), o0 =

cone(vg1, Vo2, V11, V21 ), cone(vg1, Vo2, V1)-

We have K = Z @ I' with the torsion part I' and denote deg(T;;) = (w;j,n:ij) as well
as deg(Ty) = (wk, ni) accordingly. In particular, we write

o1 = T0 —

Q" = [wor,wo2, w11, w21, wi]
for the free part of the degree matrix ). Note that the vector (woi, wo2, w11, wa1,wy) is

primitive in Z° and generates ker(P).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P.

Proposition 2.9.2. Consider X = X(A, P,X) as in Setting 2.9.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) The tuple of exponents (lp1,l11,121) fits into precisely one of the following constella-

tions:
(1,z,y9), z>y>1; (2,23), 3<z<5;
(y7272)7 Yy =2 (372,2), 3L 255
(2,4,2), y=3; (2,3,2), 4<z<5.

—K = (1 —1lo1) D& + (1 — lo2) D, + DX + D5 + Di¥ is an anticanonical divisor
on X. In particular, the free part of the anticanonical class of X is given by

wx = (1 —1lo1)wor + (1 — lp2)woz + wi1 + war + w.

Admissible row operations turn the defining matriz P into the shape

=lor —lo2 I 00 lor >lo2 >1, I1 >l21>2,
p _ —lo1 —lp2 0 Ilon O 0<dor2 <lo1,
- _ _ ) _wx wx
1—lor 1—=lp2 dinn doin 1 e < doza <loa+ X
do12 do22  di12 do212 O 0<da11,d212 < la1,

where woa | wx.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(voi, v11,v21) to
see that (lp1,l11,l21) is a platonic tuple. As P has ordered exponents, we have 111 > lo;.
Moreover, since X is non-toric, lo; > 2 holds. This leaves us with the six constellations
for (lo1,l11,121) stated in the assertion.

For the second assertion note that we have r = 2 and that the defining relation of the
Cox ring is given as

g = TopTo + T + Ty

Thus deg(g) = loi deg(To1) + lo2 deg(Tp2) holds and Remark 2.2.13 shows that the
anticanonical divisor —/C is as claimed.

We prove (iii). We care about the entries of the (d, d’)-block of P. Since vy € Z* is
primitive, we can apply a suitable unimodular 2 x 2 matrix from the left to the (d, d’)

block to ensure
dip =1, dis = 0.

We now make use of the assumption that X is Gorenstein. First consider the X-
cone 9 = cone(vo1,v02,v1). Then Corollary 2.2.19 provides a linear form u € Z* such
that

<u,v01> =1 —l()l, <u, 1)02> =1 —log, <u,?}1> = 1.

The last equation tells us in particular ug = 1. Plugging this into the first two equations
yields
doir = lo1(u1 + u2) — ugdorz +1 —lo1, do21 = lo2(u1 + u2) — ugdoza + 1 — loa.

Thus, adding the (u; + ug)-fold of the first and the uy-fold of the fourth row of P to the
third one, we obtain
do11 = 1—lo, do21 = 1 —lo2.

Moreover, adding an appropriate multiple of the first row of P to the fourth one, we
achieve
0 < do2 < lot-

Now consider the maximal X-cone ogs = cone(vg1,v11,v21,v1). Let u € Z* be a linear
form representing Dgf on X,,, according to Corollary 2.2.19(iii). Then
0= P u= Z (u, vij)wij + (u,v1)wr = wx + (uadozz — lo2 (w1 + uz))woo.
In particular, we see that wge divides wx. Moreover, we must have uz = 1. We obtain
L—lo1 = (u,v01) = —lorur — lorug + 1 — lo1 + uado12.

This merely means lo; (u; + u2) = ugadpie. Plugging this into the previous equation yields

w
—lp—=~ = ug(dogalor — do12lo2)-
wo2

Thus, (dp22lo1 — do12lo2) divides lOl%- As a consequence, we can estimate dgoo as follows:

doi2  wx do12 | wx
loo———— < do2 < lpo— + —

lor  wo2 lor  wo2
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) ) Y

Combining this with 0 < dg12 < lg1, we arrive at the desired bounds for dgoo. Finally, we
achieve

0 < dot1,do12 < oy

by adding suitable multiples of the difference of the first two rows of P to third and the
fourth one. O

The second series of constraints shows that all entries of the Z-part of the degree
matrix Q¥ = [wo1, wo2, w11, way,w1] are bounded.

Proposition 2.9.3. Consider X = X(A, P,X) as in Setting 2.9.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) For any three positive integers g1, a2 and 1 consider the 5 x 5

1—[01—0&01 1—l02 1 1 1

1—1p1 1—1Ipa — apo 1 1 1

G = 1—l01 1—[02 1 1 1—61
—lo —lo2 11 O 0

—lo1 —lo2 0 In 0

The matriz G is of rank at least four. Moreover, det(G) = 0 holds if and only
if ap1, g2, 81 and lo1, lo2, 111,121 satisfy the identity

1 1 1 l l 1 1
+++<01+°2> <+—1) = 1.
B1 o1 o2 aor a2/ \li1 Il

(ii) There are um'que o1, 02, ﬁ1 S ZZl with Qp1Wo1 = QpWp2 = ,Blw1 = Wx and the
corresponding matriz G from (i) satisfies

ker(G) = ker(P) = Z-(wgl,wog,wll,wgl,wl).

(iii) According to the possible constellations of (lo1,l11,l21) from Proposition 2.9.2 (i)
we have the following upper bounds on the entries of the matriz G from (ii):

lor lo2 Lin lo1 apr ape S
(1,a:,y) 1 1 84 8 42 4 36
(y,2,2) 11 6 2 2 6 6 6
(2, Y, 2) 2 2 24 2 28 35 1806
(2,273) 2 2 5 3 14 4 42
(3,272) 3 3 5 2 14 5 42
(z,3,2) 5 5 3 2 14 5 42

Proof. We prove (i). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting row 3 and column 1:

1—1lp2 1 1 1
. 1-— 102 — 2 1 11 .
G31 = det B apzlitler # 0.
—lp2 0 l21 O
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on o, p2, Bl and l01, log, l11> l21.

We prove (ii). Applying Corollary 2.2.21 to the three maximal X-cones o1, 0g2 and o1
shows that each of wg1,wpe and wi is a multiple of wx and hence we obtain positive
integers ap1, a2 and [1 with

agiwor = appwoz = Prwr = (1 —lor)wor + (1 — lo2)woz + wi1 + war + wy.
Moreover, by homogeneity of the defining relation g we have
lorwor + lopwoz = l1wir = la1wor.

The matrix G is the coeflicient matrix of the corresponding system of linear equations.
In particular, ker(G) is generated by the primitive vector (wo1, woz2, w11, wa1,w1) € Z°.
We turn to (iii). We treat the configuration (lo1,l11,021) = (1, z,y). In this case the

identity from (i) reads
1 1 1 1 1
—4|—+— | —-—+-) = L (2.9.3.1)
b1 apt a2/ \T Y

Since lp; = lgo holds, we may assume ag > age. We immediately get the bounds

B1 > 2, ap2 < 4, y <8

Restricting Equation 2.9.3.1 to partial sums, we obtain the inequalities

1 1 1
+

any oy B

In both cases, we can apply Lemma 2.3.4 (i), which tells us the sum on the left is at
most 41/42. This gives lower bounds on the parts of the sum in Equation 2.9.3.1 that
were split off, which yields the bounds ag; < 42 and x < 84. Finally, we solve Equation
2.9.3.1 for 1 and check the possible values within the established bounds for z,y, a1
and ago to obtain 57 < 36.

We treat the configuration (lp1,111,021) = (y,2,2). In this case the identity from (i)

reads
1 1 1
— 4+ —+ = = L
apr  ap2
This gives the bounds g1, ago, f1 < 6. Additionally, since l11 equals lo1 in this case, we
have wy; = we;. Applying Corollary 2.2.19 to the X-cone 79 = cone(vg1, vg2,v1), We see
that there is 7 € Z>1 with yw11 = yw21 = wx. Homogeneity of the defining relation g

yields

y ol _ 2

Qo1 Qo2 Y
Using the bounds for ag; and ag2, we obtain y < 11 and lys < 6.
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We treat the configuration (lp1,l11,021) = (2,¥,2). In this case the identity from (i)

reads ; ;

1 2 — 1 2

1 270 1 ( + 02) " (2.9.3.2)
B1 2002 Yy \aor Qo2

Note that the second summand is either 0 or a unit fraction. Moreover, each summand si
positive. By splitting of the summands that contain y, respectively ag; and g9 in their
denominators, we can apply Lemma 2.3.4 (i) to obtain

|
Vv

Y

ap1 Q02

1(2 +102) . 2 1 Colpyidn 1
6 a1y 42 202 42

The first inequality gives the bound y < 24, the second gives ap; < 28 and the third
gives a2 < 35. To get a bound on (1, we expand the left hand side of Equation 2.9.3.2.
It is a sum of at most five unit fractions. We apply Lemma 2.3.4 (ii) to obtain 3; < 1806.

We treat the configuration (lo1,111,021) = (2, 2,3). In this case the identity from (i)
reads

1 6— =z 3lga + (3 — 2[02)2’
— = 1. 2.9.3.3
b1 * 3ap12 * 3ap2z ( )

Note that we have 3 < z < 5 and in this range 6 — z is a divisor of z. Thus the first two
summands are unit fractions. We apply Lemma 2.3.4 (i) to obtain

3loo + (3 - 2[02)2’ >
3agoz -

=

Solving this for ags, we get the bound ag2 < 4. Note that the third summand in
Equation 2.9.3.3 is a sum of at most two unit fractions. Applying Lemma 2.3.4 (iii) to
that sum thus yields

E = 42 3apg1z 42
From this we obtain the bounds ag; < 14 and 31 < 42.

We treat the configuration (lo1,011,021) = (3, 2,2). In this case the identity from (i)
reads

1 1 6— =z 1
< <

i 6—=z 2lpo + (2—[02)2
51 20&012 20&022

= 1.

Applying exactly the same arguments as for the previous configuration, we now get the
bounds g1 < 14, age < 5 and [ < 42.
We treat the configuration (lp1,/11,021) = (2,3,2). In this case the identity from (i)
reads
1 6—=z 6 — lgg

— = 1.
B1 6ot 6o

Again, the same arguments apply as for the previous two exponent configurations, now
giving the bounds ap; < 14, ape < 5 and § < 42. (]
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Corollary 2.9.4. There is a list of 155 explicitly given generator matrices P of for-
mat (2,1,1,1) each of them defining a non-toric Q-factorial, Gorenstein, log terminal
Fano threefold X (A, P,%) of Picard number one.

Z  I+AZLy I+AZ3 LAZs LAZLs LAZe LAZE  ZAZo+Zs Z+Z3 | sum

(Lz,y) | 13 19 6 4 1 3 4 2 52
(y,2,2) 12 3 9 25
(2,y,2) | 13 24 8 1 46
(2,3,2) | 10 7 1 18
(2,2,3) | 2 3 1 6
(3,2,2) | 2 5 1 8

sum 40 67 9 7 1 4 23 2 2 155

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log-terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2,1,1,1) is isomorphic to an X = X (A, P,X) with P from the list.

Proof. Proposition 2.9.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q° = [wo1, wog, w11, w21, w1] by computer. Now, recall
that P annihilates the transpose of Q¥. This enables us to determine in the matrix P,
adjusted according to Proposition 2.9.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P. Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we arrive a the list presented in the assertion. O

2.10 Proof of Classification 2.1.1: Case 7 - format (2,1,1,1,1)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (vii). The setting is as follows.

Setting 2.10.1. Let X = X (A, P,X) a Q-factorial threefold of Picard number one of
format (2,1,1,1,1). Then

P = [vo1,v02,v11,v21,031,v1] = | —=lor —lo2 O 0 I3z O
do11  do21 di11 doin d3nn dn
do12  doz2  di12 d212 d3i2 di2

holds with pairwise different primitive columns vo1, vg2,v11, v21,v31 and v; generating Q°
as a cone. We assume P to have ordered exponents. The maximal X-cones of the fan X
of Z are given by

oo1 = cone(vg2, V11, V21, V31, V1), op2 = cone(vo1, V11, V21,31, V1),
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o1 = cone(vo1,v02, V11, V21, V31 ), 70 = cone(vo1, V2, 01).

We have K = Z & I'' with the torsion part I" and denote deg(T;;) = (wsj,n:5) as well
as deg(Ty) = (wg, ni) accordingly. In particular, we write

Q% = [wor, woa, w11, w21, w31, W]

for the free part of the degree matrix Q). Note that the vector (w1, wo2, w11, wa1, wsi, wr)
is primitive in Z® and generates ker(P).

Our first series of constraints arising from the log terminality and the Gorenstein
property directly aims for entries of the defining matrix P.

Proposition 2.10.2. Consider X = X (A, P,X) as in Setting 2.10.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) We have lp1 = lpo = 1. Moreover, the tuple of exponents (lo1,l11,l21,131) fits into
precisely one of the following constellations:

(1,9,2,2), y=>2, (1,2,3,2), 3<z<5.

(ii) —K = (1—111) D+ D3 + D +D5* is an anticanonical divisor on X . In particular,
the free part of the anticanonical class of X is given by

wx = (1—1l1)wir +war + w3y + wy.
(iii) Admissible row operations turn the defining matrixz P into the form

-1 -1 I 0 0

1112102121 1,
-1 -1 0 lo1 0 Olid_ 21;;;
P = -1 -1 0 0 l31 022=05

0<d211,d212<l21,

0 0 di1n donn dznn
0<d311,d312<I31,

0 do22 di12 doi2  d3i2

O = O O O

where woy | wx.

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(vg1, v11, v21, v31) to
see that (lo1,111,l21,31) is a platonic tuple. As P has ordered exponents, we have 11 > lo;
and lo; > l31. Moreover, since X is non-toric, I3 > 2 holds. Thus we have lp; = 1 and
consequently lpo = 1. This leaves us with the two constellations for (lo1, 11, l21, [31) stated
in the assertion. Item (ii) follows immediately from Remark 2.2.13 and homogeneity of
the defining relations gg and g;.

We prove (iii). Multiplying the (d, d')-block by a suitable unimodular 2 x 2 matrix,
we may assume dij; = 1 and di2 = 0. Adding multiples of the first row of P to the fourth
and fifth, we achieve dy11 = dg12 = 0. We make use of the Gorenstein property. Consider
the X-cone 19 = cone(vo1,vg2,v1). By Corollary 2.2.19 there is a linear form u € Z° with

(u,vp1) = 0, (u,v21) = 0, (u,v1) = 1.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Equations one and three yield w +us +us = 0 and uqg = 1. Plugging this into the second
equation, we see that dgos is a divisor of dys1. Note that linear independence of vy and vg2
demands that dgos is not zero. We add the uy-fold of the fifth row of P to the fourth
row to achieve dga; = 0. By multiplying the last row of P by —1 if necessary, we may
assume dgyzo > 0. We add an appropriate multiple of the difference of the first and second
row to the fourth and fifth to achieve 0 < da11, d212 < l21. Doing the same for the first and
third row yields 0 < d311, d312 < l3;. Consider the X-cone o2 = cone(vg1, v11, v21, V31, v1).
By Lemma 2.3.2 we have wgg | wx and there is a linear form u € Z° with

(u,v01) = 0, (u,v02) = =32,
(wo11) = 1—1li, (u,v21) = 1,
(u,v31) = 1, (u,v1) = 1.

The first and second equation show that dgg is a divisor of wx /w2, which established
the bound on dgss. O

Our second series of constraints shows that all entries of the Z-part of the degree
matrix QY = [wo1, w2, w11, w21, w31, w1] are bounded.

Proposition 2.10.3. Consider X = X (A, P,X) as in Setting 2.10.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) For any three positive integers o1, a2 and 31 consider the 6 X 6 matriz

[ —Q1 0 1-— l11 1 1 17
0 — Q2 1 —111 1 1 1
O - 0 0 1-In 1 1 1-p
' -1 -1 liih 0 O 0
—1 —1 0 lss O 0

-1 -1 0 0 Iy 0 |

The matrix G is of rank at least five. Moreover, we have det(G) = 0 if and only
if ao1, a2, B1 and li1, 191,131 satisfy the identity

1 1 1 1 1 1
—t(—+—)(—+—+—-1) = 1.
B1 apr  ap2/ \lin 21 I3
(ii) There are unique o1, o2, 1 € Z>1 with cpiwer = apewez = f1w1 = wx, and the
corresponding matrix G from (i) satisfies

ker(G) = ker(P) = Z- (wo1,wo2, W11, W21, W31, W1).

(iii) According to the possible constellations of the exponents (lo1,111,21,131) from Propo-
sition 2.10.2 (i) we have the following upper bounds on the entries of the matrixz G
from (ii). An empty line indicates that this exponent configuration does not occur.
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[lor lo2 111 oy I3 o1 aoz fr
,2)l1 1 4 2 2 3 2 4
2

Proof. We prove (i). In order to see that G is of rank at least five, we just compute the
minor obtained by deleting row 3 and column 1:

0 1—-0;; 1 1 1
— Q02 1—l11 1 1 1
Gz1 = det -1 i 0 0 0 = ap2li1la1lzr # 0.
-1 0 lsg7 00
-1 0 0 I O

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on a1, age, 51 and l11, lo1, I31.

We prove (ii). Applying Corollary 2.2.21 to the three maximal X-cones g1, 002 and
o1 shows that each of w1, wpe and wi is a multiple of wx and hence we obtain positive
integers ag1, ap2 and [ with

agiwor = appwez = frwr = (1 —li)wi + wa + w3 + wy.
Moreover, by homogeneity of the defining relations gg and g; we have
wor + w2 = liwir = lawer = Il31ws;.

The matrix G is the coefficient matrix of the corresponding system of linear equations. In
particular, ker(G) is generated by the primitive vector (wo1, woz2, w11, wa1, w31, wy) € Z5.

We prove (iii). We treat the configuration (lp1,l11,l21,131) = (1,9,2,2). In this case
the identity from (i) reads

1 1 1 1

—+-(—+—) =1L

By \aor o2
Since lg1 = lg2 holds, we may assume g1 > agp2. We immediately get the bounds ago < 2
and y < 4. Expanding the left hand side, we see that it is a sum of three unit fractions.
Applying 2.3.4 (ii) shows that the denominator of each summand is at most 6. Taking
into account y > 2, this gives the bounds ag; < 3 and 1 < 6.

We treat the configuration (lp1,111,l21,131) = (1,2,3,2). In this case the identity

from (i) reads
1+6—z<1 N 1)_1
fi 6z \an  ap .

Note that 6 — z is a divisor of 2z for 3 < z < 5. Thus the left hand side is a sum of three
unit fractions, two of them have denominator at least 6. This cannot add up to one.
Thus this exponent configuration does not occur. O
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Corollary 2.10.4. There is a list of 5 explicitly given generator matrices P of for-
mat (2,1,1,1,1) each of them defining a non-toric Q-factorial, Gorenstein, log terminal
Fano threefold X (A, P,%) of Picard number one.
| 242 2473 7+23 | sum
(1,y,2,2) | 1 3 1 | 5

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log-terminal and Gorenstein Fano threefold of Picard number one of for-
mat (2,1,1,1,1) is isomorphic to an X = X (A, P,X) with P from the list.

Proof. Proposition 2.10.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q¥ = [wo1, wo2, w11, W21, w31, w1] by computer. Now,
recall that P annihilates the transpose of QV. This enables us to determine in the matrix
P, adjusted according to Proposition 2.10.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P. Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we arrive a the list presented in the assertion. O

2.11 Proof of Classification 2.1.1: Case 8 - format (1,1,1,2)

Proposition 2.2.24 divides the proof of the classification theorem 2.1.1 into cases (i)
to (viii). In this section we treat case (viii). The setting is as follows.

Setting 2.11.1. Let X = X (A, P,X¥) a Q-factorial threefold of Picard number one of
format (1,1,1,2). Then

—lon i1 0 0 0

—lpr 0 Iy O O

do11  di11 do1n din don
do12 di12 doi2 diz2 doo

P = [vo1,v11,v21,01,02] =

holds with pairwise different primitive columns vg1,v11, v21, v1 and ve generating Q* as a
cone. We assume P to have ordered exponents. The maximal X-cones of the fan 3 of Z
are given by

o1 = cone(vo1, V11, V21, V2), oy = cone(vo1, V11, V21, V1),

79 = cone(vpr,v1,v2), 71 = cone(viy,vi,v2), To = cone(vai,vi,v2).

We have K = Z ¢ I' with the torsion part I' and denote deg(T;;) = (w;j,nij) as well
as deg(Ty) = (wg, nk) accordingly. In particular, we write

Q" = [wor, w11, war,wy, ws]

for the free part of the degree matrix @). Note that the vector (wg1, w11, wa1, wi, ws) is
primitive in Z° and generates ker(P).
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2.11. Proof of Classification 2.1.1: Case 8 - format (1,1, 1,2)

Proposition 2.11.2. Consider X = X(A, P,X) as in Setting 2.11.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) The tuple of exponents (lo1,111,l21) fits into precisely one of the following constella-
tions:
(y,2,2), y=>2, (2,3,2), 3<z<H5.
(ii) =K = (1 —ln) D + DX + D5 + DX + D2° is an anticanonical divisor on X. In
particular, the free part of the anticanonical class of X is given by

wy = (1—1lp)wor +wii + wa + wy + wa.

(iii) Admissible row operations turn the defining matriz P into the form

—lo1 11 0 0 0 lo1>l112>1212>2,

—ln 0 lo1 O 0 0<d112<!11,
P = R

do11 1 1 1 1 0<d212<l21,

doiz diiz dora O doo 0<d22< %;

where we | wx .

Proof. We prove (i). We apply Proposition 2.2.22 to the X-cone cone(vgi,v11,v21) to
see that (lp1,011,021) is a platonic tuple. As P has ordered exponents, we have lp; > l11
and ly1 > lo1. Moreover, since X is non-toric, l91 > 2 holds. This leaves us with the two
constellations for (lo1,l11,l21) stated in the assertion.

For the second assertion note that we have r = 2 and that the defining relation of the
Cox ring is given as

g = Tof + T} + 1o

Thus deg(g) = lo1 deg(Zp1) holds and Remark 2.2.13 shows that the anticanonical
divisor —K is as claimed.

We prove (iii). Applying a suitable unimodular 2 x 2 matrix to the (d, d")-block, we
may assume dij; = 1 and dio = 0. We make use of the Gorenstein property. Consider
the X-cone 75 = cone(va1, v1,v2). There is a linear form u € Z* with

(u,va1) = 1, (u,v1) = 1, (u,v9) = 1.
The second equation shows that ug = 1 holds. The other two equations the read

1 = wgler + do11 + uadora,
1 = do1 + uadoa.

By adding the us-fold of the second row of P and the u4-fold of the fourth row to the
third, we achieve ds11 = 1 and do; = 1. Note that linear independence of v1 and vg
demands that doo is not zero. Multiplying the last row of P by —1 if necessary, we may
assum that da is positive. Now consider the X-cone 71 = cone(v11,v1,v2). Again, there
is a linear form u € Z* with

(u,va1) = 1, (u,v1) = 1, (u,v9) = 1.
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Chapter 2. Gorenstein Fano threefolds of Picard number one

The second and third equation yield us = 1 and uq = 0. The first equation thus reads
1 = wuily +din-

Thus, adding the ui-fold of the first equation of P to the third, we achieve di1; = 1.
Finally consider the X-cone o9 = cone(vgy, v11,v21,v1). By Lemma 2.3.2 we have wy | wx
and there is a linear form u € Z* with

<u7001> — 1 - l017 <U,’U]_]_> - 17
<U,’U21> = 1> <u,v1) = 17
(u,v2) = 1— 3.

Combining the fourth and fifth equation shows that dgo is a divisor of wx /we. In
particular, we get the bound
w
1 < dyy < —.
w3

Finally, we add multiples of the first and the second row of P to the last row to
achieve 0 < dy12 < l11 and 0 < do19 < lo7. ]

Our second series of constraints shows that all entries of the Z-part of the degree
matrix Q¥ = [wo1, w11, w21, w1, ws] are bounded.

Proposition 2.11.3. Consider X = X (A, P,X) as in Setting 2.11.1. Assume that X is
non-toric, Fano, log-terminal and Gorenstein.
(i) For any three positive integers a1, 51 and P2 consider the 5 X 5 matriz

1-— l01 — 01 1 1 1 1

-l 1 1 1-p 1

G = 1-— l01 1 1 1 1-— 62
—lor i1 O 0 0

—l()l 0 121 0 0

The matriz G is of rank at least five. Moreover, we have det(G) = 0 if and only
if o1, B1, B2 and lo1, 11,101 satisfy the identity

1 1 1 lo1 ( 1 1 )
— b (= —1) = L
apr B P2 oaon \l1 ln
(ii) There are unique o1, B1, B2 € Z>1 with agwer = frwy = Powy = wx, and the
corresponding matriz G from (i) satisfies

ker(G) = ker(P) = Z- (w1, w11, w21, w1, w3).

(iii) According to the possible constellations of (lo1,l11,l21) from Proposition 2.11.2 (i)
we have the following upper bounds on the entries of the matrix G from (ii):
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[lor i1 ls1 a0 Br Bo
w22[12 2 2 6 6 6
(3,25 3 2 3 6 6

Proof. We prove (i). In order to see that G is of rank at least four, we just compute the
minor obtained by deleting row 3 and column 1:

1 1 1 1
1 1 1-— 1
G311 = det b = Pilila # 0.
l11 0 0
0 I 0 0

Moreover, suitably rearranging the equation det(G) = 0, we arrive at the displayed
identity on «ag1, 51, B2 and lo1, l11, l21.

We prove (ii). Applying Corollary 2.2.21 to the maximal X-cones o1 and oo shows
that each of wy and ws is a multiple of wx and hence we obtain positive integers [y
and (o with

frwi = Powz = (1 —lp1)wor + w11 + w21 + wy + wo.

By applying admissible row operations to the matrix P, we may assume that it is of the
form presented in Proposition 2.11.2 (iii). Note that P annihilates the transpose of Q.
Thus from the third row of P, we obtain the identity

do11wor + w11 + wo1 + w1 +we = 0.
Set g1 := 1 —lg1 — dp11. Then we obtain the identity
agrwor = (1 —lo1)wor + w11 + war + w1 + wa.
Moreover, by homogeneity of the defining relation g we have
wor +woz = lnwir = laywar = lz1ws;.

Now, G from (i) is the coefficient matrix of the corresponding system of linear equations.
In particular, for any choice of ag1, 51 and S the integral matrix G has kernel generated
by the primitive vector (woy, w11, w1, wr,ws) € Z5.

We prove (iii). We treat the configuration (lo1,l11,121) = (y,2,2). In this case the

identity from (i) reads
1 1 1

Qo1 * B1 * B2 !
We apply Lemma 2.3.4 (ii) to get the bounds ag; < 6, 51 < 6 and B2 < 6. Additionally,
since l11 = lo1 holds, we have wi; = wo;. Thus, applying Corollary 2.2.21 to the X-
cone 19 = cone(vg, v1,v2), we see that there is v € Z>; with yw1 = ywa1 = wx.
Homogeneity of the defining relation g yields

y_2

ap1 Y
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Using the bound on «gp1, we obtain y < 12.
We treat the configuration (lo1,011,021) = (2,3,2). In this case the identity from (i)

reads
6—z 1 1

+ 4+ =
6apr 1 Po
Note that 6 — z is a divisor of 6 for 3 < z < 5. Thus the left hand side is a sum of three
unit fractions. By Lemma 2.3.4 (ii) we obtain the bounds ag; < 3, 1 <6 and f2 < 6. O

Corollary 2.11.4. There is a list of 17 explicitly given generator matrices P of for-
mat (1,1,1,2) each of them defining a non-toric Q-factorial, Gorenstein, log terminal
Fano threefold X (A, P,X) of Picard number one.

L4Zy  ZAZ3  LZ4ZE Z+Z3  sum

(y,2,2) 2 11 3 16

(2,3,2) 1 1
sum 2 1 11 3 17

Number of members P of the list according to divisor class group and exponent configuration

Distinct matrices from the list yield non-isomorphic varieties and every non-toric, Q-
factorial, log-terminal and Gorenstein Fano threefold of Picard number one of for-
mat (1,1,1,2) is isomorphic to an X = X (A, P,X) with P from the list.

Proof. Proposition 2.11.3 allows us to write down explicitly all possible matrices G and
hence to determine all possible Q¥ = [wo1, w11, wa1, w1, ws] by computer. Now, recall
that P annihilates the transpose of Q¥. This enables us to determine in the matrix P,
adjusted according to Proposition 2.11.2 (iii), all the remaining variables. So, we are
left with a finite list of explicitly given possible defining matrices P. Checking for the
necessary properties by means of [43] and reducing via Proposition 2.3.1 to data defining
pairwise non-isomorphic varieties, we arrive a the list presented in the assertion. O

2.12 Classification lists

Here we provide the detailed presentation of our classification result. Let us briefly recall
the background. Each non-toric, Q-factorial, Gorenstein, log terminal Fano threefold X of
Picard number one coming with an effective action of a two-dimensional torus is uniquely
determined by its Cox ring. In particular, X can be encoded by the degree matrix @), that
means the list of degrees of the Cox ring generators in Cl(X) and the defining trinomial
relations go, ..., gr—1. For instance, our example variety X from Examples 2.2.3, 2.2.9,
2.2.16 and 2.2.20 is encoded by

[\

Q= go="TTo + T4 + T2,

==

=N
=l Ol =
= O N
Ol =
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2.12. Classification lists

where the columns of @ live in Z & Z/2Z & Z/27Z. Indeed, the defining matrix P is
determined up to admissible operations by @, the format (2,1,1,1) and the list of
exponents of gg. Alternatively, X is the hypersurface defined by gg in the fake weighted
projective space Z = Z/H, where Z = K°\ {0} and the quasitorus H and its action on
K?® are given by

H=K"x{+1} x {£1},  (t,(,n) -z = (t*¢nz1, t7¢nze, tnzs, t*nza, t25).

We turn to the classification lists. Every non-toric, Q-factorial, Gorenstein, log
terminal Fano threefold X of Picard number one coming with an effective action of a
two-dimensional torus is isomorphic to precisely one of the listed varieties. Conversely,
each of the listed data defines a non-toric, Q-factorial, Gorenstein, log terminal Fano
threefold X of Picard number one coming with an effective action of a two-dimensional
torus.

Each of the lists represents a possible divisor class group and format. Each variety in
such a list is specified by its matrix @ of generator degrees and its defining trinomial
relations; observe that we number the variables of the relation conventionally and not
in accordance with the double-indexed enumeration of the columns of the associated
defining matrix P. Besides the specifying data, we list the anticanonical self intersection.
A file containing also the defining matrices P and further invariants is available at [15].

Classification list 2.12.1. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group Z and format (2,2,1,0).

ID relations gd-matrix —K3 ID relations gd-matrix —K3
10 | Torp+rdTd4r2 | Lii1g | 2 10 | T8TS4T2Ty+T2 | [12669 6
1| rirderdrier? | L2228 | 2 a | 1irieriTy4T2 | 21669 6
14 | TPTy4TITI T2 [2 441 7] 4 a2 | THTy+T2Ty412 [3 262 7] 6
15 | TPT24+T3TI+TE [2 441 7] 4 52 | TATy+TITS 42 [1 211 3] s
16 | T3T24T3T2472 | 21214 | 4 53 | TATS4TdTy4T2 | [122479 s
17 | ThrdardTym2 | L1224] | 4 sa | Tl myr2ryer2 | 11444 8
18 | T3Tp4rdT24m2 | [42417 | 4 55 | TOTS+T2T 42 | [11446] 8
31| T3ry+TdTy4T2 | 31319 | 6 56 | TETy+T2Ty+T2 | [124279 s
s2 | Timytr2r2413 | 12219 | 6 57 | TITP+12Ty4T2 | [11446] 8
33 | TPToTITy4TS [1 122 2] 6 58 | TATS+T2T,+T2 [1 242 5] s
sa | TAT24m2my413 | 11229 | 6 65 | TSTytT2my+1S | [12211] 10
35 | T3Ty+1272413 | [26334] 6 66 | T2Ty4r2my41s | 21217 10
36 | TPTIATITY+TS [1 663 5] 6 67 | TIOTy+TyTy+T7 [1 51010 4] 10
a7 | T3T2412my413 | [23364) | 6 68 | 71072411y +15 | 1510104] | 10
38 | TIOTy 4121472 | [12669] 6 69 | TOTS+myTy4Td | [1510104] | 10
39 | T2rd+riTy 412 | [12669 6 70 | TPTy+1yTy+Td | 255103 | 10
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1D relations gd-matrix —K3
77 | T3Tp4rdT34T2 | [2631¢] 12
78 | T3Tp4rdT24T2 | [212439) | 12
79 | TPTy+TITy+TE [fa413 12
80 | TIOTy 121,472 | [1236¢ 12
81 | T Ty+T2Ty+TE 43129 12
s2 | TOTS+TRT T2 [12364 12
83 | TPTR+TiTyH T2 43129 12
84 | TPTI+TITH+TE 1364 12
85 | TR TITy T2 [123129 12
86 | TETS+TIT TR 43129 12
87 | T2Ty+T2Ty4Td | [11419 12
88 | T2Ty+12Ty472 | [32324] 12
80 | TP Ty 4Ty TS [1312128) | 12
90 | TIST24TTy+T3 [1312128 | 12
01 | TP2Td 4Ty 4T3 [f312128 | 12
92 | 70Ty 4Ty +TE [12663 12
93 | TPTS 4T3y 4TS [1312128) | 12
o4 | TITy+T3Ty+TS [13662] 12
95 T3 41yTy+13 | [B112128) | 12
96 | TOTS 4131y +TE [12663] 12
o7 | TPTZ4myTy4Tt | 21667 12
o8 | T3T24+1yy+1)2 | [23661) 12
90 | TPTy4+TyTy+T3 [133125] 12
100 | TPT4+T3Ty+T2 [3 446 5] 12
106 | T 4TS TR 472 [La214 16
107 | Try+T3T2472 | 28417 16
108 | T3mp4rdTy4+T2 | L1117 16
109 | T3my4riytTd | [L1121] 16
10 | 7] T4 7314+ 12 [L1244 16
11 | TOT3 42Ty 412 [11244] 16
nz | Téry4riTyT2 | L2229 16
13 | TSI TyTy+T3 [fa4s3 16
14 | TTTy413Ty4rd | 114472 16
115 | T8Ty+13Ty 418 | [12441] 16
116 | TPT3+T3Ty+T4 [L1442 16

1D relations gd-matrix —K3
17 | T334y TS raaz 16
126 | THTH+T3 T2 412 [16225] 18
127 | Ty 4TIy 11133 18
128 | TP TSTI 412 [13113] 18
120 | TTo4TITy4 T2 [12265) 18
130 | ThTS4T2Ty T2 [1 226 5] 18
131 | TS T4y 413 | [106183 18
132 | T Ty 413y 4T3 [11664] 18
133 | 7012 1y [1 166 4] 18
134 T4y 4T3 [11664] 18
135 | T T3+ T3Ty+ 13 [11664] 18
136 | T Tot Ty Ty+T3 [12363] 18
137 | TST2414Ty+13 | [196183 18
138 | TOT+TyTy4TS | [293187] 18
130 | TPTZ4TyTy+T3 [12363] 18
140 | TP To+T3Ty+T8 [11331] 18
141 | Ty 4Ty Ty T3 21363 18
142 | TPTo4T3Ty+T2 23361] 18
143 | T2To+T3Ty+T3 22332 18
145 | TTp4TPTy 412 [2 1051 8] 20
146 | T20Ty+ 13T +T2 [1 41020 15] 20
147 | 78134131y + T2 [L4102015] | 20
148 | 7073 4131+ T2 [1 41020 15] 20
149 | TIT2474Ty+72 | [41102015] | 20
150 | TPT2 4Ty [4522011 20
151 | T2Ty+13Ty4rd | [p22103 20
160 | T+ TITy 4TS [16313] o4
161 | THTy+TITy4+T3 [12142] o4
162 | TPTp4+T3Ty+T3 [1126373] 24
163 | TP 41Ty 4TS [12142] o4
164 | T2To+T3Ty+T8 [1a221] o4
165 | TPTo+T3Ty+TE [B2162] o4
166 | T2To+T3T4+T3 [f1111] 04
167 | TE2Ty+T3Ty+T2 [1 8624 15] 24
168 | TI6Ty 4Ty +T2 | 126129 o4
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1D relations gd-matrix —K3
169 | TI3Ty4TyTy+T2 | [134128 | 24
170 | 7213431y + 12 [L26129 24
171 | TOTy 4T Ty T3 [163123 24
112 | T8TY4TeTy+12 | [126129] | 24
173 | TTd4reTy+12 | 216129 | 24
174 | T T34y Ty 412 [1 3412 8] 24
175 | 78T+ 73Ty +T2 [1 8624 15] 24
176 | TOTy 4T3 Ty+T2 [p822413) | 24
177 | TP Ty Ty Ty+T3 [13262 24
178 | TPTy+TaTy4Td | [11247] 24
179 | TPTy+TaTy4T2 | [B1a128 | 24
180 | TETZ 4Tyt [L1242 o4
181 | Ty 4T3 Ty 4TS [12241 o4
182 | TTy+T3Ty+T2 [16465] o4
183 | THTo4TTy+T2 [12333] o4
184 | TR 4T3y +TE [3 2212 7] 24
185 | TPTZ4+T3Ty+T3 [1 6312 5] o4
186 | TPTo4+T3Ty+T3 [13332] 24
187 | T4 13Ty TS [32261 24
190 | T3mp4rdTy+12 | [115539 | 30
101 | T2mp4r2Ty+13 | [110524] | 30
102 | T3 Ty 4T Ty 12 [153159 30
193 | TTTy+13Ty4rd | [152104] | 30
194 | T3T34Tey+12 | [153159 | 30
105 | T212415y+13 | [152104] | 50
196 | Ty To+T3Ty+T3 3231 30
203 | TPT+T2Ty+T2 [1 114 3] 32
204 | TET+TRTy+TE 2183 39
205 | TPTS4TiTyT? [L1143 32
206 | TPTI4+TITyHTE [2 218 5] 32
207 | T2Ty4m2Ty472 | [12127 39
208 | T Ty Ty 412 [f1484] 32

ID relations gd-matrix —x3
209 | TOTS+1yy+T2 | [11486 39
210 | T8Ty+13Ty 412 | [12289] 39
211 | TY TS 4Ty 472 [1 148 6] 39
212 | TArdiTyy+12 | [122879 39
213 | TPTo+T3Ty+T2 [11222 39
214 | T2Ty4maTyard | 12221 32
215 | T2Ty4TyTy+72 | [14243 32
217 | TOTy 4 TETy T2 [12164 36
218 | TOTy41RTy412 | 241127 | 36
219 | T3TZ4T2T,472 | 241127 | 36
220 | T3T2412T,472 | [21164) 36
221 | TP T4 TETy+TE [121127] 36
222 | 70Ty 4y 472 | [L42127) | 36
223 | TTTy+13my+12 | [11264] 36
224 | TPTI4T3Ty+T2 [1 126 4] 36
225 | T3T241yTy+12 | [412127) | 36
226 | T3TyTyTy4Td | 11131 36
227 | Ty To+TyTy+T2 [31222 36
230 | TPTo+T3Ty+TE [12141) 0
281 | T2To4T3Ty+T3 [2 114 1] 10
232 | TPTytmyTy+T2 | BT12111] | a2
233 | TiTytmsTy+Td | 271148 | a2
234 | T2To+T3Ty+T] [2 316 1] 1
235 | TPTo+T3Ty+TS [1 418 3] 48
236 | T2Ty+1yTy+rd | [11183] 48
237 | Ty T+ T3Ty+T3 [12121) 48
238 | Ty To+TyTy+T3 [13132] 48
241 | TPTy+TyTy4T2 | [11153 50
242 | T3Td41yTy12 | [11153] 50
243 | T To+T3Ty+T3 [1 319 5] 54
244 | T3Ty1TyTy4T2 | [31199 54
245 | Ty To+T3Ty+T32 [t1111) 54
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Classification list 2.12.2. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7 and format (2,2,1,1,0).

ID relations gd-matrix —}C3 ID relations gd-matrix —)C3
3 3 3
Ty To+T3Ty+TE, T1To+T3Ty+T¢,
30 1 2+343+ S [133323] 6 189 12+343+ 5, [151523] 30
AT Ty+T5+Tg AT Ty+T5+T4
2 3
TETo+T3Ty+T,
6 iT2+T3 43+ X [142423] 12
AT Ty+Tg+T4

Classification list 2.12.3. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7 and format (3,1,1,0).

1D relations gd-matrix —K3 ID relations gd-matrix —K3
3 | TPTSTZ4TieT? [1 124 6] 2 51 | TPT3T 41412 [2 142 5] s
4 | TiT3r24rdeT2 | 12146 2 63 | Tyrys+r]+rd | 1101037 | 10
5 | TPTSTa4Td4T2 | 11246 | 2 64 | Ty TyTy+TI T2 554 10
6 | TPT3Ty4Td4T2 | 12146 | 2 75 | T3TSTyrT4m2 | 112817 | 12
7| TPy TT34T2 | 21146 2 104 | T2TyTy+T]+T2 [t4s27] 16
8 | TirdTaTiT? [2 114 6] 2 105 | TPTTy 4T3 +T2 [1 222 3] 16
o | TRT2Ty4Ti4T2 | 21228 | 2 121 | TPT,Ty+T 412 | [16146] 1s
13 | T2r3Ty4rl 472 | 11427 | 4 122 | TRT2T4Td4T2 | [11646] 18
25 | TPTITy 4TS +T2 [2 166 9] 6 128 | TPTSTy4TS 412 [1 164 6] 18
26 | TATdTyrT3 T2 | 21669 | 6 124 | T2T,Ty+TS 412 | [126279 1s
27 | TATETy4T34T2 | 16269 | 6 125 | TyTyTa+T] 472 | 1918414 | 15
28 | T3TyTa4Td4TZ | 23346 | 6 144 | 27215473472 | 11201015 | 20
20 | T2TyTy4+T] 412 [3 262 7] 6 158 | TiTyT3 73412 [1 1226 9] 04
a6 | TOTITy+TI4T2 | L1446 | s 159 | 27275473472 | [211269) 24
a7 | TiTiTeardeT2 | L1446 | s 188 | TyToTs+Td+12 | [15301218 | 50
a8 | ThryTyrTder? | L1129 | s 201 | T3Tymy+Td4T2 | 18146 32
a9 | T3TIT34+TI4+T2 [1 414 6] 8 202 | T2T2T3+T3 472 [1 184 6] 32
50 | T3T2Ty4T34m2 | L1128 | 8 200 | Ty TyTy+13472 | [L11046] 50

Classification list 2.12.4. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7 and format (2,1,1,1).
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ID relations gd-matrix —x3 1D relations gd-matrix —K3
1| Tr24T3er2 | 21467 2 01 | ThryrT34T2 | 12237 16
2 | T3T24154+12 | [22251) 2 102 | 2myrrdar? | 2231 | 16
12 | TETo+T{+T} [4 434 1] 4 103 | Ty To+T5+T3 [4 834 1] 16
19 | T3T24T3472 | 23469 6 us | T2ry47Ser2 | 26251 18
20 | TPTZ4+TI 4T3 26691 6 119 | T2Tp+T5+17 [22233] 18
21 | T3rp4rdir? | [p3467 6 120 | yTp+rd4Td | 218459 | s
22 | T2mp4mieTd | [36347 6 152 | TyTp+TS4T3 | 2223811 | 22
23 | T2rp4rd+12 | [66291] 6 153 | T3Ty4Td4T2 | [13233) 24
24 | TETo+T]+T3 [62273 6 154 | TPTp 4TI 4TS 12691 24
43 | TPTo+T3+T3 [1 123 1] 8 155 | Ty To+T5+T3 [6 1229 1] 24
a4 | T3TpTS T2 | 24251 8 156 | yTp+TI+72 | 212273 | 24
a5 | T2rp+rdeTy | [12251] 8 157 | ITp+Td4+T2 | 3237 o4
59 | TETo+T3+T3 [5 104 10 1] 10 197 | TETp+TS 417 [1 846 1] 32
60 | T2To+T3+T3 2463 10 198 | T2Ty4Td 472 [18259] 39
61 | TyTy+1s+rd | lo10451] | 10 199 | T21y413472 | 14234 39
62 | T\ To+T5+T5 [5 1035 2] 10 200 | TyTo+T9+T3 [2 825 1] 39
71| Térperder? | B12si21] | 12 216 | 727,470 +12 | [112274] | 36
72 | Pmyemdery | P122od] | a2 228 | TyTp+TI+Td | [1208710] | 40
73 | TyT+1Serd | 1212381) | 12 220 | Tymprrier? | [15237] o
74 | Ty To+TS+T [3 1235 4] 12 239 | T2To4+T3+72 [1 1046 1] 50

Classification list 2.12.5. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7. & Z/27 and format (2,2,1,0).

