
Object-Level Dynamic Scene Reconstruction With
Physical Plausibility From RGB-D Images

Dissertation

der Mathematisch-Naturwissenschaftlichen Fakultät
der Eberhard Karls Universität Tübingen

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

Michael Felix Strecke
aus Engen

Tübingen
2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls
Universität Tübingen.

Tag der mündlichen Qualifikation: 11.10.2023

Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Jörg-Dieter Stückler
2. Berichterstatter: Prof. Dr. Andreas Geiger

Essentially, all models are wrong, but some are useful.

– George E. P. Box

v

In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not
endorse any of University of Tübingen, or Max Planck Institute for Intelligent Systems, Tübingen, products
or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing
IEEE copyrighted material for advertising or promotional purposes or for creating new collective works
for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/

rights/rights_link.html to learn how to obtain a License from RightsLink.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

vi

vii

Abstract

Humans have the remarkable ability to perceive and interact with objects in the world around them. They
can easily segment objects from visual data and have an intuitive understanding of how physics influences
objects. By contrast, robots are so far often constrained to tailored environments for a specific task, due to
their inability to reconstruct a versatile and accurate scene representation. In this thesis, we combine RGB-D
video data with background knowledge of real-world physics to develop such a representation for robots.

Our contributions can be separated into two main parts: a dynamic object tracking tool and optimization
frameworks that allow for improving shape reconstructions based on physical plausibility. The dynamic
object tracking tool “EM-Fusion” detects, segments, reconstructs, and tracks objects from RGB-D video data.
We propose a probabilistic data association approach for attributing the image pixels to the different moving
objects in the scene. This allows us to track and reconstruct moving objects and the background scene with
state-of-the art accuracy and robustness towards occlusions.

We investigate two ways of further optimizing the reconstructed shapes of moving objects based on physical
plausibility. The first of these, “Co-Section”, includes physical plausibility by reasoning about the empty space
around an object. We observe that no two objects can occupy the same space at the same time and that the
depth images in the input video provide an estimate of observed empty space. Based on these observations,
we propose intersection and hull constraints, which we combine with the observed surfaces in a global
optimization approach. Compared to EM-Fusion, which only reconstructs the observed surface, Co-Section
optimizes watertight shapes. These watertight shapes provide a rough estimate of unseen surfaces and could
be useful as initialization for further refinement, e.g., by interactive perception. In the second optimization
approach, “DiffSDFSim”, we reason about object shapes based on physically plausible object motion. We
observe that object trajectories after collisions depend on the object’s shape, and extend a differentiable
physics simulation for optimizing object shapes together with other physical properties (e.g., forces, masses,
friction) based on the motion of the objects and their interactions. Our key contributions are using signed
distance function models for representing shapes and a novel method for computing gradients that models
the dependency of the time of contact on object shapes. We demonstrate that our approach recovers target
shapes well by fitting to target trajectories and depth observations. Further, the ground-truth trajectories are
recovered well in simulation using the resulting shape and physical properties. This enables predictions
about the future motion of objects by physical simulation.

We anticipate that our contributions can be useful building blocks in the development of 3D environment
perception for robots. The reconstruction of individual objects as in EM-Fusion is a key ingredient required
for interactions with objects. Completed shapes as the ones provided by Co-Section provide useful cues for
planning interactions like grasping of objects. Finally, the recovery of shape and other physical parameters
using differentiable simulation as in DiffSDFSim allows simulating objects and thus predicting the effects
of interactions. Future work might extend the presented works for interactive perception of dynamic
environments by comparing these predictions with observed real-world interactions to further improve the
reconstructions and physical parameter estimations.

viii

ix

Zusammenfassung

Menschen haben die bemerkenswerte Fähigkeit, Objekte in ihrer Umgebung wahrzunehmen und mit ihnen
zu interagieren. Sie können ohne Anstrengung Objekte in visuellen Daten segmentieren und haben ein
intuitives Verständnis davon, wie die Physik Objekte beeinflusst. Im Gegensatz dazu sind Roboter bisher
oft auf aufgabenspezifisch zugeschnittene Umgebungen begrenzt, da sie keine vielseitige und genaue
Szenenrepräsentation rekonstruieren können. In dieser Dissertation kombinieren wir RGB-D Videodaten
mit Hintergrundwissen über die Physik der realen Welt, um eine solche Repräsentation für Roboter zu
entwickeln.

Unsere Beiträge bestehen aus zwei Hauptbestandteilen: ein Werkzeug zur Verfolgung bewegter Objekte,
und Optimierungsansätze, welche Rekonstruktionen der 3D Form basierend auf physikalischer Plausibilität
verbessern können. Das Werkzeug zur Verfolgung bewegter Objekte, “EM-Fusion”, detektiert, segmentiert,
rekonstruiert und verfolgt Objekte in RGB-D Videodaten. Wir schlagen einen probabilistischen Datenassozia-
tionsansatz vor, um die Pixel im Bild den unterschiedlichen bewegten Objekten in der Szene zuzuordnen.
Dieser erlaubt uns, die Objekte und die Hintergrundszene mit Genauigkeit nach dem Stand der Technik und
Robustheit gegenüber Verdeckungen zu verfolgen und zu rekonstruieren.

Wir erforschen zwei Ansätze, die rekonstruierte Form von bewegten Objekten basierend auf physikalischer
Plausibilität weiter zu optimieren. Der erste hiervon, “Co-Section”, schließt physikalische Plausibilität
durch Argumentationen über den leeren Raum um ein Objekt herum ein. Wir stellen fest, dass keine zwei
Objekte denselben Raum zur selben Zeit einnehmen können und dass die Tiefenbilder im Eingabevideo eine
Schätzung von beobachtetem leeren Raum liefern. Basierend auf diesen Feststellungen schlagen wir Hüllen-
und Überschneidungsbeschränkungen vor, welche wir mit den beobachteten Oberflächen in einem globalen
Optimierungsansatz kombinieren. Verglichen mit EM-Fusion, welches nur die beobachteten Oberflächen
rekonstruiert, optimiert Co-Section wasserdichte Objektformen. Diese wasserdichten Formen liefern eine
grobe Schätzung über Oberflächen, die nicht direkt gesehen wurden, und können als Initialisierung für weitere
Verbesserung, z.B. durch interaktive Wahrnehmung, dienen. Im zweiten Optimierungsansatz, “DiffSDFSim”,
argumentieren wir über Objektformen basierend auf physikalisch plausibler Objektbewegung. Wir stellen fest,
dass Objekttrajektorien nach Kollisionen von der Objektform abhängen, und erweitern eine differenzierbare
Physiksimulation, um die Objektformen gemeinsam mit anderen physikalischen Eigenschaften (z.B. Kräfte,
Massen, Reibung) basierend auf der Bewegung der Objekte und ihrer Interaktionen zu optimieren. Unsere
Hauptbeiträge sind die Verwendung vorzeichenbehafteter Distanzfunktionen zur Repräsentation von
Objektformen, und eine neue Methode zur Berechnung von Gradienten, welche die Abhängigkeit des
Kontaktzeitpunkts von der Objektform modelliert. Wir zeigen, dass unser Ansatz Referenzformen durch
das Anpassen auf Referenztrajektorien und Tiefenmessungen gut rekonstruiert. Weiterhin werden die
wahren Trajektorien in der Simulation mit den optimierten Formen und physikalischen Eigenschaften
gut rekonstruiert, was Vorhersagen über zukünftige Bewegungen der Objekte durch die Physiksimulation
zulässt.

Wir gehen davon aus, dass unsere Beiträge nützliche Bausteine in der Entwicklung von 3D Umgebungs-
wahrnehmung für Roboter sein können. Die Rekonstruktion einzelner Objekte, wie in EM-Fusion, ist ein
Schlüsselbaustein, welche für die Interaktion mit Objekten benötigt wird. Vervollständigte Formen, wie sie
Co-Section bereitstellt, liefern nützliche Hinweise, um Interaktionen wie das Greifen von Objekten zu planen.
Schließlich erlaubt die Schätzung von Form- und anderen physikalischen Parametern mittels differenzierba-
rer Physiksimulation, wie in DiffSDFSim, Objekte zu simulieren und damit die Effekte von Interaktionen
vorherzusagen. Zukünftige Arbeiten könnten die präsentierten Ansätze zur interaktiven Wahrnehmung
dynamischer Umgebungen erweitern, indem diese Vorhersagen mit beobachteten Interaktionen in der echten
Welt verglichen werden, um die Rekonstruktionen und physikalischen Parameterschätzungen weiter zu
verbessern.

x

xi

Acknowledgments

First and foremost, I would like to thank my advisor Dr. Jörg Stückler for his guidance and support, and for
providing the research environment without which this work would not have been possible. I would further
like to express my gratitude to my thesis advisory committee Dr. Jörg Stückler, Prof. Dr. Andreas Geiger, and
Michael J. Black, PhD, for taking the time for our yearly meetings and their insightful feedback. I want to
thank my reviewers Dr. Jörg Stückler and Prof. Dr. Andreas Geiger for taking the time to review this thesis.

I want to further thank Haolong Li, Jan Achterhold, Jens Kreber, Markus Ring, Mikel Zhobro, and Rama
Kandukuri for proofreading parts of this thesis.

I am grateful to all members of the Embodied Vision Group for interesting discussions about work and other
topics. It was a pleasure working with you over the last years! I am especially thankful to Cathrin Elich, Jan
Achterhold, Nathanael Bosch, and Vincent Stimper for many nice game nights and for being great friends.

As there is more to life than work, I would also like to thank all members of the Musikverein Randegg e.V., the
Big Band of the University of Tübingen, the BrassBusters, and SuitUp! for helping me to keep my work-life balance
in check and providing the distractions that are sometimes necessary to recharge my creative batteries. Thank
you especially to Tina Baumann, Fabian Roser, Jonas Malang, Manuel Herbst, and Theresa Störiko for many
fun activities with and without music and for being great friends over the last years.

Finally, I would like to thank my parents and my siblings for their great support over the last years and in my
life in general. Ihr seid die besten Eltern und Geschwister, die man sich vorstellen kann!

Michael Strecke
Tübingen, May 2023

xii

xiii

Contents

Abstract vii

Zusammenfassung ix

Acknowledgments xi

Contents xiii

List of Figures xv

List of Tables xvii

Notation and Acronyms xix

1 Introduction 1
1.1 3D Reconstruction from 2D images . 2
1.2 Object Segmentation for Object-Level Scene Reconstruction 3
1.3 Physical Plausibility in Dynamic Scene Reconstruction . 4

1.3.1 Dense Reconstruction from Point Clouds with Plausibility Constraints 4
1.3.2 Shape Optimization via Differentiable Physics . 5

1.4 Contributions . 6
1.5 Publications . 7
1.6 Open-Source Software Releases . 7

2 Background 9
2.1 Rigid Body Motion . 9

2.1.1 Purely Rotational Motion . 9
2.1.2 Full Rigid-Body Motion . 11

2.2 Signed Distance Functions (SDFs) . 12
2.2.1 Parametric Signed Distance Functions / Shape Spaces 13
2.2.2 SDFs as Volumetric Grids . 15
2.2.3 Truncated Signed Distance Functions (TSDFs) . 17
2.2.4 Explicit Surface Extraction . 17

2.3 Depth Image Capture and Point Cloud Computation . 21

3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association 23
3.1 Introduction . 23
3.2 Related Work . 24
3.3 Preliminaries . 25

3.3.1 Image Preprocessing and Projection . 25
3.3.2 Map Representation . 26
3.3.3 Depth Image Fusion . 26
3.3.4 Dense Volumetric RGB-D SLAM . 27
3.3.5 Instance Detection and Segmentation . 28

3.4 Method . 31
3.4.1 Probabilistic Dynamic Tracking and Mapping . 32
3.4.2 Expectation Maximization Framework . 32
3.4.3 Data Association (E-Step) . 33

xiv

3.4.4 Tracking (M-Step) . 33
3.4.5 Mapping (M-Step) . 35

3.5 Experiments . 36
3.5.1 Quantitative Evaluation . 37
3.5.2 Qualitative Evaluation . 42

3.6 Conclusion . 43

4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints 45
4.1 Introduction . 45
4.2 Related Work . 47

4.2.1 Dense Surface Reconstruction . 47
4.2.2 Dense Object-Level 3D Reconstruction in Dynamic Environments 48
4.2.3 Shape Completion . 48

4.3 Preliminaries . 49
4.4 Method . 52

4.4.1 Object Tracking and Data Association . 53
4.4.2 Global SDF Optimization . 54
4.4.3 Implementation Details . 55

4.5 Experiments . 57
4.5.1 Qualitative Results . 57
4.5.2 Quantitative Results . 57

4.6 Conclusion . 61

5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes 63
5.1 Introduction . 63
5.2 Related Work . 65
5.3 Background . 66

5.3.1 Velocity-Based Time Stepping Dynamics . 66
5.3.2 Differentiable Time-Stepping Dynamics . 70
5.3.3 Differentiable SDF Shape Representation . 72
5.3.4 Contact Detection Between SDFs . 72

5.4 Method . 73
5.4.1 Differentiable Inertia Tensors . 74
5.4.2 Differentiable Contact Modeling . 74
5.4.3 Differentiable Time of Contact . 76

5.5 Experiments . 78
5.5.1 Shape Spaces . 79
5.5.2 Evaluation Metrics . 80
5.5.3 Shape Identification . 80
5.5.4 Friction and Mass Identification, Force Optimization 85
5.5.5 Fitting to Depth Image Observations . 87
5.5.6 Runtime . 93
5.5.7 Limitations . 93

5.6 Conclusion . 94

6 Conclusion 95
6.1 Limitations . 96
6.2 Future Work . 98

Bibliography 101

xv

List of Figures

2.1 Plot of an SDF in 2D for a bowl shape . 13
2.2 Learned shape spaces with and without Eikonal loss . 16
2.3 Ray casting and sphere tracing . 18
2.4 Marching squares . 20

3.1 Overview: Dynamic object-level SLAM with probabilistic data association 24
3.2 ICP and SDF alignment . 28
3.3 Pixel association likelihood . 34
3.4 Tracking with association likelihoods . 36
3.5 Qualitative evaluation on the real-world datasets published with Co-Fusion 42
3.6 Incremental mask integration . 43

4.1 Novel energy minimization approach to 3D reconstruction in dynamic scenes 46
4.2 Hull constraint . 51
4.3 Overview of EM-Fusion and Co-Section . 53
4.4 Weighted average TSDF integration can lead to conflicting measurements. 53
4.5 Intersection constraint . 55
4.6 Qualitative object shape reconstruction results on Co-Fusion sequences 58
4.7 Accuracy and completeness of object shape reconstruction results on the Co-Fusion ToyCar3

sequence . 60

5.1 Shape and physics parameter optimization through differentiable physics simulation 64
5.2 Collision detection with SDFs . 73
5.3 Differentiable time of contact . 77
5.4 Example shapes for the sphere, box, rounded box and cylinder shape spaces 79
5.5 SDF shape representation . 80
5.6 Renderings and cuts through the 𝑥𝑦-plane for the 24 can objects in their learned shapespace . 81
5.7 Renderings and cuts through the 𝑥𝑦-plane for the 22 camera objects in their learned shapespace 81
5.8 Renderings and cuts through the 𝑥𝑦-plane for the 22 mug objects in their learned shapespace . 82
5.9 Trajectory fitting for a sphere without gravity . 83
5.10 Trajectory fitting for a sphere with gravity . 84
5.11 Bouncing sphere scenario with gravity . 84
5.12 Quantitative results for trajectory fitting for learned shape spaces 85
5.13 Qualitative results for trajectory fitting for learned shape spaces 86
5.14 Collision-based shape optimization . 87
5.15 Quantitative results for shape from inertia . 88
5.16 Qualitative results for shape from inertia . 88
5.17 Quantitative system identification results . 89
5.18 Qualitative system identification results . 90
5.19 Fitting to depth observations for spheres with gravity . 91
5.20 Fitting to depth observations for spheres without gravity . 91
5.21 Fitting to depth observations for cubes without gravity . 92
5.22 Fitting an object to a point cloud can yield a wrong local optimum for both pose and shape estimates 92
5.23 Results on a real-world scene . 93

xvi

xvii

List of Tables

3.1 Dynamic object tracking results for the synthetic sequences from Co-Fusion (Rünz and Agapito
2017) . 39

3.2 Robust camera tracking with respect to the static background in dynamic scenes for different
methods . 40

3.3 Ablation study on the synthetic scene Room4 . 40
3.4 Average runtime per frame in ms on the dynamic sequences of the Co-Fusion data set (Rünz and

Agapito 2017) . 41
3.5 Ablation study with varying detection rates . 41

4.1 Accuracy and completeness (lower is better) on the Co-Fusion ToyCar3 sequence for different
variants of our method . 59

5.1 Resulting radius error for variants in the bouncing sphere scenarios 83
5.2 Numerical results for trajectory fitting with learned shape spaces 86
5.3 Numerical results for shape fitting by inertia . 87
5.4 Numerical results for system identification . 89
5.5 Position and shape parameter errors for single-frame fitting and trajectory fitting to depth

observations. 93

xviii

xix

Notation and Acronyms

Notation

Scalars Regular lower case letters 𝑎, 𝑏, 𝑐, 𝛼, 𝛽, 𝛾
Vectors Bold lower case letters a, b, c, 𝜶, 𝜷, 𝜸
Matrices Bold upper case letters M,A,𝚽
Sets Calligraphic upper case letters A,B, C,S,K
Functions Letters with parentheses for arguments 𝑓 (·), 𝜙(·)

Other symbols:
Number sets ℝ,ℕ,ℤ
Element 𝑖 of vector x 𝑥𝑖
Element x = (𝑖 , 𝑗)⊤ of matrix A 𝐴x = 𝐴𝑖 , 𝑗
Vector or matrix transpose v⊤ ,M⊤
Homogeneous coordinates of vector x ∈ ℝ𝑛 x = (𝑥1 , . . . , 𝑥𝑛 , 1)⊤ ∈ ℝ𝑛+1

Skew-symmetric matrix from vector x ˆ︁x =
⎛⎜⎝
𝑥1
𝑥2
𝑥3

⎞⎟⎠
∧

=
⎛⎜⎝

0 −𝑥3 𝑥2
𝑥3 0 −𝑥1
−𝑥2 𝑥1 0

⎞⎟⎠
Twist matrix in ℝ4×4 for twist coordinate 𝝃 ∈ ℝ6 ˆ︁𝝃 =

(︃
𝝎
v

)︃∧
=

(︃ˆ︁𝝎 v
0 1

)︃
Gradient of a function 𝑓 wrt. all parameters ∇ 𝑓
Gradient of a function 𝑓 wrt. parameter(s) x ∇x 𝑓
𝐿𝑝 norm ∥·∥𝑝
Euclidean norm (𝐿2 norm) ∥·∥2 , ∥·∥

Fixed Symbols:
signed distance function (SDF), SDF measurement 𝜙, �̌�
Camera intrinsic matrix K
Projection function 𝜋
Identity matrix in 𝑛 dimensions 𝕀𝑛
Rotation matrix in SO(3), translation vector in ℝ3 R, t

Transformation matrix in SE(3)with corresponding twist vector in
𝔰𝔢(3)

T = T(𝝃) =
(︃
R t
0 1

)︃
Angular velocity in 𝔰𝔬(3) and linear velocity in ℝ3 𝝎, v
Velocity or twist coordinates in 𝔰𝔢(3) 𝝃 = (𝝎⊤ , v⊤)⊤
Energy and loss functions 𝐸(·)
Vector/Matrix of all 0s or all 1s 0, 1

xx

Acronyms

AR augmented reality
AT(E) absolute trajectory (error)
CNN convolutional neural network
CPU central processing unit
EM expectation maximization
FJ Fast Jacobi
GAN generative adversarial network
GPU graphics processing unit
ICP iterative closest points
IMLS implicit moving least squares
IRLS iteratively reweighted least squares
IMU intertial measurement unit
LCP linear complementarity problem
R-CNN regions with CNN features
RGB red, green, and blue (used for color images)
RGB-D RGB and depth (color and depth)
RMSE root mean squared error
RP(E) relative pose (error)
SfM structure from motion
SLAM simultaneous localization and mapping
(T)SDF (truncated) signed distance function
SSD smooth signed distance surface reconstruction
VR virtual reality

Introduction 1
1.1 3D Reconstruction from

2D images 2
1.2 Object Segmentation

for Object-Level Scene
Reconstruction 3

1.3 Physical Plausibility in
Dynamic Scene Recon-
struction 4

1.3.1 Dense Reconstruction
from Point Clouds with
Plausibility Constraints . . 4

1.3.2 Shape Optimization via
Differentiable Physics . . . 5

1.4 Contributions 6
1.5 Publications 7
1.6 Open-Source Software

Releases 7

We humans have the remarkable ability to perceive our environment
from visual input. Our perception allows us to safely navigate through
diverse environments, interact with arbitrary objects and estimate the
motion of other agents or moving objects. While most animals have this
ability, we should not underestimate that a large part of the brain in
humans and primates is devoted to processing visual information1

1: Up to 50% for macaques and estimated
20-30% in humans (Sheth and Young
2016).

. To
build autonomous agents (e.g., household robots, self-driving cars) that
can safely act in their environment, we need to equip them with similar
perception capabilities.

In this thesis, we focus on the topic of 3D scene reconstruction for
autonomous agents, i. e., implementing methods for perceiving the 3D
world from images. As images are only 2D projections of the 3D world,
this problem is generally ill-posed. However, if we consider image sequences
(i. e., videos) with a moving camera, we can observe changes of pixels
that originate from the camera motion. A key effect we can observe is
motion parallax, i. e., that objects in the distance appear to move slower
than those close to us2

2: Imagine looking out of the window
when riding a train. The power line posts
close to the rails seem to move much
faster than e. g., trees in the distance.

. This observation has inspired research in the
computer vision community on 3D reconstruction from image sequences
for many years (Hartley and Zisserman 2004; Szeliski 2011)

(Hartley and Zisserman 2004): Multiple
View Geometry in Computer Vision
(Szeliski 2011): Computer Vision - Algo-
rithms and Applications

.

Most previous work on 3D reconstruction has made the assumption
that the camera or the autonomous agent is the only thing moving
in the scene. This simplifies the problem as all pixel changes can be
attributed to the motion of the camera. However, most of the time,
this assumption does not hold in the real world. The most interesting
environments are dynamic, i. e., changing over time, as people or other
agents move and manipulate objects. As it is seemingly effortlessly
possible for humans and animals to react to changes in the world around
them, a useful autonomous agent should be able to do the same. The
agent should be able to interact with people or other autonomous agents
who move around themselves and manipulate objects. The core focus of
this thesis thus lies in the reconstruction of dynamic scenes, i. e., scenes
with moving objects. In contrast to static scene reconstruction, the problem
complexity now increases as pixel changes can be associated to several
independent motions. To reconstruct dynamic scenes, we thus need to
segment objects3, so that we can associate different image pixels to different 3: i. e., find out which pixel belongs to

which objectobject motions.

With multiple objects in a scene, we further observe that not all object
configurations are physically plausible. We know from experience that
objects usually do not float in the air or that no two objects can occupy
the same 3D space at the same time. If we see, e.g., a cup standing on
a table we would be surprised if it was not in contact with the table or
penetrating the table. When objects are in motion, we further have an
expectation about how physical interactions4 between objects affect their 4: e. g., collisions, friction
motion trajectories. When seeing an object sliding on another surface
or colliding with a wall, we can get some estimate about the material
properties, giving us a coarse estimate of how it would feel to interact with
the object. While this knowledge from experience about the physics of the
real world is often not very accurate, we expect that physical plausibility

2 1 Introduction

in general can help to improve the dynamic scene reconstruction. The
second focus of this thesis is thus concerned with reasoning about the
physical plausibility of dynamic scenes, which most previous approaches
did not consider.

In summary, this thesis addresses the following three challenges, which
humans are able to solve seemingly effortlessly:

1. Building a model of the 3D world from 2D images.
2. Segmenting objects, i. e., telling which 2D points in the image

correspond to different objects.
3. Incorporating knowledge about physical plausibility of the world

into the reconstruction.

We will now introduce these challenges in more detail.

1.1 3D Reconstruction from 2D images

Challenge 1 has been a central topic in computer vision for many years.
While the problem is ill-posed from a single image, finding projections of
the same points in multiple views, e.g., from a video, allows reconstructing
the relative motion between the cameras together with the 3D locations
of the points (Hartley and Zisserman 2004). The problem can usually
only be solved up to an unknown scale factor. If we already know
the absolute distance between camera poses from which the images
were taken, metric reconstruction is possible. We can further see that
e.g., camera motion parallel to the image plane restricts the search
space for correspondences to lines in the image parallel to the camera
displacement. These observations have led to the development of stereo
cameras, in which two identical cameras are fixed at a known horizontal
displacement, allowing for easily finding feature correspondences in
horizontal lines and computing absolute depth values for these pixels.
Some manufacturers went one step further and directly implemented
the depth computation algorithm efficiently on the camera, leading to
the development of RGB-D (i. e., RGB5 color and depth) cameras, which5: R, G and B here denote the red, green,

and blue color channels, respectively.
These are the base color used to mix all
other colors in the additive color model
used in digital displays or cameras. The
human eye also has sensor cells sensitive
to these colors.

can be accurately calibrated to provide both color and metric depth for
each pixel (see Section 2.3 for more details on this type of data).

Reconstructing 3D geometry from several views, or structure from mo-
tion (SfM) has started with early approaches like (Tomasi and Kanade
1992), which found feature points in the 2D images and identified their
corresponding points in the other images to reconstruct camera motion
and the 3D locations of the feature points. Pollefeys et al. (1999) extend
the approach by first computing camera motion and metric geometry
from feature correspondences and then filling in model gaps by dense
depth estimation. During the first decade of this century, advances in
these approaches and improvements in computing resources have led
to city-scale reconstructions from arbitrary image collections (Agarwal,
Furukawa, et al. 2011; Agarwal, Snavely, et al. 2009).

While the problem of SfM is generally concerned with map reconstruction
from image collections (not necessarily image sequences) and runtime
often is not crucial6

6: The approaches (Agarwal, Furukawa,
et al. 2011; Agarwal, Snavely, et al. 2009)
took one day on a compute cluster. , it is sometimes desirable to build the map incre-

mentally with close to real-time performance and localize the camera at
the same time7

7: e. g., to achieve close to real-time in
robotics applications . This problem is known as visual simultaneous localization

1.2 Object Segmentation for Object-Level Scene Reconstruction 3

and mapping (vSLAM), but as we always work with visual data in this
thesis, we will just use simultaneous localization and mapping (SLAM) from
now on8. Several approaches have tackled this problem with monocular 8: SLAM in general considers different

sensors like cameras, LiDAR, or others.cameras (Davison et al. 2007; Mur-Artal, Montiel, et al. 2015), but other
camera setups like stereo or RGB-D cameras have shown to improve
performance (e.g., Mur-Artal and Tardós 2017).

While these approaches mainly reconstruct point clouds, another line
of research has led to approaches for building dense volumetric models in
online SLAM frameworks (Bylow et al. 2013; Kerl et al. 2013; Newcombe
et al. 2011), making use of the broad availability of RGB-D cameras from
the early 2010s. We will also build dense volumetric models for each
object and for the background scene in this thesis. In Chapter 3, we will
build upon the works by Newcombe et al. (2011) for mapping9 the object 9: i. e., fusing depth measurements from

multiple frames into consistent modelsand background models and by Bylow et al. (2013) for tracking10 the
10: i. e., estimating the camera motion
between frames

object and camera poses. Our work extends over these approaches by
introducing a novel method for segmenting moving objects in dynamic
scenes.

1.2 Object Segmentation for Object-Level Scene
Reconstruction

More recently, object-level SLAM approaches were explored in static
(McCormac et al. 2018) and dynamic (Rünz and Agapito 2017; Rünz,
Buffier, et al. 2018; B. Xu et al. 2019) environments, adding the requirement
to address challenge 2 and segment objects in images. One way to address
the segmentation problem in images is instance segmentation, which has
seen tremendous progress over the last decades due to advances in deep
learning. The segmentation problem is in this setting often combined
with classifying11 the segments, which is then called semantic instance 11: i. e., identifying the type of object
segmentation12. A seminal work in this semantic instance segmentation 12: Not to be confused with semantic seg-

mentation, which just classifies image pix-
els without segmenting individual in-
stances.

is Mask R-CNN (He et al. 2017). It builds on early works for identifying
and classifying regions of interest (Girshick et al. 2014) and several
approaches to improve the efficiency (Girshick 2015; Ren et al. 2017).
While the previous approaches mainly identify and classify bounding
boxes of possible objects, Mask R-CNN (He et al. 2017) adds a module
for pixel-levels segmentation.

Approaches like Mask R-CNN (He et al. 2017) can also be used to address
the segmentation problem in static and dynamic environments based on
learned object features. Several of the aforementioned works (McCormac
et al. 2018; Rünz, Buffier, et al. 2018; B. Xu et al. 2019) demonstrated this
use-case and we will also use Mask R-CNN in Chapter 3 to segment
possibly moving objects in images. In dynamic environments, the motion
of different object provides additional geometric cues for segmenting
them (Rünz and Agapito 2017) and we will combine such cues with
semantic segmentation for computational efficiency.

Similar to (Rünz and Agapito 2017; Rünz, Buffier, et al. 2018; B. Xu et al.
2019), we jointly address challenges 1 and 213

13: i. e., 3D reconstruction and object seg-
mentationin Chapter 3. We present

EM-Fusion (Strecke and Stueckler 2019), a method for reconstructing the (Strecke and Stueckler 2019): EM-Fusion:
Dynamic Object-Level SLAM With Proba-
bilistic Data Association

3D geometry of the static background and several independently moving
objects from a moving camera while simultaneously tracking camera and

4 1 Introduction

object motion. As mentioned before, we address the 3D reconstruction
problem from challenge 1 by fusing depth information from several
frames in truncated signed distance function models (TSDF models; see also
Section 2.2) for the background and each moving object in an approach
similar to (Curless and Levoy 1996; Newcombe et al. 2011). We further
track the camera and object motion by aligning the depth measurements
from the RGB-D images with the TSDF models as proposed by Bylow
et al. (2013).

As we track and map multiple models, we need to address challenge 2 for
identifying which pixel’s information should be used to update which
object. We approach this goal by combining semantic segmentation (He
et al. 2017) with a principled model for motion segmentation. Based on
the pose14 of models from the previous frame, we compute an association14: i. e., position and orientation
likelihood for each pixel to each object model. We then use this likelihood
as a soft weight for adjusting the influence of the respective pixels
when updating the poses and the TSDF map of the different models.
This approach is similar to the well-known expectation maximization
algorithm (EM; Bishop 2007). The association likelihood formulates an
expectation which pixel in the next frame is most likely associated with
which object (E-Step) and the update of model poses and geometry to
maximizes the likelihood given this association and the data from the
next frame (M-Step). We demonstrate that our combination of semantic
segmentation and geometry-based association likelihoods can track
multiple moving objects with state-of-the-art accuracy and robustness.

1.3 Physical Plausibility in Dynamic Scene
Reconstruction

1.3.1 Dense Reconstruction from Point Clouds with
Plausibility Constraints

In Chapter 4 (Strecke and Stueckler 2020), we observe that the geometry(Strecke and Stueckler 2020): Where Does
It End? - Reasoning About Hidden Surfaces
by Object Intersection Constraints

reconstructions recovered from EM-Fusion in Chapter 3 only cover ob-
served object surfaces. These reconstructions are not physically plausible
as they are single-sided surfaces “floating” in the air, something we
would be surprised to see when we look at objects from different sides.
In robotics applications, closed watertight shapes are desirable to enable
e.g., grasping of objects. We thus extend the incremental online map-
ping approach from Chapter 3 to retrieve optimized watertight object
models.

Previous work has addressed the issue of completing the object shape
using data-driven learned priors on observable 3D shapes (Dai et al.
2018; Firman et al. 2016; Song et al. 2017; Yang et al. 2019). However, in
the general setting, the 3D training data required for these approaches is
unavailable or difficult to obtain. We thus follow an orthogonal approach
and employ physical background knowledge to address the task of object
completion.

Our approach does not require 3D training data and attempts to com-
plete object models using only information present in the observed scene,

1.3 Physical Plausibility in Dynamic Scene Reconstruction 5

including depth measurements and reasoning about the physical plausi-
bility of the object configurations in every frame. Transforming oriented
point clouds computed from the depth maps15 to the object coordinate 15: see Section 2.3
systems with the object and camera poses recovered in Chapter 3 yields
a registered collection of points and surface normals. This oriented point
cloud is an unordered sampling of the observed surface. Several ap-
proaches exist for recovering the surface as an implicit function16 (Calakli 16: i. e., a function with 3D space as do-

main in which the surface is encoded
implicitly as a level-set, see Section 2.2 for
the representation we use in this thesis.

and Taubin 2011; Kazhdan, Bolitho, et al. 2006; Kazhdan and Hoppe
2013) have been developed. The TSDF models we build in Chapter 3 are
one type of such implicit functions, but optimizing the models with an
approach as the ones mentioned here provides more accurate models at
the cost of higher computational complexity. Schroers et al. (2014) provide (Schroers et al. 2014): A Variational Tax-

onomy for Surface Reconstruction from Ori-
ented Points

a taxonomy and mathematical formulation for generalizing several of
these approaches.

So far, these approaches only consider the observed surfaces of the objects.
As we track and reconstruct multiple objects in Chapter 3, we can impose
additional physical plausibility priors on the reconstructions. One such
prior is that no two objects intersect17 at any point in time. A second prior 17: i. e., share the same 3D point
we use in Chapter 4 is based on the geometry of the camera and the
depth measurements. When we see a 3D point in a pixel, we can reason
that the space on the ray between that point and the camera is empty. By
this argument, we can construct a hull as the complement of this known
empty space. Schroers et al. (2014) demonstrated that a hull like this can
help to improve the surface reconstructions.

We propose an intersection constraint based on our first observation
and integrate it together with the hull constraint in the Hessian-IMLS
formulation by Schroers et al. (2014) to optimize SDF models for all
objects and the background. Our experiments demonstrate improved
object shape completeness over the results by EM-Fusion (Chapter 3;
Strecke and Stueckler 2019) purely based on physical plausibility without
the requirement for 3D training data.

1.3.2 Shape Optimization via Differentiable Physics

In Chapter 5 (Strecke and Stueckler 2021), we use recent advances (Strecke and Stueckler 2021): DiffSDFSim:
Differentiable Rigid-Body Dynamics With
Implicit Shapes

in differentiable simulation and parametric shape representations to
optimize the object shape and physical parameters. Our key observation
is that the shape of an object affects its motion after collisions with
other objects18. If we now observe such a trajectory with a collision, we 18: For example, a ball thrown towards

a wall with fixed initial center position
and velocity will collide earlier or later
with the wall depending on its radius.

can reason about physically plausible shapes based on the motion of the
objects.

Many methods for physical simulation have been developed in the
last decades in the computer graphics and mechanical engineering
communities (Bender, Erleben, et al. 2013). These methods work well for
simulating the physical behavior of objects of known shape with known
physical parameters. More recently, the inverse problem, i. e., the estimation
of physical parameters that result in a given trajectory, has attracted
interest in the computer vision and robotics communities and led to the
development of differentiable physics engines (Geilinger et al. 2020; Hu,
Anderson, et al. 2020; Krishna Murthy et al. 2021). Estimating physical
parameters like friction can enable the transfer of real-world properties

6 1 Introduction

to simulated environments, possibly enabling reasoning about future
interactions with the world. One example for differentiable simulations
is the work by Avila Belbute-Peres et al. (2018). While it demonstrated the(Avila Belbute-Peres et al. 2018): End-to-

End Differentiable Physics for Learning and
Control

optimization of physical parameters, it is limited to relatively simple object
primitives in 2D scenes. We thus extend this work to 3D environments
and use signed distance function (SDF; see Section 2.2) models for object
shapes. This enables the simulation of more complex shapes and the
computation of gradients with respect to shape parameters.

While general shape optimization without any prior 3D knowledge on
the considered shapes as in Chapters 3 and 4 might not be feasible for
this approach, recent advances in neural implicit modeling (Mescheder
et al. 2019; Park et al. 2019) have shown that families of shapes can be
represented in low dimensional parameter spaces and optimized from
incomplete point clouds. Further, surface extraction from these models
can be made differentiable (Remelli et al. 2020), allowing the optimiza-
tion of shape parameters for aerodynamics or rendered silhouettes by
employing differentiable rendering (Kato et al. 2018). This inspires us
to employ these parametric SDF models in our differentiable physics
simulation and optimize for shape parameters through the simulation.

Our experiments demonstrate that we can accurately recover the shape
of objects with given simulated reference trajectories or depth measure-
ments. We further see that simulating with the optimized parameters
accurately recovers the reference trajectories. Thus, we anticipate that
the simulation model will be useful for predicting interactions19 with the19: i. e., application of forces
scene given the optimized parameters.

1.4 Contributions

In summary, the contributions of this thesis are the following:

▶ We address challenges 1 and 220 in EM-Fusion (Strecke and Stueck-20: i. e., 3D reconstruction and object seg-
mentation ler 2019), an approach for tracking and mapping dynamic objects
(Strecke and Stueckler 2019): EM-Fusion:
Dynamic Object-Level SLAM With Proba-
bilistic Data Association

together with background geometry and camera motion in Chap-
ter 3. Our approach models motion segmentation as a probabilistic
data association problem and is robust to occlusions.

▶ We present a first approach for addressing challenge 321, Co-Section21: i. e., incorporating physical plausibil-
ity (Strecke and Stueckler 2020), which optimizes watertight shapes
(Strecke and Stueckler 2020): Where Does
It End? - Reasoning About Hidden Surfaces
by Object Intersection Constraints

based on physical plausibility priors in Chapter 4. Our method
can optimize completed watertight models based on physical
plausibility constraints without the need for learned shape priors.

▶ In an orthogonal approach for addressing challenge 3, we present
DiffSDFSim (Strecke and Stueckler 2021) for optimizing object(Strecke and Stueckler 2021): DiffSDFSim:

Differentiable Rigid-Body Dynamics With
Implicit Shapes

shape and physical properties to match target observations in
Chapter 5. The optimized results allow for re-generating the target
trajectories in simulation, potentially enabling predictions about
future scene states or real-to-sim transfer.

1.5 Publications 7

1.5 Publications

Large parts of this thesis were published in peer-reviewed conference
proceedings. Each of the chapters mentioned before (Chapters 3 to 5) is
based on one of the following publications.

1. Strecke, Michael and Joerg Stueckler (2019). ‘EM-Fusion: Dynamic
Object-Level SLAM With Probabilistic Data Association’. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). IEEE.
doi: 10.1109/iccv.2019.00596, Chapter 3.

2. Strecke, Michael and Joerg Stueckler (2020). ‘Where Does It End?
- Reasoning About Hidden Surfaces by Object Intersection Con-
straints’. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE. doi: 10.1109/cvpr42600.2020.00961,
Chapter 4.

3. Strecke, Michael and Joerg Stueckler (2021). ‘DiffSDFSim: Dif-
ferentiable Rigid-Body Dynamics With Implicit Shapes’. In: 2021
International Conference on 3D Vision (3DV). IEEE. doi: 10.1109/
3dv53792.2021.00020, Chapter 5.

The following work was performed during my PhD, but does not form a
part of this thesis:

1. Kandukuri, Rama Krishna, Michael Strecke, and Joerg Stueckler
(2024). ‘Physics-Based Rigid Body Object Tracking and Friction
Filtering From RGB-D Videos’. In: International Conference on 3D
Vision (3DV). accepted, preprint arXiv: 2309.15703. doi: 10.1109/
3DV62453.2024.00111.

1.6 Open-Source Software Releases

We provide open-source software releases for EM-Fusion22 (Strecke 22: https://github.com/

EmbodiedVision/emfusionand Stueckler 2019) and Co-Section23 (Strecke and Stueckler 2020). The
23: https://github.com/

EmbodiedVision/cosection
releases allow other researchers to reproduce our results and build upon
them in future research.

https://doi.org/10.1109/iccv.2019.00596
https://doi.org/10.1109/cvpr42600.2020.00961
https://doi.org/10.1109/3dv53792.2021.00020
https://doi.org/10.1109/3dv53792.2021.00020
https://doi.org/10.1109/3DV62453.2024.00111
https://doi.org/10.1109/3DV62453.2024.00111
https://github.com/EmbodiedVision/emfusion
https://github.com/EmbodiedVision/emfusion
https://github.com/EmbodiedVision/cosection
https://github.com/EmbodiedVision/cosection

8 1 Introduction

Background 2
2.1 Rigid Body Motion 9
2.1.1 Purely Rotational Motion 9
2.1.2 Full Rigid-Body Motion . 11
2.2 Signed Distance Func-

tions (SDFs) 12
2.2.1 Parametric Signed Distance

Functions / Shape Spaces 13
2.2.2 SDFs as Volumetric Grids 15
2.2.3 Truncated Signed Distance

Functions (TSDFs) 17
2.2.4 Explicit Surface Extraction 17
2.3 Depth Image Capture and

Point Cloud Computation 21

This chapter introduces theoretical background required for all following
chapters of this thesis. Preliminaries only required in a single chapter
will be introduced as separate sections within the respective chapters.

2.1 Rigid Body Motion

In this thesis, we will consider the motion of rigid bodies, i. e. the poses,
consisting of rotation and translation of multiple objects at different points
in time. This section will introduce the notation used to represent this
kind of motion in this thesis. The derivations and definitions in this
section follow (Ma et al. 2004

(Ma et al. 2004): An Invitation to 3-D Vision
, Section 2.3 and 2.4), to which we refer for

further details.

2.1.1 Purely Rotational Motion

We describe the orientation of an object by the rotation, a linear transfor-
mation R acting on all points on the object:

x𝑊 = R𝑂𝑊x𝑂 , (2.1)

where the superscripts 𝑊 and 𝑂 denote the point x on the object in world
and object frame, respectively and the rotation R𝑂𝑊 maps from object to
world frame. Whenever clear from the context, we will omit the respective
superscripts to avoid notational clutter. The space of matrices in ℝ3×3

realizing a rotation is called the special orthogonal group in 3 dimensions:

SO(3) :=
{︁
R ∈ ℝ3×3 |︁|︁ R⊤R = 𝕀3 , det(R) = 1

}︁
, (2.2)

where 𝕀𝑛 denotes the identity matrix in 𝑛 dimensions. While a matrix R ∈
ℝ3×3 has 9 entries, the constraint in Equation (2.2) limits the degrees of
freedom of rotation matrices to 3. We can derive a minimal representation
by modeling any rotation as part of a trajectory, i. e., a time-dependent
mapping

R : ℝ→ SO(3),
𝑡 ↦→ R(𝑡), (2.3)

which at any point in time 𝑡 must satisfy the condition

R(𝑡)R(𝑡)⊤ = 𝕀3. (2.4)

Differentiating Equation (2.4) yields

Ṙ(𝑡)R⊤(𝑡) + R(𝑡)Ṙ⊤(𝑡) = 0 =⇒ Ṙ(𝑡)R⊤(𝑡) = − (︁
Ṙ(𝑡)R⊤(𝑡))︁⊤ . (2.5)

Thus, Ṙ(𝑡)R⊤(𝑡) is a skew-symmetric matrix and there exists a vector
𝝎(𝑡) ∈ ℝ3 such that (Ma et al. 2004)

ˆ︁𝝎(𝑡) = Ṙ(𝑡)R⊤(𝑡), (2.6)

10 2 Background

where the skew-symmetric matrix ˆ︁𝝎 ∈ ℝ3×3 for a vector 𝝎 ∈ ℝ3 is
defined as

ˆ︁𝝎 := ⎛⎜⎝
𝜔1
𝜔2
𝜔3

⎞⎟⎠
∧

:= ⎛⎜⎝
0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

⎞⎟⎠ with 𝝎 =
⎛⎜⎝
𝜔1
𝜔2
𝜔3

⎞⎟⎠ . (2.7)
The matrix in Equation (2.7) can also
be used to write the cross-product as a
matrix multiplication, i. e., 𝝎 × x = ˆ︁𝝎x
with 𝝎 ∈ ℝ3 , x ∈ ℝ3.

