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Zusammenfassung

Zusammenfassung

Ein Tier kann schnell und angemessen auch auf neuartige Reize reagieren, wenn

es in der Lage ist, verschiedene Umweltreize sinnvoll zu kategorisieren. Ver-

haltensstudien der letzten Jahrzehnte haben gezeigt, dass Vögel zu komplexen

Kategorisierungsleistungen fähig sind. Die zugrunde liegenden neuronalen

Mechanismen wurden allerdings erst rudimentär untersucht. Die vorliegende

Doktorarbeit beinhaltet eine Reihe von Verhaltens- und neurophysiologischen

Untersuchungen an Rabenkrähen (Corvus corone corone), die grundlegende

Erkenntnisse über die Physiologie von Kategorisierungsleistungen liefern.

In Bezug auf auditorische Kategorisierungsleistungen habe ich Rabenkrähen

darauf trainiert, Schallsignale anhand der Richtung ihrer Frequenzänderung

zu kategorisieren. Sie speicherten diese Informationen als offene Kategorien im

Arbeitsgedächtnis und konnten so neuartige Stimuli sofort richtig zuordnen.

In weiteren Studien konnten Krähen visuelle Informationen in einem aktiven

Arbeitsgedächtnis gegen Störreize schützen und Gesichter von Krähen und

Menschen unterscheiden, jedoch ohne Gesichter als spezifische Kategorie

wahrzunehmen.

Zur Aufklärung der neuronalen Grundlagen habe ich Einzelzellableitun-

gen im Nidopallium caudolaterale (NCL) von Rabenkrähen während kontrollierter

komplexer Kategorisierungsaufgaben durchgeführt. Neuronen im NCL kod-

ierten sowohl spontane als auch erlernte komplexe Kategorien. Sie reagierten

ohne vorheriges Zahlentraining der Krähen auf diskrete Anzahlen, was auf

ein angeborenes Zahlenverständnis hindeutet. Darüber hinaus kodierten

die Zellen erlernte abstrakte Längenkategorien und passten sich flexibel an

geänderte Kategoriezugehörigkeiten an. Schließlich habe ich Krähen darauf

trainiert, ihre subjektive Entscheidung über das Vorhandensein oder Fehlen

eines visuellen Reizes anzuzeigen. Die beiden Wahrnehmungsmöglichkeiten

wurden von separaten Populationen von NCL Neuronen kodiert, die somit

das neuronale Korrelat für das Wahrnehmungsbewusstsein der Krähen bildeten.

Zusammenfassend haben die in meiner Doktorarbeit enthaltenen Studien

grundlegende Erkenntnisse über die Kategorisierungsleistung von Rabenkrähen

geliefert und deutliche Gemeinsamkeiten der neuronalen Verarbeitung von

Kategorien im NCL von Krähen und im Präfrontalkortex von Primaten gezeigt.
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Abstract

Abstract

Categorization is the key to simplification of the numerous stimuli which an

animal encounters in a complex environment. It enables an animal to react

fast and appropriately to all sorts of stimuli, even to novel ones. Behavioral

studies conducted during the last decades show that birds master even most

complex levels of categorizations. However, knowledge about the neuronal

mechanisms that underlie this ability are scarce. My thesis includes a series

of behavioral and neurophysiological experiments on carrion crows (Corvus

corone corone) aimed at elucidating categorization capabilities in this bird species.

Addressing auditory categorization abilities, I trained carrion crows to categor-

ize auditory stimuli based on the direction of frequency modulation. The results

show that crows possess flexible categorical working memory to maintain high-

level auditory category information and that they formed open-ended auditory

categories which allowed them to immediately group novel stimuli correctly.

Furthermore, we showed that crows use active working memory to protect

visual information against interference and that they can discriminate images

of crow and human faces but do not seem to represent faces as special categories.

To explore how neurons in the nidopallium caudolaterale (NCL) represent

category-related information, I conducted single unit recordings while crows

performed controlled behavioral protocols. NCL neurons represented spon-

taneously present as well as learned complex magnitude categories. We found

that neurons in the NCL of numerically naïve crows responded to discrete

numerosities even though they were not relevant to the task, suggesting that

crows possess an innate ‘sense of number’. Furthermore, NCL neurons encoded

learned arbitrary categories of continuous spatial quantity (i.e. line length) and

adapted flexibly to changed behavioral demands. Lastly, I trained carrion crows

to report their subjective percept about presence or absence of a visual stimulus

and showed that discrete populations of NCL neurons actively encoded the

two perceptual states, thereby constituting the neural correlate of conscious

subjective perceptions.

Taken together, the results of the included studies add further insights on

the categorization abilities of crows and show striking similarities of category

processing between NCL and the primate prefrontal cortex.
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1. Introduction

I Synopsis

1. Introduction

1.1. Categories and concepts

Living in a complex environment requires an efficient strategy to simplify the

huge variety of surrounding stimuli. Categorization is the key to reduce the

endless number of stimuli in an animal’s environment to a smaller number of

representations which share the same meaning. Grouping stimuli that require

the same behavioral response provides a major advantage: it endows animals

to react faster and to instantly adapt even when encountering a novel situation.

Since the ability to categorize is a beneficial strategy in various situations, it is

found in many species across animal kingdom.

Some categorical responses are innate, i.e. do not require previous learn-

ing. For example, crickets (Teleogryllus oceanicus) respond categorically to sounds

according to their frequencies (promising either a conspecific or a predator)

with a sharp behavioral change between moving towards or away from the

source (Wyttenbach et al., 1996). Similarly, female lactating house mice (Mus

musculus) respond categorically to ultrasonic sounds (typically produced by

their pubs) showing searching behavior (Ehret and Haack, 1981). However, most

categorization abilities are achieved through learning. For example, the calls

of various bird species (Potvin et al., 2018). The alarm calls of black-capped

chickadees (Poecile atricapilla) and Sibirian jays (Perisoreus infaustus) convey

information about the size and threat of a predator (Templeton et al., 2005;

Griesser, 2009). The structure of the chick-a-dee call of Carolina chickadees

(Poecile carolinensis) conveys diverse information about the emitter and its

environment (Freeberg, 2008), and American goldfinch (Spinus tristis) females

recognize individual males based on their flight calls and respond specifically

to the calls of their respective mates but not to other males (Mundinger, 1970).

Likewise, mammals learn to interpret predator alarm calls. Suricates (Suricata

suricatta) produce distinct alarm calls that convey information about predator

category and risk (Manser, 2001) to which conspecifics respond accordingly

(Manser et al., 2001). Similarly, vervet monkeys learn to respond appropriately

to both, their conspecifics’ and another species’ alarm calls (Seyfarth and

Cheney, 1990).
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1. Introduction

1.1.1. Levels of categories and concepts

The term category is used for the group of items which belong together, whereas

a concept is the underlying knowledge or mental representation that enables cat-

egorization behavior (Zentall et al., 2002; Lazareva and Wasserman, 2017). The

first definition of conceptual behavior suitable for comparative animal experi-

mentation was proposed by Keller and Schoenfeld in 1950 (Wasserman, 2016;

Lazareva and Wasserman, 2017). They proposed that an animal behaves con-

ceptually if it responds similarly to members of one class and differently to

members of other classes. However, this does still not exclude simple rote learn-

ing. Therefore, this definition was extended by Wasserman et al. (1988). These

authors added that an animal must also transfer the same behavior immedi-

ately to novel (discriminably different) instances. An animal that fulfills these

criteria demonstrates that it can form open-ended categories. This competence

is very beneficial in everyday life because it gives sensory information a beha-

vioral meaning (Freedman et al., 2003) and allows an animal to react fast and

appropriately to a novel stimulus when it classified it correctly into a before

learned category. Moreover, concepts can be distinguished based on their com-

plexity into similarity-based perceptual concepts, nonsimilarity-based concepts

and abstract relations, a distinction outlined in the next paragraph (Herrnstein,

1990; Zentall et al., 2002; Lazareva and Wasserman, 2017).

Similarity-based and nonsimilarity-based concepts

Items of a class that share a perceptual similarity, such as a physical feature, are

regarded as similarity-based perceptual concepts (Zentall et al., 2002; Lazareva

and Wasserman, 2017). This could be simple features like color (wavelength)

or shape, or in the case of auditory stimuli the frequency of a sound. At

this basic level of categorization, members of a category have a high per-

ceptual similarity, whereas there is low perceptual similarity among members

of different categories (Rosch and Mervis, 1975; Lazareva and Wasserman, 2017).

In contrast, in nonsimilarity-based concepts items are grouped by their

meaning and do not necessarily need to share perceptual similarities (Herrn-

stein, 1990; Lazareva and Wasserman, 2017; Pusch et al., 2022). For instance, an

apple and a banana, although not sharing similar physical appearance, can be

both grouped together as fruits and therefore form a class of edible objects on

a superordinate level. Besides this grouping into linguistic categories, items can
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1. Introduction

be grouped into learned functional equivalence classes according to a shared

behavior or outcome; for example, all items which require the same response

or are associated with the same amount of reward (Astley et al., 2001; Lazareva

and Wasserman, 2017).

The seminal study by Herrnstein and Loveland (1964) in which pigeons

discriminated pictures containing human beings paved the way for an intense

investigation of categorization behavior in birds and other animals. They

demonstrated that pigeons are able to discriminate pictures which contained

humans from pictures which did not, and that they are able to generalize

this behavior to novel images without prior learning. Later, it was shown

that pigeons can learn various other categories, e.g. naturalistic categories like

trees vs. no-trees (Herrnstein et al., 1976; Vaughan, 1988), water vs. no-water

(Herrnstein et al., 1976), birds vs. mammals (Kendrick et al., 1990) as well

as artificial stimuli like shoes or planes (Wasserman et al., 2015). In addition,

pigeons demonstrated that they can learn up to sixteen different categories

simultaneously (Bhatt et al., 1988; Wasserman et al., 2015) and can switch

flexibly between categorizing a stimulus either according to its basic (car,

chair, flower, person) or superordinate level (natural, artificial) (Lazareva et

al., 2004). Further, pigeons can be trained to group stimuli into functional

equivalence classes based on a common trained response (Wasserman et al.,

1992), an associated amount or probability of reinforcement, or different delays

until receiving a reinforcement (Astley et al., 2001; Astley and Wasserman, 1999).

The first corvids that have been examined for categorical skills were blue

jays (Cyanocitta cristata). They were successfully trained to respond to photo-

graphs which contained a certain moth (i.e. prey) and showed generalization

to novel images (Pietrewicz and Kamil, 1977). In a follow-up study these jays

demonstrated again successful generalization abilities (Real et al., 1984). They

were trained on two types of leaf silhouettes produced by different caterpillar

species due to their feeding. After training with only one exemplar of each type,

the jays correctly classified novel images of damaged leaves into the two classes.

Abstract relations

The most complex type of concepts are abstract relations, which are based on

the relation between stimuli or even between concepts, such as same-versus-

different and cardinal numbers (Herrnstein, 1990; Lazareva and Wasserman,
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1. Introduction

2017; Pusch et al., 2022). Although pigeons can be trained on basic relations,

they show limitations in understanding abstract relations. Pigeons can perform

same-versus-different tasks, but the training procedure determines whether they

are able to transfer the learned rule also to novel stimuli (Edwards et al., 1983;

Wright et al., 1988; Katz and Wright, 2006). In a simultaneous same-different

discrimination task, pigeons were successfully trained to report whether the

sixteen items in a display were all the same or all different. However, they did

not transfer the previously learned rule to the situation when the stimulus

display showing different items was changed so that only one of the sixteen

items was different (Gibson et al., 2006). In another study, they were required to

report whether a dot was inside or outside a curve, but they needed extensive

training to perform the task (Herrnstein et al., 1989). Thus, pigeons can learn

some abstract rules, but only if the training procedures are adequate (Herrn-

stein, 1990; Pusch et al., 2022).

Among birds, corvids (crows, ravens, magpies and jays) are thought to be

cognitively superior to other birds and demonstrate complex cognitive abilities

which match those of nonhuman primates (Emery and Clayton, 2004). Corvids

use and manufacture tools (Hunt, 1996; Weir et al., 2002; Bird and Emery,

2009; Rutz et al., 2016; Kabadayi and Osvath, 2017), plan for the future when

caching food for later consumption (Balda and Kamil, 1992) and take the social

context during caching into account (Emery and Clayton, 2001; Bugnyar and

Heinrich, 2005; Dally et al., 2006; Bugnyar et al., 2016). Scrub jays (Aphelocoma

californica) even remember not only where they have hidden food but also

distinguish between ‘what’ and ‘when’ suggesting an episodic-like memory

(Clayton and Dickinson, 1998; Clayton et al., 2001). The cognitive similarities of

corvids and primates make it worthwhile to further investigate these birds in

order to gain comparative insights on the principles of higher cognitive abilities

(Clayton and Emery, 2015). In the past, carrion crows (Corvus corone corone)

demonstrated their ability to learn tasks of high complexity. They successfully

performed a variety of tasks requiring abstract categorization abilities, such

as rule-based same-different tasks (Veit and Nieder, 2013; Veit et al., 2014),

unimodal and cross-modal associations (Veit et al., 2015; Moll and Nieder, 2015)

and numerosity matching (Ditz and Nieder, 2015; 2016b). The current thesis

exploits the crows’ intelligence to address the physiology of categorization

capabilities in these birds.
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1. Introduction

1.2. Topics included in this thesis

My thesis presents a range of studies which provide insights into the categor-

ization ability of carrion crows. These categorization capabilities comprise cat-

egories that are useful for individual recognition, discrete and continuous mag-

nitudes and categorical subjective percepts. As a significant extension of previ-

ous studies, my thesis specifically elucidates the neuronal mechanisms underly-

ing explicit abstract categorization in crows.

1.2.1. Categorization abilities for individual recognition

Recognition of individual conspecifics can be beneficial for species living in so-

cial groups (Mateo, 2004; Tibbetts and Dale, 2007). It requires associating various

features to an individual. These convey social information, such as gender and

hierarchy rank within a social group, and allow recognition of mate and kin

(Dale et al., 2001). Recognition of individuals has been reported from a wide

range of animals, including mammals, birds, reptiles, fish and invertebrates

(Dale et al., 2001; Leopold and Rhodes, 2010). Similar to other birds, corvids dif-

ferentiate between specific individuals and adapt their behavior depending on

the identity of the conspecific (Dally et al., 2006; Bird and Emery, 2008; Bugnyar,

2011; Massen et al., 2015). Moreover, corvids (and mockingbirds) demonstrate

heterospecific recognition when responding differently to humans that they as-

sociate with a former negative experience (Levey et al., 2009; Marzluff et al.,

2010). In birds, the capacity to recognize others relies mainly on auditory and

visual features (Thorpe, 1968; Falls and Brooks, 1975; Weary and Krebs, 1992;

Ryan and Lea, 1994; D’eath and Stone, 1999; Brecht and Nieder, 2020). Particu-

larly songbirds rely on auditory information and recognize individuals based on

auditory features (Thorpe, 1968; Brecht and Nieder, 2020). For instance, ravens

(Corvus corax) differentiate between familiar and unfamiliar individuals based on

their vocalizations alone and remember their relationship to familiar individu-

als even three years later (Boeckle and Bugnyar, 2012). Similarly, carrion crows

(Corvus corone) can discriminate conspecifics based on vocalizations (Wascher et

al., 2015), and jungle crows (Corvus macrorhynchos) can be trained to discrim-

inate the contact calls of different individuals in a Go/No-Go task (Kondo et

al., 2010). This ability requires assigning auditory stimuli a categorical meaning.

Whether crows can categorize controlled acoustic stimuli into auditory categor-

ies and maintain such auditory categories active in working memory is explored

in Wagener and Nieder (2020).
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1. Introduction

Apart from auditory features, birds were shown to distinguish others based on

visual characteristics like plumage (Whitfield, 1986; Brown and Dooling, 1992;

Dale et al., 2001), but also facial cues (Nakamura et al., 2003; 2006; Marzluff et

al., 2010). Faces offer many relevant social information about others especially

for mammals and humans in particular with their elaborated facial musculature

(Todorov et al., 2008; Leopold and Rhodes, 2010). The ability to recognize faces

is thought to rely on a specialized configural (holistic) processing, which is why

face recognition is affected when the face is presented upside down (Collishaw

and Hole, 2000; Maurer et al., 2002). Exploring whether crows can discriminate

faces and whether faces are perceived as a special category was object of one

study included in my thesis (Brecht et al., 2017).

1.2.2. Discrete and continuous magnitudes

The concept of number is a particularly abstract categorization (Nieder et al.,

2002). This is because sets showing the same number of items are grouped

together. The only aspect that matters is the stimulus entity itself; all sensory

features (e.g. size, location, shape, etc.) of the individual items are completely

irrelevant. The ability to judge quantity is reported from various species in the

animal kingdom, e.g. insects (Dacke and Srinivasan, 2008), fish (Agrillo et al.,

2011; Bisazza et al., 2014), amphibians (Uller et al., 2003; Stancher et al., 2015),

birds (Pepperberg, 1994; Emmerton and Renner, 2006; Roberts, 2010; Scarf

et al., 2011; Ditz and Nieder, 2015; 2016a) and mammals (Meck and Church,

1983; Brannon and Terrace, 1998; Nieder et al., 2002; Beran, 2007; Vonk and

Beran, 2012). The finding that animals can discriminate quantitative information

without explicit training led to the idea of a ‘sense of number’ which describes

an intuitive ability to perceive the number of items in a set (i.e. its ‘numerosity’).

Based on this ‘number sense’ animals can understand numerical quantity

without relying on language (Dehaene, 2001; Viswanathan and Nieder, 2013;

Nieder, 2016). One of the studies included in my thesis provides neurobiological

evidence for an innate ‘number sense’ in crows (Wagener et al., 2018).

In order to assess numerosity nonverbally, two representational systems

are discussed, the ‘object file system’ and the ‘approximate number system’. In

the object file system, it is thought that mental ‘markers’ are assigned to the

individual items in a set. This mechanism can only represent a limited number

of up to four items due to the restricted number of ‘markers’ (Nieder, 2005;
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1. Introduction

Feigenson et al., 2004). This set-size limit is considered to be a signature of the

object file system and has been reported for rhesus monkeys (Hauser et al.,

2000) and human infants (Feigenson et al., 2002).

In contrast, the approximate number system has no upper boundary. It

allows animals to estimate numerical quantity by representing it akin to a

continuous magnitude (Meck and Church, 1983; Carey, 2001). The magnitude

which is assigned to each number is proportional to the number of items in

the set (Carey, 2001). The approximate number system follows the Weber’s

law. In order to perceive a difference between two stimuli, the amount of the

just noticeable difference (∆I) relative to a reference stimulus intensity (I) has

to be proportional to this intensity I. In other words, the Weber-fraction (∆I/I)

is a constant (Weber, 1850; Nieder and Miller, 2003). The minimal amount by

which two stimulus intensities need to differ so that they are perceived as being

different is called the ‘just noticeable difference’ (Nieder and Miller, 2003).

Fechner extended Weber’s law. He proposed that the relationship between the

subjective perception (S) and the physical stimulus intensity (I) is proportional

to the logarithm of the intensity (with k being a constant) which leads to Fech-

ner’s law (S = k*log(I)) (Fechner, 1860). Because both laws share fundamental

commonalities, they are sometimes combined as the ‘Weber-Fechner law’.

Weber’s law predicts a numerical distance effect and a numerical size ef-

fect for quantity discrimination. The distance effect implies that two magnitudes

are easier to discriminate the greater the difference is between them. For

instance, a numerosity 2 is easier to discriminate from a numerosity 8 than

from numerosity 3. The size effect on the other hand, indicates that it is equally

difficult to discriminate magnitudes with the same ratio (e.g. 2 from 4 and

4 from 8). Put differently, the discrimination of two magnitudes of the same

distance is more difficult for larger magnitudes (2 from 4 vs. 12 from 14). The

numerical distance effect and the numerical size effect are clear signatures of the

approximate number system. This system has been reported for different bird

species, such as chicks (Rugani et al., 2013), pigeons (Emmerton and Renner,

2006; Roberts, 2010; Scarf et al., 2011) and crows (Ditz and Nieder, 2016a), as

well as for teleost fishes (Agrillo et al., 2014; DeLong et al., 2017), salamanders

(Krusche et al., 2010), nonhuman primates (Brannon and Terrace, 1998; Nieder

and Miller, 2003; Beran, 2007), human infants (Feigenson et al., 2004) and adult

humans (Merten and Nieder, 2009).
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1. Introduction

The first suggestive evidence for a neuronal correlate of number was demon-

strated in anesthetized cats by a small proportion of neurons in the posterior

association cortex which responded to specific numbers of presented auditory

and visual stimuli independent of modality (Thompson et al., 1970; Nieder,

2021a). Later, high proportions of single neurons that encode discrete numeros-

ities have been found in the prefrontal and posterior parietal cortex of behaving

rhesus monkeys (Nieder et al., 2002; Nieder and Miller, 2004), the medial tem-

poral lobe of humans (Kutter et al., 2018) and the nidopallium of carrion crows

(Ditz and Nieder, 2015; 2016b). The neuronal mechanisms underlying numerical

competence show strong correspondence in the very distantly related birds and

primates (Nieder, 2020). Numerosity is encoded by neurons which respond to

individual (preferred) numerosities which is characteristic for a labeled-line

code (Nieder and Merten, 2007; Ditz and Nieder, 2015). Interestingly, the tuning

functions are best described on a logarithmic number line as predicted by the

Weber-Fechner law (Piazza et al., 2004; Ditz and Nieder, 2015; Kutter et al., 2018;

Nieder et al., 2002; Nieder and Miller, 2003). Although both birds and mammals

demonstrate comparable numerical abilities, it seems likely that their numerical

competences emerged independently through convergent evolution, since their

respective brain regions containing numerosity-encoding neurons originate

from different parts of the pallium (ventral in birds and dorsal in mammals),

and reptiles, being close relatives of birds, rather rely on continuous quantity

instead of discriminating discrete numerosities (Nieder, 2021a). In contrast

to discrete numerosities, non-numerical magnitudes vary along a continuous

scale. To complement our knowledge on discrete quantity representations, one

study of the current thesis therefore explores how conventional categories of

continuous magnitudes, such as line length, are represented by neurons in the

crow brain (Wagener and Nieder, 2023).

1.2.3. Categorical subjective percepts

Sensory (primary) consciousness is the awareness of subjective experiences that

can also be reported (Edelman, 2001; Nieder, 2021b). Exploring whether sensory

consciousness is present in animals is difficult because even complex behaviors

can be produced without conscious awareness (Nieder, 2022). However, using

ambiguous stimuli subjective percepts can be explored. For example, reversible

images like the rabbit-duck illusion which elicits either the perception of a rabbit

or a duck although the image stays constant, or binocular rivalry occurring
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1. Introduction

when the eyes see dissimilar images at the same time can be used (Nieder,

2021b).

Sensory stimuli presented with varying intensity near perceptual threshold (e.g.

the frequency of a vibration or the intensity of a visual stimulus) evoke bistable

perceptions as well. In order to report the conscious experience about a sensory

stimulus, the continuous feature needs to be translated into a binary categorical

percept (e.g. ‘present’ or ‘absent’). Forced-choice tasks can be used to measure

the perception threshold of a sensory stimulus by requiring a certain behavioral

response according to whether a stimulus had been perceived or not. While this

is easy for very low and very high stimulus intensities, it becomes difficult for

intermediate (near-threshold) intensities; here, the two percepts alternate from

trial to trial. The probability of perceiving an intermediate stimulus as present

or absent is described by signal detection theory and depends on the threshold

level (Green and Swets, 1966). Responses can be classified as ‘hit’ (correct ‘yes’

response to a present stimulus), ‘miss’ (erroneous ‘no’ response to a present

stimulus), ‘correct rejection’ (correct ‘no’ response to stimulus absence) and

‘false alarm’ (erroneous ‘yes’ response to stimulus absence).

Ambiguous sensory information are also suitable to explore the neural

correlate of consciousness (NCC). Neurons which encode the subjective percept

(e.g. ‘present’ versus ‘absent’) in response to identical stimuli reflect the sensory

consciousness (Nieder, 2021b). So far, neurophysiological studies have been

conducted only in human and nonhuman primates with the assumption that

the NCC relies on a layered cerebral cortex (Myerson et al., 1981; Leopold

and Logothetis, 1996; de Lafuente and Romo, 2005; Gelbard-Sagiv et al., 2018).

However, assuming the cerebral cortex to be the prerequisite of conscious

perception would implicate that birds are not endowed with the ability of

subjective experiences because they lack a layered neocortex. This seems highly

unlikely considering the cognitive abilities of birds and particularly corvids

(Emery and Clayton, 2004; Güntürkün et al., 2017). Therefore, we designed

an experiment including visual stimuli of various intensities between zero

(not visible) and clearly detectable in order to explore the neuronal correlate

of subjective percepts in the avian brain (Nieder et al., 2020). The neuronal

response to physically identical near-threshold stimuli which elicit opposite

internal percepts (and thus reflecting sensory consciousness) has been found

in the prefrontal and premotor cortex of macaque monkeys (de Lafuente and
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Romo, 2005; Merten and Nieder, 2012). In one study of my thesis, we show

evidence for the neuronal correlate of categorical subjective percepts in the NCL

of crows (Nieder et al., 2020).

Previous studies mainly suggest that the NCC relies on neurons which

actively encode the presence of a stimulus and otherwise stay silent (de

Lafuente and Romo, 2005; Quiroga et al., 2008; Van Vugt et al., 2018). Studies

reporting an active encoding of stimulus absence are rare. Neurons which

increased their firing rate when a stimulus was not perceived have been found

in macaque monkeys (Merten and Nieder, 2012) and humans (Pereira et al.,

2021). In one of the studies included in my thesis, we investigated whether the

perception of stimulus absence is represented by a distinct neuronal population

also in birds (Wagener and Nieder, 2024).

1.3. The avian brain

The neurophysiological studies which are part of my thesis confirm the similar

processing mechanisms in birds and the very distantly related mammals. Birds

and mammals share a common ancestor, the stem amniote. However, their

lineages diverged already around 320 million years ago (Dos Reis et al., 2015).

The classical view on the avian brain was based on Ludwig Edinger’s view that

evolution is a linear progress of increasing complexity with new brain areas

being added with each new vertebrate group until the reaching the apex rep-

resented by humans (Emery and Clayton, 2005; Jarvis et al., 2005; Güntürkün,

2012). According to Edinger, the avian telencephalon (which consists of pallium

and subpallium) was mistakenly thought to be mainly derived from the

subpallium and therefore homolog to the basal ganglia of mammals, and only

a small part from the pallium (Reiner et al., 2004; Emery and Clayton, 2005;

Shimizu, 2009; Olkowicz et al., 2016). This was further supported by the fact

that the avian telencephalon appears anatomically similar to the mammalian

basal ganglia as a nuclear mass organized into clusters instead of layers (Reiner

et al., 2004; Shimizu, 2009). Because of this misinterpretation, birds were for a

long time thought to produce only reflexive and instinctive behavior (Reiner et

al., 2004; Emery and Clayton, 2005; Shimizu, 2009; Olkowicz et al., 2016). First

doubts about this came up in the 1960s (Karten, 1969). Only the subpallium

turned out to be homologous in birds and mammals and it was estimated

that it constitutes against previous assumptions only a quarter of the avian
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telencephalon (Jarvis et al., 2005). Recent findings confirmed that in songbirds,

the subpallium constitutes only 10-22% of the telencephalon volume whereas

the rest corresponds to the pallium (Olkowicz et al., 2016). In 2002, most

structures of the avian brain were renamed by the Avian Brain Nomenclature

Consortium to now reflect their pallial origin (Reiner et al., 2004; Jarvis et al.,

2005).

Although the rest of the telencephalon of both birds and mammals shares

a pallial origin as suggested by molecular similarities (Puelles et al., 2000),

the long time of independent evolution resulted in substantially differently

organized brains which is especially pronounced in the telencephalon. The most

striking difference between the avian and mammalian pallium is that in birds

it is not organized in a laminated fashion (Shimizu, 2009). In mammals, the

largest part derived from the pallium is the six-layered neocortex (besides also

non-laminated structures) (Puelles et al., 2000; Shimizu, 2009). The information

processing among the cortical layers was thought to underlie complex behavior

in mammals (Calabrese and Woolley, 2015). Therefore, a layered cortex was

for a long time seen as the critical basis of complex cognitive abilities (Reiner

et al., 2004; Jarvis et al., 2005). In birds, however, the largest part of the tel-

encephalon consists of the DVR (dorsal ventricular ridge) which forms areas

that are segregated into nuclei (i.e. entopallium, mesopallium, nidopallium

and arcopallium) and the laminated Wulst (hyperpallium) (Shimizu, 2009;

Briscoe and Ragsdale, 2018). Similar processing circuits as in the mammalian

layered cortex have been found in birds which suggests that these circuits not

necessarily have to be organized into layers to guide complex behavior and

that canonical microcircuits were already present in a common ancestor (Wang

et al., 2010; Shanahan et al., 2013; Calabrese and Woolley, 2015). Very recently,

analyzing the fiber architecture of the avian pallium, a cortex-like circuitry was

detected in the sensory DVR and Wulst, however not in the associative (NC)

and motor areas (Stacho et al., 2020).

1.3.1. Emergence of category representations in the visual processing hierarchy

A hypothesis of how category representations in the avian brain emerge in

the course of hierarchically organized brain areas was recently proposed

(Güntürkün et al., 2021; Pusch et al., 2022). Birds possess two distinct visual

pathways which are homologous but functionally different to those of mammals
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(Karten et al., 1973; Koenen et al., 2016). The thalamofugal pathway is in birds

rather subordinate, although it corresponds to the in mammals dominant

geniculostriate pathway (Shimizu, 1993). It proceeds via the principle optic

nucleus of the thalamus (OPT) to the visual Wulst which is suggested to

be the avian equivalent of the primary visual cortex (Medina and Reiner,

2000). On the other hand, the tectofugal pathway which is homologous to the

mammalian extrageniculocortical pathway is considered to be the dominant

visual pathway in birds (Pusch et al., 2022). It conveys visual information from

the retina through the optic tectum and the nucleus rotundus to the entopallium

(Karten and Shimizu, 1989). The entopallium is involved in shape and motion

perception which is processed in distinct subdivisions (Nguyen et al., 2004;

Stacho et al., 2016). Complex category information is not yet present at this

stage (Azizi et al., 2019), however, neurons in the entopallium of pigeons reflect

basic stimulus-reward associations (Anderson et al., 2020).

The entopallium is further reciprocally connected to surrounding associat-

ive areas, like NFL (nidopallium frontolaterale), NIL (nidopallium intermediale

pars lateralis), MVL (mesopallium ventrolaterale) and TPO (area temporo-

parieto-occipitalis) (Krützfeldt and Wild, 2005). In these areas, in contrast to

mammalian visual associative areas, the previous functional separation of shape

and motion processing is no longer present (Stacho et al., 2016). In the past

years, these areas have been investigated electrophysiologically in order to

find category-specific responses. Spontaneous basic category representations

without prior category training have been found in NFL differentiating between

pictorial and grating stimuli (Koenen et al., 2016) and in MVL distinguishing

between ‘animate’ and ‘inanimate’ real-world objects (Azizi et al., 2019). The

categorization success of a linear classifier which was used to categorize the

population activity of MVL neurons increased with the number of included

neurons (Azizi et al., 2019; Güntürkün et al., 2021; Pusch et al., 2022). Further,

MVL neurons, similar to entopallium, distinguished pictures based on their as-

sociated reward (Anderson et al., 2020). Another study revealed a preference for

intact over scrambled objects of the neuronal population in the NIL of pigeons

(Clark et al., 2022). Thus, although some category-related responses could be

found in these associative areas, more complex category representations seem

to be absent at this stage.
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1.3.2. The NCL as the center of categorization abilities in birds

The hierarchically highest processing area in the avian brain is the NCL (nido-

pallium caudolaterale). It is the central basis for the generation of executive

functions which allow flexible behavior and functionally resembles the primate

prefrontal cortex (PFC) (Güntürkün, 2005). It was first described by Mogensen

and Divac (1982) which showed that lesions in this area produce the same be-

havioral deficits as lesions in the PFC. This was confirmed by further behavioral

studies using lesioning (Hartmann and Güntürkün, 1998; Diekamp et al., 2002)

and blocking of NCL (Kalenscher et al., 2003). The equivalence of NCL and PFC

was further verified by neurochemical studies focusing on the dopaminergic

innervation (Divac and Mogensen, 1985; Wynne and Güntürkün, 1995). Both

share a similar organization of dopaminergic innervation (Güntürkün, 2005)

receiving comparable input from the ventral tegmental area and the substantia

nigra (Gaspar et al., 1992; Waldmann and Güntürkün, 1993; von Eugen et al.,

2020). Anatomically, the NCL can be distinguished from neighboring structures

by its distribution of several receptor types (Herold et al., 2011).

In order to generate flexible behavior, both NCL and PFC serve as mul-

timodal integration stages between sensory and dopaminergic input and motor

output (Güntürkün, 2005). Both receive highly processed multimodal sensory

input from secondary and tertiary areas and project onto premotor areas

(Kröner and Güntürkün, 1999; Güntürkün, 2005; Nieder, 2017a). Functionally

the NCL resembles PFC in mediating higher cognitive abilities (Güntürkün,

2021). For example, among those category-related functions are encoding of

stimulus-reward relations (Kirsch et al., 2009; Anderson et al., 2020), abstract

rules (Veit and Nieder, 2013; Veit et al., 2014), uni- and multimodal associations

(Veit et al., 2015; 2017; Moll and Nieder, 2015; 2017) and numerical categories

(Ditz and Nieder, 2015; 2016b; Kirschhock et al., 2021). These anatomical and

functional analogies to the primate PFC argue for the NCL being the center of

complex categorical representations in birds.
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2.1. Behavioral performance of crows in categorization tasks

2.1.1. Auditory categorization

Assigning auditory stimuli a categorical meaning is a useful ability when dif-

ferentiating other individuals based on their vocalizations, particularly for song-

birds. In contrast to visual working memory, less is known about categorical

working memory in the auditory domain. Therefore, in this study, we explored

the ability of crows to classify auditory stimuli and memorize sound categories

(Wagener and Nieder, 2020). Two crows performed a delayed match-to-category

task with auditory stimuli. We used controlled pure tones which differed in

their direction of frequency modulation (upward vs. downward sweeps). In a

first step, the crows were trained on a set of three upward and three downward

modulated sample stimuli. They learned to match these stimuli to the corres-

ponding test stimulus with the same direction of frequency modulation. Once

they reached stable performance, we started with the generalization test to in-

vestigate whether the crows were able to assign novel stimuli to the learned

categories. Generalization is the next level after learning categories by rote. Re-

sponding in the same way to all members of a category, and therefore also to

those never encountered before, is the key feature of open-ended categorization.

In the generalization test, while the crows continued to perform the task with

the training set, we presented novel sounds randomly interleaved within the

training set. We used four classes of novel probe stimuli: three types of pure-

tone FM sweeps (linear, logarithmic and quadratic modulation) and frequency-

modulated segments of bird vocalizations. To exclude effects of learning, we

only analyzed responses to the first presentation of each probe stimulus.

Both crows mastered the generalization test with the three classes of pure-

tone FM sweeps. One crow additionally reached significant categorization per-

formance with the bird vocalizations. These results reveal that crows can form

open-ended auditory categories and memorize auditory category information to

bridge a delay period between sample presentation and required response.

