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Abstract

The nervous system constitutes the highway of communication in living animals. Information propagates in
both bottom-up fashion, that is from the periphery of the body to the brain, and top-down, from the brain
back to the body. It is the nervous system’s foundational units, the neurons, that serve as computational
nodes in this bidirectional sophisticated design.

Neurons reside in biological organisms, yet the nature of their electrical responses are reminiscent of systems
in engineering and physics, their communication through neurotransmitters of diffusion models in chemistry,
and their interconnectivity patterns of neural networks in machine learning. The field of neuroscience
develops increasingly interdisciplinary, yet we still lack methods that meaningfully bridge them.

To appreciate the importance of a bridge between different viewpoints in neuroscience, we can be inspired by
the ‘cortical tree of neural types‘. Even though the notion of neural types in neuroscience is fairly established,
neurons have been observed to vary both discretely and continuously in both genetic and phenotypic
landscapes, making their classification in ‘types‘, as discrete entities conforming to both modalities, difficult.

Statistical models that bridge the genetic landscape to phenotypic modalities including electrophysiology
and morphology could help us build a multimodal neuronal taxonomy. Yet, even though many exist for
the unidimensional (‘one-view‘) analysis of cells in the nervous system, we currently still lack ‘joint-view‘
statistical tools that can for instance predict one modality from another or produce joint-view two-dimensional
embeddings for the exploratory analysis of neuronal data sets.

Biophysical models move one step further. They do not merely describe the quantitative relationship between
modalities, but allow for a peek into the black-box transformation from one to the other. They can describe
how the electrophysiology comes to be in neurons based on ion channel abundance in the cell’s membrane,
the latter determined by the expression of specific genes. Reliably inferring probability distributions over
parameters of biophysical models that reproduce real-world observations in electrophysiology, has however
also proved challenging. While recent advances in inference methods have demonstratively shown useful for
synthetic simulated data, they remain difficult to generalize to experimental data.

In this thesis, we show how recent advances in machine learning can bring both statistical as well as
biophysical models, to the next level. We present sparse bottleneck neural networks that select specific genes
to nonlinearly predict electrophysiological measurements and outperform linear methods on the prediction
task. They furthermore produce two-dimensional joint-view embeddings that are directly interpretable in
biology.

We furthermore introduce a slight manipulation in training strategy for neural density estimators, causing
the inference of biophysical model parameters to be much more reliable when it is applied to real-world
electrophysiological data.

Finally, as a first attempt to bridge the genetic landscape with electrophysiological behavior in neurons, we
show how sparse reduced-rank regression intuitively selects specific genes to predict fitted parameter values
of biophysical models that replicate real-world neuronal electrophysiology.





Zusammenfassung

Das Nervensystem bildet die Grundlage für einen der wichtigsten Kommunikationskanäle der Lebewesen.
Informationen werden sowohl ‘top-down‘, d. h. von der Peripherie des Körpers zum Gehirn, als auch
‘bottom-up‘, d. h. vom Gehirn zurück zum Körper, weitergegeben. Spezifische Zellen, Neuronen genannt,
bilden die Grundeinheiten des Nervensystems, die die Rechenknoten dieses bidirektionalen raffinierten
Designs darstellen.

Obwohl Neuronen traditionell nur mit biologischen Organismen in Verbindung gebracht werden, ähnelt die
Art ihrer elektrischen Reaktionen Systemen in Technik und Physik, ihre Kommunikation über Neurotrans-
mitter Diffusionsmodellen in der Chemie und ihre Vernetzungsmuster neuronalen Netzen im maschinellen
Lernen. Das Gebiet der Neurowissenschaften entwickelt sich zunehmend interdisziplinär, doch fehlt es noch
immer an Methoden, die eine sinnvolle Brücke zwischen ihnen bilden.

Um zu verstehen, wie wichtig eine Brücke zwischen den unterschiedlichen Sichtweisen in den Neurowis-
senschaften ist, können wir uns vom “kortikalen Baum der neuronalen Typen” inspirieren lassen. Der Begriff
der neuronalen Typen in den Neurowissenschaften hat sich zwar relativ weitgehend etabliert, doch wurde
beobachtet dass Neuronen sowohl diskret als auch kontinuierlich in der genetischen und phänotypischen
Landschaft variieren. Dies erschwert ihre Klassifizierung in ‘Typen‘ als diskrete Einheiten.

Statistische Modelle könnten eine Brücke zwischen der genetischen Landschaft und den phänotypischen
Modalitäten einschließlich Elektrophysiologie und Morphologie schlagen, und somit eine multimodale
neuronale Taxonomie erstellen. Obwohl es bereits viele Modelle für die eindimensionale Analyse von Zellen im
Nervensystem gibt, fehlt es derzeit noch an statistischen Werkzeugen für eine umfassende mehrdimensionale
Analyse. Hierzu gehören z.b. die Möglichkeit eine Modalität aus einer Anderen vorherzusagen oder
zweidimensionale Darstellungen für die explorative Analyse neuronaler Datensätze erstellen zu können.

Biophysikalische Modelle gehen noch einen Schritt weiter. Sie beschreiben nicht nur die quantitative
Beziehung zwischen den Modalitäten, sondern erlauben auch einen Blick in die ‘Black-box‘-Transformation
von einer Modalität zu einer Anderen. Sie sind in der Lage, die Elektrophysiologie in Neuronen anhand der
Dichte der Ionenkanäle in der Zellmembran zu beschreiben. Die Dichte der Ionenkanäle wird von der Genen-
expression bestimmt. Es hat sich jedoch als schwierig erwiesen, zuverlässige Wahrscheinlichkeitsverteilungen
aus biophysikalischen Modellparametern abzuleiten, die reale Beobachtungen in der Elektrophysiologie
nachbilden. Die neuesten Erkenntnisse auf dem Gebiet der Inferenzmethoden haben sich für synthetische
und simulierte Daten als hilfreich erwiesen, sie lassen sich jedoch nur schwer auf experimentelle Daten
verallgemeinern.

In dieser Arbeit zeigen wir, wie die neuesten Erkenntnisse im Bereich des maschinellen Lernens genutzt
werden können, um sowohl statistische als auch biophysikalische Modelle weiterzuentwickeln. Wir stellen
neuronale Netze mit ‘Bottlenecks‘ vor, die in der Lage sind, spezifische Gene zu selektieren und damit
elektrophysiologische Messungen nichtlinear vorherzusagen. Wir zeigen auch, dass diese Netze lineare
Methoden in der Vorhersagegenauigkeit übertreffen. Darüber hinaus erzeugen sie zweidimensionale,
umfassende Darstellungen, die direkt in der Biologie interpretiert werden können.

Darüber hinaus haben wir eine leichte Manipulation der Trainingsstrategie für neuronale ‘Density Networks‘
eingeführt. Dies führte zu einer wesentlich höheren Zuverlässigkeit der Ableitung von biophysikalischen
Modellparametern in Anwendung auf reale elektrophysiologische Daten.

Schließlich zeigen wir in einem ersten Versuch, eine Brücke zwischen der genetischen Landschaft und dem
elektrophysiologischen Verhalten von Neuronen zu schlagen, wie ‘sparse reduced-rank regression‘ intuitiv
spezifische Gene selektiert und somit die Parameterwerte biophysikalischer Modelle vorhersagt, die die reale
neuronale Elektrophysiologie nachbilden.
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Notation

This section provides the reader with a reference for the notation used throughout this thesis. Placeholder
symbols are introduced in Numbers and Arrays to denote types including scalars, vectors and matrices. We
then introduce some useful operators from Linear Algebra, Calculus and Probability Theory.

Numbers and Arrays

0 A scalar.
a A vector.
A A matrix.
08 The 8�th element in vector a.
�89 Matrix element of A at the 8�th row and 9�th column.
�8: The 8�th row of A. Analogous for a column.
a(=) The =�th vector element of some set, for instance a training data set.
A(=) The =�th matrix element of some set, for instance a set of weights

in a deep neural network.

Linear Algebra

A> Transpose of matrix A.
A�1 Inverse of matrix A.
det (A) Determinant of matrix A.
kak? L?-norm of vector a. When ? = 2, we will often omit ? in the

expression.
kAk? L?-norm of matrix A.

Calculus

5 (a;)) A scalar-valued function 5 of a parameterized by ).
35

30
Derivative of 5 with respect to 0.

% 5
%0 Partial derivative of 5 with respect to 0.
| 0 | Absolute value of 0.P
#

==1(a(=)) Sum of n (data) samples 0= .
6 � 5 The composition of functions 6 and 5 , i.e. 6( 5 (·)).



Probability Theory

?(a) Probability distribution over random variable a.
a ⇠ ?(a) a is distributed according to ?.
?(a | b) Conditional probability distribution ? of a given b.
E
?(a) ( 5 (a)) Expectation of 5 (a) when a is distributed according to ?.

KL(? | | @) The Kullback-Leibler divergence of distributions ? and @.
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The nervous system constitutes the foundation for communication inside
living organisms. In a bottom-up fashion, the body uses the nervous
system to communicate what is happening in our inside and outside
perceived worlds to the brain. In a top-down fashion, the brain uses
the same nervous system to communicate to the body and respond to
what has been perceived, possibly with action [�, �]

[�]: Taylor et al. (����), ‘Top-Down and
Bottom-Up Mechanisms in Mind-Body
Medicine: Development of an Integrative
Framework for Psychophysiological Re-
search’
[�]: Rauss et al. (����), ‘What is Bottom-
Up and What is Top-Down in Predictive
Coding?’

. For instance, if
you sit in an ice bath, cold gets translated into an electrical signal that
propagates to the somatosensory cortex in the brain allowing you to
perceive temperature. It also propagates to the periaqueductal gray or
pain center of the brain, however, as the cold might not merely be felt as
cold, but painful too. Depending on your internal state, you might take
action: you immediately get out of the ice bath. Alternatively, you might
respond with non-action, and be accepting of the situation, at least for a
while [�].

Feeling, perceiving, responding and taking action is only possible because
of the nervous system’s intricate design. In the case of humans, the brain’s
makeup consists of over �� billion neurons [�] that span a variety of
neuronal families with distinct phenomenology and genetic makeup.
Within families, both discrete and continuous variation in gene expression
(genotype) as well as electrophysiology and morphology (phenotype) has
been observed [�–��]. Such complexities in multi-modal correspondence
of cells on a finer ‘cell type‘ level has kept the debate on neuronal
classification ongoing for decades [��–��]. The study of the nervous
system’s foundational level, therefore needs multimodal experimental
and statistical tools, embracing the complex variation in both genetic and
phenotypic neuronal landscapes.

�.� The BRAIN Initiative for Cell Census Network

In the spirit of understanding emerging behavior starting at the neuronal
level, the Obama administration launched the Brain Research Through
Advancing Innovative Neurotechnologies or BRAIN initiative through
the National Institutes of Health or NIH. With this initiative, researchers
aim to further accelerate the development of innovative technologies in
order to revolutionize our understanding of the brain. From describing the
brain on a single-cell level, to deriving computations in neuronal circuits,
to understanding emerging behavior, this initiative tries to tackle long-
standing questions about ourselves: what we are made up of and how
that pertains to how we perceive, store information, communicate and act.
Moreover, scientists hope that new discoveries in understanding our own
brain’s computations in this way could lead to new hypotheses in disease:
by unraveling how single cells and complex neural circuits compute in
healthy individuals, we can possibly understand when and how disease
emerges from uncommon single-cell profiles and disharmonious circuit
computations.

https://braininitiative.nih.gov/
https://www.nih.gov/
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Incentivized by such aspirations, within the BRAIN initiative, the BRAIN
Initiative for Cell Census Network or BICCN aims to provide a comprehen-
sive cell atlas with descriptions of each neuronal cell type based not only
on their transcriptomic makeup but on their morphology, connectivity
and electrophysiology as well. Indeed, a comprehensive understanding
of cell types in the brain is thought to enhance our understanding on
how neuronal circuits generate perception and complex behavior.

�.� Machine learning in Neural Science

Under the BICCN’s umbrella, this thesis sets out to understand the
computational units, the building blocks of our nervous system better.
We will see how both statistical models as well as biophysical models
prove beneficial to tackle some of these long-standing questions. Statistical
models will be introduced to understand how gene expression levels
in a neuron can be used to predict electrophysiological measurements,
thereby bridging the genetic makeup of a neuron with its phenotype.
With biophysical models, we attempt to move one step further. Beyond
learning a descriptive relationship, we use determinism in a biophysical
model to have a peek into how ion channels in the cell membrane,
coded for by specific genes, give rise to rapid fluctuations in the cell’s
membrane voltage, i.e. its electrophysiology, by opening and closing
their pores in response to certain stimuli. Biophysical models thus
allow us to understand a neuron’s computational framework, beyond its
phenotypical and genetic description.

Machine learning can be used to take both statistical and biophysical
modeling approaches to the next level (Figure �.�). Machine learning
has recently seen a rapid rise in usage for various disciplines in science,
including neural science. With the availability of increasingly bigger and
publicly available data sets, as well as improving computing infrastructure
and flexible software frameworks, machine learning has gained wide-
spread adoption in for instance (but not limited to) image production [��],
speech recognition [��] and the prediction of protein structure [��]. Here
too, we will capitalize on recent advances in deep neural networks, to
support both statistical and biophysical modeling approaches in neural
science.

Figure �.�: Machine learning in neural
science, sketch. Machine learning can
bring both statistical models and bio-
physical models in neural science to the
next level.

�.� Outline

The PRELIMINARIES part consists of the bulk of methods and key
concepts necessary to understand the thesis.

I Chapter � introduces the main data set studied throughout the
thesis, obtained with a recently developed experimental techniques
called Patch-seq. It further discusses a pipeline that automatically
computes expert-defined features from raw electrophysiological
recordings.

https://biccn.org/


�.� List of Publications �

I Chapter � introduces sparse reduced-rank regression, a linear and
intuitive statistical modeling approach to predict electrophysiolog-
ical measurements from the gene expression levels in a cell, as well
as produce biologically interpretable joint-view two-dimensional
embeddings.

I Chapter � will expand on Chapter � with a nonlinear natural
extension: sparse bottleneck neural networks, a machine learning
framework that outperforms its linear counterpart on both the
prediction task and interpretability of joint-view embeddings.

I Chapter � talks about the Hodgkin-Huxley model and how it served
neuroscientists for decades to understand neuronal computations
in the brain. We will introduce a minimal adaption of the model,
sufficiently flexible to capture the electrophysiological variation
observed in this Patch-seq data set.

I Chapter � introduces the field of simulation-based inference, another
machine learning framework for inferring probability distributions
over model parameters, consistent with electrophysiological data.

In BRIDGING SIMULATION AND EXPERIMENTAL VIEWPOINTS
IN NEUROSCIENCE, we discuss the main contributions of this thesis,
largely based on recent work (see Section �.�). It consists of:

I Chapter � that introduces neural posterior estimation with noise, an
adapted framework for the inference of posterior distributions
over model parameters. It introduces noise to the summarizing
statistics of simulations, with which the deep neural network is
trained, in order for it to generalize to real-world experimental
data such as neuronal electrophysiology. We will obtain reliable
Hodgkin-Huxley model parameter combinations capable of pro-
ducing simulations matching electrophysiology obtained with
Patch-seq.

I Chapter � will use sparse reduced-rank regression, introduced in Chap-
ter � to linearly predict Hodgkin-Huxley-based model parameters
based on gene expression levels, effectively bridging the genetic
makeup with parameters of a biophysical model that determinis-
tically explains experimentally observed electrophysiology in the
cell.

Chapter � in CONCLUSION AND OUTLOOK summarizes the main
contributions of this thesis, and discusses promising avenues for the
future understanding of our own nervous system with advances in
machine learning.

�.� List of Publications
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The electrophysiology of neurons constitutes a data modality of high
interest to neuroscientists because it describes one of the most important
characteristics of the nervous system: the propagation of electrical signals.
Neurons receive electrical signals in the form of excitatory and inhibitory
synaptic potentials from neighboring cells at their dendrites, cellular
protrusions that extend outwards form their center, the soma. At the
soma, the cell sums up the dendritic input reaching a possible threshold
that manifests as a membrane voltage, for which if the summed input
goes beyond it, the cell will generate rapid nonlinear membrane voltage
fluctuations, called action potentials (APs). These potentials continue
to propagate through the cell in protrusions morphologically similar to
dendrites called the axons of the neuron. Finally, axons synapse onto
other neighboring cells thereby further conducting the electrical signal
throughout the nervous system.

As electrophysiology therefore characterizes the important communica-
tion aspects in the nervous systems, we need carefully crafted features
that describe the summarizing statistics of electrical signals. In Chapter �,
we therefore turn to the automatic extraction of expert-defined features
summarizing the membrane voltage responses to current injection at the
soma. Before we do so, however, we discuss how the data was obtained
with a recently developed experimental technique called Patch-seq.

�.� Patch-seq

Patch-seq combines electrophysiological recordings, single-cell RNA
sequencing and morphological reconstruction in individual neurons
[��–��]. It therefore embraces the multimodal nature of cells in the
nervous systems and allows for their joint-view study. We will first turn
to electrophysiology, however, obtained with Patch-seq, and come back
to genetic features in later Chapters.

In the Patch-seq study of Scala et al. [��], researchers investigated = ⇠ 1300
cells from adult mouse motor cortex (MoP). The experimenter first injects
strong negative currents (starting for instance around -��� pA) followed
by steps of �� pA, each time during ��� ms time windows until too
strong positive currents (such as ��� pA) are applied and the cell stops
eliciting APs. The experimenter records hyperpolarizing membrane
voltage responses (increasing the negative polarity between inner and
outer environment of the cell) and depolarizing responses (decreasing
the polarity) in response to negative and positive current injections,
respectively Figure �.�. When the cell’s membrane voltage depolarizes
and reaches a certain threshold, the cell generates APs Figure �.�. We
thus end up with multiple recordings — membrane voltage traces —
that depict the cell’s response over time to current injections of different
size. These responses vary across neuronal families and cell types, and
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therefore warrant an expert definition of electrophysiological features
reflecting their variability.

�.� A Python-based Pipeline to Extract Them All

Electrophysiologists choose a set of features that captures the characteris-
tics of membrane voltage responses observed in neurons. Firstly, of great
interest, are the shape of individual APs including their width, amplitude
and upstroke. Beyond individual AP properties, passive properties in
traces showing no APs include for instance the input resistance, that
describes how strongly the membrane voltage deviates from its resting
state after applying currents. Moreover, active properties (belonging to
traces with APs) include for instance the latency that describes how long
after minimal positive current injection one needs to wait for an AP to be
elicited.

We want to establish a pipeline that not only automatically extracts the
electrophysiological features from the membrane voltage traces, but does
so consistently for ⇠ 1300 MoP neurons. We can establish such a pipeline
in Python that is publicly available on GitHub. The code builds upon
a previously established toolkit from the Allen Institute, but tailors to
our Patch-seq data set. In addition to quickly and consistently extracting
expert-defined features for all membrane voltage traces and each cell in
a sequential fashion, the user can produce ‘sanity check’ figures in order
to verify the correctness of feature values Figure �.�.

We discuss consecutive steps of the pipeline next, where we apply it to
experimentally observed firing patterns from a cell obtained with Patch-
seq. We will see that the pipeline outputs intermediate explicit values of
features describing individual action potentials (Section �.�.�, Table �.�),
features summarizing traces of membrane voltage responses to current
injections of various magnitude (Section �.�.�, Table �.�), and eventually
features summarizing the statistics of the whole cell’s electrophysiology
(Section �.�.�, Table �.�).

�.�.� Action Potential Features

A Patch-seq data set, besides transcriptomic read counts, and possibly
morphological reconstructions of cells, contains raw electrophysiological
recordings. More specifically, the raw data contains time points, mem-
brane voltage values for each time point, and current magnitudes used
at each experiment. They are saved in ‘.nwb‘ format and are publicly
available on DANDI.

Figure �.�: Automatic electrophysio-
logical feature extraction. Top plot.
Raw recordings of membrane voltage re-
sponses to current injections of three dif-
ferent magnitudes (legend). Lower three
plots. Sanity check of automatically de-
rived electrophysiological features. Some
computed values can be directly repre-
sented by horizontal or vertical lines that
can be directly visualized on top of the
voltage traces.

First our pipeline detects APs: when the first derivative of the membrane
voltage w.r.t. to time crosses a certain threshold, called the AP threshold,
an AP is being generated. The pipeline then continues to describe the
AP’s characteristics including the AP upstroke, which gives the maximum
change in voltage (divided by time) taking place during AP generation,
and the AP amplitude, which is the difference between the maximum
voltage reached during AP generation and the voltage at AP threshold.
Other features are calculated after the AP reaches its peak, including the
AP downstroke, which denotes the most negative change of membrane

https://github.com/berenslab/EphysExtraction
https://github.com/AllenInstitute/AllenSDK/tree/master/allensdk/ephys
https://dandiarchive.org/dandiset/000008/
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voltage w.r.t. time, and the trough, the lowest point the membrane voltage
reaches, usually during the AP’s afterhyperpolarization. Feature values
for individual action potentials can be found in Table �.�. Importantly, the
pipeline can give the data analyst a ‘sanity check‘, by plotting calculated
intermediate values from which said features are derived, onto the AP
itself, i.e. the membrane voltage in function of time (Figure �.�, orange
curves).

