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zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt von

M.Sc. Saeed Ghoorchian
aus Tehran, Iran
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Abstract

Sequential decision-making represents a class of online learning problems where a learn-
ing agent interacts with an environment consecutively to optimize a long-term metric.
At each round of decision-making, the agent takes action and receives feedback from
the environment. The agent’s strategy is to improve the decision-making based on ob-
served feedback. The decision-making problem is challenging as often partial feedback
information is available to the agent during the learning process; at each round, the agent
receives the feedback related to the action taken and does not observe the outcome of any
other untaken actions. Besides, the agent has to learn in a random environment without
prior knowledge about the statistical characteristics of the random variables involved in
the problem. The problem becomes more complicated by considering various real-world
constraints during the decision-making process. Therefore, appropriate decision-making
strategies are required to address the challenges and solve the problem efficiently.

This thesis contributes to the field of online decision-making under uncertainty by for-
mulating novel decision-making problems and developing several algorithms. The pro-
posed methods build upon the multi-armed bandit framework that portrays the exploration-
exploitation dilemma, where the agent decides between exploring options to acquire new
knowledge and selecting an option by exploiting the existing knowledge. More specif-
ically, this thesis introduces several multi-armed bandit frameworks with various feed-
back models and objectives, and uses the developed frameworks to model and solve
real-world problems.

Chapter 3 formulates a budget-limited bandit problem in a dynamic environment where
pulling each arm is costly. The developed bandit framework is used to model the com-
putational offloading problem of users’ mobile devices to edge servers. To this end, the
required time and energy for data transmission and processing are analyzed. We pro-
pose an adaptive policy to solve the formulated problem and prove a regret bound on its
performance. We use the algorithm to solve a computation offloading problem through
simulation and compare its performance with several bandit-based algorithms.
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Abstract

In Chapter 4, we introduce a contextual bandit problem with costly observations,
where features’ states can be observed in exchange for a known and fixed cost. We
propose two algorithms for simultaneous and sequential state observations. We prove
that the algorithms achieve sublinear regret bounds concerning time. In addition, we
evaluate the proposed algorithms in a medical context by applying them to recommend
tests and treatments to patients with breast cancer. The results show that our algorithms
outperform several context-aware and context-agnostic algorithms.

Chapter 5 extends the contextual bandit model proposed in the previous chapter by
considering random costs of state observations as well as non-stationary reward and cost
generating processes. We propose an algorithm that learns the optimal observations and
actions simultaneously. We analyze the proposed algorithm theoretically by proving a
sublinear regret bound concerning time. The solution is validated on the real-world prob-
lem of ranking nursery school applications and compared with conventional benchmarks.

In Chapter 6, we develop a combinatorial semi-bandit framework with causally related
rewards, where we model the causal relations by a directed graph in a stationary struc-
tural equation model. We propose a policy that determines the causal relations by learn-
ing the network’s topology and exploits this knowledge to optimize decision-making.
We prove that the proposed algorithm achieves a sublinear regret bound in time. Nu-
merical experiments using synthetic data demonstrate the superiority of our proposed
algorithm over several combinatorial bandit algorithms. In addition, we employ the pro-
posed framework to analyze the development of Covid-19 in Italy.

Finally, Chapter 7 builds upon the framework developed in the previous chapter and
extends the model by considering non-stationary environments with delayed feedback,
while structural dependencies still exist amongst the arms’ reward distributions. We de-
velop a policy that learns the structural dependencies from delayed feedback and utilizes
that to optimize the decision-making while adapting to environmental changes. We an-
alyze the algorithm theoretically by proving a regret bound. We evaluate our method
using synthetic and real-world datasets and apply our algorithm to detect the regions in
Italy that contribute the most to the spread of Covid-19.
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Kurzfassung

Sequentielle Entscheidungsfindung ist eine Kategorie von Online-Lernproblemen, bei
denen ein Lernagent fortlaufend mit einer Umgebung interagiert, um eine langfristige
Metrik zu optimieren. In jeder Entscheidungsrunde ergreift der Agent Aktionen und
erhält Rückmeldungen aus der Umwelt. Die Strategie des Agenten besteht darin, die
Entscheidungsfindung auf der Basis des beobachteten Feedbacks zu verbessern. Das
Entscheidungsfindungsproblem ist eine Herausforderung, da dem Agenten während des
Lernprozesses oft nur partielle Feedback-Informationen zur Verfügung stehen; in jeder
Runde erhält der Agent das Feedback für die durchgeführte Aktion und beobachtet nicht
das Ergebnis anderer nicht durchgeführter Aktionen. Außerdem muss der Agent in einer
zufälligen Umgebung lernen, ohne dass er die statistischen Eigenschaften der Zufalls-
variablen kennt, die in das Problem involviert sind. Das Problem wird noch kompli-
zierter, wenn während des Entscheidungsfindungsprozesses verschiedene Sachzwänge
berücksichtigt werden. Daher sind geeignete Entscheidungsstrategien erforderlich, um
die Herausforderungen zu meistern und das Problem effizient zu lösen.

Diese Arbeit leistet einen Beitrag zum Gebiet der Online-Entscheidungsfindung un-
ter Unsicherheit, indem sie neuartige Entscheidungsprobleme formuliert und mehrere
Algorithmen entwickelt. Die vorgeschlagenen Methoden bauen auf dem mehrarmigen
Banditen auf, der das Explorations-Ausbeutungs-Dilemma abbildet, bei dem der Agent
zwischen der Erkundung von Optionen, um neues Wissen zu erwerben, und der Auswahl
einer Option durch Ausbeutung des vorhandenen Wissens entscheidet. Konkret werden
in dieser Arbeit mehrere Multi-Armed-Bandit-Frameworks mit verschiedenen Feedback-
modellen und Zielen vorgestellt und die entwickelten Frameworks zur Modellierung und
Lösung realer Probleme eingesetzt.

Kapitel 3 formuliert ein budgetbegrenztes Bandit-Problem in einer dynamischen Um-
gebung, in der das Ziehen jedes Arms kostspielig ist. Der entwickelte Bandit-Rahmen
wird verwendet, um das Problem der Verlagerung von Rechenleistung von mobilen Geräten
der Benutzer auf Edge-Server zu modellieren. Zu diesem Zweck werden die erforderli-
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che Zeit und Energie für die Datenübertragung und -verarbeitung analysiert. Wir schla-
gen eine adaptive Strategie vor, um das formulierte Problem zu lösen und beweisen eine
Bedauernsgrenze für seine Leistung. Wir verwenden den Algorithmus, um ein Problem
der Rechenauslagerung durch Simulation zu lösen und vergleichen seine Leistung mit
mehreren Bandit-basierten Algorithmen.

In Kapitel 4 führen wir ein kontextuelles Bandit-Problem mit kostspieligen Beobach-
tungen ein, bei dem die Zustände von Merkmalen im Austausch für einen bekannten und
festen Preis beobachtet werden können. Wir schlagen zwei Algorithmen für simultane
und sequentielle Zustandsbeobachtungen vor. Wir beweisen, dass die Algorithmen sub-
lineare Bedauernsschranken bezüglich der Zeit erreichen. Darüber hinaus evaluieren wir
die vorgeschlagenen Algorithmen in einem medizinischen Kontext, indem wir sie zur
Empfehlung von Tests und Behandlungen für Patienten mit Brustkrebs einsetzen. Die
Ergebnisse zeigen, dass unsere Algorithmen mehrere kontextabhängige und kontexta-
gnostische Algorithmen übertreffen.

Kapitel 5 erweitert das bisherige kontextuelle Bandit-Modell durch die Berücksichtigung
zufälliger Kosten von Zustandsbeobachtungen sowie nicht-stationärer Belohnungs- und
Kostenerzeugungsprozesse. Wir schlagen einen Algorithmus vor, der die optimalen Be-
obachtungen und Handlungen gleichzeitig erlernt. Wir analysieren den vorgeschlagenen
Algorithmus theoretisch, indem wir eine sublineare Bedauernsgrenze bezüglich der Zeit
beweisen. Die Lösung wird anhand des realen Problems der Rangfolge von Kindergar-
tenanwendungen validiert und mit herkömmlichen Benchmarks verglichen.

In Kapitel 6 entwickeln wir einen kombinatorischen Semi-Bandit-Rahmen mit kausal
verbundenen Belohnungen, in dem wir die kausalen Beziehungen durch einen gerichte-
ten Graphen in einem stationären Strukturgleichungsmodell modellieren. Wir schlagen
eine Strategie vor, die die kausalen Beziehungen durch Lernen der Topologie des Netz-
werks bestimmt und dieses Wissen zur Optimierung der Entscheidungsfindung nutzt. Wir
beweisen, dass der vorgeschlagene Algorithmus eine zeitlich sublineare Regressions-
grenze erreicht. Numerische Experimente mit synthetischen Daten zeigen die Überlegenheit
des von uns vorgeschlagenen Algorithmus gegenüber mehreren kombinatorischen Bandit-
Algorithmen. Darüber hinaus verwenden wir den vorgeschlagenen Rahmen, um die Ent-
wicklung von Covid-19 in Italien zu analysieren.

Schließlich baut Kapitel 7 auf dem im vorigen Kapitel entwickelten Rahmen auf und
erweitert das Modell auf nicht-stationäre Umgebungen mit verzögerter Rückkopplung,
wobei immer noch strukturelle Abhängigkeiten zwischen den Belohnungsverteilungen
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der Arme bestehen. Wir entwickeln eine Strategie, die die kausalen Beziehungen aus
dem verzögerten Feedback lernt und diese zur Optimierung der Entscheidungsfindung
bei gleichzeitiger Anpassung an Umweltveränderungen nutzt. Wir analysieren den Algo-
rithmus theoretisch, indem wir eine Bedauernsgrenze nachweisen. Wir evaluieren unsere
Methode anhand synthetischer und realer Datensätze und wenden unseren Algorithmus
an, um die Regionen in Italien zu ermitteln, die am meisten zur Verbreitung von Covid-19
beitragen.
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1 Introduction

This chapter provides an introduction and an outline of this dissertation. Section 1.1
describes online learning and compares it with traditional offline learning paradigms.
Section 1.2 then introduces multi-armed bandit, a subclass of online decision-making
problems, which is the main focus of this thesis. This section ends with listing the re-
search objectives of the thesis. Section 1.3 summarizes the main contributions of the
thesis. Finally, Section 1.4 provides an overview of the remaining chapters of the disser-
tation.

1.1 Online Learning

The term Artificial Intelligence (AI), coined by McCarthy et al. [4] in 1955, refers to
the intelligence of machines capable of reasoning and self-developing independently.
Machine Learning (ML) is a branch of AI which is concerned with developing algorithms
that automatically improve their performance by leveraging data. Such algorithms are
typically designed to perform a learning task in real-world situations.

Traditional learning methods that rely on batch learning in an offline manner, e.g.,
deep learning for supervised learning tasks, postulate data availability before performing
the learning task [5, 6]. Therefore, such methods need to store enormous amounts of
data for training a model before actually deploying the model for inference. Moreover,
these methods require updating the model parameters multiple times by using the same
dataset in several epochs of training. This results in long training times to find the optimal
solution. Finally, offline learning methods often cannot adapt to changing environments
unless the model is re-trained using new observations from scratch. This is an inefficient,
time- and resource-consuming approach for many learning problems in non-stationary
environments.

In many real-world problems, the model has to be learned in real-time using a se-
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quence of data. Unlike the offline learning methods, online learning algorithms are pro-
posed to perform learning tasks adaptively in a sequential manner [7, 8]. Online learning
addresses the shortcomings of traditional learning methods by allowing a learner to op-
timize an objective function over time and update the model parameters instantly upon
observing new data points. However, optimizing long-term metrics is challenging in on-
line decision-making problems where only partial feedback information is available to
the learner during the learning process [7, 9, 10].

Online decision-making is a sequential learning method where a learning agent inter-
acts with an environment under uncertainty in consecutive rounds of decision-making.
The agent learns in a random environment without prior knowledge about the statis-
tical characteristics of the random variables involved in the problem. At each round
of decision-making, the agent takes action and receives feedback related to that action,
while the outcome of any other available actions remains unobserved. The agent’s goal
is to make informed decisions sequentially based on historical observations to optimize
an objective function in the long run. Decision-making problems have attracted exten-
sive attention in recent years [9, 11]. This thesis further extends the state-of-the-art by
addressing several decision-making problems with various feedback models and objec-
tives. To this end, we focus on Multi-Armed Bandit (MAB) problems, a subclass of
online decision-making problems. In the next section, we describe MAB problems and
list the research objectives of this thesis.

1.2 Multi-Armed Bandit: A Sequential Learning
Framework

In the seminal form of the MAB problem [12], an agent selects an arm from a given set of
arms at sequential rounds of decision-making. Upon selecting an arm, the agent receives
a reward drawn from the unknown reward distribution of that arm. The agent’s goal is to
maximize the accumulated reward in a finite number of rounds. Alternatively, the agent
aims to minimize long-term regret, which is the difference between the accumulated
reward of the optimal policy in hindsight and that of the agent’s decision-making policy.
In this setting, the agent experiences the exploration-exploitation dilemma, where the
agent decides between accumulating an immediate reward and obtaining information
that might result in a larger reward only in the future [13].
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1.2 Multi-Armed Bandit: A Sequential Learning Framework

The exploration-exploitation dilemma appears in a variety of real-world problems,
including, but not limited to, developing online recommender systems [14], edge com-
puting problems [1], design of clinical trials [15], robotics [16], wildlife conservation by
allocating patrol hours to prevent poaching [17], or targeted Covid-19 border testing of
travelers [18]. In MAB problems, such a dilemma is well-addressed under various con-
straints [10]. The MAB is a flexible framework that can be extended to model and solve a
wide range of real-world problems. Bandit-based algorithms are often established based
on rigorous theoretical analysis, leading to efficient regret performance. Hence, the MAB
is a suitable framework to address the limitations of offline learning methods described
previously and to deal with partial feedback in online learning problems.

Although the MAB is well-established in the literature, there are several remaining
challenges that require novel bandit formulations to address a broader range of learn-
ing problems. For example, in many real-world situations, observing features’ states is
costly. Therefore, besides individual arms’ reward, learning the observations of the fea-
tures’ states is essential to improve the decision-making. As another example, in some
problems, the agent has to pay a cost each time an arm is selected. Such learning prob-
lems become aggravated in a non-stationary environment where reward and cost distribu-
tions undergo abrupt changes over time. Thus, the agent must follow a decision-making
policy that adapts to distribution shifts to maintain a high performance. Another chal-
lenging situation is related to bandit problems where causal dependencies exist amongst
the arms’ reward distributions. Such causal relations make it difficult to identify a subset
of arms with the optimal collective reward. In this case, the agent must learn individual
arms’ reward and causal relations amongst them to improve the decision-making strat-
egy. This problem becomes significantly more difficult when the feedback is delayed and
the environment is dynamic. Therefore, while learning the rewards and causal relations,
adapting to delays and environmental changes is necessary to optimize decision-making.

This dissertation formulates several bandit problems and proposes decision-making
strategies to address the challenges mentioned above. The main research objectives of
this thesis are as follows:

• Developing decision-making problems with various feedback models and objec-
tives to address real-world problems.

• Designing decision-making policies to solve the formulated problems.
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• Analyzing the proposed algorithms theoretically in terms of regret performance
and computational complexity.

• Analyzing the proposed algorithms numerically and comparing their performance
with state-of-the-art benchmarks.

In the subsequent chapters, we describe the developed bandit models and present the
results.

1.3 Research Contributions

The main contribution of this thesis is developing decision-making algorithms and ap-
plying the proposed algorithms to solve real-world problems. In detail, the contributions
of this thesis are as follows.

Chapter 3: Paper I forms the foundation of this chapter. We extend the seminal bandit
problem to develop an online and distributed framework for the computation offloading
problem of users’ mobile devices in dynamic wireless networks. To this end, we define
the reward and cost in terms of the required time and energy in each offloading round,
respectively. We then derive the probability distributions of reward and cost variables
by analyzing the required time for data transmission from a user’s device to a server
and the required time for data processing at a server. We model the problem by using a
budgeted non-stationary bandit formulation, where pulling arms is costly. We propose
an algorithm that can adapt to environmental changes and analyze it by proving a regret
bound based on the given budget. We perform numerical experiments by applying our
algorithm to solve a computation offloading problem through simulation. The numeri-
cal results demonstrate the proposed method’s superiority over several online learning
algorithms. Some parts of this chapter are also published in [19].

Chapter 4: This chapter includes the results published in Paper II. This chapter con-
cerns a contextual multi-armed bandit problem where features’ states can be observed
by paying a known and fixed cost. We formulate the problem in two different cases of
simultaneous and sequential state observations. For each case, we propose an algorithm
and provide sublinear regret bounds with respect to time. We evaluate our proposed
algorithms in a medical context using a breast cancer dataset with various information
acquisition costs and apply them to recommend tests and treatments to patients. The
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numerical results show that our proposed algorithms outperform several context-aware
and context-agnostic algorithms.

Chapter 5: Paper III forms the basis of this chapter. In this chapter, we extend the
contextual bandit model with simultaneous observations proposed in the previous chapter
by assuming that the costs associated with state observations are random variables and
that the random processes of reward and cost variables are piece-wise stationary. In
the formulated problem, the agent attempts to maximize the long-term average gain,
defined as the difference between the accumulated rewards and the paid costs on average.
To achieve this objective, we propose an algorithm and analyze its regret performance
in stationary and non-stationary environments. We establish sublinear regret bounds
concerning time. We validate our solution in the context of a decision support system
for nursery school applications, where we employ our proposed policy to recommend
priority ranks for applications. The experimental results demonstrate the superiority of
our algorithm compared to several standard contextual and context-agnostic baselines.

Chapter 6: This chapter includes the contents published in Paper IV. In this chapter,
we develop a combinatorial semi-bandit framework where structural dependencies exist
amongst the base arms’ reward distributions. We model the causal relations by a directed
graph in a stationary structural equation model. In our problem, the agent aims to maxi-
mize the long-term average payoff, defined as a linear function of the base arms’ rewards
and the adjacency matrix of the graph. We propose a policy that learns causal relations
and uses this knowledge to optimize the decision-making process. Hence, our proposed
framework does not require prior knowledge of the structural dependencies. We prove
that our proposed algorithm guarantees a sublinear regret bound in time. The numeri-
cal results using synthetic data validate the developed theoretical regret bound and show
the superiority of our proposed policy compared to several combinatorial semi-bandit
algorithms. We further apply our framework to analyze the Covid-19 development in
Italy by detecting the regions within the country that contribute the most to the spread of
Covid-19.

Chapter 7: The contents of this chapter are taken from Paper V. This chapter gener-
alizes the developed framework in the previous chapter by considering delayed and non-
stationary rewards. Similar to the method proposed in the previous chapter, we model
the causal relations using a directed graph. However, this chapter provides a generalized
framework that helps to deal with a broader range of real-world problems. We develop
an algorithm and analyze it theoretically by proving a regret bound. The proposed policy
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learns the structural dependencies from delayed feedback and exploits this knowledge
during decision-making while adapting to environmental changes. We use synthetic data
to compare the performance of the proposed algorithm with several combinatorial bandit
algorithms. The results show that our algorithm outperforms the benchmark algorithms
in a non-stationary environment with delayed feedback. The developed algorithm is also
evaluated on the Covid-19 outbreak dataset of Italy. However, compared to the experi-
ments in the previous chapter, we consider a more realistic scenario where the recorded
daily infected cases are reported with a delay, and the average number of region-specific
daily cases of the regions changes over time. The results show that our algorithm can
estimate the data for each region efficiently. Thereby, compared to the method proposed
in the previous chapter, our algorithm is more reliable in the presence of delay and non-
stationarity.

1.4 Thesis Overview

The rest of this thesis is organized as follows.

Chapter 2 provides the background required for understanding the problems in the
subsequent chapters and presents a brief overview of the related research.

Chapter 3 formulates a budget-limited bandit problem in a dynamic environment,
where pulling each arm is costly. The developed bandit model is used to solve a compu-
tation offloading problem. To this end, the required time and energy for data transmission
and processing are analyzed. We propose an algorithm and analyze its performance the-
oretically and numerically.

Chapter 4 introduces a contextual bandit problem with costly observations, where
features’ states can be observed in exchange for a known and fixed cost. We propose two
algorithms for simultaneous and sequential state observations. We discuss the efficiency
of algorithms and analyze their regret performance. The algorithms are also evaluated
via numerical experiments and used to recommend tests and treatments to patients with
breast cancer.

Chapter 5 extends the model developed in the previous chapter by assuming random
costs of state observations and non-stationary random processes of reward and cost vari-
ables. We propose an algorithm and analyze its regret performance. Further, the solution
is validated on the problem of ranking nursery school applications.
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Chapter 6 develops a combinatorial semi-bandit framework where structural depen-
dencies exist amongst the arms’ reward distributions. We propose a policy that deter-
mines the causal relations by learning the network’s topology and exploits this knowl-
edge to optimize decision-making. We perform the regret analysis and discuss the effi-
ciency of the proposed algorithm. In addition, we employ the developed framework to
analyze the development of Covid-19 in Italy.

Chapter 7 builds upon the framework developed in the previous chapter and extends
the model to non-stationary environments with delayed feedback. We design an algo-
rithm and analyze it theoretically by proving a regret bound. The proposed method is
evaluated via numerical analysis. We further apply our method to detect the regions in
Italy that contribute the most to the spread of Covid-19.

Chapter 8 concludes the thesis by summarizing the contributions and highlighting
the results presented in the main Chapters 3-7. In addition, we mention several potential
future research directions.

This dissertation is written in an integrated format, and each of the Papers I-V consti-
tutes one of the Chapters 3-7. The manuscripts I-V have only been reformatted in this
thesis. Nonetheless, each chapter is self-sufficient and independent, with its specific no-
tations and literature review to provide a thorough comparison of its contribution with
the related works. The appendices of each chapter include the proofs presented in the
corresponding paper’s supplementary materials. The rest of each paper’s supplementary
materials are added to the main body of the corresponding chapter. The manuscripts I-V
include the papers published at leading peer-reviewed conferences and journals and the
papers that are already submitted. In particular, Papers I and II are © 2020-2021 IEEE.
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2 Background

This chapter focuses on bandit problems and provides the background required for under-
standing the formulated problems in the subsequent chapters. In Section 2.1, we describe
the seminal bandit problem and formulate the expected regret in stationary environments.
In Section 2.2, we explain the bandit problem in non-stationary environments and re-
define the expected regret. Section 2.3 introduces the contextual bandit problem. Next,
Section 2.4 describes the costly bandit models where pulling arms or observing feature
values are costly. Finally, Section 2.5 introduces the combinatorial bandit problems. In
each section, we present motivating examples and mention several related works.

2.1 Bandit Problems

The term bandit refers to the name of a gambling machine called a slot machine. Hence,
the slot machine is also known as a one-armed bandit. In its basic form, the Multi-Armed
Bandit (MAB) problem [12, 20] then involves a player (also called agent or decision-
maker) facing a row of slot machines (arms). The player gambles in sequential rounds of
play by pulling one arm at a time and collecting money (reward) in return. At each round,
the winning depends on the played machine (reward generating process associated with
the corresponding arm). We formalize the problem in the following.

Let A = {1,2, . . . ,A} denote the set of arms. By pulling an arm a 2 A at each time
t = 1,2, ..., the player receives some reward ra,t whose generating distribution is unknown
to the player. The player’s goal is to maximize the accumulated reward over a finite
time horizon T . In a stochastic bandit problem, the sequence of rewards for each arm
can be attributed to some specific distribution. In other words, the random process of
rewards for each arm is stochastic. In contrast, in an adversarial (non-stochastic) bandit
problem, the rewards of each arm are not drawn from any specific distribution; hence,
there does not exist any probabilistic assumption regarding the rewards [13, 10]. In
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stochastic bandit problems, the reward generating processes can be stationary or non-
stationary. In the stationary case, the rewards of each arm are independent and identically
distributed (i.i.d.) random variables. In the rest of this section, we assume that the
environment is stationary and defer the non-stationary case to the following section.

In MAB problems, the agent commonly competes with a player that knows the un-
derlying reward’s distributions. We refer to this player as the oracle. Therefore, the
oracle would always pull the arm that yields the highest mean reward to maximize the
cumulative reward. The agent follows a decision-making policy whose performance is
compared to the oracle’s policy, i.e., the optimal strategy. Therefore, the agent aims to
minimize the cumulative expected regret, defined as the difference between the accumu-
lated reward of the oracle and that of the applied decision-making policy on average. Let
µa denote the expected reward of arm a 2 A. Formally, cumulative expected regret is
defined as

RT = T µa⇤ �
T

Â
t=1

µat , (2.1)

where a⇤ = argmax
a2A

µa is the optimal arm chosen by the oracle and at is the selected arm

at time t under the applied policy.

To solve the stochastic bandit problems, different strategies such as those based on
Upper Confidence Bounds (UCBs) [21] and Thompson sampling [22] as well as greedy
approaches [23] are proposed in the literature. For example, the idea behind UCB-based
algorithms is to estimate an upper bound on each arm’s mean reward that holds with
high probability. The agent then selects the arm with the highest estimated bound at each
decision-making round.

In the rest of this chapter, we describe several extensions of the seminal MAB problem
that we consider in this thesis.

2.2 Non-stationary Bandits

Real-world problems frequently appear in non-stationary environments, where some sta-
tistical characteristics of the involved random variables change over time. For example,
in the wireless network routing problem, the quality and availability of each link may
change over time due to network congestion or maintenance [24]. In contrast to the sta-
tionary case, where the optimal arm is unique throughout the game, in the non-stationary
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case, the optimal arm may change over time. In a non-stationary environment, the arms’
mean rewards are time-dependent; hence, in this case, we denote the mean reward of arm
a 2A at time t by µa,t and re-define the cumulative expected regret as

RT =
T

Â
t=1

⇥
µa⇤t ,t�µat ,t

⇤
, (2.2)

where now a⇤t = argmax
a2A

µa,t is the optimal arm chosen by oracle at time t. We refer to

the specific time instance where a change occurs in the environment as change point.
Non-stationary multi-armed bandits have been intensively investigated in the litera-

ture. Examples include [25, 26, 27, 28, 29, 14]. Here, a common approach to solve the
problem is to use a sliding window or a discount factor to estimate the expected value of
rewards with piece-wise stationary generating processes [25]. Other approaches, such as
those based on change-point detection [30], have also been proposed to solve the prob-
lem. In Chapters 3, 5, and 7, we consider non-stationary bandits and propose adaptive
decision-making strategies to solve the formulated problems.

2.3 Contextual Bandits

In the basic bandit problem described above, the agent only observes the played arm’s
reward at each round. Therefore, the agent must make future decisions only based on
its past performance. In comparison, in a Contextual Multi-Armed Bandit (CMAB)
problem [13], a feature vector (also called context vector) as some side information is
revealed by the environment, and the agent can observe this information before selecting
an arm. Formally, let D = {1,2, . . . ,D} represent a finite set of features. Each feature
i2D has some random state F[i]2Xi, where Xi denotes a finite set of states for feature i.
Therefore, at each time t, the environment reveals a realization f t [i] of the random state
corresponding to the feature i 2 D. The agent is then able to observe the vector f t =

[f t [1],f t [2], . . . ,f t [D]], drawn from an unknown distribution, before taking an action. A
common objective in CMAB problems is to learn the best policy from features to arms.

The contextual bandit problem has been studied in various settings over the past years.
For example, in the CMAB problem, some features might be hidden [31], or the number
of feature observations can be limited by a budget [32]. In addition, the reward function
can be a linear function [21] or a general nonlinear function [33] of the context vector. In
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the literature, the contextual bandit problem is also called bandits with side information
or covariate bandits.

2.4 Costly Bandits

The aforementioned bandit models can be further extended by considering the costs of
collecting information. One possible extension is to consider a bandit problem where the
agent has to pay a cost each time an arm is selected [34, 35]. For example, in our initial
example of gambling on casino slot machines, the gambler has to allocate a coin on a
machine at each time of play. Sometimes, there is additionally a budget for the total paid
costs [36, 37, 38, 35]. In this case, a common objective is to maximize the accumulated
reward before the total paid cost exceeds the budget. In Chapter 3, we consider a budget-
limited MAB problem where pulling arms are costly.

Another possible extension is to consider costly features; in this case, the agent has
to pay a cost to observe a feature value. For example, in online advertising problems,
the advertiser can purchase information about target users to display personalized ads.
Costly features in online learning problems have been addressed in the full information
setting [39, 40, 41]. We address online learning problems with costly features in the
bandit setting in Chapters 4 and 5 of this thesis.

2.5 Combinatorial Bandits

In a combinatorial bandit problem, the agent is allowed to select a subset of base arms
at each round of decision-making. This subset is referred to as a super arm. The agent
then accumulates the collective reward associated with the chosen super arm. In a com-
binatorial semi-bandit setting, the agent can also observe the individual reward of each
base arm that belongs to the selected super arm. In this type of bandit problems, a com-
mon objective is to learn the best combinatorial strategy that maximizes the accumulated
collective reward [42, 43, 44, 45].

As the number of super arms is combinatorial in the number of base arms, naively ap-
plying conventional MAB algorithms such as [46] to solve the combinatorial bandit prob-
lem results in suboptimal regret bounds. Hence, a proper algorithm design is required
to solve the problem efficiently. The combinatorial bandit problem is well-investigated
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in the literature by considering various settings [42, 43, 47, 48, 44, 45]. Different strate-
gies, such as those based on UCBs [49] and Thompson sampling [47], are proposed to
solve the combinatorial bandit problems. In Chapters 6 and 7, we consider combinato-
rial semi-bandit problems where structural dependencies exist amongst the arms’ reward
distributions and develop UCB-based algorithms to solve the formulated problems.
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3 Multi-Armed Bandit for Edge
Computing in Dynamic Networks
with Uncertainty

In the edge computing paradigm, mobile devices offload the computational tasks to an
edge server by routing the required data over the wireless network. The full potential
of edge computing becomes realized only if a smart device selects the most appropri-
ate server in terms of the latency and energy consumption, among many available ones.
The server selection problem is challenging due to the randomness of the environment
and lack of prior information about the same. Therefore, a smart device, which se-
quentially chooses a server under uncertainty, aims to improve its decision based on the
historical time and energy consumption. The problem becomes more complicated in a
dynamic environment, where key variables might undergo abrupt changes. To deal with
the aforementioned problem, we first analyze the required time and energy to data trans-
mission and processing. We then use the analysis to cast the problem as a budget-limited
multi-armed bandit problem, where each arm is associated with a reward and cost, with
time-variant statistical characteristics. We propose a policy to solve the formulated prob-
lem and prove a regret bound. The numerical results demonstrate the superiority of the
proposed method compared to several online learning algorithms.

3.1 Introduction

The popularity of mobile applications has significantly increased among users over the
past years. Some apps, for example, those based on face and/or voice recognition, pro-
duce an excessive amount of data and require heavy computations. Even if a hand-held
device is capable of performing the computations using its own internal hardware, lo-
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cal data processing usually yield long delay as well as excessive power consumption,
thereby resulting in a low Quality of Service (QoS). Moreover, in a long run, repeti-
tive local computation might affect the lifetime of the battery or other components of a
mobile device.

In the next-generation wireless networks, edge servers are foreseen to offer computa-
tional services, meaning that the devices have the possibility to offload their computa-
tional data through a wireless network to the edge servers so that the data is processed
remotely. Compared to the cloud servers [50], edge servers are located at close proxim-
ity to the users, which guarantees a shorter data transmission time and thereby a lower
energy consumption [51], [52]. Edge computing has changed the traditional paradigm of
cloud computing by empowering more end devices to perform multiple tasks related to
real-time and data-driven applications at a lower cost. In addition, edge computing en-
ables caching of services, analytics, and required files at the edge servers, thus reducing
the backhaul traffic. Needless to say, edge computing becomes more efficient if the de-
vices are autonomous, i.e., able to choose when and to which server to offload and which
resources to use. Implementing an autonomous behavior is, however, not a trivial task.
One reason is that unlike cloud servers, there might be multiple edge servers available
to the device at the time of offloading. Moreover, often the devices are not given any
prior information about the servers and network. In addition, the environment might be
dynamic, i.e., some statistical characteristics of the network and servers might change
over time.

To deal with the aforementioned challenge, an autonomous device interacts with the
network, by sequentially choosing a server under uncertainty, and gathers some informa-
tion about the environment in each offloading round. The goal is to improve the decisions
for the next offloading rounds based on the previously consumed time and energy. This
problem is an instance of online decision-making, where the decisions are taken sequen-
tially based on the historical observations to optimize some objective function. In our
problem, we define this objective function based on the total time required for an of-
floading round and subject to a constraint based on the total consumed energy in each
offloading round.

Multi-Armed Bandit (MAB) problem is a subclass of online decision-making prob-
lems which involves a gambling machine with several arms and a gambler [12], [20]. In
our work, we use an MAB formulation to deal with the optimal server selection problem.
We investigate an MAB problem, where pulling each arm reveals two random variables:
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reward and cost. The reward and cost generating processes are a priori unknown and
piece-wise stationary. At each of the consecutive rounds, the gambler pulls one arm,
receives a reward, and pays a cost. Given a finite budget, the gambler tries to maximize
its accumulated reward before the total paid cost runs out of the budget.

In our server selection problem, we define the reward and cost in terms of the re-
quired time and energy in each offloading round, respectively. Moreover, we derive the
corresponding probability distributions by analyzing the required time for data transmis-
sion from a user’s device to a server, as well as the required time for data processing at
a server while taking the dynamic nature and the inhomogeneity of wireless networks
into account. We then use a budget-limited multi-armed bandit model to solve the dis-
tributed server selection problem. Thus, our work extends state-of-the-art works, which
are mostly centralized. We propose BPRPC-SWUCB, a novel MAB algorithm, to min-
imize the expected regret. BPRPC-SWUCB can be used to solve a variety of dynamic
decision-making problems where taking actions yields non-i.i.d. reward and cost vari-
ables. Our proposed solution does not require heavy information and does not cause
excessive computational complexity. Finally, we analyze BPRPC-SWUCB by proving a
regret bound and compare its performance with several existing MAB algorithms through
simulation.

3.1.1 Related Works

Similar to other networking paradigms, resource management is a key challenge in com-
putation offloading due to the scarcity of resources, e.g., the computational power, en-
vironmental and hardware constraints, e.g., the number of available servers, and the dy-
namic status of the environment, e.g., the task arrival rate. In [53], the authors take
advantage of supervised learning methods to solve an offloading problem where a single
user decides which components of the application to execute locally and which ones to
offload. The objective is to optimize the local execution cost and the offloading cost. The
proposed approach has a high computational complexity compared to MAB algorithms
and requires data storage to train a deep neural network. The authors in [54] study CPU
task allocation in an offloading problem where a mobile device can offload its compu-
tational tasks to multiple small cell access points. In contrast to our work, the objective
is to minimize the sum of energy consumption and task execution latency. The authors
solve the proposed optimization problems using different approximation approaches. In
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[55], the authors formulate a non-convex optimization problem to solve the computation
offloading problem of a single user. They design three algorithms to optimize edge node
candidate selection, offloading ordering, and task allocation. Compared to our work, it
does not take the energy consumption into account and instead, jointly minimizes the
latency and reliability (offloading failure probability). In [56], the authors investigate
the partial offloading of a single device and propose an algorithm that uses a Lyapunov
optimization to minimize the energy consumption. Unlike our approach, the authors
consider a constraint on the maximum frequency of task executions which do not meet
a given execution time requirement. In [57], the authors formulate an offloading prob-
lem of a single user as a Markov decision process. The objective is to find the optimal
number of tasks which should be locally executed or offloaded so that the user’s utility
is maximized whereas the energy consumption, processing delay, required payment, and
task loss probability are minimized. The proposed method results in high computational
complexity as it requires to train a deep Q-network at each offloading round. In [58],
the authors use basic MAB to model an offloading problem in vehicular edge computing
systems. The objective is to minimize the offloading delay. Unlike our work, the au-
thors does not take the energy consumption into account. In [59], the authors investigate
the computation offloading in vehicular edge computing systems. Here, they model the
problem using a combinatorial MAB where the same task is offloaded to a subset of the
service vehicles. The objective is to minimize the offloading delay by finding the service
vehicle that has the lowest offloading delay among the selected subset. However, the de-
rived upper bound for regret scales linearly with respect to the cardinality of the selected
subset of service vehicles.

As mentioned previously, we model the computation offloading problem in the MAB
framework. Our approach is perhaps most closely related to [36], where a budgeted
MAB problem is considered with a reward and a discrete cost which are independent and
identically distributed (i.i.d.) random variables. In [37], the authors take a probabilistic
approach to solve the budgeted MAB problem with i.i.d. reward and cost variables.
Similarly, in [38], the authors consider the budgeted MAB problem with i.i.d. reward and
cost variables. The proposed algorithm assigns a pulling probability to each arm based on
the solution of an optimization problem. The i.i.d. condition in these works corresponds
to a stationary environment where the expected value of reward and cost variables remain
fixed over the entire game horizon. In contrast, in our work, we allow for a non-stationary
environment with non-i.i.d. reward and cost variables where the expected value of reward
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and cost vary over time. It is noteworthy that, extending the developed decision-making
policies to dynamic (non-i.i.d.) environments is not straightforward. Our approach is
inspired by [25], where the authors investigate a non-stationary MAB problem. However,
in their formulation, pulling arms does not result in any cost. In [35], the authors study a
budgeted MAB problem, where the reward generating processes of arms are piece-wise
stationary and the cost of pulling each arm is fixed but may be different for different arms.
Further, in [34], the authors study a stationary MAB problem with a reward variable and
a continuous cost variable.

3.1.2 Organization

Section 3.2 describes the system model. In Section 3.3, we introduce the concept of
reward and cost in the context of the computation offloading problem, and we derive
their statistical characteristics. In Section 3.4, we describe and theoretically analyze
an MAB algorithm, named BPRPC-SWUCB. In Section 3.6, we present the results of
numerical analysis. Section 3.7 concludes the chapter.

3.2 System Model

We consider a multi-hop wireless network consisting of a set of servers that have fixed
locations at the network’s edge and a set of users that might be willing to offload their
computational job to one of the edge servers. We gather the servers in the set S =

{1, . . . ,S} so that any device may select one of the |S| = S to offload its computational
task. Throughout this chapter, we may use device and offloading user interchangeably.
Moreover, we use the terms user’s device and source, as well as the terms server and
sink, interchangeably.

A general computation offloading procedure consists of four elements: (i) selection of
a server, (ii) sending the data to the server, (iii) processing the data and accomplishing
the task at the server, and (iv) sending the results to the device. We consider the time to
be slotted and denote one time period by t. Moreover, we use the term round to refer to
the amount of time required to accomplish an offloading process entirely, i.e., to succeed
in all of the aforementioned steps. We denote the rounds by q = 1,2, .... Note that each
round q includes a variable amount of time periods t.
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Each computational job consists of some analysis of the offloaded data. We assume
that each computational job can be divided into some homogeneous tasks with respect to
the time required to process each task. Without loss of generality, we assume that each
device offloads the same amount of the data at each round q . If a large amount of data is
to be offloaded, we model it as multiple rounds of offloading, each with the same amount
of data.

As mentioned above, in order to offload a computational task, any user transfers the
required data to a server. The transfer takes place via some intermediate helper nodes,
which act as transmitters and receivers. This could be, for example, other devices in the
network or fixedly deployed micro- or femto small base stations. At each time, every
node can act either as a transmitter or as a receiver. We select the transmission range of
each node (including the source and any sink s 2 S) to be the same and denote it by R.
That is to say, a node can only transmit to the nodes inside the circle of radius R around
that node. In the following, we discuss the network’s model from the perspective of one
exemplary user.