2.1.2. Impairment of working memory by visual distractors

The ability to group stimuli into meaningful classes and maintain such repres-

entations active over brief time intervals relies on categorical working memory

(Miller et al., 2018). In this study, we aimed to figure out whether carrion crows
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use active working memory as opposed to simple short-term memory in or-

der to maintain relevant information which is needed to solve a visual delayed

match-to-sample task (Wagener et al., 2023). To that aim, we modified a classical

delayed match-to-sample task by introducing interfering stimuli in the middle

of the delay period between sample presentation and the test phase. To solve

the task, the crows needed to maintain relevant information about the sample

stimulus and protect it against distracting information throughout the entire

delay period. We hypothesized that sample representations would be strongly

impaired if crows maintain them in passive short-term memory. However, if

crows possess active working memory, they could filter out distracting inform-

ation and thus protect relevant information from being overwritten. We used

three different visual interfering stimuli: a neutral image (gray circle) as ref-

erence condition, the initially shown sample stimulus repeated, or a distractor

image that was subsequently presented as nonmatch stimulus in the following

test phase.

Both crows performed the task proficiently with all three types of interfering

stimuli. Relative to the neutral interfering stimulus, the repeated presentation

of the sample stimulus within the delay improved performance (both in terms

of accuracy and reaction time). In contrast, the presentation of the nonmatch

distractor caused a mild performance decay. The results indicate that the crows

maintained the relevant sample information in active working memory which

enables them to protect it against distraction.

2.1.3. Face recognition

Recognition of conspecifics relies on the discrimination of their individual fea-

tures; however, it is unknown whether birds use visual cues for conspecific re-

cognition (Brecht and Nieder, 2020). Demonstrating that faces as a visual cat-

egory are processed differently compared to other visual stimuli would suggest

that faces play an important role for birds. An indicator for that can be the so

called face inversion effect which in humans is described as an impairment of

face recognition when the faces are presented upside down (Farah et al., 1995;

Collishaw and Hole, 2000; Maurer et al., 2002). We aimed to explore such a po-

tential face inversion effect suggesting a specialized processing of faces in carrion

crows (Brecht et al., 2017). For that, we trained two crows to discriminate profiles

of crow faces as well as human faces and corresponding control images (fish and

house interior), either presented upright or inverted, in a match-to-sample task.
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The crows performed above chance level (50%) for each stimulus category indic-

ating that they are able to discriminate the individual stimuli within a category.

However, both crows neither showed a face inversion effect for crow faces nor for

human faces. Irrespective of the absence of a face inversion effect, we found that

crows had a better performance discriminating crow faces than human faces. As

a control of the experimental procedures, we tested twenty human participants

in the same task with slightly adapted timing (shorter sample stimulus present-

ation and longer delay) to prevent performance ceiling effects. In contrast to

crows, humans had a face inversion effect for human faces thus verifying that

the used methods were suitable to detect an effect.

2.2. Neuronal representations of categories in the NCL of crows

2.2.1. Neural correlate of magnitudes

Spontaneous encoding of numerosity in the crow NCL

From previous studies we know that crows can be successfully trained to

perform a delayed match-to-numerosity task (Ditz and Nieder, 2015; 2016b).

Their behavioral performance as well as the neuronal correlates of numerosities

in the NCL resemble those of monkeys (Nieder et al., 2002; Nieder, 2018).

However, following the idea of a ‘number sense’ (Dehaene, 2001), crows might

have an intuitive understanding of the number of items in a set and thus

a neural representation of numerosities even without numerosity training

as it was described for monkeys (Viswanathan and Nieder, 2013). In this

study, two numerically naïve crows performed a delayed match-to-sample

task which simply required them to match the color of the dots in numerosity

stimuli (Wagener et al., 2018). The stimuli provided behaviorally irrelevant

numerosity information unnecessary to solve the task. In a generalization test,

we tested whether the crows indeed did not rely on numerosity information.

To that aim, we inserted trials in which the dot color of all stimuli was

black (pure numerosity stimuli). In these trials, the crows performed at chance

level, showing that they did not use the numerosity information to solve the task.

Although the crows did not actively perform a numerosity task and were

never trained on numerosity stimuli before, we found neurons in the NCL

which encoded the number of dots in the presented stimuli. The neurons

responded to the stimuli in the same way as it has been shown for numerically

trained crows in the previous studies: neurons showed a peak in firing rate to
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the preferred numerosity and a decay of activity to neighboring numerosities

(Ditz and Nieder, 2015; 2016b). This indicates that numerosity-selective neur-

ons already exist in the crow brain without prior training and confirms the

hypothesis that crows possess an innate concept of numbers.

Encoding of continuous magnitude in the crow NCL

In this study, we investigated the response of NCL neurons to learned mag-

nitude categories (Wagener and Nieder, 2023). We used line length as an

example of an abstract spatial magnitude. In contrast to numerosities, line

length is continuous and has no discrete entities. We trained two crows on a

match-to-category task which required them to group horizontal lines according

to their length. A sample stimulus of a certain line length was presented and

after a delay the crows had to respond to the test stimulus which showed a line

length of the same category. The category boundary was arbitrary and divided

the six different stimuli into the two categories ‘short’ (the three shortest line

lengths) and ‘long’ (the three longest line lengths). The behavioral performance

displayed the characteristic shape of similarly high accuracy for all stimuli of

the same category and a sharp change across the category boundary.

We recorded the activity of NCL neurons and found neurons which re-

sponded selectively to the individual categories already during the presentation

of the sample stimulus, but even more so during the delay. The activity of these

neurons showed the same characteristics evident in behavioral performance.

The discharge rates were similar to all line lengths within a category and

changed sharply across the category boundary.

Several decoding analyses confirmed categorical representations at the level

of the neuron population. Transforming the activity of the category-selective

neurons into state space resulted in trajectories that displayed neuronal pop-

ulation activity to the six different line lengths in the course of a trial. The

trajectories representing within-category neuronal activity were closer in state

space, indicating similar representations. However cross-category activity was

significantly more distant in state space, suggesting distinct representations.

Applying a k-means clustering algorithm revealed that during the delay, the

optimal number of clusters into which the individual trials can be divided,

reflected the two learned categories ‘short’ and ‘long’.

In a next step, we focused only on the delay activity and explored the category

coding capability of the entire population of recorded neurons (not preselected
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for category-selectivity). In order to compare the neuronal discharge rates to the

different line lengths, we created a correlation matrix displaying the similarity

of the responses to each pair of line lengths. This confirmed that even without

any preselection for category-selectivity, the population responded similarly to

members of the same category and differently across categories. Cross-category

activity differences vanished in trials in which the crows responded incorrectly,

indicating that the neuronal representations are behaviorally relevant for the

crows to group the line lengths into the correct categories.

Another population analysis confirmed that all members of a category are

treated similarly and at the same time differently to members of the other

category. We tested the classification performance of a support vector machine

(SVM) classifier which was trained with only one line length of either category.

Irrespective of which stimuli were used for training, the classifier correctly

grouped the discharge rates of the remaining stimuli into the correct categories,

indicating that the neuronal response to each line length, no matter whether

it was far or close from the category boundary, was predictive of the other

category members.

In order to explore the effect of category learning on the behavior and the

neuronal responses, we retrained one crow to categorize the same line lengths

based on new arbitrary boundaries. Now the crow grouped the six stimuli

into three different categories (‘short’, ‘medium’ and ‘long’). The behavioral

performance was similarly high as in the previous two-category task and again

displayed the characteristic similar performance to the line length within a

category and a sharp change across categories.

We applied the same population decoding analyses as for the two-category

task. The k-means clustering algorithm now revealed that the activity of the

category-selective neurons during the delay can be optimally divided into

the newly three trained categories. Also, the correlation matrix and a SVM

classifier confirmed that, after retraining, the entire population of recorded

neurons encoded the three new categories by displaying the characteristic

category-specific response pattern, i.e. responding similarly to members of the

same category and differently to members of other categories. Comparing the

neuronal activity in the two tasks shows that NCL neurons encode learned

continuous magnitude categories in a behaviorally relevant way and flexibly

adapt to the required task conditions.
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2.2.2. Neural correlate of categorical subjective percepts

In this study, we aimed to identify the neural correlate of sensory consciousness

– brain activity in the NCL which reflects the subjective report about whether

or not the crows had perceived the presented stimulus (Nieder et al., 2020). Two

crows were trained to perform a stimulus detection task which required them to

report their binary categorical decision about presence (‘yes’) or absence (‘no’)

of the visual stimulus. The stimulus was a gray square presented at different

intensities ranging from zero (stimulus absent) to an intensity which was clearly

detectable. In contrast to assigning certain behaviors for the two different

response options, we used rule cues which indicated whether the birds were

required to make a Go-response or withhold from responding in order to report

their decision on a trial-by-trial basis, thus preventing them from preparing

confounding motor actions.

The behavioral performance plotted against stimulus intensity formed a

typical psychometric function, showing that zero and highest intensities had

been reliably perceived as absent or present, respectively, whereas interme-

diate intensities around perceptual threshold had been detected as being

present in approximately half of the trials. We classified the intensities into ‘no

stimulus’ (stimulus absent), ‘near-threshold’ (stimulus present but faint) and

‘supra-threshold’ (stimulus present and salient). Near-threshold stimuli eliciting

alternating percepts despite containing identical physical information enable

the investigation of subjective experience. The behavioral responses of the

crows were grouped according to signal detection theory into ‘hit’ (correct ‘yes’

response to a present stimulus), ‘miss’ (erroneous ‘no’ response to a present

stimulus), ‘correct rejection’ (correct ‘no’ response to stimulus absence) and

‘false alarm’ (erroneous ‘yes’ response to stimulus absence) (Green and Swets,

1966).

We found a proportion of single NCL neurons which encoded the subject-

ive experience of the crows. The activity of these neurons reflected categorically

the subjective percept (stimulus present or absent), especially shortly before

making the required response, irrespective of the true presence or absence of

the stimulus.
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To investigate the binary categorical responses at the population level, we

used a SVM classifier to discriminate ‘yes’ and ‘no’ responses based on the

neuronal activity. We trained the classifier on firing rates in near-threshold

trials in which the crows responded ‘yes’ and ‘no’ equally often to the identical

near-threshold stimulus intensity. Thereafter, the classifier was able to assign the

crow’s report also to firing rates from no-stimulus trials and supra-threshold

trials, indicating that the neuronal activity to near-threshold stimuli conveyed

sufficient information about the subjective report. The same was true for firing

rates in near-threshold trials, when the classifier was trained on ‘yes’-responses

in supra-threshold and ‘no’-responses in no stimulus trials. Overall, these data

show that neuronal activity in the NCL corresponds with the crows’ subjective

percepts.

In a follow-up study, we investigated whether both perceptions about stimulus

presence but also absence are encoded actively (Wagener and Nieder, 2024). In-

deed, two different neuronal populations reflected the crows’ subjective percept

by an increased activity to ‘yes’ responses (‘yes’-neurons) and ‘no’ responses

(‘no’-neurons), respectively. Particularly during the delay period between

stimulus presentation and response phase, we found similar neuron numbers

and encoding properties for both classes suggesting equal representation of

both subjective states.
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In the past, several experiments have shown that carrion crows can perform

complex behavioral tasks, such as rule-based delayed match-to-sample (Veit and

Nieder, 2013; Veit et al., 2014), visual and multimodal association (Veit et al.,

2015; 2017; Moll and Nieder, 2015; 2017), and match-to numerosity tasks (Ditz

and Nieder, 2015; 2016b; Kirschhock et al., 2021). The key to solve these tasks

is the ability to form concepts about abstract rules. We exploited this ability of

crows to conduct experiments targeting the categorization behavior and gain fur-

ther insight into its underlying neuronal mechanisms in birds. We showed evid-

ence for a categorical auditory working memory (Wagener and Nieder, 2020)

and demonstrated that crows use active working memory to protect visual in-

formation against interference (Wagener et al., 2023). When testing facial cat-

egories, crows discriminated images of crow and human faces but did not seem

to process faces as special categories (Brecht et al., 2017). On the neuronal level,

we found category-selective neurons existing in the NCL already without prior

category training and that crows possess an innate ‘sense of number’ (Wagener

et al., 2018). Further, NCL neurons encoded learned arbitrary categories of con-

tinuous spatial magnitudes and can be trained to flexibly encode changing cat-

egory demands (Wagener and Nieder, 2023). Finally, neurons in the crow NCL

categorically reflected the subjective experience about presence or absence of a

visual stimulus, constituting the neural correlate of consciousness (Nieder et al.,

2020; Wagener and Nieder, 2024).

3.1. Categorization behavior of crows

3.1.1. Auditory categorization

Auditory features play a major role in the discrimination of individual conspecif-

ics based on their vocalizations. Songbirds and also pigeons have been shown to

be able to discriminate and classify various auditory stimuli (songbirds: Dooling

et al., 1992; 1995; Burgering et al., 2019, pigeons: Murphy and Cook, 2008; Cook

and Brooks, 2009; Brooks and Cook, 2010; Cook et al., 2016; Cook, 2017). And

a few studies in European starlings showed auditory working memory in these

songbirds (Zokoll et al., 2007; 2008; Comins and Gentner, 2010). However, these

previous studies typically used a Go/NoGo procedure or forced choice task

without a delay period requiring a temporal storage between stimulus present-

ation and response.
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The delayed match-to-category task that we used satisfied two requirements.

First, it required maintaining categorical information about an auditory stimulus

in working memory to bridge the delay period (Wagener and Nieder, 2020). We

showed that carrion crows possess flexible categorical auditory working memory

by maintaining not only specific auditory stimuli but higher-level auditory cat-

egory information. Second, by testing the crows with novel auditory stimuli, we

demonstrated that they formed an open-ended concept of frequency modulation

direction allowing them to immediately transfer the classification rules to novel

sounds, irrespective of the frequency composition of the pure tones and partly

even for complex sounds such as bird vocalizations. Together, this provides con-

vincing evidence for true categorical auditory working memory in crows.

3.1.2. Lack of evidence for a special face category

Although corvids can recognize individual conspecifics (Dally et al., 2006; Bird

and Emery, 2008; Bugnyar, 2011), it is not clear on which features they rely

to do so. Some bird species were found to use facial cues for discrimination

(budgerigars: Trillmich, 1976; Brown and Dooling, 1992, pigeons: Nakamura et

al., 2003). Further, it was shown that crows indeed differentiate humans based

on their faces. Jungle crows can be trained to categorize photographs of human

faces according to their sex (Bogale et al., 2011) and wild American crows,

after a negative experience (capture) with people wearing unique face masks,

responded with stronger scolding behavior to the mask which was worn during

the previous negative experience than to neutral masks, even after several years

(Marzluff et al., 2010). Likewise, our results showed that crows can discriminate

pictures of crow and human faces; however, we did not find that faces are

treated in a specialized manner (Brecht et al., 2017). Similarly, pigeons as well

seem to have no face inversion effect when discriminating human and monkey

faces (Phelps and Roberts, 1994). This would suggest that birds in general

do not perceive faces as a holistic special category. When recognizing others,

birds might rather use features of the whole body. Pigeons were reported to

categorize images of pigeon bodies (Nakamura et al., 2006). Thus, it would be

interesting whether they and also crows display a body inversion effect, as it

was shown for humans (Reed et al., 2003), however this was not yet tested.

The presence of a face inversion effect has been reported for some mammals

(e.g. humans: Collishaw and Hole, 2000; Maurer et al., 2002; Brecht et al., 2017,

monkeys: Wright and Roberts, 1996, sheep: Kendrick et al., 1996) and insects
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(e.g. honeybees Dyer et al., 2005). A paper wasp species showed faster and more

accurate learning for real conspecific faces than for manipulated faces and other

images (Sheehan and Tibbetts, 2011). Thus, for some species at least, faces are

special categories.

To support face processing, human and nonhuman primates have special-

ized ‘face areas’ in the temporal lobe (Perrett et al., 1982; Desimone et al., 1984;

Kanwisher et al., 1997; Tsao et al., 2006). Single-neuron activity in these face

patches of monkeys revealed that they contain almost exclusively face-selective

neurons, suggesting specialized areas only for face recognition (Tsao et al.,

2006). Activity in the individual face patches differs depending on the viewing

conditions and neurons in one of the anterior face patches represent facial

identity irrespective of the viewpoint (Freiwald and Tsao, 2010). Similarly, cells

in the temporal cortex of sheep respond to sheep and human faces (Kendrick

and Baldwin, 1987). In the medial temporal lobe of human patients, neurons

were found that represented different categories of visual stimuli, such as faces,

animals or specific objects (Kreiman et al., 2000). Some of these neurons termed

‘concept neurons’ respond selectively to different pictures of a certain individual

person, their written name and in some cases also to the pictures of a closely

related person (Quiroga et al., 2005). These neurons reflect abstract concepts

via sparse coding, i.e. they show elevated activity to members of a concept and

apart from that stay silent (Quiroga et al., 2008).

Some studies have attempted to find face-selective neurons in the visual system

of birds, too. An imaging study revealed various brain areas in American crows,

including nidopallium and mesopallium, being activated during perception

of threatening and caring human faces, respectively (Marzluff et al., 2012).

However, although exploring various brain areas in pigeons including the

terminals from both visual pathways (Wulst and entopallium) and also higher

order visual association areas (MVL, NFL, TPO), a convincing fraction of

neurons being selective to pigeon faces in these regions was not found (Clark

et al., 2019; 2022). Whether such specialized neurons exist in the NCL which

receives projections from these association areas is still unknown. Images of bird

faces have been used in a delayed match-to-sample task while recording from

NCL neurons of crows, however a specialized neuronal population for faces

was not reported (Veit et al., 2014). Thus, based on current evidence, special face

processing modules seem to be absent in birds.
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3.2. Neuronal category representations in the crow brain

3.2.1. Spontaneous category representations

Some categorical representations don’t seem to require learning and experience.

We found neurons in the crow NCL that encoded categorical numerosity

information although the birds were never trained on numerosities before

and the task did not require to use these (Wagener et al., 2018). Later, such

numerosity-selective neurons have also been found in the NCL of untrained

10-days old domestic chicks (Kobylkov et al., 2022). These findings parallel

results in monkeys in which numerosity-selective neurons were present in the

PFC and VIP (ventral intraparietal area) of rhesus monkeys (Viswanathan and

Nieder, 2013).

Numerosity training seems to enhance neuronal representations of number.

The proportion of numerosity tuned neurons in naïve crows (12%) was smaller

compared to the proportion in numerically trained crows (20%, Ditz and Nieder,

2015). Comparable amounts of numerosity-selective neurons have also been

found in the VIP (13%) and PFC (14%) of numerically naïve rhesus monkeys

(Viswanathan and Nieder, 2013). However, the quality of numerosity-selective

responses, measured as the widths of the tuning curves, was similar for both

naïve and trained crows, suggesting that numerosity training increases the

proportion of selective neurons but does not change their coding properties. The

numerosity-selective neurons in naïve as well as in trained crows were tuned to

individual preferred numerosities (Wagener et al., 2018; Ditz and Nieder, 2015;

2016b), suggesting a labeled-line code for numerosity encoding. The same cod-

ing properties have been found in numerically naïve (Viswanathan and Nieder,

2013) and trained monkeys (Nieder et al., 2002; Sawamura et al., 2002; Nieder

and Miller, 2004; Nieder, 2017b). The spontaneous emergence of numerosity-

selective neurons is suggested to rely on inherent mechanisms of the visual

system, since such units also emerged in a deep neural network model which

was trained to classify natural images unrelated to numerosity (Nasr et al., 2019).

Other examples of spontaneous category representations, even though rather

basic ones, have been reported from areas upstream to the NCL in birds. In

the NFL of pigeons, a higher visual area receiving input from both, the tecto-

and thalamofugal pathway, category-specific activity was found distinguishing

between pictorial and grating stimuli (Koenen et al., 2016). Further, in MVL,

the neuronal population distinguished between ‘animate’ and ‘inanimate’ real-
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world objects (mainly driven by a distinction between ‘human’ and ‘nonhuman’

photographs within the ‘animate’ category) although it was not required by the

task (Azizi et al., 2019). Thus, object-specific representations seem to gradually

emerge along the visual pathways until full-blown categorical representations

manifest in the NCL.

3.2.2. Representation of learned categories in the avian brain

New categorical behavior is mostly acquired through reinforcement learning. In

mammals this is closely associated with the neuromodulator dopamine. Since

NCL receives strong dopaminergic input, it is likely that category represent-

ation is shaped by dopamine signals (Güntürkün et al., 2018). Several studies

provided evidence that dopamine signals in NCL affect reinforcement learning

and working memory (Puig et al., 2014; Rose et al., 2009; Herold et al., 2008;

2012).

Two possible mechanisms could lead to the development of category-selective

neurons. First, former nonselective neurons could develop category representa-

tions. Engel et al. (2015) proposed a cortical circuit model showing that category

representations develop between sensory and decision layers by previously

nonselective neurons becoming category-selective if fluctuations of their firing

rates are correlated with behavioral outcome. Alternatively, already existing

category-selective neurons could additionally encode novel categorizations. In

an association experiment for which crows were trained to associate colorful

images to certain pictorial stimuli, neurons in the NCL which encoded already

learned familiar associations were found to represent also the associations of

novel images after learning these by trial-and-error (Veit et al., 2015; 2017).

Rudimentary category representations of rather less complex categories

seem to emerge first in the higher visual association areas NFL and MVL which

receive input from the terminals of the two visual processing pathways (ento-

pallium and Wulst) (Koenen et al., 2016; Atoji and Wild, 2012; Azizi et al., 2019).

These findings suggest that higher visual areas pre-process visual information

which is then projected onto NCL where highly complex representations of

categories and concepts emerge (Güntürkün et al., 2018; Pusch et al., 2022).

Neurons in the NCL of pigeons were found to represent stimulus-reward

relations by encoding visual stimuli based on their behavioral meaning in a

33



3. Discussion

Go-/No-Go task (Kirsch et al., 2009) and based on their reward outcome in

an S+/S- discrimination task (Anderson et al., 2020). In crows, specialized

NCL neurons represent abstract rules in a rule-based delayed match-to-sample

task (Veit and Nieder, 2013), encode visual stimuli categorically based on their

respective associates (Veit et al., 2015; 2017) and encode discrete numerosities

in match-to-numerosity tasks (Ditz and Nieder, 2015; 2016b; Kirschhock et al.,

2021). Our results add to these the encoding of abstract continuous magnitude

categories (Wagener and Nieder, 2023) and categorical subjective perceptions

about presence or absence of a visual stimulus (Nieder et al., 2020), emphasizing

once more the functional similarity between the avian NCL and the primate

PFC (Güntürkün, 2005; Güntürkün et al., 2021).

Abstract and learned magnitude categories were encoded by NCL neur-

ons displaying characteristic category-specific tuning functions (i.e. similar

response to all members within a category and sharp difference in response to

members of other categories), as well as by the entire population of recorded

neurons in the NCL irrespective of any preselection for category-selectivity

(Wagener and Nieder, 2023). This pattern of activation is reminiscent to findings

in the primate PFC. In a seminal series of experiments, macaques were trained

in a delayed match-to-category task to categorize morphed images according to

the arbitrary categories ‘cat’ and ‘dog’, respectively (Freedman et al., 2001; 2002;

2003; Roy et al., 2010; 2014; Cromer et al., 2010; 2011). The neurons encoded

the category information of the morphed stimuli by responding similarly to

all stimuli within a category (e.g. ‘dogs’) and differently with a sharp change

in activity to the stimuli of the contrary category (e.g. ‘cats’) (Freedman et al.,

2001; 2002; Roy et al., 2010; Cromer et al., 2010).

Underscoring the plasticity of categorical representations in crows, we found

that the activity in NCL was changed through learning. When one crow was

retrained to categorize the same stimuli according to other category boundaries,

the neuronal response in the NCL reflected clearly the newly learned categories

(Wagener and Nieder, 2023). This indicates that NCL responses can be actively

shaped based on task demands. Similar flexibility was reported for the PFC

of monkeys (Freedman et al., 2001; 2002; Roy et al., 2010; Cromer et al., 2010),

which emphasizes the functional similarity of the corvid NCL with the primate

PFC.

It would be interesting to test whether discrete and continuous quantities are

represented by the same or different neuronal populations in the NCL of birds
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and whether both have the same encoding properties. To test, crows would

need to be trained to perform a match-to-category task including both dot

arrays and line lengths. This experiment was performed in macaque monkeys

and revealed mainly distinct neuron populations that either encode numerical

or continuous spatial quantity, but rarely both magnitudes in the intraparietal

sulcus (IPS), a region which contains high proportions of numerosity-selective

neurons (Nieder, 2005) and the PFC (Tudusciuc and Nieder, 2007; 2009). Similar

to the encoding of numerosities, the neurons had the same tuning properties for

the spatial quantities (line lengths), showing a peak in activity for the preferred

line length and a progressive drop-off for more remote lengths. This is in line

with a common processing mechanism proposed for numerical quantity and

the continuous magnitudes space and time (Walsh, 2003).

The ability to consciously report the subjective experience about a sensory

stimulus requires brain activity representing the abstract categorical perception

about stimulus presence or absence. Using a stimulus detection task which

required crows to report their categorical perception of a visual stimulus that

varied along a continuous intensity scale, we showed the respective neuronal

correlate of this percept reflected by neurons in the NCL (Nieder et al., 2020).

These neurons responded similarly whenever the crow judged that it had seen

(or not seen, respectively) the stimulus, irrespective of the presented intensity.

Similarly responding neurons have been reported to exist in the PFC and

other areas in the frontal cortex of monkeys (de Lafuente and Romo, 2005;

Merten and Nieder, 2012; 2013). Our findings provide the first evidence for

conscious perception in a nonmammalian species and suggest that a layered

cortical architecture is not a prerequisite for sensory consciousness. Birds

possess a cortex-like circuitry which exhibits similar processing dynamics to

that of mammals and could therefore constitute the neural basis of sensory

consciousness (Shanahan et al., 2013; Stacho et al., 2020; Güntürkün, 2021).

Further, and also consistent to the findings in the PFC of monkeys (Merten

and Nieder, 2012), stimulus absence was encoded actively by neurons which

increased their firing rate reflecting the ‘no’ response similarly to the neuronal

population which encoded ‘yes’ responses about stimulus presence (Wagener

and Nieder, 2024). Active representation of stimulus absence was recently

described also in the context of numerosity. Neurons in the NCL of crows act-

ively encoded empty set stimuli in the same manner as countable numerosities

(Kirschhock et al., 2021).
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Sensory neurons typically encode the presence of a stimulus by increasing

their firing rate and otherwise remain at baseline activity (Hubel and Wiesel,

1959; 1962). Therefore, while neurons reflecting the subjective perception of

stimulus presence can rely on activated sensory neurons, the representation

of stimulus absence requires internal generation of categorical activity. The

neuronal representation of stimulus absence as a distinct category might be an

advantage for cognitively advanced animals constituting goal-directed behavior.

3.3. Conclusion

We showed that carrion crows form open-ended auditory categories and exhibit

working memory for sound categories. They protected visual information in

an active working memory against interference and can discriminate images of

crow and human faces but do not seem to represent faces as special categories.

Neurons in the NCL represented complex categories, whether spontaneously

present or learned, in a behaviorally relevant way. Our findings suggest strik-

ing similarities of category processing between NCL and the PFC of primates.

Overall, our results confirm and significantly extend previous assumptions on

the substantial role of NCL mediating high-level cognitive functions.
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SUMMARY

The ability to group sensory data into behaviorally meaningful classes and to
maintain these perceptual categories active in working memory is key to intelli-
gent behavior. Here, we show that carrion crows, highly vocal and cognitively
advanced corvid songbirds, possess categorical auditory working memory. The
crows were trained in a delayed match-to-category task that required them to
flexibly match remembered sounds based on the upward or downward shift of
the sounds’ frequencymodulation. After training, the crows instantaneously clas-
sified novel sounds into the correct auditory categories. The crows showed sharp
category boundaries as a function of the relative frequency interval of the mod-
ulation. In addition, the crows generalized frequency-modulated sounds within a
category and correctly classified novel sounds kept in working memory irrespec-
tive of other acoustic features of the sound. This suggests that crows can form
and actively memorize auditory perceptual categories in the service of cognitive
control of their goal-directed behaviors.

INTRODUCTION

Categorical working memory, the ability to group sensory data into behaviorally meaningful classes and to

maintain them active in workingmemory for a future goal, is key to intelligent behavior (Miller et al., 2018). It

allows humans and animals to classify, memorize, and process sensory information efficiently. This enables

humans and cognitively advanced animals to quickly adapt to new situations (Miller et al., 2003).

So far, categorical working memory in animals has primarily been demonstrated in the visual domain. In

classical working memory tasks, monkeys and crows flexibly switch between remembered visual cate-

gories, such as ‘‘leftward versus rightward motion’’ (Zhou and Freedman, 2019), ‘‘cats versus dogs’’

(Freedman et al., 2001), or ‘‘same versus different’’ (Wallis et al., 2001; Veit and Nieder, 2013). However,

whether categorical working memory is also found in the auditory domain is currently unknown.

This lack of knowledge about auditory categorical working memory is surprising because this cognitive

capability is essential during goal-directed audio-vocal communication. In a telephone group call, for

instance, we categorize speech signals as belonging to a specific individual andmaintain this auditory cate-

gory in working memory in order to match it to subsequent speech signals of the same speaker while

following a conversation. Undoubtedly, also animals that rely on elaborate audio-vocal communication

would benefit from this cognitive ability. Unfortunately, most animals are notoriously difficult to train on

complex auditory tasks (Plakke and Romanski, 2016). Currently it is therefore rarely studied whether animals

can actively maintain auditory categories in working memory (Tsunada et al., 2011).

As true vocal learners, songbirds face many challenges of acoustic communication with speaking humans

(Mooney, 2009). To follow an audio-vocal communication, songbirds need to recognize communication

partner’s characteristics, such as sex, group membership, or identity (Wascher et al., 2015; Brecht and

Nieder, 2020). In short, songbirds rely both on acute hearing and cognitive abilities to classify a multitude

of raw acoustic stimuli and memorize this information across time (Nieder and Mooney, 2020). Indeed,

songbirds are known to perceive sounds in a categorical way (Dooling et al., 1995; Burgering et al.,

2019). In addition, they show working memory for auditory items comparable with humans (Zokoll et al.,

2007; Comins and Gentner, 2010). However, whether birds can combine both capabilities to actively

memorize auditory categories for future goal-directed behavior is unknown, and this capability is barely

studied in animals in general. Here, we addressed this issue in carrion crows, a vocal corvid songbird
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that can be trained on complex tasks (Nieder, 2017; Brecht et al., 2019; Nieder et al., 2020) requiring con-

ceptual understanding and behavioral flexibility (Veit et al., 2015; Moll and Nieder, 2014; Smirnova et al.,

2015; Ditz and Nieder, 2016a).

RESULTS

We trained crows on a delayed match-to-category task with sounds (Figure 1). In this task, the crows indi-

cated whether a test sound was a categorical match to a previously presented and memorized sample

sound. In each trial, the crows evaluated and maintained the direction of frequency modulation (FM) of

the sample sounds in working memory to subsequently match them to the upward or downward modu-

lated sound categories. Since individual trials presented varying sound combinations, the crows had to

flexibly categorize what they heard on a trial-by-trial basis.

The crows were first trained tomatch six fixed FM sample stimuli (‘‘training stimuli,’’ three upward and three

downward sweeps) to the upward or downward categories (Figures 2A and 2B). The frequency range of the

upward and downward FM stimuli together covered the entire hearing range of crows (Jensen and Klokker,

2006). Once the crows reached reliable performance with these training sample stimuli, novel probe sam-

ple stimuli were occasionally inserted in the daily sessions (Figures 2C–2E), while the crows continued to

discriminate the training stimuli as background task. Both crows performed 10 successive sessions with

randomly interleaved training and probe stimuli.

For the training sample stimuli, crow O performed an average of 430 correct background trials per session

(G52 STD, n = 10) and reachedmean performance of 85.2% (G6.1% STD across sessions) (Figure 3). CrowG

on average accomplished 426 correct background trials per session (G36 STD, n = 10), with a mean per-

formance of 87.7% (G2.5% STD) (Figure 3). The average performance of both crows with the background

stimuli in each daily session was significantly above the 50%-chance level (each binomial test, p < 0.001).

Owing to the temporal succession of the matching test stimulus in the ‘‘match’’ versus ‘‘non-match condi-

tions,’’ both crows had a bias toward responding to test1, resulting in systematically higher performances

duringmatch trials (see separate data points for match and non-match performances in Figure 3). However,

not only match but also all non-match performances separately were significantly above chance for both

crows and all conditions (each binomial test, p < 0.001). The crows’ mean performances for each of the

six training sample stimuli was indifferent (each one-way ANOVA, p > 0.05).

Figure 1. Task Design

The trial began when the crow adjusted its head in front of the speaker and screen (by entering an infra-red light barrier) in

response to a central visual Go-cue displayed on the screen. After the crow had adjusted its head, the screen turned blank

for the rest of the trial. A silent pre-sample period (600ms) was followed by a frequency-modulated sample sound that was

played for 300ms. The sample was followed by a 1s silent delay and then by a choice (Test) sound (900ms). Lower trial end-

sequence: If the category (upward or downward FM) of Test1 matched that of the sample (‘‘match’’ condition), the crow

had to move its head and leave the infra-red light barrier to the Test1 sound within the 900 ms response time (shifted by

100 ms relative to Test-onset) to obtain a food reward. Upper trial end-sequence: If Test1 was a nonmatch (‘‘non-match’’

condition), a match followed as Test2, which required a head movement for a reward. There were an equal number of

match and nonmatch trials and they were randomly interleaved.
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Figure 2. Auditory Stimuli Depicted as Sonagrams

(A) The familiar sample stimuli for training the crows were three upward and three downward linear FM sweeps.

(B) The same two upward and downward FM sweeps were used as test stimuli.

(C) Examples of new probe sample stimuli with frequency interval ratios of 3:1 (1.6 octaves). Linear, logarithmic, and

quadratic sweeps in a high-frequency range are shown. Top row displays upward FM sweeps, bottom row shows the

corresponding downward FM sweeps.

(D) Same layout as in (C), showing linear, logarithmic, and quadratic sample probe stimuli in a low-frequency range.

(E) Probe sample stimuli consisting of segments of bird vocalizations. Six representative examples of the 20 stimuli are

depicted. Top row shows upward, bottom row the corresponding mirrored downward stimuli.
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Next, we tested whether the crows could generalize novel FM sounds they had never heard before to the

appropriate categories and thereby would demonstrate a conceptual grasp of sound categories. To that

aim, we occasionally introduced novel probe sample sounds (12% of the trials) in the daily sessions with the

training sounds (the remaining 88% of the trials). Four classes of novel probe sample sounds were pre-

sented: three classes of pure-tone FM sweeps with linear (where frequency changes linearly with time), log-

arithmic (where frequency changes logarithmically with time), and quadratic (where frequency changes

quadratically with time) frequency trajectories, and frequency-modulated segments of bird vocalizations.

The frequency interval ratios of the pure-tone probe sweeps were 2:1 (1 octave), 3:1 (1.6 octaves) (examples

in Figures 2C and 2D), and 4:1 (2 octaves). Themean frequency interval ratio of probe bird vocalizations was

1.47:1 (around half an octave), on average (Figure 2E). The number of upward and downward-modulated

probe stimuli was balanced. Because the goal was to test whether the crows could instantaneously transfer

the FM categories without additional learning, we only analyzed responses to the first presentation of each

unique probe stimulus.

