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Zusammenfassung

Quantensimulatoren erweisen sich insbesondere dann als wertvolles Instrument, wenn
konventionelle Computer und gängige Rechenmethoden bei der Modellierung von kom-
plexen, stark korrelierten Vielteilchensystemen an ihre Kapazitätsgrenzen geraten. Ihre
Stärke liegt in ihrer ressourcenschonenden, analogen Umsetzung des zu untersuchenden
Hamilton-Operators. Von den zahlreich etablierten Plattformen zur Entwicklung funk-
tionaler Quantensimulatoren, erweisen sich jene als besonders vielversprechend, welche
einzelne Atome in flexiblen Anordnungen von optischen Pinzetten halten und positionieren.
Die Wechselwirkung zwischen den Atomen kann kontrolliert eingestellt werden durch die
Anregung der Atome zu hochenergetischen sogenannten Rydberg-Zuständen.

In unserer experimentellen Plattform präparieren wir einzelne Kaliumatome in optischen
Pinzetten und regen diese zu Rydberg-Zuständen an. Die Kopplung an diese Zustände
erfolgt entweder durch direkte, resonante Anregung oder durch das sogenannte ‘Rydberg-
Dressing’, bei welchem einem Grundzustandsatom ein einstellbarer Anteil von Rydberg-
Atom-Eigenschaften verliehen wird. Um Rydberg-Dressing in unserem experimentellen Auf-
bau realisieren zu können, kühlen wir zunächst die Atome mittels Raman-Seitenbandkühlung
nahe ihres Bewegungsgrundzustands. Dieser Schritt ist essenziell, da ansonsten thermische
Effekte jeden weiteren experimentellen Schritt dominieren würden.

Für die Anregung der Grundzustandsatome zu Rydberg-Zuständen nutzen wir einen Einzel-
photonenübergang, für das ein Lasersystem konstruiert wurde, welches bis zu 1W ultravio-
lettes Licht bei 286 nm erzeugt. Diese Umsetzung ermöglicht zunächst eine mikroskopische
Untersuchung von kaskadenartigen Verlustphänomenen, die wir während der Implemen-
tierung des Rydberg-Dressings beobachteten. Diese Verluste führen wir auf Kontaminationen
durch Atome in verschiedenen Rydbergzuständen zurück, die infolge von Schwarzkörper-
strahlung induzierten Übergänge auftreten. Solche Kontaminationen können Dipol-Dipol-
Wechselwirkungen auslösen, was zu Resonanzen von Rydberg-Paarzuständen führen kann.
Dies fördert eine beschleunigte Anregung und verkürzt die Lebensdauer des Rydberg-dressed
Zustands, was unsere experimentellen Daten untermauert.

Basierend auf diesen Erkenntnissen und Herausforderungen, richtet sich danach unser
Haupt-augenmerk auf die Umsetzung von Ising- und XYZ-Spin Modellen. Das zugrun-
deliegende effektive Spin-1/2-System wird dabei innerhalb der Hyperfeinstruktur-Grund-
zustände kodiert. Dies ermöglicht es uns, die Wechselwirkungen durch die nicht-resonante
Kopplung an Rydberg-Zustände gezielt einzustellen und durch eine geschickte Wahl von
Laserparametern die unterschiedlichen Spin-Achsen zu kontrollieren.

Zusammenfassend zeigt die vorliegende Arbeit die erfolgreiche Realisierung von Rydberg-
Dressing-Experimenten mit einzelnen Kaliumatomen in optischen Pinzetten. Wir analysierten
die grundlegenden Mechanismen im Rydberg-Dressing-Regime und demonstrierten, wie
Spin-Wechselwirkungen gezielt eingestellt werden können. Unsere Ergebnisse unterstreichen
das erhebliche Potenzial des Rydberg-Dressing-Verfahrens um eine flexible Realisierung von
Hamilton-Operatoren in analogen Quantensimulatoren zu ermöglichen.
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Abstract

Quantum simulation is a valuable tool for investigating complex quantum systems. It bridges
theory and experiment, especially when standard computational methods fail to handle
the complexities of strongly correlated many-body scenarios. The effectiveness of quantum
simulators arises from their hardware-efficient analog representation of the Hamiltonian
under study. Among the emerging platforms, simulators employing Rydberg atoms in optical
tweezer arrays are particularly promising.

Within this thesis, we detail an experimental platform using single potassium atoms confined
within optical tweezer arrays. Interactions between these atoms are induced via excitation to
Rydberg states, characterized by high principal quantum numbers. The coupling to Rydberg
states can be achieved through direct, resonant excitation or off-resonant Rydberg dressing,
where the ground state atom is admixed with a fraction of the Rydberg atom character. In
our approach, we trap and cool individual atoms near their motional ground state using
Raman sideband cooling. This technique represents an important enhancement in the
experiment, thus, making Rydberg dressing feasible, which would otherwise be constrained
by thermal broadening.

We directly excite the ground state atoms to Rydberg states using a single-photon transition,
performed by a laser system that generates up to 1W of ultra-violet light at 286 nm. This
setup facilitates a microscopic study of black-body radiation-induced contaminations of
Rydberg states, observed as an avalanche loss process within the atom array. The underlying
mechanism for these losses is the dipole-dipole interaction shifts originated by the impu-
rities. These shifts render a previously detuned laser resonant with a Rydberg pair state,
consequently reducing the experimentally observed dressed state lifetime. Our findings
confirm that the interactions catalyze these accelerated excitations.

Furthermore, we can tailor interactions for both Ising-type and XY Z-type spin models via
off-resonant coupling to Rydberg states when encoding the effective spin-1/2 system within
the electronic ground states. This configuration enables us to design spin-spin couplings
across the different spin directions determined by the chosen laser parameters.

To conclude, our work successfully demonstrates Rydberg dressing experiments within
optical tweezer arrays of single potassium atoms. We have studied the underlying processes
in the Rydberg dressing regime and validated our ability to tune spin interactions within the
array through Rydberg dressing. Overall, our findings underscore the potential of Rydberg
dressing in paving the way for advanced Hamiltonian design in analog quantum simulators.



Contents v

Contents

1 Introduction 1

2 Properties of Rydberg atoms 4
2.1 The anatomy of Rydberg atoms: structure and energy levels . . . . . . . . . 4
2.2 Rydberg atoms’ practical aspects: transitions and couplings . . . . . . . . . . 7
2.3 The extended lifetime of Rydberg atoms . . . . . . . . . . . . . . . . . . . . 9

3 Preparation of single 39K atoms in optical tweezer arrays 11
3.1 Loading atoms in optical tweezers . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Pulsed fluorescence imaging to prevent light shifts . . . . . . . . . . . . . . . 15
3.3 Experimental modifications for loading, cooling and imaging single atoms . 16
3.4 Cooling single atoms in optical tweezers to their motional ground-states . . 21

3.4.1 Optical pumping for spin state preparation . . . . . . . . . . . . . . . 21
3.4.2 Resolved Raman sideband cooling in tweezer arrays . . . . . . . . . 23

3.5 Ground-state spin control using Raman transitions . . . . . . . . . . . . . . 28
3.5.1 Ground state Raman laser setup and characterization . . . . . . . . . 29
3.5.2 Calibrating magnetic offset fields using ground state Raman spec-

troscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Implementing a Ramsey interferometric sequence . . . . . . . . . . . 31

4 From theory to practice – Probing Rydberg interactions and dressing 33
4.1 Dynamics of interacting Rydberg atoms . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Resonant dipole-dipole transitions . . . . . . . . . . . . . . . . . . . 37
4.1.2 Off-resonant dipole-dipole interactions . . . . . . . . . . . . . . . . . 38
4.1.3 Quantum technology applications of Rydberg interactions . . . . . . 40

4.2 Atoms with a Rydberg dress . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.1 Rydberg dressed interaction . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.2 Lifetime of Rydberg dressed atoms . . . . . . . . . . . . . . . . . . . 45
4.2.3 Advantages and limitations of Rydberg dressing . . . . . . . . . . . . 46

4.3 Single-photon Rydberg excitation setup . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Single photon excitation laser setup . . . . . . . . . . . . . . . . . . . 48
4.3.2 Alignment technique and characterization . . . . . . . . . . . . . . . 50
4.3.3 Experience and challenges with ultraviolet optics . . . . . . . . . . . 54

4.4 Experimental lifetime of Rydberg dressed atoms . . . . . . . . . . . . . . . . 57
4.4.1 Strategies for phase noise mitigation . . . . . . . . . . . . . . . . . . 59
4.4.2 Advances in dressed lifetime measurement via cavity filtering . . . . 60



Contents vi

4.4.3 Insights from self-heterodyne measurements . . . . . . . . . . . . . . 63
4.5 Implications of lightshift in Rydberg dressed systems . . . . . . . . . . . . . 67
4.6 Probing dynamics in dressed spin interactions . . . . . . . . . . . . . . . . . 69
4.7 Resolving the effect of black-body induced losses on Rydberg dressing . . . . 74

5 Tailoring spatially tunable spin interactions via two-color Rydberg dressing 82
5.1 Derivation of the interaction Hamiltonian . . . . . . . . . . . . . . . . . . . 82

5.1.1 The diagonal coupling terms for Ising-type interactions . . . . . . . . 86
5.1.2 The off-diagonal terms for flop-flop interactions . . . . . . . . . . . . 90
5.1.3 The off-diagonal terms for flip-flop interactions . . . . . . . . . . . . 91

5.2 Experimental setup and procedure . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.1 Calibration measurements . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Spin coupling measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1 Flop-flop interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2 Combination of flop-flop and flip-flop interactions . . . . . . . . . . . 98

5.4 Discussion of technical limitations . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.1 Decoherence due to excitation laser phase noise . . . . . . . . . . . . 101
5.4.2 Effect of trap depth inhomogeneities . . . . . . . . . . . . . . . . . . 101
5.4.3 Impact of the ground state wavepacket size . . . . . . . . . . . . . . 103
5.4.4 Further experimental improvements . . . . . . . . . . . . . . . . . . 105

5.5 Pioneering interaction programmability . . . . . . . . . . . . . . . . . . . . 106

6 Summary and outlook 108
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A D1 and D2 laser lock configurations 114

B Details on analysis of the interaction detection 116
B.1 Pair interaction parameter space . . . . . . . . . . . . . . . . . . . . . . . . . 116
B.2 Different spin recapture options . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.3 Losses for Rydberg pair states . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.4 Imaging calibration errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Danksagung 122

Bibliography 123



List of Figures vii

List of Figures

2.1 Energy level structure of 39K. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scaling of Rydberg wavefunction and Rydberg state dipole matrix elements. 6
2.3 Rydberg state lifetime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Exemplary experimental sequence. . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Experimental setup of laser beams around the in-vacuum built objective. . . 13
3.3 Trap depth inhomogeneities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Fluorescence images using the chopped imaging method. . . . . . . . . . . . 16
3.5 Simplified new optics setup for D1 and D2 laser. . . . . . . . . . . . . . . . . 17
3.6 Influence of ASE from D1 TAs on imaging background. . . . . . . . . . . . . 19
3.7 Imaging performance and calibration measurements. . . . . . . . . . . . . . 20
3.8 Level diagram and measurements of the state preparation efficiency. . . . . . 22
3.9 Level diagram and spectroscopy measurements of vibrational modes. . . . . 24
3.10 Temperature of the atoms before and after Raman sideband cooling. . . . . 26
3.11 Trap frequencies for single tweezers and a horizontal light sheet. . . . . . . 28
3.12 Ground state Raman spectroscopy and Rabi oscillation measurements. . . . 30
3.13 Calibrating the magnetic compensation fields. . . . . . . . . . . . . . . . . . 31
3.14 Ramsey fringes with and without power line trigger. . . . . . . . . . . . . . . 32

4.1 Interacting Rydberg atoms and coupling channels. . . . . . . . . . . . . . . . 36
4.2 Schematic and interaction calculations for the resonant interaction type. . . 37
4.3 Schematic and interaction coefficient calculations for the off-resonant inter-

action type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Rydberg-dressing potentials for a two-atom system. . . . . . . . . . . . . . . 44
4.5 Single photon Rydberg excitation laser setup. . . . . . . . . . . . . . . . . . 49
4.6 UV optics setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.7 Single photon Rydberg excitation level scheme and calibration measurements. 53
4.8 Examples of contaminations on optics and coating damages. . . . . . . . . . 55
4.9 Long-term drift of the UV SHG output power after setup initialization. . . . . 56
4.10 Experimental dressed lifetime measurements of the 62P3/2 state. . . . . . . . 58
4.11 System upgrade: filter cavity setup. . . . . . . . . . . . . . . . . . . . . . . . 62
4.12 Comparison of experimentally dressed lifetime measurements of the 62P1/2

state for a new seed laser with and without including a filter cavity setup. . 63
4.13 Self-heterodyne setup and phase noise measurement of the home-built ECDL

IR seed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



List of Figures viii

4.14 Self-heterodyne measurements of different IR seed laser setups before and
after the first doubling stage, and before and after the RFA. . . . . . . . . . . 65

4.15 RIN in the IR and green path of the UV setup. . . . . . . . . . . . . . . . . . 66
4.16 Dressed lightshift and oscillation frequency. . . . . . . . . . . . . . . . . . . 68
4.17 Dressed Ising-type interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.18 Rydberg pair potentials and dressed interactions for selected Rydberg states. 73
4.19 Principle of black-body decay induced losses. . . . . . . . . . . . . . . . . . . 75
4.20 Growth of correlation with varying dressing durations. . . . . . . . . . . . . 76
4.21 Dipolar interaction potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.22 Avalanche facilitation processes. . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Step-by-step adiabatic elimination of excited states. . . . . . . . . . . . . . . 87
5.2 Rydberg manifold for different pair distances and angles. . . . . . . . . . . . 91
5.3 Experimental two-color Rydberg dressing settings. . . . . . . . . . . . . . . . 93
5.4 Experimental sequence for spin flip detection. . . . . . . . . . . . . . . . . . 95
5.5 Raman condition for flop-flop interactions. . . . . . . . . . . . . . . . . . . . 96
5.6 Flop-flop interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.7 Flop-flop and flip-flop interactions. . . . . . . . . . . . . . . . . . . . . . . . 99
5.8 Trap depth inhomogeneities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.9 Influence of the out-of-plane position fluctuations. . . . . . . . . . . . . . . . 104
5.10 Tunable XYZ interaction ratios in 1D atom chains. . . . . . . . . . . . . . . . 106

6.1 Figure of merit for Rydberg dressing. . . . . . . . . . . . . . . . . . . . . . . 112

A.1 39K D1 and D2 transitions and laser locks. . . . . . . . . . . . . . . . . . . . 115

B.1 Pairinteraction parameter space characterization for interaction simulation. . 117
B.2 Possible spin detection settings for symmetric laser detuning set. . . . . . . . 118
B.3 Possible spin detection settings for antisymmetric laser detuning set. . . . . . 119
B.4 Losses due to resonant Rydberg pair state excitations. . . . . . . . . . . . . . 120
B.5 Influence of imaging calibration on spatial interaction analysis. . . . . . . . . 121



Chapter 1 Introduction 1

Chapter 1

Introduction

At the core of science is the quest to deepen our understanding of the natural world, improve
accuracy in predictions, and solve complex problems. Gaining a deep understanding of
interacting quantum many-body systems is a fundamental yet challenging task in modern
physics. These complex systems underpin various phenomena across multiple disciplines.
Examples include exotic forms of quantum magnetism [1–4], high-temperature supercon-
ductivity [5–7], nuclear magnetic resonance spectra [8], protein folding mechanisms [9],
and even cancer cell modelling [10]. The complexity and high degree of correlation in these
systems pose computational challenges that exceed the capabilities of traditional simulation
techniques and analytical methods [11, 12].

This puzzle led Richard Feynman to ask a groundbreaking question in 1982: “Can these
[quantum systems] be simulated using a new kind of computing device - a quantum
computer?” [13] and therefore obtain a “probabilistic simulator of a probabilistic nature”
[13] as an alternative way to handle these complex systems. Two primary strategies have
been developed for quantum simulation. The first approach, known as “analog quantum
simulation,” involves a second, physical quantum system that is specifically engineered to
mimic the behavior and characteristics of the system under study [11, 12]. The second
approach employs a generalized quantum computer, operating with quantum gates, to
simulate the system in question [14, 15]. The latter approach builds upon conventional
computing architectures while leveraging the unique properties of quantum mechanics.

However, analog quantum simulators possess a unique advantage over their digital coun-
terparts: they naturally evolve under their own Hamiltonian while providing a hardware-
efficient representation of the system under study. Various platforms have been developed
to investigate a range of quantum phenomena, each offering a high level of control over
individual quantum particles [11, 12, 16–18]. Among these, simulators that utilize arrays of
neutral atoms have proven particularly effective for exploring complex many-body systems.
These arrays are typically generated via optical lattices or optical tweezers. Optical lattices
emerge from the interference of multiple laser beams, which create a periodic light pattern
that replicates, for example, the crystal structure of a solid [17, 19]. On the other hand,
optical tweezers use various technologies like holography with spatial light modulators
[20–25], acousto-optic deflectors [26–28], or microlens arrays [29]. These technologies
are combined with a microscope objective, forming tightly focused beams of light capable
of trapping individual atoms [30].
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In these systems, interactions can be precisely engineered using Rydberg states, which are
highly excited states characterized by a large principal quantum number and exaggerated
atomic properties [18, 25, 31]. Notably, the spatial scaling of these interactions is on the
order of a few micrometers, which closely aligns with the typical atom-trapping distances
achievable in such atomic arrays [32–50]. In contrast to solids, where electron to phonon
coupling leads to energy dissipation, these atomic arrays act as almost fully isolated quantum
systems and exhibit coherent dynamics over long periods [25]. Numerous research groups
have achieved not only large system sizes but also extended coherence times utilizing the
properties of Rydberg atoms [39, 42]. These accomplishments make the platforms highly
effective for simulating quantum magnets through, for example, direct excitation to Rydberg
states, whether in equilibrium states [49, 51, 52] or under dynamic conditions [53].

Another intriguing approach to studying these systems involves off-resonant coupling of
electronic ground states to Rydberg states, thereby introducing only a fraction of the
Rydberg character to the ground-state atoms. This technique not only offers additional
control parameters, which facilitates the manipulation of interactions to explore various
quantum many-body systems, such as Ising quantum magnets or gates [54–56], but also
allows for arbitrary single particle terms to be implemented in the ground state [57, 58].

The ultimate goal of these quantum simulators is to develop a platform capable of univer-
sally programmable analog qubit couplings. Nevertheless, while these simulators and their
associated replication methods do reduce control overhead, they come with limitations.
Specifically, they are often constrained to problems that are intrinsically tied to the charac-
teristics of the device-dependent platform, making it a significant challenge to achieve this
ultimate objective of universal programmability.

This work reports on the progress in this direction by implementing Rydberg dressing
in optical tweezer arrays using single 39K atoms. The choice of potassium offers distinct
advantages, particularly its small fine structure and ground-state energy splittings [59–61].
These attributes help to reduce vector shifts in the traps. Furthermore, we successfully
generate both Ising-type by single-color and freely tunable short-range XYZ-type spin
interactions by two-color Rydberg dressing. Importantly, this work marks the first realization
of these XYZ-type spin interactions in tweezer arrays through two-color Rydberg dressing
[4, 62]. While we demonstrate the spatial dependence and tunability of the system, it
currently operates in an incoherent regime due to existing technical limitations. The major
limitations are the Rydberg excitation laser phase noise and trap depth inhomogeneities
within the tweezer array, which will be discussed in detail throughout this thesis. Despite
the many advantages of Rydberg states, they are prone to rapid decoherence caused by
environmental and technical factors, that compromises the simulation’s accuracy over
extended periods [63].

Accordingly, this work outlines these limitations and discusses various solutions to address
the issues inherent in Rydberg dressing. Our results highlight the significant progress and
remarkable opportunities that Rydberg dressing offers for Hamiltonian design in analog
quantum simulators.
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Outline

This thesis is structured as follows:

In Chapter 2, we highlight the advantageous characteristics of Rydberg atoms that
make them particularly suitable for quantum simulation.

In Chapter 3, we present the process of loading, cooling, and preparing single atoms
within optical tweezer arrays. In addition, we describe the challenge of trap depth
homogeneity, detail our approach to Raman sideband cooling in optical tweezer arrays,
and its benefits to our experiment. Additionally, we investigate how Raman transitions
are implemented for precise and coherent control over the ground state.

In Chapter 4, we describe the derivation of Rydberg interactions and introduce our
single-photon Rydberg excitation laser setup. The excitation laser phase noise, a key
limitation in the presented Rydberg measurements, is discussed. This chapter also
provides insights into the first Rydberg dressing measurements, especially concering
the lifetime of Rydberg dressed states. It also demonstrates measurements of the
dynamics of Ising-type spin interactions via single-color Rydberg dressing.

In Chapter 5, we introduce our two-color Rydberg dressing scheme, laying the foun-
dation for realizing tunable spin interactions. While our measurements demonstrate
the spatially-dependent interactions, we also discuss the present technical challenges
that hinder us from measuring coherent interactions.

Publications

The following articles have been published in the context of this thesis:

Spatially tunable spin interactions in neutral atom arrays
Lea-Marina Steinert, Philip Osterholz, Robin Eberhard, Lorenzo Festa, Nikolaus Lorenz,
Zaijun Chen, Arno Trautmann, Christian Groß
Phys. Rev. Lett. 130, 243001 (2023)

Blackbody-radiation-induced facilitated excitation of Rydberg atoms in optical
tweezers
Lorenzo Festa, Nikolaus Lorenz, Lea-Marina Steinert, Zaijun Chen, Philip Osterholz,
Robin Eberhard, Christian Groß
Phys. Rev. A. 105, 13109 (2022)

Raman Sideband Cooling in Optical Tweezer Arrays for Rydberg Dressing
Nikolaus Lorenz, Lorenzo Festa, Lea-Marina Steinert, Christian Groß
SciPost Phys. 10, 052 (2021)

10.1103/PhysRevLett.130.243001
10.1103/PhysRevA.105.013109
10.21468/SciPostPhys.10.3.052
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Chapter 2

Properties of Rydberg atoms

The beginning of Rydberg physics can be traced back to the late 19th century when Balmer
and Rydberg formulated a series explaining the spectral lines of atomic hydrogen [64].
This pioneering work revealed the existence of highly excited atomic states, now known
as Rydberg atoms, characterized by one electron orbiting far from the nucleus, leading to
their distinct and exaggerated properties [65]. For years, these atoms were more subject of
theoretical fascination. However, at the beginning of the 20th century, the advancements in
experimental techniques marked a turning point. Since then, efforts in the field have grown
rapidly, starting with new approaches and many new platforms of quantum technology [32,
46, 66]. In this chapter, our goal is to understand the scaling of Rydberg properties and to
demonstrate their suitability for implementation into these experimental frameworks.

2.1 The anatomy of Rydberg atoms: structure and energy levels

We first turn our attention to the key characteristics of Rydberg atoms, namely their binding
energy and wavefunction. The mentioned historical description led to the derivation of
the energy level spacing of hydrogen, given by En = −R∞/n

2, where R∞ is the Rydberg
constant [64, 65, 67]. However, when increasing the number of electrons in an atom, this
formula no longer accurately predicts the energy levels. This discrepancy necessitates the
introduction of quantum defect theory, which accounts for deviations in atomic energy
levels caused by electron-electron interactions [68]. In our experiment, we work with the
alkali metal 39K. Characterized by one valence electron in the outermost 4S shell (with
S denoting the electronic angular momentum state ` = 0), we can effectively model this
electron as orbiting around a single positively excited core, much like the hydrogen atom.
With correction factors from quantum defects arising from the core electrons, we obtain the
binding energies as

En`j = − R∗

(n− δn`j)2
=

R∗

(n∗)2
∝ (n∗)−2. (2.1)

For 39K, the mass-corrected Rydberg constant is R∗ = mK/(mK + me) · R∞, where me

represents the mass of the electron and mK the mass of 39K. In this scenario, n∗ is the
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Figure 2.1 Energy level structure of 39K. a. Depicted are the binding energies for the various nS1/2

(` = 0, red), nPJ (` = 1, blue), and nDJ (` = 2, yellow) orbital angular momentum states,
characterized by the quantum number `. The energy levels were computed using ARC [68],
which builds upon the NIST [69] database and the data of quantum defects from reference
[70]. b. Zoom into a focusing on the Rydberg manifold surrounding the 62Pj state. This
particular state was selected as it represents the Rydberg state with which the experiments
in this thesis are performed. c. Calculated energy splittings ∆EnP,nj between nP3/2 and
(n+1)S1/2 states (dark orange), and between nP3/2 and (n− 1)D3/2 states (light orange)
are displayed. This highlights the diminishing energy splitting with an increasing principal
quantum number n, signifying their experimental practicability with standard microwave
sources.

effective principal quantum number, including the quantum defects δn`j . Here, the principal
quantum number n, the orbital angular momentum ` and the electron’s total angular
momentum j factor into this formula. The varying energy levels for potassium are depicted
in Fig. 2.1. Notably, when increasing `, the influence of the quantum defect reduces. This
becomes particularly pronounced in circular states with ` = n− 1 and m` = ±`, where the
valence electron orbits with nearly zero radial extents, resembling almost a classical orbit
around the nucleus [71].

The next significant characteristic of Rydberg states is the size of their wavefunction. To
understand this, we consider the separability of atomic wavefunctions into their radial
Rn`(r) and spherical components Y`jm(θ, φ):

Ψn`jm = Rn`(r) · Y`jm(θ, φ). (2.2)

The separability facilitates a numerical solution of the Schrödinger equation using the radial
component:

[
− 1

2µ

(
d2

dr2
+

2

r

d

dr

)
+
`(`+ 1)

2µr2
+ V (r)

]
Rn`(r) = En`jRn`(r). (2.3)
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Figure 2.2 Scaling of Rydberg wavefunction and Rydberg state dipole matrix elements. a. Exem-
plary shown are the calculated wavefunctions for two Rydberg states, the 62P3/2 (blue) and
42P3/2 (grey) for the probability distribution |rR(r)|2, illustrating the exaggerated size of
Rydberg atoms. b. Computed dipole matrix elements (DME) between the electronic ground
state |4S1/2,mJ = −1/2〉 and the Rydberg |nP1/2,mJ = +1/2〉 state (light blue) and the
|nP3/2,mJ = −3/2〉 (dark blue) state. These matrix elements underscore the characteristic
transition probabilities between ground and Rydberg states, based on the spatial overlap
of the ground state and the wavefunction of the Rydberg state. c. Dipole matrix ele-
ments (DME) are computed between various Rydberg states: between |nP3/2,mJ = −3/2〉
and |(n+ 1)S1/2,mJ = −1/2〉 (dark orange), and also between |nP3/2,mJ = −3/2〉 and
|(n− 1)D3/2,mJ = −1/2〉 (light orange). These values present a strong contrast, differing
by approximately six orders of magnitude when compared to the DME depicted in b. For
reference, the dark blue line from b is included to emphasize this difference. The origin of
these substantial DMEs can be attributed to the large size of the Rydberg atoms, given by
the considerable distance between the Rydberg electron and the nucleus.

Here, the reduced mass is given by µ = mKme/(mK +me), and the potential V (r) contains
the Coulomb potential at large distances, adjustments for the influence of the valence
electron at short distances and a (relativistic) spin-orbit interaction term[68].

In the absence of a magnetic field, all projection number mj substates for the total angular
momentum j are degenerate. However, many experiments are performed in the presence
of non-zero fields, causing a splitting in the energy of the mj states. The dependence of
the wavefunction on j is originated in the quantum defects and a result of the spin-orbit
coupling, which is included as a correction term in V (r) [68]. Analyzing the Rydberg
wavefunction and computing the root-mean-square distance of electrons in Rydberg states,
one obtains the wavefunction scaling ∝ (n∗)2. Fig. 2.2 shows the probability distribution
|rR(r)|2 of the atomic wavefunction for two distinct Rydberg states, 62P3/2 and 42P3/2. This
emphasizes the wavefunction’s size significant scaling with n. This size can be compared to
the one of the ground state of ≈ 2Å. As n increases, it is possible to reach a point where the
wavefunction’s size surpasses the tweezer spacing, usually in the range of a few micrometers.
For instance, at n = 200, the wavefunction spans roughly 4µm.
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2.2 Rydberg atoms’ practical aspects: transitions and couplings

Building on our understanding of the energy and wavefunction structure of Rydberg atoms,
we now focus on the dipole matrix elements. These lay the foundation to understand the
couplings and interactions of Rydberg states elaborated in Section 4.1. The matrix element of
the dipole operator d̂ = er̂ between two (for example Rydberg) states |rA〉 = |na, `a, ja,ma〉
and |rB〉 = |nb, `b, jb,mb〉 can be represented as:

dab = 〈ra|er̂|rb〉. (2.4)

Furthermore, we express r̂ in terms of the spherical basis r̂ = {r̂−1, r̂0, r̂+1}. Here, r̂0 = ẑ
and r̂±1 = ∓1/

√
2(x̂± iŷ) [72]. This allows us to introduce the parameter q ∈ −1, 0,+1,

which are arising from applying the selection rules. For instance, r̂0 can only couple states
with ∆m = 0 states and so on. This parameter allows an easier formalism in the subsequent
formulae. Relying on the separation in Eq. (2.2) and following references [68, 72, 73], the
dipole matrix element can be presented as:

dab = 〈na, `a, ja,ma|er̂|nb, `b, jb,mb〉

= (−1)ja+jb+`b+s−ma+1

{
1 `b `a
s ja jb

}
〈na`aja||r||nb`bjb〉

∑
q

eq
(
1 ja jb
q ma −mb

)
(2.5)

where the spherical unity vector is denoted as eq. We have also introduced the spin of the
electron s = 1/2. The round and curly brackets represent the Wigner-3j and Wigner-6j
symbols, respectively. These symbols significantly simplify the calculation and formalism.
Specifically, the 3-j symbol evaluates the coupling between two distinct total angular
momenta ja,b with respective projections ma,b, while the 6-j symbol combines three angular
momenta. Notably, these symbols can be transformed using the Clebsch-Gordan coefficients
[72]. The term 〈na`aja||r||nb`bjb〉 is directly proportional to the integral of the radial
wavefunctions of the two given states.

In Fig. 2.2, we present calculations for the dipole matrix element between the ground
state |4S1/2,mj = −1/2〉 and the Rydberg states |nP3/2,mj = −3/2〉 and |nP1/2,mj = 1/2〉.
Additionally, we depict the dipole matrix elements for transitions between various Rydberg
states. Remarkably, there is a difference of six orders of magnitude between these cases.
For instance, when coupling from the ground state to the |62P3/2〉 state, we obtain a dipole
matrix element of dab = 6.3 · 10−4 eao ∝ (n∗)−3/2 [74], where e denotes the electron charge
and a0 represents the Bohr radius. The scaling is based on spatial overlap between the
ground state and the Rydberg state wavefunction. In contrast, the coupling between this
Rydberg state and the |61D3/2,mj=−1/2〉 Rydberg state yields dab = 886 eao ∝ (n∗)2 [74],
which is due to the exaggerated size of the Rydberg atoms and thus the large distance
from the respective nucleus. Comparing this value to 87Rb, another alkali metal quite
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commonly used in experiments, the ground state coupling is almost a factor of three smaller.
This difference directly affects the Rydberg state lifetime, a topic we will address in the
subsequent section.

The modest dipole matrix elements between the ground and Rydberg states directly impact
the Rabi frequencies. To derive these, we introduce the coupling between the nuclear spin I
and the total electronic angular momentum J. For 39K, the nuclear spin is I = 3/2, and for
the ground state, we obtain J = 1/2. The total angular momentum F is then F = I+ J. The
ground state hyperfine splitting between the two hyperfine states F = 1 and F = 2 of the
4S1/2 ground state is 462MHz. When determining the Rabi couplings, it is important to note
that the projection of the nuclear spin is not considered, as it remains unchanged throughout
the transition. By driving transitions with a field strength denoted by E = εE0 cosωt, the
Rabi coupling can be expressed as [74]:

~Ω = eE0〈na, `a, ja,ma|ε · d̂|ng, `g, jg, Fg,mF,g〉. (2.6)

Another essential characteristic of Rydberg atoms is their polarizability. This can be estimated
using the second-order perturbation theory of the atom’s Hamiltonian H = H0 + Edc [65].
In this context, we investigate the Hamiltonian of the Rydberg atom when subjected to an
external electric field Edc. By treating this field as a perturbation, we directly derive the DC
Stark shift ∆dc ≈ αE2

dc, where the polarizability α is given by:

α =
∑
i

|〈na`ajama|ẑ|ri〉|2

∆Eri

∝ (n∗)7 . (2.7)

In this expression,
∑

i |ri〉 sums over all nearby Rydberg states. The energy spacing between
these states is defined by ∆Eri = En`j −Eri . Utilizing the scaling of the dipole matrix ele-
ment between neighboring Rydberg states as (n∗)2 and the scaling of the energy separation
between nearby states ∆Eri ∝ (n∗)−3, we deduce that the polarizability scales with the
seventh power of the reduced principal quantum number [65].

Consequently, Rydberg atoms exhibit a pronounced response to external electric fields,
meaning they can be controlled and manipulated using such fields. Additionally, this
amplified polarizability is the origin of the strong long-range interactions, which we will
delve into in Section 4.1. All these features render Rydberg atoms as attractive candidates
for quantum technologies [25, 31, 32, 46].



Chapter 2 Properties of Rydberg atoms 9

2.3 The extended lifetime of Rydberg atoms

Rydberg atoms exhibit an extended lifetime, which proves valuable for quantum simulation
and information processing. This extended lifetime is rooted in the small matrix elements
to low lying states and expands the experimental duration available during a single mea-
surement to microseconds or milliseconds, depending on various parameters. We will now
take a closer look at these scalings and parameters.

The lifetime of a Rydberg state is primarily constrained by two factors. Firstly, the radiative
spontaneous decay back to the low-lying (ground) states, represented as 1/τspon. Secondly,
the transition to neighboring Rydberg states, stimulated by the thermal black-body mi-
crowave background, defined as 1/τbb. We will further discuss the impact of both factors on
the Rydberg state lifetime:

1/τ = 1/τspon + 1/τbb . (2.8)

The connection between these terms is shown in Fig. 2.3. Spontaneous decays can be
quantified using the Einstein A coefficient and summing over all possible decay channels to
the lower-lying states [65]:

τspon =
∑
j

Aji =
∑
j

16π3e2ν3ji
3ε0hc3

`

2`+ 1
|Rij |2 . (2.9)

In this equation, νji denotes the transition frequency between the initial Rydberg state i
and a decay state j, while Rij represents the radial matrix element between these two
Rydberg states. Notably, following Fermi’s golden rule, the ground states have the most
significant influence here, primarily due to their high transition frequency in the numerator.
The scaling is subsequently proportional to the radial matrix element, leading to a relation
τstate ∝ (n∗)3. The decays due to black-body radiation are governed by Planck’s law:

1/τbb =
∑
j

Aji(νji)

exp(hνji/kBT )− 1
. (2.10)

From the exponential decay term, it is evident that the probability of the microwave back-
ground radiation facilitating a transition diminishes as the transition frequency increases.
In other words, decays to lower-lying states become almost negligible when considering
black-body transitions, resulting in a peaked black-body transition rate profile: The rate
first rises steeply, peaks, and then decreases more slowly at higher principal quantum
numbers [68]. Here, the temperature modifies both the peak’s amplitude and the gradual
decrease, indicating that transitions involving higher principal quantum numbers (and thus
longer transition wavelengths) become more apparent at higher temperatures. The effect of
black-body radiation on the decay scales as τbb ∝ (n∗)2.
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Figure 2.3 Rydberg state lifetime. a. Histogram of decay channels for the 62P3/2 Rydberg state.
Without black-body decay included, only spontaneous decay into low-lying states occurs
(depicted in blue). The transitions are, in order from dark blue to light blue, to the nS1/2,
nD3/2, and nD5/2 states. The inset provides a closer look at transitions from n = 4 to
n = 15. At a temperature of 300K, black-body radiation induces transitions to nearby
Rydberg states, which are indicated in shades of red - dark red to light red represent
transitions to the nS1/2, nD3/2, and nD5/2 states, respectively. b. Calculated lifetimes
include: the Rydberg state lifetime without black-body influence, represented as τspon (in
blue); the state-dependent black-body transition lifetime at 300K, represented as τbb (in
grey); and the black-body reduced lifetime, represented as τryd,bb (in red). The inset zooms
into the states with principal quantum numbers ranging from n = 15 to n = 25, showing
that at n = 19 the black-body transition equates the Rydberg state lifetime and is for larger
principal quantum numbers dominating the black-body reduced lifetime τryd,bb.