ID relations gd-matrix —ICS ID relations gd-matrix —)C3
252 | THT24+TITI+T2 _é (g) % % ‘11 2 276 | THTZ+TITy+T2 % é ‘5 % ? 4
253 | TPTE+T3TZ+T2 _é % % % 411_ 2 291 | 70Ty +T2Ty+T2 _% % % g fij_ 6
254 | THTH+THTy+T2 % % % (g) 411_ 2 292 | TOT24+TITy+72 _% % % g ff_ 6
271 | TP+ THT+72 _é (g) % % g_ 4 293 | TOTS+T2Ty+72 _% % % g ff_ 6
272 | THTZ+THTy+T2 % 535 ? 4 294 | TOTZ4+TITy+T2 _% 4 ff_ 6
273 | THTo+TIT 472 % (g) é % ? 4 295 | THTY+TITy+T2 _% % % g ff_ 6
274 | TPTZ+T3TZ+T2 _é % % % g_ 4 296 | TZTo+T2Ty+T2 _g % % % 411_ 6
275 | TSTI+TITY+T2 % % 3 % ?_ 4 320 | THTo+TITE 472 _% % % % 411_ 8
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1D relations gd-matrix —K3
S qdy g2 | L1112
321 T1 T2+T3 T4-‘,—T5 00110 8
3 2 4 11121
322 T1 T2+T3 T4+T5 11000 8
7 2 2 11244
323 T1 T2+T3 T4+T5 00101 8
11244
324 | T8TZ4+T2TY+T2 00101 8
11244
325 TGT2+T2T4+T2 01100 8
11244
326 T5T3+T2T4+T2 00101 8
11244
327 | TETE+TITY+TE 30161 8
11244
328 T4T4+T2T4+T2 10001 8
4 2 2 12223
329 T1 T2+T3 T4+T5 00101 8
11121
330 T2T2+T2T4+T4 01100 8
22213
331 T2T2+T2T2+T2 10001 8
22213
332 T2T2+T2T2+T2 10100 8
9 4 11442
333 T T +T3T4+T 01001 8
4.2 3 12441
334 T T +T3T4+T 11000 8
P 4 14483
335 T T +T3T4+T 01001 8
4 3 2 [16315]
350 T1 T2+T3 T4-§»T5 00110 12
12142]
351 T2T2-}—T2T4+T3 11000 12
2 2 6 22141
352 | TPTo+TFTy+TY 15100 12
2 2 4 16322
353 | TPTR+TFTy+T5 501061 12
2 2 3 [11111]
354 | TPTo+TFTy+TE 15100 12
(126129
104 2 22 -ey
355 | T{OT5+T3Tu+T2 | 510 0 1 12
9 3 | [Le3125)
356 | TP To+T3Ty+T5 51101 12
8 5 | [216129]
357 T T +T3T4+T i100 0 12
5 3 11242
358 | TPTo+T3Ty+T5 51161 12
4 o | [r3a12s]
359 Ty+T3Ty+T73 5100 1 12
42 5 | [232127]
360 T T +T3T4+T 1000 1 12

ID relations gd-matrix —x3
4 2 12333

361 | T{To+T3Ty+T2 30110 12
3 3 | [13332

362 | TPTo+T3Ty+Ts 30110 12
3 3 | [13332

363 | TPTo+T3Ty+Ts 31511 12
2,72 4 13262

364 | TETZ+T3T4+T] 31661 12
5 2 2 11143

381 | TPTo+TETy+T2 30161 16
11143
452 | 2 2 | (11143

382 | T{TZ+T2Ty+T2 30161 16
11143
4702 | 2 2 | (11143

383 | T{TZ+T2Ty+T2 311060 16
4 2 2 22185

384 | THTo+TITy+T2 10001 16
11143
3.3, 2 2 | (11143

385 | TPTS+T2Ty+T2 30161 16
22185
352 | 2 2 | (22185

386 | TPTZ+T2Ty+T2 31561 16
2 2 2 12122

387 | TETo+TITy+T2 301561 16
84 2 11486

388 | TOTH+T3Ty+T2 10001 16
4 2 21285

389 | TETZ4+T3Ty+T2 16001 16
3 2 11222

390 | TPTo+T3Ty+T2 30110 16
2 4 12221

391 | TETy+T3Ty+T5 30110 16
2 2 14243

392 | TETo+T3Ty+T2 30110 16
6 2 2 12164

400 | TOTH+T2Ty+T2 30161 18
12164
A2 | 2 2 | |L2164

401 | THTZ+T2Ty+T2 30161 18
21164
3.2 | 2 2 | |21164

402 | TPTZ+T2Ty+T2 31061 18
- 5 11264

403 T T +T3T4+T 10001 18
3 5 12141

405 | TPTo+T3Ty+T; 110600 20
5 3 14183

408 | TPTo+T3Ty+Ts 311561 24
3 | [rt2121]

409 T1T2+T3T4+T5 11110 24
3 | [21121]

410 T1T2+T3T4+T5 11000 24
9 13132

411 T1T2+T3T4+T5 00110 24
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Classification list 2.12.6. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7 ® 7./27 and format (2,2,1,1,0).

ID relations gd-matrix —K3 1D relations gd-matrix —K3
T2Ty+TaTy+T, | [12221 2] Ty Ty +T3Ty+T3, 131312
269 1 4,2 | |555577 4 349 4.2 | 1357557 12
)\T3T4+T5 +T6 _0 0001 1_ )\T3T4+T5 +T6 111101
TET+TsTa+ T3, | [222433) |
270 ATy Ty+T2+T2 | [100001]

Classification list 2.12.7. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7. & Z/27 and format (3,1,1,0).

ID relations gd-matrix —K3 ID relations gd-matrix —K3
11224 11424
3713 4, m2 | |11224 2,2 4,52 | [L1424
248 | TPTIT3+T+T3 00011 2 312 | T{T3T3+T +Tg 00011 8
12124 11424
372 4,02 | |12124 2,2 4,52 | [L1424
249 | TPTZT3+T 412 50011 2 313 | T2T2T5 4T+ 10001 8
3 42 | [21124] 2 s, p2 | [12414
250 T1 T2T3+T4 +T5 00011 2 314 Tl T2T3+T4 +T5 00011 8
2020 a8, p2 | [21214] 2 4 g2 | 11112
251 | TETIT3+T§+T3 50011 2 315 | Ty ToT3+T +Tg 00011 8
g, g3 g2 | [11446 > 4,2 | 11112
263 Ty Ty T3+T+Ty 10001 4 316 | T{ToT3+T, +Tg 01111 8
4 5.2 | [11123] 2 3,00 | [12223
264 T1 T2T3+T4 +T5 01100 4 317 Tl T2T3+T4 +T5 01100 8
[11123] [11244]
3712 3,m2 | (11123 4.2 2,2 | |L1244
265 | TPTIT3+T5+T3 16100 4 318 | Ty Ty T3+T +Tg 01010 8
[1121 3] 12144
272 6,2 | (11213 3.2 2, 2 | |L2144
266 | TETST3+T9+T3 16001 4 319 | Ty Ty T3+T +Tg 01010 8
2 b g2 | [21425 8.2 | [181028]
267 | TETIT3+TY+T2 10001 4 337 | TyToT3+T5+T2 00011 10
22415 (211269
2 10,72 | |22415 2.2 3,2 | |211269
268 | T2TyT3+T;)0+T2 10001 4 347 | T2T2T5 475+ 10001 12
2020 od, 2 | [21636] 4,2 | [1312438]
288 | TETIT3+T4+T3 50011 6 348 | T1ToT3+T +Tg 00011 12
[1326 6] [11846]
4.2 2,2 | [L13266 2.2 3,2 | |11846
289 | TATIT3+T2+T3 5ioio 6 380 | Ty TyT3+T5+Ty 10001 16
[23324] [11624]
4,2 | |23324 4,52 | L1624
200 | Ty ToT3+Tg+T2 50011 6 399 | TyToT3+T +T2 50011 18
3 4 2 14124
311 | TPTyTy+T i+ 50011 8

Classification list 2.12.8. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7. ® 7./27 and format (2,1,1,1).

129



Chapter 2. Gorenstein Fano threefolds of Picard number one

130

1D relations gd-matrix —x3
21241
3.2, pd, 2 | (21241

246 | TPTZ+TH+T7 51510 2
21241]
3.2, pd, 2 | (21241

247 | TPTZ4+TH+T] 50710 2
5o 3.2 | [L1231]

256 | Ty Ta+T3+T) 00011 4
14461]
472 73,52 | (14461

257 | THTZ4+TI+TE 10010 4
[11231]
472 73,02 | (11231

258 | THTZ+TH+TS 116060 4
11231]
472 73,52 | (11231

259 | THTZ4+T3+TS 10610 4
4125 2]
2,52 5 2 | (41252

260 | T2T2+T5+T7 000611 4
44161]
2 12 5.2 | |[44161

261 | T{Ta+T3"+Ty | (00110 4
4215 2]
2 10,52 | [42152

262 | T2To+T3%4+72 | |56011 4
3 4 52 26361

277 | TPTy+Ti+1] 00110 6
36162
2 12,52 | [36162

278 | T2To+T32+72 | 56110 6
2 6, 2 36261

279 | T2To+T§+17 10010 6
2 6, 2 36261

280 | Ty Ta+T3+T) 10100 6
2 452 32243

281 | Ty Ta+T3+T) 00011 6
2 4 52 32243

282 | T2To+Ti+13 10111 6
12663
10 2,2 | |[L2663

283 | Ty " Tp+T3+Ty | 00101 6
12663
673, 72,2 | [L2663

284 | TOTS+T2477 00101 6
21663
572,52, 52 | |21663

285 | TPTZ+T2+T7 51100 6
23661
3.2, 52,52 | [23661

286 | TPTZ+T2+T7 51100 6
6, 4 66231

287 | Ty To+T$+T) 00110 6
4 3., 2 12232

207 | THTy+TS 413 00011 8
S i g2 | [11121]

208 | TPTo+Td+1] 00110 8
S i g2 | [L1121]

209 | TPTo+Ti+1] 11110 8
21232

300 T2T2+T?’+T2 00011 8
21232
2.2, 73,2 | |21232

301 | T2T24+T3+77 10001 8
2 8, 2 24141

302 | TyTy+T3+T) 10010 8
2 8, 2 24141

303 | TyTa+T3+T; 00110 8

1D relations gd-matrix —K3

304 | T2Ty4TS T2 22132 s
17274374 10010

305 | T2Ty+18+72 22132 8
17274374 00011

306 | T2To+T3+72 22231 8
17274374 10010

307 | TTTo+T2+72 11242 8
142 3 4 00101

308 | TOT,+T2 472 12441 s
17274374 10100
11442
53, 2, 2 | |[11442

309 | TPTS+T2+T3 50101 8
21441
3,2, 2, 2 | 21441

310 | TPT24+12472 51100 8
210235
6, 4 210235

336 | TyTo+TS+T [00101] 10

340 | T3Ty+T34+12 13233 12
17274374 00011

341 | TATy+T2472 12333 12
17274374 00011

342 | Ty To+Ti8 472 612192 12
152743 4 00011

343 | TyTopTi6yr2 | |212183 12
1T +T3 " +T) 00011

344 | Ty To+Ti0472 46156 12
142743 4 00011
33231
3.2 | [33231

345 | TyTo+T5+T3 110600 12
24336
2.2 | [24336

346 | TyTo+T2+T3 50011 12

365 | TATy+T3412 18461 16
17274374 10010

366 | T2To+TS4+12 1413l 16
17274374 10010

367 | T2To+TS4+12 1413l 16
17274374 10100

368 | T2To+T54+12 18252 16
17274374 00011

369 | T2Ty+Td412 L2122 16
17274374 00110

370 | T2Ty+Td412 L2122 16
17274374 00011

371 | T2Ty+T3412 14234 16
17274374 10001

372 | T3Ty+T2472 11222 16
17274374 00011

373 | T2Ty+T24712 12221 16
17274374 10010

374 | Ty To+Ti2472 48161 16
1 To+ T3 +Ty 00110

375 | Ty To+Ti0472 28152 16
1To+Tg +Ty 00011
24134
6.2 | (24134

376 | TyTo+TS+T3 I1011 16
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ID relations gd-matrix —x3
24134
6.2 | [24134

377 | Ty To+T§+T3 50011 16
[22121]
4,2 | |22121

378 | Ty To+T4+T3 11110 16
22121
4,2 | |22121

379 | Ty To+T4+T3 50110 16

393 | T21Ty4+T8 472 L6142 18
142 3 4 00110

394 | T2Ty4+Td 472 16241 18
17274374 10010

395 | T2Ty+Td 472 L6241 18
17274374 00110

396 | T2Ty+T24+T2 12223 18
17274374 10100

ID relations gd-matrix —K3
397 | Ty To+TS+T2 % g % % % 18
398 | TyTo+T5+T3 % % é 22 18
404 | Ty To+T5+T32 % ? % g g 20
406 | Ty To+Ty+T32 % % % % :13 24
407 | Ty To+Ty+T32 é g % 22 24
412 | Ty To+T2+T2 _é 5 % i % 32

Classification list 2.12.9. Non-toric, Q-factorial, Gorenstein, log terminal Fano three-
folds of Picard number one with an effective two-torus action: Specifying data for divisor
class group 7. & Z/27 and format (2,1,1,1,1).

ID relations gd-matrix —)C3
beg | TIT2HTSHTE, | fa22332) |
55 AT3 472 +72 000101

Classification list 2.12.10. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7 & Z./27 and format (1,1,1,2).

ID

relations

gd-matrix

_xc3

338

3 2 2
Ty +T5+T3

12

1D relations gd-matrix —K3
3,2, 2 | [23331
330 | TP 412472 | 51670 12

Classification list 2.12.11. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 @ Z/27Z and format (2,2,1,0).

1D

relations

gd-matrix

_xc3

480

472, 22, 2
Ty Ty +T3Ti+Ty

491

612 2 2
TOT+TTy+T2

492

4rd | m2 2
TS +TETy+T7

493

22 22 2
T Ty +T3Ti+Ty

494

272 2 4
T{Ty+T5Ty+Ty

1D

relations

gd-matrix

_x3

495

2 212 2
TTy+T{T{+T3

501

TP Ty +T3Ty+T3

518

472 2 2
THTI+TETy+T,

5

520

Ty To+T3 Ty +T5

12
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Classification list 2.12.12. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 ® 7./27 and format (2,2,1,1,0).

ID relations gd-matrix —)C3
2.2 2 112222
1272413y +T2, | (112222
azg | T1I2HTSIANTS | loT00T0l | o
AT3Ty+T5+ T 000011

Classification list 2.12.13. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7. & 7./27 @ 7./27 and format (2,2,1,1,1,0).

ID relations gd-matrix —K3
2
GRS i SIS SRS |
478 | MT3Ty+TZ+T5, | (0000110 2
/\2T52+Tg+T,? 1111100

Classification list 2.12.14. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 & Z/27Z and format (3,1,1,0).

ID relations gd-matrix —K3 1D relations gd-matrix —K3
11213 11112

477 | TETIT3+TS+T7 (i) g 8 (_1) % 2 490 | T2TyTy+T+T2 {g % % (i) ﬂ 4
11424

489 | TETZTy+Ti+T2 (}) g g Lo 4

Classification list 2.12.15. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7 & Z/27 & 7./27 and format (3,1,1,1,0).

1D relations gd-matrix —x3
2 2 112222
Ty ToT3+T2+72, | |112222
are | 12304 FT5 | looo110| | o
ATF+TE+TE 000011

Classification list 2.12.16. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 ® 7./27 and format (2,1,1,1).
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Classification lists

1D

relations

474

42 3 2
T1 T2 +T3 +T4

relations

gd-matrix

475

2,72 6, 2
TITy+T3+Ty

509

2 6, 12
TETo+T+T

481

3 4 2
TP To+Ty+T;

510

2 4 52
TETy+Ty+T;

482

2,2, md | 2
TITy+T3+Ty

511

3 2 2
T3Ty+T5+T;

483

2,2 2
Ty Ty+T3+Ty

512

2,2, 2, 2
TTTy+T3+Ty

484

2,2 3 2
TyTy+T3+Ty

513

2,2 2 2
Ty Ty +T3+T;

485

2 8 2
TETy+TS+T3

514

2,2 2 2
TITy+T3+T;

486

2 6, 12
TETy+TS+T3

515

2 2 2
TETo+T3+T3

487

62 2 2
T1 T2 +T3 +T4

516

6 2
Ty To+T{+T3

488

42 2 2
T1 T2 +T3 +T4

4, 72
Ty To+T4+T;

499

4 2, 2
Ty +TS+T5

519

4., 72
Ty To+T4+T;

12

2,2, 2, 2
Ty +T3+Ty

523

2, 52
Ty To+T5+T;

16

Classification list 2.12.17. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 & Z/27 and format (2,1,1,1,1).

ID relations gd-matrix —K3
4,2 221221
Ty To+T3472, | (221221

arg | A3 A3 | 001010 | o
AT3+TH+Tg 000110
2 2 111111
TyTo+T24+T72, | (111111

sor | L3 A5 | joo1100) | g
3TT4+Ty 000110

ID relations gd-matrix —K3
T To+T2+72, | |F11111
508 12172 2 111100 8
ATS+TF+TE 000110

Classification list 2.12.18. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7. & 7./27 ® 7./27 and format (1,1,1,2).

ID relations gd-matrix —}C3
13333

496 | To4rZ+7Z | (00110 6
01100

ID relations gd-matrix —IC3
23331

497 | T8412472 | 01100 6
01010
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1D relations

gd-matrix

2 2 2
498 T1 +T2 +T3

4 2 2
502 T1 +T2 +T3

4 2 2
503 T1 +T2 +T3

4 2 2
504 T1 +T2 +T3

2, 12, 2
505 | TE+T5+T3

1D relations gd-matrix —x3
[22211]
506 | TP+T3+T5 | [00L10 8
b 01100
11112]
521 | TE+TS+TS 11000 16
10010
[11121]
522 | T2472472 00110 16
01100
[11132]
524 | T2412472 | |11000 18
10010

Classification list 2.12.19. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z ® /27 & 7./27 & Z.]27 and format (2,2,1,0).

ID relations gd-matrix —K3
11112
00110
g 22 22 2 | [§X22X
533 | TPT3+TT7+T; 10010 2
00101

Classification list 2.12.20. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7. ® /27 ® 7./27 & Z./]27 and format (2,1,1,1).

ID relations gd-matrix —)C3
11121
11000
22 4 2| 22222
532 | T{T; +T3 +Ty 00110 2
10100

ID relations gd-matrix —IC3
11222
10111
272 2 2 | |z2222
537 | T{T3 +T3 +Ty 10100 4
00110

Classification list 2.12.21. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z ® Z./27 ® 7./27 ® 7./27 and format (2,1,1,1,1).
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ID relations gd-matrix —K3
2 2 111111
TiTo+T3+T5, | (110000 4
P36 | r24r24r? | (001100
110110
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Classification list 2.12.22. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z./27 ® 7./27 ® 7./27 and format (1,1,1,2).

ID relations gd-matrix —K3 ID relations gd-matrix —K3
[12221] 11121
10010 11110
4, 72,52 | |[10010 2. 2, p2 | 11110
534 Tl +T2 +T3 1 9 1 9 (_) 4 538 T1 +T2 +T3 l 1 9 (_) 9 8
11110 10010
[22211]
2, 12, 2 11110
535 | T{+T5+T;5 11000 4
10010

Classification list 2.12.23. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 @ Z/4AZ and format (2,2,1,0).

ID relations gd-matrix —K3
11222
272 2 00110
529 | TYT5+T3Ty+Tg | |VOL 10 4
17275854705 163501

Classification list 2.12.24. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7 & Z/27 @& 7/AZ and format (2,2,1,1,0).

ID relations gd-matrix —)C3

2 111111
Ty To+T3Ty+T2, | |211111
08 1To+T3Ty4+T5 " }

2,52 | (110000
AT3Ty+TE+TE 313120

Classification list 2.12.25. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/27 @ ZJ/AZ and format (3,1,1,0).

1D relations gd-matrix —K3
11222
2 2 10111
527 T ToT3+T7+Te | (1YL L1 4
17298704705 | 136031

Classification list 2.12.26. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z ® Z./27 @ Z./AZ and format (2,1,1,1).

ID relations gd-matrix —IC3 1D relations gd-matrix —)C3
22112 11112
4y rd 11000 2472 00011
526 T To+T+T7 | (L11Y09U 4 530 T1To+Ty+T7 | DYV 11 8
17279874 | 131303 17278 ™4 | 156130
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Classification list 2.12.27. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7 & Z./27 @® 7./67Z and format (3,1,1,0).

ID relations gd-matrix —IC3
11111
3 3 10100
531 T ToT3+Ty+T2 | (1Y LU0 2
17258745 | 155340

Classification list 2.12.28. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/37Z and format (2,2,1,0).

ID relations gd-matrix —K3 ID relations gd-matrix —K3
3 33, 2 13113 2 | [13222]

424 | TPTR+TSTI+T2 00210 6 434 | T Top+T3Ty+Ty 20201 12
973 5 | [11664 7 2| [13195]

425 | TYTS+T3Ty+T3 31003 6 437 | T{To+T3Ty+T5 | |61102 18
4 3 5 12363 o | [rr111]

426 | TPTI+T3Ty+T3 51503 6 438 | T1To+T3Ty+Ty 00120 18
10 o | [raz127 o | [11111]

432 | TOTy+T3 Ty +T2 51103 12 439 | T1To+T3Ty+Ty 21210 18
. 5 [11264]

433 | T To+T3Ty+Tg 01102 12

Classification list 2.12.29. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z ® Z/3Z and format (2,2,1,1,0).

ID relations gd-matrix —K3

3
Ty To+T3Ty+T2, 211211
193 1 T2+ T3Ty+T5 [ }

AT3Ty+T3+78 | (211220

Classification list 2.12.30. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/37 and format (3,1,1,0).

ID relations gd-matrix —ICS ID relations gd-matrix —IC3
[11222]
22 3 3| [zz2£22 - -
A4 | TPy T3+ Ty +T5 | 100012 2 3 5| 12633
- - 422 T1T2T3+T4 +T5 00012 6
a5 | T2rymerdeTd | 25522 2 r .
1 T2T3+Ty +T5 12220 3.3 11422
- - 429 T1T2T3+T4 +T5 00012 8
9., 13 14413 - -
416 | Ty ToT3+T)+T; 11101 4 ‘ s 5| L1111
- - 430 T1T2T3+T4 -Q-T5 11120 8
313 3,2 11646
421 T1 T2 T3+T4 +T5 10020 6
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Classification list 2.12.31. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/37 and format (2,1,1,1).

1D relations gd-matrix —K3 1D relations gd-matrix —x3
[21221] 11111
2.2, 73,53 | [21221 2 3,3 | L1111
413 | TETZ+T3+T; 50130 2 428 | T{To+T3+Ty 00120 8
12 5| [66141] _ ) 12 5| [210145
418 T1T2+T3 +T4 00120 6 431 T1T2+T3 +T4 12011 10
9. .3 | [36132 _ ) o .3 | [18134] .
419 T T2—0—T3 -‘—T4 00012 6 435 T T2—0—T3 -‘—T4 12011 16
3 3 | [33222] _ » 3 3 | [12112] .
420 | Ty To+T5+Ty 00201 6 436 | Ty To+T5+Ty 12202 16
g gd. g3 | [14221]
427 | TyTo+T3+Ty 00120 8

Classification list 2.12.32. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/37Z and format (1,1,1,2).

ID relations gd-matrix —IC3

3 3., 2 22332 X
47 | TP+T5+T3 | 116002 6

Classification list 2.12.33. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7. & Z./37 ® 7./37 and format (2,2,1,0).

ID relations gd-matrix —IC3
11111
2 21210
525 T1To+T3Ty+Ts | [£221Y 6
LRIt | 131600

Classification list 2.12.34. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/A7Z and format (2,2,1,0).

ID relations gd-matrix —K3 ID relations gd-matrix —x3
o | 52 o2 | [L11438] N T 2| [1148¢]
452 | TPTo+T2Ty+T2 03301 8 455 | TIOT2 4T3y +73 51203 8
8.8 20 o m2 | [L1143] 6,2 > | [122879]
453 | TPTS+TETy+T; 50301 8 456 | TPTS+T3Ty+Ty 01203 8
2 oo oo | [12122] 2.2 2 | [11222]
454 | TETo+T2Ty+T2 03301 8 457 | TETZ+T3Ty+T2 03051 8
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Chapter 2. Gorenstein Fano threefolds of Picard number one

Classification list 2.12.35. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/AZ and format (2,2,1,1,0).

ID relations gd-matrix —K3

- Ty To+T3 Ty +T2, {1 1111 1}

2.2 | 13312
ATy Ty+TE+T¢

Classification list 2.12.36. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/4Z and format (3,1,1,0).

ID relations gd-matrix —ICS ID relations gd-matrix —IC3
) 0.0 | [136135] . 5. o | [r1222]
443 | Ty Ty T3+T 0+ T2 33305 6 449 | T\ ToT3+T;+T5 33031 8
5 o | [12333] . 5. o | [r1222]
444 | T{TyT3+T;+T; 35330 6 450 | T\ ToT3+T;+T5 31231 8
[11846]
22 3,72 | |11846
448 | T{TyT3+T7+T5 10023 8

Classification list 2.12.37. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group 7 & Z./AZ and format (2,1,1,1).

1D relations gd-matrix —K3 1D relations gd-matrix —K3
s, | [14121) o r2om2 | [12221
440 | Ty To+TS+T}] 50130 4 446 | TZTy+T3+T; 53130 8
S g2, 02 | [13332 wooa | 2119
441 | TP Ty +TE+T3 53130 6 447 | Ty To+T5+T] 13303 8
s 4 | [26123] o g2 | [t1112]
442 | Ty To+TS+T] 53011 6 458 | Ty To+T3+T3 55310 16
3 2., 12 11222
445 | TP To+T2+T3 53130 8

Classification list 2.12.38. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z ® Z/5Z and format (2,2,1,0).

1D relations gd-matrix —K3
373 2 | (11153
462 | TETS+T3Ty+T2 | 135363 10

Classification list 2.12.39. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/5Z and format (3,1,1,0).
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1D relations gd-matrix —K3 1D relations gd-matrix —K3
5.5 | [12211 3, 2 | [111046
459 | T{ToT3+T)+T¢ 54440 2 461 | Ty ToT3+Ty+Tg 10023 10

Classification list 2.12.40. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z ® Z/5Z and format (2,1,1,1).

ID relations gd-matrix —K3
5 5 14112
460 | Ty To+T3+T) 53401 8

Classification list 2.12.41. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/6Z and format (2,2,1,0).

1D relations gd-matrix —K3
474 2 | |11264
469 T1 T2 +T3T4+T5 10405 6

Classification list 2.12.42. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/67Z and format (3,1,1,0).

ID relations gd-matrix —IC3 ID relations gd-matrix —IC3
s 5| [114a22] 4.0 | [11624

465 Ty T2T3+T4 +T5 30051 4 468 T1T2T3+T4 +T5 50051 6
soos | [rr1d]

466 Ty T2T3+T4 +T5 55540 4

Classification list 2.12.43. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/6Z and format (2,1,1,1).

ID relations gd-matrix —K3 ID relations gd-matrix —K3
o qders | (11111 4 g0 | 22123
463 | TPTo+T5+T7 | 53510 4 467 | T\ To+T5+T; | (31033 6
6 -6 | (24112 3 .3 | [12112
464 T T2+T3 +T4 54505 4 470 T1T2+T3 +T4 5140141 8

Classification list 2.12.44. Non-toric, Q-factorial, Gorenstein, log terminal Fano
threefolds of Picard number one with an effective two-torus action: Specifying data for
divisor class group Z & Z/8Z and format (3,1,1,0).

ID relations gd-matrix —ICS ID relations gd-matrix —IC3
4,04 | 11211 6 .o | [11413
471 | Ty ToT3+T, +Tg 37660 2 472 | T ToT3+T +T5 50035 4
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Chapter 2. Gorenstein Fano threefolds of Picard number one

2.13 Hilbert-Poincaré series

Here we present the Hilbert-Poincaré series of our Fano varieties. Recall that the Hilbert-
Poincaré series of a finitely generated Z>o-graded K-algebra A = @Ay is the formal
power series

HPA(t) = Z dimK(Ak)tk.

k>0
Assume that fi,..., fr € A are homogeneous of degrees wi,...,w, respectively and
generate A as an algebra. Then there is a polynomial g4 € Z[t] such that
qa(t)
HP 4(¢t _
S T

Given a Fano variety X, we associate with it the Hilbert-Poincaré series HP x () of
its anticanonical ring Ax and we define the corresponding polynomial gx (t) with respect
to a minimal system of homogeneous generators of the anticanonical ring Ax.

Proposition 2.13.1. The following table lists for each possible pair (g,c) of genus and
codimension the classification IDs from Section 2.12 of the varieties X attaining (g, c)
and the cancelled presentation of the associated Hilbert-Poincaré series together with its
first eight terms.

(g,¢) HP x () IDs

3
%+t4 2,9, 10, 11, 246, 251, 252, 253, 254,
(2,1) —t 459, AT1, A73, AT4, AT5, 477, 4TS,

1+4t+10t2+21¢3+39t4 4+ 66t° +104t0 +155¢7 + ... 479, 480, 531, 532, 533

1443
29 1—¢4 1,3,4,5,6,7,8, 247, 248, 249, 250,
( ) ) 413, 414, 415, 476
1+4t+10t2+21¢3+39t4 1+ 66t° +104¢0 +155¢7 +...
14+t 443
4
(3’ 1) 1-t 12, 416, 440, 472, 529

1+5t+15t2+35t3 +69t%+121t%+195t5 120517 4.

13, 14, 15, 16, 17, 18, 255, 256, 257,

14t4+£2 443 258, 259, 260, 261, 262, 263, 264,

1—¢4 265, 266, 267, 268, 269, 270, 271,

(3 2) 272, 273, 274, 275, 276, 463, 464,
y 465, 466, 481, 482, 483, 484, 485,

486, 487, 488, 489, 490, 491, 492,

145t+15t2+35t3 +69t4+1215 +195¢6 4-295¢ 7+ .. 493, 494, 495, 526, 527, 528, 534,
535, 536, 537
142¢6+2¢2 4¢3 19, 21, 22, 28, 30, 32, 33, 34, 35, 36,
(4 2) 1—¢4 37, 280, 282, 287, 290, 417, 418, 419,
> , 420, 421, 423, 424, 425, 426, 442,
14664202 +49¢3 1994 +176¢° +286¢6 +-435¢7 + ... 443, 467, 468, 469, 501, 525
14201262143 20, 23, 24, 25, 26, 27, 29, 31, 38, 39,

2 40, 41, 42, 277, 278, 279, 281, 283,
(4,4) 1—t 284, 285, 286, 288, 289, 201, 292,

2 3 4 5 6 7 203, 204, 295, 296, 422, 441, 444,
1+4+6t+20t2+49t3 +99t% +1761° 428610 +435¢ 7+ ... 296, 407, 498, 499, 50O
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2.13. Hilbert-Poincaré series

(g,¢) HPx (t) IDs
1+43t+3t2+¢3 301, 317, 321, 322, 325, 330, 332,
(5 3) 1—t% 333, 334, 335, 448, 451, 452, 453,
) 454, 455, 456, 457, 503, 516, 517,
1+7t+25t2+63t3+129t% +231t5+377t6 4575t 7+ 530
43, 44, 45, 46, 47, 48, 49, 50, 51, 52,
53, 54, 55, 56, 57, 58, 297, 298, 299,
14+-3t+3t2 413 300, 302, 303, 304, 305, 306, 307,
B — 308, 309, 310, 311, 312, 313, 314,
(5 6) 315, 316, 318, 319, 320, 323, 324,
) 326, 327, 328, 329, 331, 427, 428,
9 3 4 5 6 ’ 429, 430, 445, 446, 447, 449, 450,
1+7t+25t2 +63t5+120t% 423162 +377¢0 +-575¢ T+ 460, 470, 502, 504, 505, 506, 507,
508, 509, 510, 511, 512, 513, 514,
515, 518, 538
14+4t+4t2 4¢3
(6 4) 1—¢4 59, 60, 61, 62, 63, 64, 65, 66, 67, 68,
) 69, 70, 336, 337, 431, 461, 462
14+8t+30t2 +77t3 +159t4 128615 44680 4715t 7+ ...
71, 72, 73, 74, 75, 76, 77, 78, 79, 80,
14+5t+5t2+t3 81, 82, 83, 84, 85, 86, 87, 88, 89,
I Y S 90, 91, 92, 93, 94, 95, 96, 97, 98,
(7 5) 99, 100, 338, 339, 340, 341, 342, 343,
) 344, 345, 346, 347, 348, 349, 350,
9 3 4 5 6 7 351, 352, 353, 354, 355, 356, 357,
1+9t+35t%4+91t° +189t7 +341t° +559t° +855t ' +... 358, 359, 360, 361, 362, 363, 364,
432, 433, 434, 519, 520
101, 102, 103, 104, 105, 106, 107,
147+ T2 413 108, 109, 110, 111, 112, 113, 114,
B P~ 115, 116, 117, 365, 366, 367, 368,
(9 7) 369, 370, 371, 372, 373, 374, 375,
) 376, 377, 378, 379, 380, 381, 382,
) 3 4 5 6 . 383, 384, 385, 386, 387, 388, 389,
1+11t+4+45t“4+119t°+249t+451t° 4741t +1135¢t" +... 390, 391, 392, 435, 436, 458, 521,
522, 523
2,3 118, 119, 120, 121, 122, 123, 124,
% 125, 126, 127, 128, 129, 130, 131,
(10 8) 132, 133, 134, 135, 136, 137, 138,
) 139, 140, 141, 142, 143, 393, 394,
2 3 4 5 6 7 395, 396, 397, 398, 399, 400, 401,
1412645062 +133t3 +279t4 +506t5 +832t0 +1275¢7 + .. 102 405 437 438, 430, 524
1+9t+9t2 4¢3
(11 9) 1—¢ 144, 145, 146, 147, 148, 149, 150,
) 151, 404, 405
14+13t4+55¢2+147¢3+309t4+561¢5+923t0 11415¢7 +...
1+10t4+10¢2 4¢3
44
(12,10) 1=t 152
14146460t 41613433964 +6166° 410140+ 1555¢ 7 + ..
153, 154, 155, 156, 157, 158, 159,
1411641182443 160, 161, 162, 163, 164, 165, 166,
(13 11) 1—¢4 167, 168, 169, 170, 171, 172, 173,
) 174, 175, 176, 177, 178, 179, 180,
14+15t+65t2+175t3 +369t% +671t5+1105t5+1695¢ 7+ ... 181, 182, 183, 184, 185, 186, 187,
406, 407, 408, 409, 410, 411
243
1+14t+14t=+t
(16 14) 1—¢t4 188, 189, 190, 191, 192, 193, 194,
) 195, 196
1+18t+80t24+217t3 +459t% +836t5+1378t6 +2115¢7 ...
243
% 197, 198, 199, 200, 201, 202, 203,
(17,15) 1t 204, 205, 206, 207, 208, 209, 210,
1419¢4+85¢2 4231¢3 +-489¢4 +891¢° +-1469t8 1-2255¢ 7 .. 211,212, 213, 214, 215, 412
141741782443
(19 17) 1—¢4 216, 217, 218, 219, 220, 221, 222,
) 223, 224, 225, 226, 227

1421649562 4+259t3 4+ 549t4 +1001t% +1651¢6 125357 +...
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Chapter 2. Gorenstein Fano threefolds of Picard number one

(9,¢) HPx (t) IDs

14+19¢+19¢2+43
(21, 19) 1-t* 228, 229, 230, 231
1+23t+105t2+287t3 4609t +1111¢5 418330 4281517 +..

14+20¢4+20t2+¢3
1

1-t 232, 233, 234

1424t 4+110¢24+301¢54+639t% +1166t° +19245 £ 2955¢7 ...

1+23t+23¢% 4¢3
1423642317 +¢°
(25,23) 1-¢ 235, 236, 237, 238

1+27t+125t2 +343t3+729t4 +133165 4219716 +-3375¢ 7 +..

14-24t++24t% 4¢3

1
(26,24) 1-¢ 239, 240, 241, 242
14+28t+130t2 43575 +759t% 4+ 13865 +2288t0 +3515¢ 7 +...

14-26t+26¢%4-t3
(28, 26) 1t 243, 244, 245

14+30t+140t2 43855 +819t%+1496t° +2470t0 +3795¢7 +...

Proof. Observe that the anticanonical ring is the Veronese subalgebra of the Cox ring
associated to the subgroup generated by the anticanonical class. Thus, we can use the
Cox ring data from the classification lists in Section 2.12 to compute a minimal system
of generators and the associated relations. This provides us in particular with genus and
codimension. Moreover, it allows us to compute the Hilbert-Poincaré series; we used the
computer algebra system Singular. O

Corollary 2.13.2. The Hilbert-Poincaré series of a non-toric, Q-factorial, log-terminal,
Gorenstein, Fano threefold X of Picard number one with an effective action of a two-
dimensional torus only depends on the genus g of X and can be explicitly written down

as
1+ (g—2)(t+t2) +t3

(1—1t)*

HPx(t) =
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CHAPTER
THREE

LOCALLY FACTORIAL FANO FOURFOLDS OF PICARD
NUMBER TWO

We classify the locally factorial Fano fourfolds of Picard number two with a hypersurface
Cox ring that admit an effective action of a three-dimensional torus. The chapter is
organized as follows. In Section 3.1 we present our classification results. Section 3.2
serves to provide the necessary background on Cox rings. In Section 3.3 we establish two
general facts, essentially supporting our classification: First, Proposition 3.3.1 shows that
in our setting we always have a torsion-free Picard group and second, Proposition 3.3.2
supplies us with an explicit smoothing procedure. The complete proof of the classification
spans the Sections 3.4 — 3.9. The classification tables are presented in Section 3.10. The
results of this chapter have been achieved in cooperation with equal contributions by
Christian Mauz and the author and are published in the joint work [17].

3.1 Main result

We study locally factorial Fano fourfolds of Picard number two that admit an effective
action of a three-dimensional torus. Locally factorial means that every Weil divisor is
locally principal. Whereas in the toric case smoothness and local factoriality coincide,
the latter setting turns out to be much more general for torus actions of complexity one;
for instance, the varieties need not be log terminal any more and we find infinite series
of non-isomorphic Fanos in fixed dimensions. We settle the case of a Cox ring defined
by a single relation. Our main result considerably extends the corresponding one in the
smooth case [35, Thm. 1.2].

Theorem 3.1.1. There are 447 sporadic cases and 106 infinite series of locally factorial
Fano fourfolds of Picard number two coming with an effective action of a three-dimensional
torus and a Coz ring defined by a single relation.

Our varieties in question are uniquely determined by the generator degrees and the
relation in their Cox ring. Classification lists 3.10.1 to 3.10.11 provide the complete
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

and redundancy free presentation of the specifying data for Theorem 3.1.1. A data file
containing the complete classification data is also available at [18].

For the proof of Theorem 3.1.1 we distinguish two main cases. The first one treats
an ample relation degree. There, we provide a smoothing procedure via Bertini’s
theorem which allows us to infer first constraints on the relevant invariants from the
classification of smooth Fano fourfoulds of Picard number two with a hypersurface Cox
ring [45, Thm. 1.1]. The situation becomes more involved when the relation degree is
not ample. In this situation, we have to classify case by case according to the possible
constellations of the Cox ring generator degrees in the effective cone, making heavy use
of the combinatorial description of varieties with a torus action of complexity one from
[41,46], see also [6, Sec. 3.4].

3.2 Background on Cox rings

By a Mori dream space we mean an irreducible, normal, projective complex variety X
with finitely generated divisor class group CI1(X) and finitely generated Cox ring R(X).
We give a brief summary on the combinatorial approach [6,20,40] to Mori dream spaces,
adapted to our needs. By a K-graded affine algebra, where K is a finitely generated
abelian group, we mean an affine C-algebra R coming with a direct sum decomposition
into C-vector subspaces

R= P Ry

weK

such that R,R, C Ryiw holds for all w,w’ € K. An element f € R is called
homogeneous if f € Ry, holds for some w € K. In that case w is the degree of f and we
write w = deg(f). Geometrically, we have the affine variety X with R as its algebra of
global functions and the quasitorus H with K as its character group:

X = SpecR, H = SpecC[K].
The K-grading of R defines an algebraic action of H on X. By Kq := K ®7 Q we denote
the Q-vector space associated with K.
(i) The effective cone of R is
Eff(R) := cone(w € K; R, #0) C Kg.
(ii) For x € X we have the orbit cone

wy = cone(w € K; f(x) # 0 for some f € R,) C Kg.

(iii) For w € Eff(R) we have the GIT-cone
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The K-grading of R is called pointed if Ry = C holds and Eff(R) contains no line. The
effective cone, as well as orbit cones and GIT-cones are convex polyhedral cones and
there are only finitely many of them. The GIT-cones form a (quasi-) fan A(R) in Kg
called the GIT-fan of R, having the effective cone Eff(R) as its support. We recall Cox’s
quotient presentation [29] for projective toric varieties.

Construction 3.2.1. Let S = C[T4,...,T,] and consider a pointed K-grading on S,
such that the variables T1,...,T, are homogeneous. Write w; := deg(7;) € K for the
generator degrees, also when considered in Kg. We denote the grading map by

Q:7Z — K, e — w;.
We have the action of the quasitorus H on the affine toric variety Z, where
H := SpecC[K], Z = SpecS = C'.

We assume that any » — 1 of the degrees wy, ..., w, generate K as a group, ie. the K-
grading is almost free. Moreover we assume that the moving cone

.
Mov(S) := ﬂ cone(wj; j#1i) C Ko
i=1
is of full dimension. Fix a GIT-cone 7 € A(S) with 7° C Mov(S5)°. There is the H-
invariant open set of semistable points Z and the corresponding good quotient Z:

7SS

Z = 7"r) = {zeZ; ACuw}, Z = Z/JH.

The quotient variety Z is a projective toric variety of dimension r —dim(Kq) with divisor
class group Cl(Z) = K and Cox ring R(Z) = S.

The following construction produces Mori dream spaces as hypersurfaces in projective
toric varieties. A K-graded algebra R is called K -factorial, or the K-grading of R is
called factorial, if R is integral and every homogeneous non-zero non-unit is a product
of K-primes. A K-prime is a homogeneous non-zero non-unit f € R with the property
that f | gh for homogeneous g, h € R implies that f | g or f | h holds.

Construction 3.2.2. See [6, Sec. 3.2, 3.3] and [45, Constr. 4.1, Rem. 4.2]. In the setting
of Construction 3.2.1 fix 0 # u € K and g € S, and set

R, == S/g), X,=V(9) CZ  X,:=X,0NZ,  X,:=X,/HCZ

Then the factor algebra R, inherits a K-grading from S and the quotient X, C Z is a
closed subvariety. Moreover, there is a GIT-cone A € A(Ry) with

SS

Xy = XN = {z€Xg5 ACuw, b

We assume that Ry is integral and normal with B = C*, the induced K-grading is
factorial and T1,...,T, define a minimal system of pairwise non-associated K-primes
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

in Ry. Then X, is a normal, projective variety with dimension, divisor class group and
Cox ring given by

dim(X,) = dim(Z)—1, CI(X,) = K, R(X,) = R,.

Moreover, the cones of effective, movable, semiample and ample divisor classes of X are
given in the rational divisor class group Cl(X,)g = Kq by

Eff(Xy) = Eff(Ry), Mov(X,) = Mov(Rgy) = Mov(S),
SAmple(X,) = A, Ample(X,) = A°.

Remark 3.2.3. Let X = X, as in Construction 3.2.2. The minimal ambient toric variety
of X is the unique minimal open toric subvariety Z;, C Z containing X. For the ample
cones of X, Z, and Z we have

7° = Ample(Z) C Ample(Z,) = Ample(X) = \°.

Remark 3.2.4. A Mori dream space X with divisor class group Cl(X) = K has a
hypersurface Coz ring if there is an irredundant K-graded presentation

R(X) = C[Tlv ce ,TT]/<g>,

meaning that the ideal (g) contains no element T; — h; with h; € K[T1,...,T,] not depend-
ing on T;. If such a presentation exists, then we have X = X, as in Construction 3.2.2.