AP
index

Trough
time
(ms)

Trough
voltage
(mV)

Upstroke
time
(ms)

Upstroke
voltage
(mV)

Upstroke-
to-
downstroke
ratio

Width
(ms)

� ��� -��.� ��� �.��� �.�� �.��
� ��� -��.� ��� -�.�� �.�� �.��
� ��� -��.� ��� -�.�� �.�� �.��
� ��� -��.� ��� -�.�� �.�� �.��
� ��� -��.� ��� -�.�� �.�� �.��
� ��� -��.� ��� -�.�� �.�� �.��

Table �.�: Electrophysiological feature
values for individual APs. Example of
derived feature values belonging to indi-
vidual APs. AP index: index of the AP in
a sequence of APs belonging to a single
membrane voltage trace. When it starts
again from �, it belongs to a sequence
in the next membrane voltage trace, a
response to injecting 20?� more. Trough
time, voltage: time and voltage at trough
(explained in main text). Upstroke time,
voltage: time and voltage at the upstroke.
Upstroke-to-downstroke ratio: ratio of the
upstroke to the downstroke. AP width:
width of the AP at half the height.

�.�.� Trace Features

The pipeline continues to calculate feature values that summarize the
statistics of a full trace or one experiment of current injection. When the
APs have been correctly identified and described, the pipeline continues
with features including the interspike intervals (ISIs), which measure the
elapsed time between two consecutively generated APs, spike count, and
the AP coefficient of variation (AP CV) which is the standard deviation of
AP amplitudes in the trace divided by their mean (Table �.�). The latter
measures how much the AP amplitudes vary throughout the experiment.
Most cells indeed respond with high amplitude for the first AP generated
close to stimulus onset, and thereafter continue to respond with smaller
AP amplitudes. Yet, some cells, including this example cell, eventually
fires consistent high amplitude APs till the end of the experiment (Figure
�.�, green curves).

In Scala et al. [��], cells have not been stimulated with only positive
currents, but with negative currents as well, giving rise to hyperpolarizing
responses described above. During hyperpolarization, some cells rapidly
reach a new steady state, others can take longer. This can be measured
with the membrane time constant, the time constant of an exponential
function fitted to the membrane voltage response during the initial
phase of negative current stimulus (Figure �.�, blue curves). Some cells
additionally reach a trough, a lowest membrane voltage point, before
reaching the steady state. The latter would be described by an important
feature called the sag ratio. It is computed as the difference between the
trough voltage and resting membrane potential, divided by the steady
state membrane voltage difference from the resting membrane potential.
Here, the steady state membrane voltage is calculated as the average
voltage before stimulus offset. Some feature values can be found in Table
�.�. The data analyst can build trust in the pipeline’s procedure by looking
at intermediately calculated values, plotted on the membrane voltage
trace itself (Figure �.�, blue curves).
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Table �.�: Electrophysiological feature
values for traces. Here we queried fea-
ture values belonging to the membrane
voltage traces with highest firing rate (��
APs for this example cell). Trace index:
index in sequence of traces with �� APs.
ISI CV: CV of ISIs in the trace. AP CV:
CV of AP amplitudes. Current: injected
current. Burstiness: when a cell fires rapid
successive APs, it bursts. Its computation
is involved and described in Scala et al.
[��]. Spike count: number of APs.

Trace in-
dex

ISI CV AP CV Current
(pA)

Burstiness Spike
count

� �.�� �.�� ��� �.�� ��
� �.�� �.�� ��� �.�� ��
� �.�� �.�� ��� �.�� ��
� �.�� �.�� ��� �.�� ��
� �.�� �.�� ��� �.�� ��

�.�.� Cell Features

The pipeline finalizes by computing feature values describing the elec-
trophysiology of the cell. We have computed features describing the
characteristics of individual action potentials (Section �.�.�), as well as
features summarizing the statistics of hyperpolarization and depolariza-
tion traces (Section �.�.�). We can now think of features best describing
the cell’s membrane voltage response to current injections of multiple
magnitudes. For electrophysiologists, especially the �st AP fired by the
cell during the experiment is of interest, and thus its characteristics like
the threshold, amplitude and width is of immediate value. Other interest-
ing features include the highest firing rate and sag of the hyperpolarizing
response to the most negative current stimulus. Computed values of
some of the latter features as well as other descriptive features can be
found in Table �.�.

Table �.�: Electrophysiological feature
values for a cell. Resting membrane poten-
tial: average voltage between experiment
and stimulus onset AP threshold, width:
described in main text. AHP: afterhy-
perpolarization; depth of the membrane
voltage drop after the �st AP reaches its
peak, measured from AP threshold. ISI
CV: calculated as in Table �.�, i.e. for the
trace with highest firing rate. Sag ratio:
explained in main text.

Resting
poten-
tial
(mV)

AP
thresh-
old
(mV)

AP
width
(ms)

AHP ISI CV Sag ra-
tio

-��.� -��.� �.�� -�.�� �.�� �.��

�.� Application

Electrophysiologists craft features such as the ones in Table �.� to answer
specific questions in biology. For instance, do layer-� cells in mouse
somatosensory cortex respond similarly to current-injection experiments
as layer-� cells in mouse motor cortex? In Scala et al. [��], we found
interesting differences in AP width, input resistance and membrane time
constant between the two, as well as morphological and transcriptomic
differences. Here, a methodology called sparse-reduced rank regression,
which we will discuss extensively in Chapter �, has been employed to
analyze both transcriptomic and electrophysiological data.

For the Patch-seq data set introduced in Section �.� — serving as main
data set discussed in this thesis — we wondered how well the phe-
notypical landscape of neurons aligns with the genotypical landscape.
In Scala et al. [��], we propose in fact a ‘banana tree‘ structure for the
‘tree of cortical cell types‘. In this structure, we have few large leaves
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�: Referring here to both the morphology
and electrophysiology of the neuron or
cell.

representing families of neurons, including fast-spiking Pvalb-expressing
interneurons, Vip-expressing interneurons and excitatory Pyramidal cells,
to name a few, with both distinct transcriptomic and electrophysiological
characteristics. Within those leaves, however, cells rather form a contin-
uous and correlated transcriptomic and morpho-electrical� landscape.
Neighboring transcriptomic types largely show similar electrophysiolog-
ical and morphological characteristics, and should not be thought of as
purely discrete entities, as often implicitly assumed.

We can support the ‘banana tree‘ of cortical cell types, with a preliminary
analysis, namely by running the pipeline and computing all electrophysi-
ological features (Section �.�.�) for each MoP neuron in the data set. We
plot the computed values of some electrophysiological features across
transcriptomic types in Figure �.�. Features including the AP count, AP
width, ISI CV and latency show greater variability across families than
across transcriptomic types within a family (or leaf). All Pvalb-expressing
neurons are indeed known to be fast-spiking interneurons, reflected in
high AP count, and Pyramidal excitatory cells have distinct AP features
from interneurons, reflected here for instance in high AP width and
latency.

In Chapter � and Chapter �, we corroborate this analysis by introducing
statistical frameworks that can predict one modality from another or in
this case, electrophysiology from transcriptome.

Figure �.�: Electrophysiology across transcriptomic types. Electrophysiological feature values, computed for all MoP neurons and
shown across transcriptomic types, together with the median (small horizontal lines). Colors correspond To transcriptomic types. Red:
Pvalb; yellow: Sst; purple: Vip; salmon: Lamp� interneurons; green/blue: excitatory Pyramidal neurons. See Scala et al. [��].
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�.� Conclusion

In order to describe the firing patterns of experimentally observed
neurons, faithfully, quickly and consistently, it is paramount that we
build and can trust a pipeline that does so automatically, in a streaming
fashion, and in the same way each time for each cell. In Section �.�.�,
Section �.�.� and Section �.�.�, we discussed how our pipeline computes
electrophysiological features that summarize statistics of individual
action potentials, depolarizing and hyperpolarizing membrane voltage
traces and the full electrophysiology of the cell, respectively. Moreover,
sanity check figures such as shown in Figure �.� allow the user to obtain
trust in the pipeline: one can visually verify that the algorithm correctly
obtains values of intermediate calculations such as the trough in a
hyperpolarization trace in order to calculate the sag, or the timings of
AP threshold and maximum voltage to calculate the AP amplitude as
the difference between the two.

With Patch-seq, we can not only obtain raw electrophysiological record-
ings, but by aspiring the cell’s nucleus content, RNA contents as well
[��, ��]

[��]: Cadwell et al. (����), ‘Electrophysio-
logical, transcriptomic and morphologic
profiling of single neurons using Patch-
seq’
[��]: Cadwell et al. (����), ‘Multimodal
profiling of single-cell morphology, elec-
trophysiology, and gene expression us-
ing Patch-seq’

. The latter can be sequenced, so that expression levels of tens of
thousands of genes can be obtained for each cell. This allows us to deploy
paired-data or ‘two-view‘ analysis techniques to Patch-seq data sets and
to go beyond mere ‘one-view‘ perspectives. We will discuss a linear and
nonlinear technique in Chapter � and Chapter �, respectively.
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We touched upon the importance of building a multimodal-conforming
taxonomy of cortical cell types in Chapter �. In order to do so, we
need multimodal experimental techniques, like Patch-seq introduced in
Chapter �. Albeit a low-throughput technique, Patch-seq in particular
paved the way for scientists to study the relationship between genetic
identity in the form of gene counts and behavioral identities in the form
of electrophysiology and morphology in the same set of cells (see Chapter
�).

As the nature of new emerging experimental techniques including
Patch-seq becomes increasingly multimodal, so should our statistical
approaches in order to extract as much knowledge possible from the
joint-view data they generate. In Chapter �, we therefore introduce
sparse reduced-rank regression: a regression technique that can be used to
predict the response variables in one modality from predictors in another,
select the most important predictors for the task and produce joint-view
embeddings for visualization with direct (biological) interpretability.

The discussion of sparse reduced-rank regression in Chapter � is largely
based on Kobak et al. [��]. In Chapter �, we will see a nonlinear extension
to this linear framework, and capitalize on recent advances in machine
learning to see how neural networks can do better at the prediction task,
and aid the interpretability of two-view embeddings.

�.� Sparse Reduced-rank Regression

�.�.� Intuition

We could in principle take any response variable such as the AP width
and see if ⇠ 1000 most variable detected genes could predict the whole
spectrum of possible action potential width values. Focusing on one re-
sponse variable would be termed simple regression (Figure �.� b). If besides
the action potential width we were to also be interested in predicting e.g.
the latency and interspike-interval, we perform multivariate regression as we
try to regress our predictors onto multiple (response) variables (Figure
�.� c). In the case of Patch-seq data, certain genes probably (negatively)
correlate in their expression in order for the cell to have a certain elec-
trophysiology or morphology. A linear combination of predictors could
therefore be sufficient at the regression task. Now we move into the field
of Reduced-rank regression (Figure �.� d). A final step in our reasoning
process could be to exclude some genes entirely as we do not expect
every gene to be relevant in determining a neuron’s firing pattern. We
can introduce a group lasso penalty to the cost function (see Section �.�.�)
so that the adapted regression model can select the most important pre-
dictors (genes). The latter is termed sparse reduced-rank regression (sRRR,
Figure �.� e).
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Figure �.�: Sparse reduced-rank regression, sketch. (a) Patch-seq experiment, a schematic illustration: patch-clamp experiment leads
to electrophysiological recording and is then followed by RNA extraction and sequencing. Below: data matrices after computational
characterization of electrophysiological features (Y) and estimation of gene counts (X) (as discussed in Chapter �). (b) Simple regression.
(c) Multivariate regression. (d) Reduced-rank regression. (e) Sparse reduced-rank regression. Gray circles denote predictors that are left
out of the sparse model. (b-e) Below, the regression task or the cost function to be minimized. Taken from Kobak et al. [��].

�: Simple regression can be interpreted
as a special case of multivariate regres-
sion

�: Or another gene could be similarly
depressed.

�.�.� Mathematics

Patch-seq provides for two paired data matrices (Figure �.� a): an = ⇥ ?
matrix X containing expression levels of ? genes for each of the = cells,
and an = ⇥ @ matrix Y containing @ electrophysiological properties of
the same = cells. We assume that both matrices are centered, i.e. column
means have been subtracted. Note that we could include morphological
features in . too, or predict only morphology but we will focus on
transcriptome and electrophysiology in the rest of this Chapter.

We will jump straight to discussing the mathematics behind multivariate
regression � and build from there.

Multivariate Regression

If we are interested in predicting all computed electrophysiological
feature values in matrix Y based on gene count matrix X, and want to
do so linearly, we optimize the elements in a matrix B, of size ? ⇥ @ so
that the product XB is as close as possible to Y. A popular choice for
measuring ‘closeness‘ involves the mean-squared error, so that

L= kY � XBk2
, (�.�)

can be interpreted as a cost function, an adept name, for it is the cost or
the error that we want to minimize. The smaller the cost, the smaller the
mean-squared error in this case, and the better our prediction. Note that
the norm used in Equation �.� and below is the Frobenius norm.

Its solution is well known and can be mathematically stated as

B = (X>X)�1X>Y. (�.�)

Reduced-rank Regression

In Section �.�.�, we discussed how the expression of multiple genes
could be enhanced � in a coherent fashion in order to produce a type
of electrophysiology (or morphology) observed in neurons. With the
language of mathematics, in linear regression this amounts to creating
a linear combinations XW, where W is of size ? ⇥ A, which we multiply
with another matrix V> of size A⇥ @ to produce XWV>, which we hope to
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be as close as possible again to Y. Again, we would use the mean-squared
error loss term:

L= kY � XWV>k2
. (�.�)

In reduced-rank regression [��, ��], A is called the rank, a scalar that
effectively sets the dimensionality of the linear latent space, as well as
the ranks of matrices W and V and could be set to as small as two for
instance in order to produce direct two-dimensional latent visualizations
(see Section �.�). Furthermore XW could be interpreted as latent gene
variability that is predictive of electrophysiological variability, and YV as
latent electrophysiological variability that is predictive of gene variability
(see Section �.�). The solution to minimizing L in Equation �.� requires
a tidy bit more mathematical detail, for which we refer to our work in
Kobak et al. [��].

Sparse Reduced-rank Regression

In Section �.�.�, we further postulated that we most likely only need few
genes in order to understand electrophysiological variability observed in
neurons. Mathematically, we can introduce what is called a group lasso
penalty to L in Equation �.�:

L= kY � XWV>k2 + ⌫
?X
8=1

kW8·k2. (�.�)

Here, ⌫ is again a scalar we can set to our choosing and determines the
penalty strength, whereas P?

8=1kW8·k2 formulates a sum over all W row
✓2 norms. To reduce the latter term in the cost amounts to making certain
✓2 norms in the sum insignificant or close to zero, which is exactly what a
lasso penalty is known for. This is equivalent to neglecting certain genes in
the prediction task. The cost or loss function L in Equation �.� therefore
establishes a tradeoff: the second term tries to significantly reduce every
W row’s weight or contribution to the prediction task, measured by the
✓2 norm, to zero, yet some row norms will prevail, as at least some
rows (corresponding to some genes) are needed to perform well at the
prediction task at hand (first term in Equation �.�).

It is important to note that the group lasso penalty is a form of regulariza-
tion that is necessary in regression problems whenever the amount of
features in the model denoted by ? and @ exceeds the amount of data =
to our disposal. The mouse genome comes with �� thousand genes, but
usually Patch-seq data sets are reduced to ? ⇠ 1000 in X, i.e. ⇠ 1000 most
variable genes are selected for downstream analyses. Patch-seq data sets
with sufficiently small = (as most are) therefore need to be regularized.

Besides lasso, employing a ridge penalty is another common choice in
overparameterized linear regression problems. Ridge regularization can
be introduced to reduce every parameter’s weight (every element in
matrices W) or contribution to the prediction task, in addition to lasso.
In fact, within the penalty term, we can introduce a hyperparameter �,
a scalar up to our choosing and set between [0, 1], that determines the
relative strength of lasso to ridge:
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L=
1

2=
kY � XWV>k2 + ⌫

⇣
�

?X
8=1

kW8·k2 + (1 � �)kWk2/2
⌘
, (�.�)

which is also termed reduced-rank regression with elastic net regularization.
We will usually refer to sparse reduced-rank regression however, as we
deploy the ✓1 group lasso penalty, to select genes in order to predict
electrophysiological variability [��, ��]. The minimization problem in
Equation �.� is a biconvex problem: when W is fixed, we can find the
optimal V and vice versa. Usually Equation �.� is also subject to V>V = I,
i.e. V has fixed ✓2 norm.

Solutions to the biconvex problem involve again a bit more mathematical
detail which can be found in Kobak et al. [��]. Following Friedman,
Hastie, and Tibshirani [��], we can use the glmnet library to find optimal
solutions for the minimization problem in Equation �.�.

�.�.� Training

R2 Coefficient of Determination

In regression we can use the '2 coefficient of determination to see how
well the regression predicts the data:

'
2 = 1 � kY � XWV>k2

kYk2 . (�.�)

The higher'2, the better our prediction works. In fact, a perfect prediction
for all data points would mean kY � XWV>k2 = 0, so that '2 = 1.
Otherwise '2 will be lower than 1.

If we were to evaluate the '2 score on the same data with which we
minimized L in Equation �.�, called training data in machine learning
jargon, we however risk overfitting. Overfitting occurs when the model
performs well on training data but poorly on data the minimization
procedure did not see, termed test data. Put differently, your model fails
to generalize to data points collected after you have already trained your
model. One way of preventing overfitting is to evaluate on a test set rather
than the training set with:

'
2
C4BC

= 1 � kYtest � XtestW⇤V⇤>k2

kYtestk2 , (�.�)

that is, we have minimized Lwith respect to W and V in Equation �.�
with training data XCA08= and YCA08= and obtained parameters W⇤ and V⇤.
We then evaluate '2 on XC4BC and YC4BC . On which data points we train
and on which we test depends on the statistical modeler’s choice. The
entire data set can for instance be split in 80% training data and 20% test
data.
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Cross-validation

When we set hyperparameters �, ⌫ and A, we can find the optimal
minimum for L in Equation �.�. But how do we choose those parameters?
What are the best ones? We can perform what is called a grid search,
that is we try out all combinations of �, ⌫ and A and see which one
performs best according to a metric such as '2 introduced in Equation
�.�. Moreover, it is good practice to find the best combination before
one evaluates on the test set introduced in Equation �.�. An interesting
strategy is to split the training data set in �� folds or parts, where � folds
make up the (new) training data set, and � fold an evaluation set, so that
after training, we can evaluate:

'
2
E0;

= 1 � kYval � XvalW⇤V⇤>k2

kYvalk2 . (�.�)

Here again, we obtained optimal parameters W⇤ and V⇤ for L on the
training data set XCA08= and YCA08= , but evaluate '2 on XE0; and YE0; .

In cross-validation, every fold has served as both training and validation
data, so that for each combination of �, ⌫ and A we can compute the
average of '2

E0;
over �� validation folds. This will give us an optimal

combination (�,⌫, A) corresponding to highest average '2
E0;

, with which
we can train the entire regression model again, this time on all �� folds
and consequently compute '2 on the true test data set, as formulated in
Equation �.�. This also leads to a final combination of optimal W⇤ and V⇤

matrices.

Relaxed Elastic Net

Elastic net or even the lasso penalty on its own can lead to non-zero
weights (elements in matrices W or V) shrinking too much [��] during
optimization. There have been several suggestions in the literature on how
to mitigate this effect [��–��], including setting a combination of penalties
in � and ⌫ in a first optimization round, followed by a combination of
(softer) penalties in � and ⌫ in a second optimization round. Similarly,
we find that one can see a strong improvement in predictive performance
if, after a first round, we take the predictors or genes with non-zero ✓2
row norms in W and run the optimization again using � = 0 (i.e. pure
ridge) with the same value of ⌫ as in the first round.

Comparison to Canonical Correlation Analysis

We have seen throughout Section �.�.� that sparse reduced-rank regression
embeds the transcriptomic space X in a lower-dimensional linear space
XW from which it further linearly projects XWV> in order to predict
electrophysiology XWV> ⇠ Y. Its aim is therefore one of prediction,
mirrored in the minimization of L in Equation �.�. Yet, XW and YV
allow for direct linear lower-dimensional embeddings in both modalities
that are biologically interpretable (see Section �.�).

Instead of optimizing a prediction task, one could seek for maximal
correlation in the two linear embeddings XW and YV. This methodology
is termed canonical correlation analysis (CCA), of which sparse variants also
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exist, arguably the most popular being sparse CCA developed by Witten,
Tibshirani, and Hastie [��]. Interestingly, however, one can compare
correlations between XW⇤ and YV⇤ (that is, W⇤ and V⇤ obtained with
sRRR) with correlations between XWB⇠⇠� and YVB⇠⇠� and find that
sRRR can outperform sparse CCA, even though its aim is not to maximize
correlations. As both sRRR and sparse CCA involve regularization, the
explanation could be due to ‘over-regularization‘ using sparse CCA.
Details and possible explanations can be found in Kobak et al. [��].

