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Abstract

On Tensor Multi-Scalar Theories in a Post-Newtonian

Setting

Oliver Schön

The first experimental detection of gravitational waves in 2015 [1] established a

fundamentally new way of testing General Relativity 100 years after its inception

in 1915 by Albert Einstein [2, 3]. This novel approach allows us to test General

Relativity against alternative theories in the strong field regime. During the past

century, numerous tests of Relativity have been conducted in the gravity regime

of our solar system. Einstein’s theory amazingly passed these tests with very

high accuracy. Hence, testing General Relativity in regimes much more bound to

gravity than our weak field solar system is essential [4, 5].

We establish the mathematical foundation of General Relativity and viable

alternatives in the second chapter of this thesis after a brief introduction in Chapter

1. We explicitly detail various ways to append Relativity to more complex theories

viably. The fact that the theory of Albert Einstein is already excellent in multiple

tests, some of them explained in Chapter 2, of course, puts quite strong constraints

on new theories, and most will have a specific limit towards General Relativity.
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8 Abstract

The protagonist theory discussed in this dissertation, known as Tensor Multi-

Scalar Theory of Gravity, is a viable alternative that allows for di�erences to

General Relativity in the strong field regime. The theory adds multiple scalar

fields to Relativity already on the level of the action in a covariant way. Hence,

we keep several geometrical properties of Relativity that we can utilize to our

advantage later on.

We detail the mathematical machinery of Direct Integration of the Relaxed

Field Equations [6–14] in Chapter 3. This toolkit, designed to ultimately end up

with a family of gravitational wave templates via post-Newtonian analysis, is very

well suited to our use case since it is theory agnostic in the sense that every theory

motivated by an action can be analyzed using this specific framework. Approaches

adding a single scalar field to the Einstein-Hilbert action of General Relativity

have already utilized this mathematical setup to significant e�ect [15–18], and we

aim to generalize this even further in the following chapters.

The bulk of this dissertation is the calculations in Chapter 4. We adapt the

previously mentioned formalism to the generalized theory of Tensor Multi-Scalar

Gravitation. Extra flat wave equations append the field equations for the multiple

scalar fields, which need to be carefully evaluated at every step in the goal of

calculating the post-Newtonian metric to some order accurate enough for the

analysis in this dissertation. We find out that the geometry target space, a

manifold equipped with a Riemannian metric, plays a crucial role in the near

zone dynamics of compact objects as we calculate the equation of motion of a

broad class Tensor Multi-Scalar Theories through 2.5 post-Newtonian order. This

e�ect di�ers from pure General Relativity as no extra scalar fields are added, and

hence no target space exists. As expected from the analysis of single Scalar Field

Theories [15–18], we also find a 1.5 post-Newtonian contribution to the motion
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absent in classical Relativity.

We end the dissertation with an Outlook to future work and explain how this

work fits in with the brighter goal of having an extensive library of gravitational

wave templates to compare to experimental data to test General Relativity right

down to its core indeed.
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Zusammenfassung

On Tensor-Multi-Scalar Theories in a Post-Newtonian

Setting

Oliver Schön

Mit dem ersten experimentellen Nachweis von Gravitationswellen im Jahr

2015 [1] wurde eine grundlegend neue Möglichkeit gescha�en, die Allgemeine

Relativitätstheorie 100 Jahre nach ihrer Einführung im Jahr 1915 durch Albert

Einstein zu testen [2, 3]. Dieser neuartige Ansatz ermöglicht es uns, die Allgemeine

Relativitätstheorie gegen alternative Theorien im starken Gravitaionsfeld zu testen.

Im vergangenen Jahrhundert wurden zahlreiche Tests der Relativitätstheorie im

Gravitationsbereich unseres Sonnensystems durchgeführt. Einsteins Theorie hat

diese Tests erstaunlicherweise mit sehr hoher Genauigkeit bestanden. Daher ist

das Testen der Allgemeinen Relativitätstheorie in Regimen, die viel stärker an

die Schwerkraft gebunden sind als unser Sonnensystem mit schwachem Feld, von

wesentlicher Bedeutung [4, 5].

Nach einer kurzen Einführung in Kapitel 1 legen wir im zweiten Kapitel dieser

Arbeit die mathematischen Grundlagen der Allgemeinen Relativitätstheorie und

praktikable Alternativen fest. Wir zeigen explizit verschiedene Möglichkeiten auf,
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12 Zusammenfassung

die Relativitätstheorie zu komplexeren Modellen verallgemeinern. Die Tatsache,

dass die Theorie von Albert Einstein bereits in mehreren Tests hervorragend

abgeschnitten hat, von denen einige in Kapitel 2 erläutert werden, setzt neu-

en Theorien natürlich ziemlich starke Grenzen, und die meisten werden einen

spezifische Limes zur Allgemeinen Relativitätstheorie haben. Die Haupttheorie,

die in dieser Dissertation diskutiert wird und als Tensor Multi-Scalar Theory

der Gravitation bekannt ist, ist eine mögliche Alternative, die Unterschiede zur

Allgemeinen Relativitätstheorie im Starkfeldbereich zulässt. Die Theorie fügt der

Relativitätstheorie bereits auf der Ebene der Wirkung mehrere Skalarfelder auf

kovariante Weise hinzu. Dadurch bleiben einige geometrische Eigenschaften der

Relativitätstheorie erhalten, die wir später zu unserem Vorteil nutzen können.

Wir erläutern die mathematische Maschinerie der Direct Integration of the

Relaxed Field Equations [6–14] in Kapitel 3. Dieses Toolkit, das darauf abzielt,

mittels post-Newtonscher Analyse eine Familie von Gravitationswellen-Templates

zu erhalten, eignet sich sehr gut für unseren Anwendungsfall, da es theorieunab-

hängig ist, d. h. jede Theorie, die durch eine Wirkung motiviert ist, kann mit

diesem spezifischen Rahmen analysiert werden. Ansätze, die der Einstein-Hilbert

Wirkung der Allgemeinen Relativitätstheorie ein einzelnes Skalarfeld hinzufügen,

haben diesen mathematischen Aufbau bereits mit großem Erfolg genutzt [15–18],

und wir versuchen, dies in den folgenden Kapiteln noch weiter zu verallgemeinern.

Den Hauptteil dieser Dissertation bilden die Berechnungen in Kapitel 4. Wir

passen den zuvor erwähnten Formalismus an die verallgemeinerte Theorie der Ten-

sor Multi-Scalar Gravitation an. Die Feldgleichungen für die Mehrfachskalarfelder

werden durch zusätzliche flache Wellengleichungen ergänzt, die in jedem Schritt

sorgfältig ausgewertet werden müssen, um die post-Newtonsche Metrik mit einer

Ordnung zu berechnen, die für die Analyse in dieser Dissertation genügend ist.
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Wir finden heraus, dass die Geometrie des Zielraums, eine Mannigfaltigkeit mit

einer Riemannschen Metrik, eine entscheidende Rolle in der Nahbereichsdynamik

von kompakten Objekten spielt, wenn wir die Bewegungsgleichung einer breiten

Klasse von Tensor Multi-Scalar Theorien bis zur 2.5 post-Newtonschen Ordnung

berechnen. Dieser E�ekt unterscheidet sich von der reinen Allgemeinen Relativi-

tätstheorie, da hier keine zusätzlichen Skalarfelder hinzugefügt werden und somit

kein Zielraum existiert. Wie von der Analyse einzelner Skalarfeldtheorien [15–18]

erwartet, finden wir auch einen 1.5 post-Newtonschen Beitrag zur Bewegung, der

in der klassischen Relativitätstheorie fehlt.

Wir beenden die Dissertation mit einem Ausblick auf künftige Arbeiten und

erklären, wie diese Arbeit zu dem ehrgeizigeren Ziel passt, eine umfangreiche

Bibliothek von Gravitationswellenvorlagen zu haben, die mit experimentellen

Daten verglichen werden können, um die Allgemeine Relativitätstheorie wirklich

bis auf ihren Kern zu testen.
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Chapter 1

Introduction

Parts of our work in this chapter are based on the publication „Tensor-multiscalar gravity:
Equations of motion to 2.5 post-Newtonian order“, in Phys. Rev. D, 105.0640341 [19] by
O. Schön, and D. D. Doneva. Please refer to our Contribution Statement at the beginning
of this dissertation for more information.

Testing General Relativity (GR) in the gravitational wave (GW) astrophysics

era has advanced a lot. And GR is passing these tests remarkably well, especially

in the weak-field regime. There are still viable alternatives, though, mainly

generalizations of GR left to explore. One quite natural extension of GR is the

introduction of a scalar field in addition to the metric tensor being an additional

mediator of the gravitational interaction. We call those well-known generalizations

of GR Scalar Tensor Theories (STT) [20, 21]. Due to its simplicity, the single scalar

field case was much more widely considered in the literature. However, there is no

particular reason for appending GR by only one scalar field. Even more, there are

several motivations behind the idea that GR should be supplemented with multiple

scalar fields related, e.g., to higher dimensional gravity, string theories, etc. (see,
1Copyright © 2022 by American Physical Society (APS). All rights reserved.
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e.g., [22–25]). In addition, it is well known that di�erent classes of alternative

theories of gravity are mathematically equivalent to specific sectors of scalar-tensor

theories that often o�er the possibility of a more accessible and uniform treatment

of these theories. Allowing for the existence of multiple scalar fields extends the

possibilities for such analogies [26]. Those theories are mathematically well-defined

and can pass all known experimental and observational tests, making the less

explored class of Tensor Multi-Scalar Theories of gravitation (TMST) a viable

and exciting class of modified gravity. Ones of the first seminal works on the topic

of scalar-tensor theories by Damour and Esposito-Farése considered the possibility

for multiple scalar fields [21, 27], and recently, the 3 + 1 formulation of the theory

was developed in [28].

What is very interesting about TMST from a theory point of view is that it

is not just a mechanical addition of more scalar fields. Instead, these theories

o�er the possibility of entirely new phenomena and solutions unseen in any other

modified gravity theory until now. The richness of the solution’s spectrum is

controlled by the choice of target space for the scalar fields equipped with a

given metric and the choice of the map Ï : spacetime æ target space. Compact

objects in TMST, including black holes, neutron stars, and solitons, were studied

in several papers [28–39]. It was demonstrated that if one chooses the target

space metric and the map to the target space in a nontrivial way, new types of

solutions can exist, such as topological neutron stars [34]. Scalarization, that

is, a nonlinear scalar field development for sectors of the theory where the weak

field regime coincides with GR [40], was also considered in the context of TSMT

[28, 36]. Surprisingly it is possible to have scalarization with massless scalar

fields leading to compact objects with zero scalar charges. This is contrary to

all known scalarized solutions, both neutron stars and black holes [40–42], and
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suggests possible essential deviations from the standard treatment of scalarization.

Moreover, contrary to standard STT, black holes with scalar hair can exist in

TMST [39]. All this calls for further development of TMST to study possible

astrophysical implications.

Among the most promising test beds for alternative theories of gravity are

binary mergers, especially their inspiral phase that can produce a strong signal-to-

noise ratio. These phenomena are most prominently studied via a post-Newtonian

(PN) approach [43, 44] that attracted considerable attention during the past

decades due to its ability to produce fast and accurate enough waveforms. The

recent results in GR include an analysis of 4 PN order [45–55], including analysis

of memory-tails and quasi-circular orbits, and 4.5 PN order [56–58]. The energy-

flux was also studied in [47, 59–62] to 3.5 PN and 4.5 PN order. Gravitational

waveforms were studied to 3.5 PN order [63–65]. Later the 5 PN order [66–70]

and the 6 PN order [71, 72] were considered as well.

One common school of thought is to calculate the PN expansion via direct

integration of the relaxed field equations (DIRE), pioneered by Epstein and

Wagoner [6] and expanded by Thorne, Wiseman, Will, Pati, Wang, and Mitchell

[8–14, 73]. This paper series establishes an equation of motion and radiation-

reaction for binaries to 3.5 PN order in GR. Their method weakens the standard

field equations into a relaxed form as studied by Landau and Lifshitz [74]. This

framework is understood as post-Minkowskian theory. The formalism allows

one to rewrite the exact field equations as a set of ten flat, i.e., Minkowskian,

wave equations together with imposing harmonic gauge conditions. Of course,

the source terms are not trivial as they are highly nonlinear and convoluted.

Via an iteration process [9], one can expand the metric systematically and then

integrate the wave equations using concepts such as retarded Green’s functions.
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This concept merges directly in the post-Newtonian formalism by incorporating

both weak-field and slow-motion conditions Gm/rc
2

≥ v
2
/c

2
π 1, where the

characteristic mass, size, and velocity of the source are denoted by m, r, and

v. Using geometric coordinate units, i.e. G = c = 1, these conditions enable

us to use the expansion parameter Á ≥ m/r ≥ v
2 to expand the metric fields

h
–— := ÷

–—
≠

Ô
≠gg

–— for the Minkowski metric ÷
–— and spacetime metric g

–—,

g = det(g–—). To integrate the wave equations for the h
–— fields, we decompose

the past light-cone in a near-zone domain N and a wave-zone domain W, such

that h
–— = h

–—

N + h
–—

W . The integration concepts change slightly depending on

whether the field point is in the near- or the wave-zone. As a method, DIRE is

theory agnostic and can be adapted to any theory of gravity provided a set of field

equations. The present work is dedicated to calculating the near-zone expansion

in TMST. This is canonically the first step in the process of a full post-Newtonian

analysis accumulating in gravitational waveforms. Our final result will be an

equation of motion accurate to 2.5 PN order. Later, calculations performed here

can be used and furthered to obtain the tensorial gravitational waveform and,

finally, the scalar flux. For STTs, this has been performed in that order in the

paper series [15, 16, 18].

It should be mentioned that DIRE is not the only mathematical framework to

study gravity in the context of post-Newtonian analysis and gravitational waves

[5]. Similar methods of iterating the Einstein Field Equations utilizing harmonic

coordinates have been used by Blanchet, Faye, Ponsot, de Andrade, Damour,

and Esposito-Farese [75–78]. The equation of motion has also been calculated

by the Hamiltonian Arnowitt-Deser-Misner (ADM) formalism [79–81]. Einstein

himself briefly worked on the problem as well and pioneered a framework known

as Einstein-Infeld-Ho�mann surface integral approach [82–85]. More recently,
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methods borrowed from E�ective Field Theory (EFT) could also derive a 3 PN

order equation of motion in GR [86, 87]. Although those frameworks work very

di�erently and utilize distinct mathematical machinery, it has been shown that

the resulting equation of motion is in perfect agreement between those approaches

[5].

As mentioned before, STTs belong to the most studied generalizations of GR.

Naturally, they have also been studied in the context of PN approximations. DIRE

was already adapted to calculate a PN expansion for a broad class of single STT

[15–18], including an equation of motion to 2.5 PN order by Mirshekari and Will

[15] as well as an analysis of tensor gravitational waves to second PN order and

a scalar waveform accurate to 1.5 PN order by Lang [16–18]. In addition, the

metric su�cient to study light deflection at 2 PN order was examined in [88, 89].