In Equation (2.7), we implicitly defined the operator ∧ for computing a
skew-symmetric matrix ˆ︁𝝎 from a vector 𝝎 ∈ ℝ3. We further define the
inverse ∨ of this operator by

ˆ︁𝝎∨ := ⎛⎜⎝
0 −𝜔3 𝜔2
𝜔3 0 −𝜔1
−𝜔2 𝜔1 0

⎞⎟⎠
∨

:= ⎛⎜⎝
𝜔1
𝜔2
𝜔3

⎞⎟⎠ = 𝝎. (2.8)

Multiplying Equation (2.6) by R(𝑡) now yields

Ṙ(𝑡) = ˆ︁𝝎(𝑡)R(𝑡), (2.9)

where we can see that for R(𝑡0) = 𝕀3 we have Ṙ(𝑡0) = ˆ︁𝝎(𝑡0), i. e. ˆ︁𝝎 and in
turn the vector 𝝎 locally represents the angular velocity1. Thus, the skew-1: i. e., the rate of change of the orienta-

tion around identity symmetric matrix ˆ︁𝝎 further gives a first-order Taylor approximation to
the rotation trajectory:

R(𝑡0 + Δ𝑡) ≈ 𝕀3 + ˆ︁𝝎(𝑡0)Δ𝑡. (2.10)

We will denote the space of skew-symmetric matrices in 3 dimensions
by

𝔰𝔬(3) :=
{︁ˆ︁𝝎 ∈ ℝ3×3 |︁|︁ 𝝎 ∈ ℝ3}︁ . (2.11)

Using the approximation in Equation (2.10), we can derive a mapping
from 𝔰𝔬(3) to SO(3), called the exponential map (see (Ma et al. 2004) for
details):

exp : 𝔰𝔬(3) → SO(3)ˆ︁𝝎 ↦→ 𝑒 ˆ︁𝝎 , (2.12)

where 𝑒 ˆ︁𝝎 is the matrix exponential

𝑒 ˆ︁𝝎 =

∞∑︂
𝑖=0

ˆ︁𝝎𝑖

𝑖!
, (2.13)

which for skew-symmetric matrices ˆ︁𝝎 ∈ 𝔰𝔬(3) can be simplified to
Rodrigues’ formula for rotation matrices:

𝑒 ˆ︁𝝎 = 𝕀3 + ˆ︁𝝎
∥𝝎∥ sin(∥𝝎∥) + ˆ︁𝝎2

∥𝝎∥2
(1 − cos(∥𝝎∥)). (2.14)

The mapping in Equation (2.12) has a physical interpretation: the resulting
rotation matrix R ∈ SO(3) is a rotation around the axis 𝝎 by 𝜃 = ∥𝝎∥
radians. In this interpretation, the axis-angle-vector 𝝎 in Equation (2.12) is
not the angular velocity anymore, but rather the integrated constant unit
velocity 𝝎′ over some time interval Δ𝑡, i. e., 𝝎 = Δ𝑡𝝎′.

While the mapping in Equation (2.12) is not unique due to the periodic
nature of rotations (for ∥𝝎∥ = 1, we have exp(2𝜋𝑘ˆ︁𝝎) = 𝕀3 for all 𝑘 ∈ ℤ),

2.1 Rigid Body Motion 11

we can still always find a 𝝎 ∈ ℝ3 such that R = exp(ˆ︁𝝎) for R ∈ SO(3),
which we call the logarithm map of SO(3):

log : SO(3) → 𝔰𝔬(3)

R ↦→
{︄ˆ︁𝝎𝜃, if R ≠ 𝕀3

0, otherwise,
(2.15)

where

𝜃 = cos−1
(︃

trace(R) − 1
2

)︃
, 𝝎 =

1
2 sin(𝜃)

⎛⎜⎝
𝑅3,2 − 𝑅2,3
𝑅1,3 − 𝑅3,1
𝑅2,1 − 𝑅1,2

⎞⎟⎠ (2.16)

and 𝑅𝑖 , 𝑗 denotes the entry in the 𝑖-th row and 𝑗-th column of the matrix
R.

2.1.2 Full Rigid-Body Motion

In addition to rotational motion explained in Subsection 2.1.1, rigid bodies
can undergo translational motion:

x𝑊 = R𝑂𝑊x𝑂 + t𝑂𝑊 , (2.17)

where the superscripts are the same as in Equation (2.1) and t𝑂𝑊 denotes
the translation offset from object to world space (i. e. location of the object
origin in world space).

While Equation (2.1) is a linear operation, Equation (2.17) is affine. For con-
venience, we convert Equation (2.17) to a linear operation by introducing
homogeneous coordinates for vectors x ∈ ℝ𝑛 :

x =

⎛⎜⎜⎜⎜⎝
𝑥1
...
𝑥𝑛
1

⎞⎟⎟⎟⎟⎠
∈ ℝ𝑛+1. (2.18)

This allows to define the space of transformation matrices as the special
Euclidean group in 3 dimensions:

SE(3) :=
{︃
T =

(︃
R t
0 1

)︃ |︁|︁|︁|︁ R ∈ SO(3), t ∈ ℝ3
}︃
⊂ ℝ4×4. (2.19)

We can now rewrite Equation (2.17) as

x𝑊 = T𝑂𝑊x𝑂 , (2.20)

with T𝑂𝑊 ∈ SE(3) composed of R𝑂𝑊 and t𝑂𝑊 from Equation (2.17). We
will omit the overline operator “·” for homogeneous coordinates in this
thesis whenever the correct dimension of the vector is clear from the
context.

Similar as before for rotation matrices, looking at trajectories

T : ℝ→ SE(3),
𝑡 ↦→ T(𝑡) (2.21)

12 2 Background

we can look at the structure of

Ṫ(𝑡)T−1(𝑡) =
(︃
Ṙ(𝑡)R⊤(𝑡) ṫ(𝑡) − Ṙ(𝑡)R⊤(𝑡)t(𝑡)

0 0

)︃
∈ ℝ4×4. (2.22)

We can now write the top-left 3 × 3 sub-matrix as a skew-symmetric
matrix ˆ︁𝝎(𝑡) (see Equation (2.6)) and define a vector v(𝑡) = ṫ(𝑡) − ˆ︁𝝎(𝑡)t(𝑡).
Using 𝝎 and v, we can then define the twist

ˆ︁𝝃(𝑡) = Ṫ(𝑡)T−1(𝑡) =
(︃ˆ︁𝝎(𝑡) v(𝑡)

0 0

)︃
∈ ℝ4×4 , (2.23)

which similar to ˆ︁𝝎 for rotations defines a local tangent on SE(3). The
space of all twists is defined as

𝔰𝔢(3) :=
{︃ˆ︁𝝃 =

(︃ˆ︁𝝎 v
0 0

)︃ |︁|︁|︁|︁ ˆ︁𝝎 ∈ 𝔰𝔬(3), v ∈ ℝ3
}︃
⊂ ℝ4×4 (2.24)

and we define operators ∨ and ∧ to convert between the twist ˆ︁𝝃 ∈ 𝔰𝔢(3)
and the twist coordinates 𝝃 ∈ ℝ6:(︃ˆ︁𝝎 v

0 0

)︃∨
:=

(︃
𝝎
v

)︃
∈ ℝ6 ,

(︃
𝝎
v

)︃∧
:=

(︃ˆ︁𝝎 v
0 0

)︃
∈ 𝔰𝔢(3). (2.25)

The vector 𝝎 can be interpreted as the angular velocity (as before for
rotations) and v as the linear velocity for the trajectory. As tangent vectors,
twists can again be seen as the first order Taylor approximation around
T(𝑡) and by similar arguments as for rotations before, the exponential and
logarithm maps between SE(3) and 𝔰𝔢(3) can be defined:

exp : 𝔰𝔢(3) → SE(3)ˆ︁𝝃 ↦→ 𝑒ˆ︁𝝃 ,
log : SE(3) → 𝔰𝔢(3)

T ↦→ log(T). (2.26)

We refer to (Ma et al. 2004, Section 2.4) for more details on the derivation.
In this thesis we will use T (𝝃) ∈ SE(3) as a shorthand for the matrix T =

exp
(︂ˆ︁𝝃)︂ ∈ SE(3). Similar to the case for rotation matrices, Equation (2.26)

acts on twist coordinates 𝝃, which are not velocities but the integral of
some unit velocity 𝝃′ over some time interval Δ𝑡, i. e., 𝝃 = Δ𝑡𝝃′.

2.2 Signed Distance Functions (SDFs)

Throughout this thesis, we represent the geometry of objects or the
background scene as signed distance functions (SDFs). In contrast to
inherently discretized explicit geometry representations like point clouds
or triangular meshes, SDFs represent the surface Sof an object or the
background scene continuously and implicitly as the zero-level set of the
SDF. Formally, we define the signed distance function as follows.

Definition 2.2.1 Signed Distance Function. Let

S⊂ {︁(p, n) |︁|︁ p ∈ ℝ𝑑 , n ∈ ℝ𝑑 , ∥n∥ = 1
}︁ ⊂ ℝ𝑑 ×ℝ𝑑 (2.27)

2.2 Signed Distance Functions (SDFs) 13

be an oriented surface in 𝑑-dimensional space (where n denotes the outward
unit normal). The signed distance function 𝜙 representing S is the mapping

𝜙 : ℝ𝑑 → ℝ

p ↦→ sgn
(︁
n∗⊤ (p − p∗))︁ ∥p − p∗∥ , (2.28)

where (p∗ , n∗) = arg min(q,n)∈S ∥p − q∥ and

sgn : ℝ→ {−1, 1}

𝑥 ↦→
{︄
−1, if 𝑥 < 0,
1, otherwise

(2.29)

is the sign function.

Intuitively, the SDF 𝜙(p) gives the distance to the closest point on the
surface S, with the sign indicating whether p is inside or outside the
surface. As mentioned before, the surface Scan be recovered from the
SDF 𝜙 as its zero-level set

S=
{︁(p, n) |︁|︁ 𝜙(p) = 0, n = ∇𝜙(p)}︁ . (2.30)

Figure 2.1 illustrates an example of an SDF in 2D. The surface of the bowl
is represented by the zero isosurface (white) of the SDF, while the inside
of the object contains negative SDF values (blue) and the area outside the
object positive ones (red). Several other isosurfaces are shown as lines
with equal distance to the surface.

−0.05 0.0
0

0.20
0.40 −1.0

−0.5

0.0

0.5

1.0

SD
F
va

lu
e

Figure 2.1: Plot of an SDF in 2D for a
bowl shape. The surface is represented
by the zero level set (white), blue regions
are inside the object and red ones are
outside.

In practice, one can often express the SDF 𝜙 in Equation (2.28) with-
out resorting to the explicit point-normal representation of S (see e.g.
Subsection 2.2.1). While it is usually not possible to explicitly express S
without discretization or sampling, this allows to represent S implicitly
and continuously via the SDF 𝜙. If needed, a discretized approximation
of Scan be extracted from 𝜙 as we will explain in Subsection 2.2.4.

In addition to representing the surface, SDFs carry additional information
(i. e., the distance to the closest surface) for off-surface points. This
representation has thus been used in robotic path planning with collision
avoidance (Oleynikova et al. 2017; Pan et al. 2022) or for contact detection
in physical simulation (Macklin, Erleben, Müller, Chentanez, Jeschke,
and Corse 2020).

In this thesis, we will use SDFs in different representations. In Chapters 3
and 4, we will represent objects and the background as volumetric grids
(see Subsection 2.2.2) and in Chapter 3 we will additionally truncate
large distances (see Subsection 2.2.3). We will further use continuous
parametric models (see Subsection 2.2.1) in Chapter 5.

2.2.1 Parametric Signed Distance Functions / Shape
Spaces

The formulation from Definition 2.2.1 can be extended for an additional
parameter z ∈ ℝ𝑛 to allow representing families of shapes, which we

14 2 Background

also call shape spaces:

𝜙 : ℝ𝑑 ×ℝ𝑛 → ℝ

(p, z) ↦→ 𝜙(p, z). (2.31)

For some primitive shapes, this parameterized SDF can be derived
analytically. For a solid sphere of radius 𝑟 ∈ ℝ≥0 ⊂ ℝ and center at the
origin for example, the SDF is given as

𝜙◦(p, 𝑟) = ∥p∥2 − 𝑟. (2.32)

Several other primitive shapes like cuboids, cylinders or capsules have
compact analytical formulas. A good overview over these SDFs and
tutorials on the derivation of some of them can be found on the homepage
of Inigo Quilez2. Even the non-convex 2D bowl in Figure 2.1 can be2: https://iquilezles.org/

articles/distfunctions/ expressed by a parametric SDF describing an arc3 for points p = (𝑝𝑥 , 𝑝𝑦)⊤
3: https://iquilezles.org/

articles/distfunctions2d/
and parameters z = (𝜃, 𝑟𝑎 , 𝑟𝑏)⊤, where 𝜃 denotes the aperture (i. e. half
the angle covered by the arc), 𝑟𝑎 denotes the radius of the arc, and 𝑟𝑏 is
the inner radius (i. e. half the thickness of the arc):

𝜙∪ (p, z) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∥︁∥︁∥︁∥︁∥︁
(︄
|𝑝𝑥 | − sin(𝜃) · 𝑟𝑎
𝑝𝑦 − cos(𝜃) · 𝑟𝑎

)︄∥︁∥︁∥︁∥︁∥︁ , if cos(𝜃) · 𝑝𝑥 > sin(𝜃) · 𝑝𝑦 ,

|∥p∥ − 𝑟𝑎 | − 𝑟𝑏 , otherwise.
(2.33)

Two main advantages of these parametric SDFs are a continuous query
domain (as opposed to the discretized grid we will explain in Subsec-
tion 2.2.2) and differentiability for both the query points and the shape
parameters. However, modeling complex shapes requires combinations
of primitives, which can be tedious manually and sometimes does not
give the exact SDF values away from the surface.

More recently, the problem of modeling complex shapes was addressed
by several works which use neural networks to represent SDFs (Park et al.
2019) or other implicit surface representations like occupancy (Mescheder(Park et al. 2019): DeepSDF: Learning Con-

tinuous Signed Distance Functions for Shape
Representation

et al. 2019). In DeepSDF (Park et al. 2019), similar to the formula for

(Mescheder et al. 2019): Occupancy Net-
works: Learning 3D Reconstruction in Func-
tion Space

the sphere in Equation (2.32), a network with trained parameters 𝜽 ∈
ℝ𝑚 can represent a family of shapes parameterized by latent codes
z ∈ ℝ𝑛 . We denote an SDF represented by such a neural network by
𝜙𝜽. Note that formally the network parameters 𝜽 are also function
parameters, but we denote them using a subscript as they are fixed
during inference. Park et al. (2019) formulate training of this network
as an “auto-decoder”. They assume a zero-mean multivariate Gaussian
distribution over the latent codes {z𝑖}𝑁𝑖=1 for 𝑁 shapes with spherical
covariance 𝜎2𝕀𝑛

4 and minimize the negative log-likelihood over latent4: where 𝕀𝑛 denotes the 𝑛 × 𝑛 identity
matrix codes {z𝑖}𝑁𝑖=1 and network parameters 𝜽 given 𝐾 sampled points

{︁
p𝑗

}︁𝐾
𝑗=1

with given ground truth SDF values
{︁
𝑠 𝑗
}︁𝐾
𝑗=1 per shape:

(︂
𝜽∗ ,

{︁
z∗𝑖

}︁𝑁
𝑖=1

)︂
= arg min

𝜽,{z𝑖 }𝑁𝑖=1

𝑁∑︂
𝑖=1

(︄
𝐾∑︂
𝑗=1

𝐸
(︁
𝜙𝜽

(︁
p𝑗 , z𝑖

)︁
, 𝑠 𝑗

)︁ + 1
𝜎2 ∥z𝑖 ∥2

)︄
. (2.34)

Here, 𝐸 is a loss function penalizing the deviation between predicted
and ground-truth SDF values. An 𝐿2-loss would for example assume

https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions/
https://iquilezles.org/articles/distfunctions2d/
https://iquilezles.org/articles/distfunctions2d/

2.2 Signed Distance Functions (SDFs) 15

Gaussian noise on the SDF values. Park et al. (2019) used a clamped
𝐿1-loss5 in their experiments as it allowed to concentrate network capacity 5: similar to the TSDF formulation in

Subsection 2.2.3close to the surface:

𝐸(𝜙𝜽(p, z), 𝑠) =
|︁|︁clamp

(︁
𝜙𝜽(p, z), 𝛿

)︁ − clamp(𝑠, 𝛿)|︁|︁ , (2.35)

where clamp(𝑠, 𝜇) := min(𝜇,max(−𝜇, 𝑠)).
This formulation relies on supervision for the training point samples
the SDF is computed for. Computing SDF values from meshes can be
challenging, especially far from the surface. A follow-up work (Gropp
et al. 2020) thus included implicit geometric regularization in the training (Gropp et al. 2020): Implicit Geometric

Regularization for Learning Shapesloss. The key observation is that the gradient of the SDF should satisfy
the Eikonal constraint6: 6: The intuition behind this constraint is

that moving along the surface normals
(which match the SDF gradients as men-
tioned in Equation (2.30)), the distance
to the surface increases exactly by the
distance traveled.

∀p ∈ ℝ𝑑 :
∥︁∥︁∇𝜙(p)∥︁∥︁ = 1. (2.36)

Based on this, Gropp et al. (2020) proposed training the network based
on point samples with or without normal information on the surface
and enforce the correct off-surface SDF values using the constraint
Equation (2.36):

arg min
𝜽,{z𝑖 }𝑁𝑖=1

𝑁∑︂
𝑖=1

(︁
𝐸S𝑖 (𝜽, z𝑖) + 𝜆𝔼p

(︁∥︁∥︁∇p𝜙𝜽(p, z𝑖)
∥︁∥︁ − 1

)︁)︁
, (2.37)

where

𝐸S𝑖 (𝜽, z𝑖) =
1
|S𝑖 |

∑︂
(p,n)∈S𝑖

(︁|︁|︁𝜙𝜽 (p, z𝑖)
|︁|︁ + 𝜏

∥︁∥︁∇p𝜙𝜽 (p, z𝑖) − n
∥︁∥︁)︁ . (2.38)

The loss in Equation (2.38) encourages the SDF to vanish on the surface
samples. The parameter 𝜏 allows disabling the second term in Equa-
tion (2.38) if normal data is absent. In this thesis, we always consider
surfaces with normal data (as specified in Equation (2.27)), thus we always
set 𝜏 = 1. The Eikonal constraint from Equation (2.36) is incorporated
in the second term in Equation (2.37) as expectation over a distribution
of query point samples. An example of how different cuts through the
SDF look for these variants of DeepSDF is given in Figure 2.2. While
the reconstructed surfaces for the two training shapes look very similar,
training with the Eikonal loss in Equation (2.37) yields smoother surface
reconstructions and a smoother interpolation between the two shapes.
Furthermore, cuts through the SDFs exhibit some artifacts for off-surface
SDFs when trained with the original DeepSDF loss in Equation (2.34)
(see Figure 2.2a), while they are closer to the true distances when trained
with the loss in Equation (2.37) (see Figure 2.2b).

2.2.2 SDFs as Volumetric Grids

For practical reasons, SDFs are often used as discretized volumetric grids,
i. e. the SDF 𝜙 is evaluated at regular spaced grid points and the SDF
values at these points are then stored in a 3D array. Mathematically, a
cuboid-shaped domain Ω = [𝑥1 , 𝑥2] × [𝑦1 , 𝑦2] × [𝑧1 , 𝑧2] ⊂ ℝ3 is chosen
and discretized at resolution 𝑚𝑥 , 𝑚𝑦 and 𝑚𝑧 for the different coordinate
axes. The points for evaluating the SDF are placed at voxel7 locations 7: i. e. “volume element”

16 2 Background

0 1
latent dim

−0.5

0.0

0.5

la
te
nt

va
lu
e

0 1
latent dim

−0.5

0.0

0.5
la
te
nt

va
lu
e

0 1
latent dim

−0.5

0.0

0.5

la
te
nt

va
lu
e

−0.1

−0.1

0.0

0.0

0.1

0.1

−1

0

1

SD
F
va

lu
e

−0.1 −0.1

0.00.1

0.1

−1

0

1
SD

F
va

lu
e

−0.1 0.00.1

−1

0

1

SD
F
va

lu
e

(a) Trained with SDF samples as in (Park et al. 2019).

0 1
latent dim

−0.05

0.00

0.05

la
te
nt

va
lu
e

0 1
latent dim

−0.05

0.00

0.05

la
te
nt

va
lu
e

0 1
latent dim

−0.05

0.00

0.05

la
te
nt

va
lu
e

−0.1

−0.1
0.0

0.00.10.1

−1

0

1

SD
F
va

lu
e

−0.1 −0.1

0.00.1

−1

0

1

SD
F
va

lu
e

−0.1

0.0

0.1

−1

0

1

SD
F
va

lu
e

(b) Trained with the Eikonal loss from (Gropp et al. 2020).

Figure 2.2: Learned shape spaces with and without Eikonal loss. Top: renderings of the reconstructions of the two training shapes and
an interpolation. Center: The corresponding latent codes. Bottom: SDF cuts for the green plane in the top row. One can see that training
purely based on SDF samples with the loss in Equation (2.34) does not yield true distances for off-surface points (a). In (b), training with
the Eikonal loss from Equation (2.37), distances for off-surface samples are closer to true distances and the interpolation between the
shapes looks smoother.

v𝑖 , 𝑗 ,𝑘 =
⎛⎜⎜⎝
𝑥1 + 𝑖

𝑚𝑥−1 (𝑥2 − 𝑥1)
𝑦1 + 𝑗

𝑚𝑦−1 (𝑦2 − 𝑦1)
𝑧1 + 𝑘

𝑚𝑧−1 (𝑧2 − 𝑧1)

⎞⎟⎟⎠ , (2.39)

for indices 𝑖 ∈ {0, . . . , 𝑚𝑥−1}, 𝑗 ∈ {0, . . . , 𝑚𝑦−1} and 𝑘 ∈ {0, . . . , 𝑚𝑧−1}
and the corresponding SDF values are stored in a 3D tensor 𝚽 as

Φ𝑖 , 𝑗 ,𝑘 = 𝜙
(︁
v𝑖 , 𝑗 ,𝑘

)︁
. (2.40)

The indices 𝑖 , 𝑗 , 𝑘 in Equations (2.39) and (2.40) can be linearized as

ℓ =
(︁
𝑖 + 𝑚𝑥 𝑗 + 𝑚𝑥𝑚𝑦 𝑘

)︁ ∈ {0, . . . , 𝑀 − 1}, (2.41)

with 𝑀 = 𝑚𝑥𝑚𝑦𝑚𝑧 , allowing to write 𝚽 as a vector 𝝓 ∈ ℝ𝑀 .

We can now evaluate the discretized SDF at a continuous location
x = (𝑥𝑥 , 𝑥𝑦 , 𝑥𝑧)⊤ ∈ Ω by trilinear interpolation. To do this, we first compute
the index coordinates of x:

x̌ =
⎛⎜⎝
�̌�𝑥
�̌�𝑦
�̌�𝑧

⎞⎟⎠ =
⎛⎜⎜⎝
𝑥𝑥−𝑥1
𝑥2−𝑥1
(𝑚𝑥 − 1)

𝑥𝑦−𝑦1
𝑦2−𝑦1
(𝑚𝑦 − 1)

𝑥𝑧−𝑧1
𝑧2−𝑧1
(𝑚𝑧 − 1)

⎞⎟⎟⎠ . (2.42)

The SDF value at x is approximated by trilinear interpolation from the 8
neighboring voxels by first computing interpolation coefficients

𝜶 =
⎛⎜⎝
𝛼𝑥
𝛼𝑦
𝛼𝑧

⎞⎟⎠ = x̌ − ⌊x̌⌋ , (2.43)

where ⌊·⌋ denotes the floor operation, which is applied element-wise
in Equation (2.43). The vector 𝜶 contains the decimal part of x̌, which
we use as interpolation factor in each dimension when computing the

2.2 Signed Distance Functions (SDFs) 17

interpolated SDF value:

Φ∗�̌�−𝑦 ,�̌�−𝑧 = (1 − 𝛼𝑥)Φ�̌�−𝑥 ,�̌�−𝑦 ,�̌�−𝑧 + 𝛼𝑥Φ�̌�+𝑥 ,�̌�−𝑦 ,�̌�−𝑧

Φ∗�̌�−𝑦 ,�̌�+𝑧 = (1 − 𝛼𝑥)Φ�̌�−𝑥 ,�̌�−𝑦 ,�̌�+𝑧 + 𝛼𝑥Φ�̌�+𝑥 ,�̌�−𝑦 ,�̌�+𝑧

Φ∗�̌�+𝑦 ,�̌�−𝑧 = (1 − 𝛼𝑥)Φ�̌�−𝑥 ,�̌�+𝑦 ,�̌�−𝑧 + 𝛼𝑥Φ�̌�+𝑥 ,�̌�+𝑦 ,�̌�−𝑧

Φ∗�̌�+𝑦 ,�̌�+𝑧 = (1 − 𝛼𝑥)Φ�̌�+𝑥 ,�̌�+𝑦 ,�̌�+𝑧 + 𝛼𝑥Φ�̌�+𝑥 ,�̌�+𝑦 ,�̌�+𝑧

(2.44)

Φ∗�̌�−𝑧 = (1 − 𝛼𝑦)Φ∗�̌�−𝑦 ,�̌�−𝑧 + 𝛼𝑦Φ
∗
�̌�+𝑦 ,�̌�−𝑧

Φ∗�̌�+𝑧 = (1 − 𝛼𝑦)Φ∗�̌�−𝑦 ,�̌�+𝑧 + 𝛼𝑦Φ
∗
�̌�+𝑦 ,�̌�+𝑧

(2.45)

Φ(x) ≈ (1 − 𝛼𝑧)Φ∗�̌�−𝑧 + 𝛼𝑧Φ
∗
�̌�+𝑧
, (2.46)

where the notation 𝑠− = ⌊𝑠⌋ and 𝑠+ = ⌈𝑠⌉ is used to denote the lower
and higher integer indices in the discrete grid. Note that if 𝑥𝑖 , 𝑥 𝑗 and 𝑥𝑘
are integers, 𝜶 = 0 and this interpolation is the same as just querying the
grid at 𝜙(x) = Φ�̌�𝑥 ,�̌�𝑦 ,�̌�𝑧 .

Works like (Curless and Levoy 1996) or (Newcombe et al. 2011) fuse depth (Curless and Levoy 1996): A volumetric
method for building complex models from
range images
(Newcombe et al. 2011): KinectFusion:
Real-time dense surface mapping and track-
ing

information from several frames in these volumetric grids. If required,
gradients are usually computed using finite differences on these grids, but
recent works have demonstrated advantages of directly storing gradient
information in the grid (Sommer et al. 2022).

2.2.3 Truncated Signed Distance Functions (TSDFs)

When fusing depth information in volumetric grids as in (Curless and
Levoy 1996) or (Newcombe et al. 2011), one often uses a variant of the
SDF called the truncated signed distance function (TSDF), which we denote
by 𝜙. This variant truncates the SDF at some specified threshold 𝜇, i. e.
all points p for which |𝜙(p)| > 𝜇 get the truncated value of 𝜇:

𝜙(p) = clamp(𝜙(p), 𝜇), (2.47)

where clamp(𝑠, 𝜇) := min(𝜇,max(−𝜇, 𝑠)). In practice, the truncation
threshold 𝜇 is chosen small enough to prevent interference between
measurements from different sides of the observed surface, but large
enough so that averaging multiple views (see Subsection 3.3.3) can
remove noise from individual depth measurements (Curless and Levoy
1996; Newcombe 2012).

2.2.4 Explicit Surface Extraction

For some applications, like visualization of the geometry, extracting the
explicit surface (i. e. points on the zero level set) is required. In this section,
we will present two approaches that can be used for either rendering an
oriented point cloud from a given camera pose or to extract a full triangle
mesh from the SDF volume.

18 2 Background

(a) Raycasting the bowl shape from Figure 2.1. (b) Sphere tracing can speed up the ray casting process.

Figure 2.3: (a) Ray casting. Starting from the center of projection of the camera, one ray for every pixel is traversed in steps (the ticks on
the rays) until it crosses the isosurface (orange step). Rays not crossing the surface (gray) will not generate points. (b) Sphere tracing. One
way to speed up the ray casting process is to take adaptive step sizes according to the SDF value from the last sample (blue arrows) and
only switching to fixed step sizes (orange arrows) close to the surface. This yields far fewer steps than directly using the same small fixed
step size (gray ticks).

Ray Casting. If only the oriented point cloud from a single given camera
pose is required (e.g. to render the geometry from a single view), ray
casting can be performed to find the isosurface of the SDF (Parker et al.
1998). The idea of this approach is to march along a ray for each pixel(Parker et al. 1998): Interactive ray tracing

for isosurface rendering from the camera center through the domain of the SDF until the ray
intersects the desired isosurface (see Figure 2.3a).

The ray r(u, 𝑡) = 𝑡K−1𝜋−1 (u) for a pixel u ∈ Ω, where Ω denotes the
image pixel domain, is typically traversed in fixed step sizes Δ𝑡 (after
computing the step 𝑡min entering the SDF volume), evaluating the SDF
at every step (ticks on the rays in Figure 2.3a). Once the SDF values
cross the isosurface (orange steps in Figure 2.3a) between steps 𝑡+(u) and
𝑡+(u) + Δ𝑡:

𝑡+(u) = min
𝑘∈K(u)

𝑡min + 𝑘Δ𝑡 , (2.48)

where

K(u) = {︁
𝑘 ∈ ℕ |︁|︁ 𝜙 (r (u, 𝑡min + 𝑘Δ𝑡)) > 0,

𝜙 (r (u, 𝑡min + (𝑘 + 1)Δ𝑡)) ≤ 0
}︁

(2.49)

is the set of steps crossing the zero-isosurface for pixel u, the location
of the surface point is known to be between the points r(u, 𝑡+(u)) and
r(u, 𝑡+(u) + Δ𝑡). While the exact location can be computed by solving
a ray/triangle intersection (Parker et al. 1998), Newcombe et al. (2011)
propose to approximate the step 𝑡∗(u) intersecting the isosurface between
𝑡+(u) and 𝑡+(u) + Δ𝑡:

𝑡∗(u) = 𝑡+(u) − Δ𝑡𝜙 (r (u, 𝑡+(u)))
𝜙 (r (u, 𝑡+(u) + Δ𝑡)) − 𝜙 (r (u, 𝑡+(u))) . (2.50)

The surface point and normal generated from the raycast are then given
by

p(u) = r (u, 𝑡∗ (u)) and n(u) = ∇p𝜙 (p (u)) . (2.51)

2.2 Signed Distance Functions (SDFs) 19

Rays that leave the volume without crossing the zero-isosurface (𝑡(u) >
𝑡max; gray rays in Figure 2.3a) or that cross the isosurface from the wrong
side8 will not generate a surface measurement. We thus set 𝑡∗(u) = ∞ for 8: i. e., 𝜙(r(u, 𝑡)) < 0 and 𝜙(r(u, 𝑡 +

Δ𝑡)) > 0, which can happen after in-
cremental mapping as explained in Sub-
section 3.3.3

these rays and can define the rendered surface mask as

𝑚 : Ω→ {0, 1}

u ↦→
{︄

1, if 𝑡∗(u) < ∞
0, otherwise.

(2.52)

A fixed step size Δ𝑡 has to be chosen small enough so that even for
thin surfaces the rays will encounter negative SDF values with high
probability9. The process can be sped up by choosing adaptive step sizes 9: i. e., close to the thickness of the

thinnest surface to be reconstructedas large as 𝜙(𝑟(u, 𝑡)) from the last step as long as the distance to the
surface 𝜙(𝑟(u, 𝑡)) is more than some threshold, which is often referred to
as sphere tracing (Hart 1996), see Figure 2.3b10. For TSDF volumes (see (Hart 1996): Sphere tracing: a geometric

method for the antialiased ray tracing of im-
plicit surfaces
10: The threshold is required to actually
cross the surface at some point.

Subsection 2.2.3), by a similar argument, efficient ray casting can choose
the step size as large as the truncation value initially by reasoning that at
least one nun-truncated value must appear before crossing the surface
(Newcombe et al. 2011).

Once the 3D point on the surface is found, the SDF allows for computing
the surface normal as the gradient of the SDF at that location (see
Equation (2.30)). This gradient can either be computed analytically in
the case of parametric SDFs (Subsection 2.2.1) or via finite differences for
volumetric grids (Subsection 2.2.2).

Marching Cubes. For applications like evaluating surface accuracy,
physics simulation, or visualization, the full object surface is required.
We can extract the object surface as triangular meshes from SDFs using
the Marching Cubes algorithm (Lorensen and H. E. Cline 1987) after (Lorensen and H. E. Cline 1987): Marching

cubes: A high resolution 3D surface construc-
tion algorithm

computing the SDF values on a regular grid (see Subsection 2.2.2).
Triangular meshes M= (V,F) consist of a set of vertices V= {v𝑖}𝑁𝑖=0 ⊂
ℝ3 and a set of faces F⊂ {0, . . . , 𝑁}3 describing the connectivity between
the vertices as vertex indices belonging to a single triangle. The idea
behind this algorithm is that signed distance values on a regular grid
classify grid nodes as inside or outside the surface. From this classification
one can identify edges in the grid on which vertices lie and argue about
connectivity between these vertices.

Figure 2.4a illustrates the corner configurations in the 2D case and the
edges they generate11. Note that there are two corner configurations 11: In 2D, the connections between ver-

tices are not triangles but edges contain-
ing only 2 vertices.

(cases 5 and 10) can generate two possible edge configurations each and
require disambiguation12. An example for the zero-isosurface extracted

12: e. g. by computing the SDF value in
the center of the square or always con-
necting positive or negative regions as
illustrated by the connected lines in Fig-
ure 2.4a

from the bowl SDF from Figure 2.1 is shown in Figure 2.4b.

In three dimensions, the number of classification cases increases, but
the general concept remains the same13. By classifying the corners of 3D

13: Although the number of ambiguous
cases increases and more care needs to be
taken to avoid holes in the reconstruction
(Newman and Yi 2006)

cubes one can compute which edges of the cube intersect the zero level
set of the SDF. Depending on which set of edges intersects the isosurface
triangles can be created to separate corners inside and outside the surface.
The vertex locations can then be refined by interpolating the location on
the edge according to the SDF values at its ends. Similar to ray casting one
can also compute surface normals from the gradient of the SDF, which
allow for smooth shading when rendering the reconstructed surface.

20 2 Background

Figure 2.4: Marching squares. (a) The 16
square classification cases for the march-
ing squares algorithm in 2D. (b) Zero-
isosurface for the bowl in Figure 2.1 as
extracted by the marching squares algo-
rithm.

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

(a) Square classification cases for
marching squares.

(b) Marching squares applied to the
bowl from Figure 2.1.

Parallel Computation. Both ray casting and the marching cubes algo-
rithm can be accelerated using modern GPU hardware. For ray casting,
each image pixel can be trivially processed in parallel. In marching cubes,
both the initial cube classification and the creation of triangles can be
performed in parallel after allocating the necessary memory buffers. We
implemented both methods for surface extraction using CUDA14 in the14: https://developer.nvidia.com/

cuda-toolkit course of the projects contained in this thesis.

Differentiable Surfaces. For some applications it is desirable to com-
pute gradients 𝜕𝐸

𝜕z of some loss 𝐸 formulated as a sum over losses on
the extracted surface points v with respect to the shape parameters z
of the underlying SDF (Subsection 2.2.1). Remelli et al. (2020) proposed(Remelli et al. 2020): MeshSDF: Differen-

tiable Iso-Surface Extraction computing this gradient via the chain rule as

𝜕𝐸
𝜕z

=
∑︂
v∈V

𝜕𝐸
𝜕v

𝜕v
𝜕𝜙

𝜕𝜙

𝜕z
, (2.53)

where all parts except for 𝜕v
𝜕𝜙 are known if 𝐸 is differentiable with respect

to v and the SDF 𝜙 is differentiable with respect to the shape parameters
z as in Subsection 2.2.1.

They further reason by infinitesimal perturbance Δ𝜙 of the surface 𝜙
that the gradient 𝜕v

𝜕𝜙 is given by the negative surface normal at v, which
is the same as the negative gradient of the SDF (see Equation (2.30)):

𝜕v
𝜕𝜙
(v) = −n(v) = −∇𝜙(v). (2.54)

This allows to compute the gradient 𝜕𝐸
𝜕z as

𝜕𝐸
𝜕z

=
∑︂
v∈V
−𝜕𝐸
𝜕v
∇v𝜙(v, z)∇z𝜙(v, z). (2.55)

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

2.3 Depth Image Capture and Point Cloud Computation 21

2.3 Depth Image Capture and Point Cloud
Computation

Throughout this thesis, we will work with videos and images captured by
RGB-D cameras. These cameras acquire depth images15 in addition to color 15: i. e. pixel-wise distance to the camera
and have become more and more accessible in the last decades. Newcombe
(2012) provides a good overview of the advent of this technology since (Newcombe 2012): Dense visual SLAM
the early 2000s, from early research prototypes (Rusinkiewicz et al. 2002)
to commodity hardware like the Mircosoft Kinect or Asus Xtion cameras
(both based on the PrimeSense sensor) in the early 2010s. In this thesis,
we will use data sets that were recorded with these cameras (Rünz and
Agapito 2017; Sturm et al. 2012). We also record our own real-world (Rünz and Agapito 2017): Co-Fusion: Real-

time Segmentation, Tracking and Fusion of
Multiple Objects
(Sturm et al. 2012): A benchmark for the
evaluation of RGB-D SLAM systems

data using Intel RealSense cameras (Keselman et al. 2017). In short, these
cameras use a known set of calibrated stereo cameras with efficient
correspondence search to estimate depth from multiple view geometry
(Hartley and Zisserman 2004). To overcome the absence of features in (Hartley and Zisserman 2004): Multiple

View Geometry in Computer Visionuniformly colored surfaces, they are often extended with active sensing
by, e.g., projecting a pattern in the infrared spectrum into the scene.
The PrimeSense sensor uses only one infrared camera and models the
projector as a “virtual camera”. Correspondence search then reduces to
finding features from the known projected pattern in the camera image
as in (Rusinkiewicz et al. 2002). This method might fail in the presence of
strong external lighting16, as the projected pattern might be too weak to be 16: e. g., in outdoor scenarios
detected. Thus, the more recent Intel RealSense product line comes with
stereo infrared cameras and an additional infrared projector (Keselman
et al. 2017). An alternative active sensing technology for depth cameras
is time-of-flight (ToF), i. e., measuring the time between sending a light
pulse and recording it with a camera. Newer consumer-grade cameras
like the second-generation Microsoft Kinect or the Azure Kinect rely on
this technology for depth estimation (Sarbolandi et al. 2015).

Given the pixel-wise depth and the calibrated camera intrinsic matrix

K =
⎛⎜⎝
𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

⎞⎟⎠ , (2.56)

the 3D points corresponding to each pixel can be recovered by inverting
the camera projection. To see how this is done, we first explain how
points in 3D are projected to image pixels (Hartley and Zisserman 2004).
Typically, we assume a pinhole camera model in which the matrix K
in Equation (2.56) relates camera and pixel coordinates. The camera
coordinate frame is chosen so that the camera looks along the positive
𝑧 axis and 𝑥 and 𝑦 axes are aligned with the image axes. We can then
define the function 𝜋 for projecting the point p = (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧)⊤ in camera
coordinates is projected to pixel coordinates u = (𝑢𝑥 , 𝑢𝑦)⊤:

u = 𝜋 (p) =
(︃
Kp
𝑝𝑧

)︃
1:2

=
⎛⎜⎜⎝
⎛⎜⎜⎝
𝑓𝑥𝑝𝑥+𝑐𝑥𝑝𝑧

𝑝𝑧
𝑓𝑦𝑝𝑦+𝑐𝑦𝑝𝑧

𝑝𝑧
𝑝𝑧
𝑝𝑧

⎞⎟⎟⎠
⎞⎟⎟⎠1:2

=

(︄
𝑓𝑥
𝑝𝑥
𝑝𝑧
+ 𝑐𝑥

𝑓𝑦
𝑝𝑦
𝑝𝑧
+ 𝑐𝑦

)︄
, (2.57)

where the subscript x1:2 denotes taking only the first two dimensions
of the vector x. From Equation (2.57) we can see how the entries of the

22 2 Background

camera intrinsic matrix K in Equation (2.56) affect the projection: 𝑓𝑥 and
𝑓𝑦 scale the normalized 𝑥 and 𝑦 coordinates from world to pixel units
and 𝑐𝑥 and 𝑐𝑦 represent the offset of the center of projection from the
origin of the pixel coordinate space.

As the positive 𝑧-axis of the camera coordinate frame is aligned with the
viewing axis, the 𝑧-coordinate 𝑝𝑧 of p is the distance of p to the camera
in that direction, i. e., the projective distance of p. We define the depth of p
as this distance and denote the depth map of a surface S⊂ ℝ3 as:

𝑑 : Ω→ ℝ

u ↦→
{︄

minp∈Pu 𝑝𝑧 , if Pu ≠ ∅
0, otherwise,

(2.58)

where Pu = {p ∈ S | 𝜋(p) = u}. The depth map 𝑑 thus maps each pixels
u ∈ Ω ⊂ ℝ2 to the depth of the closest point p ∈ S that projects to it or to
0 if there is no point projecting to that pixel17.17: This mapping to 0 for missing mea-

surements allows for easily filtering
them, as the unprojected points below
stay at the origin for these pixels.

Given a depth measurement 𝑧 = 𝑑(u) for pixel coordinates u = (𝑢𝑥 , 𝑢𝑦)⊤,
we can invert Equation (2.57) as follows to compute the 3D point p:

p =
⎛⎜⎝
𝑝𝑥
𝑝𝑦
𝑝𝑧

⎞⎟⎠ = 𝜋−1(u, 𝑧) = 𝑧K−1u = 𝑧K−1 ⎛⎜⎝
𝑢𝑥
𝑢𝑦
1

⎞⎟⎠ = 𝑧
⎛⎜⎜⎝
𝑢𝑥−𝑐𝑥
𝑓𝑥

𝑢𝑦−𝑐𝑦
𝑓𝑦
1

⎞⎟⎟⎠ , (2.59)

where u = (𝑢𝑥 , 𝑢𝑦 , 1)⊤ are the homogeneous coordinates for u (see
Equation (2.18)). Applying the “unprojection” operation in Equation (2.59)
to all pixels produces a point cloud in camera coordinates.

