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Tübingen, den
Datum Unterschrift

4



Summary

Over the last years, machine performance at object recognition, language understanding
and other capabilities that we associate with human intelligence has rapidly improved.
One central element of this progress are machine learning models that learn the solution
for a task directly from data. The other are benchmarks that use data to quantitatively
measure model performance. In combination, they form a virtuous cycle where models can
be optimized directly on benchmark performance. But while the resulting models perform
very well on their benchmarks, they often fail unexpectedly outside the controlled setting.
Innocuous changes such as image noise, rain or the wrong background can lead to wrong
predictions. In this dissertation, I argue that to understand these failures, it is necessary
to understand the relationship between benchmark performance and the desired capability.
To support this argument, I study benchmarks in two ways.

In the first part, I investigate how to learn and evaluate a new capability. Therefore, I in-
troduce one-shot object detection and define di↵erent benchmarks to analyze what makes
this task hard for machine learning models and what is needed to solve it. I find that
CNNs struggle to separate individual objects in cluttered environments, and that one-shot
recognition of objects from novel categories can be challenging with real-world objects.
I then continue to investigate what makes one-shot generalization di�cult in real-world
scenes, and identify the number of categories in the training dataset as the central factor.
Using this insight, I show that excellent one-shot generalization can be achieved by training
on broader datasets. These results highlight how much benchmark design influences what
is measured, and that limitations in benchmarks can be confused for limitations of the
models developed with them.

In the second part, I broaden the view and analyze the connection between model failures
in di↵erent areas of machine learning. I find that many of these failures can be explained by
shortcut learning, models exploiting a mismatch between a benchmark and its associated
capability. Shortcut solutions use superficial cues that work very well within the training
domain, but are unrelated to the capability. This demonstrates that good benchmarks
performance is not su�cient to prove that a model acquired the associated capability, and
that results have to be interpreted carefully.

Taken together, these findings put in question the common practice of evaluating models
on a single, or at maximum a few, benchmarks. Rather, my results indicate that to antic-
ipate model failures, it is essential to measure broadly. And to avoid them, it is necessary
to verify that models acquire the desired capability. This will require investment into bet-
ter data, new benchmarks and other complementary forms of evaluation, but provides the
basis for further progress towards powerful, reliable and safe models.
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Zusammenfassung

In den letzten Jahren hat sich die Leistung von Maschinen bei der Erkennung von Objekten,
dem Verstehen von Sprache und anderen Fähigkeiten, die wir mit menschlicher Intelligenz
in Verbindung bringen, rapide verbessert. Ein zentrales Element dieses Prozesses sind
Modelle des maschinellen Lernens, die die Lösung einer Aufgabe direkt von Daten lernen.
Das andere sind Benchmarks, die die Leistung von Modellen anhand von Daten quanti-
tativ messen. In Kombination bilden sie einen sich gegenseitig verstärkenden Kreislauf,
bei dem die Modelle direkt anhand der Benchmark-Leistung optimiert werden können.
Doch während die resultierenden Modelle in ihren Benchmarks sehr gut funktionieren,
versagen sie oft unerwartet außerhalb der kontrollierten Umgebung. Scheinbar unbedeu-
tende Veränderungen wie Rauschen in Bildern, Regen oder ein ungewöhnlicher Hintergrund
können zu falschen Vorhersagen führen. In dieser Dissertation argumentiere ich, dass zum
Verständnis dieser Fehler die Beziehung zwischen der Leistung auf Benchmarks und der
gewünschten Fähigkeit notwendig ist. Zur Unterstützung dieses Arguments untersuche ich
Benchmarks auf zwei Arten.

Im ersten Teil betrachte ich, wie eine neue Fähigkeit gelernt und gemessen werden kann.
Dazu führe ich Objekterkennung auf Basis eines einzelnen Beispiels (One-Shot) ein und
analysiere anhand verschiedener Benchmarks, was diese Aufgabe für maschinelle Lern-
modelle schwierig macht und was zu ihrer Lösung erforderlich ist. Ich stelle fest, dass
CNNs in unübersichtlichen Umgebungen Mühe haben Objekte zu trennen, und dass die
One-Shot Erkennung von Objekten aus neuen Kategorien in realen Szenen eine große Her-
ausforderung darstellt. Anschließend untersuche ich, was die One-Shot-Generalisierung in
realen Szenen so schwierig macht, und identifiziere die Anzahl der Kategorien im Train-
ingsdatensatz als zentralen Faktor. Auf der Grundlage dieser Erkenntnis zeige ich, dass
durch Training auf breiten Datensätzen eine hervorragende One-Shot-Generalisierung er-
reicht werden kann. Diese Ergebnisse verdeutlichen, wie sehr das Design von Benchmarks
die Ergebnisse beeinflusst und dass Limitationen von Benchmarks mit Limitationen der
auf ihnen entwickelten Modelle verwechselt werden können.

Im zweiten Teil weite ich den Blick und analysiere den Zusammenhang zwischen Fehlern
von Modellen in unterschiedlichen Bereichen des maschinellen Lernens. Ich stelle fest,
dass viele dieser Fehlschläge durch Abkürzungen beim Lernen erklärt werden können, d.
h. dadurch, dass Modelle die Diskrepanz zwischen einem Benchmark und der damit ver-
bundenen Fähigkeit ausnutzen. Solche Lösungen nutzen scheinbare Anhaltspunkte, die im
Training sehr gut funktionieren, aber nicht der Fähigkeit entsprechen. Dies zeigt, dass eine
gute Leistung auf einem Benchmark nicht als Beweis dafür ausreicht, dass ein Modell die
zugehörige Fähigkeit erworben hat, und Ergebnisse mit Vorsicht zu bewerten sind.
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Diese Ergebnisse stellen die gängige Praxis in Frage, Modelle anhand eines einzigen oder
höchstens einiger weniger Benchmarks zu bewerten. Vielmehr deuten sie darauf hin, dass es
zur Vorhersage von Fehlern unerlässlich ist, umfassend zu testen. Um Fehler zu vermeiden,
muss sichergestellt werden, dass das Modell die gewünschte Fähigkeit erlangt hat. Dies
erfordert bessere Daten, neue Benchmarks und ergänzende Formen der Evaluation, welche
wiederum die Grundlage für die Entwicklung leistungsfähiger, zuverlässiger und sicherer
Modelle bilden.
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Seht ihr das auch?

Könnt ihr das auch sehen?

Deichkind 2019
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1 Introduction

In the last years, the field of Artificial Intelligence (AI) has made a lot of progress due
to the virtuous combination of machine learning and standardized benchmarks. Machine
learning allows learning tasks from examples. Standardized benchmarks allow measuring
the performance of the resulting models in a quantitative and comparable fashion. Their
combination enabled developing models that can accomplish tasks we associate with intel-
ligence, like identifying images with cats or translating text. Computers can now process
visual information, language, and speech to a degree that had been beyond imagination
for long. Today, machines learning models are used for tasks like translating websites or
driving cars, that previously only humans could do.

But despite all successes, machines are still farm from achieving human-level capabilities.
Machine learning systems need millions of examples, where humans may only need one
[Lake et al., 2015]. Object recognition models fail when small amounts of noise are added
to the images [Geirhos et al., 2018; Hendrycks and Dietterich, 2019]. And the perception
algorithms of self-driving cars struggle in bad weather conditions [Zhang et al., 2021b;
Yurtsever et al., 2020].

In this dissertation, I argue, that the di↵erence between narrow benchmark objectives
and the broad human capabilities they are associated with plays a significant role in this
human-machine gap. Take the following example: We may think object recognition tasks
such as spotting a zebra are straightforward. But if one morning a zebra was standing
in your kitchen, you would likely freak out. In contrast, an object recognition model
would probably miss the zebra, because of the unfamiliar background [Beery et al., 2018;
Kolesnikov et al., 2019]. This may be a contrived example, but it illustrates that there
is much more to object recognition than meets the eye. Context, emotions, experiences,
abstract knowledge all influence our perception, mostly without us even noticing.

It is clear that current benchmarks and models do not cover all human capabilities, and
that there are many things that could be added. But, the assumption behind my thesis is
that the current benchmarks miss much more than we may expect. I approach this from
two sides: In the first part of the dissertation, I introduce benchmarks for a new capability,
one-shot object detection. Using this example, I demonstrate how benchmark design influ-
ences which aspects of a capability are measured and that insights from studying di↵erent
benchmarks can help to identify and overcome central challenges of a capability in ways
that would not have been clear from a single benchmark. In the second part of the disser-
tation, I zoom out and analyze surprising model failures across di↵erent areas of machine
learning. This systematic analysis exposes shortcut learning, models exploiting a mismatch
between a benchmark and the desired capability, as a widely appearing phenomenon that
can explain many model failures.

11



2 Benchmarks

Generally, a benchmark is a way to measure something, from business metrics to computer
speed, in a way that is quantifiable and comparable. It is basically an exam for machines
or other systems: Everyone gets the same questions, answers are scored according to the
same rules and the final result is a score that can be used to compare and rank.

In AI, benchmarks are used to evaluate broad capabilities that are not directly mea-
surable, such as recognizing objects in images (object recognition). To make these broad
capabilities measurable, tasks are defined that have fixed rules and a success criterion.
For example, the most common object recognition task is to classify images according to
the foreground object they show (image classification). A task is more specified than a
capability, but it does not yet fix all the details, such as for example whether dogs, cats,
zebras, or co↵ee makers should be classified. A benchmarks then provides the precise
problem and metric used for evaluation. This is often done by providing a dataset, and
the metric then measures how well a model can make predictions on that dataset. For
example, in image classification the dataset usually is a collection of images with labels
(e.g., cat, dog, or zebra) and the typical metric is the accuracy with which a model predicts
the right label for each image.

So a definition could be: A benchmark is the attempt to measure performance at a capability

in a quantifiable and comparable fashion. A broad capability that intuitively makes sense
but can be hard to define precisely, such as object recognition, is turned into a measurable
quantity, such as the classification accuracy of images with cats and dogs.

To ensure results are comparable, the evaluation protocols have to be well-defined and in
the best case unambiguous (standardized benchmark). Standardized does not imply that a
benchmark has to be deterministic. Evaluation protocols can include stochastic or dynamic
elements, as long as the results are comparable. Similarly, the dataset does not have to
be fixed. Instead, it can also use a protocol or environment that are su�ciently specific
to allow a fair comparison. For example, computer games can be used as benchmarks for
interactive agents [Bellemare et al., 2013].

2.1 Benchmarking One-Shot Object Detection

To make the connection between benchmarks, tasks, and capabilities more concrete, let
us explore an example: One-shot object detection describes the capability of recognizing
and localizing objects that have been seen only once. Human perception has this ability.
Say your roommate bought a new co↵ee maker, which you briefly saw when he unpacked
it. You will have no problem identifying the co↵ee machine in the next morning. And you
could even do it if you found a zebra standing in your kitchen (once you have overcome the
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shock). This may not seem special, but the ability to recognize objects from a few or even a
single example is remarkable, and is used it a lot in people’s everyday lives. Machines with
this capability could be easily instructed and hence used for many di↵erent applications.

There are many ways to turn this capability int a measurable task. So let us go through
the co↵ee maker in kitchen scenario to identify its components? First, the reference is
visual. You have seen the co↵ee maker the day before, not only heard that there is a new
one. Second, the co↵ee maker is located within a larger scene full of known objects, like
your toaster and dishwasher, and potential unknown objects, like a zebra. Finally, the goal
is to localize the co↵ee maker within the kitchen. Therefore, the problem is localization of
an object in a scene based on one visual example.

When I started the research for this dissertation, no benchmarks existed with such a task.
Existing benchmarks that focused on detecting objects in scenes provided thousands of
training examples per category (e.g., [Lin et al., 2014]). And benchmarks which targeted
recognition from one example, so-called one-shot learning, used a task that required on
classifying tiny images showing a single object into one of five novel categories (e.g., [Lake
et al., 2015; Vinyals et al., 2016]). Therefore, in this dissertation, I introduce a new task for
this problem: Given an image of an object, find all objects of the same type in a scene. So
given an image of your kitchen, the model is expected to find the new co↵ee maker if it is
shown an image of a co↵ee maker and the dishwasher if it is shown an image of a dishwasher.

Benchmarks can now be defined upon this task by specifying a dataset, for example images
of kitchens annotated with co↵ee makers, dishwashers and the occasional zebra, as well as
an evaluation procedure and metric, for example if all co↵ee makers are found.

2.2 Why Research Benchmarks?

Benchmarking is a central element of AI research. As in other areas of science, “Mea-
surement has been a key factor for progress” [Welty et al., 2019]. Quantitative problems
have clear metrics with which di↵erent methods can easily be compared. This allows in-
cremental hill-climbing, an unspectacular but highly e�cient way to make progress on a
problem. Through leaderboards and challenges, this form of development has been made
fun by stylizing it as a game-like competition (gamification [Deterding et al., 2011]).

In machine learning (ML). benchmarks often also serve other purposes beyond evaluation.
Many benchmarks provide training data or environments that are widely used. This makes
results more comparable and enables rapid model development because the tedious task
of data collection can be skipped. Often these benchmark ecosystems do not only benefit
progress towards the specific benchmark, but are used for other problems as well. New
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benchmarks can use the same toolkits, data formats, metrics, and environments. And large
datasets can be used to pre-train models, which then can be applied to other problems via
transfer learning [Donahue et al., 2014; Devlin et al., 2019].

But while benchmarks are widely used in model development, they themselves are investi-
gated much more rarely [Sculley et al., 2018; Dehghani et al., 2021; Lipton and Steinhardt,
2019; Sambasivan et al., 2021; Marie et al., 2021; Church and Hestness, 2019]. A number
of studies on benchmarks and other evaluation methods exist (e.g., [Torralba and Efros,
2011; Recht et al., 2019; Shankar et al., 2020; Beyer et al., 2020; Bowman and Dahl, 2021;
Balduzzi et al., 2018; Dodge et al., 2019; Welty et al., 2019; Bouthillier et al., 2021]), but
they are far less numerous than modelling studies. A major reason for this neglect of
benchmarking research are bad incentives that encourage researchers to focus on achieving
state-of-the-art performance on existing benchmarks [Dehghani et al., 2021; Lipton and
Steinhardt, 2019; Sculley et al., 2018; Lin, 2019; Dacrema et al., 2019; Wagsta↵, 2012;
Church, 2017]. This would be ok, if studies mostly found benchmarks to work well. But
a large fraction find major issues and red flags in current evaluation practices (see for ex-
ample [Dacrema et al., 2019; Marie et al., 2021; Musgrave et al., 2020; Ponce et al., 2006;
Torralba and Efros, 2011; Northcutt et al., 2021; Lewis et al., 2021]).

2.3 Research Question and Methodology

In this dissertation, I investigate how benchmarks are related to shortcomings and fail-
ures of current machine learning models. Specifically, I ask three questions. How well do
benchmarks measure capabilities, and can a mismatch between benchmarks and capabil-
ities explain model failures? How do benchmarks need to be designed, to identify model
failures? And how can benchmarks help fix these failures?

To answer these questions, I use two methods. In the first part of the dissertation, I intro-
duce a challenging new capability and inspect it up close. To do so, I introduce a series of
benchmarks and compare how di↵erent models perform across them to gain insights into
the benchmarks as well as the models. In contrast, the common approach is to compare
di↵erent models on the same benchmark. As I demonstrate, the comparison of models
across benchmarks can help get a deeper understanding of the problem, which in turn can
be used to improve models in ways that would not have been obvious otherwise. In the
second part of the thesis, I perform a systematic analysis of model failures across di↵erent
areas of machine learning. This reveals a pattern of failure that arises in any benchmark,
and suggests that the challenges and methods discussed in the first part are relevant in all
areas of machine learning.
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3 Part I: Benchmarking One-Shot Object Detection

This part of the dissertation uses a new capability, one-shot object detection, to explore
how benchmark design influences which aspects of the underlying capability are measured.
The next sections provide an overview over previous research into object recognition (Sec-
tion 3.1) and learning from few examples (Section 3.2) that form the basis upon which
the new one-shot object detection benchmarks are built. Then I describe the specific task
setup and discuss how it compares to existing, similar tasks (Section 3.3). Finally, this part
includes summaries of three publications (Section 3.4-3.6), that use di↵erent benchmarks
to explore di↵erent aspects of one-shot object detection and use the insights to overcome
a key challenge of the task, generalization to novel categories. The papers can be found in
full length at the end of the dissertation.

3.1 Recognizing Objects: Object Detection & Segmentation

Object recognition is one of the central problems in computer vision and has been a dom-
inant area of research in the last years [Lee and Qiufan, 2021].

3.1.1 Object Image Classification

The standard object recognition task is (object) image classification (Figure 1A). Classi-
fying images based on the object or objects in them. The most common task uses images
with a single foreground object per image that has to be assigned to one of a number
of categories (forced choice), but tasks with multiple objects per scene exist as well (for
example Figure 1A).

The two main challenges in classification are identifying the foreground object and pre-
dicting its category. Therefore, early benchmarks consisted of digits on black background
[LeCun et al., 1998] or simple images that show only one object without a lot of back-
ground [Fei-Fei et al., 2004; Krizhevsky et al., 2009; Ponce et al., 2006]. A major milestone
was ImageNet [Russakovsky et al., 2015] which consists of widely varying and sometimes
chaotic web images that are annotated with one of over 21,000 categories that span most
of the nouns in WordNet [Miller, 1995], a lexical database of all English words. A subset of
the dataset with roughly 1.4 million images from a thousand categories that was selected
for the 2012 ImageNet large scale visual recognition challenge (ILSVRC) is used today as
the major dataset to train and evaluate image classification models. Due to the enormous
scale, large set of categories and variety of images, ImageNet was seen as a major challenge
at the time and led to the breakthrough of deep learning. Deep neural networks (DNN)
that are trained end-to-end for the image classification task were better at handling this
complexity than previous feature-based methods [Krizhevsky et al., 2012].
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Figure 1: Illustration of the four main object recognition tasks (adapted from Lin
et al. [2014]).

Most current computer vision approaches are built upon this work and follow roughly the
same approach. Images are encoded with a DNN, often a pre-trained convolutional neural
network (CNN) [LeCun et al., 1990], and predictions are made from this encoding. For
image classification, the prediction can be made with a simple linear layer, the classifier.
For other tasks, the prediction mechanism can be vastly more complex.

3.1.2 Object Detection

For many applications it is not only important to know what objects are in a scene but also
where they are. Object detection is the task of localizing objects within scenes (Figure 1B).
The most common task requires detecting all objects for a set of categories, and return a
bounding box which tightly outlines the object and class label for each of them.

The main challenges are object discovery, variations in object size as well as clutter and oc-
clusions. Older benchmarks like ImageNet Detection [Russakovsky et al., 2015] and Pascal
VOC [Everingham et al., 2010] therefore consisted of scenes with only few objects, most
of which were the focus of an image. The currently most important benchmark COCO
[Lin et al., 2014] brought significantly more challenging scenes with many more objects
and larger variations in object scale (See Table 1). A number of more recent benchmarks
increase the di�culty by raising the number of objects and or categories per image (e.g.,
LVIS [Gupta et al., 2019] & ADE20k [Zhou et al., 2017]) or provide significantly more
annotated images (e.g., OpenImages [Kuznetsova et al., 2020] & Objects365 [Shao et al.,
2019]), but a clear successor has yet to emerge.

As for image classification, most modern detectors use a CNN (called the backbone) to
encode the image. This encoding is then used to discover and classify objects. Object
discovery can be done in many ways such as a sliding window approach [Felzenszwalb
et al., 2009; Sermanet et al., 2014], by using pre-defined anchor boxes [Girshick et al.,
2014; He et al., 2015b; Ren et al., 2015] or by directly regressing a set of bounding boxes
[Szegedy et al., 2013; Redmon et al., 2016]. Object classification is performed similar to
image classification, but on a per-object basis. Discovery and classification can happen
in one (single-stage detector) or two steps (two-stage detector), the latter being more
accurate but often slower [Huang et al., 2017]. The most popular model at the time of this
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dissertation is Faster R-CNN [Ren et al., 2015], a two-stage detector using anchor boxes
to create object proposals.

3.1.3 Segmentation

If not only an object’s location but also its shape is required, the task is segmentation,
drawing the outlines of objects. Two main segmentation tasks are studied. Instance seg-
mentation is closely related to object detection as individual instances of objects have
to be identified but instead of a bounding box a segmentation mask has to be predicted
(Figure 1D). Semantic segmentation in contrast does not require to separate individual in-
stances of each object, but just to label each pixel in an image with a category (Figure 1C).

Instance segmentation shares most of the challenges with object detection, except that
objects additionally have to be segmented. The benchmarks are mostly the same as for
object detection because most datasets including COCO and Pascal VOC include segmen-
tation masks. A number of solution approaches exist. The whole scene can be segmented
first, and the segments then separated into individual objects [Bai and Urtasun, 2017;
Kirillov et al., 2017; Arnab and Torr, 2017; Liu et al., 2017]. Alternatively, the scene can
be processed in parts, either using mask proposals [Hariharan et al., 2014] or segmenting
the image in a sliding window fashion [Pinheiro et al., 2015, 2016; Dai et al., 2016a; Chen
et al., 2019c]. Finally, it is possible to segment bounding boxes predicted by an object
detection model [Dai et al., 2016b; Li et al., 2017b; He et al., 2017]. In the last years
this last object detection based approach has largely taken over the field, driven by the
success of Mask R-CNN [He et al., 2017], a variant of Faster R-CNN which segments each
predicted bounding box.

Semantic segmentation shares some challenges with instance segmentation, such as
scale invariance, but has a stronger focus on segmentation quality. In addition to COCO
and Pascal VOC, Cityscapes [Cordts et al., 2016] and ADE20k [Zhou et al., 2017] play a
central role due to their high quality annotations that include a lot of small or delicate
objects. For semantic segmentation, a per-pixel classification of the image is required. To
achieve a detailed output, the encoded image is processed by a decoder that upsamples the
downsampled CNN representation. Typical decoders consist of a cascade of upsampling
steps which are interleaved with convolutional layers [Long et al., 2015]. A popular choice
is to simply mirror the encoder [Ronneberger et al., 2015; Noh et al., 2015; Badrinarayanan
et al., 2017]. Because convolutional and up- and down-sampling layers perform only local
computations, these “fully convolutional” [Long et al., 2015] networks are independent of
the image size and very easy to implement. To pass additional information about low level
features and fine-grained structures to the decoder, skip connections between the encoder
and decoder are commonly used [Ronneberger et al., 2015].
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Dataset Version Categories Images Instances Ins/Img Cat/Img Thr.

ImageNet Det 200 332k 473k 1.4 1.1 X
Pascal VOC 07+12 20 8k 23k 2.9 1.6 X
COCO 2017 80 118k 860k 7.3 2.9 X
Cityscapes 8 5k 50k 16.9 3.0 X
OpenImages v6 600 1.9M 15.8M �8.3 �2.3 7
Objects365 v2 365 1.9M 28M 14.6 6.1 X
LVIS v1 1,203 100k 1.27M �12.8 �3.6 7
ADE20k 3,688 27k 708k 25.7 9.9 X

Table 1: Popular object detection datasets roughly sorted by image complexity, which
depends on the number of object instances and categories per image (Ins/Img and
Cat/Img). Throughout annotated (Thr.) means that every instance of every class
is annotated in every image. Non exhaustively labelled datasets (Thr. = 7) have
potentially more objects and categories per image than are annotated.

3.1.4 State-of-the-Art

Performance on all object recognition tasks has improved significantly over the last years.
A major factor for progress are improvements in CNN architecture and training [Xie et al.,
2017; Tan and Le, 2019; Wang et al., 2020b; Gao et al., 2019; Zhang et al., 2020]. In
object detection and segmentation, handling of objects at varying scales has significantly
improved. Methods range from processing images at varying scales [He et al., 2015b] over
reduced downsampling in the encoder [Chen et al., 2017] and passing information through
skip connections [Ronneberger et al., 2015] to processing features at di↵erent scales [Lin
et al., 2017a; Zhao et al., 2017] or making convolutions deformable to attend to the correct
areas of the image [Dai et al., 2017; Zhu et al., 2019]. Other problems such as avoiding
duplicate detections and segmenting fine details led to the development of sophisticated
post-processing methods [Bodla et al., 2017; Chen et al., 2017].

Especially in object detection, improvements usually do not come in the form of com-
pletely new models, but as interchangeable parts of existing models [Bochkovskiy et al.,
2020]. This has led to the development of powerful toolboxes that allow quick design and
modification of existing models [Wu et al., 2019b; Chen et al., 2019a]. Due to the many
small improvements, the Faster R-CNN implementations in these modern frameworks score
almost twice as high as the original implementation [Ren et al., 2015].

3.2 Learning from Few Examples: Few-Shot Learning

CNN models for the object recognition tasks discussed in the previous section have become
very good over the last years. However, they do not have the flexibility and fast learning
ability humans have, but require large amounts of labelled data [Halevy et al., 2009; Sun
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et al., 2017]. And once trained, new concepts cannot easily be added to a model because
of so-called “catastrophic forgetting” of the concepts a model already knows [McCloskey
and Cohen, 1989; McClelland et al., 1995; Kirkpatrick et al., 2017]. A wide variety of ap-
proaches exists to overcome these limitations (Table 2), and the one-shot object detection
benchmarks developed in this dissertation are one addition to this set of approaches. It
is most closely related to few-shot learning, the task of learning new concepts from just a
few examples.

3.2.1 Few-Shot Learning

Few-shot learning describes tasks that use just a few samples, with a few usually refer-
ring to anything between one (one-shot) and twenty (20-shot) samples. The most deeply
studied area is few-shot object recognition [Fei-Fei et al., 2006; Lake et al., 2015; Wang
et al., 2020c]. It is usually realized as the task of learning a classifier for a set of never
before encountered categories from only a few examples per category [Lake et al., 2015;
Vinyals et al., 2016]. This few-shot learning task was popularized in 2015 with the Om-
niglot benchmark [Lake et al., 2015]. The Omniglot dataset consists of 1623 characters
from 50 alphabets. The characters from 30 of these alphabets are used for pre-training.
At test time, a series of episodes is created from the characters of the other 20 alphabets.
Each episode has a small training set, for example one image for each of five characters.
Then the pre-trained model is trained again on this training set and evaluated on a number
of test samples of the five characters. The number of categories is called the ways and the
number of samples per category the shots, so the example from above would be a five-way,
one-shot task. The ways and shots are kept the same in all episodes. This evaluation
scheme is supposed to lead the focus away from learning to classify a specific set of novel
categories towards learning a model that can learn a classifier for any set of novel categories.

The main few-shot learning benchmarks are Omniglot [Lake et al., 2015] as described above
and miniImageNet [Vinyals et al., 2016] which uses a subset of ImageNet and a smaller
image size for faster development than would have been possible on the whole ImageNet
dataset. A number of similar benchmarks exist, all using the same episodic evaluation
scheme and small images [Ren et al., 2018; Welinder et al., 2010; Bertinetto et al., 2019;
Oreshkin et al., 2018]. Other tasks exist, but are far less popular. Hariharan and Girshick
[2017] use full-scale ImageNet images and evaluate performance across 500 known and
novel categories. Wertheimer and Hariharan [2019] use the iNaturalist dataset [Van Horn
et al., 2018] to create a fine-grained recognition benchmark in which the number of shots
varies between classes. Triantafillou et al. [2020] create a new Meta-Dataset composed
of a variety of existing datasets covering di↵erent concepts (e.g., common objects, street
signs or mushroom species) and image types (e.g., natural images or sketches).
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Method Objective Data Samples per category Example Exemplary papers

Learn ... labelled
un-

labelled

Unsupervised
learning

a good
representation

Unlabelled
samples

– Many
Relate two
versions of

the same image

[Oord et al., 2018]
[Chen et al., 2020a]
[Devlin et al., 2019]

Transfer
learning

a new task
A small
dataset

10-100 –

Classify flowers
using a model
trained on
ImageNet

[Donahue et al., 2014]
[Kolesnikov et al., 2019]

[Devlin et al., 2019]

Semi-
supervised
learning

with less data

A small
dataset &
unlabelled

data

10-100 Many
Train ImageNet

with 1%
of the data.

[Tarvainen and Valpola, 2017]
[Chen et al., 2020b]
[Xie et al., 2020]

Weakly-
supervised
learning

with less
expensive

data

A small
dataset
& data

labelled for
a di↵erent

task

10-100
(labelled
for the
task)

Many
(labelled
di↵e-
rently)

Learn an
object detector
from mostly
classification

data

[Oquab et al., 2015]
[Dai et al., 2015]
[Hu et al., 2018b]

[Mahajan et al., 2018]

Few-shot
learning

from
few

examples

Very few
samples per
category

1-20 –

Learn a
classifier from
a few samples
per category

[Lake et al., 2015]
[Snell et al., 2017]
[Finn et al., 2017]
[Liu et al., 2019]

One-shot
learning

from
a single
example

One
sample per
category

1 –

Learn a
classifier from
a single sample
per category

[Lake et al., 2015]
[Snell et al., 2017]
[Finn et al., 2017]
[Liu et al., 2019]

Zero-shot
learning

from
auxiliary

information

Data &
auxiliary

information

Only
auxiliary

information
–

Learn to
recognize

novel categories
from attributes

[Romera-Paredes and Torr, 2015]
[Xian et al., 2018]

[Radford et al., 2021]

Long-tail
recognition

from
unbalanced
datasets

A very
unbalaced
dataset

1-1000s –

A dataset with
1000s of images

of cars but
only few images

of zebras

[Zhang et al., 2021a]
[Cui et al., 2019]
[Lin et al., 2017b]
[Gupta et al., 2019]

Online
learning

from incoming
samples

A stream
of data

A few
at a time

–
Continually
improve a
spam filter

[Hazan, 2017]
[Perozzi et al., 2014]
[Mairal et al., 2010]

Continual
learning

continually
new concepts

A stream
of data

with new
concepts

1-100s
over time

–

Learn to
classify new

concepts as they
are encountered

[Parisi et al., 2019]
[Chen and Liu, 2018]

[Kirkpatrick et al., 2017]
[Rebu� et al., 2017]

Active
learning

to select
the right
samples

A small
dataset &
unlabelled

data

1-100 Many

Select the
right samples
to label for
a dataset

[Settles, 2009]
[Ren et al., 2021]

Table 2: Overview of methods for learning with limited data.

Most methods use a DNN as image encoder and one of three major approaches to adapt
it for each episode. In metric learning, no explicit adaptation happens, but the model
applies a metric it learned during pre-training to classify the novel categories [Chopra
et al., 2005; Koch et al., 2015; Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018;
Chen et al., 2019b]. Therefore, the samples of the new categories and the test samples are
usually encoded with the same network (often referred to as Siamese encoding [Chopra
et al., 2005; Koch et al., 2015]) and the predicted category is chosen as that of the closest
sample [Koch et al., 2015] or class prototype [Snell et al., 2017] as measured by the metric.
In meta-learning, the objective is to learn how to learn from few examples [Finn et al.,
2017; Santoro et al., 2016; Ravi and Larochelle, 2017; Nichol et al., 2018]. Instead of fine-
tuning a trained model, the whole training and fine-tuning process is optimized jointly to
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get a model that can quickly adapt, and this model is then trained on the new samples
in each episode. In transfer learning, a model trained on the training categories is
fine-tuned on the new training data of each test episode [Dhillon et al., 2019; Kolesnikov
et al., 2019]. The di↵erence to meta learning is that the optimization used for fine-tuning is
usually much simpler. While transfer learning was usually done with hundreds of examples,
powerful models and pre-training strategies allow the same approach to succeed if only a
handful of samples are available.

3.2.2 State-of-the-Art

At the time I started with the research for this dissertation, only a handful of methods
for few-shot learning existed [Lake et al., 2015; Koch et al., 2015; Santoro et al., 2016;
Vinyals et al., 2016]. The repertoire quickly expanded, first establishing the main principled
methods, such as learning prototypes [Snell et al., 2017] and meta-learning [Finn et al.,
2017]. Later methods became increasingly complex, but most of the progress was related
to better training methods [Chen et al., 2019b; Dhillon et al., 2019], rather than deeper
insights or actual learning to learn [Raghu et al., 2020]. With the same training strategies,
simple baselines perform as good or better than previous state-of-the-art models [Chen
et al., 2019b; Dhillon et al., 2019; Chen et al., 2021b; Tian et al., 2020; Wang et al., 2019c].
While the field has not moved too far in the initially studied inductive setting, where
images are classified one by one, a lot of development happened in a new transductive
setting [Liu et al., 2019], where a batch of images is evaluated at once. In this setting, the
internal data structure of the batch can be used to form clusters and better approximate
the data manifold [Kim et al., 2019; Hu et al., 2021; Requeima et al., 2019; Bateni et al.,
2020].