At the same time, the generic structure of the 2 PN Lagrangian for TMST and

N compact bodies was derived in [27]. Since the standard formalism does not

work for STT admitting scalarization, which can be viewed as a second-order

phase transition, generalizations of the PN expansions were developed in [90–93],

modeling dynamical scalarization with a resumed PN expansion and obtaining

gravitational waveforms in a class of STT to 2 PN relative order. More recently,

Bernard studied in a series [94–96] the equations of motion in STT to 3 PN order,

the resulting conserved quantities, and the dipolar tidal e�ects via the Multipolar-

Post-Minkowskian Post-Newtonian formalism (MPM-PN) [43, 97–100]. Recently,

waveforms accurate to 1.5 PN order beyond GR’s standard quadrupole moment

were generated [101]. The PN expansion and the corresponding gravitational

waveforms up to di�erent orders were also studied in other alternative theories

of gravity, e.g., massive STT, Gauss-Bonnet gravity, and Chern-Simons theories

[102–109].
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The thesis is organized as follows: We introduce the core concepts of GR and

the road map to its alternatives in Chapter 2. In there, we especially motivate

TMSTs and how they fit into the modern context of GW astrophysics. This relies

on a uniqueness result of the Einstien-Hilbert action allowing for an excellent

classification of modified gravity. In addition to that, we briefly explain testing

GR and give a short historical context. Chapter 3 presents the main framework

called DIRE in detail. We will discuss its approach to generating waveforms and

its advantages for our use case here. Most of our work is presented in Chapter 4.

In Section 4.1, we adapt DIRE to multiple scalar fields needed in our analysis and

explain the key di�erences to previous work. We continue in Section 4.2 with the

formal structure of the near-zone fields and their underlying building blocks. In

there, we introduce all the relevant potentials utilized in the equation of motion.

Next, in Section 4.3, we iterate through the process of DIRE until each field is of

the desired order to reach an accuracy of 2.5 PN order in the final ready-to-use

equation of motion. We again highlight the main di�erences with the single scalar

field theories. At the end of the lengthy 1 PN and 2 PN calculation, we present

some mathematical techniques and in-between results to make it easier to follow

along as we progress. We also explain why some potentials arising in TMST

fundamentally di�er from GR and STTs and how we handle these terms in our

analysis. Finally, in Section 4.4, we explain our skeletonized matter model and

expand all relevant associated fields. We perform a transformation of densities

suited for our point particle model. This is followed by a brief derivation of the

equation of motion in TMST, and the section ends by giving the full expansion of

said equation. Our results are then analyzed in the following discussion, Chapter

5. We take a deeper look at the equation of motion and highlight the critical

structures regarding the nontrivial target space and compact binaries. We end,
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as is usual, in a discussion and outlook part in Chapter 6. We emphasize the

importance of continuing the analysis and discuss our expectations for future

results. For that, we briefly introduce the Epstein-Wagoner moments and their

significance for gravitational waveforms. The Appendix A already details some

generalizations of wave-zone DIRE in TMST. More precisely, we perform needed

calculations and hint at what challenges will arise in the future.
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Chapter 2

General Relativity and its

Alternatives

Since its inception in the early 19th century, General Relativity has been studied

by many experimental and theoretical physicists and mathematicians. As with

any physical theory, motivated scientists have tested it numerous times over the

last 100 years. Although General Relativity stood the test of time remarkably

well, some of those tests and analyses gave rise to a few prominent alternative

theories of gravity. Most of those theories are, in fact, generalizations of the

standard formulation of Relativity. Pure GR will be recovered as a particular case

of a broader family of theories. In this chapter, we will explain the specific case of

GR in the pool of viable alternatives and how to classify possible deviations.

2.1 The Theory of General Relativity

This section briefly introduces common textbook knowledge necessary for our

work. If not noted otherwise, all relevant information might be gathered by a

47
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textbook of your choosing such as [110–113].

2.1.1 Mathematical Setup and Action

General Relativity is formulated in the language of Di�erential Geometry and

Geometric Analysis. These two areas of mathematics are powerful concepts, and

GR benefits greatly by using hundreds of years worth of mathematical research as a

toolkit to do exciting physics. When we talk about a spacetime, we usually refer to

a semi-Riemannian1 manifold (M, g) consisting of a four-dimensional di�erentiable

manifold M equipped with second rank, covariant, symmetric, nondegenerate,

tensor field g called spacetime metric. The topology of the manifold M can di�er

greatly depending on the features one wants to study in depth. In our case,

however, we generally assume a smooth manifold that usually can be covered by

a single chart (x0
, . . . , x

3). Typically, the time coordinate is renamed as t := x
0.

Since Di�erential Geometry is used as a primary tool in GR, we are also prone to

all the conventions one can choose in its concepts. The signature of the spacetime

metric that we set to (≠ + ++) is relevant. A metric of that signature is also

referred to as Lorentz2 metric and the tuple (M, g) as Lorentzian manifold. We will

frequently use the Greek indices {–, —, “, µ, ‹, . . . } to denote the spacetime metric

components g–—, meaning –, — = 0, . . . , 3. To mark the purely spatial components

of said metric, we utilize the Latin letters {i, j, k, l, . . . } taking values in 1, . . . , 3.

We start at the letter i for the spatial indices as the letters {a, b, c, d, . . . } are

reserved for a di�erent purpose further in this work to reduce the confusion that

could arise by handling a larger class of gravitational theories. Throughout our
1Georg Friedrich Bernhard Riemann, September 17, 1826 – July 20, 1866, German mathe-

matician.
2Hendrik Antoon Lorentz, July 18, 1853 – February 4, 1928, Dutch physicist.
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calculation, we adopt the Einstein summation convention and generally follow the

notation explained in, e.g., Wald [110]. All the standard formulation of important

curvature quantities we use in this work is also found there.

A good way of introducing a field theory like GR is by motivating it with an

action, in this case, the Einstein-Hilbert3 action [114]

S = c
4

16fiG

⁄

M

R
Ô

≠g d4
x , (2.1)

where c denotes the speed of light in vacuum, G is the gravitational constant, and

g = det(g–—) is the determinant of the spacetime matrix representation appearing

as part of the manifold volume element. Integrated over the whole spacetime

(assuming convergences) is the Ricci4 scalar curvature (also known as Ricci scalar

or scalar curvature) R © R(g) defined via the contraction

R := g
–—

R–— , (2.2)

for the contra variant metric components g
–— and the Ricci curvature R–—. The

latter, in turn, is calculated as a contraction of the Riemann curvature tensor

R–— := R
”

–—“
. (2.3)

The Riemann tensor marks the highest entity in terms of curvature information

for our purpose and generally in GR, as the Ricci curvature and scalar can be

derived via direct contractions. It is defined purely from the metric tensor and

the first and second derivatives. A convenient way to formulate the tensor is via
3David Hilbert, January 23, 1862 – February 14, 1943, German mathematician.
4Gregorio Ricci-Curbastro, January 12, 1853 – August 6, 1925, Italian mathematician
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the Christo�el5 symbols

�“

–—
:= 1

2g
“µ (gµ–,— + gµ—,– ≠ g–—,µ) . (2.4)

Here we introduced yet another convention in that a comma followed by a co-

ordinate index refers to a derivative in that coordinate direction, hence gµ–,— =

ˆ/ˆx
—

gµ– = ˆ— gµ–. The full Riemann tensor R
”

–—“
= R

”

–—“
(g) then takes the

form

R
”

–—“
= �”

–“,—
≠ �”

—“,–
+

1
�µ

–“
�”

—µ
≠ �µ

—“
�”

–µ

2
. (2.5)

The above-defined Christo�el symbols essentially gauge the curvature the

spacetime metric introduces on the manifold. They measure the deviation from

flat space as all described curvature quantities in this section can be expressed in

terms of these symbols. If all Christo�el symbols vanish, the Riemann tensor and,

hence, the Ricci tensor and scalar also disappear, and the manifold is said to be

flat or Minkowskian6. The other way around is, in general, not accurate. There are

Ricci flat spacetimes with nonvanishing Riemann tensor, e.g., the Schwarzschild7

or Kerr8 spacetime. Note also that despite having indices as the other tensor

quantities in this chapter, Christo�el symbols are no tensors as they transform

quite di�erently under a change of coordinates. We will have multiple objects in

this work with indices despite being no tensors, so it is worth paying attention to

the nature of the quantities we manipulate.

This section’s quantities are written in local coordinates (x0
, . . . , x

3). It is,

however, possible to define all curvature terms in a more geometric mindset
5Elwin Bruno Christo�el, 10 November 1829 – 15 March 1900, German mathematician.
6Hermann Minkowski, June 22, 1864 – January 12, 1909, German mathematician.
7Karl Schwarzschild, October 9, 1873 – May 11, 1916, German physicist.
8Roy Patrick Kerr, born May 16, 1934, New Zealand mathematician.
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and not rely on coordinates at all. In that way, one has certain gauge freedom

established as a feature of the theory itself, which opens the door for much exciting

mathematics and physics. However, the following work is better formulated in

coordinates, hence our choice of definitions here.

2.1.2 The Field Equations and their Uniqueness

To obtain the simplest form Einstein Field Equations (EFE), one has to vary the

action in Eq. (2.1) with respect to the metric tensor g–— to obtain

G–— := R–— ≠
1
2Rg–— = 0 . (2.6)

The newly defined quantity G–— is known as Einstein tensor. This is the

simplest form due to the lack of matter terms and no cosmological constant

introduced. Hence this is typically known as the Einstein Vacuum Equations and

can be more easily written as R–— = 0 by tracing out both sides. A more complex

action would look like

S = c
4

16fiG

⁄

M

(R ≠ 2�)
Ô

≠g d4
x + Smatt , (2.7)

where we have again the speed of light in vacuum c, the gravitational constant G

and Ricci scalar R. The cosmological constant � and the collected matter action

denoted by Smatt are also newly introduced here. Varying this action yields the

complete Einstein Field Equations

R–— ≠
1
2Rg–— + �g–— = 8fiG

c4
T–— . (2.8)
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These field equations here generalize the vacuum equations above in two ways.

First, the right-hand side is now given by an energy momentum tensor T–—. It

appears as the result of varying the matter action Smatt and incorporates all

physical quantities put into the system. This might be a perfect fluid, isolated

particles, or electromagnetic quantities, among others. The energy-momentum

tensor obeys a conservation law formulated via a covariant derivative, an adapted

version of a standard derivative for manifolds equipped with metric tensors:

0 = Ò—T
–— := T

–—

;—
:= T

–—

,—
+ �–

µ—
T

µ— + �—

µ—
T

–µ
, (2.9)

where we have introduced the notion of a semi-colon to refer to said covariant

derivatives. The exact calculation, of course, changes with the rank of the tensor

being di�erentiated. The other newly introduced concept is the cosmological

constant � appearing as a scaling of the metric in Eq. (2.8). This parameter

allows us to explain certain large-scale phenomena of the universe and introduces

the concept of expansion to the theory. It has been the center point of many

discussions over the past century. See [115] for a modern approach.

In theory, in Eq. (2.8), we have a system of ten (due to the symmetry) partial

di�erential equations for the ten independent metric components g–—. In principle,

one inserts all the physical components one is interested in inside the energy-

momentum tensor T–— on the left-hand side of Eq. (2.8) and then solves for the

metric components on the right-hand side. This is how the famous Wheeler9 quote

„Spacetime tells matter how to move; matter tells spacetime how to curve“, comes

to life. Generally, two problems arise while trying to solve the Einstein equations:
9John Archibald Wheeler, July 9, 1911 – April 13, 2008, American physicist.
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1. Nonlinearity: In contrast to other physical theories such as Maxwell’s10

description of electromagnetism or the Schrödinger11 Equation in Quantum

Mechanics, the Eqs. (2.8) (and Eqs. (2.6) for that matter) are non linear

in their solutions g–—. This means that, in general, two di�erent solutions

cannot be summed together to generate a new third solution.

2. No (apparent) PDE character: Naively inspected, the EFE in our form here

does not fall in any clear category like hyperbolic, parabolic, or elliptic,

meaning that no powerful mathematical theory can be utilized to guarantee

existence or uniqueness of solutions (there is, however, other methods of

creating such characteristics like the famous 3+1 decomposition [112, 116,

117]).

The majority of this thesis is to explore one relatively recent framework to solve

the EFE iteratively for a particular use case which, to some extent, involves

linearization of the problem to circumvent problem 1. explained above. This will

be detailed thoroughly in Chapter 3.

The action and the resulting field equations discussed here are far from arbitrary

choices, as the following uniqueness theorem elegantly demonstrates.

Theorem 1 (Lovelock [4, 118, 119])

In four spacetime dimensions, the only divergence-free symmetric second rank

tensor constructed solely from the metric g–— and its derivatives up to second

di�erential order, and preserving di�eomorphism invariance, is the Einstein tensor

(Eq. (2.6)) plus a cosmological term.
10James Clerk Maxwell, June 13, 1831 – November 5, 1879, Scottish mathematician.
11Erwin Rudolf Josef Alexander Schrödinger, August 12, 1887 – January 4, 1961, Austrian

physicist.
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This theorem builds up on work established by Vermeil12 [120] and Cartan13 [121]

and reveals the mathematical gem that the EFE, as in Eq. (2.8), is everything one

might hope for in a theory of tensorial nature. But one more useful conclusion one

might draw from Lovelock’s Theorem is that every modified or generalized theory

of gravity must necessarily brake one of the assumptions made here. Hence, a

road map in alternative theories can be categorized by exactly these assumptions.

In Section 2.3, we will explain what braking specific assumption yields and discuss

the viability of the emerging gravitational models.

2.2 Testing General Relativity

As with any physical theory born out of theoretical assumption, the testing of said

theory against reproducible empirical data is paramount. The same is necessarily

true for General Relativity. Einstein suggested three observational tests [3], now

known as the classical tests of GR. These tests have been instrumental in shaping

our understanding of gravity and include:

1. Mercury’s perihelion precession: The orbit of Mercury was observed to

deviate from the theoretical predictions of Newtonian14 gravity. This was

already found out in 1859 by Urbain Le Verrier [122, 123], and many

attempts to solve this issue were discussed but ultimately failed. Hence, this

phenomenon was a great test for any upcoming theory of gravity. Using

perturbation methods, Einstein himself could show that GR predicted the

measured orbit and correct perihelion advance of Mercury already in 1915

[124].
12Hermann Vermeil, 1889 – 1959, German mathematician.
13Élie Joseph Cartan, April 9, 1869 – May 6, 1951, French mathematician.
14Sir Isaac Newton, December 25, 1642 – March 20, 1726/27, English scientist.
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2. Gravitational redshift: GR forecasts a loss of energy of electromagnetic

waves or photons moving away from matter. This has been measured as

early as 1925 [125] and, with much more precision, reproduced multiple

times over the years [126].

3. Deflection of light: Newtonian gravity already predicts the bending of light

around compact objects. GR, however, forecasts a deflection of twice the

amount calculated in Newtonian Gravity [127–129]. During an eclipse in

1919, an experiment was able to confirm Einstein’s prediction [130]. Many

tests, later on, were also able to confirm that result as this first measurement

was of poor accuracy [129, 131].

Over the years, many more tests emerged, and GR still stands the test of

time remarkably well today. GR is well tested and the gold standard, especially

in the weak field regime, that is, tests performed with relatively slow velocities

and noncompact objects. However, the strong field regime is still not thoroughly

explored, and alternatives may still be viable. Modern tests of this regime include

studying double pulsars [132] and the measurement of gravitational waves (GWs)

[5], which is the subject of the next section.

2.2.1 Gravitational Waves

Gravitational waves are a prediction of General Relativity, which states that

gravitation itself is not instant and instead behaves wave-like in spacetime. When

compact objects move or accelerate, they produce changes in the curvature of

spacetime that propagate at the speed of light as gravitational waves. This

contrasts the Newtonian gravity model and is a much-discussed feature of GR for

the past century [133].



