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Abstract

Frequency and frequency-based measures such as probability are widely accepted

to have extensive effects on speech production. On the one hand, high frequency

units (e.g., words) have been found to be articulated with shorter duration and cen-

tralized tongue positions, indicating phonetic reduction. On the other hand, high

frequency, and therefore more predictable, units have been found to be articulated

with longer duration and clearer articulations, indicating phonetic enhancement.

This dissertation provides a possible account for these seemingly-contradictory

effects of frequency from the perspective of semantics. To this end, I first replicated

one previous study, using ultrasound, which reported phonetic enhancement effects

of frequency based on tongue position data recorded by electromagnetic articulog-

raphy (EMA). In addition, I developed a new methodology of analyzing ultrasound

images, in which not only tongue surface positions but the whole ultrasound im-

ages can be included for analysis. Using a different recording technique and a

different analysis technique, effects of phonetic enhancement of word frequency

were replicated.

Subsequently, I collected a set of words that shared the same rime structure,

namely the stem vowel [a(:)], at most one intervening segment, and the word-final

plosive [t], from a spontaneous speech corpus. Critically, these words differed

in their morphological status, having either one or no morphological boundary

between the stem vowel and the word-final [t], namely inflected and non-inflected

words with the same rime structure. For these words, an increase in frequency was

observed to be associated with higher tongue positions (indicating phonetically
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reduced realizations) of the stem vowel, while phonetic reduction was extensively

attenuated for inflected words. These results suggest that seemingly-contradictory

effects of frequency may in fact be due to different morphological statuses of the

items being investigated.

Finally, a possible source of this “morphological” modulation of the frequency

effect was investigated from the perspective of semantics. The amount of semantic

support for the word-final triphone (i.e., SemSupSuffix), which contains the suf-

fix in the middle, was calculated from the Discriminative Lexicon Model (DLM),

which was trained to discriminate all the German words available in the CELEX

database. SemSupSuffix was found to be associated most clearly with the word’s

inflectional status in such a way that higher SemSupSuffix was more likely for

inflected words. Furthermore, SemSupSuffix showed a better performance in pre-

dicting tongue positions during the stem vowel in a statistical model, compared

to inflectional status as a dichotomous factor variable. Moreover, the model with

SemSupSuffix predicted that high frequency was associated with phonetic reduc-

tion when SemSupSuffix was low, which corresponded to non-inflected words,

and that it was associated with phonetic enhancement when SemSupSuffix was

high, which corresponded to inflected words. These results clarify that the ob-

served interaction of frequency by morphological status can be explained without

resorting to morphological concepts such as morphemes, because the DLM, from

which SemSupSuffix was derived, does not make use of such high-level con-

structs, but uses lower-level sublexical form features instead.

In summary, this dissertation provides an explanation for why effects of fre-

quency are different for inflected and non-inflected words, without requiring the

theoretical constructs of morpheme or exponent. This explanation builds on the

strong support that a low-level sublexical unit (the triphone straddling the suffix

/t/) receives from a words’ semantics. Instead of calling upon a putative mor-

pheme boundary that would be part of a words’ form representation, this explana-

tion points to the importance of the different semantics that are realized in the word
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and the differential support that the critical triphone receives from the semantics.
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Chapter 1

Background: Speech processing

from semantics to phonetics

Abstract: This chapter provides an overview of models of speech production that

start from conceptual and semantic levels and proceed all the way down to phonetic

realizations. Early models (Fromkin, 1971; Garrett, 1984; Levelt & Wheeldon,

1994) were verbal models that were highly modular and serial with architectures

consisting of several hierarchically organized distinct levels or modules. Individual

models of speech production differ in the extent to which modularity and seriality

are imposed. Another influential model (e.g., Dell, 1986) implemented interac-

tive activation network with limited seriality. A more recent computational model

linking meaning to form (Baayen et al., 2019) works with a simple network with

no intermediate layers between high dimensional representations of meanings and

high dimensional representations of forms.
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1.1 Classical perspectives on speech production

An important part of the speech production process involves selecting those words

that properly realize the meanings that the speaker wants to express. It is uncon-

troversial that the speech production process starts off with concepts and meanings

and culminates in articulation. However, it varies from model to model what in-

termediate processing stages and how many processing stages are involved. Most

of the earliest models of speech production work with intermediate levels that fol-

low standard components of the grammar as laid out in formal theories within the

framework of generative grammar, with Chomsky (1965) being particularly influ-

ential.

1.1.1 Fromkin’s model

In early days, speech production models were constructed based on observations

of speech errors, the assumption being that speech errors are revealing about the

internal structure of the cognitive system that drives the speech production process.

For example, if swapping of two phonemes is observed (e.g., keep a tape → teep

a cape), the production system was assumed to operate on phonological units. If,

on the other hand, a certain unit is not involved in speech errors, the unit was

assumed to be irrelevant to the speech production system. The internal structure

of affricates, for instance, are not split up in speech errors (e.g., pinch hit → pinch

hitch, but not [pInt hIS]) (Fromkin, 1971), indicating that affricates are phones for

English speakers rather than sequences of phones.

Based on detailed analysis of speech errors, which were collected by the author

herself throughout three years of her academic and personal life, Fromkin (1971)

proposed six stages of processing. The first stage is the generation of an intended

meaning. Little detail was provided as to the structure within this stage and its

connection to the next stage, the syntactic stage. In this next stage, a syntactic

structure is generated. This syntactic structure has slots for words. These slots are
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specified for semantic and syntactic features. This stage was supposed to explain

speech errors that involve switching words in the same syntactic word class (e.g.,

nouns exchanged with other nouns).

After the syntactic structure is created, at stage three, an intonation contour is

assigned to the syntactic structure, distinguishing, for instance, between declara-

tive and interrogative sentences. Such an intonation contour of an entire sentence

was posited to explain the preservation of sentential stress positions. For example,

according to Fromkin (1971, p. 42), the second word holds the primary sentential

stress when How bád things were is mis-uttered for How thíngs bad were.

At the next stage, the lexicon comes into play. Definitions of the lexicon differ

from model to model. In her model (Fromkin, 1971), the lexicon was assumed to

consist of two parts: a semantic section and a phonological section1. In the se-

mantic section, words were assumed to be specified with semantic features, further

grouped into syntactic categories such as nouns and verbs. These entries in the

semantic section have a pointer to their corresponding entry in the other part of

the lexicon, the phonological section, in which segmental information of words is

specified.

According to Fromkin (1971), look-up in the lexicon consists of two steps.

Words are first looked up in the semantic section based on the semantic and syn-

tactic features assigned to the word slots in the syntactic structure. Speech errors

involving words with similar meanings (e.g., like for hate) can occur during this

selection stage, due to sharing many semantic features. Second, once an entry in

the semantic section has been accessed, look-up reads the pointer in the entry and

proceeds to the specific entry indicated by the pointer in the phonological section of

the lexicon. Words’ phonological segments are specified in the phonological sec-

tion. Since words sharing similar phonological segments are assumed to be located

in the vicinity in this section of the lexicon, word-switching based on phonological

similarity (e.g., pressure for present) is argued to occur at this stage of identifying

1These were called “the semantic class sub-section” and “the over-all vocabulary” (Fromkin,
1971).
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an entry in the phonological section. Access to an entry in the phonological sec-

tion produces a string of phonological segments, each of which is specified with

respect to its syllabic and segmental position. As a consequence, Fromkin (1971)

claimed, misordering of segments within/across syllables occurs during this pro-

cess of looking up the target words and citing their phonological segments in a

string.

Subsequently, these phonological segments are brought together in syllables

and, where necessary, modified by morphophonemic constraints. Fromkin (1971)

claimed that segmental speech errors involving allomorphs (e.g., /s/ or /z/ for the

plural suffix) should occur before this stage, but without providing much detail. At

the final stage, the phonemes in the syllables are converted into actual neuro-motor

commands driving articulation.

1.1.2 Garrett’s model

The speech production model by Fromkin (1971) was later refined by Garrett

(1984, 1988). His model posits five stages: the message level, the functional level,

the positional level, the phonetic level, and the articulatory level. In each of the

levels, representations from the level immediately above were received as input,

certain types of processes operate on the input representations, and different types

of representations are produced as output (Table 1.1). The positional level and the

phonetic level can be combined and treated as jointly constituting the positional

level. In addition, the functional, positional, and phonetic levels jointly constitute

the sentence level.

At the message level, general concepts are taken as input, inferential processes

operate on these general concepts, and message-level representations are produced

as output. Garrett (1984) suggested that a conceptual syntax operates on general

concepts and builds a more complex representation out of them in a compositional

way. However, this level was not regarded as “linguistic”, and therefore not much

detail was provided.
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Table 1.1: The five levels and their processes, input representations, and output
representations. For example, the functional level receives message-level repre-
sentations and returns functional-level representations.

Representation

Level Process Input Output

Message Inferential General concepts Message-level
Functional Logical/syntactic Message-level Functional-level
Positional Syntactic/phonological Functional-level Positional-level
Phonetic Regular phonological Positional-level Phonetic-level

Articulatory Motor coding Phonetic-level Articulatory

At the functional level, message-level representations are taken as input, log-

ical/syntactic processes operate on them, and functional-level representations are

produced as output. The processes at this level consist of lexical selection (re-

trieval of lexical items), construction of a frame (structure), and assignment of the

retrieved items to the slots of the frame. In these processes, meaning-based word

substitution errors and whole-word exchange errors can occur such as (1) and (2)

below respectively.

(1) He rode his bike to school tomorrow. (yesterday)

(2) Cat, it’s too hungry for you to be early.

Meaning-based word substitutions are based on semantic similarity. In Garrett’s

model, meaning-based word substitution errors were assumed to occur in the pro-

cess of retrieving words based on words’ meanings, namely message-level rep-

resentations. In contrast, whole-word exchanges do not always have semantic

similarity between the interacting words. However, whole words are exchanged,

not only portions of words, and whole-word exchanges always involve words in

the same syntactic category. Based on these observations, whole-word exchanges

were assumed to occur in the process of assigning the retrieved words into the

corresponding slots in the frame (structure).

The processes at the next level, namely the positional level processes, pro-



CHAPTER 1. BACKGROUND: SPEECH PROCESSING FROM SEMANTICS TO

PHONETICS 6

ceed in a similar manner as the functional level processes. These processes are

retrieval of segmental information for each word, construction of a phonological

structure, and assignment of segments to the phonological structure. The input of

the positional level is the output of the functional level, namely functional-level

representations, based on which segments of each lexical item are retrieved. While

segments are retrieved, a surface phrasal geometry (i.e., phonological structure)

is constructed, that is, a tree-like phonological structure with slots for segments.

The retrieved segmental information is then assigned to these slots. Two kinds of

speech errors can occur in this level in a similar way as in the functional level.

The retrieval of segmental information can cause word-substitution errors based

on form (sound) similarity, and the assignment of segmental information to the

phonological structure can lead to sound-exchanges, which are also based on form

(sound) similarity. The examples (3) and (4) below correspond to these two kinds

of speech errors respectively.

(3) It looks as if you’re making considerable process. (progress)

(4) I was just gonna rock on the nong door.

Garrett’s model differs from Fromkin’s model in that it makes a distinction

between the treatments of major-class items (i.e., content words) such as nouns

and minor-class items (i.e., function words) including bound morphemes such as

inflectional suffixes. This distinction was based on the observations that minor-

class items such as suffixes can be shifted to another position in the phrase but not

substituted or exchanged for another word or morpheme. In the following example

(5), the inflectional suffix -s is stranded in its original position, while the root the

suffix is attached to (i.e., pay) is exchanged for another word in the sentence (i.e.,

wait). In contrast, the following example (6) shows that a bound morpheme can be

shifted within a phrase.

(5) It waits to pay. (pays to wait)

(6) I’d forgot__ abouten that.
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Based on these kinds of speech errors, Garrett’s model assumed that minor-class

elements are associated with the phonological frame. Retrieval failure is the source

of substitution errors, such as examples (1 and 3). Assignment of retrieved items

to wrong slots of a frame is the source of exchange errors, such as example (2 and

4). In contrast to minor-class items, major-class items such as nouns were assumed

to always go through all the processes, namely being retrieved and assigned to

the functional frame, followed by their segmental information being retrieved and

assigned to the positional (phonological) frame. As a consequence, all kinds of

speech errors can be observed for major-class items. Minor-class elements can only

be shifted within a phrase. This observation was explained by postulating “error

processes in general” (Garrett, 1984, p. 180) that can occur after the positional-

level representations are completed, namely at the phonetic level.

The output of the positional level, namely positional-level representations,

is then modified by regular phonological processes, and all the segments in the

positional-level representation are then concatenated into a string of phonemes.

This stage is called the phonetic level. Misplacement of segments can occur in

this level at the moment that segments are made into a string, due to what Garrett

(1984) called error processes in general. Moreover, this level was assumed to

explain phonological accommodation, the phenomenon that an appropriate allo-

morph is selected and phonologically realized according to its new environment

created by a speech error, such as below:

(7) a money’s aunt (...). (an aunt’s money)

In this example, the indefinite article is realized as a /@/ (not an /@n/), so that it

conforms to its new environment, namely before /m/. This modification was as-

sumed to be brought about by regular phonological processes, which operate in

this phonetic level.

The output string of the phonetic level, which is namely the end product of the

sentence level (i.e., the functional, positional, and phonetic levels), is then sent to

the articulatory level. At this level, the phonetically rich sentence representation
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is translated into an articulatory structure that provides motor instructions for the

articulators.

1.1.3 Dell’s model

In contrast to the serial feedforward modular nature of the models by Fromkin

(e.g., Fromkin, 1971) and Garrett (e.g., Garrett, 1984), the model by Dell and his

colleagues (Dell, 1986, 1988, 1990; Dell et al., 2007; Dell et al., 1997; Foygel

& Dell, 2000; Kittredge et al., 2008) has a network structure, and selection of

linguistic units (e.g., word) was assumed to be based on activation levels of units

in the lexical network.

This model has four levels: the conceptual level, the syntactic level, the mor-

phological level, and the phonological level2. The model is worked out in detail

for the last three levels (Dell, 1986). Each level has a “rule” component in addi-

tion to a “lexicon” component (i.e., a lexical network). In the rule component (i.e.,

the tactic frames), a tree-like structure with slots is constructed (e.g., a syntactic

frame). Each slot is specified with respect to the appropriate categories at a given

level. These categories are syntactic classes such as nouns for the syntactic level,

morpho-syntactic classes such as the noun-stem for the morphological level, and

positions within a syllable such as nucleus for the phonological level. According

to these category specifications, the lexical network associated with a given level

(e.g., the lexical network of the syntax level) is searched for the node of the speci-

fied category with the highest activation level at a given point in time. Nodes in the

network are words at the syntactic level, morphemes at the morphological level,

and phonemes at the phonological level. Nodes are not fully connected between

adjacent layers, they are connected only to pertinent nodes. After being selected, a

node gets associated with a particular slot in the frame.

2Dell (1986) also proposed a phonological encoding model, which contained morpheme nodes,
syllable nodes, rime nodes, phoneme nodes, and feature nodes. This phonological encoding model
can be understood to correspond to the phonological level. However, this phonological encoding
model was evaluated separately from the entire model (which contained concepts, words/lemmas,
morphemes, and phonemes). In what follows, the focus is on this main model
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Processing in the lexicon is governed by spreading activation. At each time

step, a node sends a fixed proportion of its activation to its neighbor nodes that

are directly connected to the node. At a destination node, arriving activations are

summed and added to the current activation level of the node. At the same time,

activation levels of nodes are assumed to decay at a fixed rate at each time step

to keep activation levels down. Importantly, spreading of activation is assumed

to be two-way, not only downwards (i.e., from the conceptual level, through the

syntactic and morphological levels to the phonological level) but also upwards (i.e.,

from the phonological level, through the morphological and syntactic levels to the

conceptual level). This characteristic enables nodes at lower levels to affect nodes

at higher levels. As a consequence, lower levels can change activations at higher

levels, which in turn will affect how higher levels affect lower levels.

Speaking is assumed to begin with increases in activation levels of pertinent

conceptual nodes. Conceptual nodes with positive activation levels activate the

lemma nodes with which they are connected. The lemma nodes pass on activation

to lower levels in the network and subsequently receive activation back from these

lower levels. In this process, one lemma will reach a higher activation than the

other lemmas, which makes it eligible for insertion into a syntactic tree, under the

condition that this lemma is of a word category that matches the slot in the syntactic

tree. After selection and lexical insertion, the lemma node is deactivated. A similar

procedure is used to select morphemes for insertion into morpheme trees, and to

select phonemes for insertion into syllable trees.

For example, to produce the sentence some swimmers sink, the syntactic frame

shown in Figure 1.1 is constructed. Note that the end nodes of the frame specify

a syntactic category for each slot (e.g., Q = Quantifier). Based on this frame, the

model first looks for the node of the quantifier with the highest activation level in

the lexical network. The specification of the currently appropriate category ensures

that the right node belonging to the correct category gets selected. In the current

example, some, swimmer, sink, and PLURAL are expected to be activated strongly,
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since they should all be activated by the concept that the speaker intends to convey

(i.e., the concept of some swimmers sink). However, the model only checks the

node of the quantifier at the moment in this example, and therefore another highly

activated node such as swimmer will not be selected.

As a consequence, unless some other quantifiers get activated more strongly

than the correct quantifier for some unexpected reasons, the correct lemma node

some should hold the highest activation level at the time of the node-checking,

and the model finds this lemma node. Once the node gets selected, the node gets

tagged and associated with the current slot (e.g., “(1)” as shown in the figure), and

the model looks for the next appropriate node for the next slot, which is a noun in

this example. Then, the selected noun, which should be swimmer, will be tagged

(e.g., “(2)”). In Figure 1.1, the item being searched for at the moment is marked as

“?”.

S

NP

Q

(1)

N

N

(2)

Plural

?

VP

V

Figure 1.1: The syntactic frame that would be constructed to produce some swim-
mers sink at the moment the model is searching for an inflectional suffix (Dell,
1986). (Q=Quantifier, N=Noun, V=Verb, Plural=a bound morpheme for plurality)

In parallel to the syntactic level, the morphological frame is constructed in

the “rule” section at the morphological level (Figure 1.2). In the lexical network,

the current node is determined. The current node is the node tagged first at the

immediately upper level, which is some at the syntactic level for this example. The

current node receives the initial boost of activation level, which Dell (1986) called
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signaling activation, and spreads its activation to its neighbor nodes. In the current

example, the activation spreading from the current node some should activate the

quantifier stem some the most strongly, leading to the node being selected for the

morphological frame.

W

SQ

(1)

W

St

SV

?

Af1

Af2

Figure 1.2: The morphological frame that would be constructed to produce some
swimmers (sink) at the moment the model is searching for a verb stem. (W=Word,
SQ=Quantifier stem, St=Stem, Af=Affix, SV=Verb stem)

Once an appropriate node gets selected and tagged, the current node is moved

to the next slot of the frame, which is “N”, namely swimmer in the lexical network,

in this example. As the current node, the lemma node swimmer gets activated to

a certain extent (i.e., signaling activation) and spreads its activation to its neighbor

nodes.

Note that swimmer is a derived form at the syntactic level. Dell (1986) assumed

that the derived word has its own node at the syntactic level (e.g., swimmer) and it is

decomposed into its component morphemes at the morphological level (e.g., swim

and er). In contrast, the inflected word was assumed to be decomposed already at

the syntactic level, not only at the morphological level. Therefore, in the present

example (some) swimmers (sink), the nodes swimmer and PLURAL are activated

separately for the word swimmers at the syntactic level, and they are decomposed

furthermore into swim, -er, and -s at the morphological level. Dell (1986) assumed

this distinction between inflection and derivation, mainly following the standard

linguistic account about inflection and derivation (Chomsky, 1965, 1981) and some
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psycholinguistic studies (Garrett, 1984). In addition, Dell (1986) suggested that his

model can explain why suffix shift errors such as (8) tend to occur for inflectional

suffixes, rather than derivational suffixes. For an inflectional word, its stem and

its suffix are separated at the syntactic level, and each of them sends activation to

its corresponding morpheme node separately. As a consequence, the correct stem

node may not be activated the most when the suffix node is activated. If the suffix

node gets activated, while another (wrong) word (e.g., get) is still activated, then the

suffix may get attached to the wrong word. In contrast, a derived word has a single

lemma at the syntactic level. Its corresponding stem and suffix at the morphological

level are both connected with and therefore receive activation at the same time from

the lemma node. Since the stem and the suffix nodes receive activation at the same

time, the mistiming of constructing the stem-suffix combination does not happen

for a derived word.

(8) gets it (for get its)

Following the selection of the lemma swimmer as the current node, the mor-

pheme nodes swim and -er get activated. Since the next slot to be filled in the

morphological frame is a verb stem, only the morpheme nodes of the verb stem are

searched to determine which one of them retains the highest activation. Assuming

nothing irregular happens, the morpheme node swim should then be selected for

the slot. The search then continues to the next slot, which is a derivational suffix in

this case.

This cycle from the selection of the current node to the selection of the appro-

priate node for the slot in the frame works in the same way also for the phonolog-

ical level. At the phonological level, each node in the lexical network represents a

phoneme with its phonological category specified such as onset consonant, nucleus

vowel, and coda consonant. For the current example, a phonological frame such as

shown in Figure 1.3 would be constructed for some.
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SYL

On

?

Rime

Nu Co

Figure 1.3: The phonological frame for some at the moment the model is searching
for the onset consonant (Dell, 1986). (SYL=Syllable, On=Onset, Nu=Nucleus,
Co=Coda)

In this model, speech errors are explained mainly in terms of the mis-selection

of the node due to particular activation patterns. For example, non-contextual er-

rors based on semantic similarity such as (9) are assumed to occur due to the shared

lemma. In the case below, SINK is connected to sink, and sink is connected to

DROWN. Since DROWN has its own corresponding lemma drown, it is possible

that activation originating in SINK travels through sink and DROWN, activating the

wrong lemma drown in the end. If the model looks for the most activated node in

the lexical network in order to fill in the slot of the verb in the syntactic frame when

the wrong lemma drown happens to have a higher activation level than the correct

lemma sink, the word substitution from sink to drown might occur.

(9) Some swimmers drown. (for Some swimmers sink)

Such a “mis-activation” can also occur because the processing at lower levels

necessarily follow the processing at higher levels. In other words, phonological

processing (e.g., selection of phonemes) begins once at least one morpheme node

is selected and tagged for its corresponding slot in the morphological frame, and

morphological processing begins once at least one lemma is selected. As a con-

sequence, it is quite possible that the morphological level already works on the

second word, while the phonological level is still working on the first word. This

can lead to anticipatory errors such as (10) below:
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(10) sim swimmers /sIm swImÄz/ (for some swimmers /s2m swImÄz/)

In this example, the morphological level may already be working on the noun

stem swim, namely looking for the morpheme node swim to fill in the slot of the

noun stem in the morphological frame. At this moment, the morpheme node swim

should have a very high activation level, at least higher than the other morpheme

nodes of the noun stem. As a consequence, the morpheme node swim spreads a

considerable amount of activation to its constituent phonemes, including /I/. Mean-

while, the phonological level may still be trying to find the nucleus vowel for some,

where /2/ should be found. However, since /I/ may also be highly activated due to

the activation spread from swim, it is possible that /I/ happens to have a higher ac-

tivation level than /2/, leading to the wrong selection of /I/ as the nucleus vowel of

some, which results in /sIm/ in place of /s2m/.

The model assumes that the activation level of a node that has already been

selected gets reduced to zero. However, its neighboring nodes usually retain a rel-

atively high activation level, since the node that has been selected and deactivated

should already have sent some activation to its neighboring nodes before the de-

activation. As a consequence, the very node that has been deactivated will receive

a considerable amount of activation from its neighboring nodes after the deactiva-

tion, leading to a high activation level again. Dell (1986) called this “rebounding”.

This “rebounding” mechanism was claimed to explain perseveration errors such as

(11) below:

(11) some swummers /s2m sw2mÄz/ (for some swimmers /s2m swImÄz/)

After the selection of the phoneme node /2/, the node gets deactivated. How-

ever, due to the “rebounding” mechanism, the activation level of the node rebounds

back to being high. When the rebounded activation level happens to be higher than

the activation level of the phoneme node /I/ at the moment looking for the nucleus

vowel for swim, the perseveration error in (11) occurs.

Exchange errors such as shown in (12) are explained by the combination of the
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mechanisms responsible for anticipatory errors and perseveration errors.

(12) sim swummers /sIm sw2mÄz/ (for some swimmers /s2m swImÄz/)

When the anticipatory error occurs, the wrongly-selected node (i.e., /I/) gets de-

activated. As a consequence, the other phoneme node, which would have been

correct for the last slot but wrong for the current slot, namely /2/ in this example,

is possible to have a higher activation level than the correct one (i.e., /I/). This can

lead to selecting /2/ for the nucleus vowel of swim, resulting in the exchange error

shown in (12).

This model by Dell and his colleagues (e.g., Dell, 1986) is different from the

preceding classic models (Fromkin, 1971; Garrett, 1984) in that the selection of

linguistic units (e.g., word) is completely based on activation spreading in the lex-

ical network and that it allows lower levels to affect higher levels by spreading

activation. In addition, Dell’s model is more flexible which enables it to capture

intermediate cases of speech errors. For example, suppose the speaker said Let’s

stop instead of Let’s start. This speech error can be understood as an instance of the

word exchange based on semantic similarity. At the same time, since stop and start

share the same consonant cluster at the syllable onset, the speech error can also be

classified as a speech error based on phonological similarity. Nevertheless, in se-

rial feedforward modular models (e.g., Fromkin, 1971; Garrett, 1984), this speech

error must be determined to be either semantic or phonological with respect to its

nature. In contrast, in Dell’s model, it is possible that a wrong node gets selected

due to activation spreading from semantically associated nodes and phonologically

associated nodes both, allowing for the intermediate nature of speech errors such

as in the word exchange seen in Let’s stop in place of Let’s start.

The original Dell model (Dell, 1986) did not have a mechanism to explain

faster reaction times for high frequency words in a lexical decision task and a nam-

ing task. To explain faster reaction times for high frequency words, frequency dif-

ferences were later implemented as different activation levels of the lemma nodes

(Dell, 1990). High frequency words were assumed to have higher resting activation
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levels for their lemma nodes. Because of higher resting activation levels, the lem-

mas of high frequency words were assumed to be faster and more easily selected.

Note that this way of implementing frequency differences still does not predict fre-

quency effects on phonetic realizations. Although activation spreads two-ways in

Dell’s model across different linguistic levels, activation levels are used in the end

only for selecting a node. In addition, the nodes in the lowest level are phonemes,

not phones3. As a consequence, different resting activation levels are not predicted

to affect phonetic realizations.

1.1.4 Levelt’s model

The mechanism of spreading activation (Collins & Loftus, 1975) was integrated

into a serial strictly-feedforward processing mechanism (e.g., Fromkin, 1971; Gar-

rett, 1984) in the theory of lexical access proposed by Levelt et al. (1999) and

Levelt and Wheeldon (1994) and its computational implementation WEAVER++

(Roelofs, 1997). As in Dell’s model, nodes are not fully connected between dif-

ferent linguistic levels (e.g., syntax-morphology). However, unlike in Dell’s model

(e.g., Dell, 1986), activation spreads only in a forward fashion in a highly modu-

larized hierarchical network.

Levelt’s model consists of six modules: conceptual preparation, lexical selec-

tion, morphological encoding, phonological encoding, phonetic encoding, and ar-

ticulation. These six modules are organized into three strata, a conceptual stratum,

a lemma stratum, and a form stratum. Speech production begins with activating

lexical concepts. Lexical concepts, the concepts that have corresponding words

in the target language, are assumed to be non-decompositional symbols. Lexical

concepts are connected with each other, and also with their corresponding lemmas.

A lemma is a symbolic representation that is linked to words’ inflectional features

such as gender and number. Activation spreads from the lexical concepts selected

3Dell (1986) also proposed a phonological encoding model. In this model, the lowest nodes are
phonemic features such as fricative or alveolar, and they are still abstract and distant from phonetic
realizations.
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to the lemma layer. The lemma node with the highest activation level is selected

for further processing. At the same time, its inflectional features become available.

Once a lemma has been selected, activation flows to its morphemes. The se-

lected morphemes in turn pass on activation to their segments and to their metrical

properties. Connections between morphemes and segments are labeled for their

position in the morphemes. The metrical properties only specify the number of

syllables and the position of an accent. The selected segments and the metrical

properties are then combined to assemble phonological words containing syllables.

Phonological words and their syllables are constructed as follows. Segments

are inserted into the metrical frame from the beginning of the word. If the segment

is a vowel, it will be assigned to the next nucleus position. If the segment is a

consonant, the system looks ahead in the rest of the segments. If there is another

vowel coming, the consonant at hand is assumed to be an onset consonant with the

upcoming vowel, unless it violates the phonological rules of the language. If two

consonants come in a row, they will constitute a cluster in an onset position. If the

procedure makes an illegal cluster, one of the segments in the cluster will be shifted

back to the preceding syllable as a coda consonant. When the system looks ahead

but does not find any more vowels coming later in the rest of the strings, the conso-

nant at hand will be assigned to a coda position in the first place. For example, for

escorting /@skOôtIN/, its segments and the metrical frame “σσ́σ” should be avail-

able. First, /@/ is assigned to the nucleus position of the first syllable, because it is

a vowel. For the next segment /s/, the system looks ahead and finds another vowel

(i.e., /O/) coming. Therefore, /s/ is assigned to the onset position of the second

syllable. The next segment /k/ is also assigned to the onset position of the second

syllable, creating the consonant cluster /sk/. The consonant cluster /sk/ is legal in

English, hence it is kept as it is. The next segment /O/ is assigned to the nucleus

position of the second syllable. The next segment /ô/ is a consonant. The system

again looks ahead and finds /I/ coming later. Therefore, /ô/ is first assigned to the

onset of the third syllable. The next segment is /t/, also a consonant. However,
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/ôt/ is an illegal sequence in English in the onset position. As a consequence, /ô/

is shifted back to the coda position of the previous segment, while /t/ is assigned

to the onset of the third syllable by itself. The remaining two segments /I/ and /N/

are assigned to the nucleus and the coda of the third syllable respectively. The end

product is /@-skOô-tIN/.

Following the construction of a phonological word, a gestural score is retrieved

from the collection of gestural scores named “syllabary” for each syllable of the

phonological word. A gestural score is still an abstract representation that only

specifies speech tasks for each articulator. For example, pan contains [p] at its

beginning. For a bilabial stop such as [p], lips must close and open. In this case,

the gestural score of pan would specify that lips must close and open but not how.

Because of coarticulation (Öhman, 1966), the articulation of [p] would be different

when [p] follows [a], compared to when [p] follows [u]. Gestural scores do not

specify how exactly articulators should move. Such “context-dependent” proper-

ties were assumed to be handled with and determined by an external neuromuscular

execution system (Levelt et al., 1999, p. 5).

Levelt’s model, however, has several problems. First, it cannot explain effects

of phonological neighborhood density (Gahl et al., 2012; Vitevitch, 2002; Vitevitch

& Luce, 2016; Vitevitch & Stamer, 2006). Greater phonological neighborhood

density has been found to be associated with fewer speech errors (Vitevitch, 2002),

shorter reaction times in the picture-naming task (Vitevitch, 2002), and shorter

word duration (Gahl et al., 2012).

In addition, Levelt’s model cannot deal with durational differences between

homophones either. For example, Gahl (2008) investigated homophonous pairs

such as time and thyme in English and found that the member of the homophonous

pair with a greater frequency showed shorter duration. Such durational differences

between homophones are not expected by Levelt’s model, because phonetic real-

izations should not be affected by lexical factors such as frequency differences.
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1.1.5 Connectionist models

All the classical models mentioned above are based more or less on the assump-

tion of decompositionality. Morphologically complex words are assumed to be

combinations of several morphemes such as stems and suffixes. In contrast to this

assumption, Rumelhart and McClelland (1986) proposed a three-layer network to

explain the past-tense formation process of English verbs without explicit rules of

inflection.

This network worked exclusively with binary nodes. The input nodes of the

first layer corresponded to “Wickelphones”. Wickelphones are basically triples of

phonemes (i.e., triphones) such as #kA, where # and A represent a word boundary

and the diphthong eI respectively. Each verb was coded in terms of Wickelphones

and the corresponding nodes for these Wickelphones of the verb were turned on to

be 1.

The Wickelphones, however, were too specific, leading to too many units/nodes

to be feasible for the computational resources in the early eighties (Rumelhart &

McClelland, 1986)4. In this model, therefore, each phoneme was represented by

four dimensions of phonetic features. The first dimension contrasted Interrupted

(e.g., [b]), Continuous-Consonant (e.g., [v]), and Vowel. The second dimen-

sion contrasted Stop (e.g., [b]) vs. Nasal (e.g., [m]) for the first dimension being

Interrupted, Fricative (e.g., [v]) vs. Liquid/Semi-Vowel (e.g., [l]) for the

first dimension being Continuous-Consonant, and High (e.g., [I]) vs. Low (e.g.,

[E]) for the first dimension being Vowel. The third dimension contrasted Front,

Middle, and Back, according to the articulation place of the phoneme. The fourth

dimension contrasted Voiced vs. Unvoiced for consonants and Long vs. Short

for vowels. Since the first and the third dimensions had three options and the

second and the fourth dimensions had two options, this system represented each

phoneme with 3+2+3+2 = 10 units, in all 11 units, including an additional unit

4Assuming that English has 35 phonemes to distinguish, Rumelhart and McClelland (1986) esti-
mated that 353 = 42875 Wickelphones were necessary for the input layer only, even ignoring word
boundaries.
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to encode a word boundary. Using this system of encoding phonemes, a total of

11×10×11 = 1210 units is sufficient to represent all possible Wickelphones.

The first layer of the model by Rumelhart and McClelland (1986) was dedi-

cated to reduce this number of units required to encode verbs in terms of Wick-

elphones and was adopted to translate each Wickelphone into what was called

“Wickelfeatures”. Wickelfeatures are triples of phonetic features. For example,

Stop-Vowel-Nasal would be one of the Wickelfeatures activated by the Wickel-

phone kAm. The first feature (e.g., Stop of Stop-Vowel-Nasal) comes from the

first phoneme of the Wickelphone in question. The second and third features come

from the second (central) and third phonemes of the Wickelphone in question re-

spectively. With the Wickelfeatures, the number of the input nodes was cut down

to 460.

The Wickelfeatures activated by the target verb through the first layer were

the input to the second layer. This second layer was the main layer of the model,

where learning of relations between present and past tense forms took place. The

activated values of the input nodes (i.e., 1 or 0) of this second layer were multiplied

with their corresponding weights to the output nodes. In other words, each output

node receives the sum of the products of the input activations and the weights from

the input nodes connected to the output node, its net input. The binary activation

of each output node was determined probabilistically, using a logistic function.

These output nodes of the second layer were the input to the third (last) layer,

which Rumelhart and McClelland (1986) called a “decoding network”. The decod-

ing network was responsible for determining that Wickelphone that explains the

most of the activated Wickelfeatures. The activations of the Wickelphones were

determined in such a way that the more unique Wickelfeatures a particular Wick-

elphone had, the more likely the Wickelphone would win the competition with

other Wickelphones. However, this decoding process was not the main part of the

model of Rumelhart and McClelland (1986). The performance of the model was

mainly evaluated by counting the number of the Wickelfeatures that were activated
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correctly in the output nodes of the second layer.

The past tense formation model by Rumelhart and McClelland (1986) sparked

fierce discussions and criticism, including a very detailed criticism by Pinker and

Prince (1988), pointing out several issues inherent in the model of Rumelhart and

McClelland (1986). Among them was the issue of homophonous words. For exam-

ple, ring and wring share the same phonemes, namely /rIN/ (Pinker & Prince, 1988).

Nevertheless, ring is irregular, while wring is regular5. The model of Rumelhart

and McClelland (1986) simply predicts a corresponding past-tense form from the

stem form of a certain verb in terms of their phonetic features. As a consequence,

homophonous verbs necessarily are associated with the same output, regardless of

the (ir)regularity of their past tense forms. This, of course, is an inevitable problem

for any model deriving a past tense form from a present-tense form without having

access to semantics.

Another problem that was pointed out concerned verbs for which the present

and past tense forms are identical — an identity mapping (Pinker & Prince, 1988).

Pinker and Prince (1988) claimed that the transformation between identical forms

(i.e., no change such as #me → #me) should be easier than non-identical map-

pings (e.g., #me→ xyz). Nevertheless, in the model of Rumelhart and McClelland

(1986), no special status was given to the identity mapping, and, as a consequence,

the model would predict that the mapping between the same form and the mapping

from one form to another completely different form would be the same in diffi-

culty. Although Rumelhart and McClelland (1986) observed that the no-change

verbs, where the stem and the past tense forms are identical such as cut, were pro-

duced more accurately compared to other irregular verbs, Pinker and Prince (1988)

claimed that this good performance on the no-change verbs was merely an artifact

of the use of the Wickelfeatures as the validation method.