As it is conventional [60], [61], we assume that the intermediate nodes (devices, relays,
small base stations, and the like), located between the source and a sink, are distributed
according to a homogeneous Poisson Point Process (PPP). Since the servers are located at
different geographical areas, the density of the aforementioned PPP varies over servers.
Therefore, we use Ls to show the network’s intensity between the user and each server
s 2 S . Similar to [60] and [62], to take the transmission impairments of the link between
every two nodes into account, we model the links by a Bernoulli random variable with
success probability ps,q . In other words, the transmission is successful (non-outage)
with probability ps,q and fails (outage) with probability 1� ps,q . Note that the outage
probability depends on the geographical location of the server, which entails affectation
by factors such as shadowing, fading, and interference. Moreover, the dependency of ps,q

on the round (amount of time) q accommodates the time-variation of the channel quality.
Noteworthy that, 1� ps,q represents the failure probability in transmission regardless of
the reason behind this failure. For example, if we assume that the noise and interference
affect a link between a transmitter-receiver pair, we define the failure in terms of the
signal-to-interference-plus-noise ratio (SINR) being less than a given threshold. In this
case, 1� ps,q can be seen as the probability that SINR is below the given threshold. In
brief, the network between each server s and the device is modeled by a graph, where the
vertices are distributed according to a PPP with intensity Ls and there is an edge between
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every two vertexes with the probability ps,q .

As mentioned before, in our problem, we analyze the smart decision-making of a sin-
gle offloading user, when given a number of choices with respect to the server; nonethe-
less, it is natural that in every network, there are many of such users, each offloading
some tasks to some server. To model the collective behavior of the network mathemati-
cally, we assume that the arrived jobs at a server s follow a Poisson distribution with the
rate ls,q . The arrival rate depends on the server s and the offloading round q , implying
that on average, the intensity of the job arrival changes with respect to the servers and
time.

In the following assumption, we describe the mathematical model of time-variant char-
acteristics of the random variables.

Assumption 1. For any server s 2 S , the parameters ps,q and ls,q are piece-wise con-
stant with respect to the round q ; in other words, they remain constant unless they expe-
rience a change at some specific round(s), referred to as change point(s). Naturally, the
change points are not necessarily identical for two aforementioned parameters.

Consider a random process whose instantaneous outcomes are drawn from some prob-
ability distribution with parameter ps,q and/or ls,q . Then, by the discussion above,
the process is piece-wise stationary, as the distribution of the outcomes remains time-
invariant over disjoint time intervals, but changes from one interval to the other.

In Fig. 3.1, we illustrate an exemplary system model consisting of an offloading user
and four edge servers at some specific time t. Geographically, the network is divided into
four disjoint areas and the nodes in each area are distributed according to a homogeneous
PPP. Naturally, in the areas with higher intensity, a larger number of nodes are available.
Since we include 4 servers in this figure, we also divide the area into 4 parts to better
illustrate that the intensity of intermediate nodes between the user’s device and each
server can be different. In general, if there are S servers available to the user’s device at
the time of offloading, one can divide the area to S parts, each with different intensities
for the intermediate nodes.

Table 3.1 summarizes most important system’s parameters together with a brief de-
scription.
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Figure 3.1: An exemplary illustration of
a communication network consisting of
an offloading user, four computational
servers, and the intermediate transmitters
and receivers. The intensity of the inter-
mediate nodes varies with respect to each
server. The transparent cyan circle around
each server represents its job arrival rate,
where a bigger radius corresponds to a
greater rate.

3.3 Statistical Characteristics of the System Variables

Conventionally, in wireless networks, each user has some strict constraints (or require-
ments) on the delay and the energy. Therefore, given multiple choices, it is natural that
a device aims at selecting a server that guarantees minimum delay as well as minimum
energy consumption. Choosing the best server is however not a trivial task, in particular
under uncertainty, i.e., when the required information is not available at the user. The
problem becomes more challenging in a dynamic environment, where the characteristics
of the network and servers vary over time.

We define the reward gained by the device based on the delay time at each offloading
round. More precisely, we quantize the delay time and assign a positive reward 1 to
the offloading user if the delay time caused by the chosen server remains below a given
threshold. Moreover, we define the cost based on the total energy consumption during an

Table 3.1: Summary of most frequently used system parameters

Parameter
ps,q Outage parameter of the network between the user and server s at round q
ls,q Job arrival rate to the server s at round q
Ls Network’s intensity between the user and server s
R Transmission range
rs Service rate corresponding to the server s
`s Distance between the user and the server s
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offloading round. This energy consumption includes the energy spent for data transmis-
sion between the device and the server as well as the energy spent for data processing at
the server. Therefore, the incurred cost strongly depends on the choice of the server.

In order to mathematically formulate the server selection problem, in the following,
we first define and analyze the reward and cost of selecting each server.

3.3.1 Reward

As mentioned earlier, in computation offloading, an important performance metric is the
total time required for an offloading round, referred to as the delay time and denoted by
ds,q . The delay time at round q consists of the processing time fs,q at the server s and
the transmission time gs,q between the source and the sink s. Therefore, at round q we
have

ds,q = fs,q +gs,q . (3.1)

For the user’s Quality of Service (QoS) satisfaction, we require that the delay time ds,q

remains below a pre-specified threshold, namely, d . In other words, the QoS is satisfied
if ds,q  d , and is not satisfied otherwise. Therefore, we define the reward, gained by the
offloading user at round q upon choosing the server s 2 S , as

rs,q =

8
<

:
1, ds,q  d

0, ds,q > d .
(3.2)

In the rest of this section, our goal is to find the distribution of the reward rs,q , which
is determined based on the distribution of the delay time ds,q . Consequently, in the
following, we determine the distribution of the processing time fs,q and the transmission
time gs,q .

Processing Time

For each server, we define the service rate as the number of tasks which can be processed
by that server per unit of time. Naturally, the servers are inhomogeneous in terms of
service rate, meaning that each server s 2 S has some service rate rs > ls,q , 8q . We use
zs,q to denote the service time required by the server s 2 S at round q .

Moreover, to be processed, each computational job arrived at a server s2 S has to wait
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in a queue for some time depending on the job arrival rate. Consider a time t inside a
round q . We denote the waiting time at time t by ws,t . Similarly, we use fs,t and zs,t to
denote the processing time and the service time at time t, respectively. Thus, at server
s 2 S , the processing time at time t is given by

fs,t = zs,t +ws,t . (3.3)

We consider an M/M/1 queue model, by which zs,t and fs,t follow an exponential
distribution with parameter rs and rs�ls,t , respectively [63], [64]. By Assumption 1,
the job arrival rate remains fixed at least during a specific round q . Therefore, for any
time period t inside a round q , it holds ls,q = ls,t . In words, this implies that the expected
value of the waiting time, and consequently of the processing time, remains constant for
the entire amount of time of an offloading round q . Therefore, throughout this chapter,
we use fs,q to denote the processing time at the server s for round q , regardless of the
specific time period t inside the round q . Moreover, note that by Assumption 1, ls,q

is assumed to be piece-wise constant, which implies that fs,q follows an exponential
distribution with piece-wise constant mean 1

rs�ls,q
. Formally,

P( fs,q = x) =

8
<

:
(rs�ls,q )e�(rs�ls,q )x, x� 0

0, x < 0
(3.4)

Transmission Time

A path of length N is an N-hop connection between the source o and the sink s. We
represent such path by a sequence o = x1,x2, . . . ,xN+1 = s, where xi denotes the i-th
node in the path and x1 and xN+1 stand for the source and the sink, respectively. Similar
to [65] and [66], we define the concept of progress. Assume a transmitter node located
at xi. The progress of a node xi+1 is defined as the projection of the link between xi

and xi+1 onto the straight line connecting the node xi and the sink s. Additionally, we
say a progress is positive if the projection happens towards the sink s and it is negative
otherwise. We define the maximum number of hops hs,max between the source o and the
sink s as the maximum N for which a path exists between o and s and all the nodes xi,
i = 2, . . . ,N +1 have positive progress. We assume that hs,max between the source o and
any sink s is known.
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Figure 3.2: Sketch of a 2-hop communica-
tion path between the user (source) and a
computation server (sink).

In Fig. 3.2, a source node o transmits a data packet to the sink s. For the pair (o,s),
we define the distance as the length of the straight line connecting the source o and the
sink s. According to our system model, the distance is known, which we denote by `s.
If the sink s is not located within the transmission range of the source o, the data should
be transmitted using the intermediate nodes of the PPP. Therefore, several hops might be
needed to transmit the data from the source to the sink. Let Hs denote the random number
of hops between the source and a sink s. The probability of connecting the source o and
the sink s with h number of hops, h = 1,2, ..., is computed in [67] as

P(Hs = h) =C`s [1� e�Ls|As|]h�1, (3.5)

where C`s is a constant which depends on the distance `s between the source and the sink
node s and 0C`s  1. Moreover, in (3.5), As denotes the intersection area between the
transmission range of a node and its next node in a path which can be calculated as [67]

|As|= R2[2cos�1(
`s

2R
)]� sin(2cos�1(

`s

2R
))]. (3.6)

Hence, the expected value of the number of hops Hs yields

E[Hs] =
hs,max

Â
Hs=1

HsP(Hs) =C`s

hs,max

Â
Hs=1

Hs[1� e�Ls|As|](Hs�1). (3.7)

However, in our setting, there is a possibility of outage for a transmission between any
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pair of nodes xi and xi+1; this means that the transmitter might require several attempts
until a successful reception at the receiver is achieved. Let Ki, i = 1,2, . . . , denote the
random variable representing the number of Bernoulli trials (time periods) needed for
the first successful connection between the transmitter-receiver pair xi and xi+1. Then we
have

P(Ki = ki) = ps,q (1� ps,q )
ki�1. (3.8)

In words, the number of time periods (attempts) needed to achieve the first successful
connection follows a geometric distribution.

The transmission time gs,q between the source o and the sink s at round q is given by

gs,q =
Hs

Â
i=1

Ki. (3.9)

The following proposition states the statistical characteristics of the transmission time.

Proposition 1. The transmission time gs,q is a random variable with the probability
distribution

P(gs,q = k) =C`s

min{k,hs,max}

Â
h=1

✓
k�1
h�1

◆
ph

s,q (1� ps,q )
k�h[1� e�Ls|As|]h�1, k = 1,2, . . . ,

(3.10)
and the expected value

E[gs,q ] =
C`s Âhs,max

Hs=1 Hs[1� e�Ls|As|](Hs�1)

ps,q
. (3.11)

Proof. See Appendix 3.A. ⌅

We observe that the expected transmission time depends on ps,q ; therefore, in a dy-
namic environment where ps,q is piece-wise constant, gs,q has a piece-wise constant
mean.

Remark 1. According to the system model, the nodes between the user’s device and
each server are a realization of a homogeneous PPP; that is, the intermediate network’s
structure might change at each time t. Therefore, if at some specific time t there is no
intermediate node in the forward direction, the transmitter xi simply waits until some
receiver xi+1 appears in the forward direction. An integration of this scenario into the
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current system model and analysis is straightforward. Indeed, the unavailability of a
node in the forward direction corresponds to an outage without energy consumption, for
which our system model remains valid. Besides, it should be emphasized that such a
scenario is unlikely to occur when the density of the network’s PPP is high enough.

Delay Time and Reward

Finally, the following proposition characterizes the statistics of the variable reward.

Proposition 2. Reward rs,q is a random variable with Bernoulli distribution. Moreover,
it has a piece-wise constant expected value as

µs,q =C`s

bdc

Â
k=1

"⇣
1� e�(rs�ls,q )(d�k)

⌘

min{k,hs,max}

Â
h=1

✓
k�1
h�1

◆
ph

s,q (1� ps,q )
k�h[1� e�Ls|As|]h�1

#
. (3.12)

Proof. See Appendix 3.B. ⌅

Remark 2. Our proposed algorithm targets the applications in which the delay time
must only stay below a pre-specified threshold, although minimizing the delay is not nec-
essary. In fact, in such applications, reducing the delay beyond the requirement results
in the inefficiency of resources. This is the motivation behind defining the reward func-
tion (3.2). As an alternative and in order to relax the strict requirement in (3.2), one
can quantize the time interval [0,d ] to m intervals, [0, d

m), [
d
m ,2

d
m), . . . , [(m� 2) d

m ,(m�
1) d

m), [(m� 1) d
m ,d ], and assign different rewards to each interval. We can select the

value of m deterministically based on the problem specifications. Let the delay time at
round q in which a server s is selected be given by ds,q 2 [i d

m ,(i+1) d
m ]. Then, we define

rs,q = yi, 8i = 1, . . . ,m�1, where yi > 0. With such a setting, the reward variable follows
a categorical distribution that is an extension of the Bernoulli distribution for discrete
random variables with more than two possible outcomes. Even though it is a straightfor-
ward extension, for the problem formulation and the proposed solution in the following,
we work with the Bernoulli reward variables defined in (3.2).
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3.3.2 Cost

Naturally, every offloading round results in some energy consumption due to data trans-
mission to the server and data processing at the server. Consider a round q in which
the computational task is offloaded to a server s. We denote the total required energy by
cs,q . Due to the energy scarcity, we define the cost in terms of the consumed energy. In
general, the consumed energy, i.e., the cost cs,q , is a function of the transmission time
and processing time. Note that, the energy consumed by the user’s device for data trans-
mission might be of higher priority compared to the energy consumed by the server for
data processing. Therefore, in the following, we use appropriate importance weights as-
sociated to each component of the cost. More precisely, the cost consists of the following
parts.

• The energy required for data transmission, denoted by wgvg(gs,q )pg, where pg

is the energy consumption rate for data transmission and wg is the importance
weight corresponding to the energy consumption by the user’s device. Note that
gs,q represents the time required for sending the data from the user to the server s
at round q . However, we need to consider the time required for sending the data
from the server back to the user at the same round q . We consider that the function
vg(·) takes into account this round trip, for instance, via additionally multiplying
gs,q by 2.

• The energy required for data processing at the server, denoted by w f v f ( fs,q )p f ,
where p f is the energy consumption rate for accomplishing the job and w f is the
importance weight corresponding to the energy consumption by the server.

Note that pg and p f are known system parameters. Generally, vg(·) and v f (·), can be
any invertible function; in our problem, for the sake of computation, we consider linear
functions. Consequently, we have

cs,q = as fs,q +a0sgs,q +a00s , (3.13)

where as, a0s > 0, and a00s � 0. Hence, min
s,q

cs,q = a0s + a00s . Note that the cost cs,q takes

its minimum when the data is successfully transmitted via only one hop and in the first
attempt and also when the processing time fs,q = 0.

The following proposition determines the statistical characteristics of the variable cost.
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Proposition 3. The cost cs,q � a0s + a00s for an offloading round q between the user’s
device and any server s is a random variable with the probability distribution as follows

P(cs,q = x) =
C`s

as

j
x�a00s

a0s

k

Â
k=1

"⇣
(rs�ls,q )e

�(rs�ls,q )(
x�a00s�a0sk

as )
⌘

min{k,hs,max}

Â
h=1

✓
k�1
h�1

◆
ph

s,q (1� ps,q )
k�h[1� e�Ls|As|]h�1

#
.

(3.14)

Moreover, its expected value is equal to

hs,q =
as

rs�ls,q
+

a0sC`s Âhs,max
Hs=1 Hs[1� e�Ls|As|](Hs�1)

ps,q
+a00s . (3.15)

Proof. See Appendix 3.C. ⌅

The user devices play a crucial role in multi-hop wireless networks. Such devices
consume the energy stored in their batteries to participate in the process of computation
offloading, necessitating a frequent recharge. Moreover, the energy resources of mobile
devices and edge servers are often unsustainable and not environment-friendly. Conse-
quently, we consider a limit for the energy spent during the computation offloading. We
refer to this limit as the budget and denote it by B. Naturally, B is a deterministic constant
and known to the user. Therefore, the offloading user continues to offload the computa-
tional jobs as long as the total spent energy, i.e., the total paid cost, does not exceed the
budget B.

3.4 Model and Solution based on Multi-Armed Bandits

To solve the server selection problem, we take advantage of a class of sequential opti-
mization problems with limited information, namely, the Multi-Armed Bandit (MAB)
problem [13]. In this section, we formulate the server selection problem in the MAB
framework and propose an algorithm to solve this problem.
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3 Multi-Armed Bandit for Edge Computing in Dynamic Networks with Uncertainty

3.4.1 Budget-Limited Multi-Armed Bandits with Piece-wise
Stationary Reward and Cost

We consider an MAB problem which portraits a player (device) facing a number of arms
(servers). We denote the set of arms of the MAB by S = {1,2, . . . ,S}. By pulling an arm
i 2 S in each round q = 1,2, ..., the player pays some cost ci,q and receives some reward
ri,q . We assume that the random process of reward and cost are unknown a priori and
piece-wise stationary. Reward and cost of each arm i2S follow a probability distribution
with mean µi,q and hi,q at round q , respectively. The rewards are upper bounded, i.e.,
there is a constant rmax > 0 such that 0 ri,q  rmax, 8i,q . The costs are lower bounded,
i.e., there is a constant 0 < cmin such that cmin  ci,q 8i,q . The player can continue
gambling as long as its cumulative cost remains below a given budget B. Ideally, the
player’s goal is to maximize its expected accumulated reward until the last round, which
we refer to as the stopping round. We denote by T ⇤(B) and T (B) the stopping round
of the optimal policy (known as oracle) and the stopping round of the applied policy,
respectively. Formally, the problem can be formulated as

maximize
Iq2S

E
"

T (B)

Â
q=1

rIq ,q

#
s.t.

T (B)

Â
q=1

cIq ,q  B, (3.16)

where Iq denotes the played arm at round q .

The Problem (3.16) is infeasible to solve since the instantaneous outcome of the ran-
dom variables reward and cost are not known a priori. Moreover, T (B) is a random
variable because it depends on the summation of some random variable cost, which by
itself depends on the choice of the arm. Therefore, we suggest an alternative problem
formulation, as described in the following. First, we define the utility in a way that it
includes both reward and cost revealed by an arm upon pulling. Such utility can be used
to evaluate the efficiency of a choice of arm as it takes both the reward and cost into
account. More precisely, we define the utility as reward per cost. Formally,

uIq ,q =
rIq ,q
cIq ,q

. (3.17)

We then define the regret as the difference between the accumulated reward of oracle and
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the accumulated reward of the player under the applied policy. Formally,

RT (B) =
T ⇤(B)

Â
q=1

ri⇤q ,q �
T (B)

Â
q=1

rIq ,q , (3.18)

where i⇤q = argmax
i2S

µi,q
hi,q

is the arm chosen by oracle at round q . Then the player’s goal is

to minimize the expected regret, i.e.,

minimize
Iq2S

E[RT (B)]. (3.19)

We propose Algorithm 1 to solve the Problem (3.19). In this algorithm, we define the
average reward and cost as

r̄q (t, i) =
Âq

k=max{1,q�t+1} ri,k {Ik=i}

Nq (t, i)
, (3.20)

and

c̄q (t, i) =
Âq

k=max{1,q�t+1} ci,k {Ik=i}

Nq (t, i)
, (3.21)

respectively, where Nq (t, i) = Âq
k=max{1,q�t+1} {Ik=i}. We also define

Eq (t, i) =
(1+ rmax

cmin
)rmax

q
x log(min{q ,t})

Nq (t,i)

cmin� rmax

q
x log(min{q ,t})

Nq (t,i)

, (3.22)

where x and t are tunable parameters. We will elaborate on the choice of these parame-
ters later in Section 3.6.

In the initialization phase, Algorithm 1 solely explores the set of arms by selecting
each arm once and observing its reward and cost. It then uses the observations to de-
velop an initial approximation for the Upper Confidence Bound (UCB) on the reward-
to-cost ratio for each arm. Afterward, the algorithm continues selecting arms until the
accumulated cost exceeds the budget B. In this stage, at each round q , the algorithm
first calculates the UCB index Ii,q for each arm i 2 S and then selects the arm with the
highest index.
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3 Multi-Armed Bandit for Edge Computing in Dynamic Networks with Uncertainty

Algorithm 1 BPRPC-SWUCB: Budget-limited Piece-wise stationary Reward with
Piece-wise stationary Cost-Sliding Window Upper Confidence Bound

1: Input: Window length t , parameters x , rmax, and cmin
2: for q = 1, . . . ,S do
3: Select arm Iq = q .
4: Observe the reward rIq ,q and the cost cIq ,q .
5: end for
6: while Âq

k=1 cIk,k  B do
7: Calculate the index of each arm i 2 S as

Ii,q =
r̄q (t, i)
c̄q (t, i)

+Eq (t, i), (3.23)

where r̄q (t, i) and c̄q (t, i) are defined in (3.20) and (3.21), respectively. Moreover,
Eq (t, i) is defined in (3.22).

8: Select the arm Iq with the highest index. Formally,

Iq = arg maxi2S Ii,q . (3.24)

9: Observe the reward rIq ,q and the cost cIq ,q .
10: Set q = q +1.
11: end while

As a comparison to other budgeted MAB algorithms, such as KUBE [38] and UCB-
BV1 [36], BPRPC-SWUCB is able to detect the changes in the mean reward or mean
cost faster and thereby comply faster with the abrupt changes in the environment. This
is due to the fact that BPRPC-SWUCB uses a window length t and takes only the last t
observations to calculate the UCB index for each arm.

Remark 3. The utility defined in (3.17) is a common baseline to analyze and compare
the efficiency of the optimal arm in the budgeted MAB problems. Examples include [36],
[37], [38], and [34]. In (3.17), if the cost values are too small, they might mask the
effect of rewards. As the reward represents the QoS satisfaction, the reward can take
precedence for the offloading device over the consumed energy in an offloading round.
In this case, we propose two remedies: (i) Scale the reward and cost variables of all arms
so that they lie in the interval [0,1] and (0,1], respectively; Normalizing the reward and
cost values is indeed a normal procedure in the MAB literature [37], [34]. (ii) Assign
weights to reward and cost variables and set these weights according to the importance
of the corresponding variables. For example, let the utility be defined as

brrIq ,q
bccIq ,q

, where br
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and bc are the corresponding weights for the reward and cost. Then, these weights can
be considered as additional tunable parameters of our algorithm. Note that, our regret
analysis holds if any of the two aforementioned approaches are adapted.

3.5 Theoretical Analysis of BPRPC-SWUCB Algorithm

In this section, we prove an upper bound on the expected regret of the BPRPC-SWUCB.
We use the following definition in our regret analysis.

D(i) = min

(
µi⇤q ,q

hi⇤q ,q
�

µi,q
hi,q

����� 8q 2 {1, . . . ,T (B)} s.t. i 6= i⇤q

)
. (3.25)

We first prove an upper bound on the expected cumulative reward of the optimal policy
in the following lemma.

Lemma 1. The solution of Problem (3.16) is upper bounded by (B+cmin)rmax
cmin

.

Proof. See Appendix 3.D. ⌅

In the next theorem, we establish an upper bound on the expected regret of BPRPC-
SWUCB.

Theorem 1. Let us denote by °T (B) the number of change points before the stopping
round T (B) corresponding to both the reward and cost distribution. If there exists cmax >

0 such that ci,q  cmax 8i,q , then for x > 1
2 and any integer t we have

E[RT (B)]

 rmax

 ⇣ B
cmin

(1�
cmin

cmax
)+1

⌘
+

S

Â
i=1

⇣
C(t, i) B

cmin

log(t)
t

+ t°T (B) +2log2(t)
⌘!

,

(3.26)

where

C(t, i) =

 
2(1+ rmax

cmin
)+D(i)

cminD(i)

!2

r2
maxx

l
B

cmint

m

B
cmint

+
4

log(t)

&
log(t)

log(1+4
p

1� (2x )�1)

'
.

(3.27)
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Proof. See Appendix 3.E. ⌅

Remark 4. Based on the distribution of cost in (3.14), we observe that 8i,q , P(ci,q =

cmax)! 0 when cmax ! •. Nevertheless, the regret bound (3.26) in Theorem 1 also
holds true when the cost variable is unbounded from above, which is the case in the
computation offloading problem discussed in this chapter. In this case, when cmax! •,
we achieve a regret bound of order O(B). If cmin

cmax
! 1 (which is the case in many problems,

for example, in the problems where the cost is fixed for all arms or it is supported in a
small interval), the first term in the regret bound tends to zero. In this case, by choosing

t =

r
B log(B)

°T (B)
, and if we assume that the growth rate of the number of change points °T (B)

is O(Ba), for some a 2 [0,1), we achieve a regret bound of order O
⇣

B
(1+a)

2
p

log(B)
⌘

.

Remark 5. Computational Complexity
The computational complexity of BPRPC-SWUCB is linear with respect to the stopping
round T(B). Note that BPRPC-SWUCB only stores the action and reward/cost history of
the last t rounds, hence it is more space-efficient compared to algorithms that rely on the
full history. It has a linear computational complexity with respect to the window length
t . Finally, depending on the search algorithm used to find the highest UCB index, the
computational complexity can vary with respect to the number of arms S. For example,
if we use the merge sort to sort the UCB indices of S arms, BPRPC-SWUCB will have a
complexity (with respect to the number of arms) of order O(S logS) [68].

3.6 Numerical Analysis

In this section, we investigate the empirical performance of BPRPC-SWUCB algorithm
using the theoretical results obtained in this chapter. To this end, we consider a computa-
tion offloading problem and draw the reward and cost of selecting each server based on
the corresponding probability distributions derived in Section 3.3. We also compare the
performance of BPRPC-SWUCB algorithm with several MAB algorithms.

3.6.1 Baselines

We compare our algorithm with the following MAB-based policies:

36
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• KUBE: We consider a variant of the KUBE algorithm that calculates the index
for each s 2 S as (r̄q (s)+

p
(2logq)/Nq (s))/c̄q (s), where Nq (s) = Âq

k=1 {Ik=s},
r̄q (s) = (1/Nq (s))Âq

k=1 rs,k {Ik=s}, and c̄q (s) = (1/Nq (s))Âq
k=1 cs,k {Ik=s} [38].

• UCB1: It calculates the index for each s2S as ((Âq
k=1(rIk,k/cIk,k) {Ik=s})/Nq (s))+

rmax
p
(x 0 logq)/Nq (s), where x 0 is a tunable parameter [46].

• UCB-based algorithm: We define a policy which explores similar to UCB1 but
exploits similar to BPRPC-SWUCB. By implementing this algorithm, we can
compare the performance of our algorithm with a general UCB-based algorithm.
It calculates an index as (r̄q (s)/c̄q (s))+(rmax/cmin)

p
(x 00 logq)/Nq (s), where x 00

is a tunable parameter.

• UCB-BV1: For each s2S , this algorithm calculates a UCB index as (r̄q (s)/c̄q (s))+
((1+ 1

cmin
)
q

log(q�1)
Nq (s)

)/(cmin�
q

log(q�1)
Nq (s)

) [36].

• e-Greedy: At each round q , e-Greedy chooses an arm uniformly at random with
probability e and the best arm so far with probability 1� e [46].

3.6.2 Simulation Setting

The setting of our simulation is as follows: We consider a network consisting of ten edge
servers, i.e., |S|= 10. As demonstrated in Section 3.3.1, at each round q , we sample the
reward rs,q of selecting each server s 2 S from a Bernoulli distribution with piece-wise
constant mean µs,q . The distribution for the cost is derived in Section 3.3.2. We can
rewrite the probability distribution (3.14) for the cost cs,q as

P(cs,q = x) =

8
<

:
Cx(

rs�ls,q
as

)e�(
rs�ls,q

as )x, x� a0s +a00s
0, x < a0s +a00s

(3.28)

where Cx is a constant which depends on x. For a fixed x, Cx is finite due to the sum-
mations being finite. The probability distribution in (3.28) is similar to an exponential
distribution with the support [a0s +a00s ,•]. In our simulation, we consider an exponential
distribution with as = 1, a0s = 1, and a00s = 0.2, 8s 2 S , with piece-wise constant mean
hs,q . We consider at most 12 change points in the mean reward or mean cost (includ-
ing the one corresponding to the initial round). Table 3.2 summarizes the change points

37
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Table 3.2: The list of mean rewards and mean costs associated with each server for dif-
ferent change points. Si, CP, MR, and MC respectively stand for Server i, Change Point,
Mean Reward, and Mean Cost. A blank space implies the absence of any change point,
i.e., the expected value remains as before.

Simulation Setting
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

CP MR MC MR MC MR MC MR MC MR MC MR MC MR MC MR MC MR MC MR MC
q = 1
q = 500
q = 1000
q = 2000
q = 3500
q = 5000
q = 7000
q = 8000
q = 8700
q = 11000
q = 12000
q = 13000

0.37
0.31
0.5
0.3
0.82
0.21
0.13
0.54
0.19
0.33
0.13
0.93

1.98
1.66
1.4

1.31
2.18
1.67
1.86
1.51
1.87
2.15
1.27

0.19

0.36
0.19
0.24
0.93
0.53
0.2
0.39
0.19
0.63
0.65

1.93
1.63
1.8
1.66
1.71
1.25
1.31
1.81
1.71

1.62
1.3

0.52
0.75
0.3
0.4
0.24
0.61
0.62
0.39
0.33
0.6
0.32
0.63

2.12
1.3
1.58

1.45
1.49
2.04
1.57
1.84
1.44
1.6
1.74

0.56
0.32
0.51
0.5
0.3

0.62
0.78
0.61
0.4
0.43
0.35

1.73
1.72
1.32
1.4

1.24
1.9
1.3
1.25

1.31

0.56
0.24
0.87
0.36
0.61
0.6
0.22
0.55
0.56

0.11

2.18
1.52
1.29
2.03
1.64
1.29
1.41
2.3
1.92
1.5
1.97
1.81

0.18
0.5
0.37
0.41
0.55
0.32
0.85
0.6
0.5
0.19
0.59
0.62

1.98
1.81
1.61
1.86
2
1.76
1.3
1.63
1.25
1.72
2.15
1.57

0.18
0.38
0.27
0.96
0.23

0.6

0.4
0.27
0.61

1.52

1.28
2.16
1.56
1.23
1.25
1.73
1.84
1.28
1.3

0.56
0.59
0.49
0.59
0.21
0.64
0.48
0.42
0.3
0.8
0.15
0.1

1.72
1.99
1.62
1.21
1.65
1.82

1.97
1.95
1.4
1.94
1.47

0.21
0.53
0.46
0.39
0.47
0.55
0.31
0.61
0.94
0.33
0.59
0.31

2.09
1.95
1.73
2.13
1.71
1.6
2.17
1.96
1.3
1.84
1.31
1.81

0.29
0.47
0.6
0.21
0.63
0.13
0.45
0.55
0.12
0.45
0.9
0.25

1.53
1.93
1.4
1.87
1.4
2.01
1.98
2.17

2.15
1.3
1.68

in the expected value of the reward and cost variables for each server together with their
values. For each change point, we select the expected values of reward and cost variables
for each arm uniformly at random.

To be comparable with other algorithms, we chose the system variables so that to fulfill
the prerequisites of the other algorithms. The tuned parameters used in our simulation
are listed in Table 3.3. Note that, based on our problem setting, we have rmax = 1 and
cmin = 1.2. We should emphasize that our algorithm operates only based on the historical
observed reward and cost; it does not require any prior knowledge about the statistical
characteristics of the random variables, their variations over time, or their SI units.

Fig. 3.3 depicts the evolution of the mean reward per mean cost for the ten servers. The
environment is dynamic in the sense that the optimal server in terms of the highest mean
reward per mean cost changes over time. The change points can arise due to a change
in mean reward, mean cost, or both. The change points are not necessarily identical; for
example, at round q = 13000, the mean reward for server 4 is changing while its mean

Table 3.3: The parameters of the different policies used in the simulation.

Policy Setting

Policy UCB1 BPRPC-SWUCB e-Greedy UCB-based

Parameters
x 0 = 0.6 x = 0.55 e = 1

q x 00 = 0.6

t = 2000
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Figure 3.3: Evolution of the mean reward per mean cost for each server.

cost remains fixed. (Table 3.2).

3.6.3 Results

Regret Comparison

Fig. 3.4 depicts the simulation results of running different policies to solve the computa-
tion offloading problem in the aforementioned network with a given budget B= 25000. It
shows the trend of regret for each policy. To be comparable, we truncated the graph of all
policies at the smallest stopping round among the different policies. As we see, BPRPC-
SWUCB surpasses all other policies and is able to conform faster to abrupt changes in

Figure 3.4: Regret of different policies for a given same budget.
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the environment. As a result, BPRPC-SWUCB has a smoother curve where does not
exist sudden jumps in the regret, unlike other policies. The regret of other policies grows
faster than BPRPC-SWUCB especially close to change points.

Comparison with the oracle

Fig. 3.5 depicts the highest mean reward per mean cost at each round, which is known
to oracle, and the empirically computed average reward per average cost of the chosen
server by the other policies at each round. This figure illustrates well why BPRPC-
SWUCB is performing better than other policies; it chooses the optimal server in more
number of rounds (compared to other policies) due to its ability to detect the changes in
the environment.

Server Choice Comparison

Fig. 3.6 compares the performance of BPRPC-SWUCB with the two baseline policies
oracle and e-Greedy in terms of the choice of servers. Due to space limitation, we only
include the results concerning the first 8 change points. We see that BPRPC-SWUCB has
reasonably good performance compared to oracle and is able to detect the best server in
most of the rounds. In contrast, e-Greedy cannot adapt to sudden changes in the environ-

Figure 3.5: The highest mean reward per mean cost at each round chosen by oracle
and the empirically computed average reward per average cost of the chosen server by
different policies at each round.
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Figure 3.6: Server choice for oracle vs. BPRPC-SWUCB.

ment and continues to select suboptimal arms even after several change points. Note that,
the window length t shall be adjusted according to the variability of the environment. As
listed in Table 3.3, we chose a rather small window length t . As we see shortly, choos-
ing a bigger t results in a lower regret but requires a higher storage capacity to store the
historically selected actions and the resulted reward and cost. Therefore, we select t ap-
propriately to achieve a balance between the regret optimization and storage efficiency.

Delay and Cost Comparison

In Fig. 3.7, we present further performance analysis of our algorithm concerning the
delay time and energy consumption. Fig. 3.7a depicts the number of rounds each policy
has satisfied the given delay requirement. As we see, BPRPC-SWUCB has the best
performance compared to other policies by satisfying the delay constraint in 81% of the
total offloading rounds before running out of the budget B= 25000. Fig. 3.7b depicts the
total paid cost at each round. As we see, BPRPC-SWUCB has the lowest accumulated
cost at each round compared to other policies. Note that the stopping round is random
and depends on the policy. It can be seen that BPRPC-SWUCB has the highest stopping
round, i.e., the longest duration for a given budget, among all the policies. In conclusion,
Fig. 3.7 shows that BPRPC-SWUCB is a cost-efficient algorithm and suitable for delay-
sensitive computation offloading problems in non-stationary environments.
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(a) (b)

Figure 3.7: Performance of different policies with respect to satisfying the delay con-
straint (3.7a) and the total paid cost at each offloading round (3.7b).

Effect of Parameters

We have shown the effect of parameters in Fig. 3.8. Fig. 3.8a depicts an overview of
the amount of regret obtained for different choices of the parameters, namely x and the
window length t . We see that for smaller values of x and larger values of t we have
smaller regret. This graph is also obtained for a given budget B = 25000. Fig. 3.8b

(a) (b)

Figure 3.8: The effect of parameters on the performance of BPRPC-SWUCB; 3.8a: Re-
gret obtained for different x and t . 3.8b: Regret for x = 0.55 and different window
lengths t .
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shows the trend of regret for a slice of the previous figure corresponding to x = 0.55. It
clearly shows that for x = 0.55, a bigger t results in a smaller regret.

Remark 6. Parameter Selection
Fig. 3.8 might appear different for a problem with different settings, for example, a
problem with different change points, number of change points, number of arms, and
so on. Hence, the parameters t and x should be chosen based on the given problem.
Generally, x controls the exploration power of the algorithm. A larger x results in
giving more importance to the exploration rather than exploiting the arm which shows
promising results. In problems with more number of arms, a larger x can be useful.
The window length t is chosen based on the number and frequency of change points.
In general, selecting a smaller t would be more suitable if change points occur often.
Moreover, a smaller t results in storage efficiency. In an environment where the system
variables change seldom, we may choose a larger t .

3.7 Conclusion

We focused on the computation offloading problem in a dynamic network under uncer-
tainty; nonetheless, the theoretical results are applicable in a number of contexts, such as
vehicular edge computing, mobile edge computing, online advertising and recommen-
dation, and medical treatment. We modeled and solved the aforementioned problem by
using a budgeted non-stationary MAB formulation. We defined the reward and cost in
terms of the required time and energy in each offloading round, respectively, and we
derived the corresponding probability distributions. We developed a novel UCB-based
algorithm, namely BPRPC-SWUCB, to solve the formulated problem. We analyzed
BPRPC-SWUCB theoretically by proving an upper bound on its expected regret. The
numerical results demonstrated that the theoretical performance bounds hold in practice.
BPRPPC-SWUCB was successfully applied to solve the proposed computation offload-
ing problem in a dynamic environment. The experiment showed that BPRPC-SWUCB
outperforms several state-of-the-art MAB algorithms in a non-stationary environment.
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Appendices

3.A Proof of Proposition 1

Proof. Fix a sink node s and a round q . We will derive the probability distribution of
gs,q by finding the joint distribution of the transmission time gs,q and the number of hops
Hs. From the basics of probability theory we have

P(gs,q = k) =
hs,max

Â
h=1

P(gs,q = k,Hs = h) =
hs,max

Â
h=1

P(gs,q = k|Hs = h)P(Hs = h). (3.29)

The second term P(Hs = h) is given in (3.5). The first term is derived in the following.
For k < h, it is trivial that P(gs,q = k|Hs = h) = 0, as the number of attempts to transmit
the data to a server cannot be less than the number of required hops. For k � h, it is a
negative binomial distribution, as proved in the following.

P(gs,q = k|Hs = h) (a)
= P(K1 +K2 + · · ·+Kh = k) (b)

=

✓
k�1
h�1

◆
ph

s,q (1� ps,q )
k�h, (3.30)

where (a) follows from the definition of gs,q and using the given condition Hs = h. More-
over, (b) follows from the fact that the sum of h independent and identical geometric ran-
dom variables Ki with the same parameter ps,q results in a negative binomial distribution
with parameters h and ps,q [69]. Note that this form of negative binomial distribution
corresponds to the probability that k number of trials is needed until the h-th success
occur. Therefore,

P(gs,q = k|Hs = h) =

8
<

:

�k�1
h�1

�
ph

s,q (1� ps,q )
k�h, k � h

0, k < h
(3.31)

Summarizing the above results, we can write an equivalent form of (3.29) as follows

P(gs,q = k) =
min{k,hs,max}

Â
h=1

P(gs,q = k|Hs = h)P(Hs = h). (3.32)

Thus, the first part of the proposition, i.e., (3.10), follows by substituting (3.5) and (3.30)
in (3.32).
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Since all the variables Ki are independent and have the same expected value, it holds

E[gs,q ] = E[Ki]E[Hs]. (3.33)

We have E[Ki] =
1

ps,q
, 8i. Therefore, the second part of the proposition, i.e., (3.11),

follows by substituting (3.7) in (3.33). ⌅

3.B Proof of Proposition 2

Proof. We have the distribution of the delay time ds,q as the convolution of the two
probability distributions of processing time fs,q and the transmission time gs,q . From the
definition of the reward, we have rs,q 2 {0,1}. Moreover, for any server s 2 S and any
round q we have

Ps = P(rs,q = 1) = P(ds,q  d ) (a)
=
bdc

Â
k=1

P( fs,q  d � k)P(gs,q = k), (3.34)

Pf = P(rs,q = 0) = 1�P(ds,q  d ) (b)
= 1�

bdc

Â
k=1

P( fs,q  d � k)P(gs,q = k), (3.35)

where (a) and (b) follow from the following facts; ds,q is a random variable which is the
sum of two independent random variables fs,q and gs,q . Note that, fs,q is a continuous
random variable whereas gs,q is a discrete random variable. Moreover, we have d�k� 0
for k  bdc and P( fs,q  d � k) = 0 for k > bdc. We can calculate the distributions Ps

and Pf using the distributions of fs,q and gs,q . Finally, we have Ps +Pf = 1. Hence, rs,q

is a Bernoulli random variable with expected value (success probability) Ps. Thus, the
result follows from Assumption 1. ⌅

3.C Proof of Proposition 3

Proof. To prove the distribution, we first start by deriving the Cumulative Distribution
Function (CDF) of the random variable cost. This is not a trivial task since the random
variable cs,q is the result of linear combination of a continuous random variable fs,q and
a discrete random variable gs,q . In the following, FZ and fZ denote the CDF and the PDF
of the random variable Z, respectively. Fix a server s and an offloading round q . We
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have

Fc(cs,q = x) = P(cs,q  x) =
•

Â
k=1

P(as fs,q +a0sgs,q +a00s  x|gs,q = k)P(gs,q = k)

=
•

Â
k=1

P( fs,q 
x�a00s �a0sk

as
)P(gs,q = k) =

•

Â
k=1

Ff (
x�a00s �a0sk

as
)P(gs,q = k).