56 2.2. Testing General Relativity

Measuring these gravitational waves is one of the biggest challenges in modern

physics. The waves are weak and can only be detected by sensitive instruments.

After much e�ort, in 2015, scientists succeeded for the first time in measuring

gravitational waves directly. The experimental setup used laser interferometers

such as Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo

[1]. After that initial milestone, which has been honored with a Nobel Prize in 2017

to Rainer Weiss, Barry C. Barish, and Kip S. Thorne „for decisive contributions

to the LIGO detector and the observation of gravitational waves“, more events

have been observed [1, 134–141].

These instruments can measure minor changes in spacetime geometry caused

by gravitational waves. To date, we can observe multiple binary mergers consisting

of binary black holes (BBH), binary neutron stars (BNS), and mixed binaries.

Our detectors are not sensitive enough to measure continuous gravitational waves

emitted by nonmerging systems or single compact objects [142, 143]. Hence, we

will focus on the inspiral, merging, and ring-down phases of the end life of a binary

system.

Figure 2.1 depicts the general form of a gravitational wave we are interested

in. All events measured to date follow this schematic and di�er, e.g., in the

length of observation before the merger occurred. We will go deeper into the

mathematics of GWs in Chapter 3, but for now, it is su�cient to imagine them

as illustrated here. Obtaining the theoretical waveform always involves solving

the Einstein equations (2.8) in one way or another. In the previous section, we

briefly explained why this task is di�cult. Hence, di�erent ideas to calculate

the waveform for the multiple stages of the binaries lifespan emerged over time.

We are most concerned about the early to late inspiral phase. Fully relativistic,

nonlinear e�ects do not significantly impact the binary’s behavior at first. This is
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early inspiral late inspiral merger ring down

post-Newtonian

numerical Relativity

perturbation methods

Figure 2.1: Qualitative description of a gravitational wave stemming from a binary
merger. The two inspiral phases are su�ciently well modeled via post-Newtonian
analysis. Then, there is a smooth transition to numerical methods for the merger
since the nonlinear e�ects at play can no longer be captured by the PN expansion.
In the end, neutron star or black hole perturbation methods model the ring down
depending on which compact object emerged.
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why a post-Newtonian expansion works very well here; the leading contribution

is the Newtonian potential followed by relativistic corrections. Pure relativistic

e�ects mainly govern the last inspiral and merger stages. Hence, a fully nonlinear

evolution code from numerical Relativity is best suited to study this stage [5, 144].

Immediately after the merger, the ring down of the newly created compact objects

occurs. The neutron star or black hole is still very excited, which is best analyzed

via well-established perturbation methods [145, 146].

Let us comment further on why gravitational wave detection helps test GR

further in the strong field regime. The previous section listed the classical weak

field tests, which are already well-established. All viable alternatives need to be

pretty close to GR in these potentials. This leaves deviations for the strong field

regime, precisely the physics of very compact and heavy objects in a binary. It is

not as straightforward as comparing measurements to theoretical GR predictions

to see if it fits. Since the signal of binary mergers is still very weak and buried

under noise, the way to detect incoming waves is via a method called matched

filtering. One essentially filters out and identifies gravitational wave signals from

ambient noise by having templates beforehand and checking continuously for

correlation. If only GR templates are available, all you will ever discover is

GR-related gravitational waves [147, 148]. Hence, a vast database is needed to

support the matched filtering process in all directions concerned with fundamental

physics. A few of those paths will be highlighted in the next section.

2.3 Road map towards Alternatives

Lovelock’s Theorem (Thm. 1) explains the unique standing point of the Einstein

field equations (2.8). As mentioned above, this allows us to classify the most viable
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alternatives by sorting them in what way they break the theory’s assumptions.

Notable exceptions are theories that may emerge without any action to motivate

them or models that do not use a tensorial description of gravity at all. However,

since those are the exception, we will not discuss them further and concentrate on

the generalized version of Einstein’s General Relativity.

We discuss the topic utilizing Figure 2.2. The main breaking of assumptions

of Lovelock’s Theorem (Thm. 1) can be collected as

1. di�eomorphism invariance violations,

2. higher than second-order derivatives,

3. higher dimensions,

4. nonvanishing divergence of the field equations.

5. more fields in addition to the metric tensor.

We will briefly discuss those violations and refer to literature for more details

(e.g., [4, 5, 149]).

1. Di�eomorphism invariance violations. According to many, the gauge

freedom and the geometric nature is one of the key features of GR. This

makes the theory especially interesting for mathematicians and is the basis

of much work in mathematical Relativity. The most common occurrence

of breaking this invariance is in the particular form of Lorentz invariance

via extra scalar fields that we discuss separately later. Other than that,

these theories are hard to justify given modern measurements of Lorentz

symmetry [150–152].



60 2.3. Road map towards Alternatives

Lovelock’s Theorem

Extra fieldsHigher dimensions Non-vanishing divergence

Di↵-invar. violations Higher order derivatives

• Scalar-Tensor,

• Tensor-Multi-

Scalar,

• Einstein-Æther,

• Bimetric.

• Kaluza-Klein,

• Randall-Sundrum,

• Einstein

Gauss-Bonnet.

• f(R) Theories.

• Massive bimetric,

• Einstein-Æther,

• n-DBI.

• f(R) Theories,

• Horava-Lifschitz,

• Galileons.

Figure 2.2: Road map towards alternative theories using the assumptions of
Lovelock’s Theorem (Thm. 1) [118]. This is not an extensive list and can be
appended quite a bit [4, 149]. We focused ourselves here on the most common
families of alternatives. However, One must realize that many of the here listed
theories are vast in their rights and may di�er substantially in their formalism.
Hence, some theories are listed to break multiple assumptions. This only means
that there exists one way to formulate a version of this theory in such a way that
said specific assumption breaks. There might be other, di�erent versions that still
satisfy this assumption.
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2. Higher order derivatives. Di�erential equations in classical or quantum

physics are rarely given by any higher order than two. Higher-order deriva-

tives can help regarding UV divergence and renormalization e�orts in GR.

Some of this is studied in forms of f(R) theories [153–155] or, in terms of

purely higher spatial derivatives, the more recent Horava-Lifschitz theories

as studied in [150, 156–158].

3. Higher dimensions. No specific theory stands out in more than four

spacetime dimensions since every model motivated by an action can, in

principle, be generalized to higher (or lower) dimensions. It is widespread to

analyze important theorems related to GR in more than 3 + 1 dimensions

in the mathematical Relativity community, e.g., the Positive Mass Theo-

rem [159]. Beyond mathematical approaches, Quantum theories of gravity

are commonly formulated in higher dimensions. Even multiple time-like

dimensions have been studied [160]. Despite that, the Kazula-Klein (4+1

including electrodynamics) [161, 162], and Einstein Gauss-Bonnet families

are common higher dimensional formulations of gravity [163].

4. Nonvanishing divergence. Imposing a nonvanishing divergence on the

left-hand side of the field equations necessarily leads to a divergence of

the energy-momentum tensor, and the conservation law (2.9) is no longer

satisfied. This is linked to the weak equivalence principle being satisfied, an

assumption generally very well established and tested [164]. Some versions

of f(R) theories study these phenomena in more detail [165, 166].

5. Extra fields. We regard this as the most common and natural extension

of GR. There are a variety of methods extra fields can be appended to the
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spacetime metric depending on choosing massless versus massive fields and

the way they couple to the actual matter. Also, the extra fields can be

just a single scalar, vector, or even higher rank tensor added to the metric.

Suppose the extra fields are dynamic, which they are in most cases. In

that case, the strong equivalence principle is violated, as the outcome of

any experiment can change depending on the value the fields take around

that region in spacetime. We are not too concerned with that and study a

general class of Tensor Multi-Scalar Theories in the upcoming chapters.

At the end of this section, we present three tables (Tab. 2.1, Tab. 2.2, and

Tab. 2.3) taken from the topical review headed by Berti et al. [4]. These tables

give a fantastic insight into the work done in alternative theories up to 2015. Of

course, the field has changed somewhat eight years later, mainly due to astonishing

results in gravitational wave observations. Each question mark in the following

tables deserves a close analysis and can be, as the authors describe it, a great

Ph.D. project. Our work here aims to shine some light on the Tensor Multi-

Scalar Theories row, as they are littered with question marks. This is part of the

motivation for this work.
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2.4 Tensor Mulsti-Scalar Theories of Gravity

It is now time to introduce the leading actor of the original work done in our

work here, Tensor Multi-Scalar Theories (TMSTs) of gravitation. As discussed in

the previous section and equivalent to Scalar Tensor Theories (STTs), this family

breaks the assumption of Lovelock’s theorem (Thm. 1) of only having the metric

tensor describing the nature of gravity. It is, however, the most general form in

breaking this assumption, generalizing single scalar field models to their fullest

potential.

The general form of the action in TMST has the following form [21]

S := 1
16fiGı

⁄ 1
F (Ï) ÂR ≠ 2ÊÒ–Ï

a ÊÒ—Ï
b Âg–—

“ab(Ï) + V (Ï)
2 Ò

≠Âg d4
x

+ Smatt [Âg–—, �] . (2.10)

Here we used the spacetime metric Âg–— in the physical Jordan frame (JF) to which

the collective matter fields � are coupled. Gı is the bare gravitational constant,
ÂR is the Ricci scalar curvature and ÊÒ to covariant derivative with respect to

the Jordan frame metric Âg. The scalar curvature is coupled to the scalar fields

Ï = (Ï1
, . . . , Ï

n) via the field F (Ï). V (Ï) Ø 0 is the potential of the scalar

fields Ï. The JF volume element includes Âg = det(Âg–—). The scalar fields are

contracted with a tensor field “ab, a Riemannian metric on the n-dimensional

target space manifold T
n. The importance and meaning of (T n

, “ab) will be

discussed thoroughly later.

First note, while working in the physical Jordan frame has the advantage

that every calculated field is directly coupled to matter and measured in the

real world, the drawbacks are mathematical. Converting to a conformal frame
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allows us to isolate the Einstein-Hilbert (EH) contribution of the action in any

theory introducing new fields [323]. This means, by introducing a new metric

A
2(Ï)g–— := Âg–— we can drop the coupling field F (Ï) in front of the Ricci scalar

(precisely what we mean by isolating the EH contribution of the action from the

scalar fields) for the price of introducing a new conformal factor A(Ï). This was

the approach followed by [21, 27], where the post-Newtonian formalism in TMST

was explored for the first time. The single scalar field theory analysis up to 2.5

PN order was performed in the Jordan frame [15]. That is why even though we

follow the DIRE formalism of [15], some critical di�erences related to using a

di�erent frame will be discussed below. The Einstein frame is very natural for

the definition of TMST [21, 27] because of multiple scalar fields. The freedom to

choose a conformal factor A(Ï) that might depend on them in a nontrivial way

and the relation of this factor to the nonminimal coupling between the scalar field

and the Ricci scalar in the Jordan frame can lead to a significantly higher degree

of complexity of the Jordan frame field equations compared to the single scalar

field case. Hence, we adopt the conformal Einstein frame (EF) throughout the

calculations for our analysis.

The Einstein frame form of the action (2.10) in TMST is then given as [21]

S := 1
16fiGı

⁄ 1
R ≠ 2Ò–Ï

a
Ò—Ï

b
g

–—
“ab(Ï) ≠ 4V (Ï)

2 Ô
≠g d4

x

+ Smatt

Ë
A

2(Ï)g–—, �
È

. (2.11)

The matter model � still couples to the physical JF metric A
2(Ï)g–—, while the

Ricci scalar R and covariant derivative Ò are now with respect to the EF metric
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g–—. We realize immediately that the conformal action can be decomposed as

S = SEH [g–—] + SÏ [g–—, Ï] + Smatt

Ë
A

2(Ï)g–—, �
È

(2.12)

which is the basis of the mathematical advantages the Einstein frame yield since

this results in separated second-order derivatives of the gravitational variables

(g–—, Ï
a).

To make sense of the indices crowded notation intrinsic to our subject, we

use the convention of Greek letters {–, —, “, µ, ‹, . . . } for fields concerning the

Lorentzian spacetime metric g–— and the Latin letters {i, j, k, l, . . . } for purely

spatial components of said metric. The indices for the target space fields Ï
a,

that is, with respect to the Riemannian target space metric “ab, are labeled via

the di�erent Latin letters {a, b, c, d, . . . }. By slightly abusing notation, these last

indices might be added to the left of the fields when certain functions become too

crowded with labels. To make it easier to compare to commonly cited articles

with similar setups, we include Table 2.4 for quick conversion.

EF metric JF metric extra field(s) con. factor

Our work g–— Âg–— Ï
1
, . . . , Ï

n
A

2(Ï)

DEF [21] g
ú
–—

Âg–— Ï
1
, . . . , Ï

n
A

2(Ï)

MW [15] Âg–— g–— „ Ï = „/„0

Table 2.4: A quick comparison of the notation used in relevant previous work
by Damour and Esposito-Farèse (DEF) [21] and Mirshekari and Will (MW) [15]
compared to our approach. We changed the main convention from MW to a more
appealing look in the Einstein frame (EF) since this is how the bulk of our work is
formulated. MW, however, did their analysis in the physical Jordan frame (JF).
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space time (M, g)

coordinate spcae
�
R4, �

�

target space

(Tn, �)

(t,x) =
�
x0, . . . , x3

�

' =
�
'1, . . . ,'n

�

Figure 2.3: Presented is a qualitative depiction of the interaction between the
spacetime (M, g), target space (T n

, “), and canonical coordinate space (R4
, ”). The

spacetime is pictured as an asymptotically flat manifold with a central contribution
of matter (and, hence, curvature), as this is the scenario we are most interested
in later on. The n-dimensional target space (T n

, “) is illustrated as a spherically
symmetric object as some work has been done using this simplification [36, 39].
In this work, however, we will not impose any conditions on the target curvature
but instead keep it in a general form.

As indicated in the volume element of integration in (2.11), we work in a set of

coordinates (t, x) = (x0
, . . . , x

3) for the spacetime manifold (M, g). The multiple

scalar fields are each function of spacetime events themselves, so one may collect

all n fields to an n-dimensional vector Ï = (Ï1
, . . . , Ï

n) that acts as some sort of

generalized coordinates Ï : (M, g) æ (T n
, “). We impose the Riemannian nature

on the target space (T n
, “ab) to avoid ghosts that may occur in a semi-Riemannian

setting. The curvature and topology of the target space are essential to the theory

as they directly govern the predictions of the theory itself. We will analyze this in

quite some depth in Chapter 4.
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To obtain the field equations of TMST out of the conformal action (2.11),

we vary it with respect to the Einstein frame metric g–— and the scalar fields Ï
a

(instead of only the metric as in pure GR) and obtain

R–— = 2“ab(Ï)Ò–Ï
a

Ò—Ï
b + 2V (Ï)g–—

+8fiGı

3
T–— ≠

1
2Tg–—

4
, (2.13)

g
µ‹

Òµ Ò‹Ï
a = ≠“

a

bc
(Ï)g–—

Ò–Ï
b
Ò—Ï

c + “
ab(Ï)ˆV (Ï)

ˆÏb

≠4fiGı“
ab

–b(Ï)T , (2.14)

where “
a

bc
are the Christo�el symbols with respect to the target space metric “ab.