In response to these criticisms, MacWhinney and Leinbach (1991) improved

the model of Rumelhart and McClelland (1986) mainly by increasing the number

5Although Pinker and Prince (1988) explained that the past tense wring is wringed, there is in
fact variability in its past tense forms, namely wringed, wrang, or wrung.
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of layers (by adding hidden layers), in addition to improving the input and output

representations. Different definitions of the input and the output were implemented

in response to one of the claims by Pinker and Prince (1988) that Wickelphones

were problematic. However, Pinker and Prince (1988) already expected this line

of argumentation, claiming that although increasing the number of layers would

probably lead to better performance of the model, it would obscure the distinction

between the Parallel Distributed Processing (PDP) models and the classical rule-

based theories. Pinker and Prince (1988) pointed out that several properties of the

model by Rumelhart and McClelland (1986) were actually motivated by the rule-

based theories and therefore the PDP models including the model of Rumelhart and

McClelland (1986) were merely implementations of the rule-based theories. For

example, the model of Rumelhart and McClelland (1986) mapped the stem form

onto the past-tense form. The use of the concepts of the stem and the past-tense

inflected form was motivated by the property of the rule-based account, in which

the stem was combined with a suffix to produce an inflected form. An increase

in the number of layers would help the model capture certain patterns equivalent

to the “rules” such as “change the stem vowel from /i/ to /I/ and add /t/ at the

end except when the word final consonant is already /t/” (e.g., meet → met). This

would undermine the claim by Rumelhart and McClelland (1986) that the past

tense formation could be explained without rules, according to Pinker and Prince

(1988). However, with current advances in deep learning, it has become clear that

multi-layer networks are very good at capturing many kinds of regularities and

sub-regularities, while at the same time profiting from many low-level statistical

correlations that are beyond the scope of the kind of rules envisioned by Pinker

and Prince.

Several issues pointed out by Pinker and Prince (1988) such as mentioned

above can actually be readily resolved, once semantics is properly taken into con-

sideration. Pinker and Prince (1988) argued that semantics should not play a role,

on the basis of arguments such as that if semantics were to play a role, verbs with
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similar meanings should have similar past tense forms (e.g., hit/hit, strike/struck,

vs. slap/slapped). Since then, it has become clear that semantics does play a much

more important role (see, e.g., Baayen & Moscoso del Prado Martín, 2005; Heit-

meier & Baayen, 2020; Ramscar, 2002).

1.1.6 Discriminative learning models

The connectionist models such as the one by Rumelhart and McClelland (1986)

focused on the mapping from one from to another, following common practise in

linguistics, a practise that in turn was inspired by pedagogical grammars (Blevins,

2016). In contrast, the discriminative lexicon model (DLM) developed by Baayen

et al. (2019) focuses on the relation between form and meaning. This model, which

addresses both comprehension and production, builds on an earlier model that was

developed only for comprehension, the naive discriminative learning model (NDL:

Baayen et al., 2011).

The NDL model made use of a simple learning rule, proposed by Rescorla and

Wagner (1972), known as the Rescorla-Wagner learning rule (see also Rescorla,

1988). This learning rule incrementally estimates association strengths (i.e.,

weights), based on co-occurrences of cues and outcomes. Cues are word form

features and outcomes are one-hot encoded word meanings. For example, cues

can be letter bigrams or phone trigrams. Furthermore, the meanings of complex

words can be represented by multiple semantic nodes, including not only nodes

for lexical meanings but also nodes for grammatical meanings.

The Rescorla-Wagner rule is used to learn the weights between form cues and

semantic outcomes. When a particular cue is absent, weights on the connections

from this cue to the outcomes are not updated. When a particular cue co-occurs

with a particular outcome, the association strength between the cue and the out-

come is strengthened. When a particular cue is present but a particular outcome is

absent, the cue is not so likely to be a good cue for the outcome, and accordingly

the association strength from this cue to the outcome is weakened. These updates
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of association strengths are modified by presence of other competing cues. When

there are many other competing cues in addition to the target cue of interest, the

positive update of the association strength due to the co-occurrence of the cue with

a certain outcome will be smaller, while the association strength will be updated

negatively more strongly, if a certain outcome is absent. These weight-updating

rules are summarized as the following equation, which specifies the change in con-

nection strength:

∆V t
i =


0 if ABSENT(Ci, t)

αiβ1(λ −∑PRESENT(C j,t)Vj) if PRESENT(C j, t) & PRESENT(O, t)

αiβ1(0−∑PRESENT(C j,t)Vj) if PRESENT(C j, t) & ABSENT(O, t)

where ∆V t
i denotes the amount of the update applied to the association strength V

of a certain cue Ci to the outcome O at the time point t, and PRESENT(X , t) and

ABSENT(X , t) denote the presence and the absence of the cue or outcome at the

time t respectively. ∑PRESENT(C j,t)Vj represents the sum of the associations of all

the cues present at the time point t to the outcome O.

This NDL model with the Rescorla-Wagner learning rule (Rescorla, 1988;

Rescorla & Wagner, 1972) is similar to the connectionist model of Rumelhart and

McClelland (1986) in the sense that both make use of a one-layer network6. Fur-

thermore, both models do not implement discrete rules that operate on stems and

exponents. The critical difference is that NDL maps forms onto meanings, while

the connectionist models map forms (e.g., the stem form) onto other forms (e.g.,

the past tense form). A number of studies using NDL has found that the degree

to which word meanings are supported by their forms is predictive for process-

ing measures such as lexical decision latencies (Baayen et al., 2011; Baayen &

6The model by Rumelhart and McClelland (1986) technically has three layers. However, the first
layer is dedicated to convert Wickelphones to Wickelfeatures, and the third later is a fixed network
to decode (predicted) Wickelfeatures back to Wickelphones. Therefore, the main “learning” occurs
only in the middle one layer.
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Smolka, 2020), self-paced reading times (Baayen et al., 2011), and acoustic dura-

tions (Tomaschek, Plag, et al., 2019; Tucker et al., 2019).

A downside of NDL is that it treats meanings as symbols, implemented as

orthogonal one-hot encoded vectors. However, child should be closer in semantics

to kid than universe, since child and kid both refer to a young person while universe

does not even refer to animals or creatures. Since different meanings are orthogonal

to each other in NDL, a semantic distance (e.g., Euclidean distance) between child

and kid is the same as that between child and universe.

This issue was resolved by adopting real-valued semantic vectors as approx-

imations of the meanings of words, resulting in the discriminative lexicon model

(DLM, Baayen et al., 2019). The vectors representing word meanings can be sim-

ulated, or instead empirical corpus-based semantics can be used, generated with

methods such as word2vec (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et

al., 2013). When empirical vectors are used, lexical similarities such as those of

child and kid are properly represented in the model. The core engine of the DLM

is the way in which mappings between cues and outcomes are obtained, using the

mathematics of multivariate multiple regression. In other words, the DLM takes

semantic representations as a given, and also takes form representations as a given,

and then uses learning to obtain mappings from form to meaning, and from mean-

ing to form. For comprehension, the equation to be solved is

CF = S. (1.1)

In (1.1), C is a word × cues matrix specifying words’ forms. In other words, rows

of C define words’ forms, and columns of C specify letter or phone n-grams. For

example, using triphones, the word forms of hand and band can be represented

with a matrix C as follows:
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C =

#ha han #ba ban and nd#[ ]
hand 1 1 0 0 1 1

band 0 0 1 1 1 1

(1.2)

Instead of using triphones to represent words, real-valued vectors can be used,

derived, for instance, from a word’s spectrogram (Shafaei-Bajestan et al., 2021).

S in the equation 1.1 above represents the matrix specifying words’ seman-

tics. Its rows pertains to words and its columns specify semantic dimensions. The

row vectors of S are words’ semantic vectors of words (also known as word embed-

dings), which can be constructed by any method of creating word embeddings such

as word2vec (Mikolov, Chen, et al., 2013; Mikolov, Sutskever, et al., 2013), fast-

Text (Bojanowski et al., 2017), simulated semantic vectors (Baayen et al., 2018), or

the NDL-based estimation (Baayen et al., 2019). S contains real-values and may

look like the following (in which the numbers are at random just for purpose of

illustration):

S =

S1 S2 S3 S4 · · ·[ ]
hand 0.43 0.29 −0.88 −0.03 · · ·

band −0.35 0.22 −0.49 0.17 · · ·
(1.3)

F represents association strengths between each form dimension and each se-

mantic dimension. This matrix can be estimated in the following way, using the

normal equations of regression:

F = (C⊤C)−1C⊤S (1.4)

The resulting mapping matrix F represents the endstate of learning (Chuang &

Baayen, 2021; Heitmeier et al., 2021; Shafaei-Bajestan et al., 2021). Therefore,

F can conceptually be viewed as the knowledge about associations between forms

and meanings accumulated thanks to infinite learning experience with the data. The
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weight matrix F can also be learned (estimated) incrementally, using the learning

rule of Widrow and Hoff (1960):

Ft = Ft−1 + c⊤(s− ŝ)η , (1.5)

where Ft represents the updated association strengths between forms and mean-

ings, and Ft−1 pertains to the association strengths before the update. The vector

c is a form vector, where present cues are marked as 1 otherwise 0. The vectors

s and ŝ are the “correct” (or gold-standard) and the predicted semantic vectors re-

spectively. η is a parameter governing the learning rate. Simply put, the equation

1.5 states that the associations strengths between forms and meanings are updated

according to the errors between the correct and predicted semantic vectors. If the

predicted semantic vector has too small a value for a certain semantic dimension,

the pertinent association strength gets updated upwards. In contrast, if a certain

association strength was too high than it should be, then this association strength

will be updated downwards.

One important difference between the two ways of estimating the mapping

F from the psycholinguistic perspective is that the endstate of learning does not

reflect differences in frequency of occurrence. Since the endstate of learning esti-

mates the equilibrium of association strengths, high frequency and low frequency

words are treated in the same way (Heitmeier et al., 2021). The insensitivity to fre-

quency differences is avoided by using frequency-informed endstate learning (for

more detail, see Heitmeier et al., 2022).

F constitutes the “learning” part of a ‘linear discriminative learning’ (LDL)

mapping. Given F, we can predict the semantic vector corresponding to a form

vector as follows:

ciF = ŝi, (1.6)

where ci is the form vector of the i-th word, and ŝi is the predicted semantic vector
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of the i-th word. The predicted meanings of all words jointly can be expressed in

terms of matrix multiplication as below:

CF = Ŝ, (1.7)

where each row of C and Ŝ corresponds to the comprehension of each word.

So far, cues were forms, and outcomes were meanings, as in NDL. However,

the DLM also sets up mappings from meanings to forms, thereby implementing

a first step in the process of speech production. The mapping (weight) matrix for

production can be estimated as follows:

G = (S⊤S)−1S⊤C, (1.8)

Using this weight matrix, the predicted form vectors corresponding to words’ se-

mantic vectors are obtained straightforwardly:

SG = Ĉ (1.9)

The predicted form vectors specify the amount of support that individual n-phones

receive from words’ meanings. In order to properly order the triphones into the se-

quence required for articulation, a subsequent algorithm is used. As this algorithm

is not relevant to the present thesis, the reader is referred to Baayen et al. (2019)

and Luo et al. (2021) for further information.

As is the case for NDL, the representations for words’ forms in the DLM are

not informed by any linguistic units such as stems, exponents, or words. The only

units used to define forms in production are n-phones (e.g., triphones). Never-

theless, LDL has been validated language-internally by predicting forms includ-

ing unseen forms (Baayen et al., 2018; Baayen et al., 2019; Shafaei-Bajestan &

Baayen, 2018; Shafaei-Bajestan et al., 2021) and also externally in terms of pre-

dictivity for processing measures such as lexical decision latencies and acoustic

durations (Baayen et al., 2019; Chuang et al., 2019). For example, in Baayen et
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al. (2019), English content words are correctly produced by the model from letter

trigrams with an accuracy of more than 99%. Inflected words were also correctly

predicted with an accuracy of 92%. Moreover, using 10-fold cross validation, the

model predicted 62% of unseen inflected forms correctly. Similarly, derived words

are predicted correctly with an accuracy of 99% when all the derived words were

included in the training. Even when a part of all the derived words were withdrawn

from training (i.e., 10-fold cross validation), an accuracy of 75% was retained.

The DLM model also provides a framework for understanding speech errors.

Unlike the past-tense model of Rumelhart and McClelland (1986), the DLM model

produces errors that resemble the kind of errors that actual speakers might make

(see, e.g. Chuang et al., 2020). Speech errors such as slicely thinned (instead of

thinly sliced, which provide strong prima facie evidence for morphemes being ex-

changed, are straightforward to generate in the DLM. DLM locates the source for

this kind of error at the semantic level: instead of combining the semantic vectors

of thin and -ly, and those of slice and -ed, the vectors of slice and -ly are combined,

and likewise those of thin and -ed. The resulting semantic vectors then straightfor-

wardly produce the forms slicely and thinned.

In addition, the DLM model does not suffer from the criticism by Pinker, which

was mentioned above. One of the criticism involved homophonous English verbs,

one of which is regular and the other is irregular in terms of their past tense forms

(e.g., ring - rang vs. wring - wringed). The DLM model predicts that any form,

including regular/irregular past tense forms, is motivated by words’ meanings. Ho-

mophonous verbs differ in semantics. Therefore, it is straightforwardly predicted

without any problem that one of a homophonous pair of present-tense forms can

have a regular past tense form while the other has an irregular past tense form. Im-

portantly, the DLM does not derive a past-tense form from a present-tense form,

forms are derived from their meanings. Another point of the criticism involved the

identity mapping, where a present tense verb form and its corresponding past tense

form are identical (e.g., cut). In the DLM model, past-tense forms are predicted
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primarily by semantics, as is the case for any word and any form, not by their corre-

sponding present-tense forms. As a consequence, the DLM model predicts that the

identity mapping should basically be the same as, or at least very similar to, other

not-identity mappings, as was the case for the model of Rumelhart and McClelland

(1986).
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1.2 Effects of morphological boundaries

Serial feed-forward modular models such as the one by Levelt et al. (1999) in-

tegrate morphemes (or rather, exponents) into the theory. Lemmas selected after

the completion of conceptualization activate morphemes in turn. The selected mor-

phemes provide pointers to their constituent phonemes. These phonemes are subse-

quently combined into syllables, forming phonological words (Levelt et al., 1999).

In this theory, the presence or absence of a morpheme boundary is not preserved in

the form representations. As a consequence, words that share the same phonemes

and syllables are predicted to be pronounced in the same way, even though one

word may have an internal morpheme boundary whereas the other doesn’t.

In contrast to this prediction, a number of studies have reported effects of a

morpheme boundary on phonetic realizations (Hay, 2007; V. G. Li et al., 2020;

Plag & Ben Hedia, 2018; Seyfarth et al., 2017; Smith et al., 2012; Song et al., 2013;

Strycharczuk & Scobbie, 2016; Sugahara & Turk, 2009). For example, Seyfarth

et al. (2017) looked into homophonous pairs (e.g., lap+s vs. lapse) and found

that stems were significantly longer in the pre-morpheme-boundary condition. In

other words, pre-morpheme-boundary segments were shown to be phonetically

enhanced.

A similar effect was also observed for prefixes (Hay, 2007; Plag & Ben Hedia,

2018; Smith et al., 2012). Hay (2007) approached effects of a morpheme boundary

from the perspective of morphological boundary strength. Using relative frequency

(word frequency divided by lemma frequency), Hay (2007) argued that lower rela-

tive frequency facilitates morphological parsing. Furthermore, she argued that low

probability phone transitions constitute strong morphological boundaries, resulting

in more enhanced phonetic realization.

Whereas Hay (2007) investigated total duration of the English prefix un-, Smith

et al. (2012) studied the duration of individual segments in prefixes and observed

that it was mainly the vowel in a prefix (e.g., dis+tasteful) that was enhanced pho-

netically before the morpheme boundary. Also in the domain of articulatory re-
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alizations, a similar enhancement effect has been observed (V. G. Li et al., 2020;

Song et al., 2013). For example, longer intervals between maximal constrictions

of the tongue were found when a morpheme boundary is involved (V. G. Li et al.,

2020).

A recent study (Baayen et al., 2019) suggested that effects of the morpholog-

ical boundary may be based on form-meaning relationships of morphologically

complex words. Baayen et al. (2019) created word-embeddings (semantic vectors)

using Naive Discriminative Learning (NDL: Baayen et al., 2011) and trained a Lin-

ear Discriminative Learning model (LDL: Baayen et al., 2019) to learn associations

between sublexical forms (i.e., trigrams) and meanings of the words. They found

that the branching segment, namely the final segment of the stem (e.g., d in blend,

blends, blended, and blending), was longer when the transition from the branching

segment to the next segment was not strongly supported by the word’s semantics.

This finding suggests that effects of the morphological boundary can be semantic

in nature.

1.3 Effects of frequency

Frequency effects in the context of psycholinguistics were first discovered by (Old-

field & Wingfield, 1965). Their study found that naming latency is slower for lower

frequency words. Effects of frequency on reaction times in a lexical decision task

and a naming task were not within the scope of the models by Fromkin (1971) and

Garrett (1984), which mainly aimed at explaining possible speech errors. Dell’s

model later incorporated different resting activation levels for lemma nodes (Dell,

1990) to explain shorter response times for high frequency words. Different ac-

tivation thresholds were also used by Jescheniak and Levelt (1994) and also by

Levelt’s model (Levelt et al., 1999)7.

7The computational implementation of Levelt’s model, WEAVER++, implemented frequency ef-
fects by means of verification times. In this model, each selection of a lexical item has to be verified
by being compared to the node in the immediately upper level. Higher frequency words are assumed
to be verified faster and therefore afford shorter response times.
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After the Oldfield et al. study, effects of frequency have been documented for

many measures of lexical processing, such as lexical decision and naming latencies

(Baayen et al., 1997; Baayen et al., 2006; Baayen et al., 2002; Bertram et al.,

2000; Forster & Chambers, 1973; Gardner et al., 1987; Rubenstein et al., 1970;

Scarborough et al., 1977; Schreuder & Baayen, 1997; Whaley, 1978; Wurm et

al., 2006), speech errors (Gordon, 2002; Harley & Bown, 1998; Vitevitch, 1997),

acoustic characteristics (Aylett & Turk, 2004; A. Bell et al., 2009; A. Bell et al.,

2002; Dinkin, 2008; Jurafsky et al., 2001; Munson & Solomon, 2004; Pluymaekers

et al., 2005b), and tongue movements (Lin et al., 2011; Tomaschek, Arnold, et al.,

2018; Tomaschek, Tucker, et al., 2018; Tomaschek et al., 2013).

The classical speech production models introduced above, i.e. Fromkin’s

model, Garrett’s model, Dell’s model, and Levelt’s model, cannot explain fre-

quency effects on phonetic realizations, although at least Dell’s model and Level’s

model have some mechanism to explain frequency effects on reaction times. In

Dell’s model, higher resting activation levels for high frequency words may have

some influence on the phoneme nodes further down in the processing mechanism

through the morpheme nodes. However, phoneme nodes represent phonemes, not

phones. Selected phonemes must be translated into articulatory gestures later.

Furthermore, phonemes are either selected or not selected. The continuous nature

of frequency effects is not well served by such a discrete selection mechanism.

Similarly, Levelt’s model limits word frequency effects to the word-form selection

stage, which excludes the possibility that different frequencies of occurrences of

words might affect the phonetic realizations of these words. It might be argued

that it is syllable frequency that co-determines phonetic realizations. However, in

Levelt’s model, gestural scores (accessed through the syllabary) are assumed to

be abstract and context-free, only specifying speech tasks (e.g., “close” for lips),

while leaving out how a certain speech task is actually carried out by an external

system (called “a neuromuscular execution system”) (Levelt et al., 1999, p. 31). As

a consequence, systematically different phonetic realizations cannot be predicted
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by these classical models.

Furthermore, several different kinds of frequency have been investigated, in-

cluding whole-word (surface) frequency (Aylett & Turk, 2004; Baayen et al.,

1997; Baayen et al., 2006; A. Bell et al., 2009; A. Bell et al., 2002; Bertram et al.,

2000; Dinkin, 2008; Jurafsky et al., 2001; Lin et al., 2011; Munson & Solomon,

2004; Pluymaekers et al., 2005b; Wurm et al., 2006), lemma frequency (Baayen

et al., 1997; Baayen et al., 2011; Bertram et al., 2000; Gahl, 2008; Lohmann,

2018a, 2018b), relative frequency of whole-word and stem (Hay, 2007; Hay,

2003; Stein & Plag, 2022), segment frequency (Van Son & Van Santen, 2005),

phrase (multiple-word) frequency (Arnon & Cohen Priva, 2013), and constituent

frequency (Duñabeitia et al., 2007; Schmidtke et al., 2021).

Frequency counts have to be interpreted against the background of the size of

the corpus from which counts are calculated. Frequency divided by the corpus size

is known as a word’s prior probability (Jurafsky et al., 2001) or as its relative fre-

quency (Jurafsky et al., 2001; Tomaschek, Tucker, et al., 2018). Furthermore, sev-

eral refinements of frequency-based estimates of probability have been proposed,

such as conditional probability (predictability) (Aylett & Turk, 2004, 2006; Juraf-

sky et al., 2001), paradigmatic probability (M. J. Bell et al., 2021; Cohen, 2014;

Kuperman et al., 2007; Tomaschek et al., 2021), amount of information (surprisal)

(Brandt et al., 2021; Cohen Priva, 2015; Kuperman et al., 2007; Malisz et al., 2018;

Van Son & Van Santen, 2005), and entropy (Baayen et al., 2006; Kuperman et al.,

2007; Moscoso Del Prado Martín et al., 2004).

With respect to acoustic realization, words with a higher frequency of use are

typically realized with shorter durations A. Bell et al. (2002) and more central-

ized formant structures (Aylett & Turk, 2006). Gahl (2008) and Lohmann (2018b)

showed for homophone pairs such as time and thyme that the less frequent homo-

phone is realized with longer spoken word duration. Pluymaekers et al. (2005b)

focused on the durations of prefixes and suffixes and reported shorter durations for

some of the affixes when they occurred in higher frequency words. Dinkin (2008)
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investigated short vowels in English (e.g., I, E, æ, 2, U) and demonstrated that in

higher frequency words front vowels show lower F2 and back vowels show higher

F2, indicating that in higher frequency words these vowels are more centralized.

To probe articulation itself, Lin et al. (2011) used ultrasound imaging to compare

the height of the tongue tip during the pronunciation of /l/ in a /(C)(C)VlC/ con-

text (e.g., milk) for carrier words of different frequencies. They observed that the

tongue tip was located lower in the oral cavity for higher frequency words, again

indicating articulatory reduction.

The finding that higher-frequency words tend to undergo more articulatory re-

duction, has been explained in terms of syntagmatic redundancy or predictability.

Jurafsky et al. (2001) introduced the conditional probability of the current word

given the previous word as a predictor for spoken word duration and found that

higher values of the conditional probability measure were associated with shorter

spoken word duration. Aylett and Turk (2004) defined syllable-level trigram proba-

bility as a further measure gauging syntagmatic redundancy. Syllable-level trigram

probability is the probability of the target syllable given the preceding two syllables

(regardless of word boundaries). Aylett and Turk (2004) reported more phonetic

reduction for words with higher syllable-level trigram probability. These studies

all suggest that the words that are syntagmatically more predictable and redundant

are reduced phonetically. These reduction phenomena all are well described by

the smooth signal redundancy hypothesis of Aylett and Turk (2004), according to

which high probability highly redundant words are pronounced with shorter dura-

tions and more centralization in order to obtain a more smoothly evolving speech

signal.

The reduction effect of syntagmatic predictability has also been found in

the form of syntactic structures/contexts. Gahl and Garnsey (2004) investigated

whether match/mismatch of the verb-bias and the syntactic structure the verb oc-

curs in affected pronunciations of the verb. In English, some verbs are biased to

the direct-object structure, e.g., confirm the date, while others are biased to the
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sentential complement structure, e.g., suggest the date should be changed. Gahl

and Garnsey (2004) found that verb-final stops were more likely to be deleted when

the verb and the syntactic structure matched than when they mismatched. Direct-

object verbs were significantly longer when they were used with the sentential

complement, compared to when they were followed by direct objects as expected

by the verb. In addition, post-verbial silences were longer in bias-violating than

bias-matching sentences.

In contrast to the greater probability of phonetic reduction that has been widely

reported to go hand in hand with greater frequency of use, an opposite frequency

effect tied to phonetic enhancement has also been reported. Kuperman et al. (2007)

looked into the interfixes occurring in Dutch noun-noun compounds. Krott et al.

(2001) had shown that the choice of an interfix in a compound is based on the

distribution of interfixes that follow the left constituent. The constituent with the

highest probability in this mini-paradigm defined by the left constituent is the most

likely to appear in novel compounds, and is the easiest one to process (Krott et

al., 2007). Based on this research, Kuperman et al. (2007) reasoned that the the

most probable interfix should have the shortest duration. However, the opposite

was observed: the more probable an interfix is in its mini-paradigm, the longer its

acoustic duration is. This led Kuperman et al. (2007) to propose the paradigmatic

signal enhancement hypothesis according to which greater paradigmatic support

leads to phonetic enhancement rather than phonetic reduction.

Since the finding by Kuperman et al. (2007), several studies have replicated

the same effect of frequency and paradigmatic probability. For example, M. J. Bell

et al. (2021) investigated consonant duration at compound-internal morphological

boundaries and found that greater probability of consonants at the boundary fol-

lowing the first noun go hand in hand with longer consonant duration. In addition,

Cohen (2014) investigated the duration of the English verbal plural suffix (i.e., -s)

and found that the suffix duration was longer when the present third-person sin-

gular form was more likely than the corresponding plural (stem) form, which was
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gauged by relative frequency of the verb’s singular frequency divided by the plural

frequency. Tucker et al. (2019) investigated English irregular past-tense verbs and

defined paradigmatic probability as the number of irregular verbs sharing the same

vowel alternation pattern between the present and past tense forms. In addition,

Tucker et al. (2019) also defined its learning-based alternative, called the vowel-

tense activation, derived from Naive Discriminative Learning (NDL: Baayen et

al., 2011). The vowel-tense activation gauged how much the tense was supported

by the diphones containing the stem vowel of the verb. Both measures were as-

sumed to capture the amount of support for a certain vowel alternation and there-

fore paradigmatic (un)certainty. These two measures both showed U-shaped ef-

fects with the stem vowel duration being longer for their larger values (Tucker et

al., 2019). The authors of the study interpreted these results as a partial support

for the paradigmatic signal enhancement hypothesis. Also in the articulatory do-

main, Tomaschek et al. (2021) found lower tongue trajectories for the [A] vowel in

the stem of English verbs when these verbs had a higher frequency of occurrence.

Since [A] is an open low vowel, the finding of a lower tongue trajectory for higher

frequency words indicates articulatory enhancement.

These enhancement effects of frequency have been explained as a consequence

of resolving uncertainty in morphological paradigms. A more probable paradig-

matic alternative reduces this uncertainty and thereby affords phonetic strengthen-

ing.
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Chapter 2

Articulatory effects of frequency

modulated by semantics

This chapter will be published as: Motoki Saito, Fabian Tomaschek, R. Harald

Baayen. Articulatory effects of frequency modulated by semantics. In Marcel

Schlechtweg (ed.), Interfaces of Phonetics (Phonology and phonetics series). De

Gruyter Mouton.

Abstract: This chapter provides an overview of three studies addressing the role

of frequency in speech production. While frequency has often been observed to

be correlated with phonetic reduction, as evidenced by shorter durations and more

vowel centralization for higher-frequency words, some studies have reported phe-

nomena for which a higher frequency appears to give rise to phonetic enhancement.

These opposite effects of frequency have thus far resisted a consistent, theoretically

well-motivated, explanation. The first case study replicates the effect of phonetic

enhancement, previously observed with EMA, using ultrasound recordings. The

second case study looks into the possibility that morphological complexity codeter-

mines phonetic enhancement, using EMA. The third case study provides evidence

that words’ meanings, gauged with distributional semantics, play an important role

in shaping phonetic enhancement and reduction.
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2.1 Introduction

Frequency is one of the most extensively investigated variables used for probing

lexical processing (see, e.g., Baayen et al., 2016, for an overview). More frequent

units (e.g., words) have repeatedly been found to have shorter acoustic duration

(Aylett & Turk, 2004; A. Bell et al., 2009; A. Bell et al., 2002; Gahl, 2008; Malisz

et al., 2018; Pluymaekers et al., 2005a, 2005b) and to have more centralized for-

mant realizations (Aylett & Turk, 2006; Dinkin, 2008; Wright, 2004). The phonetic

reduction associated with higher frequency has been explained as a consequence

of syntagmatic predictability (Aylett & Turk, 2004): higher-frequency words are

less informative and therefore realized with more reduced forms.

In contrast, greater frequency of occurrence has also been reported to be associ-

ated with phonetic enhancement (M. J. Bell et al., 2021; Cohen, 2014; Kuperman et

al., 2007; Tomaschek, Tucker, et al., 2018; Tomaschek et al., 2021). These studies

observed that segments tend to be longer in duration and to be articulated with more

peripheral tongue positions when a word’s frequency or probability in its paradigm

is higher, yielding more discriminative phonetic characteristics. A paradigm is a

set of words that are morphologically related to each other. Kuperman et al. (2007)

focused on paradigmatic probability and observed that greater paradigmatic prob-

ability leads to phonetic enhancement. Furthermore, Tomaschek, Tucker, et al.

(2018) reported evidence that higher frequency words were realized with clearer ar-

ticulations. Tomaschek, Tucker, et al. (2018) argue that these clearer articulations

are the result of enhanced motor control for higher frequency words: opportuni-

ties for learning the planning and execution of the articulatory gestures involved

in producing a word present themselves more often for higher frequency words as

compared to lower frequency words. According to Tomaschek et al. (2021), sim-

ilar effects of enhancement are also present for inflected words that have a higher

probability in their inflectional paradigm.

A recent study by Gahl and Baayen (2022) proposed that the reduction and

enhancement effects of frequency may indeed be orthogonal and capture two dif-



CHAPTER 2. ARTICULATORY EFFECTS OF FREQUENCY MODULATED BY

SEMANTICS 41

ferent aspects of the speech production process. According to Gahl and Baayen

(2022), phonetic reduction as a function of frequency arises at the level of the utter-

ance, where words enter into syntagmatic relations, and where a word’s probabil-

ity hinges on the preceding words in the utterance and in the preceding discourse.

Since higher frequency words tend to be more predictable, and hence are less infor-

mative, the greater phonetic reduction observed for higher frequency words is well

explained by the smooth signal hypothesis proposed by Aylett and Turk (2004) and

similar explanations in subsequent studies (A. Bell et al., 2009; A. Bell et al., 2002;

Gahl, 2008; Pluymaekers et al., 2005a, 2005b).

Words do not only play a role as units of meaning in utterances and discourse

but also as the units that have to be articulated. According to Gahl and Baayen

(2022), it is during the mapping of a word’s meaning onto its form that frequency,

as a measure of experience and articulatory practice, gives rise to articulatory en-

hancement. As a consequence of learning associations between meanings and

forms, certain meanings are more strongly associated with certain forms than oth-

ers. According to Gahl and Baayen (2022), when a word’s semantics provides

stronger support for that word’s form, there is more evidence for that form, which

leads to enhanced articulation. Conversely, when there is no support from the

semantics for a word form, in the limit, it is not articulated at all and has zero du-

ration. This concept is related to the paradigmatic signal enhancement hypothesis

(e.g., Kuperman et al., 2007). When a choice has to be made as to which of a set of

allomorphs has to be selected, the one with the greater probability will be realized

with more enhancement.

Given that the reduction and enhancement effects of frequency are potentially

orthogonal, it remains unclear why reduction is found for some cases and enhance-

ment for other cases. If the proposal by Gahl and Baayen (2022) is correct and these

two directions of frequency effects are orthogonal, there are always two forces at

work, and how exactly they work out jointly is a matter for further empirical inves-

tigation.
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What then modulates the balance of the two effects? One possible factor is

morphological complexity. When enhancement effects of frequency (or frequency-

based measures such as probability) are observed, the items under investigation

tend to be morphologically complex words. For example, enhancement effects of

frequency have been demonstrated for interfixes of compounds (Kuperman et al.,

2007), inflectional suffixes (Cohen, 2014), geminates across a morpheme boundary

(M. J. Bell et al., 2021), and stem vowels of inflected verbs (Tomaschek, Tucker,

et al., 2018; Tomaschek et al., 2021).

In contrast, reduction effects of frequency have been observed frequently in

studies focusing on monomorphemic words (Lin et al., 2011; Wright, 2004) or

morphologically simple and complex words mixed (Aylett & Turk, 2004; A. Bell

et al., 2009; A. Bell et al., 2002; Dinkin, 2008; Gahl, 2008). However, there are

also studies investigating morphologically complex words that reported enhance-

ment effects or mixed results (Pluymaekers et al., 2005b). Thus, it remains by and

large unclear how morphological status (i.e., morphologically simple vs. complex)

influences frequency effects. This chapter presents three studies that address the

question of whether, and if so, how, frequency effects are modulated by morpho-

logical complexity. The first study focuses on replicating the enhancement effect

of frequency using ultrasound, the second study investigates the interaction of fre-

quency morphological status using electromagnetic articulography (EMA), and the

third study brings in word meaning, gauged with distributional semantics, as a new

factor co-determining articulatory enhancement and reduction.

The first study follows up on earlier work using articulography with the aim

of clarifying the role of frequency for the production of morphologically sim-

ple and complex words. The second study we report here made use of a corpus

of German spontaneous speech using electromagnetic articulography (Arnold &

Tomaschek, 2016). This second study revealed that segments preceding a mor-

phological boundary were associated with more enhanced articulatory realizations.

According to classical models of speech production (e.g., Levelt et al., 1999), nei-
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ther whole-word frequency nor morphological status are expected to affect artic-

ulation, as prior to articulation, phones in a word are assembled from morphemes

and bundled into syllables. The third study we review in this chapter argues that the

effects of frequency and morphological status emerge naturally once the relation

between meaning and form is taken into account. The computational framework

that we use to predict the effect of meaning on form is that of the discriminative lex-

icon (Baayen et al., 2019). In the general discussion, we present a proposal for how

the effect of frequency-as-information and the effect of frequency-as-articulatory-

practice can be integrated within this framework.

2.2 Enhanced articulations of the stem vowel by fre-

quency modulated by inflectional suffixes

In this section, we follow up on the study of Tomaschek, Tucker, et al. (2018).

Their study had German speakers pronounce German inflected verbs with suffixes

sharing the same place of articulation, namely [t] vs. [(@)n], together with their

corresponding pronouns (e.g., sie malt ‘she paints’ vs. sie malen ‘they paint’). The

stem vowel was kept the same (i.e., [a:]). Tongue positions were recorded by EMA.

They found that the stem vowel [a(:)] was articulated with the strongest tongue

tip/body lowering in the middle of the vowel for high and low frequency words.

Because they focused on the stem vowel [a:], lowered tongue trajectories indicate

articulatory enhancement. For medium frequency words, the least lowering (i.e.,

the highest/smoothest tongue trajectories) was observed.

In addition, Tomaschek, Tucker, et al. (2018) found an earlier initiation of coar-

ticulatory raising of the tongue tip/body, anticipating the upcoming suffix (e.g., [t]

or [n]), for high frequency words, compared to low frequency words. Based on

these observations, Tomaschek, Tucker, et al. (2018) suggested that high frequency

words were articulated in such a way that the tongue tip/body reaches the lowest

point of the articulation and nevertheless rises back to high tongue positions very
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quickly. They interpreted the findings as a result of kinematic improvement, the

idea being that also for articulation, “practice makes perfect”. These effects of fre-

quency were limited to the suffix condition [t], even though the suffixes shared the

same place of articulation.

Following up on Tomaschek, Tucker, et al. (2018), we carried out a similar

experiment to that by Tomaschek, Tucker, et al. (2018) to look into whether, when

ultrasound is used, this effect of frequency also emerges and whether the effect of

frequency is systematically modulated between the suffix conditions. To this end,

we selected 153 German verbs (word types) with the same criterion as adopted

in Tomaschek, Tucker, et al. (2018). 122 of these verbs were inflected with the

suffixes [-t] and [-n]. The other 31 of them were combined with the suffix [-n].

They were monosyllabic when combined with the suffix [-t], e.g., sie malt [zi:

ma:lt], and disyllabic when combined with the suffix [-(@)n], e.g., sie malen [zi:

ma:l(@)n]. The inflected forms of the target verbs were combined with the pronoun

sie [zi:]. The pronoun sie can be the third-person singular pronoun, e.g., sie malt

[zi: ma:lt] ‘she paints’, and also the third-person plural pronoun, e.g., sie malen [zi:

ma:l(@)n] ‘they paint’.

For each of these target inflected verbs, frequency was obtained from the

SdeWac corpus of German (Faaß & Eckart, 2013). The range of frequency

in the present study is roughly compatible with that of Tomaschek, Tucker, et

al. (2018). There was no significant difference in the means of frequency on

a log-scale between the present study and Tomaschek, Tucker, et al. (2018),

t(40.747) = −0.690, p ≈ 0.494. The target verbs were distributed more or less

normally over logarithm of frequency within and across each suffix condition, i.e.,

[-t] and [-(@)n]. Because Tomaschek, Tucker, et al. (2018) found a similar lowering

of the tongue tip/body for high and low frequency, and because medium frequency

words showed higher tongue trajectories, we restricted our focus to high- and

medium-frequency words. The ultrasound record suggests that high-frequency

and low-frequency words had similar tongue shapes and positions, consistent with
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the findings of Tomaschek, Tucker, et al. (2018), and are therefore not discussed

further. For the purpose of visualization and ease of reference, we refer to the

10%, 50%, and 90% deciles of frequency as low, medium, and high frequency.