3.2.3 What is Missing?

In 2017, when I started the research for this dissertation, object recognition models had
become quite good and were able to identify and localize objects even in challenging scenes,
but they still require thousands of samples per category for training. At the same time,
research in few-shot learning had demonstrated some potential, but challenging real-world
benchmarks were missing. The one-shot object detection benchmarks in this dissertation
were developed to bridge this gap. They require models to solve di�cult recognition prob-
lems, while at the same time being flexible enough to handle new categories.

3.3 A New Task: Visual Search

There are many possible tasks conceivable for one-shot object detection. The benchmarks
in this part of the dissertation all follow a common visual search task: Given an image of
an object (the reference), localize all objects of the same type in a separate image showing
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Figure 2: One-shot object detection as visual search: Given the image of a zebra,
find all zebras in a scene. Given an image of a gira↵e, find all gira↵es.

a larger scene (the scene). There are many ways to realize such a search task and the
benchmarks in this dissertation focus on three characteristics: First, the objective is not
to find the identical object but rather objects of the same category. So for example, given
an image of a zebra called Marty, the goal is not to detect just Marty but all zebras. Sec-
ond, the scenes should be complex to model the human visual experience of seeing large
scenes in which it is necessary to focus on the relevant details (something which humans
do very successfully on that note). Third, the answer should be the precise location or a
segmentation of each object.

This specific task design has a few goals. First of all, it should be suitable to measure
detection of novel objects. Because the task is defined through a reference image, this can
easily be achieved by showing reference images of novel objects at test time. Then, the
task should be close to our human experience. The setup with a scene image which can
contain objects known from training as well as other unknown objects and background
fulfills this requirement much better than previous few-shot learning tasks. In fact, the
task was directly inspired by the popular children book Where is Waldo, a hidden object
game where the goal is to identify the fictitious character Waldo. Finally, the task should
be challenging, so it can be used to explore the boundaries of what current models can
achieve and where they fail. While few-shot learning and object detection are di�cult
on their own, their combination makes the task challenging. Inferring which category to
detect from the reference requires strong inductive biases, especially on what constitutes
an object and a category. This makes the task a good opportunity to investigate from a
di↵erent angle what current object recognition models do and do not learn.
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A number of di↵erent benchmarks building upon this task are introduced in the publica-
tions in this part of the dissertation. These vary in the kind of objects (characters and
natural objects) and their specific goals (focusing more on detection or segmentation) but
all share the same basic structure and objective.

3.3.1 Relationship to Object Recognition and Few-Shot Learning Tasks

The visual search task is closely related to the existing object detection and segmentation
tasks. The main di↵erence is that instead of having a fixed set of pre-defined categories, a
reference image is shown to determine the category of interest. Therefore, the datasets and
metrics can mostly be kept, and only the evaluation procedure has to be changed. The
benefit of the reference based evaluation is that where typical object detection systems
have to be trained with thousands of examples per category, it allows the trained models
to be applied to novel categories simply by showing a corresponding reference image.

Compared to the typical task design in few-shot learning, the visual search task has a
number of di↵erences. While the evaluation is still episodic, each episode now is the search
of one type of object within a scene. This does not only require methods to identify objects
within a scene, but also means that at test time, objects of known and novel categories
co-exist in a scene. This makes the problem significantly harder because a model may be
biased towards the known categories from training. Additionally, the goal is to use full-size
scene images, rather than downsized samples. This does not only make the task harder,
but results are also much more directly applicable to real-world computer vision problems.

3.3.2 Relationship to Other Tasks

The visual search task is not only related to object detection and few-shot learning, which
it directly adds onto, but also to a number of other tasks.

The first related task is retrieval, the task of retrieving matching images from an image col-
lection [Niblack et al., 1993; Smeulders et al., 2000; Sivic and Zisserman, 2003; Sharif Raza-
vian et al., 2014]. It has well known applications in reverse image search [Google Inc., 2020;
Jing and Baluja, 2008; Hu et al., 2018a] or fashion and shopping applications [Jing et al.,
2015; Zhang et al., 2018; Yang et al., 2017]. Like the task here, the objective is searching
images using visual examples. However, there are two major di↵erences. The first dif-
ference is that the majority of existing benchmarks addresses particular object retrieval,
identifying the same object in di↵erent images. For example, finding images of a specific
building or product [Philbin et al., 2007, 2008; Oh Song et al., 2016]. In contrast, the search
task defined here addresses categorical retrieval, identifying objects of the same category.
For example, finding all chairs given an image of a chair. The second di↵erence is that the
focus of the visual search task is on localization of multiple objects within complex scenes,
while most retrieval benchmarks evaluate the ranking of the top retrieved examples. This
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additionally requires models to localize objects within scenes, and forces them to make a
decision for each object if it is from the reference category instead of only predicting a
relative ranking between objects. These two di↵erences make the task quite di↵erent from
most current retrieval benchmarks, despite having a very similar core structure.

The next two closely related tasks are co-localization [Sivic et al., 2005; Grauman and
Darrell, 2006] and co-segmentation [Rother et al., 2006], localizing or segmenting common
objects in two or more images. These tasks were designed with the goal to learn object
detection and segmentation with little to no supervision. While this is very similar in spirit
to the goal of the task discussed here, the approach is quite di↵erent. In the search task,
the object of interest is explicitly specified in the reference image, while the co-localization
tasks require models to identify the common object. Having to discover the common ob-
ject requires the data to be selected such that it has well-defined correspondences. This
does not scale to large images and many categories, and as a result co-localization and
segmentation models can only be applied to object centric images [Fergus et al., 2003;
Shotton et al., 2006; Batra et al., 2010; Rubinstein et al., 2013] or pre-select image pairs
[Li et al., 2018; Hsu et al., 2019]. In contrast, the visual search task is designed to learn
generalization to new concepts after training. It requires annotations during training, but
the trained model can later be applied to detect objects of novel categories in any image
collection.

The last related task is tracking of objects in videos [Yilmaz et al., 2006; Kalal et al.,
2011; Wu et al., 2013; Bernardin and Stiefelhagen, 2008; Milan et al., 2016]. Like in
retrieval, this is a correspondence problem between two views of the identical object, not a
categorical relationship task. But the major di↵erence is that the videos contain temporal
information with strong inductive biases. As a result, even the quite related task of one-
shot video object segmentation [Perazzi et al., 2016; Caelles et al., 2017, 2019] is in fact
quite di↵erent from the problems discussed here.

3.3.3 Parallel Work

In parallel to our work, a number of other one-shot and few-shot object detection tasks
emerged. They fall roughly into three categories: 1. Episodic tasks which are evaluated
on n-way, k-shot episodes as done in traditional few-shot learning [Dong et al., 2018; Chen
et al., 2018; Schwartz et al., 2019; Wu et al., 2019a]. 2. Transfer tasks that require adapting
a detector to a new dataset, with very few examples [Dong et al., 2018; Chen et al., 2018].
3. Continual learning tasks where an existing detector is extended to cover additional cat-
egories [Kang et al., 2018]. Each of these tasks has a di↵erent focus and di↵erent strengths
and weaknesses. The visual search task is the most flexible because the model can directly
be applied to novel scenes and objects by providing respective scene and reference inputs.
But it has a number of drawbacks, discussed in the next section.
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Researchers are used to having a single task to focus on [Dehghani et al., 2021], but the
variety of problems studied in few-shot object detection is an opportunity, because as the
following sections will show, a single task and benchmark can never su�ciently approximate
all aspects of a capability. However, while it would have been very interesting to study
the di↵erences between these tasks, I here focus only on the visual search task. This focus
on a single task design allows for deeper discovery into the e↵ect data has on learning and
identifying core aspects of the capabilities of object recognition and few-shot learning.

3.3.4 Advantages and Limitations of the Task

Realizing one-shot object detection as visual search has a few advantages. Models can be
evaluated on any new category at test time simply by providing an appropriate reference
image. This overcomes a key limitation of almost all standard object detection models,
that are trained to recognize a fixed set of categories. Visual search is also a typical prob-
lem that humans experience, for example when searching for lost keys or a new gadget.
This makes it intuitively understandable, which in turn can help to analyze errors models
make. Finally, it is more challenging than existing object detection and few-shot learning
tasks. Models trained and tested on it must have a good general representation of objects
and scenes, two aspects of human vision that current models struggle with.

But the task design also has limitations. The first is that the task is not well-defined.
While the di↵erence between a co↵ee maker and a zebra is clear, the di↵erence between a
zebra and a horse is less clear. If the task is to separate kitchen appliances from animals,
the horse, and the zebra belong to the same category. However, if the task was more
fine-grained, the horse and zebra would likely belong to di↵erent categories. The issue
with the task setup is that a model can learn this only implicitly from the categories used
during training. But for many objects, especially if categories become more fine-grained,
the di↵erence is not obvious. To fix this issue, the category would have to be specified
explicitly, for example by providing the word horse or animal with the image of a horse.
However, while perfect performance is likely not possible with this task setup, humans
have a strong intuition even in such situations and the task is designed to measure this
capability rather than evaluating the ability to reproduce some objective truth.

The second limitation is that models trained for the visual search task alone lack a few
components to make them useful for most applications. They would likely require a way
to classify known objects without relying on an explicit reference and a continual learning
component that enables adding novel objects to the known objects over time. Both of
these can be added relatively easily, but are left out here to keep the task as simple as
possible and allow focussing on understanding how models recognize objects and few-shot
learn.
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3.4 One-shot Segmentation in Clutter

Claudio Michaelis, Matthias Bethge, Alexander S. Ecker; ICML 2018

The project was initiated by A.E. and M.B. and led by C.M. and A.E.. All experiments

were designed and conducted by C.M. with input from A.E.. C.M. and A.E. wrote the first

draft and designed the figures with input from M.B.. All authors contributed to the final

version and provided critical revisions from di↵erent perspectives.

Target

One-shot segmentationA
Scene Segmentation

Figure 3: One-Shot segmentation task [Michaelis et al., 2018a]

3.4.1 Motivation

The goal of this study was to create a few-shot learning benchmark that requires to learn
an understanding of objects. The existing benchmarks Omniglot [Lake et al., 2015] and
miniImageNet [Vinyals et al., 2016] present objects in separate images and require a model
to sort them into one of five or twenty categories. This is very di↵erent from human
experience where objects are usually embedded into the surrounding and to identify some
specific object, it may be necessary to check for a number of objects if they are what is
sought. This is a significantly harder challenge because it requires separating the objects
in a scene from each other and making a separate choice for each of them. Therefore, the
goal was to create a benchmark where scene complexity can be precisely controlled by the
amount of background clutter. And to develop models, with which we could investigate
how scene complexity impacts one-shot segmentation performance.

3.4.2 Benchmark

In this study we defined the first instance of the visual search task (Section 3.3), one-shot
segmentation on cluttered Omniglot : Segment a target character, specified by a reference
image, from a larger scene (Figure 3). We created cluttered Omniglot by placing between 4
and 256 strongly augmented and randomly colored characters from Omniglot into a scene
(Figure 4). The target character is specified through a separate reference image, and the
segmentation of the scene is provided as the label. The metric is the segmentation quality
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of the character in the scene. We used 30 of the 50 alphabets in Omniglot to create the
training dataset and the other 20 to create the test set.

Target

4 8 16 32 64 128 256

Figure 4: clutteredOmniglot [Michaelis et al., 2018a]

3.4.3 Results

To tackle the problem, we built a baseline model by combining a popular segmentation
model (U-Net [Ronneberger et al., 2015]) with a popular few-shot learning method (Siamese
Networks [Koch et al., 2015]). This Siamese-U-Net generalizes very well to novel categories
and performs almost the same for novel characters as it is for characters known from train-
ing. However, while it performs almost perfectly in simple scenes, performance quickly
drops o↵ when clutter increases.

What causes this performance drop? There are two possible explanations: The model can
fail to properly segment the characters, or it can fail to recognize the right character among
the large number of other characters. To distinguish between these hypotheses, we simpli-
fied the task by extracting the individual characters from the scene, turning it into a set of
between 4 and 256 individual images each showing a single character. Without background
clutter, a standard Siamese network trained to identify the target character among them
performed almost perfectly, even in the most di�cult case with 256 characters. However,
when background clutter is kept, the model’s performance dropped as clutter increased.
This shows that identifying the correct character among many characters is much easier
than separating the characters from the background.

Building upon this insight, we created a background masking model MaskNet which first
extracted a set of candidate characters and then decided which is the correct one. This
“Segment first, Decide later” approach indeed boosts performance in cluttered scenes, but
cannot close the gap to the pre-segmented model.

3.4.4 Discussion

There are two things that are surprising in our results: The first is that all models per-
formed almost as well on novel characters as on those they knew from training. This is good
news, because it indicates that they learned a solution which works for all objects, not just
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those in the training set. However, this may be not surprising since Omniglot characters are
relatively simple and the standard Omniglot few-shot learning benchmark is mostly solved.

The second surprising finding is that the presence of background clutter poses such a big
challenge. This is especially surprising because characters can easily be told apart by color
(each character has a unique and uniform color) and therefore indicates that there are
significant issues with the general assumption that CNNs decompose scenes into objects
[LeCun et al., 2015; Kriegeskorte, 2015]. The cause of this is hard to determine, but one
reason could be the purely feed-forward structure of CNNs. It is known that the human
brain uses a lot of attention and recurrence in its processing, and using similar mechanisms
may improve model performance. Evidence for this hypothesis is provided by our MaskNet

model, which mimics a form of object based attention [Treisman and Gelade, 1980] and
performs better when facing clutter. Similar results have been found by Mnih et al. [2014]
and Spoerer et al. [2017], who show that recurrent models perform better than traditional
feed-forward models on another clutter task. However, a large gap remains between the
ability of MaskNet and the pre-segmented model at localizing the target character.

3.5 One-shot Instance Segmentation

Claudio Michaelis, Ivan Ustyuzhaninov, Matthias Bethge, Alexander S. Ecker; ArXiv 2018

The project was initiated by C.M. and A.E. and led by C.M.. A.E., C.M. and M.B. defined

the task and shaped the direction of the study. The Faster R-CNN model was conceptu-

alized by C.M. and A.E. and implemented by C.M.. The experiments were designed and

conducted by C.M. and I.U. with input from A.E. and M.B.. C.M., A.E. and I.U. wrote

the first draft and designed the figures with input from M.B.. All authors contributed to

the final version and provided critical revisions from di↵erent perspectives.
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Figure 5: Comparison between classical one-shot learning tasks and the new one-shot
instance segmentation benchmark on COCO. Predictions from our model.[Michaelis
et al., 2018b]
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3.5.1 Motivation

Key to the success of CNNs is their ability to handle complex natural images. Therefore,
after studying a highly controlled setup in cluttered Omniglot this study focuses on real-
world scenes. At the time, a similar type of task had been studied on Pascal VOC [Shaban
et al., 2017] and on ImageNet Detection [Schwartz et al., 2019]. But both of these datasets
contain on average only objects of a single category (see Table 1 in Section 3.1), and there-
fore models can perform reasonably simply by selecting the foreground object(s) [Michaelis
et al., 2020]. After seeing CNNs struggle to identify objects in cluttered Omniglot, the goal
was to create a real-world benchmark with multiple objects per scene that is challenging
enough that models can not rely on a simple trick.

3.5.2 Benchmarks

We defined two new benchmarks, one-shot object detection and one-shot instance segmen-
tation (Figure 5). As dataset, we selected COCO [Lin et al., 2014] because the complexity
of the scenes means there is no single foreground object. The objective was the same as for
the standard object detection and instance segmentation tasks, but instead of classifying
each object into one of 80 categories, they had to be classified whether they were from the
same category as the object in the reference image. That reference image was a random
instance from another image, which was cropped tightly out of the respective scene. To
test one-shot generalization, the dataset was split into four subsets of 20 categories and
for each of these subsets a model was trained without using annotations for the categories
in the respective subset. As the final metric, we used the standard AP50 metric common
in object detection by assigning the detections for each reference to the corresponding
category.

3.5.3 Results

To evaluate the di�culty of the task, we combined the state-of-the-art instance segmen-
tation model (Mask R-CNN[He et al., 2017]) with the same few-shot learning model used
before (Siamese Networks [Koch et al., 2015]). We find that performance on the object de-
tection and instance segmentation benchmarks is very similar, with instance segmentation
being slightly harder. For both tasks, performance on novel categories was significantly
lower than for the training categories. A qualitative analysis revealed that the Siamese
Mask R-CNN model generates good segmentation masks and bounding box estimates,
but predicts a lot of false positives. Finally, an analysis of the performance on images
with di↵erent numbers of objects revealed that performance dropped in scenes with more
objects.
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3.5.4 Discussion

This study had two clear insights: 1. One-shot generalization is challenging in natural
scenes. 2. Classification rather than segmentation is the main issue. These results are
almost exactly opposite to what we found on cluttered Omniglot. How can this be?

To understand why generalization is so much harder, two factors appear logical. First the
objects are much more complex with two instances of a chair or a person being visually
much further apart than two characters despite strong data augmentation in cluttered Om-

niglot. Second, the number of categories in COCO (80) is significantly smaller than in
Omniglot (1623). In combination, there is less diversity in the categories that are used to
learn a more challenging problem, making memorizing the categories a much more attrac-
tive solution. This view is consistent when comparing our results with those of Schwartz
et al. [2019] who observe a much smaller performance gap between novel and known cat-
egories in their ImageNet task. Like cluttered Omniglot they use more categories (100)
from a much smaller set of concepts (animals only) while additionally using much simpler
images which usually contain only a single foreground object.

The second question, why segmentations looks surprisingly good, is harder to answer. For
one, while natural images are highly complex, they have a less cluttered appearance than
cluttered Omniglot because objects have relatively convex shapes and do not overlap as
much. Additionally, by using the state-of-the-art instance segmentation model, we were
able to harness all the domain knowledge which is integrated into these models. This could
also explain the surprising quality not only of the bounding boxes but also of the segmen-
tation masks: Mask R-CNN segments the predicted bounding boxes, making the problem
significantly easier than segmenting the whole scene.

3.6 A Broad Dataset is All You Need for One-Shot Object De-
tection

Claudio Michaelis, Matthias Bethge, Alexander S. Ecker; ArXiv 2020

The project was initiated by C.M. and A.E. and led by C.M.. A.E., C.M. and M.B. shaped

the direction of the study. The experiments were designed by C.M. and A.E. and con-

ducted by C.M.. C.M. wrote the first draft and created the figures with input from A.E..

All authors contributed to the final version and provided critical revisions from di↵erent

perspectives.
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Figure 6: Relative performance in one-shot object detection increases with the number
of training categories [Michaelis et al., 2020]

3.6.1 Motivation

In the two previous studies, we found seemingly contradicting results. On cluttered Om-

niglot [Michaelis et al., 2018a] models perform almost as well on novel characters as they do
on known characters, while on COCO [Michaelis et al., 2018b] there is a large generaliza-
tion gap. The goal of this study was to better understand this di↵erence. As hypothesized
in the previous section, the ratio of object complexity to the breadth of categories could be
the reason for this e↵ect. Therefore, in this study, we increased the number of categories
in the one-shot object detection task by introducing new benchmarks that use broader
datasets.

3.6.2 Benchmarks

We defined two new benchmarks using the same task and metric as in one-shot object de-
tection [Michaelis et al., 2018b] but on datasets with a broader set of categories: Objects365
[Shao et al., 2019] and LVIS [Gupta et al., 2019] with 365 and 1203 categories respectively.
As for COCO, we split the categories for these datasets into four equal subsets and follow
the same training concept to be able to evaluate the detection of novel categories. For
LVIS we defined four additional subsets, leaving out all categories that correspond to each
of the COCO subsets, to be able to use LVIS as a training dataset for the COCO task.

3.6.3 Results

We found that the number of categories plays a crucial role in generalization. On COCO,
performance on novel categories was on 45% of that on known categories. This relative
performance improved to 76% on Objects365 and to 89% on LVIS. In other words, the
model was able to detect novel categories almost as well as known categories on LVIS.
While the exact numbers vary slightly, this e↵ect was consistent across a range of models
and model variations. A systematic study training with only a fraction of categories or
instances verified that the number of categories was the key factor and more important
than the raw number of samples.
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This closing of the generalization gap also led to qualitative changes. On COCO, more
powerful models or longer training times primarily improved performance for known cat-
egories and almost not at all for novel categories. On LVIS and Objects 365 the same
changes increased performance on novel categories as well. The smaller the generalization
gap was, the more the improvements also transferred. Training with the additional cat-
egories in LVIS also improved performance on COCO and allowed us to achieve a new
state-of-the-art performance for one-shot object detection on COCO.

3.6.4 Discussion

The key insight of our study is that the breadth of the training dataset is the main factor
that determines how well a model generalizes to novel categories. Therefore, in settings
in which broad datasets with many categories are available, few-shot learning may have a
surprisingly simple solution. In contrast, algorithmic methods may play less of a role, as
a comparison between our simple baseline trained on a larger dataset and more complex
models [Hsieh et al., 2019; Chen et al., 2021a] shows. And our results indicate that once the
generalization gap is closed, most improvements in detection performance directly transfer
to novel categories, simplifying the problem from detection and generalization to mostly
detection.

This finding that one-shot generalization depends to a large extent on the breadth of the
dataset used for training is supported by other studies that found similar e↵ects in few-shot
learning [Sbai et al., 2020; Jiang et al., 2020] and one-shot semantic segmentation [Lud-
decke and Ecker, 2021]. The same principle is behind breakthrough results on one-shot
ImageNet [Kolesnikov et al., 2019], zero-shot ImageNet [Radford et al., 2021; Jia et al.,
2021] and few-shot generalization in natural language processing tasks [Brown et al., 2020],
all of which results were achieved by a combination of training on larger datasets and scal-
ing up model size. Kolesnikov et al. [2019] even confirms our finding that only once the
dataset reached a su�cient size, additional model capacity benefits generalization.

Thus, if possible, pre-training on broad datasets seems to be su�cient for successful few-
shot learning. But a few questions remain. How far does the generalization gap close
with even more categories? Does it eventually vanish completely? And is simply the num-
ber of categories relevant, or are specific categories more helpful? Studies by Sbai et al.
[2020] and Jiang et al. [2020] indicate that semantically related categories are more helpful
than unrelated ones. And Meta-Dataset [Triantafillou et al., 2020] showed that domain
shifts, such as going from natural images to sketches, are relevant even for models trained
on very broad datasets [Dumoulin et al., 2021]. Finally, what influence does the granular-
ity of categories have? Are fine-grained tasks easier or harder [Wertheimer and Hariharan,
2019; Schwartz et al., 2019], and what happens when sub- or super-categories are included?
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Going forward, the field of few-shot learning will likely require a variety of harder, more
realistic problems. Some of them may require new methods, but for most of them the so-
lution may be much simpler than expected a few years ago. The thought is quite exciting
to have pre-trained models that are excellent few-shot learners to build upon. In natural
language processing, this paradigm is already well established with GPT-3 [Brown et al.,
2020]. Of course, one may question if using a model pre-trained on a large dataset can
still be considered few-shot learning. But compared to humans, who can rely on broad
world knowledge when few-shot learning, this is probably fair. Morgan [1989] estimate
that children hear 4.2 million sentences until the age of five. Maybe, but here I wander
into the realm of speculation, generalization is not that di�cult to achieve after all, but
comes naturally when trying to make sense of a complex world.
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4 Part II: Connecting Surprising Model Failures

This part of the dissertation broadens the view to investigate whether surprising model
failures in di↵erent areas of machine learning can be explained by shortcomings in the
respective benchmarks. The next section provides an overview of a number of model
failures that have been puzzling researchers (Section 4.1). Then I summarize a publication
(Section 4.2) that identifies shortcut learning, models exploiting a mismatch between the
precise benchmark objective and the desired broad capability, as the underlying cause
behind many of these failures. The full length paper can be found at the end of the
dissertation.

4.1 Generalization Failures

In most benchmarks, train and test data are created from the same distribution by ran-
domly splitting the samples. This setting is usually called i.i.d., because in the samples
in the train and test set are independent and identically distributed. Most benchmarks
only evaluate i.i.d. performance, and most of the recent progress in model performance is
assessed with this kind of measure.

But when tested outside their training distribution, these models often fail. Computer
vision models are derailed by small amounts of noise or distortions [Geirhos et al., 2018;
Hendrycks and Dietterich, 2019; Engstrom et al., 2019; Michaelis et al., 2019]1 or rely only
on image background [Beery et al., 2018; Shane, 2018; Xiao et al., 2021] (1st column in
Figure 7). Question answering methods only use the last sentence of a question for the
answer, even if the information in that sentence is irrelevant [Lapuschkin et al., 2019] (4th
column in Figure 7). Reinforcement learning algorithms learn to cheat [Lehman et al.,

1I co-authored [Michaelis et al., 2019], but did not formally include it in this dissertation.

Problem
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Changes answer if irrelevant
information is added

 

Recognise object

Hallucinates teapot if cer-
tain patterns are present

Uses features irrecogni-
sable to humans
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recognise primary object

Article: Super Bowl 50
Paragraph: “Peython Manning became the first quarterback 
ever to lead two different teams to multiple Super Bowls. He 
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Broncos to victory in Super Bowl XXXIII at age 38 and is 
currently Denver’s Executive Vice President of Football 
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Question: “What is the name of the quarterback who was 38 
in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Shane `18 Zech `18 Jia `17 

Figure 7: Examples of DNN generalization failures [Geirhos et al., 2020]
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2018], for example, by pausing a game to avoid loosing [Murphy Vii, 2013]. These failures
are not just a research question, but can cause harm in applications. Autonomous driv-
ing algorithms struggle in bad weather conditions [Zhang et al., 2021b; Yurtsever et al.,
2020; Sakaridis et al., 2018; Michaelis et al., 2019; Pitropov et al., 2021] or unexpected
scenarios [Tesla Inc., 2016]. Translation and text generation algorithms reproduce harmful
biases [Prates et al., 2020; Brown et al., 2020; Mehrabi et al., 2021; Barocas et al., 2019].
Tools to screen job applicants reproduce historic inequalities, such as being biased against
women [Dastin, 2018]. And models for medical applications are prone to overfitting be-
cause datasets are small and various strong confounders exist [Zech et al., 2018; Roberts
et al., 2021; Winkler et al., 2019; Narla et al., 2018] (3rd column in Figure 7).

To identify these kinds of failures, models have to be tested outside their training distri-
bution. But this kind of out-of-distribution (short o.o.d) performance is not commonly
evaluated. For some time, the e↵ect was rather the opposite. The diversity of ImageNet
[Russakovsky et al., 2015] and the astonishing results CNNs achieved on it created the
illusion that these models actually figured out object recognition. CNNs quickly mastered
a number of tasks [Sharif Razavian et al., 2014; Donahue et al., 2014; Girshick et al., 2014;
Long et al., 2015] and were even seen as a model of the brain [Yamins et al., 2014; Yamins
and DiCarlo, 2016; Cadena et al., 2019]. But the examples above make clear, that CNNs
are far from achieving the robustness of human vision.

The hypothesis behind this part of the dissertation is that failures in o.o.d. generalization
are not random, but that there is often a common pattern behind di↵erent failures. To
better understand this idea, let us look at two examples, texture bias and adversarial
attacks.

4.1.1 Texture Bias

In Part I of the dissertation (Section 3), a contradictory picture about object recogni-
tion emerged. On the one hand, clutter dominates performance on cluttered Omniglot

[Michaelis et al., 2018a]. On the other hand, the segmentation predictions for the natural
images look reasonably good [Michaelis et al., 2018b]. This is not limited to one-shot object
detection. Algorithms for image classification and object detection perform increasingly
well, even surpassing human performance in some tasks [He et al., 2015a; Shankar et al.,
2020], but fail when a bit of noise or distortions are added to the images [Geirhos et al.,
2018; Hendrycks and Dietterich, 2019; Michaelis et al., 2019]. This points at a knowledge
gap. Which interpretation is correct? Are CNNs good at recognizing objects and simply
struggle with the delicate shapes of the Omniglot characters and extreme levels of clutter?
Or is something going fundamentally wrong in the detection of objects that the strong
inductive biases of Faster R-CNN can cover up in the natural image benchmarks?
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The traditional view is that CNNs integrate edges and corners into parts and then combine
these parts into representations of objects [LeCun et al., 2015; Kriegeskorte, 2015]. How-
ever, this does not match our findings. If a CNN can not even learn to separate a simple
uniformly character from the background, how should it recognize natural objects that are
substantially more complex and have complex textures? The explanation may lie in CNNs
tendency to classify objects by texture instead of shape, as demonstrated by Geirhos et al.
[2019]2.

Texture bias is very interesting because it provides a potential explanation for a range of
issues. Searching a character in cluttered Omniglot, while interpreting the scene as a tex-
ture and not a set of objects, makes the problem extremely challenging. In comparison, the
scenes in COCO are much less cluttered and objects have texture, thus making detection
by texture a potential solution. This view is supported by results from Ustyuzhaninov et al.
[2018] who investigate a one-shot segmentation task that is very similar to the one-shot
object detection task discussed here but instead of an object a texture patch is given as
reference. Even with purely synthetic training data, models can readily segment natural
images with surprising precision. Texture bias could also explain, why CNNs can classify
as well from texture features as they do from all features [Gatys et al., 2015], and why they
can perfectly well classify texturized images [Brendel and Bethge, 2019]. And, why noise
and distortions that change texture much more than shape are such a big issue [Geirhos
et al., 2018; Hendrycks and Dietterich, 2019; Michaelis et al., 2019]. Of course, it is not the
only explanation and recognition does not have to happen via texture. But it provides a
blueprint, how a range of seemingly unrelated problems can be interpreted in the context
of a single issue, providing a potentially simple explanation and opening up new ways to
look at existing issues.

4.1.2 Adversarial Examples

One of the sharpest points of criticisms towards DNNs is the existence of adversarial exam-
ples [Szegedy et al., 2013; Biggio et al., 2013; Carlini and Wagner, 2017; Madry et al., 2018;
Athalye et al., 2018; Brendel et al., 2018]. Adversarial examples are tiny image modifica-
tions which are so small that humans cannot perceive them, but change the prediction of a
DNN (2nd column in Figure 7). So far, no method was found that can make models robust
against this kind of modification, and some argue that the existence of adversarial exam-
ples is proof that something is fundamentally wrong with CNNs [Marcus, 2018]. While
adversarials are still a problem, Ilyas et al. [2019] have shown that the tiny image modifica-
tions are not entirely random. By training a model on adversarially perturbed images and
testing it on normal images they found, that the adversarial perturbations were actually
predictive of the image category, despite being meaningless and mostly imperceptible to us.

2I co-authored this work, but did not formally include it in this dissertation.

36



This mechanism cannot explain all adversarial examples [Nakkiran, 2019], but it exposes
how DNNs can latch onto any feature to make a prediction, even if it is unnoticeable and
inexplicable.

4.1.3 What is Missing?

These two example cases demonstrate that the process by which DNNs make predictions is
not nearly as well understood as one may think. And while some issues have been studied
quite extensively, these e↵orts have usually focused only on one problem in isolation, such
as noise robustness or domain transfer. What is missing is a mental model that connects
all of these failures, a way to think about these failures that goes beyond a specific setting.
The goal of this part of the dissertation is to provide such a mental model by analyzing
the way benchmarks measure capabilities not just for a specific task or field, but across
machine learning.
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4.2 Shortcut Learning in Deep Neural Networks

Robert Geirhos*, Jörn-Henrik Jacobsen*, Claudio Michaelis*, Richard Zemel, Wieland
Brendel, Matthias Bethge & Felix A. Wichmann; Nature Machine Intelligence 2: 665–673

(2020)

The project was initiated by R.G. and C.M. and led by R.G. with support from C.M. and

J.J.; F.A.W. added the cognitive science and neuroscience connection; M.B. and W.B.

reshaped the initial thrust of the perspective and together with R.Z. supervised the machine

learning components. The toy experiment was conducted by J.J. with input from R.G. and

C.M. Most figures were designed by R.G. and W.B. with input from all other authors.

Figure 2 (left) was conceived by M.B. The first draft was written by R.G., J.J. and C.M.

with input from F.A.W. All authors contributed to the final version and provided critical

revisions from di↵erent perspectives.