Proposition 3.2.5. See [6, Prop. 3.3.3.2]. Let X = X, as in Construction 3.2.2. Then
the anticanonical class of X is given in K = Cl(X) by

K = wy+---+w, — p.

There is a decomposition of X = X into locally closed subsets as follows. Denote
by ~ the positive orthant in Q. A face vy =< y is called an )_(g-face if there is « € )_(g
with

z; #0 < e; € Y.

The orbit cones of X, are precisely the cones Q (o), where g is an X j-face. An X -face
is an X g-face vo with A° C Q(v9)°. Write rlv(X) for the set of X-faces. We have

X = U X)), X(y) == {z€Xy; 7, #0 < ¢ € y}/H.
Yo€rlv(X)

Proposition 3.2.6. See [6, Cor. 3.3.1.8]. For X = X, as in Construction 3.2.2 the
following hold.
(i) X is Q-factorial if and only if the cone A = SAmple(X) C Kgq is full-dimensional.
(ii) X is locally factorial if and only if for every X -face vy < =y, the group K is generated
by Q(r0 N Z").
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For locally factorial X of Picard number two, Proposition 3.2.6 (ii) in particular
yields the following two statements.

Lemma 3.2.7. See [45, Lemma 5.6]. Let X = X, as in Construction 3.2.2. Assume
X s locally factorial and of Picard number two. Let 1 < i,j <1 with A\ C cone(w;, w;).
Then either w;, w; generate K as a group, or g has precisely one monomial of the form

TiliT;j, where l; +1; > 0.

Let X = X, from Construction 3.2.2 be of Picard number two. Then we decompose
the effective cone into the convex sets

Eff(R;)) = A~ UXUAT,

where A~ and A* are the convex polyhedral cones not intersecting A\° and the intersection
AT N A consists only of the origin.

Lemma 3.2.8. See [45, Lemma 5.7]. Let X = X, as in Construction 3.2.2. Assume X
is locally factorial and of Picard number two. Let 1 <i < j <k < r. Then w;,w;, wy
generate K as a group, provided that one of the following holds:

(i) wi,wj €A™, wx, € AT and g has no monomial of the form T,

(ii) w; € A7, wj,wi € AT and g has no monomial of the form Tili,

(iii) w; € A7, wj € A, wy € AT
Moreover, if (iii) holds, then g has a monomial of the form le»j where l; is divisible by
the order of the factor group K /{w;, wy).

We turn to rational varieties with a complexity one torus action. For the general
theory see [41,42,46], also [6, Sec. 3.4]. Here we focus on the case of hypersurface Cox
rings.

Proposition 3.2.9. For a Mori dream space X with a hypersurface Cox ring the following
are equivalent:

(i) X admits a torus action of complexity one.

(ii) The Cozx ring of X has an irredundant C1(X)-graded presentation

R(X) = C[Tl’ cee 7T7“]/<g>a
where g is a trinomial consisting of pairwise coprime monomials.

Proof. We write K = Cl(X) for the divisor class group and R = R(X) for the Cox ring
of X. Assume that (i) holds. Then by [6, Thm. 4.4.1.6] there is an irredundant K-graded
presentation

R = (C[T17"‘7T7’}/<g17"')gt>7

such that the variables define pairwise non-associated K-prime generators and the
polynomials g1, ...,g € C[T1,...,T,] are homogeneous trinomials, each one consisting
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of pairwise coprime monomials. Moreover, since X has a hypersurface Cox ring, there is
an irredundant K-graded presentation

R = ClI,...,T]/{g).

The graded isomorphism between these two presentations of R lifts to a graded isomor-
phism C[T4,...,T,] = C[T1,...,T,], see [44, Lemma 2.4]. This yields r =7’ and ¢t = 1.
Now assume that (ii) holds. Using [6, Constr. 3.2.4.2] we construct the gradiator of g.
This is the maximal effective grading of K[T7,...,T,] for which the variables T1,..., T,
and the polynomial g are homogeneous. Geometrically, this grading yields an effective
action of a quasitorus H, on X. The coprimeness of the monomials of g guarantees
that the quasitorus H, contains a torus 7" of dimension dim(7") = dim(X) — 1. Thus X
admits an effective torus action of complexity one. O

We conclude this section by quoting two results used in the proof of Theorem 3.1.1.
For a torsion-free grading group K the notions of K-factoriality and factoriality coincide,
see [6, Thm. 3.4.1.11].

Remark 3.2.10. See [41, Thm. 1.1]. For ly,ls,l3 € Z%, assume that the monomi-

als T, T T ¢ C[Ty,...,T,] are pairwise coprime. Then the ring
R = C[Ty,...,T,|/(T" +T" 4+ T%)

is a unique factorization domain if and only if the integers ged(ly), ged(l2) and ged(ls)
are pairwise coprime.

Remark 3.2.11. See [45, Prop. 2.4]. Let X = X, as in Construction 3.2.2. Then we
have

[l ﬂ cone(wy; k#i,k#j) C Kg.

1<i<j<r

3.3 Picard group and smoothability

In this section we establish two general facts, being essential for our proof of Theorem
3.1.1. The first is Proposition 3.3.1, which shows that in our setting the Picard group is
always torsion-free. The second is Proposition 3.3.2, which in particular gives rise to an
explicit smoothing procedure in the case of an ample relation degree p = deg(g) in the
Cox ring; see also Remark 3.10.13.

Proposition 3.3.1. Let X = X as in Construction 3.2.2. Assume that X is Q-factorial,
Fano, of Picard number two and admits a torus action of complexity one. Then the
Picard group Pic(X) is torsion-free.

Proof. By [6, Cor. 3.3.1.6] we have the identity

Pic(X) = ﬂ Q(lin(yo) NZ").

~vo X-face
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3.3. Picard group and smoothability

It therefore suffices to show that there is a two-dimensional X-face. By Proposition 3.2.9
we may assume that g € S is a trinomial consisting of pairwise coprime monomials. We
write p1, ..., ps for the rays generated by the generator degrees w1, ..., wy. The effective
cone of R := R, is given by Eff(R) = p1 + ps. We distinguish two cases. First, assume
p = deg(g) is contained in Eff(R)°. In this case we can find generator degrees w;,w;
that satisfy the following conditions:
(i) A° C cone(w;, wy).

(ii) p € cone(w;,w;)°.

(iii) ¢ does not contain a monomial of the form TiliT]l-j .
Explicitly, we do the following: Taking w; € p; and w; € p, satisfies (i) and (ii). If
g contains a monomial of the form TleTJlJ , then, since p is contained in the interior of
Eff(R), the exponents [; and [; are positive. The definition of Mov(R) and Remark 3.2.11
ensure that we can replace either w; or w; with a different generator degree, such that
the new pair (w;,w;:) still satisfies (i) and (ii). Since the monomials of g are pairwise
coprime, this pair also satisfies (iii). The face 7 of the positive orthant ~ spanned by e;
and ej is thus a two-dimensional X-face.

Now assume that 4 lies on one of the bounding rays of Eff(R,). We may assume
that u € p; holds. Since g is a trinomial and its monomials are pairwise coprime, the
ray pi contains at least three generator degrees. If p; contains four or more generator
degrees, then there is w; € p; such that g does not contain a monomial of the form
Tili. Choose any w; € ps. Then the face vy := cone(e;, e;) is again a two-dimensional
X-face. Now assume that p; contains exactly three generator degrees, say wi,ws and
ws. The ample cone A of X is of the form A = py + pp41 for some k =1,...,5s — 1. If
A # p1 + p2, then we take w; and w; from each of the bounding rays of A. The face
Y0 := cone(e;, e) is again a two-dimensional X-face. It remains to consider the case
A = p1 + p2. Applying a unimodular transformation, we achieve that p; is the ray
generated by e;. We write w; = (a1,0), wa = (a2,0) and w3 = (a3,0). Switching the
roles of wy, ws and ws if necessary, we may assume that a; > as > as holds. Homogeneity
of g yields l1a1 = leas = lsas. As X is Fano, it’s anticanonical class is ample. By
Proposition 3.2.5, this means

(1-—lw+wetws+ws+--+w, €A = (p1+ p2)°.

The point w := w4 + - - - + w, is contained in the cone ps + (—p1). Thus, for the sum
to lie in the interior of A, we must have (1 — l1)w; + w2 + w3 € p;. This is equivalent
to (I1 — 1)a; < ag + ag. Since a; is at least as big as ag and as, this yields I; = 2.
Homogeneity of g thus yields as = 2a1/ls and a3 = 2a; /l3. With this, the exponents Iy
and [3 satisfy the following inequality:

2 2

Since as > as, we have I3 > lo. Moreover, both exponents are at least two by irredundancy
of the presentation of R. The triple (l1,l2,(3) is therefore one of the following:

<l17l27l3> - (2727y>7 (llvl27l3) = (27373)7
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

(117127l3) = (27374)7 (l17l27l3) == (27375)7

where y > 2. Thus, by [5, Thm. 3.13| the variety X has at most log terminal singularities.
With this, we are in the situation of [70, Prop. 2.1.2], which tells us that the Picard
group Pic(X) is torsion-free. O

Proposition 3.3.2. Let X = X, as in Construction 3.2.2 be locally factorial and of
Picard number two. Assume that

€ SAmple(X) N Mov(X)°.

Then there is a non-empty open subset U C S, such that for all h € U the variety X; C Z
is smooth with divisor class group Cl(Xp) = K and Cox ring R(Xp) = Rp,.

The remainder of this section is devoted to the proof of Proposition 3.3.2. We adopt
the notation of Construction 3.2.1 and Construction 3.2.2. A homogeneous polynomial
h € S, is called spread, if every monomial T € S of degree u = deg(h) is a convex
combination of monomials of h. We say that Ry, is spread, if h is spread, see [45, Def. 4.3].
Here we identify a monomial 7% = Ty -.-T¥ with its exponent vector v € Q". If
h,h' € S, are spread, then the minimal ambient toric varieties Zj, of X} and Zp of X
coincide. Thus the toric variety Z,, := Zj, is well-defined. It is called the u-minimal
ambient toric variety, see [45, Def. 4.18]. The following two Propositions, originally
[45, Prop. 4.11] and [45, Cor. 4.19], are essential to the proof of Proposition 3.3.2.

Proposition 3.3.3. See [45, Cor. 4.19]. In the setting of Construction 3.2.2, as-
sume rank(K) = 2 and that Z,, C Z is smooth. If p € T holds, then p is basepoint free.
Moreover, then there is a non-empty open subset of polynomials g € S,, such that X, is
smooth.

Proposition 3.3.4. See [45, Prop. 4.11]. In the setting of Construction 3.2.2 assume
that K is of rank at most r — 4 and torsion-free, there is g € S, such that T1,...,T,
define primes in Ry, we have p € 7° and p is basepoint free on Z. Then there is a
non-empty open subset of polynomials g € S,, such that Ry is a UFD.

For the rest of this section it is assumed that we have X = X as in Construction 3.2.2
and that X is locally factorial and of Picard number two. For any homogeneous h € S,, we
denote by A, € A(Ry,) the smallest GIT-cone that contains 7. Note that local factoriality
of X in particular implies Q-factoriality. Thus by Proposition 3.2.6 (i) the cone A is
full-dimensional.

Lemma 3.3.5. Let h € S, such that each monomial of g is also a monomial of h. Then
A C Ay, holds.

Proof. The cone A\, € A(Ry,) is the smallest GIT-cone that contains 7. Thus in the
case T = A there is nothing to show. So we may assume that 7 C A holds. We
write A = cone(w;, w;) and 7 = cone(wy,w;). Since T is a proper subset of A, one of
its ray generators is contained in the interior of A\, say wy € A\°. By [45, Prop. 2.8] the
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degree wy, is the only generator degree that is contained in the interior of . Moreover, u
lies on the ray of wi and the relation g contains a monomial of the form T,i’“. Since h
contains each monomial of g, it also contains the monomial T,i’“. Therefore, each projected
X -face Q(70), that contains 7, necessarily also contains generator degrees on both sides
of wy. Since wy, is the only generator degree in the interior of A, the cone Q(7p) also
contains A. This implies the assertion. O

Proposition 3.3.6. The p-minimal ambient toric variety Z,, C Z is smooth.

Proof. Let h € S,, spread such that each monomial of g is also a monomial of h and let
Y0 = v with A7 C Q(v)°. Write 9 = cone(e;,, ..., e;,). By Proposition 3.2.6 (ii) we
have to show that either w;,,...,w;, generate K as a group, or v is not an X ,-face.
Assume that wj,,...,w;, do not generate K. We show that v is not an X, -face. By
Lemma 3.3.5, we have \° C Q(7)°. Since A is of full dimension, 7y is at least two-
dimensional. In particular we have m > 2. None of the degrees wj,, ..., w;,, lies in \°: If
one of them did, say w;, € A°, then by [45, Prop. 2.8] it is the only generator degree in the

interior of A and g contains a monomial of the form Tillil. Moreover, in this case we have
m > 3. We may assume that w;, and w;, each lie in one of the bounding rays of Q(7p).
The degrees w;,, w;, do not generate K as a group. Thus, since X is locally factorial, by
Proposition 3.2.6 (ii) the cone spanned by e;, and e;, is not a X-face. This means that
g contains a monomial of the form Tllf Tl-lf. But then the cone spanned by e;,,e;, and
€y is an X-face and thus Wi, , Wiy, Wi, generate K. A contradiction. Thus none of the
degrees w;,,...,w;, liesin A°. We may assume that the generator degrees are sorted
in such a way that for all v € \° we have det(v, w;;) < 0 if j < k and det(v, w;;) > 0 if
4 > k for some fixed 1 < k < m. We show that either k=1 or k+1=m holds. If 1 < k
and k+1 < m, then we have m > 4 and neither w;,,w;,, ,, nor w;,,w;,, generate K. By
local factoriality of X and Proposition 3.2.6 (ii), the relation g then contains monomials

biy rrim -1 big i / : Y
of the form T; 'T;™ " and T, *T;™. Thus v, = cone(w;,, Wiy, Wi,, ,W;,,) is an X-face

and w;, , wi,, w;,, ,,w;, generate K. A contradiction. We may thus assume that £ =1
liy i ..

holds. If m = 2, then g contains a monomial of the form T} 'T;? and this is the only

monomial in S), only depending on these two variables. Therefore g is not an X ,-face.

If m > 2, then by Proposition 3.2.6 (ii), the relation g contains a monomial of the form

T;* and this is the only monomlaliln S,, only depending on the variables T;,,...,T;, ..

Thus also in this case 7g is not an X j-face. ]

Lemma 3.3.7. If u € X holds, then we also have u € 7.

Proof. In case 7 and A coincide, there is nothing to show. So we assume that 7 C A
holds. Write A\ = cone(w;, w;) and 7 = cone(wy, w;). Since 7 is a proper subset of A, one
of the generator degrees in its bounding rays lies in the interior of A, say wi € A°. By
[45, Prop. 2.8], it is the only generator degree that lies in A° and g contains a monomial
of the form T,i’“. This shows that u € 7 holds. O
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Proposition 3.3.8. Assume that i € AN Mov(R,)° holds. Then there is a non-empty
open subset U C S, such that Ry, is a UFD for each h € U.

Proof. By Lemma 3.3.7 the relation degree i is contained in the cone 7. We distinguish
two cases. First assume that © € 7° holds. As Z, is smooth by Proposition 3.3.6, the
class p is basepoint free by Proposition 3.3.3. We can thus apply Proposition 3.3.4,
which yields the assertion. Now assume that p € 07 holds. Let 7, € A(S) the unique
GIT-cone that contains p in its interior, ie. 7, is the bounding ray of 7 containing
p. We write Z(7,) := Z"(1,)//H for the projective toric variety associated with 7,
as in Construction 3.2.1. We show that p is basepoint free on Z(7,). Note that p is
semiample. Thus by [30, Thm. 6.3.12] it suffices to show that p is Cartier on Z(7,). By
[6, Cor. 3.3.1.6] this is the case if and only if

pe [ Qhnz

Yo€rlv(Z(mu))

holds. Let vy € rlv(Z(7,)). If Q(y0) is two-dimensional, then A° C Q(70)° holds and by
Proposition 3.3.6 we have Q(vy NZ") = K. So assume that Q(vy) is one-dimensional,
ie. Q(v0) = 7,. We distinguish two cases. First assume p € A°. Then by [45, Prop. 2.8],
7, contains a single generator degree wy and p is a multiple of wy. Thus in this case
i € Q(y NZ") holds. Now we assume that p € OX holds. Then 7, is one of the
bounding rays of \. Write 79 = cone(e;,,...,e¢;,) and let wy a generator degree in the
other bounding ray of p. If w;,,...,w;, , w; generate K, then p is a linear combination
of w;,,...,w;, and thus p € Q(v NZ") holds. If they do not generate K, then by
Proposition 3.2.6 (ii) the relation g contains a single monomial only depending on
Ti,...,T;,,, Tk Since p is contained in 7,, this monomial can not depend on Tj,. Thus u
is again a linear combination of the degrees wj,,...,w; and thus pu € Q(v NZ") holds.
This shows that p is basepoint free on Z(7,). We again apply Proposition 3.3.4, which
yields the assertion. O

Proof of Proposition 3.3.2. The set Uy C S, of polynomials h such that Ry, is a UFD is
open and non-empty by Proposition 3.3.8. The set Uy C S, of polynomials h such that
T1,...,T, form a minimal system of non-associated K-prime generators in Ry is open
by [45, Prop. 4.10] and since R, has that property, the set Us is non-empty. Finally,
the set Uz C S, of polynomials h such that X}, is smooth is open and non-empty by
Proposition 3.3.3 and Proposition 3.3.6. Now for any h in the intersection

U =UiNnUyNU;

the affine K-algebra R; is a UFD and the variables T71,...,7T, define pairwise non-
associated primes in Ry,. Being a UFD implies that R}, is normal and that the K-grading
is factorial. The grading is also pointed, as this is inherited from S. In particular this
implies that R} = C* holds. We are thus in the situation of Construction 3.2.2. So Ry, is
the Cox ring of the smooth projective variety Xj,. O
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3.4 Proof of Theorem 3.1.1: Preparation

We are ready to enter the proof of Theorem 3.1.1. We start by fixing the setting.

Setting 3.4.1. Let X be a locally factorial Fano fourfold of Picard number p = 2 with a
hypersurface Cox ring R = R(X). Write K = Cl(X) and let

R = C[h,...,T]/{9)

an irredundant K-graded presentation of R such that the variables Ti,...,Tr define
pairwise non-associated K-prime generators of R. We have X = X, as in Construc-
tion 3.2.2. We assume that X is of complexity ¢ = 1. By Proposition 3.3.1 the group K
is torsion-free and we identify K = Z2. By [6, Thm. 3.4.1.11] the ring R is a UFD. By
Proposition 3.2.9 and Remark 3.2.10 we may thus assume that g satisfies the following
two conditions.

(C1) The relation g is of the form

g = Th 4+ T2 47

with 1,102,135 € Z7>0 such that each variable 11, ..., T~ divides at most one monomial
of g. N
(C2) The integers ged(l1), ged(l2) and ged(l3) are pairwise coprime.
We turn to the grading map @ of R. Write w; := Q(e;) = deg(7;) and p := deg(g) for
the degrees in K, also when regarded in Kg. Suitably ordering w, ..., w7 we ensure

det(wj, wj) >0

whenever ¢ < j. Some of the degrees w; may share a common ray. We denote by s the
number of distinct rays p1, ..., ps generated by the degrees wy, ..., wy,

s = #{cone(w;); i=1,...,7}

Moreover, we denote the number of generator degrees w; contained in the ray p; by n;.
We have s < 7 and
nA+--+n, = 7.

Each ray p; in the GIT-fan A(R) is of the form p; = cone(w;) for some w;, but the
converse may not hold. As X is locally factorial, it is in particular Q-factorial. By
Proposition 3.2.6 (i) this means that the cone A = SAmple(X) is full-dimensional. As
a GIT-cone in Kg = Q?, the cone X is the intersection of two projected X g-faces and
thus each bounding ray of A contains at least one of the degrees w;. We decompose the
effective cone Eff(R) into the three convex sets

Ef(X) = A" UX UM,

where A~ and AT are the convex polyhedral cones not intersecting \°> = Ample(X) and
the intersection AT N A~ consists only of the origin. Each of the cones AT and A\~ contains
at least two of the generator degrees wi,...,w7;. However, AT as well as A~ may be
one-dimensional. The following picture illustrates the situation for the case s = 4.

153



Chapter 3. Locally factorial Fano fourfolds of Picard number two

The black dots represent the generator degrees wi, ..., wy;. The white dot represents the
relation degree p. In this example the cones AT and A~ are full-dimensional.

Remark 3.4.2. Let X as in Setting 3.4.1.
(i) The variety X is uniquely determined by it’s specifying data (Q,g): The vari-
ety X(Q,g) := X, as in Construction 3.2.2 satisfies X = X (Q, g).
(ii) Up to reversing order, the tuple (ny,...,ns) is invariant under automorphisms of
K. We call it the degree constellation of X.

Remark 3.4.3. Given specifying data (@, g) and (Q',¢'), we need criteria to decide
computationally whether or not the varieties X (@, g) and X(Q', ¢’) are isomorphic. Here
we can make use of Proposition 2.3.1; see also [16, Prop. 3.4]: If X(Q, g) and X(Q',¢")
are isomorphic, then g and ¢’ coincide up to permutation of variables.

Setting 3.4.1 divides the proof of Theorem 3.1.1 into six cases, according to the
number s of rays spanned by the degrees w1, ..., wy. The case s = 7 does not occur, see
Proposition 3.4.8. The other five cases s = 2,...,6 are treated in the coming Sections 3.5
to 3.9. Before we jump into the specific cases, we first gather some general observations
that will be used throughout the proof.

Lemma 3.4.4. Let b > a > 1 coprime integers. If ab < 2 4 a + b holds, then we
have a =2 and b = 3.

Proof. Dividing both sides of the inequality in the assertion by ab, we obtain

| < 2 4 1 . 1

~—ab b a
We have ab > 6 as well as 1/b < 1/a. With this we obtain a = 2. The original inequality
turns into 2b < 4 +b. As b > a holds and a and b are coprime, this is only fulfilled for

b=3. g

Lemma 3.4.5. In the situation of Setting 3.4.1, for each ray pj, at most two of the
generator degrees w; contained in p; are non-primitive lattice points.

Proof. Assume that p; contains three non-primitive generator degrees wj, , w;, and wj,.
Applying a unimodular transformation if necessary, we may assume that p; is the ray
generated by the first standard basis vector. Write

Wi = (ailvo)v Wiy = (aizvo)v Wiz = (ai370)'
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As the degrees w;, , w;,, w;, are non-primitive, we have a;,, ai,, a;; > 1. By [45, Prop. 2.§]
the ray p; does not lie in the interior of A\. Thus there is a generator degree wy, such that
A is contained in the two-dimensional cone 7,, = cone(w;,, , wy) for m = 1,2, 3. Since w;,,
is not primitive, the degrees w;,, and wy do not generate K as a group. Lemma 3.2.7
thus tells us that the relation g contains monomials of the form ﬂl;m Tli’“(m). As the
monomials of g a pairwise coprime, at least two of the exponent [x(m) must be zero. By
homogeneity of g we obtain (1) = l5(2) = lx(3) = 0 and p lies in p;. In particular, we
have
po= liywi, = L,wi, = li;wi,.

By the condition (C2) from Setting 3.4.1, the integers l;,,(;,, li; are pairwise coprime.
Moreover, they are all bigger than one by irredundancy of the presentation of R. Let p a
prime divisor of /;;. Then p must divide both a;, and a;,. In particular, a;, and a;, are
not coprime. Thus the three degrees w;,, w;, and wy do not generate K as a group. By
Lemma 3.2.8 the relation g must therefore contain a monomial of the form wfc’“. This is a
contradiction to the position of p. Thus at least one of w;,, w;,, w;, is primitive. O

Lemma 3.4.6. In the situation of Setting 3.4.1, assume that u € AY\X holds. Then the
following hold.
(i) The cone X is reqular and every generator degree lying on its boundary is primitive.
(ii) All generator degrees contained in X\~ coincide. In particular, ni > 2 holds and
AT = p1 is a bounding ray of \.

Proof. We prove (i). Let 1 < i < j < 7 such that A = cone(w;, w;) holds. Since the
relation degree p is not contained in A, the relation g does not contain a monomial of the
form TlllleJ . By Lemma 3.2.7, the generator degrees w; and w; generate K as a group.
We prove (ii). Let 1 <14 < j <7 such that A = cone(w;, w;) holds. By (i) we may assume
that w; = (1,0) and w; = (0,1) holds. We write w; = (a1, —b1) for some ai,b; € Z>o.
Applying Lemma 3.2.7 to the generator degrees wq and w; shows that a; = 1 holds. So in
order to verify item (ii) it suffices to show that b; = 0 holds. For this we first show that
Eff(R) contains a lattice point v € Z?2 of the form v = (—a, 1) for some a € Z>1. Note
that ws, we, wy do not lie in A\. Write wy, = (—ay, by) for k = 5,6,7. If by = 1 holds for
one of those, then we have found such a point v. Otherwise we have bs, bg, by > 1. Thus
det(w;, wg) = by, > 1 holds and by Lemma 3.2.7, the relation ¢g contains monomials of
the form Z}kiTk‘s, Tll iTéG and T;""T7"". Since only at most one monomial of ¢ is divisible
by T;, we conclude that two of the exponents k;, I; and m; must be zero. Homogeneity of
g thus implies that two of the generator degrees ws, wg, w7 lie on the ray through u. Let
v = (v1,v2) € Z? denote the primitive lattice vector on this ray. We apply Lemma 3.2.8
to w; and the two generator degrees on the ray through p to infer vy = det(w;,v) = 1.
Thus v is a lattice point of the desired form. From w; € A\~ and v € A" we infer

0 < det(wy,v) = 1—aby.

As a is positive, this inequality can only be fulfilled by b = 0. Hence w; = (1,0) holds,
which proves the assertion. O
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Lemma 3.4.7. In the situation of Setting 3.4.1 assume that p € p1 holds. Then we have
s <3 and ny > 4.

Proof. Since the relation ¢ is a trinomial consisting of pairwise coprime monomials, the
ray pi contains at least the three generator degrees wi,ws,ws. Applying a unimodular
transformation we may assume that p; is the ray generated by the first standard basis
vector. We write w; = (a;,0) with positive integers a1, a2, as. By Lemma 3.4.5 at least
one of a1, a9, as is equal to one. Renaming variables if necessary, we may assume a; = 1.
If no other generator degree is contained in p;, then g must be of the form

g = T+ T2 + 19,

Homogeneity of g thus yields I; = agle, which contradicts condition (C2) from Setting 3.4.1.
Thus the ray p; contains at least the four generator degrees wi, ws, w3, wy. In particular
we have s < 4. Assume that s = 4 holds. Applying Lemma 3.2.8 to the triples (w1, wa, ws),
(w1, wa, wg) and (w1, we, wy) shows that ws, wg, w7 are primitive. We apply a unimodular
transformation to achieve

|11 a3 ag a b 0 _
=100 0 0111/ M=o

where @ > b > 0 and a4 > a3. Lemma 3.2.8 applied to the triple (ws, w4, w7) shows
that as and a4 are coprime. The moving cone is given by Mov(R) = p1 + p3 and it is
subdivided by pz into two two-dimensional chambers. One of them is A\. If A = p3 + p3
holds, then by Lemma 3.4.6 the degrees wg and wy must coincide, which contradicts the
assumption s = 4. Thus A = p; + p2 holds. To satisfy the conditions (C1) and (C2) from
Setting 3.4.1, the relation g must be of the form

g = Tlll 2lz +T§3 +Ti4’

where I3 and [4 are coprime. By homogeneity of g we obtain lsas = l4a4. In particular
a3 = ly and a4 = I3 and p1 = asaq holds. By Proposition 3.2.5, the anticanonical class of
X is given by

24+a3+as—p1+a+bd

K = 3

From X being Fano, ie. —K € A, we infer the inequality

0 < 1l4az3+aqg—p1+b—2a.
Since b — 2a is negative, we must have pu1 < 1+ a3 + aq4. We are thus in the setting of
Lemma 3.4.4, which yields a3 = 2 and a4 = 3 and p; = 6. However, this yields 2a < b,
which contradicts the fact that ¢ > b holds. Thus we must have s < 3. L]

Proposition 3.4.8. In the situation of Setting 3.4.1 we have s < 6.
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3.5. Proof of Theorem 3.1.1: Case s =2

Proof. Let X as in 3.4.1 and assume that s = 7 holds. Then each of the seven rays
p1,--.,p7 contains a single generator degree. In particular, Lemma 3.4.6 (ii) tells us
that we must have u € A. The Moving cone is given by Mov(R) = p2 + pg and by
Remark 3.2.11 the relation degree p is contained in the cone p3 + ps. In particular, u lies
in the interior of Mov(R). We are thus in the situation of Proposition 3.3.2 which tells
us that for a general polynomial h € C[T7,...,T7] of degree deg(h) = p, the variety Xp,
is smooth with divisor class group C1(X}) = K and Cox ring R(X}) = Ry,. Moreover, by
Proposition 3.2.5 X}, is Fano. Thus, X} is a smooth Fano fourfold of Picard number two
with a spread hypersurface Cox ring. In particular, up to unimodular equivalence, the
grading matrix @ = (wy,...,wy) together with the relation degree u = deg(g) appear
in the classification list presented in [45, Thm. 1.1]. However, there is no entry in that
list with generator degrees wy, ..., w7 distributed among seven different rays. Thus we
have s < 6. O

3.5 Proof of Theorem 3.1.1: Case s =2

Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2,...,6, according to the number of rays spanned by the degrees wy, ..., ws.
In this section we treat the case s = 2.

Theorem 3.5.1. The table from 3.10.1 provides specifying data (Q,g) for 18 locally
factorial Fano fourfolds of Picard number p =2 and complexity ¢ = 1 with a hypersurface
Cox ring and s = 2. Moreover, any locally factorial Fano fourfold with a hypersurface Cox
ring and invariants (p,c,s) = (2,1,2) is isomorphic to precisely one X (Q, g) with (Q,g)
from that table.

Proof. With the tools provided in Section 3.2 we verify that each specifying data (Q, g)
from the table in 3.10.1 defines a locally factorial Fano fourfold X (Q, g) with a hypersur-
face Cox ring and invariants (p, ¢, s) = (2,1,2). Moreover, with the help of Remark 3.4.3
we verify that distinct specifying data from the table in 3.10.1 define pairwise non-
isomorphic varieties. This proves the first assertion in Theorem 3.5.1. For the second
assertion let X as in Setting 3.4.1 with invariants (p,c,s) = (2,1,2). We show that X is
isomorphic to X (@, g) with (@, g) from the table in 3.10.1. By assumption the generator
degrees w1, ..., wr lie on two distinct rays. In particular, the GIT-fan of X contains a
single full-dimensional cone. Since A is full-dimensional, we have

Eff(R) = Mov(R) = A\
We distinguish two cases, depending on the position of the relation degree u relative to A.

Case 3.5.1.1: € \°. We can apply Proposition 3.3.2, which tells us that for a general
polynomial h € C[T4,...,T7| of degree deg(h) = p, the variety X} is a smooth Fano
fourfold of Picard number two with a spread hypersurface Cox ring. Thus the grading
matrix @ = (wi,...,wy) together with the relation degree u = deg(g) appear in the
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classification list presented in [45, Thm. 1.1]. For each such entry (Q, u) with s = 2 we
determine all trinomials g of degree deg(g) = p that satisfy the conditions of Setting 3.4.1
and filter the resulting list by isomorphy. This yields the specifying data with ID’s 1 to 7
in Classification list 3.10.1. The variety X is isomorphic to precisely one variety with
specifying data (@, g) from that list.

Case 3.5.1.2: u € OX. The relation degree p is contained in one of the bounding rays
of the effective cone. Reversing orientation if necessary, we may assume that p € p;
holds. Let m = ni. By Remark 3.2.11 we have m > 3. Moreover, by the definition of
Mov(R), we also have m < 5. Applying Lemma 3.2.8 to the generator degrees wi, wa, w;,
where ¢ > m + 1 shows that the effective cone is regular and that every generator degree
contained po is primitive. For the grading matrix ) and relation degree u we can thus
write

. ar ... Qm 0 0 .
with ai,...,am, € Z>1 and we may assume a; < --- < a;,. Again applying Lemma 3.2.8
to the generator degrees w;, w;, wr with 1 <14 < j < m shows that the integers a1,...,a,,
are pairwise coprime. Moreover, the relation g only depends on the variables T1,...,T,,.

Assume m = 3 holds. Since the monomials of g are pairwise coprime, we have
_ 7l l2 l3
g =17 +1y" + 15

with l1a1 = lsas = lsas. Since R is a UFD, the exponents [y, s, l3 are pairwise coprime;
see Remark 3.2.10. This is not possibly due to the coprimeness of a1, as,as. Thus m > 4
holds and the degree constellation (n1,n2) of X is one of the following:

(nl,nQ) = (5,2), (nl,ng) = (4,3).

Case 3.5.1.2.1: (n1,n2) = (5,2). Applying Lemma 3.2.8 to the generator degrees
w;, wg, wy for ¢ = 1,...,5 shows that at most three of the degrees w1, ..., ws are non-
primitive. Thus a; = a2 = 1 holds. If az > 1 holds, then g is of the form g = Tglf” —I—Ti‘*—l—Té“”
with pairwise coprime exponents l3,l4,l5. This is not possible due to the coprimeness
of as, aq,as. Therefore ag = 1 holds and we have

- 1 1 1 a4 a5 0 O _

The anticanonical class is given by —K = (34 a4 + a5 — p1,2). The Fano condition on X
yields

w1 < 24 a4+ as. (3.5.1.1)

We distinguish three cases, depending on the values of a4 and as.
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3.5. Proof of Theorem 3.1.1: Case s =2

Case 3.5.1.2.1.1: a4,a5 > 1. We can apply Lemma 3.4.4 to obtain a4 = 2, a5 = 3
and p1; = 6. Grading matrix and relation degree are thus given by

1

112 3 00
Q_OOOOOI

BE uw = (6,0).
Applying Lemma Lemma 3.2.7 to the pairs (w4, w7) and (ws,wr) shows that g is of the

form
g = TITRTE + 77 + T2,

By homogeneity of g we have [1 +1s 4+ 13 = 6. Since R is a UFD, [y, l2, I3 must be coprime;
see Remark 3.2.10. Filtering by isomorphy, this leads to the specifying data no. 11, 12
and 13.

Case 3.5.1.2.1.2: a4 = 1,a5 > 1. Applying Lemma 3.2.7 to the pair (w5, ws) shows
that ¢ contains a monomial of the form T, Elf’ with [5 > 1. In particular we have p = lsas
and Equation 3.5.1.1 yields

(l5 - 1)&5 < 3.

There are thus two cases for a5 and 5, namely (as,l5) = (2,2) and (as,l5) = (3,2). In
the first case the grading matrix and relation degree are given by

1111 2

@ = [ 00000

We check all trinomials g of degree (4,0) that contain the monomial T2 for the conditions
from Setting 3.4.1 and filter the resulting list by isomorphy. This leads to the single

specifying data no. 14. In the second case the grading matrix and relation degree are
given by

— O

?], b= (4,0,

1111300
Q_[o 00001 1]’ o= (60
Again we check all trinomials g of degree (6,0) that contain the monomial 72 for the
conditions from Setting 3.4.1 and filter the resulting list by isomorphy. This leads to the
specifying data no. 9 and no. 10.

Case 3.5.1.2.1.3: a4 = a5 = 1. Equation 3.5.1.1 yields u; < 4. By assumption the
presentation of R is irredundant. Thus p > 2 holds. We have

11111
For each value of p1 we determine all trinomials g of degree p satisfying the conditions
from Setting 3.4.1 and filter the resulting list by isomorphy. This leads to the specifying
data no. 15, 16 and 17.

159



Chapter 3. Locally factorial Fano fourfolds of Picard number two

Case 3.5.1.2.2: (ni1,n2) = (4,3). With the same arguments as in the case 2.1 we
obtain a; = ag = 1 and that a3 and a4 are coprime. The relation g only depends on the
variables 17, ..., Ty. Since its monomials are pairwise coprime, the relation g contains at
least two monomials that only depend on a single variable. Moreover, as R is a UFD,
their exponents must be coprime, see Remark 3.2.10. This is only possible if g is of the
form

g = ThTe +Th 4 Tt

By homogeneity of g we have py = lsag = l4a4. Coprimeness of [3 and Iy yields ag,aq > 1
and that they are coprime. We can thus apply Lemma 3.4.4 to obtain a3 = 2, a4 = 3
and p; = 6. Grading matrix and relation degree are thus given by

1123000
=loo0001 11| #= 6O
The exponents of the first monomial of g are coprime and satisfy [; + lo = 6. Filtering by
isomorphy, this leads to specifying data no. 18. O

3.6 Proof of Theorem 3.1.1: Case s = 3

Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2,...,6, according to the number of rays spanned by the degrees wy, ..., ws.
In this section we treat the case s = 3.

Theorem 3.6.1. The tables from 3.10.2, 3.10.3 and 3.10.4 provide specifying data (Q, g)
for 223 sporadic cases and 4 infinite series of locally factorial Fano fourfolds of Picard
number p = 2 and complexity ¢ = 1 with a hypersurface Cox ring and s = 3. Moreover,
any locally factorial Fano fourfold with a hypersurface Cox ring and invariants (p,c,s) =
(2,1,3) is isomorphic to precisely one X(Q,g) with (Q,g) from these tables.

The proof of Theorem 3.6.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q, g) from the tables in 3.10.2, 3.10.3
and 3.10.4 defines a locally factorial Fano fourfold X (@, g) with a hypersurface Cox ring
and invariants (p,c,s) = (2,1,3). Moreover, with the help of Remark 3.4.3 we verify
that distinct specifying data from the tables in 3.10.2, 3.10.3 and 3.10.4 define pairwise
non-isomorphic varieties. The second part is to show that any locally factorial Fano
fourfold with a hypersurface Cox ring and invariants (p, ¢, s) = (2,1, 3) is isomorphic to
X(Q,g) with (Q, g) from these tables. We divide the proof of this into the two general
cases

w € SAmple(X), i ¢ SAmple(X).

The case p € SAmple(X) will be treated in Proposition 3.6.2. In Proposition 3.6.3 we
treat the case pu & SAmple(X).
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3.6. Proof of Theorem 3.1.1: Case s =3

Proposition 3.6.2. Let X as in Setting 3.4.1 with s = 3. Assume that p € A holds.
Then X is isomorphic to an X (Q, g) with specifying data (Q, g) appearing in Classification
list 8.10.2.

Proof. We divide the proof into the two cases u € Mov(R)® and p € 9 Mov(R).

Case 3.6.2.1: € Mov(R)°. We are in the situation of Proposition 3.3.2. Thus, for a
general polynomial h € C[T1,...,T7| of degree deg(h) = u, the projective variety X}, is
smooth with divisor class group Cl(X}) = K and Cox ring R(X}) = Rp,. Moreover, by
Proposition 3.2.5 X}, is Fano. Thus, X}, is a smooth Fano fourfold of Picard number two
with a spread hypersurface Cox ring. In particular, up to unimodular equivalence, the
grading matrix = (wy,...,wy7) together with the relation degree u = deg(g) appear
in the classification list presented in [45, Thm. 1.1]. For each such entry (Q,p) with
s = 3 we determine all trinomials g of degree deg(g) = p that satisfy the conditions (C1)
and (C2) from Setting 3.4.1 and filter the resulting list by isomorphy. This yields the
specifying data no. 19 to 80 in Classification list 3.10.2.

Case 3.6.2.2: u € OMov(R). The relation degree p is contained in one of the
rays pi1, p2, p3.- Reversing the order of the variables if necessary, we may assume that
A = p1 + p2 holds and that p is contained in either p; or po.

Case 3.6.2.2.1: n € ps. The ray po is a bounding ray of Mov(R). Thus in this
configuration the cones A and Mov(R) coincide. By the definition of Mov(R) we must
have ng = 1 and ny > 2. Moreover, Remark 3.2.11 yields no > 2. Applying Lemma 3.2.8
to the generator degrees w1, wa, wy shows that the cone Eff(R) is regular and that wy is
primitive. We may thus assume that Eff(R) is the positive quadrant and that wy = (0,1)
holds. Applying Lemma 3.2.8 to the triples (w1, ws, wg) and (wq, ws, we) shows that the
primitive generator v of ps is of the form v = (¢, 1) for some ¢ > 1. We obtain

w; = wy = (1,0), ws = (asc,as), we = (asc, ag),

where as, ag, c € Z>1 and as, ag are coprime. We may assume that ag > as holds. There
are three possible degree constellations (ny,ne,ng) for X, displayed in the following

pictures.
(TL1,7’L2,7’L3) = (472a 1) (nlanQan3) = (37371) (711,712,713) = (274’1)
The black dots represent the generator degrees wy, ..., w7, the white circle represents

the relation degree . We distinguish three cases, according to the degree constellation.
Case 3.6.2.2.1.1: (ni,n2,n3) = (4,2,1). We apply Lemma 3.2.8 to the triples
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(w3, ws,we) and (wg, ws, we) to obtain ws = wg = (1,0). Grading matrix and rela-
tion degree are given by

1 Y lu’ = (kc7 k)

for some k € Z>1. As g is a trinomial with pairwise coprime monomials of degree p, each
monomial of g is divisible by precisely one of 75, Tg, T%. Due to the constellation of the
generator degrees wi, ..., wry, the relation g thus contains a monomial of the form T5l5
and a monomial of the form TéG7 where I5,lg > 1. The relation degree therefore satisfies
k = lsas = lgag. Note that by Remark 3.2.10, the exponents 5 and lg are coprime. The
coprimeness of as and ag thus yields

ls = ag, le = ag, k = asag.
By Proposition 3.2.5 the anticanonical class of X is given by

4+ (a5 + ag — k)c

-k = 14+as+ag—Fk

From X being Fano, ie. —KC € A\°, we infer the inequality k& < as + ag. We have a5 < ag.
Note that a5 and ag are both bigger than one and coprime. Thus a5 < ag holds. Since &
is divisible by both a5 and ag we have k > a5 + ag. A contradiction. Thus this case does
not occur.

Case 3.6.2.2.1.2: (ni,n2,n3) = (3,3,1). We apply Lemma 3.2.8 to the triple
(ws, ws, wg) to obtain w3 = (1,0). By Lemma 3.4.5 at least one of wy, ws, wg is primitive.
We may assume that wy is primitive. Grading matrix and relation degree are given by

1 1 1 ¢ asc age O
C=10001 a5 a 1| H= keh)
for some k € Z>1. Note that by irredundancy of the presentation of R we have k > 2.
Let 5 < i < 6. Assume that a; > 1 holds. Then by Lemma 3.2.8, applied to the tuple
(w1, w;), the relation g has a monomial of the form Til" with [; > 2. By homogeneity of g
we have k = l;a;. If a; = 1, then clearly k is a multiple of a;. The relation degree thus
satisfies

k = l5a5 = l6a6

with 5 > lg > 2. By Proposition 3.2.5 the anticanonical class —/C of X is given by

3+ (1 +as+as—k)c

-k = 24a5+ag—k

From X being Fano, ie. —IC € A\, we infer the inequalities

k< 14 a5+ ag, (3.6.2.1)
c < 2. (3.6.2.2)

162



3.6. Proof of Theorem 3.1.1: Case s =3

We distinguish three cases, depending on the values of a5 and ag.

Case 3.6.2.2.1.2.1: a5 = ag = 1. Equation 3.6.2.1 yields the bound k£ < 3. Grading
matrix and relation degree are given by

Q =

o I

1 11 ¢ ¢ c
000 111

with 2 < k < 3 and 1 < ¢ < 2. For the possible values of k£ and ¢ we check each
homogeneous trinomial g of degree deg(g) = p for the conditions (C1) and (C2) from
Setting 3.4.1 and filter by isomorphy. Depending on the values of k£ and c this leads to
the following specifying data from Classification list 3.10.2:

(ko) | (2,1) (3,1) (2,2) (3,2)
o | 149 150, 152, 154,155, 156,
151 153 157, 158

Case 3.6.2.2.1.2.2: a5 = 1, ag > 1. Equation 3.6.2.1 yields ag = 2 and lg = 2. Grading
matrix and relation degree are given by

1 11 ¢ ¢ 2¢ 0
Q‘[00011 5 1| #= (el

For the two values of ¢ we check each homogeneous trinomial g of degree deg(g) = p for
the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For ¢ = 1 this
leads to specifying data no. 159 and 160. For ¢ = 2 we get the specifying data no. 161 to
no. 166.

