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Abstract

This recent widespread deployment of machine learning algorithms presents
many new challenges. Machine learning algorithms are usually opaque and can
be particularly difficult to interpret. When humans are involved, algorithmic and
automated decisions can negatively impact people’s lives. Therefore, end users
would like to be insured against potential harm. One popular way to achieve
this is to provide end users access to algorithmic recourse, which gives end users
negatively affected by algorithmic decisions the opportunity to reverse unfavo-
rable decisions, e.g., from a loan denial to a loan acceptance. In this thesis, we
design recourse algorithms to meet various end user needs. First, we propose
methods for the generation of realistic recourses. We use generative models to
suggest recourses likely to occur under the data distribution. To this end, we
shift the recourse action from the input space to the generative model’s latent
space, allowing to generate counterfactuals that lie in regions with data sup-
port. Second, we observe that small changes applied to the recourses prescribed
to end users likely invalidate the suggested recourse after being nosily imple-
mented in practice. Motivated by this observation, we design methods for the
generation of robust recourses and for assessing the robustness of recourse algo-
rithms to data deletion requests. Third, the lack of a commonly used code-base
for counterfactual explanation and algorithmic recourse algorithms and the vast
array of evaluation measures in literature make it difficult to compare the per-
formance of different algorithms. To solve this problem, we provide an open-
source benchmarking library that streamlines the evaluation process and can be
used for benchmarking, rapidly developing new methods, and setting up new
experiments. In summary, our work contributes to a more reliable interaction of
end users and machine learned models by covering fundamental aspects of the
recourse process and suggests new solutions towards generating realistic and
robust counterfactual explanations for algorithmic recourse.
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Kurzfassung

Der in letzter Zeit weit verbreitete Einsatz von Algorithmen des maschinellen
Lernens bringt viele neue Herausforderungen mit sich. Eine dieser Herausforde-
rungen ist, dass Algorithmen des maschinellen Lernens in der Regel undurch-
sichtig und besonders schwer zu interpretieren sind. Wenn Menschen involviert
sind, können sich algorithmische Entscheidungen negativ auf das Leben dieser
Menschen auswirken. Daher möchten die Endnutzer gegen mögliche Schäden
abgesichert sein und in der Lage sein “Revision” gegen die algorithmische Ent-
scheidung einzulegen. Ein beliebter Weg, dies zu erreichen, besteht darin, End-
nutzern Zugang zu “algorithmischer Revision” zu verschaffen, die Endnutzern,
die von algorithmischen Entscheidungen negativ betroffen sind, die Möglichkeit
geben, ungünstige Entscheidungen rückgängig zu machen; z. B. von einer Kre-
ditverweigerung zu einer Kreditannahme. In dieser Arbeit entwerfen wir Revisi-
onsalgorithmen, die verschiedenen Bedürfnissen der Endnutzer gerecht werden.
Zunächst schlagen wir Methoden für die Generierung realistischer, algorithmi-
scher Revision vor. Wir verwenden generative Modelle, um algorithmische Revi-
sionen vorzuschlagen, die auf der Grundlage der Datenverteilung wahrschein-
lich auftreten. Zu diesem Zweck verlagern wir die Revisionsaktionen aus dem
Eingaberaum in den latenten Raum des generativen Modells und können so
kontrafaktische Daten erzeugen, die in Regionen mit Datenunterstützung lie-
gen. Zweitens stellen wir fest, dass kleine Änderungen an den algorithmischen
Revisionen nachdem sie in der Praxis unpräzise umgesetzt wurden, die algorith-
mische Revision wahrscheinlich ungültig machen. Motiviert durch diese Beob-
achtung entwickeln wir Methoden zur Generierung und Bewertung von robus-
ten algorithmischen Revisionen. Drittens erschweren das Fehlen einer allgemein
verwendeten Codebasis für Revisionsalgorithmen sowie die Vielzahl von Be-
wertungsmaßstäben in der Literatur einen Vergleich der verschiedener Algorith-
men. Um dieses Problem zu lösen, stellen wir eine Opensource Benchmarking-
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Bibliothek vor, die den Evaluierungsprozess vereinfacht und für das Benchmar-
king, die schnelle Entwicklung neuer Methoden und den Aufbau neuer Experi-
mente verwendet werden kann. Zusammenfassend lässt sich sagen, dass unsere
Arbeit zu einer zuverlässigeren Interaktion zwischen Endnutzern und maschi-
nengelernten Modellen beiträgt, indem sie grundlegende Aspekte des algorith-
mischen Revisionsprozesses abdeckt und neue Lösungen zur Erzeugung realis-
tischer und robuster kontrafaktischer Erklärungen für algorithmischen Revisio-
nen vorschlägt.



1
Introduction and Overview

1.1 Motivation

The internet and improvements in computing capabilities have made it easy to
collect and process vast amounts of data. As a consequence, the use of machine
learning algorithms has become widespread and covers many aspects of every-
day routines where humans are involved. These routines cover all areas of daily
life, such as hiring decisions [28, 129, 151], loan assignments [10, 42, 168], judicial
parole decisions [13, 47], and disease risk prediction or diagnosis [95, 113].

This recent widespread development of the use of machine learning algorithms
also presents many new challenges. When humans are involved, algorithmic
and automated decisions can negatively impact people’s lives. For this reason,
we want to ensure that algorithmic decision support systems make decisions for
the right reasons. As system designers, our hope is that we can ensure that the
algorithmic decision support systems are transparent, accountable and can be
trusted. However, algorithmic decision support systems are usually opaque and
can be particularly difficult to interpret [33, 68, 110]. In addition to that, relative
to a single decision maker, algorithmic decision support systems can make de-
cisions at scale impacting thousands or millions of individuals simultaneously
[112].

Unsurprisingly, undesirable effects of algorithmic decision support systems have
been observed in practice: for example, to assist the human resource allocation
team in hiring appropriate computer programmers Amazon rolled out an AI tool
to screen promising candidates [21] which quickly turned out to put female ap-
plicants at a disadvantage. Similar biases have presumably been found in recidi-
vism risk prediction settings [13, 37]. Simultaneously, policy makers have been
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working on creating regulations to control these systems to empower end users
to gain insights regarding the specific decisions that were made about them.

To safeguard individuals’ rights, policymakers have implemented regulations
such as the General Data Protection Regulation (GDPR) [60] and the California
Consumer Privacy Act (CCPA) [111] to regulate the collection and use of per-
sonal data and machine learning models. These regulations arguably provide
individuals with the right to recourse, which refers to the ability to take steps
to change an unfavorable outcome (such as a denied credit application) caused
by a model’s prediction.1 Additionally, these laws empower individuals by giv-
ing them more control over their personal data, such as the right to withdraw
consent for its use at any time [54].

To safeguard individuals from misconduct, researchers have developed the no-
tion of algorithmic recourse which refers to the ability of individuals to chal-
lenge or contest decisions supported by algorithms, and to have those decisions
reviewed or revised if necessary. It is a way of ensuring that algorithms are ac-
countable and transparent in their decision support processes, and that individu-
als have the opportunity to correct any errors or biases that may have influenced
the algorithms’ decisions [159, 166]. Algorithmic recourse can take many forms,
depending on the specific context in which the algorithm is being used. For ex-
ample, in the context of automated decision-making systems used in hiring or
lending, algorithmic recourse might involve the ability to request an explanation
for why a particular decision was made, and to provide additional information
or context that could influence the decision. In other cases, algorithmic recourse
might involve the ability to appeal a decision made by an algorithm, or to have
the decision reviewed by a human. Summarizing, the goal of algorithmic re-
course is to ensure that algorithms are used in a fair and transparent manner,
and to give individuals the opportunity to correct any errors or biases that may
have influenced the algorithms’ decisions. This can help to build trust in algo-
rithmic systems and to ensure that they are used ethically and responsibly.

In this thesis, we develop algorithmic tools that provide algorithmic recourses
to humans and evaluate the quality of these recourses. We approach this prob-
lem through the lens of counterfactual explanations, which is a type of explana-
tion that describes what would have happened if some aspect (i.e., some feature
values) of the situation had been different. Following Wachter et al. [166] we
consider explanations of the following form:

Score f was assigned since the features v had values v1,v2, · · · . If v
had values v′1,v

′
2, · · · instead, and all other variables were constant, score

1We will discuss the legal motivation for the deployment of algorithms to enable recourse in
Chapter 2.
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Figure 1.1: A schematic depiction of an algorithmic decision support-recourse
system. End users, who are faced with an unfavorable decision (e.g., loan de-
nial), receive counterfactual explanations δ from the recourse system. These
counterfactual explanations provide the user with an instruction on how to
change their end user profile (e.g., decrease amount of outstanding credit card
debt by 500 Euros) to receive the favorable outcome (e.g., loan acceptance).

f ′ would have been returned.

Consistent with the view of Wachter et al. [166] we adapt a non-causal perspec-
tive on these explanations. Although misleading due to the term “counterfac-
tual” being rooted in causal literature [123, 126], we follow the convention of the
explainability literature and call these explanations counterfactual explanations.

We end this section by providing real-world examples that highlight the short-
comings of automated decision-making systems. At the same time, these exam-
ples also demonstrate how counterfactual explanations can be used to improve
transparency and provide a means of recourse in algorithmic decision-making
(see also Figure 1.1 for a schematic depiction of a recourse system):

(i) Human resource allocation: Consider the specific use-case of college ad-
missions in the US. In 2014, the students for fair admissions (SFFA) group
filed a lawsuit against Harvard College claiming that Harvard’s admis-
sion process would violate Title VI of the American Civil Rights Act by
using racial quotas that disadvantage Asian-Americans. In this context,
Arcidiacono [14] used data on applicants to Harvard college to analyze
whether the process of accepting applicants was biased towards admit-
ting “white” applicants relative to African-American or Asian-American
applicants. Arcidiacono’s report used a statistical model to predict the ap-
plicants’ acceptance probabilities based on the their available information



such as test scores, academic achievements, extra curricular activities and
demographic information. Using a counterfactual explanation, the report
concluded that an Asian-American applicant with a 25% chance of being
admitted would increase their chance by 11 percentage points if the ap-
plicant changed their race attribute to “White” holding all other feature
values in the analysis constant. While this is not the only way to measure
whether a prediction system is fair on not, such counterfactual explana-
tions can give rise to further scrutinize the admission process and current
practices.

(ii) Health care: A patient could be observed more closely if an algorithmic
decision support model suggests a high probability of an adverse outcome
(e.g., cario-vascular disease (CVD)) [88]. In this setup, we could be in-
terested in identifying actions that reduce or even minimize the probabil-
ity of CVD. Suppose an automated decision making model is based on
patient records including information on medications, lab measurements
(e.g., blood pressure, heart rate), lifestyle choices (e.g., diet, sports) and
demographic information (e.g., age, sex). While doctors often give hand-
wavy suggestions or suggestions that apply to the “average patient”, a re-
course system can make exact recommendation on how to change a pa-
tient’s profile to improve health outcomes (e.g., by suggesting a particular
kind of medication).

1.2 Outline and Contribution

In this thesis, we present solutions to three major challenges in the field of coun-
terfactual explanations for algorithmic recourse. These challenges are discussed
in more detail in Chapter 2. Throughout this thesis, we illustrate these problems
through real-world examples and provide new methodological, theoretical, and
empirical insights to address them. In Chapter 3, we introduce novel frame-
works and implementations that overcome the limitations of previous works.
In Chapter 4, we explore the connections between adversarial examples and al-
gorithmic recourse. With our findings, we develop more robust algorithms for
generating algorithmic recourse in Chapter 5. Our final contribution is the de-
velopment of a benchmarking library in Chapter 6, which allows practitioners
and researchers to track the progress of new recourse algorithms in a central
repository and compare the performance of different algorithmic recourse meth-
ods. Through these contributions, we aim to enhance the reliability of automated
machine learning systems and address known issues in the recourse process (as
discussed in [80, 163]).



This thesis is based on six publications, each contributing to one of the three
issues mentioned above. In the following, we briefly summarize our contribu-
tions.

1.2.1 Algorithms for Realistic Recourse

Generating recourses that are likely to occur. Previous algorithmic recourse
methods did not consider whether the suggested explanations were likely to oc-
cur or meet requirements such as counterfactual faithfulness (i.e., proximity to
correctly classified observations and connection to regions with substantial data
density). In order to address this issue, we propose a framework called CCHVAE
(Counterfactual Conditional Heterogenous Variational Autoencoder) that gen-
erates counterfactual explanations that are faithful to the data, drawing on ideas
from learning generative models. Additionally, we suggest the use of a crite-
rion to evaluate the difficulty of a particular counterfactual suggestion as a com-
plement to existing quality measures. Our experiments show that generating
faithful counterfactual explanations can come at a higher cost of recourse.

Generating recourses under feature dependencies. Most algorithmic recourse
methods rely on the assumption of independently manipulable features (IMF)
in order to generate low-cost recourse. However, this assumption is not always
realistic. To address the feature dependency issue the recourse problem is posed
through the causal recourse paradigm. However, it is well known that strong
assumptions, as encoded in causal models and structural equations, hinder the
applicability of these methods in complex domains where causal dependency
structures are ambiguous. To mitigate both issues, we introduce DEAR (DisEn-
tangling Algorithmic Recourse), a recourse framework that disentangles latent
features that covary with a subset of promising recourse features.

1.2.2 On the Connections between Algorithmic Recourse and
Adversarial Examples

This part of the thesis explores the relationship between two distinct but related
areas of research: adversarial examples and counterfactual explanations. These
examples are small, often imperceptible perturbations to inputs (most often im-
ages) that flip the prediction of the classifier in an often unpredictable way. For
example, the prediction could flip from “Human” to “Frog”, while the image
would still be perceived as a human. Research in this area has focused on under-
standing why these examples exist, how to generate them, and how to prevent



them. This literature has primarily framed the problem of the existence of adver-
sarial examples as a nuisance that should be avoided when possible. Meanwhile,
counterfactual explanations involve identifying minimal changes that need to
be made to an input to change the model’s prediction towards a more favorable
outcome for the individual (e.g., loan acceptance). This research has primarily
focused on providing explanations for model predictions. Here we show that
these two fields are closely related and that understanding the relationship be-
tween them can inform the design of counterfactual explanations.

1.2.3 Algorithms for Robust Recourse

Tradeoffs between actionable explanations and the right to be forgotten. There
is currently a lack of understanding on whether the principles of data protection,
such as the “right to be forgotten” and the alleged “right to an explanation” (al-
gorithmic recourse), can be implemented simultaneously in machine learning
(ML) systems. To address this issue, we investigate the problem of recourse in-
validation in the context of data deletion requests. We analyze the behavior of
state-of-the-art algorithms and find that recourses generated by these algorithms
are likely to be invalidated if a small number of data deletion requests result in
updates to the predictive model. We propose a framework to identify a minimal
set of critical training points that, when removed, maximize the fraction of inval-
idated recourses. Across data sets used in our experiments, we demonstrate that
the removal of as few as two data instances from the training set can invalidate
up to 95% of recourses output by popular algorithms. This part of our thesis
raises questions about the compatibility of algorithmic recourse and the right
to be forgotten, and provides insights into the factors that determine recourse
robustness.

Robust recourses under noisy human responses. The existing algorithmic re-
course methods face challenges in delivering low-cost solutions while maintain-
ing robustness in the face of real-world noise, which can happen when users do
not follow the prescribed recourse precisely. These methods also lack the op-
tion for users to balance the cost and robustness. To address these issues, we
present the Probabilistically ROBust rEcourse (PROBE) framework that enables
users to set the probability of recourse invalidation if there is some deviation in
real-world responses from the prescribed recourse. We propose a novel objective
function that simultaneously encourages robust recourses, minimizes recourse
costs, and ensures that the resulting recourse has a favorable prediction from
the model. We also provide theoretical results that characterize the invalidation
rates for different types of models and use these results to optimize the proposed
objective. Our experiments on real-world datasets demonstrate the effectiveness



of PROBE.

1.2.4 Standardizing the Evaluation of Recourse Methods

This part of the thesis establishes a standardized approach for evaluating algo-
rithmic recourse methods by providing a set of meaningful metrics for evaluat-
ing counterfactual explanations and introducing a novel evaluation framework,
CARLA (Counterfactual And Recourse LibrAry). The lack of a commonly used
code-base for counterfactual explanation and algorithmic recourse algorithms,
and the vast array of evaluation metrics in literature make it difficult to compare
the performance of different methods. CARLA streamlines the evaluation process
and can be used for benchmarking, rapidly developing models, and setting up
new experiments. It is highly customizable and can be integrated with custom
code. The framework is open-source and accessible on Github and Pypi.

1.3 Publications

This thesis is based on 6 publications, 5 of which have been accepted at inter-
nationally highly respected conferences and 1 of which was under review at the
time of thesis submission.

Contribution 1

Learning Model-Agnostic Counterfactual Explanations for Tabular Data.
Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. 2020. In Pro-
ceedings of The Web Conference (WWW), [115].

Contribution 2

Decomposing Counterfactual Explanations for Consequential Decision
Making. Martin Pawelczyk, Lea Tiyavorabun, and Gjergji Kasneci. 2022.
arXiv:2211.02151, [119]. Under review at UAI 2023.



Contribution 3

Exploring Counterfactual Explanations Through the Lens of Adversarial
Examples: A Theoretical and Empirical Analysis. Martin Pawelczyk, Chi-
rag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju.
2022. In International Conference on Artificial Intelligence and Statistics
(AISTATS), [118].

Contribution 4

On the Trade-Off between Actionable Explanations and the Right to be
Forgotten. Martin Pawelczyk, Tobias Leemann, Asia Biega*, Gjergji
Kasneci*. 2022. In International Conference on Learning Representations
(ICLR), [122].

Contribution 5

Probabilistically Robust Recourse: Navigating the Tradeoffs between
Costs and Robustness in Algorithmic Recourse. Martin Pawelczyk, Ter-
essa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu
Lakkaraju. 2023. In International Conference on Learning Representations
(ICLR), [120].

Contribution 6

CARLA: A Python Library to Benchmark Algorithmic Recourse and Coun-
terfactual Explanation Algorithms. Martin Pawelczyk, Sascha Bielawski.,
Johannes Van den Heuvel, Tobias Richter* and Gjergji Kasneci*. 2021. In
Advances in Neural Information Processing Systems (NeurIPS), [117].

During my time as a PhD student I also contributed to numerous other papers,
which will not be described in this thesis:

Leveraging Model Inherent Variable Importance for Stable Online Feature
Selection. Johannes Haug, Martin Pawelczyk, Klaus Broelemann, and
Gjergji Kasneci. 2020. In Proceedings of the 26th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining (KDD), [71].

On Counterfactual Explanations under Predictive Multiplicity. Martin
Pawelczyk, Klaus Broelemann and Gjergji Kasneci. 2020. In 36th Con-
ference on Uncertainty in Artificial Intelligence (UAI), [116].



Model Selection in Local Approximation Gaussian Processes: A Markov
Random Fields Approach. Hamed Jalali, Martin Pawelczyk, and Gjergji
Kasneci. 2021. In IEEE International Conference on Big Data (Big Data),
[76].

OpenXAI: Towards a Transparent Evaluation of Model Explanations. Chi-
rag Agarwal, Eshika Saxena, Satyapriya Krishna, Martin Pawelczyk, Nari
Johnson, Isha Puri, Markinka Zitnik and Himabindu Lakkaraju. 2022. In
Advances in Neural Information Processing Systems (NeurIPS), [4].

Deep Neural Networks and Tabular Data: A Survey. Vadim Borisov, To-
bias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawelczyk, and
Gjergji Kasneci. 2022. In Transactions on Neural Networks and Learnings
Systems (TNNLS), [29].

On the Privacy Risks of Algorithmic Recourse. Martin Pawelczyk,
Himabindu Lakkaraju, and Seth Neel. 2023. In International Conference
on Artificial Intelligence and Statistics (AISTATS), [121].

Large Language Models are Realistic Tabular Data Generators. Vadim
Borisov, Kathrin Seßler, Tobias Leemann, Martin Pawelczyk, and Gjergji
Kasneci. 2023. In International Conference on Learning Representations
(ICLR), [30].

I Prefer not to Say: Are Users Penalized for Protecting Sensitive Data?.
Tobias Leemann, Martin Pawelczyk, Christian Thomas Eberle, and Gjergji
Kasneci. 2022. arXiv:2210.13954, [92]. Under review at ICML 2023.

On the (In)compatibility of Short and Long-Term Fairness in Sequential
Decision Making. Danilo Brajovic*, Tobias Leemann*, Martin Pawelczyk*,
Niki Kilbertus, and Gjergji Kasneci. 2023. Unpublished. Under review at
FAccT 2023.





2
Background

In this Chapter we provide background on the fundamental challenges around
generating algorithmic recourse. We will take a top-down approach and start
our discussion where the motivation of numerous research papers on algorith-
mic recourse stops: with the argument that algorithmic recourse through coun-
terfactual explanations is well justified by the European Union’s (EU) General
Data Protection Regulation (GDPR) [51]. We then discuss to what extent re-
search on algorithmic recourse can be motivated by modern data protection reg-
ulation, and whether we can use these regulations to identify implicitly encoded
desiderata for algorithmic recourse from these regulations. We then formulate
an extended catalogue of desiderata on how recourses should best be designed
to serve a variety of possible end user needs. With the basic requirements in
place, we present the basic mathematical background on the workhorse recourse
model which we will be using throughout. Finally, we will introduce the three
main themes of this thesis: the generation of realistic and robust counterfactual ex-
planations for algorithmic recourse and their reliable evaluation. Motivated by these
themes we will describe the particular problems within these main themes in
more detail before we conclude.

2.1 The Legal Basis of Algorithmic Recourse

The majority of works (e.g., [79, 115, 122, 159]) that focus on building technical
recourse algorithms to explain complex ML models derive the motivation for
the use and development of recourse methods from data protection regulations
such as the GDPR which came into effect in April 2018. As a European Union
regulation, the GDPR does not require its member states to enable state spe-
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cific legislations and has effectively replaced the EU’s Data Protection Directive
(DPD). In contrast to the GDPR, the DPD required member states to pass in-
dividual state specific regulations implementing the directives as they deemed
appropriate. Hence, as of 2018 the GDPR is effectively the EU’s data processing
and data protection law. In this Section, we will take a closer look at key laws
from the GDPR which supposedly motivate the need for counterfactual expla-
nations for algorithmic recourse and analyze what exactly the GDPR and other
data regulations say about the provision of algorithmic explanations when au-
tomated decision making algorithms are a part of a data controller’s decision
making process.

2.1.1 Algorithmic Recourse through Counterfactual
Explanations: A Clear Mandate through the GDPR?

A closer look at European data protection regulation. It has often been argued
that the General Data Protection Regulation (GDPR) gives individuals the “right
to explanations” from the controller (the organization or individual that pro-
cesses their personal data) regarding the processing of their personal data (e.g.,
[66, 136]). This is usually understood as an ideal procedure to enhance the trans-
parency of automated decision-making systems. Arguably, this right is provided
under Articles 13 and 14 of the GDPR, which state that individuals have the right
to obtain [51, Articles 13 and 14]:

“[...] information necessary to ensure fair and transparent processing
in respect of the data subject [...]”.

Specific information that must be provided includes information on [51, Articles
13 and 14]:

”[...] the existence of automated decision-making, including profil-
ing, referred to in Article 22(1) and (4) and, at least in those cases,
meaningful information about the logic involved, as well as the sig-
nificance and the envisaged consequences of such processing for the
data subject.”

These articles grant users to obtain “meaningful information about the logic in-
volved” in automated decision making processes. At first glance, such formu-
lations seem to suggest that something like a right to explanations could be de-
rived from here. Additionally, Article 22(3) gives individuals the right to obtain
human intervention to express their point of view, and to contest the algorithmic
and automated decision [51, Article 22, italics added]:



“[...] the data controller shall implement suitable measures to safe-
guard the data subject’s rights and freedoms and legitimate interests,
at least the right to obtain human intervention on the part of the controller,
to express his or her point of view and to contest the decision.”

Thus, together the articles 13, 14 and 22 of the GDPR establish the data con-
trollers notification duties for individuals to understand how their personal data
are being processed. However, do these articles actually allow to derive a “right
to explanations” for individuals affected by automated decision-making carried
out on their personal data?

No right to decision specific explanations? While a right to an explanation is
neither explicitly mentioned in articles 13, 14 and 22 nor in any other article of
the GDPR [165], such a right could be derived from recital 71 of the GDPR, which
states:

“[...] should be subject to suitable safeguards, which should include
specific information to the data subject and the right to obtain human
intervention, to express his or her point of view, to obtain an expla-
nation of the decision reached after such assessment and to challenge
the decision.”

In contrast to articles 13, 14 and 22, which do not explicitly state a right to ex-
planations, recital 71 does state such a right by granting individuals a “right to
obtain human intervention, to express his or her point of view, to obtain an ex-
planation of the decision reached”. To better understand whether end users have
a right to individual explanations or not it is instrumental to understand the rela-
tion between articles within the GDPR and recitals. Thus, a short digression is in
place: as opposed to articles within the GDPR recitals form the preamble of the
GDPR, which explain the rationale behind groups of or individual articles, but
recticals are not legally binding. Recticals help to explain the purpose of the law
[86] and cannot be used for “legitimate expectations to arise” [18]. This begs the
question of what kind of information end users can realistically receive from the
controller when automated decision making is applied on their data. Wachter
et al. [165] address this question by categorizing explanation types along the di-
mensions explanation style and timing to understand what kind of explanations
the GDPR requires data controllers to provide to end users:

• A system functionality explanation illustrates the logic, the envisaged con-
sequences and the general functionality of automated decision-making to
the individual (e.g., the system uses a decision trees to forecast credit risk);

• A specific decision explains the logic and the underlying reasons that led to
the individual outcome of the automated decision making process given



the very specific circumstances of the individual (e.g., individual specific
rules list);

• An ex ante explanation is issued before the automated decision making
takes place (note that ex ante explanations will mostly be system function-
ality explanations);

• An ex post explanation is issued after the automated decision making took
place (e.g., individual specific rule list is issued after the decision took place
to explain the decision to the end user).

Based on this categorization Wachter et al. [165] further argue that the GDPR’s
specific use of language suggests that data controllers are specifically required to
provide ex ante system functionality explanations as opposed to ex post specific
decision explanations (e.g., the phrasing “envisaged consquenes” suggests that
articles 13 and 14 are aiming at ex ante explanations).

In summary, under the GDPR, it is not clear whether individuals do have the
right to an actionable explanation as it appears to lack well-defined rights to
make such claims. Individuals appear to have a “right to be notified” by the con-
troller prior to the automated decision making process regarding the processing
of their personal data, including the purposes of the processing, the categories
of personal data concerned, and the recipients to whom the personal data have
been or will be disclosed. This information must be provided to individuals ex
ante, i.e., at the time their personal data is collected, and individuals also have the
right to request additional information about the processing of their personal
data at any time. A right to an ex post explanation of a specific decision can
likely not be derived from the GDPR although recital 71 suggests that the law
makers want data controllers to provide such decision specific explanations.

In the next section, we turn our focus to US legislation and see whether we can
identify a more clearly articulated footing for decision specific explanations of
automated decision making.

2.1.2 Adverse Action Notices and Counterfactual Explanations

Adverse action notices are required in certain situations where a decision or ac-
tion has been taken that may negatively impact an individual’s credit, employ-
ment, insurance, or other important financial or personal matters. These notices
are typically required by laws such as the Equal Credit Opportunity Act (ECOA)
in the United States, which prohibits discrimination in credit transactions based
on certain factors such as race, color, religion, national origin, sex, age, or marital



status. Adverse action notices should state “the principal reason for the denial”,
must be provided in a clear and concise manner, and must include information
about the specific decision or action that has been taken, the reasons for the deci-
sion or action, and any rights that the individual has to challenge or contest the
decision or action [39].

Counterfactual explanations and adverse action notices are both types of expla-
nations that can be used to provide information about decisions or actions that
have been taken or may be taken in relation to individuals. As these two can
be used in different contexts, they may not necessarily be considered to provide
“algorithmic recourse” in the same sense as it is well-known that adverse ac-
tion notices do not provide actionable information on the features that should be
changed to receive the desirable outcome (see Taylor [153] for a critique).

Proposal Feature Subset Current Value Required

1 # delays elsewhere / year 5 −→ 0

2 current income $1000 −→ $2500

3 tenure w/ current job 4 months −→ 12 months
credit file NaN −→ True

(a) Algorithmic Recourse Example. Stylised example for one individual
who was denied credit by a machine learning classifier. There exists an
entire set of features representing this individual (not shown). The rows
show detailed prescriptions on which input subsets would need to change for
the individual to be awarded the loan. The difference between the current
values and the required values are the costs of counterfactual explanations.

Proposal Key Factors

1 poor credit performance elsewhere

2 insufficient income

3 length of tenure
no credit file

(b) Adverse Action Notice Example. Stylised example for one individual,
who was denied credit under the Equal Credit Opportunity Act (ECOA)
regulation. The rows show which high–level factors led to the loan rejection
decision.

Table 2.1: Comparing counterfactual explanations to adverse action notices.

One example of an adverse action notice is a notice that is provided to an indi-
vidual who has been denied a credit application (see Table 2.1b). In this case,
the adverse action notice must explain the reasons for the credit denial, such as



a low credit score or a high debt-to-income ratio, and must provide information
about any rights the individual has to challenge or contest the decision.

Counterfactual explanations, on the other hand, are not required by US or Euro-
pean law (see the previous Section) in the same way that adverse action notices
are. As opposed to adverse action notices, counterfactual explanations can be
used to provide information about what might have happened if a different deci-
sion or action had been taken (see Table 2.1a). Thus, counterfactual explanations
can help to provide transparency and accountability for automated decisions
or actions by explaining how the decision or action would have been different
if certain factors had been changed. By doing so, counterfactual explanations
could provide end users with more granular explanations.

2.1.3 Key Takeaways

Both adverse action notices and counterfactual explanations are used to provide
information about decisions that have been taken or may be taken, but they serve
different purposes. Adverse action notices are required by law in certain situa-
tions and must be provided to individuals in a clear and concise manner, while
counterfactual explanations are not required by law, but do provide an elevated
level of transparency and accountability for automated decisions by explaining
how the decision would have been different under different circumstances.

There is no clearly articulated law on the European level that motivates the use of
counterfactual explanations to provide end users with decision specific explana-
tions. However, the GDPR’s preamble suggests that the law makers envisioned
a right to a decision specific explanation when writing articles 13, 14 and 22. Re-
garding the US, law makers have passed the ECOA which gives users the right
to obtain an adverse action notice. So far, these notices are being constructed
in a rather vague way (see Table 2.1b). Thus, counterfactual explanations could
provide an algorithmic tool to beyond the basic legal requirement and enhance
algorithmic decision making. To the best of our knowledge, there does not seem
to be regulation that would prevent to replace adverse action notices by more
fine grained counterfactual explanations.

Companies in regulated industries may have a financial incentive to implement
algorithmic recourse methods in order to identify and address issues with their
decision-making algorithms. By using counterfactual explanations, they can
identify and address ethical concerns, reduce the risk of legal action, improve
transparency and accountability in their decision-making processes, and increase
the overall effectiveness and efficiency of their algorithms [19, 20, 112, 162, 166].



Additionally, there are other complex and nuanced reasons for the adoption of
algorithmic recourse. These reasons include:

(i) Fitting more complex models: Using algorithmic recourse methods holds
the promise of relaxing machine learning model constraints. The law of-
ten puts a constraint on what types of predictive machine learning models
can be deployed in practice because of the lack of interpretability of black-
box models. Additionally, industries such as credit lending or insurance
are highly regularized industries exactly due to the low interpretability of
opaque black–box predictive models, constraining institutions on what can
realistically be deployed in practice.

(ii) Protect business models from fraud: This reason is tightly linked to the
one in (i) as Wachter et al. [166] argue that the use of (complex) black–box
models enables companies to better shield their models from fraudulent
behaviours and thus enable companies to more effectively protect their
business model.1 Such fraudulent behaviors include the theft of propri-
etary information including the accurate identification or reconstruction of
the deployed predictive model or the training data set.

(iii) Identifying data issues: Algorithmic recourse can also be useful because it
can help people identify and address potential issues with the data that the
algorithm is trained on. If the data used to train the algorithm is biased or
incomplete in some way, this can lead to biased or inaccurate predictions.
By understanding how the algorithm arrived at a particular decision, peo-
ple can identify any issues with the data and take steps to correct them.

(iv) Compliance with (shaky) regulatory requirements: Algorithmic recourse
seems to comply with legal requirements [60]. Counterfactual explanations
offer a fix to this looming problem by revealing the key factors in favour
of the decision to the end–user, which enhances the decision maker’s ac-
countability [166], and may improve procedural fairness [67].

(v) Increasing user satisfaction and profits: Algorithmic recourse can enhance
the perception of fairness and trust in the system by providing users with
meaningful options to achieve more favorable outcomes. Furthermore, re-
course can be mutually beneficial for both end users and companies - end
users can attain their desired outcome while companies may increase prof-
its by expanding their customer base.

In conclusion, as there is no set standard for the generation of decision specific
explanations for algorithmic recourse, current regulations do not provide direc-

1We will come back to this aspect in Chapter 7. There, we evaluate this motivation in light of
new evidence, and what this implies for future work on reliable algorithmic recourse.



tions on how to create them. However, despite this lack of guidance, experts in
the field have begun to consider the ideal characteristics of algorithmic recourse.
In the following section, we summarize the commonly agreed-upon desiderata
that have been established in the literature on algorithmic recourse.

2.2 From Regulations to Desiderata: The Machine
Learning Challenges

In a concerted effort over the past few years, the research community has agreed
on a catalog of desirable properties for algorithmic recourse (e.g., [20, 80, 116,
117, 162, 163, 166]). This is to ensure that the prescribed recourses are actually
implementable and useful to end users. In the following, we describe key prop-
erties for generating realistic, robust, and actionable counterfactual explanations
for algorithmic recourse:

(a) Feasibility. As the goal is that recourses should be reliably used by end
users we have to define what we mean by a recourse to be feasible to the
end user. The following criteria capture such a high level definition:

(i) Complexity. It is commonly stated that parsimonious explanations are
the easiest for humans to parse and understand [103, 154, 157]. There-
fore the counterfactual should prescribe as few changes to the factual
input as possible.

(ii) Costs. The concept of costs reflects the idea that individuals have to
pay a “price” to change from the current outcome to the desired out-
come [159, 166]. Ideally, the recourses should be easy to reach at low
costs to the individual. For example, it could be more desirable for an
individual to change three inputs by a little instead of changing one
input by a lot. Complexity and costs are thus two sides of the same
coin. Ideally, a recourse should have both low recourse costs and low
complexity.

(iii) Meaningfulness. Recourses need to adhere to actionability constraints
as certain input feature cannot be changed by individuals [159]. For
example, it is unethical to ask users to change protected attributes
such as sex or race as these attributes are not under the user’s con-
trol.

(iv) Density. Recourses should lie in regions of sufficient data density as
we do not want the counterfactuals to be outliers. Additionally, the



recourses should also be close to correctly and positively classified
points from the desired class [90]. This captures the idea that a partic-
ular area of the feature space is generally reachable by humans.

(v) Dependency. Recourses should adhere to data dependencies [82, 119].
This requirement aims to ensure that logically correct counterfactual
explanations should be generated: e.g., (1) age can only increase or (2)
when education level increases, we expect the feature age to increase
as well.

(b) Robustness. When implementing prescribed recourse, a change in circum-
stances to both the decision maker and the end user could render the re-
course invalid or impossible to achieve. To minimize the decision maker’s
liability problem and maximize the end user’s ability to plan ahead and
take appropriate action, recourse robustness is a key characteristic. Since
there are different sources of unpredictability, we divide three scenarios to
be robust against:

(i) Noisy responses. Recourses should be robust to small implementation
inaccuracies by the end users [120] as the phenomenon of noisy re-
sponses to prescribed recourses appears common in the real world:
Björkegren et al. [26] conducted a field experiment in Kenya by mim-
icking the “digital loan” setting to study algorithmic recourse in real-
world scenarios, and found that individuals respond in a noisy fash-
ion.

(ii) Noisy input data. Another requirement is to ensure that the recourse is
robust to very small perturbations in the factual input data [15]. Such
perturbations could result from rounding errors of the input data or
erroneous transcription of an individual’s data record into a database.

(iii) Model parameter changes. An update of the underlying predictive model
due to shifts in the data distribution will lead to an update of the
model parameters. Therefore the recourse are at risk of being invali-
dated under the new model [116, 132]. Hence, we require that coun-
terfactual explanations should be made robust to small changes in the
model parameters.

It is generally difficult to address all requirements simultaneously. In fact, there
are various trade-offs that need to be considered some of which we will see in
Chapter 5. In the following Section, we will review the basic model to gener-
ate counterfactuals for algorithmic recourse which set out to provide recourses
with (i) low complexity and (ii) low costs while (iii) adhering to feasibility con-
straints. Based on this model, we will then discuss some of the fundamental



open problems from this literature that we will tackle in this thesis. Using the
coarse categorization developed in this section (feasibility versus robustness) the
individual Chapters 3 - 5 then provide a review of state of the art (counterfactual)
explanation methods suited to provide algorithmic recourse.

2.3 From Desiderata to Implementations

The previous section has established several desiderata for the generation of reli-
able counterfactual explanations. In order to transfer these desiderata to an algo-
rithmic output we require a mathematical model, which is presented in Section
2.3.1. In its most basic form, this model does not incorporate all of the desider-
ata from the previous Section. However, throughout this thesis we will use this
model as a workhorse and a point of departure in order to build additional ele-
ments into the model to capture some of the high level desiderata such as robust-
ness to noisy responses or the generation of counterfactual explanations subject
to data density constraints. Thereby, we address some of the open algorithmic
problems in the field of algorithmic recourse, which are presented in Section
2.3.2, and further studied in Chapters 3 - 5 in more detail.

2.3.1 Formal Background

We consider prediction problems from some input space Rd to an output space
Y , where d is the number of input dimensions. We denote a sample by z = (x,y),
and denote the training data set by D = {z1, . . . ,zn}. Consider the weighted em-
pirical risk minimization problem (ERM), which gives rise to the optimal model
parameters:

wω ∈ argmin
w′

n

∑
i=1

ωi · ℓ
(
yi, fw′(xi)

)
, (2.1)

where ℓ(·, ·) is an instance-wise loss function (e.g., binary cross-entropy, mean-
squared-error (MSE) loss, etc.) and ω ∈ {0,1}n are data weights that are fixed at
training time. If ωi = 1, then the point zi = (xi,yi) is part of the training data set,
otherwise it is not. During model training, we set ωi = 1 ∀i, that is, the decision
maker uses all available training instances at training time. In the optimization
expressed in (2.1), the model parameters w are usually an implicit function of the
data weight vector ω and we write wω to highlight this fact; in particular, when
all training instances are used we write w1, where 1 ∈ Rn is a vector of 1s.



In summary, we have introduced the weighted ERM problem since it allows us
to understand the impact of arbitrary data deletion patterns on actionable expla-
nations in Chapter 5 as we allow users to withdraw their entire input zi = (yi,xi)
from the training set used to train the model fw1 . When it is clear from the con-
text, we will drop the dependence of f on its model parameters w in the follow-
ing Chapters for the purpose of better readability. Next, we present the recourse
model we consider.

We follow an established definition of counterfactual explanations originally
proposed by [166]. For a given model fwω : Rd −→ R parameterized by wω and
a cost function c(·, ·) : X ×X → R+, the problem of finding a recourse x̌ = x+ δ
for a factual instance x is given by:

δω,x ∈ argmin
δ′∈Ad

( fwω(x+δ′)− s)2 +λ · c(x,x+δ′), (2.2)

where λ ≥ 0 is a scalar tradeoff parameter and s denotes the target score. In the
optimization from equation (2.2), the optimal recourse action δ usually depends
on the model parameters and since the model parameters themselves depend
on the exact data weights configuration we write δω,x to highlight this fact. The
first term in the objective on the right-hand-side of equation (2.2) encourages the
outcome fwω(x̌) to become close to the user-defined target score s, while the sec-
ond term encourages the distance (e.g., ℓ2 distance) between the factual instance
x and the recourse x̌ω,x := x+ δω,x to be low. When it is clear from the context,
we will drop the dependence of x̌ on the data weights ω and the factual input x
in the following Chapters for the purpose of better readability. Finally, the set of
constraints Ad ensures that only admissible changes are made to the factual x.
For example, changes to an individual’s protected attributes such as sex or race
should not be allowed. This is to make sure that the recourses are actionable and
that an end user can realistically act upon the suggestions.

2.3.2 Objects of Study

Algorithmic problems. Here we use typical counterfactuals generated by the
workhorse recourse model from the previous Section to develop an intuition for
the algorithmic issues that arise when the goal is to generate reliable recourse
through counterfactual explanations. It is well known that approaches that pri-
marily rely on the generation of low cost recourse [166] produce counterfactuals
x̌ that typically lie extremely close to the decision boundary which we have de-
picted in Figures 2.1a - 2.1c.

Under this basic model from (2.2), the following concrete problems can occur
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Figure 2.1: Illustrating the fundamental problems for the generation of reli-
able algorithmic recourse. (a): The closest point (e.g., measured in ℓ2 norm)
on the opposite side of the decision boundary has no data support. This sce-
nario shows a typical recourse output by approaches such as Wachter et al. [166]
which neglect whether counterfactual points are atypical. Methods tackling this
problem are described in Sections 3.2 and 3.3 of Chapter 3. (b): The shaded area
corresponds to the regions of recourse invalidation. The larger the shaded area
the less robust is a recourse to noisy responses. This scenario shows the recourse
output by approaches such as Wachter et al. [166] that are typically non-robust.
Methods tackling this problem are described in Section 5.2 of Chapter 5. (c):
This scenario describes the effect of applying “outdated” recourses to a model
that was updated due to data deletion requests. When the model parameters are
being updated while the prescribed recourses remain unchanged the recourses
likely become invalidated. We develop methods which expose this problem and
describe them in Section 5.3 of Chapter 5.

since the objective in (2.2) typically encourages counterfactuals to be as close as
possible to the input point to keep the recourse costs low while generating a
counterfactual on the opposite side of the decision boundary:

(i) Generating unrealistic recourses. There is no mechanism that ensures that
the so generated counterfactuals are not atypical or, even worse, outliers.
This is due to the implicit assumption underlying (2.2) which asserts that
each feature can be independently modified without considering depen-
dencies on other features. This assumption is called independently manip-
ulable feature (IMF) assumption.

(ii) Noisy human responses can invalidate recourses. There is no mechanism
that ensures that the generated counterfactuals will likely lead to the de-
sired outcome (e.g., loan acceptance) if humans nosily respond to the pre-
scribed recourse (i.e., they do not exactly implement x̌ in practice but x̌+ε



instead).

(iii) Data deletion requests can invalidate recourses. There is no evaluation
method that can evaluate the risk of recourse invalidation as a consequence
of other users sending requests that their personal data should be deleted
from the predictive model.

In Chapter 3, we introduce algorithms that tackle problem (i) by introducing a
data model g which approximates the fundamentally unknown data generating
process of the input x. This model g ideally captures how likely input points are
under g, and in combination with the scoring function f it generates recourses
that are likely to occur under this data model. In Chapter 5, we study the prob-
lems (ii) and (iii). To address (ii), we develop a novel robustness notion and show
how this notion can be leveraged to generate robust algorithmic recourse in the
presence of noisy human responses. To address (iii), we will develop effective
algorithms to identify the most critical data points, which, when removed from
the training set, would lead to a maximum number of recourse invalidations.

Evaluation problems. The various desiderata shown in Section 2.2 have led to
the rapid development of numerous recourse algorithms. However, there is no
central repository that keeps track of this development; neither exist standard-
ized ways of evaluating algorithmic recourses. In Chapter 6, we take a step
towards this goal by developing a benchmarking library called CARLA.





3
On the Generation of Realistic Counterfactual

Explanations

In this chapter, we present algorithmic approaches for generating realistic coun-
terfactual explanations for algorithmic recourse. We first overview the existing
literature on generating feasible algorithmic recourse and place our work in rela-
tion to this specific literature and the broader context of explainability literature.
The previous section highlighted the importance of various desiderata, includ-
ing (a) the generation of counterfactuals that are likely to occur and (b) the con-
sideration of data dependency constraints, in the creation of feasible recourses.
Building on the workhorse recourse model introduced earlier, we propose two
methods for generating realistic counterfactual explanations for algorithmic re-
course that address points (a) and (b). Then we discuss potential directions for
future research in this area. This Chapter summarizes Contributions 1 and 2.

3.1 Related Work

Our work builds on the vast literature in the field of explainable ML research.
Therefore we discuss how algorithmic recourse fits into the broader realm of
explainable ML research before we dive into relevant prior works and their con-
nections to this thesis. If the reader is familiar with the explainable ML literature,
we suggest to skip to the next subsection.

Generating decision specific model explanations. One usually distinguishes
between counterfactual explanations (e.g., [77, 79, 115, 159, 166]) (for algorithmic
recourse) and feature attributions. The former concerns the ability of people, who
are negatively affected by model predictions, to obtain desired outcomes from a
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fixed prediction model. Although this thesis focuses on counterfactual explana-
tions for algorithmic recourse, we will briefly review work on feature attribution
techniques. These feature attribution techniques further fan out into direct and
indirect feature attributions. In indirect feature attribution techniques, the pri-
mary goal is to identify whether the black-box model uses certain attributes even
when they are not directly used to train the model [2, 100]. In direct attribution
techniques, the main goal is to understand how all inputs available to the model
are being used to arrive at a certain prediction. A plethora of direct techniques
were recently suggested (e.g., [16, 36, 97, 133, 143, 170, 171], among many oth-
ers). Direct feature attribution techniques can be further divided into gradient-
based techniques [16, 143, 170] and sampling-based techniques [97, 133, 143, 171].
Relative to sampling-based methods, gradient-based methods compute the par-
tial derivatives of the black-box model at an instance of interest. Sampling-based
techniques, on the other hand, (often implicitly) approximate this partial deriva-
tive using samples [5, 58, 59].

Algorithmic approaches to recourse. Below, we discuss relevant prior works
and their connections to this part of the thesis. Several approaches have been
proposed in literature to provide recourse to individuals who have been nega-
tively impacted by model predictions. These approaches can be roughly catego-
rized along the following dimensions [163]:

• Model type: What is the underlying type of predictive model? Are the de-
veloped methods based on tree architectures (e.g., [96, 120, 155]), differen-
tiable classifiers (e.g., [128, 161, 166]) or model agnostic (e.g., [89, 115, 128,
131, 137]), which means that they work across all kinds of classifiers.

• Sparsity: Do the search algorithms encourage sparsity? This criterion makes
sure that only a small number of features should be changed [79, 88, 159,
166].

• Causality: Are causal relationships considered when generating counterfac-
tual explanations [45, 77, 81, 82, 99]?

• Diversity: Is the method diversity promoting? Will the produced output by
a given method be one counterfactual (e.g., [79, 166]) or multiple counter-
factuals [106, 137, 159]?

• Task: Is the underlying task posed as a regression (e.g., [41, 147]) or classi-
fication problem (e.g. [115])?

Contributions. To bridge the gap between the strong IMF assumption and the
strong causal assumption, the main idea in Contribution 1 is to change the ge-
ometry of the intervention space to a lower dimensional latent space, which en-



codes different latent factors of variation of the underlying data for which latent
recourse actions can be found (see Section 3.2). Relative to our work from Con-
tribution 1, Wachter et al. [166] does not use generative models to capture the
likelihood of a counterfactual occurring, while Mahajan et al. [99] and Joshi et al.
[77] focus on encoding causal constraints. Poyiadzi et al. [128] suggested FACE,
which uses a shortest path algorithm on graphs to find counterfactual explana-
tions. In contrast, Kanamori et al. [78] use integer programming techniques to
generate realistic recourses.

In Contribution 2 (see Section 3.3), we shift the intervention space from the latent
space to the input space, while still maintaining the generative model. Keeping
the generative model allows to disentangle recourse actions into direct and indi-
rect action, which is akin to the benefits provided by causal recourse approaches
[81, 82], without requiring the strong causal assumptions. Our approach is based
on the idea of disentangled representation learning, which aims to identify and
separate out the independent factors that contribute to the overall variation in
the data [22, 139]. This approach has been effective in achieving fairness in ma-
chine learning models while maintaining high accuracy, performing local model
audits, and generating realistic data [50, 94, 98, 100, 125]. In contrast to the afore-
mentioned works we demonstrate that disentangled representations can also be
helpful to generate counterfactual explanations for algorithmic recourse, even
in the presence of dependent data, by identifying indirect actions from direct
actions.

3.2 Generating recourses with high occurrence
probability

Wachter et al. [166] argued that counterfactual explanations should come from
a “possible world” that is “close” to the user’s starting point. Laugel et al. [90]
further refined this idea, referred to as the “close world desideratum”, into two
measurable criteria: “proximity” and “connectedness”. Proximity indicates that
counterfactuals should not be isolated outliers, and connectedness measures
whether counterfactuals are close to correctly classified observations. Laugel
et al. [90] call counterfactuals that fulfill these criteria faithful.

We informally say that a counterfactual explanation is attainable if it satisfies
three conditions: it is a “close” suggestion that is not an isolated outlier, it is sim-
ilar to correctly classified observations, and it is associated with low recourses
costs. Essentially, attainability combines the characteristics of faithful counter-
factuals (proximity and connectedness) with the requirement that they are not



overly difficult to achieve. To illustrate this concept, consider a client applying
for a loan at a bank that uses a recourse algorithm. The algorithm should not
make suggestions that are unrealistic for the client, such as those that are not
typically observed in the data or not typical for the client’s subgroup, or those
that are extremely difficult to attain based on a measure of cost of the input fea-
tures.

3.2.1 The generative model

We propose using a generative model as a means of finding counterfactual ex-
planations that are both proximate and connected to the input data. The main
idea is to change the geometry of the intervention space to a lower dimensional
latent space, which encodes different factors of variation of the underlying data.
The premise is the following: we aim at generating recourses that are likely to
occur under specific distributional assumptions; however, the objective in (2.2)
makes the IMF assumption, and can generate recourses that are outliers in the
worst case. To mitigate this problem, we postulate a data generating process
for the inputs x, which will be governed by a generative model; this generative
model transforms latent codes z into inputs x.

To successfully map an input point into the latent space, we will also require an
encoder ez : Rd → Rk which maps the input data to a lower-dimensional repre-
sentation. In summary, we assume the factual input x ∈ X = Rd is generated by
a generative model gz : Rk→ Rd such that:

x = gz(z), (3.1)

where z ∈ Rk is the latent code. Recall that we denote the counterfactual expla-
nation in input space by x̌ = x+ δx. The counterfactual code in latent space is
denoted ž = z+δz. Thus, we have x̌ = x+δx = gz(ž) = gz(z+δz).

3.2.2 The objective function

Given the data generating process from (3.1), we can now rewrite the recourse
problem from (2.2) to faithfully capture data dependencies using the generative
model gz:

δz ∈ argmin
δz,x̌′∈Ad

( f (x̌′)− s)2 +λ · c(x, x̌′) s.t. x̌′ = gz(z+δz), (3.2)



where λ ≥ 0 is a scalar tradeoff parameter and s denotes the target score in logit
space. Again, the first term in the objective on the right-hand-side of equation
(3.2) encourages the outcome f (x̌) to become close to the user-defined target
score s, while the second term encourages the distance between the factual in-
stance x and the recourse x̌ to be low. The primary difference relative to (2.2)
is that the search for counterfactual explanations is conducted in latent space as
opposed to the input space. Finally, note that the counterfactual explanation in
input space is then given by:

x̌∗ = gz(z+δz) where z = ez(x). (3.3)

The problem in (3.2) is an abstraction from how the problem is solved in prac-
tice: we first train a type of autoencoder model (described in the next Section),
and then use the model’s trained decoder as a deterministic function gz to find
counterfactual explanations. In fact, we encode an input x into its correspond-
ing dense representation, z, which serves as the starting point for our stochastic
counterfactual search (see Algorithm 1 in Contribution 1). The representation
is then stochastically perturbed, z+ δz, and the perturbed representation is fed
through the model’s decoder gz to generate a potential counterfactual. The classi-
fier is then used to determine whether the prediction was changed. We illustrate
the search procedure in Figure 3.1b where we have abstracted away the classifier.

3.2.3 Training the generative model

We propose using (Heterogeneous) Variational Autoencoders (HVAE) [85, 108]
as generative models within our recourse framework to approximate the data
density of counterfactual explanations for algorithmic recourse. The simple VAE
is typically accompanied by an isotropic Gaussian prior p(z) =N (0,I). The goal
is to optimize the Evidence Lower Bound (ELBO) objective, which is given by:

LVAE(p,q) = Eq(z|x)[log p(x|z)]−DKL[q(z|x)||p(z)]. (3.4)

This objective lower bounds the log of the evidence, log p(x). In this model, the
decoder gz and the encoder ez are chosen to be Gaussian likelihood functions
with distributional parameters that are estimated by neural networks.