(3.36)

Taking the derivative of the above equation yields

fc(cs,q = x) =
d
dx

Fc(cs,q = x) =
•

Â
k=1

d
dx

Ff (
x�a00s �a0sk

as
)P(gs,q = k)

=
•

Â
k=1

1
as

f f (
x�a00s �a0sk

as
)P(gs,q = k)

(⇤)
=

1
as

j
x�a00s

a0s

k

Â
k=1

f f (
x�a00s �a0sk

as
)P(gs,q = k),

(3.37)

where (⇤) follows from the fact that f f (
x�a00s�a0sk

as
) = 0 for k >

j
x�a00s

a0s

k
. The result fol-

lows by substituting the PDF of fs,q and the PMF of gs,q , according to (3.4) and (3.10),
respectively. The expected value (3.15) can be calculated by taking expectation from
(3.13) and using the linearity property of the expected value operator. ⌅

3.D Proof of Lemma 1

Proof. For any policy p (including the optimal policy), let T p(B) and Ip
q denote its stop-

ping round and its arm choice at round q , respectively. Moreover, let Bq denote the
budget left at round q after pulling the arm Ip

q . Hence, Bq = B�Âq
k=1 cIp

k ,k
. Inspired by

[37], we prove an upper bound on the expected cumulative reward of any policy p . We
have

E
hT p (B)

Â
q=1

rIp
q ,q

i (a)


S

Â
i=1

•

Â
q=1

E[ri,q |Ip
q = i,Bq � 0]P(Ip

q = i,Bq � 0)+ rmax

(b)


S

Â
i=1

•

Â
q=1

µi⇤q ,q

hi⇤q ,q
E[ci,q |Ip

q = i,Bq � 0]P(Ip
q = i,Bq � 0)+ rmax
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rmax

cmin
E
hT p (B)

Â
q=1

cIp
q ,q

i
+ rmax

(c)


(B+ cmin)rmax

cmin
, (3.38)

where (a) holds because of the definition of Bq , (b) follows from µi,q
hi,q


µi⇤q ,q
hi⇤q ,q

, 8i2 S , and

(c) holds because the algorithm stops before its total cost runs out of the budget B. ⌅

3.E Proof of Theorem 1

Proof. Let ÑT (B)(i) denote the number of rounds arm i has been played when it was not
the optimal arm. Inspired by [25] and [36], we start by upper bounding the expected
number of times a suboptimal arm was chosen given the stopping round T (B). In the
following, P(X) and E(X) represent the probability and expectation of the random vari-
able X under the policy of BPRPC-SWUCB, respectively. We first prove that for i 2 S it
holds.

E[ÑT (B)(i)|T (B)]C(t, i)T (B) log(t)
t

+ t°T (B) +2log2(t), (3.39)

where

C(t, i) =

 
2(1+ rmax

cmin
)+D(i)

cminD(i)

!2

r2
maxx

l
T (B)

t

m

T (B)
t

+
4

log(t)

&
log(t)

log(1+4
p

1� (2x )�1)

'
.

(3.40)

Let J(t) =

 
2(1+ rmax

cmin
)+D(i)

cminD(i)

!2

r2
maxx log(t). Moreover, define G(t) as

G(t) =
n

q 2 {S+1, . . . ,T (B)}
��� µi, j = µi,q & hi, j = hi,q ,8i 2 {1, . . . ,S}

& 8 j s.t. q � t < j  q
o
.

(3.41)

We have the following [25]

ÑT (B)(i) = 1+
T (B)

Â
q=S+1

{Iq=i 6=i⇤q}
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 1+
T (B)

Â
q=1

{Iq=i6=i⇤q ,Nq (t,i)<J(t)}+
T (B)

Â
q=S+1

{Iq=i 6=i⇤q ,Nq (t,i)�J(t)}

(⇤)
 1+

⇠
T (B)

t

⇡
J(t)+ t°T (B) + Â

q2G(t)
{Iq=i6=i⇤q ,Nq (t,i)�J(t)}, (3.42)

where (⇤) follows from the Lemma (25) in [25]. For q 2 G(t), we have

{Iq = i 6= i⇤q ,Nq (t, i)� J(t)}⇢ {
r̄q (t, i)
c̄q (t, i)

>
µi,q
hi,q

+Eq (t, i)}
| {z }

1

[{
r̄q (t, i⇤q )
c̄q (t, i⇤q )

<
µi⇤q ,q

hi⇤q ,q
�Eq (t, i⇤q )}

| {z }
2

[{
µi⇤q ,q

hi⇤q ,q
�

µi,q
hi,q

< 2Eq (t, i),Nq (t, i)� J(t)}
| {z }

3

. (3.43)

For the Event 3, we have

Eq (t, i) =
(1+ rmax

cmin
)rmax

q
x log(min{q ,t})

Nq (t,i)

cmin� rmax

q
x log(min{q ,t})

Nq (t,i)



(1+ rmax
cmin

)rmax

q
x log(t)

J(t)

cmin� rmax

q
x log(t)

J(t)

=
D(i)

2
. (3.44)

Therefore, the Event 3 never occurs. Upper bound for the Events 1 and 2 are similar and
we show only for Event 1. Note that if Event 1 occurs, it implies that at least one of the
two following inequalities happens.

r̄q (t, i)> µi,q + eq (t, i), (3.45)

or

c̄q (t, i)< hi,q � eq (t, i), (3.46)

where

eq (t, i) = rmax

s
x log(min{q ,t})

Nq (t, i)
. (3.47)
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To prove this, assume none of them happens. Therefore, we have [36]

r̄q (t, i)
c̄q (t, i)

�
µi,q
hi,q

=
(r̄q (t, i)�µi,q )hi,q +(hi,q � c̄q (t, i))µi,q

c̄q (t, i)hi,q


eq (t, i)
c̄q (t, i)

+
eq (t, i)µi,q
c̄q (t, i)hi,q


eq (t, i)

cmin� eq (t, i)
+

eq (t, i)rmax

(cmin� eq (t, i))cmin
= Eq (t, i). (3.48)

Hence, we upper bound the probability of (3.45) and (3.46). Using Corollary (21) in [25]
for any n > 0 we have

P(r̄q (t, i)> µi,q + eq (t, i))
⇠

log(min{q ,t})
log(1+n)

⇡
(min{q ,t})�2x (1� n2

16 ), (3.49)

and

P(c̄q (t, i)< hi,q � eq (t, i))
⇠

log(min{q ,t})
log(1+n)

⇡
(min{q ,t})�2x (1� n2

16 ). (3.50)

For the Event 2, we have similar results as follows.

P(r̄q (t, i⇤q )> µi⇤q ,q + eq (t, i⇤q ))
⇠

log(min{q ,t})
log(1+n)

⇡
(min{q ,t})�2x (1� n2

16 ), (3.51)

and

P(c̄q (t, i⇤q )< hi⇤q ,q � eq (t, i⇤q ))
⇠

log(min{q ,t})
log(1+n)

⇡
(min{q ,t})�2x (1� n2

16 ). (3.52)

Choosing n = 4
q

1� 1
2x as suggested in [25], combinig (3.42) and (3.49)-(3.52), and

taking expectation result in

E[ÑT (B)(i)|T (B)] 1+
⇠

T (B)
t

⇡
J(t)+ t°T (B) +4

T (B)

Â
q=1

l
log(min{q ,t})

log(1+n)

m

min{q ,t}
. (3.53)

We achieve the equation (3.39) using the following [25]

T (B)

Â
q=S+1

log(min{q ,t})
min{q ,t}



t

Â
q=2

log(q)
q

+
T (B)

Â
q=1

log(t)
t


1
2

log2 (t)+ T (B) log(t)
t

.

(3.54)
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We rewrite the expected regret as

E[RT (B)] =

 
E
"

T ⇤(B)

Â
q=1

ri⇤q ,q

#
�E

"
T (B)

Â
q=1

ri⇤q ,q

#!

| {z }
1

+

 
E
"

T (B)

Â
q=1

ri⇤q ,q

#
�E

"
T (B)

Â
q=1

rIq ,q

#!

| {z }
2

.

(3.55)

We bound each part separately. For the first term in Part 1, the approach is similar to
the proof of Lemma 1. However, here we bound the difference between the total reward
obtained by playing the optimal arm permanently but with two different stopping rounds:
(i) the stopping round corresponding to the optimal policy and (ii) the stopping round of
our policy. As before, we define Bq = B�Âq

k=1 cIp
k ,k

. We have

E
"

T ⇤(B)

Â
q=1

ri⇤q ,q

#
�E

"
T (B)

Â
q=1

ri⇤q ,q

#
(a)


•

Â
q=1

E[ri⇤q ,q |i
⇤

q = i⇤q ,Bq � 0]P(i⇤q = i⇤q ,Bq � 0)+ rmax

�

•

Â
q=1

E[ri⇤q ,q |Iq = i⇤q ,Bq � cmax]P(Iq = i⇤q ,Bq � cmax)

=
•

Â
q=1

µi⇤q ,q

hi⇤q ,q
E[ci⇤q ,q |i

⇤

q = i⇤q ,Bq � 0]P(i⇤q = i⇤q ,Bq � 0)+ rmax

�

•

Â
q=1

µi⇤q ,q

hi⇤q ,q
E[ci⇤q ,q |Iq = i⇤q ,Bq � cmax]P(Iq = i⇤q ,Bq � cmax)


rmax

cmin

⇣
E
"

T ⇤(B)

Â
q=1

ci⇤q ,q

#
�E

"
T (B)

Â
q=1

ci⇤q ,q

#⌘
+ rmax

(b)


rmax

cmin
(B�

B
cmax

cmin)+ rmax,

(3.56)

where (a) holds because of the definition of Bq and (b) follows from the following facts.
The optimal policy stops before it runs out of the budget B. Hence, its total paid cost
cannot exceed B. Moreover, we have T (B)� B

cmax
and ci,q � cmin, 8i,q .

For Part 2, we have

E
"

T (B)

Â
q=1

ri⇤q ,q

#
�E

"
T (B)

Â
q=1

rIq ,q

#
= E

"
T (B)

Â
q=1

(ri⇤q ,q � rIq ,q )

#
 rmaxE

"
T (B)

Â
q=1

S

Â
i=1

{Iq=i 6=i⇤q}

#
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= rmax

S

Â
i=1

E[ÑT (B)(i)|T (B)].

(3.57)

By replacing T (B) with B
cmin

in (3.39) and (3.40), substituting the result in (3.57), and
combining (3.56) and (3.57) with (3.55), we conclude the proof. ⌅
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4 Data-Driven Online Decision-Making
with Costly Information Acquisition

In numerous online recommender systems, collecting beneficial information from users
is costly, implying that the system has to make active choices by simultaneously learning
the observations of the features’ states to make useful recommendations to users. This
work integrates information acquisition decisions into an online learning framework. To
solve the aforementioned dual learning problem, we propose two different algorithms,
namely Sim-OOS and Seq-OOS, where observations are made simultaneously and se-
quentially, respectively. We prove that both algorithms guarantee a sublinear regret. The
developed framework can be applied to a variety of real-world applications, including
medical informatics, smart transportation, finance, and cyber-security, where collecting
information before making decisions results in an excessive cost. We validate and eval-
uate our proposed policies in a medical decision support system that recommends tests
and treatments for breast cancer patients.

4.1 Introduction

There are many online and mobile applications that recommend services and products
to their users. Examples include the recommendation of products on Amazon, music on
Spotify, and movies on Netflix. Another example is a medical decision support system
recommending medical tests and treatments to patients. Recommender systems learn
users’ preferences on the services or products and exploit this knowledge to make de-
sirable recommendations that match users’ preferences. Such recommendations would
help users select and purchase items from a large set of options.

Earlier works in recommender systems model the preferences of the users without
incorporating the contextual information of the users [70, 71, 72, 73, 74]. Including con-
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textual information when making recommendations allows the recommender system to
provide different services to users [75, 76]. Most of the existing recommender systems
[75] assume that contextual information is readily available when making recommenda-
tions. However, in numerous applications, observing the user’s contextual information
is costly and requires conducting expensive research and experimentation. For exam-
ple, a website must pay to observe the contextual information of its online users through
cookies. Hence, to attain high efficiency, it must choose the best information to observe,
i.e., minimizing the informational costs while maintaining high rewards. Contextual
Multi-Armed Bandits (CMABs) provide a suitable framework to model such problems;
however, the state-of-the-art literature for the classical CMAB formulation, such as [77],
[78], [76], [79], [73], [74] and [23], neglect the aforementioned costly features. This
results in paying a high informational cost for features that are even irrelevant to action
selection. Hence, most existing algorithms fail to perform satisfactorily when informa-
tion acquisition is costly. In such a setting, a major challenge is the simultaneous learning
of both optimal observations of the features’ states and actions.

Potentially, one can modify conventional multi-armed bandit policies to address the
cost incurred by the decision-maker due to information acquisition. To this end, the
choice of the context to observe as well as the action to take are combined as a single
meta-action, and the observation costs and the action’s reward are folded together. How-
ever, the regret of such a solution grows exponentially concerning the number of actions
and the number of features’ states. Hence, such an adaptation is inefficient and imprac-
tical for any realistic setting. Therefore, it is imperative to search for novel solution
concepts and to develop new algorithms that ensure a better performance.

To overcome the challenges mentioned above, we propose an alternative approach. We
first formulate the Contextual Multi-Armed Bandit with Costly Observations (CMAB-
CO) problem. In this formulation, the decision-maker selects at most m features at a time
and observes their states by paying the cost. Then, the decision-maker chooses an action
based on the partial information and receives a reward. The goal is to maximize the pol-
icy gain, defined as the expected reward minus the information cost. We then show this
problem reduces to a finite-stage Markov Decision Process (MDP) with a canonical start
state. We propose two policies for the described dual learning problem, namely Sim-
OOS and Seq-OOS, that involve simultaneous and sequential observations, respectively.
The proposed algorithms build upon the UCRL2 algorithm [80] to efficiently learn the
optimal observations and actions. Theoretically, we establish that both Sim-OOS and
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Seq-OOS algorithms achieve a regret that is sublinear in time and exhibit a significant
improvement over the state-of-the-art policies whose regrets are exponential in the num-
ber of observations and actions. Our proposed algorithms achieve this improvement by
exploiting the structure of the policy gain and known information cost. Numerically, we
show that our algorithms achieve substantial performance gains in a breast cancer test
and treatment application compared to the conventional contextual bandit formulation.

4.1.1 Related Works

The filtering-based recommender systems can be grouped into 3 categories: collaborative
filtering [81, 72, 82], content-based filtering [83, 84], and hybrid approaches [85, 86].
Collaborative filtering approaches aim to cluster users based on their previous prefer-
ences and use similar users’ preferences when making recommendations. Content-based
approaches aim to cluster products or services to recommend them based on similarity
to users’ previous preferences. Hybrid recommender systems combine the aforemen-
tioned methods. The approaches mentioned above, however, can not address the costly
information acquisition.

The contextual bandit problem has been under intensive investigations in recent years
[77, 78, 76, 79, 23, 87]. In [77], the authors consider a contextual bandit problem with
linear payoff function, where observing the contexts is not costly. In [78], the authors
investigate similarity information in the setting of contextual bandits by taking advan-
tage of a similarity distance between the context-action pairs. This upper bounds the
difference between the respective expected payoffs. Reference [87] focuses on learn-
ing the optimal actions by discovering the relevant information. However, it does not
consider the costs associated with information acquisition; as a result, it fails to provide
satisfactory performance in our setting.

The CMAB-CO problem is similar to the combinatorial bandits, as the decision-maker
selects multiple actions (features’ states observations and the actual action) and observes
the full outcome of her choice (observation costs and actual action’s reward) [48, 42].
The CMAB-CO problem can be formulated as a probabilistically triggered combinatorial
bandit problem [48], where each observation-action pair can be formalized as a base
arm, and a policy can be formalized as a super arm that can trigger one of the base arms.
However, our algorithms exploit the structure of the problem and the sparse structure
of the triggering probabilities. As a result, our achieved regret bounds are distribution-
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independent.
The closest work to ours is the online probing problem [39]. Here, the goal is to learn

the optimal observations and a single best function that maps the observed features to
the labels to minimize the loss and observation cost jointly. The online probing problem
assumes that the complete loss feedback, i.e., the loss for all actions, is revealed and has
an adversarial setup. In contrast, the CMAB-CO problem assumes that bandit feedback,
i.e., only the reward of the selected action, is revealed and has a stochastic setup.

Another related setting is the episodic MAB problem [88], where the agent selects
actions sequentially and observes feedback. The agent observes the reward when a ”stop”
action is selected. This reward depends on the specific sequence of the actions chosen
by the agent. In the CMAB-CO problem, the agent observes the state of the observation
by incurring a cost. The agent’s goal is to make observations to infer her final action
selection to maximize the reward. Even though the CMAB-CO problem is episodic, the
agent’s goal is quite different than [88].

Another related area of research is Markov Decision Processes (MDPs) and learning
with feature acquisition. For example, in [80], the authors aim to learn an optimal policy
for the undiscounted reinforcement learning problem in an MDP. The complexity of the
proposed approach depends not only on the MDP’s size, i.e., the number of states and
actions, but also on the transition structure. Similarly, in [89], the authors propose a learn-
ing approach for an episodic MDP, namely the randomized least-squares value iteration
(RLSVI). RLSVI generalizes using a linearly parameterized value function. Moreover,
the authors in [90] propose an algorithm to solve an MDP, namely UCRL, which works
based on developing an upper-confidence bound. In [91], the authors formulate the cost-
aware dynamic feature acquisition problem and solve it using autoencoders. The policy
selects features based on the sensitivity ratio that indicates the information level of fea-
ture, whereas our method relies on cost-efficiency. Moreover, they do not investigate the
simultaneous observation of a set of features.

The CMAB-CO problem is also similar to budget-constrained learning in the sense
that the decision-maker’s goal is to minimize the loss by an adaptive selection of features.
For example, [92, 93] adjust the features of the next training example to train a linear
regression model while accessing only a subset of the features. However, the papers
mentioned above (and similar ones) do not consider the information acquisition cost and
are restricted to batch learning.

Table 4.1 summarizes the comparison of our work with the closest works.
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Our work [75] [39] [88]

Features costly free costly N/A

Feedback bandit bandit full bandit

Sequential yes no no yes

Regret sublinear sublinear sublinear sublinear

Table 4.1: Comparison with related works.

4.1.2 Organization

In Section 4.2, we formalize the CMAB-CO problem with simultaneous observations.
We propose the Sim-OOS algorithm in Section 4.2.1 and analyze it theoretically in Sec-
tion 4.2.2. In Section 4.3, we extend the CMAB-CO formulation to sequential obser-
vations and propose the Seq-OOS algorithm. We then analyze the performance of Seq-
OOS theoretically in Section 4.3.2. Section 4.4 discusses the complexity of our proposed
decision-making policies. Section 4.5 is dedicated to numerical evaluation. Section 4.6
concludes the chapter.

4.2 Contextual Multi-Armed Bandits with Simultaneous
Costly Observations

Let D = {1,2, . . . ,D} be a finite set of features. Each feature i 2 D has some random
and initially-unknown state, denoted by f [i], which belongs to a finite set Xi. Note that
in the CMAB setting, f [i] represents the context. We denote the random state vector by
F that belongs to the set X =

N
i2DXi. We assume that the state vector is drawn from a

fixed but unknown distribution. We use P(F = f) to show the probability of some state
vector f = (f [1],f [2], . . . ,f [D]).

At each time, the decision-maker selects a set of features I ✓ D to observe their
states; the state of every feature i 2 I is revealed whereas the state of other features
remain unknown. We use y = (y[1],y[2], . . . ,y[D]) to represent a partial state vector
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Game Protocol 1 Sequence of Events in CMAB with Simultaneous Costly Observations
Step 1: The environment draws a state vector f t according to some unknown proba-
bility distribution p(·). f t is initially unknown to the decision-maker.
Step 2: The agent selects at most m features at time t, gathered in the set It , to
observe their states. For each i 2 It , the decision-maker pays a known cost denoted by
ci 2 [0,1]. Let Pm(D) denote the subset of the observations with cardinality less than
or equal to m, i.e., Pm(D) = {I ✓D | |I|m}. The partial state vector y t from the
features’ observations It is revealed, while other features’ states remain unknown.
Step 3: Based on the available information y t , the decision-maker selects an action at
from a set of actions A= {1,2, . . . ,A}. She then receives a random reward rt 2 [0,1],
where E [rt ] = r̄(at ,f t) with r̄ : A⇥X ! [0,1] being an unknown expected reward
function.

and define

y[i] =

8
<

:
f [i], if i 2 I,

?, if i /2 I,
(4.1)

where ? implies a missing feature’ state. Let dom(y) = {i 2D | y[i] 6= ?} represent the
domain of y . Moreover, Y+(I) = {y | dom(y) = I} is the set of all possible partial
state vectors with features from I. Therefore, Y =

S
I✓D Y+(I) denotes the set of all

possible partial state vectors. We say y is consistent with f if they are equal everywhere
in the domain of y , i.e., y[i] = f [i], 8i2 dom(y). In this case, we write f ⇠y . If y and
y 0 are both consistent with some f , and dom(y) ✓ dom(y 0), we say y is a substate of
y 0. In this case, we write y 0 ⌫ y . At each time t, the sequence of the events in CMAB
with simultaneous costly observations is summarized in Game Protocol 1.

We overload the definition of p and r̄ to show marginal probabilities and expected re-
wards of partial state vectors. Let p(y) = P(F ⇠ y) indicate the marginal probability
of y being realized. Moreover, r̄(a,y) = E [r̄(a,F) | F⇠ y] denotes the marginal ex-
pected reward of action a when the partial state vector is y . We have Ây2Y+(I) p(y) = 1.

The policy p that selects the features for state observation (in short, the observations)
and the associated actions consists of (i) a set of observations I and (ii) an adaptive action
strategy h : Y+(I)!A that maps a partial state vector with domain I to an action. The
expected gain of the policy p = {I,h} is given by

r(p) = b Â
y2Y+(I)

p(y)r̄(h(y),y)�Â
i2I

ci. (4.2)
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In (4.2), b > 1 is the gain parameter that balances the trade-off between the rewards
and state observation costs. For example, b represents the revenue made by one click in
the recommendation system context. The expected gain of the policy p is the expected
reward of p minus the state observation cost incurred by p . Let P denote the set of all
possible policies. The oracle policy is given by

p⇤m = argmax
p={I,h}2P:|I|m

r(p). (4.3)

The expected gain of the oracle policy is r⇤m = r(p⇤m). Our oracle is different from the
traditional oracle in the contextual bandit setting. To clarify the difference, let’s define
r̄⇤(y) = r̄(a⇤(y),y) = maxa2A r̄(a,y) as the expected reward of the best action when
the partial state vector is y . Let fixed I-oracle policy refer to a policy that selects the
observation set I and the best action a⇤(y) for all y 2 Y+(I). The expected gain of
the fixed I-oracle policy is V (I) = b Ây2Y+(I) p(y)r̄⇤(y)�Âi2I ci. Then, the oracle
policy p⇤m = {I

⇤
m,h⇤} is given by

I
⇤
m = argmax

I2Pm(D)
V (I),

h⇤(y) = argmax
a2A

r̄(a,y).
(4.4)

Note that r⇤m = V (I⇤m), i.e., our defined oracle in (4.4) achieves the best expected gain
among all the fixed I-oracle policies. Consider an adaptive policy p1:T = {It ,ht}

T
t=1 that

at each time t selects It , observes y t , uses this information to select an action at = ht(y t),
and finally receives a reward rt . The T -time regret of the policy p1:T yields

Regp1:T
T = T r⇤m�

T

Â
t=1

 
b rt�Â

i2It

ci

!
. (4.5)

The goal is to compute the policy p1:T to minimize the regret (4.5) by observing at most
m features’ states. Table 4.2 summarizes the most important notations used throughout
this chapter together with a brief description.

Remark 7. Conventional online learning methods can be modified to address the CMAB-
CO problem. To do so, the decision-maker defines a set of base-actions that consists of all
possible combinations of the observation-action pairs and a policy as a super-action that
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Table 4.2: Summary of notations

Notation Definition
f Initially-unknown state vector
I Set of features for state-observation
y Partial state vector observed by decision-maker

dom(y) Set of features whose corresponding state is observed in y
Y+(I) Set of all possible partial state vectors whose domain is equal to I

Y+(y, i)
Set of resulting partial state vectors when the observation i is made at
previous partial state y

Y Set of all possible partial state vectors
Yl Set of partial state vectors whose cardinality is equal to l
at Action taken by the decision-maker at time t
rt Instantaneous reward achieved at time t
ci Observation cost associated to the feature i 2D

r(p) Expected gain of a policy p

triggers one of the base-actions. The agent then uses Combinatorial Upper Confidence
Bound (CUCB) algorithm [49]. In such a formulation, the reward of a base-action is the
reward minus the observation’s cost. Moreover, the super-action reward is the reward
of the triggered base-action. Additionally, the agent knows a priori the subsets of the
base-actions that can be triggered under a policy. However, this simple approach does
not take the reward structure into account; therefore, it achieves a regret bound that is
linear in the number of policies and hence, is exponential in the number of actions. Our
proposed algorithm uses the structure of the policy gain, that is the expectation of reward
over the arrival probability minus the cost of observing the states. Hence, we propose a
novel algorithm that estimates arrival probabilities and reward function.

4.2.1 Simultaneous Optimistic Observation Selection Algorithm

To address the aforementioned challenges, we develop a new algorithm, which we refer
to as Simultaneous Optimistic Observation Selection (Sim-OOS). Sim-OOS operates in
rounds k = 1,2, . . . . Let tk denote the time at the beginning of round k. The decision-
maker keeps track of the estimates of the mean rewards and the state observation proba-
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4.2 Contextual Multi-Armed Bandits with Simultaneous Costly Observations

bilities. Note that when the partial state vector y t from the observation set It is revealed,
the decision-maker can use this information to re-estimate not only the probability of
observing y t but also that of all of the sub-states of y t . However, the decision-maker
cannot update the mean reward estimate of pairs of at and sub-states of y t , since this
would result in a bias on the mean reward estimates. Therefore, at each round k, we
define

Ek(a,y) = {t < tk | at = a,yt = y}, (4.6)

Ek(I) = {t < tk | I ✓ It}, (4.7)

and

Ek(I,y) =

8
<

:
{t < tk | I ✓ It ,yt ⌫ y}, y 2Y+(I),

/0, y /2Y+(I).
(4.8)

Moreover, we define the following counters: (i) Nk(I,y) = |Ek(I,y)|, (ii) Nk(I) =

|Ek(I)|, and (iii) Nk(a,y) = |Ek(a,y)|. Besides these counters, we keep the counts of
partial state vector-action pair visits in a specific round k. Let nk(a,y) denote the number
of times that the decision-maker selects some action a when she observes the partial state
vector y in some round k. The estimates of the mean reward and observation probability
yield

r̂k(a,y) =
1

Nk(a,y) Â
t2Ek(a,y)

rt , (4.9)

and
p̂k(y) =

Nk(dom(y),y)

Nk(dom(y))
, (4.10)

respectively, provided that Nk(a,y) > 0 and also Nk(dom(y)) > 0. As these estimates
can deviate from their true mean values, we add appropriate confidence intervals when
optimizing the policy. In the beginning of each round k, Sim-OOS computes the strategy
of round k by solving an optimization problem given by

maximize
p={I,h},p̃,r̃

b Â
y2Y+(I)

p̃(y)r̃(h(y),y)�Â
i2I

ci

s.t. |r̃(a,y)� r̂k(a,y)| conf1,k(a,y), 8(a,y),

Â
y2Y+(I)

|p̃(y)� p̂k(y)| conf2,k(I),
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Â
y2Y+(I)

p̃(y) = 1, 8I 2 Pm(D), (4.11)

where conf1,k(a,y) and conf2,k(I) are the confidence bounds on the estimators at time
tk. In Section 4.2.2, we select these confidence bounds so as to achieve provable regret
guarantees with high probability. Problem (4.11) is reducible to a set of convex opti-
mization problems that can be solved efficiently in polynomial time [94]. We proceed
without providing details, and discuss the details later in Appendix 4.A.

Let r̂⇤k(y) = maxa2A r̂k(a,y)+ conf1,k(a,y) be the optimistic reward of value of the
partial state vector y at round k. The optimistic gain of a fixed I-oracle in round k,
denoted by V̂k(I), is the solution of the following problem.

maximize
[p̃(y)]y2Y+(I)

b Â
y2Y+(I)

p̃(y)r̂⇤k(y)�Â
i2I

ci

s.t. Â
y2Y+(I)

|p̃(y)� p̂k(y)| conf2,k(I),

Â
y2Y+(I)

p̃(y) = 1. (4.12)

At each time t in round k, the solution of (4.12) is given by Îk = argmaxI2Pm(D) V̂k(I)

and ĥk(y) = argmaxa2A r̂k(a,y)+ conf1,k(a,y).

Let p̂k = {Îk, ĥk} be the policy computed by the Sim-OOS. The Sim-OOS follows the
strategy p̂k in round k as follows. At time t in round k (tk  t < tk+1), it selects Îk and ob-
serves the partial state vector y t from observations Ik. Using the observations, it selects
an action ĥk(y t). Round k ends when there exists a partial state vector-action pair (a,y)

whose number of visits in round k is the same as Nk(a,y) (the total observations of the
partial state vector-action pair from previous rounds k0 = 1, . . . ,k�1). This ensures that
Problem (4.11) or its equivalent Problem (4.12) is solved only if improving the estimates
and confidence bounds. The pseudocode for the Sim-OOS is given in Algorithm 2.

The computational complexity of Sim-OOS for T instances is O (Apoly(Ytot) logT ),
where Ytot =ÂI2Pm(D) |Y+(I)| is the number of all possible partial state vectors whose
corresponding state observation set has a cardinality of less than or equal to m.
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Algorithm 2 Sim-OOS: Simultaneous Optimistic Observation Selection
1: Input: m, [ci]i2D, conf1(n, t), conf2(n, t),b
2: Initialize: E(dom(y),y) /0, 8y 2Y. E(I) /0, 8I 2 Pm(D).

E(a,y) /0, 8a 2A, 8y 2Y.
3: for rounds k = 1,2, . . . do
4: Ek(dom(y),y) E(dom(y),y), 8y 2Y.
5: Ek(I) E(I), 8I 2 Pm(D).
6: Ek(a,y) E(a,y), 8a 2A, 8y 2Y.
7: conf1,k(a,y) conf1(Nk(a,y), tk).
8: conf2,k(I) conf2(Nk(I), tk).
9: r̂k(a,y) = 1

Nk(a,y) Ât2Ek(a,y) rt , 8a 2A and 8y 2Y (See (4.9)).

10: p̂k(y) = Nk(dom(y),y)
Nk(dom(y)) , 8y 2Y (See (4.10)).

11: Solve Problem (4.12) for all I 2 Pm(D). Set V̂k(I) as the maximizer.
12: Îk argmaxI2Pm(D) V̂k(I).
13: ĥk(y) argmaxa2A r̂k(a,y)+ conf1,k(a,y).
14: nk(a,y) 0, 8a 2A and 8y 2Y.
15: while nk(a,y)< max(1,Nk(a,y)), 8a,y , do
16: Select the features Îk, observe the partial state vector y t , and pay the cost

Âi2Îk
ci.

17: Select action at = ĥk(y t) and observe the reward rt .
18: Update nk(at ,y t) nk(at ,y t)+1.
19: for all y s.t. y t ⌫ y do
20: E(dom(y),y) E(dom(y),y)[{t}.
21: E(dom(y)) E(dom(y))[{t}.
22: end for
23: E(at ,y t) E(at ,y t)[{t}.
24: t t +1.
25: end while
26: end for

4.2.2 Regret Bound for the Sim-OOS Algorithm

In the following, we provide a distribution-independent regret bound for the Sim-OOS
algorithm.

Theorem 2. Suppose b = 1. For any d such that 0 < d < 1, set

conf1(n, t) = min

 
1,

s
log(20YtotAt5/d )

2max(1,n)

!
, (4.13)
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and

conf2(n, t) = min

 
1,

s
10Ytot log(4t/d )

max(1,n)

!
. (4.14)

Then, with probability at least 1�d , we have

RegSim-OOS
T =O

⇣⇣p
A+

p
|Pm(D)|

⌘p
YtotT log(T/d )

⌘
. (4.15)

Proof. See Appendix 4.B. ⌅

In [80], the authors design a policy, namely UCRL2, for the general MDP problems
that achieves a regret of Õ

⇣p
Y2

totAT
⌘

. In comparison, Sim-OOS exhibits a better regret
performance as it effectively exploits the structure of the formulated CMAB-CO problem
to improve the scalability. For example, suppose |Xi|= X for all i 2D and m = D. Then

the bound given in Theorem 2 is in the order of Õ
✓q

ÂD
m=1 Xm2DT +

q
ÂD

m=1 XmAT
◆

.

In some situations, the decision-maker prefers to select the features sequentially to
observe their states. To address such settings, we next propose the Seq-OOS algorithm.

4.3 Contextual Multi-Armed Bandits with Sequential
Costly Observations

When making sequential observations, the decision-maker can use the partial state vector
of already selected observations to improve the future selections. For example, in med-
ical settings, a positive result of a medical test often triggers additional tests to confirm
the validity, whereas a negative result is not followed by any other inspection. Naturally,
any simultaneous observation policy can be achieved also by a sequential observation
policy; therefore, the oracle defined with sequential observations achieves a higher ex-
pected gain than that with simultaneous observations. Game Protocol 2 describes the
sequence of events in the sequential setting at each time t.

Let Y+(y, i) be the set of resulting partial state vectors when observation i is made
at previous partial state vector y , i.e., Y+(y, i) = {y 0 | 9 x s.t. y 0 = y +(eix)}, where
ei is a unit vector of length D whose i-th element is 1 and other elements are 0. In this
section, p(y 0|y, i) is the probability of the partial state y 0 when the observation i is
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Game Protocol 2 Sequence of Events in CMAB with Sequential Costly Observations
Step 1: The decision-maker has initially no observations. In phase 0, we denote the
empty partial state as y0,t = y0 where dom(y0) = /0.
Step 2: At each phase l 2 L= {0, . . . ,m}, let the partial state vector be y l,t . First, the
observation il,t 2

�
D\dom(y l,t)

�
[ /0 is made. Let el,t be the unit vector of length D

where the il,t-th element is equal to 1 and the other elements are 0. Then, the resulting
partial state vector is y l+1,t , where y l+1,t = y l,t +(el,tf t [il,t ]) if il,t 6= /0 and y l+1,t =
y l,t otherwise. At phase l, if il,t 6= /0, the decision-maker pays the corresponding cost
cil,t .
Step 3: The decision-maker takes an action at when either observation il,t = /0 is made
or the final phase m is reached. Finally, she receives a random reward rt .

made at the previous partial state y . We refer to p(y 0|y, i) as the partial state transition
probability. For all y 0 2 Y+(y, i), the partial state transition probability is defined as
p(y 0|y, i) = P(F[i] = y 0[i]|F⇠y) if i 2D\dom(y) and p(y 0|y, i) = 0 otherwise. We
define p(y|y, /0) = 1 and p(y 0|y, /0) = 0 for all y 0 6= y . Moreover, P = [p(y 0|y, i)]
indicates the matrix of the partial state transition probabilities.

A sequential policy p = {g,h} consists of an observation function g : Y!D[ /0 and
an action function h : Y! A. Let y l denote the random partial state vector at phase l,
8l 2 L = {0, . . . ,m}. A sequential policy p = {g,h} works as follows. At each phase l,
the decision-maker makes the observation g(y l) and pays the random cost cl = cg(y l)

.
Note that cl is random since the partial state vector at phase l is random. For the sake of
notational simplicity, we define c /0 = 0. The decision-maker keeps making observations
until either she makes an empty observation, i.e., g(y) = /0, or she reaches a terminal
partial state, which is a state y with cardinality m, i.e, |dom(y)| = l. Afterwards, the
decision-maker selects an action am = h(ym) and then, she receives the random reward
rm. Thus, for each sequential policy p = {g,h}, we define the value function of partial
state vector y for l = 0, . . . ,m�1 as

Fp
l (y) = E

h
b rm�

m�1

Â
t=l

ct
�� y l = y,p

i
, (4.16)

where the expectation is taken with respect to the randomness in the states and rewards.
In the terminal phase, we define the value function as Fp

m (y) = r̄(h(y),y). The optimal
value function is defined by F⇤l (y) = supp Fp

l (y). A policy p⇤ is optimal if Fp⇤
0 (y) =

F⇤0 (y). The optimal value function of the partial state vector-observation pair (y, i) for
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l = 0, . . . ,m�1 is given by

Q⇤l (y, i) = E
⇥
�ci +F⇤l+1(y l+1)|y l = y, il = i

⇤
=�ci + Â

y 02Y+(y,i)
p(y 0|y, i)F⇤l+1(y 0).

(4.17)

A sequential policy p⇤ = {g⇤,h⇤} is optimal if and only if g⇤(y) = argmaxi2(D[ /0)

Q⇤
|dom(y)|(y, i), and h⇤(y) = argmaxa2A r̄(a,y). Consider a sequential learning algo-

rithm p1:T = {gt ,ht}
T
t=1, where at each phase l of time t, it makes the observation

il,t = g(y l,t) and incurs a cost cl,t . Then, it selects some action at = ht(ym,t) and receives
a random reward rt . Therefore, the net benefit of the learning algorithm p1:T = {gt ,ht}

T
t=1

at time t is calculated as rt �Âm�1
l=0 cl,t . We define the T -time regret of the sequential

learning algorithm p1:T as

Regp1:T
T = T F⇤0 (y0)�

T

Â
t=1

 
rt�

m�1

Â
l=0

cl,t

!
, (4.18)

where y0 denotes the empty partial state, i.e., dom(y0)= /0. In the following, we develop
a sequential learning algorithm that minimizes the regret (4.18).

4.3.1 Sequential Optimistic Observation Selection Algorithm

The Seq-OOS algorithm works in rounds k = 1,2, . . . . In addition to the aforemen-
tioned observation sets, the Sequential Optimistic Observation Selection (Seq-OOS) pol-
icy keeps track of the following sets at each round k.

Ek(y, i) = {t < tk | 9 l 2 L s.t. y l,t = y, il,t = i}, (4.19)

and

Ek(y, i,y 0) = {t < tk | 9 l 2 L s.t. y l,t = y, il,t = i, y l+1,t = y 0}. (4.20)

Let Nk(y, i) = |Ek(y, i)| and Nk(y, i,y 0) = |Ek(y, i,y 0)|. By nk(y, i), we denote the
number of times some observation i is made when the partial state vector y is realized
in round k. Using nk(y, i), we also track the number of visits in state-observation pairs
at each particular round k. At round k, we calculate the estimated transition probabilities
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as

p̂k(y 0|y, i) =
Nk(y, i,y 0)

Nk(y, i)
, (4.21)

provided that Nk(y, i)> 0.

In the beginning of round k, i.e., tk, the Seq-OOS solves an Optimistic Dynamic Pro-
gramming (ODP). The ODP takes the estimates P̂k = [ p̂k(y 0|y, i)] and R̂k = [r̂k(a,y)]

as inputs. As output, it produces a policy pk. To this end, the ODP first orders the partial
states with respect to the size of their domains. Let Yl denote the set of the partial states
with l observations, i.e., Yl = {y | |dom(y)| = l}. Since the decision-maker is not al-
lowed to make any more observations for any state y 2 Ym, the estimated value of the
partial state vector y is computed as F̂m,k(y) = maxa2A r̂k(a,y)+ conf1,k(a,y), where
conf1,k(a,y) is the confidence interval for the corresponding partial state vector-action
pair in round k. The ODP computes the following observation and action functions on
partial state vector y 2Ym: ĝk(y) = /0 and ĥk(y) = argmaxa2A r̂k(a,y)+conf1,k(a,y).