Case 3.6.2.2.1.2.3: as,ag > 1. We have a5 = lg, ag =I5 and k = asag. Thus we can
apply Lemma 3.4.4 to obtain a5 = 2, ag = 3 and k = 6. Grading matrix and relation
degree are given by

1 1 1 ¢ 2¢ 3¢ 0O
@=190001 2 31| #~= 66

For the two values of ¢ we check each homogeneous trinomial g of degree deg(g) = p for
the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For ¢ =1 this
leads to specifying data no. 167 to 180. For ¢ = 2 we get the specifying data no. 181 to
no. 219.

Case 3.6.2.2.1.3: (n1,n2,n3) = (2,4,1). By Lemma 3.4.5 at least two of ws, w4, w5, we
are primitive. We may assume that ws and w4 are primitive. Grading matrix and relation
degree are given by

asc age 0

1 1 ¢ ¢
Q=190 11 as ag 1|’ po= (ke,k)
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for some k € Z>1. By irredundancy of the presentation of R we have k > 2. By
Proposition 3.2.5 the anticanonical class —KC of X is given by

K = 24 (24+as+ag —k)c
- 3+as+ag—k
From X being Fano, ie. —IC € A\, we infer the inequalities

k

C

2 + a5 + ag, (3623)

<
< 1 (3.6.2.4)

Thus ¢ = 1 holds. We distinguish three cases, depending on the values of a5 and ag.

Case 3.6.2.2.1.3.1: a5 = ag = 1. Equation 3.6.2.3 yields the bound k£ < 4. Grading
matrix and relation degree are given by

1 111110
with 2 < k < 4. For the three values of £ we check each homogeneous trinomial g of
degree deg(g) = p for the conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. For k = 2 we get specifying data no. 81 to 84, for £k = 3 we get specifying
data no. 85 to 91 and for k = 4 we get specifying data no. 92 to 101.

Case 3.6.2.2.1.3.2: a5 = 1, ag > 1. Equation 3.6.2.3 yields lg = 2 and ag < 3. Grading
matrix and relation degree are given by

CLGO

111
1 11 g 1|0 H = (20620).

11

@ = 0 0

For the two values of ag we check each homogeneous trinomial g of degree deg(g) = p for
the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For ag = 2 this

leads to specifying data no. 102 to 107. For ag = 3 we get the specifying data no. 108 to
no. 129.

Case 3.6.2.2.1.3.3: as,a¢ > 1. By Lemma 3.2.8 applied to (wy,ws, ws), the integers
as, ag are coprime. With Remark 3.2.10 we obtain a5 = lg, ag = l5 and k = asag. Thus
we can apply Lemma 3.4.4 to obtain a5 = 2, ag = 3 and k = 6. Grading matrix and
relation degree are given by

0
1 ’ /’L - (676)

111 2 3

@ = 001123

We check each homogeneous trinomial g of degree deg(g) = p for the conditions (C1)

and (C2) from Setting 3.4.1 and filter by isomorphy. This leads to specifying data no.
130 to 148.
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3.6. Proof of Theorem 3.1.1: Case s =3

Case 3.6.2.2.2: 11 € p1. By Remark 3.2.11 we have ny > 3. Assume ny = 3. Then g is
of the form g = Tll1 + TQZ2 + TéB. By irredundancy of the presentation of R, the exponents
l1,12,13 are all at least two. By Lemma 3.4.5, at least one of w1, wo, w3 is primitive, say
wy. Then [y is a multiple of l5. In particular, [ and ls are not coprime. By Remark 3.2.10
this is a contradiction to factoriality of R. Thus ny > 4 holds. Applying Lemma 3.2.8
to the triple (w;, w2, w7) shows that the cone Eff(R) is regular and that wy is primitive.
We may thus assume that Eff(R) is the positive quadrant and that w7 = (0,1) holds. By
Lemma 3.4.5 at least two of the generator degrees contained in p; are primitive. We may
thus assume that w; = wy = (1,0) holds. There are three possible degree constellations
(n1,n2,n3) for X, displayed in the following pictures.

(4,2,1) (4,1,2) (5,1,1)

) Y b

The black dots represent the generator degrees wi, ..., wy, the white circle represents
the relation degree . We distinguish three cases, according to the degree constellation.

Case 3.6.2.2.2.1: (ni,n2,n3) = (4,2,1). Applying Lemma 3.2.8 to the triples
(w1, wa,ws) and (w1, ws, we) shows that ws = wg = (¢, 1) holds for some ¢ > 1. Grading
matrix and relation degree are thus given by

_ 1 1 a3 a4 ¢ ¢ O .
By Proposition 3.2.5 the anticanonical class —K of X is given by

24+ 2c+a3+a4— 1

K = 3

From X being Fano, ie. —K € A, we infer the inequality
w1 < as+ay. (3.6.2.5)

Note that the relation g only depends on the variables T4, ...,Ty. As g is a trinomial of
coprime monomials, it contains at least two monomials which only depend on a single
variable. Having in mind the restrictions imposed on g by Remark 3.2.10, the only
possible form for g is

g = T111T2l2 +T§3+T4l4,

where I3 and l4 are larger than one and coprime. By homogeneity of g, the integers as, a4
are also larger than one and due to Lemma 3.2.8 applied to (ws, wy, w7), they also must
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be coprime. Thus we have a3 = l4, ag = I3 and pu; = azay. In particular pu; > az + aq
holds. This is a contradiction to Equation 3.6.2.5. Thus this case does not occur.

Case 3.6.2.2.2.2: (ni,n2,n3) = (4,1,2). Applying Lemma 3.2.8 to the triples
(w1, we,ws) and (w1, ws, ws) shows that ws = (¢, 1) holds for some ¢ > 1 and wg = (0, 1).
Grading matrix and relation degree are thus given by

|1 1 a3 ag ¢ 0 O .

By Proposition 3.2.5 the anticanonical class —XC of X is given by

K o— [2+c+a3+a4—m]'

3
From X being Fano, ie. —K € A, we infer the inequality
1 < az+ag — 1.

As in the previous case, the relation g only depends on the variables T71,...,T4. Since
g is a trinomial consisting of coprime monomials, it contains at least two monomials
which only depend on a single variable. Having in mind the restrictions imposed on g by
Remark 3.2.10, the only possible form for g is

g = T111T212 _‘_Tés +T4[:47

where [3 and [4 are larger than one and coprime. By homogeneity of g, the integers as, a4
are also larger than one and due to Lemma 3.2.8 applied to (ws, w4, wr), they also must
be coprime. Thus we have a3 = l4, ag = I3 and pu; = asay. In particular p; > a3 + aq
holds. This is a contradiction to Equation 3.6.2.5. Thus this case does not occur.

Case 3.6.2.2.2.3: (ni,n2,n3) = (5,1,1). By Lemma 3.4.5, at least one of ws, wy, ws
is primitive, We may thus assume w3 = (1,0). Applying Lemma 3.2.8 to the triple

(w1, wa2,we) shows that wg = (¢, 1) holds for some ¢ > 1. Grading matrix and relation
degree are thus given by

_ 1 1 1 a4 a5 ¢ O .
By Proposition 3.2.5 the anticanonical class —K of X is given by

K =

3—|—c+a4+a5—u1]
9 .

From X being Fano, ie. —/C € A, we infer the inequality

w < 2—c+aq+as. (3.6.2.6)
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Note that p; is a multiple of both a4 and as. This is only possible if ¢ > 2 holds. We
distinguish three cases, depending on the values of a4 and as.

Case 3.6.2.2.2.3.1: a4 = a5 = 1. Equation 3.6.2.6 yields the bound p; < 3. Grading
matrix and relation degree are given by

11111 ¢00

with 2 < k < 3. For the possible values of k and ¢ we check each homogeneous trinomial
g of degree deg(g) = u for the conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. For (k,c) = (2,1) we get specifying data no. 225, for (k,c) = (3,1) we get
specifying data no. 224 and for (k,c) = (2,2) we get specifying data no. 226.

Case 3.6.2.2.2.3.2: a4 = 1, a5 > 1. Equation 3.6.2.6 yields ¢ = 1 and a5 = 2 and
l5 = 2. Grading matrix and relation degree are given by

1111 2 0

_ =

We check each homogeneous trinomial g of degree deg(g) = p for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This leads to specifying data no.
223.

Case 3.6.2.2.2.3.3: a4,a5 > 1. By Lemma 3.2.8 applied to (w4, ws, w7), the integers
a4, as are coprime. With Remark 3.2.10 we obtain a4 =I5, a5 = l4 and pu; = aqas. Thus
we can apply Lemma 3.4.4 to obtain a4 = 2, a5 = 3 and k = 6. Plugging these values
into Equation 3.6.2.6, we obtain ¢ = 1. Grading matrix and relation degree are given by

1112310
@=l000001 1| ~=6O

We check each homogeneous trinomial g of degree deg(g) = p for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This yields the specifying data
no. 220, 221 and 222. ]

Proposition 3.6.3. Let X as in Setting 3.4.1 with s = 3. Assume that u & A holds.
Then X is isomorphic to an X (Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.3 or in Classification list 3.10.4.

Proof. Reversing the order of the variables if necessary, we may assume that A = p; + pa
holds. By assumption p is not contained in A, so we have pu € (p2 + p3)\p2. By
Lemma 3.4.6 we have n; > 2 and w; = wy is the primitive point in p;. Moreover,
by Remark 3.2.11 we have ng > 3. Applying Lemma 3.2.8 to the triple (wy,ws, w7)
shows that the cone Eff(R) is regular. We may thus assume that Eff(R) is the positive
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

quadrant in Q2 and that w; = wy = (1,0) holds. We distinguish the two cases pu € p3
and p1 € (p2 + p3)°.

Case 3.6.3.1: i1 € p3. By Lemma 3.4.7 we have n3 > 4. Thus X has degree constellation
(n1,n2,n3) = (2,1,4). By Lemma 3.4.5 at least two of the generator degrees wy, . . ., wy are
primitive. We may therefore assume that wy = ws = (0,1) holds. Applying Lemma 3.2.8
to the triple (w1, ws,ws), we obtain ws = (¢, 1) for some ¢ > 1. Grading matrix and
relation degree are given by

1

1 ¢ 00 0 O
QiOOlll

b by |0 M= (OF)

for some bg, b7, k > 1. We may assume that bg < b7 holds. The relation g only depends on
the variables Ty, ...,T7. As g is a trinomial with pairwise coprime monomials, it contains
two monomials that each only depend on a single variable. To fulfill the conditions (C1)
and (C2) on g from Setting 3.4.1, the only possible form for g is

g = ThTh LT 4T,

where g, l7 and ged(ly,l5) are pairwise coprime. Moreover, due do irredundancy of the
presentation of R, the exponents lg and l7 are at least two and homogeneity of g yields
lgbg = l7b7. Furthermore, applying Lemma 3.2.8 to the triple (wy, wg, w7) shows that bg
and b7 are coprime. Thus we have b5 = lg and bg = l5 and k = b5bg. By Proposition 3.2.5,
the anticanonical class of X is given by

K =

2+c
3+bg+br—k

Form X being Fano, ie. —K € A°, we infer the inequalities

k 2 + bg + by, (3.6.3.1)
0 1

<
< —2c— (b6 + b7 — k)c. (3.6.3.2)
Equation 3.6.3.1 together with Lemma 3.4.4 yields bg = 2, by = 3 and k = 6. Plugging
these values into Equation 3.6.3.2, we obtain ¢ = 1. Grading matrix and relation degree
are thus given by
1110000
C=loo0o11123/| #= 00
We check each homogeneous trinomial g of degree deg(g) = p for the conditions (C1)
and (C2) from Setting 3.4.1 and filter by isomorphy. This leads to specifying data no.

241.
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3.6. Proof of Theorem 3.1.1: Case s =3

Case 3.6.3.2: p € (p2+p3)°. By Remark 3.2.11 we have ng > 3. Applying Lemma 3.2.8
to the triple (w1, wa, w;) with w; € paUps or the triple (w;, we, wr), where w; € p1, shows
that every generator degree is primitive. In particular we have ws = wg = wy = (0, 1).
The primitive point v € po is of the form v = (a,1) for some a > 1. There are three
possible degree constellations (n1,ng,ns) for X, displayed in the following pictures.

(3,1,3) (2,2,3) (2,1,4)

) ) 9 ?

The black dots represent the generator degrees wi, ..., wy, the white circle represents
the relation degree . We distinguish three cases, according to the degree constellation.

Case 3.6.3.2.1: (n1,n2,n3) = (3,1,3). Grading matrix and anticanonical class of X
are given by

/1 11 a 00 O | 3+a—m
@=1000111 1]’ K= 4 —
From X being Fano, ie. —K € A°, we infer the inequalities
p2 <3, (3.6.3.3)
pr < 2—(3— u2)a. (3.6.3.4)

In particular, we have 2 < us < 3. We first consider the case pus = 2. As pu; is positive,
Equation 3.6.3.4 yields a = 1 and p; = 1. Grading matrix and relation degree are thus
given by

1111000
@=l0001111]| H~=&

Up to isomorphy this leads to specifying data no. 227 and 228. Now consider the case
p2 = 3. Then Equation 3.6.3.4 yields 1 < p; < 2. We first consider the case p = (1, 3).
The relation g is a trinomial with pairwise coprime monomials. Due to the position of A,
each monomial of g is divisible by one of 171, ...,Ty. If T divides a monomial of g, then
by homogeneity we have ¢ = 1. Up to isomorphy this yields specifying data no. 229. If
T4 does not appear in g, then each monomial of the relation is divisible by precisely one
of T, ..., T5. Moreover, by the same argument, each monomial is divisible by precisely
one of T5,...,T7. Thus up to permutation of variables, the relation g is of the form

g = T\T3 + oI + T3T3.

Any choice for a > 1 yields valid specifying data. This is series S1. Finally we consider the
case u = (2,3). Again, if Ty divides a monomial of g, then homogeneity yields a < 2. For
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

the two possible values of a we check each homogeneous trinomial g of degree deg(g) =
for the conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a =1
we get specifying data no. 230 to 232. For a = 2 we get specifying data no. 233 and 234.
If T4 does not appear in g, then up to permutation of variables, the relation g is of the
form

g = TPTE + T5TE + T3T%

Any choice for a > 1 yields valid specifying data. This is series S2.

Case 3.6.3.2.2: (n1,n2,n3) = (2,2,3). Grading matrix and anticanonical class of X
are given by

|11 a a 0 00 e | 2+2a—m
@ = 0011111]’ k= 5 — u2
From X being Fano, ie. —K € A°, we infer the inequalities
o < 4, (3.6.3.5)
p < 1—(3-p)a. (3.6.3.6)

In particular we have 3 < ug < 4. We first consider the case us = 3. Then by Equation
3.6.3.6 we have u; = 1. The relation g is a trinomial with pairwise coprime monomials.
Due to the position of A\, each monomial of g is divisible by one of 71, ..., Ty. In particular,
at least one monomial of g is divisible by T3 or T;. With homogeneity of g we obtain
a = 1. Grading matrix and relation degree are thus given by

1 ’ H = (173)

This leads to specifying data no. 235 and 236. We discuss the case puo = 4. In that case
Equation 3.6.3.6 yields u; < a + 1. Each monomial of g is divisible by exactly one of
Ts,Tg,T7. Moreover, g contains a monomial that is not divisible by 77 or T5. Thus we
may assume that g contains a monomial of the form T§3Ti4T %7, where [3 + 14 > 0 and
I3+ 14+ l7 = 4. The relation degree thus satisfies = ((I3 + l4)a,4). With the bound on
11, we obtain

(l3 + l4)a < a+1.

Assume I3 + I4 > 1 holds. This is only possible for I3 + {4 = 2 and a = 1. In this case the
relation has degree ;= (2,4). Up to permutation of variables of the same degree, the
homogeneous trinomials g of degree deg(g) = (2,4) with coprime monomials are:

g = T3 + Tg + BLT?, g = TPT3 + T5T5 + TiT7,
g = THE + Ty T3 + TET2, g = THTE + 1273 + 112,

None of these satisfy the condition (C1) in 3.4.1. Thus I3 + 4 = 1 holds. Switching
the roles of T3 and T} if necessary, we may assume that g contains the monomial TyT%.
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3.7. Proof of Theorem 3.1.1: Case s =4

The other two monomials of g are divisible by precisely one of T and Tg. Checking all
trinomials of degree p = (a,4) with these properties, that satisfy the conditions (C1)
and (C2) in 3.4.1 and filtering by isomorphy leads to series S3 and S4.

Case 3.6.3.2.3: (ni1,n2,n3) = (2,1,4). Grading matrix and anticanonical class of X
are given by

_ 1 1 a 00 0 O e 24a—
@ = 0011111 ] ’ K= 5 — g
From X being Fano, ie. —IC € A°, we infer the inequalities
p2 <4, (3.6.3.7)
o < 1—(4—p2)a. (3.6.3.8)

These inequalities are only simultaneously fulfilled for 3 = 1 and pug = 4. The relation g
is a trinomial with pairwise coprime monomials. Due to the position of A, each monomial
of g is divisible by precisely one of 11,75, T5. Homogeneity of g thus yields a = 1. This
leads to specifying data no. 237 to no. 240. 0

3.7 Proof of Theorem 3.1.1: Case s =4

Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2,...,6, according to the number of rays spanned by the degrees wy, ..., ws.
In this section we treat the case s = 4.

Theorem 3.7.1. The tables from 3.10.5, 3.10.6 and 3.10.7 provide specifying data (Q,g)
for 169 sporadic cases and 32 infinite series of locally factorial Fano fourfolds of Picard
number p = 2 and complexity ¢ = 1 with a hypersurface Cox ring and s = 4. Moreover,
any locally factorial Fano fourfold with a hypersurface Cox ring and invariants (p,c,s) =
(2,1,4) is isomorphic to precisely one X (Q, g) with (Q, g) from these tables.

The proof of Theorem 3.7.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (@, ¢) from the tables in 3.10.5, 3.10.6
and 3.10.7 defines a locally factorial Fano fourfold X (@, g) with a hypersurface Cox ring
and invariants (p,c,s) = (2,1,4). Moreover, with the help of Remark 3.4.3 we verify
that distinct specifying data from the tables in 3.10.5, 3.10.6 and 3.10.7 define pairwise
non-isomorphic varieties. The second part is to show that any locally factorial Fano
fourfold with a hypersurface Cox ring and invariants (p, ¢, s) = (2,1,4) is isomorphic to
X(Q,g) with (Q, g) from these tables. We divide the proof of this into the two general
cases

@ € SAmple(X), w ¢ SAmple(X).

The case p € SAmple(X) will be treated in Proposition 3.7.2. In Proposition 3.7.3 we
treat the case pu & SAmple(X).
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

Proposition 3.7.2. Let X as in Setting 3.4.1 with s = 4. Assume that p € A holds.
Then X is isomorphic to an X (Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.5.

Proof. We divide the proof into the two cases p € Mov(R)° and p € d Mov(R).

Case 3.7.2.1: € Mov(R)°. We are in the situation of Proposition 3.3.2. Thus, for a
general polynomial h € C[T7,...,T7] of degree deg(h) = u, the projective variety Xj, is
smooth with divisor class group Cl(X},) = K and Cox ring R(X}) = Rp,. Moreover, by
Proposition 3.2.5 X}, is Fano. Thus, X} is a smooth Fano fourfold of Picard number two
with a spread hypersurface Cox ring. In particular, up to unimodular equivalence, the
grading matrix @ = (wy,...,wy) together with the relation degree u = deg(g) appear
in the classification list presented in [45, Thm. 1.1]. For each such entry (@, u) with
s = 4 we determine all trinomials g of degree deg(g) = u that satisfy the conditions (C1)
and (C2) from Setting 3.4.1 and filter the resulting list by isomorphy. This yields the
specifying data no. 242, 243 and 246-251.

Case 3.7.2.2: u € OMov(R). The relation degree p is contained in one of the
rays pi,...,p4. By Lemma 3.4.7, p is neither contained in p; nor in ps. Reversing
the order of the variables if necessary, we may assume that u € ps holds. By assumption
w lies in the boundary of Mov(R). Thus we have ng = 1. Moreover, Remark 3.2.11 yields
n3 > 2. The relation degree p lies in the boundary of A\, which is contained in Mov(R).
So A = pa + p3 holds. There are six possible degree constellations (ny,ng, n3,ny) for X,
displayed in the following pictures.

L o =
'

(1,3,2,1) (1,2,3,1) (1,1,4,1)

The black dots represent the generator degrees w1, ..., wy, the white circle represents
the relation degree . We distinguish six cases, according to the degree constellation.

Case 3.7.2.2.1: (n1,na,n3,ng) = (3,1,2,1). Applying Lemma 3.2.8 to the triple
(w1, w2, w7) shows that the cone Eff(R) is regular and that wy is primitive. We may
thus assume that Eff(R) is the positive quadrant and that w; = (0,1) holds. Moreover,
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3.7. Proof of Theorem 3.1.1: Case s =4

Lemma 3.2.8 applied to (w;, ws,ws) with ¢ = 1,2,3 shows that wy = wy = w3y = (1,0)
holds, that the primitive point v € p3 is of the form v = (¢, 1) for some ¢ > 1 and that
ws, we are coprime multiples of v. The grading matrix is thus given by

Q _ [é (1) é (Zi azz agg ?]’ a4’a5’a6,b4706221
with ged(as,a6) = 1. Lemma 3.2.8 applied to (w4, ws, ws) shows that w, is primitive.
Thus ged(ag, bg) = 1 holds. For the relation degree we have u = (kc, k). THe relation g is
a trinomial with pairwise coprime monomials. Due to the position of u, each monomial of
g is divisible by precisely one of Ty, Tg, T7. Thus there are [5,lg > 2 with k = l5a5 = lgag.
In particular we have k > a5 + ag. The anticanonical class of X is given by

K =
bs+as+ag—k

3+a4+(a5+a6—k)c]

From X being Fano, ie. —IC € A\°, we infer the inequality
0 < det(w4, —/C) = —3bs+ (a5 +ag — k)(a4 — b4C).

By the ordering of the generator degrees, we have as — byc > 0. As k > as + ag, the
scond summand on the right hand side is negative. This is a contradiction. Thus the
degree constellation (3,1,2,1) does not occur.

Case 3.7.2.2.2: (n1,na,n3,ng) = (2,2,2,1). Applying Lemma 3.2.8 to the triple
(w1, wq,w7) shows that the cone Eff(R) is regular and that wy is primitive. We may
thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1) holds. Moreover,
Lemma 3.2.8 applied to (w;, ws, wg) with ¢ = 1,2 shows that w; = wy = (1,0) holds, that
the primitive point v € p3 is of the form v = (¢, 1) for some ¢ > 1 and that ws, wg are
coprime multiples of v. Finally, applying Lemma 3.2.8 applied to (ws, w4, wy) shows that
the primitive point u € po is of the form v = (1,b) for some b > 1 and that w3, wy are
coprime multiples of v. The grading matrix is thus given by

1 1 a3 a4 asc age O
0 0 agb asb a5 ag 1 |’

Q = a37a47a57a67b706221
with ged(as,aq) = 1 and ged(as, ag) = 1. By the ordering of the generator degrees, we
have

0 < det(u,v) = 1—bec.
This is a contradiction, as bec > 1 holds. Thus the degree constellation (2,2,2,1) does not

occur.

Case 3.7.2.2.3: (n1,na,n3,ng) = (2,1,3,1). Applying Lemma 3.2.8 to the triple
(w1, w2, w7) shows that the cone Eff(R) is regular and that wy is primitive. We may
thus assume that Eff(R) is the positive quadrant and that w7 = (0, 1) holds. Moreover,
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Lemma 3.2.8 applied to (w;, ws,we) with ¢ = 1,2 shows that w; = we = (1,0) holds, that
the primitive point v € p3 is of the form v = (¢, 1) for some ¢ > 1. By Lemma 3.4.5,
at least one of wy,ws,wg is primitive. We may assume that wy = v holds. Write
ws = (asc, a5) and ws = (agc, ag). Lemma 3.2.8 applied to (wy, ws, wg) shows that as, ag
are coprime. The grading matrix is thus given by

1 1 a3 ¢ asc age O
= b Z
Q [ 0 0 b3 1 as ag 1 ; as, as, ag, b3, Cc € >1
with ged(as, ag) = 1. We may assume as < ag. For the relation degree we have u = (kc, k)
for some k > 2. If ws is not primitive, then by Lemma 3.2.7 applied to wi and ws, the
relation g contains a monomial of the form T5l5. The same holds for wg. Thus in any case
there are l5,lg > 2 with k = l5a5 = lgag. The anticanonical class of X is given by

K =

24 a3+ (1+as5+as —k)c
24 bs+as+as—k |’

From X being Fano, ie. —/C € A° we infer the inequalities

0 < az—2b3+ (1+as+as—k)(az — bsc), (3.7.2.1)
¢c < 14a3—bsc. (3.7.2.2)

By Lemma 3.2.8 applied to (ws, wy, ws), the degrees ws and wy generate K as a group.
Thus we have
1 = det(ws,wq) = az— bsc. (3.7.2.3)

Plugging this into Equations 3.7.2.1 and 3.7.2.2, we obtain

+ a5 + ag, (3.7.2.4)

k 1
c 2. (3.7.2.5)

<
<
Note that by Equation 3.7.2.3 we have ag = bsc+ 1. In particular, ag is at least two. This
means that ws and w7 do not generate K as a group. Thus, by Lemma 3.2.7, the relation

g contains a monomial of the form T§3T7l7. By homogeneity of g we obtain kc = l3a3 and
k = l3bs + l7. Combining these two equations yields

l3 = ly7c, k = l7(b36—|—1). (3726)

The relation g is a trinomial with pairwise coprime monomials. Due to the position of
1, the remaining two monomials only depend on the variables Ty, T5, Tg. We may thus
assume that g contains the monomial 7} éﬁ. We distinguish three cases, depending on the
values of a5 and ag.

Case 3.7.2.2.3.1: as,a¢ > 1. By Lemma 3.2.7 applied to the tuples (w;,ws) and
(w1, wg), the relation g contains the monomials T¢* and T¢® and by condition (C2) from
Setting 3.4.1 the exponents l5 and lg are coprime. With the coprimeness of a5 and ag we
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3.7. Proof of Theorem 3.1.1: Case s =4

obtain k = asag. We are thus in the situation of 3.4.4, which yields a5 = 2, ag = 3 and
k = 6. Plugging these values into Equation 3.7.2.1 yields 0 < ag — 2b3. Combining this
with Equations 3.7.2.3 and 3.7.2.5 yields ¢ = 2. Grading matrix and relation degree are
thus given by

[11 a5 2460 B
Q= 00 by 1 2 3 11| p = (12,6).

For the relation we have g = Té3Té7 + T3 + T¢. Equation 3.7.2.6 yields
ls = 2y, 6 = Il7(2b3+1).

In particular, 7 is a proper divisor of 6. Moreover, by the second identity, Iy is even.
Since b3 is at least one ,we have [; = 2. This yields I3 = 4. But then g does not satisfy
the condition (C2) from Setting 3.4.1. A contradiction. Thus, this case does not occur.

Case 3.7.2.2.8.2: a5 = 1, ag > 1. Equation 3.7.2.4 in this case reads (lg — 1)ag < 2,
which yields ag = 2 and lg = 2. Plugging these values into Equation 3.7.2.1 yields
0 < a3z — 2b3. Combining this with Equations 3.7.2.3 and 3.7.2.5 yields ¢ = 2. Grading
matrix and relation degree are thus given by

(11 a3 2240 B
=00 b 112 1|0 MG
Equation 3.7.2.6 yields

I3 = 2y, 4 = [7(2b3 +1).

Note that the second identity cannot be fulfilled for b3 > 0. A contradiction. Thus, this
case does not occur.

Case 3.7.2.2.3.3: a5 = ag = 1. Equation 3.7.2.4 in this case yields k < 3. First assume
k = 2. Then Equation 3.7.2.6 yields Iy = 1, b3 = 1 and ¢ = 1. Thus grading matrix and
relation degree are given by

1110

1 1 1 1 ) H - (27 2)‘

The relation g is of the form g = 1577 + TfT EZ,S + T2. Homogeneity of g together with
condition (C2) form Setting 3.4.1 yield Iy =I5 = 1. This is specifying data no. 244. Now
assume k = 3. In this case Equation 3.7.2.1 yields 0 < a3 — 2b3. Combining this with
Equations 3.7.2.3 and 3.7.2.5 yields ¢ = 2. With the help of Equation 3.7.2.6 we obtain
l7 =1 and b3 = 1. Grading matrix and relation degree are thus given by
113 2 2 20
C=loo1 111 1] H= 63
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The relation g is of the form g = T3T7 + Ti“Tglf’ + T3 and we may assume that Iy >[5
holds. Homogeneity of g together with condition (C2) form Setting 3.4.1 yield I = 2
and [5 = 1. This is specifying data no. 245.

Case 3.7.2.2.4: (ni,na,n3,ng) = (1,3,2,1). Applying Lemma 3.2.8 to the triple
(w1, ws,ws) shows that the cone p; + p3 is regular and that w; is primitive. We may
thus assume that p; + ps is the positive quadrant and that w; = (1,0) holds. Moreover,
Lemma 3.2.8 applied to (w;, ws, wg) with i = 2, 3,4 shows that w; = (1, b) holds for some
b > 1. The grading matrix is thus given by

1111 0 0 —a7

Q - 0 b b b b5 b6 b7 ) a77b7 b57b67b7 S ZZl

Applying Lemma 3.2.8 to the triple wa, w3, wy shows that wy is primitive and that we
and wy generate K as a group. We thus have

1 = det(wg,w7) = by + ayb.

However, since a7, b, by are positive, the right hand side is at least two. A contradiction.
Thus the degree constellation (1,3,2,1) does not occur.

Case 3.7.2.2.5: (n1,na,n3,ng) = (1,2,3,1). Applying Lemma 3.2.8 to the triple
(w1, ws, wg) shows that the cone p; + p3 is regular and that w; is primitive. We may thus
assume that p; + p3 is the positive quadrant and that w; = (1,0) holds. By Lemma 3.4.5,
at least one of wy,ws,ws is primitive. We may thus assume that ws = (0,1) holds.
Moreover, Lemma 3.2.8 applied to (w;, ws, ws) with i = 2,3 shows that w; = (1,b) holds
for some b > 1. The grading matrix is thus given by

1110 0 0 —ay

@ = 0 b b 1 by bg br |’ a’77b7b57b6,b7€Z21.

Applying Lemma 3.2.8 to the triple ws, w3, w7 shows that wy; is primitive and that ws
and wy generate K as a group. We thus have

1 = det(wQ,w7) = by + a7b.

However, since a7, b, by are positive, the right hand side is at least two. A contradiction.
Thus the degree constellation (1,2,3,1) does not occur.

Case 3.7.2.2.6: (ni,na,n3,ng) = (1,1,4,1). Applying Lemma 3.2.8 to the triple
(w1, ws, wy) shows that the cone p; + p3 is regular and that w; is primitive. We may thus
assume that p; + ps is the positive quadrant and that w; = (1,0) holds. By Lemma 3.4.5,
at least two of ws, wy, ws, wg are primitive. We may thus assume that ws = wy = (0,1)
holds. Moreover, Lemma 3.2.8 applied to (wa,ws,ws) shows that wy = (1,b) holds for
some b > 1. The grading matrix is thus given by

1100 0 0 —ay

Q - O b 1 1 b5 b6 b7 ) a’77b7 b57b67b7 S ZZl
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By Lemma 3.2.8 for (wq, ws,ws) the integers by and bg are coprime. We may assume
b5 < bg. We have
det(wz,w7) = br4+a7b > 1.

In particular, wo and w7 do not generate K as a group. Thus by Lemma 3.2.7 the relation
g contains a monomial of the form T: QZQT ;7. Since the monomials of g are coprime, the
relation does not contain a monomial of the form T1Z1T7l7. Lemma 3.2.7 thus yields

1 = det(wl,w7) = by.

For the relation degree we have u = (0, k) for some k > 2. We have already determined
one monomial of the trinomial g. Due to the position of i, the other two monomials of
g only depend on the variables Ty, ..., Ts. If ws is not primitive, then by Lemma 3.2.7
applied to (wy,ws), g contains a monomial of the form T5l5. The same holds for wg. Thus,
in any case there are 5, lg > 2 with k = l5b5 = lgbg. In particular we have k > by + bg.
By Proposition 3.2.5 the anticanonical class of X is given by

K = 2— a7
| 3+ b+bs+bs—k
From X being Fano, ie. —KC € A°, we infer the inequalities

k

ar

24+ (CL7 — 1)b + b5 + b, (3727)
1. (3728)

VARVAN

In particular, Equation 3.7.2.8 yields a7 = 1. Grading matrix and relation degree are
given by

1100 0 0 —1
Q = 0 b 1 1 bs bg 1]° po= 0k

The relation g contains a monomial of the form T212T7l7. Homogeneity of g yields
lo = Iy, kE = la(b+1). (3.7.2.9)
Plugging the value for a7 into Equation 3.7.2.7, we obtain the inequality
k < 2+ b5+ bs. (3.7.2.10)

We distinguish three cases, depending on the values of b5 and bg.

Case 3.7.2.2.6.1: bs,bg > 1. Applying Lemma 3.2.7 to the pairs (wy,ws) and (w;, we)
shows that g contains the monomials Tglf’ and Téﬁ. By condition (C2) from Setting 3.4.1
the exponents [5 and lg are coprime. This yields b5 = lg and bg = I5 and k = bsbg. We
are thus in the situation of 3.4.4, which yields b5 = 2, bg = 3 and k = 6. By 3.7.2.9 the
relation g satisfies

g = TRTR + T34+ T2,  6=10b+1).

177



Chapter 3. Locally factorial Fano fourfolds of Picard number two

Thus Iy is a proper divisor of 6 and by condition (C2) from Setting 3.4.1, I is neither
two nor three. Thus lo = 1 and b = 5 holds. This means that we, wg, w7 do not generate
K as a group. By Lemma 3.2.8 g contains a single monomial that only depends on T5, Ty
and T%. But this is not the case. A contradiction. Thus, this case does not occur.

Case 3.7.2.2.6.2: b; =1, bg > 1. Equation 3.7.2.10 reduces to (lg — 1)bg < 3. Thus we
have lg = 2 and 2 < bg < 3. By Lemma 3.2.7 applied to (w1, wg), the relation g contains
the monomial T2. Tt is thus of the form

g = TeTl 4 Thrirs + 12,

Assume bg = 2. Then k = 4 holds and 3.7.2.9 yields 4 = lI3(b+ 1). By condition (C2)
from Setting 3.4.1, l5 is not divisible by two. This means that ws, wg, w7 do not generate
K as a group. By Lemma 3.2.8 g contains a single monomial that only depends on 15, Tj
and T7. But this is not the case. A contradiction. Thus we must have bg = 3. Then
k = 6 holds and 3.7.2.9 yields 6 = l2(b+1). So I3 is a proper divisor of six, different from
two. We have seen that the case b = 5 leads to a contradiction. Thus we have I = 3 and
b = 1. Grading matrix and relation are thus given by

1 10 0 0 0 -1 5
o - [ 0000 1], g = TITI+ THTITS 4 T2

where l3 4+ l4 + I5 = 6. Filtering by isomorphy, this leads to specifying data no. 262
to 264.

Case 3.7.2.2.6.3: bs; = bg = 1. Grading matrix and relation degree are given by
110000 -1
Q_[o b1 111 1]’ wo=(0k).
The relation g contains the monomial Tzl2 T712, where [y is a proper divisor of k. Equation

3.7.2.10 reduces to k < 4. We distinguish three cases.

Case 3.7.2.2.6.3.1: k = 2. In this case we have [ = 1 and b = 1. Grading matrix and
relation degree are given by

1100 0 0 —1
Q‘[011111 11’ wo=0.2)
The relation g contains the monomial T37% and the other two monomials only depend on

Ty, Ts, Ts. Up to isomorphy this leads to specifying data no. 252 and 253.

Case 3.7.2.2.6.3.2: k = 3. In this case we have [ = 1 and b = 2. Grading matrix and
relation degree are given by

110000 —1
Q_[021111 1]’ po=(0,3).
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The relation g contains the monomial 7377 and the other two monomials only depend on
Ty, Ts, Ts. Up to isomorphy this leads to specifying data no. 255 to 257.

Case 3.7.2.2.6.3.3: k = 4. In this case we either have (l2,b) = (2,1) or (I2,b) = (1, 3).
In the first case grading matrix and relation degree are given by

110000 —1
Q‘l011111 1]’ po=(0,4).

The relation g contains the monomial T4T? and the other two monomials only depend
on Ty, Ts,Tg. Up to isomorphy this leads to specifying data no. 254. In the second case
grading matrix and relation degree are given by

110000 —1
Q_[031111 1]’ po=(0,4).

The relation g contains the monomial 7377 and the other two monomials only depend on
Ty, ..., Tg. Up to isomorphy this leads to specifying data no. 258 to 261. 0

Proposition 3.7.3. Let X as in Setting 3.4.1 with s = 4. Assume that & A holds.
Then X is isomorphic to an X (Q, g) with specifying data (Q, g) appearing in Classification
list 8.10.6 or in Classification list 3.10.7.

Proof. We have u € A. Reversing the ordering of the variables if necessary, we may assume
that € AT\ holds. We are thus in the situation of Lemma 3.4.6. Thus A\ = p; + p2
holds. Moreover, we have n; > 2 and all generator degrees contained in p; are primitive.
By Lemma 3.4.7, p is contained in the interior of Eff(R). Thus, applying Lemma 3.2.8
to the triples (wy, we, w;), where w; € p4, shows that the cone Eff(R) is regular and that
wj is primitive. We may thus assume that Eff(R) is the positive quadrant and that

wp = wy = (1,0), wy; = (0,1)

holds. Since p is contained in the interior of Eff(R), but lies outside of A, we have
W€ (p2 + pa)°. Remark 3.2.11 thus yields ng 4+ ny > 3. There are seven possible degree
constellations (n1,ng,ng,nyg) for X, displayed in the following pictures.

(3:1,2,1) (3,1,1,2) (2,2,2,1) (2,2,1,2)

(2,1,3,1) (2,1,2,2) (2,1,1,3)

179



Chapter 3. Locally factorial Fano fourfolds of Picard number two

The black dots represent the generator degrees wi,...,wy;. We distinguish seven
cases, according to the degree constellation.

Case 3.7.3.1: (ni,n2,n3,n4) = (3,1,2,1). Applying Lemma 3.2.7 to the pair (w3, wy)
shows that wy = (a, 1) holds for some a > 1. Moreover, applying Lemma 3.2.8 to the
triple (wy, ws, wg) shows that the primitive point v € p3 is of the form v = (¢, 1) for some
¢ > 1. The grading matrix is thus given by

1 1 1 a asc age O
= Z>1.
Q 0 0 O 1 a5 a6 1 ) a7a57a67c 6 21
Applying Lemma 3.2.8 to (w1, ws, wg) shows that the integers as and ag are coprime. By
Remark 3.2.11 we have p € (p2 + p3)\p2. We may assume ag > a5. We distinguish the
two cases p € (p2 + p3)° and p € ps.

Case 3.7.8.1.1: u € (p2+ p3)°. Applying Lemma 3.2.8 to (w1, wa, ws) and (w1, we, we)
yields a5 = ag = 1. Grading matrix and anticanonical class of X are thus given by

|1 11 a c c O | 3+ta+2c—m
Q_0001111]’ K= 4 —
From X being Fano, ie. ;1 € A° we infer the inequalities
pe <3, (3.7.3.1)
o < 24 2¢+ (p2 — 3)a. (3.7.3.2)

From the position of i, we obtain the inequality psc+ 1 < pg. Moreover, by the ordering
of the generator degrees, we have ¢ < a — 1. Combining this with Equation 3.7.3.2 yields

0 < po—a—1.

Having in mind 3.7.3.1, this yields uo = 3 and a = 2. With this we directly get ¢ =1
and p1; = 4. Grading matrix and relation degree are thus given by

1112110
Q‘[0001111]’ po=(43).

Checking all trinomials g of degree deg(g) = p that satisfy the conditions (C1) and (C2)
in 3.4.1 and filtering by isomorphy leads to specifying data no. 265 to 270.

Case 3.7.3.1.2: 1 € p3. The relation degree satisfies yp = (kc, k) for some k > 2.
Grading matrix and anticanonical class of X are thus given by

3+a+ (a5 +ag —k)c
24+ a5+ ag—k
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From X being Fano, ie. —IC € A° we infer the inequalities

+ as + ag, (3.7.3.3)

k 1
0 2—c+(1+as+as—k)(c—a). (3.7.3.4)

<
<
The relation ¢ is a trinomial with coprime monomials. Due to the position of u, the
relation g has monomials of the form T5l5 and Téﬁ with I5,lg > 2. By Remark 3.2.10, the
exponents [5 and lg are coprime. Using homogeneity of g we see that [5 divides ag and
lg divides as. In particular, we have as,ag > 1. As as and ag are coprime, we obtain
k = asag. By Equation 3.7.3.3 we are in the situation of Lemma 3.4.4, which tells us that

as = 2 and ag = 3 as well as kK = 6 hold. Plugging these values into Equation 3.7.3.4, we
obtain ¢ < 2. Thus, grading matrix and relation degree are given by

1 1 1 a 2 3¢ 0
_ — < 2.
Q O 0 0 1 2 3 1 I /‘I’ (667 6) ) c — 2

If Ty does not appear in g, then it is of the form
g = MTPTYTE + T35 + T3,

where [ + lo + I3 = 6¢. Apart from a > ¢, there is no restriction on the value of a.
For each possible combination of exponents I, l2,l3 we check the trinomial g for the
conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For ¢ = 1 we obtain
the series S5 to S7. For ¢ = 2 we obtain the series S8 to S17. If Ty does appear in g, then
homogeneity of g yields the inequality a < 6¢. There are thus 15 possible combinations
for the values of a and c. Checking in each case all trinomials g of degree deg(g) = p for
the conditions (C1) and (C2) from Setting 3.4.1 and filtering by isomorphy, we obtain
the following specifying data:

(@e) | 21 B @) (51 (61 (32
1D 271-275 276-278 279-280 281 282 283-300

(a,0) | (42)  (52)  (6,2)  (7,2)  (82)  (9,2)
ID |301-312 313-321 322-328 329-333 334-337 338-340

(a,c) | (10,2) (11,2) (12,2)
ID | 341-342 343 344

Case 3.7.3.2: (n1,n2,n3,n4) = (3,1,1,2). Applying Lemma 3.2.7 to the pair (wq, wy)
shows that wy = (a, 1) holds for some a > 1. The grading matrix is thus of the form

1 1 1 a a3 0 0

Q= 000 1 b 1 1]

a,as, b5 S ZZl-

By Remark 3.2.11 we have p € (p2 + p3)\p2. We distinguish the two cases p € (p2 + p3)°
and u € ps.
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Case 3.7.3.2.1: 1 € (p2 + p3)°. By Lemma 3.2.8, applied to the triple (wy,ws, ws), we
have b5 = 1. Grading matrix and anticanonical class of X are given by

1

_ 11 a ¢ 00 e | 3tatc—m
Q_00011111’ k= ]

4 — po

From X being Fano, ie. —KC € A°, we infer the inequalities

pa <3, (3.7.3.5)
p < 2+ c+ (p2 — 3)a. (3.7.3.6)

From the position of u, we get the inequality poc +1 < p3. Combining this with
Equation 3.7.3.6, we obtain

0 < 141 —p2)e+ (u2 —3)a.

The right hand side is negative due to 3.7.3.5. A contradiction. Thus this case does not
occur.

Case 3.7.3.2.2: u € p3. The relation degree satisfies p = (ke, k) for some k > 2.
Grading matrix and anticanonical class of X are given by

0 - 1 11 a asc 0 0 o= 3+a+ (a5 — k)c
10001 a5 1 1|’ B 3+as—Fk

From X being Fano we infer the inequalities

2+ as, (3.7.3.7)

<
< 2—-2c+(k—as—2)(a—c). (3.7.3.8)

0

By the ordering of the generator degrees we have ¢ < a — 1. Thus, combining these two
inequalities, we obtain ¢ = 1 and k = a5 + 2. The relation g is a trinomial with pairwise
coprime monomials. Due to the position of u, each monomial of g is divisible by precisely
one of Ty, T, T7. In particular, g has a monomial of the form T5l5 with [5 > 2. Thus
k = asls holds. This, together with the identity k = a5 + 2 yields (I5 — 1)as = 2. There
are two cases, either (as,l5) = (2,2) or (as,l5) = (1,3). We note that one monomial of
g is divisible by Ty: Assume this is not the case. Switching the roles of Ty and 77 and
permuting 17,75, T3 if necessary, we may assume that g contains the monomial T{“Té“ .
But then g does not satisfy condition (C2) from Setting 3.4.1. A contradiction. Thus
Ty appears in g. In particular, homogeneity of g gives the bound a < lsas. In case
(as,1l5) = (2,2) grading matrix and relation degree are given by

o [lrrezool Ly sy
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For each value of a we check all trinomials homogeneous ¢ of degree deg(g) = p for the
conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a = 2 we obtain
specifying data no. 345. For a = 3 we obtain specifying data no. 346. For a = 4 we
obtain specifying data no. 347 and 348. In case (as,l5) = (1,3) grading matrix and
relation degree are given by
11 a1 00
_ = < a < 3.