For our purpose in Contribution 1, we use a heterogeneous variational autoen-
coder designed for modelling tabular data [108]. For this autoencoder, the de-
coder is factorized as a composition of various likelihood functions; usually one
likelihood function per input which enables modelling tabular data that usually
contains a variety of feature modalities such as real-valued, positive real valued,
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Figure 3.1: The spectrum of recourse frameworks from Contribution 2. Illus-
trating the different assumptions underlying each recourse framework. (a): Re-
courses are found by neglecting input dependencies (e.g., [166]). (b): Actions
made to the latent code z generate recourse using a generative model h and ne-
glect control over feature costs (e.g., [115]). (c): Recourses are found by having
the decision maker come up with a causal model between the input features
(illustrated by the red directed edges) (e.g., [82]). (d): Our framework bridges
this gap by allowing a generative model g to be influenced by a subset of inputs
xS . This enables (i) generation of counterfactuals in dense regions of the input
space, and (ii) modeling of feature dependencies (iii) without the burden to spec-
ify complex causal models.

count, categorical and ordinal distributed features at the same time. Addition-
ally, the modelling framework lets us specify a variety of interval constraints by
choosing likelihoods appropriately (e.g., truncated normal distribution or Beta
distribution for interval data). This can be useful in order to ensure that a feature
such a wage income only takes positive values.

3.3 Generating recourse under data dependency

The recourse model proposed in the previous section has two limitations since
it uses a generative model of the form x = gz(z) to determine recourses: For one,
an important desideratum is to allow for an interface where end-users can in-
sert their search preferences over attributes they wish to take actions on [82,
137, 159, 166]. This is crucial since individuals often know best which feature
can realistically be changed given their circumstances [20]. Second, recourse is
determined by finding latent actions δz, but these actions carry little direct mean-
ing on tabular data or are subject to personal interpretation, which likely varies
across decision makers.



3.3.1 The generative model

On a high level, our goal is to design a recourse model which separates the la-
tent code of a generative model into 1) observable features xS – that we wish to
perform direct recourse actions on – and 2) latent space features v that have been
trained to become disentangled of the observable features. A direct recourse ac-
tion then ideally has two effects: a direct effect on the input features that have
to be changed, and an indirect effect on other, dependent features. The strength
of the indirect effect is then determined by the generative model (see Figure 1 in
Contribution 2).

To formalize this intuition, we make an adjustment to the generative model from
(3.1) and let the input x be instead generated by the following model:

x = gx(v,xS) = [xS ,xSc ], (3.5)

where gx : Rk→ Rd , v ∈ Rk−|S| refers to the latent code where the number of fea-
tures in S is smaller than k, and xS corresponds to a subset of the input features
where S ⊂ {1, . . . ,d}, and the complement set is Sc = {1, . . . ,d} \ S . Finally, to
successfully map an input point into the latent space as in the previous section,
we will also require an encoder ex : Rd → Rk which maps the input data x to the
lower-dimensional representation v.

3.3.2 The objective function

Given the data generating process from (3.5), we can now rewrite the recourse
problem from (2.2) to faithfully capture data dependencies using the generative
model gx while allowing for an interface to directly conduct recourse actions on
interpretable input features:

δS ∈ argmin
δ′S , x̌′∈Ad

( f (x̌′)− s)2 +λ · c(x, x̌′) s.t. x̌′ = gx(v,xS +δ′S), (3.6)

where λ ≥ 0 is a scalar tradeoff parameter and s denotes the target score in logit
space. Again, the first term in the objective on the right-hand-side of Equation
(3.6) encourages the outcome f (x̌) to become close to the user-defined target
score s, while the second term encourages the distance between the factual in-
stance x and the recourse x̌ to be low. The primary difference relative to (3.2) is
that the search for counterfactual explanations is now conducted in input space
as opposed to latent space.

Our reformulation has several advantages compared to existing recourse meth-



ods from the literature: i) relative to the approach presented in the previous Sec-
tion the actions are applied to input space variables as opposed to latent space
variables, and thus they are inherently interpretable; ii) relative to the approach
presented in the previous Section and recourse methods which use the IMF as-
sumption (e.g., Section 2.3.1), we can clearly separate the direct effect, which δS
has on x̌ via xS , from its indirect effect, which δS has on x̌ determined by the
generative model when it is dependent of xSc (Proposition 1 in Contribution 2);
iii) relative to causal recourse methods (e.g., [81, 82]), we neither assumed causal
graphical models nor did we assume structural equation models to incorporate
input dependencies. Finally, note that the counterfactual explanation in input
space is then given by:

x̌∗ = gx(v,xS +δS) where v = ex(x). (3.7)

3.3.3 Training the generative model

Motivated by the insights from Proposition 1 (see Contribution 2), we train au-
toencoder models that encourage disentanglement of xS and v in order to keep
the entanglement costs low. To do that we have to train a generative model, in
which xS is encouraged to be independent of the latent variable v, while pro-
viding high-quality reconstruction of the input x. Thus, the training loss for the
generative model consists of two components. First, it consists of both an en-
coder network ex and decoder network gx, for which the reconstruction loss,

LR(gx,ex;xS) = ∥gx(ex(x),xS)−x∥2
2, (3.8)

guides both networks towards a good reconstruction of x. Second, we want to
drive the entanglement costs to 0, for which we need the decoder gx to be disen-
tangled with respect to the latent space, i.e., each component of z = [v,xS ] should
ideally control a single factor of variation in the output of gx. To formalize this
intuition, recall that g(xS ,v) = x ∈Rd , where each output g j = x j for 1≤ j≤ d has
its own |xS |× |v|Hessian matrix H( j). We refer to the collections of the d Hessian
matrices as H. Thus, the second loss we seek to minimize is given by:

LH(gx;xS) =
d

∑
j=1

|v|
∑
k=1

|x|
∑
l=1

H( j)
kl , (3.9)

which is also known as the Hessian penalty [125]. We illustrate the intuition
of this objective on the j-th output x j: we regularize the Hessian matrix H( j) =
∂

∂v
∂g j
∂xS

and encourage its off-diagonal terms to become 0. Driving the off-diagonal



terms to 0 implies that ∂g j
∂xS

is not a function of v and thus v plays no role for the
output of g j when searching for minimum cost actions using xS .

3.4 Discussion

In this Chapter, we considered the problem of generating algorithmic recourse
in the presence of feature dependencies – a problem previously only studied
through the lens of causality. We developed two methods called C-CHVAE and
DEAR which used the generative models to capture some of the main practical
desiderata: (i) recourses should adhere to feature dependencies without the re-
liance on hand-crafted causal graphical models and (ii) recourses should lie in
dense regions of the feature space, while providing (iii) low recourse costs.

Some of the limitation of the approach in Contribution 1 could already be al-
leviated by Contribution 2. One main limitation of both approaches is that the
autoencoders’ reconstructions are usually not perfect; this introduces additional
recourse costs and inhibits the sparsity of the identified solutions. Thus, directly
operating on the input space without using a generative model is usually more
effective at keeping recourse costs down.

In Contribution 2, every recourse action for a fixed set of features requires train-
ing a separate generative model; thus, the approach is ineffective in scaling to
large search spaces. To improve upon this limitation, two different approaches
come to mind: First, instead of using one autoencoder per feature set S one can
introduce a generative model that captures multiple conditionals by using au-
toregressive generative models [30]. Second, if one wanted to get rid of the gen-
erative model altogether while still making sure to capture feature dependencies
when searching for counterfactual explanations, this could also be achieved by
adjusting the cost penalty for feature dependencies. For example, one could
solve the following optimization problem:

δx ∈ argmin
δ′∈Ad

( f (x+δ′)− s)2 +λ · δ′⊤Σ̂
−1δ′, (3.10)

where Σ̂ is the data’s positive-definite correlation matrix. Again, the first term
encourages the outcome f (x̌) to become close to the user-defined target score s,
while the second term encourages the Mahalanobis-distance between the factual
instance x and the recourse x̌ to be low. To keep costs low, the Mahalanobis-
distance would encourage to change features jointly which are conditionally de-
pendent; i.e., recourse actions on dependent features are encouraged to be exe-
cuted jointly, as desired. To see this, recall that the precision matrix Σ̂−1 encodes



conditional independencies between features, if the data generating process is
multivariate Gaussian [56, 91, 101] – generalizations to arbitrary data distribu-
tions also exist and allow to capture more general conditional dependency struc-
tures (see [52, 91]). Compared to our formalization from (3.6), the downside of
this approach is that Σ̂−1 remains fixed across all inputs, and thus only allows to
capture global data dependencies.



4
The Connections Between Algorithmic Recourse &

Adversarial Attacks

In this chapter, we investigate the relationship between counterfactual explana-
tions for algorithmic recourse and adversarial attacks that are created to trick a
classifier. We provide a summary of related research and connect it to Contri-
bution 3. From a theoretical perspective, we examine the similarities and differ-
ences between popular adversarial attack and counterfactual explanation algo-
rithms, and consider the implications of our findings for designing counterfac-
tual explanations for algorithmic recourse. This chapter summarizes Contribu-
tion 3.

4.1 Related Work

Since this chapter lies at the intersection of counterfactual explanations and ad-
versarial examples in machine learning we discuss related work for each of these
topics and their connection to our research below.

Adversarial examples. Adversarial examples are artificially constructed input
instances that have been modified in a way that forces a machine learning model
to produce an output desired by an adversary. The process of generating these
examples is called an adversarial attack [25, 65, 150]. There are various types
of adversarial attacks that have been proposed in recent literature, which vary
depending on the level of knowledge or access to the model, training data, and
optimization techniques. While gradient-based methods [65, 87, 105] are com-
monly used to find the smallest perturbations to generate adversarial examples,
other methods have been proposed to generate adversarial examples in non-
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differentiable and non-decomposable domains such as speech recognition and
image segmentation [38]. To get a more detailed understanding of adversarial
examples, readers can refer to a well-established survey [9].

Counterfactual explanations. Counterfactual explanation methods aim to ex-
plain a model’s predictions by identifying the minimal changes that need to be
made to an input instance to change the original prediction (e.g., [160, 166]).
These methods can be classified [80, 163] based on their access to the model or
its gradients, the level of sparsity in the generated explanation, and whether the
explanations are constrained to the data distribution. For instance, Wachter et al.
[166] proposed a gradient-based method to find counterfactual explanations by
minimizing a distance-based penalty. Additionally, many methods impose con-
straints on attributes such as race, age, and gender to ensure that the generated ex-
planations are realistic and actionable by users. Manifold-based constraints are
also commonly used to ensure that the explanations are consistent with the data
distribution (e.g., see Contributions 1 and 2). More recently, there are also causal-
based methods proposed for generating counterfactual explanations that adhere
to causal constraints [82]. For more detailed literature overviews on counterfac-
tual explanations, refer to Sections 3.1 and 5.1.

Contribution. Previous research has established connections between adversar-
ial examples and counterfactual explanations [31, 55]. While Freiesleben [55]
highlights the conceptual differences in goals, formulation, and use-cases, sug-
gesting that counterfactual explanations encompass a broader category of exam-
ples, of which adversarial examples are a subset; Browne and Swift [31] examine
the differences in the semantics of hidden layer representations in deep neural
networks. In contrast, in Contribution 3, our objective is to systematically inves-
tigate and compare these two fields, using a theoretical and empirical approach.

4.2 Exploring the Connections between Adversarial
Examples and Counterfactual Explanations

Counterfactual explanations. Counterfactual explanations provide recourses by
identifying which attributes to change for reversing a models’ adverse outcome.
As we have discussed in Chapter 2 in more detail, methods designed to output
counterfactual explanations find a counterfactual x̌ that is “closest” to the origi-
nal instance x and changes the model’s class prediction h(x̌) to the desired label.

Adversarial attacks. Similar to counterfactual explanation methods, most meth-
ods generating adversarial examples also solve a constrained optimization prob-



lem to find perturbations in the input manifold that cause models to misclassify.
These methods are broadly categorized into poisoning (e.g., Shafahi et al. [141])
and exploratory (e.g., Goodfellow et al. [65]) methods. While poisoning methods
attack the model during training and attempt to learn, influence, and corrupt the
underlying training data or model, exploratory methods do not tamper with the
underlying model but instead generate specific examples that cause the model to
produce the desired output. Like counterfactual explanation methods, evasion
methods also use gradient-based optimization to generate adversarial examples.

For a given input x and classifier h, Carlini and Wagner [32] formulate the prob-
lem of finding an adversarial example x′=x+δ such that h(x′) ̸= h(x) as:

argmin
x′

γ · ℓ(x′)+ c(x,x′) s.t. x′ ∈ [0,1]d, (4.1)

where γ is a hyperparameter and ℓ(·) is a loss function such that h(x′)=y if and
only if ℓ(x′) ≤ 0. The constraint x′ ∈ [0,1]d is applied so that the resulting x′ is
within a given data range.

Connections. In Contribution 3, we establish theoretical connections between
counterfactual explanation and adversarial attack methods by examining sim-
ilarities in their objective functions and optimization procedures. Specifically,
we compare different methods such as SCFE [166], C&W [32], DeepFool [105],
C-CHVAE [115], and NAE [172] based on their similarity in objectives and con-
straints imposed during the optimization process – we refer to Figure 4.1 for a
visual illustration of the differences in outputs by these models. Our focus will
lie on linear models as they provide a foundation for understanding the behavior
of nonlinear models through local linearization [58, 69, 135, 160]. We give a more
detailed comparison of these methods for specific loss functions and solutions
based on classification models in Contribution 3; here we will briefly summa-
rize our approach to theoretically compare the results output by counterfactual
explanation and adversarial attack algorithms using a concrete example.

Two popular gradient-based methods for generating adversarial and counterfac-
tual samples are the Carlini and Wagner (C&W) attack and score based counter-
factual explanations (SCFE), respectively. For these two approaches, we first de-
rive closed-form solutions for the minimum perturbation required by C&W and
SCFE to generate adversarial examples and counterfactuals. We then leverage
these solutions to derive upper bounds; in particular, using the loss function
recommended by Carlini and Wagner [32], we derive an upper bound for the
distance between the counterfactuals and adversarial examples generated using
SCFE and C&W. Using this general approach, we derive the following key take-
aways form our theoretical analysis:
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Figure 4.1: Similarity comparison of adversarial example and counterfactual
explanation methods from Contribution 3. Based on synthetic data, we gen-
erate adversarial examples (in red) and counterfactual explanations (in green)
for some randomly chosen test set points (in blue). (Left) Both SCFE (in green)
and C&W (in red) samples are close to each other, indicating strong similarity be-
tween these methods. (Middle) SCFE (in green) and DeepFool (in red) samples
exactly coincide, indicating equivalence. (Right) C-CCHVAE (in green) and NAE
(in red) samples are closer if the blue factual points are closer to the boundary.

• The upper bounds are smaller when the original score f (x) is close to the
target score s, suggesting that SCFE and C&W are more similar when x is
closer to the decision boundary.

• Intuitively, the adversarial example and counterfactual explanation gener-
ated by the methods are bounded depending on the data manifold proper-
ties (captured by the Lipschitzness of the generative model) and the radius
hyperparameters used by the respective search algorithms (C-CHVAE and
NAE).

In the next Section, we will discuss what these findings mean for the design of
more reliable counterfactual explanations for algorithmic recourse.

4.3 Discussion

In this chapter, we examined the similarities between state-of-the-art methods
for adversarial attacks and counterfactual explanations. In contribution 3, we
compared the objective functions, optimization algorithms and constraints used
in these methods to analyze the conditions for equivalence between counter-
factual explanations and adversarial attacks. Using linear models, we demon-
strated how we can bound the distance between the solutions obtained by the
methods proposed by Carlini and Wagner [32] and Wachter et al. [166] using the
loss functions preferred in their respective works. This helps to provide a the-



oretical foundation for understanding the relationship between these two fields
of research.

Our research raises important questions about the design and development of
counterfactual explanation algorithms by demonstrating, through both theoret-
ical and empirical evidence, that several commonly used algorithms produce
results that are similar to those produced by well-known adversarial attack al-
gorithms:

(i) Is it desirable for counterfactual explanations to closely resemble adversar-
ial examples, as indicated in Contribution 3?

(ii) How can a decision maker differentiate between adversarial attacks and
counterfactual explanations?

(iii) Does this mean that decision makers are fooling their own models by using
counterfactual explanations similar to those presented by Wachter et al.
[166]?

(iv) How can counterfactual explanations be designed to be less similar to ad-
versarial attacks?

Moreover, by establishing connections between popular counterfactual explana-
tion and adversarial example algorithms, our work opens up the possibility of
using insights from adversarial robustness literature to improve the design and
development of counterfactual explanation algorithms. Motivated by the results
of this work, in the next Chapter, we develop techniques to evaluate how reli-
able counterfactual explanations for algorithmic recourse are in the presence of
data deletion request which may lead to small updates of the model parameters.
Additionally, we will also develop a technique aimed to generate more robust
counterfactual explanations for algorithmic recourse.





5
On the Generation of Robust Counterfactual

Explanations

In this chapter, we present algorithmic approaches for assessing the robustness
of counterfactual explanations to data deletion requests and the required re-
course recalibrations (Contribution 4). Additionally, we discuss the generation
of robust counterfactual explanations for algorithmic recourse (Contribution 5).
To do that, we first overview the existing literature on the generation of robust
algorithmic recourse and place our work in relation to this specific literature
and the broader context of explainability literature. Chapter 2 highlighted the
importance of various desiderata, including the generation of robust counterfac-
tuals. Building on the workhorse recourse model introduced there, this Chapter
introduces one method for generating robust counterfactual explanations for al-
gorithmic recourse and another method for assessing recourse robustness in the
presence of deletion requests. Finally, we discuss potential directions for future
research in this area. This Chapter summarizes Contributions 4 and 5.

5.1 Related Work

Fragility of decision specific model explanations. For the class of gradient based
techniques, recent work shows that a small change to the original instance can
alter neural network (NN) explanations while keeping the network output in-
tact [43, 44, 61]. A slightly different line of work demonstrates empirically that
an adversary can train a NN model that arbitrarily controls model explanations
without changing the original input [72, 152]. Based on this observation, Anders
et al. [12] prove that an adversary can arbitrarily manipulate NN model expla-
nations. For the class of sampling based techniques, Slack et al. [144] suggest an
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algorithmic scaffolding procedure which allows an adversary to construct a clas-
sifier whose explanations are manipulated by the adversary. Other related lines
of work devise devise manipulations of statistical fairness notions [6, 8, 57], or
study the robustness of LIME explanations to hyperparameter choices [17, 58].

Fragility of algorithmic recourse. Prior works have focused on determining
the extent to which recourses remain robust to the choice of the underlying
model [27, 116], shifts or changes in the underlying models [132, 158], or small
perturbations to the input instances [15, 45, 146]. To address these problems,
these works have primarily proposed adversarial minmax objectives to mini-
mize the worst-case loss over a plausible set of instance perturbations for lin-
ear models to generate robust recourses [45, 158], which are known to generate
overly costly recourse suggestions. Pawelczyk et al. [116] provided an analysis
of the extra cost associated with algorithmic recourse under model multiplicity.
For this setting, Black et al. [27] suggested a sampling procedure to find recourses
that can handle model multiplicity. Rawal et al. [132], on the other hand, demon-
strated theoretically and empirically that recourses generated by state-of-the-art
approaches become invalid when the underlying model is updated. Artelt et al.
[15], Dominguez-Olmedo et al. [45] consider the setting in which the input in-
stance for which recourse is being computed may itself be noisy. Both works
derive upper bounds on the recourse costs, while the latter work focuses on the
causal recourse setting. More recently, Slack et al. [146] demonstrate how ad-
versaries can manipulate the recourse generation process by designing an attack
to generate fundamentally different recourses based on slightly different initial
conditions. One notable exception from these works is by Karimi et al. [81],
where the authors consider uncertainty with respect to the choice of the struc-
tural causal model, which has to be taken into account for reliable recourses. We
also refer to Mishra et al. [104] for a brief survey on that topic.

Contributions. In Contribution 4, we address the problem of the fragility of
algorithmic recourses in the presence of data deletion requests, which has not
been previously studied. To reveal this fragility, we propose algorithms to iden-
tify the minimal subset of critical training points to delete in order to maximize
the fraction of invalidated recourses when the model needs to be updated. While
previous research in data deletion has primarily focused on strategies for effec-
tively removing data from predictive models [34, 62, 63, 64, 75, 167], there has
been no examination of how data deletion requests affect the output of state-
of-the-art recourse methods. Our work is the first to address these issues and
sets the stage for recourse providers to evaluate and reconsider their recourse
strategies in the context of the right to be forgotten.

In Contribution 5, we present a user-driven framework for dealing with the
trade-off between the cost of recourse and its robustness to noise in human



Reference Assumption Source of Issue Insight Method DGP

[116] Classifier choice is uncertain Decision maker Classifier multiplicity makes CEs fragile TA NC
[81] SCM is uncertain Decision maker SCM uncertainity cause fragility Infer SCM C

[132] Shift in data distribution Exogenous Data shifts cause fragility TA NC
[158] Shift in data distribution Exogenous Data shifts make CEs fragile Adversarial objective NC
[27] Classifier choice is uncertain Decision maker Classifier multiplicity makes CEs fragile Neighbor Search NC
[45] Uncertainty in recourse process End-user Response inaccuracies make CEs fragile Adversarial heuristic C

Cont. 4 Model update after deletion request Users Deletions make CEs fragile Maximize IR NC
Cont. 5 ‘Precision landing’ on prescribed recourse End-user Response inaccuracies make CEs fragile Minimize IR NC

Table 5.1: Comparison of approaches for generating and analyzing robust algo-
rithmic recourse. We compare our contributions across a variety of dimensions:
what are the underlying assumptions, where is the source of the issue, what are
the high level insights, what are the suggested methods (TA: theoretical anal-
ysis), to which models are the methods applicable and assumptions regarding
the data generating process (DGP) are made; C: causal, SCM: structural causal
model, NC: non-causal.

implementations of prescribed recourses. We introduce a novel probabilistic
recourse approach that allows users to choose the probability of invalidation
for a recourse when it is implemented under uncertainty with some noise. We
also propose algorithms that can be used effectively with both linear and non-
linear models (such as deep neural networks and tree-based models), resulting
in more favorable cost/invalidation rate trade-offs compared to previous meth-
ods [45, 158].

5.2 Assessing Robustness of Algorithmic Recourse
under Data Deletion

Laws such as the GDPR [60] and CCPA [111] aim to protect users by regulating
the usage of personal data and ML model deployments. These laws also grant
users greater control over their personal data, including the right to withdraw
consent for the use of their data at any time [24]. Therefore, it is important for
technology platforms to consider these regulations when training ML models
on personal user data, as the continued use of models relying on deleted data
instances could potentially be considered illegal [164].

In the following, we will explore the effects of data deletion on model expla-
nations, specifically examining how it impacts recourse algorithms. We aim to
understand the limitations of recourse methods when data instances may need
to be removed from trained machine learning models. More concretely, we study
how data deletion requests can affect whether a prescribed recourse can be suc-
cessfully implemented by unsuspecting users. This is a particularly important
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Figure 5.1: Pictorial representation of the two key robustness notions from
Contribution 4. In Fig. 5.1a, recourse x̃1 for an input x is invalidated due to
a model update. In Fig. 5.1b, recourse is additionally recomputed (i.e., x̃ω) to
avoid recourse invalidation.

issue to consider as users may have already started taking costly actions based
on previously received recourses.

5.2.1 Robustness Through the Lens of the Right to be Forgotten

We consider the problem of data deletion requests and their impact on algorith-
mic recourse. In this context, some individuals may choose to withdraw their
data, leading to the need for model updates. Throughout this section, the model
is updated once a deletion request is issued to minimize the empirical risk on
the remaining training data points; while this procedure is an extreme opera-
tionalization of the GDPR’s “right to be forgotten”, it is also consistent with ap-
proaches taken in related work (see for example [62]). We define two key terms,
prescribed recourses and recourse outcomes. A prescribed recourse x̌ represents a re-
course provided to a user by a recourse method (e.g., increasing salary by $500).
The recourse outcome f (x̌) is the prediction made by the model when applied to
the recourse. Based on these definitions, we propose two definitions of recourse
instability.

Definition 1 (Recourse outcome instability (Contribution 4)) The recourse outcome in-
stability with respect to a factual instance x, where at least one data weight is set to 0, is
defined as follows:

∆x(ω) =
∣∣ fw1

(
x̌1
)
− fwω

(
x̌1
)∣∣, (5.1)



where fw1(x̌1) is the prediction at the prescribed recourse x̌1 based on the model that uses
the full training set (i.e., fw1) and fwω(x̌1) is the prediction at the prescribed recourse for
an updated model and data deletion requests have been incorporated into the predictive
model (i.e., fwω ).

In this definition, we consider how applying “outdated” recourses to an updated
model will affect the validity of the recourses. We assume that only the model
parameters are being updated, while the recourses remain unchanged. For a
model with binary output, Definition 1 captures whether the recourses will be-
come invalid after training data is deleted. We can also apply this definition to
a continuous-score model with a target value of s by using a discretized version
of the model’s predictions. This allows us to determine the invalidation rate of
the recourses.

In Definition 2 below, the cost function c is specified to be a p-norm and the
recourse is allowed to change due to model parameter updates, consistent with
related work (e.g., [166]).

Definition 2 (Recourse action instability (Contribution 4)) The Recourse action insta-
bility with respect to a factual input x, where at least one data weight is set to 0, is defined
as follows:

Φ
(p)
x (ω) =

∥∥x̌1− x̌ω
∥∥

p, (5.2)

where p ∈ [1,∞), and x̌ω is the recourse obtained for the model trained on the data in-
stances that remain present in the data set after the deletion request.

Definition 2 assesses the extent to which prescribed recourses need to be mod-
ified to still achieve the desired recourse outcome after data deletion requests
(i.e., x̌ω, see Figure 5.1b). The lowest cost recourse is of particular importance as
it is easiest to implement. Therefore, the main goal in the field of recourse is to
identify the recourse with the lowest costs. However, we are also interested in
how the optimal low-cost recourse changes, even if the outdated recourse would
still be valid.

Using the invalidation measures introduced above, the next section discusses
how we can use these to identify the set of points which would lead to maximum
recourse invalidation according to these two measures.



5.2.2 Identifying the Most Critical Training Points

We aim to identify the minimum number of data deletion requests that will have
the greatest impact on the instability of our chosen measure, m, which can be
either ∆ or Φ(2). This is done by summing the instability over the entire dataset,
e.g., resulting in ∆ = ∑x∈Dtest ∆x. We then formulate an optimization objective to
find the smallest number of deletion requests that leads to a maximum impact
on the instability measure m. To operationalize this, we define the set of possible
data weight configurations over n data points:

Γα := {ω : Maximally ⌊α ·n⌋ entries of ω are 0 and the remainder is 1.}. (5.3)

In (5.3), the parameter α controls the fraction of instances that are being removed
from the training set. For a fixed fraction α , our problem of interest becomes:

ω∗ ∈ argmax
ω∈Γα

m(ω). (5.4)

In optimizing our objective, we encounter two main challenges: (i) evaluating
m(ω) for various weight configurations ω can be costly as the objective is de-
fined through the solutions of multiple non-linear optimization problems, such
as model fitting and finding recourses. Additionally, (ii) even if m(ω) can be
computed rapidly, optimizing this objective can still be NP-hard (see Appendix
in Contribution 4).

5.2.3 Comparison with the State-of-the-art

We note that the problem stated in objective (5.4) has previously not been con-
sidered in recourse literature before. The closest work to our’s is due to Slack
et al. [146], who identify small and adversarial perturbations to feature dimen-
sions of the original input to entirely change the counterfactual explanation. Our
objective is different as our goal is to identify and remove entire training points
adversarially to maximally impact or robustness notions.

We present new methods for addressing the problem of optimizing the objective
in equation (5.4). Specifically, we propose greedy and a gradient descent style
algorithms that approach the problem from different perspectives. Both algo-
rithms efficiently evaluate m(ω) by either utilizing a closed-form expression that
shows the dependency of m on ω or by applying an approximation of m that can
be differentiated with respect to ω. Then we can optimize m(ω) by either using
a greedy method (e.g., gradient descent). Together, these methods contribute to
the field of recourse by providing new solutions to the problem of computing



and optimizing the objective in equation (5.4).

Not only do we present practical algorithms, but we also present theoretical
analyses to identify the factors that determine the instability of recourses when
users whose data is part of the training set submit deletion requests. In particu-
lar, we provide upper bounds for the recourse instability notions defined in the
previous section when the underlying models are linear or overparameterized
neural networks (see Propositions 1 and 2 of Contribution 4).

In summary, the following are the key novelties of Contribution 4:

(i) Novel recourse robustness problem: We introduce the problem of recourse
invalidation under the right to be forgotten by defining two new recourse in-
stability measures.

(ii) Novel objective and analysis: Using our instability measures, we present
an optimization framework to identify a small set of critical training data
points which, when removed, invalidates most of the issued recourses. Ad-
ditionally, through theoretical analysis, we identify the factors that deter-
mine the instability of recourses when users whose data is part of the train-
ing set submit deletion requests.

5.3 Algorithmic Recourse in the Presence of Noisy
Human Responses

In previous research, it has been shown that the approach presented in Chapter
2 produces recourses that are low-cost as the corresponding counterfactuals are
similar to the original instances [166]. However, these recourses have been found
to lack robustness in studies [116, 132]. For example, the recourses generated by
this approach may not remain valid (i.e., result in a positive model prediction) if
small changes are made to them (see Figure 5.2a). It is also known that recourses
are often noisily implemented in real-world settings, as noted in previous re-
search [26]. For instance, an individual who was asked to change their credit
card spending habits may end up spending a slightly different amount than
what was prescribed. To address this issue, some researchers [45, 158] have pro-
posed using adversarial training in the recourse objective to consider worst-case
perturbations of the input data or model parameters (see Figure 5.2c). However,
it is well-known that such adversarial objectives can be conservative [130, 156],
resulting in recourses that are more costly and harder to implement. The exist-
ing approaches generate robust recourses that are often high in cost and there-
fore difficult to implement, without considering the preferences of individual



users. In practice, users may have different preferences for balancing the trade-
offs between recourse costs and robustness - for example, some may be willing
to accept higher costs for increased robustness to noisy responses, while others
may not. In the next Section we present an end-user driven framework for the
generation of robust algorithmic recourse.

5.3.1 Defining the Recourse Invalidation Rate

In order to enable end users to effectively navigate the trade-offs between re-
course costs and robustness, we let them choose the probability with which a
prescribed recourse could get invalidated (recourse invalidation rate) if small
changes are made to the prescribed recourse, i.e., the prescribed recourse is im-
plemented somewhat noisily. To this end, we formally define the notion of Re-
course Invalidation Rate (IR) in this section. We first introduce two key terms,
namely, prescribed recourses and implemented recourses. A prescribed recourse is
a recourse that was provided to an end user by some recourse method (e.g., in-
crease salary by $500). An implemented recourse corresponds to the recourse
that the end user finally implemented (e.g., salary increment of $505) upon be-
ing provided with the prescribed recourse. With this basic terminology in place,
we now proceed to formally define the Recourse Invalidation Rate (IR) below.

Definition 3 (Recourse Invalidation Rate (Contribution 5)) For a given classifier
h : Rd→{0,1}, the recourse invalidation rate corresponding to the counterfactual x̌E =
x+δE output by a recourse method E is given by:

∆(x̌E) = Eε

[
h(x̌E)︸ ︷︷ ︸
CF class

− h(x̌E +ε)︸ ︷︷ ︸
class after response

]
. (5.5)

Since the implemented recourses do not typically match the prescribed recourses
x̌E [26], we add ε to model the noise in human responses. As we primarily com-
pute recourses for individuals x such that h(x) = 0, the label corresponding to the
counterfactual is given by h(x̌E)=1 and therefore ∆ ∈ [0,1]. For example, the fol-
lowing cases help understand our recourse invalidation rate better: When ∆=0,
then the prescribed recourse and the recourse implemented by the user agree
all the time; when ∆=0.5, the prescribed recourse and the implemented recourse
agree half of the time, and finally, when ∆=1 then the prescribed recourse and the
recourse implemented by the user never agree. To illustrate our ideas, we will
use our IR measure with a Gaussian probability distribution (i.e., ε∼N (0,σ2I))
to model the noise in human responses.
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Figure 5.2: Pictorial representation of the recourses output by various state-of-
the-art methods and our framework from Contribution 5. The blue line is the
decision boundary, and the shaded areas correspond to the regions of recourse
invalidation. Fig. 5.2a shows the recourse output by approaches such as Wachter
et al. [166] where both the recourse cost as well as robustness are low. Fig. 5.2c
shows the recourse output by approaches such as Dominguez-Olmedo et al. [45]
where both the recourse cost and robustness are high. Fig. 5.2b shows the re-
course output by our framework PROBE in response to user input requesting an
intermediate level of recourse robustness.

5.3.2 The Probabilistically Robust Recourse Objective

The core idea is to find a recourse x̌ whose prediction at any point y within some
set around x̌ belongs to the favorable class with probability 1− r. Hence, our
goal is to devise an algorithm that reliably guides the recourse search towards
regions of low invalidation probability while maintaining low cost recourse. For
a fixed scoring function f :Rd→R corresponding to the classifier h, our objective
reads:

L= R(x′;σ
2I)+λ1 ·

(
f (x′)− s

)2
+λ2 · c(x′,x), (5.6)

where s is the target score for the input x, R(x′;r,σ2I) = max(0,∆(x′;σ2I)− r) with
r being the target IR, ∆(x′;σ2I) is the recourse invalidation rate from (5.5), λ1
and λ2 are the balance parameters, and c quantifies the cost between the input
and the prescribed recourse. To arrive at an output probability of 0.5, the target
score for f (x) for a sigmoid function is s = 0, where the score corresponds to a
0.5 probability for y = 1.

The new component R is a Hinge loss encouraging that the prescribed recourse
has a low probability of invalidation, and the parameter σ2 is the uncertainty
magnitude and controls the size of the neighbourhood in which the recourse has
to be robust. The middle term encourages the score at the prescribed recourse
f (x̌) to be close to the target score s, while the last term promotes the distance



between the input x and the recourse x̌ to be small.

In practice, the choice of r depends on the risk-aversion of the end-user. If the
end-user is not confident about achieving a ‘precision landing’, then a rather low
invalidation target should be chosen (i.e., r < 0.5).

5.3.3 Comparison with the State-of-the-art

Prior works by Upadhyay et al. [158] and Dominguez-Olmedo et al. [45] at-
tribute robustness to recourses in different ways. While the former constructs
recourses that are robust to small shifts in the underlying model, the latter con-
structs recourses that are robust to small input perturbations. These approaches
adapt the classic minimax objective functions commonly employed in adversar-
ial robustness and robust optimization literature to the setting of algorithmic
recourse, and use gradient descent style approaches to optimize these functions.
In an attempt to generate recourses that are robust to either small shifts in the
model ([158]) or to small input perturbations ([45]), the above approaches find
recourses that are farther away from the underlying model’s decision bound-
aries, thereby increasing the distance between the counterfactuals (recourses)
and the original instances (i.e., the recourse costs). Higher cost recourses are
harder to implement for end users as they are farther away from the original in-
stance vectors (current user profiles). Putting it all together, the aforementioned
approaches generate robust recourses that are often high in cost and are therefore
harder to implement, without providing end users with any say in the matter.

In contrast, our work puts forth a paradigm shifting idea of enabling users to
control the recourse robustness-cost tradeoffs by letting them choose the proba-
bility with which a recourse could get invalidated (recourse invalidation rate) if
small changes are made to the recourse i.e., the recourse is implemented some-
what noisily. Given this problem formulation, we can no longer use the minimax
objectives outlined by prior works as we need to ensure that the resulting re-
course invalidation rates match desired invalidation rates input by end users. To
this end, we propose a objective (5.6) which simultaneously minimizes the gap
between the achieved (resulting) and desired recourse invalidation rates, mini-
mizes recourse costs, and also ensures that the counterfactual (recourse) achieves
a positive model prediction.

To optimize the proposed objective, we outline a gradient descent style approach
(Algorithm 1, Contribution 5). Note that we need to compute the achieved re-
course invalidation rate at each step of the gradient descent algorithm, and com-
puting this empirically can be computationally prohibitive as demonstrated by



prior work (e.g., [145]) since it involves generating perturbations of each can-
didate counterfactual and querying the underlying model for labels of all the
perturbations. To this end, we develop theoretical expressions for the recourse
invalidation rates (Theorems 1 and 2 in main body and Appendix of Contribu-
tion 5) corresponding to any given instance w.r.t. different classes of underlying
models (e.g., linear models, non-linear models such as deep neural networks
and tree based models), and then use these estimates to efficiently optimize the
proposed objective.

Note that the approaches put forth by prior works only handle gradient-based
linear models or locally linear model approximations. In contrast, the approaches
and theoretical derivation of the invalidation rate we propose (Section 4 and Ap-
pendix in Contribution 5) enable us to handle both linear and non-linear mod-
els (e.g., logistic regression, neural networks, decision tree models) effectively.
Our empirical results (Figure 4 in Contribution 5) also demonstrate that our
approach achieves better recourse cost/invalidation rate tradeoffs compared to
both Upadhyay et al. [158] and Dominguez-Olmedo et al. [45].

In summary, the following are the key novelties of Contribution 5:

(i) Novel problem formulation. We propose a novel problem formulation
which enables end users to manage the recourse robustness-cost tradeoffs;

(ii) Novel objective function. We introduce a novel objective function along
with theoretical insights to effectively optimize this objective for various
classes of underlying models (e.g., linear models, non-linear models such
as neural networks, single decision trees) to encourage that the resulting
invalidation rates match the user preferred invalidation rates.

5.4 Discussion

In Contribution 4, we have demonstrated that the robustness of algorithmic re-
course depends on the robustness of the predictive model to data deletion re-
quests. Therefore, deletion robust predictive models will generally lead to more
robust recourse. Our work is the first to establish this fundamental link between
data point influence and the robustness of counterfactual explanations. As a
consequence, our theory also suggests a paradigm shift in the way that the re-
course literature thinks about robustness of algorithmic recourse: most of the
literature follows the paradigm of developing robust recourse methods taking
the predictive model as fixed ([27, 45], Contribution 5). This usually leads to
recourses that are more difficult to act upon as they are less parsimonious and



have higher recourse costs at the benefit of higher robustness (see Section 5.3). In
contrast to this paradigm, our theoretical analysis suggests that one can achieve
increased levels of robust recourse by training the models with restricted empir-
ical influence functions. Thus, we expect that our theory can be operationalized
with some approaches to minimize influence but which have been proposed in
a different context, for instance private or deletion-robust models. In summary,
our work builds the bridge between these two fields, which we see as a valu-
able contribution, while some of our current theoretical results offer room for
improvement as they are limited to linear models and neural tangent kernels.
Future work, would generalize these results to more general function classes.

In Contribution 5, we have tackled the problem of generating robust recourses
while anticipating that humans will react nosily to the prescribed recourses. For
tree-based methods our currently suggested algorithm works very well on sin-
gle, axis-aligned decision tree classifiers. However, there is room for improve-
ment of the algorithm for more complex tree-based classifiers as the current algo-
rithm requires a model distillation step for tree-based ensemble classifiers, which
can lead to too coarse approximations of the decision regions, resulting in mis-
matches between the targeted invalidation rate r and the empirical invalidation
rate obtained from the prescribed recourse.



6
Standardizing the Evaluation of Recourse Methods

This chapter presents guidelines and a benchmarking framework for assessing
the effectiveness of recourse methods. It gives a summary of relevant past re-
search and connects it to Contribution 6. We also introduce various evaluation
metrics and a Python toolkit that facilitates transparent and consistent evalua-
tion of recourse methods. This chapter summarizes Contribution 6.

6.1 Related Work

Benchmarks and evaluation frameworks. There are many different methods
for evaluating explanations generated by black-box models [3, 23, 53, 107, 109].
Doshi-Velez and Kim [46] divide these methods into two categories: human-
grounded metrics, which rely on human judgment, and functional-grounded
metrics, which do not require a human-generated reference point. The latter
category often involves changing the most important part of an input and ob-
serving the effect on the model’s output probability. Examples of this approach
include the Sensitivity-n measure by Ancona et al. [11] and the infidelity and
max-sensitivity metrics by Yeh et al. [169]. Samek et al. [138] and Petsiuk et al.
[127] also propose altering the input pixels according to importance scores, but
Hooker et al. [73] show that this perturbation can introduce artifacts and cause a
distribution shift, calling into question the validity of these ”no-retraining” ap-
proaches. As a consequence, Hooker et al. [73] developed the Remove and Re-
train (ROAR) framework which addresses the distribution shift issue by includ-
ing an extensive model retraining step. As a result, we can distinguish between
evaluation methods that use a “retrainig” approach, like ROAR, and those that
use a “no-retraining” approach. ROAR has been widely used in recent research
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[70, 74, 102, 140, 148], and there are ongoing efforts to develop variations of it
[142] and improve upon this evaluation technique [134].

Contribution. While there exist several benchmarks in machine learning liter-
ature (e.g., [4, 40, 93]), they focus on evaluating the quality of feature attribu-
tions [4, 93] or other key model properties such as adversarial robustness [40].
Therefore, these benchmarks cannot be readily used to evaluate the reliability
of counterfactual explanations for algorithmic recourse as it requires an entirely
new set of evaluation measures, and experimental set ups. While some prior
works have constructed synthetic datasets with ground truth explanations to
benchmark feature attribution methods [4, 84, 93], these evaluations are limited
to feature attribution techniques and do not apply to recourse methods. To the
best of our knowledge, Contribution 6 is the only benchmark that provides a
complete pipeline to evaluate and compare counterfactual explanations for al-
gorithmic recourse on many key evaluation measures to promote transparency
and collaboration around evaluations of counterfactual explanations.

6.2 Evaluating Recourse Methods

The usefulness of the counterfactual explanations that are provided to individ-
uals is heavily dependent on the approach used to compute the recourse sug-
gestions. Therefore, there is a significant need for a standardized benchmarking
platform that allows for transparent and meaningful comparisons between dif-
ferent recourse methods. This is important for researchers, who need to be able
to evaluate their proposed methods against the wide range of existing methods,
as well as for practitioners, who need to be able to choose the right recourse
mechanism for their specific problem. In short, a standardized framework for
comparison and quality assurance is an essential requirement.

6.2.1 Unifying Evaluation Standards

We introduce a concise and up-to-date summary of evaluation practices for re-
course methods (Contribution 6). Our work helps to compare existing tech-
niques and thus achieve a more comparable and standardized evaluation of
available recourse methods. Below, we briefly present and discuss general eval-
uation strategies. As algorithmic recourse is a multi–modal problem we use a
variety of measures to evaluate the methods’ performances:

• Costs. When answering the question of generating the nearest counterfac-



tual explanation, it is essential to define the distance of the factual x to the
nearest counterfactual x̌. The literature has formed a consensus to use ei-
ther the normalized ℓ0 or ℓ1 norm or any convex combination thereof (see
for example [79, 106, 116, 131, 159, 166]). The ℓ0 encourages the number of
total required feature changes between factual and counterfactual instance
to be small, while the ℓ1 norm requires the average change to be small while
also encouraging to change few features only.

• Constraint violation. This measure counts the number of times a recourse
method violates user-defined constraints. Depending on the data set, we
fixed a list of features which should not be changed by the used method
(e.g., sex, age or race).

• yNN. This measure evaluates how much data support recourses have from
positively classified instances. Ideally, recourses should be close to posi-
tively classified individuals which is a desideratum formulated by [90].

• Redundancy. We evaluate how many of the proposed feature changes
were not necessary. This is a particularly important criterion for methods
that generate counterfactual under the IMF assumption. We measure this
by successively flipping one value of x̌ after another back to x, and then we
inspect whether the label flipped from 1 back to 0: e.g., we check whether
flipping the value for the second dimension would change the counterfac-
tual outcome 1 back to the predicted factual outcome of 0. If the predicted
outcome does not change, we increase the redundancy counter, conclud-
ing that a sparser counterfactual explanation could have been found. We
iterate this process over all dimensions of the input vector.

• Success rate. Some generated counterfactual explanations do not alter the
predicted label of the instance as anticipated. To keep track how often the
generated CE does hold its promise, the success rate shows the fraction of
respective models’ correctly determined counterfactuals.

• Average time. By measuring the average time a CE method needs to gen-
erate its result, we evaluate the effectiveness and feasibility for real–time
prediction settings. We have included the run time measure to give users a
rough estimate on what run times to expect when executing the respective
algorithms.



6.2.2 Software Architecture

Here we introduce our open-source benchmarking software. We describe the ar-
chitecture in more detail and provide examples of different use-cases and their
implementation. The purpose of this Python library is to provide a simple and
standardized framework to allow users to apply different state-of-the-art re-
course methods to arbitrary data sets and black-box-models. CARLA also pro-
vides an implementation interface to integrate new recourse methods in an easy-
to-use way, which allows to compare newly developed methods to already ex-
isting methods.

Figure 6.1: Architecture of our CARLA library from Contribution 6. The silver
boxes show the individual objects that will be created to generate counterfac-
tual explanations and evaluate recourse methods. Useful explanations to spe-
cific processes are illustrated as yellow notes. The dashed arrows are showing
the different implementation possibilities; either use pre-defined catalog objects
or provide custom implementation. All dependencies between these objects are
visualised by solid arrows with an additional description.

In Figure 6.1, we depict a visualization of the software architecture. For every
of the three components Data, MLModel, and RecourseMethod the user can
either utilize existing methods from our catalog, or extend the library by adding
custom methods and implementations. The components represent an interface
to the key parts in the process of generating counterfactual explanations. In par-
ticular, Data provides a common way to access the data across the software and
maintains information about the data’s features. MLModelwraps each black-box
model and stores details on the encoding, scaling and feature order specific to
the model. The primary purpose of RecourseMethod is to provide a common
interface to easily generate counterfactual examples.



1
2 from carla import RecourseMethod
3
4 # Custom recourse implementations need to
5 # inherit from the RecourseMethod interface
6 class MyRecourseMethod(RecourseMethod):
7 def __init__(self, mlmodel):
8 super().__init__(mlmodel)
9

10 # Generate and return encoded and
11 # scaled counterfactual examples
12 def get_counterfactuals(self, factuals: pd.DataFrame):
13 [...]
14 return counterfactual_examples
15

Figure 6.2: Pseudo-implementation of the recourse method wrapper from Con-
tribution 6.

Besides the option to use pretrained predictive models and preprocessed data,
CARLA also provides users with an easy way to load and define data sets and
model structures independent of their framework (e.g., Pytorch, sklearn,
Tensorflow). In the following, we will give an overview and provide example
implementations of different use cases:

(i) Predefined methods: A common usage of the library is to generate coun-
terfactual explanations. This can be done by loading black-box-models and
data sets from our provided catalogs, or by user-defined models and data
sets via integration with the defined interfaces. Figure 6.3 shows an imple-
mentation example of a simple use-case, applying a recourse method to a
predefined data set and model from our catalog. After importing both cat-
alogs, the only necessary step is to describe the data set name (e.g., adult,
give me some credit, or compas) and the model type (e.g., ann, or linear)
the user wants to load. Every recourse method contains the same proper-
ties to generate counterfactual explanations.

(ii) Benchmarking recourse methods. Besides the generation of counterfac-
tual explanations, the focus of CARLA lies on benchmarking recourse meth-
ods. Users are able to compute evaluation measures to make qualitative
statements about usability and applicability. All evaluation measures, which
have been described in the previous Section, are implemented in the Bench-
marking class of CARLA and can be used for every wrapped recourse method.

(iii) Exentsibility. Our libraray also features a RecourseMethod-wrapper which



1
2 from carla import DataCatalog, MLModelCatalog
3 from carla.recourse_methods import GrowingSpheres
4
5 # 1. Load data set from the DataCatalog
6 data_name = "adult"
7 dataset = DataCatalog(data_name)
8
9 # 2. Load pre-trained black-box model from the MLModelCatalog

10 model = MLModelCatalog(dataset, "ann")
11
12 # 3. Load recourse model with model specific hyperparameters
13 gs = GrowingSpheres(model)
14
15 # 4. Generate counterfactual examples
16 factuals = dataset.raw.sample(10)
17 counterfactuals = gs.get_counterfactuals(factuals)
18

Figure 6.3: Example usage of the data and model catalogs from Contribution 6.

users to implement their own method to generate counterfactual explana-
tions. This opens up a way of standardized and consistent comparisons be-
tween different recourse methods; thereby, advantages and disadvantages
of new newly developed methods can be swiftly analysed by benchmark-
ing against the state of the art. In Figure 6.2, we show how an implemen-
tation of a custom recourse method can be structured. This aspect of our
work is described in more detail in the Appendix of Contribution 6. Addi-
tionally, users can either utilize our provided catalogs of data sets, recourse
methods and black-box models (Figure 6.3), or they can contribute custom
implementations.

6.3 Discussion

In this Chapter, we introduced CARLA, a Python library that serves as a compet-
itive benchmarking platform for counterfactual explanation and recourse meth-
ods. The library has been designed to enable standardized and transparent com-
parisons of recourse methods on different data sets across a variety predictive
models. In summary, it provides the following contribution:

(i) Competetive baselines: Our library provides competitive baselines to com-
pare new methods to existing ones.



(ii) Common evaluation framework: Our library serves as a common frame-
work that includes over 10 counterfactual explanation methods and allows
for easy integration of new methods. It also includes built-in evaluation
measures to compare the performance of different recourse mechanisms
across various data sets and models. This makes it a useful tool to bench-
mark existing counterfactual methods on popular data sets and models.

(iii) Interface: CARLA supports popular ML frameworks such as PyTorch [114],
Tensorflow [1] or Sklearn [124], as well as providing a generic abstrac-
tion layer that allows for custom implementations of recourse methods and
predictive models. It also allows users to define problem-specific data set
characteristics and hyperparameters for the chosen counterfactual expla-
nation method.

Despite the numerous advantages, our library also has limitations: it is currently
limited to tabular data modalities where we support categorical features with
only two categories – this is to provide a fair comparison between a variety of
different recourse methods of which some provide support for categorical fea-
tures and others do not (e.g., the algorithm by Wachter et al. [166] does not, while
the method by Pawelczyk et al. [115] does). Including new evaluation measures
and including the most recent recourse algorithms is an avenue for future work.





7
Conclusions and Outlook

In this thesis, we developed techniques and tools to generate more trustworthy
counterfactual explanations for consequential decision-making scenarios. By do-
ing so, we expanded the usefulness of recourse systems and made them more
suitable for real-world applications. This chapter summarizes our findings, pro-
vides final thoughts, and suggests areas for further research

7.1 Summary of Contributions

In Chapter 3, we developed methodology and tools to bridge the gap between
methods that generate recourse under the independently manipulable feature
assumption (see Chapter 2) and the strong causal assumption. To this end, we
introduced generative models to capture the intuition that features may be de-
pendent and should move jointly when perturbed and the data’s dependence
structure allows for it. To this end, we had to change the geometry of the in-
tervention space to a lower dimensional latent space, which encodes different
latent factors of variation of the underlying data for which latent recourse ac-
tions were found (see Section 3.2). In Contribution 2 (see Section 3.3), we shifted
the intervention space from the latent space back to the input space, while still
maintaining the generative model. Keeping the generative model had two ad-
vantages: first, it allowed for an interface where end-users could insert their
search preferences over attributes they would like to do actions on and second,
we could disentangle recourse actions into direct and indirect action. The latter
aspect is akin to the benefits provided by causal recourse works [81, 82], without
requiring the strong causal assumptions.

In Chapter 4, we investigated the connections between various well-known coun-
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terfactual explanation algorithms used for algorithmic recourse and adversar-
ial attack generating algorithms. Our analysis revealed that there are signifi-
cant similarities in the solutions produced by these methods. These findings
prompted us to question the design of current algorithmic recourse algorithms
and how to create more robust and reliable recourses that do not resemble ad-
versarial attacks.

Motivated by our findings in Chapter 4, we studied the problem of generating
robust recourses 5. We first introduced the problem of recourse invalidation un-
der the right to be forgotten and considered various recourse instability notions.
Based on our instability notions, we then presented an optimization framework
to identify a small set of critical training data points which, when removed, in-
validates most of the issued recourses. Additionally, we demonstrated that the
robustness of algorithmic recourse depends on the robustness of the predictive
model to data deletion requests. Therefore, we expect deletion robust predic-
tive models will generally lead to more robust recourse. In Contribution 5 of
the same Chapter, we tackled the problem of generating robust recourses while
keeping the underlying model fixed and while anticipating that humans will re-
act nosily to the prescribed recourses. Our suggested solutions enabled users to
control the recourse robustness-cost tradeoffs by letting them choose the proba-
bility with which a recourse could get invalidated (recourse invalidation rate) if
small changes are made to the prescribed recourse.

