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Abstract

Legged animals show extraordinary versatility in navigating complex environments and overcoming
unexpected obstacles. This agility appears promoted by mechanical compliance intrinsic to their limbs.
Extensive research has been conducted on the importance of elastic compliance for legged locomotion,
demonstrating numerous benefits such as improved energy efficiency, enhanced shock absorption, and
facilitated power generation. However, elastic compliance can also produce unwanted vibrations, reduce
control bandwidth, and cannot counter energy disturbances. Although rarely implemented in legged
robotics, mechanical damping is a promising solution to these limitations. Interestingly, muscle fibers
exhibit viscous-like damping behavior when suddenly stretched. This capacity seems dependent on
muscle excitation level, indicating that tunable mechanical damping plays a functional role in biological
locomotion. In particular, tunable mechanical damping could facilitate a quick response to sudden
perturbations, mitigating errors and delays in sensorimotor information.

This doctoral dissertation investigates principles of tunable mechanical damping in fast perturbed
legged-locomotion. Through quantitative methodologies, it expands previous knowledge of how mus-
cle fibers exploit tunable mechanical damping around touchdown. Central to this research was the
force-velocity relation, a phenomenological function describing viscous-like capacities within muscle
contraction dynamics. Additionally, this thesis explores technical solutions to achieve tunable mechani-
cal damping in legged robotics, combining numerical analysis and hardware experiments. The content
of this dissertation relies on five manuscripts (four peer-reviewed journal articles and a pre-print), the
fruit of collaborative research during my doctoral project.

In two computational studies, we could confirm that the force-velocity relation grants muscle fibers
tunable mechanical damping during the earliest response to step perturbations (i.e., the preflex phase).
However, we found that current interpretations of this phenomenon require revision. Without feedforward
neuronal modulation, muscle-produced mechanical damping played a minor contribution in regulating
the preflex response. Large impact velocities during reference hopping could further compromise such
contribution. In contrast, tunable mechanical damping produced by the force-velocity relation became a
dominant regulating factor when feedforward stimulation was allowed. In particular, we observed more
adjustment of touchdown force and preflex work in response to step perturbations and a simultaneous
increase in hopping stability.

Since our computational studies relied on Hill-type muscle models, which are ansatz approximations
of real muscle contraction, we conducted an in vitro investigation with realistic boundary conditions to
validate our simulations. This study confirmed activity-dependent damping-like properties in biological
muscle fibers. However, the results showed an initial short-range stiffness phase, which Hill-type models
should include for better predictions. In vitro, the muscle fibers’ viscous-like response developed
more smoothly and later than what was observed in our simulations, suggesting the need for a better
characterization of the force-velocity relation’s eccentric side.

Inspired by the biological observations of viscous-like properties within the muscle fibers, we
investigated the advantages of incorporating viscous dampers to provide tunable mechanical damping in
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legged robots. Using numerical simulations of a robotic leg, we found that viscous damping consistently
outperforms Coulomb friction damping in rejecting potential energy disturbances caused by step
perturbations. In contrast, our empirical hardware experiments revealed that damping rate control of a
viscous damper that is directly connected to the knee joint fails to generate mechanical damping that can
be fine-tuned.

In a follow-up study, we overcame this limitation with a slack-damper mechanism. This device uses
a cable with adjustable slackness to connect the viscous damper to the knee rotation. Using hopping
experiments with various terrain disturbances, we demonstrate that slackness control could effectively
and intuitively adjust energy dissipation in a leg prototype, indicating that tunable mechanical damping
was achieved. These experiments also confirmed that embedded mechanical damping causes a trade-off
between locomotion energy efficiency and robustness. We argue that the tunability of our slack-damper
mechanism and its perturbation-triggered nature make this trade-off more favorable.

The findings of this dissertation support previous evidence that tunable mechanical damping is
beneficial for legged locomotion. We demonstrate that tunable mechanical damping can naturally occur
in biological systems due to an intricate interaction between neuromodulation, inner muscle mechanics,
and environmental conditions. In legged robotics, our slack-damper mechanism shows that simple
technical solutions are sufficient to implement tunable mechanical damping effectively.

4



Kurzfassung

Tiere mit Beinen zeigen eine außerordentliche Flexibilität bei der Navigation in komplexen Umge-
bungen und der Überwindung unerwarteter Hindernisse. Diese Beweglichkeit wird offenbar durch die
mechanische Nachgiebigkeit der Gliedmaßen gefördert. Die Bedeutung der elastischen Nachgiebigkeit
für die Fortbewegung von Beinen wurde bereits ausgiebig erforscht, wobei zahlreiche Vorteile wie ver-
besserte Energieeffizienz, verbesserte Stoßdämpfung und erleichterte Energieerzeugung nachgewiesen
wurden. Allerdings kann die elastische Nachgiebigkeit auch unerwünschte Vibrationen erzeugen, die
Kontrollbandbreite verringern und Energiestörungen nicht ausgleichen. Obwohl sie in der Beinroboter-
technik nur selten eingesetzt wird, ist die mechanische Dämpfung eine vielversprechende Lösung für
diese Einschränkungen. Interessanterweise zeigen Muskelfasern ein viskoses, dämpfendes Verhalten,
wenn sie plötzlich gedehnt werden. Diese Fähigkeit scheint vom Grad der Muskelanregung abhängig zu
sein, was darauf hindeutet, dass eine einstellbare mechanische Dämpfung eine funktionelle Rolle bei
der biologischen Fortbewegung spielt. Insbesondere könnte eine abstimmbare mechanische Dämpfung
eine schnelle Reaktion auf plötzliche Störungen ermöglichen und so Fehler und Verzögerungen bei der
sensomotorischen Information abmildern.

Diese Dissertation untersucht die Prinzipien der abstimmbaren mechanischen Dämpfung bei der
schnellen, gestörten Fortbewegung mit den Beinen. Mit Hilfe quantitativer Methoden erweitert sie
das bisherige Wissen darüber, wie Muskelfasern die abstimmbare mechanische Dämpfung beim Auf-
setzen ausnutzen. Im Mittelpunkt dieser Forschung steht die Kraft-Geschwindigkeits-Relation, eine
phänomenologische Funktion, die viskose Kapazitäten innerhalb der Muskelkontraktionsdynamik be-
schreibt. Darüber hinaus werden in dieser Arbeit technische Lösungen zur Erzielung einer abstimmbaren
mechanischen Dämpfung in der Beinrobotertechnik untersucht, wobei numerische Analysen und Hard-
wareexperimente kombiniert werden. Der Inhalt dieser Dissertation stützt sich auf fünf Manuskripte (vier
begutachtete Zeitschriftenartikel und ein Pre-Print), die das Ergebnis der gemeinschaftlichen Forschung
während meines Promotionsprojekts sind.

In zwei Berechnungsstudien konnten wir bestätigen, dass die Kraft-Geschwindigkeits-Relation den
Muskelfasern eine abstimmbare mechanische Dämpfung während der frühesten Reaktion auf Schrittstö-
rungen (d. h. der Präflexphase) gewährt. Wir haben jedoch festgestellt, dass die derzeitigen Interpre-
tationen dieses Phänomens einer Überarbeitung bedürfen. Ohne neuronale Feedforward-Modulation
spielte die muskelerzeugte mechanische Dämpfung bei der Regulierung der präflexiven Reaktion eine
untergeordnete Rolle. Große Aufprallgeschwindigkeiten beim Referenzhüpfen könnten diesen Beitrag
weiter beeinträchtigen. Im Gegensatz dazu wurde die abstimmbare mechanische Dämpfung, die durch
die Kraft-Geschwindigkeits-Relation erzeugt wird, zu einem dominanten regulierenden Faktor, wenn
eine Feedforward-Stimulation erlaubt war. Insbesondere beobachteten wir eine stärkere Anpassung der
Aufsetzkraft und der Präflexarbeit als Reaktion auf Schritt-Störungen und eine gleichzeitige Erhöhung
der Sprungstabilität.

Da unsere Berechnungsstudien auf Hill-Muskelmodellen beruhten, die eine Annäherung an die
reale Muskelkontraktion darstellen, führten wir eine In-vitro-Untersuchung mit realistischen Randbe-
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dingungen durch, um unsere Simulationen zu validieren. Diese Studie bestätigte aktivitätsabhängige
dämpfungsähnliche Eigenschaften in biologischen Muskelfasern. Die Ergebnisse zeigten jedoch eine
anfängliche Kurzzeit-Steifigkeitsphase, die Hill-Modelle für bessere Vorhersagen berücksichtigen soll-
ten. In vitro entwickelte sich die viskose Reaktion der Muskelfasern sanfter und später als in unseren
Simulationen beobachtet, was auf die Notwendigkeit einer besseren Charakterisierung der exzentrischen
Seite der Kraft-Geschwindigkeits-Beziehung hinweist.

Inspiriert von den biologischen Beobachtungen viskositätsähnlicher Eigenschaften in den Mus-
kelfasern untersuchten wir die Vorteile der Einbeziehung viskoser Dämpfer, um eine abstimmbare
mechanische Dämpfung in Beinrobotern zu ermöglichen. Anhand numerischer Simulationen eines
Roboterbeins konnten wir feststellen, dass die viskose Dämpfung die Coulombsche Reibungsdämpfung
bei der Unterdrückung von Störungen der potentiellen Energie, die durch Schrittstörungen verursacht
werden, konsequent übertrifft. Im Gegensatz dazu haben unsere empirischen Hardware-Experimente
gezeigt, dass die Steuerung der Dämpfungsrate eines viskosen Dämpfers, der direkt mit dem Kniegelenk
verbunden ist, keine mechanische Dämpfung erzeugt, die sich fein abstimmen lässt.

In einer Folgestudie haben wir diese Einschränkung mit einem Slack-Damper-Mechanismus über-
wunden. Diese Vorrichtung verwendet ein Kabel mit einstellbarem Spiel, um den viskosen Dämpfer mit
der Kniedrehung zu verbinden. Anhand von Hüpfexperimenten mit verschiedenen Geländestörungen
konnten wir nachweisen, dass die Schlaffheitssteuerung die Energiedissipation in einem Beinproto-
typ effektiv und intuitiv anpassen konnte, was darauf hindeutet, dass eine abstimmbare mechanische
Dämpfung erreicht wurde. Diese Experimente bestätigen auch, dass die eingebettete mechanische
Dämpfung einen Kompromiss zwischen der Energieeffizienz der Fortbewegung und der Robustheit
darstellt. Wir argumentieren, dass die Abstimmbarkeit unseres Slack-Damper-Mechanismus und seine
störungsausgelöste Natur diesen Kompromiss begünstigen.

Die Ergebnisse dieser Dissertation unterstützen frühere Belege dafür, dass eine abstimmbare me-
chanische Dämpfung für die Fortbewegung von Beinen von Vorteil ist. Wir zeigen, dass abstimmbare
mechanische Dämpfung in biologischen Systemen aufgrund einer komplizierten Interaktion zwischen
Neuromodulation, innerer Muskelmechanik und Umweltbedingungen natürlich vorkommen kann. In
der Beinrobotertechnik zeigt unser Slack-Damper-Mechanismus, dass einfache technische Lösungen
ausreichen, um eine abstimmbare mechanische Dämpfung effektiv umzusetzen.
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1 Introduction

1.1 Motivation

Legged locomotion is a highly versatile solution to terrestrial mobility. Walking, sprinting and hop-
ping are just a few of the many gaits legged animals can use to transverse broadly diverse terrains and
obstacles. Legged locomotion has long captured the biorobotics community’s attention, resulting in
several bio-inspired robots (Kim and Wensing, 2017). Nevertheless, the functional mechanisms behind
legged locomotion’s agility remain elusive. A significant breakthrough in this regard was realizing the
importance of mechanical compliance (Alexander, 1990; Blickhan, 1989; Chen et al., 2019; Geyer et al.,
2006; Roberts and Azizi, 2011). Unlike rigid robots, systems with embedded mechanical compliance
can instantly react to external disturbances, without requiring high bandwidth actuation and excellent
sensing (Ashtiani et al., 2021). Moreover, mechanical compliance reduces the need for direct control
when producing forces, which can save computing resources (Haeufle et al., 2020b).

Mechanical compliance in legged robotics has been predominately studied in the sense of mechanical
elasticity (Chen et al., 2019). Numerous investigations have demonstrated how integrated elasticity
offers several advantages to terrestrial locomotion, such as increased energy efficiency (Alexander
et al., 1982; Geyer et al., 2006), improved shock tolerance (Roberts and Azizi, 2010) and enhanced gait
self-stabilization (Iida et al., 2008). Thanks to this knowledge, numerous robots have shown improved
locomotion performance by incorporating serial and parallel springs in their design (Grizzle et al.,
2009; Hubicki et al., 2016; Spröwitz et al., 2013; Zhao et al., 2022). Nevertheless, elasticity alone
cannot completely capture the complex compliant behavior observed in biological legged locomotion. A
leg structure composed solely of elastic elements would result in harmful oscillations and decreased
responsiveness (Monteleone et al., 2022). In addition, its energy-conservative nature would make it
impossible to reject perturbations that modify the system’s energy, such as a sudden shift in ground
height. Therefore, it is reasonable to expect that mechanical damping plays a significant role in the
compliance of biological legged locomotion (Garcia et al., 2011).

In a mechanical system, damping occurs when nonconservative forces reduce oscillations by dissi-
pating energy. A classic example is viscous damping, which resists motion through damping forces
proportional to the system’s speed. Mechanical dampers are widely and successfully used in wheeled
locomotion (Narwade et al., 2022). In contrast, relatively little is known about their benefits in legged
locomotion (Shen and Seipel, 2012). Fundamental research suggests that mechanical damping improves
the dynamic stability of legged systems (Abraham et al., 2015; Seipel and Holmes, 2007; Shen and
Seipel, 2012), which is the ability to maintain motion trajectories after a disturbance. Specifically,
mechanical damping helps stabilize changes in touchdown velocity (Shen and Seipel, 2012) and avoid
falls following unexpected ground perturbations (Heim et al., 2020). However, the amount of mechanical
damping beneficial for legged locomotion requires careful calibration. Too little damping can reduce
dynamic stability (Shen and Seipel, 2012), while excessive damping can decrease locomotion energy
efficiency without providing significant improvement in locomotion robustness (Heim et al., 2020).
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1 Introduction

Finding the right balance for optimal performance is not trivial due to the hybrid and nonlinear dynamics
characterizing legged locomotion.

Vertebrate animals rely on their muscles to move. Muscle fibers possess unique viscoelastic properties
that allow an instant mechanical response to external perturbations. The capacity of exploiting these
mechanical properties to regulate motion takes the name of preflex (from preflex = pre-reflex) (Brown
and Loeb, 2000). Preflexes promote motion robustness amid noise and delays in the transmission
of sensorimotor information throughout the nervous system. It is argued that individual mechanical
properties of the muscle fibers specialize the preflex response to external perturbations (Gerritsen et al.,
1998). Specifically, simulation studies suggest that muscle fibers’ force-velocity relation allows preflexes
to counter perturbations such as impulses (Gerritsen et al., 1998) and step perturbations (Haeufle et al.,
2010).

The force-velocity relation is a phenomenological function describing muscle fiber force’s dependence
on muscle fiber contraction velocity (Hill, 1938). Faster shortening velocities reduce muscle fibers’ force
production; faster lengthening velocities increase it. Therefore, the force-velocity relation resembles a
source of biological viscous damping intrinsic to muscle fibers’ material mechanics. In support of this
hypothesis, research has demonstrated that removing or simplifying the force-velocity relation leads to
effects similar to insufficient mechanical damping, such as decreased locomotion stability and increased
risk of falling (Gerritsen et al., 1998; Haeufle et al., 2010).

The damper-like behavior of the force-velocity relation might be especially crucial to regulate fast
locomotion. During fast locomotion, an unexpected step perturbation poses a severe risk of falling as
the short stance duration (i.e., the ground-foot contact phase) limits the time the central nervous system
has to react. In addition, even the fastest reflexes are subject to neurotransmission delays, and during
fast locomotion, they can require up to about half the stance duration before affecting motion (More
and Donelan, 2018). Therefore, the central nervous system would struggle to stabilize movement alone.
However, when a sudden step perturbation occurs, the velocity at which the foot hits the ground differs
from unperturbed conditions. This change propagates within the leg, causing the muscle fibers to
contract at altered velocities. The force-velocity relation would resist this by instantly adjusting the
muscle fiber force to the perturbed contraction velocity, mitigating the delayed response of the nervous
system. Furthermore, such a damping-like response would help dissipate the change in the system’s
potential energy caused by the step perturbation, thereby reducing the need for active control.

Unfortunately, few studies (Gerritsen et al., 1998; Haeufle et al., 2010) have explicitly tested the ability
of the force-velocity relation to act as a mechanical damper during fast perturbed locomotion. Most of
the evidence supporting this hypothesis is qualitative, based on analyzing the shape of the force-velocity
relation without considering the complex nonlinear dynamics of muscle contraction as a whole. When
testing unexpected changes in ground stiffness, it was found that the force-velocity relation alone cannot
explain measured muscle-driven regulation (van der Krogt et al., 2009). Instead, it was observed that
feedforward neuronal stimulation tunes the force-velocity relation’s response to the given perturbation,
making preflexes more effective. This suggests that biological locomotion may take advantage of tunable
mechanical damping, which could help maximize motion robustness in the face of uncertainties while
minimizing energy dissipation on even terrains. Therefore, investigating tunable mechanical damping in
legged locomotion is a crucial step for understanding legged locomotion’s versatility.
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1.2 Research objectives

1.2 Research objectives

The overall research objective of this dissertation was to investigate principles of tunable mechanical
damping in fast, perturbed legged locomotion. Our central hypothesis was that tunable mechanical
damping enhances robustness to unexpected step perturbations, i.e., ground height changes. We
focused on the “preflex phase”, the early stance duration when sensory feedback is unavailable due to
neurotransmission delays. We hypothesized that by embedding tunable mechanical damping, a legged
system could instantly generate forces to resist changes in impact velocity without requiring closed-loop
control. These forces would adjust the energy dissipated during preflex, regulating the change in potential
energy caused by any step perturbation. As a result, we predicted that a tunable mechanical damper
would embed sensor-free regulation of the system’s energy, promoting increased locomotion robustness.
We also predicted that tunable mechanical damping could improve the trade-off between locomotion
robustness and the cost of transportation. During steady locomotion, constant mechanical damping
would result in unnecessary energy loss, which actuators must restore to maintain periodic locomotion.
In contrast, tunable mechanical damping could impact locomotion energy efficiency less by minimizing
damping forces and energy dissipation on unperturbed ground.

This doctoral dissertation combines mainly two research methodologies. The first approach relies
on computational models to understand tunable mechanical damping in muscle fibers. As mentioned
in Section 1.1, contraction experiments with muscle fibers have revealed a force-velocity relation that
resembles mechanical viscous damping. Hill-type muscle models capture this property via a phenomeno-
logical function that describes the force-velocity relation mathematically. Therefore, we implemented
neuro-musculoskeletal simulations incorporating Hill-type muscle models to explore principles of bio-
logical tunable damping. A significant benefit of this computational approach is that it permits measuring
quantities otherwise difficult to trace in vivo. In addition, it facilitates the detection of muscle preflexes.
In simulations, removing the concealing effect of other phenomena, such as reflexes and centrally-driven
neuronal strategies, is simple and less resource-intensive than in vivo studies. Notice that the dynamics
of muscle fiber contraction are highly nonlinear. This complexity is reflected in the mathematical
formulation of Hill-type models, in which the effect of the force-velocity relation is coupled with other
mechanisms, such as the force-length relation and fiber stimulation level. Accordingly, a primary objec-
tive of our computational research was the design of an algorithm to isolate and quantify the specific
contribution of the force-velocity relation to muscle preflexes in simulated fast perturbed locomotion.

The second methodology in this doctoral research involves testing tunable mechanical damping
in biorobotic leg prototypes. Analysis of such physical models is an invaluable complementary tool
to the computational study of complex biomechanical systems. Hardware tests allow for verifying
the numerous assumptions behind the design of computational models. At the same time, they keep
the tested physical system more intuitive and tractable than analogous biological organisms. Within
this methodology, and focusing on fast perturbed locomotion, our main research objectives were: (1)
understanding how to produce effective mechanical damping in a robotic leg and (2) identifying an
intuitive strategy for tuning such a mechanical damper.

The combined use of computer simulations and hardware experiments to understand tunable me-
chanical damping in perturbed legged locomotion could advance research in multiple disciplines.
Computational analysis of biological damping could lead to a greater understanding of motion control on
a biological level, potentially resulting in predictive models of locomotion impairments caused by muscle
disorders. In addition to validating the results of biological simulations, hardware experiments allow
extrapolating and optimizing functional principles of tunable mechanical damping for fast perturbed
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1 Introduction

locomotion. Together, these two methodologies can advance research on motor control and engineering
design of legged robotics, potentially leading to new guidelines for motion rehabilitation and wearable
assistive technology.

1.3 Doctoral thesis overview

The content of this doctoral thesis is organized as follows. Chapter 2 briefly overviews the five
manuscripts (four journal articles and one pre-print) that comprise the research conducted during my
doctoral project. Since these manuscripts result from collaborative research with multiple co-authors,
my contribution to each investigation is explicitly highlighted in Chapter 2.

Chapter 3 provides a methodological background. The chapter briefly describes the neuro-musculo-
skeletal system and how its elements cooperate to generate motion. This summary is intended to help
understand the complexity of investigating biological motion. It also provides justifications for some
of our modeling choices. Following this summary is an explanation of how computational studies and
bio-inspired robotics can assist biological investigations. The next section of Chapter 3 describes the
specific neuro-musculoskeletal model that was the foundation for our computational research. It follows
a description of the specific muscle model implemented. A particular emphasis is given to the force-
velocity relation, as this property is hypothesized to generate muscle mechanical damping. Chapter 3
ends by presenting my main methodological contribution to this doctoral project: the decomposition
algorithm.

Chapter 4 presents my core computational study on tunable mechanical damping in muscle-driven
locomotion. Using a simplified hopping model and the decomposition algorithm, my co-authors and
I explored whether the force-velocity relation can produce mechanical damping during the preflex
response to step perturbations. We discovered that, without neuronal modulation, the force-velocity
relation has a minor effect on the preflex response. In contrast, feedforward stimulation “activates" the
damping capacity of the force-velocity relation, indicating that biological mechanical damping exists
and is tunable.

Results in Chapter 4 suggest that the flattening profile for large eccentric velocities of the force-
velocity relation reduces the force-velocity relation’s capacity to produce mechanical damping during
preflexes. For this reason, Chapter 5 presents a study where we extended the experiments of Chapter 4
by testing different initial operative conditions of the force-velocity relation at touchdown. This analysis
confirms that hitting the ground with the force-velocity relation operating along its flattening side can
reduce the muscle’s damping response to step perturbations.

The computational studies in Chapters 4 and 5 rely on Hill-type muscle models, which are ansatz
approximations of the natural muscle contraction dynamics. Chapter 6 presents a study where we tested
the limitations introduced by the Hill-type model in our analyses. In this study, we extracted muscle
trajectories from simulated hopping under different step perturbations and applied them to real muscle
fibers in vitro. Afterward, we compared the response of biological muscle fibers to that predicted by our
Hill-type model. We found that biological muscle fibers can generate an activity-dependent damping
response to perturbed hopping trajectories. However, our in vitro results suggest that the short-range
stiffness, typically neglected in Hill-type models, may be crucial to preflex production. Furthermore,
more accurate modeling of the force-velocity relation at high eccentric velocities is needed.

Chapters 7 and 8 describe two projects in which we investigated strategies for achieving tunable
mechanical damping in legged robotics. In the first study, we implemented a computer simulation of a
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1.3 Doctoral thesis overview

two-segment robotic leg with a spring-damper knee joint and simulated vertical hopping under various
step perturbations. With this model, we found that viscous damping outperforms Coulomb friction
damping in regulating the mechanical work to the perturbation level. However, when we implemented
viscous dampers in a physical prototype and repeated the experiments with a hardware setup, we found
that controlling the damping rate was ineffective and unintuitive for producing tunable mechanical
damping.

In the second study (Chapter 8) , we overcome this limitation by coupling the viscous damper to the
knee joint by a slack-tendon mechanism. The slack-damper mechanism allowed us to produce tunable
mechanical damping intuitively, as the slackness level correlated to the amount of damped energy. In this
study, we also confirmed the hypothesis that a trade-off between the cost of transport and locomotion
robustness occurs when implementing tunable mechanical damping in a robotic leg. In this regard, the
tunability of our slack-damper mechanism and its perturbation-triggered nature could promote a more
favorable trade-off.

This thesis dissertation concludes with Chapter 9, which provides a detailed summary of the presented
studies and a general discussion. Here, I discuss our key findings on tunable mechanical damping in fast
perturbed locomotion from the perspective of muscle-driven locomotion and biorobotic implementation.
The chapter ends with a list of take-home messages.
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2 List of publications

During my doctoral research, I had the privilege of collaborating with multiple colleagues. Our
collective effort resulted in a collection of manuscripts, the majority of which published in peer-reviewed
scientific journals. As much of this thesis draws from previously published material, this chapter
highlights my contribution to each work. All co-authors have agreed to the following list.

2.1 Accepted publications

2.1.1 Manuscript 1 - Izzi et al. (2023), Chapter 4

Title: Muscle prestimulation tunes velocity preflex in simulated perturbed hopping
Authors: Fabio Izzi, An Mo, Syn Schmitt, Alexander Badri-Spröwitz , and Daniel F.B.

Haeufle
Journal: Scientific Reports
Year: 2023
Link: https://doi.org/10.1038/s41598-023-31179-6
Summary: We isolated and quantified the preflex force produced by the force-velocity relation

in neuro-musculoskeletal simulations of perturbed vertical hopping. We compared
two stimulation protocols and tested whether muscle fibers’ mechanical damping
requires neuronal modulation. Preflex-Const prevented neuronal modulation, while
Preflex-Rising allowed feedforward stimulation of the muscle fibers during preflexes.
Using our decomposition algorithm (see section 3.5), we found that the force-
velocity relation can generate a “velocity preflex" to regulate unexpected changes
in ground height. However, this regulatory capacity is minimal without neuronal
modulation. Simple feedforward stimulation was sufficient for scaling the force-
velocity relation’s contribution and producing a more effective velocity preflex.

Contribution: I conceptualized the project under the supervision of Daniel Haeufle and Alexander
Badri-Spröwitz. I designed and implemented the computer simulation. Along
with Daniel Haeufle, I developed the decomposition algorithm. I conducted all
simulations, data analysis, and interpretation. I prepared the figures with the help
of An Mo. I wrote most of the manuscript and all of the supplementary electronic
material. I organized manuscript submission and answers to reviews’ feedback, as
well as regular project meetings, discussions with co-authors, and project planning.
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2 List of publications

2.1.2 Manuscript 2 - Araz et al. (2023), Chapter 6

Title: Muscle preflex response to perturbations in locomotion: In vitro experiments and
simulations with realistic boundary conditions

Authors: Matthew Araz, Sven Weidner, Fabio Izzi, Alexander Badri-Spröwitz, Tobias Siebert
and Daniel F.B. Haeufle

Journal: Frontiers in Bioengineering and Biotechnology, section Biomechanics
Year: 2023
Link: https://doi.org/10.3389/fbioe.2023.1150170
Summary: We measured the mechanical work and force modulation generated by muscle fibers

during the preflex phase of in vitro contraction experiments. Our experiments used
physiologically plausible stretching trajectories derived from simulated vertical
hopping under different ground perturbations. We also compared muscle fiber
contraction response in vitro to predictions from a Hill-type muscle model. Our
findings confirm activity-dependent stiffness and damping in biological muscle
fibers. The activity-dependent damping could regulate muscle fiber force to per-
turbed stretching velocity. However, the amount of fiber elongation was responsible
for most of the energy regulation during preflexes. We also conclude that Hill-
type models require short-range stifness and better modelling of the force-velocity
relation’s eccentric side for more accurate predictions.

Contribution: I helped conceptualize the study and provided feedback on the methodology. I
helped Matthew Araz conduct the simulations. I contributed to the data interpre-
tation and discussion. I wrote the introduction with Matthew Araz, and I helped
edit the rest of the manuscript. I wrote the table of model parameters in the elec-
tronic supplementary material. I participated in project meetings, discussions with
co-authors, and project planning.

2.1.3 Manuscript 3 - Mo et al. (2020), Chapter 7

Title: Effective viscous damping enables morphological computation in legged locomo-
tion

Authors: An Mo, Fabio Izzi, Daniel F.B. Haeufle and Alexander Badri-Spröwitz
Journal: Frontiers in Robotics and AI, section Soft Robotics
Year: 2020
Link: https://doi.org/10.3389/frobt.2020.00110
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2.1 Accepted publications

Summary: We investigated tunable mechanical damping in legged robotics. We implemented
numerical simulations and hardware experiments involving drop tests of a two-
segment leg with a knee spring-damper device. We studied the system’s response
to step perturbations of various intensities. The numerical analysis revealed that
viscous damping regulates the dissipated energy to the perturbation level more
effectively than Coulomb friction damping. However, our hardware experiments
demonstrated that damping rate control of viscous dampers directly coupled to the
knee joint has negligible and unintuitive effects on energy regulation. We conclude
that this is an ineffective strategy for implementing tunable mechanical damping in
legged robotics.

Contribution: Along with Daniel Haeufle, I conceptualized the simulation part of the project.
I helped code and implement the computer model. I conducted the simulations,
associated data analysis, and interpretation. I provided feedback on the hardware
part of the study and helped interpret/validate results from hardware experiments. I
prepared the figures related to the numerical simulations. I wrote the simulation
part of the manuscript and helped write/edit the rest. I contributed to answering
reviewers’ feedback. I participated in regular project meetings, discussions with
co-authors, and project planning.

2.1.4 Manuscript 4 - Mo et al. (2023), Chapter 8

Title: Slack-based tunable damping leads to a trade-off between robustness and efficiency
in legged locomotion

Authors: An Mo, Fabio Izzi, Emre Cemal Gönen, Daniel F.B. Haeufle and Alexander Badri-
Spröwitz

Journal: Scientific Reports
Year: 2023
Link: https://doi.org/10.1038/s41598-023-30318-3
Summary: We designed a slack-damper mechanism to generate tunable viscous damping in a

robotic leg that can hop vertically and forward over various terrains and ground ob-
stacles. The slack-damper mechanism consists of a mechanical damper connected
to the knee joint by a cable with adjustable slackness. We found that controlling
the slackness level permits modulating the damping force, onset time, effective
stroke, and energy dissipation of the slack-damper. Furthermore, our hardware ex-
periments confirm that mechanical damping enhances locomotion robustness at the
expense of energy efficiency. We conclude that the perturbation-triggered nature of
our slack-damper could promote a more favorable trade-off.

Contribution: I contributed to conceptualizing and conducting the analysis and interpretation
of data. I helped code the scripts for data analysis and provided feedback on the
methodology. I helped with data validation and curation. I contributed to writ-
ing/editing the original draft. I participated in regular project meetings, discussions
with co-authors, and project planning.
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2 List of publications

2.2 Pre-print

2.2.1 Manuscript 5 - Izzi et al. (2022), Chapter 5

Title: Muscle pre-stimulation tunes viscous-like perturbation rejection in legged hopping
Authors: Fabio Izzi, An Mo, Syn Schmitt, Alexander Badri-Spröwitz , and Daniel F.B.

Haeufle
Archive: ArXiv
Year: 2022
Link: https://doi.org/10.48550/arXiv.2202.02114
Summary: This study extends the work done in Izzi et al. (2023). Using the same neuro-

musculoskeletal hopping model and Preflex-Const stimulation, we tested the influ-
ence of the force-velocity relation’s operative side in producing preflex regulation.
We hypothesized that the force-velocity relation contributes less to preflex regu-
lation when its touchdown state is on the plateau-side during reference hopping.
Our analysis confirms our hypothesis for touchdown force and preflex work but
not for hopping stability. We conclude that mechanical damping in muscle fibers is
sensitive to reference hopping conditions.

Contribution: I conceptualized the project under the supervision of Daniel Haeufle and Alexander
Badri-Spröwitz. I designed and implemented the computer model. I conducted all
simulations, data analysis, and interpretation. I prepared the figures with the help of
An Mo. I wrote most of the manuscript. I organized manuscript submission, regular
project meetings, discussions with co-authors, and project planning.
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3 Methodological background

This chapter provides background knowledge. The chapter begins by describing the neuro-musculo-
skeletal system and how motion results from the coordinated activity of its many components. This
description is intended to illustrate the complexity of studying the neuro-musculoskeletal system and
to justify some of our modeling assumptions. It follows a concise explanation of how computational
studies and bio-inspired robotics can facilitate biological investigations. The chapter continues by
describing the neuro-musculoskeletal model that was the foundation for this thesis’s computational
research. The following section describes the muscle model used in our simulations. A detailed overview
of the force-velocity relation is provided, as well as an intuitive explanation of how it may benefit fast
perturbed locomotion. The chapter concludes by presenting the decomposition algorithm, the primary
methodological contribution of this doctoral dissertation.

3.1 The neuro-musculoskeletal system

The biological entity that enables movement in vertebrate animals is known as the neuro-musculoskeletal
system. Conceptually, it contains four main elements: the skeletal system, muscles, sensors, and the
central nervous system. The following summaries are based on the reader by van der Kooij et al. (2008).

3.1.1 The skeletal system

The skeletal system, which forms the passive anatomical structure of a vertebrate organism, consists of
a network of interconnected bones linked together through connective tissues and ligaments, forming
joints. Joints constrain bones’ relative motion. Fibrous joints tend to be immovable, cartilaginous
joints exhibit a certain degree of mobility, and synovial joints tend to be freely movable along specific
directions.

Technically, joints limit without fully constraining bones’ relative displacement. This is because soft
connective tissue and a certain degree of bone deformation during joint loading allow slight displacement
along the restrained directions. In synovial joints, however, such movement is generally insignificant in
relation to the joint’s functional range of motion. Hence, it is standard to describe the skeletal system as
a network of interconnected rigid bodies, with synovial joints forming mechanical connections that fully
constrain bones’ displacement along specific directions.

The neuro-musculoskeletal models in this dissertation focus on the knee joint, a synovial joint that
allows angular movement between the upper (femur) and lower leg (tibia and fibula). As such, the knee
joint is usually modeled as a hinge joint, as also done in this dissertation.
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Skeletal
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Sensory-motor information Forces

Neuro-musculoskeletal system

Figure 3.1: Simplified illustration of the interplay between the neuro-musculoskeletal system’s elements. The
nervous system sends motor command to muscles, filtered by the activation dynamics. Muscles exchange forces
with the skeletal system, which in turn exchanges forces with the environment. Sensory organs collect information
from the environment and body. This information is sent to the nervous system and used to update the command
signals to the muscles. The double-sided arrow between the nervous system and the sensory organs indicates the
nervous system’s capacity to control these organs’ sensitivity. Note that noise and time delays affect sensory-motor
information transmission.

3.1.2 Muscles

There are three types of muscles. Cardiac muscles are found in the heart and are responsible for the blood
circulation. Smooth muscles enable the flow of substances in hollow organs and are not consciously
controlled. Skeletal muscles, the only type considered in this dissertation research, span across bones
and are the actuators of the neuro-musculoskeletal system. They convert neural signals from the nerves
into contraction forces. These forces exert motion on the bones via tendons. Thus, it is typical to refer to
“muscle-tendon units” when describing skeletal muscles. For the sake of clarity, I will refer to skeletal
muscles as “muscles" or “muscle-tendon units” in the following of this thesis.

Muscle architecture is complex. The smallest functional unit is the sarcomere, consisting of a bundle
of threadlike structures called myofilaments. Myofilaments are of two types: thin filaments (actin) and
thick filaments (myosin). The sliding of the myosin past the actin generates the sarcomere contraction,
contributing to the net muscle contraction. A muscle fiber consists of a series of multiple sarcomeres.
Several muscle fibers wrapped in bundles by layers of connective tissue form the entire muscle. This
complex architecture grants muscles nonlinear viscoelastic properties and complex contraction dynamics.

There are three main approaches for modeling muscle contraction dynamics (Winters and Stark,
1987). The first approach employs second-order systems to approximate muscle-joint dynamics in a
black-box manner, which offers a simple yet very approximated solution to muscle modeling. The
second approach implements structural models based on phenomenological studies of isolated muscle
tissues, known as Hill-type models, after the pioneering research of Archibald Hill (1938). Despite
well-known approximations, Hill-type models offer a good compromise between prediction accuracy and
computational cost. This characteristic makes them often preferred for neuro-musculoskeletal models,
which are already computationally expensive due to the large number of subsystems they include. The
third approach describes muscle dynamics by modeling the contractile sliding mechanism between
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3.1 The neuro-musculoskeletal system

actin and myosin on a biophysical level. These biophysical models, known as Huxley models from the
work of Andrew Huxley (1957), result in complex mathematical formulations that are computationally
expensive and require numerous parameters. For this reason and in agreement with previous studies
(Gerritsen et al., 1998; Haeufle et al., 2010; van der Krogt et al., 2009), the computational biomechanics
research in this dissertation relied on a Hill-type formulation, described in section 3.4.

3.1.3 Sensors

Sensors are all those organs providing information to the central nervous system via nerve connections.
Sensors can be classified into three main functional categories: homeostatic sensors, interoreceptors,
and exteroreceptors. Homeostatic sensors provide information about the body’s internal state, helping
control internal body functions. Interoreceptors and exteroreceptors are more explicitly involved in
locomotion. Interoreceptors provide information about the body’s posture and movement. Examples of
interoreceptors are the vestibular organ (sensing head orientation), joint receptors (sensing when joint
motion reaches its boundaries), muscle spindles (sensing the length and velocity of the muscle fibers),
and Golgi tendon organs (sensing the force transmitted via the muscle tendon). Exteroreceptors provide
information about the environment (vision, hearing, tactile sense, taste, and smell).

Transmission of sensory information is not instantaneous and is subject to noise and delays (More
and Donelan, 2018). This feature is a crucial rationale for this dissertation, which aims to understand the
stabilizing role of tunable mechanical damping in fast perturbed legged locomotion prior to sensory-
based corrections. This interest in a mechanical response to ground perturbations motivates the lack of
sensor dynamics and sensor-based control in the biomechanical models and hardware implementations
discussed in this thesis.

3.1.4 The nervous system

The nervous system consists of two main parts: the central and the peripheral nervous systems. The
central nervous system (CNS) comprises the brain and the spinal cord, responsible for elaborating and
coordinating neuronal information. The peripheral nervous system (PNS) is the network of neurons that
connect the central nervous system to muscles and sensors.

Despite this division, the neuron serves as the functional unit of the entire nervous system. A neuron
consists of dendrites, axons, and synapses. Dendrites are the sites where neurons receive information
from other neurons or sensors. Axons are the shafts along which neuron information propagates.
Synapses are the sites where electrical nerve impulses are exchanged.

A neuron that propagates information between two or more neurons is known as an interneuron.
Interneurons’ function is to elaborate information and generate command signals. Thus, interneourons
form the central nervous system. On the contrary, the peripheral nervous system consists of efferent and
afferent neurons. Efferent neurons send information from the central nervous system to muscles, while
afferent neurons send information from sensors to the central nervous system.

The nervous system can control locomotion through feedback and feedforward control. Feedback
control relies on sensory information to correct desired movement trajectories online. Feedforward
control relies on internal models of the body-environment interaction to make predictions and plan
motion commands in advance. Given the emphasis on sensor-free locomotion regulation, the research in
this dissertation excludes feedback control, allowing only feedforward control to influence leg dynamics.
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3.2 Motion control by neuro-musculoskeletal system

How the different elements in the neuro-musculoskeletal system collaborate to produce motion is
complex, but it can be conceptually summarized as follows. The central nervous system selects
target joint trajectories when planning a desired movement. Joint coordination occurs because the
central nervous system converts these target trajectories into stimulation signals for the muscles. Once
stimulated, muscles move the body by exerting forces on the skeletal system. Meanwhile, the central
nervous system processes sensory information to update muscle stimulation (or target trajectories) based
on the body’s current state and environmental conditions. Figure 3.1 provides a visual intuition of such
complex interplay.

The neuro-musculoskeletal system operates using a combination of feedforward and feedback control.
The conversion of joint trajectories into muscle stimulation uses feedforward control, which also helps
compensate for time delays and noise affecting neuro-transmission. Correction of feedforward signals
based on the current state of the body-environment dynamics uses feedback control.

From an engineering perspective, the neuro-musculoskeletal system is a multi-input-multi-output
system with time-dependent nonlinear dynamics. This type of system is very challenging to investigate.
Furthermore, we can make limited direct measurements when the neuro-musculoskeletal system operates
in vivo. We can mainly record outside-body variables, such as body kinematics and forces exchanged
with the environment, and a few internal variables, such as brain or muscle electrical signals. This
limitation in sensing technology makes it even more challenging to unveil the mechanisms behind
the functionality of the neuro-musculoskeletal system. Among the methodologies to overcome these
problems and study the neuro-musculoskeletal system are the use of computational models and bio-
inspired robots.

3.2.1 Computational motor control

Computational motor control employs mathematical models and computer simulations of the neuro-
musculoskeletal system to test hypotheses about biological motion. These digital models provide an
experimental framework where unlimited variables can be measured and manipulated to assess their
influence on motion control. Similar access and control over the system’s variables are unattainable with
in vivo experiments due to technological constraints and ethical implications. Notice, however, that
computer simulations only approximate reality; validation of the simulated results is crucial.

Computer models of the neuro-musculoskeletal system also permit predictive analyses. Conceptually,
one could use simulations to predict and optimize the performance of a rehabilitation protocol in
restoring mobility. Similarly, one could simulate the interaction between an assistive device and the
neuro-musculoskeletal system to determine an optimal design. Although these simulations would include
inherent approximations, their outcomes could provide a valuable starting point for the prototyping of
these technologies.