Version notice: Due to the publisher’s copyright assignment, reprinting the final formatted

and published version is not possible; therefore, the preprint version (arXiv version v4) is

included in this dissertation.

4.2.1 Motivation

The motivation for this study was a simple insight: Many problems in deep learning appear
to follow the same pattern. While ImageNet models are considered learning to recognize
objects, they in fact learn to recognize textures [Geirhos et al., 2019] (Figure 8). While
question answering models are considered learning to answer based on a paragraph of text,
they in fact base their answer only on the last sentence [Jia and Liang, 2017]. While med-
ical AI models are considered learning to classify diseases, they in fact often use spurious
signals, such as a hospital token in an x-ray image [Zech et al., 2018] (Figure 7). All of
these issues are not apparent when these models are tested on i.i.d. test sets, but manifest
themselves in surprising generalization errors. Shape bias makes computer vision models
susceptible to noise, question answering systems can be fooled by adding irrelevant infor-
mation, and medical AI systems fail in practice. This makes models highly unpredictable
and hinders applications.

The goal of this study was to analyze this problem on a systemic level, looking beyond a
specific problem such as texture bias and connecting the common patterns. By establishing
this as a cross-disciplinary issue, we hoped to raise awareness across the machine learning
community and initiate research into the underlying problem rather than patching each
issue individually.
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4.2.2 Analysis

The first part of our analysis was a hierarchy of solutions a model can learn. The first are
non-solutions that fail even on the training data. The second are training solutions such
as memorization that work on the training data but fail on i.i.d. test data. The third are
shortcut solutions that work on i.i.d. test data but not on o.o.d. data that for a human
represents the same task. The last are intended solutions that correspond to learning the
capability that the model is intended to learn.
Many of the issues discussed on the last pages can be interpreted as di↵erent forms of short-
cut learning, learning solutions that only work in the specific context but fail to generalize
to other scenarios. The phenomenon behind shortcut learning is not a new problem, nei-
ther is it a problem just of machine learning. From students that root learn to ace simple
tests without real understanding [Scouller, 1998; Chin and Brown, 2000] to animals which
can fool researchers by using unintended cues [Geirhos et al., 2020], problems can often
be solved in di↵erent ways than those who set them expect and learning agents will figure
these out. But to make sure the recent progress in machine learning research is transferable
to the real world, shortcut learning has to be taken into consideration.

Therefore, the second part of our analysis focused on understanding the origins of shortcut
learning. The first element is the data, which often contains spurious correlations. These
range from simple human interpretable relationships such as image background [Beery
et al., 2018] to imperceptible patterns which carry no information whatsoever for humans
[Ilyas et al., 2019]. The second element is the task design, which can favor simple yet
non-intended decision rules. While forced choice image classification is easy to annotate,
train on, and evaluate, it reduces a complex problem such as object recognition to a simple
choice. If texture features are su�cient to solve this problem and easier to learn than
object shape, it only makes sense for a model to focus on them.
The consequence of this are surprising generalization failures. Models fail in scenarios
which humans expect to be equivalent to what the model encountered during training and
testing. However, these scenarios are out of distribution with respect to some feature the
models learned to use. It is anthropomorphism, our interpretation of solutions in human
terms, that leads us on the wrong track. Conversely, models which appear to be simply
bad at generalization are capable of surprising generalization behaviors that do not make
sense to us [Jacobsen et al., 2018; Brendel and Bethge, 2019; Nguyen et al., 2015] (Figure
8, right).

4.2.3 Discussion

The key insight of this study is that the notions of overfitting and generalization have to be
reconsidered. Traditionally, the term overfitting was mostly used to describe memorization
of training examples that limits generalization to i.i.d. test sets. However, despite their
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Figure 8: Examples of the di↵erent generalization directions of humans and machines.
On the left are examples where humans generalize but machines fail. On the right are
examples where machines generalize but humans fail. [Geirhos et al., 2020]

large parameter count, DNNs overfit little to the training samples and achieve very good
i.i.d. generalization [Zhang et al., 2017]. Where DNNs overfit is on the specific tasks and
benchmarks. Models which perform extremely well on ImageNet fail when noise is added
to the images [Geirhos et al., 2018; Hendrycks and Dietterich, 2019]. This kind of o.o.d.
tasks is where shortcut learning becomes visible.

Based on this analysis, there are three recommendations we make in the publication. 1.
To avoid being surprised by generalization failures, it is important to interpret results care-
fully and distinguish between good performance on a specific benchmark and skill in the
underlying capability. If in doubt, one should take a conservative stance and rather assume
a model learned a shortcut than the intended solution. 2. To detect shortcuts early, it
should become standard practice to test models on a range of o.o.d. tests. These tests will
have to continuously develop alongside models to include newly identified issues and get
rid of redundant tests which are highly correlated. 3. To better understand the origins of
shortcut learning, it will be important to better understand the inductive biases of models.
A key component to consider is the principle of least e↵ort, which describes the tendency
of learning systems to find the easiest solution.

As with most big systemic issues, many aspects of shortcut learning are long known [Ponce
et al., 2006; Torralba and Efros, 2011]. For example, [Torralba and Efros, 2011] demonstrate
that datasets have strong built-in biases by demonstrating that models can easily tell
apart images from di↵erent datasets, and that models trained on one dataset often do
not generalize to other datasets. The author’s message about the limitations of individual
benchmarks and the need to carefully evaluate the value and biases of each dataset ring
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as true today, as they did back when the study was published. But the progress DNNs
enabled on challenging real-world tasks created the illusion of human-like performance [He
et al., 2015a; Wang et al., 2021; He et al., 2020; Esteva et al., 2017; Silver et al., 2016;
Vinyals et al., 2019; Berner et al., 2019] and led to overly optimistic predictions such as fully
self-driving cars within years [Kaufman, 2014; LaFrance, 2015; Kalanick, 2015; Ross, 2016;
Hassler, 2016]. As a result, the number of issues and challenges that appeared over time
was surprising for many. After publication, the term shortcut learning quickly caught on in
the community to describe these problems, and a number of publications referred to it to
motivate their research. DeGrave et al. [2021] find that under close investigation, methods
developed to detect Covid-19 from chest radiographs mostly learn shortcuts. D’Amour
et al. [2020] discuss underspecification, the observation that many di↵erent models and
sets of weights can solve the same task, as a central factor behind poor out of domain
performance and shortcut learning. Mitchell [2021] discusses challenges that make AI
research hard and create the illusion of human-like performance in models which are far
from that goal. Hermann and Lampinen [2020] investigate which features are learned
and why. Firestone [2020] argues that understanding the di↵erences between machine
and human cognition requires di↵erentiating between “performance” and “competence”.
Whether as a unifying principle or in the form of the various errors it causes, shortcut
learning has become a central topic in current machine learning research.
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5 Discussion

The central topic of this dissertation is the di�culty of evaluating broad capabilities with
benchmarks, which I investigated from two sides:

In the first part of the dissertation (Section 3), I introduced a new capability, one-shot
object detection, and used it as an example to demonstrate how di↵erent benchmarks
can evaluate very di↵erent aspects of a capability. In the first paper, we introduced a
benchmark with heavily cluttered scenes made out of characters from di↵erent alphabets
[Michaelis et al., 2018a]. We found that the trained models generalized well to novel char-
acters, but struggled with clutter, even though characters could easily be told apart by
color. As a next step, we introduced a benchmark with natural images of typical everyday
scenes [Michaelis et al., 2018b]. In contrast to the first benchmark, detection and segmen-
tation became easier, while generalization to novel categories became harder. Finally, we
used the insight that the dataset in the first benchmark has a lot more categories, and
used datasets with hundreds and thousands of categories, to demonstrated that in natural
scenes good generalization cap be achieved by using a broad training dataset [Michaelis
et al., 2020].

In the second part of the dissertation (Section 4), I broadened the view and investigated
the role of the benchmark-capability gap in generalization failures of DNNs. In the paper
[Geirhos et al., 2020], we identified a common pattern as the source of these generalization
failures, shortcut learning. Using spurious correlations in the benchmark design and data,
models can perform well on the benchmark without learning the underlying capability.
This overfitting to the benchmark happens all across machine learning and leads to brittle
models whose capabilities are hard to predict.

These results show the limits of benchmarks at evaluating capabilities. But they also
demonstrate the potential benchmarks have as a tool for understanding and overcoming
said limitations. Take the four issues mentioned in the introduction (Section 1), all of
which can be better understood in the context of our results: Few-shot learning is mostly
challenging when few the pre-training dataset has few categories and can potentially be
solved with broader datasets (Sections 3.4 - 3.6). Noise and bad weather have such a
strong impact on perception algorithms because they change image texture, on which ob-
ject recognition models overly rely (Sections 4.1.1 & 4.2). And classification by background
is a shortcut in standard image classification benchmarks (Section 4).

In the following sections, I will embed these results into the existing literature, to discuss
more broadly why benchmarking capabilities is so challenging, how benchmarking could
be improved and how investing in better evaluation enables building better models.

42



5.1 Evaluating Capabilities is Hard

Measurement is a key part of science and engineering. Physicists build huge machines to
understand the building blocks of our universe. But any measurement can be invalidated
by errors. A single incorrectly plugged in optical fiber led to a measurement that showed
neutrinos moving faster than light, a result that would have contradicted Einsteins theory
of relativity and caused a big stir in the physics community at that time [Strassler, 2012].

In machine learning the main tool of measurement are benchmarks and like in physics
flaws can lead to false conclusions. This can be seen in the first part of the dissertation.
The capability to generalize to novel categories from a single example strongly depends on
the number of categories in the dataset. The same model trained and tested in the same
way but on two di↵erent datasets can have very di↵erent generalization capabilities, as our
experiments on COCO and LVIS show (Sections 3.5 & 3.6). Had we only looked at results
for one of the datasets, we might have misjudged the abilities of our model.

What separates machine learning, and especially AI, from physics is that much of it is con-
cerned with human capabilities. In physics, quantities are usually well-defined and results
can be predicted very accurately from theory. In contrast, capabilities can be hard to de-
fine. Let us take object recognition as an example. Algorithms for image classification and
object detection perform increasingly well, even surpassing human performance in some
tasks [He et al., 2015a; Shankar et al., 2020]. At the same time, they are unable to han-
dle the simple characters in cluttered Omniglot and fail when a bit of noise or distortions
are added to and image [Geirhos et al., 2018; Hendrycks and Dietterich, 2019; Michaelis
et al., 2019]. Which of the following interpretations is correct? Are CNNs good at rec-
ognizing objects and simply struggle with the delicate shapes of the Omniglot characters
and extreme levels of clutter? Or is something going fundamentally wrong that cannot be
measured with the standard image classification and object detection benchmarks (e.g.,
models having a texture bias [Geirhos et al., 2019])? What our results show is, that there
is much more to understand, than the excellent performance of recent computer vision
models on image classification tasks indicates.

That human capabilities are hard to evaluate is not a new insight, and misconceptions have
a long history. Around 1900 the horse “Clever Hans” challenged the existing assumptions
about animal cognition by being apparently able to solve arithmetic problems. A com-
mission of researchers later found that the horse used subtle cues from his trainer, small
changes in posture and movements, which were too subtle to notice. Importantly, these
cues are not downright fraud but partly unconscious reactions of the horse’s instructor, and
it took an extensive investigation to uncover them [Pfungst, 1911]. This is the phenomenon
of shortcut learning the second part of the dissertation discusses (Section 4.2). Like “Clever
Hans” models can latch onto spurious correlations such as background [Beery et al., 2018]
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or texture [Geirhos et al., 2019] in object recognition tasks. Similar errors can be found
all across machine learning. In reinforcement learning, anecdotes about models exploiting
the environment or objective pile up [Lehman et al., 2018], such as the example of a Tetris
agent that learned to survive indefinitely by hitting the pause button [Murphy Vii, 2013].
In natural language processing, these failures have recently even been compared to the
Clever Hans E↵ect [Lapuschkin et al., 2019; Heinzerling, 2020].

The key insight of Geirhos et al. [2020] (Section 4.2) is that this is not an issue of a few
individual benchmarks. Most–if not all–current benchmarks can be solved in unintended
ways. But these issues are often overlooked, because good performance on typical human
tasks is quickly attributed to the model acquiring a capability, a tendency called anthropo-
morphism. Just like Clever Hans fooled the people of his time, models can fool us because
we interpret their behavior in light of our own experiences. Solving this will be di�cult
because evaluating capabilities is notoriously hard. This can be seen in the results in this
dissertation, but it also can be understood from a more principled perspective. In order to
turn broad capabilities into measurable tasks, they have to be constrained in some form.
While the perfect task may exist, normal tasks sacrifice some aspects of a capability and
thus can not cover everything we associate with that capability. In other words, while
capabilities imply meaning to a human, tasks can only measure form [Bender and Koller,
2020]. Therefore, good performance on a task does ensure acquiring the meaning people
assign to it. There is an imbalance, that in the presence of a capability, a task can tell
something about the extent of that capability, but performance on the task alone cannot
prove the presence of the capability. The first recommendation of Geirhos et al. [2020] can
be deducted from this imbalance: One should not assume a model learned a capability
only because it excels on a specific task or benchmark.

Because benchmarks are so central in machine learning, the di↵erence between benchmark
performance and assumed capability has severe consequences. It can lead to wrong es-
timates about the capabilities of methods and the progress of research [Mitchell, 2021].
In applications, it can lead to errors and cause harm [O’Neil, 2016]. And the resulting
problems can directly feed back into development. Often the task and metric define what
is solved and how it is solved [Hardt and Recht, 2021, Chapter 8]. As a result, bench-
marks can become closed worlds where solutions matter only within the context of the
specific benchmark [Torralba and Efros, 2011]. Badly selected benchmarks can result in
solving irrelevant problems [Wagsta↵, 2012]. And even a set of well-designed benchmarks
can potentially be problematic if it limits the diversity of approaches that are explored
[Brooks, 1990]. Incorrect measurement becomes especially problematic when harmful bi-
ases or stereotypes are involved. Whether it is facial recognition models failing to identify
people of color [Buolamwini and Gebru, 2018], text generation models reproducing stereo-
types [Brown et al., 2020] or a hiring tool rejecting women [Dastin, 2018], machine learning
systems can cause harm if their failures and the shortcuts they use are not detected.
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5.2 How to Measure Better?

Designing benchmarks that better evaluate the associated capabilities will require ded-
icated e↵ort. The prevalence of shortcut learning makes clear, that is not su�cient to
evaluate performance on a single benchmark, to predict competence at a capability. But
what is necessary to make better predictions? In Geirhos et al. [2020], we make three
central recommendations (see Section 4.2.3): Interpreting results carefully, testing o.o.d.
generalization and understanding what makes a solution easy to learn. The previous sec-
tion already discussed why any evaluation of a capability requires careful interpretation.
In the following paragraphs, I will discuss how benchmarks and evaluation will have to
change to integrate the other two points.

First of all, the data used in current benchmarks should be scrutinized. Data has a history
of being overlooked [Hardt and Recht, 2021], and research is often more driven by the avail-
able datasets than what is relevant in practice Wagsta↵ [2012]. But in the experiments in
the first part of the dissertation, we find that data matters a lot. What works for synthetic
datasets may not work for natural image datasets and vice versa [Michaelis et al., 2018a,b].
Data also plays an important role in shortcut learning, and improving datasets is probably
the easiest and most e↵ective way to identify and avoid shortcuts. To reduce shortcut
opportunities, datasets should have as few biases as possible [Torralba and Efros, 2011],
especially avoiding harmful biases [Mehrabi et al., 2021; Barocas et al., 2019]. Datasets
and benchmarks should also be improved over time, to address issues that arise in their use
[Beyer et al., 2020; Tsipras et al., 2020; Hardt and Recht, 2021, Chapter 8]. Before being
applied in the real world, methods should be rigorously tested on multiple datasets [Welty
et al., 2019; Bowman and Dahl, 2021; Henderson et al., 2018]. And to detect shortcuts
early, models should be evaluated on o.o.d. generalization tasks by default [Li et al., 2017a;
Michaelis et al., 2019; Yu et al., 2020b; Djolonga et al., 2021; Hendrycks et al., 2021a; Koh
et al., 2021]. To make all of this feasible, new tools will be necessary to develop [Wang
et al., 2020a], document [Gebru et al., 2021] and improve [Gupta et al., 2019] high-quality
datasets. And to make testing models across a range of tasks a standard practice, machine
learning toolkits should evolve to easily allow evaluation on multiple benchmarks.

Another important consideration are the tasks that are used for evaluation. Some shortcuts
can likely be avoided by task design. For example, solving object classification by back-
ground [Beery et al., 2018] is likely much harder in object detection. But new shortcuts will
appear, because even well-designed tasks can not solve the central issue that measuring a
broad capability with a single number is a simplification that is bound to miss important
aspects of the capability. Thus, like with datasets, it is probably a good idea to evaluate
methods on multiple tasks. However, today, most methods are trained and tested on a
single task, because they are developed for a specific task design, and changing the task
design requires changing the method. The typical outcome is, that a small set of tasks be-
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come canonical, while most other tasks are forgotten over time [Dehghani et al., 2021]. The
desired solution would be flexible models that can handle di↵erent tasks by design. Our
Siamese Faster R-CNN model is a step in that direction, because the reliance on a reference
allows applying it to new categories or datasets without retraining (Sections 3.5 & 3.6).
A much bigger step are recent language modes, for which tasks can be specified in the
prompt. Using this mode of evaluation, the static GPT-3 model [Brown et al., 2020] can
be used for all kinds of applications [OpenAI, 2020], ranging from summarization to gener-
ating JavaScript code for user interfaces [Shameem, 2020]. And in computer vision, CLIP
can recognize any category in ImageNet by probing it with a sentence such as “an image
of a zebra” [Radford et al., 2021].

But even with the best data, the best tasks and models that can handle multiple tasks,
running a number of benchmarks will likely never be su�cient to tell if a model acquired a
capability. To have a capability includes being able to apply this capability to new tasks.
And while prompt-based methods can in theory be evaluated on any task, they are in
practice evaluated on the same well known benchmarks, just in a slightly di↵erent setting.
Thus, evaluation will likely have to evolve to include methods that can generate new prob-
lems on the fly. One such task would be the Turing Test [Turing, 1950], in which a person
has a conversation with a machine. The problem with this kind of interactive tests is that
they cannot be easily standardized. To avoid research groups arbitrarily claiming they have
“passed the Turing Test” [Westaway, 2014] it would be necessary to adopt best practices
from areas such as psychology [Nesselroade and Cattell, 2013], but getting statistically sig-
nificant results can be challenging and expensive. In psychology, false positive results from
under-powered studies have become a major issue [Simmons et al., 2011]. Well-designed
transfer tasks will likely become a necessary addition to traditional benchmarks as models
come ever closer to human abilities, but they will have their own challenges and issues.

So far, I discussed how better evaluation practices can help to detect and avoid shortcuts.
But to understand the inductive biases of models and why they learn certain solutions, it
is also important to actively experiment with models. Many of the results in this disser-
tation rely on active analysis. In Section 3.6 we created subsets of datasets with varying
numbers of samples and categories to study how one-shot generalization depends on these
parameters. The cluttered Omniglot benchmark introduced in Section 3.4 was designed
specifically to be able to study the e↵ect of clutter on object identification and segmen-
tation. And the discovery of most of the shortcuts discussed in this dissertation go back
to such experiments. One problem is that it can be hard to design specific experiments.
For example, there are no good measures for clutter in natural scenes [Wolfe et al., 2011;
Rosenholtz et al., 2007], thus making a study of clutter in natural images hard. But, with
some ingenuity and the help of modern data generation tools such as generative models,
very interesting tasks can be created, such as the texture and shape cue conflict task used
to identify the texture bias of CNNs by Geirhos et al. [2019]. While assessing the per-
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formance of methods on a set of standardized benchmarks will remain an integral part
of machine learning research, deep understanding of the methods will require additional
active investigations. This type of investigative work is of course already done, but often
gets less credit than the development of new methods [Rahimi, 2017; Birhane et al., 2021].

While specific developments are hard to predict, the general direction is clear. To move
forward in the face of shortcuts, evaluation will have to take on greater importance. Some
changes will be easy to make. For example, in one-shot object detection and likely for most
few-shot learning tasks, controlling the number of categories used for training is impor-
tant to judge the generalization capabilities of a method. In other cases, changes will be
more di�cult. There are many aspects of robustness, thus while a number of robustness
benchmarks exist [Hendrycks and Dietterich, 2019; Hendrycks et al., 2021b,a], some types
of robustness have surely been overlooked. And for something like adversarial robustness
no fixed benchmark can exist, but benchmarks have to continuously evolve to include the
most recent defense mechanisms [Carlini et al., 2019; Brendel et al., 2019]. In yet other
areas it is unclear, how the desired capability can be evaluated at all. Object recognition
is such a case. While traditional object recognition benchmarks such as ImageNet [Rus-
sakovsky et al., 2015] are susceptible to shortcuts such as texture bias [Geirhos et al., 2019]
or classification by background [Beery et al., 2018], that does not mean that benchmarks
which cover these shortcuts, e.g., by including measures of texture bias [Hermann et al.,
2020], evaluate object recognition. Rather, as our conflicting results on clutteredOmniglot

and COCO show, the extent of CNN object recognition and the way to evaluate it is quite
unclear.

The good news is that the research community has made a similar step before when it
switched from qualitative evaluation on individual images to quantitative evaluation on
datasets [Efros, 2020; LeCun et al., 1998; Martin et al., 2001], and it is doing it again,
addressing many of the above issues. In computer vision, a number of recent studies inves-
tigated the limitations of ImageNet [Recht et al., 2019; Kornblith et al., 2019; Engstrom
et al., 2020; Beyer et al., 2020; Tsipras et al., 2020; Taori et al., 2020; Djolonga et al.,
2021] and proposed new test sets to evaluate robustness [Geirhos et al., 2018; Hendrycks
and Dietterich, 2019; Hendrycks et al., 2021b,a; Barbu et al., 2019]. Many new datasets
were created in the last years [Krishna et al., 2016; Zhou et al., 2017; Gupta et al., 2019;
Kuznetsova et al., 2020; Yu et al., 2020a; Caesar et al., 2019; Wang et al., 2019b; Sun
et al., 2020; Wang et al., 2018, 2019a] and a lot of attention was paid to harmful biases in
datasets [Buolamwini and Gebru, 2018; Prabhu and Birhane, 2021; Mehrabi et al., 2021].
This led to best practices for dataset generation [Hutchinson et al., 2021; Jo and Gebru,
2020], as well as tools to analyze [Wang et al., 2020a] and document datasets [Gebru et al.,
2021]. Projects such as the Robust Vision Challenge [Zendel et al., 2020], which measures
performance on multiple benchmarks, and Dynabench [Kiela et al., 2021], an evolving
benchmark with multiple rounds of new samples, explore new evaluation strategies. And
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the incentives to publish new benchmarks and evaluation strategies grow, with NeurIPS
o↵ering a benchmarks and dataset track for the first time last year [Vanschoren and Yeung,
2021].

Despite these encouraging steps, improving evaluation techniques that encapsulate the un-
derlying capability so well that they can not be fooled by shortcut learning remains a
daunting task. Scrutinizing each result whether it is a shortcut, questioning every bench-
mark, whether it measures what it is supposed to measure, and hunting for possible failures
can appear to be a tedious exercise. Thus, it may make sense to change the question from
how current benchmarks can be improved to what it takes to evaluate broad capabilities.

5.3 Is it Possible to Measure Reality?

What is necessary to develop an evaluation method for broad capabilities? A surprisingly
relevant mental model for this question can be found in the almost 2500-year-old Allegory

of the Cave by Plato [Plato and Reeves, 2004]. It describes a group of prisoners who
are kept their whole life in a cave. They are fixed in their location and all they see is
a shadow play that is performed for them on one of the caves walls. Plato argues that
“what the prisoners would take for true reality is nothing other than the shadows” [Plato
and Reeves, 2004, 515c]. And if one of the prisoners was freed and could leave the cave
he would be confused and blinded by the bright daylight and, at first, “unable to see a
single one of the things now said to be truly real” [Plato and Reeves, 2004, 516a]. Sim-
ilar to how the prisoners in the cave only experience the world through shadow plays,
current object recognition benchmarks rely solely on static 2D images. And like the pris-
oners in the cave who are not be prepared for the real world by the shadow plays, models
fail outside their training distribution. The degree of realism between a shadow play and
a photograph may be di↵erent, but both are representations of reality and not reality itself.

In the previous section, I discussed how current benchmarks could be adapted to reduce
shortcuts and better evaluate the underlying capabilities. In the image of the cave, this
corresponds to creating a more realistic shadow play. But to get rid of most shortcuts
altogether, the solution may be to measure performance in the real world outside the cave.
Many shortcuts that work on the current benchmarks would instantly fail in reality.

But evaluating models in the real world is easier said than done. First, there is the real-
ity gap in the data. Humans experience a physical three-dimensional world that changes
continuously over time. They can interact with this world and experience cause and ef-
fect of their actions, and these interactions shape perception [Grezes and Decety, 2002].
Re-creating the world with all details and across all sensor modalities is a daunting task
that is likely impossible to achieve with current computing resources. To get a sense of
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the scale, consider that most CNNs are trained on images smaller than one megapixel,
while our eyes sample the world with roughly 500 megapixels at 30 Hz. And even if this
kind of processing power was available, a lot of the training and testing process would
likely have to be done in simulators to be e�cient, thus requiring extremely realistic rep-
resentations of reality. Current simulators are far from this level of realism, and models
trained on synthetic data usually perform worse on real data [Tobin et al., 2017]. But
the reality gap is not limited to the data. The tasks humans usually perform are very
di↵erent from typical machine learning tasks, such as image classification. For example,
making co↵ee in the morning requires going through a number of steps, the easiest of
which include detecting the co↵ee maker, co↵ee beans and a mug. The metric is di�cult
as well. Of course, one could just check if the co↵ee was made. But how many mugs can
be broken during the process? How long can it take, and does the co↵ee have to taste good?

This leads to a central challenge: In reality, a lot of things are ambiguous. Of course, most
physical properties are objective, and tasks such as depth estimation have a well-defined
solution in almost all cases. But many questions do not have objective answers. Object
recognition has many aspects that are subjective. A zebra is a zebra, but it is also an
animal, a mammal, a living being et cetera. The same object can have di↵erent function in
di↵erent contexts. In many cases, this hierarchical structure can be evaluated by accepting
all the above answers. But what about attributes. Stripes are stripes, but what is a cute
zebra in a zoo can be a very problematic zebra in your kitchen. Many attributes depend on
context and can vary from person to person. It is not even always clear, what constitutes
an object. The zebra is an object, but so is its head, ear, and each single hair in its fur.
Any type of semantic labelling has ambiguities that stem from the fact that our definitions
can vary and depend on context. Humans are excellent at handling these ambiguities, and
therefore it is a reasonable goal to develop models which can do the same. But measuring
if models achieved this goal will be a challenge. And the problems do not stop there. Being
able to solve numerous ambiguous tasks is not enough to master reality. If you encounter
a zebra in your kitchen on the way to the co↵ee maker, you suddenly face a number of
new tasks, many of which you likely have never done before. As discussed in the previous
sections, solving new tasks is a crucial element of measuring deep understanding, because
almost any fixed task can be solved by a shortcut. However, designing a measurement
system which can generate infinitely many reasonable tasks is a challenge whose di�culty
is hard to predict.

While some of these issues may be overcome with engineering and improvements in com-
puter power, there are also fundamental issues with modelling reality. Sometimes repro-
ducing reality is not desired, especially when data has known biases, such as for example
past hiring decisions which are usually biased towards hiring men [Dastin, 2018]. In other
cases, learning the exact solution may be ine�cient or not even possible. Shortcuts can
be helpful to save energy in case where a true solution is not needed or not obtainable.
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Often simple solutions are great as long as their limits are known. Newton’s mechanics are
superior to quantum mechanics at describing the movement of planets, but not suited to
describe the behavior of electrons and atoms.

As the above points show, measuring reality is at best not trivial and at worst impossible.
But it can serve as a guiding system for developing new forms of measurement. Bench-
marks are one way to make reality measurable by taking a fixed sample of data points from
reality with clearly defined labels. To make progress from there, the first steps may be to
make the data more real or to add some of the flexibility reality requires into the task. This
can be quite similar to the recommended made in the previous section. The central point
I want to make is not that the only solution is to measure reality, but that it is important
to keep the goal of measuring reality in mind, when developing new methods of measure-
ment. Ultimately, the objective is a question of trade-o↵s. Humans are surprisingly good
at handling tradeo↵s, contradictions and ambiguities, therefore building models which can
handle them is a reasonable goal. But, developing evaluation methods and models which
can handle these tradeo↵s will be a challenge.

5.4 How to Build Better Models?

The discussion in the last sections has made clear that current benchmarks are far from
measuring human-level capabilities. This leads to all kinds of issues because it allows mod-
els to learn shortcuts instead of acquiring the underlying capability. So it is clear that the
limitations of current benchmarks are at least partly responsible for the current human-
machine gap. But what is their role in closing this gap?

The results in Michaelis et al. [2020] (Section 3.6) demonstrate, that careful analysis of
benchmark results can help identify which changes are necessary to overcome shortcomings
of existing methods. This principle is especially applicable in the case of shortcut learning.
Once a shortcut is identified, targeted solutions can be developed. For example, Geirhos
et al. [2019] find that image augmentation using style transfer [Gatys et al., 2016], which
exchanges the texture features in an image, leads to models with a shape bias. But iden-
tifying and blocking shortcuts one-by-one will likely fail. There are usually a number of
shortcuts present, and closing all of them may quickly turn into a “Whack a Mole” situa-
tion. Even if a shortcut has been identified and blocked it is not given, that this solution
performs better in other settings [Hermann et al., 2020]. And a model that does not make
certain mistakes is not the same as a model which has acquired the underlying capability.
But through evaluation and careful analysis can still lead to improvements, if they help to
identify larger patterns. Using style transfer as a data augmentation does not only induce
a shape bias, but also reduces the impact of other image distortions, which usually a↵ect
textures much more than object shape [Geirhos et al., 2019; Michaelis et al., 2019]. And

50



using a broad dataset for training does not only make it harder to memorize the training
categories, but also provides the model with additional context, which the model can use
to better understand the world [Michaelis et al., 2020; Kolesnikov et al., 2019].

But there is an alternative direction that proved very fruitful in recent years, and that
is simply scaling up models and datasets. This idea that simply scaling up models and
datasets may deliver better results than understanding and solving fundamental problems
has been called the “bitter lesson” of AI research [Sutton, 2019]. That more data is a
powerful way to improve models is long known, and is sometimes called the unreasonable
e↵ectiveness of data [Halevy et al., 2009; Sun et al., 2017]. But recently, breakthroughs in
self-supervised learning [Oord et al., 2018; Chen et al., 2020a; Devlin et al., 2019; Radford
et al., 2019] and model architecture [Vaswani et al., 2017; Kolesnikov et al., 2019; Liu et al.,
2022] allowed training models of unprecedented scale on datasets of unprecedented scale
[Devlin et al., 2019; Brown et al., 2020; Radford et al., 2021; Jia et al., 2021; Ramesh et al.,
2021; Baevski et al., 2022]. These do not only outperform all previous methods on standard
benchmarks, but are also more robust and excel at few-shot generalization [Djolonga et al.,
2021; Taori et al., 2020; Kolesnikov et al., 2019; Brown et al., 2020; Radford et al., 2021; Jia
et al., 2021]. Scaling has been shown to solve issues such as classification by background
[Kolesnikov et al., 2019]. It can facilitate long term planning in reinforcement learning
[OpenAI, 2018]. And it led to zero-shot language models which can perform new tasks
simply by providing the right prompt [Brown et al., 2020]. The relationship between data,
model size, training compute and performance is so clear, that they can be described with
exponential “scaling laws” [Kaplan et al., 2020; Henighan et al., 2020]. In its extreme, this
has led to the formulation of the scaling hypothesis [Gwern, 2020]: Simply scaling models
and data will lead to human level intelligence.

The question is how far this can go? So far, even the biggest models trained on the largest
datasets still take shortcuts [Bommasani et al., 2021]. In Plato’s Allegory of the Cave,
the shadow plays the prisoners see are not su�cient to understand the reality outside the
cave [Plato and Reeves, 2004]. It is unclear if Plato had made the same argument if the
prisoners were shown images with a projector, but it is not unlikely. It is known that 3D
information [Kestenbaum et al., 1987], motion [Spelke, 1990] and interaction [Grezes and
Decety, 2002] are elemental to human object perception and images can not accurately
represent them. Or intuitively, if you see a zebra moving, the di↵erence between its shape
and texture is directly apparent. It is not unlikely that as for benchmarks (see discussion
in Section 5.3), training data and tasks have to come as close as possible to reality to give
models any chance to learn broad capabilities. The tasks that are used to train many of
the most powerful recent models already added complexity in the way they model language
[Brown et al., 2020; Radford et al., 2021].