Finally, in Chapter 6, we took a step towards standardizing the evaluation of
recourse methods by introducing a benchmarking library called CARLA. This
library aims to facilitate the comparison of different recourse methods by pro-
viding a suite of established evaluation measures. It comes with predefined
datasets, pretrained models, and a variety of recourse methods out of the box.
Additionally, CARLA is designed in a modular way, which allows users to go be-
yond its existing resources and easily implement their own methods according
to their specific needs.

7.2 Future Work

In the future, several intriguing research questions should be addressed. First,
handing out recourses to the public poses a potential security threat to the de-
cision maker, which calls for studying security aspects of counterfactual expla-
nations in more detail; Second, there is little understanding of how offering al-
gorithmic recourse to the public will affect population dynamics and the distri-
bution of predictive outcomes over time; Third, recourse is fundamentally an



applied concept, and therefore we need to make sure that the research agenda is
heading in the right direction.

7.2.1 Goodheart’s Law and Algorithmic Recourse

Goodheart’s law states that “[w]hen a measure becomes a target, it ceases to be
a good measure” [149]. Applying this logic to algorithmic recourse can lead
to interesting insights. This law suggests that as individuals keep receiving
counterfactual explanations over time, they will start to challenge the predic-
tive outcomes produced by the machine learning algorithms, causing changes
in the feature distribution and possibly the distribution of true labels. As a re-
sult, the original statistical regularities that the machine learning algorithm has
been based on may no longer hold, potentially leading to shifts in the relative
importance of certain features for algorithmic recourse, and in the worst case
to features that might become increasingly uninformative over time. This high-
lights the importance of continuously monitoring and re-evaluating algorithmic
recourse systems to ensure that they continue to produce valid and fair results.
Developing this idea into a formal mathematical framework seems an interest-
ing avenue for future research.

7.2.2 Validating the Utility of Research on Algorithmic Recourse

Despite the growing number of contributions to the body of counterfactual ex-
plainability research, empirically validated desiderata lack behind the numerous
postulated desiderata and their algorithmic and theoretical contributions in the
field (see Chapters 2 - 5).

One way to address this issue is through the use of systematic user studies. For
instance, recent research in the field of explainability [83] has utilized methods
such as semi-structured interviews and surveys to understand how data scien-
tists utilize local feature attribution tools [97, 171] to identify problems in the
machine learning pipeline. These studies have shown that data scientists often
place too much trust in these methods. Similarly, it would be valuable to inves-
tigate how companies use counterfactual explanations for algorithmic recourse,
and whether end-users find them to be useful in achieving their desired out-
comes. The following are some intriguing, yet unanswered questions that could
be explored through such research:

• The corporate perspective: From this perspective, it would helpful to know
whether there is indeed a need for precise instructions as the algorithmic



research literature seems to suggest? To date, there is a lack of work ad-
dressing this and related elementary questions:

(i) Do institutions consider using these explanation techniques to pro-
vide customers with recourse?

(ii) If they have not used these techniques yet, how do they plan to use
them in the future? Do they issue adverse action notices (recall Chapter
2) or precise counterfactual explanations?

(iii) What challenges do these institutions face when deploying these ex-
planations in practice?

• The end-user perspective: The key requirement of counterfactual explana-
tions is that they should be low in cost and easy to achieve by an end-user.
This requirement relies on the premise that a low-complexity counterfac-
tual explanation would be easiest to put into practice (recall Chapter 2).
The lowest cost counterfactual explanations are usually generated under
the independently manipulable feature assumption, which is prone to gen-
erating atypical recourses, where the term “atypical” refers to how likely
the generated instance would occur under the (estimated) data distribution
(recall Chapter 3). Thus, it would be interesting to understand whether
users find IMF recourses more or less atypical compared to recourses gen-
erated by the methods we have proposed in Chapter 3.

Another central desideratum is to ascertain that an issued counterfactual
explanation is feasible, i.e., the recourse should be attainable by the indi-
vidual. In the causal recourse literature, feasibility constraints can easily
be encoded into a postulated causal graphical model that represents the
underlying data generating process. However, identifying the causal re-
lations and evaluating their correctness is a cognitively demanding task.
Therefore, it would be fascinating to understand whether supporting par-
ticipants with a postulated causal model leads to better performance in
spotting feasibility violations within the counterfactual explanations.

7.2.3 Can Recourse be Provided without Opening the
Black-box?

In their seminal work, Wachter et al. [166] argue that counterfactual explanations
allow end users access to useful explanations while avoiding that model owners
have to disclose proprietary information in terms of model internals (e.g., model
parameters) or information regarding the training data. In contrast to this ini-



tial motivation, recent research has demonstrated the privacy risks that arise
when attackers have access to counterfactual model explanations that highlight
the rationale behind one or more model predictions [7, 121]. These works have
shown that malicious attackers could exploit these recourses to extract informa-
tion about the underlying models and their training data, thus leaking sensitive
information (e.g., a bank’s customer data) and enabling fraudulent activities. In
particular, the generated recourses can be used for;

(i) Privacy attacks: infer whether an end-user’s private data was part of the
model’s training data set [121] or;

(ii) Model extraction: reverse-engineer the underlying predictive model [7].

Therefore, there is an urgent need to investigate how recourses can be made
more secure against such fraudulent activities. We envision the notion of Dif-
ferential Privacy (DP) [35, 48, 49] to play a central part when devising strategies
to mitigate such privacy attacks. Therefore, we conjecture that the reliability of
algorithmic recourse will likely benefit from underlying predictive models that
have been trained under DP constraints.
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ABSTRACT
Counterfactual explanations can be obtained by identifying the
smallest change made to an input vector to influence a prediction in
a positive way from a user’s viewpoint; for example, from ’loan re-
jected’ to ’awarded’ or from ’high risk of cardiovascular disease’ to
’low risk’. Previous approaches would not ensure that the produced
counterfactuals be proximate (i.e., not local outliers) and connected
to regions with substantial data density (i.e., close to correctly clas-
sified observations), two requirements known as counterfactual
faithfulness. Our contribution is twofold. First, drawing ideas from
the manifold learning literature, we develop a framework, called C-
CHVAE, that generates faithful counterfactuals. Second, we suggest
to complement the catalog of counterfactual quality measures using
a criterion to quantify the degree of difficulty for a certain counter-
factual suggestion. Our real world experiments suggest that faithful
counterfactuals come at the cost of higher degrees of difficulty.
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1 INTRODUCTORY REMARKS
Machine learning models are increasingly being deployed to auto-
mate high-stake decisions in industrial applications, e.g., financial,
employment, medical or public services. Wachter et al. [22] discuss
to establish a legally binding right to request explanations on any
prediction that is made based on personal data of an individual. In
fact, the EU General Data Protection Regulation (GDPR) includes a
right to request “meaningful information about the logic involved,
as well as the significance and the envisaged consequences” [22] of
automated decisions.

As people are increasingly being affected by these automated
decisions, it is natural to ask how those affected can be empowered
to receive desired results in the future. To this end, Wachter et al.
[22] suggest using counterfactual explanations. In this context, a
counterfactual is defined as a small change made to the input vector
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to influence a classifier’s decision in favor of the person represented
by the input vector.

1.1 A step towards user empowerment
The “close world” desideratum. At a high level, Wachter et al.

[22] formulated the desideratum that counterfactuals should come
from a ’possible world’ which is ’close’ to the user’s starting point.
Laugel et al. [11] formalized the close world desideratum and split
it into two measurable criteria, proximity and connectedness. Prox-
imity describes that counterfactuals should not be local outliers
and connectedness quantifies whether counterfactuals are close to
correctly classified observations. We shortly review both criteria
in section 5. To these two criteria, we add a third one based on
percentile shifts of the cumulative distribution function (CDF) of
the inputs, as a measure for the degree of difficulty. Intuitively, all
criteria help quantify how attainable suggested counterfactuals are.

The C-CHVAE. In this work, our main contribution is a general-
purpose framework, the Counterfactual Conditional Heterogeneous
Autoencoder, C-CHVAE, which allows finding (multiple) counter-
factual feature sets while generating counterfactuals with high
occurrence probability. This is a fundamental requirement towards
attainability of counterfactuals. In particular, our framework is com-
patible with a multitude of autoencoder (AE) architectures as long
as the AE allows both modelling of heterogeneous data and approxi-
mating the conditional log likelihood of the the mutable/free inputs
given the immutable/protected ones. Moreover, the C-CHVAE does
not require access to a distance function (for the input space) and
is classifier agnostic. Part of this work was previously published
as a NeurIPS HCML workshop paper [15]. Our source code can be
found at: https://github.com/MartinPawel/c-chvae.

1.2 Challenges for counterfactuals
Attainability. Intuitively, a counterfactual is attainable, if it is

jointly (1) a ’close’ suggestion that is not a local outlier, (2) similar
to correctly classified observations and (3) associated with low total
CDF percentile shifts. Hence, in our point of view, attainability is
a composition of faithful counterfactuals ((1) and (2)) which are
at the same time not too difficult to attain (3). To reach a better
understanding, let us translate conditions (1), (2) and (3) into the
following synthetic bank loan setting: a client applies for a loan
and a bank employs a counterfactual empowerment tool. Under
these circumstances, we focus on one problematic aspect. The tool
could make suggestions that ’lie outside of a client’s wheelhouse’,
that is to say, it is not reasonable to suggest counterfactuals that (a)
one would typically not observe in the data, (b) that are not typical
for the subgroup of users the client belongs to, and that (c) are
extremely difficult to attain, where difficulty is measured in terms
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of the percentiles of the CDF of the given inputs. For example, in
table 1, the suggestion made by the second method is likely not
attainable given her age and education level.

Similarity via latent distance. Additionally, in health, bank-
ing or credit scoring contexts we often face continuous, ordinal and
nominal inputs concurrently. This is also known as heterogeneous
or tabular data. For this type of data, it can sometimes be difficult to
measure distance in a meaningful way (e. g. measuring distance be-
tween different occupations). Furthermore, existing methods leave
the elicitation of appropriate distance/cost functions up to (expert)
opinions [4, 10, 12, 21, 22], which can vary considerably across in-
dividuals [5]. Therefore, we suggest measuring similarity between
the input feature xi and a potential counterfactual x̃i as follows.

Definition 1 (Latent distance). Let xi ,x j ∈ Rn be two obser-
vations in input space with corresponding lower dimensional repre-
sentations zi ,zj ∈ Rk with k < n, in latent space. Then the distance
dL(xi ,x j ) := ∥zi − zj ∥p is called the latent distance of xi and x j .

1.3 Overview
Learning faithful counterfactuals via the C-CHVAE. We

suggest embedding counterfactual search into a data density ap-
proximator, here a variational autoencoder (VAE) [9]. The idea is
to use the VAE as a search device to find counterfactuals that are
proximate and connected to the input data. The intuition of this
approach becomes apparent by considering each part of the VAE
in turn. As opposed to classical generative model contexts, the en-
coder part is not discarded at test time/generation time. Indeed, it
is the trained encoder that plays a crucial role: given the original
heterogeneous data, the encoder specifies a lower dimensional, real-
valued and dense representation of that data, z, Therefore, it is the
encoder that determines which low-dimensional neighbourhood
we should look to for potential counterfactuals. Next, we perturb
the low dimensional data representation, z + δ , and feed the per-
turbed representation into the decoder. For small perturbations
the decoder gives a potential counterfactual by reconstructing the
input data from the perturbed representation. This counterfactual
is likely to occur. Next, the potential counterfactual is passed to
the pretrained classifier, which we ask whether the prediction was
altered. Figure 1 represents this mechanism.

Consistent search for heterogeneous data. While we aim to
avoid altering immutable inputs, such as age or education, it is
reasonable to believe that the immutable inputs can have an impact
on what is attainable to the individual. Thus, the immutable inputs
should influence the neighbourhood search for counterfactuals.
For example, certain drugs can have different treatment effects,
depending on whether a patient is male or female [16]. Hence, we
wish to generate conditionally consistent counterfactuals.

Again, consider Figure 1 for an intuition of counterfactual search
in the presence of immutable inputs. Unlike in vanilla VAEs, we
assume a Gaussian mixture prior on the latent variables where each
mixture component is also estimated by the immutable inputs. This
helps cluster the latent space and has the advantage that we look
for counterfactuals among semantically similar alternatives.

Contribution. The C-CHVAE is a general-purpose framework
that generates counterfactuals. Its main merits are:

Figure 1: Autoencoding Counterfactual search. The learned
encoder, mθ̂ , maps heterogeneous protected and free fea-
tures, xp and x f , and latent mixture components, ĉ, into a la-
tent representation, ẑ. The learned decoder, дϕ̂ , reconstructs
the free inputs x f from the perturbed representation, pro-
viding a potential counterfactual, x̃ = (xp , x̃ f ). The counter-
factual acts like a typical observation from the data distri-
bution. Next, we feed the potential counterfactual x̃ to the
classifier, f . We stop the search, if the EC condition is met.

• Faithful counterfactuals. The generated counterfactuals
are proximate and connected to regions of high data density
and therefore likely attainable, addressing the most impor-
tant desiderata in the literature on counterfactuals [11, 22];
• Suitable for tabular data and classifier agnostic. The
data distribution is modelled by an autoencoder that handles
heterogeneous data and interval constraints by choosing
appropriate likelihood models. It can also be combined with
a multitude of autoencoder architectures [7, 9, 13, 14, 18, 20];
• No ad-hoc distance measures for input data. The C-
CHVAE does not require ad-hoc predefined distance mea-
sures for input data to generate counterfactuals. This is can
be an advantage over existing work, since it can be difficult
to devise meaningful distance measures for tabular data.

2 RELATED LITERATURE
Explainability through counterfactuals. At a meta level, the

major difference separating our work from previous approaches is
that we learn a separate model to learn similarity in latent space
and use this model to generate counterfactual recommendations.
Doing this allows us to generate counterfactuals that lie on the data
manifold.

Approaches dealing with heterogeneous data rely on integer
programming optimization [17, 21]. To produce counterfactuals
that take on reasonable values (e. g. non negative values for wage
income) one directly specifies the set of features and their respective
support subject to change. The C-CHVAE also allows for such
constraints by choosing the likelihood functions for each feature
appropriately (see Section 4.2 and our github repo.).

A closely related collection of approaches assumes that distances
or costs between any two points can be measured in a meaningful
way [4, 10, 12, 21, 22]. The C-CHVAE, however, does not rely on
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Method ID Input subset Current Percentile Counterfactual Percentile Shift Tot. shift L. Outlier Connected

I 1 credit card debt 5000 55 3500 75 20 40 No Yes
saving account 200 45 600 65 20

II 1 monthly income ($) 2500 40 10000 95 55 75 Yes No
# loans elsewhere 5 85 2 65 20

Table 1: Hypothetical counterfactuals for the same 22 year old individual without a college degree, who was denied credit.
Suggestions were made by two different methods for a given classifier f . The rows suggest how a subset of free inputs would
need to change to obtain credit, i. e. from ŷ = 0 to ŷ = 1. For the first empowerment technology, the suggestion might be
reasonable whereas for the second one, the suggestion looks atypical and could be difficult to attain measured in terms of
connectedness to existing knowledge, an outlier measure and the total percentile shift.

Method Train Classifier
agnostic Classifier Tabular

data

AR [21] No No Lin. Models No
HCLS [10] No No SVM No
GS [12] No Yes All No
FT [19] No No Trees No

C-CHVAE (ours) Yes Yes All Yes
Table 2: Overview of existing counterfactual generation
methods. ‘Train’ indicates that a method requires training.
‘Classifier agnostic’ means whether a method can be com-
bined with any black-box classifier.

task-specific, predefined similarity functions between the inputs
and counterfactuals. For a given autoencoder architecture, we learn
similarity between inputs and counterfactuals from the data.

Other approaches strongly rely on the pretrained classifier f
and make use of restrictive assumptions, e. g. that f stems from a
certain hypothesis class. For example, Ustun et al. [21] and Tolomei
et al. [19] assume the pretrained classifiers to be linear or tree based
respectively, which can restrict usefulness.

In independent work from our’s, Joshi et al. [8] suggest a similar
explanation model, however, they focus on causal models and are
less concerned with the issue of evaluating counterfactual explana-
tions.

Adversarial perturbations. Since counterfactuals are often gen-
erated independently of the underlying classification model, they
are related to universal adversarial attacks (see for example Brown
et al. [3]). While adversarial examples aim to alter the prediction a
deep neural network makes on a data point via small and impercep-
tible changes, counterfactuals aim to alter data points to suggest
impactful changes to individuals. Notice that counterfactuals do not
fool a classifier in a classical sense, since individuals need to exert
real-world effort to achieve the desired prediction. Since a review of
the entire literature on adversarial attacks goes beyond the scope
of this work, we refer the reader to the survey by Akhtar and Mian
[2]. For an overview of counterfactual generation methods consider
table 2.

Notation. In the remainder of this work, we denote the D di-
mensional feature space as X = RD and the feature vector for

observation i by xi ∈ X. We split the feature space into two disjoint
feature subspaces of immutable (i. e. protected) and free features
denoted by Xp = RDp and Xf = RDf respectively such that w.l.o.g.
X = Xp × Xf and xi = (xpi ,x

f
i ). This means in particular that the

d-th free feature of xi is given by x fd,i = xd,i and the d-th protected
feature is given by x

p
d,i = xd+Df ,i . Let z ∈ Z = Rk denote the

latent space representation of x . The labels corresponding to the
i’th observation are denoted by yi ∈ Y = {0, 1}. Moreover, we
assume a given pretrained classifier f : X −→ Y. Further, we in-
troduce the following sets: H− = {x ∈ X : f (x) = 0},H+ = {x ∈
X : f (x) = 1},D+ = {xi ∈ X : yi = 1}. We attempt to find an
explainer E : X −→ X, generating counterfactuals E(x) = x̃ , such
that f (x) , f (E(x)). Finally, values with ·̂ usually denote estimated
quantities, values carrying ·̃ denote candidate values and values
with ·∗ denote the best value among a number of candidate values.

3 BACKGROUND
3.1 (Conditional) Variational Autoencoder
The simple VAE is often accompanied by an isotropic Gaussian prior
p(z) = N(0, I ). We then aim to optimize the following objective
known as the Evidence Lower Bound (ELBO),

LVAE (p,q) =Eq(z |x f )[logp(x f |z)] − DKL[q(z |x f )| |p(z)].
This objective bounds the data log likelihood, log p(x f ), from be-
low. In the simple model, the decoder and the encoder are chosen
to be Gaussians, that is, q(z |x f ) = N(z |µq , Σq ) and p(x f |z) =
N(x f |µp , Σp ), where the distributional parameters µ(·) and Σ(·)
are estimated by neural networks. If all inputs were binary instead,
one could use a Bernoulli decoder, p(x f |z) = Ber (x f |ϱp (z)).

Conditioning on a set of inputs, say xp , the objective that bounds
the conditional log likelihood, log p(x f |xp ), can be written as [18],

LCVAE (p,q) =Eq(z |x f ,x p )[logp(x f |z,xp )]−
DKL[q(z |x f ,xp )| |p(z |xp )],

(1)

where one assumes that the prior p(z |xp ) is still an isotropic Gauss-
ian, i.e. z |xp ∼ N(0, I ). We will refer to this model as the CVAE.

4 C-CHVAE
In this part, we present both our objective function and the CHVAE
architecture in Sections 4.1 and 4.2, respectively.
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4.1 The C- in C-CHVAE
We take the pretrained, potentially non-linear, classifier f (·) as
given, which can also be a training time fairness constraint clas-
sifier [1, 23]. Let us denote the encoder function, parameterized
by θ , by mθ (·;xp )), taking arguments x f . The decoder function,
parametrized byϕ, is denoted byдϕ (·). It has inputsmθ (x f ;xp ) = z ∈
Rk . Then our objective reads as follows,

min
δ ∈Z

| |δ | | subject to (2)

f (дϕ̂ (mθ̂ (x) + δ),xp ) , f (x f ,xp ) & (3)

min
ϕ,θ
ℓ(x ,дϕ (mθ (x f ;xp ))) − Ω(mθ (x f ;xp )), (4)

where Ω(·) is a regularizer on the latent space and ∥·∥ denotes the
p-norm. The idea behind the objective is as follows. First, (4) approx-
imates the conditional log likelihood, p(x f |xp ), while learning a
lower dimensional latent representation. Subsequently, we use this
latent representation, ẑ =mθ̂ (x f ;xp ), to search for counterfactuals
((2) and (3)). If the perturbation on ẑ is small enough, the trained
decoder дϕ̂ gives a reconstruction x̃ f ∗ that (a) is similar to x f , (b)
satisfies the empowerment condition (3), and (c) lies in regions
where we would usually expect data. Also, notice that this regular-
izer effectively plays the role of the distance function. It determines
the neighbourhood of x in which we search for counterfactuals.

4.2 CHVAE
To solve the above optimization problem defined in (2)-(4), it is
crucial to elicit an appropriate autoencoder architecture. We adjust
the HVAE [14] so that it approximates conditional densities.

Factorized decoder. We suggest using the following hierarchi-
cal model to accommodate the generation of counterfactuals condi-
tional on some immutable attributes. The factorized decoder with
a conditional uniform Gaussian mixture prior ((5) and (6)) with
parameters πl = 1/L for all mixture components l reads:

p(ci |xpi ) = Cat(π ) (5)

p(zi |ci ,xpi ) = N(µp (ci ), IK ) (6)

p(zi ,x fi ,ci |x
p
i ) = p(zi ,ci |x

p
i )

Df∏
d=1

p(x fd,i |zi ,ci ,x
p
i )

= p(zi |ci ,xpi )p(ci |x
p
i ) ·

Df∏
d=1

p(x fd,i |zi ,ci ,x
p
i ), (7)

where zi ∈ Rk is the continuous latent vector and ci ∈ RC is
a vector indicating mixture components, generating the instance
x
f
i ∈ RDf . Note that (5) and (6), where we assume independence

between ci and x
p
i , are analogous to the prior on z in the CVAE

above, (1). Moreover, the intuition behind the mixture prior is to
facilitate clustering of the latent space in a meaningful way.

Since the factorized decoder in (7) is a composition of various
likelihood models, we can use one likelihood function per input,
giving rise to modelling data with real-valued, positive real val-
ued, count, categorical and ordinal values, concurrently. Addition-
ally, the modelling framework lets us specify a variety of interval

constraints by choosing likelihoods appropriately (e.g. truncated
normal distribution or Beta distribution for interval data).

Factorized encoder. Then the factorized encoder is given by:

q(ci |xpi ,x
f
i ) = Cat(π (x

p
i ,x

f
i ))

q(zi |x fi ,x
p
i ,ci ) = N(µq (x

f
i ,x

p
i ,ci ), Σq (x

f
i ,x

p
i ,ci ))

q(zi ,x fi ,ci |x
p
i ) = q(zi ,ci |x

p
i )

Df∏
d=1

p(x fd,i |zi ,ci ,x
p
i )

= q(zi |ci ,xpi )q(ci |x
p
i ) ·

Df∏
d=1

p(x fd,i |zi ,ci ,x
p
i ). (8)

Parameter sharing and likelihoodmodels. Unlike in the vanilla
CVAE in (1), which is only suitable for one data type at the time, the
decoder was factorized into multiple likelihood models. In practice,
one needs to carefully specify one likelihood model per input di-
mension p(x fd,i |zi ,ci ). In our github repository, we describe more
details of the model architecture and which likelihood models we
have chosen.

ELBO. The evidence lower bound (ELBO) can be derived as:

logp(x f |xp ) ≥ E
q(ci ,zi |x f

i ,x
p
i )

Df∑
d=1

logp(x fd,i |zi ,ci ,x
p
i )

−
∑
i
E
q(ci |x f

i ,x
p
i )
DKL[q(zi |ci ,x fi ,x

p
i )| |p(zi |ci ,x

p
i )]

−
∑
i
DKL[q(ci |x fi ,x

p
i )| |p(ci |x

p
i )]

where we recognize the influence of the factorized decoder in the
first line, effectively allowing us to model complex, heterogeneous
data distributions.

4.3 Counterfactual search algorithm
As inputs, our algorithm requires any pretrained classifier f and
the trained decoder and encoder from the CHVAE. It returns the
closest E(x) due to a nearest neighbour style search in the latent
space. The details can be found in our github repository, but it
uses a standard procedure to generate random numbers distributed
uniformly over a sphere [6, 12] around the latent observation ẑ.
Thus, we sample observations z̃ in lp -spheres around the point ẑ
until we find a counterfactual explanation x̃∗.

5 EVALUATING ATTAINABILITY OF
COUNTERFACTUALS

To quantify faithfulness, [11] suggest two measures, which we
shortly review here since they do not belong to the catalog of com-
monly used evaluation measures (such as for example accuracy).
Their two suggested measures quantify proximity (i.e. whether E(x)
is a local outlier) and connectedness (i.e. whether E(x) is connected
to other correctly classified observations from the same class). How-
ever, these measures do not indicate the degree of difficulty for the
individual to attain a certain counterfactual given the current state.
We suggest two appropriate measures in 5.2.
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5.1 Counterfactual faithfulness
Proximity. Ideally, the distance between a counterfactual ex-

planation E(x) and its closest, non-counterfactual neighbour a0 ∈
H+ ∩ D+ should be small:

a0 = argmin
x ∈H+∩D+

d(E(x),x).

Moreover, it is required that the observation resembling our coun-
terfactual, a0, be close to the rest of the data, which gives rise to
the following relative metric:

P(E(x)) = d(E(x),a0)
min

x,a0∈H+∩D+
d(a0,x) .

The intuition behind this measure is to help evaluate whether coun-
terfactuals are outliers relative to correctly classified observations.

Connectedness. We say that that a counterfactual e and an ob-
servation a are ϵ-chained, with ϵ > 0, if there exists a sequence
e0,e1, ...,eN ∈ X such thate0 = e,eN = a and∀i < N ,d(ei ,ei+1) <
ϵ and f (e) = f (a). Now, given an appropriate value for ϵ , we can
evaluate the connectedness of a counterfactual E(x) using a binary
score: C(E(x)) = 1, if E(x) is ϵ-connected to a ∈ H+ ∩ D+ and
C(E(x)) = 0, otherwise.

5.2 Degree of difficulty
Individual costs of counterfactuals. We suggest to measure

the degree of difficulty of a certain counterfactual suggestion x̃ in
terms of the percentiles of x fd = {xi,d }Ni=1 and x̃

f ∗
d : Q j (x̃ f ∗d ) and

Qd (x fd ) where Qd (·) is the cumulative density function of x fd . As
an example, a cost of p suggests changing a free feature by at least
p percentiles to receive a desired result.

We suggest two measures with the following properties: (a)
cost(x fd ;x

f
d ) = 0N×1, implying that staying at the current state

is costless and (b) cost(x̃ f + ν1N×1;x f ) ≥ cost(x̃ f ;x f ) with ν ≥ 0,
that is, the further from the current state, the more difficulties we
have to incur to achieve the suggestion. The difficulty measures
then read as follows:

cost1(x̃ f ∗;x f ) =
Df∑
d=1
|(Qd (x̃ f ∗d ) −Qd (x fd )|, (9)

cost2(x̃ f ∗;x f ) = max
d
|Qd (x̃ f ∗d ) −Qd (x fd )|. (10)

The total percentile shift (TS) in (9) can be thought of as a baseline
measure for how attainable a certain counterfactual suggestion
might be. The maximum percentile shift (MS) in (10) across all free
features reflects the maximum difficulty across all mutable features.

6 EXPERIMENTS
6.1 Synthetic experiments

Homogeneous features. We begin by describing a data generat-
ing processes (DGP) for which it can be difficult to identify faithful
counterfactuals. Example 1 corresponds to the case when all fea-
tures are numerical. We generate 10000 observations from this DGP.
We assume that the constant classifier I (x2 > 6) is given to us and
our goal is to find counterfactuals for observations with 0-labels.

(a) Reconstructed train
data generated by different
ẑ (coloured).

(b) Density of ẑ . Colours
aligned so that left red ẑ
generates left x̂ in 2(a).

(c) Density of ẑ from 2(b)
in blue. Density of z̃∗ (red)
belongs to E(x) from 2(f) .

(d) True DGP. (e) Test data and E(x ) by
GS/AR (not shown). Upper
right E(x ) lie where no
data is expected.

(f) Test data and E(x ) by
our cchvae. Most E(x ) lie
in high-density areas and
are connected.

Figure 2: Example 1. Homogeneous features. Figure 2(c)
shows that generating close and meaningful counterfactu-
als amounts to finding the closest latent code from only 2 of
the 3 modes of the latent distribution.

Figure 2(a) shows the reconstructed training data. The true DGP is
shown in figure 2(d).

Example 1 (make blobs). We generate x = [x1,x2] from a
mixture of 3 Gaussians with µ = [µ1, µ2, µ3] and σ = [σ1,σ2,σ3] =
[1, 1, 1] with a fixed seed. The response y is generated from Pr (y =
1|X ) = I (x2 > 6), where I (·) denotes the indicator function.

Figure 2(e) shows test data and their generated counterfactuals
from AR and GS. For values from the lower right (blue) cluster in
figure 2(a), both AR and GS suggest E(x) that lie in the top right
corner (figure 2(e)). Since both GS and AR generate almost identical
values, we report the results for GS only. AR and GS favour sparse
E(x), meaning they only require changes along the second feature
axis. However, it is apparent that the upper right corner E(x) are
not attainable – according to the DGP no data lives in this region.
In contrast, our C-CHVAE suggests E(x) that lie in regions of high
data density, figure 2(f).

To gain a better understanding of our method consider figure
2(b). It shows the density of the estimated latent variable ẑ. The
colours correspond to the clusters in the reconstructed data of
figure 2(a). In figure 2(c), the counterfactual latent density z̃∗, i.e.
the density of the latent variables from the counterfactuals x̃∗, is
depicted on top of the density of ẑ. It shows that the density of z̃∗ is
concentrated on the two modes which generate data that lies close
to the decision boundary of the DGP.

6.2 Real world data sets
For our real world experiments we choose 2 credit data sets; a
processed version of the “Give me some credit” data set and the
Home Equity Line of Credit (HELOC) data set.12 For the former, the
1https://www.kaggle.com/brycecf/give-me-some-credit-dataset.
2https://community.fico.com/s/explainable-machine-learning-challenge.
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(a) Local outlier factor score (b) Connectedness score

Figure 3: Faithfulnes relative to x ∈ H+ ∩ D+ for GMSC.

(a) Local outlier factor score (b) Connectedness score

Figure 4: Faithfulness relative to x ∈ H+ ∩D+ for HELOC data.

target variable records whether individuals experience financial
distress within a period of two years, in the latter case one uses the
applicants’ information from credit reports to predict whether they
will repay the HELOC account within a fixed time window. Both data
sets are standard in the literature [4, 17, 21] and are described in
more detail in our github repository.

While GS works for different classifiers, the AR and HCLS algo-
rithms do not. To also compare our results with AR we follow Ustun
et al. [21] and choose an ℓ2-penalized logistic regression model. For
HCLS, we use SVM with a linear kernel when possible.

“Give Me Some Credit” (GMSC). For this data set, GS and AR
produce very similar results in terms of faithfulness. HCLS performs
worst and C-CHVAE (our’s) outperforms all other methods. In terms
of the local outlier score, the difference gets as high as 20 percentage
points (figure 3(a)). With respect to the connectedness score the
difference grows larger for large ϵ (figure 3(b)). In terms of difficulty,
it the C-CHVAE’s faithfully generated counterfactuals come at the
cost of greater TS and MS (figure 5).

HELOC. With respect to counterfactual faithfulness, the C-CHVAE
outperforms all other methods for both measures and all parameter
choices (figure 4). Again, HCLS is not performing well; one reason
could lie in the fact that one needs to specify the directions in which
all free features are allowed to change. This seems to require very
careful choices. Moreover, it is likely to restrict the counterfactual
suggestions, leading to counterfactuals that might look less typical,
which is what faithfulness measures. In terms of difficulty, the pat-
tern is similar to the one above (see figure 6). The C-CHVAE tends

(a) AR (b) C-CHVAE

(c) GS (d) HCLS

Figure 5: Total shift vs. max. shift for E(x) on GMSC data.

(a) AR (b) C-CHVAE

(c) GS (d) HCLS

Figure 6: Total shift vs. max. shift for E(x) on HELOC data.

to make suggestions with higher MS. This time, to obtain faithful
counterfactuals we are paying a price in terms of higher MS.

7 CONCLUSION AND FUTUREWORK
We have introduced a general-purpose framework for generating
counterfactuals; in particular, the fact that our method works for
tabular data without the specification of distance or cost functions
in the input space allows practitioners and researchers to adapt this
work to a wide variety of applications. To do so, several avenues for
future work open up. First, all existing methods make recommenda-
tions of how features would need to be altered to receive a desired
result, but none of these methods give associated input importance.
And second, it would be desirable to formalize the tradeoff between
the autoencoder capacity and counterfactual faithulness.
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A COUNTERFACTUAL SEARCH –
ALGORITHMS

A.1 Counterfactual search algorithm
As inputs, the algorithm requires any pretrained classifier f and the
trained decoder and encoder from the CHVAE. It returns the closest
counterfactual. We note algorithm 1 uses a standard procedure
to generate random numbers distributed uniformly over a sphere.
Laugel et al. [12] use a similar algorithm, but relative to their work,
we look for the smallest change in the latent representation z (not
in input space) that would lead to a change in the predicted label.
Thus, we sample observations z̃ in lp -spheres around the point ẑ
until we find a counterfactual x̃∗. For positive numbers r1 and r2,
we define a (r1, r2)-sphere around ẑ:

S(ẑ, r1, r2) = {z̃ ∈ Z : r1 ≤ ∥ẑ − z̃∥ ≤ r2}. (11)

In order to generate uniform random numbers over a sphere,
we also use the YPHL algorithm [6]. Their algorithm allows us to
generate observations uniformly distributed over the unit-sphere.
Next, one draws observations uniformly fromU [r1, r2], which are
in turn used to rescale the distance between uniform sphere values
and ẑ. Eventually, we arrive at observations z̃ that are uniformly
distributed over S(ẑ, r1, r2).

Algorithm 1 shows a counterfactual search procedure when the
latent variable has a dense distribution. It is straightforward to
adjust the algorithm to scenarios when one desires to generate
multiple counterfactual examples, also known as flip sets [17, 21].
The idea is that the user can choose one counterfactual from a menu
of different counterfactuals, which fits her preferences best.

B COMMON LIKELIHOOD MODELS
For the sake of completeness we enumerate a list of commonly used
likelihood models for numerical and nominal features [14]:
• Real-valued data. For real valued data, one usually assumes
a Gaussian likelihood model such as,

p(xi,d |γi,d ) = N(µd (zi ),σ 2
d (zi )),

where γi,d = {µd (zi ),σ 2
d (zi )} are modelled by the outputs

of a DNN with inputs z.
• Positive real-valued data. For positive real valued data,
one can assume a log normal likelihood model such as,

p(xi,d |γi,d ) = logN(µd (zi ),σ 2
d (zi )),

where γi,d = {µd (zi ),σ 2
d (zi )}.• Count data. For count data, one can assume a Poisson like-

lihood model such as,

p(xi,d |γi,d ) = Poisson(λd (zi )),
where γi,d = {λd (zi )}.
• Ordinal data. For ordinal valued data, we use the same
procedure as in [14].
• Categorical data. For categorical data one can assume a
multinomial logit model, where the probability of every cat-
egory r is given by

p(xi,d = r |γi,d ) =
exp(hdr (zi ))∑R
r=1 exp

(hdr (zi ))
,

Algorithm 1 Stochastic Counterfactual Search For Latent Space
Input: Xtrain : training data; xi,test : test observation; f : clas-
sifier trained on Xtrain ;mθ̂ , дϕ̂ : CHVAE encoder and decoder
trained on Xtrain ; S : number search samples; ∆r : search radius.
Initialize: f (xi,test ) = ŷi,test ; mθ̂ (xi,test ) = ẑi,test ; r = 0;
C = ∅; ẑtrain,min = mini ẑi,train ; ẑtrain,max = maxi ẑi,train .

while C = ∅ ∧ z̃i,test ∈ [ẑtrain,min , ẑtrain,max ] do
for j = 1 to J do
sample z̃ ji,test from S(ẑi,test , r ,∆r ) in (11) {Perturbed rep-
resentation}
x̃
j
i,test = дϕ̂ (z̃

j
i,test ) {Potential counterfactual}

ỹ
j
i,test = f (x̃ ji,test )
if ỹ ji,test , ŷi,test then
C ←− (z̃ ji,test , x̃

j
i,test , ỹ

j
i,test )

end if
end for
if C = ∅ then
r = r + ∆r {Push search range outward}

else if z̃i,test < [ẑtrain,min , ẑtrain,max ] then
Return: {No counterfactual consistent with data distribu-
tion}
C = ∅

else
Return: {Find ’closest’ counterfactual}
z̃∗i,test = argminz̃test ∈C | |z̃test − ẑtest | |
x̃∗i,test = дϕ̂ (z̃∗i,test ), ỹ∗i,test = f (x̃∗i,test )

end if
end while

with parameters γi,d = {hd0 (zi ),hd1 (zi ), ...,hdR−1 (zi )} and
hd0 (zi ) = 0 to ensure identifiablity.

C SYNTHETIC EXAMPLE
Example 2 (discretized make moons). We generate the upper

have circle [x1,x2]-pairs by cos(i) for i ∈ (0,π ), which we round
to the closest decimal. The lower have circle [x1,x2]-pairs are then
generated by 1 - sin(i) for i ∈ (0,π ), where we round sin(i) to the
closest integer. Both the upper and the lower half contain half of the
observations each and x2 is treated as categorical with 19 categories.
The response y is then generated from Pr (y = 1|X ) = I (x1 > 0).

Heterogeneous features. Figures 7(g), 7(a) and 7(b) depict the
true data generating process with corresponding distribution of
labels, corresponding 2d-histogram and test observations from the
0-class. Figure 7(c) depicts the 2d-histogram from the reconstructed
test data. Despite the simplistic class assignment, finding attainable
counterfactuals might not be trivial in this case since the data
density is very fragmented.

Next, figures 7(d)-7(f) depict 25 counterfactuals generated using
AR, HCLS and our C-CHVAE, respectively. For AR, counterfactuals
appear in the 1st and the 9th category. For GS, counterfactuals
appear in all categories. For our C-CHVAE, counterfactuals appear
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(a) 2-d histogram of data
generating process
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(b) Test data 2d-
histogram from 0-class.
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(c) Reconstructed train-
ing data.
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(d) E(x ) by ar.
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(e) E(x ) by gs.
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(f) E(x ) by cchvae.
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(g) Data generating process.
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Figure 7: Example 2. Heterogeneous features. AR generates
counterfactuals E(x) from 1st and 9th category. GS gener-
ates counterfactuals from all categories. CCHVAE generates
counterfactuals from 1st, 9th and 19th category. Figure 7(h)
shows test data conditional on ∆z = z̃∗ − ẑ, which indicates
how much ẑ needs to change to alter the prediction.

in the 1st, 9th and 19th category. The model correctly produces
counterfactuals for all categories.

D DATA
D.1 Real world example: “Give Me Some

Credit”
In the following, we list the specified pretrained classification mod-
els as well as the parameter specification used for the experiments.
We use 80 percent of the data as our training set and the remaining
part is used as the holdout test set. Additionally, we allow f access
to all features, i.e. f (x f ,xp ). The state of features can be found in
table 3.

AR [21]. The AR algorithm requires to choose both an action set
and free and immutable features. The implementation can be found
here: https://github.com/ustunb/actionable-recourse. We specify
that the DebtRatio feature can only move downward [21]. The AR
implementation has a default decision boundary at 0 and therefore
one needs to shift the boundary. We choose pAR = 0.50, adjusting
the boundary appropriately. Finally, we set the linear programming
optimizer to cbc, which is based on an open-access python imple-
mentation. As f , we choose the l2-regularized logistic regression
model.

Feature Free Model Dir. (HCLS)
Revolving Utilization Of Unsecured Lines Y log Normal ↓
Age N Poisson
Number Of Times 30-59 Days Past Due Not Worse Y Poisson ↓
Debt Ratio Y log Normal ↓
Monthly Income Y log Normal ↑
Number Open Credit Lines And Loans Y Poisson ↓
Number Of Times 90 days Late Y Poisson indirect
Number Real Estate Loans Or Lines Y Poisson ↓
Number Of Times 60-89 Days Past Due Not Worse Y Poisson ↓
Number Of Dependents N Poisson

Table 3: “Give Me Some Credit”: State of features and likeli-
hood models.

GS [12]. GS is based on a version of the YPHL algorithm de-
scribed above. As such we have to choose appropriate step sizes in
our implementation to generate new observations from the sphere
around x . We choose a step size of 0.1. As f , we choose the l2-
regularized logistic regression model.

HCLS [10]. In our experiment we used their baseline MATLAB
implementation, which can be found here: github.com/michael-
lash/BCIC. HCLS requires us to choose a budget, which we set
to 10. It also requires to choose a cost associated with changing
each feature. We set it equal to 1 for all features. As f , we choose
SVM with the Gaussian kernel, which delivered good results in
reasonable time. Initially, we tried to choose the linear kernel, but
after training for several hours with no convergence, we decided
against it. We also experimented with different standardization
forms (minmax standardization, z-score standardization), which
did not help. For the evaluation metric, we choose accuracy and
we used a balance option that weighs each individual sample in-
versely proportional to class frequencies in the training data. We
had to specify an indirectly changeable feature, which we set to
NumberOfTimes90daysLate. Finally, we had to choose the direction
(Dir.(HCLS) in table 3) in which every free feature is allowed to
move.

C-CHVAE (ours). For our algorithm we made the following
choices. We set the latent space dimension of both s and z to 5
and 6, respectively. For training, we used 50 epochs. Table 3 gives
details about the chosen likelihood model for each feature. For
count features, we use the Poisson likelihood model, while for fea-
tures with a support on the positive part of the real line we choose
log normal distributions. As f , we choose the l2-regularized logistic
regression model.

D.2 Real world example: HELOC
The Home Equity Line of Credit (HELOC) data set consists of credit
applications made by homeowners in the US, which can be obtained
from the FICO community.3 The task is to use the applicant’s infor-
mation within the credit report to predict whether they will repay
the HELOC account within 2 years. Table 4 gives an overview of
the available features and the corresponding assumed likelihood
models.

3https://community.fico.com/s/explainable-machine-learning-challenge?tabset-
3158a=2.
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Feature Free Model Dir. (HCLS)
MSinceOldestTradeOpen N Poisson
AverageMInFile N log Normal
NumSatisfactoryTrades Y Poissonl ↑
NumTrades60Ever/DerogPubRec Y log Normal ↓
NumTrades90Ever/DerogPubRec Y log Normal indirect
NumTotalTrades Y Poisson ↓
PercentInstallTrades Y log Normal ↑
MSinceMostRecentInqexcl7days Y Poisson ↓
NumInqLast6M Y Poisson ↓
NetFractionRevolvingBurden Y log Normal ↓
NumRevolvingTradesWBalance Y Poisson ↑
NumBank/NatlTradesWHighUtilization Y log Normal ↑
ExternalRiskEstimate N log Normal
MPercentTradesNeverDelq Y log Normal ↓
MaxDelq2PublicRecLast12M Y Poisson ↓
MaxDelqEver Y Poisson ↓
NumTradesOpeninLast12M Y Poisson ↓
NumInqLast6Mexcl7days Y Poisson ↓
NetFractionRevolvingBurden Y Poisson ↓
NumInstallTradesWBalance Y Poisson ↑
NumBank2NatlTradesWHighUtilization Y Poisson ↓
PercentTradesWBalance Y log Normal ↑
Table 4: HELOC: State of features and likelihood models.

AR and GS. As before. Additionally, we do not specify how
features have to move.

HCLS. As f , we choose SVMwith the linear kernel. We specified
NumTrades90Ever/DerogPubRec as the indirect feature. Again, we
had to specfiy which directions features move, which we indicated
in the ’Direction’ column of table 4.

C-CHAVE (ours). For our algorithm we made the following
choices. We set the latent space dimension of both s and z to 1
and 10, respectively. For training, we used 60 epochs. Table 4 gives
details about the chosen likelihood model for each feature. The rest
remains as before.
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Abstract

The goal of algorithmic recourse is to reverse
unfavorable decisions (e.g., from loan denial to
approval) under automated decision making by
suggesting actionable feature changes (e.g., re-
duce the number of credit cards). To generate
low-cost recourse the majority of methods work
under the assumption that the features are indepen-
dently manipulable (IMF). To address the feature
dependency issue the recourse problem is usu-
ally studied through the causal recourse paradigm.
However, it is well known that strong assump-
tions, as encoded in causal models and struc-
tural equations, hinder the applicability of these
methods in complex domains where causal depen-
dency structures are ambiguous. In this work, we
develop DEAR (DisEntangling Algorithmic Re-
course), a novel and practical recourse framework
that bridges the gap between the IMF and the
strong causal assumptions. DEAR generates re-
courses by disentangling the latent representation
of co-varying features from a subset of promising
recourse features to capture the main practical re-
course desiderata. Our experiments on real-world
data corroborate our theoretically motivated re-
course model and highlight our framework’s abil-
ity to provide reliable, low-cost recourse in the
presence of feature dependencies.

1 Introduction

Counterfactual explanations provide a means for action-
able model explanations at feature level. Such explanations,
which have become popular among legal and technical com-
munities, provide both an explanation and an instruction:
the former emphasizes why a certain machine learning (ML)
prediction was produced; the latter gives an instruction on
how to act to arrive at a desirable outcome.

Several approaches in recent literature tackled the problem
of providing recourses by generating counterfactual explana-
tions [41, 37]. For instance, Wachter et al. [41] proposed a
gradient based approach which finds the nearest counterfac-
tual resulting in the desired prediction. Pawelczyk et al. [27]
proposed a method which uses a generative model to find
recourses in dense regions of the input space. More recently,
Karimi et al. [15] advocated for considering causal structure
of the underlying data when generating recourses to avoid
spurious explanations. Yet, despite their popularity these
works are not without drawbacks: (i) Wachter et al. [41] im-
plicitly assume that the input features can be independently
manipulated, (ii) Pawelczyk et al. [27] narrowly focuse on
generating recourse in dense regions of the input space, and
(iii) Karimi et al. [15] require a correct specification of the
causal graph and structural equation models.

For many practical use cases the strong causal assumptions
constitute the limiting factor when it comes to the deploy-
ment of causal recourse methods. On the other hand, most
of the practical approaches implicitly make the indepen-
dently manipulable feature (IMF) assumption ignoring fea-
ture dependencies. Therefore critiques of counterfactual
explanations and algorithmic recourse have highlighted the
feature dependency issue [2, 39]: in a nutshell, changing
one feature will likely change others. For instance, a re-
course system might ask to increase the feature ‘income’
for a loan approval. However, there might be several ways
of achieving the same desired outcome of loan approval:
either one could increase ‘income’ through a promotion or
one could find a new role in a different company. In the
former case, the value of the variable reflecting ‘time on
job’ would go up, which would likely amplify the model’s
output towards the desirable outcome. In the latter case,
however, the model’s output would likely swing towards
a loan rejection, since the short ‘time on job’ opposes the
positive influence of the ‘income’ increase.

The fundamental drawbacks of these recourse paradigms
motivate the need for a new recourse framework (see Figure
1): (i) The framework should allow recourses to adhere to
feature dependencies without relying on causal models. (ii)
It should also enable recourses to lie in dense regions of the
data distribution. (iii) Finally, it should ensure that recourses
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x1

...
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x̌

+δ1

+δd

(a) IMF recourse

δz

z h x̌

+

(b) Manifold-based recourse

d3 x1

x2

x3 x̌

+

(c) Causal recourse

dS

xS

v

g x̌

+

(d) Our recourse framework

Figure 1: The spectrum of recourse frameworks. Illustrating the different assumptions underlying each recourse
framework. (a): Recourses are found by neglecting input dependencies (e.g., [41]). (b): Actions made to the latent
code z generate recourse using a generative model h and neglect control over feature costs (e.g., [27]). (c): Recourses are
found by having the decision maker come up with a causal model between the input features (illustrated by the red directed
edges) (e.g., [15]). (d): Our framework bridges this gap by allowing a generative model g to be influenced by a subset of
inputs xS . This enables (i) generation of counterfactuals in dense regions of the input space, and (ii) modeling of feature
dependencies (iii) without the reliance on causal graphical models.

are attainable at low and controllable cost by the individual.
Combining these requirements in one recourse system poses
a severe challenge to making algorithmic recourse practica-
ble in the real world. In this work, we address this critical
problem in the face of these three challenges by formulating
the problem of algorithmic recourse using a new framework
called DEAR (DisEntangling Algorithmic Recourse). Our
framework exploits a generative model and uses techniques
from the disentanglement literature to capture the main prac-
tical desiderata (i) – (iii). Our key contributions can be
summarized as follows:

• Novel recourse framework. Our framework gener-
ates recourses by disentangling the latent representa-
tion of co-varying features with indirect impact on the
recourse from a subset of promising recourse features.

• Interpretable recourse costs. As a byproduct of our
framework, we show that recourse actions can be di-
vided into two types of actions: direct and indirect
actions, which can be exploited to lower the cost of
algorithmic recourse.

• Constructive theoretical insights. We develop the-
oretical expressions for the costs of recourse which
guide the design of our generative model and contribute
to reliably find low cost algorithmic recourse.

• Extensive experiments. Our experimental evaluations
on real-world data sets demonstrate that DEAR gener-
ates significantly less costly and at the same time more
realistic recourses than previous manifold based ap-
proaches [1, 31, 27, 12].

2 Related Work

Our work builds on a rich literature in the field of algorith-
mic recourse. We discuss prior works and the connections
to this research.

Algorithmic approaches to recourse. As discussed ear-
lier, several approaches have been proposed in literature
to provide recourse to individuals who have been nega-
tively impacted by model predictions, e.g., [36, 18, 5, 41,
37, 12, 38, 27, 23, 25, 13, 32, 14, 4, 1, 35, 31]. These ap-
proaches can be roughly categorized along the following
dimensions [40]: type of the underlying predictive model
(e.g., tree based [36, 21, 26] vs. differentiable classifier
[41]), type of access they require to the underlying pre-
dictive model (e.g., black box [18, 9] vs. gradients [1]),
whether they encourage sparsity in counterfactuals (i.e., only
a small number of features should be changed [16, 13, 34]),
whether counterfactuals should lie on the data manifold
[12, 27, 23, 1, 8, 17, 42], whether the underlying causal re-
lationships should be accounted for when generating coun-
terfactuals [15, 14], whether the output produced by the
method should be multiple diverse counterfactuals (e.g.,
[33, 25]) or a single counterfactual, and whether the under-
lying task is posed as a regression (e.g., [4, 35]) or classifi-
cation problem.

While there have been few recent works that consider input
dependencies in algorithmic recourse problems, these works
require strong causal assumptions [15, 14]. For practical use
cases, such strong causal assumptions constitute the limiting
factor when it comes to the deployment of these models. In
contrast, our work makes the first attempt at tackling the
problem of generating recourses in the presence of feature
dependencies while not relying on structural causal models.

Disentangled representations. The techniques that we
leverage in this work are inspired by the representation learn-
ing literature. The core principle underlying disentangled
representation learning is to learn independent factors of
variation that capture well most of the variation underlying
the unknown data generating process [3]. For example, the
idea of using disentangled representations has been success-
fully leveraged to ensure that classifiers are fair while en-
suring high classification accuracy downstream [7, 22, 20],
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to conduct local model audits [24], or to generate highly
realistic data [30]. In contrast, our main insight is that disen-
tangled representations can be used to generate recourses in
the presence of dependent data by deriving indirect actions
from direct actions.

3 Preliminaries

Notation. Before we introduce our framework, we note ‖·‖
refers to the 2-norm of a vector, h(f(x)) denotes the proba-
bilistic output of the trained classifier, where f : Rd→R is
a differentiable scoring function (e.g., logit scoring function)
and h : R→ [0, 1] is an activation function (e.g., sigmoid)
that maps scores to continuous probability outputs. We de-
note the set of outcomes by y ∈ {0, 1}, where y = 0 is the
undesirable outcome (e.g., loan rejection) and y = 1 indi-
cates the desirable outcome (e.g., loan approval). Moreover,
ŷ = I[h(f(x)) > θ] = I[f(x) > s] is the predicted class,
where I[·] denotes the indicator function and θ is a threshold
rule in probability space (e.g., θ = 0.5), with correspond-
ing threshold rule s in scoring space (e.g., s = 0 when a
sigmoid activation is used).