Conclusion

Sparse reduced-rank regression is an intuitive linear framework, em-
ployed by data scientists to predict variability in one modality based on
another. It uses the group lasso penalty to select predictors and linearly
combines them into a latent lower-dimensional representation to predict
variability in the response variable. It therefore lends itself beautifully to
Patch-seq: it selects the most important genes that, linearly combined,
predict electrophysiological variability.

�.� Latent Visualizations

In Section �.�.� we discussed the significance of the rank A in sparse
reduced-rank regression: a scalar that sets the dimensionality of the
lower-dimensional latent space. We saw that it could be set to A = 2 so
that XW constructs a two-dimensional latent space with gene variability
that is predictive of electrophysiological variability, and YV constructs a
two-dimensional latent space with electrophysiological variability that is
predictive of gene variability. Both two-dimensional representations can
be visualized next to one another creating what we term a bibiplot [��]
(Figure �.�).

Data Sets

Here, we apply sRRR to four Patch-seq data sets in order to demonstrate
the intuitive biological interpretability that comes with bibiplots in Figure
�.�. The fist data set involves = = 51 interneurons from layer � in the
mouse neocortex taken from Fuzik et al. [��] and visualized in Figure
�.� a. The second data set involves 110 cells from layer � in both the mouse
visual cortex and somatosensory cortex discussed by Scala et al. [��] and
displayed in Figure �.� b. The third data set is discussed throughout this
entire thesis, = = 1213 excitatory and inhibitory neurons obtained with
Patch-seq by Scala et al. [��] that span different layers and cover various
cell types in the mouse motor cortex (Figure �.� c). The fourth and last
data set covers a subset of the data published by Gouwens et al. [��]: it
covers many interneuronal cell types in the mouse visual cortex (Figure
�.� d). For preprocessing details regarding all data sets, we refer again to
Kobak et al. [��].

On all data sets, we apply sRRR with A = 2 to obtain two-dimensional
visualizations and set ⌫ to yield only �� biologically prominent genes in
each data set (� is variable with values: �.�, �.�, �.�, and �.� respectively).
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Two-dimensional visualizations are shown and discussed in Section �.�,
some '2

E0;
values in Chapter �.

Bibiplots

To construct bibiplots for all data sets in the transcriptomic space, we
first use the bottleneck representation XW⇤ for a first scatter plot (Figure
�.� a-d, left) and analogously YV⇤ to create the electrophysiological
latent space in a second one (Figure �.� a-d, right). We can overlay
both scatterplots with lines showing correlations of selected individual
genes or electrophysiological features with the first and second latent
component of the trained sRRR model (first and second column in
XW⇤ for scatterplots on the left and first and second column in YV⇤ for
scatterplots on the right, Figure �.� grey lines). More specifically, if we
take predictor or gene g, the line extends from the origin (0, 0) to the point
with coordinates (corr (g, (XW⇤)1·)) , corr (g, (XW⇤)·2)), where corr refers
to the Pearson correlation between two variables. The circle (correlation
circle) shows maximal possible correlations. The relative scaling of the
scatter plot and the lines/circle is arbitrary.

The bibiplots therefore condense information intuitively in two two-
dimensional latent representations side by side. We can directly visualize
and compare two latent embeddings, each from a different modality,
where one predicts the other. If the regression score defined by '2 of the
sRRR model is high, then the two scatter plots will be similar to each
other. Moreover, we can compare the directions of variables between
the two plots visualized by the overlayed lines, and hypothesize which
electrophysiological features are associated with which genes.

Analysis

The first data set encompasses two types of interneurons from layer �
of mouse cortex: neurogliaform cells and single bouqet cells (shown
in orange and green in Figure �.� a respectively). We can see that the
first latent dimension or first sRRR component captured the difference
between the two cell types (Figure �.�a). The second sRRR component has
only one gene strongly associated with it (Figure �.�a) and contributes
only a very small increase in '2

E0;
, as one can see after comparing the

cross-validated values for A = 1 and A = 2 at �� selected genes (see
[��]).

Similarly, the first latent dimension captures the difference between cells
located in the visual and somatosensory cortex for the second data set
(orange and red colors in Figure �.� b). The selected genes here are
pointing in all directions, and indeed the second component contributes
a substantial increase in '

2 [��]. This suggests that both components
are biologically meaningful. See the work of Scala et al. [��] for a more
in-depth analysis.
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Figure �.�: Sparse reduced-rank regression applied to Patch-seq. (a) Transcriptomic two-dimensional space (left) and electrophysiological
two-dimensional space (right) — also termed ‘bibiplots‘ — for the first data set from Fuzik et al. [��]. Color codes for cell type (orange:
neurogliaform cells; green: single bouqet cells). Only �� genes selected by the model are shown on the left. (b) Analogous to a, but applied
to the second data set from Scala et al. [��]. Color denotes cortical area (orange: visual cortex; red: somatosensory cortex). (c) Third
data set from Scala et al. [��]. Color denotes for transcriptomic type. Red: Pvalb; yellow: Sst; purple: Vip; salmon: Lamp� interneurons;
green/blue: excitatory Pyramidal neurons. (d) Fourth data set from Gouwens et al. [��]. Color denotes same transcriptomic type as in c.
For this data set, only a subset of electrophysiological features are shown on the right to reduce the clutter.

Our third data set is much larger than the previous two and includes a
much more diverse selection of neuron types. As a result, the '2 values



�.� Conclusion ��

are substantially higher and the model needs to use rank A � 5 to reach
its optimal performance. Here we nevertheless use A = 2 because it
allows the same kind of visualization as for the other data sets (Figure
�.� c). See the work of Scala et al. [��] for a more in-depth analysis using
sRRR with rank A = 5. Two-dimensional bibiplots separate major classes
of neurons, such as Pvalb, Sst, Vip, and Lamp� expressing interneurons
(red/orange/purple/salmon), and excitatory cells (green). Moreover,
some selected genes are directly related to ion channel dynamics, such as
the calcium channel subunit genes Cacna�e and Cacna�d� or the potassium
channel-interacting protein gene Kcnip�. The same is true in the V� data
set (Figure �.�d), where e.g. a potassium channel gene Kctd� is among
those selected by the model.

It is worth noting that the YV⇤ representation in the electrophysiological
space for our third data set (Figure �.� c, right) is very similar to the
PCA lower-dimensional representation in Kobak et al. [��] (Figure �b).
This indicates that our sRRR model explains the dominant modes of
variation among the dependent variables. We observe the same in other
datasets analyzed here, even though in principle it is possible that latent
components derived with PCA of the Y matrix are different from the
ones derived with our sRRR model.

The reader is referred to GitHub for a Python implementation of sRRR
models applied to Patch-seq, and to GitHub for its application in the
study of Scala et al. [��].

�.� Conclusion

Sparse reduced-rank regression, a linear statistical framework, selects
the most meaningful predictors to predict variability in a response
variable and has the additional bonus of producing lower-dimensional
embeddings that are intuitive and directly interpretable, especially in
biology. For paired Patch-seq data sets, it can select genes as part of
the minimization procedure in Equation �.�, that contribute most to
predicting electrophysiological variability. So-called bibiplots can help
hypothesize which genes are expressed to explain the variability in
individual electrophysiological features.

In Chapter �, we will be introduced to the Hodgkin-Huxley model, a
biophysical model that includes deterministic mechanisms. Whereas
in statistical tools such as sRRR or sparse CCA we optimize (linear)
parameters W and V to relate one space to another directly, deterministic
mechanisms explain carefully, at every time step in the model, how we
move from one state to the next.

In Chapter � we will move even one step further and combine both sRRR
and biophysical models as a first attempt to make the partly causal bridge
from an experimental viewpoint observed in the genetic makeup of
neurons to a simulation viewpoint explicit in the model parameters of a
biophysical model, that in itself models the electrophysiological makeup
of the same neurons.

https://github.com/berenslab/patch-seq-rrr
https://github.com/berenslab/mini-atlas
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In Chapter � we introduced Patch-seq and its importance for the multi-
modal study of neurons in the nervous system. We also showed how a
pipeline implemented in Python can be utilized to extract expert-defined
electrophysiological features automatically and its that their computed
values can be verified with ‘sanity check plots‘.

Chapter � then introduced sparse reduced-rank regression, a biologically
intuitive and linear statistical tool that embraces the multimodal nature ob-
served in neuroscience. It selects most predictive genes, linearly combines
them into latent components that subsequently predict electrophysio-
logical response variables. We can furthermore conveniently use the
latent components to produce low-dimensional joint-view embeddings,
and, much like PCA, we can verify which genes and electrophysiological
features the sRRR components correlate highly with, and overlay that
information on the same embedding.

The next natural question to ask is whether we can do better, by going
beyond a linear framework. It is not unreasonable to assume that nonlinear
computations used in the regression task could be helpful to uncover
the highly nonlinear and complex steps the biological cell undertakes
to eventually produce its firing patterns. The cell transcribes certain
genes, translates them into functional proteins, specifically ion channels
in the cell membrane. Those channels open under certain conditions,
for instance when the membrane voltage reaches a certain threshold,
or when a neurotransmitter (a chemical) finds access to its binding site.
In Chapter �, we will see that, when certain ion channels are in the
open state, the membrane voltage undergoes rapid and highly nonlinear
fluctuations, leading to so-called action potentials. So especially for this
stage in the cell, we expect nonlinear computational units to be useful in
relating gene expression levels to firing patterns.

In Chapter �, we therefore introduce sparse bottleneck neural networks
(sBNNs), a machine learning framework for the nonlinear prediction
of electrophysiological features based on gene expression levels. We
will see that it outperforms sRRR on the prediction task, and that
two-dimensional bottlenecks can provide insightful visualizations not
immediately captured by sRRR unless one introduces more than two
dimensions in the latent space.

The reader is invited to read Bernaerts, Berens, and Kobak [��] for an
in-depth exploration, of which the main points will be outlined next.

�.� Sparse Bottleneck Neural Networks

As discussed in Chapter �, sRRR uses a linear combination of few predic-
tors or genes, selected by introducing a group lasso penalty in the cost
function (see Section �.�.� and Equation �.�) to predict electrophysiologi-
cal variability. Moreover, the linear latent embedding proves very useful
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erogeneous Systems

[��]: Yosinski et al. (����), ‘How trans-
ferable are features in deep neural net-
works?’

to visualize and interpret this two-view data in biology and neuroscience.
We would like to therefore build a deep neural network that shares many
of the intuitive features of sRRR. It should be able to be pruned at its
input layer to select few genes and a bottleneck should allow for direct
joint-view nonlinear embeddings.

�.�.� Architecture

In our architecture (Figure �.�c), the sBNN encoder part compresses the
? = 1000 high-dimensional transcriptomic data into a two-dimensional
bottleneck representation via several fully connected layers, from which
one head of the network reconstructs the transcriptomic data (termed
autoencoder), whereas an additional head predicts the electrophysiological
properties of the neurons (termed alloencoder). The encoder and decoder
have two hidden nonlinear layers each (we use ��� and ��� units for
the encoder, and ��� and ��� units for the decoder). We use exponential
linear units for the hidden layers, but linear units for the bottleneck layer
and the output layer because the response variables can take values in R

and are not necessarily constrained to be positive or to lie between � and
�.

To enforce sparsity, we can impose the same group lasso ✓1 penalty as
introduced in Section �.�.� and Equation �.� to the first encoding layer
weight. We moreover use a constant ✓2 penalty of 10�10.

Importantly, linear models with lasso penalty allow for solutions that
converge to having exactly zero entries [��]. This is not the case for deep
learning models, where gradient descent will generally fluctuate around
solutions with many small but non-zero elements. Our strategy to achieve
a genuinely sparse model here is to (i) impose a strong lasso penalty and
train the network until convergence; then (ii) prune the input layer by
only selecting a pre-specified number of input units with the highest ✓2
row norms in the first layer, and deleting all the other input units; and
finally, (iii) fine-tune the resulting model with lasso penalty set to zero.
This procedure mimics the ‘relaxed’ elastic net procedure described in
Section �.�.�: the lasso-regularized model is pruned and then fine-tuned
without a lasso penalty.

To produce outputs approaching electrophysiological measurements we
can use the same MSE loss as introduced for the first time in Equation
�.�.

For the entire implementation inKeras [��] (version �.�.�) and TensorFlow
[��] (version �.�.�) libraries in Python, the reader is referred to GitHub.

�.�.� Training

Pre-training

Transferring the weights from an initial task A to a target task B with
subsequent fine-tuning can improve the performance on task B compared
to random weight initialization [��]. As such it can be demonstrated that
for Patch-seq, directly training the network on the regression task, i.e. pre-
dicting electrophysiological measurements from gene expression levels,

https://www.tensorflow.org/
https://github.com/berenslab/sBNN
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Figure �.�: Patch-seq, sRRR and sBNN schemas. (a) Patch-seq allows for electrophysiological recordings, collected here in matrix Y
and extraction of RNA content of the same cells, collected in matrix X. (b) SRRR schema, here again for reference. Also see Figure �.�.
(c) SBNN schema. Encoder takes ? = 1000 genes in input layer and produces two-dimensional latent space in its (linear) output. From
latent components, the alloencoder predicts �� electrophysiological features, and the autoencoder predicts �� genes selected after pruning
with a group lasso ✓1 penalty in the first layer weight.

[��]: Lathuilière et al. (����), ‘A compre-
hensive analysis of deep regression’

�: For Patch-seq experiments here,  =
20.

�: When an output layer of a deep neural
network outputs values in R, the layer
can be transformed to a density, that is,
all output nodes summing up to 1, by
applying the softmax operation. Given the
value at output layer node >

:
, applying

the softmax means transforming >
:

with
the operation exp(>

:
)P

9
exp

⇣
>
9

⌘ , where the sum

is over all output layer nodes indexed by
9.

[��]: Howard et al. (����), ‘Universal Lan-
guage Model Fine-tuning for Text Classi-
fication’

results in suboptimal performance (Figure �.�), both on the validation
and on the training sets. Better results can be achieved after pre-training
the network on a classification task. This approach is inspired by the usual
practice for image-based regression tasks to start with a convolutional
neural network with weights trained for classification on ImageNet and to
fine-tune them on the task at hand [��].

To perform classification, one can perform :-means clustering to partition
the whole data set of = points into  � clusters based on the values of the
response variables. Thereafter, the output layer of the network can be
replaced with a  -element softmax� so that the network can be used to
predict cluster identity with the cross-entropy loss:

L⇠⇢ = �
 X
:=1

?(B:) log (@(B:)) . (�.�)

Here, the cross-entropy loss is stated for one training data example B.
‘True’ class probabilities ?(B:) are derived with :-means. The network,
however, also outputs softmax probabilities @(B:), which we want to get
as close as possible to ?(B:). The final loss that the network minimizes
sums Equation �.� up for all training data samples B.

We hold out ��% of the training set as the validation set (Section �.�.�) in
order to perform early stopping and choose the training epoch that has
the lowest unpenalized cross-entropy validation loss (during �� epochs).
We can then use the weights obtained at that epoch as a starting point
for subsequent training with the original MSE loss.

Freezing

A common advice in transfer learning is to hold the bottom layers frozen
after the transfer (as those are the most generalizable [��]), train the
upper layers first and then unfreeze all layers for fine-tuning [��]. Here,
we hold the bottom two layers frozen for the first �� fine-tuning epochs,
and then train the network with all layers unfrozen for another �� epochs
(Figure �.�, vertical dashed lines).
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[��]: Han et al. (����), ‘Learning both
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�: For Patch-seq standards.

Pruning

This can then be followed by pruning the input layer [��, ��] at epoch
��� (Figure �.�). When we prune, we keep �� input layer nodes 8 with
highest first layer weight row norms or high kW(1)

i,· k2. Remember that
we are introducing a group lasso penalty, enforcing some rows in the
first layer matrix W(1) to have such a reduced weight in the feed-forward
direction of the neural network, that corresponding input nodes or genes
attribute close to nothing in the prediction task. Pruning in this sense,
leads to gene selection.

Optimization

We can use the standard Adam optimizer [��] but with learning rate
set to 0.0001. The default value 0.001 sometimes can lead to very noisy
convergence characteristics, especially for small data set sizes like ours.
The learning rate is then further reduced to 0.00005 after unfreezing,
encouraging an optimal local solution not too far from the current state.
It takes ⇠� minute to train any of these models for the entire ��� epochs
on NVIDIA Titan Xp.

�.� Sparse Bottleneck Neural Networks for
Patch-seq

Equipped with our architecture design and training schedule, we are
ready to deploy our deep neural network on two large� Patch-seq data
sets, which we will refer to as M� (mouse motor cortex) and V� (mouse
visual cortex). They have already been introduced here in Section �.�,
but we briefly reiterate them here for convenience.

�.�.� Patch-seq Data Sets

The M� data set refers to = = 1213 excitatory and inhibitory neurons
obtained with Patch-seq by Scala et al. [��] that span different layers
and cover various cell types in the mouse motor cortex (M�, see Figure
�.�c). We focus on @ = 16 expert-defined electrophysiological features
that are ‘well-behaved‘, i.e. did not correlate too highly with one another
and were well represented by a Gaussian distribution, and ? = 1000
most variable genes, leading to X and Y matrices of size 1213 ⇥ 1000 and
1213 ⇥ 16 respectively. It should be assumed for the following discussion
that all columns in X and Y have zero mean and unit variance, i.e. were
standardized before training the network. The M� data set can be found
on Github.

The V� Patch-seq data set contains = = 3395 inhibitory neurons from
primary visual cortex (V�) of adult mice Gouwens et al. [��], with ? = 1252
and @ = 55. It covers many interneuronal cell types in the mouse visual
cortex derived with Patch-seq (Figure �.� d). Analogous to the M� data
set, columns in both X and Y are standardized. The V� data set can also
be found on Github.

https://github.com/berenslab/mini-atlas
https://github.com/AllenInstitute/coupledAE-patchseq


�.� Sparse Bottleneck Neural Networks for Patch-seq ��

It is good to note that we are equipped with only low = ⇠ 1000B data set
sizes according to machine learning standards, yet have a lot of predictors
(genes) ? = 1000, some layers with = ⇠ 100B of nodes, and eventually
few response variables @ = 16 very informative of electrophysiology in
neurons. That is a lot of variables and little data to tune them. Nevertheless,
we will see in Section �.�.� that with sufficient regularization, deep neural
networks can be utilized to perform better on the prediction task on
held-out data during cross-validation than linear frameworks such as
sparse reduced-rank regression, even though they do not come with as
much parameters.

�.�.� Predictive Performance

The cross-validated '
2
E0;

of the A = 2 sRRR model selecting �� genes
is 0.35 ± 0.02 and 0.19 ± 0.01 respectively for the M� and V� data set
(mean±SD across cross-validation folds, see Table �.� and Section �.�.�).
Without a two-dimensional linear bottleneck, the full-rank sRRR model
'

2
E0;

increases to 0.40. Our nonlinear sBNN model with two-dimensional
bottleneck reaches 0.40 for M� (Figure �.�, full green line) and 0.25 for
the V� data set. SBNN therefore outperforms A = 2 sRRR models and
performs as well as a full-rank sRRR linear models. Note that the full
rank here is ��.

Figure �.�: SBNN training and valida-
tion set performance during training
of M� Patch-seq data set. Training set
(dashed lines) and validation set (full
lines) '2 scores of the sBNN with and
without pre-training. The bottom two
layers are frozen for �� epochs after pre-
training. All models were pruned to ��
input units at epoch ��� and trained for
further ��� epochs. Horizontal lines show
performances of A = 2 and A = 16 sRRR
models with �� genes.

Model M� V� CITE-Seq

SRRR, rank-� .35 ± .02 .19 ± .01 .23 ± .04
SRRR, full-rank .40 ± .02 .25 ± .01 .35 ± .06
SBNN .40 ± .02 .26 ± .01 .38 ± .07

Table �.�: Cross-validated Multivariate
'

2 Performance Scores for the SRRR and
SBNN Frameworks Regarding the M�,
V�, and CITE-Seq Data Sets. Mean±SD
across �� cross-validation folds.

'
2
E0;

can vary across individual electrophysiological features (Figure
�.�). For the M� data set, the highest cross-validated '

2
E0;

values are
obtained for the upstroke-downstroke ratio of the action potential ('2

E0;
=

0.77 ± 0.03), maximum action potential count ('2
E0;

= 0.73 ± 0.04), and
action potential width ('2

E0;
= 0.72 ± 0.05), whereas some other features

have '2
E0;

below �.�.

�.�.� Gene Selection

The group lasso penalty on the first layer weight selects genes relevant
for electrophysiology and predictive of different transcriptomic types.
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In the sBNN model, Sst, Vip, Pvalb, Gad�, Coro�, Ndst�, etc. are selected
(see Table �.� for the M� data set, where we sort genes in descending
order by the ✓2 norms of the first layer weights). Sst, Vip, Pvalb and
Lamp� are well-known marker genes of specific neuronal populations
[�, �]

[�]: Tremblay et al. (����), ‘GABAergic
interneurons in the neocortex: from cel-
lular properties to circuits’
[�]: Tasic et al. (����), ‘Shared and distinct
transcriptomic cell types across neocorti-
cal areas’

, and Gad� encodes an enzyme responsible for catalyzing the
production of gamma-aminobutyric acid (GABA), a crucial molecule in
neuronal signaling. For the V� data set, the list starts with Vip, Synpr,
Pdyn, Fxyd�, Trhde, Cacna�d�, etc. Here, Fxyd� and Cacna�d� encode
important ion transport transmembrane proteins, directly affecting the
electrophysiology of cells.