We can further compute surface normals from this point cloud as the
vector orthogonal to two tangent vectors to the surface (Besl and Jain
1986). These tangent vectors can be computed as the gradients of the
point cloud in 𝑥 and 𝑦 direction

∇𝑥p =
⎛⎜⎝

1
0
𝜕𝑧
𝜕𝑥

⎞⎟⎠ and ∇𝑦p =
⎛⎜⎜⎝

0
1
𝜕𝑧
𝜕𝑦

⎞⎟⎟⎠ , (2.60)

yielding the surface normal as

n =
∇𝑥p × ∇𝑦p∥︁∥︁∇𝑥p × ∇𝑦p∥︁∥︁ =

(︂
− 𝜕𝑧

𝜕𝑥 ,− 𝜕𝑧
𝜕𝑦 , 1

)︂⊤∥︁∥︁∥︁∥︁(︂− 𝜕𝑧
𝜕𝑥 ,− 𝜕𝑧

𝜕𝑦 , 1
)︂⊤∥︁∥︁∥︁∥︁ . (2.61)

EM-Fusion: Dynamic
Object-Level SLAM With

Probabilistic Data Association 3
3.1 Introduction 23
3.2 Related Work 24
3.3 Preliminaries 25
3.3.1 Image Preprocessing and

Projection 25
3.3.2 Map Representation . . . 26
3.3.3 Depth Image Fusion . . . 26
3.3.4 Dense Volumetric RGB-D

SLAM 27
3.3.5 Instance Detection and

Segmentation 28
3.4 Method 31
3.4.1 Probabilistic Dynamic

Tracking and Mapping . . 32
3.4.2 Expectation Maximization

Framework 32
3.4.3 Data Association (E-Step) 33
3.4.4 Tracking (M-Step) 33
3.4.5 Mapping (M-Step) 35
3.5 Experiments 36
3.5.1 Quantitative Evaluation . 37
3.5.2 Qualitative Evaluation . . 42
3.6 Conclusion 43

The contents of this chapter are based on the peer-reviewed conference
publication

©2019 IEEE. Reprinted, with permission, from Strecke, Michael and
Joerg Stueckler (2019). ‘EM-Fusion: Dynamic Object-Level SLAM With
Probabilistic Data Association’. In: 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). IEEE. doi: 10.1109/iccv.2019.00596,
(Strecke and Stueckler 2019),

with the following co-author contributions:
Ideas Experiments Analysis Writing

Michael Strecke 60% 100% 80% 65%
Jörg Stückler 40% 0% 20% 35%

This chapter contains tables and according descriptions that were origi-
nally part of the supplementary material of the conference publication.

Compared to the conference publication, this chapter contains more
detailed preliminaries and unified notation with the rest of the thesis.

3.1 Introduction

In a first step towards physically plausible reconstruction of dynamic
scenes, we develop a method that uses RGB-D images (Section 2.3) as
input and reconstructs the 3D objects as signed distance function (SDF;
Section 2.2) models in this chapter. We further track the motion of the
camera and the object models in SE(3) (Section 2.1).

As mentioned before, RGB-D cameras are popular devices for dense
visual 3D scene acquisition (Bylow et al. 2013; Kerl et al. 2013; Newcombe
et al. 2011). Most of these approaches to simultaneous localization and
mapping (SLAM) with RGB-D cameras only map the static part of the
environment and localize the camera within this map. However, in many
applications of robotics and augmented reality (AR), agents1 interact with 1: i. e., humans or other robotic agents
the environment and hence the environment state is dynamic. While some
approaches filter dynamic objects (Keller et al. 2013; Scona et al. 2018)
as outliers from the measurements, we are interested in reconstructing
and tracking them in this thesis. This potentially to enables interactions
of autonomous agents with observed dynamic objects or using the
reconstruction of dynamic objects in AR applications.

In this chapter, we propose a novel approach to dynamic SLAM that maps
and tracks objects in the scene. We detect objects by semantic instance
segmentation of the images and subsequently perform tracking and
mapping of the static background and the objects. In previous approaches
(Rünz and Agapito 2017; Rünz, Buffier, et al. 2018; B. Xu et al. 2019), data
association of measurements to objects is either solved through image-
based instance segmentation or by ray casting in the maps. We propose to
determine the unknown association of pixels to objects in a probabilistic
expectation maximization (EM; Bishop 2007) formulation which estimates

https://doi.org/10.1109/iccv.2019.00596

24 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

association likelihoods (E-step)

image

3D reconstruction

(ours)

3D reconstruction

(without EM)

Figure 3.1: Dynamic object-level SLAM with probabilistic data association. We infer the association likelihood of pixels with objects in an
expectation-maximization framework. The probabilistic data association improves accuracy and robustness of tracking and mapping.
It implicitly handles occlusions. The E-step (orange arrows) estimates the association likelihoods based on the data likelihood of the
current image given the latest object maps and poses. In the M-step (blue arrows) poses and map are updated with the measurements
according to the association likelihoods. Association likelihoods are visualized for the background (top), the train (middle) and the
airplane (bottom). The moving truck occludes the table and the airplane which is well recovered by the association likelihoods. Without
association likelihoods, artifacts are integrated into the map due to wrong data association.

the soft association likelihood from the likelihood of the measurements
in our map representation. The probabilistic association uses the distance
of depth measurements to object surfaces as additional geometric cue
and implicitly handles occlusions for object segmentation, tracking, and
mapping (see Figure 3.1). We represent the object maps by volumetric
SDFs and augment the maximum likelihood integration of the SDF
from depths to incorporate their association likelihood. The probabilistic
data association facilitates the direct alignment of the depth maps with
the SDF object maps for object tracking. This avoids projective data
association through ray casting which is needed for the iterative closest
point (ICP) algorithm used in other approaches. In our experiments, we
evaluate our approach on several datasets and demonstrate superior
performance over the state-of-the-art methods. Our results demonstrate
that proper probabilistic treatment of data associations is a key ingredient
to robust object-level SLAM in dynamic scenes. In summary, we make
the following contributions in our work,

▶ We propose a probabilistic EM formulation for dynamic object-
level SLAM that naturally leads to data association and occlusion
handling strategies.

▶ Based on our EM formulation, we approach multi-object tracking as
direct alignment of RGB-D images with SDF object representations
and evaluate this tracking approach for dense dynamic SLAM.

▶ Our approach achieves state-of-the-art performance on several
datasets for dynamic object-level SLAM.

▶ We provide the source code of our approach to allow other re-
searchers to reproduce our results and build upon them in future
research2 .2: https://github.com/

EmbodiedVision/emfusion

3.2 Related Work

Static SLAM. Simultaneous localization and mapping (SLAM) with
RGB-D sensors has seen tremendous progress quickly after the sensors
have become broadly available on the market. KinectFusion (Newcombe
et al. 2011) is a prominent approach that incrementally tracks the camera

https://github.com/EmbodiedVision/emfusion
https://github.com/EmbodiedVision/emfusion

3.3 Preliminaries 25

motion and maps the environment densely in volumetric signed distance
function (SDF) grids. Several other RGB-D SLAM approaches have been
proposed that differ in tracking methods such as ICP (Newcombe et al.
2011), direct image alignment (Kerl et al. 2013) or SDF alignment (Bylow
et al. 2013), and map representations such as surfels (Keller et al. 2013)
or keyframes (Kerl et al. 2013). Extensive research has gone into scaling
the approaches to large environments (Nießner et al. 2013; Whelan,
Kaess, et al. 2012) or supporting loop-closing (Kerl et al. 2013; Whelan,
Leutenegger, et al. 2015) to reduce drift. Some approaches also consider
the creation of object-level maps (McCormac et al. 2018; Salas-Moreno
et al. 2013), but assume the objects to remain static. Other approaches
consider dynamic environments, but only reconstruct the static part
and treat dynamic parts as outliers (Keller et al. 2013; Scona et al. 2018;
Whelan, Kaess, et al. 2012; Whelan, Leutenegger, et al. 2015).

Dynamic SLAM. Research on tracking and reconstruction of articulated
objects such as human body parts (Taylor et al. 2016; Tzionas and Gall 2016)
or robots (Cifuentes et al. 2017; Schmidt et al. 2015) is related to dynamic
SLAM. Recently, some RGB-D SLAM methods have been proposed that
represent and track moving rigid objects. An early approach extends key
frame-based RGB-D SLAM to object-level dynamic SLAM (Stückler and
Behnke 2013). The approach segments moving objects between RGB-D
frames (Stückler and Behnke 2015) and builds a key frame pose graph
for associated motion segments in the key frames. Co-Fusion (Rünz and
Agapito 2017) extends surfel3-based representations for moving objects. 3: i. e., surface element, a point with as-

sociated normal, typically represented
as a fixed-size disk

It combines geometric and motion segmentation to detect moving objects.
Tracking camera motion with respect to the scene background and
the objects is based on ICP (Besl and McKay 1992) alignment using
geometry and color cues. MaskFusion (Rünz, Buffier, et al. 2018) does not
use motion segmentation but fuses geometric and deep-learning based
instance segmentation (Mask R-CNN; He et al. 2017). MID-Fusion (B. Xu
et al. 2019) follows a similar approach, but represents the 3D map in
volumetric SDFs using octrees. We also represent objects in using SDFs
but formulate tracking using efficient but accurate direct SDF alignment
(Bylow et al. 2013) and further propose novel strategies for handling
occlusions and disocclusions.

3.3 Preliminaries

3.3.1 Image Preprocessing and Projection

We apply a bilateral filter on the raw depth images to smooth depth
quantization artifacts. From the filtered depth maps z𝑡 = 𝑑𝑡(u) (see Equa-
tion (2.58)) we compute 3D point coordinates p = 𝜋−1(u, 𝑧𝑡 ,u) ∈ ℝ3 at
each pixel u ∈ Ω ⊂ ℝ2, where we define𝜋−1(u, 𝑧u) := 𝑧u K−1 (︁

𝑢𝑥 , 𝑢𝑦 , 1
)︁⊤

and K is the camera intrinsic matrix of the calibrated pinhole camera (see
Section 2.3).

26 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

3.3.2 Map Representation

We represent background and objects maps by volumetric SDFs. The
SDF 𝜙(p) : ℝ3 → ℝ yields the signed distance of a point p to the
closest surface represented by the SDF (see Section 2.2). The object
surface is determined by the zero level-set

{︁
p ∈ ℝ3

|︁|︁ 𝜙(p) = 0
}︁

of the
SDF. We implement the volumetric SDF through discretization in a 3D
grid of voxels. The SDF value at a point within the grid is found through
trilinear interpolation (see Subsection 2.2.2). We maintain several SDF
volumes: one background volume (resolution 5123) and several smaller
SDF volumes, one for each detected object (initialized with a size of 643

and resized as needed, see Subsection 3.3.5).

3.3.3 Depth Image Fusion

Curless and Levoy (1996) present an approach for fusing measurements(Curless and Levoy 1996): A volumetric
method for building complex models from
range images

from multiple calibrated depth frames efficiently in a consistent volumet-
ric model. Their formulation computes the SDF 𝜙 on a discrete grid as
the weighted average of multiple depth images {𝑑𝑡}𝑇𝑡=1:

𝜙(p) = 1∑︁𝑇
𝑡=1 𝑤𝑡(p)

𝑇∑︂
𝑡=1

𝑤𝑡(p)�̌�𝑡 (p) , (3.1)

where 𝑤𝑡 is a weight describing the confidence in measurement 𝑑𝑡 and
the projective SDF measurement �̌�𝑡 for depth map 𝑑𝑡 is defined as

�̌�𝑡(p) = 𝑑𝑡
(︁
up

)︁ − 1
𝜆u
∥p − t𝑡 ∥ . (3.2)

In Equation (3.2), up = 𝜋
(︁
T−1
𝑡 p

)︁
, where 𝜋 denotes the perspective

projection of the point p ∈ ℝ3 from 3D camera to 2D pixel coordinates
(see Section 2.3) and

𝜆u =

∥︁∥︁∥︁∥︁∥︁(︃𝑢𝑥 − 𝑐𝑥𝑓𝑥
,
𝑢𝑦 − 𝑐𝑦
𝑓𝑦

, 1
)︃⊤∥︁∥︁∥︁∥︁∥︁ , (3.3)

where 𝑢𝑥 and 𝑢𝑦 are the pixel coordinates in up and 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 and 𝑐𝑦 are
entries in the intrinsic matrix K (see Equation (2.56)). It allows scaling
the distance between the point and the camera center to the projective
distance along the viewing axis, as can be seen from Equation (2.59). The
transformation

T𝑡 =
(︃
R𝑡 t𝑡
0 1

)︃
∈ SE(3), (3.4)

with R𝑡 ∈ SO(3) and t𝑡 ∈ ℝ3 is the camera transformation of frame 𝑡 (see
Section 2.1) and is used to transform the point p to camera coordinates
before projecting it to image pixels. Equation (3.2) first computes the
pixel up = 𝜋

(︁
T−1
𝑡 p

)︁
into which the point p projects under the camera

transformation T𝑡 . It then computes the projective signed distance along
the ray of sight by comparing the measured depth 𝑑𝑡 at the pixel up
with the actual projective distance between p and the camera center t𝑡 .
For points in front of the measured surface, 𝑑𝑡

(︁
up

)︁
will be larger than

1
𝜆u
∥p − t𝑡 ∥, yielding positive values for �̌�𝑡(p), while points behind the

surface (i. e., inside objects) will get negative values for �̌�𝑡(p), consistent

3.3 Preliminaries 27

with the notion in Section 2.2. Equation (3.1) is equivalent to the least
squares fit of the surface given the measurements (Curless and Levoy
1996) and corresponds to a maximum likelihood estimate (Newcombe
2012). In scenarios like the ones considered in this thesis, we are often
interested in online mapping. Thus, we do not want to wait for all
measurement frames to build the map, but allow for incremental mapping.
By using an additional volume𝑊 to collect the accumulated weights 𝑤𝑡 ,
Equation (3.1) can be reformulated to compute the estimates 𝜙𝑡 and𝑊𝑡

from the previous estimates 𝜙𝑡−1 and𝑊𝑡−1 and the new measurements
�̌�𝑡 and 𝑤𝑡 incrementally:

𝜙𝑡(p) =
𝑊𝑡−1(p)𝜙𝑡−1(p) + 𝑤𝑡(p)�̌�𝑡 (p)

𝑊𝑡−1(p) + 𝑤𝑡(p)
𝑊𝑡(p) =𝑊𝑡−1(p) + 𝑤𝑡(p).

(3.5)

Because the depth measurement does not contain information about
the area behind the surface or its “thickness”, the SDF 𝜙 is typically
replaced with the truncated version 𝜙 (see Subsection 2.2.3). The trunca-
tion parameter 𝜇 in Equation (2.47) is chosen small enough to prevent
interference of conflicting measurements when surfaces are seen from
different sides but large enough to allow noise removal by the weighted
average fusion (Curless and Levoy 1996; Newcombe 2012). The weights
𝑤𝑡 are adjusted so that 𝑤𝑡(p) = 0 if �̌�(p) < −𝜇.

We will further cap the fused weights𝑊 at a maximum value𝑊 to allow
the SDF volume to slowly adapt to measurements inconsistent with the
present map by setting

𝑊𝑡(p) = min
(︂
𝑊𝑡−1(p) + 𝑤𝑡(p),𝑊

)︂
(3.6)

in Equation (3.5). While we use the truncated SDF in this chapter, we still
denote it by 𝜙 instead of 𝜙 to avoid notational clutter.

The cumulative integration in Equation (3.5) can be parallelized efficiently
on modern GPU hardware (Newcombe 2012; Newcombe et al. 2011). We
use this formulation in this chapter for building volumetric models for
individual moving objects and the static background scene.

3.3.4 Dense Volumetric RGB-D SLAM

Newcombe et al. (2011) combined the range image fusion presented in (Newcombe et al. 2011): KinectFusion:
Real-time dense surface mapping and track-
ing

Subsection 3.3.3 with frame-to-model tracking for real-time incremental
RGB-D SLAM. Given the camera pose T𝑖−1 and TSDF model 𝜙𝑖−1 from
the previous frame, they first extract the surface from the model using ray
casting (see Subsection 2.2.4) and then set up an optimization problem
to align the oriented model point cloud from the previous frame S𝑡−1
with the point cloud Š𝑡 computed from the current depth map (see
Section 2.3). They use the projective point to plane distance

𝐸 (T𝑡) =
∑︂
u∈Ω

∥︁∥︁(T𝑡 p̌(u) − p(ǔ))⊤ n(ǔ)∥︁∥︁ , (3.7)

where Ω denotes the depth image’s pixel domain, p̌(u) is the point
computed from depth map pixel u according to Equation (2.59) and

28 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

(a) ICP alignment (b) SDF alignment

Figure 3.2: ICP and SDF alignment for finding the pose T𝑡 for a new frame. (a) In ICP alignment (Newcombe et al. 2011), each point from
the depth map (blue) is matched to a rendered point from the current pose estimate (green). (b) In SDF alignment (Bylow et al. 2013;
Canelhas et al. 2013), the alignment objective is directly aligning the points from the depth map with the isosurface.

p(ǔ) and n(ǔ) are the model point and normal computed by raycasting
(Subsection 2.2.4) for the pixel ǔ = 𝜋

(︂˜︁T𝑡𝑡−1p̌(u)
)︂
, where ˜︁T𝑡𝑡−1 denotes

the incremental transformation between frame 𝑡 − 1 and 𝑡 such that
T𝑡 = ˜︁T𝑡𝑡−1T𝑡−1. Equation (3.7) matches points between the model and the
captured depth map that project into the same pixel (see Figure 3.2a).

We follow Bylow et al. (2013) and Canelhas et al. (2013) and use direct(Bylow et al. 2013): Real-Time Camera
Tracking and 3D Reconstruction Using
Signed Distance Functions
(Canelhas et al. 2013): SDF Tracker: A par-
allel algorithm for on-line pose estimation
and scene reconstruction from depth images

SDF alignment for tracking camera and object poses (see Figure 3.2b).
The optimization objective encourages the points reconstructed from the
depth map to project to the zero-isosurface of the SDF and is defined
as

𝐸 (T𝑡) =
∑︂
u∈Ω

𝜙𝑡−1 (T𝑡 p̌(u))2 , (3.8)

where 𝜙𝑡−1 is the SDF of the reconstructed background model after
frame 𝑡 − 1. We can optimize Equation (3.8) using methods for solving
least-squares problems. We will use a more general formulation including
weights for individual pixels:

𝐸 (T𝑡) =
∑︂
u∈Ω

𝑤u𝜙𝑡−1 (T𝑡 p̌ (u))2 , (3.9)

where we now use the index 𝑖 for indexing image pixels. Equation (3.9)
can be optimized by iterative reweighed least squares algorithms, and we
employ the Levenberg-Marquardt method (Levenberg 1944; Marquardt
1963) for optimizing it.(Levenberg 1944): A method for the solu-

tion of certain non-linear problems in least
squares
(Marquardt 1963): An Algorithm for Least-
Squares Estimation of Nonlinear Parameters 3.3.5 Instance Detection and Segmentation

The previously explained method by Newcombe et al. (2011) only builds
one global SDF model for the scene and tracks the camera pose relative to
it. This limits the method to static environments. In this thesis however, we
consider dynamic scenes in which we want to acquire models and motion
trajectories for individual objects. We build upon Fusion++ (McCormac et
al. 2018) for fusing separate SDF models for each moving object. Fusion++(McCormac et al. 2018): Fusion++: Volu-

metric Object-Level SLAM was designed for robust tracking in static scenes by building object-level
models and using them in a pose graph to track the camera poses. We

3.3 Preliminaries 29

propose a different formulation for dynamic object tracking, but follow
McCormac et al. (2018) for object model initialization and foreground
mask fusion. For detecting possibly moving objects, we segment the
input images using Mask R-CNN (He et al. 2017), which we execute on (He et al. 2017): Mask R-CNN
every 30th frame for computational efficiency. If detections are available
for a frame, we try to match the detected masks with existing objects and
initialize new models or update existing ones as described below.

Initialization. For initialization, objects are detected using a semantic
instance segmentation method like Mask R-CNN (He et al. 2017), gen-
erating 𝑀 semantic segmentation masks {�̌� 𝑖}𝑀𝑖=1 which are matched
with existing volumes as explained below. Unmatched segmentations
are denoted by �̌�𝑜 with 𝑜 ∈ {𝑁 + 1, . . . } for 𝑁 existing objects. We use
them to compute initialization point clouds from the depth map z

P̌
𝑜
=

{︂
p̌ = 𝜋−1 (u, zu)

|︁|︁|︁ u ∈ M̌𝑜
}︂
, (3.10)

where M̌
𝑜
= {u ∈ Ω | �̌�𝑜(u) = 1}. As RGB-only segmentation masks

might include pixels that are not on the object and include potentially
far-away points, we follow McCormac et al. (2018), who propose to use
the component-wise 10th and 90th percentiles p̌𝑜10 and p̌𝑜90

(︁
�̌�𝑜10

)︁
𝑖 = min

⎧⎪⎪⎨⎪⎪⎩�̌� 𝑖
|︁|︁|︁|︁|︁|︁|︁ p̌ ∈ P̌𝑜

,

|︁|︁|︁{︂p̌′ ∈ P̌𝑜
|︁|︁|︁ �̌�′𝑖 ≤ �̌� 𝑖}︂|︁|︁|︁|︁|︁|︁P̌𝑜
|︁|︁|︁ ≤ 0.1

⎫⎪⎪⎬⎪⎪⎭ ,
(︁
�̌�𝑜90

)︁
𝑖 = min

⎧⎪⎪⎨⎪⎪⎩�̌� 𝑖
|︁|︁|︁|︁|︁|︁|︁ p̌ ∈ P̌𝑜

,

|︁|︁|︁{︂p̌′ ∈ P̌𝑜
|︁|︁|︁ �̌�′𝑖 ≥ �̌� 𝑖}︂|︁|︁|︁|︁|︁|︁P̌𝑜
|︁|︁|︁ ≥ 0.9

⎫⎪⎪⎬⎪⎪⎭ ,
(3.11)

to determine the object size 𝑠𝑜 and position t𝑜 as

𝑠𝑜 = 𝑝
∥︁∥︁p̌𝑜90 − p̌𝑜10

∥︁∥︁
∞ and t𝑜 =

p̌𝑜90 + p̌𝑜10
2

, (3.12)

where ∥x∥∞ = max𝑖∈{1,...,𝑑} 𝑥𝑖 is the maximum norm of a vector x ∈ ℝ𝑑

and 𝑝 is a padding factor, which we set to 2.0 to account for erosion
by the heuristic or parts of the surfaces that become visible in later
frames. The TSDF volume is then initialized at position t𝑜 as a cube
with size 𝑠𝑜 and a fixed resolution 𝑟𝑜 of 64 in each dimension, yielding
a voxel size of 𝑣𝑜 = 𝑠𝑜

𝑟𝑜 . To account for potentially inaccurate masks, all
depth measurements projecting into the volume are integrated using
the formulas in Equation (3.5). The new volume is only initialized if its
center t𝑜 is within 5 m from the camera and the volumetric IoU with any
other volume is lower than 0.5.

Volumetric Foreground Mask Fusion. In addition to the integration
weight volume𝑊4, foreground and background weight volumes 𝐹 and 4: see Equation (3.5)
𝐵 are maintained for each object. The weights for voxel v are updated
with the foreground probabilities 𝑝𝑜fg (uv | �̌�𝑜) = �̌�𝑜 (uv) from the masks

matched with the same object, where uv = 𝜋
(︂ (︁

T𝑜𝑡
)︁−1 v

)︂
with camera-to-

30 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

object transformation T𝑜𝑡 is the pixel into which the voxel v projects:

𝐹𝑜𝑡 (v) = 𝐹𝑜𝑡−1 + 𝑝𝑜fg (uv | �̌�𝑜
𝑡)

𝐵𝑜𝑡 (v) = 𝐵𝑜𝑡−1 +
(︂
1 − 𝑝𝑜fg (uv | �̌�𝑜

𝑡)
)︂
.

(3.13)

The fused foreground probability for object 𝑜 is then computed as

𝑝fg(v | 𝑜) = 𝐹𝑜(v)
𝐹𝑜(v) + 𝐵𝑜(v) . (3.14)

A point v in the object volume is considered foreground if 𝑝fg(v | 𝑜) > 0.5.
When ray casting the objects, this foreground condition is added to the
set K in Equation (2.49). The ray cast is performed in all object volumes
and the ray with the shortest length (i. e., the object in the foreground in
case of occlusions) is taken to generate object masks and rendered points.
For rays that do not hit objects or where the object surface is more than
5 cm behind the background surface, we render the background volume
following McCormac et al. (2018).

Matching Existing Objects. When 𝑀 semantic segmentation masks
{�̌� 𝑖}𝑀𝑖=1 are generated by Mask R-CNN (He et al. 2017) for a new frame,
they need to be matched to the𝑁 existing object model IDs 𝑜 ∈ {1, . . . 𝑁}.
As the masks {�̌� 𝑖}𝑀𝑖=1 are in pixel space, we perform the matching in this
space. We adapt the set K in Equation (2.49) to include the volumetric
foreground probability (see above in Equation (3.14)) and ray cast5 all5: see Equation (2.48)
SDFs 𝜙𝑜 , 𝑜 ∈ {0, . . . , 𝑁}, taking for each pixel the first visible surface
across all volumes. We then compute object masks {𝑚𝑜}𝑁𝑜=1 for the 𝑁
object models currently present in the scene using Equation (2.52).

We determine the association of the segmentation masks computed from
existing models with the detected segments by the intersection-over-
union (IoU) measure:

IoU
(︂
M̌

𝑖
,M𝑜

)︂
=

|︁|︁|︁M̌𝑖 ∩M𝑜
|︁|︁|︁|︁|︁|︁M̌𝑖 ∪M𝑜
|︁|︁|︁ , (3.15)

where M̌
𝑖
=

{︁
u ∈ Ω |︁|︁ �̌� 𝑖(u) = 1

}︁
and M𝑜 = {u ∈ Ω | 𝑚𝑜(u) = 1} are the

sets of pixels inside the detected and rendered masks, respectively, and
|·| denotes the number of elements in a set. Mask �̌� 𝑖 is then matched to
the object 𝑜∗ with the largest overlap:

𝑜∗𝑖 = arg max
𝑜∈{1,...,𝑀}

IoU
(︂
M̌

𝑖
,M𝑜

)︂
, (3.16)

if IoU
(︂
M̌

𝑖
,M𝑜∗

)︂
is larger than a matching threshold (0.2 in our experi-

ments). For matched masks, we denote the segmentation mask matched
with object 𝑜∗ with �̌�𝑜∗ . Unmatched masks �̌� 𝑖 are used for initializing
new objects as explained above and will be assigned with new object
indices 𝑜 ∈ {𝑁 + 1, . . . }. If points from new detections matched with an
existing model fall outside the existing volume 𝑜∗, the volume is resized.
We keep the voxel size 𝑣𝑜∗ fixed and determine an increased 𝑟𝑜∗ required
to fit the new detection. To achieve this, we first compute the minimum

3.4 Method 31

size 𝑟𝑜
∗

that fits the new detection, then compute 𝑟𝑜∗ as the smallest larger
even resolution and finally compute the new volume size 𝑠𝑜∗ from the
resolution and the voxel size:

𝑟𝑜
∗
=

⌈︄
𝑝
∥︁∥︁p𝑜∗90 − p𝑜∗10

∥︁∥︁
∞

𝑣𝑜∗

⌉︄
, 𝑟𝑜

∗
=

⌊︃
𝑟𝑜
∗ + 1
2

⌋︃
· 2, 𝑠𝑜

∗
= 𝑟𝑜

∗
𝑣𝑜
∗
, (3.17)

where p𝑜∗90 and p𝑜∗10 are computed as in Equation (3.11), replacing P̌
𝑜 by

P𝑜∗ =
{︂
p̌ = 𝜋−1 (u, zu)

|︁|︁|︁ u ∈ M̌𝑜∗ ∪M𝑜∗
}︂
. (3.18)

We then shift t𝑜∗ by a multiple of 𝑣𝑜∗ so that it is still in the center of the
volume:

t𝑜
∗
=

⎢⎢⎢⎢⎢⎣
p𝑜∗90+p𝑜∗10

2
𝑣𝑜∗

⎥⎥⎥⎥⎥⎦ 𝑣𝑜∗ . (3.19)

Existence Probability. Since Mask R-CNN can deliver false detections,
we follow (McCormac et al. 2018) and maintain an existence probability

𝑝ex(𝑖) = 𝐸(𝑖)
𝐸(𝑖) + 𝑁(𝑖) , (3.20)

similar to Equation (3.14), where for each frame with a Mask R-CNN
segmentation available 𝐸(𝑖) is incremented if the object is matched to a
segment and otherwise 𝑁(𝑖) is incremented. We delete objects where
𝑝ex(𝑖) < 0.1.

Semantic Labels. As Mask R-CNN is a semantic instance segmentation
approach, it provides a probability distribution 𝑝(𝑙𝑜 | i𝑡) over class labels
𝑙𝑜 for the matched object 𝑜 in each RGB frame i𝑡 , 𝑡 ∈ {1, . . . , 𝑇}. We
follow McCormac et al. (2018) and average these probabilities over all
frames:

𝑝(𝑙𝑜𝑇 | i1 , . . . , i𝑇) = 1
𝑇

𝑇∑︂
𝑡=1

𝑝(𝑙𝑜 | i𝑡). (3.21)

3.4 Method

Our dynamic SLAM approach performs incremental tracking and map-
ping of objects and the static background. We propose a probabilistic
formulation for tracking and mapping of multiple objects which naturally
leads to a principled method for data association and occlusion handling.
We represent the 3D shape of objects and background in volumetric
SDF representations which we estimate from depth images. New object
instances are initially detected and segmented using a deep learning
approach to appearance-based semantic instance segmentation (Mask
R-CNN; He et al. 2017).

32 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

3.4.1 Probabilistic Dynamic Tracking and Mapping

We formulate SLAM as maximum likelihood estimation of the camera
trajectory and the map from visual observations z𝑡 = (𝑧𝑡 ,u)u∈Ω, the depth
images in the image domain Ω. The map is composed of separate TSDF
volumes 𝝓 :=

{︁
𝜙𝑜

}︁𝑁
𝑜=0 for the background (𝜙0) and 𝑁 objects. In each

camera frame at time 𝑡, we track the camera pose with regard to the
objects and background with distinct poses T𝑡 :=

{︁
T𝑜𝑡

}︁𝑁
𝑜=0, T𝑜𝑡 ∈ SE(3).

We choose incremental tracking and mapping in which we optimize the
joint posterior likelihood of the map and the camera poses in the current
frame, given all images so far,

arg max
𝝓,T𝑡

𝑝 (𝝓,T𝑡 | z1:𝑡) = arg max
𝝓,T𝑡

𝑝 (z𝑡 | 𝝓,T𝑡) 𝑝 (𝝓 | z1:𝑡−1) 𝑝 (T𝑡) .
(3.22)

We optimize the posterior separately first for the camera pose, then for
the map. By causality, each pixel measurement can only be attributed
to one of the objects or the background, such that we also need to find
the association of each pixel u in the image domain Ω to one of the
objects. This association is a latent variable c𝑡 = (𝑐𝑡 ,u)u∈Ω ∈ C in our
probabilistic model which we infer during the tracking and mapping. The
set C= {0, . . . , 𝑁} |Ω| is the set of all pixel-level association vectors.

3.4.2 Expectation Maximization Framework

Expectation-maximization (EM; Bishop 2007) is a natural framework for(Bishop 2007): Pattern recognition and ma-
chine learning, 5th Edition our problem of finding the latent data association with the map and

camera pose estimates. In EM, we treat the map and camera poses as
parameters 𝜽𝑡 = (𝝓,T𝑡) to be optimized. In the E-step, we recover a
variational approximation of the association likelihood for each pixel
u ∈ Ω given the current parameter estimate 𝜽𝑡−1 from the previous EM
iteration,

𝑞(c𝑡) ← arg max
𝑞(c𝑡)

∑︂
c𝑡∈C

𝑞(c𝑡) ln 𝑝(z𝑡 , c𝑡 | 𝜽𝑡−1). (3.23)

The maximum is achieved for 𝑞(c𝑡) = 𝑝(c𝑡 | z𝑡 , 𝜽𝑡−1). For the M-step, we
maximize the expected log posterior under the approximate association
likelihood

𝜽𝑡 ← arg max
𝜽

∑︂
c𝑡∈C

𝑞(c𝑡) ln 𝑝(z𝑡 , c𝑡 | 𝜽) + ln 𝑝(𝜽). (3.24)

Note that 𝑝(𝜽) = 𝑝(𝝓 | z1:𝑡−1) 𝑝(T) for 𝜽 = (𝝓,T).
In our case the E-step can be performed by evaluating

𝑝(c𝑡 | z𝑡 , 𝜽𝑡−1) = 𝑝(z𝑡 | c𝑡 , 𝜽𝑡−1)𝑝(c𝑡 | 𝜽𝑡−1)∑︁
c′𝑡∈C 𝑝(z𝑡 | c′𝑡 , 𝜽𝑡−1)𝑝(c′𝑡 | 𝜽𝑡−1) . (3.25)

Since we treat data and association likelihood stochastically independent
between pixels, the association likelihood can be determined for each
pixel individually. Assuming uniform prior association likelihood, we
arrive at

𝑝(c𝑡 | z𝑡 , 𝜽𝑡−1) = 𝑝(z𝑡 | c𝑡 , 𝜽𝑡−1)∑︁
c′𝑡∈C 𝑝(z𝑡 | c′𝑡 , 𝜽𝑡−1) . (3.26)

3.4 Method 33

The M-step is solved individually per object by taking into account the
association likelihood of the pixels to the objects. We optimize first for the
camera poses in the previous map and then integrate the measurement
into the map using the new pose estimates. In the following, we detail
the steps in our pipeline that implement the EM algorithm.

3.4.3 Data Association (E-Step)

We associate the pixels u in the current frame according to Equation (3.26),
modeling the probability

𝑝(c𝑡 | z𝑡 , 𝜽) =
∏︂
u∈Ω

𝑝(𝑐𝑡 ,u | 𝑧𝑡 ,u , 𝜽𝑡−1) (3.27)

independently for each pixel. Let p𝑖 := T𝑖𝑡−1 𝜋
−1(u, 𝑧𝑡 ,u) be the local point

coordinate of pixel u in the coordinate frame of object 𝑖, where we denote
p := (p⊤ , 1)⊤. We model the data likelihood of a pixel that falls inside the
map volume of object 𝑐𝑡 ,u ∈ {0, . . . , 𝑁} with a mixture distribution,

𝑝(𝑧𝑡 ,u | 𝑐𝑡 ,u , 𝜽𝑡−1) = 𝛼
1

2𝜎
exp

(︄
− |𝜙

𝑐𝑡 ,u
𝑡−1(p𝑐𝑡 ,u)|

𝜎

)︄
𝑝fg(p𝑐𝑡 ,u | 𝑐𝑡)

+ (1 − 𝛼) 𝑝U(p𝑐𝑡 ,u), (3.28)

where 𝜙𝑐𝑡 ,u is the SDF of object 𝑐𝑡 ,u. The mixture is composed of a Laplace
distribution which explains the measurement within the object, and a
uniform component 𝑝U that models outlier measurements and objects
that are not yet detected and missing in the multi-object map. If the pixel
is not within the map volume of object 𝑐𝑡 ,u, we set its data likelihood to
zero for this object. Equation (3.28) gives the likelihood for each model
individually. We normalize this likelihood over all models to arrive at
the final pixel association likelihood:

𝑝(𝑐𝑡 ,u | 𝑧𝑡 ,u , 𝜽𝑡−1) = 𝑝(𝑧𝑡 ,u | 𝑐𝑡 ,u , 𝜽𝑡−1)∑︁𝑁
𝑐′𝑡 ,u=0 𝑝(𝑧𝑡 ,u | 𝑐′𝑡 ,u , 𝜽𝑡−1)

. (3.29)

Occlusions are implicitly handled by our data association approach.
If an object is occluded by another object in the map, the association
likelihood will be higher within the occluding object. This results in a
lower weight for the measurements in the occluded object for tracking
and map integration. Figure 3.3 illustrates such a case for a clock which
is moved upwards along a wall.

3.4.4 Tracking (M-Step)

Most existing approaches to dynamic multi-object SLAM employ a variant
of the iterative closest points algorithm (ICP; Besl and McKay 1992) for
tracking the camera pose. This requires that a point cloud is extracted
from the existing TSDF volume and associations are found between this
point cloud and the depth image. A typical approach with SDF map
representations is to apply raycasting6 to determine the zero-crossings 6: see Subsection 2.2.4
along the line-of-sight of the pixels. The point clouds from the ray cast are

34 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Figure 3.3: Pixel association likelihood.
The E-step of our EM method determines
the association likelihood (black: 0, white:
1) for the background (third row) and all
objects (fourth row: clock). The associa-
tion likelihood is determined from the
data likelihood of the pixels in all objects
given the current pose and map estimates
(second row, object segments overlaid by
color). Before the clock starts to move, the
association weight is equally distributed
between the background and the clock
model. While the clock moves upwards,
the background above the clock becomes
occluded and the clock measurements
are stronger associated with the object
map than with the background.

then aligned with the point clouds from the depth maps using non-linear
least squares techniques. In this approach, depth measurements are
associated projectively with the zero-level surface.

We instead follow the approach in (Bylow et al. 2013) and associate the
depth measurements with the closest point on the surface as shown
in Figure 3.2b. This is achieved by minimizing the signed distance of
the measured points to the surface which is directly given by the SDF
function at the points. The main advantage of this strategy is that pixels
are associated with the correct part of the implicit surface using only one
trilinear interpolation lookup per pixel in each iteration of the algorithm.
In ICP, the projective association is only performed once and requires
several lookups per pixel until a surface is found.

For the M-step in Equation (3.24) we need to update camera and object
poses, as well as the background and object maps. In a first step, we
estimate the camera and object poses with regard to an SDF volume by
minimizing

𝐸(T𝑐𝑡) =
1
2

∑︂
u∈𝛀

𝑞(𝑐u)
|︁|︁𝜙𝑐𝑡−1

(︁
T𝑐𝑡 p(u))︁ |︁|︁

𝛿
, (3.30)

where p(u) := 𝜋−1(u, 𝑧𝑡 ,u) and 𝑞(𝑐u) = 𝑝(𝑐𝑡 ,u | 𝑧𝑡 ,u , 𝜽𝑡−1) is the associ-
ation likelihood of pixel u for the object/background with index 𝑐 as
computed in Equation (3.29). We use the Huber norm with threshold 𝛿
to achieve robustness with regard to outliers.

We optimize Equation (3.30) using the iteratively reweighted non-linear
least squares (IRLS) algorithm. Since the camera and object poses are
in SE(3), we optimize Equation (3.30) by reformulating it with a local
parameterization 𝝃𝑐𝑡 = log

(︁
T𝑐𝑡

)︁∨ ∈ 𝔰𝔢(3) using the Lie algebra 𝔰𝔢(3) (see

3.4 Method 35

Section 2.1). To this end, we apply local increments 𝜹𝝃 ∈ 𝔰𝔢(3) to the
current solution for 𝝃 in each iteration which we linearize at 𝜹𝝃 = 0.
For convenience, we write T (𝝃) = exp

(︂
�̂�
)︂
∈ SE(3) (see Section 2.1).

Consequently, Equation (3.30) becomes

𝐸 (𝜹𝝃𝑐) = 1
2

∑︂
u∈𝛀

𝑞 (𝑐u) 𝑤u
(︁
𝜙𝑐𝑡−1

(︁
T

(︁
𝝃𝑐𝑡

)︁
T (𝜹𝝃𝑐) p (u))︁)︁2 , (3.31)

with weights

𝑤u = min

(︄
1,

𝛿|︁|︁𝜙𝑐𝑡−1
(︁
T

(︁
𝝃𝑐𝑡

)︁
T (𝜹𝝃𝑐) p (u))︁ |︁|︁

)︄
𝑊(𝜋−1(u, 𝑧𝑡 ,u))

maxu′∈𝛀𝑊(𝜋−1(u′, 𝑧𝑡 ,u′)) ,
(3.32)

where the first term implements the Huber norm in Equation (3.31)
and the second term is the map confidence. 𝑊(p) is the accumulated
integration weight (see Subsection 3.4.5), which quantifies how certain
we are about a surface estimate in the model. This robustifies the tracking
when large objects enter the frame from the image boundary.

As Equation (3.31) is of the same form as Equation (3.9), we optimize it
using the Levenberg-Marquardt method (Levenberg 1944; Marquardt
1963) following Bylow et al. (2013). The pose estimate 𝝃𝑐𝑡 in Equation (3.31) (Levenberg 1944): A method for the solu-

tion of certain non-linear problems in least
squares
(Marquardt 1963): An Algorithm for Least-
Squares Estimation of Nonlinear Parameters

is initialized with 𝝃𝑐𝑡−1 and updated by 𝜹𝝃𝑐 in every iteration of the
algorithm. This tracking optimization is first run on the background
TSDF to estimate the updated camera pose before recomputing the
association probabilities and running the same algorithm on each object
TSDF for updating the individual object poses.

Figure 3.4 illustrates the effectiveness of using the association likelihood
for tracking. We compare our approach with just using the foreground
probabilities without geometric cues by replacing 𝑞(𝑐u)with 𝑝fg(p𝑐u | 𝑐u)
in Equation (3.31). While the foreground probability also provides a
segmentation cue, it is not sufficient for robust tracking due to the
inaccurate instance segmentations by Mask R-CNN. The segmentation
by the foreground probability (last column) has a high weight even on
non-object pixels like the wall in the first and the floor in the second scene.
By contrast, our association likelihood (third column) and as a result our
tracking weights (fourth column) are lower in these regions as they are
already explained well by the background model. Consequently, these
pixels have lower influence on the energy function in Equation (3.31),
allowing the hand to move back and the horse to tilt in rows two and
four, respectively.