Across all probe stimuli and classes, both crows showed a significant category transfer (each binomial test,

p < 0.001, n = 160) (Figure 4). For all ten sessions together, crow O responded 80% (128/160 trials) and crow

G responded 77% (123/160) correctly across all probe stimuli (which was comparable with the performance

with training stimuli in crow O but significantly worse in crow G; binomial test, p < 0.05). To ensure that the

transfer was made for each of the two categories, we analyzed the performance to upward and downward

FMprobes separately. Again, both crows performed well above chance level for both categories separately

(each binomial test, p < 0.01, n = 80) (Figure 4). Crow O responded correctly in 81% and 79% of the trials

presenting upward and downward FM probe stimuli, respectively. Crow G responded correctly in 68% and

86% of the trials presenting upward and downward FM probe stimuli, respectively. Again, not only match

but also non-match performances separately were significantly above chance for both crows and all con-

ditions (each binomial test, p < 0.05), except for one (downward for crow O, binomial test, p = 0.059).

Categorization is characterized by sharp category boundaries and within-category generalization. We first

analyzed performance as a function of distance to the category boundary. The physical dimension for cate-

gorization of FM sounds into the perceptual ‘‘upward’’ and ‘‘downward’’ categories is the frequency interval

ratio of the sounds. A frequency interval ratio of 1 (i.e., no change in frequency with time) demarcates the

category boundary relative to which upward versus downward frequency-modulated sounds of increasing

frequency interval ratio can be classified into the FM categories upward versus downward. Figure 5 depicts

the crows’ judgments of upward category as a function of the probes’ frequency interval ratios. As ex-

pected for categorical behavior, the crows classified rising FM sounds into the upward category and falling

FM sounds into the downward category, with an abrupt switch of performance at the category boundary.

Performance for probe sweeps at high-frequency interval ratios (4:1, 3:1, and 2:1) (each binomial test, p <

0.001, n = 30 for ratios of 4:1 and 2:1, respectively, n = 60 for a ratio of 3:1). The performance of crow O was

93%, 75%, and 90% for ratios of 4, 3, and 2, respectively. The performance of crowGwas 80%, 85%, and 87%

for ratios of 4, 3, and 2, respectively. As expected, categorization with probe bird vocalizations that had the

lowest frequency interval ratio of all probe sounds near the category boundary became increasingly more

difficult for the crows. CrowO correctly categorized the probe bird vocalization sounds (70%; binomial test,

p < 0.01, n = 40), whereas crow G showed a tendency but did not reach significance (55%; binomial test, p =

0.32, n = 40). Overall, however, the crows categorized novel sounds correctly into the appropriate cate-

gories, with categorization performance suffering close to the category boundary.

Next, we investigated within-category generalization performance. Within-category generalization pre-

dicts that performance is independent from the acoustic details of the FM sound, such as the modulation

trajectory and the frequency composition of the sounds. To that aim, we separately analyzed and

compared performance to the four probe stimulus classes (linear, logarithmic, quadratic pure-tone FM

sweeps, and bird vocalization segments). Both crows showed high performance to all probes containing

FM sweeps of different trajectories. (linear: crow O 85%, crow G 85%; logarithmic: crow O 85%, crow G

83%; quadratic: crow O 80%, crow G 85%) (each binomial test, p < 0.001, n = 40) (Figure 6). As mentioned

above, the bird vocalization probes that exhibited only mild frequency modulation were close to the cate-

gory boundary and thus more difficult for the crows. To summarize, for probe sounds with distinct fre-

quency modulation, the crows categorized performance was independent from the type of modulation

trajectory.
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In addition, we investigated whether the frequency range of the 120 pure-tone probe stimuli (linear, log-

arithmic, and quadratic sweeps) had an influence on behavior. Half of these stimuli had a frequency be-

tween 0.3 and 2.7 kHz and were therefore assigned to the group of ‘‘low-frequency’’ stimuli. The other

half had a frequency between 0.9 and 8.1 kHz and were grouped as ‘‘high-frequency’’ stimuli. Stimuli

including frequencies in the overlapping range of 0.9–2.7 kHz never contained both frequencies lower

than 0.9 kHz and higher than 2.7 kHz. The crows performed well above chance regardless of the frequency

range of the sample stimuli (each binomial test, p < 0.001, n = 60) (Figure 6). Crow O responded correctly in

87% and 80% of low frequency and high frequency trials, respectively. Crow G responded correctly in 92%

and 77% of low frequency and high frequency trials, respectively. Thus, the crows showed robust within-

category generalization irrespective of the frequency range of the probe sounds.

DISCUSSION

Our data show that crows possess categorical auditory working memory. They are able to maintain the FM

categories upward and downward in working memory to master an auditory delayed match-to-category

task. As a sign of categorical generalization and transfer, the crows instantaneously and without further

training matched the remembered novel sample sounds correctly to the upward and downward FM cate-

gories, irrespective of other sound parameters. The crows’ behavior showed the diagnostic characteristics

of categories, namely, sharp category boundaries and within-category generalization: the crows categor-

ically classified the continuous direction of FM into upward and downward while ignoring other sound pa-

rameters (such as spectral composition, frequency intervals, or modulation trajectory of the novel sample

sounds) within one FM sound category. This suggests that the crows only memorized the direction of the

FM, not the other varying sound parameters, when categorizing sounds from working memory.

Auditory Categorization in Birds

Birds have also been shown to discriminate and classify complex sounds. Vocal learners, in particular, rely

on acute audition and are known to perceive sounds in a categorical way (Dooling et al., 1995; Burgering

et al., 2019). Even pigeons, non-songbirds with an unlearned vocal repertoire, are able to make same/

different discriminations across a wide variety of auditory stimuli (Murphy and Cook, 2008; Cook and

Brooks, 2009; Cook et al., 2016) and can learn to discriminate among music-derived acoustic elements

and sequences (Brooks and Cook, 2010; Hagmann and Cook, 2010; Brooks and Cook, 2010; Cook,

2017). However, previous experiments did not require the birds to flexibly switch between auditory

Figure 3. Performance to Familiar Training Stimuli

Both crows responded significantly above chance (dashed horizontal line at 50% performance) to upward and downward

FM samples. Columns represent mean performance values averaged across match and non-match trials (error bars:

standard error of the mean), circle and triangle symbols reflect mean performance for match and non-match trials

separately.
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categories or remember auditory categories in working memory. In these studies, the birds were typically

tested in Go/NoGo or forced choice tasks without a delay period. Both temporal and spectral changes in

the sounds could be exploited.

Birds are known to categorize complex sounds, such as human speech sounds, based on temporal differ-

ences. For instance, budgerigars place vowels /i/, /a/, /e/, and /u/ in phonetically appropriate categories in

spite of variation in who is talking and their gender (Dooling and Brown, 1990). When working with synthetic

phoneme continua of speech sounds, budgerigars exhibit perceptual phonemic boundaries near the hu-

man boundaries for /ba/-/pa/, /da/-/ta/, /ga/-/ka/, /ra/-/la/, and /ba/-/wa/ (Dooling et al., 1995; Dent et al.,

1997). Similar perception of speech sound categories has also been shown in quails and zebra finches (Bur-

gering et al., 2019; Kleunder et al., 1987; Ohms et al., 2010). Because the phoneme boundaries rely on tem-

poral differences (or ‘‘voice onset time’’ between the vowel and the consonant), these data suggest that not

only sound frequency but also sound timing plays an important role in birds’ capability to categorize

sounds.

Besides temporal factors, also the spectral composition of sounds can be exploited by birds. In a series of

experiments, several songbird species (primarily European starlings) have been shown to perceive pitch

relations in a simple tonal melody (Hulse and Cynx, 1985). In particular, songbirds can classify rising as

opposed to falling pitch patterns. However, these songbirds preferentially discriminated tonal patterns ac-

cording to the absolute frequency of the individual element tones in the patterns; they failed to transfer

discrimination to a novel frequency range when the training frequency range was shifted. Only when the

experimental conditions severely constrained the use of pattern element cues did the songbirds use pitch

relations as a secondary strategy (Hulse and Cynx, 1986; Hulse et al., 1984; Braaten et al., 1990). Data like

these lead to the conclusion that birds, unlike humans, cannot generalize relative pitch discrimination to

new frequencies, thus lacking a conceptual grasp of frequency modulation in complex sounds. However,

our data suggest that corvid songbirds can indeed form a conceptual understanding of upward and down-

ward frequency modulation, irrespective of frequency composition.

Auditory Working Memory in Birds

Auditory workingmemory capabilities have only rarely been studied in birds, mainly because it is difficult to

train birds—and nonhuman animals in general—to perform auditory working memory tasks that are similar

Figure 4. Overall Performance to Novel Probe Stimuli

Both crows responded significantly above chance to upward and downward FM probe samples. Columns represent mean

performance values averaged across match and non-match trials (error bars: standard error of the mean), circle and

triangle symbols reflect mean performance for match and non-match trials separately.

ll
OPEN ACCESS

6 iScience 23, 101737, November 20, 2020

iScience
Article

63



to those used in the study of visual memory (Plakke and Romanski, 2016). Nonetheless, a few studies show

that European starlings exhibit auditory working memory and show interesting similarities and differences

when compared with humans (Zokoll et al., 2007, 2008a, 2008b; Comins and Gentner, 2010). For example,

the classical finding of a decay of working memory with increasing delay times in humans and other animals

could be reproduced in starlings (Zokoll et al., 2008a, 2008b). In contrast to humans, however, starlings

benefited from repeated presentations of sample sounds. Our study adds to these insights by showing

that songbirds maintain not only specific sounds in working memory but also overarching auditory cate-

gories. Overall, songbirds are therefore valuable models for investigating not only mechanisms of auditory

signal processing but also cognitive control functions in the auditory domain.

Categorization of Bird Vocalizations

In contrast to novel pure-tone FM sweeps, novel segments of frequency-modulated bird vocalizations were

more difficult to categorize for the crows. One crow reached significant categorization (albeit with less pre-

cision than with the pure-tone probes), whereas the other crow showed a tendency but failed significance.

Most likely, this difficulty was due to the vocalization segments having the lowest frequency interval ratio of

all probe sounds, a ratio that was closest to the category boundary. In addition, the vocalizations were

acoustically more complex and richer. Some of them contained broadband noise that potentially could

have masked the FMs and additional harmonics that might have distracted the crows. Overall, however,

these data suggest that corvids can categorize and remember animal sounds in order to adapt their

behavior.

The capability to memorize sound categories may also have adaptive advantages in a world in which ob-

jects and events are characterized by multi-modal signals. The semantic grouping of a multitude of unique

stimuli into uni-modal categories facilitates the association with stimuli from other sensory modalities that

characterize the same members of a class. For instance, social songbirds need to group conspecifics into

different categories based on sex, relatedness, or group membership in order to adjust their behavioral

responses. Crows recognize group members by identity congruence between visual presentation of a

group member and the subsequent playback of a contact call (Kondo et al., 2012). Because corvids can

recognize individuals by sound (Wascher et al., 2015) or sight alone (Kondo et al., 2010), the most parsimo-

nious explanation is that they first categorize acoustic and visual stimuli as belonging to an individual and

later associate the auditory and visual categories for cross-modal audiovisual recognition of group mem-

bers. The brain of crows is able to associate stimuli across modality and time (Moll and Nieder, 2015, 2017).

However, whether this extends also to more cognitive cross-modal categories remains to be explored.

Figure 5. Performance Relative to Category Boundary

Categorization performance to probe stimuli of different frequency interval ratios of upward and downward FM sounds.

Performance is depicted as percent correct classification as ‘‘upward’’ category. Vertical dashed line indicates the

category boundary at a frequency interval ratio of 1.
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Categorization of Pure Auditory Frequency Modulation in Mammals

The categorical discrimination of sounds based on pure frequency modulation has been demonstrated

convincingly in a mammal, the Mongolian gerbil (Wetzel et al., 1998; Ohl et al., 2001). In this positive-rein-

forcement Go/NoGo task, the effects of conditioned fear (CS+) based on FM categories were tested. The

gerbils had to change compartments in a shuttle box during ascending FMs (CS+) presentation to avoid

foot shock. The gerbils were able to discriminate FM tones by modulation direction and, after familiariza-

tion with a number of different FM pairs, transferred the ascending-descending concept to stimuli not

heard before (Wetzel et al., 1998). A similar conditioning approach was used in categorization studies

with ferrets (Yin et al, 2016, 2020); in one study, individual ferrets were trained to discriminate downward

sequences (the target sequence) from upward sequences (the reference sequence), or vice versa (Yin

et al., 2010). In both approaches, gerbils and ferrets thus discriminated a fixed FM category stored in

long-term memory from deviating sounds.

Although these experiments clearly show perceptual categorization of FMs in gerbils and ferrets, they

required the animals neither to flexibly switch between different auditory categories nor to maintain the

switching categories in auditory working memory. To address both cognitive aspects, we therefore trained

crows on a delayed match-to-category task. This task not only tested the formation of one FM category

against other sounds but probed the conceptual flexibility of the crows to switch between rewarded and

unrewarded FM categories on a trial-by-trial basis. In addition, the crows could not have succeeded without

a working memory for the auditory categories.

Categorical Auditory Working Memory in Monkeys

Categorical auditory perception and working memory have been reported in macaque monkeys. Using a

delayed match-to-sample protocol, monkeys were trained to report by an eye movement whether two

consecutive human-speech sounds (‘‘dad’’ versus ‘‘bad’’) or a series of morphed versions of these sounds

belonged to the same or different category (Tsunada et al., 2011). The behavioral data showed that mon-

keys perceived these morphed speech sounds categorically; despite the gradual variation of the acoustic

stimulus, the monkeys reliably assigned the morphs to one of the two categories and exhibited a sharp

transition boundary between morphed sounds being perceived as dad rather than bad.

Whether the monkeys could also categorize novel morph sounds or other types of speech sounds as a sign

of abstract categorization was not tested in this study. We tested this in the current study and found that the

crows instantaneously categorized the remembered novel sample sounds correctly to the upward and

Figure 6. Performance to Probe Stimuli as a Function of Modulation Trajectory and Frequency Range

Chance level is again 50% performance.
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downward FM categories, irrespective of other sound parameters. Crows can transfer the semantic

grouping criteria they learned to novel and acoustically distinct sounds.

It is worth mentioning that the auditory working memory capacity of monkeys seems to be surprisingly

limited and prone to interference. When rhesus monkeys were tested in an auditory delayedmatch-to-sam-

ple task equivalent to the task structure of the current study in which either the first (match condition) or the

second test stimulus (nonmatch condition) could be a match and required a response, marked perfor-

mance differences between the two conditions surfaced. Performance was accurate whenever a match fol-

lowed the sample directly, but it fell precipitously if (one or two) nonmatch stimuli intervened between sam-

ple and match. This drop in accuracy was found to result from an ‘‘overwriting’’ effect, i.e., a retroactive

interference from the intervening nonmatch stimulus that was far greater than that observed previously

in delayed match-to-sample tasks with visual stimuli. The authors concluded that the monkeys’ perfor-

mance depended on the retention of stimulus traces in the passive form of short-term memory rather

than on active working memory (Scott et al., 2012, 2013).

Our data from crows only allow an evaluation of this issue for zero (match condition) or one interfering stim-

ulus (nonmatch condition). The data plotted in Figures 3 and 4 show a similar tendency, namely, a decline in

accuracy in the nonmatch condition. Notably, crowG showed only amild decline in the nonmatch condition

when tested with novel probe stimuli (Figure 4). It is also worth mentioning that part (or all) of this perfor-

mance decline may be due to the crows’ bias to respond rather quicker (match condition) to receive a

reward earlier. In addition, the performance and response pattern of crows for match and nonmatch con-

ditions is comparable with those we see for visual categorization in delayed match-to-sample tasks (Ditz

and Nieder, 2016a, 2016b, 2020; Wagener et al., 2018). Overall, the data suggest that the crows possess

active working memory capacities also for auditory stimuli.

Limitations of the Study

This study explored the crows’ category generalization capabilities to a limited set of probe stimuli and

found that the crows had more difficulty categorizing FM segments of bird vocalizations. One explanation

for this finding is that vocalizations showed the smallest frequency interval ratio of all probe stimuli. How-

ever, compared with the pure tone training FM sweeps, vocalizations also showed additional harmonics. To

demonstrate that crows can generalize FM categories to acoustically richer sounds, the application of

multi-harmonic FM sweeps as training and probe stimuli would be helpful. In addition, and to further differ-

entiate active working memory from potential passive short-term memory, the crows’ performance when

confronted with more than one distractor and for longer delays would be informative. Resistance against

distraction over longer delay periods would corroborate the notion of auditory workingmemory in crows as

it is regularly seen in the visual domain.
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SHORT COMMUNICATION

Crows protect visual working memory against interference
Lysann Wagener1, Paul Rinnert1, Lena Veit2 and Andreas Nieder1,*

ABSTRACT

Working memory, the ability to actively maintain and manipulate

information across time, is key to intelligent behavior. Because of the

limited capacity of working memory, relevant information needs to be

protected against distracting representations. Whether birds can

resist distractors and safeguard memorized relevant information is

unclear. We trained carrion crows in a delayed match-to-sample task

to memorize an image while resisting other, interfering stimuli. We

found that the repetition of the sample stimulus during the memory

delay improved performance accuracy and accelerated reaction time

relative to a reference condition with a neutral interfering stimulus. In

contrast, the presentation of the image that constituted the

subsequent non-match test stimulus mildly weakened performance.

However, the crows’ robust performance in this most demanding

distractor condition indicates that sample information was actively

protected from being overwritten by the distractor. These data show

that crows can cognitively control and safeguard behaviorally relevant

working memory contents.

KEY WORDS: Corvid songbird, Visual working memory, Distractor

resistance

INTRODUCTION

The maintenance of information over brief delay periods can be

achieved by different cognitive systems (Shevlin, 2020). In the case

of simple short-term memory (such as iconic and echoic memory), a

stimulus trace is temporarily retained in a passive, implicit way;

short-term memory is fragile and highly susceptible to erasing by a

successive stimulus. In contrast, working memory addresses a

system by which the memory contents depend on attention and can

be held and manipulated towards a goal in an active, explicit state;

for as long as attention is directed at memorized relevant

information, it can be protected not only from passive decline but

also from interfering irrelevant stimuli (Luck and Vogel, 1997;

Cowan, 2008; Baddeley, 2012; Carruthers, 2013; Oberauer, 2019;

Nieder, 2022).

When exploring memory capacities in animals, this distinction is

crucial. Animals are typically tested in variations of ‘delayed

response tasks’ that contain a brief temporal gap between a stimulus

and a response. However, an animal’s success in a delayed response

task does not yet indicate working memory because passive short-

term memory typically suffices to explain performance (Nieder,

2022). Oneway to segregate passive short-termmemory from active

working memory is the presentation of interfering stimuli during

memory retention. With only passive short-term memory at work,

memory performance suffers greatly after distraction (Scott et al.,

2012). However, with working memory capabilities, animals are

able to largely ignore and filter out distracting information (Jacob

and Nieder, 2014). Of course, animals – and corvids in particular –

can store information for much longer durations in long-term

memory (Kamil et al., 1994; Balda and Kamil, 1989; Olson, 1991;

Olson et al., 1995; Gould-Beierle, 2000); however, to access this

information from long-term memory, it needs to be retrieved into

working memory.

Several bird species have been tested successfully for their ability

to memorize information across short temporal gaps (e.g. Blough,

1959; Roberts, 1980; Regolin et al., 2005; Veit et al., 2015; Rinnert

et al., 2019; Rinnert and Nieder, 2021). The delayed match-to-

sample (DMS) task is a suitable task to investigate memory

capacities in animals (Hunter, 1913; Lind et al., 2015). In the DMS

task, an animal is first presented with a sample stimulus that is

afterwards removed. After a delay period in which no stimulus is

displayed, two or more choice stimuli are presented. The subject

receives a reward for selecting the one that matches the sample.

Different species of birds, such as pigeons (Blough, 1959; Roberts,

1980; Johnston et al., 2019), chickens (Nakagawa et al., 2004),

black-capped chickadees, dark-eyed juncos (Brodbeck and

Shettleworth, 1995), jays (Olson et al., 1995) and carrion crows

(Goto andWatanabe, 2009; Veit et al., 2014; Hartmann et al., 2018;

Ditz and Nieder, 2016; 2020; Wagener and Nieder, 2017; 2020;

Balakhonov and Rose, 2017) canmaster the DMS task. However, so

far it is not known whether corvids or other birds can actively

protect memorized information against interference as an essential

feature of working memory. In the current study, we therefore

modified the classic DMS task by introducing an interfering

stimulus following the presentation of the sample halfway through

the delay period (Fig. 1). To succeed in the face of distraction, the

animals need to actively maintain relevant sample information and

to safeguard it by filtering out distractors (Jacob and Nieder, 2014;

Jacob et al., 2018).

We considered two hypotheses. Target representation in memory

could deteriorate in the face of strong task-irrelevant distractors,

indicating that crows rely primarily on interference-vulnerable and

passive short-term memory. Alternatively, the crows’ memory

performance could remain largely unaffected by interfering

information, suggesting active filtering and suppression of

distractor information characteristic of explicit cognitive control of

memory contents. We found clear evidence for the latter.

MATERIALS AND METHODS

Subjects

One 2 year old female and one 2 year old male carrion crow (Corvus

corone Linnaeus 1758) were used in this study. The crows were

housed in social groups in indoor aviaries. During the training andReceived 22 December 2022; Accepted 6 February 2023
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testing period, they were on a controlled feeding protocol. Food was

given as a reward during the sessions. Water was available ad

libitum in the aviary and during the experiments. All procedures

were carried out according to the guidelines for animal

experimentation and approved by the responsible national

authorities, the Regierungspräsidium Tübingen, Germany.

Experimental setup

The crows were placed on a perch in front of a touchscreen monitor

(3M Microtouch, 15 inch, 60 Hz refresh rate) in a darkened operant

conditioning chamber (length 1 m, width 0.76 m, height 1 m). The

behavior was controlled by the CORTEX system (National Institute

of Mental Health, Bethesda, MD, USA) which also stored the

behavioral data. An automated feeder delivered either mealworms

(Tenebrio molitor larvae) or bird seed pellets upon correctly

completed trials. An infrared light barrier was installed above the

crows’ head to which a reflector foil was attached. Except for the

distractor and test periods, the crow had to keep its head still within

the beam of the light barrier and thereby in front of the touchscreen

throughout a trial.

Behavioral task

The crows were trained on a DMS task in which they matched

images (Fig. 1). A crow started a trial by positioning its head in front

of the monitor whenever a go-stimulus (a small white square) was

shown on the screen. When the head was in the correct position in

front of the monitor, the crows received auditory feedback. After a

500 ms pre-sample phase with no stimulus, the sample stimulus

(500 ms duration) was displayed. Colorful complex images were

used as stimuli.

The sample was followed by a 1000 ms delay period (delay1)

with a blank screen. Next, one of three interfering stimuli was shown

in equal trial proportions (one-third) and pseudo-randomly

interleaved: a gray circle that was never shown in the sample or

test periods (neutral-image trials), the initially shown sample image

(repeat-sample trials) or the image that was shown as a non-match

stimulus in the subsequent test period (distractor trials). To ensure

that the crow was perceiving the interfering stimulus, it had to peck

at it within 1500 ms to continue the trial, and thereafter to resume

the correct head position in front of the monitor. After a second

1000 ms delay period (delay2), the test period displayed two choice

images side by side. To receive a reward, the crow had to peck at the

test stimulus that matched the sample (‘match’) within 1500 ms

while ignoring the non-matching stimulus (‘non-match’). Match

and non-match were pseudo-randomly and equally often shown on

the left or right side. For every session, three new sample and non-

match images were selected. Responses to the non-match were

considered as error and not rewarded. Premature head movements

(except during the interfering stimulus and test period) ended the

trial, which was then discarded. The tests began once the crows’

accuracy reached at least 75% correct responses per session. Each

session consisted of an average of 412 completed trials for crow 1

and 446 completed trials for crow 2.

Data analysis

The percentage of correct responses, i.e. the number of correct trials

divided by the total number of completed trials, was calculated as a

measure of behavioral accuracy. As a second measure, the reaction

time (RT), i.e. how quickly the crows pecked the correct match

stimulus in the test phase, was calculated. Accuracy and RT were

calculated separately for the three interfering stimulus conditions.

The relationship between accuracy and RT was measured using

Pearson correlation. MATLAB (version R2020b, MathWorks Inc.,

Natick, MA, USA) was used for all data analyses.

RESULTS AND DISCUSSION

The two crows performed a modified version of a visual DMS task,

in which a task-irrelevant, interfering image was presented halfway

through the working memory period (Fig. 1). Sample and test

images varied in individual trials so that the crows had to flexibly

memorize what they saw on a trial-by-trial basis. To test the crows’

working memory, one of three different types of ‘interfering

stimuli’ was presented within the delay period: ‘neutral-image

trials’ as a reference condition, ‘repeat-sample trials’ and ‘distractor

trials’. The crows’ performance in these three conditions was

compared using percentage correct performance (performance

accuracy) and RTs as quantitative parameters.

Across all sessions, crow 1 reached a mean (±s.d.) performance

accuracy of 88.9±4.5% (across 50 sessions), while crow 2 showed a

mean accuracy of 90.4±3.8% (across 63 sessions) (Fig. 2A,D).

The average accuracy of both crows with all three trial types in

each daily session was significantly above the 50% chance level

(each crow P<0.001, two-tailed binomial test). The crows’ accuracy

systematically differed between the three interfering stimulus

conditions (each crow P<0.001, ANOVA) (Fig. 2B,E). Relative

to the reference accuracy for the neutral-image trials (crow 1:

90.8±4.6%; crow 2: 92.8±3.3%), accuracy increased for repeat-

sample trials (crow 1: 98.0±2.6%; crow 2: 96.4±2.5%; each crow

P<0.001; paired-sample t-test, Bonferroni corrected) (Fig. 2B,E).

In contrast, accuracy decreased relative to the neutral-image trials

for both crows in distractor trials (crow 1: 80.2%±7.8%; crow 2:

83.6±7.0%; each crow P<0.001; paired-sample t-test, Bonferroni

corrected) (Fig. 2B,E). Thus, across both crows, repetition of the

sample during the memory delay enhanced accuracy on average

by 5.25%, while the presentation of the non-match stimulus

deteriorated accuracy by 9.9%.

As second performance parameter, we explored RT. Across all

sessions, crow 1 had a mean (±s.d.) RT of 516.0±29.7 ms (across 50

sessions), while crow 2 showed a mean RT of 549.3±69.9 ms

(across 63 sessions). The crows’RT systematically differed between

the three interfering stimulus conditions (each crow P<0.001,

Time

Delay2 TestDelay1Sample
Pre-

sample

500 ms500 ms 1000 ms Max. 1500 ms 1000 ms

Go-

stimulus

Interfering

stimulus

Max. 1500 ms

P=1/3

P=1/3

P=1/3

Fig. 1. Schematic illustration of the delayed match-to-sample task with

interfering stimuli. In each trial sequence (left to right), one of three

interfering stimuli was shown halfway through the delay period: a neutral

gray circle, repetition of the sample stimulus, or an image that served as the

non-match in the impending test period. The crows needed to peck at the

interfering stimuli to continue the trial. The crows indicated their choice in the

test period by pecking at the selected test image (here, the flower would be

the correct match).
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ANOVA) (Fig. 2C,F). Relative to the reference RT for the

neutral-image trials (crow 1: 525.0±33.9 ms; crow 2: 539.7

±81.3 ms), RT decreased for repeat-sample trials (crow 1: 485.0

±22.5 ms; crow 2: 527.0±70.9 ms; crow 1: P<0.001, crow 2:

P<0.029; paired-sample t-test, Bonferroni corrected) (Fig. 2C,F). In

contrast, RT increased relative to the neutral-image trials for both

crows in distractor trials (crow 1: 552.1 ms±41.2 ms; crow 2: 583.7

±68.6 ms; each crow P<0.001; paired-sample t-test, Bonferroni

corrected) (Fig. 2C,F). Thus, repetition of the sample during the

memory delay sped responses up by 26.4 ms on average, while

presentation of the non-match stimulus slowed responses down by

35.6 ms across both crows.

The findings so far indicated an inverse relationship between

accuracy and RT: more difficult conditions resulted in longer RTs.

To systematically explore this relationship, we correlated accuracy

and RT on a session-by-session basis. For each crow individually,

we found a significant negative correlation of accuracy with RT

(crow 1: r=−0.377, P=0.007; crow 2: r=−0.731, P<0.001; Pearson

correlation). We tested this correlation for each of the three trial

conditions and two crows separately. Significant negative

correlations were found in crow 1 for all three conditions (neutral-

image trials: r=−0.281, P=0.048; repeat-sample trials: r=−0.377,

P=0.007; distractor trials: r=−0.415, P=0.003; n=50) (Fig. 2G–I).

Similarly, significant negative correlations were found in crow 2 for
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Fig. 2. Behavioral data. (A) Accuracy

(mean values) of crow 1 across

sessions. (B) Average accuracy of

crow 1 for the neutral, repeat-sample

and distractor trials. Shown are the

means across sessions and the s.d.

The dotted line indicates the reference

value for neutral trials. (C) Average

reaction time of crow 1 for the neutral,

repeat-sample, and distractor trials.

Shown are the means across sessions

and the s.d. The dotted line indicates

the reference value for neutral trials.

(D) Accuracy of crow 2 across

sessions. (E) Average accuracy of

crow 2 for the neutral, repeat-sample

and distractor trials. Same layout as

in B. (F) Average reaction time of

crow 2 for the neutral, repeat-sample

and distractor trials. Same layout as in

C. (G–I) Correlation of accuracy with

reaction time for neutral trials (G),

repeat-sample trials (H) and distractor

trials (I) across all sessions for crow 1.

(J–L) Same as in G–I, but for crow 2.
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neutral-image trials (r=−0.463, P<0.001; n=63) and distractor trials

(r=−0.771, P<0.001) (Fig. 2J,L), whereas repeat-sample trials

showed only a negative tendency (r=−0.239, P=0.061) (Fig. 2K).

This confirms that performance accuracy and RT were negatively

correlated irrespective of the interfering stimulus condition.

Our data show that the crows were affected by different types of

interfering information during the delay period. Importantly, the

crows managed surprisingly well to safeguard the relevant sample

stimulus from demanding distraction. The results indicate that crows

can actively protect relevant sample information from being erased

by the distractor, thus emphasizing the crows’ cognitive aptitude

(Nieder, 2017). Crows possess active working memory, enabling

them to cognitively control the memorization of relevant

information. Whether interfering information during delay times

longer than the 3 s used in the current study would elicit comparable

effects remains to be seen.

To guarantee that the interfering stimuli were perceived, we

required the crows to peck at them. This constraint prevented us

from testing performance without any interfering stimulus as a

reference situation, as it would have lacked a motor response that

alone could explain potential differentiating effects compared with

interfering stimulus conditions. Instead, we used the neutral-image

condition with a simple circle as a performance reference. In

preceding pilot tests, a circle as the interfering stimulus was found to

elicit indifferent accuracy and RT performance compared with no

interfering stimulus in crow 1.

Relative to the neutral-image condition, significant improvement

in performance (in terms of both accuracy and RT) was found for the

repeat-sample trials in both crows. This finding suggests that the

crows benefitted from repeating the relevant sample information in

working memory to achieve higher performance. Such maintenance

of relevant information by repetition in working memory is captured

in Baddeley’s working memory model (Baddeley, 2003).

Relative to the neutral-image condition, a mild but significant

decay in performance (in terms of both accuracy and RT) was found

for the distractor trials with the non-match stimulus as an interfering

stimulus in both crows. Distractor trials were certainly the most

difficult condition because not only did the non-match stimulus

belong to the same complex picture category as the match, a

situation known to elicited the highest distraction (Yoon et al., 2006;

Sreenivasan and Jha, 2007), but also the distractor was the only

other response option besides the match in the test phase. The

crows’ continued high performance in this distractor condition

clearly indicates that sample information was actively protected and

cognitively controlled from being overwritten by the distractor. It

seems crows can attenuate the processing of distracting information

due to endogenous attentional biasing towards relevant sample

information during working memory maintenance (Quest et al.,

2022). At the same time, more frequent selection of the distractor in

the test phase (and thus more errors) also signifies that the distractor

was not eliminated but held in memory. These findings suggest that

crows can maintain more than one item at a time in working

memory. This has also been suggested for visual change detection

tasks in humans, pigeons and crows (Gibson et al., 2011;

Balakhonov and Rose, 2017).

In both crows and across interfering stimulus conditions,

performance accuracy and RTs were negatively correlated. Thus,

higher RTs were associated with higher error rates. That trials with

longer RTs are more likely to be errors has also been widely

reported for perceptual decision making in humans and other

primates when task difficulty is fixed (Carter et al., 1998; Shevinsky

and Reinagel, 2019). Only rats show a positive correlation

(Shevinsky and Reinagel, 2019). In that respect, crows tend

toward producing a more primate-like behavioral pattern.

Why are interfering stimuli not entirely suppressed or filtered

out? In the ecological environment of an animal, any stimulus could

potentially contain relevant information, maybe even more

important information than the task at hand (Berti and Schröger,

2003). It would therefore be maladaptive to completely ignore

interfering stimuli. The ‘supervisory attentional system’ has to react

to unexpected and potentially meaningful stimuli to be adaptive

(Norman and Shallice, 1986). Working memory is able to

coordinate the maintenance of distractibility and the focus on the

task at hand; the more difficult and attention-demanding a memory

task, the less distraction is seen (Berti and Schröger, 2003).
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Berti, S. and Schröger, E. (2003). Working memory controls involuntary attention

switching: evidence from an auditory distraction paradigm. Eur. J. Neurosci. 17,

1119-1122. doi:10.1046/j.1460-9568.2003.02527.x

Blough, D. S. (1959). Delayed matching in the pigeon. J. Exp. Anal. Behav. 2,

151-160. doi:10.1901/jeab.1959.2-151

Brodbeck, D. R. and Shettleworth, S. J. (1995). Matching location and color of

a compound stimulus: Comparison of a food-storing and a nonstoring bird

species. J. Exp. Psychol. Anim. Behav. Process. 21, 64-77. doi:10.1037/0097-

7403.21.1.64

Carruthers, P. (2013). Evolution of working memory. Proc. Natl. Acad. Sci. U.S.A.,

110 Suppl. 2, 10371-10378. doi:10.1073/pnas.1301195110

Carter, C. S., Perlstein, W., Ganguli, R., Brar, J., Mintun, M. and Cohen, J. D.

(1998). Functional hypofrontality and working memory dysfunction in

schizophrenia. Am. J. Psychiatry 155, 1285-1287. doi:10.1176/ajp.155.9.1285

Cowan, N. (2008). What are the differences between long-term, short-term,

and working memory? Prog. Brain Res. 169, 323-338. doi:10.1016/S0079-

6123(07)00020-9

Ditz, H. M. and Nieder, A. (2016). Sensory and working memory representations of

small and large numerosities in the crow endbrain. J. Neurosci. 36, 12044-12052.

doi:10.1523/JNEUROSCI.1521-16.2016

Ditz, H. M. and Nieder, A. (2020). Format-dependent and format-independent

representation of sequential and simultaneous numerosity in the crow endbrain.