Figure �.�: Sparse bottleneck neural
network performance on individual
electrophysiological features. Cross-
validated '2

E0;
scores calculated for each

individual electrophysiological feature
(mean ± s.d. across �� cross-validation
folds).

In both Patch-seq data sets, selected genes beyond the known cell class
markers often have direct and interpretable relations to ion channel
dynamics and the electrophysiological properties. For example, Kcnc�,
selected by the sBNN for the V� data set, encodes for the Kv�.� potassium
voltage-gated channel directly affecting the firing rate most notably in
fast-spiking Pvalb interneurons [��–��]

[��]: Muona et al. (����), ‘A recurrent de
novo mutation in KCNC� causes progres-
sive myoclonus epilepsy’
[��]: Wymore et al. (����), ‘Genomic Or-
ganization, Nucleotide Sequence, Bio-
physical Properties, and Localization
of the Voltage-Gated K+ Channel
Gene KCNA�/Kv�.� to Mouse Chro-
mosome �/Human ��p�� and Mapping
of KCNC�/Kv�.� to Mouse �/Human
��p��.�-p��.� and KCNA�/Kv�.� to Hu-
man ��p��’
[��]: Jiang et al. (����), ‘Chapter �
- Involvement of cortical fast-spiking
parvalbumin-positive basket cells in
epilepsy’
[��]: Erisir et al. (����), ‘Function of Spe-
cific K+ Channels in Sustained High-
Frequency Firing of Fast-Spiking Neo-
cortical Interneurons’

. Similarly Kcnab�, selected in the
M� data set, also encodes for a potassium voltage-gated channel, which
is expressed higher in fast-spiking Pvalb interneurons (Figure �.� a).

The strength of the lasso penalty seems to play an important role (Figure
�.�). For low penalties such as �.����, the ✓2 weight norms for different
input units before pruning are all of similar size (Figure �.� b), leading
to arbitrary genes being selected after pruning and bad performance
afterwards (Figure �.� a). Strong penalties (�.��–�.�) lead to rapidly
decaying weight norms (Figure �.� b), similar sets of genes being selected,
and similar final performance (Figure �.� a), with �.� penalty achieving
the highest performance.

A curious effect arises when we impose the group lasso penalty: while the
training and test performance are initially both improving, after several
epochs they both deteriorate rapidly when we have not already pre-
trained the network (Figure �.�, orange curves). It can also be observed,
during pre-training (training curves not shown here), as we would apply
the group lasso penalty already then. This is not due to overfitting
because the training performance becomes worse as well. Instead, the
shape of the performance curves suggests that the lasso penalty ‘begins
kicking in’, bringing the penalized MSE loss down while the unpenalized
MSE loss goes up. After this initial rapid decrease, the validation test set
performance slowly improves again with further training. It is speculated
that this behavior is reminiscent of a phase transition in the gradient
descent dynamics: in the earlier ⇠�� epochs mainly the MSE (or cross-
entropy) term is being optimized, while in the next ⇠�� epochs it is
mainly the lasso penalty[��].

Table �.�: �� selected genes for the
= = 1213 Patch-seq data set, ranked in
descending ✓2 norm order of first layer
weights.

Data Genes

M� Sst, Vip, Pvalb, Gad�, Coro�, Ndst�, Synpr, Tac�, Ndn,
Htr�a, Lamp�, Unc��c, Cplx�, Enpp�, Sparcl�, Atp�a�,
Dlx�os�, Col��a�, Plch�, Tiam�, Kcnab�, Tafa�, Ptk�b, Igf�,
Magel�

V� Vip, Synpr, Pdyn, Fxyd�, Trhde, Cacna�d�, Ptpru, Kcnc�,
Pvalb, Hpse, Pcp�l�, Egfem�, Lamp�, Penk, Pde��a, Necab�,
Chodl, Cpne�, Fstl�, Crtac�, Zfp���, Grm�, Shisa�, Kit,
Grin�a
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Figure �.�: Effect of the group lasso penalty strength, M� data set. (a) Validation (solid lines) '2
E0;

of the sBNN model, depending on
the value of the lasso penalty (color-coded, see legend). Analogous to Figure �.�. (b) The ✓2 norms of the first layer weight for each input
unit just before pruning, depending on the value of the lasso penalty. Vertical axis is on the log scale.

�: Note that we train � different net-
works, i.e. two sBNN models, one with
M� data and one with V� data, from
scratch, before passing through the
whole data set through respective net-
works.

�.�.� Visualization

As promised, we can construct a two-dimensional nonlinear embedding
after training the network and passing through the whole data set of
M� and V�� (see Figure �.�). Two-dimensional bottleneck linear outputs
for the M� and V� data set are shown in Figure �.� a,b (middle), re-
spectively. We can observe that major cell families are well separated
in the embeddings, as per case for the sRRR model (Figure �.�). For
the A = 2 sRRR model, however, we cannot observe a clear separation
between Sst and Vip families in Figure �.� c for the M� data set, even
though they are known to be different in both transcriptome and electro-
physiology. Indeed, higher ranks are necessary to show their differences
[��]. Our sBNN model, however, separates them with only two latent
dimensions, demonstrating the use of nonlinear computational units
when the bottleneck’s dimension is constrained.

Autoencoder gene predictions and alloencoder electrophysiological pre-
dictions can be intuitively overlayed on the same bottleneck representa-
tion in Figure �.� shown on the left and right, respectively. We pick nine
exemplary genes that were selected by the model and can verify that for
instance Sst and Pvalb marker genes are predicted to be highly expressed
in Sst and Pvalb interneurons respectively (Figure �.� a, M� data set).
Likewise, predicted high expression of Vip is correctly assigned to Vip
interneurons in the V� data set (Figure �.� b). Similarly, nine randomly
picked electrophysiological features allows us to reason which genes
could be responsible for their high or low prediction. As such, the sBNN
model also allows for meaningful biological interpretations beyond the
level of major cell families: for instance for Vip neurons (Figure �.�a,
purple colors) we can see a separation between different transcriptomic
types in the latent space, with differences in several predicted electrophys-
iological properties such as the membrane time constant and rebound,
and correlated differences in gene expression e.g. of Ptk�b (Figure �.�).
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Figure �.�: Latent visualization with gene and electrophysiological feature overlays. (a) M� data set. Middle: two-dimensional
bottleneck activations after passing the whole data set of = = 1213 neurons through. Left: autoencoder model predictions for nine
exemplary genes out of �� selected genes. Right: alloencoder model predictions for nine exemplary electrophysiological features. Colors
correspond to transcriptomic types. Red: Pvalb; yellow: Sst; purple: Vip; salmon: Lamp� interneurons; green/blue: excitatory Pyramidal
neurons. (b) V� data set. Analogous to a.

[��]: Stoeckius et al. (����), ‘Simultane-
ous epitope and transcriptome measure-
ment in single cells’
�: Data set is publicly available at NCBI.

Figure �.�: SBNN latent visualization,
zoomed-in. Zoomed-in version of Fig-
ure �.� a for Vip neurons. The Ptk�b ion
channel gene, rebound and membrane
time constant overlays are shown.

�.� Sparse Bottleneck Neural Networks beyond
Patch-seq

Sparse bottleneck neural networks need not be limited in their application
to Patch-seq data sets only. Indeed, sBNN’s design (Section �.�.�) suggests
its use is most relevant for paired data sets where it is assumed that a
lower-dimensional representation from high-dimensional input space
can predict most of the variability in the low-dimensional output space,
and where in addition it is believed that many predictors can be ‘thrown
away‘.

Here, we demonstrate sBNN’s competing performance beyond Patch-
seq, and apply it to a CITE-seq data set [��] of = = 7652 cord blood
mononuclear cells �.

�.�.� CITE-seq Data Set

Whereas with Patch-seq experiments we obtain transcriptomic read
counts and electrophysiological measurements from Patch-clamp experi-

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866
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�: CITE for for “Cellular Indexing of
Transcriptomes and Epitopes”.

[��]: Moon et al. (����), ‘Visualiz-
ing structure and transitions in high-
dimensional biological data’
[��]: Eraslan et al. (����), ‘Single-cell
RNA-seq denoising using a deep count
autoencoder’
[��]: Amodio et al. (����), ‘Exploring
single-cell data with deep multitasking
neural networks’
[��]: Lopez et al. (����), ‘Deep generative
modeling for single-cell transcriptomics’

ments, with CITE-seq� experiments we obtain read counts and epitope
measurements such as CD�, CD� and CD� (antibody-derived tag levels)
which are relevant for immunological protein marker detection. The
feature dimensionality for CITE-seq is ? = 1000 and @ = 13.

�.�.� Predictive Performance

Applied to the CITE-seq data set, cross-validated performance '2
E0;

of
the A = 2 sRRR model selecting again �� genes is 0.23 ± 0.04 and reaches
0.35± .06 for the A = 13 or full-rank sRRR model (Table �.�). Interestingly,
the sBNN model with two-dimensional bottleneck reaches '2

E0;
= 0.38

even outperforming the full-rank linear counterpart (Table �.�).

�.�.� Gene Selection

The sBNN model selects Ms�a�, Cd�b, Gnly, Ighm, Nng�, Tcl�a, etc. (Figure
�.� a) Within this list, Cd�, Cd�d, Cd�a, Cdab, Ighm and Ighd are genes re-
sponsible for CD�, CD�, CD� and IgM transmembrane protein (sub)units.
Out of ? = 1000 genes, therefore, sBNN selects highly relevant genes for
CITE-seq: it selects those genes coding for protein subunits that either
directly constitute or are highly relevant for the epitope, that is, the part
of the protein to which the antibody attaches in the experiment.

�.�.� Visualization

Figure �.�: SBNN latent visualization with gene and electrophysiological feature overlays for CITE-seq. Analogous to Figure �.� a,b
but for CITE-seq. = = 7652. Colors correspond to immune populations [��]. Red: CD� T cells; green: CD�� monocytes; yellow: CD��
Monocytes; blue: natural killer cells; aquamarine: CD� T cells; magenta: B cells; brown: precursors.

�.� Related Work

A multitude of linear and nonlinear methods for low-dimensional visual-
ization of non-paired ‘one-view’ data are used in single-cell literature [��]

[��]: Luecken et al. (����), ‘Current best
practices in single-cell RNA-seq analysis:
a tutorial’

.
These range from principal component analysis (PCA) and :NN-based
methods such as t-SNE [��]

[��]: Maaten et al. (����), ‘Visualizing
data using t-SNE’

, UMAP [��]

[��]: McInnes et al. (����), ‘UMAP: Uni-
form Manifold Approximation and Pro-
jection’

, or PHATE [��], to autoencoder
and variational inference frameworks such as DCA [��], SAUCIE [��], or
scVI [��]. Even though the latter show great potential of nonlinear para-
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[��]: Lipovsek et al. (����), ‘Patch-seq:
Past, present, and future’
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[��]: Lance et al. (����), ‘Multimodal
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metric models for single-cell data analysis, they focus on one modality,
namely transcriptomics.

Analyzing paired joint-view data, on the other hand, remains a chal-
lenge [��]. Most methods that are being used, focus on the symmetric
integration of the two modalities into one joint representation. This
has been approached using adaptive combination of :NN graphs [��];
multi-view extension of factor analysis [��]; coupled autoencoders [��,
��] constrained to have similar latent spaces; or joint variational autoen-
coders [��–��]. In fact, a NeurIPS competition focused on multimodal
data integration of single-cell data [��] and offered three different chal-
lenges, including prediction of one modality from another and joint
embedding. Most of the winners were based on deep-learning models
and autoencoders [��].

These algorithms are very promising but most of them do not conform to
all of our design principles, that is, to treat both modalities asymmetrically
— directly predicting one modality from another —, to select predictors,
and to produce meaningful (two-dimensional) embeddings. Instead they
either treat the two modalities symmetrically, or formulate a prediction
task that does not aim at data exploration and does not generate low-
dimensional embeddings. Second, most method do not aim at feature
selection which we believe is important for biological interpretability.
Third, the methods that generate low-dimensional latent spaces typically
use latent dimensionality of ⇠��� which is not amenable for direct
visualization.

�.� Discussion

A sparse bottleneck neural network is a deep neural network framework
that leverages its inherent nonlinear computational units to outperform
its linear counterpart: sparse reduced-rank regression. Inspired by the
latter’s intuitive design, a group lasso penalty is imposed on the first layer
weight to select predictors, and a bottleneck is introduced to combine
them in a nonlinear fashion into a low-dimensional latent representations
used for prediction and visualization.

We have seen that '2
E0;

can improve significantly when we introduce
nonlinear computations in the prediction task, and that the efficacy of
sBNNs need not to be limited to Patch-seq data sets, but works very well
for CITE-seq too. It would be interesting to see the application of sBNNs
on many more kinds of paired data sets as well, for instance not limited
to biology.

We speculated at the beginning of Chapter � that introducing nonlinear
computational units could benefit the task of predicting electrophysiology,
because decades-old neuroscientific research in living biological systems
dictates that observed neuronal firing patterns are highly nonlinear, with
membrane voltage fluctuations varying rapidly on millisecond timescales.
In Chapter �, we will move beyond just statistical approaches to describe
the relationship between transcriptome and electrophysiology and make a
step towards deterministic models, that is the Hodgkin-Huxley model.



�: Similarly for instance, in biochemical
modeling, the modeler attempts to math-
ematically describe the underlying chem-
istry in a biological system.

Biophysical Modeling �
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based Model for Patch-seq ��
�.�.� Hodgkin-Huxley-based

Models for Fitting Experi-
mental Electrophysiology. ��

�.� Conclusion . . . . . . . . . . ��

Chapter � (Sparse Reduced-Rank Regression) on page �� and Chapter �
(Sparse Bottleneck Neural Networks) on page �� introduced statistical
tools that can be employed to learn a relationship between variables,
namely a response variable such as the observed electrophysiology of a
neuron and a predictor variable such as the observed gene expression
levels in a neuron. These tools can be powerful: if the parameters of such
a relationship can be learned effectively, for instance by minimizing a
certain cost or error, then predictions can be made: given new gene expres-
sion levels, the learned mapping gives you predicted electrophysiology.
Consequently, if the experimenter has access to the nucleus of a cell, and
can give you this transcriptomic information, you, as a data analyst, can
predict how the cell would respond to current injection (in the form of
summarizing statistics), prior to having performed that experiment.

As touched upon in Section �.�, these statistical tools do not, however,
tell you which causal mechanisms lead to observed firing patterns, given
knowledge of which genes are expressed and which are not. Indeed,
when certain genes are expressed, certain proteins will be prevalent in
the cell. In the case of neurons, specific genes give rise to typical proteins
called ion channels that are located in the outer layer or membrane of the
cell. Ion channels, as their name adeptly implies and as we will introduce
in Section �.�, allow for the free movement of specific ions through the
cell’s membrane. Those small currents lead to rapid fluctuations in the
cell’s membrane voltage and are called action potentials, and their typical
shape and rapid succession give rise to the observed electrophysiology
of the cell.

The biological design of a neuron is therefore incredibly intricate, specific
and directed. If we want to get a deeper understanding of the exact
biophysical mechanisms that lie at the core of typical firing patterns, we
would need to go beyond the learned parameters in statistical frameworks.
We would need access to a full description of the biophysics in a neuron,
or a model that explains the experimental observation. This is the field
of biophysical modeling.

�.� Motivation

In biophysical modeling, modelers attempt to mathematically formulate
the underlying physics in a biological system�. With a set of (differen-
tial) equations that explains the physics we think responsible for an
observation in biology, the model output is matched to the experimental
outcome.

In the pursuit of such a great and complex endeavor, the modeler has to
make decisions on different scales. First, as is the case in many (biological)
systems, not every part of the whole has a physical counterpart or
mathematical description to it (yet). As we will see in Section �.�, the
Hodgkin-Huxley model describes how ions that flow through specific
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�: Often attributed to Einstein referring
to him saying during a lecture:

· · · the supreme goal of all
theory is to make the ir-
reducible basic elements
as simple and as few as
possible without having
to surrender the adequate
representation of a single
datum of experience.

[��]: Deistler et al. (����), ‘Energy-
efficient network activity from disparate
circuit parameters’

channels in the outer layer of the cell can be interpreted as currents and
the outer layer itself as a capacitance or battery that holds a potential
difference between the inner and outer environment of the cell. Potential
differences located in parallel to currents and a capacitance describe a
physical circuit that is well understood in physics and well described
in mathematics. In contrast, the path from genes being transcribed to
messenger RNA, which in turn translate to functional proteins in the
cell, including those ion channels in the cell’s membrane, is incredibly
complex. This would either involve fitting a huge amount of parameters
in a very big and complex dynamical system, which could take years
even on the best computing infrastructure available, or interpreting
this part in the system as a black box. In black-box modeling, a system is
interpreted in terms of its inputs and outputs. The system itself or the logic
therein remains obscure (black) to the modeler: when the output/input
relationship is learned, a black-box modeler cares less about the internal
mechanisms that explain the flow from input to output. Sparse reduced-
rank regression and sparse bottleneck neural networks can be interpreted
as black-box models: a linear or nonlinear relationship is learned from
genes to electrophysiology, but this regression does not explain how
we get to the observed firing patterns of a neuron or which biophysical
mechanisms underlie them.

When the modeler has decided for which parts of the system a math-
ematical framework can be built, then still does the modeler need to
choose which set of equations describe the observation best. One would
generally want to keep the dynamical system as simple as possibly but
not simpler.� Simpler models allow for better understandings, but when
the apparent need for adding complexity in the model arises, it should
not be ignored. In fact, it is the added complexity deemed necessary by
the modeler that can guide experimental design and new discovery in
biology. This is one of the greatest strengths in biophysical modeling for
which we will see an example in Section �.�.

Finally, the parameters of such a model need to be fit to the observation in
biology: we want the model output to match the experimental outcome as
best as we can. When we have variables that summarize the observation,
we can attempt to match those, for instance through minimizing an
error: the difference between the feature values derived from the model
with those derived from experiment. It could be that many parameter
combinations do sufficiently well of a job, however, which again, can be
of great biological significance. Depending on energy considerations, for
instance, a neuron might use a different set of ion channels to its disposal
in the membrane [��], which is reflected in a different set of parameter
values in the model. In Chapter �, we will see how we can fit models
with some of the latest techniques in machine learning and moreover
obtain probabilities for every possible parameter combination.

�.� The Hodgkin-Huxley Model

In the work of Hodkgin and Huxley [��], in squids, for the first time
it was demonstrated how ionic mechanisms underlie the initiation and
propagation of action potentials: rapid membrane voltage fluctuations in



�.� The Hodgkin-Huxley Model ��

�: Moreover, besides leaky protrusions
and specific ion channels, the membrane
also hosts ion pumps, which help keep
the natural gradient intact and ion ex-
changers, that exchange ions between
the inner and outer environment of the
cell. Both ion exchangers and ion pumps
are often represented by �? too in the
physical circuit depicted by Figure �.�.
[��]: Oldham (����), ‘The doctrine of
description : Gustav Kirchhoff, classical
physics, and the "purpose of all science"
in ��th-century Germany’

time. In ����, they received the Nobel Prize in Physiology or Medicine
for their revolutional work.

�.�.� Background

In the Hodgkin-Huxley model, depicted by a physical circuit in Figure
�.�, the outer lipid bilayer of the cell functions as a capacitance ⇠< , as it
keeps the gradient of charges between the inner and outer environment
of the cell intact. This lipid bilayer is indeed largely impermeable to ions
and hydrophobic but does contain so-called leaky channels denoted
by conductances 6! through which random ions can flow down their
electrochemical gradient ⇢!. The cell’s membrane hosts, besides leaky
channels, also a spectrum of proteins called ion channels (denoted by
conductances 6=) that allow the free flow of specific ions down their
gradient when specific conditions are met. This condition is usually
the current membrane voltage + , that is the voltage difference between
the inner and outer environment of the cell, that reaches a certain
threshold+) . This threshold can be reached for instance because sufficient
other neurons have excited this one, electrically or chemically (through
neurotransmitters), or because an experimenter injected current, which is
what we will mean with �? throughout this thesis�. When that threshold
is reached, the cell displays an all or none behavior: rapid fluctuations
of the cell’s membrane voltage + will inevitably follow: so-called action
potentials are generated.