The details of the selected items were available at https://osf.io/3mxjg/.

These target items was embedded with other filler items. These fillers were

made of inflected forms of 213 different word types. They were either inflected

verbs with their corresponding pronouns, containing other vowels than [a:], or

nouns.

For the task of reading aloud these 366 target and filler word types (1017

word/phrase tokens) in total, 18 German native speakers were recruited. 10 out

of the 18 participants finished all the recordings on the same day. Seven of them

split the participation in the experiment to two days. One of them spent three

days to complete all the recordings. The target and filler items were displayed on

a laptop screen. Participants read aloud these items on the screen once for each

item. While they articulated each of the items, tongue shapes and positions were

recorded by ultrasound, using the software Articulate Assistant Advanced (Articu-

late Instruments Ltd., 2012). An ultrasound transducer was fixed under the chin of

the speaker by means of a headset in such a way that the shadows created by the

hyoid bone and the jaw were both visible in the ultrasound image being recorded.

For a majority of the items (about 77%), ultrasound images were recorded by about

95 frames per seconds. For the other 22% of the data, 82 frames were recorded per

second. For the remaining 1%, the number of frames per second ranged from 62 to

94.

The use of ultrasound in the present study, contrasting the use of EMA by

Tomaschek, Tucker, et al. (2018), was motivated by their different strengths and

their complementary characteristics. EMA tracks positions of sensors attached to

the tongue. EMA can track some parts of the tongue very precisely, although the

sensors on the tongue may hinder articulation and the very apex of the tongue is

still difficult to track. This is because a sensor is placed about 5 mm posterior to
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the tongue apex to avoid impeding articulations with the tongue tip. In contrast, it

is very difficult to record the root of the tongue or the inside of the tongue. On the

other hand, the tongue root and the inside of the tongue can be traced quite well

with ultrasound, which makes ultrasound imaging a good complementary method

to EMA. Accordingly, the present study made use of ultrasound imaging, aiming

at replicating and extending the findings of Tomaschek, Tucker, et al. (2018) to the

tongue root and the inside of the tongue.

Typically, ultrasound images of the tongue are analyzed by detecting and com-

paring tongue surface contours. One standard method for comparing multiple

tongue surface curves is to fit spline curves to detected tongue surface positions

(Davidson, 2005, 2006; Slud et al., 2002; Stone et al., 1997; Turton, 2015). Fit-

ted splines of tongue surface contours are sometimes compared to each other by

taking all the data points on the splines into consideration (Lee-Kim et al., 2013;

Strycharczuk & Scobbie, 2016), while other times the data points on the splines

are further summarized to representative values according to their shapes such as

the curvature index (Aubin & Ménard, 2006; Bressmann et al., 2005; Noiray et al.,

2013; Noiray et al., 2019).

These methods of analyzing ultrasound images all depend on detected tongue

surface contours and assume the x-coordinates (horizontal positions) are accurate

across frames, items, and speakers. However, this assumption does not necessarily

hold true. In ultrasound midsagittal images of the tongue, the tongue tip is often

hidden by shadow created by the mandible (jaw) bone, and the end of the tongue

root can also be hidden by another shadow created by the hyoid bone. Because

ultrasound images do not contain any anatomical reference point in themselves, it

is unclear how much of the tongue tip and root is missing in actual images. In

addition, tongue surface contours can flatten, e.g., for /a/, or shrink for the bulky

shape required for the articulation of, e.g., /u/. Because of these characteristics

of ultrasound imaging and the tongue, the same x-coordinate can actually refer

to different points on the tongue surface. This issue also applies to the y-axis
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coordinate, because the ultrasound transducer is usually fixed to the bottom of the

chin and therefore is not consistent in its positions relative to the hard palate.

The problem of anatomical reference points can be mitigated by taking into

account additional information from other parts in ultrasound images than tongue

surface contour curves. To include more information from ultrasound images, sev-

eral recent studies have summarized brightness values of all the pixels in ultra-

sound images and used these for comparison of different frames and items (Palo

et al., 2014). Although it is certainly an advantage to have access to more infor-

mation by including all the pixels for analysis, these methods, so far, necessarily

involve summarizing ultrasound images into some representative values. Given the

complexities of actual images, it may not be so straightforward to identify what is

exactly different across images.

To explore the possibility to include as much information in ultrasound images

as possible but not to compress pixel data into representative characteristic values,

we made use of Generalized Additive Models (GAMs) and modeled brightness of

each pixel in ultrasound images as a function of x- and y-coordinates, using ten-

sor product smooths. In this approach, the tongue surface contour appears as an

“area”, because pixel brightness is estimated across images from different words

and speakers. When there is little variability among words the predicted tongue

surface contour/area becomes thin and has brighter pixel values. If there is con-

siderable variability, the tongue surface contour/area becomes a larger area with

dimmed (low) predicted pixel values. In order to take different sizes of the oral

cavity into consideration, some normalization of ultrasound images is generally

recommended. However, normalization does not have to be perfect. Although

imprecise application of normalization would certainly lead to spurious greater

variance among speakers, only a few pixels of differences in coordinates would

not alter the overall results, either. In addition, such systematic differences can

be accommodated with random effects in GAMMs. In what follows, we report

the results obtained for the by-word ultrasound images averaged across speakers.
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Comparisons with models including by-speaker random surfaces showed that av-

eraging yields very similar mean surfaces at enormously reduced computational

costs.

A downside of this statistical method is that it is computationally very demand-

ing. In order to reduce computation time (and the concomitant carbon footprint),

separate models were fitted to the data for the two suffix conditions. For each of

the two suffix conditions, we fitted a model with partial effects for the x and y coor-

dinates and their interaction, and furthermore included segment duration (SegDur)

and (log-transformed) word frequency (Freq) as covariates. Segment duration was

determined based on the segment boundaries obtained by a forced aligner (Rapp,

1995). We also included interactions of these covariates with the x and y coordi-

nates and the corresponding interaction. The model specification supplied to the

bam function of the mgcv package (Wood, 2017) is as follows:

PixelBrightness ~ s(x, k=20) + s(y, k=20) +

ti(x, y, k=20) +

s(SegDur, k=20) +

ti(x, SegDur, k=c(20, 20)) +

ti(y, SegDur, k=c(20, 20)) +

ti(x, y, SegDur,k=c(20, 20, 20)) +

s(Freq, k=20) +

ti(x, Freq, k=c(20, 20)) +

ti(y, Freq, k=c(20, 20)) +

ti(x, y, Freq, k=c(20, 20, 20))

In order to determine the number of basis functions, we tested a range of num-

bers of basis functions ranging from 3 to 30. In general, estimated contours tend

to be too blurred too much with lower numbers of basis functions. In the present

study, numbers of basis functions being 15 or higher produced similar results. Al-

though larger numbers of basis functions were better at capturing small details in



CHAPTER 2. ARTICULATORY EFFECTS OF FREQUENCY MODULATED BY

SEMANTICS 49

ultrasound images, greater numbers of basis functions necessarily required huge

amounts of additional computation time. Therefore, we opted for 20 basis func-

tions in the present study, aiming at a good balance between clarity of estimated

contours and computational load.

The fitted models for the two suffix conditions at the middle of the vowel are

visualized in Figure 2.1. For all panels of this figure, the front of the mouth is to

the right. The three figures on the left side of Figure 2.1 pertain to the condition

“sie...t”. The three figures on the right side of Figure 2.1 pertain to the condition

“sie...n”. The two figures at the top visualize the ultrasound pixel brightness for

high-frequency words. The two contour plots in the middle row summarize the

ultrasound pixel brightness for medium-frequency words. In these top four figures,

warmer colors indicate brighter pixels. The brightest pixels in the image (in dark

red) are typically found close to the tongue surface. Frequency was included in

the fitted models as a continuous variable. It is discretized to high- and medium-

frequencies in Figure 2.1 corresponding to the quantiles 90% and 50%, to simplify

visualization.

First compare the top-left panel and the top-right panel. In the condition of

the suffix [t] (in the left panel), the tongue tip/blade is positioned lower and at the

same time the tongue body is positioned higher, compared to the condition of the

suffix [n]. Tongue fat in the tongue, indicated by the orange areas in the center

of each figure below the tongue surface contours, is also pushed up in the suffix

condition [t], compared to the suffix condition [n]. In addition, the tongue root is

extended more posterior in the [n] condition, which is indicated by the redder area

to the left of the top-right figure. The less visible tongue root in the [t] condition

compared to the [n] condition indicates that the tongue root tends to be shadowed

by the hyoid bone in the [t] condition, compared to the [n] condition. The forward

and upward advancements of the hyoid bone are associated with the fronting of

the tongue (Jordan & White, 2008; Kutzner et al., 2017; Sanders & Mu, 2013).

In the current study, the forward and upward movement of the tongue is stronger
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(a) High frequency words in sie ...t, e.g., sie
sagt [zi: za:kt]

(b) High frequency words in sie ...n, e.g.,
sie sagen [zi: za:g(@)n]

(c) Medium frequency words in sie ...t, e.g.,
sie nagt [zi: na:kt]

(d) Medium frequency words in sie ...n,
e.g., sie nagen [zi: na:g(@)n]

(e) Difference (a)-(c). (f) Difference (b)-(d).

Figure 2.1: Predicted ultrasound images at the middle of the target vowel, i.e.,
[a(:)], Warmer (darker red) colors in (a–d) are those for which the brightest pixels
are predicted. Warmer colors in (e–f) represent brighter pixels in high frequency
words compared to medium frequency words

in the suffix [t] condition than the suffix [n] condition. These observations hold

irrespective of whether the word has a high or a medium frequency.

The two figures on the bottom present the difference surfaces between high-

frequency and medium-frequency words. Warmer colors in these contour plots in-

dicate brighter pixels for high-frequency words as compared to medium-frequency

words. Colder colors, by contrast, indicate that medium-frequency words have
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brighter pixels than high-frequency words. Accordingly, warmer colored regions

in the bottom two figures indicate that the corresponding regions are brighter in

high frequency (figures on the top), and cold colored regions indicate the opposite.

The blank areas in these difference contour plots denote pixels for which there

is no significant difference between high-frequency and medium-frequency words

(α = 0.05). These two difference plots are essential for clarifying where the fitted

surfaces for high-frequency words and medium-frequency words actually differ.

First consider the “sie...t” condition (the left panels). In the difference plot,

at the right-hand side, we find a green area (denoting brighter pixels for medium-

frequency words) and below it, two red areas (denoting brighter pixels for high-

frequency words). These areas represent the preferential positions of the tongue tip

and tongue blade depending on the frequency of the word that is articulated. Since

warmer colors represent brighter pixels in the high frequency condition compared

to the medium frequency condition, the tongue tip/blade is lower for high frequency

words, compared to medium frequency words.

By contrast, the left side of the difference surface (Figure 2.1e) illustrates dif-

ferences pertaining to the positions of the tongue root. The orange area in the

top left of the difference surface indicates a higher position of the tongue root for

higher-frequency words. For medium-frequency words, as indicated by the large

blue area, the tongue root is positioned lower. Below the blue area is another or-

ange area, which we interpret to reflect tongue fat (Kim et al., 2014; S. H. Wang

et al., 2020; Yu et al., 2022) that is pushed up for high-frequency words, but not for

medium-frequency words.

In contrast to the suffix [t] condition, the difference surface for the suffix [n]

condition (Figure 2.1f) is almost empty. Although there are some colored regions,

they do not appear to be systematic. The almost empty difference surface indicates

that tongue shapes are rather similar for the high- and medium-frequency condi-

tions. The absence of an enhancement effect of frequency in the [n] condition and

the presence of enhancement in the [t] condition is consistent with the findings of



CHAPTER 2. ARTICULATORY EFFECTS OF FREQUENCY MODULATED BY

SEMANTICS 52

Tomaschek, Tucker, et al. (2018). The absence of an enhancement effect in the [n]

condition may be due to the final nasal being realized either as a syllabic nasal or

as the final nasal in a separate syllable in which it is preceded by a schwa.

The present findings replicated one of the observations reported by Tomaschek,

Tucker, et al. (2018), using ultrasound. The tongue tip was in a lower position for

higher-frequency words as compared to medium-frequency words. This lowering

of the [a:] for high-frequency words suggests these words are phonetically en-

hanced. The enhancement effect is in line with the hypothesis that “articulatory

practice makes perfect” (Tomaschek, Tucker, et al., 2018).

In the next section, we compare inflected and non-inflected words, in order to

see whether the enhancement effect observed in the ultrasound record is modulated

by morphological status.

2.3 Frequency effects in relation to inflectional status

The preceding case study investigated the articulation of inflected words, with spe-

cial attention to how frequency of use modulates the position of the tongue during

the articulation of the stem vowel. In this section, we continue our investigation of

the stem vowel, but now we impose stricter controls on segmental similarity, while

comparing two conditions, one in which the stem vowel is followed by an inflec-

tional exponent, and one in which there is no such following inflectional exponent.

We call these two conditions “inflected” and “non-inflected”. This allows us to

investigate the consequences of inflectional status for articulation. In the litera-

ture, this contrast is often referred to as words with/without a morpheme boundary

(Hayes, 2000; Lee-Kim et al., 2013). We will follow this terminology, without

however assuming that some kind of boundary is physically present; i.e., the ter-

minology will be used in a purely descriptive sense.

The goal of this second case study is to clarify whether the presence or absence

of a morpheme boundary is associated with systematic differences in articulation



CHAPTER 2. ARTICULATORY EFFECTS OF FREQUENCY MODULATED BY

SEMANTICS 53

in EMA recordings of spontaneous conversation, under the strictest possible con-

trols for form similarity. (Here, and in what follows, we use the term “morpheme

boundary” in a descriptive sense, the presence of a morpheme boundary being

equivalent to a word being morphologically complex in the concatenative sense.)

It is of course impossible to find a sufficient number of word pairs with identical

segments (such as German Macht [maxt] ‘power’ vs. mach+t [maxt] ‘makes’).

We therefore extracted from the Karl Eberhards Corpus of spontaneously spoken

southern German (KEC) (Arnold & Tomaschek, 2016) all the words with the same

rhyme structure and with the same segments for the nucleus and for the word-final

segment, namely the word-final segment structure [a(:)(C)t]. “(C)” represents at

most one intervening segment between the target vowel [a(:)] and the word-final

segment [t]. kalt [kalt] ‘cold’ is one example of a non-inflected word adopted in the

present study, where no morpheme boundary is located between [a(:)] and [t]. On

the other hand, mal+t [ma:l+t] ‘paints’ has a morpheme boundary between [a(:)]

and [t]. The stems of the inflected and non-inflected words in our data set com-

prised not only simple words, but also some derived words and compounds. For

example, bemalt consists of a prefix be- and a verb malt, where -t is an inflectional

suffix. Ausland consists of a prefix Aus- and a noun Land, where no inflection is

involved. In the current study, inflected words included 16 derived words by prefix-

ation and one compound word. Non-inflected words included nine derived words

and 14 compound words.

Presence and absence of a morphological boundary between the target vowel

and the word-final [t] were coded manually. Intermediate cases involving stem al-

ternation (e.g., denken → gedacht) were excluded. In the end, 84 word types, of

which 48 were non-inflected and 36 were inflected, were included in the analysis,

which amounts to 532 word tokens being analyzed. For each token, vertical tongue

tip and body positions during the target vowel were obtained from KEC. Tongue

positions were recorded in KEC with electromagnetic articulography (EMA, NDI

WAVE articulograph, sample rate 400Hz). Data points outside 1.5 times the in-
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terquantile range were considered to be outliers and were therefore removed from

the dataset.

Vertical tongue tip/body sensor positions (SensorPosition) were modelled

with Generalized Additive Mixed-effect Models (GAMMs) as a function of time,

fitting separate models for the tongue tip and the tongue body. The sensor positions

were corrected and centralized by means of three head positions and a bite plate.

For details of sensors, see Arnold and Tomaschek (2016). Time was normalized, so

that the onset of the vowel was 0 and the offset was 1. We included factor smooths

for the interaction of speaker by normalized time.

In addition, we included random intercepts for the segments preceding and

following the target vowel (PrevSeg and NextSeg). As many word types were

represented by a single word token, we refrained from incorporating by-word fac-

tor smooths (Baayen & Linke, 2020) and instead included segments preceding and

following the target vowel as random effects (i.e., PrevSeg and NextSeg). By

including preceding and following segments, the influence of preceding and fol-

lowing segments on the target vowel was controlled statistically. Just in case that

preceding and following segments of very frequent word tokens might distort the

results, we fitted another GAMM excluding the most frequent word type (i.e., halt

[halt] “just/simply”). This model showed very similar results as the model that in-

cluded the most frequent word type. In addition, another GAMM was fitted with

additional factors representing whether the segments preceding and following the

vowel were alveolar, considering systematic appearance of alveolar consonants in

the segments surrounding the vowel would bias the results. These additional fac-

tors did not improve the model fit and therefore were not considered any further.

We fitted separate curves for position as a function of time for non-inflected

words and inflected words (Morph). Finally, we included duration (SegDur) and

word frequency (Freq) as covariates, and allowed both covariates to interact with

time and morphological complexity. Frequency was obtained from the SdeWac

corpus (Faaß & Eckart, 2013) and log-transformed prior to fitting. The mean of
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frequency in a log scale was higher for inflected words, compared to non-inflected

words, t(10850) = 10.541, p < 0.001. The range of frequency was larger for

inflected words, compared to non-inflected words: the maximum values of fre-

quency were 13.084 and 12.569 for inflected and non-inflected words respectively,

whereas the minimum values of frequency were 3.434 and 3.611 for inflected and

non-inflected words respectively. Accordingly, there is no big difference in fre-

quency distributions between inflected and non-inflected words, although the cur-

rent data is collected from a spontaneous speech corpus (Arnold & Tomaschek,

2016) and therefore it is impossible to completely match frequency distributions

between the two morphological categories. The median duration of inflected words

(Mdn=0.09) was larger than the median duration of their non-inflected counter-

parts (Mdn=0.07, Mann-Whitney U=25004, p<0.001), which is consistent with the

duration-lengthening effect found for the pre-morpheme-boundary condition (Hay,

2007; V. G. Li et al., 2020; Plag & Ben Hedia, 2018; Seyfarth et al., 2017; Smith

et al., 2012; Song et al., 2013; Strycharczuk & Scobbie, 2016; Sugahara & Turk,

2009). The mean segment duration (SegDur) of long vowels was 121 ms and of

short vowels 103 ms, t(5231.6) =−13.866, p < 0.001, reflecting the phonological

distinction between /a/ and /a:/.

Duration and frequency were not correlated significantly when inflected and

non-inflected words were aggregated, r(510) = −0.08, p ≈ 0.08. Separating in-

flected and non-inflected words, non-inflected words showed a significant correla-

tion of frequency and duration, r(306) =−0.18, p < 0.001, while inflected words

did not, r(202) =−0.03, p ≈ 0.65. These observations are consistent with the hy-

pothesis that the effect of frequency on duration is modulated by morphological

status.

The following GAMM was fitted to the data, again using the bam function of

the mgcv package (Wood, 2017):

SensorPosition ~ s(Time, Speaker, bs=‘‘fs’’) +

s(PrevSeg, bs=‘‘re’’) +
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s(NextSeg, bs=‘‘re’’) +

s(Time, by=Morph, k=3) +

s(SegDur, by=Morph, k=3) +

s(Freq, by=Morph, k=3) +

ti(SegDur, Time, by=Morph, k=c(3,3)) +

ti(Freq, Time, by=Morph, k=c(3,3)) +

Morph)

For both sensors, GAMM analyses revealed that inflected words were articu-

lated with lower tongue trajectories on average, compared to non-inflected words,

especially around the center of the vowel. In what follows, we zoom in on how

frequency modulated this difference.

Figure 2.2 visualizes tongue tip/body height at the middle of the vowel as a

function of frequency with inflected and non-inflected words in blue-green and red

respectively. For the middle of the vowel, we selected the frame in the middle of

all the frames that belong to the segment based on acoustic segmentation. For the

tongue tip (left panel), we observe that for non-inflected words, a higher frequency

predicts a higher vertical position. Conversely, for inflected words, a higher fre-

quency of use predicts a lower vertical position. The right panel clarifies the effect

of frequency for the tongue body sensor. The positive slope observed for the tongue

tip when words are non-inflected is again present. The effect of frequency is very

similar across both inflected and non-inflected words. Only for the very highest

frequency words do we see a small difference between non-inflected and inflected

words. Higher and lower positions correspond to reduced and enhanced articu-

latory realizations respectively, because, for the open low vowel [a(:)], a lower

tongue height reflects lowering and hence a more clear articulation. Therefore, we

observe here a reduction effect for non-inflected words both for the tongue tip and

the tongue body sensor. For inflected words, an enhancement effect is observed

most clearly for the tongue tip. For the tongue body, only a small difference is

observed for high frequency words. This result is consistent with the earlier study
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by Tomaschek, Tucker, et al. (2018), which also reported a reduced effect for the

tongue body sensor.
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Figure 2.2: Vertical tongue positions (in mm) at the middle of the target vowel [a(:)]
for inflected (blue-green) and non-inflected (red) words as a function of frequency.
Confidence intervals are 95% credible intervals.

Gahl and Baayen (2022) proposed that, other things being equal, the more

predictable words are in utterances, the more probable it is that they will be re-

duced. Here, they follow the smooth signal redundancy hypothesis of Aylett and

Turk (2004). At the same time, independently, again other things being equal,

word-forms that are better supported by their semantics undergo articulatory en-

hancement (i.e., semantic strengthening). If this hypothesis is on the right track,

does it follow that the present results should be understood as indicating that for

non-inflected words the principle of smooth signal redundancy (Aylett & Turk,

2004) dominates (predicting higher-frequency words reduce), whereas for inflected

words, the principle of semantic strengthening dominates? Of course, this imme-

diately raises a further question, namely, why it would be only the inflected words

that show an effect of semantic strengthening. This question is addressed in the

next section.

In what follows, however, we first briefly consider two alternative explanations,
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one building on the paradigm uniformity hypothesis, and one pursuing the smooth

signal redundancy hypothesis (Aylett & Turk, 2004).

The paradigm uniformity hypothesis states that members of the same paradigm

tend to be similar to each other (Hayes, 2000; Plag, 1999, 2013; Seyfarth et al.,

2017). For example, Seyfarth et al. (2017) found the stem of inflected words tends

to be longer than the same string of segments in morphologically simple words

(e.g., frees vs. freeze). This leads to the prediction that German verb stems should

also be longer compared to monomorphemic controls.

If the findings of Seyfarth et al. (2017) generalize to tongue position, one would

expect to find that the vowel in stems should be articulated with lower tongue

positions compared to monomorphemic controls. As can be seen in Figure 2.2,

this is the case only for higher-frequency inflected words.

One reason for the absence of a main effect is that in German verb paradigms,

the stem is much less dominant compared to English. Whereas in English, the

stem is followed by an inflectional exponent only for the 3rd person singular, and

is also used as infinitive, German verbs have somewhat richer inflection with sep-

arate forms in the singular for the three persons, and most present plurals and the

infinitive sharing the same form. As a consequence, the German stem is much less

dominant in its paradigm compared to English verb stems. This holds even when

we take into account that the first-person singular form, which ends in a schwa,

undergoes schwa-apocope in colloquial speech. Accordingly, there is no strong

reason to consider that the stem of German inflected verbs is influenced strongly

by their bare forms and would therefore be characterized by longer duration and

less coarticulation. In fact, German inflectional verbal suffixes are alveolar, i.e., [t],

[st], [(@)n], the exception being [@]. If anything, inflected forms with an alveolar

suffix are most likely to serve as the origin of the paradigm uniformity effect.

In addition, the paradigm uniformity hypothesis does not predict an interac-

tion with frequency. The current results show that, as frequency increases, pre-

morpheme-boundary segments are articulated with tongue positions that are the
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same as or lower than no-boundary segments. Therefore, the current results only

partially support the paradigm uniformity account. Phonetic realizations are en-

hanced in complex words only when carrier-word frequency is high enough.

The paradigm uniformity hypothesis is based on the decompositional view of

morphologically complex words (Taft, 1979; Taft & Forster, 1975). Strictly de-

compositional theories hold that inflected forms have no lexical status of their own,

and are always processed on the basis of their stems, in combination with morpho-

logical rules. Therefore, these theories predict that (cumulative) stem frequency

is the crucial predictor, and not the frequency of the inflected form itself. In or-

der to evaluate this possibility, we fitted another GAM with the same structure but

replaced word frequency with lemma frequency. The result showed that the fit-

ted GAM with lemma frequency performed worse than that with word frequency

(∆ML = 11.878). Therefore, the observed patterns of frequency effects according

to morphological status are not very likely due to morphological decomposition

and activation of lemmas.

It is also possible that places of articulation, not phonemes per se, were sys-

tematically different between morphological conditions. For example, [s] and

[n] were distinguished as phonemes sharing the same place of articulation. As

a consequence, it might be argued that they should undergo similar effects of co-

articulation. In order to consider the possibility of potential confounding by places

of articulation of segments surrounding the target vowel, we created a new factor

variable that encoded whether the previous/next segment of the target vowel was

alveolar. We fitted additional GAMMs with this new factor variable for tongue tip

and body positions separately. In both of the models, the inclusion of the factor

variable did not alter the observed effects of frequency as shown in Figure 2.2.

Therefore, systematic differences in segments around the target vowel did not con-

found the present results regarding the observed effects of frequency.

Next, we consider how the present results challenge the smooth signal redun-

dancy hypothesis (Aylett & Turk, 2004). The reduced realization for non-inflected
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words as frequency is increased dovetails well with this hypothesis. However, this

hypothesis is insensitive to morphological structure. Whether or not the target

word is morphological complex, the word is predicted to be reduced if the word is

likely to occur (i.e., high frequency). Consequently, this hypothesis also predicts

reduction for inflected words, which is not consistent with the current results.

Since the observed interaction of frequency by inflectional status resists ex-

planation in terms of paradigm uniformity or smooth signal redundancy, the next

section investigates the consequences of inflectional semantics for articulation.

2.4 From semantics to articulation

Using the theory of the discriminative lexicon (Baayen et al., 2019), Chuang et al.

(2021) and Gahl and Baayen (2022) reported phonetic enhancement for forms that

are better supported by their semantics, compared to their competitors. Consider-

ing the strong form-meaning relations between inflectional suffixes and inflectional

meanings, word-final forms may receive more semantic support when these forms

encode inflectional semantics. This, in turn, is expected to give rise to enhanced

articulation. In what follows, we pursue this explanation in two steps.

Section 2.4.1 introduces the discriminative lexicon model and formulates a

measure of semantic support. Section 2.4.2 applies this measure as a covariate

in a GAM model predicting vertical tongue position.

2.4.1 Deriving a semantic measure from LDL

The discriminative lexicon model (DLM: Baayen et al., 2018; Baayen et al., 2019)

is a mathematical model that sets up simple mappings between numerical repre-

sentations for words forms (brought together in a matrix C) and numerical repre-

sentations for their meanings (brought together in a matrix S). These mappings are

implemented using the core ideas of multivariate multiple regression, an estimation

method that we refer to as Linear Discriminative Learning (LDL).
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The C-matrix is a word by triphone matrix. For each word, the cells in its

row-vector whose triphone (context sensitive phone) is contained in the word were

coded as 1 and otherwise 0. The S-matrix brings together, for each word, a 300-

dimensional vector representing its meaning, using embeddings from a pre-trained

word2vec model (Müller, 2015). The C and S matrices were constructed for all

the words in the CELEX database (Baayen et al., 1995) whose frequency was more

than 0, and for which a word2vec (Müller, 2015) embedding was available.

A mapping G from S to C was estimated by solving C = SG. Given G,

a word’s form vector ĉ is obtained by post-multiplication with G of the corre-

sponding semantic vector: ĉ= sG. The sum of the semantic support for a word’s

triphones in ĉ was used by Gahl and Baayen (2022) to predict the spoken word du-

ration of English homophones. In what follows, we focus on the semantic support

for the final triphone in a word, to which we refer as SufSemSup, as this triphone

is most relevant for the co-articulation within the vowel with the word-final [t].

Semantic support to a sublexical unit such as a word’s final triphone can be

understood conceptually as a measure gauging how accurately you can guess a

particular sublexical string based on its carrier word’s meaning. For example,

the meaning “something round” does not support any particular sublexical string.

Words that this meaning supports include ball, apple, donut, sun, etc. As a conse-

quence, none of the triphones in these words receives solid support from the mean-

ing “something round”. In contrast, inflectional suffixes are usually associated

well with their corresponding inflectional meanings. For example, the meaning of

“past tense” predicts that it is quite likely that the word contains -ed at the word

final position. Although the meaning of “past tense” does not exclude a few other

possibilities (irregular verbs, for instance, do not inflect with -ed), -ed should re-

ceive much stronger semantic support from its inflectional meaning, in comparison

to the first example with the much more specific meaning of “something round”.

These informal intuitions about how well a given triphone can be predicted from

a word’s meaning can be made precise by Linear Discriminative Learning in the
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Discriminative Lexicon Model (Baayen et al., 2019).

In the preceding section, we observed an interaction of inflectional status (i.e.,

presence/absence of a morpheme boundary after the stem vowel) by frequency.

Whereas inflectional status is a binary measure — a word is either inflected or

non-inflected — SufSemSup is a continuous measure. To clarify whether this con-

tinuous measure is a proper real-valued counterpart for the binary predictor con-

trasting non-inflected and inflected words, we fitted a logistic regression model,

predicting inflectional status from SufSemSup. Figure 2.3 visualizes how the prob-

ability of inflectional status varies with SufSemSup, and supports SufSemSup as a

continuous measure of inflectional status.
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Figure 2.3: Probability of inflected words as a function of semantic support to
word-final triphones. Greater semantic support for word-final triphones predicts
higher probability of morphological complexity.

For the words in our dataset, we have a set of word-final triphones, all of which

end with t#. Each of these word-final triphones comes with a different real num-

ber denoting how much support that triphone receives from the semantics of its

carrier word. Importantly, the very same triphone can have different values for

SufSemSup, as this measure critically depends on the semantic vector of its own

specific carrier word. Thus, instead of having a single inflectional exponent -t,

we have a set of final triphones with support values that depend on the word2vec
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embeddings of their carrier words.

2.4.2 Predicting tongue tip positions with a measure of semantic sup-

port

Is SufSemSup useful as a covariate predicting vertical tongue position? And if so,

how should SufSemSup relate to tongue tip position? In general, larger values of

measures of semantic support are expected to predict more enhanced pronuncia-

tions. For instance, Gahl and Baayen (2022) and Chuang et al. (2022) observed

a positive correlation of spoken word duration and measures of semantic support.

For the present data, we therefore expect greater semantic support for the final tri-

phone to be correlated with lower tongue positions, as for the [a:] vowel, lower

tongue positions reflect articulatory enhancement. The reason that semantic sup-

port is expected to predict enhancement instead of reduction is straightforward. To

see this, consider the form vector ĉ= sG. Unlike the gold standard vector c, which

has 1 for exactly those triphones that are part of the word, and 0 elsewhere, the ĉ

vector has real-valued entries, which are closer to zero for triphones that are not

part of a word, and that have larger positive values for triphones that are properly

part of the word. The smaller the semantic support ĉk for the k-th triphone is, the

more likely it is that this triphone should not be articulated. Conversely, the larger

the value of ĉk, the more likely it is that it should be pronounced. The theory of the

discriminative lexicon goes one step further, and argues that the amount of seman-

tic support correlates positively with the amount of phonetic enhancement. The

above mentioned studies of spoken word duration provide support for this claim.

We therefore expect that, overall, greater values of SufSemSup should correlate

positively with phonetic enhancement.

A further question concerns whether, and if so, how, SufSemSup interacts with

frequency. Given the results reported in the preceding section, we expect an in-

teraction of frequency by semantic support, such that for words with low semantic

support, increasing frequency predicts higher tongue positions. For words with
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high semantic support, the reverse pattern is expected.

Finally, we are interested in clarifying whether SufSemSup outperforms inflec-

tional status as predictor for the tongue tip position, as this would provide further

support for the importance of taking meaning into account when studying morpho-

logical processing.

To address these questions, we fitted a slightly modified GAMM to the same

dataset as analyzed in the preceding section, the only difference being that the

predictor “morphological status” was replaced by SufSemSup:

SensorPosition ~ s(Time, Speaker, bs=‘‘fs’’) +

s(PrevSeg, bs=‘‘re’’) +

s(NextSeg, bs=‘‘re’’) +

s(SufSemSup, k=3) +

s(Freq, k=3) +

s(SegDur, k=3) +

ti(Time, SufSemSup, k=c(3,3)) +

ti(Time, Freq, k=c(3,3)) +

ti(Time, SegDur, k=c(3,3)) +

ti(SufSemSup, Freq, k=c(3,3)) +

ti(SufSemSup, SegDur, k=c(3,3)) +

ti(Freq, SegDur, k=c(3,3)) +

ti(Time, SufSemSup, Freq, k=c(3,3)))

All terms in this model involving frequency, semantic support, and their interaction

were well supported (all p < 0.0001). The fitted surface spanned by frequency and

SufSemSup is presented in Figure 2.4. Warmer colors indicate higher positions of

the tongue tip sensor.

Except for the very lowest values of frequency, the trend is that for a fixed

frequency, increasing semantic support predicts lower tongue positions. This effect

is the strongest for the highest-frequency words. Thus, greater semantic support is
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indeed associated with articulatory enhancement, as predicted by the theory of the

discriminative lexicon.

Figure 2.4 clarifies that the expected interaction of frequency by semantic sup-

port is also present. The effect of frequency on tongue tip position has a positive

slope for low values of SufSemSup, indicating that as frequency increases, the

tongue tip sensor is found at higher positions. Since low values of SufSemSup in-

dicate a low probability of being inflected, we replicate our earlier finding in the

preceding section that for non-inflected words, the tongue tip rises with increasing

frequency. In contrast, when word-final triphones receive good semantic support

(indicated by higher values of SufSemSup), the slope for frequency is negative:

higher probabilities of being inflected are associated with lower tongue positions.
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Figure 2.4: Interaction of effects of frequency and SufSemSup at the middle of
the vowel [a(:)]. Warmer and colder colors represent higher (reduced) and lower
(enhanced) tongue tip positions respectively. Dashed lines specify 1SE confidence
regions for the contour lines.

This interaction between frequency and SufSemSup is not confounded with

triphone frequency. Although SufSemSep is mildly correlated with triphone fre-

quency, r(72) = 0.36, p < 0.01, adding triphone frequency to the GAMM does not

eliminate the effect of SufSemSup. As SufSemSup increases, the tongue tip sensor

is positioned lower. By contrast, an increase in triphone frequency is associated
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with tongue raising. Within the framework of DLM (Baayen et al., 2019), the ef-

fect of triphone token frequency is likely an effect of triphone type frequency in

disguise. Triphones that occur in more different words and that realize more differ-

ent senses are more difficult to learn, and hence will receive reduced support from

their senses. A new algorithm for incorporating frequency of use into the estima-

tion of the mapping from meaning to form is expected to allow for more precise

modelling of the semantic support for the final triphone while also taking into ac-

count the consequences of the frequencies with which triphones occur (Heitmeier

et al., 2022).

Similarly, the observed patterns do not seem to be confounded with the transi-

tional probabilities of phonemes into the target vowel. To look into the potential

confound by transitional probability, we fitted another GAMM by adding bigram

conditional probability of the stem vowel given one segment before the vowel

to the GAM model. The inclusion of transitional probability, however, led to

worse model performance in spite of increased model complexity (∆ML= 13.065).

Therefore, transitional probability into the target vowel is not an essential predictor

for the present dataset.

A remarkable result is that replacing the original categorical predictor “in-

flectional status” with SufSemSup results in a substantial improvement in model

fit by no less than 10158 AIC units (model comparison test: χ2(5) = 5051.669,

p < 0.0001). Importantly, at no point is morphological structure explicitly coded

into the computational model: form representations are based on triphones, and se-

mantic representations are based on word2vec, which, unlike fasttext, has no access

to internal word structure. All that is required is inspection of the word-specific se-

mantic support for the final triphone. Theoretical constructs such as morphemes

and morpheme-boundaries are not required.

Many different semantic measures can be derived within the framework of the

DLM, in addition to semantic support. In fact, eight other semantic measures were

actually computed and evaluated for the present study. However, based on variable
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importance estimated with a random forest, it was the SufSemSup that turned out to

be the most powerful predictor of tongue tip height (although several other related

measures also performed quite well). The importance of specifically this final tri-

phone may help explain why there is no strong frequency effect for the tongue body

sensor: the tongue body is less involved in the co-articulation with the word-final

[t]. Slightly higher tongue body positions found in the first study with ultrasound

were therefore likely due to a passive movement induced by the lowering of the

tongue tip. In addition, it is possible that what we referred to as “tongue body”

in ultrasound images can correspond to somewhere more in the back of the oral

cavity than the location of the “tongue body” sensor of EMA. Because of a lack

of anatomical reference points in ultrasound imaging, it is far from straightforward

to establish how the positions of the EMA sensors correspond to regions in the ul-

trasound image. This topic is therefore left for future research using simultaneous

recordings with EMA and ultrasound.