Comparing the scaling of both spontaneous and black-body decays, we can identify a
specific principal quantum number at which these two rates become equal. This point of
convergence is depicted in the inset of Fig. 2.3. For high principal quantum numbers at room
temperature (300K), black-body decay becomes predominant and sets the scaling tone.
Referring to Fig. 2.3, one can observe that for a principal quantum number of n = 62, a state
lifetime of 841µs would be anticipated in the absence of black-body transitions. Yet, at room
temperature, this lifetime gets reduced by a factor of five, yielding an actual lifetime of 160µs.

Without the black-body losses, the radiative lifetimes for 39K would be about 60% longer
than those for 87Rb. However, since black-body losses dominate, both alkali metals face
similar operational conditions, resulting in roughly equivalent black-body-limited lifetimes,
despite the differences in the ratios between black-body and ground state decays.

In this chapter, we studied the properties of Rydberg atoms, characterized by their energy
structure and wavefunction, which make them highly sensitive to external fields. We derived
typical scalings for couplings to and within Rydberg states and highlighted their extended
lifetimes. In the following chapter, we will introduce the experimental platform designed
to leverage the distinctive properties of Rydberg atoms.
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Chapter 3

Preparation of single 39K atoms in optical tweezer
arrays

Over the last few decades, Rydberg atoms trapped in optical tweezers have attracted
significant attention mainly due to their long-range interactions, prolonged coherence, and
the scalability of tweezer arrays, which opened up new paths for quantum simulation,
quantum computing and the study of quantum many-body systems. In our experiment, we
work with single 39K atoms confined within adjustable tweezer arrays and probe interactions
via (detuned) excitations to Rydberg states.

This chapter will introduce the most relevant features of this thesis’ experimental setup and
procedures. Most of the measurements in this thesis follow the exemplary sequence shown
in Fig. 3.1.

The sections are structured as follows. First, the setup and technique for trapping single
39K atoms in optical tweezers are described in Section 3.1, followed by a description of
the fluorescence imaging technique in Section 3.2. However, after taking most of the
data discussed in this thesis, there were numerous refinements and modifications to the
techniques for loading, cooling, and imaging single atoms. For documentary reasons, we
also present the updated status of the experiment in Section 3.3.

The atom’s remaining finite temperature leads to a thermal broadening of the Rydberg
transition, which imposes a severe limitation for Rydberg experiments. To overcome this
issue, we cool the atoms close to their motional ground state via Raman sideband cooling
(RSC), as described in Section 3.4. Next, we implemented a coherent ground state control
technique to perform interferometry measurements, as shown in Section 3.5.

All sections will only focus on details relevant to this thesis’ measurements. The complete
technical details of the vacuum system and the experiment’s laser setups have been described
in the Ph.D. theses of Nikolaus Lorenz and Lorenzo Festa [60, 75].

3.1 Loading atoms in optical tweezers

The first step of every experimental sequence is loading optical tweezer arrays with single
atoms, which we focus on in this chapter. In the measurements presented in the upcoming
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Figure 3.1 Exemplary experimental sequence. Atoms are loaded in a magneto optical trap (MOT),
and further compressed using the compressed MOT (cMOT) and grey molasses cooling(GM).
The tweezers are loaded using a chopped molasses technique [76], and followed by a parity
projection pulse, resulting in singly occupied traps. Then, a first fluorescence picture is
taken. Afterward, we continue with a state preparation pulse, preparing all the atoms
in the |F = 2,mF = ±2〉 state. Further, we continue with cooling the atoms to the
motional ground state via Raman sideband cooling (RSC). In the case of interferometry
measurements, we apply a ground state control pulse (GS MW) and continue with a pulse
of Rydberg excitation laser. In the case of spin-selective imaging, we remove atoms in
the |F = 2mF = ±2〉 state from the tweezer array via a push out pulse on the closed D2
cycling transition before taking a second fluorescence image. Comparing both fluorescence
images gives insights into the physics and dynamics applied between them.

chapters, we load the tweezers with atoms by alternating between trapping light and
near-resonant D2-light, following the method detailed in reference [76]. Please refer to
Appendix A for the 39K D1 and D2 level scheme. A key aspect of this method is ensuring the
pulsing frequency of the trapping and near-resonant light is significantly higher than the
trapping frequency of the tweezers. However, after a more in-depth study of the loading
process, we were able to simplify the loading procedure. Now, the tweezers can be filled
during the compressed magneto optical trap (cMOT) stage, discussed later in Section 3.3.

Each measurement starts with loading atoms into the magneto-optical trap (MOT) from
a Zeeman slower, as illustrated in Fig. 3.1. Typically, our tweezer-based measurements
require a MOT loading duration of at least 250ms. Following this, we adjust the detunings
and powers of the MOT lasers, targeting a spatially compressed MOT (cMOT). Through a
time-of-flight measurement, we extract the average temperatures to be TMOT = 230µK for
the MOT and TcMOT = 150µK for the cMOT. Unfortunately, 39K possesses a narrow hyperfine
splitting in the excited 4P3/2 state. This characteristic complicates sub-Doppler cooling as it
permits only minimal detunings from the cycling transition, demanding precise tuning of
experimental parameters. To mitigate this, we introduce a supplementary grey molasses
(GM), which not only reduces the atoms’ temperature to TGM = 17µK with an added 20ms
of cooling time but also crucially provides a settling period for the magnetic fields before the
red-detuned (D2) molasses cooling stage [77]. Consequently, we can continue with a red
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Figure 3.2 Experimental setup of laser beams around the in-vacuum built objective. For the
MOT and GM we use two beams for each axis (red). One beam in x-direction is also used
for optical pumping. We use three beams for Raman sideband cooling (Rx, Ry, Rz), two
overlapped beams from the same direction to drive ground-state Raman transitions (GSR),
one Rydberg excitation beam (UV) and a dipole trap along the x-axis of the experiment
(X-trap).

molasses cooling stage without adiabatic tuning from residual or settling fields, improving
the overall robustness of the experiment.

We then generate the optical tweezers, by emploing a 50W, 1064 nm fiber laser1. This
beam is then intensity stabilized using an AOM2 and afterward directed onto a liquid crystal
spatial light modulator3 (SLM), imprinting a specific phase pattern onto the trapping light.
Then, the beam is reflected from the SLM and aligned to the in-vacuum objective4, which
focuses this beam within our primary vacuum chamber (see Fig. 3.2 for an overview of the
used laser beams). More details about the generation of the tweezer patterns can be found
in the Ph.D. Thesis of Lorenzo Festa [75]. Using an SLM offers the flexibility to prepare
almost arbitrary array designs.

However, we face challenges by working with 39K: Its 4P states experience a significant
repulsive light shift at the trapping light wavelength of 1064 nm, attributed to the nearby
3D3/2 and 3D5/2 transitions at 1170 nm and 1178 nm [60]. This renders the in-trap D1
cooling process (in trap GM cooling [78, 79]) highly sensitive to the trapping potentials.
The cooling efficiency for each trap can be compromised by the spatial variation of the

1Azur Light Systems ALS-IR-45-SF
2Gooch & Housego AOM 3080-197
3Hamamatsu LCOS-SLM X10468-03WR
4Special Optics 54-40-33 @ 770,1064nm
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Figure 3.3 Trap depth inhomogeneities. a. To characterize trap depths, we measured a spectroscopy
of the D1-lines: Atoms are prepared in the |4S1/2 F = 2, mF = 2〉 state and the D1 laser
is tuned through the |4P1/2 F

′ = 2〉 resonance. On resonance, atoms scatter and might
end up in the |4S1/2 F = 1〉 ground state. Subsequently, a heat-out pulse targets the D2
line’s closed cycling transition, removing remaining atoms in |4S1/2 F = 2, mF = 2〉. The
detuning, relative to free space resonance, reflects the light shift. The upper plot averages
over all 64 tweezers, while the lower plot highlights two selected tweezers. Solid lines
represent Gaussian fits to evaluate and compare the fit’s center as an estimate for the trap
depth. b. The Gaussian fit’s center gives the light shift for each tweezer in the 8× 8 array.
c. The light shift lets us deduce the trap depth. For the shown measurement, the tweezer
power was reduced to 20% of the initial loading power, corresponding to a trap depth of
U/kB = 202± 2µK. The Gaussian distribution width is σ = 18.6± 1.7µK, indicating an
inhomogeneity of 11% in trap depth.

detuning which can be on the order of several MHz. Moreover, our system exhibits trap
depth inhomogeneities of around 10%, as visualized in Fig. 3.3. Such inhomogeneities can
drive the cooling beam to be trap-dependent on resonance, leading to photon scattering.
The outcome is undesirable: increased atom heating and potential atom loss.

To address the challenges associated with light shifts and anti-trapping, we adopt a strategy
proposed by Hutzler et al. [76] by alternating the use of trapping and near-resonant cooling
light pulses. This chopping method ensures that atoms do not undergo any light shifts or
anti-trapping effects during the cooling phase. Essentially, it renders the cooling process
as if it were happening in a free-space configuration. The key to this technique lies in
its switching frequency. It must be considerably faster than the trap frequency, ensuring
that atoms only undergo an averaged trapping potential, thereby avoiding the risks of
parametric heating. To achieve this, we set the chopping frequency at 1.4MHz, one order
of magnitude faster than the axial trap frequency. This frequency was carefully selected; it
represents the optimum speed at which the rise time of the switching trap AOM enables
nearly rectangular-shaped pulses. In addition, the pulsing is four times slower than the
atomic natural linewidth of Γ/2π = 5.96MHz, which enables multiple scattering events
within a single cooling pulse. This ensures that atoms revert to their ground state before
the subsequent pulse of trapping light is introduced.
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While this technique offers certain advantages, it also has drawbacks, encouraging us
to develop a new loading scheme detailed in Section 3.3. The primary challenge with
tweezer loading using this method arises from the need for more trapping power to ensure
a consistent average trapping potential during chopping. Consequently, our experiment
demands a peak power of 2.25 times higher than required in continuous operation for a
trap depth of U/kB ≈ 1mK, given the averaged power over a single duty cycle [80]. As a
result, the maximum possible number of our tweezers is constrained by the accessible laser
power and this specific amplification factor.

Furthermore, when evaluating the trap lifetime during fast pulsing with the one for contin-
uous wave (cw) operation, we found that the 1/e lifetime is 90 s for cw operation, whereas,
in pulsed mode, it is 40 s [75]. These durations exceed our typical experimental cycle of
maximally 3 s by one to two orders of magnitude, varying based on the length of additional
sequence components. In practice, we perform a continuous 40ms pulsed atom loading. To
ensure only a single atom occupies each trap, we perform a light-assisted collision pulse
lasting 10ms [80]. This process leaves each trap with a previously odd atom number oc-
cupied by just one atom and all traps with an even atom number empty. After allowing a
30ms interval to wait for background atoms to escape, we take the first fluorescence image,
capturing the array’s filling.

3.2 Pulsed fluorescence imaging to prevent light shifts

This chapter describes our technique to detect single atoms within our tweezer array. For
most of the measurements discussed in this thesis, we use a technique where the imaging
and trapping light are pulsed similar to the initial loading process. However, following our
system upgrade, we implemented a technique that does not require this chopping method.
Instead, we adopt the approach detailed in [79], which involves using both resonant D2
scattering and off-resonant D1 cooling light during imaging. Nonetheless, as the results
in Section 3.3 indicate, our experiment encounters challenges with this technique. The
primary obstacle stems from the significant anti-trapping of the excited state, worsened by
trap depth inhomogeneities.

When designing the experiment, we wanted to avoid such challenges, and that is why we
adopted the same chopping method used for the light-assisted collisions, as described in
Section 3.1. This involves alternating between trapping and cooling light pulses, which we
applied for an imaging duration of 10ms. For the analysis, we set a region of interest (ROI)
for each tweezer, summing the counts within each specified region. This process yields a
typical count histogram, depicted in Fig. 3.4. Utilizing this data, we can set a classification
threshold, distinguishing tweezers that either contained or lacked a single atom. It is worth
noting that imaging with GM light is ineffective because the grey molasses technique is
based on a dark state that suppresses scattering, thus reducing the photon count we can
collect.
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Figure 3.4 Fluorescence images using the chopped imaging method. a. Displayed is an averaged
fluorescence image of the 8 × 8 tweezer array. b. A selected single shot from the array
illustrates the statistical filling. c. A typical histogram of the photon counts derived from
4960 shots using the chopped imaging method.

Unfortunately, we experienced an atom loss rate of 2.7% [75] after each fluorescence
picture. This loss arised from the lifetime of the trapped atoms when having interleaved
molasses light during the trap pulsing switched on, which was around 332ms for a 1mK
trap depth [75].

There are several possible solutions to circumvent this: The simplest among these is in-
creasing the average trap depth. For example, doubling the trap depth to 2mK extended
the lifetime to 895ms [75]. The trap depth can also be increased by refining the pulse
shape to be more rectangular. Nonetheless, we face constraints caused by the limited power
output of our laser source. These challenges led to the development of the in-trap imaging
technique, which we will discuss in the next section.

3.3 Experimental modifications for loading, cooling and imaging
single atoms

After further optimization on the trapping and cooling sequences of the MOT and cMOT,
we achieve temperatures of TcMOT = 74µK. Additionally, we upgraded our D1 and D2 laser
systems to provide more power during these phases. The configuration of this enhancement
can be seen in Fig. 3.5 and the laser lock settings are described in Appendix A.

The primary motivation behind this setup change is increasing the available laser power
using consecutive tapered amplifiers (TA). Our system now includes two separate pathways,
one for the D2 laser and another for the D1 laser setup. Each pathway has a TA that boosts
the seed light to approximately 1W. In addition, we have also incorporated an acousto-optic
Modulator (AOM) in a double-pass arrangement for each path. An electronic switch between
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Figure 3.5 Simplified new optics setup for D1 and D2 laser. The MOT laser is locked to an
MTS spectroscopy and serves as a reference for the IMG laser beat-lock. The MOT light
is amplified using a tapered amplifier (TA) and aligned through an AOM in a double-pass
configuration to be able to tune frequency and amplitude. The GM laser is amplified by a
TA and beat-locked to a D1 Master laser, which is locked to a spectroscopy. The GM light
passes a broadband AOM for amplitude and frequency control. An electronic switch enables
the AOM either exclusively in the GM or MOT path. Both paths are spectrally filtered
using an interference filter as described in the main text. Before overlapping, the D2 light is
split into the Zeeman slower AOM setup and the overlap fiber. After this fiber, the beam
passes a non-polarising beam splitter (50:50) and is amplified each by a TA and frequency
shifted by a consecutive AOM in a double-pass configuration. The two beam paths, which
we refer to as Cooler and Repumper paths due to their frequency shift, are again overlapped
and split into two paths to the experiment. In the z-axis, there is an additional interference
filter included and shutter to filter out D2 light if needed.
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their AOM drivers ensures that exactly one is activated at any given time. These beam paths
are fiber-coupled, overlapped on a separate breadboard, and coupled into the same fiber.
Following the outcoupling from this, the light is split into two paths, each having another
TA, producing around 1W, and an AOM. We have assigned these two paths as the Cooler
and Repumper paths, where the AOMs are calibrated to span the ground state splitting of
potassium, which is 462MHz. This setup effectively increases the available power for each
path by a factor of four compared to the previous laser setup used in the sections before,
which is described in detail in reference [60].

Furthermore, with this setup, we improve the atom cooling procedure. To compress the
MOT, we ramp the magnetic field from 110G/cm to 30G/cm within a duration of 10ms.
These measures enables us to cool the atoms down to 74µK, representing an impressive
reduction by almost half, a result we obtain using a time of flight measurement. A notable
advantage of this approach is the ability to load our tweezers as early as in the cMOT phase.
For effective atom loading, the trap depth we require is on average U/kB = 1mK.

After loading the tweezers, we apply a pulse to allow for light-assisted collisions to ensure
that only a single atom remains trapped. To achieve this, we introduce a pulse of 40MHz
blue detuned D1 light for 15ms. Subsequently, we continue to cool the atoms within the
trap for 20ms, employing the technique described in reference [79]. This method employs
an in-trap lambda-enhanced GM cooling. The cooling performance is primarily constrained
by our tweezer inhomogeneities, which were ≈ 4.5% at the time.

Two essential factors for the effectiveness of this cooling method are the lambda condition
and the detuning from resonance. A potential enhancement for the loading probability
would involve adopting the approach from reference [79] using the D1 cooling method
for enhanced trap filling: At its core, the idea is to increase the detuning to a point where
the energy absorbed by an atom pair during a collision is sufficient to eject only one of the
atoms. With more homogeneous traps in the future, implementing this technique could be
both promising and beneficial for a large filling.

For the imaging technique, we adopt the methods outlined in the same reference [79].
However, as we will proceed, a critical factor for the success of this method is achieving homo-
geneous tweezer trap depths to ensure uniform cooling across all tweezers. In the imaging
setup utilized for the measurements presented in Fig. 3.6, we apply three-dimensional
GM cooling for an imaging duration of 100ms in the traps with an average trap depth
of U/kB = 0.5mK. GM Cooler and Repumper beam are in lambda condition and are
detuned by 16MHz. This detuning was selected as a compromise between minimizing
background scattering during fluorescence imaging using low optical powers and ensuring
efficient cooling for the average array. Contrarily, we apply the D2 imaging light in the
two-dimensional axis of the atom plane (xy-plane). This minimizes stray light scattering at
767 nm in the axis of the camera, as the imaging system cannot filter this scatter. Additionally,
we replaced our CMOS5 camera with an EMCCD6 camera. This change was motivated by

5Andor Zyla 4.2 PLUS.
6Andor iXon.
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Figure 3.6 Influence of ASE from D1 TAs on imaging background. For all depicted measurements,
we implemented four bandpass filters into the imaging tube, blocking both the trapping
and D1 cooling light, as detailed in the main text. a. Acquisition of 100 shots, then
averaging the counts for each tweezer ROI without any interference filters after the seed TAs.
b. Introduction of an interference filter after each D1 and D2 seed TA significantly reduced
the observed background scatter. c. In addition to the interference filter, we included an
obstacle that blocks the central part of the imaging beam, significantly reducing scatter
originating from the hole of the objective.

the superior quantum efficiency of the EMCCD, necessitating fewer scattered photons and,
ideally, allowing for shorter imaging durations. Moreover, the electron multiplying (EM)
process effectively boosts pixel signals, increasing the signal beyond the camera’s readout
noise.

Furthermore, we modified our imaging system by replacing the focusing achromat7, achiev-
ing an image magnification of 30.14. This results in a resolution of 0.53µm/px. To minimize
background scatter, potentially originating from trapping or imaging light, we added four
bandpass filters: The first filter8 the light hits blocks the 1064 nm trapping light. This is then
followed by three filters9 that block the 770 nm cooling light, but allow the 767 nm imaging
light to transmit.

Despite these filters, we still observe significant background scattering, as depicted in
Fig. 3.6. We trace the source of this background to the amplified spontaneous emission
(ASE) noise from the D1 TA. The bandwidth of this noise spans several nm, causing visible
background on the camera. We adopt the following approach to improving this: First, we
place narrow interference filters after the MOT and GM TAs, ensuring that the subsequent
TAs do not further amplify the ASE from these. However, as in our setup, we need to
switch between the two TA seeds, we can not place a narrowband filter after the cooler and
repumper TAs. Consequently, we add an additional switching setup in the z-axis path of our

7Exchanged the focusing achromat with f = 250mm from Thorlabs AC508-250-B to an achromat with
f = 1000mm from Thorlabs AC508-1000-B.

8Semrock FF01-766/13-25 at 0◦ tilt.
9Semrock FF01-747/33-25 at 0◦ tilt.
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Figure 3.7 Imaging performance and calibration measurements. The upper plot averages over
100 tweezers (orange), while the lower plots represent results from two selected individual
tweezers (red and blue). a. Typical histogram of the photon counts from several experimental
realizations within each tweezer’s defined region of interest. b. D1-spectroscopy signal
showing the 4P1/2F

′ = 2 (right) and 4P1/2F
′ = 1 (left) levels. c. D2-spectroscopy signal

of the 4P3/2F
′ = 3 (left) and 4P3/2F

′ = 2 resonances. During the measurement, we
scanned the detuning of the imaging laser and took fluorescence images for these scanned
values. This adjustment produced a smeared-out photon count histogram, as depicted in
the inset. A high classification threshold (indicated by the orange dashed line) was set to
identify the resonance through scattered photons.

laser setup, including an interference filter10 that reflects D2 light. This light is then blocked
by an additional beam shutter, as illustrated in Fig. 3.5. Second, one significant source of
scattering is the aperture of our in-vacuum objective. We found that by blocking the central
part of the imaging beam, with a diameter of around 1 cm (given the imaging beam’s width
of roughly two inches), we further reduced noise. However, this also results in a minor loss
of imaging photons. The cumulative effect of these measures is depicted in Fig. 3.6.

We capture a fluorescence image with an imaging duration of 100ms after completing the
following calibration measurements: We first perform a D1 spectroscopy, resolving the
hyperfine states of the 4P1/2 excited state, and select a blue detuning of 16MHz of the
4P1/2 F

′ = 2 state for in-trap cooling. Next, we perform a D2 spectroscopy that resolves the
4P3/2 F

′ = 3 and 4P3/2 F
′ = 2 levels. As previously illustrated in Fig. 3.7, we again encounter

challenges due to trap depth inhomogeneities, shown in the exemplary set of two selected
tweezers. When taking a fluorescence image of traps with a depth of U/kB = 0.5mK, the
photon counts histogram reveals a noticeable pedestal between the bimodal distribution.
10Laseroptik.
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This pedestal can be attributed to the aforementioned inhomogeneities. In Fig. 3.7, this
effect is again showcased by two selected tweezers, where one does not scatter sufficiently,
making the two distributions indistinguishable. This results in a persistent offset between
the averaged histogram’s ’zero’ and ’one’ atom distributions.

In summary, although notable improvements were made in diminishing background scatter-
ing, it is apparant that further refinements are required. Here, it is evident that improving
the trap depth uniformity is the cardinal step toward optimizing our imaging capabilities.
During the writing of this thesis, we achieved an average trap inhomogeneity of ≈ 1.5%,
an improvement by an order of magnitude. Further details on this advancement and its
resulting improvement for the imaging will be discussed in the PhD thesis of Philip Osterholz.

3.4 Cooling single atoms in optical tweezers to their motional
ground-states

Preparing low-entropy systems of neutral atom arrays is one piece of the jigsaw for quantum
many-body experiments. These low temperatures increase the experiment’s robustness
regarding coherence time for quantum state manipulation such as mesoscopic superposition
states. Even after in-trap optical molasses cooling to (several) tens of microkelvin, the atoms’
remaining temperature presents a severe limitation for the abovementioned measurements
[38, 81, 82]. Here, Raman sideband cooling (RSC) offers a powerful tool to prepare the
atoms in confined optical traps in their vibrational ground state [83–86].
This section will introduce our experimental implementation of RSC relying on transitions
between different hyperfine ground states. First, we prepare the atoms in a defined mF

Zeeman sub-state, as described in Section 3.4.1. Then, in Section 3.4.2, we describe how
we cool the atoms to their vibrational ground state and discuss our technique’s limitations
and possible solutions.
Detailed information about the laser setups can be found in the thesis of Nikolaus Lorenz
[60]. The section for RSC is based on the material from our publication [80].

3.4.1 Optical pumping for spin state preparation

After the first fluorescence image, described in Section 3.2, we usually post-select on the
presence of one atom and continue with optically pumping and preparing the atoms in the
|4S1/2 F = 2, mF = 2〉 state, similar to reference [87]. Usually, we prepare the atoms in
one of these stretched states for two reasons. First, they have a complete projection of the
total angular momentum quantum number mj = ±1/2. And second, they offer a maximal
Rabi coupling to the Rydberg states later.

For the preparation, we use the D1 light (GM laser) of one of the six MOT axes beams
around the science chamber and block the beams in the other directions with mechanical
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Figure 3.8 Level diagram and measurements of the state preparation efficiency. a. Level scheme
for the state preparation in the |F = 2, mF = −2〉 state with driving σ− transitions at a
magnetic field of 1.5G. After several scattering and decay processes, the atoms end up in
the |F = 2, mF = −2〉 state, which appears dark to the pumping light. b. Measurement of
the optical depumping time for a maximally polarized beam. c. Measurement of the optical
pumping time for a magnetic field perpendicular to the pumping beam. This also adds σ+

and π transitions.

shutters. The lasers’ beat lock is tuned to the |4P1/2 F
′ = 2〉 resonance. Furthermore, we

implement a Glan Taylor polariser in combination with a quarter waveplate to guarantee a
high degree of the desired circular polarization. We then apply a magnetic field of 1.5G
parallel to the pumping beam (in our case, one of the MOT x-axis beams), which is tilted by
14.5 ◦ w.r.t. to the x-axis (see Fig. 3.2). By changing the orientation of the magnetic field,
we can tune the driving transitions on the atoms from σ− to σ+ and vice versa.

For optical pumping, we apply a pulse of 200µs with D2 Repumer and Cooler beams.
Afterward, we switch off the optical Cooler beam 200µs before the Repumper beam. Both
beams are set to a power of 0.3 Isat, where Isat = 1.75mW/cm2 is the saturation intensity
for the D2 line. Note that for the state preparation, we also alternate between trapping
and resonant light like done in reference [76]. This way, we can circumvent the issue of
undesired trap inhomogeneities (as discussed in Section 3.1) and prepare all atoms in free
space in the accurate mF state.

For the measurement and optimization of the state preparation efficiency, we employ a
similar technique as used in reference [85]. We start with preparing all atoms in the
|F = 2, mF = −2〉 state, then switch on the optical pumping light without repumping light
and scan the pulse duration. As shown in Fig. 3.8, we apply this measurement for two
different pump polarizations, which are tuned by rotating the magnetic field orientation.
In the case of σ− polarization, the prepared atoms remain in the mF = −2 state, which
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appears dark when illuminated with D1 light. After the D1 pulse, the remaining atoms
in the |F = 2, mF = −2〉 state are heated by using a resonant D2 beam driving a closed
transition from F = 2 to F ′ = 3 and ejected from the trap. Atoms in other mF states
can decay into the F = 1 sub-states and, therefore, stay trapped. Finally, we capture the
remaining atoms in the F = 1 state with a second fluorescence image. We extract 1/e decay
of τDP = 35.93± 2.54ms from an exponential fit to this optical depumping measurement.

Afterward, we repeat the measurement with a tilted magnetic field such that the pump
light can also drive π and σ+ transitions. Now, the atoms in F = 2 are not dark anymore
and can be depumped to F = 1. In this case, we measure a 1/e optical pumping time
of τOP = 0.20± 0.02ms. From this, we can extract the state preparation efficiency as the
ratio between the optical pumping and depumping time to be P (F = 2,mF = −2) =
1− τOP/τDP = 99.44± 0.08%.

The obtained efficiency is sufficient to proceed. However, the fidelity is primarily limited by
the polarization adjustment of the beam, which has been so far fine-tuned by hand. Suppose
this is getting limiting in the future, one could optimize the polarization by adding multiple
waveplates or by implementing motorized rotational mounts, enabling an automized and,
therefore, more precise adjustment.
The state preparation is implemented for all further measurements and presents a good
starting point for RSC.

3.4.2 Resolved Raman sideband cooling in tweezer arrays

In our experiment, we implemented RSC to cool the atoms in tight optical traps to their
motional ground state. Initially, RSC has been used to cool ions in dipole traps [83] and
since then implemented in various other experiments for neutral atoms trapped in optical
lattices [81, 84] and tweezers [85, 86, 88–90]. In the following, we explain and discuss
our experimental implementation of RSC using an array of 8× 8 tweezers [60, 80].

Our scheme uses off-resonant D1 light to drive transitions between vibrational manifolds of
the trap linked with two hyperfine ground states, |F = 2, mF = 2〉, and |F = 1, mF = 1〉.
The cooling procedure consists of two steps, as illustrated in Fig. 3.9. First, the atoms
undergo a spin flip via a stimulated Raman process from the |F = 2, mF = 2〉 to the
|F = 1, mF = 1〉 state, where the vibrational state is reduced by one motional quantum
from n to n − 1. In the second step, optical pumping beams transfer the atom back into
the initial spin state via a spontaneous Raman process, where the photon carries away
the entropy. The probability of the atom remaining in the same vibrational state during
this spin-flip is crucial for a successful cooling process. The coupling between the atom’s
internal and motional states is described by (2n̄+1)η2LD. Here, the temperature of the atoms
is expressed by the mean vibrational quantum number n̄ and the Lamb-Dicke parameter
ηLD = k · aHO, where k is the wave number of the pumping light, and aHO =

√
~/2mω the

oscillator length with m the mass of the atom and ω the oscillator frequency [85]. For a
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Figure 3.9 Level diagram and spectroscopy measurements of vibrational modes. a. We imple-
mented three beams for RSC corresponding to the three coordinate axis Rx,Ry, and Rz.
The combination of Rx and Ry cools the radial axis, and the combination of the Rx and Rz

the axial axis. b. Radial Raman spectroscopy measurements for an average of 64 tweezers
(dark blue) and a selected single tweezer (light blue) after RSC w.r.t. to the carrier, where
the vibrational quantum state remains the same. The shown peak for negative detunings
corresponds to the first red sideband. The double feature of the sideband is due to an
elliptical trapping potential. Figure adapted from [60, 80]. c. Evaluated radial trapping
frequencies in an array of 8× 8 tweezers. In the case of elliptical tweezers, this leads to two
radial trapping frequencies. For efficient Raman cooling, a chirp over 120 kHz is required to
cover the frequency spread. Figure adapted from [60, 80]. d. Axial Raman spectroscopy
measurements around the carrier. In the case of a single tweezer, one can resolve the first
and second red sideband. e. Evaluated axial trapping frequencies of the tweezer array.

successful Raman cooling, we require low initial temperatures of the atoms (small mean
vibrational number) and high trapping frequencies.

Assuming tight optical traps like in our setup, the radial trapping frequency ω2
rad = 4V0/mw2

0

and axial trapping frequency ω2
ax = 2V0/mz2r scale with the trap depth V0, the mass of the

atom m, the waist of the trapping beam w0, and its Rayleigh range zr = πw2/λ, where λ
is to the trapping wavelength. By comparing the trapping frequencies, we recognize that
ωax < ωrad and, therefore, the axial trapping frequency is more critical for an efficient
Raman cooling process.

For this reason, we increase our overall trap depth by a factor of 2.25 compared to the power
at which we load the tweezers, corresponding to a mean trap depth of 2mK, which is also
the peak power during chopping. We maintain the magnetic field defining our quantization
axis from the state preparation in Section 3.4.1, which is pointing along our MOT x-axis
with an amplitude of 1.5G and an angle of 14.5 ◦ to the x-axis of the main chamber. The
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magnetic field is sufficiently strong, allowing us to neglect vector light shifts caused by a
highly focused trapping beam [86]. Here, the use of a trapping wavelength of 1064 nm
for potassium is especially beneficial, resulting in negligible vector shifts of the ground
states [60].

We implemented in total three Raman beams for each coordinate axis Rx, Ry, Rz (see
Fig. 3.2) with a beam waist of 250µm. Each path contains an AOM, where Rx uses the -1.
order and the other beams the +1. order to bridge the ground state splitting of 461.7MHz
as shown in Fig. 3.9. This allows us to freely tune the frequency in order to precisely
drive Raman transitions between vibrational states. With beam intensities of 1.6W/cm2

for Rx and 0.9W/cm2 for Ry and Rz and a laser detuning of ∆RSC = 2π × 40GHz we
measure Rabi frequencies of ΩRaman = 2π × 43 kHz for transitions from |F = 2, mF = 2〉to
|F = 1, mF = 1〉. For a first rough alignment of the beams onto the tweezer array, we tune
the laser onto the D1 resonance and align the beam as a measure of pumping probability
to F = 1 or F = 2, respectively. The fine adjustment is further done by improving the
abovementioned Rabi coupling. The laser frequency is stabilized to the modes of an ultra-
low expansion cavity (ULE) and, therefore, adjustable in steps of the free spectral range
FSR = 1.5GHz.

The optical pumping beams during RSC are the same ones as those used for the state
preparation. However, we stabilized the laser to be blue detuned by ∆OP /2π = 80MHz±
30MHz from the in-trap D1 resonance to avoid heating from the anti-trapped excited states
[91]. The uncertainty is given by the standard deviation of the trap inhomogeneity of the
array.

The full cooling process takes 150ms and consists in total of 30 cycles [80]. Each cycle cools
the radial axis for 2ms, applying frequency chirps over 120 kHz with a duration of 200µs to
cover trap depth inhomogeneities. In addition, we cool the axial trapping axis with three
pulses, each of 200µs duration and driving transitions from the fourth to the first motional
blue sideband [90]. In the latter case, the cooling begins outside the Lamb-Dicke regime
and requires step-by-step cooling from high vibrational quantum numbers to lower ones.
The optical repumpers are turned on during the whole cooling process. The lower threshold
of the cooling process is mainly limited by the trap inhomogeneities, which fixes the chirp
duration and frequency width. After a successful cooling process, the atoms end up in the
|F = 2, mF = 2〉, n = 0 state, which is dark to the optical pumping and Raman beams.

We evaluate the cooling efficiency by measuring the sideband spectroscopy. Here, we use
the combination of Raman beams Rx and Ry for the radial spectroscopy and the pair Rx

and Rz for the axial spectroscopy. During the measurement, we keep the same trap power
as throughout the cooling. However, the Raman pulse duration is set such that we drive a
∼ π/2 pulse on the carrier transition for the radial, and a π pulse for the axial spectroscopy.
Afterward, we ramp the overall trap power down to 20% of the initial trap loading power,
start chopping again, and heat out the atoms remaining in the |F = 2, mF = 2〉 state
with resonant D2 light on the 4P3/2, |F ′ = 3, mF ′ = 3〉 cycling transition. With a second
fluorescence picture, we only capture atoms transferred to the F = 1 state via the sideband
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Figure 3.10 Temperature of the atoms before and after Raman sideband cooling. Figures based
on data and simulation from [60, 80] a. Measurement of the survival probability versus trap
switch-off durations for two different atom temperatures. Before switching off the trap,
we ramp down the trap power to 20%. For non-cooled atoms (red), we lose the atoms
basically within the first few µs. For a Raman sideband cooled system (both blue), we can
switch off the trap for 20µs without atom loss. When ramping the trap power to 0.5%
before releasing the atoms (dark blue), we additionally adiabatically “cool” the atoms and
increase the available switch-off duration. The solid lines are Monte Carlo simulations.
b. Measurement of the survival probability versus trap depth for non-cooled (red) and
Raman sideband cooled (blue) atoms. Solid lines are theory fits using a Boltzmann
distribution. The vertical, dashed line corresponds to the trap depth, where gravity pulls
open the trap.

pulse. Fig. 3.9 shows the spectroscopy measurements for a cooled system. We can extract
the mean vibrational quantum number n̄ via the asymmetry of the amplitude of the red
and blue sideband Iblue/Ired = n̄/(n̄+ 1).

After cooling, we obtain a mean vibrational number 〈n̄rad〉 = 0.225± 0.217 for the radial
axis and 〈n̄ax〉 = 1.04± 1.05 for the axial axis. The brackets indicate the mean value over all
64 tweezers, leading the standard deviation to be this large. With these values, we obtain
an average groundstate fraction of 37%± 18%. However, checking the performance of the
best single tweezer, we obtain a mean vibrational number of n̄rad = 0.13 in the radial and
n̄ax = 0.23 in the axial axis, corresponding to a ground state fraction of 69%. Therefore,
the cooling performance in our experiment is strongly limited by the trap inhomogeneity
and the relatively small axial trapping frequency.

To optimize the cooling parameters, we use a ballistic expansion technique, where we
switch off the trapping potential for a variable amount of time. The atoms’ temperature
strongly limits the trap’s switch-off duration. The effect of RSC and, therefore, the atoms’
temperature on the switch-off period is shown in Fig. 3.10. The trap power is lowered to
20% before switching off a non-cooled and a Raman sideband cooled system. Furthermore,
for the latter case, we also measure the recapture probability if the trap depth was ramped to
0.5% before releasing the atoms. With a Monte Carlo simulation done in references [60, 80],
we extract the atoms’ temperature to be 9.3µK, 1.4µK, and 200 nK for the non-cooled, the
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Raman sideband cooled, and the Raman sideband and further adiabatically cooled system
[92], respectively. We choose a switch-off time where the atom recapture is significantly
reduced to optimize the cooling parameters mentioned above. Thus, we are very sensitive
to the parameters linked to the atoms’ temperature.