The recourse objective. Counterfactual explanation meth-
ods provide recourses by identifying which attributes to
change for reversing an unfavorable model prediction. We
now describe the generic formulation leveraged by several
state-of-the-art recourse methods. The goal is to find a set
of actionable changes in order to improve the outcomes of
instances x which are assigned an undesirable prediction
under f . Moreover, one typically defines a cost measure in
input space c : Rd × Rd −→ R+. Typical choices are the `1
or `2 norms. Then the recourse problem is set up as follows:

δ∗ = arg min
δ

c(x, x̌) s.t. x̌ = x + δ,

x̌ ∈ Ad, f(x̌) = s.
(1)

The objective in eqn. (1) seeks to minimize the recourse
costs c(x, x̌) subject to the constraint that the predicted la-
bel ŷ flips from 0 (i.e., f(x̌) < s) to 1 (i.e., f(x̌) ≥ s), and
Ad represents a set of constraints ensuring that only admis-
sible changes are made to the factual input x. For example,
Ad could specify that no changes to protected attributes
such as ‘sex’ can be made. The assumption underlying
(1) is that each feature can be independently manipulated
regardless of existing feature dependencies. Under this so-
called independently manipulable feature (IMF) assumption,
existing popular approaches use gradient based optimiza-
tion techniques [41, 29], random search [18], or integer
programming [37, 13, 32] to find recourses.

4 Our Framework: DEAR

The discussion in the previous sections identified three
desiderata for a new recourse framework:

(i) Feature dependencies. The framework should cap-
ture feature dependencies while not relying on causal
graphical models and structural equations.

(ii) Realistic recourse. The so identified recourses should
lie in dense regions of the input space.

(iii) Low costs. The framework should allow to find re-
courses with controllable and low recourse costs.

With requirements (i) – (iii) in mind we present our novel
recourse framework, DisEntangling Algorithmic Recourse
(DEAR), which satisfies these fundamental requirements.
More specifically: First, we introduce the generative model
required to generate recourses under input dependencies
that lie in dense regions of the input space. Second, using
our model we then show that disentangled representations
need to be learned to yield accurate recourse cost estimates.
Third, we present our objective function to generate re-
courses under input dependencies and suggest a constructive
explanation for why our framework finds recourses more
reliably than existing manifold-based approaches. Finally,
we provide a detailed discussion on how to operationalize
and optimize our objective effectively.

4.1 The Generative Model

On a high level, our framework consists of separating the
latent code of a generative model into 1) observable features
xS – that we wish to perform direct recourse actions on
– and 2) latent space features v that have been trained to
become disentangled of the observable features. A direct
recourse action has two effects: a direct effect on the input
features that have to be changed, and an indirect effect on
other, dependent features. The strength of the indirect effect
is then determined by a generative model (see Figure 2). To
formalize this intuition, let the input x be produced by the
following generative model:

x = [xS ,xSc ]

= [gxS (v,xS), gxSc (v,xS)] = g(v,xS),
(2)

where g : Rk→Rd, v ∈ Rk−|S| refers to the latent
code and xS corresponds to a subset of the input fea-
tures where S ⊂ {1, . . . , d}, and the complement set is
Sc = {1, . . . , d} \ S.

4.2 Disentangled Representations Promote Low Costs

Since one of the key considerations in recourse literature
are recourse costs we use our generative model from eqn.
(2) and analyze the recourse cost estimates under this model.
Using the following Proposition, we obtain an intuition on
how the generative model required for our framework has
to be trained to yield low recourse costs.
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Proposition 1 (Recourse costs). Under the generative
model in (2), the cost of recourse ‖δx‖2 = ‖x − x̌‖2 is
given by:

‖δx‖2 ≈ d>S
(
J(xS)
xS

>
J(xS)
xS

)
dS︸ ︷︷ ︸

Direct Costs

+d>S
(
J(xSc )
xS

>
J(xSc )
xS

)
dS︸ ︷︷ ︸

Indirect Costs

,

where :

J(xS)
xS =

∂gxS (v,xS)

∂v

∂v

∂xS︸ ︷︷ ︸
Entanglement costs

+
∂gxS (v,xS)

∂xS︸ ︷︷ ︸
Identity Mapping

J(xSc )
xS =

∂gxSc (v,xS)

∂v

∂v

∂xS︸ ︷︷ ︸
Entanglement costs

+
∂gxSc (v,xS)

∂xS︸ ︷︷ ︸
Elasticity of gxSc w.r.t xS

.

The result of Proposition 1 provides constructive insights
for the implementation of the generative model g. It says
that we can control the recourse costs using the actions dS .
First, the result reveals that the costs have to be partitioned
into direct and indirect costs. The direct costs correspond
to the costs that one would have obtained from algorithms
that use the IMF assumption when searching for recourses
(e.g., [41, 29, 37]). The indirect costs are due to feature
dependencies of xS with xSc . If xS is independent of xSc

(i.e., the elasticity of gxSc w.r.t xS is 0), then a change in
xS will not alter xSc and the only cost remaining is the
direct cost (we refer to Figure 2 for a schematic overview of
the mechanism). Second, we observe that the costs can be
inflated, if the latent space variables v depend on xS . This
is expressed through the entanglement cost terms in Proposi-
tion 1 and suggests that the model g should be trained such
that xS ⊥⊥ v to keep the recourse costs low.

4.3 Our Recourse Objective

So far the predictive model f has played no role in our
considerations. Now, we introduce the predictive model to
rewrite the recourse problem from (1) as follows:

d∗S = arg min
dS

c(x, x̌) s.t. x̌ = g(v,xS + dS),

x̌ ∈ Ad, xS ⊥⊥ v, f(x̌) = s,
(3)

where we have used the insight that xS ⊥⊥ v derived from
Proposition 1. Relative to the objective from eqn. (1), our ob-
jective in eqn. (3) uses our generative model to capture input
dependencies. Instead of finding recourse actions across the
whole input space, we find recourse actions for the inputs in
S . We make recommendation on the choice of S in Section
4.4. Our reformulation has several advantages compared
to existing recourse methods from the literature: i) relative
to manifold-based recourse methods [12, 27, 1] the actions
are applied to input space variables as opposed to latent

vxS + dS

g

x̌ScxS + dS

}
x̌ = x + δx

f

indirectdirect

Figure 2: Finding recourse for input x with DEAR. For an
input x with f(x) < s, we encode [xS ,v]=e(x). Then, we
find direct actions dS , which generate recourse, i.e. we find
a x̌ such that f(x̌) = s, where x̌ = [dS+xS , gxSc (v,dS+
xS)]. The direct action dS has two effects: 1) it changes the
features in S directly (i.e., dS + xS ), and 2) it changes the
features in Sc indirectly (i.e., x̌Sc = gxSc (v,dS + xS)).
The strength of the indirect change x̌Sc is determined by
the elasticity of gxSc w.r.t. xS .

space variables, and thus they are inherently interpretable;
ii) relative to manifold-based recourse methods and recourse
methods which use the IMF assumption [41, 18], we can
sharply separate the direct effect, which dS has on x̌ via
xS , from its indirect effect, which dS has on x̌ determined
by the generative model when it is dependent of xSc (re-
call Proposition 1); iii) relative to causal recourse methods
[15, 14], we neither assumed causal graphical models nor
did we assume structural equation models to incorporate
input dependencies.

4.4 Aligned Generative Models Promote Finding
Recourses Reliably

So far we have learned how disentangled represenations help
reduce the recourse costs. Related work [1] has reported that
manifold-based methods, which search for recourse in latent
space (e.g., [27, 12, 1]), sometimes get stuck before they
find a recourse. In this section, we develop a theoretical
expression that will inform the choice of the set S, and
we will see that choosing this set appropriately promotes
finding recourses more reliably. To this end, we derive an
approximate closed-form solution for the objective in (3)
which uses our insights from Proposition 1 (i.e., v ⊥⊥ xS ).

Proposition 2 (Direct action). Given v ⊥⊥ xS and c =
‖x − x̌‖2, a first-order approximation d̃∗S to the optimal
direct action d∗S from the objective in (3) is given by:

d̃∗S =
m

λ+ ‖w‖22
·w, (4)

where Y
(x)
xS :=∂g(v,xS)

∂xS

∣∣∣
v=v,xS=xS

, s is the target score,

m = s−f(x), w=Y
(x)
xS

>
∇f(x) and λ is the trade-off pa-

rameter.

Corollary 1 (Recourse action). Under the same conditions
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stated in Proposition 2, a first-order approximation to the
recourse action is given by:

δ∗x ≈ Y(x)
xS d̃∗S =

m

λ+ ‖w‖22
·Y(x)

xS w. (5)

The above result is intuitive. The optimal recourse action
d̃∗S applied to the inputs xS is being transformed by the
generator Jacobian Y

(x)
xS to yield the optimal action in input

space δ∗x. The generator Jacobian, in turn, measures the
influence that the features in S have on the input x.

We suggest to use singletons for the set of variables S where
the direct action should be performed on as these are easiest
to interpret (see Appendix B) and reliably lead to low cost
recourses. Using singletons the insight from Proposition
2 becomes more clear. Then w from eqn. (4) is a scalar.
Therefore, to make most progress towards the desired out-
come at first order, the generator Jaocobian Y

(x)
xS should be

aligned with the model gradient∇f(x), i.e., the two vectors
should have a high similarity in the dot-product sense. To
see this, consider a first-order approximation of f(x+δ∗x) ≈
f(x) +∇f(x)>δ∗x = f(x) + m·w

λ+‖w‖22
· ∇f(x)>Y(x)

xS . To
push the score f(x) towards the target score s ≥ 0, S should
be chosen such that the dot product∇f(x)>Y(x)

xS is high.

4.5 Optimizing our Objective

Motivated by the insights from Propositions 1 and 2, we
present an algorithmic procedure to compute minimal cost
recourses under feature dependencies using a penalty term
during autoencoder training that encourages disentangle-
ment of xS and v in order to keep the entanglement costs
low. In summary, DEAR requires two steps: first, we need to
obtain a latent space representation v, which is independent
of xS . Second, we require an optimization procedure to
identify the nearest counterfactual.

xSc

xS

xrSc

xrS

v

xS
e g

(a) Conditional autoencoder

xS

v

xrS

w
eightlayer

w
eightlayer

g
Add xS

(b) ResNet component within
the decoder

Figure 3: DEAR’s autoencoder architecture. (a): The con-
ditional autoencoder architecture is trained subject to the
Hessian penalty described in Section 4.5. (b): We achieve
the identity mapping between xS and the reconstructed xrS
using a ResNet component [10, 11]: we add xS to xrS
before passing the arguments to the loss LR from eqn. (6).

Step 1: Training the Generative Model. The main idea
is to train a generative model, in which xS is independent
of the latent variable v, while providing high-quality re-
construction of the input x. Thus, the training loss for the
generative model consists of two components. First, it con-
sists of both an encoder network e and decoder network g,
for which the reconstruction loss,

LR(g, e;xS) = ‖g(e(x),xS)− x‖22, (6)

guides both networks towards a good reconstruction of
x. Second, we want to drive the entanglement costs to
0, for which we need the decoder g to be disentangled
with respect to the latent space, i.e., each component of
z = [v,xS ] should ideally control a single factor of vari-
ation in the output of g. To formalize this intuition, recall
that g(xS ,v) = x ∈ Rd, where each output gj = xj for
1 ≤ j ≤ d has its own |xS | × |v| Hessian matrix H(j). We
refer to the collections of the d Hessian matrices as H. Thus,
the second loss we seek to minimize is given by:

LH(g;xS) =

d∑

j=1

( |v|∑

k=1

|xS |∑

l=1

H
(j)
kl

)
, (7)

which is also known as the Hessian penalty [30]. We il-
lustrate the intuition of this objective on the j-th output
xj : we regularize the Hessian matrix H(j) = ∂

∂v
∂gj
∂xS

and
encourage its off-diagonal terms to become 0. Driving the
off-diagonal terms to 0 implies that ∂gj

∂xS
is not a function

of v and thus v plays no role for the output of gj when
searching for minimum cost actions using xS . We use the
Hessian penalty from [30] in our implementation. Finally,
Proposition 1 requires the identity mapping between the
latent space xS and the reconstructed xrS . We encourage
our generator g to learn this mapping by using a ResNet
architecture [10, 11] as shown in Figure 3.

Step 2: Finding Minimal Cost Actions dS . Given our
trained generative model from step 1, we rewrite the prob-
lem in eqn. (3) using a Lagrangian with trade-off parameter
λ. For a given encoded input instance e(x) = [v,xS ], our
objective function reads:

d∗S = arg min
dS , x̌∈Ad

L

= arg min
dS , x̌∈Ad

`
(
f(x̌), s

)
+ λ‖x− x̌)‖1,

(8)

where x̌ = g(v,xS + dS) is a potential counterfactual in
input space, `(·, ·) denotes the MSE loss, and s ≥ 0 is the
target score in logit space. The term on the right side en-
courages the counterfactual g(v,xS + dS) = x̌ to be close
to the given input point x, while the left hand side encour-
ages the predictions to be pushed from the factual output
f(x) towards s. We do gradient descent iteratively on the
loss function in eqn. (8) until the class label changes from
y = 0 to y = 1. Algorithm 1 summarizes our optimization
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Algorithm 1 DEAR
Input: f , x s.t. f(x)<0, g, e, λ > 0, Learning rate:
α > 0, s ≥ 0, S
Initialize: dS = 0, e(x) = [v,xS ], x̌ = g(v,xS + dS)

while f(x̌) < s do
dS = dS − α · ∇dSL(x̌; f, s, λ) {Optimize (8)}
x̌ = g(v,xS + dS)

end while {Class changed, i.e., f(x̌) ≥ s}
Return: x̌∗ = x̌

procedure. Finally, in Appendix C we further discuss how
monotonicity constraints and how categorical variables are
included in our objective.

5 Experimental Results

In this Section, we conduct extensive quantitative and quali-
tative evaluations to analyze DEAR’s performance using our
conceptual insights from the previous section. Quantita-
tively, we conduct a baseline comparison contrasting our
framework DEAR with state-of-the-art recourse methods,
which use generative models, using common evaluation
measures [28] from the recourse literature such as recourse
costs and reliability measures. Qualitatively, we consider
three aspects: (i) the entanglement costs, (ii) the structure of
the cost splits (i.e., direct vs. indirect costs) and (iii) a case
study to showcase the advantages of our new framework
which we relegated to Appendix B.

5.1 Details on Experiments

Real–world Data. Our first data set is the Adult data set
taken from the UCI repository. This data set consists of
approximately 48K samples with demographic (e.g., race,
sex), education and employment (e.g., degree, occupation,
hours-per-week), personal (e.g., marital status, relationship),
financial (capital gain/loss) features where the label pre-
dicts whether an individual’s income exceeds 50K$ per
year (y = 1). Our second data set, COMPAS (Correctional
Offender Management Profiling for Alternative Sanctions)
consists of defendants’ criminal history, jail and prison time,
demographics and the goal is to predict recidivism risk for
defendants from Broward County, Florida. Our third data
set is the Give Me Credit data set from 2011 Kaggle compe-
tition. It is is a credit scoring data set, consisting of 150,000
observations and 11 features. The classification task consists
of deciding whether an instance will experience financial
distress within the next two years (SeriousDlqin2yrs is 0).

Prediction Models. For all our experiments, we obtain
counterfactual explanations for two classification models,
for which we provide additional details in Appendix C: We
use is a binary logistic classifier that was trained without

regularization, and an artificial neural network with a two-
layer architecture that was trained with ReLU activation
functions.

Recourse Methods. For all data sets, recourses are gener-
ated in order to flip the prediction label from the unfavorable
class (y = 0) to the favorable class (y = 1). We partition
the data set into 80-20 train-test splits, and do the model
training and testing on these splits. We use the following
six methods as our baselines for comparison:

M: CLUE [1]: This model suggests feasible counterfactual
explanations that are likely to occur under the data
distribution. Using the VAE’s decoder, CLUE uses
an objective that guides the search of CEs towards
instances that have low uncertainty measured in terms
of the classifier’s entropy.

M: REVISE [12]: To find recourses that lie on the data
manifold, this method utilizes a trained autoencoder
to transform the input space into a latent embedding
space. REVISE then uses gradient descent in latent
space to find recourses that lie on the data manifold.

M: CCHVAE [27]: This is a method to find recourses that
lie on the data manifold. CCHVAE also uses a trained
autoencoder to transform the input space into a latent
embedding space. The latent representation is then
randomly perturbed to find recourses.

G: FACE-K & FACE-E [31]: This is classifier-agnostic
method that finds recourses that lie on paths along
dense regions. These methods construct neighbour-
hood graphs to find paths through dense regions. The
graph is either an ε-graph (FACE-E) or a k-nearest
neighbour graph (FACE-K).

Note that ‘M’ abbreviates methods which generate recourses
that lie on the data manifold, and ‘G’ abbreviates meth-
ods, which use a graphical model to generate recourses that
lead through dense paths. ‘D’ refers to our method (i.e.,
DEAR), which takes input dependencies into account. To
allow for a fair comparison across the explanation models,
which use autoencoders, we use similar base architectures
for DEAR. Appendix C provides implementation details for
the recourse methods and of all used autoencoders. We com-
pute evaluation measures by using the min-max normalized
inputs used for training the classification and generative
models. Below we describe the evaluation measures.

Evaluation Measures. Since we are interested in gener-
ating small cost recourses, we define a notion of distance
from the counterfactual explanation to the input point. As
all methods under consideration minimize the `1 norm, we
use this measure and compare the `1-costs across the meth-
ods. Further, we count the constraint violations (CV). We
set the protected attributes ‘sex’ and ‘race’ to be immutable
for the Adult and COMPAS data sets, and count how often
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Figure 4: Measuring the cost of recourse (`1) across recourse methods, demonstrating that DEAR reduces recourse costs by
up to 49% (bottom left). We use boxplots to show the distribution of recourse costs across all individuals from the test set
who require algorithmic recourse. The numbers above the maximum values correspond to the white dots (= median recourse
costs). The color of the boxplots represent the type of the recourse method: The methods with ‘M’ purely focus on the data
manifold constraints, and methods with ‘G’ use a graphical model to generate recourses through dense paths. ‘D’ refers to
our method which takes both manifold and input dependencies into account. Results for GMC are relegated to Appendix B.

Adult COMPAS GMC

LR ANN LR ANN LR ANN

Method SR (↑) CV (↓) YNN (↑) SR (↑) CV (↓) YNN (↑) SR (↑) CV (↓) YNN (↑) SR (↑) CV (↓) YNN (↑) SR (↑) CV (↓) YNN (↑) SR (↑) CV (↓) YNN (↑)

M

REVISE 0.35 0.00∗ 0.37 1.00 0.12 0.72 0.63 0.11 1.00 0.99 0.12 0.98 0.99 NA 1.00 1.00 NA 0.95
CCHVAE 0.54 0.17 0.53 1.00 0.07 0.61 1.00 0.32 1.00 1.00 0.17 0.96 1.00 NA 0.24 1.00 NA 0.80
CLUE 0.38∗ 0.00∗ 1.00∗ 1.00 0.00 0.25 0.00 – – 0.21 0.00 1.00 1.00 NA 1.00 1.00 NA 0.92

G FACE-K 0.99 0.36 0.71 1.00 0.29 0.57 0.99 0.38 1.00 0.60 0.40 1.00 1.00 NA 0.95 1.00 NA 0.96
FACE-E 0.74 0.38 0.70 0.99 0.30 0.58 0.99 0.41 1.00 0.39 0.40 1.00 1.00 NA 0.94 1.00 NA 0.97

D DEAR 1.00 0.00 0.84 1.00 0.00 0.70 1.00 0.00 1.00 1.00 0.01 1.00 1.00 NA 0.91 1.00 NA 0.94

Table 1: Measuring the reliability of algorithmic recourse for the ANN and LR models on all data sets. The success rate
(SR), constraint violation (CV) and y-nearest neighbors (YNN) measures are described in Section 5. For GMC, there were
no immutable features and therefore we are reporting NA. Our method (i.e., DEAR) usually performs on par or better relative
to other recourse methods. ∗: Methods with success rates below 50% are excluded from the evaluation.

each of the explanation models suggests changes to these
protected features. GMC has no protected attribute. We use
the label yeighborhood (YNN) and measure how much data
support recourses have from positively classified instances
[28]. Ideally, recourses should be close to correct positively
classified individuals, which is a desideratum formulated by
the authors of [19]. Values of YNN close to 1 imply that
the neighbourhoods around the recourses consists of points
with the same predicted label, indicating that the neighbor-
hoods around these points have already been reached by
positively classified instances. Note that some generated
recoures do not alter the predicted label of the instance as
anticipated. Therefore we keep track of the success rate, i.e.,
how often do the suggested counterfactuals yield successful
recourse. We so by counting the fraction of the respective
methods’ correctly determined counterfactuals. Finally, we

report the entanglement costs. For a fixed set S, for every
instance at the end of training, we obtain d Hessian matrices
H(j) = ∂2g

∂v∂xS
for 1 ≤ j ≤ d. We then average the Hessian

off-diagonal elements across all j and plot their distribution
across all training instances. We can only do this for our
recourse method DEAR.

5.2 Experimental Results

Recourse Costs. The baseline comparisons regarding the
cost of recourse are shown in Figure 4. Relative to manifold-
based recourse methods (i.e, REVISE and CCHVAE), DEAR
usually performs more favourably ensuring up to 50 per-
cent less costly median recourse costs. This is due to the
fact that DEAR can use the most discriminative features in
input space – as opposed to latent space – to search for
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Figure 5: Evaluating DEAR’s entanglement costs on all data sets. At the end of autoencoder training, we compute the
Hessians’ off-diagonal elements of the decoder and average them (see Section 5.1 for more details). The feature names
indicate the sets S , that we perform direct recourse actions on. The white dots indicate the median entanglement costs, and
the box indicates the interquartile range. In line with Proposition 1, the costs are pushed to 0.
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Figure 6: Cost splits as suggested by Proposition 1 on both
classifiers across all data sets. The direct costs corresponds
to the direct action dS and are measured as ‖dS‖1. The
indirect costs are measured as ‖xSc − gxSc (v,dS +xS)‖1.

recourses. Relative to the graph-based methods (i.e., FACE)
our method performs significantly better. Since FACE has
to ensure connected paths their costs are usually highest.

Reliability of Recourse. We measure the reliability of re-
course using SR, CV and YNN presented in the previous
Section. The results across all methods, data sets and classi-
fiers are shown in Table 1. We see that DEAR has the highest
SRs across all data sets and classifiers, among the highest
YNN scores, and one of the lowest CV rates. Compared to
the manifold-based recourse methods, DEAR’s SR is up to
45 percentage points higher. This is due to the fact that the
lower dimensional data manifold can end before the decision
boundary is reached and thus the manifold-based methods,
which search for recourse in latent space, sometimes get
stuck before they find a counterfactual instance (see [6] for
a detailed analysis of this phenomenon). Antorán et al. [1,
Appendix] report a similar finding. A similar reason likely
prevents FACE from reaching high SRs. Our method does
not suffer from this shortcoming since it primarily uses the
most discriminative features in input space (Proposition 2)
to search for recourses, resulting in SRs of 1.

Qualitative Analysis. Finally, we analyze our recourse
model qualitatively. We start by analyzing the entanglement
costs. As required by Proposition 1, we require these costs
to be pushed to 0. We plot the distribution of the averaged
off-diagonal terms in Figure 5. The results show that the

entanglement cost is consistently pushed to 0 (most medians
are at 0). These results indicate that our mechanism is very
well aligned with Proposition 1’s requirement of disentan-
gled v and xS . Next, we analyze the cost splits. According
to Proposition 1, we can split the costs of recourse into a
direct and an indirect component. We show these cost splits
in Figure 6 verifying that the elasticity of gxSc w.r.t. xS is
non-zero, i.e., we observe a strong presence of feature de-
pendencies. In App. B we provide a case study and further
analyze the semantic meaning of these cost splits on GMC.

6 Conclusion

In this work, we considered the problem of generating al-
gorithmic recourse in the presence of feature dependencies
– a problem previously only studied through the lens of
causality. We developed DEAR (DisEntangling Algorithmic
Recourse), a novel recourse method that generates recourses
by disentangling the latent representation of co-varying fea-
tures from a subset of promising recourse features to capture
some of the main practical desiderata: (i) recourses should
adhere to feature dependencies without the reliance on hand-
crafted causal graphical models and (ii) recourses should
lie in dense regions of the feature space, while providing
(iii) low recourse costs. Quantitative as well as qualitative
experiments on real-world data corroborate our theoretically
motivated recourse model, highlighting our method’s ability
to provide reliable and low-cost recourse in the presence of
feature dependencies.

We see several avenues for future work. From an end-user
perspective, comparing the practical usefulness across var-
ious different recourse methods running user-studies with
human participants is an important direction for future work.
Further, our framework showcases the importance of fea-
ture dependencies for reliable algorithmic recourse by high-
lighting which individual features contributed directly and
indirectly to the recourse. While this is reminiscent of re-
courses output by causal methods the recourses output by
our framework should not be mistaken for causal recourses.
Therefore, from a theoretical perspective, it would be inter-
esting to find (local) conditions for both the classifier and
the generative model under which our recourse framework
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would generate recourses with a causal interpretation.
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Supplementary Materials:
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for Consequential Decision Making

A Theoretical Analysis

A.1 Proof of Proposition 1

Proof (Recourse Costs by DEAR) First, we note that v is usually obtained via some kind of training procedure, and thus
it could be a function of xS . Next, we partition both z = [v xS ]> and dz = [dv dS ]>. Moreover, we partition
g(v,xS) = [gxS

(v,xS) gxSc (v,xS)]> = [xS xSc ]>. Then, the matrix of derivatives can be partitioned as follows:

J(x)
z =

[
J

(xSc )
v J

(xSc )
xS

J
(xS)
v J

(xS)
xS

]
:=

[
A B
C D

]
.

Since we are not interested in applied changes to v we set dv:=0. By Lemma 1 we know ‖dx‖2=d>z
(
J

(x)
z

>
J

(x)
z

)
dz . A

direct computation with dz:=
[
0 dS

]>
yields:

‖dx‖2 ≈
[
0 dS

] [A C
B D

] [
A B
C D

] [
0
dS

]

= d>SB
>BdS + d>SD

>DdS

= d>S
(
J(xSc )
xS

>
J(xSc )
xS

)
dS︸ ︷︷ ︸

Indirect Costs

+d>S
(
J(xS)
xS

>
J(xS)
xS

)
dS︸ ︷︷ ︸

Direct Costs

.

By the chain rule of multivariate calculus (recall that v and xS need not be independent), note that we can write out the
above terms as follows:

J(xSc )
xS

=
∂gxSc (v,xS)

∂v

∂v

∂xS
+
∂gxSc (v,xS)

∂xS

∂xS
∂xS

=
∂gxSc (v,xS)

∂v

∂v

∂xS︸ ︷︷ ︸
Entanglement costs

+
∂gxSc (v,xS)

∂xS︸ ︷︷ ︸
Elasticity of g(xSc ) w.r.t to xS

J(xS)
xS

=
∂gxS

(v,xS)

∂v

∂v

∂xS
+
∂gxS

(v,xS)

∂xS

∂xS
∂xS

=
∂gxS

(v,xS)

∂v

∂v

∂xS︸ ︷︷ ︸
Entanglement costs

+
∂gxS

(v,xS)

∂xS︸ ︷︷ ︸
Identity Mapping

.

Let us consider what this implies intuitively. For the direct costs, notice that g would achieve the best reconstruction of xS by
using the identify mapping. Recall, in Section 4.5, we suggested to use a ResNet component within the decoder to enforce
this identity mapping during training of our autoencoder model. Hence, under perfect disentanglement the disentanglement
costs are 0, and the J

(xS)
xS =1: thus, the direct cost would ideally be given by d>SdS . This is the squared `2 norm of dS .

The indirect costs, on the other hand, depend on the sensitivity of xSc with respect to xS , that is, J(xSc )
xS . Again, we consider

the case of perfect disentanglement first: Suppose xS was a variable that was unrelated to the remaining variables xSc , while
still being predictive of the outcome: Then J

(xSc )
xS = 0, and a change dS would only have a direct impact on the outcome,
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and thus the indirect costs would disappear. In this case, the recourse cost for independence–based and dependence–based
methods coincide. On the other extreme, suppose xS was almost a copy of xSc , then J

(xSc )
xS ≈ 1, and changing xS clearly

impacts the remaining variables xSc . In this case, an independence–based method would not reliably capture the recourse
costs.

A.2 Proof of Proposition 2

Proof of Proposition 2. Recall the problem in (3):

d∗S = arg min
dS

L = arg min
dS

λ‖dS‖2 + ‖s− f
(
g(v,xS + dS)

)
‖2. (9)

We use the following first-order approximation to f
(
g(v,xS +dS)

)
≈ f(x) +∇f(x)>Y(x)

xS dS , where we have substituted
g(v,xS) = x and used that v ⊥⊥ xS by design of the generative model. Then, we can derive a surrogate loss to the loss
from (9):

L ≈ L̃ = λ · d>SdS +
(
m−∇f(x)>Y(x)

xS dS
)>(

m−∇f(x)>Y(x)
xS dS

)
, (10)

where m = s− f(x). The second term on the right in (10) can be written as:

m2 − 2m∇f(x)>Y(x)
xS dS + d>SY

(x)
xS

>∇f(x)∇f(x)>Y(x)
xS dS .

By solving arg mindS L̃ we find the optimal change required in the features xS as follows:

d̃∗S = M−1η, (11)

where

M = λ · I + Y(x)
xS

>∇f(x)∇f(x)>Y(x)
xS η = m · ∇f(x)>Y(x)

xS . (12)

Next, we define w = Y
(x)
xS

>
∇f(x). Note that ww> is a rank-1 matrix. Thus, by the well-known Sherman-Morrison-

Woodbury formula, M can be inverted as follows:

M−1 =
1

λ

(
I− ww>

λ+ ‖w‖22

)
. (13)

As a consequence, after substituting (13) into (12) we obtain that:

d̃∗S =
m

λ+ ‖w‖22
w. (14)

Further, note that δ = g(z + dS)− g(z) ≈ Y
(x)
xS dS , where we have used that v ⊥⊥ xS . Therefore, we obtain a first-order

approximation to the optimal recourse in input space:

δ∗x ≈ Y(x)
xS d̃∗S =

m

λ+ ‖w‖22
·Y(x)

xS w, (15)

as claimed.

A.3 Proof of Lemma 1

Lemma 1 (Recourse costs in terms latent space quantities). Given a latent representation z of a sample x = g(z) and a
generated counterfactual x̌ = g(ž) with ž = z + dz , the cost of recourse ‖x − x̌‖2 can be expressed in terms of latent
space quantities:

‖δx‖2 ≈ d>z
(
J(x)
z

>
J(x)
z

)
dz,

where the matrix of derivatives with respect to output x = g(z) is given by J
(x)
z :=∂g(z)

∂z

∣∣∣
z=z

.
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Figure 7: We show the rel. frequency of important feature pairs that need to be changed together. Associated with each
direct minimum cost action on the x-axis (i.e., dS ), we plot the second most important feature (y-axis) that should change
together with the direct action feature from S . For example, in the bottom panel, for 10 percent of all instances, decreasing
’60-89 days late’ goes hand in hand with either a decrease in ’30-60 days late’ or a decrease in ’more than 90 days late’.
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Figure 8: Give Me Credit: Plot from main text.

Proof. We use the cost of recourse, and a first-order Taylor series approximation for g(z + dz) at z to arrive at:

‖δx‖2 = ‖g(z)− g(z + dz)‖2

≈ ‖g(z)− (g(z) + J(x)
z dz)‖2

= d>z
(
J(x)
z

>
J(x)
z

)
dz,

where J
(x)
z := ∂g(z)

∂z

∣∣∣
z=z

.

On an intuitive level, Lemma 1 measures how the cost – measured in input space quantities – depends on perturbations of
each component of the generative latent space z.

B Case Study: “Credit Risk”

As a practical example, we showcase additional insights that our recourse model can provide. Here we analyze the cost splits
from a semantic point of view. In Figure 7, we show the distribution of important feature pairs that need to change together
to lead to loan approvals for individuals from the Give Me Credit data set: the x-axis shows the direct actions resulting in the
lowest costs, and the y-axis shows the relative frequency of the most important indirect actions. The following noteworthy
patterns emerge: (i) the non-linear classifier has picked up more non-linear relations since the feature, on which the minimum
cost direct actions are suggested, vary more heavily across instances for the ANN model (bottom panel) relative to the LR
model (top panel); For example, a decrease in ‘revolving utilization’ is often followed by a decrease in the number of ‘loans’,
which is semantically meaningful suggesting ways to reduce the ‘revolving utilization’. Finally, we emphasize that our
method showcases the importance of feature dependencies for reliable algorithmic recourse by highlighting how it arrived at
the recourse. The recourses output by our framework should not be mistaken for causal recourses.
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Recourse Method

Factual SCFE (IMF) REVISE (M) DEAR (D)

Age 45 58 45 45
Educ 9 7 11 9
C-gain 0 0 2110 307
Hours 0 0 80 24
C-loss 60 20 45 41
W-class Private: No No No No
M-status Married: No No No No
Occu Specialized: No No Yes Yes
Race White: No No No No
Sex Male: No No No No
Native US: Yes Yes Yes Yes

ANN > 50K: No Yes Yes Yes

Table 2: Comparing recourses qualitatively across explanation methods for a factual instance. The bottom row shows the
ANN classifier’s predicted class outcomes. For DEAR, the recourse intervention was done to C-loss. The remaining
features changed as a result of this. For CCHVAE, the results were similar to those by REVISE.

C Implementation Details

C.1 Handling Constraints

Encoding Monotonicity Constraints. In the presence of strong prior knowledge on how certain features are allowed to
change (e.g., ‘years of schooling’ (yos) or ‘age’ can only go up) one can add Hinge-losses [23] to encourage monotonicity
constraints. Let xyos correspond to the schooling feature. Then we can add −min(0, x̌yos − xyos) to the loss function in
(8) to ensure that the counterfactual x̌yos should increase, where x̌yos is the corresponding entry from g(v,xS + dS).

Handling Categorical Variables. Using DEAR, one can easily handle (high-cardinality) categorical features. We can turn
all categorical features into numeric features by standard one-hot encoding. For each categorical feature, we can then use a
softmax-layer after the final output layer of the decoder. For the purpose of the one-hot-encoded reconstruction, we apply
the argmax.

C.2 Recourse Methods

For all data sets, the features are binary-encoded and the data is scaled to lie between 0 and 1. We partition the data sets into
train-test splits. The training set is used to train the classification models for which recourses are generated. Recourses are
generated for all samples in the test split for the fixed classification model. In particular, we use the following algorithms to
generate recourses. Specifically,

• C-CHVAE An autoencoder is additionally trained to model the data-manifold. The explanation model uses a counter-
factual search algorithm in the latent space of the AE. Particularly, a latent sample within an `1-norm ball with search
radius rl is used until recourse is successfully obtained. The search radius of the norm ball is increased until recourse is
found. The architecture of the generative model are provided in Appendix C.4.

• REVISE As with the recourse model of Pawelczyk et al. [27], an autoencoder is additionally trained to model the
data-manifold. The explanation model uses a gradient-based search algorithm in the latent space of the AE. For a fixed
weight on the distance component, we allow up to 500 gradient steps until recourse is successfully obtained. Moreover,
we iteratively search for the weight leading up to minimum cost recourse. The architectures of the generative model are
provided in Appendix C.4.

• FACE Poyiadzi et al. [31] provide FACE, which uses a shortest path algorithm (for graphs) to find counterfactual
explanations from high–density regions. Those explanations are actual data points from either the training or test
set. Immutability constraints are enforced by removing incorrect neighbors from the graph. We implemented two
variants of this model: one uses an epsilon–graph (FACE-EPS), and a second one uses a knn–graph (FACE-KNN).
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To determine the strongest hyperparameters for the graph size we conducted a grid search. We found that values of
kFACE = 50 gave rise to the best balance of success rate and costs. For the epsilon graph, a radius of 0.25 yields the
strongest results to balance between high ynn and low cost.

• CLUE Antorán et al. [1] propose CLUE, a generative recourse model that takes a classifier’s uncertainty into account.
This model suggests feasible counterfactual explanations that are likely to occur under the data distribution. The
authors use a variational autoencoder (VAE) to estimate the generative model. Using the VAE’s decoder, CLUE uses an
objective that guides the search of CEs towards instances that have low uncertainty measured in terms of the classifier’s
entropy. We use the default hyperparameters, which are set as a function of the data set dimension d. Performing
hyperparameter search did not yield results that were improving distances while keeping the same success rate.

We describe architecture and training details in the following.

C.3 Supervised Classification Models

All models are implemented in PyTorch and use a 80− 20 train-test split for model training and evaluation. We evaluate
model quality based on the model accuracy. All models are trained with the same architectures across the data sets:

Neural Network Logistic Regression

Units [Input dim, 18, 9, 3, 1] [Input dim, 1]
Type Fully connected Fully connected
Intermediate activations ReLU N/A
Last layer activations Sigmoid Sigmoid

Table 3: Classification Model Details

Adult COMPAS Give Me Credit

Batch-size ANN 512 32 64

Logistic
Regression 512 32 64

Epochs ANN 50 40 30

Logistic
Regression 50 40 30

Learning rate ANN 0.002 0.002 0.001

Logistic
Regression 0.002 0.002 0.001

Table 4: Training details

Adult COMPAS Give Me Credit

Logistic Regression 0.83 0.84 0.92
Neural Network 0.84 0.85 0.93

Table 5: Performance of classification models used for generating algorithmic recourse.

C.4 Generative Model Architectures used for DEAR, CCHVAE and REVISE

For all experiments, we use the following architectures.

Additionally, for DEAR all generative models use the Hessian Penalty [30] and a residual block, which we both described in
more detail in Section 4.5 of the main text.
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Adult COMPAS Give Me Credit

Encoder layers [input dim, 16, 32, 10] [input dim, 8, 10, 5] [input dim, 8, 10, 5]
Decoder layers [10, 16, 32, input dim] [5, 10, 8, input dim] [5, 10, 8, input dim]
Type Fully connected Fully connected Fully connected
Loss function MSE MSE MSE

Table 6: Autoencoder details
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1University of Tübingen 2Adobe Research 3Harvard University

Abstract

As machine learning (ML) models become
more widely deployed in high-stakes appli-
cations, counterfactual explanations have
emerged as key tools for providing actionable
model explanations in practice. Despite the
growing popularity of counterfactual expla-
nations, a deeper understanding of these
explanations is still lacking. In this work,
we systematically analyze counterfactual
explanations through the lens of adversarial
examples. We do so by formalizing the
similarities between popular counterfactual
explanation and adversarial example gener-
ation methods identifying conditions when
they are equivalent. We then derive the up-
per bounds on the distances between the so-
lutions output by counterfactual explanation
and adversarial example generation methods,
which we validate on several real world data
sets. By establishing these theoretical and
empirical similarities between counterfactual
explanations and adversarial examples, our
work raises fundamental questions about
the design and development of existing
counterfactual explanation algorithms.

1 INTRODUCTION

With the increasing use of Machine learning (ML)
models in critical domains, such as health care and
law enforcement, it becomes important to ensure that
their decisions are robust and explainable. To this end,
several approaches have been proposed in recent litera-
ture to explain the complex behavior of ML models (Si-
monyan et al., 2013; Ribeiro et al., 2016; Lundberg and
Lee, 2017; Sundararajan et al., 2017). One such pop-

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

ular class of explanations designed to provide recourse
to individuals adversely impacted by algorithmic deci-
sions are counterfactual explanations (Wachter et al.,
2017; Ustun et al., 2019; Barocas et al., 2020; Venkata-
subramanian and Alfano, 2020). For example, in a
credit scoring model where an individual loan applica-
tion is denied, a counterfactual explanation can high-
light the minimal set of changes the individual can
make to obtain a positive outcome (Pawelczyk et al.,
2020a; Karimi et al., 2020c). Algorithms designed
to output counterfactual explanations often attempt
to find a closest counterfactual for which the model
prediction is positive (Wachter et al., 2017; Ustun
et al., 2019; Pawelczyk et al., 2020a; Karimi et al.,
2020c).

Adversarial examples, on the other hand, were pro-
posed to highlight how vulnerabilities of ML models
can be exploited by (malicious) adversaries (Szegedy
et al., 2013; Ballet et al., 2019; Cartella et al., 2021).
These adversarial examples are usually also obtained
by finding minimal perturbations to a given data in-
stance such that the model prediction changes (Good-
fellow et al., 2014; Carlini and Wagner, 2017; Moosavi-
Dezfooli et al., 2016).

Conceptually, adversarial examples and counterfac-
tual explanations solve a similar optimization prob-
lem (Freiesleben, 2020; Wachter et al., 2017; Cartella
et al., 2021). Techniques generating adversarial exam-
ples and counterfactual explanations use distance or
norm constraints in the objective function to enforce
the notion of minimal perturbations. While adversar-
ial methods generate instances that are semantically
indistinguishable from the original instance, counter-
factual explanations or algorithmic recourse1, encour-
age minimal changes to an input so that so that a

1Note that counterfactual explanations, contrastive ex-
planations, and recourses are used interchangeably in prior
literature. Counterfactual/contrastive explanations serve
as a means to provide recourse to individuals with unfa-
vorable algorithmic decisions. We use these terms inter-
changeably as introduced and defined by Wachter et al.
(2017).
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user can readily act upon these changes to obtain the
desired outcome. In addition, some methods in both
lines of work use manifold-based constraints to find
natural adversarial examples (Zhao et al., 2018) or re-
alistic counterfactual explanations by restricting them
to lie on the data manifold (Joshi et al., 2019; Pawel-
czyk et al., 2020a,b).

While the rationale of producing a counterfactual close
to the original instance is motivated by the desidera-
tum that counterfactuals should be actionable and eas-
ily understandable, producing close instances on the
other side of the decision boundary could just as eas-
ily indicate adversarial activity. This begs the ques-
tion to what extent do counterfactual explanation al-
gorithms return solutions that resemble adversarial ex-
amples. However, there has been little to no work on
systematically analyzing the aforementioned connec-
tions between the literature on counterfactual expla-
nations and adversarial examples.

Present Work. In this work, we approach the
study of similarities between counterfactual explana-
tions and adversarial examples from the perspective of
counterfactual explanations for algorithmic recourse.
Therefore, we consider consequential decision prob-
lems (e.g., loan applications) commonly employed in
recourse literature and our choices of data modalities
(i.e., tabular data) and algorithms are predominantly
motivated by this literature. In particular, we make
one of the first attempts at establishing theoretical and
empirical connections between state-of-the-art coun-
terfactual explanation and adversarial example gener-
ation methods.

More specifically, we analyze these similarities by
bounding the distances between the solutions of salient
counterfactual explanation and popular adversarial ex-
ample methods for locally linear approximations. Our
analysis demonstrates that several popular counter-
factual explanation and adversarial example genera-
tion methods such as the ones proposed by Wachter
et al. (2017) and Carlini and Wagner (2017); Moosavi-
Dezfooli et al. (2016), are equivalent for certain hy-
perparameter choices. Moreover, we demonstrate that
C-CHVAE and the natural adversarial attack (NAE)
(Zhao et al., 2018) provide similar solutions for certain
generative model choices.

Finally, we carry out extensive experimentation with
multiple synthetic and real-world data sets from di-
verse domains such as financial lending and criminal
justice to validate our theoretical findings. We fur-
ther probe these methods empirically to validate the
similarity between the counterfactuals and adversarial
examples output by several state-of-the-art methods.
Our results indicate that counterfactuals and adversar-

ial examples output by manifold-based methods such
as NAE and C-CHVAE are more similar compared to
those generated by other techniques. By establishing
these and other theoretical and empirical similarities,
our work raises fundamental questions about the de-
sign and development of existing counterfactual expla-
nation algorithms.

2 RELATED WORK

This work lies at the intersection of counterfactual ex-
planations and adversarial examples in machine learn-
ing. Below we discuss related work for each of these
topics and their connection.

Adversarial examples. Adversarial examples are
obtained by making infinitesimal perturbations to in-
put instances such that they force a ML model to
generate adversary-selected outputs. Algorithms de-
signed to successfully generate these examples are
called Adversarial attacks (Szegedy et al., 2013; Good-
fellow et al., 2014). Several attacks have been pro-
posed in recent literature depending on the degree
of knowledge/access of the model, training data, and
optimization techniques. While gradient-based meth-
ods (Goodfellow et al., 2014; Kurakin et al., 2016;
Moosavi-Dezfooli et al., 2016) find the minimum ℓp-
norm perturbations to generate adversarial examples,
generative methods (Zhao et al., 2018) constrain the
search for adversarial examples to the training data-
manifold. Finally, some methods (Cisse et al., 2017)
generate adversarial examples for non-differentiable
and non-decomposable measures in complex domains
such as speech recognition and image segmentation.
We refer to a well-established survey for a more com-
prehensive overview of adversarial examples (Akhtar
and Mian, 2018).

Counterfactual explanations. Counterfactual ex-
planation methods aim to provide explanations for
a model prediction in the form of minimal changes
to an input instance that changes the original pre-
diction (Wachter et al., 2017; Ustun et al., 2019;
Van Looveren and Klaise, 2019; Karimi et al., 2020b).
These methods are categorized based on the access
to the model (or gradients), sparsity of the gener-
ated explanation and whether the generated explana-
tions are constrained to the manifold (Verma et al.,
2020; Karimi et al., 2020b). To this end, Wachter
et al. (2017) proposed a gradient-based method to ob-
tain counterfactual explanations for models using a
distance-based penalty and finding the nearest coun-
terfactual explanation. Further, restrictions on at-
tributes such as race, age, and gender are generally en-
forced to ensure that the output counterfactual expla-
nations are realistic for users to act on them. In addi-
tion, manifold-based constraints are imposed in many
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methods (Pawelczyk et al., 2020a; Joshi et al., 2019)
so that the counterfactual explanations are faithful to
the data distribution. Finally, causal approaches have
recently been proposed to generate counterfactual ex-
planations that adhere to causal constraints (Karimi
et al., 2020a; Barocas et al., 2020; Karimi et al., 2021,
2020c).

Connections between adversarial examples and
counterfactual explanations. Conceptual connec-
tions between adversarial examples and counterfactual
explanations have been previously identified in the lit-
erature (Freiesleben, 2020; Browne and Swift, 2020).
While Freiesleben (2020) highlight conceptual differ-
ences in aims, formulation and use-cases between both
sub-fields suggesting that counterfactual explanations
represent a broader class of examples of which adver-
sarial examples represent a subclass, Browne and Swift
(2020) focus on discussing the differences w.r.t seman-
tics hidden layer representations of DNNs. Our goal,
on the other hand, is to theoretically formalize and
empirically analyze the (dis)similarity between these
fields.

3 PRELIMINARIES

Notation. We denote a classifier h : X→Y mapping
features x ∈ X to labels Y. Further, we define
h(x)=g(f(x)), where f : X→R is a scoring function
(e.g., logits) and g : R→Y an activation function that
maps output logit scores to discrete labels. Below
we describe some representative methods used in this
work to generate counterfactual explanations and
adversarial examples.

3.1 Counterfactual explanation
methods

Counterfactual explanations provide recourses by
identifying which attributes to change for reversing a
models’ adverse outcome. Methods designed to output
counterfactual explanations find a counterfactual x′

that is ”closest” to the original instance x and changes
the models’ prediction h(x′) to the desired label.
While several of these methods incorporate distance
metrics (e.g., ℓp-norm) or user preferences (Rawal and
Lakkaraju, 2020) to find the desired counterfactuals,
some efforts also impose causal (Karimi et al., 2020c)
or data manifold constraints (Joshi et al., 2019; Pawel-
czyk et al., 2020a,b) to find realistic counterfactuals.
We now describe counterfactual explanation methods
from two broad categories: 1) Gradient- (Wachter
et al., 2017) and 2) search-based (Pawelczyk et al.,
2020a).

Score CounterFactual Explanations (SCFE).
For a given classifier h and the corresponding scoring
function f , and a distance function d : X × X → R+,

Wachter et al. (2017) formulate the problem of finding
a counterfactual x′ for x as:

argmin
x′

(f(x′)− s)
2
+ λ d(x,x′), (1)

where s is the target score for x and λ is set to it-
eratively increase until f(x′)=s. More specifically, to
arrive at a counterfactual probability of 0.5, the target
score for g(x) for a sigmoid function is s=0, where the
logit corresponds to a 0.5 probability for y=1.

C-CHVAE. Let Iγ and Gθ denote the encoder and
decoder of the VAE model used by C-CHVAE (Pawel-
czyk et al., 2020a) to generate realistic counterfactuals.
Note that the counterfactuals for x are generated in
the latent space of the encoder Z, where Iγ : X → Z.
Let z and z̃ = z+δ denote the latent representation
and generated counterfactuals for the original instance
x. Intuitively, Gθ is a generative model that projects
the latent counterfactuals to the feature space and
Iγ allows to search for counterfactuals in the data
manifold. Thus, the objective function is defined as
follows:

δ∗ = argmin
δ∈Z

∥δ∥

s.t. h(Gθ(Iγ(xf ) + δ),xp) ̸= h(xf ,xp),
(2)

where xp and xf indicate the protected and non-
protected features of x and Eqn. 2 finds the minimal
perturbation δ by changing the non-protected features
xm constrained to the data-manifold.

3.2 Adversarial example generation
methods

Similar to counterfactual explanation methods, most
methods generating adversarial examples also solve
a constrained optimization problem to find pertur-
bations in the input manifold that cause models to
misclassify. These methods are broadly categorized
into poisoning (e.g., Shafahi et al. (2018)) and ex-
ploratory (e.g., Goodfellow et al. (2014)) methods.
While poisoning methods attack the model during
training and attempts to learn, influence, and corrupt
the underlying training data or model, Exploratory
methods do not tamper with the underlying model
but instead generate specific examples that cause
the model to produce the desired output. Like
counterfactual explanation methods, evasion methods
also use gradient-based optimization to generate
adversarial examples. Below, we briefly outline three
evasion techniques considered in this work.

C&W Attack. For a given input x and classifier
h(·), Carlini and Wagner (2017) formulate the problem
of finding an adversarial example x′=x+δ such that
h(x′) ̸= h(x) as:

argmin
x′

c · ℓ(x′) + d(x,x′) s.t. x′ ∈ [0, 1]d (3)
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where c is a hyperparameter and ℓ(·) is a loss function
such that h(x′)=y if and only if ℓ(x′) ≤ 0. The con-
straint x′ ∈ [0, 1]d is applied so that the resulting x′ is
within a given data range.

DeepFool. For a given instance x, Deep-
Fool (Moosavi-Dezfooli et al., 2016) perturbs x by
adding small perturbation δDF at each iteration of the
algorithm. The perturbations from each iterations are
finally aggregated to generate the final perturbation
once the output label changes. The minimal pertur-
bation to change the classification model’s prediction
is the solution to the following objective:

δ∗DF(x) = argmin
δ

||δ||2

s.t. sign(f(x+ δ)) ̸= sign(f(x)),
(4)

where x is the input sample. The closed-
form step for each iteration is: δ∗DF= −
(f(x)/||∇f(x)||22)∇f(x).
Natural Adversarial Example (NAE). Similar to
C-CHVAE, Zhao et al. (2018) proposes NAE to search
for adversarial examples using a generative model Gθ
where the similarity is measured in the latent space of
Gθ. Thus, the objective is given by:

z∗ = argmin
z̃∈Z

∥z̃− Iγ(x)∥ s.t. h(Gθ(z̃)) ̸= h(x), (5)

where Iγ(x) corresponds to the latent representation
of x and Gθ(z̃) maps the latent sample to the feature
space. NAE separately trains an inverter function
from Gθ by enforcing the latent representation to be
normally distributed (i.e., corresponding to the noise
model of the generator) while minimizing the recon-
struction error of the feature space.

4 THEORETICAL ANALYSIS

In this section, we provide theoretical connections
between counterfactual explanation and adversarial
example methods by leveraging similarities in the
objective functions and optimization procedures. In
particular, we compare: 1) SCFE and C&W (Sec. 4.1),
2) SCFE and DeepFool (Sec. 4.2), and 3) C-CHVAE
and NAE (Sec. 4.3) due to their similarity in the
objective functions. We do these comparisons either
for a specific loss, solutions based on the classification
model, or constraints imposed during optimization.
We focus on locally linear model approximations as
these are often studied as a first step (Hardt and
Ma, 2017; Ustun et al., 2019; Rosenfeld et al., 2020;
Garreau and Luxburg, 2020) towards understanding
nonlinear model behaviour.

4.1 SCFE and C&W

Two popular gradient-based methods for generating
adversarial and counterfactual samples are the C&W

Attack and SCFE, respectively. Here, we first show
the closed-form solutions for the minimum pertur-
bation required by C&W (δ∗CW) and SCFE (δ∗SCFE)
to generate adversarial examples and counterfactu-
als. We then leverage these solutions to derive an
upper bound for the distance between the adversarial
and counterfactual samples. Using the loss function
ℓ∗(·)=max(0,maxi(f(x)i) − f(x)y) recommended by
Carlini and Wagner (2017), we derive an upper bound
for the distance between the counterfactuals and ad-
versarial examples generated using SCFE and C&W.
For the upper bound, we first state a lemma that de-
rives the closed-form solution for δ∗SCFE.