Note that Eq. (2.13) is not the standard form containing the Einstein tensor G–—

from Eq. (2.6) but rather written in terms of the conformal energy-momentum

tensor

T–— := ≠
2

Ô
≠g

”Smatt [A2(Ï)g–—, �]
”g–—

(2.15)

and its trace T := g
–—

T–—. Equivalently, to replace Eq. (2.13), we may write

G–— = 2“ab(Ï)Ò–Ï
a

Ò—Ï
b + 2V (Ï)g–— + 8fiGıT–— . (2.16)

The reason for choosing the form (2.13) instead of the more common (2.16) is to

adapt already existing results from [15] later on.

The matter contribution to the scalar field equations is given in the last term

of Eq. (2.14) and in the form of the energy-momentum trace T coupled with the

new quantity –a(Ï). Making the standard assumption that the matter fields are
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independent of the scalar fields, one can show that (see, e.g., [21, 27, 28, 33, 34])

–a(Ï) := ˆ log (A(Ï))
ˆÏa

= A
≠1(Ï)ˆA(Ï)

ˆÏa
. (2.17)

This coupling function is of great interest to us later in our analysis, especially

regarding self-gravitating phenomena in TMST.

The first part of the field equations, Eq. (2.13), is a system of ten second-order,

nonlinear PDEs for the metric components g–— while the second part, Eq. (2.14),

is set of n nonlinear, curved wave equations for the scalars Ï
a. Assuming some

matter model T–— and keeping the free parts (A(Ï), V (Ï), “ab) mostly general,

the bulk of this work is to solve for these 10 + n gravitational fields (g–—, Ï) in a

particular scenario explained in Chapters 3 and 4.

The transformation of the energy-momentum tensor (2.15) into the physical

Jordan frame is then given by

ÂT–— = A
≠2(Ï)T–— (2.18)

ÂT –— = A
≠6(Ï)T –—

. (2.19)

The energy-momentum conservation of the physical matter model

ÊÒ—
ÂT –— = 0 (2.20)

translates to

Ò—T
–— = –a(Ï)TÒ

–
Ï

a
, (2.21)
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with –a(Ï) defined as in (2.17). This can be seen from the conservation identity

Ò
–

1
T–— + T

Ï

–—

2
= 0 , (2.22)

where T
Ï

–—
is defined as the variational derivative of the scalar action SÏ[g–—, Ï]

(Eq. (2.12))

T
Ï

–—
:= ≠

2
Ô

g

”SÏ [g–—, Ï]
”g–—

=2“ab(Ï)Ò–Ï
a

Ò—Ï
b + 2V (Ï)g–— . (2.23)

In the post-Newtonian formalism we adopt, as part of the skeletonization

procedure, one can assume, however, that the masses of the individual self-

gravitating objects depend on the scalar fields as well [15, 21, 27], which makes

the resulting energy-momentum tensor also Ï-dependent. Hence, derivatives of

the trace of the energy-momentum tensor with respect to the scalar field have

to be included in the field equation (2.14). It was demonstrated in [21, 27] that

these derivatives can be introduced through a redefinition of –a(Ï). Here we will

follow the approach of [21], that is to keep the expression for –a(Ï) in its general

form in the first part of the analysis and only later present its explicit form when

we discuss the matter fields and skeletonization.

Let us remark on some general properties of TMST. The action (2.10) is

invariant under spacetime and target space di�eomorphism. This keeps the

covariant, geometrical nature of GR alive and allows for scalar field redefinitions.

TMSTs not only generalize GR and single scalar field extensions, including all

Brans-Dicke theories [324] but also a large subset of f(R) theories [325]. More

well-studied models also include single scalar field theories with a complex scalar
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field [21, 28, 35, 39] These are equivalent to TMSTs with two scalar fields and,

hence, analysis of, e.g., no hair theorems of complex scalar field models translate

to specific TMSTs [200]. TMSTs were also investigated under the 3+1 formalism

crucial for numerical Relativity [28]. This allows for a much deeper analysis of

especially late inspiral and merger phases of binaries. To our knowledge, this

has not been done yet and is, in our mind, a perfect project for future work.

More recently, TMSTs were also investigated in a cosmological context [326, 327],

revealing promising features for future, testable measurements.
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Chapter 3

Post-Newtonian Analysis via

DIRE

Parts of our work in this chapter are based on the publication „Tensor-multiscalar gravity:
Equations of motion to 2.5 post-Newtonian order“, in Phys. Rev. D, 105.0640341 [19] by
O. Schön, and D. D. Doneva. Please refer to our Contribution Statement at the beginning
of this dissertation for more information.

It is time to introduce the central toolkit we use to conduct our analysis, the

direct integration of the relaxed field equations (DIRE) [6, 8–14, 73]. We chose this

framework because it is a well-studied model that is theory agnostic in its approach.

Generally, every theory motivated via an action, and hence, field equations, can be

studied with this mathematical setup. This is quite powerful for multiple reasons,

such as it allows one to promptly compare with other theories that have been

studied using DIRE [15, 16, 108, 328]. It is also possible to generalize previous

results even further using this framework.

DIRE is a tool for post-Newtonian analysis which, in turn, is a tool for
1Copyright © 2022 by American Physical Society (APS). All rights reserved.
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calculating the inspiral phase gravitational waves stemming from binaries. It has

been developed by multiple people, including Epstein and Wagoner [6], Wiseman

[7] and made more rigorous by a series of Will and Pati [8–12]. This chapter

will use all these resources, with a topical book by Poisson and Will [44] and our

previous work [19].

This chapter introduces DIRE vie pure GR, whereas Chapter 4 starts with

adapting to TMSTs.

3.1 Landau-Lifshitz Formulation of Gravity

Post-Newtonian and the more general post-Minkowskian expansion start with a

framework developed by Landau and Lifshitz [74], which is fittingly named Landau-

Lifshitz formulation of GR. We again start with a four-dimensional spacetime

(M, g–—) satisfying the Einstein field equations (2.8) for some given matter model

T–— as the energy-momentum tensor. We still use the signature (≠ + ++) and

a coordinate system (t, x) = (x0
, . . . , x

3). The goal is, as per usual, to calculate

the spacetime metric for a given matter model. Knowing the metric gives you

access to all information you desire from spacetime in GR. The Landau-Lifshitz

formulation, however, starts with another object, the gothic metric density

g–— :=
Ô

≠g g
–—

, (3.1)

where g = det (g–—) is again the determinant of the matrix representation of the

spacetime metric. Please observe that the gothic metric itself is not a tensor

anymore but rather a tensor density due to the scaling with the determinant.

The gothic metric will be the most important quantity in this chapter as we
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calculate various fields. Knowing all components of the gothic metric allows us to

reconstruct the full spacetime metric g–— via Eq. (3.1) and the easily verifiable

fact that det
1
g–—

2
= g. Next, we introduce the tensor density

H
–µ—‹ := g–—gµ‹

≠ g–‹g—µ
. (3.2)

While also not a tensor, this object possesses the same symmetries as the rank

four Riemann tensor (2.5). More specifically, it is skew-symmetric in the first,

as well as in the last two indices (i.e., 0 = H
(–µ)—‹ = H

–µ(—‹)). It also has the

interchange symmetry H
–µ—‹ = H

—‹–µ. Furthermore, the density, or rather the

second derivatives of it, interestingly reproduces the Einstein tensor (2.6) plus

some other terms that we collect in the Landau-Lifshitz pseudotensor t
–—

LL
, such

that

ˆµ‹H
–µ—‹ = 16fiG(≠g)

1
T

–— + t
–—

LL

2
(3.3)

with

16fiG(≠g)t–—

LL
:= ˆ⁄g

–—
ˆµg

⁄µ
≠ ˆ⁄g

–⁄
ˆµg

—µ + 1
2g

–—
g⁄µˆflg

⁄‹
ˆ‹g

µfl

≠g
–⁄

gµ‹ˆflg
—‹

ˆ⁄g
µfl

≠ g
—⁄

gµ‹ˆflg
–‹

ˆ⁄g
µfl + g

‹fl
g⁄µˆ‹g

–⁄
ˆflg

—µ

+1
8

1
2g

–⁄
g

—µ
≠ g

–—
g

⁄µ
2

(2g‹flg‡· ≠ gfl‡g‹· ) ˆ⁄g
‹·

ˆµg
fl‡

, (3.4)

where ˆµ‹ = ˆµˆ‹ .

Equation (3.3) is the starting point of a post-Minkowskian theory which, in

turn, is the foundation of the post-Newtonian theory used in this paper. These field

equations are as usual of second order: The left-hand side has second derivatives

of the tensor density H
–µ—‹ , which implies second derivatives of the gothic metric
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and the spacetime metric. Notice that all these are pure geometric quantities,

precisely as the left-hand side of the standard Einstein field equations (2.8). The

Landau-Lifshitz pseudotensor t
–—

LL
itself does not contain second-order derivatives

anymore but is rather proportional to quadratics of first-order derivatives of the

gothic metric, t
–—

LL
≥ ˆg · ˆg. Further, Eq. (3.3) is still mathematically equivalent

to the full Einstein field equations (2.8) in the sense that no approximations have

been introduced yet. We did lose, however, the covariant nature of GR by writing

everything in Lorentzian coordinates because not all quantities are pure tensors

anymore. This loss is not too devastating, though, since in almost all practical

use cases in physics relating to GR, one has to choose a coordinate system at one

point. Here, we already used one on the hierarchy of the field equations. Note

here, as with any attempt to solve Einstein’s field equations, the manipulations

introduced here do not give away their usefulness. Similar to the 3+1 formulation

or conformal rewriting, this is a preliminary step with some advantages later.

Moving on, the antisymmetry of H
–µ—‹ in the last pair of indices yields a

resemblance of a conservation law

ˆ—ˆµ‹H
–µ—‹ = ˆ—

Ë
(≠g)

1
T

–— + t
–—

LL

2È
= 0 . (3.5)

This, together with the Einstein equations (2.8), is equivalent to the energy-

momentum conservation Ò—T
–— = 0. Using this, we can formulate global conser-

vation properties (here only for the energy, but similar integral identities can be

defined straight from Eq. (3.5) for angular momentum, linear momentum, and

center of mass)

E :=
⁄

V

(≠g)
1
T

00 + t
00

LL

2
d3

x (3.6)
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dE

dt
=

j

S

(≠g)t0j

LL
d2

Sj , (3.7)

where the former integral is assumed to be over a three-dimensional domain V

with nonvanishing matter contribution, and the latter equation is a surface integral

over a two-sphere S containing all support of the energy-momentum tensor T
–—.

The involvement of the Landau-Lifshitz pseudotensor in the energy rate of change

(3.7) hints at its involvement in the energy loss of a system due to gravitational

radiation. This contrasts Newtonian gravity, where energy was a strictly conserved

quantity. GR allows energy to be reduced in forms of radiation away from the

source towards spatial infinity.

3.2 The Relaxed Einstein equations

To proceed, we impose harmonic coordinate (gauge) conditions ˆ—g–— = 0 and

define the potentials

h
–— := ÷

–—
≠ g–—

, (3.8)

with inverse Minkowski metric ÷
–— in Lorentzian coordinates (t := x

0
, x

j). It is

easily verified that such coordinates always exist as our formulation inherits the

coordinate freedom from the usual GR formulation. The fields h
–— are, next to

the scalar fields, the main focus of the rest of this thesis. Together, they are the

unknowns in the wave equations we will derive below. First, note that knowing all

h
–— is su�cient to recreate the spacetime metric via the definition (3.8) and Eq.

(3.1). Next, it is easy to imagine that any ansatz to solve for h
–— works best if the

spacetime geometry is close to flat Minkowski space since then Eq. (3.8) implies

that the h
–— are small and, in some sense, a perturbation to a flat background.
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Later on, we will realize that, while not suitable for physics directly at the event

horizon, this ansatz produces strong results even for the space between compact

objects assuming certain slow-motion conditions. Hence, this toolkit is very usable

even for calculating orbits of slow-moving (compared to the speed of light) binary

black holes.

The above introduced harmonic gauge translates nicely to these fields as

ˆ—h
–— = 0. Using all this, the left-hand side of (3.3) becomes

ˆµ‹H
–µ—‹ = ≠⇤h

–—
≠ 16fiGı(≠g)t–—

H
, (3.9)

for the usual harmonic-gauge pseudotensor

16fiGı(≠g)t–—

H
:= ˆµh

–‹
ˆ‹h

—µ
≠ h

µ‹
ˆµˆ‹h

–— (3.10)

and for the Minkowskian wave operator ⇤ := ÷
µ‹

ˆµˆ‹ . The right-hand side of

(3.3) also simplifies as some terms in the Landau-Lifshitz pseudotensor (3.4) vanish

due to our chosen gauge. Now, substituting the identity (3.3) into Eq. (3.9) and

isolating the box operator to the left-hand side, we arrive at the flat wave equation

⇤h
–— = ≠16fiGı·

–—
, (3.11)

where the source

·
–— := (≠g)

1
T

–— + t
–—

LL
+ t

–—

H

2
(3.12)

plays the role of an e�ective energy-momentum pseudotensor and satisfies the

conservation law

ˆ—·
–— = 0 . (3.13)
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Note that with Eq. (3.8) in mind, we hint at the idea that we will assume

the spacetime to be close to the Minkowski solution to expand in terms of the

gravitational potentials h
–—. Until now, however, we did not impose anything

else on pure GR but a preferred coordinate system. Everything here is a direct

reformulation of the Einstein field equations (2.8) and mathematically equivalent

to a change of coordinates. Further on, approximations will be introduced to

be helpful for our analysis, and at that point, this equivalence will break. The

rewriting was to obtain the flat wave equation (3.11). While highly nonlinear and

complicated, it is nonetheless a wave equation; we can utilize decades of existing

research to solve this problem.

The reformulating of the field equations in the previous section lead us, in

principle, to the following set of equations

⇤h
–— = ≠16fiGı·

–—
, (3.14)

ˆ—·
–— = 0 . (3.15)

The idea is to solve for the gravitational potentials h
–— in terms of the matter

variables included in the source ·
–— via Eq. (3.12) and then make sure the

divergence condition of the second equation is satisfied. In some sense, this is

similar to the famous Wheeler quote cited in Section 2.1.2 in that in Eq. (3.14),

matter dictates the fields h
–— and, in turn, the metric tensor which tells spacetime

how to curve. On the other hand, Eq. (3.15) is essentially a form of an equation

of motion, meaning spacetime tells matter how to move.

As the title of the section indicates, we will occupy ourselves with the relaxed

field equations, that is, the wave equation (3.14) independent from the conservation

(3.15). This is where the basic framework of DIRE starts, and the integration
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techniques are explained in the next section.