For each l, let Q̂l,k(y, i) be the solution of the following convex optimization problem:

maximize
[p̃(·|y,i)]

� ci +b Â
y 02Y+(y,i)

p̃(y 0|y, i)F̂l+1,k(y 0)

s.t. Â
y 02Y+(y,i)

|p̃(y 0|y, i)� p̂k(y 0|y, i)| conf2,k(y, i),

Â
y 02Y+(y,i)

p̃(y 0|y, i) = 1. (4.22)

At round k, after computing the value and policy in the partial state vector y 2 Ym,
the ODP solves the convex optimization problem (4.22) to compute the optimistic value
function of each partial state vector-observation pair y 2 Ym�1 and i 2 D \ dom(y).
Let Q̂m�1,k(y, i) denote the optimistic value function for making some observation i in
the partial state y at phase m� 1 of round k, which is the solution of the convex opti-
mization problem (4.22) for l = m� 1. The optimistic value of the empty observation
/0 in the partial state y at round k is computed by Q̂m�1,k(y, /0) = maxa2A r̂k(a,y) +

conf1,k(a,y). Based on the optimistic value of partial state vector-observation pairs
⇥
Q̂m�1,k(y, i)

⇤
, the ODP computes the following: (i) the optimistic value of the par-

tial state vector y as F̂m�1,k(y) = maxi2(D\dom(y))[ /0 Q̂m�1,k(y, i); (ii) the action as
ĥk(y) = argmaxa2A r̂k(a,y)+conf1,k(a,y); and (iii) the observation function of partial
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state vector y 2 Ym�1 as ĝk(y) = argmaxi2(D\dom(y))[ /0 Q̂m�1,k(y, i). The aforemen-
tioned computations are repeated for l = m�2, . . . ,0 to find the complete policy p̂k.

Given p̂k = {ĝk, ĥk}, at each time t of round k (tk  t < tk+1), the Seq-OOS follows
the policy p̂k: At phase l < m, let the state be y l,t . First the policy selects an observation
il,t = ĝk(y l,t) and observes the partial state y l+1,t . If the observation il,t is the empty set,
i.e., ĝk(y l,t) = /0, then Seq-OOS selects an action ĥk(y l,t). If it is a terminal phase, i.e.,
l = m, then Seq-OOS selects an action ĥk(ym,t). The pseudocode for the Seq-OOS is
given in Algorithm 3.

4.3.2 Regret Bound for the Seq-OOS Algorithm

The regret analysis of Seq-OOS is similar to Sim-OOS. Note that Sim-OOS has only
2 phases: making m simultaneous observations and selecting an action. However, Seq-
OOS has at most m+1 phases in which it makes m sequential observations followed by
selecting an action. Thus, we need to decompose the regret of Seq-OOS into two parts:
(i) regret due to phases with suboptimal observations, and (ii) regret due to suboptimal
actions. Let Ymax =maxy maxi2D |Y+(y, i)|. The next theorem bounds the distribution-
independent regret.

Theorem 3. Let b = 1. For any 0 < d < 1, set

conf1(n, t) = min

 
1,

s
log(20YtotAt5/d )

2max(1,n)

!
, (4.23)

and

conf2(n, t) = min

 
1,

s
10Ymax log(4DYtott/d )

max(1,n)

!
. (4.24)

Then, with probability at least 1�d , we have

RegSeq-OOS
T =O

⇣⇣
m
p

YmaxD+
p

A
⌘p

YtotT log(T/d )
⌘
. (4.25)

Proof. See Appendix 4.C ⌅

The difference in the regret bounds of Sim-OOS and Seq-OOS arises due to the fact
that Sim-OOS estimates the observation probabilities p(y) for each y 2 Y whereas
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Algorithm 3 Seq-OOS: Sequential Optimistic Observation Selection
1: Input: m, [ci]i2D, conf1(n, t), conf2(n, t),b
2: Initialize: E(a,y) /0, 8a 2A, 8y 2Y. E(y, i) /0, 8y 2Y, 8i 2D.

E(y, i,y 0) /0, 8y 2Y, 8i 2D, 8y 0 2Y+(y, i).
3: for rounds k = 1,2, . . . do
4: Ek(a,y) E(a,y), 8a 2A, 8y 2Y.
5: Ek(y, i) E(y, i), 8y 2Y, 8i 2D.
6: Ek(y, i,y 0) E(y, i,y 0), 8y 2Y, 8i 2D, 8y 0 2Y+(y, i).
7: conf1,k(a,y) conf1(Nk(a,y), tk).
8: conf2,k(y, i) conf2(Nk(y, i), tk).
9: r̂k(a,y) = 1

Nk(a,y) Ât2Ek(a,y) rt , 8a 2A and 8y 2Y (See (4.9)).

10: p̂k(y 0|y, i) = Nk(y,i,y 0)
Nk(y,i) , 8y 2Y, 8i 2D, and 8y 0 2Y+(y, i) (See (4.21)).

11: F̂m,k(y) = maxa2A r̂k(a,y)+ conf1,k(a,y).
12: for l = m�1, . . . ,0 do
13: Solve (4.22), 8y 2Yl , 8i 2 (D\dom(y))[ /0. Set Q̂l,k(y, i) as maximizer.
14: F̂l,k(y) maxi2(D\dom(y))[ /0 Q̂l,k(y, i).
15: end for
16: ĥk(y) argmaxa2A r̂k(a,y)+ conf1,k(a,y).
17: nk(y, i) 0, 8y 2Y and 8i 2D.
18: while nk(y, i)< max(1,Nk(y, i)), 8y, i, do
19: l 0 and y l,t = y0 (empty partial state with dom(y0) = /0).
20: while l < m and il,t 6= /0, do
21: ĝk(y) argmaxi2(D\dom(y))[ /0 Q̂l,k(y, i).
22: Select il,t = ĝk(y l,t) and pay the cost cil,t .
23: if il,t 6= /0 then
24: Update the partial state vector y l+1,t = y l,t +(el,tf t [il,t ]).
25: else
26: y l+1,t = y l,t .
27: end if
28: E(y l,t , il,t) E(y l,t , il,t)[{t}.
29: E(y l,t , il,t ,y l+1,t) E(y l,t , il,t ,y l+1,t)[{t}.
30: Update nk(y l,t , il,t) nk(y l,t , il,t)+1.
31: l l +1.
32: end while
33: Select an action at = ĥk(y l,t) and observe the reward rt .
34: E(at ,y l,t) E(at ,y l,t)[{t}.
35: t t +1.
36: end while
37: end for
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Seq-OOS estimates the observation transition probabilities p(·|y, i) for each y 2Y and
i 2 D. For a clear comparison, assume that |Xi| = X for all i 2 D and m = D. In
this case, the distribution-independent regret is O

⇣
2D
p

AXD logT/d
⌘

for Sim-OOS and
⇣

D
p

D2DXD+1AT logT/d
⌘

for Seq-OOS, with probability at least 1�d .

4.4 Remarks and Discussion

As described before, the complexity of the proposed algorithms depends on the number
of possible combinations of the features’ states. While this value can become exces-
sively large in some cases, the computational burden remains low in many scenarios, for
example, under the following conditions.

• The complexity decreases if the number of features and/or the number of states for
each feature is small. This holds in numerous applications, where several features
are a priori known to be uninformative and the states can be efficiently quantized.
For example, in a medical setting, the clinician limits the potentially useful tests
to a specific small set. Moreover, the outcome of each test can be interpreted as
healthy or not. As another example, in a wireless communication network, one
can describe the channel state as high-quality or low-quality based on the QoS
requirement.

• The complexity diminishes if the features are correlated, in the sense that observ-
ing the state of one feature reveals information also about the state of some other
feature(s). In such a case, measures such as transfer entropy are used to quantify
the connection between any two features. Such a scenario is realistic in a wide
range of applications. For example, in an energy-harvesting network, the amount
of energy harvested by different units is correlated based on weather, location, and
the like.

• The complexity decreases for some specific reward functions, e.g., in linear con-
textual bandits, where the expected reward of each arm is a linear function of the
contexts with some unknown coefficient [77].
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4.5 Numerical Analysis

In this section, we present the results of numerical experiments and evaluate the perfor-
mance of our proposed algorithms, namely Sim-OOS and Seq-OOS. More specifically,
we evaluate our proposed algorithms on a medical decision support system with vari-
ous information acquisition costs. We also compare the performance of Sim-OOS and
Seq-OOS with conventional benchmarks using a real-world dataset.

4.5.1 Baselines

We compare Sim-OOS and Seq-OOS algorithms with the following policies.

• LinUCB: LinUCB assumes that the expected reward of each action a 2 A is a
linear function of the contexts. For each action a and at each time t, LinUCB
computes an index for the expected reward of that action by solving a least square
problem, and selects the action with the highest index [21].

• Contextual UCB (C-UCB): At each time t, C-UCB observes the states of all
features and calculates an index for each pair of action a and state f , defined as
((Ât

t=1 rt {at = a & f t = f})/Nt(a,f))+
p
(2log(t))/Nt(a,f), where we have

Nt(a,f) = Ât
t=1 {at = a & f t = f}. It then picks the action with the highest

index.

• UCB: It calculates an index for each action as ((Ât
t=1 rt {at = a})/Nt(a)) +p

(2log(t))/Nt(a) at each time t, where Nt(a) = Ât
t=1 {at = a} [46].

• Uniformly at Random (UaR): At each time t, UaR chooses an action a 2 A

uniformly at random.

• e-greedy: At each time t, e-greedy chooses an arm uniformly at random with
probability e = 1/t, and the best arm so far with probability 1� e [46].

4.5.2 Medical Dataset

We evaluate our proposed algorithms on a dataset of 10,000 records of breast cancer
patients participating in the National Surgical Adjuvant Breast and Bowel Project (NS-
ABP) [95]. The patient arrivals are random selections on the instances of the dataset.
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Each instance consists of some information about the patient. In each instance, we set
the contexts as D = {age, estrogen receptor, tumor stage, surgery type}. Thus, we have
D ✓R4. We assume that a patient arrives with no test results, implying that state of each
feature i 2 D has not been revealed initially. The decision support system has a choice
of applying the medical test i, hence revealing the actual state of feature i by paying a
cost of ci or recommending a treatment from A and revealing the reward at the end. We
experiment with various costs of information. We made sure that cost does not dominate
the reward since then the algorithm does not make any observations.

The treatment is a choice among two chemotherapy regimes AC and ACT. The out-
comes for these regimens were derived based on 32 references from PubMed Clinical
Queries; this is a medically accepted procedure. The reward is 1 if the treatment with
the highest outcome is given to the patient and 0 otherwise. At each time step, a random
patient instance is selected without revealing contextual information. The proposed al-
gorithms are evaluated on their selections of medical tests (by paying the cost) and the
outcome. For the rest of the numerical results, we set b = 1, d = 0.6, and m = 3.

4.5.3 Results

Regret Comparison

Fig. 4.1 depicts the trend of regret for different policies where observing the contexts
results in fixed but different costs, namely c1 = 0.02, c2 = 0.06, c3 = 0.08, and c4 =

0.04. Note that to obtain the regret, we consider the oracle defined in (4.4). As we
see, Sim-OOS and Seq-OOS achieve a lower regret at each time t compared to other

Figure 4.1: Trend of regret when contexts have different costs.
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Figure 4.2: Trend of regret when all the contexts have the same cost c = 0.05.

algorithms. Moreover, the regret growth rate is lower for the Sim-OOS and Seq-OOS;
that is, with time, the total regret of Sim-OOS and Seq-OOS increases slower than that of
other algorithms. Note that, at each time t, LinUCB and C-UCB observe all the features’
states and pay the cost ÂD

i=1 ci, whereas e-greedy, UCB, and UaR don’t incur any cost as
they don’t observe any context.

Fig. 4.2 compares the algorithms’ regret growth as a function of time for contexts with
the identical cost ci = 0.05, 8i 2 D. As we see, Sim-OOS and Seq-OOS have a lower
regret compared to other algorithms.

Fig. 4.3 depicts the final regret (at T = 10,000) when all the contexts have the same
cost c. We compared the results with LinUCB and C-UCB as these algorithms observe
the entire feature vector at each time. We show the results for increasing values of cost
c, i.e., c = 0.03, ...,0.09. In general, the regret of the Sim-OOS and Seq-OOS algorithm

Figure 4.3: Final accumulated regret when all the contexts have the same cost c.
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increases as the observation cost increases. However, the figure shows that when the
observation cost increases, the Sim-OOS and Seq-OOS achieve lower regret compared
to other algorithms by observing less information, thereby paying less cost. This figure
clearly shows that regret depends on the cost of observing each feature. When the cost of
observation is small, our proposed algorithms learn to observe more relevant information
as they can be used to maximize the policy gain. When the cost of information is large,
our proposed algorithms learn to make less observations to maximize the policy gain by
cutting the cost of observation.

Performance

We define the performance of an algorithm as the total obtained rewards, i.e., the number
of times that the optimal action is chosen, divided by the total cost paid to observe the
features’ states. Formally, we define the performance as ÂT

t=1 rt/ÂT
t=1 Âi2It ci. Note that

for LinUCB and C-UCB, we have It =D, 8t. We calculate the performance of the Sim-
OOS and Seq-OOS and compare them with the C-UCB and LinUCB for the case that
all the contexts have the same cost c. We do so for different costs c = 0.01, . . . ,0.09
and depict the results in Fig. 4.4. We see that as the cost of observation increases,
the performance of all algorithms decreases. However, Sim-OOS and Seq-OOS achieve
higher performance even for the contexts with higher costs. In contrast to regret, the
performance of an algorithm determines the ratio of obtained rewards over the total paid
costs. Therefore, although the performances of algorithms are rather close in Fig. 4.4,
their achieved regrets can be very different; it is evident from Fig. 4.2 for the case of
LinUCB and C-UCB.

Figure 4.4: Rewards per cost performance.
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Accuracy

To further compare our proposed algorithms, we define accuracy when l observations
are made as (Âl

j=0 ÂT
t=1 rt {|It |= j})/(Âl

j=0 ÂT
t=1 {|It |= j}). We calculate the accu-

racy for Sim-OOS and Seq-OOS in the case that all contexts have the same cost c. Fig.
4.5 depicts the results for c = 0.02,0.04,0.06,0.08. For Sim-OOS, Fig. 4.5a shows a
trade-off between the accuracy and the number of observations: To increase the accu-
racy of treatment recommendation, one shall pay the cost of performing several medical
tests. Fig. 4.5b shows similar results for Seq-OOS; however, it also shows that for Seq-
OOS algorithm, observing 2 contexts yields an accuracy even higher than 3 observations.
This could be due to the fact that Seq-OOS already exploits the information obtained by
observing each context and then decides to observe an additional context or to take an
action. Hence, observing an additional observation, might not have much impact on the
selection of optimal action.

Treatment Choice Comparison

Fig. 4.6 depicts the frequency of treatment choice when all the observations have the
same cost equal to c. We compare the performance of Sim-OOS and Seq-OOS algo-
rithms with the baseline policy of oracle in terms of the choice of actions. We present the
results for different cost values c = 0.01, . . . ,0.09. When all the observations have the
same cost, the algorithm learns whether the impact of observing a feature on the policy
gain exceeds the cost of information. Higher information cost results in a smaller num-
ber of observations to be made. As we see, this figure clearly shows that our proposed
algorithms recommend the best treatment in most of the times.

(a) Accuracy of Sim-OOS. (b) Accuracy of Seq-OOS.

Figure 4.5: Accuracy against the number of observations.
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Figure 4.6: Comparison of selected actions by oracle, SimOOS, and Seq-OOS when all
the contexts have the same cost c.

Effect of Gain Parameter b

In Fig. 4.7, we compare the trend of gain for different choices of the gain parameter,
i.e., b , in our problem formulation. We show the results corresponding to Sim-OOS
algorithm when contexts have different costs 0.02,0.04,0.06,0.08. As expected, for a
higher value of the gain parameter b , the corresponding curve is higher and the trend of
gain increases faster for a larger gain parameter, which is compatible with our defined
notion of gain.

Figure 4.7: Trend of gain for Sim-OOS algorithm corresponding to different values of
gain parameter b .
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Figure 4.8: Trend of gain for different policies when the cost values of all contexts are
zero.

Gain Comparison for Zero Cost of Observation

When there is no cost of observation, our problem formulation will be similar to tradi-
tional contextual bandit algorithms with no cost of information acquisition. However,
our proposed algorithms can still outperform the benchmark algorithms by learning the
most relevant m features and relying only on those features when selecting an action. In
this experiment, our algorithms only perform similar to the C-UCB algorithm. Fig. 4.8
shows this result for m = 3 and c = 0. Note that, in our experiment, the cost of informa-
tion acquisition is also zero for LinUCB and C-UCB algorithms. Moreover, e-greedy,
UCB, and UaR don’t observe any context.

4.6 Conclusion

We introduced the contextual MAB problem with costly observations. The problem
portrays an agent that selects some contexts to observe by paying the incurred cost hoping
that the obtained information improves the decisions, thereby the net reward. To address
this problem, we developed two algorithms, namely Sim-OOS and Seq-OOS, where
observations are made simultaneously and sequentially, respectively. We proved that
the policies achieve sublinear regret bounds in time. We evaluated our algorithms via
numerical analysis and applied them to recommend tests and treatments to patients with
breast cancer.
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Appendices

4.A Reduction of Problem (4.11) to a Convex Problem

For simplicity, we drop the subscript k in the following. The optimization problem can
be solved by fixing the feature set I and p̃(·), followed by maximization with respect
to the action function. Let h⇤I,p̃ denote the action function that maximizes the Problem
(4.11). Then, we have h⇤I,p̃(y) = ĥ⇤(y) = argmaxa2A r̂(a,y)+conf1,k(a,y). By fixing
h to ĥ⇤ in Problem (4.11), we arrive at the following optimization problem:

maximize
I

b Â
y2Y+(I)

p̃(y)r̂⇤(y)�Â
i2I

ci

s.t. Â
y2Y+(I)

|p̃(y)� p̂k(y)| conf2,k(I),

Â
y2Y+(I)

p̃(y) = 1, 8I 2 Pm(D). (4.26)

We solve Problem (4.26) by first fixing I and then optimizing the parameters p̃. This
procedure results in Problem (4.12). We denote the result of the optimization problem as
V̂ (I). Then, the optimal observations yield Î = argmaxI2Pm(D) V̂ (I).

4.B Proof of Theorem 2

4.B.A Notations

Before proceeding to the proof of Theorem 2, we introduce some necessary notations.
Let Nt(a,y) = |{t < t + 1 | at = a,yt = y}|. Moreover, Nt = [Nt(a,y)] indicates
a matrix whose elements are the number of times that the partial state-action pair is
observed. Let K and k(t) denote the total number of rounds until time T and the round to
which time t belongs, respectively. Moreover, tk = tk+1� tk denotes the length of round
k. Then we have

NT (a,y) =
K

Â
k=1

nk(a,y) and Nk(a,y) =
k�1

Â
k=1

nk(a,y).

For round k, let Pk be the set of observation/transition probabilities matrices. More-
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over, Rk is the set of mean rewards of the partial state-action pairs that satisfy the con-
straints in the Problem (4.11). Similarly, P(t) and R(t) respectively denote the set of
plausible observation/transition probability matrices and the set of plausible mean re-
wards of the partial state-action pairs using the estimates that can be defined in time step
t. The expected gain of action a and state y is the expected reward of action a minus
the observation cost of state y . Formally, µ(a,y) = r̄(a,y)�Âi2dom(y) ci. In round
k, let r̃k(a,y) = r̂k(a,y)+ conf1,k(a,y) be the optimistic reward estimate of the partial
state-action pair (a,y). Moreover, p̃k(y) is the solution of Problem (4.12) (optimistic
observation probability estimate of the partial state y). We define

µ̃k(a,y) = r̃k(a,y)�Âi2dom(y)
ci, (4.27)

P̃k = [ p̃k(y)]y2Y+(Îk)
, (4.28)

P̂k = [ p̂(y)]y2Y+(Îk)
, (4.29)

P = [p(y)]y2Y+(Îk)
, (4.30)

µ̃k =
⇥
µ̃k(ĥk(y),y)

⇤
y2Y+(Îk)

, (4.31)

µk =
⇥
µk(ĥk(y),y)

⇤
y2Y+(Îk)

, (4.32)

nk =
⇥
nk(ĥk(y),y)

⇤
y2Y+(Îk)

. (4.33)

Let r̃m(k) be the optimistic gain in round k that is the solution of Problem (4.11). Based
on the aforementioned definitions, we have r̃m(k) = hP̃k, µ̃ki, where h·, ·i denotes the
dot product between two vectors. Let ek,y be the unit vector of size |Y+(Îk)| where
the element corresponding to the state y is equal to 1 and the other elements are 0.
Moreover, let Bk denote the event that optimistic rewards and observation probabilities
satisfy the constraints of Problem (4.11), i.e., Bk =((P,R) 2 (Pk,Rk)). By B̄k, we denote
the complement of the event Bk. In addition, I(Bk) is the indicator function which is
equal to 1 if the event Bk happens, and is 0 otherwise. Note that when Bk happens, we
have r̃m(k)� r⇤m with probability 1.

4.B.B Proof

Proof. The core idea is to decompose the regret in the regimes where confidence intervals
are achieved and violated. We show that the regret is small when the confidence intervals
are achieved. We also show that the confidence bounds are satisfied with high probability.
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By combining these two results, we prove the desired regret bounds.
Step 1 (Regret decomposition): We have

RegSim-OOS
T = T r⇤m�

T

Â
t=1

 
rt�Â

i2It

ci

!

= Â
a2A

Â
y2Y

NT (a,y)(r⇤m�µ(a,y))+ Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�
T

Â
t=1

rt

=
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(r⇤m�µ(a,y))I(Bk)

| {z }
(D)

+
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(r⇤m�µ(a,y))I(B̄k)

+ Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�
T

Â
t=1

rt . (4.34)

Given the set of observations Îk and the action function ĥk(·), nk(·, ·) is only non-zero
for the following form of action-partial state (ĥk(y),y)y2Y+(Îk)

; consequently, the part
(D) in (4.34) can be further decomposed as

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(r⇤m�µ(a,y))I(Bk)

(a)


K

Â
k=1

Â
y2Y+(Îk)

nk(ĥk(y),y)
�
r̃m(k)� µ̃k(ĥk(y),y)

�
I(Bk)

+
K

Â
k=1

Â
y2Y+(Îk)

nk(ĥk(y),y)
�
µ̃k(ĥk(y),y)�µ(ĥk(y),y)

�
I(Bk)

(b)
=

K

Â
k=1

tkh(P̃k�Pk), µ̃kiI(Bk)

+
K

Â
k=1

Â
y2Y+(Îk)

nk(ĥk(y),y)h(Pk� ek,y), µ̃kiI(Bk)

+
K

Â
k=1
hvk,(µ̃k�µk)iI(Bk), (4.35)
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where (a) follows from r̃m(k) � r⇤m when event Bk occurs. Moreover, (b) follows
from r̃m(k)� µ̃k(ĥk(y),y) = hP̃k, µ̃ki�hek,y , µ̃ki= h(P̃k�Pk), µ̃ki+h(Pk�ek,y), µ̃ki.
Then, the regret decomposition yields

RegSim-OOS
T  Â

a2A
Â

y2Y
NT (a,y)r̄(a,y)�

T

Â
t=1

rt (4.36)

+
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(r⇤m�µ(a,y))I(B̄k) (4.37)

+
K

Â
k=1

tkh(P̃k�Pk), µ̃kiI(Bk) (4.38)

+
K

Â
k=1

Â
y2Y+(Îk)

nk(ĥk(y),y)h(Pk� ek,y), µ̃kiI(Bk) (4.39)

+
K

Â
k=1
hvk,(µ̃k�µk)iI(Bk). (4.40)

Step 2 (Regret due to randomness of the rewards): Observe that

E
"

T

Â
t=1

rt

���� NT

#
= Â

a2A
Â

y2Y
NT (a,y)r̄(a,y). (4.41)

Given the number of observations of the partial state-action pairs, i.e., NT , the random
variables rt(at) are independent over time t. Therefore, we have

P
 

T

Â
t=1

rt  Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�

r
T
2

log
4T
d

�����NT

!

(c)
 exp

✓
�2

1
2T

log
✓

4T
d

◆
T
◆


d
4T

, (4.42)

where (c) follows from Hoeffding’s inequality. Hence, with probability 1� d
4T , (4.36) is

bounded by

Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�
T

Â
t=1

rt 

r
T
2

log
4T
d

. (4.43)
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Step 3 (Regret due to the failure of confidence intervals): In this step, we consider the
regret of the episodes in which B̄k occurs. Then,

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(r⇤m�µ(a,y))I
�
B̄k
�
 2

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)I
�
B̄k
�

 2
K

Â
k=1

tkI
�
B̄k
�

 2
T

Â
t=1

t I((P,R) /2 (P(t),R(t)))

 2
p

T +2
T

Â
t=bT 1/4c+1

t I((P,R) /2 (P(t),R(t))) .

(4.44)

Therefore, we have

P
 

T

Â
t=bT 1/4c+1

t I((P,R) /2 (P(t),R(t)))> 0

!

 P
⇣
9 t :

j
T 1/4

k
+1 t  T s.t.(P,R) /2 (P(t),R(t))

⌘



T

Â
t=bT 1/4c+1

P((P,R) /2 (P(t),R(t)))

(d)


T

Â
t=bT 1/4c+1

d
5t5


d

5T 5/4 +
Z •

bT 1/4c+1

d
5t5 dt 

d
5T 5/4 +

d
20T


d

4T
, (4.45)

where (d) follows from Lemma 2. Therefore, with probability at least 1� d
4T , the fol-

lowing holds for (4.37).

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(r⇤m�µ(a,y))I
�
B̄k
�
 2
p

T . (4.46)
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Step 4 (Regret due to estimation error of transition probabilities): We start with
some definitions and observations. For any k, we have

h(P̃k�Pk), µ̃ki= h(P̃k� P̂k), µ̃ki+ h(P̂k�Pk), µ̃ki

(e)
 (k(P̃k� P̂k)k1 +kP̂k� P̂kk1)kµ̃kk•



s
160Ytot log4T/d
max(1,Nk(Îk))

, (4.47)

where (e) holds when event Bk happens and follows from kµ̃kk• < 2. Let the length of
the rounds with Îk = I be denoted by the sequence (t1(I),t2(I), . . . ,tK(I)(I)), where
K(I) = |{1  k  K|Îk = I}|. Moreover, nk(I) = Âk�1

i=1 ti(I) is the number of times
in which observations I are made in the rounds (t1(I),t2(I), . . . ,tk�1(I)). We have
Nk(I) � nk(I), since Nk(I) is the number of the observations that contain I. We also
have T = ÂI2Pm(D) nK(I)(I). Then, (4.38) is bounded by

K

Â
k=1

tkh(P̃k�Pk), µ̃kiI(Bk)
p

160Ytot log4T/d
K

Â
k=1

tkq
max

�
1,Nk(Îk)

�



p
160Ytot log4T/d Â

I2Pm(D)

K(I)

Â
k=1

tk(I)p
max(1,nk(I))

( f )
 (1+

p

2)
p

160Ytot log4T/d Â
I2Pm(D)

q
NK(I)(I)

(g)
 (1+

p

2)
p

160Ytot|Pm(D)|T log4T/d , (4.48)

where ( f ) and (g) follow from Lemma 5 and Jensen’s inequality, respectively.
Step 5 (Regret due to randomness due to transition probabilities): Let Xt = h(Pk(t)�

ek(t),yt
), µ̃k(t)iI(Bk(t)). (4.39) can be written as

K

Â
k=1

Â
y2Y+(Îk)

nk(ĥk(y),y)h(Pk� ek,y), µ̃kiI(Bk) =
T

Â
t=1

Xt . (4.49)

We observe that

E
⇥
Xt | (I1,y1,a1,r1), . . . ,(It�1,y t�1,at�1,rt�1),It

⇤
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= hE
⇥
Pk(t)� ek(t),yt

⇤
, µ̃k(t)iI(Bk(t)) = 0, (4.50)

and

|Xt |
⇣
kPk(t)k1 +kek(t),yt

k1

⌘
kµ̃k(t)k•I(Bk(t)) 4. (4.51)

By Azuma-Hoeffding bound, we have

P
 

T

Â
t=1

Xt � 4
p

2T log4T/d

!


d
4T

. (4.52)

Therefore, with probability at least 1� d
4T , it holds

K

Â
k=1

Â
y2Y+(Îk)

nk(ĥk(y),y)
�
Pk� ek,y

�T µ̃kI(Bk) 4
p

2T log4T/d . (4.53)

Step 6 (Regret due to errors in reward estimation): Note that when Bk happens, we
have

µ̃k(ĥk(y),y)�µ(ĥk(y),y) = r̃k(ĥk(y),y)� r̄(ĥk(y),y)

= r̃k(ĥk(y),y)� r̂k(ĥk(y,y)+ r̂k(ĥk(y),y)� r̄(ĥk(y),y)

 |r̃k(ĥk(y),y)� r̂k(ĥk(y),y)|+ |r̂k(ĥk(y),y)� r̄(ĥk(y),y)|



s
2log(20YtotAt5/d )

Nk(ĥk(y),y)
. (4.54)

Therefore, for (4.40) we have

K

Â
k=1
hvk,(µ̃k�µk)iI(Bk)

p
2log(20YtotAT/d ) Â

a2A
Â

y2Y

K

Â
k=1

nk(a,y)

max
⇣

1,
p

Nk(a,y)
⌘ .

(4.55)

Since Nk(a,y) = Âk�1
i=1 nk(a,y), by Lemma 5, it yields

K

Â
k=1

nk(a,y)

max
⇣

1,
p

Nk(a,y)
⌘  (1+

p

2)
p

NT (a,y). (4.56)
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By Jensen’s inequality, we have

p
2log(20YtotAT/d ) Â

a2A
Â

y2Y

K

Â
k=1

nk(a,y)

max
⇣

1,
p

Nk(a,y)
⌘

 (1+
p

2)
p

2YtotAT log(20YtotAT/d ). (4.57)

Therefore, with probability at least 1�d , we have

RegSim-OOS
T 

r
T
2

log4T/d +4
p

2T log4T/d +2
p

T

+(1+
p

2)

 
p

160|Pm(D)|T log4T/d +
p

2YtotAT log20YtotAT/d

!
.

(4.58)

⌅

4.C Proof of Theorem 3

4.C.A Notations

We use the following notations in the proof of Theorem 3.

P̃k(·|y, i) =
⇥
p̃k(y 0|y, i)

⇤
y 02Y+(y,i) , (4.59)

P̂k(·|y, i) =
⇥
p̂k(y 0|y, i)

⇤
y 02Y+(y,i) , (4.60)

P(·|y, i) =
⇥
p(y 0|y, i)

⇤
y 02Y+(y,i) , (4.61)

F̂ l,k =
⇥
F̂l,k(y)

⇤
y2Yl

, (4.62)

for any l = 0, . . . ,m. We need to define the event Bk as the event that reward and transition
probability estimates achieve the confidence levels. Formally, it is defined as

Bk =
n

y 2Y,a 2A

���|r̄(a,y)� r̂k(a,y)| conf1,k(a,y)
o

\

n
y 2Y, i 2D\dom(y)

��� kP(·|y, i)� P̂k(·|y, i)k1  conf2,k(y, i)
o
. (4.63)
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When event Bk happens, we have F̂0,k(y0)� F⇤0 (y0). Let Y+
p,l denote the set of realiza-

tions in phase l under policy p . Thus, Y+
p,m denotes the set of terminal realizations under

policy p . Let p̃k(y 0|y, i) denote the optimistic observation transition probabilities from
y to y 0 by observation i.

4.C.B Proof

Proof. Step 1 (Regret decomposition): Following a similar approach as the Step 1 in
the proof of Theorem 2, the regret of Seq-OOS can be decomposed as

RegSeq-OOS
T = T F⇤0 (y0)�

"
T

Â
t=1

 
rt�

m�1

Â
t=0

ct

!#

=
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y) [F⇤0 (y0)�µ(a,y)]

+ Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�
T

Â
t=1

rt

=
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y) [F⇤0 (y0)�µ(a,y)]I(Bk)

| {z }
(D)

+
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y) [F⇤0 (y0)�µ(a,y)]I(B̄k)

+ Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�
T

Â
t=1

rt . (4.64)

Part (D) in (4.64) can be bounded and decomposed as

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y) [F⇤0 (y0)�µ(a,y)]I(Bk)



K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)
⇥
F̂0,k(y0)� µ̃k(a,y)

⇤
I(Bk)

| {z }
(D)

+
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y) [r̃k(a,y)� r̄(a,y)]I(Bk) (4.65)
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We can further decompose the part (D) in (4.65). Observe that nk(·, ·) is non-zero only
for partial state-action pairs of the form (ĥk(y),y)y2Y+

p̂k ,m
. Therefore, we can rewrite

(D) in (4.65) as

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)
⇥
F̂0,k(y0)� µ̃(a,y)

⇤
I(Bk)

=
K

Â
k=1

Â
y2Y+

p̃k ,m

nk(ĥk(y),y)
�
F̂0,k(y0)� µ̃(ĥk(y),y)

�
I(Bk)

=
K

Â
k=1

tk+1�1

Â
t=tk

�
F̂0,k(y0)� µ̃(ĥk(ym,t),ym,t)

�
I(Bk). (4.66)

By definition, we have F̂l,k(y) = Q̂l,k(y, ĝk(y)), 8y 2 Yl and l = 0, . . . ,m� 1 and
F̂m,k(y) = r̃(ĥk(y),y) = µ̃(ĥk(y),y)+Âi2dom(y) ci. Thus, we can rewrite (4.66) as

K

Â
k=1

tk+1�1

Â
t=tk

�
F̂0,k(y0)� µ̃(ĥk(ym,t),ym,t)

�
I(Bk)

=
K

Â
k=1

tk+1�1

Â
t=tk

 
Q̂0,k(y0, ĝk(y0))� F̂m,k(ym,t)+

m�1

Â
l=0

cĝk(y l,t)

!
I(Bk)

= Â
k=1

tk+1�1

Â
t=tk

m�1

Â
l=0

⇣
Q̂l,k(y l,t , ĝk(y l,t))� F̂l,k(y l+1,t)+ cĝk(y l,t)

⌘
I(Bk). (4.67)

By definition, we have

Q̂l,k(y, i) = Â
y 02Y+(y,i)

p̃k(y 0|y, i)F̂l+1,k(y 0)� ci. (4.68)

Then,

tk+1�1

Â
t=tk

m�1

Â
l=0

⇣
Q̂l,k(y l,t , ĝk(y l,t))� F̂l,k(y l+1,t)+ cĝk(y l,t)

⌘
I(Bk)

=
tk+1�1

Â
t=tk

m�1

Â
l=0
h(P̃k(·|y l,t , ĝk(y l,t))� ek,y l+1,t

), F̂ l,kiI(Bk)

=
m�1

Â
l=0

Â
y2Yl

Â
i2D\dom(y)

nk(y, i)h(P̃k(·|y, i)�P(·|y, i)), F̂ l,kiI(Bk)
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+
tk+1�1

Â
t=tk

m�1

Â
l=0
h(P(·|yl,t , ĝk(y l,t))� ek,y l+1,t

), F̂ l,kiI(Bk). (4.69)

Therefore, the regret can be decomposed as

RegSeq-OOS
T  Â

a2A
Â

y2Y
NT (a,y)r̄(a,y)�

T

Â
t=1

rt (4.70)

+
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(F⇤0 (y0)�µ(a,y))I(B̄k) (4.71)

+
K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(µ̃k(a,y)�µ(a,y))I(Bk) (4.72)

+
K

Â
k=1

m�1

Â
l=0

Â
y2Yl

Â
i2D\dom(y)

nk(y, i)h(P̃k(·|y, i)�P(·|y, i)), F̂ l,kiI(Bk)

(4.73)

+
K

Â
k=1

tk+1�1

Â
t=tk

m�1

Â
l=0
h(P(·|y l,t , ĝk(y l,t))� ey l+1,t ), F̂ l,kiI(Bk). (4.74)

Step 2 (Regret due to randomness of the rewards): For (4.70), similar to the Step 2 of
the proof of Theorem 2, it can be shown that with probability 1� d

4T , we have

Â
a2A

Â
y2Y

NT (a,y)r̄(a,y)�
T

Â
t=1

rt 

s
T
2

log
✓

4
T
d

◆
. (4.75)

Step 3 (Regret due to violation of confidence intervals): (4.71) can be bounded by

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(F⇤0 (y0)�µ(a,y))I(B̄k)

 2
p

T +
T

Â
t=bT 1/4c+1

t I((P,R) /2 (P(t),R(t))) , (4.76)
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where P((P,R) /2 (P(t),R(t)))  d
5t5 using Lemma 3. Therefore, following the same

steps as the Step 3 of proof of Theorem 2, with probability at least 1� d
4T , we have

K

Â
k=1

Â
a2A

Â
y2Y

nk(a,y)(F⇤0 (y0)�µ(a,y))I(B̄k) 2
p

T . (4.77)

Step 4 (Regret due to estimation error of transition probabilities): For (4.73), we can
show that

K

Â
k=1

m�1

Â
l=0

Â
y2Yl

Â
i2P1(y)

nk(y, i)h(P̃k(·|y, i)�P(·|y, i)), F̂ l,kiI(Bk)



p
160Ymax log(4DYtotT/d )

m�1

Â
l=0

Â
y2Yl

Â
i2D\dom(y)

K

Â
k=1

nk(y, i)p
max(1,Nk(y, i))

(a)
 (1+

p

2)
p

160Ymax log(4DYtotT/d )
m�1

Â
l=0

Â
y2Yl

Â
i2D\dom(y)

p
NT (y, i)

(b)
 (1+

p

2)
p

160mDYmaxYtotT log(4DYtotT/d ), (4.78)

where (a) follows from Lemma 5 and (b) follows from Jensen’s inequality and the fact
that Ây2Y Âi2D[ /0 NT (y, i) = mT .
Step 5 (Regret due to randomness due to transition probabilities): We define

Xl,t = h(P(·|y l,t , ĝk(y l,t))� ey l+1,k(t)), F̂ l,k(t)iI(Bk(t)). (4.79)

Observe that kF̂ l,k(t)k•  2 since r̂t(a,y) 1 for each partial state-action pair and con-
fidence levels are less than 1. Therefore, for any l = 0,1, . . . ,m�1, we have

|Xl,t |=
⇣
kp(·|y l,t , ĝk(y l,t))k1 +key l+1,k(t)k1

⌘
kF̂ l,k(t)k•I(Bk(t)) 4. (4.80)

By Azuma-Hoeffding bound and following the same steps as the Step 5 in proof of
Theorem 2, with probability 1� d

4T , the following holds for (4.74):

K

Â
k=1

tk+1�1

Â
t=tk

m�1

Â
l=0
h(P(·|y l,t , ĝk(y l,t))� ey l+1,t ), F̂ l,kiI(Bk)
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=
m�1

Â
l=0

T

Â
t=1

Xl,t  4m
p

2T log(4T/d ). (4.81)

Step 6 (Regret due to estimation error of rewards): Following the same steps as Step 6
of proof of Theorem 2, (4.72) can be bounded as (1+

p
2)
p

2YtotAT log(20YtotAT/d ).
Therefore,

RegSeq-OOS
T 

r
T
2

log(4T/d )+2
p

T +(1+
p

2)
p

160mDYmaxYtotT log(4DYtotT/d )

+4m
p

2T log(4T/d )+(1+
p

2)
p

10YtotAT log(20YtotAT/d ).

⌅

4.D Supplementary Results

4.D.A Probability of Confidence Intervals Violation for Sim-OOS

Let P̂t = (p̂t(y))y2Y and R̂t = (r̂t(a,y))y2Y denote the estimations of the observation/-
transition probability and the mean reward, both at time t, respectively. The following
lemma determines the bounds for the probability of (P,R) being in the plausible set of
observation/transition probability and mean rewards using the estimations at time t.

Lemma 2. For any t � 1, if we set

conf1(n, t) = min

 
1,

s
log(20YtotAt5/d )

2max(1,n)

!
, (4.82)

and

conf2(n, t) = min

 
1,

s
log(10Ytot log(4t/d ))

max(1,n)

!
, (4.83)

the probability that true (P,R) is not contained in the plausible set (P(t),R(t)) at time t
is

P((P,R) /2 (P(t),R(t)))
d

5t5 . (4.84)
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Proof.