One reason why scaling had such success not only on the training tasks, but also at improv-
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ing generalization is that for all their flaws, progress on benchmarks seems to be surprisingly
well aligned with progress on the underlying capability. As I discussed in the last sections,
evaluating a capability with a benchmark is extremely hard, if not impossible. But this
does not mean that progress on a benchmark cannot be aligned with progress towards the
associated capability. And in fact, for many popular benchmarks this appears to be the
case. Standard benchmark accuracy is often the most predictive factor for performance
in generalization tasks, whether it is transfer learning [Kornblith et al., 2019; Kolesnikov
et al., 2019; Djolonga et al., 2021], few-shot learning [Kolesnikov et al., 2019; Brown et al.,
2020], or o.o.d. generalization [Taori et al., 2020; Djolonga et al., 2021]. But it is clear
that they miss central aspects of their associated capabilities, so how far can they be used
as a tool to measure progress? In the last part of the allegory, Plato considers what would
happen if a person returned to the cave. Having seen the real world, the shadows would
have lost their meaning as a way to understand the world and predict the future. He
would no longer be eager to be the best at interpreting the shadows, and “if he had to
compete once again with the perpetual prisoners in recognizing the shadows [...] he [would
likely] provoke ridicule” [Plato and Reeves, 2004, 517a]. Just as the person at the end of
Plato’s Allegory who is led back into the cave understands the shadow plays less well than
his peers in the cave, models may seem to move backwards on the existing benchmarks
when they come closer to acquiring broad capabilities. For example, reducing the shape
bias of a model leads to worse, rather than better, performance on ImageNet [Hermann
et al., 2020]. And the human baseline for ImageNet performance is much lower than that
of recent models [He et al., 2015a]. While benchmarks are an amazing way to measure
progress “within the cave”, it may be necessary to let go of them in order to move out of
the cave.

It is unclear, how far machines are from achieving human-level capabilities. As demon-
strated in this dissertation, the current set of narrow benchmarks will not be su�cient
to measure the gap. And shortcut learning is a clear indicator, that current models are
missing significant aspects of the capabilities they are supposed to learn. At the same
time, progress in areas such as few-shot learning and robustness is fast and, in the face
of shortcut learning maybe surprisingly, current benchmarks are still indicative of this
progress. Whatever the key ingredients for the route ahead are, it is an exciting time to
do AI research and develop machine learning models, because we will likely encounter the
results in our everyday lives.

52



Acknowledgements

This dissertation is the result of four amazing years in the labs of Matthias Bethge and Alex
Ecker. Thus, first and foremost I want to thank Matthias, Alex and Wieland, for creating
this environment and o↵ering me an opportunity to become a part of it. The energy and
excitement of everyone, from the professors and postdocs over my fellow PhD students to
the administrative sta↵, made working there an amazing experience. I am truly grateful I
got to know them, and am happy many turned from colleagues to friends over time. I es-
pecially want to thank my collaborators and co-authors. A special role took Robert, Jörn,
Evi and Ivan, with whom I worked as equal partners and often shared first authorship. The
collaborations with them were some of the most fun and productive experiences I had. I
am also deeply grateful to the administrative sta↵. The support Heike, Tina, Melanie, and
many others provided with everything from contracts to calendars was simply phenomenal.

What made the lab special applies in a similar form to the wider ML community in
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Giacinto, and Fabio Roli. Evasion attacks against machine learning at test time. In Joint ECML
PKDD, 2013.

Abeba Birhane, Pratyusha Kalluri, Dallas Card, William Agnew, Ravit Dotan, and Michelle Bao. The
values encoded in machine learning research. arXiv:2106.15590, 2021.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy
of object detection. arXiv:2004.10934, 2020.

Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-nms–improving object detection
with one line of code. In ICCV, 2017.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv:2108.07258, 2021.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, Assya Trofimov, Brennan Nichyporuk, Justin Szeto,
Nazanin Mohammadi Sepahvand, Edward Ra↵, Kanika Madan, Vikram Voleti, et al. Accounting for
variance in machine learning benchmarks. Machine Learning and Systems, 2021.

Samuel Bowman and George Dahl. What will it take to fix benchmarking in natural language under-
standing? In Annual Conference of the North American Chapter of the Association for Computational
Linguistics, pages 4843–4855, 2021.

Wieland Brendel and Matthias Bethge. Approximating cnns with bag-of-local-features models works
surprisingly well on imagenet. ICLR, 2019.

Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based adversarial attacks: Reliable attacks
against black-box machine learning models. In ICLR, 2018.
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Yuqing Hu, Vincent Gripon, and Stéphane Pateux. Leveraging the feature distribution in transfer-based
few-shot learning. In ICANN, 2021.

60



Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian Fis-
cher, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-o↵s for modern
convolutional object detectors. In CVPR, 2017.

Ben Hutchinson, Andrew Smart, Alex Hanna, Emily Denton, Christina Greer, Oddur Kjartansson, Parker
Barnes, and Margaret Mitchell. Towards accountability for machine learning datasets: Practices from
software engineering and infrastructure. In Conference on Fairness, Accountability, and Transparency,
2021.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. In NeurIPS, 2019.

Joern-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge. Excessive invariance causes
adversarial vulnerability. In ICLR, 2018.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V Le, Yunhsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text
supervision. In ICML, 2021.

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems. In
EMNLP, 2017.

Shuqiang Jiang, Yaohui Zhu, Chenlong Liu, Xinhang Song, Xiangyang Li, and Weiqing Min. Dataset bias
in few-shot image recognition. arXiv:2008.07960, 2020.

Yushi Jing and Shumeet Baluja. Visualrank: Applying pagerank to large-scale image search. TPAMI, 30
(11):1877–1890, 2008.

Yushi Jing, David Liu, Dmitry Kislyuk, Andrew Zhai, Jiajing Xu, Je↵ Donahue, and Sarah Tavel. Visual
search at pinterest. In KDD, 2015.

Eun Seo Jo and Timnit Gebru. Lessons from archives: Strategies for collecting sociocultural data in
machine learning. In Conference on Fairness, Accountability, and Transparency, 2020.

Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection. TPAMI, 34(7):1409–
1422, 2011.

Travis Kalanick. Tweet, 2015. URL https://twitter.com/travisk/status/564072341395632128. (Ac-
cessed: 2021-12-04).

Bingyi Kang, Zhuang Liu, Xin Wang, Fisher Yu, Jiashi Feng, and Trevor Darrell. Few-shot object detection
via feature reweighting. arXiv:1812.01866, 2018.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Je↵rey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv:2001.08361, 2020.

Alexander C. Kaufman. Elon musk: We’ll have driverless cars by 2023, 2014. URL https://www.
huffpost.com/entry/tesla-driverless-cars_n_5990136. (Accessed: 2021-12-04).

Roberta Kestenbaum, Nancy Termine, and Elizabeth S Spelke. Perception of objects and object boundaries
by 3-month-old infants. British Journal of Developmental Psychology, 5(4):367–383, 1987.

61

https://twitter.com/travisk/status/564072341395632128
https://www.huffpost.com/entry/tesla-driverless-cars_n_5990136
https://www.huffpost.com/entry/tesla-driverless-cars_n_5990136


Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie Vidgen,
Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking benchmarking in nlp.
In Annual Conference of the North American Chapter of the Association for Computational Linguistics,
2021.

Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. Edge-labeling graph neural network for
few-shot learning. In CVPR, 2019.

Alexander Kirillov, Evgeny Levinkov, Bjoern Andres, Bogdan Savchynskyy, and Carsten Rother. Instance-
cut: From edges to instances with multicut. In CVPR, 2017.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catas-
trophic forgetting in neural networks. PNAS, 114(13):3521–3526, 2017.

Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. Siamese Neural Networks for One-shot Image
Recognition. ICML, 2015.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani,
Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-
the-wild distribution shifts. In ICML, 2021.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Large scale learning of general visual representations for transfer. arXiv:1912.11370, 2019.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In CVPR,
2019.

Nikolaus Kriegeskorte. Deep neural networks: A new framework for modeling biological vision and brain
information processing. Annual Review of Vision Science, 2015.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein, and Li Fei-Fei. Visual genome:
Connecting language and vision using crowdsourced dense image annotations. In arXiv:1602.07332,
2016.

Alex Krizhevsky, Geo↵rey Hinton, et al. Learning multiple layers of features from tiny images. Technical
report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. Imagenet classification with deep convolutional
neural networks. In NeurIPS, 2012.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari. The
open images dataset v4: Unified image classification, object detection, and visual relationship detection
at scale. IJCV, 128(7):1956–1981, 2020.

Adrienne LaFrance. The high-stakes race to rid the world of human drivers. The
Atlantic, 2015. URL https://www.theatlantic.com/technology/archive/2015/12/
driverless-cars-are-this-centurys-space-race/417672/. (Accessed: 2021-12-04).

62

https://www.theatlantic.com/technology/archive/2015/12/driverless-cars-are-this-centurys-space-race/417672/
https://www.theatlantic.com/technology/archive/2015/12/driverless-cars-are-this-centurys-space-race/417672/


Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.
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Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and Yann LeCun. Overfeat:
Integrated recognition, localization and detection using convolutional networks. ICLR, 2014.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison Depart-
ment of Computer Sciences, 2009.

68

https://spectrum.ieee.org/ford-robotaxis-in-2021-selfdriving-cars-for-consumer-2025


Amirreza Shaban, Shray Bansal, Zhen Liu, Irfan Essa, and Byron Boots. One-Shot Learning for Semantic
Segmentation. BMVC, 2017.

Sharif Shameem. ”this is mind blowing. with gpt-3, i built a layout generator where you just describe any
layout you want, and it generates the jsx code for you. w h a t”, 2020. URL https://twitter.com/
sharifshameem/status/1282676454690451457. (Accessed: 2022-3-30).

Janelle Shane. Do neural nets dream of electric sheep?, 2018. URL https://aiweirdness.com/post/
171451900302/do-neural-nets-dream-of-electric-sheep. (Accessed: 2019-8-7).

Vaishaal Shankar, Rebecca Roelofs, Horia Mania, Alex Fang, Benjamin Recht, and Ludwig Schmidt.
Evaluating machine accuracy on imagenet. In ICML, 2020.

Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
Objects365: A large-scale, high-quality dataset for object detection. In ICCV, 2019.

Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features o↵-the-shelf:
an astounding baseline for recognition. In CVPR Workshops, 2014.

Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. Textonboost: Joint appearance, shape
and context modeling for multi-class object recognition and segmentation. In ECCV, 2006.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of
go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

Joseph P Simmons, Leif D Nelson, and Uri Simonsohn. False-positive psychology: Undisclosed flexibility
in data collection and analysis allows presenting anything as significant. Psychological Science, 22(11):
1359–1366, 2011.

Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching in videos.
In ICCV, 2003.

Josef Sivic, Bryan C Russell, Alexei A Efros, Andrew Zisserman, and William T Freeman. Discovering
objects and their location in images. In ICCV, 2005.

Arnold WM Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and Ramesh Jain. Content-
based image retrieval at the end of the early years. TPAMI, 22(12):1349–1380, 2000.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical Networks for Few-shot Learning. In NeurIPS,
2017.

Elizabeth S Spelke. Principles of object perception. Cognitive Science, 14(1):29–56, 1990.

Courtney J Spoerer, Patrick McClure, and Nikolaus Kriegeskorte. Recurrent convolutional neural networks:
a better model of biological object recognition. Frontiers in Psychology, 8:1551, 2017.

Matt Strassler. Opera: What went wrong, 2012. URL https://profmattstrassler.com/
articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/
opera-what-went-wrong/. (Accessed: 2022-4-23).

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable e↵ectiveness
of data in deep learning era. In ICCV, 2017.

69

https://twitter.com/sharifshameem/status/1282676454690451457
https://twitter.com/sharifshameem/status/1282676454690451457
https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep
https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/
https://profmattstrassler.com/articles-and-posts/particle-physics-basics/neutrinos/neutrinos-faster-than-light/opera-what-went-wrong/


Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James
Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving:
Waymo open dataset. In CVPR, 2020.

Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales. Learning
to compare: Relation network for few-shot learning. In CVPR, 2018.

Richard Sutton. The bitter lesson. Incomplete Ideas (blog), 2019.

Christian Szegedy, Alexander Toshev, and Dumitru Erhan. Deep neural networks for object detection.
NeurIPS, 2013.

Mingxing Tan and Quoc V Le. E�cientnet: Rethinking model scaling for convolutional neural networks.
ICML, 2019.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt.
Measuring robustness to natural distribution shifts in image classification. NeurIPS, 2020.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. In NeurIPS, 2017.

Tesla Inc. A tragic loss, 2016. URL https://www.tesla.com/de_DE/blog/tragic-loss. (Accessed:
2021-12-04).

Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B Tenenbaum, and Phillip Isola. Rethinking few-shot
image classification: a good embedding is all you need? In ECCV, 2020.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In IROS, 2017.

Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. In CVPR, 2011.

Anne M Treisman and Garry Gelade. A feature-integration theory of attention. Cognitive Psychology,
1980.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin,
Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset of datasets for
learning to learn from few examples. In ICLR, 2020.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. From ima-
genet to image classification: Contextualizing progress on benchmarks. In ICML, 2020.

Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

Ivan Ustyuzhaninov, Claudio Michaelis, Wieland Brendel, and Matthias Bethge. One-shot Texture Seg-
mentation. arXiv:1807.02654, 2018.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro
Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In CVPR,
2018.

70

https://www.tesla.com/de_DE/blog/tragic-loss


Joaquin Vanschoren and Serena Yeung. Announcing the neurips 2021 datasets
and benchmarks track, 2021. URL https://neuripsconf.medium.com/
announcing-the-neurips-2021-datasets-and-benchmarks-track-644e27c1e66c. (Accessed:
2022-3-30).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,  Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Matching net-
works for one shot learning. In NeurIPS, 2016.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
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Abstract
We tackle the problem of one-shot segmentation:
finding and segmenting a previously unseen ob-
ject in a cluttered scene based on a single instruc-
tion example. We propose a novel dataset, which
we call cluttered Omniglot. Using a baseline ar-
chitecture combining a Siamese embedding for
detection with a U-net for segmentation we show
that increasing levels of clutter make the task pro-
gressively harder. Using oracle models with ac-
cess to various amounts of ground-truth informa-
tion, we evaluate different aspects of the prob-
lem and show that in this kind of visual search
task, detection and segmentation are two inter-
twined problems, the solution to each of which
helps solving the other. We therefore introduce
MaskNet, an improved model that attends to mul-
tiple candidate locations, generates segmentation
proposals to mask out background clutter and se-
lects among the segmented objects. Our findings
suggest that such image recognition models based
on an iterative refinement of object detection and
foreground segmentation may provide a way to
deal with highly cluttered scenes.

1. Introduction
Humans are not only good at learning to recognize novel,
unknown objects from a single instruction example (one-
shot learning), but can also localize these objects in highly
cluttered scenes and segment them from the background.

In the computer vision community, one-shot learning has re-
cently received a lot of attention and substantial progress has
been made in the context of image classification (Koch et al.,
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Planck Institute for Biological Cybernetics, Tübingen, Germany
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Figure 1. One-Shot Segmentation. A, Goal: find a target in a
cluttered scene and produce a pixel-wise segmentation. B, Our
Siamese U-net baseline localizes the target, then segments it.
C, MaskNet generates proposals of segmented instances, masks
the background, then computes the best match.

2015; Lake et al., 2015; Vinyals et al., 2016; Bertinetto et al.,
2016; Snell et al., 2017; Triantafillou et al., 2017; Shyam
et al., 2017). Segmentation, however, is still very much
tied to classification, limiting its applicability to datasets
with less than a few hundred semantic or object classes
(or subsets thereof, e. g. the SceneParse150 benchmark on
ADE20k (Zhou et al., 2017)). This stands in contrast to
humans who can segment previously unseen objects simply
by using contextual information.

In the present paper, we work towards closing this gap by
tackling the problem of one-shot segmentation: Given a
single instruction example (the target) and a cluttered image
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with many objects (the scene), find the target in the scene
and produce a pixel-wise segmentation (Fig 1A). This task
is harder than the multi-way discrimination task often em-
ployed for one-shot learning because it additionally requires
(a) localizing the target among a potentially large number
of distractors and (b) segmenting the detected object. While
a few groups have started working on variants of this task
(Caelles et al., 2017; Shaban et al., 2017), no commonly
employed benchmark has emerged yet.

Our contributions are as follows:

• We propose a new benchmark dataset: “cluttered Om-
niglot” (Fig. 1A). It is based on simple components
– characters from Omniglot (Lake et al., 2015) – yet
turns out to be hard for current state-of-the-art com-
puter vision components. We publish the dataset, the
code and our models.1

• We present a baseline for one-shot segmentation on
cluttered Omniglot. It combines two principled yet
simple components: a Siamese network for object de-
tection and a U-net for segmentation (Fig. 1B).

• We identify clutter as a substantial problem for cur-
rent computer vision systems and investigate it using
various oracles – models with access to some ground
truth information. Although the statistical complex-
ity of the objects in cluttered Omniglot is low – color
alone completely identifies each instance –, the dead
leaves environment creates difficulties for both detec-
tion and segmentation due to the similar foreground
and background statistics.

• We propose to solve this task by a form of object-based
attention: we first generate and segment multiple object
proposals, then mask out background and finally decide
among the “cleaned-up” objects (Fig. 1C). We show
that this approach, which we call MaskNet, improves
both segmentation and localization.

Our paper is structured as follows: We start by describing
the cluttered Omniglot dataset (Sec. 2), then explain our
Siamese U-net baseline (Sec. 3) and MaskNet, our improved
architecture (Sec. 4), as well as the oracles we use (Sec. 5).
We then present our experimental results (Sec. 6), discuss
related work (Sec. 7) and conclude (Sec. 8).

2. Cluttered Omniglot
Cluttered Omniglot is a visual search task: the goal is to find
a previously unseen target character in a cluttered scene and
to produce a pixelwise segmentation (Fig. 1A). It is based on
the Omniglot dataset (Lake et al., 2015), which we chose for
two reasons: First, it is a popular and well-studied dataset

1
https://github.com/michaelisc/cluttered-omniglot

for one-shot learning. Second, the statistics of the individual
objects in Omniglot are relatively simple. Nevertheless,
we show below that cluttered Omniglot presents a serious
challenge to convolutional neural networks. Thus, we think
of this dataset as the essence of the clutter problem.

Each sample in the dataset consists of three images: a target,
a scene and a segmentation map. Targets are individual
characters from Omniglot, rescaled to 32 ⇥ 32 pixels and
colored in a random RGB color. Scenes are 96⇥ 96 pixel
collages of multiple (4–256) randomly drawn Omniglot
characters, one of which is the target (Fig. 2). The characters
are sequentially “dropped” into the image like dead leaves,
occluding any characters previously drawn at the same pixel
locations. Each character is placed at a random location,
has a random RGB color and is transformed with a random
affine transformation of up to 20� rotation, 10� shearing and
scaling between 16 and 64 pixels. At the end, a random
instance of the target character is added. This instance is
always fully visible and not occluded. We specifically avoid
occlusion of the target instance, so we do not confound the
effect of visual clutter with that of occlusion.

We split the dataset into three splits: training, validation
and one-shot. As in the original work on Omniglot (Lake
et al., 2015), we use the background set for training and
validation, while we use the evaluation set for testing one-
shot performance. For simplicity, we use only the first ten
drawers in each alphabet for the training set and the other
ten drawers for the validation and one-shot sets.

The difficulty of this task depends on the number of distrac-
tors (Wolfe, 1998). We show below (Section 6.1) that our
baseline scores a close-to-perfect Intersection over Union
(IoU) for the easiest version with just four distractors, sim-
ilar to the accuracies of high-performing architectures de-
signed for one-shot discrimination on Omniglot (Koch et al.,
2015; Vinyals et al., 2016; Snell et al., 2017; Triantafillou
et al., 2017; Shyam et al., 2017). In contrast, performance
drops below 40% IoU for the hardest version with 256 dis-
tractors.

For each difficulty level, we generate a training set consist-
ing of 2 million samples and validation and one-shot sets
consisting of 10,000 samples each. Note that the entire
dataset is generated using a total of 9640 (6590) character
instances for the training (one-shot) set.

3. Baseline: Siamese U-net
Intuitively, the one-shot segmentation task can be broken
down into two steps: detect the target in the scene and
segment it. We implement a baseline that performs the
detection part with a Siamese net applied in sliding windows
over the scene to produce a heat map of candidate locations
(Fig. 3A). The segmentation mask is then generated by a
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Figure 2. Multiple scenes form cluttered Omniglot with a common target and varying amounts of clutter defined by the numbers of
characters in each scene.

deconvolutional net with skip connections from the encoder.

3.1. Encoder

The encoder is inspired by Siamese networks. It consists of
two parallel fully convolutional neural networks that process
the target (32⇥ 32⇥ 3) and the scene image (96⇥ 96⇥ 3),
respectively (Fig. 3A). All convolutions use 3⇥ 3 kernels
with “same” padding, followed by layer normalization (Ba
et al., 2016) and ReLUs. An exception is made in the last
two layers, which use 2⇥ 2 and 1⇥ 1 kernels respectively
(the size of the feature maps of the target encoder in these
layers) (Fig. 3C). Before each but the first convolution, the
image is downsampled by a factor of two using average
pooling. This architecture produces an embedding of the
target in form of a 384-dimensional vector (1⇥ 1 spatially).
The scene image is processed analogously. To retain a higher
resolution in the last layer, we do not use downsampling in
the last two layers of the scene encoder. Instead we us a
dilation factor of 2 for the convolutions in the second-to-last
layer. This results in a 12⇥ 12 pixel encoding with – as for
the target – 384 feature maps.

Although the encoder is inspired by Siamese networks, we
found in initial experiments that untying the weights im-
proves performance and therefore do not use weight sharing
between the two paths (see also Bertinetto et al., 2016).
This result could potentially be attributed to the differing
statistics of the clean target and the cluttered scene image.

3.2. Target matching

To get an estimate of the target’s location in the scene, we
compute the cosine similarity in the embedding space given
by the encoder. We do so by taking the pixelwise inner prod-
uct of the scene embedding with that of the target (Fig. 3C),
which is implemented by a 1 ⇥ 1 convolution using the
target embedding as the filter. This step can be thought of
as applying a Siamese network in sliding windows over the
scene image (with a stride of 8, the stride of the final layer
of the scene encoder). The output is a 12 ⇥ 12 heatmap,
which can be seen as a (subsampled) pixel-level likelihood
that the target is at a given location within the scene.

This heatmap does not contain any information about what

the target is. To inform the decoder about the target that
should be segmented, we compute the outer tensor prod-
uct of the heatmap with the target embedding. Thus, the
final output of the matching step is a 12⇥ 12⇥ 384 tensor,
which encodes at each location the direction of the target
in embedding space, weighted by how likely the encoder
considers the target to be at that location. As all other layers,
this output is normalized using layer normalization.

3.3. Decoder

The segmentation part of our baseline model is inspired
by the U-net architecture (Ronneberger et al., 2015). The
decoder is essentially a mirror image of the encoder: six
convolutional layers with 3⇥3 kernels and “same” padding,
followed by layer normalization, ReLU and – for the third,
fourth and fifth layer – nearest neighbor upsampling by
a factor of two to incrementally increase the image size
to the original 96⇥ 96 pixels (Fig. 3C). The input to each
convolutional layer in the decoder is the concatenation of the
previous layer’s output and the output of the corresponding
layer in the encoder (skip connections). The final layer of
the decoder outputs two feature maps, which are combined
into a segmentation map by taking the pixelwise softmax.

3.4. Training

During training, we minimize the binary cross-entropy be-
tween the ground truth segmentation and the network’s
prediction. The cross-entropy is computed pixelwise and
averaged across all pixels. The weights are initialized ran-
domly from a Gaussian distribution following the MSRA
initialization scheme (He et al., 2015). We regularize the
weights using L2 weight decay with a factor of 10�9. We
train the network for 20 epochs using Adam (Kingma & Ba,
2014) with a batch size of 250 and an initial learning rate
of 5 ⇥ 10�4. After 10, 15 and 17 epochs, we divide the
learning rate by 2.

3.5. Evaluation

We evaluated the baseline model using intersection over
union (IoU). Therefore the generated segmentation maps
are binarized using a threshold or 0.3, which was determined
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to be optimal across models and datasets.

4. MaskNet: Segment first, decide later
MaskNet (Fig. 3B) adds two additional processing stages
to the baseline. Instead of generating the segmentation in
a single pass through the U-net, we let the decoder attend
to different locations. We branch off at the target matching
stage and generate multiple object proposals with associ-
ated instance segmentations. We then decide which of these
proposals is the best match. This last stage reduces to the
one-shot multi-way discrimination task for image classifica-
tion, and we solve it using a Siamese net.

4.1. Proposal network

We modify our Siamese U-net to turn it into a targeted
proposal network (Fig.3B+C). Its output is a set of segmen-
tation proposals (96⇥96 pixels). To this end, we modify
the target matching step: instead of computing the heatmap
by an inner product of target and scene embeddings, we
simply set it to a one-hot map encoding a single location
(Fig.3C, orange block). We then use the simplest possi-
ble strategy for selecting candidate locations: sweeping all
possible locations, thus generating 144 proposals (Fig.3B).
While there are certainly more elaborate ways of generating
proposals, we opt for simplicity over efficiency. Similar
to the target matching step in the baseline network, these
one-hot heatmaps are multiplied with the target embedding
and normalized using layer normalization. Thus, for each
proposal, the decoder is seeded by an embedding of the
target confined to a single pixel within the 12⇥ 12 spatial
grid and generates a segmentation mask for the target at this
location (or background if the target is not present).

4.2. Decision stage

The decision stage takes multiple object proposals as input
and uses a Siamese network to pick the one that most closely
resembles the target (Fig. 3B). This step is essentially a 144-
way one-shot discrimination task. The key ingredient here
is the input: instead of just taking crops from the scene, we
use the generated segmentations to mask out background
clutter and perform the discrimination on “clean” objects
(Fig. 3B & Fig. 1C). To do so, we binarize the segmentation
proposals using a threshold of 0.3 and extend them to RGB
colors by simply coloring them white. For each proposal,
we compute the center of mass of the segmentation mask
and extract a 32 ⇥ 32 pixel crop centered on this point.
We found this solution using the mask directly to perform
slightly better then applying it to the image. These crops
are then fed into an encoder with the same architecture as
the one used for the target (i. e. outputs a 384-dimensional
embedding). As in Siamese networks (Koch et al., 2015),
we use the sigmoid of a weighted sum of the L1 distance

between two embeddings as a similarity measure. The full
segmentation map corresponding to the crop that is most
similar to the target is the final output.

4.3. Training

We train proposal network and discriminator separately, by
initializing the weights (where possible) from the Siamese
U-net baseline and then fine-tuning (Sec. 3.4). All other
weights are initialized randomly as for the baseline. We use
the same optimizer and regularization as before. We train
for five epochs, dividing the learning rate by two after two,
three and four epochs, respectively.

To train the proposal network, we generate eight proposals
for each training sample: four positive ones as above and
four negative ones, which are drawn from random locations.
We then fine-tune encoder and decoder using the same pix-
elwise cross-entropy loss as above using the ground truth
segmentation for the positive samples and “background” as
the label for the negative ones. The initial learning rate is
set to 5⇥ 10�5 and the batch size is 50.

To train the discriminator, we fix the target encoder, train the
encoder for the segmented patches by initializing with the
weights of the target encoder and fine-tuning, and train the
weights for the weighted L1 distance. For each training sam-
ple, we generate four segmentation proposals: one centered
at one of the four locations around the center of mass of the
target and three at other random positions. We minimize
the binary cross-entropy of the same/different task for each
proposal. The initial learning rate is set to 2.5⇥ 10�4 and
the batch size is 250.

4.4. Evaluation

To evaluate MaskNet, we use intersection over union (IoU)
as for the baseline. As before, we apply a threshold of 0.3
to the predicted segmentation mask. In addition, we eval-
uate the localization accuracy of the network independent
of the quality of the generated segmentation masks. To
do so, we use the center of mass of the chosen segmenta-
tion proposal as the prediction of the target’s location. We
count all predictions that are within five pixels of the ground
truth location (also center of mass) as correct and report
localization accuracy in percent correct.

5. Oracles
We evaluate two oracles that have access to ground truth
segmentation masks of all characters in the scene. Being
able to define such oracles is a useful feature of cluttered
Omniglot, which allows us to test the quality of individual
model components.
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Figure 3. Architectures and details. A, Siamese U-net baseline (Section 3). B, MaskNet (Section 4). C, Close-up of the individual
components, showing architecture details.

5.1. Pre-segmented discriminator

The pre-segmented discriminator operates on individual
characters that have been pre-segmented and cropped to the
same size as the target. Specifically, we use the fact that the
characters are uniformly colored to segment each character
and extract a 32 ⇥ 32 pixel crop centered on its center of
mass. The task of this oracle is the same as for the decision
step of MaskNet (Sec. 4.2) and can be reduced to the widely
used one-shot multi-way discrimination, hence the name
discriminator. We implement it by a Siamese network using
the same encoder as before (Sec. 3.1) comparing the gener-
ated embeddings with a weighted L1 distance, followed by a
sigmoid (Koch et al., 2015). The pre-segmented discrimina-
tor lets us assess the additional difficulty (if any) introduced
by (a) the random affine transformations in cluttered Om-
niglot and (b) the potentially large number of candidate
characters to decide among.

5.2. Cluttered discriminator

The cluttered discriminator does not pre-segment characters.
Instead it takes the same crops as the pre-segmented dis-
criminator, but keeps the cluttered background intact. The
rest is identical to the pre-segmented discriminator. Thus,
the cluttered discriminator performs the one-shot multi-way
discrimination on cluttered crops. By comparing its perfor-
mance to that of the pre-segmented version, we can directly
assess the effect of clutter on discrimination.

5.3. Training

We train both discriminators by minimizing the binary cross-
entropy in the same/different task. In each training step, four
crops are sampled: one containing the target and three ran-
domly selected ones. Each crop is compared with the target
and the average cross-entropy is computed. Initialization,
regularization and optimization are done in the same way as
for the baseline (Sec. 3.4). A batch size of 250 and an initial
learning rate of 5⇥ 10�4 are chosen. Like the baseline, the
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Figure 4. Performance of various model architectures and oracles on cluttered Omniglot. Performance is measured as intersection over
union (IoU) for segmentation (A–C) or localization accuracy (D); higher is better. All results (except A) are measured on the one-shot sets.
A, IoU of the Siamese-U-Net on validation (light blue) and one-shot set (dark blue). B, MaskNet with targeted (green) and un-targeted
proposals (grey) and the best segmentations generated by the proposal network (black). C, Comparison of Siamese-U-Net (blue), MaskNet
(green) and an oracle: the pre-segmented discriminator (red), which has access to ground truth locations and segmentation masks of
all characters (but not to class labels). D, Localization accuracy of MaskNet (green) in comparison to the cluttered (yellow) and the
pre-segmented discriminator (red).

discriminators are trained for 20 epochs and the learning
rate is divided by 2 after epochs 10, 15 and 17.

5.4. Evaluation

We evaluate the pre-segmented discriminator using the same
two metrics used for MaskNet: IoU and localization accu-
racy. To evaluate IoU, we use the ground truth segmenta-
tions associated with the best-matching crop. Due to the
access to ground truth segmentations, IoU is equivalent to
the percentage of correct decisions in the discrimination
task. To evaluate localization accuracy, we take the same
measure as for MaskNet: The Euclidean distance between
the center of each crop and the true location of the target
thresholded at 5 pixels. For the cluttered discriminator, we
evaluate only localization accuracy.

6. Results
We used the same encoder and decoder architectures for
all experiments. Both consist of six convolutional layers
interleaved with pooling, dilation or upsampling operations
(see Fig. 3C and Sec. 3.1). All comparisons between ar-
chitectures are therefore independent of the expressiveness
of encoder and decoder, but rely only on the different ap-
proaches to segmentation and detection. All reported results
are evaluated on the one-shot set unless specified otherwise.