Another important advantage of RSC is that it allows us to reduce the trap depth further
while keeping the atoms trapped. This is an essential measure for Rydberg dressing (see
Section 4.2), as the absolute trap inhomogeneities are reduced with decreased trap depth.
In addition, this allows us to further adiabatically cool the atoms within the traps [92].
For the measurements in Fig. 3.10, we measure the atoms’ probability of staying trapped
versus the trap depth. Therefore, we ramp the trap depth down within 50ms and keep this
trapping power for 50ms until we ramp back to 1mK for imaging. We do this procedure
for two different initial temperatures. For a non-cooled system, we can lower the trap
depth to 10% before losing the atoms, corresponding to a trap depth of roughly 100µK.
However, in the case of a Raman sideband cooled system, we can ramp the trap depth to
0.5%, corresponding to a trap depth of 3.7µK. The latter is limited by gravity, as indicated
by the vertical, dashed line in Fig. 3.10b. Below 0.02% trap power, the atoms are no longer
trapped in the axial direction.

From a D1-lightshift measurement of the tweezers we extract a trap depth of 0.906mK
for 100% tweezer power [80]. For RSC, we increase the tweezer power by a factor of
2.25 and measure an average radial trapping frequency of 240 kHz and an axial trapping
frequency of 38 kHz. With these trapping frequencies we calculate a tweezer beam waist
of wtweezer = 0.89µm (neglecting any ellipticity of the beam) and a Rayleigh range of
zr,tweezer = 3.96mm. The Rayleigh range, however, is slightly different when comparing it
to the theoretically calculated one πw2/λ = 2.3mm, which could come from aberrations
and the real diffraction profile [93].

In summary, implementing RSC offers three major advantages for our experiment: First,
it enables longer trap switch-off durations, which we need for, e.g., measuring Rydberg
Rabi oscillations. Here, we want to avoid the anti-trapping of the excited state. Second,
after cooling, we can further lower the trap depth, cool the atoms adiabatically [92], and
reduce the absolute differences in trap inhomogeneities as they scale linearly with the trap
depth. Third, the cooling also reduces the Doppler shift, which depends on the atom’s finite
temperature and the k-vector of the excitation beam [63]. The latter could be, for example,
decreased by using counterpropagating beams for the two-photon Rydberg excitation or
three-photon excitations with specific geometries to partially or even completely cancel the
recoil effect [94]. In the case of a single-photon excitation, the atom’s temperature is the
only knob to reduce the Doppler shift, which is responsible for the damping of the Rabi
oscillations and due to a broadening of the excitation linewidth.

However, there is definitely room for improvement. One possible solution to increase
the efficiency of RSC could be a better confinement of the atoms in the axial direction
by additionally implementing an optical lattice [95] or a horizontal light sheet as shown
in Fig. 3.11. This figure shows the calculation of an elliptically shaped light sheet at a
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Figure 3.11 Trap frequencies for single tweezers and a horizontal light sheet. a. Radial (red) and
axial (orange) trap frequencies for single tweezers at varying trap depths. The grey right
vertical line indicates the trap depth used for RSC. The left vertical grey line indicates the
trap depth used for loading and imaging the tweezer. b. A two-dimensional slice through
a light sheet in the plane of the tweezers. The color map represents the intensity relative
to I0 = 9 × 103 W/mm2. The corresponding laser power and beam waists yield weak
and strong radial trapping frequencies {ωrad,strong, ωrad,weak}/2π = {48.42 kHz, 0.82 kHz}
and axial trapping frequencies {ωax,strong, ωax,weak}/2π = {3.41 kHz, 0.98Hz}. Note that
ωrad,strong is overlapped with the axial axis of the tweezers. c. A sketch illustrating the
light sheet propagating along the y-axis, with the tweezer array situated within the x-y
plane. d. Normalized intensity, depicted for cuts through the experimental x-axis (blue),
y-axis (red), and z-axis (yellow).

wavelength of 1064 nm, power of 10W, a horizontal waist (in the x-direction) of 200µm
and a vertical (in z-direction) waist of 3.4µm. The light sheet would be aligned along the
experimental y-axis. Since we are interested in the trapping frequency, which is overlapped
with the propagation direction of the tweezers, we are calculating the vertical trapping
frequency ωz in the tweezer (x-y) plane. Here, we are limited by the Rayleigh range of
zr = 34µm along the y-axis and the horizontal waist along the x-axis. Nevertheless, the
additional light sheet would boost the confinement of the tweezers and allow for better
sideband cooling on this axis. In addition, it would also allow further lowering of the tweezer
trapping potential and increase the tweezer switch-off time. Another very advantageous
aspect is to load the tweezers out of the light sheet, preventing Talbot planes from filling
with atoms.

3.5 Ground-state spin control using Raman transitions

One mandatory requirement to study spin Hamiltonians using Rydberg atoms is the precise
preparation and initialization of quantum spin states. Depending on the choice of effective
spins, they are prepared via optical pumping and coherent transfer pulses between electronic
ground and/or excited states. In our case, after the Raman-assisted optical pumping
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during the state preparation and the RSC sequence (see previous section), the atoms are
initialized in the |F = 2, mF = ±2〉 hyperfine ground state. For the measurements in this
thesis, we usually encode our spins in two hyperfine ground states |F = 2, mF = +2〉, and
|F = 1, mF = +1〉 or in the |F = 2, mF = −2〉, and |F = 1, mF = −1〉 states. Furthermore,
we require to drive coherent Raman pulses between them in order to perform Ramsey
interferometry measurements as done in Section 4.6. In the following, we will introduce
and characterize the corresponding ground-state Raman laser setup.

3.5.1 Ground state Raman laser setup and characterization

We implemented two co-propagating Raman beams along the experimental y-axis to facili-
tate coherent transitions between atomic spin states. This configuration effectively mitigates
any effect of the atom’s Doppler shift onto the coherent state transfer. The polarizations of
the beams are set both linear and orthogonal to each other. Given that our quantization
axis is parallel to the x-axis, this setup drives ∆mF = ±1 transitions. Notably, the choice of
linear polarizations avoids any vector light shifts [91].

In more detail, the ground state Raman (GSR) laser is beat-locked to the RSC laser, which
is stabilized to a ULE at a detuning ∆RSC = 2π × 40GHz from the D1-resonance. The laser
setup includes two AOMs in double-pass configuration to bridge the ground state hyperfine
splitting of 461.7MHz. Then, both paths are overlapped with perpendicular polarizations
and coupled into the same fiber, making the alignment procedure onto the atoms easier.
After the fiber out-coupler, the Raman beams are shaped to be elliptical to maintain a
homogeneous coupling for large tweezer arrays. Using an anamorphic prism pair, we obtain
a 1/e2 waist of 250µm for the short axis in z-direction and 500µm for the long axis along
the x-direction.

First, we want to measure the ground-state Raman spectroscopy. We apply a ground state
Raman pulse of 7µs. Afterward, we ramp the tweezer depth to 20% of the initial loading
depth. Since we cannot distinguish between the two spin states during fluorescence imaging,
we remove the atoms in the |F = 2, mF = −2〉 state. By applying a resonant D2 pulse,
driving the closed |F = 2, mF = −2〉 to |F ′ = 3, mF ′ = 3〉 cycling transition, we heat the
atoms such that they escape from the trapping potential. As shown in Fig. 3.12, we measure
the probability of finding the atoms in the F = 1 state. We can fit the spectroscopy with
a sinc(f) envelope with a width of 132.32 ± 1.87 kHz, which we expect for the applied
rectangular-shaped Raman pulse. For the Rabi measurement, we fit an average Rabi
frequency of 79.64± 0.15 kHz. The dephasing exceeds the scanned Raman pulse duration
and is within the order of several hundreds of microseconds. Due to the Gaussian shape
of the Raman beam, we see a Gaussian envelope of the Rabi couplings when evaluating
the coupling per tweezer row, which is parallel to the Raman beams. We fit a Gaussian
beam with a 1/e2 waist of 425.6 ± 12.1µm. Small offsets in the spectroscopy and Rabi
measurements can be explained by an inefficient state preparation to |F = 2, mF = 2〉 and
heat-out pulse of the same state.
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Figure 3.12 Ground state Raman spectroscopy and Rabi oscillation measurements. a. Scan of
Raman detuning with a pulse duration of 7µs. We average over 64 tweezers and fit a sinc
function with a width of 132.32±1.87 kHz, as expected from a rectangular pulse. b. Raman
Rabi oscillations between the |F = 2, mF = −2〉 and |F = 1, mF = −1〉 ground states,
averaged over 64 tweezers. The fit shows ocillations with a frequency of 79.64± 0.15 kHz.
c. Raman Rabi oscillation evaluated per tweezer row along the experimental y-axis. The
array spacing is 20µm. The fit for the Gaussian beam corresponds to a beam with a 1/e2

waist of 425.6± 12.1µm. The inset shows a schematic of the tweezer array illustrating
the plotted y-distance.

3.5.2 Calibrating magnetic offset fields using ground state Raman spectroscopy

We use the narrow Raman transition line to precisely calibrate the magnetic compensation
field at the position of the atoms. Given that our experimental setup contains two magnetic
offset coils in the x, y, and z directions, it is important to relate the amplitude of the
magnetic fields to one another, especially when performing field rotations. The choice
of linear polarization for the ground state Raman beams proves beneficial in this context.
Without it, vector light shifts could compromise our measurements. Previously, we measured
the required magnetic compensation fields using the D2 optical molasses, whose cooling
efficiency is very sensitive to stray magnetic fields.

For the calibration measurement, we apply an offset field of 5G aligned along the x-axis
and ramp the tweezer power to 0.5% to minimize the influence of inhomogeneous trap
depths on the width of the averaged spectroscopy signal. We apply a Hahn-shaped Ra-
man pulse between 500 − 700µs to drive transition between the |F = 2, mF = −2〉 to
the |F = 1, mF = −1〉 ground state. Afterward, we heat out the remaining atoms in the
|F = 2, mF = −2〉 state. Changes in the Raman resonance center frequency can directly
be translated into magnetic field shifts due to a magnetic field sensitivity of the transition of
3× 0.7MHz/G. For αxy (αxz) of 90 ◦ and 270 ◦, we align the field parallel with the y-axis
(z-axis). As shown by the grey data points in Fig. 3.13, we measure changes in the Raman
resonance frequency due to two effects: The asymmetry of the dips corresponds to a wrong
“zero field” setting along the axis. When inverting the magnetic field direction, we would
expect the same Raman resonance frequency for a correct zero field. The difference in the
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Figure 3.13 Calibrating the magnetic compensation fields. Rotating a magnetic field in the x-z
plane (a) and in the x-y plane (b). The data points correspond to the Raman center
frequency of the fitted spectroscopy signals. The inset in a shows an exemplary spectroscopy
measurement with a Gaussian fit. The measurement was done before (grey data points)
and after (red data points) correcting the magnetic compensation fields. The y-axis label
on the right of each plot is the calculated magnetic field shift having a magnetic field
sensitivity of 3 · 0.7MHz/G.

y-direction (z-direction) is ≈ 100 kHz (≈ 130 kHz), which is consistent with a change in
the magnetic field of about ≈ 50mG (≈ 65mG). The peak-to-peak magnetic field change
between x and y axis (z axis) is ≈ 95mG (≈ 110mG). After correcting the magnetic zero
field and referencing the amplitudes of the magnetic compensation field direction between
each other, we repeat the measurement (red and blue data points in Fig. 3.13). We measure
a maximal difference of 8 kHz (3.6mG), when rotating the field bei 90 ◦ in the x-y-plane
and 12 kHz (5.8mG) as the maximal difference in the x-z-plane. The applied calibration
is sufficient to continue with the Rydberg measurements in the next section. However,
the accuracy of the magnetic field can be improved further with a second optimization
iteration using longer Raman pulse durations, not being Fourier limited, and evaluating the
resonance frequency per tweezer and not averaged. The atoms’ temperature will then limit
the highest achievable accuracy.

3.5.3 Implementing a Ramsey interferometric sequence

Now, we want to characterize the dephasing of the ground state control. We start with
preparing all atoms in the |F = 2, mF = −2〉 state, ramp the tweezer power to 0.05% and
apply a Ramsey interferometry sequence with two π/2 pulses, separated by the scanned
evolution time. We set the laser to be detuned by ∆/2π = 30 kHz from the Raman resonance
and measure the characteristic sinusoidal oscillations with a frequency equal to the set
detuning in Fig. 3.14. We fit a Gaussian decay T ∗

2 of 81± 5.3µs. One of the major reasons
for the fast dephasing are fluctuations in the magnetic field during the measurement arising
from the 50Hz power grid. These fluctuations lead to a normal distribution of oscillation
frequencies.



Chapter 3 Preparation of single 39K atoms in optical tweezer arrays 32

a b c

0 100 200 300 400
Ramsey time (μs)

0.0

0.4

0.8

Pr
ob

ab
ilit

y 
in

 F
=1

0 10 20
Delay time (ms)

16

18

20

Ω
/2

π
(k

H
z)

0 40 80 120
Ramsey time (μs)

0.0

0.4

0.8

Pr
ob

ab
ilit

y 
in

 F
=1

Figure 3.14 Ramsey fringes with and without power line trigger. a. Measurement of Ramsey
fringes without a line trigger. We apply a π/2 pulse of 3.2µs and fit a sin (solid line) with
a frequency of 2π × 28.26 ± 0.32 kHz. The dashed line is the fitted Gaussian decay of
81± 5.3µs. b. Ramsey fringes measureme nt when using an in-sequence line trigger. The
applied π/2 pulse duration is 3.7µs. The fit (solid line) gives an oscillation frequency of
20.92±0.054 kHz with a Gaussian decay (dashed line) of 358.5±20.7µs. c. Data points are
the fitted oscillation frequencies of Ramsey fringes when applying the Ramsey measurements
at different timings w.r.t. to the line trigger. We fit sin with a frequency of 48.9± 3.1Hz.

To correct for fluctuations in the power grid, we implemented a so-called “line trigger”.
It pauses the cycle at a specific time during the sequence and holds the experimental
parameters until the next zero crossing of the 50Hz line occurs such that the residual
magnetic offset fields are in-phase afterward. We repeat the same Ramsey interferometry
sequence as before at a detuning of 2π × 20 kHz and measure a T ∗

2 time of 358.5± 20.7µs.
Furthermore, we repeat the same measurement with various delays of the Ramsey pulse
sequence w.r.t. the zero crossing of the power grid and fit the resulting oscillation. Fig. 3.14
shows the measured oscillation frequency, where we applied a sinusoidal fit, and obtained a
frequency of 48.9± 3.1Hz.

The dephasing can be improved further by implementing a spin-echo pulse (π pulse) centered
between the π/2 pulses. Additionally, one could eliminate any magnetic field fluctuations
when encoding the spin in the magnetically insensitive Zeeman sublevels mF = 0 and
driving the so-called clock transition ∆mF = 0 [37, 38, 54].

In summary, we have characterized the coherent ground state atom control between the
|F = 2mF = −2〉 and |F = 1mF = −1〉 states and calibrated the magnetic compensation
fields using Raman spectroscopy. Additionally, we have shown how the so-called line trigger
improves the dephasing measuring characteristic Ramsey fringes by a factor of ≈ 4.

In this chapter, we explored the characteristics of our experimental setup and elaborated on
the methods used to load and image tweezers. Building on this foundation, we described our
state preparation technique and detailed the implementation of Raman sideband cooling.
With our atoms prepared, the next logical step is to introduce interactions. We achieve this
through the use of Rydberg atoms, which will be the central focus of the next chapter.
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Chapter 4

From theory to practice – Probing Rydberg
interactions and dressing

Having introduced the concept of Rydberg atoms and their advantageous properties in
Chapter 2, we now focus on their interactions. The structure of this chapter is as follows:
We begin by exploring the interaction dynamics between two Rydberg atoms in Section 4.1.
This leads us to discuss their potential applications in the context of quantum technology.
A resulting characteristic of prime significance is the Rydberg blockade effect. This phe-
nomenon, studied extensively in multiple settings, holds the promise of pioneering results,
particularly regarding qubit implementation for quantum computation [32, 37, 38, 43, 45,
46, 48, 96–99]. A noteworthy alternative approach of using Rydberg interactions in the
context of quantum simulation is the so-called Rydberg dressing. Here, we transfer Rydberg
characteristics to ground-state atoms by admixing them with Rydberg states. In Section 4.2,
the properties and advantages of Rydberg dressing are presented.

Transitioning from theory to practice, we describe the single-photon Rydberg excitation laser
setup used in the subsequent experimental sections. Section 4.3 provides a brief overview
of the laser configuration, its general alignment technique, initial calibration procedures,
and discourse on challenges regarding optical components encountered when operating at
the Rydberg excitation wavelength of 286 nm.

Next, we turn our attention to the practical side, presenting measurements of Rydberg-
dressed atoms, especially characterizing the dressed lifetime. A significant constraint here
emerges from resonant scattering light during Rydberg dressing due to the phase noise of
the Rydberg excitation laser. This issue is discussed in Section 4.4, where we also provide a
potential solution by introducing measurements using a spectral filter, an optical cavity. The
building process of this setup and the subsequent measurements were collaboratively done
with Ludwig Müller, with further insights available in Ludwig Müller’s Master thesis [100].

In preparation for our subsequent Rydberg experiments, we measure the light shift induced
by the Rydberg dressing laser across different detunings from the Rydberg resonance, as de-
tailed in Section 4.5. This procedure serves as a pre-calibration for all further measurements
regarding the Rydberg Rabi couplings.

In Section 4.6, we present our findings from implementing Ising-type spin interactions.
We use a Ramsey-interferometric measurement technique to resolve these spin interaction
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dynamics. Our analysis identifies the excitation laser phase noise and black-body-induced
losses as the predominant sources of decoherence.

Finally, in Section 4.7, our attention turns to black-body induced losses, particularly in the
context of Rydberg dressing using optical tweezer arrays. This section offers a qualitative
analysis of these effects, concluding with a discussion on potential strategies to address the
challenges presented by contaminant atoms introduced during the process.

4.1 Dynamics of interacting Rydberg atoms

The interest in Rydberg interactions has grown since the early 2000s, thanks to the advances
in experimental techniques for cooling and trapping atoms. The development of optical
tweezers and optical lattices, featuring lattice spacing on the order of the interaction range
of Rydberg atoms, has further amplified this curiosity. With their long-range characteristics
and the ability to manipulate quantum systems over mesoscopic scales, Rydberg interactions
have become a promising subject to study [27, 32, 46, 99, 101–103]. The following section
will derive the interaction scaling and explore its importance.

The interactions among Rydberg atoms arise from the large transition dipole matrix elements
between adjacent Rydberg atoms, combined with the substantial polarizability of these
atoms as detailed in Section 2.2. As a result, even minor perturbations, such as those caused
by the presence of a second Rydberg atom at characteristic distances of a few micrometers,
can induce a non-vanishing dipole moment [46, 65]. Throughout the derivation and
discussion of the interactions in this thesis, we assume that the atoms are sufficiently far
apart such that the wavefunctions of the Rydberg electrons do not overlap.

A conventional approach for deducing these interactions employs the electrostatic interaction
potential between the valence electron and the apparent nuclei. Considering two atoms,
designated as A and B, the Coulomb interaction V̂c can be defined as [104, 105]

V̂c =
e2

4πε0

(
1

|R|
− 1

|R− â|
− 1

|R+ b̂|
+

1

|R− â+ b̂|

)
. (4.1)

Here, R corresponds to the distance between the two nuclei, while â and b̂ represent
position operators describing the distance from the Rydberg electrons to their respective
nuclei. The different terms express the repulsive potential between the two nuclei and
Rydberg electrons, as well as the attractive potential seen by the Rydberg electrons from the
nucleus of the other atom. When performing a Taylor expansion up to the third order, under
the assumption that |a|, |b| � |R|, we obtain the leading electrostatic interaction term in
the form of the distance-dependent dipole-dipole operator [46, 104]
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V̂dd =
1

4πε0R3
(d̂a · d̂b − 3(d̂a · n̂)(d̂b · n̂)) (4.2)

where we used n̂ = R/|R| as a unit vector for the interatomic axis along the direction of
R. In addition, we replaced the positional operators â, b̂ with the electric dipole operators
d̂a = eâ for the individual atoms [46].

The previously derived interaction operator acts simultaneously on two atoms. Hence, it is
convenient to define the two-atom basis for the atomsA andB, written as |ra〉⊗|rb〉 = |rarb〉.
Here, each |ra〉 = |na`a, ja,ma〉 represents the quantum numbers of the atomic states
described by the wavefunction

ψn`jm(r, θ, φ) = Rn`(r) · Y`jm(θ, φ) . (4.3)

The wavefunction is described by the product of the radial part Rn`(r) and the spherical
harmonics Y`jm(θ, φ), describing the angular component of the wavefunction. With this
description, we want to evaluate the dipole matrix element 〈rarb|V̂dd(R)|rcrd〉, describing
how the Rydberg atoms interact in the given two-atom basis.

〈rarb|V̂dd(R)|rcrd〉 =
1

4πε0R3
fa,b,c,d(r)

(
Cc
aCd

b − 3(Cc
a · n̂)(Cd

b · n̂)
)
. (4.4)

In this expression, we used

fa,b,c,d(R) =

∫
r3drRna`a(R)Rnb`b(R)Rnc`c(R)Rnd`d(R) (4.5)

which encounts for the product of the various radial components and the Clebsch-Gordan
coefficients

Cc
a =

∫
sin θdθdφ êrY ∗

`ajama
(θ, φ)Y`cjcmc(θ, φ) . (4.6)

The individual coefficients contain the angular contribution to the matrix elements and can
be evaluated in terms of Wigner 3j-symbols, which is done for each component in [104].
Nevertheless, due to the characteristics of these symbols, the angular dependence carries
some crucial informations recognized as the dipole selection rules [104, 106], which are
also exemplary shown by descrite coupling channels in Fig. 4.1:

• The `-selection rule: The orbital angular momentum must change by ±1, such
that `c = `a ± 1 and `d = `b ± 1. This rule allows us to define discrete coupling
channels contributing to the interaction. Throughout this thesis, we primarily work
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Figure 4.1 Interacting Rydberg atoms and coupling channels. a. Sketch for two interacting atoms
A and B, with corresponding Rydberg orbits (shading), separated at distance R. b. Example
for the dipole-dipole interaction coupling atom pairs in P1/2,mj = 1/2 states to different
state channels. Note that the change in the m quantum number allows for spatial restrictions
due to the polarization of the virtually emitted photons [106] thus defining the spatial
interaction shape.

with Rydberg P -states, where ` = 1. These states provide coupling channels to
Rydberg S and D states.

• Themj-selection rule: This constraint restricts the allowed transitions to those where
the magnetic quantum number mj changes by {0,±1}. This rule influences the spatial
interaction profile between two Rydberg atoms. Since the total angular momentum
is conserved during these transitions, the sum of the m-quantum numbers must also
remain the same, meaning that ma +mb = mc +md needs to be fulfilled.

• The j-selection rule: This rule emerges from the previous rules and only allows for
transitions of 0,±1, further narrowing the number of channels to which a Rydberg
atom can couple under the influence of the interaction.

In addition, the product of the radial components, as described in Eq. (4.5), significantly
affects the number of states contributing to the interaction. Specifically, it explains why the
influence is more effective when ∆n is small. If this is not the case, the overlap between the
different states vanishes and effectively nullifies their contribution to the interaction.
This aspect and the selection rules above play an essential role in calculating atomic transi-
tions and consequently also in describing the Rydberg atom interactions, carefully consider-
ing the quantum numbers involved in these processes [46, 65].

We now want to analyse the dipole-dipole interaction in Eq. (4.4) more in depth. Specifically
we are interested in different intial pair-state configurations, depending on whether the pair
of atoms do show same or opposite parity of states. We can thus differ between two major
types of interactions [46, 107, 108], which we will discuss in the following two sections.
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Figure 4.2 Schematic and interaction calculations for the resonant interaction type. a. Spa-
tial interaction profile of the dipole-dipole interaction. The dashed line at 54.7 ◦ indi-
cated the magic angle, at which die interactions vanish. b. Calculations of Rydberg
pair potentials for the |Ψab〉 = |42P1/2,mj = 1/2〉 ⊗ |42S1/2,mj = 1/2〉 state (lower) and
Ψab = |62P1/2,mj = 1/2〉 ⊗ |62S1/2,mj = 1/2〉 state (upper), where the overlap indicates
the quadratic overlap |〈Ψab|Ψα〉|2, where |Ψα〉 corresponds to the Rydberg manifold. The
orange line is a fit of the upper branch using a f(r) = C3/r

3 + C6/r
6 fit function. For

the calculation, the atoms are oriented perpendicular to the magnetic field with |B| = 5G.
The calculations of the Rydberg pair potentials have been done with the aid of Pairin-
teraction [105]. c. Extracted values for the C3 coefficients from the fits as shown in
b., but for principal quantum numbers from 40 to 70 in steps of 2. The blue (red) data
points correspond to a setting, where the atoms are oriented perpendicular (parallel) to the
magnetic field. The two orange points are the obtained C3 coefficients from b. The solid
line is a ∝ n4 fit. Errorbars of the individual fits are smaller than the data points.

4.1.1 Resonant dipole-dipole transitions

The resonant interaction emerges when two atoms occupy different Rydberg states with
opposite parity, thereby obtaining a non-zero dipole matrix element |〈ra|d̂|rb〉| = dab 6= 0.
In the rotating frame, we define the energy reference point as Ea = 0 and thus Eb = ∆.
The interaction that arises between the two different Rydberg states is based on the dipole
matrix element, which in turn is incited by the coupling between the different Rydberg
states, as previously discussed.

Defining the interaction Hamiltonian in the pairstate basis of these two Rydberg states reads
as

Ĥdd =

〈rarb| 〈rbra|( )
|rarb〉 ~∆ Vdd
|rbra〉 V ∗

dd ~∆
. (4.7)



Chapter 4 From theory to practice – Probing Rydberg interactions and dressing 38

This matrix illustrates the oscillation between the two states |rarb〉 and |rbra〉, occuring at an
oscillation frequency of 2/hVdd [109]. The off-diagonal coupling terms are the well-known
dipolar interaction [46]

Vdd(R, θ) =
1

4πε0R3
d2ab
(
1− 3 cos2 θ

)
. (4.8)

The interaction is maximal, when the two atoms are oriented perpendicular to the quanti-
zation axis and it is zero for the so-called magic angle of θm = 54.7 ◦ [33], as depicted in
Fig. 4.2.

The experimental realization of these exchange oscillations requires the initiation of two
atoms in different Rydberg states. This has been achieved by preparing the atoms in
one Rydberg state and additionally integrating a microwave source, which usually drives
transitions in the GHz regime and couples to nearby Rydberg states [52, 109]. Furthermore,
local excitations within a tweezer array have been accomplished using off-resonant beams
on selected traps to induce a light shift and thus shifting them either selectively in resonance
or off-resonance to the microwave transition [110, 111]. This technique emphasizes the
beneficial combination of optical microtraps and Rydberg interactions.

4.1.2 Off-resonant dipole-dipole interactions

The off-resonant interaction, also known as the van der Waals interaction, emerges between
two atoms occupying the same Rydberg state (having the same parity). Due to the absence
of direct coupling between the atoms (|〈ra|d̂|ra〉| = daa = 0), the first-order dipole-dipole
interaction vanishes, such that C3 coefficients are zero. As a consequence, second-order
processes, after applying a second-order perturbative treatment of the dipole-dipole interac-
tion, represent then the leading terms of this interaction. In other words, the interaction can
be understood as virtual processes where atoms couple to virtual states while preserving
energy conservation (see selection rules). These states, detuned from the intial Rydberg
pair state by the so-called Förster defects ∆aa,cd = Ec + Ed − 2Ea, can only be virtually
populated in a second-order process:

VvdW,aa =
∑
cd

|〈rcrd|Vdd(R)|rara〉|2

∆aa,cd
= C6(θ)/R

6 . (4.9)

The sum of all these coupling channels results in an effective interaction between the atoms.
This interaction is quantified by the characteristicC6(θ) coefficient, leading to the interaction
scaling as VvdW ∝ n11 [32, 112–119].

This type of interaction is widely known due to its role in the blockade mechanism. Here,
an excited atom suppresses the excitation of surrounding atoms to the same Rydberg state,
leading to a characteristic blockade radius Rb defined as
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Figure 4.3 Schematic and interaction coefficient calculations for the off-resonant interaction
type. a. The schematic illustrates the concept of the blockade radius. Due to the van
der Waals interaction (blue line), the laser is unable to simultaneously couple both atoms
to the Rydberg state, depending on the distance between the atoms, the excitation laser
frequency, and the state linewidth. b. Calculations of Rydberg pair potentials for the
|Ψab〉 = |62P1/2,mj = 1/2〉 ⊗ |62P1/2,mj = 1/2〉 state, with the overlap representing the
quadratic overlap |〈Ψab|Ψα〉|2. For these calculations, atoms are aligned perpendicular
to the magnetic field with |B| = 1G. The Rydberg pair potentials were calculated using
Pairinteraction [105]. c. We derive the C6 coefficients from each pair potential using
a fit of the form f(r) = C3/r

3 + C6/r
6 for principal quantum numbers ranging from 40 to

70 in steps of 2. The solid line represents a ∝ n11 fit. Error bars for the individual fits are
smaller than the data points.

Rb =
6

√
|C6|
Ω

. (4.10)

In this equation, Ω refers to the laser coupling, which power broadens the line. The radius
basically defines a distance between a pair of atoms, where the strength of the laser driving
is equal to the absolute value of the Rydberg-Rydberg interaction. This mechanism plays a
key role in the design of interactions and the engineering of quantum gates [32, 37, 38,
43, 45, 46, 48, 96–99, 120]. From an experimental standpoint, this interaction is relatively
straightforward to realize, as both ground-state atoms can be coupled to the same Rydberg
state.

A unique case emerges when the Rydberg states are prepared or tuned to approach Förster
resonances, whereby the Förster defect is almost vanishing. In this situation, the interaction
scaling changes drastically, transitioning to a 1/R3 scaling [68]. Förster resonances naturally
arise when the C6 coefficient undergoes a sign shift. A possible workaround to obtain
Förster resonances involves implementing electric fields to artificially shift the Rydberg
levels, creating conditions that allow for Förster resonances to occur [121]. This case
illustrates how the characteristics of the interaction can be exploited through the specific
characteristics of the Rydberg atoms involved.
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4.1.3 Quantum technology applications of Rydberg interactions

Over the past few decades, Rydberg atoms have proven to be a versatile platform for many
applications in quantum technology. These applications take advantage of the unique
properties of Rydberg atoms, including controllable interactions, the blockade mechanism,
long state lifetimes, large polarizabilities, and other features [31, 46, 65, 66, 122]. This
opens up a range of applications for:

• Quantum computing and quantum information processing: The Rydberg blockade
mechanism is fundamental to the engineering of gates in Rydberg-based quantum
computers [32, 37, 38, 43, 45, 46, 48, 96–99]. Despite significant advancements,
achieving high-fidelity two-qubit entangling gates with neutral atoms remains chal-
lenging, particularly regarding feasible quantum error correction. Nonetheless, Ryd-
berg atoms are strong candidates for implementing quantum error correction protocols
[123–125]. Additionally, the unique properties of Rydberg atoms open new pathways
for encoding, manipulating, and transferring quantum information. Their potential
for coherent state transfer, combined with long coherence times relative to interaction
timescales, make them promising for quantum memory applications – a key component
for long-distance quantum communication and quantum repeaters [46, 126–128].

• Quantum simulation within the Rydberg manifold: Rydberg interactions have
proven to be a powerful tool to simulate complex quantum many-body systems in
a highly controllable experimental setting. The long-range nature of these tunable
interactions enables realizing complex models such as the XY -Hamiltonian and the
transverse-field Ising Hamiltonian [66]. In the XY model, interactions between the
different components (spins) depend on their respective orientation and are thus
based on resonant exchange interactions. Besides the fact that it can be used to
study quantum magnetism, it is also exploited to analyze transport properties in
various settings, such as the spread of spin excitations in a chain [109, 129]. On
the other hand, the transverse-field Ising Hamiltonian is used to describe magnetic
materials and quantum phase transitions, leading to an improved understanding of
these systems [21, 49, 66, 99, 130]. Recently, the engineering of XXZ Hamiltonians
in arrays of Rydberg atoms has been realized [52], where the resonant dipole-dipole
interaction has been used. This opens perspectives to study frustration for different
array geometries or domain-wall dynamics for large systems.

• Quantum metrology: The strong interactions between Rydberg atoms offer the
possibility to prepare and generate large entangled states, an advantageous feature in
quantum metrology. The correlations within these states enable enhanced precision
measurements, which is particularly beneficial in the context of spin squeezing [58,
131, 132]. Moreover, the non-linear response of Rydberg atoms to external electric
and magnetic fields makes them very favorable candidates for constructing highly
sensitive quantum sensors [68, 122]. By working with circular Rydberg states, which
have a high orbital angular momentum quantum number, the radiative lifetime,
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sensitivity, and polarizability can be further enhanced, optimizing their suitability for
high-precision measurements [133].

• Nonlinear quantum optics: The nonlinear scaling of interactions within Rydberg
ensembles, originating from the blockade effect, finds a significant advantage within
the context of nonlinear quantum optics. The impact of the nonlinearity can be
amplified to the extent that one is sensitive at a few or even single photon level [134].
This leads to innovative applications, including single-photon transistors, where a
single photon controls the transmission of subsequent photons, or single-photon
switches, where the direction of light is controlled on a single photon level [122, 135].

• Rydberg dressing: Instead of operating entirely within the Rydberg manifold, it is
possible to transfer a part of the Rydberg-Rydberg interactions to the ground state,
thus preparing ground state atoms with an experimentally controllable fraction of
Rydberg characteristics [4, 54, 56, 57, 136–142]. The derivation and relevance of
this technique, called Rydberg dressing, will be discussed in more detail in the next
section.

While the listed applications offer a broad snapshot of the growing field of Rydberg physics,
they represent just the tip of the iceberg. The variety and prospects of the platform have
grown remarkably in recent years. Beyond what is listed, other areas of active research
include the exploration of Rydberg molecules [143–146], which present a unique combi-
nation of atomic and molecular physics. Multi-valence electron atomic species, such as
alkaline earth or alkaline earth like atoms, have also gained attention, especially in the
context of quantum computing, due to their richer electronic structure and the possibility to
enhance or facilitate specific Rydberg properties [36, 89, 147, 148]. To tackle the intrinsic
challenge of decoherence and black-body limited Rydberg state lifetimes, several groups
have turned to circular Rydberg atoms, recognized for their extended lifetimes especially in
cavities or even in cryogenic environments [71, 149, 150]. In addition, the integration of
cryogenic environments offers another avenue to mitigate decoherence, providing a ’quieter’
environment for Rydberg experiments [149]. Researchers are pushing boundaries even fur-
ther by integrating Rydberg atoms into ultrafast physics, where one can, with sophisticated
laser pulses, dive into the fast dynamics of dipole-dipole interactions [151]. Furthermore,
various groups are researching Rydberg excitons, an interesting field of research combining
Rydberg excitations and solid-state materials [152]. However, there is also research on
creating hybrid quantum systems combing trapped, ultracold atoms with on-chip microwave
resonators [153, 154]. Other research groups also combine Rydberg physics with ion physics
to so-called Rydberg ions [155], or trap Rydberg atoms inside optical cavities [56, 58].

In summary, the applications of Rydberg atoms cover a broad landscape from quantum
computing to precision sensing, reflecting the miscellaneous nature of this field.
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4.2 Atoms with a Rydberg dress

In this section, we have a closer look at another fascinating aspect of Rydberg physics:
Rydberg dressing. This phenomenon broadens our perspective of Rydberg atoms by demon-
strating how (a collection of) ground-state atoms can undergo an interaction induced
two-atom energy shift when admixed with Rydberg states, effectively ’dressing’ them with
Rydberg properties.

4.2.1 Rydberg dressed interaction

We will begin by deriving this energy shift for a two-atom system. Initially, both atoms are
prepared in the ground state |g〉 and are off-resonantly coupled to the Rydberg state |r〉
via the Rabi coupling Ω and the laser detuning ∆. Thus, we can compose a new, dressed
state |g̃〉 that is mainly in the ground state but additionally offers a tunable fraction of
Rydberg characteristics: |g̃〉 ≈ |g〉+ β|r〉 [156]. Here, the Rydberg admixture β = Ω/2∆,
purely dependent on the laser parameters, offers an additional level of control in adjusting
the Rydberg probability (which scales with β2) and, thus, the contribution from Rydberg
interactions. Assuming, for example, a Rabi coupling of Ω = 2π× 1MHz and laser detuning
of ∆ = 2π × 2MHz, we have an admixture of β2 = 6.25%. This representation sticks to a
fully coherent picture, implying the absence of other decoherence and loss mechanisms.