We apply Kirchhoff’s law [��] to a physical circuit as demonstrated in
Figure �.�. A law that states that the sum of all currents meeting in a
point amounts to zero. We can take the convergence point of currents in
the node depicted right below ⇢! in Figure �.�. When an experimenter
injects current �? flowing from the right into the node, it is divided into
linear currents through leaky channels 6! (+ � ⇢!), nonlinear currents
through ion channels 6= (+ � ⇢=), and a capacitance current ⇠ 3+

3C
, which

we can state as:

�? = 6! (+ � ⇢!) +
X
=

6= (+ � ⇢=) + ⇠<
3+

3C

, (�.�)

and where the P
=

is introduced to state that there can be multiple and
specific ion channels. In the case of the squid axon that was studied by
Hodkgin and Huxley [��], two ion channels allowing the flux of only
sodium (#0+) with current 6#0+(+ � ⇢#0+) and potassium ( +) with
current 6 +(+ � ⇢ +) respectively, were introduced to explain the action
potential generation observed. When the membrane threshold is reached,
#0

+-channels open and create a positively charged rapid influx of #0+.
This creates a fast depolarization of the membrane voltage. Due to this
rapid increase in the membrane voltage, however,  +-channels respond,
and in turn allow the rapid efflux of  + ions, creating a rapid repolarization
of the membrane voltage. During the same time,#0+-channels inactivate
due to a closing of one of the subunits or gates within the channel.

Extracellular Medium

Intracellular Medium

Cm
gn(t,V)

En

gL

EL

Ip

Figure �.�: Physical circuit describing
the Hodgkin-Huxley model. The outer
lipid bilayer of the cell is depicted by a
capacitance⇠< , the voltage difference be-
tween the inner and outer environment
by + , specific ion channels by conduc-
tances 6= , leak currents by conductance
6!, possible current sources or so-called
ion pumps and ion exchangers by �? and
the electrochemical gradient driving the
flow of ions by ⇢!. From Wikipedia.

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
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�: Exact dependencies of � and � on the
membrane voltage+ for both#0+-influx
and  

+-efflux in Hodkgin and Huxley
[��].

As the gates open and close in response to the membrane voltage value
and in function of time, Equation �.� can be rewritten as

�? = 6! (+ � ⇢!) + 6#0+ (+ � ⇢#0+) + 6 + (+ � ⇢ +) + ⇠<
3+

3C

= 6! (+ � ⇢!) + 6
#0

+<
3
⌘ (+ � ⇢#0+) + 6

 
+=

4 (+ � ⇢ +) + ⇠<
3+

3C

,

(�.�)

where < is the probability with which one activation gate opens and
⌘ the probability with which the inactivation gate opens in the #0+-
channel. Indeed, #0+-channels have � subunits, � activation gates and
one inactivation gate, all needing to be in the open state for #0+ ions
to flow into the cell. Analogously,  +-channels contain � subunits, all
activation gates, that are in the open state with probability =. When
all gates are in the open state, #0+ influx and  +-efflux happens with
maximal conductances 6

#0
+ and 6

 
+ respectively.

The probability with which (in)activation gates are in the open state are
modeled as

3=

3C

= �= (+(C)) (1 � =) � �= (+(C)) = (�.�)

, where �= denotes the membrane voltage dependent rate of opening and
�= the membrane voltage dependent rate of closing (= 2 (< , ⌘ , =))�.

During the refinement of the Hodgkin-Huxley model, Hodgkin and
Huxley inevitably introduced powers in Equation �.�, as they noticed it
better explained the shape of an action potential in the observed firing
pattern of a neuron in a squid. They did not know yet, however, that these
correspond to actual gates or subunits within the channels themselves.
Interestingly, these powers were later confirmed by experiments in
biology: it turns out that multiple gates (protein subunits) need to be in the
open state within the same ion channel in order for ions to flow through
the channel down their gradient. A great example of biophysical modeling
creating testable hypotheses end guiding experimental design.

�.�.� The Hodgkin-Huxley-based Model for Patch-seq

The Hodgkin-Huxley model introduced in Section �.� is of great impor-
tance till this day in neuroscience to accurately describe and fit models to
observed electrophysiology in a wide range of neurons. In fact, for the pur-
pose of this thesis, we use a single-compartment Hodgkin-Huxley-based
model (henceforth sometimes abbreviated as the HH model) described by
Pospischil et al. [��] that was designed to reproduce electrophysiological
behavior of a wide variety of neurons across species with a minimal
set of ion channels. To account for the variability across excitatory and
inhibitory cortical neurons, we add additional ion channels explained in
Hay et al. [��] and introduce A(( , a parameter influencing how rapid gates
reach open and closed steady states in some sodium and and potassium
currents. Without these modifications we could not fit wider AP widths
for instance observed in firing patterns of Pyramidal cells in our data set
(see later).

As we have seen in Section �.�, the Hodgkin-Huxley model solves the
following ODE +<(C) = 5 (+<(C), )) for +<(C), the membrane voltage as
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[��]: Pospischil et al. (����), ‘Minimal
Hodgkin-Huxley type models for dif-
ferent classes of cortical and thalamic
neurons.’
[��]: Hay et al. (����), ‘Models of Neocor-
tical Layer �b Pyramidal Cells Capturing
a Wide Range of Dendritic and Periso-
matic Active Properties.’

a function of time, which in our case amounts to:

3+<(C)
3C

=
1
⇠

�
�#0 + �#0C + � 3 + �" + � E3.1 + �! + �;40: � �8= 9 � �=>8B4

�

(�.�)
�#0 = 6

#0
<

3
⌘ (⇢#0+ � +<(C)) (�.�)

�#0C = 6
#0C

<̂
3
⌘̂ (⇢#0+ � +<(C)) (�.�)

� 3 = 6
 3
=

4 (⇢ + � +<(C)) (�.�)
�" = 6

"
? (⇢ + � +<(C)) (�.�)

� E3.1 = 6
 E3.1 E (⇢ + � +<(C)) (�.�)

�! = 6
!
@

2
A (⇢

⇠0
2+ � +<(C)) (�.��)

�;40: = 6
;40:

(⇢;40: � +<(C)) . (�.��)

Here, 6
G

and ⇢G denote the maximum channel conductance and reversal
potential of membrane ion channel G respectively. ⇠ is the membrane
capacitance and �8= 9 = 300?� denotes the magnitude of experimental
current injected between current stimulation onset at 100<B and stimula-
tion offset 700<B. In order to model small membrane voltage fluctuations
observed experimentally, we further introduce Gaussian current noise
�=>8B4 ⇠ N(10, 1) at every time point.

Analogously to Section �.�, ion channel activation and inactivation gates
follow dynamics 3G

3C
= �G (+<(C)) (1 � G) + �G (+<(C)) G, where

G 2
n
< , ⌘ , <̂ , ⌘̂ , = , ? , E , @ , A

o
. Opening �G and closing �G rate constants

depend on the membrane voltage +<(C) as previously described by [��,
��]. In order to account for the 25�⇠ temperature at which Patch-seq
experiments were performed, we use a temperature coefficient &10 = 2.3
to scale the kinetics with which gates in ion channels open and close.
Parameter A(( further scales the rates with which sodium and potassium
currents with maximal conductances 6

#0
and 6

 3
reach steady states.

We implement the model with the Brian� toolbox developed by Stimberg,
Brette, and Goodman [��] in Python, which can efficiently transpile and
simulate models in C++.

Model Parameters

In Table �.�, the 13 free parameters used in this HH model are described.

Summary Statistics

We automatically extract 23 electrophysiological features (Table �.�) from
the measured or simulated voltage traces +(C). In Chapter �, however,
the pipeline focused on the extraction of electrophysiological features
summarizing both depolarization and hyperpolarization characteristics
of the cell. Here, we focus on traces with action potentials and keep
only the membrane voltage response to current injections of 300 ?�
magnitude. Code can be found on GitHub.

https://brian2modelfitting.readthedocs.io/en/stable/
https://github.com/berenslab/hh_sbi
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Table �.�: Description of parameters of the Hodgkin-Huxley-based model.

Model pa-
rameter

Prior range Description

⇠ [0.1, 15] ⇠�
2<

2 The membrane capacitance ⇠ measures how much charge
can be stored per voltage difference+< across the membrane.

'8=?DC [20, 1000]"⌦ The input resistance '8=?DC , equals the membrane voltage+<
deflection from resting state divided by injected current. The
inverse is called the leak conductance 6;40: .

� [0.1, 70]<B Here, � describes the time for the membrane potential to
increase by a fraction of (1 � 1/4), or 63 %, from its resting
membrane state during the application of the positive 300 ?�
current pulse.

6
#0C

[0, 250] <(

2<
2 Maximal conductance of the fast inactivating #0+ current

described by Hay et al. [��] and Colbert and Pan [��].
6
#0

[0, 100] <(

2<
2 Maximal conductance of the#0+ current described by Pospis-

chil et al. [��] and Traub and Miles [��].
6
 3

[0, 30] <(

2<
2 Maximal conductance of the delayed rectifier  + current

described by Pospischil et al. [��] and Traub and Miles [��].
6
"

[0, 3] <(

2<
2 Maximal conductance of the slow non-inactivating muscarinic

 
+ current, also found in Pospischil et al. [��] and Yamada,

Koch, and Adams [��].
6
 E3.1 [0, 250] <(

2<
2 Maximal conductance of the fast non-inactivating  + current

described by Hay et al. [��] and Rettig et al. [��].
6
!

[0, 3] <(

2<
2 Maximal conductance of the high-threshold ⇠0

2+ current,
found in Pospischil et al. [��] and Reuveni et al. [��].

⇢;40: [�130,�50]<+ Reversal potential of the leak current.
�<0G [50, 4000]<B Time constant describing how rapid the muscarinic current

channel opens (see 6").
+) [�90,�35]<+ Parameter that can adjust the AP threshold.
A(( [0.1, 3] Rate to steady state (SS). Parameter introduced to change

how rapid gates reach open and closed steady states in #0+
current with maximal conductance 6#0 and  + current with
maximal conductance 6

 3
.



�.� The Hodgkin-Huxley Model ��

Table �.�: Description of electrophysiological features summarizing Hodgkin-Huxley-based model simulations. *To make their
distribution more Gaussian, these features are additionally log-transformed, except for the AP average amp adapt for which we used the
sigmoid transformation.

Electrophysiological
feature

Description

AP threshold Membrane voltage at the time where the first derivative of the
voltage w.r.t. time reaches a threshold, which elicits the first AP.

AP amplitude Height of the �st AP, measured from threshold to maximum voltage.
AP width Width at half height of the �st AP
AHP Afterhyperpolarization. Depth of the membrane voltage drop after

the �st AP, measured from AP threshold.
�rd AP threshold Analogous to AP threshold but for the �rd AP.
�rd AP amplitude Analogous to AP amplitude but for the �rd AP.
�rd AP width Analogous to �rd AP width but for the �rd AP.
�rd AHP Analogous to AHP but for the �rd elicited AP.
AP count* Number of elicited APs in the current injection window 100�700<B.
AP counts �st �th* Number of elicited APs in 100 � 175 <B.
AP count �st quarter* Number of APs in 100 � 250 <B.
AP count �st half* Number of APs in 100 � 400 <B.
AP count �nd half* Number of APs in 400 � 700 <B.
AP amp adapt* AP amplitude adaptation. �st elicited AP amplitude divided by the

amplitude of the �nd elicited AP.
AP average amp adapt* AP average amplitude adaptation. Average ratio of all two con-

secutive AP heights as calculated by AP amp adapt during current
injection window.

AP CV* Standard deviation divided by the mean of all AP amplitudes of
APs elicited during the current injection window.

ISI adapt* Interspike interval (ISI) adaptation. ISI: time elapsed between two
APs. ISI adapt: ratio of the �nd ISI (between �nd and �rd elicited
AP) to the �st ISI (between �st and �nd elicited AP).

ISI CV* Standard deviation divided by the mean of all ISIs.
Latency* Time it takes to elicit the �st AP, measured from current stimulation

onset to AP threshold.
Rest +< mean Mean of the membrane voltage +< before current stimulation onset

0 � 100 <B. Also called resting membrane potential.
+< mean Mean of the membrane voltage +< during current stimulation

window 100 � 700 <B.
+< std Standard deviation of the membrane voltage +< during current

stimulation window 100 � 700 <B.
+< skewness Skewness of the membrane voltage +< during current stimulation

window 100 � 700 <B.
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�.�.� Hodgkin-Huxley-based Models for Fitting
Experimental Electrophysiology.

The adapted Hodgkin-Huxley-based model fits firing patterns observed
with Patch-seq experiments across a wide variety of neurons. In Figure �.�,
Figure �.� and Figure �.�, we showcase the model’s capability of fitting
firing patterns obtained from a fast-spiking Pvalb Kank� interneuron,
irregular firing Sst Hpse neuron and L�/� IT_� Pyramidal cell, respectively.
True experimental observations are shown on top in black. These are
the cell’s membrane voltage responses to 300 ?� current stimulation.
Three HH model simulations with smallest Euclidean distance to the
experimental observation in ��-dimensional electrophysiological feature
space, are shown in gray.

Each model simulation is generated with one particular ��-dimensional
HH model parameter combination (Table �.�), also called a point estimate.
In Chapter �, we will come across a machine-learning based framework
that derives probabilities over the full space of possible model parameter
combinations. As such, we do not only know single best solutions, we
know of all HH model parameter combinations how likely they fit the
experimental observation.

Figure �.�: HH Model Fits Experimen-
tal Observations from Patch-seq Firing
pattern of a fast-spiking Pvalb Kank� in-
terneuron is shown on top in black. Three
HH model simulations with smallest
Euclidean distance in electrophysiologi-
cal feature space to the observation are
shown in gray.

Figure �.�: Analogous to Figure �.�. Sst
Hpse interneuron.

Figure �.�: Analogous to Figure �.�. Pyra-
midal L�/� IT_� neuron.

�.� Conclusion

The work of Hodkgin and Huxley [��] demonstratively revolutionized
the field of neuroscience. The Hodgkin-Huxley model was a first of
its kind, describing mathematically the mechanistic steps from ionic
flows through channels in the cell membrane to observed firing patterns
in neurons. In contrast to statistical tools introduced in Chapter � and
Chapter �, the Hodgkin-Huxley model is not a black box. We can peer
into the mechanics of the system and understand how it goes from model
parameters including the membrane capacitance and ion channels to
action potential generation and firing patterns.

Still to this day, many adaptations to the Hodgkin-Huxley model allow
for the accurate fitting of observed electrophysiology in a variety of
neurons, such as Patch-seq experimental observations in mouse motor
cortex, as we qualitatively deduced in Section �.�.�.

As touched upon, however, we do not know how probable certain pa-
rameter combinations are that lead to similar model outputs fitting the
same experimentally observed firing pattern. How do we know which
parameter combinations are likely and which less likely? Can very dif-
ferent parameter combinations produce similar firing patterns? What
could that mean for the neuron in living systems? Advanced statistical
tools in machine learning can infer probabilities over the entire space of
biologically reasonable model parameters, and that will be the topic of
Chapter �.

In Chapter �, we will attempt to bridge the genetic identity of neurons in
the form of gene expression levels to their phenotypic identity in the form
of observed electrophysiology with the combination of a statistical model
introduced in Chapter � and a biophysical model introduced here.
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In the subfield of machine learning called simulation-based inference
(SBI), scientists attempt to infer the parameters of a model that explain
observed data, based on simulations generated from the model itself.
Beyond providing single numerical values for all parameters, which
produce a single simulation sufficiently close to the observation, they
attempt to provide uncertainties over all possible parameter values.
Uncertainty distributions provide the modeler with probabilities for
each combination of parameter values. Consequently the modeler knows
which combinations of parameter values are likely to generate simulations
sufficiently close to the observed data and which parameters are not
likely to do so.

SBI has recently seen fruitful and real physical applications ranging from
identifying mechanistic models of neural dynamics [��] and the energy
management thereof [��] to gravitational wave parameter estimation
[��] and particle physics [��]. Indeed, recent work in SBI on enhancing
network architectures and training frameworks [��, ��] has shown its
superiority over traditional Approximate Bayesian Frameworks (ABC)
[��].

There are five ingredients necessary for SBI applied to Patch-seq:

I i. a prior distribution over model parameters, that is, initially as-
signed probability values to each and every combination of param-
eter values,

I ii. a model capable of generating simulations that can explain the
data,

I iii. features summarizing the simulated data,�,
I iv. a network architecture, or differently put, a neural network that

can learn the mapping from features to probability distributions
over model parameters.

I v. features summarizing experimental data, serving as input to the
simulation-based trained network.

In Chapter � (Biophysical Modeling) on page ��, we introduced the
HH model, a sophisticated highly nonlinear model flexible enough to
generate voltage traces explaining raw electrophysiological recordings
obtained with Patch-seq. We also have a Python-based pipeline, much
like the one introduced in Chapter �, for the automated extraction of
electrophysiological features from simulations (see Section �.�.�). Indeed,
it are our expert-defined features including the latency, AP amplitude and
firing rate that summarize how the cell responds to current injection.

Plausible parameter ranges, defined by the uniform prior distribution,
were also introduced in Chapter � (Biophysical Modeling) on page ��, in
Table �.�, motivated by biology. Indeed, it is up to the Bayesian statistician
to introduce as much knowledge about the system a priori available, that
is, to capitalize on biologically available prior knowledge and introduce
it into the Bayesian inference procedure.
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�: That is, we need enough simulated
electrophysiology vectors that cover the
space of ‘true’ experimentally observed
ones.

Equipped with a prior distribution over parameters, the model to generate
simulations with parameters and the pipeline to derive features from
the simulations, we can move on to the �th ingredient: training a neural
network that learns a mapping from the electrophysiological features to
HH model parameters, which is what we describe next.

�.� Neural Posterior Estimation

Within the field of SBI, scientists can train a neural network to directly
estimate a posterior distribution, hence termed neural posterior estimation
or NPE. Training data is usually made up of data observed in the real
world such as images in computer vision, text in large language models or
genetic and electrophysiological data to train bottleneck neural networks
as shown in Chapter �. The neural network might learn to say whether
there is a dog or cat in the image for which we have the true label, or
learn how to predict the next word when it receives text, or predict the
firing rate based on the expression of a few genes. The points is that, in
all previous cases, we have verified or true examples representing both
the input and output space (image of a dog, and the label ‘dog’, a piece
of text and the next word, expressions of genes Cacna�d� and Canca�d�,
and the AP width of the neuron). In NPE, however, where we try to learn
a mapping from summarizing statistics to model parameters, we do
not have access to ‘true’ model parameters connected to experimentally
observed data. Indeed, the experimenter used the Patch-seq protocol to
provide us with raw electrophysiological recordings but cannot provide
us with a ‘true’ model parameter combination connected to it one-to-one.
So how do we train the neural network? We do so by using simulations.
After all, that is why it is called simulation-based inference.

�.�.� Simulated Training Data

In order to produce enough simulations that cover experimental obser-
vations �, we need many parameter combinations from our biologically
motivated uniform prior distribution ?. We can therefore sample

)(=) ⇠ ?()),

where = ⇠ 15 million. As described in Chapter �, they set the values
for parameters including the membrane capacitance, sodium conductance
and so forth. As we have 15 million different parameter combinations,
they each produce a different simulation: each a different membrane
voltage response to 300 ?� injection. From each and every one of those,
electrophysiological features including the latency and AP amplitude can
automatically be extracted as described in Chapter �. To conclude, we
end up with tuples (), y)(=) that serve as our (simulated) training data.

�.�.� Training

Equipped with simulated data (), y)(=), we are now in a position to learn
a mapping from electrophysiological feature space Y to model parameter
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�: This would resemble for instance
sparse bottleneck neural networks where
we optimize network parameters to di-
rectly predict electrophysiology vector
y(=) based on gene expression levels x(=)

�: Not to be confused with our HH
model parameters. Rather, they could
for instance be the mean and covariance
parameterizing a Gaussian distribution.
Specific examples will be introduced in
Section �.�.

space Θ. We do so by optimizing the parameters 5 of a neural network
(our mapping) which we denote by @5() | y). More precisely, however,
we train what is called a neural density estimator. Instead of optimizing
parameters 5 to predict the model parameter combination )(=) directly
based on the electrophysiology vector y(=) �, we want the neural network
to output a full distribution over model parameters. A distribution that
gives high probability to model parameter combinations that lead to
simulations with very similar summary statistics to the ones we fed into
the neural network.

How do we train such a neural network? We cannot minimize a mean-
squared error as we introduced in Chapter �, but we can minimize

L= �
X
=

log(@5()(=) | y(=))), (�.�)

with respect to 5. That is, at each training step, with a current estimate of
5, each y(=), when fed into the network, leads to parameters� describing
a different probability distribution @5() | y(=)), which we can evaluate
at )(=), that is, we calculate @5()(=) | y(=)). We can do this for all =
simulated training data samples, take the natural logarithm and sum
them all up. This is a quantity we would want to maximize, or the minus
of that a quantity that we would want to minimize.