6.1. Baseline

We start by characterizing the difficulty of the one-shot
segmentation task on cluttered Omniglot by evaluating the
performance of our baseline model (Section 3) on both, the
one-shot and the validation set across all difficulty levels.

We first consider the results on the validation set (Fig. 4A,
light blue). The validation set contains characters seen
during training, but drawn by a different set of drawers (see

Table 1. One-shot segmentation accuracy (IoU in %) across differ-
ent amounts of clutter (number of characters per image).

MODEL 4 8 16 32 64 128 256

PATTERN MATCHING 62.2 50.4 41.7 36.9 32.6 29.0 28.6
P-SEG. DISCRIMINATOR 99.6 99.2 98.9 98.2 97.8 96.9 96.2
BEST SEG. PROPOSAL 98.9 96.8 90.5 80.9 68.7 60.5 58.2

SIAMESE U-NET 97.1 92.1 79.8 62.4 48.1 39.3 38.4
MaskNet 95.8 90.5 79.3 65.6 52.8 44.8 43.7
MASKN. UNTARGETED - - - 52.7 39.0 30.7 27.3

Section 2). For a small number of distractors, the network
performs well – as expected, because the characters are
mostly isolated within the scene. Performance is above 90%
IoU, similar to discrimination performance in one-shot five-
way discrimination on regular Omniglot (Koch et al., 2015;
Vinyals et al., 2016; Snell et al., 2017; Triantafillou et al.,
2017; Shyam et al., 2017). However, performance drops
substantially with increasing number of distractors (< 40%
for 256 distractors).

On the one-shot set – that is, characters from alphabets not
seen during training – performance is on average only 3%
worse than validation performance (Fig. 4A, blue), show-
ing that the network has indeed learned the right metric to
identify previously unseen letters and segment them.

6.2. Clutter reduces performance more than the
number of comparisons

The performance drop of our baseline model with increasing
number of distractors could have two reasons. First, the
scenes are highly cluttered, which may cause problems for
the detection of the target. Second, the large number of
comparisons may simply increase the probability of making
a mistake by chance (n-way discrimination with large n).
To understand the influence of these factors, we constructed
two oracles, which both have access to the ground truth
locations of all characters in the scene (Sec. 5). Both models



One-Shot Segmentation in Clutter

Table 2. One-shot localization accuracy (in %) across different
amounts of clutter (number of characters per image).

MODEL 4 8 16 32 64 128 256

P-SEG. DISCRIMINATOR 99.6 99.2 98.9 98.2 97.8 96.9 96.2

CLUTT. DISCRIMINATOR 97.0 92.1 82.2 67.1 54.7 44.2 41.3
MASKNET 97.4 94.1 87.0 77.5 66.1 58.5 57.7

extract crops centered at the location of each character in
the scene and perform a discrimination task between these
crops and the target.

The pre-segmented discriminator has access not only to the
ground truth location but also the segmentation mask of
each character, allowing it to pre-segment all crops. The
resulting task is essentially the classical one-shot n-way
discrimination task. The only difference is that it is a bit
easier since many characters in the background are highly
occluded, whereas the target is always unoccluded. Remark-
ably, the performance of the pre-segmented discriminator
remains above 95% IoU even for the most cluttered scenes
with 256 characters (Fig. 4C+D, red), demonstrating that our
encoder can solve the task in an uncluttered environment.

The cluttered discriminator has access to only the ground
truth locations. It cannot segment the characters and has
to perform the n-way discrimination on cluttered crops.
In contrast to the pre-segmented discriminatior its perfor-
mance takes a substantial hit with increased clutter (Fig. 4D,
yellow). Thus we conclude that the difficulty of cluttered
Omniglot arises due to clutter rather than the potentially
large number of candidate characters in the scene.

6.3. Template matching is not sufficient

A lot of work on one-shot learning has used Omniglot, but
we are not aware of any work evaluating simple approaches
like template matching. As a sanity check, we implemented
a template matching procedure for our task based on the pre-
segmented discriminator.2 Accuracy ranged from 62% for 4
characters to 29% for 256 characters (Table 1).3 Despite the
highly simplified setting with oracle information available,
template matching performs not only worse than the pre-
segmented discriminator (99�96%), but even worse than
our baseline on the full task (97�38%). Thus, template
matching is not a viable solution for (cluttered) Omniglot.

6.4. Background masking improves performance

Motivated by the superb discrimination performance on pre-
segmented objects, we developed MaskNet, a novel model

2We generated 9317 transformed versions of the target (11 ro-
tations, 7 shearing angles, 11x11 x/y scales), convolved them with
each segmented, binarized character and picked the best match.

3For comparison: on the standard 5-way one-shot task on Om-
niglot, we achieved 84% accuracy using template matching.

that operates in three steps (Sec. 4). First, we generate a
number of object proposals. Next, we generate correspond-
ing object segmentations which mask out the background.
In the last step, we perform discrimination on these seg-
mented objects to decide which one to pick. This model
outperforms the baseline (Fig. 4B+C, green line), suggest-
ing that segmenting objects (and masking out background)
before classifying them is beneficial when processing highly
cluttered scenes. Nevertheless, there is still a large margin
to the performance of the pre-segmented oracle. We investi-
gate the reasons for this margin below.

6.5. Quality of segmentation limits performance

A crucial feature of MaskNet (and perhaps its main weak-
ness) is that the final discriminator can only be as good as
the segmentations it receives as input. We therefore evaluate
the quality of these segmentations. To this end, we evaluate
the maximal IoU among all proposals, which is equivalent
to assuming a perfect discriminator that always picks the
correct character. We find that indeed the instance segmen-
tations of the proposals appear to be a limiting factor: for
the most cluttered scenes the proposal with the highest IoU
achieves only around 60% on average (Fig. 4B, black).

6.6. Targeted segmentations improve performance

Next, we test whether it is necessary to seed the decoder
with an embedding of the target, instead of just seeding it
with a location and segment the most salient character at that
location. To this end, we remove the target multiplication
step from MaskNet’s proposal network and simply seed
the decoder with the spatial one-hot encoding (Section 4.1).
Using this non-targeted proposal network instead of the
targeted one reduces performance (Fig. 4B, grey), showing
that it is important to supply the decoder with information
what to segment.

6.7. Performing segmentation improves localization

So far, we have focused our evaluation of MaskNet’s perfor-
mance on segmentation. Interestingly, though, segmenting
objects also helps if we are interested only in localizing
the target rather than segmenting it. To provide evidence
for this claim, we compare the localization performance
of MaskNet to that of the cluttered discriminator. For the
cluttered discriminator, we simply use the location of the
crop it chooses as the prediction for the target’s location.
For MaskNet, we use the center of mass of its predicted seg-
mentation mask. We then compute the localization accuracy
(Sec. 4.4) of these predictions to the ground truth center of
mass of the target. Indeed, MaskNet predicts the location of
the target more accurately than the cluttered discriminator
(Fig. 4D and Table. 2), showing that segmenting objects to
mask out background clutter improves localization.
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7. Related Work
7.1. One-shot discrimination

One-shot learning has been explored mostly in the context
of multi-way discrimination for image classification. Lake
et al. (2015) developed the Omniglot dataset for this purpose
and approach it using a generative model of stroke patterns.
Most competing approaches learn an embedding to compute
a similarity metric (Koch et al., 2015; Vinyals et al., 2016;
Snell et al., 2017; Triantafillou et al., 2017). Bertinetto et al.
(2016) train a meta network that predicts the weights of
a discriminator in a single feedforward step. Another ap-
proach compares image parts in an iterative fashion (Shyam
et al., 2017).

7.2. Semantic/instance segmentation

Most recent approaches to segmentation use an en-
coder/decoder architecture (Noh et al., 2015; Badri-
narayanan et al., 2017). The encoders are usually high-
performing architectures for image classification [e. g.
AlexNet (Krizhevsky et al., 2012), VGG (Simonyan &
Zisserman, 2015), ResNet (He et al., 2016)]. The main
differences lie in the decoder design. Where early works
converted high-level representations into pixelwise labels
using upsampling in combination with linear transforma-
tion (Long et al., 2015) or conditional random fields (Chen
et al., 2014; 2018), recent approaches rely on more complex
decoders [DeconvNet (Noh et al., 2015), SegNet (Badri-
narayanan et al., 2017), RefineNet (Lin et al., 2017)] and
introduce skip connections from the encoder. The U-net
architecture (Ronneberger et al., 2015), which uses skip
connections is a particularly simple and elegant general-
purpose architecture for dense labeling and image-to-image
problems (e. g. Isola et al., 2016).

More recent work focuses on multi-scale pooling (Zhao
et al., 2017) and dilated convolutions (Chen et al., 2017).
These architectures improve performance, but simplify the
decoders, relying more on upsampling. While this approach
works well on datasets such as MS-COCO, it renders them
infeasible for segmenting on Omniglot, where characters
have fine detail at the pixel level.

Our proposal network is inspired by Mask R-CNN (He
et al., 2017), which achieved state-of-the-art performance
on MS-COCO by splitting object detection and instance
segmentation into two consecutive steps. Similarly, our
class-agnostic segmentation is inspired by the work of Hong
et al. (2015) and Mask R-CNN (He et al., 2017). Also
related is work on class-agnostic segmentation using ex-
treme point annotations (Maninis et al., 2017; Papadopoulos
et al., 2017): while these works inform the segmentation by
clicks in the image, our architecture seeds the decoder with
a location information at the embedding layer.

7.3. One-shot segmentation

One-shot segmentation has emerged only recently. Caelles
et al. (2017) tackle the problem of segmenting an unseen
object in a video based on a single (or a few) initial labeled
frame(s). The work by Shaban et al. (2017) is very similar to
our approach, except that they use logistic regression with
a large stride and upsampling for the decoder and tackle
Pascal VOC (Everingham et al., 2012).

7.4. Other related problems

Co-segmentation (Faktor & Irani, 2013; Quan et al., 2016;
Sharma, 2017) is somewhat related to one-shot segmenta-
tion, as the common object in multiple images has to be
segmented. However, objects are typically quite salient
(otherwise the problem is not well defined). We can think
of cluttered Omniglot as an asymmetric co-segmentation
problem with one object-centered and one scene image.

Apparel recognition (Hadi Kiapour et al., 2015; Zhao et al.,
2016; Cheng et al., 2017) and particular object retrieval
(Razavian et al., 2014; Tolias et al., 2016; Li et al., 2017;
Siméoni et al., 2017) are related in the sense that the goal
is to find objects specified by one image in other images.
However, both problems are primarily about image retrieval
rather than segmentation of objects within these images.
One exception is the work of Zhao et al. (2016) in which
co-segmentation is performed on pieces of clothing.

8. Conclusions
We explored one-shot segmentation in cluttered Omniglot
and found increasing clutter to quickly diminish perfor-
mance even though characters can be easily identified by
color. Thus clutter is a serious problem for current state-of-
the-art CNN architectures. As a first step towards solving
this problem, we showed that segmenting objects first im-
proves detection when scenes are cluttered. We aimed for a
proof of principle and thus used the simplest model possible,
which performs only one iteration of segmentation and then
decides directly based upon this first segmentation. Fully
recurrent architectures that iteratively refine detection and
segmentation by cycling through this process multiple times
could lead to even larger performance gains.

As we focus on the role of clutter, we specifically designed
cluttered Omniglot to have relatively simple object statis-
tics but various levels of clutter. An interesting avenue for
future work would be to specifically investigate cluttered
image regions in real-world datasets such as Pascal VOC,
MS-COCO or ADE20k. Both, the task and our MaskNet
architecture should be directly applicable to these datatsets,
for instance by searching for unseen object categories in
natural scenes could be done by replacing our encoder by a
state-of-the-art ImageNet classifier.
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Abstract

We tackle the problem of one-shot instance segmentation: Given an example
image of a novel, previously unknown object category (the reference), find and
segment all objects of this category within a complex scene (the query image). To
address this challenging new task, we propose Siamese Mask R-CNN. It extends
Mask R-CNN by a Siamese backbone encoding both reference image and scene,
allowing it to target detection and segmentation towards the reference category. We
demonstrate empirical results on MS-COCO highlighting challenges of the one-shot
setting: while transferring knowledge about instance segmentation to novel object
categories works very well, targeting the detection network towards the reference
category appears to be more difficult. Our work provides a first strong baseline
for one-shot instance segmentation and will hopefully inspire further research
into more powerful and flexible scene analysis algorithms. Code is available at:
https://github.com/bethgelab/siamese-mask-rcnn

Query image OutputOutput

Reference Reference

Reference Query images O
ld

N
ew

Figure 1: Left: Classical one-shot learning tasks are phrased as multi-class discrimination on
datasets such as Omniglot and miniImagenet. Right: We propose one-shot instance segmentation on
MS-COCO. The bounding boxes and instance masks are outputs of our model.

1 Introduction

Humans do not only excel at acquiring novel concepts from a small number of training examples
(few-shot learning), but can also readily point to such objects (object detection) and draw their
outlines (instance segmentation). Conversely strong machine vision algorithms exist which can
detect and segment a limited number of object categories in complex scenes [46, 32, 21]. However
in contrast to humans they are unable to incorporate new object concepts for which only a small
number of training examples are provided. Enabling these object detection and segmentation systems
to perform few-shot learning would be extremely useful for many real-world applications for which
no large-scale annotated datasets like MS-COCO [33] or OpenImages [26] exist. Examples include
autonomous agents such as household, service or manufacturing robots, or detecting objects in images
collected in scientific settings (e. g. medical imaging or satellite images in geosciences).

Computer vision has made substantial progress in few-shot learning in the last years [27, 57, 16,
52, 35]. However, the field has focused on image classification in a discriminative setting, using
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datasets such as Omniglot [27] and MiniImagenet [62] (see Figure 1, left). As a consequence, these
approaches are limited to rather simple object-centered images and cannot trivially handle object
detection.

In this paper, we combine few-shot learning and instance segmentation in one task: We learn to
detect and segment arbitrary objects in complex real-world scenes based on a single visual example
(Figure 1, right). That is, we want our system to be able to find people and cars even though it has
been provided with only one (or a few) labeled examples for each of those object categories.

To evaluate the success of such a system, we formulate the task of one-shot instance segmentation:
Given a scene image and a previously unknown object category defined by a single reference instance,
generate a bounding box and a segmentation mask for every instance of that category in the image.
This task can be seen as an example-based version of the typical instance segmentation setup and is
closely related to the everyday problem of visual search which has been studied extensively in human
perception [54, 64].

We show that a new model, Siamese Mask R-CNN, which incorporates ideas from metric learning
(Siamese networks [25]) into Mask R-CNN [21], a state-of-the-art object detection and segmentation
system (Figure 2), can learn this task and acquire a similarity metric that allows it to generalize to
previously unknown object categories.

Our main contributions are:

• We introduce one-shot instance segmentation, a novel one-shot task, requiring object detec-
tion and instance segmentation based on a single visual example.

• We present Siamese Mask R-CNN, a system capable of performing one-shot instance
segmentation.

• We establish an evaluation protocol for the task and evaluate our model on MS-COCO.
• We show that, for our model, targeting the detection towards the reference category is the

main challenge, while segmenting the correctly identified objects works well.

2 Background

Object detection and instance segmentation. In computer vision, object detection is the task
of localizing and classifying individual objects in a scene [14]. It is usually formalized as: Given
an image (query image), localize all objects from a fixed set of categories and draw a bounding
box around each of them. Current state-of-the-art models use a convolutional neural network (the
backbone) to extract features from the query image and subsequently classify the detected objects
into one of the n categories (or background). Most models either directly use the backbone features
to predict object locations and categories (single stage) [34, 44–46, 32] or first generate a set of
class-agnostic object proposals which are subsequently classified (two stage) [18, 17, 49, 21].

Segmentation tasks require labeling all pixels belonging to a certain semantic category (semantic
segmentation) or object instance (instance segmentation). While both tasks seem closely related,
they in fact require quite different approaches: Semantic segmentation models perform pixel-wise
classification and are usually implemented using fully convolutional architectures [36, 40, 50, 68, 8].
In contrast, instance segmentation is more closely related to object detection, as it requires identifying
individual object instances [20, 10, 41, 47, 21]. It therefore inherits the difficulties of object detection,
which make it a significantly harder task than semantic segmentation. Consequently, the current
state-of-the-art instance segmentation model (Mask R-CNN) [21] is an extension of a successful
object detection model (Faster R-CNN) [49].

Few-shot learning The goal of few-shot learning is to find models which can generalize to novel
categories from few labeled examples [30, 27]. This capability is usually evaluated through a number
of episodes. Each episode consists of a few examples from novel categories (the support set) and a
small test set of images from the same categories (the query set). When the support set contains k
examples from n categories, the problem is usually referred to as an n-way, k-shot learning problem.
In the extreme case when only a single example per category is given, this is referred to as one-shot
learning.

There are two main approaches to solve this task: either train a model to learn a metric, based on which
examples from novel categories can be classified (metric learning) [25, 62, 57, 63] or to learn a good
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learning strategy which can be applied in each episode (meta learning) [16, 29, 39, 38, 59, 48, 58, 52].
To train these models, the categories in a dataset are usually split into training categories used to train
the models and test categories used during the evaluation procedure. Therefore, the few-shot model
will be trained and tested on different categories, forcing it to generalize to novel categories.

3 One-shot object detection and instance segmentation on MS-COCO

The goal of one-shot object detection and instance segmentation is to develop models that can localize
and segment objects from arbitrary categories when provided with a single visual example from
that category. To this end, we 1) replace the widely used category-based object detection task by
an example-based task setup and 2) split the available object categories into a training set and a
non-overlapping test set, which is used to evaluate generalization to unknown categories. We use the
popular MS-COCO dataset, which consists of a large variety of complex scenes with multiple objects
from abroad range of categories and often challenging conditions like clutter.

Task setup: example-based instance segmentation. We define one-shot detection and segmen-
tation as follows: Given a reference image showing a close-up example of a novel object category,
find and segment all instances of objects belonging to this category in a separate query image, which
shows an entire visual scene containing many objects (Figure 1, right). The main difference between
this task and the usual object detection setup is the change from a category-based to an example-based
setup. Instead of requiring to localize objects from a number of fixed categories, the example-based
task requires to detect objects from a single category, which is defined through a reference image.
The reference image shows a single object instance of the category that is to be detected, cropped to
its bounding box (see Figure 1 for two examples). It is provided without mask annotations.

Split of categories for training and testing. To be able to evaluate performance on novel cat-
egories, we split the 80 object categories in MS-COCO into 60 training and 20 test categories.
Following earlier work on Pascal VOC [56], we generate four such training/test splits by including
every fourth category into the test split, starting with the first, second, third or fourth category,
respectively (see Table A1 in the Appendix).

Because we use complex scenes which can contain objects from many categories, it is not feasible
to ensure that the training images contain no instances of held-out categories. However, we do not
provide any annotations for these categories during training and never use them as references. In
other words, the model will see objects from the test categories during training, but is never provided
with any information about them. This setup differs from the typical few-shot learning setup, in
which the model never encounters any instance of the novel objects during training. However, in
addition to being the only feasible solution, we consider this setup quite realistic for an autonomous
agent, which may encounter unlabeled objects multiple times before they become relevant and label
information is provided. Think of a household robot seeing, but not recognizing, a certain type of toy
in various parts of the apartment multiple times before you instruct it to go pick it up for you.

Evaluation procedure. We propose to evaluate task performance using the following procedure:

1. Choose an image from the test set
2. Draw a random reference image for each of the (novel) test categories present in the image
3. Predict bounding boxes for each reference image separately
4. Assign the computed predictions to the category of the corresponding reference image
5. Repeat this process for all images in the test set
6. Compute mAP50 [14] using the standard tools from object detection [1] 1

The same steps as above apply in the case of instance segmentation, with the difference that a
segmentation mask instead of a bounding box is required for each predicted object.

Our evaluation procedure is simplified somewhat, because we ensure that the reference categories are
actually present in each image used for evaluation. For a real-world application of such a system, this

1We chose to use mAP50 (mAP @ 50% Bounding Box IoU [14]) instead of the COCO metric mAP (mean
of mAP @ 50, 55, ..., 95% Bounding Box IoU [33]), because we think it more directly reflects the result we are
primarily interested in: whether our model can find novel objects based on a single reference image. For results
using the MS-COCO metric see Appendix Section A6
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restriction would have to be removed. However, we found the task to be very challenging already
with this simplification, so we believe it is justified for the time being.

Connection to few-shot learning and object detection. Our evaluation procedure lends from
other few-shot setups that typically evaluate in episodes. Each episode consists of a support set (the
training examples for the novel categories) and a query set (the images to be classified). In our case,
an episode consists of the detection of objects of one novel category in one image. In this case, the
support set is the set of examples from the category to be detected (the references) while the query set
is a single image (the query image). Compared to object detection, the classifier is turned into a binary
verification conditioned on the reference image(s). Compared to the typical few-shot learning setup,
there are two key differences: First, as only one category is given, the task is not a discrimination task
between the given categories, but a verification task between the given category and all other object
categories. Second the query image may not only contain objects from the novel category given by
the reference, but also other objects from known and unknown categories.

Connection to other related tasks. Our setup differs from a number of related paradigms. In
contrast to recent work on few-shot object detection [13, 7, 24, 55], we formulate our task as an
example-based search task rather than learning an object detector from a small labeled dataset. This
allows us to directly apply our model on novel categories without any retraining. We also extend
all of these approaches by additionally asking the system to output segmentation masks for each
instance and focus on the challenging MS-COCO dataset. Similarly our task shares similarities with
zero-shot object detection [3, 42, 11, 69], but with the crucial difference that in zero-shot detection
the reference category is defined by a textual description instead of an image.

A range of one-shot segmentation tasks exist, including one-shot semantic segmentation [56, 43,
12, 37], texture segmentation [61], medical image segmentation [67] and recent work on co-
segmentation [28]2. The key difference is that the models developed for these tasks output pixel-level
semantic classifications rather than instance-level masks and, thus, cannot distinguish individual
object instances. In co-segmentation very recent work [23] explores instance co-segmentation, but
not in a few-shot setting. Two studies segment instances in a few-shot setting, but with different
task setups: (1) in one-shot video segmentation [5, 6], object instances are tracked across a video
sequence; (2) in one-shot instance segmentation of homogeneous object clusters [65] a model is
proposed which segments, e. g., a pile of bricks into the individual instances based on a video pan of
one of the bricks. Both of these setups are closer to particular object retrieval [60, 53, 19], as they
localize instances of a particular object rather than instances of the same object category, as is the
focus of our work.

4 Siamese Mask R-CNN

The key idea of one-shot instance segmentation is to detect and segment object instances based on a
single visual example of some object category. Thus, our system has to deal with arbitrary, potentially
previously unknown object categories which are defined only through a single reference image, rather
than with a fixed set of categories for which extensive labeled data was provided during training. To
solve this problem, we take a metric-learning approach: we learn a similarity metric between the
reference and image regions in the scene. Based on this similarity metric, we then generate object
proposals and classify them into matches and non-matches. The key advantage of this approach is
that it can be directly applied to objects of novel categories without the need to retrain or fine-tune
the learned model.

To compute the similarity metric we use Siamese networks, a classic metric learning approach
[4, 9, 25]. We combine this form of similarity judgment with the domain knowledge built into
current state-of-the-art object detection and instance segmentation systems by integrating it into
Mask R-CNN [21]. In the following paragraphs we provide a quick recap of Mask R-CNN before
describing the changes we made to integrate the Siamese approach and how we compute the similarity
metric. We build our implementation upon the Matterport Mask R-CNN library [2]. The details can
be found in Appendix A2 and in our code3.

2Most co-segmentation work (e.g. [51, 15]) uses the same object categories during training and test time and
therefore does not operate in the few-shot setting

3
https://github.com/bethgelab/siamese-mask-rcnn
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Figure 2: Comparison of Mask R-CNN and Siamese Mask R-CNN. The main differences (marked in
red) of our model are (1) the Siamese backbone which jointly encodes the image and reference, and
(2) the matching of those embeddings to target the region proposal and classification heads towards
the reference category.

Mask R-CNN. Mask R-CNN is a two-stage object detector that consists of a backbone feature
extractor and multiple heads operating on these features (see Figure 2). The heads consist of two
stages. First, the region proposal network (RPN) is applied convolutionally across the image to
predict possible object locations in the scene. The most promising region proposals are then cropped
from the backbone feature maps and used as inputs for the bounding box classification (CLS) and
regression (BBOX) head as well as the instance masking head (MASK).

Siamese network backbone. To integrate the reference information into Mask R-CNN, the same
backbone (ResNet50 [22] with Feature Pyramid Networks (FPN) [31]) is used with shared weights to
extract features from both the reference and the scene.

Feature matching. To obtain a measure of similarity between the reference and different regions
of the query image, we treat each (x,y) location of the encoded features of the query image as an
embedding vector and compare it to the embedding of the reference image. This procedure can be
viewed as a non-linear template matching in the embedding space instead of the pixel space. The
matching procedure works as shown in Figure 3:

1. Average pool the features of the reference image to an embedding vector. In the few-
shot case (more than one reference) compute the average of the reference features as in
prototypical networks [57].

2. Compute the absolute difference between the reference embedding and that of the scene at
each (x,y) position.

3. Concatenate this difference to the scene representation.
4. Reduce the number of features with a 1⇥ 1 convolution.

Avg pool
1

2
4

Ref

Scene

L1
Difference

Concat

1×1
|x–y|

3

Figure 3: Sketch of the matching procedure.

The resulting features are then used as a drop-
in replacement for the original Mask R-CNN
features 4. The key difference is that they do
not only encode the content of the scene image,
but also its similarity to the reference image,
which forms the basis for the subsequent heads
to generate object proposals, classify matches
vs. non-matches and generate instance masks.

Head architecture Because the computed features can be used as a drop-in replacement for the
original features, we can use the same region proposal network and ROI pooling operations as Mask
R-CNN. We can also use the same classification and bounding box regression head as Mask R-CNN,
but change the classification from an 80-way category discrimination to a binary match/non-match
discrimination and generate only a single, class-agnostic set of bounding box coordinates. Similarly,
for the mask branch we predict only a single instance mask instead of one per potential category.

4As we use a backbone with feature pyramid networks (FPN) we get features at multiple resolutions. We
therefore simply apply the described matching procedure at each resolution independently.
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Success C
ases

False Positives

Figure 4: Examples of Siamese Mask R-CNN operating in the one-shot setting, i.e. segmenting novel
objects which are not known from training (split S2). The only information our model has about these
categories is one reference image (shown in the lower-left corner of each example; the categories in
the titles are just for the reader). The top two rows show success cases while the last row displays
some results with a lot of false positives. Best viewed with zoom and color.

5 Experiments

We train Siamese Mask R-CNN jointly on object detection and instance segmentation in the example-
based setting using the training set of MS-COCO. We train one model on each of the four category
splits defined in Section 3 and evaluate the trained models on both known (train) and unknown (test)
categories using the MS-COCO validation set. In the following paragraphs, we highlight the most
important changes between our training and evaluation protocol and that of Mask R-CNN. The full
training and evaluation details are given in Appendix A3 and A4.

Training. We first pre-train the ResNet backbone on a reduced subset of ImageNet, which contains
only images from the 687 ImageNet categories that have no correspondence in MS-COCO. We do
this to avoid using any label information about the test categories during pre-training.

We then proceed by training episodically. For each image in a minibatch, we pick a random reference
category among the training categories present in the image. We then crop a random instance of
this category out of another random image in the training set. We keep only the annotations of this
category; all other objects are treated as background.

Evaluation. We evaluate our model using the procedure described in Section 3. Each category split
is evaluated separately. The final score is the mean of the scores from all four splits. This evaluation
procedure is stochastic due to the random selection of references. We thus repeat the evaluation five
times and report the average and 95% confidence intervals.

Baseline: random boxes. As a simple sanity check, we evaluate the performance of a model
predicting random bounding boxes and segmentation masks. To do so, we take ground-truth bounding
boxes and segmentation masks for the category of the reference image, and randomly shift the boxes
around the image (assigning a random confidence value for each box between 0.8 and 1). We keep
the ground-truth segmentation masks intact in the shifted boxes. This procedure allows us to get
random predictions while keeping certain statistics of the ground-truth annotations (e.g. number of
boxes per image, their sizes, etc.).
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Categories used in training Novel categories Random
1-shot 5-shot 1-shot 5-shot

Object detection 37.6 ± 0.2 41.3 ± 0.1 16.3 ± 0.1 18.5 ± 0.1 1.2 ± 0.1

Instance segmentation 34.9 ± 0.1 38.4 ± 0.1 14.5 ± 0.1 16.8 ± 0.1 0.5 ± 0.1

Table 1: Results on MS-COCO (in % mAP50 with 95% confidence intervals). Three settings are
reported: Evaluating on training (train), novel (test) categories and randomly drawn boxes (random).
We run our models with one or five references per category and image (shots).

6 Results

Example-based detection and segmentation. We begin by applying the trained Siamese Mask
R-CNN model to detect objects from the categories used for training. In this setting, all of the training
examples are used to learn the metric, but the detection is based only on the similarity to one (or five)
instance(s) from the reference category. IWith one reference, we achieve 37.6% and 34.9% mAP50
for object detection and instance segmentation, respectively. With five references, we achieve 41.3%
and 38.4%, respectively (Table 1). We also report the 95% confidence interval estimated from five
evaluation runs to quantify the variability introduced by to the random selection of reference images.
The variation is below 0.2 percentage points in all cases, which suggests that evaluating five times is
sufficient to handle the variability. We observe some additional variation between the splits, which
seems to stem mostly from the over-representation of the person category (see Appendix Table A2
for results of each split).

One-shot instance segmentation. Next, we report the results of evaluating Siamese Mask R-CNN
on novel categories not used for training, showcasingits ability to generalize to the 20 held-out
categories that have not been annotated during training. With one reference (one-shot), the average
detection mAP50 score for the test splits is 16.3%, while the segmentation performance is 14.5%
(Table 1). While these values are significantly lower than those for the training categories, they still
present a strong baseline and are far from chance (1.2%/0.5% for detection/segmentation) despite the
difficulty of the one-shot setting. When using five references (five-shot), the performance improves
to 18.5% and 16.7%, respectively. Taken together, these results suggest that the metric our model
has learned allows some generalization outside of the training categories, but a substantial degree of
overfitting on the those categories remains.

Figure 5: Results on split
S2 (in % mAP50) sepa-
rated by the number of in-
stances per image.

Qualitative analysis. The first two rows of Figure 4 show some ex-
amples of successful detection and segmentation of objects from novel
categories. These examples allow us to get a feeling for the difficulty of
the task: the reference inputs are quite different from the instances in the
query image, often showing different perspectives, usually very different
instances of the category and sometimes only parts of the reference ob-
ject. Also note that the ground truth segmentation mask is not used to
pre-segment the reference.

To generate bounding boxes and segmentation masks, the model can
thus use only its general knowledge about objects. It has to rely on
the metric learned on the categories annotated during training to decide
whether the reference and the query instances belong to the same category.
For instance, the bus and the horse in the second row of Figure 4 are
incomplete and the network has never been provided with ground truth
bounding boxes or instance masks for either horses or buses. Nevertheless,
it still finds the correct object in the query image and segments the entire object.

We also show examples of failure cases in the last row of Figure 4. The picture that emerges from
both successful and failure cases is that the network produces overall good bounding boxes and
segmentation masks, but often fails at targeting them towards the correct category. We elaborate more
on the challenges of the task in the following paragraphs.

False positives when evaluating on novel categories. There is a marked drop in model perfor-
mance between evaluating on the categories used during training and the novel categories, suggesting
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some degree of overfitting to the training categories. If this is indeed the case, we would expect
false positives to be biased towards these categories and, in particular, towards those categories
that are most frequent in the training set. Qualitatively, this bias seems indeed to exist (Figure 4).
We verified this assumption quantitatively by computing a confusion matrix between categories
(Appendix Figure A1). The confusion matrix shows that objects from the training categories are
often falsely detected when searching for objects of the novel categories. Among the most commonly
falsely detected categories are people, cars, airplanes and clocks which are overrepresented in the
dataset.

Effect of image clutter. Previous work on synthetic data found that cluttered scenes are especially
challenging in example based one-shot tasks [37]. This effect is also present in the current context.
Both detection and segmentation scores are substantially higher for images with a small number of
total instances (Figure 5), underscoring the importance of extending the model to robustly process
cluttered scenes.