Nat. Commun. 11, 686. doi:10.1038/s41467-020-14519-2

Gibson, B., Wasserman, E. and Luck, S. J. (2011). Qualitative similarities in

the visual short-term memory of pigeons and people. Psychon. Bull. Rev. 18,

979-984. doi:10.3758/s13423-011-0132-7

Goto, K. andWatanabe, S. (2009). Visual working memory of jungle crows (Corvus

macrorhynchos) in operant delayed matching-to-sample. Jpn. Psychol. Res. 51,

122-131. doi:10.1111/j.1468-5884.2009.00400.x

4

SHORT COMMUNICATION Journal of Experimental Biology (2023) 226, jeb245453. doi:10.1242/jeb.245453

Jo
u
rn
a
l
o
f
E
x
p
e
ri
m
e
n
ta
l
B
io
lo
g
y

78



Gould-Beierle, K. (2000). A comparison of four corvid species in a working and

reference memory task using a radial maze. J. Comp. Psychol. 114, 347-356.

doi:10.1037/0735-7036.114.4.347

Hartmann, K., Veit, L. and Nieder, A. (2018). Neurons in the crow nidopallium

caudolaterale encode varying durations of visual working memory periods. Exp.

Brain Res. 236, 215-226. doi:10.1007/s00221-017-5120-3

Hunter, W. S. (1913). The delayed reaction in animals and children. Behav. Monogr.

2, 1-86.

Jacob, S. N. and Nieder, A. (2014). Complementary roles for primate frontal and

parietal cortex in guarding working memory from distractor stimuli. Neuron 83,

226-237. doi:10.1016/j.neuron.2014.05.009
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Introduction

Compared to stimuli of other categories, in humans, recog-

nition and memory of faces is disproportionately impaired 

when faces are presented upside down even though both 

upright and inverted stimuli carry the same physical infor-

mation (Yin 1969; Rhodes et al. 1993; Rossion 2009). While 

inversion reduces recognition of non-face stimuli by only 

10%, recognition of faces is reduced by about 25% (Carey 

and Diamond 1977; Diamond and Carey 1986). This ‘face 

inversion effect’ has been interpreted as an indicator for spe-

cialised or proficient processing of faces compared to other 

stimuli (Liu and Chaudhuri 2003), possibly reflecting a dif-

ferent mechanism (Farah et al. 1995).

Inversion of a stimulus impedes the configural processing 

of this stimulus (Towler and Eimer 2016), i.e., the encoding 

of spatial relations between different features, such as the 

distance between the eyes. Our ability to recognise faces is 

thought to rely on such configural (or holistic) processing 

(Bartlett and Searcy 1993; Rhodes et al. 1993; Collishaw 

and Hole 2000; Maurer et al. 2002). This configural pro-

cessing appears early in life (Turati et al. 2004; Simion and 

Giorgio 2015) and seems to mature with time (de Heering 

et al. 2007; Cassia et al. 2009). Hence, some researchers 

argue that this domain-specific processing of faces is innate 

(Farah et al. 1995). However, others suggest it is also the 

result of our experience and thus reflects expertise for pro-

cessing faces (Diamond and Carey 1986; Gauthier and Tarr 

1997). This expertise is achieved by exploiting, where pos-

sible, a configural assembly of an object’s features, and can 

thus be achieved with any type of stimulus where individ-

ual stimuli share many similar features (Gauthier and Tarr 

1997; Gauthier et al. 1998). Diamond and Carey (1986), for 

example, report that ‘dog experts’ show an inversion effect 

for dog pictures. Furthermore, certain non-face stimuli are 

Abstract Humans show impaired recognition of faces 

that are presented upside down, a phenomenon termed face 

inversion effect, which is thought to reflect the special rel-

evance of faces for humans. Here, we investigated whether a 

phylogenetically distantly related avian species, the carrion 

crow, with similar socio-cognitive abilities to human and 

non-human primates, exhibits a face inversion effect. In a 

delayed matching-to-sample task, two crows had to differ-

entiate profiles of crow faces as well as matched controls, 

presented both upright and inverted. Because crows can 

discriminate humans based on their faces, we also assessed 

the face inversion effect using human faces. Both crows per-

formed better with crow faces than with human faces and 

performed worse when responding to inverted pictures in 

general compared to upright pictures. However, neither of 

the crows showed a face inversion effect. For comparative 
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Therefore, we did not find any evidence that crows—like 
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sensitive to inversion, for example words or body postures 

(Reed et al. 2003). Thus, the face inversion effect is not nec-

essarily confined to conspecific’s faces. Rather than reflect-

ing a domain-specific process of face perception, the effect 

could be a result of expertise. Taken together, it has been 

argued that a specialised processing of faces might be due to 

an innate predisposition that matures with exposure (Simion 

and Giorgio 2015).

Arguably, humans process faces in a specialised man-

ner because faces represent highly relevant cues offering a 

range of information about, for example, identity, age, sex, 

or emotional states of social partners (Todorov et al. 2008; 

Leopold and Rhodes 2010). However, humans are not the 

only animals that need to differentiate between individuals 

(Rosa Salva et al. 2015): the face inversion effect as an indi-

cator for specialised face processing has also been investi-

gated in non-human animals. Chimpanzees seem to exhibit a 

face inversion effect (Parr et al. 1998; Parr 2011a; Dahl et al. 

2013), whereas research with rhesus monkeys reports more 

mixed results (Parr et al. 1999; Parr 2011b). This inconsist-

ency has been attributed to the use of unsuitable methods 

(Dahl et al. 2013). Aside from primates, so far only a handful 

of other non-human species have been investigated. Socially 

living sheep, for example, are able to differentiate between 

faces of their conspecifics (Tate et al. 2006) and also show a 

face inversion effect (Kendrick et al. 1996), whereas pigeons 

do not (Phelps and Roberts 1994).

In the present study, the face inversion effect was inves-

tigated in crows. There are two reasons why corvids are an 

interesting model for studying the face inversion effect. First, 

corvids, similarly to humans and great apes, show a range 

of socio-cognitive abilities (e.g., Ostojić et al. 2013; Clay-

ton and Emery 2015; Legg et al. 2015) that require them 

to differentiate between individuals in diverse contexts. For 

example, they might need to distinguish between different 

observers when protecting their caches from them—indeed, 

scrub-jays and ravens have been found to keep track of 

which individuals do and do not know about their caches 

and thus do or do not pose a threat to their caches (Dally 

et al. 2006; Bugnyar 2011). Furthermore, ravens are known 

to be aware of relationships between members of their social 

group (Massen et al. 2014) and adjust their willingness to 

cooperate with a partner based on identity (Massen et al. 

2015). Thus, corvids seem to attend to the identity of their 

social partners both in cooperative and in competitive situa-

tions. Second, previous work suggests that corvids can rec-

ognise individuals (Kondo et al. 2012) and are also able to 

recognise conspecifics using visual cues alone: Rooks can 

differentiate between their partner and other conspecifics 

shown on video (Bird and Emery 2008), and carrion crows 

can be trained to differentiate between full-body pictures of 

conspecifics (Braun 2013). Hence, the ability to recognise 

conspecifics and the relevance of the identity of different 

conspecifics suggests that for corvids, conspecifics repre-

sent a relevant stimulus. Consequently, we aimed to assess 

a potential face inversion effect for conspecific faces as an 

indicator of specialised processing of faces.

Given the repeated exposure of captive crows to human 

faces, crows might have developed an expertise for human 

faces, similarly to humans who developed an expertise for 

dogs (Diamond and Carey 1986). Hence, our second aim 

was to investigate whether another stimulus of everyday 

relevance for captured crows could elicit a face inversion 

effect: the human face. Previous research supports this pre-

diction because both hand-raised (von Bayern and Emery 

2009) and wild corvids (Marzluff et al. 2010; Clucas et al. 

2013) have been found to attend to human faces. Further-

more, American crows recognise humans based on their face 

more than 2 years after the initial presentation (Marzluff 

et al. 2010) and can differentiate between male and female 

human faces from coloured pictures (Bogale et al. 2011). 

Thus, it is likely that crows can use facial cues to differenti-

ate between humans.

To test the hypothesis that birds of the crow family show 

performance disruption when recognising inverted compared 

to upright faces, we administered a delayed matching-to-

sample task to carrion crows in Experiment 1. Specifically, 

we compared performance when crows had to recognise: (1) 

crow faces and non-face control stimuli (side view of a fish), 

both inverted and upright and (2) human faces and non-face 

control stimuli (interior of a house). Non-face controls were 

chosen based on their similarity to the human/crow face 

stimuli. If faces are ‘special’ for crows, they should have 

an impaired performance for inverted images compared to 

upright images. This impaired performance should further 

be more pronounced when responding to faces compared to 

when responding to non-face stimuli. In Experiment 2, we 

compared the crows’ performance to that of human partici-

pants using the same stimuli and setup.

Materials and methods

A possible face inversion effect was investigated in a delayed 

matching-to-sample task. Two crows and 20 human partici-

pants were tested. In the following, we outline the proce-

dures and setup used for both crows (Experiment 1) and 

humans (Experiment 2).

Investigating a face inversion effect in carrion crows 

(Experiment 1)

Subjects and housing

Two male carrion crows, aged 3 years (Walt) and 2 years 

(Hugo), participated in the experiment. The crows were 
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housed in large indoor aviaries (360 × 240 cm × 300 cm) 

side by side in groups of four at the Animal Physiology lab, 

University of Tübingen, Germany. The crows had been taken 

from the institute’s breeding stock (Hoffmann et al. 2011). 

The birds were kept on a controlled feeding protocol for the 

duration of the experiment and earned food during and, if 

necessary, after the daily tests. Body weight was measured 

daily. Outside of testing, the birds’ diet consisted of chick 

meat and mashed birdseeds. Water was provided ad libitum 

in the aviary and during testing. Training and data collec-

tion lasted from July to October 2016. All experimental pro-

cedures were approved by the local ethical committee and 

authorised by the national authorities (Regierungspräsidium 

Tübingen).

General procedure

The birds were trained and tested on the matching-to-sample 

task in a darkened operant conditioning chamber (Fig. 1a). 

The CORTEX program (National Institute of Mental Health, 

MD, USA) was used for stimulus presentation and meas-

uring the birds’ performance as error rates. Visual stimuli 

were displayed on a touch screen monitor (ART develop-

ment PS-150, 15’’, 60-Hz refresh rate), allowing the birds to 

respond by pecking at stimuli shown on the screen. Leather 

jesses secured birds loosely to their perch.

Rewards (Beo Special pearls or mealworm beetle larva) 

for 75% of correct trials were delivered with an automated 

feeder below the screen. Additionally, birds received audi-

tory feedback with specific tones for correct and incorrect 

trials. Birds could initiate a trial by placing their head in 

an infra-red light barrier: in combination with a reflector 

foil attached to the birds’ head the light barrier was acti-

vated when the birds were positioned in front of the screen 

and facing it. Trials were aborted and not counted when the 

crow left the light barrier during sample presentation. The 

retainer of the reflector of the light barrier was implanted 

under general anaesthesia onto the birds’ skull for experi-

ments conducted prior to the present study. For a description 

of surgical procedures, see, e.g., Veit and Nieder (2013). A 

Go-stimulus (a small white square) was presented on the 

screen to indicate a new trial (Fig. 1b). A short click indi-

cated the activation of the light barrier and the Go-stim-

ulus disappeared (pre-sample phase). Next, the birds saw 

a sample stimulus at the centre of the screen (i.e., one of 

the images described below). After a short delay, two test 

stimuli, the match and the non-match stimuli, were shown 

left and right of the centre. The birds had to respond within 

3000 ms by pecking one of the stimuli. During training, 

the delay between sample and test stimuli as well as time-

out after incorrect responses were adjusted depending on 

performance.

In case of an incorrect response, the particular trial was 

presented in a delayed and pseudo-randomized way until all 

stimuli combinations were shown once. Only during train-

ing, but not during data collection, the retry occasionally 

took place immediately after an incorrect trial. This was 

done when birds started to develop a side bias or when per-

formance dropped to chance level once a new stimulus type 

was introduced.

Birds received between 300 and 480 correct trials a day 

during training.

Material

The pictures used had been downloaded from google images 

and flickr.com. Pictures of human faces were selected with 

permission from the face database provided by the Max 

Planck Institute of Biological Cybernetics in Tübingen, 

Germany (Troje and Bülthoff 1996). Pictures of all stimuli 

were achromatic and brightness was equalised. Pictures were 

between 45 × 43 and 77 × 47 pixels in size. When perform-

ing the tasks, the distance between the birds’ eyes and the 

screen was around 7 cm (Walt) and 9 cm (Hugo), creating an 

angular diameter of 17.1 and 16.3, respectively.

For data collection, four different categories of stimuli 

were used (Fig. 2): profiles of crow faces, human faces, 

house interiors, and fish. The pictures of the crow profile 

Fig. 1  a Set-up for Experi-

ment 1. Crows sat in an operant 

conditioning chamber meas-

uring 100 × 76 × 100 cm. 

During testing, the doors of 

the chamber were kept closed 

to minimise disruption and to 

avoid reflections on the screen. 

b Delayed matching-to-sample 

task used in Experiment 1 and 

2. Presentation times varied 

depending on training progress
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were from different individuals and of the fish from different 

species of fish. The crows were not familiar with the crows 

depicted. There is some indication that for jungle crows the 

shape of the beak might be used to discriminate between 

individuals (Kondo and Izawa 2014). Consequently, due 

to the loss of information about beak size and shape when 

viewed frontally, the profile might be relevant when recog-

nising conspecifics. Indeed, previous research showed that 

birds recognise faces in full or ¾ profiles (Trillmich 1976; 

Brown and Dooling 1992). Moreover, crows rarely see a 

frontal view of conspecific faces due to their visual scan-

ning behaviour (Fernández-Juricic et al. 2010). Hence, in 

the present study profiles of carrion crows’ heads were used 

rather than their faces. Note that using the profile was also 

a practical decision: it was not feasible to acquire a range of 

portraits of crows facing straight forward. One reason for 

this might be that corvids exhibit a lot of head movements 

to scan their environment (Fernández-Juricic et al. 2010) and 

thus rarely look straight into a camera.

Pictures of fish served as non-face controls for the crow 

faces and pictures of house interiors as non-face controls for 

the human faces. Fish were used as non-face controls for two 

reasons: first, pictures of different fish species were readily 

available in the same orientation (profile). Second, regard-

less of the hypothesis about the origin of the face inversion 

effect is adopted, fish should not be configurally processed 

by carrion crows: if configural processing of faces is innate, 

only conspecifics should be relevant for crows, and if it is 

due to specialised expertise, fish should only be configurally 

processed by crows who have repeated exposure to fish and 

have a reason to differentiate between different species of 

fish. All pictures were presented both upright and inverted.

Behavioural protocol

Both crows had previously participated in other experiments 

using the same set-up and were thus habituated to the set-up 

and general procedure.

Matching‑to‑sample task

Several training steps were applied. First, the crows had to 

match colours (blue and red) and chromatic ‘abstract’ pic-

tures taken from Veit and Nieder (2013) until they reached 

criterion (defined as accuracy >70%). In Step 2, birds had 

to match achromatic abstract patterns. In Step 3, birds had to 

match achromatic pictures of the same category (e.g., foot-

balls). In Step 4, birds had to recognise two pictures of four 

different categories (mugs, tires, flowers, and keys).

Fig. 2  Stimuli used for test-

ing. Crows were tested on four 

categories of stimuli: crow faces 

and corresponding controls (i.e., 

fish), and human faces and cor-

responding controls (i.e., house 

interior)
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Data collection

During data collection, six pairs of stimuli per class were 

used. Each correct test stimulus appeared once on the right 

and once on the left side of the screen, and each stimulus 

was twice the match stimulus and twice the non-match 

stimulus. Trial order was blocked, such that pictures of 

one category were blocked together. The order of blocks 

and trials within each block was randomised.

The crows were presented with a minimum of 192 cor-

rect trials during a session (4 different pairings per stimuli 

× 6 stimuli pairs × 2 orientations × 4 stimuli categories). 

Therefore, crows saw each picture at least 4 times dur-

ing one session. During data collection, crows received 

between 384 and 576 trials each day (2–4 sessions).

Analysis

Data were extracted from CORTEX (National Institute of 

Mental Health) using MATLAB R2016a. For data analy-

ses, a difference index was calculated for the percentage of 

correct responses on upright minus the percentage of cor-

rect responses on inverted trials (DI = Upright − Inverted). 

A face inversion effect would predict a larger impairment 

of the crows’ performance when responding to face com-

pared to non-face stimuli. Hence, the DI should be larger 

in face than non-face categories.

Data were analysed for each crow separately. First, the 

DI (as performance for upright stimuli minus the perfor-

mance for inverted stimuli) when responding to crow faces 

was compared to the DI when responding to non-face con-

trols (fish pictures),  DIcrow face > DIfish. Second, the DI 

when responding to human faces was compared to the DI 

when responding to non-face controls (house interior pic-

tures),  DIhuman face > DIhouse interior.

Whether overall performance differed from chance or 

not was analysed using a binomial test in RStudio Ver-

sion 1.0.136 (R Core Team 2016). To assess the face 

inversion effect, the proportion of correct responses to 

all pictures of one category was calculated as one score 

for each category during each session. This was done for 

both upright and inverted stimuli separately. The com-

parisons between  DIcrow face > DIfish as well as between 

 DIhuman face > DIhouse interior were analysed with paired Wil-

coxon rank tests in RStudio. Comparisons based upon 

clear predictions were calculated using directional (one-

sided) tests (Ruxton and Neuhäuser 2010).

All analyses were based upon clear predictions and as 

such all comparisons were calculated using directional 

(one-sided) tests (Ruxton and Neuhäuser 2010).

Investigating the face inversion effect in human 

participants (Experiment 2)

Participants

Twenty participants were recruited and tested at the Institute 

of Biology at the University of Tübingen, Germany, aged 

21–35 (M = 26.7), of which 13 were females. The experi-

ment was performed with the approval of the Ethical Com-

mittee of the Faculty of Science, University of Tübingen, 

performed in accordance with the ethical standards laid 

down in the 1964 Declaration of Helsinki. Data were col-

lected from January to February 2017.

Set‑up and material

The same test stimuli as in Experiment 1 were used. The 

set-up was the same as in Experiment 1 except that the touch 

screen was moved to face the participants sitting in front of 

the box. The room was darkened. Piloting the original task 

on KFB and LW showed that humans were likely to perform 

at ceiling if the same timings as in the crow task were used. 

Thus, the presentation time of the sample was reduced to 

500 ms and the delay between sample and test stimuli was 

increased to 500 ms. Furthermore, the available response 

time until a trial was aborted was reduced to 710 ms.

Procedure

Participants were instructed verbally. They were asked to 

complete 192 correct trials each. Similarly to the crows, 

humans received a retry for incorrect trials. The experiment 

took 20 min in total.

Analysis

Data were extracted from CORTEX (National Institute of 

Mental Health) using MATLAB R2016a and were analysed 

in RStudio Version 1.0.136 (R Core Team 2016). For data 

analyses a difference index was calculated for percent-

age of correct responses in upright minus inverted trials 

(DI = upright − inverted).

Due to non-normality, data were analysed using Wilcoxon 

signed rank tests. Because the analysis was based on clear 

predictions, directional tests were used. Cohen’s ds were 

corrected for dependence according to Morris and DeShon 

(2002). First, the DI (as performance for upright stimuli 

minus the performance for inverted stimuli) when respond-

ing to crow faces was compared to the DI when responding 

to non-face controls (fish pictures),  DIcrow face > DIfish. Sec-

ond, the DI when responding to human faces was compared 

to the DI when responding to non-face controls (house inte-

rior pictures),  DIhuman face > DIhouse interior. Additionally, we 
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compared the performance on trials with crow faces with 

the performance on human faces, regardless of orientation.

Results

Assessing a possible face inversion effect in carrion 

crows

We first assessed the presence of a putative face inver-

sion effect in crows (Experiment 1). Figure 3 gives the 

performance scores of the two crows for all categories in 

upright and inverted trials. Both crows performed the task 

better than chance (50%) for all stimulus categories (Bino-

mial tests, all p’s < .001). Crow Hugo scored on average 

M = 86.9% (SD = 9.1%) on trials with upright crow faces, 

and M = 82.6% (SD = 9.4%) on trials with inverted crow 

faces,  DIcrow face = 4.3%. He scored on average M = 86.0% 

(SD = 7.6%) on trials with upright non-face controls (fish), 

and M = 80.6% (SD = 7.6%) on trials with inverted non-

face controls,  DIfish = 5.4%. Hence, as can be seen in Fig. 4, 

Hugo did not show a face-specific inversion effect for crow 

faces, U = 365.5, pone-sided = .698. With the human faces, 

he scored on average M = 73.8% (SD = 8.9%) on trials 

with upright human faces, and M = 69.6% (SD = 8.0%) on 

trials with inverted human faces,  DIhuman faces = 4.2%. He 

scored on average M = 88.1% (SD = 7.8%) on trials with 

upright non-face controls (house interior), and M = 79.1% 

(SD = 7.8%), on trials with inverted non-face controls, 

 DIhouse interior  =  9.0%. Thus, Hugo also did not show a 

face-specific inversion effect for human faces, U = 469, 

pone-sided = .962.

Crow Walt scored on average M = 77.4% (SD = 10.0%) on 

trials with upright crow faces, and M = 74.1% (SD = 10.5%) 

on trials with inverted crow faces,  DIcrow face  =  3.3%. 

He scored on average M = 76.0% (SD = 9.9%) on tri-

als with upright non-face controls (fish), and M = 75.3% 

(SD = 8.1%) on trials with inverted non-face controls, 

 DIfish = 0.7%. This difference in DI did not reach signifi-

cance, U = 267, pone-sided = .070, see Fig. 3. With the human 

faces, he scored on average M = 69.8% (SD = 8.8%) on trials 

with upright human faces, and M = 66.4% (SD = 9.6%) on 

trials with inverted human faces,  DIhuman faces = 3.3%. He 

scored on average M = 78.8% (SD = 9.5%) on trials with 

upright non-face controls (house interior), and M = 75.8% 

(SD = 9.5%), on trials with inverted non-face controls, 

Fig. 3  Box-and-whiskers plot showing the performance for all stim-

ulus categories when responding to upright stimuli (light grey) and 

inverted stimuli (dark grey) for crow Hugo (n = 37 sessions), crow 

Walt (n  =  39 sessions) and the human participants (n  =  20). The 

boxes signify the upper and lower quartiles and the thick black hori‑

zontal lines the median. The whiskers extend from the box to values 

no further than ±1.5 * IQR from the box 
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 DIhouse interior  =  2.93%. Thus, Walt also did not show a 

face-specific inversion effect for human faces, U = 226, 

pone-sided = .339.

Interestingly, as can be seen in Fig.  3, as well as in 

Table 1, both crows performed better when crow faces 

were presented compared to when human faces were pre-

sented, regardless of orientation (Hugo: U  =  2408.5, 

ptwo-sided < .001; Walt: U = 2101, ptwo-sided < .001). Further-

more, both crows generally performed better when respond-

ing to upright than to inverted stimuli, regardless of cat-

egory (Hugo: U = 7785, ptwo-sided < .001; Walt: U = 6667, 

ptwo-sided = .004).

Validation of the methodology with human participants

We validated the face inversion effect in humans using the 

same methodology (Experiment 2). The percentage of cor-

rect responses was on average M = 82.5% (SD = 11.1%) on 

trials with upright crow faces, and M = 78.7% (SD = 8.72%) 

on trials with inverted crow faces,  DIcrow face = 3.88%. On 

trials with upright non-face controls (fish), the percentage of 

correct responses was on average M = 93.7% (SD = 5.4%), 

and M = 90.9% (SD = 6.5%) on trials with inverted non-face 

controls,  DIfish = 2.83%. This difference in DI did not reach 

significance, U = 114.5, p = .222 (Fig. 4). For the human 

faces, the average of percentage of correct responses was 

M = 90.2% (SD = 6.7%) on trials with upright stimuli, and 

M = 81.3% (SD = 10.9%) on trials with inverted stimuli, 

 DIhuman faces = 8.91. On trials with upright non-face con-

trols (house interiors), the average of percentage of correct 

responses was M = 94.5% (SD = 4.5%), and M = 94.1% 

Fig. 4  Mean DI in performance  ±  SEM. Performance scores when 

responding to inverted pictures were subtracted from the performance 

scores when responding to upright pictures to determine the impair-

ment due to inversion for the different stimulus categories, comparing 

crow Hugo, crow Walt and human participants. The asterisk indicates 

a significant difference (*p = .001, Wilcoxon-signed rank test)

Table 1  Overview of performance (percentage of correct choice) for 

all stimulus categories for both birds and human participants, aver-

aged across all sessions

Mean (SD) performance in %

Crow Hugo Crow Walt Human participants

Fish 83.3 (8.0) 75.6 (9.0) 92.3 (6.1)

House interior 83.6 (8.8) 77.3 (9.0) 94.3 (5.8)

Crow face 84.7 (9.5) 75.8 (10.3) 80.6 (10.1)

Human face 71.7 (8.7) 68.1 (9.3) 85.8 (10.0)

Upright 83.7 (10.1) 75.5 (10.1) 90.3 (8.0)

 Fish 86.0 (7.7) 76.0 (9.9) 93.7 (5.4)

 House interior 88.1 (7.8) 78.7 (9.5) 94.5 (4.5)

 Crow face 86.9 (9.1) 77.4 (10.0) 82.5 (8.7)

 Human face 73.8 (8.9) 69.8 (8.8) 90.2 (6.7)

Inverted 78.0 (9.5) 72.9 (9.8) 86.2 (11.0)

 Fish 80.6 (7.6) 75.3 (8.1) 90.9 (6.5)

 House interior 79.1 (7.8) 75.8 (8.3) 94.1 (7.0)

 Crow face 82.6 (9.4) 74.1 (10.5) 78.7 (11.1)

 Human face 69.9 (7.9) 67.0 (9.5) 81.2 (10.9)

Overall 80.8 (10.2) 74.2 (10.0) 88.2 (9.8)
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(SD = 7.0%), on trials with inverted non-face controls, 

 DIhouse interior = 0.41%. The  DIhuman face was significantly 

larger than  DIhouse interior, U = 170.5, p = .001. Hence, as can 

be seen in Fig. 4, humans showed a face inversion effect for 

human faces.

Discussion

In this study, we present results suggesting that carrion 

crows do not exhibit a face inversion effect. The face inver-

sion effect refers to a pronounced impairment in the ability 

to recognise and remember faces compared to other stimuli 

once the pictures are turned upside-down (Yin 1969; Dia-

mond and Carey 1986). As such, the face inversion effect 

has been suggested to reflect a special processing of faces.

The lack of a face inversion effect in carrion crows

In Experiment 1, we investigated whether carrion crows 

also show the face inversion effect or not, both with crow 

faces and with human faces. The crows performed better 

with upright than inverted stimuli in general, and their accu-

racy for inverted stimuli never reached the accuracy shown 

for upright stimuli. Some impairment following inversion 

is also found in humans (e.g., Diamond and Carey 1986; 

Experiment 2), and was previously reported for animals, too 

(e.g., Wright and Roberts 1996). However, note that this 

result could in part be explained by the fact that prior to 

data collection, when we selected the control stimuli, we 

exposed the crows to the upright examples of the respective 

category to assess which stimulus categories they were able 

to discriminate. One possible explanation for their difficul-

ties to achieve similar performance for the inverted stimuli 

could be that they developed a strategy to respond to these 

pictures, which was rendered suboptimal once the pictures 

were inverted.

Furthermore, while not being the main focus of this study, 

it should be noted that crows were better at recognising crow 

faces compared to recognising human faces. However, nei-

ther of the crows tested showed a more pronounced impair-

ment of their performance when presented with inverted 

faces—either human faces or crow profiles—compared to 

inverted control stimuli. Hence, the two crows tested did not 

show evidence of a face inversion effect.

There are three reasons why this lack of a face inversion 

effect in crows may be surprising. First, corvids can and 

need to identify specific individuals (e.g., Dally et al. 2006; 

Bugnyar 2011; Massen et al. 2015) and can do so from static 

pictures (e.g., Bird and Emery 2008; Braun 2013). Second, 

corvids can also recognise specific human faces (Marzluff 

et al. 2010; Clucas et al. 2013). And last, corvids can learn 

to discriminate pictures in general (Veit and Nieder 2013; 

Veit et al. 2014), and pictures of conspecifics in particular, as 

shown in Experiment 1. In the following, the lack of a face 

inversion effect in our crows is discussed in relation to the 

stimuli used and the cues crows (might) use to differentiate 

individuals.

Positive validation of the experimental procedures 

in human adults

In order to directly test whether the stimuli used could have 

been responsible for the lack of a face inversion effect in 

carrion crows, Experiment 2 validated the procedure and 

stimuli used in Experiment 1 by testing humans in the same 

set-up and with the same stimuli as the crows. Whether a 

face inversion effect is present in animals or not is still a mat-

ter of debate. It has been argued that the conflicting results 

reported regarding whether or not primates show a face 

inversion effect is due to differences in methods and stimuli 

used (Dahl et al. 2013). For example, some studies used 

natural pictures of full primate heads, sometimes with some 

scenery in the background (e.g., Parr et al. 1999; Phelps 

and Roberts 1994; Wright and Roberts 1996), while newer 

studies have used very controlled pictures, showing only a 

face without any surrounding that might allow viewers to 

determine head shape (Dahl et al. 2013). Thus, in Experi-

ment 2, the paradigm and stimuli used in Experiment 1 were 

validated with a human sample. Here, humans showed a 

strong face inversion effect: their performance in recognis-

ing faces was impaired to a greater extent when pictures of 

human faces were inverted compared to pictures of non-face 

controls. This result is in line with a range of previous stud-

ies on the face inversion effect in humans (e.g., Yin 1969; 

Diamond and Carey 1986; Kanwisher et al. 1998; Freire 

et al. 2000; Turati et al. 2004). The result of Experiment 2 

further suggests that, in principle, the stimuli used in our 

study are appropriate to induce a face inversion effect, as 

they do so in human participants. Consequently, the null 

result in Experiment 1 cannot be explained by a methodo-

logical problem and instead reflects a lack of a face inver-

sion effect in the crows. The consistent results from the two 

crows suggest that this species does not show a face-specific 

inversion effect. However, given the small sample size in the 

current study, it remains a possibility that our results might 

not apply to crows in general.

Implications regarding the cues used by crows 

for individual recognition

Given the positive validation of the procedures used in 

Experiment 2, there are two possible reasons for a lack of 

face inversion effect in crows: first, crows might use and pro-

cess cues other than face profiles to recognise and discrimi-

nate between conspecifics. It is not yet known whether crows 
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use facial cues to identify conspecifics. There are reports of 

certain bird species using facial cues to discriminate between 

conspecifics (e.g., Trillmich 1976; Brown and Dooling 1992; 

Nakamura et al. 2003), for example the diverse plumage of 

the face (Leopold and Rhodes 2010). It is, however, pos-

sible that crows in the wild use the whole body as a cue, 

rather than the face alone. Notably, research on conspecific 

discrimination in crows has so far mainly used whole bodies 

(Braun 2013). Thus, it would be of interest to see whether 

crows have a ‘body-inversion’ effect. Reed et al. (2003) 

found that humans display a body inversion effect in that 

their performance in recognising human bodies is impaired 

by inversion whereas recognition of houses is not.

Another cue that corvids might use for identity discrimi-

nation is ultraviolet differences in plumage. Ultraviolet light 

perception has been reported to be relevant for mate choice 

in a range of bird species (for a review see Rajchard 2009, 

but for opposing views see Stevens and Cuthill 2007). For 

example, Steller’s jays’ plumage UV reflection signals mate 

quality. Note, however, that extra-pair copulations play a 

relatively important role for Steller’s jays, compared to 

other corvid species (Overeem et al. 2014). It is thus unclear 

whether the importance of UV perception in Steller’s jays’ 

sexual behaviour is indicative of visual features that might 

be relevant for monogamous and largely unassisted breeding 

carrion crows. Still, it is worth noting that the failure to find 

a face inversion effect might be due to the lack of UV light 

of the crow face stimuli used in the current study.

Second, the face inversion effect might simply not be an 

indicator for specialised processing in crows, maybe because 

crows do not process faces in a configural manner. In this 

case, a different approach might be necessary to evaluate 

whether faces are processed differently to stimuli of other 

categories. With electrophysiological experiments it has 

been demonstrated that rhesus macaques possess neural cir-

cuits specifically dedicated to processing faces (Allison et al. 

2000; Gross 2008; Freiwald and Tsao 2010). Yet, studies 

investigating the face inversion effect in monkeys produced 

mixed results (e.g., Phelps and Roberts 1994; Wright and 

Roberts 1996; Parr 2011b). Thus, it has been argued that 

in monkeys, specialised face processing might not manifest 

itself in configural processing, which is susceptible to inver-

sion (Leopold and Rhodes 2010). Consequently, it would be 

of interest whether electrophysiological experiments could 

uncover face-specific responses in the crow brain, too. Face-

selective cells have been previously found in a range of pri-

mate species, from humans (Kanwisher and Yovel 2006) to 

macaques (Gross 2008; Freiwald and Tsao 2010) and mar-

moset (Hung et al. 2015), but also in a non-primate mammal, 

the sheep (Tate et al. 2006). Furthermore, faces seem to be 

special for another species of bird: newborn domestic chicks 

have been reported to show a predisposition to imprint on 

face-like stimuli (Johnson and Horn 1988; Rosa-Salva et al. 

2010; Salva et al. 2011; Rosa Salva et al. 2012; Di Gior-

gio et al. 2016; Versace et al. 2017). It is thus possible that 

corvids, while not showing a face inversion effect, might 

have similar face-selective cells indicative of a specialised 

processing of faces.

Specialised processing of human faces by crows?

Previous research suggests that crows can use the face of a 

human to differentiate between individuals (Marzluff et al. 

2010; Bogale et al. 2011) and can be trained to discriminate 

between male and female faces based on pictures (Bogale 

et al. 2011); therefore, we assessed the face inversion effect 

in crows for human faces as well. However, this prior 

research alone does not imply that human faces constitute a 

‘special’ cue for crows. This notion is tentatively supported 

by the results presented here, because the birds did not show 

an inversion effect when presented with human faces, sug-

gesting that crows might use local features to differentiate 

them. Such feature recognition would not be impaired by 

inversion. There are of course a range of different features 

they could have used, such as for example the shape or size 

of the eyes. Future research is needed to assess whether they 

indeed used local features to solve the matching-to-sample 

task, and if so, which ones.

Conclusion

In summary, our results suggest that crows do not exhibit a 

face inversion effect. We further show that crows can learn 

to discriminate between human as well as crow faces, and 

make fewer errors when responding to crow faces. Based on 

the rationale from human and other primate studies, these 

findings may be taken to mean that crows are no ‘experts’ for 

faces and thus do not process faces in a different way to other 

stimuli. Further research is needed to determine which cues 

crows use to differentiate between different conspecifics as 

well as humans, and whether there are other ways to assess 

a possible specialised processing of faces in crows.
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SUMMARY

Endowed with an elaborate cerebral cortex, humans

and other primates can assess the number of items

in a set, or numerosity, from birth on [1] and without

being trained [2]. Whether spontaneous numerosity

extraction is a unique feat of the mammalian cerebral

cortex [3–7] or rather an adaptive property that can

be found in differently designed and independently

evolved neural substrates, such as the avian en-

brain [8], is unknown. To address this question, we

recorded single-cell activity from the nidopallium

caudolaterale (NCL), a high-level avian association

brain area [9–11], of numerically naive crows. We

found that a proportion of NCL neurons were sponta-

neously responsive to numerosity and tuned to the

number of items, even though the crows were never

trained to assess numerical quantity. Our data show

that numerosity-selective neuronal responses are

spontaneously present in the distinct endbrains of

diverge vertebrate taxa. This seemingly hard-wired

property of the avian endbrain to extract numerical

quantity explains how birds in the wild, or right

after hatching, can exploit numerical cues when

making foraging or social decisions. It suggests

that endbrain circuitries that evolved based on

convergent evolution, such as the avian endbrain,

give rise to the same numerosity code.