We begin with two atoms, prepared in the ground state and well-separated, such that we
can consider them as individual atoms. When switching on the detuned coupling beam,
both atoms experience an energy shift δAC . This so-called light shift can be calculated
using perturbation theory and is understood as a correction term to the atom’s Hamiltonian
H∆ = ~∆|r〉〈r|, treating the laser driving as a pertubationHΩ = ~Ω/2(|g〉〈r|+|r〉〈g|), where
Ω = 〈g|d̂ · E|r〉 with the laser driving field E (see also Section 2.2 for detailed derivation of
the dipole matrix element and Rabi frequency). The first-order correction is zero because
the time-averaged fast oscillating driving field equals zero. The same scenario applies to all
odd orders of the perturbative treatment and can be understood from symmetry arguments:
Odd orders contain a product of an odd number of field operators, where the negative and
positive contributions cancel out when averaging over time. Consequently, only the even
orders will contribute to the single-atom energy shift [30]:

δAC =
~Ω2

4∆
+

~Ω4

16∆3
+O

((
Ω

2∆

)6
)
. (4.11)

As we decrease the distance between the two atoms, interactions between the Rydberg
components become apparent. In an intuitive picture, we would expect these interactions
to scale with the product of the Rydberg probabilities of the two individual atoms, thus
scaling with β4. However, this cannot hold true for all distances. As we continue to reduce
the atom-atom distance, the Rydberg fraction will gradually decrease due to the scaling
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behaviour of the interaction potential until it effectively vanishes due to the increased
effective pair-detuning. Thus, we will expect a saturation behavior for the interaction
contribution to the state |g̃g̃〉.

We now want to calcuate this interaction induced potential, and start with defining our two-
atom Hamiltonian. In addition, we transfer to a rotating frame, which simplifies the atom-
light interaction treatment. The two-atom Hamiltonian in the |gg〉, |+〉 = (|rg〉+ |gr〉)/

√
2,

|rr〉 basis can then be expressed as:

Ĥ =

〈gg| 〈+| 〈rr| |gg〉 0 ~Ω/
√
2 0

|+〉 ~Ω/
√
2 −~∆ ~Ω/

√
2

|rr〉 0 ~Ω/
√
2 −∆(2)

. (4.12)

In this Hamiltonian, we neglected the anti-symmetric state |−〉 = (|rg〉 − |gr〉)/
√
2 since

it is not coupled by any laser due to the interference between the two excitation paths.
Additionally, we introduced the two-photon detuning ∆(2) = 2~∆− VvdW(R, θ), where we
restored the van der Waals interaction potential VvdW(R, θ). From this definition, the impact
of the sign of the laser detuning relative to the interaction potential becomes evident: When
both signs are identical, the laser can become resonant with the atomic transition. To obtain
an exact solution for the |g̃g̃〉 state under these circumstances, it is necessary to diagonalize
the full Hamiltonian of the system. Diagonalizing the matrix in Eq. (4.12), we obtain three
distance-dependent eigenenergies Err, E+, Eg̃g̃, referring to the asymptotic states |rr〉, |+〉
and |g̃g̃〉. The distance-dependent eigenenergies for a Rabi coupling of Ω/2π = 1MHz and
a detuning of ∆ = ±2π× 5MHz are illustrated in Fig. 4.4, where the previously mentioned
saturation behavior of Eg̃g̃ is clearly visible. This demonstrates that our earlier intuitive
approach provided valuable insights into the interaction shape.

Nevertheless, the Hamiltonian can become quite complex for larger many-body systems,
making it impossible to find an exact analytical expression. One possible solution to this
issue is to employ an approximate method, such as perturbation theory. Thus, we now apply
a perturbative approach to estimate the energy correction associated with the Rydberg-
Rydberg interaction, following the procedure from reference [157]. Note that this derivation
is applicable when Ω/∆ � 1, thereby ensuring we do not cross any atomic resonance.

Similar to the treatment for Eq. (4.11), we consider the laser coupling term Ĥ∆ as a
perturbation to the single atom Hamiltonian Ĥ∆. As we have observed earlier, the k-th
order of the perturbation series contains a product of k field operators, thereby describing
the influence of k virtual processes (photons). In the two-atom picture, this requirement
means we need a total of four virtual photons to effectively couple the Rydberg-Rydberg
interactions to the pair of ground-state atoms. Thus, we will calculate the energy correction
terms ugg(k) up to the 4th order [157, 158]:



Chapter 4 From theory to practice – Probing Rydberg interactions and dressing 44

a b c

−0.5

0

0.5

1

In
te

ra
ct

io
n

U
(r)

 (k
H

z)

0 5 10 15
Distance (µm)

−0.0995

−0.0990

−0.0985

−0.0980

En
er

gy
 (M

H
z)

0 5 10 15
Distance (µm)

0

3

6

9

12

En
er

gy
 (M

H
z)

U0

RC
gg0

E

rr

Figure 4.4 Rydberg-dressing potentials for a two-atom system. a. Illustration of the perturbative
treatment. A pair of ground state atoms |gg〉 is coupled via the Rabi coupling Ω to the state
|+〉, with a detuning of ∆. The singly excited state is subsequently coupled to the Rydberg
pair state |rr〉 with a detuning ∆

(2)
α . The latter includes the Rydberg-Rydberg interaction

VvdW, which gives rise to the soft-core interaction type potential illustrated in c. b. The
figure displays the three eigenenergies Err, E+, Eg̃g̃ (in blue, yellow, and red) for a detuning
∆/2π = −5MHz and Rabi coupling Ω/2π = 1MHz, assuming an interaction coefficient of
C6 = 166GHz/µm6 extracted from Fig. 4.3 for the 62P1/2 state. c. A detailed view of the
Eg̃g̃ eigenenergy. The dashed line corresponds to the perturbative result from Eq. (4.14).
The two horizontal lines represent the soft-core height U0, and the vertical line indicates
the soft-core radius RC = 5.05µm.

ugg(1) =〈gg|ĤΩ|gg〉 = 0

ugg(2) =
|〈gg|ĤΩ|+〉|2

〈+|Ĥ∆|+〉
= ~

Ω2

2∆

ugg(3) =
〈gg|ĤΩ|+〉〈+|ĤΩ|rr〉〈rr|ĤΩ|gg〉

〈+|Ĥ∆|+〉〈rr|Ĥ∆|rr〉
− ugg(1)

|〈gg|ĤΩ|rr〉|2

(〈rr|Ĥ∆|rr〉)2
= 0

ugg(4) =
|〈gg|ĤΩ|+〉〈+|ĤΩ|rr〉|2

(〈+|Ĥ∆|+〉)2〈rr|Ĥ∆|rr〉
− ugg(2)

|〈gg|ĤΩ|+〉|2

(〈+|Ĥ∆|+〉)2
= ~2

Ω4

4∆2 ·∆(2)
− ~

Ω4

4∆3
.

(4.13)

From these calculations, we identify that the first and third-order terms are zero. This is
intuitively clear, as we always require an equal amount of virtual photons to couple to the
ground state. Moreover, we notice similarities when comparing the second and the fourth-
order terms with the light shift calculated in Eq. (4.11). For example, the second-order term
corresponds exactly to twice the second-order light shift. This factor two is attributed to the
two-atom system under consideration. However, as expected, there are no Rydberg-Rydberg
interactions in the second order, which is why proceeding to the fourth order is necessary.
Furthermore, as we are only interested in the interaction-induced shift of the dressed ground
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state potential Ugg, we normalize the energy corrections by subtracting the light shift for
two atoms, as calculated in Eq. (4.11), from the sum of all energy correction terms:

Ugg = ugg(1) + ugg(2) + ugg(3) + ugg(4) − 2δAC =
~2Ω4

4∆2∆(2)
− ~Ω4

8∆3
=

U0

(R/Rc)6 − 1
. (4.14)

Here, we used Eq. (4.9) to extract the soft-core potential

U0 =
~Ω4

8∆3
(4.15)

and the soft-core radius

RC =
6

√
C6

2~∆
. (4.16)

Interestingly, as previously mentioned, the extracted soft-core potential scales with U0 =
2~∆β4 and, thus, purely depends on laser parameters. The soft-core radius, on the other
hand, scales according to the ratio between the interaction coefficient C6 and the laser
detuning and is maximal when both are identical. We also note some similarities with
the blockade radius in Eq. (4.10) as both describe the ratio between the van der Waals
coefficient and the effective power broadening Ωeff =

√
Ω2 + (2∆)2, which corresponds to

Ωeff = Ω for resonant physics and Ωeff = 2∆ for the dressing regime, where Ω2 5 ∆2 [136].

4.2.2 Lifetime of Rydberg dressed atoms

Another key aspect of Rydberg dressing is the extended lifetime of Rydberg states, which
scales with the square of the principal quantum number n2. This principle is discussed in
Chapter 2. When operating in the Rydberg dressing regime, we encounter an additional
significant timescale. Since a fraction of the Rydberg characteristics β is transferred to the
ground state, the resulting dressed atom also exhibits a shortened lifetime. This dressed
lifetime is influenced both by the Rydberg admixture and by the black-body limited lifetime
of the Rydberg states:

τdr =
τbb
β2

. (4.17)

Consider a laser coupling of Ω = 2π · 1MHz and a laser detuning of ∆ = 2π × 2MHz. A
commonly used Rydberg state throughout this thesis is the 62P state, which has a black-
body limited lifetime of τbb = 160µs. With the calculated admixture, we therefore obtain a
dressed lifetime of τdr = 2.56ms.

However, in experimental conditions, we also need to consider the laser’s linewidth ΓLas. In
the calculations above, we assumed an infinitely small laser linewidth. Yet, a finite laser
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width becomes critical when it is of the same order or larger than the state linewidth. Thus,
we have to combine both linewidths to obtain an effective, experimental linewidth:

Γeff = Γbb + ΓLas (4.18)

Besides the linewidth of the laser, the most limiting characteristic of the laser’s spectral
line is its phase noise, not expressed by this formula [159–161]. Even for lasers with
sub-Hertz linewidth, a significant fraction of the overall power can be found in the broad
phase-noise pedestal surrounding the carrier, typically extending up to a few megahertz
[161]. This can become easily limiting for Rydberg dressing experiments: The additional
noise pedestal can cause incoherent, resonant excitations to the Rydberg state, thereby
reducing the experimentally observed lifetime of the dressed state [56, 57]. For instance,
by locking the laser to a reference cavity [161], the feedback loop can tightly stabilize the
laser to the cavity resonance such that ΓLas � Γbb can be rather easily reached. However,
due to the finite range of the feedback bandwidth, the intrinsic noise of the laser can only
be partially compensated.

To carry out Rydberg dressing measurements within a detuning range of a few megahertz,
it’s crucial to minimize the laser’s noise as much as possible. The characterization of the
laser and possible solutions to reduce its phase noise are discussed in Section 4.4.

4.2.3 Advantages and limitations of Rydberg dressing

Rydberg dressing has emerged as an active field of study [4, 54, 56, 57, 136–142, 156,
162–165] and provides various advantages compared to resonant Rydberg physics:

• Controlled interaction strength and range: Rydberg dressing introduces extra
control parameters, namely the laser parameters, which enable tuning the interaction
strength and spatial behavior, as well as the ability to turn the interactions on or off
as needed. This is in contrast with resonant interactions, where the interactions are
always present.

• Long range interactions in optical traps: Dressed interactions inherit the long-range
scaling of Rydberg interactions, making them especially suitable for the implementation
in optical lattices and tweezers [23]. Moreover, the trapping potential can remain on
during dressing experiments. In contrast, resonant excitation generally repell atoms
from ponderomotive light potentials, which forces the experiments to switch off the
trapping potential during the excitation pulse and interaction evolution [60, 78]. This
imposes an upper limit on the possible evolution time. Alternatively experiments also
investigate trapping Rydberg atoms.

• Exotic interaction shape: One proposed method to engineer interactions with an
exotic distance dependence is by implementing Rydberg dressing in the presence
of Förster resonances [139]. Operating close to these resonances can significantly
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enhance the effectiveness of Rydberg dressing, resulting in interaction couplings
that exceed the related decoherence rates. If one does not operate near the Förster
resonances, the effectiveness of these interactions is given by the ratio of interaction
strength to the effective decay of the system. This ratio tends to be lower for Rydberg
dressing than for the resonant case.

• Advanced Quantum Simulation: Rydberg dressing enables to engineer and simulate
complex quantum systems, such as spin systems [55, 57, 137], quantum phase
transitions [139], and novel phases of matter, such as crystalline states. It also has
applications in quantum logic operations, providing the potential to construct quantum
gates [54, 141, 164]. The perspectives and advantages will be elaborated more in
detail within the next chapters.

In summary, Rydberg dressing provides a versatile platform for exploring and manipulat-
ing quantum systems, with wide-ranging applications in quantum information, quantum
simulation, and beyond. Despite these advantages, significant challenges remain, such as
undesired losses to and interactions with other Rydberg states [57, 75, 166], and the laser
noise [56, 62, 75].

4.3 Single-photon Rydberg excitation setup

Now, we turn our focus to the Rydberg excitation laser setup. There are various possible
configurations, with the two-photon Rydberg excitation schemes being the most commonly
used ones. For alkali atoms like potassium, these schemes involve a combination of two lasers
operating at very different frequencies. Over the past few years, the so-called “inverted”
scheme has become the standard. This scheme couples the electronic ground state 4S to a
(n+ 1)P state first and then couples to any Rybderg n′S or n′′D state. Previously, it was
quite common to use a combination of a D2-laser (also used for MOT transitions) and an
additional laser to couple to the Rydberg states via an intermediate state. However, this
configuration has a much smaller dipole matrix element than the inverted excitation scheme.
This shortcoming cannot be compensated due to the limited available laser power.

Alternatively, the single-photon excitation from the 4S state to any Rydberg n′P state could
offer a significant advantage by not requiring any intermediate state to couple to the Rydberg
manifold. However, the single-photon excitation setup is more complex and often requires
one to several frequency-doubling stages, limiting the maximum achievable output power
and setting an upper limit of the attainable Rabi coupling.

Rydberg dressing experiments, as discussed in the previous chapter, are highly sensitive to
laser noise. Consequently, the intermediate-state scattering from the two-photon excitation
scheme further reduces coherence in the system, which is why we use a single-photon
Rydberg excitation laser setup for the Rydberg dressing experiments presented in this thesis.
In Section 4.3.1, we briefly introduce the home-built laser setup, which is described in
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detail in the thesis of Nikolaus Lorenz [60]. Then, we present a step-by-step guide of the
alignment procedure for the fast and optimal alignment of the tightly focused excitation
beam onto the tweezer array in Section 4.3.2.

Additionally, we discuss the performance of the laser setup and evaluate potential sources of
imperfections. Unfortunately, the used excitation wavelength caused damage to certain op-
tics coatings, which prompts us to share our understandings, experiences, and improvements
in Section 4.3.3.

4.3.1 Single photon excitation laser setup

As of now, there are no commercial laser sources available that operate at the required
wavelength of 286 nm while also offering a high optical power of at least 1W. Additionally,
these lasers must meet the specific requirements for driving transitions to Rydberg states,
having narrow linewidths. To address this gap, we have developed a custom laser system.
This system starts with an infrared seed laser, which is amplified and undergoes two
frequency-doubling stages to generate the desired ultraviolet wavelength.

First, we focus on the seed laser, which is the first component in our setup. It is a home-built
external cavity diode laser (ECDL) with an output wavelength of 1143 nm. The design of
our home-built lasers and a detailed description of the optical and electric setup around
this laser can be found in the thesis of Nikolaus Lorenz [60]. This laser is stabilized to an
ultra-low expansion cavity (ULE) with a Finesse of F ≈ 10000. For tuning the laser to any
desired frequency, we implemented a fiber EOM1, enabling to modulate the light at a range
from 50-700 MHz. Consequently, we stabilize the laser to one of the modulation sidebands
instead of locking it to the carrier. We use a Pound Drever Hall locking scheme [167], which
includes additional locking sidebands at 21.3MHz.

Then, the output of the laser is amplified to a power of 8W using a Raman fiber amplifier2.
We guide the beam through two consecutive frequency doubling stages as illustrated in
Fig. 4.5. The first second-harmonic generation cavity has a coupling efficiency of 80% into
the Gaussian mode, resulting in an output power of ≈ 3.3W of green light at a wavelength
of 572 nm. The beam is subsequently directed through an AOM for intensity stabilization.
The feedback signal for this AOM can be either measured with a PD in the green beam
path after the AOM or with a PD in the UV beam path after the second cavity, operating in
sample-and-hold mode.

We utilize two different locking methods for these cavities. For the first (green) one, we
use the Pound Drever Hall locking method [167]. For this lock, we implemented a free-
space EOM into the beam path before the RFA, which modulates the light at about 51MHz.
For the second cavity, we want to avoid introducing modulated sidebands, which could

1EOspace 10Gb/s Lithium Niobate Phase Modulator at 1140-1160nm - PM-0S5-10-PFA-PFA-1140/1160.
2 MPB Communications Inc. Single frequency NIR Raman Fiber Amplifier
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Figure 4.5 Single photon Rydberg excitation laser setup. The seed laser is a home-built ECDL,
which is stabilized using a Pound-Drever-Hall (PDH) lock to an ultra-low-expansion (ULE)
cavity. This seed light is then amplified by a Raman Fiber Amplifier (RFA) and is subsequently
frequency-doubled twice using non-linear doubling cavities. The first cavity is stabilized
by employing a PDH lock, whereas the second uses a Hänsch-Couillaud locking technique.
Between the two cavities, the intensity of the green light is stabilized using an AOM.

interfere with the atoms. Instead, we use a polarization-dependent lock, namely the Hänsch-
Couillaud lock [168]. This requires a polarization-dependent element such as a Brewster
cut crystal, which results in polarization-dependent reflection and transmission of the cavity.
For locking both cavities, we use a digital FPGA-based PID controller3. While the first cavity
is permanently locked, the second one is kept in scanning mode, with a triangular function
applied to the slow piezo of the second cavity. In case a laser pulse is needed in the sequence,
we lock the cavity a few tens of milliseconds beforehand to allow for thermalization, keeping
it scanning otherwise. This approach prevents the degradation of the intra-cavity optics
and non-linear crystal of the second cavity. The second cavity delivers a maximum output
power of 1W at a wavelength of 286 nm.

The diverging beam following the second cavity is then collimated using a lens with a focal
length of 500mm. As we will discuss in the next section, we observe intensity-dependent
damage to our optics within the UV path, which is the reason we aim to increase the beam
size as much as possible for free space alignment onto the atoms.

After collimation, we adjust the beam diameter to match the aperture of the subsequent
AOMs using a sequential lens telescope. Using a polarized beam splitter, we divide the
beam into two paths, each featuring an AOM; one in the -1st order, the other in the +1st
order. Then, we combine these two beams using a non-polarized beam splitter (50:50). To

3Red Pitaya STEMLab 125-14, firmware and interface from Fabian Schmid: https://github.com/schmidf/
rp-lockbox.

https://github.com/schmidf/rp-lockbox
https://github.com/schmidf/rp-lockbox
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enable independent precision adjustments of the two beams later, we implemented a piezo
actuator mirror mount into one of the paths, as illustrated in Fig. 4.6. After combining the
two beams, we adjust the beam size again using a second telescope.

Throughout this thesis, we employed various telescope configurations to adjust the beam
focus onto the atoms. For the measurements in this chapter, we used a beam waist of 20µm.
For the measurements in the subsequent chapter, we maintained the 1:4 ellipticity of the
UV output beam, resulting in an elliptical beam with a height of roughly 10µm and an
in-tweezer-plane beam waist of 40µm. The reason for this variation in beam waist is to
enable the homogeneous coupling of a larger spread atom array.

To ensure the beam has circular polarization at the position of the atoms, we implemented
a Brewster thin film polarizer4 in combination with corresponding waveplates before and
after it. Furthermore, we implement intensity stabilization for the two beam paths. For
measurements requiring brief excitation pulses, we employ a sample-and-hold technique
for both beams sequentially. This stabilization method also requires a beam shutter5, which
remains shut during pre-stabilization. After several milliseconds of stabilization, the PI
parameters are set to hold, the AOM is turned off, and the shutters are opened to permit an
excitation pulse onto the atoms. As both beams require the same polarization on the atoms,
they cannot be intensity stabilized simultaneously.

To stabilize the position of the excitation beam onto the atom array, we image the beam at
the position of the atoms using a spatial detector6. This detector simplifies the alignment
process during the thermalization time of the entire laser system, which can take from
several hours up to a full day. Once thermalized, the system does not exhibit any significant
long-term drifts. Moreover, this detector allows for a triggered beam stabilization between
each measurement iteration.

4.3.2 Alignment technique and characterization

Aligning the tightly focused Rydberg excitation beam onto the tweezer array can be quite
challenging. When aligning the UV beam from scratch, we use the following techniques for
efficient and reliable alignment:

For a preliminary rough alignment, we overlap the UV beam with the pre-aligned dipole
trap at 1064nm in the same direction before and after the main chamber. However, after
a setup change that involved the removal of the dipole trap, we employed a different
initial alignment method: After several years of Rydberg measurements, we noted that the
viewports showed less fluorescent spots where the UV beam was before transmitted. These
spots, likely resulting from the UV beam, served as position markers, allowing us to guide
the beam through the chamber and align it before and after the viewport. This method is

4Altechna Brewster Tzpe Thin Film Polarizer.
5Uniblitz VCM-D1.
6TEM µAligna 140 with the PSD 2D 4 DUV.
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Figure 4.6 UV optics setup. The output from the final frequency-doubling cavity is collimated using
lens f1, and the beam diameter is decreased using a subsequent telescope comprised of
lenses f2 and f3. A polarizing beam splitter then splits the beam into two paths. Each path
contains an AOM: one operates in the -1st order and the other in the +1st order, so both
together cover the electronic ground state splitting. These paths are subsequently combined
using a 50:50 beam splitter. The beam’s astigmatism is corrected with a second telescope
of lenses (f4, f5, f6), with the last two being cylindrical lenses. A precision pinhole is
located at the focus of this telescope and is projected in a 4f-configuration (f5, f6, and
f7) onto the atoms. The polarization of the beam on the atoms is set to circular using
a Brewster thin-film polarizer and appropriate waveplates. The intensity of both beams
is stabilized in sequence using a photodiode placed after the polarization optics, and this
stabilization employs a sample-and-hold technique. The beam is then overlapped with the
imaging x-axis beam and the dipole trap in x-direction through a dichroic mirror, which
is the last optical component before, and the first one after, the main vacuum chamber.
After the main chamber, the beam is aligned onto two photodiodes. The first one serves as
a diagnostic tool to ensure the beam shutter operates with the correct timing, while the
second one acts as a spatial detector and beam aligner. This aligner provides automatic
feedback to the last piezo mirror to correct any beam drifts.

typically sufficient to align the beam onto the atom cloud (e.g., grey molasses). If the beam
is still significantly off, we employ another pre-alignment step: We remove all filters and
dichroics that sample out the D1 and D2 and trapping light before the CCD camera (see
Fig. 4.6) and align the UV beam at very low power onto the camera. This is feasible as we
have a non-coated lens in front of the camera. After reinstalling the filter and dichroic, we
check for a signal of the Rydberg beam on the GM. The beam can be seen as a ’hole’ within
the atom cloud when on resonance and for a long enough pulse, as shown in Fig. 4.7. As
soon as we see a signal on the atom cloud, we can conveniently guide the beam onto the
position of the tweezers.
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Before proceeding with the fine adjustment, we adjust the polarization of the excitation beam
by spectroscopy. For this purpose, we overlap the excitation beam with the dipole trap in the
x-axis. This method is preferred over using tweezers primarily because there are more atoms
in each dipole trap, leading to a stronger signal and facilitating real-time optimization using
absorption imaging. We load the dipole trap from the grey molasses and prepare all atoms
in one of the stretched states of the hyperfine ground state |4S1/2 F = 2, mF = −2〉, similar
as done in tweezers as discussed in Section 3.4. We apply a magnetic field of 10G along the
x-axis and use a Rydberg spectroscopy measurement, where we measure, depending on the
excitation beam’s polarization, the transition lines to the |62P3/2, mj = {−3/2,−1/2, 1/2}〉
Rydberg substates, corresponding to the σ−, π, and σ+ transitions. We adjust the polariza-
tion by tuning the waveplates while keeping the laser frequency fixed to one of the Rydberg
resonances requiring a σ-transition. We fine-tune the waveplates to minimize the excitation
of the atoms to the Rydberg state. This process implies that we are purely driving the other
polarized sigma transition. An example for the spectroscopic measurements before and
after polarization adjustment is shown in Fig. 4.7. Alternatively, instead of the dipole trap
we used, one could employ the light sheet mentioned in Section 3.4.2 to achieve a similar
adjustment.

Then, we continue with the fine adjustment of the beam onto the array. Essentially, we have
to ensure that the beam is centered on the atoms, the focus is adjusted at the atom’s position,
and the beam is not tilted to obtain a homogeneous illumination over several columns and
rows within the tweezer array. We start with centering the beam onto the array by adjusting
the vertical and horizontal alignment of the beam via the piezo mirror mount before the
chamber. For the adjustment of the focus and beam position, we measure Rabi oscillations
and maximize the coupling with the fine adjustment onto the tweezer array. We follow the
single atom loading and cooling procedure as described in Section 3.1 for this measurement.
We prepare the atoms in the same hyperfine ground state |4S1/2 F = 2, mF = −2〉, ramp
down the overall trapping power, and switch off the tweezer trap for up to 20µs. During this
time, we apply a Rydberg excitation pulse with varing durations. We measure the Rydberg
excitation probability indirectly via atom loss, as shown in Fig. 4.7. The beam is aligned
parallel to the tweezer columns, and knowing the spacing between them, we can calculate
the beam size at the position of the array. Then, we can adjust the focusing lens, which is
mounted on a micrometer stage, and measure the beam size for each position by extracting
the Rabi frequency for each tweezer column, thereby finding the position of the focus.

To verify that the UV beam is aligned parallel to the plane of the atom array, we evaluate the
Rabi coupling of five individual tweezers in a column along the direction of beam propagation.
The averaged Rabi coupling over one column is depicted in Fig. 4.7. With each tweezer
separated by a distance of 39µm, the total span across the column measures 156µm. We
calculate the standard deviation of the Rabi coupling of the individual tweezers to be 18 kHz.
This deviation corresponds to a 2% variation in the Rabi coupling of Ω/2π = 808± 2 kHz,
aligning well with the Rayleigh range for the smaller axis, represented as zr = 1.1mm,
given a beam waist of the smaller (vertical) axis of 10µm.
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Figure 4.7 Single photon Rydberg excitation level scheme and calibration measurements.
a. Generally, in the experiment, the atoms are prepared in one of the stretched states F = 2,
mF = ±2, and are coupled to the Rydberg states. The circular polarization of the beam,
in combination with the direction of the quantization axis, allows for different excitation
paths. b. The first alignment step involves aligning the UV beam onto the grey molasses.
For the alignment, we apply a resonant pulse and capture an absorption image afterwards.
The excitation to the Rydberg state generates a hole in the atom cloud. Conversely, the
dipole trap in the x-direction appears as a denser spot within the atom cloud (indicated by
the right red circle). Subsequently, the UV beam is moved onto the dipole trap, which was
previously aligned to the position of the tweezers. c. For precise polarization alignment, we
conduct spectroscopy scans within the dipole trap. The atoms are prepared in the F = 2,
mF = −2 state and are coupled to the 62P3/2 state. Upon applying a magnetic field
perpendicular to the incident beam with a strength of 5G, we observe three transitions
(grey data points) to the mj = {−3/2,−1/2, 1/2} substates (from left to right). These
correspond to the σ−, π, σ+ transitions. After adjusting the polarization of the incoming
beam and aligning the magnetic field with the beam’s direction, only a single transition
(blue data points) is observed. The x-axis is offset with respect to the π-transition. d. The
spectroscopy signal of the 62P3/2, mj = −3/2 state in tweezers is depicted. The Gaussian
fit indicates a FWHM of 126±10 kHz and a center position uncertainty of ±4 kHz. e. Rabi
oscillation measurements in tweezers, when coupling to the 62P3/2, mj = −3/2 state, are
shown. The fit is an exponentially damped sinusoidal function and yields an oscillation
frequency of Ω/2π = 808± 2 kHz and a damping time of τ = 9.9± 2µs.

Additionally, we observed damping in the Rabi oscillation, which can be attributed to the
following major factors, further elaborated in reference [63]:

• Doppler broadening: After RSC, the remaining ground state momentum uncertainty
of the atoms introduces a Doppler broadening. We define the Doppler shift as ∆D =
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k · v, where the wave vector k is determined by k = 2π/λ and λ denotes the UV laser
wavelength. Meanwhile, the velocity v is given by v =

√
kBT/m, considering the

atomic temperature T and atomic mass m. The finite temperature of the atoms leads
to irregular detuning offsets in consecutive experimental runs, defining an effective
Rabi coupling as Ωeff =

√
Ω2 +∆2

D. After RSC and reducing the trap depth to 20% of
the original loading power, we calculate a Doppler shift of ∆D = 2π×50 kHz. Notably,
the influence of the Doppler shift diminishes with increasing Rabi frequencies. For
instance, at a Rabi coupling of Ω/2π = 800 kHz, this effect becomes negligible.

• Intensity fluctuations: The shot-to-shot intensity fluctuations in the excitation pulse
area induce changes in the Rabi frequency, leading to variations in the evolution time
for each shot. The intensity noise restricts the number of coherent oscillations, which
is inversely proportional to the standard deviation of the pulse area, as shown in [39].

• Phase Noise: The carrier’s phase noise is another contributor to the oscillation damp-
ing. The noise introduces variations in the evolution of each measurement shot.
Improving the excitation laser’s phase noise can significantly increase the achievable
coherent oscillations, as experimentally demonstrated in [63, 169, 170].

Having completed these steps on setting up and fine-tuning the UV beam and with an under-
standing of the remaining limitations that may become relevant later, we now have a closer
look into optics for ultraviolet wavelengths and begin with initial dressing measurements in
the upcoming sections.

4.3.3 Experience and challenges with ultraviolet optics

We require high-reflectivity, high-quality optics to align the single-photon Rydberg exci-
tation beam in free space onto the atoms. However, optical coatings in the UV-B range
(280− 315 nm) demand a careful selection of optics. For this purpose, we use mirrors with
customized, narrow-band coatings that result in no measurable power loss. Conversely,
when we employ complex coatings, such as those provided with custom dichroic mirrors, we
measure a power loss exceeding 3%. For commercially available broadband UV-enhanced
aluminum-coated mirrors7, we have observed an average power loss of 10%. Plus, we have
one specific mirror in our optics setup that adjusts the beam from the AOM plane to the
chamber plane, resulting in an incident angle of 22.5 ◦. To minimize loss for this mirror as
much as possible, we used a commercial mirror8.

In addition to the variations in reflections across distinct optics, we observed different
long-term behaviors. As depicted in Fig. 4.8, some coatings suffered irreversible damage at
the position where the UV beam hit the surface. Notably, anti-reflection coatings, which are
employed for lenses, beam splitters, dichroic mirrors (like the outcoupling mirror of the UV

7Thorlabs PF10-03-F01.
8OptoSigma TFM-25. 4C05-266.
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a b c

Figure 4.8 Examples of contaminations on optic and coating damages. a. Contamination
(indicated within the red circle) on a mirror diminished the reflectivity of the optics.
Fortunately, the contamination was removable and did not lead to any additional damage
to the coating. b. Damage to the coating of the outcoupling mirror from the UV doubling
cavity. c. Damage to the coating on the surface of the crystal within an acousto-optical
modulator.

doubling cavity), and polarization optics, were particularly affected. This damage reduced
the transmission and necessitated frequent replacements. Regarding polarization optics,
we found that those provided by Altechna exhibited the best endurance over time.

We attribute the damage to the UV optics to two major factors:

Laser-induced contamination (LIC) of the surfaces by hydrocarbons

These organic compounds can be found outgassing from organic materials and surfaces.
They can interact with the laser via different processes, which can ionize or polymerize them
at the short wavelength we use. Eventually, these molecules may be deposited on the optical
surface under laser illumination. LIC is an interdisciplinary topic that requires a combined
understanding of material science and optical engineering. It is extensively studied in
space science, where hydrocarbon contamination can damage laser-based measurement
instruments [171–175]. This issue is even more severe in space, as repairing or replacing
components can be difficult, if not impossible. Although we can clean and exchange the
optics in our laser setup whenever necessary to a certain extend, it is still highly desirable
to slow down the contamination process as much as possible.

The contamination depends on several factors, such as the intensity of the radiation. We,
therefore, implemented telescopes to enlarge the beam size at an early stage and reduce
the intensity on the optics. In addition, we found that constantly flushing the optics with
pure nitrogen also slowed down the contamination process. However, we are unable to
completely prevent the process from occurring, meaning that we need to clean the optics
from time to time.
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Figure 4.9 Long-term drift of the UV SHG output power after setup initialization. Measurement
of the maximal Rabi coupling over eight days following the optimization and maximization
of the output power from the UV doubling cavity. The beam alignment for the excitation
beam was confirmed for each Rabi oscillation measurement. Over the course of one week,
we observed a 50% drop in the total output power as shown by the normalized power on
the right y-axis.

Photo-degradation of optical coatings

UV radiation can break chemical bonds in the optical coatings on optics. In the case of
oxygen-containing coatings, such as metal oxide coatings for the mid-UV range, bonds
between the metal and oxygen can be disrupted, leading to the escape of oxygen atoms (a
process known as desorption). This conclusion is supported by the findings of reference
[176], which measured a change in absorption losses over time and temperature and found
correlations with alterations in the oxygen concentration on the surfaces. As a result of this
change in chemical composition, the remaining coating exhibits modified optical properties.

Our observations indicate that optics with anti-reflection coatings are the ones mainly
degrading under UV illumination as shown for the outcoupling mirror of the UV doubling
cavity in Fig. 4.9. Reducing the intensity also slows down the process of oxygen depletion
in this case. However, there are several more options for coatings, each with its own set of
advantages and disadvantages. For example, one could choose uncoated optics or fluoride
coatings for anti-reflection purposes. Still, these come with the disadvantage of power loss
for the 286 nm wavelength [177]. Another possibility is the use of nano-textured optics,
which have a high damage threshold as the anti-reflection texture is directly etched into
the surface of the fused silica window [178]. We integrated such a window9 at the output
for the second doubling cavity. However, this is not a feasible option for the outcoupling
mirror of the second doubling cavity, since we require high reflectivity for the fundamental
light at 572 nm. In this instance, we changed the coating type from HfO2 to Al2O2, as
the latter one has a higher damage threshold [179]. So far, we have not completed a
long-term characterization of these two upgrades. Moreover, several groups have reported
that degradation can be reduced by flushing the optics with oxygen or ozone to replace

9Newport 10Q20RAR.S.
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the desorbed oxygen on the surface [180]. For this reason, we have designed new mounts
for the AOMs that allow us to flush the crystal with ozone produced by a commercial
ozone generator10 (more details can be found in the master thesis of Ludwig Müller [100]).
Unfortunately, we cannot utilize the ozone generator during measurements since ozone
exhibits pronounced absorption in both the UV and green spectra.

4.4 Experimental lifetime of Rydberg dressed atoms

We now aim to carry out Rydberg dressing characterization measurements, focusing first on
the Rydberg-dressed lifetime. As described in Eq. (4.17), this lifetime should scale propor-
tionally with 1/β2. However, as previously discussed in Section 4.2.2, the experimentally
observed dressed lifetime is also influenced by the laser’s frequency and phase noise. In our
experiment, phase noise poses the most significant constraint, leading to a reduced effective
lifetime.