P((P,R) /2 (P(t),R(t))) Â
a2A

Â
y2Y

P(|r̄(a,y)� r̂t(a,y)|� conf1,t(a,y))

+ Â
I2Pm(D)

P
 

Â
y2Y+(I)

|p(y)� p̂t(y)|� conf2,t(I)

!

(a)
 Â

a2A
Â

y2Y

2d
20YtotAt5 +

d
10t5 

d
5t5 , (4.85)

where (a) follows from the following facts. We have

conf2,t(I) =

s
10Ytot log(4t/d )

Nt(I)

�

s
2log(10Ytot2Ytott5/d )

max(1,Nt(I))
. (4.86)

Therefore,

Â
I2Pm(D)

P
 

Â
y2Y+(I)

|p(y)� p̂t(y)|� conf2,t(I)

!

 Â
I2Pm(D)

P
 

Â
y2Y+(I)

|p(y)� p̂t(y)|�

s
2log(10Ytot2Ytott5/d )

max(1,Nt(I))

!

(b)
 Â

I2Pm(D)

d
5Ytott5 

d
10t5 , (4.87)

where (b) follows from Lemma 4. ⌅

4.D.B Probability of Confidence Intervals Violation for Seq-OOS

Let P̂t = ( p̂t(y 0|y, i))y2Y,i2D denote the observation/transition probability estimates.
Also, R̂t = (r̂t(a,y))y2Y indicates the mean reward estimates at time t. The following
lemma bounds the probability of (P,R) being in the plausible set of observation/transition
probability and the mean rewards using the estimates at time t.
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Lemma 3. For any t � 1, if we set

conf1(n, t) = min

 
1,

s
log(20YtotAt5/d )

2max(1,n)

!
, (4.88)

and

conf2(n, t) = min

 
1,

s
log(10Ymax log(4tYtotD/d ))

max(1,n)

!
, (4.89)

the probability that true (P,R) is not contained in the plausible set (P(t),R(t)) at time t
is

P((P,R) /2 (P(t),R(t)))
d

10t5 . (4.90)

Proof.

P((P,R) /2 (P(t),R(t)))

 Â
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P(|r̄(a,y)� r̂t(a,y)|� conf1,t(a,y))
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d
10t5 

d
5t5 , (4.91)

where (a) follows from the following facts. We have,

conf2,t(y, i) =

s
10Ymax log(4YtotDt/d )

Nt(I)
�

s
2log(10YtotD2Ymaxt5/d )

max(1,Nt(y, i))
. (4.92)

Thus, we have
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Â
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D\dom(y)
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y 02Y+(y,i)

|p(y 0|y, i)� p̂t(y 0|y, i)|� conf2,t(y, i)
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 Â
y2Y

Â
i2

D\dom(y)

P
 

Â
y 02Y+(y,i)

|p(y 0|y, i)� p̂t(y 0|y, i)|�

s
2log(10Ymax2YtotDt5/d )

max(1,Nt(y, i))

!

(b)
 Â

y2Y
Â

i2D\dom(y)

d
10YtotDt5 

d
10t5 , (4.93)

where (b) follows from Lemma 4. ⌅

4.E Auxiliary Results

L1 Deviation of True and Empirical Distributions

Let A denote the finite set {1,2, . . . ,a}. For two probability distributions P and Q on A,
let

kP�Qk1 =
a

Â
i=1

|P(i)�Q(i)| (4.94)

denote L1 distance between P and Q. For a sequence xn = x1, . . . ,xn 2 A
n, let P̂ be the

empirical probability distribution on A defined by

P̂( j) =
1
n

n

Â
i=1

I(xi = j). (4.95)

Lemma 4 ( [96] ). Let P be a probability distribution on the set A = {1,2, . . . ,a}. Let
Xn = X1,X2, . . . ,Xn be i.i.d. random variables according to P. Then, for all e > 0,

P(kP� P̂k � e) (2a
�2)e�e2n/2. (4.96)

Summation Bound

Lemma 5 ( [80] ). For any sequence of numbers z1, . . . ,zn with 0  zk  Zk�1, where
Zk�1 = max

⇣
1,Âk�1

i=1 zi

⌘
, it yields

n

Â
k=1

zk
p

Zk�1
 (
p

2+1)
p

Zn. (4.97)
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5 Online Learning with Costly
Features in Non-stationary
Environments

Maximizing long-term rewards is the primary goal in sequential decision-making prob-
lems. The majority of existing methods assume that side information is freely available,
enabling the learning agent to observe all features’ states before making a decision. In
real-world problems, however, collecting beneficial information is often costly. That
implies that, besides individual arms’ reward, learning the observations of the features’
states is essential to improve the decision-making strategy. The problem is aggravated
in a non-stationary environment where reward and cost distributions undergo abrupt
changes over time. To address the aforementioned dual learning problem, we extend
the contextual bandit setting and allow the agent to observe subsets of features’ states.
The objective is to maximize the long-term average gain, which is the difference be-
tween the accumulated rewards and the paid costs on average. Therefore, the agent faces
a trade-off between minimizing the cost of information acquisition and possibly improv-
ing the decision-making process using the obtained information. To this end, we develop
an algorithm that guarantees a sublinear regret in time. Numerical results demonstrate
the superiority of our proposed policy in a real-world scenario.

5.1 Introduction

In a sequential decision-making problem, an agent takes action over consecutive rounds
of play to optimize a long-term metric. Over the past decades, a large body of literature
develop decision-making policies that deal with such optimization problems under var-
ious constraints [10, 7]. In most cases, particularly in the era of big data, the proposed
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methods postulate the possibility of information acquisition with no limit and for free. In
reality, however, access to side information is challenging; collecting information might
be costly. For example, in medical contexts, obtaining information for treatment recom-
mendations mainly requires additional tests that are time- and money-consuming. Thus,
it is essential to develop algorithms that can learn the optimal observations and actions
simultaneously.

Real-world problems frequently appear in non-stationary environments. For instance,
in the application of personalized news recommendation, user preferences over news
can change over time and exhibit various seasonality patterns [97]. The dual learning
problem described above becomes significantly more challenging when the environment
changes. In fact, in a non-stationary environment, the value of obtained information,
such as received action’s feedback or paid observation’s cost, before a change in the en-
vironment might become obsolete after the change occurs. Therefore, the agent has to
constantly adapt her strategy and improve the decision-making process to comply faster
with the changes in the environment, while she simultaneously performs the aforemen-
tioned dual learning task.

We address the mentioned challenges by using the Multi-Armed Bandit (MAB) [12]
framework, where a learning agent selects an arm at sequential decision-making rounds
and the environment reveals a feedback drawn from some unknown probability distribu-
tion. In this setting, the agent experiences the exploration-exploitation dilemma, where
the decision has to be made between exploring options to acquire new knowledge and
selecting an option by exploiting the existing knowledge [13]. In a contextual MAB
problem, the agent has additional access to some side information and is able to observe
these contextual information before making decision at each round. However, in prac-
tice, such contextual information is not always readily available to the agent, but rather
it has to be acquired in exchange for a cost.

We model the described problem using the contextual bandit setting and introduce
the non-stationary costly contextual bandit problem, which we call it NCC problem for
short. We propose and analyze an algorithm to solve the NCC problem. Our proposed
algorithm can be considered as a variant of the UCRL2 algorithm [80]. Moreover, it
uses a sliding window to estimate the non-stationary rewards and costs. We prove that
our algorithm achieves a sublinear regret bound in time. We validate our solution on a
real-world problem of ranking nursery school applications. The results demonstrate the
superiority of our algorithm compared to several benchmarks.
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5.1 Introduction

5.1.1 Related Works

Non-stationary multi-armed bandits have attracted extensive attention in the past years.
Examples include [25], [26], [27], [28], [29], [14]; nevertheless, the state-of-the-art
methods in non-stationary bandits either do not consider access to contextual informa-
tion or do not assume costly information acquisition. In the seminal work of [25], the
authors use a sliding window or a discount factor to estimate the rewards with piece-
wise stationary generating processes. Reference [26] also takes advantage of sliding
windows of observations; however, it detects the change points using a change point
analysis. [14] considers a contextual bandit problem and uses two sliding windows to
detect changes in reward distributions. If the rewards inside the second window are not
predictable with high accuracy from observations inside the first window, the algorithm
considers a new change point. The observations since the last change point are used to
select arms. The proposed algorithm in [29] utilizes exponentially increasing weights
of observations to reduce the influence of past observations with time, thereby adapting
to environmental changes. Besides, the authors in [27] use Gaussian random walks to
model the non-stationarity in underlying reward-generating processes. Online inference
based on particle learning is applied to fit the bandit parameters sequentially. Moreover,
in [28], a hierarchical bandit algorithm is proposed, which maintains a suite of bandit
models that estimate the reward distributions using a subset of observations. A higher
level bandit model measures if the prediction error of lower level models exceeds some
threshold, discards them accordingly, and creates new ones.

Costly features in online learning problems have been addressed both in the full infor-
mation setting [39, 40, 41], also in the bandit setting [2]. However, the existing methods
with bandit feedback either do not model the cost as a random variable or do not take
into account the non-stationarity of the environment. Reference [2] is the most relevant
work to ours. The authors consider a contextual bandit problem where observing fea-
tures’ states is costly. However, the costs are constant values, and the reward-generating
processes are stationary. Our approach shall not be mistaken for MAB problems with
paid observations [98], where the agent can observe the rewards of any subset of arms
after paying the costs at each round. In contrast, in our work, we allow for feature vectors
and assume that observing feature’s states is costly.

Another related area of research is budget-constrained learning, where feature selec-
tion is adaptive. For example, the authors in [92] consider linear regression models under
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local and global constraints on the number of observed features. They propose an algo-
rithm that actively chooses the features to observe for each data sample. As another
example, in [93], the authors consider linear regression with a budget on the number of
feature observations for each data sample. They analyze the number of required samples
for the model with partial information to attain the same error as that with complete in-
formation. Unlike our approach, these works consider a batch learning setting with the
free observation of a limited number of features. Besides, [40] investigates an online
classification problem with a per-sample budget for observing features, where features
have various costs. The authors propose a deep reinforcement learning algorithm to solve
the problem. Reference [32] studies a contextual bandit problem in which the agent has
a fixed budget on the number of features she can observe before choosing an arm. The
authors take advantage of Thompson sampling and propose an algorithm that works in
stationary and non-stationary environments. However, they do not provide regret analy-
sis for the proposed method. Compared to the aforementioned works, we not assume a
budget constraint; nonetheless, the agent attempts to minimize the total cost of observ-
ing features’ states. Therefore, in our proposed method, the agent adaptively selects the
features and learns the optimal policy from limited information.

5.1.2 Organization

We formulate the NCC bandit problem in Section 5.2. We describe our proposed method,
NCC-UCRL2, in Section 5.3. In Section 5.4, we analyze the performance of NCC-
UCRL2 theoretically. Section 5.5 includes numerical evaluation, and Section 5.6 con-
cludes the chapter.

5.2 Problem Formulation

Let A= {1,2, . . . ,A} denote the set of actions. D= {1,2, . . . ,D} represents a finite set of
features. Each feature i 2 D has some random state F[i] 2 Xi, where Xi denotes a finite
set of states for feature i. We collect the random features’ states of all the features in the
random state vector F = [F[1],F[2], . . . ,F[D]] 2X =

N
i2DXi. Let f be a realization of

the random state vector, which is drawn from a fixed but unknown distribution. P[F = f ]
shows the probability of state vector f being realized.

At each time t, the environment draws a state vector f t = [f t [1],f t [2], . . . ,f t [D]].
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5.2 Problem Formulation

The agent can select a subset of features It ✓ D, called the observation set, for costly
observation. Other elements of the state vector remain unknown. When |It |= 0, i.e., It =

/0, none of features’ states are observed at time t. We use P(D) to represent the power
set of D that includes all possible observation sets, i.e., P(D) = {I ✓D | 0 |I| D}.
Besides, the partial state vector y t = [y t [1],y t [2], . . . ,y t [D]] can be represented as

y t [i] =

8
<

:
f t [i], if i 2 It ,

N/A, if i /2 It ,
(5.1)

where N/A indicates the corresponding feature’s state is missing. Let D(y) = {i 2
D | y[i] 6= N/A} represent the domain set of a partial state vector y . By Y+(I) =

{y | D(y) = I}, we denote the set of all possible partial state vectors whose domain
set is equal to the observation set I. Therefore, Y =

S
I✓D Y+(I) denotes the set of

all possible partial state vectors. Furthermore, we define a partial state vector y to be
consistent with f if y[i] = f [i], 8i 2D(y). We use f ⇠ y to show that y is consistent
with f . Moreover, y is a substate of y 0 if both the partial state vectors y and y 0 are
consistent with f and D(y) ✓ D(y 0). We use y � y 0 to show that y is a substate of
y 0. For every i 2 It , ct [i] 2 [0,1] shows the random cost to observe f t [i], which follows
an unknown probability distribution with mean c̄t [i]. Also, by ct = [ct [1],ct [2], . . . ,ct [D]]

and c̄t = c̄t [1], c̄t [2], . . . , c̄t [D]], we denote the cost vector and the mean cost vector of all
features at time t, respectively.

At each time t, the agent follows a policy pt to select an observation set It and an
action at . Therefore, we define the policy at time t using a tuple pt = (It ,ht), where
ht : Y+(It)! A denotes an adaptive action selection strategy that maps a partial state
vector y t 2 Y+(It) to an action at 2 A. The agent then receives a random reward
rt 2 [0,1] whose distribution is unknown a priori. We define the unknown expected
reward function as r̄t : A⇥X ! [0,1]; hence r̄t(at ,f t) is the expected reward of action
at at time t when the state vector is f t . The generating processes of rewards and costs are
piece-wise stationary so that there exist °T time instants before a time horizon T where
at least one of the mean rewards or mean costs changes abruptly. We define the marginal
probabilities and expected rewards of partial state vectors using the definition of prob-
ability distribution and expected reward for the state vectors. The marginal probability
of the partial state vector y t being realized at time t is defined as p(y t) = P[Ft ⇠ y t ].
Moreover, r̄t(at ,y t) = E [r̄t(at ,Ft) | Ft ⇠ y t ] indicates the marginal expected reward of
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action at when the partial state vector y t is observed. Therefore, for a fixed observation
set I, it holds that Ây2Y+(I) p(y) = 1.

The expected gain of the agent following the policy p = (I,h) at time t yields

rp
t = Â

y2Y+(I)
p(y)r̄t(h(y),y)�Â

i2I
c̄t [i]. (5.2)

In words, the expected gain of the agent that follows a policy p at time t is the expected
reward of p received by the agent at time t minus the expected cost of p incurred by
the agent due to state observation at time t. Let P denote the set of all feasible policies
defined as

P = {(I,h)|I 2 P(D)}. (5.3)

Therefore, the optimal policy p⇤t = (I⇤t ,h⇤t ) at time t is given by

p⇤t = argmax
p2P

rp
t . (5.4)

Moreover, the expected gain of the optimal policy at time t is denoted by r⇤t = rp⇤t
t . We

summarize the most important notations in Table 5.1.

The optimal policy for NCC problem defined in (5.4) differs from the conventional
optimal policies in the contextual bandit problems. Let a⇤t (y) = argmaxa2A r̄t(a,y)

denote the best action for a given partial state vector y . Moreover, define r̄⇤t (y) =

r̄t(a⇤t (y),y) as the expected reward of the best action when the partial state vector is y .
Moreover, for a fixed observation set I, define a policy pt(I)= (I,a⇤t (y)) that selects the
observation set I and the best action a⇤t (y) for any y 2Y+(I) at time t. The expected
gain of the policy pt(I) can be calculated as Vt(I) = Ây2Y+(I) p(y)r̄⇤t (y)�Âi2I c̄t [i].
Then, the optimal policy p⇤t = (I⇤t ,h⇤t ) defined in (5.4) can be obtained by

I
⇤

t = argmax
I2P(D)

Vt(I),

h⇤t (y) = argmax
a2A

r̄t(a,y).
(5.5)

We observe that r⇤t =Vt(I⇤t ), which means the optimal policy (5.4) achieves the highest
expected gain at each time t among all the policies pt(I).
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Table 5.1: Summary of notations

Notation Definition
A Set of actions
D Set of features
f t Unknown state vector at time t
It Observation set of selected features at time t
y t Partial state vector observed by the agent at time t
at Action of the agent at time t
rt Reward at time t

c̄t [i] Cost of state observation for feature i 2D at time t
rp

t Expected gain of policy p
D(y) Domain set of partial state vector y
Y+(I) Set of all partial state vectors with domain I

Y Set of all partial state vectors

Ideally, the agent aims at maximizing the total expected gain over the time horizon T .
Alternatively, the agent’s goal is to minimize the expected regret over the time horizon
T , defined as the difference between the accumulated expected gain of the oracle that
follows the optimal policy and that of the agent that follows the applied policy. Formally,
the expected regret is defined as

RT (P) =
T

Â
t=1

⇥
r⇤t �rpt

t
⇤
. (5.6)

In the next section, we propose a policy to minimize the expected regret (5.6).

5.3 NCC-UCRL2 Algorithm

In this section, we propose our decision-making strategy to solve the NCC problem de-
scribed in Section 5.2. Our policy, presented in Algorithm 4, takes three types of confi-
dence regions into account, for rewards, costs, and probabilities of partial state vectors.
Since the random generating processes of rewards and costs are non-stationary, we use a
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sliding window of size w > 0 to estimate their mean values. At each time t, we define

Tt(a,y;w) = {t�w < t < t | at = a & yt = y}, (5.7)

and

Tt(i;w) = {t�w < t < t | i 2 It}. (5.8)

For each a 2A and y 2Y, we calculate the empirical average of rewards at time t by

r̂t(a,y) =
1

Nt(a,y;w) Â
t2Tt(a,y;w)

rt , (5.9)

where Nt(a,y;w) = max{1, |Tt(a,y;w)|}. Moreover, at each time t, we calculate the
empirical average of costs for each i 2D by

ĉt [i] =
1

Nt(i;w) Â
t2Tt(i;w)

ct [i], (5.10)

where Nt(i;w) = max{1, |Tt(i;w)|}.

Our policy uses the collected data to estimate the probabilities of partial state vectors;
that is, after observing the partial state vector y t , the agent uses it to update the estimate
of the probability of y t and the probabilities of all the substates of y t . However, the
agent cannot use the obtained reward at time t to update the estimate of mean reward
for action at and the sub-states of y t , since it introduces a bias into the mean reward
estimation. Therefore, we define

Tt(I) = {t < t | I ✓ It}, (5.11)

and

Tt(I,y) =

8
<

:
{t < t | I ✓ It & y � yt}, y 2Y+(I),

/0, y /2Y+(I).
(5.12)
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5.3 NCC-UCRL2 Algorithm

Algorithm 4 NCC-UCRL2: Non-stationary Costly Contextual bandit-UCRL2
Input: Window size w.

1: Initialize: 8a 2A, 8y 2Y, 8i 2D, 8I 2 P(D):
T1(a,y;w) = /0, T1(i;w) = /0, T1(I) = /0, T1(I,y) = /0.

2: for t = 1, . . . ,T do
3: Compute r̂t(a,y), 8a 2A, 8y 2Y, using (5.9).
4: Compute ĉt [i], 8i 2D, using (5.10).
5: Compute p̂t(y), 8y 2Y. using (5.13).
6: Solve Problem (5.17), 8I 2 P(D), and obtain V̂t(I).
7: Select the observation set Ît that solves (5.18) and pay the cost Âi2Ît

ct [i].
8: Determine the action selection strategy ĥt(y) based on (5.19).
9: Observe the partial state vector y t 2Y+(Ît).

10: Select the action at = ĥt(y t) and observe the reward rt .
11: Update Tt(D(y)) and Tt(D(y),y), 8y s.t. y � y t .
12: Update Tt(at ,y t ;w).
13: Update Tt(i;w), 8i 2 Ît .
14: end for

Then, we estimate the probability for each partial state vector y 2Y at time t as

p̂t(y) =
Nt(D(y),y)

Nt(D(y))
, (5.13)

where Nt(I,y) = max{1, |Tt(I,y)|} and Nt(I) = max{1, |Tt(I)|}.

When searching for the optimal observation set and action, we add high-probability
confidence bounds to the aforementioned estimates. Let Ytot = ÂI2P(D) |Y+(I)| and
d > 0. For each action a 2A and partial state vector y 2Y, we define

r̃t(a,y) = r̂t(a,y)+Ct(a,y;w), (5.14)

where Ct(a,y;w) = min
n

1,
q

log(TAYtotw/d )
Nt(a,y;w)

o
. Moreover, for each feature i 2 D, we

define

c̃t [i] = ĉt [i]�Ct(i;w), (5.15)

where Ct(i;w) = min
n

1,
q

2log(T Dw/d )
Nt(i;w)

o
. The optimistic gain at time t can be found by
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searching for partial state vector probabilities over a high-probability space and a policy
that solves

maximize
p=(I,h),q2D

|Y+(I)|

(

Â
y2Y+(I)

q(y)r̃t(h(y),y)�Â
i2I

c̃t [i]

�����

Â
y2Y+(I)

|q(y)� p̂t(y)|Ct(I)

)
,

(5.16)

where Ct(I) = min
n

1,
q

2Ytot log(2T |P(D)|/d )
Nt(I)

o
and D

|Y+(I)| is a simplex in |Y+(I)| di-
mensions. The optimization problem (5.16) can be reduced to the following optimization
problem (See Appendix 5.A for details.).

V̂t(I) = maximize
q2D

|Y+(I)|

8
<

: Â
y2Y+(I)

q(y)r̃⇤t (y)�Â
i2I

c̃t [i]

����� Â
y2Y+(I)

|q(y)� p̂t(y)|Ct(I)

9
=

; ,

(5.17)

where r̃⇤t (y) = maxa2A r̃t(a,y) is the optimistic reward estimate of the partial state vec-
tor y at time t. Problem (5.17) is solved by ranging the value of q over the plausible
candidate set of probabilities for p(y). We denote the value of q that solves (5.17) at
time t by p̃t(y). Note that, for each I, the probability p̃t(y) denotes the optimistic
probability estimate of the partial state vector y 2 Y+(I) at time t. Moreover, V̂t(I)

represents the optimistic gain of a policy pt(I) = (I, ĥt(y)) that selects the observation
set I and the action ĥt(y) for any y 2Y+(I) at time t.

At each time t, our algorithm solves (5.17) and acts optimistically by choosing the
observation set and determining the action selection strategy as

Ît = argmax
I2P(D)

V̂t(I), (5.18)

and

ĥt(y) = argmax
a2A

r̂t(a,y)+Ct(a,y;w), (5.19)

respectively.
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Afterward, NCC-UCRL2 pays the costs corresponding to the selected observation set
Ît , observes the partial state vector y t 2 Y+(Ît), and takes the action at = ĥt(y t). Fi-
nally, it receives the corresponding reward rt and updates the counters.

5.4 Theoretical Analysis

In this section, we analyze the regret performance of NCC-UCRL2 algorithm in station-
ary and non-stationary environments. We first prove an upper bound on the expected
regret of our algorithm by assuming that there is no change point in the environment. In
the stationary case, we can choose w = Q(T ) to exploit the entire collected data when
estimating the mean rewards and mean costs. In this case, as expected, NCC-UCRL2
achieves a sublinear regret.

Theorem 4. If °T = 0, i.e., when the environment is stationary, with probability at least
1�3d , the expected regret of NCC-UCRL2 is upper bounded as

RT (P) O

 
T
⇣rAYtot log(TAYtotw/d )

w
+D

r
log(T Dw/d )

w

⌘

+
p

T log(1/d )
⇣p

AYtot log(TAYtotw/d )+D
p

log(T Dw/d )
⌘

+
p

T |P(D)|Ytot log(T |P(D)|/d )

!
.

(5.20)

Choosing w = T results in

RT (P) O

 ⇣p
TAYtot log(TAYtot/d )+D

p
T log(T D/d )

⌘⇣
1+

p
log(1/d )

⌘

+
p

T |P(D)|Ytot log(T |P(D)|/d )

!
.

(5.21)

Proof. See Appendix 5.C. ⌅

In the next theorem, we establish an upper bound on the expected regret of NCC-
UCRL2 in non-stationary environments. The regret analysis for non-stationary case is
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based on the theoretical analysis in Theorem 4.

Theorem 5. If °T > 0, i.e., when the environment is non-stationary, with probability at
least 1�3d , the expected regret of NCC-UCRL2 is upper bounded as

RT (P) O

 
w°T +T

⇣rAYtot log(TAYtotw/d )
w

+D

r
log(T Dw/d )

w

⌘

+
p

°T T log(1/d )
⇣p

AYtot log(TAYtotw/d )+D
p

log(T Dw/d )
⌘

+
p

T |P(D)|Ytot log(T |P(D)|/d )

!
.

(5.22)

Choosing w = (T/°T )2/3 results in

RT (P)

O

 ⇣
T 2/3°1/3

T +
p

°T T log(1/d )
⌘⇣p

AYtot log(TAYtot/d )+D
p

log(T D/d )
⌘

+
p

T |P(D)|Ytot log(T |P(D)|/d )

!
.

(5.23)

Proof. See Appendix 5.D. ⌅

5.5 Numerical Analysis

In this section, via numerical experiments, we provide more insights into the effects
of costly features on the performance of learning algorithms. Besides, we clarify how
our proposed algorithm mitigates the adverse effects by observing only a subset of fea-
tures’ states. Moreover, we show that our algorithm efficiently adapts to environmental
changes. We also compare the performance of our algorithm with conventional bench-
marks using a real-world dataset. The source code for our algorithm and experiments in
this chapter are publicly available 1.

1https://github.com/guchis/NCC-Bandits.git
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5.5.1 Baselines

We compare NCC-UCRL2 with the state-of-the-art contextual and context-agnostic al-
gorithms. Contextual bandit algorithms in our experiment include Sim-OOS [2], PS-
LinUCB [14], and LinUCB [21]. Sim-OOS is designed for bandit problems with fixed
costs for features’ states observation in stationary environments. PS-LinUCB is designed
for piece-wise stationary environments, but it is cost-agnostic. LinUCB is the final con-
textual bandit algorithm that is neither designed for changing environments nor costly
features. In our experiment, similar to our algorithm, Sim-OOS can select any subset of
features for state observation at each time of play. As a result, at each time, they pay the
corresponding cost only for those selected features. PS-LinUCB and LinUCB always
observe all features’ states. Hence, they pay the full cost vector. We consider UCB1 and
e-Greedy [46] as context-agnostic benchmarks as standard methods despite their weak-
ness due to being blind to contextual information. We also consider a random policy
that selects an action uniformly at random at each time. Context-agnostic algorithms do
not incur any costs and only collect the rewards.

5.5.2 Nursery Dataset

We assess the performance of our algorithm on the Nursery dataset from the UCI Ma-
chine Learning Repository [99]. The dataset, derived from a hierarchical decision sup-
port system, includes applications for nursery schools and their target ranks that prior-
itize the applications and determine whether the child is recommended to be admitted
to a nursery school. The applications are described using features that represent the so-
cioeconomic status of the family. We consider D = 5 features: (i) Form of the family,
(ii) number of children, (iii) financial standing of the family, (iv) housing conditions, and
(v) health conditions of the applicant. In our experiment, we work with A = 3 target
rank values ranging from 1 to 3 that indicate the given application is not recommended,
accepted with priority, and accepted with special priority, respectively. Taking an action
is equivalent to recommending one particular rank for the given application. The agent
receives reward 1 if the correct rank is recommended, otherwise the reward is 0.
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Experimental Setup

To simulate a piece-wise stationary reward generating process, we follow the approach
proposed in [32]. At each change point, we shift all the target labels cyclically. This guar-
antees that the expected reward is piece-wise constant. In the context of decision support
system for nursery school applications, such change points correspond to changes in
preference of the decision-making authority over the applications.

We endow the features with random cost values. At each time t, the random cost of ob-
servation for each feature’s state follows a normal distribution with a standard deviation
of 0.001 and a piece-wise constant mean. We select the mean values of cost distributions
uniformly at random from the interval [0.03;0.08]. Therefore, the total observation cost
of a full state vector at each time amounts to 15� 40% of the maximum reward. The
range of costs are chosen based on two factors: (i) It should be high enough to prevent
the algorithm from observing all features’ states at all times and, (ii) low enough to incen-
tivize the algorithm considerably to pay for state observation in order to find the optimal
observations. In the nursery application ranking scenario, the state observation costs can
be thought of as the efforts required to acquire the information about the applicant. Such
efforts may include the time or other related expenses spent to obtain the information.

We split the data into train and validation (tuning) sets in approximately 80:20 ratio
with 10000 and 2630 data samples, respectively. More specifically, we sample 2630 data
points at random and use it to tune the parameters of algorithms. The parameters of
those benchmark algorithms that are originally designed for stationary environments are
tuned without introducing non-stationarity in the validation set. To tune the parameters
of NCC-UCRL2 and PS-LinUCB, we consider 2 change points in mean rewards, but no
change points in mean costs. Table 5.2 lists the tuned parameters of algorithms used in
our simulation. For NCC-UCRL2, we set d = 0.04 and choose the window parameter
w = 250.

We run the experiment for T = 10000 time steps by revealing applications to the algo-
rithms one at a time. We consider a maximum of °T = 7 change points in our experiment,
with change points in the mean rewards and mean costs at times {1000,2000,5000,8000}
and {3000,5000,7000,9000}, respectively. Fig. 5.1a and 5.1b depict the changes in the
mean reward for each arm and in the mean cost for each feature, respectively. Note that
the change points are not necessarily identical; the mean rewards and mean costs do not
always change simultaneously at a change point.
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Table 5.2: Parameters of the different policies in the experiment.

Policy Setting
Policy Sim-OOS PS-LinUCB LinUCB UCB1 e-Greedy NCC-UCRL2

Parameters
d = 0.8 a = 0.7 a = 0.5 a = 0.6 e = 0.03 w = 250

w = 100 d = 0.04
d = 0.05

5.5.3 Results

Regret Comparison

We run the algorithms using the aforementioned setup. Fig. 5.2 depicts the trend of cu-
mulative regret over time for each policy. We average the results over 5 independent runs.
Here, the instantaneous regret at each time is defined based on the instantaneous gains,
which is the obtained reward minus the total paid observation costs at every round. As
we see, NCC-UCRL2 detects the changes in the mean rewards or mean costs faster than
all other policies and therefore has a superior performance. Besides, as NCC-UCRL2
uses only the last w observations to estimate the mean rewards and mean costs, it has
a smooth curve around change points. These advantages are despite the fact that NCC-
UCRL2 only observes a subset of features’ states at each time.

(a) Evolution of the mean reward for each arm. (b) Evolution of the mean cost for each feature.

Figure 5.1: Settings of mean rewards and mean costs.
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Figure 5.2: Cumulative regret of different policies. Vertical dotted lines show the change
points.

Gain Comparison

Fig. 5.3 shows the policies’ total reward, gain, and cost. It also compares them with
the oracle. In this figure, the height of each bar shows the total accumulated reward
of each policy which is equal to the total gain (green part) plus the total cost (brown
part). NCC-UCRL2 accumulates the highest rewards during the experiment among the
benchmark policies. The accumulated reward of PS-LinUCB is almost the same as that
of our algorithm; it receives only about 0.1% less reward than NCC-UCRL2. However,
the total gain of PS-LinUCB is 20% lower due to higher paid costs as it observes all the

Figure 5.3: Total reward (number on top of bar), gain (number in green), and cost (num-
ber in brown) for each policy. Values are rounded to the nearest integers.
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features’ states at all times. On the contrary, NCC-UCRL2 adaptively learns the opti-
mal state observations while it observes only a fraction of features’ states at each time.
As a result, NCC-UCRL2 incurs less cost, hence a higher performance concerning the
accumulated gain. The two counterparts of NCC-UCRL2 and PS-LinUCB that suit sta-
tionary environments, i.e., Sim-OOS and LinUCB, exhibit a similar pattern for the total
costs; nevertheless, Sim-OOS achieves lower accumulated reward compared to LinUCB,
which shows the importance of learning the optimal observations in a non-stationary en-
vironment.

Adaptation to the Preference Volatility

In Fig. 5.4, we plot the histograms of nursery application priorities recommended by
the oracle, NCC-UCRL2, and UCB1 for each of the stationary periods. Our algorithm
closely follows the arm choice pattern of the oracle, which means that it can quickly
adapt to changes in preference over applications. On the other hand, UCB1 cannot al-
ways adapt to sudden changes in the environment. We particularly consider UCB1 in
this analysis to show the following: Although UCB1 achieves the second highest gain
amongst the benchmarks, it fails to provide tailored recommendations when the environ-
ment parameters undergo abrupt changes.

Figure 5.4: Comparison of priority recommendations of the oracle, NCC-UCRL2, and
UCB1 in each stationary period.

111



5 Online Learning with Costly Features in Non-stationary Environments

Figure 5.5: Cumulative regret of NCC-UCRL2 for different window parameters w.

Effect of Window Length w

Choosing the right window parameter w is crucial to ensure that the NCC-UCRL2 algo-
rithm promptly adjusts the decision-making strategy after sudden changes while main-
taining a good performance during stationary periods. The window size w can be chosen
based on the change frequency. A smaller w allows for faster adaptation but reduces the
performance during stationary periods due to exploiting fewer relevant data samples. In
an environment with infrequent change points, a larger w is more suitable as it results in a
better performance between change points, although the algorithm requires more storage
space. Fig. 5.5 illustrates the trend of cumulative regret of our algorithm when running
on the nursery dataset with different window parameters w. Based on our simulation’s
setting, we see that NCC-UCRL2 with smaller window sizes (around 300) results in a
much lower regret (e.g., compared to values more than 700).

Accuracy

To further analyze the performance of our algorithm, we define the accuracy for the
model based on the number of state observations. With ` observations, the accuracy
yields

⇣
Â`

j=0 ÂT
t=1 rt {|It |= j}

⌘
/
⇣

Â`
j=0 ÂT

t=1 {|It |= j}
⌘

. We use the term accuracy
since, in our experiment, a reward of 1 implies the correct classification of a nursery ap-
plication. Reference [2] performs a similar analysis for Sim-OOS. Therefore, we plot the
accuracy of NCC-UCRL2 and Sim-OOS for a different number of observations in Fig.
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Figure 5.6: Accuracy for different number of observations.

5.6, as these are the only algorithms that implement feature selection. For fewer obser-
vations, the accuracy of Sim-OOS is close to that of NCC-UCRL2, while NCC-UCRL2
achieves a higher accuracy as the number of observations increases. This again shows
the importance of learning the optimal observations and demonstrates the superiority of
our method.

5.6 Conclusion

We introduced the NCC bandit framework, where information acquisition is costly and
the environment is non-stationary. We developed a decision-making policy, namely
NCC-UCRL2, that mitigates the effects of costs by observing only a subset of features.
We proved that NCC-UCRL2 achieves a sublinear regret bound in time. Our proposed
framework is applicable in several contexts, such as online advertising problems, medical
treatment recommendations, edge computing, and stock trading. We applied our method
to recommend priority ranks for nursery school applications. The experiments showed
that NCC-UCRL2 outperforms several state-of-the-art bandit algorithms.

Appendices

5.A Reduction of Optimization Problem (5.16)

We can solve the optimization problem (5.16) by first fixing the observation set I and the
probabilities q, and then, maximizing only with respect to the action selection function
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h. For a fixed I and q, let ĥI,qt (y) denote the action function that maximizes the opti-
mization problem (5.16). We have ĥI,qt (y) = ĥt(y) = argmaxa2A r̃t(a,y). Therefore,
By fixing h to ĥI,qt in (5.16), we obtain the following optimization problem.

max
I,q2D

|Y+(I)|

8
<

: Â
y2Y+(I)

q(y)r̃⇤t (y)�Â
i2I

c̃t [i]

����� Â
y2Y+(I)

|q(y)� p̂t(y)|Ct(I)

9
=

; .

(5.24)

We solve the problem (5.24) by first fixing the observation set I and then, maximizing
with respect to the probabilities q. This results in the optimization problem (5.17).

5.B Notations

Before proceeding to the proof, in the following we introduce some important notations
together with their definitions.

We define the expected gain of an action a and a partial state vector y as gt(a,y) =

r̄t(a,y)�Âi2D(y) c̄t [i]. In addition, we define g̃t(a,y) = r̃t(a,y)�Âi2D(y) c̃t [i]. For
ease of presentation, we introduce new vector notations. We collect the probability
distributions for partial state vectors y 2 Y+(Ît) in a vector and denote it by P(Ît) =

[p(y)]y2Y+(Ît)
. Similarly, we define P̃t(Ît)= [p̃t(y)]y2Y+(Ît)

, P̂t(Ît)= [p̂t(y)]y2Y+(Ît)
,

Gt(Ît) = [gt(ĥt(y),y)]y2Y+(Ît)
, G̃t(Ît) = [g̃t(ĥt(y),y)]y2Y+(Ît)

. Moreover, we define
nt(I) = Ât

t=1 {It = I}.

Let r̃t denote the optimistic gain at time t. Based on the aforementioned definitions,
we have r̃t = hP̃t(Ît), G̃t(Ît)i, where h·, ·i denotes the dot product between two vectors.
Therefore,

r̃t = hP̃t(Ît), G̃t(Ît)i= Â
y2Y+(Ît)

p̃t(y)g̃t(ĥt(y),y)

= Â
y2Y+(Ît)

p̃t(y)

"
r̂t(ĥt(y),y)+Ct(ĥt(y),y;w)� Â

i2D(y)

[ĉt [i]�Ct(i;w)]

#
. (5.25)

At each time t, we use rt to denote the expected gain of the agent that follows our
proposed policy. Let [T ] = {1,2, . . . ,T}. We define the following events which we use
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in the subsequent proofs.

E1 =
�
9t 2 [T ], s.t. rt  r̃t

 
, (5.26)

E2 =
�
9t 2 [T ],9I 2 P(D), s.t. kP̂t(I)�P(I)k1 Ct(I)

 
, (5.27)

E3 =
�
9t 2 [T ],9a 2A,9y 2Y, s.t. |r̂t(a,y)� r̄t(a,y)|Ct(a,y;w)

 
, (5.28)

E4 =
�
9t 2 [T ],9i 2D, s.t. |ĉt [i]� c̄t [i]|Ct(i;w)

 
. (5.29)

Finally, by Ē , we denote the complement of an event E .

5.C Proof of Theorem 4

Proof. Assume that the events E1, E2, E3, and E4, defined in (5.26)-(5.29), hold. Note
that, based on the definition of optimal policy in (5.4), when E1 happens, we have r̃t � r⇤t .
Then, we observe that

RT (P) =
T

Â
t=1

[r⇤t �rt ]
T

Â
t=1

[r̃t�rt ]

=
T

Â
t=1

Â
y2Y+(Ît)

⇥
p̃t(y)g̃t(ĥt(y),y)� p(y)gt(ĥt(y),y)

⇤

=
T

Â
t=1

Â
y2Y+(Ît)

[p̃t(y)� p(y)] g̃t(ĥt(y),y)

| {z }
D1

+
T

Â
t=1

Â
y2Y+(Ît)

p(y)
⇥
g̃t(ĥt(y),y)�gt(ĥt(y),y)

⇤

| {z }
D2

.

(5.30)

We bound each term individually. For D1, we have

T

Â
t=1

Â
y2Y+(Ît)

[p̃t(y)� p(y)]g̃t(ĥt(y),y) =
T

Â
t=1
hP̃t(Ît)�P(Ît),G̃t(Ît)i

(a)


T

Â
t=1
kP̃t(Ît)�P(Ît)k1kG̃t(Ît)k•

115



5 Online Learning with Costly Features in Non-stationary Environments

(b)


T

Â
t=1

2Ct(Ît) = 2
p

Ytot log(2T |P(D)|/d )
T

Â
t=1

1q
Nt(Ît)

,

(5.31)

where (a) follows from Cauchy-Schwarz inequality and (b) holds since event E2 occurs
and kG̃t(Ît)k•  2. To bound the sum in the last term of (5.31), we write

T

Â
t=1

1q
Nt(Ît)

=
T

Â
t=1

Â
I2P(D)

{Ît = I}p
Nt(I)

= Â
I2P(D)

T

Â
t=1

{Ît = I}p
Nt(I)

(a)
 Â

I2P(D)

T

Â
t=1

{Ît = I}p
nt(I)

 Â
I2P(D)

nT (I)

Â
k=1

1
p

k

 Â
I2P(D)

2
p

nT (I)

(b)
 2

p
|P(D)|T , (5.32)

where (a) holds since nt(I) Nt(I), 8I 2P(D) and (b) follows from Jensen’s inequal-
ity and the fact that ÂI2P(D) nT (I) = T . Thus, with probability at least 1� d , D1 is
bounded as

T

Â
t=1

Â
y2Y+(Ît)

[p̃t(y)� p(y)] g̃t(ĥt(y),y) O
⇣p

Ytot log(2T |P(D)|/d )|P(D)|T
⌘
.