3.3 The Direct Integration of the Relaxed Field

Equations

Luckily for us, there already exists a formal solution of wave equations in the form

of Eq. (3.14) in

h
–— (x) = 4G

⁄
G (x, x

Õ) ·
–— (xÕ) d4

x
Õ
, (3.16)

for an event x = (t, x) with the retarded Green’s function G (x, x
Õ) satisfying the

Minkowski wave equation

⇤G (x, x
Õ) = ≠4fi” (x ≠ x

Õ) , (3.17)

for the standard ” distribution. Note that we call Eq. (3.16) a formal solution

due to the dependence of h
–— in the source ·

–— via the Landau-Lifshitz, t
–—

LL
, and

harmonic gauge, t
–—

H
, pseudetensors in Eq. (3.12). The retarded Green’s function

as a solution of Eq. (3.17) is a function only of x ≠ x
Õ and can be written down

explicitly as

G (x, x
Õ) = ” (t ≠ t

Õ
≠ |x ≠ xÕ

|)
|x ≠ xÕ|

, (3.18)

for the standard Euclidean norm | · | where we used the fact that

” (x ≠ x
Õ) = ” (t ≠ t

Õ) ” (x ≠ xÕ) . (3.19)

Substituting the Green’s function (3.18) back in the formal solution (3.16)
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then yields

h
–— (x) = 4G

⁄
·

–— (xÕ) ” (t ≠ t
Õ
≠ |x ≠ xÕ

|)
|x ≠ xÕ|

d4
x

Õ
. (3.20)

This can be simplified immediately further by integrating out the time component

to obtain (as demonstrated in Fig. 3.1)

h
–— (t, x) = 4G

⁄
·

–— (t ≠ |x ≠ xÕ
|, xÕ)

|x ≠ xÕ|
d3

x
Õ
, (3.21)

where this integral is meant to be evaluated over the past light cone C(t, x)

of the field event (t, x). We still observe a retardation in time in the source

·
–— (t ≠ |x ≠ xÕ

|, xÕ) via t ≠ |x ≠ xÕ
|. This is, again, in contrast to Newtonian

gravity, where no retardation would occur due to gravity being an immediate

e�ect. Here, relativistic e�ects such as noninstant gravitation are incorporated.

Approximating this retardation will be one of the key components in our analysis

later on.

The key to unlocking solutions from the right-hand side of Eq. (3.21) is via

an iterative process of the form

⇤h
–—

N+1
= ≠16fiGı·

–—
1
h

–—

N

2
, (3.22)

h
–—

N+1
= 4G

⁄ ·
–—

1
h

–—

N

2
(t ≠ |x ≠ xÕ

|, xÕ)
|x ≠ xÕ|

d3
x

Õ
. (3.23)

So we start with the initial data h
–—

0 = 0, pluck this in the e�ective energy-

momentum pseudotensor ·
–— and then evaluate the integral (3.23) to obtain h

–—

1 .

This process can be iterated, and due to the involvement of the gravitational

constant G in the above’s equations, we end up with an expansion in G of the
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C(t,x)

|x� x0|

|x
�

x
0 |

t0 = t� |x� x0|

(t,x)

(t0,x0)

(t,x0)

Figure 3.1: Past light cone C(t, x) of an event (t, x). Any other event (t, xÕ)
happening at the same time t is moved to the the past light cone C(t, x) via the
time retardation t

Õ = t ≠ |x ≠ xÕ
|.

form

h
–— = Gk

–—

1¸ ˚˙ ˝
h

–—
1

+ G
2
k

–—

2

¸ ˚˙ ˝
h

–—
2

+ G
3
k

–—

3

¸ ˚˙ ˝
h

–—
3

+ G
4
k

–—

4

¸ ˚˙ ˝
h

–—
4

+ . . . , (3.24)

with the iterative defined auxiliary quantities

h
–—

N
=:

Nÿ

j=1

G
j
k

–—

j
. (3.25)

A power series in the gravitational constant G like here is known as a post-

Minkowskian expansion. Using a quantity with dimension as an expansion pa-

rameter might seem unusual. In involving units, there is no way of making sense

of „small“ typically needed for the parameter of a series like that. Later on, the
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physical expansion parameter will be of the form

Gmc

c2rc

(3.26)

for the characteristic mass mc and radius rc of the physical system of interest. To

not overcrowd the analysis until the matter matters, it is established to keep the

parameter as G for now. This also means that there is not exactly convergence

expected from Eq. (3.22) but rather hope that the truncated series produces

good enough results for the region we are interested in due to the nature of the

framework itself.

3.3.1 Domain Separation

Evaluating the integral (3.21) is not as straightforward as one might hope. There

are, however, methods to approximate the integral in specific domains (similar to

problems encountered in electrodynamics). To make full use of these methods,

we split the past light cone C(t, x) of any event (t, x) into a near-zone N (t, x)

and a wave-zone W(t, x) (sometimes also called the far-zone or radiation-zone).

These zones are defined via a three-dimensional sphere of radius R around the

matter source of the physical system we are modeling (see Fig. 3.2). In the most

common use case of a binary system, the radius R roughly equals the characteristic

wavelength the system radiates in the forms of gravitational waves. This ensures

that all the matter lies within the sphere and that the methods below yield the

best results.

More precisely, the near-zone N (t, x) then is the intersection of a world tube
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W

N

R
⇠
�

Figure 3.2: Binary system separated in near- and far zone via a sphere of radius R.
The size of the sphere is proportional to the wavelength ⁄ of the system-specific
characteristic radiation, R ≥ ⁄.

D, traced by our sphere of radius R

D :=
;

(t, x)
---- |x ≠ xCM | < R for the center of mass (t, xCM) at time t

<
(3.27)

and the past light cone C(t, x) of any event (t, x) (see Fig. 3.3), so

N (t, x) := D fl C(t, x) µ C(t, x) , (3.28)

and the wave-zone is hence given as the set di�erence

W(t, x) := C(t, x) \ N (t, x) µ C(t, x) . (3.29)

As mentioned earlier, depending on whether the event (t, x) is located in
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C(t,x)W(t,x)

D
(t,x)

N (t,x)

Figure 3.3: Past light cone C(t, x) of an event (t, x). The domain D is a world
tube traced by the matter sphere of radius R where the support of the energy-
momentum tensor is located. The near-zone N (t, x) is depicted as the intersection
of the light cone with D. Here, we arranged the field point (t, x) in the wave-zone
W(t, x).

the near-zone N (t, x) or wave-zone W(t, x), di�erent techniques can be used

to approximately evaluate the integral (3.21) and, hence, calculate h
–—(t, x) at

this specific event. Be aware that in both incidents, there is a near- and wave-

zone contribution to the gravitational potential h
–—. Hence, to obtain the entire

spacetime geometry, one has to calculate the four individual components

h
–— (t, x) =

Y
___]

___[

h
–—

N (t, x) + h
–—

W (t, x) for (t, x) œ N (t, x) ,

h
–—

N (t, x) + h
–—

W (t, x) for (t, x) œ W(t, x) .

(3.30)

The near- and wave-zone potentials might contain terms dependent on the cut-

o� radius R due to its involvement in the integration boundary. This parameter,

however, has to necessarily cancel out by adding up the two solutions. Hence, in
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further calculations, we can drop R-depended terms from our analysis.

Of course, one might expect that the radiation zone solutions will not con-

tribute much to the full potential for a field point in the near-zone as the near-zone

dynamics will dominate the system due to the e�ects of the retardation being min-

imal. Basically, inside the near-zone, everything happens almost instantaneously.

But the nonlinear nature of our theory will necessarily force such contribution at

higher orders as the value of nonmatter fields (such as t
–—

LL
, Eq. (3.4), and t

–—

H
, Eq.

(3.10)) might decrease away from the near-zone, the integration domain grows

more extensive as well. Hence the magnitude of the contribution is not apparent

right away.

This contrasts the previously mentioned similarity to electrodynamics, where

you only ever integrate over the source of your system. Our source term, ·
–— from

Eq, (3.12), contains the gravitational potential h
–— itself and, hence, the source

has to be integrated over the whole past light cone. In this sense, gravity itself

can create gravity.

It is crucial to keep in mind that when we talk about the near-zone dynamics,

when do not mean just the near-zone part h
–—

N of the gravitational potentials h
–—.

Instead, we talk about the behavior of h
–— at a near-zone event (t, x), which

includes radiation-zone integrals as depicted in Eq. (3.30).

3.4 Near-Zone Field Point Evaluation

As our primary goal is to derive the equation of motion in Tensor Multi-Scalar

Theories of gravitation, we are mainly interested in near-zone dynamics. This

means we must thoroughly evaluate the first case of Eq. (3.30) to a high enough

order for our analysis. As briefly mentioned above, the main contribution is the
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near-zone integration which will be analyzed in the following. After, we will briefly

discuss the wave-zone contribution to the evaluation of h
–— at a near-zone event.

3.4.1 Near-Zone Integration of Near-Zone Event

The near-zone N (t, x) of any event (t, x) is a nontrivial geometrical region. As

an intersection of the past light cone, it has nonvanishing curvature making it

a complicated integration domain. Examining the formal solution of Eq. (3.21)

more closely, we observe that for a near-zone event (t, x) the near-zone integration

h
–—

N (t, x) = 4G

⁄

N

·
–— (t ≠ |x ≠ xÕ

|, xÕ)
|x ≠ xÕ|

d3
x

Õ
, (3.31)

depends on the distance |x ≠ xÕ
| in two separate ways. Once via time retardation

in the wave equation source ·
–— and the Newtonian-like denominator. Since here

we assume (t, x) œ N (t, x), we now that

|x ≠ xÕ
| < R (3.32)

for the near-zone integration over xÕ. This allows us to interpret |x≠xÕ
| as a small

quantity compared to the time and validates a Taylor expansion of the source as

·
–— (t ≠ |x ≠ xÕ

|, xÕ) =
Œÿ

k=0

(≠1)k

k!
ˆ

k

ˆtk
·

–— (t, xÕ) |x ≠ xÕ
|
k

. (3.33)

We immediately note that the pseudo tensor ·
–— is now evaluated at nonre-

tarded time t. Hence, integrating over the near-zone now involves the new domain

M(t, x)

M(t, x) := D fl �t µ �t , (3.34)
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C(t,x)

W(t,x)

D

(t,x)

N (t,x)

M(t,x)

Figure 3.4: Field point (t, x) in the near-zone N (t, x). We approximate the
near-zone with the intersection M(t, x) of our world tube D and a time slice �t

of constant time t (Cauchy surface).

where �t is a Cauchy surface of constant time t (as depicted in Fig. 3.4). This,

again, mimics the behavior one would study in electrodynamics as we have

instantaneous interaction of gravity via this approximation. In the near-zone, this

is true enough for our purposes.

Putting it all together to calculate h
–—

N , and keeping in mind that the source is

weighted by 1/|x ≠ xÕ
|, we obtain

h
–—

N (t, x) =
Œÿ

k=0

(≠1)k

k!
ˆ

k

ˆtk

⁄

M
·

–— (t, xÕ) |x ≠ xÕ
|
k≠1 d3

x
Õ
. (3.35)

Calculating the sum above to a high order is the bulk of analyzing near-zone

behavior as we intend to do. The calculations are more involved as the wave-zone

integration does not contribute early. This post-Newtonian expansion right here

is often depicted as a power series in terms of the reciprocal of the speed of light,
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1/c, since in nongeometric units, the retardation could read t ≠ |x ≠ xÕ
|/c. We

omitted it here since our original analysis, later on, will be in said units, as stated

before.

As a sanity check, we may briefly investigate the series in Eq. (3.35). The first

term, and hence lowest order contribution, has the form

⁄

M

·
–— (t, xÕ)
|x ≠ xÕ|

d3
x

Õ
. (3.36)

This is, just as expected, the Newtonian potential itself. All additional terms are

counted as relativistic corrections in powers of |x ≠ xÕ
|.

3.4.2 Wave-Zone Integration of Near-Zone Event

We will not spend too much time and e�ort on this part since the wave-zone

contribution to the near-zone analysis only plays a vital role in an order beyond our

goal of accurately constructing the equation of motion thru 2.5 post-Newtonian

order. This is also what one would expect from a physical point of view, as the

masses in the near-zone should dominate behavior related to gravity quite a bit.

However, it has to be carefully checked every time one calculates contribution if

we discover new terms beyond gravity. As mentioned, this is a brief discussion,

and for details, please consult [10, 15, 16, 44].

By adapting the spatial integration variables via the retardation

·
Õ = t

Õ
≠ R

Õ (3.37)



92 3.5. Post-Newtonian Spacetime Metric for Near-Zone Events

the wave-zone W integration yields

h
–—

W (t, x) = 4
⁄

·≠2R+2R

·≠2R
d·

Õ
⁄

2fi

0

d„
Õ
⁄

1

1≠›

·
–— (· Õ + R

Õ
, xÕ)

t ≠ · Õ ≠ N Õ
· x

[RÕ (· Õ
, �Õ)] d cos (◊Õ)

+4
⁄

·≠2R

≠Œ
d·

Õ
j

·
–— (· Õ + R

Õ
, xÕ)

t ≠ · Õ ≠ N Õ
· x

[RÕ (· Õ
, �Õ)]2 d2�Õ (3.38)

with

› := · ≠ ·
Õ

2RR
(2R ≠ 2R + · ≠ ·

Õ) (3.39)

R
Õ (· Õ

, �Õ) = (t ≠ ·
Õ)2

≠ R
2

2 (t ≠ · Õ ≠ N Õ
· x) , (3.40)

and the unit normal N Õ = xÕ
/R

Õ for R
Õ = |xÕ

|.

3.5 Post-Newtonian Spacetime Metric for Near-

Zone Events

Let us now take the time to explain how exactly we convert between the gravi-

tational potentials h
–— as defined in Eq. (3.8) and the full spacetime metric g–—.

More precisely, we need to ask ourselves how accurately we need to calculate the

fields h
–— via the post-Minkowskian approximation explained above to have the

(conformal) spacetime metric su�ciently correct for the physical problem we want

to analyze. Combining Eq. (3.8) and the definition of the goth metric Eq. (3.1),

we obtain

g
–— = 1

Ô
≠g

1
÷

–—
≠ h

–—
2

, (3.41)

with g = det(g–—) again.

The factor 1/
Ô

≠g in the above’s equation is important to understand to
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calculate g
–— in any meaningful way. Its expansion will guide the expansion of all

other spacetime fields later on. First, we recall

(≠g) = ≠ det (g–—) = ≠ det
1
g–—

2
= ≠ det

1
÷

–—
≠ h

–—
2

. (3.42)

Hence, we need to approximate the determinant somehow in terms of the gravita-

tional potentials h
–—. We note the formal expansion in a parameter ⁄ œ R

det (Id + ⁄M) = exp (tr (log (Id ≠ ⁄M)))

= exp
3

⁄tr(M) ≠
1
2⁄

2tr
1
M

2
2

+ 1
3⁄

3tr
1
M

3
2

+ O

1
M

4
24

= 1 + ⁄tr(M) + 1
2⁄

2
1
tr2 (M) ≠ tr

1
M

2
22

+1
6⁄

3
1
tr3 (M) ≠ 3tr (M) tr

1
M

2
2

+ 2tr
1
M

3
22

+O

1
M

4
2

. (3.43)

Adapted to our scenario, meaning Id = ÷
–—, M = h

–—, and ⁄ = ≠1, we obtain

(≠g) = ≠ det (g–—) = ≠ det
1
g–—

2
= ≠ det

1
÷

–—
≠ h

–—
2

= 1 ≠ h + 1
2h

2
≠

1
2h

–—
h–— ≠

1
6h

3 + 1
2h h

–—
h–— ≠

1
3h–—h

—

“
h

–“

+O

1
G

4
2

, (3.44)

since h
–—

Ã G and for h := tr÷(h) = ÷–—h
–—. It is generally understood that

the indices of the gravitational potentials h
–— are raised and lowered with the

Minkowski metric ÷–— = diag(≠1, 1, 1, 1).