3.4.5 Mapping (M-Step)

Once the new camera poses T𝑡 have been estimated, we implement the
second part of the M-step (Equation (3.24)) by integrating the depth
maps into the background and object volumes. Following (Curless and
Levoy 1996), we find the SDF as the maximum likelihood surface fit to

36 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Figure 3.4: Tracking with association likelihoods. Probabilistic data association helps to overcome inaccuracies of the instance segmentation
with geometric cues and makes the tracking more robust. From left to right: RGB images, our 3D reconstruction with reprojected
object segmentation, association likelihood for the hand/horse object, our total pixel weights for tracking for the hand/horse object, 3D
reconstruction with foreground probability instead of the association likelihood, total tracking weights with foreground probability
instead of association likelihood. Our tracking weights (column four) are lower on non-object pixels in rows one and three than the
foreground probability (last column). Thus, the hand can move back, and the horse can tilt in our approach (rows two and four).

the depth images using the recursive integration akin Equation (3.5):

𝜙𝑜𝑡 (v) ←
𝑊 𝑜
𝑡−1(v)𝜙𝑜𝑡−1(v) + 𝑞(𝑐u) �̌�𝑜𝑡 (v)

𝑊𝑡−1(v) + 𝑞(𝑐u) ,

𝑊 𝑜
𝑡 (v) ← min

(︂
𝑊𝑡−1(v) + 𝑞(𝑐u),𝑊

)︂
,

(3.33)

where �̌�
𝑜
𝑡 (v) is the measured depth difference of the voxel towards the

integrated depth image z𝑡 as defined in Equation (3.2). For implementing
the M-step in Equation (3.24), we incorporate the association likelihood
𝑞(𝑐u) of the pixel u = 𝜋

(︂ (︁
T𝑜𝑡

)︁−1 v
)︂

which passes through the voxel for
computing the update weight. The cap on 𝑊(v) prevents the model
from becoming overconfident in the SDF estimate and allows for faster
adaptation in case of inaccurate or missing segmentations of dynamic
objects (see Subsection 3.3.3). Non-moving objects are initially integrated
in the background map as well until the moving object map fits the
measurements better. We consider backtracing these insertions too costly.
One could reweigh the accumulated weight 𝑊(v) with the combined
IRLS weight and map confidence 𝑤u from Equation (3.32) for faster map
updates, which increases drift though:

𝑊(v) ← 𝑞(𝑐u)𝑤u𝑊(v) + (1 − 𝑞(𝑐u))𝑊(v). (3.34)

3.5 Experiments

We evaluate the performance of our method qualitatively and quanti-
tatively on datasets containing dynamic scenes published with (Rünz

3.5 Experiments 37

and Agapito 2017) and the benchmark (Sturm et al. 2012). We employ (Rünz and Agapito 2017): Co-Fusion: Real-
time Segmentation, Tracking and Fusion of
Multiple Objects
(Sturm et al. 2012): A benchmark for the
evaluation of RGB-D SLAM systems

the Mask R-CNN implementation of Abdulla (2017). In our experiments,

(Abdulla 2017): Mask R-CNN for object
detection and instance segmentation on Keras
and TensorFlow

the truncation distance 𝜇 in Equation (2.47) is chosen to be 10 times the
voxel size for each TSDF volume and the parameter 𝛿 in Equation (3.30)
is twice the voxel size. In Equation (3.28), we set 𝜎 = 0.02, 𝛼 = 0.8,
and 𝑝U(p𝑐𝑡) = 1.0. Mask R-CNN detections are only accepted if they
are large enough (at least 40 × 40 pixels) and objects are classified as
invisible (tracking and mapping unreliable) and deleted if their projected
mask area within a region of 20 pixels from the image boundary is
below this threshold. To avoid cluttering the scene with large volumes
containing static objects for which Mask R-CNN usually generates very
inaccurate masks, we exclude a list of these object classes (e.g., tables,
beds, refrigerators, etc.) from the detections used for instantiating new
object volumes. While one could implement a sliding window version for
the background TSDF (Whelan, Kaess, et al. 2012), we found that in our
experiments a volume size of 5.12 m with the camera positioned at the
center of one of the sides of the volume usually worked well. The only
exception from this strategy is the scene Room4, where we increased the
volume size to 7.68 m and moved the initial camera pose further inside
the volume to keep the scene within the volume boundaries.

3.5.1 Quantitative Evaluation

Evaluation Measures. We evaluate our approach using the absolute
trajectory (AT) and relative pose (RP) evaluation measures as proposed
by Sturm et al. (2012). For both error measures we compute the root mean (Sturm et al. 2012): A benchmark for the

evaluation of RGB-D SLAM systemssquared error (RMSE). We use the toolkit provided by Sturm et al. (2012)7

7: https://cvg.cit.tum.de/data/

datasets/rgbd-dataset/tools
for computing these evaluation measures. For the absolute trajectory
error, the tool first aligns the estimated and ground truth trajectories
as they are both in arbitrary coordinate frames. The absolute trajectory
root mean squared error (AT-RMSE) between the aligned estimated and
ground-truth trajectories, T𝑒 =

{︁
T𝑒𝑡

}︁𝑇
𝑡=1 and T𝑔 =

{︁
T𝑔
𝑡

}︁𝑇
𝑡=1, respectively,

is then defined as

AT-RMSE (T𝑒 ,T𝑔) =
√︄

1
𝑛

𝑇∑︂
𝑡=1

∥︁∥︁t𝑡
∥︁∥︁2
, (3.35)

where t𝑡 is the translation part of the difference transformation

T𝑡 =
(︂
T𝑔
𝑡

)︂−1
T𝑒𝑡 . (3.36)

The relative pose error compares the relative pose increments in both
trajectories in a window of size Δ𝑡:

T𝑡 =
(︃(︂

T𝑔
𝑡

)︂−1
T𝑔
𝑡+Δ𝑡

)︃−1 (︂ (︁
T𝑒𝑡

)︁−1 T𝑒𝑡+Δ𝑡
)︂
. (3.37)

The relative pose root mean squared error (RP-RMSE) is then computed
as the average RMSE over this difference in each window for all possible

https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools
https://cvg.cit.tum.de/data/datasets/rgbd-dataset/tools

38 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

window sizes Δ𝑡 ∈ {1, . . . , 𝑇}:

RP-RMSE (T𝑒 ,T𝑔) = 1
𝑇

𝑇∑︂
Δ𝑡=1

√︄
1

𝑇 − Δ𝑡
𝑇−Δ𝑡∑︂
𝑡=1

∥︁∥︁t𝑡
∥︁∥︁2
, (3.38)

where t𝑡 is the translation part of T𝑡 in Equation (3.36). The relative pose
error can alternatively also be computed on the rotation:

RP-RMSE (T𝑒 ,T𝑔) = 1
𝑇

𝑇∑︂
Δ𝑡=1

√︄
1

𝑇 − Δ𝑡
𝑇−Δ𝑡∑︂
𝑡=1

∥︁∥︁∥︁∥︁log
(︂
R𝑡

)︂∨∥︁∥︁∥︁∥︁2

, (3.39)

where R𝑡 is the rotation part of T𝑡 and log computes the logarithm
map in SO(3)8. The result of the logarithm map is then converted to the8: see Equation (2.15)
axis-angle vector using the ∨ operator9, and the norm gives the angle9: see Equation (2.8)
between the estimated and ground-truth rotations.

Tracking of Dynamic Objects. We perform quantitative evaluation of
dynamic object tracking on the synthetic scenes provided by Rünz and
Agapito (2017) in Co-Fusion. As the Mask R-CNN model we use (Abdulla(Rünz and Agapito 2017): Co-Fusion: Real-

time Segmentation, Tracking and Fusion of
Multiple Objects

2017) is trained on the COCO dataset (Lin et al. 2014), our method is
theoretically limited to detect object classes present in this training set.
Remarkably, although the classes of many objects present in the scenes are
not contained in the COCO dataset, Mask R-CNN manages to generate
detections of most of the moving objects. We compare our method to
Kintinuous (KT; Whelan, Kaess, et al. 2012), ElasticFusion (EF; Whelan,(Whelan, Kaess, et al. 2012): Kintinuous:

Spatially Extended KinectFusion Leutenegger, et al. 2015), Co-Fusion (CF; Rünz and Agapito 2017), and
(Whelan, Leutenegger, et al. 2015): Elas-
ticFusion: Dense SLAM Without A Pose
Graph
(Rünz and Agapito 2017): Co-Fusion: Real-
time Segmentation, Tracking and Fusion of
Multiple Objects

MaskFusion (MF; Rünz, Buffier, et al. 2018). KT and EF are static SLAM

(Rünz, Buffier, et al. 2018): MaskFusion:
Real-Time Recognition, Tracking and Recon-
struction of Multiple Moving Objects

systems that treat dynamic objects as outliers. CF uses geometric and
motion segmentation for dynamic objects, while MF combines geometric
segmentation with Mask R-CNN based instance segmentation. For the
publicly available implementation of MF we adjusted the minimum
number of pixels required for instantiating a new object model to work
well on the sequences. We used the same threshold as in our approach,
but MF still failed to instantiate an object instance for the rocking horse
in the Room4 scene.

The results of our evaluation are shown in Table 3.1. One can see that our
method achieves competitive results. Especially for the dynamic objects,
our method outperforms the competing dynamic object-level SLAM
approaches CF and MF. The large camera tracking error with respect to
the static background (Static Bg) for MF in the ToyCar3 scene is caused
by a very late detection of one of the moving cars, causing significant
drift at the beginning of the trajectory. This shows that the ICP tracking
without a robust norm used in MF is sensitive to missing detections.
Our robust tracking using direct SDF alignment and the Huber norm,
however, manages to keep the trajectory error low.

Robust Camera Tracking. Similar to experiments performed in Mask-
Fusion (Rünz, Buffier, et al. 2018) and MID-Fusion (B. Xu et al. 2019),
we can use Mask R-CNN detections with certain labels (e.g., person)
to exclude these labels from the reconstruction and tracking. In our
approach, the association likelihoods already prevent parts of depth

3.5 Experiments 39

KT EF CF MF Ours

To
yC

ar
3 Static Bg 0.10 0.59 0.61 20.60 0.95

Car1 - - 7.78 1.53 0.77
Car2 - - 1.44 0.58 0.18

Ro
om

4
Static Bg 0.16 1.22 0.93 1.41 1.37
Airship - - 0.91/ 13.62/ 0.56/

1.01 2.29/ 1.41/
3.46 0.75

Car - - 0.29 2.66 2.10
Horse - - 5.80 - 3.57

Table 3.1: Absolute trajectory (AT) RMSE
(in cm) of estimated trajectories for
the synthetic sequences from Co-Fusion
(Rünz and Agapito 2017). The Airship
trajectory is split into multiple parts due
to separate geometric segments and de-
tections with too little overlap for assign-
ment. Our method achieves competitive
results with a static SLAM system (EF)
for the static background and outper-
forms other dynamic SLAM approaches
(CF, MF) on the objects.

maps projecting into foreground parts of object volumes from being
integrated into the background volume used for camera tracking. We
thus maintain object volumes for detected people but do not render them
during raycasting for visualization10. The association likelihood then 10: Using the fused class probability

from Equation (3.21) for classification.tends to associate even non-rigidly moving people to the object volumes
rather than the background, enabling us to robustly track the camera
with respect to the background.

We compare our method to five state-of-the-art dynamic SLAM ap-
proaches in Table 3.2. Two of these, joint visual odometry and scene
flow (VO-SF; Jaimez et al. 2017), and StaticFusion (SF; Scona et al. 2018) (Jaimez et al. 2017): Fast odometry and

scene flow from RGB-D cameras based on
geometric clustering
(Scona et al. 2018): StaticFusion: Back-
ground Reconstruction for Dense RGB-D
SLAM in Dynamic Environments

were designed for reconstructing the static background while ignoring
dynamic parts. The remaining ones, CF (Rünz and Agapito 2017), MF

(Rünz and Agapito 2017): Co-Fusion: Real-
time Segmentation, Tracking and Fusion of
Multiple Objects

(Rünz, Buffier, et al. 2018), MID-Fusion (MID-F; B. Xu et al. 2019) were

(Rünz, Buffier, et al. 2018): MaskFusion:
Real-Time Recognition, Tracking and Recon-
struction of Multiple Moving Objects
(B. Xu et al. 2019): MID-Fusion: Octree-
based Object-Level Multi-Instance Dynamic
SLAM

designed for multi-object reconstruction. The latter two of these meth-
ods, like our approach, use Mask R-CNN (He et al. 2017) detections for
instantiating objects. One can see that our method achieves competitive
results in most cases, especially compared to MF (Rünz, Buffier, et al.
2018) and MID-F (B. Xu et al. 2019). Like all these methods, our method
might fail if large undetected objects cover the major part of the image.
Our results demonstrate that the combination of robust tracking and our
data association strategy improves robustness on these sequences. The
table rows are ordered approximately by scene difficulty, so the latter
rows exhibit large dynamic parts with heavy occlusions. f3s abbreviates
freiburg3_sitting while f3w stands for freiburg3_walking. MID-F did not
report RP-RMSE and thus is not shown in Tables 3.2b and 3.2c.

We further compare to MF (Rünz, Buffier, et al. 2018) on the scene
f3_long_office_household of the benchmark (Sturm et al. 2012). By exporting
the relative trajectory of the teddy bear and the camera, we can compare
the object trajectory to the ground truth camera trajectory as was done
in (Rünz, Buffier, et al. 2018). While we achieve slightly worse results
on the teddy bear trajectory (3.5 cm, while MF achieved 2.2cm), our
camera trajectory is more accurate (5.0 cm compared to 8.9 cm for MF).
Note that while MF improved their camera trajectory with respect to the
background to 7.2 cm AT-RMSE when not tracking the teddy bear, we
do not expect a notable change for this case in our approach since the
teddy is implicitly reconstructed with partial association likelihood in
the background and would be disassociated and removed from it if it
started moving.

In Table 3.3, we perform an ablation study to evaluate the contributions
of different parts of our method on the synthetic scene Room4. Since
most objects only observe minor changes in their local topology (the
Airship moving freely in the air, the car driving on the ground), and

40 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Table 3.2: Comparison of robust cam-
era tracking with respect to the static
background in dynamic scenes for dif-
ferent methods. Our approach provides
state-of-the-art results and outperforms
previous methods in the majority of se-
quences.

VO-SF SF CF MF MID-F Ours

f3s static 2.9 1.3 1.1 2.1 1.0 0.9
f3s xyz 11.1 4.0 2.7 3.1 6.2 3.7
f3s halfsphere 18.0 4.0 3.6 5.2 3.1 3.2
f3w static 32.7 1.4 55.1 3.5 2.3 1.4
f3w xyz 87.4 12.7 69.6 10.4 6.8 6.6
f3w halfsphere 73.9 39.1 80.3 10.6 3.8 5.1

(a) Absolute trajectory (AT) RMSE (in cm)

VO-SF CF SF MF Ours

f3s static 2.4 1.1 1.1 1.7 0.9
f3s xyz 5.7 2.7 2.8 4.6 2.6
f3s halfsphere 7.5 3.0 3.0 4.1 3.0
f3w static 10.1 22.4 1.3 3.9 1.2
f3w xyz 27.7 32.9 12.1 9.7 6.0
f3w halfsphere 33.5 40.0 20.7 9.3 5.1

(b) Translational relative pose (RP) RMSE (cm/s)

VO-SF CF SF MF Ours

f3s static 0.71 0.44 0.43 0.54 0.44
f3s xyz 1.44 1.00 0.92 1.25 0.90
f3s halfsphere 2.98 1.92 2.11 2.07 1.82
f3w static 1.68 4.01 0.38 0.76 0.40
f3w xyz 5.11 5.55 2.66 2.00 1.57
f3w halfsphere 6.69 13.02 5.04 3.35 1.96

(c) Rotational relative pose (RP) RMSE (deg/s)

Table 3.3: Ablation study on the syn-
thetic scene Room4. We compare AT-
RMSE for our approach to not using
association likelihoods, and to not us-
ing map confidence weights for tracking.

w/o assoc. w/o map conf. Ours

Ro
om

4

Static Bg 1.42 1.37 1.37
Airship 0.49/ 0.73/ 0.56/

1.13/ 1.47/ 1.41/
1.24 0.75 0.75

Car 2.01 2.11 2.10
Horse 9.12 8.38 3.57

there are no large objects moving into view from the edge of the image,
the effects of not using association likelihoods or map confidence weights
for tracking are numerically negligible for most objects. However, the
rocking horse is subject to topology changes in its surrounding since
wall and floor intersect the volume at different angles. We observe a
significant improvement for this object in Table 3.3.

Computational Performance. While our implementation is not yet
tuned for runtime performance (e.g., parallel processing of objects), the
average runtime per frame on the CF-datasets (Rünz and Agapito 2017)
ranges from 106 ms to 257 ms on an Nvidia GTX 1080 Ti GPU with 11GB of
memory and an Intel Xeon Silver 4112 CPU with 4 cores and 2.6 GHz.

In Table 3.4, we report the average runtime per frame on the dynamic
sequences from Co-Fusion (Rünz and Agapito 2017). One can clearly
see that the runtime for detection frames is much higher than on the
frames where only tracking and mapping with our probabilistic data
association is run. The overhead in detection frames amounts to more
than just the inference runtime of Mask R-CNN (which has been reported
around 200 ms/frame or 5 Hz (Rünz, Buffier, et al. 2018)), since we also
allocate new object volumes in these frames or match and update existing

3.5 Experiments 41

det. frames non-det. frames Overall

ToyCar3 789 241 259
Room4 561 124 139
PlaceItems 611 89 107
TeddyHandover 772 142 164
SlidingClock 759 188 208

Table 3.4: Average runtime per frame
in ms on the dynamic sequences of the
Co-Fusion data set (Rünz and Agapito
2017). The runtime on detection frames
includes not only Mask R-CNN inference
but also creation and updates of object
maps.

Table 3.5: Ablation study with varying detection rates. (a) Average trajectory (AT) RMSE when running detections every 1, 15, 30, or 60
frames. (b) Trajectory coverage for these setups. (c) Number of non-moving objects detected in these cases.

Det. rate 1 15 30 60

To
yC

ar
3 Static Bg 0.94 0.94 0.95 0.96

Car1 0.80 0.83 0.77 0.85
Car2 0.13 0.17 0.18 -

Ro
om

4

Static Bg 1.35 1.37 1.37 1.40
Airship 0.34/ 0.56/ 0.56/ 0.56/

3.87/ 1.35/ 1.41/ 1.43/
0.75 0.75 0.75 0.75

Car 2.34 2.13 2.10 2.10
Horse 2.19 3.57 3.57 -

(a) AT-RMSE (in cm)

1 15 30 60

To
yC

ar
3

Car1 82.6% 81.1% 81.1% 62.3%
Car2 21.4% 6.5% 6.5% 0%

Ro
om

4
Airship 7.4%/ 9.2%/ 9.2%/ 9.2%/

11.1%/ 6.1%/ 6.3%/ 6.3%/
10.9% 5.7% 5.7% 5.7%

Car 12.0% 9.7% 7.9% 7.9%
Horse 19.5% 18.5% 18.5% 0%

(b) Trajectory coverage

1 15 30 60

To
yC

ar
3

6 2 2 1

Ro
om

4

10 1 0 0

(c) Static objects

ones. Note that this implementation is not yet tuned for computational
efficiency. Note further, that the ToyCar3 data set has a resolution of
960 × 540 pixels while all other datasets are captured at a resolution
of 640 × 480 pixels. We can thus partly attribute the higher runtime in
ToyCar3 to the higher amount of data that needs to be processed per
frame.

Varying Detection Rates. As Table 3.4 indicates significantly higher
runtime requirements for detection frames, one possibility for improving
the overall computation time of our approach is lowering the detection
rate for Mask R-CNN. Table 3.5 shows an ablation study of how varying
the detection rate for Mask R-CNN affects trajectory accuracy, trajectory
coverage, and the number of detected non-moving objects. The coverage
is computed as the percentage of frames in the sequence for which our
approach maintained a model for the object. Note that by this measure,
100% cannot be achieved for most objects since they are not visible in
all frames. Note further, that in ToyCar3, the static airplane is always
detected and instantiated as an object. Thus, there is always at least one
non-moving object detected in this scene (see Table 3.5c).

The clear and intuitive tendency is that trajectory coverage improves with
increased detection rate, but this also creates more spurious detections
instantiating objects. If the detection frequency is too low, some objects
might be missed. This happens for the second car in ToyCar3 and the
horse in Room4 when we run the detection only every 60 frames (s.
Tables 3.5a and 3.5b).

Interestingly, while a larger trajectory coverage can induce higher AT-
RMSE (since more frames can deviate from the ground truth), we do not
observe this as a clear tendency. For most objects, the AT-RMSE remains
at a very similar level. In some cases, such as for Car2 in ToyCar3, the
AT-RMSE even improves with increased trajectory coverage.

42 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

Figure 3.5: Qualitative evaluation on the real-world datasets published with Co-Fusion (Rünz and Agapito 2017). We demonstrate that we
can handle fast movement (the second and the third image of the first sequence are only 25 frames apart), as well as objects with relative
weak geometric cues, such as the clock in the second scene. Note that the left arm handing over the teddy is not detected in the last scene.
While it initially is integrated into the background it is quickly overwritten by actual background depth soon after it moves out of view.

3.5.2 Qualitative Evaluation

Figure 3.5 shows a qualitative evaluation on the real-world datasets
published with Co-Fusion (Rünz and Agapito 2017). One can see that
we manage to reconstruct dynamic and static objects in these scenes if
they are detected by Mask R-CNN. Note that some of the objects, like the
trashcan in the first sequence, are not contained in the set of classes that
Mask R-CNN is trained on. Thus, after the initial detection the trashcan is
not detected anymore and deleted because of a low existence probability
𝑝ex (Equation (3.20)). The bottle and the clock in the second sequence are
deleted after they are classified as “not visible” because they move out of
view between the fourth and the last displayed frame and the number of
pixels in view is too low.

We show how the incremental integration of foreground probabilities
into object volumes improves the object masks in Figure 3.6. Note that

3.6 Conclusion 43

Fr
am

e
24

0
Fr

am
e

27
0

Fr
am

e
30

0

Figure 3.6: Incremental mask integration. From left to right: Masked RGB Frame, model output and association likelihood for teddy
before mask integration, model output and association likelihoods after mask integration. One can see that the association likelihoods
provide a soft geometric segmentation for the moving geometry inside the volume of the teddy object. It gets stronger for the pixels that
actually belong to the object once Mask R-CNN confirms those pixels to belong to that object. Note that the teddy bear is first detected in
frame 240 and thus does not have association likelihoods in this frame yet.

the association likelihoods are already non-zero for the parts which
geometrically better match the object than the far-away background and
thus the mask integration makes an already integrated volumetric 3D
model for these regions visible. Finally, for a qualitative evaluation of
the effect of the association likelihood, we refer to Figures 3.1 and 3.4,
where moving objects leave a visible trace because their depth values are
integrated into the background if just using the foreground probability as
segmentation cue. Figure 3.4 further shows that the association likelihood
helps to improve the tracking quality by including geometric cues if Mask
R-CNN segmentations do not fit the actual object shape.

3.6 Conclusion

In this chapter, we propose a novel probabilistic formulation for dy-
namic object-level SLAM with RGB-D cameras. We infer the latent data
association of pixels to the objects in the map concurrently with the
maximum likelihood estimates of camera poses and maps. The maps
are represented as volumetric signed distance functions. For tracking,
our probabilistic formulation facilitates direct alignment of depth im-
ages with the SDF representation. Our results demonstrate that proper
probabilistic treatment of data associations is a key ingredient to robust
tracking and mapping in dynamic scenes. To the best of our knowledge,
our approach is the first that considers EM for dynamic object-level
SLAM with RGB-D cameras.

Note that our approach treats the detected objects models always as
dynamic. While our experiments have shown that their poses are stable in
most settings for static objects, in future work, an additional classification
into static and dynamic objects might be developed to prevent drifting
of static objects and to refine the camera pose by tracking it relative to
the static object volumes. This might prove beneficial since the object

44 3 EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association

volumes usually exhibit a higher relative resolution. We further plan
to integrate information from the RGB image for tracking to further
increase the accuracy and robustness of the method in planar surfaces in
future work. Furthermore, more efficient data structures and global graph
optimization are interesting directions to further scale our approach.
Finally, we plan to investigate how our approach could be used on mobile
manipulation platforms for the interactive perception of objects.

Where Does It End? – Reasoning
About Hidden Surfaces by Object

Intersection Constraints 4
4.1 Introduction 45
4.2 Related Work 47
4.2.1 Dense Surface Reconstruc-

tion 47
4.2.2 Dense Object-Level 3D

Reconstruction in Dynamic
Environments 48

4.2.3 Shape Completion 48
4.3 Preliminaries 49
4.4 Method 52
4.4.1 Object Tracking and Data

Association 53
4.4.2 Global SDF Optimization 54
4.4.3 Implementation Details . 55
4.5 Experiments 57
4.5.1 Qualitative Results 57
4.5.2 Quantitative Results . . . 57
4.6 Conclusion 61

The contents of this chapter are based on the peer-reviewed conference
publication

©2020 IEEE. Reprinted, with permission, from Strecke, Michael and
Joerg Stueckler (2020). ‘Where Does It End? - Reasoning About Hidden
Surfaces by Object Intersection Constraints’. In: 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE. doi: 10.1109/
cvpr42600.2020.00961, (Strecke and Stueckler 2020),

with the following co-author contributions:
Ideas Experiments Analysis Writing

Michael Strecke 80% 100% 80% 65%
Jörg Stückler 20% 0% 20% 35%

Compared to the conference publication, this chapter contains more
detailed preliminaries and unified notation with the rest of the thesis.

4.1 Introduction

In the previous chapter, we tracked and reconstructed object models in
TSDF volumes in an online fashion. While the previous approach only
reconstructed visible surfaces of the objects, we will now investigate how
priors on the physical plausibility of dynamic scene configurations1 can 1: i. e., the geometries and relative poses

of the objects at different points in timehelp to infer missing information. We observe that humans have the
remarkable ability to infer missing information using assumptions on
the physical plausibility of scenes. For instance, if we see objects lying
on a table, we immediately conclude that the shape of the objects is
constrained by the table surface. We would be surprised if an object
continues within the table. Our approach uses this concept to get a coarse
estimate about the shape on the hidden side of the objects2. 2: i. e., the side facing away from the

camera

In this chapter we want to build a model that uses physical plausibility
constraints to answer the question: “How far does the object extend to
the background if we have a physically plausible scene configuration in
every frame?”3. We propose Co-Section, a novel approach to incorporate 3: Or, in short “Where does it (the object)

end?”such constraints into a bottom-up 3D scene reconstruction method. Our
method tracks and maps moving objects in the scenes. However, in
dynamic scenes4, we can use more than just the image measurements 4: i. e., scene with moving objects
to reason about the object shapes. Physical plausibility dictates that any
point in 3D is only occupied by at most a single object at any point in time.
Objects thus cannot penetrate each other and the geometry of each object
is constrained not to occupy the space already occupied by other objects
moving close to it or touching it. In contrast to a variety of learning-based
approaches for shape completion (Dai et al. 2018; Firman et al. 2016; Song
et al. 2017; Yang et al. 2019), we incorporate such physical plausibility as
intersection constraints in an energy-minimization framework.

https://doi.org/10.1109/cvpr42600.2020.00961
https://doi.org/10.1109/cvpr42600.2020.00961

46 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

Figure 4.1: We propose a novel en-
ergy minimization approach to 3D re-
construction in dynamic scenes. Our
approach uses a dynamic object-level
SLAM method as front-end (such as
EM-Fusion; Strecke and Stueckler 2019).
Compared to the TSDF object maps of
the front-end, our approach can leverage
intersection constraints between objects
and visibility constraints to complete ob-
ject shapes from scenes published with
Co-Fusion (Rünz and Agapito 2017) in
a physically plausible way. The top two
rows show the same time step in the
scene ToyCar3 from different viewpoints.
The bottom rows show different time
steps from the PlaceItems scene. Note that
the shape reconstructed by Co-Section
in the first frame would penetrate the
table with the changed object pose in the
second frame. The shape of the teddy is
thus adapted to satisfy the intersection
constraint. Input color EM-Fusion Co-Section

Our formulation optimizes the implicit surfaces of the objects as signed
distance functions from oriented points. The oriented point measure-
ments are computed from the depth maps (see Section 2.3) and trans-
formed to the object models with the camera and object poses provided
by a dynamic object-level SLAM front-end. The dynamic SLAM front-end
EM-Fusion (see Chapter 3; Strecke and Stueckler 2019) detects, segments,
tracks and 3D reconstructs the objects in local volumetric signed dis-
tance function (SDF) representations. Our energy minimization back-end
applies a method for implicit surface reconstruction from registered
point clouds (Schroers et al. 2014) to optimize the object maps. We incor-
porate intersection and hull constraints to complete the object shapes.
In Figure 4.1, we can see that the truck can be closed plausibly by our
optimization (top two rows) and that reconstructions by our approach
improve as more information becomes available. In the third row, the
optimized reconstruction of the teddy is not yet well-constrained and the
teddy model would penetrate the table with the changed pose in the last
row. Thus, our approach uses the more constraining object pose in the
last row and adapts the teddy geometry to avoid this penetration.

We demonstrate our approach on real and synthetic dynamic scene
datasets. We also assess our shape completion quantitatively using the
ground-truth 3D models on the synthetic scenes.

In summary, our contributions are

▶ We include intersection constraints for physically plausible shape
completion in dynamic scenes. This allows for inferring hidden
surfaces of objects which can be useful for robotics or VR/AR
applications. To the best of our knowledge, we are the first to include
such constraints for object-level 3D reconstruction in dynamic
scenes.

4.2 Related Work 47

▶ We demonstrate efficient optimization by initializing new object
volumes coarse-to-fine and optimizing the volumes incrementally
when new measurements are available.

▶ We assess our approach qualitatively and quantitatively on dynamic
SLAM datasets. Our evaluation can serve as a baseline for future
research in this area.

▶ We provide the source code of our approach to allow other re-
searchers to reproduce our results and build upon them in future
research5 . 5: https://github.com/

EmbodiedVision/cosection

4.2 Related Work

4.2.1 Dense Surface Reconstruction

Several approaches reconstruct 3D surfaces densely from point clouds
(Calakli and Taubin 2011; Kazhdan, Bolitho, et al. 2006; Schroers et al.
2014; Ummenhofer and Brox 2015), depth images (Curless and Levoy
1996) or RGB images from multiple view points (Cremers and Kolev
2011). The methods typically consider the data as belonging to a single
surface and do not reason about the surfaces of individual objects.

Dense Reconstruction from Point Clouds. Moving least squares sur-
face reconstruction (Alexa et al. 2003) fits a point set representing the
surface to oriented point samples. Local parameterizations such as planar
surface patches are assumed and the points are fit using moving least
squares. Smooth signed distance surface reconstruction (SSD; Calakli and
Taubin 2011) recovers a volumetric implicit surface representation from
the oriented points using a variational energy minimization formulation.
The energy includes data terms favoring the points lying on the zero
level set of the optimized implicit function and aligning its gradients
with the surface normals. A regularization term keeps the Hessian6, of 6: i. e., the second-order derivatives
the implicit function small. While we also use this regularization term,
we use a data term that measures the distance of a voxel towards a point
along the normal. In Poisson surface reconstruction (Kazhdan, Bolitho,
et al. 2006), a smoothed indicator function is estimated whose gradient
follows the surface normal field approximated with the oriented points.
The implicit function is recovered using a least squares approximation of
the Poisson equation. Implicit moving least squares formulations recover
an implicit surface function at a set of points or voxel centers using a
quadratic penalty on the deviation from local point samples along their
normals. Shen et al. (2004) estimate a fit of linear function coefficients to
point samples. Our formulation extends the Hessian-IMLS formulation
by Schroers et al. (2014) which combines a quadratic data penalty term
similar to (Shen et al. 2004) with the 𝐿2-Hessian regularizer as in (Calakli
and Taubin 2011) to estimate the signed distance function on a grid. The
approach by Ummenhofer and Brox (2015) uses 𝐿1 norms on the data
terms of SSD and a total variation regularizer on the gradient of the
vector field7 which affords a primal-dual optimization scheme. We favor 7: i. e., keeping the norm of the gradient

smallthe 𝐿2-Hessian regularization of the implicit function over total variation
regularization of its vector field, since we are interested in recovering

https://github.com/EmbodiedVision/cosection
https://github.com/EmbodiedVision/cosection

48 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

smooth implicit surface functions without discontinuities in order to
complete object shapes watertight.

Dense Reconstruction from RGB-D Images. Several approaches fuse
depth images which can be recovered using multi-view stereo or ac-
tive sensing principles such as structured light or time-of-flight (see
Section 2.3). A popular approach for incremental fusion of depth maps
into volumetric signed distance functions is the seminal approach by
Curless and Levoy (1996)8, which we used in Chapter 3 for building8: see Subsection 3.3.3
object models. Cremers and Kolev (2011) optimize the signed distance
function directly from intensity9 images using multi-view stereo and9: i. e., gray scale
silhouette constraints. These dense reconstruction methods are restricted
to static scenes and do not incorporate intersection constraints between
objects like our method.

4.2.2 Dense Object-Level 3D Reconstruction in Dynamic
Environments

Several methods have been proposed that track and map moving objects
with RGB-D cameras (Hachiuma et al. 2019; Rünz and Agapito 2017;
Rünz, Buffier, et al. 2018; B. Xu et al. 2019) and (Strecke and Stueckler 2019,
Chapter 3). However, none of the methods consider mutual constraints
between the objects for inferring hidden surfaces at their intersections.
Some works also consider interactions between objects, e.g., between
human bodies and the static environment (Hassan et al. 2019), or hands
and objects (Hasson et al. 2019). However, these methods require learned
parametric deformation models of bodies and hands. They furthermore
rely on deep learning for pose and shape regression from images.

4.2.3 Shape Completion

Various learning-based approaches to completing volumetric reconstruc-
tions obtained with depth cameras have been proposed (Dai et al. 2018;
Firman et al. 2016; Song et al. 2017; Yang et al. 2019). Firman et al. (2016)
train random forests to map depth image patches to local 3D voxel repre-
sentations. Song et al. (2017) complete a voxel representation of single
depth images. They train a 3D convolutional neural network (CNN) end-
to-end on a synthetic 3D scene dataset. ScanComplete (Dai et al. 2018)
applies 3D CNNs in a hierarchical fashion to complete and semantically
label voxel grids of point clouds fusing multiple views. Yang et al. (2019)
propose an approach based on Generative Adversarial Networks (GANs)
to predict completed shapes from depth images. X-Section (Nicastro et al.
2019) predicts the end-point of an object along a ray which can be used
with volumetric SDF fusion (Curless and Levoy 1996, Subsection 3.3.3)
to obtain completed shapes.

Our energy minimization approach includes physical plausibility con-
straints which do not need to be learned from data. It thus provides an
orthogonal approach to these learning-based approaches.

4.3 Preliminaries 49

4.3 Preliminaries

We extend the incremental online mapping from Chapter 3 to retrieve
globally optimal models in an offline optimization approach. Schroers et al.
(2014) proposed a formulation generalizing previous optimization-based
surface reconstruction methods (e.g., Calakli and Taubin 2011; Kazhdan,
Bolitho, et al. 2006) based on the calculus of variations.

We want to find an SDF 𝜙∗ which is optimal given oriented point
measurements accumulated over several frames from depth maps10. 10: see Section 2.3
Generally, this problem can be phrased as minimizing an energy functional
𝐸 : V→ ℝ, where V=

{︁
𝜙

|︁|︁ 𝜙 : Ω→ ℝ
}︁

is the space of admissible SDF
functions defined on a domain Ω ⊂ ℝ3:

𝜙∗ = arg min
𝜙∈V

𝐸(𝜙). (4.1)

We call 𝐸 a functional because its argument is itself a function in our case.
As mentioned before, optimizing Equation (4.1) in the general sense is
often done using methods from the calculus of variations, which poses
the necessary condition for minimizers of Equation (4.1) as

𝜕𝐸
𝜕𝜙
(𝜙) = 0, (4.2)

where we call the derivative 𝜕𝐸
𝜕𝜙 the first variation of 𝐸, which is induced

by infinitesimal changes11 in the function 𝜙: 11: Very similar to the definition of the
derivatives of functions.

𝜕𝐸
𝜕𝜙
(𝜙) = lim

ℎ→0

𝐸(𝜙 + ℎ𝜂) − 𝐸(𝜙)
ℎ

, (4.3)

where 𝜂 : Ω→ ℝ is an “increment function” (Bolza 1904; Rindler 2018).
Variational calculus and its applications in optimization problems are the
topics of several textbooks (Bolza 1904; Boyd and Vandenberghe 2004;
Rindler 2018; Ralph Tyrell Rockafellar 1970; Ralph Tyrrell Rockafellar and
Wets 1998), to which we refer for more details12. 12: These details include more restric-

tions on the function spaces of 𝜙, 𝜂 and
𝐸. As a thorough introduction is beyond
the scope of this thesis, we refer the in-
terested reader to (Rindler 2018)

Schroers et al. (2014) propose finding 𝜙∗ by setting 𝐸 in Equation (4.1) to

(Schroers et al. 2014): A Variational Tax-
onomy for Surface Reconstruction from Ori-
ented Points

the energy functional

𝐸(𝜙) =
𝐾∑︂
𝑘=0

𝛼𝑘𝐷𝑘(𝜙) + 𝛼𝑆(𝜙), (4.4)

consisting of a smoothness functional 𝑆(𝜙) and a data term for the 𝑘-th
derivative and 𝑁 oriented point measurements ˜︁S= {(p𝑖 , n𝑖)}𝑁𝑖=1:

𝐷𝑘(𝜙) =
𝑁∑︂
𝑖=1

∫
Ω

𝑤𝑖 ,𝑘
𝑑𝑘

∥︁∥︁∥︁D(𝑘) (︁𝜙 − 𝜙p𝑖
)︁∥︁∥︁∥︁2

dx, (4.5)

where we omit the argument x to the functions 𝑤𝑖 ,𝑘 , 𝑑𝑘 , 𝜙 and 𝜙p𝑖 in
Equation (4.5) to avoid notational clutter. In Equation (4.5),

𝜙p𝑖 (x) = (x − p𝑖)⊤n𝑖 (4.6)

is the point-to-plane distance from x to point sample 𝑖 and D(𝑘) is the
operator implementing the 𝑘-th derivative in all dimensions. The function

50 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

𝑤𝑖 ,𝑘 is a weight adjusting the influence of point sample 𝑖 and can be
chosen differently for every order of derivative 𝑘. Finally, 𝑑𝑘 accounts for
possible weight normalization. One example for the weighting function
would be 𝑤𝑖 ,𝑘(x) = 𝑤𝜎 (∥x − p𝑖 ∥)with

𝑤𝜎(𝑠) =
{︄

1, if |𝑠 | ≤ 𝜎,

0, otherwise,
(4.7)

for constraining the influence of point sample 𝑖 to the 𝜎-ball or

𝑤𝜎(𝑠) = exp
(︃
−

(︂ 𝑠
𝜎

)︂2
)︃
, (4.8)

for a smooth decaying Gaussian weight.

This energy formulation generalizes other popular surface reconstruction
methods, e.g., for 𝐾 = 1, the formulation for Poisson Surface Reconstruc-
tion (Kazhdan, Bolitho, et al. 2006; Kazhdan and Hoppe 2013) can be(Kazhdan, Bolitho, et al. 2006): Poisson

Surface Reconstruction
(Kazhdan and Hoppe 2013): Screened pois-
son surface reconstruction

derived. We now consider the cases 𝐾 = 0 and 𝐾 = 2 in more detail, as
they provide the basis for the formulation used in our approach. Implicit
Moving Least Squares (IMLS; Shen et al. 2004) results from Equation (4.4)(Shen et al. 2004): Interpolating and ap-

proximating implicit surfaces from polygon
soup

for 𝐾 = 0, 𝛼 = 0 and 𝑑0 = 1:

𝐸(𝜙) =
𝑁∑︂
𝑖=1

∫
Ω

𝑤𝑖 ,0
(︁
𝜙 − 𝜙p𝑖

)︁2 dx, (4.9)

which has the analytic solution (Schroers et al. 2014)

𝜙∗(x) =
∑︁𝑁
𝑖=0 𝑤𝑖 ,0(x)𝜙p𝑖 (x)∑︁𝑁

𝑖=0 𝑤𝑖 ,0(x)
. (4.10)

The Smooth Signed Distance Surface Reconstruction (SSD; Calakli and
Taubin 2011) formulation can be recovered in the higher-order framework(Calakli and Taubin 2011): SSD: Smooth

Signed Distance Surface Reconstruction by setting 𝐾 = 2 and 𝛼 = 0. Further, 𝑤𝑖 ,0 and 𝑤𝑖 ,1 should be set to Dirac
distributions for creating point-wise constraints and 𝑤𝑖 ,2 = 1

𝑁 as a global
constraint. The normalization factor 𝑑𝑘 is chosen to automatically scale
the data term by all 𝑁 weight functions:

𝑑𝑘 =
𝑁∑︂
𝑖=1

∫
Ω

𝑤𝑖 ,𝑘(x)dx. (4.11)

Plugging this into Equation (4.4) yields:

𝐸(𝜙) = 𝛼0
𝑁

𝑁∑︂
𝑖=1

∥︁∥︁𝜙 (p𝑖)∥︁∥︁2 + 𝛼1
𝑁

𝑁∑︂
𝑖=1

∥︁∥︁∇𝜙 (p𝑖) − n𝑖
∥︁∥︁ + 𝛼2

𝑁

∫
Ω

∥︁∥︁H𝜙(x)∥︁∥︁2
𝐹 dx,

(4.12)
where H denotes the Hessian operator13. Equation (4.12) follows from13: i. e., H𝜙(x) is a matrix containing all

second-order derivatives of 𝜙 at x Equation (4.4) by recalling that 𝜙p𝑖 (x) = (x−p𝑖)⊤n𝑖 and thus∇𝜙p𝑖 (x) = n𝑖
and H𝜙p𝑖 (x) = 0.

Schroers et al. (2014) propose the following combination of the first-
order data term from Equation (4.9) with the Hessian regularizer in

4.3 Preliminaries 51

Figure 4.2: The hull constraint effectively
limits the reconstructed surface within
the observed free-space.

Equation (4.12):

𝐸Hessian−IMLS(𝜙) =
𝑁∑︂
𝑖=1

∫
Ω

𝑤𝑖
(︁
𝜙 − 𝜙p𝑖

)︁2 dx⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
=:𝐸data(𝜙)

+ 𝛼
∫
Ω

∥︁∥︁H𝜙
∥︁∥︁2
𝐹 dx⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

=:𝐸reg(𝜙)

, (4.13)

with 𝑤𝑖 = 𝑤𝜎 (∥x − p𝑖 ∥), where 𝑤𝜎 is the Gaussian weight from Equa-
tion (4.8). They argue that this is the simplest choice within the higher
order framework combining the simple point-to-plane distance from
IMLS with appropriate regularization. The Hessian regularizer encour-
ages the gradients of the reconstructed SDF to vary smoothly on Ω. This,
together with the point-to-plane distance from Equation (4.6), which
encourages the SDF to follow the unit surface normals, poses a prior on
the SDF similar to the Eikonal constraint from Equation (2.36)14. This 14: i. e., the gradients should have unit

norm close to the surface and should stay
almost constant away from the surface,
thus staying close to the unit norm

combination of data term and regularization can propagate the distance
information from the point samples even to points far away in the SDF
volume, as for those points the influence 𝑤𝑖 of the data term 𝐸data is low
and the regularizer 𝐸reg encourages the SDF values to increase along the
surface normals.

Schroers et al. (2014) further propose an optional hull constraint

𝐸hull(𝜙) = 𝛽

∫
Ω\H

max
{︁
0, 𝑑(H, x) − 𝜙(x)}︁2 dx, (4.14)

encouraging the surface to lie within a hull H⊂ Ω with, where

𝑑(H, x) = min
p∈H ∥x − p∥ (4.15)

denotes the distance of the point x to the hull H. A hull can often be
estimated, e.g., as the visual hull from the silhouette of the point cloud
in different views. Essentially, this constrains the reconstructed implicit
surface to a reasonable area and proves beneficial in their experiments
(Schroers et al. 2014). We illustrate the hull constraint in Figure 4.2 and
explain how we estimate the hull in our approach in Subsection 4.4.2.

We reconstruct SDFs on discrete grids (see Subsection 2.2.2), i. e., we
optimize the SDF values 𝜙𝑖 , 𝑗 ,𝑘 = 𝜙

(︁
v𝑖 , 𝑗 ,𝑘

)︁
as in Equation (2.40) directly.