An example of these concepts is the research of Stollenmaier et al. (2020b), to which I contributed
during my doctoral project. Notice that, despite my contribution, this manuscript is not part of this
dissertation due to its significantly different research objective. In this study, we used a biomechanical
model to simulate goal-directed arm movements in individuals with ataxia, a neurological disorder
causing overshooting in motion trajectories. The arm model was initially developed in Stollenmaier
et al. (2020a). We hypothesized that ataxia occurs when abnormal co-contraction levels affect the
patient’s initial arm posture. We simulated this hypothesis in the arm model and found it was sufficient
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to replicate the joint trajectories of ataxia patients (see Figure 3 in Stollenmaier et al. (2020b)). After
successfully replicating ataxia-like overshooting, we simulated the interaction between the arm model
and a wearable device to correct the motion impairment using minimalistic assistive strategies. We
found different approaches possible; however, our results underscore the importance of including
muscle dynamics for correctly prototyping the assistive device. Therefore, the neuro-musculoskeletal
simulations in Stollenmaier et al. (2020b) provided not only initial evidence for mechanisms explaining
ataxia overshooting, but also guidelines for prototyping potential corrective technology.

In the literature, other studies exist that use neuro-musculoskeletal models to explain impaired
movement generation (e.g., Bhanpuri et al. (2014), Mugge et al. (2012), Lassmann et al. (2023) and Song
and Geyer (2018)) and predict the response to wearable assistive devices (e.g., Petrič et al. (2019) and
Zhang et al. (2021)). These investigations, together with simulation studies on the neuro-biomechanics
of healthy motion (e.g., Geyer and Herr (2010), Bunz et al. (2023), Haeufle et al. (2018), Schreff et al.
(2022) and Dzeladini et al. (2014)), offer a digital environment to form initial hypotheses about how the
neuro-musculoskeletal system operates.

3.2.2 Bio-inspired robotics

Bio-inspired robotics uses robots as physical models to investigate biological hypotheses (Iida and
Ijspeert, 2016). As it should be evident from section 3.2, studying the neuro-musculoskeletal system
demands both system-level analysis and exploring the individual functionality of its components. This
practice is typical of robotic research, which requires individual design and system-level integration of
numerous mechatronics components. Therefore, building bio-inspired robots offers a natural approach
to investigating biological locomotion (Ijspeert, 2014).

As physical models, robots offer a good compromise between experimental accessibility and valid-
ity. Measuring, controlling, and reproducing tests with a robot is more accessible than during animal
experiments. Furthermore, robotic components can be designed and replaced individually, permitting sys-
tematic analysis and even experimentations with hazardous conditions (Ijspeert, 2014). Simultaneously,
robots are physical entities and thus obey the laws of physics (Nishikawa et al., 2007). Consequently,
physical phenomena that are difficult to simulate, such as friction, hydrodynamics, and collisions, occur
naturally and without approximations during robot experiments.

Designing bio-inspired robots to use as physical models requires accurately targeting the biological
mechanisms to test. This task is challenging as the neuro-musculoskeletal system is complex, highly
redundant, and performs multiple tasks simultaneously. An overly complicated robot design would con-
ceal the fundamental physics driving biological motion, thus compromising the investigation. Strategies
such as "templates and anchors modeling" have been proposed to facilitate targeting the proper robot
design (Full and Koditschek, 1999). However, the proper level of abstraction in bio-inspired robotic
research is still a matter of debate and requires accurate contextualization (Webb, 2001).

Several bio-inspired robots have been designed to understand legged locomotion. For example,
Spröwitz et al. (2013) developed a cheetah cub robot to investigate the benefits of pantographic-compliant
limbs in quadrupedal locomotion. Their design could produce robust dynamic gaits without sensory
feedback, indicating that body morphology plays an important role in motion robustness. Similar studies
have investigated the importance of passive dynamics (Collins et al., 2001; McGeer, 1990), tendon
compliance (Berkemeier and Desai, 1996), interlimb coordination (Crespi et al., 2013; Owaki et al.,
2013), and locomotion control (Manoonpong et al., 2007; Pfeifer et al., 1998). For more comprehensive
reviews, refer to these sources: Ijspeert (2014), Zhou and Bi (2012), and Webb (2001).
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Another significant advantage of bio-inspired robots is that they lead to the development of unconven-
tional technology (Iida and Ijspeert, 2016). An example is serial elastic actuation, inspired by muscle
compliance in biological movement and now used in various engineering applications (Lee et al., 2013).
Even unsuccessful attempts to replicate target biological capacities can help form new assumptions
about how the neuro-musculoskeletal system operates (Nishikawa et al., 2007).

It is worth noting that bio-inspired robotic research does not eliminate the need for simulation studies
or biological experiments. Instead, it offers a complementary experimental platform. For example,
Kalveram and Seyfarth (2009) proposed the concept of a “test trilogy”. In this methodological framework,
the authors propose bio-robotic experiments as critical tools for validating simulation models against
real-world physics. Functioning as “reality checkers", tests with robots can help justify behavioral
comparisons between simulated and observed biological data.

3.3 Hopping model

FMTU

ra

m

href

ls

lf

y

Δh (-)
(Ground)
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Figure 3.2: Biomechanical model used for simulating muscle-driven vertical hopping in Chapters 4 to 6. Figure
extracted from Figure 1b in Izzi et al. (2023).

The computational research in this dissertation implements simulations of a two-segment leg performing
vertical hopping. In Chapters 4 to 6, the vertical hopper is driven by a muscle-tendon unit, with the
model parameters based on human anatomy (according to Geyer et al. (2003)). Chapter 7 implements
a simplified version of the model, where knee actuation is reduced to a spring and damper in parallel.
In this simplified version, model parameters were chosen to match the robotic leg tested in the same
chapter.

The current section describes the muscle-driven vertical hopper, as illustrated in Figure 3.2– for
details about its simplified version or the robotic hardware, refer to Chapters 7 and 8. The biomechanical
structure of the muscle-driven model was developed in Geyer et al. (2003). It consists of a two-segment
leg with motion constrained to the vertical direction, allowing only a single degree of freedom, the knee
rotation. Each leg segment is equal to ls = 0.5m. The model’s mass is lumped at the hip and equal to
m = 80kg.
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3.4 Muscle model

A knee extensor muscle drives the model vertical hopping with an extending torque (T ) equal to:

T = ra FMTU

where ra is the lever arm at the knee joint, and FMTU is the force produced by the muscle-tendon unit.
For our studies, we used the muscle-tendon architecture developed in Haeufle et al. (2014b), with
activation dynamics from Hatze (1977); Rockenfeller et al. (2015). A more detailed description of these
models can be found in the next sections (section 3.4 and section 3.4.5, respectively). The knee extensor
muscle acts on the knee joint only during the stance phase, which is the hopping phase with ground-foot
contact. Outside the stance phase, the leg geometry is fixed, with knee angle corresponding to a leg
length l f = 0.99m. Tables 4.1, A1.1 and A2.1 contain the comprehensive lists of model parameters used
for implementing the hopping model in Chapters 4 to 6.

Given a specific muscle setting and stimulation, the model performs vertical hopping. We defined hre f

as the reference hopping height, i.e., the initial drop height resulting in the same apex height by the end
of one hopping cycle. We simulated fast perturbed locomotion by applying small step perturbations (∆h)
to the reference hopping height for chosen model settings. A step-down perturbation (∆h (+)) comported
an increment in the initial drop height, while a step-up perturbation (∆h (-)) a reduction. The hopping
motion is asymptotically stable if the change in drop height produced by a step perturbation tends to
zero over the following hopping cycles. The hopping is stable, but not asymptotically, if the change
remains constant. Finally, the hopping is unstable if the change increases over time.

Vertical hopping simplifies fast perturbed locomotion by constraining the dynamics to a single
dimension, the vertical axis. Despite being an approximation, this modeling choice facilitates the
analysis by reducing the number of redundant solutions for rejecting step perturbations. For example, in
planar hopping, hip-torque strategies can assist hopping stabilization by adjusting leg orientation (Shen
and Seipel, 2012). In our model, only the knee torque can regulate leg motion, thereby centering the
analysis on the functional role of the embedded tunable mechanical damping. While this simplification
facilitates our analysis, it also emphasizes the function of knee damping. Therefore, omitting concurrent
regulatory strategies in other joints likely influences our investigations. Limiting our research to the
knee joint was motivated by consistent evidence of its crucial role as an absorber of negative work
in downslope walking (Alexander et al., 2017; Lay et al., 2007; Montgomery and Grabowski, 2018),
acceleration and deceleration (Qiao and Jindrich, 2016), and landing from different heights (Zhang
et al., 2000). Nevertheless, future work should extend our studies to more comprehensive biomechanical
structures to understand the generalizability of our findings.

3.4 Muscle model

Haeufle et al. (2014a) created the Hill-type muscle model used in this dissertation’s computational
studies. As illustrated in Figure 3.3a, the model consists of four elements: a contractile element (CE), a
parallel elastic element (PEE), a serial elastic element (SEE), and a serial damper element (SDE). The
geometry of the muscle-tendon unit (MTU) is such that the CE and PEE operate in parallel against the
parallel SEE and SDE. Therefore, the force equilibrium in the muscle-tendon unit is:

FMTU = FCE +FPEE = FSEE +FSDE (3.1)

Due to the model geometry, if lMTU represents the muscle-tendon unit length, the following equivalences
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Figure 3.3: The muscle model implemented in this dissertation. a) Muscle-tendon unit and associated motor
neuron (top) and corresponding architecture of the Hill-type model (bottom). AD stands for Activation Dynamics
and converts the neuronal stimulus u into muscle activity level a. b) Sketches of the force-length and force-velocity
relations characterizing the contractile element (CE). c) Sketches of the force-length profiles characterizing the
serial elastic element (SEE) and parallel elastic element (PEE). d) Example of how the activation dynamics convert
a step stimulus u into a smooth rise of muscle activation level a.

also hold:

lCE = lPEE

lSEE = lSDE

lMTU = lCE + lSEE (3.2)

where li is the length of the i-th element in the muscle model. Identical equations characterize the
relationship between the elements’ velocities (l̇i). Therefore, the muscle model relies on an internal
equilibrium between the parallel dynamics of the contractile and parallel elastic elements and those
of the serial elastic and damper elements. The following provides a brief overview of how the model
describes the dynamics of each element. The explicit formulation of the various parameters in the
model is superfluous for understanding their overall function, and therefore it will be omitted. For more
information, refer to Günther et al. (2007); Haeufle et al. (2014a).

3.4.1 Contractile element (CE)

The contractile element captures the collective contraction of the active fibers in a biological muscle.
According to Hill-type experiments, the force produced by the contractile element exhibits force-length
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and force-velocity relations. The force-length relation is modeled as follows:

Fisom (lCE) = exp
{
−
∣∣∣∣ lCE/lCE,opt −1

∆Wlimb

∣∣∣∣νCE,limb
}

(3.3)

Equation (3.3) describes a bell curve with two limbs, one ascending (lCE ≤ lCE,opt) and one descending
(lCE > lCE,opt). ∆Wlimb and νCE,limb are constant parameters that characterize the bell curve’s width and
exponent for each limb, respectively. lCE,opt is a constant parameter that describes the muscle fiber length
for which the isometric force of the muscle fibers (Fisom) is maximal. Therefore, Fisom is a function of
only one state of the muscle-tendon unit, lCE .

To account for the force-velocity relation and activity dependence of the muscle fiber force, the
formulation of Fisom is extended as follows:

FCE,k
(
lCE , l̇CE ,a

)
= Fmax

aFisom +Arel,k

1− l̇CE
Brel,k lCE,opt

−Arel,k

 (3.4)

where k indicates parameters whose formulation depends on whether muscle fiber velocity is concentric
(l̇CE < 0) or eccentric (l̇CE > 0). According to eq. (3.4), FCE,k is a function of three state variables:
muscle fiber length (lCE), velocity (l̇CE) and activation level (a). With respect to l̇CE , eq. (3.4) describes
a hyperbola that characterizes the force-velocity relation; Arel,k and Brel,k set the hyperbola axes. During
concentric contraction (k = c), FCE,c reduces with larger concentric velocities, while FCE,e increases
with larger eccentric velocities during eccentric contraction (k = e). With respect to a, FCE,k increases
as muscle fibers are more excited and reduces otherwise. Equation (3.4) also implies that a scales the
curve of the force-velocity relation. Finally, Fmax represents the max isometric force produced by the
muscle fibers. This parameter serves to denormalize and scale eq. (3.4), allowing to simulate muscles
of different sizes and actuation capacities. Figure 3.3b illustrates the force-length and force-velocity
relations characterizing CE contraction dynamics.

3.4.1.1 The force-velocity relation

The force-velocity relation is a fundamental mechanical property of muscle physiology. It describes a
phenomenological dependence between muscle force and muscle contraction velocity. According to
Alcazar et al. (2019), the first mention of this property dates back to 1922, when Archibald Hill (1922)
observed that the force exerted by human muscles during in vivo experiments is greatest the slower the
motion.

Since then, numerous experiments with active shortening and lengthening of muscles (or muscle
fibers) have been conducted to determine the force-velocity relation’s shape (Alcazar et al., 2019). A
classic experimental protocol is the quick-release experiment (Haeufle et al., 2012b), where a muscle is
fixed at a desired length (usually the optimal length of isometric contraction) and fully activated. After
the initial contraction stabilizes, one muscle end is quickly released against a predefined resistance,
usually an attached mass. This process is repeated with multiple loads, resulting in different contraction
velocities. The force-velocity relation is eventually computed by fitting a mathematical function to the
measured force-velocity data pairs.

While it’s widely accepted that the shape of the force-velocity relation is nonlinear, the exact for-
mulation for the fitting function remains a topic of debate (Alcazar et al., 2019). A typical strategy
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Figure 3.4: The expected contribution of the force-velocity relation during fast perturbed locomotion. a) Reference
unperturbed hopping, occurring with an initial {FCE ,vCE} state. b) Step-up perturbation, causing lower impact
velocity at touchdown and a reduction in the system’s potential energy. The slower impact velocity comports a
reduction in the extensor’s eccentric velocity at touchdown (∆vCE,step-up), with the consequent reduction in muscle
fiber force due to the force-velocity relation. This force reduction should diminish muscle energy dissipation
during knee flexion, counteracting the effect of the step-up perturbation on the system’s potential energy. c)
Step-down perturbation, representing the inverse scenario to the step-up perturbation.

involves modeling the force-velocity relation with hyperbolic functions, separating it into eccentric and
concentric portions.

The concentric portion involves muscle fiber velocities that produce shortening contraction. In this
part of the force-velocity relation, the muscle fiber force decreases as the shortening velocity increases.
In his seminal study, Hill (1938) found that a rectangular hyperbola could fit the curvilinear distribution
of force-velocity data that characterizes shortening contraction experiments. Although later studies
demonstrated that Hill’s regression loses accuracy at very slow and very fast concentric velocities (Claflin
and Faulkner, 1985; Edman and Hwang, 1977; Edman et al., 1976; Julian et al., 1986), single-hyperbolic
fitting is still frequently used in Hill-type muscle models due to its good correlation with experimental
data (Alcazar et al., 2019). For example, the muscle model implemented in this dissertation (Haeufle
et al., 2014b) uses such a hyperbolic fitting.

The eccentric portion of the force-velocity relation involves lengthening muscle contractions. Contrary
to shortening contractions, faster lengthening velocities increase the force a muscle can produce. This
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can lead to force increments up to 1.8 times the maximum voluntary isometric force, as reported in Hahn
(2018).

The eccentric portion of the force-velocity relation has been studied less than the concentric part. As
reviewed in Alcazar et al. (2019), it is generally accepted that its shape is concave, with most force
augmentation occurring at low eccentric velocities (i.e., vCE close to zero). At moderate to high eccentric
velocities, the force augmentation levels off, resulting in a flattening profile of the force-velocity relation
(Krylow and Sandercock, 1997; Lännergren, 1978; Stienen et al., 1992). The results in Rijkelijkhuizen
et al. (2003) even suggest a potential decrease from maximal eccentric force when lengthening velocities
are sufficiently high. This evidence suggests that the force regulation by the eccentric side of the
force-velocity relation may become less effective for very fast lengthening contractions.

While the exact shape of the eccentric part of the force-velocity relation remains uncertain, muscles
must certainly dissipate mechanical energy during eccentric contractions. This is because muscles
are unidirectional actuators, capable of only exerting pulling forces. In a lengthening contraction,
muscle force and contraction velocity have opposite directions, generating negative mechanical power.
Consequently, the eccentric portion of the force-velocity relation could embed muscles with mechanical
viscous damping capacities. This feature would be useful against external disturbances.

Figure 3.4 offers an insight into how the force-velocity relation could aid in rejecting step perturba-
tions during hopping. In this example, an extensor muscle drives the hopping model, with reference
hopping occurring at an initial {FCE ,vCE} state. The knee flexion following touchdown leads to muscle
lengthening at a certain eccentric velocity. Let us now assume that a step-up perturbation occurs during
the initial flight phase. In this scenario, the reduction in drop height would diminish both ground
impact velocity and the hopper’s potential energy. The diminished impact velocity would produce a
slower initial knee flexion, resulting in less eccentric muscle velocity. With less eccentric velocity,
the force-velocity relation would diminish muscle force, promoting less energy dissipation and thus
compensating for the lost potential energy. The inverse would occur with a step-down perturbation:
the higher impact velocity and extra potential energy due to the perturbation would be compensated by
more muscle force and energy dissipation. What is common to both perturbed conditions is that hopping
robustness would be promoted by a viscous-like regulation inner to the muscle mechanics, thus without
needing sensing and feedback control.

Unfortunately, evidence supporting the functional damping role of the force-velocity relation is both
scarce and largely qualitative. Gerritsen et al. (1998) discovered that removing the force-velocity relation
from Hill-type models during multibody biomechanical simulations compromises the system’s ability to
reject dynamic disturbances. Similarly, Haeufle et al. (2010) found that removing or simplifying the
shape of the force-velocity relation in a minimalistic muscle-driven hopper diminished the system’s
ability to stabilize step perturbations. Both studies provide evidence for a stabilizing role of the force-
velocity relation, but they fail to quantify its exact contribution and interplay with other muscle properties.
In this regard, van der Krogt et al. (2009) suggested that the force-velocity relation may contribute less
to perturbation rejection than expected. Their study found that during unexpected changes in ground
stiffness, the interaction between feedforward stimulation and change in surface hardness was more
meaningful in correcting leg stiffness than muscle inner mechanics.

The suggested importance of the force-velocity relation for enabling stable motion in biomechanical
simulations, combined with the lack of a quantitative understanding of its contribution within the
nonlinear muscle contraction dynamics, has been a primary motivation for this dissertation’s research.
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3 Methodological background

3.4.2 Parallel elastic element (PEE)

The parallel elastic element approximates the passive elastic properties of muscle fibers’ bundles. The
mathematical formulation of PEE in the model of Haeufle et al. (2014b) is:

FPEE (lCE) =

{
0, lCE < lPEE,0

KPEE (lCE − lPEE,0)
νPEE , lCE ≥ lPEE,0

(3.5)

Equation (3.5) describes a nonlinear elastic element, with curvature defined by KPEE and νPEE . This
element only engages when muscle fibers have stretched beyond a certain threshold (lCE ≥ lPEE,0), a
property observed during isometric contraction experiments with biological muscles. Note that while
νPEE is a free parameter of the muscle model, KPEE comprises two additional free parameters in its
explicit formulation (here omitted). Figure 3.3c (right) illustrates the force-length profile characterizing
PEE dynamics.

3.4.3 Serial elastic element (SEE)

The serial elastic element captures the elastic properties of tendons and aponeuroses. Its mathematical
expression in Haeufle et al. (2014b)’s model is:

FSEE (lSEE) =


0, lSEE < lSEE,0

KSEE,nl (lSE − lSEE,0)
νSEE , lSEE,0 ≤ lSEE < lSEE,nll

∆FSEE,0 +KSEE,l (lSEE − lSEE,nll) , lSEE ≥ lSEE,nll

(3.6)

Equation (3.6) describes the serial elastic element as a nonlinear toe-zone with a linear continuation.
Below a certain threshold lSEE,0, the serial elastic element is not engaged in force production. In the
range of lSEE,0 ≤ lSEE < lSEE,nll , a nonlinear elastic force is produced as a function of lSEE . Here,
KSEE,nl and νSEE define the nonlinear curvature. For more extended stretching (lSEE ≥ lSEE,nll), the
serial elastic element produces a linear elastic force with stiffness coefficient KSEE,l . The parameter
∆FSEE,0 guarantees force continuity between the nonlinear and linear branches of the serial elastic
element. Figure 3.3c (left) illustrates the force-length profile characterizing SEE dynamics.

3.4.4 Serial damper element (SDE)

The serial damper element captures de-localized musculo-tendinous damping, consistent with obser-
vations of physiologically damped eigenoscillations in real muscles (Günther et al., 2007). SDE is
formulated by Haeufle et al. (2014b) as follows:

FSDE
(
lCE , l̇CE , l̇MTU ,q

)
= DSDE,max ·

(
(1−RSDE) ·

FCE
(
lCE , l̇CE ,q

)
+FPEE (lCE)

Fmax
+RSDE

)
·
(
l̇MTU − l̇CE

) (3.7)

According to eq. (3.7), the serial damper element produces a viscous damper-like force, with the damping
coefficient proportional to the muscle-tendon force (FMTU = FCE +FPEE). The coefficient RSDE , which
is ≤ 1, represents the damping at FMTU = 0; DSDE,max represents the maximum damping coefficient at
FMTU = Fmax.
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3.5 Decomposition algorithm

3.4.5 Activation dynamics

In this dissertation, muscle contraction dynamics during hopping simulations include the activation
dynamics from Hatze (1977); Rockenfeller et al. (2015). The activation dynamics describe the electro-
chemical processes that convert neuronal stimulation (u) into the activity of the contractile element (a).
Neuronal stimulation refers to the electrical signal that arrives at the muscle membrane, modeled by
a normalized continuous variable u ∈ [0,1]. Therefore, u represents the control signal for muscle con-
traction. A value of u = 1 implies complete recruitment of the muscle unit, whereas a value of u = 0
indicates the nervous system is not recruiting the muscle unit.

The normalized continuous variable a is the output of the activation dynamics and represents the
concentration of bound Ca2+-ions. Such concentration is associated with the number of attached cross-
bridges in the muscle fibers and thus defines the force the muscle unit exerts. a = 1 implies that the
maximum concentraction of Ca2+-ions is reached, resulting in maximal muscle contraction. Contrary
to u, a is never zero. Its minimum threshold is a = a0, where a0 indicates the minimum concentration
of bound Ca2+-ions persisting in the muscle when no neuronal stimulation is received. Therefore,
a ∈ [a0,1].

The activation dynamics link u and a as functions of time through the following nonlinear differential
equation:

ȧ(t) =
ν ·m

1−a0
· [u(t) ·ρ (ℓCErel ) · (1−a(t))1+1/ν · (a(t)−a0)

1−1/ν −(1−a(t)) · (a(t)−a0)] (3.8)

for which the following definitions hold

ρ (ℓCErel ) = ρc ·
((
ℓρ −1

)
/
(
ℓρ/ℓCErel −1

))
ρc = ρ0 · c

ℓCErel (t) = ℓCE(t)/ℓCE,opt

(3.9)

In eqs. (3.8) and (3.9), ν , m, ρ0, c, andℓρ are empirical values (for a more careful description, see
Rockenfeller et al. (2015)). It should be noted that eq. (3.8) includes a length dependency, expressed
by ρ (ℓCErel ). This feature is based on experimental evidence of a relation between the contractile
element’s length and the muscle fibers’ activity level. Figure 3.3d provides an intuitive example of how
the activation dynamics (AD) convert a step stimulus u into a smooth rise of muscle activity level a.

3.5 Decomposition algorithm

One research objective of this doctoral project was investigating damping-like regulation by the force-
velocity relation during fast perturbed locomotion. This requires measuring the amount of force
produced by the force-velocity relation, a quantity not available in biological experiments and not
directly accessible in Hill-type simulations. As indicated by eq. (3.4), the force produced by the muscle
fibers depends on nonlinear dynamics combining the contribution of the force-velocity relation with
other muscle properties, such as force-length relation and activation level. Therefore, we developed
the decomposition algorithm, a computational method to isolate and quantify the muscle fiber force
produced by the force-velocity relation during Hill-type simulations. This algorithm is a fundamental
contribution to this doctoral thesis. It enables a quantitative understanding of preflexes and eliminates
the need to restrain muscle contraction to unrealistic trajectories to study the individual contribution of
muscle inner mechanics.
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3 Methodological background

The decomposition algorithm is based on the concept of the total derivative. Given a time-dependent
function G = g(t) and a small time increment ∆t, the total derivative of G represents its best linear
approximation at t +∆t:

G(t +∆t) = G(t)+
dG
dt

(t)∆t + ε(∆t) (3.10)

where dG/dt is the total derivative of G calculated at t, and ε(∆t) is the approximation error. Notice
that the approximation error depends on the time increment ∆t. For an infinitesimal time increment dt,
the approximation error is zero. Therefore, given an initial time instance t0, the value of G at any desired
future time instance tx can be computed as:

G(tx) = G(t0)+
∫ tx

t0

dG
dt

(t)dt (3.11)

Intuitively, eq. (3.11) can be considered as the continuous form of eq. (3.10). The integral in eq. (3.11)
indicates that the change in G that occurs from t0 to tx is the continuous and cumulative summation of
the infinitesimal change of G across each integration step. Therefore, the integral of the total derivative
dG/dt describes the evolution of G as a function of time.

Let’s now generalise eq. (3.11) for a multi-input function G = g(x,y,z), where each input variable is
time-dependent, i.e., x(t), y(t), z(t). For the sake of simplicity, only three input variables are considered,
yet the following can be easily generalized to n-dimensions. The total derivative of G = g(x,y,z)
becomes:

dG
dt

=
∂G
∂x

dx
dt

+
∂G
∂y

dy
dt

+
∂G
∂ z

dz
dt

(3.12)

where Leibniz chain rule was applied and time-dependencies removed for clarity. ∂G/∂k indicates the
partial derivative of G with respect to its k-th input variable. Applying eq. (3.12) to eq. (3.11) gives:

G(tx) = G(t0)+
∫ tx

t0

(
∂G
∂x

dx
dt

+
∂G
∂y

dy
dt

+
∂G
∂ z

dz
dt

)
dt

= G(t0)+
∫ x(tx)

x(t0)

∂G
∂x

dx+
∫ y(tx)

y(t0)

∂G
∂y

dy+
∫ z(tx)

z(t0)

∂G
∂ z

dz

= G(t0)+∆Gx(tx)+∆Gy(tx)+∆Gz(tx) (3.13)

with ∆Gk(tx) =
∫ k(tx)

k(t0)
∂G
∂k dk and k indicating the k-th input variable. In eq. (3.13), each integral represents

the individual contribution of the k-th input variable to the change in G between t0 and tx. Therefore,
each ∆Gk(t) is a time-dependent function that describes the separate contribution of the k-th input
variable to the evolution of G in time t.

Equation (3.13) is the key formula implemented by our decomposition algorithm. According to
eq. (3.13), the decomposition algorithm exploits the total time derivative and the Leibniz chain rule
to reformulate the evolution in time of a multi-variable function G. In this reformulation, the separate
contribution of each input variable emerges explicitely. Section 4.2.3 describes the application of
the decomposition algorithm to the Hill-type formulation of muscle contraction. The main steps for
implementing the decomposition algorithm to simulated muscle contraction are:

1. Simulate the motion of a desired biomechanical model. In our study, we simulated vertical
hopping of a two-segment leg actuated by an extensor muscle.
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3.5 Decomposition algorithm

2. Record the time traces of the muscle model’s input variables throughout the simulated movement.
In our study, the input variables for the muscle model were muscle fiber length, velocity, and
activation level.

3. Compute the partial derivatives in eq. (3.13) from the analytical formulation of the muscle model
used for the simulations. In our study, the muscle model implemented the Hill-type formulation
defined in Haeufle et al. (2014b).

4. Numerically integrate these partial derivatives according to eq. (3.13), using the recorded values
of the muscle model’s input variables as integration nodes.

These steps collectively form the decomposition algorithm. We used this algorithm to compute offline
the change in muscle fiber force produced by each input variable of the muscle model. Precisely, the
change produced by the muscle fiber velocity quantifies the force contribution of the force-velocity
relation to muscle contraction (see Chapter 4 for more details).
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4 Muscle prestimulation tunes velocity preflex in
simulated perturbed hopping

Hill-type muscle models feature the force-velocity relation, a phenomenological function that char-
acterizes the viscous-like behavior of muscle fibers observed during contraction experiments. It is
hypothesized that the force-velocity relation grants muscle fibers viscous mechanical damping. However,
validating this hypothesis is complex due to the highly nonlinear dynamics of muscle contraction. For
this reason, in vitro studies use unrealistic contraction trajectories to isolate the contribution of the
force-velocity relation to muscle force generation. Computer simulations with Hill-type models can
simulate more complex conditions. Nevertheless, even their mathematical formulation nonlinearly
combines the force-velocity relation with other factors, such as the force-length relation and muscle
fibers’ activity level.

In this study, we present the decomposition algorithm, a novel approach to isolate and quantify the
force produced by the force-velocity relation in Hill-type musculoskeletal simulations. We used this
technique to analyze the muscle response to ground-level perturbations in simulated vertical hopping.
Our analysis focused on the preflex phase—the first 30 ms after impact—where neuronal delays render
a controlled response impossible. We found that muscle force at impact and dissipated energy increase
with perturbation height, helping reject the perturbations. However, the muscle fibers reject only 15% of
step-down perturbation energy with constant stimulation. An open-loop rising stimulation, observed in
locomotion experiments, amplified the regulatory effects of the muscle fiber’s force-velocity relation,
resulting in 68% perturbation energy rejection. We conclude that open-loop neuronal tuning of muscle
activity around impact allows for adequate feedforward tuning of muscle fiber viscous-like capacity,
facilitating energy adjustment to unexpected ground-level perturbations.

Note: a large portion of this chapter uses content published in Scientific Reports (Izzi et al., 2023).
For details on this journal article, including the list of authors and my contribution, see Section 2.1.1.
Copyright license: https://creativecommons.org/licenses/by/4.0/.

4.1 Introduction

Muscles are smart actuators; they generate forces and movements and contribute to controlling them.
Thanks to muscles’ nonlinear mechanical characteristics, they can react to unexpected perturbations
instantly (Haeufle et al., 2020a,b; John et al., 2013; Patla, 2003; van der Krogt et al., 2009) and without
the inherent delays of neuronal reflexes (More and Donelan, 2018). This zero-delay capacity is known as
“preflex” (Loeb, 1995). Preflexes allow mitigating neuro-transmission delays, which otherwise produce
significant reaction latencies (animal size dependent, > 30ms . . .50 ms) and hinder the control of quick
movements (More and Donelan, 2018; Patla, 2003).
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4 Muscle prestimulation tunes velocity preflex in simulated perturbed hopping

Among the mechanical properties of muscle fibers is the capacity to produce more negative power
when lengthening (eccentric contraction) than positive power when shortening (concentric contraction)
(Biewener, 1998; Herzog, 2018; Joyce et al., 1969; Siebert and Rode, 2014). Macroscopic muscle
models describe this asymmetry as a “force-velocity relation” (Haeufle et al., 2014b; van Soest and
Bobbert, 1993), i.e., a phenomenological relation between muscle fiber velocity and force (fig. 5.1d).

Simulation studies have shown that the force-velocity relation can contribute to the stability of hopping
and walking (Gerritsen et al., 1998; Haeufle et al., 2010; John et al., 2013). However, it is still unclear
how the force-velocity relation contributes to the preflex mechanics. Previous research argued that the
force-velocity relation implements a stabilizing velocity preflex in muscle fibers (Geyer et al., 2003;
Haeufle et al., 2010). If the impact velocity changes due to an unexpected ground height, the muscle’s
force-velocity characteristics would instantly lead to an adjusted force (fig. 5.1a). Similar self-regulating
mechanisms are documented for parallel-elastic viscous damper systems during legged locomotion
(Abraham et al., 2015; Heim et al., 2020; Mo et al., 2020).

Much functional research concerns the existence and shape of the force-velocity relation, and is
often qualitative (Gerritsen et al., 1998; Haeufle et al., 2010). Multiple mechanisms rejecting ground
perturbations are plausible; variables such as fiber length and neuronal activity shape the nonlinearity of
muscle dynamics. For example, a ground perturbation during the rise of the muscle stimulation would
trigger a change of muscle excitation at touchdown, leading to velocity-dependent regulation of muscle
force similar to a velocity preflex. Furthermore, a change in impact velocity can also alter the muscle
fiber stretch, which indirectly adapts muscle forces. Therefore, a quantitative analysis is necessary to
test if the force-velocity relation leads to a velocity-dependent rejection of external disturbances, and if
so, to what extent.

In this study, we use computer simulations to quantify velocity-dependent regulation of muscle fiber
force when ground perturbations affect vertical hopping. The novelty of our analysis consists in the
explicit quantification of the preflex response generated by the muscle fibers’ force-velocity relation,
force-length relation, and neuronal activity. With this approach, we study the complex nonlinearity of
muscle contraction, discerning the net contribution of the force-velocity relation from other regulating
factors. Our results suggest that the force-velocity relation can regulate muscle forces during perturbed
hopping in a velocity-dependent manner. However, we observe a substantial, stabilizing response only if
low-level neuronal stimulation interacts with the muscle’s force-length-velocity characteristics.
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Figure 4.1: Study design. (a) Step perturbations present a challenge during agile locomotion because neuro-
transmission delay affects a considerable fraction of the stance duration. Because of their instantaneous response
to ground disturbances, the mechanical properties of muscle-tendon units may be critical to prevent falling. (b)
We simulate vertical hopping of a massless, two-segment leg model to investigate the stabilizing response of
the muscle fiber’s force-velocity relation to step disturbance ∆h. Here, hre f indicates the unperturbed periodic
hopping height, and y is the vertical position of the point-mass m. Leg length during flight and leg segment length
are indicated by l f and ls, respectively. FMTU is the force exerted by the muscle-tendon unit and ra the associated
lever arm. (c) To stimulate the muscle and generate periodic hopping, we apply a ramp signal, with prestimulation
value u0 and slope uβ . In Preflex-Const, the muscle stimulation starts at the actual touchdown and stays constant
(u = u0) until the end of the preflex duration (30ms post-touchdown, indicated by the colored bar, with t = 0s
being touchdown). In Preflex-Rising, the muscle stimulation starts before the expected touchdown with u0 = 0.
Here, the stimulation onset is fixed in time and thus independent of the actual touchdown timing. We use the
activation dynamics in Hatze (1977); Rockenfeller et al. (2015) to convert the stimulation signal u into muscle
activity a. We tuned Preflex-Const and Preflex-Rising to produce the same muscle activity at touchdown during
unperturbed hopping: y shows the vertical trajectory of the center of mass for each stimulation strategy. Initial
and final mass heights y are identical for each trajectory, indicating that both Preflex-Const and Preflex-Rising
produced periodic hopping. (d) For our simulations, we use the Hill-type muscle model developed in Haeufle
et al. (2014b), which includes a contractile element (CE), a parallel elastic element (PEE), a serial elastic element
(SEE), and a serial damper element (SDE). The force-velocity relation models the dependence of the muscle
fiber force FCE on the muscle fiber velocity vCE . Shortening velocities (negative vCE ) define the concentric region
of the force-velocity relation, while lengthening velocities (positive vCE ) define the eccentric region. (e) Length
(lCE ), velocity (vCE ), and force traces (FCE ) of the muscle fibers during unperturbed hopping with Preflex-Const
and Preflex-Rising 45



4 Muscle prestimulation tunes velocity preflex in simulated perturbed hopping

4.2 Methods

4.2.1 Musculoskeletal model

For our study, we used a modified version of the musculoskeletal model developed in Geyer et al. (2003),
with identical kinematics but a revised muscle-tendon unit (Haeufle et al., 2014b). The model is a
minimalist representation of vertical, perturbed hopping (fig. 4.1a). It consists of a two-segment leg with
total mass lumped at the hip and motion constrained to the vertical axis (figure fig. 4.1b). During stance,
an extensor muscle-tendon unit actuates the knee joint with a force outcome FMTU that corresponds to a
torque

Tknee = ra FMTU (4.1)

with ra being the muscle lever arm. During the flight phase, the knee motion was always constrained,
and the leg length was fixed to l f . This solution guaranteed the same leg geometry at touchdown despite
the absence of antagonistic muscles in our model. Because of the simplified flight phase, we could
reduce the analysis of each hopping scenario to the first hopping cycle (apex-to-apex). Each simulation
started with the model in flight phase. Touchdown occurred when the mass vertical position y ≤ l f , and
take-off when either y > l f or the ground reaction force Fleg ≤ 0N (positive Fleg was upwards directed).

For our muscle-tendon unit, we used the Hill-type model in Haeufle et al. (2014b). It consists of four
elements, as shown in fig. 4.1d: a contractile element (CE), a parallel elastic element (PEE), a serial
elastic element (SEE), and a serial damping element (SDE). These four components fulfill the force
equilibrium:

FMTU = FCE +FPEE = FSEE +FSDE (4.2)

The contractile element represents the collective contribution of the muscle fibers to muscle contraction.
In our model, the parallel elastic element (PEE) engages when lCE > 95% lopt , i.e., when the muscle
fiber length (lCE) is close to the muscle fiber optimal length (lopt). This condition never occurred in our
simulations, which means that in our study, the force produced by the muscle fibers (FCE) was equal to
the total force produced by the muscle-tendon unit (FMTU ).

The force of the contractile element FCE is a nonlinear function of the fiber velocity vCE (force-velocity
relation), fiber length lCE (force-length relation), and muscle activity a, the latter in turn dependent on the
neuronal stimulation u received by the muscle fibers. The force-velocity relation comprises two regions,
shown in fig. 4.1d: the concentric and the eccentric contraction regions, characterized by shortening
velocities (vCE ≤ 0m/s) and stretching velocities (vCE > 0m/s) of the muscle fibers, respectively. The
force-velocity relation predicts a flattening profile of FCE for increasing eccentric velocities. Such
flattening is suggested by experimental data and commonly implemented in biomechanical models; for
an overview see Fig.3 of Klute et al. (2002).

We implemented our model in Simulink R2018a (Mathworks Inc., Natick, MA, USA). We used ode45
as numerical solver, with a maximum step size of 1 × 10−4 s, and absolute and relative error tolerances
of 1 × 10−8. Model parameters are listed in Table 4.1. A more in-depth list of model variables can be
found in the electronic supplementary materials (Table A1.1). Note that our model requires a large value
for the maximum isometric force Fmax to compensate for the lack of additional muscle-tendon units, as
explained in Geyer et al. (2003).
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4.2.2 Muscle stimulation

This study focuses on the preflex phase, i.e., the first 30 ms after touchdown, during which neuronal
feedback is absent because of neuronal delays (More and Donelan, 2018). To initialize hopping, muscle
fibers receive a ramp signal as neuronal stimulus u(t) (fig. 4.1c). The ramp signal is inspired by the
observation that knee extensor’s activity rises during locomotion around and after impact (Moritz and
Farley, 2004; Müller et al., 2015, 2020). We implemented two stimulation protocols: Preflex-Const (uC)
and Preflex-Rising (uR).

With Preflex-Const, the ramp signal is kept constant during the first 30ms after touchdown. After the
preflex phase, the muscle stimulation rises linearly:

uC(t) =

{
u0 +uβ (t − tT D −δC) , for t > tT D +δC

u0 , otherwise
(4.3)

where u0 is the muscle prestimulation level, uβ the slope of the ramp stimulus, tT D the time of touchdown,
and δC = 30ms the neuronal delay. The Preflex-Const protocol enabled us to study the isolated response
of the muscle fibers’ inherent mechanical properties. The Preflex-Const protocol also served as design
reference for Preflex-Rising.

With Preflex-Rising, the muscle stimulation u(t) rises linearly starting 54 ms before the expected
touchdown, with the same linear coefficient as in Preflex-Const (uβ ):

uR(t) =

{
uβ (t − t∗T D +δR) , for t > t∗T D −δR

0 , otherwise
(4.4)

where t∗T D is the expected touchdown event, i.e., the time in which touchdown occurs during unperturbed
hopping, and δR = 54ms. We applied the particular time offset δR to ensure that both Preflex-Rising
and Preflex-Const produced unperturbed periodic hopping with the same amount of muscle activity
at touchdown. Therefore, Preflex-Const and Preflex-Rising guarantee the same muscle pre-activation
level at touchdown, as shown by the a-signal in fig. 4.1c. However, while the onset of Preflex-Const
depends on the real touchdown tT D, Preflex-Rising is an open-loop signal with the onset at the expected
touchdown (t∗T D), and therefore independent of the actual ground height. The Preflex-Rising protocol
allowed comparing Preflex-Const results with those of a more biologically feasible stimulation, for
which inherent mechanics and feedforward control of muscle fibers interact to generate a first response
to ground perturbations.

Regardless of the stimulation protocol in use, our model includes the activation dynamics described in
Hatze (1977); Rockenfeller et al. (2015), which consists of a first-order differential equation incorporating
fiber length dependency. The activation dynamics turn the stimulation signal u(t) into muscular activity
a(t) before reaching muscle fibers, limiting muscle activity between 0.005 and 1.

4.2.3 Muscle fiber force decomposition

We aimed to quantify the force-velocity relation’s contribution to the force produced by the muscle
fibers during the preflex phase. We further separated the contributions of fiber elasticity and muscle
activity. In our simulations, the muscle fibers exert a force

FCE(t) = fCE (vCE (t) , lCE (t) ,a(t)) (4.5)
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4 Muscle prestimulation tunes velocity preflex in simulated perturbed hopping

which is a nonlinear function of the muscle fiber velocity vCE(t), length lCE(t), and muscle activity a(t).
For better readability, we will omit the time dependency in the following.