Lemma 1. (Optimal Counterfactual Perturbation)
For a scoring function with weights w the SCFE
method generates a counterfactual xSCFE for an in-
put x using the counterfactual perturbation δ∗SCFE such
that:

δ∗SCFE = m · (wwT + λI)−1w, (6)

where s is the target score for x, m=s−f(x) is the
target residual, f(x)=w⊤x + b is a local linear score
approximation, and λ is a given hyperparameter.

Proof Sketch. We derive the closed-form solution for
δ∗SCFE by formulating the SCFE objective in its vector
quadratic form. See Appendix B.1 for the complete
proof.

Using Lemma 1, we now formally state and derive the
upper bound for the distance between the counterfac-
tuals and adversarial examples.

Theorem 1. (Difference between SCFE and C&W)
Under the same conditions as stated in Lemma 1, the
normed difference between the SCFE counterfactual
xSCFE and C&W adversarial example xCW using the
loss function ℓ∗(·) is upper bounded by:

∥xSCFE − xCW∥p

≤
∥∥∥∥
1

λ

(
I− wwT

λ+ ∥w||22

)
(s− f(x))− cI

∥∥∥∥
p

||w||p.
(7)

Proof Sketch. We first derive the closed-form solution
for the perturbation used by C&W. Intuitively, this
solution is equivalent to shifting x in the direction of
the models’ decision boundary scaled by c. The up-
per bound follows by applying Lemma 1 and Cauchy-
Schwartz inequality. Moreover, choosing the hyper-
parameter such that λ −→ 0 and setting c=m/∥w∥22
yields equivalence, i.e., ||xSCFE − xCW||p−→ 0. See
Appendix B.3 for the complete proof.

We note that the upper bound is smaller when the
original score f(x) is close to the target score s, sug-
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gesting that xSCFE and xCW are more similar when x
is closer to the decision boundary.

4.2 SCFE and DeepFool

DeepFool is an adversarial attack that uses an itera-
tive gradient-based optimization approach to generate
adversarial examples. Despite the differences in the
formulations of SCFE and DeepFool, our theoretical
analysis reveals a striking similarity between the two
methods. In particular, we provide an upper bound
for the distance between the solutions output by coun-
terfactuals and adversarial examples generated using
SCFE and DeepFool, respectively.

Theorem 2. (Difference between SCFE and Deep-
Fool) Under the same conditions as stated in Lemma
1, the normed difference between the SCFE counter-
factual xSCFE and the DeepFool adversarial example
xDF is upper bounded by:

∥xSCFE − xDF∥p

≤
∥∥∥∥
(
I− wwT

λ+ ∥w||22

)
(s− f(x))

λ
+ I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p.

(8)

Proof Sketch. We show the similarity between SCFE
and DeepFool methods by comparing their closed-form
solutions for the generated counterfactual and adver-
sarial examples. Similar to Theorem 1, the results
follow from Cauchy-Schwartz inequality, (see Ap-
pendix B.4 for the complete proof). Moreover, choos-
ing the hyperparameter such that λ −→ 0 and setting
s:=0 yields equivalence, i.e., ||xSCFE−xDF||p−→ 0.

The right term in the inequality (Eqn. 8) entails that
the lp-norm of the difference between the generated
samples is bounded if: 1) the predicted score is closer
to the target score of a given input, and 2) the gradi-
ents with respect to the logit scores of the underlying
model are bounded.

4.3 Manifold-based methods

We formalize the connection between manifold-based
methods by comparing NAE to C-CHVAE as both
rely on generative models. While C-CHVAE uses vari-
ational autoencoders, NAE uses GANs, specifically
Wasserstein GAN (Arjovsky et al., 2017), to gener-
ate adversarial example. To allow a fair comparison,
we assume that both methods use the same generator
Gθ and inverter Iγ networks.

Proposition 1. Let p=∅ in C-CHVAE. Assuming
that C-CHVAE and NAE use the same generator Gθ
and inverter functions Iθ. Then the proposed objec-
tives of NAE and C-CHVAE are equivalent.

Proof. Since p=∅, equation 2 reduces to:

δ∗=argmin
δ∈Z

∥δ∥ s.t. h(Gθ(Iγ(xf ) + δ)) ̸= h(xf ) (9)

Also, Iγ(x)=z. Replacing z̃−z=δ in eqn. 5, we get:

δ∗ = argmin
δ∈Z

∥δ∥ s.t. h(Gθ(Iγ(x) + δ)) ̸= h(x) (10)

Since xf=x, we get the equivalence.

Both C-CHVAE and NAE use search methods to gen-
erate adversarial examples or counterfactuals using the
above objective function. In particular, both NAE and
C-CHVAE samples z using an ℓp-norm ball of radius
range (rNAE,∆rNAE] and rC. z̃NAE denotes the so-
lution returned by Zhao et al. (2018) and z̃C the so-
lution returned by C-CHVAE. We denote r∗NAE and
r∗C as the corresponding radius parameters from NAE
and C-CHVAE, respectively, and restrict our analysis
to the class of L-Lipschitz generative models:

Definition 1. Bora et al. (2017): A generative model
Gθ(·) is L-Lipschitz if ∀ z1, z2 ∈ Z, we have,

∥Gθ(z1)− Gθ(z2)∥p≤ L∥z1 − z2∥p. (11)

Note that commonly used DNN models comprise of
linear, convolutional and activation layers, which sat-
isfy Lipschitz continuity (Gouk et al., 2021).

Lemma 2. (Difference between C-CHVAE and NAE)
Let z̃C and z̃NAE be the output generated by C-
CHVAE and NAE by sampling from ℓp-norm ball
in the latent space using an L-Lipschitz generative
model Gθ(·). Analogously, let xNAE=Gθ(z̃NAE) and
xC=Gθ(z̃C) generate perturbed samples by design of
the two methods. Let r∗NAE and r∗C be the correspond-
ing radii chosen by each algorithm such that they suc-
cessfully return an adversarial example or counterfac-
tual. Then, ∥xC − xNAE∥p≤ L(r∗C + r∗NAE).

Proof Sketch. The proof follows from triangle inequal-
ity, L-Lipschitzness of the generative model, and the
fact that the ℓp-norm of the method’s outputs are
known in the latent space. See Appendix B.5 for a
detailed proof.

Intuitively, the adversarial example and counter-
factual explanation generated by the methods are
bounded depending on the data manifold properties
(captured by the Lipschitzness of the generative
model) and the radius hyperparameters used by the
search algorithms.
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4.4 On the Underlying Assumptions

The analyzed counterfactual explanation objectives in
our analysis slightly differ from their original imple-
mentations. Hence, the following remarks are in place.
First, the original objective stated by Wachter et al.
(2017) includes the median absolute deviation (MAD)
for each input as a normalization term for the regular-
izer. However, the regularizer is independent of δ, and
can therefore be incorporated into Lemma 1 and Theo-
rem 1. Second, our analysis focuses on objective func-
tions from SCFE and C-CHVAE explanation meth-
ods which consider generic distance functions. Hence,
to facilitate a fair comparison across all counterfac-
tual explanation and adversarial example algorithms,
we use ℓ2-norm in our analysis. Finally, immutability
constraints can be readily incorporated. For instance,
instead of taking the derivative of the SCFE objec-
tive function with respect to all available features, we
take the derivative with respect to the mutable fea-
tures only.

5 EXPERIMENTS

We now present the empirical analysis to demonstrate
the similarities between counterfactual explanations
and adversarial examples. More specifically, we verify
the validity of our theoretical upper bounds using
real-world datasets and determine the extent to which
counterfactual explanations and adversarial examples
similar to each other.

5.1 Experimental Setup

We first describe the synthetic and real-world datasets
used to study the connections between counterfactual
explanations and adversarial examples, and then we
outline our experimental setup.

Synthetic Data. We generate 5000 samples from a
mixture of Gaussians with pdfsN (µ1=[1.0, 1.0],Σ1=I)
and N (µ2=[−1.0,−1.0],Σ2=I).

Real-world Data. We use three datasets in our
experiments. 1) The UCI Adult dataset (Dua and
Graff, 2017) consisting of 48842 individuals with de-
mographic (e.g., age, race, and gender), education (de-
gree), employment (occupation, hours-per-week), per-
sonal (marital status, relationship), and financial (cap-
ital gain/loss) features. The task is to predict whether
an individual’s income exceeds $50K per year or not.
2) The COMPAS dataset (Mattu et al., 2016) com-
prising of 10000 individuals representing defendants
released on bail. The task is to predict whether to re-
lease a defendant on bail or not using features, such
as criminal history, jail, prison time, and defendant’s
demographics. 3) The German Credit dataset from
the UCI repository (Dua and Graff, 2017) consisting
of demographic (age, gender), personal (marital sta-

tus), and financial (income, credit duration) features
from 1000 credit applications. The task is to predict
whether an applicant qualifies for credit or not.

Methods. Following our analysis in Sec. 4, we
compare the following pair of methods: i) SCFE
(Wachter et al., 2017) vs. C&W (Carlini and Wagner,
2017), ii) SCFE vs. DeepFool (Moosavi-Dezfooli et al.,
2016), and iii) C-CHVAE (Pawelczyk et al., 2020a)
vs. NAE (Zhao et al., 2018).

Prediction Models. For the synthetic dataset, we
train a logistic regression model (LR) to learn the
mixture component (samples and corresponding deci-
sion boundary shown in Fig. 1), whereas for real-world
datasets, we obtain adversarial examples and counter-
factuals using LR and artificial neural network (ANN)
models. See Appendix C for more details.

Implementation Details For all real-world data,
adversarial examples and counterfactuals are gener-
ated so as to flip the target prediction label from
unfavorable (y=0) to favorable (y=1). We use
ℓ2-norm as the distance function in all our experi-
ments. We partition the dataset into train-test splits
where the training set is used to train the predictor
models. Adversarial examples and counterfactuals are
generated for the trained models using samples in the
test splits. For counterfactual explanation methods
applied to generate recourse, all features are assumed
actionable for fair comparison with adversarial exam-
ple generation methods. See Appendix C for more
implementation details.

5.2 Results

Validating our Theoretical Upper Bounds. We
empirically validate the theoretical upper bounds ob-
tained in Sec. 4. To this end, we first estimate the
bounds for each instance in the test set according to
Theorems 1 and 2, and compare them with the em-
pirical estimates of the ℓ2-norm differences (LHS of
Theorems 1 and 2). We use the same procedure to
validate the bounds from Lemma 3.

SCFE vs. C&W and DeepFool. In Fig. 2, we
show the empirical evaluation of our theoretical
bounds for all real-world datasets. For each dataset,
we show four box-plots: empirical estimates (green)
and theoretical upper bounds (blue) of the distance
(ℓ2-norm) between the resulting counterfactuals and
adversarial examples for SCFE and C&W (labeled as
SCFE vs. CW), and SCFE and DeepFool (labeled as
SCFE vs. DF). Across all three datasets, we observe
that no bounds were violated for both theorems. The
gap between empirical and theoretical values is rela-
tively small for German credit dataset as compared
to COMPAS and Adult datasets. From Theorems 1
and 2, we see that the bound strongly depends on
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Figure 1: Similarity comparison of adversarial example and counterfactual explanation methods. Based on
synthetic data, we generate adversarial examples (in red) and counterfactual explanations (in green) for some
randomly chosen test set points (in blue) using methods described in Sec. 3. (Left) Both SCFE (in green) and
C&W (in red) samples are close to each other, indicating strong similarity between these methods. (Middle)
SCFE (in green) and DeepFool (in red) samples exactly coincide, indicating equivalence. (Right) C-CHVAE (in
green) and NAE (in red) samples are closer if the blue factual points are closer to the boundary.
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Figure 2: Verifying the theoretical bounds from The-
orems 1 and 2. The green boxplots correspond to the
empirical norm differences between SCFE (i.e., xCE)
and CW or DF (i.e., xAE). The blue boxplots show
the distribution of upper bounds, which we evaluated
by plugging in the necessary quantities (hyperparam-
eters, gradients, logit values) into equations 7 and 8.
No bounds are violated. For ANNs, the upper bounds
were computed using local linear model approxima-
tions.

the norm of the logit score gradient w=∇xf(x), e.g.,
for Adult dataset these norms are relatively higher
leading to less tight bounds.

C-CHVAE vs.NAE. In Fig. 3, we validate the
bounds obtained in Lemma 3 for all three datasets us-
ing an encoder-decoder framework. We observe that
our upper bounds are tight, thus validating our theo-
retical analysis for comparing manifold-based counter-
factual explanation (C-CHVAE) and adversarial ex-
ample generation method (NAE).

Similarities between Counterfactuals and Ad-
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Figure 3: Verifying the theoretical bounds from
Lemma 2. The green boxplots correspond to the em-
pirical norm differences between CCHVAE (i.e., xCE)
and NAE (i.e., xAE). The blue boxplots show the
distribution of upper bounds, which we evaluated by
plugging in the corresponding quantities (hyperparam-
eters, Lipschitz constant) into the upper bound from
Lemma 2. The Lipschitz constant is computed based
on decoders and encoders using Lemma 4. No bounds
are violated.

versarial examples. Here, we qualitatively and
quantitatively show the similarities between coun-
terfactuals and adversarial examples using several
datasets.

Analysis with Synthetic Data. In Fig. 1, we show
the similarity between counterfactual explanations
and adversarial examples generated for a classifier
trained on a two-dimensional mixture of Gaussian
datasets. Across all cases, we observe that most
output samples generated by counterfactual expla-
nation and adversarial example methods overlap. In
particular, for samples near the decision boundary,
the solutions tend to be more similar. These results
confirm our theoretical bounds, which depend on the
difference between the logit sample prediction f(x)
and the target score s. If points are close to the
decision boundary, f(x) is closer to s, suggesting that
the resulting counterfactual and adversarial example



Exploring Counterfactual Explanations Through the Lens of Adversarial Examples

DF (`2) CW (`2) NAE (`2)
SCFE (`2) vs.

0.0

0.5

1.0

d m
at

ch
(`

2)

DF (`2) CW (`2) NAE (`2)
CCHVAE (`2) vs.

0.0

0.5

1.0

d m
at

ch
(`

2)

θ=0.02
θ=0.05
θ=0.1

(a) COMPAS

DF (`2) CW (`2) NAE (`2)
SCFE (`2) vs.

0.0

0.5

1.0

d m
at

ch
(`

2)

DF (`2) CW (`2) NAE (`2)
CCHVAE (`2) vs.

0.0

0.5

1.0

d m
at

ch
(`

2)

(b) Adult

Figure 4: Analyzing to what extent different counter-
factual explanation methods and adversarial example
generation methods are empirically equivalent for the
logistic regression classifier. To do that, we compute
dmatch from Eqn. 12. Missing bars indicate that there
was no match.

will be closer as implied by Theorems 1 and 2.

Analysis with Real Data. For real-world datasets,
we define two additional metrics beyond those studied
in our theoretical analysis to gain a more granular un-
derstanding about the similarities of counterfactuals
and adversarial examples. First, we introduce dmatch

which quantifies the similarity between counterfactuals
(i.e., xCE) and adversarial examples (i.e., xAE):

dmatch =
1

n

n∑

i=1

I
[

1√
d
∥x(i)

CE − x
(i)
AE∥2 < θ

]
, (12)

where n is the total number of instances used in
the analysis and θ∈{0.02, 0.05, 0.1} is a threshold
determining when to consider counterfactual and
adversarial examples as equivalent. dmatch evaluates
whether counterfactuals and adversarial examples
are exactly the same with higher dmatch implying
higher similarity. Second, we complement dmatch by
Spearman rank ρ between δCE and δAE, which is a
rank correlation coefficient measuring to what extent
the perturbations’ rankings agree, i.e., whether adver-
sarial example generation methods and counterfactual
explanation methods deem the same dimensions
important in order to arrive at their final outputs.
Here, ρ(δCE, δAE)=1 implies that the rankings are
same, 0 suggests that the rankings are independent,
and −1 indicates reversely ordered rankings.

In Fig. 4, we compare a given counterfactual expla-
nation method to salient adversarial example gener-
ation methods (DeepFool, C&W, and NAE) using
dmatch. We show the results for Adult and COM-
PAS datasets using LR models and relegate results
for German Credit as well as neural network classifiers
to Appendix D. Our results in Fig. 4 validate that
the SCFE method is similar to DeepFool and C&W

(higher dmatch for lower θ). Across all datasets, this
result aligns and validates with the similarity analysis
in Sec. 4. Similarly, manifold-based methods demon-
strate higher dmatch compared to non-manifold meth-
ods (right panels in Fig. 4). Additionally, we show
the results from the rank correlation analysis in Ta-
ble 1 and observe that the maximum rank correlations
(between 0.90 and 1.00) are obtained for methods that
belong to the same categories, suggesting that the con-
sidered counterfactuals and adversarial examples are
close to being equivalent.

6 CONCLUSION

In this work, we formally analyzed the connections be-
tween state-of-the-art adversarial example generation
methods and counterfactual explanation methods. To
this end, we first highlighted salient counterfactual ex-
planation and adversarial example methods in litera-
ture, and leveraged similarities in their objective func-
tions, optimization algorithms and constraints utilized
in these methods to theoretically analyze conditions
for equivalence and bound the distance between the
solutions output by counterfactual explanation and ad-
versarial example generation methods. For locally lin-
ear models, we bound the distance between the solu-
tions obtained by C&W and SCFE using loss functions
preferred in the respective works. We obtained similar
bounds for the solutions of DeepFool and SCFE. We
also demonstrated equivalence between the manifold-
based methods of NAE and C-CHVAE and bounded
the distance between their respective solutions. Fi-
nally, we empirically evaluated our theoretical findings
on simulated and real-world data sets.

By establishing theoretically and empirically that sev-
eral popular counterfactual explanation algorithms are
generating extremely similar solutions as those of well
known adversarial example algorithms, our work raises
fundamental questions about the design and devel-
opment of existing counterfactual explanation algo-
rithms. Do we really want counterfactual explanations
to resemble adversarial examples, as our work sug-
gests they do? How can a decision maker distinguish
an adversarial attack from a counterfactual explana-
tion? Does this imply that decision makers are trick-
ing their own models by issuing counterfactual expla-
nations? Can we do a better job of designing counter-
factual explanations? Moreover, by establishing con-
nections between popular counterfactual explanation
and adversarial example algorithms, our work opens
up the possibility of using insights from adversarial ro-
bustness literature to improve the design and develop-
ment of counterfactual explanation algorithms.

We hope our formal analysis helps carve a path for
more robust approaches to counterfactual explana-
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Table 1: Average Spearman rank correlation between counterfactual and adversarial perturbations. For every
input x, we compute the corresponding adversarial perturbation δAE and the counterfactual perturbation δCE.
We then compute Spearman’s ρ(δAE, δCE) and report their means (gradient-based: (g); manifold-based: (m)).

COMPAS Adult

LR ANN LR ANN

Model SCFE (g) CCHVAE (m) SCFE (g) CCHVAE (m) SCFE (g) CCHVAE (m) SCFE (g) CCHVAE (m)

CW (g) 0.88± 0.16 0.67± 0.30 0.93± 0.10 0.67± 0.22 0.95± 0.06 0.86± 0.10 0.92± 0.09 0.70± 0.16
DF (g) 0.91± 0.12 0.68± 0.31 0.97± 0.03 0.65± 0.22 0.92± 0.06 0.80± 0.13 0.93± 0.08 0.63± 0.20
NAE (m) 0.57± 0.35 0.94± 0.08 0.71± 0.19 1.00± 0.00 0.83± 0.12 0.90± 0.10 0.74± 0.13 0.98± 0.02

tions, a critical aspect for calibrating trust in ML.
Improving our theoretical bounds using other strate-
gies and deriving new theoretical bounds for other ap-
proaches is an interesting future direction.
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Supplementary Material:
Exploring Counterfactual Explanations Through the Lens of
Adversarial Examples: A Theoretical and Empirical Analysis

APPENDIX SUMMARY

Section A provides a categorization of counterfactual explanation and adversarial example methods. In Section B,
we provide detailed proofs for Lemmas 1 and 3, and Theorems 1 and 2. In Section C, we provide implementation
details for all models used in our experiments including (i) the supervised learning models, (ii) the counterfactual
explanation and adversarial example methods, and the (iii) generative models required to run the manifold-based
methods. Finally, in Section D, we present the remaining experiments we referred to in the main text.

A TAXONOMY OF COUNTERFACTUAL AND ADVERSARIAL EXAMPLE
METHODS

In order to choose methods to compare across counterfactual explanation methods and adversarial example
generation methods, we surveyed existing literature. We use a taxonomy to categorize each subset of methods
based on various factors. The main characteristics we use are based on type of method, based on widely accepted
terminology and specific implementation details. In particular, we distinguish between i) constraints imposed
for generating adversarial examples or counterfactual explanations, ii) algorithms used for generating them.
For the class of adversarial example generation methods, we further distinguish between poisoning attacks and
evasion attacks and note that evasion attacks are most closely related to counterfactual explanation methods.
The taxonomy for counterfactual explanation methods is provided in Table 2 and that for adversarial example
generation methods is provided in Table 3.

The main algorithm types used for counterfactual explanation methods are search-based, gradient-based and one
method that uses integer programming (Ustun et al., 2019). The main constraints considered are actionability
i.e., only certain features are allowed to change, and counterfactual explanations are encouraged to be realistic
using either causal and/or manifold constraints. Similarly, for adversarial example generation methods primarily,
Greedy search-based and gradient-based methods are most common. Manifold constraints are also imposed in
a few cases where the goal is to generate adversaries close to the data-distribution. Based on this taxonomy, we
select the appropriate pairs of counterfactual explanation method and adversarial example generation method
to compare to each other for theoretical analysis. This leads us to compare gradient-based methods SCFE
and C&W attack, SCFE and DeepFool and finally, manifold-based methods C-CHVAE and NAE with their
search-based algorithms.

Table 2: Taxonomy of counterfactual explanation methods

Algorithm Constraints Method

Search-based
Causal, Actionability
Manifold, Actionability

MINT (Karimi et al., 2020c)
C-CHVAE (Pawelczyk et al., 2020a)

Gradient-based
Actionability
Manifold, Actionability

CFE, SCFE Wachter et al. (2017)
REVISE (Joshi et al., 2019)

Integer-programming Actionability/Linear black-box AR (Ustun et al., 2019)
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Table 3: Taxonomy of adversarial example generation methods

Algorithm Constraints Method

Poisoning
Attacks

Greedy Search Manifold Adv. Data Poisoning (Tavallali et al., 2021)
Gradient-based Data-domain SVM-attack (Biggio et al., 2012)

One-Shot Kill (Shafahi et al., 2018)

Evasion
Attacks

Search-based Manifold NAE (Zhao et al., 2018)
Gradient-based Data-domain DeepFool (Moosavi-Dezfooli et al., 2016)

C&W Attack (Carlini and Wagner, 2017)

B PROOFS OF SECTION 4

B.1 Proof of Lemma 1

Lemma 1. For a linear score function f(x) = w⊤x + b, the SCFE counterfactual for x on f is x′ = x + δ∗

where
δ∗ = (wwT + λI)−1(s−wTx− b)w.

Proof. Reformulating Equation 1 using l2-norm as the distance metric, we get:

min
x′

(wTx′ + b− s)2 + λ||x′ − x||22.

We can convert this minimization objective into finding the minimum perturbation δ by substituting x′ = x+ δ,
i.e.,

min
δ

(wTx+wT δ + b− s)2 + λ||x′ − x||22. (13)

Using s−wTx− b = m as a dummy variable and x′ − x = δ, we get:

min
δ

(wT δ −m)2 + λ||δ||22
min
δ

(wT δ −m)T (wT δ −m) + λδT δ

min
δ

(δTw −m)(wT δ −m) + λδT δ (m is a scalar, hence mT = m)

min
δ

δTwwT δ − 2mδTw +m2 + λδT δ

min
δ

δT (wwT + λI)δ − 2mδTw +m2

min
δ

δTMδ − 2mwT δ +m2 (where M = wwT + λI)

min
δ

δTMδ − 2ηT δ +m2 (where mw = η)

min
δ

δTMδ − 2ηT δ + ηTM−1η − ηTM−1η +m2

min
δ

(δ −M−1η)TM(δ −M−1η)− ηTM−1η +m2

The closed form solution is given by,
δ∗ = M−1η, (14)

where M = wwT + λI.

The expression in equation 14 can further be simplified:

δ∗ =
m

λ

(
I− wwT

λ+ ∥w∥22

)
w (Sherman-Morrison Formula)

=
m

λ

(
Iw −w

∥w∥22
λ+ ∥w∥22

)

=
m

λ
· λ

λ+ ∥w∥22
·w =

m

λ+ ∥w∥22
·w, (15)
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where m := s−wTx− b. Finally, we note that as λ −→ 0, we have:

δ∗∗ =
m

∥w∥22
·w. (16)

B.2 Proof of Lemma 3

Lemma 3. For a binary classifier h(x) = g(f(x)) such that f(x) = w⊤x + b, g(x) = σ(x), and h(x) is the
probability that x is in the class y = 1,

ℓ∗(x) = max(0,−2(w⊤x+ b))

.

Proof. Given our formulation of h(x), f(x) is the score corresponding to class y = 1. By the definition of σ(x),

f(x) = ln
h(x)

1− h(x)
= lnh(x)− ln (1− h(x))

Then the score corresponding to the class y = 0 is

ln
1− h(x)

1− (1− h(x))
= ln

1− h(x)

h(x)
= ln (1− h(x))− lnh(x) = −f(x)

Substituting back into definition of ℓ∗(x),

ℓ∗(x) = max(0,max
i

(f(x)i)− f(x)y)

= max(0, (−f(x)− f(x))

= max(0, (−2f(x))
= max(0,−2(w⊤x+ b)).

B.3 Proof of Theorem 1

Theorem 1. For a linear classifier h(x) = g(f(x)) such that f(x) = wTx+ b, the difference between the SCFE
counterfactual example xSCFE and the C&W adversarial example xCW using the recommended loss function
ℓ∗(·) = max(0,maxi(f(x)i)− f(x)y) is given by:

∥xSCFE − xCW∥p ≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p

.

Proof. Consider a binary classifier h(x) = g(f(x)) such that f(x) = w⊤x + b, g(x) = σ(x), and h(x) is the
probability that x is in the class y = 1. Then by Lemma 3 and using ℓ2-nrom as the distance metric, we can
write the C&W Attack objective as

argmin
x′

cmax(0,−2(w⊤x′ + b)) + ∥x− x′∥22

We can convert this minimization objective into finding the minimum perturbation δ by substituting x′ = x+ δ,

argmin
δ

cmax(0,−2(w⊤x+w⊤δ + b)) + ∥δ∥22

The subgradients of this objective are
{

2δ when − 2(w⊤x+w⊤δ + b) < 0

−2cw + 2δ otherwise
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By Lemma 3, −2(w⊤x+w⊤δ + b) = −f(x)− f(x) < 0. This implies that f(x) > −f(x), i.e that the score for
class y = 1 is greater than the score for y = 0. As this indicates an adversarial example has already been found,
we focus on minimizing the other subgradient. Setting this subgradient equal to 0,

0 = −2cw + 2δ

δ = cw

Thus the minimum perturbation to generate and adversarial example using the C&W Attack is

δ∗CW = cw

Now, taking the difference between the minimum perturbation to generate a SCFE counterfactual (Lemma 1)
and DeepFool (equation 18), we get:

δ∗SCFE − δ∗CW = (wwT + λI)−1(s−wTx− b)w − cw

= ((wwT + λI)−1(s− f(x))− cI)w

=

(
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

)
w (Using Sherman–Morrison formula)

Taking the lp-norm on both sides, we get:

∥δ∗SCFE − δ∗CW∥p =

∥∥∥∥
(
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

)
w

∥∥∥∥
p

≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p (Using Cauchy-Schwartz)

Adding and subtracting the input instance x in the left term, we get:

∥x+ δ∗SCFE − (x+ δ∗CW)∥p ≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p

∥xSCFE − xCW∥p ≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x))− cI

∥∥∥∥
p

∥w∥p,

where the final equation gives an upper bound on the difference between the SCFE counterfactual and the
C&W adversarial example.

Furthermore, we ask under which conditions the normed difference becomes 0. We start with:

δ∗SCFE − δ∗CW =
m

λ+ ∥w∥22
·w − c ·w

Taking the lp-norm on both sides, we get:

∥δ∗SCFE − δ∗CW∥p =

∣∣∣∣
m

λ+ ∥w∥22
− c

∣∣∣∣ · ∥w∥p

If we were to choose λ −→ 0 we would get:

∥δ∗∗SCFE − δ∗CW∥p =

∣∣∣∣
m− c · ∥w∥22
∥w∥22

∣∣∣∣ · ∥w∥p,

where equality holds when the hyperparameter is chosen so that c := m
∥w∥2

2
.

B.4 Proof of Theorem 2

Theorem 2. For a linear classifier h(x) = g(f(x)) such that f(x) = wTx + b, the difference between the
counterfactual example xSCFE generated by Wachter et al. (2017) and the adversarial example xDF generated by
Moosavi-Dezfooli et al. (2016) is given by:

||xSCFE − xDF||p≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) +

(
I
f(x)

∥w∥22

)∥∥∥∥
p

· ||w||p, (17)
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Proof. The minimal perturbation to change the classifier’s decision for a binary model f(x) is given by the
closed-form formula (Moosavi-Dezfooli et al., 2016):

δ∗DF = − f(x)

||w||22
w. (18)

Now, taking the difference between the minimum perturbation added to an input instance x byWachter algorithm
(Lemma 1) and DeepFool (equation 18), we get:

δ∗SCFE − δ∗DF = (wwT + λI)−1(s−wTx− b)w −
(
− f(x)

||w||22
w

)

δ∗SCFE − δ∗DF =

(
(wwT + λI)−1(s− f(x)) +

f(x)

||w||22

)
w

δ∗SCFE − δ∗DF =

(
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) +

f(x)

||w||22

)
w (Using Sherman–Morrison formula)

Taking the lp-norm on both sides, we get:

∥δ∗SCFE − δ∗DF∥p =

∥∥∥∥
(
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

)
w

∥∥∥∥
p

≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p (Using Cauchy-Schwartz)

Adding and subtracting the input instance x in the left term, we get:

∥x+ δ∗SCFE − (x+ δ∗DF)∥p ≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p

∥xSCFE − xDF∥p ≤
∥∥∥∥
1

λ

(
I− wwT

λ+wTw

)
(s− f(x)) + I

f(x)

∥w∥22

∥∥∥∥
p

∥w∥p,

where the final equation gives an upper bound on the difference between the SCFE counterfactual and the
adversarial example from DeepFool (Moosavi-Dezfooli et al., 2016).

Furthermore, we ask under which conditions the normed difference becomes 0. If we were to choose λ −→ 0 we
would get:

∥δ∗∗SCFE − δ∗DF∥p =

∥∥∥∥
−f(x) + s

∥w∥22
·w +

−f(x)
∥w∥22

·w
∥∥∥∥
p

=
|s|
∥w∥22

· ∥w∥p,

where equality holds when the target score is chosen so that s=0, which corresponds to a probability of Y=1 of
0.5.

B.5 Proof of Lemma 2

Lemma 2. Let z̃NAE be the solution returned Zhao et al. (2018, Algorithm 1) and z̃C the solution returned by
the counterfactual search algorithm of Pawelczyk et al. (2020a) by sampling from ℓp-norm ball in the latent space
using an L-Lipschitz generative model Gθ(·). Analogously, let xNAE = Gθ(z̃NAE) and xC = Gθ(z̃C) by design
of the two algorithms. Let r∗NAE and r∗C be the corresponding radius chosed by each algorithm respectively that
successfully returns an adversarial example or counterfactual explanation. Then, ∥xNAE − xC∥≤ L(r∗NAE + r∗C).
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Proof. The proof straightforwardly follows from triangle inequality and L-Lipschitzness of the Generative model:

∥xNAE − xC∥ = ∥Gθ(z̃NAE)− Gθ(z̃C)∥p (19)

≤ ∥Gθ(z̃NAE)− x+ x− Gθ(z̃C)∥p (20)

≤ ∥Gθ(z̃NAE)− x∥p+∥x− Gθ(z̃C)∥p (21)

= ∥Gθ(z̃NAE)− Gθ(z)∥p+∥Gθ(z)− Gθ(z̃C)∥p (22)

≤ L∥z̃NAE − z∥p+L∥z− z̃C∥p (23)

≤ L{r∗NAE + r∗C} (24)

where equation 20 follows from triangle inequality in the ℓp-norm, equation 23 follows from the Lipschitzness
assumption and equation 24 follows from properties of the counterfactual search algorithms.

In the following we outline a lemma that allows us to estimate the Lipschitz constant of the generative model.
This will be used for empirical validation of our theoretical claims.

Lemma 4 (Bora et al. (2017)). If G is a d-layer neural network with at most c nodes per layer, all weights ≤ wmax

in absolute value, and M -Lipschitz non-linearity after each layer, then G(·) is L -Lipschitz with L = (Mcwmax)
d
.

C EXPERIMENTAL SETUP

C.1 Implementation Details for Counterfactual Explanation and Adversarial Example
Methods

For all datasets, categorical features are one-hot encoded and data is scaled to lie between 0 and 1. We partition
the dataset into train-test splits. The training set is used to train the classification models for which adversarial
examples and counterfactual explanations are generated. adversarial examples and counterfactual explanations
are generated for all samples in the test split for the fixed classification model. For counterfactual explanation
methods applied to generate recourse examples, all features are assumed actionable for comparison with ad-
versarial examples methods. Adversarial examples and counterfactuals are appropriately generated using the
prescribed algorithm implementations in each respective method. Specifically,

i) SCFE: As suggested in Wachter et al. (2017), an Adam optimizer (Kingma and Ba, 2014) is used to obtain
counterfactual explanations corresponding to the cost function of equation 14. We have based our implementation
on the implementation provided by Pawelczyk et al. (2021).

ii) C-CHVAE: A (V)AE is additionally trained to model the data-manifold as prescribed in Pawelczyk et al.
(2020a). As suggested in Pawelczyk et al. (2020a), a counterfactual search algorithm in the latent space of
the (V)AEs. Particularly, a latent sample within an ℓp-norm ball with a fixed search radius is used until
a counterfactual example is successfully obtained. The search radius of the norm ball is increased until a
counterfactual explanation is found. The architecture of the generative model is provided in Appendix C.3. We
have based our implementation on the implementation provided by Pawelczyk et al. (2021).

iv) C&W Attack: As prescribed in Carlini and Wagner (2017), we use gradient-based optimization to find
Adversarial Examples using this attack.

v) DeepFool: We implement Moosavi-Dezfooli et al. (2016, Algorithm 1) to generate Adversarial Examples
using DeepFool.

vi) NAE: This method trains a generative model and an inverter to generate Adversarial Examples. For
consistency of comparison with C-CHVAE, we use the decoder of the same (V)AE as the generative model for
this method. The inverter then corresponds to the encoder of the (V)AE. We use Zhao et al. (2018, Algorithm 1)
which uses an iterative search method to find natural adversarial examples. The algorithm searches for adversarial
examples in the latent space with radius between (r, r +∆r]. The search radius is iteratively increased until an
Adversarial Example is successfully found.

We describe architecture and training details for real-world data sets in the following.
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C.2 Supervised Classification Models

All models are implemented in PyTorch and use a 80− 20 train-test split for model training and evaluation. We
evaluate model quality based on the model accuracy. All models are trained with the same architectures across
the data sets:

Neural Network Logistic Regression

Units [Input dim. , 18, 9, 3, 1] [Input dim. , 1]
Type Fully connected Fully connected
Intermediate activations ReLU N/A
Last layer activations Sigmoid Sigmoid

Table 4: Classification model details

Adult COMPAS German Credit

Batch-size NN 512 32 64

Logistic
Regression

512 32 64

Epochs NN 50 40 30

Logistic
Regression

50 40 30

Learning rate NN 0.002 0.002 0.001

Logistic
Regression

0.002 0.002 0.001

Table 5: Training details

Adult COMPAS German Credit

Logistic Regression 0.83 0.84 0.71
Neural Network 0.84 0.85 0.72

Table 6: Performance of models used for generating adversarial examples and counterfactual explanations

C.3 Generative model architectures used for C-CHVAE and NAE

For the results in Lemma 3, we used linear encoders and decoders. For the remaining experiments, we use the
following architectures.

Adult COMPAS German Credit

Encoder layers [input dim, 16, 32, 10] [input dim, 8, 10, 5] [input dim, 16, 32, 10]
Decoder layers [10, 16, 32, input dim] [5, 10, 8, input dim] [10, 16, 32, input dim]
Type Fully connected Fully connected Fully connected
Intermediate activations ReLU ReLU ReLU
Loss function MSE MSE MSE

Table 7: Autoencoder details
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D ADDITIONAL EMPIRICAL EVALUATION

D.1 Remaining Empirical Results from Section 5

In Table 8, we show the remaining results on the German Credit data pertaining to the Spearman rank correlation
experiments, while Figure 5 depicts the remaining dmatch results for the German Credit data set on the logistic
regression classifier.

German Credit

LR ANN

Model SCFE CCHVAE SCFE CCHVAE

CW 0.92± 0.04 0.52± 0.08 0.98± 0.02 0.72± 0.13
DF 0.92± 0.04 0.57± 0.08 0.97± 0.02 0.72± 0.13
NAE 0.44± 0.11 0.99± 0.01 0.71± 0.19 0.99± 0.01

Table 8: Average Spearman rank correlation between counterfactual perturbations and adversarial perturba-
tions. For every input x, we compute the corresponding adversarial perturbation δAE and the counterfactual
perturbation δCE. We then compute the rank correlation of δAE and δCE and report their means. The maximum
rank correlation is obtained for methods that belong to the same categories (gradient based vs. manifold-based).
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Figure 5: Analyzing to what extent different counterfactual explanation methods and adversarial example gen-
eration methods are empirically equivalent for the logistic regression classifier with German Credit data. We
compute dmatch from equation 12 with varying thresholds θ = {0.02, 0.05, 0.1}. Missing bars indicate that there
was no match.

We also include results for Neural Networks in Appendix D.2.
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D.2 Empirical Evaluation with ANN
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Figure 6: Analyzing to what extent different counterfactual explanations and adversarial examples are empirically
equivalent for the 2-layer ANN classifier. To do that, we compute dmatch from equation 12 with varying thresholds
θ = {0.02, 0.05, 0.1}. Missing bars indicate that there was no match.
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Figure 7: Distribution of instance wise norm comparisons for the logistic regression model. We show the dis-
tribution of cost comparisons across negatively predicted instances (ŷ = 0) for which we computed adversarial
examples and counterfactual explanations.



M. Pawelczyk, C. Agarwal, S. Joshi, S. Upadhyay, H. Lakkaraju

DF (`2) CW (`2) NAE (`2)
SCFE (`2) vs.

0.0

0.2

0.4

1 √
d
||x

C
E
−

x A
E
|| 2

DF (`2) CW (`2) NAE (`2)
CCHVAE (`2) vs.

0.0

0.2

0.4

1 √
d
||x

C
E
−

x A
E
|| 2

(a) Adult

DF (`2) CW (`2) NAE (`2)
SCFE (`2) vs.

0.0

0.2

0.4

1 √
d
||x

C
E
−

x A
E
|| 2

DF (`2) CW (`2) NAE (`2)
CCHVAE (`2) vs.

0.0

0.2

0.4

1 √
d
||x

C
E
−

x A
E
|| 2

(b) COMPAS

DF (`2) CW (`2) NAE (`2)
SCFE (`2) vs.

0.0

0.2

0.4

1 √
d
||x

C
E
−

x A
E
|| 2

DF (`2) CW (`2) NAE (`2)
CCHVAE (`2) vs.

0.0

0.2

0.4

1 √
d
||x

C
E
−

x A
E
|| 2

(c) German Credit

Figure 8: Distribution of instance wise norm comparisons for the 2-layer ANN. We show the distribution of
cost comparisons across negatively predicted instances (ŷ = 0) for which we computed adversarial examples and
counterfactual explanations.
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ABSTRACT

As machine learning (ML) models are increasingly being deployed in high-stakes
applications, policymakers have suggested tighter data protection regulations (e.g.,
GDPR, CCPA). One key principle is the “right to be forgotten” which gives users
the right to have their data deleted. Another key principle is the right to an action-
able explanation, also known as algorithmic recourse, allowing users to reverse
unfavorable decisions. To date, it is unknown whether these two principles can be
operationalized simultaneously. Therefore, we introduce and study the problem
of recourse invalidation in the context of data deletion requests. More specifically,
we theoretically and empirically analyze the behavior of popular state-of-the-art
algorithms and demonstrate that the recourses generated by these algorithms are
likely to be invalidated if a small number of data deletion requests (e.g., 1 or 2)
warrant updates of the predictive model. For the setting of differentiable models,
we suggest a framework to identify a minimal subset of critical training points
which, when removed, maximize the fraction of invalidated recourses. Using our
framework, we empirically show that the removal of as little as 2 data instances
from the training set can invalidate up to 95 percent of all recourses output by
popular state-of-the-art algorithms. Thus, our work raises fundamental questions
about the compatibility of “the right to an actionable explanation” in the context
of the “right to be forgotten”, while also providing constructive insights on the
determining factors of recourse robustness.

1 INTRODUCTION

Machine learning (ML) models make a variety of consequential decisions in domains such as finance,
healthcare, and policy. To protect users, laws such as the European Union’s General Data Protection
Regulation (GDPR) (GDPR, 2016) or the California Consumer Privacy Act (CCPA) (OAG, 2021)
constrain the usage of personal data and ML model deployments. For example, individuals who
have been adversely impacted by the predictions of these models have the right to recourse (Voigt &
Von dem Bussche, 2017), i.e., a constructive instruction on how to act to arrive at a more desirable
outcome (e.g., change a model prediction from “loan denied” to “approved”). Several approaches in
recent literature tackled the problem of providing recourses by generating instance level counterfactual
explanations (Wachter et al., 2018; Ustun et al., 2019; Karimi et al., 2020; Pawelczyk et al., 2020a).

Complementarily, data protection laws provide users with greater authority over their personal
data. For instance, users are granted the right to withdraw consent to the usage of their data at any
time (Biega & Finck, 2021). These regulations affect technology platforms that train their ML models
on personal user data under the respective legal regime. Law scholars have argued that the continued
use of ML models relying on deleted data instances could be deemed illegal (Villaronga et al., 2018).

Irrespective of the underlying mandate, data deletion has raised a number of algorithmic research
questions. In particular, recent literature has focused on the efficiency of deletion (i.e., how to delete
individual data points without retraining the model (Ginart et al., 2019; Golatkar et al., 2020a)) and
model accuracy aspects of data deletion (i.e., how to remove data without compromising model

∗Corresponding author: martin.pawelczyk@uni-tuebingen.de
†Equal senior author contribution.
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accuracy (Biega et al., 2020; Goldsteen et al., 2021)). An aspect of data deletion which has not been
examined before is whether and how data deletion may impact model explanation frameworks. Thus,
there is a need to understand and systematically characterize the limitations of recourse algorithms
when personal user data may need to be deleted from trained ML models. Indeed, deletion of
certain data instances might invalidate actionable model explanations – both for the deleting user and,
critically, unsuspecting other users. Such invalidations can be especially problematic in cases where
users have already started to take costly actions to change their model outcomes based on previously
received explanations.

In this paper, we formally examine the problem of algorithmic recourse in the context of data deletion
requests. We consider the setting where a small set of individuals has decided to withdraw their data
and, as a consequence of the deletion request, the model needs to be updated (Ginart et al., 2019). In
particular, this work tackles the subsequent pressing question:

What is the worst impact that a deleted data instance can have on the recourse validity?

We approach this question by considering two distinct scenarios. The first setting considers to what
extent the outdated recourses still lead to a desirable prediction (e.g., loan approval) on the updated
model. For this scenario, we suggest a robustness measure called recourse outcome instability to
quantify the fragility of recourse methods. Second, we consider the setting where the recourse action
is being updated as a consequence of the prediction model update. In this case, we study what
maximal change in recourse will be required to maintain the desirable prediction. To quantify the
extent of this second problem, we suggest the notion of recourse action instability.

Given these robustness measures, we derive and analyze theoretical worst-case guarantees of the
maximal instability induced for linear models and neural networks in the overparameterized regime,
which we study through the lens of neural tangent kernels. We furthermore define an optimization
problem for empirically quantifying recourse instability under data deletion. For a given trained
ML model, we identify small sets of data points that maximize the proposed instability measures
when deleted. Since the resulting brute-force approach (i.e., retraining models for every possible
removal set) is NP-hard, we propose two relaxations for recourse instability maximization that can
be optimized using (i) end-to-end gradient descent or (ii) via a greedy approximation algorithm. To
summarize, in this work we make the following key contributions:

• Novel recourse robustness problem. We introduce the problem of recourse invalidation
under the right to be forgotten by defining two new recourse instability measures.

• Theoretical analysis. Through rigorous theoretical analysis, we identify the factors that
determine the instability of recourses when users whose data is part of the training set submit
deletion requests.

• Tractable algorithms. Using our instability measures, we present an optimization frame-
work to identify a small set of critical training data points which, when removed, invalidates
most of the issued recourses.

• Comprehensive experiments. We conduct extensive experiments on multiple real-world
data sets for both regression and classification tasks with our proposed algorithms, showing
that the removal of even one point from the training set can invalidate up to 95 percent of all
recourses output by state-of-the-art methods

Our results also have practical implications for system designers. First, our analysis and algorithms
help identify parameters and model classes leading to higher stability when a trained ML model is
subjected to deletion requests. Furthermore, our proposed methods can provide an informed way
towards practical implementations of data minimization (Finck & Biega, 2021), as one could argue
that data points contributing to recourse instability could be minimized out. Hence, our methods
could increase designer’s awareness and the compliance of their trained models.

2 RELATED WORK

Algorithmic Approaches to Recourse. Several approaches in recent literature have been suggested
to generate recourse for users who have been negatively impacted by model predictions (Tolomei
et al., 2017; Laugel et al., 2017; Dhurandhar et al., 2018; Wachter et al., 2018; Ustun et al., 2019;
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Van Looveren & Klaise, 2019; Pawelczyk et al., 2020a; Mahajan et al., 2019; Mothilal et al., 2020;
Karimi et al., 2020; Rawal & Lakkaraju, 2020; Dandl et al., 2020; Antorán et al., 2021; Spooner
et al., 2021; Albini et al., 2022). These approaches generate recourses assuming a static environment
without data deletion requests, where both the model and the recourse remain stable.

A related line of work has focused on determining the extent to which recourses remain invariant to
the model choice (Pawelczyk et al., 2020b; Black et al., 2021), to data distribution shifts (Rawal et al.,
2021; Upadhyay et al., 2021), perturbations to the input instances (Artelt et al., 2021; Dominguez-
Olmedo et al., 2022; Slack et al., 2021), or perturbations to the recourses (Pawelczyk et al., 2023).

Sample Deletion in Predictive Models. Since according to EU’s GDPR individuals can request
to have their data deleted, several approaches in recent literature have been focusing on updating a
machine learning model without the need of retraining the entire model from scratch (Wu et al., 2020;
Ginart et al., 2019; Izzo et al., 2021; Golatkar et al., 2020a;b; Cawley & Talbot, 2004). A related
line of work considers the problem of data valuation (Ghorbani et al., 2020; Ghorbani & Zou, 2019).
Finally, removing subsets of training data is an ingredient used for model debugging (Doshi-Velez &
Kim, 2017) or the evaluation of explanation techniques (Hooker et al., 2019; Rong et al., 2022).

Contribution. While we do not suggest a new recourse algorithm, our work addresses the problem
of recourse fragility in the presence of data deletion requests, which has previously not been studied.
To expose this fragility, we suggest effective algorithms to delete a minimal subset of critical training
points so that the fraction of invalidated recourses due to a required model update is maximized.
Moreover, while prior research in the data deletion literature has primarily focused on effective data
removal strategies for predictive models, there is no prior work that studies to what extent recourses
output by state-of-the-art methods are affected by data deletion requests. Our work is the first to
tackle these important problems and thereby paves the way for recourse providers to evaluate and
rethink their recourse strategies in light of the right to be forgotten.

3 PRELIMINARIES

The Predictive Model and the Data Deletion Mechanism. We consider prediction problems from
some input space Rd to an output space Y , where d is the number of input dimensions. We denote a
sample by z = (x, y), and denote the training data set by D = {z1, . . . , zn}. Consider the weighted
empirical risk minimization problem (ERM), which gives rise to the optimal model parameters:

wω = arg min
w′

n∑

i=1

ωi · `
(
yi, fw′(xi)

)
, (1)

where `(·, ·) is an instance-wise loss function (e.g., binary cross-entropy, mean-squared-error (MSE)
loss, etc.) and ω ∈ {0, 1}n are data weights that are fixed at training time. If ωi = 1, then the
point zi = (xi, yi) is part of the training data set, otherwise it is not. During model training, we
set ωi = 1 ∀i, that is, the decision maker uses all available training instances at training time. In
the optimization expressed in equation 1, the model parameters w are usually an implicit function
of the data weight vector ω and we write wω to highlight this fact; in particular, when all training
instances are used we write w1, where 1 ∈ Rn is a vector of 1s. In summary, we have introduced the
weighted ERM problem since it allows us to understand the impact of arbitrary data deletion patterns
on actionable explanations as we allow users to withdraw their entire input zi = (yi,xi) from the
training set used to train the model fw1 . Next, we present the recourse model we consider.

The Recourse Problem in the Context of the Data Deletion Mechanism. We follow an established
definition of counterfactual explanations originally proposed by Wachter et al. (2018). For a given
model fwω : Rd −→ R parameterized by w and a distance function d(·, ·) : X × X → R+, the
problem of finding a recourse x̌ = x + δ for a factual instance x is given by:

δω,x ∈ arg min
δ′∈Ad

(fwω (x + δ′)− s)2 + λ · d(x,x + δ′), (2)

where λ ≥ 0 is a scalar tradeoff parameter and s denotes the target score. In the optimization
from equation 2, the optimal recourse action δ usually depends on the model parameters and since
the model parameters themselves depend on the exact data weights configuration we write δω,x to
highlight this fact. The first term in the objective on the right-hand-side of equation 2 encourages the
outcome fwω (x̌) to become close to the user-defined target score s, while the second term encourages
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the distance between the factual instance x and the recourse x̌ω := x + δω,x to be low. The set of
constraints Ad ensures that only admissible changes are made to the factual x.

Recourse Robustness Through the Lens of the Right to be Forgotten. We first introduce several
key terms, namely, prescribed recourses and recourse outcomes. A prescribed recourse x̌ refers to a
recourse that was provided to an end user by a recourse method (e.g., salary was increased by $500).
The recourse outcome f(x̌) is the model’s prediction evaluated at the recourse. With these concepts
in place, we develop two recourse instability definitions.

Definition 1. (Recourse outcome instability) The recourse outcome instability with respect to a
factual instance x, where at least one data weight is set to 0, is defined as follows:

∆x(ω) =
∣∣fw1

(
x̌1

)
− fwω

(
x̌1

)∣∣, (3)

where fw1(x̌1) is the prediction at the prescribed recourse x̌1 based on the model that uses the full
training set (i.e., fw1 ) and fwω (x̌1) is the prediction at the prescribed recourse for an updated model
and data deletion requests have been incorporated into the predictive model (i.e., fwω ).
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(a) Recourse Outcome Instability
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(b) Recourse Action Instability

Figure 1: Visualizing the two
key robustness notions. In Fig.
1a, recourse x̃1 for an input x is
invalidated due to a model up-
date. In Fig. 1b, recourse is ad-
ditionally recomputed (i.e., x̃ω)
to avoid recourse invalidation.

The above definition concisely describes the effect of applying
“outdated” recourses to the updated model. We assume that only the
model parameters are being updated while the prescribed recourses
remain unchanged. For a discrete model with Y = {0, 1}, Defi-
nition 1 captures whether the prescribed recourses will be invalid
(∆x = 1) after deletion of training instances (see Fig. 1a). To
obtain invalidation rates of recourses for a continuous-score model
with target value s, we can also apply Definition 1 with a discretized
f ′(x) = I [f(x) > s], where I denotes the indicator function.

In Definition 2, consistent with related work (e.g., Wachter et al.
(2018)), the distance function d is specified to be a p-norm and the
recourse is allowed to change due to model parameter updates.

Definition 2. (Recourse action instability) The Recourse action
instability with respect to a factual input x, where at least one
data weight is set to 0, is defined as follows:

Φ(p)
x (ω) =

∥∥x̌1 − x̌ω
∥∥
p
, (4)

where p ∈ [1,∞), and x̌ω is the recourse obtained for the model
trained on the data instances that remain present in the data set
after the deletion request.