Following Schroers et al. (2014), we thus optimize the discretized version

52 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

of Equation (4.13):

𝐸(𝝓) =
𝑁∑︂
𝑖=1

∥︁∥︁∥︁W
1
2
𝑖

(︁
𝝓 − 𝝓p𝑖

)︁∥︁∥︁∥︁2
+ 𝛼

𝑀∑︂
𝑗=1

∑︂
𝜸∈𝑉2

(︁
D𝜸𝝓

)︁2
𝑗 , (4.16)

where we collect the weight functions 𝑤𝑖 in diagonal matrices W𝑖
15. We15: As W𝑖 is diagonal, W

1
2
𝑖 is just the

element-wise square root. further denote the discretized versions of 𝜙 and 𝜙p𝑖 by 𝝓 and 𝝓p𝑖 ∈ ℝ𝑀 ,
respectively (see Subsection 2.2.2)16. The matrices D𝜸 implement the16: We use linearized indices as in Equa-

tion (2.41) here. finite difference kernels for the second order derivatives in directions
𝜸 ∈ 𝑉2 with𝑉 = {𝑥, 𝑦, 𝑧}. The hull constraint in Equation (4.14) remains
mostly the same, just transforming the integral into a sum for the indices
for which the corresponding grid point is outside the hull.

In this setting, because Equation (4.13) is convex in 𝜙, the necessary
condition from Equation (4.2) is also sufficient for finding a minimizer
(Schroers et al. 2014). Setting the derivative of Equation (4.16) to zero
yields (︄

𝑁∑︂
𝑖=1

W𝑖 + 𝛼
∑︂
𝜸∈𝑉2

D⊤𝜸D𝜸

)︄
𝝓 =

𝑁∑︂
𝑖=1

W𝑖𝝓p𝑖 . (4.17)

If the hull constraint is active, we further need the derivative of Equa-
tion (4.14), which can be expressed component-wise in its discrete form
as

2 𝛽𝐻
(︁
𝑑 𝑗

)︁
𝐻

(︁
𝑑 𝑗 − 𝜙 𝑗

)︁ (︁
𝜙 𝑗 − 𝑑 𝑗

)︁
, (4.18)

where d denotes the discrete version of 𝑑(H, x) and

𝐻 : ℝ→ {0, 1}

𝑥 ↦→
{︄

0, 𝑥 < 0
1, 𝑥 ≥ 0

(4.19)

is the Heaviside step function. Note that 𝜙 𝑗 here denotes index 𝑗 of the
discrete vector 𝝓, in contrast to the time index 𝑡 for the function 𝜙 in
Subsection 3.3.3.

The linear system of equations in Equation (4.17), possibly with the added
term from Equation (4.18) for the corresponding indices, can be solved
by the Fast Jacobi (FJ) solver by Weickert et al. (2015).

4.4 Method

In our method, we use the previously explained optimization framework
to extend our object-level dynamic SLAM method EM-Fusion from
Chapter 3. As mentioned before, our goal is to improve the object-level
3D reconstruction by including physical plausibility constraints such as
the hull constraint Equation (4.14) and a novel intersection constraint,
which we will explain in this section. The key idea behind the intersection
constraint is that dynamic objects reveal some information about their
maximum extend in the viewing direction if they pass in front of another
known surface. We use this information to infer where an object ends in
directions that have not been directly observed.

4.4 Method 53

Depth

RGB

Mask R-CNN
initialization

TSDF models and poses

Assoc. likelihoods

E-Step

E-Step

M-Step
(Update)

EM-Fusion

Optimized SDF models

SDF optimization

intersection
constraint

input points
and normals

hull
constraint

Co-Section

poses

Figure 4.3: Our approach uses input depth maps and the estimated object and camera poses as well as the pixel-wise object association
likelihoods from EM-Fusion (Strecke and Stueckler 2019) in a global optimization framework to retrieve optimized SDF models that
take physical plausibility constraints into account. EM-Fusion uses Mask R-CNN (He et al. 2017) segmentations to initialize objects and
subsequently tracks and maps them in an EM-like framework by estimating geometric association likelihoods from existing models and
input depth maps.

4.4.1 Object Tracking and Data Association

For implementing our optimization method, we need to associate depth
measurements to object models and recover the relative poses between
the camera and the objects in each frame. As we have explained in detail
in Chapter 3 and visualized in the left part of Figure 4.3, EM-Fusion
(Strecke and Stueckler 2019) can provide this information17. (Strecke and Stueckler 2019): EM-Fusion:

Dynamic Object-Level SLAM With Proba-
bilistic Data Association
17: Note that one could also use other
dynamic SLAM methods (Hachiuma et
al. 2019; Rünz and Agapito 2017; Rünz,
Buffier, et al. 2018; B. Xu et al. 2019) for
this purpose.

While EM-Fusion also reconstructs dense 3D models for individual
objects as truncated signed distance fields (TSDFs), we will show that
these models can be improved by relaxing computation time constraints
and performing offline optimization instead of online mapping. We find the
signed distance field (SDF) representation especially useful for the goal of
including intersection constraints since it contains distance information to
the closest surfaces. Additionally, it gives information whether a 3D point
is inside or outside an object by negative or positive values, respectively.

Tt

Tt′

x

Figure 4.4: Weighted average TSDF inte-
gration can lead to conflicting measure-
ments.

In addition to including the physical plausibility constraints mentioned
before, we want to address another issue with the weighted average
integration from Chapter 3 (Curless and Levoy 1996; Newcombe et al.
2011). Although this approach has been proven to yield a maximum
likelihood estimate of the surface (Curless and Levoy 1996; Newcombe
2012; see Subsection 3.3.3), this method cannot map thin structures and
edges of objects well if they are viewed from different sides. Choosing the
truncation threshold for both conditions mentioned in Subsection 2.2.318

18: i. e., small enough to prevent interfer-
ence between measurements from differ-
ent sides and large enough to multiple
views to remove noise.

is not always possible as we illustrate in Figure 4.4. The black line indicates
the surface, the dashed black lines show the truncation distance, and the
light blue/orange frustum show the space around the surface observed
by the cameras. The lines of sight, along which the projective signed
distance is measured, are indicated by dotted lines. The point x is within
the truncation threshold (indicated by dashed lines) from both camera
poses T𝑡 and T𝑡′ . It will thus receive conflicting integration measurements
as its measured SDF value19

19: see Equation (3.2)
is positive for T𝑡 and negative for T𝑡′20. 20: i. e., �̌�𝑡 (x) > 0 and �̌�𝑡′ (x) < 0

54 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

We address this issue by collecting the depth maps as raw surface
measurements and employing the optimization framework explained
in Section 4.3 to retrieved globally optimized models. We collect the
depth maps at equidistant time steps and compute oriented point clouds
(consisting of points p𝑖 and their corresponding normals n𝑖) from them
given the poses estimated by EM-Fusion. These oriented point clouds
are then used in the data term in Equation (4.13).

4.4.2 Global SDF Optimization

Energy Formulation. As explained before in Section 4.3, we adopt the
Hessian-IMLS energy formulation by Schroers et al. (2014). Our energy
formulation uses point measurements associated with object models
by EM-Fusion, our implementation of the hull constraint for dynamic
scenes, and our novel intersection constraint explained below. The overall
energy that we optimize is the sum of three parts:

𝐸(𝜙) = 𝐸Hessian−IMLS(𝜙) + 𝐸hull(𝜙) + 𝐸inter(𝜙), (4.20)

where 𝐸Hessian−IMLS and 𝐸hull are defined in Equations (4.13) and (4.14),
respectively.

We compute the weight

𝑤𝑜
𝑖 (x) = 𝑤𝜎(∥x − p𝑖 ∥) · 𝑎𝑜(p𝑖) (4.21)

in Equation (4.13) as the product of the Gaussian weight in Equation (4.8)
and the association likelihood 𝑎𝑜(p𝑖) of point p𝑖 = 𝜋−1 (u, 𝑑𝑡 (u))21 to21: see Section 2.3
object 𝑜 from EM-Fusion, i. e.,

𝑎𝑜 (p𝑖) = 𝑞(𝑐𝑡 ,u) (4.22)

for 𝑐𝑡 ,u = 𝑜. We set 𝜎 equal to the voxel size in our experiments and cap
the weights when the distance to the measurement is larger than 3𝜎.

Hull Constraint. As mentioned in Section 4.3, we can compute a hull
constraint as proposed by Schroers et al. (2014). Since the data we collect
is not just the raw oriented point cloud, but depth measurements over
time, we implement the hull H to consist of all unseen parts of the scene
(hidden behind seen surfaces or outside the field of view). Furthermore,
to avoid the potentially expensive exact computation of 𝑑hull(H, x), we
use the voxel size as a lower bound for all voxels v ∈ Ω \H. In practice
our implementation records 𝑑hull(H, v) as

𝑑hull(H, v) =
{︄
𝑣𝑜 , if �̌�

𝑜
𝑡 (v) > 𝑣𝑜 for any 𝑡 ,

0, otherwise,
(4.23)

where �̌�
𝑜
𝑡 (v) is the projective SDF measurement for object 𝑜 in frame 𝑡

from EM-Fusion defined in Equation (3.2) and 𝑣𝑜 is the voxel size of the
considered volume. We effectively use the projective SDF measurements
from EM-Fusion in a space carving approach to record a mask for the
empty space Ω \H.

4.4 Method 55

Figure 4.5: Our intersection constraint is based on a measure of interpenetration distance 𝑑inter. It penalizes signed distance functions
that interpenetrate each other. Left: interpenetration distance for two objects that do not intersect each others. Middle: case of two
intersecting objects. Right: Distance after resolved interpenetration.

Intersection Constraint. We propose to implement an intersection
constraint for multiple objects with a similar form like the hull constraint
in Equation (4.14). For each object 𝑜 in the set of objects O, we define
the intersection distance 𝑑inter based on the observations of multiple
(moving) objects in several time steps 𝑡:

𝑑𝑜inter(x) = max
{︃

max
𝑡∈𝑇,𝑝∈O

{︁−𝜙𝑝(x𝑡)}︁ , 0}︃ . (4.24)

Here, x𝑡 = (T𝑝𝑡)−1T𝑜𝑡 x denotes the point x transformed from the coordinate
system of object 𝑜 to object 𝑝 at time step 𝑡 using the poses T𝑜𝑡 and T𝑝𝑡 of 𝑜
and 𝑝 at that time step. Intuitively, this distance measures the maximum
penetration of a point x of object 𝑜 in object 𝑝 over all time steps.

Using this distance, we define the energy term

𝐸inter
(︁
𝜙𝑜

)︁
= 𝛽inter

∫
I𝑜

max
{︁
0, 𝑑𝑜inter − 𝜙𝑜⏞ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄⏞

=:ℓ 𝑜inter

}︁2 dx, (4.25)

where I𝑜 =
{︁
x ∈ Ω |︁|︁ 𝑑𝑜inter(x) > 0

}︁
. This term favors SDFs that do not

interpenetrate each other. Figure 4.5 illustrates the intersection constraint
and the value of ℓ 𝑜inter in several situations.

4.4.3 Implementation Details

Optimization. Since all parts of the energy are convex and differentiable
in 𝜙, we follow Schroers et al. (2014) and implement the optimization (Schroers et al. 2014): A Variational Tax-

onomy for Surface Reconstruction from Ori-
ented Points

with the Fast Jacobi algorithm proposed by Weickert et al. (2015) as

(Weickert et al. 2015): Cyclic Schemes for
PDE-Based Image Analysis

mentioned in Section 4.3. We integrate our approach with EM-Fusion
and compute the intersection constraint using relative object poses in
every frame. At a lower temporal resolution22, we insert key frames in 22: In our experiments every tenth frame
which we record the point clouds from the depth maps and compute
the hull constraint. The optimization is then run after every key frame
insertion.

Since in our case the data measurements are sparse compared to the

56 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

overall volume size, optimization of the background volume on the finest
resolution of 2563 only converges slowly for the first run. We thus propose
to initialize each volume with a coarse-to-fine optimization by optimizing
only 𝐸Hessian−IMLS from Equation (4.13) first on a resolution of 323 and
subsequently up-sampling the result by splitting each voxel into 8 and
using this as initialization for the next level until the target resolution
is reached. Even without interpolation, this strategy yields reasonably
fast and accurate results. For the finest level, we optimize Equation (4.20)
and include the hull and intersection constraints. The coarse-to-fine
scheme is only applied for the first optimization23 of each volume. In23: i. e., the optimization after the first

key frame our experiments, the previous optimization result can adapt reasonably
fast to new measurements in later optimization runs. Furthermore, we
found the application of a coarse-to-fine scheme in later time steps to
actually slow down the optimization in some cases. This is caused by
removing fine details at lower resolutions which were already recovered
in the previous optimization run.

Wrong Data and Inaccurate Detections. The detection of dynamic
objects in (Strecke and Stueckler 2019) relies on Mask R-CNN (He et al.(Strecke and Stueckler 2019): EM-Fusion:

Dynamic Object-Level SLAM With Proba-
bilistic Data Association

2017). The detection is carried out at low frame rate. This might lead to
dynamic objects being missed when they move into view. Consequently,
point associations with the background or other object models are
incorporated which are difficult to remove later. Since EM-Fusion is
mainly designed to track rigid objects, it is fair to assume that space that
was seen unoccupied before in a model will not be occupied by the same
object in the future. We thus do not allow association of points in this
space with the respective model and set 𝜙p𝑖 (x) = 𝑤𝑖(x) = 0 for x ∈ Ω \H.
Note that this way, the hull Hwill only get smaller over time.

Furthermore, EM-Fusion yields balanced association likelihoods for the
background model and objects that remain static from the first view.
Including these points in both the object and the background model
during our optimization would yield conflicting data terms for the
intersection constraint. To avoid this, we use the volumetric foreground
probability estimated by EM-Fusion and remove all point measurements
in the foreground region of an object model from all other models. While
this strategy helps with handling static objects, it might cause dents
when models touch each others since it might also remove correct point
measurements from the other model. This strategy might not be needed
in scenes where no static objects are detected by EM-Fusion.

Ordering the Optimization of Different Volumes. The intersection
constraint as formulated in Equation (4.24) introduces a chicken-and-
egg-problem. The optimization for object 𝑜 depends on the optimization
results for all other models while those results depend on the optimiza-
tion result of 𝑜. To resolve this, we observe that planar surfaces (as they
are common, e.g., for walls and floors in man-made environments) can
be completed reasonably well using the Hessian norm prior in Equa-
tion (4.17). Thus, to compute the intersection constraint in Equation (4.24),
we use the optimized SDF of the background model and approximate

4.5 Experiments 57

𝜙𝑝 in the case of object models using the point measurements, i. e.,

𝜙𝑝(x) ≈ 1
𝑁

𝑁∑︂
𝑖=1

𝑤𝑝
𝑖 (x)𝜙

𝑝
p𝑖 (x). (4.26)

4.5 Experiments

We evaluate our approach in qualitative and quantitative experiments
on the data set provided with Co-Fusion (Rünz and Agapito 2017). We
use two real and one synthetic scene in which up to three objects move
independently. The qualitative results show visually plausible shape
completions by our approach, which we further evaluate quantitatively
in the synthetic scene using the ground-truth meshes of the objects. In an
ablation study, we analyze the effectiveness of the individual components
of our energy minimization approach.

We chose the parameters for weighting the different parts of the energy
empirically as 𝛼 = 0.005, 𝛽hull = 𝛽inter = 0.001, and choose a cycle length
of 20 for the Fast Jacobi optimizer (Weickert et al. 2015). We used a single
set of parameters throughout our experiments. For visualization and
evaluation of the reconstructed geometry, we compute the triangle mesh
from the SDF using the marching cubes algorithm (Subsection 2.2.4,
Lorensen and H. E. Cline 1987). (Lorensen and H. E. Cline 1987): Marching

cubes: A high resolution 3D surface construc-
tion algorithm

4.5.1 Qualitative Results

We provide qualitative results of our approach in Figure 4.6. The first
three examples show different viewpoints of the same time step, while
the last one (placement of teddy) illustrates how the shape changes over
time. The TSDF reconstructions estimated by EM-Fusion can only take the
visible part of the object into account. When using our global optimization
approach without hull and intersection constraints, the object surface
is continued as smooth as possible towards the borders of the object
map. The hull constraint wraps the surfaces such that they are limited by
the observed free space. However, the surface can freely intersect with
the background surface under the object. When including the intersec-
tion constraint, this penetration is avoided. However, without the hull
constraint, the gradient introduced by the intersection constraint might
be continued in regions outside the actual objects, causing unwanted
zero-crossings (see column 4 in Figure 4.6). In combination with the hull
constraint, these unwanted zero-crossings are removed by penalizing
negative SDF values in observed free space. Thus, the object shape is
closed and approximates the actual object shape well.

4.5.2 Quantitative Results

Evaluation Metrics. We evaluate shape reconstruction between the
reconstructed mesh Mrec = (Vrec ,Frec) and the ground-truth mesh Mgt =(︁
Vgt ,Fgt

)︁
using the measures and tools suggested in (Stutz and Geiger

2018)24. We sample 10,000 points on the mesh reconstructed from the 24: https://github.com/

davidstutz/mesh-evaluationSDFs and the ground-truth mesh uniformly and compute two evaluation

https://github.com/davidstutz/mesh-evaluation
https://github.com/davidstutz/mesh-evaluation

58 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

Input color TSDF baseline baseline + hull baseline +
intersection

Co-Section (ours)

Figure 4.6: Qualitative object shape reconstruction results on Co-Fusion sequences. From top to bottom: truck (ToyCar3), clock
(SlidingClock), bottle and trash can (PlaceItems), and teddy (PlaceItems). The TSDF shape only includes the observed part of the objects.
While the hull constraint limits the surface in the observed free space, the intersection constraint closes the object shape at intersections
with other shapes. Our full approach recovers closed surfaces which approximate the actual object shapes. Note that we do not show
“person” objects such as the arm in the bottle and trash can example.

metrics. The first of these, accuracy, is the average distance of each sample
point in the reconstructed mesh to the ground-truth mesh:

Acc
(︁
Prec ,Mgt

)︁
=

1
|Prec |

∑︂
p∈Prec

min
f∈Fgt

𝑑△(p, f), (4.27)

where Prec is the set of sampled points from Vrec and 𝑑△(p, f) is the point-
to-triangle distance of point p and triangle face f. The second, completeness,
is the average distance of each sample from the ground-truth mesh to
the reconstructed mesh:

Comp
(︁
Pgt ,Mref

)︁
=

1|︁|︁Pgt
|︁|︁ ∑︂

p∈Pgt

min
f∈Frec

𝑑△(p, f), (4.28)

4.5 Experiments 59

Table 4.1: Accuracy and completeness (lower is better) on the Co-Fusion ToyCar3 sequence for different variants of our method. Best in
bold. Our full approach is clearly superior in completeness and also performs well in accuracy despite the fact that it “guesses” parts of
the object surface from the constraints.

Truck Car Airplane Average

Method Acc Comp Acc Comp Acc Comp Acc Comp

TSDF 0.0095 0.0376 0.0020 0.0277 0.0365 0.0281 0.0160 0.0311
baseline 0.0334 0.0328 0.0155 0.0196 0.1569 0.0229 0.0686 0.0251
baseline + hull 0.0234 0.0239 0.0118 0.0123 0.1510 0.0175 0.0621 0.0179
baseline + intersection 0.0326 0.0116 0.0163 0.0109 0.1732 0.0203 0.0740 0.0143
Co-Section 0.0088 0.0110 0.0052 0.0102 0.0872 0.0162 0.0337 0.0125

where Pgt is the point set sampled from Vgt. Unfortunately, for this
evaluation the alignment of the ground-truth mesh is not provided by
the data set. Thus, we manually align scale and pose of the ground-truth
meshes with our output meshes by selecting point correspondences on
the meshes. Note that we only need to align each object once for each
optimized map (using the full approach), since all reconstructions are
based on the EM-Fusion result and share the same pose estimate.

Results. Table 4.1 lists accuracy and completeness for the objects on
the synthetic ToyCar3 sequence of the Co-Fusion data set. Our full
optimization approach strongly improves the completeness of the shape
towards the TSDF map. For two of three objects, accuracy is reduced
towards the TSDF map. However, this is expected since our method
in-paints new object parts which are not modeled by the TSDF. Still, the
accuracy of our full approach is better than any variant of the optimization
method. We also observe this trend for the average over the three objects
in Table 4.1. Note that the larger airplane model results in overall larger
error measures (especially for accuracy) and thus has a higher impact on
the average. We observe that while the hull constraint tends to improve
accuracy, the intersection constraint tends to improve completeness. We
conclude that both the hull and intersection constraints are important
to achieve the performance of the full model. In Figure 4.7 we show
accuracy and completeness per mesh vertex (point-to-triangle distance).
For accuracy, this visualization highlights large distances for estimated
surfaces that are far from the ground truth. For completeness, parts of the
ground truth model that were not well recovered in the reconstruction
yield high distances. The color map is computed based on the maximum
accuracy or completeness (whichever is larger) for each object.

Our method relies on accurate pose estimates by the underlying dynamic
SLAM method. In case of inaccurate pose estimates, hull and intersection
volumes might become inaccurate as well, leading to inaccuracies in the
surface reconstruction. While we have not observed this problem in our
experiments, a stronger weighting of the data term𝐸data in Equation (4.13)
could alleviate this problem to some extent.

Computation Times. The intersection constraint can be computed for
several voxels in parallel on a GPU. In our experiments this computation
takes under 10 ms on average per volume. Similarly, the data measure-
ments and the hull constraint can be computed fast for all the voxels on
parallel hardware. The optimization itself is more time-consuming. For
the object volumes in our experiments, our implementation of our variant

60 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

TSDF baseline baseline + hull baseline + intersection Co-Section (ours)

−0.2
0.0

0.2 −0.2
0.0

0.2

0.0

0.2

−0.2
0.0

0.2 −0.2
0.0

0.2

0.0

0.2

−0.2
0.0

0.2 −0.2
0.0

0.2

0.0

0.2

−0.2
0.0

0.2 −0.2
0.0

0.2

0.0

0.2

−0.2
0.0

0.2 −0.2
0.0

0.2

0.0

0.2

0.00

0.05

0.10

0.15

0.20

0.25

A
cc
ur
ac
y

0.0
0.2 −0.2

0.0
0.2

−0.1
0.0
0.1

0.0
0.2 −0.2

0.0
0.2

−0.1
0.0
0.1

0.0
0.2 −0.2

0.0
0.2

−0.1
0.0
0.1

0.0
0.2 −0.2

0.0
0.2

−0.1
0.0
0.1

0.0
0.2 −0.2

0.0
0.2

−0.1
0.0
0.1

0.00

0.05

0.10

0.15

0.20

0.25

C
om

pl
et
en

es
s

−0.10.0
0.1 −0.1 0.0 0.1

−0.1
0.0
0.1

−0.10.0
0.1 −0.1 0.0 0.1

−0.1
0.0
0.1

−0.10.0
0.1 −0.1 0.0 0.1

−0.1
0.0
0.1

−0.10.0
0.1 −0.1 0.0 0.1

−0.1
0.0
0.1

−0.10.0
0.1 −0.1 0.0 0.1

−0.1
0.0
0.1

0.00

0.02

0.04

0.06

0.08

0.10

A
cc
ur
ac
y

−0.1
0.0

0.1 −0.10.0 0.1

−0.1
0.0
0.1

−0.1
0.0

0.1 −0.10.0 0.1

−0.1
0.0
0.1

−0.1
0.0

0.1 −0.10.0 0.1

−0.1
0.0
0.1

−0.1
0.0

0.1 −0.10.0 0.1

−0.1
0.0
0.1

−0.1
0.0

0.1 −0.10.0 0.1

−0.1
0.0
0.1

0.00

0.02

0.04

0.06

0.08

0.10

C
om

pl
et
en

es
s

−0.5
0.0

0.5 −0.5
0.0

0.5
−0.5

0.0

0.5

−0.5
0.0

0.5 −0.5
0.0

0.5
−0.5

0.0

0.5

−0.5
0.0

0.5 −0.5
0.0

0.5
−0.5

0.0

0.5

−0.5
0.0

0.5 −0.5
0.0

0.5
−0.5

0.0

0.5

−0.5
0.0

0.5 −0.5
0.0

0.5
−0.5

0.0

0.5

0.0

0.1

0.2

0.3

0.4

0.5

A
cc
ur
ac
y

−0.25
0.00

0.25 0.0
0.5

0.00

0.25

−0.25
0.00

0.25 0.0
0.5

0.00

0.25

−0.25
0.00

0.25 0.0
0.5

0.00

0.25

−0.25
0.00

0.25 0.0
0.5

0.00

0.25

−0.25
0.00

0.25 0.0
0.5

0.00

0.25

0.0

0.1

0.2

0.3

0.4

0.5

C
om

pl
et
en

es
s

Figure 4.7: Accuracy (top row per object) and completeness (bottom row per object) of object shape reconstruction results on the
Co-Fusion ToyCar3 sequence. Color indicates distance of mesh vertices to the other mesh. From top to bottom: truck, car, airplane. Our
full approach is clearly superior to all other variants in accuracy as well as completeness.

of the Hessian-IMLS (Schroers et al. 2014) achieves computation times of
several seconds (average 0.98 s, peak 19.8 s). The peak runtime typically
occurs when a mostly empty volume needs to be filled from sparse
measurements after initialization. We consider further parallelization
and improvement of the runtime efficiency of our approach as future
work. Schroers et al. (2014) report computation times between 1 s and 4 s
for volumes with resolutions up to 4003 (our resolution is 643/2563 for
objects/background, respectively).

4.6 Conclusion 61

4.6 Conclusion

In this chapter we propose a novel energy minimization approach
for object shape completion in dynamic scenes. We incorporate hull
and intersection constraints between objects into a formulation which
optimizes for the implicit surface in a volumetric representation. The
data terms of our method are obtained with a dynamic object-level
SLAM front-end which detects, segments, tracks and maps the objects
in local TSDF volumes. In our experiments, we demonstrate that our
formulation can achieve object shape completion which is physically
plausible. We analyze the contributions of the constraints for accuracy
and completeness of object shape reconstruction. Our approach improves
completeness over the TSDF reconstruction and can achieve high accuracy
even if parts of the object are unobserved.

In future work, we would like to investigate the incorporation of further
regularization constraints to achieve improved scene reconstruction.
Currently, our method is not real-time capable. Optimization of a volume
takes from under a second to several seconds. This can still be interesting
for back-end optimization in a parallel thread with the front-end. Devising
methods for increasing the run-time efficiency is an interesting direction
for future research.

62 4 Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints

DiffSDFSim: Differentiable
Rigid-Body Dynamics With

Implicit Shapes 5
5.1 Introduction 63
5.2 Related Work 65
5.3 Background 66
5.3.1 Velocity-Based Time

Stepping Dynamics 66
5.3.2 Differentiable Time-

Stepping Dynamics 70
5.3.3 Differentiable SDF Shape

Representation 72
5.3.4 Contact Detection Between

SDFs 72
5.4 Method 73
5.4.1 Differentiable Inertia

Tensors 74
5.4.2 Differentiable Contact

Modeling 74
5.4.3 Differentiable Time of

Contact 76
5.5 Experiments 78
5.5.1 Shape Spaces 79
5.5.2 Evaluation Metrics 80
5.5.3 Shape Identification 80
5.5.4 Friction and Mass Identifi-

cation, Force Optimization 85
5.5.5 Fitting to Depth Image

Observations 87
5.5.6 Runtime 93
5.5.7 Limitations 93
5.6 Conclusion 94

The contents of this chapter are based on the peer-reviewed conference
publication

©2021 IEEE. Reprinted, with permission, from Strecke, Michael and Joerg
Stueckler (2021). ‘DiffSDFSim: Differentiable Rigid-Body Dynamics With
Implicit Shapes’. In: 2021 International Conference on 3D Vision (3DV). IEEE.
doi: 10.1109/3dv53792.2021.00020, (Strecke and Stueckler 2021),

with the following co-author contributions:
Ideas Experiments Analysis Writing

Michael Strecke 50% 100% 80% 65%
Jörg Stückler 50% 0% 20% 35%

This chapter contains tables, figures and according descriptions that
were originally part of the supplementary material of the conference
publication.

Compared to the conference publication, this chapter contains more
detailed preliminaries and unified notation with the rest of the thesis.

5.1 Introduction

So far, we only used the 3D information available in the observed scene
and simple plausibility reasoning in the recorded scenes to reconstruct
and track dynamic objects. We will now combine a stronger prior on
the present shapes with a more sophisticated physical model for shape
estimation. For combining shape estimation with physical plausibility, we
now take an orthogonal approach to Chapter 4. Previously, we assumed
fixed given object trajectories and optimized object geometries for physical
plausibility by reasoning about empty space that is not occupied by an
object. We now want to improve the geometry based on plausible object
motion in this chapter.

Towards this goal, we model object motion using a differentiable physics
simulation. Differentiable physics simulations have recently attracted
interest in the computer vision and robotics communities as they allow
for the identification of physical parameters like friction by comparing tra-
jectories with estimated parameters to observation trajectories (Geilinger
et al. 2020; Hu, Anderson, et al. 2020; Krishna Murthy et al. 2021). The
estimated parameters can then be used, e.g., for real-to-sim transfer1 1: i. e., replicating real scenes in simula-

tion(Geilinger et al. 2020), which has the potential to allow autonomous
agents to reason about interactions with the environment.

However, existing approaches have frequently been limited to objects
with primitive shapes or shapes that are known in advance. They are thus
not directly applicable in our case, where we want to optimize the shape
as part of the physical properties from coarse estimates. To address this
issue, we develop a framework capable of simulating objects of complex
shapes and optimizing the shape and other physical parameters, such as
mass and friction, of these objects (see Figure 5.1). We represent shapes

https://doi.org/10.1109/3dv53792.2021.00020

64 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Figure 5.1: Shape and physics parame-
ter optimization through differentiable
physics simulation. We represent arbi-
trary watertight shapes by signed dis-
tance functions (SDF) and optimize the
parameters through the physics-based
dynamics to fit trajectories and depth im-
age observations.

environment

differentiable simulator

shape parameters

& physics parameters

(friction,mass,etc)

error function

forward

backprop

observations

using signed distance functions (SDFs)2, implicit shape representations2: see Section 2.2
that allow for low-dimensional description and detection of collisions
for complex shapes. We propose a new differential through the physical
dynamics with contacts that allows us to optimize shape parameters.

While optimizing for general shapes might not be feasible, recent advances
in neural implicit models were able to show shape optimization in a
low-dimensional latent space using partial depth observations (Park et al.
2019) or rendered silhouettes via differentiable mesh extraction (Remelli
et al. 2020) and differentiable rendering (Kato et al. 2018). We thus use
learned shape spaces like these and primitive parametric shape models
(see Subsection 2.2.1) as a stronger prior on the present shapes.

Our approach is based on a class of constraint velocity-based dynamics
simulation methods (Stewart and Trinkle 1996) which lead to linear
complementarity problems (LCPs). We build upon the work by Avila
Belbute-Peres et al. (2018), who proposed an approach for differentiating
the LCPs at the solution to make the simulation differentiable. We
represent shapes using signed distance functions (SDFs, see Section 2.2),
which represent the object shape as the zero-level set of the signed
distance of 3D points to the surface. The sign of the distance defines
whether the queried point is inside or outside the object. In our approach,
we assume that the SDF is differentiable for the coordinates of the 3D
points and shape parameters3. We devise methods for differentiating time3: see Subsection 2.2.1
of contact and mass-inertia tensors which enables gradient-based shape
optimization. In experiments, we demonstrate that our approach can
be used in optimization approaches which identify physical parameters
such as shape, forces, mass and friction from sample trajectories and
depth image observations.

In summary, the contributions of our work are:

▶ We propose a novel differentiable physics simulation approach
which supports contact handling and differentiable mass-inertia
tensor calculation for arbitrary watertight shapes represented as
SDFs.

▶ We develop a novel formulation of differentiable time of contact
which enables gradient-based shape optimization through collision
constraints.

▶ We demonstrate that our approach makes shape optimization and
system identification feasible for shapes modeled by SDFs from
object trajectories and depth image observations in several synthetic
scenarios and a real RGB-D image sequence.

5.2 Related Work 65

5.2 Related Work

Physics Simulation. Over the last decades, a large body of methods
for physical simulation has been developed in the computer graphics
and mechanical engineering communities (Bender, Erleben, et al. 2013).
Physics-based simulation methods can be distinguished as following
different paradigms: time stepping or event-driven impulse-based.

Time stepping methods formulate the dynamics by Newton-Euler equa-
tions and add equality and inequality constraints to model joints, contacts
and collisions. The methods can be phrased as position-based (Müller et al.
2007), velocity-based (Anitescu and Potra 1997; Stewart and Trinkle 1996),
or acceleration-based (Baraff 1996) optimization problems. Position-based
methods often solve for collision and joint constraints using Gauss-Seidel
and fast projection methods. Friction and impulse-conservation laws have
to be included in a post-processing step which augment the velocities of
the objects. While the methods have been demonstrated to yield visibly
plausible results, they are typically difficult to tune for accuracy. Position-
based methods can also be extended to simulate deformable objects
and fluids by solving collision and deformation constraints between
particles. Recently, a differentiable position-based approach has been
proposed (Macklin, Erleben, Müller, Chentanez, Jeschke, and T.-Y. Kim
2020). Acceleration-based approaches estimate constraint forces through
solving complementarity problems. They can suffer from indeterminacy
for Coulomb friction which can be solved by reformulating the opti-
mization problem with contact impulses, leading to a velocity-based
formulation (Stewart and Trinkle 1996). In this chapter, we also follow
a constraint-based velocity-based approach as proposed in (Anitescu
and Potra 1997). Avila Belbute-Peres et al. (2018) make this formulation
differentiable at the solution using the OptNet approach (Amos and
Kolter 2017). More recently, the method has also been extended to in-
crease efficiency for many objects and mesh-based collision detection
(Qiao et al. 2020). Geilinger et al. (2020) propose a different approach for
differentiable simulation. As hard constraints for frictional contact are
expensive to solve exactly and difficult to differentiate, they propose a
mollified contact model which can be applied for rigid and deformable
objects. Their approach allows them to tune for a trade-off between
accuracy and smoothness of the objective landscapes. Differently, we
represent shapes using signed distance functions in a differentiable way
and derive a novel time of contact differential which allows for shape
optimization from collision constraints.

Another line of research are event-driven impulse-based methods (Bender
and Schmitt 2006; Mirtich and Canny 1995; Weinstein et al. 2006) which
have been introduced in the seminal work of (Mirtich and Canny 1995).
Impulse-based methods iteratively update the velocities of the rigid
bodies at the events of contacts until all joint and collision constraints are
satisfied.

Other related simulation methods are finite element (Terzopoulos and
Fleischer 1988) or meshless methods such as (Hu, Liu, et al. 2019; Sulsky
et al. 1995) which are used to simulate deformables and fluids. In contrast
to our LCP-based rigid-body physics formulation, these methods cannot
model strictly rigid objects or hard collision constraints.

66 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Physical System Identification. Physical system identification from
observations has recently attracted attention in the machine learning and
computer vision communities. Early approaches use non-differentiable
physics engines (Wu, Lu, et al. 2017; Wu, Yildirim, et al. 2015) such as
Bullet (Coumans 2010) or integrate specific physical laws for each scenario
(Wu, Lim, et al. 2016). Lidec et al. (2021) propose a variant of the staggered
projections method to identify Coulomb friction coefficients from objects
observed in video via markers. Weiss et al. (2020) estimate material prop-
erties of deformables by matching a differentiable deformable simulation
to point cloud observations. In (Kandukuri, Achterhold, et al. 2020) a
differentiable physics simulation based on (Avila Belbute-Peres et al.
2018) is embedded as layer into a deep neural network which infers the
physical state from images and predicts the next states. Krishna Murthy
et al. (2021) proposed gradSim, a framework that combines differentiable
simulation and differentiable rendering for system identification from
video and visual control. The method uses penalty based resolution of
contacts for rigid body modeling. Yet, these approaches lack a physical
model which supports differentiation for arbitrary watertight shapes like
ours.

Parametric Shape Optimization. In recent years, learning based
implicit models were proposed for representing families of shapes
(Mescheder et al. 2019; Park et al. 2019). Once these models are trained,
their decoder models can be interpreted as differentiable parametric
shape models (see Subsection 2.2.1). Park et al. (2019) demonstrated
that the latent code representing the shape can be optimized to fit
depth measurements. Extending the model with differentiable mesh
extraction, Remelli et al. (2020) further demonstrated optimization of the
shape latent codes e.g., for aerodynamics or to match a given silhouette
via differentiable rendering (Kato et al. 2018). In this chapter, we also
optimize shape parameters of parametric SDF models. Different to
the mentioned methods, we combine the parametric models with a
differentiable simulator and fit the shape to match a simulated motion
with known parameters.

5.3 Background

We base our formulation on a differentiable velocity-based constraint-
based time stepping method. We extend the approach with differentiable
SDF shape representations, inertia tensors and time of contact.

5.3.1 Velocity-Based Time Stepping Dynamics

Constraint-based time stepping methods formulate the dynamics as solv-
ing the Newton-Euler equations with equality and inequality constraints
to model joints, collisions and frition (Anitescu and Potra 1997; Avila
Belbute-Peres et al. 2018). The Newton-Euler equations relate wrenches
(i. e., torques and forces) acting on the objects in the scene with their
motion, i. e.,

f = Mẍ + Coriolis forces. (5.1)

5.3 Background 67

We denote wrenches by a time dependent mapping f : [0,∞) → ℝ6𝑁 .
The 𝑁 objects in the scene are described by their mass-inertia matrices
M ∈ ℝ6𝑁×6𝑁 and their poses (positions and orientations) x ∈ SE(3)𝑁 ,
where SE(3) is the special Euclidean group. The block-diagonal matrix
M has the form

M =
⎛⎜⎜⎝
M1

. . .
M𝑁

⎞⎟⎟⎠ , where M𝑖 =

(︃
I𝑖 0
0 𝑚𝑖𝕀3

)︃
∈ ℝ6×6 , (5.2)

and I𝑖 denotes the shape-specific inertia tensor, 𝑚𝑖 the mass of the
object and 𝕀3 the 3 × 3 identity matrix. We represent the velocities
ẋ𝑖 = 𝝃𝑖 =

(︁
𝝎⊤𝑖 , v

⊤
𝑖

)︁⊤ of object 𝑖 by twist coordinates4, which stack 4: see Subsection 2.1.2
rotational and linear velocities 𝝎𝑖 : [0,∞) → ℝ3 , v𝑖 : [0,∞) → ℝ3,
respectively (M. B. Cline 2002).

To simulate joints, collisions and friction, corresponding constraints are
included. When including friction, the solution of acceleration-based
dynamics equations can become indeterminate (M. B. Cline 2002). Hence,
acceleration is discretized as

ẍ = �̇� =
𝝃𝑡+ℎ − 𝝃𝑡

ℎ
, (5.3)

where 𝝃𝑡+ℎ and 𝝃𝑡 are the velocities in successive time steps at times
𝑡 + ℎ and 𝑡, and ℎ is the time step size. Plugging Equation (5.3) into
Equation (5.1) (including the Coriolis forces in fext), multiplying both
sides by ℎ and adding M𝝃𝑡 yields

M𝝃𝑡+ℎ = M𝝃𝑡 + ℎfext. (5.4)

Joints between objects impose equality constraints 𝑔𝑒(x) = 0 on their poses
and restrict degrees of freedom in their motion. The velocity constraints
�̇�𝑒(x) = J𝑒𝝃 = 0 are obtained by computing the derivative of the pose
constraints, relating velocities 𝝃 to the derivative with the corresponding
Jacobian J𝑒 . In another interpretation, the rows of the Jacobian J𝑒 are
the basis vectors of the forces required to keep the constraint satisfied.
Solving for the constraint forces thus reduces to solving for Lagrange
multipliers 𝝀𝑒 , which determine the magnitude of the constraint force.
Adding the constraint forces and the velocity constraints to Equation (5.4),
we get

M𝝃𝑡+ℎ = M𝝃𝑡 + ℎ
forces combining external and constraint forces⏟ˉ̄ ˉ̄ ˉ̄⏞⏞ˉ̄ ˉ̄ ˉ̄⏟

fext + J⊤𝑒 𝝀𝑒
J𝑒𝝃𝑡+ℎ = 0,

(5.5)

which we can write in matrix form as(︃
M −J⊤𝑒
J𝑒 0

)︃ (︃
𝝃𝑡+ℎ
𝝀𝑒

)︃
=

(︃
M𝝃𝑡 + ℎfext

0

)︃
. (5.6)

Collisions give rise to inequality constraints 𝑔𝑐(x) ≥ 0 in the poses which
prevent objects from interpenetrating each others. In our 3D simulation,
the collision pose constraint function is 𝑔𝑐(x) = n⊤

(︂
p𝑤𝑖 − p𝑤𝑗

)︂
− 𝜖, where

p𝑤𝑖 := x𝑖+p𝑖𝑖 = x𝑖+R𝑖p𝑖 is the contact point on object 𝑖 in the world frame

68 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

(indicated by the superscript 𝑤), n is the contact normal in world frame,
and R𝑖 ∈ SO(3) is the rotation of the object frames relative to the world
frame. As indicated by the superscript 𝑖, the contact point p𝑖𝑖 is given in
relative coordinates of body 𝑖. We find a velocity constraint through time
differentiation of the pose constraint as (M. B. Cline 2002):

�̇�𝑐(x) = J𝑐𝝃 ≥ 0, (5.7)

where J𝑐 is the Jacobian of the contact pose constraint function, which
follows from

�̇�(x) = n⊤(ṗ𝑤𝑖 − ṗ𝑤𝑗) (5.8)

= n⊤
(︂(︂

v𝑖 + 𝝎𝑖 × p𝑖𝑖
)︂
−

(︂
v𝑗 + 𝝎j × p𝑗𝑗

)︂)︂
(5.9)

=

(︂ (︁
p𝑖𝑖 × n

)︁⊤ n⊤
)︂

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
J𝑖

(︃
𝝎𝑖

v𝑖

)︃
⏞⏟⏟⏞

𝝃𝑖

+
(︂
−

(︂
p𝑗𝑗 × n

)︂⊤
−n⊤

)︂
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

J𝑗

(︃
𝝎 𝑗

v𝑗

)︃
⏞⏟⏟⏞

𝝃𝑗

(5.10)

=

(︃
J𝑖 0
0 J𝑗

)︃
⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞

J𝑐

(︃
𝝃𝑖
𝝃𝑗

)︃
⏞⏟⏟⏞

𝝃

= J𝑐𝝃. (5.11)

The constraint in Equation (5.7) only prevents penetration between objects.
We will consider collisions with restitution in this work, i. e., after collision
the velocity along the contact normal should be inverted and scaled with
the restitution coefficient 𝑘. Incorporating this condition into Equation (5.7)
yields:

J𝑐𝝃𝑡+ℎ ≥ −𝑘J𝑐𝝃𝑡 =: −c. (5.12)

Similar as before, the Jacobian J𝑐 forms a basis for the corresponding
constraint forces, and we can reduce finding the constraint forces to
finding their magnitudes in the Lagrange multiplier vector 𝝀𝑐 , i. e., J⊤𝑐 𝝀
approximates the contact force at the solution. The collision constraint
Equation (5.12) can be rewritten as

a = J𝑐𝝃𝑡+ℎ + c ≥ 0, (5.13)

interpreting a as the acceleration along the contact normal. The constraint
in Equation (5.13) ensures the acceleration a causes the objects to move
apart. Furthermore, the contact force magnitude 𝝀𝑐 must push the objects
apart, i. e., 𝝀𝑐 ≥ 0 and component-wise either a or 𝝀𝑐 must be zero (see
(M. B. Cline 2002) for details), leading to a⊤𝝀𝑐 = 0. We can now include
these constraints in Equation (5.6), including a as slack variables and
𝝀𝑐 as Lagrange multipliers (similar to 𝝀𝑒), leading to complementarity
constraints (Boyd and Vandenberghe 2004):

⎛⎜⎝
0
0
−a

⎞⎟⎠ + ⎛⎜⎝
M −J⊤𝑒 −J⊤𝑐
J𝑒 0 0
J𝑐 0 0

⎞⎟⎠ ⎛⎜⎝
𝝃𝑡+ℎ
𝝀𝑒
𝝀𝑐

⎞⎟⎠ =
⎛⎜⎝
M𝝃𝑡 + ℎfext

0
−c

⎞⎟⎠ ,
subject to a ≥ 0, 𝝀𝑐 ≥ 0, a⊤𝝀𝑐 = 0.