For the measurements, we arrange the atoms in a 5 × 5 tweezer array, with a spacing of
40µm, to prevent interatomic interactions when dressing to the |62P3/2, mj = −3/2〉 state.
The Rydberg excitation beam is aligned to one column. After loading single atoms into
the tweezer array, we cool the atoms using Raman sideband cooling and then optically
pump and prepare them in the hyperfine ground state |4S1/2 F = 2, mF = −2〉 (refer to
Section 3.4 for a more detailed description). As previously mentioned, we are challenged by
trap depth inhomogeneities, which become significant due to their contribution to additional
tweezer-dependent detuning offsets. In order to reduce the absolute tweezer-to-tweezer
difference, we lower the trap depth to 0.5% of the original loading power. With an average
tweezer inhomogeneity of ≈ 10%, the trap depth differences result in a few tens of kHz,
which is two to three orders of magnitude smaller than the set of detunings used in the
measurement presented here. During the Rydberg dressing pulse, we apply a magnetic
field of B = 5G along the experimental x-axis. The choice of state and the magnetic field
will be justified in the upcoming measurements, which involve smaller tweezer spacings.
For these parameters and when being red detuned, no Rydberg pair state resonances are
observed down to atom separations of 3µm. During the measurement, we keep the Rabi
coupling fixed at Ω = 2π × (355± 5) kHz and modify the theoretical admixture by tuning
the laser detuning from resonance, ranging from ∆ = 2π × 500 kHz to ∆ = 2π × 5MHz
in steps of 200 kHz. For each detuning parameter, we scan the Rydberg excitation pulse
duration and apply a fit with an exponential function, scaling with ∝ exp(−t/τ). In our
analysis, we derive the decay time τ for each detuning and compare it to the theoretically
predicted Rydberg dressed lifetime of an ideal (delta-function-like) laser τdr = τbb/β

2. We
then calculate the ratio between both, expressed as α(∆) = τdr/τeff , as illustrated in
Fig. 4.10.

10Anseros COM-AD-02.
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Figure 4.10 Experimental dressed lifetime measurements of the 62P3/2 state. a. Scanning
the duration of the Rydberg excitation pulse for ∆ = 2π × 1.4MHz (upper) and ∆ =
2π × 5MHz (lower), with a resonant Rabi coupling of 355 ± 2 kHz. We measure the
survival probability after the excitation pulse (accounting for trap losses) and apply an
exponential fit (red solid line). From this, we determine dressed lifetimes of the ground
states to be 0.44 ± 0.02ms (upper) and 34.4 ± 2.01ms (lower). The solid grey line
represents τdr = τbb/β

2 with a blackbody limited lifetime of τbb = 160µs for the |62P3/2〉
state. Error bars denote 1 s.e.m. b. Repeating the measurement from a. for various laser
detunings and extracting the 1/e lifetime from each fit. The two red points represent the
measurements shown in a. The grey solid line denotes the theoretical dressed lifetime, τdr.
c. Plotting the ratio between the theoretical dressed lifetime and the measured lifetime as
α = τdr/τmeas. The grey line visualizes a ratio of one for an ideal laser linewidth.

As we increase the detuning, we find that this ratio decreases from α = 20 to less than α = 5
across a detuning range of −2π × {0.8, 5}MHz. Such ratios cannot be solely attributed to
intensity noise, which results in a shot-to-shot variation of the area of the UV pulse, thereby
inducing variations in the Rabi frequency, as mentioned earlier.

Furthermore, we observe a modulation in this ratio α, showing spikes at intervals of 600 kHz.
This modulation does not correspond to the bandwidth of the ULE lock of the seed laser,
which was tuned to 400 kHz for these measurements.

We attribute the notable reduction in the measured dressed lifetime to the performance of
the laser setup, specifically its noise spectrum. When analyzing a laser’s spectral profile,
we differentiate between low-frequency and high-frequency noise. Each of these frequency
characteristics has unique origins and consequences regarding laser behavior.

To describe the spectral profile of a laser with an ideal gain medium, we begin with a
Lorentzian line shape originating from the laser’s cavity. Several external factors, such as
disturbances within the laser cavity and the electronic noise from the laser driver, lead to a
low-frequency Gaussian line shape. The convolution of these two shapes results in a Voigt
profile, with the Gaussian profile determining the laser’s linewidth [159–161, 181, 182].
One can further refine and control this linewidth by stabilizing the noise sources.
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Nevertheless, when considering a realistic gain medium such as laser diodes, we observe
an additional so-called phase noise pedestal – a wide, low-intensity noise component
surrounding the carrier. This phase noise results from the laser diode’s spontaneous emission,
inducing random fluctuations in the population inversion and thus random fluctuations
within the resonant field of the laser [183], primarily contributing to the wings of the laser’s
spectrum [181, 182]. Such noise poses the most profound challenge in our Rydberg dressing
experiment and emphasizes that a laser with a narrow linewidth does not guarantee spectral
purity.

As observed by Matveev et al. [184], the phase noise becomes even more significant when
the laser radiation undergoes multiple frequency conversions to higher harmonics. They
proposed a description where the power fraction contained in the laser’s carrier is denoted
as η = exp(−φ2rms), scaling with the root-mean-square phase deviation of the laser. In
the absence of any phase noise (φrms = 0), all power resides in the carrier, resulting in a
monochromatic field. Because the generation of one ultraviolet photon requires a total
of four infrared photons, the power fraction in the carrier is further reduced after the
conversion, resulting in η′ = ηn

2
= η4

2
= η16 [184].

The phase noise pedestal surrounding the laser’s carrier can become a limitation in Rydberg
dressing experiments. This effect can be interpreted as incoherent, resonant excitations,
which consequently reduce the measured Rydberg state lifetime and coherence for Rydberg
dressed interactions [62, 63, 78]. In the following section, we will present potential
techniques to mitigate the laser’s phase noise as observed by the atoms.

4.4.1 Strategies for phase noise mitigation

In our experiment, the spectral properties, including linewidth and phase noise of the
single-photon Rydberg excitation laser setup, are dictated by the seed laser operating at
1143 nm. As highlighted in the previous section, this phase noise amplifies when undergoing
the two frequency doubling stages [185], as well as the Raman fiber amplifier may add noise
[186]. Therefore, by merely minimizing the seed laser’s noise, we can achieve significant
improvements of the performance of Rydberg-dressing measurements.

There are various strategies available for reducing the phase noise experienced by the atoms:
As a first approach, we can consider replacing the seed laser with a source that possesses
intrinsically low phase noise. As demonstrated in reference [185], the phase noise and
spectral linewidth of the laser can be reduced by extending the length of the external
cavity of the ECDL. However, this adjustment makes the system less stable. An alternative
approach involves the use of Titanium-Sapphire lasers or Dye lasers, which are well-known
for their exceptionally low phase noise emissions, thanks to their long cavity [63, 169, 170].
However, our specific needs call for either a high-power output laser at 1143 nm or the
second harmonic at 572 nm. These wavelengths surpass the capabilities of any Ti:Sa laser.
While Dye lasers are available for these wavelengths, their impracticality necessitates our
reliance on the ECDL. In response, we designed a laser with an external cavity of 7 cm,
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although this still left us with the phase noise issue discussed in the previous section. Many
alternatives exist, such as sum-frequency mixing and Vecsel lasers that are presently under
development [187, 188]. These advancements are expected to present new opportunities
and possible solutions in the near future.

Secondly, one could use an additional optical cavity. In this setup, the ’noisy’ incident laser
is coupled into a high finesse cavity, with only the transmitted light from the cavity being
further utilized. The storage time of the photons, denoted as τst, can be long enough to
suppress the frequency fluctuations of the light for Fourier frequencies higher than 1/τst
[189]. Consequently, the cavity acts as a spectral low-pass filter, resulting in a suppression
with its characteristic Lorentzian line shape. One issue with this approach is that the ’cavity-
filtered’ transmission of high finesse cavities usually is roughly about a few µW , and as such,
does not provide sufficient power for further procedures. As a workaround, this transmission
is used to injection lock a second laser diode. The slave laser obeys the frequency noise
fluctuations of the master laser and follows the linewidth of the incident master light field,
only adding spontaneous emissions. Successful implementations of this scheme, resulting
in a significant reduction in phase noise, have been reported by various research groups
[169, 190, 191]. However, our setup presents another challenge: the absence of injectable
laser diodes suitable for our required wavelength. By ’injectable,’ we refer to a diode with a
medium AR coating on the front facet, which allows the diode to lase independently and
form a cavity. Our proposed solution to this issue is to couple enough power into the cavity
such that the transmission power is sufficient for further seeding the RFA, bypassing the
need for a second slave diode [100]. The results of this approach will be discussed in the
following subsection.

The third strategy is based on an active noise cancellation technique that employs a feedfor-
ward mechanism, as demonstrated by Li et al. [192]. In this method, a beat is measured
between the laser and the transmission through a high-finesse reference cavity, which allows
for the real-time measurement of the laser’s frequency deviation, which can be compensated
using an electro-optic modulator. They reported a noise suppression of 20 dB at the peak
of their locking bandwidth, marked as a servo bump, of 250 kHz, and a noise suppression
bandwidth of 5MHz. However, noise exceeding this bandwidth remains unaffected. Alter-
natively, some research groups have reported using a fiber-based delay line interferometer
to analyze phase noise. They applied feedback on electro-optical modulators to compensate
for this noise, suggesting an alternative approach [193, 194].

In the upcoming section, we will delve into the modifications we implemented to our UV
laser system to address the phase noise issue. Specifically, we employed the second strategy
containing an additional optical cavity to reduce the effects of phase noise.

4.4.2 Advances in dressed lifetime measurement via cavity filtering

In terms of system upgrades, we implemented two significant changes to our setup, of
which only one demonstrated notable improvement in phase noise reduction. The first
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significant upgrade was the implementation of an optical filter cavity into our setup. The
second modification was the implementation of an ultra-narrow linewidth laser11 as the
seed laser. Both changes were set up in the context of Ludwig Müller’s Master thesis [100].
What follows is a brief overview of the central components of this setup. For an in-depth
understanding of the individual components or electrical circuitry, please refer to that thesis.

Two key constraints existed when implementing the filter cavity: First, as stated earlier, no
injectable laser diodes are available for the wavelengths at 1143nm. In order to circumvent
this, we decided to couple sufficient power into the filter cavity with a finesse of F = 10, 000,
thereby avoiding the need for a second diode, that needs to be injected. As a result, we could
attain enough power in the transmission to proceed and to seed the Raman fiber amplifier.
The incoupling power is typically around 30mW, with a transmission efficiency of ≈ 65%
for an incoupling efficiency of 90%. The filter cavity is locked to the frequency of the laser
while adjusting the cavity length as one cavity mirror is mounted on a piezo actuator stack.
We utilized an FPGA-based digital lock for this cavity lock, which automatically re-locks the
cavity, a useful feature during the cavity’s thermalization time.

The second constraint was to ensure that the Raman fiber amplifier (RFA) always remains
seeded. This stops to be the case if the cavity lock fails and the transmission power drops to
zero. Although the RFA has an internal interlock that switches off the amplification when
not sufficiently seeded – a highly undesirable event that can lead to laser degradation –
we’ve developed a setup with an additional laser and a switching acousto-optic modulator
(AOM). If the filter cavity lock fails, the setup switches to a second laser. This laser is a
home-built ECDL laser, in free-running configuration at the same wavelength, thus ensuring
that the RFA remains seeded at all times. The illustration of this setup is presented in
Fig. 4.11.

Regarding the second modification, a new IR seed laser, it is important to remember that a
laser with a narrow linewidth does not automatically guarantee low phase noise behavior,
which is precisely what we observed when we performed a new set of measurements on
the Rydberg dressed lifetime following these system upgrades. As these measurements
were carried out after multiple upgrades and modifications to the entire experiment, the
measurement procedure slightly differs from the one outlined in Section 4.4:

First, the loading and imaging of the atoms in the tweezers have changed, as we have
adopted the techniques presented in Section 3.3. Instead of chopping the trap light for
these stages, we now switch them to continuous wave operation.
Second, we did not employ Raman sideband cooling for these measurements. Instead, we
used in-trap grey molasses cooling exclusively, where we continuously switch on the traps
and cool the atoms with D1 light, as discussed in Section 3.3 . This explains why during
the Rydberg dressing pulses, we could only reduce the overall trap depth to ≈ 0.5MHz.
Third, we prepared the atoms in the F = 2, mF = +2 state using optical pumping, this time
from a different direction (z-axis), different to the approach described in Section 3.4. It’s
important to highlight that the state preparation performance is not optimal, as indicated

11Menlo ORS Ultrastable Laser.
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Figure 4.11 System upgrade: filter cavity setup. The master laser at 1143 nm is aligned through an
EOM, which modulates sidebands for the PDH lock of the filter cavity. The filter cavity is
stabilized to the laser by applying feedback to the piezo on one of the cavity mirrors. The
cavity’s transmission is then aligned in 0th-order through an AOM and fiber-coupled for
amplification by the RFA. Prior to the fiber coupler, an EOM is implemented to modulate
sidebands for the PDH lock of the first (green) doubling cavity. If the filter cavity lock
fails, the transmission through the cavity will drop to zero and thus the RFA would not be
seeded. To circumvent this issue, we installed a photodiode to monitor the transmission.
When the transmission power drops below a specified threshold, the AOM is triggered to
switch to the light from a second (’bypass’) laser. This secondary beam is aligned with the
deflected order of the AOM. When the AOM is activated, this backup laser is deflected to
seed the RFA, while the original light from the master laser is directed away from the fiber
coupler.

by a constant offset following the heat-out pulse (see Fig. 4.12). This could potentially
be attributed to inadequate adjustment of the beam polarization. As previously noted,
we modified the setup for optical pumping. In the earlier configuration, we employed
Glan-Taylor polarizers to ensure a better extinction ratio, a component yet to be integrated
into the new setup.

The |F = 2, mF = +2〉 state is coupled to the |62P1/2, mj = −1/2〉 state and we observed
a Rabi coupling of 367± 9 kHz. We then conducted a dressed lifetime measurement for a
detuning set of {−8,−4,−2,−1}MHz for two different cases: The first one utilized only
the new seed laser, while the second set of measurements also included the optical filter
cavity between the RFA and the seed laser. The results are depicted in Fig. 4.12. In the case
where we did not use the filter cavity, we observed a deviation of a factor 100 compared to
the ideal lifetime. This substantial influence is primarily attributed to the new seed laser
exhibiting a higher phase noise pedestal. When the cavity filtering is activated, we see a
clear improvement in the deviation, especially for smaller laser detunings. For example,
in the case of the smallest detuning, we measured a reduction of 60%. However, we have
not yet achieved the values of the previously shown data set using the home-built laser as
the seed laser. It’s worth recognizing that this home-built design was specifically tuned to
feature less phase noise due to a longer external cavity length. Thus, the next approach
should involve using this laser and the optical filter cavity to decrease the phase noise
further and/or further phase noise reduction methods, such as a feedforward technique, as
presented in the previous section.
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Figure 4.12 Comparison of experimentally dressed lifetime measurements of the 62P1/2 state
for a new seed laser with and without including a filter cavity setup. a. Scanning
the survival probability of the atoms by varying the UV dressing pulse duration with a fixed
laser detuning of 2MHz and a resonant Rabi coupling of 367 ± 9 kHz. The upper plot
corresponds to a setup using a new (commercial) seed laser without cavity filtering. The
lower plot displays measurements using the same laser but with cavity filtering included.
b. Repeating the measurements with (blue) and without (red) cavity filtering as done
in a. for various laser detunings and extracting the 1/e lifetime from each fit. The box
surrounding the two data points at 2MHz highlights the values extracted from the fits
in a. The grey line indicates the theoretically dressed lifetime, τdr. c. Shown is the ratio
between τdr and the experimentally measured dressed lifetime. The grey line represents a
ratio of one. When compared to the results from the home-built laser in Fig. 4.10, the
ratio for the new seed laser from Menlo seems to have a noticeably more phase noise
leading to an even larger ratio α.

Before proceeding with these system upgrades, we will first conduct a self-heterodyne
measurement of different laser setups to characterize the lasers’ spectral profiles.

4.4.3 Insights from self-heterodyne measurements

The linewidth of a laser can be measured by heterodyning the laser with a reference
source – in which case the laser with the broader linewidth will always be the one mea-
sured – or by self-heterodyne interferometry measurements using a long optical delay line,
as initially proposed in 1980 by T. Okoshi [195]. In the latter approach, the laser field is
split into two paths. One path includes a frequency shifter, in our case, an acousto-optic
modulator (AOM), that shifts the signal by a frequency of fs. The second path passes
through a long optical fiber, introducing a delay of τd. Subsequently, the two beams are
recombined, and their beat note is detected using a photodiode. The purpose of the AOM is
to shift the beat note frequency, making the measurement easily accessible to the spectral
analysis electronics. More importantly, the delay line introduces a phase difference between
the two paths. This phase shift leads to periodic maxima and minima in the interferometer’s
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Figure 4.13 Self-heterodyne setup and phase noise measurement of the home-built ECDL
IR seed. a. For the self-heterodyne measurements, we split the laser beam into two
paths using a 50:50 non-polarizing beam splitter. One path is frequency-shifted via an
AOM in a double-pass configuration. The second path is coupled into a 100m long
fiber and afterward back reflected. The reflected beams from both paths are recombined
using the same 50:50 splitter and directed onto a diagnostic photodiode, which detects
the beat at the AOM modulation frequency. b. The measurement spanned a 3MHz
frequency range with a resolution bandwidth (RBW) of 100Hz. The signal was further
processed, accounting for the sensitivity of the interferometer using sin2(π · f · τd). The
grey-shaded areas indicate regions where the detection efficiency of the interferometer
is reduced (around the sensitivity minimum due to scaling systematics). The displayed
traces represent setups in which the commercial IR laser was implemented (orange), the
home-built ECDL without (red), and with (dark blue) cavity filtering before the RFA.

sensitivity due to a length-dependent π/2 phase shift, displaying as a scalloped pattern
around the beat note.

The interferometer shown in Fig. 4.13, built by Ludwig Müller, is utilized in the following to
characterize the spectral profile of the different IR seed lasers of the single-photon excitation
setup. Additionally we have a second interferometer to analyze the spectral profil after the
first frequency doubling stage in the green wavelength.

In the IR interferometer, we use an AOM12 with a center frequency of fs = 110MHz and
a 100m long fiber13, through which the light passes twice. For the green interferometer,
we employ an AOM14 with a center frequency of fs = 200MHz and a fiber15 of the same
length. Using these fiber lengths, we achieve a delay time of τd = nl/c = 0.976µs for
the IR interferometer, where the calculated refractive index of the core is n = 1.4625 at a
wavelength of 1143 nm. For the green interferometer, we obtain a delay time of τd = 0.973µs,
with a calculated refractive index of n = 1.459 at a wavelength of 572 nm. As mentioned

12Gooch & Housego 3110-191.
13Thorlabs 980HP.
14Gooch & Housego 3200-125.
15Thorlabs S405-XP fiber.
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Figure 4.14 Self-heterodyne measurements of different IR seed laser setups before and after the
first doubling stage, and before and after the RFA. a. Measurements of the home-built
ECDL with cavity filtering, both before (in dark blue) and after (in light blue) the RFA.
Additionally, we measured the home-built ECDL without cavity filtering after the RFA (in
light red). These measurements spanned a 6MHz frequency range and utilized an RBW
of 100Hz. b. Noise spectra were captured in the green path using two distinct setups: the
home-built ECDL combined with the filter cavity (light green), and the commercial laser
without the filter cavity (light orange). These measurements spanned a 6MHz frequency
range and utilized an RBW of 100Hz. The displayed trace was adjusted to account for
the sensitivity of the green interferometer. Grey-shaded areas denote regions where the
detection efficiency of the interferometer drops.

above, the delay time defines the sensitivity of the interferometer with 1/τd, which is
in our case approximately 1MHz. We use commercially available function generators16

as the frequency source for the RF signal to the AOMs in both paths. Both arms of the
interferometer are then overlapped on the same photodetector, and the beat note is analyzed
using an RF spectrum analyzer17.

Before amplifying the light using an RFA, we have a closer look at the noise spectrum
around the carrier. We aim to compare three different scenarios: the noise spectrum of the
commercially purchased narrow-linewidth laser, and the home-built laser before and after
the implementation of the optical filter cavity. For the measurements displayed in Fig. 4.13,
we also consider the interferometer’s sensitivity, which is determined by the length of the
delay line. Consequently, we apply a deconvolution function of sin2(π ·f ·τd) to the measured
noise spectrum. We represent the sensitivity breakdown of the measurements with grey
bars in the plot. All three measurement traces were carried out with the same resolution
bandwidth of 10Hz and a 3MHz-frequency window. When comparing the two seed lasers
without any cavity filtering, a significant difference is evident, with the home-built laser
demonstrating approximately 15 dB less noise. Additionally, we observe clear evidence

16SRS SG382.
17Rhode and Schwarz FSC6.
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Figure 4.15 RIN in the IR and green path of the UV setup. a. Noise spectrum measured in the
IR path for the home-built ECDL with the filter cavity, both before (dark blue) and after
(light blue) the RFA. Measurements were performed with a RBW of 10Hz and converted
into RIN using Eq. (4.19), considering an input impedance of RSA = 50Ω. b. Utilizing
the home-built ECDL with the filter cavity setup as the IR seed, we measured the noise
spectrum after the first frequency doubling stage at 572 nm. This was done both with
(light green) and without (dark green) intensity stabilization, employing the built-in AOM.
The inset provides a closer look at the frequency range up to 1MHz of the signal filtered
through intensity stabilization.

of the effect of the cavity filtering, which further reduces the noise by about 10 dB for a
detuning of 500 kHz.

In the next set of measurements, we compare the noise spectrum of the home-built laser
with the optical filter cavity before and after it passes through the RFA with the one of
the Menlo laser after the RFA. Both measurements are displayed in Fig. 4.14. These
measurements were performed using a resolution bandwidth (RBW) of 100Hz within a
frequency span of 6MHz. We observe that the RFA introduces additional periodic noise
at ≈ 250 kHz, adding nearly 10 dB at a frequency detuning of 0.5MHz from the beat note.
This modulation pattern has been observed by other research groups as well as by the
manufacturer of the RFA [196]. It is attributed to the relative intensity noise (RIN), which
can be understood as intensity noise arising from the intensity noise of the pump fiber laser
as the beam propagates through the RFA fiber [186, 196].

This is also visible, when evaluating the impact of frequency doubling on the noise spectrum
around the carrier after the first doubling stage using the green interferometer (IF) at
a wavelength of 572 nm. Regarding the noise spectrum in Fig. 4.14, we now distinguish
between two cases: the use of a commercial laser as the seed for the RFA, and the employ-
ment of a home-built laser in combination with the filter cavity as the seed for the RFA.
A noticeable improvement of approximately 10 − 20 dB is observed. This underlines the
significance of utilizing a spectrally pure seed laser.
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Finally, we performed a RIN measurement of the filtered home-built laser, both before and
after the RFA, as illustrated in Fig. 4.15. In both scenarios, we installed photodiodes and
used the same spectrum analyzer as in the previous measurements to resolve the spectrum
from 10 kHz to 10MHz with an RBW of 10Hz. To convert the measurement of the spectrum
analyzer SdBm/∆ν into relative intensity noise SdBc/Hz, we apply the following conversion
[197]:

SdBc/Hz = SdBm/∆ν − 10 log10

(
RSB · U2

c

1Hz · 1mW ·RSA

)
. (4.19)

Here, RBW is the resolution bandwidth, RSA = 50Ω is the input impedance, and Uc is the
voltage induced by the carrier of the laser. For the measurement before the RFA, we recorded
a voltage of Uc = 3.28V from the carrier, and after the RFA, we measured Uc = 3.5V. The
data presented in Fig. 4.15 underscore that after optimizing the seed laser’s phase noise,
the predominant limitation emerges from the RIN induced by the RFA. Addressing this noise
necessitates implementing additional compensation strategies involving applying feedback
on, for example, AOMs or EOMs.

4.5 Implications of lightshift in Rydberg dressed systems

In the Rydberg-dressing regime, each spin experiences a constant offset, often referred to as
the longitudinal field [57]. By studying spin-precession dynamics, we aim to measure this
shift using a Ramsey measurement, as detailed in Section 3.5. We systematically analyze
the precession frequency across various detunings scaling with νAC · 2π = δAC = −∆/2 +
1/2 ·

√
Ω2 +∆2, which is equivalent to Eq. (4.11). For the measurement, we place atoms in

an 5× 5 array with 39µm spacing and optically pump them to the |4S1/2 F = 2, mF = −2〉
ground state, following the protocol in Section 3.4. We then apply a π/2 pulse on the
|F = 1, mF = −1〉 transition, wait for 350µs, apply a π-pulse, wait another 350µs and
introduce a second π/2 pulse, mapping the atoms to the |F = 1, mF = −1〉 state. We then
eliminate any remaining atoms in the |F = 2, mF = −2〉 state using a heat-out pulse on
the closed cycling transition on the D2 line.

In addition, we apply pulses from the single-photon Rydberg excitation beam during
the waiting time between the two pulses for varying durations. This beam couples the
|4S1/2 F = 2, mF = −2〉 state to the Rydberg state |62P3/2, mj = −3/2〉. Suppose this cou-
pling is detuned from the resonance. In that case, the resulting light shift causes a phase
difference between the two ground states, triggering a periodic oscillation in the populations
of the coupled and uncoupled ground states. By repeating this measurement at different
detunings and fitting an exponentially damped sinusoidal curve to the data, we determine
the oscillation frequency, as illustrated in Fig. 4.16.
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Figure 4.16 Dressed lightshift and oscillation frequency. a. In a Ramsey measurement with an echo
pulse, we scanned the UV dressing duration at two distinct detunings: ∆/2π = 1MHz
and ∆/2π = 4MHz, each accompanied by a Rabi coupling of ω/2π = 816 ± 11 kHz.
Using exponentially damped sinusoidal fits, we determined the oscillation frequencies
νAC/2π = 128± 3 kHz (upper) and νAC/2π = 27± 0.4 kHz (lower). b. We perform the
same measurement for different laser detunings and extract the oscillation frequencies.
By applying the fit from Eq. (4.11) (solid blue line), we obtain a Rabi coupling of
Ωmeas/2π = 795± 6 kHz aligning within error margins with our Rabi coupling measured
on resonance. As the atoms within the tweezer array are spaced at intervals of 39µm,
no additional collective field shifts have to be considered. The dashed line represents a
hypothetical scenario where the atom spacing is reduced so that neff = 2. c. Simulations
displaying the detuning-dependent oscillation frequency, νAC , for different Rabi couplings:
2Ωmeas, 1.5Ωmeas, and Ωmeas (solid lines, dark to light grey respectively). Additionally, the
effects of collective field shifts for neff = 2 are shown (dashed lines).

As we position our atoms at a distance where Rydberg interactions are vanishing, we neither
expect nor observe any collective field shift [57]. If this were not the case, we would need
to factor in these interactions by applying a correction value, ∆(coll)

i = neffΩ
4/16∆. This

value accounts for the van der Waals interactions among neff atoms and can be interpreted
as a first indication of dressed interactions [57], including the soft-core potential from
Eq. (4.17). A theoretical scenario with neff = 2 and varying Rabi couplings is illustrated in
Fig. 4.16. As expected, the impact of the interactions strongly depends on the Rabi coupling,
leading to noticeable deviations, even at large detunings.While this scenario represents a
hypothetical construct, neff could contain any number of atoms. An example of this can
be seen in reference [57]. This optical lattice experiment measured 19 effective particles
contributing to the shift.

Notably, the measured oscillation frequency is lower than in the ’interaction-free’ case,
indicating that the laser detuning and the interaction potential have different signs. This
difference results in a larger detuning and, therefore, a reduced oscillation frequency. Given
that we are red-detuned from the Rydberg resonance, it follows that the collective field shift
is repulsive.
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Using these measurements, we can calibrate our Rabi couplings by allowing Ω to act as
a fit parameter. Hence, the AC-Stark shift induced on the ground state by the ultraviolet
beam will enable us to infer a Rabi coupling of Ωmeas/2π = 795 ± 6MHz. However, this
method depends on accurately determining the laser detuning, which in turn requires a
precise spectroscopy measurement beforehand. An example of a spectroscopy measurement
is displayed in Fig. 4.7, where the center of the applied Gaussian fit reveals an uncertainty
of a few kHz.

4.6 Probing dynamics in dressed spin interactions

We now present an experimental approach to realize coherent effective spin-spin interactions.
The measurement technique we employ is consistent with the procedure demonstrated
in reference [57], utilizing a Ramsey sequence. Similar to the technique discussed in the
section before, we employ a second ground state, |↓〉, which is not coupled to the Rydberg
state. Instead, we couple this state via a ground state Raman transition to the distinct
ground state |↑〉, which is off-resonantly coupled to the Rydberg manifold. This dressing
procedure, therefore, introduces the ’dressed’ ground state interactions to the system, which
we have elaborated on in Section 4.2. Moreover, we decrease the separations between
the atoms. As a result, we achieve Ising-type interactions described by the subsequent
interaction Hamiltonian [57]:

Ĥ = ~
N∑
i

(
δAC +∆(coll)

i

)
Ŝz
i +

N∑
i 6=j

Ui,j

2
Ŝz
i Ŝ

z
j . (4.20)

Here, Ŝz
i represents the spin-1/2 operators. We also included the single-atom light shift,

δAC , and the collective field shift, ∆(coll)
i , which were covered in the previous section.

Furthermore, the interaction Ui,j characterizes the dressing-induced interactions between
two spins situated at positions i and j. Given that both the collective field shift and single-
atom light shift result in a measurable frequency shift in the Ramsey protocol – acting
effectively as a constant offset – we will primarily concentrate on the dressed interactions.

For the measurement, we prepare the atoms at a fixed distance of 3.4µm in an array of
six groups, each containing three tweezers. Within each group, the atoms are aligned
perpendicular to the magnetic field |B| = 5G. The groups are spaced by 30µm along the
magnetic field to prevent any interactions between the groups and only allow interactions
within the groups. We prepare the atoms in the |↑〉 = |F = 2, mF = −2〉 spin state, which
can be coupled to the |r〉 = |62P3/2, mj = −3/2〉 Rydberg state. The Ramsey protocol
is illustrated in Fig. 4.17 and structured as follows: We begin with a π/2-pulse on the
|↑〉 − |↓〉 ground state transition, leading to a superposition of both spin states. We then
apply two identical Rydberg dressing pulses τdr/2, separated by a spin-echo (π) pulse on
the ground states. After a total Ramsey time of 700µs, we apply a second π/2-pulse, but
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Figure 4.17 Dressed Ising-type interaction. a. Schematic of the Ramsey measurement. The atoms
are initially prepared in the stretched state |↑〉 = |F = 2, mF = −2〉. A subsequent π/2-
pulse is applied (indicated by the red dashed error on the Bloch sphere), which is followed
by a variable duration of a dressing pulse τdr/2 (highlighted by the yellow shaded area).
This is followed by an echo pulse, another dressing pulse, and a π/2-pulse with a phase
shift of 180◦ to transfer the atoms to the |↓〉 = |F = 1, mF = −1〉 state. b. Calculation
of the distance dependent interaction strength U(R). The vertical grey line indicates the
spacing of atom pairs in the experiment. The blue curve represents the diagonalization
of the Hamiltonian in Eq. (4.12), assuming that C6 = 14.3GHz · µm6. In contrast, the
dashed grey line depicts the interaction strength deduced from a perturbative approach,
as done in Eq. (4.14). The orange data points reflect the exact diagonalization of the
Hamiltonian in Eq. (4.21) but include all the Rydberg pair potentials |Ψ(2)

α 〉, with their
weight determined by the overlap 〈Ψ(2)

α |rr〉, where |r〉 = |62P3/2, mj = −3/2〉. The
inset shows a glimpse into the analysis of the Rydberg pair potentials (calculated with
pairinteraction [105]) surrounded by the |rr〉 Rydberg pair potential, with the solid
orange line representing a C6/R

6 fit, emphasizing its inadequacy for smaller pair distances.
c. Measurement of the nearest neighbor pair correlation g(2) for different dressing durations.
We employ an exponentially damped sin2 fit function to deduce an interaction strength of
U/2π = 4.88± 0.23 kHz.

with a 180◦ phase shift, which transfers the system into the |↓〉 = |F = 1, mF = −1〉 state
if no interactions occurred. To distinguish between the two ground states, we perform a
heat-out pulse on the |↑〉 state by driving the closed cycling transition of the D2-line.

For the coupling to the Rydberg state, we measure a Rabi frequency of Ω/2π = 813± 3 kHz
and set a laser detuning of ∆/2π = −2.1MHz. Using these parameters, we estimate a
soft-core potential of U0 = Ω4/8∆3 = 2π × 5.9 kHz. We extract a C6 coefficient by fitting a
f(r) = C6/r

6 function to the Rydberg pair potentials calculated with pairinteraction18

18For the calculations, we assumed the following boundary parameters: ∆n = 1, ∆` = 1, ∆E1 atom = 200GHz
and ∆Epair = 100GHz.
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[105], as depicted in the inset of Fig. 4.17. As clearly visible, the fit is valid only for large
spacings. For spacings below 4µm, other Rydberg pair potentials influence the shape,
which renders the C6 curve fit inapplicable. Nevertheless, from this analysis, we extract
C6 = 12.26±0.06GHz · µm6 when only fitting the eigenenergies up to the smallest distance
of 4.5µm. Consequently, we deduce a cut-off radius of RC = 3.8µm. We then calculate the
interaction strength at the distance of the atom pairs in our experiment in three different
scenarios:

The first approach follows the perturbative treatment as outlined in Eq. (4.14). Here, we
determine an interaction strength of U(R = 3.4µm)/2π = 3.76 kHz.
The second method involves a diagonalization of the Hamiltonian in Eq. (4.12) and assumes
∆(2)(R) = −2π∆ + C6/R

6. This yields an interaction strength of U(R = 3.4µm)/2π =
3.1 kHz, which differs by hundreds of Hertz but is of the same order of magnitude as the
first method.
However, we consider the third method the most accurate. Unlike the other methods, it
does not rely on assumptions or rounding of the C6 coefficient but directly uses the pair
potentials calculated with pairinteraction. This approach diagonalizes the Hamiltonian
described below in the basis of |↑↑〉, the symmetric singly-excited state |+〉, and the Rydberg
manifold |Ψ(2)

α (r, θ)〉:

Ĥ =
∑
α

〈↑↑| 〈+| 〈Ψ(2)
α (r, θ)| |↑↑〉 0 ~Ω/

√
2 0

|+〉 ~Ω/
√
2 −~∆ ~Ω/

√
2 · cmn

α (r, θ)

|Ψ(2)
α (r, θ)〉 0 ~Ω/

√
2 · cmn

α (r, θ) −~∆+ E
(2)
α (r, θ)

. (4.21)

Here, α indexes the new pair distance- and angle-dependent eigenstates |Ψ(2)
α (r, θ)〉, ex-

pressed as a composition of different asymptotic pair states |rmrn〉, wherem and n denote dif-
ferent Rydberg states. The eigenstate is represented by |Ψ(2)

α (r, θ)〉 =
∑

mn c
mn
α (r, θ)|rmrn〉.

In the following, we will omit the explicit mention of distance and angle dependence
to enhance readability. Additionally, we consider the state-dependent admixture cmn

α =

〈Ψ(2)
α |rmrn〉, which accounts for the different geometric configurations of the atom pair.

Since we can only couple to one Rydberg pair state |rr〉, the expression simplifies by drop-
ping all m and n terms. In this formalism, the matrix element between |+〉 and |Ψ(2)

α 〉 is
weighted by the state overlap cα.

Furthermore, instead of using any C6-potential curve, we directly include the eigenenergy
of each eigenstate Eα. As it can be seen in Fig. 4.17 at the atom’s distance, we encounter
Rydberg pair potential crossings, making the potential non-smooth. From the atom distance,
we extrapolate an interaction strength of U(R = 3.4µm)/2π ≈ 2.4 kHz.
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In the Ramsey measurement, this interaction can be measured as a correlated phase shift
given by φint =

∫ τdr
0 U(R)tdt = U(R) · τdr. This will lead to detectable spin correlations

after this sequence. Paired with our site-resolved detection method, we can directly deduce
the two-body correlation function:

g
(2)
i,j = 〈(ni − 〈ni〉) · (nj − 〈nj〉)〉 . (4.22)

In this expression, ni denotes the state population in the |↓〉 spin state at site i. For the
subsequent analysis, we select on the nearest neighbor pairs that were initially loaded within
the sets of three available tweezers.