RESULTS

Whether humans and animals are endowed with an innate fac-

ulty to perceive the number of items in a set (that is, numerosity)

is intensely discussed. The idea of a ‘‘number sense’’ [12, 13]

argues that numerosity is assessed intuitively as a spontaneous

category by hard-wired brain processes, without the need to be

learned. Support for the direct and spontaneous assessment of

numerosity resulted from psychophysical experiments in hu-

mans showing that approximate visual number assessments

are subject to adaptation [3, 4]. In addition, recent imaging evi-

dence suggests that the direct and automatic extraction of nu-

merosity also occurs in the human brain [5, 6]. The most direct

support for the notion of a ‘‘number sense’’ comes from record-

ings in monkeys that had not been trained to judge number;

these recordings showed that single neurons in both the parietal

and prefrontal cortices spontaneously responded to numerosity

and were tuned to preferred numerosities [7].

However, all of these data have been collected in primate spe-

cies that possess an elaborate six-layered cerebral cortex as

highest integration center in the brain. Whether spontaneous

numerosity extraction is a special feature of the cerebral cortex

or rather an adaptive property that can be found in differently

designed and independently evolved endbrains is unknown.

We therefore investigated the question of spontaneous

numerosity selectivity in a bird species: the carrion crow. Instead

of a cerebral cortex, birds possess nuclear telencephalic

areas [8] as highest integration centers that evolved indepen-

dently since the last common reptilian-like ancestor of birds

and mammals lived 320 million years ago [14]. We recently

showed that neurons in the endbrain region nidopallium caudo-

laterale (NCL), a brain area considered to be the avian analog of

the primate prefrontal cortex [9–11], respond selectively to the

number of visual items in numerically trained crows [15, 16]. In

the current study, we explored spontaneous neuronal selectivity

to numerosity in crows that had never been trained to discrimi-

nate the number of items in a set.

Crows Performed the Color Discrimination Task and

Were Ignorant of Numerosity

Two crows (Corvus corone) were trained to discriminate color

in variable dot displays in a delayed match-to-sample (DMS)

task. This ensured that the crows paid attention to the stimulus

displays during recording (Figure 1A). The crows saw two

colored-dot displays (first sample, then test) separated by a

1 s delay. They were trained to respond by moving their head

whenever the (1–5) dots in the sample and test displays were

of the same color. Five colors (red, blue, green, yellow, purple)

were used (Figure 1B). Importantly, the crows were only trained

to discriminate color, not numerosity. All five colors and numer-

osities were displayed as ‘‘standard stimuli,’’ with variable dot

sizes and positions, and ‘‘control stimuli’’ equating the total

area and the average density of all dots across numerosities.

All parameters (color, numerosity, stimulus protocol, match

versus non-match trials, etc.) were balanced and pseudo-

randomly presented in each session.

Both crows performed the color-discrimination task profi-

ciently well above the 50% chance level (crow T: 99% ± 0.2%

SEM, n = 50 sessions; crow V: 95% ± 0.3% SEM, n = 43 ses-

sions; Figure 2A) for all sample colors (all binomial tests,

p < 0.001). To ensure that the crows had indeed discriminated

color and not numerosity, we inserted a small fraction of

1090 Current Biology 28, 1090–1094, April 2, 2018 ª 2018 Elsevier Ltd.
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generalization trials during the ongoing color-discrimination

task. In generalization trials, the dots of both sample and test

stimuli were all black. If the crows were ignorant of numerosity

and relied on color, they would perform at chance level for the

all black dot arrays. Indeed, both crows performed at chance

level in black-dot trials (crow T: 52%, n = 283 trials; crow V:

52%, n = 270 trials; both binomial tests, p R 0.5; Figure 2B).

Neurons Spontaneously Tuned to Numerosity

We recorded the activity of 403 single neurons (crow T: 289;

crow V: 114) in the NCL (Figure 3A) while the crows performed

the color-discrimination task with colored-dot stimuli. We found

cells that responded differently to specific numbers of dots (i.e.,

numerosities) during the sample presentation. Figure 3 shows

the activity of three exemplary neurons. The example neuron in

Figure 3B showed the highest activity to numerosity 1, whereas

the other neurons responded strongest to numerosity 2 (Fig-

ure 3C) and 5 (Figure 3D).

A three-factor ANOVA (numerosity 3 color 3 protocol) was

used to statistically test the neurons’ selectivity to the different

stimulus parameters. Neurons that showed a significant main

effect for numerosity (p < 0.01), but no significant main effect

for protocol or any interaction, were identified as numerosity-

selective neurons and considered for further analyses. The

behaviorally irrelevant parameter ‘‘numerosity’’ significantly

modulated the activity of 12% (48/403) of the NCL neurons.

Of those 48 numerosity-selective cells, 19 neurons (39.6%)

showed an additional main effect for color. All neurons depicted

in Figure 3 were numerosity selective according to this criterion.

Table S1 shows the proportions of neurons that were significant

to each of the main factors and interactions. These proportions

of significant neurons are well beyond the chance level of about

1% of selective cells that we got when the spike rates of

individual neurons were shuffled and analyzed in the same

way (Table S2).

These neurons were tuned to the number of dots; they

showed the highest discharge rates to a specific numerosity,

its preferred numerosity, and a progressive decay of activity

for neighboring numerosities (see tuning curve insets in Figures

3B–3D). Most of the selective neurons preferred numerosity 1

and 5; fewer neurons were tuned to the other intermediate

numerosities (Figure 4A). Note that an increased frequency

count for preferred numerosity 5 is even expected as the tested

numerosity range was truncated to numerosity 5, and few

neurons assigned to this class may, in fact, have been tuned

to numerosities larger than 5.

To create average neural filter functions, activity rates were

normalized by setting themaximumactivity to themost preferred

numerosity as 100% and the activity to the least preferred nu-

merosity as 0%. Tuning functions to each of the sample numer-

osities were constructed by averaging the normalized spike rates

Figure 1. Task Protocol and Example Stimuli

(A) The crows performed a delayed match-to-sample task in which they

discriminated the color of dot arrays. A trial was initiated by moving the head

into a light barrier in front of the screen and keeping it in this position. After a

short pre-sample phase, a sample stimulus (colored-dot array) was presented

for 800 ms, followed by a delay of 1,000 ms. In the subsequent test phase, a

match stimulus (same color as the sample) was shown as test 1 in 50% of the

trials, in the other half a non-match stimulus (different color as the sample) was

presented first and followed by a match stimulus. The crow was rewarded for

responding by moving its head out of the light barrier whenever the color of a

test stimulus matched the color of the sample.

(B) Example stimulus displays. Each of the five colors was presented in five

different numerosities and two different stimulus sets (standard and control).

Figure 2. Behavioral Performance of Both Crows

(A) Performance in the color discrimination task during recording sessions

(crow T: n = 50; crow V: n = 43). Chance level is 50%. Error bars indicate SEM

across the sessions.

(B) Performance in the numerosity-discrimination task in the generalization test

sessions (crow T: n = 283 trials; crow V: n = 270 trials). Chance level is 50%.

Current Biology 28, 1090–1094, April 2, 2018 1091
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of all neurons that had the same preferred numerosity. This re-

sulted in overlapping numerosity tuning curves (Figure 4B).

Across the population, NCL neurons covered the entire tested

range of numerosities 1–5. Finally, we plotted the average

normalized activity across the population of numerosity-selec-

tive neurons as a function of the numerical distance from the

preferred numerosity (Figure 4C). On average, neuronal activity

dropped as a function of the numerical distance from the

preferred numerosity, a neuronal correlate of the ‘‘numerical dis-

tance effect’’ that has been reported for numerosity-selective

NCL neurons in trained crows [15, 16].

DISCUSSION

In the current study, we tested the core idea of the ‘‘number

sense’’ and explored, for the first time in a non-primate spe-

cies, whether numerosity-selective neurons spontaneously

exist in the brain of crows. To that aim, we recorded single-

cell activity from the NCL, a high-level avian association brain

area [17–19], of numerically naive crows. We show that a pro-

portion of NCL neurons is selectively tuned to the number of

items in a set. This demonstrates that numerosity-selective

neurons are not the result of behavioral training but spontane-

ously exist in crows that have never been trained to discrimi-

nate numerosity.

Without numerosity training, we found that 12% of NCL neu-

rons responded selectively to the number of presented dots.

This proportion was significantly smaller compared to the

20% of numerosity-selective neurons from the same NCL re-

gion in crows trained to perform a numerosity-discrimination

task [15] (chi-square tests, p < 0.01). However, the selectivity

of the numerosity-selective responses was comparable for

data from naive and trained crows. We compared the widths

of the numerosity-tuning curves as measured by sigma of

Gauss-fits to the (logarithmically scaled) tuning functions [20]

and found no difference between numerically naive and trained

crows (Mann-Whitney-U test, p = 0.86). Based on these com-

parisons, we conclude that numerosity training may increase

the proportion of numerosity-selective cells in NCL but not their

coding properties.

The only other animal species for which single-unit data about

numerosity coding is available are macaque monkeys. In these

primates, the ventral intraparietal area (VIP) and prefrontal cortex

(PFC) have been identified as key areas for number representa-

tions [21, 22]. Interestingly, the proportion of selective neurons

(12%) in the NCL of numerically naive crows is almost identical

to the 13% and 14% of numerosity-selective neurons in the

VIP and PFC, respectively, of numerically naive monkeys [7].

This suggests the NCL as a neuronal substrate for representing

numerical information, much in the way as the VIP and PFC

constitute the core number system in primates.

Our study also speaks to the question of the neuronal code for

numerical quantity in the animal kingdom. Two competing hy-

potheses have been proposed. Numbers could either be en-

coded by a ‘‘summation code’’ as witnessed by monotonic dis-

charges as a function of quantity [23], or by a ‘‘labeled-line code’’

as evidenced by neurons tuned to preferred numerosities [21]. In

agreement with influential computational models of number pro-

cessing [24, 25], the numerosity-selective neurons we found in

the NCL of numerically naive crows were tuned to their individual

preferred numerical value. The same code has been found in

numerically trained crows [15, 16] and multiple times in single-

cell recordings in monkeys, both trained [26–31] and numerially

naive [7]. It therefore seems that the neuronal code for number

information is a labeled-line code. This code seems to have

Figure 3. Brain Area and Neuronal Responses

(A) Lateral view of a crow brain with the nidopallium caudolaterale (NCL)

located inside the telencephalon color coded. Cb, cerebellum; OT, optic

tectum.

(B–D) Neuronal responses of exemplary neurons to the number of presented

dots in the sample stimulus. The neurons were selective to numerosity 1 (A),

2 (B), and 5 (C). Top: Dot-raster histograms with each line indicating one trial

and each dot representing an action potential. Activity is separated for stan-

dard and control conditions. Bottom: Corresponding spike-density functions,

representing the time course of the average response to each numerosity

(smoothed by a 150 ms Gauss kernel). Colors of dot-raster histograms and

spike-density functions correspond to the numerosity of the sample stimulus.

Vertical line at 0 ms indicates onset of the sample that was shown for 800 ms.

Tuning function insets indicate the average firing rate to numerosity in the

standard (std) and control (cntr) condition. Error bars represent SEM. See also

Tables S1 and S2.
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evolved independently in phylogeny in birds and mammals,

two distantly related vertebrate taxa [32]. The labeled-line code

may be computationally superior when compared to alternative

neuronal representations such as summation coding.

The ability to spontaneously assess the number of items in an

approximate way is widespread across the animal kingdom,

indicating that it is of adaptive value. Tests in which animals

can choose between sets of food objects show that different

species spontaneously ‘‘go for more’’ and pick the sets contain-

ing more food items [33–37]. Similarly, animals in the wild spon-

taneously exploit quantitative information in social interactions

[2, 38, 39]. For these animals to successfully discriminate

set size, numerosity-selective neurons must spontaneously be

implemented in their brains. Without such neurons, they could

not solve such numerical tasks in the first place.

The current data in crows together with a report about numer-

osity-selective neurons in the parietal and prefrontal cortex of

monkeys [7] argue that the neuronal mechanisms for approxi-

mate number discrimination are readily available without number

training in differently designed endbrains. This begs the question

whether animals might be born with hard-wired neuronal net-

works that can represent numerical information. Alternatively,

numerosity selectivity could emerge implicitly as a function of

increased visual experience with different numbers of objects

throughout development. To address this question directly, re-

cordings in juvenile crows at the moment of eye opening would

be necessary. However, even without such data, behavioral

investigations suggest that numerical competence is present

from early on in birds.

The young domestic chick is an extremely precocial species

and has been tested for numerical competence right after hatch-

ing from the egg and thus with a minimum of visual experience.

Exploiting filial imprinting few hours after hatching, chicks have

been shown to discriminate numerosity and even perform rudi-

mentary arithmetic [40, 41]. Moreover, newborn human infants

at the age of 50 hr also discriminate abstract numerosity, even

across sensory modality and sequential and simultaneous pre-

sentation formats [1].

All of these data together argue that numerosity selectivity

may indeed be inborn, not only in primates but also in other ver-

tebrates. This suggests that hard-wired (but, of course, modifi-

able) neuronal connections extracting numerical information

are not a special property of the cerebral cortex but are also im-

plemented in the anatomically distinct endbrain circuitries of

birds that evolved based on convergent evolution. How these

distinct endbrain designs give rise to the same type of numeros-

ity code needs to be addressed in the future.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andreas

Nieder (andreas.nieder@uni-tuebingen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Carrion crows

Two hand-raised male carrion crows (Corvus corone corone, 6 and 2 years old) were used in this experiment. The birds were housed

in social groups in indoor aviaries. They were on a controlled feeding protocol during the training and recording period. Body

weight was measured daily. The daily amount of food was given as reward during, or if necessary after, the sessions. Water was

ad libitum available in the aviaries and during the experiments. All procedures were carried out according to the guidelines for animal

experimentation and approved by the responsible national authorities, the Regierungspr€asidium Tübingen, Germany.

METHOD DETAILS

Apparatus

The birds were placed on a wooden perch in front of a touchscreen monitor (ART development PS-150, 1500, 60 Hz refresh rate) in a

darkened operant conditioning chamber. The CORTEX system (National Institute of Mental Health, MD, USA) was used to control the

stimulus display on the screen and to store the behavioral data. An infrared light barrier ensured, controlled by a reflector foil attached

to the bird’s head, a stable head position in front of the screen throughout the trial and was used as the response instrument by the

bird. A custom-built automated feeder below the screen delivered either mealworms (Tenebrio molitor larvae) or bird seed pellets as

reward upon correctly completed trials. Additionally, the birds received specific auditory feedback sounds for correct and error trials.

Stimuli

The visual stimuli were generated using a custom-written MATLAB software. They consisted of a colored dot array presented on a

gray background circle. Each combination of five colors (red, blue, green, yellow, purple) and five numerosities (1, 2, 3, 4, 5) was used

(Figure 1B). For the generalization test, black dot arrays were used. To prevent the crows from memorizing the visual patterns of the

dot arrays, a new stimulus set with four different images for each color-numerosity combination was generated for each session.

For the standard stimuli, the diameter of each dot varied randomly within a given range. In addition, control stimuli controlling for

total dot area (the total area of all dots in a display was equal for all stimuli within a trial) and dot density (mean distances between

centers of the dots in a display was equal for all stimuli within a trial) were used in each session. Trials containing standard or control

stimuli were pseudo-randomly shuffled and equally likely to occur.

Behavioral protocol

The crows performed a delayed match-to-sample (DMS) task in which they discriminated the color of dot arrays (Figure 1A). A trial

was initiated by positioning the head facing the monitor whenever a go-stimulus (small white cross) was shown, thus closing an

infrared light barrier, and maintaining this position throughout the trial. To indicate that the light barrier had been entered, the bird

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Corvus corone University of Tübingen, Institute of Neurobiology Crow T, crow V

Software and Algorithms

NIMH Cortex National Institute of Mental Health c598; https://www.nimh.nih.gov/labs-at-nimh/research-

areas/clinics-and-labs/ln/shn/software-projects.shtml

MAP Data Acquisition System Plexon https://plexon.com/

R2013b MathWorks https://www.mathworks.com

Other

Dental Cement Heraeus Paladur, ISO 20795, CE 0197

Microdrives Animal Physiology Unit Custom fabrication

Electrodes Alpha Omega LTD Cat.#: 366-130620-00; www.alphaomega-eng.com
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heard a click sound and the go-stimulus turned into a small white circle for 60 ms. Whenever a crow made premature head move-

ments and thereby left the light barrier during an ongoing trial, this trial was terminated and discarded. In the 600 ms pre-sample

phase, a plain gray background circle was shown in the center of the screen. Then the sample dot array was presented within the

background circle for 800 ms. The color and numerosity of the dot array were pseudo-randomly selected. During the subsequent

1000ms delay, only the plain background circle remained on the screen. In the following test phase, another dot array, the test1 stim-

ulus, was presented for 900 ms. It was a ‘match’ in 50% of the cases, i.e., the dot array had the same color and numerosity as the

sample, however it was never exactly the same image. The crow had to respond bymoving its head out of the light barrier to receive a

reward. In the other half of the cases, the test1 stimulus was a ‘nonmatch’ showing a dot array of another color and numerosity as the

sample. Here, the crow had to refrain from responding and wait until the test2 stimulus, which was always a ‘match’, appeared.

Responses to the ‘nonmatch’ stimulus and no response to either of the two test stimuli were considered as error trials and therefore

not rewarded.

Generalization test

To confirm that the crows discriminated the stimuli based on color and not on the irrelevant parameter numerosity, we tested them

with pure numerosity stimuli (black dot arrays, numerosity 1 to 5). These trials contained no color information (sample and test stimuli

black) and were randomly inserted during the ongoing color discrimination task. The ratio of generalization trials was between 12.3%

and 17.1% of the total number of trials. Reward was given for correctly solved numerosity trials (i.e., responding to the test stimulus

which showed the same numerosity as the sample), however the birds were not forced to solve these trials correctly. Three gener-

alization test sessions without neural recording were done for each bird: before, during and after the recording period.

Surgery and neuronal recordings

The surgery was performed while the animal was under general anesthesia with a mixture of ketamine (50 mg/kg) and Rompun

(5 mg/kg xylazine). The head was placed in a stereotactic holder. To locate the target region, stereotaxic coordinates (center of

craniotomy: AP 5 mm, ML 13 mm) were used. Neurons were sampled a few millimeters around these coordinates.Two custom-built

microdrives with four glass-coated tungsten microelectrodes (2 MU impedance, Alpha Omega LTD, Israel) each and a connector for

the head stagewere chronically implanted. The eight electrodes were located in theNCL of the left hemisphere of crow T and the right

hemisphere of crow V. No clustering of numerosity selectivity was detected across electrodes or recordings depths. A small head

post for the reflector of the light barrier was already implanted in the course of previous experiments. After the surgery, the birds

were provided with postoperative analgesics (Morphasol, 1 mg/kg butorphanol).

Each recording session started with adjusting the electrodes until a proper neuronal signal was detected on at least one channel.

The neurons were never pre-selected for any involvement in the task. Single-cell separation was done offline (Plexon Offline Sorter,

version 2.6.2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis

Data analysis was performed usingMATLAB (MathWorks, R2013b). The behavioral performance, which quantifies the ratio of correct

answers, was calculated as the number of correct trials divided by the total number of trials. For the color discrimination task, the

performance was calculated for each sample color in each session, statistically verified using a binomial test, and averaged across

all sessions. To exclude numerosity discrimination, the performance for each numerosity in trials with black dot arrays during the

generalization sessions (trials of the three sessions added together) was calculated and tested using a binomial test.

Neuronal analysis

The analyzed neuronal data included all cells that were recorded for at least 20 correct trials of each sample color and numerosity and

had an average firing rate higher than 1 Hz during the entire trial. Neuronal responses to the sample stimulus were analyzed in an

800 ms window shifted by 100 ms from stimulus onset to account for response latency.

To identify numerosity-selectivity, defined as a difference in firing rate as a function of the number of presented dots, a three-factor

ANOVA with main factors sample numerosity (1, 2, 3, 4, 5), sample color (red, blue, green, yellow, purple) and protocol (standard or

control) was performed. A neuron was classified as numerosity-selective if it showed either a significant main effect for numerosity

(p < 0.01) or for numerosity and color, but no significant effect for protocol and interactions. The preferred numerosity was defined as

the numerosity which elicited the highest firing rate. We compared the proportion of selective neurons found in the real data with

shuffled firing rate data as a measure of chance selectivity. Data were shuffled a thousand times per neuron and each time tested

with the three-factor ANOVA.

To derive average tuning functions of the numerosity-selective neurons, the individual tuning functions were normalized by setting

the highest firing rate to the preferred numerosity as 100% and the lowest firing rate as 0%. These were then averaged across all

neurons which preferred the same numerosity and as a function of the numerical distance from the preferred numerosity,

respectively.

To evaluate potential changes in the selectivity of numerosity tuning in naive versus numerically trained crows, we compared the

width of the tuning functions in naive crows (this dataset) with a previously recorded dataset in numerically trained crows [15]. To that
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aim, Gauss-functions were fit to the neuronal tuning functions of each numerosity-selective neuron. The Gaussian was chosen

because it represents the standard symmetric distribution and, thus, provided a means to compare the tuning functions. Data

were plotted on a logarithmic scale because this provides symmetric tuning functions [15]. The derived width (sigma) of the Gauss

fits was then compared between data in naive and trained crows.

DATA AND SOFTWARE AVAILABILITY

Analysis-specific code and data are available by request to the Lead Contact.

Current Biology 28, 1090–1094.e1–e3, April 2, 2018 e3

101



Current Biology, Volume 28

Supplemental Information

Neurons in the Endbrain of Numerically Naive

Crows Spontaneously Encode Visual Numerosity

Lysann Wagener, Maria Loconsole, Helen M. Ditz, and Andreas Nieder

102



103



Study 5: Categorical representation of abstract spatial magnitudes in the executive
telencephalon of crows

Study 5: Categorical representation of abstract spatial magnitudes

in the executive telencephalon of crows

Wagener, L., Nieder, A. (2023) Categorical representation of abstract spatial mag-
nitudes in the executive telencephalon of crows. Current Biology 33(11),
2151-2162.

104



Article

Categorical representation of abstract spatial
magnitudes in the executive telencephalon of crows

Graphical abstract

Highlights

d Crows classified lines in a match-to-sample task into ‘‘short’’

and ‘‘long’’ categories

d NCL neurons encoded category information and category

boundaries

d NCL activity changed with retraining to reflect new length

categories

d Malleable categorization is mediated by the flexible networks

of the crow NCL

Authors

Lysann Wagener, Andreas Nieder

Correspondence

andreas.nieder@uni-tuebingen.de

In brief

Wagener and Nieder show that neurons in

the NCL of crows trained to group lines

into ‘‘short’’ and ‘‘long’’ categories

reflected these magnitude categories in a

behaviorally relevant way. Neuronal

category representations changed

flexibly after retraining a crow with

identical stimuli to new categories

‘‘short’’, ‘‘medium’’, and ‘‘long’’.

Wagener & Nieder, 2023, Current Biology 33, 2151–2162

June 5, 2023 ª 2023 Elsevier Inc.

https://doi.org/10.1016/j.cub.2023.04.013 ll

105



Article

Categorical representation of abstract spatial
magnitudes in the executive telencephalon of crows

Lysann Wagener1 and Andreas Nieder1,2,*
1Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
2Lead contact

*Correspondence: andreas.nieder@uni-tuebingen.de

https://doi.org/10.1016/j.cub.2023.04.013

SUMMARY

The ability to group abstract continuousmagnitudes intomeaningful categories is cognitively demanding but

key to intelligent behavior. To explore its neuronal mechanisms, we trained carrion crows to categorize lines

of variable lengths into arbitrary ‘‘short’’ and ‘‘long’’ categories. Single-neuron activity in the nidopallium cau-

dolaterale (NCL) of behaving crows reflected the learned length categories of visual stimuli. The length cat-

egories could be reliably decoded from neuronal population activity to predict the crows’ conceptual deci-

sions. NCL activity changed with learning when a crow was retrained with the same stimuli assigned to

more categories with new boundaries (‘‘short’’, ‘‘medium,’’ and ‘‘long’’). Categorical neuronal representations

emerged dynamically so that sensory length information at the beginning of the trial was transformed into

behaviorally relevant categorical representations shortly before the crows’ decision making. Our data

showmalleable categorization capabilities for abstract spatial magnitudesmediated by the flexible networks

of the crow NCL.

INTRODUCTION

Perceptual categorization enables animals to group stimuli into

behaviorally meaningful classes that can easily be generalized

to new circumstances.1 Variable stimuli are distinguished as

belonging to the same category (within category) or to different

categories (across category). Even if the sensory features of to

be categorized stimuli change continuously, the classification

judgment from one category to another is sudden, thus resulting

in an abrupt category boundary.2

In some animals and domains, the categorical perception of

stimuli can be largely innate. For example, female túngara frogs

respond categorically to complex male mating calls,3 crickets

divide sound frequency categorically into attractive and repul-

sive sounds,4 and lactating female house mice perceive the ul-

trasonic calls of their pups categorically.5 In many other circum-

stances, however, perceptual categories need to be learned by

trial-and-error based on behavioral feedback.6 For instance,

young vervet monkeys need to learn to identify the predator

category alarm calls,7 and songbirds learned to recognize new

alarms by association with known alarms.8 Evidently, the capa-

bility to categorize stimuli offers survival and reproduction bene-

fits and therefore is widespread across the animal kingdom.9

Experience-dependent categorization is frequent in cognitively

flexible vertebrates. It can be found in mammals10,11 and birds

such as pigeons12–19 and crows.20–24 Similar to the hierarchical

processing pathway in the primate brain,25 behaviorally relevant

stimulus features supporting categorical neuronal responses

seem to be extracted gradually along the two major visual fore-

brain pathways of birds26: the thalamofugal pathway (homolog

to the mammalian geniculocortical pathway) and the tectofugal

pathway (thought to be analogous to themammalian extrastriate

cortex27). In the avian telencephalon, rudimentary category rep-

resentations emerge first via the thalamofugal pathway in the tha-

lamorecipient structures of the visualWulst and via the tectofugal

pathway in the entopallium and the overlaying intercalated nido-

pallium (NI) and mesopallium ventrolaterale (MVL) layers.28,29

From these layers, highly integrated visual information still lacking

sufficient feature invariance is forwarded to the dominant asso-

ciative cognitive control center of the avian brain, the nidopallium

caudolaterale (NCL). Based on a variety of anatomical and func-

tional criteria, the NCL is thought to be an avian equivalent of the

primate prefrontal cortex (PFC),30–36 a mammalian brain area of

great importance in categorization.11,37–40

Neuronal responses that establish behaviorally relevant condi-

tional stimulus-response contingencies have been reported

several times in the avian NCL.18,41–44Clear categorical neuronal

responses were observed in the realm of numerical quantity.

NCL neurons are tuned to the number of items in visual displays,

both in numerically trained crows45–48 but also in numerically

naive crows49 and untrained 10-day-old domestic chicks.50

The latter findings suggest that categorical responses to number

emerge largely spontaneously based onmechanisms inherent to

the visual system.51,52 How learned magnitude categories

emerge in the avian brain and the neuronal mechanisms under-

lying them is currently unknown.

Here, we explored crows’ behavioral and neuronal representa-

tion of learned magnitude categories. We tested three assump-

tions: first, we hypothesized that neurons in the corvid NCL rep-

resented learned and abstract spatial categories in a stimulus

feature invariant and behaviorally relevant manner. Therefore,

we trained crows in a delayed match-to-category task to group
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the lengths of parameter-controlled lines into the categories

‘‘short’’ vs. ‘‘long’’ by relying on learned and arbitrary rules while

recording from neurons of the NCL during performance. Second,

we assumed that NCL neurons can flexibly adapt to new cate-

gory boundaries if categorization rules change. Therefore, we re-

trained one crow with the line lengths reassigned to three new

categories short, medium, and long. Third, we predicted that

crow NCL neurons, despite a distinct neuroanatomy, exhibit a

similar code for categories as PFC neurons in monkeys. Similar-

ities of crow NCL data with monkey PFC findings would lend

support to the notion of a superior physiological solution to the

same categorization challenge in convergently evolved telence-

phalic executive brain regions.

RESULTS

Two crows were trained in a delayed match-to-category task to

categorize line stimuli according to their length into two groups

(short and long categories). Six different line lengths were used

that were assigned to the two length categories short (S1, S2,

and S3) vs. long (L1, L2, and L3) (Figure 1B). To ensure that the

crows categorized length rather than the area or thickness of

the lines, we used two stimulus protocols (‘‘standard,’’ where

line thickness varied pseudo-randomly across line lengths, and

‘‘control,’’ where the area of each line was constant) in each

session.

Behavior

Both crows were able to memorize and match the sample line

length to the category-matching length in the test phase. The

crows performed proficiently above the 50% chance level

(crow 1: 87.2% ± 0.5% SEM, n = 52 sessions; crow 2:

87.7% ± 0.7% SEM, n = 55 sessions) in each session (all bino-

mial tests, p < 0.001). The behavioral performance was a step

function with similar responses for stimuli of the same category

and a sharp change across the category boundary (Figures 1C

and 1D). Both crows reliably categorized each of the six individ-

ual sample stimuli to the appropriate length category, irrespec-

tive of whether standard or control protocols were shown

(Figures 1E and 1F).

As expected for parameterized length magnitude, both crows

categorized the lengths most distant from the category bound-

ary (S1 and L3, respectively) most proficient and the lengths

near the category transition (S3 and L1, respectively) least profi-

cient, resulting in performance differences of between 2.6% and

19.7% between the most distant and the closest line length to

the category boundary (S1 vs. S3 and L3 vs. L1, respectively)

(Kruskal-Wallis tests, p < 0.001; except for short stimuli in match

conditions for crow 1 (p = 0.16), Figure 1C, left). However, this

within-category performance drop was mild compared with the

substantial across-category (short vs. long) difference of, on

average, 76.9% for crow 1 and 77.3% for crow 2 (Kruskal-

Wallis tests, p < 0.001 for both short vs. long and long vs. short

categorizations in both crows).

Both crows were slightly better in discriminating the control

protocol compared with the standard protocol (paired t test,

p < 0.001, Figures 1E and 1F). The mean performance of

crow 1 with standard and control stimuli was 84.9% and

89.8%, respectively. Crow 2 had a mean performance of

84.0% with standard stimuli and 92.1% with control stimuli.

However, the performance of both crows in each session was

clearly above the 50% chance level with either stimulus set (all

binomial tests for individual sessions and both crows p < 0.01).

Neuronal data

We recorded the single-cell activity of 449 NCL neurons (crow 1,

195 neurons; crow 2, 254 neurons) while the crows performed

the length categorization task. Overall, 134 neurons (29.8%

overall; 43% in crow 1 and 20% in crow 2) were found to be cate-

gory selective in specific trial intervals and showed firing rate dif-

ferences between the short vs. long categories (two-factor

ANOVA, p < 0.01), but no differences within the two categories

(Kruskal-Wallis tests, pR 0.05). In the sample phase, 65 neurons

were category selective (Figure 2A), whereas 86 neurons were

category selective during the delay phase (Figure 2B). The re-

sponses of four category-selective example neurons are shown

in Figures 2C–2F. The neurons in Figures 2C and 2D increased

their firing rates selectively to the line stimuli of the long category

in the sample phase and during the delay, respectively. The other

two example neurons responded selectively to category short in

the early (Figure 2E) and later delay (Figure 2F), respectively.

The preferred category of a selective neuron was defined as

the one eliciting the highest firing rate within the selective time

window. In the sample phase, slightly more neurons preferred

the short category (n = 41/65, binomial test, p = 0.046): in the

delay, a similar number of 47 selective neurons preferred short,

whereas 39 neurons preferred the long category (binomial test,

p = 0.45)

Category-selective neurons robustly encoded the learned cat-

egories; their tuning fulfilled the hallmarks of categorical re-

sponses, i.e., a similar response to all members of the same

category and a change in activity across the category boundary

(Figures 2G and 2H). Both in the sample and the delay phase, a

significant difference between the neurons’ firing rates to the

preferred vs. the non-preferred categories was observed (Wil-

coxon signed-rank test, p < 0.001). No firing rate differences

were found within the preferred and non-preferred categories

for sample and delay (Friedman tests, p > 0.05), except for firing

rates within the non-preferred category of sample-selective neu-

rons (Friedman test, p = 0.02).

We calculated a category index to quantify the difference in the

firing rates of the category-selective neurons (analogous to

Freedman et al.37,53). We first derived the ‘‘within-category differ-

ence’’ (WCD) and ‘‘between-category difference’’ (BCD) from the

neurons’ firing rates (see STAR Methods). For the population of

selective neurons, the BCD was significantly higher than the

WCD, resulting in a shift of the data above the diagonal when

plotted against each other (Figures 2I and 2J) (Wilcoxon signed-

rank test, p < 0.001 for both sample [n = 65] and delay-selective

neurons [n = 86]). The WCD and BCD were then used to calculate

the category index—positive index values (max. +1) indicate

higher firing rate differences for stimuli of different (across) cate-

gories, whereas negative values (min. �1) signify higher differ-

ences for stimuli of the same (within) category (Figures 2K and

2L). For both the sample- and delay-selective category neurons,

the distributions were significantly shifted toward positive values

with means of 0.36 and 0.45, respectively (both one-sample t

tests, p < 0.001), indicating strongcategory codingof the selective
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neurons. Category indices had a tendency to be larger during the

delay period (two-sample t test, p = 0.067).

Analysis of the population of category-selective neurons

To assess the activity of the category-selective neurons together

across time, we transformed their activity into state space. Here,

the activity of a population of neurons at every moment is repre-

sented as an n-dimensional vector in n-dimensional space. After

dimensionality reduction to the three most informative dimen-

sions (first three principle components [PCs]), the trajectories

in three-dimensional space represent the time course of the

neuronal activity to the different line lengths (see STAR

Methods). Sample-selective and delay-selective category

neurons were separately analyzed. Figures 3A and 3B depict

the resulting activity trajectories across trial time in state space.

While the absolute position of the color-coded trajectories repre-

senting the six line lengths is irrelevant, the distances between

trajectories reveal differences in population activity. Visual in-

spection shows that similar line lengths are encoded in an orderly

fashion by nearby trajectories. In addition, trajectories within a

category seem to be closer, whereas trajectories across the

two categories appear more distant.

We performed a cluster analysis to explore the potential clus-

tering of population activity according to the categories. We

calculated PC scores with average firing rates in the sample

and delay period separately (see STARMethods). The dispersion

Figure 1. Task protocol, example stimuli, and behavioral performance in the two-category task

(A) Layout of the delayed match-to-category task with line-length stimuli. The crows had to respond whenever test 1 in 50% of the trials showed a line length that

matched the short-vs.-long length category of the sample. In the other 50% of the trials, test 1 was a category ‘‘nonmatch’’; here, the crow had to refrain from

responding until the second test stimulus (test 2) was shown, which was always a category ‘‘match.’’