Using Eq. (3.44), we can expand the square root needed for Eq. (3.41) as

Ô
≠g = 1 ≠

1
2h + 1

8h
2

≠
1
4h

–—
h–— ≠

1
48h

3 + 1
8h h

–—
h–— ≠

1
6h–—h

—

“
h

–“
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+O

1
G

4
2

. (3.45)

From this we can easily expand 1/
Ô

≠g and substitute the solution in Eq. (3.41)

to obtain the inverse spacetime metric

g
–— = 1

Ô
≠g

1
÷

–—
≠ h

–—
2

= ÷
–—

≠ h
–— + 1

2h÷
–—

≠
1
2hh

–— +
31

8h
2 + 1

4h
–—

h–—

4
÷

–—

≠
1
8h

2
h

–—
≠

1
4h

–—
hµ‹h

µ‹ + 1
48h

3
÷

–— + 1
8hhµ‹h

µ‹
÷

–— + 1
6hµ‹h

‹

“
h

µ“
÷

–—

+O

1
G

4
2

. (3.46)

And after inverting the full spacetime metric has the form

g–— = ÷–— + h–— ≠
1
2h÷

–—
≠

1
2hh–— + h–µh

µ

—
+

31
8h

2
≠

1
4h

–—
h–—

4
÷–—

+O

1
G

3
2

. (3.47)

Let us analyze the (inverse) spacetime metrics Eqs. (3.46) an (3.47) more

closely. The good news is that we do not need to calculate all ten spacetime

potentials in the same order. Depending on the physical problem one wants

to study, the component g00 might be needed to higher order accuracy than

some spatial component gij. In this application, we switch from the formal post-

Minkowskian expansion in G to the physical post-Newtonian expansion parameter

already indicated in Eq. (3.26)

Á ≥
Gmc

c2rc

. (3.48)

This also shows why PN approximations are sometimes given in orders of 1/c.
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However, we stick to Á since we will work in geometrized units later on and be

consistent with previous literature. A crucial assumption needed to further the

investigation is called slow-motion condition. This entails that the physical objects

move slowly compared to the speed of light in a way such that Á ≥ v
2

c
for the

characteristic velocity vc. Keeping this in mind, the factor

1
≠g00 ≠ 2g0iv

i
≠ gijv

i
v

j
2

1/2

(3.49)

the standard Lagrangian for the equation of motion reveals the order in which

the metric components need to be evaluated. To obtain the equation of motion

to our desired 2.5 PN order, we need g00 to Á
7/2 but g0i only to Á

3 and gij to Á
5/2

due to the multiplication with the velocities v
i

≥
Ô

Á and v
i
v

j
≥ Á, respectively.

So, in total,

g00 ≥ O

1
Á

7/2
2

, (3.50)

g0j ≥ O

1
Á

3
2

, (3.51)

gij ≥ O

1
Á

5/2
2

. (3.52)

Combining the fact above with the expanded spacetime metric Eq. (3.47), we

obtain

g00 = ≠

3
1 ≠

1
2h

00 + 3
8

1
h

00
2

2

≠
5
16

1
h

00
2

3
4

+ 1
2h

k

k

3
1 ≠

1
2h

00

4
+ 1

2h
0k

h0k

+O

1
Á

4
2

, (3.53a)

g0i = ≠h
0i

3
1 ≠

1
2h

00

4
+ O

1
Á

7/2
2

, (3.53b)

gij = ”
ij

3
1 + 1

2h
00

≠
1
8

1
h

00
2

2
4

+ h
ij

≠
1
2h

k

k
”

ij + O

1
Á

3
2

, (3.53c)

(≠g) = 1 + h
00

≠ h
k

k
+ O

1
Á

3
2

. (3.53d)
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We can analyze how and where h
–— components enter the spacetime metric

(3.53). We find that the lapse h
00 enters all metric fields at first post-Newtonian

order despite g0i where it enters at Á
5/2. Next, despite the obvious contribution to

g0i, the field h
0j also enters at Á

3 in g00. Hence, for the equations of motion to

1.5 PN order, h
0j does not contribute to the spacetime metric field g00. Last, the

spatial part h
ij enters twice only as a trace, namely in g00 and gij, while the full

spatial part also appears in the latter. Note that the spatial part does not enter

gij for analysis to 1.5 PN order making it a second-order correction term.



Chapter 4

Equations of Motion to 2.5

Post-Newtonian Order

Parts of our work in this chapter are based on the publication „Tensor-multiscalar gravity:
Equations of motion to 2.5 post-Newtonian order“, in Phys. Rev. D, 105.0640341 [19] by
O. Schön, and D. D. Doneva. Please refer to our Contribution Statement at the beginning
of this dissertation for more information.

In this chapter, we combine all the ingredients discussed in the previous chapter

to calculate the main focus of our analysis: The motion of compact bodies in

Tensor Multi-Scalar Theories of gravity. More precisely, we take the field equations

(2.13)-(2.14) and bring them into the relaxed form introduced in Sec 3.2. Then,

we iterate via the DIRE process to obtain a spacetime metric which we will use

to calculate the Christo�el symbols accurately enough to obtain the equations of

motion through 2.5 PN order finally.
1Copyright © 2022 by American Physical Society (APS). All rights reserved.
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4.1 Adapting DIRE to TMST

At first, we collect all scalar field-related terms in (2.13) via

16fiGı

(≠g) t
Ï

–—
:= ≠2g–—“ab(Ï)gµ‹

ÒµÏ
a

Ò‹Ï
b + 4“ab(Ï)Ò–Ï

a
Ò—Ï

b
≠ 4V (Ï)g–— , (4.1)

and we rewrite (2.13) as

G–— = 8fiGıT–— + 8fiGı

(≠g) t
Ï

–—
. (4.2)

The equation above visualizes the di�erence to pure GR quite directly as the

additional terms are all encoded in t
Ï

–—
. Thanks to this specific form, we can insert

this Eq. (4.2) into our newly defined field equation (3.3) and obtain

ˆµˆ‹H
–µ—‹ = 16fiGı(≠g)

1
T

–— + t
–—

LL
+ t

–—

Ï

2
. (4.3)

Let us take a closer look at the right-hand side. The physical quantities

are, as usual, incorporated in the energy-momentum tensor T
–—. As before, the

di�erence to GR is the inclusion of the field t
–—

Ï
. Note that while Eq. (4.3) looks

algebraically identical to the single scalar field case in [15], the di�erence is hidden

in the definition of t
–—

Ï
as all the multiple scalar fields are contracted in there.

Until now, all manipulations done in this section can be seen as equivalent

to the theory defined by the field equation (2.13), and we have yet to focus our

attention on the extra field equations (2.14). The following steps explicitly show

the advantage of this Landau-Lifshitz formulation of gravity. The goal is to

isolate the spacetime metric potentials and the multiple scalar fields in a flat wave

equation. Once we succeed, we can fully use PDE theory and solve for those
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desired fields.

To proceed, we again impose the harmonic coordinate (gauge) conditions

ˆ—g–— = 0 and define the potentials

h
–— := ÷

–—
≠ g–— (4.4)

with inverse Minkowski metric ÷
–— in Lorentzian coordinates (t := x

0
, x

j) as we

did in Eq. (3.8). The fields h
–— are, next to the scalar fields, the main focus of

the rest of this chapter. Together, they are the unknowns in the wave equations

we will derive below.

Using all this, the left-hand side of (4.3) becomes

ˆµˆ‹H
–µ—‹ = ≠⇤h

–—
≠ 16fiGı(≠g)t–—

H
, (4.5)

for the usual harmonic-gauge pseudotensor

16fiGı(≠g)t–—

H
:= ˆµh

–‹
ˆ‹h

—µ
≠ h

µ‹
ˆµˆ‹h

–— (4.6)

and for the Minkowskian wave operator ⇤ := ÷
µ‹

ˆµˆ‹ . The right-hand side of

(4.3) also simplifies as some terms in the Landau-Lifshitz pseudotensor (3.4) vanish

due to our chosen gauge. Now, substituting the identity (4.3) into Eq. (3.9) and

isolating the box operator to the left-hand side, we arrive at the flat wave equation

⇤h
–— = ≠16fiGı·

–—
, (4.7)

where the source

·
–— := (≠g)

1
T

–— + t
–—

LL
+ t

–—

H
+ t

–—

Ï

2
(4.8)
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plays the role of an e�ective energy-momentum pseudotensor. Again, compared

to GR, this source has the additional term t
–—

Ï
encoding the multiple scalar field

contributions. In addition, similar to the conservation of energy-momentum
ÊÒ—

ÂT –— = 0 in the physical Jordan frame, our conformal e�ective source necessarily

obeys an equivalent conservation law in

ˆ—·
–— = 0 . (4.9)

The crucial conceptual di�erence in those two described conservation laws is that

the first one is fundamental in the sense that this should be true in any viable

theory. The latter is a consequence of assuming our field equations to be fulfilled.

The second part of the field equations, Eq. (2.14), already has the form of a

wave equation with respect to a curved metric. We can, however, transform it

into a flat wave equation via

g
µ‹

ÒµÒ‹Ï
a = 1

Ô
≠g

ˆµ (gµ‹
ˆ‹Ï

a) = 1
Ô

≠g

1
⇤Ï

a
≠ h

–—
ˆ–ˆ—Ï

a
2

. (4.10)

Hence, Eq. (2.14) can be brought into the form

⇤Ï
a = ≠8fiGı·

a

Ï
, (4.11)

where the source is given as

·
a

Ï
:= ≠

Ô
≠g

8fiGı

C

≠“
a

bc
(Ï)g–—

Ò–Ï
b
Ò—Ï

c + “
ab(Ï)ˆV (Ï)

ˆÏb
≠ 4fiGı“

ab
–b(Ï)T

D

≠
1

8fiGı

h
–—

ˆ–ˆ—Ï
a

. (4.12)

The di�erence between TMST to STT becomes more evident in the source term
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(4.12). For each scalar field Ï
a, the target space metric “

ab and its associated

Christo�el symbols “
a

bc
contribute di�erently to the source. Hence, the curvature

of the n-dimensional Riemannian target manifold (T n
, “ab) directly decides the

source term di�erence. Also, one may introduce symmetry conditions to the

metric “ab to reduce certain degrees of freedom.

In total, we have a system of wave equations

⇤h
–— = ≠16fiGı·

–—
, (4.13)

⇤Ï
a = ≠8fiGı·

a

Ï
. (4.14)

These equations, in the absence of any coordinate conditions, are referred to as the

relaxed Einstein field equations, or, more accurately, in our case, relaxed Tensor

Multi-Scalar Theory field equations. This paper aims to solve these two entangled

partial di�erential equations in the near-zone. The formal solutions are given by

the standard retarded Green functions

h
–—(t, x) = 4

⁄
·

–— (t ≠ |x ≠ xÕ
|, xÕ)

|x ≠ xÕ|
d3

x
Õ
, (4.15)

Ï
a(t, x) = 2

⁄
·

a

Ï
(t ≠ |x ≠ xÕ

|, xÕ)
|x ≠ xÕ|

d3
x

Õ
. (4.16)

These will be calculated iteratively with the framework DIRE as explained in

[11, 44]. That is, the integrals will be expanded, incorporating a slow-motion

and weak-field assumption in terms of a small parameter Á ≥ v
2

≥ Gım/r for

the characteristic mass m, size r, and velocity v of the physical objects we are

interested in.

Now that we have defined the main equations we want to study further and

solve in (4.13) and (4.14), it is worthwhile to think about the whole setting
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we find ourselves in. Various fields govern Tensor Multi-Scalar Theory in the

Einstein frame. Besides the natural spacetime metric g–— and the scalar fields

Ï
a, we have the conformal factor A

2(Ï), the target space metric “ab(Ï), the

scalar field potential V (Ï), and, of course, the energy-momentum tensor T–—.

The unknowns of our system (4.13) and (4.14) are the tuple (g–—, Ï
a), so for a

four-dimensional spacetime with n scalar fields that is 10 + n total independent

fields. The initial data we need to provide therefore [A2(Ï), “ab(Ï), V (Ï), T–—]

consisting of 1 + n(n + 1)/2 + 1 + 10 = n(n + 1)/2 + 12 independent fields fully

defining our approach.

To close this section, we set ourselves up to utilize previous results. Following

[11, 15], we define the quantities

�–— := 16fiGı(≠g)
1
t
–—

LL
+ t

–—

H

2
, (4.17)

�–—

Ï
:= 16fiGı(≠g)t–—

Ï
, (4.18)

to rewrite the metric-potential source in (4.13) and obtain

16fiGı·
–— = 16fiGı(≠g)T –— + �–— + �–—

Ï
. (4.19)

This equation mimics the formulas in [11] and [15]. Hence, the fields defined in

(4.17) and (4.18) have the same algebraic structure as in GR and single STT and

can be used in our analysis.

For the remaining work of this dissertation, we restrict ourselves to a class of

TMST with vanishing potential of the scalar fields V (Ï) = 0. Furthermore, we

adapt geometric coordinate units to set the bare gravitational constant Gı = 1.
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4.2 Formal structure of the near-zone fields

At this stage, we are ready to calculate the general form of the near-zone metric.

This forms the basis of the post-Newtonian theory analyzed in the presented work.

Out of convenience, we assign less indices-crowded notation (as in [10, 15])

N := h
00

, K
j := h

0j
, B

ij := h
ij

, B
i

i
:= B . (4.20)

These fields inherit their leading order in Á from the energy-momentum tensor in

Eq. (4.13). The exact form of the matter model we are using will be discussed in

more detail in Section 4.4, but for now, it is su�cient to know that there exists

a hierarchy of the form T
0i

/T
00

≥
Ô

Á T
ij

/T
00. Using this fact together with Eq.

(4.13) yields h
0i

/h
00

≥
Ô

Á h
ij

/h
00. These physically meaningful relationships can

be written more handily via the shortcuts

N ≥ O (Á) , K
j

≥ O

1
Á

3/2
2

, B
ij

≥ O

1
Á

2
2

, B ≥ O

1
Á

2
2

.

(4.21)

We can now calculate the expansion of our Einstein frame metric in terms of

the potentials (4.20) using the leading orders in (4.21). Utilizing (3.8) to get

an expansion for the gothic inverse metric g–— allows us to calculate the inverse

spacetime metric g
–— via (3.1). Finally, inverting this metric perturbatively yields

g00 = ≠

3
1 ≠

1
2N + 3

8N
2

≠
5
16N

3

4
+ 1

2B

3
1 ≠

1
2N

4
+ 1

2K
j
K

j

+O

1
Á

4
2

, (4.22a)

g0i = ≠K
i

3
1 ≠

1
2N

4
+ O

1
Á

7/2
2

, (4.22b)
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gij = ”
ij

3
1 + 1

2N ≠
1
8N

2

4
+ B

ij
≠

1
2B”

ij + O

1
Á

3
2

, (4.22c)

(≠g) = 1 + N ≠ B + O

1
Á

3
2

, (4.22d)

which is the same as calculated in pure GR in Eqs. (3.53).

The fields’ covariant and contravariant components, such as K
i or B

ij, are

naturally interchangeable since the spatial metric to raise and lower those indices

is ”
ij. Note that these potentials do not depend explicitly on the extra scalar

fields (instead via the h
–— fields) as in the single scalar field case in [15] since we

stay in the conformal Einstein frame. In contrast, the cited paper converts to the

physical Jordan frame. If one collapses all equations down to one scalar field, we

can yield the relevant fields in the Einstein frame, which is an auxiliary new result

of this dissertation.

Following the convention in [21] and the work built on top of it, we define

underneath quantities from the energy-momentum tensor T
–—

‡ := T
00 + T

ii
, (4.23a)

‡
i := T

0i
, (4.23b)

‡
ij := T

ij
, (4.23c)

‡
a

Ï
:= –

a(Ï) T . (4.23d)

These densities will aid in expanding the sources of the wave equations (4.13)

and (4.14). In contrast to GR and similar to STT, the field ‡
a

Ï
is added. It is

coupled to the matter model via –
a(Ï) defined in (2.17). Hence, the conformal

factor A
2(Ï) contributes here.