Following the exact solution for the final many-body state detailed in references [57, 198],
and restricting the system to those with two (neighboring) atoms, we find that the correlation
function scales as:

g(2)(R) ∝ sin2(φint) = sin2(U(R) · τdr) . (4.23)

We utilize this scaling to fit an exponentially damped quadratic sinusoidal function to our
nearest neighbor correlation amplitudes for various dressing durations τdr, as illustrated in
Fig. 4.17. From the fit parameters, we determine the interaction strength to be Umeas/2π =
4.88 ± 0.23 kHz and a rapid damping rate of 1/γ = 126 ± 24µs. Notably, this interaction
strength differs from the theoretical prediction. With the third method, this difference
is approximately a factor of two. We explain this variation by two significant effects:
The first one stems from the lack of accurate calibration of the imaging magnification
and, consequently, the tweezer spacing. Studying the interaction shape more closely, we
observe that atoms spaced 300 nm closer at 3.1µm, the coupling strength achieves 4.8 kHz,
coinciding within error margins with our measurement. The rapid increase in interaction
amplitude can be attributed to the nearby Rydberg pair state resonances. This emphasizes
the need for a refined calibration technique for our imaging magnification system to enhance
our understanding and subsequent analyses. The second factor arises from the need to
reduce our overall trap depth to its minimum before gravity takes over, opening the trap
and allowing for larger ground-state wavepacket sizes. This results in radial and axial
trapping frequencies of ωrad = 2π × 11 kHz and ωax = 2π × 1.7 kHz. We only focus on the
radial trapping frequency since the axial leads merely to out-of-plane motion, effectively
increasing pair distances. Using the radial trapping frequency, we compute the ground state
wavepacket size in the radial direction as σ0rad =

√
~/(mωrad) = 150 nm. Given that the

atomic temperature kBT = h·4.2 kHz is below the radial trapping frequency, we consider the
ground state wavepacket size to account for the fluctuations in the radial pair-distances with
σrad =

√
2σ0rad = 212 nm, where

√
2 factors in the movement of two atoms. This roughly

equates to the positional deviation observed when contrasting the measured interaction
with the calculated one.
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Figure 4.18 Rydberg pair potentials and dressed interactions for selected Rydberg states.
Simulations for these pair potentials were performed using the pairinteraction software
[105]. We set the magnetic field to B = 5G with pairs oriented at a 90◦ angle relative to
the magnetic field. Across all simulations, we maintained a consistent Rydberg fraction of
β2 = 3.7%. a. Pair potentials and interactions for the |42P3/2, mj = −3/2〉 state. The
Rabi coupling for this state is Ω/2π = 1.46MHz, with a detuning at ∆/2π = −3.8MHz
(horizontal dashed line). b. Pair potentials and interactions for the |42P1/2, mj = −1/2〉
state. The Rabi coupling here is calculated as Ω/2π = 813 kHz/2·(42/62)−3/2 = 729 kHz,
with a set detuning of ∆/2π = −1.9MHz (horizontal dashed line). c. The pair potentials
and interactions correspond to the |62P1/2, mj = −1/2〉 state. We accounted for a smaller
Rabi coupling, set at Ω/2π = 407 kHz, which is half of the Rabi coupling for the P3/2

state as seen in Fig. 4.17. The detuning was set at ∆/2π = −1.05MHz (horizontal
dashed line).

Additionally, we also identify a fast damping in the oscillation. Although there are various
constraints, like potentially non-adiabatic ramping of the dressing pulses, the primary
source of this dephasing seems to be the shortened experimental dressed lifetime and
the consequent increased Rydberg fraction. Given our prior discussion on laser detuning
and Rabi frequency, we had anticipated a theoretically ’ideal’ dressed lifetime of 4.4ms.
Nonetheless, due to the phase noise of our laser, which we addressed previously, we estimate
a lifetime reduction by a factor of 20. As such, the expected dressed lifetime decreases to
220µs, which is shorter than our measurement’s longest duration of 300µs. This means
that the correlation strength diminishes in proportion to the number of atoms excited in
the system, manifesting as losses from this mechanism. This phenomenon has also been
identified as a significant source of decoherence in reference [56]. The effect of the black-
body-limited lifetime, resulting from decays into adjacent Rydberg states, imposes additional
significant constraints, which we will discuss in the following chapter.
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Moreover, when looking closely at the Rydberg pair potential plot in Fig. 4.17, we notice
numerous resonances for pair distances under 4µm. Meaning our selection of the Rydberg
state was not optimal. Exploring different Rydberg states would be beneficial for future
works, as showcased in Fig. 4.18. Here, we contrast two distinct principal quantum numbers
(n = 42 and n = 62), evaluating the dressed interactions for Rydberg nP1/2 and nP3/2 states.
The magnetic field remained consistent at B = 5G for all simulations, and the Rydberg
fraction β2 = 3.7% was held constant. Since the dipole matrix element for the P1/2 states is
less than that for the P3/2 states, the coupling was adjusted to reflect a twofold difference,
verified experimentally. The Rabi frequencies were adapted with n−3/2, as elucidated in
Section 2.2 to include the estimate for varying principal quantum numbers. Two scenarios
in Fig. 4.18 are particularly interesting: One option is the 42P3/2 state, where one could
amplify the proportion of Rydberg pair states in the system while operating close to a pair
resonance that is approached when reducing the distance to 2µm. Here, one could maintain
the fraction of single excitations and enhance the interaction strength with V = Ω4/U2

0∆
(2),

where ∆(2) = 2∆− U(R) denotes the pair detuning [139]. In this context, ∆(2) could be
smaller than ∆, thereby increasing the Rydberg pair fraction and yielding a more favorable
balance between interactions and decoherence rates. Another option could be working at
the 42P1/2 state, yielding a clean system without crossing pair resonances until 2µm and
an interaction strength of roughly U/2π = 2kHz at this distance.

While we have studied several aspects influencing the interaction dynamics and challenges,
the influence of black-body radiation cannot be understated. Black-body-induced losses
significantly influence Rydberg dressing and the behavior of Rydberg systems. In the
upcoming chapter, we’ll investigate the mechanisms behind these losses and explore potential
strategies to mitigate their impact on our experiment.

4.7 Resolving the effect of black-body induced losses on Rydberg
dressing

In previous chapters, our measurements have underlined the importance of understanding
the various channels of decoherence in Rydberg physics, especially as its applications
continue to evolve. In this chapter, we turn our attention to one of the ’Achille’s heels’
of Rydberg dressing: the losses induced by black-body radiation. The content of this
chapter is built upon the material and discussions found in our publication [75]. Black-body
radiation at room temperature initiates incoherent transitions between adjacent Rydberg
states, effectively shortening the lifetime of a Rydberg state. For instance, the 62P Rydberg
state has a blackbody-constrained lifetime of τbb = 160µs at T = 300K. In contrast, at a
temperature of T = 4K, its lifetime would be extended fivefold to τbb = 829µs. Black-body
radiation facilitates transitions to neighboring states of opposite parity, as illustrated in
Fig. 4.19. These transitions give rise to new dipolar interactions, acting beyond the range
of the van-der-Waals interactions typical of Rydberg states with identical parity. These
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Figure 4.19 Principle of black-body decay induced losses. a. Schematic of the process. In our
experiment, we excite the atoms to Rydberg nP states via a single photon excitation.
These states can decay to nearby Rydberg n′S or n′′D states via black-body decay γbb.
b. Histogram of transition rates at T = 300K, when exciting the atoms to the Rydberg
|62P1/2, mj = −1/2〉 state, computed with the ARC software package [68]. Via a black-
body photon, atoms can decay into nS1/2 states (light red) and nD3/2 states (dark red).
Here, we only show a snapshot of the main contributing states sorted via the principal
quantum number n. c. Schematic of the black-body induced contamination losses in the
system, which can be read from left to right: We excite the atoms off-resonantly to the
Rydberg state |r〉. This state produces a van-der-Waals-like (C6) interaction potential
(light blue) for all surrounding atoms. In the case of a black-body decay into nearby
states, this new contamination leads to a dipole-dipole-like (C3) interaction shift of the
surrounding atoms (red solid line), which might lead to resonant excitations of atoms at a
certain distance with the then-in-resonance laser. d. Example of a single shot fluorescence
picture of the 3x16-array we use for the experiments shown in this chapter. The average
atom spacing is 5µm. The magnetic field and the Rydberg excitation beam are aligned
with the long axis of the array.

interaction ranges often align with the tweezer array’s spacing or the spacing within an
optical lattice [57, 199].

These dipolar interactions induce level shifts in neighboring atoms. When operating in
the off-resonant Rydberg dressing regime, these shifts can render a previously detuned
laser into a resonance with a Rydberg pair state. This facilitates excitations to the Rydberg
manifold. Such excitations manifest as losses in the array, since the excited states most
often are anti-trapped, leading them to escape from the trap.

In the subsequent part, we will delve into the analysis of losses induced by Rydberg state
contamination in a two-dimensional array of single atoms, particularly within the Rydberg
dressing regime. Our primary objective is to offer a detailed quantitative estimation of
the interaction range, and further discuss potential avalanche excitations, which have
been identified as limiting factors in various other experiments [56, 57, 199]. Central to
our implementation is the observation that the interaction range is proportional to the
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Figure 4.20 Growth of correlation with varying dressing durations. a. Dressed lifetime measurement
for the 3× 16-atom array, with a Rabi coupling of Ω/2π = 424± 8 kHz and a detuning
of ∆/2π = −2MHz. The blue solid line represents an exponential fit, yielding a 1/e
lifetime of τdr = 352± 16µs. The horizontal line marks a point where 60% of the atoms
are recaptured. The three yellow data points denote the timings corresponding to the
correlations plotted in c. b. Evaluation of the nearest neighbor correlation amplitude, g(2)nn ,
for the same data points as in a. c. Depicted are the correlations within the array at three
distinct dressing durations, as indicated in a and b: 0ms, 0.3ms, and 0.5ms, from top to
bottom.

interatomic spacing in our tweezer array and the detuning of the laser. In our experiments,
this spacing is on the order of a few micrometers.

For our measurements, we employ a 3× 16 tweezer array with a spacing of 5µm, as shown
in Fig. 4.19. The Rydberg excitation beam, aligned with the long axis of the array, is parallel
to a magnetic field of magnitude |B| = 10G.

Our standard experimental procedure is as follows: After loading the tweezers – with
an average loading probability of around 50% – we capture an initial fluorescence image.
Subsequently, we perform RSC and prepare the atoms in the |F = 2,mF = −2〉 ground
state. Then, we reduce the trap depth to 0.5% of its initial power for loading, and while
ensuring the atoms remain trapped, expose them to a Rydberg dressing pulse of varying
duration and laser detuning. This excitation beam drives σ−-transitions to the Rydberg
state |ri〉 = |62P1/2, mj = −1/2〉. We can quantify the losses arising during this sequence
by comparing both fluorescence images.

We now aim to identify interaction-induced losses within the array as a function of detuning.
Our general approach aligns with the steps illustrated in Fig. 4.20. First, we measure the
dressed lifetime of the atom array to calibrate the dressing pulse duration. We then adjust
this duration to maintain about 60% of the atoms within the trap. This careful calibration
allows for the accumulation of interactions without substantial atom loss. For the analysis,
we use the correlation function defined in Eq. (4.22). Fig. 4.20 shows the evolution of
two-point correlations over time and their spatial trace for three specific dressing durations.



Chapter 4 From theory to practice – Probing Rydberg interactions and dressing 77

a b c

0

0.05

0.10

0 30 60
Distance (μm)

0

0.1

0.2

g(2
)

g(2
)

Re
la

tiv
e 

fa
ci

lit
at

io
n 

st
re

ng
th

+13GHz

Distance (μm)

E/
h 

(M
H

z)
E/

h 
(M

H
z)

~

−20

0

20

5 15 25
−20

0

20

5 10 15 20 25 30
Distance (μm)

−10

−5

0

5

10

Δ/
2π

(M
H

z)

Figure 4.21 Dipolar interaction potentials. Figures are adapted from [78]. a. The upper plot
visualizes the pair potentials of the laser-coupled Rydberg state |62P1/2, mj = −1/2〉 with
the magnetic substates of its most strongly coupled states, |61D3/2〉 and |61D5/2〉, at a
magnetic field amplitude of |B| = 10G. The color coding corresponds to the logarithmic
relative facilitation strength shown in the color bar in b. When a black-body process
is initiated, the microwave photon provides the energy difference of 13GHz, effectively
causing all pair potentials to collapse asymptotically, as demonstrated in the lower plot. For
comparison, the orange line represents a van-der-Waals potential of the |riri〉 pair potential,
highlighting its significantly shorter range in contrast to the dipolar interaction potentials.
These potentials are computed using the pairinteraction software [105]. b. This panel
showcases the collapsed dipolar potentials, weighted by the logarithmic relative facilitation
strength. This weighting takes into account the normalized transition rate and the state
overlap with |rirbbj 〉. The plotted data points signify typical correlation distances deduced
from an exponential fit to g(2)(d,∆) for a 3x16 array spaced at 5µm. The specifics of
this spacing can be found in Fig. 4.20. The error bars indicate fit errors. c. Examples of
the measured two-body correlations, along with exponential fits used to determine the
decay length. For ∆/2π = −3MHz (upper plot), the decay length is dc = 14.3± 0.7µm,
while for ∆/2π = −8MHz (lower plot), it stands at dc = 8.2± 0.4µm.

Furthermore, we derive the two-point correlation amplitude for various distances within
the array and fit it with an exponential decay function, f(d) ∝ exp(d/dc). This empirical
approach is effective for an initial estimate of the interaction range, allowing us to determine
the decay length, dc. Subsequently, we repeat this measurement at different laser detunings,
ensuring the theoretical admixture β = Ω/2∆ remains constant without factoring in any
incoherent processes.

To calculate the diverse dipolar interaction potentials, we utilize the pairinteraction
software [105]. These potentials are delineated in the GHz domain. Transitions into
other Rydberg states are facilitated by blackbody photons, causing the different Rydberg
pair potentials to converge to a unified energy level. An illustrative representation of this
process is provided in Fig. 4.21 for the most strongly coupled Rydberg states 61D3/2 and
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61D5/2. This figure also shows the merged dipolar pair interactions of the dipolar pair
potentials. Each of these potentials is weighted based on the relative facilitation strength of
the respective pair potential, represented as |rirbbj 〉, where rbbj denotes the Rydberg state
that has undergone black-body decay:

γrel
j = cij ·

Γbb
ij

Γbb
max

. (4.24)

In this equation, cij signifies the quadratic overlap of the asymptotic Rydberg pair state
|rirj〉 with the eigenstate |Ψ(2)

α (d)〉. Here, α spans all computed eigenstates at position d:
cij = |〈Ψ(2)

α (d)|rirbbj 〉|2. Transition rates into closeby Rydberg states, represented by Γbb
ij , are

depicted in Fig. 4.19.

Upon analyzing the two-point correlation function over various distances, one might expect
to resolve individual potential lines. In addition, the interaction range observed in our
detuning scans is larger than the theoretical predictions shown in Fig. 4.21.

This deviation can be attributed to the motion of the Rydberg atoms. Several factors influence
this motion, including the atom’s temperature, the ponderomotive potential of the tweezers,
and atomic recoil. The recoil velocity vr is described by vr = hk/m = 36µm/ms [78]. Here,
k represents the wavevector of the excitation wavelength, defined as k = 2π/λ = 2π/286 nm,
andm is the atom’s mass. Interestingly, this velocity is comparable with the velocity, vU , that
an atom gets accelerated to by the ponderomotive potential: vU =

√
2~U/m = 40µm/ms,

given a trap depth of U = 3.7µK. Furthermore, the thermal velocity, dictated by the atom’s
temperature T = 200 nK, is described as vT =

√
kBT/m = 6.5µm/ms.

Considering that the decay to low-lying states takes several hundreds of microseconds,
atoms excited to the Rydberg state move through the array, covering a wide range of pair
distances. This movement hinders us from distinguishing between individual potential
resonances. Furthermore, the trapping potentials serve as ’barriers’, influencing the atoms’
trajectories. For an in-depth exploration of the effects of atomic motion, please refer to our
publication [78].

Another underlying, phenomenon is known as avalanche facilitation. This mechanism
describes that when an atom is excited to the Rydberg state and undergoes a blackbody
transition, it sets off a chain reaction, triggering a series of subsequent excitations. This
cascade effect has been identified in prior experiments and is recognized as a significant
limitation, especially when operating within atom ensembles or large arrays of single atoms
with high atom density [56, 57, 199].

In our experiment, a challenge we consistently face is the statistical loading of our tweezer
array. This results in an average loading probability of approximately 50%. However, the
filling rate is crucial for observing the avalanche effect due to its close association with the
dipolar interaction range.



Chapter 4 From theory to practice – Probing Rydberg interactions and dressing 79

a b

0

500

C
ou

nt
s

0 5 10 15 20 25 30
Lost atoms

0

200

C
ou

nt
s

Loaded atoms

0 200

25

0 30 60
Distances (μm)

10−3

10−2

10−1

g(2
)

nn

Figure 4.22 Avalanche facilitation processes. Figures are adapted from [78]. a. The graph displays
two-body correlations at varying distances within the 3 × 16 atom array, with different
Rabi couplings. These couplings range from dark to light orange and are represented
as Ω/2π = (410, 205, 103, 51) kHz. For each measurement, the dressing duration was
adjusted such that 60% of the atoms were recaptured. Solid lines denote exponential fits,
with extracted decay lengths as follows (ordered from dark to light orange): 30.8± 1.1µm,
16.2 ± 0.7µm, 15.9 ± 1.3µm, and 15 ± 1.9µm. The grey bares present the loading
distribution within the array b. This panel showcases the distribution of lost atoms
(depicted in blue) for a specific Rabi coupling of Ω/2π = 424± 8 kHz and a detuning of
∆/2π = −3MHz. The upper plot represents data collected without any UV exposure
time, while the lower plot indicates results from a UV exposure time of 0.6ms. The inset
in the lower plot captures data from the same experimental settings, but with postselection
based on scenarios where 26 atoms were initially loaded into the array.

We evaluate atom losses across three distinct scenarios in one experiment. In the first
scenario, we don’t apply any Rydberg dressing pulse. This means any observed atom losses
come from imaging losses or insufficient RSC, which leads to trap losses when the trap
depth decreases. In the second scenario, we analyze the trap losses after a dressing duration
of 0.6ms, which corresponds to a total loss of 40% of the atoms. In the third scenario, we
apply the same dressing duration, but we limit our analysis to samples with an initial load
of 26 atoms, equivalent to a filling fraction of 54%. When analyzing the third scenario, as
shown in Fig. 4.22, there’s a noticeable broadening in the distribution of lost atoms. This
broadening can serve as an early sign of the bimodality observed in denser setups [57].
Enhancing the array filling, either through deterministic loading [79, 200] or filling via
resorting [27], may allow us in the future to better contrast this bimodality.

Furthermore, we analyze the effects of varying Rabi coupling strengths on avalanche losses
with the next set of measurements. For this, we systematically increase the Rabi coupling
while maintaining the detuning unchanged. We set the dressing time such that we ensure a
consistent loss of 60% of atoms across all observations. As shown in Fig. 4.22, the correlation
amplitudes grow as the Rabi couplings increase. Interestingly, when applying an exponential
decay fit to the measurements, we obtain comparable interaction ranges for the cases with
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reduced Rabi couplings. Moreover, the correlation length gains a factor of two when
increasing the Rabi coupling from Ω/2 to Ω = 2π × 410 kHz.

Increased interaction strength might indicate the presence of avalanche processes. These
processes become evident when studying higher-order correlations, where multiple facilita-
tion events are expected in the event of avalanches. We explored this in our publication
[78] using three- and four-point correlators. Our findings demonstrate that the amplitude
of these higher-order correlators rises with an increase in Rabi coupling.

Our studies have clarified the challenges associated with black-body-induced losses and
avalanche processes in Rydberg dressing. Understanding these limitations is essential,
especially given their apparent limitations on coherence. We will now discuss several clever
methods to overcome the issues posed by black-body contaminants:

• Stroboscopic dressing: The stroboscopic dressing technique, successfully imple-
mented by various research groups, serves as an innovative approach to enhance the
Rydberg lifetimes in atom ensembles or lattices with large filling densities [58, 107].
This method alternates between short dressing light pulses and dark periods TD when
no light is applied. These dark intervals are strategically timed to let impurity atoms
decay and leave the trap. As discussed previously, the excited atoms, influenced by
the ponderomotive potential of the trapping light and the recoil, leave the trap before
decaying back to the ground state. To ensure the same effective interaction strength
during this process, it’s necessary to decrease the laser detuning. Moreover, instead of
simply implementing these dark periods as waiting times, they can also be utilized for
other operations. For example, during Floquet measurements [56], these intervals
can be used to apply spin rotations.

• Introduction of additional repulsive potential for Rydberg states: A possible
method to consider involves introducing an additional repulsive potential specific to
Rydberg states, such as employing a light sheet focused on the atom array. While this
light sheet acts as a trapping potential for atoms in the ground state, it effectively
repels those in the Rydberg states. The key is to ensure a sufficiently strong shift,
causing the contaminant atoms to move out of the array vertically, thus reducing
motion within the array itself [75].

• Depumping of black-body decayed atoms: Another method to mitigate the effects of
black-body decays in the system could be to rapidly depump these atoms to lower-lying
states. These states neither induce notable dipolar shifts nor have a long lifetime,
quickly transitioning further into the electronic ground states. It’s essential that the
depumping process is faster than any facilitation rate, which scales with the resonant
Rabi couplings. A first experimental approach might focus on extracting contaminant
states that exhibit the strongest coupling to the designated Rydberg state. In our
configuration, this would involve targeting adjacent nS and nD states that are only
tens of GHz away. One way to achieve this is by introducing another 973 nm light
source to couple these contaminants to the 5P states. However, while this method
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allows atoms to re-enter the system, it has a drawback: the reintroduced atoms may
decay into random ground states, potentially leading to errors in spin detection.

All of the suggestions above are technically feasible. Notably, the stroboscopic approach
stands out as it can be implemented in the experimental sequence without necessitating
any changes to the current setup, providing a swift solution with minimal adjustments.

In this chapter, we have introduced different types of Rydberg interactions, explored the
technique of Rydberg dressing, discussed potential applications in quantum technology,
and highlighted the technical constraints inherent to our experiment. We investigated and
analyzed the experimentally observed Rydberg dressed lifetime, identifying the excitation
laser phase noise as a key contributor to the reduced lifetime. We also proposed several
strategies to address these challenges, such as spectrally filtering the light using an optical
cavity. Additionally, we investigated the dynamics of Ising-type interactions and discussed
the sources of decoherence within the system. This led us to another significant source of
decoherence, specifically, black-body-induced losses in the experiment, which we discussed
within the context of Rydberg dressing. Addressing this effect necessitates the implementa-
tion of the strategies we discussed. Above all is the technique of stroboscopic dressing, which
can be seamlessly integrated into the experimental sequence. Overall, there’s optimism that
these challenges will be improved in the near future.
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Chapter 5

Tailoring spatially tunable spin interactions via
two-color Rydberg dressing

Programmable quantum systems based on cold atoms provide a powerful tool for quantum
simulators of many-body physics. While various realizations of cold atom-based spin-
Hamiltonian have already been demonstrated, [66, 109, 170, 201–203], the most significant
challenge remains to increase the system’s flexibility via universally programmable analog
qubit couplings.

In this chapter, we demonstrate the realization of freely tunable short-range XYZ-type
spin interactions between atoms trapped in optical tweezer arrays and engineer spin-spin
couplings by two-color Rydberg dressing, where the interaction strength and sign in each spin
direction can be tuned with a corresponding choice of laser parameters. Our approach relies
on the proposal of A. Glaetzle et al. [4]. Here, we encode the effective spin-1/2 system in two
distinctive hyperfine manifolds within the electronic ground state and induce interactions
depending on the spatially dependent van-der-Waals (vdW) interactions between different
mj hyperfine sublevels in the Rydberg part state manifold.

In Section 5.1, we provide the derivation of the interaction Hamiltonian. We then describe
the experimental parameters required to engineer these interactions and discuss the neces-
sary calibration measurements in Section 5.2. In Section 5.3, we present the experimental
results for the interactions for two different sets of laser parameters, and we discuss the
technical limitations of our implementation in Section 5.4.

This chapter is based on our publication [62]. Our results pave the way toward realizing
universally programmable analog qubit couplings in programmable quantum systems based
on cold atoms.

5.1 Derivation of the interaction Hamiltonian

The Heisenberg model is a quantum-mechanical approach to describe magnetism, which
serves as an exemplary model for a host of emergent phenomena such as frustrated quantum
magnetism, spin-class physics, and exotic states of matter like topologically, ordered quantum
spin liquids [1, 204]. These examples aim to study the asymptotic properties of the model,
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specifically the ground state or state with the lowest energy [2, 139]. The anisotropic
Heisenberg Hamiltonian, also known as XYZ-Hamiltonian, can be written as

ĤXYZ = ~
∑
i,j

[Jx
ij σ̂

x
i σ̂

x
j + Jy

ij σ̂
y
i σ̂

y
j + Jz

ij σ̂
z
i σ̂

z
j ] . (5.1)

Here, σ̂x, σ̂y and σ̂z are the Pauli matrices describing the localized spin-1/2 particles at
position j in a lattice, and {Jx

ij , J
y
ij , J

z
ij} are the directional spin-exchange couplings. We

can replace the Pauli matrices with the raising and lowering operators σ̂+, σ̂− using

σ̂xi = σ̂+i + σ̂−i
σ̂yi = σ̂+i − σ̂−i .

(5.2)

This allows us to write the Hamiltonian in Eq. (5.1) as

Ĥ = ~
∑
i,j

[J+−
ij (σ̂+i σ̂

−
j + σ̂−i σ̂

+
j ) + J++

ij (σ̂+i σ̂
+
j + σ̂−i σ̂

−
j ) + Jz

ij σ̂
z
i σ̂

z
j ] (5.3)

where we used J+−
ij = Jx

ij +Jy
ij and J++

ij = Jx
ij −Jy

ij . This formalism differentiates between
three kinds of spin couplings Jγ

ij:

• The diagonal interaction between pairs of dressed ground states Jz
ij ,

• The off-diagonal “flop-flop” interaction J++
ij , which flips the sign of pairs of parallel

spins, and

• The off-diagonal “flip-flop” interaction J+−
ij , which acts between pairs of anti-parallel

spins.

While dressing-induced Ising interactions Jz
ij have already been investigated in various

experiments [56, 57, 99, 107, 130, 137, 205] and programmable long-range interactions
have been shown in optical cavities [206], we focus on programmable J++

ij and J+−
ij

interactions. Please note that in Section 4.6, we also studied the Ising-type interactions.

We now want to derive the spin-spin interactions in Eq. (5.3) and start by introducing a
general model for two atoms with distinguishable positions within a tweezer array. We
encode the spin-1/2 in two hyperfine ground states and assume that in a typical experiment,
all atoms are initialized in one of them

|↑〉 = |4S1/2〉 |F = 2, mF = −2〉
= |4S1/2〉 |mj = −1/2〉 |mI = −3/2〉

|↓〉 = |4S1/2〉 |F = 1, mF = −1〉

= |4S1/2〉
(
|mj = 1/2〉 |mI = −3/2〉 −

√
3 |mj = −1/2〉 |mI = −1/2〉

)
/2.

(5.4)
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where mI is the projection quantum number of the nuclear spin. The interactions between
the ground states are introduced by two-color Rydberg dressing, where both states are
individually coupled to neighboring Rydberg states

|r↑〉 = |62P3/2, mj = −3/2〉 ⊗ |mI = −3/2〉
|r↓〉 = |62P3/2, mj = −1/2〉 ⊗ |mI = −3/2〉

(5.5)

Note that, in the case of |↓〉, the coupling strength is reduced by the respective Clebsch-
Gordon coefficient 1/2 (see mI = −3/2 contribution). To introduce interactions between
the ground-state spins, we make use of a technique called Rydberg dressing, which was
already presented in Section 4.2. In this technique, we use detuned couplings to the Rydberg
states. The off-resonant coupling admixes the strong Rydberg-Rydberg van-der-Waals (vdW)
interactions to the ground states and induces effective spin-spin interactions. The resulting
Hamiltonian describing the interacting two-atom system can be written in the rotating-wave
approximation [4, 46].

Ĥtwo = Ĥlas + Ĥint (5.6)

consisting of the Rydberg pair interaction operator Ĥint and the Hamiltonian containing the
laser coupling and energies of the unperturbed Rydberg states Ĥlas, which reads as

Ĥlas/~ =

2∑
i=1

[
Ω↑(|↑〉〈r↑|i + |r↑〉〈↑|i)/2 + Ω↓(|↓〉〈r↓|i + |r↓〉〈↓|i)/2

− ∆↑|r↑〉〈r↑|i −∆↓|r↓〉〈r↓|i
]
.

(5.7)

Here, the Rabi frequency Ωσ determines the coupling strength between a ground state |σ〉i
and a Rydberg state |rσ〉i of one atom i, with σ ∈ {↑, ↓}. The single atom detunings are
described by ∆σ. By choosing the appropriate laser polarizations and states, the dipole
matrix elements between |↑〉i and |r↓〉i and vice versa vanish, resulting in the absence of
the single-atom Raman transitions.

The pair interaction Hamiltonian Ĥint describes the dipolar interactions between two
Rydberg states. For the calculation, we use the Pairinteraction software package [105],
which numerically diagonalizes the interaction Hamiltonian to obtain the pair-separation
d and -angle θ dependent eigenstates |Ψ(2)

α 〉 with eigenenergies Eα(d, θ). To make the
diagonalization computationally practicable, the pair interaction software implemented
restrictions reducing the basis of the matrix to states that particularly affect the interaction
potentials. However, the constraints must be tested before each calculation as it depends on
the selected quantum numbers, external fields, and many more. There are three possible
constraints: Restricting the basis to states with similar energy (∆E), limiting the size of
momentum quantum numbers (∆`) and principal quantum numbers (∆n). For optimization,
one usually starts with strong constraints and opens them up until the pair potentials
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at the desired pair separation distance converge. In our case, we calculated the pair
potentials at a pair distance of 4µm and concluded to restrict the energy surroundings to
∆Eatom = ±50GHz around single atoms and ∆Epair = ±35GHz for pairs of atoms and
limited the involved momentum quantum number to ∆` = ±1 and principal quantum
number to ∆n = ±2 (see alsoe Appendix B.1). After the diagonalization, the obtained
eigenstates can be expressed in asymptotic pair states |rmrn〉 of m,n different Rydberg
states as

|Ψ(2)
α 〉 =

∑
m,n

cmn
α (d, θ)|rmrn〉 (5.8)

with the distance- and angle-dependend admixture cmn
α (d, θ) = 〈Ψ(2)

α (d, θ)|rmrn〉. To
improve the readability, we drop out the explicit d, θ-dependency in the followed derivation.

The dipolar interactions between any pair of Rydberg states |rmrn〉, where the pair of
atoms is oriented perpendicular to the quantization axis, can be written in the pair basis
{|rmrm〉, |rmrn〉, |rnrm〉, |rnrn〉} in the form

Ĥint =

〈rmrm| 〈rmrn| 〈rnrm| 〈rnrn|


|rmrm〉 V mm,mm 0 0 V mm,nn

|rmrn〉 0 V mn,mn V mn,nm 0
|rnrm〉 0 V nm,mn V nm,nm 0
|rnrn〉 V nn,mm 0 0 V nn,nn

. (5.9)

In order to transfer the interactions to the dressed ground states, we adiabatically eliminate
the Rydberg states, which is equivalent to the fourth-order perturbation theory as done in
[4]. In the following sections, we will derive the concrete terms of the effective interactions,
which add up in the effective Hamiltonian Ĥeff in the {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} basis:

Ĥeff =

〈↑↑| 〈↑↓| 〈↓↑| 〈↓↓|


|↑↑〉 W ↑↑,↑↑ 0 0 W ↑↑,↓↓

|↑↓〉 0 W ↑↓,↑↓ W ↑↓,↓↑ 0
|↓↑〉 0 W ↓↑,↑↓ W ↓↑,↓↑ 0
|↓↓〉 W ↓↓,↑↑ 0 0 W ↓↓,↓↓

. (5.10)
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We can now compare the obtained effective Hamiltonian with Eq. (5.3) when expanding
the latter on a ground state pair basis and identify the following interaction terms:

Jz
ij =

1

4

(
W ↑↑,↑↑(dij , θij) +W ↓↓,↓↓(dij , θij)− 2W ↑↓,↑↓(dij , θij)

)
J+−
ij =

1

2

(
W ↑↓,↓↑(dij , θij) +W ↓↑,↑↓(dij , θij)

)
=W ↑↓,↓↑(dij , θij)

J++
ij =

1

2

(
W ↑↑,↓↓(dij , θij) +W ↓↓,↑↑(dij , θij)

)
=W ↑↑,↓↓(dij , θij)

(5.11)

where we use W ↑↓,↑↓ = W ↓↑,↓↑, W ↓↑,↑↓ = W ↑↓,↓↑, and W ↑↑,↓↓ = W ↓↓,↑↑ and restored the
pair-separation and -angle dependence for clarity reasons. Finally, we obtained the spin-
spin couplings depending on the dressing-induced effective couplings W from Eq. (5.10).
In the following subsections, we will describe an intuitive picture for deriving those. As
illustrated in Fig. 5.1, our derivation is based on a two-step adiabatic elimination of the
Rydberg levels, starting with the singly-excited states. After this first step, we obtain an
effective Λ system. In the second step, we eliminate the doubly-excited states and obtain
the abovementioned spin couplings. This procedure is illustrated in Fig. 5.1, where we
assume that there are only four relevant (i. e. near-resonantly) laser-coupled asymptotic
pair states {|r↑r↑〉, |r↑r↓〉, |r↓r↑〉, |r↓r↓〉}.

5.1.1 The diagonal coupling terms for Ising-type interactions

In the following, we will present two approaches for deriving W σσ,σσ, resulting in the same
interaction potential. Both are based on the perturbative treatment of the Hamiltonian in
Eq. (5.6), with the laser coupling part as a perturbation.

In the first approach, we perform a perturbative treatment up to the fourth order, as done in
in references [104, 157, 158]. The system contains the ground state |σσ〉, the intermediate
state |+σ〉 = (|σrσ〉 + |rσσ〉)/

√
2, and Rydberg manifold |Ψ(2)

α 〉(d, θ). We assume that all
atoms are initialized in |σσ〉 at the beginning of the experiment. Note that the anti-symmetric
dark state |−σ〉 = (|σrσ〉−|rσσ〉)/

√
2 is not coupled and is therefore ignored in the following

approach. We again omit the distance and angle dependence of the Rydberg manifold for
better readability. As described in Eq. (5.7), in the rotating frame, we couple the states via
the dipole matrix elements

〈σσ|Ĥlas|+σ〉 = 〈σσ|Ĥlas(|σrσ〉+ |rσσ〉)/
√
2 = (2~Ωσ/2/

√
2) = ~Ωσ/

√
2

〈+σ|Ĥlas|Ψ(2)
α 〉 = 1/

√
2(〈σrσ|+ 〈rσσ|)Ĥlas|Ψ(2)

α 〉 = cσσα ~Ωσ/
√
2,

(5.12)

where the latter contains the state-dependent admixture cσσα = 〈Ψ(2)
α |rσrσ〉 of |rσrσ〉 in

close-by interacting pairstates |Ψ(2)
α 〉, which reduces the Rabi coupling. In addition, we

define the eigenenergies for the system as



Chapter 5 Tailoring spatially tunable spin interactions via two-color Rydberg dressing 87
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Figure 5.1 Step-by-step adiabatic elimination of excited states. a. Single atom excitation scheme.
The spins |↑〉, |↓〉 are encoded in electronic ground states and coupled with Rabi frequencies
(Ω↑, Ω↓) and detunings (∆↑, ∆↓) to different Rydberg states |r↑〉, |r↓〉. b. Elimination of
singly excited Rydberg states. Shown are the level schemes for different ground state spin-
pair configurations (|↑↑〉, |↓↓〉, |↑↓〉, |↓↑〉), which are coupled to the Rydberg manifold. By
adiabatic elimination of the singly excited states, we reduce the two photon excitation scheme
to obtain effective pair state couplings Ωσσ′

α to the eigenstates of the dipolar interaction
Hamiltonian |Ψ(2)

α 〉. c, d. Elimination of doubly excited states (Rydberg manifold). After
the first adiabatic elimination of the singly excited states, we obtain an effective Λ-system.
In a next step, we eliminate the doubly exited states |Ψ(2)

α 〉 and end up with an effective
ground state coupling for unequal initial and final states W ↑↑,↓↓, W ↓↑,↑↓ or an induced light
shift for equal intial and final states W ↑↑,↑↑, W ↓↓,↓↓, W ↑↓,↑↓, and W ↓↑,↑↓. Figure adapted
from [62].