2.5 Discussion

In this chapter, we presented three case studies. The first study replicated one of the

previous findings reported by Tomaschek, Tucker, et al. (2018), using ultrasound.

Tomaschek, Tucker, et al. (2018), using EMA, found enhanced articulatory realiza-

tions for high frequency inflected words, compared to medium frequency words. A

similar enhancement effect emerged from the ultrasound recordings. The more en-

hanced realization of higher frequency words supports the hypothesis of kinematic

improvement with practice.

In the second study, we compared articulatory realizations of [a(:)] of inflected

and non-inflected words. For non-inflected words, a higher frequency predicted a

higher tongue position, suggesting articulatory reduction. But for inflected words,

the opposite effect emerged, most notably for the tongue tip sensor, which is more

actively involved in the co-articulation between [a(:)] and [t].
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This interaction between frequency and inflectional status is not predicted by

the paradigm uniformity hypothesis (Seyfarth et al., 2017), the smooth signal re-

dundancy hypothesis (Aylett & Turk, 2004), the paradigmatic signal enhance-

ment hypothesis (Kuperman et al., 2007), and the kinematic practice hypothesis

(Tomaschek, Arnold, et al., 2018; Tomaschek, Tucker, et al., 2018). All these

hypotheses can explain either the pattern for inflected words, or the pattern for

non-inflected words, but not both.

Following up on studies that investigated how semantic support for forms of

words affects spoken word duration (Chuang et al., 2021; Gahl & Baayen, 2022),

the third study replaced the categorical predictor of inflectional status (inflected vs.

non-inflected) by a continuous measure of semantic support provided by empirical

word embeddings (word2vec) for the word-final triphone. This measure of seman-

tic support was shown to be the real-valued counterpart of the categorical measure:

the probability of being inflected increases with semantic support. Replacing mor-

phological status with semantic support resulted in a substantially improved model

fit. For words with low semantic support (most likely non-inflected words), tongue

height was positively correlated with frequency; for words with high semantic sup-

port, the correlation changed sign. This result indicates that it is the specific se-

mantics of inflected and non-inflected words (e.g., inflectional meanings) that drive

articulation, and not the presence of an exponent or a putative morpheme bound-

ary in forms of words. In other words, systematic differences in meanings create

different (co-)articulatory patterns between inflected and non-inflected words, and

not as a consequence of the presence of a discrete exponent or hypothesized mor-

pheme boundary. Systematic differences in meaning are not restricted to inflected

and non-inflected words. Investigation of the semantic support for derived words

is a topic that is on our agenda for future research.

The observed reduction and enhancement effects of frequency according to

different degrees of semantic support to inflectional suffixes can also be understood

to elaborate the distinction between the need for clearer articulation in favor of
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the listener and the desire to save articulatory effort for the speaker themselves

(Lindblom, 1983; Lindblom & Marchal, 1990; Nelson, 1983).

In general, it takes longer to move the tongue across longer distance (Kelso

et al., 1985). In order to keep the same “traveling” duration, the speaker has to

move the tongue faster. For moving the tongue faster, the speaker needs to make

greater articulatory effort (Nelson, 1983). According to the H&H theory (Lind-

blom & Marchal, 1990), the speaker has certain degrees of freedom with respect

to articulatory effort. They can choose to make more effort to move the tongue

for clearer articulation under temporal pressure, whereas they can also choose to

undershoot an articulatory target (less clearer, reduced articulation) for saving ar-

ticulatory effort (Lindblom, 1983). Lindblom and Marchal (1990) suggested that

the balance of the benefits for the speaker and the listener is determined by vari-

ous communicative factors. Therefore, although duration is correlated with longer

distance and faster tongue movements, duration cannot be a sole factor to deter-

mine degrees of articulatory reduction/enhancement (Lindblom, 1983; Lindblom

& Marchal, 1990).

The present study controlled vowel duration and phonological environment.

And yet we found clearer articulation for the words of higher frequency and greater

semantic support. Therefore, the present findings can also be interpreted to elabo-

rate other factors than just duration, which are responsible for the many low-level

phonetic differences which Lindblom and Marchal (1990) called “the lack of in-

variance” (Lindblom & Marchal, 1990, p. 403). More precisely, the present study

suggests that, when duration is kept constant, the speaker tends to pay more articu-

latory effort for clearer (co-)articulation when the suffix of the word is semantically

motivated and therefore less uncertainty is involved for the phonetic makeup of that

word.

More direct evaluation of the claims by the H&H theory (Lindblom & Mar-

chal, 1990) is possible. A number of studies has suggested that the balance of the

benefits for the speaker and the listener is important to predict phonetic realization
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(Kelso et al., 1985; Lindblom, 1983; Lindblom & Marchal, 1990; Nelson, 1983).

The present study focused on a semantic measure purely from the perspective of

speech production. However, the counterpart of SufSemSup on the comprehension

side, called functional load, was also found to be predictive for phonetic realization

(Denistia & Baayen, 2022; Saito et al., 2021). SufSemSup and functional load are

expected to capture opposing forces between the benefits for the speaker and the

listener, which are analogous to the distinction of the clarity for the listener and the

economy of articulatory effort according to Lindblom and Marchal (1990). This

possibility is left open for future research.

Another open question is how to understand the observed effect of frequency.

The current results only indicate that the balance between the reduction and en-

hancement effects of frequency are adjusted by semantic support for forms. It

is perhaps unsurprising that the effect of semantic support is strongest for the

highest-frequency words, which are the words for which we have more obser-

vations, and that speakers have encountered more often. However, this role of

frequency for learning is not properly accounted for by the way in which we es-

timated the mapping from meaning to form, namely, using the matrix algebra of

multivariate multiple regression. The resulting mapping represents the “endstate of

learning” that is reached with “infinite” experience, see Heitmeier et al. (2021) and

Shafaei-Bajestan et al. (2021) for detailed discussion. Recently, a new algorithm

has been developed that is able to take frequency of use into account (Heitmeier et

al., 2022); Taking frequency of use into account for the mapping between meaning

and form then is another topic that is high on our research agenda.

How frequency shapes the fitted surface for tongue tip height likely reflects

two factors. The first factor concerns how frequency modulates the learning of

the mapping from meaning to form. The present estimated form vectors ĉ are

suboptimal in this respect, and hopefully can be improved in the near future.

The second factor concerns how the informativity of the word in the discourse

(Aylett & Turk, 2004) affects articulation. Within the framework of the discrim-
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inative lexicon, given a measure of the informativity hω,k ≥ 0 of a word token ω

at point k in a discourse, its effect on the semantic support for triphones is, in the

simplest possible scenario, proportional to hω,kĉ. In this way, the reduction effect

and the enhancement effect of frequency can be represented jointly in the model.

However, teasing apart the independent contributions of these two factors to articu-

lation remains a topic for further research. Whether the paradigmatic enhancement

hypothesis (Kuperman et al., 2007) can be integrated within the present approach

likewise awaits further advances in computational modeling.

What the present study is able to contribute to the advancement of knowledge

is, first, further support for the possibility that part of the effect of frequency may

reflect articulatory practice, and second, that quantitative representations of mean-

ings of words, such as made available by distributional semantics, can be used to

obtain substantially more precise predictions of phonetic realization.
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Chapter 3

Analyzing ultrasound images

with GA(M)Ms

Abstract: This study has two aims: 1) to develop a new analysis methodology

of ultrasound images, and 2) to investigate effects of phonetic enhancement by

word frequency, using ultrasound. The new analysis method of ultrasound images

makes use of Generalized Additive Mixed-effect Models (GAMM: Wood, 2017)

and predicts each pixel brightness to constitute whole ultrasound images. Using

this new methodology, in the following theoretical part of this paper, we address the

phonetic enhancement effects of word frequency with experimental data of German

native speakers articulating pronoun-verb combinations. The results indicated that

more peripheral tongue positions for the stem vowel [a(:)] were associated with

higher frequency words. This effect of word frequency was observed for the suffix

[t] condition, but not for the suffix [n] condition. These results will be interpreted

to support general effects of phonetic enhancement by high frequency, explained

by the paradigmatic signal enhancement hypothesis (Kuperman et al., 2007) and

the kinematic practice hypothesis (Tomaschek, Arnold, et al., 2018; Tomaschek,

Tucker, et al., 2018).
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3.1 Introduction

Tongue movements during speech can provide extensive insights to speech pro-

duction process. To record tongue shapes and movements during speech, several

different techniques have been developed. One of these techniques is ultrasound

imaging. Ultrasound imaging makes use of high frequency sound waves that in

phonetics are used to trace the tongue surface.

Although ultrasound imaging has attracted more and more attention and has

been adopted in a wide range of studies, there is still no consensus regarding the

optimal way for analyzing ultrasound images and sequences of ultrasound images.

A standard methodology fits a spline curve to the brightest pixels that are expected

to correspond to the tongue surface contour. This methodology has the advan-

tage that it reduces the high complexity of ultrasound images only to just a set of

pixel locations that are straightforwardly described by their x and y coordinates.

Detected tongue contours can then be straightforwardly compared with statistical

methods such as Smooth Spline ANOVA (Davidson, 2006; Gu, 2002; Lee-Kim et

al., 2013; Strycharczuk & Scobbie, 2016; Sung, 2014) or GAMs (Generalized Ad-

ditive Mixed-effects Models: Heyne et al., 2019; Noiray et al., 2019; Strycharczuk

& Scobbie, 2017).

However, extraction of only the tongue surface contour has the disadvantage

that other potentially relevant information about tongue movements are not avail-

able to the analyst. For example, changes in the location of tongue fat within

the tongue can be indicative of changes in muscle tension and contraction taking

place during articulation. More importantly, movements of the hyoid bone are vis-

ible in the ultrasound record (Hiiemae et al., 2002; Ma & Wrench, 2022; Rossi

& Autesserre, 1981) and can inform about tongue fronting and tongue elevation,

although there is still a lot of uncertainty as to the exact interpretation of the data

(Buchaillard et al., 2009).

This study proposes to analyze full ultrasound images with the Generalized

Additive Model (GAM: Wood, 2017), using tensor product smooths. Tensor prod-
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uct smooths can take into account all the pixels in an ultrasound image, and the

predicted pixel brightness can be visualized using contour plots.

In what follows, we first summarize advantages and disadvantages of ultra-

sound imaging in relation to other tongue-shape-recording techniques (Section

3.2.1). Subsequently, we introduce several key muscles in and around the tongue

(Sections 3.2.3-3.2.5), as a basic understanding of tongue muscles is necessary for

properly interpreting ultrasound images. Next, we briefly explain how ultrasound

imaging works (Section 3.2.6), and then discuss existing methods for analyzing

ultrasound images (Section 3.2.2). Against this background information, we then

show how tensor product smooths can be used to analyze full ultrasound images

(Section 3.3). Section 3.4 illustrates the method for experimental data on the pro-

duction of the German [a(:)] vowel.

3.2 Background

3.2.1 Why ultrasound?

The present paper introduces a new method of analyzing ultrasound images. In the

context of articulatory phonetics, ultrasound imaging is one of the tools for record-

ing the tongue shape or position during speech. Other tools are X-ray photography

(Liljencrants, 1971), Cinefluography (Harshman et al., 1977), X-ray microbeam

registration (Westbury, 1994), Electromagnetic Articulography (EMA) (Arnold &

Tomaschek, 2016; Cho, 2001; Dang et al., 2008; Dang et al., 2009; Erickson et al.,

2014; Hertrich & Ackermann, 2000; Lee et al., 2019; Perkell et al., 1992; Saito

et al., 2021; Steele & van Lieshout, 2004; Tiede et al., 2011; Tomaschek, Arnold,

et al., 2018; Tomaschek, Tucker, & Baayen, 2019; Tomaschek, Tucker, et al., 2018;

Tomaschek et al., 2013; J. Wang et al., 2013), and Magnetic Resonance Imaging

(MRI) (Masaki et al., 1996; Moisik et al., 2019; Stone et al., 2001).

The oldest technique for tracing tongue position made use of X-rays. X-ray

photography takes a few snapshots of the oral cavity (Liljencrants, 1971). Cine-
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fluography takes a series of X-ray photographs, which are combined to construct a

video capturing tongue movements (Harshman et al., 1977). X-ray photography is

not well-suited to record movements of the tongue. Although cinefluography can

take a video of tongue movements, extended radiation exposure comes with a po-

tential health risk. X-ray microbeam registration dealt with this problem by attach-

ing gold pellets to the tongue and by focusing a microbeam specifically on these

pellets (Westbury, 1994). As a consequence, only small parts of the oral cavity are

exposed to radiation. However, only the positions of the pellets are traced. Fur-

thermore, this method suffered from limited accessibility (Steele & van Lieshout,

2004).

X-ray microbeam registration is a point-tracking system. Another point-

tracking system, electromagnetic articulography (EMA), is more accessible and

widely used. Similarly to X-ray microbeam registration, EMA requires several

sensors to be attached on the tongue and the lips. The EMA system creates an

electromagnetic field, which induces current in sensors. The changes in the current

strength are used to estimate positions of sensors. Since the amount of current pro-

duced stands in an inverse relation to the cube of the distance, the precise locations

of the sensors can be calculated. Disadvantages of EMA are 1) that sensors need

to be glued to the tongue and the lips, which is practically impossible to do for

the back and root of the tongue, due to the gag reflex, 2) that only the positions of

the sensors are traceable, not the entire tongue surface, 3) that sensors are difficult

to place at exactly same positions across experiments with the same speaker, and

within an experiment when sensors get detached, and 4) that sensors and wires

connecting sensors to the EMA system may interfere with natural articulation.

These disadvantages are absent when ultrasound or MRI are used. Ultrasound

and MRI both capture a full image of the tongue. Ultrasound makes use of high

frequency sound waves and MRI uses a strong magnetic field. While MRI provides

clearer pictures of the tongue than ultrasound, it has several downsides. One of its

disadvantages is its low time resolution, which can be a problem for recording rapid
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movements of the articulators. Furthermore, the speaker has to lie down when

they are recorded. Different body postures come with different ways in which

gravity affects tongue positions and tongue shapes (Hoedl, 2015). However, it is

worth noting that these downsides may perhaps be solved in the near future thanks

to the development of real time MRI systems (Nayak et al., 2022) and upright

MRI registration (Botchu et al., 2018). Practical disadvantages of MRI are 1) that

MRI machines are expensive both with respect to acquisition and maintenance, 2)

that MRI machines are not portable and hence not practical to use for studying

articulation in children, and 3) that MRI registration is not without health risks and

cannot be used with participants with implants such as pacemakers.

Ultrasound systems are relatively cheap and transportable. Because of their

better mobility, ultrasound systems can also be used for field work (Gick, 2002).

Ultrasound images can be recorded with good temporal resolution, they capture

the whole tongue, they are not invasive, and don’t come with health risks. These

characteristics make ultrasound an especially suitable tool for children (Noiray et

al., 2013; Noiray et al., 2019).

These advantages of ultrasound come at the cost of less visual clarity. Ultra-

sound images usually contain a lot of noise and possibly visual artefacts. In addi-

tion, ultrasound images usually do not contain clear anatomical reference points.

Furthermore, a time-series of ultrasound images poses challenges for interpreta-

tion due to both movements of the transducer with respect to the vocal tract, and

movements within the vocal tract that change the locations of anatomical refer-

ence points. These problems also arise when the differently shaped vocal tracts of

individual speakers have to be taken into account. As a consequence, analyzing

ultrasound images can be challenging, an issue to which we will return below.

3.2.2 Analysis methods for ultrasound images

While ultrasound imaging has attracted more and more attentions for phonetic,

phonological, and also clinical purposes, there is no consensus about how to best
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analyze ultrasound images. A majority of studies has focused on tongue surface

contours. Some analysts zoomed in on representative values of these contours,

for example, the x- and y-coordinates of the highest point on the tongue surface

contour (Lin et al., 2011; Noiray et al., 2013; Noiray et al., 2019). Other analysts

have taken more points of the tongue surface contour into consideration. In their

approaches, the shape of the tongue surface contour is mapped onto one or more

representative values (Aubin & Ménard, 2006; Bressmann et al., 2005; Davidson,

2005; Dawson et al., 2016; Ménard et al., 2013; Slud et al., 2002; Song et al., 2013;

Stolar & Gick, 2013; Stone, 2005; Stone et al., 1992; Turton, 2015). One of the

simplest methods is to approximate the shape of the tongue contour with a triangle

(Aubin & Ménard, 2006; Ménard et al., 2013; Song et al., 2013). The base of the

triangle is set up by connecting both ends of the tongue surface contour. The height

of the triangle is given by the longest perpendicular line starting from the base and

ending at the tongue contour. If this perpendicular line is longer than the base

line, then the tongue is more bunched up. In contrast, if the base is longer than

the perpendicular line, the tongue is more flattened. Measures based on several

ratios calculated from the triangle were used by Aubin and Ménard (2006) to study

compensatory tongue movements in adults and children, by Ménard et al. (2013)

to investigate differences between blind and sighted speakers, and by Song et al.

(2013) to trace different articulatory realizations of consonant clusters according to

their morphological properties.

The curvature index (CI) and the modified curvature index (MCI) are more so-

phisticated measures for assessing the shape of the tongue surface contour (Dawson

et al., 2016; Stolar & Gick, 2013). The curvature index is defined as the integral

of the radius of curvature from one end of the tongue contour curve to the other,

which is fitted with a 7th-order polynomial function (Stolar & Gick, 2013). Daw-

son et al. (2016) introduced a slightly modified version of this index (MCI), the

differences being 1) that the integral was based on the arc length rather than the

x-coordinates, and 2) that central differencing replaced polynomial based differen-
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tiation. The CI and the MCI both have the advantage of interpretability. Higher

(modified) curvature index values indicate greater curvature with greater complex-

ity in the tongue contour line. In addition, these measures are robust to rotations

of the tongue surface contour. Such rotations can occur due to movement of the

ultrasound transducer, one of the problems inherent to ultrasound imaging. In this

respect, the MCI outperformed the CI. For the formal definitions of the curvature

indices, see Appendix 3.A.

Similarly to the CI and the MCI, the so-called Procrustes distance (J. Wang et

al., 2013) produces a single value representing the complexity of the tongue surface

contour. A Procrustes analysis is a statistical method that measures the distance

between two shapes in such a way that the distance between the points of the two

shapes is minimized. This is accomplished by aligning, scaling, and rotating. The

distance between the aligned shapes is defined as the sum of Euclidean distances

between the points (landmarks) of the two shapes. To apply a Procrustes analysis

to the tongue surface contour, the tongue shape in resting position is used as the

reference shape. The distance from this reference shape to the target tongue shape

during articulation is the Procrustes distance (Dawson et al., 2016; J. Wang et al.,

2013).

While the Procrustes distance and the MCI provide interpretable measures of

curvature, they have been found to be less effective for delineating phonemes, com-

pared to discrete Fourier Transform (DFT) (Dawson et al., 2016). A DFT maps a

sequence of equally-spaced samples of a function represented in the time domain

to corresponding data points in the frequency domain. In other words, DFT looks

for sinusoid functions with different frequencies, such that the weighted sum of the

sinusoid functions converges to the shape function. For more details, see Appendix

3.B. The weights of the sines are the output of the DFT method and form the in-

put for the analysis of the tongue surface. Dawson et al. (2016) used the DFT, the

MCI, and the Procrustes distance to predict phoneme identity from the tongue sur-

face contour, and reported that the DFT outperformed the MCI and the Procrustes
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distance in terms of classification rates by Linear Discriminant Analysis (LDA).

The original work that applied Fourier series to trace the tongue surface contour

was Liljencrants (1971). Liljencrants (1971) adopted the real-value counterpart

of DFT. These authors approximated the tongue contour by a sum of cosine and

sine functions with different coefficients. They reconstructed the tongue contour

from only the first few Fourier coefficients using the inverse transform. The dif-

ferences between the original tongue contour and the reconstructed tongue contour

were evaluated in terms of the root mean square (RMS). According to Liljencrants

(1971), the DC component (i.e., zero frequency component) and the fundamental

frequency already capture the overall shapes of tongue contours quite well. By

adding the second harmonic, reconstructed tongue contours become very similar

to the originals.

One downside of Fourier based analysis is that coefficients are far from

straightforward to interpret. Although Dawson et al. (2016) found that the imagi-

nary part of the first DFT coefficients discriminated between phonemes, it was not

clear what the imaginary part of the first DFT actually represented. In addition, the

magnitude of the DFT coefficients did not correspond to the degree of phoneme

complexity. In Dawson et al. (2016), phonemes were categorized in terms of the

complexity of their tongue shapes, as low, middle, or high complexity. For exam-

ple, /2/ was categorize as low complexity, because it does not require movements

of the tongue (as for glides) or second constriction (as for /ô/). For example, a

lower value of the imaginary part of the first DFT coefficient was associated with a

high phoneme complexity, a higher value was associated with medium complexity,

and a middle value was associated with low complexity.

The methods discussed thus far all involve compressing or transforming co-

ordinates of the tongue contour into some representative values. Other studies

have compared multiple tongue contours without compressing or transforming

tongue surface coordinates (Davidson, 2006; Heyne et al., 2019; Lee-Kim et al.,

2013; Strycharczuk & Scobbie, 2016). Davidson (2006) made use of Smooth-



CHAPTER 3. ANALYZING ULTRASOUND IMAGES WITH GA(M)MS 81

ing Spline ANOVA (Gu, 2002), which makes it possible to evaluate statistically

whether tongue contours linked to experimental factorial manipulations are sig-

nificantly different. Inferred tongue contours can be visually represented together

with their confidence intervals. Davidson (2006) used this statistical method to

study coarticulation coarticulation of English /g/ in word-final position. Lee-Kim

et al. (2013) used Smoothing Spline ANOVA to investigate the darkness of English

/l/ before and after morpheme boundaries. A downside of this method is that it

is very sensitive to small systematic differences in tongue contours that are linked

to the geometry of individual speakers’ vocal tracts. Therefore, Smoothing Spline

ANOVA is not recommended for multiple tongue contours from different sessions

and speakers.

Recently, Generalized Additive Mixed Models (GAMMs) (Wood, 2017) have

been employed to compare multiple tongue contours (Heyne et al., 2019). GAMMs

are an extension of the standard linear regression model that can estimate not only

linear effects but also non-linear effects of predictors. Just as Smoothing Spline

ANOVA, smoothing splines play a central role in GAMMs. But GAMMs make

many different kinds of splines available for both single predictors and multiple

predictors. Heyne et al. (2019) recorded the tongue shapes of English and Ton-

gan speakers during articulating vowels using ultrasound. Tongue contours were

traced manually by placing several points on the tongue surface contour and by

interpolating these points with 100 points of a cubic spline. Tongue height was

then defined as the distance from the origin to the tongue surface contour. Tongue

height and variance in tongue height were modeled as a function of a range of pre-

dictors including random effect smooths for speakers. Heyne et al. (2019) showed

that there was more variability in the way Tongan vowels were produced by native

speakers of Tongan, compared to English vowels produced by native speakers of

New Zealand English.

Although Smoothing Spline ANOVA and GAMMs extended the analysis of ul-

trasound images from representative values to full tongue contours, these methods
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make use of only a part of the information contained in ultrasound images. Fur-

thermore, ultrasound images can contain a lot of noise, which leads to uncertainty

about the exact position of the tongue surface. As a consequence, any analysis

done on an imputed tongue surface inherits the errors made by the tongue surface

tracker. Even when tongue tracking is accurate, it is often the case that the full

tongue contour cannot be traced. Because ultrasound pulses are blocked by air or

bones, ultrasound images often have big shadows around the tongue tip and the

tongue root, rendering these invisible. As a result, the parts of the tongue contour

that are visible can differ in length. To deal with such different lengths, normaliza-

tion is usually carried out (Heyne et al., 2019; Liljencrants, 1971; Slud et al., 2002;

Stone et al., 1992; Stone et al., 1997; Strycharczuk & Scobbie, 2016). For exam-

ple, shorter tongue contours can be stretched to match the longest tongue contour

(Slud et al., 2002). However, stretching comes with the risk of comparing different

parts of the tongue surface. For example, when the tongue tip is raised for articu-

lating a /t/, a large part of the tongue tip becomes invisible. In contrast, when the

tongue tip is in rest with no air pocket underneath it, as when producing an /a/,

more of the tongue tip is visible. When these two tongue surfaces are compared

after normalization, not taking into account how much of the tongue tip is hidden

by the mandible shadow, will lead to equation of the front part of the tongue tip

with the rear part of the tongue tip or even the tongue blade.

This issue can be mitigated by including information provided by other sources

than the tongue contour such as the hyoid shadow. To include more information

than the tongue contour, Palo et al. (2014) introduced the Pixel Difference (PD)

method. This method calculates mean Euclidean distances across all the pixels

between frames (Palo, 2019, 2020, 2021; Palo & Lulich, 2021; Palo et al., 2014),

making it suitable for tracing changes in ultrasound images over time. Using this

pixel difference method, Palo et al. (2014) reported that the initiation of articulation

can precede the onset of audible speech. A disadvantage of this method is that

it is difficult to establish where differences in pixel locations between ultrasound
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images are significant.

Fortunately, the generalized additive model (GAM Wood, 2017) offers flex-

ible statistical tools to model full ultrasound images and their development over

time. For the interpretation of full ultrasound images, it is necessary to have some

understanding of the anatomy of the tongue.

3.2.3 Tongue muscles

Anatomical descriptions of the tongue distinguish between intrinsic muscles, ex-

trinsic muscles, and neck muscles. In what follows, we discuss the sets of muscles

in further detail.

Intrinsic muscles

The inside of the tongue is made up of four muscles: the superior longitudinal

muscle, the inferior longitudinal muscle, the transverse muscle, and the vertical

muscle (Figure 3.1).

The superior longitudinal muscle extends from the middle line of the tongue

(the median septum) and stretches out to the edges of the tongue including the

tongue apex. This muscle is used to raise the tongue tip for alveolars and to curl

up for retroflex consonants. In addition, by contracting the superior longitudinal

muscle, the tongue root can be slightly pushed out backward (Buchaillard et al.,

2009).

The inferior longitudinal muscle stretches from the hyoid bone and its sur-

roundings to the inferior part of the tongue tip. The hyoid bone is a small U-shape

bone located at the bottom of the tongue root. Since the inferior longitudinal mus-

cle is located in the inferior part of the tongue, its contraction causes the tongue

tip to be pulled downward and backward. This lowering action is required for the

release of tongue tip for stop consonants. In addition, by lowering and retracting

the tongue tip/blade, the tongue body can be bulged, which is required for articu-

lation of velar consonants (Epstein et al., 2002). The inferior longitudinal muscle
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also helps to shorten and stiffen the tongue, working together with the superior

longitudinal muscle.

The transverse muscle runs from the median septum of the tongue towards

the edges of the tongue. It is located below the superior longitudinal muscle. Its

function is mainly to narrow the tongue (Shaw & Martino, 2013). Narrowing the

tongue at the same time elongates the tongue. This elongation can be observed as

a small forward movement of the tongue tip and/or a small backward movement of

the tongue root (Buchaillard et al., 2009). As a consequence, the transverse muscle

is involved in the articulation of front vowels and consonants (Epstein et al., 2002).

The vertical muscle stretches down from below the superior longitudinal mus-

cle to the inferior longitudinal muscle. Its vertical fibers are interlaced with the

transverse fibers of the transverse muscle. By contracting, the vertical muscle flat-

tens and widens the tongue. Flattening and widening cause the tongue to approach

and contact the (hard) palate, which is required for high front vowels and alveolar

stops (Epstein et al., 2002).

Figure 3.1: Schematic image of intrinsic muscles.

Extrinsic muscles

The intrinsic muscles make up the top part of the tongue. This top part of the tongue

is supported externally by several other muscles, the so-called extrinsic muscles.

There are four extrinsic muscles: the genioglossus, the hyoglossus, the styloglos-

sus, and the palatoglossus (Figure 3.2). The names of these muscles indicate where



CHAPTER 3. ANALYZING ULTRASOUND IMAGES WITH GA(M)MS 85

these muscles originate.

The genioglossus (genio-, “chin”, -glossus, “tongue”) makes up the main part

of the inner tongue. This muscle extends from the superior mental spine, which is

located in the center of the mandible (jaw), to the dorsum of the tongue and also

to the hyoid bone. This muscle extends in a fan-shaped way to the entire surface

of the tongue, including the tongue root. This versatile muscle is a major player

in articulation. The anterior part of the genioglossus extends to the tongue tip.

Its contraction pulls the tongue tip downward and backward. This also causes the

tongue root to be slightly pushed out backward (Buchaillard et al., 2009). The

movement of the tongue tip is involved in the release action of alveolar stop conso-

nants. Important for the interpretation of ultrasound images is that contraction of

the anterior genioglossus elevates the hyoid bone (Epstein et al., 2002). The me-

dial genioglossus is involved in lowering the tongue body, which also causes the

tongue tip to be pushed out, and slightly up (Buchaillard et al., 2009). The poste-

rior genioglossus muscle extends all the way to the tongue root. When contracting,

it pulls the tongue root forward. This in turn causes the upper part of the tongue

to be pushed up and forward, resulting in raising of the tongue tip and the tongue

blade (Buchaillard et al., 2009). Thus, the posterior genioglossus is also involved

in the articulation for many sounds made in the front of the mouth (Epstein et al.,

2002).

Both sides of the tongue are supported by the hyoglossus, which connects the

hyoid bone (hyo-) and the tongue (-glossus). The hyoid bone is located in the

tongue root. Contraction of the hyoglossus pulls the tongue root backward and the

tongue body downward (Buchaillard et al., 2009). While the main functions of the

hyoglossus are lowering and retraction of the tongue, it also balances the forward

movement of the whole tongue controlled in part by the posterior genioglossus. For

front vowels and back vowels, the hyoglossus acts as antagonist1 to the styloglossus

(Epstein et al., 2002). The styloglossus lifts up the back of the tongue, whereas the

1Antagonist muscles are muscles that exert a force opposite to that of primary, agonist muscles.
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hyoglossus muscle antagonistically helps to control the position of the tongue back

by pulling it down and retracting it at the same time.

The styloglossus is a muscle that attaches to the back part of the tongue and to

the temporal styloid process. The temporal styloid process is a small cylindrical

bone located right beneath the ears. Contraction of the styloglossus elevates and

retracts the tongue body. The styloglossus is essential for articulation of most back

vowels (Epstein et al., 2002). In addition, the styloglossus pulls the tongue tip

downward and backward, probably as a mechanical consequence of tongue body

elevation and retraction (Buchaillard et al., 2009).

Elevation of the tongue body by the styloglossus is further supported by the

palatoglossus. The palatoglossus is a muscle connecting the end of the hard

palate with the side of the back of the tongue. Together with the styloglossus, the

palatoglossus contributes raising and buldging the tongue body (Shaw & Martino,

2013). This muscle is required for velar consonants (Epstein et al., 2002).

Figure 3.2: Schematic image of extrinsic and neck muscles.

3.2.4 Neck muscles

In addition to the extrinsic and intrinsic muscles for the tongue, ultrasound cap-

tures two additional muscles: the mylohyoid and the geniohyoid (Figure 3.2). The

mylohyoid is the lowest muscle in the mouth and connects the inner lowest part of
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the mandible bone and the hyoid bone. It is often described as the floor muscle of

the mouth. Its contraction pulls the hyoid bone forward and upward (Epstein et al.,

2002; Shaw & Martino, 2013). At the same time, the floor of the mouth is elevated

when the mylohyoid contacts, causing elevation of the tongue body (Buchaillard

et al., 2009). The mylohyoid contributes to the articulation of velars and high back

vowels. (Epstein et al., 2002). During ultrasound registration, the transducer is

placed below the chin and hence is directly next to the mylohyoid.

The geniohyoid is located directly above the mylohyoid and connects the lower

central part of the mandible with the hyoid bone. This muscle is more tubular in

shape, whereas the mylohyoid is a fan-shaped muscle. The geniohyoid pulls the

hyoid bone forward and upward when it contracts, similarly to the mylohyoid mus-

cle (Buchaillard et al., 2009; Shaw & Martino, 2013), leading to a slight elevation

of the tongue (Epstein et al., 2002).

3.2.5 Muscles in the midsagittal ultrasound image

Muscles are usually hypoechoic, showing up as relatively darker pixels in ultra-

sound images (Carra et al., 2014; Reimers et al., 1993). For example, the ge-

nioglossus, which constitutes a large part of the inside of the tongue, shows up

as the dark area marked with “A” in Figure 3.3. The tongue surface, by contrast,

shows up as the bright curve marked with “B”. (In Figure 3.3 and all the images

in the present study, the front of the mouth is to the right of the image.) The my-

lohyoid and geniohyoid are also visible as dark patches in the image (marked with

“C”). Above and slightly to the left of the mylohyoid and geniohyoid, a moderately

bright area close to the tongue root is visible (“D”). This area reflects the tongue

fat, which is found predominantly in the tongue root (Kim et al., 2014; S. H. Wang

et al., 2020). Above the mylohyoid and geniohyoid, slightly to the right, another

bright area is located (“E”). It represents the tendon of the genioglossus (Wrench

& Balch-Tomes, 2022; Wrench & Beck, 2022). Above the tendon is yet another

bright area (i.e., “F”), which appears in ultrasound images when there is an air
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pocket underneath the tongue tip.

A typical midsagittal ultrasound image usually contains two dark black big

shadows at both sides of the image. The one located near the front of the

mouth (“G”) is called the mandible shadow, as it is a shadow created by the

jaw (mandible). The dark area next to the tongue back is known as the hyoid

shadow (“H”), which is created by the hyoid bone (“I”).

Figure 3.3: An example of an ultrasound image. A: genioglossus, B: tongue surface
contour, C: mylohyoid and geniohyoid, D: Tongue fat, E: Tendon of genioglossus,
F: Air pocket under the tongue tip, G: mandible shadow, H: hyoid shadow, I: hyoid
bone.

3.2.6 Basic physics of ultrasound imaging

Ultrasound imaging is widely used in medical applications for creating images of

internal organs. A sound emitting device known as the transducer sends out high

frequency sound waves that cannot be perceived by the human ear. The trans-

ducer not only emits, but also receives ultrasound waves. The device operates

with pulses, first emitting sound waves and then receiving their reflections. For the

tongue recording, the transducer is usually placed under the chin.

Ultrasound pulses, emitted from the transducer, travel through the tongue and

reflect at borders of substances with different acoustic impedances. The greater

the differences in acoustic impedances are, the more of the ultrasound pulse is

reflected back. Acoustic impedances are similar among different kinds of tissues,

bones have greater acoustic impedances, and air has substantially reduced acoustic
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impedances. Because of these differences in acoustic impedances, more than 99%

of ultrasound pulses reflect at the border between the tongue and the air above the

tongue. At the border of human tissue and bone, about 59% of ultrasound pulses

reflect. Between different kinds of human tissues, very little of ultrasound pulses

is reflected back.

Areas above air pockets and areas above bones show up as black shadows in

ultrasound images. As the tongue tip often has an air pocket underneath it, it is

often shadowed and invisible. Furthermore, part of the tongue root tends to be

shadowed by the hyoid bone.

Ultrasound pulses are also attenuated by scattering when pulses encounter

small targets or rough surfaces. Scattered ultrasound pulses appear as flickering

white dots all over an ultrasound image. These dots are mostly at random locations

in the image. However, certain constellations of irregularities in the tongue may

give rise to artefacts. For example, an ultrasound pulse can reflect at one border

and then, instead of being reflected straight back, it might vear off in a different

direction, and then bounce straight back and then return to the transducer. The

time required to travel back is now longer, which leads to the transducer to im-

pute a location that is farther away than the actual border where the pulse was first

reflected. In this case, the transducer mistakenly assumes that the received pulse

travelled along a straight path and back again. As a consequence, a bright pixel is

depicted in a wrong position. Such an artefact is known as a mirror-image artefact.

Another example of an image artefact is the reverberation artefact. This artefact

can occur when relatively strong echos are created by a large smooth surface. The

ultrasound pulse, reflected at such a surface, comes back to the transducer, where it

can be reflected back again, resulting in a second wave that travels along the same

path as the initial pulse. As such a second wave will arrive back at the transducer

at a later point in time, it will be interpreted as being located at twice the actual

distance. These kinds of artefacts lead to bright pixels far above the tongue surface.

Without these artefacts, the area above the tongue border would be completely
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black.

3.3 Modelling pixel brightness with GAMs

The Generalized Additive Model (GAM) is a flexible statistical tool for modeling

a response variable as a non-linear function of one or more predictor variables. In

the following example, the response is modeled with a general intercept β0 and a

smooth with two covariates, x1 and x2. ŷ = β0 + f (x1,x2)+ ε. When the smooth

function f has a single argument, a wiggly curve is predicted. When it has two

arguments, a wiggly surface is predicted. When there are more than two predic-

tors, the result is a wiggly hypersurface. Smooths with longitude and latitude as

predictors are widely used in biology (e.g., the density of sole eggs of the coast

of Devon and Cornwall (Wood, 2017)) and dialectometry (Wieling et al., 2011).

Applications are also found in linguistics (Baayen et al., 2010; Nieder, 2023) and

psychology (Baayen et al., 2017; van Rij et al., 2019).