According to what described in section 3.5, we can separate the three contributions by interpreting
fCE as follows:

fCE =
∫ tx

tT D−1

d fCE (vCE , lCE ,a)
dt

dt +F0
CE (4.6)

where F0
CE is the force exerted by the muscle fibers immediately before touchdown, tT D−1 is the time

instance just before touchdown, and tx any later time within the stance duration. After applying the chain
rule in eq. (4.6), we can rewrite eq. (4.5) as the sum of four components:

FCE = FV
CE +FL

CE +FA
CE +F0

CE

FV
CE =

∫ tx

tT D−1

∂ fCE

∂vCE
dvCE

FL
CE =

∫ tx

tT D−1

∂ fCE

∂ lCE
dlCE

FA
CE =

∫ tx

tT D−1

∂ fCE

∂a
da

(4.7)

where FV
CE is the force contribution of the force-velocity relation, FL

CE of the force-length relation, and
FA

CE of the muscle activity, the latter in turn associated with the stimulation signal received by the muscle
fibers.

We implemented this decomposition algorithm offline, using the trapezoidal rule to solve each integral
in eq. (4.7) numerically (cumtrapz, Matlab R2018a, Mathworks Inc., Natick, MA, USA). Touchdown
(t = tT D) occurs instantly in our model. Hence, we computed the initial values of the numerical
integration of eq. (4.7) algebraically:

FL
CE(tT D) = FA

CE(tT D) = 0

FV
CE(tT D) = FCE(tT D)−F0

CE
(4.8)

Equation (4.8) shows that changes in muscle fiber force at touchdown must derive from the contribution
of the force-velocity relation since muscle fiber length (lCE) and activity (a) remain constant at the
instantaneous ground impact.

4.2.4 Hopping motion and perturbation modeling

To explore the contribution of muscle fibers to preflexes during perturbed hopping, we established
reference hopping conditions for both stimulation protocols, i.e., Preflex-Const and Preflex-Rising.

We started by tuning the Preflex-Const stimulus to produce periodic hopping with physiologically
plausible muscle activation values: prestimulation value a0 = 0.11, reaching 90 % saturation in 117 ms.
Setting u0 = 0.15 and uβ = 10 resulted in vertical hopping with 10.6 cm apex height (hre f ) and the
muscle activity shown in fig. 4.1c. The resulting stance duration was 255 ms and the hopping frequency
1.8 Hz, consistent with periodic hopping investigated by previous research (Geyer et al., 2003). Although
the Preflex-Const stimulation uC remained constant throughout the preflex phase, in accordance to
eq. (4.3), a small increase of muscle activity a occurred within the preflex duration (see bottom plot,
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green line in fig. 4.1c). This increase is a result of the activation dynamics’ dependency on the muscle
fiber length and stretch throughout the preflex duration.

We designed the Preflex-Rising stimulation using Preflex-Const as reference: we set δR = 54ms to
have the same amount of muscle activation a at touchdown (a0 = 0.11), and uβ = 10 for an equal rate of
muscle stimulation – producing 90 % saturation of a-signal in 70 ms after touchdown. These settings
resulted in a Preflex-Rising muscle activity comparable to that produced by Preflex-Const, as shown in
fig. 4.1d. The major difference is a time shift due to the lack of a constant stimulation phase during the
preflex. The Preflex-Rising stimulation produced periodic hopping with an apex height hre f of 5.2 cm, a
stance duration of 151 ms, and a hopping frequency of 2.8 Hz. These features imply that Preflex-Rising
caused stiffer reference hopping than Preflex-Const, as also seen by the smaller change in the lCE and
vCE time traces in fig. 4.1e. Nonetheless, the characteristics of the stiffer reference periodic hopping
remain in line with earlier studies (Geyer et al., 2003).

A second difference in the periodic hopping associated with Preflex-Rising and Preflex-Const was
the muscle fiber’s force at touchdown: 179 N during Preflex-Rising, and 1260 N during Preflex-Const.
The difference in touchdown conditions occurs as the muscle stimulation starts before touchdown in the
periodic hopping caused by Preflex-Rising. As a result, muscle fibers are shortening at ground contact
with Preflex-Rising, and this causes the concentric side of the force-velocity relation to diminish the
muscle fiber force at touchdown. Figure 4.1e further illustrates the time trace of FCE for both stimulation
protocols.

After selecting these reference hopping conditions for the two investigated stimulation protocols, we
simulated unexpected ground perturbations by applying changes ∆h to the reference hopping height. We
applied a total of six height perturbations, consisting of two step-up (∆h = −5.0 cm and −2.5 cm) and
four step-down perturbations (∆h = 2.5 cm, 5.0 cm, 7.5 cm and 10.0 cm). Hence, ground perturbations
ranged from −5 % to 10 %, in reference to a leg length of l f = 99cm. Limiting the largest step-up
perturbation to −5cm was because hre f = 5.2cm during reference periodic hopping with Preflex-Rising.

The apex-return map visualizes the stability of Preflex-Const and Preflex-Rising reference hopping
against the tested step perturbations (fig. 4.2). The apex-return map plots each tested drop height
(h0 = y(tT D)− l f ) against the apex height at the end of the first hopping cycle (h1) – which would
become the follow-up drop cycle height. A horizontal apex-return profile would show complete rejection
of any ground disturbance since any perturbation intensity will produce a return apex coincident with
the reference hopping height. If the apex-return profile coincides with the diagonal line, the result is
periodic hopping at the perturbed hopping height. The hopping height would not converge back to the
initial reference hopping height, and the perturbation would not be rejected. Finally, any apex-return
profile with a slope outside the area enclosed by (1) the diagonal line and (2) its perpendicular line at the
periodic hopping height represents unstable hopping: the return apex will move away from the reference
hopping height at each new hopping cycle.

Figure 4.2 shows that reference hopping of Preflex-Const and Preflex-Rising were asymptotically
stable for the set of step perturbations studied here. Preflex-Rising showed faster rejection of the
step-down perturbations, based on its more horizontal apex-return profile in fig. 4.2.
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Figure 4.2: Apex return map for Preflex-Const (green) and Preflex-Rising (red). h0 is each initial drop height
tested in our study, and h1 each associated return apex after one hopping cycle. Notice that h1 would be the
initial drop height for the following hopping cycle during continuous hopping. Intersections with the diagonal
line represent periodic hopping heights. The rather horizontal return-map for Preflex-Rising around its periodic
hopping height represents a faster rejection of ground perturbations: the arrows indicate the faster convergence to
periodic hopping within fewer hopping cycles.

4.3 Results

4.3.1 Touchdown response (at t = 0ms)

At touchdown, Preflex-Const produced little adjustments of muscle fibers’ force in response to ground
perturbations, while Preflex-Rising produced larger adjustments. This finding is visible at the touchdown
events in fig. 4.3, indicated by circle symbols. Figure 4.4a shows that during Preflex-Const, the muscle
fiber force FCE ranged from 1.15 kN to 1.35 kN at impact. Also, changes in FCE became smaller as the
drop height increased. During Preflex-Rising, FCE at impact displayed a wider range of adjustment (from
0.06 kN to 4.20 kN, fig. 4.4b). Here, the majority of change occurred along the step-down perturbations.
This finding is expected since with Preflex-Rising, the concomitant effects of delayed ground impacts
and rising stimulation produce larger muscle excitation at touchdown during step-down perturbations.

By separating the individual components contributing to the muscle force at touchdown, it becomes
clear that different mechanisms lead to the touchdown adjustment of FCE (fig. 4.4a,b), depending on
the stimulation protocol. During Preflex-Const, the force-velocity relation was the main factor driving
FCE adjustment, as shown by changes in FV

CE and constant values of F0
CE across the tested conditions

(fig. 4.4a). During Preflex-Rising, changes in both FV
CE and F0

CE produced FCE adjustment, with F0
CE

contributing the most (fig. 4.4b). This shows that the adjustment of muscle stimulation at touchdown,
which occurs during Preflex-Rising but not during Preflex-Const, plays a major role in adjusting the
initial preflex response to the perturbation intensity.

We hypothesized that the force-velocity relation contributes to regulate ground perturbations by means
of a velocity preflex. Such a velocity-dependence can be seen when plotting the force component FV

CE
against muscle fiber velocities vCE at impact (fig. 4.4c,d). The plot reveals that the touchdown event of
Preflex-Const trials always occurred in the eccentric contraction, and that increasing drop heights led to
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Table 4.1: Model parameters, adapted from (Geyer et al., 2003).

Parameter Value

Body weight m 80 kg
Gravitational constant g 9.81 m/s2

Assumed flight leg length ℓf 0.99 m
Segment length ℓs 0.5 m
Optimum length ℓopt 0.1 m
Lever arm ra 0.04 m
Maximum isometric force Fmax 22 kN
Activation dynamics time constant τ 88.5 ms

faster vCE but flatter adjustment of FV
CE . The flattening of FV

CE adjustment is a result of the eccentric side
of the force-velocity relation in our muscle model, which predicts a decrease in the velocity-produced
adjustment of the muscle force as vCE increases (fig. 4.1d). No flattening adjustment of FV

CE occurred
during Preflex-Rising trials. In contrast, the rising muscle stimulation caused an almost linear trend along
step-down perturbations. Furthermore, during Preflex-Rising trials, touchdown occurred in concentric
contraction. Exceptions were the two step-up perturbations, which produced touchdown with almost
steady conditions (|vCE |< 0.01m/s) and minimal muscle activity due to the short time for the muscle
stimulation to rise.

4.3.2 Preflex response (t = 0ms to 30ms)

Work loop trajectories of Preflex-Const trials were almost identical during preflexes (t = 0ms to 30ms).
They mainly differed by the amount of stretch reached by muscle fibers at the end of the preflex duration,
shown by the box symbols in fig. 4.3a shifting to the right. Hence, differences in the muscle fiber
velocity between trials resulted in a minimal adjustment of the muscle fiber force throughout the preflex
duration. Therefore, in Preflex-Const trials, increased energy dissipation during preflexes was mainly
caused by larger fiber stretch.

In contrast, work loop trajectories of Preflex-Rising trials show more complex preflex adjustments,
visible by the variety of work loop shapes (fig. 4.3b). Step-up perturbations of higher intensity resulted
in more eccentric stretch of muscle fibers and lower rise in muscle fiber force during preflexes, as shown
by the two darker lines in fig. 4.3b. This trend emerges because larger step-up perturbations move the
touchdown event closer to the onset of muscle stimulation. This leads to less excited and, therefore,
more compliant muscle fibers during preflexes. For instance, the −5.0 cm step-up perturbation shifted
the touchdown event about 30 ms before the muscle stimulation onset, making the muscle fibers relaxed
for 99 % of the preflex phase and dissipate almost no energy. The step-down perturbations consisted of
an initial phase of concentric shortening, followed by an eccentric stretch of the muscle fibers. Larger
perturbations caused more prominent eccentric phases with larger muscle fiber forces, resulting in more
energy dissipated by muscle fibers during preflexes.

To investigate the amount of energy regulation, we calculated the change in muscle fiber work during
preflexes in response to each ground perturbation (∆WCE , green lines in fig. 4.5). The light-blue line
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Figure 4.3: Muscle fiber work loop results for (a) Preflex-Const and (b) Preflex-Rising. Data is plotted from
touchdown ◦ to take-off △. The preflex phase is emphasized with thicker lines. Each □ indicates the end of the
preflex duration; each * indicates mid-stance. The drop height increases from darker to lighter colors: the darkest
and lightest work loops are produced by the largest step-up and step-down perturbations, respectively. Reference
hopping conditions are colored green and red for Preflex-Const and Preflex-Rising, respectively.

(∆EP in fig. 4.5) indicates the amount of potential energy altered by each step perturbation. As such,
∆WCE matching ∆EP indicates the full rejection of ground perturbations by the end of the preflex phase.

Results show that Preflex-Rising produced a consistently better regulation of muscle fiber work than
Preflex-Const during step-down perturbations. For example, during the largest step-down perturbation,
∆WCE = 53.4J with Preflex-Rising, and ∆WCE = 11.9J with Preflex-Const. This means that Preflex-
Rising could reject 68 % ∆EP, while Preflex-Const only 15 % ∆EP.

Preflex-Const adapted well to step-up perturbations by reducing muscle fiber work (negative x-axis,
fig. 4.5a). During the largest step-up perturbation, ∆WCE = −7.5J with Preflex-Const, meaning 19 %
∆EP rejection. In contrast, Preflex-Rising failed to adjust muscle fiber work during step-up perturbations
(negative x-axis, fig. 4.5b). Instead, muscle fiber work slightly increased: ∆WCE was equal to 1.0 J and
0.3 J for −2.5 cm and −5.0 cm step-up perturbations, respectively.

We hypothesized that the force-velocity relation is important to regulate the muscle fiber work in
response to perturbed ground contacts. We were able to test our hypothesis with our new approach,
separating the components that produce ∆WCE . We identified different principles of work regulation
between Preflex-Const and Preflex-Rising. During Preflex-Const, we found a similar contribution from
the force-velocity relation (∆WV

CE , dark-blue line), force-length relation (∆W L
CE , red line), and muscle

excitation (∆W A
CE , yellow line). In particular, ∆WV

CE contributed the least to ∆WCE during Preflex-Const
trials. In contrast, during Preflex-Rising ∆WV

CE contribution was predominant over ∆W L
CE and ∆W A

CE .
These results show that by adjusting muscle prestimulation at touchdown, the regulatory effect of the
force-velocity relation on the muscle fiber work is most effective.

4.4 Discussion

In this study, we tested whether muscle fibers can produce a velocity preflex, i.e., a mechanical velocity
feedback, to reject step perturbations, and how much the force-velocity relation contributes. We tested
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Figure 4.4: Touchdown results. (a, b) Force values: FCE is the net muscle fiber force, FV
CE the force component due

to the force-velocity relation and F0
CE the muscle fiber force just before touchdown. (c, d) Touchdown dependence

of the muscle fiber force component due to the force-velocity relation (FV
CE ) on the muscle fiber velocity (vCE ). (a,

c) Results for Preflex-Const, with reference hopping condition in green. (b, d) Results for Preflex-Rising, with
reference hopping condition in red.

two stimulation protocols; in Preflex-Const, the stimulation of muscle fibers is kept constant around
impact as an artificial measure to isolate the mechanical contribution of the muscle fibers to preflexes.
The more physiologically plausible Preflex-Rising case permits to study the interplay between low-
level control and muscle fibers’ mechanical properties. Thanks to our suggested analytical approach
to quantify force components produced by muscle fibers’ mechanical properties, we found that the
force-velocity relation does not produce a substantial velocity preflex in isolation, i.e., it produces only a
minor adjustment of muscle fiber’s force to variable impact velocity. However, its regulating effect can
be maximized by feedforward control.

4.4.1 Reflection on literature hypothesis

By completely removing the force-velocity relation, previous research showed that the force-velocity
relation is crucial to reject dynamic perturbations (Gerritsen et al., 1998; Haeufle et al., 2010; John et al.,
2013). It was suggested that the force-velocity relation stabilizes locomotion by providing damping
capacities to the muscle fibers (Geyer and Herr, 2010; Geyer et al., 2003; Haeufle et al., 2010). According
to this hypothesis, in the event of a sudden step perturbation, the force-velocity relation would adjust the
muscle fiber force in response to the new impact velocity. With this velocity preflex, that is, a mechanical
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Figure 4.5: Change in muscle fiber work caused by each step perturbation (circles) with respect to the reference
hopping condition. ∆EP (light blue) is the amount of work adjustment required to reject, within the preflex
duration, the potential energy change caused by each step perturbation. ∆WCE (green) is the net change in muscle
fiber work. ∆WV

CE (dark blue) is the change in muscle fiber work induced by the force-velocity relation; ∆W L
CE (red)

by the force-length relation; ∆W A
CE (yellow) by the muscle excitation. (a) Preflex-Const and (b) Preflex-Rising.

velocity feedback embedded in the muscle fibers, the force-velocity relation can mitigate delays caused
by neuro-transmission and reduce feedback control by the nervous system.

By explicitly quantifying the preflex response of muscle fibers during perturbed hopping with constant
muscle stimulation around impact (Preflex-Const), we observed that the muscle fiber force does, indeed,
adjust to the perturbed impact velocity because of the force-velocity relation (fig. 4.4a) as previously
hypothesized. However, this regulatory action of the force-velocity relation was small and quickly faded
(< 5ms) during preflexes (Figure A1.1a, in supplementary material). As a result, the force-velocity
relation produced minimal adjustment of the muscle work and had little effect on rejecting the potential
energy induced by each step perturbation (fig. 4.5a).

One aspect that seems to limit the contribution of the force-velocity relation is its flattening shape along
the eccentric side (fig. 4.1d). It predicts a diminishing influence on the muscle fiber force for sufficiently
large muscle fiber velocities. Inspection of the time traces (Figure A1.1-A1.2, in supplementary material)
confirms that shortly after touchdown, a rapid increase in the stretching velocity of muscle fibers
occurs, leading to a convergence of multiple FV

CE trajectories. This convergence explains why work loop
trajectories of Preflex-Const trials were mostly aligned during the preflex duration (fig. 4.3a).

Our Preflex-Const tests reveal a limited energy regulation by the mechanical damping action associated
with the force-velocity relation. Still, some energetic adaptation is achieved (fig. 4.5a), but this is rather
a result of the change in muscle fiber stretch during preflexes, as can be seen from the area under the
thick lines in the work loops (fig. 4.3a).

Overall, our simulation results of Preflex-Const support the literature hypothesis about a velocity
preflex induced by the force-velocity relation in musculoskeletal models. We also demonstrate its
inefficacy in regulating ground perturbations in a purely passive mechanical manner. In contrast, the
force-velocity relation becomes the predominant element in regulating perturbed hopping with Preflex-
Rising. Here, a minimalist, low-level stimulation was sufficient to enhance the regulating action of the
force-velocity relation, resulting in surprisingly complex stabilizing mechanics.
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4.4.2 Details about perturbation rejection by Preflex-Rising

Preflex-Rising produced better regulation of step-down perturbations. Its central aspect is the rising stim-
ulation that amplified regulatory effects of the force-velocity relation (fig. 4.5b). In human locomotion,
such rising stimulation can be found in knee extensor muscles (Moritz and Farley, 2004; Müller et al.,
2015, 2020). Several previous computer simulations applied such control when investigating the role of
the force-velocity relation or stability of gait (Dzeladini et al., 2014; Gerritsen et al., 1998; Haeufle et al.,
2010, 2018; John et al., 2013).

The underlying regulatory mechanism generated by Preflex-Rising shows an intricate interaction
between muscle fiber force and velocity profile. The central effect is that increasing drop heights
postponed ground impact and, therefore, lead to more excited muscle fibers at touchdown. On the one
hand, the muscle is stiffer with rising activity and, therefore, resists shifting to eccentric velocities, where
more energy can be dissipated. On the other hand, the rising activity consistently increased the force of
the muscle fiber at impact with larger step-down perturbations. Furthermore, with more excited muscle
fibers, the force-velocity relation scales vertically so that the change in muscle fiber velocity produces a
larger response from the force-velocity relation, as shown in fig. 4.4d. This scaling effect was already
observed in van der Krogt et al. (2009). Combined, these effects result in a substantial adaptation of the
preflex energy dissipation to the perturbation height (fig. 4.5b).

Now the intricate details: Preflex-Rising initiated a muscle contraction before impact, which led to
an initial concentric contraction and then eccentric stretch during the preflex duration (Figure A1.2b,
in supplementary material). With increasing step-down perturbations, this initial contraction starts
earlier and, depending on the timing of the perturbation, it shifts the shortening velocity of the fibers at
impact (Figure A1.2b, in supplementary material). For medium perturbations, the contraction velocity
was larger than in reference hopping. For large perturbations, it was smaller, as muscle-tendon forces
approached equilibrium (the knee is fixed in flight). In all cases, the ground impact causes a shift in fiber
velocity towards eccentric velocities. In particular, larger step-down perturbations produced a faster
transition to the eccentric mode and higher maximum eccentric velocity during preflexes (Figure A1.2b,
in supplementary material). During Preflex-Rising, the dynamic effect of the step-down perturbation,
which caused more eccentric stretch of the muscle fibers due to larger impact velocities, overcame the
muscle fiber stiffening caused by the increasing muscle activity at touchdown. In combination with the
faster rising of FV

CE due to the scaling of the force-velocity relation (Figure A1.1b, in supplementary
material), this specific trend in velocity profile resulted in muscular power generation that rose earlier,
faster and created a larger area during the preflex phase with increasing step-down height (Figure A1.3b,
in supplementary material).

It is worth noticing that the intricate details of how knee joint flexion is transmitted into fiber stretch
velocity depend on the internal stiffness of muscle fibers and tendons. At landing, changing the tendon’s
stiffness affects both the way the impact velocity is transmitted to the muscle fibers and the overall
stiffness of the muscle-tendon unit. These two aspects affect vCE in opposite ways and can (potentially)
balance each other. From one side, more compliant tendons will decouple the muscle fibers from the
joint action (Roberts and Azizi, 2010), thus favoring reduced vCE values just after landing. However,
the muscle-tendon unit will be more compliant overall, meaning that reference hopping will occur at
higher hopping heights due to more elastic recoil during the stance phase. This increased hopping
height favors higher impact velocities and, as a consequence, higher vCE values. Changing the tendon’s
stiffness also alters how much vCE changes following a step perturbation. Stiffer tendons will comport
larger changes in vCE . Notice, however, that the force-velocity relation has a plateau on its eccentric

55



4 Muscle prestimulation tunes velocity preflex in simulated perturbed hopping

side (fig. 4.1d). For this reason, larger increments in vCE comport minor adjustment of FCE after a
certain range of vCE values is reached (fig. 4.4c shows that this reduced FCE adaptation occurs already
for vCE = 0.1m/s). Therefore, we expect that a different compliance of the tendon affects the hopping
pattern of our model and the operative point on the force-velocity relation at touchdown, and, thus, the
magnitude of the force-velocity contribution. However, we do not expect tendon compliance to affect
our main finding, i.e., that the force-velocity relation contributes to a velocity preflex in the presence of
low-level feedforward stimulation. This is because feedforward stimulation will always contribute to
scale the force-velocity relation, regardless of the force-velocity state at landing and during the preflex
duration. As a future research direction, we propose to quantify the force-velocity contribution over a
range of different muscle fiber to tendon length ratios (Mörl et al., 2016), which could give insights into
the role of different muscle-tendon unit morphologies in locomotion.

4.4.3 Muscle model considerations

The muscle model used here is a variant of a macroscopic Hill-type muscle model described in Haeufle
et al. (2014b). Originally, Archibald Hill developed a mathematical formulation to fit his experimental
data on frog muscle fiber contraction (Hill, 1938). Later models included explicit elements, i.e.,
mathematical formulations, for the tendon and connective tissue parts too. Several different arrangements
of such mechanical elements exist, all being in series or parallel to the fiber formulation. The model
used here additionally includes an explicit damper element (SDE) in series to the contractile element
(CE). This Hill-type muscle model with added SDE fits the biological data for all muscle contraction
experiments better than muscle models without added serial damper (Günther et al., 2007). Additionally,
the added SDE allows to observe an impact velocity distribution between the fiber and the tendon part.
A purely elastic tendon formulation, as used in other variants of Hill-type models, does not provide such
capability. Consequently, the Hill-type model with an added damper in series has shown great accuracy
when modeling dynamic motions. Similar to the parallel damping element in Millard et al. (2013),
the serial damper element in Haeufle et al. (2014b) is intended to capture the macroscopic effects of
viscosity in muscle-tendon units, but in series to the fiber. It is, therefore, ideally suited for the analyses
of such a contribution on a macroscopic level.

The Hill-type muscle model used in this study also replicates the flattening of the force-velocity
relation at high fiber-stretching velocities, which is consistent with previous experimental research on the
eccentric contraction of the muscle fibers (Joyce et al., 1969). However, the data on eccentric contractions
is relatively sparse, and the real dynamics are more complicated, especially its inter-dependency with
the force-length relation (Till et al., 2008). Nonetheless, our – or similar – implementations of the
force-velocity relation allows to simulate realistic locomotion patterns (Geyer and Herr, 2010; John
et al., 2013), which are further used to investigate perturbations in locomotion (Gerritsen et al., 1998;
Günther and Ruder, 2003; Haeufle et al., 2018; Schreff et al., 2022; Song and Geyer, 2017).

Generally, Hill-type muscle models are macroscopic, phenomenological approximations of biological
muscle-tendon complexes. As such, they present several shortcomings when compared to experimental
data of muscle fibers’ contraction. For example, experimental studies show that parameters for Hill-type
models, which are usually obtained from maximally activated muscles, adjust based on complex relations
with the activation level (Holt and Azizi, 2016). For this reason, Hill-type models are less accurate for
simulating muscle force with variable excitation level, as occurring in our study. Over the last years,
attempts have been made to derive the macroscopic formulation of muscle-tendon dynamics from a
microscopic, biophysical perspective (Günther et al., 2018; Rosenfeld and Günther, 2014). Thus, the

56



4.4 Discussion

macroscopic force-velocity relation, as used here, becomes the result of a first principles ansatz and a
stringent derivation using few additional assumptions (Günther et al., 2018). Looking inside biophysical
models reveals explicit formulations of damping components inside the CE. Such formulations would
facilitate the research presented here by enabling to directly quantify the damping rate at the muscle
fiber level. Unfortunately, the existing models that incorporate explicit damping cannot yet predict
the mechanical response of muscles during eccentric contractions (Günther et al., 2018; Rosenfeld
and Günther, 2014). This drawback leaves these more physiological-biophysical models currently
insufficient to apply here, as the eccentric contraction is the main working mode during preflexes.

4.4.4 Implication of our results

Our study shows that the force-velocity relation contributes with a velocity preflex to reject unexpected
ground perturbations, but it needs low-level control for maximum efficacy. This is consistent with van der
Krogt et al. (2009), where it was observed that time-based muscle stimulation drives the regulating
response of muscle fiber viscoelasticity to variations in ground stiffness. In our simulation, the basic
rising stimulation considered in Preflex-Rising was sufficient to amplify the regulatory effects of the
force-velocity relation. However, even more simple stimulation strategies might produce similar effects.
For example, Preflex-Const with prestimulation level proportional to the drop height, i.e, with tunable
u0 (see eq. (4.3)), will produce the same vertical scaling of the force-velocity relation observed in
Preflex-Rising, potentially leading to similar stabilizing effects. From a biological perspective, our
findings raise the question of how much morphological computation, as described in Ghazi-Zahedi et al.
(2016); Zahedi and Ay (2013), is carried by the force-velocity relation, and whether a trade-off exists
between the force-velocity relation’s stabilizing effect and control effort. From a technical perspective,
understanding low-level control of the force-velocity relation can promote bio-inspired designs for
assistive robotic devices, as numerous studies have suggested that implementing (tunable) dampers can
improve the system performance and facilitate robustness against external perturbations (Mo et al., 2020;
Monteleone et al., 2022).

Previous research has qualitatively described a velocity preflex produced by the muscle fiber’s
force-velocity relation to regulate locomotion (Gerritsen et al., 1998; Geyer et al., 2003; Haeufle et al.,
2010). With our quantitative analysis, which was made possible by our decomposition algorithm (see
Section 4.2.3), we could test the mechanical principles expected to produce such a velocity-based
regulation by preflexes. Our study shows that preflex regulation of perturbed hopping emerges from a
complex coupling between muscle fiber stretching trajectories and muscle fiber force. The amount of
preflex force produced by muscle fibers depends on the muscle fiber length-velocity state, which is in
turn affected by the action of the preflex force on the knee joint flexion. In addition to low-level control,
this intricate interaction is likely affected by several elements, such as ground impact dynamics, terrain
stiffness, leg geometry, and internal stiffness of the muscle-tendon unit. Therefore, future studies could
consider more comprehensive musculoskeletal models to unveil the functionality of muscular preflex
and to allow direct comparison with experimental studies, such as the running investigation carried out
in Daley et al. (2009). In this context, the decomposition algorithm that we present here can become a
central tool, as it permits to explicitly quantify the force components associated with muscular preflexes
despite the model’s complexity.
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5 Influence of the operative side of the
force-velocity relation on preflexes

As described in section 3.4.1.1, the force-velocity relation presents a flattening profile (plateau)
for high eccentric velocities. The analysis in Chapter 4 suggests that this flattening profile reduces
the mechanical damping that the force-velocity relation can produce without neuromodulation. As a
result, the effectiveness of biological damping might be sensitive to the reference impact velocity of
periodic locomotion. We hypothesized that if the touchdown velocity during periodic locomotion lies
on the flattening side of the force-velocity relation (plateau-side), the preflex regulation in response
to step perturbations is compromised. This chapter (Chapter 5) explores this hypothesis by using the
simulation framework defined in Chapter 4. We selected numerous Preflex-Const stimulation settings
to generate periodic hopping with different touchdown velocities. We then classified these conditions
based on whether the touchdown velocity was on the rising- or plateau-side of the force-velocity relation.
Surprisingly, we found lower periodic hopping stability for the rising-cases. However, the detailed
analysis of two single cases (one plateau-case and one rising-case) supported our original hypothesis,
revealing reduced regulation of touchdown force and preflex work for the plateau-case.

Note: a large portion of this chapter uses content from our pre-print in arXiv (Izzi et al., 2022). For
details on this pre-print, including the list of authors and my contribution, see Section 2.2.1.

5.1 Introduction

Simulations of musculoskeletal models have shown that the force-velocity relation contributes to the
robustness of hopping and walking (Gerritsen et al., 1998; Haeufle et al., 2010). By embedding nonlinear
viscosity in a muscle-driven system (Geyer et al., 2003; Haeufle et al., 2010), the force-velocity relation
is expected to mitigate sudden perturbations without additional control load on the central nervous
system. As such, the force-velocity relation could play a major role in the muscle preflex response
during fast, agile locomotion. For example, it may facilitate the quick rejection of step perturbations
by instantly adapting the muscle force to a new impact velocity, similar to what has been observed
when implementing a parallel viscous damper in a legged system (Abraham et al., 2015; Heim et al.,
2020; Mo et al., 2020). According to Joyce et al. (1969); Till et al. (2008), however, the force-velocity
relation may plateau at high fiber-stretching velocities. This could result in an undesirable decrease
in its damping capacity during severely perturbed conditions, for which viscous stabilization could
be particularly beneficial. It is still unclear how and to what extent periodic hopping with touchdown
velocity on this plateau-side affects the preflex regulation that the force-velocity relation can produce
in response to ground perturbations. In this study (Chapter 5), we use the computational framework
developed in Chapter 4 to quantify how the mechanical damping response of the force-velocity relation
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Figure 5.1: (a) For this study, we implemented the same neuro-musculoskeletal model described in Chapter 4.
Thus, refer to fig. 4.1’s caption for more details. (b) Architecture of the Hill-type muscle model implemented
in our study (note: the model was developed in Haeufle et al. (2014b)). In this study, we divided the eccentric
portion (vCE > 0 m/s) of the force-velocity relation into two zones to classify periodic hopping conditions based
on their operative velocity at touchdown. Inside the plateau-side, the force-velocity relation is mostly flat, and
hence little variation in muscle fiber force (FCE ) occurs as a result of changes in muscle fiber velocity (vCE ). The
opposite is true within the rising-side. (c) To stimulate the muscle and generate periodic hopping, we implemented
Preflex-Const stimulation, as described in Chapter 4. We systematically adjusted u0 and uβ to find periodic
hopping conditions in the rising-side (rising-cases) or plateau-side (plateau-cases). The preflex duration (defined
by δC) was equal to 30ms for all conditions. TD indicates touchdown, TO take-off. h0 is the initial drop height,
and h1 is the drop height at the end of the hopping cycle.

depends on its operational velocity at touchdown.

5.2 Methods

The neuro-musculoskeletal model and most of the methods used in this study are identical to those
described in Chapter 4. In this section, only the differences will be reported. For all remaining
information, refer to section 4.2.

5.2.1 Definition of plateau- and rising-side

As shown in Fig.5.1b, the force-velocity relation comprises both positive and negative muscle fiber
velocities. Negative velocities (vCE ≤ 0m/s) define the concentric region of the force-velocity relation,
where muscle contraction involves shortening muscle fibers. Positive velocities (vCE > 0m/s) form the
eccentric region, where muscle contraction occurs with lengthening muscle fibers. The eccentric region
of the force-velocity relation was the focus of our analysis. This was because, with the Preflex-Const
stimulation, muscle fibers are in static equilibrium before touchdown. As impact occurs, knee flexion
causes the extensor muscle to lengthen, resulting in eccentric contraction of the muscle model around
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touchdown.
For our analysis, we separated the eccentric region into two sides of interest: the rising-side and the

plateau-side. Along the rising-side, a deviation in muscle fiber velocity produces a large deviation in
muscle fiber force (FCE ), while along the plateau-side, FCE mostly saturates. Mathematically, we defined
these two sides as: {

rising-side if FCE(tT D)< 0.95 F̃CE

plateau-side if FCE(tT D)> 0.99 F̃CE
(5.1)

where tT D is the touchdown time, and F̃CE is the force that the contractile element would produce if vCE =
1.5m/s at ground impact. Therefore, F̃CE represents the largest expected force that the contractile element
can produce at touchdown. Fig.5.2 further visualizes our classification approach. We hypothesized that
if periodic hopping occurs with muscle fibers operating within the rising-side at touchdown, the preflex
response would effectively adjust to ground perturbations; in contrast, we expected reduced adjustment
if within the plateau-side.

5.2.2 Experimental procedure

In this study, we only considered Preflex-Const stimulations (see section 4.2.2 for details). First, we
identified periodic hopping conditions for a grid of stimulation inputs u0 = [0.01 : 0.01 : 0.2] and
uβ = [1 : 1 : 20]. For each {u0, uβ } input pair, we used optimization to compute the drop height (hre f )
that produces the smallest change in subsequent apex height (h1). We used min(h1 − hre f )

2 as the
cost function and fmincon (Matlab R2018a) as the optimizer algorithm. We discarded all input pairs
producing unstable hopping, which we defined to occur when hre f ≤ 1cm or |h1 −hre f | ≥ 0.01mm. We
classified each periodic hopping condition according to the operative side of the force-velocity relation
at touchdown, as defined in eq. (5.1). Furthermore, we measured the stability of each periodic hopping
by applying a small perturbation (∆s) to the reference hopping height and then computing

S =
h∗1 −hre f

∆s
(5.2)

where h∗1 is the return apex height following the perturbation. |S| values closer to 0 indicate more
(asymptotically) stable periodic hopping. For completeness, we tested bidirectional perturbations
(∆s =±0.1cm).

For a more detailed analysis, we selected two periodic hopping conditions, one rising-case and one
plateau-case. The rising-case was the hopping condition studied as Preflex-Const in Chapter 4. The
plateau-case used the same Preflex-Const stimulation rate (uβ ) but lower prestimulation (u0). For each
of these two conditions, we tested the mechanical response of the muscle fibers for an array of step
perturbations ∆h = [−5,−2.5,0,2.5,5,7.5,10] cm, where a negative sign indicates a step-up and a
positive sign indicates a step-down perturbation. Considering that our model has a reference leg length
l f = 0.99m, these ground perturbations were within [-5,10]% l f range. As in Chapter 4, the focus of our
in-depth analysis was the preflex duration, which we defined as the first 30 ms following touchdown.
Furthermore, we applied the same decomposition algorithm to study the adjustment of touchdown
force and preflex work to each perturbation, isolating and quantifying the specific contribution of the
force-velocity relation.
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Figure 5.2: (a) Periodic hopping heights hre f for different stimulation input pairs {u0,uβ }. Preflex-Const (as
defined in section 4.2.2) was the stimulation protocol for all conditions. Enclosing lines separate the plateau-cases
from the rising-cases, i.e., conditions with the force-velocity relation operating on either the plateau-side or
rising-side at touchdown. The square and triangle symbols indicate the two hopping conditions that we selected
for in-depth analysis: one plateau-case and one rising-case, respectively. (b) Stability analysis for step-down
disturbance (∆s = 0.1 cm). Stability analysis for step-up disturbance (∆s = −0.1 cm) yielded similar results. (c-d)
Shape of the force-velocity relation at touchdown for the selected plateau-case and rising-case. The markers
(square and triangle) indicate their specific force-velocity states at touchdown. Dashed lines indicate the thresholds
separating the plateau- and rising-side, according to eq. (5.1). A rising-case occurred when the {FCE ,vCE} state at
touchdown was below the rising threshold; a plateau-case occurred when the {FCE ,vCE} state at touchdown was
above the plateau threshold. (e) Apex return map for the selected plateau- and rising-case, with h0 indicating each
starting apex height and h1 the associated return apex after one hopping cycle. Intersections with the diagonal line
indicate periodic hopping heights. More horizontal inclinations indicate faster perturbation rejection, requiring
fewer hopping cycles to converge to reference hopping.

5.3.1 Periodic hopping analysis

Out of 400 tested conditions, we found 381 input pairs {u0,uβ } to produce periodic hopping (Fig.5.2a),
which was always asymptotically stable (Fig.5.2b). Stable periodic hopping was possible with the
touchdown state {FCE ,vCE} anywhere on the eccentric side of the force-velocity relation: either within
the plateau-side, rising-side, or in-between (Fig.5.2a). We found a sharp clustering of plateau-cases and
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rising-cases, which predominantly depended on the muscle prestimulation level u0 (see enclosing dotted
lines in Fig.5.2a). Plateau-cases were characterized by larger hopping heights than the rising-cases
(21.2±2.5cm and 7.9±2.6cm, mean ± st.d. respectively). In contrast to our expectation, plateau-cases
were also more stable than rising-cases (|S|, mean ± st.d.: 0.25±0.13 for plateau-cases vs. 0.60±0.04
for rising-cases).

5.3.2 Preflex response (in-depth analysis)

To investigate muscle fibers’ preflex response to ground perturbations, we selected two periodic hopping
conditions, one with muscle fibers’ touchdown velocity inside the plateau-side of the force-velocity
relation (u0 = 0.09, uβ = 10), and one inside the rising-side (u0 = 0.15, uβ = 10) (Fig.5.2c,d). For
clarity, we will refer to these two experimental conditions as plateau-case and rising-case, respectively.
These two conditions served as baseline scenarios for our analysis. Notice that the rising-case in this
study is the same Preflex-Const hopping scenario presented in Chapter 4. Instead, the plateau-case was
a novel hopping condition that we obtained by applying the same stimulation as in the rising-case, but
with a lower prestimulation value u0.

The plateau-case featured about 19 cm reference hopping height (hre f ) and 338 ms stance duration,
while the rising-case had about 11 cm hre f and 255 ms stance duration. Muscle pretension force (F0

CE)
values were 323 N and 913 N for the plateau- and rising-case, respectively. Each reference case was
tested against ground perturbations ∆h = [−5,−2.5,0,2.5,5,7.5,10] cm, for a total of two step-up
(negative sign) and four step-down perturbations (positive sign). Inspection of the apex return map
confirms stronger asymptotic stability for the plateau-case (Fig. 5.2e). Leg compression during the
stance duration was never sufficient to engage the parallel elastic element (PEE) in either the plateau-
or rising-case, perturbed or not. Therefore, according to eq. (3.1), muscle fiber force (FCE) always
represented the net force of the muscle-tendon-unit in our in-depth analysis.

Across all the tested conditions, the force-velocity relation produced an instantaneous, breaking force
at touchdown (FV

CE in Fig.5.3a,d). This was expected because the massless leg and the instantaneous
ground impact generate a jump in muscle-tendon velocity (vMTU ) and thus muscle fiber velocity (vCE);
in contrast, muscle geometry and stimulation level stay constant at touchdown (see eq.4.8). The jump
in muscle force at touchdown was substantial: during unperturbed hopping, FV

CE was equivalent to
approximately 49% (plateau-case) and 38% (rising-case) of the original values of muscle pretension
(F0

CE).
To check for a possible viscous-like response produced by the force-velocity relation, we looked at

how FV
CE changed with different step perturbations. For the rising-case, the touchdown value of FV

CE
adapted to the ground perturbation intensity, ranging from 238 N to 436 N (26% and 48% of the original
muscle pretension). However, a similar adaptation was absent for the plateau-case. This finding confirms
our hypothesis that the initial adaptation to ground perturbations produced by the muscle fibers depends
on the operative side of the force-velocity relation at touchdown.

The adaptation of FV
CE observed for the rising-case was not proportional to the change in vCE that

followed each step perturbation, as one would expect from an ideal viscous response (Fig. 5.3d vs.
e). While the vCE increments grew in size with higher drop heights, the corresponding FV

CE increments
lessened. These two opposite trends imply that incremental impact velocities move the touchdown state
of the force-velocity relation towards the plateau-side, thereby reducing the touchdown adaptation of
FV

CE .
Impact transmission to the muscle fibers differed between the plateau- and rising-case. During the
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vCE + vSEE ). (c,f) Energy dissipated by the muscle fibers throughout the preflex duration, separated into the
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CE ). For the sake of comparison, WCE is the net energy dissipated by muscle fibers
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CE ). The results illustrate the plateau-case (a-c) and rising-case (d-f) under different

levels of ground perturbation.

plateau-case, the dependence of vCE on the step perturbation intensity closely matched the trend of vMTU ,
while vSEE remained about constant across conditions (Fig.5.3b). This means that in the plateau-case,
the change in impact condition almost exclusively affected the muscle fiber velocity and not the tendon
velocity. In comparison, during the rising-case, vMTU showed a profile more similar to that of vSEE ,
especially during step-up and mild step-down perturbations (Fig.5.3e). This means that the tendon
velocity was now the most affected by the ground perturbation at touchdown. Overall, these results
demonstrate that impact velocity and muscle fiber velocity at touchdown are not directly proportional.
Rather, there is a complex mapping that depends on the operating conditions of the force-velocity
relation and on the level of prestimulation. This further supports our hypothesis that the operative side
of the force-velocity relation influences muscle fibers’ behavior.