We can interpret the neural density estimator @5() |y) as a surrogate
posterior, because when we feedforward y, the neural network spits out
parameters of a full distribution over model parameters, given known
y. But does it in any way come close to the true posterior ?() | y)? As
it turns out, provided the neural density estimator is flexible enough
and we have an infinite amount of data to our disposal, a theoretical
guarantee follows that minimizing L corresponds to minimizing the
forward KL-divergence between true and surrogate posterior: KL(? | |
@) = KL

�
? () | y) | | @5 () | y)� . Indeed, we can easily show that

KL(? | | @) = E
?() |y) log

✓
? () | y)
@5 () | y)

◆
(�.�)

= �E
?() |y) log

�
@5 () | y)� + E

?() |y) log (? () | y)) (�.�)

⇡ �
X
=

log(@5()(=) | y(=))) + 2C4 , (�.�)

where we have used that E
?() |y) log (? () | y)) does not depend on 5 and

that we can approximate the expectation w.r.t. ? () | y) with the sum,
also called a Monte Carlo estimate.

As the KL-divergence is always positive, this quantity is minimal where
?() | y) = @5() | y) or where the KL-divergence is zero.

One can use stochastic gradient descent algorithms (SGD) or standard
algorithms such as Adam [��] to optimize the objective in Equation �.�.

�.�.� Amortized Neural Density Estimator

Consider now a real-word experimental observation y(>): real latency,
AP amplitude, AP width, ... values derived from a raw experimental
recording obtained with Patch-seq. We can use our simulation-based
trained neural density estimator network @5⇤() | y) where 5⇤ denotes
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�: This number is less than ���� as pre-
viously suggested as the size of this data
set. Not all cells have defined (i.e. not
NaN and not infinite) values for the ��
electrophysiological features introduced
in Section �.�.�.
�: In Sequential NPE, one samples from
obtained posterior @5⇤ () | y(>)) to gener-
ate more simulations closer to the exper-
imental recording than randomly drawn
samples from the prior could. Using
these simulations to train a second neu-
ral density estimator arguably draws the
surrogate even closer to the true poste-
rior. Yet, as the new samples were drawn
based on only one cell’s electrophysiol-
ogy y(>), the second trained network is
finetuned to that cell only, and loses its
amortization.

the optimal parameters 5 of the neural network, that is parameters for
which the loss L(5⇤) is at a local minimum. We feedforward y(>) leading
up to inferred posterior @5⇤() | y(>)). Now we have full knowledge of the
probability mass in the model parameter space defined by the prior. Given
observed electrophysiology vectors, we know which model parameter
combinations are likely (and which less likely) for the HH model to
reproduce the electrophysiological recording. Indeed, the neural density
estimator is amortized; we need only train the neural network once, yet
we can sequentially feedforward electrophysiology vectors of all the
cells in our data set and obtain = = 955 surrogate posterior distributions�

@5⇤() | y(>)), another clear advantage of NPE�.

�.�.� Conclusion

Except the kind of neural density estimators that are commonly used,
we discussed all ingredients, to cook up a recipe that allows us to do
inference, neural posterior estimation style (Figure �.�). We sample from
the prior distribution to obtain many HH model parameter combinations,
that produce simulated firing patterns, from which we derive our favorite
summarizing statistics. Combinations of HH model parameters with
summarizing statistics can be used to train the neural density estimator,
that, when optimized, can subsequently derive the posterior over HH
model parameters given summarizing statistics of an experimentally
observed firing pattern. HH model parameters obtained by sampling from
high probability posterior regions are expected to produce simulations
consistent with the experimental observation.
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Figure �.�: Neural posterior estimation, schematic. HH model parameters are sampled from the prior distribution and produce firing
patterns by simulating the HH model. Summarizing statistics of simulations, together with corresponding HH model parameters are
used to train the neural density estimator, whereas the summarizing statistics of the experimentally observed firing pattern, are fed
through the trained network to obtain the posterior. HH model parameters sampled from high posterior regions give rise to HH model
simulations consistent with experimental data. Adapted from Gonçalves et al. [��].
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�: Oftentimes : = 10 or : = 5 is used,
but this is essentially up to the user.

�: In fact, to check whether a normaliz-
ing flow is calibrated well one can pass
many target samples x through )�1 and
verify their histogram is of base distribu-
tion form.

�.� Architecture

�.�.� Mixture Density Networks

For now we have remained pretty vague on the architecture of our
neural density estimator or neural network. A common choice, proven
useful on not just synthetic but real-world data as well, is to use mixture
density networks where the output layer of @5() |y) is constituted by the
means -

:
, covariances Σ: and weights 0: of a mixture of Gaussians with

: components �. During each training step, updated parameters 5 lead
then to updated -

:
’s, Σ: ’s and0: . In Gonçalves et al. [��], mixture density

networks are used on real-world electrophysiological data to infer HH
model parameters, very similarly as discussed here.

�.�.� Normalizing Flows

Recently, however, the use of normalizing flows has become increasingly
popular. Following notation and train of thought introduced in Papa-
makarios et al. [��], we consider first a base distribution ?D(u), for instance
a multivariate normal or uniform distribution. We can draw samples
u ⇠ ?D(u), pass them through a transformation ), to obtain transformed
random samples x = )(u). We would hope to construct ) in such a way,
that producing a histogram of samples x matches the true target density
?G(x).
) can be flexible, for instance a neural network with parameters 5. Yet,
the defining property of flow-based models is that the transformation
) must be invertible (i.e. )�1 exists and is properly defined), and that
both ) and )�1 are differentiable. In that case, u and x have the same
dimensionality and the density of ?G can be found under a change of
variables:

?G(x) =| det J)(u) |�1
?D(u), (�.�)

where u = )
�1(x), and J is the Jacobian or matrix collecting first order

partial derivatives, that is, matrix element J)(u)8 9 = %)8
%D8

. Alternatively we
could write:

?G(x) =| det J
)
�1(x) | ?D()�1(x)). (�.�)

Essentially, we tune parameters 5 to transform density ?D(u) with )
into ?G(x), the distribution of interest. The Jacobian can be thought of
measuring the relative change in volume from du to dx due to ).

After sampling u0 from a first base distribution ?0(u), we can in fact,
repeatedly transform u1 = )1(u0), u2 = )2(u1), ..., u = ) (u �1) so
that u = x and ) = ) � ) �1 · · ·)2 � )1. Put differently, we can apply
multiple neural networks or transformations, each taking the output of the
previous network as input to transform random numbers in sequence and
eventually produce random vectors u covering the target distribution.
This is where the term flow originates form. The fact that they are thought
of as normalizing is because the inverse )�1 = )�1

1 �)�1
2 · · ·)�1

 �1 �)�1
 

can
be thought of transforming data x back to u covering a base distribution�.
Moreover det J)9�)8 (u8) = det J)9 ()9(u8)) · det J)8 (u8). Normalizing flows
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[��]: Papamakarios et al. (����), ‘Masked
autoregressive flow for density estima-
tion’

[��]: Lueckmann et al. (����),
‘Likelihood-free inference with emulator
networks’
[��]: Papamakarios et al. (����),
‘Sequential Neural Likelihood: Fast
Likelihood-free Inference with
Autoregressive Flows’

are therefore said to composable. The resulting flow is still a normalizing
flow and one can thus imagine increased flexibility of the transformation
if thought to be required for increasingly complex target distributions.

So how does this tie into our original objective Equation �.�? When we
try to obtain the posterior, i.e. distribution over ), we essentially want
our random vectors u to be transformed with )5 to ) (previously x).
Equation �.� then becomes:

L(5) = �
X
=

⇣
log(?D()�1()(=)),5)) + log | det J

)
�1(),5) |)=)(=) |

⌘
.

(�.�)
It can be shown that Equation �.� can be reframed as minimizing a
forward KL-divergence, as already discussed in Section �.�.�.

How can we make this conditioned on electrophysiological feature
vectors y? One approach is to concatenate y to each u8 , at the input of
each neural network or transformation )8 . When we evaluate Equation
�.�, then, )8 = )8(u8�1 , y).

Lastly, the second term in Equation �.� can still be computationally
expensive to compute, because of the determinant of a potentially high-
dimensional matrix. Autoregressive flows, however, can make that com-
putation much faster. Autoregressive stems from the fact that these flows
are implemented so that )8 = )8(u<8), so that for instance the �-th ele-
ment in vector ) will only depend on the �st, �nd and �rd element in
vector u. To achieve this, one needs to mask certain weights in the neural
network or flow )5 . That brings us to the class of normalizing flows used
throughout this thesis when we say we use neural posterior estimation,
namely masked autoregressive flows [��].

�.� Related Work

As one might guess, the type of flow or neural density estimator can be
chosen out of potentially an infinite set of possibilities. Many other inter-
esting flexible flows are discussed in Papamakarios et al. [��]. In practice,
it is a priori often not obvious what flow is best or sufficiently flexible
for one’s experimental data set. Note that with the simulation-based
inference package https://www.mackelab.org/sbi/, one can flexibly
choose the architecture including mixture density networks and a variety
of flow architectures to do inference. Inference results in this thesis are
obtained with this package.

One might opt to train a neural network to estimate the likelihood rather
than the posterior directly, aptly termed Neural Likelihood Estimation
(NLE) [��, ��]. This could be interesting if it is assumed for instance that
simulations are considered highly informative in constraining , so that
one would not need bias in the form of prior ?()). Depending on the
dimensionality of, in this case, ) or y one or the other setting might be
more computationally expensive to train the flow. Note, however, that
if one wishes to obtain posterior samples )8 with NLE, that one needs
to resort to sampling methods including for instance Markov Chain
Monte Carlo (MCMC) approaches, which can be computationally more
exhaustive.
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[��]: Deistler et al. (����), ‘Energy-
efficient network activity from disparate
circuit parameters’
[��]: Marder et al. (����), ‘Understand-
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efficient network activity from disparate
circuit parameters’

�: For practical purposes, between �� ���
and ��� ��� samples is usually consid-
ered sufficient, but this may depend on
the dimensionality of either y or ).

When we use mixture density networks (Section �.�.�) to estimate the
likelihood @5(y | )) based on simulated training data (), y)(=), we
can analytically compute marginal likelihoods as we are working with
Gaussians. We can thus easily ‘average away‘ certain electrophysiological
features and calculate how much the posterior uncertainty changes. The
distribution might for instance become much ‘broader‘ (uncertain) in the
neighborhood of the maximum-a-posterior estimate. Consequently, we
can quickly figure out which electrophysiological feature are important
in constraining our estimates for the HH model parameters, without
having to train a new neural density network from scratch. This has been
the focus of Beck et al. [��], of which we will discuss its application to
this data set in Chapter �.

As we are equipped with full distributions over HH model parameters,
it is possible to construct posterior paths. These paths serve as high
probability subspaces in high-dimensional HH model parameter space,
revealing multiple parameter combinations that can produce simulations
recovering the experimental observation. In contrast, moving orthogo-
nally to said paths, quickly reveals model parameter combinations for
which the produced simulation fails to recover the observation. Details
on how to construct such paths can found in Gonçalves et al. [��]. The
degeneracy of biophysical models has been extensively studied in the
pyloric rhythm of the crustacean stomatogastric ganglion for instance [��,
��, ��], but so-called compensation mechanisms are well supported in
biological systems too [��–��]. Altering the expression of one channel can
for instance induce changes in the expression of others to keep certain
function and cell viability [��]. Compensation mechanisms can also be
relevant in the presence of energy constraints [��]. Full distributions
obtained with NPE provide for a natural way to study these mechanisms:
one needs simply to follow the path of highly likely parameter combina-
tions. Implied by high relevance in biology, further applications of this
methodology on experimental data is highly warranted.

�.� Discussion

To conclude, when we infer uncertainties about HH model parameters
conditioned on electrophysiological measurements, we

I sample )(=) ⇠ ?()), where n ⇡ 15 million,
I simulate HH models to obtain corresponding y(=),
I keep well-defined simulations, deleting ones with undefined sum-

marizing statistics, reducing = to about half or ⇡ 7 million,
I train a masked autoregressive flow )5 by minimizing objective

Equation �.�.

Our simulation-based trained flow )5⇤ can then be utilized to estimate
uncertainties about HH model parameters, given a true observation
y(>), as discussed in Section �.�.�. The only thing we need to do is
sample enough� random vectors from our base distribution u(8) ⇠ ?D and
feedforward through the trained flow, conditioned on the observation to
obtain )8 = )5⇤(u(=); y(>)). Finally, we can evaluate the probability of the
outputted HH model parameter combinations )(=) by plugging it into
Equation �.�.
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Unfortunately, applying simulation-based inference or neural posterior es-
timation on real-world data is not as straightforward as it seems. Whereas
flexible neural density estimators such as masked autoregressive flows
can be applied successfully on synthetic data considered as ‘true‘ obser-
vations [��, ��], they might fail considerably on real-word observations.
Despite their flexibility, the simulation-based trained flow easily fails to
generalize to experimental data, rendering unreliable posterior estimates.
This will be the topic of Chapter �.
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The Hodgkin-Huxley-based model discussed in Chapter � is capable
of accurately capturing firing patterns observed from experiments with
Patch-seq, both qualitatively and quantitatively. In fact, multiple pa-
rameter combinations can oftentimes produce model outputs that are
satisfyingly close to experimental recordings according to the electro-
physiologist’s judgment.

In Chapter �, we discussed neural posterior estimation, a machine-
learning based framework, to obtain full probability measures over the
entire biological plausible model parameter space. With it, we understand
which model parameter combinations are likely, and which less likely, to
fit observed electrophysiology.

As we will see next in Section �.�, however, obtaining reliable probability
distributions for experimental data including Patch-seq can be cumber-
some, which we attribute to a small but consistent mismatch between
the model and the data.

Section �.� discusses a working strategy to overcome problems with
neural posterior estimation due to mismatches between model and data.
We introduce noise to the summarizing statistics of simulations used
to train the deep neural density estimator and show how the obtained
posteriors, the full probability distributions of model parameters given
observed experimental features, give much more reliable estimates.

This chapter discusses the work of Bernaerts et al. [��], one of the main
papers included in this thesis, and the reader is referred to this work for
a more extensive discussion.

�.� Neural Posterior Estimation

�.�.� Setting

In Section �.�.�, we have seen that the HH model is capable of producing
firing rates that capture qualitatively what is experimentally observed,
as well as matching quantitatively derived electrophysiological features
including the firing rate, AP width, and so on. We would like to move
a step further. We would want to know how probable each possible
parameter combination� is in producing a Hodgkin-Huxley-based model
simulation sufficiently close the experimental observation of interest,
qualitatively and quantitatively.

In Chapter � we therefore introduced Neural Posterior Estimation (NPE),
a framework that naturally lends itself to this setting. To recapitulate,
given experimentally observed electrophysiology vector H(>) we are
interested in obtaining a reliable posterior distribution @5⇤() | y(>)). That
is, we have trained a normalizing flow @ with parameters 5 based on
a batch of HH model simulations, and hope the output to be a reliable
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distribution when the input is, in this case, an experimental observation
(see Section �.�.�).

�.�.� Problem

Posterior estimates derived with neural posterior estimation often lead
to unreliable distributions. Unfortunately, when we feed an experimental
observation shown here in Figure �.� a, our trained neural density
estimator — our trained masked autoregressive flow — can produce
unreliable model parameter distributions. Here, we select three model
parameter combinations with highest probability out of 10 000 randomly
sampled model parameter combinations )(=) ⇠ @5⇤() | y(>)), and plot
their HH model simulations in the lower left corner of Figure �.� b. Clearly,
simulations do not qualitatively match the experimental observation,
and as we can deduce from Figure �.� a, especially features including the
ISI adapt and �rd AHP are not fitted well.

Figure �.�: Neural posterior estimation
without noise applied to an experimen-
tal observation leads to unreliable pos-
terior estimates. (a) We calculate the
difference of every electrophysiological
feature value derived from the exper-
imental observation shown in the in-
set, with the ones derived from the HH
model simulation produced with the
maximum-a-posteriori estimate. Differ-
ences are shown after Z-scoring. 0 would
denote a perfect fit for that electrophysio-
logical feature. (b) One-dimensional (di-
agonal) and two-dimensional marginals
(upper diagonal) of @5⇤ () | y(>)) trained
with NPE (� out of �� model parame-
ters are shown). Three HH model sim-
ulations are shown corresponding to
three model parameter combinations
with highest probability out of 10 000
samples.

�.�.� Diagnostics

When we feedforward a HH model simulation’s electrophysiological
feature vector y(8), the trained neural density estimator tends to produce
much more reliable posterior estimates @5⇤() | y(8)). In Figure �.� a we
show a HH model simulation, considered here as the ‘experimental
observation‘. In this setting, the three model parameter combinations
with highest probability out of 10 000 random samples from the posterior
estimate )(=) ⇠ @5⇤() | y(8)) produce HH model simulations that are
qualitatively very similar to the ‘observation‘ (Figure �.� b, orange).
Moreover, the maximum-a-posteriori (MAP) estimate generates a HH
model simulation that fits all electrophysiological features very well
(Figure �.�) a), except for the ISI CV (Section �.�.� a). The difficulty in
fitting ISI CV could be due to a lack of simulations that approach the exact
value for the ISI CV of this randomly picked simulation considered here
as the ‘observation‘. Alternatively, the neural network might appreciate
some electrophysiological features more than others to predict HH model
parameters and consequently ‘weighs‘ them differently.

The fact that NPE seems to work on simulated true data but not experimen-
tal data begs the question: how different are experimental observations
generally from HH model simulations? Do they occupy a very different
electrophysiological feature subspace than simulations do? Put differ-
ently, is there a systematic mismatch between the data and the model
(Figure �.� a)?

To show a potential data-model mismatch, we select a simulation from
the synthetic data set of �� million simulations and rank ordered all other
simulations by their distance in the feature space to this reference (Figure
�.�, top). While few simulations are very close to the reference, most
lie somewhat farther away, but still produce qualitatively very similar
outcomes (Figure �.� b, orange). In contrast, if we choose an experimental
firing pattern as reference, the distance to the closest simulation in the
electrophysiological feature space is larger than between any simulation
from the synthetic data set (Figure �.�b, blue). Consequently, simulated
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traces are much more dissimilar to the experimental observations than
to the simulated references.

Figure �.�: Neural posterior estimation, diagnostics. (Top) Sketch illustrating a data-model mismatch: in electrophysiological feature
space, simulations do not cover the space of experimental observations. (Bottom) Simulations are further away from experimental
observations (blue) than from other simulations (orange). Qualitatively, simulations increasingly further away from an experimental
observation look more dissimilar than from another simulation. Numbers �,� and � refer to the �nd, ���st and ���st closest simulations
respectively.

�.� Neural Posterior Estimation with Noise

�.�.� Out-of-distribution Test Data.

The problem we are faced with is a long-standing and common issue
in machine learning. Our trained neural network — our trained masked
autoregressive flow @5⇤ — fails to generalize to test data, in this case
experimentally observed neuronal firing patterns, as it has only seen
training data made up of HH model simulations. Our test data is out
of distribution, that is, it is not adequately captured by the distribution
covering training data with which the neural density estimator was
trained. Remember that we can only train the neural density estimator
with simulations for which there exist one-to-one (up to some current
noise, see Section �.�.� and Equation �.�) tuples (), y)(=) and that we
are not equipped with model parameters for experimental observations
y(>).

Figure �.�: NPE without noise applied
to HH model simulations leads to re-
liable posterior estimates. (a,b) Analo-
gous to Figure �.� but when a HH model
simulation is feedforwarded through the
trained neural density estimator @5⇤ () |
y(8)), where y(8) is derived from a HH
model simulation.

�.�.� Adding Noise.

Introducing noise to the summary statistics of training data benefices the
generalizing capabilities of neural density estimators including normaliz-
ing flows. As a (training) data manipulation strategy, one could shift the
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subspace occupied by simulations by adding small amounts of isotropic
Gaussian noise (Figure �.�, top, red arrows).

Intuitively, we can see how this can be helpful: even though the coordi-
nates of our training data samples (our HH model simulations) will be
shifted randomly in electrophysiological feature space, many simulations
will get closer to the experimental observation manifold, by chance. Math-
ematically, instead of training our neural density network @5 with tuples
(), y)(=) (Section �.�.�), we train it with (), y+ 9)(=), where 9(=) ⇠ N(0,⌃)
and ⌃ is a diagonal matrix occupied with standard deviations of the
training data for each electrophysiological feature (Table �.�). Our neural
density network is therefore expected to see more data close to the ex-
perimental manifold, closing the model-data gap and resolving to some
extent the distributional shift, and is therefore expected to generalize
better. We term this strategy NPE-N for neural posterior estimation with
noise.

The skeptical reader might note that this changes the model itself signifi-
cantly. It might seem that by post-hoc introducing noise to the summary
statistics of HH model simulations, we change the deterministic (up to
some current noise described in Equation �.�) mapping from model pa-
rameters to electrophysiological features, making it much more stochastic.
To put this in perspective, we need to remember our original goal, which
is for the trained neural density estimator to give posterior estimates
@5⇤() | y(>)) that are reliable. More specifically, we want samples from
that distribution )(=) ⇠ @5⇤() | y(>)) to produce HH model simulations
for which the summarizing statistics y(=) fit y(>) (without the post-hoc
introduction of noise), and for which the firing pattern qualitatively
matches the observed electrophysiology in the cell with Patch-seq. We
thus only manipulate simulated training data, as an attempt to obtain
more reliable posterior estimates when we feedforward an experimental
observation. We then wish to get posterior samples that produce satisfy-
ing firing patterns, those observed with Patch-seq, and using the model
explicitly described in Equation �.�.