(5.14)

Friction also leads to inequality constraints as in the Coulomb friction
model, the magnitude of the frictional force must be smaller than 𝜇 times

5.3 Background 69

the magnitude of the normal force
∥︁∥︁f 𝑓

∥︁∥︁ ≤ 𝜇 ∥f𝑐 ∥, where 𝜇 is the coefficient
of friction. This constraint limits the contact force (i. e., the combined
collision and friction forces) to lie inside a spherical cone, which we
approximate with a polyhedral cone using 8 directions d1 , . . . , d8 ∈ ℝ3

with unit norm and equal angular spacing on the tangential plane. In
general, the number of directions can be chosen arbitrarily5, and use 8 5: as long as for any direction d, the

opposite direction −d is also included
(M. B. Cline 2002)

directions as a trade-off between efficiency and accuracy and determine
the directions as

d1 =
n⊥

∥n⊥∥2
, d2 =

d1 × n
∥d1 × n∥2

,

d3 =
d1 + d2

∥d1 + d2∥2
, d4 =

d3 × n
∥d3 × n∥2

,

d4+𝑖 = −d𝑖 , 𝑖 ∈ {1, . . . , 4},

(5.15)

where p⊥ = p × u𝑗∗ with 𝑗∗ = arg min𝑗∈{0,1,2}
|︁|︁𝑝 𝑗 |︁|︁ and u𝑗 ∈ ℝ3 is the

𝑗-th unit vector. This set of directions allows us to compute the friction
Jacobian J 𝑓 similar to J𝑐 (Equation (5.11)), now replacing the contact
normal direction n with directions d1 , . . . , d8 along the tangential contact
surface.

The set of contact forces lying inside this polyhedral cone is then given
by {︂

J⊤𝑐𝑖𝜆𝑐𝑖 + J⊤𝑓𝑖𝝀 𝑓𝑖
|︁|︁|︁ 𝜆𝑐𝑖 ≥ 0, 𝝀 𝑓𝑖 ≥ 0, e⊤𝑖 𝝀 𝑓𝑖 ≤ 𝜇𝑖𝜆𝑐𝑖

}︂
, (5.16)

where 𝑖 denotes the contact index, e𝑖 = 1 ∈ ℝ8, 𝜆𝑐𝑖 is the entry of 𝝀𝑐
corresponding to contact 𝑖, 𝝀 𝑓𝑖 ∈ ℝ8 are the Lagrange multipliers for
contact 𝑖 in all friction directions and 𝜇𝑖 is the corresponding coefficient of
friction. Intuitively, the conditions in Equation (5.16) mean that the force
magnitudes 𝜆𝑐𝑖 and 𝝀 𝑓𝑖 must be positive and the sum of friction force
magnitudes e⊤𝑖 𝝀 𝑓𝑖 must be at most 𝜇𝑖 times the collision force magnitude
𝜆𝑐𝑖 .

This leads to two complementarity constraints (M. B. Cline 2002):

𝛾𝑖e𝑖 + J 𝑓𝑖𝝃𝑡+ℎ ≥ 0 complementary to 𝝀 𝑓𝑖 ≥ 0,
𝜇𝑖𝜆𝑐𝑖 − e⊤𝑖 𝝀 𝑓𝑖 ≥ 0 complementary to 𝛾𝑖 ≥ 0,

(5.17)

which limit the friction impulse 𝝀 𝑓𝑖 to 0 if 𝜆𝑐𝑖 = 0 (as otherwise 𝜇𝑖𝜆𝑐𝑖 −
e⊤𝑖 𝝀 𝑓𝑖 < 0) and tie the two constraint together via 𝛾𝑖 if the normal impulse
𝜆𝑐𝑖 is positive. In the latter case, without tangential motion (J 𝑓𝑖𝝃𝑡+ℎ = 0),
we have 𝛾𝑖 = 0, allowing a cumulated friction force (e⊤𝑖 𝝀 𝑓𝑖) smaller than
𝜇𝑖𝜆𝑐𝑖 , and with tangential motion 𝛾𝑖 will be positive, forcing the friction
impulse to the maximal possible magnitude. Stacking the constraint force
magnitudes 𝝀 𝑓𝑖 in a vector 𝝀 𝑓 ∈ ℝ8𝑛 , 𝛾𝑖 in Lagrange multipliers 𝜸 ∈ ℝ𝑛 ,
the coefficients of friction in a diagonal matrix 𝝁 ∈ ℝ𝑛×𝑛 , and the vectors
e𝑖 in a block-diagonal matrix E ∈ ℝ8𝑛×𝑛 for 𝑛 contact points

𝝁 =
⎛⎜⎜⎝
𝜇1

. . .
𝜇𝑛

⎞⎟⎟⎠ and E =
⎛⎜⎜⎝
e1

. . .
e𝑛

⎞⎟⎟⎠ , (5.18)

lets us rewrite Equation (5.17) as J 𝑓 𝝃𝑡+ℎ + E𝜸 ≥ 0 and 𝝁𝝀𝑐 ≥ E⊤𝝀 𝑓 .
Similar to contacts and joint constraints, the friction forces are given by
J⊤𝑓 𝝀 𝑓 . Further, adding slack variables 𝝈 , 𝜻 corresponding to 𝝀 𝑓 and 𝜸, we

70 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

can add the constraints to Equation (5.14) to get the constrained dynamics
model as the following linear complementarity problem (LCP):

⎛⎜⎜⎜⎜⎜⎝
0
0
−a
−𝝈
−𝜻

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝
M −J⊤𝑒 −J⊤𝑐 −J⊤𝑓 0
J𝑒 0 0 0 0
J𝑐 0 0 0 0
J 𝑓 0 0 0 E
0 0 𝝁 −E⊤ 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝝃𝑡+ℎ
𝝀𝑒
𝝀𝑐
𝝀 𝑓
𝜸

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
M𝝃𝑡 + ℎf𝑒𝑥𝑡

0
−c
0
0

⎞⎟⎟⎟⎟⎟⎠
,

subject to ⎛⎜⎝
a
𝝈
𝜻

⎞⎟⎠ ≥ 0, ⎛⎜⎝
𝝀𝑐
𝝀 𝑓
𝜸

⎞⎟⎠ ≥ 0, ⎛⎜⎝
a
𝝈
𝜻

⎞⎟⎠
⊤ ⎛⎜⎝

𝝀𝑐
𝝀 𝑓
𝜸

⎞⎟⎠ = 0.

(5.19)

The LCP is solved using a primal-dual algorithm as described in (Boyd and
Vandenberghe 2004; Mattingley and Boyd 2012) and can be differentiated
for the input states, forces and physical parameters at the solution (Avila
Belbute-Peres et al. 2018) as we will explain in Subsection 5.3.2.

5.3.2 Differentiable Time-Stepping Dynamics

Amos and Kolter (2017) proposed an approach for computing derivatives(Amos and Kolter 2017): OptNet: Differ-
entiable Optimization as a Layer in Neural
Networks

of quadratic programs (QPs) at their solution, effectively enabling the
computation of gradients through the optimization problem. Avila
Belbute-Peres et al. (2018) applied the similar derivations to the LCP in(Avila Belbute-Peres et al. 2018): End-to-

End Differentiable Physics for Learning and
Control

Equation (5.19) for differentiating through the physics simulation.

In a first step, Avila Belbute-Peres et al. (2018) reorder Equation (5.19)
to get a block-diagonal matrix structure by moving the second row and
column to the last row/column:

⎛⎜⎜⎜⎜⎜⎝
0
−a
−𝝈
−𝜻
0

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝
M −J⊤𝑐 −J⊤𝑓 0 −J⊤𝑒
J𝑐 0 0 0 0
J 𝑓 0 0 E 0
0 𝝁 −E⊤ 0 0
J𝑒 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
𝝃𝑡+ℎ
𝝀𝑐
𝝀 𝑓
𝜸
𝝀𝑒

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
M𝝃𝑡 + ℎf𝑒𝑥𝑡
−c
0
0
0

⎞⎟⎟⎟⎟⎟⎠
. (5.20)

They then multiply the equation by −1 on both sides, applying the
sign change to 𝝃𝑡+ℎ instead of the first column of the matrix in the
matrix-vector product and to the matrix columns for the rest:

⎛⎜⎜⎜⎜⎜⎝
0
a
𝝈
𝜻
0

⎞⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎝
M J⊤𝑐 J⊤𝑓 0 J⊤𝑒
J𝑐 0 0 0 0
J 𝑓 0 0 −E 0
0 −𝝁 E⊤ 0 0
J𝑒 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎝
−𝝃𝑡+ℎ
𝝀𝑐
𝝀 𝑓
𝜸
𝝀𝑒

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝
−M𝝃𝑡 − ℎf𝑒𝑥𝑡

c
0
0
0

⎞⎟⎟⎟⎟⎟⎠
. (5.21)

Finally, they identify the following blocks in Equation (5.21):

x := −𝝃𝑡+ℎ q := M𝝃𝑡 + ℎfext

y := 𝝀𝑒 A := J𝑒

z := ⎛⎜⎝
𝝀𝑐
𝝀 𝑓
𝜸

⎞⎟⎠ G := ⎛⎜⎝
J𝑐
J 𝑓
0

⎞⎟⎠
s := ⎛⎜⎝

a
𝝈
𝜻

⎞⎟⎠
m := ⎛⎜⎝

c
0
0

⎞⎟⎠
F := ⎛⎜⎝

0 0 0
0 0 −E
−𝝁 E⊤ 0

⎞⎟⎠ ,
(5.22)

5.3 Background 71

allowing to rewrite the equation as

⎛⎜⎝
0
s
0

⎞⎟⎠ + ⎛⎜⎝
M G⊤ A⊤
G F 0
A 0 0

⎞⎟⎠ ⎛⎜⎝
x
z
y

⎞⎟⎠ =
⎛⎜⎝
−q
m
0

⎞⎟⎠ ,
subject to s ≥ 0, z ≥ 0, s⊤z = 0.

(5.23)

From this formulation, they followed Amos and Kolter (2017) and applied
matrix differential calculus (Magnus and Neudecker 1988) to compute
the matrix differentials of the equations resulting from the system in
Equation (5.23) at the solution

(︁
x∗⊤ , z∗⊤ , y∗⊤

)︁⊤:

⎛⎜⎝
M G⊤ A⊤

diag (z∗)G diag (Gx∗ + Fz∗ −m) + F 0
A 0 0

⎞⎟⎠ ⎛⎜⎝
dx
dz
dy

⎞⎟⎠
=

⎛⎜⎝
−dMx∗ − dA⊤y∗ − dG⊤z∗ − dq

−diag (z∗)dGx∗ − diag (z∗)dFz∗ + diag (z∗)dm
−dAx∗

⎞⎟⎠ . (5.24)

Given the upstream gradient 𝜕𝐸
𝜕x∗ relating some loss function 𝐸 to the

resulting velocity from solving Equation (5.23) x∗ = −𝝃∗𝑡+ℎ , the gradients
for the input parameters can be computed by the chain rule. Avila
Belbute-Peres et al. (2018) do this by first defining

⎛⎜⎝
dx
dz
dy

⎞⎟⎠ =
⎛⎜⎝

M G⊤ A⊤
diag (z∗)G diag (Gx∗ + Fz∗ −m) + F 0

A 0 0

⎞⎟⎠
−⊤ ⎛⎜⎜⎝

(︂
𝜕𝐸
𝜕x∗

)︂⊤
0
0

⎞⎟⎟⎠
(5.25)

and multiplying Equation (5.24) with its transpose yielding

𝜕𝐸
𝜕x∗

dx =
⎛⎜⎝
dx
dz
dy

⎞⎟⎠
⊤ ⎛⎜⎝

−dMx∗ − dA⊤y∗ − dG⊤z∗ − dq
−diag (z∗)dGx∗ − diag (z∗)dFz∗ + diag (z∗)dm

−dAx∗
⎞⎟⎠ ,

(5.26)
from which the following derivatives for the components defined in
Equation (5.22) can be derived:

𝜕𝐸
𝜕q

= −dx
𝜕𝐸
𝜕M

= −1
2

(︁
dxx⊤ + xd⊤x

)︁
𝜕𝐸
𝜕m

= diag (z∗)dz
𝜕𝐸
𝜕G

= −diag (z∗)dzx⊤ + zd⊤x
𝜕𝐸
𝜕A

= −dyx⊤ − yd⊤x
𝜕𝐸
𝜕F

= −diag (z∗)dzz⊤.

(5.27)

After computing these derivatives, the derivatives on the original parame-
ters (e.g., initial velocity, friction, restitution) can be computed component-
wise from the blocks in which they appear in Equation (5.22).

Dependency of the LCP Solution Derivative on Contact Points. The
derivatives of the physics simulation in Equation (5.27) are found at the
solution of the LCP in Equation (5.19) (Avila Belbute-Peres et al. 2018).
The contact points appear in the contact and friction Jacobians in a cross

72 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

product with the contact normal which is then multiplied with the rota-
tional velocity in a dot product (see Equation (5.11)). Direct dependency
on linear velocity is not incorporated in the velocity constraint as the
linear velocity is only multiplied with the direction of the contact normal
in Equation (5.11). Moreover, the LCP does not solve for the time step
ℎ through the collision constraint, but assumes it constant. Thus, no
implicit dependency of the time step on other states and parameters is
modeled. We include the dependencies of the contact points on linear
velocities and of the time step size on the shape with our time of contact
differential based on the contact position constraint.

5.3.3 Differentiable SDF Shape Representation

We represent shapes by signed distance functions (SDFs) (see Section 2.2).
More specifically, we use parametric shape models, which are differ-
entiable for the shape parameters (see Subsection 2.2.1). To represent
complex shapes, we train neural network representations (Gropp et al.
2020; Park et al. 2019). We further use the SDF directly for contact de-
tection (see Subsection 5.3.4). Thus, it is important that the distance
is accurate even for off-surface points. To achieve this for the learned
parametric models, we use the loss proposed by Gropp et al. (2020)
(see Subsection 2.2.1 for details). For contact detection and visualization,
we need to extract explicit meshes from the SDF (see Subsection 2.2.4;
Lorensen and H. E. Cline 1987) and we make them differentiable with
respect to the shape parameters by following the approach proposed by
Remelli et al. (2020) (see Subsection 2.2.1 for details).

5.3.4 Contact Detection Between SDFs

We detect contacts and estimate contact points and normals from the
SDFs of both objects based on the approach of (Macklin, Erleben, Müller,
Chentanez, Jeschke, and Corse 2020). The approach determines contact
points between a triangular mesh and an SDF by finding the point with
the lowest SDF value for each triangle6. We first transform the object6: i. e., the points with lowest distance

between the objects SDF representations into their differentiable mesh representations (see
Subsection 2.2.4). The culling and starting point strategies of (Macklin,
Erleben, Müller, Chentanez, Jeschke, and Corse 2020) determine an initial
set of mesh triangles to consider for contact detection. This involves
determining for each triangle with vertices V= {v1 , v2 , v3}, if the signed
distance 𝜙 𝑗(c) at the triangle’s centroid position c in the other object is
below the radius maxv∈V ∥v − c∥2 of the triangle:

𝜙 𝑗(c) < max
v∈V
∥v − c∥2 ,with c =

1
3

∑︂
v∈V

v. (5.28)

The contact point for such a triangle is found iteratively from the triangle
vertex position p0 with the smallest SDF value in the other object using
the Frank-Wolfe algorithm (Frank and Wolfe 1956) based approach in
(Macklin, Erleben, Müller, Chentanez, Jeschke, and Corse 2020).

In each iteration 𝑘, the algorithm determines a point s𝑘 that minimizes

s𝑘 = arg min
s∈T

s⊤∇𝜙(p𝑘), (5.29)

5.4 Method 73

Figure 5.2: Collision detection with SDFs. Left: we extract a differentiable mesh (orange) from an SDF (ellipse, green) and find contact
points p (points of maximum penetration) and normals ∇𝜙(p) (direction towards closest point on penetrated surface) on the mesh faces
towards a second SDF 𝜙 (box, white). The differentiable mesh allows for propagating gradients from the contact points and normals
onto the SDF shape parametrization. Middle: We localize contact points using a Frank-Wolfe algorithm which iteratively select the vertex
v𝑖 , which projected on the signed distance gradient v⊤𝑖 ∇𝜙(p𝑘) provides the best improvement. Right: The solution of the Frank-Wolfe
algorithm can be written as a linear combination of the vertex positions. The found contact point is differentiable for the underlying SDF
through the vertex positions.

where T ⊂ ℝ3 is the surface spanned by the triangle vertices. The
minimum in Equation (5.29) provides the point in the triangle for which
the projection onto the SDF gradient yields the best improvement. As
T is convex, the minimum of Equation (5.29) is achieved for one of the
triangle vertices v ∈ V (Macklin, Erleben, Müller, Chentanez, Jeschke,
and Corse 2020):

s𝑘 = arg min
v∈V

v⊤∇𝜙(p𝑘) (5.30)

The contact point is updated according to

p𝑘+1 = (1 − 𝛼𝑘)p𝑘 + 𝛼𝑘s𝑘 , (5.31)

where 𝛼𝑘 =
2
𝑘+2 . We iterate the algorithm until the criterion|︁|︁(p𝑘 − s𝑘)⊤∇𝜙(p𝑘)

|︁|︁ < 𝜏 (5.32)

converges below a threshold 𝜏 or a maximum iteration count is reached.
This process is illustrated in Figure 5.2.

5.4 Method

We now detail our simulation framework and novel contributions to
include a differentiable SDF shape representation and differentiable
time of contact into a velocity- and constraint-based time-stepping 3D
simulation method. Our overall goal is to develop a differentiable model
x𝑡 = 𝑔(x𝑡−1 , 𝜽, fext , ℎ) for physics simulation which can be used for
predicting the next scene state x𝑡 (object poses) based on physics pa-
rameters 𝜽 (including shape parameters z), initial states (object poses
and velocities) x𝑡−1, external wrench fext, and a simulation time step
ℎ. In our approach, the function 𝑔 is given by the solution of the LCP
in Equation (5.19). The property of differentiability of 𝑔 for its inputs
allows us to formulate optimization problems to fit simulated to target
trajectories by adjusting parameters 𝜽. For instance,

𝐸(𝜽) = 1
2

𝑁−1∑︂
𝑖=0
∥𝑔(x𝑖 , 𝜽, fext,𝑖 , ℎ𝑖) − x̌𝑖+1∥22 (5.33)

74 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

fits a target trajectory x̌1 , . . . , x̌𝑁 of duration 𝑇 with appropriate time
discretization 𝑡𝑖 = 𝑡0 +∑︁𝑖−1

𝑗=0 ℎ 𝑗 where ℎ𝑖 ≥ 0 and ∑︁𝑁−1
𝑖=0 ℎ𝑖 = 𝑇.

5.4.1 Differentiable Inertia Tensors

The mass-inertia matrix M stacks angular inertia tensor I and object
mass 𝑚 for the angular and linear parts of the Newton-Euler equations.
We determine the angular inertia tensor of the object from the shape
represented implicitly in an SDF. The tensor I is found efficiently from
a triangular surface mesh using (Mirtich 1996) which we implement
using differentiable operations. We extract the mesh from the SDF using
the marching cubes algorithm (Lorensen and H. E. Cline 1987). Using
(Remelli et al. 2020) (see Subsection 2.2.4), we differentiate the inertia
tensor for the underlying SDF and subsequently the shape encoding z
through the mesh,

dI
dz

=
∑︂
v∈V

𝜕I
𝜕v

𝜕v
𝜕𝜙

𝜕𝜙

𝜕z
, (5.34)

with mesh vertices V.

5.4.2 Differentiable Contact Modeling

Our differentiable physics simulation supports friction and collision
contact constraints. Both constraints are formulated in terms of contacts
with associated contact points p𝑖 , p𝑗 relative to the reference frames of
both objects 𝑖 and 𝑗, contact normal n𝑖/𝑗 and penetration distance 𝑑𝑖/𝑗
(see Subsection 5.3.1).

Differentiable Contact Points and Normals. We extend the approach
in (Macklin, Erleben, Müller, Chentanez, Jeschke, and Corse 2020) (see(Macklin, Erleben, Müller, Chentanez,

Jeschke, and Corse 2020): Local Optimiza-
tion for Robust Signed Distance Field Colli-
sion

Subsection 5.3.4) to develop efficient differentiable contact detection for
SDF shapes. The contact detection algorithm provides the contact point p∗
on a mesh triangle through Frank-Wolfe iterations (Frank and Wolfe 1956).(Frank and Wolfe 1956): An algorithm for

quadratic programming The solution p∗ of the algorithm achieved by iterating Equation (5.31) is
a linear combination

p∗ =
3∑︂
𝑙=1

𝑤𝑙v𝑙 (5.35)

of the triangle vertices, where

𝑤𝑙 ,𝑘+1 = (1 − 𝛼𝑘)𝑤𝑙 ,𝑘 +
{︄
𝛼𝑘 , if s𝑘 = v𝑙
0, otherwise,

(5.36)

since s𝑘 ∈ V for all 𝑘 as illustrated in Figure 5.2.

We directly differentiate the resulting linear combination of the Frank-
Wolfe algorithm, and find the derivative of this linear combination for
the underlying SDF using the mesh to SDF differential in Equation (2.55).
This also enables us to propagate gradients through the contact points
onto the shape encoding z of SDF shape spaces to optimize the object
shapes for physical plausibility in contact situations.

5.4 Method 75

Finally, we find the contact normal and penetration distance directly
from the object SDFs. The normal is given by the SDF gradient at the
contact point

n𝑖 = ±
∇𝜙 𝑗/𝑖(p𝑖)∥︁∥︁∇𝜙 𝑗/𝑖(p𝑖)

∥︁∥︁
2

(5.37)

in either the other or the own object, while the penetration is the signed
distance value 𝑑𝑖 = 𝜙 𝑗(p𝑖). We choose the contact normal from the object
with the smallest mean curvature of the SDF at the contact point p𝑖 .
The corresponding contact point on the other object 𝑗 is detected at
p𝑗 = p𝑖 − 𝜙 𝑗(p𝑖)∇𝜙 𝑗(p𝑖).

Reducing the Number of Contact Points. Since the runtime complexity
for solving the LCP increases with the number of contact points, we
determine redundant contact points by clustering the points according
to normal similarity and reducing the set to the points on its convex hull.
This does not change the contact and friction constraints as shown by the
following theorem:

Theorem 5.4.1 Let 𝐶 be a set of contact points between two bodies 𝑖 and 𝑗
sharing a common surface normal. Let further C= {(p1

𝑖 , p
1
𝑗), . . . , (p𝑛𝑖 , p𝑛𝑗)}

be the convex hull of 𝐶 and let the contact constraint

J𝑐𝝃𝑡+ℎ ≥ −𝑘J𝑐𝝃𝑡 = −c (5.38)

be satisfied for all contact points in C. Then the contact constraint Equa-
tion (5.38) is also satisfied for all points of 𝐶.

Proof. We start by expressing the contact Jacobians in their full form:

J𝑐 =
(︃
J𝑖 0
0 J𝑗

)︃
(5.39)

where, as in Equation (5.10),

J𝑖 =
(︁(p𝑖 × n)⊤ n⊤

)︁
, J𝑗 = −

(︁(p𝑗 × n)⊤ n⊤
)︁
. (5.40)

By definition of the convex hull, we can express any point that lies inside
the convex hull as a linear combination of the hull points:

p𝑖 =
𝑛∑︂
𝑘=1

𝑎𝑘p𝑘𝑖 , where
𝑛∑︂
𝑘=1

𝑎𝑘 = 1;∀𝑘 : 𝑎𝑘 ≥ 0. (5.41)

Now, we apply these properties to show that the contact constraint is
automatically satisfied for all contact points in 𝐶 if it is satisfied for all

76 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

points in C:

J𝑐𝝃𝑡+ℎ (5.42)

=
(︁(p𝑖 × n)⊤ n⊤

)︁
𝝃𝑡+ℎ𝑖 − (︁(p𝑗 × n)⊤ n⊤

)︁
𝝃𝑡+ℎ𝑗 (5.43)

=
(︁(∑︁𝑛

𝑙=1 𝑎𝑙p
𝑙
𝑖 × n)⊤ n⊤

)︁
𝝃𝑡+ℎ𝑖 −

(︂
(∑︁𝑛

𝑙=1 𝑎𝑙p
𝑙
𝑗 × n)⊤ n⊤

)︂
𝝃𝑡+ℎ𝑗

(5.44)

=

𝑛∑︂
𝑙=1

𝑎𝑙
(︂ (︁(p𝑙𝑖 × n)⊤ n⊤

)︁
𝝃𝑡+ℎ𝑖 −

(︂
(p𝑙𝑗 × n)⊤ n⊤

)︂
𝝃𝑡+ℎ𝑗

)︂
(5.45)

≥
𝑛∑︂
𝑙=1

𝑎𝑙
(︂
−𝑘

(︂ (︁(p𝑙𝑖 × n)⊤ n⊤
)︁
𝝃𝑡𝑖 −

(︂
(p𝑙𝑗 × n)⊤ n⊤

)︂
𝝃𝑡𝑗

)︂)︂
(5.46)

= −𝑘
(︂ (︁(∑︁𝑛

𝑙=1 𝑎𝑙p
𝑙
𝑖 × n)⊤ n⊤

)︁
𝝃𝑡𝑖 −

(︂
(∑︁𝑛

𝑙=1 𝑎𝑙p
𝑙
𝑗 × n)⊤ n⊤

)︂
𝝃𝑡𝑗

)︂
(5.47)

= −𝑘
(︂ (︁(p𝑖 × n)⊤ n⊤

)︁
𝝃𝑡𝑖 −

(︁(p𝑗 × n)⊤ n⊤
)︁
𝝃𝑡𝑗

)︂
(5.48)

= −c (5.49)

In Equations (5.44) and (5.48), we applied the definition of the convex hull
(Equation (5.41)). Equations (5.45) and (5.47) follow from the distributive
law and the fact that

n =

𝑛∑︂
𝑙=1

𝑎𝑙n if
𝑛∑︂
𝑙=1

𝑎𝑙 = 1. (5.50)

In Equation (5.46), we applied the constraint inequality for the individual
hull points. We have thus shown that satisfying the contact constraint
Equation (5.38) for all points in Calso satisfies it for all points in 𝐶.

The proof for the friction Jacobians follows analogous to the proof
of Theorem 5.4.1 by replacing the contact normals with the friction
directions.

5.4.3 Differentiable Time of Contact

The LCP contains the contact points in the contact and friction constraint
Jacobians by which the LCP solution can also be differentiated for the
contact points and hence for the shape parameters of the objects. Due to
the time discretization and time derivatives of the position constraint,
there is no direct dependency of the contact points on the linear velocity
of the bodies as explained in Subsection 5.3.2. We observe, that the shape
and the induced collisions influence the time of contact: the larger the
shape in the direction of motion, the earlier the contact (see Figure 5.3).
Hence, changes in object shape induce changes in time of contact. We
propose an approach to model this dependency of the simulation on the
shape parameters.

The LCP from Subsection 5.3.1 assumes the time step size ℎ constant and
does not model its dependency on other parameters of the simulation.
The time step is found through a separate optimization process which
determines the largest step size ℎ ≤ 𝐻 until the next collision with
maximum step size 𝐻. The dependency of ℎ on the shape parameters
is implicitly defined by the solution of the optimization problem. It

5.4 Method 77

Figure 5.3: Differentiable time of con-
tact. We differentiate the time of contact
ℎ for the contact point to enable shape
optimization through collisions. The con-
straint 𝐷(ℎ, 𝜽) = 0 requires the distance
of the contact point p𝑗𝑖 of object 𝑖 to its
corresponding contact point of object 𝑗
along the contact normal direction n𝑗 to
be zero. Shape, physical states and pa-
rameters which 𝐷 depends on are sum-
marized in 𝜽. The constraint defines an
implicit relationship between ℎ and 𝜽.
The distance is defined with body frame
of object 𝑗 as reference frame (denoted by
superscript 𝑗 on points and vectors). In
this frame, object 𝑖 and its contact point
move along trajectories t𝑗𝑖 (ℎ) and p𝑗𝑖 (ℎ),
respectively. We use implicit differentia-
tion to determine 𝜕ℎ/𝜕𝜽.

determines the time step for which corresponding points of contact p𝑖 , p𝑗
on both objects 𝑖, 𝑗 coincide, i. e.,

𝐷
(︂
ℎ, p𝑗𝑖 (ℎ, 𝜽(ℎ)), p

𝑗
𝑗 , 𝜽(ℎ)

)︂
= n𝑗⊤

(︂
p𝑗𝑗 − p𝑗𝑖 (ℎ, 𝜽(ℎ))

)︂
= 0. (5.51)

The distance 𝐷 also depends on the contact normal n and variables 𝜽(ℎ),
such as the object shape parameters, poses, and velocities at the time of
collision. We express the distance in the body frame of object 𝑗 (indicated
by the superscript 𝑗) so that the contact point on object 𝑗 and the contact
normal remain constant, while the contact point on object 𝑖 depends on
time ℎ via the pose T7, velocity v and acceleration a of the objects, 7: consisting of rotation R and transla-

tion t, see Subsection 2.1.2

p𝑗𝑖 (ℎ, 𝜽(ℎ)) = (exp(ˆ︁𝝎 𝑗ℎ)R𝑗)⊤
(︂
exp(ˆ︁𝝎𝑖ℎ)p𝐼𝑖 + t𝑖

+ v𝑖ℎ + 1
2 a𝑖ℎ2 − (︁

t𝑗 + v𝑗ℎ + 1
2 a𝑗ℎ2)︁)︂ (5.52)

and p𝑗𝑗 = exp(ˆ︁𝝎 𝑗ℎ)R⊤𝑗 p𝐽𝑗 , where R𝑗 and t𝑗 are the rotation and translation
of object in the world frame, respectively. The operator ˆ︁· maps twist coor-
dinates 𝝎 to 𝔰𝔬(3) Lie algebra elements and exp is the exponential map
of SO(3)8. By the constraint in Equation (5.51), the time step ℎ(p𝑖 , p𝑗 , 𝜽) 8: see Subsection 2.1.1
implicitly becomes a function of the contact points, the contact normal,
and the simulation state and parameters (see Figure 5.3).

When optimizing system identification objectives such as Equation (5.33)
using gradient-based methods, we require the derivative of the time of
contact ℎ for its parameters. For instance, differentiating the objective in
Equation (5.33) yields a Jacobian depending on three derivative terms

d𝐸(𝜽)
d𝜽

=

𝑁−1∑︂
𝑖=0
(𝑔 (x𝑖 , 𝜽, fext,𝑖 , ℎ𝑖(𝜽)) −ˆ︁x𝑖+1)(︃

𝜕𝑔
𝜕𝜽
+ 𝜕𝑔

𝜕x𝑖
𝜕x𝑖
𝜕𝜽
+ 𝜕𝑔

𝜕ℎ𝑖

𝜕ℎ𝑖
𝜕𝜽

)︃
. (5.53)

The first term 𝜕𝑔
𝜕𝜽 is obtained by differentiating the LCP at its solution for

the physics parameters. The second term 𝜕𝑔
𝜕x𝑖

𝜕x𝑖
𝜕𝜽 is the derivative of the

LCP for the input state 𝜕𝑔
𝜕x𝑖

multiplied with the derivative of 𝑔 for the

78 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

parameters from the previous time step as x𝑖 = 𝑔(x𝑖−1 , 𝜽, fext,𝑖−1 , ℎ𝑖−1(𝜽)).
For the third term, we require the time of contact derivative 𝜕ℎ𝑖

𝜕𝜽 .

In practice, in each simulation step, the step size ℎ is either chosen as a
maximum time step 𝐻 or the time until the first contact occurs. To this
end, the simulation step size ℎ is iteratively halved until all penetrations
between objects are below a contact threshold distance 𝜖. This yields the
step size ℎ = ℎ0−ℎ− until the approximate time of contact ℎ0 in Figure 5.3
and a set of contact points p𝑘𝑖 , p𝑘𝑗 with contact normals n𝑘 determined
as the surface normal on one of the objects with 𝑘 ∈ {1, . . . , 𝐾}. The
constraints form an over-determined set of equations,

D(ℎ0 , 𝜽) = ⎛⎜⎜⎝
𝐷1(ℎ0 , 𝜽)

...
𝐷𝐾(ℎ0 , 𝜽)

⎞⎟⎟⎠ = 0, (5.54)

where 𝜽 subsumes the parameters ℎ0 depends on and 𝐷𝑘(ℎ0 , 𝜽) = 0 is
the time of contact constraint for the 𝑘-th contact point. From this set
of equations, we find the time of contact derivative through implicit
differentiation,

dD(ℎ, 𝜽)
d𝜽

=
𝜕D(ℎ, 𝜽)

𝜕𝜽
+ 𝜕D(ℎ, 𝜽)

𝜕ℎ
𝜕ℎ
𝜕𝜽

= 0, (5.55)

which gives
𝜕ℎ
𝜕𝜽

= −𝜕D(ℎ, 𝜽)
𝜕ℎ

+ 𝜕D(ℎ, 𝜽)
𝜕𝜽

(5.56)

By applying the Moore-Penrose pseudo-inverse 𝜕D(ℎ,𝜽)
𝜕ℎ

+
we find the

least squares fit to the over-determined set of equations. The time of
contact derivative effectively allows for optimizing the shape of objects
through the contact points so that collisions occur earlier or later and
the trajectories of the objects are adapted. Components 𝑘 only contribute
meaningfully if the bodies move towards each other according to the
relative velocity, i. e., if 𝜕𝐷𝑘 (ℎ,𝜽)

𝜕ℎ ≥ 0. Otherwise, the component is excluded
from D.

The actually simulated step size ℎ until the time of contact ℎ0 might be
smaller than the target simulation step size 𝐻 = ℎ+ − ℎ− (see Figure 5.3).
Thus, both the time step before and after the collision depend on the
time of contact, and we compute gradients for both ℎ(𝜽) = ℎ0 − ℎ− and
ℎ′(𝜽) = ℎ+ − ℎ0.

We distinguish contacts with impact and resting contacts and determine
the time of contact differential only for contacts with impact. Contacts
with impact are those which are newly found between two objects in
a time step (i. e., the previous time step did not have contacts between
these objects). Resting contacts are contacts in successive time steps after
the first contact time step between two objects.

5.5 Experiments

We evaluate and demonstrate our method in several physical system
identification scenarios which involve inference on shape, friction coef-

5.5 Experiments 79

−0.2

0.0

0.2

−1

0

1

−0.2

0.0

0.2

−1

0

1

−0.2
0.0

0.2

−1

0

1

−0.2
0.0

0.2

−1

0

1

−0.2

0.0

0.2 −1

0

1

−0.2

0.0

0.2 −1

0

1

−0.2
0.0

0.2

−1

0

1

−0.2

0.0

0.2

−1

0

1

Figure 5.4: Example shapes for the
sphere, box, rounded box and cylinder
shape spaces from left to right. Mesh
renderings are shown on the top and
the bottom rows illustrate cuts through
the respective SDFs along the 𝑦𝑧- (left;
green in the rendering) and 𝑥𝑦-planes
(right; red in the rendering). Note that
for all rendered but the cylinder the two
cuts are identical. Note further, that the
rounded box SDF is basically a box SDF
for a smaller box with the 0-level set
shifted further outside.

ficient, mass or forces. The observations are generated using the LCP
physics engine with ground truth parameters with a time step size of
𝐻 = 1

30 . We evaluate the accuracy of our novel approach quantitatively
and provide an ablation study.

5.5.1 Shape Spaces

Primitive Shapes. For shape primitives, i. e., spheres, boxes and cylin-
ders, we compute the SDF analytically. In Figure 5.4, we show example
objects as rendered meshes as well as cuts through the SDFs for the
primitive shapes used in the experiments.

Learned Shape Spaces. In Figure 5.5 we show the generated meshes
for the two training shapes “bob” and “spot” together with their two-
dimensional encodings in their learned shape space. We also show the
“mean shape” for this shape space, i. e., the result of interpolating half-way
between bob and spot. This shape space has latent size 2 and the DeepSDF
(Park et al. 2019) auto-decoder has 8 layers with a hidden dimension of
128.

Figures 5.6 to 5.8 show the generated meshes for the training shapes
of the can, camera and mug classes, respectively. These shape spaces
are trained with a latent size of 4 and the DeepSDF (Park et al. 2019)
auto-decoder has 8 layers with a hidden dimension of 256.

All learned shape spaces were trained using the implicit geometric regu-
larization losses from (Gropp et al. 2020) as explained in Subsection 2.2.1,
to encourage the network to learn actual distances to the surface.

80 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Figure 5.5: SDF shape representation.
Shapes (top) represented in an exam-
plary two-dimenional SDF shape embed-
ding with corresponding latent codes
(middle) and cuts through the SDF along
the 𝑥𝑦-plane (bottom; the plane is indi-
cated in green in the rendering on the
top).

0 1
latent dim

−0.05

0.00

0.05

la
te
nt

va
lu
e

0 1
latent dim

−0.05

0.00

0.05

la
te
nt

va
lu
e

0 1
latent dim

−0.05

0.00

0.05

la
te
nt

va
lu
e

−0.1 −0.1

0.0

0.0

0.1

0.1

−1.0

−0.5

0.0

0.5

1.0

SD
F
va

lu
e −0.1

−0.10.0

0.1

0.1

−1.0

−0.5

0.0

0.5

1.0

SD
F
va

lu
e

−0.1

0.0

0.1

−1.0

−0.5

0.0

0.5

1.0

SD
F
va

lu
e

5.5.2 Evaluation Metrics

Shape Identification (Subsection 5.5.3). The shape accuracy in the
bouncing objects and shape from inertia experiments is evaluated by the
symmetric Chamfer distance between the mesh estimate M𝑒 = {V𝑒 ,F𝑒}
and the target mesh M𝑡 = {V𝑡 ,F𝑡}. The meshes consist of sets of vertices
Vand faces Fand are extracted from the SDF using the marching cubes
algorithm (Lorensen and H. E. Cline 1987, see Subsection 2.2.4). The
symmetric Chamfer distance is defined as

CD(V𝑒 , V𝑡) = 1
|V𝑒 |

∑︂
v𝑒∈V𝑒

min
v𝑡∈V𝑡
∥v𝑒 − v𝑡 ∥2 + 1

|V𝑡 |
∑︂

v𝑡∈V𝑡
min
v𝑒∈V𝑒

∥v𝑡 − v𝑒 ∥2 ,
(5.57)

where ∥·∥ denotes the Euclidean norm and |V| the number of elements
in V.

Friction and Mass Identification, Force Optimization (Subsection 5.5.4).
Friction coefficient and mass are evaluated by the absolute difference
between the estimated and target values. The force vector is evaluated by
the Euclidean norm between the estimated and target force vectors.

Fitting to Depth Image Observations (Subsection 5.5.5). The position
error is the Euclidean norm between the locations of the center of the
estimated and target objects. The rotation error is measured as the relative
angle between the estimated and target rotation of the object. The size
error is the absolute difference between the estimated and target objects
radius for the sphere and edge length for the cube.

5.5.3 Shape Identification

The following experiments analyze the accuracy of our method for
estimating shape from collisions and inertia in several scenarios such as

5.5 Experiments 81

−0.1

0.0

0.1

−1

0

1

−0
.10.00.1

−1

0

1

−0.1

0.0

0.1

−1

0

1

−0
.1

0.0

0.
1

0.1

−1

0

1

−0.1

0.0

0.
1

−1

0

1

−0
.1

0.0 0.
1

0.1

−1

0

1

−0.1

0.0

0.
1

−1

0

1

−0
.1

0.
0

0.
1

−1

0

1

−0.10.0

0.1

−1

0

1

−0
.1

0.0

0.
1

−1

0

1

−0
.1

0.0

0.1

−1

0

1

−0.1

0.0

0.
1

0.1

−1

0

1

−0.1

0.
0

0.
1 0.

1

−1

0

1

−0.1

0.
0

0.1

−1

0

1

−0
.1

0.0

0.1

−1

0

1

−0.1

0.
0

0.1

−1

0

1

−0.10.
0

0.1 −1

0

1

−0
.1

0.0

0.
1

0.1

−1

0

1

−0.1

0.00.1 −1

0

1

−0.1

0.0

0.
1

−1

0

1

−0.1

0.
0

0.
1

−1

0

1

−0.1

0.0

0.
1

−1

0

1

−0.1 0.0

0.
1

−1

0

1

−0.10.0

0.
1

−1

0

1

Figure 5.6: Renderings (left) and cuts through the 𝑥𝑦-plane (right; the plane is indicated in green in the rendering) for the 24 can objects
in their learned shapespace. Each object is represented by a four-dimensional latent code.

−0
.1

0.0

0.
0

0.1

−1

0

1

−0.1

0.00.
1

−1

0

1

−0
.1

0.0
0.1

−1

0

1

−0.1

0.0

0.1

−1

0

1

−0.1
0.00.1

−1

0

1

−0
.10.

0

0.1

−1

0

1

−0
.1

0.0

0.
1

−1

0

1

−0.1

0.0 0.0

0.1

−1

0

1

−0
.1

0.0

0.
1

−1

0

1

−0.1

0.0

0.1

−1

0

1

−0
.1

0.0

0.1

−1

0

1

−0
.1

0.00.
1

−1

0

1

−0
.1

0.0

0.1

−1

0

1

−0.1

0.0

0.1

−1

0

1

−0
.1

0.0

0.1

−1

0

1

−0.1
0.00.1

−1

0

1

−0.1

0.0

0.1

−1

0

1

−0.10.0
0.1

−1

0

1

−0
.1

0.
0

0.1

−1

0

1

−0
.1 0.
0

0.
1

−1

0

1

−0.1

0.0

0.
1

−1

0

1

−0.1

0.0

0.
1

−1

0

1

Figure 5.7: Renderings (left) and cuts through the 𝑥𝑦-plane (right; the plane is indicated in green in the rendering) for the 22 camera
objects in their learned shapespace. Each object is represented by a four-dimensional latent code.

82 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

0.0

0.0

0.
1

−1

0

1

0.0

0.
0

0.1

−1

0

1

0.0 0.
0

0.1 0.1

−1

0

1

0.0

0.0

0.1

−1

0

1

0.0

0.0

0.1

0.
1

−1

0

1

0.0

0.1

−1

0

1

0.0
0.1

0.1

−1

0

1

0.0

0.
1 0.1

−1

0

1
0.