(5.33)

It remains to bound the term D2. Let ey be the unit vector with dimension |Y+(Îk)|,
where the component corresponding to the state y is 1 and other components are 0. We
rewrite D2 as

T

Â
t=1

Â
y2Y+(Ît)

p(y)
⇥
g̃t(ĥt(y),y)�gt(ĥt(y),y)

⇤

=
T

Â
t=1

⇥
hP(Ît)� eyt ,G̃t(Ît)�Gt(Ît)i+ heyt ,G̃t(Ît)�Gt(Ît)i

⇤
.

(5.34)

We continue by bounding the first term in (5.34) as follows. Since the events E3 and
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E4 hold, it yields that

|r̂t(a,y)� r̄t(a,y)|Ct(a,y;w), 8a 2A,y 2Y, (5.35)

and

|ĉt [i]� c̄t [i]|Ct(i;w), 8i 2D. (5.36)

Let Ft be the s -algebra generated by Ît , at , and all the random variables before time t
that are revealed to the algorithm. Then, eyt , Ît , ĥt(y), and G̃t(Ît) are Ft-measurable and
E[eyt |Ft�1] =P(Ît). Moreover, hP(Ît)�eyt ,G̃t(Ît)�Gt(Ît)i is a martingale-difference
sequence w.r.t. Ft . In addition, for y 2Y+(Ît), we have

g̃t(ĥt(y),y)�gt(ĥt(y),y) = r̃t(ĥt(y),y)� Â
i2D(y)

c̃t [i]� r̄t(ĥt(y),y)+ Â
i2D(y)

c̄t [i]

= r̃t(ĥt(y),y)� r̂t(ĥt(y),y)+ r̂t(ĥt(y),y)� r̄t(ĥt(y),y)

+ Â
i2D(y)

c̄t [i]� Â
i2D(y)

ĉt [i]+ Â
i2D(y)

ĉt [i]� Â
i2D(y)

c̃t [i]

 |r̃t(ĥt(y),y)� r̂t(ĥt(y),y)|+ |r̂t(ĥt(y),y)� r̄t(ĥt(y),y)|

+ Â
i2D(y)

|c̄t [i]� ĉt [i]|+ Â
i2D(y)

|ĉt [i]� c̃t [i]|

 2Ct(ĥt(y),y;w)+2 Â
i2D(y)

Ct(i;w)

 2

s
log(TAYtotw/d )
Nt(ĥt(y),y;w)

+2 Â
i2D(y)

s
2log(T Dw/d )

Nt(i;w)
(5.37)

 2
hp

log(TAYtotw/d )+D
p

2log(T Dw/d )
i
. (5.38)

Therefore,

hP(Ît)� eyt ,G̃t(Ît)�Gt(Ît)i  4
hp

log(TAYtotw/d )+D
p

2log(T Dw/d )
i
.

(5.39)

Hence, using the Azuma-Hoeffding inequality stated in Lemma (7), with probability at
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least 1�d , it holds

T

Â
t=1
hP(Ît)� eyt ,G̃t(Ît)�Gt(Ît)i

 4
hp

log(TAYtotw/d )+D
p

2log(T Dw/d )
ip

2T log(1/d ).

(5.40)

Now, we bound the second term in (5.34). Using (5.37), we observe that

T

Â
t=1
heyt ,G̃t(Ît)�Gt(Ît)i=

T

Â
t=1

Â
y2Y

{y t = y}(g̃t(ĥt(y),y)�gt(ĥt(y),y))

 2
T

Â
t=1

Â
y2Y

{y t = y}

"s
log(TAYtotw/d )
Nt(ĥt(y),y;w)

+ Â
i2D(y)

s
2log(T Dw/d )

Nt(i;w)

#

= 2
p

log(TAYtotw/d )

2

666664

T

Â
t=1

Â
y2Y

{y t = y}q
Nt(ĥt(y),y;w)

| {z }
a

3

777775

+2
p

2log(T Dw/d )

2

666664

T

Â
t=1

Â
y2Y

{y t = y} Â
i2D(y)

1p
Nt(i;w)

| {z }
b

3

777775
.

(5.41)

For the term a , similar to [100], we split the time horizon into intervals I` = [`w�
w,`w� 1] of length w. For any interval I` and any t 2 I`, let Nt(a,y;`) and Nt(i;`)
represent the number of times the pair (a,y) was chosen in [`w�w, t�1] and the number
of times the feature i was selected in [`w�w, t� 1], respectively. If no such pair (a,y)

and feature i was chosen in [`w�w, t � 1], we set Nt(a,y;`) and Nt(i;`) equal to 1,
respectively. We observe that Nt(a,y;`)Nt(a,y;w) and Nt(i;`)Nt(i;w). Therefore,

T

Â
t=1

Â
y2Y

{y t = y}q
Nt(ĥt(y),y;w)



d
T
we

Ầ
=1

Â
t2I`

Â
a2A

Â
y2Y

{y t = y&at = a}p
Nt(a,y;w)
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=
d

T
we

Ầ
=1

Â
a2A

Â
y2Y

Â
t2I`

{y t = y&at = a}p
Nt(a,y;`)

(a)


d
T
we

Ầ
=1

2
p

AYtot(w+1)

(b)
 2(

T
w
+1)

p
AYtot(w+1), (5.42)

where (a) holds because of the inequality Âv
i=1

1p
i
 2(
p

v+1�1) and due to the fact that

the last sum reaches its highest value when each pair (a,y) is selected
j

w
AYtot

k


w
AYtot

times in the interval I`. Moreover, (b) holds since the number of intervals I` is at most
⌃T

w
⌥


T
w +1.

For the term b , we have

T

Â
t=1

Â
y2Y

{y t = y} Â
i2D(y)

1p
Nt(i;w)

=
T

Â
t=1

Â
y2Y

{y t = y} Â
i2D

{i 2D(y)}p
Nt(i;w)

(a)


T

Â
t=1

Â
i2D

{i 2 Ît}p
Nt(i;w)



d
T
we

Ầ
=1

Â
i2D

Â
t2I`

{i 2 Ît}p
Nt(i;`)

(b)
 2(

T
w
+1)D

p
w+1, (5.43)

where (a) holds because at each time t, regardless of the agent’s choice of observation set,
at most D features’ states can be observed. Moreover, (b) follows by a similar reasoning
as the one given for (5.42); the only difference here is that, the agent can choose to
observe more than one feature’s state at each time t. This means that, unlike the counts
Nt(a,y;`), the counts Nt(i;`) can be increased by 1 for more than one feature i at each
time t. Thus, we consider the worst case where D features’ states are observed at each
time of play.

Therefore, by using (5.42) and (5.43) in (5.41), and combining the results with (5.40),
with probability at least 1�3d , the following bound holds for D2.

T

Â
t=1

Â
y2Y+(Ît)

p(y)
⇥
g̃t(ĥt(y),y)�gt(ĥt(y),y)

⇤
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 O

 
T
⇣rAYtot log(TAYtotw/d )

w
+D

r
log(T Dw/d )

w

⌘

+
p

T log(1/d )
⇣p

AYtot log(TAYtotw/d )+D
p

log(T Dw/d )
⌘!

.

(5.44)

We conclude the proof by combining (5.33) and (5.44). ⌅

5.D Proof of Theorem 5

Proof. For any positive T , define G(w) as

G(w) =
n

t 2 {1, . . . ,T}
��� r̄t(a,y) = r̄t(a,y) & c̄t [i] = c̄t [i],

8a 2A,8y 2Y,8i 2D,8t s.t. t�w < t  t
o
. (5.45)

In our problem, there are °T + 1 stationary periods. We add the first and last round to
the change points and denote them by 1 = t0, . . . ,t°T+1 = T . Moreover, consider the
events E1, E3, and E4, defined in 5.26, 5.28, and 5.29, respectively. We redefne these
events for t 2 G(w) instead of t 2 [T ] to include the time instances belonging only to
G(w), and denote the resulting events by E1(w), E3(w), and E4(w), respectively. By the
same reasoning as in Lemma 6, it holds that P[Ē1(w)[ Ē2[ Ē3(w)[ Ē4(w)] 3d .

Now, we assume that the events E1(w), E2, E3(w), and E4(w) hold and follow the same
reasoning as in the proof of Theorem 4. This results in the following regret bound that
holds with probability at least 1�3d .

RT (P) w°T +
T

Â
t=1
hP̃t(Ît)�P(Ît),G̃t(Ît)i+

°T

Â
i=0

ti+1�1

Â
ti+w
hP,G̃t�Gti. (5.46)

The last term can be bounded similar to (5.44) in the proof of Theorem 4. Therefore,

°T

Â
i=0

ti+1�1

Â
ti+w
hP,G̃t�Gti



°T

Â
i=0

O

 
(ti+1� ti)

⇣rAYtot log(TAYtotw/d )
w

+D

r
log(T Dw/d )

w

⌘
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+
p

(ti+1� ti) log(1/d )
⇣p

AYtot log(TAYtotw/d )+D
p

log(T Dw/d )
⌘!

 O

 
T
⇣rAYtot log(TAYtotw/d )

w
+D

r
log(T Dw/d )

w

⌘

+
p

°T T log(1/d )
⇣p

AYtot log(TAYtotw/d )+D
p

log(T Dw/d )
⌘!

, (5.47)

where the last inequality follows from Jensen’s inequality and the fact that Â°T
i=0(ti+1�

ti) = T . Thus, summarizing the above results, and by using (5.33) to bound the second
term in (5.46), we conclude the proof. ⌅

5.E Supplementary Result: Probability of Failure Event

The following lemma proves an upper bound on the probability of the failure event Ē1[

Ē2[ Ē3[ Ē4. The developed upper bound shows that the events defined in (5.26)-(5.29)
fail with a low probability.

Lemma 6. Consider the events defined in (5.26)-(5.29). Then,

P[Ē1[ Ē2[ Ē3[ Ē4] P[Ē2[ Ē3[ Ē4] 3d . (5.48)

Proof. First, note that if E2, E3, and E4 hold, the following is true: (i) p(y) belongs
to the set of distributions over which the solution of (5.17) is computed, (ii) r̄t(a,y) 

r̂t(a,y)+Ct(a,y;w), and (iii) ĉt [i]�Ct(i;w) c̄t [i]. Therefore,

r̃t = hP̃t(Ît),G̃t(Ît)i

= Â
y2Y+(Ît)

p̃t(y)

"
r̂t(ĥt(y),y)+Ct(ĥt(y),y;w)� Â

i2D(y)

[ĉt [i]�Ct(i;w)]

#

� Â
y2Y+(Ît)

p(y)

"
r̄t(ĥt(y),y)� Â

i2D(y)

c̄t [i]

#

= Â
y2Y+(Ît)

p(y)r̄t(ĥt(y),y)� Â
i2D(y)

c̄t [i] = rt , (5.49)

which implies that E1 is also true. This proves the first inequality in (5.48).
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Second, we bound each individual failure event in the following. For Ē2, by taking the
union bound and using the concentration bound stated in Lemma 8, we obtain

P[Ē2]
T

Â
t=1

Â
I2P(D)

P
⇥
kP(I)� P̂t(I)k1 �Ct(I)

⇤
 d . (5.50)

For Ē3 and Ē4, similar to [100], we use the Hoeffding-Azuma inequality stated in Lemma
7. More precisely, let r̂t,u(a,y) denote the empirical estimate of r̄t(a,y) using the first
u reward observations corresponding to the action a and the partial state vector y in the
window [t�w, t�1]. Similarly, let ĉt,u[i] denote the the empirical estimate of c̄t [i] using
the first u cost observations corresponding to the feature i2D in the window [t�w, t�1].
We have r̂t,Nt(a,y;w)(a,y) = r̂t(a,y) and ĉt,Nt(i;w)[i] = ĉt [i]. Then,

P[Ē3]
T

Â
t=1

Â
a2A

Â
y2Y

w

Â
u=1

P
"
|r̄t(a,y)� r̂t,u(a,y)|�

r
log(TAYtotw/d )

u

#
 d , (5.51)

P[Ē4]
T

Â
t=1

Â
i2D

w

Â
u=1

P
"
|c̄t [i]� ĉt,u[i]|�

r
2log(T Dw/d )

u

#
 d . (5.52)

Therefore, we prove the second inequality in (5.48) and conclude the proof. ⌅

5.F Auxiliary Results

Lemma 7. ([101]) Let x1,x2, . . . ,xn be random variables and xi 2 [0,bi], 8i. Moreover,
E[xi|x1, . . . ,xi�1] = b , for all i = 1, . . . ,n. Then, for all B� 0,

P
"���

n

Â
i=1

xi�nb
���� B

#
 e
�

2B2

Ân
i=1 b2

i . (5.53)

Lemma 8 ([96]). Let Z = {1,2, . . . ,z} and assume P represents a probability distribution
on Z . Moreover, consider Xn = X1, . . . ,Xn 2 Z to be i.i.d. random variables that are
distributed according to P. Let P̂ be the empirical estimate of P, that is defined for each
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z 2 Z as P̂(z) = 1
n Ân

t=1 {Xt = z}. Then, for any d > 0,

P

2

4kP� P̂k1 �

s
2Z log 2

d
n

3

5 d , (5.54)

where kP� P̂k1 = ÂZ
z=1 |P(z)� P̂(z)| is the L1 norm.
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6 Linear Combinatorial Semi-Bandit
with Causally Related Rewards

In a sequential decision-making problem, having a structural dependency amongst the
reward distributions associated with the arms makes it challenging to identify a subset
of alternatives that guarantees the optimal collective outcome. Thus, besides individual
actions’ reward, learning the causal relations is essential to improve the decision-making
strategy. To solve the two-fold learning problem described above, we develop the ’com-
binatorial semi-bandit framework with causally related rewards’, where we model the
causal relations by a directed graph in a stationary structural equation model. The nodal
observation in the graph signal comprises the corresponding base arm’s instantaneous
reward and an additional term resulting from the causal influences of other base arms’
rewards. The objective is to maximize the long-term average payoff, which is a linear
function of the base arms’ rewards and depends strongly on the network topology. To
achieve this objective, we propose a policy that determines the causal relations by learn-
ing the network’s topology and simultaneously exploits this knowledge to optimize the
decision-making process. We establish a sublinear regret bound for the proposed algo-
rithm. Numerical experiments using synthetic and real-world datasets demonstrate the
superior performance of our proposed method compared to several benchmarks.

6.1 Introduction

In the seminal form of the Multi-Armed Bandit (MAB) problem, an agent selects an arm
from a given set of arms at sequential rounds of decision-making. Upon selecting an
arm, the agent receives a reward, which is drawn from the unknown reward distribution
of that arm. The agent aims at maximizing the average reward over the gambling horizon
[12]. The MAB problem portrays the exploration-exploitation dilemma, where the agent
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decides between accumulating immediate reward and obtaining information that might
result in larger reward only in the future [13]. To measure the performance of a strategy,
one uses the notion of regret. It is the difference between the accumulated reward of the
applied decision-making policy and that of the optimal policy in hindsight.

In a combinatorial semi-bandit setting [42], at each round, the agent selects a subset
of base arms. This subset is referred to as a super arm. She then observes the indi-
vidual reward of each base arm that belongs to the selected super arm. Consequently,
she accumulates the collective reward associated with the chosen super arm. The com-
binatorial MAB problem is challenging since the number of super arms is combinatorial
in the number of base arms. Thus, conventional MAB algorithms such as [46] are not
appropriate for combinatorial problems as they result in suboptimal regret bounds. The
aforementioned problem becomes significantly more difficult when there are causal de-
pendencies amongst the reward distributions.

In some cases, it is possible to model the causal structure that affects the rewards
[102]. Therefore, exploiting the knowledge of this structure helps to deal with the afore-
mentioned challenges. We develop a novel combinatorial semi-bandit framework with
causally related rewards, where we rely on Structural Equation Models (SEMs) [103] to
model the causal relations. At each time of play, we see the instantaneous rewards of
the chosen base arms as controlled stimulus to the causal system. Consequently, in our
causal system, the solution to the decision-making problem is the choice over the exoge-
nous input that maximizes the collected reward. We propose a decision-making policy
to solve the aforementioned problem and prove that it achieves a sublinear regret bound
in time. Our developed framework can be used to model various real-world problems,
such as network data analysis of biological networks or financial markets. We apply our
framework to analyze the development of Covid-19 in Italy. We show that our proposed
policy is able to detect the regions that contribute the most to the spread of Covid-19 in
the country.

6.1.1 Related Works

There is a vast body of literature on combinatorial bandit problems. Examples include
[42, 43, 47, 48, 44, 45]. The majority of the existing methods do not assume any struc-
tural dependencies in the problem. Therefore, novel techniques are required to alleviate
the effect of causal relationships on the performance of state-of-the-art methods. Our
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proposed algorithm is able to learn the causal structure of the problem and uses this
knowledge to optimize the decision-making process.

Compared to previous works, our proposed framework does not require any prior
knowledge of the structural dependencies. For example, in [44], the authors exploit
the prior knowledge of statistical structures to learn the best combinatorial strategy. At
each decision-making round, the agent receives the reward of the selected super arm and
some side rewards from the selected base arms’ neighbors. In [47], a Combinatorial
Thompson Sampling (CTS) algorithm is proposed to solve a combinatorial semi-bandit
problem with probabilistically triggered arms. The proposed algorithm has access to an
oracle that determines the best decision at each round of play based on the already col-
lected data. Similarly, the authors in [49] study a setting where triggering super arms
can probabilistically trigger other unchosen arms. They propose an Upper Confidence
Bound (UCB)-based algorithm that uses an oracle to improve the decision-making pro-
cess. In [45], the authors formulate a combinatorial bandit problem where the agent has
access to an influence diagram that represents the probabilistic dependencies in the sys-
tem. The authors propose a Thompson sampling algorithm and its approximations to
solve the formulated problem. Further, there are some works that study the underlying
structure of the problem. For example, in [104], the authors attempt to learn the structure
of a combinatorial bandit problem. However, they do not assume any causal relations
between rewards. Moreover, in [105], the MAB framework is employed to identify the
best soft intervention on a causal system while it is assumed that the causal graph is only
partially unknown.

6.1.2 Organization

In Section 6.2, we formulate the structured combinatorial semi-bandit problem with
causally related rewards. In Section 6.3, we introduce our proposed algorithm, namely
SEM-UCB. Section 6.4 includes the theoretical analysis of the regret performance of
SEM-UCB. Section 6.5 is dedicated to numerical evaluation. Section 6.6 concludes the
chapter.
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6.2 Problem Formulation

Let [N] = {1,2, . . . ,N} denote the set of base arms. bt = [bt [1],bt [2], . . . ,bt [N]] 2 [0,1]N

represents the vector of instantaneous rewards of the base arms at time t. The instan-
taneous rewards of each base arm i 2 [N] are independent and identically distributed
(i.i.d.) random variables drawn from an unknown probability distribution with mean
b [i]. We collect the mean rewards of all the base arms in the mean reward vector of
b = [b [1],b [2], . . . ,b [N]].

We consider a causally structured combinatorial semi-bandit problem where an agent
sequentially selects a subset of base arms over time. We refer to this subset as the
super arm. More precisely, at each time t, the agent selects a decision vector xt =

[xt [1],xt [2], . . . ,xt [N]] 2 {0,1}N . If the agent selects the base arm i at time t, we have
xt [i] = 1, otherwise xt [i] = 0. The agent observes the value of bt [i] at time t only if
xt [i] = 1. The agent is allowed to select at most s base arms at each time of play. Hence,
we define the set of all feasible decision vectors as

X =
�

x | x 2 {0,1}N
^kxk0  s

 
, (6.1)

where k·k0 determines the number of non-zero elements in a vector. In our problem, the
parameter s is pre-determined and is given to the agent.

We take advantage of a directed graph structure to model the causal relationships in
the system. We consider an unknown stationary sparse Directed Acyclic Graph (DAG)
G = (V,E ,A), where V denotes the set of N vertices, i.e., |V| = N, E is the edge set,
and A denotes the weighted adjacency matrix. By p  N� 1, we denote the length of
the largest path in the graph G. We assume that the reward generating processes in the
bandit setting follow an error-free Structural Equation Model (SEM) ([106], [107]). The
exogenous input vector and the endogenous output vector of the SEM at each time t are
denoted by zt = [zt [1],zt [2], . . . ,zt [N]] and yt = [yt [1],yt [2], . . . ,yt [N]], respectively. At
each time t, the exogenous input zt represents the semi-bandit feedback in the decision-
making problem. Formally,

zt = diag(bt)xt , (6.2)

where diag(·) represents the diagonalization of its given input vector. Consequently, we
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define the elements of the endogenous output vector yt as

yt [i] = Â
i 6= j

A[i, j]yt [ j]+F[i, i]zt [i], 8i = 1, . . . ,N, (6.3)

where F is a diagonal matrix that captures the effects of the exogenous input vector zt .
The SEM in (6.3) implies that the output measurement yt [i] depends on the single-hop
neighbor measurements in addition to the exogenous input signal zt [i]. In our formu-
lation, at each time t, the endogenous output yt [i] represents the overall reward of the
corresponding base arm i 2 [N]. Therefore, at each time t, the overall reward of each
base arm comprises two parts; one part directly results from its instantaneous reward,
while the other part reflects the effect of causal influences of other base arms’ overall
rewards.

In (6.3), the overall rewards are causally related. Thus, the adjacency matrix A rep-
resents the causal relationships between the overall rewards; accordingly, the element
A[i, j] of the adjacency matrix A denotes the causal impact of the overall reward of base
arm j on the overall reward of base arm i, and we have A[i, i] = 0, 8i= 1,2, . . . ,N. We as-
sume that the agent is not aware of the causal relationships between the overall rewards.
Hence, the adjacency matrix A is unknown a priori. In the following, we work with the
matrix form of (6.3), defined at time t as

yt = Ayt +Fzt . (6.4)

In Fig. 6.1, we illustrate an exemplary network consisting of N vertices and the underly-
ing causal relations. Based on our problem formulation, the agent is able to observe both
the exogenous input signal vector zt and the endogenous output signal vector yt . As we
see, there does not exist necessarily a causal relation between every pair of nodes.

By inserting (6.2) in (6.4) and solving for yt we obtain

yt = (I�A)�1Fdiag(bt)xt . (6.5)

Finally, we define the payoff received by the agent upon choosing the decision vector xt

as
r(xt) = 1>yt = 1>(I�A)�1Fdiag(bt)xt , (6.6)

where 1 is the N-dimensional vector of ones. Since the graph G is a DAG, it implies
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yt [1] yt [2] yt [3] yt [N]

A[2,1]
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yt [1]

F[1,1]
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yt [2]

F[2,2]

zt [3]
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zt [N]

yt [N]
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Figure 6.1: An exemplary illustration of a graph consisting of N vertices and their causal
relations. The black directed edges represent the causal relationships amongst the ver-
tices.

that with a proper indexing of the vertices, the adjacency matrix A is a strictly upper
triangular matrix. This guarantees that the matrix (I�A) is invertible. In our problem,
since the agent directly observes the exogenous input, we assume that the effects of F
on the exogenous inputs are already integrated in the instantaneous rewards. Therefore,
to simplify the notation and without loss of generality, we assume that F = I in the
following.

Given a decision vector xt 2 X , the expected payoff at time t is calculated as

µ(xt) = E [r(X)|X = xt ] , (6.7)

where the expectation is taken with respect to the randomness in the reward generating
processes.

Ideally, the agent’s goal is to maximize her total mean payoff over a time horizon T .
Alternatively, the agent aims at minimizing the expected regret, defined as the difference
between the expected accumulated payoff of an oracle that follows the optimal policy
and that of the agent that follows the applied policy. Formally, the expected regret is
defined as

RT (X ) = T µ(x⇤)�
T

Â
t=1

µ(xt), (6.8)

where x⇤ = argmax
x2X

µ(x) is the optimal decision vector, and xt denotes the selected

decision vector at time t under the applied policy.

Remark 8. The definition of payoff in (6.6) implies that we are dealing with a linear
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combinatorial semi-bandit problem with causally related rewards. In general, due to
the randomness in selection of the decision vector xt , the consecutive overall reward
vectors yt become non-identically distributed. In the following section, we propose our
algorithm that is able to deal with such variables. This is an improvement over the
previous methods, such as [49] and [47], that are not able to cope with our problem
formulation, as they are specially designed to work with i.i.d. random variables.

6.3 Decision-Making Strategy

In this section, we present our decision-making strategy to solve the problem described
in Section 6.2. Our proposed policy consists of two learning components: (i) an online
graph learning and (ii) an Upper Confidence Bound (UCB)-based reward learning. In the
following, we describe each component separately and propose our algorithm, namely
SEM-UCB.

6.3.1 Online Graph Learning

The payoff defined in (6.6) implies that the knowledge of A is necessary to select decision
vectors that result in higher accumulated payoffs. Therefore, the agent aims at learning
the matrix A to improve her decision-making process. To this end, we propose an online
graph learning framework that uses the collected feedback, i.e., the collected exogenous
input and endogenous output vectors, to estimate the ground truth matrix A. In the
following, we formalize the online graph learning framework.

At each time t, we collect the feedback up to the current time in Zt = [z1 . . .zt ] and
Yt = [y1 . . .yt ]. Therefore,

Yt = AYt +Zt . (6.9)

We assume that the right indexing of the vertices is known prior to estimating the ground
truth adjacency matrix. We use the collected feedback Yt and Zt as the input to a para-
metric graph learning algorithm ([106], [108]). More precisely, we use the following
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optimization problem to estimate the adjacency matrix at time t.

Ât = argmin
A

kYt�AYt�Ztk
2
2 +g(A)

s.t. A[i, j]� 0, 8i, j 2 [N],

A[i, j] = 0, 8i� j,

(6.10)

where k·k2 represents the L2-norm of matrices and g(A) is a regularization function
that imposes sparsity over A. In our numerical experiments, we work with different
regularization functions to demonstrate the effectiveness of our proposed algorithm in
different scenarios. As an example, we impose the sparsity property on the estimated
matrix Ât in (6.10) by defining g(A) = l kAk1, where k·k1 is the L1-norm of the matrices
and l is the regularization parameter. Our choices of regularization function guarantee
that the optimization problem (6.10) is convex.

6.3.2 SEM-UCB Algorithm

We propose our decision-making policy in Algorithm 5. The key idea behind our al-
gorithm is that it works with observations for each base arm, rather than the payoff ob-
servations for each super arm. As the same base arm can be observed while selecting
different super arms, we can use the obtained information from selection of a super arm
to improve our payoff estimation of other relevant super arms. This, combined with the
fact that our algorithm simultaneously learns the causal relations, significantly improves
the performance of our proposed algorithm and speed up the learning process.

For each base arm i, we define the empirical average of instantaneous rewards at time
t as

b̂ t [i] =
Ât

t=1 bt [i] {xt [i] = 1}
mt [i]

, (6.11)

where mt [i] denotes the number of times that the base arm i is observed up to time t.
Formally,

mt [i] =
t

Â
t=1

{xt [i] = 1} . (6.12)

The initialization phase of SEM-UCB algorithm follows a specific strategy to create a
rich data that helps to learn the ground truth adjacency matrix. At each time t during the
first N times of play, SEM-UCB picks the column t of an upper-triangular initialization
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Algorithm 5 SEM-UCB: Structural Equation Model-Upper Confidence Bound
Input: Parameter s, initialization matrix M.

1: for t = 1, . . . ,N do
2: Select column t of the initialization matrix M as the decision vector xt .
3: Observe zt and yt .
4: end for
5: for t = N +1, . . . ,T do
6: Solve (6.10) to obtain Ât�1.
7: Calculate Et�1[i] using (6.13), 8i 2 [N].
8: Select decision vector xt that solves (6.14).
9: Observe zt and yt .

10: end for

matrix M 2 {0,1}N⇥N , where M is created as follows. All diagonal elements of M are
equal to 1. As for the column i, if i  s, we set all elements above diagonal to 1. If
s+1 iN, we select s�1 elements above diagonal uniformly at random and set them
to 1. The remaining elements are set to 0.

After the initialization period, our proposed algorithm takes two steps at each time
t to learn the causal relationships and the expected instantaneous rewards of the base
arms. First, it uses the collected feedback Yt and Zt and solves the optimization problem
(6.10) to obtain the estimated adjacency matrix. It then uses the reward observations to
calculate the UCB index Et [i] for each base arm i, defined as

Et [i] = b̂ t [i]+

s
(s+1)lnt

mt [i]
. (6.13)

Afterward, the algorithm selects a decision vector xt using the current estimate of the
adjacency matrix and the developed UCB indices of the base arms. We collect the UCB
indices in the vector Et = [Et [1],Et [2], . . . ,Et [N]]. At time t, SEM-UCB selects xt as

xt = argmax
x2X

1>(I� Ât�1)
�1 diag(Et�1)x

s.t. kxk0  s.
(6.14)

Remark 9. The initialization phase of our algorithm guarantees that all the base arms
are pulled at least once and the matrix M is full rank. Consequently, the adjacency
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matrix A is uniquely identifiable from the collected feedback [107].

Remark 10. Let c> = 1>(I� Ât�1)�1 diag(Et�1). Since all the elements of both matri-
ces Et�1 and Ât�1 are non-negative, we have c[i] > 0, 8i 2 [N]. Thus, the optimization
problem (6.14) reduces to finding the s-biggest elements of c. Therefore, (6.14) can be
solved efficiently based on the choice of sorting algorithm used to order the elements of
c.

The computational complexity of the SEM-UCB algorithm varies depending on the
solver that is used to learn the graph. For example, if we use OSQP solver [109], we
achieve a computational complexity of order O(N4).

6.4 Theoretical Analysis

In this section, we prove an upper bound on the expected regret of SEM-UCB algorithm.
We use the following definitions in our regret analysis. For any decision vector x2X , let
D(x) = µ(x⇤)� µ(x). We define Dmax = max

x:µ(x)<µ(x⇤)
D(x) and Dmin = min

x:µ(x)<µ(x⇤)
D(x).

Moreover, let w>t = 1>(I� Ât)�1diag(xt+1). We define wmax = max
t

max
i

wt [i].

The following theorem states an upper bound on the expected regret of SEM-UCB.

Theorem 6. The expected regret of SEM-UCB algorithm is upper bounded as

RT (X )
h4w2

maxs2(s+1)N lnT
D2

min
+N +

p2

3
spN

i
Dmax. (6.15)

Proof. See Appendix 6.B. ⌅

6.5 Numerical Analysis

In this section, we present experimental results to provide more insight on the usefulness
of learning the causal relations for improving the decision-making process. We evaluate
the performance of our algorithm on synthetic and real-world datasets by comparing it
to standard benchmark algorithms.
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6.5.1 Baselines

We compare SEM-UCB with state-of-the-art combinatorial semi-bandit algorithms that
do not learn the causal structure of the problem. Specifically, we compare our algorithm
with the following policies: (i) CUCB [49] calculates a UCB index for each base arm
at each time t and feeds them to an approximation oracle that outputs a super arm. (ii)
DFL-CSR [44] develops a UCB index for each base arm and selects a super arm at each
time t based on a prior knowledge of a graph structure that shows the correlations among
base arms. (iii) CTS [47] employs Thompson sampling and uses an oracle to select a
super arm at each time t. (iv) FTRL [110] selects a super arm at each time t based
on the method of Follow-the-Regularized-Leader. To be comparable, we apply these
benchmarks on the vector of overall reward yt at each time t. If a benchmark requires
yt to be in [0,1], we feed the normalized version of yt to the corresponding algorithm.
Finally, in our experiments, we choose s = 6, meaning that the algorithms can choose 6
base arms at each time of play.

6.5.2 Synthetic Dataset

Our simulation setting is as follows. We first create a graph consisting of N = 20 nodes.
The elements of the adjacency matrix A are drawn from a uniform distribution over
[0.4,0.7]. The edge density of the ground truth adjacency matrix is 0.15. At each time t,
the vector of instantaneous rewards bt is drawn from a multivariate normal distribution
with the support in [0,1]20 and a spherical covariance matrix. As demonstrated in Section
6.2, we generate the vector of overall rewards according to the SEM in (6.3). We use
g(A) = l kAk1 as the regularization function in (6.10) when estimating the adjacency
matrix A. The regularization parameter l is tuned by grid search over [0.0001,1000].
We evaluate the estimated adjacency matrix at each time t by using the mean squared
error defined as MSE = 1

N2

��A� Â
��2

F, where k·kF denotes the Frobenius norm.

Comparison with the Baselines

We run the algorithms using the aforementioned synthetic data with T = 4000. In Fig.
6.2, we depict the trend of time-averaged expected regret for each policy. As we see,
SEM-UCB surpasses all other policies. This is due to the fact that SEM-UCB learns the
network’s topology and hence, it has a better knowledge of the causal relationships in the
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Figure 6.2: Time-averaged expected regret of different policies.

graph structure, unlike other policies that do not estimate the graph structure. As we see,
the time-averaged expected regret of SEM-UCB tends to zero. This matches with our
theoretical results in Section 6.4. Note that, the benchmark policies exhibit a suboptimal
regret performance as they have to deal with non-identically distributed random variables
yt .

6.5.3 Covid-19 Dataset

We evaluate our proposed algorithm on the Covid-19 outbreak dataset of daily new in-
fected cases during the pandemic in different regions within Italy 1. The dataset fits in
our framework as the daily new cases in each region results from the causal spread of
Covid-19 among the regions in a country [111] and the region-specific characteristics
[112]. As the regions differ in their regional characteristics, such as socio-economic
and geographical characteristics, each region has a specific exposure risk of Covid-19
infection. To be consistent with our terminology in Section 6.2, at each time (day) t, we
use the overall reward yt [i] to refer to the overall daily new cases in region i and use
the instantaneous reward bt [i] to refer to the region-specific daily new cases in region
i. Naturally, the overall daily new cases includes the region-specific daily new cases of
Covid-19 infection.

Italy has been severely affected by the COVID-19 pandemic. In April 2020, the coun-

1https://github.com/pcm-dpc/COVID-19
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try had the highest death toll in Europe. From the beginning of the pandemic, with
the goal of containing the outbreak, the Italian government has put in place an increas-
ing number of restrictions. Governments around the world strive to track the spread of
Covid-19 and find the regions that are contributing the most to the total number of daily
new cases in the country [113]. By the end of this experiment, we address this critical
problem and highlight that our algorithm is capable of finding the optimal candidate re-
gions for political interventions in order to contain the spread of a contagious disease
such as Covid-19.

Data Preparation

We focus on the recorded daily new cases from 10 August to 15 October, 2020, for
N = 21 regions within Italy. Fig. 6.3 depicts the overall daily new cases of covid-19
of the 21 regions in Italy for the considered time interval in our numerical experiments.
Due to space limitation, we use abbreviations for region names. Table 6.1 lists the
abbreviations together with the original names of the regions. The Covid-19 dataset only
provides us with the overall daily new cases of each region. Hence, in order to apply
our algorithm, we need to infer the distribution of region-specific daily new cases for

Figure 6.3: Overall daily new cases of Covid-19 for different regions in Italy during the
study period.
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Table 6.1: List of regions in Italy and the corresponding abbreviations.

Abbreviation Region Name

ABR Abruzzo
BAS Basilicata
CAL Calabria
CAM Campania
EMR Emilia-Romagna
FVG Friuli Venezia Giulia
LAZ Lazio
LIG Liguria
LOM Lombardia
MAR Marche
MOL Molise
PAB Provincia Autonoma di Bolzano
PAT Provincia Autonoma di Trento
PIE Piemonte
PUG Puglia
SAR Sardegna / Sardigna
SIC Siciliana
TOS Toscana
UMB Umbria
VDA Valle d’Aosta / Vallée d’Aoste
VEN Veneto

each region. In the following, we describe this process and further pre-processing of the
Covid-19 dataset.

According to [114], for the time period from 18 May to 3 June, 2020, all places for
work and leisure activities were opened and travelling within regions was permitted while
travelling between regions was forbidden. Consequently, during this period, there are
no causal effects on the overall daily new cases of each region from other regions. In
addition, according to google mobility data [115], during 4 weeks prior to 18 May the
mobility was increasing within the regions while travel ban between the regions was still
imposed. Hence, we use this expanded period to estimate the underlying distributions of
the region-specific daily new cases using a kernel density estimation. Finally, considering
that the daily recorded data noticeably fluctuates, a 7-day moving average was applied to
the signals.

We create the region-specific daily new cases for each region by sampling from the
estimated distributions. Below, we present the results of applying our algorithm on the
pre-processed Covid-19 dataset. Since the data only contains the reported overall daily
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new cases for a limited time period, care should be exercised in interpreting the results.
However, by providing more relevant data, our proposed framework helps towards more
accurate detection of the regions that contribute the most to the development of Covid-19.

Learning the Structural Dependencies

Our algorithm learns the ground truth adjacency matrix A using (6.10). As for the choice
of regularization function in (6.10), we employ Directed Total Variation (DTV) which is
a novel application of the Graph Directed Variation (GDV) function [116]. DTV regu-
larization function is defined as

g(A) = l Â
i, j=1,...,N

A[i, j] Â
k=1,...,t

[Y[i,k]�Y[ j,k]]+ , (6.16)

[y]+ = max{y,0} . (6.17)

The regularization function addresses the smoothness of the entire observations Y over
the underlying directed graph. To be more realistic, since the causal spread of the disease
might create cycles, we additionally include cyclic graphs in the search space of the
optimization problem (6.10).

We perform cross-validation technique to tune the regularization parameter l . As
mentioned before, we work on a limited time period with T = 66 days. Thus, we split
the data into train and validation sets in 10:1 ratio. More specifically, we split the data
into 6 subsets of 11 consecutive days. In each subset, one day is chosen uniformly at
random to be included in the validation set while the remaining 10 days are added to the
train set. We calculate the prediction error at each time t by

Error(t) =
1

NK(t) Â
i2K(t)

kyi� ŷik1 , (6.18)

where K(t) is the validation set at time t with cardinality K(t) = |K(t)| and yi and ŷi are
the validation data and the corresponding predicted value using the estimated graph for
day i, respectively. Fig. 6.4 compares the ground truth overall daily new cases and the
predicted overall daily new cases using the estimated graph on 4 different days of the
Covid-19 outbreak in our validation data. We observe that our proposed framework is
capable to estimate the data for each region efficiently, that helps the agent to improve
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Figure 6.4: Original overall daily new cases and the corresponding predicted values for
different days in the validation set.

its decision-making process in a real-world scenario.

Learning Regions with the Highest Contribution

In Fig. 6.5, we show the decision-making process of the agent over time by follow-
ing the SEM-UCB policy. Dark rectangles represent the 6 selected regions at each day
(time). Based on our framework, we represent the selected regions by our algorithm as
those with biggest contributions to the development of Covid-19 during the time inter-
val considered in our experiment. More specifically, we find the regions of Lombardia,
Emilia-Romagna, Lazio, Veneto, Piemonte, and Liguria as the ones that contribute the
most to the spread of Covid-19 during that period in Italy.

We emphasize that, due to the causal effects among the regions, contribution of each
region to the spread of covid-19 differs from its overall daily cases of infection. Thus,
the set of regions with the highest contribution does not necessarily equal to the set of
regions with the highest total number of daily cases. This is a key aspect of our problem
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Figure 6.5: Selected regions on each day.

formulation that is addressed by SEM-UCB in Fig. 6.5. We elaborate more on this fact
in the following.

Comparison with a Naive Approach

As the governments try to contain the spread of Covid-19, they usually adopt restrictive
measures such as quarantine over the regions that are showing the most number of overall
daily new infections. As a result, they destructively ignore the effects of causal spread of
the virus, meaning that they only focus on the overall daily new cases of regions without
their causal effects on other regions. Therefore, we refer to this method of finding the
best political interventions as the naive approach. Our goal is to show the superiority of
our proposed algorithm over this naive approach.