Definition 2 quantifies the extent to which the prescribed recourses
would have to additionally change to still achieve the desired re-
course outcome after data deletion requests (i.e., x̌ω , see Fig. 1b).
Note that we are interested in how the optimal low cost recourse
changes even if the outdated recourse would remain valid. Using
our invalidation measures defined above, in the next section, we
formally study the trade-offs between actionable explanations and
the right to be forgotten. To do so, we provide data dependent upper bounds on the invalidation
measures from Definitions 1 and 2, which practitioners can use to probe the worst-case vulnerability
of their algorithmic recourse to data deletion requests.

4 TRADE-OFFS BETW. ALG. RECOURSE AND THE RIGHT TO BE FORGOTTEN

Here we relate the two notions of recourse instability presented in Definitions 1 and 2 to the
vulnerability of the underlying predictive model with respect to data deletion requests. We show that
the introduced instability measures are directly related to data points with a high influence on the
parameters after deletion.

Analyzing the Instability Measures. With the basic terminology in place, we provide upper bounds
for the recourse instability notions defined in the previous section when the underlying models are
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linear or overparameterized neural networks. Throughout our analysis, we the term di := w1 −w−i
has an important impact. It measures the difference from the original parameters w1 to the parameter
vector w−i obtained after deleting the i-th instance (xi, yi) from the model. In the statistics literature,
this term is also known as the empirical influence function (Cook & Weisberg, 1980). Below we
provide an upper bound for recourse outcome instability in linear models.
Proposition 1 (Upper bound on recourse outcome instability for linear models). For the linear
regression model f(x) = w>L x with model parameters wL = (X>X)−1X>Y, an upper bound for
the recourse invalidation from Definition 1 by removing an instance from the training set is given by:

∆x ≤ ‖x̌1‖2 ·max
i∈[n]

‖dL
i ‖2, (5)

where dL
i := wL−wL,−i = (X>X)−1xi · ri

1−hii , ri = yi −w>L xi and hii = x>i (X>X)−1xi.

The term (X>X)−1xi = dwL
dyi

describes how sensitive the model parameters are to yi, while the
residual ri captures how well yi can be fit by the model. On the contrary, the term hii from the
denominator is known as the leverage and describes how atypical xi is with respect to all training
inputs X. In summary, data instances that have influential labels or are atypical will have the highest
impact when deleted. Next, we provide a generic upper bound on recourse action instability.
Proposition 2 (Upper bound on recourse action instability). For any predictive model with scoring
function f : Rd → R, an upper bound for the recourse instability from Definition 2 by removing an
instance zi = (x, y) from the training set is given by:

Φ(2)
x ≤ ‖di‖2

∫ 1

0

∥∥∥∥
Dδ

Dw
(w̃)

∥∥∥∥
2

dγ, (6)

where Dδ
Dw denotes the Jacobian of optimal recourse with the corresponding operator matrix norm,

w̃ := γw+(1− γ) w−i with w−i being the optimal model parameters with the i-th training instance
removed from the training set, and di = w −w−i.

The norm of the Jacobian of optimal recourse indicates the local sensitivity of optimal recourse with
respect to changes in model parameters w. High magnitudes indicate that a small change in the
parameters may require a fundamentally different recourse action. The total change can be bounded
by the integral over these local sensitivities, which means that low local sensitivities along the path
will result in a low overall change. Next, we specialize this result to the case of linear models.
Corollary 1 (Upper bound on recourse action instability for linear models). For the linear model
f(x) = w>L x with model parameters wL = (X>X)−1X>Y, an upper bound for the recourse
action instability when s = 0, λ→ 0 by removing an instance from the training set is given by:

Φ(2)
x ≤

(
max
i∈[n]

‖dL
i ‖2
)

4
√

2‖x‖2
min(‖wL‖2,mini∈[n]‖wL,−i‖2)

, (7)

under the condition that w>L wL,−i ≥ 0 (no diametrical weight changes), where wL,−i = wL − dL
i is

the weight after removal of training instance i and dL
i = (XTX)−1xi

(yi−w>
L xi)

1−hii .

For models trained on large data sets, the absolute value of the model parameters’ norm ‖wL‖ will
not change much under deletion of a single instance. Therefore we argue that the denominator
min(‖wL‖2,mini∈[n]‖wL,−i‖2) ≈ ‖wL‖. Thus, recourse action instability is mainly determined by
the sensitivity of model parameters to deletion, maxi∈[n] ‖dL

i ‖2, scaled by the ratio of ‖x‖2‖wL‖2 .

Neural Tangent Kernels. Studying the relation between deletion requests and the robustness
of algorithmic recourse for models as complex as neural networks requires recent results from
computational learning theory. In particular, we also rely on insights on the behaviour of over-
parameterized neural networks from the theory of Neural Tangent Kernels (NTKs), which we will
now briefly introduce. Thus we study our robustness notions for neural network models in the
overparameterized regime with ReLU activation functions that take the following form:

fANN(x) =
1√
k

k∑

j=1

aj · relu(w>j x), (8)

5
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where W = [w1, . . . ,wk] ∈ Rd×k and a = [a1, . . . , ak] ∈ Rk. To concretely study the impact of
data deletion on recourses in non-linear models such as neural networks, we leverage ideas from the
neural tangent kernel (NTK) literature (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019; Du et al.,
2019). The key insight from this literature for the purpose of our work is that infinitely wide neural
networks can be expressed as a kernel ridge regression problem with the NTK under appropriate
parameter initialization, and gradient descent training dynamics. In particular, in the limit as the
number of hidden nodes k →∞, the neural tangent kernel associated with a two-layer ReLU network
has a closed-form expression (Chen & Xu, 2021; Zhang & Zhang, 2021) (see Appendix A.5):

K∞(x0,x) =
x>0 x

(
π − arcos

(
x>
0 x

‖x0‖‖x‖

))

2π
. (9)

Thus, the network’s prediction at an input x can be described by:

fNTK(x) =
(
K∞(x,X)

)>
wNTK, (10)

where X ∈ Rn×d is the input data matrix, K∞(X,X) ∈ Rn×n is the NTK matrix evaluated on the
training data points: [K∞(X,X)]ij = K∞(xi,xj) and wNTK =

(
K∞(X,X) + βIn

)−1
Y solves

the `2 regularized minimization problem with MSE loss where Y ∈ Rn are the prediction targets.
With this appropriate terminology in place we provide an upper bound on recourse outcome instability
of wide neural network models.
Proposition 3 (Upper bound on recourse outcome instability for wide neural networks). For the
NTK model with wNTK =

(
K∞(X,X) + βIn

)−1
Y, an upper bound for the recourse invalidation

from Definition 1 by removing an instance (x, y) from the training set is given by:

∆x ≤ ‖K∞(x̌1,X)‖2 ·max
i∈[n]

‖dNTK
i ‖2, (11)

where dNTK
i = 1

kii
kik
>
i Y, where ki is the i-th column of the matrix

(
K∞(X,X) + βIn

)−1
, and kii

is its i-th diagonal element.

Intuitively, dNTK
i is the linear model analog to dL

i and dNTK
i represents the importance that the point

zi = (xi, yi) has on the model parameters wNTK.

In practical use-cases, when trying to comply with both the right to data deletion and the right to
actionable explanations, our results have practical implications. For example, instances with high
influence captured by di should be encountered with caution during model training in order to provide
reliable recourses to the individuals who seek recourse. In summary, our results suggest that the right
to data deletion may be fundamentally at odds with reliable state-of-the-art actionable explanations
as the removal of an influential data instance can induce a large change in the recourse robustness,
the extent to which is primarily measured by the empirical influence function di.

5 FINDING THE SET OF MOST CRITICAL DATA POINTS

The Objective Function. In this section, we present optimization procedures that can be readily
used to assess recourses’ vulnerability to deletion requests. On this way, we start by formulating
our optimization objective. We denote by m ∈ {∆,Φ(2)} the measure we want to optimize for.
We consider the summed instability of over the data set by omitting the subscript x, e.g., ∆ =∑

x∈Dtest ∆x. Our goal is to find the smallest number of deletion requests that leads to a maximum
impact on the instability measure m. To formalize this, define the set of data weight configurations:

Γα := {ω : Maximally bα · nc entries of ω are 0 and the remainder is 1.}. (12)

In equation 12, the parameter α controls the fraction of instances that are being removed from the
training set. For a fixed fraction α, our problem of interest becomes:

ω∗ = arg max
ω∈Γα

m(ω). (13)

Fundamental Problems. When optimizing the above objective we face two fundamental problems:
(i) evaluating m(ω) for many weight configurations ω can be prohibitively expensive as the objective

6



Published as a conference paper at ICLR 2023

is defined implicitly through solutions of several non-linear optimization problems (i.e., model fitting
and finding recourses). Further, (ii) even for an objective m(ω) which can be computed in constant
or polynomial time optimizing this objective can still be NP-hard (a proof is given in Appendix A.3).

Practical Algorithms. We devise two practical algorithms which approach the problem in equa-
tion 13 in different ways. As for the problem of computing m(ω) in (i), we can either solve this
by (a) using a closed-form expression indicating the dependency of m on ω or (b) by using an
approximation of m that is differentiable with respect to ω. As for the optimization in (ii), once we
have established the dependency of m on ω we can either (a) use a gradient descent approach or (b)
we use a greedy method. Below we explain the individual steps required for our algorithms.

5.1 COMPUTING THE OBJECTIVE

In the objectivem(ω), notice the dependencies ∆x(ω) = ∆x (f(w(ω), x̌)) for the recourse outcome
instability, and Φ

(2)
x (ω) = Φ

(2)
x (δ(w(ω),x))) for the recourse action instability. In the following,

we briefly discuss how we efficiently compute each of these functions without numerical optimization.

Model parameters from data weights w(ω). For the linear model, an analytical solution can be
obtained, wL(ω) =

(
X>ΩX

)−1
X>ΩY, where Ω = diag(ω). The same goes for the NTK model

where wNTK(ω) = Ω
1
2

(
Ω

1
2 K∞(X,X)Ω

1
2 + βI

)−1
Ω

1
2 Y (Busuttil & Kalnishkan, 2007, Eqn. 3).

When no closed-form expressions for the model parameters exist, we can resort to the infinitesimal
jackknife (IJ) (Jaeckel, 1972; Efron, 1982; Giordano et al., 2019b;a), that can be seen as a linear
approximation to this implicit function. We refer to Appendix C for additional details on this matter.

Model prediction from model parameters f(w, x̌). Having established the model parameters,
evaluating the prediction at a given point can be quickly done even in a differentiable manner with
respect to w for the models we consider in this work.

Recourse action from model parameters δ(w, x̌). Estimating the recourse action is more chal-
lenging as it requires solving equation 2. However, a differentiable solution exists for linear mod-
els, where the optimal recourse action is given by δL = s−wL(ω)>x

λ+‖wL(ω)‖22
wL(ω). When the underly-

ing predictor is a wide neural network we can approximate the recourse expression of the corre-
sponding NTK, δNTK ≈ s−fω,NTK(x)

λ+‖w̄NTK(ω̄)‖22
w̄NTK(ω), which stems from the first-order taylor expansion

fω,NTK(x + δ) ≈ fω,NTK(x) + δ>w̄NTK(ω) with w̄NTK(ω) = ∇xK(x,X)wNTK(ω).

5.2 OPTIMIZING THE OBJECTIVE FUNCTION

The Greedy Algorithm. We consider the model on the full data set and compute the objective
function m(ω) under deletion of every instance (alone). We then select the instance that leads to the
highest increase in the objective. We add this instance to the set of deleted points. Subsequently,
we refit the model and compute the impact of deletion for every second instance, when deleted in
combination with the first one. Again, we add the instance that results in the largest increase to the set.
Iteratively repeating these steps, we identify more instances to be deleted. Computational complexity
depends on the implementation of the model weight recomputation, which is required O(αn2) times.

The Gradient Descent Algorithm. Because our developed computation of m(ω) can be made
differentiable, we also propose a gradient-based optimization framework. We consider the relaxation
of the problem in equation 13,

ω∗ = arg max
ω∈{0,1}n

m(ω)− ‖1− ω‖0, (14)

where the `0 norm encourages to change as few data weights from 1 to 0 as possible while few
removals of training instances should have maximum impact on the robustness measure. The problem
in equation 14 can be further relaxed to a continuous and unconstrained optimization problem. To do
so we use a recently suggested stochastic surrogate loss for the `0 term (Yamada et al., 2020). Using
this technique, a surrogate loss for equation 14 can be optimized using stochastic gradient descent
(SGD). We refer to Appendix C for more details and pseudo-code of the two algorithms.
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Figure 2: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for both the Admission and the Heloc data sets for regression and NTK models and various
recourse methods. Results were obtained by greedy optimization; see Appendix B for SGD results.

6 EXPERIMENTAL EVALUATION

We experimentally evaluate our framework in terms of its ability to find significant recourse invalida-
tions using the instability measures presented in Section 3.

Data Sets. For our experiments on regression tasks we use two real-world data sets. In addition,
we provide results for two classification datasets in the Appendix B. First, we use law school data
from the Law School Admission Council (Admission). The council carried out surveys across 163
law schools in the US, in which they collected information from 21,790 law students across the US
(Wightman, 1998). The data contains information on the students’ prior performances. The task is to
predict the students’ first-year law-school average grades. Second, we use the Home Equity Line of
Credit (Heloc) data set. Here, the target variable is a score indicating whether individuals will repay
the Heloc account within a fixed time window. Across both tasks we consider individuals in need of
recourse if their scores lie below the median score across the data set.

Recourse Methods. We apply our techniques to four different methods which aim to generate
low-cost recourses using different principles: SCFE was suggested by Wachter et al. (Wachter et al.,
2018) and uses a gradient-based objective to find recourses, DICE (Mothilal et al., 2020) uses a
gradient-based objective to find recourses subject to a diversity constraint, and CEM (Dhurandhar
et al., 2018) uses a generative model to encourage recourses to lie on the data manifold. For all
methods, we used the recourse method implementations from the CARLA library (Pawelczyk et al.,
2021) and specify the `1 cost constraint. Further details on these algorithms are provided in App. C.

Evaluation Measures. For the purpose of our evaluation, we use both the recourse outcome instabil-
ity measure and the recourse action instability measure presented in Definitions 1 and 2. We evaluate
the efficacy of our framework to destabilize a large fraction of recourses using a small number of
deletion requests (up to 14). To find critical instances, we use the greedy and the gradient-based
algorithms described in Sec. 5. After having established a set of critical points, we recompute the
metrics with the refitted models and recourses to obtain a ground truth result.

For the recourse outcome instability, our metric ∆ counts the number of invalidated recourses. We
use the median as the target score s, i.e., if the recourse outcome flips back from a positive leaning
prediction (above median) to a negative one (below median) it is considered invalidated. When
evaluating recourse action instability, we identify a set of critical points, delete these points from
the train set and refit the predictive model. In this case, we also have to recompute the recourses to
evaluate Φp. We then measure the recourse instability using Definition 2 with p = 2. Additionally,
we compare with a random baseline, which deletes points uniformly at random from the train set. We
compute these measures for all individuals from the test set who require algorithmic recourse. To
obtain standard errors, we split the test set into 5 folds and report averaged results over these 5 folds.
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Figure 3: Quantifying the tradeoff between recourse action instability as measured in Definition 2
and the number of deletion requests for both the Admission and the Heloc data sets for the SCFE
method when the underlying model is linear or an NTK (results by SGD optimization).

Results. In Figure 2, we measure the tradeoff between recourse outcome instability and the number
of deletion requests. We plot the number of deletion requests against the fraction of all recourses
that become invalidated when up to k ∈ {1, . . . , 14} training points are removed from the training
set of the predictive model. When the underlying model is linear, we observe that the removal of as
few as 5 training points induces invalidation rates of all recourses that are as high as 95 % percent –
we observe a similar trend across all recourse methods. Note that a similar trend is present for the
NTK model; however, a larger number of deletion requests (roughly 9) is required to achieve similar
invalidation rates. Finally, also note that our approach is always much more effective at deleting
instances than the random baseline. In Figure 3, we measure the tradeoff between recourse action
instability and the number of deletion requests with respect to the SCFE recourse method when the
underlying predictive model is linear or an NTK model. For this complex objective, we use the
more efficient SGD optimization. Again, we observe that our optimization method significantly
outperforms the random baselines at finding the most influential points to be removed.

Additional Models and Tasks. In addition to the here presented results, we provide results for
classification tasks with (a) Logistic Regression, (b) Kernel-SVM and (c) ANN models on two
additional data sets (Diabetes and COMPAS) in Appendix B. Across all these models, we observe
that our removal algorithms outperform random guessing; often by up to 75 percentage points.

Factors of Recourse Robustness. Our empirical results shed light on which factors are influential
in determining robustness of trained ML models with respect to deletion requests. In combination
with results from Fig. 4 (see Appendix B), our results suggest that linear models are more susceptible
to invalidation in the worst-case but are slightly more robust when it comes to random removals.
Furthermore, the characteristics of the data set play a key role; in particular those of the critical
points. We perform an additional experiment where we consider modified data sets without the most
influential points identified by our optimization approaches. In Appendix B, initial results show that
this simple technique decreases the invalidation probabilities by up to 6 percentage points.

7 DISCUSSION AND CONCLUSION

In this work, we made the first step towards understanding the tradeoffs between actionable model
explanations and the right to be forgotten. We theoretically analyzed the robustness of state-of-the-art
recourse methods under data deletion requests and suggested (i) a greedy and (ii) a gradient-based
algorithm to efficiently identify a small subset of individuals, whose data, when removed, would lead
to invalidation of a large number of recourses for unsuspecting other users. Our experimental evalua-
tion with multiple real-world data sets on both regression and classification tasks demonstrates that
the right to be forgotten presents a significant challenge to the reliability of actionable explanations.

Finally, our theoretical results suggest that the robustness to deletion increases when the model
parameter changes under data deletion remain small. This formulation closely resembles the definition
of Differential Privacy (DP) (Dwork et al., 2014). We therefore conjecture that the reliability of
actionable recourse could benefit from models that have been trained under DP constraints. As the
field of AI rapidly evolves, data protection authorities will further refine the precise interpretations
of general principles in regulations such as GDPR. The present paper contributes towards this goal
theoretically, algorithmically, and empirically by providing evidence of tensions between different
data protection principles.
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Ethics statement. Our findings raise compelling questions on the deployment of counterfactual
explanations in practice. First of all, Are the two requirements of actionable explanations and the
right to be forgotten fundamentally at odds with one another? The theoretical and empirical results
in this work indicate that for many model and recourse method pairs, this might indeed be the case.
This finding leads to the pressing follow-up question: How can practitioners make sure that their
recourses stay valid under deletion requests? A first take might be to implement the principle of data
minimization (Biega et al., 2020; Biega & Finck, 2021; Shanmugam et al., 2022) in the first place,
i.e., exclude the k most critical data points from model training.
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APPENDIX

A THEORETICAL RESULTS

A.1 UPPER BOUNDS ON RECOURSE OUTCOME INSTABILITY

Proposition 1 (Upper Bound on Output Robustness for Linear Models). For the linear regression
model f(x) = w>x with weights given by w = (X>X)−1X>Y, an upper bound for the output
robustness by removing an instance (x, y) from the training set is given by:

∆x ≤ max
i∈[n]

‖di‖2 · ‖x̌1‖2, (15)

where di = (X>X)−1xi · ri
1−hii , ri = yi −w>xi and hii = x>i (X>X)−1xi.

Proof. By Definition 1, we have:

∆x =
∣∣w>1 x̌1 −w>−ix̌1

∣∣ (16)

=
∣∣(w1 −w−i

)>
x̌1

∣∣

=

∣∣∣∣
(

(XTX)−1xi
(yi −wTxi)

1− hii

)>
x̌1

∣∣∣∣ (by Theorem 1) (17)

≤ ‖di‖2 · ‖x̌1‖2 (by Cauchy-Schwartz) (18)
≤ ‖x̌1‖2 ·max

i∈[n]
‖di‖2·, (19)

where di = (XTX)−1xi
(yi−wTxi)

1−hii . This completes our proof.

Proposition 2 (Upper Bound on Output Robustness for NTK). For the NTK model with wNTK =(
K∞(X,X) + λIn

)−1
Y, an upper bound for the output robustness by removing an instance (x, y)

from the training set is given by:

∆x ≤ ‖K∞(x̌1,X)‖2 ·max
i∈[n]

‖di‖2, (20)

where di = 1
kii

kik
>
i Y, where ki is the i-th column of the matrix

(
K∞(X,X) + βIn

)−1
, and kii is

its i-th diagonal element.

Proof. By Definition 1 and the weight-update theorem by Zhang & Zhang (2021) (see Appendix
A.4) and the assumption of the over-parameterized regime, we have:

∆x =
∣∣fNTK(x̌1)− f−iNTK(x̌1)

∣∣

=
∣∣(K∞(x̌1,X)

)>
wNTK −

(
K∞(x̌1,X)

)>
(

(K∞(X,X) + βIn
)−1 − 1

kii
kik
>
i

)
Y
∣∣ (21)

=
∣∣(K∞(x̌1,X)

)> 1

kii
kik
>
i Y
∣∣ (22)

≤ ‖di‖2 · ‖K∞(x̌1,X)‖2 (by Cauchy-Schwartz)

≤ ‖x̌1‖2 ·max
i∈[n]

‖di‖2, (23)

where di = 1
kii

kik
>
i Y which completes our proof.

A.2 UPPER BOUNDS ON RECOURSE ACTION INSTABILITY

Proposition 3 (Upper Bound on Input Robustness). For the linear regression model f(x) = w>x
with weights given by w = (X>X)−1X>Y, an upper bound for the input robustness in the setting
s = 0, λ = 0 by removing the i-th instance (xi, yi) from the training set is given by:

Φ(2)
x ≤ ‖di‖2

4
√

2‖x‖2
min(‖w‖2, ‖w−i‖2)

, (24)
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under the condition that w>w−i ≤ 0 (no diametrical weight changes), where w−i = w − di is the
weight after removal of training instance i and di = (XTX)−1xi

(yi−w>xi)
1−hii .

Proof. For a linear scoring function f(x) = w′>x with given parameters w′, under the squared `2
norm constraint with balance parameter λ, the optimal recourse action is given by (Pawelczyk et al.,
2022):

δ (w′) =
s−w′>x

‖w′‖22 + λ
·w′. (25)

Using Definition 2, we can express the total change in δ as a path integral over changes in w, times
the change Dδ

Dw they entail:

Φ(2)
x =

∥∥δ1 − δω
∥∥

2
=
∥∥δ (w)− δ (w−i)

∥∥
2

(26)

≤
∫ 1

0

∥∥∥∥
Dδ

Dw
(γw + (1− γ)w−i)

∥∥∥∥‖w −w−i‖2dγ, (27)

where Dδ
Dw denotes the Jacobian, with the corresponding operator matrix norm. Defining w̃ :=

γw + (1− γ) w−i and using ‖w −w−i‖2 = ‖di‖2, we obtain

Φ(2)
x ≤ ‖di‖2

∫ 1

0

∥∥∥∥
Dδ

Dw
(w̃)

∥∥∥∥
2

dγ. (28)

Because of the form δ(w′) = f(w′)w′, where f(w′) := s−w′>x
‖w′‖22+λ

is a scalar function, its Jacobian

has the form Dδ
Dw′ = w′ (∇f(w′))> + f(w′)I. We will now derive a bound on the Jacobian’s

operator norm:
∥∥∥∥

Dδ

Dw′
(w̃)

∥∥∥∥
2

= max
‖a‖=1

∥∥∥∥
Dδ

Dw′
a

∥∥∥∥
2

= max
‖a‖=1

∥∥∥∥w′ (∇f(w̃))
>

a + f(w̃)a

∥∥∥∥
2

(29)

≤ ‖∇f(w̃)‖2‖w̃‖2 + |f(w̃)|. (30)

Additionally, we know that for s = 0, |f(w′)| ≤ ‖x‖2‖w̃‖2‖w̃‖22
= ‖x‖2
‖w̃‖2 . The gradient is given by

‖∇f(w̃)‖2 =

∥∥∥∥
−(‖w̃‖22 + λ)x− 2(s− w̃>x)w̃

(‖w̃‖22 + λ)2

∥∥∥∥
2

(31)

≤ (‖w̃‖22 + λ)‖x‖2 + 2(s+ ‖w̃‖2‖x‖2)‖2w̃‖2
‖w̃‖42

(32)

=
3‖x‖2
‖w̃‖22

(Using λ→ 0, s = 0). (33)

In summary,
∥∥∥∥

Dδ

Dw′
(w̃)

∥∥∥∥
2

≤ 3‖x‖2
‖w̃‖22

‖w̃‖2 +
‖x‖2
‖w̃‖2

=
4‖x‖2
‖w̃‖2

. (34)

Because w̃ is a line between w and w−i, its norm is bounded from below by ‖w̃‖2 ≥
1√
2

min(‖w‖2, ‖w−i‖2) ≥ 1√
2

(‖w‖2 − ‖w −w−i‖2) = 1√
2

(‖w‖2 − ‖di‖2). We can thus uni-
formly bound the integral and plug in the bound because of its positivity,

Φ(2)
x ≤ ‖di‖2

∫ 1

0

∥∥∥∥
Dδ

Dw
(w̃)

∥∥∥∥
2

dγ (35)

≤ ‖di‖2
∫ 1

0

4
√

2‖x‖2
min(‖w‖2, ‖w−i‖2)

dγ (36)

= ‖di‖2
4
√

2‖x‖2
min(‖w‖2, ‖w−i‖2)

, (37)

which completes the proof.
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A.3 CALCULATING RECOURSE OUTCOME INSTABILITY FOR K DELETIONS IS NP-HARD

We can show that, for a general scoring function f , the problem defined in equation 13 is NP-hard.
We make this proof by providing a function f for which solving the recourse outcome invalidity
problem is as hard as solving the well-known Knapsack problem, that has been shown to be NP-hard
(Karp, 1972). The knapsack problem is defined as follows:

max
qi∈{0,1}

n∑

i=1

viqi s.t.
n∑

i=1

yiqi ≤W, (38)

where the problem considers n fixed items (vi, yi)i=1...n with a value vi and knapsack weight yi > 0,
and W is a fixed weight budget. The optimization problem consists of choosing the items that
maximize the summed values but have a weight lower than W . To solve this problem through the
recourse outcome invalidation problem, we suppose there is a data point for each item. We can
choose any k > W

min yi
of points to be deleted, where this condition ensures that we can remove the

number of samples maximally required to solve the corresponding knapsack problem. Note that we
can always add a number of dummy points that have no effect such that the total number of data
points is at least k. Suppose there is a classifier function:

fω(x) :=

{ ∑n
i=1 vi(1− ωi),

∑n
i=1 yi(1− ωi) ≤W

0, else . (39)

In this case, solving Eqn. 13 comes down to finding the set of items (i.e., removing the data points)
that have maximum value, but stay under the thresholdW . Thus, if we can solve Eqn. 13, the solution
to the equivalent knapsack problem is given by q = (1− ω).

A.4 AUXILIARY THEORETICAL RESULTS

We state the following classic result by Miller Jr (1974) without proof.
Theorem 1. (Leave-One-Out Estimator, Miller Jr (1974)) Define (xi, yi) as the point to be removed
from the training set. Given the optimal weight vector w = (X>X)−1X>Y which solves for a
linear model under mean-squared-error loss, the leave-one-out estimator is given by:

w −w−i = (XTX)−1xi
(yi −wTxi)

1− xTi (XTX)−1xi
= (XTX)−1xi

(yi −wTxi)

1− hii
=: di.

We restate the analtical solution for the NTK weights in case of a single deletion from Zhang &
Zhang (2021).
Theorem 2. (Leave-One-Out weights for NTK models, Zhang & Zhang (2021)) Let wNTK =(
K∞(X,X) + λIn

)−1
Y be the weight for the NTK model on the full data Kernel model, where

K∞(X,X) is the NTK matrix evaluated on the training data points: [K∞(X,X)]ij = K∞(xi,xj).
Then, the NTK model that would be obtained when removing instance i, could be equivalently
described by

f−iNTK (x) = K∞(x,X)>wNTK,−i = K∞(x,X)>
((

K∞(X,X) + λIn
)−1 − 1

q−ii
q−iq

>
−i

)
Y

where q−i is the i-th column of the matrix Q−1 =
(
K∞(X,X) + βIn

)−1
, and q−ii is its i-th

diagonal element of this inverse.

Proof. We begin by introducing some notation. Define:

Q = K∞(X,X) + βIn (40)
R = K∞(X−i,X−i) + βIn−1, (41)

then the analytical NTK model when considering the dataset with one instance xi removed is given
by

f−iNTK (x) = K∞(x,X−i)
>R−1Y−i, (42)
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where X−i denotes the data matrix with row i missing and Y−i denotes the label vector with the i-th
label missing. We have to show that this expression is equivalent to that stated in the theorem.

Without loss of generality, we can assume the i is the last point in the dataset (otherwise, we just
permute the data set accordingly). Therefore, we can write the matrixQ in block form:

Q =

[
R K∞(xi,X)

K∞>(xi,X) K∞(xi,xi)

]
:=

[
R qi
q>i qii

]
(43)

Through the block matrix inversion formula (see for example Csató & Opper (2002) (eqn. 52)) we
can writeQ’s inverse as

Q−1 =

[
R−1 + γ−1R−1qiq

>
i R
−1 γ−1R−1qi

γ−1q>i R
−1 γ−1

]
(44)

with γ = qii − q>i R−1qi.

We denote the i-th (and last) column ofQ−1 as q−i =

[
γ−1R−1qi

γ−1

]
and the i-th and last diagonal

element of the inverse as q−ii = γ−1. We will now show, that the form of the weights given in the
theorem (i.e., the weights for the points not removed) are equivalent to the weights that would have
been computed by plugging in the smaller kernel matrix K∞(X−i,X−i) in the analytical solution
and the weight for the point deleted will have a value of zero, i.e.,

((
K∞(X,X) + βIn

)−1 − 1

q−ii
q−iq

>
−i

)
Y =

(
Q−1 − 1

q−ii
q−iq

>
−i

)
Y (45)

=

[
R−1Y−i

0

]
. (46)

To show this, we plug in the inversion formula Q−1 from equation 44 into equation 45 and using
q−ii = γ−1:
(
Q−1 − 1

q−ii
q−iq

>
−i

)
Y (47)

=

([
R−1 +R−1qiq

>
i R
−1 γ−1R−1qi

γ−1q>i R
−1 γ−1

]
− 1

γ−1

[
γ−1R−1qi

γ−1

] [
γ−1R−1qi

γ−1

]>)[
Y−i
Yi

]
(48)

=

([
R−1 + γ−1R−1qiq

>
i R
−1 γ−1R−1qi

γ−1q>i R
−1 γ−1

]
− γ

[
γ−2R−1qiq

>
i R
−1 γ−2R−1qi

γ−2q>i R
−1 γ−2

])[
Y−i
Yi

]

(49)

=

[
R−1 + γ−1R−1qiq

>
i R
−1 − γ−1R−1qiq

>
i R
−1 γ−1R−1qi − γ−1R−1qi

γ−1q>i R
−1 − γ−1q>i R

−1 γ−1 − γ−1

] [
Y−i
Yi

]
(50)

=

[
R−1 0
0> 0

] [
Y−i
Yi

]
=

[
R−1Y−i

0

]
. (51)

Therefore, we have equivalence between equation 42 and the formulation in the theorem.

A.5 AN ANALYTICAL NTK KERNEL

In this section, we provide theoretical results that allow deriving the closed form solution of the NTK
for the two-layer ReLU network. First, see the paper by Jacot et al. Jacot et al. (2018) for the original
derivation of the neural tangent kernel.

A closed-form solution for two-layer ReLU networks. From (Zhang & Zhang, 2021; Du et al.,
2019, Assumption 3.1) we obtain the definition of the Kernel matrix K∞ (termed Gram matrix in the
paper Du et al. (2019)) for ReLU networks:

K∞ij = K∞(xi,xj) = Ew∼N (0,I)

[
x>i xjI

{
w>xi ≥ 0,w>xj ≥ 0

}]
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= x>i xjEw∼N (0,I)

[
I
{
w>xi ≥ 0,w>xj ≥ 0

}]

= x>i xj
π − arcos

(
x>
i xj

‖xi‖‖xj‖

)

2π
.

The last reformulation uses an analytical result by Cho & Saul (2009). The derived result matches the
one by Xie et al. (2017), which however does not provide a comprehensive derivation.

B ADDITIONAL EXPERIMENTAL RESULTS

Data sets for the Classification Tasks When considering classification tasks on the heloc and
admission data sets, we threshold the scores based on the median to obtain binary target labels. On
the Admission data set (in the classification setting), a counterfactual is found when the predicted first-
year average score switches from ‘below median’ to ‘above median’. We then count an invalidation
if, after the model update, the score of a counterfactual switches back to ‘below median’. In addition
to the aforementioned data sets, we use both the Diabetes and the Compas data sets. The Diabetes
data set which contains information on diabetic patients from 130 different US hospitals (Strack et al.,
2014). The patients are described using administrative (e.g., length of stay) and medical records (e.g.,
test results), and the prediction task is concerned with identifying whether a patient will be readmitted
within the next 30 days. We sub sampled a smaller data sets of 10000 points from this dataset. 8000
points are left to train the model, while 2000 points are left for the test set. The Compas data set
Angwin et al. (2016) contains data for more than 10,000 criminal defendants in Florida. It is used by
the jurisdiction to score defendant’s likelihood of reoffending. We kept a small part of the raw data
as features like name, id, casenumbers or date-time were dropped. The classification task consists
of classifying an instance into high risk of recidivism. Across all data sets, we dropped duplicate
instances.

Discussing the Results As suggested in Section 6, here we are discussing the remaining recourse
outcome invalidation results. We show these results for two settings. In Figure 4, we demonstrate the
efficacy of our greedy deletion algorithm across 4 data sets on the classification tasks using different
classification models (ANN, logistic regression, Kernel-SVM). For the logistic regression and the
ANN model, we use the infinitesimal jackknife approximation to calculate the probitively expensive
retraining step as described in Section 5. We observe that our method well outperforms random
guessing. The results also highlight that while the NTK theory allows to study the deletion effects
from a theoretical point of view, if one is interested in empirical worst-case approximations, the
infinitesimal jackknife can be a method of choice. As we observe this pattern across all recourse
methods, we hypothesize that this is related to the instability of the trained ANN models, and we
leave an investigation of this interesting phenomenon for future work.

Additionally, in Figure 5, we compare our SGD-based deletion algorithm to the greedy algorithm.
For the SGD-based deletion results, we observe inverse-u-shaped curves on some method-data-
model combinations. The reason for this phenomenon can be explained as follows: when the `0
regularization strength (i.e., η) is not strong enough, then the importance weights for the k-th removal
with k > 5 become more variable (i.e., SGD does not always select the most important data weight for
larger k). This drop in performance can be mitigated by increasing the strength of the `0 regularizer
within our SGD-based deletion algorithm.

In Figure 6, we study a simple removal strategy aimed at increasing the stability of algorithmic
recourse. To this end, we identified the 15 points that lead to the highest invalidation on the NTK and
linear regression models when the underlying recourse method is SCFE. Using our greedy method,
we remove these 15 points from the training data set, and we then then rerun our proposed greedy
removal algorithm. This strategy leads to an improvement of up to 6 percentage points over the initial
model where the 15 most critical points were included, suggesting that the removal of these critical
points can be used to alleviate the recourse instability issue. In future work, we plan to investigate
strategies that increase the robustness of algorithmic recourse even further.

Finally, in Figure 7 we study how well the critical points identified for the NTK model would
invalidate a wide 2-layer ReLU network with 10000 hidden nodes. To study that question, we
identified the points that lead to the highest invalidation on the NTK using our greedy method, and
we then use these identified training points to invalidate the recourses suggested by the wide ANN.
As before, we are running these experiments on the full data set across 5 folds. Figure 7 demonstrates
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the results of this strategy for the SCFE recourse method. We see that this strategy increases the
robustness of up to 30 percentage points over the random baseline, suggesting that critical points
under NTK can be used to estimate recourse invalidation for wide ANN models.
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(d) Diabetes

Figure 4: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for the Admission, Heloc, Diabetes and Compas data sets for logistic regression, kernel svm,
and ANN models across recourse methods on classification tasks. Results were obtained by greedy
optimization. The dotted lines indicate the random baselines.

C IMPLEMENTATION DETAILS

C.1 DETAILS ON MODEL TRAINING

We train the classification models using the hyperparameters given in Table 1. The ANN and the
Logistic regression models are fit using the quasi-newton lbgfs solver. We add L2-regularization to
the ANN weights. The other methods are trained via their analytical solutions. Below, in Algorithms
1 and 2, we show pseudocodes for both our greedy and sgd-based deletion methods to invalidate
the recourse outcome. In order to do the optimization with respect to the recourse action stability
measure, we slightly adjust Algorithm 2 to optimize the right metric from Definition 2.
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(d) Heloc (SGD)

Figure 5: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for the Admission and Heloc data sets for linear regression and NTK models across recourse
methods on regression tasks. Results were obtained by both SGD and Greedy optimization. The
dotted lines indicate the random baselines.

C.2 DETAILS ON GENERATING THE COUNTERFACTUALS

For DICE, for every test input, we generate two different counterfactual explanations. Then we
randomly pick either the first or second counterfactual to be the counterfactual assigned to the given
input. Across all recourse methods the success rates lie above 95%, i.e., for 95% of recourse seeking
individuals the algorithms can identify recourses. The only exception is admission data set for the
NTK model, where the success rate lies at 60%. Across all recourse methods we set λ→ 0. Note
that the default implementations use early stopping once a feasible recourse has been identified.

C.3 DETAILS ON THE `0 REGULARIZER

Since an `0 regularizer is computationally intractable for high-dimensional optimization problems,
we have to resort to approximations. One such approximation approach was recently suggested by
Yamada et al. (2020). The underlying idea consists of converting the combinatorial search problem
to a continuous search problem over distribution parameters. To this end, recall our optimization
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Figure 6: Measuring the efficacy of a simple removal strategy on the Heloc and Admission data set
for linear and NTK regression models. We removed the 15 critical points identified for the linear and
NTK models when the underlying recourse method is SCFE and reran the removal algorithm on the
remaining training set. Results were obtained by Greedy optimization. The dotted lines indicate the
random baselines.
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Figure 7: Measuring the tradeoff between recourse outcome instability and the number of deletion
requests for the Admission data set for a neural network regression model. We used the critical points
identified for the NTK model to invalidate the recourses identified by a wide 2-layer ReLU network
with 10000 hidden nodes. Results were obtained by Greedy optimization. The dotted lines indicate
the random baselines.

problem from the main text:

ω∗ = arg max
ω∈{0,1}n

m(ω)− η · ‖1− ω‖0. (52)

We will now introduce Bernoulli random variables Zi ∈ {0, 1} with corresponding parameters πi to
model the individual ωi. Instead of optimizing the objective above with respect to ω we will optimize

Model Parameters

Linear Regression OLS, no hyperparameters.
NTK Regression β = 2 (Admission), β = 5 (other data sets)

Logistic Regression L2-Regularization with C = 1.0
Kernel-LSSVM Gaussian Kernel with γ = 1.0 (see Cawley & Talbot (2004))

ANN 2-Layer, 30 Hidden units, Sigmoid, α = 10 (L2-Regularization)

Table 1: Model hyperparameters used in this work
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Algorithm 1 Greedy recourse outcome invalidation

Required: Model: fw(1); Matrix of Recourses: X̌1 ∈ Rq×d; d: input dimension; q number of
recourse points on test set; n: # train points; M : max # deleted train points; s: invalidation target
ω(0) = 1n . All training instances present
for m = 1 : M do
ω(m) ← ω(m−1)

Ỹ = 0n×q . Recourse outcomes
J = 0n×q . Invalidations present

S(m) ←
{
i
∣∣∣ ω(m)

i 6= 0
}

. Set of train instances present at iteration m

for i ∈ S(m) do
w

(i)
new = update_w(ω

(m)
−i ) . ω

(m)
−i has additionally set weight i to 0.

. Use analytical or IJ solution for w(ω)

Ỹ[i, :] = f
w

(i)
new

(X̌1) . New recourse outcomes

J [i, :] = I(Ỹ[i, :] < s) . Invalidation present
end for
index← arg maxi∈S(m)‖J[i, :]‖1 . Find point that leads to highest invalidation
ω(m)[index] = 0 . Remove training point

end for
return: ω(M) . data weights indicating M removals

with respect to distribution parameters π:

π∗ = arg max
π

m(Z(π))− η · ‖1− Z(π)‖0. (53)

Since the above optimization problem is known to suffer from high-variance solutions, (Yamada
et al., 2020) suggest to use a Gaussian-based continuous relaxation of the Bernoulli variables:

Z̃i = max(0,min(1, µi + εi)), (54)

where εi = N (0, σ2), resulting in the following optimization problem:

µ∗ = arg max
µ

m(Z̃(µ))− η · ‖1− Z̃(µ)‖0. (55)

At inference time, the optimal weights are then given by Z̃∗i = max(0,min(1, µ∗i )) ∀i ∈ [n]. To
obtain discrete weights, we take the argmax over each individual Z̃i.

C.4 DETAILS ON THE JACKKNIFE APPROXIMATION

When the model parameters w are a function of the data weights by solving equation 1 we can
approximate w(ω) using the infinitesimal Jackknife (IJ) without having to optimize equation 1
repeatedly (Jaeckel, 1972; Efron, 1982; Giordano et al., 2019b;a):

wIJ(ω) = w1 −H−1
1 Gω−1, (56)

where G and H1 are the Jacobian and the Hessian matrices of the loss function with respect to
the data weights evaluated at the optimal model parameters w, i.e., Gω−1 = 1

n

∑n
i=1(ωi − 1) ·

∂`(fw(xi),yi)
∂w and H1 = 1

n

∑n
i=1

∂2`(fw(xi),yi)
∂w∂w> . Note that this technique computes the Hessian matrix

H1 only once. Using this Jackknife approximation, the Jacobian term Gω−1 becomes an explicit
function of the data weights which makes the Jackknife approximation amenable to optimization.
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Algorithm 2 SGD recourse outcome invalidation

Required: Model: fw(1); Matrix of Recourses: X̌1 ∈ Rq×d; d: input dimension; q number of
recourse points on test set; n: # train points; M : max # deleted train points; s: invalidation target
µ(1) = 1n . Mu are soft data weights that are opimized.
for m = 1 : Step do . Perform Step number of updates.

δ−loss=0.0
for k = 1 : K do . Use K Monte-Carlo Samples for the approximation

Sample ε(m)
k ∼ N

(
0, σ2In

)

ω
(m)
k = max

(
0,min

(
1,µ(m) + ε

(m)
k

))
. Sample (soft) data weights as in Yamada et al.

(2020)

w
(m)
k,new = update_w(ω

(m)
k ) .

Compute model weights from data
weights either analytically or with IJ

l
(m)
k = sigmoid

(
f
w

(m)
k,new

(X̌1)− s
)

.
Predict with new weights and com-
pute soft invalidation.

δ−loss = δ−loss + ‖l(m)
k ‖1 . Add up soft inval. loss

end for
r(m) =

∑n
i=1 Φ

(
1−(µ(m))i

σ

)
. Sparsity Regularizer from Yamada et al. (2020)

µ(m+1) = µ(m) + γ∇µ(m)

(
δ−loss
D + λr(m)

)
. Grad. Descent with lr. γ

end for
removed_ind = argsort(µ(Step+1)) . Sort indices ascendingly
j = 0
ω = 1n
while j < M do . Binarize and fulfil max number M
ω[removed_ind[j]]= 0
j = j + 1

end while
return: ω . data weights indicating M removals
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PROBABILISTICALLY ROBUST RECOURSE:
NAVIGATING THE TRADE-OFFS BETWEEN COSTS AND
ROBUSTNESS IN ALGORITHMIC RECOURSE

Martin Pawelczyk1∗, Teresa Datta2, Johannes van-den-Heuvel1
Gjergji Kasneci1, Himabindu Lakkaraju2

1University of Tübingen, Germany
2Harvard University, US

ABSTRACT

As machine learning models are increasingly being employed to make consequen-
tial decisions in real-world settings, it becomes critical to ensure that individuals
who are adversely impacted (e.g., loan denied) by the predictions of these models
are provided with a means for recourse. While several approaches have been
proposed to construct recourses for affected individuals, the recourses output by
these methods either achieve low costs (i.e., ease-of-implementation) or robustness
to small perturbations (i.e., noisy implementations of recourses), but not both
due to the inherent trade-offs between the recourse costs and robustness. Further-
more, prior approaches do not provide end users with any agency over navigating
the aforementioned trade-offs. In this work, we address the above challenges by
proposing the first algorithmic framework which enables users to effectively man-
age the recourse cost vs. robustness trade-offs. More specifically, our framework
Probabilistically ROBust rEcourse (PROBE) lets users choose the probability with
which a recourse could get invalidated (recourse invalidation rate) if small changes
are made to the recourse i.e., the recourse is implemented somewhat noisily. To
this end, we propose a novel objective function which simultaneously minimizes
the gap between the achieved (resulting) and desired recourse invalidation rates,
minimizes recourse costs, and also ensures that the resulting recourse achieves a
positive model prediction. We develop novel theoretical results to characterize
the recourse invalidation rates corresponding to any given instance w.r.t. different
classes of underlying models (e.g., linear models, tree based models etc.), and
leverage these results to efficiently optimize the proposed objective. Experimen-
tal evaluation with multiple real world datasets demonstrates the efficacy of the
proposed framework.

1 INTRODUCTION

Machine learning (ML) models are increasingly being deployed to make a variety of consequential
decisions in domains such as finance, healthcare, and policy. Consequently, there is a growing
emphasis on designing tools and techniques which can provide recourse to individuals who have
been adversely impacted by the predictions of these models (Voigt & Von dem Bussche, 2017).
For example, when an individual is denied a loan by a model employed by a bank, they should
be informed about the reasons for this decision and what can be done to reverse it. To this end,
several approaches in recent literature tackled the problem of providing recourse by generating
counterfactual explanations (Wachter et al., 2018; Ustun et al., 2019; Karimi et al., 2020a). which
highlight what features need to be changed and by how much to flip a model’s prediction. While
the aforementioned approaches output low cost recourses that are easy to implement (i.e., the
corresponding counterfactuals are close to the original instances), the resulting recourses suffer
from a severe lack of robustness as demonstrated by prior works (Pawelczyk et al., 2020b; Rawal
et al., 2021). For example, the aforementioned approaches generate recourses which do not remain

∗Corresponding author: martin.pawelczyk@uni-tuebingen.de
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Figure 1: Pictorial representation of the recourses (counterfactuals) output by various state-of-the-art
recourse methods and our framework. The blue line is the decision boundary, and the shaded areas
correspond to the regions of recourse invalidation. Fig. 1a shows the recourse output by approaches
such as Wachter et al. (2018) where both the recourse cost as well as robustness are low. Fig. 1c
shows the recourse output by approaches such as Dominguez-Olmedo et al. (2022) where both the
recourse cost and robustness are high. Fig. 1b shows the recourse output by our framework PROBE
in response to user input requesting an intermediate level of recourse robustness.

valid (i.e., result in a positive model prediction) if/when small changes are made to them (See
Figure 1a). However, recourses are often noisily implemented in real world settings as noted by prior
research (Björkegren et al., 2020). For instance, an individual who was asked to increase their salary
by $500 may get a promotion which comes with a raise of $505 or even $499.95.

Prior works by Upadhyay et al. (2021) and Dominguez-Olmedo et al. (2022) proposed methods to
address some of the aforementioned challenges and generate robust recourses. While the former
constructed recourses that are robust to small shifts in the underlying model, the latter constructed
recourses that are robust to small input perturbations. These approaches adapted the classic minimax
objective functions commonly employed in adversarial robustness and robust optimization literature
to the setting of algorithmic recourse, and used gradient descent style approaches to optimize
these functions. In an attempt to generate recourses that are robust to either small shifts in the
model or to small input perturbations, the above approaches find recourses that are farther away
from the underlying model’s decision boundaries (Tsipras et al., 2018; Raghunathan et al., 2019),
thereby increasing the recourse costs i.e., the distance between the counterfactuals (recourses) and
the original instances. Higher cost recourses are harder to implement for end users as they are
farther away from the original instance vectors (current user profiles). Putting it all together, the
aforementioned approaches generate robust recourses that are often high in cost and are therefore
harder to implement (See Figure 1c), without providing end users with any say in the matter. In
practice, each individual user may have a different preference for navigating the trade-offs between
recourse costs and robustness – e.g., some users may be willing to tolerate additional cost to avail
more robustness to noisy responses, whereas other users may not.

In this work, we address the aforementioned challenges by proposing a novel algorithmic framework
called Probabilistically ROBust rEcourse (PROBE) which enables end users to effectively manage
the recourse cost vs. robustness trade-offs by letting users choose the probability with which a
recourse could get invalidated (recourse invalidation rate) if small changes are made to the recourse
i.e., the recourse is implemented somewhat noisily (See Figure 1b). To the best of our knowledge,
this work is the first to formulate and address the problem of enabling users to navigate the trade-
offs between recourse costs and robustness. Our framework can ensure that a resulting recourse is
invalidated at most r% of the time when it is noisily implemented, where r is provided as input by
the end user requesting recourse. To operationalize this, we propose a novel objective function which
simultaneously minimizes the gap between the achieved (resulting) and desired recourse invalidation
rates, minimizes recourse costs, and also ensures that the resulting recourse achieves a positive
model prediction. We develop novel theoretical results to characterize the recourse invalidation rates
corresponding to any given instance w.r.t. different classes of underlying models (e.g., linear models,
tree based models etc.), and leverage these results to efficiently optimize the proposed objective.

We also carried out extensive experimentation with multiple real-world datasets. Our empirical
analysis not only validated our theoretical results, but also demonstrated the efficacy of our proposed
framework. More specifically, we found that our framework PROBE generates recourses that are not
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only three times less costly than the recourses output by the baseline approaches (Upadhyay et al.,
2021; Dominguez-Olmedo et al., 2022), but also more robust (See Table 1). Further, our framework
PROBE reliably identified low cost recourses at various target recourse invalidation rates r in case
of both linear and non-linear classifiers (See Table 1 and Figure 4). On the other hand, the baseline
approaches were not only ill-suited to achieve target recourse invalidation rates but also had trouble
finding recourses in case of non-linear classifiers.

2 RELATED WORK

Algorithmic Approaches to Recourse. As discussed earlier, several approaches have been proposed
in literature to provide recourse to individuals who have been negatively impacted by model predic-
tions (Tolomei et al., 2017; Laugel et al., 2017; Wachter et al., 2018; Ustun et al., 2019; Van Looveren
& Klaise, 2019; Pawelczyk et al., 2020a; Mahajan et al., 2019; Mothilal et al., 2020; Karimi et al.,
2020a; Rawal & Lakkaraju, 2020; Karimi et al., 2020b; Dandl et al., 2020; Antorán et al., 2021;
Spooner et al., 2021). These approaches can be roughly categorized along the following dimensions
(Verma et al., 2020): type of the underlying predictive model (e.g., tree based vs. differentiable classi-
fier), whether they encourage sparsity in counterfactuals (i.e., only a small number of features should
be changed), whether counterfactuals should lie on the data manifold and whether the underlying
causal relationships should be accounted for when generating counterfactuals, All these approaches
generate recourses assuming that the prescribed recourses will be correctly implemented by users.

Robustness of Algorithmic Recourse. Prior works have focused on determining the extent to
which recourses remain robust to the choice of the underlying model (Pawelczyk et al., 2020b;
Black et al., 2021; Pawelczyk et al., 2023), shifts or changes in the underlying models (Rawal et al.,
2021; Upadhyay et al., 2021), or small perturbations to the input instances (Artelt et al., 2021;
Dominguez-Olmedo et al., 2022; Slack et al., 2021). To address these problems, these works have
primarily proposed adversarial inimax objectives to minimize the worst-case loss over a plausible
set of instance perturbations for linear models to generate robust recourses (Upadhyay et al., 2021;
Dominguez-Olmedo et al., 2022), which are known to generate overly costly recourse suggestions.

In contrast to the aforementioned approaches our work focuses on a user-driven framework for
navigating the trade-offs between recourse costs and robustness to noisy responses by suggesting a
novel probabilistic recourse framework. To this end, we present several algorithms that enable us to
handle both linear and non-linear models (e.g., deep neural networks, tree based models) effectively,
resulting in better recourse cost/invalidation rate tradeoffs compared to both Upadhyay et al. (2021)
and Dominguez-Olmedo et al. (2022).

3 PRELIMINARIES

Here, we first discuss the generic formulation leveraged by several state-of-the-art recourse methods
including Wachter et al. (2018). We then define the notion of recourse invalidation rate formally.