As ultrasound images are fully described by rectangular matrices with pixel

brightness values, two-dimensional spline smooths can be applied to these matrices

with as predictors the x and y coordinates, and pixel brightness as the response

variable. In this study, we make use of tensor product splines, as these splines are

ideal for models that separate out main effects and interactions.

Modeling with GAMs can be understood as an extension of the line of research

using splines on the tongue contour (Davidson, 2006), and also as part of a line of

research attempting to include as much information as possible from an ultrasound

image (Palo, 2019, 2020, 2021).

In the following sections, we will show how GAMs can be used for analysing

single ultrasound frames (Section 3.3.1), for comparing multiple ultrasound images

(Section 3.3.2), and for predicting ultrasound images with an additional covariate

such as time (Section 3.3.3). How speaker differences can be handled is discussed

in Section 3.3.4.
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3.3.1 Representing a single ultrasound image

A single frame of an ultrasound image is usually displayed in a fan-shape fashion

as shown in Figure 3.4. This fan-shape picture, however, is the result of a geo-

metric transformation with interpolation. Ultrasound pulses are emitted from the

transducer and travel along their own “corridors” or ultrasound beams. Since these

ultrasound beams spread from the transducer in a fan-shape fashion, ultrasound

beams are more sparse as they get farther from the transducer and hence more

interpolation is needed to reconstruct a fan-shaped picture.

Figure 3.4: An example of an fan-shaped ultrasound image of German /a:/ in ihr
zahlt.

The data that are collected by the transducer for a given image is brought to-

gether in a single vector of unsigned integers that represent pixel brightness. This

vector can be split into the sub-vectors representing the ultrasound scan lines, and

these vectors can then be stored as the column vectors of a matrix representing the

raw ultrasound image. An example of such an image is presented in Figure 3.5a.

Figure 3.5b is the same ultrasound image, but stretched horizontally for better vis-

ibility.

The raw ultrasound image is a simple square grayscale image. In grayscale

images, pixel brightness is represented by unsigned integers ranging from 0 to

255. Therefore, pixel brightness can be modelled with a tensor product smooth

using the x- and y-coordinates as predictors.

The simplest GAM model for a single ultrasound image (using the notation of

the mgcv package (Wood, 2017) for R (R Core Team, 2022)) specifies a tensor
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(a) Raw ultrasound image. (b) Raw ultrasound image resized to a square.

Figure 3.5: Examples of a raw ultrasound image corresponding to Figure 3.4 (left)
and the same figure but stretched horizontally for better visibility (right).

product smooth.

brightness ~ te(x,y)

In this specification, an intercept is automatically included during model fitting. A

tensor product smooth can also be split into main effects and an interaction term,

modeled with the ti directive, as follows:

brightness ~ s(x) + s(y) + ti(x,y)

Here, s(x) represents a thin plate regression spline smooth for x.

The wiggliness of spline curves and tensor product smooths is controlled by

the number of basis functions used to construct the smooths. The number of basis

functions is specified in mgcv by an optional argument k. Greater values of k enable

more precise modeling of nonlinear trends. The default of k is not theoretically

motivated, and the analyst has to make sure that k is set to a value that is large

enough for adequate modeling. For a given k, the GAM algorithm penalizes the

coefficients of the basis functions in order to optimally balance oversmoothing and

undersmoothing.
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For ultrasound images, which are characterized by sudden changes in bright-

ness, we use 20 basis functions for both coordinates, and set to 20 for both dimen-

sions (k=c(20,20)):

brightness ~ te(x, y, k=c(20,20))

When the raw ultrasound image shown in Figure 3.5a is fitted with this model, the

fitted surface presented in Figure 3.6 is obtained. In this figure, the front of the

mouth is to the right, following standard conventions for raw ultrasound images.

Warmer colors represent higher pixel brightness values. The axes cover the same

ranges of values as in Figure 3.5a, but the axis are rescaled for better interpretabil-

ity.

Figure 3.6: The fitted surface for Figure 3.5a.

Figure 3.6 is the fitted surface for a raw ultrasound image. It has to be trans-

formed to the usual fan-shape with interpolation in order to correctly represent the

tongue shape. This can be achieved with the same geometric transformation and

interpolation method that was used above to transform a raw ultrasound image into

its corresponding fan-shape image:

Figure 3.7 corresponds to 3.4. The bright wedge-shape curve in the center

of the figure represents the tongue contour. The yellow-colored areas above the

tongue surface are artefacts, that arise for the reasons discussed in the preceding

section.
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Figure 3.7: The fitted surface for Figure 3.5a, transformed to the fan-shape.

Below the tongue surface, there are some areas that are unlikely to be artifacts.

First, below the tongue tip, is a small red area that highlights a pocket of air below

the tongue tip. The bright area at the bottom of the GAM contour plot represents

the fat and skin below the mylohyoid and the geniohyoid. Between the bright area

in the bottom and the tongue contour is another moderately bright and relatively

large area slightly to the left in the contour plot. This area represents tongue fat

that is located more towards the tongue root.

In Figure 3.7, there are two big shadows to the left and the right of the image.

The one to the left of the image, the hyoid shadow, is created by the hyoid bone

located in the tongue root. The shadow to the right of the image is created by the

mandible (jaw) bone.

The visualization of the tensor product smooth in Figure 3.7 clearly reveals

where the tongue surface is located. Furthermore, the tongue surface is clearly

separated from the pocket of air below the tongue tip. Unlike a widely used method

for tracking the tongue surface (EdgeTrak: M. Li et al., 2005) which requires pre-

processing of images by the analyst, the GAM provides a clear regression surface

that does not require prior selection of regions of interest.

In practice, the analyst will be interested in comparisons between ultrasound

images, and specifically in differences between locations of the tongue surfaces as

a function of experimental treatments. The next subsection explains how GAMs

can be used to address these questions.
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3.3.2 Comparing two ultrasound images

Before introducing the construction of spline surfaces that directly represent differ-

ences, we first need to introduce how to model interactions of x- and y-coordinates

with a factorial predictor. Consider, for instance, two images of the tongue at the

center of a vowel, as realized in German verbs, that differ only with respect to

their morphological structure: the third person singular and the first/third plural

(zahlt, ‘he/she/it pays’ vs. zahlen, ‘we/they pay’). We would like the GAM to fit

two brightness surfaces, one for the vowel [a:] of zahlt and one for that of zahlen.

The analyst can request a separate regression surface for each of the levels of the

factorial predictor morphology, using the by directive in the call to gam:

brightness ~ morphology +

te(x, y, k = c(20, 20), by = morphology)

Note that the factorial predictor morphology is included also as a main effect in

the above formula. Its inclusion ensures that a possible difference in the means of

the two surfaces is taken into account. In the case of ultrasound images, differences

in means represent overall shifts of brightness across ultrasound images. For ex-

ample, the ultrasound image for zahlt (Figure 3.8a) appears to be slightly brighter

overall, compared to that for zahlen (Figure 3.8c), possibly due to changes within

the tongue giving rise to different scattering of ultrasound beams. As indicated in

Table 3.1, morphology has an estimated coefficient of 13.959, indicating that the

ultrasound image for zahlt is brighter by about 14 brightness values (which range

between 0 and 255) on average than that for zahlen.

In Figure 3.8, the left two panels present the ultrasound images for zahlt (top)

and zahlen (bottom). The smooths to the right of these grayscale images present the

fitted surfaces that are estimated by the GAM. The fitted surfaces, by their nature,

include the intercept and the adjustments to the intercept that come with the main

effect of morphology. The fitted surfaces are therefore directly comparable with

the raw ultrasound images to their left.
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(a) Input, zahlt (b) Prediction, zahlt

(c) Input, zahlen (d) Prediction, zahlen

(e) Predicted differences

(f) Predicted differences with insignificant
differences being blank

Figure 3.8: Input (left) and predicted (right) ultrasound images for the stem vowel
(i.e., [a:]) of zahlt [tsa:lt] (top) and zahlen [tsa:l@n] (second row). The figure in
the third row represents the differences between the predicted images of zahlt and
zahlen. The figure in the bottom row is the predicted differences with insignificant
differences between the two conditions being blank. The areas that are marked
by ‘A’ show that there are differences in positions of the hyoid shadow between
zahlen and zahlt. ‘B’ indicates that there is no difference between the conditions.
‘C’ suggests that the tongue body positions are slightly different with the tongue
body for zahlen being slightly higher.
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Table 3.1: The summary of the model implementing two surfaces for the two mor-
phological conditions.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 61.296 0.109 563.080 <0.001
morphology=zahlt 13.959 0.154 90.736 <0.001

B. Smooth terms edf Ref.df F-value p-value

te(x, y):morphology=zahlen 386.166 397.845 433.559 <0.001
te(x, y):morphology=zahlt 382.264 396.998 577.649 <0.001

The red curved areas in the middle of the fitted surfaces, seen in Figures 3.8b

and 3.8d, correspond to the bright (white) curves seen in their corresponding raw

ultrasound images (i.e., Figures 3.8a and 3.8c), which represent the tongue surface.

The estimated tongue surfaces look wider in the fitted ultrasound images than in

the observed ultrasound images. One reason is that the tongue surface in the fit-

ted surfaces reflect uncertainty about the location of the tongue surface. Another

reason is that GAMs work with smooths that need to be differentiable and hence

cannot deal with abrupt discontinuities, such as a transition from completely black

to completely white.

In general, summaries of GAM models provide the analyst with information

about the significance of partial effects. For the present model, all the terms are

significant, including the parametric term morphology and two surfaces created as

a function of x- and y-coordinates for each level of morphology (Table 3.1). The

tests for the two smooth surfaces are not very revealing, because there are obvious

differences in pixel brightness all over the image, and many of such differences are

devoid of theoretical interest. What is more useful to the analyst is a surface that is

informative about where two images differ, and whether the observed differences

are present in areas that are of interest, such as the tongue surface.

For comparing differences between two levels of a categorical variable, there

are two possibilities, regarding how to treat overall shifts in brightness between

conditions. For the current model, the parametric term is significant (Table 3.1)
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and indicates that there is a significant overall shift in brightness between the two

images being compared. Such an overall shift in brightness between conditions

may be systematic and informative, but it may also be basically random and of no

theoretical interest. If such an overall shift in brightness is not of theoretical interest

and assumed to be random, then the response variable (i.e., brightness values of

pixels) can be centered and scaled before fitting a GAM model. This procedure

will eliminate an mean difference between conditions (e.g., morphology). Since

the mean difference is taken away beforehand, no parametric term is necessary in

this case to code for different conditions.

While no parametric term is necessary, the analyst still has to set up the model

in such away that it captures two input ultrasound images properly while bringing

out the differences between them. For this goal, the analysis first needs to set up a

reference surface, for instance, the surface for zahlen. This surface will be wrong

for the other level, zahlt. Therefore, the GAM model will need to add a surface

that changes the reference surface for zahlen into the correct surface for zahlt. This

‘correcting surface’ is the difference surface. To this end, the categorical variable

of interest, here morphology, must be explicitly coded as a numeric binary variable

morphology_num, with 0 corresponding to the reference level of morphology (i.e.,

zahlen) and 1 to the treatment level (i.e., zahlt). Denoting centered brightness by

c.brightness, a GAM model can now be estimated as follows:

c.brightness ~ te(x, y, k = c(20, 20)) +

te(x, y, k = c(20, 20), by = morphology_num)

The summary of this model is presented in Table 3.2.

The first tensor product smooth (i.e., te(x, y, k = c(20, 20))) fits a regres-

sion surface for the reference level of morphology_num (i.e., zahlen). The sec-

ond tensor smooth (i.e., te(x, y, k = c(20, 20), by = morphology_num))

fits the difference surface. When this difference surface is added to the reference

surface, the surface for zahlt is obtained.
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Table 3.2: The summary of the model implementing a difference surface for the
morphological conditions.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 0.008 0.002 4.746 <0.001

B. Smooth terms edf Ref.df F-value p-value

te(x, y) 387.501 397.525 489.350 <0.001
te(x, y):morphology_num=1 379.062 396.096 64.221 <0.001

Note that the first tensor product smooth (i.e., the reference surface) does not

have the by option, while the second tensor product smooth (i.e., the difference

surface) does. Because the reference surface does not have the by option, it is

always “on”, regardless of the levels of the morphology_num. In contrast, the

difference surface is specified with a by-directive. When by points to 0, the smooth

is pre-multiplied with 0, and thus effectively cancelled. As a consequence, a ‘zero-

difference smooth’ is added to the smooth for the data points of the reference level.

When by points to 1, the second (difference) smooth is multiplied with 1, and hence

retained. Thus, when the treatment level (i.e., zahlt) is estimated, the first and

second tensor terms are both used. The regression surface for zahlt is obtained

by taking the regression surface for the reference level (zahlen) and adding to this

the difference surface for the treatment level zahlt.

This model does not need to include the parametric term for morphology or

morphology_num, since the dependent variable is centered and scaled prior to fit-

ting the model (i.e., c.brightness), eliminating mean differences between con-

ditions effectively. This pre-processing is based on the assumption that any mean

difference between conditions should be at random and not of any theoretical in-

terest.

In contrast, if one wishes not to have such an a priori assumption about overall

differences in brightness, the parametric term can be brought back to the formula

without centering and scaling the response variable (i.e., brightness):

brightness ~ morphology_num +
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te(x, y, k = c(20, 20)) +

te(x, y, k = c(20, 20), by = morphology_num)

This model with the parametric term provides a significantly better model fit than

the model without the parametric term for the current dataset (∆AIC = 8782.41;

∆ML = 4441.324, χ2(1) = 4441.324, p < 0.001). This difference in model fit is

likely due to the fact that, in the model without the parametric term, the overall shift

in brightness had to be absorbed by the difference smooth by itself. This smooth

does not include a ‘horizontal’ basis function (which for identifiability reasons is

merged into the intercept). As a consequence, more basis functions are required,

leading to a higher AIC.2(Baayen & Linke, 2020). On the other hand, the overall

shift in brightness was taken into account by the parametric term in the model with

the parametric term. In other words, the task of estimating differences between sur-

faces of different conditions is more difficult for the model without the parametric

term than for the model with the parametric term.

The significance of the difference surface in the summary table (Table 3.3)

clarifies that the two regression surfaces differ significantly. The difference surface

is visualized in Figure 3.8e. The difference surface is colored in such a way that

warmer colors represent brighter pixels in the zahlt condition than in the zahlen

condition.

In the center left of the difference surface there are a deep red area and a dark

blue area next to each other (marked “A”). They together indicate that the position

of the hyoid shadow is different between the two conditions. In the case of zahlen,

the hyoid shadow is located more towards the center.

It is noteworthy that this movement of the hyoid shadow is not due to rotation

of the transducer. This can be deduced from the mandible shadow, which hardly

2The first basis function is usually not included in a GAM model due to the identifiability prob-
lem. If a smooth term also has its own intercept (represented by the first basis function) in addition to
the “grand” intercept, then the coefficient for this intercept can be increased by a, and the grand in-
tercept can be decreased by a, without changing model predictions. In this case, unfortunately, there
will be infinitely many models that are identical in model performance, and it will not be possible to
determine which model to choose.
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Table 3.3: The summary of the model implementing a difference surface with the
parametric term for the morphological conditions.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 61.660 0.107 577.555 <0.001
morphology_num=1 15.118 0.151 100.266 <0.001

B. Smooth terms edf Ref.df F-value p-value

te(x, y) 386.072 397.229 433.889 <0.001
te(x, y):morphology_num=1 378.688 395.946 69.420 <0.001

changes between the two conditions: There are no systematic differences in pixel

brightness at the right-hand side of the difference surface (marked “B”). If the

movement of the hyoid shadow were mainly due to rotation of the transducer, the

mandible shadow should also have moved to the same degree as the hyoid shadow,

contrary to fact. Since the mandible shadow is fixed and the hyoid shadow is

fronted, the areas “A” and “B” together indicate contraction of the mylohyoid, the

geniohyoid, and possibly also the posterior genioglossus. By contracting, these

muscles bring the hyoid bone forward and upward, squeezing the bottom of the

tongue, and resulting in raising of the tongue body.

The green and red areas highlighted by “C” represent the differences in tongue

surface positions of the posterior part of the tongue. The red area shows where the

ultrasound image is brighter for zahlt. The green area above it indicates where the

ultrasound image is brighter for zahlen. Thus, the difference surface shows that the

position of the posterior part of the tongue surface is slightly pushed up for zahlen,

compared to zahlt. Furthermore, the rightward shift of the hyoid shadow indicates

that the tongue root is more fronted, so that the tongue is also more bulged for

zahlen, compared to zahlt.

The difference surface simply shows what differences exist where. Since this

difference surface is a predicted regression surface, it comes with its own confi-

dence intervals. When the confidence interval of a difference surface contains 0,

then there is no significant difference between conditions. However, the fitted val-
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ues and the confidence intervals of the difference surface should be taken with cau-

tion in this setting, due to the presence of the parametric term for morphology (i.e.,

morphology_num). Such a parametric term indicates that one surface is higher or

lower than the other on average. However, for regions where there is no difference

between the two conditions, as is the case for the mandible shadow, the difference

smooth is forced to compensate for the mean difference, resulting in negative val-

ues around -15 for the difference surface in the current dataset. In this way, the

predicted values for the regression surfaces for both zahlt and zahlen will be

zero.

The drawback of all this is that the difference surface will be significantly be-

low zero for the mandible shadow, even though the two surfaces have zero bright-

ness and are not different at all. To avoid this problem, one option is to add the

parametric term to the difference surface, and then consider whether the confidence

interval of this shifted surface contains zero. Figure 3.8f was produced following

this procedure. Areas for which the confidence interval includes zero are repre-

sented in white.

A disadvantage of this procedure is that addition of the parametric term may

introduce a significant ‘main effect’ difference for other areas even when brightness

values for the two surfaces are very similar. As a consequence, interpretation of

the difference surface becomes more complex.

An alternative is to focus on the fitted surfaces and their 95% confidence inter-

vals. In general, non-overlapping of confidence intervals is a strong indication of

a significance difference, while overlapping does not necessarily suggest insignif-

icance (Cornell Statistical Consulting Unit, 2020). We therefore implemented a

fairly conservative assessment of the difference surface, accepting regions as sig-

nificantly different only when the 95% confidence intervals of the two predicted

regression surfaces do not overlap. In plots visualizing the difference surface in the

following sections, all areas where 95% confidence intervals overlap are displayed

in white.
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Figure 3.9 presents the two difference surfaces, so that the results of the two

methods can be compared. The left panel presents the same difference surface as

shown in Figure 3.8f, the only difference being that now differences were evaluated

by the confidence intervals at a significance level of 0.001, instead of 0.05. The

right panel presents the difference surface with whitening wherever the confidence

intervals of the two fitted surfaces overlap (α = 0.05). Figure 3.9 shows that the

two methods provide very similar results.

(a) By the CIs of the difference surface plus
the intercept.

(b) By overlaps of CIs of the two surface un-
der comparison.

Figure 3.9: Visualization of the estimated difference surface with non-significant
areas being blank, evaluated by the intersection of the CIs of the shifted difference
surface with 0 at the α = 0.001 level (left) and by overlaps of the CIs of the two
surfaces under comparison at the α = 0.05 level (right).

As was the case for the evaluation method by the confidence intervals of the

difference surface, this method focusing on overlaps of fitted surfaces also show

that the differences due to the movement of the hyoid bone are well supported, as

well as the small difference in tongue body position. In addition, similarly to the

method of the difference surface (Figure 3.9a), the evaluation based on overlaps of

confidence intervals (Figure 3.9b) also shows several orange areas above the tongue

surface, for which the method reports medium differences in brightness. These

differences are not of theoretical interest as they most likely reflect the differences

in the extent to which ultrasound beams were scattered.

Ideally, one would want to compare surfaces from the same model. However,

due to the large number of data points in ultrasound images, in the case study we
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report below, we fitted separate models and evaluated similarities and differences

by comparing the absence of overlap between confidence intervals as a guide to

areas of interest.

3.3.3 Including covariates as predictors

In the previous subsection, we included a categorical variable (i.e., morphology),

using the by directive. A continuous variable such as time can also be included,

for instance, using a three-dimensional tensor product smooth.

brightness ~ te(x, y, time)

When multiple consecutive frames are analyzed, bright pixels at one frame

tend to be still bright at the next frame. This autocorrelation should be taken into

consideration when time course data is analyzed. It can be achieved by including

an AR1 process for the errors (Wood, 2017), according to which the current error

at time t is a proportion of the error at time t −1 plus gaussian noise.

As an example, ultrasound images of the stem vowel of zahlt ([tsa:lt]) were

fitted with the three-way tensor product smooth and AR1 process with ρ ≈ 0.372.

For visualization, five frames were selected at the quartiles, i.e., 0%, 25%, 50%,

75%, and 100% into the vowel.

Figure 3.10 shows the resulting five fitted surfaces together with the corre-

sponding ultrasound images. Going from top to bottom, the raising of the tongue

tip is clearly visible, as well as the flattening of the tongue surface, suggesting

contraction of the medial genioglossus. The raising of the tongue tip reflects antic-

ipatory coarticulation with the upcoming alveolar consonants ([-lt]), and is likely

due to be supported by the superior longitudinal muscle.

In addition, it is worth noting that the hyoid shadow is fully visible in the top

panels, but has shifted somewhat to the left by the time the center of the vowel is

reached. The initial elevation and advancement of the hyoid bone, that result in a

rightward shifted hyoid shadow, are likely due to the contraction of the mylohyoid
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Figure 3.10: Development of the tongue shape during [a:] in zahlt [tsa:lt] from the
onset (top) to the offset (bottom).



CHAPTER 3. ANALYZING ULTRASOUND IMAGES WITH GA(M)MS 106

and the geniohyoid muscles (Epstein et al., 2002). In the top two frames of Figure

3.10, the contraction of these two muscles results in elevation of the floor of the

mouth and contribute to the bulging of the tongue body. Thus, the upper panels

present the initial configuration of the tongue for the vowel, although it cannot be

ruled out that there is some co-articulation with the preceding segments.

Another covariate can be included in the same way as time was included

above. For example, it has been known that duration and frequency can both affect

movements of the tongue (Dinkin, 2008; Kelso et al., 1985; Kuehn & Moll, 1976;

Lin et al., 2011; Tomaschek, Arnold, et al., 2018; Tomaschek, Tucker, et al., 2018;

Tomaschek et al., 2021). In order to include duration and frequency as covari-

ates, one might want to simply set up separate tensor product smooths for each of

the covariates as below:

brightness ~ te(x,y, duration) + te(x,y, freq)

However, this specification is not correct, because the two terms are compet-

ing in part for the same variance. What we need is a completely decompositional

model, in which main effects and interactions are carefully distinguished. Inter-

actions of two or more numeric variables have to be fitted with the ti directive,

rather than the te directive. The ti terms are appropriate for functional ANOVA

decomposition and provide interaction (hyper)surfaces from which the main ef-

fects have been excluded. In the following model, the main effects are specified

first, followed by all pairwise interactions and the two three-way interactions of

interest between the x- and y-coordinates and the two additional covariates.

brightness ~ s(x) + s(y) + s(dur) + s(freq) +

ti(x,y) + ti(x,dur) + ti(x,freq) +

ti(y,dur) + ti(y,freq) +

ti(x,y,dur) + ti(x,y,freq)

A main effect term such as s(freq) specifies how pixel brightness varies with

frequency, irrespective of position in the image. An interaction term such as ti(x,
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freq) allows the effect of frequency to vary in the direction of the x-axis, re-

gardless of the y-axis position. A three-way interaction such as ti(x,y,freq)

captures changes in brightness by frequency in the x-y plane that are not captured

by the main effects and lower order interactions. Thanks to this ANOVA decom-

position, it is possible to include multiple covariates and their interactions with the

x and y coordinates.

In this subsection, we have sketched how convariates such as time can be

brought into a GAM model. The next subject shows how differences between

speakers can be taken into account.

3.3.4 Speaker as random effect

GAMs can include random-effect factors. However, for ultrasound data, by-

speaker random intercepts only allow for differences in overall pixel brightness.

But what we are interested in is speaker-specific modulations of the regression sur-

face. To capture different degrees and patterns of wiggliness for different speakers,

we can request the GAM algorithm to allow each level of speaker to have its own

wiggly curve. As there are many different speakers, it may be desirable to treat

speaker as a random effect factor. In the context of GAMs, this means we assume

that the amount of wiggliness in the speaker-specific partial effects is roughly the

same. Wiggly random effects are requested by setting the bs option to the value

“fs” (i.e., factor smooth):

brightness ~ te(x, y) + te(x, y, speaker, bs = "fs")

In this model specification, the first tensor product corresponds to the predicted

surface (i.e., predicted ultrasound image) that is common to all speakers.

For demonstration, we focused on the production of the stem vowel [a:] of ihr

zahlt [I5 tsa:lt] by two speakers. Different speakers usually have different sizes of

the oral cavity and the tongue. To normalize these differences, we took the fol-

lowing four points as reference point for cropping the images prior to analysis: (a)
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the border of the tongue contour line and the hyoid shadow, (b) the border of the

tongue contour line and the mandible shadow, (c) the highest tongue point during

articulating [k], (d) the border of the skin and the mylo/genio-hyoid muscles. We

considered the articulation of [k] to estimate the position of the palate, because [k]

constantly showed higher tongue constriction points than [t]. This cropping pro-

cedure normalizes different sizes of the oral cavity across speakers, with the left

and right edges of the image corresponding to the hyoid shadow and the mandible

shadow respectively, and with the top and bottom of the image corresponding to

the palate and the mylo-/genio-hyoid respectively. These cropping points are illus-

trated in Figure 3.11.

Figure 3.11: Example of the selection of the area to be included in analyses with
multiple speakers, which requires normalization for different sizes of the oral cav-
ity.

The first two figures in Figure 3.12 are the cropped ultrasound images of the

two speakers. The tongue position of Speaker 1 is slightly more fronted than that

of Speaker 2. In addition, the tongue tip is also higher for Speaker 1. These two

figures were provided as input to a GAMM with the model specification presented

above.

The partial effect of the main tensor product is shown in Figure 3.12d. This

main tensor product captures the average of the ultrasound surfaces of the two

speakers. When the average of the raw ultrasound images is computed (see the

third panel on the top row), we obtain a surface that is very similar to the partial

effect of the main tensor product. The lower right panel presents the predicted sur-
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(a) Speaker 1 (b) Speaker 2 (c) Average

(d) By a factor smooth (e) By averaging images

Figure 3.12: Ultrasound images at the middle of [a:] in ihr zahlt from two speakers
(a,b), the averaged image between the two (c), and predicted ultrasound images by
a factor smooth (d) and by averaging images in prior to fitting a GAM.

face of a GAM fitted to the average of the two ultrasound images. As expected, the

two predicted surfaces are very similar. Because main effect tensor smooths pro-

vide central tendencies across different speakers, areas that are consistently bright

across all speakers will show up with high predicted brightness values, whereas

areas where speakers are highly variable, brightness values will be reduced. In

Figure 3.12d, the position of the tongue middle/body shows up with shades of red,

as for both speakers, this part of the tongue is in a very similar position. However,

the position of the back/root of the tongue differs for the two speakers, and accord-

ingly this part of the tongue is represented by lighter colors. In other words, when

more than one speaker is included, degrees of predicted brightness can also indi-

cate variability among speakers. In addition, variability among speakers can also

show up as a larger “area” of the tongue surface position. Although we focused

on speaker differences so far, this discussion about variability among speakers can

also be applied to differences across frames and items.

Our discussion thus far illustrates how speaker variability can in principle be

integrated into a GAM model. Unfortunately, estimating by-speaker random wig-

gly curves becomes prohibitively computationally expensive for larger numbers
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of speakers. To reduce computational load, we therefore averaged images across

speakers, and did not include speaker as a separate random effect term in the mod-

els reported below.

3.4 Case study: Enhancement effects of frequency

In this section, we use GAMs to study possible effects of frequency on pronuncia-

tion. Frequency of occurrence has been investigated intensively in psycholinguis-

tics. Oldfield and Wingfield (1965) found that word naming was slower for lower

frequency words. Since then, many studies have reported effects of frequency

across tasks, methodologies, languages, and different types of items (Baayen et

al., 1997; Baayen et al., 2006; Baayen et al., 2002; Bertram et al., 2000; Forster

& Chambers, 1973; Gahl, 2008; Gardner et al., 1987; Rubenstein et al., 1970;

Scarborough et al., 1977; Schreuder & Baayen, 1997; Whaley, 1978; Wurm et al.,

2006).

Higher frequency words have widely been reported to show more phonetic re-

duction, namely shorter duration, more centralized formant realizations, and less

clear articulations (Aylett & Turk, 2004; A. Bell et al., 2009; A. Bell et al., 2002;

Dinkin, 2008; Jurafsky et al., 2001; Munson & Solomon, 2004; Pluymaekers et al.,

2005b). Furthermore, higher frequency words are more likely to be encountered

and are more predictable in context. Higher predictability, in turn, goes in hand

in hand with greater redundancy and a reduced information load (Aylett & Turk,

2004; Jurafsky et al., 2001). The amount of information carried by a word is de-

fined as the negative logarithm (usually with base 2) of its probability of occurrence

(Shannon, 1948). Words that carry little information are relatively redundant and

this has been argued to underlie the extent to which such words undergo phonetic

reduction.

While the reduction effect of frequency has repeatedly been replicated, fre-

quency effects in the opposite direction have also been reported. Kuperman et al.
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(2007) investigated the duration of interfixes in Dutch compounds and found that

interfix duration was longer, rather than shorter, when the interfix was predicted

better in the morphological paradigm the compound word belongs to and when the

compound word that carries the interfix was a high frequency word. The possibility

that a greater paradigmatic probability goes hand in hand with phonetic strength-

ening is supported by several subsequent studies (M. J. Bell et al., 2021; Cohen,

2014; Tomaschek, Tucker, et al., 2018; Tomaschek et al., 2021).

Tomaschek, Tucker, et al. (2018) investigated the stem vowel [a:] of German

inflected verbs and found that frequency effects were modulated by the suffixes

following the stem vowel. When the stem vowel was followed by the suffix -t, it

was articulated with lower tongue trajectories as frequency of the word increased,

indicating a phonetic enhancement effect of frequency. However, when the suffix

-en followed the vowel, no clear effect of frequency was present.

In addition, Tomaschek, Tucker, et al. (2018) observed that the enhancement

effect of frequency was non-linear. The greatest articulatory reduction was ob-

served for words with average frequency. In contrast, both high frequency words

and low frequency words were articulated with lower, more enhanced, tongue tip

trajectories. In comparison to low frequency words, high frequency words tended

to be articulated with earlier initiation of tongue raising towards the offset of the

stem vowel, anticipating the upcoming alveolar suffix. In other words, low fre-

quency words were articulated in such a way that clarity of the vowel was max-

imized. Middle frequency words were articulated the most smoothly. High fre-

quency words realized both clarity and smoothness. Tomaschek, Tucker, et al.

(2018) interpreted these results as reflecting articulatory optimization, made pos-

sible by more extensive motor experience. This interpretation was supported by a

further study (Tomaschek, Arnold, et al., 2018), which reported that for high fre-

quency words more complex tongue trajectories are articulated without a loss of

speed.

In what follows, we report a replication study, using ultrasound instead of
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EMA, of the frequency effects reported by Tomaschek, Tucker, et al. (2018), us-

ing an extended data set of German inflected verbs. The focus of this replica-

tion study is the difference in articulation between high and mid frequency words.

Tomaschek, Tucker, et al. (2018) found that middle frequency words were articu-

lated with shallower tongue trajectories, while high frequency words were articu-

lated with lower tongue trajectories.

The materials in Tomaschek, Tucker, et al. (2018) contained 27 German verb

types. These verb types had [a:] as the stem vowel and were inflected and combined

with the third person plural pronoun sie and its corresponding suffix -en. Nine of

these verbs were also combined with the second person plural pronoun ihr and its

corresponding suffix -t, as illustrated below:

(13) sie
they

zahlen.
pay.3PL

[zi: tsa:l(@)n]

‘They pay.’

(14) ihr
you.PL

zahlt.
pay.2SG

[I5 tsa:lt]

‘You (plural) pay.’

Note that, in this study by Tomaschek, Tucker, et al. (2018), the suffix -en

was always combined with the pronoun sie, and the suffix -t was always combined

with the pronoun ihr. As a consequence, the possibility cannot be excluded that

systematic differences in the articulation of [a:] found by Tomaschek, Tucker, et

al. (2018) were confounded by the systematic differences in pronouns, namely the

carryover coarticulation (Öhman, 1966; Repp & Mann, 1982; Song et al., 2013).

While the pronouns sie and ihr were always combined with the suffixes -en and

-t respectively in Tomaschek, Tucker, et al. (2018), sie can also be used as the third

person sinular pronoun by being combined with the suffix -t. In addition, the rime

segments of ihr [i:5] can also occur as the rime of the first person plural pronoun

wir [vi:5], being combined with the suffix -en. Furthermore, the suffix -t can be

singular or plural, depending on pronouns, and the suffix -en can be used as the



CHAPTER 3. ANALYZING ULTRASOUND IMAGES WITH GA(M)MS 113

first person plural and the third person plural suffix both, as shown below:

(15) sie
he/she/it

zahlt.
pay.3SG

[zi: tsa:lt]

‘He/she/it pays.’

(16) wir
we

zahlen.
pay.1PL

[vI5 tsa:l(@)n]

‘We pay.’

Table 3.4 shows all the possible suffixes for German present tense indicative in-

flected verbs.

Table 3.4: Inflectional exponents of the German verbs in the present tense

Person Singular Plural

1st -e -en
2nd -st -t
3rd -t -en

In order to control possible carryover coarticulation from the preceding pro-

noun, we adopted additional two inflectional variants, namely the pronoun sie with

the suffix -t and the pronoun wir with the suffix -en, as summarized in Table 3.5

below:

Table 3.5: Combinations of pronouns and suffixes of interest with sagen [za:g(@)n]
as an example.

Suffix

Pronoun [-t] [-(@)n]

sie [zi:] sie sagt sie sagen
ihr/wir [(v)I5] ihr sagt wir sagen
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3.4.1 Method

Participants

A total of 18 participants took part in the experiment. These participants were

students at the university of Tübingen and received 10 Euro in compensation for

their participation. All participants had normal hearing.

Materials

The dataset contained 395 target phrases, 52 of which belonged to the sie-t con-

dition (e.g., sie zahlt), 152 to the sie-n condition (e.g., sie zahlen), 116 to the

ihr-t condition (e.g., ihr zahlt), and 75 to the wir-n condition (e.g., wir zahlen).

The verbs of these target phrases contained [a] or [a:] as the stem vowel. In ad-

dition, we also had a total of 308 filler phrases of verbs with the same inflectional

exponents but with different stem vowels (e.g., ihr spielt). Furthermore, 231 filler

verb phrases in the other combinations of pronouns and suffixes (e.g., du zahlst)

and 84 filler bare nouns were included. For each participant, a different list was

created in which targets and fillers were pseudo-randomized. Because of the rel-

atively large number of items, each list was split into two sublists, which were

presented to participants in different sessions.

Procedure

The items were presented visually on a screen of a laptop (Lenovo ThinkPad with

intel core i7 and Windows 7), using Articulate Assistant Advanced (Articulate In-

struments Ltd., 2012). Participants were instructed to read aloud the items dis-

played on the screen. Audio signals of their speech were recorded with a mi-

crophone (Oktava MK-012) placed about 10 cm away from the mouth (mono au-

dio). The microphone was positioned towards the mouth but slightly lower than

the mouth, so that breath does not directly reach the microphone. For an audio

interface, we used Focusrite Scarlett Solo 3rd Generation.
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At the same time, articulations by participants were recorded with an EchoB ul-

trasound system (Articulate Instruments Ltd., 2012). The EchoB system included

a microconvex 10 mm radius probe by TELEMED, the AAA software, the pulse

stretch unit that synchronizes audio signals with ultrasound images, and a probe

stabilization headset (UltraFit). Participants were requested to wear the probe sta-

bilization headset, which holds the ultrasound transducer fixed under the chin. The

transducer had 64 scanlines, with 842 pixels for each scanline, and with a field of

view equal to 92 degrees. Frame rates were 92 frames per second on average.

Before the main session including the target and filler items, participants were

instructed to articulate [t] and [k] in addition to swallowing saliva. These data were

collected to calculate the position of the hard and soft palate. Cropping points for

normalization between speakers were determined in the same way as in Section

3.3.4.

Analysis

Each of the target verb phrases was encountered and produced at least by 10 speak-

ers (min=10, Q1=, Q2=12, Q3=, max=17)3. Most (approximately 93%) of the tar-

get phrases were spoken by 12 or more speakers. (0.25% by 10 speakers, 6.60%

by 11 speakers, 62.69% by 12 speakers, 30.20% by 13 speakers, and 0.25% by 17

speakers).

Recorded ultrasound images were exported as raw data, that is, as a single

vector of pixel brightness values. The exported raw data was processed using the

python package pyult (Saito, 2020). The vector of pixel brightness data was first

reshaped as a rectangle, as illustrated above. Subsequently, the reconstructed im-

ages were cropped at each side in order to normalize individual differences in oral

cavity size (Figure 3.11). These reference points were determined for each partici-

pant, based on the middle frame of the recording of [k].