@ 000111 1) *=G3 2<a<3
For each value of a we check all trinomials homogeneous g of degree deg(g) = p for the
conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For a = 2 we obtain
specifying data no. 349. For a = 3 we obtain specifying data no. 350 and 351.

Case 3.7.3.3: (n1,n2,n3,n4) = (2,2,2,1). By Lemma 3.4.6 (i) we have w3 = wy = (a, 1)
for some a > 1. Applying Lemma 3.2.8 to the triple (w1, ws, wg) shows that the primitive
point v € p3 is of the form v = (¢, 1) for some ¢ > 1. The grading matrix of X is thus
given by

1 1 a a asc agec O

Q B 0 01 1 as ag 1 ) a7a57a6;C€Z21.

By Lemma 3.2.8 applied to (w1, ws,ws) the integers as and ag are coprime. We may
assume as < ag. By Remark 3.2.11 we have p € (p2 + p3)\p2. We distinguish the two
cases 1 € (p2 + p3)° and p € ps.

Case 3.7.3.8.1: p € (p2 + p3)°. Lemma 3.2.8 applied to the triples (wy,ws,ws) and
(w1, we,we) yields a5 = ag = 1. Grading matrix and anticanonical class of X are given

by
|1 1T aa c c 0 e | 2+ 204 2c— 1y
@ = 00111111’ K= 5 — U2
From X being Fano, ie. —K € A°, we infer the inequalities
p2 < 4, (3.7.3.9)
o < 1+2c¢+ (p2 —3)a. (3.7.3.10)

The position of u yields the inequality poc+1 < p1. Combining this with Equation 3.7.3.10,
we obtain
0 < (2—p2)e+ (p2 — 3)a.

Due to Equation 3.7.3.10 and the fact that c is strictly smaller than a, this is only fulfilled
for pue = 4. With this, Equation 3.7.3.10 turns into

< 1+ 2c+a. (3.7.3.11)

The relation g is a trinomial with pairwise coprime monomials. Due to the position of
1, each monomial of g is divisible by precisely one of 15, Ty, T» and by at least one of
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T1,...,T4. Thus there is a monomial divisible by either T3 or T;. For the monomial m
with Ts we write m = TlllTQZQT:?Ti“Té"). Set [ ;=11 + Iy and I’ := I3 + l4. Homogeneity of
g then yields I’ =4 — I5 and py = [+ l'a + lsc. With Equation 3.7.3.11 we obtain the
inequality

0 < 1—l+(2—l5)c—|—(l5—3)a.

Since a is strictly bigger than ¢, this yields 3 < 5 < 4. Similarly we obtain 3 < lg < 4
and 2 < [; < 4. We distinguish between the different possible values for Is, lg, l7. As a
first step, we consider the cases Iy = 2 and I7 > 3.

Case 3.7.83.3.1.1: l; = 2. For the monomial m of g that contains T; we write
m = Tf1T212T§3Ti4T72. By homogeneity of g we have I3 + [4 = 2. If I3 and I4 are both
positive, then, by coprimeness of the monomials of the trinomial g, it must be of the form
U 1
g = T\'Td + TR2TY + TsTyTZ.
The relation has degree u = (2a,4). Thus I} =I5 = 2a — 4c¢ holds. In particular they
are even, which contradicts condition (C2) form Setting 3.4.1. Thus we have [3 = 0 or
l4 = 0. We may assume [3 = 0 and l4 = 2. To avoid a contradiction to condition (C2),
the variable T5 must appear among the other two monomials of g. Switching the roles
of Ts and Tj if necessary, we may assume that g contains the monomials 7} 111T212T5‘1 and

TQZIQTng’, where at least one of I, 1}, is zero. If I5 > 0, then Iy = 0 holds and [ is even,
leading to the same contradiction as before. Thus I5 = 0 holds. The relation g is thus of
the form )

g = TUTETY + T3 + TR T2T2.

Homogeneity of g, together with Equation 3.7.3.11 yield the following conditions on a
and c:
a+3c < 1+2c+a, a+3c = 2a+1l.

This yields ¢ = 1 and a + l5 = 3. Thus we have 2 <a <3 and l, =3 —a. For a =2
grading matrix and relation are given by

(112211 0]
@=1p011111] g = T\Ty + T5T3 + ToTT7.

This is specifying data no. 352. For a = 3 grading matrix and relation are given by
33110)]
L1111l g = TVTLTd + T3T3 + T2T2.

(11
Q=149

This is specifying data no. 353.

Case 3.7.3.3.1.2: I; > 3. We divide this case further depending on the values of I3, lg
and l7. We have seen earlier, that 3 < I5,lg < 4 holds. Switching the roles of T5 and
Tg if necessary, we may assume that [5 > lg holds. Moreover, due to the position of u,

184



3.7. Proof of Theorem 3.1.1: Case s =4

the cases (I5,ls,l7) = (3,3,3) and (5,1, 17) = (4,4,4) cannot occur. We thus distinguish
tthe following four cases:

(l57167l7) = (47373)? (l57l67l7) == (47473)7

(l57l67l7) = (37374)7 (l57l67l7) = (47374)

Case 3.7.3.3.1.2.1: (I5,1s,l7) = (4,3,3). Switching roles of T} and T, as well as T3
and T}y if necessary, we can write g as

g = TNTRTY + TRTRTY + T2 Ty T3,

where [; > 0 and at most one of Iy, ko, ma is non-zero. By homogeneity of g we have
mo = 3¢ + ko. Thus me = 3c and Il = ko = 0 holds and the relation degree is
u = (a+3c,4). Comparing this to the first monomial of g, we obtain [; = a — ¢. Plugging
the value for u; into Equation 3.7.3.11 yields ¢ = 1. Grading matrix and relation are
thus given by

1 1 a a 1 1 0 —14 3 3 3
This is series S21.

Case 3.7.3.3.1.2.2: (I5,16,l7) = (4,4,3). Switching roles of T3 and T} if necessary, we
can write g as

g = TPTE + TRTE + TyTS.
Homogeneity of g yields [y = ls = a — 4c. In particular we have a > 4c¢ + 1. Grading
matrix and relation are thus given by

11 0 B -
©=100 C1L C1L f f L9 = TN+ T 4 T
For g to satisfy condition (C2) from Setting 3.4.1, @ must be odd. This is series S18.

Case 3.7.3.3.1.2.3: (I5,1s,l7) = (3,3,4). Switching roles of 71 and T3 as well as T3
and T} if necessary, we can write g as

g = ThI3TS + TR TyTE + T T T,

where mgy > 0 and at most one of I1, k1, m1 is non-zero. By homogeneity of g we have
l1 = k1 and thus [; = k; = 0 holds. The relation degree is i = (a + 3¢, 4). Plugging the
value for p; into Equation 3.7.3.11 yields ¢ = 1. Comparing p to the degree of the third
monomial, we see m; = a + 3¢ — meo. Grading matrix and relation are thus given by

11 a a1 10 .
R=1o001111 1] g = TyTP +TyT§ + T ' Ty
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This is series S19.

Case 3.7.83.3.1.2.4: (I5,1s,l7) = (4,3,4). Switching roles of 71 and T as well as T3
and T} if necessary, we can write g as

g = ThTd + TyT3 + TeTs,

The relation degree is i = (a + 3¢, 4). Homogeneity of g yields l; = a — c and Iy = a + 3c.
Plugging the value for p; into Equation 3.7.3.11 yields ¢ = 1. Grading matrix and relation
are thus given by

|11 aall2 O _ ma—174 3 | a+3gd
Q_[0011111]’ 9 = I s + Blg 1,7
For g to satisfy condition (C2) from Setting 3.4.1, a must be even. This is series S20.

Case 3.7.8.3.2: u € ps. The relation degree satisfies u = (ke, k) for some k > 2.
Grading matrix and relation degree are thus given by

_ 1 1 a a asc agec O .
Q‘loo 1 1 a5 ag 1]’ o= (ke,k).

As g is a trinomial with pairwise coprime monomials, the position of i requires that
g contains monomials of the form Tglf’ and Téﬁ. By irredundancy of the presentation
of R we have [5,lg > 2. Homogeneity of g yields k = l5a5 = lgag. Due to condition
(C2) from Setting 3.4.1 the exponents [5 and lg are coprime. Coprimeness of a5 and ag
yields a5 = lg and ag =I5 and k = asag. We are thus in the situation of Lemma 3.4.4,
which yields a5 = 2, ag = 3 and k = 6. Grading matrix and anticanonical class, due to
Proposition 3.2.5, are given by

Q=10011 2 31

11aa20300]’ K = :

2+2ac]

From X being Fano, ie. —K € A°, we infer the inequality
0 < det(—K,ws3) = 2—c¢,
which yields ¢ = 1. The relation is of the form
g = ThrlThThTE 413 + T2,

where Iy + o = Iy and I3 + I4 + I7 = 6. We distinguish the two cases I3 + 4 = 0 and
I3+ 14 > 0.

Case 3.7.3.3.2.1: I3+ 14, = 0. We have [; + lo = l; = 6. For g to satisfy condition (C2)
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from Setting 3.4.1, up two switching 77 and 75, we have [y = 5 and I = 1. Grading
matrix and relation are given by
. 1 1 a a 2 3 O . 5 6 3 2
@=loo1 1231 97 HEE+HEAHT

This is series S22.

Case 3.7.3.3.2.2: I3 + 14 > 0. By homogeneity of g we have l; + lo + (I3 + l4)a = 6,
which yields a < 6. For each possible value of a we determine all homogeneous trinomials
g of degree deg(g) = p and filter for isomorphy. According to the value of a we obtain
the following specifying data

a | 2 3 4 5 6
ID | 354-360 361-363 364-365 366 367

Case 3.7.3.4: (n1,n2,n3,n4) = (2,2,1,2). By Lemma 3.4.6 (i) we have w3 = wy = (a, 1)
for some a > 1. The grading matrix of X is thus of the form

1 1 a a a5 0 0

e 001 1 b 1 11| a,as,bs € Z>1.

By Remark 3.2.11 we have p € (p2 + p3)\p2. We distinguish the two cases p € (p2 + p3)°
and pu € ps.

Case 3.7.3.4.1: p € (p2 + p3)°. Applying Lemma 3.2.8 to the triple (w, we, ws) yields
bs = 1. Set ¢ := a5. Grading matrix and the anticanonical class, due to Proposition 3.2.5,

are given by
0
1 ] ) K =

From X being Fano, ie. —IC € A\°, we infer the inequalities

_— O

1 1 a a c¢
Q_()Olll

2+ 2a+c—m
5—p2 |

pe < 4, (3.7.3.12)
o < 1+c+ (2 —3)a. (3.7.3.13)

The position of p yields the inequality poc+1 < pq. Combining this with Equation 3.7.3.13
yields
0 < (1—p2)e+ (p2 —3)a.

Having in mind 3.7.3.12, this inequality yields uo = 4. Plugging this into Equation 3.7.3.13,
we obtain the bound
m < l+a+ec. (3.7.3.14)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of g is divisible by precisely one of T5,Tg, T7. We establish

187



Chapter 3. Locally factorial Fano fourfolds of Picard number two

bounds for the exponents [s, lg, 7. First consider the monomial m of g containing T5. It
is of the form
m = TRTRTRTHTES.

Set [ := 1y + I3 and I’ := I3 + 4. By homogeneity of g we obtain | + 'a + l5¢ = p1 and
' + 15 = 4. In combination with the bound 3.7.3.14 we obtain the inequality

0 < 1+(l5—3)a+(1—l5)c.

This is only fulfilled by l5 = 4. With the same arguments we obtain the following bound
on lg:
0 < 14+ (lg—3)a+c.

Having in mind that a > 4c¢ holds due to the position of pu, this inequality yields lg > 3.
Since wg = w7, we also obtain Iy > 3. Moreover, switching the roles of Ty and 1% if
necessary, we may assume that lg > Iy holds. Note that the case (I5,1s,17) = (4,4,4)
cannot occur. We thus distinguish the two cases (Is,ls,17) = (4,3,3) and (I5,1s,1l7) =
(4,4,3).

Case 3.7.8.4.1.1: (I5,15,17) = (4,3,3). Switching roles of T3 and Ty if necessary, we
can write g as
g = ThTRT? + T3T3 + Ty T3,

The relation degree is = (a,4). Comparing this to the degree of the first monomial, we
obtain I} = a — lp. Grading matrix and relation are thus given by

1

1 a a ¢ 0 0
Q_0011111’

g = TY'TITE + T3T3 + Ty T3,
This is series S24.

Case 3.7.3.4.1.2: (I5,1s,17) = (4,4, 3). Switching roles of T and T» as well as T3 and
T, if necessary, we can write g as

g = Thrd + TeTd + 1,13,

The relation degree is u = (a,4). Homogeneity of g yields [y = a —4c and Iy = a. Grading
matrix and relation are thus given by

1

1 a a ¢ 0 0
Q_0011111’

g = T Td £ TOTE 4+ Ty T3,

This is series S23.

Case 3.7.3.4.2: i € p3. The relation degree 1 and the generator degree ws lie on the
same ray. Since g is a trinomial consisting of pairwise coprime monomials, each monomial

of g is divisible by precisely one of T5, T4, T7. In particular, g has a monomial of the form
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T é5 with 5 > 2. Thus p = (I5as, l5b5) holds. Grading matrix and anticanonical class of
X, due to 3.2.5, are given by

Q = 11 a a a5 0 O K — 242a+ (1—1I5)as
00 11 b5 11} N 44+ (1—=15)bs5 |-
From X being Fano, ie. —/C € A°, we infer the inequalities
(Ils —1)bs < 3, (3.7.3.15)
0 < 1—2a+ (l5 - 1)(@()5 — a5). (3.7.3.16)

In particular, by the first inequality, we have 1 < b5 < 3. We distinguish three cases,
depending on the value of bs.

Case 3.7.83.4.2.1: b5 = 1. In this case we have a > a5. Equation 3.7.3.16 reads
0 < 1+ (l5 - S)a - (l5 — 1)@5.

Having in mind 3.7.3.15, this yields I5 = 4. Plugging the value for l5 back into that
inequality, we also obtain a > 3as —1. We establish bounds for the values of the exponents
lg and l7. For the monomial m of g containing Tg we write

_ mlimplaplzplaples

We set | := l1+1y and I := I3+14. Homogeneity of g yields I’ = 4—Ig and 4as = [+ (4—Is)a.
Together with the inequality a > 3as — 1, we see that lg > 2 holds. Assume lg = 2.
Then we have I3 + I = 2. To satisfy condition (C2) from Setting 3.4.1, we must have
l3 =1y = 1. Moreover, we obtain the inequality

das > 6as+1— 2,

which is only fulfilled for a5 =1, a = 2 and [ = 0. Up to switching the roles of T} and T,
grading matrix and relation are thus given by

0

2 2
11 1]’

—= O

11 1
Q=140 ) g = T+ T3TWT2 + TP ToT.
This is specifying data no. 368. Switching the roles of Tg and T%, this also includes the
case [y = 2. Thus we may now assume that lg,l7 > 3 holds. Moreover, we may assume
lg > l7. Note that the case (Is,lg,17) = (4,4,4) cannot occur. We thus distinguish the

two cases (Is,1l6,l7) = (4,3,3) and (I5,l6,l7) = (4,4, 3).

Case 3.7.3.4.2.1.1: (I5,16,1l7) = (4,3,3). Switching roles of T} and T3 as well as T3 and
T, if necessary, we can write g as

g = Td+ ThTRTT + T Ty T3,
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where at most one of lo, my is non-zero. The relation degree is u = (4¢,4). Homogeneity
of g yields lo = 0 and Iy = mo = a — 4¢. In particular a > 4c holds. Grading matrix and
relation are given by
a a c _ _
@=100111 g = T TS + T3 I TY
This is series S25.

Case 3.7.3.4.2.1.2: (I5,16,1l7) = (4,4,3). Switching roles of T} and T3 as well as T3 and
Ty if necessary, we can write g as

g = Td+ThTlr! + 121, T3,

where at most one of [z, mg is non-zero. To satisfy the condition (C2) from Setting 3.4.1,
we must have my = 0 and l1,lo must be odd. The relation degree is u = (4c,4).
Homogeneity of g yields a = 4¢ and [; = 4¢ — l5. Grading matrix and relation are given
by
|1 1 4c 4c ¢ 0 O
@ = 00 1 1 111}

This is series S26.

g = Té+ T\ TiTd + TyT3.

Case 3.7.3.4.2.2: b5 = 2. By Equation 3.7.3.15 we have [5 = 2. Plugging these values
into Equation 3.7.3.16, we obtain a5 = 1. Thus the relation g has degree p = (2,4). Note
that in order to fulfill the condition (C2) from Setting 3.4.1, at least one of T3, 7Ty must
appear in g. This then yields the bound a < 2. Grading matrix and relation degree are
thus given by

For each of the two values of a we determine all homogeneous trinomials g of degree
deg(g) = p that satisfy conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. For a = 1 this leads to specifying data no. 369. For a = 2 this leads to
specifying data no. 370.

Case 3.7.3.4.2.3: b5 = 3. By Equation 3.7.3.15 we have [5 = 2. Thus the relation g has
degree 11 = (2as5,6). We establish bounds for the exponents /g and I7. By homogeneity of
g we have lg, [ < 6. Switching the roles of Ty and Tx if necessary, we may assume lg > 7.
Consider the monomial m of g that contains 7%7. It is of the form

m = TRTRTRTHTY.
We set | := l1+12 and I := l3+14. Homogeneity of g yields I’ = 6—17 and 2a5 = I+(6—17)a.
Together with Equation 3.7.3.15 we obtain

(4-1I)a < 2. (3.7.3.17)
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Thus we have I7 > 2. With the same arguments we obtain I; > 2. We distinguish two
cases, depending on the value of [7.

Case 3.7.3.4.2.3.1: l; > 4. In this case we also have lg > 4. To fulfill the condition
(C2) from Setting 3.4.1, at least one of T3, T, must appear in g. Thus l; <5 holds. If
l7 = 4, then both T35 and T must be paired with 7% in order for g to satisfy condition
(C2) from 3.4.1. Thus in this case lg = 6 holds. We thus distinguish the following three
cases:

(l5716>l7) = (27674)¢ (l5>l67l7) = (27575)7 (l5al6>l7) = (27675)

Case 3.7.8.4.2.8.1.1: (l5,16,17) = (2,6,4). The relation is of the form
g = T2+ TITETS + T3Ty TS,

The relation degree is u = (2as, 2). Homogeneity yields Iy = 2a5 — Iz and a = a5. Grading
matrix and relation are thus given by

1

1 a a a 0 0
Q_0011311’

g = T2+ T2 'T4T8 + 131, T2
This is series S28.

Case 3.7.3.4.2.3.1.2: (l5,1s,l7) = (2,5,5). Switching roles of 77 and 1% as well as T3
and T} if necessary, we can write g as

g = T2+ ThI3TP + TRT,T?.

The relation degree is p = (2as,2). Homogeneity yields I3 = ls = 2a5 — a. In particular
we have a < 2as. Setting ¢ := as, grading matrix and relation are given by

1

1 - —
@=10 0 611 C1L 51 1| 9= THTIOBIE + T TT7.

This is series S27.

Case 3.7.3.4.2.3.1.3: (l5,1g,17) = (2,6,5). In order to satisfy condition (C2) from
Setting 3.4.1, 17 and 71> must both be paired with Tg. Switching roles of T35 and Ty if
necessary, we can write g as

g = T2+ TITRTS + TyT2.

The relation degree is p = (2as, 2). Homogeneity yields a = 2a5 and l; = 2a5 — 2. Setting
¢ := as, grading matrix and relation are given by

1 1 2¢ 2¢ ¢ 0 O

Q=100 1 131 1| 9= B+ RIZ+TTE
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This is series S29.

Case 3.7.3.4.2.3.2: l; < 4. In this case 4 — 7 is positive. Thus Equation 3.7.3.17 yields
a < 2. Moreover, by Equation 3.7.3.16 we have a5 < a + 1 < 3. By the ordering of the
degrees we have 3a > a5 and the restriction I7 < 4 yields 2a5 > 3a. The possible values
for a and as are thus (a,as) = (1,2) and (a,as) = (2,3). In both cases we determine
all homogeneous trinomials g of degree deg(g) = p with I7 < 3 that satisfy conditions
(C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For (a,as) = (1,2) we obtain
specifying data no. 371 to 373. For (a,as) = (2,3) we obtain specifying data no. 374 to
377.

Case 3.7.3.5: (ni1,n2,n3,n4) = (2,1,3,1). By Lemma 3.4.6 (i) we have w3 = (a, 1) for
some a > 1. Applying Lemma 3.2.8 to the triple (w;, wy, ws) shows that the primitive
point v € p3 is of the form v = (¢, 1) for some ¢ > 1. By Lemma 3.4.5, at least one of
w4, W5, We is primitive. We may assume that wys = v holds. The grading matrix of X is
thus of the form

1 1 a ¢ asc agec O

Q@ = 0011 a5 ag 1|’

a,as, g, C € Zzl‘

Applying Lemma 3.2.8 to the triple (wy, ws, ws) shows that as and ag are coprime. We
may assume a5 < ag. By Remark 3.2.11 we have p € (p2 + p3)\p2. We distinguish the
two cases p € (p2 + p3)° and p € ps.

Case 3.7.3.5.1: u € (p2 + p3)°. Applying Lemma 3.2.8 to the triples (w1, w2, ws) and
(w1, wy, wg) shows that as = ag = 1 holds. Grading matrix and anticanonical class of X,
due to Proposition 3.2.5, are thus given by
|1 1 acc c O | 24+a+3c—m
Q_0011111‘|’ ’C_[ 5— g |-

From X being Fano, ie. —K € A° we infer the inequalities

4, (3.7.3.18)
L+3c+ (2 —4)a. (3.7.3.19)

K2

<
p1 <

The position of p yields the inequality poc+1 < pp. Combining this with Equation 3.7.3.19,
we obtain

0 < (3—p2)e+ (p2 —4)a.
Having in mind Equation 3.7.3.18 and a > ¢, this inequality is only fulfilled for po = 4.
Plugging this into Equation 3.7.3.19 yields p1 < 3c + 1. However, by the position of p,
we have 1 > poc = 4e. A contradiction. Thus the case p € (p2 + p3)° thus not occur.
Case 3.7.3.5.2: 1 € p3. The relation degree satisfies yp = (kc, k) for some k > 2.
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Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

0 = 1 1 a ¢ asc agc O K _ 24a+ (1+as+ag—k)c
- 0011 a5 ag 1|’ - 34as+as—k
From X being Fano, ie —/C € A°, we infer the inequalities
k< 24 a5+ asg, (3.7.3.20)
0 < 1l—a+({1+4as+as—k)(c—a). (3.7.3.21)

We distinguish three cases, depending on the values of a5 and ag.

Case 3.7.3.5.2.1: a5 = ag = 1. Equations 3.7.3.20 and 3.7.3.21 yield
0 <1+ (k—4)a+ (3-k)c, k < 4.

Since a > ¢, this is only fulfilled for £ = 4 and in this case we have ¢ = 1. Grading matrix
and relation degree are thus given by
11 a1 1 10
@=loo11111]| H= &Y
If T5 does not appear in g, then permuting Ty, T5, T if necessary, the relation g is of the

form
g = N'TT; + TP T + T

with I3 + Iy = Iy + I5 = 4. To fulfill condition (C2) from Setting 3.4.1, up to switching T3
and T3, respectively Ty and T5, we have [{ =4 = 3 and I3 = l5 = 1. This is series S30. If
T3 does appear in g, then homogeneity of g yields the bound a < 4. For each possible
value of a we determine all homogeneous trinomials g of degree deg(g) = u that contain
T3 and satisfy conditions (C1) and (C2) from Setting 3.4.1 and filter by isomorphy. For
a = 2 we obtain specifying data no. 378 and 379. For a = 3 we obtain specifying data
no. 380. For a = 4 we obtain specifying data no. 381.

Case 3.7.8.5.2.2: a5 =1, ag > 1. Applying Lemma 3.2.7 to the pair (w;,wg) shows
that ¢ contains a monomial of the form Té6 with lg > 2. In particular we have k = lgag.
Equation 3.7.3.20 turns into (lg — 1)ag < 3, which yields lg = 2 and 2 < ag < 3. Plugging
this into Equation 3.7.3.21, we obtain the inequality

0 < 14(2—ag)c+ (ag — 3)a.

Since a > 1, this yields ag = 3. Moreover we obtain ¢ = 1. Grading matrix and relation
degree are thus given by

1 1a 1130
Q=l001113 1| M=I(6
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If T5 does not appear in g, then permuting Ty, 75, T if necessary, the relation g is of the
form

g = TOTST 4 TUTS + 73

with I3 +ls = l4 + l5 = 6. Checking each possible combination of exponents (I, 2,14, l5)
for condition (C2) from Setting 3.4.1 and filtering by isomorphy, we obtain series S31 to
S33. If T3 does appear in g, then homogeneity of g yields the bound a < 6. For each
possible value of a we determine all homogeneous trinomials g of degree deg(g) = p
that contain T3 and satisfy conditions (C1) and (C2) from Setting 3.4.1 and filter by
isomorphy. Depending on the value of a, we obtain the following specifying data:

a | 2 3 4 5 6
ID | 382-390 391-394 395-398 399-400 401-402

Case 3.7.3.5.2.3: as,a¢ > 1. Applying Lemma 3.2.7 to the pairs (wy,ws) and (wi, we)
shows that g contains monomials of the form Té5 and Téﬁ with 5, lg > 2. In particular
we have k = lsa5 = lgag. By condition (C2) from Setting 3.4.1, the exponents I5 and g
are coprime. With coprimeness of as and ag we obtain a5 = lg and ag =I5 and k = asag.
We are thus in the situation of Lemma 3.4.4, which yields a5 = 2, ag = 3 and k = 6.
Plugging these values into Equation 3.7.3.21, we obtain a < 1. This is a contradiction to
a > ¢ > 1. Thus this case does not occur.

Case 3.7.3.6: (ny1,n2,n3,n4) = (2,1,2,2). By Lemma 3.4.6 (i) we have w3 = (a, 1) for
some a > 1. Applying Lemma 3.2.8 to the triple (w;, w4, ws) shows that the primitive
point v € ps is of the form v = (¢, 1) for some ¢ > 1. The grading matrix of X is thus of
the form

1 1 a agc asc 0 O

= Z
Q 0 0 1 a4 (]/5 1 1 ) a7a47a57c 6 217

Applying Lemma 3.2.8 to the triple (w1, w4, ws) shows that a4 and a5 are coprime. We
may assume a4 < as. By Remark 3.2.11 we have p € (p2 + p3)\p2. We distinguish the
two cases p € (p2 + p3)° and p € ps.

Case 3.7.3.6.1: 1 € (p2 + p3)°. Lemma 3.2.8 applied to the triples (wi,ws, ws) and
(w1, wq,ws) yields ay = a5 = 1. Grading matrix and anticanonical class of X, due to
Proposition 3.2.5, are given by

1 1 a ¢c ¢ 00
@ = 0011111]’ -k = 5 — po

2+a+2c—/¢1]

From X being Fano, ie. —K € A°, we infer the inequalities

pe <4, (3.7.3.22)
o < 142c+ (p2 —4)a. (3.7.3.23)
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The position of u yields the inequality pec+ 1 < pp Combined with Equation 3.7.3.23,
we obtain the inequality

0 < (2—p2)e+ (u2 —4)a,
the right hand side of which is negative for pus < 4. This is a contradiction to Equa-
tion 3.7.3.22. Thus the case p € (p2 + p3)° does not occur.

Case 3.7.8.6.2: 1 € p3. The relation degree satisfies u = (ke, k) for some k > 2.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are thus given by

0 - 1 1 a asc asc 0 0 K 24+ a+ (as+ a5 —k)c
1001 a a5 1 1|’ - 3+aq+as—k
From X being Fano, ie. —IC € A°, we infer the inequalities
k< 24 a4+ as, (3.7.3.24)
0 < 1—-2+as+as—k)a+ (as+as —k)c. (3.7.3.25)

If ag > 1, then Lemma 3.2.7 applied to the pair (w;, w4) shows that g contains a monomial
to the form Ti‘l with I4 > 2. Thus in this case u is a multiple of wy. If ag = 1, then wy
is primitive and p is a multiple of wy as well. The same holds for ws. There are thus
ly,l5 > 2 with k = l4a4 = lsas. In particular we have k > a4 4+ a5. This, together with
Equation 3.7.3.24 shows that the right hand side of Equation 3.7.3.25 is strictly negative.
A contradiction. Thus the case i € ps thus not occur.

Case 3.7.3.7: (n1,n2,n3,n4) = (2,1,1,3). By Lemma 3.4.6 (i) we have w3 = (a, 1) for
some a > 1. The grading matrix of X is thus of the form

Q_llaa4000
001 by 11 1}

a,a4,by € L1,
By Lemma 3.4.7 we have u € (p2 + p4)°. We distinguish the three cases
e (p2+p3)°,  peps,  pe(p3+pa)°
Case 3.7.8.7.1: i € (p2+p3)°. Lemma 3.2.8 applied to the triple (wq, wa, wy) yields by =

1. We set ¢ := a4. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are thus given by

2+a+c—M1]

1 1 a ¢ 0 0 0
@ = 0011111]’ -k = 5— po

From X being Fano, ie —/C € A°, we infer the inequalities

o <4, (3.7.3.26)
o < 1+4c+ (u2 —4)a. (3.7.3.27)
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The position of u yields the inequality pec+ 1 < py. Combined with Equation 3.7.3.27,
we obtain the inequality

0 < (1= p2)+ (p2 —4)a,

the right hand side of which is negative for us < 4. This is a contradiction to Equa-
tion 3.7.3.26. Thus the case u € (p2 + p3)° does not occur.

Case 3.7.3.7.2: i € p3. Relation degree p and generator degree wy lie on the same ray.
If wy is primitive, then p is a multiple of wy. If wy is not primitive, then Lemma 3.2.7
applied to the pair (w1, w4) shows that g contains a monomial of the form 7. i“ with [y > 2.
Thus in any case there is Iy > 2 such that pu = (l4a4,14b4) holds. Grading matrix and
anticanonical class of X, due to Setting 3.4.1, are thus given by

0 = 1 1 a a4 0 0 O K = 2+a—|—(1—l4)a4
00 1 by 11 1| N 44 (1 —1y)by |~
From X being Fano, ie. —K € A°, we infer the inequalities
(ly —1)by < 3, (3.7.3.28)
0 < 1-3a+ (l4 - 1)((1()4 — a4). (37329)

By Equation 3.7.3.28 we have by < 3. Assume bs = 1 holds. Then by Equation 3.7.3.28
we have Iy < 4 and Equation 3.7.3.29 yields

0 <1+ (l4—4)a— (1—14)@4.

The right hand side is strictly negative for all possible values of I4. A contradiction. Thus
by > 1 holds. This yields Iy = 2. For by = 2, Equation 3.7.3.29 yields

0 < 1-—a-—ay4.

The right hand side is strictly negative. A contradiction. Thus b4 = 3 holds. Equa-
tion 3.7.3.29 then yields a4 = 1. Grading matrix and relation degree are thus given
by

1

1 a1 000
001311

Q = E w = (2,6).
Assume T3 does not appear in g. Then, in order for g to satisfy condition (C1) from
Setting 3.4.1, up to permuting variables of the same degree ¢ is given by

g = T2T8 + T2TleTl 4 72,

where lg 4 l7 = 6. This trinomial does not satisfy condition (C2) from Setting 3.4.1. A
contradiction. Thus the variable T3 appears in g. By homogeneity of g we obtain the
bound a < 2. For each of the two possible values of a we determine all homogeneous
trinomials g of degree deg(g) = p that contain T3 and satisfy condition (C1) and (C2)
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3.7. Proof of Theorem 3.1.1: Case s =4

from Setting 3.4.1 and filter by isomorphy. For a = 1 we obtain specifying data no. 403
and 404. For a = 2 we obtain specifying data no. 405 to 410.

Case 3.7.83.7.3: p € (p3+ ps)°. Lemma 3.2.7 applied to the pair (wq,wy) yields by = 1.
We set ¢ := a4. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are thus given by

0
1

|1 1 ac 0 0 e | 2+tatc—m
@ = 0 011 11]’ IC_[ ]

5 — p2
From X being Fano, ie. —IC € A°, we infer the inequalities

M2
M1

4, (3.7.3.30)

<
< 1+c+ (p2 —4)a (3.7.3.31)
The component p; is positive. Since a > ¢ holds, Equation 3.7.3.31 is only fulfilled
for ps > 4. With Equation 3.7.3.30 we obtain po = 4. Plugging the value for uo into
Equation 3.7.3.31, we obtain the bound p; < c¢+1. The relation g is a trinomial consisting
of pairwise coprime monomials. Due to the position of u, each monomial of g is divisible
by precisely one of T, Ty, T7. If T3 does not appear in g, then up to permuting variables
of the same degree, g is of the form

g = TITd + TeTd + T},

By homogeneity of g we obtain I; = lo = l4c. Moreover, the bound on p; yields
(ly—1)c < 1. Iflg > 1, then this yields I = 2 and ¢ = 1. We obtain [y = Il = 2, which is
a contradiction to condition (C2) from Setting 3.4.1. Thus Iy = 1 holds. Grading matrix
and relation are thus given by

1

1 a ¢ 0 0O
Q_()Olllll’

g = TSTd + TSTg + TyT3.

For g to satisfy condition (C2) from Setting 3.4.1, ¢ must be odd. This is series S34.
If T3 does appear in g, then the bound on p; yields a = 3 = ¢+ 1. Up to permuting
variables of the same degree, the relation g is of the form

g = THTd 4 TRTITE 4 T3T3,

where lo + l4c = ¢+ 1 and 4 + lg = 4. In particular we have 0 <[y < 1. For Iy = 1 we
obtain series S35. For 4 = 0 we obtain series S36. O
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Chapter 3. Locally factorial Fano fourfolds of Picard number two

3.8 Proof of Theorem 3.1.1: Case s =5

Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2,...,6, according to the number of rays spanned by the degrees wy,...,ws.
In this section we treat the case s = 5.

Theorem 3.8.1. The tables from 3.10.8, 3.10.9 and 3.10.10 provide specifying data (Q, g)
for 37 sporadic cases and 39 infinite series of locally factorial Fano fourfolds of Picard
number p = 2 and complexity ¢ = 1 with a hypersurface Cox ring and s = 5. Moreover,
any locally factorial Fano fourfold with a hypersurface Cox ring and invariants (p,c,s) =
(2,1,5) is isomorphic to precisely one X(Q,g) with (Q,g) from these tables.

The proof of Theorem 3.8.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q,¢g) from the tables in 3.10.8, 3.10.9
and 3.10.10 defines a locally factorial Fano fourfold X (Q, g) with a hypersurface Cox
ring and invariants (p, ¢, s) = (2,1,5). Moreover, with the help of Remark 3.4.3 we verify
that distinct specifying data from the tables in 3.10.8, 3.10.9 and 3.10.10 define pairwise
non-isomorphic varieties. The second part is to show that any locally factorial Fano
fourfold with a hypersurface Cox ring and invariants (p, ¢, s) = (2,1,5) is isomorphic to
X(Q,g) with (Q, g) from these tables. We divide the proof of this into the two general
cases

p € SAmple(X), p & SAmple(X).

The case p € SAmple(X) will be treated in Proposition 3.8.2. In Proposition 3.8.3 we
treat the case pu & SAmple(X).

Proposition 3.8.2. Let X as in Setting 3.4.1 with s = 5. Assume that € A holds.
Then X is isomorphic to an X (Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.8.

Proof. We show that p € Mov(R)® holds. Assume p € 9 Mov. The relation degree pu is
contained in one of the rays p1,...,p5. By Lemma 3.4.7, u is neither contained in p; nor
in ps. Reversing the order of the variables if necessary, we may assume that p € ps U p3
holds. By assumption p lies in the boundary of Mov(R). This is not possible if p lies in
p3. Thus we have p € pa. Moreover we have n; = 1 and, by Remark 3.2.11, also ng > 2
holds. The relation degree y lies in the boundary of A, which is contained in Mov(R). So
we have A = pa + p3. Denote by v; the primitive point on the ray p;. Since ns > 2 holds
and p lies on po, we can apply Lemma 3.2.8 to vo, v; for ¢ = 3,4,5, which tells us that
each of the cones ps + p; is regular. By applying a suitable unimodular transformation

we achieve

(01, v, v3, 04, V5] = ai 1 a b 0
1,02,V3,U4,VU5] — _bl()lll?

where a1, b1, a,b are positive integers. Let w; € p3 and w; € ps. Since det(vy,v3) > 1
and det(vy,v4) > 1, Lemma 3.2.7 tells us that the relation g contains monomials of the

form TlllT?l)3 and TlllTi“. Due to the position of p, we have l1,1],13,l) > 0. This is a
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3.8. Proof of Theorem 3.1.1: Case s =5

contradiction to the fact that the monomials of g are pairwise coprime. Thus p € Mov(R)°
holds.

By assumption we have p € A and we have just seen that u € Mov(R)° holds.
We are therefore in the situation of Proposition 3.3.2. Thus, for a general polynomial
h € C[T1,...,T7] of degree deg(h) = pu, the projective variety X}, is smooth with divisor
class group Cl(X}) = K and Cox ring R(X}) = Rp,. Moreover, by Proposition 3.2.5
X}, is Fano. Thus, X}, is a smooth Fano fourfold of Picard number two with a spread
hypersurface Cox ring. In particular, up to unimodular equivalence, the grading matrix
Q = (w1, ..., wy) together with the relation degree u = deg(g) appear in the classification
list presented in [45, Thm. 1.1]. For each such entry (@, u) with s = 4 we determine
all trinomials g of degree deg(g) = p that satisfy the conditions (C1) and (C2) from
Setting 3.4.1 and filter the resulting list by isomorphy. This yields the specifying data
no. 411 to 414 in Classification list 3.10.8. O

Proposition 3.8.3. Let X as in Setting 8.4.1 with s = 5. Assume that u & A holds.
Then X is isomorphic to an X (Q, g) with specifying data (Q, g) appearing in Classification
list 3.10.9 or in Classification list 3.10.10.

Proof. We have i ¢ A. Reversing the ordering of the variables if necessary, we may assume
that u € AT\ holds. We are thus in the situation of Lemma 3.4.6. Thus A = p; + po
holds. Moreover, we have n; > 2 and all generator degrees contained in p; are primitive.
By Lemma 3.4.7, p is contained in the interior of Eff(R). Thus applying Lemma 3.2.8 to
the triples (w1, wa,w;), where w; € ps, shows that the cone Eff(R) is regular and that w;
is primitive. We may thus assume that Eff(R) is the positive quadrant and that

wp = wy = (1,0), wy = (0,1)

holds. Since p is contained in the interior of Eff(R), but lies outside of A, we have
w € (p2 + ps)°. As there are only seven generator degrees, ns < 2 holds. Thus
Remark 3.2.11 even yields p € (p2 + p4)\p2. There are five possible degree constellations
(n1,n2,n3,n4,n5) for X, displayed in the following pictures.

(3,1,1,1,1) (2,2,1,1,1) (2,1,2,1,1)

(2,1,1,2,1) (2,1,1,1,2)

) ) 9 )
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The black dots represent the generator degrees wi,...,w7. We distinguish five cases,
according to the degree constellation.

Case 3.8.3.1: (n1,n2,n3,ng,n5) = (3,1,1,1,1). Applying Lemma 3.2.7 to the pair
(w1, wy) shows that wy = (a4,1) holds with a4 > 1. By Remark 3.2.11 we have A €
(p2+p3)\p2. Applying Lemma 3.2.8 to the triple (wi, wa, wg) thus shows that wg = (ag, 1)
holds with ag > 1. The grading matrix is given by

_ 1 1 1 a4 a5 as O
©= 000 1 b 1 1} as, as, ag, bs € Z>1,

We distinguish the two cases u € (p2 + p3)° and u € ps.

Case 3.8.3.1.1: € (p2 + p3)°. Applying Lemma 3.2.8 to the triple (w1, we, wg) yields
bs = 1. Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given

by

0 = 1 1 1 a4 a5 ag O K = 3+as+as+ag— 1
oo o0 1 1 1 1} - 4—py |-
From X being Fano, ie. —KC € A°, we infer the inequalities
p2 <3, (3.8.3.1)
w < 24as+ag+ (,UQ — 3)@4. (3.8.3.2)

By the ordering of the generator degrees we have a4 > as > ag. With this, Equation
3.8.3.2 turns into

pr < (p2 —1ag — 1.

However, due to the position of u, we have p1 > paay. This is a contradiction. Thus the
case 1 € (p2 + p3)° does not occur.

Case 3.8.3.1.2: u € p3. The relation ¢ is a trinomial consisting of pairwise coprime
monomials. Due to the position of u, the relation ¢ thus contains a monomial of the
form T5l5 with I5 > 2. So the relation degree satisfies u = (Isas, l5b5). Grading matrix
and anticanonical class of X, due to Proposition 3.2.5, are given by

0 = 1 1 1 a4 a5 ag O K = 3+aq+ (1 —1I5)as+ ag
o 0 00 1 by 1 1|’ - 3+(1—l5)b5 ’
From X being Fano, ie. —KC € A\°, we infer the inequalities
(Ils —1)bs < 2 (3.8.3.3)
0 < 2+4ag—2a4+ (l5 - 1)(@4[)5 — a5). (3.8.3.4)
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By Equation 3.8.3.3 we have b5 < 2 and [5 < 3. Assume b5 = 1. The Equation 3.8.3.4
yields
0 < 2+ (l5 — 3)&4 — (l5 — 1>CL5 + ag.

By the ordering of the generator degrees we have a4 > a5 > ag. Thus the right hand side
is strictly negative. A contradiction. Thus bs = 2 holds. By Equation 3.8.3.3 we have
ls = 2. Equation 3.8.3.4 turns into

as < 2+ ag.

By the ordering of the generator degrees, we have 0 < det(ws,wg) = a5 — 2ag. This
yields ag = 1 and a5 = 3. Grading matrix and relation degree are thus given by

111 a8 310 B
R=1000 1211/ po=(6,4).

The relation g contains the monomial 72. If Ty does not occur in g, then up to switching
the roles of T1, Ty and T, it either contains the monomial T$T# or the monomial T3T .
Both of those contradict condition (C2) from Setting 3.4.1. Thus Ty appears in g. In
particular, by homogeneity of g, we obtain the bound a4 < 6. For each possible value of
a4 we determine all homogeneous trinomials g of degree deg(g) = u that satisfy conditions
(C1) and (C2) from Setting 3.4.1 and filter by isomorphy. Depending on the value of ay,
we obtain the following specifying data:

ag |2 3 4 5 6
ID | 415-418 419-422 423 424 425

Case 3.8.3.2: (n1,n2,n3,ng,ns) = (2,2,1,1,1). Applying Lemma 3.2.7 to the pairs
(w1, ws) and (w1, ws) shows that w3 = ws = (a, 1) holds for some @ > 1. By Remark 3.2.11
we have X € (p2 + p3)\p2. Applying Lemma 3.2.8 to the triple (w1, w2, wg) thus shows
that we = (¢, 1) holds for some ¢ > 1. The grading matrix is given by

1 1 a a a5 ¢ O
Q—[ °

001 1 b 1 1]’ a,as,bs, c € Z>1,

We distinguish the two cases p € (p2 + p3)° and p € ps.
Case 3.8.3.2.1: i € (p2 + p3)°. Applying Lemma 3.2.8 to the triple (w1, we, ws) yields

bs = 1. Set b := a5. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are given by

0 = 11 a a b c O K = 24+2a+b+c—
0011111} N 5— g |-
From X being Fano, ie. —IC € A°, we infer the inequalities
o < A4, (3.8.3.5)
p < 1+b+4+c+ (u2—3)a. (3.8.3.6)
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By the position of u, we have the inequality pq > peb + 1. This, together with the
inequality b > ¢, Equation 3.8.3.2 turns into

1 < (2= p2)b+ (u2 — 3)a.