In spite of the differences observed at touchdown, both the plateau-case and rising-case produced
stabilizing responses within the preflex duration, as indicated by the finding that the total dissipated
energy (WCE) adjusted as a function of the step perturbation intensity (Fig.5.3c,f). For the plateau-
case, the highest step-up and step-down perturbations resulted in a WCE’s change of −2.5 J and 4.4 J,
respectively; −7.5 J and 11.9 J for the rising-case. This means that by the end of the preflex duration,
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the plateau-case rejected around 6.4% and 5.6% of the change in system energy caused by the biggest
step-up and step-down perturbations, respectively; the rising-case rejected 19.1% and 15.1%. This
indicates that in terms of net dissipated energy during preflexes (WCE), muscle fibers rejected ground
perturbations better in the rising-case.

The force-velocity relation, along with the force-length relation, muscle pretension, and even muscle
activity, all contributed to counter the step perturbation during the preflex phase in the form of negative
work. It is worth noting that the negative work produced by the muscle activity (W A

CE) was not zero
during preflexes, despite the constant stimulation signal (u = u0). This is because the activation
dynamics include an internal muscle-length dependency that alters muscle activity and, thus, muscle
force according to changes in muscle fiber length. The energy dissipated by the force-velocity relation
(WV

CE) contributed the least to the total dissipated energy (WCE) across almost all examined scenarios.
Changes in WCE in response to each step perturbation were mainly driven by the force-length relation
(W L

CE) and activity-induced changes (W A
CE) (Fig.5.3c,f). However, compared to the plateau-case, the

rising-case showed a more than threefold adaptation of WV
CE to the ground perturbation intensity, ranging

from 3.4 J to 5.6 J compared to 2.1 J and 2.7 J, respectively.
To further understand how the force-velocity relation dissipates energy during preflexes, we inspected

the time progression of the associated force component (FV
CE), fiber velocity (vCE), and power (PV

CE)
(Fig.5.4). For both the plateau- and the rising-case, FV

CE trajectories showed minimal dependence
on the ground perturbation level (Fig.5.4a,d). This occurs because vCE rapidly rose following an
impact (Fig.5.4b,e), causing the muscle to operate outside the rising-side of the force-velocity relation
throughout most of the preflex duration (see markers in Fig.5.4a,d). As a consequence, even in the
rising-case, FV

CE trajectories exhibit little variability early after impact. On the contrary, the trajectory of
vCE changed noticeably across ground perturbations (Fig.5.4b,e), with trends similar to those of PV

CE
(Fig.5.4c,f). This means that changes in the muscle fiber velocity’s profile, rather than adjustments in
FV

CE trajectories, were primarily responsible for adjusting the energy dissipated by the force-velocity
relation to each step perturbation. The fact that vCE adjustments played a major role in energy regulation
during the preflex phase is also supported by the finding that the energy dissipated by muscle pretension
(W 0

CE) changed across step perturbations (Fig.5.3c,f). Since F0
CE was constant throughout the preflex

duration, only changes in vCE trajectory can explain the observed W 0
CE adjustment.

5.4 Discussion

In this study, we quantified the capacity of the Hill-type force-velocity relation to regulate ground
perturbations during vertical hopping. Our analysis focused on the early stance duration (preflex phase,
δC = 30ms after touchdown), during which a viscous-like response from the muscle fibers was expected
to play a significant role (Geyer et al., 2003; Haeufle et al., 2010). We hypothesized that the contribution
of the force-velocity relation to the perturbation rejection would depend on its initial state at touchdown.
To test this hypothesis, we simulated a variety of periodic hopping conditions having the force-velocity
relation operating with different {FCE ,vCE} states at touchdown. Of this set, we analyzed in-depth
two single cases: a plateau-case, where {FCE ,vCE} at touchdown was within the flattening side of the
force-velocity relation, and a rising-case, where {FCE ,vCE} was on the steep incline (Fig.5.2c,d). We
predicted that by producing more viscous damping, the rising-case would reject ground disturbances
better than the plateau-case.

Our results support this hypothesis, showing that the rising-case could better adjust muscle fibers’
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In no case did {FCE ,vCE} return to the rising-side for the remaining preflex duration. (b,e) Time trajectories
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PV

CE = FV
CE · vCE . Positive values indicate energy dissipation (negative work). Results illustrate the plateau-case

(a-c) and the rising-case (d-f) from touchdown to the end of the preflex duration and in response to various ground
perturbation levels.

touchdown force (FCE ) and preflex work (WCE ) in response to step perturbations than the plateau-case. In
the plateau-case, touchdown regulation of FCE was diminished by a severe reduction in FV

CE adjustments.
Although each step perturbation caused a new muscle fiber touchdown velocity (vCE), the flattening
side of the force-velocity relation saturated the ability of muscle fibers to adjust their force to the new
impact condition. Since the force-velocity relation is the only factor that can adjust muscle fiber force
at touchdown when constant preflex stimulation is considered, lack of FV

CE adjustments resulted in
negligible FCE regulation for the plateau-case’s touchdown.

It is worth noting that the extra touchdown regulation of FV
CE and thus FCE that we observed during

the rising-case diminished in magnitude as we tested larger step-down perturbations (Fig.5.3d). This
finding occurs because our demarcation between rising-cases and plateau-cases is based on unperturbed
hopping. As the impact velocity increased with increasing step-down perturbations, the touchdown
{FCE ,vCE} state of the rising-case moved closer to the plateau-side. For example, when we perturbed
the rising-case with ∆h = [5,7.5,10] cm, the operative state of force-velocity relation at touchdown was
within the transition zone between the rising-side and plateau-side. As a result, the rising-case became
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less capable of adjusting touchdown preflex forces as step-down perturbations increased in magnitude.
Concerning the preflex work, the negative work produced by the force-velocity relation (WV

CE) also
adjusted to step perturbations better in the rising-case compared to the plateau-case (Fig.5.3, c vs. f).
However, it is important to note that the force-velocity relation had a minor role in the preflex adjustment
of the total dissipated energy (WCE ) for both the rising- and plateau-case. From the largest step-up to the
largest step-down perturbation, the change in WV

CE accounted for only 11.4 % and 8.5 % of the change in
WCE for the rising- and plateau-case, respectively. This finding aligns with previous observations that a
lack of neuronal modulation severely limits viscous-like preflex regulation by the force-velocity relation
(Izzi et al., 2023; van der Krogt et al., 2009).

When we inspected the mechanisms of WV
CE adjustment, we discovered that the force component

produced by the force-velocity relation (FV
CE) had minimal impact. FV

CE time trajectories converged to
the same profile shortly after touchdown. This indicates that outside the touchdown event, regulation
of FV

CE to the perturbation level was negligible. Surprisingly, we found this behavior not only for the
plateau-case, where the force-velocity relation struggles to adjust muscle fiber force in response to
changes in muscle fiber velocity, but also for the rising-case (Fig.5.4a,d). The lack of FV

CE adjustment
during the preflex phase of the rising-case was due to a rapid shift in the force-velocity relation’s
operative state early after touchdown. Shortly after touchdown, muscle fiber stretching velocity rapidly
increased, causing the {FCE ,vCE} state to leave the rising-side and operate outside it for the rest of
the preflex duration. This resulted in the force-velocity relation operating outside the rising-side for
99.2±1.1% of the preflex duration— mean and st.d. across the seven ground heights that we tested.
As a result, any initial touchdown regulation of FV

CE that we observed in the rising-case quickly faded
throughout the preflex phase.

During preflexes, the muscle fibers elongate, increasing muscle activity due to the dependence of the
activation dynamics on the muscle fiber length. In our muscle model, the shape of the force-velocity
relation scales with changes in either muscle fiber length or muscle activity, similar to what is described
in Fig.7G-H in van der Krogt et al. (2009). When the curvature of the force-velocity relation becomes
steeper, the overall sensitivity of muscle fiber force to muscle fiber velocity increases, potentially
enhancing the capacity of modulating FV

CE within the preflex phase. However, our results indicate
that muscle fiber elongation and consequent increase in muscle activity were insufficient to alter the
force-velocity relation’s shape in a way to modulate FV

CE trajectories within the preflex duration.
Instead, our data suggest that WV

CE adjustment was primarily driven by changes in vCE trajectory
(Fig.5.4b,e). This indicates that energy regulation in response to step perturbations is mainly driven by the
spontaneous change in leg kinematics that follows the altered impact conditions. This kinematic change
could be sufficient to allow a constant damping force to adjust energy dissipation to the perturbation
intensity. Enabling this constant damping force to be tunable in magnitude could further enhance the
resulting energy regulation. These considerations present an intriguing new paradigm for implementing
tunable mechanical damping in legged locomotion. For example, a simple friction damper with
controllable braking force could be an effective technical solution for a hopping robot. A similar
implementation could offer a simple alternative to more complex designs exploiting viscous damping, as
those simulated in Abraham et al. (2015); Heim et al. (2020). As later discussed, this intuition motivated
the simulation analysis in Chapter 7.

Surprisingly, hopping with the force-velocity relation on the rising-side at touchdown did not produce
higher hopping stability. In fact, we found the plateau-cases to produce more stable hopping than
the rising-cases (Fig.5.2b,e). As observed in Chapter 4, preflex regulation is limited with constant
preflex stimulation. For this reason, it is possible that the level of preflex regulation in our plateau- and
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rising-cases was small enough to play a marginal impact on the overall hopping stability. Therefore,
we cannot exclude that mechanics beyond preflexes were more critical in determining hopping stability
across the tested conditions.

Altogether, our analysis supports the findings of Chapter 4, demonstrating that previous explanations
of how the force-velocity relation regulates ground perturbations (Geyer et al., 2003; Haeufle et al.,
2010) may oversimplify more complex mechanisms, involving a nonlinear coupling between system
kinematics, muscle inner mechanics, and perturbation intensity.

5.4.1 Limitations

Our study presents some limitations. Our muscle model (Haeufle et al., 2014b) lacks muscle charac-
teristics that could influence preflex generation, such as history-dependent force production (Daley
et al., 2009) and short-range stiffness (Rack and Westbury, 1974). Furthermore, we only investigated a
single stimulation strategy. More realistic muscle models and alternative stimulations may modify
the distribution of plateau- and rising-cases, along with their hopping stability and engagement of the
force-velocity relation. Notice, however, that similar limitations were present in previous research on
the topic (Gerritsen et al., 1998; Haeufle et al., 2010; van der Krogt et al., 2009).

The analysis in this study focuses on the influence of preflex regulation on hopping stability. Consid-
ering hopping stability as the only performance metric is limiting as locomotion is likely optimized for
multiple objectives (Birn-Jeffery et al., 2014). Our choice was motivated by the simplified nature of
vertical hopping, for which testing more complex metrics, such as resistance to falling, is challenging.
Future studies should extend our analysis to more complex locomotion tasks, which would enable testing
the influence of the force-velocity relation on additional performance metrics. Similarly, implementing
more complex neuro-musculoskeletal models, including multiple muscles and ground-impact dynamics,
would help validate our hypothesis over more realistic conditions.

In this study, we examined only two periodic hopping conditions in detail, one of which is coincident
with Preflex-Const in Chapter 4. This limitation narrows the generalizability of our results and partially
promotes alignment with previous findings (Chapter 4). Extending our in-depth analysis to more cases
is thus necessary for further validation. Considering more periodic hopping conditions would also
help exclude the existence of other stabilizing mechanisms beyond those discussed.

Despite these limitations, the findings in this study provide further evidence supporting a renewed
interpretation of how the force-velocity relation produces preflexes. Specifically, this study highlights
a previously unconsidered sensitivity of the force-velocity relation on its starting operative side at
touchdown.

5.5 Conclusion

In summary, the intrinsic mechanical characteristics of muscle fibers play an essential role during agile
locomotion. The zero-delay response to ground perturbations generated by muscle inner mechanics
may be essential for compensating for neurotransmission delays, particularly early after touchdown.
While it is argued that the force-velocity relation is a crucial factor in producing such an instantaneous
response, we found that the touchdown state of the force-velocity relation influences the mechanical
damping produced. Hopping with the touchdown state of the force-velocity relation on the flattening
side reduced the regulation of muscle preflexes. Nevertheless, this did not lead to a reduction in hopping
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stability. We also found that when preflex stimulation is constant, muscle mechanical damping mainly
relies on the complex coupling between hopping kinematics and step perturbation intensity. From an
engineering perspective, this finding suggests that a constant friction damper with tunable magnitude
may be sufficient to provide some tunable mechanical damping in a legged robot.
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6 Muscle Preflex Response to Perturbations in
locomotion: In vitro experiments and
simulations with realistic boundary conditions

The computational research in the previous two chapters relies on Hill-type muscle models. These
models are common in computational studies of motion control. However, it is well known that they
can only approximate the contraction dynamics of biological muscles. Hill-type models implement
phenomenological functions that describe muscle mechanical properties (active and passive) during
constrained experimental conditions. Therefore, they may perform poorly in predicting more dynamic
contractions (Millard et al., 2023). These approximations might impact the reliability of simulations
involving non-standard contraction conditions, such as the simulated perturbed hopping in Chapters 4
and 5. The study in the current chapter investigates the influence of the Hill-type formulation in this
thesis’s computational research.

We performed in vitro experiments with biological muscle fibers under physiological boundary condi-
tions, which we defined using computer simulations of perturbed hopping. We measured the mechanical
work and force modulation in biological muscle fibers during preflexes and compared the results to
Hill-type predictions. Our findings show that muscles initially resist impacts with a stereotypical stiff-
ness response—identified as short-range stiffness—regardless of the perturbation condition. We then
observed a velocity adaptation of the muscle force related to the amount of perturbation, similar to a
damping response. The main contributor to the preflex work modulation was not the change in force due
to the change in fiber stretch velocity (fiber damping characteristics) but the change in magnitude of the
stretch due to the leg dynamics in the perturbed conditions. Our results confirm previous findings that
muscle stiffness is activity-dependent and show that also damping characteristics are activity-dependent.
These results indicate that neural control could tune the preflex properties of muscles in expectation of
ground conditions leading to previously inexplicable neuromuscular adaptation speeds.

Note: a large portion of this chapter uses content published in Frontiers in Bioengineering and
Biotechnology, section Biomechanics (Araz et al., 2023). For details on this journal article, including the
list of authors and my contribution, see Section 2.1.2. Copyright license: https://creativecommons.
org/licenses/by/4.0/.

6.1 Introduction

Legged locomotion on uneven terrain is a complex motor control task performed seemingly effortless
by humans and other animals (Blickhan et al., 2007). Animals reject unexpected ground perturbations
(Daley and Biewener, 2006; Müller et al., 2014), despite considerable sensorimotor transmission delays
affecting the feedback control (More et al., 2010; More and Donelan, 2018). This ability has long
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puzzled researchers in biomechanics and motor control science. In vivo research on perturbed legged
locomotion suggests that the intrinsic mechanical properties of muscles are essential for dynamic stability
during the first 30 ms to 50 ms after touchdown (Daley et al., 2009; Gordon et al., 2020; Nishikawa et al.,
2007). During this brief interval, muscles and tendons react instantly through elastic and viscous-like
properties. Brown and Loeb (2000, p. 161) labeled it preflex: the “. . . zero-delay, intrinsic response of a
neuromusculoskeletal system to a perturbation”.

In vivo walking experiments are essential for understanding robust locomotion. However, the
functional mechanical and control coupling of muscle groups during whole-body movement complicates
unveiling the regulatory principles behind preflexes, reflexes, and voluntary neuromuscular control.
By artificially contracting individual muscle fibers, in vitro research allows for precise isolation and
investigation of muscles’ mechanical properties (Weidner et al., 2022). So far, a wide range of contraction
settings have been explored, such as isometric, isotonic, and isovelocity (Brown et al., 2003; Gilliver
et al., 2011; Tomalka et al., 2020). Yet, the exact boundary conditions of physiological muscle contraction
are hard to replicate during in vitro experiments. Cyclic fiber contractions during in vitro experiments
and follow-up work loop analyses are relatively realistic (Josephson, 1985). Even though it is possible
to extract physiological kinematic trajectories of muscle contraction with the sonomicrometry method
during in vivo experiments (Daley et al., 2009; Gordon et al., 2020), extracting the preflex phase is still
challenging due to the relative oscillations of soft tissue at impact (Christensen et al., 2017). Therefore,
stretch-shortening cycle investigations that are limited to sinusoidal length trajectories (Darby et al.,
2013) only roughly present locomotion conditions.

Previous simulation studies support the hypothesis that intrinsic muscle properties play a crucial
role in stabilizing locomotion against disturbances (Gerritsen et al., 1998; John et al., 2013; van der
Krogt et al., 2009). Simulation studies revealed that feedforward adjustment of muscle stimulation,
as observed during human locomotion (Müller et al., 2015), may allow to adjust muscle mechanics
according to perturbed impact conditions (Haeufle et al., 2010, 2018). As a means of investigation,
computer simulations combine the advantages of in vivo and in vitro investigations. They enable the
analysis of complex whole-body movements similar to in vivo research while providing access to
difficult-to-measure variables, similar to in vitro experiments. Nevertheless, computer models depend
on simplified assumptions. Most investigations of muscle preflexes use classic Hill-type muscle models,
which are restricted in their ability to describe muscle contraction outside of specific conditions (Siebert
et al., 2021). Hill-type muscle models are parameterized with empirical data from isometric, isotonic,
and isovelocity muscle fiber experiments, mostly at maximum activity, which are controlled experimental
conditions differing greatly from in vivo muscle loading. Compared to data from gait recordings, Hill-
type muscle models were inaccurate in predicting muscle force during high-speed locomotion (Dick
et al., 2017; Lee et al., 2013). Furthermore, several studies showed that Hill-type muscle models can
only predict accurate joint kinetics and kinematics for perturbed quiet stance (De Groote et al., 2017; Hu
et al., 2011) if they consider a model extension accounting for short-range stiffness (Cui et al., 2008).
Therefore, it still needs to be discovered to what extent simulation studies with Hill-type models can
validate experimental research on muscle preflexes. On the other hand, in vitro experiments are required
to test individual muscle fibers’ response to unexpected perturbation.

This study aims to understand how individual muscle fibers exploit their intrinsic mechanical properties
to respond to perturbations in realistic settings (in terms of physiological boundary conditions). We
focus on how muscles’ elastic and viscous properties regulate energy absorption during the preflex
phase to reject perturbations during locomotion impacts. We hypothesize that (1) the muscle’s force and
mechanical work during and after the short-range stiffness (SRS) period, but within the 30 ms preflex
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period, changes in reaction to differences in stretch velocities induced by step-up and step-down ground
level perturbations, and (2) mechanical muscle properties can be tuned by changing activity level in
advance to touchdown. We conducted muscle fiber experiments with realistic kinematic trajectories
at three different activity levels to prove our hypotheses. We obtained the kinematic trajectories by
simulating vertical human hopping driven by a Hill-type muscle model under three levels of perturbations:
step-up, no step, and step-down. Further, we derived a quasistatic-scenario for muscle fiber experiments
with the same lengthening patterns over a much larger time to eliminate fiber’s velocity effect on
the muscle force production. These quasistatic-scenario experiments permit separating the elastic
response from the viscous response of muscle fibers. Finally, we compared simulations with muscle
fiber experiments to test the accuracy of Hill-type models in explaining fiber response. Our results show
that during the preflex phase, intrinsic muscle characteristics adjust the muscle force in response to the
perturbation level. Our findings corroborate that muscle activity can tune mechanical muscle properties
in advance. On the other hand, we confirm previous findings that classical Hill-type muscle models—as
the one used in our study—cannot accurately predict the force response in the preflex phase. This is
not only the case within the SRS phase (De Groote et al., 2017; Hu et al., 2011), but also after the SRS,
where the change in force with stretch velocity (Weidner et al., 2022) is not predicted by the model.

6.2 Materials and Methods

The goal of this study was to test the force response of muscle fibers in realistic perturbation scenarios.
Boundary conditions for in vitro muscle fiber experiments were derived from a human hopping simulation
(Figure 6.1A). Notice that the neuro-musculoskeletal model in this study is the same as in Chapter 4.
The model consists of a point mass, a single leg with two segments, and a classical Hill-type muscle
model connected as a knee extensor (Geyer et al., 2003; Haeufle et al., 2014b; Izzi et al., 2023) (for more
details, see section 3.3). We performed three simulations with the hopping model: a no-perturbation
reference hopping (P0), a step-up perturbation (P↑), and a step-down perturbation (P↓). Figure 6.1B
shows the stimulation profile applied during the hopping simulation. During the first 30 ms (preflex
phase), the stimulation is kept constant due to the delay of neural transmission, and response against
the perturbation is dependent only on elastic and viscous intrinsic properties of the muscle. Then,
stimulation rises linearly with time (approximated from experimental findings for hopping (Moritz
and Farley, 2004) and walking (Müller et al., 2015, 2020)). Note that the muscle stimulation for this
study is identical to Preflex-Const stimulation in Chapter 4. We extracted kinematic trajectories and
the stimulation state during the preflex phase (Figure 6.1B) of the contractile element. These data were
used as boundary conditions for muscle fiber experiments (conducted with the fibers taken from rat
muscles) and their corresponding simulations of the isolated contractile element (Figure 6.1C-D). Notice
that in the vertical hopping model (Figure 6.1A), the neural stimulation (u) is first filtered by activation
dynamics (Hatze, 1977; Rockenfeller et al., 2015). However, in the simulation of the isolated contractile
element, no activation dynamics are included. Thus, the neural stimulation sent to the muscle and
the muscle activation level are equal (u = a). This was necessary since the simulation of the isolated
contractile element mimics the in vitro muscle fiber experiments for which no activation dynamics take
place. The highlighted preflex phase (Figure 6.1B, shaded area)— is the focus of our study. Figure 6.1B
also shows the behavior shortly after the preflex phase. However, the data after preflexes is measured
with constant activity levels, as the in vitro setup does not allow for a time-controlled activity change. In
the hopping simulation, the muscle activity rises after the preflex phase. We recorded force-length traces
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during these experiments and matching simulations and analyzed the preflex phases of work loops for
the mechanical work of the muscle fiber. The following sections provide details of the experiments and
simulations conducted.
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Figure 6.1: Simulations and in vitro experiments applied in this study. A Hill-type model muscle-tendon unit
drives a knee extensor unit of the hopper (Geyer et al., 2003; Haeufle et al., 2014b; Izzi et al., 2023). The hopping
model is the same as in Chapter 4 (for more details, see section 3.3). Single-leg hopping is computer-simulated
(A) with three perturbation scenarios: 5 cm step-up (P↑), no perturbation (P0), and 5 cm step-down (P↓). The
model outputs are length changes of the contractile element (lCE, (B)), and contraction velocities (l̇CE, (B)). One
hopping cycle from touchdown (TD) to toe-off (TO) is extracted for the analysis. Since the focus of this study is
the muscle behavior during the preflex phase of a hopping cycle (the first 30 ms of the stance phase), we focused
on the time zone shown with the blue area (B). In this time zone, there is no influence of reflexes on the muscle
activation, and we assume no activity rise due to feedforward muscle activation. Thus, constant stimulation
profile (uCE -orange line is shown only for 15% stimulation level, (B)) is then applied to in vitro muscle fiber
experiments (C) and isolated contractile element (CE) simulations (D). Constant stimulation in experiments and
isolated contractile element simulations were used since the in vitro setup does not allow changing stimulation
levels within a stretch-shortening cycle. Since the muscle fibers used in in vitro experiments (C) were isolated
from the tendon, the contractile element (CE) and parallel elastic element (PEE) of the Hill-type muscle model
were also isolated from the tendon unit (D).

6.2.1 Muscle Fiber Experiments

6.2.1.1 Fiber Preparation

One M. extensor digitorum longus (EDL) was extracted from a single female Wistar rat, which was
sacrificed with an overdose of CO2 shortly before. We used n = 9 fibers from the extracted EDL muscle
for our experiments. The specimen’s age was 8 to 10 months, at a body weight of 300 g to 350 g. The
specimen was kept at a 12 h light and 12 h dark cycle at a housing temperature of 22 °C. The EDL
muscle was obtained from the left hind limb. The experiment was conducted according to the guidelines
of ARRIVE and approved according to the German animal protection law (Tierschutzgesetz §4(3),
permit no. T170/18ST).

The techniques used for muscle preparation, storage, and activation of skinned single muscle fibers
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were carried out as described in detail in Tomalka et al. (2017). In summary, the EDL was prepared
in 6 to 8 small fiber bundles, which were permeabilized in a skinning solution (see “Solutions"; Sec-
tion 6.2.1.3) at 4 °C temperature directly after preparation. Fiber bundles were transferred to a storage
solution made of 50% glycerol and 50% skinning solution and kept at −22 °C for 6 to 8 weeks. Prior to
conducting experiments, fibers were removed from the bundle using a dissecting microscope and fine
forceps. Single fibers were cut into smaller muscle fiber segments with a length of 1 mm. Aluminum
T-shaped clips were folded around both ends of the fiber. The fiber was then treated with a skinning
solution consisting of a relaxing solution with 1% vol/vol Triton-X 100 for 3 min at 4 °C until the
complete removal of internal fiber membranes (Linari et al., 2007).

6.2.1.2 Experimental Setup

The skinned muscle fiber was transferred from the skinning solution to the experimental chamber of the
fiber test apparatus (600A, Aurora Scientific, ON, Canada). One clipped end was attached to a length
controller (model 308B, Aurora Scientific, ON, Canada) and the other end to a force transducer (model
403A, Aurora Scientific, ON, Canada). Both attached ends were fixed with fingernail polish diluted with
acetone (Getz et al., 1998). Transitions from the fiber end to the clip were treated with glutaraldehyde
in rigor solution to improve mechanical performance and stability during the experiment (Hilber and
Galler, 1998).

The central fiber segment was focused in the microscope and used to optically measure the sarcomere
length (Weidner et al., 2022), which was set to 2.5 µm (means ± standard deviation) in the beginning.
At this optimal sarcomere length, the fiber produces its maximum force Fmax(Stephenson and Williams,
1982). The corresponding muscle fiber length is defined as lopt. The height (h) and width (w) of the
fiber were measured in 0.1 mm increments over the entire length of the fiber using a 10 x extra long
working distance dry lens (NA 0.60, Nikon, Japan) and a 10 x eyepiece. The cross-sectional area of all
tested muscle fibers was determined 5.25 × 10−9 m2 (±1.5 × 10−9) assuming an elliptical cross-section
(π ×h×w/4).

A high-speed video system (Aurora Scientific, 901B, Canada) in combination with a 10 x extra long
working distance dry objective (NA 0.40, Nikon, Japan) and an accessory lens (2.5 x, Nikon, Japan)
visualized and tracked dynamic changes in the sarcomere length. Videos were recorded at 300 Hz
recording frequency.

6.2.1.3 Solutions

The relaxing solution contained 0.1 mol TES, 7.7 mmol MgCl2, 5.44 mmol Na2ATP, 25 mmol EGTA,
19.11 mmol Na2CP, 10 mmol GLH (pCa 9.0). The preactivating solution contained 0.1 mol TES,
6.93 mmol MgCl2, 5.45 mmol Na2ATP, 0.1 mmol EGTA, 19.49 mmol Na2CP, 10 mmol GLH, and
24.9 mmol HDTA. The skinning solution contained 0.17 mol potassium propionate, 2.5 mmol MgCl2,
2.5 mmol Na2ATP, 5 mmol EGTA, 10 mmol IMID, and 0.2 mmol PMSF. Recipes for activation solutions
(‘ACT’) are shown in Table 6.1. The storage solution is the same as the skinning solution, except for the
presence of 10 mmol GLH and 50 % glycerol vol/vol. Cysteine and cysteine/serine protease inhibitors
[trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane, E-64, 10 mM; leupeptin, 20 mg/mL] were
added to all solutions to preserve lattice proteins and thus sarcomere homogeneity (Linari et al., 2007;
Tomalka et al., 2017). KOH was applied to adjust to a pH 7.1 at 12 °C. Then, 450 U/mL of creatine
kinase were added to all except skinning and storage solutions. Creatine kinase was obtained from
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Roche, Mannheim, Germany, and the remaining chemicals were obtained from Sigma, St Louis, MO.
According to our calibration curve (Figure A2.1) we chose concentrations of 6.73 pCa, 6.34 pCa and
6.3 pCa to best match the simulations boundary conditions.

Table 6.1: Recipe of activation solutions used, values are in [mmol].

ACT 5 % 15 % 25 % 100 %

TES 100.000 100.000 100.000 100.000
MgCl2 7.183 6.995 6.980 6.760
EGTA 11.250 6.250 5.852 0.000
CaEGTA 13.750 18.750 19.147 25.000
Na2ATP 5.451 5.455 5.455 5.460
KPi 0 0 0 0
Na2CP 19.319 19.395 19.401 19.490
GSH 10.000 10.000 10.000 10.000

6.2.1.4 Experimental Protocol

All experimental trials were conducted at a solution temperature of 12 °C (±0.1). At this temperature,
the skinned muscle fibers proved stable during work loop experiments (Tomalka et al., 2020, 2021).
Fibers can tolerate activation and active stretch protocols over a long period (Ranatunga, 1982, 1984).
A three-step approach was used to activate the fibers by calcium diffusion. First, muscle fibers were
immersed for 60 s in a preactivation solution for equilibration. The fiber was then transferred to the
activation solution. This led to a rapid increase in force until a plateau was reached. We defined the
plateau as an isometric force increase of less than 1% rise of force within 1.5 s. After reaching the
plateau, the perturbation was carried out. In the last step, the fiber was transferred to the relaxing solution,
in which it was prepared for the subsequent activation for 400 s using cycling protocols (Tomalka et al.,
2017).

The in vitro experiment included isometric contractions at optimal fiber length and three hopping
stretch-shortening cycles based on the simulation data of the hopping model (Section 6.2.2). First, the
activity level of the fiber in three sub-maximal conditions was checked using isometric contractions
in 5 %, 15 %, 25 %, and supra maximal activation solution at optimal fiber length. This step ensured
matching boundary conditions with the simulation data. A flow chart of an experimental day for a single
fiber is shown in Supplementary Figure A2.2. Hopping stretch-shortening cycles were applied to the fiber
according to length and velocity data extracted from the simulations in the simulated dynamic-scenarios
and modified quasistatic-scenarios (see Section 6.2.2 for more details).

Both the order of stretch-shortening profiles and the order of activity levels within a perturbation,
called a “block", were randomized. Each block was surrounded by isometric reference contractions at
optimal fiber length and full activity to take into account fiber degradation during force data normalization
(Supplementary Figure A2.2).

Velocity, force, and length data were recorded at 1 kHz for isometric and quasistatic-scenario trials
and 10 kHz for high-speed trials with an A/D interface (604A, Aurora Scientific, ON, Canada). The
data acquisition was carried out with real-time software (600A, Aurora Scientific, ON, Canada). Data
were loaded into MATLAB (MathWorks, MA, United States) and analyzed with a custom-written script.
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Forces during perturbation trials for every single fiber were divided by individual Fmax, and likewise,
fiber length l by individual lopt, to normalize them.

6.2.2 Simulations

6.2.2.1 Generating Hopping Trajectories in Simulation

To identify realistic boundary conditions for in vitro muscle fiber experiments, we extracted contractile
element kinematics from a single-leg hopper simulation (Izzi et al. (2023) based on the model by Geyer
et al. (2003)). The hopping model is the same as in Chapter 4. The single-leg hopper is driven by a
Hill-type muscle-tendon unit (MTU) model. The MTU model considers four elements: a contractile
element representing the muscle fibers (CE), a parallel elastic (PEE), a serial elastic (SEE), and a series
damping (SDE) element (Haeufle et al., 2014b). The modeled muscle-tendon unit extends the knee
joint (Figure 6.1A). The leg features two massless segments connected by the knee hinge joint. The
body mass is represented as a point mass located at the hip joint. For further details on the model, see
section 3.3.

We simulated stable periodic hopping with the hopper model and introduced a step-up and a step-
down perturbation (Figure 6.1A). During the flight phase, the muscle was stimulated with 15 % constant
stimulation, and the knee joint was fixed. After touchdown, the constant stimulation level continued
for 30 ms throughout the preflex phase and then increased with a ramp input (b = 10s−1, Figure 6.1B).
Thus, the stimulation was identical to the Preflex-Const stimulation described in Chapter 4. Despite
the constant stimulation during the preflex phase, the contractile element can change its force due to
its elastic and viscous intrinsic properties, which are related to the force-length and the force-velocity
relations, respectively. Since the Hill-type muscle is extending the knee in the hopping simulation,
muscle-tendon unit and contractile element are stretched at the initial phases of the stretch-shortening
cycle. Thus, the model operates on the eccentric section of the force-velocity relation (Haeufle et al.,
2014b):

FCE,e
(
l̇CE > 0

)
= Fmax

aF isom +Arel,e

1− l̇CE
Brel,elopt

−Arel,e

 (6.1)

Here l̇CE is the fiber contraction velocity, Fmax is the maximum isometric force that the contractile
element can generate, Fisom is the isometric force that the contractile element generates according to the
current muscle length, Arel,e and Brel,e are the normalized Hill parameters for the eccentric phase, and a
is the activity level. Figure 6.2 shows force-velocity traces predicted by the Hill-type muscle model for
sub-maximal (5 %, 15 % and 25 %), and full activity (100 %).
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Figure 6.2: Force-velocity relation for the contractile element for activity levels of 5 %, 15 %, 25 % and 100 %.
Shown intervals for each perturbation represent the stretch velocity ranges from touchdown to the end of the
preflex phase.

For a comparison between the biological muscle fiber and the Hill-type muscle model behavior, the
parameters of the isometric force-length curve of the model were optimized to fit experimental data
(Stephenson, 2003). More precisely, the width of the normalized bell-curve ∆Wlimb and its exponent
νCE,limb of the ascending limb were optimized with the lsqcurvefit function (MATLAB 2021b). All other
parameters are based on (Bayer et al., 2017; Kistemaker et al., 2006; Mörl et al., 2012) and tabulated in
the Supplementary table A2.1.

6.2.2.2 Extracting Boundary Conditions

We simulated hopping for no-perturbation locomotion on ground level (P0), 5 cm step-up perturbation
(P↑), and 5 cm step-down perturbation (P↓). Beyond step-up perturbations of 5 cm, the single-leg hopper
generates unstable hopping patterns. Thus, we decided to use a maximum perturbation height of 5 cm.
The contractile element length and velocity profiles were extracted for each perturbation level. These
kinematic data were used in muscle fiber experiments and isolated contractile element simulations to
compare their reactions to the perturbations during the preflex phase.

We further derived quasistatic-scenario boundary conditions to differentiate between the muscle
fibers’ velocity-dependent and length-dependent force modulation. To create a length-dependent
force modulation, we generated quasistatic-scenario boundary conditions for each perturbation level.
In these conditions, the time duration of the contractile element lengthening profiles obtained from
each perturbation level was expanded by 80 times compared to the original duration. Thereby, the
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contraction velocity was decreased to negligible levels without exceeding the minimum speed limits
of the experimental setup. Hence, the viscous contribution was minimized from the muscle fiber force
response, and the muscles only reacted with their elastic properties to the perturbations.

6.2.2.3 Simulating Isolated Contractile Element Response

In the hopping simulation, the Hill-type muscle model calculates contractile element kinematics ac-
cording to the dynamic balance of the serial (SEE and SDE) and contractile (CE and PEE) side of the
model. However, in vitro experiments are conducted only with isolated muscle fascicles. To match in
vitro conditions, we ran simulations solely with an isolated contractile element. Thereby, the isolated
responses of the CE—corresponding to the muscle fibers—were calculated according to the provided
contractile element length (lCE), contraction velocity (l̇CE) and activity (a):

FCE = f (lCE, l̇CE ,a) (6.2)

We obtained the kinematic data of contractile element from hopping simulations for step-up, no step, and
step-down perturbations. All perturbation cases were applied as input to the isolated contractile element
model with constant activity levels of 5 %, 15 % and 25 %. Although the activity level increases after
the preflex phase during hopping simulations, isolated contractile element model simulations must be
kept constant to reproduce the conditions of in vitro muscle fiber experiments. In the experimental setup,
the stimulation level is arranged with chemical baths, as explained in Section 6.2.1.3. The setup allows
only a single stimulation level for each stretch-shortening cycle. Therefore, stimulation levels were kept
constant in isolated contractile element simulations to match the experimental in vitro conditions.

6.2.3 Data Analysis and Statistics

6.2.3.1 Data Analysis

The analysis of stretch-shortening cycles of both experimental and simulated fiber contractions focused
on the preflex phase, which is the first 30 ms of the dynamic-scenario scenarios. We analyzed data in
quasi-scenarios until the fiber lengthening reached the same level as at the end of the preflex phase
in the dynamic-scenario conditions. We calculated the areas under force-length curves with the trapz
function (MATLAB 2021b) to measure the work done by the muscle fibers and the isolated contractile
element model. In addition, we estimated the muscle fiber’s short-range stiffness from the slope of
fitted force-length curves during the initial phase of preflex, from 0.57 to 0.59 l̃CE, with l̃CE = lCE/lopt.
This initial phase begins where muscles start to generate force (≈ 0.57 l̃CE) and ends where the force
responses start to deviate due to the stretch velocities (≈ 0.59 l̃CE). Then, to observe the effect of velocity
on stiffness, we calculated the stiffness during the quasistatic-scenario stretch for the same boundary
conditions.

6.2.3.2 Statistics

SPSS 27 (IBM Corp., Armonk, NY) was used for the statistical analysis, with a significance level of
p = 0.05. Initially, we tested for normal data distribution by running a Shapiro-Wilk, which was negative.
Hence, we used a Friedman test to elucidate differences between the applied perturbations within one
activity level. We executed comparisons pairwise for post hoc experimental data analysis. Results were
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fed into a Bonferroni correction to take multiple testing into account. We tested for differences between
similar activity levels and applied perturbation between dynamic-scenario and quasistatic-scenario
conditions with a two-sample paired sign test. Effect sizes for the pairwise comparisons were classified
as small (d < 0.3), medium (0.3 < d < 0.5), and large (d > 0.5) using Cohen’s d (Cohen, 1988).

6.3 Results
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Figure 6.3: Shifted work loops for dynamic-scenario and quasistatic-scenario analysis step-up (P↑), no (P0) and
step-down (P↓) perturbations for both experiments (A, B) and simulations (C, D) at 15 % activity level (work
loops for 5 % and 25 % are shared in Supplementary Figures A2.3 and A2.4, respectively). The experimental data
presented on (A, B) show the mean of all experimental trials. From touchdown to toe-off, all stretch-shortening
cycle loops are plotted in the clockwise direction, and the thick and thin sections of the loops represent the preflex
and remaining part of the stretch-shortening cycle, respectively. The preflex stretch gets longer from step-up to
step-down perturbation since the muscle stretches faster in the same amount of time. The force-time curves for all
experimental conditions with standard deviations can be found in Supplementary Figure A2.5 and Supplementary
Figure A2.6 for dynamic-scenario and quasistatic-scenario, respectively.

During in vitro experiments, we found that intrinsic muscle properties adjust the force response to the
perturbation condition within the preflex phase (Figure 6.3A, thick lines). Work loops of dynamic-
scenario experiments for skinned fibers show muscle fibers are initially responding with similar force
and with a linear and increasing trend between touchdown and 0.59 l̃CE in all perturbations (Figure 6.3A).
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After 0.59 l̃CE, the force differs depending on the perturbation level, i.e., force is highest in the step-down
perturbation (Figure 6.3A).

The response we observed from the skinned fiber experiments does not match with the prediction
of the isolated contractile element of the Hill-type muscle model (Figure 6.3A, C). For the Hill-type
muscle model, an effect of the perturbation is only observed at touchdown (0.56 l̃CE, Figure 6.3C). Right
after touchdown, the response of the Hill-type muscle model reaches the same force level regardless of
the perturbation state and then increases with the same linear trend. Therefore, the model did not predict
the modulation in the muscle’s force response due to the perturbation.

Contrary to the dynamic-scenario experiments (Figure 6.3A), force responses of skinned fibers in
quasistatic-scenario stretches do not change according to the perturbation level (Figure 6.3B), during
preflexes. Initial force and the rise in force are similar for all perturbation levels. This result matches the
prediction of the isolated contractile element of the Hill-type muscle model (Figure 6.3D).

We found that intrinsic muscle properties adjust the mechanical work during the preflex phase (preflex
work) according to the perturbation condition. This is true in dynamic-scenario and quasistatic-scenario
tests, both during experiments and simulations and for all activity levels (Figure 6.4).

The preflex work increases when comparing the step-up to the step-down perturbation, according to
the dynamic-scenario analysis of skinned fibers (Figure 6.4A). Albeit no significant difference among
perturbation states at 5 % activity level (p = 0.169), a perturbation influence on preflex work is observ-
able for 15 % (χ2 = 12.61; p = 0.002) and 25 % (χ2 = 14; p = 0.001) activity levels (Supplementary
Table A2.2).

Preflex work changes significantly between activity levels. For the same kinematic profiles, the work
done by skinned fibers increases if they are activated more (5 % to 25 % activity level; p = 0.001). The
work differences between the perturbation conditions increase with an increase in activity level. See the
supplementary materials (Supplementary Table A2.3) for further details.

In the dynamic-scenario analysis, the muscle fibers’ response is a combination of two mechanical
features: elasticity and viscosity. To identify their individual contributions, we minimized the parameter
responsible for the viscous contribution—the stretch velocity. We performed quasistatic-scenario
experiments, where muscles were stretched with the same lengthening profiles as in dynamic-scenario
experiments, but at super-low velocities. Hence, with this experimental design, we expect to see only
the elastic muscle fiber response. Still, even at negligible stretch velocities, we observed a similar
preflex work trend between perturbation levels in quasistatic-scenario experiments and dynamic-scenario
experiments (Figure 6.4A, B).