Fig. 6.6 compares the performance of our algorithm with that of the naive approach.
The diagram shows the ratio of the amount of contributions of the selected regions by
the algorithms over the total number of daily new infections in the country for each day.
As expected, after the initialization phase, SEM-UCB learns the underlying graph that
influences the data. Consequently, it performs better with respect to the naive approach
due to the fact that it takes the effects of causalities into account. We note that, due to
such causal effects, it might be the case that a region with a lower number of overall daily
cases contributes more than other regions with higher number of overall daily cases. This
diagram provides the evidence that our framework can be highly effective in real-world
applications such as analysis of the spread of Covid-19.
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Figure 6.6: The ratio of the amount of contributions of the selected regions by SEM-UCB
and the naive approach over the total number of daily new infections in the country for
each day.

6.6 Conclusion

We developed a combinatorial semi-bandit framework with causally related rewards,
where we modelled the causal relations by a directed graph in a structural equation
model. We developed a decision-making policy, namely SEM-UCB, that learns the
structural dependencies to improve the decision-making process. We proved that SEM-
UCB achieves a sublinear regret bound in time. Our framework is applicable in a num-
ber of contexts such as network data analysis of biological networks or financial mar-
kets. We applied our method to analyze the development of Covid-19. The experiments
showed that SEM-UCB outperforms several state-of-the-art combinatorial semi-bandit
algorithms.
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Appendices

6.A Notations

Before proceeding to the proof, in the following we introduce some important notations
together with their definitions.

We define the index set of a decision vector x 2 X by I(x) = {i 2 [N] | x[i] 6= 0}.
For each base arm i at time t, we define Ct [i] =

q
(s+1) ln t

mt [i]
. At each time t, we col-

lect the empirical average of instantaneous rewards b̂ t [i] and the calculated confidence
bounds Ct [i] of all base arms i 2 [N] in vectors b̂ t and Ct , respectively. We have
Et = b̂ t +Ct . For ease of presentation, in the sequel, we use the following equivalence
1>(I� Ât�1)�1diag(Et�1)xt = 1>(I� Ât�1)�1diag(xt)Et�1. At each time t, we define
the selection index for a decision vector x 2 X as It(x) = 1>(I� Ât�1)�1diag(x)Et�1.
To simplify the notation, sometimes we drop the time index t in mt [i] and use m[i] to
denote the number of times that the base arm i has been observed up to the current time
instance.

For any x 2 X , we use the counter Tx(t) to represent the total number of times the
decision vector x is selected up to time t. Finally, for each base arm i 2 [N], we define
a counter Ti(t) which is updated as follows. At each time t after the initialization phase
that a suboptimal decision vector xt is selected, we have at least one base arm i 2 [N]

such that i = argmin
i2I(xt)

mt [i]. In this case, if the base arm i is unique, we increment Ti(t)

by 1. If there are more than one such base arm, we break the tie and select one of them
arbitrarily to increment its corresponding counter.

6.B Proof of Theorem 6

Proof. We start by rewriting the expected regret as

RT (X ) = T µ(x⇤)�
T

Â
t=1

µ(xt) = Â
x:µ(x)<µ(x⇤)

D(x)E[Tx(T )]. (6.19)

Based on the definition of the counters Ti(t) for the base arms i 2 [N], at each time t that
a suboptimal decision vector is selected, only one of such counters is incremented by 1.
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Thus, we have [117]

E
"

Â
x:µ(x)<µ(x⇤)

Tx(t)

#
= E

"
N

Â
i=1

Ti(t)

#
, (6.20)

which implies that

Â
x:µ(x)<µ(x⇤)

E [Tx(t)] =
N

Â
i=1

E [Ti(t)] . (6.21)

Therefore, we observe that

RT (X ) = Â
x:µ(x)<µ(x⇤)

D(x)E[Tx(T )]
(⇤)
 Dmax

N

Â
i=1

E[Ti(T )], (6.22)

where (⇤) follows from the definition of Dmax.

Let i(t) denote the indicator function which is equal to 1 if Ti(t) is increased by 1 at
time t, and is 0 otherwise. Therefore,

Ti(T ) =
T

Â
t=N+1

{ i(t) = 1} . (6.23)

If i(t) = 1, it means that a suboptimal decision vector xt is selected at time t. In this

case, mt [i] = min{mt [ j]| j 2 I(xt)}. Let l =
⇠

4(s+1) lnT
(

Dmin
swmax )

2

⇡
. Then,

Ti(T ) =
T

Â
t=N+1

{ i(t) = 1}

 l +
T

Â
t=N+1

{ i(t) = 1 & Ti(t�1)� l}

 l +
T

Â
t=N+1

{It(x⇤) It(xt) & Ti(t�1)� l}

= l +
T

Â
t=N+1

{1>(I� Ât�1)
�1diag(x⇤)Et�1

 1>(I� Ât�1)
�1diag(xt)Et�1 & Ti(t�1)� l}
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= l +
T

Â
t=N

{1>(I� Ât)
�1diag(x⇤)Et  1>(I� Ât)

�1diag(xt+1)Et & Ti(t)� l}.

(6.24)

Based on the definition of Ti(t), we have Ti(t)mt [i], 8i2 [N]. Therefore, when Ti(t)�
l, the following holds [117].

l  Ti(t)mt [ j], 8 j 2 I(xt+1). (6.25)

Let v>t+1 = 1>(I� Ât)�1diag(x⇤) and u>t+1 = 1>(I� Ât)�1diag(xt+1). We order the ele-
ments in sets I(x⇤) and I(xt+1) arbitrarily. In the following, our results are independent
of the way we order these sets. Let vk, k = 1, . . . , |I(x⇤)|  s, represent the kth element
in I(x⇤) and uk, k = 1, . . . , |I(xt+1)|  s, represent the kth element in I(xt+1). Hence,
we have

Ti(T ) l +
T

Â
t=N

(
min

0<m[v1],...,m[v|I(x⇤)|]t

|I(x⇤)|

Â
j=1

v>t+1[v j](b̂ t [v j]+Ct [v j])

 max
lm[u1],...,m[u|I(xt+1)|]t

|I(xt+1)|

Â
j=1

u>t+1[u j](b̂ t [u j]+Ct [u j])

)

 l +
•

Â
t=1

t

Â
mv1=1

· · ·

t

Â
mv

|I(x⇤)|=1

t

Â
mu1=l

· · ·

t

Â
mu

|I(xt+1)|
=l

(
|I(x⇤)|

Â
j=1

v>t+1[v j](b̂ t [v j]+Ct [v j])



|I(xt+1)|

Â
j=1

u>t+1[u j](b̂ t [u j]+Ct [u j])

)
.

(6.26)

We define the Event P as

|I(x⇤)|

Â
j=1

v>t+1[v j](b̂ t [v j]+Ct [v j])
|I(xt+1)|

Â
j=1

u>t+1[u j](b̂ t [u j]+Ct [u j]). (6.27)

If the Event P in (6.27) is true, it implies that at least one of the following events must
be true.

1>(I� Ât)
�1diag(x⇤)(b̂ t +Ct) 1>(I�A)�1diag(x⇤)b , (6.28)
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1>(I� Ât)
�1diag(xt+1)(b̂ t�Ct)� 1>(I�A)�1diag(xt+1)b , (6.29)

1>(I�A)�1diag(x⇤)b < 1>(I�A)�1diag(xt+1)b +21>(I� Ât)
�1diag(xt+1)Ct .

(6.30)

First, we consider (6.28). Based on our problem formulation and proposed solution,
we know that matrices A and Ât are nilpotent with index N. Thus, AN = 0N⇥N and
ÂN

t = 0N⇥N . Hence, we can write the Taylor’s series of (I�A)�1 and (I� Ât)�1 as

(I�A)�1 = I+A+A2 + · · ·+AN�1, (6.31)

and

(I� Ât)
�1 = I+ Ât + Â2

t + · · ·+ ÂN�1
t , (6.32)

respectively. Substituting (6.31) and (6.32) in (6.28) results in

1>(I+ Ât + Â2
t + · · ·+ ÂN�1

t )diag(x⇤)(b̂ t +Ct)

 1>(I+A+A2 + · · ·+AN�1)diag(x⇤)b . (6.33)

For j = 1, . . .N, we find the upper bound for

P
h
1>Â j�1

t diag(x⇤)(b̂ t +Ct) 1>A j�1diag(x⇤)b
i
. (6.34)

We consider the following Event E .

1>Â j�1
t diag(x⇤)(b̂ t +Ct)+1>Â j�1

t diag(x⇤)b

 1>Â j�1
t diag(x⇤)b +1>A j�1diag(x⇤)b . (6.35)

If E is true, then at least one of the following must hold.

1>Â j�1
t diag(x⇤)(b̂ t +Ct) 1>Â j�1

t diag(x⇤)b| {z }
I

, (6.36)

1>Â j�1
t diag(x⇤)b  1>A j�1diag(x⇤)b| {z }

II

. (6.37)
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Therefore, we have

P [E ] P [I]+P [II] . (6.38)

Let y>t = 1>Â j�1
t diag(x⇤). If Event I is true, then at least one of the following must

hold.

y>t [v1](b̂ t [v1]+Ct [v1]) y>t [v1]b [v1], (6.39)

y>t [v2](b̂ t [v2]+Ct [v2]) y>t [v2]b [v2], (6.40)
...

y>t [v|I(x⇤)|](b̂ t [v|I(x⇤)|]+Ct [v|I(x⇤)|]) y>t [v|I(x⇤)|]b [v|I(x⇤)|]. (6.41)

For k = 1, . . . , |I(x⇤)|, we have

P
h
y>t [vk](b̂ t [vk]+Ct [vk]) y>t [vk]b [vk]

i
(a)
= P

h
mt [vk](b̂ t [vk]+Ct [vk])mt [vk]b [vk]

i

(b)
 e�(2/mt [vk])mt [vk]

2Ct [vk]
2

(c)
= e�2(s+1) ln t = t�2(s+1), (6.42)

where (a) holds since y>t [vk] � 0, 8k, (b) follows from Lemma 9, and (c) results from
the definition of Ct . Hence, for Event I, we conclude that

P [I] |I(x⇤)|t�2(s+1)
 st�2(s+1). (6.43)

Now, we consider Event II. Based on Theorem 1 in [107], we know that we can identify
the adjacency matrix A uniquely by N samples gathered during the initialization period
of our proposed algorithm. This means that with probability 1, after the time point
q = N < •, Ât = A holds for all t > q . Therefore, for t > N, Event II holds with
probability 1.

Combining the aforementioned results with (6.38), we find the upper bound for (6.34)
as

P
h
1>Â j�1

t diag(x⇤)(b̂ t +Ct) 1>A j�1diag(x⇤)b
i
 st�2(s+1), (6.44)
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for each j = 1, . . . ,N. Since Ât = A, 8t > N and the length of the largest path in the
graph is p, we can rewrite (6.31) and (6.32) as [118]

(I�A)�1 = I+A+A2 + · · ·+Ap, (6.45)

and

(I� Ât)
�1 = I+ Ât + Â2

t + · · ·+ Âp
t , (6.46)

respectively. Therefore, by using (6.45) and (6.46) in place of (6.31) and (6.32), and
based on (6.44), the following holds for (6.28).

P
h
1>(I�Ât)

�1diag(x⇤)(b̂ t +Ct) 1>(I�A)�1diag(x⇤)b
i
 spt�2p(s+1). (6.47)

For (6.29), we have similar results as follows.

P
h
1>(I�Ât)

�1diag(xt+1)(b̂ t�Ct)� 1>(I�A)�1diag(xt+1)b
i
 spt�2p(s+1). (6.48)

Finally, we consider (6.30). We have

1>(I�A)�1diag(x⇤)b �1>(I�A)�1diag(xt+1)b �21>(I� Ât)
�1diag(xt+1)Ct

(a)
= 1>(I�A)�1diag(x⇤)b �1>(I�A)�1diag(xt+1)b �2 Â

j: j2I(xt+1)

w>t [ j]Ct [ j]

(b)
= 1>(I�A)�1diag(x⇤)b �1>(I�A)�1diag(xt+1)b �2 Â

j: j2I(xt+1)

w>t [ j]

s
(s+1) ln t

mt [ j]

(c)
� 1>(I�A)�1diag(x⇤)b �1>(I�A)�1diag(xt+1)b �2swmax

r
(s+1) lnT

l
(d)
� 1>(I�A)�1diag(x⇤)b �1>(I�A)�1diag(xt+1)b �Dmin

(e)
� 1>(I�A)�1diag(x⇤)b �1>(I�A)�1diag(xt+1)b �D(xt+1) = 0,

where in (a) and (c) we used the definition of w>t and wmax, respectively. Moreover, in
(b) and (d), we substituted the value for Ct [ j] and l, respectively. (e) follows from the
definition of Dmin. Hence, we conclude that (6.30) never happens.
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By using (6.47), (6.48), and (6.49), we achieve the following.

E[Ti(T )]

&
4(s+1) lnT
( Dmin

swmax
)2

'
+

•

Â
t=1

"
t

Â
mv1=1

· · ·

t

Â
mvs=1

t

Â
mu1=l

· · ·

t

Â
mus=l

2spt�2p(s+1)

#


4w2

maxs2(s+1) lnT
D2

min
+1+ sp

•

Â
t=1

2t�2


4w2

maxs2(s+1) lnT
D2

min
+1+

p2

3
sp. (6.49)

Therefore, the expected regret is upper bounded as

RT (X ) Dmax

N

Â
i=1

E[Ti(T )]
N

Â
i=1

h4w2
maxs2(s+1) lnT

D2
min

+1+
p2

3
sp
i
Dmax



h4w2
maxs2(s+1)N lnT

D2
min

+N +
p2

3
spN

i
Dmax. (6.50)

⌅

6.C Auxiliary Results

We use the following lemma in the proof of Theorem 1.

Lemma 9. ([101]) Let z1,z2, . . . ,zm be random variables and zi 2 [0,1], 8i. Moreover,
E[zt |z1, . . . ,zt�1] = a , for all t = 1, . . . ,m. Then, for all D� 0,

P
"���

m

Â
i=1

zi�ma
���� D

#
 e�

2D2
m . (6.51)
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7 Non-stationary Delayed
Combinatorial Semi-Bandit with
Causally Related Rewards

Sequential decision-making under uncertainty is often associated with long feedback
delays. Such delays degrade the performance of the learning agent in identifying a sub-
set of arms with the optimal collective reward in the long run. This problem becomes
significantly challenging in a non-stationary environment with structural dependencies
amongst the reward distributions associated with the arms. Therefore, besides adapting
to delays and environmental changes, learning the causal relations alleviates the adverse
effects of feedback delay on the decision-making process. We formalize the described
setting as a non-stationary and delayed combinatorial semi-bandit problem with causally
related rewards. We model the causal relations by a directed graph in a stationary struc-
tural equation model. The agent maximizes the long-term average payoff, defined as a
linear function of the base arms’ rewards. We develop a policy that learns the structural
dependencies from delayed feedback and utilizes that to optimize the decision-making
while adapting to drifts. We prove a regret bound for the performance of the proposed
algorithm. Besides, we evaluate our method via numerical analysis using synthetic and
real-world datasets to detect the regions that contribute the most to the spread of Covid-
19 in Italy.

7.1 Introduction

Optimizing the long-run accumulated payoffs is the core challenge of online decision-
making. In real-world scenarios, the learner often receives feedback with long delays and
performs the learning task in a frequently-varying environment. For example, researchers
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have recently attempted to use the collected data to analyze the Covid-19 spread within
a country [3, 111, 18]. In this example, the testing results become available only after
a while, thereby delaying the received information. Moreover, the average number of
individuals infected within a region changes over time due to several factors, such as
that region’s geographical- and demographical characteristics. Such changes render the
spread pattern of Covid-19 disease difficult to understand. This problem becomes ag-
gravated when considering mobility amongst different regions. Such mobility results in
causal relations amongst the total daily new cases of regions which in turn affects the
trend of daily infected cases of each region.

The challenges mentioned above call for a suitable framework to efficiently model
and solve the problem. We take advantage of the Multi-Armed Bandit (MAB) problem
[12], where an agent sequentially chooses an arm and the environment reveals feedback
drawn from some unknown distribution. The agent’s goal is to maximize the cumulative
reward over a finite time horizon. Alternatively, the objective is to minimize long-term
regret, which is the difference between the accumulated reward of the optimal policy
in hindsight and that of the agent’s decision-making policy. In this scenario, the agent
experiences the exploration-exploitation dilemma, where the decision has to be made
between exploring options to acquire new knowledge and selecting an option by exploit-
ing the existing knowledge [13]. Our model is related to combinatorial semi-bandit [42]
where the agent is allowed to select a super arm, i.e., a subset of base arms, at each round
of decision-making. In this setting, the agent observes a base arm’s reward if it belongs
to the selected super arm. Consequently, the agent accumulates the collective reward
associated with the selected super arm.

We model the described problem using the combinatorial bandit setting and introduce
the non-stationary delayed combinatorial semi-bandit problem with causally related re-
wards, which we refer to as NDC bandit for short. In this problem, we use Structural
Equation Models (SEMs) [103] to model the existing causal relations. The underlying
causal structure that affects the rewards is unknown to the agent. The nodal observation
in the graph signal consists of the instantaneous reward of the corresponding base arm
and an additional term resulting from the causal influences of other base arms’ rewards.
In our framework, the agent aims to maximize the long-term average payoff, defined as
a linear function of the base arms’ rewards and dependent on the network topology.

We propose and analyze an algorithm to solve the NDC bandit problem. Our pro-
posed decision-making policy consists of two learning phases at each round of decision-
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making; first, the agent determines the causal relations by learning the network’s topol-
ogy while taking into account the delayed feedback. Second, the agent exploits the
learned graph to improve the decision-making process while coping with abrupt changes
in the environment. To this end, it utilizes a discount factor to reduce the influence of
past observations with time. We prove a regret bound for the performance of our algo-
rithm. The numerical results on synthetic data demonstrate our algorithm’s superiority
over several benchmarks. In addition to our experiments with synthetic data, we apply
our method to analyze the development of Covid-19 in Italy. We employ our method to
detect the regions that contribute the most to the spread of Covid-19 in the country while
assuming that the testing results are delayed, and the environment is non-stationary.

7.1.1 Related Works

Most real-world problems are non-stationary in their nature. Bandit-based algorithms de-
veloped for non-stationary online learning problems, such as [25, 14, 26, 29, 27, 1, 43],
inherently rely on the availability of recent feedback without delay. However, learners
in many real-world problems are often limited in accessing such immediate feedback;
such limitation arises due to a delay in receiving feedback, which badly affects the per-
formance of the aforementioned methods. In addition to the delay, having causal depen-
dencies [102, 3] in the system makes it hard to adapt to changes in the environment by
using the algorithms mentioned above.

Online learning with delayed feedback has been investigated both in the full feed-
back setting [119, 120] and partial feedback setting [121, 122]. The proposed algorithms
only start learning after having received enough feedback from the environment. Con-
sequently, such methods are effective in stationary environments. However, in a non-
stationary environment where system parameters undergo abrupt changes, the aforemen-
tioned methods are not appropriate anymore. In the worst-case scenario, if the environ-
ment changes in the number of rounds less than or equal to the length of feedback delay,
it is not possible to perform the learning task, as, by the time the learner receives the
information, it loses its value. To address this problem, [100] disentangles the effects of
delays and non-stationarity by introducing intermediate signals that become available to
the learner without delay. In the proposed method, the authors assume that, given the
intermediate signals, the system’s long-term behavior is stationary. However, the authors
do not consider the possible causal dependencies amongst the arms’ reward distributions.
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In a combinatorial setting, addressing the abovementioned challenges becomes signif-
icantly more difficult. Applying conventional MAB algorithms [46] to solve the combi-
natorial MAB problem results in suboptimal regret bounds as the number of super arms
is combinatorial in the number of base arms. The combinatorial bandit problem is well-
investigated in the literature under various conditions and using different approaches
[42, 43, 47, 48, 44, 45]. However, novel techniques are required to mitigate the combined
effect of delayed feedback, non-stationarity, and causal dependencies on the performance
of state-of-the-art methods. Our proposed algorithm is able to work with delayed feed-
back and adapts to changes in non-stationary environments. In addition, it learns the
underlying causal structure over time and exploits it to improve the decision-making
process. Hence, in our proposed framework, we do not require prior knowledge of the
structural dependencies, unlike most previous works. The authors in [47] consider a
combinatorial semi-bandit problem with probabilistically triggered arms, where selected
super arms can probabilistically trigger other base arms. They propose the combinatorial
Thompson sampling algorithm to solve the problem. At each decision-making time, the
algorithm uses the entire collected feedback up to the current time and an oracle to se-
lect the best combinatorial action. Similarly, in [48], the authors study the combinatorial
semi-bandit problem with probabilistically triggered arms and propose an Upper Confi-
dence Bound (UCB)-based algorithm. The proposed algorithm uses an oracle to select a
super arm at each time by using the entire observed data up to the current time. Refer-
ence [44] consider a combinatorial setting where at each round of play, the agent receives
the reward of the selected super arm and some side rewards from the selected base arms’
neighbors. The proposed method exploits the prior knowledge of statistical structures
to learn the best combinatorial strategy. In [45], the authors formulate a combinatorial
bandit problem where the agent has access to an influence diagram that represents the
probabilistic dependencies in the system. The authors propose a Thompson sampling
algorithm and its approximations to solve the formulated problem.

The remaining literature that studies the underlying structure of the problem is not
suitable to deal with delayed feedback in changing environments. For example, in [104],
the authors attempt to learn the structure of a combinatorial bandit problem with i.i.d.
rewards. In the considered setting, there is neither a delay in receiving feedback nor
causal relations between rewards. Moreover, in [105], the MAB framework is employed
to identify the best soft intervention on a causal system while it is assumed that the causal
graph is only partially unknown. The authors assume a stationary environment and do
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not consider possible delays in receiving feedback. Our work is most closely related
to [3], where the authors model the causal relations by a directed graph in a stationary
SEM. However, the proposed framework ignores the changes in the environment and is
not able to work with delayed feedback.

7.1.2 Organization

We formulate the NDC bandit problem in Section 7.2. In Section 7.3, we propose our al-
gorithm, namely NDC-SEM, and theoretically analyze its regret performance in Section
7.4. In Section 7.5, we present the results of numerical analysis. Section 7.6 concludes
the chapter.

7.2 Problem Formulation

We consider a causally structured combinatorial semi-bandit problem with N base arms
gathered in the set [N] = {1,2, . . . ,N}. Let bt = [bt [1],bt [2], . . . ,bt [N]]2 [0,1]N represent
the vector of instantaneous rewards of the base arms at time t. Moreover, by b t =

[b t [1],b t [2], . . . ,b t [N]], we denote the expected instantaneous reward vector of the base
arms at time t. For each base arm i 2 [N], the instantaneous rewards bt [i] over time
are independent random variables, drawn from an unknown probability distribution with
mean b t [i].

We model the causal relationships in the system by using an unknown stationary sparse
Directed Acyclic Graph (DAG) G = (V,E ,A). V denotes the set of N vertices, i.e.,
|V| = N, E represents the edge set, and A is the weighted adjacency matrix. In addi-
tion, we use p  N � 1 to denote the length of the longest path in the graph G. The
reward generating processes in the bandit setting follow an error-free Structural Equa-
tion Model (SEM) ([106], [107]). At each time t, we use zt = [zt [1],zt [2], . . . ,zt [N]]

and yt = [yt [1],yt [2], . . . ,yt [N]] to denote the exogenous input vector and the endogenous
output vector of the SEM, respectively. We refer to zt and yt as the feedback from the
environment at time t.
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Game Protocol

At each time t of decision-making, the sequence of the events in the NDC bandit problem
is as follows:

• The agent determines a super arm, i.e., a subset of base arms, by choosing a de-
cision vector xt = [xt [1],xt [2], . . . ,xt [N]] 2 {0,1}N , where xt [i] = 1 if the agent
selects the base arm i and xt [i] = 0 otherwise. At each time of play, the agent
selects at most s base arms, where the sparsity parameter s is pre-determined and
known.

• After a delay D, the environment reveals the feedback zt and yt to the agent.

The environment presumably changes over time. To model the non-stationarity in the
environment, we assume that there exist °T time instants before a time horizon T where
at least one of the expected rewards b t [i], for any i 2 [N], changes abruptly.

In Fig. 7.1, we depict an exemplary graph with four nodes and the underlying causal
relations. Note that there does not exist necessarily a causal relation between every pair
of nodes. Based on our proposed model, at each time t, the agent observes both the
exogenous input vector zt�D and the endogenous output vector yt�D for the time t�D.

Expected Payoff and Regret

We define the exogenous input zt at time t as

zt = diag(bt)xt , (7.1)

where diag(·) represents the operator that diagonalizes its given input vector. The ex-
ogenous input zt represents the semi-bandit feedback at time t of the decision-making
problem. Accordingly, for each i 2 [N], we define the endogenous output yt [i] as

yt [i] = Â
i 6= j

A[i, j]yt [ j]+F[i, i]zt [i], 8i 2 [N], (7.2)

where F is a diagonal matrix that captures the effects of the exogenous input vector zt .
The SEM in (7.2) implies that yt [i] depends on the exogenous input signal zt [i] as well as
the endogenous outputs of single-hop neighbors. The endogenous output yt [i] represents
the overall reward of the corresponding base arm i 2 [N] at time t. Hence, at each time
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yt [1] yt [2] yt [3] yt [4]
A[2,1] A[2,3]

A[3,1] A[2,4]

A[4,3]

zt [1]

yt [1]

F[1,1]

zt [2]

yt [2]

F[2,2]

zt [3]

yt [3]

F[3,3]

zt [4]

yt [4]

F[4,4]

Figure 7.1: An exemplary illustration of a graph with 4 nodes and the corresponding
causal relations. The red directed edges represent the causal relationships within the
network.

t, the overall reward of each base arm consists of (i) a part that directly results from its
instantaneous reward and (ii) another part that reflects the effect of causal influences of
other base arms’ overall rewards.

Based on (7.2), the base arms’ overall rewards are causally related. The adjacency
matrix A represents the causal relationships between the overall rewards; the element
A[i, j] of the adjacency matrix denotes the causal impact of the overall reward of base
arm j on the overall reward of base arm i, and we have A[i, i] = 0, 8i = 1,2, . . . ,N. In our
problem, the adjacency matrix A is unknown a priori, which means that the agent does
not know the causal relationships between the base arms’ overall rewards. The matrix
form of (7.2) is defined as

yt = Ayt +Fzt . (7.3)

By solving (7.3) for variable yt and using (7.1) in place of zt , we achieve

yt = (I�A)�1Fdiag(bt)xt . (7.4)

Therefore, we define the payoff at time t, upon choosing the decision vector xt by the
agent, as

rt(xt) = 1>yt = 1>(I�A)�1Fdiag(bt)xt , (7.5)

where 1 is the N-dimensional vector of ones. Note that the matrix (I�A) is invertible
due to the fact that the graph G is a DAG, which implies that with a proper indexing of
the vertices, the adjacency matrix A is a strictly upper triangular matrix. In our problem,
since the agent directly observes the exogenous input, we assume that the effects of
F on the exogenous input is already integrated in the instantaneous rewards. Hence,
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7 Non-stationary Delayed Combinatorial Semi-Bandit with Causally Related Rewards

to simplify the notation and without loss of generality, we assume that F = I in the
following.

Finally, at time t, when the decision vector xt is chosen by the agent, the expected
payoff can be calculated as

µt(xt) = E [rt(X)|X = xt ] , (7.6)

where the expectation is taken with respect to the randomness in the reward generating
processes.

The expected payoff defined in (7.6) shows that we are dealing with a linear combi-
natorial semi-bandit problem with causally related rewards in a non-stationary environ-
ment. Note that, for a fixed decision vector x, the expected payoff may change over time
due to the possible changes in the expected value of base arms’ instantaneous rewards.
In addition, due to the randomness in selection of the decision vector xt , the consecutive
overall reward vectors yt become non-identically distributed.

The set of all feasible decision vectors is given by

X =
�

x | x 2 {0,1}N
^kxk0  s

 
, (7.7)

where k·k0 determines the number of non-zero elements in a given vector. Ideally, the
agent maximizes the expected accumulated payoff over the time horizon T . Alterna-
tively, the agent minimizes the expected regret, i.e., the difference between the expected
accumulated payoff of an oracle that follows the optimal policy and that of the agent that
follows the applied policy. We define the expected regret as

RT (X ) =
T

Â
t=1

[µt(x⇤t )�µt(xt)], (7.8)

where x⇤t = argmax
x2X

µt(x) and xt denote the optimal decision vector and the selected

decision vector under the applied policy at time t, respectively.

7.3 Decision-Making Strategy

This section presents our decision-making strategy to minimize the expected regret de-
fined in (7.8). Note that the expected payoff defined in (7.6) implies that the knowledge of
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A and b t are essential to select the best decision vectors that maximize the accumulated
payoffs. Therefore, our proposed algorithm estimates them before making decisions.
More precisely, our proposed policy consists of two learning components: (i) an online
graph learning using delayed feedback and (ii) an adaptive Upper Confidence Bound
(UCB)-based reward learning. In the following, we describe each component separately
and propose our algorithm, namely NDC-SEM.

7.3.1 Online Graph Learning under Delayed Feedback

In our proposed policy, the agent attempts to learn the causal relations; nonetheless,
not the entire feedback becomes immediately available. In the following, we develop
an online graph learning framework that uses the delayed feedback, i.e., the delayed
exogenous input and endogenous output vectors, to estimate the adjacency matrix A.

At each time t, due to the existing delay D, the agent only observes the feedback up to
the time t�D. Therefore, at time t, we collect the received feedback in ZD

t = [z1 . . .zt�D]

and YD
t = [y1 . . .yt�D]. Then,

YD
t = AYD

t +ZD
t . (7.9)

We assume that the right indexing of the vertices is known prior to estimating the ground
truth adjacency matrix. At each time t, we exploit the received feedback YD

t and ZD
t as

the input to a parametric graph learning algorithm ([106], [108]). Formally, at time t, we
use the following optimization problem to estimate the adjacency matrix.

Ât = argmin
A

��YD
t �AYD

t �ZD
t
��2

2 +l kAk1

s.t. A[i, j]� 0, 8i, j 2 [N],

A[i, j] = 0, 8i� j,

(7.10)

where k·k2 and k·k1 represent the L2-norm and L1-norm of matrices, respectively. More-
over, l is the regularization parameter. The regularization term in (7.10) imposes the
sparsity property on the estimated matrix Ât . In addition, it guarantees that the optimiza-
tion problem (7.10) is convex.
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7.3.2 Adaptive Decision Vector Selection

Our proposed decision-making policy is presented in Algorithm 6. Our decision-making
strategy relies on confidence regions for rewards. Moreover, it adapts to changes in the
environment by using a discount factor g 2 (0,1) when estimating the expected value of
base arms’ instantaneous rewards. The discount factor g , given as input to the algorithm,
helps to reduce the influence of observations with time; by using the discount factor, the
agent gives more importance to recent observations relative to those in the distant past.
Formally, for each base arm i 2 [N] at time t, we define

b̂ t [i] =
Ât�D

t=1 g t�tbt [i] {xt [i] = 1}

Mg,D
t [i]

, (7.11)

where

Mg,D
t [i] =

t�D

Â
t=1

g t�t
{xt [i] = 1} . (7.12)

In the initialization phase, NDC-SEM algorithm uses an upper-triangular initializa-
tion matrix H 2 {0,1}N⇥N . At each time t during the first N times of play, NDC-SEM
selects the column t of H as the corresponding decision vector. We create the matrix H
as follows. All diagonal elements of H are equal to 1. As for the column i, if i  s, we
set all elements above diagonal to 1. If s+ 1  i  N, we select s� 1 elements above
diagonal uniformly at random and set them to 1. The remaining elements are set to 0.
Such a specific strategy in the initialization phase creates rich data that helps to learn the
ground truth adjacency matrix. In addition, it guarantees that all the base arms are pulled
at least once, and the matrix H is full rank. Consequently, the adjacency matrix A is
uniquely identifiable from the collected feedback [107].

In the next phase, the NDC-SEM algorithm takes two consecutive steps at each time
t to learn the causal relationships and the expected instantaneous rewards of the base
arms. In the first step, it uses the collected delayed feedback YD

t and ZD
t to estimate the

adjacency matrix by solving the optimization problem (7.10). In the second step, it uses
the reward observations to calculate the UCB index Et [i] for each base arm i, defined as

Et [i] = b̂ t [i]+2

s
x (s+1) logmg

t

Mg,D
t [ j]

, (7.13)
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Algorithm 6 NDC-SEM for NDC bandit problems with Structural Equation Models.
Input: Number of arms N, sparsity parameter s, discount factor g , initialization matrix
H.

1: for t = 1, . . . ,N do
2: Select column t of the initialization matrix H as the decision vector xt .
3: Receive feedback zt�D and yt�D for t > D.
4: end for
5: for t = N +1, . . . ,T do
6: Obtain Ât�1 by solving (7.10).
7: Calculate Et�1[i] using (7.13), 8i 2 [N].
8: Select decision vector xt that solves (7.14).
9: Receive feedback zt�D and yt�D for t > D.

10: end for

where x is a tunable parameter that controls the exploration power of the algorithm and
mg

t = Ât
t=1 g t�t .

Afterward, the NDC-SEM algorithm selects a decision vector xt using the current
estimate of the adjacency matrix and the developed UCB indices of the base arms. Let
Et = [Et [1],Et [2], . . . ,Et [N]]. At time t, it selects xt as

xt = argmax
x2X

1>(I� Ât�1)
�1 diag(Et�1)x

s.t. kxk0  s.
(7.14)

The fundamental aspect of our algorithm is that it works with delayed observations
for each base arm rather than the delayed payoff observations for each super arm. As
the same base arm can be included in different selected super arms, we can use the
information obtained from selecting a super arm to improve our payoff estimation of
other relevant super arms. This, combined with the fact that our algorithm adapts to non-
stationary rewards and simultaneously learns the adjacency matrix, significantly speeds
up the learning process, resulting in high performance for our proposed algorithm.

Remark 11. Define c> = 1>(I� Ât�1)�1 diag(Et�1). Based on our proposed solution,
all the elements of both matrices Et�1 and Ât�1 are non-negative. Therefore, c[i] > 0,
8i 2 [N]. Thus, the optimization problem (7.14) reduces to finding the s-biggest elements
of c, which can be solved efficiently based on the choice of sorting algorithm used to
order the elements of c. The computational complexity of the NDC-SEM algorithm varies
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7 Non-stationary Delayed Combinatorial Semi-Bandit with Causally Related Rewards

depending on the solver that is used to learn the graph. For example, if we use OSQP
solver [109], we achieve a computational complexity of order O(N4).

7.4 Theoretical Analysis of NDC-SEM Algorithm

In this section, we prove an upper bound on the expected regret of NDC-SEM algorithm.
We use the following definitions in our regret analysis. Let [T ] = {1,2, . . . ,T}. For
any x 2 X , let Dt(x) = µt(x⇤t )� µt(x). We define Dmax = max

t2[T ]
max

x:µt(x)<µt(x⇤t )
Dt(x) and

Dmin = min
t2[T ]

min
x:µt(x)<µt(x⇤t )

Dt(x). Moreover, let w>t = 1>(I� Ât�1)�1diag(xt). We define

wmax = max
t

max
i

wt [i].

The following theorem states an upper bound on the expected regret of NDC-SEM.

Theorem 7. Let x > 1
2(s+1) . The expected regret of NDC-SEM algorithm is upper

bounded as

RT (X )

"
1+ J(g)°T +NdT (1� g)e

✓⇠
16x s2w2

max(s+1) logmg
T

D2
min

⇡
g�

1
1�g +D

◆

+2sp
⇠

1
1� g

⇡2s
 

1
1� g

+

&
log 1

1�g
log(1+h)

'p
T (1� g)p

(1� g
1

1�g )p

!#
NDmax. (7.15)

Proof. See Appendix 7.B. ⌅

7.5 Numerical Analysis

In this section, we present the results of numerical experiments to provide more insight
into the impact of delay, non-stationarity, and structural dependencies on the performance
of learning algorithms. We show that our proposed algorithm can mitigate these impacts
by learning the causal relations from delayed feedback to improve the decision-making
process while adapting to changes in the environment in an efficient way. We test our
algorithm in different scenarios using synthetic and real-world datasets and compare it
with state-of-the-art benchmark algorithms.
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7.5.1 Baselines

We compare NDC-SEM with two categories of combinatorial semi-bandit algorithms;
those that are agnostic towards learning the causal relations and the one benchmark that
learns the causal structure of the problem. The former category in our experiment in-
cludes CUCB [48], CTS [47], and FTRL [110]. At each round of decision-making, the
CUCB policy uses an approximation oracle that takes as input the calculated UCB index
for base arms and outputs a super arm. The CTS policy utilizes the Thompson sampling
and an oracle to select a super arm at each time of play. The CUCB and CTS algorithms
are designed to work with i.i.d. random variables. Moreover, they are delay-agnostic.
The FTRL policy relies on the method of Follow-the-Regularized-Leader to select a su-
per arm at each time. In addition, it does not take the possible delays in observations
into account. The latter category includes only SEM-UCB [3] that learns the structural
dependencies and exploits this knowledge to select a super arm at each time. It is a UCB-
based algorithm and works based on the individual observations of base arms rather than
the payoff observations of super arms as a whole. The SEM-UCB algorithm is specially
designed for stationary environments. In addition, it is delay-agnostic. Finally, we also
consider a Random policy that selects a super arm uniformly at random at each time.

7.5.2 Synthetic Dataset

We start our experiments by assessing the performance of our algorithm on a synthetic
dataset. This way, we have access to the oracle, and therefore, we can perform vari-
ous analyses on our proposed method. More specifically, we can compare the selected
decision vectors by NDC-SEM with the decisions made by the oracle to provide more
insight into the effectiveness of our proposed method. The setting of our simulation is as
follows.

Experimental Setup

We create a weighted directed acyclic graph consisting of N = 10 nodes. The edge den-
sity of the ground truth graph is 0.09. The non-zero elements of the adjacency matrix
A are drawn from a continuous uniform distribution over [0.4,0.7]. The instantaneous
rewards bt [i] for each base arm i 2 [N] are drawn from a Bernoulli distribution with
piece-wise constant mean b t [i]. We consider °T = 3 change points in the expected in-
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stantaneous rewards at times {1000,2500,4000}. In Fig. 7.2, we depict the changes
in the expected instantaneous reward over time for each base arm. As demonstrated in
Section 7.2, we generate the vector of overall rewards according to the SEM in (7.2).
The regularization parameter l is tuned by grid search over [10�5,106]. We evaluate the
estimated adjacency matrix at each time t by using the mean squared error defined as
MSE = 1

N2

��A� Ât
��2

F, where k·kF denotes the Frobenius norm.
For the results to be comparable, we apply all the benchmarks to the vector of overall

reward yt at each time t. If a benchmark requires yt to be in [0,1], we feed the normalized
version of yt to the corresponding algorithm. Finally, in our experiments, we choose the
sparsity parameter s = 4, meaning that the algorithms can choose 4 base arms at each
time of play. We run the experiment for T = 5000 time steps and repeat the experiment
by considering three different values for delay D 2 {50,200,400}. We tune the discount
factor for NDC-SEM and set it to g = 0.985.

Regret Comparison

We run the algorithms using the aforementioned setup. In Fig. 7.3, we depict the trend
of cumulative expected regret over time for each policy for different choices of delay D.
Here, the oracle receives the feedback without delay. As we see, NDC-SEM outperforms
all the other policies and can comply faster with abrupt environmental changes. This is
because NDC-SEM estimates the graph structure using the delayed feedback; hence, it
has a better knowledge of the causal relationships in the network. Moreover, NDC-SEM

Figure 7.2: Evolution of the base arms’ expected instantaneous reward for the synthetic
experiment.
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Figure 7.3: Cumulative expected regret of different policies with delay D 2
{50,200,400} from left to right. Vertical lines show the change points.

uses a discount factor g to weight the observations when estimating the expected instan-
taneous rewards. Therefore, it has a smoother curve around change points, unlike other
policies that jump suddenly. We emphasize that our algorithm can deal with delayed,
causally related, and non-i.i.d. variables. This is a significant improvement over the pre-
vious methods that either do not consider delayed and non-i.i.d feedback or do not learn
the causal relations.