Having in mind Equation 3.8.3.5, this is only fulfilled for uo = 4. With this, Equa-
tion 3.8.3.6 yields the bound
pw < l4+a+b+ec (3.8.3.7)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of g is therefore divisible by precisely one of Ty, Ty, T7.
We establish bounds on the exponents Is, g, l7. Since ps = 4, homogeneity of g yields
l5,lg,l7 < 4. Consider the monomial m of g containing T%. It is of the form

_ mpliplepls oy pls
m—T1T2T3T4T5.

Set | := 1y + 1y and I’ := I3 + l4. By homogeneity of g we have I’ = 4 — [5 and the bound
3.8.3.7 yields
0 < 1+(5—3)a+(1-1I5b+c

This inequality is only fulfilled for l5 = 4. Similarly we obtain lg > 3 and I7 > 2. Assume
l7 = 2 holds. Switching the roles of 71 and 75 as well as T3 and T} if necessary, we can
write g as

g = TPTRTE 4 T Ti Tl 4 T2,

where [; > 0, at most one of lo, ms, ko is non-zero, k3 + k4 = 2 holds and either k3 = 0 or
lg = 4. If k3 and k4 are positive, then lg = 4 as well as mo > 0 holds. By homogeneity of
g, both [; and mg are even. This violates condition (C2) from Setting 3.4.1. Thus either
ks = 0 or k4 = 0 holds. We may assume k3 = 0 and k4 = 2. The case lg = 4 again leads
to the same contradiction. Thus lg = 3 holds. Moreover, if lo = 0, then by homogeneity
[1 is even, leading to a violation of condition (C2) from Setting 3.4.1. Thus g is of the
form
g = TPTRTE + TyTE + TIT?.

Comparing the degrees of the second and third monomial, we obtain a = 3c. Thus
1 = 6¢ holds. Moreover, the degree of the first monomial yields 4b < 6¢. Combining this
with Equation 3.8.3.7, we obtain ¢ = 1. Since b > 2 holds, this yields 8 < 4b < 6c=6. A
contradiction. Thus the case Iy = 2 does not occur. Moreover, the case (5, lg,l7) = (4,4,4)
cannot occur. We therefore distinguish the following three cases

(l5alﬁal7) = (47373)7 (l5716al7) = (47374)a (l57l67l7) = (47473)

Case 3.8.3.2.1.1: (I5,15,17) = (4,3,3). Switching roles of T and T» as well as T3 and
T, if necessary, we can write g as

g = ThTRTE + T TyTE + Ty Ty T3,
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3.8. Proof of Theorem 3.1.1: Case s =5

where [; > 0 and at most one of ls, ms, ko is non-zero. By homogeneity of g we obtain
lo = mg = 0 and ko = 3c. This also yields I; = a — 4b + 3¢. Grading matrix and relation
are thus given by

11 boc 0 .
Q=1ly 0111 11| ¢=T""T+nTi+TenT.
This is series S37.

Case 3.8.3.2.1.2: (I5,1s,1l7) = (4,3,4). Switching roles of T1 and T, as well as T3 and
Ty if necessary, we can write g as

g = THTE + T5T3 + TRT2,

By homogeneity of g we obtain l; = a — 4b + 3¢ and Iy = a + 3¢. Grading matrix and
relation are thus given by

11 b 0 _
Q=lp 01111 1| 9=T" T enT et
This is series S38.

Case 3.8.3.2.1.3: (I5,16,1l7) = (4,4, 3). Switching roles of T1 and T, as well as T3 and
Ty if necessary, we can write g as

g = ThT¢ +TeTi + T)T3.

By homogeneity of g we obtain l; = a — 4b and ly = a — 4c. Grading matrix and relation
are thus given by

11 b 0 _ B
Q=001 111 1| 9=T"ErTT T
This is series S39.

Case 3.8.3.2.2: i € ps. The relation degree p and the generator degree I5 lie on the
same ray. If [5 is not primitive, then applying Lemma 3.2.7 to the pair w, ws shows
that ¢ contains a monomial of the form T5l5. In particular, p is a multiple of ws. If
ws is primitive, then clearly p is a multiple of ws. Thus in any case there is I5 > 2
with p = lsws = (lsas,l5b5). Grading matrix and anticanonical class of X, due to
Proposition 3.2.5, are given by

1 1 2+2 1-—
Q = a a as c 017 K +2a+ (1—1I5)as+c

0 01 1 b 11 4+(1*l5)b5 ’
From X being Fano, ie. —K € A°, we infer the inequalities
(Is —1)bs < 3, (3.8.3.8)
0 < 1—-2a+c+(Is—1)(abs — as). (3.8.3.9)
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Thus, by Equation 3.8.3.8 we have b5 < 3. We distinguish three cases, depending to the
value of bs.

Case 3.8.3.2.2.1: bs = 1. By Equation 3.8.3.8 we have l5 < 4. Set b := 5. Euqgation
3.8.3.9 yields the inequality

0 < 1—|—(l5—3)a+(1—l5)b+c,

the right hand side of which is only non-negative for l5 > 4. Thus I5 = 4 holds. Grading
matrix and relation degree are thus given by

1 1 a a b ¢ 0
Q=100 1111 1| Hm=UnY

Moreover, plugging the value for [5 into Equation 3.8.3.9, we obtain the bound
p < 1+a+b+c (3.8.3.10)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of p, each monomial of g is divisible by precisely one of Ts,Tg,77. We have
already seen that g contains the monomial Té . Thus one of the remaining monomials is
divisible by T§, the other one by 77. We establish bounds for the exponents Ig, 7. Since
mug = 4 holds, we have lg, 7 < 4. Consider the monomial m of g containing Tg. It is of
the form
m = TPTRTRTHTLS.

Set | := Iy + 1y and I’ := I3 + l4. By homogeneity of g we have I’ = 4 — lg and
Equation 3.8.3.10 yields

0 < 1+ (lg—3)a+tb+(1—1lg)e

The right hand side is only non-negative for lg > 3. Similarly we obtain I; > 2. We
distinguish the following six cases:

(l5alﬁal7) = (47372)7 (l5716al7> = (47373)a (l5alﬁal7) = (47374)7
(Is, 16, 17) = (4,4,2), (Is, 16, 17) = (4,4,3), (Is,l6,17) = (4,4,4).

Case 3.8.3.2.2.1.1: (l5,1g,17) = (4, 3,2). Switching the roles of T3 and T} if necessary,
we can write g as
g = Td+ THTRTTE + T Ty T2T2,

where either I; = 0 or m; = 0, as well as either ls = 0 or my = 0. To satisfy condition
(C2) from Setting 3.4.1, the exponents m; and mg must be odd. Thus l; = I3 = 0 holds.
Let [ := 1} + l}. Homogeneity of g yields the identities

4b = a+3c (3.8.3.11)
4b = 2a+1. (3.8.3.12)
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By Equation 3.8.3.11 we have a = 4b — 3c. Plugging this into Equation 3.8.3.12, we
obtain [ = 6¢ — 4b. In particular, we get the bounds

3c < 4b < 6e.

Combining Equation 3.8.3.11 with the bound 3.8.3.10, we obtain 2c¢ < 1 + b. Together
with the bound on b, this yields b < 3. Thus we have b = 2 and ¢ = 1. But then 4b > 6¢
holds. A contradiction. Thus the case (I5,lg,1l7) = (4, 3,2) does not occur.

Case 3.8.3.2.2.1.2: (I5,1s,17) = (4,3,3). Switching the roles of T3 and T} if necessary,
we can write g as

g = Td+THTRTTE + T T Ty T3,
where either 1 = 0 or m1 = 0, as well as either [o = 0 or mo = 0. By homogeneity of
g we have mj1 4+ mg > 0 and we may assume that mq is positive. Thus we have ls = 0.

If I; = 0 holds, then homogeneity of g yields a = 4b — 3¢ and m; = 3¢ — my. Grading
matrix and relation are thus given by

1 1 4b—3c 4b—3c b ¢ O
QZ[

0 0 1 111 1]’ g = T4+ TTg + TP ' T TS,

This is series S40. If I; > 0 holds, then we have m; = 0 and homogeneity of g yields
Iy =4b— a — 3c and [y = 4b — a. Grading matrix and relation are thus given by

11 aa b cO o B

This is series S42.

Case 3.8.3.2.2.1.3: (l5,1¢,17) = (4,3,4). Switching the roles of T3 and T} if necessary,
we can write g as
g = T&+TITRTTS + T T T,

where either [y = 0 or my = 0, as well as either [o = 0 or mo = 0. To satisfy the condition
(C2) from Setting 3.4.1, the exponents m1, my must be positive and odd. Thus I} =1ls =0
holds. Homogeneity of g yields a = 4b — 3¢ and m; = 4b — mg. Grading matrix and
relation are thus given by

0 = 1 1 4b—-3c 4b—3c b ¢ O
~lo o 1 1111 9

= Td + TT3 + T 1T
This is series S41.
Case 3.8.3.2.2.1.4: (I5,16,17) = (4,4,2). The relation g is of the form

g = Td+ THTETS + T TP Ty T T2,
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where ms + my = 2 and lym; = 0 and lemy = 0. To satisfy condition (C2) from
Setting 3.4.1, the exponents [; and ls must be positive and odd. Thus m; = mo =0
holds. This in turn yields ms = my = 1 with the same argument. By homogeneity of
g we thus obtain a = 2b. Plugging this into the bound 3.8.3.10, we obtain b = ¢ + 1.
Using homogeneity of ¢ again, we obtain I; + lo = 4. Switching the roles of T} and T5 if
necessary, we may assume /; = 3 and lo = 1. Grading matrix and relation are thus given

by

1 1 2¢4+2 2¢+2 ¢c+1 ¢ O

©=100 1 1 111 Y = Ty + TV ToTy + T3TT7.

This is series S43.

Case 3.8.3.2.2.1.5: (l5,16,17) = (4,4, 3). Switching roles of T3 and Ty if necessary, we
can write g as
g = Te+ThTeTd + 7Ty T3,

where {1 > 0 and either [y = 0 or mg = 0. To satisfy condition (C2) from Setting 3.4.1,
the exponents /1 and [y must be positive and odd. Thus mgy = 0 holds. Homogeneity of g
yields a = 4b and [y = 4b — 4¢ — l5. Grading matrix and relation are thus given by

1 1 4b 4b b ¢ O

Q=100 1 111 1] ¢9=D0+0"" LI+

This is series S44.

Case 3.8.3.2.2.1.6: (l5,1s,l7) = (4,4,4). In this case the variables T35 and T do not
appear in g. Thus, up to switching 77 and 715, the relation g is of the form

g = T¢+TPT§ + TR

By homogeneity of g, the exponents {1 and Iy are even. This violates condition (C2) from
Setting 3.4.1. Thus the case (I5,1s,17) = (4,4,4) does not occur.

Case 3.8.3.2.2.2: b; = 2. Equation 3.8.3.8 yields l5 = 2. Plugging the values for b5 and
l5 into Equation 3.8.3.9, we obtain a5 = ¢+ 1. This yields det(ws,wg) < 0, contradicting
the ordering of the generator degrees. Thus the case bs = 2 does not occur.

Case 3.8.3.2.2.3: bs = 3. Equation 3.8.3.8 yields l5 = 2. Set b := a5. Grading matrix
and relation degree are given by

11 a a b c O
C=loo0o1 131 1| H=E6
Plugging the values for b5 and l5 into Equation 3.8.3.9 and combining it with homogeneity
of g, we obtain the bound

w = 2b < 24 2a+ 2c. (3.8.3.13)
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The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial is divisible by precisely one of T5,Tg,T7. The relation g
contains the monomial 72. The other two monomials are thus each divisible by precisely
one of Ty and T7. We establish bounds on the exponents lg and l7. Since po = 6 holds,
we have lg, l7 < 6. Consider the monomial m of g containing Ts. It is of the form

_ I lo ls Al ole
m = ThTRThThT.

Set [ := Iy +13 and I’ := I3+14. By homogeneity of g we have I’ = 6 —lg. Equation 3.8.3.13
yields
0 <L 2+(l6—4)a+(2—l6)c.

The right hand side is only non-negative for lg > 4. Similarly we obtain Iy > 2. We
distinguish three cases:

() Ig =4, (i) Iy =2, (i) lg > 5, Iy > 3.

Case 3.8.3.2.2.3.1: lg = 4. With the notation from above, we have
2b = pp = 1+ (6—1Ig)a+lsc = 1+ 2a+4c.

The bound on pq 3.8.3.13 yields ¢ = 1. With this, we obtain [ = 0 and b = a+ 2. Grading
matrix and relation degree are thus given by

11 a a a+2 1 0

Q=190 11 31 1| M= (atdo)

The monomial of ¢ containing Tg is of the form m = T§3Ti4Té with I3 + 14 = 2. By
condition (C2) from Setting 3.4.1 we have I3 = 4 = 1. The relation g is threfore of the
form

g = T2+ TyTyT§ + T TRTS.

By homogeneity of g we have Iy = 2a + 4 — I3 and by condition (C2) from Setting 3.4.1,
[1 is odd. This is series S45.

Case 3.8.3.2.2.3.2: l; = 2. Similar to above, we consider the monomial m of g containig
T7 and write
m = TRTRTRTHTZ,

We set [ := 1y + 1y and I’ :== [3 + l4. By homogeneity of g we obtain I’ = 4 and
2b = = l+4a.

The bound on pp 3.8.3.13 yields a = ¢+ 1 and [ = 0. Homogeneity then yields b = 2a =
2¢ + 2. By the ordering of the generator degrees we have

0 < det(ws,wg) = 2—c.
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This yields ¢ = 1. Grading matrix and relation degree are thus given by

0

2 2 4

—_ =

By condition (C2) from Setting 3.4.1, both I3 and l4 are positive and odd. Up to switching
the roles of T5 and T}, the relation g is of the form

g = T2+ TOTRTS + TITT?

with {3 + lo = 2. Again using condition (C2) yields I; = ls = 1. This is specifying data
no. 426.

Case 3.8.3.2.2.8.3: lg > 5,17 > 3. We further distinguish the following eight exponent
constellations for (Is,lg, l7):

(2,5,3), (2,5,4), (2,5,5), (2,5,6),

(2,6,3), (2,6,4), (2,6,5), (2,6,6).

Case 3.8.3.2.2.3.3.1: (l5,1s,17) = (2,5,3). Switching roles of T3 and T} if necessary,
we can write g as

g = T2+ TNTRTRTY + T Ty TPTS, (3.8.3.14)

where l;m1 = 0 and lgmo = 0. Homogeneity of g together with the bound on u; 3.8.3.13
yield the inequalities

24+ 2a+ 2c
24+ 2a + 2c.

i+l +a+5c

<
mi1+mg+3a <
From the first one, we obtain a > 3¢ — 2, from the second one a < 2¢ 4+ 2. Combining
these two, we get the bound ¢ < 4. Plugging this back into the second inequality, we
obtain @ < 10. The bound on pu; then yields b < 30. For all possible combinations of
a,b and ¢ within these bounds we determine all homogeneous trinomials g of degree
deg(g) = p of the form 3.8.3.14 that satisfy conditions (C1) and (C2) from Setting 3.4.1
and filter by isomorphy. Not all combinations of values for a, b, ¢ do actually produce
valid specifying data. Depending on the values of a, b, ¢ we obtain the following specifying
data

(a,b,c) | (2,4,1)  (3,5,1) (4,6,1) (4,7,2) (5,8,2) (6,9,2)

ID 427 428 429-430  431-432 433 434-435
(a,b,c) | (7,11,3) (8,12,3) (10,15,4)
ID 436 437 438
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Case 3.8.3.2.2.3.3.2: (l5,1s,17) = (2,5,4). Switching roles of T3 and T} if necessary,
we can write g as
g = T2+ ThTRTTd + T T T2,

where [ym; = 0 and lymg = 0. To satisfy condition (C2) from Setting 3.4.1, the exponents
m1 and meo must both be positive and odd. Thus I; = lo = 0 holds. Homogeneity of g
yields a = 2b — 5¢ and my = 10c — 2b — mg. Grading matrix and relation are thus given
by

1 1 2b—5¢ 2b—5¢c b ¢ O

The Fano condition on X, ie —/C € A\° yields b > 4¢ — 1. This is series S46.

Case 3.8.3.2.2.3.3.3: (l5,1s,17) = (2,5,5). Switching roles of T3 and T} if necessary,
we can write g as

g = T2+ ThTRTTY + T Ty Ty T2,
where l1m, = 0 and lemg = 0. Comparing degrees of the second and third monomial
shows that mi 4+ mo > 0 holds. We may assume mo > 0. Then we have I = 0. If [; =0,
then g is of the form

g = T2 +T3T5 + T T2 Ty T2,

Homogeneity of g yields a = 2b — 5¢ and m; = 5¢ — my. Grading matrix and relation are
thus given by

1 1 2b—5¢ 2b—5¢c b ¢ O

Q=140 ) L3 1 1|0 9= BB+ T

This is series S47. If [y > 0, then g is of the form
_ 2 l1 5 mo 5

Homogeneity of g yields I = 2b — 5¢ — a and mo = 2b — a. This in particular yields
a < 2b — 5c. Note that the right hand side is positive by the ordering of the generator
degrees. Grading matrix and relation are given by

1 1 b 0 L B
Q = 0 0 Cll (i 3 f 1 , g = T52+T12b 5c aTSTé)+T22b aT4T75.

The Fano condition on X, ie. —K € \°, yields b > 4c¢. This is series S49.

Case 3.8.3.2.2.3.3.4: (ls,1s,1l7) = (2,5,6). Switching roles of 77 and T as well as T3
and Ty if necessary, we can write g as

g = T2+ ThI3TP + T T Te,
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where mg > 0 and lym; = 0. To satisfy condition (C2) from Setting 3.4.1, m; and mq
must both be positive and odd. Thus /; = 0 holds. Homogeneity of g yields a = 2b — 5¢
and m; = 2b — my. Grading matrix and relation are thus given by

1 1 20—5¢ 2b—5¢ b ¢ O

Q=10 0 1 131 1|

g = T2+ T315 + TR 'Tirs,

This is series S48.

Case 3.8.3.2.2.3.8.5: (I5,15,17) = (2,6,3). Switching roles of T} and T3 if necessary,
we can write g as
g = T TOTETY + TSI,

where [; > 0, at most one of [y, mg is non-zero and mg +my4 = 3 holds. By condition (C2)
from Setting 3.4.1, the exponents /1 and ls are both positive and odd. Thus mo = 0 holds.
Comparing the degrees of the first and third monomial of g, we see that there is an integer
d such that b = 3d and a = 2d holds. The bound on p; thus yields 6d < 2 + 4d + 2¢, or
equivalently d < ¢+ 1. Comparing the first and second monomial of g yields d > ¢. Thus
d = c+ 1 holds. This also yields [; + lo = 6. Thus grading matrix and relation are given
by

1 1 2¢+2 2¢+2 3¢+3 ¢ O

Q =

where 1} 4+ lo = 6 and mg + m4 = 3. Having in mind condition (C2) from Setting 3.4.1,
up to isomorphy this leads to series S50 to S52.

Case 3.8.3.2.2.3.3.6: (l5,1s,17) = (2,6,4). Switching roles of 77 and T if necessary,
we can write g as
g = T2+ TPTRTE + Ty Ty T Ty,

where [; > 0, at most one of Iy, mo is non-zero and mg + mg4 = 2 holds. To satisfy
condition (C2) from Setting 3.4.1, the exponents I; and ls must both be positive and odd.
Thus mo = 0 holds. By the same argument we also obtain ms = m4 = 1. Homogeneity
of g yields a = b and I} = 2a — 6¢ — l3. Grading matrix and relation are thus given by

1

1 a a a ¢ O
0011311}’

Q = g = T2+ 12 0S4 T3y T

This leads to series S53.

Case 3.8.3.2.2.3.3.7: (l5,1s,1l7) = (2,6,5). Switching roles of 77 and Tb as well as T3
and T}y if necessary, we can write g as

g = T+ TP TE + T3 TuTy,
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where I3 > 0 and at most one of I, mg is non-zero. To satisfy condition (C2) from
Setting 3.4.1, the exponents [; and lo must both be positive and odd. Thus ms = 0 holds.
Homogeneity of g yields a = 2b and I} = a — l3. Grading matrix and relation are thus
given by

112 20 b c 0 )
Q=190 1 131 1| 9= B+ BE+OT.

This leads to series SH4.

Case 3.8.3.2.2.3.3.8: (l5,1s,17) = (2,6,6). Switching roles of 77 and T if necessary,
we can write g as
_ 2 16 lo 6
g = T2+ ThT$ + TT8.

By homogeneity of g, the exponents /1 and s are both odd. This violates condition (C2)
from Setting 3.4.1. Thus the case (lg,l7) = (6,6) does not occur.

Case 3.8.3.3: (n1,n2,ns,ng,ns) = (2,1,2,1,1). Applying Lemma 3.2.7 to the pair
(w1, ws) shows that w3 = (a, 1) holds for some a > 1. Moreover, applying Lemma 3.2.8 to
the triple (w1, w4, ws) shows that the primitive point v € ps is of the form v = (b, 1) for
some b > 1. By Remark 3.2.11 we have A € (p2 + p3)\p2. Thus applying Lemma 3.2.8 to
the triple (w1, wsg, we) shows that wg = (¢, 1) holds for some ¢ > 1. The grading matrix
is given by

1 1 a ag4b asb ¢ 0

Q:001a4a511’

a,ay,as,b,c € Zzl'

By Lemma 3.2.8 applied to the triple (wq, w4, ws), the integers a4 and a5 are coprime.
We distinguish the two cases p € (p2 + p3)° and p € ps.

Case 3.8.3.3.1: 1 € (p2 + p3)°. Applying Lemma 3.2.8 to the triples (wq, we,w,) and
(w1, wy, ws) shows that ay = a5 = 1 holds. Grading matrix and anticanonical class of X,
due to Proposition 3.2.5, are given by

0 = 11 a b b c 0 K = 24+a+2b+c— 1
- 0011111} - 5—pe |-
From X being Fano, ie. —KC € A°, we infer the inequalities
pe < 4, (3.8.3.15)
pr < 1+ (pe—4)a+2b+ec (3.8.3.16)

The position of p yields the inequality pob+1 < py. Combining this with Equation 3.8.3.16,
we obtain
0 < (p2—4)a+(2—p2)b+c.
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Having in mind the ordering of the generator degrees, the right hand side is negative for
p2 < 4. This is a contradiction to Equation 3.8.3.15. Thus the case u € (p2 + p3)° does
not occur.

Case 3.8.3.3.2: 1 € p3. The relation degree satisfies u = (kb, k) for some k > 2.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

Q = 1 1 a asb asb ¢ 0 K 24+a+ (ag+as—k)b+c
a 0 01 a a5 1 1}’ o 3+aqg+as—k
From X being Fano, ie. u € A°, we infer the inequalities
E < 2+a4+as, (3.8.3.17)
0 < 1+c—2a+(as+as—k)(b—a). (3.8.3.18)
The second inequality can also be written as
0<c+2-2b+2+as+as—k)(b—a). (3.8.3.19)

By the ordering of the generator degrees we have ¢ +2 — 2b < 0 as well as b —a < 0.
Thus, by Equation 3.8.3.17, the right hand side of Equation 3.8.3.19 is negative. A
contradiction. Thus the case p € ps does not occur. This Case 3.

Case 3.8.3.4: (n1,n2,n3,ng,ns) = (2,1,1,2,1). Applying Lemma 3.2.7 to the pair
(w1, ws) shows that ws = (a, 1) holds for some a > 1. Moreover, applying Lemma 3.2.8
to the triple (w1, ws, wg) shows that the primitive point v € py is of the form v = (¢, 1)
for some ¢ > 1. The grading matrix is given by

1 1 a a4 asc agc O
= Zi>1.
Q O 0 1 b4 a5 aﬁ 1 9y a7a47a57a67b47c e 21
Lemma 3.2.8 for the triple (w;,ws,ws) shows that as and ag are coprime. We may
assume that as < ag holds. By Remark 3.2.11 we have p € (p2 + ps)\p2. We distinguish
the following four cases:

pe(p2+ps3)’, peEps,  pE(ps+ps)’,  pEps

Case 3.8.3.4.1: 1 € (p2 + p3)°. Applying Lemma 3.2.8 to the generator degree triples
(w1, wa,wy), (w1, ws,ws) and (w1, ws, ws) shows that by = a5 = ag = 1 holds. Grading
matrix and anticanonical class of X, due to Proposition 3.2.5, are thus given by

24a+b+2c—

1 1 a b ¢ ¢ O
@ = 0011111]’ -k = 5—p |-
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From X being Fano, ie. u € A°, we infer the inequalities

pe <4, (3.8.3.20)
< 1+ (ug —4)a+2b+ec. (3.8.3.21)

The position of u yields pusb + 1 < py. Combining this with Equation 3.8.3.21, we obtain
0 < (p2—4)a+(2—p2)b+c.

Due to the ordering of the generator degrees, the reight hand side of this inequality
is negative for ps < 4. This is a contradiction to Equation 3.8.3.20. Thus the case
i € (p2 + p3)° does not occur.

Case 3.8.3.4.2: n € ps. The relation degree p and the generator degree wy lie on
the same ray. If wy is not primitive, then Lemma 3.2.7 applied to the pair (wq,ws)
shows that g contains a monomial of the form 7T i“. Thus p is a multiple of wy. If wy
is primitive, then clearly p is a multiple of wy. So in any case there is £ > 2 with
i = kwy. Moreover, applying Lemma 3.2.8 to the generator degree triples (wy, we, ws)
and (w1, wy, wg) shows that as = ag = 1 holds. Grading matrix and anticanonical class
of X, due to Proposition 3.2.5, are thus given by

Q = 11 a a ¢ ¢ 0 K — 24+a+2c+ (1 —k)ag
00 1 by 11 1| N 44 (1 —Fk)by
From X being Fano, ie. —KC € A°, we infer the inequalities
(k—1)by < 3, (3.8.3.22)
0 < 1+2c—3a+ (k—1)(abs — as). (3.8.3.23)

Since det(wy4, ws) > 0 holds, we can rewrite Equation 3.8.3.23 to obtain the inequality
0<2—k—c+ 3= (k—1)bs)(c—a).

By the ordering of the generator degrees and Equation 3.8.3.22, the right hand side of
this inequality is strictly negative. A contradiction. Thus the case pu € p3 does not occur.

Case 3.8.3.4.3: 1 € (p3 + ps)°. Applying Lemma 3.2.8 to the generator degree triples
(w1, we,wy), (w1, ws, ws) and (w1, ws, we) shows that by = a5 = ag = 1 holds. Grading
matrix and anticanonical class, due to Proposition 3.2.5, are thus given by

0 = 1 1 a b c c O i = 24+a+b+2c—
~]lo0oo0 1111 1| N 5—p2 |
From X being Fano, ie. p € A°, we infer the inequalities
p2 <4, (3.8.3.24)
p < 14+b+42c+ (u2 —4)a. (3.8.3.25)
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The position of p yields poc+ 1 < p3. Combining this with Equation 3.8.3.25, we obtain
0 < 1+ (u2—4)a+b+(2— p2)e

Having in mind the ordering of the generator degrees, the right hand side of this inequality
is negative for us < 4. Together with Equation 3.8.3.24 we obtain ps = 4. Plugging this
into Equation 3.8.3.25, we obtain the bound

p < 14b+2c (3.8.3.26)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of g is thus divisible by precisely one of T5,Tg, T7. We
establish bounds for I5,lg,l7. Since uo = 4 holds, we have I5,lg,l7 < 4. Consider the
monomial m of g containing T5. We write

_ mplimplamplzplapls

Set | :=l1 + lo. By homogeneity of g we have I3+ 14+ 15 =4 and [ + lsa + l4b + l5¢ = p1.
Combining this with the bound 3.8.3.26, we obtain

lsc + (4 — l5>b < lse+lza+140 < pp < 140+ 2c. (3.8.3.27)

This inequality is only fulfilled for I5 > 3. Similarly we obtain lg > 3 and Iy > 2.
Interchanging 75 and Tj if necessary, we may assume that l5 > lg holds. Assume [5 = 3.
Then we have lg = 3. Switching roles of T3 and T as well as T5 and Tg if necessary, we
can write

g = T3T3 + TP 0T T3 + 19T,

With the bound on p; we obtain
a+3c = < 14+b+2c < a+2c

A contradiction. Thus l5 = 4 holds. In particular, the monomial of g containing T3 is
of the form TlllT QZzTg1 and we may assume that /; > 0 holds. We distinguish the cases
l6:3andl6:4.

Case 3.8.3.4.3.1: lg = 3. Consider the monomial m of g containing Tg. It is of the
form
m = TPTPTHTE

with I3 + 14 = 1. The bound 3.8.3.26 yields lsa + {40 + ¢ < b+ 1. This inequality is only
fulfilled for I3 =0, I3 =1 and ¢ = 1. Thus m is of the form

m = TRTTE
We distinguish three cases, depending on the value of I7.
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Case 3.8.3.4.3.1.1: (I5,l6,1l7) = (4,3,2). The relation g is of the form
g = TMTYT + T TV TE + T TETE,

where at most one of ls, ko, mo is non-zero. Applying the bound 3.8.3.26 to the degree of
the third monomial, we obtain

2a < 2a+mgy = pup < 14+b+2c = b+3.

This yields a < 2. However, by the ordering of the generator degrees, a > 3 holds. A
contradiction. Thus the case (I5,1s,17) = (4, 3,2) does not occur.

Case 3.8.8.4.3.1.2: (I5,1s,17) = (4,3,3). The relation g is of the form
g = TI'TRT + TyT§ + Ty T T3,

where lo = 0 or mo = 0. Homogeneity of g yields a = b+ 3 —mgy < b+ 3. By the ordering
of the generator degrees, we have a > b+ 1. We thus distinguish the three cases a = b+1,
a=b+2and a=0>b+3.

Case 3.8.3.4.3.1.2.1: a =b+ 1. We have my = 2. Grading matrix and relation are
given by

o R I R e NN St Oy Vi)
1 1111
This is series S55.

Case 3.8.3.4.3.1.2.2: a = b+ 2. We have my = 1. Grading matrix and relation are
given by

Q= | L or2 o L L0 e s s,
1 1111
This is series S56.

Case 3.8.3.4.3.1.2.3: a = b+ 3. We have my = 0. Grading matrix and relation are
given by

11 b+3 0
Q_loo 11

This is series S57.

110 s
11 1], g = Ty VT + Ty T + T3 T3

Case 3.8.8.4.3.1.3: (I5,1s,17) = (4,3,4). The relation g is of the form

g = ThTd + TyT3 + T2T2,
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Homogeneity of g yields I} = b —1 and I3 = b+ 3. Grading matrix and relation are thus
given by

, g = T\ 4 Ty 4+ TEATE
To satisfy condition (C2) from Setting 3.4.1, b must be even. This is series S58.

Case 3.8.3.4.3.2: lg = 4. Since us = 4 holds and T appears in the monomial of T5,
the monomial m of g containing T is now of the form

_ o
m = 1,°Tq

We distinguish three cases, depending on the value of [.

Case 3.8.3.4.3.2.1: (I5,l6,1l7) = (4,4, 2). The relation g is of the form
g = VT + T + TPTPT7,

where I3 + 1y = 2. If I3 = 0, then 4 = 2 holds and the relation has degree p = (2b,4).
Homogeneity of g yields [ = Il = 2b. This violates condition (C2) from Setting 3.4.1.
Similarly for the case {4 = 0. Thus I3 = {4 = 1 holds. Applying the bound 3.8.3.26 to the
degrees of the second and third monomial of g, we obtain

2¢c < b < a < 2+ 1.

This is only fulfilled for b = 2¢ and a = 2¢ + 1. Moreover we obtain [y = ls = 1. Grading
matrix and relation are thus given by

1 1 2¢c+1 2¢ ¢ ¢ O

0 0 L 1111 9= DT+ DI + LT

Q p—
This is series S59.

Case 3.8.3.4.3.2.2: (I5,16,17) = (4,4, 3). The relation g is of the form
g = T{T + TP T + T3 TP T,

where [3 + 4, = 1. Homogeneity of g yields [1 =ls =:l and [ = lga + [4b — 4c. If I3 =1,
then I4 = 0 holds. This yields | = a — 4¢. Grading matrix and relation are given by
_11abccO _ ma—4c4 a—4cpd 3

To satisfy condition (C2) from Setting 3.4.1, a must be odd. This is series S60. Now
assume Iy = 1. Then I3 = 0 holds. This yields [ = b — 4¢. Grading matrix and relation
are given by

11 b 0 B -
@ = [0 01111 1]’ g = TV TS + T3 Tg + TWT3,
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To satisfy condition (C2) from Setting 3.4.1, b must be odd. This is series S61.

Case 3.8.3.4.3.2.3: (ls,l6,l7) = (4,4,4). Since uy = 4, the variables T3, Ty do not
appear in g. The relation g consists of pairwise coprime monomials. It is not possible to
form g with only the variables T, Ts, T5, T, T7. Thus the case (I5,1s,17) = (4,4,4) does
not occur.

Case 3.8.3.4.4: p € psy. The relation degree is of the form u = (ke, k) for some
k > 2. The relation g is a trinomial consisting of pairwise coprime monomials. Due
to the position of u, the relation g contains monomials of the form Tés and TéG with
l5,lg > 1. By homogeneity of g we obtain k = lsas = lgag. To satisfy condition (C2)
from Setting 3.4.1, the exponents /5 and lg must be coprime. The coprimeness of a5 and
ag yields as = lg, ag = 5 and k = asag. We are thus in the situation of Lemma 3.4.4,
which yields a5 = 2, ag = 3 and k = 6. Grading matrix and anticanonical class of X, due
to Proposition 3.2.5, are thus given by

- 1 1 a b 2¢c 3¢ 0 - 24+a+b—c
Q= 0011 2 3 1L _K"[ 2}

From X being Fano we infer the inequality
0<14b—a-—c

As a is strictly larger than b, the right hand side of this inequality is strictly negative.
Thus the case p € ps does not occur.

Case 3.8.3.5: (n1,n2,n3,ng,ns) = (2,1,1,1,2). Applying Lemma 3.2.7 to the pair
(w1, ws) shows that ws = (a, 1) holds for some a > 1. The grading matrix is given by

Q_llaa4a500
10 01 by bs 11|

a,as,as,bs, b5 € Z>1,
By Remark 3.2.11 we have u € (p2 + pa)\p2. We distinguish the following four cases:
w € (p2 +p3)°, € p3, 1€ (p3s + pa)°, K€ py.
Case 3.8.3.5.1: € (p2 + p3)°. Applying Lemma 3.2.8 to the generator degree

triples (w1, we,w4) and (wq, wy, ws) shows that by = b5 = 1 holds. Grading matrix and
anticanonical class of X, due to Proposition 3.2.5, are thus given by

0 - 11 a b c 00 K = 24a+b+c—m
|00 1111 1} N 5 — 2
From X being Fano, ie. p € A°, we infer the inequalities
o < 4, (3.8.3.28)
pr < 14+ (pe—4)a+b+e (3.8.3.29)
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The position of p yields peb 4+ 1 < p1. Combining this with Equation 3.8.3.29, we obtain
0 < (p2—4)a+(1—p)b+ec.

Having in mind the ordering of the generator degrees, the right hand side of this inequality
is negative for po < 4. This is a contradiction to Equation 3.8.3.28. Thus the case
i € (p2 + p3)° does not occur.

Case 3.8.3.5.2: n € ps. Applying Lemma 3.2.8 to the triple (w1, ws,ws) shows that
bs = 1 holds. The relation degree p and the generator degree wy lie on the same ray. If
wy is not primitive, then Lemma 3.2.7 applied to the pair (wq,w,) shows that g contains
a monomial of the form T4l4. In particular, p is a multiple of wy. If wy is primitive, then
clearly p is a multiple of wy. So in any case there is k > 2 with 4 = kw4. Grading matrix
and anticanonical class of X, due to Proposition 3.2.5, are thus given by

Q- 11 a ag ¢ 00 K — 24+a+c+(1—-k)as
“ o001 b 111 - 44 (1—k)by
From X being Fano, ie. u € \°, we infer the inequalities
(k—1by < 3, (3.8.3.30)
0 < 14+c—3a+(k—1)(absy — aq). (3.8.3.31)

By the ordering of the generator degrees we have det(wg,ws) > 0. With this, we can
rewrite Equation 3.8.3.31 to obtain

0<(3—(k—1)bs)(a—c)+1— 2

Note that a is strictly larger than ¢. Thus by Equation 3.8.3.30, the right hand side of
this inequality is strictly negative. A contradiction. Therfore the case p € ps does not
occur.

Case 3.8.3.5.3: p € (ps + p4)°. Applying Lemma 3.2.8 to the triples (wi,ws,wy) and
(w1, wy, ws) shows that by = bs = 1 holds. Grading matrix and anticanonical class of X,
due to Proposition 3.2.5, are thus given by

0 = 11 a b c¢c 00 K = 24+a+b+c—
0011111}’ N 5—p |-
From X being Fano, ie. p € A°, we infer the inequalities
pe <4, (3.8.3.32)
m < 1+ (ue—4)a+b+e (3.8.3.33)

The position of u yields pusc + 1 < py. Combining this with Equation 3.8.3.33, we obtain
0 < (p2—4)a+b+(1—p2)e.
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Having in mind the ordering of the generator degrees, the right hand side of this inequality
is negative for po < 4. Together with 3.8.3.32 this yields pus = 4. Plugging this into
Equation 3.8.3.33, we obtain the bound

m < 1+b+e (3.8.3.34)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of g is therefore divisible by precisely one of T5, T4, T7. We
establish bounds for the exponents [5, g, 7. Since uo = 4 holds, we immediately obtain
l5,1lg, l7 < 4. Consider the monomial m of g divisible by T5. We write

_ mplimplaplzplarpls
m—T1T2T3T4T5.

By homogeneity of g we have I3 4 l4 + I5 = 4. Combining this with the bound 3.8.3.34,
we obtain

l5C + (4 — l5)b < l5C + l3a + l4b < 1 < 14+b+e. (38335)

This inequality is only fulfilled for I5 = 4. In particular, the monomial of g containing
Ts is of the form TI'T2T¢ and we may assume that /; > 0 holds. Similarly we obtain
lg,l7 > 2. Switching the roles of Ty and T% if necessary, we may assume that lg > 7 holds.
Note that due to the bound 3.8.3.34, the variable T3 appears in g with exponent at most
one. In particular this yields lg > 3. We show that I7 > 3 holds. Assume 7 = 2. The
monomial m of g containing 7% is of the form

m = T{TRTPT,TE,
where I3 + [, = 2. With 3.8.3.34 we have
lsa+1b < 14+b+c
This yields I3 = 0 and Iy = 2 as well as b = ¢+ 1. Thus we can write
g = TPTRTS + TP Ty T + Ty TET7,

where at most one of ls, ko, mo is non-zero. Since b = ¢+ 1 holds, the bound 3.8.3.34 now
reads 1 < 2c+ 2. Applying this to the first monomial of g, we obtain

2+ < 2

A contradiction, since [; and ¢ are both positive. Thus I7 > 3 holds. Note that Is, g, I7
cannot all be equal to four. We therefore distinguish the two cases (15,1, l7) = (4,3, 3)
and (l5, lﬁ, l7) = (4, 4, 3)

Case 3.8.3.5.3.1: (l5,15,17) = (4,3,3). Switching roles of Ts and T7 if necessary, we
can write

g = ThTd + TRTTE + T Ty T3,
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where ly = 0 or my = 0. Comparing degrees of the second and third monomial shows
that ls = 0 and mo = a — b holds. Moreover we have [; = a — 4¢ by homogeneity of g.
Grading matrix and relation are thus given by

00 _ _
L 9= TR+ BT 4+ T T
This is series S62.

Case 3.8.3.5.3.2: (Is,1s,17) = (4,4,3). The relation g is of the form
g = TV'T + T T + TPTPTY,

where I3 + 4 = 1. If I3 = 1, then l4 = 0 holds and homogeneity of g yields I; = a — 4c
and ls = a. Grading matrix and relation are thus given by

11 b 00 _
Q = [ 011111 ] g = T{ T3+ TETY + TsT7.
To satisfy condition (C2) from Setting 3.4.1, a must be odd. This is series S63. If [4 = 1,
then I3 = 0 holds and homogeneity of g yields l; = b — 4¢ and l» = b. Grading matrix
and relation are thus given by

11 a b c 00 B
@ = [0 01111 1]’ g = TV T3 + T3T5 + TuT5.

To satisfy condition (C2) from Setting 3.4.1, b must be odd. This is series S64.

Case 3.8.3.5.4: p € pg. Applying Lemma 3.2.8 to the generator degree triple
(w1, wq,wy) shows that by = 1 holds. The relation degree p and the generator de-
gree ws lie on the same ray. If ws is not primitive, then Lemma 3.2.7 applied to the pair
(w1, ws) shows that g contains a monomial of the form T2, In particular, x is a multiple
of ws. If ws is primitive, then clearly p is a multiple of ws. So in any case there is k > 2
with g = kws. Grading matrix and anticanonical class of X, due to Proposition 3.2.5,
are thus given by

0 = 11 a b as 0 0 K - 24+a+b+(1—kas
00 11 b 11} - 44+ (1—k)bs
From X being Fano, ie. u € A\°, we infer the inequalities
(k—1)b; < 3, (3.8.3.36)
0 < 1-3a+b+(k—1)(abs — as). (3.8.3.37)

Equation 3.8.3.36 yields b5 < 3. We distinguish three cases, depending on the value of bs.
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Case 3.8.3.5.4.1: bs = 1. Equation 3.8.3.36 yields k < 4. Set ¢ := as. Plugging the
value for b5 into Equation 3.8.3.37, we obtain

0< 1+ (k-—4at+b+(1-ke

By the ordering of the generator degrees, the right hand side of this inequality is negative
for k < 4. Thus k = 4 holds. Grading matrix and relation degree are given by

11 a b ¢ 00
@=loo1 111 1| #= U
Moreover, Equation 3.8.3.37 yields the bound
w < 1+b+ec (3.8.3.38)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of g is therefore divisible by precisely one of T, T4, T%.
We have already seen that g contains the monomial T5. We establish bounds for the
exponents lg and l7. Since o = 4 holds, we immediately obtain lg,l7 < 4. Consider the
monomial m of g divisible by Ts. We write

_ mplimplaplzplaples

By homogeneity of g we have I3 4 l4 4+ lg = 4. Combining this with the bound 3.8.3.38,
we obtain
(4—l6)b < 13a+l4b < pup < 1+b+ec.

This inequality is only fulfilled for lg > 2. Similarly we obtain l7; > 2. Switching the roles
of Tg and T~ if necessary, we may assume that lg > [7 holds. Note that due to the bound
3.8.3.38, the variable T3 appears in g with exponent at most one. In particular this yields
lg > 3. We show that [y > 3 holds. Assume [; = 2. The monomial m of g containing 7%
is of the form

m = TPTRTETATS

where I3 + I, = 2. With 3.8.3.38 we have
lsa+14b < 1+b+c
This yields I3 = 0 and I4 = 2 as well as b = ¢+ 1. Thus we can write
g = T§ + T'TRT ST + Ty T T3,
where [ym; = 0 and lymoe = 0. Since b = ¢ + 1 holds, the bound 3.8.3.38 now reads

1 < 2c+ 2. As pp = 4c holds, this yields ¢ = 1. Thus the relation has degree u = (4,4).
Comparing this to the degree of the third monomial shows m; = mg = 0. But then
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g violates condition (C2) from Setting 3.4.1. A contradiction. Thus l7 > 3 holds. We
distinguish the following three cases:

(l5al6,l7) = (45373)7 (l57l65l7) = (47473)5 (l5al67l7> = (4a454)

Case 3.8.3.5.4.1.1: (I5,16,l7) = (4,3, 3). Switching roles of Ts and T% if necessary, we
write g as
g = Ti + T{ TRTSTE + T Ty Ty TS,

where l1m; = 0 and lomg = 0. Comparing degrees of the second and third monomial
shows that mq 4+ mgy > 0 holds. We may assume mo > 0. Then I, = 0 holds. Assume
l1 = 0. Then homogeneity of g yields a = 4c and m; = 4¢ — b — mo. Grading matrix and
relation are given by

1 1 4c b 00 —b—
R P N VR CRE TR

This is series S65. If [; > 0, then we have m; = 0 and homogeneity of g yields [y =4c—a
and ls = 4c — b. Grading matrix and relation are given by

1
-4

This is series S67.

S =

b c 00 _ _
1111 1]’ g = T3 + T\ TST3 + T T4 T7.