〈σσ|Ĥtwo|σσ〉 = 0

〈+σ|Ĥtwo|+σ〉 = 1/2(〈σrσ|+ 〈rσσ|)Ĥtwo(|σrσ〉+ |rσσ〉) = ∆σ

〈Ψ(2)
α |Ĥtwo|Ψ(2)

α 〉 = ∆(2)
α = 2∆σ + Eα

(5.13)

where Eα is the interaction-induced energy shift. With this equation, we can directly see
that for an atom pair with large separation, the interaction vanishes, and the atoms can be
treated as single atoms with an eigenenergy 2∆σ.



Chapter 5 Tailoring spatially tunable spin interactions via two-color Rydberg dressing 88

The different orders (kth) of the perturbation series express the effect of exactly k virtual
processes of the perturbation operator. As we have already discussed in Section 4.2, all odd
orders cancel out, as one requires one relaxation process for every excitation step to end up
in the ground state again [104].

The correction energy terms to the ground state up to the fourth order are

uσσ(2) =
|〈σσ|Ĥlas|+σ〉|2

〈+σ|Ĥlas|+σ〉
=

(Ωσ)2

2∆σ

uσσ(4) =
∑
α

(
|〈σσ|Ĥlas|+σ〉〈+σ|Ĥlas|Ψ

(2)
α 〉|2

(〈+σ|Ĥlas|+σ〉)2〈Ψ(2)
α |Ĥlas|Ψ

(2)
α 〉

− uσσ(2)
|〈σσ|Ĥlas|+σ〉|2

(〈+σ|Ĥlas|+σ〉)2
−O(uσσ(1))

)

=
∑
α

(Ωσ)4 · (cσσα )2

4(∆σ)2 ·∆(2)
α

− (Ωσ)4

4(∆σ)3
.

(5.14)

The second-order processes only account for a single excitation in the system and hence do
not contain any interaction term. Instead, we obtain a constant offset term, also known
as AC Stark shift, which distinguishes between a dressed and not dressed single atom. In
contrast, in the fourth-order correction, we treat the excitation of two atoms and obtain
pair-distance dependent terms besides the constant offsets. The corrections then sum up

Ũσσ,σσ = uσσ(2) + uσσ(4) =
(Ωσ)2

2∆σ
− (Ωσ)4

4(∆σ)3
+
∑
α

(
(Ωσ)4cσσα )2

4(∆σ)2∆
(2)
α

)
. (5.15)

Given that the interaction time scales are significantly shorter than the motion of the atoms
within the tight tweezers, we assume that constant offset terms are irrelevant in our case.
Thus, we subtract the asymptotic value, which is equivalent to the first and second order
AC-Stark induced potentials [104, 107]

Ũσσ,σσ(dmn → ∞) =
(Ωσ)2

2∆σ
− (Ωσ)4

4(∆σ)3
+

(Ωσ)4

8(∆σ)3
. (5.16)

Note, that here we used the energy shift of the asymptotic Rydberg pair states ∆(2)
α (dmn →

∞) = 2∆σ. Subtracting Eq. (5.16) from Eq. (5.15) we end up with the interaction potential:

W σσ,σσ =
(Ωσ)4

4(∆σ)2

∑
α

(
(cσσα )2

∆
(2)
α

− 1

2∆σ

)
. (5.17)

The second option to derive the W σσ,σσ interaction potential consists of two consecutive
steps of adiabatic elimination: We start with adiabatic elimination of the single excited state



Chapter 5 Tailoring spatially tunable spin interactions via two-color Rydberg dressing 89

|+σ〉 to obtain an effective Λ-scheme consisting of the ground state |σσ〉 and the Rydberg
manifold as shown in Fig. 5.1 (the Λ-scheme will be more obvious when deriving the
flop-flop and flip-flop terms in the next sections), coupled via the effective two-photon Rabi
couplings, which now depend on the atom-pair distance Ωσσ

α : For large distances, we obtain
the effective two-photon Rabi couplings Ωσσ

eff/2 = (Ωσ)2/2∆σ. At short distances, the pair
potentials in the mj-subspace of the 62P3/2 manifold interact with each other via dipole-
quadrupole interaction, which leads to avoided crossings and mixing of Rydberg states
[207]. The corresponding admixture cσσα = 〈Ψ(2)

α |rσrσ〉 of |rσrσ〉 in close-by interacting
pairstates |Ψ(2)

α 〉 reduces the effective Rabi frequencies to Ωσσ
α = Ωσσ

eff · cσσα .

After this first step of adiabatic elimination of the singly excited states, we transform the
light-atom Hamiltonian in Eq. (5.7) to a two-atom basis:

Ĥlas,2/~ =
∑
α

[
Ωσσ
α /2

(
|σσ〉〈Ψ(2)

α |+ |Ψ(2)
α 〉〈σσ|

)
+ Ωσσ̄

α /2
(
|σσ̄〉〈Ψ(2)

α |+ |Ψ(2)
α 〉〈σσ̄|

)
+∆(2)

α |Ψ(2)
α 〉〈Ψ(2)

α |
]
.

(5.18)

In a second step, we then adiabatically eliminate the Rydberg states up to the second order
(similar as done in Eq. (5.14)) and obtain

Uσσ,σσ =
∑
α

|〈σσ|Ĥlas,2|Ψ
(2)
α 〉|2

〈Ψ(2)
α |Ĥlas,2|Ψ

(2)
α 〉

=
∑
α

(Ωσσ
α )2

4∆
(2)
α

=
∑
α

(Ωσ)4(cσσα )2

4(∆σ)2∆
(2)
α

(5.19)

with the two-photon detuning from the corresponding Rydberg pairstate ∆
(2)
α is as shown

in Fig. 5.1. Similar to the first derivation, we evaluate the asymptotic value, which is in this
case

Uσσ,σσ(dmn → ∞) =
(Ωσ)4

8(∆σ)3
(5.20)

and substract this term to obtain the interaction potential identical to Eq. (5.17).

The derivation of the diagonal interactions of an anti-symmetric pair W σσ̄,σσ̄ (with σ 6= σ̄)
is similar: As shown in Fig. 5.1 there are two excitation paths from |σσ̄〉 to |Ψ(2)

α 〉, via the
intermediate states |σrσ̄〉 and |σ̄rσ〉. Eliminating all singly excited states, we obtain the
effective two-photon coupling Ωσσ̄

α /2 = ΩσΩσ̄cσσ̄α · (1/4∆σ + 1/4∆σ̄). Same as before, we
then in a second step adiabatically eliminate |Ψ(2)

α 〉 and obtain

Uσσ̄,σσ̄ =
∑
α

(Ωσ)2(Ωσ̄)2(cσσ̄α )2

16∆
(2)
α

(
1

(∆σ)2
+

1

(∆σ̄)2
+

1

∆σ∆σ̄

)
(5.21)
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and remove a constant offset by subtracting the d→ ∞ asymptotic value to obtain the last
term in the Ising interaction in Eq. (5.11)

W σσ̄,σσ̄ =

(
1

(∆σ)2
+

1

(∆σ̄)2
+

1

∆σ∆σ̄

)
(Ωσ)2(Ωσ̄)2

16
×
∑
α

(
(cσσ̄α )2

∆
(2)
α

− 1

2∆σ
− 1

2∆σ̄

)
.

(5.22)

Finally, we obtain terms for the Ising interaction via step-by-step adiabatic elimination of
the excited states. Note that the asymptotic value of this derivation corresponds solely to
the second-order light shift for two atoms. In contrast, the light shift of single atoms is
bypassed in this approach.

5.1.2 The off-diagonal terms for flop-flop interactions

The flop-flop coupling termsW σσ,σ̄σ̄ between the two ground states |↑↑〉 and |↓↓〉 are derived
analogously. The energy required to bridge the ground state splitting between |↑〉 and |↓〉
is provided by the two-color excitation photons. In the rotating wave approximation, we
obtain two intermediate states for each excitation leg |+σ〉, as shown in Fig. 5.1. As before,
the derivation is split into two parts: After the adiabatic elimination of these singly excited
states, we obtain the effective two-photon Rabi couplings Ωσσ

α = Ωσσ
eff ·cσσα with the couplings

Ωσσ
eff as described in Section 5.1.1. An example of the distance and angular dependent

Rydberg manifold is shown in Fig. 5.2, where we used the pair interaction software
[105] to calculate the Rydberg pair potentials fixing one degree of freedom (pair distance or
angle). The calculations are done for a magnetic offset field of 1G defining the quantization
axis.

In a second step, we adiabatically eliminate the Rydberg pair states and obtain the flop-flop
coupling term:

W σσ,σ̄σ̄ =
∑
α

〈σσ|Ĥlas|Ψ
(2)
α 〉〈Ψ(2)

α |Ĥlas|σ̄σ̄〉
〈Ψ(2)

α |Ĥlas|Ψ
(2)
α 〉

=
∑
α

Ωσσ
α Ωσ̄σ̄

α

∆
(2)
α

=
∑
α

(ΩσΩσ̄)2

4∆σ∆σ̄
· c

σσ
α cσ̄σ̄α

∆
(2)
α

(5.23)

The absence of offsets at large distances for off-diagonal terms arises from the fact that
two different asymptotic pair state overlaps are involved, and one of them must vanish
asymptotically. Specifically, the two-color excitation laser beams need to be detuned from
each other by a frequency that matches the energy difference between the initial and
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Figure 5.2 Rydberg manifold for different pair distances and angles. a. Schematic for the flop-flop
interaction J++

ij between two atoms i and j. Via adiabatic elimination of the singly excited
pair states, we reduce the four-photon process to an effective Λ-scheme. The pairs of ground
state atoms are coupled with the effective Rabi couplings (Ω↑↑

α , Ω↓↓
α ) to Rydberg pair states

|Ψ(2)
α 〉. ∆

(2)
α is the two-photon detuning to each |Ψ(2)

α 〉, which includes interaction induced
shifts. b, c. Calculated eigenenergies of ĤRyd depending on the atom pair distance d at
an angle of θ = 90 ◦ (b.) and atom pair angle θ at a distance d = 6µm (c.). The color
scale corresponds to the overlap c↑↑α c

↓↓
α . The solid lines at ±2MHz mark the energy of

the asymptotic Rydberg pair state (|r↓r↓〉, |r↑r↑〉). The theoretical results are obtained by
exact diagonalization of HRyd using the Pairinteraction software package [105]. Figures
taken from [62].

final states such that energy conservation is fulfilled. The laser detunings must be set to
∆↑ − ∆↓ = Ez, where Ez is the Zeeman splitting between |r↑〉 and |r↓〉. This condition
ensures the maximal transfer of population between the two ground states.

5.1.3 The off-diagonal terms for flip-flop interactions

We use the same procedure as before to derivate the flip-flop interaction term W σσ̄,σ̄σ. The
virtual four-photon process is split into two parts: Once again, we adiabatically eliminate
the single excited states |rσσ̄〉 and obtain the reduced two-photon Rabi couplings Ωσσ̄

α =
(ΩσΩσ̄/4∆σ +ΩσΩσ̄/4∆σ̄) · cσσ̄α . Here, we recognize that the effective two-photon coupling
vanishes when the detunings are set to equal magnitude but opposite sign. This can be
understood as destructive interference of the two excitation paths. In the experimental
realization, later, we can cancel the flip-flop interaction by a corresponding set of laser
detunings (see Section 5.3.1).



Chapter 5 Tailoring spatially tunable spin interactions via two-color Rydberg dressing 92

Via adiabatic elimination of the Rydberg manifold, we obtain the flip-flop coupling term:

W σσ̄,σ̄σ =
∑
α

〈σσ̄|Ĥlas|Ψ
(2)
α 〉〈Ψ(2)

α |Ĥlas|σ̄σ〉
〈Ψ(2)

α |Ĥlas|Ψ
(2)
α 〉

=
∑
α

Ωσσ̄
α Ωσ̄σ

α

∆
(2)
α

=
∑
α

(
ΩσΩσ̄

4∆σ
+

Ωσ̄Ωσ

4∆σ̄

)2 cσσ̄α cσ̄σα

∆
(2)
α

(5.24)

We have derived the interaction terms for the Ising-type, flop-flop, and flip-flop interaction
as defined in Eq. (5.11). Additionally, we have obtained the detuning dependence of the flip-
flop interaction, which can be activated or deactivated simply by choosing the appropriate
laser detuning. The flop-flop interaction requires the two excitation paths at the Raman
condition.

5.2 Experimental setup and procedure

We will now describe the procedure of a typical interaction measurement. We focus on
the J++ and J+− interactions as Ising interactions have already been studied in various
publications [56, 57, 99, 107, 130, 137, 205]. See also Section 4.6 for our results on Ising
interaction measurements.

To experimentally study the dependence of the interaction strengths on the geometric ar-
rangement, we load single atoms in optical tweezer arrays with freely adjustable geometries.
We select the simplest possible setting of three in-line traps with various nearest-neighbor
distances d and angles θ, as shown in Fig. 5.3. Here, θ is the angle between the interatomic
separation vector d and the magnetic field B defining the quantization axis. We use 14
replications of these triplets to increase statistics and space the groups by more than 20µm to
ensure that interactions only appear within one group but not between different neighboring
groups. After the loading procedure described in Section 3.1, we take a first fluorescence
image to check for the presence of an atom in the trap. Due to the statistical loading, we
obtain an average loading probability of 50%. Fig. 5.3 shows a typical first fluorescence
picture [75, 80]. Afterward, we optically pump and prepare the atoms in the |↑〉 state with
σ−-polarized pumping and repumping light on the D1-line as described in Section 3.4.1.
We then apply Raman sideband cooling [80] as described in Section 3.4.2 to lower the trap
depth to a minimum of h · 80 kHz before gravity opens the trap. We must lower the overall
trap depth during the dressing measurements due to the trap-depth inhomogeneities, which
would otherwise break the Raman condition described in Section 5.1.2. The influence of the
trap inhomogeneities will be discussed in Section 5.4.2. In addition, we apply a magnetic
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Figure 5.3 Experimental two-color Rydberg dressing settings. a.Level scheme for the two-color
Rydberg excitation consisting of two beams, driving each σ− transitions at a magnetic field
of 1.06G. This will result in a Rydberg Zeeman splitting of Ez/h = 1.98MHz. b. Sketch
of the experimental setting. The Rydberg excitation beams (k↑, k↓, light blue) are aligned
along the magnetic field B. They illuminate all tweezer groups, each with three linearly
arranged tweezers (red). The tweezers are statistically loaded with atoms (black spheres).
At the bottom of the illustration, a single-shot fluorescence image shows the statistical
single-atom filling. c. Exemplary images for various angles θ at a distance of 5.2µm. Figures
taken from reference [62].

field aligned parallel with our Rydberg excitation beams, with an amplitude of B = 1.06G,
which leads to the Zeeman splitting of the Rydberg states Ez/h = 1.98MHz.

We use the laser setup for the Rydberg dressing pulse as described in Section 4.3.1. For
the two-color excitation, we split the UV beam into two paths, each with an acousto-
optical modulator (AOM)1 with frequencies of ±230.275MHz 2, which we use for intensity
stabilization and bridging the hyperfine ground state splitting. Both beams require the
same polarization, so we overlap them using a non-polarizing beam splitter3. After passing
the polarization cleaning optics, consisting of a set of waveplates4 and a thin film polarizer5,
the beams are focused onto the atoms with a horizontal (in-plane) waist of 40µm and a
vertical (out-of-plane) waist of 10µm. The Rydberg excitation beams propagate parallel
to the magnetic field and drive σ− transitions. Single-atom Raman couplings are thus
suppressed by choice of beam polarization and polarization extinction of the used optics.

1AOMs are from G&H I-M200-3C10BB-3-GH27, and we use high-power RF amplifiers RFbay MPA-40-40 to
provide the required 4W of RF power.

2We use the signal generator Rigol DSG815, referenced to the 10MHz rubidium clock SI FS725.
3UV plate beamsplitter Newport UVBS14-1
4Zero-order crystalline quartz waveplates from Altechna have been proven to sustain high UV intensities.
5Brewster type thin film polarizer from Altechna.
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To ensure proper alignment of the excitation beams onto the atoms, we follow a two-step
procedure. First, we roughly align both beams onto the same spot on a spatial detector6

placed after the science vacuum chamber. Then, in the second step, we fine-tune the
alignment by optimizing the Rabi couplings of both beams in a large-spaced tweezer array.
This alignment procedure is similar to the one described in Section 4.3.1 with the addition
of a piezo-controlled mirror mount for individual control of the second excitation beam.
Since the full Rydberg excitation path is free space, the system is sensitive to thermalization-
induced changes in the beam pointing. However, we found that our system remained
stable without requiring resetting of the UV beam position when thermalized. For the
measurements described in the following sections, we typically apply a Rydberg dressing
pulse of 50µs of both beams.

As state-selective imaging is not possible at present, we remove one spin state from the
system to investigate interaction-induced spin-flips. Therefore, after the Rydberg excitation
pulse, we adjust the overall trap depth to 20% of the initial loading power and apply a
pulse to heat the |↑〉 atoms with resonant D2-light on the |4P3/2 F

′ = 3, mF ‘ = −3〉 cycling
transition. This leaves only the atoms in the |↓〉 state trapped, which we capture with a
second fluorescence image. By comparing both fluorescence images, we can deduce the
spin interactions based on spin flips and their correlations.

Alternatively, we could also prepare the atoms in the |↓〉 state by applying a π-pulse between
both ground states (see Section 3.4.1) and detect spin changes via trap losses. Unfortunately,
in this case, we would not be able to differentiate interaction-induced losses from other
loss mechanisms, such as off-resonant single-atom Rydberg excitations (dressed Rydberg
lifetime). However, if we prepare the atoms in the |↑〉 state, we are blind to such losses, which
requires us to check for them separately, as it will be discussed in the next Section 5.2.1
and in Section 5.4.1 and Appendix B.3.

5.2.1 Calibration measurements

Prior to each measurement, we independently check the Rabi coupling and spectroscopy
signal for both excitation beams. We scan the Rabi frequencies in a free-space configuration
without trapping light. The typical uncertainty of the oscillation fits of the observed Rabi
frequencies is 0.01MHz, consistent for all listed couplings for the measurements presented
in the next sections. As discussed in Section 4.3.1 we observe a degradation of the UV power
to 50% of the original output power within one week of usage. We implemented intensity
stabilization of the UV pulses to maintain the excitation power constant until completing
one measurement set. In addition, we observe a long thermalization duration of the UV
laser setup of approximately 12 h, during which the UV beam alignment drifts.

Due to our spin-insensitive imaging method and the required heat-out pulse, we have
to check for residual atom losses separately. Our in-trap lifetime exceeds several tens of

6We use a 2D beam position measurement and alignment system from TEM: µAligna 140 for this purpose.
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 Preparation Push Rydberg dressing time

J++ J+-

Figure 5.4 Experimental sequence for spin flip detection. We initiate all atoms in the |↑〉 state
using an optical pumping pulse. Then, we continue with a Rydberg dressing of 50µs and
push-out pulse period, where the latter only leaves us with atoms in the |↓〉 state. Finally,
to evaluate for flop-flop and flip-flop interaction, we post-select two initial configurations:
The atom in the center plus one extra atom or all three atoms. This initial configuration
enables flop-flop (blue arrow) and flip-flop processes (red arrow). Figure adapted from
reference [62].

seconds, which is much longer than one experimental run of approximately 1 s. Hence, the
majority of the atom loss is due to off-resonant single-atom Rydberg excitation, quantified
by the dressed Rydberg lifetime, as defined in Section 4.2.2. The ideal lifetime of the dressed
ground state atoms scales quadratically with the Rydberg admixture β = 2Ω/∆. Assuming
a phase-noise-free laser, we expect a black-body radiation-limited lifetime of τr = 1.7ms
for ∆↓ = −2π × 0.6MHz and Ω↓ = 2π × 0.4MHz. However, the experimentally observed
lifetime is reduced to 70± 7µs due to laser noise [75]. The influence of the laser phase
noise will be discussed in Section 5.4.1.

Moreover, we have to quantify the number of false positives, which are detected atoms in
the second fluorescence picture that did not undergo any Rydberg interaction. They can be
caused by two main reasons: Inefficient state preparation and insufficient push-out pulse,
leading to a constant offset. In each measurement evaluation, we check for single-loaded
tweezer groups.

Comparing the two fluorescence images taken before and after the Rydberg dressing pulse,
we reconstruct the occurred spin interactions. For the analysis, we focused on the original
loading configurations where nearest-neighbor tweezer pairs are occupied, corresponding
to either a fully loaded group (|↑↑↑〉) or two out of three at the nearest neighbor distance
pairs (|◦ ↑↑〉, |↑↑ ◦〉). The presence of flop-flop interactions would lead to pairwise spin-flips
and recapture of |◦ ↓↓〉 or |↓↓ ◦〉 in the second image.

In the first calibration measurement, we scanned flop-flop processes while tuning the
two-atom Raman condition, as shown in Figure 5.5. A fulfilled Raman condition ∆E =
Ez−∆↑+∆↓ is necessary for observing flop-flop processes. We fitted a characteristic sinc(f)
envelope, which we expect for a Fourier limited rectangular pulse of 50µs duration.
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Figure 5.5 Raman condition for flop-flop interactions. a. Schematic for the flop-flop interaction
between two atoms. Shown is the effective Λ-scheme with effective two-photon Rabi
couplings Ωσσ

α between the pairs of ground state atoms and Rydberg pair states Ψ
(2)
α . ∆

(2)
α

is to the two-photon detuning to the corresponding Ψ
(2)
α . For the Raman condition scan in b,

we scan the detuning of one excitation arm (blue). b. Flop-flop processes versus two-atom
Raman detuning ∆E = Ez −∆↑ +∆↓. The fit shows the characteristic sinc2 envelope of a
Fourier limited rectangular pulse with a full width half maximum FWHM = (18.2±0.2) kHz.
The grey-shaded area represents the detection limit, accounting for a false positive probability
due to single spin flips and inefficient state preparation and push out. Figure adapted from
reference [62].

Now that we introduced the typical measurement procedure, we want to observe the spin
interactions in the following sections.

5.3 Spin coupling measurements

The desired interactions’ strength can be fully controlled by experimental parameters,
such as laser coupling, detuning, and the geometric arrangement of the atom pairs to the
quantization axis, as derived before. In the following, we scan for interaction processes
for different conditions. For the first set of measurements in Section 5.3.1, we tune the
laser detunings of the two excitation paths to have the same amplitude but with opposite
signs, such that flip-flop interactions vanish, and we only observe flop-flop interactions.
In a second set in Section 5.3.2, we use an asymmetric set of detunings, which enables
flip-flop interactions in addition to flop-flop interactions. In Section 5.4, we will discuss the
experimental restraints limiting coherent dynamics.
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Figure 5.6 Flop-flop interactions. a. Calculation of J++ as a function of θ and d for ∆↑ = −∆↓ =
2π × 1MHz. We identify a resonance in the spin-spin couplings. Calculation of J++ as a
function of θ and d for ∆↑ = −∆↓ = 2π× 1MHz. We identify a resonance in the spin-spin
couplings appearing as a singularity around θ = 30 ◦ at a distance of 5− 6µm. b. Observed
flop-flop probability Pflop for different atom pair distances at θ = 90 ◦. A small false positive
probability sets the detection limit (grey area) taking into account single spin flips and
inefficient state preparation and push out. Error bars indicate 1 s.e.m. The solid line is the
scaled theoretical prediction, where the amplitude has been scaled to match the experimental
values due to broadening effects. The blue shading indicates the effect of the finite radial
size of the atomic wavepacket σrad in σrad/2-steps up to ±3σrad. c. Angular dependence of
the flop-flop interaction at a distance of 5.6µm. Figures taken from reference [62].

5.3.1 Flop-flop interactions

First, we experimentally investigate the flop-flop interactions obtained for the most straight-
forward parameter set. We choose the laser detuning to be symmetric ∆↑ = −∆↓, which
cancels flip-flop terms by destructive interference of the excitation paths (see Section 5.1.3).

We simulate the expected interactions for distances for a 2D plane ranging from 3− 8µm
and an angle of 0 − 90 ◦, as shown in Fig. 5.6. Here, we observe a vanishing interaction
strength at approximately 60 ◦, resulting from the destructive interference of all interaction
contributors. Additionally, we note a diverging interaction behavior around 25 ◦, where
a Rydberg pair state is shifted on resonance with the lasers detunings. The advantage of
working close to Rydberg pair resonances while keeping a large single atom detuning will
be discussed in Section 5.4.4 and has been previously proposed in reference [139].

To characterize the interactions, we scan the pair distance behavior, preparing the atoms
aligned perpendicular to the quantization axis and thus avoiding any crossing of Rydberg
pair state resonance. The experimental sequence is the same as described in Section 5.2.
Before the measurement, we prepare a set of SLM phase patterns for each specific atom
distance. Then, at the beginning of each iteration step, we update the SLM with a new
pattern, giving enough buffer time for the SLM to react during the MOT loading time of
250ms.
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The distance dependence of the interaction is shown in Fig. 5.6 for Rabi couplings of
Ω↑ = 2π × 0.52MHz, Ω↓ = 2π × 0.36MHz. Overall, the experimental data and the
amplitude-scaled theoretical expectation are in good qualitative agreement. We checked
that we did not measure significant single-atom recapture or increased single spin flips in
every interaction measurement, proving the suppression of single-atom Raman processes.
The small spin-flip probability of a few percent is due to several reasons, which are described
in more detail in Section 5.4.

One of the major reasons for the small interaction probability is the laser phase noise, limiting
the dressing time due to an approximately 20-fold increased scattering rate appearing
as atom loss. In addition, there are several broadening effects that contribute to the
experimental uncertainties. For instance, the finite size of the atoms’ thermal wavepacket
in the radial and axial direction in the traps, leading to an averaging effect over a range
of atom pair separations and angles within the radial ground state wavepacket size of
σ0rad = 0.15µm and the axial thermal wavepacket size

√
2σ0ax

√
kBT/~ωax ≈ 0.86µm for

the axial trapping frequency ωax = 2π × 1.7 kHz, where kB is the Boltzmann constant
and T is the temperature. Another prominent broadening effect is the line shifts due to
tweezer-to-tweezer inhomogeneities. For the used arrays, the average trap depth difference
is |∆U | = h · (10.6± 1.6) kHz.

These broadening effects are also present for the second set of measurements, where we
map out the angular dependence of the flop-flop interaction for a fixed distance of 5.6µm
and Rabi couplings (Ω↑,Ω↓) = 2π× (0.55, 0.30)MHz for the same laser detunings as before.
For these parameters, we observe a singularity in the spin-spin interaction at θ ≈ 30 ◦ due
to the Rydberg pair state resonance mentioned earlier. As a result, the measurement shows
a peaked interaction around this resonance, as shown in Fig. 5.6. The broadening effect is
responsible for the weak atom loss caused by direct Rydberg pair excitation on resonance
(see Appendix B.3).

5.3.2 Combination of flop-flop and flip-flop interactions

In the following set of measurements, we activate both flop-flop and flip-flop interactions.
We set the detunings to ∆↑ = 2π × 1.4MHz and ∆↓ = −2π × 0.6MHz and Rabi couplings
to Ω↑ = 2π × 0.5MHz and Ω↓ = 2π × 0.36MHz. To observe flip-flop interactions, we
post-select fully loaded tweezer groups and require the specific chronology of spin couplings
depicted in Fig. 5.4. In an initial |↑↑↑〉 occupation, flop-flop processes introduce the (|↓↓↑〉,
|↑↓↓〉) spin state, and in combination with flip-flop interactions, this leads to the detection of
|↓ ◦ ↓〉. Thus, this procedure requires flop-flop interactions to initiate the flip-flop dynamics
from the fully polarized initial state. To detect flop-flop interactions, we will post-select
tweezer groups where two out of three traps at the nearest neighbor distance are occupied.

First, we simulate the interaction geometry for J++ and J+− with the abovementioned
detuning and Rabi couplings. We expect different spatial dependencies as shown in Fig. 5.7.
Note that the plots shown are radial interpolations for discrete simulation steps of 70 nm
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Figure 5.7 Flop-flop and flip-flop interactions. a, d. Calculation of the distance- and angular-
dependent flop-flop and flip-flop interaction for an asymmetric detuning ∆↑ = 2π×1.4MHz
and ∆↓ = −2π×0.6MHz and Rabi couplings Ω↑ = 2π×0.5MHz and Ω↓ = 2π×0.36MHz.
Grey lines indicate the trace for the measurements in this figure. b, e. Preparing the atoms at
a fixed angle of θ = 50 ◦ and scan the distance-dependence of the J++ and J+− interactions.
c, f. Preparing the atoms at a fixed distance of 5.3µm and scan the angular-dependence of
the J++ and J+− interactions. Shadings reveal the effect of the spatial elongation of the
atomic wavepacket in the radial direction, thus indicating the detection limit. Error bars
represent 1 s.e.m. Figures taken from reference [62].

for distances between 3− 8µm and 0.5 ◦ angular steps between 0− 90 ◦. For the flip-flop
interaction, we obtain two singularities for the chosen detuning set. Additionally, we note
that J+− exhibits stronger interaction compared to J++. This is due to the interplay of
the small detuning to the Rydberg pair states with large a large product overlap c↑↓mn · c↓↑mn.
This spatial dependence of the interaction is consistent with the theoretical prediction in
reference [4].

In the first measurement, we prepare the atoms at a fixed angle of 50 ◦ and scan the spatial
dependence of both interactions. For the flop-flop interaction, we surpass a Rydberg pair
state resonance at ≈ 6µm. While this singularity enhances the interaction strength, it can
also cause resonant excitation to pair states and lead to losses (Appendix B.3). Our data in
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Fig. 5.7 reveals the amplitude-scaled interaction shape. Slight discrepancies between theory
and measurement may be due to systematic errors in the calibration of the imaging system,
which we estimate to be less than 5%. In addition, the occurrence of the |↓ ◦ ↓〉 state is
now non-zero, indicating the presence of flip-flop interactions. In this case, we predict
two singularities in qualitative agreement with our data. The theory fit of the flip-flop
interactions in Fig. 5.7 also considers the prerequired flop-flop interactions.

In the previous section, we demonstrated that we could vanish flip-flop interactions by
choosing a set of symmetric detunings. In this section, however, we show that the interactions
can also be suppressed by the choice of the geometrical arrangement of the atoms. For
the second set of measurements, we prepare the atoms at a fixed distance of 5.3µm and
scan the angular dependence of the interactions in steps of five degrees. To evaluate the
flop-flop interaction, we post-select on initial |◦ ↑↑〉 and |↑↑ ◦〉 states, as shown in Fig. 5.7.
The minimum at 65 ◦ arises from the destructive interference of the different interaction
contributions on the two-atom level. The contributors are different Rydberg pair states
|Ψ(2)

α 〉 with product overlap c↑↑α c↓↓α of opposite sign. The sum over all contributors results in
a vanishing J++ interaction. We do not measure any |↓ ◦ ↓〉 state occurrence, which agrees
with our prediction.

In summary, we have demonstrated two-color Rydberg-dressing as a new technique for
achieving tunable, XYZ-type short-range spin interactions. We used the flexible arrangement
of optical tweezers to investigate the spatial shape of the desired interactions and employed
the laser detunings to tune flip-flop interactions. Nevertheless, the measured spin-spin
interaction probability is only a few percent, and the interactions are in the incoherent regime.
We, therefore, require a detailed discussion of the limitations and possible improvements in
the next section.

5.4 Discussion of technical limitations

Currently, technical limitations hinder us from accessing the coherent regime. This section
aims to explore these limitations in detail and propose possible solutions to overcome
them, paving the way towards achieving coherence. The two primary limitations arise
from laser phase noise and tweezer-to-tweezer inhomogeneity, as detailed in sections
Section 5.4.1 and Section 5.4.2. Laser phase noise limits the duration of our dressing pulses
and determines the lower threshold of the interaction coupling strength. Meanwhile, trap
depth inhomogeneities require us to work at the lowest possible trap depth. This has an
impact on the atoms’ positional uncertainty coming from the in-trap wavepacket size, as
described in Section 5.4.3. There are even more possibilities to improve the performance of
the experiment, which are listed in Section 5.4.4. We will discuss the realistically reachable
figure of merit according to the experimental improvements in Section 6.2.



Chapter 5 Tailoring spatially tunable spin interactions via two-color Rydberg dressing 101

5.4.1 Decoherence due to excitation laser phase noise

The phase noise of our Rydberg excitation laser leads to an incoherently enhanced population
of the Rydberg states. As we will see in the following, this results in a dephasing of the
interaction dynamics and defines an upper limit for the duration of the Rydberg dressing
pulses. For more details about the noise of the excitation laser and possible solutions, please
refer to Section 4.4.

To estimate the impact of the phase noise, we first want to calculate the parameters for an
“ideal” laser with negligible noise: Here, the Rydberg population is defined by β2 = Ω2/4∆2.
The Rydberg excitation rate then scales as β2γr, where γ−1

r is the Rydberg-state lifetime.
Our measurement for the Rydberg dressed lifetime is based on observing trap losses after a
certain period of the excitation pulse, as described in Section 4.2.2. These trap losses occur
because excited atoms, influenced by both the ponderomotive potential of the trapping
light and the excitation’s recoil, exit the trap before decaying back to the ground state with
a probability of one. We expect a black-body limited dressed Rydberg lifetime of 2.2ms,
assuming a phase-noise-free laser for the laser for a symmetric detuning as in Section 5.3.1
and Rabi couplings of Ω↑ = 2π × 0.537 kHz. However, we measure a 1/e-decay of the trap
occupation of 101± 5µs, corresponding to a 22-fold increased scattering rate. We obtain
a similar ratio for the laser parameters in Section 5.3.2, where we chose an asymmetric
detuning set (2π × 0.6MHz, 2π × 1.4MHz). In this case, we calculate an “ideal” dressed
lifetime of 1.7ms and measure a reduced lifetime of 70± 7µs.

The phase noise of the Rydberg excitation laser can be reduced by implementing optical
filter cavities or employing feed-forward techniques, as already successfully implemented
by different groups [169, 192, 208]. These and other techniques are discussed in detail in
Section 4.4.1.

In summary, reducing the phase noise of the excitation laser is essential for future dressing
experiments working close to resonance [57, 139]. Moreover, it boosts the interaction
coherence due to less high-frequency noise [208].

5.4.2 Effect of trap depth inhomogeneities

The flop-flop interactions require energy conservation to be fulfilled at any time and,
therefore, both excitation paths in Raman configuration. Hence, as the trap remains on
during the excitation pulse, differences in trap depth between tweezer-to-tweezer present a
severe problem as they might break the Raman condition.

To resolve these trap depth differences, we measure the AC Stark shift on the D1-line
spectroscopically to determine the trap depth of the individual tweezers in the array. Here,
the light shift of the ground state is equal to the trap depth, and by knowing the ratio
between the anti-trapped, excited, and trapped ground states, we can calculate the exact
trap depth [60].
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Figure 5.8 Trap depth inhomogeneities. a. Exemplary 3× 13 tweezer array consisting of groups of
three horizontally spaced tweezers at a distance of ≈ 30µm(columns). The columns are
spaced by 5.6µm. b. Distribution of the trap depth difference |∆U | for two tweezers at the
nearest neighbor distance and for the minimum trap depth as shown in a. The Gaussian fit
(solid line) reveals an average trap depth difference of |∆U | = h · (10.6 ± 1.6) kHz. For
our tweezers generated with 1064 nm light, the magnitude of the ponderomotive potential
for the Rydberg states approximately equals the trap depth for the ground states but is
of the opposite sign. Hence, the difference in the line shifts of the ground states-Rydberg
transition for neurest-neighbor pairs is about 2 |∆U |. Figure adapted from reference [62].

We start by optically pumping the atoms into the |F = 2,mF = −2〉 state. Afterward,
we set the magnetic field perpendicular to the optical pumping beam, allowing different
polarizations. When the excitation beam is on resonance with the transition of |4S1/2, F = 2〉
to |4P1/2, F

′ = 2〉, the atoms are statistically transferred to the ground state hyperfine
manifold. We apply a pulse duration of 20µs, three orders of magnitude larger than the
lifetime of the excited states of 26 ns [59] to ensure multiple scattering processes. Afterward,
we rotate the magnetic field parallel to the direction of the laser beam and remove all atoms
in the F = 2 manifold with light resonant to the |F = 2,mF = 2〉 to |F ′ = 3,mF ′ = 3〉
cycling transition of the D2-line. For a linear polarisation and the trapping wavelength of
1064 nm, we calculate the excited state lightshift to be −5.66 times larger compared to the
ground state [60], where the sign indicates the anti-trapping potential. Note that we use the
D1-line for the spectroscopy measurements, as the individual F and mF states do not have
differential shifts for linearly polarized traps. As we perform the spectroscopy measurement
at 20% of the tweezer power (average trap depth of 200µK), we need to scale the results to
the minimal trap depth (0.5% tweezer power) used for the experiments described before.