7 Related work

As outlined in section 3, our approach lies at the intersection of few-shot/metric learning, object
detection/visual search, and instance segmentation. Each of these aspects has been investigated
extensively. The novelty of our approach is the combination of all these aspects. A number of very
recent and, to a large extent concurrent, works have started addressing few-shot detection. We review
the most closely related work below. We are not aware of any previous work on category-based
few-shot instance segmentation.

Dong et al. [13] train a semi-supervised few-shot detector on the 20 categories of Pascal VOC using
roughly 80 annotated images, supplemented by a large set of unlabeled images. They train a set
of models, each of which generates training labels for the other models by using high-confidence
detections in the unlabeled images. The low-shot transfer detector (LSTD) [7] fine-tunes an object
detector on a transfer task with new categories using two novel regularization terms: one for
background depression and one for knowledge transfer from the source domain to the target domain.
Kang et. al. [24] extend a single-stage object detector – YOLOv2 [45] – by a category-specific
feature reweighting that is predicted by a meta model, allowing them to incorporate novel classes
with few examples. Schwartz et. al. [55] replace the classification branch of Faster R-CNN with a
metric learning module, which evaluates the similarity of each predicted box to a set of prototypes
generated from the few provided examples. Very recent concurrent work [66] evaluates the same task
as we do for object detection on Pascal VOC using Faster R-CNN, although they employ separate
feature fusions in the RPN and classifier head instead of the unified matching we employ. Recent
works on zero-shot detection [3, 42, 11, 69] use a similar approach to ours to target the detection
towards a novel category, except that they learn a joint embedding for the query image and a textual
description (instead of a visual description) of this novel category.

8 Discussion

We introduced the task of one-shot instance segmentation which requires models to generalize to
object categories that have not been labeled during training in the challenging setting of instance
segmentation. To address this task we proposed Siamese Mask R-CNN, a model combining a state-
of-the-art instance segmentation model (Mask R-CNN) with a metric learning approach (Siamese
networks). This model can detect and segment objects from novel categories based on a single
reference image. While our approach is not as successful on novel categories as on those used for
training, it performs far above chance, showcasing it’s ability to generalize to categories outside of
the training set. Generally, it is expected from any reasonable learning system that it should perform
better on object categories for which it has been trained with thousands of examples than for those
encountered in a few-shot setting. Considering the difficulty of this problem, the performance of our
model should provide a strong baseline and we hope that our work provides a first step towards visual
search algorithms with human like flexibility.
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Changes to previous version

Compared to the previous version (submitted to arxiv on 28 Nov 2018) this version additionally
includes:

• a different evaluation procedure evaluating each split 5-times and reporting the mean and
95% confidence interval.

• five-shot results using a prototypical approach to accomodate multiple reference images.
• a background section introducing information and notation of object detection and few-shot

learning tasks.
• discussion of concurrent work which was published on arxiv since the publication of the

previous version [24, 66].
• detailed description of the training and evaluation process in the Appendix.
• results for all metrics evaluated on the MS-COCO leaderboard to the Appendix.

Additionally to adding content we reworked large parts of the text to clarify the task setup the way
we present related tasks and the corresponding solutions. We also update some of the figures, mainly
combining the two figures for qualitative analysis into one figure which includes good and bad
examples, adding a comparison with traditional few-shot learning tasks to the introduction figure and
making the color coding in the model figure easier to understand.

Appendix

A1 Training and testing categories

This section contains the description of the category splits from Section 3 from the main paper as
well as a table of those categories.

A1.1 Splits S1-S4

To be able to evaluate performance on novel categories we hold out some categories during training.
We split the 80 object categories in MS-COCO into 60 training and 20 test categories. Following
earlier work on Pascal VOC [56], we generate four such training/test splits by including every fourth
category into the test split starting with the first, second, third or fourth category, respectively. These
splits are shown in Table A1 below.

A1.2 Rationale

Providing four splits with equally distributed held-out categories has two main advantages: It allows
to test on all categories in MS-COCO (albeit with different models) while sub sampling the super
categories [33] as evenly as possible. This approach assumes that we will know some objects from
all broad object categories in the world and that we can infer the missing parts from this knowledge.
This setup differs from tasks like tieredImageNet [48] which require generalization to objects from
vastly different categories.

A2 Implementation details

A2.1 Backbone

We use the standard architecture of ResNet-50 [22] without any modifications.

A2.2 Feature matching
• We use layers5

res2c_relu (256 features), res3d_relu (512), res4f_relu (1024)
and res5c_relu (2048) of the backbone as a feature representation of the inputs. For
brevity, we refer to these layers as C2, C3, C4 and C5.

5Using the notation from here: https://ethereon.github.io/netscope/#/gist/

db945b393d40bfa26006
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S1 S2 S3 S4

1 Person 2 Bicycle 3 Car 4 Motorcycle
5 Airplane 6 Bus 7 Train 8 Truck
9 Boat 10 Traffic light 11 Fire Hydrant 12 Stop sign

13 Parking meter 14 Bench 15 Bird 16 Cat
17 Dog 18 Horse 19 Sheep 20 Cow
21 Elephant 22 Bear 23 Zebra 24 Giraffe
25 Backpack 26 Umbrella 27 Handbag 28 Tie
29 Suitcase 30 Frisbee 31 Skis 32 Snowboard
33 Sports ball 34 Kite 35 Baseball bat 36 Baseball glove
37 Skateboard 38 Surfboard 39 Tennis rocket 40 Bottle
41 Wine glass 42 Cup 43 Fork 44 Knife
45 Spoon 46 Bowl 47 Banana 48 Apple
49 Sandwich 50 Orange 51 Broccoli 52 Carrot
53 Hot dog 54 Pizza 55 Donut 56 Cake
57 Chair 58 Couch 59 Potted plant 60 Bed
61 Dining table 62 Toilet 63 TV 64 Laptop
65 Mouse 66 Remote 67 Keyboard 68 Cell phone
69 Microwave 70 Oven 71 Toaster 72 Sink
73 Refrigerator 74 Book 75 Clock 76 Vase
77 Scissors 78 Teddy bear 79 Hair drier 80 Toothbrush

Table A1: Category splits (S1 – S4, Section 3) of MS-COCO.

• FPN generates multi-scale representations Pi, i = {2, 3, 4, 5, 6} consisting of 256 features
(for all i) as follows. P5 is a result of applying a 1⇥ 1 conv layer to C5 (to get 256 features).
Pi (i = {2, 3, 4}) is a sum of a 1⇥ 1 conv layer applied to Ci and up-sampled (by a factor
of two on each side) Pi+1. P6 is a down-sampled P5 (by a factor of two on each side).

• The final similarity scores between the input scene and the reference at scale i are computed
by obtaining P scene

i and P ref
i as described above, applying global average pooling to P ref

i ,
and computing pixel-wise differences Di = abs(P scene

i � pool(P ref
i )).

• The final feature representations containing information about similarities between the scene
and the reference are computed by concatenating P scene

i and Di, and applying a 1⇥ 1 conv
layer, outputting 384 features.

A2.3 Region Proposal Network (RPN)
• We use 3 anchor aspect ratios (0.5, 1, 2) at each pixel location for the 5 scales (32, 64,

128, 256, 512) i = {2, . . . , 6} defined above, resulting in 3 ⇥ (322 + . . . + 5122) ⇡ 1M
proposals in total.

• The architecture is a 3⇥ 3⇥ 512 conv layer, followed by the 1⇥ 1 conv outputting k times
number of anchors per location (three in our case) features (corresponding to proposal logits
for k = 2 or to bounding box deltas for k = 4).

A2.4 Classification and bounding box regression head

The classification head produces same/different classifications for each proposal and performs
bounding box regression.

• Inputs: the computed bounding boxes (outputs of the RPN) are cropped from Pi, reshaped
to 7⇥ 7, and concatenated for i = {2, . . . , 5}. Only 6000 top scoring anchors are processed
for efficiency.

• Architecture: two fc-layers (1024 units with ReLU) followed by a logistic regression into 2
classes (same as reference or not).

• Bounding box regression is part of the classification branch, but uses a different output
layer. This output layer produces fine adjustments (deltas) of the bounding box coordinates
(instead of class probabilities).

• Non-maximum suppression (NMS; threshold 0.7) is applied to the predicted bounding
boxes.
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A2.5 Segmentation head
• Inputs: the computed bounding boxes are cropped from Pi, reshaped to 14 ⇥ 14, and

concatenated for i = {2, . . . , 5}.
• Architecture: four 3⇥ 3 conv layers (with ReLU and BN) followed by a transposed conv

layer with 2⇥ 2 kernels and stride of 2, and a final 1⇥ 1 conv layer outputting two feature
maps consisting of logits for foreground/background at each spatial location.

A3 Training details

This section contains a detailed description of the training procedure. To make this section more
readable and have all relevant information in one place it contains a few duplications with Section 5

Pre-training backbone. We pre-train the ResNet backbone on image classification on a reduced
subset of ImageNet, which contains images from the 687 ImageNet categories without correspondence
in MS-COCO – hence we refer to it as ImageNet-687. Pre-training on this reduced set ensures that
we do not use any label information about the test categories at any training stage.

Training Siamese Mask R-CNN. We train the models using stochastic gradient descent with
momentum for 160,000 steps with a batch size of 12 on 4 NVIDIA P100 GPUs in parallel. With this
setup training takes roughly a week. We use an initial learning rate of 0.02 and a momentum of 0.9.
We start our training with a warm-up phase of 1,000 steps during which we train only the heads. After
that, we train the entire network, including the backbone and all heads, end-to-end. After 120,000
steps, we divide the learning rate by 10.

Construction of mini-batches. During training, a mini-batch contains 12 sets of reference and
query images. We first draw the query images at random from the training set and pre-process them
in the following way: (1) we resize an image so that the longer side is 1024 px, while keeping the
aspect ratio, (2) we zero-pad the smaller side of the image to be square 1024⇥ 1024, (3) we subtract
the mean ImageNet RGB value from each pixel. Next, for each image, we generate a reference image
as follows: (1) draw a random category among all categories of the background set present in the
image, (2) crop a random instance of the selected category out of any image in the training set (using
the bounding box annotation), and (3) resize the reference image so that its longer side is 192 px and
zero-pad the shorter side to get a square image of 192⇥ 192. To enable a quick look-up of reference
instances, we created an index that contains a list of categories present in each image.

Labels. We use only the annotations of object instances in the query image that belong to the
corresponding reference category. The annotations of all other objects are removed and subsequently
they are treated as background.

Loss function. Siamese Mask R-CNN is trained on the same basic multi-task objective as Mask
R-CNN: classification and bounding box loss for the RPN; classification, bounding box and mask
loss for each RoI. There are a couple of differences as well. First, the classification losses consist
of a binary cross-entropy of the match/non-match classification rather than an 80-way multinomial
cross-entropy used for classification on MS-COCO. Second, we found that weighting the individual
losses differently improved performance in the one-shot setting. Specifically, we apply the following
weights to each component of the loss function: RPN classification loss: 2, RPN bounding box loss:
0.1, RoI classification loss: 2, RoI bounding box loss: 0.5 and mask loss: 1.

Exact hyper parameter details Complex systems like Mask R-CNN require a large set of hyper
parameters to be set for optimal training performance. We mentioned all changes we made to the
hyperparameter settings of the implementation we extended [2]. For the full list of hyperparameter
settings and exact details of our loss function implementation and data handling please refer to the
code: https://github.com/bethgelab/siamese-mask-rcnn
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A4 Evaluation details

This section contains a detailed description and discussion of the evaluation procedure. As with the
training section it contains a few duplications with the corresponding Section 3 from the main paper
in order to have all information in one place.

A4.1 Category selection

The evaluation is performed on the MS Coco 2017 validation set (which corresponds to the 2014
minval set). The evaluation is performed for 4 subtasks, each using 60 categories for training and the
remaining 20 categories for one-shot evaluation. Those 20 categories are selected by choosing every
4th category, therefore the ith split is constructed by: [i + 4 ⇤ k for k in range (20)]. An explicit
listing of all 4 splits can be found in Table A1 above.

A4.2 Evaluation procedure

Each of the subtasks is evaluated over the whole validation set using the corresponding set of
categories. Therefore for each image the present categories from the current split are determined.
Then for each present category a reference instance is randomly chosen from the whole evaluation set
(those references are chosen individually for each image). The model is then evaluated for each of the
references and the predictions of each of these runs is assigned to the corresponding category. If no
category from the current split is present the image is skipped. After running this over all images the
results contain predicted bounding boxes for each image but only for the categories of the selected
split. These collected results can then be fed to a slightly modified version of the official MS-COCO
analysis tools [1] which can handle specific category subsets to get the final mAP50 scores.

for image in images do
present categories = get one shot categories(image);
for category in present categories do

ref = get random instance (category, images);
results[image, category] = model.predict (ref, image);

end
end
mAP50 = evaluate mAP50(results, one shot categories);

Algorithm 1: Pseudocode for evaluation procedure

A4.3 Noise induced by random reference sampling

Because only one reference is sampled per category and image the predictions can be rather noisy
(especially in the one-shot case). For our model the std of the predicted results is ±1%. To get a good
prediction of the actual mean we run the evaluation of each split 5 times thus reaching reaching a
standard error of the mean of less than ±0.2%.

A4.4 Comment on the evaluation procedure

We specifically chose to evaluate our model only on the categories present in each image. We think,
that this scenario can realistically be assumed in real world tasks as a whole-image classification
network can be used to pre-select if the reference category is present in an image before running the
bounding box and instance segmentation prediction network.

This choice, however, makes the task substantially easier than evaluating each image for all categories.
It does not punish false positives as hard as the other task does. However, as visible in our results,
false positives play an important role even in our simpler task, which leads us to the conclusion, that
our task setup is still sufficiently difficult.

A4.5 Note on non-maximum suppression

We use non-maximum suppression (NMS) on the predictions of each image/references combination
individually and not on the combined output of an image after running the detection for all references
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because at test time the system needs to be able to detect and segment objects based on only a single
reference example of each category separately.

A4.6 Choice of evaluation metric

We chose to use mAP50 instead of the so called "coco metric" mAP. mAP50 is evaluated at a
single Intersection over Union (IoU) threshold of 50% between predicted and the ground truth
bounding boxes (corresponding to around 70% overlap between two same-sized boxes/masks) while
mAP is evaluated at IoU thresholds of [50%, 55%, ..., 95%] adding weight to exact bounding
box/segmentation mask predictions.

We think, that mAP50 is the value most reflective of the result we are interested in: whether our
model can find novel objects based on a single reference image. For instance segmentation the
additional information about mask quality implicitly included in mAP might make sense. However
we found, that correctly masking the sought objects was less of a problem for our model than correctly
classifying them.

A5 Confusion matrix

To quantify the errors of our model we compute a confusion matrix over the 80 categories in MS-
COCO using a model trained on split S2 (Figure A1). The element (i, j) of this matrix corresponds to
the AP50 value of detections obtained for reference images of category i, which are evaluated as if the
reference images belonged to category j. If there were no false positives, the off-diagonal elements
of the matrix would be zero. The sums of values in the columns show instances of categories that are
most often falsely detected (the histogram of such sums is shown below the matrix). Among such
commonly falsely predicted categories are people, cars, airplanes, clocks, and other categories that
are common in the dataset.

A6 Additional results

In this section we discuss the noisiness of our evaluation approach and provide additional results
including split-by-split values for the 95% confidence intervals we get from running the evaluation
5 times (Table A2) and the full results on all metrics evaluated on the MS-COCO leaderboard
(cocodataset.org/#detection-leaderboard) for object detection (Tables A3 & A5)
and instance segmentation (Tables A4 & A6).

A6.1 Noisiness of evaluation

The example based evaluation setting with a randomly drawn reference per category and image is
naturally prone to be noisy. We therefore evaluate our models five times and take the mean of these 5
evaluations as our final result. We here want to discuss the amount of randomness generated by our
evaluation procedure and the confidence of our mean.

We found the standard deviation of one-shot object detection and instance segmentation segmentation
to be around 0.3% mAP50 while the standard deviation with five reference images is lower at 0.1%
mAP50. The 95% confidence of the mean is around 0.1% (See Table 1. The rather small deviations
can be seen as a result of the evaluation procedure which considers every image and reference
category as a single instance. This ensures that there are many samples per category over test set.

A6.2 Results for each split

We show the results for each split (S1-S4) separately reporting mean and 95% confidence interval of
five evaluation runs in Table A2. We find slight difference in performance between these split with
split S1 showing the biggest gap between evaluating on the training and test categories. We assume,
that this is due to the strong over representation of the person category in MS-COCO [33]. With a lot
of small instances and presence of persons in almost every image the removal of this category during
training makes the dataset considerably easier, while requesting to detect them later is hard.
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One-shot classes

Figure A1: Confusion matrix for the Siamese Mask R-CNN model using split S2 for one-shot
evaluation. The element (i, j) shows the AP50 of using detections for category i and evaluating them
as instances of category j. The histogram below the matrix shows the most commonly confused (or
falsely predicted) categories.

A6.3 Full MS-COCO style results

In this section we report results on all metrics used at the MS-COCO leader board cocodataset.
org/#detection-leaderboard. Beyond the mAP50 (AP50) metric reported in the main
paper these include the MS-COCO metric (AP) as well as other AP metrics at different thresholds
(AP75) and object sizes (APS, APM, APL each as subsets of AP) as well as recall metrics (AR) with
varying numbers of detections (AR1, AR10, AR100) and object sizes (ARS, ARM, ARL each as parts
of AR100).
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Object detection

Categories Shots S1 S2 S3 S4 Ø

Train 1 39.1 ± 0.1 36.6 ± 0.1 37.5 ± 0.1 37.2 ± 0.2 37.6 ± 0.1

5 42.4 ± 0.1 40.5 ± 0.1 41.5 ± 0.1 40.9 ± 0.2 41.3 ± 0.1

Test 1 15.3 ± 0.2 16.8 ± 0.2 16.7 ± 0.2 16.4 ± 0.1 16.3 ± 0.1

5 16.8 ± 0.1 20.0 ± 0.1 18.2 ± 0.1 19.0 ± 0.1 18.5 ± 0.1

Instance segmentation

Categories Shots S1 S2 S3 S4 Ø

Train 1 36.6 ± 0.1 33.5 ± 0.1 34.9 ± 0.1 34.5 ± 0.2 34.9 ± 0.1

5 39.7 ± 0.1 37.3 ± 0.1 38.7 ± 0.1 37.9 ± 0.2 38.4 ± 0.1

Test 1 13.5 ± 0.2 14.9 ± 0.1 15.5 ± 0.2 14.2 ± 0.1 14.5 ± 0.1

5 14.8 ± 0.1 18.0 ± 0.1 17.4 ± 0.1 16.9 ± 0.1 16.8 ± 0.1

Table A2: Results on MS Coco (in % mAP50 with 95% confidence intervals). In split Si, every fourth
category, starting at the ith, is placed into the test set.

Model AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

full 21.8 35.5 23.4 11.1 21.8 30.8 19.9 37.6 39.2 22.2 41.0 56.5
train S1 23.6 39.1 25.0 11.4 23.3 33.8 20.9 38.9 40.7 22.9 43.1 57.5
train S2 21.9 36.6 23.5 11.4 22.6 31.1 19.9 37.9 39.4 22.7 41.9 57.1
train S3 23.3 37.5 25.2 11.1 22.5 33.4 20.9 39.3 41.0 21.8 43.1 59.7
train S4 22.7 37.2 24.2 11.9 21.6 31.7 20.1 38.5 40.4 23.2 42.4 56.7
test S1 8.6 15.3 8.8 5.0 8.6 13.5 10.3 26.4 27.7 14.4 29.9 43.2
test S2 9.8 16.8 10.1 5.7 8.4 14.8 12.2 26.7 27.7 13.9 27.6 43.9
test S3 8.9 16.7 8.8 5.6 8.2 16.6 9.4 23.6 24.6 15.3 25.1 40.0
test S4 9.1 16.4 9.2 5.4 9.4 14.0 10.9 25.7 27.4 14.5 30.7 43.2

Table A3: Full one-shot detection results on MS-COCO. train/test indicate evaluation on the
training/test categories of split Si respectively. Each value is the mean of 5 evaluation runs.

Model AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

full 19.3 33.1 19.9 9.3 19.4 27.5 17.9 33.5 34.9 19.4 36.9 49.9
train S1 20.9 36.6 21.0 9.3 20.9 30.5 19.0 34.6 36.1 19.6 38.9 51.3
train S2 18.9 33.5 19.4 9.2 19.3 27.4 17.8 33.2 34.5 19.6 36.7 50.0
train S3 20.0 34.9 20.2 9.0 19.5 29.6 18.7 34.8 36.2 18.6 38.4 53.9
train S4 20.0 34.5 20.9 9.9 19.0 28.6 18.2 34.3 35.7 20.3 37.5 51.2
test S1 6.7 13.5 6.0 3.8 6.8 11.0 8.3 22.0 23.0 11.7 25.2 36.1
test S2 8.5 14.9 8.7 4.7 7.4 12.8 10.8 23.5 24.5 11.7 24.7 39.3
test S3 8.2 15.5 8.0 4.7 7.2 15.3 9.0 21.8 22.7 13.9 22.8 35.9
test S4 7.3 14.2 6.6 3.8 7.9 11.8 9.3 22.3 23.8 12.0 28.2 38.2

Table A4: Full one-shot segmentation results on MS-COCO. train/test indicate evaluation on the
training/test categories of split Si respectively. Each value is the mean of 5 evaluation runs.

Model AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

full 24.9 40.5 26.7 13.3 25.0 35.9 21.8 40.1 41.8 23.9 44.3 59.1
train S1 25.7 42.4 27.1 12.6 25.6 36.2 22.1 40.6 42.4 24.3 45.1 59.3
train S2 24.3 40.5 26.1 12.8 25.1 35.3 21.4 39.7 41.3 24.1 44.2 59.9
train S3 25.8 41.5 28.0 12.7 25.2 38.2 22.4 41.0 42.7 23.5 45.1 61.5
train S4 25.1 40.9 26.8 12.9 23.8 36.3 21.5 40.3 42.3 24.7 44.5 59.1
test S1 9.4 16.8 9.7 5.6 9.3 14.6 11.0 28.1 29.4 15.8 31.9 45.8
test S2 11.7 20.0 12.1 6.3 9.7 19.3 13.3 29.1 30.3 15.1 30.7 48.3
test S3 9.8 18.2 9.5 6.7 9.2 17.5 9.6 25.0 26.0 16.3 26.4 42.4
test S4 10.6 19.0 10.6 5.8 10.4 16.6 11.8 27.8 29.6 14.8 33.1 47.5

Table A5: Full five-shot detection results on MS-COCO. train/test indicate evaluation on the train-
ing/test categories of split Si respectively. Each value is the mean of 5 evaluation runs.
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Model AP AP50 AP75 APS APM APL AR1 AR10 AR100 ARS ARM ARL

full 22.0 37.8 22.9 11.4 22.2 32.4 19.7 35.8 37.2 21.0 39.5 52.6
train S1 22.7 39.7 23.1 10.3 23.0 33.0 20.2 36.1 37.6 20.8 40.7 53.2
train S2 21.0 37.3 21.7 10.5 21.7 31.2 19.2 34.9 36.3 20.7 38.7 52.9
train S3 22.4 38.7 22.8 10.3 21.9 34.2 20.3 36.5 37.8 19.8 40.2 56.3
train S4 22.1 37.9 23.2 10.6 20.8 32.9 19.5 35.9 37.6 21.4 39.3 53.6
test S1 7.4 14.8 6.7 4.3 7.2 12.2 9.2 23.7 24.7 13.1 26.8 39.3
test S2 10.2 18.0 10.5 5.1 8.6 17.2 12.0 26.0 27.0 12.5 27.7 44.1
test S3 9.0 17.4 8.5 5.6 8.2 16.6 9.4 23.0 23.9 14.5 24.3 38.3
test S4 8.5 16.9 7.8 4.1 8.8 14.4 10.3 24.3 25.9 12.3 30.4 42.0

Table A6: Full five-shot segmentation results on MS-COCO. train/test indicate evaluation on the
training/test categories of split Si respectively. Each value is the mean of 5 evaluation runs.
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Abstract

Is it possible to detect arbitrary objects from a single example? A central problem of all existing
attempts at one-shot object detection is the generalization gap: Object categories used during training
are detected much more reliably than novel ones. We here show that this generalization gap can be
nearly closed by increasing the number of object categories used during training. Doing so allows
us to improve generalization from seen to unseen classes from 45% to 89% and improve the state-
of-the-art on COCO by 5.4 %AP50 (from 22.0 to 27.5). We verify that the effect is caused by the
number of categories and not the number of training samples, and that it holds for different models,
backbones and datasets. This result suggests that the key to strong few-shot detection models may
not lie in sophisticated metric learning approaches, but instead simply in scaling the number of
categories. We hope that our findings will help to better understand the challenges of few-shot
learning and encourage future data annotation efforts to focus on wider datasets with a broader set
of categories rather than gathering more samples per category.

Example based object detection Successful Detection of Novel Objects!A broad training dataset
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Figure 1: Example based object detectors can in theory detect any object based on an example
image. However existing models trained on the datasets with few categories such as COCO per-
form significantly worse for novel than known objects. We here show that this generalization gap
progressively shrinks when training the same models with more categories thus moving us closer to
models which can actually detect any object.

1 Introduction

It’s January 2021 and your long awaited household robot finally arrives. Equipped with the
latest “Deep Learning Technology”, it can recognize over 21,000 objects. Your initial excite-
ment quickly vanishes as you realize that your casserole is not one of them. When you contact
customer service they ask you to send some pictures of the casserole so they can fix this. They
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tell you that the fix will be some time, though, as they need to collect about a thousand images
of casseroles to retrain the neural network. While you are making the call your robot knocks
over the olive oil because the steam coming from the pot of boiling water confused it. You start
filling out the return form ...

While not 100% realistic, the above story highlights an important obstacle towards truly autonomous
agents: such systems should be able to detect novel, previously unseen objects and learn to recognize
them based on (ideally) a single example. Solving this one-shot object detection problem can be decom-
posed into three subproblems: (1) designing a class-agnostic object proposal mechanism that detects
both known and previously unseen objects; (2) learning a suitably general visual representation (metric)
that supports recognition of the detected objects; (3) continuously updating the classifier to accommo-
date new object classes or training examples of existing classes. In this paper, we focus on the detection
and representation learning part of the pipeline, and we ask: what does it take to learn a visual repre-
sentation that allows detection and recognition of previously unseen object categories based on a single
example?

We operationalize this question using an example-based visual search task (Fig. 1) that has been
investigated before using handwritten characters (Omniglot; [29]) and real-world image datasets (Pascal
VOC, COCO; [30, 18, 50, 10, 25]). Our central hypothesis is that scaling up the number of object
categories used for training should improve the generalization capabilities of the learned representation.
This hypothesis is motivated by the following observations. On (cluttered) Omniglot [29], recognition
of novel characters works almost as well as for characters seen during training. In this case, sampling
enough categories during training relative to the visual complexity of the objects is sufficient to learn
a metric that generalizes to novel categories. In contrast, models trained on visually more complex
datasets like Pascal VOC and COCO exhibit a large generalization gap: novel categories are detected
much less reliably than ones seen during training. This result suggests that on the natural image datasets,
the number of categories is too small given the visual complexity of the objects and the models retreat
to a shortcut [12] – memorizing the training categories.

To test the hypothesis that wider datasets improve generalization, we increase the number of object
categories during training by using datasets (LVIS, Objects365) that have a larger number of categories
annotated. Our experiments support this hypothesis and suggest the following conclusions:

• The generalization gap between training and novel categories is a key problem in one-shot object
detection.

• This generalization gap can be almost closed by increasing the number of categories used for
training: going from 80 classses in COCO to 1200 in LVIS improves relative performance from
45% to 89%.

• A detailed analysis shows that number of categories, not the amount of data, is the driving force
behind this effect.

• Closing the generalization gap allows using established methods from the object detection com-
munity (like e.g. stronger backbones) to improve performance on known and novel categories
alike.

• We use these insights to improve state-of-the-art performance on COCO by 5.4 %AP50 (from 22
%AP50 to 27.5 %AP50) using annotations from LVIS.
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2 Related Work

Object detection Object detection - the task of detecting objects in complex, cluttered scenes - has
seen huge progress since the widespread adoption of DNNs [13, 35, 16, 26, 6, 47, 4]. Similarly the
number of datasets has grown steadily, fueled by the importance this task has for computer vision ap-
plications [9, 36, 28, 51, 32, 23, 14, 40]. However most models and datasets focus on scenarios where
abundant examples per category are available.

Few-shot learning Algorithms for few-shot learning - learning a model from only a few examples
- can broadly be separated into two categories: Metric learning[21, 44, 41] - learn a good representation
and metric that generalizes to new data. And meta learning [11, 37] - learn a good way to learn a new
task. However, recent work has shown that complex algorithmic approaches can be rivaled by improving
and scaling simple approaches like transfer learning [7, 31, 8, 22].

Few-shot & one-shot object detection Recently, several groups have started to tackle few-shot
learning for object detection. Two training and evaluation paradigms have emerged. The first is inspired
by continual learning: incorporate a set of new categories with only a few labeled images per category
into an existing classifier [20, 49, 46, 45]. The second one phrases the problem as an example-based
visual search: detect objects based on a single example image [30, 18, 50, 10, 25, Fig. 1 left]. We refer
to the former (continual learning) as few-shot object detection, since typically 10–30 images are used
for experiments on COCO. In contrast, we refer to the latter (visual search) as one-shot object detection,
since the focus is on the setting with a single example. In the present paper we work with this latter
paradigm, since it focuses on the representation learning part of the problem and avoids the additional
complexity of continual learning.

Methods for one-shot object detection Existing methods for one-shot object detection usually
combine a standard object detection architecture with metric or meta-learning methods [2, 30, 18, 50,
10, 33, 25]. To better handle complex scenes and pose changes methods such as spatial awareness
[25] or pose transforms [2, 33] have been proposed. A recent method uses a transformer to solve the
matching problem [5]. We here use one of the most straightforward models, Siamese Faster R-CNN
[30], to demonstrate that a change of the training data rather than the model architecture is sufficient to
substantially reduce the generalization gap between known and novel categories.

Number of categories in few-shot learning Most of the few-shot learning literature focuses
on developing algorithmic solutions to a set of existing small-scale benchmarks. In contrast a lot less
attention has been payed to exploring new tasks or datasets. The influence of the training data was
mostly observed indirectly, e.g. through better performance on datasets with more categories such as
tieredImageNet vs. miniImageNet. We here flip the focus demonstrating that significant progress can be
made by keeping the algorithm the same and only changing the training data. Concurrent studies confirm
this finding that more categories help few-shot object detection [10] and few-shot image classification
[38, 19]. We add to this by not only looking at few-shot performance but comparing it with performance
on known categories (generalization gap). This allows us to uncover the functional relationship behind
the effect (closing a shortcut).

3 Experiments

Models We mainly use Siamese Faster R-CNN, an example-based version of Faster R-CNN [35] sim-
ilar to Siamese Mask R-CNN [30]. Briefly, it consists of a feature extractor, a matching step and a stan-
dard region proposal network and bounding box head (Fig. 2). The feature extractor (called backbone in
object detection) is a standard ResNet-50 with feature pyramid networks [17, 26] which is applied to the
image and reference with weight sharing. In the matching step the reference representation is compared
to the image representation in a sliding window approach by computing a feature-wise L1 difference.
The resulting similarity encoding representation is concatenated to the image representation and passed
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on to the region proposal network (RPN). The RPN proposes a set of bounding boxes which potentially
contain objects. These boxes are then classified as containing an object from the reference class or
something else (other object or background). Box coordinates are refined by bounding box regression
and overlapping boxes are removed using non-maximum suppression.

We additionally developed Siamese RetinaNet, a single-stage detector based on RetinaNet [27]. The
feature extraction and matching steps are identical to Siamese Faster R-CNN, but it uses the unified
RetinaHead to jointly propose and classify bounding boxes. To counter the effect of too many negative
samples, the classifier is trained with focal loss [27].

Training & Evaluation The example-based training is slightly different from the traditional ob-
ject detection training paradigm. For each image a reference category is randomly chosen by picking
a category with at least one instance in the image. A reference is retrieved by randomly selecting one
instance from this category in another image and tightly cropping it. The labels for each bounding box
are changed to 0 or 1 depending on whether the object is from the reference category or not. Annota-
tions for objects from the held-out categories are removed from the dataset before training. At test time
a similar procedure is chosen but instead of picking one category for each image, all categories with
at least one object in the image are chosen [30] and one (1-shot) or five (5-shot) reference images are
provided. Predictions are assigned their corresponding category label and evaluation is performed using
standard tools and metrics.