(B) Example stimulus displays of the two-category task. Two stimulus sets (standard and control) with six line lengths eachwere used. Category boundary divided

the stimuli into short and long categories, with three line lengths each.

(C) Percent correct performance of crow 1 in the two-category task. Left: performance in trials with short sample stimuli. Right: performance in trials with long

sample stimuli. The values depict the percentage of how often the crows correctly judged the length of either test 1 or test 2 as belonging to the same category as

the line length of the sample stimulus. The circles indicate which exact line length was previously shown as the sample stimulus. Chance level is 50% (dashed

lines). Error bars (very small) represent SEM across the sessions.

(D) Same as in (C) but for crow 2.

(E) Behavioral performance of crow 1 for the two different stimulus sets (standard and control) individually. Left: performance in trials with short sample stimuli.

Right: performance in trials with long sample stimuli. Chance level is 50% (dashed lines). Error bars (very small) indicate SEM across the sessions.

(F) Same as in (E) but for crow 2.
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of the PC scores (only the first two PCs) for each trial (n = 180) in

PC-space is shown in Figures 3C and 3D. We first determined

the optimal number of clusters for the datasets by applying

two measures: the Cali�nski-Harabasz index (also termed ‘‘vari-

ance ratio criterion [VRC]’’),54 and the ‘‘gap criterion’’ that deter-

mines the most dramatic decrease in error measurement (the

‘‘elbow’’ or ‘‘gap’’) of different cluster numbers (see STAR

Methods).55 In the sample period, the Cali�nski-Harabasz index

(which is only defined for two or more clusters and thus less reli-

able) indicated two as the optimal cluster number, whereas the

gap value indicated only one cluster as an optimal description

of the population activity (Figure 3E). However, in the delay

period, both measures indicated two clusters as the optimal

cluster number (Figure 3F).

We then applied unsupervised k-means clustering to partition

all trials in state space (n = 180) into the previously determined

Figure 2. Single-neuron activity from NCL in the two-category task

(A and B) Pattern of task-selectivity of the neurons with a selective interval in the sample (A) and delay phase (B). Top: time-resolved histograms depicting the

number of neurons for which factor ‘‘category’’ was significant at a given time point. Bottom: color-coded traces of the p values. Each line represents a neuron.

Dashed lines separate the periods of a trial by indicating sample onset (at 0 ms), sample offset (at 500 ms), and end of delay (1,500 ms).

(C–F) Responses of four single neurons selective to category long in the sample (C) and delay phase (D), respectively, and selective to category short in the early

delay (E) and later delay (F). Top panels depict dot-raster histograms (each line corresponds to a trial and each dot is an action potential). Bottom panels represent

the corresponding averaged and smoothed (200msGauss kernel, step size of 1ms) spike-density functions. Each line shows the time course of the activity for the

six different line lengths. Vertical dashed lines indicate sample onset, sample offset, and end of delay. The horizontal black line indicates the selective interval.

Tuning function insets show the average firing rate to each line length during this interval (error bars indicate SEM across the trials).

(G and H) Average normalized activity of category-selective neurons in the sample (G) and delay phase (H) in response to the individual line lengths of their

preferred and non-preferred category. The line lengths are arranged according to their distance from the category boundary. Error bars indicate SEM.

(I and J) Difference in firing rates in response to sample line lengths of the same (WCD) and different categories (BCD) for sample (I) and delay category-selective

neurons (J).

(K and L) Frequency distribution of category indices for sample (K) and delay category-selective neurons (L). Arrows indicate respective means.
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optimal number of clusters.56 In the sample period, the indif-

ferent data comprised a single cluster (Figure 3G). In the delay

period, however, the clustering algorithm detected one cluster

for each of the two (short vs. long) length categories (Figure 3H).

However, with trial progression, activity in state space encodes

the relevant two length categories by two clusters that border

between the length categories.

Analysis of the entire neuron population

In thenext step,weexplored the category codingcapability of the

entire population of recorded neurons (n = 348), irrespective of

selectivity. We focused on the last 600 ms of the delay period in

which the crows particularly relied on category information to

solve the task. First, we calculated a correlation matrix to

compare the responses of the neurons with pairs of stimuli (Fig-

ure 4A). A correlation coefficient was calculated for each stimulus

combination, and its value is depicted as a color-coded tile in the

correlation matrix. The emerging correlation pattern shows that

the responses of all neuronsweremore similar towithin-category

stimuli than to across-category stimuli. The mean coefficient for

correlations for within-category stimuli was 0.76 and thus higher

compared with the mean coefficient of 0.63 for across-category

stimuli (two-sample t test, p < 0.001) (Figure 4B).

To explore the behavioral relevance of population activity for the

crows’ categorization performance, we calculated the correlation

coefficients for suitable neurons also in error trials in addition to

correct trials over the last 600 ms of the delay period (Figures 4C

and 4D). The correlation coefficients in correct trials differed signif-

icantly for this subset of neurons, with means of 0.77 and 0.62 for

stimuli of the same and different categories, respectively (two-

sample t test, p < 0.001). In error trials, however, no difference be-

tween within-category correlation coefficients (mean = 0.41) and

between-category correlation coefficients (mean = 0.39) was

found (two-sample t test, p = 0.70) (Figure 4E). This indicates

that the activity differences between categories that are lacking

in error trials are behaviorally relevant for the crows to group the

sample stimuli into the learned categories during correct trials.

Next, we used a population decoding approach to explore cat-

egorical information contained in the neuronal responses. We

trained a support vector machine (SVM) classifier with the firing

rates of the neuronswithin the last 600msof the delay.57The clas-

sificationperformancewas then testedwitha subset of these firing

rates which were not used for training (Figure 4F). The classifier

grouped the firing rates with a high performance of 91.2%

(±0.9% SEM) into the correct categories. Additionally, we trained

an SVM classifier 3 times on different pairs of training stimuli to

test whether the firing to each of the six individual stimuli was pre-

dictive of the short vs. long categorization. For each classifier

training, we used the firing rates to one stimulus of each category

(S1/L3, S2/L2, and S3/L1, respectively) and then predicted the

category of the remaining four stimuli. The classifier was able to

predict the correct category at a mean performance of 77.9%

(±3.2% SEM) (Figure 4G). All training sets resulted in similarly

high classifier performance without performance differences be-

tween the tested cross-category line pairs (two-factor ANOVA,

p = 0.58; mean classification performance with S1/L3 as the

trainingset, 76.0%;withS2/L2, 83.0%;withS3/L1, 74.8%). Impor-

tantly, therewas no difference between the performance of stimuli

within the short and the long category (two-factor ANOVA, p =

0.52; mean prediction performance for stimuli of the short cate-

gory: 75.7% and long category: 80.2%). These decoding results

show that the neurons respond in a similar manner to all stimuli

of the same category but differently tomembers of the other cate-

gory, thus allowing a classifier to predict category membership.

Figure 3. State space analysis of the selective neurons of the two-

category task

(A and B) Time course of neuronal activity to the different line lengths

throughout a trial (1, start sample phase; 2, start delay; 3, end of delay) of

neurons that were category selective in the sample (A) and delay phase (B).

(C and D) Dispersion of the PC scores of an example clustering repetition

during the sample (C) and delay phase (D). One dot corresponds to one trial,

color-coded by the different sample line lengths.

(E and F) Proportion of the optimal number of clusters based on gap value and

Cali�nski-Harabasz index, respectively, in the sample (E) and delay phase (F).

(G and H) Cluster assignment based on gap value of the same trials as in

(C) and (D), respectively. The optimal number of clusters was ‘‘one’’ in the

sample phase (G) and ‘‘two’’ in the delay phase (H). Red crosses indicate the

position of the cluster’s centroids.
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Behavior in the three-category task

After collecting data in the two-category task, we retrained crow

1 on a three-category task to explore learning-related categori-

zation changes.We used the same line-length stimuli but applied

two category boundaries that resulted in the three length cate-

gories short, medium, and long (Figure 5A). The crow was able

to learn the new categories and performed above the 50%

chance level in each session (all binomial tests, p < 0.001). The

mean correct performance across all sessions was 83.1%

(±3.7% SEM, n = 58 sessions).

The crow showed similarly high performances for either stim-

ulus of each category and a sharp drop-off across the two cate-

gory boundaries (Figure 5B). As with the two-category task, the

crow performed best when the sample stimulus was S1 (95.0%±

0.5%SEM, Figure 5B, left). However, performance was also high

for the medium category which is the most difficult category

because both within-category stimuli are adjacent to a category

boundary (M1, 81.3% ± 0.9% SEM; M2, 75.1% ± 1.0% SEM;

Figure 5B, middle). The mean performance with standard and

control stimuli was 81.4% (±0.7% SEM) and 85.2% (±0.7%

SEM), respectively, and thus slightly better with stimuli of the

control set (paired t test, p < 0.001, Figure 5C). However, the

crow’s performance in each sessionwaswell above chance level

with both stimulus sets (all binomial tests, p < 0.001).

Neuronal data in the three-category task

We recorded 336 single neurons while crow 1 was performing

the three-category task. Of these, 128 neurons (38.1%) were

category selective (47 neurons in the sample phase and 93 neu-

rons during the delay). Three category-selective neurons are

shown in Figures 5D–5F. The sample-selective neuron in Fig-

ure 5D was tuned to the long category. The other two delay-se-

lective example neurons preferred the medium category in the

middle of the delay (Figure 5E) and the long category toward

the end of the delay (Figure 5F), respectively. In the sample

phase, 14 neurons preferred a stimulus of the short category,

11 of the medium, and 22 of the long category. During the delay,

17 preferred short, 53 preferred medium, and 23 preferred long.

Analogous to the analysis of the two-category data, we assess

the activity of all selective neurons in the three-category task

together in state space (Figures 6A and 6B). In addition to the

orderly representation of adjacent line lengths, trajectories within

one of the categories seem to be closer, whereas trajectories

across categories appear more distant. We again performed

cluster analysis with PC scores (n = 180 trials) and separately

for the sample and delay periods (Figures 6C and 6D).

In the sample period, the Cali�nski-Harabasz index indicated

three as the optimal cluster number, whereas the gap value indi-

cated only two clusters as an optimal description of population

Figure 4. Correlated activity to pairs of stimuli and classification probability of an SVMclassifier for the entire neuronal population in the two-

category task

(A) Correlation matrix to pairs of stimuli comparing the neuronal activity during the last 600ms of the delay. Each tile represents the correlation coefficient via color

code. Darker colors indicate higher correlation. The tiles along the diagonal represent the maximum correlation when comparing stimuli with themselves (r = 1.0).

(B) Mean correlation coefficient across all comparisons of stimuli within the same category and of different categories, respectively. Error bars represent SEM. ***:

p < 0.001.

(C and D) Correlation coefficients in correct (C) and error trials (D) for a subset of the neuronal population for which error trials could be analyzed.

(E) Mean correlation coefficients across comparisons of stimuli within the same category and of different categories in correct trials (left two bars) and error trials

(right two bars). Error bars represent SEM. ***: p < 0.001.

(F) Performance of an SVM classifier classifying the category of the sample stimulus after being trained on the firing rates of the entire neuronal population during

the last 600 ms of the delay.

(G) SVM classifier predictive performance to novel stimuli after classifier training on the firing rates to two other stimuli. Data for classifier training with S1 and L3

(left), S2 and L2 (middle), and S3 and L1 (right). Columns represent the proportion of how often a stimulus was assigned to the short category.
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activity (Figure 6E). However, in the delay period, both measures

indicated three as the optimal cluster number (Figure 6F). In the

sample period, k-means clustering partitioned the trials into the

previously determined two optimal clusters which mainly con-

sisted of the first shortest vs. the three longest line stimuli (Fig-

ure 6G). In the delay period, however, the clustering algorithm

detected three clusters correlating with the line lengths of the

short, medium, and long categories (Figure 6H). Thus, state

space activity later in the delay period encodes the relevant three

length categories by three clusters that border between the

trained length categories.

As before, we analyzed the category coding of the entire popu-

lation of recorded neurons (n = 278) and used again the activity in

the last 600msof thedelay period tocalculate a correlationmatrix.

After retraining crow 1, the correlation pattern now reflected the

new three categories (Figure 7A). The difference between the

mean correlation coefficient for stimuli within the same category

(0.80) and for correlations of stimuli across categories (0.59) was

Figure 5. Example stimuli, behavioral per-

formance, and single-neuron activity in the

three-category task

(A) Example stimulus displays of the three-cate-

gory task. Two different stimulus sets (standard

and control) with six line lengths each were used.

The category boundaries divided the stimuli into

three categories (short, medium, and long), with

two line lengths each.

(B) Behavioral performance of crow 1 in the three-

category task. Left to right: performance in trials

with short, medium, and long sample stimuli,

respectively. Circles indicate which line length was

shown as the sample stimulus. Dashed lines

represent chance. Error bars (very small) represent

SEM across the sessions.

(C) Behavioral performance of crow 1 for the two

different stimulus sets (standard and control) indi-

vidually. Left to right: performance in trials with

short, medium, and long sample stimuli, respec-

tively. Layout as in (B).

(D) Category-selective neuron encoding the three

categories in the sample phase and preferring

category long. Layout as in Figures 2C–2F.

(E and F) Example category-selective neurons

during the delay, preferring the medium (E) and

long categories (F), respectively. Layout as in

Figures 2C–2F.

significant (Figure 7B) (two-sample t test,

p < 0.001). By contrast, no differences in

correlation coefficients were observed for

stimuli that belonged to adjacent cate-

gories (short vs. medium and medium vs.

long; mean = 0.57) or had a greater dis-

tance (short vs. long; mean = 0.62) (two-

sample t test, p = 0.06).

We tested whether the neuronal popula-

tion recorded during the three-category

task may still encode the now invalid two

categories of the original task. The mean

correlation coefficients for stimuli within

the original categories of the two-category

task compared with stimuli between the original two categories

were0.65and0.61, respectively, andwere indifferent (two-sample

t test, p = 0.44). This indicates that the population of neurons no

longer encoded the categories of the two-category task. As a con-

trol, we explored three-category coding in the original two-cate-

gory task and calculated the correlation analysis with the cate-

gories of the three-category task for the data recorded during

the two-category task (see Figure 4A). Here aswell, themean cor-

relation coefficients for stimuli within the same category (0.74) and

those between categories (0.67) were indifferent (two-sample t

test, p=0.12).Thus, thecorrelationdifferenceswithinandbetween

categories of the three-category task were not a chance event but

resulted from retraining with the new categories.

A subset of the neuronal population (n = 120 suitable neurons;

see STAR Methods) was used to analyze the correlation coeffi-

cients in error trials (Figures 7C and 7D). Although a higher cor-

relation coefficient for stimuli within the same category than for

stimuli across categories (0.82 and 0.56, respectively) was
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observed in correct trials (two-sample t test, p < 0.001, Fig-

ure 7E), in error trials, no difference between the correlation co-

efficients for stimuli of the same category and stimuli across cat-

egories was detected (both 0.32, two-sample t test, p = 0.99).

This again indicates that category-specific signals in the three-

category task had vanished during error trials, supporting the

behavioral relevance of the neurons’ responses.

Finally,weemployeddecodingpopulationanalyses irrespective

of single neurons’ category selectivity. We again trained an SVM

classifier using the firing rates of the last 600 ms of the delay and

tested its classification performance with a subset of firing rates

that were not used for training (Figure 7F). The classifier grouped

the firing rates correctly into the three categories with a high prob-

ability of 90.1% (±1.5% SEM). This indicates a robust representa-

tion of the three length categories by the random population of

NCL neurons.

DISCUSSION

We report that crows efficiently learned to apply a matching to

category rule based on short or long line length. We report three

major findings from recordings during task performance. First, a

substantial proportion of neurons encoded the category infor-

mation by showing large activity differences between length cat-

egories but similar responses to stimuli within each length cate-

gory. Second, after the retraining of a crow and testing with new

and more length categories (short, medium, and long), NCL

neuron activity had flexibly changed to now reflect these new

categories. Our data show malleable categorization capability

mediated by the flexible networks of the crow NCL that are remi-

niscent of findings in the PFC of monkeys.

Temporal dynamics of behaviorally relevant category

activity with trial time

The task design allowed us to compare length category selectivity

during the visual encoding phase (sample phase) and during

memorization (delay phase). During the two-category task, more

category-selective neurons, with stronger selectivity, were

observed during the delay compared with the sample period.

Moreover, behaviorally relevant activity clusters (derived from

state space) based on the population of category-selective neu-

rons only emerged during the delay period but were largely absent

during the sample period in both two-category and three-category

tasks. In addition, activity differences between length categories

(asmeasured by correlationmeasures) collapsed during the delay

period in error trials in both two-category and three-category

tasks. These results suggest that category-indifferent neural re-

sponses rendered the crows’ error-proneness.

Collectively, our data argue that the activity of NCL neurons is

relevant for the crows’ categorization performance, confirming

previous findings during numerical categorization.47,48 More-

over, the observed time course of category selectivity indicates

that the initial sensory and largely category-void encoding of

length stimuli became dynamically restructured along trial time.

Direct sensory length information in conjunction with conceptual

information (i.e., short, medium, and long categories) retrieved

from long-term memory sculptured NCL activity until the crows

have access to categorical representations at the end of the

delay period when they need this data to solve the task.

Mechanism of categorization

Mechanistically, the emergence and shaping of categorical tuning

could be implemented via broad inhibitory mechanisms.58 To pin

Figure 6. State space analysis of the selective neurons of the three-

category task

(A and B) Course of neuronal activity in response to the different line lengths

throughouta trial (1, start samplephase; 2, start delay;3,endofdelay) for neurons

that were category selective in the sample phase (A) and during the delay (B).

(C and D) Dispersion of the PC scores of an example clustering repetition

during the sample period (C) and during the delay (D). One dot corresponds to

one trial, color-coded by the different sample line lengths.

(E and F) Proportion of the optimal number of clusters based on gap value and

Cali�nski-Harabasz index, respectively, in the sample phase (E) and during the

delay (F).

(G and H) Cluster assignment based on gap value of the same trials as in

(C) and (D), respectively. Here, the optimal number of clusters was two in the

sample phase (G) and three in the delay (H). Red crosses indicate the position

of the cluster’s centroids.

ll

2158 Current Biology 33, 2151–2162, June 5, 2023

Article

113



down inhibitory mechanisms, the major pallial cell types, putative

excitatory projection cells and inhibitory interneurons, have been

identified bymeans of waveform analyses of intra- and extracellu-

larly recorded action potentials.59–62 Waveform analyses and

segregation of putative excitatory projection and inhibitory inter-

neuronswere recentlyalsoaccomplished inNCLneuronsofcrows

discriminatingnumerosities. It turnedout thatputative inhibitory in-

terneurons showed stronger stimulus-evoked responses, shorter

response latencies, and broader numerosity tuning compared

with putative projection neurons.24 In addition, nearby and func-

tionally coupled putative excitatory projection neurons were syn-

chronously excited and exhibited similar numerosity tuning,

whereas coupled putative inhibitory interneurons and projection

neurons inhibited each other’s firing and showed inverse tuning

relative to each other.24 These data suggest an inhibitory

feedforward mechanism for the shaping of neurons tuned to nu-

merical categories in the crowNCL.24Such amicrocircuit ensures

that only projection cells that respond to the correct category

remain active and control the animal’s response.

Category selectivity arising through reinforcement

learning

The length categories applied in the current task—first, short vs.

long, and later, short, medium, and long—had no congenital

origin and needed to be learned by the crows over time as the

result of trial-and-error reinforcement learning. Reinforcement

learning based on reward can refine functional connectivity be-

tween neurons63 and typically relies on dopamine signals64,65—

reward prediction error signals arising from thedopamine system

modulate reward-dependent plasticity in primates.66Similar pro-

cesses may be at work in birds learning to categorize, as reward

prediction errors have also been observed in the avian NCL, a

pallial brain area that is characterized by strong dopaminergic

innervation.33,35,67According to a cortical circuit model designed

for neuronal category learning, weak but systematic correlations

between trial-to-trial fluctuations of the firing rates and the

accompanying reward after appropriate behavioral choices

generate neurons that gradually become category selective.68

In thismodel, initially nonselective neurons that showfluctuations

that correlate with behavioral outcome developed categorical

tuning. Therefore, when a crow learns to respond appropriately

to length categories in order to receive a reward, such a mecha-

nism might suffice to produce category-selective NCL neurons

from originally untuned neurons. Alternatively, the NCL may

contain a special set of malleable category-tuned neurons that

change their boundaries with experience. In a previous study,

we reported that association learning exclusively recruited NCL

neurons that already represented previously established associ-

ations.69Translated to categories, learning could cause the same

pool of neurons to respond to new category boundaries applied

to the same length stimulus space.

Category representations in crow NCL vs. primate PFC

The avian NCL is often said to be a functional equivalent of the

primate PFC. A comparison of the current data in the crow

NCL adds to this functional resemblance in the realm of learned

categorization. In primates, behaviorally relevant representa-

tions of learned categories have been studied extensively in

the PFC using delayedmatch-to-category tasks. In a seminal se-

ries of experiments, macaques were trained to categorize

morphed visual stimuli into arbitrary cat and dog cate-

gories.37–40,53,70 As expected for category selectivity, a large

proportion of PFC neurons encoded category information by ex-

hibiting significant activity differences between cat and dog cat-

egories but similar responses to stimuli within each cate-

gory.37–40,53,70 Moreover, although the monkeys learned new

category boundaries within the same stimulus space, PFC neu-

rons changed selectivity to now encode the new category

boundary, indicating the malleability of the PFC in representing

acquired categories.37–40,53,70

Beyond perceptual categories (such as cats and dogs), the

primate PFC is also equipped to represent more abstract learned

spatial categories comparable to those tested here in crows. In

the past, representations of abstract magnitude, such as the

Figure 7. Correlated activity to pairs of stimuli and classification

probability of an SVM classifier for the entire neuronal population

in the three-category task

(A) Correlation matrix comparing the neuronal activity during the last 600ms of

the delay. Layout as in Figure 4A.

(B) Mean correlation coefficients across all comparisons of stimuli within the

same category and of different categories, respectively. Error bars represent

SEM. ***: p < 0.001.

(C and D) Correlation coefficients in correct (C) and error trials (D) for a subset

of the neuronal population for which error trials could be analyzed.

(E) Mean correlation coefficients across comparisons of stimuli within and

between categories in correct (left columns) and error trials (right columns).

Error bars represent SEM. ***: p < 0.001.

(F) Performance of SVM classifier trained on firing rates of the entire neuron

population during the last 600 ms of the delay. Layout as in Figure 4F.

ll

Current Biology 33, 2151–2162, June 5, 2023 2159

Article

114



absolute71,72 and relative line length,73,74 the absolute75 and

relative spatial distance,76,77 or numerical quantity78,79 have

been reported in the macaque PFC. In one study, monkeys

had to learn to classify spatial proportions, i.e., the relation be-

tween the variable lengths of two horizontal lines, with propor-

tions ranging from 1:4 and 2:4 to 3:4 and 4:4.80 Here, PFC neu-

rons showed categorical proportion tuning to the four different

proportion categories, very similar to the three length categories

short, medium, and long reported here in crows.

These similarities in the flexibility of telencephalic associative

brain areas to represent abstract learned categories are remark-

able in the face of independent evolution of these brain areas in

mammalian and avian lineages.81 Compared with the mamma-

lian neocortex, the avian telencephalic integration centers origi-

nate from different pallial territories during embryology,82 show

distinct neural architectures,83 and have evolved classes of

excitatory and inhibitory pallial neurons that have no counterpart

in the mammalian neocortex.84–86 Despite all this independent

brain evolution, crows and monkeys seem to be equipped with

equivalent neuronal circuits that can flexibly represent abstract

learned magnitude categories.19,87
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Andreas

Nieder (andreas.nieder@uni-tuebingen.de).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data reported in this paper will be shared by the lead contact upon request. This paper does not report original code. Any addi-

tional information required to re-analyse the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects

Two hand-raised adult male carrion crows (Corvus corone) from the institute’s breeding facility were used. The crows were 3 and 6

years old. They were housed in an indoor aviary in social groups. During the experiment, the crows were on a controlled feeding pro-

tocol and received their daily amount of food as reward during training and recording or, if necessary, after the sessions. Water was

available ad libitum during the experiments and in the aviary. All procedures were carried out according to the guidelines for animal

experimentation and approved by the responsible national authorities, the Regierungspr€asidium Tübingen, Germany.

METHOD DETAILS

Apparatus

The experiment was conducted in a darkened operant conditioning chamber. The crows were placed on a perch in front of a 15’’

touchscreen monitor (ART development MT1599-BS and ART development PS-150, respectively). Viewing distance to the screen

was 14 cm. The touchscreen was used only for stimulus presentation, as the crows responded by head movements.

Behavior and response of the crows were controlled by an infrared reflexive light system which was located above the crows and

registered the position of a reflector foil attached on top of the crows’ head. The crows initiated trials by keeping their heads still in the

center position in front of the touchscreenmonitor andwere required to keep the headwithin this position throughout the trial until the

target stimulus appeared.

The crows reported the detection of the target stimulus by briefly moving their heads (‘nodding’), which was again automatically

detected by the infrared reflexive light system. With every correct answer, a food reward (either birdseed pellets or mealworms

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Corvus corone University of Tübingen,

Institute of Neurobiology

crow 1, crow 2

Software and algorithms

NIMH Cortex National Institute of Mental Health c595; https://www.nimh.nih.gov/labs-at-nimh/

research-areas/clinics-and-labs/ln/shn/

software-projects.shtml

MAP Data Acquisition System Plexon https://plexon.com/

MATLAB R2019a MathWorks https://www.mathworks.com

Other

Dental Cement Heraeus Paladur, ISO 20795, CE 0197

Microdrives Animal Physiology Unit Custom fabrication

Electrodes Alpha Omega LTD Cat.#: 366-130620-00

www.alphaomega-eng.com
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(Tenebrio molitor larvae)) was given by the briefly illuminated feeder below the touchscreenmonitor. Auditory feedback was provided

by speakers (Lasmex S-03) located behind the touchscreen monitor. We used the CORTEX system (National Institute of Mental

Health) to run the experiment and collect behavioral data.

Behavioral protocol

The crows were trained to group horizontal line stimuli into learned categories according to their length (Figure 1A). The crows initi-

ated a trial by positioning their heads facing the screen whenever the go-stimulus (small white cross, 2x2 dva (degree of visual angle))

was shown. A click sound indicated that the correct position had been entered and the go-stimulus turned briefly (for 60ms) into a

circle before it vanished. This head position had to be maintained throughout the trial until the test phase. Premature head move-

ments aborted the ongoing trial which was then discarded.

After a 600 ms pre-sample phase in which only the grey background circle was shown, the sample stimulus was presented for

500 ms. Then the screen returned to the grey background circle for a delay of 1000 ms. In the subsequent test phase, the first

test stimulus (Test 1) appeared formax. 900ms. In 50%of the trials, Test 1 displayed a line length that belonged to the same category

as the sample stimulus (i.e. ‘‘match’’). In the other half of the trials, Test 1 was not member of the same category as the sample stim-

ulus (i.e. ‘‘nonmatch’’). The chance level of Test 1 or Test 2 being amatchwas therefore 50%. The crow indicated a category ‘‘match’’

by instantaneously nodding, i.e. moving its head out of the monitored center position.

A ‘‘nonmatch’’ stimulus required the crow to maintain head position and to refrain from responding until the subsequent second

test stimulus (Test 2) appeared which always belonged to the same category as the sample (a ‘‘match’’). A correct response to a

‘‘match’’ stimulus (either Test 1 or Test 2) led to a reward for the crow. A response to a ‘‘nonmatch’’ stimulus or no response to either

Test 1 or Test 2 aborted the trial and was considered as error trial and not rewarded. Within each session, all behaviorally relevant

parameters (i.e. sample line length, stimulus sets and match/nonmatch trials) were balanced and pseudo-randomly interleaved.

Stimuli

The line length stimuli were generated using MATLAB software. They consisted of a horizontal black line at random position within a

grey background circle (Figure 1B). Six different line lengths were used that were assigned to either two (first experiment) or three

different length categories (second experiment). The lengths were consecutive multiples of lengths of 2.6 dva ranging from 3.3

dva (shortest line) to 16.3 dva (longest line).

To ensure that the crows categorized length rather than the area or thickness of the lines, we used two interleaved sets of stimuli in

each session, a standard stimulus protocol and a control protocol. In the standard protocol, the thickness of the lines varied randomly

between 0.4 and 2.0 dva. In the control protocol, the black area of each linewas kept constant to 6.5 dva2 across the different lengths,

with the thickness of the shortest line being always 2 dva and thickness of the longest line always 0.4 dva. In addition, the sample and

the test images within a trial were never identical. New stimulus sets were generated for each session to prevent the crows from

memorizing visual patterns.

First, we trained both crows on the two-category task (Experiment 1). For that, one category boundary divided the six different line

lengths into two groups of three line lengths each. The ‘‘short’’ category included the lengths S1, S2 and S3; the ‘‘long’’ category

included L1, L2 and L3. Thereafter, we retrained crow 1 on the three length categories ‘‘short’’, ‘‘medium’’, and ‘‘long’’ (Experiment

2). To that aim, we divided the line lengths into three categories of two line lengths each. The absolute lengths of the lines remained

unaffected, i.e. the physical appearance of the stimuli stayed the same, only the category membership changed. The ‘‘short’’ cate-

gory still included the lengths S1 and S2, and the ‘‘long’’ category still contained the lengths L2 and L3 (now renamed as L1 and L2,

respectively). The former lengths S3 and L1 constituted the new ‘‘medium’’ category and in this context were renamed asM1 andM2,

respectively.

Surgery and neurophysiological recordings

The surgeries were performed while the animal was under general anesthesia with a mixture of ketamine (50 mg/kg) and xylazine

(5 mg/kg). The animals were placed in a stereotaxic holder. We targeted the dorsal part of the nidopallium caudolaterale

(NCLd)33,35,36 by performing a craniotomy at 5 mm anterior-posterior and 13 mmmedio-lateral on the right hemisphere. Two manual

micro drives containing four electrodes each (2MU, Alpha Omega Co.) and aminiature connector for the head stage were implanted.

After the surgery, the crows received an analgesic. A small holder for attaching the reflector of the light barrier and head-tracking

system, respectively, had been already implanted under the same conditions.

Each recording session started with adjusting the electrodes until a proper neuronal signal (of at least 3:1 signal to noise) was de-

tected on at least one channel (see also Figures 4A and 4B in Veit and Nieder,42 for an example recording trace). Neurons were not

preselected in the involvement of the task. Signal amplification, filtering, and digitizing of spike waveforms was performed using the

Plexon MAP system (Plexon Inc., Dallas, Texas). Spectral filtering of recordings was accomplished by a combined preamplifier filter

(150 Hz–8kHz, 1 pole low-cut, 3 pole high-cut) and main filter (250 Hz, 2-pole, low-cut filter). Amplitude amplifications were set indi-

vidually for different channels in the range of ca. 20,000x gain. Spike waveforms were sampled at a frequency of 40 kHz (one entry

every 25 ms) for a duration of 800 ms. Plexon’s offline Sorter was used to manually offline sort spikes into single-unit waveforms by

applying mainly principal component analysis. We recorded 52 sessions in crow 1 and 55 sessions in crow 2 performing the two-

category task, and 58 sessions in crow 1 performing the three-category task.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis

The behavioral performance was measured as the percentage correct categorization of the sample line lengths, i.e. of how often the

crows correctly judged that the line lengths of the test stimuli (either Test 1 or Test 2) belonged to the same category as the length of

the sample stimulus. For each session we used a binomial test to verify that the ratio of correct answers was above the 50% chance

level (for both stimulus sets separately and combined).

Neuronal analysis

Analyses of category-selective neurons

For the neuronal analyses, we included all neurons which had an average firing rate of at least 1 Hz during the overall trial and were

recorded for at least 10 correct trials for each sample line length. First, we identified category-selective neurons. To that aim, we

analyzed the activity of the neurons in sliding windows of 200 ms length which were advanced by 10 ms steps, starting at sample

onset and ending 100 ms after delay offset (to account for the neurons’ response latency). In each window, we performed a com-

bination of two statistical tests on the neurons’ firing rates to determine category-selective neurons: First, we calculated a two-

factor ANOVA with category and stimulus protocol as main factors (criterion P < 0.01) to determine across-category selectivity.

Neurons were selected that showed a significant main effect for category but no effect for main factor protocol or interaction be-

tween main factors. Second, we additionally calculated Kruskal-Wallis tests to explore differential activity to within-category line

length. A category selective neuronwas supposed to show no response differences across stimuli within each category (criterion P

R 0.05). Neurons recorded in the two-category task were tested with two Kruskal-Wallis tests (for category ‘‘short’’: neuronal re-

sponses to sample stimuli S1 vs. S2 vs. S3, and for category ‘‘long’’: sample stimuli L1 vs. L2 vs. L3). Neurons recorded in the

three-category task were tested with three Kruskal-Wallis testes (‘‘short’’: neuronal responses to sample stimuli S1 vs. S2, ‘‘me-

dium’’: sample stimuli M1 vs. M2, ‘‘long’’: sample stimuli L1 vs. L2). If a neuron fulfilled all of these criteria, i.e., was selective to

category in the ANOVA but unselective in the Kruskal-Wallis tests over at least 11 consecutive windows (i.e. 300 ms in total), it

was termed ‘category-selective’.

A category selective interval was assigned to the sample period if it started no later than 100ms after sample offset. Later occurring

selective intervals were assigned to the delay period. If a neuron had more than one selective interval in the sample or delay period,

respectively, only the one with the smallest P-value for factor category according to the ANOVA was used for later analyses. The

preferred length category within a selective interval was defined as the category which contained the stimulus eliciting the highest

mean firing rate. To calculate the average neuronal activity of the category-selective neurons within the selective intervals (separately

for the sample and delay phase), each neuron’s mean firing rates to the six different line lengths were normalized by setting the high-

est firing rate to 100% and the lowest to 0%. These were then arranged according to their distance from the category boundary and

averaged across all neurons. Due to this definition of category selectivity, the preferred category is expected to be encoded by

normalized firing rates that are larger than 50% and maximally 100% (and vice versa for the non-preferred category). However,

the normalized firing rates to individual line length stimuli within a category are not part of the definition, which is why this measure

and the derived values are suitable to explore neuronal encoding similarities to individual stimuli within categories and coding differ-

ences to stimuli between categories, particularly at the category boundary.

We calculated a category index from the average firing rates of the category-selective neurons to the six different sample line

lengths analogous to Freedman et al.37,53 The ‘‘between category difference’’ (BCD) was defined as the absolute difference between

the average firing rate of a neuron to the sample stimuli adjacent to the category boundary (i.e. S3 vs. L1). For the ‘‘within category

difference’’ (WCD), we calculated the firing rate differences between all neighboring sample stimuli (to keep the distance between the

compared stimuli constant) that belong to the same category (i.e. S1 vs. S2, S2 vs. S3, L1 vs. L2 and L2 vs. L3) and then took themean

of these. From these firing rate differences, we calculated the category index by subtracting the WCD from BCD and dividing it by

their sum:

Catergory index = ðBCD � WCDÞ=ðBCD + WCDÞ:

It resulted in values between -1 and 1 with positive values indicating a higher difference between the firing rates to two sample

stimuli of different categories than between stimuli within the same category. Shifts of the category index distributions relative to

value 0 were tested with a one-sample t-test.