0

0.0

0.1

0.
1

−1

0

1

0.0

0.
0

0.1

0.1

0.1

−1

0

1

0.0

0.
0

0.1

−1

0

1

0.0

0.1

−1

0

1

0.
0

0.0

0.1

0.1

−1

0

1

0.0

0.00.
1

0.1

−1

0

1

0.0

0.1

0.1

−1

0

1

0.0
0.1

−1

0

1

0.00.1

0.1

−1

0

1

0.00.1
−1

0

1

0.0
0.0

0.1

−1

0

1

0.0
0.1

0.1

−1

0

1

0.0 0.
0

0.1

−1

0

1

0.0

0.0

0.1

0.1

−1

0

1

Figure 5.8: Renderings (left) and cuts through the 𝑥𝑦-plane (right; the plane is indicated in green in the rendering) for the 22 mug objects
in their learned shapespace. Each object is represented by a four-dimensional latent code.

bouncing shapes, topological shape changes, and shape from inertia for
rotating objects.

Bouncing Objects. We evaluate our approach in several scenarios in
which we let objects collide with a wall and possibly the floor. The objects
start with a known initial horizontal velocity towards the wall and the
collision yields different trajectories depending on the shape parameters
𝜽. The optimization objective in these experiments is the mean-squared
position error over the entire trajectory in all time steps 𝑡 ∈ {1, . . . , 𝑇}
plus an optional regularization term on the shape parameters:

𝐸(𝜽) = 1
𝑇

𝑇∑︂
𝑡=1

∥︁∥︁∥︁t(𝜽)𝑡𝑒 − t(𝜽)𝑡𝑔
∥︁∥︁∥︁2
+ 𝜆 ∥𝜽∥2 , (5.58)

where t(𝜽)𝑡𝑒 and t(𝜽)𝑡𝑔 denote the center location of the estimated and goal
spheres at time 𝑡, respectively and the parameter𝜆 scales the contribution
of the regularization. In all bouncing object experiments, the friction and
restitution coefficients are set to 0.25 and 0.5, respectively. For numerical
evaluation, we run take 50 runs with random initialization and targets in
each setting (with/without gravity and with/without time of contact
differential).

We evaluate our time of contact differential for estimating the radius
of sphere that bounces against a wall and the floor (see Figures 5.9
and 5.10). We generate 50 scenes with randomly sampled sphere radii
between 0.4 and 2.0 with an initial velocity of 5 towards the wall in two
scenarios with gravity enabled and disabled. We optimize the radius

5.5 Experiments 83

Figure 5.9: Trajectory fitting for a sphere.
From left to right, each group shows 3
frames from the start, middle and end
of the trajectory. We optimize the radius
of a sphere from an initial value (blue),
by comparing the simulated trajectory
to that of a target sphere (gray, overlaid)
and arrive at the result in green (also
overlaid with gt in gray). Our formula-
tion (top) works in the case of a head
on-collision without gravity, while the
engine without the time-of-contact dif-
ferential fails.

resulting radius error

scenario variant min mean max

w/ gravity w/o toc 6e-5 0.038 0.219
w/ toc 2e-6 0.007 0.046

w/o gravity w/o toc fails fails fails
w/ toc 2e-4 0.002 0.006

Table 5.1: Resulting radius error for vari-
ants in the bouncing sphere scenarios.
Time of contact differentials clearly im-
prove the results and make the “no grav-
ity” case work.

to match a target position trajectory also generated with a random
radius between 0.4 and 2.0 with the same initial conditions otherwise.
This position depends on the shape parameters 𝜽9. Trajectories are 9: in this case, the radius
recorded as observation sequences of length 1.5 s. In each scenario, a new
sphere radius is sampled randomly, and the predicted trajectory is fit
to the observations using gradient descent on the objective function in
Equation (5.58) with 𝜆 = 0. In Table 5.1 we compare accuracy for different
variants. If gravity is disabled, the sphere hits the wall in a direction
along the contact normal and the shape receives no gradient if the time
of contact differential is not used (see Figure 5.9). If gravity is enabled,
velocity at the contact has a downwards component, which transmits
into a rotational velocity after the first bounce (see Figure 5.10). Together
with the second bounce, this renders the trajectory more complex and
we found it beneficial to optimize the trajectory in chunks including
each contact separately by detaching poses and velocities before the
second bounce to avoid exploding gradients that might build up by
recursively computing gradients through this complex trajectory. The
rotational velocity component leads to a gradient on the shape through
the inertia tensor. In this case, using the time of contact differential
improves convergence and accuracy of the radius estimate as displayed
in Table 5.1 and Figure 5.11.

In Figure 5.12, we show quantitative results for optimizing the shape

84 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Figure 5.10: Trajectory fitting for a sphere.
From left to right, each group shows 3
frames from the start, middle and end
of the trajectory. We optimize the radius
of a sphere from an initial value (blue),
by comparing the simulated trajectory
to that of a target sphere (gray, overlaid)
and arrive at the result in green (also
overlaid with gt in gray). In this setting
with gravity enabled (bottom two rows),
our formulation achieves more accurate
results.

Figure 5.11: Bouncing sphere scenario
with gravity. Left: start radius error vs.
resulting radius error in sphere bounce
experiment with gravity enabled with
(blue) and without (orange) time of con-
tact (toc) differential. The toc differential
yields faster convergence and more accu-
rate results. Right: median (solid lines),
quartiles (shaded areas) and min/max
(dashed lines) for the objective over time
(blue: with toc, orange: without toc dif-
ferential).

−1 0 1

start radius error

−0.2

−0.1

0.0

0.1

re
su

lt
ra
di
us

er
ro
r

0 20 40 60 80 100

iteration

0

1

2

3

4
O
pt
im

iz
at
io
n
ob

je
ct
iv
e

w/ toc
w/o toc

of several DeepSDF shape spaces (bob and spot trained with latent
dimension 2; can, camera and mug with latent dimension 4) via a
single bounce against the wall without gravity. For this experiment,
𝜆 in Equation (5.58) is set to 1 × 10−4. The average Chamfer distance
(measuring shape accuracy) over all objects is reduced from initial 0.016
to 0.010 by our approach. Without the time of contact differential, the
resulting average is 0.017. One can see that while the optimization
objective generally decreases by almost one order of magnitude in the
median case, in some cases this does not hold for the shape accuracy.
For these outlier runs, the objective exhibits a local optimum in this
challenging scenario which does not contain the true shape. We further
provide numeric results in Table 5.2 and include an ablation study for
not using the time of contact differential for this experiment. One of
the mug examples diverged and lead to an invalid state for the physics
engine without the time of contact differential. It is thus excluded from
the statistics in the w/o toc column and the overall average mentioned
above. Qualitative results are shown in Figure 5.13.

We also test our approach for a challenging shape optimization scenario in
which the DeepSDF shape space of bob and spot is used (see Figure 5.14).

5.5 Experiments 85

bob/
spot

can camera mug

10−4

10−3

10−2

10−1

Chamfer distance

Initialization
Result

bob/
spot

can camera mug

10−4

10−3

10−2

10−1

Optimization objective

Figure 5.12: Trajectory fitting for learned
shape spaces. Shape and trajectory ac-
curacy improve in most cases. Note the
log-scaling on the vertical axis.

The object is dropped on a stick. One of the objects is a genus-0 type
cow-like shape (spot), while the other is genus-1 with a hole in the duck-
like body (bob). Only the latter will fall through the stick and reach the
target position. We optimize the shape latents in this scenario to reach
the target position at the end of a 1.1 s sequence.

Shape from Inertia. Figure 5.15 gives quantitative results for shape
optimization from inertia. We apply a random torque with unit norm
on the objects in the first 0.3 s and simulate for 2 s. The optimization
objective in this experiment is the mean-squared error of the object’s
rotational velocity to the ground truth:

𝐸(𝜽) =
∥︁∥︁∥︁𝝎(𝜽)2𝑠𝑒 − 𝝎(𝜽)2𝑠𝑔

∥︁∥︁∥︁2
+ 𝜆 ∥𝜽∥2 , (5.59)

where 𝝎(𝜽)2𝑠𝑒 and 𝝎(𝜽)2𝑠𝑔 are the angular velocities of the estimated and
goal objects, respectively after 2 s of simulation. We additionally add the
squared 𝐿2 norm of the latent code with weight𝜆 = 1×10−4 as regularizer
for learned shape spaces and set 𝜆 = 0 for primitives. We sample 50
scenes with random initial and target shape parameters for each shape
type and evaluate our approach for sphere, box and cylinder shapes,
and the DeepSDF shape spaces from the bouncing objects experiment.
We observe that the shape is well recovered in most of the runs. The
average in Chamfer distance over all objects drops from 0.164 to 0.021. In
a few outlier runs, the difference between result and target shape is large,
while the optimization objective still achieves a very low value. This
hints at local minima in the objective landscape, which could possibly
be alleviated by choosing other torques. We further present numerical
results in Table 5.3 and show qualitative results in Figure 5.16.

5.5.4 Friction and Mass Identification, Force Optimization

In Figure 5.17, we show quantitative results for friction, mass and force
estimation in which either the duck-like “bob”, or the cow “spot” is
placed on a plane pushed with a constant force along the plane for
1 s. We generate 50 runs for each optimization target (mass, force and
friction). We uniformly sample the force between 2 and 5 for each of the
two dimensions along the plane, mass between 0.9 and 1.1, and friction
between 0.01 and 0.25. Depending on the setting, one of these parameters

86 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Table 5.2: Numerical results for trajectory fitting with learned shape spaces. “CD” denotes the Chamfer distance of the object to the
target shape, “obj” denotes the optimization objective (Equation (5.58)) and “pos err” is the position error in the last step of the simulated
trajectory. The time of contact differential shows improvements in accuracy in most cases over not using the differential. For the mug
objects, the median accuracy is similar for using or not using the time of contact differential, while for Chamfer distance using time of
contact differential makes the fitting more robust (see max measure).

Error bob and spot can camera mug

init result w/o toc init result w/o toc init result w/o toc init result w/o toc

C
D

mean 0.0216 0.0081 0.0157 0.0076 0.0019 0.0041 0.0290 0.0244 0.0285 0.0052 0.0064 0.0190

min 0.0109 0.0000 0.0002 0.0001 0.0000 0.0000 0.0033 0.0032 0.0033 0.0006 0.0001 0.0002
Q25 0.0182 0.0030 0.0044 0.0012 0.0008 0.0012 0.0179 0.0089 0.0137 0.0010 0.0009 0.0010

median 0.0219 0.0060 0.0091 0.0021 0.0012 0.0017 0.0305 0.0196 0.0255 0.0022 0.0023 0.0022
Q75 0.0255 0.0081 0.0199 0.0038 0.0021 0.0033 0.0390 0.0330 0.0337 0.0046 0.0057 0.0064
max 0.0330 0.0286 0.1052 0.0794 0.0148 0.0382 0.0671 0.1447 0.1251 0.0338 0.0816 0.6794

ob
j

mean 0.0199 0.0059 0.0130 0.0058 0.0020 0.0027 0.0279 0.0070 0.0141 0.0087 0.0042 0.0063

min 0.0008 0.0000 0.0002 0.0001 0.0000 0.0001 0.0007 0.0001 0.0004 0.0002 0.0001 0.0000
Q25 0.0074 0.0007 0.0011 0.0009 0.0002 0.0004 0.0065 0.0010 0.0020 0.0011 0.0005 0.0004

median 0.0153 0.0017 0.0044 0.0034 0.0008 0.0011 0.0134 0.0031 0.0061 0.0027 0.0010 0.0012
Q75 0.0269 0.0056 0.0101 0.0064 0.0027 0.0032 0.0334 0.0090 0.0161 0.0046 0.0029 0.0037
max 0.0957 0.0936 0.1254 0.0397 0.0124 0.0333 0.2917 0.0438 0.1112 0.0633 0.0647 0.0666

po
se

rr

mean 0.3409 0.1648 0.2356 0.1601 0.0962 0.1065 0.3472 0.2018 0.2519 0.1799 0.1399 0.1404

min 0.0794 0.0091 0.0249 0.0125 0.0047 0.0147 0.0344 0.0368 0.0163 0.0224 0.0145 0.0127
Q25 0.2188 0.0617 0.0669 0.0721 0.0435 0.0447 0.2142 0.0929 0.1109 0.0746 0.0558 0.0415

median 0.3212 0.1215 0.1709 0.1456 0.0726 0.0798 0.3336 0.1531 0.2038 0.1351 0.0908 0.0890
Q75 0.4080 0.2327 0.2714 0.2291 0.1430 0.1556 0.4442 0.2838 0.3321 0.1945 0.1721 0.1756
max 0.9399 0.9301 1.0076 0.5049 0.3238 0.3469 1.0767 0.6934 0.8276 0.8014 0.8032 0.7997

Figure 5.13: Trajectory fitting for learned shape spaces. From left to right, each group shows 3 frames from the start, middle and end of
the trajectory. Initializations (blue) and results (green) overlaid with targets in gray. Each group shows one of the 4 learned shape spaces:
bob and spot (top left), can (top right), camera (bottom left) and mug (bottom right). In most cases the estimated shapes are very accurate,
except for the example shown for mugs.

5.5 Experiments 87

Figure 5.14: Collision-based shape op-
timization. Complex topological shape
changes can be achieved by our approach.
The shape is initialized with the genus-
0 spot shape that falls onto a stick (left
col.). The target pose for the object is on
the floor through the stick (bottom right).
This pose requires adapting the latent
code to the genus-1 spot shape (middle
col.: intermediate result (4 its.), right col.:
final result (44 its.)).

Table 5.3: Numerical results for shape fitting by inertia. “CD” denotes the Chamfer distance of the object to the target shape and “obj”
denotes the optimization objective (rotational velocity error).

Error box sphere cylinder bob and spot can camera mug

init result init result init result init result init result init result init result

C
D

mean 1.4e-01 2.6e-02 6.3e-01 4.0e-02 3.1e-01 6.2e-02 2.2e-02 1.7e-03 7.9e-03 5.6e-04 3.0e-02 1.4e-02 5.4e-03 2.9e-03

min 5.0e-04 1.0e-05 9.3e-04 2.3e-08 1.8e-03 1.2e-05 1.3e-02 1.3e-06 2.3e-04 9.1e-06 3.1e-03 7.5e-04 5.4e-04 6.5e-05
Q25 6.3e-02 2.8e-03 7.3e-02 8.2e-06 1.1e-01 5.5e-04 1.9e-02 8.2e-06 1.1e-03 1.8e-04 1.9e-02 3.7e-03 1.0e-03 4.1e-04

median 1.2e-01 1.1e-02 3.9e-01 1.5e-04 2.4e-01 8.5e-03 2.1e-02 1.3e-05 2.5e-03 5.3e-04 3.2e-02 8.3e-03 2.3e-03 1.3e-03
Q75 1.9e-01 2.7e-02 8.0e-01 1.7e-03 4.2e-01 9.2e-02 2.4e-02 3.3e-05 4.0e-03 9.0e-04 4.0e-02 2.0e-02 3.9e-03 2.7e-03
max 4.5e-01 1.9e-01 2.9e+00 7.8e-01 1.3e+00 3.7e-01 3.5e-02 4.9e-02 8.4e-02 1.3e-03 6.7e-02 1.1e-01 3.9e-02 4.5e-02

ob
j

mean 1.1e+00 5.2e-03 7.6e-01 7.8e-03 2.9e-01 2.1e-03 3.6e-01 4.2e-03 4.1e-01 7.3e-04 4.3e-01 4.0e-03 1.7e-02 4.0e-04

min 8.0e-05 1.2e-05 6.1e-05 2.3e-08 2.4e-04 8.4e-08 1.4e-02 9.9e-07 1.6e-04 2.7e-06 5.1e-03 8.8e-06 7.6e-04 4.0e-06
Q25 1.1e-01 3.8e-04 1.7e-02 4.6e-06 1.2e-02 4.2e-05 1.6e-01 4.6e-06 3.1e-03 3.5e-05 3.2e-02 4.6e-04 2.0e-03 6.5e-05

median 4.0e-01 1.3e-03 1.1e-01 1.2e-04 7.0e-02 2.3e-04 2.5e-01 3.4e-05 1.4e-02 1.2e-04 1.3e-01 1.2e-03 4.3e-03 1.1e-04
Q75 1.2e+00 3.4e-03 8.2e-01 6.6e-04 4.0e-01 8.1e-04 4.0e-01 1.2e-04 6.2e-02 1.1e-03 5.8e-01 2.9e-03 1.8e-02 3.5e-04
max 7.5e+00 1.2e-01 6.7e+00 1.6e-01 2.6e+00 2.3e-02 1.3e+00 2.0e-01 1.0e+01 4.9e-03 2.3e+00 3.6e-02 1.5e-01 3.5e-03

is sampled anew to create a varied initialization. We optimize the mean
squared position error of the simulation towards the ground-truth. The
physical quantities are recovered with high accuracy in most settings.
The average error drops from 0.07 to 0.003 for mass, 1.6 to 0.015 for
force, and 0.08 to 1 × 10−4 for friction. Except for a few outliers, the
optimization can recover the ground-truth parameters and trajectories
almost perfectly, as we can see in Figure 5.17 and the numerical results in
Table 5.4. Qualitative results are shown in Figure 5.18.

5.5.5 Fitting to Depth Image Observations

Synthetically Rendered Objects. We also test our method for fitting
the physics simulation based on synthetic depth image observations
from a static camera. We render depth images and object segmentation
masks at resolution of 640 × 480 using pyrender10. The depth images are 10: https://github.com/mmatl/

pyrenderaugmented with synthetic per-pixel Gaussian noise with mean 𝜇 = 𝑑
and standard deviation 𝜎 = 0.0001𝑑2. We evaluate using the bounce
scenarios (see Subsection 5.5.3) with spheres and cubes with rounded
edges in randomized poses and sizes. We run the scenarios 20 times
each for different settings (sphere and cube, each with and without
gravity). The ground truth pose is set by adding Gaussian noise with
mean 0 and standard deviation 0.1 to a standard rotation (represented as
unit quaternion) and position. We initialize the first pose by adding the
same noise distribution to the ground-truth pose. Spheres and cubes are

https://github.com/mmatl/pyrender
https://github.com/mmatl/pyrender

88 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Figure 5.15: Shape from inertia. Left:
Chamfer distance. Right: optimization
objective value. Note the log-scale on the
vertical axis.

box sphere cylinder

10−7

10−5

10−3

10−1

Chamfer distance

Initialization
Result

box sphere cylinder

10−7

10−5

10−3

10−1

101

Optimization objective

bob/
spot

can camera mug

10−6

10−5

10−4

10−3

10−2

10−1

Chamfer distance

Initialization
Result

bob/
spot

can camera mug

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Optimization objective

Figure 5.16: Shape from inertia. For each object, we show the initialization (blue) and result (green) overlaid with the ground truth in
gray. The difference in inertia results in a different pose after 2 seconds of simulation (right rendering for each object). The red arrows
indicate the torque that is applied at the beginning of the trajectory.

5.5 Experiments 89

mass force friction

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Target error

Initialization
Result

mass force friction

10−11

10−9

10−7

10−5

10−3

10−1

101

Optimization objective

Figure 5.17: System identification results.
Mass, force and friction are estimated
with high accuracy. Note the log-scale on
the vertical axis.

Error mass force friction

init result init result init result

ta
rg

et
er

ro
r

mean 6.6e-02 2.8e-03 1.6e+00 1.5e-02 8.3e-02 1.3e-04

min 6.5e-04 1.4e-07 5.6e-02 5.3e-04 1.1e-03 4.0e-06
Q25 3.3e-02 4.1e-05 1.3e+00 1.0e-03 4.1e-02 1.1e-04

median 5.6e-02 1.1e-04 1.6e+00 1.4e-03 7.7e-02 1.2e-04
Q75 1.0e-01 3.4e-04 2.0e+00 1.6e-03 1.2e-01 1.5e-04
max 1.7e-01 1.3e-01 2.9e+00 3.4e-01 2.3e-01 3.0e-04

ob
je

ct
iv

e

mean 3.3e-01 3.7e-02 5.7e+00 1.8e-05 1.9e+00 5.0e-06

min 8.5e-06 1.2e-12 5.6e-03 6.9e-07 2.1e-04 4.7e-07
Q25 5.6e-02 1.2e-07 3.3e+00 2.4e-06 3.5e-01 2.3e-06

median 1.5e-01 1.1e-06 5.6e+00 3.8e-06 1.2e+00 2.9e-06
Q75 3.7e-01 4.1e-06 7.8e+00 4.9e-06 3.1e+00 4.2e-06
max 2.3e+00 1.8e+00 1.8e+01 3.4e-04 1.0e+01 4.4e-05

Table 5.4: Numerical results for system
identification. The target error is the dif-
ference to the target value and “objective”
denotes the optimization objective (posi-
tion trajectory error).

sampled with radii/edge lengths 𝑠 ∈ [0.5, 1.5]. We sample initialization
object sizes 𝑠′ = 𝑠 + 𝜀 with 𝜀 ∈ [0, 1.0]. This initialization larger than the
target size is chosen as segmented depth measurements from RGB-D
cameras typically overestimate the size of the object due to inaccurate
segmentation masks. For pose and trajectory fitting, we first segment the
depth map using the given segmentation mask and compute the set of 3D
points P belonging to the object from it as explained in Section 2.3. We
then use the mean squared SDF value of the points in Pafter transforming
them to the object frame using its pose estimate and the known camera
view pose:

𝐸sdf(𝑠,T) = 1
|P|

∑︂
p∈P

𝜙(Tp, 𝑠)2 , (5.60)

where T ∈ SE(3) is the transformation matrix transforming the points
in P from camera to object frame and 𝜙(p, 𝑠) is the object SDF (see also
Subsection 2.2.1). Fitting of pose and object size in a single frame is prone
to local minima and typically overestimates the object size, as can be
seen in the middle rows of Figures 5.19 to 5.21. Figure 5.22 illustrates
this problem. Fitting the shape and position of the objects (gray) to the
point clouds (yellow) yields wrong local optima. For the cube, this local
optimum is a perfect fit, while the actual object would be smaller, ending
where the point cloud ends and having a position closer to the camera.
For the sphere, the local optimum ends up with some points outside and
some inside the object.

We compare the single frame pose fit with its refinement through fitting
the trajectory on all depth image observations (cumulating Equation (5.60)

90 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Figure 5.18: Friction (top) and mass (mid-
dle) identification and force optimization
(bottom). Each group shows 3 frames
from the beginning, middle, and end of
a 1s trajectory. With the initial estimates
(blue), the simulated trajectory differs
from the target one (overlay in gray). By
optimizing the parameters to match the
trajectory, we manage to recover them
well. The red arrows indicate the pushing
force parallel to the plane that is applied
to the object (scaled by a factor of 0.5 for
better visibility).

fr
ic

tio
n in

iti
al

iz
at

io
n

re
su

lt
m

as
s

in
iti

al
iz

at
io

n
re

su
lt

fo
rc

e
in

iti
al

iz
at

io
n

re
su

lt

over all frames) in each sequence using the differentiable simulation.
Table 5.5 shows quantitatively that fitting pose and size of spheres
and cubes to a depth map falls into a local optimum, making the pose
estimate worse while improving the shape estimates. Refining this result
via trajectory optimization improves radius and pose estimates, as can
also be seen qualitatively in Figures 5.19 to 5.21.

Real-World Experiment. In Figure 5.23 we provide results for a real data
experiment, in which we reproduce a setting similar to the synthetic depth
fitting experiment by throwing a tennis ball against a wall and recording
it with an Intel RealSense D455 camera at a resolution of 640 × 480 with
30 FPS. The camera comes with an inertial measurement unit (IMU),
which gives the gravity direction. In contrast to the synthetic examples,
we do not have known ground-truth parameters for restitution, friction,
velocity or position and need to optimize for all of these parameters.
We first compute the point cloud from the depth map as explained in
Section 2.3. Then, we segment the planes and the ball from the point
cloud by combined geometric and color segmentation.

5.5 Experiments 91

Figure 5.19: Fitting to depth observations
for spheres with gravity. The inputs for
this experiment are depth and segmen-
tation masks (illustrated in the second
and third rows below a rendering of the
scene) at 3 time steps from the begin-
ning, middle and end of a 1.5 s trajectory.
Optimization of initialization pose and
the size of the object is then carried out
in 2 stages. From an initialization (red
overlay over the blue target), pose and
shape of the SDF are first fit to the first
depth frame (gray overlay over blue tar-
get). This optimization can fall into local
optima, e. g., by overestimating the size
and putting the object further back as can
be seen in the fifth row. In the last row,
we can see that this error is recovered by
our optimization using our differentiable
simulation (green overlay over blue tar-
get).

Figure 5.20: Fitting to depth observations
for spheres without gravity. The inputs
for this experiment are the same as in Fig-
ure 5.19. Optimization of initialization
pose and the size of the object is then
carried out in 2 stages. From an initial-
ization (red overlay over the blue target),
pose and shape of the SDF are first fit to
the first depth frame (gray overlay over
blue target). This optimization can fall
into local optima, e. g., by overestimating
the size and putting the object further
back as can be seen in the second row. In
the last row, we can see that this error is
recovered by our optimization using our
differentiable simulation (green overlay
over blue target).

92 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

Figure 5.21: Fitting to depth observations
for cubes without gravity. The inputs for
this experiment are the same as in Fig-
ure 5.19. Optimization of initialization
pose and the size of the object is then
carried out in 2 stages. From an initial-
ization (red overlay over the blue target),
pose and shape of the SDF are first fit to
the first depth frame (gray overlay over
blue target). This optimization can fall
into local optima, e. g., by overestimating
the size and putting the object further
back as can be seen in the second row. In
the last row, we can see that this error is
recovered by our optimization using our
differentiable simulation (green overlay
over blue target).

Figure 5.22: Fitting an object (gray) to a
point cloud (yellow) can yield a wrong lo-
cal optimum for both pose and shape esti-
mates since the point cloud does not con-
strain the unseen side of the object. For
the box (left) this local optimum yields
a perfect fit, for the sphere (right), some
of the points end up outside the object
(darker) and some inside it (lighter/gray
points).

As the initial velocity of the ball is unknown, we try to estimate it using
finite differences from the first two frames. For initialization, we thus first
compute the positions in these frames as the centroids of the segmented
point clouds and the radius of the ball as half the diameter of the segment
in the first frame, resulting in an estimate of 2.96 cm.

In a first optimization stage11, we refine the previously initialized positions11: Similar to the first-frame fit in the
synthetic examples in the first two frames and the radius of the ball by optimizing them using

Equation (5.60). The resulting radius (3.68 cm) is a slight over-estimate
of the ball’s radius (gt: 3.24 cm). As we can see in the second row of
Figure 5.23, simulating the ball (blue) with this radius, the initial velocity
computed by finite differences from the positions, and empirically set
friction and restitution coefficients, fits the depth measurements (red)
well in the beginning but deviates after the collision with the wall.

We then optimize restitution, friction, initial velocity, initial position,
and radius using the depth fitting objective from Equation (5.60). This
optimization problem has many degrees of freedom, hence, fitting these
parameters on a single trajectory is prone to local minima. Still, our ap-
proach is able to recover the radius and trajectory well in this experiment.
The initial radius is improved to 3.13 cm by our approach and we can see
a better fit of the ball simulated with the optimized parameters (green)
and the segmented point cloud (red) in the last row of Figure 5.23. The
result demonstrates that trajectory and radius estimates can be improved
by our physics-based approach in this challenging scenario.

5.5 Experiments 93

sphere cube

error w/o gravity w/ gravity w/o gravity w/ gravity

init pos 0.040 0.040 0.040 0.040
pos frame fit 0.056 0.056 0.077 0.077
pos traj. fit 0.031 0.044 0.023 0.029
init rot – – 0.135 0.135
rot frame fit – – 0.001 0.001
rot traj. fit – – 0.002 0.000
init size 0.512 0.512 0.512 0.512
size frame fit 0.163 0.163 0.137 0.137
size traj. fit 0.022 0.014 0.029 0.030

Table 5.5: Position and shape parameter
errors for single-frame fitting and trajec-
tory fitting to depth observations.

Figure 5.23: Results on a real-world scene (frame 0, 2, 4, 6 and 9). Blue: fit to first two frames. Green: fit of simulated trajectory. Red:
Recorded point cloud segment. Our result (green) fits the trajectory better overall, especially after the bounce. The radius is improved
from 3.68 cm (initial 2 frames fit) to 3.13 cm (trajectory fit, ground truth 3.24 cm).

5.5.6 Runtime

We implemented our method in PyTorch (Paszke et al. 2019) and have
not yet tuned our implementation for efficiency. Currently, our method
requires several seconds of computation time for one second in simulation.
Major room for run-time improvements is in collision detection and
contact point estimation which we have not yet optimized on the GPU.
Note that Macklin, Erleben, Müller, Chentanez, Jeschke, and Corse (2020)
have demonstrated that these steps can be significantly sped up with
timings in the microseconds. The LCP optimization could be sped up
by approaches such as (Shao et al. 2021). Implementing more efficient
C++ implementations instead of the current ones in Python could further
improve the efficiency of contact detection and the solution of the LCP.

5.5.7 Limitations

We observed that bouncing boxes with sharp corners and edges can have
strong variations in contact points and number of contacts which makes
system identification challenging due to varying contact situations (e.g.,
a box collides with different corners/edges). First-order gradient based
optimization can be difficult in such cases for the trajectory alignment.
In the shape from inertia experiment, we observed that in some outlier

94 5 DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes

cases, depending on the start and target configurations, the torque and
the shape space, the velocity loss can be reduced while the shape is
converging to a wrong local minimum. Non-convex shapes can render
the system identification problem itself non-convex for which gradient
descent will retrieve local minima.

5.6 Conclusion

We propose a novel approach for differentiable rigid-body physics simu-
lation that models arbitrary watertight shapes using SDF representations.
We devise differentiable inertia tensors and time of contact in a velocity-
based constraint-based time-stepping method. Our experimental results
demonstrate that physical system identification including shape inference
is possible for several challenging scenarios with non-convex shapes and
collisions via gradient descent. We fit our model on sample trajectories
and depth image observations of synthetic scenes. Further scaling our ap-
proach for system identification, 3D vision, and control in more complex
scenarios through more elaborate optimization methods than gradient
descent is an interesting direction for future research.

Conclusion 6
6.1 Limitations 96
6.2 Future Work 98

In this thesis, we present several approaches for 3D reconstruction in
dynamic scenes to enable autonomous agents to perceive the 3D world
around them. While 3D reconstruction in general has been an active area
of research in computer vision over the last decades, most previous works
assumed static environments, in which the camera or the autonomous
agent is the only moving entity. This assumption limits the applicability
of these algorithms, as we often want autonomous agents to interact
with objects or other agents that move, i. e., in dynamic environments.
Some approaches have tried to address this issue by making the tracking
and reconstruction algorithms robust to dynamic scene elements, i. e.,
treating dynamic parts of the scene as outliers. By contrast, we reconstruct
and track the dynamic parts of the scene and the static background in
separate models. Further, we demonstrate that dynamic scenes exhibit
more information than just the geometry observed by the camera. We
reason about physically plausible scene configurations and physically
plausible object motion and show that we can infer more information
about object shapes.

In Chapter 3, we present an approach for tracking and mapping dynamic
objects after detecting them using semantic instance segmentation. We
choose to represent the objects and the static background by individual
volumetric truncated signed distance function models. This representa-
tion allows for efficiently formulating the data association problem of
pixels to the different moving objects in a geometric fashion, as signed
distance functions trivially provide distances to the closest surface for 3D
points. We compute the distances of points measured in depth images
to the different models and formulate a data association probability
of pixels to object models based on these distances. After estimating
the probability under the scene configuration from the previous frame,
we then maximize it by updating the poses and geometries using the
estimated probability to attribute the pixel contributions to the different
models. This probabilistic formulation allows us to run the comparatively
expensive semantic instance segmentation only on a relatively sparse
set of frames for improved efficiency. We further demonstrate state-of-
the-art performance in object tracking accuracy compared to related
approaches.

We extend our work in Chapter 4 for completing the reconstructed object
geometries from Chapter 3 by reasoning about physical plausibility of
the scene configurations. Our approach collects depth measurements in
key frames as oriented surface point clouds and attributes them to the
individual object models by the association likelihood from Chapter 3. We
then combine these point clouds with two physical plausibility constraints
in an offline optimization method. The first of these constraints reasons
about observed empty space and constrains the objects to only occupy
unobserved space, i. e., to lie within a hull. While this constraint can
and has been used to improve reconstructions in static environments,
we propose a second constraint, exploiting the dynamics of the scene.
We reason that observed surfaces do not disappear just because they
are occluded by another object and that they constrain the possible

96 6 Conclusion

geometries of the occluding object as no two objects can occupy the same
space at the same time. Signed distance functions are especially suited
for formulating this constraint, as negative distances indicate how far
inside an object a certain point is. We reason that if a point in 3D is a
certain distance inside one object, it has to be outside all other objects by at
least the same distance. Our experiments demonstrate that incorporating
these constraints leads to physically plausible shape completions. Most
other approaches to shape completion use learning-based shape priors,
requiring 3D training data for the object one expects to observe. As our
approach is based on reasoning about physical plausibility, it provides
an orthogonal direction as we do not need to make such assumptions
about the present 3D shapes. While our reconstructions are not very
accurate on the surfaces estimated by the constraints, we anticipate that
our watertight models still provide useful cues for applications like
robotic grasping.

In Chapter 5, we present another approach for using physical plausibility
cues in object reconstruction. Different to Chapters 3 and 4, we now
employ learned parametric signed distance function models to represent
shapes. This allows us to distinguish different shapes by low-dimensional
parameters and to optimize these parameters when fitting to observations
as was shown in previous work. We combine these parametric models
with a differentiable physics simulation method by extending it to use
signed distance functions for contact detection. To optimize the shape of
objects through the physics simulation, we observe that the trajectory
of objects after collisions is affected by the object shape, as, e.g., a ball
moving towards a wall would hit the wall earlier or later depending
on its radius. In other words, the time of contact depends on the shape
parameters of the objects. As the differentiable simulation we build upon
assumes the time step size to be constant when computing gradients, we
propose a novel method for computing gradients for the time of contact
at collisions. Our experiments demonstrate that our contributions enable
accurate shape estimation by reasoning about physically plausible object
motion in the simulation. The optimized shapes further recover the target
trajectories and depth observations well, indicating possible applications
in real-to-sim transfer. We anticipate that our contributions can be useful
for estimating object shapes and reasoning about possible interactions
with the objects in robotic applications.

While the works presented in this thesis provide several approaches for
improving robotic 3D perception in dynamic environments, more work
is needed to make them applicable in practice. We will now summarize
the limitations of our approaches and discuss possible directions for
future work.

6.1 Limitations

Segmentation Methods for EM-Fusion. While we do not make as-
sumptions about the reconstructed 3D shapes in Chapters 3 and 4, both
approaches are limited to objects that can be detected by the semantic
instance segmentation method Mask R-CNN (He et al. 2017). While we
observed that Mask R-CNN typically manages to create segmentation
masks (sometimes not with the correct classification) for moving objects,

6.1 Limitations 97

this limits our methods to object categories in the training set for Mask
R-CNN. The Mask R-CNN module can easily be replaced by other ap-
proaches that provide segmentation masks for the objects. One way to
avoid having to train on known object classes are recent advances in in-
stance segmentation that allow class-agnostic segmentation for instances
of any object (Kirillov et al. 2023; X. Wang et al. 2022). Other approaches
can perform instance segmentation much faster than Mask R-CNN (Bolya
et al. 2019), or focus more on moving or potentially moving objects by
motion segmentation (Bao et al. 2022; Tokmakov et al. 2018; Xie et al.
2022). Another interesting direction would be to use the geometric dis-
tances after the robust alignment with the Huber norm as segmentation
cues.

Invalid Object Configurations in Differentiable Simulation. The dif-
ferentiable simulation we use in Chapter 5 cannot resolve penetrations
and assumes a valid scene configuration without penetration at the
start. Initialization configuration from observations (e.g., object pose esti-
mates) might not satisfy this condition and might thus require additional
processing to resolve the penetration. Further, gradient-based optimiza-
tion might also lead to such invalid states, requiring a similar failure
case handling strategy. Apart from resolving penetrations “manually”,
penalty-based differentiable simulation approaches (Geilinger et al. 2020;
J. Xu, T. Chen, et al. 2021; J. Xu, S. Kim, et al. 2022) model contacts by
soft penalties instead of the hard constraints in the LCP formulation
(Avila Belbute-Peres et al. 2018) and might be able to handle these cases
better.

Computation Times. One aspect currently limiting the applicability
of the presented methods is computation time. Robotics applications
typically have strict real-time requirements, i. e., by the time the next frame
arrives from the camera, the previous frame should already be processed,
and the robot might need to react to its environment depending on
that processing result. While our works’ focus lies on demonstrating
what is possible with our approaches, we still want to summarize the
computational performance of our implementations and possible paths
for improvement.

As reported in Chapter 3, we achieve average computation times per
frame between 100 ms and 260 ms for EM-Fusion. The videos in the
experiments are captured at 30 Hz, capturing a new frame every 33 ms,
which is about one third of our best-case average processing time. While
we did implement the approach presented in Chapter 3 in C++ for
computational efficiency and performed many computations on the
GPU using CUDA, we anticipate further run time improvements, like
parallel (instead of sequential) processing of the different object models
or multithreading for the semantic instance segmentation part, will yield
closer to real-time computation times.

Co-Section in Chapter 4 is designed as an offline optimization approach
to be run at a lower frame rate. Generally the key frame rate at which the
optimization refines the previous object models can be seen as a parameter
which can be tuned for a trade-off between updating models more often
and lower overall run times. As explained in Chapter 4, the computation

98 6 Conclusion

times are in the ranges of several seconds, while Schroers et al. (2014)
report lower computation times at higher resolutions. We anticipate
that a more efficient implementation of the optimization algorithm can
improve the performance.

DiffSDFSim in Chapter 5 is quite far from real-time applications. The
simulation takes up to several seconds for one second of simulation
time and needs to be rolled out for each iteration of the optimization
algorithm. We implemented DiffSDFSim in Python and PyTorch (Paszke
et al. 2019). While PyTorch allows the parallelization of some operations
on the GPU, the Python interface comes at the cost of computational
overhead. We anticipate that more efficient implementations, e.g., in C++,
for the contact detection algorithm and solving the LCP, will improve
the run time. Especially the contact detection algorithm, which takes up
a large part of the computation time in our approach, was demonstrated
with much lower computation times in an efficient implementation on the
GPU (Macklin, Erleben, Müller, Chentanez, Jeschke, and Corse 2020).

6.2 Future Work

Combining the Presented Methods. Apart from addressing the lim-
itations mentioned in Section 6.1, one path for future work includes
combinations of the presented approaches. One interesting direction
would be to use learned parametric shape spaces like (Park et al. 2019) in
online tracking like EM-Fusion (Chapter 3), possibly further optimizing
the shape parameters using the physical plausibility constraints from Co-
Section (Chapter 4). While the object poses in EM-Fusion were arbitrarily
aligned with the world frame, this combination requires first estimating
the object pose as the shape spaces are typically trained on objects in
a fixed coordinate frame. As the shape spaces are usually trained on
categories of objects, this introduces the problem of category-level object
pose estimation. This problem was first addressed by H. Wang et al. (2019),
who also published a data set for this problem. Subsequent work has
tried to combine category level pose and shape estimation (K. Chen and
Dou 2021; Irshad, Kollar, et al. 2022; Tian et al. 2020), recently even by
predicting shape latent codes for DeepSDF models (Irshad, Zakharov,
et al. 2022). As mentioned before, such pose estimation models could be
used as initialization for tracking DeepSDF models with approaches like
EM-Fusion (Chapter 3)1. Including the plausibility losses from Co-Section1: Other approaches proposed category-

level object tracking from known initial
poses, (e. g., C. Wang et al. 2020; Wen and
Bekris 2021) and could also be used here.

(Chapter 4) or the trajectory optimization from DiffSDFSim (Chapter 5)
can then further improve the shape estimation.

Interactive Perception in Dynamic Scenes. Thinking further, while
vision is one important cue in human perception, we also include other
modalities like sound or touch when perceiving our environment. Es-
pecially for touch, we interact with objects from a very young age and
collect experiences about how our interactions affect objects. Interactive
perception approaches for robotic agents could build upon the recon-
structions recovered by the approaches presented in this thesis and refine
the shape and motion estimates further. Moreover, physical models like
the simulation model used in DiffSDFSim only provide approximations
and do not model all effects we observe in our complex physical world.

6.2 Future Work 99

Simulating interactions and comparing the result with actual interactions
with the real world might provide interesting cues for improving the
physical model. We hope that the approaches presented in this thesis will
provide useful building blocks in more general approaches for dynamic
scene perception.

100 6 Conclusion

101

Bibliography

Abdulla, Waleed (2017). Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow.
https://github.com/matterport/Mask_RCNN (cited on pages 37, 38).

Agarwal, Sameer, Yasutaka Furukawa, Noah Snavely, Ian Simon, Brian Curless, Steven M. Seitz, and
Richard Szeliski (2011). ‘Building Rome in a day’. In: Communications of the ACM 54.10, pp. 105–112. doi:
10.1145/2001269.2001293 (cited on page 2).

Agarwal, Sameer, Noah Snavely, Ian Simon, Steven M. Seitz, and Richard Szeliski (2009). ‘Building Rome
in a day’. In: 2009 IEEE 12th International Conference on Computer Vision. 2009 IEEE 12th International
Conference on Computer Vision. ISSN: 2380-7504. IEEE, pp. 72–79. doi: 10.1109/iccv.2009.5459148
(cited on page 2).

Alexa, Marc, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and Claudio T. Silva (2003).
‘Computing and rendering point set surfaces’. In: IEEE Transactions on Visualization and Computer Graphics
9.1 (1), pp. 3–15. doi: 10.1109/tvcg.2003.1175093 (cited on page 47).

Amos, Brandon and J. Zico Kolter (Aug. 2017). ‘OptNet: Differentiable Optimization as a Layer in Neural
Networks’. In: Proceedings of the 34th International Conference on Machine Learning (ICML). Ed. by Doina
Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. International Convention
Centre, Sydney, Australia: PMLR, pp. 136–145 (cited on pages 65, 70, 71).

Anitescu, Mihai and Florian A. Potra (1997). ‘Formulating Dynamic Multi-Rigid-Body Contact Problems
with Friction as Solvable Linear Complementarity Problems’. In: Nonlinear Dynamics 14.3, pp. 231–247. doi:
10.1023/a:1008292328909 (cited on pages 65, 66).

Avila Belbute-Peres, Filipe de, Kevin Smith, Kelsey Allen, Josh Tenenbaum, and J. Zico Kolter (2018). ‘End-to-
End Differentiable Physics for Learning and Control’. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 31. Curran Associates, Inc., pp. 7178–7189. (Visited on 08/02/2022) (cited on pages 6, 64–66,
70, 71, 97).

Bao, Zhipeng, Pavel Tokmakov, Allan Jabri, Yu-Xiong Wang, Adrien Gaidon, and Martial Hebert (2022).
‘Discovering Objects that Can Move’. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, pp. 11779–11788. doi: 10.1109/cvpr52688.2022.01149 (cited on page 97).

Baraff, David (1996). ‘Linear-time dynamics using Lagrange multipliers’. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques - SIGGRAPH ’96. ACM Press. doi: 10.1145/237170.
237226 (cited on page 65).