As mentioned earlier, the source fields (4.17) and (4.18) are algebraic equivalent
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with GR; hence, those fields to the required order are given in [10] as

�00 = ≠
7
8(ÒN)2 +

;5
8Ṅ

2
≠ N̈N ≠ 2Ṅ

,k
K

k + 1
2K

i,j
1
3K

j,i + K
i,j

2

+K̇
j
N

,j
≠ B

ij
N

,ij + 1
4ÒN · ÒB + 7

8N(ÒN)2

<
+ O(flÁ

3) , (4.24a)

�0i =
;

N
,k(Kk,i

≠ K
i,k) + 3

4ṄN
,i

<
+ O

1
flÁ

5/2
2

, (4.24b)

�ij = 1
4

;
N

,i
N

,j
≠

1
2”

ij(ÒN)2

<
+

Ó
2K

k,(i
K

j),k
≠ K

k,i
K

k,j
≠ K

i,k
K

j,k

+2N
,(i

K̇
j) + 1

2N
,(i

B
,j)

≠
1
2N

3
N

,i
N

,j
≠

1
2”

ij(ÒN)2

4

≠”
ij

3
K

l,k
K

[k,l] + N
,k

K̇
k + 3

8Ṅ
2 + 1

4ÒN · ÒB

4<
+ O(flÁ

3) , (4.24c)

�ii = ≠
1
8(ÒN)2 +

;
K

l,k
K

[k,l]
≠ N

,k
K̇

k
≠

1
4ÒN · ÒB

≠
9
8Ṅ

2 + 1
4N(ÒN)2

<
+ O(flÁ

3) . (4.24d)

To ease the reading, we employ the following notation: Parentheses denote the

symmetrization of a tensor with respect to those indices. In contrast, square

brackets denote the antisymmetrization of a tensor with respect to those indices.

A comma represents a partial derivative with respect to the spatial coordinate,

while a dot indicates a time derivative. Time derivatives of order three or higher

will be denoted as a number in parentheses over the field.

To expand the extra source terms for the multiple scalar fields, we rely on an

asymptotic expansion in terms of Ï
a around Ï

a

Œ, the cosmological values of the

multiple scalar fields. For the target space metric “ab = “ab(Ï), this means

“ab(Ï) = “ab(ÏŒ) + ˆ“ab(Ï)
ˆÏc

-----
ÏŒ

(Ïc
≠ Ï

c

Œ) + O(Ï2) . (4.25)

Now, in order not to overcrowd our notations, we understand every occurrence of
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“ab as asymptotically evaluated, such that

“ab © “ab(ÏŒ) , “ab,c ©
ˆ“ab(Ï)

ˆÏc

-----
ÏŒ

. (4.26)

Using the same techniques for the Christo�el symbols “
a

bc
= “

a

bc
(Ï), we obtain

“
a

bc
(Ï) = “

a

bc
(ÏŒ) + ˆ“

a

bc
(Ï)

ˆÏd

-----
ÏŒ

1
Ï

d
≠ Ï

d

Œ

2
+ O(Ï2) , (4.27)

where it is from now on again understood that

“
a

bc
© “

a

bc
(ÏŒ) , “

a

bc,d
©

ˆ“
a

bc
(Ï)

ˆÏd

-----
ÏŒ

. (4.28)

Without loss of generality in what follows, we can assume that the cosmological

value of the scalar field is zero similar to [21], i.e., Ï
a

Œ = 0. We will, however,

in contrast to [21], not make any further simplifications by choosing specific

coordinates for the target space (T n
, “ab). In their analysis, field coordinates were

selected to be asymptotically geodesic; that is, the cosmological value ÏŒ let the

Christo�el symbols vanish, i.e., “
a

bc
(ÏŒ) © 0. By keeping the coordinates general

ourselves, we can identify specific spots where the geometry of the target space

contributes via these Christo�el symbols. The goal is to gain some insight into

the physical meaning of the target space and its form.

Keeping in mind that ˆt ≥
Ô

Á Ò, we can calculate the expanded scalar field

source terms to be

�00

Ï
=

Ó
2“ab”

ij
Ï

a,i
Ï

b,j
Ô

+
Ó
4“abN”

ij
Ï

a,i
Ï

b,j + 2“abÏ̇
a
Ï̇

b + 2“ab,c”
ij

Ï
a,i

Ï
b,j

Ï
c
Ô

+O

1
flÁ

3
2

, (4.29a)
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�0i

Ï
= ≠4“abÏ̇

a
Ï

b,i + O

1
flÁ

5/2
2

, (4.29b)

�ij

Ï
= 2

Ó
4“abÏ

a,i
Ï

b,j + 2“ab”
ij

”
kl

Ï
a,k

Ï
b,l

Ô
+ 2

Ó
2“abNÏ

a,i
Ï

b,j

+“ab”
ij

1
N”

kl
Ï

a,k
Ï

b,l + Ï̇
a
Ï̇

b
2

2“ab,c Ï
a,i

Ï
b,j

Ï
c

+“ab,c ”
ij

”
kl

Ï
a,k

Ï
b,l

Ï
c
Ô

+ O

1
flÁ

3
2

, (4.29c)

�ii

Ï
=

Ó
10“ab”

ij
Ï

a,i
Ï

b,j
Ô

+ 10
Ó
“abN”

ij
Ï

a,i
Ï

b,j + “abÏ̇
a
Ï̇

b + “ab,c ”
ij

Ï
a,i

Ï
b,j

Ï
c
Ô

+O

1
flÁ

3
2

. (4.29d)

The source of the scalar fields wave equations (4.12) then can be expanded as

·
a

Ï
= 1

2‡
a

Ï
+

;
≠

1
4N‡

a

Ï
+ 1

8fi
“

a

bc
”

ij
Ï

b,i
Ï

c,j

<

+

Y
]

[
1
8N

2
‡

a

Ï
+ 1

8fi

1
≠N Ï̈

a
≠ 2Ï̇

a,k
K

k
≠ Ï

a,ij
B

ij
≠ “

a

bc
Ï̇

b
Ï̇

c

+“
a

bc,d
”

ij
Ï

b,i
Ï

c,j
Ï

d
2

Z
^

\ + O

1
flÁ

3
2

. (4.30)

Again, we emphasize the di�erence to STT by examining Eqs. (4.29) and

(4.30) more closely. The target space metric is directly involved in contracting the

scalar field indices; hence, the target space’s geometry is directly involved here.

Besides the obvious contribution of the Christo�el symbols “
a

bc
in the expanded

source (4.30), one can also notice the direct contribution of the conformal factor

A(Ï) in ‡
a

Ï
. As the derivative of A(Ï) in direction Ï

a is contributing, and the

Einstein frame in TMST gives the freedom to choose a conformal factor A(Ï),

one can see that di�erent scalar fields might behave vastly di�erent, depending on

their dependency in A(Ï).

We continue to follow the process of DIRE and give the formal near-zone

expansions of the retarded Green functions. The integration domain is a bounded
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time-slice: a spatial hypersurface M at a constant time t bounded by a world-

tube of radius R. This radius naturally bounds the near-zone from the far-zone.

We can disregard all near-zone potentials that depend on this auxiliary cut-o�

parameter R since they need to cancel out with their counterparts from the

far-zone. Furthermore, the equations of the formal near-zone expansions of the

retarded Green functions are again algebraically the same as in [15] due to the

inheritance of the conservation law shown in Eq. (4.9) adapted for TMST. Knowing

this, the expansions to the order we need are given as

NN = 4Á

⁄

M

·
00(t, xÕ)

|x ≠ xÕ|
d3

x
Õ + 2Á

2
ˆ

2

t

⁄

M
·

00(t, xÕ)|x ≠ xÕ
| d3

x
Õ
≠

2
3Á

5/2

(3)

I
kk(t)

+1
6Á

3
ˆ

4

t

⁄

M
·

00(t, xÕ)|x ≠ xÕ
|
3 d3

x
Õ
≠

1
30Á

7/2

Y
]

[

1
(4x

kl + 2r
2
”

kl
2 (5)

I
kl(t)

≠4x
k

(5)

I
kll(t) +

(5)

I
kkll(t)

Z
^

\ + NˆM + O(Á4) , (4.31a)

K
i

N = 4Á
3/2

⁄

M

·
0i(t, xÕ)

|x ≠ xÕ|
d3

x
Õ + 2Á

5/2
ˆ

2

t

⁄

M
·

0i(t, xÕ)|x ≠ xÕ
| d3

x
Õ

+2
9Á

3

Y
]

[3x
k

(4)

I
ik(t) ≠

(4)

I
ikk(t) +2Á

mik

(3)

J
mk(t)

Z
^

\

+K
i

ˆM + O

1
Á

7/2
2

, (4.31b)

B
ij

N = 4Á
2

⁄

M

·
ij(t, xÕ)

|x ≠ xÕ|
d3

x
Õ
≠ 2Á

5/2

(3)

I
ij(t) +2Á

3
ˆ

2

t

⁄

M
·

ij(t, xÕ)|x ≠ xÕ
| d3

x
Õ

≠
1
9Á

7/2

Y
]

[3r
2

(5)

I
ij(t) ≠2x

k

(5)

I
ijk(t) ≠8x

k
Á

mki

(4)

J
m|j(t) +6

(3)

M
ijkk(t)

Z
^

\

+B
ij

ˆM + O(Á4) , (4.31c)

Ï
a

N = 2Á

⁄

M

·
a

Ï
(t, xÕ)

|x ≠ xÕ|
d3

x
Õ
≠ 2Á

3/2
Ṁ

a

Ï
+ Á

2
ˆ

2

t

⁄

M
·

a

Ï
(t, xÕ)|x ≠ xÕ

| d3
x

Õ

≠
1
3Á

5/2

Y
]

[r
2

(3)

M
a

Ï
(t) ≠2x

j

(3)

a
I

j

Ï
(t) +

(3)

a
I

kk

Ï
(t)

Z
^

\
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+ 1
12Á

3
ˆ

4

t

⁄

M
·

a

Ï
(t, xÕ)|x ≠ xÕ

|
3 d3

x
Õ
≠

1
60Á

7/2

Y
]

[r
4

(5)

M
a

Ï
(t) ≠4r

2
x

j

(5)

a
I

j

Ï
(t)

+
1
4x

kl + 2r
2
”

kl
2 (5)

a
I

kl

Ï
(t) ≠4x

k

(5)

a
I

kll

Ï
(t) +

(5)

a
I

kkll

Ï
(t)

Z
^

\

+O(Á4) . (4.31d)

The key di�erence with STT in [15] here is the adaption of the expansion

to multiple scalar fields Ï
a in the last equation. To present this expansion in a

readable manner, we made use of the momentum already employed in [15] and

adapted it to our needs:

I
Q :=

⁄

M
·

00
x

Q d3
x , (4.32a)

J
iQ := Á

ikl

⁄

M
·

0l
x

kQ d3
x , (4.32b)

M
ijQ :=

⁄

M
·

ij
x

Q d3
x , (4.32c)

a
I

Q

Ï
:=

⁄

M
·

a

Ï
x

Q d3
x , (4.32d)

M
a

Ï
:=

⁄

M
·

a

Ï
d3

x . (4.32e)

Here, Q is understood as a multi-index in the following sense: Take, as an example,

the scalar dipole moments a
I

j

Ï
(t). For those we have Q = j and

a
I

Q

Ï
(t) = a

I
j

Ï
(t) =

⁄

M
·

a

Ï
x

j d3
x . (4.33)

As in the single scalar field scenario, the boundary terms NˆM , K
i

ˆM and B
ij

ˆM

have no e�ect for the order we are interested in. They are, however, given in

Appendix C in [10] and will have the same algebraic form for TMST.

The near-zone expansions in (4.31) are essentially an expansion in terms of time

derivatives and powers of |x ≠ xÕ
| where we integrate out xÕ over the previously
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explained set M. This expansion is suitable since for any event (t, x) in the

near-zone, the di�erence |x ≠ xÕ
| is small or, more precisely, |x ≠ xÕ

| < 2R for

the above introduced cut-o� radius R. Examining these equations a bit more,

we notice that first-time derivatives are missing in, for example, the near-zone

expansion of NN = h
00

N . This is a direct consequence of the conservation law (4.9)

together with Gauss’s theorem. However, no such conservation law exists for the

extra multiple scalar fields Ï
a; hence, we have a 1.5 PN contribution term in the

expansion (4.31d). In the next section, we deal with that fact more closely in

calculating the potential.

The potentials resulting from integrating the source terms via Eq. (4.31) will

be Poisson-like. We follow the notation of [10] further and generalize to multiscalar

potentials when appropriate. We then get for any source f the Poisson potential

P (f) := 1
4fi

⁄

M

f(t, xÕ)
|x ≠ xÕ|

d3
x

Õ
, Ò

2
P (f) = ≠f . (4.34)

The fields stemming from the energy-matter distribution and hence the source of

the wave-equations ‡, ‡
i, ‡

ij
, and ‡

a

Ï
inherit potentials such as

�(f) :=
⁄

M

‡(t, xÕ)f(t, xÕ)
|x ≠ xÕ|

d3
x

Õ = P (4fi‡f) , (4.35a)

�i(f) :=
⁄

M

‡
i(t, xÕ)f(t, xÕ)

|x ≠ xÕ|
d3

x
Õ = P (4fi‡

i
f) , (4.35b)

�ij(f) :=
⁄

M

‡
ij(t, xÕ)f(t, xÕ)

|x ≠ xÕ|
d3

x
Õ = P (4fi‡

ij
f) , (4.35c)

�a

Ï
(f) :=

⁄

M

‡
a

Ï
(t, xÕ)f(t, xÕ)
|x ≠ xÕ|

d3
x

Õ = P (4fi‡
a

Ï
f) , (4.35d)

where we added the theory specific �a

Ï
stemming from the source ‡

a

Ï
. Integrating

a source against higher powers of |x ≠ xÕ
|
≠1, i.e. |x ≠ xÕ

|, |x ≠ xÕ
|
3, are commonly
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referred to as superpotentials [15]. For these, we introduce the notation

X(f) :=
⁄

M
‡(t, xÕ)f(t, xÕ)|x ≠ xÕ

| d3
x

Õ
, (4.36a)

Y (f) :=
⁄

M
‡(t, xÕ)f(t, xÕ)|x ≠ xÕ

|
3 d3

x
Õ
, (4.36b)

and likewise their counterparts and generalizations X
i, X

a

Ï
and analogs for Y .

To improve readability and reduce long expressions we introduce similar

definitions as in [10] and again adapt them to our generalized formulation. The

most often used potentials are the Newtonian-like constructions

U :=
⁄

M

‡(t, xÕ)
|x ≠ xÕ|

d3
x

Õ = P (4fi‡) = �(1) , (4.37a)

U
a

Ï
:=

⁄

M

‡
a

Ï
(t, xÕ)

|x ≠ xÕ|
d3

x
Õ = P

1
4fi‡

a

Ï

2
= �a

Ï
(1) . (4.37b)

We use the GR potentials to PN order of [10, 15]:

V
i := �i(1) , �ij

1 := �ij(1) , �1 := �ii(1) , �2 := �(U) , X := X(1) ,

and the 2 PN potentials

V
i

2
:= �i(U) , �i

2
:= �(V i) ,

Y := Y (1) , X
i := X

i(1) ,

X1 := X
ii(1) , X2 := X(U) ,

P
ij

2 := P (U ,i
U

,j) , P2 := P
ii

2
= �2 ≠

1
2U

2
,

G1 := P (U̇2) , G2 := P (UÜ) ,

G3 := ≠P (U̇ ,k
V

k) , G4 := P (V i,j
V

j,i) ,
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G5 := ≠P (V̇ k
U

,k) , G6 := P (U ,ij�ij

1 ) ,

G
i

7
:= P (U ,k

V
k,i) + 3

4P (U ,i
U̇) , H := P (U ,ij

P
ij

2 ) .