3.1 ALGORITHMIC RECOURSE: GENERAL FORMULATION

Notation Let h ∶ X → Y denote a classifier which maps features x ∈ X ⊆ Rd to labels Y . LetY = {0,1} where 0 and 1 denote an unfavorable outcome (e.g., loan denied) and a favorable outcome
(e.g., loan approved), respectively. We also define h(x)=g(f(x)), where f ∶ X → R is a differentiable
scoring function (e.g., logit scoring function) and g ∶ R→ Y an activation function that maps logit
scores to binary labels. Throughout the remainder of this work we will use g(u) = I[u > ξ], where ξ
is a decision rule in logit space. W.l.o.g. we will set ξ = 0.

Counterfactual (CF) explanation methods provide recourses by identifying which attributes to change
for reversing an unfavorable model prediction. Since counterfactuals that propose changes to features
such as gender are not actionable, we restrict the search space to ensure that only actionable changes
are allowed. Let A denote the set of actionable counterfactuals. For a given predictive model h ,
and a predefined cost function dc ∶ Rd Ð→ R+, the problem of finding a counterfactual explanation
x̌ = x + δ for an instance x ∈ Rd is expressed by the following optimization problem:

x̌ = argmin
x′∈A ℓ(h(x′),1)) + λ ⋅ dc(x,x′), (1)
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where λ ≥ 0 is a trade-off parameter, and ℓ(⋅, ⋅) is the mean-squared-error (MSE) loss.

The first term on the right-hand-side ensures that the model prediction corresponding to the counter-
factual i.e., h(x′) is close to the favorable outcome label 1. The second term encourages low-cost
recourses; for example, Wachter et al. (2018) propose ℓ1 or ℓ2 distances to ensure that the distance
between the original instance x and the counterfactual x̌ is small.

3.2 DEFINING THE RECOURSE INVALIDATION RATE

In order to enable end users to effectively navigate the trade-offs between recourse costs and ro-
bustness, we let them choose the probability with which a recourse could get invalidated (recourse
invalidation rate) if small changes are made to it i.e., the recourse is implemented somewhat noisily.
To this end, we formally define the notion of Recourse Invalidation Rate (IR) in this section. We first
introduce two key terms, namely, prescribed recourses and implemented recourses. A prescribed
recourse is a recourse that was provided to an end user by some recourse method (e.g., increase salary
by $500). An implemented recourse corresponds to the recourse that the end user finally implemented
(e.g., salary increment of $505) upon being provided with the prescribed recourse. With this basic
terminology in place, we now proceed to formally define the Recourse Invalidation Rate (IR) below.

Definition 1 (Recourse Invalidation Rate). For a given classifier h, the recourse invalidation rate
corresponding to the counterfactual x̌E = x + δE output by a recourse method E is given by:

∆(x̌E) = Eε[h(x̌E)´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
CF class

− h(x̌E + ε)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
class after response

], (2)

where the expectation is taken with respect to a random variable ε with probability distribution pε
which captures the noise in human responses.

Age: 34 Yearly income: $52000

Loan amount: $20000 # Open credit lines: 4

Savings: $5000 # 30-59 days late payments: 2

Debt ratio: 0.8 # Dependents: 2

Loan Denied

Recourse suggestionsAccepted

Invalidation target: r = 0.5 Invalidation target: r = 0.25 Invalidation target: r = 0.10

-0.2 Debt ratio -0.2 Debt ratio

-2 # Open credit lines

-0.2 Debt ratio

-2 # Open credit lines

+$4000 Savings

+$12000 Yearly income

Low cost and 

low robustness

Medium cost and 

medium robustness

High cost and 

high robustness

Figure 2: Practical view on navigating the
cost/robustness tradeoff for a credit loan example.

Since the implemented recourses do not typ-
ically match the prescribed recourses x̌E

(Björkegren et al., 2020), we add ε to model
the noise in human responses. As we primarily
compute recourses for individuals x such that
h(x) = 0, the label corresponding to the coun-
terfactual is given by h(x̌E)=1 and therefore
∆ ∈ [0,1]. For example, the following cases
help understand our recourse invalidation rate
metric better: When ∆=0, then the prescribed
recourse and the recourse implemented by the
user agree all the time; when ∆=0.5, the pre-
scribed recourse and the implemented recourse
agree half of the time, and finally, when ∆=1
then the prescribed recourse and the recourse
implemented by the user never agree. To illustrate our ideas, we will use our IR measure with a
Gaussian probability distribution (i.e., ε ∼ N (0, σ2I)) to model the noise in human responses.

4 OUR FRAMEWORK: PROBABILISTICALLY ROBUST RECOURSE

Below we present our objective function, which is followed by a discussion on how to operationalize
it efficiently.

4.1 RECOURSE INVALIDATION RATE AWARE OBJECTIVE

The core idea is to find a recourse x̌ whose prediction at any point y within some set around x̌ belongs
to the positive class with probability 1 − r. Hence, our goal is to devise an algorithm that reliably
guides the recourse search towards regions of low invalidation probability while maintaining low cost
recourse (see Fig. 2 for a practical example). For a fixed model, our objective reads:

L = λ1R(x′;σ2I) + λ2ℓ(f(x′), s)) + λ3dc(x′,x), (3)
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where s is the target score for the input x, R(x′; r, σ2I) = max(0,∆(x′;σ2I) − r) with r being
the target IR, ∆(x′;σ2I) is the recourse invalidation rate from equation 1, λ1 to λ3 are the balance
parameters, and dc quantifies the distance between the input and the prescribed recourse. To arrive at
a output probability of 0.5, the target score for f(x) for a sigmoid function is s = 0, where the score
corresponds to a 0.5 probability for y = 1.

The new component R is a Hinge loss encouraging that the prescribed recourse has a low probability
of invalidation, and the parameter σ2 is the uncertainty magnitude and controls the size of the
neighbourhood in which the recourse has to be robust. The middle term encourages the score at the
prescribed recourse f(x̌) to be close to the target score s, while the last term promotes the distance
between the input x and the recourse x̌ to be small.

In practice, the choice of r depends on the risk-aversion of the end-user. If the end-user is not
confident about achieving a ‘precision landing’, then a rather low invalidation target should be chosen
(i.e., r < 0.5).

4.2 OPTIMIZING THE RECOURSE INVALIDATION RATE AWARE OBJECTIVE

Algorithm 1 PROBE

Input: x s.t. f(x) < 0, f , σ2, λ > 0,
α, r > 0
Init.: x′ = x;
Compute ∆̃(x′) ▷ from Theorem 1
while ∆̃(x′) > r and f(x′) < 0 do

∆̃ = ClosedFormIR(f, σ2,x′)▷ from Theorem 1
x′ = x′ − α ⋅ ∇x′L(x′;σ2, r, λ)▷ Opt. equation 3

end while
Return: x̌ = x′

In order for the objective in equation 3 to guide us reliably to-
wards recourses with low target invalidation rate r, we need
to approximate the invalidation rate ∆(x′) at any x′ ∈ Rd.
However, such an approximation becomes non-trivial since
the recourse invalidation rate, which depends on the clas-
sifier h, is generally non-differentiable since the classifier
h(x) = I(f(x) > ξ) as defined in Section 3 involves an indi-
cator function acting on the score f . To circumvent this issue,
we derive a closed-form expression for the IR using a local
approximation of the predictive model f . The procedure
suggested here remains generalizable even for non-linear
models since the local behavior of a given non-linear model
can often be well approximated by fitting a locally linear
model (Ribeiro et al., 2016; Ustun et al., 2019).

Theorem 1 (Closed-Form Recourse Invalidation Rate). A first-order approximation ∆̃ to the recourse
invalidation rate ∆ in equation 2 under Gaussian distributed noise in human responses ε ∼ N (0, σI)
is given by:

∆̃(x̌E ;σ
2I) = 1 −Φ( f(x̌E)√∇f(x̌E)⊺σ2I∇f(x̌E)), (4)

where Φ is the CDF of the univariate standard normal distribution N (0,1), f(x̌E) denotes the logit
score at x̌E which is the recourse output by a recourse method E, and h(x̌E) ∈ {0,1}.
All theoretical proofs along with the proof to the above proposition can be found in Appendix D.
In Algorithm 1, we show pseudo-code of our optimization procedure. Using gradient descent we
update the recourse repeatedly until the class label flips from 0 to 1 and the IR ∆̃ is smaller than
the targeted invalidation rate r. In essence, the result in Theorem 1 serves as our regularizer since it
steers recourses towards low-invalidation regions. For example, when f(x̌E) = 0, then ∆̃ = 0.5 since
Φ(0) = 1

2
. This means that the prescribed recourse and the recourse implemented by the user agree

50% of the time. On the other hand, when f(x̌E)→+∞, then ∆̃→0 since Φ→1, which means that the
prescribed recourse and the recourse implemented by the user always agree. Figure 3 demonstrates
how PROBE finds recourses relative to a standard low-cost algorithm (Wachter et al., 2018).

We now leverage the recourse invalidation rate derived in Theorem 1 to show how the recourses output
by Wachter et al. (2018) can be made more robust. Pawelczyk et al. (2022) provide a closed-form
solution for the recourse output by Wachter et al. (2018) w.r.t. the special case of a logistic regression
classifier when dc = ∥x − x′∥2 and the MSE-loss is used. This solution takes the following form:
x̌Wachter(s) = x + s−f(x)∥∇f(x)∥22∇f(x), where s is the target logit score. More specifically, to arrive at the
desired class with probability of 0.5, the target score for a sigmoid function is s = 0, where the logit
corresponds to a 0.5 probability for y = 1. The next statement quantifies the IR of recourses output
by Wachter et al. (2018).
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Proposition 1 (Exact Recourse IR). For logistic regression, consider the recourse output by Wachter
et al. (2018): x̌Wachter(s) = x + s−f(x)∥∇f(x)∥22∇f(x). Then the recourse invalidation rate is given by:

∆(x̌Wachter(s);σ2I) = 1 −Φ( s

σ∥∇f(x)∥2 ), (5)

where s is the target logit score.

A recourse generated by Wachter et al. (2018) such that f(x̌Wachter) = s = 0 will result in ∆ = 0.5. To
obtain recourse that is more robust to noisy responses from users, i.e., ∆ Ð→ 0, the decision maker
can choose a higher logit target score of s′ > s ≥ 0 since this decreases the recourse invalidation rate,
i.e., ∆(x̌Wachter(s)) >∆(x̌Wachter(s′)). The next statement makes precise how s should be chosen to
achieve a desired robustness level.
Corollary 1. Under the conditions of Proposition 1, choosing sr = σ∥∇f(x)∥2Φ−1(1−r) guarantees
a recourse invalidation rate of r, i.e., ∆(x̌Wachter(sr);σ2I) = r.

On extensions to general noise distributions, and tree-based classifiers. In Appendix A we present
extensions of our framework to obtain (i) reliable recourses for general noise distributions and (ii)
tree-based classifiers. These two cases pose non-trivial difficulties as the recourse invalidation rate is
generally non-differentiable. As for the more general noise distributions, we develop a Monte-Carlo
approach in appendix A.1, which relies on a differentiable approximation of the indicator function
required to obtain a Monte-Carlo estimate of the invalidation rate. For tree-based classifiers, we
develop a closed-form solution for the recourse invalidation rate (see Theorem 2).

4.3 ADDITIONAL THEORETICAL RESULTS

−1 0 1
x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x 2

Invalidation target: r = 0.35

PROBE
Wachter
Input

−1 0 1
x1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

x 2
Invalidation target: r = 0.1

PROBE
Wachter
Input

Figure 3: Navigating between high and low invalida-
tion recourses. The circles around PROBE’s recourses
have radius 2σ, i.e., this is the region where 95% of re-
course inaccuracies fall when σ2 = 0.05. For instance,
on the left we set an invalidation target of r = 0.35,
i.e., 35% of the recourse responses would fail under
spherical inaccuracies ε ∼ N (0,0.05 ⋅ I).

In this section, we leverage the recourse in-
validation rate expression derived in the pre-
vious section to theoretically show i) that an
additional cost has to be incurred to generate
robust recourses in the face of noisy human
responses, and ii) we derive a general up-
per bound on the IR which is applicable to
any valid recourse provided by any method
with the underlying classifier being a differ-
entiable model.

Next, we show that there exists a trade-
off between robustness to noisy human re-
sponses and cost. To this end, we fix the
target invalidation rate r, and ask what costs are needed to achieve a fixed level r:
Proposition 2 (General Cost of Recourse). For a linear classifier, let r ∈ (0,1) and let x̌E = x + δE
be the output produced by some recourse method E such that h(x̌E) = 1. Then the cost required to
achieve a fixed invalidation target r is:

∥δE∥2 = σ

ω
(Φ−1(1 − r) − c), (6)

where c = f(x)
σ⋅∥∇f(x)∥2 is a constant, and ω > 0 is the cosine of the angle between ∇f(x) and δE .

From Proposition 2, we see that the target invalidation rate r decreases as the recourse cost increases
for a given uncertainty magnitude σ2. To make this more precise the next statement demonstrates the
cost-robustness tradeoff.
Proposition 3 (Cost-Robustness Tradeoff). Under the same conditions as in Proposition 2, we have
∂∥δE∥2
∂(1−r) = σ

ω
1

ϕ(Φ−1(1−r)) > 0, i.e., an infinitesimal increase in robustness (i.e.,1 − r) increases the cost
of recourse by σ

ω
1

ϕ(Φ−1(1−r)) .
Now, we derive a general upper bound on the recourse invalidation rate. This bound is applicable to
any method E that provides recourses resulting in a positive outcome.
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Proposition 4 (Upper Bound). Let x̌E be the output produced by some recourse method E such that
h(x̌E) = 1. Then, an upper bound on ∆̃ from equation 4 is given by:

∆̃(x̌E ;σ
2I) ≤ 1 −Φ(c + ω

σ

∥∇f(x)∥2∥∇f(x̌E)∥2 ∥δE∥1√∥δE∥0 ), (7)

where c = f(x)
σ⋅∥∇f(x)∥2 , δE = x̌E − x, and ω > 0 is the cosine of the angle between ∇f(x) and δE .

The right term in the inequality entails that the upper bound depends on the ratio of the ℓ1 and
ℓ0-norms of the recourse action δE provided by recourse method E. The higher the ℓ1/ℓ0 ratio of the
recourse actions, the tighter the bound. The bound is tight when ∥δE∥0 assumes minimum value i.e.,∥δE∥0 = 1 since at least one feature needs to be changed to flip the model prediction.

5 EXPERIMENTAL EVALUATION

We now present our empirical analysis. First, we validate our theoretical results on the recourse
invalidation rates across various recourse methods. Second, we study the effectiveness of PROBE at
finding robust recourses in the presence of noisy human responses.

Real-World Data and Noisy Responses. Regarding real-world data, we use the same data sets as
provided in the recourse and counterfactual explanation library CARLA (Pawelczyk et al., 2021).
The Adult data set Dua & Graff (2017) originates from the 1994 Census database, consisting of
14 attributes and 48,842 instances. The class label indicates whether an individual has an income
greater than 50,000 USD/year. The Give Me Some Credit (GMC) data set Kaggle-Competition
(2011) is a credit scoring data set, consisting of 150,000 observations and 11 features. The class
label indicates if the corresponding individual will experience financial distress within the next two
years (SeriousDlqin2yrs is 1) or not. The COMPAS data set Angwin et al. (2016) contains data for
more than 10,000 criminal defendants in Florida. It is used by the jurisdiction to score defendant’s
likelihood of re-offending. The class label indicates if the corresponding defendant is high or low
risk for recidivism. All the data sets were normalized so that x ∈ [0,1]d. Across all experiments, we
add noise ε to the prescribed recourse x̌E , where ε ∼ N (0, σ2 ⋅ I) and σ2 = 0.01.

Methods. We compare the recourses generated by PROBE to four different baseline methods which
aim to generate low-cost recourses using fundamentally different principles: AR (-LIME) uses an
integer-programming-based objective Ustun et al. (2019), Wachter uses a gradient-based objective
(Wachter et al., 2018), DICE uses a diversity-based objectve (Mothilal et al., 2020), and GS is
based on a random search algorithm (Laugel et al., 2017). Further, we compare with methods that
use adversarial minmax objectives to generate robust recourse (Dominguez-Olmedo et al., 2022;
Upadhyay et al., 2021). We used the recourse implementations from CARLA (Pawelczyk et al., 2021).
Following Upadhyay et al. (2021), all methods search for counterfactuals over the same set of balance
parameters λ ∈ {0,0.25,0.5,0.75,1} when applicable.

Prediction Models. For all data sets, we trained both ReLU-based NN models with 50 hidden layers
(App. B) and a logistic regerssion (LR). All recourses were generated with respect to these classifiers.

Measures. We consider three measures in our evaluation: 1) We measure the average cost (AC)
required to act upon the prescribed recourses where the average is taken with respect to all instances
in the test set for which a given method provides recourse. Since all our algorithms are optimizing
for the ℓ1-norm we use this as our cost measure. 2) We use recourse accuracy (RA) defined as the
fraction of instances in the test set for which acting upon the prescribed recourse results in the desired
prediction. 3) We compute the average IR across every instance in the test set. To do that, we sample
10,000 points from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the average
IR quantifies recourse robustness where the individual IRs are averaged over all instances from the
test set for which a given method provides recourse.

5.1 VALIDATING OUR THEORETICAL BOUNDS

Computing Bounds. We empirically validate the theoretical upper bounds derived in Section 4.3.
To do that, we first estimate the bounds for each instance in the test set according to Proposition 4,
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Adult Compas GMC

Measures AR Wachter GS PROBE AR Wachter GS PROBE AR Wachter GS PROBE

LR
RA (↑) 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AIR (↓) 0.5 ± 0.01 0.46 ± 0.02 0.35 ± 0.11 0.34 ± 0.02 0.48 ± 0.04 0.47 ± 0.02 0.3 ± 0.18 0.28 ± 0.02 0.47 ± 0.06 0.45 ± 0.03 0.48 ± 0.04 0.24 ± 0.01
AC (↓) 0.55 ± 0.4 0.62 ± 0.43 2.12 ± 1.05 1.56 ± 0.92 0.16 ± 0.17 0.22 ± 0.17 0.73 ± 0.45 0.63 ± 0.39 0.29 ± 0.27 0.49 ± 0.51 0.28 ± 0.31 0.60 ± 0.56

NN
RA (↑) 0.38 1.0 1.0 0.99 0.84 1.0 1.0 1.0 0.38 1.0 1.0 1.0
AIR (↓) 0.49 ± 0.03 0.5 ± 0.02 0.48 ± 0.02 0.35 ± 0.01 0.34 ± 0.09 0.46 ± 0.02 0.43 ± 0.07 0.33 ± 0.02 0.34 ± 0.07 0.43 ± 0.03 0.45 ± 0.03 0.25 ± 0.03
AC (↓) 1.05 ± 0.22 0.3 ± 0.19 2.99 ± 1.51 1.43 ± 0.49 1.15 ± 0.52 0.2 ± 0.16 0.81 ± 0.45 0.8 ± 0.34 0.2 ± 0.19 0.26 ± 0.18 0.12 ± 0.09 0.47 ± 0.21

(a) Comparing PROBE to baseline recourse methods.
Adult Compas GMC

Measures ROAR ARAR PROBE ROAR ARAR PROBE ROAR ARAR PROBE

LR
RA(↑) 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0

AIR (↓) 0.0 ± 0.0 0.02 ± 0.01 0.34 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.28 ± 0.02 0.0 ± 0.0 0.35 ± 0.01 0.24 ± 0.01
AC (↓) 3.56 ± 0.8 2.68 ± 0.79 1.56 ± 0.92 2.99 ± 0.31 1.74 ± 0.3 0.63 ± 0.39 1.74 ± 0.45 1.27 ± 0.45 0.60 ± 0.56

NN
RA(↑) 0.94 0.03 0.99 0.97 0.02 1.0 0.06 0.06 1.0

AIR (↓) 0.0 ± 0.0 0.51 ± 0.0 0.35 ± 0.01 0.01 ± 0.06 0.46 ± 0.0 0.33 ± 0.02 0.3 ± 0.21 0.45 ± 0.01 0.25 ± 0.03
AC (↓) 19.8 ± 3.39 0.04 ± 0.0∗ 1.43 ± 0.49 6.41 ± 1.07 0.02 ± 0.0∗ 0.8 ± 0.34 0.67 ± 0.94 0.02 ± 0.0∗ 0.47 ± 0.21

(b) Comparing PROBE to adversarially robust recourse methods.

Table 1: Comparing PROBE to recourse methods from literature using recourse accuracy (RA),
average recourse invalidation rate (AIR) for σ2 = 0.01 and average cost (AC) across different recourse
methods. For PROBE, we generated recourses by setting r = 0.35 and σ2 = 0.01. (a): Recourses
that use our framework PROBE are more robust compared to those produced by existing baselines.
(b): Adversarially robust recourses are more costly than recourses output by PROBE. For ARAR and
ROAR we set ϵ = 0.01. ∗: Results with recourse accuracies less than 10% have not been considered.
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Figure 4: Comparing PROBE to adversarially robust recourse methods using pareto plots that show
the tradeoff between average costs and average invalidation rate (towards bottom left indicates a
better performance). For PROBE, the invalidation target is r ∈ {0.35,0.3,0.25,0.20,0.15}, and we
generated recourses by setting σ2, ϵ ∈ {0.005,0.01,0.015}. The latter are used for ARAR and ROAR.

and compare them with the empirical estimates of the IR. The empirical IR, in turn, we obtain from
Monte-Carlo estimates of the IR in equation 2; we used 10,000 samples to get a stable estimate of IR.

Results. In Figure 5, we validate the bounds obtained in Proposition 4 for the GMC data sets. We
relegated results for the Compas and Adult data set and other values of σ2 to Appendix C. Note
that the trivial upper bound is 1 since ∆ ≤ 1, and we see that our bounds usually lie well below this
value, which suggests that our bounds are meaningful. We observe that these upper bounds are quite
tight, thus providing accurate estimates of the worst case recourse invalidation rates. It is noteworthy
that GS tends to provide looser bounds, since its recourses tend to have lower ℓ1/ℓ0 ratios; for GS,
its random search procedure increases the ℓ0-norms of the recourse relative to the recourses output
by other recourse methods. This contributes to a looser bound saying that the randomly sampled
recourses by GS tend to provide looser worst-case IR estimates relative to all the other methods,
which do use gradient information (e.g., Wachter , AR and PROBE).

5.2 EVALUATING THE PROBE FRAMEWORK

Results. Here, we evaluate the robustness, costs and recourse accuracy of the recourses generated
by our framework PROBE relative to the baselines. We consider a recourse robust if the recourse
remains valid (i.e., results in positive outcome) even after small changes are made to it (i.e., humans
implement it in a noisy manner). Table 1 shows the average IR for different methods across different
real world data sets and classifiers when σ2 = 0.01. Further, in Table 1a we see that PROBE has the
lowest invalidation rate across all real-world data sets and classifiers among the non-robust recourse
methods, while PROBE provides the lowest cost recourses among the robust recourse methods (see
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Figure 5: Verifying the theoretical upper bound from Proposition 4 on the logistic regression model.
The red boxplots show the empirical recourse invalidation rates for AR(-LIME), Wachter, GS,
DICE, ARAR (ϵ = 0.01), ROAR (ϵ = 0.01) and PROBE (r = 0.35, σ2 = 0.01). The blue boxplots show
the distribution of upper bounds evaluated by plugging in the corresponding quantities (i.e., σ2, ω,
etc.) into the bound. The results show no violations of our theoretical bounds. See appendix C for the
full set of results.

Table 1b). We also consider if the robustness achieved by our framework is coming at an additional
cost i.e., by sacrificing recourse accuracy (RA) or by increasing the average recourse cost (AC). We
compute AC of the recourses output by all the algorithms and find that PROBE usually has the highest
or second highest recourse costs, while the RA is at 100% across classifiers and data sets.

Finally, we provide a more detailed comparison between PROBE and the adversarially robust recourse
methods ARAR and ROAR. To do so, we plot pareto frontiers in Figure 4 which demonstrate the inher-
ent tradeoffs between the average cost of recourse and the average recourse invalidation rate computed
over all recousre seeking individuals for different uncertainty magnitudes σ2, ϵ ∈ {0.005,0.01,0.15}.
For ARAR and ROAR we expect to see AIRs close to 0 (by construction). However, this is only the
case for the linear classifiers. Moreover, ROAR provide recourses with up to 3 times higher cost
relative to our method PROBE. Note also that ARAR and ROAR have trouble finding recourses for
non-linear classifiers, resulting in RA scores of around 5% in the worst case, while not being able to
maintain low invalidation scores. This is likely due to the local linear approximation used by these
methods. In summary, PROBE finds recourses for 100% of the test instances in line with the promise
of having an invalidation probability of at most r, while being less costly than ROAR and ARAR.

Relegated results. The relegated experiments in Appendix C (i) demonstrate that baseline recourse
methods are not robust to noisy human responses (Figures 8 - 9), (ii) verify that the targeted invalida-
tion rates match the empirical recourse invalidation rates (Figures 13 - 15) and (iii) demonstrate the
trade-off between recourse costs and robustness verifying Corollary 3 (Figures 16 - 17).

6 CONCLUSION

In this work, we proposed a novel algorithmic framework called Probabilistically ROBust rEcourse
(PROBE) which enables end users to effectively manage the recourse cost vs. robustness trade-offs by
letting users choose the probability with which a recourse could get invalidated (recourse invalidation
rate) if small changes are made to the recourse i.e., the recourse is implemented somewhat noisily. To
the best of our knowledge, this work is the first to formulate and address the problem of enabling
users to navigate the trade-offs between recourse costs and robustness. Our framework can ensure
that a resulting recourse is invalidated at most r% of the time when it is noisily implemented, where
r is provided as input by the end user requesting recourse. To operationalize this, we proposed a
novel objective function which simultaneously minimizes the gap between the achieved (resulting)
and desired recourse invalidation rates, minimizes recourse costs, and also ensures that the resulting
recourse achieves a positive model prediction. We developed novel theoretical results to characterize
the recourse invalidation rates corresponding to any given instance w.r.t. different classes of under-
lying models (e.g., linear models, tree based models etc.), and leveraged these results to efficiently
optimize the proposed objective. Experimental evaluation with multiple real world datasets not only
demonstrated the efficacy of the proposed framework, but also validated our theoretical findings. Our
work also paves the way for several interesting future research directions in the field of algorithmic
recourse. For instance, it would be interesting to build on this work to develop approaches which can
generate recourses that are simultaneously robust to noisy human responses, noise in the inputs, as
well as shifts in the underlying models.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn:
Machine learning in python. Journal of machine learning research, 2011.

Mary Phuong and Christoph Lampert. Towards understanding knowledge distillation. In International
Conference on Machine Learning (ICML). PMLR, 2019.

Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Adversarial
training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

Kaivalya Rawal and Himabindu Lakkaraju. Interpretable and interactive summaries ofactionable
recourses. In Advances in Neural Information Processing Systems (NeurIPS), volume 33, 2020.

Kaivalya Rawal, Ece Kamar, and Himabindu Lakkaraju. Algorithmic recourse in the wild: Under-
standing the impact of data and model shifts. arXiv:2012.11788, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ” why should i trust you?” explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference
on knowledge discovery and data mining (KDD), pp. 1135–1144, 2016.

Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. Counterfactual explanations
can be manipulated. In Advances in Neural Information Processing Systems (NeurIPS), volume 34,
2021.

11



Published as a conference paper at ICLR 2023

Thomas Spooner, Danial Dervovic, Jason Long, Jon Shepard, Jiahao Chen, and Daniele Magazzeni.
Counterfactual explanations for arbitrary regression models. arXiv:2106.15212, 2021.

Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable predictions
of tree-based ensembles via actionable feature tweaking. In Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (KDD). ACM, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. arXiv preprint arXiv:1805.12152, 2018.

Sohini Upadhyay, Shalmali Joshi, and Himabindu Lakkaraju. Towards robust and reliable algorithmic
recourse. In Advances in Neural Information Processing Systems (NeurIPS), volume 34, 2021.

Berk Ustun, Alexander Spangher, and Y. Liu. Actionable recourse in linear classification. In
Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT*), 2019.

Arnaud Van Looveren and Janis Klaise. Interpretable counterfactual explanations guided by proto-
types. arXiv preprint arXiv:1907.02584, 2019.

Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual explanations for machine learning:
A review. arXiv:2010.10596, 2020.

Paul Voigt and Axel Von dem Bussche. The eu general data protection regulation (gdpr). A Practical
Guide, 1st Ed., Cham: Springer International Publishing, 10:3152676, 2017.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
the black box: automated decisions and the gdpr. Harvard Journal of Law & Technology, 31(2),
2018.

12



Published as a conference paper at ICLR 2023

A EXTENSIONS TO OTHER NOISE DISTRIBUTIONS AND TREE BASED
CLASSIFIERS

A.1 EXTENSIONS TO GENERAL NOISE DISTRIBUTIONS

A.1.1 A MONTE-CARLO APPROACH FOR GENERAL NOISE DISTRIBUTIONS

Algorithm 2 PROBE-MC

Input: x s.t. f(x) < 0, f , σ2, λ > 0,
t, α, r > 0
Init.: x′ = x;
Compute ∆̂MC(x′) ▷ from
equation 11
while ∆̂MC(x′) > r and f(x′) < 0 do

Compute ∆̂MC(x′) ▷ from
equation 11

x′ = x′ − α ⋅ ∇x′L(x′;σ2, r, λ)▷ Opt. equation 3
end while
Return: x̌ = x′

In section 4 we have introduced our PROBE
framework, which enables us to guide the search
for counterfactual explanations towards regions
with a targeted low invalidation rate. Recall that
the optimization procedure in Section 4 relied
on a first-order approximation to the recourse in-
validation rate under Gaussian distributed noisy
human responses. In this section, we develop
an algorithm that is agnostic to the specifics of
the parameterized noise distribution. To this
end, we suggest a Monte Carlo estimator of the
recourse IR from Def. 1, i.e.,

∆̃MC = 1

K

K∑
k=1(1 − h(x′ + εk)). (8)

We highlight that the estimator ∆̃MC allows for a flexible specification of various noise distributions,
and thus does not depend on specific distributional assumptions of ε. The following result suggests
that we can estimate the true IR ∆(x′) to desired precision using the Monte-Carlo estimator ∆̃MC(x′).
Proposition 5. The mean-squared-error (MSE) between the true IR ∆(x′) and the empirical Monte-
Carlo estimate ∆̃MC(x′) is upper bounded such that:

Eε[(∆(x′) − ∆̃MC(x′))2] ≤ 1

4K
. (9)

Since it is up to us to choose K, we can make the MSE arbitrarily small and reliably estimate the true
invalidation rate ∆(x′).
A.1.2 A DIFFERENTIABLE APPROXIMATION TO ∆̃MC
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Figure 6: Differentiable approximations of the indi-
cator function I(x > 0) using the sigmoid function
S(y) = 1

1+exp(−y) evaluated at different tempera-
tures t ∈ {1,2,10,25,100} when ξ = 0.

A problem with the estimator ∆̃MC is that it
is not amenable to automatic differentiation re-
quired for our gradient based algorithm to op-
erate. This is due to the discontinuity at the
threshold ξ introduced by the indicator function
which, in turn, is applied to the logit score when
computing the recourse invalidation rate (i.e.,
h(x) = I(f(x) > ξ) and see Definition 1). To
mitigate this issue, we suggest to use a sigmoid
function with appropriate temperature t to ap-
proximate the indicator at the threshold ξ:

S((x − ξ) ⋅ t) = 1

1 + exp ( − (x − ξ) ⋅ t) . (10)

Therefore, as t → ∞ the sigmoid S converges
to the indicator function I(x > ξ). We illustrate this behaviour in Figure 6 for different temperature
levels t ∈ {1,2,10,25,100} when the threshold is ξ = 0. Using the differentiable approximation to the
indicator function, we are now ready to state a differentiable estimator for the recourse invalidation
rate, which we can use to guide our gradient descent procedure to low recourse invalidation regions:

∆̂MC(x′; 0, t) = 1

K

K∑
k=1(1 − S(t ⋅ f(x′ + εk))). (11)
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A.2 EXTENSIONS TO TREE BASED CLASSIFIERS

The recourse literature commonly considers consequential decision problems which heavily rely
on the usage of tabular data. For this data modality, ensembles of decision trees such as Random
Forest (RF) (Breiman, 2001) or Gradient Boosted Boosted Decision Trees (GBDT) (Friedman, 2001)
are considered among the state-of-the-art models (Borisov et al., 2021). As a consequence, some
recourse methods were developed to find recourses for tree ensembles (Tolomei et al., 2017; Lucic
et al., 2022) where the non-differentiability prevents a direct application of the recourse objective in
equation 1. To extend our method to tree-based classifiers, we also derive an IR expression for tree
ensembles, and develop a method which computes low IR recourses for these models.
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(a) Distilling a RF classifier (left) into a single tree
(right). In the left panel, the RF classifier averages
30 decision trees, indicating that the final axis-aligned
regions (not shown) are complicated functions of all 30
decision trees.
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(b) Computing recourse for the RF model (right) based
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fall when σ2 = 0.025. The input x has IR ≈ 0.5. The
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Figure 7: Computing certified recourses on the 2d Moon data set (Pedregosa et al., 2011) for a RF
classifier. Figure a): Distilling a RF classifier (left panel) into a single decision tree (right panel)
using knowledge distillation (Domingos, 1997). Figure b): Using the distilled tree, we form the
hypercubes (left panel) required to compute IR according to Theorem 2. We then optimize equation 3
to find certified recourses for the RF model (right panel).

Tree Ensemble Classifiers An object of interest is the predicted output of a decision tree:

T (x) = ∑
R∈RT cT (R) ⋅ I(x ∈ R), (12)

where cT (R) ∈ {0,1} is the constant prediction assigned in region R ∈RT for tree T . Moreover, a
decision forest is formed by a set of MT decision trees, and forms the probabilistic output:

fForest(x) = 1

MT

MT∑
m=1Tm(x). (13)

The predicted class of an input x is formed via a vote by the trees where each tree assigns a probability
estimate to the input. That is, the predicted class is the one with highest mean probability estimate
across the trees. After the trees are combined, the multiple models form a single model again
(Domingos, 1997). Thus, the corresponding predicted class of equation 13 is given by:

F(x) = ∑
R∈RF cF(R) ⋅ I(x ∈ R), (14)

where cF(R) ∈ {0,1} is the constant prediction assigned in region R ∈RF for the ensemble of treesF . Furthermore, note that for each ensemble, there is an active subset of ensemble-specific featuresSF ⊆ {1, . . . , d} on which axis-aligned splits took place. Finally, we note that this formulation is
quite general as it subsumes a large class of popular tree-based models such as Random Forests (RF)
and Gradient Boosted Decision Trees (GBDT).

A.3 THE RECOURSE IR FOR TREE ENSEMBLE CLASSIFIERS

Theorem 2 (IR for Tree-Ensemble Classifiers). Consider the decision forest classifier in equation 14.
The recourse invalidation rate under Gaussian distributed response inconsistencies ε ∼ N (0,σ2I) is
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given by:

∆(x̌E ;Σ) = 1 − ∑
R∈RF cF(R) ∏j∈SF dj,R(x̌E,j), (15)

where

dj,R(x̌E,j) = [Φ( t̄j,R − x̌E,j

σj
) −Φ( tj,R − x̌E,j

σj
)], (16)

and where Φ is the Gaussian CDF, t̄j,R and tj,R are the upper and lower points corresponding to
feature j ∈ SF that define the hypercube formed by region R.

Proof Sketch. The proof uses the insight that a decision forest based on trees with axis-aligned splits
partions the input space into hypercubes where the prediction is either 0 or 1. It then remains to
evaluate Gaussian integrals subject to the constrains set by the hypercubes. The full proof is given in
Appendix D.3.

Our proof of Theorem 2 assumed that the split points t̄j,R and tj,R, corresponding to the tree-ensemble,
are readily available. However, the hypercubes formed by the tree-ensemble, for which the prediction
is constant, is a function of all individual trees, and of how they are combined. Thus, the clear-cut
division into hypecrubes present in each of the trees got lost in the process of model averaging.

Model Distillation to Evaluate IR We suggest a solution to this problem by using a technique
called model distillation (Domingos, 1997; Bucilua et al., 2006; Hinton et al., 2015; Phuong &
Lampert, 2019). In a nutshell: We wish to change the form of the model (to a simpler decision
tree) while keeping the same knowledge (from our tree ensemble) (Hinton et al., 2015). Thus, the
goal of this technique is to distil the knowledge of a larger model (possibly an ensemble) into a
single, small (and interpretable) model. In our case, the ensemble is formed by decision trees, and
the target model is a decision tree as well. Second, the method is simple to operationalize: let h be
your complex model, and g denotes the simple model. Then we use our data {xi, yi}ni=1 to train and
validate the model h. The target model, however, is trained on samples from {xi, h(xi)}ni=1 to mimic
the behaviour of the complex model. We refer to panels 1 to 3 in Figure 7 to gain some intuition on
how this technique works on a non-linear 2-dimensional data set.

B EXPERIMENTAL DETAILS

In this section, we describe the hyperparameter choices and how the classification models were fitted.
We have used CARLA’s built-in functionality to fit classifiers using PyTorch (Paszke et al., 2019) and
treat all variables as continuous. We set λ1 = 2, λ2 = 1 and search over λ3 in the usual way (Wachter
et al., 2018). All models use a 80 − 20 train-test split for model training and evaluation. We evaluate
model quality based on the model accuracy. All models are trained with the same architectures across
the data sets:

Neural Network Logistic Regression

Units [Input dim., 50, 2] [Input dim. , 2]
Type Fully connected Fully connected
Intermediate activations ReLU N/A
Last layer activations Softmax Softmax

Table 2: Classification model details
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Adult COMPAS Give Me Credit

Batch-size NN 512 32 64

Logistic
Regression 512 32 64

Epochs NN 50 40 30

Logistic
Regression 50 40 30

Learning rate NN 0.002 0.002 0.001

Logistic
Regression 0.002 0.002 0.001

Table 3: Training details

Adult COMPAS Give Me Credit

Logistic Regression 0.83 0.84 0.92
Neural Network 0.85 0.85 0.93

Table 4: Performance of models used for generating recourses

C ADDITIONAL EXPERIMENTS

C.1 ALGORITHMIC RECOURSE IN THE FACE OF NOISY HUMAN RESPONSES

In this Section we show a set of additional experiments. Since this work is the first to highlight and
address the problem of recourse invalidation in the face of noisy human responses, we demonstrate in
Figures 8 and 9 that recourses generated by state-of-the-art approaches are, on average, invalidated up
to 50% of the time when small changes are made to them. It is worth highlighting that the maximum
invalidation scores can become as high as 61%, which motivates the need for a recourse method that
rightly controls the invalidation rate.
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Figure 8: Boxplots of recourse invalidation probabilities across sucessfully generated recourses x̌ for
logistic regression on three data sets. Recourses were generated by four different explanation methods
(i.e., AR, Wachter, and GS, DICE), which use different techniques (i.e., integer programming,
gradient search, random search, diverse recourse) to find minimum cost recourses. We perturbed the
recourses by adding small normally distributed response inaccuracies ε ∼ N (0, σ2 ⋅ I) to x̌.
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Figure 9: Boxplots of recourse invalidation probabilities across sucessfully generated recourses x̌ for
NN classifiers on three data sets. The recourses were generated by four different explanation methods
(i.e., AR, Wachter, and GS, DICE), which use different techniques (i.e., integer programming,
gradient search, random search, diverse recourse) to find minimum cost recourses. We perturbed the
recourses by adding small normally distributed response inaccuracies ε ∼ N (0, σ2 ⋅ I) to x̌.

C.2 MISSING FIGURES FROM THE MAIN TEXT

Below, we show the Figure that was missing from the main text due to space constraints. To keep the
plots below more readable, we have omitted DICE from them as both the bounds implied by DICE,
the results on cost and the remaining measures are similar to the one by Wachter.
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Figure 10: Missing figures from the main text (Compas).
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Figure 11: Missing figures from the main text (Adult).
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(a) Logistic Regression (Left), ANN (Right), σ2 = 0.025
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(b) Logistic Regression (Left), ANN (Right), σ2 = 0.025
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(c) Logistic Regression (Left), ANN (Right), σ2 = 0.025
Figure 12: Verifying the theoretical upper bound from Lemma 4 for the logistic regression and
artificial neural network classifiers on all data sets when σ2 = 0.025. The green boxplots show the
empirical recourse IRs for AR(-LIME), Wachter, GS, and PROBE. The blue boxplots show the
distribution of upper bounds, which we evaluated by plugging in the corresponding quantities (i.e.,
σ2, ω, etc.) into the upper bound from Lemma 4. The results show no violations of our bounds.
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Adult Compas GMC

AR Wachter GS PROBE AR Wachter GS PROBE AR Wachter GS PROBE

LR
RA (↑) 0.98 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
AIR (↓) 0.5 ± 0.01 0.48 ± 0.01 0.4 ± 0.08 0.28 ± 0.02 0.49 ± 0.03 0.48 ± 0.02 0.36 ± 0.14 0.31 ± 0.01 0.48 ± 0.04 0.47 ± 0.02 0.49 ± 0.02 0.3 ± 0.01
AC (↓) 0.55 ± 0.4 0.62 ± 0.43 2.06 ± 1.03 2.21 ± 3.17 0.16 ± 0.17 0.22 ± 0.17 0.73 ± 0.45 0.68 ± 0.28 0.29 ± 0.27 0.49 ± 0.51 0.28 ± 0.32 1.22 ± 2.29

NN
RA(↑) 0.38 1.0 1.0 1.0 0.84 1.0 1.0 1.0 0.4 1.0 1.0 1.0

AIR (↓) 0.51 ± 0.02 0.51 ± 0.01 0.5 ± 0.02 0.33 ± 0.01 0.39 ± 0.06 0.46 ± 0.02 0.41 ± 0.07 0.25 ± 0.02 0.37 ± 0.05 0.42 ± 0.03 0.44 ± 0.02 0.34 ± 0.02
AC (↓) 1.05 ± 0.22 0.3 ± 0.19 3.11 ± 1.62 1.98 ± 2.35 1.15 ± 0.52 0.2 ± 0.16 1.0 ± 0.17 0.84 ± 0.34 0.2 ± 0.16 0.26 ± 0.18 0.11 ± 0.09 0.41 ± 0.23

Table 5: Recourse accuracy (RA), average recourse invalidation rate (AIR) for σ2 = 0.025 and
average cost (AC) across different recourse methods. Recourses that use our framework PROBE are
more robust compared to those produced by existing baselines. For PROBE, we generated recourses
by setting r = 0.35. Thus, the AIR should be at most 0.35, in line with our results.

C.3 VERIFYING THE VALIDITY OF THE EMPIRICAL INVALIDATION RATE

In Figures 13, 14, and 15 we show that the IRs of the recourses by our framework can be controlled
setting r to desired values.
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Figure 13: Verifying that the invalidation rate for our framework PROBE (blue line) is at most equal to
the invalidation target r on the Adult data set for different σ2 ∈ {0.01,0.025} across both classifiers.
We compute the mean IR across every instance in the test set. To do that, we sample 10,000 points
from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the mean IR quantifies
recourse robustness where the individual IRs are averaged over all instances from the test set. The
shaded regions indicate the corresponding standard deviations.

C.4 DEMONSTRATING THE COST-ROBUSTNESS TRADEOFF

In Figures 16 and 17 we demonstrate that there exists a tradeoff between recourse costs and the
robustness of recourse to noisy response.

C.5 DETAILED COMPARISON WITH ROAR AND ARAR

In this section we compare our method with two approaches that aim at generating robust algorithmic
recourse in different settings. We further report results by DICE, which does not generate robust
recourse. Thus, we PROBE the cost performance (i.e., AC) by DICE to serve as a lower bound,
while its robustness performance would serve as an upper bound (i.e., AIR). Regarding the methods
that suggest robust recourse we refer to Upadhyay et al. (2021) who proposed a minimax objective
to generate recourses that are robust to model updates (ROAR), while Dominguez-Olmedo et al.
(2022) use a slight variation of this objective to find recourses that are robust to uncertainty in the
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Figure 14: Verifying that the invalidation rate for our framework PROBE (blue line) is at most equal
to the invalidation target r on the Compas data set for different σ2 ∈ {0.01,0.025} across both
classifiers. We compute the mean IR across every instance in the test set. To do that, we sample
10,000 points from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the mean
IR quantifies recourse robustness where the individual IRs are averaged over all instances from the
test set. The shaded regions indicate the corresponding standard deviations.
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Figure 15: Verifying that the invalidation rate for our framework PROBE (blue line) is at most equal to
the invalidation target r on the GMC data set for different σ2 ∈ {0.01,0.025} across both classifiers.
We compute the mean IR across every instance in the test set. To do that, we sample 10,000 points
from ε ∼ N (0, σ2I) for every instance and compute IR in equation 2. Then the mean IR quantifies
recourse robustness where the individual IRs are averaged over all instances from the test set. The
shaded regions indicate the corresponding standard deviations.

inputs (ARAR). Moreover, on a high-level, these objectives differ from our approach since the epsilon
neighborhoods that PROBE constructs are probabilistic.
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Figure 16: Trading off recourse costs against robustness by choosing the invalidation target r in
our PROBE framework. We generated recourses by setting r ∈ {0.20,0.25,0.30,0.35.0.40} and
σ2 = 0.01 for the logistic regression classifier.
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Figure 17: Trading off recourse costs against robustness by choosing the invalidation target r in
our PROBE framework. We generated recourses by setting r ∈ {0.20,0.25,0.30,0.35.0.40} and
σ2 = 0.01 for the NN classifier.

Cost versus invalidation rate performances. The table shown below summarizes the performance
comparison across the aforementioned methods, and Figures 18 and 19 provide Pareto plots, which
demonstrate the tradeoff between the average costs measured in terms of ℓ1 norm and the average
invalidation rate.

Discussion. The AIR for PROBE should be at most 0.35, in line with our results. For ARAR and
ROAR, we should expect AIRs close to 0, which is only the case for the linear classifiers. Additionally,
ARAR and ROAR provide recourses with up to 10 times higher cost relative to our method PROBE.
Note also that ARAR and ROAR have trouble finding recourses for non-linear classifiers, resulting in
RA scores of around 5% in the worst case, while not being able to maintain low invalidation scores.
This is likely due to the local linear approximation that needs to be used by these methods. For ARAR,
only up to 5 percent of all recourse are found (i.e., it only finds recourse with low cost to the decision
boundary), and for those identified recourses the average invalidation rate is close to a random coin
flip. In summary, PROBE finds recourses for 100% of the test instances in line with the promise of
having an invalidation probability of at most 0.35, while being substantially less costly than ROAR.

Adult Compas GMC

Measures ROAR ARAR PROBE ROAR ARAR PROBE ROAR ARAR PROBE

LR
RA(↑) 1.0 1.0 1.0 1.0 0.99 1.0 1.0 1.0 1.0

AIR (↓) 0.0 ± 0.0 0.02 ± 0.01 0.34 ± 0.02 0.0 ± 0.0 0.0 ± 0.0 0.33 ± 0.02 0.0 ± 0.0 0.35 ± 0.01 0.24 ± 0.01
AC (↓) 3.56 ± 0.8 2.68 ± 0.79 1.56 ± 0.92 2.99 ± 0.31 1.74 ± 0.3 0.63 ± 0.39 1.74 ± 0.45 1.27 ± 0.45 0.60 ± 0.56

NN
RA(↑) 0.94 0.03 0.99 0.97 0.02 1.0 0.06 0.06 1.0

AIR (↓) 0.0 ± 0.0 0.51 ± 0.0 0.35 ± 0.01 0.01 ± 0.06 0.46 ± 0.0 0.33 ± 0.02 0.3 ± 0.21 0.45 ± 0.01 0.25 ± 0.03
AC (↓) 19.8 ± 3.39 0.04 ± 0.0 1.43 ± 0.49 6.41 ± 1.07 0.02 ± 0.0 0.8 ± 0.34 0.67 ± 0.94 0.02 ± 0.0 0.47 ± 0.21

Table 6: Recourse accuracy (RA), average recourse invalidation rate (AIR) for σ2 = 0.01 and average
cost (AC) across different recourse methods. Recourses that use our framework PROBE provide
a strong recourse-robustness tradeoff. For PROBE, we generated recourses by setting r = 0.35,
σ2 = 0.01. For ROAR and ARAR, we generated recourses by setting ε = 0.01.
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Figure 18: Pareto plots showing the tradeoff between average costs and average invalidation rate
when the underlying model is linear. For PROBE, the invalidation target r (dotted line) is set to
0.3, and we generated recourses by setting σ2 ∈ {0.005,0.01,0.015}, and for ARAR and ROAR
we set ϵ ∈ {0.005,0.01,0.015}. Following the suggestion by Upadhyay et al. (2021), all re-
course methods search for the optimal counterfactuals over the same set of balance parameters
λ ∈ {0,0.25,0.5,0.75,1}.
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Figure 19: Pareto plots showing the tradeoff between average costs and average invalidation rate
when the underlying model is a neural network. For PROBE, the invalidation target r (dooted line)
is set to 0.35, and we generated recourses by setting σ2 ∈ {0.005,0.01,0.015}, and for ARAR and
ROAR we set ϵ ∈ {0.005,0.01,0.015}. Following the suggestion by Upadhyay et al. (2021), all
recourse methods search for the optimal counterfactuals over the same set of balance parameters
λ ∈ {0,0.25,0.5,0.75,1}.
D PROOFS

D.1 PROOF OF PROPOSITION 5

Proposition 5. The mean-squared-error (MSE) between the true IR ∆(x′) and the empirical Monte-
Carlo estimate ∆̃MC(x′) is upper bounded such that:

Eε[(∆(x′) − ∆̃MC(x′))2] ≤ 1

4K
. (17)

Proof. First, recall that the empirical Monte-Carlo estimator is given by:

∆̃MC = 1

K

K∑
k=1(1 − h(x′ + εk)). (18)

Next, note Eε[1 − h(x′ + ε)] = ∆(x′). Further, the mean-squared error between the nominal
invalidation rate ∆(x′) and the Monte-Carlo estimate ∆̃MC is given by:

Eε[(∆(x′) − ∆̃MC)2] = Vε(∆̃MC) +Eε[∆̃MC −∆(x′)]2, (19)

which gives the bias-variance decomposition. We first compute the squared bias term:

Eε[∆̃MC −∆(x′)]2 = [ 1
K
⋅K ⋅Eε[1 − h(x + ε)] −∆(x′)]2 (20)

= 0, (21)

where we have used that the εs are identically distributed. We now turn to the variance term for which
we find the following expression:

Vε(∆̃MC) = 1

K2
⋅K ⋅Vε[1 − h(x + ε)] = 1

K
⋅Vε[h(x + ε)]. (22)
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It remains to identify an upper bound for Vε(h(x + ε)). Since h(x + ε) is binary, a simple upper
bound is given by:

Vε(h(x + ε)) ≤ 1

4
. (23)

Combining the expression for the squared bias and the upper bound on the variance yields the desired
result.

D.2 PROOFS OF THEOREM 1, PROPOSITIONS 1 - 4 AND COROLLARY 1

Theorem 1. A first-order approximation ∆̃ to the recourse invalidation rate ∆ in equation 2 under a
Gaussian distribution ε ∼ N (0,Σ) capturing the noise in human responses is given by:

∆̃(x̌E ;Σ) = 1 −Φ( f(x̌E)√∇f(x̌E)⊺Σ∇f(x̌E)), (24)

where Φ is the CDF of the univariate standard normal distribution N (0,1), f(x̌E) denotes the logit
score at x̌E which is the recourse output by a recourse method E, and h(x̌E) ∈ {0,1}.
Proof. Let the random variable ε follow a multivariate normal distribution, i.e., ε ∼ N (µ,Σ). The
following result is a well-known fact: v⊺ϵ ∼ N (v⊺µ,vΣvT ) where v ∈ Rd. Let x denote the input
sample for which we wish to find a counterfactual x̌E = x + δE . Recall from Definition 1 that we
have to evaluate:

∆ = Eε[h(x̌E)´¹¹¹¹¹¹¸¹¹¹¹¹¹¶
CE class

− h(x̌E + ε)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
class after response

]
= 1 −Eε[h(x̌E + ε)],

(25)

where we have used that the first term is a constant and evaluates to 1 by the definition of a
counterfactual explanation. It remains to evaluate the expectation: Eε[h(x̌E + ε)]. Next, we note
that equation 25 can equivalently be expressed in terms of the logit outcomes:

∆ = Eε[I[f(x̌E) > 0]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
CE class

− I[f(x̌E + ε) > 0]´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
class after perturbation

] = (1 −Eε[I[f(x̌E + ε) > 0]]). (26)

Again, we are interested in the second term, which evaluates to:

Eε[I[f(x̌E + ε) > 0]] = 0 ⋅ P(f(x̌E + ε) < 0) + 1 ⋅ P(f(x̌E + ε) > 0). (27)

Next, consider the first-order Taylor approximation: f(x̌E + ε) ≈ f(x̌E) +∇f(x̌E)⊺ε. Hence, we
know ∇f(x̌E)⊺ε approximately follows N (0,∇f(x̌E)Σ∇f(x̌E)⊺). Now, the second term can be
computed as follows:

P(f(x̌E + ε) > 0) ≈ P(f(x̌E) > −∇f(x̌E)⊺ε) = P( − f(x̌E) < ∇f(x̌E)⊺ε) (28)

= 1 − P( − f(x̌E) > ∇f(x̌E)⊺ε) (29)

= 1 − P( ∇f(x̌E)⊺ε√∇f(x̌E)⊺Σ∇f(x̌E)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Mean 0 Gaussian RV

< − f(x̌E)√∇f(x̌E)⊺Σ∇f(x̌E)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Constant

)

= 1 −Φ( − f(x̌E)√∇f(x̌E)⊺Σ∇f(x̌E))
= Φ( f(x̌E)√∇f(x̌E)⊺Σ∇f(x̌E)), (30)
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where the last line follows due to symmetry of the standard normal distribution (i.e., Φ(−u) =
1 −Φ(u)). Putting the pieces together, we have:

Eε[I[f(x̌E + ε) > 0]] = 0 ⋅ P(f(x̌E + ε) < 0) + 1 ⋅ P(f(x̌E + ε) ≥ 0) (31)

= Φ( f(x̌E)√∇f(x̌E)⊺Σ∇f(x̌E)). (32)

Thus, we have:

∆ ≈ ∆̃ = 1 −Φ( f(x̌E)√∇f(x̌E)⊺Σ∇f(x̌E)), (33)

which completes our proof. Note that this is equivalent to P(f(x̌E + ε) < 0), and thus we are

“counting” how often perturbations to x̌E sampled from ε ∼ N (0,Σ) result in flips back to the
undesired class.