Surprisingly, the Hill-type muscle model predicted the amount of preflex work accurately for the
dynamic-scenario experiments (Figure 6.4A, C) and the quasistatic-scenario experiments (Figure 6.4B,
D). Such correct prediction is an expected outcome for quasistatic-scenario experiments but not for
dynamic-scenario experiments, as the model’s dynamics differed compared to the muscle fiber dynamics
(Figure 6.3A, C).
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Figure 6.4: The amount of preflex work done by skinned fibers and the isolated contractile element of the Hill-type
muscle model for all perturbation states and activity levels. In the dynamic-scenario analysis, work done during
the preflex phase was calculated as the area under the force curve. Shaded areas in the insets (A) and (B) indicate
changing perturbation levels. In the quasistatic-scenario analysis, the area till the lengthening reached at the
end of the preflex phase was analyzed for each perturbation level. Bars in (A, B) and (C, D) indicate the work
done by skinned muscle fibers and the isolated contractile element at dynamic-scenario and quasistatic-scenario,
respectively. We calculated and indicated the area of the normalized work loops (Figure 6.3). Hence, there is no
need to match the parameters of the hopping simulation to the experimental muscle size.

Work loops obtained from the dynamic-scenario analysis (Figure 6.3A, Supplementary Figure A2.3A,
and Supplementary Figure A2.4A) show that the force response of the muscle fibers is almost identical
within the short-range stiffness (Rack and Westbury, 1974) regardless of the velocity profile. The
force-time curves of all experimental conditions with standard deviations can be found in Supplementary
Figure A2.5 and Supplementary Figure A2.6 for the dynamic- and quasistatic-scenarios, respectively.
Only after the short-range stiffness phase, the force and energy are affected by velocity (Figure 6.5).
To understand the influence of velocity on the preflex work, we measure the area after the end of the
short-range stiffness phase until the end of preflexes for the step-up perturbation condition (Figure 6.5A,
inset: shaded areas). Work done in this phase is slightly higher for the faster stretches at 15 % and 25 %
activity levels. However, the differences between the perturbation levels are not significant (15% activity:
χ2 = 4.67, p = 0.097; 25 % activity: χ2 = 3.56, p = 0.167; See Supplementary Table A2.2 for more
details).
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Figure 6.5: Influence of velocity adaptation on preflex work is represented. (A) shows the dissipated energies
at dynamic-scenario experiments after the short-range stiffness till the end of the ‘step-up’ perturbation phase
(shaded area shown in the inset). Elastic contribution is kept equal for all perturbation states. Thus, the difference
in energy will be caused by the difference in velocity profiles. (B) shows the preflex work difference between the
dynamic-scenario and quasistatic-scenario experiments for each perturbation level. The preflex work is shown in
the insets as a shaded area and for multiple conditions.

We compared activity levels affecting muscle work to see whether muscles’ viscous properties
are tunable. Our results show that the activity level influences the amount of viscous contribution
(Figure 6.5A) similar to the preflex work (Figure 6.4A). For the same kinematic profiles, a rising activity
level causes a work increase by viscous characteristics of muscle fibers (15 % to 25 % activity level;
p = 0.001).

To understand the velocity-related adaptation throughout the preflex phase, we subtract the work
done in the quasistatic-scenario experiments from dynamic-scenario experiments, shown as inset
in Figure 6.5B. Surprisingly, the amount of work done by muscle fibers at dynamic-scenario and
quasistatic-scenario experiments are almost identical, and we measured no significant effect of the
velocity on the preflex work (Supplementary Table A2.4). Both comparisons between perturbations and
between dynamic- and quasistatic-scenarios showed that velocity differences had no significant effect
on the preflex work.

Analysis of the short-range stiffness shows no difference between perturbations but significant
differences between activity levels (Figure 6.6A). In quasistatic-scenario experiments, we found no
significant differences between perturbation levels. However, short-range stiffness was less in quasistatic-
scenario stretches (Figure 6.6B) than in dynamic-scenario experiments (Figure 6.6A), and the difference
between them increased with higher activities (Supplementary Table A2.4). Hence, short-range stiffness
is increasing from quasistatic-scenario (Figure 6.6D) to dynamic-scenario velocities (Figure 6.6C).
However, short-range stiffness does not change according to the difference in velocity between the
perturbation levels (Figure 6.6C, different shades of thick blue lines). Besides, the stiffness value can be
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Figure 6.6: Short-range stiffness of muscle fibers during the dynamic-scenario (A). Stiffness amount during the
short-range stiffness lengthening during quasistatic-scenario experiments (B) for all perturbation and activity
levels are shown in the bar charts. Boundary conditions for the stiffness calculations for both speed conditions are
shown as insets. In addition, velocity-length profiles during the preflex phase are presented in (C) and (D) for
actual and quasistatic-scenario experiments, respectively. Thick lines show the short-range stiffness phase and
thin lines present the remaining part of the preflex phase.

arranged by changing the activity level.

6.4 Discussion

In this study, we presented the first in vitro experiments conducted under realistic boundary conditions
and activity levels of perturbed hopping. Our aim is to understand how intrinsic mechanical properties of
an individual muscle fiber result in the modulation of the force output to perturbation during locomotion.
We extracted the boundary conditions from a hopping simulation for three levels of perturbations. Here,
we discuss surprising outcomes that we observed from our in vitro experiments and simulations. As
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hypothesized, muscles modulate their force response to the stretch velocities. However, this modulation
is not the main contributor to the preflex work. In addition, we observed that muscle’s intrinsic properties
are tunable by changing the activity level.

6.4.1 Muscle response to perturbations at dynamic-scenario

During dynamic-scenario experiments, muscle fibers initially react elastically to the sudden perturbation,
known as short-range stiffness (Kirsch et al., 1994; Rack and Westbury, 1974). Muscles then transition
into a viscoelastic behavior (Figure 6.3A). In the short-range stiffness region, we found no significant
changes in fiber work, despite of different perturbations changed stretch velocities (Figure 6.6C). We
calculated fiber work starting at the beginning of the stretch until the end of the short-range stiffness
phase at 0.59 l̃CE (Figure 6.3A). Our observation is in agreement with the reported constant short-range
stiffness for stretch velocity ranges similar to ours (3 lopt/s to 5 lopt/s) (Pinniger et al., 2006; Rack and
Westbury, 1974).

After the short-range stiffness phase, i.e., from 0.59 l̃CE to the end of preflexes, the force response
became nonlinear, and velocity adaptation occurred. In this phase, higher stretch velocities cause higher
forces (Figure 6.3A) and preflex work (Figure 6.4A). Both observations are in agreement with the
reported work increment associated with increasing stretch velocity for the eccentric phase of ramp-like
stretch-shortening cycles (Tomalka et al., 2021).

Two factors contribute to the increasing preflex work in our study. The first factor is the higher force
when assuming the same stretch is considered for calculating the preflex work (Figure 6.5A, inset). For
the specified area, all energetic differences between perturbations are the result of muscle fibers’ viscous
behavior since stretch amounts are identical. In that case, we observed no significant differences in
preflex work between perturbations. Second, higher velocities cause a larger fibers’ stretch in the preflex
phase (Figure 6.3A). If the larger stretch is fully considered, differences in preflex work between the
perturbation cases become significant (Figure 6.4A). We find a rising trend in dissipated energy with the
increase of stretch velocity from step-up to step-down perturbations. Hence, muscles adjust their work
response primarily due to a change of stretch caused by locomotion perturbation.

6.4.2 Tuning the force and energy response by activity level

Humans increase muscle activity in preparation for a step-down perturbation, as previously shown
(Müller et al., 2012, 2015). The increased muscle activity strategy increases walking robustness (Haeufle
et al., 2018). To test whether increased activity leads to higher muscle stiffness and work in this scenario,
we conducted muscle fiber experiments with activity levels of 5 %, 15 % and 25 % for each perturbation
case while keeping the kinematics identical.

The results confirm previous findings (Campbell et al., 2003) that the short-range stiffness increases
with activity level (Figure 6.6A). As short-range stiffness is likely due to the stretch of attached cross-
bridges (Getz et al., 1998; Pinniger et al., 2006), an increase in short-range stiffness can be explained
by the increasing number of attached cross-bridges with increasing activity level (Metzger and Moss,
1990).

Additionally, we found that higher activity levels result in significantly higher preflex work (Fig-
ure 6.4A). Tomalka et al. (2021) likewise reported an increase in work with an increasing number of
active cross-bridges in the eccentric phase of the ramp-like stretch-shortening cycles. An increase in pre-
flex work with increasing activity level might be explained by an increasing number of forcibly detached

85



6 Muscle Preflex Response to Perturbations: in vitro and simulation study

cross-bridges after the short-range stiffness phase. The number of forcibly detached cross-bridges might
increase (at the given stretch kinematics) as a fraction of the increasing number of attached cross-bridges
with activity level (Wahr and Rall, 1997). Forced detachment of cross-bridges is expected (Weidner
et al., 2022) in the range of the tested stretch velocities (3 lopt/s to 5 lopt/s; Figure 6.6). Additionally,
viscoelastic properties of non-cross-bridge structures (e.g., titin) might contribute to energy dissipation
in a velocity-dependent manner (Freundt and Linke, 2019; Herzog et al., 2014; Tomalka et al., 2021).
Furthermore, with higher activity, the differences between perturbation cases become more prominent,
and, for 25 %, even significant (Figure 6.4A).

Consequently, humans and animals may tune their muscle stiffness during the short-range stiffness
phase (Figure 6.6A) and their muscle work after the short-range stiffness phase (Figure 6.5A) utilizing
the activity level. Thus, increased muscle stiffness and work in preparation for an expected perturbation
are possible by increasing the muscle pre-activity level.

6.4.3 Dynamic- versus quasistatic-scenario

During the preflex phase of the quasistatic-scenario experiments, when muscles are stretched with
negligible velocities, they respond with a linear force increase which is almost the same regardless of the
perturbation case (Figure 6.3B). Comparison of dynamic-scenario and quasistatic-scenario experiments
show that velocity is not only adding a viscous behavior to the response (Figure 6.3A, B), but also a
visible short-range stiffness contribution (Figure 6.6). In previous isovelocity stretch experiments, the
initial force response (i.e., short-range stiffness) was velocity dependent (Pinniger et al., 2006; Rack
and Westbury, 1974), especially when the strain rate was varied over several orders of magnitude. For
example, Pinniger et al. (2006) showed that the initial force response differs between slow (0.1 lopt/s)
and fast (2 lopt/s) stretches. However, for contractions faster than 2 lopt/s they observed no significant
difference in the short-range stiffness. Weidner et al. (2022) observed differences in the short-range
stiffness between 0.01 lopt/s and 1 lopt/s stretches. Our results align with these previous findings: while
the short-range stiffness appears to be velocity-independent within the range of velocities tested in
our dynamic-scenario experiments (reached peak velocities from 3 lopt/s to 5 lopt/s, Figure 6.6C), the
comparison to the quasistatic-scenario experiments (reached maximum peak velocity of 0.05 lopt/s,
Figure 6.6D) revealed that the short-range stiffness actually reflects a muscle behavior that varies with
large differences of velocity.

Interestingly, even though the dynamic behaviors during the preflex phase differ between quasistatic-
scenario and dynamic-scenario conditions (Figure 6.3A, B), we observed almost equal amounts of
mechanical work at quasistatic-scenario compared to dynamic-scenario stretches for each activity level
(Figure 6.4A, B).

Possibly, myosin heads are detached forcibly from actin at high velocities during eccentric contractions.
This will decrease muscle force generation (Weidner et al., 2022) observed during in situ and in vitro
experiments (Fukutani et al., 2019; Griffiths et al., 1980; Krylow and Sandercock, 1997; Till et al., 2008;
Tomalka et al., 2020; Weidner et al., 2022). On the other hand, during the quasistatic-scenario stretches,
ultra-slow-speed stretches allow cross-bridges to bind easier and longer than during rapid contractions
(Herzog, 2018; Huxley, 1957). Hence, similar forces during the preflex stretch phase result in similar
amounts of energy dissipation in quasistatic-scenario and dynamic-scenario experiments.
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6.4.4 Muscle fibers versus Hill-type muscle model

Since Hill’s empirical investigations of muscle contraction dynamics, Hill-type models have played a
crucial role in biomechanics research (Hill, 1938; Rode and Siebert, 2017). These models have been
improved over the years, but they are still limited in predicting muscle forces, especially during eccentric
(lengthening) contractions (Siebert et al., 2021; Till et al., 2008). Surprisingly, our results show that
the magnitude and trends in mechanical work predicted by the Hill-type contractile element model
are similar to the work of muscle fibers for fast eccentric contractions (Figure 6.4A, C). This is an
unexpected outcome since the force responses of the Hill-type muscle model and muscle fibers differ
(Figure 6.3A, C). We show that the main source of preflex work modulation to perturbation height is the
amount of muscle stretch rather than the viscous force adaptation.

Our quasistatic-scenario experiments and simulations proved that the force-length relation of the
Hill-type muscle model could accurately estimate the length-dependent force and mechanical work
response of muscle fibers for the investigated conditions (relatively short muscle fibers at low activity
levels). Because the length-dependent behavior of muscle fibers is the main force contributor during
preflex, the Hill-type muscle model predicts work for the larger stretch in response to the fast contraction
reasonably well.

Although the Hill-type muscle model estimates work during preflexes with good accuracy, it still
requires improvements for better force prediction during fast contractions (Figure 6.3A, C). The short-
range stiffness had previously been observed in other fiber experiments (Rack and Westbury, 1974;
Tomalka et al., 2021; Weidner et al., 2022). We observed that the short-range stiffness was activity-
and velocity-dependent (Figure 6.6), at least for the velocity difference between dynamic-scenario
and quasistatic-scenario experiments (Figure 6.3A, B). However, our Hill-type muscle model cannot
generate the high-stiffness response of a short-range stiffness, since short-range stiffness is not a built-in
mechanical property (Haeufle et al., 2014b). So far, the short-range stiffness model proposed by Cui
et al. (2008) has been implemented in several musculoskeletal simulations to study the influence of
short-range stiffness on the endpoint stiffness of the human arm in static postures (Hu et al., 2011)
and postural stability while standing (De Groote et al., 2017). These simulation studies showed that
including short-range stiffness in a Hill-type muscle model improves the estimation of joint angles,
torques, and stiffness (Hu et al., 2011), as well as postural stability against external perturbations
(De Groote et al., 2017). Together with our results, we expect that Hill-type muscle models that feature
short-range stiffness should provide a better force estimation at and immediately after impact. Therefore,
we consider short-range stiffness an essential model feature for the understanding of gait mechanics
leading to stable locomotion.

The force modulation to the perturbation velocity after the short-range stiffness (Figure 6.3A, C) is
also not accurately modeled in the Hill-type muscle model. Here, the Hill-type muscle model operates
in the plateau region of the eccentric force-velocity relation (Figure 6.2). The model, therefore, does not
show any modulation of the force due to the perturbation-related changes in fiber velocity, in contrast to
the observations in the experiments (Figure 6.3A, C). This plateau-form of the eccentric force-length
relation was introduced by van Soest and Bobbert (1993). While their results are consistent with our
simulation data, they do not explain the experimental results of the present study. Possible reasons for the
deviation of the experiment can be the starting length of the contraction, the sub-maximal activity level
or the underlying model. However, the results of Krylow and Sandercock (1997) suggest that the starting
length has no influence on the point of occurrence of the eccentric force-velocity relation’s plateau.
Regarding the sub-maximal activity level and its effects, it is known that the calcium concentration has
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an influence on the cross-bridge kinetics (Brenner, 1988). Nevertheless, to the best of our knowledge,
there is no study that looked at the dependency of the eccentric force-velocity relation on the activity
level within the contractile element only. A likely explanation for the discrepancy is a simplification
of the contraction by the model. For example, the Hill-type muscle model lacks the implementation
of “Give" (Flitney and Hirst, 1978), which, on the one hand, is speed-dependent and, on the other
hand, occurs directly after the end of the short-range stiffness (Weidner et al., 2022). The force and
work responses show that the modeling of eccentric muscle behavior needs to be modified for better
estimation of the dynamic response to perturbations during fast eccentric contractions. In addition, the
effect of the neural reflex response after the preflex phase will have a significant effect on the post-preflex
force generation (Nichols and Houk, 1976) and should also be examined in further experiments with an
appropriately updated experimental setup.

6.4.5 Study limitations

This study aimed to analyze how a single muscle fiber reacts to ground perturbations in real life. It
is known that the temperature influences the muscle properties (e.g., Fmax, Vmax, (Ranatunga, 1984;
Stephenson and Williams, 1985; Zhao and Kawai, 1994)) and thus the force response to disturbances.
Therefore, temperature influences on the force response to perturbations should be investigated in future
studies. We conducted single-leg hopping simulations using a Hill-type muscle model as a knee extensor
muscle to generate kinematic boundary conditions for in vitro experiments. However, Hill-type muscle
models have limitations discussed in previous chapters, and simulation and real-life muscle lengthening
may differ. Additionally, our in vitro experimental setup allows only constant activity levels. Even
though in the hopping simulations after the preflex phase activity rises, due to the setup limitations, we
performed the kinematic analysis with the constant preflex activity level, which is not the case for in
vivo hopping (Moritz and Farley, 2004) and locomotion (Müller et al., 2015). Thus, we only focused our
analysis on the preflex phase. We assume a preflex time-span of 30 ms based on the reflex delay scaling
found by More et al. (2010). Since we do not consider a full work loop, this study’s design does not
directly allow us to calculate damping, i.e., the amount of energy dissipation in a full cycle. However,
the velocity-dependent modulation of preflex work indicates a viscous-like response, which we identify
as a damping behavior.

6.5 Conclusion

Previous experimental and simulation studies indicated that muscles’ preflex capability to adjust force to
unexpected ground conditions is essential in stabilizing hopping and locomotion. Our study confirms
these findings and shows three mechanisms: (1) muscle force adapts to the change in stretch velocity
caused by a perturbation; (2) the overall fiber stretch in the preflex duration is larger for larger stretch
velocities resulting in increased preflex work; (3) with increasing muscle activity short-range stiffness
and muscle force increase. Mechanism (1) is the hypothesized viscous effect of the force-velocity
relationship but plays a minor role compared to the mechanism (2). Together, (1) and (2) result in
a beneficial and significant modulation of muscle force to perturbations and thus confirm the preflex
hypothesis. Mechanism (3) allows for a simple neuronal strategy to tune the muscle properties to ground
conditions and unexpected perturbations and aligns with feedforward strategies observed in human
locomotion (Müller et al., 2012).
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7 Effective viscous damping enables
morphological computation in legged
locomotion

This chapter describes our first investigation on principles of tunable mechanical damping in legged
robotics. Muscle models and experimental observations suggest that mechanical damping benefits
motion stabilization. Still, only a few implementations of mechanical damping exist in compliant, legged
robots. Although its control-free capacity to generate adaptive forces and negative work is promising, it
remains primarily unexplored how mechanical damping can be exploited in legged robotics.

Using a simplified numerical model of a robotic leg, we studied the benefit of viscous damping in
regulating energy dissipation following step perturbations. Our simulations demonstrate that viscous
damping consistently outperforms Coulomb friction damping. Based on these results, we investigated
whether damping rate control of viscous dampers directly coupled to the knee joint effectively produces
tunable mechanical damping in hardware experiments. We tested two damper designs: commercial
hydraulic dampers and a custom-made pneumatic damper. The pneumatic damper exploits a rolling
diaphragm with an adjustable orifice, minimizing Coulomb friction-damping effects while permitting ad-
justable resistance. Experimental results show that the leg-mounted hydraulic damper exhibits the most
effective viscous damping. However, damping rate control did not adjust dissipated energy substantially
in all the tested hardware, unlike what we observed in our numerical simulations. Consequently, our
hardware experiments suggest that damping rate control of directly coupled viscous dampers may not be
an effective solution to produce tunable mechanical damping in fast perturbed legged locomotion.

Note: a large portion of this chapter uses content published in Frontiers in Robotics and AI, section
Soft Robotics (Mo et al., 2020). For details on this journal article, including the list of authors and my
contribution, see Section 2.1.3. Copyright license: https://creativecommons.org/licenses/by/
4.0/.

7.1 Introduction

While less understood, damping likely plays an essential role in animal legged locomotion. Intrinsic
damping forces can potentially increase the effective force output during unexpected impacts (Müller
et al., 2014), reduce control effort (Haeufle et al., 2014b), stabilize movements (Abraham et al., 2015;
Secer and Saranli, 2013; Shen and Seipel, 2012), and reject unexpected perturbations (Haeufle et al.,
2010; Kalveram et al., 2012), e.g., sudden variations in the ground level (Figure 7.1). Stiffness, in
comparison, has been studied extensively in legged locomotion. Its benefits have been shown both in
numerical simulations, e.g., through spring-loaded inverted pendulum (SLIP) models (Blickhan et al.,
2007; Mochon and McMahon, 1980), and mechanical springy leg implementations (Hutter et al., 2016;
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Figure 7.1: (A-C) Problem identification, and related research question. The limited nerve conduction velocity
in organic tissue (More et al., 2010) 2 presents a significant hazard in legged locomotion. Local neuromuscular
strategies 6 provide an alternative means of timely and tunable force and power production. Actuators like the
indicated knee extensor muscle keep the leg extended during the stance phase (muscle length Lmuscle) by producing
the appropriate amount of muscle force (Fmuscle), correctly timed. Neuromuscular control 1 plays a major
role in initiating and producing these active muscle forces, but works best only during unperturbed locomotion.
Sensor information from foot contact travels via nerves bundles 2 to the spinal cord, but with significant time
delays in the range of t = 40ms (More and Donelan, 2018, for 1 m leg length) and more. Hence, the locomotion
control system can become ‘sensor blind’ due to conduction delays, for half a stance phase, and can miss
unexpected perturbations like the depicted step-down. During step-down perturbations 3 additional energy 4 is
inserted into the system. Viscous damper-like mechanisms produce velocity-dependent counter-forces and can
dissipate kinetic energy. Local neuromuscular strategies 6 producing tunable, viscous damping forces would act
instantaneously and adaptively. Such strategies 6 could also be robust to uncontrolled and harsh impacts of the
foot after perturbations 5 , better than sensor-based strategies. In this work (D), we are testing and characterizing
spring-damper configurations mounted to a two-segment leg structure, during rapid- and slow-drop experiments,
for their feasibility to mechanically and instantaneously produce tunable, speed-dependent forces extending the leg.
Work loops (E) will indicate how much effective negative work is dissipated between touchdown and mid-stance.
Prior to impact 7 and during the leg loading 8 the spring-damper’s tendons act equally. Starting at mid-stance,
the main spring extends the knee, leading to leg extension and leaving the damper’s tendon slack 9 .

Ruppert and Badri-Spröwitz, 2019; Spröwitz et al., 2013).
What combines both mechanical stiffness and intrinsic mechanical damping is their sensor- and

computational-free action. A spring-loaded leg joint starts building up forces exactly at the moment
of impact. Mechanical stiffness, or damping, acts instantaneously and is not subject to delays from
post-processing sensor data (Grimminger et al., 2020), delays from limited nerve conductive velocities
(More and Donelan, 2018), or uncertainties in the estimation of the exact timing of swing-to-stance
switching (Bledt et al., 2018).

Legged robots commonly exploit virtual damping: actively produced and sensory-controlled negative
work in the actuators (Grimminger et al., 2020; Havoutis et al., 2013; Hutter et al., 2012; Kalouche, 2017;
Seok et al., 2015). Virtual damping requires high-frequency force control, and actuators mechanically
and electrically capable of absorbing peaks in negative work. In comparison, mechanical damping-based
systems (Garcia et al., 2011; Hu et al., 2019) act instantaneously, share impact loads with the actuator
when in parallel configuration, and require no sensors or control feedback. The instantaneous mechanical
response of a damper is especially relevant in biological systems, where the neuronal delay may be as
large as 5 % to 40 % of the duration of a stance phase (More et al., 2010). In such a short time window,
mechanical damping could help to reject the perturbation (Haeufle et al., 2010; Kalveram et al., 2012)
by morphological computation, as it mechanically contributes to the rejection of the perturbation, a
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contribution that otherwise would need to be achieved by a (fast) controller (Ghazi-Zahedi et al., 2016;
Zahedi and Ay, 2013). Hence, mechanical damping has the potential to contribute to the morphological
computation (Ghazi-Zahedi et al., 2016; Zahedi and Ay, 2013) of a legged system.

Compared to virtual damping with proprioceptive sensing strategies (Grimminger et al., 2020), a
legged robot with mechanical damping requires additional mechanical components, e.g., a fluidic
cylinder, and the mechanics to convert linear motion to rotary output. In a cyclic locomotion task, the
energy removed by any damper must also be replenished. Hence, from a naive energetic perspective,
both virtual and mechanical damping systems are costly.

Energy dissipation in the form of negative work has been quantified in running birds and identified
as a potential strategy to ‘... reduce the likelihood of a catastrophic fall.’ (Daley and Biewener, 2006,
p. 185). In virtual point-based control strategies for bipedal running, positive work is inserted into hip
joints, and negative work is then dissipated in equal amounts in the spring-damper leg (Drama and
Badri-Spröwitz, 2020). In sum, either mechanical damping or virtual damping allows removing energy
from a legged locomotion system. In this work, we focus on mechanical damping produced by a viscous
damper. We aim towards an understanding of how mechanical damping can be exploited in legged
locomotion and which requirements a damper must fulfill.

We consider two damping principles: viscous damping and Coulomb damping. Viscous damping
reacts to a system motion with a force that is linearly (or nonlinearly) proportional to its relative acting
speed. Coulomb damping generates a constant force, largely independent from its speed (Serafin, 2004).
From a control perspective, viscous damping can be beneficial for the negotiation of perturbations in
locomotion as it approximates the characteristics of a differential, velocity-dependent term. Yet, it is
unknown how this intuition transfers into reality, where impact dynamics and nonlinearities of the leg
geometry alter the stance-phase dynamics of locomotion.

Damping in legged locomotion can have other purposes besides dissipating energy. The authors of
(Werner et al., 2017, p. 7) introduced a damping matrix in the control scheme, which reduced unwanted
oscillations in the presence of modeling errors. Tsagarakis et al. (2013) mount compliant elements with
some damping characteristics, which also could reduce oscillations of the system’s springy components.

In this project, we focus our investigation on the effect of damping during the touchdown (impact) and
mid-stance. We chose this simpler drop-down scenario as it captures the characteristics of roughly half a
locomotion cycle. A complete cycle would require an active push-off phase and the leg’s swing dynamics.
Hence, we study the effectiveness of mechanical damping on the leg’s energy dissipation within one drop
(touchdown to lift-off) by quantifying its effective dissipated energy Eeffective. We combine insights
from numerical simulations and hardware experiments (Figure 7.2). By studying the response of two
damping strategies (viscous and Coulomb damping) in numerical drop-down simulations, we investigate
how mechanical damping can influence the dynamics of the impact phase. We then examine how
these theoretical predictions relate to hardware experiments with two functionally different, mechanical
dampers. Hence we explore and characterize the mechanical damper implementations in a robot leg for
their effectiveness in drop-impacts.
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Hardware experiment: leg drop

viscous    vs.   Coulomb friction

variation:                   ground level height

Numerical simulation: leg drop

ground level variation: valve weigh

hydraulic diaphragm spring

variation:

Hardware experiment: hydraulic damper drop

height setting

damper onlydamper

valve
setting

valve
setting

1 2

3 4 5

6 7 8

Figure 7.2: Overview: We study the effective dissipated energy Eeffective in drop experiments, i.e., the energy
dissipation within one drop cycle between touchdown and lift-off (Figure 7.6). We focus on a system design
with a damper and a spring, both acting in parallel on the knee joint (Figure 7.1D and Figure 7.3). No active
motor is considered as it is not relevant for the drop scenario, but required for continuous hopping. In numerical
simulations, we quantify the difference in energy dissipation between viscous 1 and Coulomb 2 damping for
varying ground level heights (Section 7.2 and Figure 7.4). The first set of hardware experiments characterizes
the industrial hydraulic damper. For this, we drop the isolated damper (damper only, not mounted in the leg) on
a force sensor and calculate the energy dissipation. We vary the ground level height 3 , the valve setting 4 and
the drop mass 5 , to investigate its dynamic characteristics (Section 7.4.1 and Figure 7.7). For the second set of
hardware experiments, we drop a 2-segment leg with dampers mounted in parallel to knee springs. We
investigate the energy dissipation dynamics of the hydraulic 6 and diaphragm damper 7 by comparing it to a
spring-only condition 8 , where the damper cable is simply detached (Section 7.4.2 and Figure 7.8). We also vary
the valve setting on the dampers to test the dynamic adjustability of damping (Section 7.4.3 and Figure 7.9).
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7.2 Numerical simulation

We use numerical simulations to investigate the energy dissipation in a leg drop scenario (Figure 7.2). In
analogy to our hardware experiment (Section 7.3.3), a two-segment leg with a damper and a spring in
parallel on the knee joint is dropped vertically (Figure 7.3a). Once in contact with the ground, the knee
flexes, and energy is dissipated. We compare viscous vs. Coulomb damping to investigate which of these
two theoretical damping strategies may be more suited for the rejection of ground-level perturbations.
Also, we investigate how the adjustment of the damping characteristics influences the dissipated energy.

In all the damping scenarios investigated, the system is not energy-conservative. As we investigate
the potential benefit of damping in the initial phase of the ground contact, i.e., from touchdown to
mid-stance, we do not consider any actuation. Without actuation or control, the model’s dissipated
energy is not refilled, unlike in, for example, periodic hopping (Kalveram et al., 2012).

l 0
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(a) Leg model
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(b) Leg design (c) Drop test bench

Figure 7.3: (a) two-segment spring-damper-loaded leg model used for simulation. (b) Mechanical design of
the two-segment leg. The knee pulley 11⃝ is fixed with the lower segment 12⃝, coupled with the spring 8⃝ and the
diaphragm damper 15⃝ or hydraulic damper 16⃝ via cables 9⃝ 10⃝. (c) Drop test bench with the two-segment leg.

7.2.1 Model

The numerical model is a modified version of the two-segment leg proposed in Rummel and Seyfarth
(2008) with an additional damper mounted in parallel to the knee-spring. The equation describing our
leg dynamics is:

ÿ(t) =
Fleg (t)

m
−g (7.1)

where g is the gravitational acceleration, m is the leg mass (lumped at the hip), and y(t) is the time-
dependent vertical position from the ground. Fleg (t) is the force transmitted to the hip mass - and the

93



7 Effective viscous damping enables morphological computation in legged locomotion

ground - through the leg structure. As such, the force depends on the current phase of the hopping cycle:

Fleg (t) =

0 , flight phase: y(t)> l0
y(t)
λ1λ2

τ (t)
sin(β (t))

, ground contact: y(t)≤ l0
(7.2)

with segment length λi and knee angle β (t) (Figure 7.3a); l0 is the leg length at impact. τ (t) is the knee
torque which is produced by the parallel spring-damper element, as in

τ (t) =−k r2
k (β (t)−β0)+ τd (t) (7.3)

with k and rk being the spring stiffness coefficient and lever arm, respectively. τd (t) is the damping
torque, which is set to zero during leg extension, i.e., the damper is only active from impact to mid-stance:

τd (t) = 0 if β̇ (t)> 0 (7.4)

The modeled damper becomes inactive during leg extension, in accordance with our hardware: the tested
mechanical dampers apply forces to the knee’s cam via a tendon (Figure 7.1D, 9 ), and this tendon
auto-decouples during leg extension. By choosing different definitions of the damper torque τd (t), we
can analyze different damper concepts. The model parameters are listed in Table 7.1.

Simulations were performed using MATLAB (the MathWorks, Natick, MA) with ODE45 solver
(absolute and relative tolerance of 10−5, max step size of 10−5 s). When searching for appropriate settings
of the numerical solver, we progressively reduced error tolerances and the maximum step size until
convergence of the simulation results in Table 7.2 to the first non-significant digit.

Table 7.1: Simulation and hardware parameters

Parameters Symbol Value Unit
Mass m 0.408 kg
Reference drop height h0 14 cm
Spring stiffness k 5900 N/m
Leg segment length λ1,λ2 15 cm
Leg resting length l0 24.6 cm
Knee resting angle β0 110 deg
Spring lever arm rk 2.5 cm
Damper lever arm rd 2 cm

7.2.2 Damping characteristics

We compared two damping concepts in our numerical simulation: (1) pure Coulomb damping, i.e., a
constant resistance only dependent on motion direction, and (2) pure viscous damping, i.e., a damper
torque linearly dependent on the knee angular velocity. Accordingly, we tested two different definitions
of τd :

τd (t) =

−dc rd sign(β̇ (t)) , pure Coulomb damping

−dv r2
d β̇ (t) , pure viscous damping

(7.5)
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where rd is the damper level arm, dc (in N) and dv (in Ns/m) the Coulomb damping and viscous damping
coefficients, respectively.

7.2.3 Energy dissipation in numerical drop simulations

With this model, we investigate the difference in energy dissipation in response to step-up/down
perturbations (cases 1 and 2 in Figure 7.2). For each drop test, the numerically modeled leg starts at
rest (ẏ(t) = 0) with a drop height

h = y(t = 0)− l0 (7.6)

corresponding to the foot clearance at release. The total energy at release is ET (h) = mgh. Given that
all model parameters in Table 7.1 are fixed, the energy dissipated in a drop becomes a function of the
drop height and the damping coefficients: ED = fED(h,dc,v).

A simulated drop height h can be seen as a variation ∆h from a reference value h0:

h = h0 ±∆h (7.7)

Equal to the hardware experiments, we use h0 = 14cm as reference drop height. In the reference drop
condition, i.e., h = h0, the energy dissipated by damping is ED0 = ED (h0) = fED (h0,dc,v). ED0 only
depends on the damping level, namely the chosen damping strategy (viscous or Coulomb damping)
and the associated damping coefficient. We chose five different desired damping levels (set 1-5) as a
means of scanning a range in which the damping could be adjusted: for each set, the amount of energy
that is dissipated at the reference drop height ED0 differs. The chosen ED0 values (Table 7.2, column
“Reference height") correspond to proportional levels ([0.1,0.2, . . . ,0.5]) of the systems potential energy
in terms of the leg resting length l0, as in

ED0 ≈ mg [0.1,0.2, . . . ,0.5] l0 (7.8)

This corresponds to damping configurations that dissipate between ≈ 17% and ≈ 88% of the system’s
initial potential energy at the reference height (ET0 = ET (h0) = mgh0 = 560mJ), as shown in Table 7.2,
column “Reference height". To achieve these desired damping levels, we adjusted the damper parameters
dc and dv accordingly (Table 7.2, column “Damping coeff."). As an example: for set 3, both damping
values were adjusted such that at the reference height h0 both dampers dissipate ED0 =mg0.3 l0 = 295mJ,
which corresponds to 53 % of the total energy ET0 .

In the numerical simulations, we focus on the relation between a ground-level perturbation ∆h and
the change in energy dissipation – and their dependency on the damper characteristics. A drop from a
height larger than h0 corresponds to a step-down (∆h > 0), and a drop from a height smaller than h0 to a
step-up (∆h < 0). Each condition introduces a change in the total energy of ∆ET = mg∆h. The change
in energy dissipation due to the perturbation is defined as

∆ED (∆h) = ED (h0 +∆h)−ED0 (7.9)

which is the difference between the dissipated energy when released from a perturbed height and the
dissipated energy when released from the reference height. As a reference, we further define the full
rejection case where

∆ED (∆h) = ∆ET = mg∆h (7.10)
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Table 7.2: Numerical simulation Total dissipated energy (ED) in one drop cycle for different drop heights (h).
Reference height is the reference drop height h = h0 = 14cm. During step-up(down) condition, the drop height is
reduced(increased) by ∆h = 2.5cm. Percentage values indicate the change in dissipated energy (∆ED) relative
to the change in system total energy (∆ET ) due to the height perturbations. Each set simulates two separate
mechanical dampers (pure viscous or pure Coulomb damping), with damping coefficients chosen to dissipate the
same energy at the reference condition, i.e., ED0 . Results of set 1, 3 and 5 are further described in Figure 7.4.
For all tested conditions, viscous damping outperforms Coulomb damping, as indicated by the always higher
percentage values (bold).

Damping coeff.
Step-up Reference height Step-down

h = h0 −∆h = 11.5cm h = h0 = 14cm h = h0 +∆h = 16.5cm
dv dc ED (∆ED/∆ET ) ED0 (ED0/ET0 ) ED (∆ED/∆ET )

Set 1 Viscous 29.5 Ns/m 0 N 82 mJ (15%) 97 mJ (17%) 112 mJ (15%)
Coulomb 0 Ns/m 7.7 N 88 mJ (9%) 97 mJ (17%) 104 mJ (7%)

Set 2 Viscous 68 Ns/m 0 N 167 mJ (30%) 197 mJ (35%) 227 mJ (30%)
Coulomb 0 Ns/m 17.3 N 178 mJ (19%) 197 mJ (35%) 214 mJ (17%)

Set 3 Viscous 119.4 Ns/m 0 N 249 mJ (46%) 295 mJ (53%) 341 mJ (46%)
Coulomb 0 Ns/m 29.3 N 264 mJ (31%) 295 mJ (53%) 323 mJ (28%)

Set 4 Viscous 197.1 Ns/m 0 N 330 mJ (63%) 393 mJ (70%) 455 mJ (62%)
Coulomb 0 Ns/m 46.1 N 346 mJ (47%) 393 mJ (70%) 436 mJ (43%)

Set 5 Viscous 349.4 Ns/m 0 N 411 mJ (81%) 492 mJ (88%) 572 mJ (80%)
Coulomb 0 Ns/m 76.3N 423 mJ (69%) 492 mJ (88%) 556 mJ (64%)

In human hopping, a full recovery within a single hopping cycle is not seen during experimental drop-
down perturbations. Instead, a perturbation of ∆h = 0.1 l0 is rejected in two to three hopping cycles
(Kalveram et al., 2012). In our results, this corresponds to the partial rejections observed with viscous
damping in sets 2 and 3 for ∆h =±2.5cm.

7.2.4 Simulation results

Figure 7.4a shows the relation between the change in drop height and the corresponding change in
dissipated energy by the simulated dampers for set 1, 3 and 5 (continuous line for pure viscous, dashed
for pure Coulomb damping). For the range of simulated drop heights, pure viscous and Coulomb
dampers change the amount of dissipated energy with an almost linear dependence on the drop height.
However, pure viscous damping has a slope closer to the full rejection scenario (blue line in Figure 7.4a),
regardless of the set considered. In a step-down perturbation (∆h > 0 in Figure 7.4a), pure viscous
damping dissipates more of the additional energy ∆ET , while in a step-up perturbation (∆h < 0) it
dissipates less energy than pure Coulomb damping. As such, the results show that a viscous damper
can reject a step-down perturbation faster, e.g., within fewer hopping cycles, and it requires smaller
correction by the active energy supply during a step-up perturbation.

Adjusting the damping parameters allows to change the reaction to a perturbation (Figure 7.4).
Increasing the damping intensity, i.e., dv and dc from set 1 to 5, allows to better match the full recovery
behavior (blue line in Figure 7.4a). However, this comes at the cost of a higher energy dissipation at the
reference height, i.e., in the absence of a ground perturbation (Table 7.2, column ‘reference height’).
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Figure 7.4: Numerical simulation Cases 1 and 2 from Figure 7.2, (a): Change of dissipated energy vs. change
of drop height for set 1, 3 and 5, with damping coefficients as in Table 7.2. Continuous lines are viscous damping
results, dashed Coulomb damping. Positive perturbations, i.e., ∆h > 0, correspond to step-down perturbations;
step-up perturbations, otherwise. The steepest line indicates the slope needed for a full rejection of a ∆h deviation.
For each set (1, 3, 5), the damping parameters are matched such that viscous and Coulomb damping dissipate
the same energy at the reference height h0 (see Table 7.2). Within each set, the viscous damping line is closer
to the desired full rejection line than the corresponding Coulomb damping line. This means that for the same
cost (in the sense of dissipated energy at the reference height) viscous damping always rejects more of ground
level perturbation than Coulomb damping. (b): ∆ED for ∆h = 2.5cm. The horizontal line indicates the amount of
energy to dissipate for full rejection of ∆h. The energetic advantage of viscous damping over Coulomb damping,
as indicated by the spread in the corresponding ∆ED values, increases from set 1 to 3, and reduces from set 3 to 5.

Increasing the damping rate also affects the energetic advantage of viscous damping over Coulomb
damping. Figure 7.4b shows this in detail for a specific step-down perturbation (∆h = 2.5cm): from set
1 to set 3, the spread between the ∆ED values of the viscous damper and the Coulomb damper increases
(from 8 mJ to 18 mJ). However, the difference in dissipated energy ∆ED slightly reduces from set 3 to
set 5 (from 18 mJ to 16 mJ).

Table 7.2 quantifies the previous findings by indicating the percentage of energy perturbation ∆ET that
each damping approach dissipates for ∆h =±2.5cm and for all the tested sets of damping coefficients
dv and dc. The data further confirms the observations from Figure 7.4, showing that:

1. within each set, viscous damping outperforms Coulomb damping for all the simulated conditions
- its dissipated energy is always the closest to 100 % of ∆ET , which means the closest to full
rejection;

2. the energetic benefit of viscous damping over Coulomb damping, i.e., the spread in percentage

97



7 Effective viscous damping enables morphological computation in legged locomotion

values of ∆ED/∆ET , does not monotonically increase with higher damping rates, i.e., moving
from set 1 to 5.

Furthermore, Table 7.2 shows that for low damping rates, i.e., set 1, viscous damping introduces only
marginal benefits in energy management compared to Coulomb damping: < 10% spread between the
corresponding ∆ED/∆ET values.