Bender, Jan, Kenny Erleben, and Jeff Trinkle (2013). ‘Interactive Simulation of Rigid Body Dynamics in
Computer Graphics’. In: Computer Graphics Forum 33.1, pp. 246–270. doi: 10.1111/cgf.12272 (cited on
pages 5, 65).

Bender, Jan and Alfred A. Schmitt (2006). ‘Fast dynamic simulation of multi-body systems using impulses’.
In: Virtual Reality Interactions and Physical Simulations (VRIPhys), pp. 81–90 (cited on page 65).

Besl, Paul J. and Ramesh C. Jain (1986). ‘Invariant surface characteristics for 3D object recognition in
range images’. In: Computer Vision, Graphics, and Image Processing 33.1, pp. 33–80. doi: 10.1016/0734-
189x(86)90220-3 (cited on page 22).

Besl, Paul J. and Neil D. McKay (1992). ‘A method for registration of 3-D shapes’. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 14.2, pp. 239–256. doi: 10.1109/34.121791 (cited on pages 25, 33).

Bishop, Christopher M. (2007). Pattern recognition and machine learning, 5th Edition. Information science and
statistics. Springer (cited on pages 4, 23, 32).

Bolya, Daniel, Chong Zhou, Fanyi Xiao, and Yong Jae Lee (2019). ‘YOLACT: Real-Time Instance Segmentation’.
In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. doi: 10.1109/iccv.2019.00925
(cited on page 97).

Bolza, Oskar (1904). Lectures on the calculus of variations: Repr. of ed. 1904. Vol. 14. University of Chicago Press
(cited on page 49).

Boyd, Stephen and Lieven Vandenberghe (2004). Convex Optimization. Cambridge University Press (cited on
pages 49, 68, 70).

https://github.com/matterport/Mask_RCNN
https://doi.org/10.1145/2001269.2001293
https://doi.org/10.1109/iccv.2009.5459148
https://doi.org/10.1109/tvcg.2003.1175093
https://doi.org/10.1023/a:1008292328909
https://doi.org/10.1109/cvpr52688.2022.01149
https://doi.org/10.1145/237170.237226
https://doi.org/10.1145/237170.237226
https://doi.org/10.1111/cgf.12272
https://doi.org/10.1016/0734-189x(86)90220-3
https://doi.org/10.1016/0734-189x(86)90220-3
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/iccv.2019.00925

102

Bylow, Erik, Jürgen Sturm, Christian Kerl, Fredrik Kahl, and Daniel Cremers (2013). ‘Real-Time Camera
Tracking and 3D Reconstruction Using Signed Distance Functions’. In: Robotics: Science and Systems IX.
Berlin, Germany: Robotics: Science and Systems Foundation. doi: 10.15607/rss.2013.ix.035 (cited on
pages 3, 4, 23, 25, 28, 34, 35).

Calakli, Fatih and Gabriel Taubin (2011). ‘SSD: Smooth Signed Distance Surface Reconstruction’. In: Computer
Graphics Forum 30.7, pp. 1993–2002. doi: 10.1111/j.1467-8659.2011.02058.x (cited on pages 5, 47, 49,
50).

Canelhas, Daniel R., Todor Stoyanov, and Achim J. Lilienthal (2013). ‘SDF Tracker: A parallel algorithm
for on-line pose estimation and scene reconstruction from depth images’. In: 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE. doi: 10.1109/iros.2013.6696880 (cited on page 28).

Chen, Kai and Qi Dou (2021). ‘SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose
Estimation’. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, pp. 2773–2782. doi:
10.1109/iccv48922.2021.00277 (cited on page 98).

Cifuentes, Cristina Garcia, Jan Issac, Manuel Wuthrich, Stefan Schaal, and Jeannette Bohg (2017). ‘Probabilistic
Articulated Real-Time Tracking for Robot Manipulation’. In: IEEE Robotics and Automation Letters (RA-L)
2.2, pp. 577–584. doi: 10.1109/lra.2016.2645124 (cited on page 25).

Cline, Michael Bradley (2002). ‘Rigid body simulation with contact and constraints’. en. In: Retrospective
Theses and Dissertations, 1919-2007. doi: 10.14288/1.0051676 (cited on pages 67–69).

Coumans, Erwin (2010). Bullet physics engine. Open Source Software: https://bulletphysics.org (cited on
page 66).

Cremers, Daniel and Kalin Kolev (2011). ‘Multiview Stereo and Silhouette Consistency via Convex Functionals
over Convex Domains’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 33.6, pp. 1161–1174.
doi: 10.1109/tpami.2010.174 (cited on pages 47, 48).

Curless, Brian and Marc Levoy (1996). ‘A volumetric method for building complex models from range images’.
In: Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. SIGGRAPH ’96.
New York, NY, USA: ACM Press, pp. 303–312. doi: 10.1145/237170.237269 (cited on pages 4, 17, 26, 27,
35, 47, 48, 53).

Dai, Angela, Daniel Ritchie, Martin Bokeloh, Scott Reed, Jürgen Sturm, and Matthias Nießner (2018).
‘ScanComplete: Large-Scale Scene Completion and Semantic Segmentation for 3D Scans’. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. IEEE. doi: 10.1109/cvpr.2018.00481 (cited on
pages 4, 45, 48).

Davison, Andrew J., Ian D. Reid, Nicholas Molton, and Olivier Stasse (2007). ‘MonoSLAM: Real-Time Single
Camera SLAM’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 29.6, pp. 1052–1067. doi:
10.1109/tpami.2007.1049 (cited on page 3).

Firman, Michael, Oisin Mac Aodha, Simon Julier, and Gabriel J. Brostow (2016). ‘Structured Prediction of
Unobserved Voxels from a Single Depth Image’. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2016.586 (cited on pages 4, 45, 48).

Frank, Marguerite and Philip Wolfe (1956). ‘An algorithm for quadratic programming’. en. In: Naval Research
Logistics Quarterly 3.1-2, pp. 95–110. doi: 10.1002/nav.3800030109. (Visited on 02/01/2021) (cited on
pages 72, 74).

Geilinger, Moritz, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros
(2020). ‘ADD: analytically differentiable dynamics for multi-body systems with frictional contact’. In: ACM
Transactions on Graphics 39.6, pp. 1–15. doi: 10.1145/3414685.3417766 (cited on pages 5, 63, 65, 97).

Girshick, Ross B. (2015). ‘Fast R-CNN’. In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE
Computer Society, pp. 1440–1448. doi: 10.1109/iccv.2015.169 (cited on page 3).

Girshick, Ross B., Jeff Donahue, Trevor Darrell, and Jitendra Malik (2014). ‘Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation’. In: 2014 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, pp. 580–587. doi: 10.1109/cvpr.2014.81 (cited on page 3).

Gropp, Amos, Lior Yariv, Niv Haim, Matan Atzmon, and Yaron Lipman (July 2020). ‘Implicit Geometric
Regularization for Learning Shapes’. In: Proceedings of the 37th International Conference on Machine Learning.
Ed. by Hal Daumé III and Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR,
pp. 3789–3799 (cited on pages 15, 16, 72, 79).

https://doi.org/10.15607/rss.2013.ix.035
https://doi.org/10.1111/j.1467-8659.2011.02058.x
https://doi.org/10.1109/iros.2013.6696880
https://doi.org/10.1109/iccv48922.2021.00277
https://doi.org/10.1109/lra.2016.2645124
https://doi.org/10.14288/1.0051676
https://doi.org/10.1109/tpami.2010.174
https://doi.org/10.1145/237170.237269
https://doi.org/10.1109/cvpr.2018.00481
https://doi.org/10.1109/tpami.2007.1049
https://doi.org/10.1109/cvpr.2016.586
https://doi.org/10.1002/nav.3800030109
https://doi.org/10.1145/3414685.3417766
https://doi.org/10.1109/iccv.2015.169
https://doi.org/10.1109/cvpr.2014.81

103

Hachiuma, Ryo, Christian Pirchheim, Dieter Schmalstieg, and Hideo Saito (2019). ‘DetectFusion: Detecting
and Segmenting Both Known and Unknown Dynamic Objects in Real-time SLAM’. English. In: Proceedings
British Machine Vision Conference (BMVC) (cited on pages 48, 53).

Hart, John C. (1996). ‘Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces’.
In: The Visual Computer 12.10, pp. 527–545. doi: 10.1007/s003710050084 (cited on page 19).

Hartley, Richard and Andrew Zisserman (2004). Multiple View Geometry in Computer Vision. Cambridge
University Press (cited on pages 1, 2, 21).

Hassan, Mohamed, Vasileios Choutas, Dimitrios Tzionas, and Michael Black (2019). ‘Resolving 3D Human
Pose Ambiguities With 3D Scene Constraints’. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV). IEEE. doi: 10.1109/iccv.2019.00237 (cited on page 48).

Hasson, Yana, Gül Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael J. Black, Ivan Laptev, and Cordelia
Schmid (2019). ‘Learning Joint Reconstruction of Hands and Manipulated Objects’. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2019.01208 (cited
on page 48).

He, Kaiming, Georgia Gkioxari, Piotr Dollár, and Ross Girshick (2017). ‘Mask R-CNN’. In: 2017 IEEE
International Conference on Computer Vision (ICCV). IEEE, pp. 2980–2988. doi: 10.1109/iccv.2017.322
(cited on pages 3, 4, 25, 29–31, 39, 53, 56, 96).

Hu, Yuanming, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand
(Oct. 2020). ‘DiffTaichi: Differentiable Programming for Physical Simulation’. In: International Conf. on
Learning Representations (ICLR) (cited on pages 5, 63).

Hu, Yuanming, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun
Wu, Daniela Rus, and Wojciech Matusik (2019). ‘ChainQueen: A Real-Time Differentiable Physical
Simulator for Soft Robotics’. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE. doi:
10.1109/icra.2019.8794333 (cited on page 65).

Irshad, Muhammad Zubair, Thomas Kollar, Michael Laskey, Kevin Stone, and Zsolt Kira (2022). ‘CenterSnap:
Single-Shot Multi-Object 3D Shape Reconstruction and Categorical 6D Pose and Size Estimation’. In: 2022
International Conference on Robotics and Automation (ICRA). IEEE. doi: 10.1109/icra46639.2022.9811799
(cited on page 98).

Irshad, Muhammad Zubair, Sergey Zakharov, Rares Ambrus, Thomas Kollar, Zsolt Kira, and Adrien Gaidon
(July 2022). ‘ShAPO: Implicit Representations for Multi-object Shape, Appearance, and Pose Optimization’.
en. In: Lecture Notes in Computer Science. Ed. by Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni
Maria Farinella, and Tal Hassner. Lecture Notes in Computer Science. Cham: Springer Nature Switzerland,
pp. 275–292. doi: 10.1007/978-3-031-20086-1_16 (cited on page 98).

Jaimez, Mariano, Christian Kerl, Javier Gonzalez-Jimenez, and Daniel Cremers (2017). ‘Fast odometry and
scene flow from RGB-D cameras based on geometric clustering’. In: 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, pp. 3992–3999. doi: 10.1109/icra.2017.7989459 (cited on page 39).

Kandukuri, Rama Krishna, Jan Achterhold, Michael Moeller, and Joerg Stueckler (2020). ‘Learning to Identify
Physical Parameters from Video Using Differentiable Physics’. In: pp. 44–57. doi: 10.1007/978-3-030-
71278-5_4 (cited on page 66).

Kandukuri, Rama Krishna, Michael Strecke, and Joerg Stueckler (2024). ‘Physics-Based Rigid Body Object
Tracking and Friction Filtering From RGB-D Videos’. In: International Conference on 3D Vision (3DV). accepted,
preprint arXiv: 2309.15703. doi: 10.1109/3DV62453.2024.00111 (cited on page 7).

Kato, Hiroharu, Yoshitaka Ushiku, and Tatsuya Harada (2018). ‘Neural 3D Mesh Renderer’. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. Computer Vision Foundation / IEEE Computer
Society, pp. 3907–3916. doi: 10.1109/cvpr.2018.00411 (cited on pages 6, 64, 66).

Kazhdan, Michael, Matthew Bolitho, and Hugues Hoppe (2006). ‘Poisson Surface Reconstruction’. In:
Proceedings of the Fourth Eurographics Symposium on Geometry Processing. SGP ’06. Cagliari, Sardinia, Italy:
Eurographics Association, pp. 61–70 (cited on pages 5, 47, 49, 50).

Kazhdan, Michael and Hugues Hoppe (2013). ‘Screened poisson surface reconstruction’. In: ACM Transactions
on Graphics 32.3, pp. 1–13. doi: 10.1145/2487228.2487237. (Visited on 05/16/2023) (cited on pages 5, 50).

Keller, Maik, Damien Lefloch, Martin Lambers, Shahram Izadi, Tim Weyrich, and Andreas Kolb (2013).
‘Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based Fusion’. In: 2013 International Conference
on 3D Vision. IEEE, pp. 1–8. doi: 10.1109/3dv.2013.9 (cited on pages 23, 25).

https://doi.org/10.1007/s003710050084
https://doi.org/10.1109/iccv.2019.00237
https://doi.org/10.1109/cvpr.2019.01208
https://doi.org/10.1109/iccv.2017.322
https://doi.org/10.1109/icra.2019.8794333
https://doi.org/10.1109/icra46639.2022.9811799
https://doi.org/10.1007/978-3-031-20086-1_16
https://doi.org/10.1109/icra.2017.7989459
https://doi.org/10.1007/978-3-030-71278-5_4
https://doi.org/10.1007/978-3-030-71278-5_4
https://doi.org/10.1109/3DV62453.2024.00111
https://doi.org/10.1109/cvpr.2018.00411
https://doi.org/10.1145/2487228.2487237
https://doi.org/10.1109/3dv.2013.9

104

Kerl, Christian, Jurgen Sturm, and Daniel Cremers (2013). ‘Dense visual SLAM for RGB-D cameras’. In:
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2100–2106. doi:
10.1109/iros.2013.6696650 (cited on pages 3, 23, 25).

Keselman, Leonid, John Iselin Woodfill, Anders Grunnet-Jepsen, and Achintya Bhowmik (2017). ‘Intel(R)
RealSense(TM) Stereoscopic Depth Cameras’. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW). IEEE. doi: 10.1109/cvprw.2017.167 (cited on page 21).

Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao,
Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick (Oct. 2023). ‘Segment
Anything’. In: 2023 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. doi: 10.1109/
iccv51070.2023.00371 (cited on page 97).

Krishna Murthy, Jatavallabhula, Miles Macklin, Florian Golemo, Vikram Voleti, Linda Petrini, Martin Weiss,
Breandan Considine, Jerome Parent-Levesque, Kevin Xie, Kenny Erleben, Liam Paull, Florian Shkurti, Derek
Nowrouzezahrai, and Sanja Fidler (2021). ‘gradSim: Differentiable simulation for system identification and
visuomotor control’. In: International Conference on Learning Representations (ICLR) (cited on pages 5, 63, 66).

Levenberg, Kenneth (1944). ‘A method for the solution of certain non-linear problems in least squares’. In:
Quarterly of Applied Mathematics 2.2, pp. 164–168. doi: 10.1090/qam/10666 (cited on pages 28, 35).

Lidec, Quentin Le, Igor Kalevatykh, Ivan Laptev, Cordelia Schmid, and Justin Carpentier (2021). ‘Differentiable
Simulation for Physical System Identification’. In: IEEE Robotics and Automation Letters 6.2, pp. 3413–3420.
doi: 10.1109/LRA.2021.3062323 (cited on page 66).

Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick (2014). ‘Microsoft COCO: Common Objects in Context’. In: Computer Vision – ECCV
2014. Ed. by David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars. Cham: Springer International
Publishing, pp. 740–755. doi: 10.1007/978-3-319-10602-1_48 (cited on page 38).

Lorensen, William E. and Harvey E. Cline (1987). ‘Marching cubes: A high resolution 3D surface construction
algorithm’. In: Proceedings of the 14th annual conference on Computer graphics and interactive techniques -
SIGGRAPH ’87. ACM Press. doi: 10.1145/37401.37422 (cited on pages 19, 57, 72, 74, 80).

Ma, Yi, Stefano Soatto, Jana Košecká, and S. Shankar Sastry (2004). An Invitation to 3-D Vision. Springer New
York (cited on pages 9, 10, 12).

Macklin, Miles, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Zach Corse
(2020). ‘Local Optimization for Robust Signed Distance Field Collision’. In: Proceedings of the ACM on
Computer Graphics and Interactive Techniques 3.1, pp. 1–17. doi: 10.1145/3384538 (cited on pages 13, 72–74,
93, 98).

Macklin, Miles, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Tae-Yong Kim
(2020). ‘Primal/Dual Descent Methods for Dynamics’. In: Computer Graphics Forum 39.8, pp. 89–100. doi:
10.1111/cgf.14104 (cited on page 65).

Magnus, Jan R. and Heinz Neudecker (1988). Matrix differential calculus with applications in statistics and
econometrics. English. Wiley Ser. Probab. Math. Stat. Chichester (UK) etc.: John Wiley &| Sons (cited on
page 71).

Marquardt, Donald W. (1963). ‘An Algorithm for Least-Squares Estimation of Nonlinear Parameters’. In:
Journal of the Society for Industrial and Applied Mathematics 11.2, pp. 431–441. doi: 10.1137/0111030 (cited on
pages 28, 35).

Mattingley, Jacob and Stephen Boyd (Mar. 2012). ‘CVXGEN: a code generator for embedded convex
optimization’. In: Optimization and Engineering 13.1, pp. 1–27. doi: 10.1007/s11081-011-9176-9. (Visited
on 05/09/2023) (cited on page 70).

McCormac, John, Ronald Clark, Michael Bloesch, Andrew J. Davison, and Stefan Leutenegger (2018).
‘Fusion++: Volumetric Object-Level SLAM’. In: 2018 International Conference on 3D Vision (3DV). IEEE,
pp. 32–41. doi: 10.1109/3dv.2018.00015 (cited on pages 3, 25, 28–31).

Mescheder, Lars, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger (2019).
‘Occupancy Networks: Learning 3D Reconstruction in Function Space’. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2019.00459 (cited on pages 6,
14, 66).

Mirtich, Brian (1996). ‘Fast and Accurate Computation of Polyhedral Mass Properties’. In: Journal of Graphics
Tools 1.2, pp. 31–50. doi: 10.1080/10867651.1996.10487458 (cited on page 74).

https://doi.org/10.1109/iros.2013.6696650
https://doi.org/10.1109/cvprw.2017.167
https://doi.org/10.1109/iccv51070.2023.00371
https://doi.org/10.1109/iccv51070.2023.00371
https://doi.org/10.1090/qam/10666
https://doi.org/10.1109/LRA.2021.3062323
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/3384538
https://doi.org/10.1111/cgf.14104
https://doi.org/10.1137/0111030
https://doi.org/10.1007/s11081-011-9176-9
https://doi.org/10.1109/3dv.2018.00015
https://doi.org/10.1109/cvpr.2019.00459
https://doi.org/10.1080/10867651.1996.10487458

105

Mirtich, Brian and John Canny (1995). ‘Impulse-based simulation of rigid bodies’. In: Proceedings of the 1995
symposium on Interactive 3D graphics - SI3D ’95. ACM Press. doi: 10.1145/199404.199436 (cited on page 65).

Müller, Matthias, Bruno Heidelberger, Marcus Hennix, and John Ratcliff (2007). ‘Position based dynamics’. In:
J. Vis. Commun. Image Represent. 18.2, pp. 109–118. doi: 10.1016/j.jvcir.2007.01.005 (cited on page 65).

Mur-Artal, Raul, J. M. Martínez Montiel, and Juan D. Tardós (2015). ‘ORB-SLAM: A Versatile and Accurate
Monocular SLAM System’. In: IEEE Transactions on Robotics 31.5, pp. 1147–1163. doi: 10.1109/tro.2015.
2463671 (cited on page 3).

Mur-Artal, Raul and Juan D. Tardós (2017). ‘ORB-SLAM2: An Open-Source SLAM System for Monocular,
Stereo, and RGB-D Cameras’. In: IEEE Transactions on Robotics 33.5, pp. 1255–1262. doi: 10.1109/tro.2017.
2705103 (cited on page 3).

Newcombe, Richard A. (2012). ‘Dense visual SLAM’. PhD thesis. Imperial College London, UK (cited on
pages 17, 21, 27, 53).

Newcombe, Richard A., Andrew Fitzgibbon, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohi, Jamie Shotton, and Steve Hodges (2011). ‘KinectFusion: Real-time
dense surface mapping and tracking’. In: 2011 10th IEEE International Symposium on Mixed and Augmented
Reality. IEEE. doi: 10.1109/ismar.2011.6092378 (cited on pages 3, 4, 17–19, 23–25, 27, 28, 53).

Newman, Timothy S. and Hong Yi (2006). ‘A survey of the marching cubes algorithm’. In: Computers &
Graphics 30.5, pp. 854–879. doi: 10.1016/j.cag.2006.07.021 (cited on page 19).

Nicastro, Andrea, Ronald Clark, and Stefan Leutenegger (2019). ‘X-Section: Cross-Section Prediction for
Enhanced RGB-D Fusion’. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. doi:
10.1109/iccv.2019.00160 (cited on page 48).

Nießner, Matthias, Michael Zollhöfer, Shahram Izadi, and Marc Stamminger (2013). ‘Real-time 3D reconstruc-
tion at scale using voxel hashing’. In: ACM Transactions on Graphics 32.6, pp. 1–11. doi: 10.1145/2508363.
2508374 (cited on page 25).

Oleynikova, Helen, Zachary Taylor, Marius Fehr, Roland Siegwart, and Juan Nieto (2017). ‘Voxblox: Incremental
3D Euclidean Signed Distance Fields for on-board MAV planning’. In: 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. doi: 10.1109/iros.2017.8202315 (cited on page 13).

Pan, Yue, Yves Kompis, Luca Bartolomei, Ruben Mascaro, Cyrill Stachniss, and Margarita Chli (2022).
‘Voxfield: Non-Projective Signed Distance Fields for Online Planning and 3D Reconstruction’. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2022, Kyoto, Japan, October 23-27, 2022. IEEE,
pp. 5331–5338. doi: 10.1109/IROS47612.2022.9981318 (cited on page 13).

Park, Jeong Joon, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove (2019). ‘DeepSDF:
Learning Continuous Signed Distance Functions for Shape Representation’. In: 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2019.00025 (cited on pages 6,
14–16, 64, 66, 72, 79, 98).

Parker, Steven, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike Sloan (1998). ‘Interactive
ray tracing for isosurface rendering’. In: Proceedings Visualization ’98 (Cat. No.98CB36276) (Proceedings
Visualization ’98 (Cat. No.98CB36276)). IEEE. doi: 10.1109/visual.1998.745713 (cited on page 18).

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala (2019). ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., pp. 8024–8035 (cited on pages 93, 98).

Pollefeys, Marc, Reinhard Koch, Maarten Vergauwen, and Luc Van Gool (Oct. 1999). ‘Hand-held acquisition of
3D models with a video camera’. In: Second International Conference on 3-D Digital Imaging and Modeling (Cat.
No.PR00062). Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).
IEEE Comput. Soc, pp. 14–23. doi: 10.1109/im.1999.805330 (cited on page 2).

Qiao, Yi-Ling, Junbang Liang, Vladlen Koltun, and Ming C. Lin (July 4, 2020). ‘Scalable Differentiable Physics
for Learning and Control’. In: Proceedings of the 37th International Conference on Machine Learning (ICML)
(cited on page 65).

https://doi.org/10.1145/199404.199436
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/tro.2015.2463671
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1109/tro.2017.2705103
https://doi.org/10.1109/ismar.2011.6092378
https://doi.org/10.1016/j.cag.2006.07.021
https://doi.org/10.1109/iccv.2019.00160
https://doi.org/10.1145/2508363.2508374
https://doi.org/10.1145/2508363.2508374
https://doi.org/10.1109/iros.2017.8202315
https://doi.org/10.1109/IROS47612.2022.9981318
https://doi.org/10.1109/cvpr.2019.00025
https://doi.org/10.1109/visual.1998.745713
https://doi.org/10.1109/im.1999.805330

106

Remelli, Edoardo, Artem Lukoianov, Stephan Richter, Benoit Guillard, Timur Bagautdinov, Pierre Baque,
and Pascal Fua (June 6, 2020). ‘MeshSDF: Differentiable Iso-Surface Extraction’. In: Advances in Neural
Information Processing Systems (NeurIPS). Vol. 33, pp. 22468–22478 (cited on pages 6, 20, 64, 66, 72, 74).

Ren, Shaoqing, Kaiming He, Ross B. Girshick, and Jian Sun (2017). ‘Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
39.6, pp. 1137–1149. doi: 10.1109/tpami.2016.2577031 (cited on page 3).

Rindler, Filip (2018). Calculus of Variations. Springer International Publishing (cited on page 49).
Rockafellar, Ralph Tyrell (1970). Convex Analysis. Princeton Landmarks in Mathematics and Physics. Princeton

University Press (cited on page 49).
Rockafellar, Ralph Tyrrell and Roger J. B. Wets (1998). Variational Analysis. Vol. 317. Grundlehren der

mathematischen Wissenschaften. Springer Berlin Heidelberg (cited on page 49).
Rünz, Martin and Lourdes Agapito (2017). ‘Co-Fusion: Real-time Segmentation, Tracking and Fusion of

Multiple Objects’. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 4471–
4478. doi: 10.1109/icra.2017.7989518 (cited on pages 3, 21, 23, 25, 36–42, 46, 48, 53, 57).

Rünz, Martin, Maud Buffier, and Lourdes Agapito (2018). ‘MaskFusion: Real-Time Recognition, Tracking and
Reconstruction of Multiple Moving Objects’. In: 2018 IEEE International Symposium on Mixed and Augmented
Reality (ISMAR). IEEE, pp. 10–20. doi: 10.1109/ismar.2018.00024 (cited on pages 3, 23, 25, 38–40, 48, 53).

Rusinkiewicz, Szymon, Olaf Hall-Holt, and Marc Levoy (2002). ‘Real-time 3D model acquisition’. In: ACM
Transactions on Graphics 21.3, pp. 438–446. doi: 10.1145/566654.566600 (cited on page 21).

Salas-Moreno, Renato F., Richard A. Newcombe, Hauke Strasdat, Paul H. J. Kelly, and Andrew J. Davison
(2013). ‘SLAM++: Simultaneous Localisation and Mapping at the Level of Objects’. In: 2013 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, pp. 1352–1359. doi: 10.1109/cvpr.2013.178 (cited on
page 25).

Sarbolandi, Hamed, Damien Lefloch, and Andreas Kolb (2015). ‘Kinect range sensing: Structured-light versus
Time-of-Flight Kinect’. In: Computer Vision and Image Understanding 139, pp. 1–20. doi: 10.1016/j.cviu.
2015.05.006. (Visited on 05/24/2023) (cited on page 21).

Schmidt, Tanner, Katharina Hertkorn, Richard Newcombe, Zoltan Marton, Michael Suppa, and Dieter Fox
(2015). ‘Depth-based tracking with physical constraints for robot manipulation’. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). ISSN: 1050-4729. IEEE, pp. 119–126. doi: 10.1109/icra.2015.
7138989 (cited on page 25).

Schroers, Christopher, Simon Setzer, and Joachim Weickert (2014). ‘A Variational Taxonomy for Surface
Reconstruction from Oriented Points’. In: Computer Graphics Forum 33.5, pp. 195–204. doi: 10.1111/cgf.
12445 (cited on pages 5, 46, 47, 49–52, 54, 55, 60, 98).

Scona, Raluca, Mariano Jaimez, Yvan R. Petillot, Maurice Fallon, and Daniel Cremers (2018). ‘StaticFusion:
Background Reconstruction for Dense RGB-D SLAM in Dynamic Environments’. In: 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, pp. 1–9. doi: 10.1109/icra.2018.8460681 (cited on
pages 23, 25, 39).

Shao, Han, Tassilo Kugelstadt, Torsten Hädrich, Wojciech Pałubicki, Jan Bender, Sören Pirk, and Dominik L.
Michels (June 2021). ‘Accurately Solving Rod Dynamics with Graph Learning’. In: Advances in Neural
Information Processing Systems (NeurIPS) (cited on page 93).

Shen, Chen, James F. O’Brien, and Jonathan R. Shewchuk (2004). ‘Interpolating and approximating implicit
surfaces from polygon soup’. In: ACM Transactions on Graphics 23.3, p. 896. doi: 10.1145/1015706.1015816
(cited on pages 47, 50).

Sheth, Bhavin R. and Ryan Young (2016). ‘Two Visual Pathways in Primates Based on Sampling of Space:
Exploitation and Exploration of Visual Information’. In: Frontiers in Integrative Neuroscience 10. doi:
10.3389/fnint.2016.00037. (Visited on 05/19/2023) (cited on page 1).

Sommer, Christiane, Lu Sang, David Schubert, and Daniel Cremers (2022). ‘Gradient-SDF: A Semi-Implicit
Surface Representation for 3D Reconstruction’. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE. doi: 10.1109/cvpr52688.2022.00618 (cited on page 17).

Song, Shuran, Fisher Yu, Andy Zeng, Angel X. Chang, Manolis Savva, and Thomas Funkhouser (2017).
‘Semantic Scene Completion from a Single Depth Image’. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE. doi: 10.1109/cvpr.2017.28 (cited on pages 4, 45, 48).

https://doi.org/10.1109/tpami.2016.2577031
https://doi.org/10.1109/icra.2017.7989518
https://doi.org/10.1109/ismar.2018.00024
https://doi.org/10.1145/566654.566600
https://doi.org/10.1109/cvpr.2013.178
https://doi.org/10.1016/j.cviu.2015.05.006
https://doi.org/10.1016/j.cviu.2015.05.006
https://doi.org/10.1109/icra.2015.7138989
https://doi.org/10.1109/icra.2015.7138989
https://doi.org/10.1111/cgf.12445
https://doi.org/10.1111/cgf.12445
https://doi.org/10.1109/icra.2018.8460681
https://doi.org/10.1145/1015706.1015816
https://doi.org/10.3389/fnint.2016.00037
https://doi.org/10.1109/cvpr52688.2022.00618
https://doi.org/10.1109/cvpr.2017.28

107

Stewart, David E. and Jeffrey C. Trinkle (1996). ‘An Implicit Time-Stepping Scheme For Rigid Body Dynamics
With Inelastic Collisions and Coulomb friction’. In: International Journal for Numerical Methods in Engineering
39.15, pp. 2673–2691. doi: 10.1002/(sici)1097-0207(19960815)39:15<2673::aid-nme972>3.0.co;2-i
(cited on pages 64, 65).

Strecke, Michael and Joerg Stueckler (2019). ‘EM-Fusion: Dynamic Object-Level SLAM With Probabilistic
Data Association’. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. doi:
10.1109/iccv.2019.00596 (cited on pages 3, 5–7, 23, 46, 48, 53, 56).

– (2020). ‘Where Does It End? - Reasoning About Hidden Surfaces by Object Intersection Constraints’.
In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. doi: 10.1109/
cvpr42600.2020.00961 (cited on pages 4, 6, 7, 45).

– (2021). ‘DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes’. In: 2021 International
Conference on 3D Vision (3DV). IEEE. doi: 10.1109/3dv53792.2021.00020 (cited on pages 5–7, 63).

Stückler, Jörg and Sven Behnke (2013). ‘Hierarchical Object Discovery and Dense Modelling from Motion
Cues in RGB-D Video’. In: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence.
ĲCAI ’13. Beĳing, China: AAAI Press, pp. 2502–2509 (cited on page 25).

– (2015). ‘Efficient Dense Rigid-Body Motion Segmentation and Estimation in RGB-D Video’. In: International
Journal of Computer Vision (ĲCV) 113.3, pp. 233–245. doi: 10.1007/s11263-014-0796-3 (cited on page 25).

Sturm, Jürgen, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers (2012). ‘A benchmark
for the evaluation of RGB-D SLAM systems’. In: 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. IEEE, pp. 573–580. doi: 10.1109/iros.2012.6385773 (cited on pages 21, 37, 39).

Stutz, David and Andreas Geiger (2018). ‘Learning 3D Shape Completion from Laser Scan Data with
Weak Supervision’. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE. doi:
10.1109/cvpr.2018.00209 (cited on page 57).

Sulsky, Deborah, Shi-Jian Zhou, and Howard L. Schreyer (1995). ‘Application of a particle-in-cell method to
solid mechanics’. In: Computer Physics Communications 87.1, pp. 236–252. doi: 10.1016/0010-4655(94)
00170-7 (cited on page 65).

Szeliski, Richard (2011). Computer Vision - Algorithms and Applications. Texts in Computer Science. Springer
(cited on page 1).

Taylor, Jonathan, Benjamin Luff, Arran Topalian, Erroll Wood, Sameh Khamis, Pushmeet Kohli, Shahram
Izadi, Richard Banks, Andrew Fitzgibbon, Jamie Shotton, Lucas Bordeaux, Thomas Cashman, Bob Corish,
Cem Keskin, Toby Sharp, Eduardo Soto, David Sweeney, and Julien Valentin (2016). ‘Efficient and precise
interactive hand tracking through joint, continuous optimization of pose and correspondences’. In: ACM
Transactions on Graphics 35.4, pp. 1–12. doi: 10.1145/2897824.2925965 (cited on page 25).

Terzopoulos, Demetri and Kurt Fleischer (1988). ‘Modeling inelastic deformation’. In: Proceedings of the
15th annual conference on Computer graphics and interactive techniques - SIGGRAPH ’88. ACM Press. doi:
10.1145/54852.378522 (cited on page 65).

Tian, Meng, Marcelo H. Ang, and Gim Hee Lee (2020). ‘Shape Prior Deformation for Categorical 6D Object
Pose and Size Estimation’. In: Computer Vision – ECCV 2020. Springer International Publishing, pp. 530–546.
doi: 10.1007/978-3-030-58589-1_32 (cited on page 98).

Tokmakov, Pavel, Cordelia Schmid, and Karteek Alahari (2018). ‘Learning to Segment Moving Objects’. In:
International Journal of Computer Vision 127.3, pp. 282–301. doi: 10.1007/s11263-018-1122-2 (cited on
page 97).

Tomasi, Carlo and Takeo Kanade (1992). ‘Shape and motion from image streams under orthography: a
factorization method’. In: International Journal of Computer Vision 9.2, pp. 137–154. doi: 10.1007/bf00129684.
(Visited on 05/12/2023) (cited on page 2).

Tzionas, Dimitrios and Juergen Gall (2016). ‘Reconstructing Articulated Rigged Models from RGB-D Videos’.
In: Lecture Notes in Computer Science. Ed. by Gang Hua and Hervé Jégou. Cham: Springer International
Publishing, pp. 620–633. doi: 10.1007/978-3-319-49409-8_53 (cited on page 25).

Ummenhofer, Benjamin and Thomas Brox (2015). ‘Global, Dense Multiscale Reconstruction for a Billion
Points’. In: 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. doi: 10.1109/iccv.2015.158
(cited on page 47).

Wang, Chen, Roberto Martin-Martin, Danfei Xu, Jun Lv, Cewu Lu, Li Fei-Fei, Silvio Savarese, and Yuke Zhu
(2020). ‘6-PACK: Category-level 6D Pose Tracker with Anchor-Based Keypoints’. In: 2020 IEEE International

https://doi.org/10.1002/(sici)1097-0207(19960815)39:15<2673::aid-nme972>3.0.co;2-i
https://doi.org/10.1109/iccv.2019.00596
https://doi.org/10.1109/cvpr42600.2020.00961
https://doi.org/10.1109/cvpr42600.2020.00961
https://doi.org/10.1109/3dv53792.2021.00020
https://doi.org/10.1007/s11263-014-0796-3
https://doi.org/10.1109/iros.2012.6385773
https://doi.org/10.1109/cvpr.2018.00209
https://doi.org/10.1016/0010-4655(94)00170-7
https://doi.org/10.1016/0010-4655(94)00170-7
https://doi.org/10.1145/2897824.2925965
https://doi.org/10.1145/54852.378522
https://doi.org/10.1007/978-3-030-58589-1_32
https://doi.org/10.1007/s11263-018-1122-2
https://doi.org/10.1007/bf00129684
https://doi.org/10.1007/978-3-319-49409-8_53
https://doi.org/10.1109/iccv.2015.158

108

Conference on Robotics and Automation (ICRA). IEEE. doi: 10.1109/icra40945.2020.9196679 (cited on
page 98).

Wang, He, Srinath Sridhar, Jingwei Huang, Julien Valentin, Shuran Song, and Leonidas J. Guibas (2019).
‘Normalized Object Coordinate Space for Category-Level 6D Object Pose and Size Estimation’. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 2642–2651. doi: 10.1109/
cvpr.2019.00275 (cited on page 98).

Wang, Xinlong, Zhiding Yu, Shalini De Mello, Jan Kautz, Anima Anandkumar, Chunhua Shen, and Jose
M. Alvarez (2022). ‘FreeSOLO: Learning to Segment Objects without Annotations’. In: 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 14156–14166. doi: 10.1109/
cvpr52688.2022.01378 (cited on page 97).

Weickert, Joachim, Sven Grewenig, Christopher Schroers, and Andrés Bruhn (2015). ‘Cyclic Schemes for PDE-
Based Image Analysis’. In: International Journal of Computer Vision 118.3, pp. 275–299. doi: 10.1007/s11263-
015-0874-1 (cited on pages 52, 55, 57).

Weinstein, Rachel, Joseph Teran, and Ron Fedkiw (May 2006). ‘Dynamic simulation of articulated rigid bodies
with contact and collision’. In: IEEE Transactions on Visualization and Computer Graphics 12, pp. 365–74. doi:
10.1109/TVCG.2006.48 (cited on page 65).

Weiss, Sebastian, Robert Maier, Daniel Cremers, Rudiger Westermann, and Nils Thuerey (2020).
‘Correspondence-Free Material Reconstruction using Sparse Surface Constraints’. In: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, pp. 4685–4694. doi: 10 . 1109 /
cvpr42600.2020.00474 (cited on page 66).

Wen, Bowen and Kostas Bekris (2021). ‘BundleTrack: 6D Pose Tracking for Novel Objects without Instance
or Category-Level 3D Models’. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. doi: 10.1109/iros51168.2021.9635991 (cited on page 98).

Whelan, Thomas, Michael Kaess, Maurice F. Fallon, Hordur Johannsson, John J. Leonard, and John B.
McDonald (July 2012). ‘Kintinuous: Spatially Extended KinectFusion’. In: RSS Workshop on RGB-D:
Advanced Reasoning with Depth Cameras. Sydney, Australia (cited on pages 25, 37, 38).

Whelan, Thomas, Stefan Leutenegger, Renato Salas Moreno, Ben Glocker, and Andrew Davison (2015).
‘ElasticFusion: Dense SLAM Without A Pose Graph’. In: Robotics: Science and Systems XI. Rome, Italy:
Robotics: Science and Systems Foundation. doi: 10.15607/rss.2015.xi.001 (cited on pages 25, 38).

Wu, Jiajun, Joseph J Lim, Hongyi Zhang, Joshua B Tenenbaum, and William T Freeman (2016). ‘Physics 101:
Learning physical object properties from unlabeled videos’. In: Proceedings of the British Machine Vision
Conference (BMVC). doi: 10.5244/c.30.39 (cited on page 66).

Wu, Jiajun, Erika Lu, Pushmeet Kohli, William T Freeman, and Joshua B Tenenbaum (2017). ‘Learning to See
Physics via Visual De-animation’. In: Advances in Neural Information Processing Systems (NeurIPS) (cited on
page 66).

Wu, Jiajun, Ilker Yildirim, Joseph J Lim, William T Freeman, and Joshua B Tenenbaum (2015). ‘Galileo:
Perceiving physical object properties by integrating a physics engine with deep learning’. In: Advances in
Neural Information Processing Systems (NeurIPS). Ed. by C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett. Vol. 28. Curran Associates, Inc., pp. 127–135 (cited on page 66).

Xie, Junyu, Weidi Xie, and Andrew Zisserman (2022). ‘Segmenting Moving Objects via an Object-Centric
Layered Representation’. In: NeurIPS (cited on page 97).

Xu, Binbin, Wenbin Li, Dimos Tzoumanikas, Michael Bloesch, Andrew Davison, and Stefan Leutenegger
(2019). ‘MID-Fusion: Octree-based Object-Level Multi-Instance Dynamic SLAM’. In: 2019 International
Conference on Robotics and Automation (ICRA). IEEE. doi: 10.1109/icra.2019.8794371 (cited on pages 3,
23, 25, 38, 39, 48, 53).

Xu, Jie, Tao Chen, Lara Zlokapa, Michael Foshey, Wojciech Matusik, Shinjiro Sueda, and Pulkit Agrawal
(July 15, 2021). ‘An End-to-End Differentiable Framework for Contact-Aware Robot Design’. In: Robotics:
Science and Systems XVII. Robotics: Science and Systems Foundation. doi: 10.15607/rss.2021.xvii.008
(cited on page 97).

Xu, Jie, Sangwoon Kim, Tao Chen, Alberto Rodriguez Garcia, Pulkit Agrawal, Wojciech Matusik, and Shinjiro
Sueda (2022). ‘Efficient Tactile Simulation with Differentiability for Robotic Manipulation’. In: 6th Annual
Conference on Robot Learning (cited on page 97).

https://doi.org/10.1109/icra40945.2020.9196679
https://doi.org/10.1109/cvpr.2019.00275
https://doi.org/10.1109/cvpr.2019.00275
https://doi.org/10.1109/cvpr52688.2022.01378
https://doi.org/10.1109/cvpr52688.2022.01378
https://doi.org/10.1007/s11263-015-0874-1
https://doi.org/10.1007/s11263-015-0874-1
https://doi.org/10.1109/TVCG.2006.48
https://doi.org/10.1109/cvpr42600.2020.00474
https://doi.org/10.1109/cvpr42600.2020.00474
https://doi.org/10.1109/iros51168.2021.9635991
https://doi.org/10.15607/rss.2015.xi.001
https://doi.org/10.5244/c.30.39
https://doi.org/10.1109/icra.2019.8794371
https://doi.org/10.15607/rss.2021.xvii.008

109

Yang, Bo, Stefano Rosa, Andrew Markham, Niki Trigoni, and Hongkai Wen (2019). ‘Dense 3D Object
Reconstruction from a Single Depth View’. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
41.12, pp. 2820–2834. doi: 10.1109/tpami.2018.2868195 (cited on pages 4, 45, 48).

https://doi.org/10.1109/tpami.2018.2868195

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Notation and Acronyms
	Introduction
	3D Reconstruction from 2D images
	Object Segmentation for Object-Level Scene Reconstruction
	Physical Plausibility in Dynamic Scene Reconstruction
	Contributions
	Publications
	Open-Source Software Releases

	Background
	Rigid Body Motion
	Signed Distance Functions (SDFs)
	Depth Image Capture and Point Cloud Computation

	EM-Fusion: Dynamic Object-Level SLAM With Probabilistic Data Association
	Introduction
	Related Work
	Preliminaries
	Method
	Experiments
	Conclusion

	Where Does It End? – Reasoning About Hidden Surfaces by Object Intersection Constraints
	Introduction
	Related Work
	Preliminaries
	Method
	Experiments
	Conclusion

	DiffSDFSim: Differentiable Rigid-Body Dynamics With Implicit Shapes
	Introduction
	Related Work
	Background
	Method
	Experiments
	Conclusion

	Conclusion
	Limitations
	Future Work

	Bibliography