Implementation We implemented Siamese Faster R-CNN and Siamese RetinaNet in mmdetec-
tion v1.0rc [6], which improved performance by more than 30% over the original Siamese Mask R-CNN
[30, Table 4]. We keep all hyperparameters the same as in the standard Faster R-CNN implementation
of mmdetection. Due to resource constraints we reduce the number of samples per epoch to 120k for
Objects365.

Hyperparameters Our model is derived from mmdetection v1.0rc [6] and uses the same hyper-
parameters as used for Faster R-CNN and RetinaNet1. Please note that the default settings for Pascal
VOC differ slightly from those for COCO training. We use the COCO hyperparameters for experiments
on COCO, LVIS and Objects365 and Pascal VOC settings for Pascal VOC.

Datasets We use the four datasets shown in Table 1: COCO [28], Objects365 [40], LVIS [14] and
Pascal VOC [9]. We use standard splits and test on the validation sets except for Pascal VOC where we
test on the 2007 test set. Due to resource constraints, we evaluate Objects365 on a fixed subset of 10k
images from the validation set.

Category splits Following common protocol for example-based detection [30, 39] we split the
categories in each dataset into four splits using every fourth category as hold-out set and the other 3/4
categories for training. So on Pascal VOC there are 15 categories for training in each split, on COCO
there are 60, on Objects365 274 and on LVIS 902. We train and test four models (one for each split)

Siamese Backbone

IF = Image Features, L1 = Pointwise L1 Difference, 
RPN = Region Proposal Network, CLS = Classifier, BBOX = Bounding Box Regressor

Siamese Faster R-CNN

ResNet 50

ResNet 50

IF

RPN

CLS
BBOX

Heads

Matching

L1

Figure 2: Siamese Faster R-CNN

1All details can be found in the respective configs: https://github.com/open-mmlab/mmdetection/tree/
5bf935e1b7621b234ddb34ef6c32b2b524243995/configs
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Figure 3: Example predictions on held-out categories (ResNet-50 backbone). The left three
columns show success cases. The rightmost column shows failure cases in which objects are over-
looked and/or wrongfully detected.

and report the mean over those four models, so performance is always measured on all categories.
Computing performance in this way across all categories is preferable to using a fixed subset as some
categories may be harder than others. During evaluation, the reference images are chosen randomly.
We therefore run the evaluation five times, reporting the average AP50 over splits. The 95% confidence
intervals for the average AP50 is below ±0.2%AP50 for all experiments.

4 Results

4.1 Generalization gap on COCO and Pascal VOC

We start by showing that objects of held-out categories are detected less reliably on COCO and Pascal
VOC. On both datasets, Siamese Faster R-CNN shows strong signs of overfitting to the training cat-
egories (Fig. 4 & Table 2): despite setting a new stat-of-the-art performance is much higher than for
categories held-out during training (COCO: 49.7 ! 22.8 %AP50; Pascal VOC: 82.7 ! 37.6 %AP50).
We refer to this drop in performance as the generalization gap. This result is consistent with the litera-
ture: [18] – the previous state-of-the-art – report performance dropping 40.9 ! 22.0 %AP50 on COCO

Dataset Version Classes Images Instances Ins/Img Cls/Img Thr.
Pascal VOC 07+12 20 8k 23k 2.9 1.6 X
COCO 2017 80 118k 860k 7.3 2.9 X
LVIS v1 1,203 100k 1.27M �12.8⇤ �3.6⇤ 7
Objects365 v2 365 1.94M 28M 14.6 6.1 X

Table 1: Dataset comparison. Thr. = Throughoutly annotated: every instance of every class is
annotated in every image. ⇤LVIS has potentially more objects and categories per image than are
annotated due to the non-exhaustive labeling.
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COCO Pascal VOC
Categories! Train Held-Out Train Held-Out
Siam. Faster R-CNN 49.7 22.8 82.7 37.6
— empty Refs. 10.1 4.4 59.6 33.2

Table 2: On COCO and Pascal VOC there is a clear performance gap (AP50) between categories
used during training (Train) and held-out categories (Held-Out). A baseline getting a black image
as reference which contains no information about the target category (– empty Refs.) performs
surprisingly well on Pascal VOC but fails on COCO.

(see Table 4 below). Some newer models reportedly close the gap on Pascal VOC [50, 18, 25]; we will
discuss Pascal VOC further in the next section. Example predictions show good localization (bounding
boxes) even for unknown objects in cluttered scenes while classification errors make up the majority of
mistakes (Fig. 3).

4.2 Pascal VOC is too easy to evaluate one-shot object detection models

Having identified this large generalization gap, we ask whether the models have learned a useful metric
for one-shot detection at all or whether they rely on simple dataset statistics. Pascal VOC contains, on
average, only 1.6 categories and 2.9 instances per image. In this case, simply detecting all foreground
objects may be a viable strategy. To test how well such a trivial strategy would perform, we provide
the model with uninformative references (we use all-black images). Interestingly, this baseline performs
very well, achieving 59.6 %AP50 on training and 33.2 %AP50 on held-out categories (Table 2). For held-
out categories, the difference to an example-based search is marginal (33.2 ! 37.6 %AP50). This result
demonstrates that on Pascal VOC the model mostly follows a shortcut and uses basic dataset statistics
to solve the task.

In contrast, COCO represents a drastic increase in image complexity compared with Pascal VOC:
it contains, on average, 2.9 categories and 7.3 instances per image. As expected, in this case the triv-
ial baseline with uninformative references performs substantially worse than the example-based search
(training: 49.7 ! 10.1 %AP50; held-out: 22.8 ! 4.4 %AP50; Table 2). Thus, the added image complex-
ity in COCO forces the model to use the reference image for classification but the small set of categories
is not sufficient to prevent memorizing the training categories.

4.3 Training on more categories reduces the generalization gap

Figure 4: Performance on
known and novel categories
for different datasets.

We now turn to our main hypothesis that increasing the number of cat-
egories used during training could close the generalization gap identi-
fied above. To this end we use Objects365 and LVIS, two fairly new
datasets with 365 and 1203 categories, respectively (much more than the
20/80 in Pascal VOC/COCO). Indeed, training on these wider datasets
improves the relative performance on the held-out categories from 46%
on COCO to 76% on Objects365 and up to 89% on LVIS (Fig. 1). In
absolute numbers this means going from a 26.9 %AP50 gap on COCO
to a 4.6 %AP50 gap on Objects365 and a 3.5 %AP50 gap on LVIS (Ta-
ble 3) in the one-shot setting. Increasing the number of references to five
(5-shot) improves performance on all datasets but leaves relative perfor-
mance unchanged (Table 3, right columns).

This effect is not caused simply by differences between the datasets, as the following experiment
shows: For both datasets (LVIS and Objects365), we train models on progressively more categories.
When training on less than 100 categories (resembling training on COCO), a clear generalization gap is
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visible on both LVIS and Objects365 (Fig. 5A: leftmost data points). Increasing the number of training
categories leads to better performance on the held-out categories, while performance on the training
categories stays the same (LVIS) or decreases (Objects365). The effect is the same in the 5-shot setting
but with a better baseline performance (Fig. A.1 in Appendix).

4.4 The number of categories is the crucial factor

The results so far show that increasing the number of categories used during training reduces the gen-
eralization gap and improves performance. However, this effect could also be caused by the fact that
with more categories there is also more data available. Consider the situation where we train on 10% of
the categories (90 in the case of LVIS). As we sample these categories uniformly from the dataset, we
use only approximately 10% of the total number of instances. To control for this confound, we created
training sets that match the number of instances: in this case we use only 10% of the instances in the
dataset but sample them uniformly from all 900 training categories.

The results can be seen in Fig. 5B. Our example from above with 10% of the data corresponds to the
leftmost datapoint in both plots. The model trained with more categories (green) clearly outperforms the
model with more instances per category (blue). The same performance gap can be seen for any fraction
of the data. Thus, for a given budget of instances (labels) it is better to cover more categories than to
collect as many samples per category as possible.

4.5 Once the generalization gap is closed more powerful models benefit novel categories

If models indeed learn the distribution over categories, stronger models that can learn more powerful
representations should perform better on known and novel categories alike. We test this hypothesis in
two ways: first, by replacing the standard ResNet-50 [17] backbone with a more expressive ResNeXt-
101 [48]; second, by using a three times longer training schedule.

The larger backbone does not improve performance on the held-out categories on COCO (Table 3).
Instead the additional capacity is used to memorize the training categories, which is evident from the
large improvement (6.7%AP50) in performance on the training categories, but only a small improvement
(0.7%AP50) on the held-out categories. In contrast, on LVIS and Objects365 the gains of the bigger
backbone are not confined to the training categories but apply to the one-shot setting as well. Only a
small difference remains on Objects365 (3.0%AP50 vs. 1.4%AP50).

Longer training schedules show the same pattern. For COCO, performance on the training categories
improves while performance on held-out categories even gets a bit worse on a 3x schedule (Table 3). In

Figure 5: A. Experiment subsampling LVIS and Objects365 categories during training. When
more categories are used during training performance on held-out categories (blue) improves while
performance on the training categories (light blue) stays flat or decreases. B. Comparison of the
performance on held-out categories if a fixed number of instances is chosen either from all cate-
gories (green) or from a subset of categories (blue). Having more categories is more important than
having more samples per category. (1-shot results, for 5-shot see Fig. A.1)
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COCO
1-shot 5-shot

Model Backb. Sched. Train C. Held-Out C. Delta Train C. Held-Out C. Delta
Siam. RetinaNet R50 1x 50.6 18.9 31.7 55.5 22.1 33.4
Siam. FRCNN R50 1x 49.7 22.8 26.9 54.9 27.6 27.3
Siam. FRCNN R50 3x 51.7 21.9 29.8 57.6 26.7 30.9
Siam. FRCNN X101 1x 56.4 23.5 32.9 61.9 28.6 33.3

LVIS
1-shot 5-shot

Model Backb. Sched. Train C. Held-Out C. Delta Train C. Held-Out C. Delta
Siam. RetinaNet R50 1x 28.4 24.7 3.7 31.6 27.5 4.1
Siam. FRCNN R50 1x 31.5 28.0 3.5 37.0 33.0 4.0
Siam. FRCNN R50 3x 32.7 28.7 4.0 38.2 33.5 4.7
Siam. FRCNN X101 1x 35.4 31.3 4.1 41.4 36.3 5.1

Objects365
1-shot 5-shot

Model Backb. Sched. Train Cats. Held-Out C. Delta Train C. Held-Out C. Delta
Siam. RetinaNet R50 1x 19.7 14.5 5.2 23.4 17.2 6.2
Siam. FRCNN R50 1x 19.4 14.8 4.6 25.7 19.9 5.8
Siam. FRCNN R50 3x 22.0 16.5 5.5 27.7 20.9 6.8
Siam. FRCNN X101 1x 25.0 17.9 7.1 30.6 22.4 8.2

Table 3: Effect of a three times longer training schedule and a larger backbone (ResNeXt-101
32x4d) on model performance across datasets. While larger models and longer training times lead
to no or only minor improvements on held-out categories on COCO, they do have a larger effect on
LVIS and Objects365.

contrast, performance on LVIS and Objects365 improves for both training and held-out categories alike,
suggesting that the models do not overfit only the training categories.

4.6 Results hold for different model configurations

To test if our findings apply to single-stage detectors as well, we train and test Siamese RetinaNet on
COCO, LVIS and Objects365 (Table 3). Results are very similar to Siamese Faster R-CNN. Siamese
RetinaNet shows a slightly larger generalization gap on COCO (relative performance: Retina: 37% vs.
FRCNN: 46%) but results are very similar on LVIS (Retina: 87% vs. FRCNN: 89%) and Objects365
(Retina: 74% vs. FRCNN: 76%).

Taken together we observe the same patterns for single- and two-stage detectors with different back-
bones and learning rate schedules on two datasets (Objects365 and LVIS) for 1-shot and 5-shot evalua-
tion. This suggests that our conclusions may extend to most object detection models and we can expect
to significantly boost performance using the large toolboxes which exist for traditional object detection.

4.7 State-of-the-art on COCO using LVIS

Using the insights from above, we now demonstrate state-of-the-art one-shot detection performance
on COCO by training on a large number of categories. We use LVIS and create four splits which
leave out all categories that have a correspondence in the respective COCO split. As LVIS is a re-
annotation of COCO, this means that we expand the categories in the training set while training on the
same set of images. Training with the more diverse LVIS annotations leads to a noticeable performance
improvement from 22.8 to 25.0%AP50, which can be improved even further to 27.4%AP50 by using
the stronger ResNeXt-101 backbone, outperforming the previous best model by 5.4%AP50 (Table 4). In
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Figure 6: Predictions on COCO tend to be more accurate and cleaner when using a bigger backbone
and training on LVIS. Especially on categories with more ambiguous references like sports ball or
dining table the LVIS trained model is more precise. Additionally the ResNeXt backbone leads to
”cleaner” results with less false positives.

1-shot 5-shot
Model Backb. Train Data Train C. Held-Out C. Train C. Held-Out C.
Siam. Mask R-CNN⇤ R50 COCO 37.6 16.3 41.3 18.5
CoAE⇤⇤ R50 COCO 40.9 22.0 - -
AIT⇤⇤⇤ R50 COCO 47.5 24.3 - -
Siam. RetinaNet R50 COCO 50.6 18.9 55.5 22.1
Siam. Faster R-CNN R50 COCO 49.7 22.8 54.9 27.6
Siam. Mask R-CNN R50 COCO 51.9 22.9 57.9 27.8
Siam. Cascade R-CNN R50 COCO 50.3 22.0 56.2 27.2
Siam. Faster R-CNN X101 32x4d COCO 56.4 23.5 61.9 28.6
Siam. Faster R-CNN R50 LVIS 36.2 25.0 43.5 31.7
Siam. Faster R-CNN X101 32x4d LVIS 42.5 27.4 50.3 34.8

Table 4: Performance (AP50) on COCO can be improved by training on LVIS. Siamese Mask R-
CNN and Siamese Cascade R-CNN are identical to Siamese Faster R-CNN except for an additional
mask head or cascaded bbox heads. (*[30], ** [18], *** [5])

relative terms that means going from 45% relative performance to 65%, thus substantially outperforming
the previous best method (55% relative performance [18]) both in absolute and relative terms. Visual
inspection of the results (Fig. 6) shows cleaner predictions with less false positives especially for difficult
reference images.

5 Discussion

It has long been assumed and recently shown [38, 19, 10] that training with more categories improves
few-shot learning performance. However the question whether this is due to better overall model per-
formance or better generalization has not been answered so far. Our results show that the underlying
mechanism is an improvement in generalization from 45% relative performance on COCO to 89% on
LVIS. The effect is consistent for different detectors, backbone architectures and training schedules
which suggests that the effect will hold for almost any model. If this trend continues with more cate-
gories object detection that generalizes to any object is within reach. This, however, does not mean that
one-shot object detection is “solved”. There are at least three important steps to take:

First and foremost the performance of example-based object detectors has to improve significantly.
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Our experiments outline a path forward, demonstrating that methods that profit general object detection
transfer to novel categories when the generalization gap is closed. Secondly, we have to better under-
stand the mechanisms that lead to the generalization gap. Our results indicate that one of the main
reasons is a shortcut [12] - memorizing the training categories. That stronger models also perform better
on novel categories with progressive closing of the gap is an indicator that the key issue was indeed
overfitting. However more investigation will be required to determine which factors are important. Is
it the sheer number of categories or is it their diversity, granularity, frequency? Or is the main factor
semantic relationship as results from [38] and [19] suggest? Finally we have to find a way to transfer
this success to smaller datasets with less categories. While we achieve a new state-of-the-art on COCO
the generalization gap there (69%) is still larger than on LVIS (89%).

5.1 Future datasets should focus on the diversity of categories.

Our findings have important implications for the design of future datasets. For the goal of generalization
a broader range of categories is helpful at any dataset size (Fig. 5B: green curve above blue curve at
any data fraction), while from a certain point onward more examples per category lead to diminishing
returns (Fig. 5B: green curve flattens out). At a time where few-shot and long-tail problems become
more important in computer vision this suggest that future data collection and annotation efforts should
focus more on a broad set of categories and less on the number of instances for each of those categories.

An open question is, how broad datasets have to be. Despite being a big step forward, training on
LVIS still leaves a small generalization gap that widens when using stronger models. In other words:
some amount of overfitting on the training categories remains. The good news is that we don’t see a
saturation (Fig. 5B: dark blue curves still rise at the maximum number of categories) so further increasing
the number of categories should reduce the remaining gap.

5.2 The bigger picture

Our insight that applying existing methods on larger and more diverse datasets can lead to unexpected
capabilities is mirrored in other areas. This phenomenon has been observed time and again and was
termed the “unreasonable effectiveness of data” [15, 42] or the “bitter lesson” [43]. It played a key role
in the breakthrough of DNNs thanks to ImageNet [36, 24] as well as recent results on game-play [1]
or language modelling [3]. Recently [22] and [34] achieve impressive results demonstrating strong per-
formance at one-shot and zero-shot ImageNet classification. As in our study, simple methods (transfer
learning in [22] and unsupervised image captioning in [34]) on large and diverse datasets led to results
that are far better than what one would have expected: Achieving ResNet performance with 10 [22]
respectively zero [34] annotated samples per class in their case; 89% relative performance on LVIS in
our case. We hope that by building on this insight we can soon move from trying to solve few-shot
learning towards using few-shot learning to solve other problems.
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A Appendix

A.1 Additional few-shot results

We provide five-shot results for the experiments in Fig. 5 in Fig. A.1.

Figure A.1: Performing the experiments in Fig. 5 with five reference images (five-shot) leads to no
qualitative difference.
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Abstract

Deep learning has triggered the current rise of artificial intelligence and is the workhorse
of today’s machine intelligence. Numerous success stories have rapidly spread all over
science, industry and society, but its limitations have only recently come into focus. In this
perspective we seek to distil how many of deep learning’s problem can be seen as different
symptoms of the same underlying problem: shortcut learning. Shortcuts are decision rules
that perform well on standard benchmarks but fail to transfer to more challenging testing
conditions, such as real-world scenarios. Related issues are known in Comparative Psy-
chology, Education and Linguistics, suggesting that shortcut learning may be a common
characteristic of learning systems, biological and artificial alike. Based on these observa-
tions, we develop a set of recommendations for model interpretation and benchmarking,
highlighting recent advances in machine learning to improve robustness and transferability
from the lab to real-world applications.

1 Introduction
If science was a journey, then its destination would be the discovery of simple explanations
to complex phenomena. There was a time when the existence of tides, the planet’s orbit
around the sun, and the observation that “things fall down” were all largely considered to be
independent phenomena—until 1687, when Isaac Newton formulated his law of gravitation
that provided an elegantly simple explanation to all of these (and many more). Physics has
made tremendous progress over the last few centuries, but the thriving field of deep learning
is still very much at the beginning of its journey—often lacking a detailed understanding
of the underlying principles.

For some time, the tremendous success of deep learning has perhaps overshadowed
the need to thoroughly understand the behaviour of Deep Neural Networks (DNNs). In an
ever-increasing pace, DNNs were reported as having achieved human-level object classifi-
cation performance [1], beating world-class human Go, Poker, and Starcraft players [2, 3],

This is the preprint version of an article that has been published by Nature Machine Intelligence
(https://doi.org/10.1038/s42256-020-00257-z).
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Problem

Shortcut

Task for DNN Answer question

Changes answer if irrelevant
information is added

 

Recognise object

Hallucinates teapot if cer-
tain patterns are present

Uses features irrecogni-
sable to humans

Recognise pneumonia

Fails on scans from
new hospitals 

Looks at hospital token,
not lung

Only looks at last sentence and 
ignores context

Caption image

Describes green
hillside as grazing sheep

Uses background to
recognise primary object

Article: Super Bowl 50
Paragraph: “Peython Manning became the first quarterback 
ever to lead two different teams to multiple Super Bowls. He 
is also the oldest quarterback ever to play in a Super Bowl 
at age 39. The past record was held by John Elway, who 
led the Broncos to victory in Super Bowl XXXIII at age 38 
and is currently Denver’s Executive Vice President of Foot-
ball Operations and General Manager. Quarterback Jeff 
Dean had a jersey number 37 in Champ Bowl XXXIV.”
Question: “What is the name of the quarterback who was 
38 in Super Bowl XXXIII?”
Original Prediction: John Elway
Prediction under adversary: Jeff Dean

Figure 1. Deep neural networks often solve problems by taking shortcuts instead of learning the
intended solution, leading to a lack of generalisation and unintuitive failures. This pattern can be
observed in many real-world applications.

detecting cancer from X-ray scans [4], translating text across languages [5], helping com-
bat climate change [6], and accelerating the pace of scientific progress itself [7]. Because
of these successes, deep learning has gained a strong influence on our lives and society. At
the same time, however, researchers are unsatisfied about the lack of a deeper understand-
ing of the underlying principles and limitations. Different from the past, tackling this lack
of understanding is not a purely scientific endeavour anymore but has become an urgent
necessity due to the growing societal impact of machine learning applications. If we are
to trust algorithms with our lives by being driven in an autonomous vehicle, if our job ap-
plications are to be evaluated by neural networks, if our cancer screening results are to be
assessed with the help of deep learning—then we indeed need to understand thoroughly:
When does deep learning work? When does it fail, and why?

In terms of understanding the limitations of deep learning, we are currently observing
a large number of failure cases, some of which are visualised in Figure 1. DNNs achieve
super-human performance recognising objects, but even small invisible changes [8] or a
different background context [9, 10] can completely derail predictions. DNNs can generate
a plausible caption for an image, but—worryingly—they can do so without ever looking
at that image [11]. DNNs can accurately recognise faces, but they show high error rates
for faces from minority groups [12]. DNNs can predict hiring decisions on the basis of
résumés, but the algorithm’s decisions are biased towards selecting men [13].

How can this discrepancy between super-human performance on one hand and aston-
ishing failures on the other hand be reconciled? One central observation is that many
failure cases are not independent phenomena, but are instead connected in the sense that
DNNs follow unintended “shortcut” strategies. While superficially successful, these strate-
gies typically fail under slightly different circumstances. For instance, a DNN may appear
to classify cows perfectly well—but fails when tested on pictures where cows appear out-
side the typical grass landscape, revealing “grass” as an unintended (shortcut) predictor
for “cow” [9]. Likewise, a language model may appear to have learned to reason—but
drops to chance performance when superficial correlations are removed from the dataset
[14]. Worse yet, a machine classifier successfully detected pneumonia from X-ray scans
of a number of hospitals, but its performance was surprisingly low for scans from novel
hospitals: The model had unexpectedly learned to identify particular hospital systems with
near-perfect accuracy (e.g. by detecting a hospital-specific metal token on the scan, see
Figure 1). Together with the hospital’s pneumonia prevalence rate it was able to achieve a
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reasonably good prediction—without learning much about pneumonia at all [15].
At a principal level, shortcut learning is not a novel phenomenon. The field of machine

learning with its strong mathematical underpinnings has long aspired to develop a formal
understanding of shortcut learning which has led to a variety of mathematical concepts and
an increasing amount of work under different terms such as learning under covariate shift
[16], anti-causal learning [17], dataset bias [18], the tank legend [19] and the Clever Hans
effect [20]. This perspective aims to present a unifying view of the various phenomena that
can be collectively termed shortcuts, to describe common themes underlying them, and lay
out the approaches that are being taken to address them both in theory and in practice.

The structure of this perspective is as follows. Starting from an intuitive level, we in-
troduce shortcut learning across biological neural networks (Section 2) and then approach
a more systematic level by introducing a taxonomy (Section 3) and by investigating the
origins of shortcuts (Section 4). In Section 5, we highlight how these characteristics affect
different areas of deep learning (Computer Vision, Natural Language Processing, Agent-
based Learning, Fairness). The remainder of this perspective identifies actionable strate-
gies towards diagnosing and understanding shortcut learning (Section 6) as well as current
research directions attempting to overcome shortcut learning (Section 7). Overall, our se-
lection of examples is biased towards Computer Vision since this is one of the areas where
deep learning has had its biggest successes, and an area where examples are particularly
easy to visualise. We hope that this perspective facilitates the awareness for shortcut learn-
ing and motivates new research to tackle this fundamental challenge we currently face in
machine learning.

2 Shortcut learning in biological neural networks
Shortcut learning typically reveals itself by a strong discrepancy between intended and
actual learning strategy, causing an unexpected failure. Interestingly, machine learning is
not alone with this issue: From the way students learn to the unintended strategies rats use
in behavioural experiments—variants of shortcut learning are also common for biological
neural networks. We here point out two examples of unintended learning strategies by
natural systems in the hope that this may provide an interesting frame of reference for
thinking about shortcut learning within and beyond artificial systems.

2.1 Shortcut learning in Comparative Psychology: unintended
cue learning
Rats learned to navigate a complex maze apparently based on subtle colour differences—
very surprising given that the rat retina has only rudimentary machinery to support at best
somewhat crude colour vision. Intensive investigation into this curious finding revealed
that the rats had tricked the researchers: They did not use their visual system at all in the
experiment and instead simply discriminated the colours by the odour of the colour paint
used on the walls of the maze. Once smell was controlled for, the remarkable colour dis-
crimination ability disappeared ...1

Animals are no strangers to finding simple, unintended solutions that fail unexpectedly:
They are prone to unintended cue learning, as shortcut learning is called in Comparative

1Nicholas Rawlins, personal communication with F.A.W. some time in the early 1990s, confirmed via email
on 12.11.2019.
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Psychology and the Behavioural Neurosciences. When discovering cases of unintended
cue learning, one typically has to acknowledge that there was a crucial difference between
performance in a given experimental paradigm (e.g. rewarding rats to identify different
colours) and the investigated mental ability one is actually interested in (e.g. visual colour
discrimination). In analogy to machine learning, we have a striking discrepancy between
intended and actual learning outcome.

2.2 Shortcut learning in Education: surface learning
Alice loves history. Always has, probably always will. At this very moment, however, she is
cursing the subject: After spending weeks immersing herself in the world of Hannibal and
his exploits in the Roman Empire, she is now faced with a number of exam questions that
are (in her opinion) to equal parts dull and difficult. “How many elephants did Hannibal
employ in his army—19, 34 or 40?” ... Alice notices that Bob, sitting in front of her, seems
to be doing very well. Bob of all people, who had just boasted how he had learned the
whole book chapter by rote last night ...

In educational research, Bob’s reproductive learning strategy would be considered surface
learning, an approach that relies on narrow testing conditions where simple discriminative
generalisation strategies can be highly successful. This fulfils the characteristics of shortcut
learning by giving the appearance of good performance but failing immediately under more
general test settings. Worryingly, surface learning helps rather than hurts test performance
on typical multiple-choice exams [21]: Bob is likely to receive a good grade, and judging
from grades alone Bob would appear to be a much better student than Alice in spite of her
focus on understanding. Thus, in analogy to machine learning we again have a striking
discrepancy between intended and actual learning outcome.

3 Shortcuts defined: a taxonomy of decision rules
With examples of biological shortcut learning in mind (examples which we will return to
in Section 6), what does shortcut learning in artificial neural networks look like? Figure 2
shows a simple classification problem that a neural network is trained on (distinguishing
a star from a moon).2 When testing the model on similar data (blue) the network does
very well—or so it may seem. Very much like the smart rats that tricked the experimenter,
the network uses a shortcut to solve the classification problem by relying on the location
of stars and moons. When location is controlled for, network performance deteriorates
to random guessing (red). In this case (as is typical for object recognition), classification
based on object shape would have been the intended solution, even though the difference
between intended and shortcut solution is not something a neural network can possibly
infer from the training data.

On a general level, any neural network (or machine learning algorithm) implements
a decision rule which defines a relationship between input and output—in this example
assigning a category to every input image. Shortcuts, the focus of this article, are one
particular group of decision rules. In order to distinguish them from other decision rules,
we here introduce a taxonomy of decision rules (visualised in Figure 3), starting from a
very general rule and subsequently adding more constraints until we approach the intended
solution.

2Code is available from https://github.com/rgeirhos/shortcut-perspective.
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Figure 2. Toy example of shortcut learning in neural networks. When trained on a simple dataset
of stars and moons (top row), a standard neural network (three layers, fully connected) can easily
categorise novel similar exemplars (mathematically termed i.i.d. test set, defined later in Section 3).
However, testing it on a slightly different dataset (o.o.d. test set, bottom row) reveals a shortcut
strategy: The network has learned to associate object location with a category. During training,
stars were always shown in the top right or bottom left of an image; moons in the top left or bottom
right. This pattern is still present in samples from the i.i.d. test set (middle row) but not in o.o.d. test
images (bottom row), exposing the shortcut.

(1) all possible decision rules, including non-solutions
Imagine a model that tries to solve the problem of separating stars and moons by predicting
“star” every time it detects a white pixel in the image. This model uses an uninformative
feature (the grey area in Figure 3) and does not reach good performance on the data it was
trained on, since it implements a poor decision rule (both moon and star images contain
white pixels). Typically, interesting problems have an abundant amount of non-solutions.

(2) training solutions, including overfitting solutions
In machine learning it is common practice to split the available data randomly into a train-
ing and a test set. The training set is used to guide the model in its selection of a (hopefully
useful) decision rule, and the test set is used to check whether the model achieves good per-
formance on similar data it has not seen before. Mathematically, the notion of similarity
between training and test set commonly referred to in machine learning is the assumption
that the samples in both sets are drawn from the same distribution. This is the case if both
the data generation mechanism and the sampling mechanism are identical. In practice this
is achieved by randomising the split between training and test set. The test set is then
called independent and identically distributed (i.i.d.) with regard to the training set. In or-
der to achieve high average performance on the test set, a model needs to learn a function
that is approximately correct within a subset of the input domain which covers most of
the probability of the distribution. If a function is learned that yields the correct output on
the training images but not on the i.i.d. test images, the learning machine uses overfitting
features (the blue area in Figure 3).

5



Figure 3. Taxonomy of decision rules. Among the set of all possible rules, only some solve the
training data. Among the solutions that solve the training data, only some generalise to an i.i.d. test
set. Among those solutions, shortcuts fail to generalise to different data (o.o.d. test sets), but the
intended solution does generalise.

(3) i.i.d. test solutions, including shortcuts
Decision rules that solve both the training and i.i.d. test set typically score high on standard
benchmark leaderboards. However, even the simple toy example can be solved through at
least three different decision rules: (a) by shape, (b) by counting the number of white pixels
(moons are smaller than stars) or (c) by location (which was correlated with object category
in the training and i.i.d. test sets). As long as tests are performed only on i.i.d. data, it is
impossible to distinguish between these. However, one can instead test models on datasets
that are systematically different from the i.i.d. training and test data (also called out-of-
distribution or o.o.d. data). For example, an o.o.d. test set with randomised object size
will instantly invalidate a rule that counts white pixels. Which decision rule is the intended
solution is clearly in the eye of the beholder, but humans often have clear expectations. In
our toy example, humans typically classify by shape. A standard fully connected neural
network3 trained on this dataset, however, learns a location-based rule (see Figure 2). In
this case, the network has used a shortcut feature (the blue area in Figure 3): a feature that
helps to perform well on i.i.d. test data but fails in o.o.d. generalisation tests.

(4) intended solution
Decision rules that use the intended features (the red area in Figure 3) work well not only
on an i.i.d. test set but also perform as intended on o.o.d. tests, where shortcut solutions
fail. In the toy example, a decision rule based on object shape (the intended feature) would
generalise to objects at a different location or with a different size. Humans typically have a
strong intuition for what the intended solution should be capable of. Yet, for complex prob-
lems, intended solutions are mostly impossible to formalise, so machine learning is needed
to estimate these solutions from examples. Therefore the choice of examples, among other
aspects, influence how closely the intended solution can be approximated.

3A convolutional (rather than fully connected) network would be prevented from taking this shortcut by design.

6



4 Shortcuts: where do they come from?
Following this taxonomy, shortcuts are decision rules that perform well on i.i.d. test data
but fail on o.o.d. tests, revealing a mismatch between intended and learned solution. It is
clear that shortcut learning is to be avoided, but where do shortcuts come from, and what
are the defining real-world characteristics of shortcuts that one needs to look out for when
assessing a model or task through the lens of shortcut learning? There are two different as-
pects that one needs to take into account. First, shortcut opportunities (or shortcut features)
in the data: possibilities for solving a problem differently than intended (Section 4.1). Sec-
ond, feature combination: how different features are combined to form a decision rule
(Section 4.2). Together, these aspects determine how a model generalises (Section 4.3).