We used principle component analysis (PCA), to investigate how the activity of the category-selective neurons evolved during the

course of a trial. For the later purpose of clustering, we included all category-selective neurons with at least 30 correct trials for each

line length (two-category task: 54 out of 65 sample-selective neurons and 80 of 86 delay-selective neurons; three-category task: 41

out of 47 sample-selective neurons and 88 out of 93 delay-selective neurons). The neuronal activity in response to a certain stimulus

at a certain time point is represented as a n-dimensional vector in n-dimensional space, with each dimension corresponding to one

single neuron.

We used PCA to reduce the dimensionality of the population activity while capturing most of the information. For that, the neuronal

data for each trial was smoothed by a 200 ms Gauss kernel with a step size of 1 ms, and the mean firing rate to each line length was

calculated in bins of 100 ms (advanced in steps of 10 ms) and then neuron-wise z-scored. From this data, we created a population of

pseudo-simultaneously recorded neurons. We calculated the PC scores using the implemented pca function of MATLAB. To
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illustrate the trajectories of the change in neuronal activity, we used the first three principle components which formed a three-dimen-

sional subspace. These three principle components explained 47.2% of the neuronal covariance in the sample period, and 40.6% of

the covariance in the delay period of the two-category task. In the three-category task, the first three principle components explained

58.0% of the neuronal covariance of the neurons which were category-selective in the sample phase and 54.6% for the neurons

which were selective during the delay.

In a next step, we analyzed the sample and delay periods separately. As before, the neuronal activity was first smoothed by a

200msGauss kernel across the entire trial. Then, we calculated themean firing rate in each trial across a 600ms timewindow starting

at sample onset and reaching 100 ms into the delay for the neurons which were category-selective in the sample phase. For the neu-

rons that were selective during the delay, we averaged the firing rate across the last 900ms of the delay. Then, we randomly drew the

firing rates of 30 trials for each sample line length within the given analysis interval, z-scored these neuron-wise and calculated the PC

scores.

To evaluate the optimal number of clusters, we applied the unsupervised k-means clustering algorithm using the first two prin-

ciple components. We used two different criteria, the gap value and the Calinski-Harabasz index.54,55 The maximum possible

number of clusters was set to six. The Calinski-Harabasz index (also called variance ratio criterion) is a measure of how dense

the objects within a cluster are and howwell different clusters are separated. The optimal number of clusters is the one which yields

the highest value. The gap statistic compares the within cluster variation to its variation expected under the assumption of a refer-

ence null distribution.55 A high gap value for a certain number of clusters indicates a large difference from the uniform distribution.

These two measures indicated the optimal number of clusters based on the drawn trials. This was repeated 1000 times with newly

drawn trials. After that, we calculated the frequency of how often the different cluster numbers were assigned among across the

repetitions.

Population analyses

Population analyses were performed on the entire population of recorded neurons. All neurons with an average firing rate of at least

1 Hz and at least 30 correct trials for each sample line length entered the analysis without any pre-selection for category-selectivity

(two-category task: n = 348, three-category task: n = 278). We used the firing rates within a 600 ms fixed window at the end of the

delay (starting 400 ms after sample offset) to capture delay-activity which carries the category information needed to be available for

the subsequent test phase and at the same time exclude late sample-related responses.

A correlation matrix was created to visualize the firing rate differences between pairs of stimuli and to detect coding patterns. The

strength of the relationship between the firing rates to two stimuli was measured by the correlation coefficient r (deviation from the

regression line). For that, the firing rates of each neuron were normalized by subtracting the average baseline firing rate (measured

within 300ms before sample onset across all correct trials) and dividing by the respective standard deviation. The coefficients of each

correlation were represented as a tile in the correlation matrix. The tiles along the diagonal from lower left to upper right represent the

correlation of the stimuli with themselves (r = 1.0). The matrix is symmetric to the diagonal.

For quantification, we calculated the mean of the correlation coefficients for the relationships of stimuli which belong to the same

category and for stimuli of different categories. Regarding the data from the two-category task, correlations within the same category

were: S1 vs. S2, S1 vs. S3, S2 vs. S3, L1 vs. L2, L2 vs. L3 and L1 vs. L3 and correlations between different categories: S1 vs. L1, S1 vs.

L2, S1 vs. L3, S2 vs. L1, S2 vs. L2, S2 vs. L3, S3 vs. L1, S3 vs. L2 and S3 vs. L3. In the three-category task, correlations within the

same category were: S1 vs. S2, M1 vs. M2 and L1 vs. L2 and between different categories: S1 vs. M1, S1 vs. M2, S1 vs. L1, S1 vs. L2,

S2 vs. M1, S2 vs. M2, S2 vs. L1, S2 vs. L2, M1 vs. L1, M1 vs. L2, M2 vs. L1 andM2 vs. L2. The mean difference between these values

was statistically verified by a two-sample t-test.

To test whether the activity of the neuronal population is behaviorally relevant, we calculated the correlation coefficients also in

error trials (i.e. when the crow responded to the ‘‘nonmatch’’ stimulus or to neither of the two test stimuli). For that, we used all neu-

rons of the analyzed population which had additionally at least 3 error trials for each sample line length (two-category task: n = 172,

three-category task: n = 120). Baseline activity and respective standard deviation for firing rate normalization was measured in error

trials within 300 ms before sample onset. Further analysis was done equally as for correct trials.

Additionally, we tested how well a multi-class support vector machine (SVM) classifier categorizes the firing rates of the re-

corded neurons. We used the LIBSVM toolbox for MATLAB (version 3.24)57 with default parameters (multi-class classification,

radial basis function as kernel). We performed a 5-fold cross-validation with the firing rates of the neuronal population to the

six different sample line lengths within the last 600 ms of the delay. For that we randomly drew the firing rates of 30 trials of

each neuron for each sample line length and assigned the true category labels to them. Then the drawn set of firing rates was

normalized by z-scoring and then split into five equal groups. The classifier was trained with the firing rates of four fifth of the trials

(144 trials of each neuron, sample stimuli were balanced, i.e. 24 trials for each sample stimulus) and then tested with the remaining

one fifth (36 trials, i.e. 6 trials for each sample stimulus). This procedure was repeated five times so that each split of firing rates was

used once as the test set, resulting in one accuracy value per sample line length (percentage of correctly classified firing rates

across the five repetitions). Furthermore, we repeated the 5-fold cross-validation with 30 newly drawn trials for each sample

line length 1000 times. The resultant confusion matrix shows the averaged classification probability across the trial samplings

for the firing rates of each sample line length.

We finally used the SVM classifier to test whether the activity of the neurons to a single stimulus of each category of the two-cate-

gory task can be used to predict the correct category of firing rates to the remaining stimuli which were not used for training. To that

aim, we used three different sets of training and testing stimuli. First, we trained the classifier using the firing rates to the stimuli S1 and
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L3 (most distant from the category boundary) and predicted the category of the stimuli S2, S3, L1 and L2. Next, we used the stimuli S2

and L2 for classifier training and S1, S3, L1 and L3 for the prediction and finally, S3 and L1 (adjacent to the category boundary) were

used for training and S1, S2, L2 and L3 as prediction stimuli. For the classifier training and testing, we randomly drew the firing rates of

30 trials per line length and normalized these by z-scoring. Then we calculated the percentage of how often the classifier predicted

that the test firing rates belong to the ‘‘short’’ category. This was repeated 1000 times with newly drawn firing rates. The results were

then averaged across the repetitions.
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CONSCIOUSNESS

A neural correlate of sensory consciousness
in a corvid bird
Andreas Nieder*, Lysann Wagener, Paul Rinnert

Subjective experiences that can be consciously accessed and reported are associated with the cerebral

cortex. Whether sensory consciousness can also arise from differently organized brains that lack a

layered cerebral cortex, such as the bird brain, remains unknown. We show that single-neuron responses

in the pallial endbrain of crows performing a visual detection task correlate with the birds’ perception

about stimulus presence or absence and argue that this is an empirical marker of avian consciousness.

Neuronal activity follows a temporal two-stage process in which the first activity component mainly

reflects physical stimulus intensity, whereas the later component predicts the crows’ perceptual

reports. These results suggest that the neural foundations that allow sensory consciousness

arose either before the emergence of mammals or independently in at least the avian lineage and do

not necessarily require a cerebral cortex.

S
ensory consciousness, the ability to have

subjective experience that can be ex-

plicitly accessed and thus reported, arises

frombrain processes that emerged through

evolutionary history (1, 2). Today, the neu-

ral correlates of consciousness are primarily

associated with the workings of the primate

cerebral cortex (3–6), a part of the telencephalic

pallium that is laminar in organization

(7–9). Birds, by contrast, have evolved a differ-

ent pallium since they diverged from themam-

malian lineage 320 million years ago (10, 11).

The bird pallium retains organizational prin-

ciples reminiscent of the mammalian brain

(12) but is distinctively nuclear and lacks a

layered cerebral cortex (13–15). Despite this,

birds demonstrate sophisticated perceptual

and cognitive behaviors that suggest conscious

experiences (16, 17).

The associative endbrain area called nidopal-

lium caudolaterale (NCL) is linked to high-level

cognition in birds (18, 19) and is considered a

putative avian analog of the mammalian pre-

frontal cortex (20), which plays a predominant

role in sensory consciousness in primates

(21–23). To signify a “neural correlate of con-

sciousness” in primates, brain activity that

systematically changeswith the subject’s report

of whether or not it had perceived identical

stimuli is identified (24, 25). We hypothesized

that conscious experience originates from ac-

tivity of the NCL in corvids and used a corre-

sponding experimental protocol in which only

the crows’ internal state, not the physical stim-

ulus properties, determined their subjective

experience.

We trained two carrion crows (Corvus corone)

to report the presence or absence of visual

stimuli around perceptual threshold in a rule-

based delayed detection task (Fig. 1A and

supplementary materials and methods). At

perceptual threshold, the internal state of

the crows determined whether stimuli of

identical intensity would be seen or not per-

ceived. After a delay, a rule cue informed

the crow about which motor action was re-

quired to report its percept. Thus, the crows

could not prepare motor responses prior to

the rule cues, which enabled the investi-

gation of neuronal activity related to sub-

jective sensory experience and its lasting

accessibility.

The crows’ proportion of “yes” responses in

relation to increasing stimulus intensity gave

rise to classical psychometric functions (Fig. 1,
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Fig. 1. Crows performed a delayed stimulus detection task. (A) Behavioral
task. After the crow initiated a trial in the Go period, a brief visual stimulus
of variable intensity appeared in 50% of the trials (stimulus trials), whereas
no stimulus appeared in the other half of the trials (no stimulus trials). After
a delay period, a rule cue informed the crow how to respond if it had seen or
had not seen the stimulus. In stimulus trials (top), a red cue required a response
for stimulus detection (“yes”), whereas a blue cue prohibited a response for
stimulus detection. In no-stimulus trials (bottom), rule-response contingencies

were inverted. (B and C) Psychometric functions of crow O (B) and crow G (C).
Grouping of trials into suprathreshold, near-threshold, and no-stimulus trials.
Error bars (very small) indicate standard error of the mean. (D) Signal detection
theory classifies an observer’s behavior at detection threshold, given two
stimulus conditions (stimulus present or absent) and two possible responses
(“yes, stimulus present” and “no, stimulus absent”). (E) Lateral view of a
crow brain depicting the nidopallium caudolaterale (NCL, shaded) in the
telencephalon. Cb, cerebellum; OT, optic tectum.
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B and C). Trials were classified into supra-

threshold (the two highest stimulus intensi-

ties), near-threshold (the two lowest stimulus

intensities at perceptual threshold), and no-

stimulus categories (Fig. 1C). The crows’ re-

sponses were classified according to signal

detection theory into “hit” (correct “yes” re-

sponse to a stimulus), “correct rejection” (cor-

rect “no” response for stimulus absence), “miss”

(erroneous “no” response to stimulus pres-

ence), and “false alarm” (erroneous “yes” re-

sponse for stimulus absence) (Fig. 1D).

While the crows performed the task, we rec-

orded single-cell activity of 480 neurons (n =

306 for crow G; n = 174 for crow O) from the

NCL (Fig. 1E and supplementary materials and

methods). We first identified 262 task-selective

neurons that showed differences in firing rates

for suprathreshold trials versus no-stimulus

trials (Mann-Whitney U test, p < 0.01). The

selective time intervals of these neurons that

together bridged the total trial period were

classified into stimulus-related (n= 155) (Fig. 2A)

and delay-related (n = 165) (Fig. 2B).

Next, we compared the discharges during

the crows’ “yes” versus “no” responses in the

different trial categories (Fig. 1C and supple-

mentary materials and methods). If neurons

signal stimulus intensity, the responses to

near-threshold stimuli should be indistinguish-

able irrespective of the crow’s response. In ad-

dition, the responses during “false alarms” are

expected to be similar to “correct rejections” in

the no-stimulus condition. However, if neu-

rons represent the crows’ percept, they are ex-

pected to change activity as a function of the

crows’ later report. In this case, firing rates

to near-threshold “no” responses should re-

semble those during “correct rejections” in

no-stimulus trials. Likewise, discharges for

near-threshold “yes” responsesand “falsealarms”

should be more similar to those of supra-

threshold “yes” responses.

During stimulus presentation, neurons re-

spondedmainly to stimulus intensity and only

mildly to the crow’s later reported conscious

percept. The example neuron in Fig. 2C dis-

charged exclusively to the presentation of a

salient stimulus, without a correlation with

the crow’s “yes/no” responses. The neuron in

Fig. 2D showed some correlation with the

crow’s later report because firing rates during

near-threshold “yes” responses were similar to

supra-threshold “yes” responses, whereas dis-

charges during near-threshold “no” responses

resembled “correct rejections.”

During the subsequent delay period, however,

manyneurons respondedaccording to the crows’

impending report, rather than to stimulus in-

tensity. The neuron in Fig. 2E showed cat-

egorically higher firing rates for all “yes”

responses (suprathreshold and near-threshold

“hits,” as well as “false alarms” in the absence

of stimuli) compared to all “no” responses (“no”

responses to near-threshold stimuli, “correct

rejections” in the absence of stimuli) during

the first half of the delay period. A similar

effect can be witnessed for the neuron in Fig.

2F, which showed discharges that correlated

with the report at the beginning and end of

the delay period.

To find out whether the activity of the 262

task-selective neurons was related to the crows’

report for the same near-threshold stimuli, we

compared the firing rates in the neurons’ re-

spective selectivity intervals for different trial

outcomes. We used receiver operating char-

acteristic (ROC) analysis from signal detection

theory (26) (supplementary materials and

methods). We derived the area under the ROC

curve (AUC), termed choice probability, as the

probability of predicting the subjective “yes/

no” responses for identical stimuli for the stim-

ulus and the delay phases separately (27).

We first compared the mean (rectified) ac-

tivity during “hit” and “miss” trials for near-

threshold stimuli in the stimulus presentation

period. Choice probability was higher than the

chance level of 0.5 (mean: 0.55; p < 0.001; one-

sample Wilcoxon signed-rank test; n = 155

neurons; compared to a mean of 0.69 for supra-

threshold “hits” and no-stimulus “correct rejec-

tions”) (Fig. 3A). In addition, we compared the

choice probability for “correct rejections”

and “false alarms” during no-stimulus trials,

which was comparable to chance (mean: 0.51;

p = 0.08; one-sample Wilcoxon signed-rank

test; n = 155 neurons) (Fig. 3B). Thus, during
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Fig. 2. Single-neuron

responses in NCL. (A and
B) Pattern of task selectivity
for all stimulus-selective
neurons during the stimulus
(A) and delay period (B).
Bottom: Color-coded traces
of significance values (every
line represents a neuron);
neurons sorted according to
selectivity latency. Top:
Cumulative time-resolved
histogram of task-selective
intervals. (C and D) Activity
of two stimulus-period task-
selective example neurons
in relation to the crow’s
behavioral responses. Top
panels depict dot raster
histograms (every line is
a trial, every dot is an action
potential); bottom panels
represent the corresponding
averaged and smoothed
spike density histograms.
The vertical gray shading
indicates the presentation of
the stimulus (onset at 0 ms),
the vertical dotted line signi-
fies the end of the delay.
The color code represents
the five different trial catego-
ries, with red, orange, and pink
colors representing “yes”
response trials, and dark and
light blue colors “no” response
trials. The horizontal bars in
each spike-density histogram
signify the task-selective
interval. (E and F) Activity of
two delay-period task-selective
example neurons in relation
to the crow’s behavioral
responses. Same layout as in
(C) and (D).
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stimulus presentation, the neurons signaled

the crows’ subsequent report only mildly.

However, the primarily stimulus-based ac-

tivity changed to a predominantly report-driven

representation during the delay. Both the choice

probabilities for near-threshold “hit” and “miss”

trials (mean: 0.56; Fig. 3C), as well as the choice

probability for no-stimulus “correct rejections”

and “false alarms” (mean: 0.53; Fig. 3D), were

higher than expected by chance (p < 0.001 for

both values; one-sample Wilcoxon signed-rank

test; n = 165 neurons). On the background of

a mean AUC of 0.64 for suprathreshold “hits”

andno-stimulus “correct rejections,” both choice

probabilities predicted the crows’ perceptual

report rather than the physical stimulus. No-

tably, this effect was found not only for the very

same faint stimuli, but also on “false alarm”

trials, when the crows mistakenly reported

perceiving a stimulus when in fact no stimulus

was present. Thus, shortly after stimulus pres-

entation, the neurons represented the crows’

later report.

To explore the time course of choice predic-

tion from stimulus onset to delay offset irre-

spective of neuronal selectivity, we applied

time-resolved population analyses based on

the activity of all NCL neurons with sufficient

trials per trial type (n = 152). We first trained a

support vector machine (SVM) classifier to dis-

criminate “yes” versus “no” responses on the

basis of the spiking activity (28) (supplemen-

tary materials and methods). Cross-validation

on “hits” in suprathreshold trials and “correct

rejections” in no-stimulus trials indicated reli-

able information differentiating the crows’ al-

ternative responses (fig. S1). To minimize the

influence of stimulus intensity, we next trained

the classifier with discharges exclusively from

near-threshold trials in which crows subjective-

ly made “yes” and “no” responses for identical

stimulus intensities. After training, the classi-

fier was tested with new data from the same

neuronal population, but for suprathreshold

“hits” versus “correct rejections” in the ab-

sence of stimuli. Indeed, the classifier was able

to correctly assign the new trials into “yes”

versus “no” responses, with particularly high

accuracy at stimulus offset and toward the

end of the delay (Fig. 4A). This indicates that

a population of neurons contained information

about the crows’ subjective experience through-

out the trial.

Finally, we quantified how much informa-

tion about the physical stimulus and the later

report was carried by the activity of the same

population of NCL neurons across the trial.

We calculated the percent explained variance

(w
2
, PEV) for stimulus intensity and “yes/no”

response (29, 30) (supplementary materials

and methods). We found that stimulus inten-

sity information increased sharply after stim-

ulus presentation, but then rapidly decayed

and vanished during the following delay (Fig.

4B). Instead, the neurons increasingly encoded

the crows’ perceptual report until it reached a

peak level toward the end of the delay (Fig. 4B).

A similar response pattern was found for pre-

dictions on near-threshold trials of a SVM-

classifier trained on population responses of

“yes” responses in suprathreshold trials (“hits”)

and “no” responses in no-stimulus trials (“cor-

rect rejections”) (fig. S2). The neuronal popu-

lation results suggest that NCL neurons switch

from initially mainly representing stimulus

intensity to predominantly encoding the crows’

subjective experience later in the trial and

before a required behavioral report.

A difference between the neuronal activities

of one reported perceptual state versus the

other for equal visual stimuli is considered to

be a “neural correlate of visual consciousness”

(3, 5, 21–23). Our finding thus constitutes an

empirical marker of avian sensory conscious-

ness. As for any animal, the qualitative nature

of this subjective experience—“what it is like”

for a crow to be consciously aware of sensory

data—remains hidden (31).Moreover, whether

pure subjective experience itself (“phenome-

nal consciousness”) can and should be disso-

ciated from its report (“access consciousness”)

remains intensely debated (1, 32).

Our report of a two-stage process in aware-

ness in the corvid NCL is markedly similar to

findings in the primate cerebral cortex, where

the initial sweep of activity is also mainly in-

volved in unconscious vision, whereas activity

correlating with consciousness is delayed rela-

tive to stimulus onset activity (21, 33–36). To

explain these effects, the global neuronal work-

space theory (25, 37) posits that only sensory

activity that is strong enough can access

awareness by causing a state termed “global

ignition” in higher brain centers such as pre-

frontal cortex. “Ignition” causes information

about a brief stimulus to become sustained

and broadcasted back through recurrent inter-

actions between many brain areas, thereby

also characterizing the transition of a sensory

representation into the explicit workingmem-

ory state (1, 23). The NCL may very well con-

stitute the avian brain site of an “all-or-none”

ignition process that leads either to a high

degree of activation causing and maintaining
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Fig. 3. Neuronal activity predicts “yes” versus “no” responses. Distribution of neuronal choice probabilities
according to signal detection theory. (A and B) Choice probabilities during the stimulus period (155 neurons).
(C and D) Choice probabilities during the delay period (165 neurons). Gray arrow indicates mean of choice
probabilities for near-threshold hits versus near-threshold misses [(A) and (C)] and for correct rejections versus
false alarms, respectively [(B) and (D)]. Choice probabilities in (A), (C), and (D) were significantly larger than
chance level indicated by dotted vertical line (***p < 0.001; n.s., not significant). Black arrows indicate mean AUC
values for suprathreshold hits versus correct rejections for comparison.
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information about conscious experience across

a temporal gap for a future goal, or to a van-

ishing response. Combining report-based be-

havioral protocols in crows with no-report

protocols may help to disentangle the neural

mechanisms involved in generating,maintain-

ing, and reporting conscious experience (38, 39).

This two-stage process in awareness could

prove to be a general and evolutionarily stable

principle of how sensory consciousness is

achieved in vertebrates in general.

Our finding also provides evidence for the

phylogenetic origins of consciousness (2). It

excludes the proposition that only primates

or other mammals possessing a layered cereb-

ral cortex are endowed with sensory conscious-

ness. To reconcile sensory consciousness in

birds and mammals, one scenario would post-

ulate that birds and mammals inherited the

trait of consciousness from their last-common

ancestor. If true, this would date the evolution

of consciousness back to at least 320 million

yearswhen reptiles and birds on the one hand,

andmammals on the other hand, evolved from

the last common stem-amniotic ancestor (40).

Alternatively, consciousness emerged independ-

ently on the basis of convergent evolution on

different branches of the vertebrate “tree of

life.” According to this hypothesis, conscious-

ness was absent in the common stem-amniotic

ancestor, but—comparable to homeothermy—

evolved later and independently during the rise

of, at least, birds and mammals. Yet another

scenariowould predict a gradual emergence of

consciousness. Here, different degrees of con-

served pallial connectivity patterns in verte-

brates could give rise to aspects of sensory

consciousness across phylogeny. Combining

measurements of brain signals with controlled

behavioral protocols will help to delineate the

origins of conscious experience in the animal

kingdom.
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Fig. 4. Time-resolved neuron

population analyses. (A) A
support vector machine (SVM)
classifier trained on near-
threshold trial activity predicts
the crows’ “yes” responses
from suprathreshold “hit” trials
and “no” responses from correct
rejection no-stimulus trials. Chance
level is 50%. (B) Sliding-window
percent explained variance (w2)
analysis quantifying the information
about the stimulus intensity and
report-associated subjective percept.
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Conscious Experience of Stimulus Presence and Absence
Is Actively Encoded by Neurons in the Crow Brain

Lysann Wagener and Andreas Nieder

Abstract

■ The emergence of consciousness from brain activity consti-

tutes one of the great riddles in biology. It is commonly

assumed that only the conscious perception of the presence

of a stimulus elicits neuronal activation to signify a “neural cor-

relate of consciousness,” whereas the subjective experience of

the absence of a stimulus is associated with a neuronal resting

state. Here, we demonstrate that the two subjective states

“stimulus present” and “stimulus absent” are represented by

two specialized neuron populations in crows, corvid birds. We

recorded single-neuron activity from the nidopallium caudola-

terale of crows trained to report the presence or absence of

images presented near the visual threshold. Because of the task

design, neuronal activity tracking the conscious “present” ver-

sus “absent” percept was dissociated from that involved in plan-

ning a motor response. Distinct neuron populations signaled

the subjective percepts of “present” and “absent” by increases

in activation. The response selectivity of these two neuron pop-

ulations was similar in strength and time course. This suggests a

balanced code for subjective “presence” versus “absence” expe-

riences, which might be beneficial when both conscious states

need to be maintained active in the service of goal-directed

behavior. ■

INTRODUCTION

How perceptual consciousness, the subjective experience

associated with a reportable sensory event, emerges from

theworkings of the brain is a fundamental question in biol-

ogy (Ehret & Romand, 2022; Vallortigara, 2021; Laureys,

2005; Nagel, 1974). The main method to study how neu-

rons give rise to perceptual consciousness relies on iden-

tifying neuronal activity that specifically occurs during

subjective reports of the subject under study. Such “neural

correlates of consciousness (NCCs),” defined as the mini-

mal set of neuronal events andmechanisms sufficient for a

specific conscious percept (Koch, Massimini, Boly, &

Tononi, 2016), have been explored in humans (Pereira

et al., 2021; Gelbard-Sagiv, Mudrik, Hill, Koch, & Fried,

2018; Reber et al., 2017; Quiroga, Mukamel, Isham,

Malach, & Fried, 2008; Kreiman, Fried, & Koch, 2002), in

nonhuman primates (Kapoor et al., 2022; van Vugt et al.,

2018; Panagiotaropoulos, Deco, Kapoor, & Logothetis,

2012; de Lafuente & Romo, 2005; Leopold & Logothetis,

1996; Logothetis & Schall, 1989), and recently also in the

crow, a corvid songbird (Nieder, Wagener, & Rinnert,

2020). Common to all these experimental approaches is

that physically identical stimuli spontaneously elicit one

of two contrasting, endogenously generated percepts.

The general finding is that a proportion of neurons in

higher-order brain areas becomes active in relation to

the subject’s alternating conscious percept for physically

identical stimuli. This holds even when reports are initially

undefined to the subject or not required, arguing that the

activity of such neurons represents the subjective experi-

ence and not factors related to the impending report

(Kapoor et al., 2022; Hesse & Tsao, 2020; Nieder et al.,

2020).

One of the most radical contrasts in subjective experi-

ence can be witnessed when stimuli are presented near

perceptual threshold of the subject (Nieder et al., 2020;

van Vugt et al., 2018; de Lafuente & Romo, 2005). Despite

the constant intensity of the target stimulus across trials,

the perceptually ambiguous stimulus is sometimes per-

ceived, whereas other times, the stimulus is not perceived.

In other words, conscious perception switches between

conscious “stimulus-present” and “stimulus-absent”

states, irrespective of the constant intensity of the stimu-

lus. As an NCC, neurons respond in relation to the chang-

ing perceptual states. Thus, the readout of neuronal

activity can predict whether the subject was consciously

aware or unaware of the stimulus (Nieder et al., 2020;

van Vugt et al., 2018; Quiroga et al., 2008; de Lafuente &

Romo, 2005).

The tacit assumption from these studies is that the NCC

is only based on percept-related neurons that show ele-

vated firing rates for perceived stimuli but remains silent

when stimulus absence is experienced (van Vugt et al.,

2018; Quiroga et al., 2008; de Lafuente & Romo, 2005).

Within this framework, only conscious perception is

encoded, whereas the absence of a percept correlates with

neurons’ resting activity (Pereira, Perrin, & Faivre, 2022).

However, it is conceivable that not only subjective experi-

ence of the presence of a stimulus is encoded by neuronalUniversity of Tübingen
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activity but also the experience about the absence of a

stimulus (Pereira et al., 2022). After all, both stimulus pres-

ence and stimulus absence experiences constitute explicit

categorical states.

Evidence supporting the intriguing possibility that also

the conscious experience of stimulus absence can be

encoded actively comes from single-neuron recordings

in the associative cerebral cortex of monkeys and humans

(Pereira et al., 2021; Merten & Nieder, 2012). Given that

evidence for neurons actively signaling the experienced

absence of stimuli stem exclusively from primates, one

hypothesis is that this way of implementing conscious per-

cepts might have emerged with the advent of a mammal-

specific and computationally powerful layered neocortex.

Alternatively, this way of representing two subjective

states by two specialized neuron populations may consti-

tute a computational advantage that therefore might be

implemented in other vertebrate classes, such as birds,

with distinctly evolved endbrains (telencephala) lacking

a cerebral cortex (Jarvis et al., 2005) and neuronal circuits

of distinct developmental origin (Colquitt, Merullo,

Konopka, Roberts, & Brainard, 2021). Recently, we

reported a neuronal correlate of perceptual consciousness

in the associative endbrain area nidopallium caudola-

terale (NCL) of carrion crows (Nieder et al., 2020). In the

current study, we reanalyzed this data set to explore the

hypothesis that—similar to the primate neocortex—

the two subjective states “stimulus present” and “stimulus

absent” are represented by two specialized neuron popu-

lations in the independently evolved telencephalon of

birds (Nieder, 2021).

METHODS

Subjects

Two 1-year-old hand-raised male carrion crows (Corvus

corone) from the institute’s breeding facility were used.

They were housed in a social group of four crows in an

indoor aviary. During the experiment, the crows were on

a controlled feeding protocol and received their daily

amount of food as reward during training and recording

or, if necessary, after the sessions. The body weight was

measured daily. Water was available ad libitum during

the experiments and in the aviary. All procedures were

carried out according to the guidelines for animal experi-

mentation and approved by the responsible national

authorities, the Regierungspräsidium Tübingen, Germany.

Behavioral Protocol

We trained the crows to report the presence or absence of

a gray visual stimulus (4.5° of visual angle) presented at six

different intensity levels in the center of a black computer

screen.

The experiment was conducted in a darkened operant

conditioning chamber. The crow was placed on a perch in

front of a touchscreen monitor (ART Development

MT1599-BS), which was used only for stimulus presenta-

tion. The behavior and response of the crow were con-

trolled by an infrared light barrier, which was located

above the crow and registered the position of a reflector

foil attached to the bird’s head. Reward (either birdseed

pellets or mealworms [Tenebrio molitor larvae]) was

given by an automated feeder below the touchscreen.

Auditory feedback was provided by speakers (Lasmex

S-03) located behind the touchscreen. We used the

CORTEX system (National Institute of Mental Health) to

run the experiment and collect behavioral data.

The crow initiated a trial by positioning its head facing

the screen whenever the go stimulus (small white cross,

2 × 2° of visual angle) was shown. Auditory feedback

indicated that the light barrier had been entered and the

go stimulus turned briefly into a circle (60 msec) before it

vanished. This stable head position had to be maintained

throughout the trial until the response phase. Premature

head movements aborted the ongoing trial, which was

then discarded.

After a 600-msec waiting period in which the screen was

completely black, the stimulus period followed. In 50% of

the trials, the visual stimulus was shown for 300 msec,

whereas in the other 50%, the screen remained black.

The intensity of the stimulus was close to the perceptual

threshold and individually adjusted so that the two faintest

stimulus values were at threshold (around 50% “yes”

responses) and the two highest values were salient and

always detectable. Whether a stimulus was shown or not,

and the intensity of the stimulus, was shuffled pseudoran-

domly on a trial-by-trial basis.

Then, the screen was black for a delay of 2500 msec,

after which a rule cue (colored square) informed the crow

how to respond. For a correct response, the crow needed

to associate its conscious experience about the stimulus

with the conditional instruction signified by the rule cue.

If a stimulus was present, a red square required the crow to

respond (i.e., to nod and thus move the head out of the

light barrier within 800 msec) to earn a reward, whereas

a blue square demanded withholding from responding

and maintaining a stable head position for 800 msec to

receive a reward. The orthogonal rule–response relation-

ships were applied for the absence of a stimulus. If a

stimulus was absent, a red square required the crow to

withhold from responding, whereas a blue square

demanded a response. The rule cues were pseudorando-

mized, fully balanced and unbeknownst to the crow at

the beginning of each trial. This prevented the bird from

learning stimulus–response associations and from pre-

paring a motor response already during the stimulus

and delay periods.

Surgery and Neurophysiological Recordings

The surgery was performed while the animal was under

general anesthesia with a mixture of ketamine (50 mg/kg)

Wagener and Nieder 509
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and xylazine (5 mg/kg). The animal was placed in a ste-

reotaxic holder. We targeted the medial part of the NCL

by performing a craniotomy at 5 mm anterior–posterior

and 13 mm mediolateral on the left hemisphere of

both birds (Kersten, Friedrich-Müller, & Nieder, 2022).

Two manual micro drives containing four electrodes each

(2 MΩ, Alpha Omega Co.) were implanted at the craniot-

omy. In addition, a miniature connector for the head-

stage and a small holder for attaching the reflector were

implanted. After the surgery, the crows received analge-

sics. Each recording session started with adjusting the

electrodes until a proper neuronal signal was detected

on at least one channel. The neurons were never prese-

lected for any involvement in the task. Neuronal data were

recorded using the Plexon system (Plexon Inc.). Single-cell

separation was done offline (Plexon Offline Sorter,

Version 2.6.2).

Data Analysis

Behavior

Data analysis was performed using MATLAB (The Math-

Works). We recorded behavioral and neuronal data during

37 sessions for Crow 1 and 41 sessions for Crow 2. During

these sessions, the birds performed 22,447 (Crow 1) and

18,548 (Crow 2) single trials, respectively. The proportion

of “yes” responses was plotted as a function of stimulus

intensity to give rise to a sigmoidal psychometric function.

For that purpose, trials with both response types (requir-

ing head movements or no head movements according to

the rule cue) were pooled.

Neuronal Analysis

We analyzed the data set that constituted the basis of a

previous publication (Nieder et al., 2020). For neuronal

analyses, the trials were grouped into three different trial

categories according to the crows’ psychophysical perfor-

mance correlating with stimulus intensity:

Suprathreshold trials. Salient stimuli presented at Inten-

sities 4 and 5 were suprathreshold conditions in which the

crows detected the stimulus in almost 100% of the trials.

The crows produced almost exclusively “yes” responses

(i.e., “hits”) for such suprathreshold stimuli.

Near-threshold trials. Stimulus Intensities 1 and 2 repre-

sent faint intensities near the perceptual detection thresh-

old (∼50% “yes” responses) of the crows. In such trials, the

subjective perception of the crows resulted in either “yes”

(“hits”) or “no” (“misses”) responses.

No-stimulus trials. Stimulus Intensity 0 corresponds to

the 50% of the trials in which no stimulus was presented.

“No” responses correspond to “correct rejections,” and

“yes” responses signify “false alarms.”

All neurons that were used for the following analyses

had an average firing rate of at least 0.5 Hz and were

recorded for at least four trials of each trial category and

responses mentioned above (“hits” in suprathreshold

trials, “hits” and “misses” in near-threshold trials, and “cor-

rect rejections” and “false alarms” in no-stimulus trials). In

addition, all neurons were task selective; that is, they had a

time interval with a significant difference in their activity to

the most unambiguous conditions, namely, “correct rejec-

tions” in the no-stimulus trials and “hits” in the suprathres-

hold trials. To identify this task-selective time window, we

used a sliding Mann–Whitney U test (200-msec window

duration, 10-msec step size, p < .01) beginning at sample

onset and ending 100msec after delay offset. A neuronwas

termed “task selective” if its neuronal activity differed over

at least 11 consecutive windows (i.e., 300 msec in total).