Subsequently, five frames with approximately equal intervals were extracted

3Because not all the participants showed up for the second session of the recordings, not all the
items could be obtained from every speaker.
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from each recording. These five frames corresponded to 0%, 25%, 50%, 75%, and

100% of the stem vowel. For each of the 395 target phrases, the images for a given

time point were averaged by speaker.

The procedure above led to the total number of average ultrasound images

available for the analysis being 395×5 = 1975 for each of the target verbal phrasal

types, which in all comprised 697,448,365 pixel values. This large dataset proved

to be too large to allow analysis with a single GAM model. We therefore first re-

sized each ultrasound image to 40×40 pixels. This resulted in 395×5×40×40 =

3,160,000 pixels for each of the verbal phrasal types, comprising 38,960,000 pixel

values. Furthermore, we ran separate GAM models for each individual timestep for

each of the four sets of words defined by pronoun and exponent (see Table 3.5), re-

sulting in a total of 5×4 = 20 models. Although including word as random effect

would be preferable, even for these smaller datasets, this proved to be computa-

tionally intractable.

For each of the 20 datasets, pixel brightness was modelled as a function of x-

coordinate, y-coordinate, vowel duration, word frequency, and interactions of the

latter two covariates with the two coordinates. Vowel duration was included to take

into account durational differences between the vowels a and a:, and also because

the tongue can move more extensively when more time is available for articulation

(Kelso et al., 1985; Kuehn & Moll, 1976). Word frequency was collected from the

SdeWac corpus (Faaß & Eckart, 2013) and log-transformed prior to fitting GAMs.

The number of basis functions used in the smooth term was set to 20, which we

found to be sufficiently large to capture sudden changes in brightness in the ultra-

sound image, as typically present near the tongue surface. We used the same model

formula for all 20 datasets:

PixelBrightness ~ s(x, k=20) + s(y, k=20) +

ti(x, y, k=20) + s(duration, k=20) +

ti(x, duration, k=c(20, 20)) +

ti(y, duration, k=c(20, 20)) +
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ti(x, y, duration, k=c(20, 20, 20) +

s(frequency, k=20) +

ti(x, frequency, k=c(20, 20)) +

ti(y, frequency, k=c(20, 20)) +

ti(x, y, frequency, k=c(20, 20, 20))

Since we have 20 models with 11 smooth terms each, we used a Bonferroni cor-

rected alpha level 0.01/(20×11)≈ 0.00005.

3.4.2 Results

All the smooths were significant at α = 0.00005. Summaries of each model are

provided in Appendix 3.D.

The suffix-[t] condition

We discuss the results for the condition “i:-t” first, where the pronoun ends with [-i:]

and the suffix is [-t]. The predicted ultrasound images for this condition are listed in

Figure 3.13. The five plots in the leftmost column represent high frequency words.

Those in the central column represent middle frequency words. The rightmost

column lists the five difference plots for each time step. Time steps are represented

on rows. The top row is the first time step, namely the onset of the target vowel

[a(:)]. The third row is the middle of the vowel. The bottom row is the offset of the

vowel. For the predicted ultrasound images in the left and central columns, warmer

colors represent brighter pixel values.

In all the GAM models in this case study, frequency was included as a continu-

ous variable. However, just for illustrative purpose, in Figure 3.13 and all the other

figures that follow, we refer to 50% and 90% quantiles of the frequency variable as

“high” and “mid” frequencies.

The difference plots in the rightmost column were obtained by subtracting the

images in the central column from those in the leftmost column. Therefore, warmer

colors in the difference plots indicate that pixels are brighter in the high frequency
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(a) Freq=High, T=1 (b) Freq=Middle, T=1 (c) Differences, T=1

(d) Freq=High, T=2 (e) Freq=Middle, T=2 (f) Differences, T=2

(g) Freq=High, T=3 (h) Freq=Middle, T=3 (i) Differences, T=3

(j) Freq=High, T=4 (k) Freq=Middle, T=4 (l) Differences, T=4

(m) Freq=High, T=5 (n) Freq=Middle, T=5 (o) Differences, T=5

Figure 3.13: Predicted ultrasound images for words preceded by sie and ending
with the exponent -t. High frequency words are presented in the left column, mid-
dle frequency words are presented in the center column, and the corresponding
difference surfaces in the right column.

condition, compared to the middle frequency condition. Colder colors indicate the

opposite, namely brighter pixels in the middle frequency condition than in the high

frequency condition.

Differences between the high-frequency and mid-frequency words that are vis-

ible to the eye are the lower position of the front of the tongue for higher-frequency
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words at timesteps 3 and 4, and to some extent timestep 5. Furthermore, at later

timesteps, there is greater uncertainty about the position of the tongue surface,

as indicated by the greater areas with darker red. This uncertainty appears to be

somewhat less for the mid-frequency words at timesteps 4 and 5, especially for the

tongue root.

The difference surfaces in the right column provide further information. At the

first timestep, the front of the tongue is more likely to be positioned in areas A and

B for high-frequency words. Area C probably is close to the air pocket below the

tongue tip. At the second timestep, area B is again more likely for high-frequency

words, but for area A, no difference is present. At timestep 3, area A begins to

show a preference for mid-frequency words, and by timestep 4, this preference is

very clearly present. At this timestep, the front of the tongue is positioned higher

for mid-frequency words, and lower for high-frequency words. At vowel offset,

only area B remains as area of preference for high-frequency words.

The difference surface at timestep 4 also clarifies that the tongue back and

tongue root are more likely to be in area D for mid-frequency words, whereas for

high-frequency words, there center/back of the tongue is more likely to be located

higher in area E.

In summary, for higher-frequency words, the front of the tongue is lowered

more, and the center/back of the tongue raised more, compared to mid-frequency

words, with the greatest differences emerging at T=4.

Figure 3.14 shows, for the ihr -t condition, the predicted ultrasound images for

high frequency words (left column) and middle frequency words (central column)

from the onset (top row) to the offset (bottom row) of the stem vowel. The right

column of Figure 3.14 contains the difference surfaces between the predicted ul-

trasound images of high and middle frequency words. As for the sie -t condition,

lowering of the tongue tip is visible during timesteps 2, 3, and 4. Unlike the sie -t

condition, the variance in tongue positions is very similar across all time steps for

both high and medium frequency words. With respect to the differences between
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the high and middle frequency conditions, the difference surfaces show that these

are much reduced. There is some evidence that the tongue position is higher for the

high frequency words (area A), starting with the tongue tip at the first time steps,

and moving to the tongue body at later time steps. It is only at the first time step

that there is some evidence for the front of the tongue being located further down

(area B). By the end of the vowel, the tongue back and the tongue root appear to

be positioned somewhat lower for the medium frequency words (area C). For these

words, there is more reflection from tongue fat in the tongue root (area D), possibly

due to a more fronted position of the tongue tip (area E).

Comparing the fitted surfaces at T=1 for the sie -t and the ihr -t condition, the

position of the tongue front appears to be slightly lower for the ihr -t condition,

suggesting coarticulation with the preceding vowel, which has a lower point of

articulation for the latter condition ([5] vs. [i:]).

The suffix-[(@)n] condition

Figures 3.15-3.16 present the results for the sie -n and wir -n conditions respec-

tively.

In the sie -n condition, some lowering of the front of the tongue is visible

at the second time step. At later time steps, the front of the tongue is found at

increasingly high positions especially for middle frequency words. The difference

surfaces show that, at vowel onset, higher frequency words have a higher position

of the front of the tongue than middle frequency words (areas A and B). This

difference substantially reduced in the second time step, and is completely absent

in the third time step, at the center of the vowel. Subsequently, mid frequency

words have a higher position of the tongue back (area C)

In the wir -n condition (Figure 3.16), the wider tongue surface regions for the

high frequency words indicate greater variability in articulation. For both high and

middle frequency words, lowering of the front of the tongue is visible at time steps

2, 3, and 4. The difference surfaces suggest that the higher variance visible for
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(a) Freq=High, T=1 (b) Freq=Middle, T=1 (c) Differences, T=1

(d) Freq=High, T=2 (e) Freq=Middle, T=2 (f) Differences, T=2

(g) Freq=High, T=3 (h) Freq=Middle, T=3 (i) Differences, T=3

(j) Freq=High, T=4 (k) Freq=Middle, T=4 (l) Differences, T=4

(m) Freq=High, T=5 (n) Freq=Middle, T=5 (o) Differences, T=5

Figure 3.14: Predicted ultrasound images for high frequency (left) and middle fre-
quency words (center) with the pronoun ending [-5] and the suffix being [-t] and
differences between the two frequency conditions (right).

high frequency words at many of the time steps is due to two different ways in

which speakers realize the vowel, which are jointly represented in the regression

surfaces due to aggregation across speakers. Some speakers realize high frequency

words with higher tongue positions than the mid frequency words (area A). Other

speakers make use of lower positions of the front and the mid of the tongue, and at
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(a) Freq=High, T=1 (b) Freq=Middle, T=1 (c) Differences, T=1

(d) Freq=High, T=2 (e) Freq=Middle, T=2 (f) Differences, T=2

(g) Freq=High, T=3 (h) Freq=Middle, T=3 (i) Differences, T=3

(j) Freq=High, T=4 (k) Freq=Middle, T=4 (l) Differences, T=4

(m) Freq=High, T=5 (n) Freq=Middle, T=5 (o) Differences, T=5

Figure 3.15: Predicted ultrasound images for high frequency (left) and middle fre-
quency words (center) with the pronoun ending [-i:] and the suffix being [-(@)n]
and differences between the two frequency conditions (right).

time steps 2 and 3, even for the tongue back (area C). At time step 4, differences

between high and middle frequency words largely disappeared. At vowel offset,

higher frequency words show a somewhat more fronted realization.
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(a) Freq=High, T=1 (b) Freq=Middle, T=1 (c) Differences, T=1

(d) Freq=High, T=2 (e) Freq=Middle, T=2 (f) Differences, T=2

(g) Freq=High, T=3 (h) Freq=Middle, T=3 (i) Differences, T=3

(j) Freq=High, T=4 (k) Freq=Middle, T=4 (l) Differences, T=4

(m) Freq=High, T=5 (n) Freq=Middle, T=5 (o) Differences, T=5

Figure 3.16: Predicted ultrasound images for high frequency (left) and middle fre-
quency words (center) with the pronoun ending [-5] and the suffix being [-t] and
differences between the two frequency conditions (right).

3.4.3 Discussion

As mentioned above, this study is in part a replication study of Tomaschek, Tucker,

et al. (2018), who used electromagnetic articulography. As can be seen in Figure

3.17, for the ihr -t condition, the strongest effect of frequency was present for

the tongue tip. In Figure 3.17, the horizontal axis represents time, the vertical
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axis represents frequency, and darker colors indicate lower tongue sensor positions.

For both the tongue tip and the tongue body sensors, the lowest sensor positions

were reached for the highest frequency words. In the present ultrasound study,

frequency effects are present for the ihr -t condition. However, in this experiment,

the tongue front and the tongue back tend to be higher for high frequency words,

instead of lower. By contrast, for the sie -t condition, which was not considered

in Tomaschek, Tucker, et al. (2018), we observed a strong frequency effect that is

more similar to that reported in Tomaschek, Tucker, et al. (2018).
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Figure 3.17: Tongue tip and body positions for middle to high frequency words in
the suffix -t condition found in Tomaschek, Tucker, et al. (2018).

In the sie -n condition, in contrast, effects of frequency were not well supported

in Tomaschek, Tucker, et al. (2018). In the present ultrasound study, however, we

observed a higher position of the tongue front for high frequency words at the onset

of the stem vowel, while at the offset of the stem vowel the tongue front was lower

for high frequency words. In the wir -n condition, which was not considered in

Tomaschek, Tucker, et al. (2018), we observed two different kinds of articulatory

patterns. For one, the tongue front is higher for high frequency words. For the

other, the tongue front is lower for high frequency words.

Across all four conditions (sie -t, ihr -t, sie -n, and wir -n), the word-final
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exponent contains an alveolar consonant. This consonant may be expected to give

rise to raising of the tongue front and the tongue tip by the end of the stem vowel.

Expected high positions are indeed visible for all four conditions, but only for

middle frequency words. High frequency words show consistently lower tongue

positions, typically accompanied by higher positions of the tongue back and the

tongue root.4 This finding fits well with the results reported by Tomaschek, Tucker,

et al. (2018), who also observed that higher frequency words were more resistant

to coarticulation with upcoming alveolar exponents. As argued by this study, this

resistance can be interpreted as evidence for greater articulatory clarity, enabled by

more motor experience.

3.5 General discussion

In this paper, we introduced a new statistical method for analyzing ultrasound im-

ages. The method is based on the Generalized Additive Model (GAM: Wood,

2017), predicting pixel brightness by x- and y-coordinates, resulting in a predicted

wiggly surface for an ultrasound image. These predicted surfaces provide detailed

information about the variability in articulation across items. For comparing ul-

trasound images across experimental conditions, we enriched difference surfaces

between these conditions with areas where confidence intervals of the pertinent

conditions do not overlap. In this way, combined with a proper Bonferroni cor-

rection, the analyst is provided with a guide to where ultrasound images are most

likely to be different. The biggest advantage of this method is its ability to include

all the information available in an ultrasound image, rather than having to rely

on only tongue surface contour lines (as used by, for instance, Aubin & Ménard,

2006; Davidson, 2005, 2006; Dawson et al., 2016; Heyne et al., 2019; Lee-Kim

et al., 2013; Ménard et al., 2013; Song et al., 2013; Stolar & Gick, 2013; Strychar-

4In the ihr -t condition, this is evidenced by the lower position of the tongue back and the tongue
root as well as the higher position of the tongue tip for medium frequency words, see areas C and E
in Figure 3.14.
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czuk & Scobbie, 2016; Turton, 2015). The shadows and the inside of the tongue

can also be used as information sources. For example, the movement of the hyoid

shadow can be an indication of the advancement of the tongue root. Therefore,

this analysis method provides a more holistic view of the tongue and helps to un-

derstand what is happening in the oral cavity more clearly. Currently, this method

comes with a high computational load. In order to work around this problem, we

averaged over subjects.

This method can be applied not only to midsaggital ultrasound images, but also

to any other slice of the tongue (e.g., coronal). In principle, extension to 3-D in-

stead of 2-D ultrasound imaging is also possible, in which case higher-dimensional

tensor product smooths are required in order to model the interaction of the x,

y, and z coordinates with time. Currently, the huge computational load of fitting

high-dimensional surfaces to the immense amounts of pixel data generated by 3-D

ultrasound imaging, may render a full analysis infeasible for the current algorithms

implemented in the mgcv package.

To illustrate the GAM method for 2-D ultrasound images, we carried out a

replication study with ultrasound, following up on the study of Tomaschek, Tucker,

et al. (2018), which made use of electromagnetic articulography. GAM analysis of

the ultrasound images revealed similar lower positions of the front of the tongue for

high frequency words with [a(:)] as stem vowel, in general replicating Tomaschek,

Tucker, et al. (2018). We observed an effect of frequency for three of the pronoun-

suffix conditions in the experiment, the exception being the wir -n condition. In

this condition, speakers pronounced target phrases in two different ways. This

variability may also underlie the fact that Tomaschek, Tucker, et al. (2018) did not

find a strong effect of frequency for the suffix -n condition.

Lower tongue tip positions for the [a(:)] vowel indicate clearer articulations.

Tomaschek, Tucker, et al. (2018) interpreted this result as indicating enhancement

effects of frequency. Clearer articulations for high frequency words are in line

with the finding of less co-articulation for adults compared to children (Howson
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& Redford, 2019; Nittrouer et al., 1989; Noiray et al., 2019; Sereno et al., 1987;

Zharkova et al., 2011). In addition, this finding is also in line with several studies

that found enhancement effects of frequency and predictability in morphologically

complex words (M. J. Bell et al., 2021; Cohen, 2014; Kuperman et al., 2007;

Tomaschek et al., 2021).

These enhancement effects of frequency appear to contradict the reduction ef-

fect of frequency, which has been observed repeatedly and well-established (Arnon

& Cohen Priva, 2013; Aylett & Turk, 2004, 2006; A. Bell et al., 2009; A. Bell et al.,

2002; Dinkin, 2008; Gahl, 2008; Jurafsky et al., 2001; Pluymaekers et al., 2005b;

Van Son & Van Santen, 2005; Wright, 2004). One difference between these studies

and the present study is that the latter investigates only morphologically complex

words, focusing on a stem vowel that is always followed by a morpheme boundary.

Importantly, segments before the morpheme boundary have been observed to be

enhanced phonetically (Hay, 2007; V. G. Li et al., 2020; Plag & Ben Hedia, 2018;

Seyfarth et al., 2017; Smith et al., 2012; Song et al., 2013; Strycharczuk & Scob-

bie, 2016; Sugahara & Turk, 2009). The study by Tomaschek, Tucker, et al. (2018)

and the present replication using ultrasound add to this literature the observation

that this enhancement effect appears to be stronger for higher frequency words.

A second difference is that, in the present experiment, target phrases were pre-

sented in isolation without context, whereas the reduction effect of frequency is

generally understood in terms of syntagmatic predictability (Aylett & Turk, 2006;

Jurafsky et al., 2001): more frequent words have a reduced information load in

utterances and hence can be reduced to minimize effort (Zipf, 1949). Without any

context, the verb phrases in our experiment were syntagmatically unpredictable,

which explains why no articulatory reduction took place: all verb phrases were

equally (un)informative. This account is in line with Gahl and Baayen (2022), a

study tha suggests frequency effects are composed of two opposite forces, namely

syntagmatic reduction effects and paradigmatic enhancement effects.

The observed enhancement effects of frequency fit well with the kinematic
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practice hypothesis (Tomaschek, Arnold, et al., 2018; Tomaschek, Tucker, et al.,

2018), according to which well-practiced routines of tongue movements are exe-

cuted faster and more clearly (Tomaschek, Arnold, et al., 2018). It is also pos-

sible that higher-frequency words are not only executed with better-trained motor

skills, but also have stronger form-meaning associations (Gahl & Baayen, 2022).

Stronger associations allow words’ forms to receive more support from their se-

mantics, which in turn may support phonetically enhanced realization (Chuang et

al., 2022; Gahl & Baayen, 2022).

Appendices

3.A Curvature index

Curvature index, denoted i, is defined as

i =
∫ b

a
r dx

r =
(1+ y′2)

3
2

(y′′)

y = ax7 +bx6 + cx5 +dx4 + ex5 + f x2 +gx+h

where x and y are coordinates of a fitted tongue contour line. y′ and y′′ represent

the first and second derivatives of y. a and b are the both ends of the tongue surface

contour (Stolar & Gick, 2013).

3.B Discrete Fourier Transform (DFT)

Suppose that we have n data points, which are assumed to be sampled from a con-

tinuous periodic function, i.e., f0, f1, f2, ..., fn−1. These data points are defined in

the time domain. Discrete Fourier Transform maps these data points onto corre-



CHAPTER 3. ANALYZING ULTRASOUND IMAGES WITH GA(M)MS 129

sponding data points in the frequency domain, i.e., f̂0, f̂1, f̂2, ..., f̂n−1. The coeffi-

cient of kth frequency (i.e., f̂k) is then defined by the following equation with i an

imaginary number (i.e., i =
√
−1):

f̂k =
n−1

∑
j=0

f je−i2π jk/n (3.1)

This equation can be rewritten as below, using Euler’s formula eix = cosx+ isinx.

As indicated by the equation, DFT approximates the original function by a sum of

cosine and sine functions.

n−1

∑
j=0

f je−i2π jk/n =
n−1

∑
j=0

f j(cos(2π jk/n)− isin(2π jk/n)) (3.2)

The DFT can also be expressed as below, where ωn = e−i2π/n. This equation shows

more explicitly that DFT is a linear mapping from the time domain to the frequency

domain.



f̂0

f̂1

f̂2
...

f̂n−1


=



1 1 1 · · · 1

1 ωn ω2
n · · · ωn−1

n

1 ω2
n ω4

n · · · ω
2(n−1)
n

...
...

...
. . .

...

1 ωn−1
n ω

2(n−1)
n · · · ω

(n−1)2

n





f0

f1

f2
...

fn−1


(3.3)
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3.C Items

Table 3.C.1: The target phrases adopted in the case study.

wir baden
sie badet
wir bahnen
sie bahnt
sie bat
wir baten
sie baten
ihr batet
wir blasen
wir fahnden
sie fahndet
wir faseln
sie faselt
wir lahmen
sie lahmt
wir mahlen
sie mahlt
wir mahnen
sie mahnt
wir malen
sie malt
sie plagt
wir plagen
sie plagen
wir schaben
sie schabt
wir schaden
sie schadet
wir schlafen
wir sassen
sie sassen
ihr sasst
wir stapeln
sie stapelt
wir tadeln
sie tadelt
wir tafeln
sie tafelt

wir waten
sie watet
wir zahlen
sie zahlt
wir zahnen
sie zahnt
sie ahmt
ihr ahmt
wir ahmen
sie ahmen
sie ahnt
ihr ahnt
wir ahnen
sie ahnen
sie ahndet
ihr ahndet
wir ahnden
sie ahnden
sie sagt
ihr sagt
wir sagen
sie sagen
wir tragen
sie tragen
ihr tragt
wir fahren
sie fahren
ihr fahrt
sie fragt
ihr fragt
wir fragen
sie fragen
wir schlagen
sie schlagen
ihr schlagt
sie plant
ihr plant
wir planen

sie planen
sie wagt
ihr wagt
wir wagen
sie wagen
sie klagt
ihr klagt
wir klagen
sie klagen
wir raten
sie raten
ihr ratet
sie jagt
ihr jagt
wir jagen
sie jagen
sie atmet
ihr atmet
wir atmen
sie atmen
wir braten
sie braten
ihr bratet
sie strahlt
ihr strahlt
wir strahlen
sie strahlen
sie ragt
ihr ragt
wir ragen
sie ragen
wir graben
sie graben
ihr grabt
sie tagt
ihr tagt
wir tagen
sie tagen

sie rast
ihr rast
wir rasen
sie rasen
sie masst
ihr masst
wir massen
sie massen
sie grast
ihr grast
wir grasen
sie grasen
sie nagt
ihr nagt
wir nagen
sie nagen
sie labt
ihr labt
wir laben
sie laben
sie prahlt
ihr prahlt
wir prahlen
sie prahlen
sie trabt
ihr trabt
wir traben
sie traben
sie spasst
ihr spasst
wir spassen
sie spassen
sie rahmt
ihr rahmt
wir rahmen
sie rahmen
sie kramt
ihr kramt
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wir kramen
sie kramen
wir schalen
sie schalen
sie hakt
ihr hakt
wir haken
sie haken
sie tratscht
ihr tratscht
wir tratschen
sie tratschen
sie gast
ihr gast
wir gasen
sie gasen
wir sahen
sie sahen
ihr saht
sie sahnt
ihr sahnt
wir sahnen
sie sahnen
sie wahrt
ihr wahrt
wir wahren
sie wahren
wir lagen
sie lagen
ihr lagt
wir gaben
sie gaben
ihr gabt
wir trafen
sie trafen
ihr traft
wir assen
sie assen

ihr asst
wir lasen
sie lasen
ihr last
wir stahlen
sie stahlen
ihr stahlt
wir brachen
sie brachen
ihr bracht
wir frassen
sie frassen
ihr frasst
wir stachen
sie stachen
ihr stacht
wir kamen
sie kamen
ihr kamt
wir nahmen
sie nahmen
ihr nahmt
wir sprachen
sie sprachen
ihr spracht
sie trat
wir traten
sie traten
ihr tratet
sie ratschen
wir ratschen
ihr ratscht
sie ratscht
sie baden
sie bahnen
ihr bahnt
sie blasen
ihr blast

sie fahnden
sie faseln
ihr faselt
sie fasten
sie labern
sie lahmen
ihr lahmt
sie mahlen
ihr mahlt
sie mahnen
ihr mahnt
sie malen
ihr malt
ihr plagt
sie schaben
ihr schabt
sie schaden
sie schlafen
ihr schlaft
sie stapeln
sie tadeln
sie tafeln
sie tapern
sie waten
sie zahlen
ihr zahlt
sie zahnen
ihr zahnt
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3.D Model summaries

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 67.505 0.018 3705.900 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.489 18.951 13944.896 < 0.00005
s(y) 18.944 18.999 7103.456 < 0.00005
s(Duration) 18.874 18.996 85.514 < 0.00005
s(Frequency) 18.923 18.997 154.129 < 0.00005
ti(x, y) 301.022 339.278 948.933 < 0.00005
ti(x, Duration) 150.644 186.226 18.742 < 0.00005
ti(y, Duration) 297.941 335.677 17.961 < 0.00005
ti(x, y, Duration) 2206.641 2976.021 6.644 < 0.00005
ti(x, Frequency) 143.709 178.701 11.642 < 0.00005
ti(y, Frequency) 275.992 321.537 11.301 < 0.00005
ti(x, y, Frequency) 1738.910 2374.300 4.692 < 0.00005

Table 3.D.1: Summary of the GAM fitted to the ultrasound image for the sie -n
condition, at T = 1.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 68.514 0.018 3852.798 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.535 18.958 14829.777 < 0.00005
s(y) 18.950 18.999 8368.386 < 0.00005
s(Duration) 18.906 18.997 119.765 < 0.00005
s(Frequency) 18.931 18.998 167.458 < 0.00005
ti(x, y) 304.617 341.531 1002.922 < 0.00005
ti(x, Duration) 150.722 186.636 20.824 < 0.00005
ti(y, Duration) 305.973 341.278 23.333 < 0.00005
ti(x, y, Duration) 2537.358 3392.393 6.944 < 0.00005
ti(x, Frequency) 143.348 178.267 14.057 < 0.00005
ti(y, Frequency) 272.327 318.410 9.201 < 0.00005
ti(x, y, Frequency) 1618.589 2212.068 3.860 < 0.00005

Table 3.D.2: Summary of the GAM fitted to the ultrasound image for the sie -n
condition, at T = 2.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 69.360 0.018 3814.270 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.529 18.957 14682.985 < 0.00005
s(y) 18.945 18.999 7809.375 < 0.00005
s(Duration) 18.883 18.996 175.495 < 0.00005
s(Frequency) 18.926 18.997 156.777 < 0.00005
ti(x, y) 302.418 340.269 966.551 < 0.00005
ti(x, Duration) 149.111 184.576 26.562 < 0.00005
ti(y, Duration) 306.026 341.273 30.399 < 0.00005
ti(x, y, Duration) 2582.375 3444.319 7.834 < 0.00005
ti(x, Frequency) 143.107 177.526 15.946 < 0.00005
ti(y, Frequency) 264.984 312.899 8.619 < 0.00005
ti(x, y, Frequency) 1641.322 2252.182 3.737 < 0.00005

Table 3.D.3: Summary of the GAM fitted to the ultrasound image for the sie -n
condition, at T = 3.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 70.867 0.020 3613.871 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.441 18.942 13640.063 < 0.00005
s(y) 18.923 18.998 5430.417 < 0.00005
s(Duration) 18.849 18.994 260.926 < 0.00005
s(Frequency) 18.896 18.996 174.384 < 0.00005
ti(x, y) 293.244 334.407 876.934 < 0.00005
ti(x, Duration) 149.198 184.877 30.037 < 0.00005
ti(y, Duration) 303.157 338.490 29.793 < 0.00005
ti(x, y, Duration) 2345.501 3164.392 7.234 < 0.00005
ti(x, Frequency) 146.335 181.040 20.332 < 0.00005
ti(y, Frequency) 277.495 320.556 15.702 < 0.00005
ti(x, y, Frequency) 1726.710 2392.433 4.886 < 0.00005

Table 3.D.4: Summary of the GAM fitted to the ultrasound image for the sie -n
condition, at T = 4.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 71.312 0.020 3519.466 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.351 18.926 14200.805 < 0.00005
s(y) 18.889 18.996 4344.521 < 0.00005
s(Duration) 18.752 18.987 272.148 < 0.00005
s(Frequency) 18.912 18.997 182.108 < 0.00005
ti(x, y) 285.379 328.966 836.196 < 0.00005
ti(x, Duration) 165.382 204.248 28.889 < 0.00005
ti(y, Duration) 304.058 338.849 33.270 < 0.00005
ti(x, y, Duration) 2215.106 3005.886 6.727 < 0.00005
ti(x, Frequency) 155.961 192.266 24.080 < 0.00005
ti(y, Frequency) 265.280 308.800 22.205 < 0.00005
ti(x, y, Frequency) 1677.846 2341.878 5.010 < 0.00005

Table 3.D.5: Summary of the GAM fitted to the ultrasound image for the sie -n
condition, at T = 5.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 68.049 0.037 1851.866 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.308 18.918 6873.242 < 0.00005
s(y) 18.910 18.994 3247.975 < 0.00005
s(Duration) 18.964 18.999 241.260 < 0.00005
s(Frequency) 18.831 18.987 183.503 < 0.00005
ti(x, y) 285.309 329.004 389.818 < 0.00005
ti(x, Duration) 163.782 200.617 16.094 < 0.00005
ti(y, Duration) 295.992 330.778 14.488 < 0.00005
ti(x, y, Duration) 2148.925 2828.797 5.015 < 0.00005
ti(x, Frequency) 170.914 209.360 16.423 < 0.00005
ti(y, Frequency) 302.834 335.630 17.607 < 0.00005
ti(x, y, Frequency) 2053.561 2732.973 4.673 < 0.00005

Table 3.D.6: Summary of the GAM fitted to the ultrasound image for the sie -t
condition, at T = 1.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 69.528 0.027 2535.116 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.404 18.936 7928.390 < 0.00005
s(y) 18.928 18.996 4230.020 < 0.00005
s(Duration) 18.934 18.998 171.740 < 0.00005
s(Frequency) 18.851 18.989 167.968 < 0.00005
ti(x, y) 295.504 335.830 420.687 < 0.00005
ti(x, Duration) 165.707 202.718 15.379 < 0.00005
ti(y, Duration) 296.266 331.771 11.827 < 0.00005
ti(x, y, Duration) 2285.896 3009.217 4.007 < 0.00005
ti(x, Frequency) 180.219 220.037 15.636 < 0.00005
ti(y, Frequency) 307.451 339.200 13.401 < 0.00005
ti(x, y, Frequency) 2144.531 2844.486 3.720 < 0.00005

Table 3.D.7: Summary of the GAM fitted to the ultrasound image for the sie -t
condition, at T = 2.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 70.965 0.036 1972.437 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.413 18.937 7861.766 < 0.00005
s(y) 18.915 18.994 4185.174 < 0.00005
s(Duration) 18.916 18.997 151.300 < 0.00005
s(Frequency) 18.802 18.982 124.208 < 0.00005
ti(x, y) 297.906 337.369 397.921 < 0.00005
ti(x, Duration) 173.661 212.028 17.656 < 0.00005
ti(y, Duration) 288.773 326.122 12.678 < 0.00005
ti(x, y, Duration) 2213.972 2921.024 4.473 < 0.00005
ti(x, Frequency) 175.702 215.175 16.299 < 0.00005
ti(y, Frequency) 301.531 335.871 12.879 < 0.00005
ti(x, y, Frequency) 2171.929 2877.893 3.919 < 0.00005

Table 3.D.8: Summary of the GAM fitted to the ultrasound image for the sie -t
condition, at T = 3.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 72.292 0.032 2292.622 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.387 18.934 8091.680 < 0.00005
s(y) 18.871 18.992 3186.284 < 0.00005
s(Duration) 18.930 18.997 152.870 < 0.00005
s(Frequency) 18.819 18.985 101.628 < 0.00005
ti(x, y) 279.702 324.812 424.201 < 0.00005
ti(x, Duration) 166.068 203.260 18.266 < 0.00005
ti(y, Duration) 302.261 334.332 17.414 < 0.00005
ti(x, y, Duration) 2077.898 2758.937 6.155 < 0.00005
ti(x, Frequency) 177.489 217.698 17.829 < 0.00005
ti(y, Frequency) 300.743 334.641 18.595 < 0.00005
ti(x, y, Frequency) 2257.327 2985.417 5.759 < 0.00005

Table 3.D.9: Summary of the GAM fitted to the ultrasound image for the sie -t
condition, at T = 4.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 72.502 0.030 2451.159 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.302 18.915 8236.954 < 0.00005
s(y) 18.808 18.987 2377.272 < 0.00005
s(Duration) 18.937 18.998 183.732 < 0.00005
s(Frequency) 18.863 18.991 132.695 < 0.00005
ti(x, y) 282.474 327.145 418.480 < 0.00005
ti(x, Duration) 188.517 228.513 19.387 < 0.00005
ti(y, Duration) 292.920 326.918 20.354 < 0.00005
ti(x, y, Duration) 1957.506 2624.522 6.525 < 0.00005
ti(x, Frequency) 187.828 229.636 15.948 < 0.00005
ti(y, Frequency) 296.812 332.109 25.700 < 0.00005
ti(x, y, Frequency) 2223.379 2976.094 5.671 < 0.00005

Table 3.D.10: Summary of the GAM fitted to the ultrasound image for the sie -t
condition, at T = 5.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 68.294 0.039 1748.140 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.412 18.940 7930.030 < 0.00005
s(y) 18.932 18.996 4276.388 < 0.00005
s(Duration) 18.170 18.575 139.104 < 0.00005
s(Frequency) 18.812 18.985 156.147 < 0.00005
ti(x, y) 291.073 333.117 498.757 < 0.00005
ti(x, Duration) 149.976 186.556 14.023 < 0.00005
ti(y, Duration) 303.865 338.046 15.310 < 0.00005
ti(x, y, Duration) 1806.133 2430.689 4.213 < 0.00005
ti(x, Frequency) 146.087 180.858 13.541 < 0.00005
ti(y, Frequency) 301.572 336.555 12.926 < 0.00005
ti(x, y, Frequency) 1905.217 2544.983 4.205 < 0.00005

Table 3.D.11: Summary of the GAM fitted to the ultrasound image for the wir -n
condition, at T = 1.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 69.644 0.047 1476.746 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.526 18.960 8803.581 < 0.00005
s(y) 18.950 18.998 5222.781 < 0.00005
s(Duration) 18.449 18.779 179.242 < 0.00005
s(Frequency) 18.814 18.985 188.665 < 0.00005
ti(x, y) 301.606 339.904 526.560 < 0.00005
ti(x, Duration) 160.907 200.469 12.058 < 0.00005
ti(y, Duration) 293.777 332.657 10.719 < 0.00005
ti(x, y, Duration) 1813.760 2438.876 3.529 < 0.00005
ti(x, Frequency) 155.611 191.954 13.685 < 0.00005
ti(y, Frequency) 276.549 318.391 8.884 < 0.00005
ti(x, y, Frequency) 1887.875 2539.102 3.237 < 0.00005

Table 3.D.12: Summary of the GAM fitted to the ultrasound image for the wir -n
condition, at T = 2.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 71.244 0.047 1522.831 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.536 18.960 9041.976 < 0.00005
s(y) 18.951 18.998 5477.807 < 0.00005
s(Duration) 18.448 18.779 178.046 < 0.00005
s(Frequency) 18.811 18.985 156.850 < 0.00005
ti(x, y) 303.327 340.876 520.514 < 0.00005
ti(x, Duration) 159.003 198.196 11.585 < 0.00005
ti(y, Duration) 295.639 333.811 12.557 < 0.00005
ti(x, y, Duration) 1912.708 2577.254 3.946 < 0.00005
ti(x, Frequency) 161.398 199.185 11.790 < 0.00005
ti(y, Frequency) 272.701 315.852 8.504 < 0.00005
ti(x, y, Frequency) 1820.907 2451.486 3.284 < 0.00005

Table 3.D.13: Summary of the GAM fitted to the ultrasound image for the wir -n
condition, at T = 3.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 72.938 0.055 1324.644 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.487 18.953 8442.756 < 0.00005
s(y) 18.904 18.995 3659.194 < 0.00005
s(Duration) 18.829 18.972 164.767 < 0.00005
s(Frequency) 18.788 18.987 169.737 < 0.00005
ti(x, y) 290.324 333.318 488.838 < 0.00005
ti(x, Duration) 146.156 182.942 13.618 < 0.00005
ti(y, Duration) 297.468 333.002 17.336 < 0.00005
ti(x, y, Duration) 1872.196 2512.378 5.400 < 0.00005
ti(x, Frequency) 155.153 192.376 13.489 < 0.00005
ti(y, Frequency) 290.635 329.029 14.696 < 0.00005
ti(x, y, Frequency) 1986.846 2670.292 4.901 < 0.00005

Table 3.D.14: Summary of the GAM fitted to the ultrasound image for the wir -n
condition, at T = 4.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 73.451 0.067 1088.345 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.355 18.928 8417.637 < 0.00005
s(y) 18.842 18.990 2629.753 < 0.00005
s(Duration) 18.945 18.996 177.927 < 0.00005
s(Frequency) 18.807 18.991 181.358 < 0.00005
ti(x, y) 280.965 326.829 443.274 < 0.00005
ti(x, Duration) 151.954 189.231 14.983 < 0.00005
ti(y, Duration) 274.186 314.789 18.562 < 0.00005
ti(x, y, Duration) 1722.641 2352.118 5.473 < 0.00005
ti(x, Frequency) 174.600 214.623 16.562 < 0.00005
ti(y, Frequency) 298.664 334.335 20.048 < 0.00005
ti(x, y, Frequency) 1834.015 2500.661 5.751 < 0.00005

Table 3.D.15: Summary of the GAM fitted to the ultrasound image for the wir -n
condition, at T = 5.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 69.263 0.020 3415.147 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.427 18.945 11284.596 < 0.00005
s(y) 18.940 18.998 5848.467 < 0.00005
s(Duration) 18.918 18.998 282.603 < 0.00005
s(Frequency) 18.910 18.998 169.082 < 0.00005
ti(x, y) 289.330 331.418 738.939 < 0.00005
ti(x, Duration) 160.655 200.082 16.849 < 0.00005
ti(y, Duration) 299.838 337.183 19.033 < 0.00005
ti(x, y, Duration) 2209.780 2994.631 7.109 < 0.00005
ti(x, Frequency) 152.209 188.502 9.949 < 0.00005
ti(y, Frequency) 286.054 326.488 11.542 < 0.00005
ti(x, y, Frequency) 1661.307 2266.915 3.924 < 0.00005

Table 3.D.16: Summary of the GAM fitted to the ultrasound image for the ihr -t
condition, at T = 1.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 70.450 0.020 3531.458 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.478 18.953 11004.234 < 0.00005
s(y) 18.951 18.998 6691.142 < 0.00005
s(Duration) 18.909 18.998 202.787 < 0.00005
s(Frequency) 18.882 18.997 172.550 < 0.00005
ti(x, y) 299.900 338.690 739.345 < 0.00005
ti(x, Duration) 158.240 196.908 19.981 < 0.00005
ti(y, Duration) 295.960 335.449 19.105 < 0.00005
ti(x, y, Duration) 2472.935 3316.275 7.033 < 0.00005
ti(x, Frequency) 143.138 178.053 9.702 < 0.00005
ti(y, Frequency) 277.622 319.841 11.058 < 0.00005
ti(x, y, Frequency) 1751.961 2388.756 3.752 < 0.00005

Table 3.D.17: Summary of the GAM fitted to the ultrasound image for the ihr -t
condition, at T = 2.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 71.979 0.020 3520.357 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.459 18.948 10394.568 < 0.00005
s(y) 18.943 18.998 6254.787 < 0.00005
s(Duration) 18.895 18.997 234.111 < 0.00005
s(Frequency) 18.857 18.996 158.517 < 0.00005
ti(x, y) 296.942 336.742 704.106 < 0.00005
ti(x, Duration) 152.959 190.244 27.287 < 0.00005
ti(y, Duration) 299.519 337.403 26.949 < 0.00005
ti(x, y, Duration) 2477.328 3343.370 7.701 < 0.00005
ti(x, Frequency) 137.617 171.572 10.652 < 0.00005
ti(y, Frequency) 288.315 327.473 13.015 < 0.00005
ti(x, y, Frequency) 1807.037 2461.390 4.221 < 0.00005

Table 3.D.18: Summary of the GAM fitted to the ultrasound image for the ihr -t
condition, at T = 3.