4.1 Dataset: shortcut opportunities
What makes a cow a cow? To DNNs, a familiar background can be
as important for recognition as the object itself, and sometimes even
more important: A cow at an unexpected location (such as a beach
rather than grassland) is not classified correctly [9]. Conversely, a
lush hilly landscape without any animal at all might be labelled as a
“herd of grazing sheep” by a DNN [22].

This example highlights how a systematic relationship between object and background or
context can easily create a shortcut opportunity. If cows happen to be on grassland for
most of the training data, detecting grass instead of cows becomes a successful strategy for
solving a classification problem in an unintended way; and indeed many models base their
predictions on context [23, 24, 25, 26, 9, 27, 10]. Many shortcut opportunities are a conse-
quence of natural relationships, since grazing cows are typically surrounded by grassland
rather than water. These so-called dataset biases have long been known to be problematic
for machine learning algorithms [18]. Humans, too, are influenced by contextual biases (as
evident from faster reaction times when objects appear in the expected context), but their
predictions are much less affected when context is missing [28, 29, 30, 31]. In addition
to shortcut opportunities that are fairly easy to recognise, deep learning has led to the dis-
covery of much more subtle shortcut features, including high-frequency patterns that are
almost invisible to the human eye [32, 33]. Whether easy to recognise or hard to detect,
it is becoming more and more evident that shortcut opportunities are by no means disap-
pearing when the size of a dataset is simply scaled up by some orders of magnitude (in the
hope that this is sufficient to sample the diverse world that we live in [34]). Systematic
biases are still present even in “Big Data” with large volume and variety, and consequently
even large real-world datasets usually contain numerous shortcut opportunities. Overall,
it is quite clear that data alone rarely constrains a model sufficiently, and that data cannot
replace making assumptions [35]. The totality of all assumptions that a model incorporates
(such as, e.g., the choice of architecture) is called the inductive bias of a model and will be
discussed in more detail in Section 6.3.
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4.2 Decision rule: shortcuts from discriminative learning
What makes a cat a cat? To standard DNNs, the example image on
the left clearly shows an elephant, not a cat. Object textures and
other local structures in images are highly useful for object classifi-
cation in standard datasets [36], and DNNs strongly rely on texture
cues for object classification, largely ignoring global object shape
[37, 38].

In many cases, relying on object textures can be sufficient to solve an object categorisation
task. Obviously, however, texture is only one of many attributes that define an object.
Discriminative learning differs from generative modeling by picking any feature that is
sufficient to reliably discriminate on a given dataset but the learning machine has no notion
of how realistic examples typically look like and how the features used for discrimination
are combined with other features that define an object. In our example, using textures
for object classification becomes problematic if other intended attributes (like shape) are
ignored entirely. This exemplifies the importance of feature combination: the definition
of an object relies on a (potentially highly non-linear) combination of information from
different sources or attributes that influence a decision rule.4 In the example of the cat
with elephant texture above, a shape-agnostic decision rule that merely relies on texture
properties clearly fails to capture the task of object recognition as it is understood for
human vision. While the model uses an important attribute (texture) it tends to equate
it with the definition of the object missing out other important attributes such as shape.
Of course, being aligned with the human decision rule does not always conform to our
intention. In medical or safety-critical applications, for instance, we may instead seek an
improvement over human performance.

Inferring human-interpretable object attributes like shape or texture from an image
requires specific nonlinear computations. In typical end-to-end discriminative learning,
this again may be prone to shortcut learning. Standard DNNs do not impose any human-
interpretability requirements on intermediate image representations and thus might be
severely biased to the extraction of overly simplistic features which only generalise under
the specific design of the particular dataset used but easily fail otherwise. Discriminative
feature learning goes as far that some decision rules only depend on a single predictive
pixel [39, 40, 41] while all other evidence is ignored.5 In principle, ignoring some evi-
dence can be beneficial. In object recognition, for example, we want the decision rule to be
invariant to an object shift. However, undesirable invariance (sometimes called excessive
invariance) is harmful and modern machine learning models can be invariant to almost all
features that humans would rely on when classifying an image [41].

4In Cognitive Science, this process is called cue combination.
5In models of animal learning, the blocking effect is a related phenomenon. Once a predictive cue/feature (say,

a light flash) has been associated with an outcome (e.g. food), animals sometimes fail to associate a new, equally
predictive cues with the same outcome [42, 43, 44].
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Figure 4. Both human and machine vision generalise, but they generalise very differently. Left:
image pairs that belong to the same category for humans, but not for DNNs. Right: images pairs
assigned to the same category by a variety of DNNs, but not by humans.

4.3 Generalisation: how shortcuts can be revealed
What makes a guitar a guitar? When tested on this pattern never seen
before, standard DNNs predict “guitar” with high certainty [45].
Exposed by the generalisation test, it seems that DNNs learned to
detect certain patterns (curved guitar body? strings?) instead of gui-
tars: a successful strategy on training and i.i.d. test data that leads to
unintended generalisation on o.o.d. data.

This exemplifies the inherent link between shortcut learning and generalisation. By itself,
generalisation is not a part of shortcut learning—but more often than not, shortcut learning
is discovered through cases of unintended generalisation, revealing a mismatch between
human-intended and model-learned solution. Interestingly, DNNs do not suffer from a
general lack of o.o.d. generalisation (Figure 4) [45, 36, 46, 41]. DNNs recognise guitars
even if only some abstract pattern is left—however, this remarkable generalisation perfor-
mance is undesired, at least in this case. In fact, the set of images that DNNs classify as
“guitar” with high certainty is incredibly big. To humans only some of these look like gui-
tars, others like patterns (interpretable or abstract) and many more resemble white noise
or even look like airplanes, cats or food [8, 45, 41]. Figure 4 on the right, for example,
highlights a variety of image pairs that have hardly anything in common for humans but
belong to the same category for DNNs. Conversely, to the human eye an image’s category
is not altered by innocuous distribution shifts like rotating objects or adding a bit of noise,
but if these changes interact with the shortcut features that DNNs are sensitive to, they
completely derail neural network predictions [8, 47, 9, 48, 49, 50, 38]. This highlights
that generalisation failures are neither a failure to learn nor a failure to generalise at all,
but instead a failure to generalise in the intended direction—generalisation and robustness
can be considered the flip side of shortcut learning. Using a certain set of features creates
insensitivity towards other features. Only if the selected features are still present after a
distribution shift, a model generalises o.o.d.
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5 Shortcut learning across deep learning
Taken together, we have seen how shortcuts are based on dataset shortcut opportunities
and discriminative feature learing that result in a failure to generalise as intended. We will
now turn to specific application areas, and discover how this general pattern appears across
Computer Vision, Natural Language Processing, Agent-based (Reinforcement) Learning
and Fairness / algorithmic decision-making. While shortcut learning is certainly not lim-
ited to these areas, they might be the most prominent ones where the problem has been
observed.

Computer Vision To humans, for example, a photograph of a car still shows the same
car even when the image is slightly transformed. To DNNs, in contrast, innocuous trans-
formations can completely change predictions. This has been reported in various cases
such as shifting the image by a few pixels [47], rotating the object [49], adding a bit of
random noise or blur [51, 50, 52, 53] or (as discussed earlier) by changing background
[9] or texture while keeping the shape intact [38] (see Figure 4 for examples). Some key
problems in Computer Vision are linked to shortcut learning. For example, transferring
model performance across datasets (domain transfer) is challenging because models often
use domain-specific shortcut features, and shortcuts limit the usefulness of unsupervised
representations [54]. Furthermore, adversarial examples are particularly tiny changes to
an input image that completely derail model predictions [8] (an example is shown in Fig-
ure 4). Invisible to the human eye, those changes modify highly predictive patterns that
DNNs use to classify objects [33]. In this sense, adversarial examples—one of the most
severe failure cases of neural networks—can at least partly be interpreted as a consequence
of shortcut learning.

Natural Language Processing The widely used language model BERT has been
found to rely on superficial cue words. For instance, it learned that within a dataset of nat-
ural language arguments, detecting the presence of “not” was sufficient to perform above
chance in finding the correct line of argumentation. This strategy turned out to be very use-
ful for drawing a conclusion without understanding the content of a sentence [14]. Natural
Language Processing suffers from very similar problems as Computer Vision and other
fields. Shortcut learning starts from various dataset biases such as annotation artefacts
[55, 56, 57, 58]. Feature combination crucially depends on shortcut features like word
length [59, 60, 14, 61], and consequently leads to a severe lack of robustness such as an
inability to generalise to more challenging test conditions [62, 63, 64, 65]. Attempts like
incorporating a certain degree of unsupervised training as employed in prominent language
models like BERT [5] and GPT-2 [66] did not resolve the problem of shortcut learning [14].

Agent-based (Reinforcement) Learning Instead of learning how to play Tetris, an
algorithm simply learned to pause the game to evade losing [67]. Systems of Agent-based
Learning are usually trained using Reinforcement Learning and related approaches such
as evolutionary algorithms. In both cases, designing a good reward function is crucial,
since a reward function measures how close a system is to solving the problem. However,
they all too often contain unexpected shortcuts that allow for so-called reward hacking
[68]. The existence of loopholes exploited by machines that follow the letter (and not the
spirit) of the reward function highlight how difficult it is to design a shortcut-free reward
function [69]. Reinforcement Learning is also a widely used method in Robotics, where
there is a commonly observed generalisation or reality gap between simulated training
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environment and real-world use case. This can be thought of as a consequence of narrow
shortcut learning by adapting to specific details of the simulation. Introducing additional
variation in colour, size, texture, lighting, etc. helps a lot in closing this gap [70, 71].

Fairness & algorithmic decision-making Tasked to predict strong candidates on
the basis of their résumés, a hiring tool developed by Amazon was found to be biased
towards preferring men. The model, trained on previous human decisions, found gender to
be such a strong predictor that even removing applicant names would not help: The model
always found a way around, for instance by inferring gender from all-woman college names
[13]. This exemplifies how some—but not all—problems of (un)fair algorithmic decision-
making are linked to shortcut learning: Once a predictive feature is found by a model, even
if it is just an artifact of the dataset, the model’s decision rule may depend entirely on the
shortcut feature. When human biases are not only replicated, but worsened by a machine,
this is referred to as bias amplification [72]. Other shortcut strategies include focusing on
the majority group in a dataset while accepting high error rates for underrepresented groups
[12, 73], which can amplify existing societal disparities and even create new ones over
time [74]. In the dynamical setting a related problem is called disparity amplification [74],
where sequential feedback loops may amplify a model’s reliance on a majority group. It
should be emphasised, however, that fairness is an active research area of machine learning
closely related to invariance learning that might be useful to quantify and overcome biases
of both machine and human decision making.

6 Diagnosing and understanding shortcut learning
Shortcut learning currently occurs across deep learning, causing machines to fail unexpect-
edly. Many individual elements of shortcut learning have been identified long ago by parts
of the machine learning community and some have already seen substantial progress, but
currently a variety of approaches are explored without a commonly accepted strategy. We
here outline three actionable steps towards diagnosing and analysing shortcut learning.

6.1 Interpreting results carefully
Distinguishing datasets and underlying abilities Shortcut learning is most decep-
tive when gone unnoticed. The most popular benchmarks in machine learning still rely
on i.i.d. testing which drags attention away from the need to verify how closely this test
performance measures the underlying ability one is actually interested in. For example, the
ImageNet dataset [75] was intended to measure the ability “object recognition”, but DNNs
seem to rely mostly on “counting texture patches” [36]. Likewise, instead of performing
“natural language inference”, some language models perform well on datasets by simply
detecting correlated key words [56]. Whenever there is a discrepancy between the simplic-
ity with which a dataset (e.g. ImageNet, SQuAD) can be solved and the complexity evoked
by the high-level description of the underlying ability (e.g. object recognition, scene under-
standing, argument comprehension), it is important to bear in mind that a dataset is useful
only for as long as it is a good proxy for the ability one is actually interested in [56, 76].
We would hardly be intrigued by reproducing human-defined labels on datasets per se (a
lookup table would do just as well in this case)—it is the underlying generalisation ability
that we truly intend to measure, and ultimately improve upon.
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Morgan’s Canon for machine learning Recall the cautionary tale of rats sniffing
rather than seeing colour, described in Section 2.1. Animals often trick experimenters by
solving an experimental paradigm (i.e., dataset) in an unintended way without using the un-
derlying ability one is actually interested in. This highlights how incredibly difficult it can
be for humans to imagine solving a tough challenge in any other way than the human way:
Surely, at Marr’s implementational level [77] there may be differences between rat and
human colour discrimination. But at the algorithmic level there is often a tacit assump-
tion that human-like performance implies human-like strategy (or algorithm) [78]. This
same strategy assumption is paralleled by deep learning: Surely, DNN units are different
from biological neurons—but if DNNs successfully recognise objects, it seems natural to
assume that they are using object shape like humans do [37, 36, 38].

Comparative Psychology with its long history of comparing mental abilities across
species has coined a term for the fallacy to confuse human-centered interpretations of an
observed behaviour and the actual behaviour at hand (which often has a much simpler
explanation): anthropomorphism, “the tendency of humans to attribute human-like psy-
chological characteristics to nonhumans on the basis of insufficient empirical evidence”
[79, p. 5]. As a reaction to the widespread occurrence of this fallacy, psychologist Lloyd
Morgan developed a conservative guideline for interpreting non-human behaviour as early
as 1903. It later became known as Morgan’s Canon: “In no case is an animal activity to be
interpreted in terms of higher psychological processes if it can be fairly interpreted in terms
of processes which stand lower on the scale of psychological evolution and development”
[80, p. 59]. Picking up on a simple correlation, for example, would be considered a pro-
cess that stands low on this psychological scale whereas “understanding a scene” would
be considered much higher. It has been argued that Morgan’s Canon can and should be
applied to interpreting machine learning results [79], and we consider it to be especially
relevant in the context of shortcut learning. Accordingly, it might be worth acquiring the
habit to confront machine learning models with a “Morgan’s Canon for machine learn-
ing”6: Never attribute to high-level abilities that which can be adequately explained by
shortcut learning.

Testing (surprisingly) strong baselines In order to find out whether a result may
also be explained by shortcut learning, it can be helpful to test whether a baseline model
exceeds expectations even though it does not use intended features. Examples include us-
ing nearest neighbours for scene completion and estimating geolocation [81, 82], object
recognition with local features only [36], reasoning based on single cue words [59, 14]
or answering questions about a movie without ever showing the movie to a model [83].
Importantly, this is not meant to imply that DNNs cannot acquire high-level abilities. They
certainly do have the potential to solve complex challenges and serve as scientific models
for prediction, explanation and exploration [84]—however, we must not confuse perfor-
mance on a dataset with the acquisition of an underlying ability.

6.2 Detecting shortcuts: towards o.o.d. generalisation tests
Making o.o.d. generalisation tests a standard practice Currently, measuring model
performance by assessing validation performance on an i.i.d. test set is at the very heart of
the vast majority of machine learning benchmarks. Unfortunately, in real-world settings

6Our formulation is adapted from Hanlon’s razor, “Never attribute to malice that which can be adequately
explained by stupidity”.
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the i.i.d. assumption is rarely justified; in fact, this assumption has been called “the big lie
in machine learning” [85]. While any metric is typically only an approximation of what
we truly intend to measure, the i.i.d. performance metric may not be a good approximation
as it can often be misleading, giving a false sense of security. In Section 2.2 we described
how Bob gets a good grade on a multiple-choice exam through rote learning. Bob’s repro-
ductive approach gives the superficial appearance of excellent performance, but it would
not generalise to a more challenging test. Worse yet, as long as Bob continues to receive
good grades through surface learning, he is unlikely to change his learning strategy.

Within the field of Education, what is the best practice to avoid surface learning? It
has been argued that changing the type of examination from multiple-choice tests to essay
questions discourages surface learning, and indeed surface approaches typically fail on
these kinds of exams [21]. Essay questions, on the other hand, encourage so-called deep or
transformational learning strategies [86, 87], like Alice’s focus on understanding. This in
turn enables transferring the learned content to novel problems and consequently achieves a
much better overlap between the educational objectives of the teacher and what the students
actually learn [88]. We can easily see the connection to machine learning—transferring
knowledge to novel problems corresponds to testing generalisation beyond the narrowly
learned setting [89, 90, 91]. If model performance is assessed only on i.i.d. test data, then
we are unable to discover whether the model is actually acquiring the ability we think it is,
since exploiting shortcuts often leads to deceptively good results on standard metrics [92].
We, among many others [93, 78, 94, 95, 96], have explored a variety of o.o.d. tests and we
hope it will be possible to identify a sufficiently simple and effective test procedure that
could replace i.i.d. testing as a new standard method for benchmarking machine learning
models in the future.

Designing good o.o.d. tests While a distribution shift (between i.i.d. and o.o.d. data)
has a clear mathematical definition, it can be hard to detect in practice [101, 102]. In
these cases, training a classifier to distinguish samples in dataset A from samples in dataset
A’ can reveal a distribution shift. We believe that good o.o.d. tests should fullfill at least
the following three conditions: First, per definition there needs to be a clear distribution
shift, a shift that may or may not be distinguishable by humans. Second, it should have
a well-defined intended solution. Training on natural images while testing on white noise
would technically constitute an o.o.d. test but lacks a solution. Third, a good o.o.d. test
is a test where the majority of current models struggle. Typically, the space of all con-
ceivable o.o.d. tests includes numerous uninteresting tests. Thus given limited time and
resources, one might want to focus on challenging test cases. As models evolve, gener-
alisation benchmarks will need to evolve as well, which is exemplified by the Winograd
Schema Challenge [103]. Initially designed to overcome shortcut opportunities caused by
the open-ended nature of the Turing test, this common-sense reasoning benchmark was
scrutinised after modern language models started to perform suspiciously well—and it in-
deed contained more shortcut opportunities than originally envisioned [104], highlighting
the need for revised tests. Fortunately, stronger generalisation tests are beginning to gain
traction across deep learning. While o.o.d. tests will likely need to evolve alongside the
models they aim to evaluate, a few current encouraging examples are listed in Box I. In
summary, rigorous generalisation benchmarks are crucial when distinguishing between the
intended and a shortcut solution, and it would be extremely useful if a strong generally
applicable testing procedure will emerge from this range of approaches.
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Box I. EXAMPLES OF INTERESTING O.O.D. BENCHMARKS

We here list a few selected, encouraging examples of o.o.d. benchmarks.

Adversarial attacks can be seen as testing on model-specific worst-case o.o.d. data, which
makes it an interesting diagnostic tool. If a successful adversarial attack [8] can change model
predictions without changing semantic content, this is an indication that something akin to
shortcut learning may be occurring [33, 97].

ARCT with removed shortcuts is a language argument comprehension dataset that follows the
idea of removing known shortcut opportunities from the data itself in order to create harder test
cases [14].

Cue conflict stimuli like images with conflicting texture and shape information pitch fea-
tures/cues against each other, such as an intended against an unintended cue [38]. This approach
can easily be compared to human responses.

ImageNet-A is a collection of natural images that several state-of-the-art models consistently
classify wrongly. It thus benchmarks models on worst-case natural images [46].

ImageNet-C applies 15 different image corruptions to standard test images, an approach we find
appealing for its variety and usability [52].

ObjectNet introduces the idea of scientific controls into o.o.d. benchmarking, allowing to
disentangle the influence of background, rotation and viewpoint [98].

PACS and other domain generalisation datasets require extrapolation beyond i.i.d. data per
design by testing on a domain different from training data (e.g. cartoon images) [99].

Shift-MNIST / biased CelebA / unfair dSprites are controlled toy datasets that introduce corre-
lations in the training data (e.g. class-predictive pixels or image quality) and record the accuracy
drop on clean test data as a way of finding out how prone a given architecture and loss function
are to picking up on shortcuts [39, 40, 100, 41].

6.3 Shortcuts: why are they learned?
The “Principle of Least Effort” Why are machines so prone to learning shortcuts,
detecting grass instead of cows [9] or a metal token instead of pneumonia [15]? Exploit-
ing those shortcuts seems much easier for DNNs than learning the intended solution. But
what determines whether a solution is easy to learn? In Linguistics, a related phenomenon
is called the “Principle of Least Effort” [119], the observation that language speakers gen-
erally try to minimise the amount of effort involved in communication. For example, the
use of “plane” is becoming more common than “airplane”, and in pronouncing “cupboard”,
“p” and “b” are merged into a single sound [120, 121]. Interestingly, whether a language
change makes it easier for the speaker doesn’t always simply depend on objective measures
like word length. On the contrary, this process is shaped by a variety of different factors,
including the anatomy (architecture) of the human speech organs and previous language
experience (training data).
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Box II. SHORTCUT LEARNING & INDUCTIVE BIASES

The four components listed below determine the inductive bias of a model and dataset: the set of
assumptions that influence which solutions are learnable, and how readily they can be learned.
Although in theory DNNs can approximate any function (given potentially infinite capacity)
[105], their inductive bias plays an important role for the types of patterns they prefer to learn
given finite capacity and data.

• Structure: architecture. Convolutions make it harder for a model to use location—a
prior [106] that is so powerful for natural images that even untrained networks can be
used for tasks like image inpainting and denoising [107]. In Natural Language Processing,
transformer architectures [108] use attention layers to understand the context by modelling
relationships between words. In most cases, however, it is hard to understand the implicit
priors in a DNN and even standard elements like ReLU activations can lead to unexpected
effects like unwarranted confidence [109].

• Experience: training data. As discussed in Section 4.1, shortcut opportunities are present
in most data and rarely disappear by adding more data [32, 69, 56, 38, 33]. Modifying
the training data to block specific shortcuts has been demonstrated to work for reducing
adversarial vulnerability [110] and texture bias [38].

• Goal: loss function. The most commonly used loss function for classification, cross-
entropy, encourages DNNs to stop learning once a simple predictor is found; a modifica-
tion can force neural networks to use all available information [41]. Regularisation terms
that use additional information about the training data have been used to disentangle in-
tended features from shortcut features [39, 111].

• Learning: optimisation. Stochastic gradient descent and its variants bias DNNs towards
learning simple functions [112, 113, 114, 115]. The learning rate influences which patterns
networks focus on: Large learning rates lead to learning simple patterns that are shared
across examples, while small learning rates facilitate complex pattern learning and mem-
orisation [116, 117]. The complex interactions between training method and architecture
are poorly understood so far; strong claims can only be made for simple cases [118].

Understanding the influence of inductive biases In a similar vein, whether a solu-
tion is easy to learn for machines does not simply depend on the data but on all of the four
components of a machine learning algorithm: architecture, training data, loss function, and
optimisation. Often, the training process starts with feeding training data to the model with
a fixed architecture and randomly initialised parameters. When the model’s prediction is
compared to ground truth, the loss function measures the prediction’s quality. This super-
vision signal is used by an optimiser for adapting the model’s internal parameters such that
the model makes a better prediction the next time. Taken together, these four components
(which determine the inductive bias of a model) influence how certain solutions are much
easier to learn than others, and thus ultimately determine whether a shortcut is learned
instead of the intended solution [122]. Box II provides an overview of the connections
between shortcut learning and inductive biases.
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7 Beyond shortcut learning
A lack of out-of-distribution generalisation can be observed all across machine learning.
Consequently, a significant fraction of machine learning research is concerned with over-
coming shortcut learning, albeit not necessarily as a concerted effort. Here we highlight
connections between different research areas. Note that an exhaustive list would be out of
the scope for this work. Instead, we cover a diverse set of approaches we find promising,
each providing a unique perspective on learning beyond shortcut learning.

Domain-specific prior knowledge Avoiding reliance on unintended cues can be achieved
by designing architectures and data-augmentation strategies that discourage learning short-
cut features. If the orientation of an object does not matter for its category, either data-
augmentation or hard-coded rotation invariance [123] can be applied. This strategy can
be applied to almost any well-understood transformation of the inputs and finds its proba-
bly most general form in auto-augment as an augmentation strategy [124]. Extreme data-
augmentation strategies are also the core ingredient of the most successful semi-supervised
[125] and self-supervised learning approaches to date [126, 127].

Adversarial examples and robustness Adversarial attacks are a powerful analysis tool for
worst-case generalisation [8]. Adversarial examples can be understood as counterfactual
explanations, since they are the smallest change to an input that produces a certain output.
Achieving counterfactual explanations of predictions aligned with human intention makes
the ultimate goals of adversarial robustness tightly coupled to causality research in machine
learning [128]. Adversarially robust models are somewhat more aligned with humans and
show promising generalisation abilities [129, 130]. While adversarial attacks test model
performance on model-dependent worst-case noise, a related line of research focuses on
model-independent noise like image corruptions [51, 52].

Domain adaptation, -generalisation and -randomisation These areas are explicitly con-
cerned with out-of-distribution generalisation. Usually, multiple distributions are observed
during training time and the model is supposed to generalise to a new distribution at test
time. Under certain assumptions the intended (or even causal) solution can be learned
from multiple domains and environments [131, 39, 111]. In robotics, domain randomisa-
tion (setting certain simulation parameters randomly during training) is a very successful
approach for learning policies that generalise to similar situations in the real-world [70].

Fairness Fairness research aims at making machine decisions “fair” according to a cer-
tain definition [132]. Individual fairness aims at treating similar individuals similarly
while group fairness aims at treating subgroups no different than the rest of the population
[133, 134]. Fairness is closely linked to generalisation and causality [135]. Sensitive group
membership can be viewed as a domain indicator: Just like machine decisions should not
typically be influenced by changing the domain of the data, they also should not be biased
against minority groups.

Meta-learning Meta-learning seeks to learn how to learn. An intermediate goal is to learn
representations that can adapt quickly to new conditions [136, 137, 138]. This ability is
connected to the identification of causal graphs [139] since learning causal features allows
for small changes when changing environments.
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Generative modelling and disentanglement Learning to generate the observed data forces
a neural network to model every variation in the training data. By itself, however, this does
not necessarily lead to representations useful for downstream tasks [140], let alone out-
of-distribution generalisation. Research on disentanglement addresses this shortcoming by
learning generative models with well-structured latent representations [141]. The goal is
to recover the true generating factors of the data distribution from observations [142] by
identifying independent causal mechanisms [128].

8 Conclusion
“The road reaches every place, the short cut only one”

— James Richardson [143]

Science aims for understanding. While deep learning as an engineering discipline has seen
tremendous progress over the last few years, deep learning as a scientific discipline is still
lagging behind in terms of understanding the principles and limitations that govern how
machines learn to extract patterns from data. A deeper understanding of how to overcome
shortcut learning is of relevance beyond the current application domains of machine learn-
ing and there might be interesting future opportunities for cross-fertilisation with other
disciplines such as Economics (designing management incentives that do not jeopardise
long-term success by rewarding unintended “shortcut” behaviour) or Law (creating laws
without “loophole” shortcut opportunities). Until the problem is solved, however, we offer
the following four recommendations:

(1) Connecting the dots: shortcut learning is ubiquitous
Shortcut learning appears to be a ubiquitous characteristic of learning systems, biologi-
cal and artificial alike. Many of deep learning’s problems are connected through shortcut
learning—models exploit dataset shortcut opportunities, select only a few predictive fea-
tures instead of taking all evidence into account, and consequently suffer from unexpected
generalisation failures. “Connecting the dots” between affected areas is likely to facilitate
progress, and making progress can generate highly valuable impact across various appli-
cations domains.

(2) Interpreting results carefully
Discovering a shortcut often reveals the existence of an easy solution to a seemingly com-
plex dataset. We argue that we will need to exercise great care before attributing high-level
abilities like “object recognition” or “language understanding” to machines, since there is
often a much simpler explanation.

(3) Testing o.o.d. generalisation
Assessing model performance on i.i.d. test data (as the majority of current benchmarks do)
is insufficient to distinguish between intended and unintended (shortcut) solutions. Conse-
quently, o.o.d. generalisation tests will need to become the rule rather than the exception.

(4) Understanding what makes a solution easy to learn
DNNs always learn the easiest possible solution to a problem, but understanding which
solutions are easy (and thus likely to be learned) requires disentangling the influence of
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structure (architecture), experience (training data), goal (loss function) and learning (opti-
misation), as well as a thorough understanding of the interactions between these factors.

Shortcut learning is one of the key roadblocks towards fair, robust, deployable and trust-
worthy machine learning. While overcoming shortcut learning in its entirety may poten-
tially be impossible, any progress towards mitigating it will lead to a better alignment be-
tween learned and intended solutions. This holds the promise that machines behave much
more reliably in our complex and ever-changing world, even in situations far away from
their training experience. Furthermore, machine decisions would become more transpar-
ent, enabling us to detect and remove biases more easily. Currently, the research on short-
cut learning is still fragmented into various communities. With this perspective we hope to
fuel discussions across these different communities and to initiate a movement that pushes
for a new standard paradigm of generalisation that is able to replace the current i.i.d. tests.
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Appendix
A Toy example: method details
The code to reproduce our toy example (Figure 2) is available from https://github.com/rgeirhos/
shortcut-perspective. Two easily distinguishable shapes (star and moon) were placed on a
200⇥200 dimensional 2D canvas. The training set is constructed out of 4000 images, where 2000
contain a star shape and 2000 a moon shape. The star shape is randomly placed in the top right and
bottom left quarters of the canvas, whereas the moon shape is randomly placed in the top left and
bottom right quarters of the canvas. At test time the setup is nearly identical, 1000 images with a
star and 1000 images with a moon are presented. However, this time the position of star and moon
shapes are randomised over the full canvas, i.e. in test images stars and moons can appear at any
location.

We train two classifiers on this dataset: a fully connected network as well as a convolutional
network. The classifiers are trained for five epochs with a batch size of 100 on the training set and
evaluated on the test set. The training objective is standard crossentropy loss and the optimizer is
Adam with a learning rate of 0.00001, b1 = 0.9, b2 = 0.999 and e = 1e�08. The fully connected
network was a three-layer ReLU MLP (multilayer perceptron) with 1024 units in each layer and
two output units corresponding to the two target classes. It reaches 100% accuracy at training time
and approximately chance-level accuracy at test time (51.0%). The convolutional network had three
convolutional layers with 128 channels, a stride of 2 and filter size of 5⇥5 interleaved with ReLU
nonlinearities, followed by a global average pooling and a linear layer mapping the 128 outputs to
the logits. It reaches 100% accuracy on train and test set.

B Image rights & attribution
Figure 1 consists of four images from different sources. The first image from the left was taken from
https://aiweirdness.com/post/171451900302/do-neural-nets-dream-of-electric-sheep
with permission of the author. The second image from the left was generated by ourselves. The third
image from the left is from ref. [15]. It was released under the CC BY 4.0 license as stated here:
https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002683
and adapted by us from Figure 2B of the corresponding publication. The image on the right
is Figure 1 from ref. [64]. It was released under CC BY 4.0 license as stated here: https:
//www.aclweb.org/anthology/D17-1215/(at the bottom) and retrieved by us from .

The image from Section 4.1 was adapted from Figure 1 of ref. [9] with permission from the
authors (image cropped from original figure by us). The image from Section 4.2 was adapted from
Figure 1 of ref. [38] with permission from the authors (image cropped from original figure by us).
The image from Section 4.3 was adapted from Figure 1 of ref. [45] with permission from the authors
(image cropped from original figure by us).

Figure 4 consists of a number of images from different sources. The first author of the corre-
sponding publication is mentioned in the figure for identification. The images from ref. [8] were
released under the CC BY 3.0 license as stated here: https://arxiv.org/abs/1312.6199 and
adapted by us from Figure 5a of the corresponding publication (images cropped from original fig-
ure by us). The images from ref. [50] were adapted from Figure 1 of the corresponding paper with
permission from the authors (images cropped from original figure by us). The images from ref. [49]
were adapted from Figure 1 of the corresponding paper with permission from the authors (images
cropped from original figure by us). The images from ref. [38] were adapted from Figure 1 of
the corresponding paper with permission from the authors (images cropped from original figure by
us). The images from ref. [41] were adapted from Figure 1 of the corresponding paper with per-
mission from the authors (images cropped from original figure by us). The images from ref. [36]
were adapted from Figure 5 of the corresponding paper with permission from the authors (images
cropped from original figure by us). The images from ref. [9] were adapted from Figure 1 of the
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corresponding paper with permission from the authors (images cropped from original figure by us).
The images from ref. [45] were adapted from Figure 1 and Figure 2 of the corresponding paper
with permission from the authors (images cropped from original figures by us).
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