7.3 Hardware Description

With the previous results from our numerical simulation in mind, we tested two technical implementations
(Figure 7.5) to produce tunable mechanical viscous damping. We implemented a two-segment leg
hardware (Figure 7.3b) and mounted it to a vertical drop test bench to investigate the role of mechanical
damping. The drop test bench produces velocity profiles during impact and stance phase similar to
continuous hopping and allows us to test effective damping efficiently and repeatably.

7.3.1 Rolling Diaphragm Damper

The most common designs of viscous dampers are based on hydraulic or pneumatic cylinders (viscous
damping) and can offer the possibility of regulating fluid flow by altering the orifice opening (adjustabil-
ity). These mechanical dampers can display high Coulomb friction, caused by the mechanical design
of the sliding seal mechanisms. Typically, the higher the cylinder pressure is, the higher the Coulomb
friction exists. Ideally, we wanted to test one mechanical damper concept with the least possible amount
of Coulomb friction. Inspired by the low-friction hydrostatic actuators (Whitney et al., 2014, 2016),
we designed a low-Coulomb damper based on a rolling diaphragm cylinder. Its cylinder is 3D printed
from Onyx material. Figure 7.5a illustrates the folding movement of this rolling diaphragm mounted
on a piston. The rolling diaphragm is made of an elastomer shaped like a top hat that can fold at its
rim. When the piston moves out, the diaphragm envelopes the piston. In the ideal implementation, only
rolling contact between the diaphragm and the cylinder occurs and no sliding contact. Hence, Coulomb
friction between the piston and cylinder is minimized. We measured FC ≈ 0.3N of Coulomb friction for
our rolling diaphragm cylinder at low speed.

Our numerical simulation results promoted viscous and tunable damping for use in vertical leg-drop.
By concept, both properties are satisfied by the diaphragm damper with an adjustable valve. When an
external load Fext pulls the damper piston (Figure 7.5a), the fluid inside the cylinder chamber flows
through a small orifice, adjustable by diameter. This flow introduces a pressure drop ∆P(t), whose
magnitude depends on the orifice cross-section area Ao and piston speed v(t). As such, for a given
cylinder cross-section area Ap, the diaphragm damper reacts to an external load Fext by a viscous force
Fp(t) due to the pressure drop ∆P(t):

Fp(t) = Ap ∆P(t) = Ap f (v(t),Ao) (7.11)

We mounted a manually adjustable valve (SPSNN4, MISUMI) to set the orifice size Ao. For practical
reasons (weight, leakage, complexity of a closed circuit with two cylinders), we used air in the diaphragm
cylinder as the operating fluid instead of liquid (Whitney et al., 2014, 2016). Air is compressible, and
with a fully closed valve, the diaphragm cylinder also acts as an air spring. This additional functionality
can potentially simplify the overall leg design. With the pneumatic, rolling diaphragm-based damper
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①

②

(a) Diaphragm damper (b) Hydraulic damper

Figure 7.5: (a) Left-top: schematic of a diaphragm damper, illustrating the motion of the rolling diaphragm, which
includes an adjustable orifice 1⃝, a cylinder 2⃝, a piston 3⃝, and a rolling diaphragm 4⃝. (b) Right: schematic of a
hydraulic damper: fluid is sealed inside the cylinder 2⃝ with a recovery spring 5⃝ to reset the piston 3⃝.

implementation, we focused on creating a lightweight, tunable damper with minimal Coulomb friction
and air as the operating fluid.

7.3.2 Hydraulic Damper

In the second technical implementation, we applied an off-the-shelf hydraulic damper (1214H or 1210M,
MISUMI, Figure 7.5b), i.e., a commercially available solution for tunable and viscous damping. Tested
against other hydraulic commercial dampers, we found these specific models to have the most extensive
range of tunable viscous damping and the smallest Coulomb friction (FC ≈ 0.7N). Similarly to the
diaphragm damper, these hydraulic dampers produce viscous damping by the pressure drop at the
adjustable orifice. The operating fluid is oil, which is in-compressible. Hence, the hydraulic damper
should not exhibit compliant behavior. Other than the diaphragm damper, the hydraulic damper produces
damping force when its piston is pushed, not pulled. This design also includes an internal spring to
recover the piston position when unloaded. In sum, the hydraulic damper features high viscous damping,
no air-spring effect, and a higher Coulomb friction compared the custom-designed pneumatic diaphragm
damper.

7.3.3 Articulated Leg Design

The characteristics of a viscous damper strongly depend on the speed- and force-loading profile imposed
at its piston because of the complex interaction of fluid pressure and compression, viscous friction, and
cavitation (Dixon, 2007). We implemented a hardware leg to test our two mechanical dampers at loading
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profiles (speed, force) similar to legged hopping and running.
The two-segment hardware leg (Figure 7.3b) is designed with a constant spring and damper lever

arm; parameters are provided in Table 7.1. In all experiments with the two-segmented leg, the leg
spring provides elastic joint reaction forces. Dampers are swapped in and out in a modular fashion,
depending on the experimental settings. The two-segment leg design parameters are identical to those
in our simulation model (Table 7.1). A compression spring 8⃝ is mounted on the upper leg segment 13⃝.
When the leg flexes, the spring is charged by a spring cap 7⃝ coupled to a cable 10⃝ attached to the lower
leg. Either damper 15⃝ 16⃝ is fixed on a support 6⃝ on the upper segment 13⃝. The support 6⃝ can be moved
within the upper segment 13⃝, to adjust the cable 9⃝ pretension. Cables 9⃝ 10⃝ link the damper piston 3⃝
(Figure 7.5) and the spring 8⃝ to the knee pulley 11⃝, which is part of the lower segment 12⃝.

During the leg flexion, the cable under tension transmits forces instantly to the spring and damper.
Spring and damper forces counteract the knee flexion. During leg extension, the spring releases energy,
while the damper is decoupled due to the slackness of the cable. We included a hard stop into the knee
joint to limit the maximum leg extension and achieve a fixed leg length at impact. At maximum leg
flexion at high leg loading, segments can potentially collide. We ensured not to hit either hard stops
during the drop experiments. The hydraulic damper 16⃝ requires a reverse mechanism 14⃝ since its piston
requires compression to work. The piston of the diaphragm damper 15⃝ was directly connected to the
knee pulley. The diaphragm damper 15⃝ included no recovery spring 5⃝ (Figure 7.5). Hence, we reset
the piston position manually after each drop test. In sum, different spring-damper combinations can
be tested with the two-segment leg setup. Note that the here shown hardware leg has no actuation. If a
motor actuates the knee joint, in parallel mounted to the spring and the damper, the damper will share
the external impact load, consequently reducing the impact at the motor.

7.3.4 Experimental setup, data sampling and processing

We implemented an experimental setup for repetitive measurements (Figure 7.3c). A drop bench was
used to constrain the leg motion to a single vertical degree of freedom and linear motion. This allowed
us to fully instrument the setup (slider position and vertical ground reaction forces, GRF) and ensured
repeatable conditions over trials. Adjusting the drop height allowed us to set the touchdown speed. A
linear rail (SVR-28, MISUMI) was fixed vertically on a frame. The upper leg segment was hinged to a
rail slider. The rail slider was loaded with additional external weights, simulating different robot masses.
We set the initial hip angle α0 to align the hip and foot vertically. A hard stop ensured that the upper leg
kept a minimum angle α > α0.

Two sensors measured the leg dynamics: the body position y and the vertical ground reaction force
are recorded by a linear encoder (AS5311, AMS) and a force sensor (K3D60a, ME, amplified with
9326, Burster), respectively (Figure 7.3c). The duration from touchdown to mid-stance is very short,
typically t ≤ 100ms, and high-frequency data sampling was required. The encoder data was sampled by
Raspberry Pi 3B+ with f = 8kHz sampling rate. Force data were recorded by an Arduino Uno, with a
10-bit internal ADC at 1 kHz sampling rate. A high-speed camera (Miro Lab 110, Phantom) recorded
the drop sequence at f = 1kHz sampling rate. We performed ten trials for each test condition. Sensor
data was processed with MATLAB (the MathWorks, Natick, MA). Data was smoothed with a moving
average filter, with a filter span of 35 samples for encoder data and 200 samples for force data. Repeated
experiments of the same test condition are summarized as an envelope defined by the average ± 95%
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standard deviation of the filtered signals.

7.4 Hardware experiments and results

In the drop experiments, we characterize both the hydraulic and diaphragm dampers and the two-segment
springy leg (Figure 7.6). We chose three orifice settings (labeled as a, b, and c) for each damper and
focused on the effects of viscous damping and adjustable dissipation of energy in the hardware setup.
Table 7.3 lists an overview of the drop tests and their settings (drop height, weight, orifice setting, damper
type). To emphasize the fundamental differences between the damper designs, we compare only one
model of the hydraulic damper (1214H) to the diaphragm damper (Section 7.4.1 - Section 7.4.3), and
show the potential of the second hydraulic damper (1210M) in Section 7.4.4. Videos of the experiments
are downloadable from the supplementary material page of Mo et al. (2020) and online available 1.

Table 7.3: Drop test settings for experiments. Values indicated in bold indicate control parameters for these
experiments.

Drop test setup Figure Drop height Drop weight Orifice
[cm] [g] [∼]

Damper (1214H)
7.7a 3, 5, 7 280 b
7.7b 5 280 a, b, c
7.7c 3 280, 620 b

Damper (1214H, diaphragm) & leg
7.8a, 7.8b 14 408 c
7.8c 14 408 damper detached

Damper & leg (simulation)
7.9a, 7.9b 14 408 a, c
7.9c 14 408 viscous, Coulomb

Damper (1210M) & leg 7.10 14 408 a, b

7.4.1 Isolated damper drops, evaluation

In this experiment, we characterized the hydraulic damper by dropping it under changing conditions
of the instrumented drop setup, without mounting it to the two-segment leg. The experimental setup
allows differentiating effects compared to the two-segment leg setup, emphasizing the viscous damper
behavior of the off-the-shelf component. We also applied the results to estimate the range of damping
rates available with changing orifice settings. The hydraulic damper was directly fixed to the rail slider
into the drop bench (Section 7.3.4). The piston pointed downwards. We measured the vertical ground
reaction force to determine the piston force, and we recorded the vertical position of the slider over time
to estimate the piston speed after it touches the force sensor.

Figure 7.7 shows the force-speed profiles for drop tests with different drop heights (Figure 7.7a),
orifice settings (Figure 7.7b), and drop loads (Figure 7.7c). Data lines in Figure 7.7 should be interpreted
from high speed (impact, right side of each plot) to low speed (end of settling phase, 0 m/s, left). The
time from impact to peak force (right slope of each plot) is ≈24 ms, while the negative work (shown in
legends) was mainly dissipated along the falling slope in the much longer-lasting settling phase after the
peak (left slope of each plot, ≈200 ms).

1https://youtu.be/F00Sma2BQ4c
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7 Effective viscous damping enables morphological computation in legged locomotion
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Figure 7.6: High-speed snapshots of drop experiments starting from release to second touchdown. The leg with
the hydraulic damper is shown on the top row; the leg with the diaphragm damper is on the bottom row. Depicted
are from left to right: release, touchdown, mid-stance, lift-off, apex, second touchdown. The right plots illustrate
the timing of the events corresponding to the snapshots.

The results from tests with drop heights from 3 cm to 7 cm show viscous damping behavior in the
settling phase after peak force (left slope), with higher reaction forces at higher piston speeds with
higher dissipation, ranging from 45 N for maximum speeds of 0.6 m/s with 56 mJ to 65 N at 0.9 m/s with
116 mJ. The piston force almost linearly depends on the piston speed (Figure 7.7a).

Changing the orifice setting at a constant drop height resulted in different settling slopes (Figure 7.7b).
Applying a least-squares fit on the left-falling settling slope, we estimate an adjustable damping rate
between 91 Ns/m and 192 Ns/m. The dissipated energy changes from 89 mJ to 81 mJ, respectively.
Hence, adjusting the orifice setting has an effect on the damping rate and the dissipated energy in the
isolated hydraulic damper, but not as we intuitively expected.

We interpret the rising slope in the impact phase (right part of each curve, Figures 7.7a and 7.7b) as a
build-up phase; the hydraulic damper takes time (≈24 ms) to build up its internal viscous flow and the
related piston movement, after the piston impact. With heavier weights (620 g = heavy, 280 g = light,
Figure 7.7c), the impact phase equally lasts ≈24 ms. After the impact phase with heavy weight, the
damper shows the same damping rate in the settling phase, in the form of an equal left slope.

Similar drop tests for the evaluation of the isolated diaphragm damper were not possible since the
orientation of the internal diaphragm only permits to pull the piston. In the following section, we test
the diaphragm (connected by a piston reverse mechanism) and the hydraulic damper directly on the
two-segment leg structure.

7.4.2 Composition of dissipated energy

We performed drop tests of two damper configurations: one off-the-shelf hydraulic damper and the
custom-made pneumatic damper, each mounted in parallel to a spring at the two-segment leg (Sec-
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Figure 7.7: Characterizing the hydraulic damper A single damper (not leg-mounted) drops onto the force
sensor. 10 repeated experiments are plotted as an envelope, defined by the average ±95 % of the standard deviation
data. The curves are read from right to left, i.e., from touchdown at maximum speed to zero speed at rest, also
corresponding to the maximum damper compression. (a) 280 grams drop mass with medium orifice in 3 drop
heights. (b) 280 grams drop mass with 5 cm drop height in 3 orifice settings. (c) 3 cm drop height with medium
orifice in 2 drop weights.

tion 7.3.3, Figure 7.3b), to quantify the effect of viscous damping for drop dynamics similar to legged
hopping.

For each drop, the effective dissipated energy Eeffective was computed by calculating the area enclosed
by the vertical GRF-leg length curve from touchdown to lift-off (Josephson, 1985), i.e., the work loop
area. These work loops are to be read counter-clockwise, with the rising part being the loading during
leg flexion and the falling part being the unloading due to spring recoil. Eeffective does not only consist of
the viscous loss Eviscous due to the damper, but also Coulomb friction loss in the leg (Ecfriction) and the
impact loss Eimpact due to unsprung masses:

Eeffective = Ecfriction +Eimpact +Eviscous. (7.12)

We propose a method to indirectly calculate the contribution of viscous damping by measuring and
eliminating effects from Coulomb friction and unsprung masses.

To quantify the Coulomb friction loss Ecfriction, we conducted ‘slow drop’ tests. The mechanical setup
is identical to ‘free drops’ test, where the leg is freely dropped from a fixed height. However, in the
‘slow drop’ experiment the two-segment leg is lowered manually onto the force sensor, contacting and
pressing the leg-damper-spring system onto the force sensor. At slow speed, only Coulomb friction in
joints and damper act, but no viscous damping or impact losses occur. Consequently, the dissipated
energy calculated from the size of the work loop is due to Coulomb friction losses Ecfriction.
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7 Effective viscous damping enables morphological computation in legged locomotion

To identify the impact loss Eimpact, we remove the viscous component first by detaching the damper
cable on the setup. A ‘free drop’ test in this spring-only condition measures the contribution of friction
loss Ecfriction and impact loss Eimpact combined. A ‘slow drop’ test of the same setup is able to quantify
the friction loss Ecfriction. The impact loss Eimpact is therefore estimated as the energy difference between
‘free drop’ and ‘slow drop’ in the spring-only condition (Figure 7.8c). Since the effective dissipated
energy Eeffective is directly measured, and the friction loss Ecfriction and impact loss Eimpact are obtained
separately, the viscous loss Eviscous can be computed according to Equation (7.12).

Figures 7.8a and 7.8b show the ‘free drop’ and ‘slow drop’ results of the hydraulic damper and
diaphragm damper, respectively. Both drop heights are 14 cm at identical orifice setting. We calculated
the negative work of each work loop (range indicated by the two vertical dash lines), as shown in
Figure 7.8. To provide an objective analysis, the work loop area of each ‘slow drop’ (manual movement)
was cut to the maximum leg compression of the corresponding ‘free drop’ condition. The dissipated
energy of the leg-mounted hydraulic damper is 150 mJ and 60 mJ for ‘free drop’ and ‘slow drop’,
respectively, and 100 mJ and 67 mJ for the diaphragm damper, respectively. According to Figure 7.8c,
the impact loss Eimpact due to unsprung masses play a large role, accounting for 31 mJ. The viscous loss
Eviscous of the hydraulic and the diaphragm damper are 59 mJ and 2 mJ, respectively.
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Figure 7.8: Characterizing the contribution of velocity-dependent damping: Vertical GRF versus leg length
change, a 2-DOF leg with damper/spring drops onto the force sensor. Three different hardware configurations
(a: hydraulic damper and spring, b: diaphragm damper and spring, c: spring only) were tested for slow and free
drop speeds on the vertical slider. Yellow data lines indicate slow-motion experiments. Experiments ‘start’ at the
bottom right, at normalized leg length 100 %. Reading goes counter-clockwise, i.e., from touchdown to mid-stance
is indicated by the upper part of the hysteresis curve, while the lower part indicates elastic spring-rebound without
damper contribution.
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7.4 Hardware experiments and results

7.4.3 Adjustability of dissipated energy

For each leg-mounted damper, we tested how changes in the orifice setting adjust the energy dissipation
during leg drops, quantified by calculating the size of the resulting work loops. The drop height was
fixed to 14 cm, and we used two orifice settings. The identical setup but in the spring-only configuration
(damper cables detached) was tested for reference. Work loop and corresponding effective dissipated
energies are illustrated in Figures 7.9a and 7.9b. The hydraulic damper-mounted leg dissipated 156 mJ
and 150 mJ energy on its two orifice settings, the pneumatic diaphragm damper dissipated 102 mJ and
100 mJ. In Figure 7.9c, we display results from the numerical model introduced in Section 7.2 to
estimate the work loop shape that either a pure viscous or pure Coulomb damper would produce, if
dissipating the same amount of energy as the hydraulic damper with orifice-a (Figure 7.9a). We set the
damping coefficients of our numerical model to ED0 ≈ 156mJ, so that: {dv,dc}= {51Ns/m,0N} for
pure viscous damping; and {dv,dc}= {0Ns/m,13.2N} for pure Coulomb damping. Work loops from
the numerical simulation differ notably from the experimental data, suggesting that neither the hydraulic
or diaphragm damper can easily be approximated as pure viscous or pure Coulomb dampers. Both
work loops in Figure 7.9c present about an equal amount of dissipated energy. Yet, both differ greatly
due to their underlying damping dynamics, visible in their unique work loop shapes. Their individual
characteristics are different enough to uniquely identify pure viscous or pure Coulomb dampers from
numerical simulation.

7.4.4 Damper selection choices

In accordance with the simulation results, we aim to use a viscous damper to dissipate energy introduced
by a ground disturbance. How much energy could be dissipated by the damper depended mainly on the
selected viscous damper and only to a limited degree on the orifice setting. Results from the hydraulic
damper 1214H showed significant energy dissipation capabilities: ≈11 % of the system’s total energy
(59 mJ of 560 mJ) were dissipated (Figure 7.9a at orifice setting ‘c’ and Table 7.4). At the drop, in
sum 150 mJ (27 %) of the leg’s system energy were lost, due to Coulomb friction in the joints, impact
dynamics, and viscous damping losses. Other dissipation dynamics are feasible by selecting appropriate
dampers. We tested a second hydraulic damper (1210M, MISUMI) under equal conditions and compared
it to damper-1214H. The two applied orifice settings changed the observed work loop largely by shape
and little by area (Figure 7.10). The damper-1210M dissipated ≈60 % system energy, and the leg lost
in sum (viscous + Coulomb + impact) 72 % of its system’s energy during that single drop. At other
orifice settings, we observed over-damping; the 1210M-spring leg came to an early and complete stop
and without rebound (data not shown here due to an incomplete work loop). For comparison, time plots
of the vertical GRF and the impulse during the stance phase are shown in Figure 7.11. The energy
composition (Equation 7.12) is provided in Table 7.4. The ‘spring only’ data correspond to the curves
in Figure 7.8c. The diaphragm + spring data correspond to ‘orifice c’ in Figure 7.9b. The hydraulic
(1214H) + spring data correspond to ‘orifice c’ in Figure 7.9a. The hydraulic (1210M) + spring data
correspond to ‘orifice b’ in Figure 7.10. Among the tested dampers, the hydraulic 1210M damper
showed the largest vertical GRF; peak vertical GRF of 6.3 BW are observed, almost twice as much as
the ‘spring only’ case. The viscous dampers 1214H and 1210M shifted the peak of their legs’ vertical
GRF to an earlier point in time, compared to the spring-leg and the spring+diaphragm-leg (Figure 7.11).
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Figure 7.9: Adjustability and tunability of damping: Vertical GRF vs. leg length change, a two-segment
leg with damper and spring drops onto the force sensor. Two different hardware configurations were tested for
different orifice settings. (a) and (b) show the results from hydraulic damper and diaphragm damper, respectively,
where the green data lines indicate the leg drop without damper for comparison. (c): Simulated approximation of
hydraulic damper orifice ‘a’ by a pure viscous and a Coulomb damper. Damping coefficients are chosen to allow
same dissipated energy, i.e., ED0 = 156mJ: respectively — pure viscous damper: dc = 0 N and dv = 51 Ns/m; pure
Coulomb damper: dc = 13.2 N and dv = 0 Ns/m. None of the two curves can fully capture the work loop of the
hydraulic damper.
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Figure 7.10: Higher energy dissipation with a different model of the hydraulic damper (1210M): Vertical
GRF vs. leg length change, a 2-DOF leg with a parallel damper and spring drops onto the force sensor. Two damper
orifice settings were tested (blue and red curves). The two resulting curves are compared with the spring-only
configuration provided as a reference.

Table 7.4: Leg drop experiments and their individual energetic losses per drop. The system’s initial potential
energy is 560 mJ. Eeffective: sum of all energetic losses visible as the area of the hysteresis curve, i.e., in Figure 7.8;
Ecfriction: negative work dissipated by Coulomb friction; Eimpact: energetic losses from impact (unsprung mass).
The negative work dissipated by viscous damping in the mechanical damper is Eviscous. The corresponding work
curves are provided in Figures 7.8 to 7.10.

Drop test setup Eeffective Ecfriction Eimpact Eviscous
[mJ] [mJ] [mJ] [mJ]

Spring only 91 60 31 0
Diaphragm + spring 100 67 31 2
Hydraulic 1214H + spring 150 60 31 59
Hydraulic 1210M + spring 401 70 31 300

7.5 Discussion

A primary objective of this study was to test how mechanical dampers could be exploited for locomotion
tasks by characterizing multiple available technical solutions. Our numerical model predicted three
crucial aspects: (1) a pure viscous damper generally performs better than a pure Coulomb damper
(Figure 7.4); (2) higher damping rates result in better rejection of ground disturbances (Figure 7.4a),
however at the cost of higher dissipation at reference height (Table 7.2); (3) characteristic work loop
shapes for pure viscous and Coulomb damper during leg-drop (Figure 7.9c). Our hardware findings show
that neither of the tested mechanical dampers approximates pure viscous or pure Coulomb dampers. The
experiments also suggest that the mapping between dissipated energy and damping rates is concealed by
the dynamics of the impact and the nonlinearity of the force-velocity characteristics of the leg in the
stance phase. Therefore, it is vital to test damping in a real leg at impact because the behavior is not
merely as expected from the data sheets and the simple model.

Figure 7.7 characterizes how the hydraulic damper dissipates energy during a free drop. The ex-
perimental results show that the dissipated energy of the hydraulic damper scales with drop height
(Figure 7.7a) and weight (Figure 7.7c), but less intuitively, it reduces with increasing damping rates
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7 Effective viscous damping enables morphological computation in legged locomotion
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Figure 7.11: Ground reaction forces: (a) shows the vertical GRF and (b) the corresponding instantaneous
vertical impulse over time, for the leg drop experiments in Figures 7.8 to 7.10.

(Figure 7.7b). This can be partially interpreted in the context of an ideal viscous damper for which the
effective dissipated energy Eeffective would be calculated as in,

Eeffective =
∫

Fp(t)dyp =
∫

(dv · vp(t))dyp (7.13)

where Fp(t) is the damper piston force and yp is the piston displacement, vp(t) the corresponding velocity.
When increasing the drop height, the velocity at impact is increased, so is vp(t). With the assumption of
Equation (7.13), this results in higher damping forces Fp(t), and thus, dissipated energy Eeffective, as seen
in Figure 7.7a. The heavier drop weight leads to slower deceleration. Therefore the velocity profile vp(t)
is increased, which also leads to higher dissipation Eeffective (Figure 7.7b). An orifice setting with a high
damping rate will increase the damping coefficient dv. However, the velocity profile vp(t) is expected
to reduce due to higher resistance. This simple analogy shows that the coupling between damping
coefficient dv and velocity profile vp(t) makes it difficult to predict the energy dissipation by setting the
orifice and serves as an interpretation of why adjusting the orifice generates a relatively small adjustment
of 10 % (81 mJ-89 mJ) of the dissipated energy. Also, the impact phase (time for the damper to output its
designed damping force under sudden load) introduces additional nonlinearity to the output force profile.
Overall, the results in Figure 7.7 indicate that we can approximate the damping force produced by the
hydraulic damper to be viscous and tunable— as such dampers are typically designed Dixon (2007)—,
but the mapping of energy dissipation to orifice setting is difficult to predict in a dynamic scenario.

The approximation as a linear, velocity-dependent damper allows us to rapidly estimate energy
dissipation in simulation over a range of parameters. However, the exact mapping of the hardware
leg/spring/damper energy dissipation to the orifice setting is difficult to predict when basing the esti-
mation only on the isolated-damper drop experiments from Figure 7.7. Instead, the leg/spring/damper
experiments show that the energetic losses from the impact remove 31 mJ energy, compared to 59 mJ
damper losses. The high amount of force oscillations at impact (up to ≈ 1BW, Figure 7.8a) during
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7.5 Discussion

the first 3 % leg length change leads us to believe that these impact oscillations move the damper’s
dynamic working range, i.e., its resulting instantaneous force and velocity. The oscillations are likely
caused by unsprung mass effects of the leg/spring/damper structure and could not be captured in an
isolated-damper setup, or—at least not easily—in a simulation.

The work loops of leg drop experiments (Figure 7.8) show the effects of our tested dampers on
a legged system. From touchdown to mid-stance (leg flexion), the ‘free drop’ curves show a larger
negative work compared to the ‘slow drop’ curves, illustrating that the damper absorbs extra energy.
The returning curves (mid-stance to lift-off) of the hydraulic damper align well with the ‘slow drop’
curve, indicating the damper is successfully detached due to the slackness cable while the spring recoil.
Figure 7.8b shows that the ‘free drop’ force of the diaphragm damper is slightly higher than ‘slow drop’
force in the first half of the leg extension phase. This discrepancy is likely caused by the elastic force
component of the diaphragm damper due to the sudden expansion of the air chamber volume. The
elastic component seems to dominate the damper behavior, which thus acts mostly as an air spring. By
separating its energetic components (Equation (7.12)), we found that the hydraulic damper produces a
viscous-like resistance higher than the diaphragm damper (59 mJ versus 2 mJ), indicating the hydraulic
damper is more effective in dissipating energy under drop impact. Hence, the hydraulic damper shows
more viscous behavior, while the diaphragm damper is more elastic.

Mechanical damping in the system comes at the cost of energy loss, and to maintain periodic hopping,
it becomes necessary to replenish energy that is dissipated by damping (ED0). Therefore, there is a
trade-off to consider: simulation results show that higher damping results in faster rejection of ground
perturbation at the price of more energy consumption at reference drop height (Table 7.2, Figure 7.4). A
tunable damper would partly address this problem: on level ground, the damping rate could be minimal,
and on rough terrain increased. The adjustability of the two dampers is illustrated in Figures 7.9a
and 7.9b. We discuss the adjustability from both energy dissipation and dynamic behavior perspectives.

Compared with the spring-only results, both the hydraulic and the diaphragm damper reduced the
maximum leg flexion and dissipated more energy. The orifice setting changes the shape of the work
loop differently for the two setups. For the hydraulic damper (Figure 7.9a), orifice setting-c shrinks
the work loop from the left edge, indicating more resistance is introduced by the damper to reduce leg
flexion. For the diaphragm damper (Figure 7.9b), orifice setting-c not only shrinks the work loop but
also increases its slope. We interpret this as the elastic contribution of air compression: relatively fewer
air leaves through the smaller orifice, instead acting as an in-parallel spring.

Concerning energy dissipation, changes in orifice settings led to relatively small changes in effective
dissipated energy Eeffective: 150 mJ to 156 mJ for the hydraulic damper, and 100 mJ to 102 mJ for the
diaphragm damper. Even for the other damper model (1210M), which dissipates high amounts of energy,
changes in orifice setting change the work loop shape drastically, but not the dissipated energy (395 mJ
versus 401 mJ).

Similar to the isolated damper drop, the data (Figures 7.9a and 7.9b) shows that specific orifice settings
introduce more resistance but do not necessarily lead to higher energy dissipation for both hydraulic and
diaphragm damper. However, in our simplified numerical leg model, an increase in viscous damping
coefficients leads to a systematic increase of dissipated energy (Table 7.2) and a sharper tip at the left
side of the work loop (Figure 7.9c). The discrepancy is likely due to the nonlinear coupling between the
damper mechanics and the leg dynamics in the hardware setup: (1) The damping force generated by
the fluid dynamics in the orifice only approximates a linear viscosity (Dixon, 2007). (2) The impact
loading on both the nonlinear leg structure and the damper. This makes the prediction of the energy
dissipation not straightforward based on our simplified numerical leg model and points towards the
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7 Effective viscous damping enables morphological computation in legged locomotion

need for a combined approach between simulation and hardware testing to fully understand mechanical
damping in a legged system.

Viscous, velocity-dependent damping alters the leg’s loading characteristics and leads to a peak force
at the instance of touchdown. As a result, the vertical GRF is increased in the early stance phase, shifting
and increasing the peak vertical GRF before mid-stance (Figure 7.11a). When designing a legged system
with a viscous damper, its increasing load on the mechanical structure should be considered.

The selection of viscous dampers depends on the task. High damping can fully reject disturbances in a
single cycle, but lower damping could have energetic benefits. Here we looked for a damper that would
dissipate significant negative work ( Eviscous

ET0
≈ 10%−15%) in the form of viscous damping. The air-filled

diaphragm damper lead to insufficient energy losses (2 %), but the hydraulic dampers dissipated 10 %
and 60 % of the system’s total energy (Table 7.4).

Drawing conclusions about animal locomotion based on the here presented leg-drop experiments
is somewhat early. However, observations from (Müller et al., 2014, Table 1, p. 2288) indicate that
leg forces can increase at unexpected step-downs during locomotion experiments. Further, Kalveram
et al. (2012) suggests in a comparison of experimental human hopping and numerical simulations that
damping may be the driving ingredient in passive stabilization against ground-level perturbations. We
are consequently excited about the here presented results of viscous dampers mounted in parallel to a
leg’s spring, producing adaptive forces without the need for sensing.

7.6 Conclusions

We investigated the possibility of exploiting mechanical damping in a simplified leg drop scenario as a
template for the early stance phase of legged locomotion. Our results from a) numerical simulation pro-
mote the use of tunable and viscous damping over Coulomb damping to deal with a ground perturbation
by mechanical damping. As such, we b) tested two technical solutions in hardware: a commercial, off-
the-shelf hydraulic damper and a custom-made, rolling diaphragm damper. We dissected the observed
dissipated energy from the hardware damper-spring leg drops into its components by experimental
design. The resulting data allowed us to characterize dissipation from the early impact (unsprung-mass
effects), viscous damping, Coulomb damping, and orifice adjustments individually and qualitatively.
The rolling diaphragm damper features low-Coulomb friction but dissipates only low amounts of energy
through viscous damping. The off-the-shelf, leg-mounted hydraulic damper did exhibit high viscous
damping and qualitatively showed the expected relationship between impact speed, output force, and
negative work. Changes in orifice setting showed only minor changes in overall energy dissipation but
can lead to large changes in leg length dynamics, depending on the chosen technical damper. Hence,
switching between different viscous, hydraulic dampers is an interesting future option. Our results show
how viscous, hydraulic dampers react velocity-dependent and create an instantaneous, mechanically
adaptive response to ground-level perturbations without sensory input.
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8 Slack-based tunable damping leads to a
trade-off between robustness and efficiency in
legged locomotion

The simulation results from the previous chapter (Chapter 7) indicate that viscous damping is de-
sirable for implementing tunable mechanical damping in legged robotics. However, the hardware
experiments show that conventional control of the damping rate in viscous dampers that are directly
coupled to the knee joint fails to produce effective tunable mechanical damping. The current chapter
(Chapter 8) presents our follow-up investigation, where we addressed the limitations in Chapter 7 by
proposing a slack-damper mechanism. This device uses a cable with adjustable slackness to connect the
mechanical damper to the joint rotation. We evaluated the performance of the slack-damper mechanism
through hardware experiments, which involved both vertical and planar hopping across various terrains
and perturbations. Our results show that the slack-damper mechanism allows adjustment of damping
force, onset timing, effective stroke, and energy dissipation. Thus, it can effectively produce tunable
mechanical damping during fast perturbed locomotion. Our experiments also highlight a trade-off:
increased mechanical damping improves locomotion robustness at the cost of less energy efficiency.
Interestingly, we found that the slack-damper mechanism autoregulates the damper engagement, leading
to perturbation-trigger damping. This feature could promote a more favorable trade-off, improving
locomotion robustness at a minimum energetic cost.

Note: a large portion of this chapter uses content published in Scientific Reports (Mo et al., 2023).
For details on this journal article, including the list of authors and my contribution, see Section 2.1.4.
Copyright license: https://creativecommons.org/licenses/by/4.0/.

8.1 Introduction

Animals run dynamically over a wide range of terrain (Fig. 8.1). The unevenness and changing com-
pliance of natural terrain demand the capability for fast and dynamic adaptation to unexpected ground
conditions. However, animals’ neurotransmission delays slow down sensorimotor information propa-
gation (Gordon et al., 2020), rendering a neuronal response impossible for as much as 5 % to 40 % of
the stance phase duration, depending on the animal size (More et al., 2010). How animals are able to
produce and maintain highly dynamic movements despite delayed sensorimotor information is, therefore,
a central question in neuroscience and biorobotics (Ashtiani et al., 2021; Kamska et al., 2020; More
et al., 2010; More and Donelan, 2018).

Inherent mechanical properties of muscles facilitate the rejection of unexpected perturbations (Daley
et al., 2009; Grillner, 1972; Loeb et al., 1999; Wagner and Blickhan, 1999). Muscular tissue possesses
nonlinear elastic and viscous-like mechanical properties, which adapt the muscle force instantly to
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8 Slack-damper mechanism and trade-off between locomotion robustness and energy efficiency

changes in the length or contraction velocity of the muscle-tendon fibers. These mechanical properties
enable the neuro-musculoskeletal system to react to external perturbations with zero delay, a capacity
termed “preflex” (Brown and Loeb, 2000).

Rough terrain
Flat terrain

 Hidden perturbation 

Slow neural response

Fast physical response

 Tendon engaged 
 Tendon slacked 

 Damper not yet engaged 

ApexApex
Mid-stance

level

Mid-stance
perturbation

Low leg compression
Low impact speed

 Damper slacked 
 Damper slacked 

 Damper engaged 
High leg compression

High impact speed

Figure 8.1: Top: Fast running over ground perturbations is challenging. Due to sensorimotor delays up to 50 ms,
the central nervous system struggles to perceive and react to sudden ground disturbances (More et al., 2010).
In contrast, the intrinsic mechanics of the musculoskeletal system act like a spring damper. They produce a
mechanical and, therefore, immediate (< 5 ms) reaction when in contact with the environment. We hypothesize
that the leg damping mitigates ground disturbance through adaptive force production and energy dissipation.
The tendon’s slack, coupled with the joint’s motion, auto-engages the damper. This creates a trade-off between
locomotion robustness and energetic efficiency. Bottom: The damper slack enables perturbation-triggered
damping. Sufficiently slacked, the damper does not engage during stance, and only spring-based torque is
produced. When encountering a perturbation, the leg’s compression increases further, removing all damper slack,
and the damper engages in parallel to the spring.

Intrinsic elasticity and its role in legged locomotion have been studied extensively (Alexander et al.,
1982; Alexander, 1991; Biewener and Roberts, 2000; Hof, 1990; Robertson and Sawicki, 2014). For
instance, tendons, which behave like nonlinear serial springs, store and release mechanical energy during
ground contact (Alexander et al., 1982) and improve shock tolerance (Roberts and Azizi, 2010). Inspired
by this, parallel and series elastic actuators have successfully been implemented in the design of legged
robots (Grizzle et al., 2009; Hubicki et al., 2016; Spröwitz et al., 2013; Zhao et al., 2022), demonstrating
improved robustness at low control effort. In contrast, the functional role that damping plays in legged
locomotion is less studied and understood.

Damping can produce a force outcome that is adaptive to the impact velocity. This adaptive force
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output enhances the effective force output during impacts (Müller et al., 2014), minimize control
effort (Haeufle et al., 2014a), stabilize motion (Abraham et al., 2015; Secer and Saranli, 2013; Shen
and Seipel, 2012) and reject unexpected disturbances (Haeufle et al., 2010; Kalveram et al., 2012).
Nevertheless, damping is usually minimized in the design of (bio)robotic systems, as it can lead to
increased energy consumption. Interestingly, vertebrates seem capable of tuning the damping produced
by their muscle fibers (Günther and Schmitt, 2010). This suggests that tunable damping can be a solution
for regulating damping forces and dissipating energy depending on the terrain conditions.

Tunable damping in biorobotics can be implemented through control (Candan et al., 2020; Monteleone
et al., 2022), i.e., virtual damping. Virtual damping poses substantial design constraints. It requires
precise velocity estimation, high-frequency control (>1 kHz), strong actuators to produce sufficient peak
forces, and means to dissipate the resulting heat effectively (Grimminger et al., 2020; Havoutis et al.,
2013; Hutter et al., 2012; Kalouche, 2017; Seok et al., 2015). Alternatively, mechanical dampers can be
mounted in parallel to the robot’s joints (Vanderborght et al., 2013). A mechanical damper perceives
and responds mechanically and instantly, requires no controller or computation, shares peak load of
actuators, and thus has the potential for fast adaptation to terrain perturbations (Mo et al., 2020). Tuning
damping with a mechanical damper mounted to a legged robot proved challenging. Setting a higher
damping rate resulted in the expected higher forces but at reduced leg compression and effective damper
stroke (Mo et al., 2020). Consequently, the dissipated energy indicated by the work loop area did not
increase. Additionally, fix-mounted mechanical dampers operate continuously and dissipate energy
during unperturbed level running. Instead, tunable mechanical damping should ideally be triggered by
the perturbation itself. The damper should engage and self-adjust according to the presence and severity
of the ground disturbance experienced during running.

The tendon slack observed in muscle-tendon units (Heers et al., 2018; Robi et al., 2013) and animal-
inspired robots (Badri-Spröwitz et al., 2022) provided us with a design template for implementing
tunable damping in a legged system (Fig. 8.1 Top). Tendon slack length is defined as the “. . . length
beyond which the tendons associated with a muscle begin resisting stretch and producing force” (Heers
et al., 2018). In other work, the “tendon is strained up to 2 %, representing the “stretching out” of the
crimped tendon fibrils, before starting to transfer considerable force” (Robi et al., 2013). Badri-Spröwitz
et al. show tendon slack in the flexing motion of the digits of large birds, and implement tendon slack in
the related robot (Badri-Spröwitz et al., 2022). By disengaging the damper from its joint via controlled
tendon slack, we expect to adjust the onset, timing, and amount of damper engagement. Moreover, the
tendon slack allows for a perturbation-trigger strategy (Fig. 8.1Bottom). During steady-state running, for
example, on flat terrain, the leg compresses without saturating the tendon slack. Once an unperceived
ground perturbation increases leg compression further, the tendon displacement will exceed the tendon’s
slack and start to auto-engage the damper. This strategy enables adaptive force output triggered by
ground perturbations.

We implemented and tested a bio-inspired, tunable mechanical damping strategy based on tendon
slack in this work. We aimed at producing perturbation-triggered damping and improving robustness
against ground perturbations. We evaluated this design concept on a robotic leg during vertical and
forward hopping, both in steady-state and perturbed conditions. Unlike earlier designs (Mo et al.,
2020), our slack-damper mechanism enabled straightforward adjustment of the damper engagement and
energy dissipation. We observed improved hopping robustness due to the adaptive characteristics of our
mechanical damping design, whereas the energetic cost increases. The perturbation-triggered capacity
of our slack-damper mechanism allows for a more favorable trade-off between robustness and efficiency.
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Figure 8.2: Experiment setup overview. (a) Our leg design is inspired by the leg anatomy of mammalian
quadrupeds. (b) We implement a pantograph leg design with spring and damper representing the passive
compliance of the quadriceps and a biarticular segment, simplifying the gastrocnemius muscle and the Achilles
tendon. (c) The rendering of the leg design shows that the knee joint is coupled to the linear spring, the linear
damper through tendons, and the knee motor through a timing belt. (d) The slack-damper mechanism is realized
by the threaded connection between the damper and the loadcell. By rotating the damper, the damper will
travel up and down, thus allowing tunable tendon slack. The left schematics illustrate the lowest position of the
damper in maximum tendon slack, and the right schematics demonstrate the inner mechanics of the hydraulic
damper with minimum tendon slack. (e) The vertical hopping setup fixes the robot leg on a vertical slider to test
step-down perturbation, which is introduced by removing the perturbation block on top of the force sensor. The
top right shows a feedforward control pattern for hip position and knee torque. (f) The forward hopping setup
fixes the robot leg on a rotary boom to test continuous perturbation (in photo) and ramp-up-step-down perturbation
(Supplementary Movie S3, see appendix A3). The top right shows a feedforward CPG control pattern for hip
position and knee torque.