A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 72.936 0.022 3390.891 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.320 18.923 9929.637 < 0.00005
s(y) 18.917 18.997 4271.097 < 0.00005
s(Duration) 18.865 18.996 240.597 < 0.00005
s(Frequency) 18.845 18.995 185.789 < 0.00005
ti(x, y) 285.371 328.815 659.826 < 0.00005
ti(x, Duration) 150.920 187.287 35.869 < 0.00005
ti(y, Duration) 295.435 333.586 31.447 < 0.00005
ti(x, y, Duration) 2385.094 3207.092 8.120 < 0.00005
ti(x, Frequency) 143.572 178.842 11.327 < 0.00005
ti(y, Frequency) 278.325 318.434 17.126 < 0.00005
ti(x, y, Frequency) 1871.948 2559.794 5.374 < 0.00005

Table 3.D.19: Summary of the GAM fitted to the ultrasound image for the ihr -t
condition, at T = 4.
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A. Parametric coefficients Estimate Std. Error t-value p-value

(Intercept) 73.665 0.023 3252.502 < 0.00005

B. Smooth terms Edf Ref.df F-value p-value

s(x) 18.246 18.908 10290.045 < 0.00005
s(y) 18.874 18.994 3002.719 < 0.00005
s(Duration) 18.882 18.997 303.469 < 0.00005
s(Frequency) 18.870 18.996 189.700 < 0.00005
ti(x, y) 274.845 320.924 621.766 < 0.00005
ti(x, Duration) 151.897 188.073 36.078 < 0.00005
ti(y, Duration) 293.534 332.516 35.292 < 0.00005
ti(x, y, Duration) 2201.544 2982.905 7.620 < 0.00005
ti(x, Frequency) 152.506 189.062 11.080 < 0.00005
ti(y, Frequency) 267.993 309.394 22.151 < 0.00005
ti(x, y, Frequency) 1836.478 2528.805 5.646 < 0.00005

Table 3.D.20: Summary of the GAM fitted to the ultrasound image for the ihr -t
condition, at T = 5.



Chapter 4

Interaction of frequency and

inflectional status

Abstract: High frequency has been associated with phonetic reduction on one

hand and phonetic enhancement on the other hand. The present study first looks

into the possibility that these opposite frequency effects are at least partially due

to the different inflectional status of the items being investigated. Based on tongue

position data from a spontaneous speech corpus of German, we found that the

stem vowels in inflected words tended to be hyper-articulated (i.e., showing pho-

netic enhancement), while those in non-inflected words tended to be articulated

with more centralized tongue positions. This observed modulation by inflectional

status is subsequently investigated from the perspective of distributional semantics.

Using Linear Discriminative Learning to study the relation between word embed-

dings and word forms, we observed that the word-final triphones of inflected words

received more support from their embeddings compared to uninflected words. Fur-

thermore, replacement of the two-level factorial predictor for inflectional status

with the amount of support received from the semantics, led to substantial im-

provement in model fit. The implications of these results for models of speech

production are discussed.
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4.1 Introduction

The consequences of the frequencies with which words are used have been in-

vestigated extensively for a wide range of aspects of speech processing, including

speech perception and speech production (for an overview, see, e.g., Baayen et al.,

2016). And yet it is not entirely clear what frequency and frequency-based mea-

sures actually capture.

An influential interpretation of lexical frequency effects in speech production

is that higher-frequency words are less informative, and that lower degrees of in-

formativity give rise to higher degrees of phonetic reduction. More probable, and

less informative, linguistic units such as high frequency words have been found to

undergo more phonetic reduction, resulting in shorter acoustic duration (Arnon &

Cohen Priva, 2013; Aylett & Turk, 2004, 2006; A. Bell et al., 2009; A. Bell et al.,

2002; Gahl, 2008; Jurafsky et al., 2001; Pluymaekers et al., 2005a, 2005b), more

centralized formant realization (Dinkin, 2008; Wright, 2004), and more reduced

tongue positions (Lin et al., 2011; Tomaschek, Arnold, et al., 2018; Tomaschek

et al., 2013). According to the smooth signal redundancy hypothesis (Aylett &

Turk, 2004), the positive correlation between frequency and amount of phonetic

reduction arises due to the cognitive system preferring a stable rate of information

in the speech signal. To achieve such a smooth signal, less informative words have

to be reduced more.

In contrast, Kuperman et al. (2007) found that more probable interfixes be-

tween the constituents of Dutch compounds were realized with longer duration,

rather than shorter duration. They argued that this unexpected positive correla-

tion of probability and phonetic enhancement is paradigmatic in nature. The more

probable an interfix is in the paradigm of compounds sharing the same initial con-

stituent, the more the interfix is enhanced in the speech signal (paradigmatic signal

enhancement hypothesis). The enhancement effects of frequency and paradigmatic

probability was subsequently replicated for inflectional suffixes (Cohen, 2014) and

for stem vowels of inflected verbs (Tomaschek, Tucker, et al., 2018; Tomaschek
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et al., 2021).

Why are these opposite directions of frequency effects observed? One pos-

sible missing factor is morphological status. The reduction effect of frequency

was found when only morphologically simple words are in focus (Lin et al., 2011;

Wright, 2004) or when morphologically simple and complex words are not distin-

guished and mixed (Aylett & Turk, 2004; A. Bell et al., 2009; A. Bell et al., 2002;

Dinkin, 2008; Gahl, 2008; Pluymaekers et al., 2005a, 2005b; Tomaschek, Arnold,

et al., 2018; Tomaschek et al., 2013). In contrast, the enhancement effect of fre-

quency was found so far exclusively for morphologically complex words (Cohen,

2014; Kuperman et al., 2007; Tomaschek, Tucker, et al., 2018; Tomaschek et al.,

2021).

Apart from frequency effects, segments preceding morphological boundaries

were found to be acoustically longer (Hay, 2007; Plag & Ben Hedia, 2018; Sey-

farth et al., 2017; Smith et al., 2012; Sugahara & Turk, 2009) and articulatorily

hyper-articulated (V. G. Li et al., 2020; Smith et al., 2012; Song et al., 2013;

Strycharczuk & Scobbie, 2016). These findings suggests that phonetic realiza-

tions are enhanced before morphological boundaries. Nevertheless, the effect of

the morphological boundary and that of frequency have been investigated so far by

and large independently. When frequency effects are investigated, morphological

status is controlled or simply ignored. When pre-morpheme-boundary effects are

researched, frequency effects are controlled through item selection (Seyfarth et al.,

2017; Sugahara & Turk, 2009), statistically (Plag & Ben Hedia, 2018; Smith et

al., 2012) or ignored in some cases (Song et al., 2013; Strycharczuk & Scobbie,

2016). Therefore, it is important to clarify to what extent the enhancement effect

of frequency and morphological boundary effects are independent, or whether the

enhancement effect of frequency is confounded with the effect of the morpheme

boundary. This is the first aim of the current study.

The second aim of the current study is to provide an improved understand-

ing of the pre-morpheme-boundary effect. The pre-morpheme-boundary effect has
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mainly been explained in terms of the paradigm uniformity hypothesis (Seyfarth

et al., 2017). This hypothesis states that members of the same morphological

paradigm are similar to each other in phonetic realization. For example, Seyfarth

et al. (2017) found longer duration for stems of inflected words (e.g., frees), com-

pared to their corresponding morphologically simple words (e.g., freeze).

However, an alternative interpretation of the morpheme boundary effect sug-

gests itself within the framework of the discriminative lexicon model (Baayen et al.,

2019), a theory that does not require linguistic units such as morphemes, stems, and

exponents (Chuang et al., 2020; Gahl & Baayen, 2022; Stein & Plag, 2021). This

approach, which integrates distributional semantics into a computational model for

lexical processing, predicts that greater support from a word’s meaning for its form

goes hand in hand with articulatory strengthening. For example, Gahl and Baayen

(2022) found that spoken word duration of English homophones was positively

correlated with a greater amount of semantic support for the word’s form. Well-

learned form-meaning relationships are enhanced phonetically, while forms with

no support from semantics theoretically predict zero duration (Gahl & Baayen,

2022).

In the light of these findings, we expect that the pre-morpheme-boundary effect

may in fact reflect different amounts of semantic support that sublexical word-final

form features receive from words’ meanings. Providing empirical support for this

interpretation is the second aim of the current study.

In the following sections, we first address the interaction of morphological sta-

tus and frequency. Given the previous studies finding the enhancement effect of

frequency for inflected words (Cohen, 2014; Tomaschek et al., 2021), we also fo-

cused on inflected words. We expect that the enhancement effect of frequency

persists after including in a regression model the interaction between frequency

and inflectional status. Given that a majority of studies reporting the reduction ef-

fect of frequency mainly inspected morphologically simple words, and that those

studies finding enhancement effects of frequency are exclusively investigating mor-
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phologically complex words, we also expect that phonetic enhancement is present

for inflected words, while reduction is expected for morphologically simple words.

Subsequently, we address the question of the source of the pre-morpheme-

boundary effect. To this end, we will first introduce a quantitative measure of

semantic support based on the Discriminative Lexicon Model that is a real-valued

alternative for the dichotomy between simple and complex words given with the

factorial variable of inflectional status. We then evaluate this new measure by in-

vestigating its predictivity for tongue trajectories registered with electromagnetic

articulography. In the discussion section, we discuss possible implications of our

results for the understanding of frequency effects in phonetic realization.

4.2 Frequency and inflectional status

4.2.1 Methods

Data

In order to investigate the interaction of frequency by inflectional status, control-

ling for segmental similarity is essential. It was, however, impossible to find suffi-

cient pairs of morphologically simple and complex words with identical segments

over a reasonably wide range of frequencies (e.g., pairs such as Macht ‘power’ vs.

mach+t ‘makes’). Therefore, we extracted all the words with the same rhyme struc-

ture, with the same nucleus, and with the same word-final segment, i.e., [a(:)(X)t],

from the articulography section of the Karl-Eberhard-Corpus of spontaneously spo-

ken southern German (KEC: Arnold & Tomaschek, 2016). Our target vowel is

[a(:)], the long and short low open vowels. The word-final segment, which corre-

sponds to a suffix for inflected verbs, is [t]. To allow an enough number of items

to be included, at most one intervening segment was allowed between the target

vowel and the word-final [t]. The resulting set of target words comprised inflected

or non-inflected words with and without a morphological boundary between the

target vowel and the word-final segment. The stems of the target items comprised
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not only monomorphemic words but also derived words and compounds. For ex-

ample, bemalt [b@ma:lt] ‘paints/painted’ consists of a prefix be-, a verb -mal-, and

a inflectional suffix -t. Ausland [aUslant] ‘foreign country’ consists of a prefix Aus-

and a noun -land. The former has a morphological boundary between the target

vowel [a(:)] and the word-final [t], while the latter does not. Under this item selec-

tion criteria, we were able to collect 560 word tokens from 88 word types, 48 of

which were non-inflected and 40 of which were inflected.

For the selected words, vertical tongue tip and body positions were collected.

Since the target vowel is [a(:)] followed by the word-final [t], the strongest coartic-

ulatory tongue movements were expected for the tongue tip. The tongue body was

also included, because a study on coarticulatory tongue movements (Tomaschek,

Tucker, et al., 2018) also reported an effect of frequency not only for the tongue

tip, but also for the tongue body for words with [a(:)] and a final [t].

Vertical positions of the tongue tip were distributed mainly within -15 mm and

+20 mm from the occlusal plane, which was approximated by having the speaker

biting a plastic plate (bite plate) (Arnold & Tomaschek, 2016). In some of the word

tokens, measurement errors were so big that registered sensor positions jumped

around and did not show any consistent pattern of movements. To deal with these

jumping data points, intervals between adjacent data points were calculated within

each word token. Extraordinarily large intervals which lay outside 1.5 times the

interquartile range were considered to be measurement errors, which amounted

to approximately 9.23% of the data points (where each data point pairs time and

vertical position), while the number of the word tokens was intact. To avoid that

the simple removal of the jumping data points leaves too few data points for the

time series of tongue positions for a given word token, the word tokens with less

than 4 data points after the removal were removed from the dataset. This resulted

in the exclusion of 0.39% of the data points and 6.07% of the word tokens.

These word tokens were distributed as shown in Figure 4.1. The numbers of

word tokens spoken by speakers ranged from 1 to 36. The numbers of word types
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by speakers ranged from 1 to 15. The mean of the numbers of word tokens spoken

by each speaker was 15.029, indicated by the vertical line in Figure 4.1. In Figure

4.1, different word types are illustrated in different colors and marked by “Word

ID”. For example, speaker “s01” produced the words of interest the most often.

Speaker “s35” articulated only one word meeting the criteria of the present study

only once, which is the word with ID “w44”. Word “w44”, halt, is listed in the

color legend of Figure 4.1.

w04w26w35w37w39w42w44w47w58w59w74
w07w09w29w30w37w42w44w46w52w61w72w73w75w77w78

w07w21w29w31w35w42w44w54w55
w25w26w42w44w45w68
w20w21w22w29w30w35w37w42w44w67w80

w23w31w37w44w58w60w67w68
w06w19w21w35w44w56w58w70

w01w31w32w35w42w44
w03w21w26w35w37w44w53w64w83

w35w37w40w43w44w52w76w84
w27w29w30w35w37w42w43w44w63w66w81w83

w14w26w35w42w44w51w52w56w58
w03w11w12w16w18w29w33w35w39w42w44w74
w13w26w29w35w37w42w44w58w62w63
w20w29w37w41w42w44w69
w10w15w31w43w44

w37w42w44w58w63w65
w21w26w28w29w35w37w42w44w53w54
w03w35w37w44w50

w12w29w30w36w37w42w44w51w63
w26w34w37w53w57w58w74w83

w26w37w43w44w58w63
w25w26w35w37w44w48w49w52w58w79

w08w14w35w42w44w58w71
w35w38w42w44w58w63
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w15:Bad
w16:bald
w17:Bällchenbad

w18:bemalt
w19:Bewegungsapparat
w20:bezahlt
w21:dacht
w22:durchgeplant
w23:Fachschaft
w24:Fahrrad
w25:Fahrt
w26:fast
w27:fragt
w28:gebracht
w29:gedacht
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w39:gespannt
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w42:grad
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Figure 4.1: The distribution of the words analyzed in the present study across
speakers.
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Analysis

The tongue movement data during [a(:)] were fitted with Generalized Additive

Mixed-effects Models (GAMMs) (Wood, 2017) for tongue tip movements and

tongue body movements separately. In each of the two models, the dependent

variable was the vertical position of the tongue tip/body.

Our predictors of interest were time, frequency, and inflectional status (a fac-

tor with levels ‘non-inflected’ vs. ‘inflected’). Word frequency values were ob-

tained for the target words from the SdeWac corpus (Faaß & Eckart, 2013) and

log-transformed prior to the analysis. Log-transformed word frequency was dis-

tributed approximately in the same range for non-inflected and inflected words

(Figure 4.2). Data points are sparse below log frequencies below 7.
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7.5

10.0

12.5

Non−Inflected Inflected
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re

qu
en

cy
 (
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g)

Figure 4.2: Distributions of log-transformed word frequency for non-inflected and
inflected words.

Time was normalized between 0 and 1, corresponding to the onset and the

offset of the target vowel [a(:)]. To compensate for the normalization, the target

vowel’s duration was included as a covariate.

The duration of the target vowel was correlated with inflectional condition
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(t(368.33) = −4.50, p < 0.001) (Figure 4.3). The vowel [a(:)] was significantly

longer for inflected words, compared to non-inflected words. The longer duration

in inflected words is consistent with previous acoustic studies that found similar

acoustic lengthening effects in the pre-morpheme-boundary condition (Hay, 2007;

V. G. Li et al., 2020; Plag & Ben Hedia, 2018; Seyfarth et al., 2017; Smith et al.,

2012; Song et al., 2013; Strycharczuk & Scobbie, 2016; Sugahara & Turk, 2009).

t(368.33)=−4.50, p<0.001
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Figure 4.3: The target vowel’s duration for inflected and non-inflected words.

In addition, the target vowel’s duration was significantly shorter for higher (log)

frequency (r(525) = −0.097, p = 0.026), as illustrated in the left panel in Figure

4.4. The reduction effect of frequency on duration for the present dataset is also in

line with previous studies reporting a negative correlation between frequency and

segment duration (Aylett & Turk, 2004; A. Bell et al., 2009; A. Bell et al., 2002;

Gahl, 2008).

Interestingly, separating the inflected and non-inflected words in the present

data, high frequency words turned out to be significantly associated with shorter

duration (r(329) = −0.208, p < 0.001) for non-inflected words, but not for in-

flected words (r(194) = −0.040, p ≈ 0.575) (see Figure 4.4). A linear model

regressing segment duration on frequency, inflectional status, and their interaction

supports the presence of the interaction (t(523) = 2.724, p = 0.007). This result
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suggests that frequency effects play out in different ways for morphologically sim-

ple and morphologically complex words.

r(525)=−0.097, p=0.026
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Figure 4.4: Correlation of frequency with the target vowel’s duration, aggregating
(left plot) and separating (right plot) the inflectional condition.

With respect to random effect factors, speaker and word are two common

choices in regression modeling. Although there were differences in the number

of tokens uttered by the speakers (see Figure 4.1), including speaker as a random-

effect factor was relatively unproblematic. However, as many of the word types

were represented by just a single speaker (57%, see Figure 4.5), inclusion of word

as random-effect factor is not advisable, as it would lead to an over-specified model

(see, e.g., Baayen & Linke, 2020).

As the segments preceding and following the target vowel influence the vowel’s

articulation, we included random effect factors for these two sets of segments. The

distributions of the segments before and after the target vowel are illustrated in

Figure 4.6.

Given these predictors, we fitted generalized additive mixed models to the

dataset for vertical positions of the tongue tip, and for vertical positions of the

tongue body, using the function bam of the package mgcv (Wood, 2017) in R (R

Core Team, 2022). As we are interested in the difference surface of time by fre-

quency for simple and complex words, we requested a tensor product smooth with

0/1 coding for inflectional status, as follows:
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Figure 4.5: Distribution of the word types across the speakers in the present dataset.
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Figure 4.6: Distributions of the segments before and after the vowel of interest.

TonguePosition ~ s(Time, Speaker, bs=’fs’, k=3, m=1) +

s(PrevSeg, bs=’re’, k=3) +

s(NextSeg, bs=’re’, k=3) +

s(VowelDuration, k=3) +

ti(VowelDuration, Time, k=c(3,3)) +

te(Freq, Time, k=c(3,3)) +

te(Freq, Time, by=InflStatus, k=c(3,3)) +

InflStatus
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4.2.2 Results

Tongue tip

The fitted GAMM for the tongue tip revealed that articulations of the (stem) vowel

[a(:)] were significantly lower in general for inflected words, compared to non-

inflected words, as indicated by the main effect listed in the second row of the

upper part of Table 4.1 (β =−4.921, p < 0.001). Inflectional status interacted with

Time and Freq, as shown in the last row of the lower part of Table 4.1, allowing us

to conclude that, for our data, the two regression surfaces are different.

Table 4.1: Summary of the model for the tongue tip.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 5.397 2.172 2.485 0.013
Inflected -4.921 0.467 -10.542 <0.001

B. Smooth terms edf Ref.df F p-value

s(Time, Speaker) 97.067 104.000 666.311 <0.001
s(PrevSeg) 18.170 19.000 251.539 <0.001
s(NextSeg) 8.265 9.000 1112.447 <0.001
s(VowelDuration) 1.002 1.004 32.359 <0.001
ti(Time, VowelDuration) 3.629 3.928 35.911 <0.001
te(Freq, Time) 7.643 7.928 38.272 <0.001
te(Freq, Time):Inflected 7.531 7.900 14.364 <0.001

This interaction is visualized in Figure 4.7. The x-axis represents normalized

time, and the y-axis log-transformed frequency. The leftmost and middle panels

pertain to non-inflected and inflected words respectively. The rightmost panel dis-

plays the difference surface for inflected words. Warmer colors represent higher

tongue positions. Since the target vowel is [a(:)], higher tongue positions indicate

articulatory reduction.

For non-inflected words (in the leftmost panel), the tongue tip raises as time

proceeds, and reaches its highest elevation at the offset of the vowel. This pattern

is present irrespective of frequency. The amount of raising, however, depends on

frequency: for the lowest frequency words, the change over time is stronger than



CHAPTER 4. INTERACTION OF FREQUENCY AND INFLECTIONAL STATUS 155

−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4−2

0

0

2

2

4

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−4

−4

−4

−2

−2

0

0

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

−6

−6

−4

−4

−4

−2

0

2

Non−inflected Inflected Difference

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

5.0

7.5

10.0

12.5

Time (normalized)

F
re

qu
en

cy
 (

lo
g)

+1se

−1se

−7.5
−5.0
−2.5
0.0
2.5
5.0

Figure 4.7: Fitted tongue tip height as a function of time and frequency, for non-
inflected words (left), inflected words (middle), and the difference surface (right).

for the higher frequency words. Conversely, higher-frequency words are realized

with higher tongue positions, most clearly so early in the vowel, and less so near

the end of the vowel. In other words, higher-frequency words have higher and

flatter trajectories of the tongue tip.

The difference surface is presented in the rightmost panel of Figure 4.7. Ad-

dition of this difference surface to the surface of the non-inflected words (i.e., the

rightmost panel) results in the predicted surface shown in the middle panel. The

middle panel shows that the reduction effect of frequency is retained to some ex-

tent also for inflected words. However, tongue tip trajectories for inflected words

are overall lower and have a greater lowering of the tongue at the center of the

vowel. In addition, the coarticulatory raising of the tongue tip towards the off-

set of the vowel, which was observed for non-inflected words, is also attenuated

substantially for inflected words.

Tongue body

The tongue body also showed a significant main effect of the inflectional condition

(β = −1.560, p < 0.001), as shown in the upper part of Table 4.2. Inflectional

status also interacted with frequency and time, albeit to lesser degree compared to

the tongue tip model (see the last row of the second half of the table). As can be

seen in the left panel of Figure 4.8, non-inflected words are articulated with higher
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Figure 4.8: Fitted tongue body height as a function of time and frequency, for non-
inflected words (left), inflected words (middle), and the difference surface (right).

tongue body positions as frequency increases. These higher tongue positions for

higher frequency words are canceled out by the difference surface (the rightmost

panel of Figure 4.8), and as a consequence the tongue trajectories of the tongue

body are minimal, staying relatively low positions.

Table 4.2: Summary of the model for the tongue body.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 9.388 1.445 6.496 <0.001
Inflected -1.560 0.410 -3.801 <0.001

B. Smooth terms edf Ref.df F p-value

s(Time, Speaker) 40.718 104.000 372.099 <0.001
s(PrevSeg) 17.168 19.000 29.062 <0.001
s(NextSeg) 6.797 9.000 112.055 <0.001
s(VowelDuration) 1.019 1.037 0.866 0.363
ti(Time, VowelDuration) 2.904 3.490 5.193 0.001
te(Freq, Time) 4.783 4.967 17.605 <0.001
te(Freq, Time):Inflected 3.018 3.035 3.267 0.020

4.2.3 Interim summary

For both tongue sensors, the GAMMs revealed higher positions for higher fre-

quency words. In addition, the reduction (tongue-raising) effect of frequency was

attenuated for inflected words as compared to non-inflected words.

Overall lower tongue positions for inflected words (the main effects, indepen-
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dently from frequency and time) are consistent with the paradigm uniformity hy-

pothesis (Seyfarth et al., 2017), according to which phonetic realizations in the pre-

morphological-boundary condition should be enhanced. However, this hypothesis

does not explain the interaction of the effects of frequency and inflectional status

observed for both tongue sensors.

Increases in tongue height hand in hand with increases in frequency reflect ar-

ticulatory reduction for the [a(:)]. This effect of frequency dovetails well with the

smooth signal redundancy hypothesis (Aylett & Turk, 2004), and is consistent with

a number of studies that report reduced phonetic realizations (e.g., Gahl, 2008).

However, the smooth signal redundancy hypothesis does not predict attenuation of

the reduction effect for inflected words. In the current dataset, we observed a much

weaker reduction effect of frequency for inflected words. The attenuated reduc-

tion effect of frequency may be due to the opposing pressure enhancing phonetic

realizations for clearer articulations. Such opposing enhancement pressure is at

least partially in line with the paradigmatic enhancement hypothesis (Kuperman

et al., 2007) and the kinematic improvement hypothesis (Tomaschek, Tucker, et

al., 2018). However, the absence of such enhancement pressure for non-inflected

words remains unaccounted for.

None of these three hypotheses fully explain the articulation patterns observed

in the present study for inflected and non-inflected words sufficiently. Therefore,

in the next section, we investigate whether the observed patterns of articulation can

be explained more precisely in terms of words’ inflectional semantics.

4.3 Morpheme boundary or semantics

Several studies framed within the theory of the discriminative lexicon (Baayen et

al., 2019; Chuang et al., 2020; Gahl & Baayen, 2022; Stein & Plag, 2021) have re-

ported phonetic enhancement for word forms that are better-supported by their cor-

responding semantics. For semantically transparent inflected words, strong links
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between their forms and meanings are expected, and it is conceivable that these

strong links underlie the enhanced articulations reported above.

To test this hypothesis, we will first define a measure of semantic support and

show that the semantic measure is correlated with inflectional status. Subsequently,

the measure will be used as a predictor for tongue trajectories in a GAM regression

model.

4.3.1 Semantic measures derived from the DLM

The discriminative lexicon model (DLM: Baayen et al., 2018; Baayen et al., 2019)

is a computational model of lexical processing that works with numerical represen-

tations for words’ forms and words’ semantics. In this study, we represent words’

forms with zero/one binary vectors that encode which triphones are present in a

word. These vectors are brought together as the row vectors of a word-by-triphone

matrix (henceforth C). Each word vector (row) in C contains 1 where the triphone

in question is contained in the word and 0 otherwise.

Words’ meanings are represented by word embeddings. We adopted a pre-

trained word2vec model (Müller, 2015) which represents words’ semantics with

300 dimensional vectors. These vectors are combined as the row vectors of a word-

semantics matrix (henceforth S matrix).

We set up the C (64068, 14404) and S (64068, 300) matrices for all those

words in the CELEX database (Baayen et al., 1995) with frequency greater than 0,

and for which pre-trained embeddings are available. The DLM posits simple linear

mappings between form and meaning matrices. Given C and S, a weight matrix

F , used for modeling comprehension, can be estimated by solving CF = S. The

obtained F can then be used to estimate a predict semantic matrix Ŝ by post-

multiplication of C by F , i.e., CF = Ŝ. Rows of Ŝ represent predicted word

meanings. Conceptually, these are the meanings as understood by the system given

the corresponding word-forms. Similarly, a weight matrix G can be estimated

for modelling part of the speech production process by solving SG = C. The
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estimated G maps S onto Ĉ. Rows of Ĉ are predicted semantic support to word-

forms. This method of estimating F and G is called “endstate of learning”. For

other learning methods implemented for the DLM, see Heitmeier et al. (2022).

Using the endstate-of-learning method in the framework of the discriminative

lexicon model, Gahl and Baayen (2022) found that the sum of semantic support

from the word to the triphones constituting the word was predictive for word-

duration of English homophones (Gahl & Baayen, 2022). Greater semantic support

was associated with longer duration (Gahl & Baayen, 2022). For a word i, the se-

mantic support for triphone j is:

SemSupi, j = Ĉi, j (4.1)

Let Ci a set of triphones constituting a word i. The sum of semantic supports to all

the component triphones of a word i, which we call SemSupWord, is:

SemSupWordi = ∑
k∈Ci

Ĉi,k (4.2)

In addition to SemSupWord, we considered the triphone centered around the

vowel (henceforth the vowel triphone) and the triphone centered around the expo-

nent (henceforth the suffix triphone). Let v and s denote the indices of the vowel

and suffix triphones. The semantic support from a word i to its vowel triphone

(SemSupVowel) and the suffix triphone (SemSupSuffix) are defined as

SemSupVoweli = Ĉi,v (4.3)

and

SemSupSuffixi = Ĉi,s. (4.4)

Along with these measures of semantic support, prediction accuracy of the trained

LDL model (i.e., PredAcc) was also considered. Prediction accuracy was quanti-

fied as the correlation of the predicted and observed (gold-standard) row vectors of
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Ĉ and C. Denoting the i-th row vector of Ĉ (and C) as Ĉi,∗ (Ci,∗), we have:

PredAcci = cor(Ĉi,∗,Ci,∗) (4.5)

PredAccwas expected to be correlated with the semantic support measures to some

extent, especially SemSupWord, because well-predicted word-form-vectors should

have higher values (only) for their correct component triphones.

In addition to semantic support to form, we also defined another measure that

focused on uncertainty among predicted form vectors. Uncertainty among pre-

dicted forms (i.e., UncertProd) is the product of the correlation of the predicted

and observed form vectors and the correlation’s rank:

UncertProdi = ∑
k

(
cor(Ĉi,∗,Ck,∗)× rank(cor(Ĉi,∗,Ck,∗))

)
. (4.6)

The counterpart of this measure for comprehension side is

UncertCompi = ∑
k

(
cor(Ŝi,∗,Sk,∗)× rank(cor(Ŝi,∗,Sk,∗))

)
. (4.7)

These uncertainty measures are illustrated in Figure 4.1. The left panel presents

an example of high uncertainty. The shaded part under the curve represents the

uncertainty measure. The predicted word with the highest correlation is found at

the right hand side of the plot, with the biggest rank, but many other words are

also supported by high correlations. Therefore, even if the most strongly supported

word is the correct target word, there are also many other words that are “competi-

tative”. In contrast, the right panel shows a case of low uncertainty in prediction.

Only one of the possible words is strongly supported with a very high correlation

coefficient, and the other words are not well supported. In this example, the word

with the greatest rank is supported not only well supported, but also there is little

uncertainty about what word is the best candidate.

In addition, the counterpart of semantic support for the comprehension side of

the mappings was also considered, i.e. FuncLoad. This measure quantifies how
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Figure 4.1: Illustration of high and low uncertainty cases.

much triphones help to identify the target word in the comprehension mapping.

The FuncLoad of a triphone is defined as the correlation of that triphone’s row

vector in F and the semantic vector of its carrier word in Ŝ. The FuncLoad of the

j-th triphone to the i-th word is given by

FuncLoad j,i = cor(F j,∗, Ŝi,∗). (4.8)

As for SemSup, FuncLoad can also be defined for the vowel triphone and the suffix

triphone:

FuncLoadVoweli = cor(Fv,∗, Ŝi,∗), (4.9)

FuncLoadSuffixi = cor(Fs,∗, Ŝi,∗). (4.10)

The last measure we considered is the length of a semantic vector (SemLen).

SemLen is simply the L1norm of a semantic vector:

SemLeni = ∑
j
|Si j|. (4.11)
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4.3.2 Correlation between inflectional status and semantic support

measures

How are these semantic measures related to inflectional status? In this section, we

first address this question using variable importance measures based on a Random

Forest analysis (Breiman, 2001). Subsequently, we look in more detail into how

the most important semantic measures pattern with respect to inflectional status.

To this end, all the words from the CELEX database (Baayen et al., 1995)

with the stem vowel [a(:)] and the word-final segment [t], whose frequency was

more than 0, were selected. At most one intervening segment between [a(:)] and

[t] was allowed. The resulting dataset comprised 1392 words. Inflectional status

was assigned with help of the inflectional information recorded in CELEX. For

example, in CELEX, macht [maxt] ‘makes’ is coded as “3SIE,2PIE,rP”. The code

stands for “third-person singular indicative present (3SIE)”, “second-person plural

indicative present (2SPIE)”, and “imperative plural (rP)”. Appendix 4.A provides

a complete list of feature bundles and their classification as either “inflected” or

“non-inflected”.

Variable importance

Inflectional status was entered as the dependent variable in a Random Forest analy-

sis. The number of predictors being considered for a given subsample (i.e., for each

split of the tree) was set to three (of the nine semantic measures introduced above),

based on a grid-search using the function train of the caret package (Kuhn, 2021)

in R (R Core Team, 2022).

The variable importances of the semantic measures are presented in Figure

4.2. SemSupSuffix is the best supported predictor for inflectional status, fol-

lowed by SemSupVowel. SemSupWord was not as predictive as SemSupSuffix

and SemSupVowel. The good performance of SemSupSuffix fits well with the

fact that the exponent -t has well-defined inflectional meanings, and thus differs

from non-inflectional word-final segment such as -l (as in Vogel, Ball).
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Figure 4.2: Variable importances of the semantic measures.

In what follows, we focus on three of the best-supported measures, which are

namely SemSupSuffix, SemSupVowel, and SemSupWord, and look into how they

are correlated with inflectional status. Since PredAcc is highly correlated with

SemSupWord (r = 0.857), this predictor was not considered further.

Predicting inflectional status with semantic measures

Inflected words had significantly higher values of semantic support for the suffix

and the entire word (U=152201, N1=922, N2=470, p< 0.0001 for SemSupSuffix;

U=172134, N1=922, N2=470, p < 0.0001 for SemSupWord), as illustrated in Fig-

ures 4.3a and 4.3b respectively. By contrast, inflected words were associated with

significantly lower SemSupVowel (U=266563, N1=922, N2=470, p < 0.0001) as

can be seen in Figure 4.3c.

Subsequently, we fitted a logistic regression model, in which the dependent

variable was inflectional status. The goal of the logistic model was to predict

the probability of a word being inflected. The predictors were SemSupSuffix,

SemSupVowel, and SemSupWord. Due to moderate correlations between the three

semantic support measures, three logistic regression models were fitted for each of

the three semantic measures. Each of the three models showed that the semantic
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Figure 4.3: Comparison of SemSupSuffix, SemSupVowel, and SemSupWord.

support measures were always highly significant (p < 0.001).

As illustrated in Figure 4.3d, the effects of the three semantic support measures

were qualitatively different. SemSupSuffix was associated the most strongly with

the probability of inflectedness. The greater SemSupSuffix becomes, the more

likely the word in question is to be inflected. A similar effect was observed also

for SemSupWord, albeit to lesser degree. In contrast, higher SemSupVowel was

correlated with lower probability of inflectedness.



CHAPTER 4. INTERACTION OF FREQUENCY AND INFLECTIONAL STATUS 165

In line with the results of the variable importances obtained with a Random

Forest analysis above, the present analyses confirmed that SemSupSuffix was the

most effective predictor for inflectional status. Accordingly, in the next section, we

focus on SemSupSuffix to clarify whether SemSupSuffix is also predictive for

tongue tip trajectories. Considering that SemSupSuffix was greater for inflected

words and that inflected words showed articulatory enhancement (Section 4.2),

greater SemSupSuffix is expected to be associated with articulatory enhancement.