In Fig. 5.8, we show the trap depth difference |∆U | of nearest-neighbor tweezer pairs in a
3× 13 tweezer array. Applying a Gaussian fit, we estimate an average trap depth difference
of |∆U | = h · (10.6 ± 1.6) kHz. As the ponderomotive potential for the Rydberg states is
anti-trapped with roughly the same amplitude as the trap depth of the ground states, the
effect on the probed interactions is even more severe, with the difference of the Rydberg
line shifts being approximately 2 |∆U |.
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To address this issue, it is necessary to improve the array uniformity. Other groups have
already demonstrated arrays with less than 1.1% inhomogeneity [209], which represents a
tenfold improvement compared to our arrays. The central refinement lies in employing a
feedback algorithm, which levels the trap depths of the array after creating a new phase
pattern. Moreover, working at the same trap depth would result in a 2 |∆U | shift smaller
than the current interaction amplitude between 2π × (5− 15) kHz. Assuming this level of
trap depth difference, and a spin-spin interaction coupling of 2π × 5 kHz, we could prepare
the atoms at an average trap depth of h · 0.5MHz. This will increase the radial and axial
trapping frequencies by a factor of

√
0.5/0.08 ≈ 2.5, resulting in a decreased axial and

radial wavepacket size by a factor of 1/
√
2.5 ≈ 0.5.

In addition to optimizing the array homogeneity, implementing a light sheet perpendicular
to the direction of the tweezers, as presented in Section 3.4.2, could allow us to lower the
trap depth further and, therefore, decrease the absolute difference within the array.

On the other hand, improving the array homogeneity would also enable working at larger
trap depths, which would decrease the in-trap wavepacket size of the atoms, as discussed in
the next section.

5.4.3 Impact of the ground state wavepacket size

The Rydberg dressing measurements presented in this chapter are limited by the trap depth
inhomogeneities within the tweezer arrays, which forces us to perform the measurements at
a minimal trap depth of h · 80 kHz. This corresponds to radial and axial trapping frequencies
of ωrad = 2π × 11 kHz and ωax = 2π × 1.7 kHz. After Raman sideband cooling, the atoms’
temperature are on average kBT = h · 4.2 kHz as measured in [60]. With these parameters,
we calculate the ground state wavepacket size in the radial and axial direction, which are
σ0rad =

√
~/(mωrad) = 0.15µm and σax =

√
~/(mωax) = 0.39µm, respectively.

Since the temperature is below the radial trapping frequency, we evaluate the ground state
wavepacket size to consider the fluctuations of the radial pair-distances with σrad ≈

√
2σ0rad.

Here, the factor
√
2 describes the movement of two individual atoms. The influence of the

radial motion on the interaction measures is indicated by the shading in the measurements
in Fig. 5.6 and Fig. 5.7.

In the axial direction, on the other hand, we estimate the out-of-plane fluctuations for two
atoms with the thermal wavepacket size in a harmonic potential of the trap to have an root
mean square (RMS) width for two atoms moving w.r.t. each other

√
2kBT/mω2

ax ≈ 0.86µm.
Here, the large temperature limit is used to assess the position fluctuations, as kBT > ~ωax.
The impact of this motion depends on the angle between the atom pair and the quantization
axis. For a 90 ◦ pair orientation, an out-of-plane movement will solely lead to washed-out
atom distances towards larger separations. Contrary, the contribution for small angles is
more severe, as it removes the zero of the interactions at a mean angle of θ = 0◦. This
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Figure 5.9 Influence of the out-of-plane position fluctuations. Data points are the same as in
Fig. 5.6 and Fig. 5.7 with corresponding selection on the initial tweezer group configuration
as shown by the inset. The shading represents the effect of the axial motion of the atoms
in the traps, where the motion along this axis is converted to new pair angles and larger
pair distances. The shadings depict the difference between the initial flop-flop potential and
the potential seen by the atoms due to a position shift in the axial axis. The shadings are
plotten in σax/2-steps up to ±3σax. Figures adapted from reference [62].

explains the comparably strong flop-flop interactions for small angles in the measurements
shown in Fig. 5.9.

Hence, the motion of the atoms in the radial and axial axis leads to blurred interaction
detection. The origin of this severe limitation are the tweezer depth inhomogeneities, which
result in a less efficient (over the array averaged) Raman sideband cooling. Furthermore,
these constraints are the reason why the experiment has to be performed at the lowest
possible trap depth.

Improving the homogeneity of the array mentioned earlier will facilitate more efficient
Raman sideband cooling, subsequently reducing line broadening attributed to the Doppler
shift. Such broadening could otherwise restrict the coherence of spin interactions. As
detailed in Section 3.4.2, the average ground state probability of the entire array after the
cooling process is on average 37% ± 18%. This cooling efficiency is primarily restricted
by trap inhomogeneities and low axial trapping frequencies. Nonetheless, the best-cooled
single tweezer within the array achieves a ground state probability of 69%, suggesting that
an improvement is both feasible and necessary. It is worth noting that this measured ground
state fraction for a single tweezer was obtained with cooling parameters optimized for
the entire array. To compensate for the small axial trapping frequency, one can introduce
an additional confinement perpendicular to the tweezer plane [95], such as the light
sheet discussed in Section 3.4.2. This additional light sheet also offers the opportunity for
adiabatic cooling of the atoms by further lowering the tweezer trap depth. Clearly, there
exists significant potential for enhancement, which is realistically achievable.
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In summary, implementing these measures allows us to perform the measurements at more
confined traps, lower atoms’ temperature, and decrease dephasing effects due to the motion
of the atoms.

5.4.4 Further experimental improvements

As discussed, the main technical limitations affecting the performance of our experiment
are the excitation laser phase noise, the trap inhomogeneities, and the large ground state
(thermal) wavepacket size. Nevertheless, we can improve the experimental performance by
implementing the following measures:

• Increase Rabi coupling: We currently overlap both Rydberg excitation beams using
a non-polarizing beam splitter, as both beams require the same polarization at the
atoms. Unfortunately, this setup leads to a loss of half of the optical power. Using a
polarized beam splitter for overlapping both beams instead, we could increase the
Rabi couplings of each path by a factor of

√
2. The spin interactions, scaling with Ω4,

will then directly increase by a factor of four. However, this requires a different choice
of Rydberg states, where the two excitation paths possess opposite polarizations.

• Vanish influence of magnetic field fluctuations: Instead of employing the stretched
states |F = 2,mF = −2〉 and |F = 1,mF = −1〉, we could encode the spins in the
mF = 0 hyperfine substates. As these states are insensitive to magnetic fields [38],
we reduce the effect of decoherence and dephasing caused by magnetic field noise.
However, these states do not have a good projection of the angular quantum number,
reducing the coupling to Rydberg states.

• Increase statistics: Until now, we load the tweezer array statistically with a probability
of ≈ 50%. The probability of obtaining only a nearest neighbor tweezer pair loaded
within a group of three tweezers is 25%. The chance to initialize a fully loaded tweezer
group is 12.5%. For one set of measurements, we take, on average, 15, 000 shots and
increase the statistics above by preparing arrays of several tweezer groups spaced far
enough not to interfere with each other. By implementing resorting and preparing
fully-loaded tweezer groups, we could tremendously increase the statistics [26, 27].

• Increase interaction coupling: It has been shown that the observed Rydberg pair state
resonances can be utilized to enhance the coherence of Rydberg dressing [139]. Fur-
thermore, we can use C3-couplings to increase the interaction strength further [210].

Overall, implementing these modifications could significantly improve the experimental
performance by increasing the coherence time, statistics, and interaction strength. Never-
theless, we must carefully consider the trade-offs associated with these modifications.
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Figure 5.10 Tunable XYZ interaction ratios in 1D atom chains. (a.) Exemplary sketch for freely
adjustable atom pair geometries b, c. Both figures are taken from reference [62] and
show the same calculation, demonstrating the distance (b.) and angle (c.) dependence
of the ratios J++

ij /Jz
ij and J+−

ij /Jz
ij . The interactions are calculated for the detunings

∆↑ = 2π× 1.4MHz, ∆↓ = −2π× 0.6MHz and in steps of 100 nm and 1 ◦. Quadrants II
and IV illustrate a smooth tunability, while the ratios in quadrants I and III seem to be
more spackled caused by close-by Rydberg pair-state resonances. In the latter case, the
system shows a higher sensitivity of the control parameters and, therefore, requires higher
stability..

5.5 Pioneering interaction programmability

By implementing the measures discussed in the previous section, we can expect a significant
improvement in the maximum figure of merit (FOM), which is described by the product of
the peak interaction strength and the coherence time. Based on the current laser technology,
we estimate that the maximum realistically achievable FOM is in the order of one hundred.

In our experiment, the ratio of the spin interactions in the different channels can be easily
controlled with the laser parameters and the freely adjustable geometries of nearest and
next-nearest-neighbor atom pairs. The tunable interactions are rooted in the non-monotonic
spatial dependence of the interaction amplitude. We can engineer the relative coupling
strength of the spin-spin interactions J+−/Jz and J++/Jz as visualized exemplarily in
Fig. 5.10. Here, we chose an asymmetric set of laser detunings and couplings corresponding
to the measurements in Section 5.3.2. On top of that, we can switch off specific couplings
globally by choice of laser detuning, as discussed in Section 5.1.3. Further investigation can
exploit the tunable interactions to design couplings in two dimensions. Nevertheless, in a 2D
configuration, the situation and the path toward an optimal set of experimental parameters
are even more complex. In any case, the angular dependence of the interaction provides
a unique opportunity to engineer nearest-neighbor or even longer-ranged interactions.
Imagine scenarios where every second atom is placed at the interference minimum shown
in Fig. 5.7, and thus interactions only occur between next-nearest neighbor pairs, but not
between nearest neighbors. Alternatively, consider a design merging flip-flop with flop-flop
interactions by forming triangular tweezer groups at a 90-degree angle. In this design, one
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group aligns with the quantization axis, permitting only flip-flop interactions, while the
perpendicular group, for example, exclusively experiences flop-flop interactions. The range
of possibilities is extensive. Yet, the experimental ralization will open new pathways to
realizing a versatile and programmable analog quantum simulation platform for many-body
quantum spin problems. Controlling these interactions is of great interest, particularly in
the field of condensed matter physics.

In this chapter, we delved into two-color Rydberg-dressing as a pioneering technique to
engineer tunable, XY Z-type short-range spin interactions in optical tweezer arrays. Despite
certain technical limitations hindering the probing of coherent interactions, we explained
possible improvements that promise to boost the performance of the experiment. We demon-
strated the distance and angular adjustability of the interactions, spanning distances as
concise as 3.5µm to approximately 10µm and angles of one full quadrant from 0 − 90 ◦.
Our measurements affirm that this methodology paves the way for the establishment of
a versatile, programmable analog quantum simulation platform tailored for many-body
quantum spin problems. The uniqueness lies not just in controlling the ratio of spin in-
teractions across different channels but also in adjusting the ratio between nearest and
next-nearest neighbor interactions. This versatility stems from the non-monotonic spatial
behavior of the interactions, an attribute that can be used to design interactions in two
dimensions. Such a framework offers potential for the realization of various frustrated
geometries [4], and static [138] or dynamic gauge fields [211]. Another advantage of our
approach could be the practical relevance of the interference of Hamiltonians underlying
spectra obtained in nuclear magnetic resonance experiments in chemistry and biology, as
discussed in reference [8].
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Chapter 6

Summary and outlook

6.1 Summary

In this thesis, we present an optical tweezer platform employing potassium atoms for
quantum simulation. We explain and contrast the lengthscales of Rydberg properties and
interactions with those of optical tweezer arrays. Additionally, we introduce Rydberg
dressing as a technique to simulate spin models. By exciting two distinct ground states to
respective different Rydberg states, we can design a complex spin interaction Hamiltonian,
paving the way for exploring, for instance, frustrated spin models and systems.

After introducing the concept of Rydberg atoms, we detail the properties of these atoms
and outline our experimental procedure to load, cool, and prepare single atoms in a
defined quantum state. The preparation fidelity of the |F = 2,mF ± 2〉 states exceeds
99%. Subsequently, we employ Raman sideband cooling (RSC) to bring the atoms close to
their motional ground state, achieving an average ground state occupation of 37 ± 18%.
This approach offers multiple benefits: Firstly, it decreases the Doppler broadening of the
atoms from ∆D/2π = 160 kHz to ∆D/2π = 50 kHz. This reduction proves essential during
resonant Rydberg excitations when the trapping potentials are briefly switched off. After
RSC and additional adiabatic cooling due to gradual reduction of the trap potential, we
manage to switch off the trap for 20µs without any loss. In comparison, a non-cooled system
exhibits losses after just 2µs. Secondly, RSC allows for a reduction of the overall trapping
power, which in turn allows us to minimize the absolute value differences between the traps
to a few kHz. This becomes crucial during Rydberg dressing pulses when atoms remain
trapped, and varying trapping potentials could lead to trap-dependent detunings. However,
there is certainly potential to enhance the cooling efficiency of our RSC implementation.
Our cooling approach is initially optimized for larger tweezer arrays with more than 25
tweezers, and we report a trap depth inhomogeneity of about 10%. By improving the array
homogeneity, we expect to achieve more effective cooling and also a reduction in cooling
time since we currently need time-intensive frequency sweeps to accommodate tweezers of
varying depths.

In our experiment, we employ a single-photon Rydberg excitation operating at 286 nm to
excite atoms to Rydberg P-states. We describe our home-built laser setup, which generates
an output power of 1W, and discuss the challenges posed by the UV wavelength on the
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optical parts. Upon conducting the first Rydberg dressing measurements, we observe a
detuning-dependent reduction in the Rydberg dressed lifetime. This decrease is primarily
due to the seed laser’s phase noise. We not only provide a comprehensive characterization of
this issue but also suggest potential solutions that can be adopted in the future to mitigate
the phase noise.

Subsequently, we discuss atom losses in tweezer arrays, caused by black-body-radiation-
induced excitation of Rydberg atoms. In this scenario, black-body radiation induced decays
to adjacent Rydberg states introduce dipolar C3-type interaction potentials. This can render
a previously detuned laser resonant with the pair potential, facilitating pair excitations
within the array. By measuring the correlation length at various detunings, we obtain a
microscopic mapping of the cumulative spread of all C3 pair potentials. Additionally, we
explore how the recoil stemming from Rydberg excitations can trigger atom movement,
further enhancing this process as the atoms in motion surpass various distances within the
array. Building upon this, we find that amplifying the coupling strength provides evidence
of avalanche losses, an phenomenon similarly documented in bulk systems [57].

We further explore various spin interactions within the tweezer array. Through Ramsey
interferometry, our focus is on Ising-type spin interactions in a Rydberg-dressed atom array
consisting of atom pairs. This method incorporates an additional ground state that does
not couple with the Rydberg state. For the interferometric measurement, we induce spin
rotations via Raman transitions between the two ground states (one Rydberg-coupled and
the other uncoupled). The interactions, which can be optically controlled and switched, are
induced sequentially within this measurement. We demonstrate a dynamic measurement
of the dressed interaction strength at U/2π ≈ 5 kHz, with atoms approximately spaced at
3.4µm. A notable limitation in our approach is the increased Rydberg contamination. This
arises primarily from laser phase noise and aligns with the dressed lifetime measurements
discussed previously. It is worth noting that this limitation has also been identified in
other Rydberg dressing experiments [56, 57]. Building on these insights, we introduce
simultaneous dressing of both ground states to examine the more complex XY Z-type spin
interactions. Our approach uses the spatially-dependent van der Waals interactions between
the distinct mj  -sublevels within the Rydberg pair state manifold. This strategy facilitates the
design of distance and angular-dependent couplings, specifically the flop-flop J++, flip-flop
J+, and Ising type interaction Jz. The capability to merge angular and distance-dependent
ratios among these interactions opens up possibilities for realizing models with various
magnetic phenomena, including frustration and topology.

6.2 Outlook

The field of optical tweezers and Rydberg atoms in quantum simulation has experienced
significant growth in recent years, overcoming many technical challenges and achieving
noteworthy results. Despite these accomplishments, as emphasized throughout this thesis,
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several limitations persist. We aim to summarize the upcoming improvements and modifi-
cations that are either already in progress or soon to be implemented in our experiment:

Technical upgrades

Homogeneous trap depths: The essential initial step is the enhancement of trap depth ho-
mogeneity within the tweezer array. Until now, we have been working with inhomogeneities
on the order of 10%. A tenfold improvement would substantially elevate the experiment’s
efficiency. Importantly, this level of improvement is within reach, given that other research
groups have already showcased array inhomogeneities on the order of 1%. This refinement
will improve the experiment in several aspects:

• Fluorescence imaging: As discussed in Section 3.2, our pulsed imaging method, which
alternates between trapping and resonant light, effectively circumvents the pro-
nounced light shift (anti-trapping) of the D2-line. Nevertheless, this method shortens
the lifetime of atoms using the chopped red molasses to 332ms for a 1mK trap [78],
leading to an atom loss rate of 2.7% after each imaging sequence. Hence, transitioning
to an in-trap imaging technique, as done in Section 3.3 and illustrated in reference
[79], emerges as a feasible solution. While we have endeavored to integrate this
approach, persisting array inhomogeneity of 4.5% has prevented us from concurrently
imaging all tweezers effectively. However, once this inhomogeneity is reduced, as
suggested by reference [61], the imaging technique exhibits an impressive detection
efficiency (exceeding 99%) across a span of over 100 images.

• Raman sideband cooling efficiency: Thus far, after RSC, our average vibrational numbers
are 〈n̄rad〉 = 0.225 ± 0.217 for the radial axis and 〈n̄ax〉 = 1.04 ± 1.05 for the axial
axis. For an individual tweezer optimized to its best performance, we have recorded
values of n̄rad = 0.13 radially and n̄ax = 0.23 axially. Therefore, refining the array
trap depth inhomogeneity would align the overall ground state fraction closer to that
of the optimized single tweezer.

• Enhancement in dressing measurements: As described in Section 5.4.2, optimizing the
homogeneity of the array will significantly benefit dressing measurements and mitigate
the detunings between tweezers, which arise from varying trap depths. Even when
operating at the minimal trap depth, the current inhomogeneities are larger than the
anticipated spin-spin couplings. A significant reduction in the array’s inhomogeneity
(of one order of magnitude) would ensure its absolute variation remains smaller than
the predicted interaction strength.

Light sheet for tweezer loading: The next major advancement for the experiment involves
introducing a light sheet that aligns with the plane of the tweezer array. This additional
dipole trap will play a crucial role in loading the tweezers more effectively, thereby reduc-
ing unwanted loading into Talbot planes. The Talbot effect, determined by the trapping
wavelength λ and grating period a, is roughly zT ≈ 2a2/λ. It is important to note that this
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effect behaves differently when using holographic techniques, leading to slightly distorted
planes [75]. With tweezer spacings around 2.5µm, we expect Talbot planes to appear at
approximately 11µm. This is significantly farther than the waist of the light sheet described
in Section 3.4.2, which has a width of 3.4µm. This difference highlights the advantage of
employing a light sheet to prevent loading into various tweezer planes. Furthermore, the
light sheet could increase the axial trapping frequency during Raman sideband cooling,
thereby enhancing cooling performance along this axis.

Increase statistics: Another technical improvement aims to increase the experimental
statistics by utilizing fully filled arrays, in contrast to the statistically filled arrays discussed
in this thesis. The current approach to statistical filling relies on a pair-repulsion sequence:
a red-detuned beam is employed to remove all paired atoms, leaving only traps with an
odd number of atoms occupied by a single atom [76]. To improve this filling method,
we can adopt techniques like deterministic loading, which uses blue-detuned light to fa-
cilitate collisions after the initial loading process [79, 212]. This approach ensures that
only individual atoms remain in the trap. Looking ahead, we also plan to rearrange atoms
within the array by shifting them from a reservoir array to the primary ’science’ array, using
acousto-optic deflectors [26, 27]. This method is becoming increasingly standard and has
been successfully implemented in numerous experiments.

Reducing phase noise in the Rydberg excitation laser: The next critical step involves
enhancing the phase noise performance of our Rydberg excitation laser setup, as elaborated
in Section 4.4.1. In this section, we have introduced various techniques and have shown
some improvement in phase noise, particularly when using an optical cavity for the spectral
filtering of the infrared seed light. Looking ahead, we plan to integrate this cavity filtering
approach with our home-built UV seed laser at 1143 nm, featuring a longer external cavity
and thus offers improved phase noise performance. Despite these advances, it was evident
that the phase noise suppression was insufficient, particularly in the strong-dressing regime
with detunings within just a few MHz. Translated into infrared photon terms, this corre-
sponds to a detuning of less than 1MHz. To address this issue, a more narrowly focused
optical cavity could provide a solution. Therefore, our next step will be to employ an active
feed-forward mechanism to further mitigate phase noise near the carrier frequency [213].

Route towards improved interaction coherence

The discussed technical limitations, currently prevent us from probing coherent spin dynam-
ics for the implementation of th XYZ-type spin interactions as shown in Chapter 5. These
challenges are well-understood, and various research groups have already demonstrated
innovative solutions for individual tasks [169, 208, 209, 214–216]. Up to this point, their
simultaneous implementation has been technically challenging due to the requirements of
the respective experimental setup. Nevertheless, considering the rapid progress in technical
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Figure 6.1 Figure of merit for Rydberg dressing. Figures are taken from [62]. a. Calculation of
the effective decoherence for different principal quantum numbers nP3/2 Rydberg states
for two different environmental temperatures 300K (orange) and 4K (blue). b. Calculated
Rabi couplings to the nP3/2 Rydberg states for a single photon excitation laser with a beam
waist of 10µm and power of 250mW. c. The figure of merit is defined as the ratio of
Rabi coupling and effective decoherence Ω/2πγeff for the same temperatures as in a. The
flattened blue curve can be explained by the increased influence of γLas compared to γr.

improvements, it is probable that Rydberg dressing achieved near-optimal performance in
terms of the figure of merit (FOM) in the future. To elaborate further, assuming a negligible
array inhomogeneity and Doppler effect, we define the FOM as the ratio of coherent inter-
action U to effective decoherence γeff = γr + γLas. Here, the lifetime of the Rydberg states
γr defines a fundamental upper limit. The phase noise of the excitation laser, characterized
as γLas, is the technical parameter with room for improvement (see Section 5.4.1).

In the simplified case of a single photon “standard” Rydberg dressing, the FOM can be
described by U/γeff = β · Ω/γeff , where β = Ω/(2∆) is the Rydberg admixture (see Sec-
tion 4.2). The admixture reduces the FOM of resonant Rydberg physics, which is defined as
Ω/γeff . Fig. 6.1 illustrates the experimentally attainable Rabi couplings to ` = 1 Rydberg
states for different principal quantum numbers. Here, we consider an excitation beam with
a 10µm beam waist and a power of 250mW, which are reasonable values compared to the
laser output power of 1W . Our calculations show that Rabi frequencies of 2π × 5MHz are
realistically reachable in a 1D geometry for states with a lifetime of 200µs. This results in a
ratio Ω/γeff & 1000 for a realistic γLas = 2π×100Hz, which is comparable to those obtained
for other atomic species [54, 57, 137, 217]. Generally, Rydberg dressing experiments select
a Rydberg admixture β � 1, altered to the particular experimental conditions [57, 137,
140]. Note that here we talk about the theoretically Rydberg probability, not taking into
account additional excitations due to laser noise. For instance, when the probability of a
single atom being in the Rydberg state is 1% (i.e., β = 0.1), the obtained FOM for “standard”
Rydberg dressing is on the order of 100.

Furthermore, reference [139] suggests that Rydberg dressing can increase the FOM U/γeff &
1000 when the detunings are set far from the single atom asymptote but near a pair state.
This method also applies to the two-color dressing scheme, where the reduction factors
due to the different pair state admixtures cσσ′

α differ from unity. Therefore, a FOM of 100
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appears to be reasonable for two-color Rydberg dressing. It would be interesting to further
investigate whether this approach can exceed the performance of single-color Rydberg
dressing in specific settings [139, 142].

Moreover, working in a cryogenic environment will further suppress decoherence introduced
by black-body radiation, as shown in Fig. 6.1. This can lead to an improved FOM of Rydberg
dressing to U/γeff & 4000 (400) for both “standard” and two-color Rydberg-dressing.

Overcoming these technical limitations is essential for effectively controlling the XY Z-type
spin-1/2 Hamiltonian. This thesis represents a significant stride in that direction, outlining
the challenges and proposing strategies for their mitigation. Tuning the interaction strengths
will enable new prospects for studying quantum many-body physics, including phenomena
as frustrated quantum systems [4] or variational quantum optimization [47, 48, 50]. We
emphasize the potential of Rydberg dressing in shaping analog quantum simulators, which
facilitates handling intricate many-body challenges presented in nature.
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Appendix A

D1 and D2 laser lock configurations

In the updated laser setup, as detailed in Section 3.3, we employ four lasers with respective
locking methods at the potassium-39 D1 transition at 770.108 nm and the D2 transition at
776.701 nm [59]. The locking configurations are illustrated in Fig. A.1 and correspond to
the laser setup in Fig. 3.5.

The magneto-optical trap (MOT) laser is stabilized using a potassium vapor cell. To lock the
laser, we employ modulation transfer spectroscopy (MTS) [218], targeting the transition
from 4S1/2 F = 1 to 4P3/2 (indicated as red 1 in the diagram). The fundamental principle of
MTS involves using two counter-propagating beams. One of these beams is modulated with
a radio frequency ω, thereby creating sidebands around the laser frequency. When these
two beams are overlapped again, the modulation of the probe beam is detected as a beat
signal on a photodiode. More details on the specific implementation of the locking method
in our setup can be found in the thesis of Nikolaus Lorenz [60]. Due to the unresolved
hyperfine structure in the excited state, we cannot assign a specific F quantum number
to the 4P3/2 state. Next, we insert an acousto-optic modulator1 (AOM) in a double-pass
arrangement, shifting the laser frequency by 2× 106.5MHz. This shifts the laser onto the
crossover between the 4S1/2 F = 1, F = 2 to 4P3/2 transitions (marked as red 2).

From this point, the laser beam is divided into three pathways: the cooler, repumper, and
Zeeman slower. Each of the cooler and repumper paths includes another AOM2 in double-
pass configuration, allowing us to precisely detune the light for the respective transitions by
δMOTC and δMOTR (red 3 and 4). For the Zeeman slower path, we use an AOM3 in double-pass
configuration to shift the beam frequency −2× 95.75MHz and an electro-optic modulator
(EOM) to introduce sidebands matching the ground state splitting at 461.7MHz.

Next, the imaging laser (IMG) is offset-locked to the MOT laser at a beat frequency denoted
by δbeat = −765MHz (yellow 1). This beam is then shifted using another AOM4 in a
double-pass setup by 2×194MHz, shifting it onto the 4S1/2 F = 2 to 4P3/2 F

′ = 3 transition
(yellow 2), which is necessary for absorption imaging. When capturing fluorescence images
of trapped atoms, we adjust the beat frequency accordingly.

1Gooch & Housego AOM 3100-125.
2Gooch & Housego AOM 3100-125.
3Gooch & Housego AOM 3110-125.
4Gooch & Housego AOM 3200-125.
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Figure A.1 39K D1 and D2 transitions and laser locking schemes for the MOT, IMG, D1 Master and
GM laser.

We adopt a similar locking strategy for the 39K D1 line at 770.108 nm. A D1 laser is stabilized
using a potassium vapor cell, locking on the crossover from 4S1/2 F = 1, F = 2 to the
4P1/2 F

′ = 2 (represented as blue 1). The grey molasses (GM) laser is then beat-locked
to this reference laser, and an AOM5 shifts its frequency in double-pass configuration by
2× (180− 240)MHz (beat and AOM shift result in blue 2).

In this setup, we use a broadband AOM, allowing for frequency ramps without relying on
external locking mechanisms. The beat lock also enables dynamic tuning between free-space
GM cooling and the cooling of atoms trapped in optical tweezers, as described in Section 3.3.
Finally, we split the beam into two paths for the Cooler and Repumper transitions (blue
3 and 4), analog to the AOM setup used for the MOT laser. To successfully apply GM
cooling, both lasers must meet the lambda condition and be blue-detuned at approximately
≈ 40MHz [77].

5Gooch & Housego AOM 3200-124.
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Appendix B

Details on analysis of the interaction detection

Additional information on the spin interaction measurements of Chapter 5.

B.1 Pair interaction parameter space

For the calculation of the Rydberg pair potentials, we use the Pairinteraction software
package [105]. This software numerically diagonalizes the interaction Hamiltonian, yielding
the interaction energy as a function of atom pair distance and relative orientation w.r.t.
the quantization axis. Additionally, it facilitates the computation of pair potentials for
Rydberg atoms influenced by external electric and magnetic fields. To ensure computational
feasibility during diagonalization, the Pairinteraction software constrains the size of the
basis set. Consequently, calculations include a finite number of states instead of considering
all possible Rydberg atom states. The chosen basis set size influences the accuracy of the
results. Thus, a balance between computational efficiency and desired accuracy is essential
and must be evaluated for each state separately. We imposed three constraints:

• Energy surroundings for both individual atoms ∆Eatom and atom pairs ∆Epair to
restrict the basis to states with similar energy.

• The momentum quantum number ∆` and

• the principal quantum number ∆n.

Typically, to find the optimal parameter space, one initiates with strong constraints and
gradually opens them until the pair potentials at the final pair distance converge.

The evaluation is depicted in Fig. B.1. As a reference, we determined the flop-flop interaction
strength J++

0 within an expanded parameter space: ∆Esingle = ±100GHz for single atoms,
∆Epair = ±40GHz for atom pairs, ∆` = ±2 for the momentum quantum number and
∆n = 3 for the principal quantum number. Under these conditions, we calculated the
flop-flop interaction strength at a distance of d = 5.5µm and a pair angle of 50 ◦ to be
J++
0 = 2π · 4.36 kHz. These settings near a Rydberg pair resonance, as shown in Fig. 5.7,

render the system highly sensitive to even minor variations in pair interaction energies.
Calculating this interaction strength required a total computation time of ≈ 70min. For
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Figure B.1 Pairinteraction parameter space characterization for interaction simulation. Shown

are the difference in flop-flop interaction strength of J++
0 of a large parameter space

(∆Esingle = ±100GHz, ∆n = ±3, ∆` = ±2, ∆Epair = ±40GHz) with the interaction
obtained with the varied basis set. For each paramter, we also plot the required computation
time and the number of states involved for this calculation.
a. Varying ∆Esingle with the parameters, ∆n = ±8, ∆` = ±1, ∆Epair = ±35GHz.
b. Varying ∆n with the parameters, ∆Esingle = ±50GHz, ∆` = ±2, ∆Epair = ±35GHz.
c. Varying ∆` with the parameters, ∆Esingle = ±50GHz, ∆n = ±3, ∆Epair = ±35GHz.
d. Varying ∆Epair with the parameters, ∆Esingle = ±50GHz, ∆n = ±3, ∆` = ±2.

the calculations shown in Fig. B.1, we calculated the deviation between this J++
0 and the

flop-flop interaction strength of the changed basis.

Having a closer look at the interaction deviation for the varied basis set in Fig. B.1, we
observe that the single atom energy space converges at 50GHz. Regarding the principal
quantum number, the deviation achieves convergence after ∆n = ±3. In the main text
simulations, we chose ∆n = ±2. This decision was influenced by the minor difference of
approximately 10Hz, which is over two orders of magnitude smaller than the interaction
itself while having a four-fold reduction in computation time. A similar trend is noticeable
with the momentum quantum number, where convergence is evident after ∆` = ±2. The
shift from ∆` = ±1 to ∆` = ±2 introduces a variation of less than 10Hz, but elongates the
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Figure B.2 Possible spin detection settings for symmetric laser detuning set. The measurements
presented here are identical to those in Fig. 5.6. This visualization showcases the different
post-selection options on both the flop-flop and flip-flop interactions.

computation time from 0.4min to 17min. Consequently, we chose ∆` = ±1 to be more
time-efficient. When analyzing the atom pair energy space, convergence appears to occur
around 40GHz. Nevertheless, for the main text simulations, we selected ∆Epair = 35GHz,
tolerating a slight interaction deviation below 50Hz to enhance computational efficiency.
This difference is roughly two orders of magnitude smaller than the interaction itself.

B.2 Different spin recapture options

To investigate both flop-flop and flip-flop interactions under symmetric and asymmetric
detuning conditions in Section 5.3.1 and Section 5.3.2, we employ post-selection techniques
based on different initial loading configurations within the tweezer groups. In the case of the
symmetric detuning measurements, as shown in Fig. 5.6, we specifically post-select tweezer
groups in which at least two out of the three nearest-neighbor tweezers are occupied. To
validate this post-selection approach, we outline the different scenarios of the identical
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Figure B.3 Possible spin detection settings for antisymmetric laser detuning set. The measure-
ments presented here are identical to those in Fig. 5.7. However, this visualization showcases
the different post-selection options on both the flop-flop and flip-flop interactions.

measurement dataset in Fig. B.2, including fully loaded groups (grey), tweezer groups with
two out of three nearest-neighbor traps occupied (light blue), and combinations of both
(dark blue).

When tuning the flop-flop interaction by adjusting the atom pair distance, we observe good
agreement across these three post-selection options. In contrast, changing the angle of the
atoms w.r.t. the magnetic field results in an increased signal spike at the interference point
around 60 ◦, but only for tweezer groups that are initially fully loaded. This spike occurs
despite our initial prediction that flip-flop occurrences would be negligible (dark orange).
As this increase is absent in partially loaded tweezer groups, this occurrence might indicate
the possibility of underlying multi-body interactions.

In the case of asymmetric detuning, where we also allow for flip-flop interactions to occur, we
differentiate between different post-selection settings as illustrated in Fig. B.3. Interestingly,
when we adjust the interactions by varying the distances between atom pairs, we observe a
broadening effect in flop-flop interactions in fully loaded tweezer groups. Conversely, when
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Figure B.4 Losses due to resonant Rydberg pair state excitations. The measurement settings are
identical to those in Fig. 5.6. The gray vertical line indicates the pair state resonance’s
expected distance. No push-out pulse was applied after the Rydberg dressing pulse. Notably,
while atom loss on resonance is evident, it remains small given our chosen parameters.
Figure taken from [62].

we post-select based on the presence of two nearest-neighbor atoms, the resulting interaction
signatures are considerably narrower and more aligned with theoretical predictions than
those observed in fully loaded traps. We attribute this observed broadening to the influence
of strong flip-flop interactions. This picture is further supported when we compare different
post-selection settings while adjusting the strength of the interactions at various angles.
In this particular case, we do not find any broadening that can be attributed to flip-flop
interactions. The results from various post-selections remain closely aligned within their
respective error bars.

B.3 Losses for Rydberg pair states

The lifetime of the dressed ground states scales with the Rydberg state probability 1/β2.
With our specified parameters ∆↓ = −2π · 0.6MHz and Ω↓ = 2π · 0.4MHz, and when
considering a laser without phase noise, we expect a dressed lifetime constrained by black-
body radiation to be approximately τdr = 1.7ms. Yet, experimental observations show the
lifetime to be reduced to 70µs, a consequence of laser phase noise [78]. Meanwhile, another
loss mechanism we must consider is the resonant excitation to Rydberg pair potentials,
illustrated in Fig. B.4. For the measurement shown in this figure, we apply the same
experimental procedure as done for the measurement in Fig. 5.7. However, we did not apply
any end-sequence push-out pulses to ensure spin-insensitive imaging, and we post-selected
on nearest neighbor tweezer pairs initially loaded. The results show that excitations to
Rydberg pair resonances induce only a small atom loss.
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calibration on spatial interaction analysis. Displayed are the identical simulations and data
points from Fig. 5.7. Yet, the measurement’s pair distance has been recalibrated to account
for a 5% error in imaging magnification.

B.4 Imaging calibration errors

Upon closely reviewing the simulations and measurements of the interactions presented in
Fig. 5.7, we notice a slight discrepancy between our experimental results and the theoretical
predictions. One possible reason for this difference might be a calibration error associated
with the imaging magnification, as pointed out in Fig. B.5. Within that figure, a potential
5% misalignment in the pair distances across the array due to imaging calibration is con-
sidered. Nevertheless, verifying this hypothesis would necessitate a rigorous recalibration.
Specifically, to ensure accuracy, we would need to fine-tune both the tweezer spacing and
the imaging system. This could be accomplished by overlaying an interference pattern atop
the tweezer array, serving as a reference for calibration.
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