Case 3.8.3.5.4.1.2: (I5,15,17) = (4,4,3). Switching roles of 71 and T if necessary, we
can write g as
g = TS TOTET 4 TS,

where [; > 0, either I = 0 or my = 0 and mg + my4 = 1 holds. To satisfy condition (C2)
from Setting 3.4.1, the exponents /1 and s must both be positive and odd. Thus ms =0
holds. In case m3 = 1, we have my = 0. Homogeneity of g yields a = 4c and I} = 4¢c — Is.
Grading matrix and relation are given by

1 1 4 b c 0 0 )
Q:loo 51511]’ g = Ti + T\' 3T + T5T3.

To satisfy condition (C2) from Setting 3.4.1, I must be odd. This is series S66. If my = 1,
then ms = 0 holds and homogeneity of g yields b = 4c and [ = 4c — [s.

1 1 a 4¢c ¢ 0 O B
©= [0 01 111 1]’ g = T3 + T\ "I + TT?.

To satisfy condition (C2) from Setting 3.4.1, [ must be odd. This is series S68.
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Case 3.8.3.5.4.1.3: (I5,1,17) = (4,4,4). Since po = 4, the variables T3 and Ty do not
appear in g. Up to switching the roles of 77 and T3, the relation g is given by

g = To + T{T§ + TyTs.

This violates condition (C2) from Setting 3.4.1. Thus the case (I5,ls,l7) = (4,4,4) thus
not occur.

Case 3.8.3.5.4.2: bs = 2. Equation 3.8.3.36 yields k = 2. Plugging the values for bs;
and k into Equation 3.8.3.37, we obtain

0 <1+b—-a—as < 0.

A contradiction. Thus the case b5 = 2 does not occur.

Case 3.8.3.5.4.3: bs = 3. Equation 3.8.3.36 yields k = 2. Set ¢ := a5. Grading matrix

and the relation degree are given by
1 1 a b c 00
C=loo01131 1| K= 20

Plugging the values for b5 and k into Equation 3.8.3.37, we obtain the bound
m < 1+b+c (3.8.3.39)

In particular, we obtain ¢ < b+ 1. The relation ¢ is a trinomial consisting of pairwise
coprime monomials. Due to the position of u, each monomial of g is therefore divisible
by precisely one of Tk, Ts, Tr. We have already seen that g contains the monomial T2.
We establish bounds for the exponents lg and l7. Since po = 6 holds, we immediately
obtain lg, [y < 6. Consider the monomial m of g containing Tg. It is of the form

m = TRTRTRTHTLS,
where l3 + 4 + lg = 6. Homogeneity of g together with Equation 3.8.3.39 yield
(6—[6)19 < p < 14b+4c < 2042

This yields lg > 2. Similarly we obtain [y > 2. Switching the roles of Tg and 17 if
necessary, we may assume that lg > [y holds. We show that I7 > 3 holds. Assume I7 = 2.
Then the bound 3.8.3.39 yields b = 1. Moreover we obtain and ¢ < 2. The monomial m
of g containing 717 is of the form

m = THTRTSTHT?
with [ + l4 = 4. Thus homogeneity of g yields

lsa+4—1I3 = lsa+14b < pp=2¢ < 4.
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This yields I3 = 0 and {4 = 4. Moreover we obtain ¢ = 2. Th relation g thus contains the
monomial m = T#T?. This violates condition (C2) from Setting 3.4.1. Thus Iz > 3 holds.
Note that by the bound 3.8.3.39 the T3 appears in g with exponent at most one. Thus
we have lg > 5. Moreover, due to the position of u, the case lg = Iy = 6 cannot occur.
We thus distinguish the following six cases:

(l57167l7) = (27533)7 (l5>l6al7) = (27574)a (l5a167l7) = (2a575)7

(l5alﬁal7) = (27673)7 (l57l6al7) = (27674)a <l57l67l7) = (27675)

Case 3.8.8.5.4.3.1: (I5,1s,17) = (2,5,3). The relation g is of the form
g = T2+ TNTRTTY + T T TiTS,

where [ymy = 0 and lome = 0. Applying the bound 3.8.3.39 to the third monomial of g,
we obtain
my+mo+3b < pup < 14b4+c < 2042,

This yields b < 2. Moreover, since ¢ < b + 1 holds, we obtain the bound ¢ < 3. In
particular, this yields mu; < 6. Applying this to the second monomial of g, we obtain the
bound a < 6. For each triple of possible values for a, b, c we determine all homogeneous
trinomials g of degree deg(g) = p that satisfy conditions (C1) and (C2) from Setting 3.4.1
and filter by isomorphy. Depending on the values of a,b,c we obtain the following
specifying data

(a,b,c) | (3,2,3) (4,2,3) (52,3) (6,2,3) (3,1,2) (4,1,2)
ID | 439-440 441-442 443 444 445 446

Case 3.8.3.5.4.3.2: (I5,l6,17) = (2,5,4). The relation g is of the form
g = T2+ TITRTTY + T T T2TS,

where lym; = 0 and lomg = 0. To satisfy condition (C2) from Setting 3.4.1, the exponents
m1 and my must both be positive and odd. Thus /; = lo = 0 holds. By homogeneity of g
we obtain @ = 2¢c. Moreover, the bound 3.8.3.39, together with the inequality ¢ < b+ 1,
yield m; = mg =1 and b = ¢ — 1. Grading matrix and relation are thus given by

Q_112CC—1COO
0 0 1 1 31 1)°

g = T2+ T3T9 + VT, T2T.

This is series S69.

Case 3.8.3.5.4.8.3: (I5,16,l7) = (2,5,5). Switching roles of Ts and T7 if necessary, we
can write g as

g = T2+ THTETTY + T T Ty T2,
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where {ym1 = 0 and lamo = 0. Comparing the degrees of the second and third monomial
of g shows that mi + mo > 0 holds. We may assume mgy > 0. Thus we have I = 0. If
I1 = 0 holds, then by homogeneity of g we obtain a = 2¢ and m; = 2¢ — b — my. Grading
matrix and relation are thus given by

11 2 b ¢ 00 2 5 2c—b—lrlm 5

¢ - lO 0 1131 1]’ g = T3 + TG + 7 LITT.
This is series S70. If [y > 0 holds, then we have m; = 0. By homogeneity of g we obtain
Iy =2c —a and Iy = 2¢ — b. Grading matrix and relation are thus given by

1 1abec00 - .
©= [0 0 Cll 1 ?f 1 1]’ g = T3+ TP T3TE + T35 T T3

This is series S71.

Case 3.8.3.5.4.8.4: (Is,16,l7) = (2,6, 3). Switching roles of 77 and T if necessary, we
can write g as

g = T2+ ThTRTE + Ty Tys T T3,
where [; > 0, either lo = 0 or mg = 0 and I3 + 4 = 3 holds. To satisfy condition (C2)
from Setting 3.4.1, the exponents [; and lo must both be positive and odd. Thus mg = 0
holds. Applying the bound 3.8.3.39 to the third monomial of g and having in mind that
¢ < b+ 1 holds, we obtain

3b < lza+lyb < py < 14+b+c < 26+ 2.

This yields b < 2 and ¢ < 3. Note the by the bound 3.8.3.39 the exponent ms is at most
one. If m3 = 0 holds, then by homogeneity of g we have 2¢ = 3b. This yields b = 2 and
¢ = 3. Grading matrix and relation are thus given by

1 1a2300

where [; + lg = 6. To satisfy condition (C2) from Setting 3.4.1, up to switching roles
of T1 and Ty we have I; = 5 and lo = 1. This is series S72. If mg = 1 holds, then by
homogeneity of g we obtain a 4+ 2b = 2¢ < 2b+ 2. Thus a = 2 holds. We also obtain
b =1 and ¢ = 2. Grading matrix and relation are thus given by

11 2 1 2
Q_l00113

where [ + Il = 4. To satisfy condition (C2) from Setting 3.4.1, up to switching roles of
T1 and T5, we have {1 = 3 and [, = 1. This is specifying data no. 447.

0 0
1

1 ] , g = T2+ TP TRTE + T5TETE,

Case 3.8.3.5.4.3.5: (I5,15,17) = (2,6,4). Switching roles of 71 and T if necessary, we
can write g as
g = T TOTETY + TP,
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where [y > 0, either Iy = 0 or mo = 0 and ms + myq = 2 holds. To satisfy condition
(C2) from Setting 3.4.1, the exponents [; and [y must both be positive and odd. Thus
m1 = mg = 0 holds. With the same argument we obtain [3 = 4 = 1. Homogeneity of g
together with the bound 3.8.3.39 yields a = ¢+ 1 and b = ¢ — 1. Grading matrix and
relation are thus given by

1 1 ¢c+1 ec¢—1

c 2 Iy rrla 6 4

00
Q_ 117

where [; + I = 2¢. This is series S73.

Case 3.8.3.5.4.8.6: (l5,16,17) = (2,6,5). Switching roles of 77 and T if necessary, we
can write g as

g = T2+ TP TPTE + T Ty T T T3,

where [y > 0, either lo = 0 or mo = 0 and ms + myq = 1 holds. To satisfy condition
(C2) from Setting 3.4.1, the exponents [; and [y must both be positive and odd. Thus
my1 = mg = 0 holds. If m3 = 1, then we have my = 0. By homogeneity of g we obtain
a = 2c and l; = 2¢ — l. Grading matrix and relation are given by

112 beco00O )
QZ[OO A ] g = T5 + T TIE + T517.

This is series S74. If my = 1, then we have ms = 0. By homogeneity of g we obtain
b = 2c. Moreover we have I} = 2¢ — l3. Grading matrix and relation are given by

11 2 00 -
Q:[O 01 131 1]’ g = T3+ TP TTE + TuT3.
This leads to series S75. 0

3.9 Proof of Theorem 3.1.1: Case s =6

Setting 3.4.1 and Proposition 3.4.8 divide the proof of Theorem 3.1.1 into the five
cases s = 2,...,6, according to the number of rays spanned by the degrees wy, ..., ws.
In this section we treat the case s = 6.

Theorem 3.9.1. The tables from 3.10.11 provide specifying data (Q, g) for 31 infinite
series of locally factorial Fano fourfolds of Picard number p = 2 and complexity ¢ = 1
with a hypersurface Cox ring and s = 6. Moreover, any locally factorial Fano fourfold
with a hypersurface Coz ring and invariants (p,c,s) = (2,1,6) is isomorphic to precisely
one X(Q, g) with (Q,g) from these tables.
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The proof of Theorem 3.9.1 splits into two parts. First, with the tools provided in
Section 3.2 we verify that each specifying data (Q,g) from the tables 3.10.11 defines
a locally factorial Fano fourfold X (@, ¢) with a hypersurface Cox ring and invariants
(p,c,s) = (2,1,6). Moreover, with the help of Remark 3.4.3 we verify that distinct
specifying data from the tables in 3.10.11 define pairwise non-isomorphic varieties. The
second part is to show that any locally factorial Fano fourfold with a hypersurface Cox
ring and invariants (p, ¢, s) = (2,1,6) is isomorphic to X (Q, g) with (@, g) from these
tables. This is done in Proposition 3.9.3.

Lemma 3.9.2. Let X as in Setting 3.4.1. If s =6, then u & X holds.

Proof. By Lemma 3.4.7 we have pu € Eff(R)°. Thus p € (p2 + p5) holds. Assume u € A.
If 4 € Mov(R)°, then by Proposition 3.3.2 the grading matrix @ = (wi,...,w7) and the
relation degree p appear in the classification list of [45, Thm. 1.1]. However, there is no
entry in that list with s = 6. Thus we must have y € 0 Mov(R). By the definition of the
moving cone, we have (p2 + ps5) € Mov(R). This means that u lies either on the ray pa or
on the ray ps. Reversing ordering of the generator degrees if necessary we achieve u € po.
As ps is a bounding ray of Mov(R), we have n; = 1. Moreover, by Remark 3.2.11, we
have ng = 2. Thus the degree constellation of X is (ni,...,n¢) = (1,2,1,1,1,1). The
cone A is contained in Mov(R) and has p in it’s bounding ray. By [45, Prop. 2.8] no
generator degree lies in the interior of A\. This means that A = pa + p3 holds. Applying
Lemma 3.2.8 to the triples (wq, w3, w;) for i =4,...,7 shows that the cones ps + p; are
all regular. We can thus apply a unimodular transformation to achieve

_ a1 a2 a3z a4 as ag 0O -

Note that we have det(wq,ws) > 1 as well as det(wq,ws) > 1. Thus by Lemma 3.2.7, the
relation g contains monomials of the form TlllTi4 and T7"*T:"®. By homogeneity of g and

the position of u, the exponents [y, 14, m1, ms are all positive. This violates condition
(C1) from Setting 3.4.1. Thus pu ¢ A holds. O

Proposition 3.9.3. Let X as in Setting 3.4.1 with s = 6. Then X is isomorphic to an
X(Q,g) with specifying data (Q, g) appearing in Classification list 3.10.11.

Proof. By Lemma 3.9.2 the relation degree p is not contained in A. We are thus in the
situation of Lemma 3.4.6, which tells us that either A™ or A~ is one-dimensional. By
reversing the order of the variables if necessary, we may assume that A = p; + ps holds.
Moreover, we have n; > 2 and all generator degrees contained in p; are primitive. Since
there are six rays and seven generator degrees, this already fixes the degree constellation
of X to be (n1,...,n¢) =(2,1,1,1,1,1). By Lemma 3.4.7, i is contained in the interior
of Eff(R). Thus applying Lemma 3.2.8 to the triple (w;, w2, w7) shows that the cone
Eff(R) is effective and that wy is primitive. We may thus assume that Eff(R) is the
positive quadrant and that

wp = wy = (1,0), wy = (0,1)
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holds. By Remark 3.2.11 we have p € (p2 + pa)\p2. Applying Lemma 3.2.8 to the triples
(w1, wq,ws) and (w1, ws, wg) shows that the cones p; + p2 and p; + ps are regular and
that ws and wg are primitive. The grading matrix of X is thus of the form

1 1 a a4 a5 d O

Q - 0 0 1 b4 b5 ]_ 1 a’a47a57b47b57d6221.

There are four possible positions of i, displayed in the following pictures.

e e e e

€ (p2 +p3)° K€ p3 € (p3 + pa)° M€ pa

The black dots represent the generator degrees wi, ..., wsy, the white circle represents
the relation degree . We distinguish four cases, according to the position of u.

Case 3.9.3.1: u € (p2 + p3)°. Applying Lemma 3.2.8 to the triples (wy,ws,w4) and
(w1, wa, ws) shows that by = b5 = 1 holds. Set b := a4 and ¢ := a5. Grading matrix and
anticanonical class of X, due to Proposition 3.2.5, are given by

24+a+btct+d—

R
From X being Fano, ie. p € A°, we infer the inequalities
e < 4, (3.9.3.1)
w < 14+ (ue—4)a+b+c+d. (3.9.3.2)

The position of p yields pob + 1 < p1. Combining this with Equation 3.9.3.2, we obtain
0< (p2—4)a+ (1 —p2)b+c+d.

By the ordering of the generator degrees, the right hand side of this inequality is negative
for pup < 4. This is a contradiction to Equation 3.9.3.1. Thus the case u € (p2 + p3)°
does not occur.

Case 3.9.3.2: 1 € p3. Applying Lemma 3.2.8 to the triple (wi,ws,ws) shows that
bs = 1 holds. The relation degree © and the generator degree wy lie on the same ray. If
wy is not primitive, then Lemma 3.2.7 applied to the pair (wq,w,) shows that g contains
a monomial of the form Ti“. In particular, y is a multiple of wy. If wy is primitive, then
clearly p is a multiple of wy. So in any case there is k > 2 with pu = kwy. Set ¢ := as.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

0 - 11 a as ¢ d O = 24a+(1—k)as+c+d
|00 1 by 111 - 44 (1 —k)by
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From X being Fano, ie. u € A°, we infer the inequalities

(k—1)by < 3, (3.9.3.3)
0 < 1+((k—=1)bs—3)a+ (1 —Fk)ag+c+d. (3.9.3.4)

By Equation 3.9.3.3 we have by < 3. We distinguish three cases, depending on the value
of b4.

Case 3.9.3.2.1: by = 1. Plugging the value for b4 into Equation 3.9.3.4, we obtain
0 <1+ ((k—-4)a+(1-k)as+c+d.

By the ordering of the generator degrees, the right hand side of this inequality is negative
for k < 4. This is a contradiction to Equation 3.9.3.3. Thus the case by = 1 does not
occur.

Case 3.9.3.2.2: by = 2. By Equation 3.9.3.3 we have k = 2. Plugging the values for by
and k into Equation 3.9.3.4, we obtain

0 < l—-a—as+c+d.

By the ordering of the generator degrees, the right hand side of this inequality is negative.
A contradiction. Thus the case by = 2 does not occur.

Case 3.9.3.2.3: by = 3. By Equation 3.9.3.3 we have k = 2. Plugging the values for b4
and k into Equation 3.9.3.4, we obtain

0 <1—2a4+c+d.

By the ordering of the generator degrees, the right hand side of this inequality is negative.
A contradiction. Thus the case by = 3 does not occur.

Case 3.9.3.3: pu € (p3 + psa)°. Applying Lemma 3.2.8 to the triples (wy,ws,ws) and
(w1, wy, ws) shows that by = by = 1 holds. Set b := a4 and ¢ := a5. Grading matrix and
anticanonical class of X, due to Proposition 3.2.5, are given by

0 - 11 a b c d 0 K 24+a+b+c+d—
0011111} N 5— g |-
From X being Fano, ie. u € A°, we infer the inequalities
p2 <4, (3.9.3.5)
pr < 14 (pe—4)a+b+cH+d. (3.9.3.6)

The position of p yields poc + 1 < p1. Combining this with Equation 3.9.3.6, we obtain
0 < (ue—4Da+b+ (1— p2)c+d.
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The right hand side of the inequality is negative for us < 4. Thus, by Equation 3.9.3.5,
we obtain ps = 4. Plugging this into Equation 3.9.3.2, we obtain the bound

p < 1+b+c+d (3.9.3.7)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of g is thus divisible by precisely one of Ts, T, T7. We
establish bounds on the exponents I5, lg, 7. Since ps = 4 holds, we immediately obtain
l5,lg, l7 < 4. Consider the monomial m of g containing 75. It is of the form

_ mlimplamplzplapls

Homogeneity of ¢ yields I3 + l4 + 5 = 4 and 11 + lo 4+ l3a + I4b + ls5¢ = p1. Combining
this with the bound 3.9.3.7, we obtain

0< 1+ (5 —3)b+(1—1I5)c+d.

The right hand side of this inequality is negative for I5 < 3. Thus l5 = 4 holds. This
also yields l3 = l4 = 0. The monomial m is therefore of the form m = T1l1T212T54 with
l1 + 1o > 0. We may assume [y > 0. So the variable T} does not appear in the other
two monomials of g. Similarly we obtain lg > 3 and Iy > 2. We show that I7 > 3 holds.
Assume 7 = 2. For the monomial m of g containing T we write

m = TRTHTHT2,
By homogeneity of g we have I3 4+ 4 = 2. With the bound 3.9.3.7 we obtain
2b < lsa+14b < g < 14+b+c+d < b+ 2c

Thus we have b < 2¢. Applying the bound 3.9.3.7 to the monomial of g containing 75,
we obtain
de < h+lo+4e =y < 14+b+c+d < b+ 2ec.

Thus b > 2¢ holds. A contradiction. Thus we must have I7 > 3. Note that due to the
location of u, the case l5 = lg = Iy = 4 does not occur. We now distinguish the following
three cases:

(Is,16,17) = (4,3,3), (Is,l6,17) = (4,3,4), (Is,l6,17) = (4,4,3).

Case 3.9.3.3.1: (l5,16,1l7) = (4,3,3). The relation g is of the form
g = TOTETY 4 TRTETITY + Ty,

where at most one of lo, ko, ms is non-zero and the other exponents in g satisfy the
following conditions:

lh > 1, ks+ky = 1, ms+myg = 1, ksms = 1, kymg = 1.
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We distinguish two cases, depending on the value of 3.

Case 3.9.3.3.1.1: I3 = 1. We have mg =0, [4 = 0 and my4 = 1. Comparing degrees of
the second and third monomial of g shows that mo > 0 holds. Thus we have lo = ko = 0.
Grading matrix and relation are given by

f ‘f (1) g = TP YT+ T T
This is series S76.
Case 3.9.3.3.1.2: I3 =0. We have m3 =1, l4 = 1 and m4 = 0. The relation g is of the

form
g = TNTRTE + TRTYTS + T2 T5T3.

We further distinguish three cases, depending on the values of lo, ko, mo.

Case 3.9.3.3.1.2.1: ls > 0. We have ko = mo = 0. Using homogeneity of g, we obtain
a = b+ 3d. Grading matrix and relation are given by

(11 b+3d
Q‘loo 1

b ¢ d 0 _ _
R R R cRE R )

This is series S78.

Case 3.9.3.3.1.2.2: ky > 0. We have I = my = 0. Using homogeneity of g, we obtain
a = b+ 3d. Grading matrix and relation are given by

1 1 b d 0 3 L
@ = [0 0 C1L 1 f 1 1]’ g = TP YT + Ty "Iy T8 + T5T3.
This is series S79.

Case 3.9.3.3.1.2.3: ma > 0. We have ls = ky = 0. Using homogeneity of g, we obtain
a = b+ 3d. Grading matrix and relation are given by

11 abcdo B f )
@ = [0 0 61L 1 f 1 1]’ g = Ty AeriTd 4 TP + TV Ty TR

This is series S81.

Case 3.9.3.3.2: (Is,l6,1l7) = (4,3,4). The relation g is of the form
g = TPT + TP TP TE + 1T,
where [3 + {4 = 1. We distinguish two cases, depending on the values of I3 and 4.
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Case 3.9.3.3.2.1: I3 = 1. We have l4 = 0. Homogeneity of g yields I = a + 3d — 4c
and ly = a + 3d. Grading matrix and relation are given by

Q= l(l) (1) i f 1 Cf (1)] g = Ty 4+ TTE 4 1T

This is series S77.

Case 3.9.3.3.2.2: Iy, = 1. We have [3 = 0. Homogeneity of g yields [y = b+ 3d — 4c
and Iy = b+ 3d. Grading matrix and relation are given by

1 1 b d 0 _
©= [ L ] g = T NI+ TG + 15077
This is series S82.

Case 3.9.3.3.3: (Is,1s,1l7) = (4,4, 3). The relation g is of the form
g = T3+ TPTg + TPT T,

where l3 + 4 = 1. We distinguish two cases, depending on the values of I3 and I4.

Case 3.9.3.3.3.1: l3 = 1. We have l4 = 0. Homogeneity of ¢ yields Iy = a — 4c and
lo = a — 4d. Grading matrix and relation are given by

1 1 b d 0 B - r
© = [0 01111 1]’ g = T{ T3 + Ty T + T T

This is series S80.

Case 3.9.3.3.3.2: 14 = 1. We have I3 = 0. Homogeneity of g yields [y = b — 4¢ and
lo = b — 4d. Grading matrix and relation are given by

1 1 a b c d 0 B -
9= [0 01111 1]’ g = Ty7T3 + ;YT + T3

This is series S83.

Case 3.9.3.4: 1 € py. Applying Lemma 3.2.8 to the triple (wi,ws,wy) shows that
by = 1 holds. The relation degree p and the generator degree ws lie on the same ray. If
ws is not primitive, then Lemma 3.2.7 applied to the pair (wq,ws) shows that g contains
a monomial of the form T5l5. In particular, y is a multiple of ws. If ws is primitive, then
clearly p is a multiple of ws. So in any case there is k > 2 with u = kws. Set b := a4.
Grading matrix and anticanonical class of X, due to Proposition 3.2.5, are given by

0 - 11 a b a d 0O = 24a+b+(1—k)as+d
“loo0 11 b5 1 1] - A+ (1—k)bs |
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From X being Fano, ie. u € A°, we infer the inequalities

(k—1)b; < 3, (3.9.3.8)
0 < 1+((k—1bs—3)a+b—(k—1)as +d. (3.9.3.9)

Equation 3.9.3.8 yields b5 < 3. We distinguish three cases, depending on the value of bs.

Case 3.9.3.4.1: bs = 1. Equation 3.9.3.8 yields k < 4. Plugging the value for b5 into
Equation 3.9.3.9, we obtain

0 <1+(k—-4)a+b—(k—1)as+d.

The right hand side is negative for k£ < 3. Thus k = 4 holds. Set ¢ := a5. Grading matrix
and relation degree are given by

11 a b c d O
@=1l0011111]| H=Ud
From Equation 3.9.3.9, we obtain the bound
e < 1+b+cH+d. (3.9.3.10)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of u, each monomial of ¢ is thus divisible by precisely one of T5,7Tg,T%. The
relation g contains the monomial T4. The other two monomials are each divisible by
one of Ty, T7. We establish bounds on the exponents lg and I7. Since puo = 4 holds, we
immediately obtain lg, [y < 4. Consider the monomial m of g containing Tg. It is of the

form
_ mplimplamplzplapls
m = Ty T3P T TE°.

By homogeneity of g we have I3 +14+1g =4 and Iy + s + l3a+ 140+ lgd = 1. Combining
this with the bound 3.9.3.10, we obtain

0 < 14 (Ig—3)b+c+ (1—lg)d.

The right hand side of this inequality is negative for lg < 2. Thus lg > 3 holds. Similarly
we obtain I7 > 2. We show that [7 > 3 holds. Assume 7 = 2. For the monomial m of g
containing 77 we have
m = TRTRTETHT

where I3 + Iy = 2. Applying the bound 3.9.3.10 to the degree of m, we obtain b > 2¢. On
the other hand, the bound 3.9.3.10 applied to the degree of Tgl, we obtain b > 2¢. Thus
b = 2c holds. This yields Iy = 2 and [} = I3 = [3 = 0. The relation g thus contains the
monomials T4 and TZT2. This violates condition (C2) from 3.4.1. Thus I; > 3 holds.
Note that due to condition (C2) from Setting 3.4.1 the case l5 = lg = Iy = 4 cannot occur.
We thus distinguish the following three cases:

(l5vl6717) - (47373)7 (l57l67l7) - (47374)7 <l57l67l7) - (47473)
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Case 3.9.8.4.1.1: (l5,1g,l7) = (4,3,3). The relation g is of the form
g = Ti+ T TRTRTYTE + T Ty Ty T TR,
where the exponents in g satisfy
lim1 =0, lomy =0, Igmg=0, Iyms=0, I3+lg4=1, mz+mg=1.
We distinguish two cases, depending on the value of T5.
Case 3.9.3.4.1.1.1: I3 = 1. We have 4 = m3 = 0 and myq = 1. The relation g is of the

form
g = Td+ THTRTTE + T T Ty TS,

Comparing the degrees of the second and third monomial of g shows that m; +mo > 0
holds. We may assume msy > 0. So we have I = 0. If [y = 0, then homogeneity of g
yields a = 4¢ — 3d and m; = 4¢ — b — l». Grading matrix and relation are given by

1 1 4¢-3d b ¢ d O .
Q = [ ¢ ¢ ] g = Td 4+ TyT3 + Tl Tty T3,

0 0 11111

This is series S84. If 1 > 0, then m; = 0 holds. Homogeneity of g yields l; = 4c —a — 3d
and my = 4¢ — b. Grading matrix and relation are given by

1 1abecdo o o
©= [0 01111 1]7 g = T3+ T\ DT + T T T

This is series S86.

Case 3.9.3.4.1.1.2: I3 =0. We have |4 = m3 = 1 and m4 = 0. The relation g is of the
form
g = T+ ThTRTTE + T Ty T3T3,

We distinguish four cases, depending on the values of [ + lo and m; + mo.

Case 3.9.3.4.1.1.2.1: 1} = ly = m; = mo = 0. Homogeneity of g yields b = 4c — 3d
and a = 4c¢. Grading matrix and relation are given by

1 1 4¢c 4¢c—3d ¢ d O
Qz[

00 1 L11 1], g = Td+TyT3 + T3T3.

This is series S88.

Case 3.9.3.4.1.1.2.2: 11 + 13 > 0, m; = mg = 0. Homogeneity of g yields I; =
4c¢ — b —3d — lo and a = 4¢. Grading matrix and relation are given by

Q7114Cb6d0
T ]l0 0 11111

] ;g = TE4 et T 4 Ty
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This is series S&9.

Case 3.9.3.4.1.1.2.3: || =1ls =0, m1 + mo > 0. Homogeneity of g yields b = 4¢ — 3d
and mj = 4¢ — a — mo. Grading matrix and relation are given by

1 1 a 4¢c—3d ¢ d O

Q=1, 0 1 L1 11l 9= AT+ T T

This is series S91.

Case 3.9.3.4.1.1.2.4: 11 + 1o > 0, m1 +mo > 0. Switching the roles of T} and T5 if
necessary, we may assume l; > 0 and mg > 0. So we have lo = m; = 0. Homogeneity of
g yields l1 = 4c — b — 3d and ms = 4¢ — a. Grading matrix and relation are given by

11 b d 0 L -
Q=001 11 11| 9=B+TOT LT DT,
This is series S&7.

Case 3.9.8.4.1.2: (I5,1s,17) = (4,3,4). The relation g is of the form

g = T¢+ TP TPTRTHTY + T 15 T,
where lym; = 0, lomg = 0 and I3 + 4 = 1. To satisfy condition (C2) from Setting 3.4.1,
the exponents mq and mo must both be positive and odd. Thus I; = I3 = 0 holds. If

l3 = 1, then Iy = 0 holds. Homogeneity of g yields a = 4c¢ — 3d and m; = 4¢c — my.
Grading matrix and relation are given by

g = Td+ TyT3 + T 'Tirs,

o |11 de=3d b cdo
~ 100 1111 1]

This is series S85. If [4 = 1, then 3 = 0 holds. Homogeneity of g yields b = 4¢ — 3d and
my = 4c — my. Grading matrix and relation are given by

0 - ll 1 a 4¢—3d ¢ d 017 g = T54+T4T63+ch_nglT74.

0 0 1 1111
This is series S92.
Case 3.9.3.4.1.3: (I5,1,1l7) = (4,4,3). The relation g is of the form
g = T8+ TPTRTE + Ty Ty TS T TS,

where [ym; = 0, lamg = 0 and mg +my = 1. To satisfy condition (C2) from Setting 3.4.1,
the exponents [; and o must both be positive and odd. Thus my = mg = 0 holds. If
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mgz = 1, then myqy = 0 holds. Homogeneity of g yields a = 4c and l; = 4¢ — 4d — Is.
Grading matrix and relation are given by

11 4¢c b cdo o
@ = lo 0 f 1 f 1 1]7 g = T+ T ITiTd + 13138,

This is series S90. If my = 1, then m3 = 0 holds. Homogeneity of g yields b = 4¢ and
Iy = 4c — 4d — 1. Grading matrix and relation are given by

1 1 a 4c ¢ d O o
@ = [0 01 111 1]’ g = T3 + T/ "ITE + T T3

This is series S93.

Case 3.9.3.4.2: bs = 2. Equation 3.9.3.8 yields k = 2. Plugging the values for b5 and k
into Equation 3.9.3.9, we obtain

0 <l—a+b—as+d

By the ordering of the generator degrees, the right hand side is negative. A contradiction.
Thus the case b5 = 2 does not occur.

Case 3.9.83.4.3: bs = 3. Equation 3.9.3.8 yields k = 2. Set ¢ := a5. Grading matrix and
relation degree are given by

11

a

b ¢ d O
13 1 1}
Plugging the values for b5 and k into Equation 3.9.3.9, we obtain the bound

wm < 1+b+cH+d. (3.9.3.11)

The relation ¢ is a trinomial consisting of pairwise coprime monomials. Due to the
position of i, each monomial of ¢ is thus divisible by precisely one of T5,7Tg,T%. The
relation g contains the monomial T2. The other two monomials are each divisible by
one of T, T7. We establish bounds on the exponents lg and I7. Since uo = 6 holds, we
immediately obtain lg,l; < 6. Consider the monomial m of g containing Tg. It is of the
form
m = TRTRTRTHTLS.

Homogeneity of g yields I3 + 4 + lg = 6 and Iy + ls + l3a + l4b + l¢d = 1. Combining
this with the bound 3.9.3.11, we obtain

0 < 1+ (lg—5)b+c+ (1—1Ig)d.

The right hand side of this inequality is negative for lg < 5. Thus lg > 5 holds. Similarly
we obtain l7 > 4. Note that by condition (C2) from Setting 3.4.1 the case lg = l7 = 6
cannot occur. We thus distinguish the followingh five cases:

(l5vl6717) - (27574)7 (l57l67l7) - (27575)7 <l57l67l7) - (27576)7
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(157167l7) = (27674)7 (l57l67l7) == (27675)

Case 3.9.8.4.8.1: (I5,1s,17) = (2,5,4). The relation g is of the form
g = T2+ THTRTBTHTY + T T2 T T TS,
where the exponents in g satisfy the following conditions:
Is+ly =1, mg+my = 2, Ilim1 =0, lame =0, Igm3=0, Iymg=0.

Thus either mgz = 2 or my = 2 holds. To satisfy condition (C2) from Setting 3.4.1, the
exponents mi and meo must be positive and odd. Thus [; = lo = 0 holds. We distinguish
two cases, depending on the values of m3 and my.

Case 3.9.3.4.3.1.1: m3 =2, mqy = 0. We have [y = 1 and I3 = 0. Homogeneity of g
yields b = 2¢ — 5d and m; = 2¢ — 2a — mo. Grading matrix and relation are given by

1 1 a 2¢—5d ¢ d O
Qzl 1 g

00 1 L3 1 1 = T2+ TyTy + T2 212 Ty,

This is series S94.
Case 3.9.3.4.3.1.2: m3 =0, mqy = 2. We have [3 = 1 and l4 = 0. Homogeneity of g

yields a = 2¢ — 5d and my = 2¢ — 2b — mo. Grading matrix and relation are given by

1 1 2¢—-5d b ¢ d 0
Qzl 1 g

0 0 11311 = T2 + T3T5 + T2 2Ty

This is series S97.

Case 3.9.3.4.3.2: (Is,1ls,17) = (2,5,5). The relation g is of the form
g = T3+ TP TRPTPTHTE + TP Ty Ty T TS
where the exponents in g satisfy the following conditions:
Ils+1ly =1, mg4+my =1, Iim =0, Ileme=0, Igm3g=0, I4mg=0.
We distinguish two cases, depending on the value of I3.
Case 3.9.3.4.3.2.1: I3 = 1. We have |4 = m3 = 0 and m4 = 1. The relation g is of the

form
g = T2+ ThTETTY + T T Ty T2,

By homogeneity of g we have m; + mg > 0. We may assume that mo > 0 holds. So we
have Iy = 0. If [y = 0, then homogeneity of g yields a = 2¢ — 5d and m; = 2¢ — b — mo.
Grading matrix and relation are thus given by

1 1 2¢—-5d b ¢ d 0

00 L1311 9= BB+ T

Q =
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This is series S98. If [; > 0, then we have m; = 0. Homogeneity of g yields I} = 2c—a—5d
and mg = 2¢ — a. Grading matrix and relation degree are thus given by

d 0 —a— —
& , T52 T120 a 5dT3T5 T2c bT T5.
ThlS is series SlOO

Case 3.9.3.4.3.2.2: I3 =0. We have |4 = m3 = 1 and m4 = 0. The relation g is of the
form
g = T2+ ThTRTTY + T Ty T3T2.

We distinguish four cases, depending on the values of [1 + lo and m; 4+ mo.

Case 3.9.3.4.3.2.2.1: 11 = ly = m; = mo = 0. Homogeneity of g yields b = 2¢ — 5d
and a = 2¢. Grading matrix and relation are given by

1 1 2¢ 2¢c—5d d 0
Q:[ . " ] g = T?+TyT + 517,

0 0 1 1 3 11

This is series S102.

Case 3.9.3.4.3.2.2.2: 11 +1s > 0, m; = ms = 0. Homogeneity of g yields lo =
2c — b —5d — Iy and a = 2¢. Grading matrix and relation are given by

112 bcd?o o
Q:loo f1 ?(j 1 1]’ g = T+ TP "I TE + Ty T2

This is series S103.

Case 3.9.3.4.3.2.2.3: 1} =12 =0, m; +my > 0. Homogeneity of g yields b = 2¢ — 5d
and m1 = 2¢ — a — meo. Grading matrix and relation are given by

= T2 + TyTy + TP "' TS T T3,

Q_11a20—5dcd0
“ 1o o0 1 1311 9

This is series S95.
Case 3.9.3.4.3.2.2.4: l1 + 12 > 0, m1 + mao > 0. We may assume [; > 0 and mo > 0.

Then ls = m; = 0 holds. Homogeneity of g yields [y = 2¢ — b — 5d and my = 2¢ — a.
Grading matrix and relation are given by

1 1 b d 0 b _
Q = [ 0113 1 1], g = TE 4 TEV I TR,
This is series S101.
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Case 3.9.8.4.8.3: (I5,16,l7) = (2,5,6). Switching roles of T} and T if necessary, we
may write g as
g = T2+ TPTPTYTE + Ty Ty T8,

where mo > 0, at most one of {1, m; is non-zero and I3 + {4 = 1. To satisfy condition
(C2) from Setting 3.4.1, the exponents m; and mg must both be positive and odd. Thus
we have [; = 0. If [3 = 1, then I4 = 0 holds. Homogeneity of g yields a = 2¢ — 5d and
m1 = 2c¢ — my. Grading matrix and relation are given by

g = T2+ T3TH + T2 T4Th.

o |11 2e-5d b cdo
~ 100 11311/

This is series S99. If [4 = 1, then 3 = 0 holds. Homogeneity of g yields b = 2¢ — 5d and
m1 = 2¢ — mo. Grading matrix and relation are given by

1 1 a 2¢—5d ¢
Q_[OOI 1 3

d 0 _
L1 ] . g = T2+ TyTH + TP ' ToTe.
This is series S96.

Case 3.9.3.4.8.4: (I5,16,l7) = (2,6,4). Switching roles of T} and T if necessary, we
may write g as
g = T2+ TPTRTE + Ty Ty T Ty,

where [; > 0, at most one of [y, msy is non-zero and ms + m4 = 2 holds. To satisfy

condition (C2) from Setting 3.4.1, the exponents {1 and Il must both be positive and

odd. Thus we have mo = 0. With the same argument also we obtain m3 = my = 1.

Homogeneity of g yields I; = 2¢ — 6d — I and a = 2¢ — b. Grading matrix and relation

are given by

1 1 2¢—b b
1 1

d 0
Q_OO 1 11

g g = T2+ T2 SdITiTs | Ty, T2,
This is series S105.

Case 3.9.3.4.3.5: (I5,16,l7) = (2,6,5). Switching roles of T} and T if necessary, we
can write g as
g = T3+ T TPTE + TR TN,

where [; > 0, at most one of [y, mgy is non-zero and ms + m4 = 1 holds. To satisfy
condition (C2) from Setting 3.4.1, the exponents ; and I must both be positive and odd.
Thus we have mgo = 0. If ms = 1, then my4 = 0 holds. Homogeneity of g yields a = 2¢
and [ = 2¢ — 6d — l3. Grading matrix and relation are given by

11 2¢ b
1

d 0 o
Q=190 11311] 9=B+T " TR+TT.
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This is series S104. If my = 1, then ms = 0 holds. Homogeneity of g yields b = 2¢ and
Iy = 2¢ — 6d — l5. Grading matrix and relation are given by

11 a 2 d 0 o
@ = oocll f§1 L 9= T TNITIE + T

This is series S106. O

3.10 Classification lists

Here we provide the detailed presentation of our classification results. Let us briefly
recall the background. Each locally factorial Fano fourfould X of Picard number two
and complexity one with a hypersurface Cox ring can be encoded by the degree matrix
Q, that means the list [w1, ..., w;] of degrees of the Cox ring generators in Cl(X) = Z2,
and the defining trinomial g. Each such variety X is isomorphic to precisely one X (Q, g)
with specifying data @@ = [wy, ..., wy] and g appearing in the Classification lists 3.10.1 to
3.10.11. Here X (Q,g) = X, is the variety from Construction 3.2.2 associated with the
Z*-graded C-algebra R;, where the grading is given by deg(T;) = w;.

To make the classification easier to navigate, we split it into several lists, each one
containing the specifying data for a given number s of rays generated by the degrees
wi, ..., w7, with either u € XA or u € A. Moreover, in the case y € A we separate the
sporadic cases from the infinite series of specifying data. Apart from the specifying data
(Q, g), the classification lists also contain the relation degree u = deg(g), the anticanonical
class —KC € Z? and, for the sporadic cases, also the anticanonical degree K*. A data file
containing the complete classification data is also available at [18].

Classification list 3.10.1. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the case
with s = 2.

ID [wl, ce ,’LU7] 12 -K ’C4 g

(1, 1) (3,2) 432 TT + T5Ts + TyTr

T2Ts + ToTsTy + T2Ts
T s + TiTr + TETs

TPTr + T3Ts + T To

2,1)  (2,2) 256

O =
o
(=]
(=]
-
-

QU s [ W N
— [/ — |/

0 e — e
—~
w
—_
~—
—~
—_
[\
~—

1111000 80
0000111 T3Ts + T3y Ts + T3T+
6 |oooorra] (L2) (31 210 TNTF+TDI7 +TT7
32 32 2 2
O AT Y R VR gy i Sl £

TPT2 + T3T7 + T3T?
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1D [’U}l, ce ,’LU7] 12 -K ’C4 g

9 1111300} T13T§’+T25T4+T52
10 |:0 000011 (670) (112) 16 T1T45 +T25T3 +T52
1 T DT + T + T2
12 [5asdity] 60 (22 6 Th+Ti+TE
13 TPT3Ts + T3 + T3
4o [Librzeel @0)  (22) 128 TVTP+TITy+ T2
15 0000011 (2,0) (3,2) 432 TNT5+ ToTs + T3
16 16000011 (3,0)  (2,2) 192 Ty +T3Ts + T3
17 [Laiiiee] @0 (1L2) 32 TRT 4TIy +TE
18 [bhaatt] 6o s s Ty 4TE

Classification list 3.10.2. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the cases
with s =3 and p € \.