This hypothesis will be tested in the next section. In addition, the performance of

SemSupSuffix is compared with that of the binary predictor inflectional status.

4.3.3 Predicting tongue trajectories from semantics

We used the same dataset as in Section 4.2 to compare the performance of semantic

support for suffix (i.e., SemSupSuffix) with that of inflectional status as a binary

predictor. Some words were not available in CELEX or the pre-trained word2vec

model. As a consequence, 5.33% of the data points were lost.

For the remaining data, a GAMM was fitted with the same model structure as

in section 4.2 except for the predictor for inflectional status. Inflectional status was

represented by a binary factor in section 4.2 in interaction with normalized time

and log-transformed frequency. In the following analyses, the binary factor was

replaced with SemSupSuffix. We fitted the following model to the data, again

including the three-way interaction:

TonguePosition ~ s(Time, Speaker, bs=’fs’, k=3, m=1) +

s(PrevSeg, bs=’re’, k=3) +

s(NextSeg, bs=’re’, k=3) +

s(VowelDuration, k=3) +

ti(VowelDuration, Time, k=c(3,3)) +

te(Time, SemSupSuffix, Freq, k=c(3, 3, 3))

The model with SemSupSuffix required one less edf, and nevertheless improved
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the model fit significantly by 142.30 AIC units (by 62.73 ML scores), compared

to the model with a binary factor of inflectional status1. All terms in the model

were well-supported (except for the intercept; see Table 4.1). Figure 4.4 illustrates

the interaction of SemSupSuffix by frequency at the center of the vowel. In this

figure, the x axis represents frequency, and the y axis SemSupSuffix. Warmer

colors represent higher tongue tip positions. Since the target vowel is [a(:)], higher

tongue positions correspond to articulatory reduction.

Table 4.1: Summary of the model with SemSupSuffix.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 2.628 2.530 1.038 0.299

B. Smooth terms edf Ref.df F p-value

s(Time, Speaker) 97.841 104.000 604.502 <0.001
s(PrevSeg) 16.671 17.000 547.183 <0.001
s(NextSeg) 7.870 8.000 2189.755 <0.001
s(VowelDuration) 1.005 1.010 18.850 <0.001
ti(Time, VowelDuration) 3.632 3.910 29.419 <0.001
te(Time, SemSupSuffix, Freq) 20.312 22.235 30.919 <0.001

Figure 4.4 shows that higher SemSupSuffix mainly goes hand in hand with lower

tongue trajectories, indicating that the enhancement effect of SemSupSuffix is

limited to higher frequency words. From the perspective of frequency effects,

higher frequency is associated with higher tongue positions for low SemSupSuffix

values, indicating articulatory reduction. In contrast, when SemSupSuffix is high,

an increase in frequency is tied with lowering of the tongue tip, indicating articu-

latory enhancement. Since greater SemSupSuffix is correlated with inflectedness

(Section 4.3.2), the current result is in line with the strong and attenuated reduction

effects of frequency for non-inflected and inflected words respectively, reported in

section 4.2.

Figure 4.4 does not show in details how tongue trajectories over time are mod-

1No model comparison test is necessary because the model with SemSupSuffix is simpler and
better than the model with inflectional status as factor variable.
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Figure 4.4: Tongue tip height as a function of frequency and SemSupSuffix. Time
is fixed at 0.5 (at the middle of the vowel). Warmer colors represent high and colder
colors represent low positions.

ulated by frequency and SemSupSuffix, because thus far time was fixed at the

middle of the vowel. Figure 4.5 zooms in on time, illustrating qualitative differ-

ences in tongue trajectories as a function of time, frequency, and SemSupSuffix.

For illustration, SemSupSuffix is discretized into high and low values, which cor-

respond to 1% and 99% quantiles.
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Figure 4.5: Tongue tip height as a function of time and frequency. SemSupSuffix
is discretized to low and high values, which correspond to 0.01 and 0.99 quantiles.
Warmer colors represent high and colder colors represents low positions.

When SemSupSuffix is low (in the left panel), lower frequency is associ-

ated with lower tongue trajectories, and higher frequency is associated with higher
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tongue trajectories. On the other hand, when SemSupSuffix is high (in the right

panel), high frequency words are articulated with tongue trajectories with a greater

lowering from the middle to the onset of the vowel.

4.3.4 Interim summary

In this section, we showed that semantic support from the word to its word-final

triphone (i.e. SemSupSuffix) outperformed other semantic measures in variable

importance estimated by a Random Forest (Breiman, 2001). In line with this vari-

able importance, SemSupSuffix also predicted inflectional status most effectively.

Higher SemSupSuffix was associated with the word being inflected and also in-

teracted with frequency. Because of the interaction with SemSupSuffix, higher

frequency was associated with higher tongue trajectories, indicating reduced ar-

ticulations, for low SemSupSuffix, while higher frequency was correlated with

lower tongue positions, indicating enhanced articulations, for high SemSupSuffix.

These observed patterns are in line with the patterns observed in the section 4.2.

In 4.2, higher frequency was associated with strong articulatory reduction for non-

inflected words, while the reduction effect was attenuated for inflected words.

Thus far, we have focused on the semantic support for the final triphone, which

is centered around the exponent /-t/. We also considered a model in which the

semantic support for the triphone straddling the vowel (i.e., SemSupVowel) is con-

sidered instead. This model shows that a greater semantic support for the vowel

leads to a lower position of the tongue tip. At the same time, higher word fre-

quency predicts higher tongue positions, irrespective of the amount of semantic

support for the vowel (see Appendix 4.C for detail). As only 14 out of 70 word

types have a stem that ends in a vowel, the vast majority of words have a vowel

triphone that does not include the inflectional exponent. From these observations,

we conclude that on the one hand, a greater semantic support for the vowel gives

rise to enhanced articulation of the stem vowel, but that the effect of frequency

works against this, giving rise to higher tongue positions.
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4.4 Discussion

In what follows, we first explore possible explanations for the observed patterns.

Subsequently, we propose our interpretation and lay out implications of our find-

ings for existing theories.

Higher frequency has been reported to be correlated with both phonetic re-

duction (e.g. Aylett & Turk, 2004) as well as enhancement (e.g. Kuperman et al.,

2007). These seemingly contradictory effects may be due to morphological status

of the items being investigated. When the reduction effect is observed, morpho-

logically simple words are always included. On the other hand, the enhancement

effect has been observed only for morphologically complex words.

In order to clarify the role of morphological structure, we focused on inflected

and non-inflected words in German. The target words shared the same rhyme struc-

ture, their stem vowel was [a(:)], and their final segment was [t]. The word-final

[t] was a part of the stem for non-inflected words, while it was the exponent for in-

flected words. Vertical tongue tip and body positions were fitted with Generalized

Additive Mixed-effects Models (GAMMs) (Wood, 2017) as a function of time,

frequency, and inflectional status together with random effect factors and control

covariates.

The tongue tip and body models both showed significant effects of inflectional

status. Inflected words showed lower tongue tip/body positions on average than

non-inflected words. Since the vowel [a(:)] was investigated and followed by a

morpheme boundary in inflected words, these results suggest enhanced articulatory

realizations in the pre-morpheme-boundary condition.

Pre-morpheme boundary enhancement is in harmony with the paradigm uni-

formity hypothesis (Seyfarth et al., 2017), which predicts that members of the

same paradigm become similar in phonetic realizations to each other. However,

the quality and degree of articulatory enhancement was significantly modulated by

frequency. Inflected words retained lower tongue positions, namely more enhanced

tongue positions, compared to non-inflected words, as frequency increased. This
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interaction of inflectional status and frequency was observed for the tongue tip and

the tongue body both.

Increased degrees of articulatory enhancement (implying decreased degrees of

articulatory reduction) for higher frequency inflected words are consistent with the

articulatory improvement hypothesis (Tomaschek, Tucker, et al., 2018). Higher

frequency words are articulatorily well-practiced and therefore their articulations

are faster and more enhanced. However, under this hypothesis, not only inflected

words but also non-inflected words should be enhanced with increasing frequency.

This, however, is not the case in the present study.

In the present study, we observed that non-inflected words were realized with

greater degrees of articulatory reduction as frequency increases. This reduction ef-

fect is in line with the smooth signal redundancy hypothesis (Aylett & Turk, 2004).

Higher frequency can go hand in hand with higher redundancy and lower amounts

of information (surprisal). According to Aylett and Turk (2004), this motivates

articulatory reduction. However, the smooth signal redundancy hypothesis does

not take into consideration the morphological status of the word in question. Con-

sequently, the hypothesis predicts the same degree of phonetic reduction also for

inflected words, which was not the case in the present study.

Why do inflected words show less degrees of reduction, while non-inflected

words show a strong reduction effect? One systematic difference between inflected

and non-inflected words is the presence and absence of inflectional meanings. In

German, inflectional meanings are mostly expressed by and tied in with inflectional

suffixes. Strong form-meaning relations have been found to be a source of phonetic

enhancement: (Gahl & Baayen, 2022) report that semantically better-supported

words are realized with longer durations. This suggests that inflectional meanings

may provide good semantic support for their corresponding inflectional suffixes,

which in turn may lead to enhanced realizations in the corresponding inflected

words.

This hypothesis was addressed, using the discriminative lexicon model (DLM:
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Baayen et al., 2018; Baayen et al., 2019). Computational modeling revealed that

the semantic support for the word-final triphone (SemSupSuffix) outperformed

other semantic measures such as semantic support to the stem triphone. Greater

SemSupSuffix was strongly associated with higher probability of inflectedness.

Therefore, SemSupSuffix can be understood as a continuous counterpart of a cat-

egorical factor specifying inflectional status. Replacing the categorical predictor

‘inflectional status’ by SemSupSuffix resulted in a significant improvement in

model fit.

SemSupSuffix was also shown to be predictive for vertical positions of

the tongue tip. For higher-frequency words, a higher SemSupSuffix predicted

a lower tongue position. From the perspective of the word frequency effect,

SemSupSuffix emerges as a modulation of the word frequency effect. When

SemSupSuffix was high, high frequency words were articulated with lower tongue

positions. When SemSupSuffix was low, high frequency words were articulated

with higher tongue positions. Since high SemSupSuffix was associated with

inflected words, the modulation by SemSupSuffix explains why inflected words

were less reduced, while non-inflected words showed strong reduction.

Importantly, this explanation does not require the theoretical concept of a ‘mor-

pheme boundary’. The present results therefore challenge the classical view of the

speech production process such as formalized in the WEAVER++ model (Levelt

et al., 1999; Levelt & Wheeldon, 1994; Roelofs, 1997), which operates on mor-

phemes with at least one intermediate symbolic layer between semantics and pho-

netics. On the other hand, the present results support the hypothesis that better

mappings between inflectional meanings and forms (inflectional suffixes) go hand

in hand with enhanced realizations (Gahl & Baayen, 2022).

In the DLM model, the support from a words’ meaning for the final /-t/ is much

stronger for inflected words, which we have shown to be due to the inflectional

semantics that are realized by this exponent. However, the enhancement observed

for greater semantic support was observed for the vowel. This strong enhancement
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of the vowel is likely to be due to co-articulation between the stem vowel and

the suffix. This possibility is also supported by greater degrees of modulation of

tongue trajectories by semantic support and frequency for tongue tip positions than

for tongue body positions (compare Figure 4.5 in section 4.3.3 and Figure 4.C.2

in 4.C). Since the present study investigated [a(:)] followed by the dental exponent

[t], it makes sense that the co-articulation with [a(:)] was more prominent for the

tongue tip than the tongue body.

We observed that a higher semantic support for the vowel triphone, namely

SemSupVowel, predicts lower positions for the tongue tip. However, the vowel

triphone does not include the inflectional exponent. Unlike the final triphone, the

vowel triphone is not systematically connected with the inflectional semantics of

the /-t/ exponent. This may explain why, in a model replacing the final triphone

with the triphone of the vowel, greater word frequency predicted higher positions of

the tongue tip. It is only for the final triphone, and its co-articulatory entanglement

with the preceding vowel, that the practice effect of frequency is visible.

Enhancement from semantic support clearly is not the only factor that co-

determines articulation. For the non-inflected words, greater frequency goes hand

in hand with higher tongue positions, which fits well with the argument of Aylett

and Turk (2004) that less informative words reduce. For the inflected words in

our dataset, we observed attenuated degrees of the reduction effect. This is likely

due to the reduction effect being counterbalanced by the articulatory strengthening

induced by the inflectional semantics.

It is possible to explain the reduction effect of predictability in the frame-

work of the discriminative lexicon model. The present study showed that higher

SemSupSuffix, namely higher Ĉi,s, was correlated with phonetic enhancement.

On the other hand, greater amount of information is said to also go hand in hand

with enhanced realizations. Therefore, the effect of informativity can be integrated

as a parameter modifying the strength of a semantic vector. Denoting the amount

of information of a word ω at a point in a discourse k by hω,k, the composite effect
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of informativity and semantic support can be expressed as hω,kĈi,s (see also Gahl

& Baayen, 2022).

In summary, the present study shows how the paradox of two seemingly con-

tradictory frequency effects can be resolved. Frequency effects can show up as

different degrees of phonetic reduction, depending on morphological status. For

inflected words, what looks like an attenuated reduction effect (and even a clear en-

hancement effect for some previous studies) is actually a composite of a reduction

effect due to lack of informativity (e.g., Aylett & Turk, 2004) and a strengthening

effect that is determined by the amount of semantic support that a word’s form re-

ceives. For inflected words, this amount of support, especially for a word’s final

triphone, is driven by a word’s inflectional semantics. In other words, what would

seem to be an effect at the level of word form — a morphological boundary effect

— actually is driven by inflectional semantics.
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Appendices

4.A Assignment of inflectional status

CELEX tag Example Present study

0 jemand non-inflected
13SIA stand non-inflected
2PIE,rP fangt inflected
2SIE,3SIE,2PIE aufpasst inflected
2SIE,3SIE,2PIE,rP kratzt inflected
2SIE,3SIE,2PIE,rP,pA erfasst inflected
3SIE,2PIE ausmacht inflected
3SIE,2PIE,pA ausbezahlt inflected
3SIE,2PIE,rP macht inflected
3SIE,2PIE,rP,pA bezahlt inflected
nP,gP,dP,aP,nS,dS,aS Watt non-inflected
nS Kandidat non-inflected
nS,dS,aS Land non-inflected
nS,dS,aS,nP,gP,dP,aP England non-inflected
nS,gS,dS,aS Hand non-inflected
pA gemacht inflected
pA,3SIE,2PIE,rP bestrahlt inflected
X bald non-inflected

4.B SemSupSuffix model for tongue body positions

A GAMM with the same structure as for SemSupSuffix (see section 4.3.3) was fit-

ted to vertical tongue body positions. The interaction among time, SemSupSuffix,

and frequency was supported as shown in the last row of Table 4.B.1 below.

A visualization of the interaction between frequency and SemSupSuffix at

the center of the vowel (Figure 4.B.1) indicates that their effects are minimal in

most combinations of values of SemSupSuffix and frequency. Patterns of tongue

body trajectories are comparable for low and high values of SemSupSuffix, while

higher frequency is constantly associated with higher tongue body positions.

The current dataset consists of the words with the stem vowel [a(:)] and the
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Table 4.B.1: Summary of the model with SemSupSuffix for tongue body posi-
tions.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 8.440 1.546 5.460 <0.001

B. Smooth terms edf Ref.df F p-value

s(Time, Speaker) 57.310 104.000 393.725 <0.001
s(PrevSeg) 15.883 17.000 108.292 <0.001
s(NextSeg) 6.823 8.000 347.235 <0.001
s(VowelDuration) 1.002 1.005 0.182 0.672
ti(Time, VowelDuration) 3.041 3.569 5.663 <0.001
te(Time, SemSupSuffix, Freq) 13.826 14.973 9.651 <0.001
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Figure 4.B.1: Tongue body height as a function of frequency and SemSupSuffix.
Time is fixed at 0.5 (at the middle of the vowel). Warmer colors represent high and
colder colors represent low positions.

word-final segment [t], which are expected to induce coarticulatory movements

mainly for the tongue tip, leaving the tongue body being moved only passively.

Therefore, these results suggest that strengthening effects by semantic support

mainly influence coarticulatory movements of the tongue.
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Figure 4.B.2: Tongue body height as a function of time and frequency. Semantic
support for suffixes (i.e., SemSupSuffix) is discretized to low and high values,
which correspond to 0.01 and 0.99 quantiles. Warmer colors represent high and
colder colors represents low positions.

4.C SemSupVowel models

SemSupVowel was distributed in a right-skewed manner. Therefore, the variable

was log-transformed in prior to fitting GAMMs. After the log-transformation,

SemSupVowelwas fitted with a GAMM to predict tongue tip and body positions

with other control variables and random effects with the same model structure as

for SemSupSuffix (see section 4.3.3 for the model structure), except for replacing

SemSupSuffix for SemSupVowel.

4.C.1 Tongue tip

A fitted GAMM showed that higher SemSupVowel was constantly associated with

lower tongue tip positions, namely clearer articulations (see Table 4.C.1 and Fig-

ure 4.C.1). Figure 4.C.2 further illustrates that higher frequency words are articu-

lated with higher and flatter tongue tip trajectories when SemSupVowelis low, while

higher frequency words show attenuated degrees of reduction (i.e., tongue-raising

effects) when SemSupVowelis high.
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Table 4.C.1: Summary of the model with log-transformed SemSupVowel for tongue
tip positions.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 2.803 2.634 1.064 0.287

B. Smooth terms edf Ref.df F p-value

s(Time, Speaker) 98.270 104.000 317.565 <0.001
s(PrevSeg) 13.718 14.000 507.679 <0.001
s(NextSeg) 7.801 8.000 1054.130 <0.001
s(VowelDuration) 1.793 1.955 12.690 <0.001
ti(Time, VowelDuration) 3.500 3.853 25.346 <0.001
te(Time, SemSupVowel, Freq) 24.158 25.261 34.194 <0.001
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Figure 4.C.1: Tongue tip height as a function of frequency and log-transformed
SemSupVowel. Time is fixed at 0.5 (at the middle of the vowel). Warmer colors
represent high and colder colors represent low positions.

4.C.2 Tongue body

The same structure of a GAMM was fitted for tongue body positions (Table 4.C.2).

The interaction of frequency and SemSupVowel turned out to be a U-shaped effect

(Figure 4.C.3). This effect is likely due to extreme values predicted for very high

and very low SemSupVowelvalues. For middle values of SemSupVowel, predicted

tongue body height is almost always zero, indicating no substantial effect of fre-

quency and SemSupVowelis visible in the region. In line with this observation,

tongue trajectories are predicted to stay slightly higher than the occlusal plane (i.e.
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Figure 4.C.2: Tongue tip height as a function of time and frequency. SemSupVowel
is log-transformed and discretized to low and high values, which correspond to 0.01
and 0.99 quantiles. Warmer colors represent high and colder colors represents low
positions.

0) with not much raising or lowering during the vowel, regardless of values of fre-

quency. A possible exception could be tongue body positions at the onset of the

vowel for low frequency words with high SemSupVowel, where low positions are

predicted. However, these predictions are not very reliable due to sparseness of

data points below (log) frequency being 7.

Table 4.C.2: Summary of the model with log-transformed SemSupVowel for tongue
body positions.

A. Parametric terms Estimate Std.Error t-value p-value

Intercept 8.312 1.401 5.935 <0.001

B. Smooth terms edf Ref.df F p-value

s(Time, Speaker) 94.479 104.000 173.855 <0.001
s(PrevSeg) 11.962 14.000 44.459 <0.001
s(NextSeg) 6.076 8.000 108.862 <0.001
s(VowelDuration) 1.008 1.015 4.895 0.026
ti(Time, VowelDuration) 1.997 2.013 48.738 <0.001
te(Time, SemSupVowel, Freq) 23.823 25.147 25.439 <0.001
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Figure 4.C.3: Tongue body height as a function of frequency and log-transformed
SemSupVowel. Time is fixed at 0.5 (at the middle of the vowel). Warmer colors
represent high and colder colors represent low positions.
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Figure 4.C.4: Tongue body height as a function of time and frequency. Semantic
support for the stem vowel (i.e., SemSupVowel) is log-transformed and discretized
to low and high values, which correspond to 0.01 and 0.99 quantiles. Warmer
colors represent high and colder colors represents low positions.
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Chapter 5

Summary and conclusions

Frequency has been reported to be associated with phonetically enhanced real-

izations such as longer duration and more peripheral tongue positions in a small

number of studies (Cohen, 2014; Kuperman et al., 2007; Tomaschek, Tucker, et

al., 2018; Tomaschek et al., 2021), whereas the large majority of studies report

frequency to go hand in hand with phonetic reduction (Aylett & Turk, 2004, 2006;

A. Bell et al., 2002; Dinkin, 2008; Gahl, 2008; Jurafsky et al., 2001; Lin et al.,

2011; Pluymaekers et al., 2005b).

In this thesis, the finding that a higher frequency predicts phonetic enhance-

ment was replicated using ultrasound, following up on one of the previous stud-

ies that found such an enhancement effect using electromagnetic articulography

(Tomaschek, Tucker, et al., 2018). Consistent with the findings of this study,

clearer articulations were observed for the [a:] vowel in high frequency words,

compared to middle frequency words. Effects of frequency were more visible

for the tongue tip than the tongue body. In the current study, as in the study

of Tomaschek, Tucker, et al. (2018), the [a:] vowels were followed by alveolar

suffixes, which explains why coarticulation was most prominently present for the

tongue tip. The tongue body executed relatively passive movements that followed

the relatively more active movements of the tongue tip.

In addition, effects of frequency were much more visible for the suffix condi-
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tion [t], compared to [n]. This was most likely caused by possible differences in

syllable structure. The suffix [n] condition contained [@n] and [n]. The former can

be a syllabic nasal and the latter can be a separate syllable with a schwa. In either

case, co-articulatory effects from the suffix onto the stem vowel are expected to

become smaller. Considered jointly, this study clarifies that how strongly experi-

ence, as gauged with frequency, strengthens articulation can vary substantially with

morphological context and the nature of the co-articulatory processes expected for

these contexts.

The second study, in contrast, controlled for word-final syllable structure, and

focused on the suffix [t] condition. Furthermore, in this study, words with non-

morphemic word-final [t] were included in order to clarify whether frequency in-

teracts with morphological structure. An interaction of frequency by morphologi-

cal status (inflected vs. not inflected) indeed emerged from this study, which made

use of electromagnetic articulography recordings of spontaneous conversational

German. For non-inflected words, a higher frequency predicted greater phonetic

reduction for the stem vowel (always [a:]). In contrast, when the final segment ([t])

was an inflectional exponent, the phonetic reduction effect was attenuated or even

somewhat enhanced.

These observations support the possibility that presence or absence of a mor-

phological boundary modulates frequency effects. In fact, these observations are

consistent with the fact that in the literature, the words that show phonetic reduc-

tion for increasing frequency tend to be morphologically simple, whereas phonetic

enhancement has only been reported for morphologically complex words.

However, the question remains: why do different morphological configurations

create such different frequency effects? Neither an explanation based on morpho-

logical parsing with pressure from paradigm members, namely the paradigm uni-

formity account (Seyfarth et al., 2017), nor an explanation based on syntagmatic

predictability (Aylett & Turk, 2004; Jurafsky et al., 2001) can account for the ob-

served interaction of frequency by morphological status. For a better explanation,
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we revisited the concept of “morphological boundary”. Rather than assuming this

construct as a theoretical primitive, we explored the possibility that this construct

is itself grounded in semantics.

To this end, the third study investigated the relation between inflectional sta-

tus and the amount of semantic support that an inflectional suffix receives from its

meaning, using the DLM model. Compared to non-inflected words, inflected words

received much greater semantic support for the word-final trigram, which straddled

the inflectional exponent. Inflectional status was associated with greater seman-

tic support for suffix. This finding is even more remarkable given that word2vec

embeddings were used to represent words’ meanings, rather than fastText vectors

(which can ‘look inside’ word forms). Apparently, empirical word embeddings

of inflected words ending in [t] co-vary systematically with the presence of this

exponent in words’ forms, allowing the DLM mapping from embeddings to tri-

grams to provide especially strong support for the trigram covering the inflectional

exponent.

In addition, the third study of this dissertation revealed that greater semantic

support for the suffixal trigram predicted phonetically more enhanced realization

of the [a:]. Importantly, a regression model with semantic support as predictor

provided a better fit to the data than a regression model with a factor specifying the

absence or presence of an inflectional word boundary. This suggests that indeed

semantics is the crucial factor at play, rather than a purely form-based ‘invisible’

boundary between stem and exponent.

Furthermore, an interaction of the semantic support measure by frequency was

present, indicating that when semantic support for the final trigram was low (typi-

cal for non-inflected words) the vowel was more reduced, whereas when semantic

support for the final trigram was high (typical for inflected words), the vowel was

articulatorily enhanced. In other words, the measure of semantic support provided

an explanation to the different degrees of phonetic reduction effects of frequency

according to inflectional status observed in the second study without requiring the-
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oretical constructs such as stems, exponents, and morphological boundaries. Such

constructs are useful for high-level analyses, but for understanding the fine details

of articulation, the distributional properties of words forms, their meanings, and

the relation between these are crucial.

These findings cannot be explained by classical speech process models that

assume serial processing based on modules such as syntax, morphology, phonol-

ogy, and so on (Fromkin, 1971; Garrett, 1984, 1988; Levelt et al., 1999; Levelt

& Wheeldon, 1994). In these models, morphological information, let alone se-

mantics, is not available at the levels at which the details of phonetic realization

are calculated. For some models, such as the Levelt model, it is a design feature

that phonetic realization is completely shielded from semantics and syntax. Other

models, such as the one proposed by Oppenheim et al. (2010), may be able to

accommodate the present findings, but in order to do so with sufficient precision,

it will be necessary to move from hand-crafted featural representations for word

meaning to the embeddings of distributional semantics.

What I have shown in this doctoral dissertation is that a detailed quantitative

assessment of how distributed semantics support low-level sublexical features of

form can improve our understanding of the details of how we articulate words,

without having to posit hierarchies of units mediating between meaning and form.

Phoneticians tend to predict form from form. Semanticists tend to predict meaning

from meaning. But language is a communication system that bridges the gap be-

tween form and meaning, and meaning and form. Current distributional semantics,

in combination with the simple but highly effective algorithms of the DLM model,

make it possible to understand in much greater detail how language bridges this

gap. With current methods from statistics and machine learning, bridging this gap

may be simpler than suggested by many models that thus far have been proposed

as blueprints of human speech production.



Zusammenfassung und Fazit

In mehreren Studien wurde festgestellt, dass die Häufigkeit der Wörter in der

Sprache mit phonetisch verstärkten Realisierungen verbunden sind. Beispielsweise

haben häufige Wörter eine längere Dauer und eine peripherere Zungenpositionen

(Cohen, 2014; Kuperman et al., 2007; Tomaschek, Tucker, et al., 2018; Tomaschek

et al., 2021). Dies steht scheinbar im Widerspruch zu der vorherrschenden Ansicht,

dass häufige Wörter phonetisch reduziert sind, das heißt, eine zentralisiertere Zun-

genpositionen besitzen und eine kürzere Dauer haben (Aylett & Turk, 2004, 2006;

A. Bell et al., 2002; Dinkin, 2008; Gahl, 2008; Jurafsky et al., 2001; Lin et al.,

2011; Pluymaekers et al., 2005b).

In dieser Doktorarbeit wurde zuerst der Verstärkungseffekt mittels Ultraschall

reproduziert, der auch von einer der vorherigen Studie mit Elektromagnetische Ar-

tikulographie gefunden wurde (Tomaschek, Tucker, et al., 2018). In Übereinstim-

mung mit der Studie von Tomaschek, Tucker, et al. (2018) wurde in der ersten

Studie dieser Doktroarbeit klarere Artikulationen für sehr häufige Wörter im Ver-

gleich mit mittel häufigen Wörtern beobachtet. Die Effekte von der Worthäufigkeit

waren sichtbarer für die Zungenspitze als für den Zungenkörper. In der aktuellen

Studie, genauso wie in der Studie von Tomaschek, Tucker, et al. (2018), folgten

dem [a:] Vokal Alveolarsuffixe, was erklärt, warum die Koartikulation an der Zun-

genspitze am stärksten ausgeprägt war. Der Zungenkörper führte nur nach der

relativ aktiveren Bewegung der Zungenspitze relativ passive Bewegungen aus.

Außerdem waren Effekte der Worthäufigkeit in der aktuellen Studie viel sicht-

barer für die Suffixbedingung [t] im Vergleich zu [n]. Dieser Unterschid wurde



ZUSAMMENFASSUNG UND FAZIT 186

höchstwahrscheinlich durch mögliche Unterschiede in den Silbenstrukturen verur-

sacht. Die Suffixbedingung [n] enthielt [@n] und [n]. Ersteres kann ein Silben-

nasal und letzteres kann eine getrennte Silbe mit einem Schwa sein. In beiden

Fällen sollten koartikulatorische Effekte vom Suffix auf den Stammvokal kleiner.

Zusammengenommen verdeutlicht diese Studie, dass die Art und Weise, wie die

Erfahrung, gemessen an der Worthäufigkeit, Artikulationen verstärkt. Allerdings

kann die erwartete Koartikulation abhängig vom morphologischen Kontext erhe-

blich unterschiedlich ausfallen.

Im Gegensatz kontrollierte die zweite Studie in dieser Doktorarbeit wort-

ausschließende Silbenstrukturen, indem sich auf Suffixbedingung [t] konzentriert

wurde. Darüber hinaus wurde in dieser Studie das nicht-morphämische wordaus-

schließende [t] eingeschlossen, um die Wechselwirkung von Worthäufigkeit und

morphologischem Status zu beobachten. Eine Wechselwirkung von Worthäufigkeit

und morphologischem Status (flektiert vs. nicht flektiert) hat sich tatsächlich aus

dieser Studie ergegeben, in der die Aufnahmen von Elektromagnetische Artikulo-

graphie von spontanem Konversationsdeutch benutzt wurden. Für nicht-flektierte

Wörter sagte die höhere Frequenz stärkere phonetische Reduzierungen von dem

Stammvokal (immer [a:]) vorher. Wenn das wortausschließende Segment ([t])

dagegen ein Flektionsexponent war, wurde der phonetische Reduzierungseffekt

abgeschwächt und sogar etwas verstärkt.

Diese Beobachtungen unterstützen die Möglichkeit, dass das Vorhanden-

sein/Fehlen von einer morphologischen Grenze Effekte von Worthäufigkeit mod-

uliert. Tatsächlich stimmen diese Beobachtungen damit überein, dass in der

Literatur die Wörter, die den Reduktionseffekt für höhere Frequenzen zeigten, ten-

denziell morphologisch einfach sind, während der phonetische Verstärkungseffekt

nur für morphologisch komplexe Wörter gefunden wurde.

Aber warum verursachen unterschiedliche morphologische Strukturen solche

unterschiedlichen Effekte in Abhängigkeit der Worthäufigkeit? Weder die Erk-

lärung, die auf morphologischem Parsing (Syntaxanalyse) mit Druck von Paradig-
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menmitgliedern basiert, die Paradigm-Uniformity Hypothese, noch die Erklärung,

die auf syntagmatischer Vorhersagbarkeit basiert (Aylett & Turk, 2004; Jurafsky

et al., 2001), liefern ausreichende Erkärungen für die beobachte Wechelwirkung

von Worthäufigkeit und morphologischem Status. Zur besseren Erklärung haben

wir den Begriff der morphologischen Grenze übergedacht. Dafür haben wir die

morphologische Grenze nicht als gegeben angenommen, sondern sind davon aus-

gegangen, dass die morphologische Grenze durch eine semantische Ebene markiert

wird.

Um zu überprüfen, ob die morphologische Grenze durch einen semantischen

Einfluss vermittelt sein kann, untersuchte die dritte Studie in dieser Doktorar-

beit mithilfe des DLM-Modells die Beziehung zwischen dem Flexionsstatus und

der Höhe der semantischen Unterstützung, die das Suffix durch die Bedeutung

des Worts erhält. Im Vergleich mit nicht-flektierten Wörtern erhielten flektierte

Wörter deutlich mehr semantische Unterstützung für das wortausschließende Tri-

gramm, das dem Flektionsexponent überspannte. Das Flektionsstatus war mit

der höheren semantischen Unterstützung verbunden. Dieses Ergebnis ist umso

bemerkenswerter, wenn man denkt, dass Einbettungen nicht von fastText, die in

Wortformen ‘hineinschauen’ können, sondern von word2vec eingerichtet wurden,

um Bedeutungen von Wörtern darzustellen. Offensichtlich variieren empirische

Worteinbettungen von flektieren Wörtern, die mit [t] enden, systematisch mit dem

Vorhandensein von diesem Flektionsexponent in Wortformen, was es dem DLM-

Modell ermöglicht, welches Einbettungen auf Trigramme abbildet, besonders

starke Unterstützungen für Trigramme bereitzustellen, die Flektionsexponenten

abdecken.

Zusätzlich ergab die dritte Studie dieser Doktorarbeit, dass höhere semantische

Unterstützung für das Suffixtrigramm phonetisch stärkere Realisierungen von dem

Stammvokal [a:] vorhersagte. Wichtig ist, dass das Regressionsmodell mit seman-

tischer Unterstützung als Prädiktor eine bessere Anpassung an die Daten lieferte,

als das Regressionsmodell mit einem Faktor, der das Vorhandensein und Fehlen
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von einer Flektionswortgrenze angibt. Diese Ergebnisse deuten darauf hin, dass

tatsächlich Semantik der entscheidende Faktor ist und nicht eine rein formbasierte

‘unsichtbare’ Grenze zwischen Stamm und Exponent.

Darüber hinaus wurde die Wechselwirkung der semantischen Unterstützung

und Worthäufigkeit beobachtet, was darauf hindeutet, dass der Stammvokal mehr

reduziert war, wenn die semantische Unterstützung für das wortausschließende Tri-

gramm niedrig war (typisch für nicht-flektierte Wörter), während der Stammvokal

artikulatorisch verstärkt wurde, wenn die semantische Unterstützung für das wor-

tausschließende Trigramm hoch war (typisch für flektierte Wörter). Mit anderen

Worten lieferte das Maß von der semantischen Unterstützung die Erklärung für

die nach dem Flektionsstatus unterschiedlichen Grade der phonetischen Reduk-

tionseffekte der Worthäufigkeit, die in der zweiten Studie in dieser Doktorarbeit

beobachtet wurden, ohne dass theoretische Begriffe wie Stämme, Exponenten, und

morphologische Grenzen erforderlich sind. Solche Begriffe sind für Analysen auf

hoher kognitiver Verarbeitungsebene nützlich. Aber um feine Details von Artiku-

lationen zu verstehen, sind Verteilungseigenschaften von Wortformen, ihre Bedeu-

tungen, und das Zusammenhang zwischen diesen entscheidend.

Diese neuen Erkenntnisse lassen sich nicht einfach durch klassische Sprach-

prozessmodelle erklären, die von der auf Modulen wie Syntax, Morphologie,

Phonologie, usw. basierten seriellen Verarbeitungssytem ausgehen (Fromkin,

1971; Garrett, 1984, 1988; Levelt et al., 1999; Levelt & Wheeldon, 1994). In

diesen Modellen stehen morphologische Informationen, geschweige denn seman-

tische Informationen, nicht zur Verfügung, um feine phonetische Details zu bes-

timmen. Für einige Modelle, beispielsweise das Level Modell, ist es ein Design-

merkmal, dass die phonetische Realisierung vollständig von Semantik und Syntax

abgeschirmt ist. Andere Modelle, beispielsweise das Modell von Oppenheim et

al., 2010, können möglicherweise die vorliegenden Ergebnisse berücksichtigen.

Aber um das mit ausreichender Präzision zu erreichen würde es nötig sein, von

handgefertigen Merkmalsdarstellungen für Wortbedeutungen zu Worteinbettungen
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von Verteilungssemantik überzugehen.

Mit dieser Doktorarbeit habe ich gezeigt, dass eine detaillierte quantitative

Bewertung von der Art und Weise, wie Verteilungssemantik sublexikalische Merk-

male von Formen auf niedriger Ebene unterstützt, unser Verständnis darüber

verbessern kann, wie man Wörter artikuliert, ohne Hierarchien von Einheiten

zwischen Bedeutung und Form postulieren zu müssen. Phonetiker sagen —

vereinfacht ausgedrückt — Form von Form vorher. Semantiker sagen — vere-

infacht ausgedrückt — Bedeutung von Bedeutung vorher. Aber die Sprache ist

ein Kommunikationssystem, das die Lücke zwischen Form und Bedeutung, sowie

zwischen Bedeutung und Form, überbrückt. Die aktuelle Verteilungssemantik in

Kombination mit den einfachen aber äußerst effektiven Algorithmen des DLM

Modells ermöglicht es, besser zu verstehen, wie die Sprache diese Lücke über-

brückt. Mithilfe aktueller Methoden aus Statistik und Machine-Learning ist die

Überbrückung von dieser Lücke einfacher, als viele Modelle vermuten lassen, die

bisher als Blaupausen der menschlichen Sprachproduktion vorgeschlagen wurden.
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