Task-selective intervals occurring between stimulus onset

until 300 msec after stimulus onset were classified as stim-

ulus related; all later occurring selective intervals were

classified as delay related. If a neuron had more than

one selective time interval during the sample and delay

period, respectively, only the one with the greater differ-

ence in firing rate to suprathreshold “hit” trials versus

no-stimulus “correct rejections” trials (interval with the

smallest p value of the Mann–Whitney U test) was used.

We identified percept-related neurons, that is, task-

selective neurons that showed a difference in firing rates

to the crows’ “yes’” versus “no” responses in near-

threshold trials during their selective time windows, using

receiver operating characteristics (ROCs). For that pur-

pose, we calculated the area under the ROC curve

(AUROC) as a measure of how well a neuron based on

its firing rates discriminates between two conditions. A

value of 0.5 indicates chance level, whereas a value of 1.0

denotes perfect discriminability. A percept-related neuron

had to meet two criteria in unison: First, firing rates in

suprathreshold “hit” compared to no-stimulus “correct

rejection” trials had to be significantly different (i.e., task

selectivity; Mann–Whitney U test, p < .01; see paragraph

above). Second, AUROC values comparing near-threshold

“hits” versus near-threshold “misses” had to be signifi-

cantly different (permutation test, 1000 shuffled distribu-

tions, p < .05). If neuronal activity was smaller in “hits”

compared to “correct rejections,” the AUROC values were

smaller than 0.5. In this case, the AUROC value was recti-

fied (mirrored at 0.5) so that both negative and positive

deflections resulted in values greater than 0.5. Accord-

ingly, the choice probabilities of such a neuron were also

mirrored at 0.5. We compared the choice probabilities

(i.e., AUROC value for near-threshold “hit” trials vs. near-

threshold “miss” trials) to a distribution of AUROC values

with permuted trial labels (1000 times). A neuron was

called percept related if its rectified AUROC value for

near-threshold trials was greater than the 5% upper bound

of the permuted distribution.

The percept-related neurons were further classified into

“yes” neurons and “no” neurons according to their
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neuronal activity during the selective time interval. A neu-

ron was termed “yes” neuron if its mean firing rate was

higher for “hits” in suprathreshold trials than for “correct

rejections” in no-stimulus trials and if its mean firing rate

was higher in near-threshold “hit” trials than in near-

threshold “miss” trials. The converse relations were

applied to identify “no” neurons. One neuron could not

be assigned to either class because it had higher firing

rates in suprathreshold “hit” than in “correct rejection”

trials but lower firing rates in near-threshold “hit” than in

near-threshold “miss” trials.

ROC analysis was further used to investigate whether

“yes” and “no” neurons encoded the crows’ later report.

The choice probability index describes the AUROC value

for different behavioral responses with identical stimulus

properties (Britten, Newsome, Shadlen, Celebrini, &

Movshon, 1996). To that aim, we used the firing rates of

each neuron during its selective time interval to calculate

the choice probability for “yes” versus “no” responses in

near-threshold trials (“hits” vs. “misses”) and in no-

stimulus trials (“correct rejections” vs. “false alarms”),

respectively. In addition, we calculated the AUROC value

for suprathreshold “hit” versus no-stimulus “correct rejec-

tion” trials as a reference. If a neuron reflects the crow’s

subjective experience, it is expected to discriminate

between “yes” and “no” responses, although stimulus

intensities were identical, and with qualitatively similar

activity as for suprathreshold “hits” versus no-stimulus

“correct rejections.”

To determine the onset latency and duration of signifi-

cant neuronal activity for “yes” and “no” neurons, we

employed a sliding window of 50-msec duration and

1-msec step size. The onset of significant neuronal activity

was considered achieved when the neuronal activity

differed by 3 SDs from the baseline over at least 26 consec-

utive windows. For each “yes” neuron (stimulus- and

delay-related), we determined the onset and duration of

significant “hit” activity in response to salient stimulus-

present trials. In parallel, for each “no” neuron (stimulus-

and delay-related), we determined the onset and duration

of significant “correct rejection” activity in response to tri-

als with no stimulus. A Mann–Whitney U test was used to

compare these time values.

Neuronal activity of single cells is depicted by dot raster

histograms (every line corresponds to a trial, and every

dot represents an action potential) and spike density

functions. Spike density functions were averaged over

trials and convolved with a Gaussian kernel (bin width =

300msec, step size= 1msec) for illustrative purposes only.

For averaging the spike density functions of different

neurons, we first normalized the firing rates by subtracting

the baseline activity (firing rate in a 300-msec interval

300 msec to 0 msec before stimulus onset) and dividing

by the standard deviation. The baseline activity (mean

firing rate across all trials) of each neuron and its standard

deviation was measured during the last 300 msec before

sample onset.

To quantify the time course of information about stimu-

lus intensity and subjective “yes” versus “no” responses, we

performed a sliding-window percent explained variance

(ω2 PEV) analysis. For that purpose, we merged stimulus-

related and delay-related percept-related neurons. Neu-

rons that had sufficient trial numbers of at least 10 trials

for each trial category (“hits” in suprathreshold trials, “hits”

and “misses” in near-threshold trials, and “correct rejec-

tions” and “false alarms” in no-stimulus trials) entered the

analysis (n = 21 “yes” neurons and 41 “no” neurons). We

used a sliding window of 400-msec duration and 10-msec

step size. In each window, a two-factorial ANOVA (includ-

ing suprathreshold “hit,” near-threshold “hit,” near-

threshold “miss,” and no-stimulus “correct rejection” trials)

was calculated, and the resultant sums of squares were

used to estimate the percentage of variance attributable

to either the stimulus intensity or the “yes”/“no” response

for each neuron. The ω
2 was calculated as follows:

ω2 ¼
SSfactor − df �MSE

SStotal þMSE

where SSfactor is the sum of squares for the factor stimulus

intensity and subjective percept (“yes”/“no” response),

respectively; SStotal is the total sum of squares; df is the

degrees of freedom, and MSE is the mean squared error.

This was repeated 1000 times and then averaged. We then

took the average across the individual neurons yielding a

population estimate of the average percentage of variance

explained by each factor.

A support vector machine (SVM) classifier was used to

investigate whether the activity of a neuronal population

in near-threshold trials can be used to predict the decision

in supra-threshold “hit” and no-stimulus “correct rejec-

tion” trials. This was done with the same neuronal popula-

tions that were used for the PEV analysis and had at least 10

trials for each trial category (“hits” in suprathreshold trials,

“hits” and “misses” in near-threshold trials, and “correct

rejections” and “false alarms” in no-stimulus trials). We

trained the classifier in sliding windows (400-msec length,

10-msec step size) on the firing rates of “yes” and “no”

responses in near-threshold trials to exclude the factor

stimulus. For each window, we used the firing rates of

the neurons in 10 randomly drawn near-threshold “hit”

and “miss” trials, respectively. The trained classifier was

then used to predict the labels of 10 randomly drawn

suprathreshold “hit” trials and 10 no-stimulus “correct

rejection” trials. We calculated the percentage of “yes” pre-

dictions as a measure for decision information in the

tested trials. We repeated the classifier training and predic-

tion 1000 times with newly drawn trials and calculated the

mean proportion of “yes” predictions.

RESULTS

Two carrion crows were trained in a rule-based delayed

detection task to report the presence or absence of visual
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stimuli (Figure 1A). In half of the trials, a stimulus in five

different intensity values around the crows’ perceptual

threshold (with intermediate stimulus intensities individ-

ually adjusted for each crow to result in a sigmoidal psy-

chometric function) was presented, whereas a stimulus

was absent in the other half of the trials. At perceptual

threshold, the crows’ conscious percept was endoge-

nously determined; a stimulus of identical intensity was

sometimes seen and other times not perceived. The crows

had to wait during a delay period until a rule cue informed

them about how to report their percept. Therefore, the

crows were unable to prepare motor responses before

the rule cues, which precluded report-related processes.

This allowed us to explore neuronal activity related to sub-

jective sensory experience and its accessibility during the

delay period.

Behavior

The crows’ behavioral accuracy (percent correct “yes”

responses) was plotted as a function of stimulus intensity

to result in a classical psychometric function (Figure 1B

and C). Depending on the crows’ accuracy, the trials were

grouped into three categories: suprathreshold trials

(presenting the two highest stimulus intensities), near-

threshold trials (in which the two lowest stimulus intensi-

ties at perceptual threshold of about 50% hit rate were

shown), and no-stimulus trials (without any stimulus

shown; Figure 1C). The crows’ responses were classified

according to the framework of signal detection theory

(Green & Swets, 1966): “hit” (correct “yes” response to a

stimulus), “correct rejection” (correct “no” response for

stimulus absence), “miss” (erroneous “no” response to

stimulus presence), and “false alarm” (erroneous “yes”

response for stimulus absence; Figure 1D). These

response categories were later used to classify and com-

pare neuronal activity during task performance.

Neurophysiology

We recorded action potentials from a total of 480 neurons

(n= 174 for Crow 1, n= 306 for Crow 2) in the NCL of the

crows while they performed the task (Figure 1A; see

Nieder et al., 2020). On the basis of a sliding-window anal-

ysis comparing firing rates for suprathreshold “hit” trials

versus no-stimulus “correct rejection” trials in individual

neurons (Mann–Whitney U test, p< .01), we first isolated

262 task-selective neurons that showed selective trial

intervals at some point during the stimulus and/or delay

phase. According to the two most important trial phases

in which report-independent subjective experiences

about the stimulus situation occurred, we classified task-

selective neurons into stimulus related (n = 155) and

delay related (n = 165). Most neurons showed transient

task-selective epochs but, as a population, spanned the

entire trial period until rule cue presentation (see

Figure 2A and B in Nieder et al., 2020).

Task-selective neurons may simply respond to the dif-

ferent intensities of the stimulus. To identify neurons that

changed activity as a function of the crows’ percept as

reported later in the trial (later called “percept-related

neurons”), we compared the discharges during the crows’

“yes” versus “no” responses in near-threshold trials. If

Figure 1. Task design and behavioral performance. (A) Visual detection

task. After the crow initiated a trial in the go period, a brief visual

stimulus of variable intensity appeared in 50% of the trials (stimulus

present), whereas no stimulus appeared in the other half of the trials

(stimulus absent). After a delay period, a rule cue informed the crow

how to respond if it had seen or had not seen the stimulus. In stimulus

trials (top), a red cue required a nodding response for stimulus

detection (“yes”), whereas a blue cue required the crow to hold still for

stimulus detection. In stimulus-absent trials (bottom), the rule–

response contingencies were inverted. (B, C) Psychometric functions of

Crow 1 (B) and Crow 2 (C). Error bars indicate SEM. Lilac ellipses

illustrate the grouping of stimulus intensities into suprathreshold, near-

threshold, and no-stimulus trials. (D) Signal detection theory classifies

an observer’s behavior at detection threshold, given two stimulus

conditions (stimulus present or absent) and two possible responses

(“yes, stimulus present” and “no, stimulus absent”).
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neurons are percept related and represent the crows’

reported subjective experience, they are expected to

change activity as a function of the crows’ later report

and irrespective of the identical stimulus intensity. In this

case, firing rates in near-threshold trials during the crows’

“yes” responses (“hits”) should be similar to those during

“yes” responses (“hits”) in suprathreshold trials. In

contrast, firing rates of percept-related neurons in

near-threshold trials during the crows’ “no” responses

(“misses”) should be similar to those during “no”

responses (“correct rejections”) in no-stimulus trials. Fir-

ing rates to “false alarms” were not included as additional

criterion for the selection of percept-related neurons

because of activity noise caused by low trial counts. How-

ever, “false alarms” were analyzed qualitatively for the

selected percept-related neurons.

Activity of Percept-related Neurons

To objectively identify percept-related neurons, we

applied the following statistical criteria in unison: First, fir-

ing rates in suprathreshold “hit” compared to no-stimulus

“correct rejection” trials had to be significantly different

(“task-selective neuron”; Mann–Whitney U test, p < .01).

Second, we performed an ROC analysis (i.e., a binary clas-

sifier) with firing rates taken from the selective trial inter-

vals during “yes” versus “no” responses in near-threshold

trials as well as for stimulus and delay periods separately.

We derived the AUROCs as a distribution-free discrimina-

bility measure (Green & Swets, 1966). AUROC values

(“choice probabilities”) comparing near-threshold “hit”

trials versus near-threshold “miss” trials had to be signifi-

cantly different from 0.5 for percept-related neurons (per-

mutation test, 1000 shuffled distributions, p < .05).

Neurons that met both criteria were classified into “yes”

neurons if firing rates to “yes” responses were higher com-

pared to “no” responses or “no” neurons if firing rates to

“no” responses were higher compared to “yes” responses.

Moreover, for a neuron to be classified as percept-related

“yes” or “no” neuron, the firing rate changes for both com-

parisons had to concur for “yes” versus “no” responses; in

other words, if a neuron increased its firing rate to supra-

threshold “hits,” it also had to increase its firing rate to

near-threshold “hits” to be classified as a “yes” neuron,

and vice versa for “no” neuron.

During the stimulus presentation phase, we found that

14% of the task-related neurons (21/155) were percept

related (Table 1). Of those, three percept-related neurons

showed higher firing rates to “yes” percepts (stimulus-

present percept) compared to “no” percepts and were

called “yes neurons.” In contrast, 17 percept-related neu-

rons exhibited higher firing rates to “no” percepts (stimu-

lus-absent percept) compared to “yes” percepts and were

called “no neurons.”One neuron could not be assigned to

either class. Two percept-related example neurons during

the stimulus presentation period are shown in Figure 2A

and B. Both neurons signaled the “yes” versus “no” per-

cepts later reported by the crows and irrespective of the

stimulus intensity in the different trial conditions. How-

ever, whereas the neuron in Figure 2A was a “yes” neuron

and increased its firing rate for “yes” percepts, the neuron

Figure 2. Activity of percept-related NCL neurons during stimulus

presentation. (A) Activity of an example “yes” neuron. The top depicts

dot raster histogram with each line corresponding to a trial and each

dot corresponding to an action potential. The bottom represents the

respective averaged spike density functions (smoothed by a 300-msec

Gaussian kernel with a step size of 1 msec). Each curve corresponds to

one of the five trial categories with warm (red, pink, and orange) colors

indicating “yes” responses and cool (dark and light blue) colors

indicating “no” responses. The gray-shaded area indicates stimulus

presentation time; and the dashed vertical line, the end of the delay

period (onset of response rule cue). The horizontal gray bar signifies

the task-selective interval. (B) Activity of an example “no” neuron.

Layout as in A. (C) Averaged, normalized activity of the population of all

“yes” neurons (n = 3). Shaded regions indicate SEM. Color code and

layout as in A. (D) Averaged, normalized activity of the population of all

“no” neurons (n = 17). Shaded regions indicate SEM. Color code and

layout as in A. Norm. = Normalized.

Table 1. Number of “Yes” and “No” Neurons Among the Percept-related Neurons

Percept Related “Yes” Neurons “No” Neurons Not Determinable

Stimulus related 21 3 17 1

Delay related 47 19 28
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in Figure 2B qualified as a “no” neuron because it

increased its firing rate to “no” percepts. This pattern of

activation in example neurons was seen for the population

of significant “yes” neurons (Figure 2C) and “no” neurons

(Figure 2D).

During the delay phase, a significantly higher propor-

tion of 28% (47/165) of the percept-related neurons was

identified compared to the stimulus presentation period

(chi-square test; p= .001). Here, more balanced numbers

of 19 “yes” neurons and 28 “no” neurons were detected.

Two percept-related example neurons during the delay

period are shown in Figure 3A and B. Both neurons sig-

naled the “yes” versus no” percepts irrespective of the

stimulus intensity in the different trial conditions. The

neuron in Figure 3A increased its firing rate for “yes” per-

cepts and was classified as a “yes” neuron. In contrast, the

neuron in Figure 3B increased its firing rate to “no” per-

cepts and qualified as a “no” neuron. Activation during

“false alarms” (“yes” percepts) was more similar to supra-

threshold and near-threshold “hits,” although no stimulus

was presented. Similar patterns of overall activation as for

the example neurons were seen for the population of

significant “yes” neurons (Figure 3C) and “no” neurons

(Figure 3D).

The negative deflection of activity for “hits” in “no” neu-

rons (Figure 2B and D) could result from two different

conditions: The deflection could reflect suppression

below the neurons’ spontaneous activity; alternatively,

neuronal firing could assume an increased tonic state with

trial onset that is then switched off by stimulus appear-

ance. We, therefore, compared the firing rates of individ-

ual neurons before the start of the trial with their activity

after the onset of the trial but before stimulus appearance.

If the neurons assume an elevated tonic state with trial

onset, the firing rate is expected to be higher in the period

before stimulus onset that we defined as baseline activity.

We found that the firing rate in a 300-msec period before

the start of a trial (400msec to 100msec before trial onset)

was 5.68 Hz on average and indifferent from baseline

activity of 5.59 Hz determined before the presentation of

the stimulus (300 msec to 0 msec before stimulus onset;

Wilcoxon signed-rank test, p = .6617, n = 66). This

suggests that the neurons did not increase their firing

rates to assume an increased tonic state in response to

the absence of a stimulus. Rather, the suppression with

perceived stimulus onset observed in “no” neurons

(Figure 2B and D) reflects suppression below spontane-

ous activity in these neurons.

Next, we explored potential differences in onset latency

of “yes” and “no” neurons. For each “yes” neuron (stimu-

lus- and delay-related), we determined the onset and dura-

tion of significant “hit” activity in response to salient

stimulus-present trials. Similarly, for each “no” neuron

(stimulus- and delay-related), we determined the onset

and duration of significant “correct rejection” activity in

response to trials with no stimulus. We found that the

onset latency of “yes” neurons (mean= 179msec) was sig-

nificantly shorter compared to the onset latency of “no”

neurons (408 msec; Mann–Whitney U test, two-tailed,

p = .0014). No difference was detected for the duration

of significant response intervals between both neuron

types (Mann–Whitney U test, two-tailed, p = .1211).

Choice Probabilities

To quantify how well neurons discriminated the behavior-

ally relevant “yes” and “no” percepts irrespective of stimu-

lus intensity, we calculated AUROC values for “yes” versus

“no” responses (termed “choice probabilities”). To that

aim, we compared the firing rates in near-threshold “hit”

versus “miss” trials as well as “correct rejection” versus

“false alarm” trials. As a reference, we also calculated the

AUROC value for suprathreshold “hit” versus no-stimulus

“correct rejection” trials. AUROC values of “no” neurons

were, by definition, smaller than 0.5 and were rectified

for further analysis. Choice probabilities were then

assessed separately for percept-related neurons in the

stimulus and delay periods. The choice probabilities (gray

columns in Figure 4) were plotted relative to the reference

AUROC values (suprathreshold “hit” vs. no-stimulus “cor-

rect rejection” trials; black columns in Figure 4).

In the stimulus presentation period, the reference

AUROC values (“hits” in suprathreshold trials vs. “correct

rejections”) were 0.82 for “yes” neurons (Figure 4A and C)

Figure 3. Activity of percept-related NCL neurons in the delay period.

(A) Activity of an example “yes” neuron. Color code and layout as in

Figure 2A. (B) Activity of an example “no” neuron. Color code and

layout as in Figure 2A. (C) Averaged, normalized activity of the

population of all “yes” neurons (n = 19). Shaded regions indicate SEM.

Color code and layout as in A. (D) Averaged, normalized activity of the

population of all “no” neurons (n = 28). Shaded regions indicate SEM.

Color code and layout as in A. Norm. = Normalized.
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and 0.75 for “no” neurons (Figure 4B and D), respectively,

and were indifferent (Mann–Whitney U test, p= .24). The

reference ROC values of the “no” neurons were signifi-

cantly higher than chance level (one-sample Wilcoxon

signed-rank test, p < .0003, n = 17). The “yes” neurons

could not be tested because of the low number of only

three neurons. In addition, because of the low neuron

numbers, the choice probabilities of the few “yes” neurons

in the near-threshold “hit” versus near-threshold “miss”

trials (mean = 0.67; Figure 4A) and the “correct rejection”

versus “false alarm” trials (mean = 0.60; Figure 4C) were

indifferent from chance level of 0.5 (one-sample Wilcoxon

signed-rank test, p = .25, n = 3). However, the choice

probabilities of the “no” neurons were significantly higher

than the chance level of 0.5 in the near-threshold “hit” ver-

sus “miss” trials (mean = 0.67, one-sample Wilcoxon

signed-rank test, p < .0003, n = 17; Figure 4B) and also

for “correct rejection” versus “false alarm” trials (mean =

0.56, one-sample Wilcoxon signed-rank test, p < .0057,

n = 17; Figure 4D).

In the delay period, the reference AUROC values of 0.67

for “yes” neurons (Figure 4E and G) and 0.68 for “no” neu-

rons (Figure 4F and H), respectively, were indifferent

(Mann–Whitney U test, p = .22) but significantly above

chance (one-sample Wilcoxon signed-rank test, both

ps < .0002, n = 28 “yes” neurons and 19 “no” neurons).

Furthermore, in the delay period, the choice probabilities

of “yes” and “no” neurons in the near-threshold “hit” ver-

sus near-threshold “miss” trials were both significantly

higher than chance (one-sample Wilcoxon signed-rank

test, both ps < .0002, n = 28 “yes” neurons and 19 “no”

neurons) and indifferent, with means of 0.64 and 0.65,

respectively (Mann–Whitney U test, p = .74; Figure 4E

and F). Moreover, the choice probabilities of “yes” and

“no” neurons in the “correct rejection” versus “false alarm”

trials had similar means of 0.54 and 0.56, respectively

Figure 4. Choice probabilities of percept-related neurons. (A–D) Choice probabilities for percept-related neurons during stimulus presentation. (A)

Reference AUROC values of “yes” neurons and their choice probabilities for near-threshold “hits” versus near-threshold “misses.” Arrows indicate

mean choice probabilities. Vertical dashed line depicts chance level at 0.5. (B) Reference AUROC values of “no” neurons and their choice

probabilities for near-threshold “hits” versus near-threshold “misses.” Asterisks indicate significant difference to chance level (one-sample Wilcoxon

signed-rank test; ***p < .001, **p < .01, *p < .05). (C) Reference AUROC values of “yes” neurons and their choice probabilities for “correct

rejections” versus “false alarms.” (D) Reference AUROC values of “no” neurons and their choice probabilities for “correct rejections” versus “false

alarms.” (E–H) Choice probabilities for percept-related neurons during the delay phase. Same layout and trial conditions as in A–D.
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(Mann–Whitney U test, p = .23), and were both higher

than chance (one-sample Wilcoxon signed-rank test,

“yes” neurons: p < .013, n = 19; “no” neurons: p <

.0002, n = 28; Figure 4G and H). Taken together, both

“yes” and “no” neurons in the delay period encoded the

crows’ subjective percept irrespective of stimulus intensity

in ambiguous trials. A higher proportion of neurons

turned out to be percept related during the delay

period compared to the stimulus presentation period,

and “yes” and “no” neurons were more balanced during

the delay period than during the stimulus presentation

period.

Neuron Population Analyses

Next, we quantified howmuch information about the sub-

jective report as opposed to stimulus intensity was carried

by the separate populations of “yes” and “no” neurons

throughout the trial. To that aim, we merged the

percept-related neurons with sufficient trial numbers in

the stimulus and delay periods and calculated the ω
2 PEV

in sliding windows throughout the trial. For the popula-

tion of “yes” neurons (n=21), the information about stim-

ulus intensity and subjective experience oscillated until

the end of the delay. Briefly before the onset of the

response rule, information about stimulus intensity had

vanished, whereas subjective experience information

increased notably shortly before the crows reported their

percept (Figure 5A). For “no” neurons (n = 41), the pre-

sentation of the stimulus elicited a sharp increase of infor-

mation about the stimulus intensity, followed by a slightly

delayed increase of information about the subjective

report (Figure 5B). After a decay during the first half of

the delay, information about the subjective report

increased again toward the end of the delay, whereas stim-

ulus information had vanished.

Finally, we tested with a decoding analysis whether the

subjective report in suprathreshold “hit” and no-stimulus

“correct rejection” trials can be predicted separately by

“yes” and “no” neurons in near-threshold trials. Assuming

that a percept-related neuron encodes the subjective

report, its firing rates should be similar according to the

subjective experience and thus predictive of the report

irrespective of the stimulus intensity. To investigate this,

we trained an SVM classifier using the same separate neu-

ronal populations as before (n= 21 “yes” neurons and 41

“no” neurons). We trained the classifier on firing rates of

“yes” and “no” responses in near-threshold trials and then

tested it on the firing rates in suprathreshold “hit” and no-

stimulus “correct rejection” trials of the same neuronal

population.

On the basis of the population of “yes” neurons, the

classifier labeled “yes” and “no” responses with highest

accuracy shortly after stimulus presentation and at the

end of the delay (Figure 6A). At these time points, the

difference between “yes” predictions to firing rates in

suprathreshold “hit” and no-stimulus “correct rejection”

trials was greatest (Figure 6B). In addition, training the

classifier on the activity of the population of “no” neurons

in near-threshold trials yielded the highest prediction

accuracy for “yes” responses in suprathreshold “hit” and

no-stimulus “correct rejection” trials shortly after stimu-

lus presentation and, after a drop-off, increasingly in

the second half of the delay (Figure 6C). Apart from more

pronounced accuracy after stimulus onset, the time

course of the accuracy of “yes” predictions was compara-

ble for “yes” neurons (Figure 6B) and “no” neurons

(Figure 6D).

Figure 5. Time-resolved PEV analysis. (A) Time course of information about stimulus intensity and subjective report carried by the activity of “yes”

neurons (n = 21) throughout a trial. Colored shadings indicate SEM across the neurons. Gray-shaded area depicts stimulus presentation time; and

vertical dashed line, the end of the delay (onset of response rule cue). (B) Same as in A but for the population of “no” neurons (n = 41).
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DISCUSSION

We trained crows to report the presence or absence of

low-contrast images presented near to visual threshold

(note that this process only requires awareness; it does

not require self-awareness or metacognition of experi-

ence). Neuronal activity tracking the conscious percept

(i.e., present or absent) was dissociated from that involved

in planning a motor response by use of a poststimulus

response rule cue that varied from trial to trial. Distinct

populations of “yes” and “no” neurons signaled the subjec-

tive percepts of “seen” versus “unseen,” respectively.

Importantly, the magnitude of activation of these two neu-

ron populations was similar in timing and strength. This

suggests a balanced encoding of awareness in the crow

NCL by neurons actively signaling subjective stimulus

presence and absence.

The shorter onset latency of “yes” neurons compared to

“no” neurons suggests that the neuronal activation of “yes”

neurons to the onset of a seen stimulus was temporally

more precise and thus faster compared to the activation

related to stimulus absence in “no” neurons. For “no” neu-

rons, responses to the absence of a stimulus may be less

precise and potentially more variable from trial to trial

(Ganupuru, Goldring, Harun, & Hanks, 2019).

Active Encoding of Percepts About Stimulus

Absence in the Brain

A main finding of the current study is that a distinct popu-

lation of “no” neurons in the crow NCL actively encoded

the crows’ perceived absence of stimuli by firing rate

increases. This is a remarkable finding as it is commonly

assumed that only the perceived presence of stimuli is

actively encoded by increasing firing rates of neurons

(de Lafuente & Romo, 2005, 2006). According to this

common assumption, only the conscious presence of a

stimulus is signaled by neurons that accumulate positive

stimulus evidence until an upper threshold is reached that

Figure 6. Classification accuracy of an SVM classifier. (A) Proportion of assigned “yes” labels to firing rates of “yes” neurons (n = 21) in

suprathreshold “hit” trials and no-stimulus “correct rejection” trials of an SVM classifier, which was trained on the firing rates of “yes” and “no”

responses in near-threshold trials. Horizontal dashed line indicates chance level at 50%. Gray-shaded area depicts stimulus presentation time, and

vertical dashed line indicates end of the delay (onset of response rule cue). (B) Difference between the proportions of assigned “yes” labels to

suprathreshold “hit” and no-stimulus “correct rejection” trials shown in A. (C) Same as in A but for the population of “no” neurons (n = 41). (D)

Same as in B but for the population of “no” neurons (n = 41).

Wagener and Nieder 517

146



causes a conscious stimulus-present percept; the con-

scious no-stimulus percept is supposed to be represented

by the absence of specific neuronal activity equivalent to

resting state activity (Pereira et al., 2022).

In line with our finding, previous studies reported that

a behaviorally relevant lack of sensory evidence favoring

perceived absence of a stimulus may also be actively

encoded by neurons in cortical association areas of non-

human primates, animals known to show visual aware-

ness (Ben-Haim et al., 2021). Neurons in the dorsolateral

pFC of macaque monkeys reporting the subjective pres-

ence or absence of visual stimuli actively signal the per-

ceived absence of a stimulus (Merten & Nieder, 2012).

Such stimulus-absence signals in pFC are predominantly

found during the delay period after a missed stimulus

(Merten & Nieder, 2012). Similar findings were reported

in single-neuron recordings in posterior parietal cortex

of human patients with epilepsy while they detected

weak and unpredictable vibrotactile stimuli (Pereira

et al., 2021). In this human study, some neurons showed

a higher increase in firing rates for misses compared to

hits, raising the intriguing possibility that missed/absent

percepts are encoded actively also in the human brain

(Pereira et al., 2021). These empirical findings agree

with models of awareness states that postulate

symmetric/balanced encoding of presence and absence

experiences (Fleming, 2020, 2021). Together, these data

call for a greater focus on examining percepts and deci-

sions about stimulus absence. These findings also ques-

tion whether absence percepts can be used as a baseline

or control condition in studies of perceptual awareness,

as is often done.

Temporal Two-stage Process of

Sensory Consciousness

Our results in crows suggest a temporal two-stage process

in sensory consciousness. NCL “yes”- and “no”-neuron

populations change from initially predominantly encoding

stimulus intensity to mainly representing the crows’ sub-

jective experience later in the trial and before a behavioral

report is required. Notably, the active coding of the “stim-

ulus absence” percept primarily emerged during the delay

phase when the crows’ subjective percept was maintained

until the response type was instructed. This suggests a

postsensory, cognitive processing stage in which the cate-

gorical “no” signal arose.

This activation cascade is reminiscent to results in the

primate cerebral cortex; here, the early activity is also pri-

marily involved in unconscious vision, whereas neuronal

responses associated with subjective experiences are

delayed relative to stimulus onset (Quiroga et al., 2008;

de Lafuente & Romo, 2006; Supèr, Spekreijse, & Lamme,

2001; Lamme & Roelfsema, 2000; Thompson & Schall,

1999). This two-stage process in conscious perception

may constitute a general principle of how sensory aware-

ness is realized in the vertebrate brain.

The two-stage process can, in principle, be explained by

the “global neuronal workspace theory” (Dehaene &

Changeux, 2011; Baars, 2002). This neurobiological con-

ception of consciousness theorizes that only intensive

enough sensory activity is able to access awareness by eli-

citing a network state called “global ignition” in higher

brain centers such as the primate pFC. The NCL would

be the ideal site for such an “ignition” because—like

pFC in the primate brain—it operates at the apex of the

telencephalic processing hierarchy in the avian brain

(Nieder, 2017; Güntürkün, 2005). This “all-or-none igni-

tion” event results in stimulus-driven activity to become

persistent in recurrent and interconnected brain net-

works, even after the stimulus itself has vanished

(Mashour, Roelfsema, Changeux, & Dehaene, 2020; van

Vugt et al., 2018). This can explain why percept-related

activity in NCL is seen in the delay phase after the brief

stimulus has ceased.

As an elaboration and extension of the original “global

neuronal workspace theory,” our findings suggest that

sensed stimulus energy is not the only trigger that can lead

to an ignition of large-scale networks when causing “stim-

ulus presence” percepts. Rather, the absence of stimuli

can also ignite brain networks by sufficient activation of

pools of “no” neurons to cause explicit “stimulus absence”

experiences, as long as “nothing” is a behaviorally relevant

category. As “no” neurons cannot be excited by incoming

stimulus energy (which is lacking by definition for absent

stimuli), brain-internal mechanisms must excite (or disin-

hibit) “no” neurons to signal conscious “absence” states as

subjective categorical representation. The precise mecha-

nisms of how “no” neurons become activated needs to be

deciphered in the future.

“Nothing” Represented as a Behavioral Category

In our behavioral protocol, not only the presence but also

the absence of stimuli was behaviorally relevant and

needed to be reported by the crows. Therefore, “nothing”

became a behavioral category and as such was most likely

needed to be actively encoded by neurons. This categori-

cal active “absence” signal is reminiscent of quantitative

empty-set representations (Nieder, 2016). Neurons in

the crow (Kirschhock, Ditz, & Nieder, 2021) and monkey

brain (Ramirez-Cardenas & Nieder, 2019; Ramirez-

Cardenas, Moskaleva, & Nieder, 2016; Okuyama, Kuki, &

Mushiake, 2015) are tuned to the preferred numerosity

zero (i.e., the empty set). Numerosity-zero-tuned neurons

respond with a maximum discharge to numerosity zero

and show a progressive drop-off of activity toward higher

numerosities. Neurons tuned to zero even emerge spon-

taneously in deep neural networks of object discrimina-

tion (Nasr & Nieder, 2021).

Both “stimulus absence” and “empty set” activity

require a transformation from a sensory “no-event” to an

internally generated, categorical representation, probably

through trial-and-error reinforcement learning. A cortical
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circuit model exemplified how category selectivity could

arise from reinforcement learning (Engel, Chaisangmongkon,

Freedman, & Wang, 2015). This model posits that sys-

tematic correlations between trial-to-trial fluctuations

of firing rates and the accompanying reward after appro-

priate behavioral choices cause neurons that progres-

sively become category selective (Engel et al., 2015).

According to this model, even initially nonselective neu-

rons developed categorical tuning, as long as they

exhibit firing rate fluctuations that correlated with

behavioral choices. Thus, when a crow learns to explic-

itly respond to “nothing” or numerosity zero to receive a

reward, this mechanism might suffice to produce neu-

rons that respond actively to “no” percepts and numer-

ical zero categories.

Neurobiological Principles of Sensory

Consciousness Across Evolution

Our findings in crows can also inform the neurobiological

principles of sensory consciousness across evolution

(Nieder, 2022; Nieder et al., 2020). Birds diverged from

the mammalian lineage 320 million years ago (Hedges,

2002; Kumar & Hedges, 1998). Since then, birds evolved

radically different endbrain structures (Jarvis et al., 2005).

Nevertheless, some birds, notably members of the corvid

songbird family (crows, ravens, jays), show sophisticated

cognitive behaviors such as endogenous attention

(Hahner & Nieder, 2023; Quest, Rinnert, Hahner, &

Nieder, 2022) and robust working memory (Wagener,

Rinnert, Veit, & Nieder, 2023; Liao, Brecht, Johnston, &

Nieder, 2022; Smirnova, Zorina, Obozova, & Wasserman,

2015; Veit & Nieder, 2013) indicative of conscious experi-

ences (Nieder, 2022, 2023; Nieder et al., 2020). In contrast

to mammals, the crow telencephalon—and the NCL in

particular—is lacking a layered neocortex and has instead

evolved a nuclear anatomical arrangement with surpris-

ingly high associative neuron numbers (Kersten et al.,

2022; Ströckens et al., 2022; Olkowicz et al., 2016). Our

data suggest that the active coding of both stimulus pres-

ence and absence is a computational principle for sensory

consciousness irrespective of the precise anatomical

layout and across remotely related phylogenetic taxa

(Nieder, 2021).
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