1D [wi, ..., wr] U —-K I g

o [biiite] an e oae pErTEERE
n [ant] an ey e T CITEC
o [eeses] an o e pEEEBEETE
O PR ] I CRUNNC TR S e £ K
oo sy eo ey s SR TERIEERE
wo [ ey ey e pETREEAE
o ] ey ey e RETTRERLD

51 1112000} TITT? + TVT3Ts + T2
52 [O 012111 (474) (1a2) 34 T24T§’T6 +T13T3T73 -I-T42
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ID [wi, ..., w7 1 K K4 g

72 [1ir0000] (2,2)  (1,3) 206 TETYTy + TRT5Ts + T2

730 [D010000]  (24)  (L,2) 64 TRTLTY + TRTHTS 4 T3

77 [Larrocol(99) (2,2) 192 TyTYTZ 4+ TETHTy + T2

78 [Liiioool 38 (1L1) 18 TPTRIE + TyTETS 4 TP

79 [Larzocol g9y (1,2) 48 TPTYTE + TETTr + T

s0 [Lilzoool a4y (L,1) 12 TTPTE + TETRT, + T3

149 [Lrrreoo] (2,2)  (2,4) 8352 TRTNTe + T2+ ThTh

150 [1111000]
151 EEREEEEEY

152 ([1111000]
153 [0222111]|

159 [1112000]
160 [o112111]

TPTsTE + T5 + T5T¢
T3TsTeTy + ToT7 + T3
TETSTE + ToTy + T3
T12T5T62T7 + 1513 + T42
THTSTS + ToTS + T3
THTSTsT2 + TSTs + T3

(3,3)  (1,3) 99

(2,4)  (2,5) 304

(4,4) (1,3) 66

223 [bA0hziol (400 (3,2) 160 TYTS 4 TETy 4 T2

924 [LiiirrOl(30)  (3,2) 240 T2y +T2Ty + T3

225 [Lo3iite] (2,00 (4,2) 480  TNTh+ToTh + T2

226 9000011 | (20) (52 624 T3+ ToTs+ 17
Q=[1a53001] w=@n K=02 K =2

ID g D g D g

23 TITsTiATITeATETs 24 T3 T2Ts+T2Ts 25 TP T AT TsTs+T2Ts
Q=[1a53902] W= -K=@01 K =0

D g D g D g

28 TTTEATTI4TyT? 29 TITITE4TsTEATaT? 30 TRTEATLTEATSTE
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_ 1111000 _ _ 4 _
Q = {71000111} po= (3,1) -£ = (1,1) K% = 38
1D g 1D g 1D g
35 TPTHATSTe+TsTEiTs 36 TETs+TST+TiTs 37 TTETEATSTe+TST,
38 TPTHTITs+TETe 39 TP TRIATITATITs
o 1111000 o o 4
Q = {71000111} po=(2,1) -£ = (2,1) K% = 192
1D g 1D g 1D g
40 T TEATITATiTs 41 TETRHTeTuTe+T3Ts 42 TIT+T3Ts+T;Ts
43 TITS+T3T-+T3Ts
o 1111000 o o 4
Q = {0011111} po= (3,3) -K = (1,2) K* =51
1D g 1D g ID g
48  TITsTEATTIT+T3 49 T3TET4+TiTyTi+13 50  TPTeT24+T3TS+T5T7
o 1123000 _ _ 4
Q = {0023111} p = (6,6) -K = (1,2) Kt =17
ID g 1D g 1D g
53 TTITsTeTA+TS3+T2 54 TTITSTeT2+TS3+T7 5D TiTSTsT24T34T?
56  TPTETsTS4TI+T? 5T  TSTETe+TE+T2 58  TPTETETE4TS+T?
59  TOTETeT3+T3+T2 60  TSTETeTr+T3+T2 61 TPTITATeTE+T3+T?
62  TETITETTZ+T34+T; 63 TPTeTETE+T34+T3 64 TP, TETRTZHTIATE
65 TPTITITe4+Ti+TE 66 TPTSTZTAHTS AT 67 TTSTS4TI4+T?
68  TETITATTr+TI4TE 69 TTITETSH+TIATE 70 TPT3TsTeTA+TS+T2
71 TETITETETE 4TI 4T?
_ 1110000 _ _ 4 _
Q = {0031111} po= (2,6) -£ = (1,1 K% =38
1D g 1D g 1D g
T4 TPTPTo+ATETuTE+TZ 75 TRPTPTe+T2TITS+T? 76 T2TITS+TITITS 4T3
o 1111100 _ _ 4 _
Q = {0111111} po=(2,2) K = (3,4) Kt = 3718
1D g 1D q ID g
8l TTTo+T24+TuTs 82  TETEH+ToTs+TuTs 83  TETeTr+T3Ts+T2
84 TRTeTr4+TeTy+TsTs
_ |1111100 _ _ 4
Q = [0111111} po= (3,3) -K = (2,3) K% = 144
ID g 1D g ID g
85 TETsT2HTITy+T3 86 TPTETATT2+TT? 8T  TPTeT2 4T3 +T4T?
88  TTETATI+T5T? 89  TETEHTITy+TETs 90  TETuTeTr+T2Ts+T2

91 TP ATTsTs+T3
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_ 1111100 _ _ 4 _
Q = {0111111} po= (4,4) -K =(1,2) K* =20
1D g 1D g 1D g
92 Ty T+ To T3+ T4 93 TP TETr+ T+ T TS 94 Tl T2+ T TE+TE Ty
95 TAT3 T+ T T3+T2T2 96 T2T2Te T+ T3 Ts+TE 97 Ty T3 T+ TETy+T3
1°6 3 4+5 1+2 3 4 5 2 3
98  TITeTE4TLTE4+T) 99 T2 4TiTATsTE 100 TETE T4 TeTITy+TE
101 TTi+TT3+TaT2
_ 1111200 _ _ 4
Q= |o111211 po= (4,4) -K = (2,3) K* = 96
1D g 1D g ID g
102 1inyreT?+13Ts+12 103 TTS T+ TS T+ TE 104 TETE T+ T T2 Tu+T2
105 TETeT3+T3Tu+T12 106 TPTuTE4+TSTs+TE 107 TPTITeTo+ToT34T2
_ 1111300 _ _ 4 _
Q = {0111311} pn = (6,6) -K =(1,2) K* =10
1D g 1D g 1D g
108 TP TTi+TsTi+T2 109 nTiT 4TS T +TE 110 TP TT3T2 41T +T2
111 1frire+ririTa+12 112 TP Ti+13 15 +12 113 113 reTi+13T+17
114 TPr3rdr+r3Ti+12 115 TOTET3+TeTaTi+T? 116 TP TuTiT +T3T34+T2
117 ririrdr+nri+1? 118 TPTe T+ T Ty +17 119 7133+ T7 412
120 TPTiTeTo+T3Tu+12 121 TIT3TI 4T T 4TE 122 TP T3 Te T2+ 12Ty + T2
142 3 5 127 4 5 174 7 3 5
123 11T+ T TR 4+TE 124 TPTsTeTi+TeTi4TZE 125 TETETI+TITITA+TE
146 374 5 1 7 4 5 14647 23 5
126 TOTeTP+TiTaTu+T2 127  TPTyTRT3+T3T3+T2 128  TRTiTeTo+TSTS+T2
129 mrir+13Ti 412
_ 1112300 _ _ 4 _
Q = {0112311} p = (6,6) -£ = (2,3) K% =48
1D g 1D g 1D g
130  TiTETeTi4+TiATE 131 TinTsTeri+ri+1? 132 TPTITsTIATI+TE
133 TPTiTeTr4+T3+T2 134 TTiTTe+TS+T2 135 TiTsTi+Ti+12
136 mririT 14T 137 TRTiTeTo 4TI +TE 138 mims+1i+1?
139 TTTiT?4+T34+T2 140 TP TsTeTi+T5+12 141 TPT3TeT24T3 412
142 1P 1i+Ti+T? 143 11T+ T +T? 144 1T T2T24T8+17
145 TPTETE+TiATE 146 ST T 4T 147 I TITET AT +TE
148 T2T2T2TeTr4+T54+T2
_ 1111000 _ _ 4
Q = {0222111} pno= (3,6) -K = (1,3) K* = 54
1D g 1D g 1D g
154 TPTiTeTi+TiTa+TS 185 TRTITIHTIATIT 156 TPTiTe T+ TS +T3 Ty
157  TTeT?+ T T+ T3 158  TPTITI T+ T T +TY
_ |1112000 _ _ 4
Q = {0224111} po= (4,8) -K = (1,3) K* = 36
1D g 1D g D g
161 T Ter?+TTi+r; 162 TRTSTiTE+TITs+1; 163 TRTETE4TLTE+TE
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. 1112000 _ _ 4 _
Q = {0224111} po= (4,8) -K = (1,3) K = 36
1D g 1D g 1D g
164 TET2TETR4TSTa+T2 165 TEATI T+ ToTS+T3 166 THTSTeTo+ToTi+T7
o 1123000 o o 4
Q = {0123111} pw = (6,6) -K = (1,3) K* = 33
ID g 1D g 1D g
167  TSTsTRTE 4T3 4T 168  TST3T 4T3 +717 169 mTST4TiTE
170 TPT3TET T3 4TE 171 TPnTiTsTA+TivTE 172 TP TETIATS 4T
173 T2TiTsTr+T3+T2 174 TSTATeTr+T3+T2 175 TPToTiTe+TS+T2
176 TPTTS+T3+712 177 TETITSTE 4TS 4T 178 TP TTsTET24T34+T2
179 TET3TsTeT24T+1; 180  TPTSTsTeTr 4T3 417
. 1123000 _ _ 4 _
Q = |:0246111} p o= (6,12) -K = (1,3) K* = 18
1D g 1D g 1D g
181 mrsT2+13+713 182  1fTiTI4Ti+TE 183 18T TeTS+T3 4T}
184 TPTiTeT24+T3+T2 185  TPTRTOTe+T3+T2 186 TPrTiTI+Ti4+T
187  TPTIT3TeT2 4T3 +17 188  TETITsTeTS+TI+TE 189  TSTITSTZ4TI4T?
190 TirdTiTeTr4Ti+T: 191 TETITITE4TIATE 192 TP TSTERTiATiTE
193 TT3TST 4T3 4TE 194 18T T+ T3 4TE 195 T8TITETZ 4T3 4T3
196  T8TsT T AT+ T 197 TPnTITeT2+T3+T2 198  TR2TITSTS+T3 4T3
199 18T TiT+TI4+TE 200 TPTYTeTZ4Ti+TE 201 TTETETITRATI+TE
202 TTETiTET.+Ti4T: 203 TETRTTS+TS4TE 204 TP TETATRAT4TE
205  TPTTETZ4TIATE 206 TPTITRTAHTITE 207 TPTTETST +T3+T3
208 TPTTHO4TITE 209 TrnrETiTiTi4T: 210 TPy TETSTAATIATE
211 DTS TeTo+T34+TE 212 TPTTETeTATS+TZ 213 TETRTsTETHATS+T7
214 TPTETsT2T 413412 215 TET2TsTI+T3+T2 216 TPTRTSTS+TS+T?
217 TPTTSTA+TS+T2 218  TiTsTETE4TI+TE 219 TPriTiTITI4Ti+TE
o 1112310 - o 4
Q = {0000011] p = (6,0) -K = (3,2) K% =80
1D g 1D g 1D g
220 TiTTs+T4TE 221 TPT4TIATE 222 TPTITATIATE

Classification list 3.10.3. Locally factorial Fano fourfoulds of Picard number two with a
hypersurface Cox ring and an effective three-torus action: Specifying data for the sporadic
cases with s = 3 and p & \.

K K

9

352

TTE + ToTg + T3T7
T\T2 + ToT2 + Ty Ty
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1D [’LUl7 e ,w7] 1% -K IC4 g

20 [0541909] W3 B M0 BT+ TI+ T2
230 TITS + T3T3 + T3TyT?
21 [L301000] @3 @1 6 DT+ T
232 T2T3 + ToT3T3 + T T?
233 1112000 T2TS + T3TE + TyT?
234 {0 00111 1} (273) <3a 1) 122 leTg _|_T2T3T63 +T4T72
235 111100 o} T1T53 +T2T63 +T4T72
236 {0 011111 (133) (372) 208 T1T53 +T3T62 +T4T72

237 T\TH + ToT4 + Ty T3

238 111000 0} T1TET5 —|—T2T64 +T3T$’
s 019000 e @n 2 poba e
240 T\T} + ToTd + T3 T T?

-

21 34109

N o

g] 0,6) (3,2) 80 TPTs + T3+ T2

[

Classification list 3.10.4. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the series
with s = 3.

1D [wl,...,w7] 12 -K g
st [asaitte] (L3 (a+21) TTABII4TIE ez

2 [Lahsit] @3) (ablL1) TS 4TITY e

TP TS + T3 T3 + TuT? a>1, 0<i<a/2

S3 |:1 1 a
0 TeTE + T9Tg + TyT3 a>1, a odd

54

o

[

= Q
=]
k=]
=]
[E—)

(a,4)  (a+2,1)

Classification list 3.10.5. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the cases
with s =4 and p € \.

1D [wl, “e ,wﬂ 1% -K IC4 g
242 111110 0} T2T3T7+T§?T6+T1T52
243 —-1000111 (37 1) (271) 113 TSSTG +T43T7 +T1T52
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ID [7,U1, 7w7] H -K ’C4 g

24 5111300 @2 (35 438 OB +DL+TE
25 [113030Y] 0 GO (25) M5 T4 TET 4TS

246 111100 O} TETGT%3 +T2T3T52 +T42
247 {O 112111 (2a4) (273) 144 TITBT(? +T22T5T7 +T42
248 TITSTS + TyTSTE + T
249 1112000} T1T§T5’+T§T5T7+T42
250 {0 113111 (436) (132) 22 TETQT'? +T§1T5T6 +T42
251 TITETS + T3T5T2 + T7
252 1111110 T1T6+T2T4+T??

S I B ) B C D Rt o et
254 | heseit] @0 @) 62 TIT+ TETy+TYTs
255 T2Ts + T3 + T1 Ty
256 [ _1haseit] B0 (A1) 376 I+ BT+ T
257 ToT3Ts + T3 + Th T
258 TSTy + T3T2 + T T
259 111150 T3Ts + TyT3 + Th Ty
o |deseeti] o @y sa AT T

261 TT3Ts + T4 + Th'Ts
262 T3TE + ToT5T} + T2
263 [_lasesit] 60 (1) 81 TP+ TET 4 T2
264 TS + T TTE + T2

Classification list 3.10.6. Locally factorial Fano fourfoulds of Picard number two with a
hypersurface Cox ring and an effective three-torus action: Specifying data for the sporadic
cases with s =4 and p & .

ID [wla . ,U)7] H -K IC4 g

279 TT,T2 + T3 + T¢
O R RS R CL B R B L i evan s S
281 4481338 66 () 157 TDTE+TE 4T
282 (5440330 6.6)  (81) 208 TP+ TE4TE
341 TETAT? + T3 + T¢
342 “3312§gﬂ (12,6) (L1 322 Tbﬁn&?+%§+%g
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248

D [wi, ..., w7 1 K Kt g

33 [bos'148Y] (20 (21 38T TLTE+TE 4T

344 coatEas 2] (12,6) (13,1) 458 TyT2? + T2 +1T¢

345 coe200 (4,4) (3,1) 68  TPTeTy + TeTuT3 + T2
346 5001501 (4,4) (4,1) 114 TIDTE + T3TyT3 + T2
347 1114200] Tf’TQTé+T4T73+T52
348 000121 1_ (4a 4) (57 1) 172 T12T2T3Tél —|—T4T$’ +T52
39 [430i108] B3 B 102 TIRTE+ TN+ T
350 1113100] T12T2T3+T4T72+T§’
351 000111 1_ (373) (47 1) 171 T1T2T3Tg +T4T72 +T§’
352 [1l2zirol gy (31) 29 VTR 4 ToTRTE 4 TRTE
353 oo Ty (6,4)  (4,1) 38 NTTg + T5T3 + TiT?
364 1144230] T:L2T3T75"|'T53"'TG2
365 001123 1_ (6a6) (9a2) 144 T1T2T3T75 —|—T53 +T62
366 |oo011550 (6,6) (11,2) 176  TWT5TP + T35 + TF
367 |oo0115350 (6,6) (13,2) 208 TRTP + T3 +TF

368 0022109 (44 (1) 32 TITTA 4+ TyILTE 4T
369 [1irito ;’: 2,4)  (3,2) 128 TIPS + TTLTS + T2
370 112210 ;’: 2.4) (52 102 TyT3 + TyT3 + T2

378 L121110] T2TyT3 + T + T3Ty
379 001111 1_ (4a 4) (3a 1) 32 T1T2T3Tr? _|_TZL —|—T§'T6
380 [Lrsiid ;’: (4,4) (41) 44 TTTE +TF + T3T,
1 [betiity] @ G 56 BT+ T+ T

399 1151130] T1T3T75+TET5+T62
400 001113 1_ (6a6) (67 1) 34 T1T3T75 +TET§) +T62
401 1161130] T3T75+T45T5+T62

402 001113 1_ (6’6) (7’ 1) 40 T3T§5 _|_T£>T53 _|_T62

403 1111000 TITSTs + ThT3T2 + T3
404 0013111 (2u6) (27 1) 14 T;Tg’Tg +T1T3T75 +T42
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o 111100 —1 _ 4 _
Q = {000111 1} K (1,3) -K =(2,1) K* =383
1D g 1D g 1D g
260 TITUT2H+TiTE+ToTe 266 THTS+TiT3+TuTE 267  TITSHTITS+TsTY
268 TITTS+TTIATTE 269 TPTRTS+TaT3+TuT? 270 DTS4+ TTS+T2T,
_ 1112230 _ _ 4 _
Q = {0001231} pn = (6,6) -£ = (4,1 K* =55
1D g 1D g 1D g
271 TDTiTi 4T3 +T 272 TiTyTE4TE4TE 273 TPTTyT24+T3 4T}
274 TPTET,TS+TE+T2 275 T2TyTsTuTS+TE+T2
o 1113230 _ _ 4 _
Q = {0001231} pn = (6,6) -K = (5,1) K* = 83
1D g 1D g ID g
276 TPTyTS4+TS4T? 277 TPTTyT24T34T? 278 TTTsTyT+TE+TE
o 1113460 _ _ 4
Q = {0001231} po= (12,6) -K = (4,1) K* =35
1D g 1D g ID g
283 TITTRTEATE+TE 284 TTTTPTS+TE+T2 285 TPTRTITA4HTS+TE
286 TPTITITAHTS4TE 287 T TRTITA+T3+12 288  TPTITSTRTA+T3+T17
289  TYTyTE4+TE4TE 290 TPy TRATI4TE 291 T TET TR ATE4TE
292 TTIT T2 HTE+TE 293 TPTTATATE4TE 294 T Ty TsTyTS +TE3+TE
295 TITETTaTR+TEA4TE 296 TPTSTSTWTRATE+TZ 297 THTITsTuTE4+TE4TE
298  riririTyri+ri4r? 299 rirdrinyri+ri+r: 300 TRTSTITyTEATE+TE
_ 1114460 _ _ 4 _
Q = {0001231} o= (12,6) -K = (5,1) K* = 58
1D g 1D g 1D g
301 TP TETiATE4+T? 302 TPrrTiTi+ri4r? 303 TR TRATS+TE
304 TTTTyT2+T3+T2 305 TSTITuTEATE4TE 306 TPTITLTEATE4TE
307 TETETLTEATS+TE 308 TPy Ti+Ti+T: 309 TPTRIsTuTEATS+TE
310 mirdmrrieri4T? 311 TiTRTITyTS4T4T? 312 TRTITITWTS+TS4TE
o 1115460 o o 4
Q = {0001231} o= (12,6) -K = (6,1) K" = 87
1D g 1D g 1D g
313 TTTiTi+TE4TE 314 1T+ TE4TE 315 TS Ty TS +TE4+TE
316 TPTITyTEATE+TE 317 TETITA TS +TS+T12 318 TPy TE+TE4TE
319 TrinnTieri4r: 320 TPTITTuTS+TS+T? 321 TRTETITWTS+TS4TE
_ 1116460 _ _ 4 _
Q = {0001231} o= (12,6) -£ = (7,1) K% = 122
1D g 1D g 1D g
322 TOTYTEATE4TE 323 TPTTu TS +TE4TE 324 TITETATI+TS+TE
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Q= [4055asy] w=020 Kk =@y K =2
ID g ID g D g
325 TITITUTIHTI+TS 326 TATTSTTIATEHTE 327 TRTRTRTuTS+TE+T2
328 TETITITATS+TE34+TE
Q=[iab1288] w=020 -k=@1 K =16
ID g ID 9 ID g
329  TPTATI+TIHTS 330  TATLTWTEATE+T? 331 TRTRTTE4TE4+TE
332 TITTsTTSA+T34+T2 333 T2TRTsTyTS+T3+T2
Q=[ias3282] w=020 k=01 k' =20
ID g D g D g
334 TITTHTI 4TS 335 TP TE+TE+TE 336 TRTITATIATEATE
337 TETyTsTyTS+TE+TE
Q= [ied0458] w=026 k=01 K =23
ID 9 ID g D g
338  TPTuTI+TE4TE 339 TPTLT TR 4TE+TE 340 TTTsTyTS+T3+T2
Q= [4013338] w=0606 -K=(2 K =80
ID g ID g D g
354 TETyTE4TE4TE 355 TTTITIH+TE4+TE 356 TRTTuTIHTEHTE
357  TMTTsTuTi+T3+TE 358  TTTS+TS+T2 359 TP TsTI4+TE+T2
360  TITTSTEHTE+TE
Q= [a8e2230] w=606) K =@2 K =1
ID g ID g 1D g
361  TTyTHHTEHTE 362 TPTsTRHTE4TE 363 TETTRTEATS+TE
Q=[1at130] w=we k=@ k=1
ID 9 ID 9 ID g
371 TPrS4+TiTaT2412 372 TT3TSH+TTiT3+12 373 TPTTS+TeTiTS 4T3
Q=[1a223%] w=06 K=@E1D K =16
ID 9 ID g ID g
374 TnITEATITE 4T 375 TR TSATIT4TE  3T6 TPTRTN T4 TITIATE
37T TITITST+TETE+T?
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o 1121130 _ _ 4 _
Q = [0011131] p = (6,6) -K = (3,1 K% =16
1D g 1D g 1D g
382 TITI+TITs+TE 383 TTTITH+TiT:+T2 384 TTeTiTH+TTE+T17
385 TITTEATITs+TE 386 TITTEATITE4TE 387  TITTRTE+TPTs+T3
388  TETTTIHTITS4+T? 389 TRTEITaTIATITs+TE 390 TRTITST24+T3TS+T12
_ 1131130 _ — 4 _
Q = [0011131] p = (6,6) -K = (41 K% = 22
1D g 1D g 1D g
391 TPTTRATITs+TE 392 TPTTEATiTE4TE 393 TP TsTEATITs 4T
394 TR TsTIHTITS4+TE
o 1141130 _ — 4
Q = [0011131] p = (6,6) -K = (5,1) K* = 28
1D g 1D g ID g
395 TPTTEATITs+TE 396 TPTTRATITE4TE 397 DT TsTE+TYT5+T2
398 TTTsTI+TPTE+T2
o 1121000 o o 4
Q = [0013111] po= (2,6) -K = (3,1) K5 =20
1D g 1D g 1D g
405  TITSTe+TsTS+T3 406 TITETEATTS+T3 407 TTTS+T3T2 4T
408 TnTiTe+TsTi+T; 409 TnTiTi4TTi+T; 410 TRTTEATsTR 4T

Classification list 3.10.7. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the series

with s = 4.

D [w,...w] [,g} g

918 [1 laace 0} (a,4) T(a74c)T4 +T(a74c)T4 +T T3 c>1,a>4c,
0011111 (a+2c+2,1) 1 5 2 6 4+t7 a odd
11aa230 6,6

522 [0 0112 1} (2¢(z+1,)2) T15T2T$ +T53 +T62 a2

595 1laac00 (4c, 4) pla—de)p p3 | pla=de)p m3 | a5y 4
0011111 (2a—3c+2,1) 1 3lg + 1y 4l7 + 15 c2la>dc
11 4a 4a a 0 0 4a,4 4a—1) 4 >1,1 odd,

526 [0 0 1 111 1} (5(a+2,)1) T1( ¢ )T2T6 +T4T73 +TE§1 8§l<20c
1laac0O0 2¢,6 (2¢—a) 5 (2¢—a) 5 2 a,c>1,

S27 [o 01131 1] (211(764»%,1) Ty T5T6 + 1y TT? + T3 9% a<2e
11aaa00 2a, 6 2a—1) ] >1,1 odd,

S28 [0 01131 1} (i+2,i) T1( ¢ )T2Tg+T3T4T?+T§ 121%a
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R R I g
11 2a 22 a00 (2a, 6) 9 (2a—1) 6 5 a>1,10dd,
529 {00 1 1311} Gateny Iy +T) LI+ 1417 1Z2i%a
11al1110 (4,4) 3 4 3 4
s30 [basiiit] Y DRI+ TIT 4T a2
11ac000 (c,4) crpd crmd 3 c>l,a>c,
S34 [0 01111 1} (a+2,1) T1T5 +T2T6 +T4T7 c odd
111a230
Q = [0001231] w = (6,6) -K = (a+2,1)
1D g D g D g
S5 TP ToTE+TE+TE, 6 T T3 TS+ TE+TE, g7 TETITsTE+TE+TE,
a>?2 a>2 a>2
111a460
Q = [0001231} p o= (12,6) K = (a+1,1)
1D g 1D g
S8 THTTE+TE+TY, S9 TITSTS+T2+TZ, 10 T T3 TS+ T2 +T7,
a>3 a>3 a>3
S11 TP TITTS+TE+TE, §12 TETITsTE+TE+TE, 13 T T3 T3 TE+TE+TE,
a>3 a>3 a>3
S14 TeTS TS TS+ TE4TE, 315 TIT3TTS+T3+TE, S16 TPTS T3 TS+ T3+TE,
a>3 a>3 a>3
§17 TPTS TS TR +TE+ T4,
a>3
11aallO
Q = |oo011111 po= (a+3,4) K = (a+1,1)
1D g 1D g
19 TsTE+ Ty T3+T 3D 1ird, 920 T T4 T T34T T T,
a>2,0<1<(a+3)/2 a>2 a even
(a=1) 4 3 3 3
T T+ T T3 +T3TATS,
821 1 5 6 2 7
a>?2
11aacO0O0
Q@ = |o011111 po= (a,4) -K = (a+c+2,1)
1D g ID g
993 T T TS T+ T T, 924 T T T+ TS TE+Tu TS,

c>1,a>4c c>1l,a

>4c,0<1<a/2
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11a1130
Q= l0011131 p = (6,6) K = (a+1,1)
1D g 1D g
TP T TS+ TP T5 4T, TP T TeA T TE4TE,
S31 S32 ‘
a>2 a>2
933 TET3TE+T T5+T5,
a>2
|1 1a41a000 . .
Q= oo 1111 1} po= (a+1,4) K = (a+2,1)
1D g 1D g
935 TN AL T, Ty T3+ T T2, 336 SR N Sl P o i

a>1

a>1,a even

Classification list 3.10.8. Locally factorial Fano fourfoulds of Picard number two with
a hypersurface Cox ring and an effective three-torus action: Specifying data for the cases

with s =5 and p € \.

ID (w1, ..., wr] I -K g

411 T3T3T? + Ty T3 + T3
412 1112100 T3T5Te Ty + T T3 + T3
413 |:0 113211 (476) (233) 65 T24T6T7 +T1T§ +T42
414 T3T3Te Ty + ThTS + T3

Classification list 3.10.9. Locally factorial Fano fourfoulds of Picard number two with a
hypersurface Cox ring and an effective three-torus action: Specifying data for the sporadic

cases with s =5 and p & \.

’C4

ID (w1, ..., wr ju -K g

415 LITVTY + TS + 73
416 1112310 WL T + 1717 + T3
ar Leesiiil] Go ey 0 TITTE + Ty Ty TS + T2
418 T3TTH + T3TyT§ + T2
419 LITVTE + TTLTY + T
420 1113310 TP T7 +T,T5 + 1%
o [eesiiil] G0 @y w0 TIT, TS + Ty T3 + T2
422 TPTITST? + TyTE + T?
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1D [’LUl7 e ,w7] 12 -K IC4 g

423 |oo01211 (6,4)  (51) 142 NLT{+TiTTE + T3
424 5001211 (6,4)  (6,1) 206 TATLT{ +T5TyT + T2
425 |oo01211 (6,4)  (7,1) 282 TLT{+T.T+ T3
426 (1122410 T1T2T66 +T33T4T72 +T52
4927 _0 011311 (876) (371) 14 TngTé} +T1T3Tg’ —|—T52
428 cossn0 (10,6)  (4,1) 18  TZIRTP + ToTPT3 + T2
429 [1144610] T13T3T65+T2T$+T52
430 _0 01131 1_ (1276) (571) 22 TfTQTng —|—TET$ —|—T52
431 (1144720] T22T2T73+T3Té—)+T52
432 _O 01131 1_ (1476) (571) 20 T1T2TE>T73 +T3T65 +T52
433 PP (16,6)  (6,1) 24 TDTTTH +ToT;T3 + T?
434 (1166920] T12T3T5)+TET73+T52
435 _0 01131 1_ (1876) (77 1) 28 T1T2T3T65 +TE’T$’ +T52
136 [La1741Y] @260 (81 30 TIIT 4 BT+ T2
B [3A51NY @6 (0 34 DI+ TIT 4 T2

8 [L3NNTHY] G611 0 THTE 4 TETE 4 T2

439 T3TRTY + T3TS + T2

440 {é o113 ﬂ 6.6 &1 22 TYTTSTE + TPT? + T3
w [t eo ey s g,
3 [331300Y] 66 (61 34 TLIE 4 TT 4 T2
e 3500390 66) (L) 0 TTE 4 TETE 4 T2
s [3311300] @e) @) 2 TLIE 4RI 4 T2
a6 [011300] e (B 30 TTPT 4 BT+ T2

[ )

447

-
V]
-
[V
o

=]

(4,6) (3,1) 18 TPITE + TsT3T3 + 17

Classification list 3.10.10. Locally factorial Fano fourfoulds of Picard number two
with a hypersurface Cox ring and an effective three-torus action: Specifying data for the
series with s = 5.
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I
o w4 ;
1laabeo (a,4) e pay ple—de)pd L p p3,
839 1 5 2 6 7
0011111 (a+c+b+2,1)  b>c>1,a>4b,a odd
§49 1laabeco (4a,4) TE4TH o3 3 T(*P ) T, 73,
0011111 (c+b—2a+2,1) b>¢c>1,b>2c—1,3b—c—1<a<4b—3c
Q43 [1 12042 2042 at1 a0 (4a+4,4) TETITE+TsTu T2+ T4,
00 1 1 111 (2a+3,1) a>1
Qa4 11 4a 4a a b0 (4a,4) el L B o
00 1 1111 (5a+b+2,1) a>b>1,0<1<2a+2b,1 odd
S45 1laaa+210 (2a+4,6) T2 4Ty Ty TE+T =D TiTs,
0011 311 (a+1,1) a>1,0<1<a+2,l odd
llaabeo (2b, 6) T2 p2b=se=a) s p(2b—a)p 5
S49 5 1 6 2 7
0011311 (2a—=b+c+2,1)  ¢>1,b>4c,b/3<a<2b—5c
l1laaabo (2a, 6) T2 4 p2a=6b=Dplyps oy, 74
S53 5 1 246 7
0011311 (a+b+2,1) b>1,a>3b,0<1<a—3b,1 odd
S54 112 2 abo (2a,6) 72472V TiTS 4T, T3,
00 1 1311 (b+3a+2,1) b>1,a>3b,0<1<a,l odd
955 [11at1a110] (a+3,4) T DT T T3+ T2 T T3,
00 11111 (a+2,1) a>2
S56 (11a+2a110] (a+3,4) T DT T T+ T T T2,
00 11111 (a+3,1) aZQ
[11a43 a1 10] (a+3,4) ple=t=Dplpd L 734 1yT3,
857 1 245 6 7
R (at+4,1) a>2,0<1< (a—1)/2
58 11ab110 (0+3,4) T VT T T4+ T8
0011111 (a+1,1) a>b>2,beven
959 11 2a+12a a a0 (4a+1,4) T T+ T T +T5TaTE,
00 1 1111 (2a+2,1) a>1
[(11abececol (a,4) ple—de)pd  pla—de)pd  po8
S60 1 5 2 6 7
(0011 111] (2¢+b+2,1) c>1,b>2¢c—1,4c< a < 14+b+2¢,a odd
(1 1abececol (b,4) pb-te)pd plb—de)pay p 3
SG]_ 1 5 2 6 7
(0011111 (a+2c+2,1) c>1,b>4c,a>b,bodd
564 (11 abcoo] (b,4) TP TP T4 T, T3,
0011111 (a+c+2,1) c>1,b>4c,b<a<1l+b+c,bodd
S67 11abecoo (4¢,4) TE4+T e O T3+ T8O 1, 73,
0011111 (a+b=3c+2,1) c>1,a>b>4c
968 11a4bb00 (4b,4) TE+T DT 4T, T3,
001 1111 (a+b+2,1) b>1,4b<a <5b+1,0<1<2b,l odd
969 112 a—1a00 (24, 6) T T T+ T5TE+T2,
00 1 1311 (142a,1) a>2
S70 112 ab00 (2a,6) T24+TTE+T POl T2,
00 11311 (3b—a+2,1) a,b>1,b—1<a<2b
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I
D [wr,...w] %] g
971 11abeoo (2¢,6) TE+T 2 DT T+ T2~V T, T3,
060011311 (a+b—c+2,1) c>1,c—1<b<2c,b<a<2c
S79 11a2300 (6,6) TP T TS +TETE+TE,
0011311 (a+1,1) a>3
g73 [t1a+ta-1a00 (2a,6) TR D TITS 4 Ty Ty TA T2,
00 1 1311 (a+2,1) a>2,0<1<a,l odd
§74 1120ab00 (26, 6) T24+TP D TETS 4+ T T2,
00 11311 (a+b+2,1) a,b>1,b—1<a<2b,0<1<b,l odd
S75 11a2b00 (2b,6) T24+T 2 D TITS 4T, T3,
001 1311 (a+b+2,1) b>1,a>2b,0<1<b,l odd
_ 11aabcoO _ 4 IC _ 9 b 2.1
Q = |oo11111 p = (a+3c,4) —K = (a—2c+b+2,1)

1D g

37 pletse 4 pd L3y mder, T3,
b>c>1,b>2c—1,a>4b—3c

1D g

T1(a+3c74b)T51+T3Té3+T2(a+BC)T;L’
b>c>1,b>2c—1,a>4b—3c,a or ¢ odd

538

Q _ 11 4a—3b 4a—3b a b 0
- 00 1 1111
1D g

40 T+ T T3+TE DT, T3,
a>b>1,a>2b—1,0<1<3b/2

pw = (4a,4) —K = (5ba—5b+2,1)
1D g

TA+ T T3 +T* D TiTe,

a>b>1,a>2b—1,0<1<2a,l odd

S41

Q _ 11 2a—5b 2a—5b a b O
- 00 1 1311
1D g

946 T2+ T TS +T 2= rir2 Ty,
b>1,4b—1<a<5b

T AT T +T, D T3TY,

p = (2a,6) —-K = (3a—9b+2,1)
1D g

T2+ T T3 +T DT, T3,
b>1,a>4b—1,0<1<5b/2

S47

548

b>1,a>4b—1,0<1<a,l odd

11 2a+2 2a+2 3a+3 a 0
Q = [shriti i) p = (6a+6,6) —K = (20+3,1)

D g 1D g
S50 TP ToTe+TETu TS +T2, 3§51 TP T TE+T3TE+TE,

a>1 a>1
52 TETSTO+TETu TS +TZ,

a>1
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11abecoOO
Q = [0011111} p = (a,4) —-K = (c+b+2,1)
ID g D g
rle—4)pa o3 pla=b)p 13 pla—4e)pd | mapd L 3
862 1 5 T13T5+T; 4t 863 1 5 Ty Tg +T3717,
c>1,b>3c—1,4c<a<1+b+c c>1,b>3c—1,4c<a<14b+c,a odd
114babo0o
Q = [0 01111 1} p = (4b,4) —-K = (a+b+2,1)
ID g D g
965 T+ T T3+T D TiT, T2, 366 TE+T O TIT 4T3 T3,

b>1,3b—1<a<4b,0<1< (4db—a)/2

b>1,3b—1<a<4b,0<1<2b,1 odd

Classification list 3.10.11. Locally factorial Fano fourfoulds of Picard number two
with a hypersurface Cox ring and an effective three-torus action: Specifying data for the
series with s = 6.

"
1D [wl, . 7w7] [—)C} g
(b—4cH3d—1) il pd 3 3
S78 11b43dbcdo (b+3d, 4) h Lot 4 TaT g+ 157,
00 11111 (b+dtet2,1) c>d>1,¢>2d—1,b>4c—-3d,
0<1< (b—4c+3d)/2
983 1labecdo (6,4) T TR T4 D T4 T TS,
0011111 (d+ecta+2,1) ¢>d>1,b>4c,a>b,bodd
988 11 4c 4c—3d c d 0 (4c,4) TsT+TaT5+ Ty,
00 1 1111 (5c—2d+2,1) c¢>d>1,c>2d—1
11adcecdoO c, ST +14T7,
593 (4¢,4) G Rl 0 1
001 1111 (dtcta+2,1)  ¢>d>1,a>4c,0<1<2c—2d,l odd
S102 |1 12 2e-sd cao (2¢,4) TsTP+TaT5+T2,
00 1 1311 (3c—4d+2,3) d>1,¢>3,c>4d—1
2 (2c—6d—1) pl 6 4
e b b e do (20,0) TZ4T} TLTS+T5Ta TS,
S105 |, o 11311 (crdtoz d>1e>3db>1c-d-1<b<c,
’ 0<1<c—3d,1 odd
11a2 c¢cdo c, + e +T4T7,
3106 (2¢, 4) T2+T7 2D TS 41y TS
001 1311 (d+c+a+2,3) d>1,¢>3d,a>2¢,0<1<c—3d,l odd
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S76

_ 11abecdO _

= [0011111} p = (a+3d,4)
g ID

Tl(a,—4c+3d)Té+T3Tg,+Téa,—b+3d)T4T$,

b>c>d>1,a>4c—3d, ST7

a>b—3d,a <14+b+c—2d

-K = (c+b—2d+2,1)

g
:,11(0,—4c-¢-3d)Té_i_Tng._,'_:,12(a-¢-3d>T747
b>c>d>1,4c—3d < a < 1+b+c—2d,
a+3d odd

11abecdoO
Q = [0 01111 1} p = (a,4) —-K = (b+d+c+2,1)
1D 1D
9 g
Tl(a—4c)TgL+T2£a7b—3d)T4Tg+T3T73’ T1(a74c)Tg1+T2£a—4d)T(§1+T3T73,
S79 b>c>d>1,a>4c,a>b+3d, S80 c¢>d>1,b>3c—d,dc<a< 1+btctd,
a < 1+b+c+d a odd
11 b d 0
Q = [0 01111 1} p = (b+3d,4) —K = (c+a—2d+2,1)
1D 1D
9 g
b—4c+3d) pd 3 b+3d) nd
(o~ 4e+80) a3 L p(0+8d=a) 1y 7 Tf )T +T4T§+T2( )T,
SBL L 4 1.b5 hem3dLb < o < b43d 582 c>d>1,e22d-1,b>dc-3d,
coi=n ehhsa a>b,b+3d odd
11 4c—3d b cdO
Q = [0 0 11111 p o= (4c,4) —K = (c+b—2d+2,1)
ID g D g
) . ) TA4+Ty T34t~V s
TA+ T T3+ =Dl 13, 5 T Tg+Ty 217,
S84 s S85 d>1,¢>2d—1,3¢c—d—1<b< 4c—3d,
c>d>1,3c—d—1<b<4c—3d
- - 0<l<2¢c! odd
11 b d 0
Q = [0 01111 1} p o= (4e,4) —-K = (d+b+a—3c+2,1)
1D g D g
4 (4c—b—3d) 3 (4c—a) 3
qgg THTCTTIDIAT Ty, g THRT T T,
e>d>1,3c—d—1<b<dc,a>4c—3d € 1€ = ¢=3a,
b<a<dc
114cbcdo
Q = [0 0 11111 uw = (4e,4) —K = (b+d+c+2,1)
ID g ID g
L _ T4+T(4cf4d7l)TlT4+T3T3
T54+T1(4c b—3d ”TZLT4T§’+T3T737 5 1 2Ty -
>1,3c—d—1<b<4
S89 421, 6> 2d-1, So—dl € b < de-3d S90 c¢>d>1,3c—d—1<b<4c,
0<1<2c—2d,1 odd
11 a 4¢—3d ¢ d 0O
Q = [0 01 111 1} p = (4¢,4) —K = (ct+a—2d+2,1)
ID g ID g
—a— TA+T T3+ VT
T4, T3 T(4c a ”T’T T3 5 6 1 2475
sg1 'etlaleth 24357, S92 ¢ d>1,¢>2d—1,a> dc—3d,

c>d>1,¢>2d—1,4c—3d<a<4c

0<1<2¢c! odd
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_ 11 a2c—5d ¢cdoO _ o
Q= lo01 131 1} p = (2¢,4) —-K = (c—4d+a+2,3)

ID g ID g
T2+ T, TS +TP¢ 2D lr2 T, T2+ Ty TS +TP¢ VT T3,

S94  d>1,¢>3d,4d—1<c< 5d, S95  d>1,¢>3,¢>4d—1,2c—5d < a < 2c,
2c—bd<a<c,0<l<c—a,l odd 0<1<(2¢—a)/2
T2+TyT+T 2V TiTS,

S96 d>1,¢>3,c>4d—1,a> 2c—5d,
0<l<ec,lodd

112c—5d bcdO
Q = Joo 11311 no= (207 4) -K = (0_4d+b+273)

ID g ID g
T2 4T TS +T P2~V i Ts, T2 4T TS +T 2~ DTl T3,

S97  d>1,c>4d—1,c—d—1<b<c, S98  d>1,¢>3d,c—d—1<b< 2c—5d,
b<2c—5d,0<1<c—b,l odd 0<1< (2c—b)/2
T24+TTo+T 2V TiTS,

S99  d>1,¢>4d—1,b>1,c—d—1<b<2c—5d,
0<l<codd

11abcdo
Q= lo011311 no= (2074) -K = (d+b—|—a—c+2,3)
ID g ID g
e . 72 (2e=b=5d)p, p5  p(2e—a)p s
S100 TE T ORI T VLT, S101 d5>+1 1>4d 1 b4>(13+ 2d 1<bd<727 5d
d>1,¢>3d,c—d—1<b<a<?2c—5d =5e ’ € = e
b<a<2c
_ 112cbcdO _ —
Q= |00 1151 1] po= (2¢,4) —-K = (b+d+c+2,3)

ID g
T2 4727 =P plp, TS 4T T3,
S103 d>1,e>4d—1,c—d—1<b< 2c—5d,
0 <1< (2c—b—5d)/2

ID g
T2+~ DTS 41573,

S104 d>1,¢>3d,b>1,c—d—1<b< 2c,
0<1<c—3d,1 odd

Finally, let us compare our results with existing classifications.

Remark 3.10.12. The 447 sporadic cases from Classification lists 3.10.1 to 3.10.11
encompass in particular the smooth Fano fourfolds with hypersurface Cox ring of Picard
number two and torus action of complexity one. The following table translates their ID’s
in the present classification to the cases of [35, Thm. 1.2].

Theorem 1.2 in [35] ID Theorem 1.2 in [35] ID

1 84 (3.10.2) Bim=1,a=0 228 (3.10.3)
2 20 (3.10.2) Tom=1 253 (3.10.5)
4A:m=1c=-1 |45 (3.10.2) 10: m = 244 (3.10.5)
4A:m=1,¢=0 1(3.10.1) 1I: m=2,a2=1 225 (3.10.2)
4B:m=1 44 (3.10.2) 11: m=2,a92 =2 226 (3.10.2)
4.C:m=1 6 (3.10.1) 12: m = 15 (3.10.1)
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Remark 3.10.13. At least 268 varieties from our classification admit a one-parameter
smoothing to a smooth Fano fourfold of Picard number two. Here, by a one-parameter
smoothing of X we mean a flat morphism of varieties p: X — C such that Xy := ¢ ~1(0)
is isomorphic to X and there is a non-empty open subset U C C such that X; := ¢~ 1(¢)
is smooth for all t € U. The procedure to explicitly construct such a smoothing goes as
follows: Let X = X (Q, g) with (@, g) from the lists 3.10.1 to 3.10.11 and assume that up
to a unimodular transformation the data @ = [wy,...,w;] and p = deg(g) appears in
[45, Thm. 1.1]. Then there is a homogeneous spread polynomial h of degree deg(h) = 1
such that Xp is a smooth Fano fourfold with general hypersurface Cox ring. We extend
the action of H = (C*)? on C7 given by the grading map @ to C® by letting H act
trivially on the last coordinate. We set

Z=C8 Z=2Z%r), Z=2Z/H,

where 7 € A(C[Ty,...,T7,T]) is the unique GIT-cone that contains the anticanonical
class —Kx in its interior. Moreover we set

X = V((@1-T)g+Th) C C® X =XNnZ, X = X/H

The projection pr: X — C to the last coordinate is H-invariant and thus factors through
a morphism ¢: X — C. We have X = ¢ ~1(0) and ¢ is a smoothing of X with fiber over
t = 1 isomorphic to Xj. In the following table, for each entry (Q, u) from the table in
[45, Thm. 1.1] we list the IDs of the varieties X (@, g) from the present classification that
admit such an explicit smoothing to a smooth Fano fourfold of Picard number two with
a general hypersurface Cox ring and data (Q, u).

[45, Thm. 1.1] | IDs [45, Thm. 1.1] | IDs

1 1 19 40 - 43

2 2,3 20 44, 45

3 4,5 21 242, 243

4 6 22 46, 47

5 - 23 48 - 50

6 7.8 24 51, 52

7 19, 20 25 53 - 71

8 21, 22 26 72

9 23-25 27 73

10 - 28 74 - 76

11 26, 27 29 7

12 28 - 30 30 78

13 227, 228 31 79

14 230 - 232; 32 80
S2:a=1 33 415 - 418

15 265 - 270 34 81 - 84

16 31, 32 35 85-91

17 33, 34 36 92 - 101

18 35 -39 37 102 - 107
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3.10. Classification lists

[45, Thm. 1.1] | IDs [45, Thm. 1.1] | IDs
38 108 - 129 53 252, 253
39 130 - 148 54 254
40 149 95 255 - 257
41 150, 151 56 258 - 261
42 152, 153 o7 262 - 264
43 154 - 158 58 9, 10
44 159, 160 59 11-13
45 161 - 166 60 220 - 222
46 167 - 180 61 14
47 181 - 219 62 223
48 244 63 16
49 245 64 224
50 246, 247 65 15
o1 248 - 251 66 225
52 411 - 414 67 226

With the smoothing procedure from above one obtains a one-parameter smoothing of
the variety no. 17 in Classification list 3.10.1 to X =Y x P!, where Y C P* is a smooth
quartic. The specifying data of X is missing from [45, Thm. 1.1].
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