Biorobotic leg implementation

The three-segment leg design was inspired and simplified from the leg anatomy of small mammalian
quadrupeds (Fig. 8.2a). It consisted of four links forming a pantograph structure (Fig. 8.2b). A spring
and a damper coupled to the knee joint mimicked the passive compliance of the quadriceps muscles.
The gastrocnemius muscle and Achilles tendon were simplified as a rigid link to reduce parameter space.
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The two-degrees-of-freedom leg was fully actuated by two motors (hip and knee). The key design
parameters are provided in the supplementary materials (Figure A3.1 and Table A3.1).

The leg was fabricated mostly from off-the-shelf components and 3D-printing (Fig. 8.2c). The main
structural components were 3D-printed using polylactic acid (PLA), except for the foot segment, which
was 3D-printed using carbon-fiber-reinforced nylon to improve strength and impact resistance. The hip
and knee motors (MN7005-KV115, T-motor, 1.3 Nm maximum rated torque) were placed co-axially at
the hip to reduce leg swing inertia, using a 5:1 planetary gearbox (lgu35-s, Matex) to gear them down.
The knee torque was transmitted by a timing belt (SYNCHROFLEX 10/T5/390, Contitech) with an
additional 25:12 gear ratio. We mounted two loadcells (model 3134, Phidgets, 20 kg) to the spring and
the damper to measure forces. The knee spring (SWS14.5-15, MISUMI) was designed to hold the leg in
stance. Its stiffness of 10.9 N/mm was empirically determined to generate three times the body weight
of the robot at 10% leg length deflection (Bobbert et al., 1992; Walter and Carrier, 2007). The knee
damper (1210M, MISUMI) was selected as the most effective damper from our previous study (Mo
et al., 2020). Both the spring and the damper were coupled to the knee joint through Dyneema tendons
(Climax Combat Speed 250/150, Ockert), with a cam radius of 30 mm and 20 mm, respectively. A
roller (VMRA20-4, MISUMI) was attached to the piston of the damper to transform the tendon tension
(“muscle lengthening”) in knee flexion to a push motion on the damper piston. The whole leg weighs
0.94 kg, with a resting leg length of 31 cm.

Slack-damper mechanism

Tuning an adjustable damper when operating within a legged system is challenging. Higher damping
settings make the damper produce larger forces, which in turn can reduce the piston displacement,
compromising the projected change in dissipated energy (Mo et al., 2020). Therefore, it is difficult to
anticipate how adjusting the orifice of the damper internal valve affects the dissipated energy. Instead of
regulating the damper’s force by adjusting the orifice size, we propose damping control by adjustment
of the damper tendon slack. Tendon slack has been observed in biology, with tendon stretch up to 2 % of
the nominal tendon length before starting to produce considerable force (Badri-Spröwitz et al., 2022;
Heers et al., 2018; Robi et al., 2013). This is known as the “toe region” in the tendon’s stress-strain
diagram.

Inspired by this observation, we set a defined tendon slack length when connecting the damper to
the knee pulley (Fig. 8.2d). For our mechanism, the damper body and the loadcell are machined with
external and internal threading, respectively. By screwing the damper’s body into the loadcell, we set the
damper’s position with a resolution of ±1 mm per turn. The adjustable threading allows for a precise
slack control in the range of 0 mm to 10 mm. Before each experiment, we lock the damper in place with
two nuts to prohibit damper body movement.

This slack-damper mechanism permitted tunable damping. The damper energy dissipation Edamper,
calculated as the integration of damper force Fdamper and damper piston displacement x, can be controlled
by the tendon slack s because of two concomitant effects (equation (8.1)). First, when the ground impact
flexes the leg, the parallel spring decelerates leg flexion. At the same time, the tendon slack saturates,
thereby softening the engagement conditions for the damper’s piston (more slack s =̂ less damper force
Fdamper). Second, the tendon slack reduces the effective damper piston stroke ∆x (more slack s =̂ less
piston stroke ∆x). The combination of these two mechanisms—softened (less Fdamper) and delayed (less
∆x) damper engagement—predicts an inverse relationship between the tendon slack s and the integrated
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damper energy dissipation Edamper.

Edamper =
∫

Fdamper dx

Fdamper ∝
1
s , ∆x ∝

1
s

}
⇒ Edamper ∝

1
s

(8.1)

Experimental setup

We designed two experimental setups and three perturbation types to evaluate the proposed design in
four slack settings.

The vertical hopping setup (Fig. 8.2e) investigates only the vertical component of locomotion. Such a
reduced-order experiment reduced system complexity, allowing ground reaction force (GRF) measure-
ment in all steps. The forward hopping setup (Fig. 8.2f) fixed the leg on a boom structure, simulating
more realistic locomotion dynamics and allowing for more perturbation types.

We focus the investigation on the mechanical response produced by the passive damping embedded in
the leg design. Hence, we designed an open-loop locomotion controller such that it could not detect
ground perturbation. We tested three types of ground perturbations: step-down perturbation representing
a sudden, unexpected disturbance during fast running; continuous perturbation simulating rough terrain
conditions, and ramp-up-step-down perturbation combining gradual and sudden disturbance.

We tested damper tendon slack of 10, 6, 3, and 0 mm for each test condition. The damper engaged
synchronously with the spring in the 0 mm slack setting. With the 10 mm slack setting, the damper
never engaged. Hence, we investigated a wide range of possible slack conditions, from complete to zero
tendon slack.

Vertical hopping

In the vertical hopping setup (Fig. 8.2e), the hip of the robot leg was fixed to a vertical rail (SVR-
28, MISUMI). A force sensor (K3D60a, ME) was used to measure the ground reaction force during
hopping. The step-down perturbation was realized using a 3D-printed block (PLA) and an automatic
block-removal device. The block was placed on top of the force sensor to elevate the ground. Magnets
were inserted into the block and the top plate of the force sensor to prevent relative sliding during the
leg impact. The block-removal device was a lever arm actuated by a servo motor (1235M, Power HD).
The arm pushed away the block during the aerial phase of a hopping cycle (Supplementary Movie S1,
see appendix A3). This automatic block-removal device was needed to remove the perturbation block
within the aerial hopping phase reliably (200 ms in our experiments).

The vertical hopping setup was instrumented as follows. The hip position was measured by a linear
encoder (AS5311, AMS). The loadcells (spring and damper) and the ground reaction force sensor
readings were amplified (9326, Burster) and then recorded by a microcontroller (Due, Arduino) with
internal 12-bit ADC. The motor position was measured by a 12-bit rotary encoder (AEAT8800-Q24,
Broadcom). We used an open-source motor driver (Micro-Driver (Grimminger et al., 2020)) for motor
control, current sensing, and encoder reading, which runs dual motor field-oriented control at 10 kHz.
We monitored the motor driver current with a current sensor (ACS723T-AB, Allegro Microsystems). A
second microcontroller (Uno, Arduino) was implemented to control the servo motor for automatic block
removal. A single-board computer (Raspberry Pi 4B) was used to centralize and synchronize all sensor
readings and motor commands in 1 kHz.
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We implemented a Raibert-like (Raibert, 2000) open-loop controller for vertical hopping. The hip
was position-controlled with a PD controller to keep a vertical posture. The knee was torque-controlled
to produce a defined torque at a given duty cycle, typically during the second half of the stance phase.
Motor commands are illustrated in the inserted plots in Fig. 8.2e. Control parameters for a stable
hopping gait were found through manual tuning, resulting in a 450 ms cycle time with 100 ms knee
motor push-off. The knee torque was tuned for each setting of the damper tendon slack to maintain the
same hopping heights across tested conditions (Supplementary Table A3.2).

We tested two perturbation levels: 31 mm and 47 mm, equivalent to 10 % and 15 % of the leg length,
respectively. For each hopping trial, the robot hopped for 1 min. We analyzed ten steps before and after
the perturbation. Each hopping condition was repeated ten times. We recorded in total 80 trials: two
perturbations × four slack settings × ten repetitions.

Forward hopping

In the forward hopping setup (Fig. 8.2f), the robot leg was mounted on a boom in a four-bar design. This
mount permits only horizontal and vertical motion in the robot’s sagittal plane. The length of the boom
was 1.613 m, and the travel distance of a complete revolution was around 10 m. The boom design is
openly available (Ruppert et al., 2022).

The instrumentation of the forward hopping setup was similar to that of the vertical hopping setup.
The force measurement and the automatic block-removal device were incompatible with the boom setup
and were removed. All the other sensors remained. Horizontal and vertical motions of the rotating boom
were measured by two 11-bit rotary encoders (102-V, AMS).

We generated the forward motion of the robot leg using a feedforward central pattern generator (CPG).
In most vertebrates, CPGs contribute to controlling rhythmic motion (Ijspeert et al., 2007), such as
locomotion. We implemented a CPG controller for the hip angle trajectory θhip:

θhip = Ahip cos(Φ)+Ohip (8.2)

Φ =


φ

2D
φ < 2πDvir

φ +2π(1−2Dvir)

2(1−Dvir)
else

(8.3)

where Ahip is the hip angle amplitude, Φ the hip angle phase, Ohip the hip angle offset, Dvir the virtual
duty factor as the fraction of time when the leg moves forward, and φ the oscillator’s linearly progressing
phase. The knee motor was torque-controlled to generate push-off force in the late stance, following a
fixed square-wave pattern as in the vertical hopping with the same frequency as the hip CPG. The motor
commands are shown in the overlay plots of Fig. 8.2f. For ease of comparison, the control parameters
(Supplementary Table A3.2) remained the same for all forward-hopping experiments.

To replicate rough terrain in a controlled way, we designed 3D-print tracks with a sinusoidal profile
(Fig. 8.2f). The circular track was built from 3D-printed blocks. These were serially connected and taped
to the floor. Each block is 360 mm long, and 27 blocks fit the circumference of the hopping path. A
single, shorter connection block was added (red, Fig. 8.2f). This connection block prevents the hopping
cycle from being entrained by the terrain harmonic perturbation pattern, e.g., repeatedly stepping onto
the exact position of a cycle length of the track. We tested two rough terrains, with the amplitude of the
sinusoidal perturbation being 5 mm and 10 mm. In addition, we also tested hopping on flat terrain. For
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each trial, the robot performed a total of six revolutions. We cropped the first and the last revolutions
from the recorded data and analyzed the remaining four revolutions (60 steps per condition).

Further, we designed ramp-up-step-down perturbations to disturb stable hopping during forward
locomotion. Within a revolution’s 10 m hopping path, we built a slope of 3 m length for the robot leg to
gradually climb and jump off. We tested two perturbation heights: 47 mm and 93 mm, equivalent to 15%
and 30% of leg length, respectively. For each trial, the robot leg performed 12 revolutions. We cropped
the first and the last revolution from the recorded data and analyzed the remaining ten revolutions (150
steps per condition).

Data analysis

The ground reaction force and vertical position data were filtered for the vertical hopping experiments
with a 4th-order zero-lag Butterworth filter. The loadcells were calibrated to output force reading only at
leg flexion. The spring and damper force data were smoothed using a moving average filter with a filter
span of 5 samples. The boom encoder data were filtered with a 4th-order zero-lag Butterworth filter for
the forward hopping experiments. The cutoff frequencies (9 Hz-19 Hz) of the Butterworth filter were
determined by residual analysis (Winter, 2009).

The recovery steps in the vertical hopping experiment were calculated by first computing the average
hop height before perturbation as a reference height (dotted lines in Fig. 8.3f) and then finding the
post-perturbation hop height that intersected with the ±4% boundary of the reference height (Zhao et al.,
2022). The cost of hopping was calculated by normalizing the electric energy consumption Eelec of one
hopping step to the system’s gravitational potential energy at the apex.

CoH =
Eelec

m ·g ·hapex
(8.4)

where m is the robot mass, g the gravitational acceleration, hapex the apex height position.
We defined two measurements for evaluating the robustness of forward hopping after the ramp-up-

step-down perturbation. The recovery steps were defined as the number of steps needed by the robot leg
to recover its stable hopping after the step-down perturbation. This metric quantified how fast the robot
system can recover from perturbation, and it was measured by visual inspection of the video recordings
and kinematic data. The failure step metric quantified the number of failures after a perturbation was
applied. We identified two failure modes from the video recordings: the robot leg could slip or stop
after the perturbation (Supplementary Movie S3, see appendix A3). The number of failures was visually
counted from the video recordings. The CoT was calculated by the electric energy consumption per
distance traveled d, normalized by the robot weight.

CoT =
Eelec

m ·g ·d
(8.5)

All data were processed with Matlab (R2021b, MathWorks).

8.3 Results

We designed three experiments to study the proposed design with a hydraulic damper mounted to a
robotic leg joint (Table 8.1). We tested damper slack values of 10, 6, 3, and 0 mm for all conditions. These

118



8.3 Results

Experiment Terrain Perturbation
height

No. of
perturbation steps

No. of
repetitions

Vertical hopping step-down
10% LL

1 10
15% LL

Forward hopping
flat terrain 0 mm

15 4rough terrain ±5 mm
rough terrain ±10 mm

Forward hopping ramp-up-step-down
15% LL

1 10
30% LL

Table 8.1: Experiment design, all experiments are repeated with damper slack values of 10, 6, 3, and 0 mm, from
maximum slack to no slack.

settings span from full slack (10 mm, minimum effective damping) to no slack (0 mm, maximum effective
damping). An open-loop controller produced the robot leg’s locomotion pattern. Without feedback,
ground perturbations were invisible to this high-level control (neural circuits), and perturbations could
only be compensated by low-level mechanics in the form of a mechanical response.

We used the vertical hopping setup to investigate the vertical component of locomotion, allowing
ground reaction force (GRF) measurement in all steps (Fig. 8.2e). We introduced step-down perturbation
to evaluate the robustness of the system. We used the forward hopping setup, which mounts the leg
on a boom structure, to simulate more realistic locomotion dynamics (Fig. 8.2f). We analyzed forward
hopping performance on rough terrain and robustness against ramp-up-step-down perturbation.

All data can be found in Supplementary Tables A3.3 to A3.5.

Vertical hopping with step-down perturbation

With feedforward control, the leg hopped in the vertical setup for two perturbation levels and four
slack values. Figure 8.3a shows an example of a time-series of 10 repetitions. The test condition
included a perturbation of 15 % leg length (LL) and tendon slack of 3 mm (Supplementary Movie S1,
see appendix A3). At the perturbed step 1, the leg impacted the ground at a higher speed, compressing
more. This resulted in higher damper and spring forces than during pre-perturbation levels. We noticed
that the damper force did not drop to zero at mid-stance due to the damper’s internal recovery spring.

We found that the tunable slack mechanism was effective in tuning damping. Damper slack adjust-
ments of 0 mm to 6 mm resulted in a delayed engagement of the damper: from 0 ms to 50 ms after the
onset of the spring force during level hopping (Fig. 8.3b). The damper’s force-displacement work loops
during level hopping confirmed the controllable onset of the damper force (Fig. 8.3c). The enclosed work
loop areas represent the damper’s standby dissipated energy. Damper slack values of 0, 3, 6, and 10 mm
can be mapped to standby dissipation of 152, 86, 29, and 1 mJ. At the perturbation step, the damper
dissipated more energy (65 % to 190 %) compared to level hopping standby dissipation (Fig. 8.3d). The
extra dissipated energy is associated with the height of the ground drop, showing an adaptive energy
dissipation to terrain disturbance. In all tested conditions, the extra dissipated energy converged to 0 in
the following steps, indicating recovery to steady-state hopping.

The robustness of the hopping system can be qualitatively assessed by the phase plot of the hip
height (Fig. 8.3e and Supplementary Movie S1, appendix A3). With a 10 mm slack setting, the hopping
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behavior was the most variable, as shown by the overlay of gray lines, representing 200 steps in 10
repetitions. With a 6 mm slack setting, the phase plot was clean, and the hopping converged to a new
‘limit cycle’ in fewer steps than other settings. A quantitative robustness measurement is the number of
steps required to bring the system back to its original hopping height after the perturbation (Fig. 8.3f).
The system’s robustness was highest with the 6 mm slack setting, requiring on average 1.7 and 2.5 steps
to recover for 10 % and 15 % LL perturbation, respectively (Fig. 8.3g). At stronger perturbations, the
robot needed more steps to recover. We measure the energetics of the hopping system by its cost of
hopping (CoH, equation (8.4)). The CoH increased from 6.3 to 7.6 with higher damping or stronger
perturbations (Fig. 8.3h). With a damper slack of 6 mm at 10 % LL perturbation, we found 47 % faster
perturbation recovery in combination with 5 % higher CoH compared to 10 mm damper slack (Fig. 8.3i).

Forward hopping with continuous perturbation

During forward hopping on the sinusoidal ground, the standard deviation of the step cycle time quantifies
the hopping periodicity. In the flat terrain, the standard deviation of the step cycle time decreased
from 27 ms to 2 ms with less damper slack, showing improved hopping periodicity with more damping
(Fig. 8.4a). This tendency was less apparent in ±5 and ±10 mm rough terrain, as the step cycle time
variation increased first for the damper slack value 6 mm, then decreased with less damper slack. The
energetic cost of forward hopping was measured as the cost of transport (Tucker, 1975) (CoT, equation
(8.5)). The CoT increased from a minimum of 0.75 to 1.35 with increasing damping (Fig. 8.4b). Both
hopping periodicity and CoT were affected by the terrain’s roughness. In flat terrain, increasing damping
was associated with improved periodicity and increased CoT (Fig. 8.4c). At ±5 mm terrain roughness,
data for damper slack values of 0, 3, and 6 mm show a similar tendency. The 10 mm damper slack shows
the best performance with a CoT of 0.75 and a standard deviation of 2 ms cycle time (Fig. 8.4d). With
±10 mm terrain roughness, the cycle time standard deviation was clustered around 2 mm to 3 mm for all
slack settings, while the CoT varied from 0.79 to 1.32. Among these three tested terrains, the strongest
damping, i.e., the setting with a slack of 0 mm, showed better periodicity with a cycle time standard
deviation of ≈2 ms, but with the highest CoT, ranging from 1.24 to 1.35.

Forward hopping with ramp-up-step-down perturbation

We evaluated the system’s robustness during forward hopping by testing its response to unexpected,
sudden perturbations. Thus, we analyzed the robotic leg’s behavior with step-down perturbations in its
hopping path. As robustness measurement, we counted the number of steps required for the hopper to
recover after the step perturbation. The second measurement of robustness is the number of failures out
of ten perturbation attempts. By reducing the damper slack from 10 mm to 0 mm, the average recovery
steps needed by the robotic leg decreased from 2.7 to 1.0 for the 15% LL perturbation and from 2.6 to
2.3 for the 30 % LL perturbation (Fig. 8.5a). Similarly, with more damping, the number of failed trials
decreased from 7 to 0 for the 15 % LL perturbation and 10 to 3 for the 30 % LL perturbation (Fig. 8.5b).
The legged robot was less robust against a stronger perturbation, as it required on average 0.7 more
recovery steps or failed, on average, four times more for the two tested perturbation levels. Similar
to the other two experiments, the energetic cost of the system increased with more damping, as the
CoT increased from 0.95 to 1.44 (Fig. 8.5c). With a damper slack of 0 mm at 15 % LL perturbation, we
found 170 % faster perturbation recovery in combination with 27 % higher CoH compared to 10 mm
damper slack (Fig. 8.5d). With both measurements of robustness, we observed a tendency of increasing
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robustness at the expense of more energetic cost with higher damping settings (Fig. 8.5d and e).

8.4 Discussion

The slack-damper mechanism allows effective tunable damping. This has three consequences. First,
depending on the slack setting, the damper produces an immediate or delayed response to ground
impacts (Fig. 8.3b). Second, the onset of the damper stroke can be reliably set by the tendon slack
(Fig. 8.3c). Third, the mechanical work generated by the damper is tunable, as shown by the change
in the size of the enclosed work loops (Fig. 8.3c). Such a level of tunability of the damper response
was not possible in our previous, more canonical approach of controlling the damping rate of the same
damper model (implemented in a two-segment leg) via orifice adjustment (Mo et al., 2020). In contrast,
adjusting the slack of the damper tendon provides an effective strategy for tuning embedded damping in
the robotic leg. The slack in the damper tendon system allows the parallel spring to soften the damper
impact within tens of milliseconds after the foot touchdown. As a result, the damper produced less force
and effective stroke than scenarios with less slack (equation (8.1), Fig. 8.3c).

In the steps following a sudden drop in ground height, the additional gravitational energy results
in 20 % to 30 % higher touchdown speeds. The damper force and negative work increase accordingly,
providing a beneficial mechanical reaction to compensate for the perturbation (Fig. 8.3d). Therefore, our
damper implementation produces mechanical work in an adaptive manner that is consistent with the
perturbation level and tunable by just one parameter: the damper tendon slack.

Legged system robustness is required due to the system’s inherent sensor- and control-noise and
the imprecision of its motor-control (Eliasmith and Anderson, 2003; Faisal et al., 2008; More et al.,
2010). Heim et al. (Heim et al., 2020) quantified task-level stability in a modified spring-loaded
inverted pendulum (SLIP) model that includes perturbation-triggered damping, suggesting that increased
damping contributes to improved robustness. Legged locomotion simulation studies (Abraham et al.,
2015; Shen and Seipel, 2012) and muscle experiments (Wilson et al., 2001) revealed the stabilizing
effect of damping. This theoretical evidence motivated our biorobotic setup to explore and characterize
damping and its effect on locomotion robustness.

In general, damping improves system robustness. In the vertical hopping experiments, adding a small
amount of damping (6 mm slack) led to the fastest recovery from step perturbations (Fig. 8.3e and g).
Above a certain amount of damping, the robotic leg appears to be “over-damped”, as shown by the
hopping height over steps. For example, with more damping (slack < 6 mm), the convergence to the
pre-perturbation behavior is smoother (Fig. 8.3f) but requires more steps (Fig. 8.3g). In forward hopping
experiments, more damping improved hopping periodicity (Fig. 8.4a) and robustness (Fig. 8.5a and b)
without the emergence of an over-damping threshold. Our system performed well in this perturbed
condition. It overcame the perturbation 64 times out of 80 trials despite using the simple feedforward
open-loop controller for forward hopping motion. Although no electronic sensors are utilized to perceive
the perturbations, the passive compliance embedded in the leg acts as an intrinsic system of mechanical
sensors and actuators, which detect and respond immediately to external disturbances. We believe the
adaptive force output from damping plays a key role. A reflex-control mammalian quadruped of similar
size to our robot has a total sensorimotor delay of 60 ms (More and Donelan, 2018). In comparison, the
delay of damping force production in the robotic leg is less than 50 ms (Fig. 8.3b). This confirms that
the mechanical damping force effectively acts faster than reflex control in response to a perturbation.

The improved robustness introduced by the damper system comes at an energetic cost. Higher
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8 Slack-damper mechanism and trade-off between locomotion robustness and energy efficiency

damping settings (less slack) result in higher energy costs for all the experiments (Fig. 8.3i, Fig. 8.4b,
and Fig. 8.5c). This occurs because the actuators need to produce more power to compensate for the lost
energy by damping (Fig. 8.3c and d) and achieve a steady-state hopping behavior. Tunable damping
leads to a trade-off between the robustness and energy cost of the system (Fig. 8.5d and e). This trade-off
implies that hopping can be either robust against perturbations but with a penalty in energy consumption,
or be energy efficient but vulnerable to disturbance. Adjusting tendon slack allows for selecting a
suitable compromise depending on the terrain.

The benefit of damping for legged systems remains a debate in the field (Cham and Cutkosky, 2006;
Heim et al., 2020; Shen and Seipel, 2012). Most research on legged locomotion focuses on optimizing a
single aspect, such as robustness, stability, or energy consumption. On the contrary, evolution in biology
is likely not a single-objective optimization process. Instead, we argue that a more holistic perspective
is required to understand the interaction among the many performance metrics characterizing legged
locomotion. Therefore, we argue that the locomotion priority can change. As Fig. 8.1 suggests, less
damping is desired to minimize energy consumption during level terrain locomotion. In the case of
rough terrain, higher damping is preferred to improve the robustness against ground disturbances. Hence,
damping is a key to balance the trade-off between robustness and energy consumption.

The advantage of our slack-damper mechanism concerning energy consumption is that it allows a
perturbation-trigger strategy. The damper tendon slack can be tuned to barely engage at level hopping.
It will then engage once a ground perturbation induces higher impact velocities. In this way, the
absence of a damper minimizes the dissipating energy during level hopping, while the engagement
of the damper improves robustness at ground perturbation steps. This automatic on-off control was
impossible with previous damper implementations (Arelekatti et al., 2021; Garcia et al., 2011), because
damping generated from friction, rheology, eddy currents, and fluid dynamics are hard to switch off
completely (Vanderborght et al., 2013). Instead of optimizing the adjustment of the nonlinear damping
coefficient, our mechanism features a fixed damping coefficient but exploits a slack tendon to create a
tunable on-off damping. The proposed slack tendon could also be applied to selectively engage springs.
Hence, the tunable tendon slack mechanism offers a new mechanism for adaptive compliant actuator
applications.

Besides the adaptive force output of damping, we expect the tunability of damping to provide better
hopping behavior, such as transitioning into new terrain. When expecting a more uneven terrain, the
damper slack can be adjusted accordingly to gain more robustness against the stronger perturbation. This
requires an online slack tuning mechanism and its feedback control strategy. Possibly, a feedforward
controller can be sufficient to produce highly robust running in an uncertain environment (Wu and Geyer,
2013). Limited by the hardware implementation, we did not thoroughly investigate an online tuning
design. Nevertheless, the four damper slack settings demonstrate the proof-of-concept of online tunable
damping.

We consider extending our system with stiffness control in the future. Tunable spring designs have
been studied extensively (Vanderborght et al., 2013), but a combination with tunable damping is rare.
Software online tuning of stiffness and damping has been realized (Huerta et al., 2020; Roberts and
Koditschek, 2019), but relies on precise sensing, high-frequency control, and strong actuation. Virtual
feedback impedance control (Bogdanovic et al., 2020; Xiong and Manoonpong, 2018) combined with
mechanical springs and dampers provide software control flexibility and fast mechanical response (Ash-
tiani et al., 2021). With these improvements, we can readily implement controllers and hardware for
versatile and robust locomotion in natural terrains such as gravel.

In summary, this work aims at understanding the tunable damping mechanism in legged locomotion.
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8.4 Discussion

We proposed the slack-damper strategy inspired by muscle tendon slack and tested it in robotic legged
hopping. The slack-damper mechanism allows effective tunable damping regarding onset timing,
engaged stroke, and energy dissipation. This study provides novel insights into the trade-off between
energetics and robustness under different damping levels. Additionally, the slack-damper design allows
for perturbation-trigger damping, resolving the trade-off during locomotion with unexpected perturbation.
Our results could inspire future robotic locomotion hardware and controller design.
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Figure 8.3: Vertical hopping with step-down perturbation: (a) 10-repetition-overlay time-series of hip position y,
GRF, spring, and damper forces. 15% LL perturbation at step 1 increases the GRF, spring, and damper forces
due to higher impact speed. The damper starts to produce force with a delay to touchdown due to the 3 mm slack
setting. (b) This damper engagement delay is adjustable by the damper slack setting. (c) The 10-repetition-overlay
damper work loop in unperturbed periodic steps shows that the onset position can be reliably tuned and the standby
dissipated energy (enclosed area) adjustable. (d) The average extra damper dissipated energy during perturbation
steps. (e) Phase plot of hip position with 10 mm and 6 mm damper slack under 15% LL perturbation. The grey
overlay shows the overlap of 10 repetitions of 20 steps, while the darker line is the averaged trajectory. (f) The
average hopping apex height during perturbation steps. The transparent overlay represents the 95% confidence
boundary. (g) The relationship between the number of steps to recovery after perturbation and the damper slack
settings. (h) The relationship between the cost of hopping and the damper slack settings. (i) The relationship
between the number of steps to recovery and the cost of hopping under different damper slack settings and
perturbation levels.
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Figure 8.4: Forward hopping with continuous perturbation: (a) The standard deviation of the step cycle time
shows that the hopping periodicity is improved with higher damping (less slack). (b) The relationship between the
CoT and the damper slack settings. (c) In flat terrain, the robot’s ability to maintain periodic hopping is improved
by higher damping at the cost of CoT. (d, e) In the continuous perturbation terrain, high damping is also associated
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Figure 8.5: Forward hopping with ramp-up and step-down perturbation: The robustness of the robot system is
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9 General discussion

The research objective of this dissertation was to investigate principles of tunable mechanical damping
in fast, perturbed legged locomotion. Although less understood than tunable mechanical stiffness,
tunable mechanical damping may be crucial in providing a first response to external perturbations.
Such instant stabilizing action could benefit locomotion by compensating for delays and noise in the
neurotransmission of sensorimotor information. Therefore, this dissertation investigates how tunable
mechanical damping occurs in muscle-driven locomotion and how it can be achieved in legged robotics.

My doctoral thesis relies on interdisciplinary research combining computational biomechanical
simulations, in vitro experiments on muscle fibers, and hardware testing with robotic prototypes. My
main contribution to this research was the computational part, which supported the in vitro and robotic
experimentation. A precise description of my contribution to the research presented in this thesis is in
Chapter 2.

This final chapter (Chapter 9) starts with a detailed summary of the studies that comprise my
dissertation. Afterward, I present my general discussion, separated into two parts. First, I discuss how
our findings provide a new quantitative understanding of muscle-produced, tunable mechanical damping.
Then, I discuss our implementations of tunable mechanical damping in legged robotics. I conclude the
chapter by highlighting the take-home messages from this dissertation.

9.1 Summary of the studies

The research in this dissertation involves five different investigations, corresponding to four journal
articles (Araz et al., 2023; Izzi et al., 2023; Mo et al., 2020, 2023) and one pre-print (Izzi et al., 2022).

Chapter 4 presents my core computational study on tunable mechanical damping in muscle-driven
locomotion. This study implements a simplified biomechanical model to simulate vertical hopping
under different step perturbations. By applying the decomposition algorithm (described in Section 4.2.3)
to the knee extensor muscle that drives the model, it was possible to quantify how the force-velocity
relation adjusts touchdown force and preflex work to different perturbation intensities. We termed
this regulatory capacity “velocity preflex” since it adjusts the preflex response to the change in impact
velocity that follows a step perturbation. Although previous studies suggested the force-velocity relation
is critical for building a velocity preflex, we found that without neuronal modulation, the force-velocity
relation has only a minor effect on the preflex response. When feedforward stimulation is allowed,
the damping capacity of the force-velocity relation shapes preflex production far more effectively,
indicating the existence and tunability of biological mechanical damping. Thus, our findings support the
literature hypothesis that the force-velocity relation produces mechanical damping and plays a role in
preflex regulation. However, we conclude that understanding this phenomenon requires considering the
interaction between muscle mechanics, feedforward control, and touchdown timing.

The analysis in Chapter 4 shows that, without neuronal modulation, the force-velocity relation
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9 General discussion

contributes less to preflex regulation primarily because of its flattening side at high eccentric velocities.
As a result, the damping capacity of the force-velocity relation may depend on the touchdown velocity
of unperturbed locomotion. Chapter 5 tests this hypothesis. Using the same computer model from
Chapter 4, we simulated periodic hopping without neuronal modulation at different reference touchdown
velocities. We classified these conditions by the operative side of the force-velocity relation at touchdown,
separating hopping on the rising-side (rising-cases) from hopping on the flattening side (plateau-cases).
We tested the stability of periodic hopping for each condition and analyzed two selected cases in detail,
one plateau-case and one rising-case. Our in-depth analysis shows that periodic hopping on the plateau-
side reduces the preflex regulation that the force-velocity relation can generate. This finding confirms
our hypothesis that the preflex contribution of the force-velocity relation is sensible to the touchdown
reference condition. However, we also found that periodic hopping with the force-velocity relation on
the plateau-side at touchdown was more stable. Further testing is required, as we limited the in-depth
analysis to only two periodic hopping conditions and did not investigate how muscle force influences
movement after the preflex duration. Our results also show that the intrinsic coupling between hopping
kinematics and perturbation intensity promotes the regulation of dissipated energy. This implies that
constant damping of tunable magnitude could be sufficient to implement tunable mechanical damping in
legged robotics.

Chapters 4 and 5 base their computational research on a Hill-type muscle model. Hill-type models
are approximations of the complex dynamics occurring during biological muscle contraction. To assess
the limitations of this modeling choice, Chapter 6 presents a study in which we compared the preflex
response predicted by our Hill-type simulations to that from in vitro muscle fiber experiments. Using
the computer model in Chapters 4 and 5, we recorded muscle fiber trajectories occurring during periodic
and perturbed vertical hopping. Then, we applied the simulated trajectories to in vitro experiments with
isolated muscle fibers. We compared the preflex force and work produced by the biological muscle
fibers with predictions from the isolated contractile element in our Hill-type model. To highlight the
contribution of the force-velocity relation, we compared these results with a quasistatic-scenario, where
we applied the same trajectories over a time frame long enough to make the instantaneous velocity close
to zero. The in vitro experiments confirm that preflex force modulation by force-velocity dependencies
occurs in real muscle fibers, as predicted by our simulations. However, contrary to our model predictions,
this viscous modulation did not occur at touchdown. Instead, it followed a phase of short-range stiffness
that our Hill-type model does not capture. Regarding mechanical work, we observed little viscous-like
modulation of the preflex work. However, muscle activity level could regulate the amount of preflex
work produced by the viscous-like properties of the muscle fibers. Therefore, our in vitro analysis
supports the hypothesis that muscle fibers can produce some tunable mechanical damping. At the same
time, we conclude that better predictions of biological tunable damping require Hill-type models to
include short-range stiffness and a more accurate description of the force-velocity relation’s eccentric
portion.

The remaining chapters present two studies in which we explored technical solutions to achieve
tunable mechanical damping in legged robotics during fast perturbed locomotion. Chapter 7 explores the
feasibility and benefits of mechanical viscous damping. Given its resemblance with the force-velocity
relation of muscle contraction, we hypothesized that viscous damping is effective in rejecting energy
perturbation caused by unexpected ground disturbances. To test this hypothesis, we compared its
performance with Coulomb friction damping in simulated drop experiments. Coloumb friction damping
generates a constant damping force, which can be adjusted in magnitude by setting different friction
coefficients. Therefore, comparing viscous damping to Coulomb friction damping highlights the added
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9.2 Tunable mechanical damping in muscle-driven locomotion

benefit of velocity-dependent force modulation. As hypothesized at the end of Chapter 5, some energy
regulation was possible with the constant damping force. Nevertheless, viscous damping consistently
outperformed Coulomb friction damping. As a result, we conducted hardware experiments with a leg
prototype and viscous dampers directly coupled to the knee joint. We investigated whether damping rate
adjustment of these devices allowed tuning mechanical damping in perturbed drop experiments. We
found that complex nonlinearities conceal the mapping between damping rate and dissipated energy.
Consequently, we conclude that damping rate control of a directly-coupled viscous damper is an
ineffective design strategy.

Chapter 8 presents a study in which we proposed a slack-damper mechanism to address the hardware
limitations identified in Chapter 7. In the slack-damper mechanism, the viscous damper connects to
the knee joint through a cable of adjustable slackness. The level of slackness determines when the
damper starts breaking the knee rotation. Zero slackness causes the damper to react instantly to the joint
motion. High slackness decouples the damper from the joint kinematics, requiring a certain amount of
leg compression before the damper can engage. Therefore, more slackness delays the viscous damping
response and reduces its magnitude, as leg compression decelerates from touchdown to midstance.
We tested the performance of our slack-damper mechanism in producing tunable mechanical damping
during various hopping conditions and step perturbations. To accomplish this, we implemented one
of the hydraulic dampers tested in Chapter 7 to the knee joint of a pantographic robotic leg. The
damping rate of the hydraulic damper remained constant across all tested conditions. Our experimental
results reveal that the slack-damper mechanism can adjust the dissipated energy to the perturbation
intensity. Unlike controlling the damping rate, slackness adjustments effectively modulated the amount
of energy the damper can dissipate. Moreover, the mapping between slackness level and damped energy
is intuitive: fewer slackness results in more damped energy due to earlier damper engagement, and
vice-versa. With this achieved tunability, we could test and confirm that more mechanical damping
increases locomotion robustness at the expense of a higher cost of transport. We conclude that the
tunability and perturbation-triggered nature of our slack-damper mechanism could promote a more
favorable trade-off.

9.2 Tunable mechanical damping in muscle-driven locomotion

According to previous research (Gerritsen et al., 1998; Geyer et al., 2003; Haeufle et al., 2010), the force-
velocity relation grants muscle fibers tunable mechanical damping. This property could facilitate the
rejection of external perturbations during fast locomotion. When a step perturbation occurs, touchdown
velocity and potential energy change. A damping-like response by the force-velocity relation could
adjust the muscle force to the new impact velocity and allow partial rejection of the change in potential
energy. Due to its mechanical nature, such a response would be instantaneous and sensor-free. For
this reason, we referred to it as a velocity preflex (Chapter 4). However, evidence for such a velocity
preflex was only qualitative (Gerritsen et al., 1998; Geyer et al., 2003; Haeufle et al., 2010). As muscle
dynamics are highly nonlinear, a qualitative understanding cannot unequivocally characterize the force-
velocity relation’s role during fast perturbed locomotion. Therefore, a primary research objective of this
dissertation was to provide a more quantitative understanding (Chapters 4 to 6).
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9 General discussion

9.2.1 Constant stimulation during preflexes

Our results support the hypothesis that the force-velocity relation produces tunable mechanical damping
during fast perturbed locomotion, which allows preflex regulation in response to step perturbations.
However, the interpretation of this phenomenon needs revision. We found that the force-velocity relation
can generate only little preflex regulation without neuronal modulation, i.e., when preflex stimulation
remains constant. In this scenario, our simulations show that muscle fiber force adjusts to new impact
velocities, consistent with the previously hypothesized contribution of the force-velocity relation as
mechanical damping (Gerritsen et al., 1998; Geyer et al., 2003; Haeufle et al., 2010). However, such force
adjustment remains confined around touchdown and fails to produce meaningful energy regulation by
the end of the preflex phase. Furthermore, the degree of force adjustment is sensible to the force-velocity
relation’s operative side, with large eccentric touchdown velocities compromising it.

We interpret these findings as a consequence of the flattening side of the force-velocity relation
for large eccentric velocities. After touchdown, muscle fibers experience an acceleration that rapidly
increases their stretching velocity. This makes the force-velocity relation quickly operate along its
plateau-side. The constant preflex stimulation cannot alter the shape of the force-velocity relation across
different perturbed scenarios. As a result, the force profiles attributed to the force-velocity relation
quickly converge to the same trajectory; differences in force profiles remain confined to the touchdown
event. Notice that some energy regulation during preflex still occurs without neuronal modulation.
However, this is primarily driven by the change in muscle fibers’ elongation caused by the perturbed
touchdown velocity.

As reviewed in Alcazar et al. (2019), several experimental studies support the existence of a flattening
side in the force-velocity relation for the range of moderate-to-high stretching velocities. However,
the eccentric side of the force-velocity relation has been studied less than the concentric side. In
Chapter 6, our in vitro experiments show that viscous-like regulation of the muscle fiber force occurs
in the mid-to-late preflex phase. This finding suggests that flattening of the force-velocity relation
did not emerge during our biological experiments. A possible interpretation of this result is that the
muscle activation level in our experiments was low enough to restrain the flattening of the force-velocity
relation. Evidence indicates that cross-bridge turnover kinetics depends on Ca2+ concentration (Brenner,
1988), and thus, low submaximal activation may alter muscle fiber mechanics and the shape of the force-
velocity relation’s eccentric side. Quick-release or similar experiments to characterize the force-velocity
relation’s eccentric side at such low submaximal activation are still missing. Thus, further testing is
needed to validate a similar explanation of our findings.

Another possible interpretation is the existence of a mechanical delay in the viscous-like response
of muscle fibers. Levin et al. (1927) observed that when an isometric muscle is stretched, the muscle
fibers’ response resembles the mechanical behavior of a pure elastic element in series with a viscous-
elastic element. The serial elasticity prevents the direct transmission of the stretching velocity to the
viscous-elastic element, causing the damping forces within the muscle fibers to build up gradually in
response to suddenly applied muscle fiber velocities. Lännergren (1978) further observed that such
build-up dynamics depend on the muscle fiber composition, with slow and twitch fibers characterized by
different behaviors. These findings are consistent with our observation of an initial short-range stiffness
response, which anticipated the viscous-like regulation of muscle force during our in vitro experiments.
Therefore, our results suggest that Hill-type models may wrongly assume that the force-velocity relation
acts instantaneously, and some build-up dynamics are likely to occur in reality. Notice, however, that
although the force-velocity relation’s contribution may not be instantaneous, viscous-like regulation
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9.2 Tunable mechanical damping in muscle-driven locomotion

of muscle force occurred within the preflex duration in our biological experiments. Thus, our results
still support the hypothesis that the force-velocity relation generates a faster regulatory response than
reflexes and other centrally-driven strategies.

9.2.2 Feedforward stimulation during preflexes

Feedforward control plays an important contribution to motor control. Networks of spinal neurons,
referred to as central pattern generators (CPGs), provide rhythmic feedforward signals that support
reflex-based control of animal and (likely) human locomotion (for a review, see Duysens and Van
de Crommert (1998); Ijspeert (2008); Loeb (1989)). As observed in (Ryu and Kuo, 2021), added
feedforward control can serve multiple functions, such as enhancing gait stability (Daley et al., 2007),
controlling gait mode transition (Owaki and Ishiguro, 2017), and adjusting walking speed (Dzeladini
et al., 2014). The research in this dissertation suggests that feedforward control may also serve to activate
preflex regulation in response to unexpected ground disturbances.