So let us return to our experimental observation shown in Figure �.�.
When we feedforward y(>) through the neural density estimator that was
trained with the manipulated training data set, we obtain a different
posterior estimate @5⇤() | y(>)). We observe that �-dimensional marginal
distributions for � and A(( are broader and shifted (in the mode), respec-
tively (Figure �.� b). This posterior estimate is also much more reliable,
as HH model simulations produced by samples ) ⇠ @5⇤() | y(>)) with
high posterior weight qualitatively match the firing pattern and sum-
marizing statistics y(>) of the neuron much better (Figure �.� b and a,
respectively).

Figure �.�: Neural posterior estimation
with noise, applied to an experimen-
tal observation, leads to reliable poste-
rior estimates. (a) Analogous to Figure
�.� a, but with additional differences to
electrophysiological features values de-
rived with the HH model simulation
set up with maximum-a-posteriori esti-
mate from using NPE with noise (NPE-N).
(b) One-dimensional (diagonal) and two-
dimensional marginals (upper diagonal)
of @5⇤ () | y(>)) trained with NPE-N.
Three HH model simulations are shown
corresponding to three model parameter
combinations with highest probability
out of 10 000 samples.

�.�.� Examples

To further showcase the strength of our adapted training strategy, we
select cells representing Pvalb, Sst, Vip and Lamp� interneuron families
besides one belonging to the excitatory Pyramidal class in Figure �.�,
Figure �.�, Figure �.�, Figure �.� and Figure �.� respectively.
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In some cases, both NPE and NPE-N produce reliable model parameter
distributions as samples produce firing patterns (Figure �.� b,c and Figure
�.� b,c, orange for NPE and yellowgreen for NPE-N) qualitatively similar
to the experimental observation (Figure �.� a and Figure �.� a, blue).
Yet, the maximum-a-posteriori estimate of posterior distribution gener-
ated with NPE-N produces a HH model simulation with summarizing
statistics much closer to the experimental observation than with NPE
(Figure �.� a and Figure �.� a). Especially features including the AHP,
AP amplitude and AP threshold (see Table �.�) are fitted much better with
NPE-N.

For a more complex firing pattern observed in the Vip Serpinf�_� interneu-
ronal family and showcased in Figure �.� a (blue), however, the difference
between NPE and NPE-N is more obvious: HH model simulations
generated with samples from NPE-N posterior estimates (Figure �.� c,
yellowgreen) capture much more electrophysiological complexity such
as changes in AP frequency during the current injection time window as
well as action potential shapes of the �st and �rd generated AP (Figure
�.� a), in comparison to HH model simulations generated with samples
from NPE posterior estimates (Figure �.� b, orange). NPE-N seemingly
produces more conservative posterior estimates, as both �-dimensional
and �-dimensional marginals are generally broader in comparison to
NPE (Figure �.� c,b respectively). A very similar story can be written
for the Lamp� Egln�_� interneuron showcased in Figure �.�. In this case,
samples from the NPE posterior estimate fail to produce simulations
with APs after a certain point in time (Figure �.� b), even though they
are experimentally observed.

For the Pyramidal cell showcased in Figure �.�, it is less clear whether
NPE-N outperforms NPE. Most electrophysiological features derived
from the HH model simulation generated with the MAP estimate are
fitted as well as or better with NPE-N, except the AP amplitude and ISI
adapt (Figure �.� a). Arguably, we would want the posterior estimate to
generate samples that produce simulations with an initial small burst
of APs, followed by steady firing of APs as is experimentally observed.
Samples from the NPE-N posterior estimate capture that transition
qualitatively better, but produce overall too many APs, whereas samples
from the NPE posterior estimate produce simulations with no clear
transition and too few APs (Figure �.� b,c).

Finally, we show an Sst Th_� interneuron in Figure �.�� as both NPE
and NPE-N here fail to provide for posterior distributions from which
samples can generate HH model simulations that are satisfyingly similar
to the experimental observation. HH model simulations from both NPE
and NPE-N posterior estimates fail to stop firing APs at the appropriate
point in time, and fail to decrease the amplitude of every subsequently
generated AP appropriately. We therefore stumble upon a possible
limitation of the model itself described by Equation �.� in Equation �.�.
It could be that we need a more flexible model, either in the form of more
compartments or more model parameters (ion channels) to explain the
observed electrophysiology in this neuron.
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Figure �.�: NPE vs NPE-N, illustration �: fast-spiking Pvalb Calb�_� interneuron. (a) Analogous to Figure �.� a. (b) Analogous to
Figure �.� b, but � model parameters are shown. (c) Analogous to Figure �.� b, but � model parameters are shown.

Figure �.�: NPE vs NPE-N, illustration �: Sst Crhr�_� interneuron. (a,b,c) Analogous to Figure �.�.

Figure �.�: NPE vs NPE-N, illustration �: Vip Serpinf�_� interneuron. (a,b,c) Analogous to Figure �.�.
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Figure �.�: NPE vs NPE-N, illustration �: Lamp� Egln�_� interneuron. (a,b,c) Analogous to Figure �.�.

Figure �.�: NPE vs NPE-N, illustration �: L� CT Cpa� Pyramidal cell. (a,b,c) Analogous to Figure �.�.

Figure �.��: NPE vs NPE-N, illustration �: Sst Th_� interneuron. (a,b,c) Analogous to Figure �.�.
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�.�.� NPE-N applied to Patch-seq Data Set.

In Section �.�.� we discussed six specific cells representing different
subclasses in the whole data set of = = 955 MoP neurons. In this section,
we seek to obtain a picture that describes the general performance of
NPE-N on this data set.

In Figure �.�� a, we show a t-SNE embedding of = = 955 MoP neurons.
Interneuronal Pvalb (red), Sst (yellowish), Vip (purple) and Lamp� (pink)
cells as well as excitatory Pyramidal Pyr cells are well separated. We can
confirm the cell’s identity by overlaying marker gene expressions (Figure
�.�� b).

As we are equipped with density estimator @5⇤ () | y) trained with
adapted training schedule discussed with NPE-N in Section �.�.�, we can
feed every experimental observation y(>) and obtain = = 955 posterior
estimates @5⇤() | y(>)). We can obtain the MAP parameter estimate for
each posterior estimate and overlay the same embedding with its param-
eter values for each cell (Figure �.�� d. We can for instance immediately
deduce that high A(( parameter values are needed to fit the firing patterns
of Pyr cells (Figure �.�� d). Indeed, as discussed previously, A(( is in fact
introduced to fit the larger AP widths observed in Pyr cells (Figure �.�� e,f).
Potassium conductance 6 3 on the other hand proves important to fit
firing patterns of fast-spiking Pvalb cells, which need rapid repolarization
of the membrane potential after action potential generation in order to
sustain high firing rates (Figure �.�� e,f). Embeddings overlayed with
summarizing statistics derived from HH model simulations generated
with MAP estimates, shown in Figure �.�� e, are very similar to embed-
dings overlayed with summarizing statistics derived from experimental
observations, shown in Figure �.�� f. This further demonstrates the ap-
plicability of using NPE-N to real-world observations such as obtained
with Patch-seq.

NPE-N can be used to gain insight about uncertainties about MAP
estimates. If we are only interested in unique parameter estimates that
can generate HH model simulations each satisfyingly matching their
respective y(>), we can equally as well minimize a mean-squared-error
in electrophysiological feature space, as conducted in Section �.�.�.
This point estimate is obtained much faster because it does not involve
training a deep neural network. We are, however, interested in probability
distributions over the full parameter space, revealing not only the most
likely model parameter combinations but the very unlikely as well.
Additionally, if we want to understand how certain NPE-N is about
its MAP estimate for each observation, we can calculate the posterior
entropy which is a measure for the broadness of the posterior. Broader
posteriors would indicate higher uncertainty about the MAP estimate in
order to reproduce the firing rate experimentally observed. Vice versa,
narrower posteriors denote lower uncertainty about the MAP estimate.
Posterior entropy can be calculated as P 

:=1 � log @5⇤()(:) | y(>)), where
we sample )(:) ⇠ @5⇤() | y(>)) and choose  = 1000. We thus obtain
= = 955 uncertainty estimates and overlay those on the same embedding,
as shown in Figure �.�� c. Vip neurons, which are relatively sparsely
sampled in the data set, show higher posterior uncertainty. In contrast,
Pvalb neurons show lowest uncertainty indicating that their posteriors
are best constrained. One reason for this may be that Pvalb neurons fire
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APs more stereotypically, whereas Vip neurons show greater variability
in their firing patterns [��, ��]

[��]: Scala et al. (����), ‘Phenotypic varia-
tion of transcriptomic cell types in mouse
motor cortex’
[��]: Apicella et al. (����), ‘VIP-
Expressing GABAergic Neurons: Disin-
hibitory vs. Inhibitory Motif and Its Role
in Communication Across Neocortical
Areas’

, that may require greater flexibility in the
model to reproduce all summarizing statistics.

Figure �.��: NPE-N applied to the electrophysiology of = = 955 neurons obtained with Patch-seq. Two-dimensional embedding
reveals difference in HH model parameters between neural families. (a) T-sne embedding of = = 955 Mop neurons based on
transcriptomic data. Colors denote transcriptomic types again (see for instance Figure �.�). Cells in the middle of the embedding tend to
show lower quality transcriptomic data and therefore group together. (b) Marker genes expression levels overlayed and interpolated on
embedding confirm known subclasses (dark purple: low expression, yellow: high). (c) Uncertainty of MAP parameters for each cell
overlayed on the embedding. (d) Selection of MAP parameters, overlayed on embedding. (e) Selection of summary statistics derived
from simulations corresponding to MAP estimates, overlayed on embedding. (f) Selection of summary statistics describing observed
electrophysiology, overlayed on embedding.

�.�.� Discussion

The simulation gap manifests itself as what in the machine learning
community is more well-known as the ‘distribution shift‘. Here, training
and test data come from different distributions leading to poor general-
izing capability of for instance convolutional neural networks in image
classification and graph neural networks [��–��]

[��]: Taori et al. (����), ‘Measuring Ro-
bustness to Natural Distribution Shifts
in Image Classification’
[��]: Wu et al. (����), ‘Handling Distri-
bution Shifts on Graphs: An Invariance
Perspective’
[��]: Quiñonero-Candela et al. (����),
Dataset Shift in Machine Learning

. In this work, the shift is
caused by the gap between summary statistic values derived from model
simulations (training data) with respect to Patch-seq experiments (test
data). As there is ongoing research to alleviate problems ascribed to this
‘shift‘, we remain optimistic that advances in neural network architectures
will speed up their generalizing capability, perhaps making training data
manipulations such as the addition of noise, eventually redundant.
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[��]: Ward et al. (����), ‘Robust Neu-
ral Posterior Estimation and Statistical
Model Criticism’
[��]: Cannon et al. (����), Investigating
the Impact of Model Misspecification in Neu-
ral Simulation-based Inference
[��]: Schmitt et al. (����), Detecting Model
Misspecification in Amortized Bayesian In-
ference with Neural Networks
[���]: Frazier et al. (����), Synthetic Likeli-
hood in Misspecified Models: Consequences
and Corrections
[���]: Frazier et al. (����), ‘Robust Ap-
proximate Bayesian Inference With Syn-
thetic Likelihood’
[��]: Hay et al. (����), ‘Models of Neocor-
tical Layer �b Pyramidal Cells Capturing
a Wide Range of Dendritic and Periso-
matic Active Properties.’
[���]: Gouwens et al. (����), ‘System-
atic generation of biophysically detailed
models for diverse cortical neuron types’
[���]: Nandi et al. (����), ‘Single-neuron
models linking electrophysiology, mor-
phology, and transcriptomics across cor-
tical cell types’

As a couple of ongoing strategies, in parallel work [��–���], robust neural
posterior estimation[��] takes the opposite approach to the strategy
outlined in Section �.�.� and denoises the measured data towards the
model using Monte-Carlo sampling. On the other hand, robust synthetic
likelihood approaches [���] that estimate likelihoods rather than posteri-
ors, work similarly to our approach. Which strategy works best for which
models and circumstances remains to be evaluated, but these strategies
will allow to apply SBI in cases where models provide relatively coarse,
but useful approximations of the true phenomena. Alternatively, one
could make the model more realistic. In our case, some of the model
mismatch is likely also caused by the use of single-compartment models
in contrast to other studies, which use HH models with two or more com-
partments [��, ���, ���]. Adding more compartments and consequently
more parameters to the model, however, increases the time needed to
run simulations and the amount of simulated data needed to train neural
density estimators, and for which especially the former can turn out to
be prohibitive on most computing infrastructure available today.

Equipped, not with mere point estimates but distributions to our disposal,
we know which model parameter combinations are likely (and less likely)
to explain observed electrophysiology, a clear Bayesian advantage over
‘evolutionary fitting algorithms’ as for instance employed in related work
by Gouwens et al. [���]. Indeed, as the authors point out themselves,
multiple parameter combinations can explain same electrophysiology
which genetic algorithms may or may not capture. Interestingly, the
authors also experienced issues fitting AP widths of all cells in their data
set. Interestingly, where we opted to introduce parameter A(( directly
influencing the gating mechanics in one ion channel, they opted for a
different combination of ion channels tailored to the exact width of the
AP fired by the cell.

In Section �.�, we discussed that when we obtain the likelihood with
mixture density networks, rather than the posterior with a normalizing
flow, we can analytically marginalize out electrophysiological features,
and thus obtain estimates with a reduced set of summarizing statistics,
quickly. For some electrophysiological recordings, we can show that
posterior estimates can be obtained with NLE, with a similar data
manipulation strategy, close enough to the ones obtained with NPE-
N[��]. We can thus employ the methodology introduced in Beck et al.
[��] to investigate the relative importance of electrophysiological features
in constraining the posterior condition on true electrophysiological data.
On average, the Rest+< mean turns out the single most important feature,
followed by the +< mean, AP amplitude, the AP threshold and +< std [��]
(Table �.�).

We will expand on fitted parameter values across cell classes and cell
types together with their relation to gene expression levels in Chapter
�.
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The field of neuroscience is truly of interdisciplinary nature. Great care
in experimental design leads to new experimental observations that can
update biophysical models, both on the equation level, as well as on
the parameter level. Updated biophysical models can give rise to new
biological insights, new hypotheses to be tested, and thus further guide
experimental design or even entire new protocols (Chapter �).

We have seen that Patch-seq paved the way for neuroscientists to unravel
the relationship between genetic and phenotypic identity in the same set
of neurons, whereas in earlier days, most experiments done on a set of
cells, led to unidimensional information, be it on a genetic or phenotypical
level. Data scientists, therefore, now have the responsibility to extract as
much knowledge from these low-throughput but multidimensional and
highly informative techniques.

We discussed sparse reduced-rank regression in Chapter �, a linear
statistical tool that is easy to understand and that comes with great
biological interpretability: it selects genes best capable of predicting elec-
trophysiological variability, and produces interpretable two-dimensional
embeddings. In Chapter �, we discussed its nonlinear natural extension
with sparse bottleneck neural networks, a framework that outperforms its
linear counterpart on the prediction task, and produces clearer separation
between transcriptomic types in a two-dimensional embedding. Indeed,
the path from ion channels coded for by highly specific genes to complex
firing patterns is of a very nonlinear nature as implied by the HH model
discussed in Chapter �, which suggests the use of nonlinear computing
nodes in prediction tasks.

In Chapter � we introduced the field of simulation-based inference and
in Chapter �, we successfully applied NPE-N to HH models explaining
electrophysiological behavior obtained with Patch-seq. Beyond simply
fitting the HH model to an experimental observation with a point estimate
(one combination of model parameter values), we know how likely every
possible model parameter combination is in doing so.

In Chapter �, we attempt to increase our knowledge of the relationship
between genotypic and phenotypic identity in neurons. We would be
keen on understanding the path from genes expressed in the neuron, to
protein function, to behavioral electrophysiology in the form of firing
patterns, as best as we can.

�.� A Semi-deterministic Bridge from Genotype
to Phenotype

In order to build a framework that connects transcriptome with HH
model parameters and electrophysiology, we will first recollect what we
have learned in previous Chapters, and outline what ingredients we can
work with. We will then discuss a framework, based on statistical and
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�: Limited in the space defined by our
biologically motivated prior.

�: Up to limited current noise.

deterministic tools to do so. Important to note is that we attempt here to
learn a mapping from gene expression levels in the neuron, which we
obtained with Patch-seq experiments, to HH model parameters, which we
derived with NPE-N and that exist in biophysical simulation space, back
to electrophysiology, also obtained with Patch-seq experiments. Finally,
we discuss a couple of insights that we can derive from applying this
framework on the data set of 955 MoP neurons.

�.�.� Setting

Transcriptomic reads or gene expression levels of all = = 955 MoP neurons
as well as their firing patterns and derived electrophysiological features
are obtained with Patch-seq, as discussed in Chapter � (Automated
Extraction of Electrophysiological Features) on page �. Moreover, in
Chapter � (Neural Posterior Estimation with Noise) on page ��, we learned
how to obtain reliable HH model parameter posterior estimates for all
= = 955 cells, that is, for each cell, we learned not just MAP parameter
estimates, but we learned the probability of each possible parameter
combination� in reproducing experimentally observed electrophysiology.
Let us focus on = = 955 MAP parameter estimates for now. In principle,
then, we are equipped with:

I Transcriptomic reads in matrix X of size =⇥?, containing expression
levels of ? = 1000 genes for each of the = = 955 cells,

I Electrophysiology matrix Y of size = ⇥ @, containing @ = 23 electro-
physiological feature values for the same = = 955 cells, and

I HH model parameter matrix Θ of size = ⇥ <, containing < = 13
MAP parameter values for the same = = 955 cells.

�.�.� Approach

One part of the mapping, that is from HH model parameters in the
form of MAP parameters estimates collected in Θ, to electrophysiology
Y is already in place. Indeed, the HH model formulated in Section �.�.�
provides for a deterministic� mapping, a set of differential equations
informing the biophysical modeler, at every time step, how the membrane
voltage evolves V< as a function of time C, and additional variables
including the rates with which ion channels open � and close �, evolve
with the membrane voltage V<(C). This all depends highly on the< = 13
HH model parameter with which the HH model is set up, before we
simulate it.

So what about the relationship between gene expression levels collected
in X and HH model parameters in Θ? There is only very limited literature
available on modeling transcription and translation and, as far as we
know, none that describes the full process with dynamical systems
from gene expressions to ion channel abundance as experimentally
obtained here with Patch-seq. That is not to say that biophysical models
of translation, that is the production of proteins from mRNA do not
exist. In Adhikari et al. [���] for instance, researchers apply biophysical
models composed of coupled differential equations to capture both
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transcription and translation. Another good overview of both statistical
and deterministic approaches can be found in the work of Zur and Tuller
[���].

Intuitively, we can come up with a couple of arguments, however, as
we made in Chapter � (Sparse Reduced-Rank Regression) on page ��
where we deployed sRRR in order to predict electrophysiology from
transcriptome. Similarly, we do not expect all ? = 1000 genes to be
relevant in predicting ion channel abundance in the cell membrane, or
its capacity ⇠< to hold charge concentration differences across the lipid
bilayer. In fact, a linear combination of few selected genes might be
capable to predict sufficient variability in HH model parameter estimates
in our data set.

We thus deploy sRRR, a simple and intuitive statistical tool, without
biophysical determinism, to establish a black-box relationship between
transcriptome (experiment) and HH model parameters (simulation).

Cross-validated performance (see Section �.�.�) of an A = 2 sRRR model is
visualized in Figure �.�l a: validation set prediction scores '2

E0;
vary with

the amount of genes that are selected or the strength of group lasso penalty.
We pick �� genes (Figure �.� a, vertical dashed line) and report individual
feature prediction scores in Figure �.� b. To ease the interpretability, we
focus on ion channel and known marker genes only (? = 427) and train
linear sRRR and nonlinear sBNN models with two-dimensional latent
space. Model parameters can be predicted with reasonable accuracy
(sRRR: '2 = .17 ± 0.03, mean ± SD across cross-validation folds, for
a model selecting approximately �� genes) and the nonlinear model
performed just as well as the linear one (sBNN: '2 = 0.17 ± 0.03), so
we analyz only the linear model further. In addition, an sRRR model
with A = 13, built by adding �� dimensions to the latent space did not
improve '2

E0;
(Figure �.� a) meaning that two linear combinations contain

enough information to predict HH model parameter variability in these
neurons.

Figure �.�: Prediction of MAP parame-
ter estimates from gene expression with
sRRR. (a) Cross-validation performance
for rank-� and full-rank sRRR models
with elastic net penalty. The dashed ver-
tical line shows the performance with ��
genes. (b) Rank-� sRRR model predictive
performance for each model parameter,
using the entire data set.

Our sRRR model predicts some parameters such as the conductance of
the voltage dependent or delayed rectifying potassium current (6

 +31
and 6

 3
) or the membrane capacitance ⇠ particularly well. Other model

parameters are less well predicted, such as the leak current ⇢;40: or the
muscarinic potassium channel 6

"
. Interestingly, the A(( parameter is

predicted best, which is our custom parameter again that we introduced
to fit wider AP widths in Pyramidal cells, but also proved useful to
overcome some level of data-model mismatch.