Adaptation to the Environmental Changes

To further analyze the performance of our algorithm, we define the optimality ratio for
the model during each stationary period. Let I(x) = {i 2 [N] | x[i] 6= 0} be the index set
of a decision vector x2X . For the i-th stationary period Ti✓ [T ], the optimality ratio of a
given policy is calculated as (Ât2Ti Âi2I(xt)

{i 2 I(x⇤t )})/(Ât2Ti
|I(x⇤t )|). In words, the

optimality ratio of a given policy for each stationary period is the ratio of the number of
selected base arms by that policy that belong to the optimal super arm in that stationary
period over the number of selected base arms by oracle during that stationary period.

Fig. 7.4 shows the optimality ratio of the agent over different stationary periods by
following the NDC-SEM and SEM-UCB policies. We can observe that our algorithm
closely follows the super arm choice pattern of the oracle, which means that it can quickly
adapt to changes in the environment. On the other hand, SEM-UCB cannot always adapt
to sudden changes in the environment. We particularly consider SEM-UCB in this analy-
sis to show that, although SEM-UCB learns the structural dependencies in the network, it
fails in learning the optimal decision vector in the presence of delay and non-stationarity.
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Figure 7.4: Optimality ratio of NDC-SEM vs. SEM-UCB for delay D 2 {50,200,400}
from top to bottom.

7.5.3 Covid-19 Dataset

In addition to the experiments using synthetic data, we evaluate our proposed algorithm
on the Covid-19 outbreak dataset of Italy, which includes the daily new infected cases
during the pandemic for different regions 1. The NDC bandit formulation provides a
suitable framework for analysis of Covid-19 spread for the following reasons: (i) Due to
movement between regions, there exists a causal impact amongst the daily new cases of
different regions. Therefore, in each region, the daily new cases result from the causal
spread of Covid-19 amongst the regions [111] and the region-specific characteristics
[112], such as social, cultural, and geographical characteristics. (ii) Each region has
a specific exposure risk of Covid-19 infection due to different regional characteristics.
Naturally, such exposure risk varies over time as our behavior changes, e.g., due to the

1https://github.com/pcm-dpc/COVID-19
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start of holiday seasons, quarantine orders, or even temperature variations [123, 124], or
as immunity develops, e.g., due to vaccination coverage. Therefore, we are dealing with
a changing environment. (iii) Finally, the virus testing results are typically reported or
even recorded with a delay. Hence, the daily new cases are associated with a delay.

During the Covid-19 pandemic, containing the virus outbreak has been one of the ma-
jor concerns of governments. To this end, health authorities have considered different
measurements for monitoring the outbreak and detecting the regions likely to become
coronavirus hotspots. The examples include the daily number of infected cases, inci-
dence rate, and reproduction number (also known as R-value). For example, Germany
monitors the 7-day incidence rate that shows the number of new infections within the
past week per 100,000 population. Consequently, based on the incidence rate of new
infections, the German authorities decide whether to impose restrictions, such as enforc-
ing mask-wearing, implementing curfews, making home office obligatory, and banning
travel. However, none of such measurements mentioned above considers a region’s daily
cases’ impact on other regions’ daily cases within a country. Thus, it is only natural that
health authorities seek to find the regions that contribute the most to the total number of
daily new cases in the country [113]. By the end of this experiment, we address this criti-
cal problem and highlight that our algorithm can detect the optimal candidate regions for
political interventions. To our knowledge, no previous work simultaneously considers
delay, non-stationarity, and casual impacts amongst regions when analyzing the spread
of a contagious disease such as Covid-19.

In the following, we follow our terminology in Section 7.2 and use the overall reward
yt [i] and the instantaneous reward bt [i] to refer to the overall daily new cases and the
region-specific daily new cases in region i at each time (day) t, respectively. Naturally, the
overall daily new cases include the region-specific daily new cases of Covid-19 infection.

Settings and Data Preparation

We consider a period with T = 80 days that corresponds to recorded daily new cases from
31 July to 18 October, 2020, for N = 21 regions within Italy. Fig. 7.5 depicts the overall
daily new cases of 21 regions in Italy for the considered time interval in our numerical
experiments. This figure shows the original daily records before the pre-processing of
the dataset in our experiment. Due to space limitations, we use abbreviations for region
names. The original regions’ names and their corresponding abbreviations are listed
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Figure 7.5: Overall daily new cases of Covid-19 for different regions in Italy during the
study period.

before in Table 6.1, in Chapter 6.

The dataset includes only the region’s overall daily new cases. Thus, to apply our
algorithm, we need to infer the distribution of region-specific daily new cases for each
region. To this end, we follow the approach proposed in [3] and use the data correspond-
ing to the period from 20 April to 3 June, 2020, to estimate the underlying distributions
of the region-specific daily new cases using a kernel density estimation. In particular,
from 18 May to 3 June, all places for work and leisure activities were opened, and trav-
eling within regions was permitted while traveling between regions was forbidden [114].
Consequently, during this period, there are no causal effects amongst the regions’ overall
daily new cases. In addition, according to google mobility data [115], from 20 April to
18 May, the movement was increasing within the regions while a travel ban between the
regions was still imposed.

We sample from the aforementioned estimated distributions to create the region-specific
daily new cases for each region. Then, we apply a 7-day moving average to the over-
all and region-specific daily cases. Afterward, to simulate piece-wise stationary reward
generating processes, we consider °T = 1 change point at the day t = 40. At the change
point, we draw a random integer k 2 {1, . . . ,N�1} and shift the base arms cyclically k
times forward. Hence, the instantaneous and overall reward of region i becomes those of
region (i+ k�1 mod N)+1. This guarantees that the expected instantaneous reward is
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Figure 7.6: Evolution of the expected region-specific daily new cases for each region
over time (corresponding to the pre-processed data).

piece-wise constant with respect to time. In Fig. 7.6, we show the trend of the regions’
expected instantaneous reward over time in our experiment with the Covid-19 dataset.
Note that this figure corresponds to the pre-processed Covid-19 data used in our experi-
ment. Finally, we choose the sparsity parameter s = 5 and consider a delay of 3 days in
receiving the testing results.

Learning the Causal Relationships under Delayed Feedback

The first learning component in our proposed policy corresponds to learning the ground
truth adjacency matrix A using (7.10). To be more realistic, since the causal spread
of the disease might create cycles, we include cyclic graphs in the search space of the
optimization problem (7.10). Further, we split the data into train and validation (tuning)
sets in a 90:10 ratio with 72 and 8 data samples, respectively. More specifically, we
consider 8 subsets of consecutive days, each with a length of 10 days. We pick one day
in each subset to include in the validation set and add the remaining 9 days to the train
set. The validation set is then used to tune the regularization parameter l online, i.e., by
using the already collected validation data up to the current time. At day t, we calculate
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the prediction error E(t) as

E(t) =
1

NK(t) Â
t2K(t)

kyt � ŷtk1 , (7.16)

where K(t) is the validation set at day t with cardinality K(t) = |K(t)|. Moreover, yt and
ŷt are the ground truth validation data and the corresponding predicted value using the
estimated graph for the day t , respectively.

Fig. 7.7 compares the ground truth overall daily new cases and the corresponding
predicted value using the estimated graph on 4 different days in the validation set. As we
see, the NDC-SEM algorithm efficiently estimates the regions’ overall daily new cases
using the delayed feedback, which helps to improve the decision-making process.

Adaptive Learning of the Regions with Highest Contribution

Using the setup mentioned above, we run the NDC-SEM algorithm with discount factor
g = 0.8 and show the agent’s decision-making process over time in Fig. 7.8. The 5
selected regions at each day are shown by black rectangles. Based on our framework,

Figure 7.7: Comparison of the original overall daily new cases and the corresponding
predicted values for different days in the validation set.
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Figure 7.8: Selected regions by NDC-SEM on each day.

we represent the selected regions as those with the highest contributions to the Covid-19
spread during the study period of our experiment. As we see, the NDC-SEM algorithm
adaptively selects the regions over time; that is why some selected regions after the
change point (day 40) differ from those selected before the change point. For example,
Valle d’Aosta and Campania regions are selected only after the change point.

The above-explained adaptive selection of regions is a significant advantage over the
SEM-UCB benchmark policy, as SEM-UCB does not consider the non-stationarity and
the delay. Notably, each region’s contribution to the Covid-19 development differs from
its overall daily cases of infection due to the existing causal effects amongst the regions.
Therefore, the set of regions with the highest contributions is not necessarily the same
as the set of regions with the highest total number of daily cases. In addition, in a real-
world scenario, the set of regions with the highest contributions might change over time
in a non-stationary environment. This is a key aspect of our problem formulation, which
NDC-SEM addresses in Fig. 7.8.

7.6 Conclusion

We introduced the NDC bandit framework that addresses real-world problems where
the feedback is delayed, the environment is non-stationary, and the base arm’s rewards
are causally related. We developed a decision-making policy, namely NDC-SEM, that
learns the causal relationships using the delayed feedback and alleviates the effects of
changes in non-stationary environments by discounting distant past rewards. We ana-
lyzed NDC-SEM theoretically and numerically and showed that NDC-SEM outperforms
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several state-of-the-art bandit algorithms.
We employed our proposed framework to detect the regions that contribute the most

to the spread of Covid-19 within Italy. The Covid-19 dataset contained only the reported
overall daily new cases for a limited period. Hence, care shall be exercised in inter-
preting the results. However, by providing more relevant data, our proposed framework
helps toward a more accurate analysis of the Covid-19 development. Beside the Covid-
19 problem, our method can be applied to analyze gene regulatory networks, financial
networks, or even artificial neural networks in online settings.

Appendices

7.A Notations

Before proceeding to the proof, in the following we introduce some important notations
together with their definitions.

For any positive T , we define G(g) as

G(g) =
n

t 2 {N +1, . . . ,T}
��� b s[ j] = b t [ j],8 j 2 [N],8s s.t. t� J(g)< s t

o
, (7.17)

where

J(g) =
log((1� g)x (s+1) logmg

N)

logg
. (7.18)

We define the index set for a decision vector x 2 X by I(x) = {i 2 [N] | x[i] 6= 0}.

For each base arm i at time t, we define Ct [i] = 2
r

x (s+1) logmg
t

Mg,D
t [i]

. At each time t, we

collect the computed values of b̂ t [i] and Ct [i] for all base arms i 2 [N] in vectors b̂ t and
Ct , respectively. Therefore, based on the definition of UCB indices in (7.13), we have
Et = b̂ t +Ct . For ease of presentation, in the sequel, we use the following equivalence
1>(I� Ât�1)�1diag(Et�1)xt = 1>(I� Ât�1)�1diag(xt)Et�1. At each time t, we define
the selection index for a decision vector x 2 X as It(x) = 1>(I� Ât�1)�1diag(x)Et�1.
To simplify the notation, sometimes we drop the time index t in Mg,D

t [i] and use Mg,D[i]
to denote the discounted number of times that the base arm i has been observed up to the
current time instance minus delay.
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For each base arm i 2 [N], we define a counter Ti(t) which is updated as follows. At
each time t that a suboptimal decision vector xt is selected, we have at least one base
arm i 2 [N] such that i = argmin

i2I(xt)
Mg,D

t�1[i]. In this case, if the base arm i is unique, we

increment Ti(t) by 1. If there is more than one such base arm, we break the tie and
select one of them arbitrarily to increment its corresponding counter. Finally, by i(t),
we denote the indicator function which is equal to 1 if Ti(t) is increased by 1 at time t,
and is 0 otherwise.

7.B Proof of Theorem 7

Proof. We rewrite the expected regret as

RT (X ) =
T

Â
t=1

[µt(x⇤t )�µt(xt)] = E
"

T

Â
t=1

Dt(xt) {xt 6= x⇤t }

#
(⇤)
 DmaxE

"
T

Â
t=1

{xt 6= x⇤t }

#
,

(7.19)

where (⇤) follows from the definition of Dmax.
Based on the definition of the counters Ti(t) for the base arms i 2 [N], at each time t

that a suboptimal decision vector is selected, only one of such counters is incremented
by 1. Thus, we have [117]

E
"

T

Â
t=1

{xt 6= x⇤t }

#
= E

"
N

Â
i=1

Ti(t)

#
=

N

Â
i=1

E [Ti(t)] . (7.20)

Therefore, we observe that

RT (X ) DmaxE
"

T

Â
t=1

{xt 6= x⇤t }

#
= Dmax

N

Â
i=1

E[Ti(T )]. (7.21)

Recall that i(t) is the indicator function which is equal to 1 if Ti(t) is increased by 1
at time t, and is 0 otherwise. Hence,

Ti(T ) =
T

Â
t=N+1

{ i(t) = 1} . (7.22)

If i(t) = 1, it means that a suboptimal decision vector xt is selected at time t. In this
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case, Mg,D
t�1[i] = min

n
Mg,D

t�1[ j]| j 2 I(xt)
o

. Let `=
⇠

16x (s+1) logmg
T

(
Dmin

swmax )
2

⇡
. Then,

Ti(T ) =
T

Â
t=N+1

{ i(t) = 1}

 1+
T

Â
t=N+1

n
i(t) = 1 & Mg,D

t�1[i]< `
o
+

T

Â
t=N+1

n
i(t) = 1 & Mg,D

t�1[i]� `
o

(⇤)
 1+NdT (1� g)e(`g�

1
1�g +D)+ J(g)°T + Â

t2G(g)

n
It(x⇤t ) It(xt) & Mg,D

t�1[i]� `
o

= 1+ J(g)°T +NdT (1� g)e(`g�
1

1�g +D)

+ Â
t2G(g)

n
1>(I� Ât�1)

�1diag(x⇤t )Et�1  1>(I� Ât�1)
�1diag(xt)Et�1 & Mg,D

t�1[i]� `
o
,

(7.23)

where (⇤) follows from Lemma 10 by choosing W = 1
1�g .

Note that, when Ti(t) is incremented by 1 at time t and Mg,D
t�1[i] � `, the following

holds.

`Mg,D
t�1[i]Mg,D

t�1[ j], 8 j 2 I(xt). (7.24)

Let v>t = 1>(I� Ât�1)�1diag(x⇤t ) and u>t = 1>(I� Ât�1)�1diag(xt). We order the ele-
ments in sets I(x⇤t ) and I(xt) arbitrarily. In the following, our results are independent of
the way we order these sets. Let vk, k = 1, . . . , |I(x⇤t )|  s, represent the kth element in
I(x⇤t ) and uk, k = 1, . . . , |I(xt)| s, represent the kth element in I(xt). Hence, we have

Ti(T ) 1+ J(g)°T +NdT (1� g)e(`g�
1

1�g +D)

+ Â
t2G(g)

(
min

0<Mg,D[v1],...,Mg,D[v
|I(x⇤t )|

]t

|I(x⇤t )|

Â
j=1

v>t [v j](b̂ t�1[v j]+Ct�1[v j])

max
`Mg,D[u1],...,Mg,D[u|I(xt )|]t

|I(xt)|

Â
j=1

u>t [u j](b̂ t�1[u j]+Ct�1[u j])

)

 1+ J(g)°T +NdT (1� g)e(`g�
1

1�g +D)

+ Â
t2G(g)

t

Â
Mg,D[v1]=1

· · ·

t

Â
Mg,D[v

|I(x⇤t )|
]=1

t

Â
Mg,D[u1]=`

· · ·

t

Â
Mg,D[u|I(xt )|]=`
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(
|I(x⇤t )|

Â
j=1

v>t [v j](b̂ t�1[v j]+Ct�1[v j])
|I(xt)|

Â
j=1

u>t [u j](b̂ t�1[u j]+Ct�1[u j])

)
.

(7.25)

We define the Event P as

|I(x⇤t )|

Â
j=1

v>t [v j](b̂ t�1[v j]+Ct�1[v j])
|I(xt)|

Â
j=1

u>t [u j](b̂ t�1[u j]+Ct�1[u j]). (7.26)

Now, for t 2 G(g), if the Event P in (7.26) is true, it implies that at least one of the
following events must be true.

1>(I� Ât�1)
�1diag(x⇤t )(b̂ t�1 +Ct�1) 1>(I�A)�1diag(x⇤t )b t�1, (7.27)

1>(I� Ât�1)
�1diag(xt)(b̂ t�1�Ct�1)� 1>(I�A)�1diag(xt)b t�1, (7.28)

1>(I�A)�1diag(x⇤t )b t�1 < 1>(I�A)�1diag(xt)b t�1 +21>(I� Ât�1)
�1diag(xt)Ct�1.

(7.29)

First, we consider (7.27). Based on our problem formulation and proposed solution,
we know that matrices A and Ât�1 are nilpotent with index N. Thus, AN = 0N⇥N and
ÂN

t�1 = 0N⇥N . Hence, we can write the Taylor’s series of (I�A)�1 and (I� Ât�1)�1 as

(I�A)�1 = I+A+A2 + · · ·+AN�1, (7.30)

and

(I� Ât�1)
�1 = I+ Ât�1 + Â2

t�1 + · · ·+ ÂN�1
t�1 , (7.31)

respectively. Substituting (7.30) and (7.31) in (7.27) results in

1>(I+ Ât�1 + · · ·+ ÂN�1
t�1 )diag(x⇤t )(b̂ t�1+Ct�1)

 1>(I+A+ · · ·+AN�1)diag(x⇤t )b t�1.

(7.32)

For j = 1, . . .N, we find the upper bound for

P
h
1>Â j�1

t�1 diag(x⇤t )(b̂ t�1 +Ct�1) 1>A j�1diag(x⇤t )b t�1

i
. (7.33)
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We consider the following Event E .

1>Â j�1
t�1 diag(x⇤t )(b̂ t�1+Ct�1)+1>Â j�1

t�1 diag(x⇤t )b t�1

 1>Â j�1
t�1 diag(x⇤t )b t�1 +1>A j�1diag(x⇤t )b t�1. (7.34)

If E is true, then at least one of the following must hold.

1>Â j�1
t�1 diag(x⇤t )(b̂ t�1 +Ct�1) 1>Â j�1

t�1 diag(x⇤t )b t�1| {z }
I

, (7.35)

1>Â j�1
t�1 diag(x⇤t )b t�1  1>A j�1diag(x⇤t )b t�1| {z }

II

. (7.36)

Therefore, we have

P [E ] P [I]+P [II] . (7.37)

Let y>t = 1>Â j�1
t�1 diag(x⇤t ). If Event I is true, then at least one of the following must

hold.

y>t [v1](b̂ t�1[v1]+Ct�1[v1]) y>t [v1]b t�1[v1], (7.38)

y>t [v2](b̂ t�1[v2]+Ct�1[v2]) y>t [v2]b t�1[v2], (7.39)
...

y>t [v|I(x⇤t )|](b̂ t�1[v|I(x⇤t )|]+Ct�1[v|I(x⇤t )|]) y>t [v|I(x⇤t )|]b t�1[v|I(x⇤t )|]. (7.40)

For k = 1, . . . , |I(x⇤t )|, we have

P
h
y>t [vk](b̂ t�1[vk]+Ct�1[vk]) y>t [vk]b t�1[vk]

i

(a)
= P

h
(b̂ t�1[vk]+Ct�1[vk]) b t�1[vk]

i

(b)


⇠
logmg

t
log(1+h)

⇡
e
�

✓
2x (s+1) log(mg

t )

✓
1�h2

16

◆◆

(c)
=

⇠
logmg

t
log(1+h)

⇡
(mg

t )
�2x (s+1)

✓
1�h2

16

◆

, (7.41)

where (a) holds since y>t [vk] � 0, 8k and (b) follows from a small modification of the
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proof in [25] for all h > 0. Hence, for Event I, we conclude that

P [I] |I(x⇤t )|
⇠

logmg
t

log(1+h)

⇡
(mg

t )
�2x (s+1)

✓
1�h2

16

◆

 s
⇠

logmg
t

log(1+h)

⇡
(mg

t )
�2x (s+1)

✓
1�h2

16

◆

. (7.42)

Now, we consider Event II. Based on Theorem 1 in [107], we know that we can identify
the adjacency matrix A uniquely by N samples gathered during the initialization period
of our proposed algorithm. This means that with probability 1, after the time point
q = N +D+1 < •, Ât�1 = A holds for all t > q . Therefore, for t > N +D+1, Event
II holds with probability 1.

Combining the aforementioned results with (7.37), we find the upper bound for (7.33)
as

P
h
1>Â j�1

t�1 diag(x⇤t )(b̂ t�1 +Ct�1) 1>A j�1diag(x⇤t )b t�1

i

 s
⇠

logmg
t

log(1+h)

⇡
(mg

t )
�2x (s+1)

✓
1�h2

16

◆

,

(7.43)

for each j = 1, . . . ,N. Since Ât�1 = A, 8t > N+D+1 and the length of the longest path
in the graph is p, we can rewrite (7.30) and (7.31) as [118]

(I�A)�1 = I+A+A2 + · · ·+Ap, (7.44)

and

(I� Ât�1)
�1 = I+ Ât�1 + Â2

t�1 + · · ·+ Âp
t�1, (7.45)

respectively. Therefore, by using (7.44) and (7.45) in place of (7.30) and (7.31), and
based on (7.43), the following holds for (7.27).

P
h
1>(I� Ât�1)

�1diag(x⇤t )(b̂ t�1 +Ct�1) 1>(I�A)�1diag(x⇤t )b t�1

i

 sp
⇠

logmg
t

log(1+h)

⇡p

(mg
t )
�2px (s+1)

✓
1�h2

16

◆

. (7.46)
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For (7.28), we have similar results as follows.

P
h
1>(I� Ât�1)

�1diag(xt)(b̂ t�1�Ct�1)� 1>(I�A)�1diag(xt)b t�1

i

 sp
⇠

logmg
t

log(1+h)

⇡p

(mg
t )
�2px (s+1)

✓
1�h2

16

◆

. (7.47)

Finally, we consider (7.29). We have

1>(I�A)�1diag(x⇤t )b t�1�1>(I�A)�1diag(xt)b t�1�21>(I� Ât�1)
�1diag(xt)Ct�1

(a)
= 1>(I�A)�1diag(x⇤t )b t�1�1>(I�A)�1diag(xt)b t�1�2 Â

j: j2I(xt)

w>t [ j]Ct�1[ j]

(b)
= 1>(I�A)�1diag(x⇤t )b t�1�1>(I�A)�1diag(xt)b t�1

�4 Â
j: j2I(xt)

w>t [ j]

vuutx (s+1) logmg
t�1

Mg,D
t�1[ j]

(c)
� 1>(I�A)�1diag(x⇤t )b t�1�1>(I�A)�1diag(xt)b t�1�4swmax

s
x (s+1) logmg

T
`

(d)
� 1>(I�A)�1diag(x⇤t )b t�1�1>(I�A)�1diag(xt)b t�1�Dmin

(e)
� 1>(I�A)�1diag(x⇤t )b t�1�1>(I�A)�1diag(xt)b t�1�Dt�1(xt) = 0, (7.48)

where in (a) and (c) we used the definition of w>t and wmax, respectively. Moreover, in
(b) and (d), we substituted the value for Ct�1[ j] and l, respectively. (e) follows from the
definition of Dmin. Hence, we conclude that (7.29) never happens.

Since x > 1
2(s+1) , we can choose h = 4

q
1� 1

2x (s+1) . By using (7.46), (7.47), and
(7.48), we achieve the following.
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where (⇤) follows from Mg,D
t [i]  mg

t 
l

1
1�g

m
, 8i 2 [N], 8t 2 [T ]. We can control the

sum in the last term as follows. By choosing k = (1� g)�1, we have
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Hence, the expected regret is upper bounded as

RT (X ) Dmax
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i=1

E[Ti(T )]
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(7.51)

⌅

7.C Supplementary Result

We use the following lemma in the proof of Theorem 7.

Lemma 10. For any i 2 {1,2, . . . ,N} and any integers W,D > 0, let Mt�W :t�D[i] =

Ât�D
t=t�W+1 { i(t) = 1}, where i(t) is the indicator function defined above. Then, for
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any `> 0,

T

Â
t=N+1

n
i(t) = 1 & Mg,D

t�1[i]< `
o
 Nd

T
W
e(`g�W +D). (7.52)

Proof. First, we prove that

T

Â
t=N+1

{ i(t) = 1 & Mt�W :t�D[i]< `} Nd
T
W
e(`+D). (7.53)

We have

T

Â
t=N+1

{ i(t) = 1 & Mt�W :t�D[i]< `}
dT/We

Â
t=1

tW

Â
t=(t�1)W+1

{ i(t) & Mt�W :t�D[i]< `} .

(7.54)

For any t 2 {1, . . . ,dT/We}, either ÂtW
t=(t�1)W+1 { i(t) = 1 & Mt�W :t�D[i]< `} = 0,

or there exists t 2 {(t � 1)W + 1, . . . ,tW} such that i(t) = 1 and Mt�W :t�D[i] < `. In
such case, let tt = max{t 2 {(t � 1)W + 1, . . . ,tW} | i(t) = 1 & Mt�W :t�D[i] < `}.
Therefore,

tW

Â
t=(t�1)W+1

{ i(t) = 1 & Mt�W :t�D[i]< `}

=
tt

Â
t=(t�1)W+1

{ i(t) = 1 & Mt�W :t�D[i]< `}



tt

Â
t=tt�W+1

{ i(t) = 1 & Mt�W :t�D[i]< `}



tt

Â
t=tt�W+1

{ i(t) = 1}Mtt�W :tt�D[i]+D < `+D. (7.55)

Therefore, we prove (7.53). We conclude the proof of lemma using the following obser-
vation.
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i(t) = 1 & Mg,D
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T

Â
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�
i(t) = 1 & Mt�W :t�D[i]< `g�W .

(7.56)
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8 Conclusion

This thesis focused on decision-making problems in various settings and proposed sev-
eral novel algorithms. In addition, we analyzed the developed policies, discussed their
efficiency in terms of computational complexity and regret performance, and compared
them with state-of-the-art algorithms using synthetic and real-world datasets. In this
chapter, we summarize the results and conclude the thesis. In section 8.1, we summarize
the contributions and results of the main Chapters 3-7. Section 8.2 ends the thesis by
listing several future research directions and remaining challenges.

8.1 Summary

Chapter 3:

The main motive behind this chapter was to design an efficient and distributed framework
for the computation offloading of users’ mobile devices to edge servers in a dynamic and
inhomogeneous network [51], [52]. To this end, we modeled and solved the computation
offloading problem as a bandit game, where an autonomous mobile device sequentially
selects the most appropriate server, among a set of available servers, in terms of latency
and energy consumption. We defined the reward and cost in terms of the required time
and energy in each offloading round (decision-making round), respectively, and derived
the corresponding probability distributions. In our bandit model, upon selecting an arm
at each round of decision-making, the agent pays a random cost and receives some ran-
dom reward. Thus, our model extends the basic MAB problems with no cost of pulling
arms [12, 25, 13]. In addition, the random processes of reward and cost are piece-wise
stationary. Hence, our formulation generalizes the models considered in [36, 37, 35, 34].
In our problem, the agent can continue pulling the arms as long as its cumulative cost
remains below a given budget.

In our formulated problem, we defined the expected cumulative regret based on an
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oracle that selects the arm with the highest mean reward per mean cost at each round.
The objective is to minimize the expected cumulative regret before the accumulated cost
exceeds the budget. To achieve this objective, we proposed a UCB-based algorithm,
BPRPC-SWUCB, that uses a sliding window to estimate the expected value of non-
stationary random variables. We analyzed the BPRPC-SWUCB algorithm theoretically
by proving a regret bound. More specifically, we showed that when the ratio of mini-
mum value over maximum value for the cost tends to zero, with the proper choice of the
window length and assumption on the growth rate of the number of change points, the
BPRPC-SWUCB algorithm achieves a sublinear regret concerning the given budget. We
used the theoretical results in our numerical experiments to simulate the proposed com-
putation offloading problem and applied the BPRPPC-SWUCB algorithm to solve the
problem. The results showed the superiority of our proposed policy compared to several
MAB benchmarks.

Our proposed solution is efficient in the sense that it does not require large storage
space and does not cause excessive computational complexity. In addition, our model
provides a distributed framework for the server selection problem. Thus, it extends state-
of-the-art works on computation offloading problems, which are mostly centralized. The
proposed model and solution can be used in several real-world problems in dynamic
environments. Examples include vehicular edge computing, mobile edge computing,
online advertising and recommendation, and medical treatment.

Chapter 4:

This chapter integrated information acquisition decisions into an online learning frame-
work. The primary motivation behind this chapter was to design recommender systems
that can deal with costly information acquisition. We modeled the problem as a sequen-
tial decision-making problem and introduced the Contextual MAB with Costly Observa-
tions (CMAB-CO) framework. In our formulation, the agent can observe each feature’s
state in exchange for a fixed and known cost. Based on the obtained information, the
agent takes an action and receives a reward from the environment. Therefore, the agent
faces a trade-off between minimizing the cost of information acquisition and possibly
improving the decision-making process using the obtained information. The CMAB-CO
problem extended the traditional contextual bandit problem where features’ states are
available for free [10]. Our work is the first that develops an online learning framework
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with costly features in a partial feedback setting. The online probing problem [39] is the
closest work to ours that provides an online learning framework with costly information
acquisition. However, this work considers full feedback in an adversarial setup.

We considered two observation strategies where state observations are made simul-
taneously and sequentially, and designed appropriate algorithms for each case. Specifi-
cally, by building upon the UCRL2 algorithm proposed in [80], we presented the policies
Sim-OOS and Seq-OOS that make simultaneous and sequential observations, respec-
tively. We proved that both algorithms achieve a sublinear regret in time. In addition,
we discussed the runtime efficiency of the proposed policies under several assumptions
on the features and reward function, and mentioned real-world scenarios where we can
implement the algorithms efficiently.

We evaluated the performance of developed algorithms using a medical dataset that
includes patients with breast cancer [95]. The features include various test results and
information about a given patient. We applied our algorithms to recommend tests and
treatments to patients while considering various information acquisition costs for differ-
ent features. In particular, we considered contexts with the same or different costs and
compared the policies with several context-aware and context-agnostic algorithms. The
results showed the proposed algorithms’ superiority and ability to learn the optimal ac-
tion and observations. Although we considered a medical decision support system in our
numerical analysis, the developed framework is applicable in several contexts, such as
online advertising problems, edge computing, smart transportation, finance, and cyber-
security.

Chapter 5:

In this chapter, we extended the contextual bandit problem with simultaneous observa-
tions proposed in the previous chapter by considering random reward and cost variables
whose generating processes are non-stationary. We introduced the Non-stationary Costly
Contextual bandit (NCC bandit) model. In our formulation, the agent aims to maximize
the long-term average gain, defined as the difference between the accumulated rewards
and the paid costs on average. Due to environmental changes, the agent has to constantly
adapt her strategy to learn the optimal action and observation set over time. To this end,
we developed a decision-making policy, NCC-UCRL2, that alleviates the adverse effects
of costly features by observing only a subset of features. In addition, NCC-UCRL2 uses
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a sliding window of recent observations to estimate the expected values of non-stationary
rewards and costs. Our proposed algorithm can be thought of as a variant of the UCRL2
algorithm [80]. We analyzed the regret performance of the NCC-UCRL2 algorithm in
stationary and non-stationary environments, and proved sublinear regret bounds concern-
ing time.

We validated the proposed solution on the Nursery dataset [99] that includes appli-
cations for nursery schools and their target ranks that prioritize the applications. The
features represent various aspects of the socioeconomic status of the family. We pre-
processed the data to include non-stationary rewards and costs and applied our method to
recommend priority ranks for given nursery school applications. The results demonstrate
the superiority of our algorithm compared to several contextual and context-agnostic
benchmarks, including the Sim-OOS policy [2] proposed in the previous chapter. We
observed that the PS-LinUCB algorithm [14] accumulated almost the same total reward
as our algorithm. However, we showed that the gain of PS-LinUCB is lower than our al-
gorithm by 20% due to higher paid costs as it observes all the features’ states at all times.
This result shows the importance of learning the optimal observations in a non-stationary
environment with costly features.

Chapter 6:

In this chapter, we developed a combinatorial semi-bandit framework where the base
arms’ rewards are causally related. We modeled the causal relations by a directed graph
in a stationary Structural Equation Model (SEM). In our problem, the agent’s goal is to
maximize the long-term average payoff, defined as a linear function of the base arms’
rewards and dependent on the network topology. We designed a decision-making policy,
SEM-UCB, that consists of two learning components: First, it performs an online graph
learning to determine the causal relations. Second, it calculates a UCB index on the
expected instantaneous reward of each base arm. It then uses the obtained knowledge of
the causal relationships and the developed UCB indices to select a super arm. The SEM-
UCB algorithm can deal with non-identically distributed feedback variables. Such ability
is an improvement over the previous methods, such as [49] and [47], that are unable to
cope with our problem formulation, as they are specially designed to work with i.i.d.
random variables.

The SEM-UCB algorithm uses the learned graph to optimize decision-making and
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speed up learning. Our proposed solution does not require any prior knowledge of the
structural dependencies. Nevertheless, in our problem, the agent competes with an oracle
that knows the mean instantaneous rewards and the ground truth adjacency matrix. We
proved that SEM-UCB achieves a sublinear regret bound in time.

In our numerical experiment with synthetic data, we compared the trend of time-
averaged expected regret of our policy with several combinatorial semi-bandit algorithms
that do not learn the causal structure of the problem. The results showed the superiority
of our proposed policy over the baselines. We further evaluated the SEM-UCB algorithm
on the Covid-19 outbreak dataset that includes the daily new infected cases in different
regions within Italy 1. We pre-processed the data by inferring the distribution of region-
specific daily cases and applied our method to analyze the development of Covid-19
within the country. We observed that our proposed algorithm efficiently predicts the
data for each region using the estimated graph, which helps the agent detect the regions
that contribute the most to the spread of Covid-19 in the country. Besides the Covid-19
problem, our method can be applied to analyze gene regulatory networks and financial
markets.

Chapter 7:

In this chapter, we generalized the proposed framework in the previous chapter by con-
sidering delayed rewards whose random processes are non-stationary. We formulated the
non-stationary delayed combinatorial semi-bandit problem with causally related rewards
(NDC bandit). In our framework, we modeled the causal relations and defined the payoff
as in the previous chapter by taking advantage of a directed graph in a structural equation
model. However, to maximize the payoff in the long run, our proposed decision-making
strategy, NDC-SEM, estimates the adjacency matrix from delayed feedback and adapts
to changes in the environment by using a discount factor when estimating the expected
value of base arms’ instantaneous rewards.

We analyzed the algorithm’s regret performance by proving a regret bound. We per-
formed numerical analysis using synthetic data by considering various delay lengths. The
experimental results showed that the NDC-SEM algorithm outperforms several combi-
natorial semi-bandit algorithms, including the SEM-UCB policy [3] proposed in the pre-
vious chapter, while mitigating the adverse effects of drifts in the environment. Like

1https://github.com/pcm-dpc/COVID-19
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the previous chapter, we employed our proposed framework to detect the regions that
contribute the most to the spread of Covid-19 within Italy. However, compared to the
experiments in the previous chapter, we considered a more realistic scenario where the
recorded daily cases of infections are reported with a delay, and the average number of
region-specific daily cases of the regions changes over time. This way, we considered
several important characteristics of the Covid-19 spread problem in our model and solu-
tion. The results showed that our method can learn the network structure from delayed
feedback while adapting to environmental changes. Hence, it is a more reliable solution
than SEM-UCB in the presence of delay and non-stationarity.

The Covid-19 dataset used in our experiments contained only the reported total daily
new cases for a limited period. Hence, care shall be exercised in interpreting the results.
However, by providing more relevant data, our proposed framework can be helpful for
a more accurate analysis of the Covid-19 development. Compared to the method pro-
posed in the previous chapter, this chapter provides a generalized approach that helps to
deal with a broader range of real-world problems, where involved random variables are
delayed, non-stationary, and structurally dependent.

8.2 Future Work

As summarized in the previous section, this thesis addressed a number of challenges in
online decision-making problems by proposing several bandit-based algorithms. In the
following, we describe some remaining challenges and highlight future research direc-
tions.

• The wireless system model proposed in Chapter 3 describes a network where nodes
have fixed positions. A potential direction for future research is to consider the
movements of the nodes to extend the proposed system model in this chapter.

• The algorithms proposed in Chapters 4 and 5 learn the optimal state observations
by searching over all the subsets of features. This approach is not computationally
efficient in large-scale problems with high-dimensional feature vectors. There-
fore, future research can be dedicated to designing efficient algorithms for online
learning problems with costly features.

• Another future work is to solve the formulated CMAB-CO problem in Chapter 4
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by leveraging Neural Networks (NNs) in both simultaneous- and sequential infor-
mation acquisition settings. So far, some papers have studied various MAB prob-
lems using such methods, including deep reinforcement learning [125], imitation
learning [126], recurrent neural networks [127], and autoencoders [91]. However,
the MAB problem with costly information acquisition has not been investigated
jointly with NNs.

• The next line of future research would be to extend the formulated bandit problems
in this thesis to deal with a wider range of real-world problems. We mention a few
possibilities in the following. First, the developed frameworks in Chapters 6 and 7
can be extended by considering a causal graph that undergoes abrupt changes over
time. Note that we already extended the proposed framework in Chapter 6 to deal
with piece-wise stationary environments in Chapter 7. However, we only consid-
ered non-stationary feedback in the extended framework developed in Chapter 7.
Second, the future work can consider the contextual version of the bandit problems
developed in Chapters 6 and 7, where the rewards of each base arm depend on a
given context vector. Third, confounding variables can be considered to extend the
frameworks developed in Chapters 6 and 7. Finally, the NCC bandit framework
proposed in Chapter 5 can be extended by considering sequential state observa-
tions. Note that the NCC bandit formulation already extends the CMAB-CO prob-
lem (Chapter 4) by considering non-stationary environments. However, the NCC
bandit model includes only the simultaneous state observations.
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as a sequential decision-making problem. Machine Learning, 109(8):1587–1615,
2020.

[41] Hajin Shim, Sung Ju Hwang, and Eunho Yang. Joint active feature acquisition
and classification with variable-size set encoding. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18,
page 1375–1385, Red Hook, NY, USA, 2018. Curran Associates Inc.

[42] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: Gen-
eral framework and applications. In Sanjoy Dasgupta and David McAllester, edi-
tors, Proceedings of the 30th International Conference on Machine Learning, vol-
ume 28 of Proceedings of Machine Learning Research, pages 151–159, Atlanta,
Georgia, USA, 17–19 Jun 2013. PMLR.

195



Bibliography

[43] Wei Chen, Liwei Wang, Haoyu Zhao, and Kai Zheng. Combinatorial semi-bandit
in the non-stationary environment. CoRR, abs/2002.03580, 2020.

[44] Shaojie Tang, Yaqin Zhou, Kai Han, Zhao Zhang, Jing Yuan, and Weili Wu. Net-
worked stochastic multi-armed bandits with combinatorial strategies. In 2017
IEEE 37th International Conference on Distributed Computing Systems (ICDCS),
pages 786–793. IEEE, 2017.

[45] Tong Yu, Branislav Kveton, Zheng Wen, Ruiyi Zhang, and Ole J Mengshoel.
Graphical models meet bandits: A variational thompson sampling approach. In In-
ternational Conference on Machine Learning, pages 10902–10912. PMLR, 2020.

[46] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multi-armed bandit problem. Machine learning, 47(2-3):235–256, 2002.

[47] Alihan Huyuk and Cem Tekin. Analysis of thompson sampling for combinato-
rial multi-armed bandit with probabilistically triggered arms. In The 22nd Inter-
national Conference on Artificial Intelligence and Statistics, pages 1322–1330.
PMLR, 2019.

[48] Wei Chen, Wei Hu, Fu Li, Jian Li, Yu Liu, and Pinyan Lu. Combinatorial multi-
armed bandit with general reward functions. In Advances in Neural Information
Processing Systems, pages 1659–1667, 2016.

[49] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial multi-
armed bandit and its extension to probabilistically triggered arms. The Journal of
Machine Learning Research, 17(1):1746–1778, 2016.
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