Our simulations demonstrate that feedforward stimulation enables the force-velocity relation to
effectively generate tunable mechanical damping during preflexes. When disturbing hopping with step-
down perturbations, we observed greater adjustment of muscle fiber force at touchdown and up to a
fourfold increase in preflex energy regulation if feedforward stimulation was present. We interpret
this finding as the scaling capacity of feedforward stimulation on the force-velocity relation’s shape
and magnitude. In our simulations, the feedforward stimulation was a rising signal with a fixed
onset. Consequently, the shift in touchdown timing caused by each step perturbation resulted in a
change of muscle fiber excitation upon ground impact. Muscle excitation increased with step-down
perturbations, while it decreased with step-up perturbations. More excited muscle fibers exhibit greater
viscosity, meaning the force-velocity relation would produce a larger force adjustment for a given change
in muscle fiber velocity. Less excited muscle fibers exhibit lower viscosity. This phenomenon amplified
muscle fibers’ capacity to produce viscous-like adjustments of touchdown force in our simulations.
Furthermore, the feedforward stimulation raised muscle fibers’ activity level throughout the preflex
duration. In scenarios involving step-down perturbations, this helped compensate for the force-saturating
effects of the force-velocity relation’s flattening side. As a result, the force-velocity relation also became
the primary factor in adjusting preflex work to step-down perturbation intensity.

In their study, van der Krogt et al. (2009) observed the same regulatory mechanism when simulating
human hopping over variable surface hardness. They found that muscle fiber mechanics alone cannot
significantly adjust leg stiffness to an unexpected level of surface hardness. Instead, regulation occurred
from the phase shift between feedforward stimulation and the duration of leg compression (van der Krogt
et al., 2009). Muscle fiber viscoelasticity also scaled due to this phase shift; however, the authors mainly
regarded it as a secondary, beneficial contribution (van der Krogt et al., 2009). Our decomposition
algorithm partly contradicts this view by demonstrating that the force-velocity relation is the main
factor in regulating preflex work when feedforward stimulation is allowed. In our simulations, the
feedforward stimulation could contribute to the adjustment of preflex work by directly altering muscle
fiber force. Nevertheless, neuronal direct contribution to preflex regulation was lower than that of the
force-velocity relation, indicating that the feedforward stimulation’s primary function was activating
mechanical damping capacities in the muscle fibers. It should be noted that we limited our analysis to
the preflex duration. Thus, we cannot exclude that the phase shift in feedforward control may have a
more direct and dominant role in rejecting perturbations when a longer stance duration is examined, as
done in van der Krogt et al. (2009).
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Our findings align with previous research observing that legged locomotion exploits a close interplay
between neuromodulation, inner muscle mechanics, and environmental interaction (Biewener and Daley,
2007; Daley et al., 2009; van der Krogt et al., 2009). Thanks to our decomposition algorithm, we were
able to probe such a complex interplay and quantify the distinct mechanisms affecting preflex regulation.
We identified phenomena, such as the feedforward adjustment of the force-velocity relation’s shape,
that promote the rejection of step perturbations by tunable mechanical damping. Interestingly, we also
observed mechanisms that hinder muscle fibers from fully exploiting their mechanical damping capacity.
For instance, when muscle fibers receive a feedforward stimulation during the initial flight phase, they
undergo a shortening contraction at touchdown. This results in a brief injection of mechanical energy
following ground impact, rather than dissipation. A step-down perturbation would prolong the initial
flight phase, potentially increasing muscle fiber shortening velocity and, consequently, the injected
energy. It also allows for more excited muscle fibers at touchdown, which would resist lengthening
more. These phenomena would oppose the rise in energy dissipation necessary to reject the step-down
perturbation. Notice that the step-down perturbation would also cause the leg to hit the ground at a
faster impact velocity, promoting more lengthening acceleration of the muscle fibers after touchdown.
Therefore, whether the feedforward stimulation enables the muscle fibers to dissipate more energy and
reject the step-down perturbation depends on which dynamics prevail.

In our simulations, the mechanisms that promote tunable mechanical damping consistently emerged as
the prevailing factors. However, the associated dynamics are complex, nonlinear, and potentially sensible
to multiple conditions. For example, tendon stiffness may affect impact velocity transmission, reference
hopping height, and the duration of the initial flight phase. Smoother impact dynamics may reduce the
eccentric acceleration of the muscle fibers after touchdown. Even a different feedforward stimulation
may influence the interplay between inner muscle mechanics and environmental interaction. Concerning
this, the results from Haeufle et al. (2012a) suggest that the stabilizing function of the force-velocity
relation may not be so sensitive to the feedforward stimulation profile. However, how the force-velocity
relation contributes to locomotion stability may be affected. For instance, we designed our ramp signal
inspired by experimental human data from Moritz and Farley (2004); Müller et al. (2015, 2020). Avian
experiments in Daley et al. (2009) measured a different feedforward profile, resembling a triangular
signal with peak point around expected touchdown. With this stimulation, step-down perturbations
resulted in less excited muscle fibers upon ground impact, a trend opposite to our simulations. Despite
this, more energy dissipation in response to the step-down perturbations still occurred due to increased
muscle stretching.

As Biewener and Daley (2007) observed, the interplay between neuromodulation, inner muscle
mechanics, and environmental interaction may be context-dependent and sensitive to the movement’s
initial conditions. Theoretical studies also suggest that mechanical damping requires proper calibration
within the dynamics of a legged system to benefit locomotion (Heim et al., 2020; Shen and Seipel, 2012).
Therefore, future research should expand our analysis to more comprehensive neuro-musculoskeletal
models, involving multiple muscles and body segments. These models could validate our findings under
simulated conditions more representative of muscle fibers’ contraction trajectories during biological
locomotion. In addition, they would allow the simulation of more complex tasks, such as forward
hopping and running. Analysis of such locomotion tasks would permit investigating the benefits of
the force-velocity relation and associated preflex regulation for metrics more complex than touchdown
force and preflex work adjustment.
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9.3 Tunable mechanical damping in legged robotics

The second part of this dissertation (Chapters 7 and 8) investigated solutions to embed tunable mechanical
damping in legged robotics. Tunable mechanical damping can benefit legged robotics for two main
reasons. First, it delivers a quick mechanical response to external perturbations, enabling sensor-free
motion stabilization and less burden on the control architecture. Second, it diminishes unwanted energy
losses during steady-state locomotion, which are inevitable with non-tunable mechanical damping.

9.3.1 Physical principle

Multiple physical principles can produce mechanical damping in a robotic system (Laffranchi et al.,
2012; Monteleone et al., 2022). The results from Chapters 4 to 6 show that step perturbations alter the
kinematics of leg compression, which already provides a certain degree of energy regulation when some
damping is present. Therefore, a constant damping force of tunable magnitude may be sufficient to
produce a stabilizing response that adapts to variable terrain conditions. We hypothesized, however, that
tunable viscous damping could provide better performance. Our hypothesis is supported by the findings
in Chapters 4 and 5, which show better preflex regulation when muscle fibers granted more viscous-like
mechanical capacities.

Consequently, in Chapter 7, we compared the capacity of a simulated robotic leg to reject step
perturbations when embedding either Coulomb friction or viscous damping. The simulated model
comprised a two-segment leg with a single degree of freedom, the knee joint, actuated by an ideal spring
and damper. In all simulated conditions, we found viscous damping to outperform Coulomb friction
damping in adjusting energy dissipation to the step perturbation intensity.

This finding is explained by first noting how the generic knee damper dissipates energy (Ed):

Ed =
∫

θ MS
k

θ T D
k

Td dθk (9.1)

where Td is the torque the damper produces during leg compression, θk is the knee angle, and θ T D
k and

θ MS
k are the knee angle values at touchdown and midstance, respectively. According to eq. (9.1), the

amount of energy the damper dissipates depends on the applied damping torque and the amount of
knee compression following ground impact. With a Coulomb friction damper, the damping torque is
constant and independent of any step perturbation. Therefore, the Coulomb friction damper adjusts
energy dissipation based entirely on the change in knee flexion that follows a step perturbation. In
contrast, a viscous damper produces a torque whose intensity depends on the knee’s angular velocity,
resisting fast rotations more and slow rotations less. As a result, the dissipated energy adjusts to the step
perturbation intensity because of simultaneous changes in damper torque and knee flexion. Notice that,
in the case of a step-down perturbation, a viscous knee torque would oppose knee flexion more than
a constant one. Thus, the maximum knee flexion with Coulomb friction damping is larger than with
viscous damping. Our simulations reveal, however, that the combined adjustment of damping torque
and knee flexion that occurs with viscous damping is still superior in regulating energy dissipation than
any extra knee flexion possible with constant friction damping. This means the viscous damper allowed
for better rejection of ground perturbations while also protecting the knee from excessive flexion.

While the viscous damper consistently outperformed the Coulomb friction damper, the performance
gap diminished for small and large damping rates. This finding suggests that a Coulomb friction damper
could still be suitable for applications requiring either high or low levels of mechanical damping. Friction

133



9 General discussion

dampers are a common strategy for mechanical damping in robotic actuation (Monteleone et al., 2022),
as they are cost-effective and easy to manufacture (Arelekatti et al., 2021). However, this technology
can be unreliable, as it is sensitive to wear and environmental conditions (Andrysek, 2010). On the other
hand, fluid-based dampers provide more precise control of tunable mechanical damping (Guglielmino
et al., 2005; Unsal et al., 2004). Arelekatti et al. (2021) even demonstrated that this technology could
be compact and cost-effective with an appropriate design. Therefore, we conclude that the advantages
of implementing viscous dampers in a legged system significantly outweigh those of Coulomb friction
dampers.

9.3.2 Damping in hardware

Based on the considerations in section 9.3.1, we tested two strategies to embed viscous damping into
legged robotics and generate tunable mechanical damping. Our first approach was to directly couple the
viscous damper to the knee rotation, as described in Chapter 7. We hypothesized that tunable mechanical
damping during perturbed drop experiments could be achieved by (offline) damping rate control, which
required changing the valve setting of the viscous damper. Our experiments revealed that this strategy is
ineffective: the tunability of energy dissipation was small, and the mapping between the damping rate
and change in dissipated energy was inconsistent.

We explain this finding by the damping rate’s opposite effect on the damper force and piston dis-
placement. A higher damping rate, for instance, increases the damper force and piston’s resistance
to movement. The first phenomenon promotes more energy dissipation, whereas the second counters
it. The complex fluid dynamics of the damper and the nonlinearities of legged locomotion make it
challenging to predict which of these two opposing mechanisms will dominate. As a result, there is
an unintuitive mapping between damping rate and dissipated energy. Prior studies also argued against
the use of hydraulic piston dampers at the knee joint of prosthetic legs due to their intricate nonlinear
dynamics (Arelekatti et al., 2018, 2021).

We designed a slack-damper mechanism to overcome our previous design’s limitations and achieve
more intuitively and effectively tunable mechanical damping. As described in Chapter 8, the slack-
damper mechanism implements a cable of adjustable slackness to connect the viscous damper (same
model tested in Chapter 7) to the knee joint of a robotic leg. We hypothesized that the degree of slackness
would directly control the amount of energy the damper dissipates. With zero slackness, the damper
would react immediately to the knee rotation, resulting in large damping forces and energy dissipation.
In contrast, high slackness would decouple the damper from the joint rotation, requiring a certain amount
of leg compression before the damper can engage. Since leg compression would slow down during this
period, we expected high slackness to decrease the damping force and associated energy dissipation.
Note that the slack-damper mechanism does not alter the damping rate of the viscous damper, which
remained unchanged throughout our tests.

Our experiments validated our assumptions, demonstrating that the slack-damper mechanism can
produce effective and intuitive-to-tune mechanical damping across various hopping conditions and
ground perturbations. This improved performance can be understood by examining how tendon slackness
controls the damper’s work loop. In a directly-coupled damper, damping rate control has little impact on
the work loop’s encircled area, which represents the dissipated energy. As previously explained, this
control strategy inversely alters the damping force and piston displacement. In a damper’s work loop,
the damping force determines the vertical peak, while the piston displacement defines the horizontal
width. Thus, damping rate control of a directly-coupled damper cannot significantly regulate energy

134



9.3 Tunable mechanical damping in legged robotics

dissipation, as the work loop’s vertical and horizontal dimensions are affected inversely. In contrast,
slackness control concurrently increases (or decreases) the work loop’s peak and width. For instance,
when slackness is increased, damper engagement is delayed. When the engagement occurs, knee
compression is closer to a complete stop, resulting in less piston displacement than reference slackness.
Simultaneously, due to the damper’s viscous nature and decelerating knee compression, the damping
force at damper engagement is reduced. Therefore, increased slackness reduces both the horizontal and
vertical dimensions of the damper’s work loop, resulting in a smaller encircled area and less energy
dissipated during leg compression. The opposite effect occurs when slackness is reduced.

Our slack-damper mechanism makes the nonlinear dynamics of a fluid-based piston damper in a
robotic leg more predictable. To achieve similar intuitive dynamics, Arelekatti et al. (2018) proposed an
alternative design strategy consisting of a rotary, shear-based architecture. Their damper allows coaxial
implementation, which facilitates inserting the device into a robotic joint. Furthermore, it displays a
linear dependence between the damping torque and the gait cadence. Despite these advantages, their
implementation does not offer means to control the produced damping: the damper size defines the
damping rate. Our slack-damper implementation, instead, allowed us to take a viscous damper with a
fixed damping coefficient and produce tunable mechanical damping by simply adjusting the slackness
level.

Another class of viscous dampers that could provide an alternative strategy to our slack-damper
mechanism are magneto-rheological dampers (Agrawal and Amjadian, 2022). These devices exploit a
special class of fluids that change rheological behavior when subject to a magnetic field (Monteleone
et al., 2022). This technology could successfully adjust the knee damping coefficient of robotic legs
throughout the gait cycle, as demonstrated in experiments with unilateral amputees (Herr and Wilkenfeld,
2003) and robotic systems (Garcia et al., 2011). The Össur Rheo leg prosthetic, which implements
a magneto-rheological damper, was found to improve gait and metabolic cost relative to prosthetics
implementing more conventional hydraulic dampers (Johansson et al., 2005). A magneto-rheological
damper was also effectively used by Kostamo et al. (2013) to design a compliant foot and improve foot-
ground contact in a robotic leg (HyQ). When we conducted our studies, we had no access to commercially
available magneto-rheological dampers that could fit our leg prototypes. Future studies should investigate
the potential of these devices in producing tunable mechanical damping in experiments similar to those
described in Chapter 8. In particular, it would be interesting to compare their performance and cost-
effectiveness with our slack-damper mechanism, as well as evaluate the easiness of implementation
relative to our approach.

9.3.3 Trade-off: energy efficiency vs. robustness

Energy efficiency is a vital design objective in legged robotics, as untethered mobile robots suffer limited
power autonomy (Kashiri et al., 2018). Elastic actuation has long been explored as a strategy to increase
robots’ energy efficiency (Beckerle et al., 2017), leading to several successful legged systems (Grizzle
et al., 2009; Hubicki et al., 2016; Spröwitz et al., 2013; Zhao et al., 2022). Elastic compliance, however,
can produce unwanted oscillations and reduced control bandwidth (Kashiri et al., 2018; Monteleone
et al., 2022). Integrated mechanical damping can address this problem (Kashiri et al., 2017), and even
enable rejection of energy-based perturbations, such as changes in impact velocity (Shen and Seipel,
2012). Nevertheless, the dissipative nature of mechanical damping may negatively impact energy
efficiency. For example, a mechanical damper would dissipate mechanical energy during steady-state
locomotion, requiring extra actuation to maintain a periodic gait.
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We hypothesized that a trade-off between energy efficiency and locomotion robustness emerges
when implementing our slack-damper mechanism in a robotic leg. Experiments in Chapter 8 confirm
our hypothesis. For instance, during forward hopping tests, when we reduced the slackness in our
slack-damper mechanism, thereby allowing for increased mechanical damping, we observed a faster
recovery speed after ground perturbations and a decreased risk of falling. However, the cost of transport
increased.

The tunability of our device allows different locomotion strategies, prioritizing robustness or energy
efficiency as desired. Based on the considerations in Heim et al. (2020), a robot implementing our
slack-damper mechanism could use large slackness over flat terrains, prioritizing energy efficiency;
when detecting rougher surfaces, the robot could switch to a reduced slackness, prioritizing locomotion
robustness. This would require a mechanism for online adjustment of the tendon slackness, which we
did not include in our study.

It is worth noting that our results could partly depend on the leg architecture tested. In our minimalistic
robot, a trunk segment is missing. Trunk oscillations and posture greatly influence the energetics of
bipedal locomotion (Drama and Badri-Spröwitz, 2020). Our results show that increased mechanical
damping smooths locomotion dynamics, potentially reducing the need for active trunk posture control in
a bipedal robot. I speculate that in the case of a heavy trunk, this could significantly reduce the external
mechanical work required by actuation, leading to a simultaneous increase in locomotion robustness and
energy efficiency.

Another key advantage of our slack-damper is its perturbation-triggered nature. The damper engages
only after a certain amount of leg compression, meaning it remains inactive over flat terrains or during
minor perturbations. Therefore, our design enables a ‘damping-as-needed’ strategy that is sensor-free
and consistent with the principle of morphological computation. As defined in Pfeifer and Bongard
(2007), morphological computation refers to the body’s capacity to perform operations that would
otherwise require the brain to execute them. Morphological computation occurs when a desired behavior,
such as resisting external perturbations, develops through the interaction between body morphology (e.g.,
geometry and compliance) and the environment without direct control. This definition aligns with how
our slack-damper mechanism operates: for any slackness level, its activation in response to a ground
perturbation uniquely depends on the leg-environment interaction. Conventional implementations of
tunable mechanical damping, like those using magneto-rheological fluids, struggle to replicate a similar
perturbation-triggered characteristic. Even at their lowest setting, these devices cannot achieve zero
damping, which can promote undesired behaviors when they are directly coupled to a joint. For instance,
Herr and Wilkenfeld (2003) found that the inability to turn off entirely the viscous damping in their
magneto-rheological prosthetic knee could lead to unnatural swing trajectories.

As a final remark, it is worth noting that we focused on the trade-off between energy efficiency
and locomotion robustness. However, these are only two of the many task-level demands that legged
locomotion can pose, such as high maneuverability (Hubel et al., 2016) and prevention of injuries
(Biewener, 1989). Biological legged locomotion often accommodates many, sometimes conflicting,
task-level objectives (Birn-Jeffery et al., 2014). Therefore, future research should extend our analysis by
testing our slack-damper mechanism over a wider variety of legged locomotion demands, exploring the
existence of further trade-offs.
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9.4 Take-home messages

• Tunable mechanical damping benefits fast legged locomotion by providing a rapid response to
unexpected disturbances;

• We developed a decomposition algorithm to quantify the mechanical damping generated by
muscles during simulated perturbed hopping. We also conducted hardware experiments to explore
the effective implementation of tunable mechanical damping in legged robotics;

• The force-velocity relation grants muscle fibers tunable mechanical damping. However, this
requires feedforward stimulation for effective preflex regulation;

• Tunable mechanical damping in biological actuation emerges from a complex interaction between
muscle inner mechanics, neuronal modulation, and environmental conditions. This interplay is
highly nonlinear and potentially sensible to simulated conditions. Future work should investigate
such sensitivity systematically;

• A more precise estimation of the force-velocity relation’s eccentric side is crucial for better
understanding biological damping;

• Viscous damping is more effective than Coulomb friction damping in generating tunable mechani-
cal damping in legged robotics;

• Damping rate control of a viscous damper coupled to the knee joint might not be an effective
strategy for generating tunable mechanical damping in legged robotics;

• Interposing a cable of controllable slackness between the viscous damper and the joint rotation is
a more effective and intuitive method for implementing tunable mechanical damping in a robotic
leg;

• Mechanical damping increases locomotion robustness at the cost of less energy efficiency. Tunable
mechanical damping can reduce unnecessary energy dissipation by deactivating the damper
on even terrains. Perturbation-triggered damping likely increases morphological computation,
simplifying the control architecture. Future work should explore the existence of additional
trade-offs.
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Appendix

A1 Supplementary Material - Chapters 4 and 5

This is the supplementary material for Chapters 4 and 5, with Chapter 4’s material being previously
published in (Izzi et al., 2023). Figures A1.1 to A1.5 belong to Chapter 4’s study. Table A1.1 contains
model parameters used for the computer simulations in both Chapters 4 and 5.

A1.1 Supplementary figures and tables
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Figure A1.1: Time trajectories of the force component produced by the force-velocity relation (FV
CE ). Data plotted

from touchdown (t = 0ms) to the end of the preflex duration (t = 30ms). (a) Preflex-Const, with reference hopping
case in green; (b) Preflex-Rising, with reference hopping case in red. Figure from Izzi et al. (2023).
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Figure A1.2: (a,b) Time trajectories of the muscle fiber velocity (vCE ). Data plotted from the start of the leg’s
vertical fall to the end of the preflex duration (t = 30ms). All dataset are centered to the touchdown event
(t = 0ms). (c,d) Close up (touchdown to preflex end) of the time trajectories of the muscle fiber velocity (vCE ).
(a,c) Preflex-Const, with reference hopping case in green; (b,d) Preflex-Rising, with reference hopping case in red.
Figure from Izzi et al. (2023).
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Figure A1.3: Time trajectories of the muscle fiber power component produced by the force-velocity relation
(PV

CE = FV
CE · vCE ). Data plotted from touchdown (t = 0ms) to the end of the preflex duration (t = 30ms). (a)

Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference hopping case in red. Figure
from Izzi et al. (2023).
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Figure A1.4: Work dissipated by the muscle fibers during the preflex phase. WCE is the net dissipated work; WV
CE

is the work component dissipated by the force-velocity relation, W L
CE by the force-length relation, and W A

CE by
the muscle activity. (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference
hopping case in red. Figure from Izzi et al. (2023).
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Figure A1.5: Touchdown values of muscle-tendon unit velocity (vMTU ), muscle fiber velocity (vCE ) and tendon
fiber velocity (vSEE ). (a) Preflex-Const, with reference hopping case in green; (b) Preflex-Rising, with reference
hopping case in red. Figure from Izzi et al. (2023).
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Table A1.1: Table of supplementary parameters used in the muscle model and activation dynamics (Hatze). These
parameters were used for computer simulations in both Chapters 4 and 5. Table from Izzi et al. (2023).

Parameter Unit Value Source Description
MTU lMTU,re f m 0.5 (Geyer et al., 2003) muscle-tendon unit’s reference

length, alias lre f in (Geyer et al.,
2003)

CE ∆W des [ ] 0.45 similar to (Bayer et al.,
2017); (Kistemaker et al.,
2006)

width of normalized bell curve in de-
scending branch, adapted to match
observed force-length curves

∆W asc [ ] 0.45 similar to (Bayer et al.,
2017); (Kistemaker et al.,
2006)

width of normalized bell curve in
ascending branch, adapted to match
observed force-length curves

νCE,des [ ] 1.5 (Mörl et al., 2012) exponent for descending branch of
force-length relation

νCE,asc [ ] 3.0 (Mörl et al., 2012) exponent for ascending branch of
force-length relation

Arel,0 [ ] 0.2 (Bayer et al., 2017) parameter for contraction dynamics:
maximum value of Arel

Brel,0 1/s 2.0 (Bayer et al., 2017) parameter for contraction dynamics:
maximum value of Brel

Secc [ ] 2.0 (van Soest and Bobbert,
1993)

ratio of the derivatives of the force-
velocity relation at the transition
point (vCE = 0m/s)

Fecc [ ] 1.5 (van Soest and Bobbert,
1993)

factor by which the force can exceed
Fisom for large eccentric velocities

PEE LPEE,0 [ ] 0.95 (Bayer et al., 2017) rest length of PEE normalized to op-
timal length of CE

νPEE [ ] 2.5 (Mörl et al., 2012) exponent of FPEE

FPEE [ ] 2.0 (Mörl et al., 2012) force of PEE if lCE is stretched to
∆Wdes

SDE DSDE [ ] 0.3 (Mörl et al., 2012) dimensionless factor to scale
dSDE,max

RSDE [ ] 0.01 (Mörl et al., 2012) minimum value of dSDE (at FMTU =
0N), normalized to dSDE,max

SEE lSEE,0 m 0.4 (Geyer et al., 2003) tendon’s rest length, alias lrest in
(Geyer et al., 2003)

∆USEE,nll [ ] 0.0425 (Mörl et al., 2012) relative stretch at nonlinear linear
transition

∆USEE,l [ ] 0.017 (Mörl et al., 2012) relative additional stretch in the lin-
ear part providing a force increase
of ∆FSEE,0

∆FSEE,0 N 0.4 Fmax (Bayer et al., 2017) both force at the transition and force
increase in the linear part
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Hatze m 1/s 11.3 (Kistemaker et al., 2006) inverse of time constant for the acti-
vation dynamics (1/τ , τ defined in
Table 4.1)

c mol/l 1.37e-4 (Kistemaker et al., 2006) constant for the activation dynamics
µ l/mol 5.27e4 (Kistemaker et al., 2006) constant for the activation dynamics
k [ ] 2.9 (Kistemaker et al., 2006) constant for the activation dynamics
a0 [ ] 0.005 (Kistemaker et al., 2006) resting active state for all activated

muscle fibers
ν [ ] 3 (Kistemaker et al., 2006) constant for the activation dynamics
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A2 Supplementary Material - Chapter 6

This is Chapter 6’s supplementary material, which is published in Araz et al. (2023).

A2.1 Supplementary figures and tables

Table A2.1. Parameters used in the leg-muscle model and activation dynamics (Hatze). Table from Araz
et al. (2023).

Parameter Unit Value Source Description

General g m/s2 9.81 (Geyer et al., 2003) gravitational constant
ℓf m 0.99 (Geyer et al., 2003) assumed flight leg length
ℓs m 0.5 (Geyer et al., 2003) segment length
m kg 80 (Geyer et al., 2003) body weight
ra m 0.04 (Geyer et al., 2003) knee joint lever arm

hre f cm 9.27 reference hopping height producing pe-
riodic hopping

MTU lMTU,re f m 0.5 (Geyer et al., 2003) muscle-tendon unit’s reference length,
alias lre f in (Geyer et al., 2003)

Fmax kN 22 (Geyer et al., 2003) maximum isometric force
CE ℓopt m 0.1 (Geyer et al., 2003) optimum length contractile element

∆W des [ ] 0.45 similar to (Bayer
et al., 2017);
(Kistemaker et al.,
2006)

width of the normalized bell curve in the
descending branch, adapted to match
observed force-length curves

∆W asc [ ] 0.4 width of the normalized bell curve
in the ascending branch, adapted to
match experimented isometric force-
length curves

νCE,des [ ] 1.5 (Mörl et al., 2012) exponent for descending branch of
force-length relation

νCE,asc [ ] 3.8 exponent for ascending branch of force-
length relation adapted to match experi-
mented isometric force-length curves

Arel,0 [ ] 0.2 (Bayer et al., 2017) parameter for contraction dynamics:
maximum value of Arel

Brel,0 1/s 2.0 (Bayer et al., 2017) parameter for contraction dynamics:
maximum value of Brel

Secc [ ] 2.0 (van Soest and Bob-
bert, 1993)

ratio of the derivatives of the force-
velocity relation at the transition point
(vCE = 0m/s)

...
Continued on next page
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Table A2.1 – Continued from previous page

Parameter Unit Value Source Description

Fecc [ ] 1.5 (van Soest and Bob-
bert, 1993)

factor by which the force can exceed
Fisom for large eccentric velocities

PEE LPEE,0 [ ] 0.95 (Bayer et al., 2017) rest length of PEE normalized to opti-
mal length of CE

νPEE [ ] 2.5 (Mörl et al., 2012) exponent of FPEE

FPEE [ ] 2.0 (Mörl et al., 2012) force of PEE if lCE is stretched to ∆Wdes

SDE DSDE [ ] 0.3 (Mörl et al., 2012) dimensionless factor to scale dSDE,max

RSDE [ ] 0.01 (Mörl et al., 2012) minimum value of dSDE (at FMTU =
0N), normalized to dSDE,max

SEE lSEE,0 m 0.4 (Geyer et al., 2003) tendon’s rest length, alias lrest in (Geyer
et al., 2003)

∆USEE,nll [ ] 0.0425 (Mörl et al., 2012) relative stretch at nonlinear linear tran-
sition

∆USEE,l [ ] 0.017 (Mörl et al., 2012) relative additional stretch in the lin-
ear part providing a force increase of
∆FSEE,0

∆FSEE,0 N 0.4 Fmax (Bayer et al., 2017) both force at the transition and force
increase in the linear part

Hatze m 1/s 11.3 (Kistemaker et al.,
2006)

inverse of time constant for the activa-
tion dynamics

c mol/l 1.37e-4 (Kistemaker et al.,
2006)

constant for the activation dynamics

µ l/mol 5.27e4 (Kistemaker et al.,
2006)

constant for the activation dynamics

k [ ] 2.9 (Kistemaker et al.,
2006)

constant for the activation dynamics

a0 [ ] 0.005 (Kistemaker et al.,
2006)

resting active state for all activated mus-
cle fibers

ν [ ] 3 (Kistemaker et al.,
2006)

constant for the activation dynamics
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Figure A2.1: Measured activity level of skinned fibers (n=7) from the muscle used in the current study depending
on the pCa of the experimental solution. Temperature while testing was 12 °C as in the perturbation experiment.
Figure from Araz et al. (2023).

Figure A2.2: The Flow chart of an experimental day is shown here. First the activity level for every fiber was
checked using the 6.73 , 6.34 and 6.3 pCa concentration solution to ensure that the experiment is matching the
simulation condition. Afterwards the experimental blocks were conducted. One block contained all contractions
(n=3) of a perturbation for one velocity-scenario. The order of the blocks were randomized on the day of the
experiment. Between two blocks a reference contraction at optimal length and full activity was conducted to check
for the degradation of the skinned fiber. Figure from Araz et al. (2023).
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Figure A2.3: Shifted work loops for dynamic-scenario and quasistatic-scenario analysis step-up(P↑), no (P0)
and step-down (P↓) perturbations for both experiments (A-B) and simulations (C-D) at 5 % activity level. The
experimental data presented on A and B show the mean of all experimental trials. From touchdown to toe-off,
all stretch-shortening cycle loops are plotted in the clockwise direction, and the thick and thin sections of the
loops represent the preflex and remaining part of the stretch-shortening cycle, respectively. Figure from Araz et al.
(2023).

168



A2 Supplementary Material - Chapter 6

0.6 0.65 0.7
0

0.05

0.1

0.15

0.2

0.6 0.65 0.7
0

0.05

0.1

0.15

0.2

0.6 0.65 0.7
0

0.05

0.1

0.15

0.2

0.6 0.65 0.7
0

0.05

0.1

0.15

0.2

A B

C D

Dynamic-scenario Quasistatic-scenario

N
or

m
. &

 S
hi

ft
ed

 F
or

ce
, F

C
E

 - 
F

C
E

,0
 (
F
/F
m
ax

)[
-]

Norm. length, lCE (lCE/lCE,opt)[-]

E
xp
er
im
en
t

S
im
u
la
ti
on

Figure A2.4: Shifted work loops for dynamic-scenario and quasistatic-scenario analysis step-up(P↑), no (P0)
and step-down (P↓) perturbations for both experiments (A-B) and simulations (C-D) at 25 % activity level. The
experimental data presented on A and B show the mean of all experimental trials. From touchdown to toe-off,
all stretch-shortening cycle loops are plotted in the clockwise direction, and the thick and thin sections of the
loops represent the preflex and remaining part of the stretch-shortening cycle, respectively. Figure from Araz et al.
(2023).
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Figure A2.5: Force generated in dynamic-scenario by both muscle fibers and the Hill-type muscle model during
one hopping cycle — from touchdown to toe-off — are presented for all perturbation and activity levels. The thick
and thin sections of the loops represent the preflex and remaining part of the stretch-shortening cycle, respectively.
The blue line and shaded area represent the mean of all experimental trials and the standard deviation, respectively.
Figure from Araz et al. (2023).
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Figure A2.6: Force generated in quasistatic-scenario by both muscle fibers and the Hill-type muscle model during
one hopping cycle — from touchdown to toe-off — are presented for all perturbation and activity levels. The thick
and thin sections of the loops represent the preflex and remaining part of the stretch-shortening cycle, respectively.
The blue line and shaded area represent the mean of all experimental trials and the standard deviation, respectively.
Figure from Araz et al. (2023).
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Table A2.2: Statistical comparison of muscle fibers’ perturbation response for each activity level. Significantly
different results are indicated by ∗; a: activity level; SRS: short range stiffness; χ2: test value of Friedmantest; p:
significance value; r: effect size; P0: no-perturbation; P↑: step-up perturbation; P↓: step-down perturbation. Table
from Araz et al. (2023).

Condition a Parameter χ2 p P0 vs. P↑(r) P0 vs. P↓(r) P↓ vs. P↑ (r)

Dynamic-
Scenario

5 %
Preflex work 8.222 0.016∗ 0.029(.41)∗ 1 0.055
SRS 0.889 0.641 - - -
Work Figure 6.5A 1.556 0.459 - - -

15 %
Preflex work 16.222 0.001∗ 0.055 0.297 0.001(0.63)∗

SRS 0 1 - - -
Work Figure 6.5A 4.667 0.097 - - -

25 %
Preflex work 14.889 0.001∗ 0.029(0.41)∗ 0.716 0.001(0.59)∗

SRS 1.556 0.459 - - -
Work Figure 6.5A 3.556 0.169 - - -

Quasistatic-
Scenario

5 %
Preflex work 4.222 0.121 - - -
Stiffness 4.222 0.121 - - -

15 %
Preflex work 16.222 0.001∗ 0.055 0.297 0.001(0.63)∗

Stiffness 0.667 0.717 - - -

25 %
Preflex work 16.222 0.001∗ 0.055 0.297 0.001(0.63)∗

Stiffness 0.667 0.717 - - -

Dynamic vs.
Quasistatic-
Scenario
Figure 6.5B

5 % Preflex work 2.667 0.264 - - -
15 % Preflex work 4.222 0.121 - - -
25 % Preflex Work 1.556 0.459 - - -
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Table A2.3: Statistical comparison of activity differences for each perturbation case. Significantly different results
are indicated by ∗; effect size is shown for significant differences in (); SRS: short range stiffness; χ2: test value of
Friedmantest; p: significance value; P0: no-perturbation; P↑: step-up perturbation; P↓: step-down perturbation.
Table from Araz et al. (2023).

Condition P Parameter χ2 p 5 % vs. 15 % 5 % vs. 25 % 15 % vs. 25 %

Dynamic-
Scenario

P0
Preflex work 18 0.001∗ 0.102 0.001(0,67)∗ 0.102
SRS 18 0.001∗ 0.102 0.001(0.67)∗ 0.102
Work Figure 6.5A 12.667 0.002∗ 0.472 0.001(0.56)∗ 0.102

P↑
Preflex work 18 0.001∗ 0.102 0.001(0.67)∗ 0.102
SRS 18 0.001∗ 0.102 0.001(0.67)∗ 0.102
Work Figure 6.5A 18 0.001∗ 0.102 0.001(0.67)∗ 0.102

P↓
Preflex work 18 0.001∗ 0.102 0.001(0.67)∗ 0.102
SRS 18 0.001∗ 0.102 0.001(0.67)∗ 0.102
Work Figure 6.5A 18 0.001∗ 0.102 0.001(0.67)∗ 0.102

Quasistatic-
Scenario

P0
Preflex work 16.22 0.001∗ 0.055 0.001(0.63)∗ 0.297
Stiffness 12.667 0.002∗ 0.102 0.001(0.56)∗ 0.472

P↑ Preflex work 16.22 0.001∗ 0.055 0.001(0.63)∗ 0.297
Stiffness 11.556 0.003∗ 0.055 0.003(0.52)∗ 1

P↓ Preflex work 18 0.001∗ 0.102 0.001(0.67)∗ 0.102
Stiffness 11.556 0.003∗ 0.055 0.003(0.52)∗ 1

Dynamics vs.
Quasistatic-
Scenario
Figure 6.5B

P0 Preflex work 2 0.368 - - -
P↑ Preflex work 0.222 0.895 - - -
P↓ Preflex work 0.222 0.895 - - -
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Table A2.4: Statistical comparison between Dynamic- and Quasistatic-Scenario. Significantly different results
are indicated by ∗; SRS: short range stiffness; z: test value of t-test; p: significance value; r: effect size; P0:
no-perturbation; P↑: step-up perturbation; P↓: step-down perturbation. Table from Araz et al. (2023).

Activity Level Parameter P z p r

5 %

Preflex work
P0 0.533 0.594 -
P↑ 0.296 0.767 -
P↓ 1.333 0.182 -

SRS
P0 0 1 -
P↑ 0 1 -
P↓ 0 1 -

15 %

Preflex work
P0 0.667 0.505 -
P↑ 0.533 0.594 -
P↓ 0.667 0.505 -

SRS
P0 1.333 0.182 -
P↑ 2 0.046∗ 0.67
P↓ 2.666 0.008∗ 0.89

25 %

Preflex work
P0 0.667 0.505 -
P↑ 0.652 0.515
P↓ 0.667 0.505 -

SRS
P0 2.666 0.008∗ 0.89
P↑ 2.666 0.008∗ 0.89
P↓ 2 0.046∗ 0.67
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A3 Supplementary material - Chapter 8

This is Chapter 8’s supplementary material, which is published in (Mo et al., 2023).
The PDF file includes:

Figure A3.1
Tables A3.1 to A3.5
Legends for movies S1 to S3

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S3: https://youtu.be/Sa-q-5NucGY
CAD model of the robot leg and data analysis: https://doi.org/10.17617/3.THJWG8

A3.1 Supplementary Videos

Movie-S1: Vertical hopping with step-down perturbation. The leg is hopping on a block whose height
is 15% of the leg length. The slack of the damper is set to 3 mm. The first part of the video shows the
experiment in real-time. In the second part, slow motion of the same experiment is repeated. In both
cases, hip position y, GRF, spring and damper forces are plotted synchronized to the video. In the last
part, the phase plots of the all experiments show the relation between hopping speed and the hopping
position.

Movie-S2: Forward hopping with continuous perturbation. The leg moves forward by hopping on the
sinusoidal terrain with ±10 mm amplitude. The damper is fully engaged, i.e., the slackness is 0 mm.
After the leg completes one full rotation on the terrain, the video shows frames taken by the high-speed
video camera.

Movie-S3: Failure modes of forward hopping with ramp-up-step-down perturbation. The leg moves
on the flat surface, and it gradually climbs on the ramp to jump off. The perturbation height is 30% of
the leg length, and the damper slack is set to 3 mm. The bottom-right plot shows the synchronized hip
position in planer motion. The video shows three cases: slipping, stopping, and the good response after
the step-down perturbations. The slipping case can be identified by audio irregularity.
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A3.2 Leg design parameters

l2

l3

kk
l1

rk

rd
α0

rpk

Figure A3.1: Schematics of the leg with the key design parameters. Figure from Mo et al. (2023).

Parameters Value

Robot mass - vertical hopping mv 1.94 kg
Robot mass - forward hopping m f 0.94 kg
Leg resting length l0 310 mm
Segment 1 length l1 150 mm
Segment 2 length l2 150 mm
Segment 3 length l3 150 mm
Knee spring pulley radius rk 30 mm
Knee damper pulley radius rd 20 mm
Knee spring stiffness kk 10.9 N/mm
Bi-articular insertion radius rpk 32 mm
Knee resting angle α0 100°

Table A3.1: Robot design parameters. Table from Mo et al. (2023).
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A3.3 Robot control parameters

Parameters Value

Vertical hopping
Hopping frequency fv 2.2 Hz
Knee torque amplitude τv 4.0 - 4.3Nm
Knee duty cycle − 0.22
Forward hopping
Hip amplitude θhip 18°
Hip offset Ohip 2°
Hopping frequency f f 1.85 Hz
Hip virtual duty factor Dvir 0.4
Knee torque amplitude τ f 1.3 Nm
Knee phase shift − 0.75
Knee duty cycle − 0.2

Table A3.2: Robot control parameters. Table from Mo et al. (2023).

A3.4 Experimental results

Perturbation
[LL]

Damper slack
[mm]

Hop height
[mm]

CoH
[/]

Recovery steps
[/]

Delay
[ms]

Ed
[mJ]

10% 10 53.3 6.3 2.5 - 1
10% 6 49.3 6.6 1.7 51 26
10% 3 49.1 6.7 2.0 26 117
10% 0 44.7 7.4 2.9 0 186
15% 10 55.8 6.3 3.2 - 1
15% 6 47.8 6.7 2.5 50 29
15% 3 43.2 7.0 3.6 24 86
15% 0 42.4 7.6 5.9 0 152

Table A3.3: Experimental results of vertical hopping with step-down perturbation. The energy dissipated by the
damper (Ed) is calculated by integrating the damping force with respect to the damper compression (Figure 8.3c).
Table from Mo et al. (2023).
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Roughness amplitude
[mm]

Damper slack
[mm]

Speed
[m/s]

CoT
[/]

Step cycle std
[ms]

0 10 0.80 1.01 27.1
0 6 0.79 0.99 16.2
0 3 0.71 1.07 2.4
0 0 0.67 1.35 2.1
±5 10 0.76 0.75 2.4
±5 6 0.76 1.01 13.4
±5 3 0.74 1.01 11.1
±5 0 0.68 1.24 2.2
±10 10 0.76 0.79 3.1
±10 6 0.71 0.97 3.6
±10 3 0.72 0.80 2.7
±10 0 0.66 1.32 2.7

Table A3.4: Experimental results of forward hopping with continuous perturbation. Table from Mo et al. (2023).

Perturbation
[LL]

Damper slack
[mm]

Speed
[m/s]

CoT
[/]

Recovery steps
[/]

Failure steps
[/]

15% 10 0.81 0.95 2.7 7
15% 6 0.78 1.00 2.0 4
15% 3 0.72 1.36 1.7 6
15% 0 0.68 1.30 1.0 0
30% 10 0.80 0.91 2.6 10
30% 6 0.75 0.93 2.4 10
30% 3 0.73 1.18 2.9 10
30% 0 0.64 1.44 2.3 3

Table A3.5: Experimental results of forward hopping with ramp-up-step-down perturbation. Table from Mo et al.
(2023).
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