Proposition 2. For a linear classifier, let r ∈ (0,1) and let x̌E = x + δE be the output produced by
some recourse method E such that h(x̌E) = 1. Then the cost required to achieve a fixed invalidation
target r is given by: ∥δE∥2 = σ

ω
(Φ−1(1 − r) − c), (34)

where c = f(x)
σ⋅∥∇f(x)∥2 is a constant, and ω > 0 is the cosine of the angle between the vectors ∇f(x)

and δE .

Proof. Under a logistic classifier, the result immediately follows by setting the expression from
Theorem 1 equal to r, using the identity ∇f(x)⊺δE = ω ⋅ ∥∇f(x)∥2 ⋅ ∥δE∥2 where ω is the cosine of
the angle between the vectors ∇f(x) and δE , and rearranging for ∥δE∥2.

Proposition 3. Under the same conditions as in Proposition 2, we have ∂∥δE∥2
∂(1−r) = σ

ω
1

ϕ(Φ−1(1−r)) > 0,
i.e., an infinitesimal increase in robustness (i.e.,1 − r) increases the cost of recourse by σ

ω
1

ϕ(Φ−1(1−r)) .

Proof. We will compute the derivative of ∥δE∥2 = σ
ω
(Φ−1(1 − r) − c) with respect to 1 − r and show

that it is positive for all r ∈ (0,1):
∂∥δE∥2
∂(1 − r) = σ

ω

1

ϕ(Φ−1(1 − r)) > 0, (35)

where ϕ is the probability density function (PDF) of the standard Gaussian distribution. Since the
PDF must be positive, we have that ϕ(Φ−1(1 − r)) > 0, and we know that σ,ω > 0. Thus, the results
follows.

Proposition 4. Let x̌E be the output produced by some recourse method E such that h(x̌E) = 1.
Then, an upper bound on ∆̃ from equation 4 is given by:

∆̃(x̌E ;σ
2I) ≤ 1 −Φ(c + ω

σ

∥∇f(x)∥2∥∇f(x̌E)∥2 ∥δE∥1√∥δE∥0 ), (36)

where c = f(x)
σ⋅∥∇f(x)∥2 is a constant, δE = x̌E − x, and ω > 0 is the cosine of the angle between the

vectors ∇f(x) and δE .

Proof. We start by noting the following basic inequality:

∥z∥1 ≤√∥z∥0 ⋅ ∥z∥2.
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Going forward, we will refer to these inequalities as basic inequalities. Moreover, note that Φ is a
monotonic function. Thus, we have Φ(a) ≤ Φ(a′) for a ≤ a′. Note that f(x̌E) ≈ f(x) +∇f(x)⊺δE .
Thus we obtain the following approximation:

∆̃ = 1 −Φ( f(x) +∇f(x)⊺δE√∇f(x̌E)Σ⊺∇f(x̌E)). (37)

Next, we will find upper bounds for the term on the right: Before we will do that, we will express the
above expression more conveniently to highlight the impact of the counterfactual action δE more
explicitly. To do that, note that ∇f(x)⊺δE = ω ⋅ ∥∇f(x)∥2 ⋅ ∥δE∥2 where ω is the cosine of the angle
between the vectors ∇f(x) and δE . Using Σ = σ2I, we obtain:

Φ(f(x) +∇f(x)⊺δE
σ∥∇f(x̌E)∥2 ) = Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2 ⋅ ωσ ⋅ ∥δE∥2), (38)

where we defined a constant c = f(x)
σ∥∇f(x̌E)∥2 using quantities that we will keep fixed in our analysis,

namely x,∇f(x) and σ. Also note that x is the factual input, and thus its logit score satisfies:
f(x) < 0. Since δE is a valid perturbation, we must have that ω > 0 for the perturbation to change
the class prediction.

Note that the following lower bound holds by the basic inequality stated above:

Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2 ⋅ ωσ ⋅ ∥δE∥2) ≥ Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2 ⋅ ωσ ⋅ ∥δE∥1√∥δE∥0 ). (39)

As a consequence we obtain the following upper bound on the IR:

∆̃ ≤ 1 −Φ(c + ∥∇f(x)∥2∥∇f(x̌E)∥2 ⋅ ωσ ⋅ ∥δE∥1√∥δE∥0 ), (40)

as claimed.

Proposition 1. For the logistic regression classifier, consider the recourse output by Wachter et al.
(2018): x̌Wachter(s) = x + s−f(x)∥∇f(x)∥22∇f(x). Then the recourse invalidation rate has the following
closed-form:

∆(x̌Wachter(s);σ2I) = 1 −Φ( s

σ∥∇f(x)∥2 ), (41)

where s is the target logit score.

Proof. Since we are in the linear case, we have: ∇f(x̌E) = ∇f(x). Also, note that f(x̌E) =
f(x) +∇f(x)⊺δE . Using Σ = σ2I, we obtain the following exact expression:

∆ = 1 −Φ(f(x) +∇f(x)⊺δE
σ∥∇f(x)∥2 ). (42)

From Pawelczyk et al. (2022), we have:

δWachter = s − f(x)∥∇f(x)∥22∇f(x). (43)

Plugging equation 43 into equation 42 we obtain:

∆ = 1 −Φ( f(x)
σ∥∇f(x)∥2 + ∇f(x)

⊺δE
σ∥∇f(x)∥2 ) (44)

= 1 −Φ( f(x)
σ∥∇f(x)∥2 + 1

σ∥∇f(x)∥2 ⋅ ∇f(x)⊺∇f(x) s − f(x)∥∇f(x)∥22 )
= 1 −Φ( f(x)

σ∥∇f(x)∥2 + s − f(x)
σ∥∇f(x)∥2 )

= 1 −Φ( s

σ∥∇f(x)∥2 ), (45)

which concludes the proof.
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Corollary 1. Under the conditions of Proposition 1, choosing sr = σ∥∇f(x)∥2Φ−1(1−r) guarantees
a recourse invalidation rate of r, i.e., ∆(x̌Wachter(sr);σ2I) = r.

Proof. The result directly follows from plugging in sr = σ∥∇f(x)∥2Φ−1(1 − r) into the optimal
recourse from δWachter from equation 43 and subsequently evaluating the recourse invalidation rate
from equation 5.

D.3 PROOF OF THEOREM 2

Proof. From Definition 1 we know:

∆Forest = Eε[F(x̌E)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
CE class

− F(x̌E + ε)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
class after response

] (46)

= 1 −Eε[F(x̌E + ε)]. (47)

It remains to evaluate: Eε[F(x̌E + ε)]. Using equation 14, we have:

Eε[F(x̌E + ε)] = Eε[ ∑
R∈RF cF(R) ⋅ I(x̌E + ε ∈ R)] (48)

= ∑
R∈RF cF(R) ⋅Eε[I(x̌E + ε ∈ R)] (Linearity of Expectation)

= ∑
R∈RF cF(R) ⋅ ∫R p(y)dy (p(y) = N (x̌E ,σ

2I))
= ∑

R∈RF cF(R) ⋅ ∏j∈SF ∫Rj

1√
2πσ2

j

exp( − 1

2

(yj − x̌E,j)2
σ2
j

)dyj
(Since ε is an independent Gaussian)

= ∑
R∈RF cF(R) ⋅ ∏j∈SF [Φ(

t̄j,R − x̌E,j

σj
) −Φ( tj,R − x̌E,j

σj
)].

(Since ε is Gaussian)

Using our Definition of robustness, we have

∆Forest = 1 − ∑
R∈RF cF(R) ∏j∈SF [Φ(

t̄j,R − x̌E,j

σj
) −Φ( tj,R − x̌E,j

σj
)], (49)

which completes the proof.
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Abstract
Counterfactual explanations provide means for prescriptive model explanations
by suggesting actionable feature changes (e.g., increase income) that allow indi-
viduals to achieve favourable outcomes in the future (e.g., insurance approval).
Choosing an appropriate method is a crucial aspect for meaningful counterfactual
explanations. As documented in recent reviews, there exists a quickly growing liter-
ature with available methods. Yet, in the absence of widely available open–source
implementations, the decision in favour of certain models is primarily based on
what is readily available. Going forward – to guarantee meaningful comparisons
across explanation methods – we present CARLA (Counterfactual And Recourse
LibrAry), a python library for benchmarking counterfactual explanation methods
across both different data sets and different machine learning models. In summary,
our work provides the following contributions: (i) an extensive benchmark of 11
popular counterfactual explanation methods, (ii) a benchmarking framework for
research on future counterfactual explanation methods, and (iii) a standardized
set of integrated evaluation measures and data sets for transparent and extensive
comparisons of these methods. We have open sourced CARLA and our experimental
results on Github, making them available as competitive baselines. We welcome
contributions from other research groups and practitioners.

1 Introduction
Machine learning (ML) methods have found their way into numerous everyday applications and have
become an indispensable asset in various sensitive domains, like disease diagnostics [13], criminal
justice [4], or credit risk scoring [29]. While ML models bear the great potential to provide effective
support in human decision making processes, their predictions may have considerable impact on
personal lives, where the final decisions might be disadvantageous for an end user. For example, the
rejection of a loan or the denial of parole might have negative effects on the future development of
the corresponding person’s life.
∗Corresponding author
†Equal senior author contribution

35th Conference on Neural Information Processing Systems (NeurIPS 2021) Track on Datasets and Benchmarks.
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When ML systems involve humans in the loop, it is crucial to build a strong foundation for long-term
acceptance of these methods. To this end, it is critical (1) to explain the predictions of a model and
(2) to offer constructive means for the improvement of those predictions to the advantage of the
end–user. Counterfactual explanations – popularized by the seminal work of [62] – provide means
for prescriptive model explanations by suggesting actionable feature changes (e.g., increase income)
that allow individuals to achieve favourable outcomes in the future (e.g., insurance approval).

When counterfactual explainability is employed in systems that involve humans in the loop, the
community refers to it as recourse. Algorithmic recourse subsumes precise recipes on how to obtain
desirable outcomes after being subjected to an automated decision, emphasizing feasibility constraints
that have to be taken into account. Those explanations are found by making the smallest possible
change to an input vector to influence the prediction of a pretrained classifier in a positive way; for
example, from ‘loan denial’ to ‘loan approval’, subject to the constraint that an individual’s sex may
not change. As documented in recent reviews, there exists a quickly growing literature with available
methods (see Figure 1 and [54, 24, 60]), reflecting the insight that the understanding of complex
machine learning models is an elementary ingredient for a wide and safe technology adoption.
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Figure 1: ArXiv submissions over time on
explainability, counterfactual explanations
and algorithmic recourse.

In practice, the counterfactual explanation (CE) that an
individual receives crucially depends on the method that
computes the recourse suggestions. Hence, there is a
substantial need for a standardized benchmarking plat-
form, which ensures that methods can be compared in a
transparent and meaningful way. Researchers need to be
able to easily evaluate their proposed methods against
the overwhelming diversity of already available methods
and practitioners need to make sure that they are using
the right recourse mechanism for the problem at hand.
Therefore, a standardized framework for comparison
and quality assurance is an essential and indispensable
prerequisite.

In this work, we present CARLA (Counterfactual And
Recourse LibrAry), a python library with the following
merits: First, CARLA provides competitive baselines for
researchers to benchmark new counterfactual explana-
tion and recourse methods for the standardized and trans-
parent comparison of CE methods on different integrated
data sets. Second, CARLA is a common framework
with more than 10 counterfactual explanation methods
in combination with the possibility to easily integrate new methods into a commonly accessible and
easily distributable Python library. Moreover, the built-in integrated evaluation measures allow users
to plug-in their custom black-box predictive models into the available counterfactual explanation
methods and conduct extensive evaluations in comparison with other recourse mechanisms across
different data sets. The same is true for researchers, who can use CARLA to extensively benchmark
available counterfactual methods on popular data sets across various ML models. Third, CARLA
supports popular optimization frameworks such as Tensorflow [1] and PyTorch [43], and provides
a generic abstraction layer to support custom implementations. Users can can define problem–specific
data set characteristics like immutable features and explicitly specify hyperparameters for the chosen
counterfactual explanation method.

The remainder of this work is structured as follows: Section 2 presents related work, Section 3
formally introduces the recourse problem, Section 4 presents the benchmarking process. In Section 5,
we describe our main findings, before concluding in Section 6. Appendices A - E describe CARLA’s
software architecture and usage instructions, as well as additional experimental results, used ML
classifiers, data sets and hyperparameters settings.

2 Related Work
Explainable machine learning is concerned with the problem of providing explanations for complex
ML models. Towards this goal, various streams of research follow different explainability paradigms
which can be categorized into the following groups [17, 14].
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2.1 Feature Highlighting Explanations
Local input attribution techniques seek to explain the behaviour of ML models instance by instance.
Those methods aim to understand how all inputs available to the model are being used to arrive at a
certain prediction. Some popular approaches for model explanations aim at explainability by design
[34, 2, 5, 63]. For white-box models – the internal model parameters are known – gradient-based
approaches, e.g. [27, 6] (for deep neural networks), and rule-based or probabilistic approaches for
tree ensembles, e.g. [19, 9] have been proposed. In cases where the parameters of the complex
models cannot be accessed, model-agnostic approaches can prove useful. This group of approaches
seeks to explain a model’s behavior locally by applying surrogate models [50, 35, 51, 36], which are
interpretable by design and are used to explain individual predictions of black-box ML models.

2.2 Counterfactual Explanations
The main purpose of counterfactual explanations is to suggest constructive interventions to the input
of a complex model so that the output changes to the advantage of an end user. By emphasizing
both the feature importance and the recommendation aspect, counterfactual explanation methods
can be further divided into three different groups: independence-based, dependence-based, and
causality-based approaches.

In the class of independence-based methods, where the input features of the predictive model are
assumed to be independent, some approaches use combinatorial solvers or evolutionary algorithms
to generate recourse in the presence of feasibility constraints [57, 52, 49, 23, 28, 8]. Notable
exceptions from this line of work are proposed by [56, 32, 31, 18, 15], who use decision trees, random
search, support vector machines (SVM) and information networks that are aligned with the recourse
objective. Another line of research deploys gradient-based optimization to find low-cost counterfactual
explanations in the presence of feasibility and diversity constraints [10, 38, 39, 53, 59, 46]. The main
problem with these approaches is that they abstract from input correlations. That implies that the
intervention costs (i.e., the costs of changing the input to achieve the proposed counterfactual state)
are too optimistically estimated. In other words, the estimated costs do not reflect the true costs that
an individual would need to incur in practical scenarios, where feature dependencies are usually
present: e.g., income is dependent on tenure, and if income changes, tenure also changes (see Figure
2 for a schematic comparison).

In the class of causality-based approaches, all methods make use of Pearl’s causal modelling
framework [47]. As such, they usually require knowledge of the system of causal structural equations
[20, 16, 25, 42] or the causal graph [26]. The authors of [25] show that these models can generate
minimum-cost recourse, if the access to the true causal data generating process was available.
However, in practical scenarios, the guarantee for such minimum-cost recommendations is vacuous,
since, in complex settings, the causal model is likely to be miss-specified [26]. Since these methods
usually require the true causal graph – which is the limiting factor in practice – we have not considered
them at this point, but we plan to do that in the future.

Dependence-based methods bridge the gap between the strong independence assumption and the
strong causal assumption. This class of models builds recourse suggestions on generative models
[44, 11, 20, 37, 45]. The main idea is to change the geometry of the intervention space to a
lower dimensional latent space, which encodes different factors of variation while capturing input
dependencies. To this end, these methods primarily use variational autoencoders (VAE) [30, 41].
In particular, Mahajan et al. [37] demonstrate how to encode various feasibility constraints into
VAE-based models. Most recently, [3] proposed CLUE, a generative recourse model that takes a
classifier’s uncertainty into account. Work that deviates from this line of research was done by
[48, 22]. The authors of [48] provide FACE, which uses a shortest path algorithm on graphs to find
counterfactual explanations. In contrast, Kanamori et al. [22] use integer programming techniques to
account for input dependencies.

3 Preliminaries
In this Section, we review the algorithmic recourse problem and draw a distinction between two
observational (i.e., non–causal) methods.

3.1 Counterfactual Explanations for Independent Inputs
Let D be the data set consisting of N input data points, D = {(x1, y1), . . . , (xN , yN )}. We denote
by f : Rd −→ [0, 1] the fixed classifier for which recourse is to be determined. We denote the

3
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Figure 2: Different views on recourse generation. In (a) a change to X3 only impacts f through X3 ,
while in (b) the same change induces indirect effects on f , if X3 is correlated with other inputs.

set of outcomes by y(x) ∈ {0, 1}, where y = 1 indicates the desirable outcome. Moreover,
ŷ = I[f(x) > θ] is the predicted class, where I[·] denotes the indicator function and θ is a threshold
(e.g., 0.5). Our goal is to find a set of actionable changes in order to improve the outcomes of instances
x, which are assigned an undesirable prediction under f . Moreover, one typically defines a distance
measure in inputs space c : Rd × Rd −→ R+. We discuss typical choices for c in Section 4.

Assuming inputs are pairwise statistically independent, the recourse problem is defined as fol-
lows:

δ∗x = arg min
δx∈Ad

c(x, x̌) s.t. x̌ = x+ δx, f(x+ δx) > θ, (I)

whereAd is the set of admissible changes made to the factual input x. For example,Ad could specify
that no changes to sensitive attributes such as age or sex may be made. For example, using the
independent input assumption, existing approaches [57] use mixed-integer linear programming to
find counterfactual explanations. In the next paragraph, we present a problem formulation that relaxes
the strong independence assumption by introducing generative models.

3.2 Recourse for Correlated Inputs
We assume the factual input x ∈ X = Rd is generated by a generative model g such that:

x = g(z),

where z ∈ Z = Rk are latent codes. We denote the counterfactual explanation in an input space
by x̌ = x + δx. Thus, we have x̌ = x + δx = g(z + δz). Assuming inputs are dependent, we can
rewrite the recourse problem in (I) to faithfully capture those dependencies using the generative
model g:

δ∗z = arg min
δz∈Ak

c(x, x̌) s.t. x̌ = g(z + δz), f(x̌) > θ, (D)

where Ak is the set of admissible changes in the k-dimensional latent space. For example, Ak
would ensure that the counterfactual latent space lies within range of z. The problem in (D) is an
abstraction from how the problem is usually solved in practice: most existing approaches first train a
type of autoencoder model (e.g., a VAE), and then use the model’s trained decoder as a deterministic
function g to find counterfactual explanations [20, 44, 37, 11, 3]. Our benchmarked explanation
models roughly fit in one of these two categories.

4 Benchmarking Process
In this Section, we provide a brief explanation model overview and introduce a variety of explanation
measures used to evaluate the quality of the generated counterfactual explanations. In Table 1 we
present a concise explanation model overview.

4.1 Counterfactual Explanation Methods
AR (I) Ustun et al. [58] provide a method to generate minimal cost actions δ∗x for linear classification
models such as logistic regression models. AR requires the linear model’s coefficients, and uses these
coefficients for its search for counterfactual explanations. To provide reasonable actions it is possible
to restrict δ∗x to user–specified constraints (e.g., has_phd can only change from False to True) or
to set a subset of inputs as immutable (e.g., age). The problem to find these changes is a discrete
optimization problem. Given a set of actions, AR finds the action which minimizes a defined cost
function, using integer programming solvers like CPLEX or CBC.

4
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Figure 3: Evaluating the distribution of costs of counterfactual explanations on 2 different data sets
(the results on COMPAS are relegated to Appendix B). For all instances with a negative prediction
({x ∈ D : f(x) < θ}), we plot the distribution of `0 and `1 costs of algorithmic recourse as defined
in (1) for a logistic regression and an artificial neural network classifier. The white dots indicate
the medians (lower is better), and the black boxes indicate the interquartile ranges. We distinguish
between independence based and dependence based methods. The results are discussed in Section 5
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Approach Method Model Type Algorithm Immutable Categorical Other

Independent (I)

AR Linear Integer Prog. Yes Binary Direction of change
AR–LIME Agnostic Integer Prog. Yes Binary Direction of change
CEM Gradient based Gradient based No No None
DICE Gradient Based Gradient based Yes Binary Generative model
GS Agnostic Random search Yes Binary None

Wachter Gradient based Gradient based No Binary None

Dependent (D)

CEM-VAE Gradient based Gradient based No No Gen. Model regularizer
CLUE Gradient based Gradient based No No Generative model

FACE–EPS Agnostic Graph search Binary Binary CE is from data set
FACE–KNN Agnositc Graph search Binary Binary CE is from data set
REVISE Gradient based Gradient based Binary Binary Generative model

Table 1: Explanation method summary: we categorize different approaches based on their underlying
assumptions and list what kind of ML model they work with (Model Type), the Method’s underlying
algorithm (Algorithm), whether the method can handle immutable features (Immutable), whether it
can handle categorical features (Categorical) and any other outstanding characteristics (Other).

AR–LIME (I) Most classification tasks do not have linearly separable classes and complex non–
linear models usually provide more accurate predictions. Non–linear models are not per se inter-
pretable and usually do not provide coefficients similar to linear models. We use a reduction to apply
AR to non–linear models by computing a local linear approximation for the point of interest x, using
LIME [50]. For an arbitrary black–box model f , LIME estimates post–hoc local explanations in form
of a set of linear coefficients per instance. Using the coefficients we apply AR.

CEM (I) Dhurandhar et al. [10] use an elastic–net regularization inspired objective to find low-cost
counterfactual instances. Different weights can be assigned to `1 and `2 norms, respectively. There
exists no immutable feature handling. However, we provide support for their VAE type regularizer,
which should help ensure that counterfactual instances look more realistic.

CLUE (D) Antorán et al. [3] propose CLUE, a generative recourse model that takes a classifier’s
uncertainty into account. This model suggests feasible counterfactual explanations that are likely to
occur under the data distribution. The authors use a variational autoencoder (VAE) to estimate the
generative model. Using the VAE’s decoder, CLUE uses an objective that guides the search of CEs
towards instances that have low uncertainty measured in terms of the classifier’s entropy.

DICE (I) Mothilal et al. [40] suggest DICE, which is an explanation model that seeks to generate
minimum costs counterfactual explanations according to (I) subject to a diversity constraint which
aims to promote a diverse set of counterfactual explanations. Diversity is achieved by using the whole
range of suggested changes, while still keeping proximity to a given input. Regarding the optimization
problem, DICE uses gradient descent to find a solution that trades-off proximity and diversity. Domain
knowledge – in form of feature ranges or immutability constraints – can be added.

FACE (D) The authors of [48] provide FACE, which uses a shortest path algorithm (for graphs)
to find counterfactual explanations from high–density regions. Those explanations are actual data
points from either the training or test set. Immutability constraints are enforced by removing incorrect
neighbors from the graph. We implemented two variants of this model: the first variant uses an
epsilon–graph (FACE–EPS), whereas the second variant uses a knn–graph (FACE–KNN).

Growing Spheres (GS) (I) Growing Spheres – suggested in [32] – is a random search algo-
rithm, which generates samples around the factual input point until a point with a corresponding
counterfactual class label was found. The random samples are generated around x using growing
hyperspheres. For binary input dimensions, the method makes use of Bernoulli sampling. Immutable
features are readily specified by excluding them from the search procedure.

REVISE (D) Joshi et al. [20] propose a generative recourse model. This model suggests feasible
counterfactual explanations that are likely to occur under the data distribution. The authors use a
variational autoencoder (VAE) to estimate the generative model. Using the VAE’s decoder, REVISE
uses the latent space to search for CEs. No handling of immutable features exists.

Wachter et al. (Wachter) (I) The optimization approach suggested by Wachter et al. [61]
generates counterfactual explanations by minimizing an objective function using gradient descent to
find counterfactuals x̌ which are as close as possible to x. Closeness is measured in `1-norm.
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Artificial Neural Network Logistic Regression

Data Set Method yNN redund. violation success t(s) yNN redund. violation success t(s)

Adult

AR(–LIME) 0.62 0.00 0.14 0.28 1.59 0.72 0.67 0.13 0.52 10.49
CEM 0.26 3.96 0.66 1.00 1.10 0.20 3.98 0.66 1.00 0.92
DICE 0.71 0.53 0.17 1.00 0.13 0.58 0.51 0.23 1.00 0.13
GS 0.30 3.77 0.09 1.00 0.01 0.30 3.94 0.10 1.00 0.01

Wachter 0.23 4.45 0.83 0.50 15.72 0.16 1.67 0.94 1.00 0.03

GMC

AR(–LIME) 0.89 0.00 0.29 0.07 0.55 1.00 2.33 0.14 0.39 3.42
CEM 0.95 5.46 0.65 1.00 0.97 0.74 5.07 0.67 1.00 0.87
DICE 0.90 0.58 0.27 1.00 0.28 0.88 0.61 0.27 1.00 0.29
GS 0.40 6.64 0.17 1.00 0.01 0.49 5.29 0.17 1.00 0.01

Wachter 0.58 6.56 0.71 1.00 0.02 0.59 6.12 0.83 1.00 0.01

(a) Independence based methods

Artificial Neural Network Logistic Regression

Data Set Method yNN redund. violation success t(s) yNN redund. violation success t(s)

Adult

CEM–VAE 0.12 9.68 1.82 1.00 0.93 0.43 10.05 1.80 1.00 0.81
CLUE 0.82 8.05 1.28 1.00 2.70 0.33 7.30 1.33 1.00 2.56

FACE–EPS 0.65 5.19 1.45 0.99 4.36 0.64 5.11 1.44 0.94 4.35
FACE–KNN 0.60 5.11 1.41 1.00 4.31 0.57 4.97 1.38 1.00 4.31
REVISE 0.20 8.65 1.33 1.00 8.33 0.62 7.92 1.23 1.00 7.52

GMC

CEM–VAE 1.00 8.40 0.66 1.00 0.87 1.00 8.54 0.36 1.00 0.88
CLUE 1.00 9.39 0.90 0.93 1.91 1.00 9.56 0.96 1.00 1.76

FACE–EPS 0.99 8.06 0.99 1.00 19.44 0.98 7.98 0.96 1.00 19.50
FACE–KNN 0.98 9.00 0.98 1.00 15.87 0.98 7.88 0.95 1.00 16.09
REVISE 1.00 9.50 0.97 1.00 4.56 1.00 9.59 0.96 1.00 3.76

(b) Dependence based methods

Table 2: Summary of a subset of results for independence and dependence based methods. For all
instances with a negative prediction ({x ∈ D : f(x) < θ}), we compute counterfactual explanations
for which we then measure yNN (higher is better), redundancy (lower is better), violation (lower is
better), success rate (higher is better) and time (lower is better). We distinguish between a logistic
regression and an artificial neural network classifier. Detailed descriptions of these measures can be
found in Section 4. The results are discussed in Section 5.

4.2 Evaluation Measures for Counterfactual Explanation Methods
As algorithmic recourse is a multi–modal problem we introduce a variety of measures to evaluate the
methods’ performances. We use six baseline evaluation measures. Besides distance measures it is
important to consider measures that emphasize the quality of recourse.

Costs When answering the question of generating the nearest counterfactual explanation, it is
essential to define the distance of the factual x to the nearest counterfactual x̌. The literature has
formed a consensus to use either the normalized `0 or `1 norm or any convex combination thereof (see
for example [49, 39, 45, 23, 57, 62]). The `0 norm puts a restriction on the number of feature changes
between factual and counterfactual instance, while the `1 norm restricts the average change:

c0(x̌, x) =
1

d
‖x− x̌‖0 =

1

d
‖δx‖0, c1(x̌, x) =

1

d
‖x− x̌‖1 =

1

d
‖δx‖1. (1)

Constraint violation This measure counts the number of times the CE method violates user-defined
constraints. Depending on the data set, we fixed a list of features which should not be changed by the
used method (e.g., sex, age or race).

yNN We use a measure that evaluates how much data support CEs have from positively classified
instances. Ideally, CEs should be close to positively classified individuals which is a desideratum
formulated by Laugel et al. [33]. We define the set of individuals who received an undesirable
prediction under f as H− := {x ∈ D : f(x) < θ}. The counterfactual instances (instances for
which the label was successfully changed) corresponding to the set H− are denoted by Ȟ−. We use
a measure that captures how differently neighborhood points around a counterfactual instance x̌ are
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classified:

yNN = 1− 1

nk

n∑

i∈Ȟ−

∑

j∈kNN(x̌i)

|fb(x̌i)− fb(xj)|, (2)

where kNN denotes the k-nearest neighbours of x, and fb(x) = I[f(x) > 0.5] is the binarized
classifier. Values of yNN close to 1 imply that the neighbourhoods around the counterfactual
explanations consists of points with the same predicted label, indicating that the neighborhoods
around these points have already been reached by positively classified instances. We use a value of
k := 5, which ensures sufficient data support from the positive class.

Redundancy We evaluate how many of the proposed feature changes were not necessary. This is a
particularly important criterion for independence–based methods. We measure this by successively
flipping one value of x̌ after another back to x, and then we inspect whether the label flipped from
1 back to 0: e.g., we check whether flipping the value for the second dimension would change the
counterfactual outcome 1 back to the predicted factual outcome of 0: I[fb([x̌1, x2, x̌3, . . . , x̌d]) = 0].
If the predicted outcome does not change, we increase the redundancy counter, concluding that a
sparser counterfactual explanation could have been found. We iterate this process over all dimensions
of the input vector.3 A low number indicates few redundancies across counterfactual instances.

Success Rate Some generated counterfactual explanations do not alter the predicted label of the
instance as anticipated. To keep track how often the generated CE does hold its promise, the success
rate shows the fraction of respective models’ correctly determined counterfactuals.

Average Time By measuring the average time a CE method needs to generate its result, we evaluate
the effectiveness and feasibility for real–time prediction settings.

5 Experimental Evaluation
Using CARLA we conduct extensive empirical evaluations to benchmark the presented counterfactual
explanations methods using three real-world data sets. Our main findings are displayed in Figure 3,
and Table 2. We split the benchmarking evaluation by CE method category. In the following Sections,
we provide an overview over the used data sets (see Table 3) and the classification models. Detailed
information on hyperparameter search for the CE methods is provided in Appendix E.

Data sets The Adult data set [12] originates from the 1994 Census database, consisting of 14
attributes and 48,842 instances. The classification consists of deciding whether an individual has
an income greater than 50,000 USD/year. Since several CE methods cannot handle non-binary
categorical data, we binarized these features by partitioning them into the most frequent value, and its
counterpart (e.g., US and Non-US, Husband and Non-Husband). The features age, sex and race are
set as immutable. The Give Me Some Credit (GMC) data set [7] from a 2011 Kaggle Competition
is a credit scoring data set, consisting of 150,000 observations and 11 features. The classification task
consists of deciding whether an instance will experience financial distress within the next two years
(SeriousDlqin2yrs is 1) or not. We dropped missing data, and set age as immutable.

Data Set Task Positive Class Size (N | d) Features Immutable Features

Adult Predict Income High Income (24%) (45,222 | 20) Work, Education, Income Sex, Age, Race
COMPAS Predict Recidivism No Recid. (65%) (10,000 | 8) Crim. History, Jail & Prison Time Sex, Race

GMC Predict Financial Distress No deficiency (93%) (150,000 | 11) Pay. History, Balance, Loans Age

Table 3: Summarizing the used data sets, where N and d are the number of samples and input
dimension after processing of the data. Results on the COMPAS data set are relegated to Appendix B.

Black-box models We briefly describe how the black–box classifiers f were trained. CARLA
supports different ML libraries (e.g., Pytorch, Tensorflow) to estimate these classifiers as the imple-
mentations of the various explanation methods work particular ML libraries only. The first model is a
multi-layer perceptron, consisting of three hidden layers with 18, 9 and 3 neurons, respectively. To
allow a more extensive comparison (AR only works on linear models) between CE methods, we chose
logistic regression models as the second classification model for which we evaluate the CE methods.
Detailed information on the classifiers’ training for each data set is provided in Appendix C.

3We do not consider all possible subsets of changes.
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Benchmarking For independence based methods, we find that no one single CE method outper-
formed all its competitors. This is not too surprising since algorithmic recourse is a multi–modal
problem. Instead, we found that some methods dominated certain measures across all data sets. AR,
AR–LIME, DICE performed strongest with respect to `0 (see the top left panels in Figures 3a and 3b).
AR–LIME does so despite our use of the LIME reduction. Therefore, it makes sense that AR, AR-LIME
and DICE offer the lowest redundancy scores (Table 2a). CEM performed strongest with respect to the
overall cost measure `1 across data sets. GS is the clear winner when it comes to the measurement of
time (Table 2a). Since the algorithm behind GS is based on a rather rudimentary sampling strategy,
we expect that savvier sampling strategies should boost its cost performance significantly.

For dependence based methods, the results are mixed as well. While CLUE and REVISE are the
winner with respect to the cost of recourse (`1), the margins between these generative recourse models
and the graph-based ones (FACE) are small (Figure 3). The FACE-EPS method performs strongest
with respect to the ynn measure (usually well above 0.60) (Table 2b) indicating that the generated
CEs have sufficient data support from positively classified individuals relatively to the remaining
dependence–based methods. As expected, the ynn measures are on average higher for the dependence
based methods. This suggest that dependence based CEs are less often outliers. Notably, CLUE and
REVISE perform best with respect to `1 (with REVISE being the clear winner on 3 out of 4 cases),
while they perform worst on `0 – likely due to the decoder’s imprecise reconstruction. In this respect,
it is not surprising that these methods have average redundancy values that are up to twice as high as
those by FACE. Finally, the generative model approaches (CEM-VAE, CLUE, REVISE) performed best
with respect to time since the autoencoder training time amortizes with more samples.

6 Conclusion and Broader Impact of CARLA
The current implementations of recourse methods, mentioned in Section 4.1 are based on the original
implementation of the respective research groups. Researchers mostly implement their experiments
and models for specific ML frameworks and data sets. For example, some explanation methods are
restricted to Tensorflow and are not applicable to Pytorch models. In the future, we will extend CARLA
to decouple each recourse method from the frameworks and data contraints.

When trying to combine different CE methods into a common benchmarking framework we encoun-
tered the following issues: First, a great number of repositories only contain remarks about installation
and script calls to recreate the results from the corresponding research papers. Second, missing
information about interfaces for data sets or black–box models further complicated the process of
integrating different CE methods into the benchmarking workflow. In order to add more CE methods
and data sets to CARLA, we are currently in contact with several authors in this exciting and rapidly
growing field. With a growing open-source community, CARLA can evolve to be the main library
for generating counterfactual explanations and benchmarks for recourse methods. Therefore we are
continuously expanding the catalog of explanation methods and data sets, and welcome researchers
to add their own recourse methods to the library. To facilitate this process, we provide a step-by-step
user-guide to integrate new CE methods into CARLA, which we present in Appendix A.

The rapidly growing number of available CE methods calls for standardized and efficient ways to
assure the quality of a new technique in comparison with other approaches on different data sets.
Quality assurance is a key aspect of actionable recourse, since complex models and CE mechanisms
can have a considerable impact on personal lives. In this work, we presented CARLA, a versatile
benchmarking platform for the standardized and transparent comparison of CE methods on different
integrated data sets. In the explainability field, CARLA bears the potential to help researchers and
practitioners alike to efficiently derive more realistic and use–case–driven recourse strategies and
assure their quality through extensive comparative evaluations. We hope that this work contributes to
further advances in explainability research.
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Checklist
The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section ??.

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note
that the Checklist section does not count towards the page limit. In your paper, please delete this
instructions block and only keep the Checklist section heading above along with the questions/answers
below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] . As we state in the abstract, our goal is to provide
a Python framework for benchmarking counterfactual explanation methods. Users
can easily evaluate our results by accessing our Github repository, where we host our
Python framework and our benchmarking results.

(b) Did you describe the limitations of your work? [Yes] . In Section 6, we discuss the
current limitations of our approach. The counterfactual explanation methods are based
on the original implementation of the respective research groups. Researchers mostly
implement their experiments and models for specific ML frameworks and data sets. For
example, some explanation methods are restricted to Tensorflow and are not applicable
to Pytorch models.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] . We
discuss the broader impact of our benchmarking library in Section 6; we mainly see
positive impacts on the literature of algorithmic recourse.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes] . We have read the ethics review guidelines and attest that our paper
conforms to the guidelines.

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] . We did not
provide theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] . We did not provide
theoretical results.

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main exper-
imental results (either in the supplemental material or as a URL)? [Yes] . Details of
implementations, data sets and instructions can be found here: Appendices A, C, E,
and our Github repository.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] . Please see Appendices E and C.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] . Error bars have been reported for our cost comparisons
in terms of the 25th and 75ht percentiles of the cost distribution, see for example Figure
3.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] . All models are evaluated on an
i7-8550U CPU with 16 Gb RAM, running on Windows 10.
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4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] . The data sets, which
are publicly available are appropriately cited in Section 5. We cite and link to any
additional code used, for example [3].

(b) Did you mention the license of the assets? [Yes] . All assets are publicly available and
attributed.

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
. Our implementation and code is accessible through our Github repository.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A] . We use publicly available data sets without any personal
identifying information.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A] . We use publicly available data sets without
any personal identifying information.

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] . We did not use crowdsourcing or conduct research with human
subjects.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] . We did not use crowdsourcing or conduct
research with human subjects.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] . We did not use crowdsourcing or conduct
research with human subjects.
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A CARLA’s Software Interface
In the following, we introduce our open-source benchmarking software CARLA. we describe the archi-
tecture in more detail and provide examples of different use-cases and their implementation.

A.1 CARLA’s High Level Software Architecture
The purpose of this Python library is to provide a simple and standardized framework to allow users
to apply different state-of-the-art recourse methods to arbitrary data sets and black-box-models. It is
possible to compare different approaches and save the evaluation results, as described in Section 4.2.
For research groups, CARLA provides an implementation interface to integrate new recourse methods
in an easy-to-use way, which allows to compare their method to already existing methods.

Figure 4: Architecture of the CARLA python library. The silver boxes show the individual objects
that will be created to generate counterfactual explanations and evaluate recourse methods. Useful
explanations to specific processes are illustrated as yellow notes. The dashed arrows are showing
the different implementation possibilities, either use pre-defined catalog objects or provide custom
implementation. All dependencies between these objects are visualised by solid arrows with an
additional description.

A simplified visualization of the CARLA software architecture is depicted in Figure 4. For every
component (Data, MLModel, and RecourseMethod) the library provides the possibility to use existing
methods from our catalog, or extend the users custom methods and implementations. The components
represent an interface to the key parts in the process of generating counterfactual explanations. Data
provides a common way to access the data across the software and maintains information about the
features. MLModel wraps each black-box model and stores details on the encoding, scaling and
feature order specific to the model. The primary purpose of RecourseMethod is to provide a common
interface to easily generate counterfactual examples.

Besides the possibility to use pretrained black-box-models and preprocessed data, CARLA provides an
easy way to load and define own data sets and model structures independent of their framework (e.g.,
Pytorch, Tensorflow, sklearn). The following sections will give an overview and provide example
implementations of different use cases.

A.2 CARLA for Research Groups
One of the most exciting features of CARLA is, that research groups can make use of the Re-
courseMethod-wrapper to implement their own method to generate counterfactual examples. This
opens up a way of standardized and consistent comparisons between different recourse methods.
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Strong and weak points of new algorithms can be stated, benchmarked and analysed in forthcoming
publications with the help of CARLA.

In Figure 5, we show how an implementation of a custom recourse method can be structured.
After defining the recourse method in the shown way, it can be used with the library to generate
counterfactuals for a given data set and benchmark its results against other methods. Research groups
have the choice to do this using our provided catalog of data sets, recourse methods and black-box
models (Figure 6) or use their own models and data sets (see Figures 7 and 8).

1

2 from carla import RecourseMethod
3

4 # Custom recourse implementations need to
5 # inherit from the RecourseMethod interface
6 class MyRecourseMethod(RecourseMethod):
7 def __init__(self , mlmodel):
8 super().__init__(mlmodel)
9

10 # Generate and return encoded and
11 # scaled counterfactual examples
12 def get_counterfactuals(self , factuals: pd.DataFrame):
13 [...]
14 return counterfactual_examples
15

Figure 5: Pseudo-implementation of the CARLA recourse method wrapper

A.3 CARLA as a Recourse Library
A common usage of the package is to generate counterfactual examples. This can be done by loading
black-box-models and data sets from our provided catalogs, or by user-defined models and datasets
via integration with the defined interfaces. Figure 6 shows an implementation example of a simple
use-case, applying a recourse method to a pre-defined data set and model from our catalog. After
importing both catalogs, the only necessary step is to describe the data set name (e.g., adult, give
me some credit, or compas) and the model type (e.g., ann, or linear) the user wants to load. Every
recourse method contains the same properties to generate counterfactual examples.

1

2 from carla import DataCatalog , MLModelCatalog
3 from carla.recourse_methods import GrowingSpheres
4

5 # 1. Load data set from the DataCatalog
6 data_name = "adult"
7 dataset = DataCatalog(data_name)
8

9 # 2. Load pre -trained black -box model from the MLModelCatalog
10 model = MLModelCatalog(dataset , "ann")
11

12 # 3. Load recourse model with model specific hyperparameters
13 gs = GrowingSpheres(model)
14

15 # 4. Generate counterfactual examples
16 factuals = dataset.raw.sample (10)
17 counterfactuals = gs.get_counterfactuals(factuals)
18

Figure 6: Example implementation of CARLA, using the data and model catalog.

To give users the possiblity to explore their own black-box-model on a custom data set, we imple-
mented in CARLA easy-to-use interfaces, that are able to wrap every possible model or data set. These
interfaces specify particular properties users have to implement, to be able to work with the library.
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Figure 7 shows an example implementation of the data wrapper, and Figure 8 depicts the same for an
arbitrary black-box-model. After defining data set and black-box model classes, users simply need to
call the canonical methods and generate counterfactual examples, similar to the process in Figure
6.

1

2 from carla import Data
3 from carla.recourse_methods import GrowingSpheres
4

5 # Custom data set implementations need to inherit from the Data
interface

6 class MyOwnDataSet(Data):
7 def __init__(self):
8 # The data set can e.g. be loaded in the constructor
9 self._dataset = load_dataset_from_disk ()

10

11 # List of all categorical features
12 def categoricals(self):
13 return [...]
14

15 # List of all continous features
16 def continous(self):
17 return [...]
18

19 # List of all immutable features which
20 # should not be changed by the recourse method
21 def immutables(self):
22 return [...]
23

24 # Feature name of the target column
25 def target(self):
26 return "label"
27

28 # Non -encoded and non -normalized , raw data set
29 def raw(self):
30 return self._dataset
31

Figure 7: Pseudo-implementation of the CARLA data wrapper

A.4 Benchmarking Recourse Methods
Besides the generation of counterfactual examples, the focus of CARLA lies on benchmarking recourse
methods. Users are able to compute evaluation measures to make qualitative statements about
usability and applicability.

All measurements, which are described in Section 4.2, are implemented in the Benchmarking
class of CARLA and can be used for every wrapped recourse method. Figure 9 shows an example
implementation of a benchmarking process based on the variables of Figure 6.

B Additional Experimental Results
In this Section, we depict the missing experiments from the COMPAS data set in Figure 10 and Table
4. These results underline the trends that we have already highlighted in Section 5.

C ML Classifiers
In this section, we describe how the black–box models f were fitted. CARLA supports different ML
libraries to estimate these models (e.g., Pytorch, Tensorflow) as the implementations of the various
explanation methods work with a particular ML library. We note that the various explanation methods
rely on different binary feature encodings. DICE, for example, requires that binary inputs are supplied
as one–hot vectors, while FACE needs binary features encoded in a single column. If this was the
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1

2 from carla import MLModel
3

4 # Custom black -box models need to inherit from
5 # the MLModel interface
6 class MyOwnModel(MLModel):
7 def __init__(self , data):
8 super().__init__(data)
9 # The constructor can be used to load or build an

10 # arbitrary black -box -model
11 self._mymodel = load_model ()
12

13 # Define a fitted sklearn scaler to normalize input data
14 self.scaler = MySklearnScaler ().fit()
15

16 # Define a fitted sklearn encoder for binary input data
17 self.encoder = MySklearnEncoder.fit()
18

19 # List of the feature order the ml model was trained on
20 def feature_input_order(self):
21 return [...]
22

23 # The ML framework the model was trained on
24 def backend(self):
25 return "pytorch"
26

27 # The black -box model object
28 def raw_model(self):
29 return self._mymodel
30

31 # The predict function outputs
32 # the continous prediction of the model
33 def predict(self , x):
34 return self._mymodel.predict(x)
35

36 # The predict_proba method outputs
37 # the prediction as class probabilities
38 def predict_proba(self , x):
39 return self._mymodel.predict_proba(x)
40

Figure 8: Pseudo-implementation of the CARLA black-box-model wrapper

case, we fitted two ML models, using the same hyperparameters, and generated CEs with respect to
the same set of samples.

To ensure similar behavior between the different ML libraries and encoding variations, each black-box
model type has the same structure (e.g., number of hidden layer, number of neurons), and training
parameters (e.g., learning rate, epochs, etc.).

The first model is a multi-layer perceptron, consisting of three hidden layers with 18, 9 and 3
neurons, respectively. We use ReLu activation functions and binary cross entropy to calculate class
probabilities. Optimization of the loss function is done by RMSProp [55] using a learning rate of
0.002 for every data set. By performing 25 epochs on COMPAS and 10 epochs on Adult and GMC we
reached acceptable performance. Further increasing epochs gave rise to very marginal performance
increases. For Adult we use a batch–size of 1024, for COMPAS 25 and for GMC 2048.

To allow a more extensive comparison between CE methods, we choose linear models as the second
black–box model category for which we evaluate the CE methods. Again, we optimized these models
with RMSProp using a binary cross entropy loss. For Adult, we used 100 epochs and a batch–size of
2048, for COMPAS we choose 25 epochs and batch–size of 128, and for GMC we chose 10 epochs
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1

2 from carla import Benchmark
3

4 # 1. Initilize the benchmarking class by passing
5 # black -box -model , recourse method , and factuals into it
6 benchmark = Benchmark(model , gs, factuals)
7

8 # 2. Either only compute the distance measures
9 distances = benchmark.compute_distances ()

10

11 # 3. Or run all implemented measurements and create a
12 # DataFrame which consists of all results
13 results = benchmark.run_benchmark ()
14

Figure 9: Pseudo-implementation of the CARLA recourse method wrapper
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Figure 10: COMPAS Data

Figure 11: Evaluating the distribution of costs of counterfactual explanations on the COMPAS dataset.
For all instances with a negative prediction ({x ∈ D : f(x) < θ}), we plot the distribution of `0
and `1 costs of algorithmic recourse as defined in (1) for a logistic regression and an artificial neural
network classifier. The white dots indicate the medians (lower is better), and the black boxes indicate
the interquartile ranges. We distinguish between independence based and dependence based methods.

with a batch–size of 2048. The learning rate on every data set is set 0.002. Table 5 provides an
overview of the model’s classification accuracies.

Adult COMPAS Give Me Credit

Logistic Regression 0.83 0.84 0.92
Neural Network 0.84 0.85 0.93

Table 5: Performance of classification models used for generating algortihmic recourse.
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Artificial Neural Network Logistic Regression

Data Set Method yNN redund. violation success t(s) yNN redund. violation success t(s)

COMPAS

AR(–LIME) 0.91 0.00 0.02 0.53 0.06 – – – 0.00 0.01
CEM 0.98 2.29 0.43 1.00 0.89 0.93 1.88 0.99 1.00 0.86
DICE 0.89 0.88 1.03 1.00 0.09 0.95 0.94 0.90 1.00 0.09
GS 0.44 0.97 0.03 1.00 0.01 0.60 0.64 0.02 1.00 0.01

Wachter 0.56 1.77 0.74 0.66 10.90 0.50 1.21 0.79 1.00 0.02

(a) Independence based methods

Artificial Neural Network Logistic Regression

Data Set Method yNN redund. violation success t(s) yNN redund. violation success t(s)

COMPAS

CEM–VAE 1.00 5.59 1.98 1.00 0.89 1.00 6.91 2.14 1.00 0.87
CLUE 0.99 4.06 1.08 1.00 2.03 1.00 4.62 1.25 1.00 1.88

FACE–EPS 0.94 3.71 1.55 0.99 0.45 0.97 3.94 1.62 0.99 0.45
FACE–KNN 0.94 3.83 1.63 1.00 0.44 0.97 3.86 1.57 1.00 0.44
REVISE 1.00 3.29 1.29 1.00 6.06 0.92 3.15 1.03 1.00 5.35

(b) Dependence based methods

Table 4: Summary of COMPAS results for independence and dependence based methods. For all
instances with a negative prediction ({x ∈ D : f(x) < θ}), we compute counterfactual explanations
for which we then measure yNN (higher is better), redundancy (lower is better), violation (lower is
better), success rate (higher is better) and time (lower is better). We distinguish between a logistic
regression and an artificial neural network classifier. Detailed descriptions of these measures can be
found in Section 4. The results are discussed in Appendix B.

D COMPAS Data Set Description
The COMPAS data set [21] contains data for more than 10,000 criminal defendants in Florida. It is
used by the jurisdiction to score defendant’s likelihood of reoffending. We kept a small part of the
raw data as features like name, id, casenumbers or date-time were dropped. The classification task
consists of classifying an instance into high risk of recidivism (score_text is high). By converting the
feature race into white and non-white, we keep the categorical input binary. Similar to Adult, the
immutable features for COMPAS are age, sex and race.

E Hyperparameter Search for the Counterfactual Explanation and
Recourse Methods

We generated counterfactual explanations for instances from H−, the set of factuals with negative
class predictions.

AR and AR–LIME It frequently occurred that the action with the lowest cost did not flip the prediction
of the black-box classifier. To overcome this problem, we let AR compute a flipset of 150 actions
per instance, and subsequently search this set for low–cost CEs. For AR–LIME, we used LIME [50]
and required sampling around the instance to make sure that the coefficients at x were truly
local.

CEM After performing grid search, we set the `1 weight to 0.9 and the `2 weight to 0.1, yielding the
strongest performance. For CEM-VAE we set the `2 weight to 0.1, and the VAE–weight to 0.9.

CLUE We use the default hyperparameters from [3], which are set as a function of the data set
dimension d. Performing hyperparameter search did not yield results that were improving distances
while keeping the same success rate.

DICE Since DICE is able to compute a set of counterfactuals for a given instance, we only chose
to generate one CE per input instance. We use a grid search for the proximity and diversity
weights.

FACE To determine the strongest hyperparameters for the graph size we conducted a grid search.
We found that values of kFACE = 50 gave rise to the best balance of success rate and costs. For
the epsilon graph, a radius of 0.25 yields the strongest results to balance between high yNN and low
cost.
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GS We chose 0.02 as the step size with which the sphere is grown. Lower values yield similar
results at the costs of higher computational time, while higher values gave worse results.

REVISE The grid search to find an acceptable learning rate and similarity weight λ yielded η = 0.1
and λ = 0.5 for about 1500 iterations.

Wachter For the target loss, we choose the Binary Cross Entropy with a learning rate of 0.01 and
an initial λ of 0.01. For the distance loss, we use the `1- norm to measure the similarity between the
factual input and the counterfactual point x̌.
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