The reader is referred to Bernaerts et al. [��] for an in-depth description of
the architecture. It can be very insightful to check this GitHub repository
too for an analysis of the code. In Section �.�.�, we will continue with
embeddings and visualization of the results.

�.�.� Embeddings

The reduced rank of A = 2 makes it convenient to produce latent em-
beddings, that can be overlayed with both gene expression levels as
well as predicted model parameter values, as discussed in Chapter �
and visualized here in Figure �.�. The two-dimensional latent space

https://github.com/berenslab/hh_sbi


�� � Predict Fitted Model Parameters from Genes

of the sRRR model shows two principal directions of variation, where
one separates pyramidal cells from interneurons and the other mostly
different interneuron subclasses. In addition, the sRRR model identifies
mechanistically plausible relationships: for example, the potassium chan-
nel conductances 6

 E31 and 6
 3

are both high in Pvalb neurons placed in
the lower left corner, predicted by the expression of various potassium
channel genes like Kcnc�, that constitutes a subunit of the Kv�.� voltage-
gated potassium channel, and Kcnab� respectively. Likewise, the calcium
channel conductance 6

!
is predicted by high expression of Cacna�d� that

directly encodes for the alpha-� and delta subunits in the L-Type calcium
channel. Our sRRR model selects Cacna�d� as well, which is a paralog
gene with opposite expression to Cacna�d� (Figure �.�, left). In addition,
classical marker genes like Vip act as surrogate cell subclass markers and
contribute to the prediction.

Figure �.�: Prediction of MAP parameter estimates from gene expression with sRRR. Analogous to Figure �.�. (Middle) rank-� sRRR
model latent space visualization. All ��� MoP neurons are shown. (Left) Selected ion channel and marker gene overlays. (Right) Predicted
model parameter overlays.

�.�.� Prediction

The approach outlined in Section �.�.� can be used to accurately predict
HH models for neurons for which we only measured gene expression
but not electrophysiology. One can use the trained sRRR model to tell the
electrophysiologist how the neuron’s membrane voltage will respond to
current injection before the Patch-clamp experiment has been conducted,
provided that information of gene expression levels in that neuron is
available. The only thing one needs to do, is feed the vector of gene
expression levels x(>) into the sRRR model. The output will be a model
parameter combination ), which we can set up the HH model with, and
thus simulate. We can now visualize the likely response of the membrane
voltage to current injection. We can also derive summarizing statistics to
quantify the neuron’s electrophysiological characteristics.

We can compare sRRR estimates representative of neuronal families
and cell types to MAP estimates derived with posterior estimates from
NPE-N. We compute the average MAP estimate over cells belonging to
a specific family (Figure �.� a, left) and then compute the average over
cells belonging to a specific cell type (Figure �.� a, right). Analogously,
we perform the same computations for sRRR estimates (Figure �.� b).
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[��]: Scala et al. (����), ‘Phenotypic varia-
tion of transcriptomic cell types in mouse
motor cortex’

Especially on the family level, the sRRR model predictions capture
essential variation in the model parameters (Figure �.� a vs b, left). For
many cell types, we can also observe similar model parameter variations,
but not every cell type is represented as well by the sRRR model (Figure
�.� a vs b, right). Much of the finer structure shown by average MAP
estimates in Sst interneuron cell types for instance seems to be lacking in
the equivalent sRRR representation. This could be due, again, to a richer
variety in firing patterns observed in Sst interneurons [��]. When we
simulate the HH model with the family-average sRRR estimate, however,
and compare it to the HH model simulation set up with the family-
average MAP estimate, a very similar picture emerges Figure �.�. All
neuronal families are qualitatively represented by the sRRR model.

Figure �.�: MAP parameter estimates and sRRR predictions for each subclass and cell type. (a) MAP parameter estimates averaged over
cells belonging to a family and belonging to a transcriptomic cell type (left and right respectively). Estimates are Z-scored. (b) Analogous
to (a), but with rank-� sRRR predicted model parameter values.

�.� Discussion

Derived conductance values in this work largely agree with those found
in literature, with interesting exceptions. Pospischil et al. [��] report for
instance an average maximum sodium conductance of 6

#0
+ = 50 <(

2<
2

for fast-spiking interneurons much in line with the MAP average of
6
#0

+ = 49 <(

2<
2 we found for Pvalb fast-spiking cells. In contrast they used

on average 6
 3

= 5.1 and 6
"

= 0.07 in comparison to our 6
 3

= 20.8 and
6
"

= 1.8 to fit fast-spiking neurons. Differences can be attributed to a
multitude of factors including the fact that we try to replicate mice instead
of rat, ferret, cat or guinea-pig electrophysiological measurements, that
our model introduces more ion channels and parameters in comparison
to theirs providing for potential compensation mechanisms, and that we
only replicate membrane voltage responses to a relatively high 300?�
current injection. Hay et al. [��] report 6

B , E3.1 = 693 <(

2<
2 , 6

B ,#0C
=

2040 <(

2<
2 in the soma and 6

0 , E3.1 = 0.13 <(

2<
2 , 6

0 ,#0C
= 10.7 <(

2<
2 in the
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[��]: Pospischil et al. (����), ‘Minimal
Hodgkin-Huxley type models for dif-
ferent classes of cortical and thalamic
neurons.’
[��]: Hay et al. (����), ‘Models of Neocor-
tical Layer �b Pyramidal Cells Capturing
a Wide Range of Dendritic and Periso-
matic Active Properties.’
[���]: Herrera et al. (����), ‘A Minimal
Biophysical Model of Neocortical Pyra-
midal Cells: Implications for Frontal Cor-
tex Microcircuitry and Field Potential
Generation’
[���]: Almog et al. (����), ‘Is realistic neu-
ronal modeling realistic?’
[���]: Brette (����), ‘What Is the Most
Realistic Single-Compartment Model of
Spike Initiation?’
[���]: Leterrier (����), ‘The Axon Initial
Segment: An Updated Viewpoint’

apical dendrite to fit their neocortical layer �b neuron whereas we needed
on average 6

 E3.1 = 33 <(

2<
2 and 6

#0C
= 119 <(

2<
2 in our �-compartment

model to fit Pyramidal cells. Indeed, whereas their multi-compartment
model allows for a larger variety in conductances across compartments,
it is possible that our �-compartment model is forced to take an ‘average‘
stand.

Figure �.�: Subclass representation of
MAP estimates together with sRRR pre-
dictions. T-sne embedding as in Figure
�.�� a. Simulation on top is derived from
the subclass MAP estimate calculated as
in Figure �.� a, left. Simulation on the bot-
tom is derived from the subclass sRRR
prediction calculated as in as in Figure
�.� a, left.

Generally, care is warranted in interpreting fitted parameter values when
both the model and experimental setup differ (ours vs Pospischil et al.
[��] and Hay et al. [��]). Moreover, HH models show redundancy in their
parametrizations and compensation mechanisms, as discussed in Section
�.�.

Albeit the one-compartment’s demonstrated utility across a range of
animals and neuronal types [��], especially for Pyramidal cells there
is substantial benefit in using more than one compartment [��, ���,
���]. Furthermore, substantial evidence illustrates that AP generation
happens, not at the soma, but at another location called the axon initial
segment further suggesting the need for at least another compartment
when injecting current in (and recording from) the soma [���, ���]. The
more compartments and parameters, however, one includes in the model,
introducing more complexity in the underlying governing equations, the
longer it will usually take to simulate. Yet, we would need even more
simulations to represent the many more parameter combinations that are
possible in the higher-dimensional parameter setting, and can therefore
take a prohibitively long time. Finally, simulation-based inference has
proven its utility mostly for fairly low-dimensional parameter settings.
More research is needed to understand whether NPE and NPE-N can
prove useful for HH models with more compartments as well as (many)
more parameters.
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�: Again, up to limited current noise.

The MAP parameter estimates across and within neuronal families
corroborate the idea of a banana tree of cortical cell types. In line with
Scala et al. [��], we largely find stronger differences in MAP estimates
between families and smoother transitions across transcriptomic types
within a family.

We also find that different values are needed for the potassium conduc-
tance 6

 E3.1 to model Vip, Sst and Pvalb neurons and that the expression
of Kcnc� varies accordingly (Figure �.�). In a similar vein, Nandi et al.
[���] found different values for 6

 E3.1 and show that Kcnc� is differentially
expressed between these classes. Importantly, in their work, this example
is hand-selected for analysis, while in our analysis the evidence emerges
from the sRRR model: 6

 E3.1 is selected due to enforcing the group lasso
penalty as predictive of HH model parameter variability across the data
set.

Interestingly, the sBNN performs as well as its sRRR linear counterpart on
the model parameter prediction task. We speculate that the relationship
between gene expression levels and electrophysiological features in cells
is complex and highly nonlinear, suggested by the complex dynamics in
the governing equations of the HH model (Section �.�), and improved
predictive performance of the nonlinear sBNN model over the linear
sRRR model (Chapter �). Nonlinear computing nodes in deep neural
networks might mirror nonlinear dynamics in the HH model. Yet, the
relationship between gene expression levels and HH model parameters
could be of a more linear nature. Higher expression of genes including
Kcnc�, Cacna�d� and Kcnab� linearly correlate with ion channel abundance
in the cell membrane, mirrored in higher maximal conductance values
including 6

 E3.1 (Figure �.�) and 6
!
.

�.� Conclusion

We established a semi-deterministic bridge from the genotype of a neuron,
in the form of gene expression levels, to its phenotype, in the form of
electrophysiology. The bridge is semi-deterministic as it is constituted
by two parts. The first part is a non-deterministic sparse reduced-rank
regression model that can predict fitted HH model parameters based
on the cell’s gene expression levels. It does not merely predict, but can
select most meaningful genes for the task and produce intuitive two-
dimensional joint-view embeddings for subsequent exploratory analysis.
‘Joint-view‘ here refers not to the fact that we look at both transcriptome
and electrophysiology in the embedding (both experimental viewpoints),
but at transcriptome and HH model parameters (experimental and
simulation viewpoints). The second part involves the deterministic� HH
model. Predicted HH model parameters based on gene expression levels,
can be used to generate simulations that qualitatively (and quantitatively
through extracted features) match electrophysiology in Patch-seq. Note
that the simulation, as final output of this bridge, can serve as a proxy
for how the live cell will respond to current injection, purely based on
genetic data.
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Neurons form the foundational blocks of communication within our
nervous system. They serve as highly specialized biological cells, yet
their electrical firing patterns, interconnectivity design and intricate
morphology suggest a multimodal approach towards understanding
them.

As their nature can be appreciated from different angles it is perhaps
not surprising that they come in different ‘colors and shapes‘, making
a multimodal conforming taxonomy of neuronal cell types challenging.
Indeed, transcriptomically, a more wide-spread consensus has been
established for the classification of cells into transcriptomic distinct types.
Yet, neurons seem to vary more continuously across transcriptomic types
(yet also discretely across families) based on their electrophysiology and
morphology.

We therefore need statistical tools, that embrace the nervous system’s
multiple modalities, and that can help us understand the relationship
between them. Ideally, we would want to build a multimodal bridge so
that we may grasp how a neuron’s genetic setup leads to phenotypic
behavior.

Such a bridge would not merely help us decipher a multimodal con-
forming ‘cortical tree of neural types‘, it would help us have a clearer
understanding of how the expression of certain genes leads to the abun-
dance of specific proteins including ion channels in the cell’s membrane,
that we know are responsible for the various electrophysiological patterns
observed in neurons.

�.� Summary

In this thesis, we developed models towards the construction of a multi-
modal bridge. We capitalized on recent advances in machine learning to
improve both statistical and biophysical models that together can relate
the transcriptome with electrophysiology observed in neurons.

In Chapter �, we first established a pipeline that automatically extracts
expert-defined features that summarize the electrophysiological firing
patterns observed in a wide variety of neurons obtained with Patch-seq.
Importantly, the user can create ‘sanity check plots‘ to verify the pipeline’s
computation.

Equipped with computed values for a collection of electrophysiological
features and the expression levels of variable genes, we dived into sparse
reduced-rank regression introduced in Chapter �. Sparse reduced-rank
regression constitutes an intuitive framework to select specific genes,
linearly combine them and predict electrophysiological features, also
linearly. A group lasso penalty enforced on the linear ‘encoder‘ ensures
the selection of biologically relevant genes, and the linear encoder’s
‘low-rank‘ constraint ensures ‘joint-view‘ two-dimensional embeddings.
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We have seen how such visualizations are highly informative and can
help guide the exploratory analysis of the multimodal nature inherent to
our nervous system.

We then continued with sparse bottleneck neural networks introduced
in Chapter �, a natural nonlinear extension to sparse reduced-rank
regression, that capitalizes on the predictive power demonstrated by
deep neural networks in machine learning. Nonlinear computational
units in sparse bottleneck neural networks improve the prediction of
electrophysiological measurements. Additionally, two-dimensional joint-
view visualizations with sparse bottleneck neural networks capture
biological variability for which one needs more dimensions with sparse
reduced-rank regression. We have additionally seen the applicability
of this nonlinear framework beyond Patch-seq, and showed how we
can predict epitopic measurements from gene expressions and produce
meaningful paired-data visualizations for CITE-seq.

A case for biophysical models was made in Chapter �, where we specifi-
cally introduced the long-standing Hodgkin-Huxley model with its wide
applicability in neural science. We investigated simulations produced
with a ‘minimal‘ one-compartment Hodgkin-Huxley-based model and
showed its potential to fitting variable neuronal electrophysiology ob-
served with Patch-seq. In order for us to know which model parameters
are likely and which less likely — that is, consistent with data, and
our prior assumption of the allowed space for parameter values — we
introduced neural posterior estimation in Chapter �. With neural posterior
estimation, we utilize model simulations to train a neural density esti-
mator. Given real-world electrophysiological measurements, the trained
network outputs a posterior, a distribution over model parameters so that
for each parameter combination we know the probability with which
the Hodgkin-Huxley model produces a simulation consistent with firing
patterns observed in cell biology.

We introduced one of the most flexible kind of neural density estima-
tors, normalizing flows, at the end of Chapter �, but showed its limited
applicability to real-world experimental data in Chapter �, such as elec-
trophysiology observed with Patch-seq. We saw that this is not entirely
due to the model itself, as we can produce highly satisfying firing pat-
terns, reproducing observed electrophysiology in Patch-seq (see Section
�.�.�). We rather showed how the space of simulated electrophysiology
does not adequately cover the space of experimental electrophysiology,
causing the neural density estimators — trained with simulations only —
to generalize poorly to ‘unseen‘ experimental (test) data. We therefore
added isotropic Gaussian noise to the summarizing statistics of training
data (the electrophysiological features of Hodgkin-Huxley simulations)
in Chapter � and showed how this simple strategy can significantly help
the density estimator to generalize to electrophysiological data obtained
with Patch-seq.

We computed the maximum-a-posteriori estimate together with uncer-
tainty, measured by the posterior entropy, for all Patch-seq cells and
showed its variability across families and transcriptomic types. Gener-
ally, model parameter values are in agreement with modeling literature
for various cell types, and the electrophysiological features derived of
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corresponding simulations very similar to the experimental data (Figure
�.��).

We finally made a first attempt in Chapter �, to our knowledge, bridging
the transcriptomic view in a data set of neurons, in the form of gene
expression levels, to their phenotypic description, in the form of electro-
physiological measurements. We built the bridge in two steps. We first
obtained model parameters in Chapter � for each neuron that can generate
Hodgkin-Huxley-based simulations reproducing their experimentally
observed electrophysiology. This constitutes a biophysical bridge from
model parameters including potassium, sodium and calcium channel
densities, the leak conductance and the membrane capacitance, to firing
patterns described with electrophysiological features such as latency,
resting membrane potential and action potential width. The advantage
of a biophysical model is that we understand how membrane voltage
responses occur under a set of model parameter values, when current
is injected in the cell. We then used sparse reduced-rank regression to
predict fitted model parameters from the expression levels of their genes.
This two-step procedure can give the electrophysiologist an idea how the
neuron will respond to current injection, without having performed the
experiment, as long as there is data available regarding this neuron’s ex-
pected gene expression levels (e.g. from literature or experiments). Indeed,
sparse-reduced-rank regression will give you Hodgkin-Huxley-based
model parameters based on given gene expression levels, with which you
can generate simulations and derive electrophysiological feature values.
One can thus both qualitatively and quantitatively predict a neuron’s
electrophysiology based on available transcriptomic information.

A friendly introduction into the research behind this thesis, moreover
applicable to a wide audience can be found on YouTube.

�.� Future Work

The use of sparse bottleneck neural networks has been demonstrated
for Patch-seq data sets, but does not need to limit itself to those. Indeed,
any paired data set where it is believed that a combination of specific
predictors are sufficient to predict the variability in a response modality,
and where direct two-dimensional visualizations can be appreciated for
the joint-view exploration of them, is a candidate for sparse bottleneck
neural networks. We already demonstrated its use for CITE-seq, but
welcome further research into its applicability to other data sets.

Our suggested training data manipulation strategy helps the neural
density estimator in neural posterior estimation to see more data close to
the experimental manifold. Yet, it is important to note that when we feed
experimental data to the trained flow, that we do not post-hoc change the
model simulation nor its summarizing statistics, for instance generated
with the maximum-a-posteriori estimate. The posterior generalizes better
in the same space of model parameters and uses the same unmanipulated
Hodgkin-Huxley-based model. We therefore expect neural posterior
estimation with noise to be applicable to a plethora of biophysical models
where their application to real-world data is crucial. Further research
into the general application of neural posterior estimation with noise to

https://www.youtube.com/watch?v=hVohHnKQVrM&t=591s&ab_channel=CampusTVT%C3%BCbingen
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a wide variety of biophysical models and experimental data is therefore
warranted.

At the same time, future research in the fields of simulation-based
inference and the use of normalizing flows for density estimation could
make training data manipulation strategies such as the addition of noise,
eventually redundant. It is expected that the ongoing research into
normalizing flows [���–���] will lead to highly flexible density estimators,
eventually capable of scaling to higher-dimensional settings as well as
estimating densities of increasingly sophisticated form. Additionally,
it would be more convenient to have simulation-based trained density
estimators that generalize better to experimental data without having
to manipulate the training data set of simulations, and thus apply
simulation-based inference packages such as sbi ‘as they come‘ to
real-world experimental data such as Patch-seq. We are confident that
continued future research into the well-known phenomenon of deep
neural networks that poorly generalize to out-of-distribution data, also
known as the distribution shift, could eventually make deep neural
networks operate better in unseen territory in general.

The two-step produce outlined in this thesis to build a multimodal bridge,
has plenty of room for improvement. First, it would be insightful to build
a biophysical model that deterministically explains the full process from
gene transcription and translation to protein abundance [���, ���, ���–
���]) including ion channels in the cell membrane, eventually coupled
with models for action potential generation such as the Hodgkin-Huxley
model. This would make statistical tools including sparse reduced-rank
regression redundant and equip us with a full understanding of how, in
the nervous system, genotypes lead to phenotypes. Second, as discussed
in Section �.�, the use of multiple compartments would make sense
to fit more complicated neuronal phenotypes of for instance excitatory
Pyramidal cells, but could rapidly increase the dimensionality of our
model parameter space and time needed to produce a sufficient amount
of simulations for training density estimators. The latter is especially
true when we introduce parameters that guide gene transcription to
translation to protein abundance.

We live in exciting times for machine learning and artificial intelligence
research in general. Beyond image production [��], speech recognition
[��] and games [���], there currently exist machine learning frameworks
that can predict protein structure from their sequence [��, ���]. Moreover,
OpenAI recently launched GPT-4, a large-scale multimodal model that
can accept both image and text and produces text [���]. It can for instance
be used to help build code, debug and guide mathematical derivations.
It is therefore expected that machine learning will prove revolutionizing
in neural science as well, and help tackle long-standing questions of how
the brain perceives the environment, computes and responds.

As an exciting possible avenue for the future, the use of neural posterior
estimation (with noise), or simulation-based inference in general can
prove revolutionizing as a machine-learning framework for the field
of neural science and medicine. In this thesis, we showed how we can
obtain reliable posterior distributions of Hodgkin-Huxley-based model
parameters given electrophysiology. In the future, such inference proce-
dures could indicate which parameters are for instance not necessary to

https://openai.com/
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reproduce firing patterns in a neuron from a patient’s tissue. In healthy
tissue, the posterior might indicate that we do need that parameter. Con-
sequently, as some parameters like potassium conductance abundance in
the cell membrane are intimately linked with the expression of certain
genes such as Kcnc�, these analyses can pave the way for targeted gene
therapy.

�.�.� Ethical Considerations

Machine learning experts, and data scientists in general, are not oblivious
to the fact that, in order for us to understand the intricate design of our
own nervous system, current research involves the killing of animals.
We believe, however, that with further research into increasingly sophis-
ticated machine learning tools, especially those that bridge multiple
modalities in real-world data such as Patch-seq, we can extract more and
more knowledge from data sets of possibly limited size. Combine that
with an increased collaborative spirit and public availability of data sets,
and the sacrifice of animals can be significantly reduced.
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