To avoid confusion with too many indices, we keep the abbreviations for

potentials, including target space indices, to a minimum. The ones used are listed

as

X
a

Ï
:= X

a

Ï
(1) , Y

a

Ï
:= Y

a

Ï
(1) . (4.38)

4.3 Expansion of near-zone fields to 2.5 PN order

We follow the convention in [15] and [11] to split the metric fields in terms of their

PN contributions via

N = Á

1
N0 + ÁN1 + Á

3/2
N1.5 + Á

2
N2 + Á

5/2
N2.5

2
+ O

1
Á

4
2

, (4.39a)

K
i = Á

3/2
1
K

i

1
+ ÁK

i

2
+ Á

3/2
K

i

2.5

2
+ O

1
Á

7/2
2

, (4.39b)

B = Á
2

1
B1 + Á

1/2
B1.5 + ÁB2 + Á

3/2
B2.5

2
+ O

1
Á

4
2

, (4.39c)

B
ij = Á

2
1
B

ij

2 + Á
1/2

B
ij

2.5

2
+ O

1
Á

3
2

, (4.39d)

Ï
a = Á

1
Ï

a

0
+ Á

1/2
Ï

a

0.5
+ ÁÏ

a

1
+ Á

3/2
Ï

a

1.5
+ Á

2
Ï

a

2
+ Á

5/2
Ï

a

2.5

2
+ O

1
Á

4
2

, (4.39e)

where the subscript number on each metric field denotes the leading order con-

tribution to the equations of motion. Writing the equations this way helps to

visualize where and how much any field of interest contributes. As expected, the

lapse N = h
00 and the scalar fields Ï

a are most involved as they start to contribute

already at first post-Newtonian order. A complete map of the iterative process to

calculate all the above fields and our succeeding analysis is given in Figure 4.1.
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Calculate the source expansions

Tab
N = Tab

⇣
m, hab

N , ja
N

⌘

t
ab
N = tab

⇣
Tab

N , hab
N , ja

N

⌘

ta
j,N = tab

⇣
TN , hab

N , ja
N

⌘

Use Green’s function to obtain

hab
N+1 =

Z
t

ab
N |x � x0|�1 d3x0

ja
N+1 =

Z
ta

j,N |x � x0|�1 d3x0

Already at desired order?

N 7! N + 1

Expand matter source

Tab
N+1 = Tab

⇣
m, hab

N+1, ja
N+1

⌘

Calculate Christoffel symbols
to obtain equation of motion

Yes

No

Figure 4.1: Flowchart of the general scheme of our calculations. This is similar to
the one found in [10] but adapted to our TMST case here. The iterative process
starts with setting 0 © Ï

a
© h

–— and uses that to calculate the wave equation
sources in (4.13)–(4.14) to lowest order. These sources are then inserted in the
retarded Green’s function, which will be evaluated via the expansions detailed
in Eqs. (4.31). This yields the first set of the metric and scalar potentials of
Eqs. (4.39). Now, depending on the problem of interest, one can iterate this
process as long as needed, reinserting these fields in the wave equation sources and
calculating those one order more accurately. Once the desired order is reached, we
expand the actual matter model assumed in our work utilizing the prior metric
and scalar field potentials calculated. At last, we can calculate the Christo�el
symbols from our expanded metric, which, in turn, yields the equation of motion.
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4.3.1 Calculation of Newtonian, 1 PN, and 1.5 PN Fields

The lowest order in our PN expansion relies only on

·
00 = (≠g)T 00 + O(flÁ) = ‡ + O(flÁ) (4.40)

since there are no other contributions in the source and ‡
ii

≥ Á‡. This gives us

N0 = 4U . (4.41)

This result is expected since it resembles the Newtonian potential itself. The

source to the Newtonian order of the scalar fields is given by

·
a

Ï
= 1

2‡
a

Ï
+ O(flÁ) (4.42)

which returns

Ï
a

0
= U

a

Ï
. (4.43)

To the next PN order, we substitute the field to the prior order in the source

and obtain

·
00 = ‡ ≠ ‡

ii + 4‡U ≠
7

8fi
(ÒU)2 + 1

8fi
“ab”

ij
U

a,i

Ï
U

b,j

Ï
+ O(flÁ

2) , (4.44)

·
0i = ‡

i + O(flÁ
3/2) , (4.45)

·
ii = ‡

ii
≠

1
8fi

(ÒU)2 + 5
8fi

“ab”
kl

U
a,k

Ï
U

b,l

Ï
+ O(flÁ

2) , (4.46)

·
ij = O(flÁ) , (4.47)

·
a

Ï
= 1

2‡
a

Ï
≠ ‡

a

Ï
U + 1

8fi
“

a

bc
”

ij
U

b,i

Ï
U

c,j

Ï
+ O(flÁ

2) (4.48)

At this point, comparing these equations to those in [15] is worthwhile. The
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terms presented here are natural generalizations to their single scalar field coun-

terparts. There is, however, one notable di�erence: In (4.44), the counterpart for

·
00 (Eq. (4.9a) in [15]) has a term ‡Us. We do not have this term in our analysis.

The reason for that is the di�erence in the underlying frame used.

Substituting all sources above into Eqs. (4.31), we obtain

N1 = 7U
2

≠ 4�1 + 2�2 + 2Ẍ ≠ “ab

1
U

a

Ï
U

b

Ï
+ 2�a

Ï

1
U

b

Ï

22
, (4.49)

K
i

1
= 4V

i
, (4.50)

B1 = U
2 + 4�1 ≠ 2�2 ≠ 5“ab

1
U

a

Ï
U

b

Ï
+ 2�a

Ï

1
U

b

Ï

22
, (4.51)

Ï
a

1
= ≠“

a

bc

1
U

b

Ï
U

c

Ï
+ 2�b

Ï

1
U

c

Ï

22
≠ �a

Ï
(U) + 1

2Ẍ
a

Ï
, (4.52)

N1.5 = ≠
2
3

(3)

I
kk(t) , (4.53)

B1.5 = ≠2
(3)

I
kk(t) , (4.54)

Ï
a

1.5
= ≠2Ṁ

a

Ï
(t) + 2

3x
j

(3)

a
I

j

Ï
(t) ≠

1
3

(3)

a
I

kk

Ï
(t) . (4.55)

Like the single scalar field case [15], M
a

Ï
(t) is constant to the lowest PN order.

This can be verified assuming that our compact bodies have a stationary internal

structure and the conservation of the baryon number in our system. Hence the

term M
a

Ï
(t) does not contribute to Ï

a

0.5
as shown in Eq. (4.31d) but rather to 1.5

PN order as shown above. Hence, Ï
a

0.5
vanishes here.

To calculate the 1 PN and 1.5 PN metric and scalar field contributions listed

in Eqs. (4.49)–(4.55) we made use of some identities. First note that for any

su�ciently regular function f the Poisson potential of Ò
2
f , as defined in Eq.

(4.34), is given as

P

1
Ò

2
f

2
= ≠f + BP (f) , (4.56)
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for the boundary term given in the surface integral

BP (f) := 1
4fi

j

ˆM

C
f(t, xÕ)
|x ≠ xÕ|

ˆ
Õ
r
log (f(t, xÕ)|x ≠ xÕ

|)
D

rÕ=R
R

2 d�Õ
. (4.57)

For 1 PN and 1.5 PN correction terms, this term will not produce any R-

independent terms and can be neglected. At higher order, however, essential

contributions might arise. Hence, it is necessary to carefully evaluate this integral

at every step the formula above is used.

To apply this formula, we present useful in-between results of integrating the

sources ·
–—, Eqs. (4.44)–(4.48). For example, note that

”
ij

U
a,i

Ï
U

b,j

Ï
= ÒU

a

Ï
· ÒU

b

Ï

= 1
2Ò

2
1
U

a

Ï
U

b

Ï

2
≠ U

a

Ï
Ò

2
U

b

Ï
≠ U

b

Ï
Ò

2
U

a

Ï
, (4.58)

leading to

P

1
ÒU

a

Ï
· ÒU

b

Ï

2
= ≠

1
2

1
U

a

Ï
U

b

Ï
≠ P

1
U

a

Ï
Ò

2
U

b

Ï

2
≠ P

1
U

b

Ï
Ò

2
U

a

Ï

22
. (4.59)

The last step, invoking the fact that “ab is symmetric together with Poisson’s

equation

Ò
2
U

a

Ï
= 4fi‡

a

Ï
, (4.60)

and the potentials in Eqs. (4.35), yields

P

1
“ab”

ij
U

a,i

Ï
U

b,j

Ï

2
= ≠

1
2“abU

a

Ï
U

b

Ï
+ “ab�a

Ï

1
U

b

Ï

2
. (4.61)

Since the Christo�el symbols are symmetric in the lower indices, i.e., “
a

bc
= “

a

cb
,



Chapter 4. Equations of Motion to 2.5 Post-Newtonian Order 117

integrating the term

“
a

bc
”

ij
U

b,i

Ï
U

c,j

Ï
(4.62)

from the scalar-field source ·
a

Ï
, Eq. (4.48), works similar as

P

1
“

a

bc
”

ij
U

b,i

Ï
U

c,j

Ï

2
= ≠

1
2“

a

bc
U

b

Ï
U

c

Ï
+ “

a

bc
�b

Ï

1
U

c

Ï

2
. (4.63)

All of the above together explains the terms beyond GR in Eqs. (4.49)–(4.55)

stemming from Einstein frame TMSTs. The GR counterpart to Eq. (4.61) is then

given as [10]

P (ÒU · ÒU) = ≠
1
2U

2 + �2 . (4.64)

With similar calculations, we are also able to provide some valuable formulae

for other GR and TMST potentials, such as

P (U) = ≠
1
2X , (4.65)

P (Ua

Ï
) = ≠

1
2X

a

Ï
, (4.66)

(4.67)

utilizing the identities

Ò
2
X = 2U , (4.68)

Ò
2
X

a

Ï
= 2U

a

Ï
. (4.69)

4.3.2 Spacetime Metric and Scalar Fields to 1.5 PN Order

To better see the full picture of our results until here, we can put the 1 PN and

1.5 PN order contributions of Eqs. (4.49)–(4.55) in the context of the spacetime
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metric (4.22). This allows us to analyze the interactions between the various

contributions of the expansions (4.39) in the actual setting of the gravitational

fields g–—. So, substituting all previous results in the 1.5 PN expansion of the

metric (4.22) yields

g00 = ≠1 + 2U ≠ 2U
2 + Ẍ ≠ 3“ab

1
U

a

Ï
U

b

Ï
+ 2�a

Ï

1
U

b

Ï

22

≠
4
3

(3)

I
kk(t) +O

1
Á

3
2

, (4.70a)

g0i = ≠4V
i + O

1
Á

5/2
2

, (4.70b)

gij = ”
ij (1 + 2U) + O

1
Á

2
2

, (4.70c)

(≠g) = 1 + 4U + O

1
Á

2
2

, (4.70d)

Ï
a = U

a

Ï
≠ “

a

bc

1
U

b

Ï
U

c

Ï
+ 2�b

Ï

1
U

c

Ï

22
≠ �a

Ï
(U) + 1

2Ẍ
a

Ï

≠2Ṁ
a

Ï
(t) + 2

3x
j

(3)

a
I

j

Ï
(t) ≠

1
3

(3)

a
I

kk

Ï
(t) +O

1
Á

3
2

. (4.70e)

Taking a step back and examining these potentials more closely is worthwhile.

This result agrees with [21] and can be compared to the one scalar field case

given in [15]. In there, the notation is as follows: The extra scalar field given in

the field equations is denoted by „ with cosmological value „0 and the rescaling

„/„0 =: 1 ≠ �. This allows us to collapse our equations to one scalar field, Ï
a

© „,

and choose our free parameters as

A
2(„) := „0

„
; “ab(„) © “00(„) := 2Ê(„) + 3

4„2
. (4.71)

Now, calculating the physical metric Âg–— via the conformal relation for single

STTs, Âg–— = „0/„ g–—, we obtain the same result as in [15], Eqs. (4.11).

Next, let us further analyze the physical Jordan frame metric Âg–— = A
2(Ï)g–—
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in our Tensor Multi-Scalar setting. Notice that, to the here discussed 1.5 PN

order, the only scalar field contribution in the tensorial part of the Einstein frame

metric g–— is in the dt
2 component g00, Eq. (4.70a). This is not true for the

physical metric, as one can see with an asymptotic expansion of the conformal

factor

A
2(Ï) = A

2(ÏŒ) + 2ˆA(Ï)
ˆÏa

-----
ÏŒ

(Ïa
≠ Ï

a

Œ) + O

1
Ï

2
2

, (4.72)

or, simply written (keeping ÏŒ © 0 from earlier in mind), A
2(Ï) = A

2

0
+ 2A0,aÏ

a +

O(Ï2). Now, substituting in the lowest order contribution of Ï
a via Eq. (4.43),

the nontrivial contribution to the first PN order of the physical Jordan frame

metric is given as

Âg00 = ≠A
2

0
+ 2A

2

0
U ≠ 2A0,aU

a

Ï
+ O

1
Á

2
2

. (4.73)

The form of the physical metric here makes sense as it is a linear combination of the

Newtonian-like gravitational potentials U and U
a

Ï
. At the same time, the coe�cient

in front can be interpreted as rescaled e�ective gravitational coupling constants.

The fact that there is now a combination of 1 + n contributing potentials as a

post-Newtonian addition to gravity is, of course, expected as a result of coupling

n scalar fields to the gravitational potentials as is done in Tensor Multi-Scalar

Theory studied here.

4.3.3 Calculation of 2 PN and 2.5 PN Fields

At 2 PN and 2.5 PN orders, we obtain

·
ij = ‡

ij + 1
4fi

3
U

,i
U

,j
≠

1
2”

ij(ÒU)2

4
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+ 1
8fi

“ab

1
2U

a,i

Ï
U

b,j

Ï
+ ”

ij
”

kl
U

a,k

Ï
U

b,l

Ï

2
+ O(flÁ

2) , (4.74)

·
0i = ‡

i + 4‡
i
U + 2

fi
U

,j
V

[j,i] + 3
4fi

U̇U
,i

≠
1

4fi
“abU̇

a

Ï
U

b,i

Ï
+ O

1
flÁ

5/2
2

. (4.75)

Using Eqs. (4.31b) and (4.31c), the integrals yield

B
ij

2 = 4Ï
ij

1 + 4P
ij

2 ≠ ”
ij(2�2 ≠ U

2)

+4“ab
ab
P

ij

2Ï ≠ “ab”
ij

1
U

a

Ï
U

b

Ï
+ 2�a

Ï

1
U

b

Ï

22
, (4.76)

K
i

2
= 8V

i

2
≠ 8�i

2
+ 8UV

i + 16G
i

7
+ 2Ẍ

i
≠ 4“ab”

ij
P

1
U̇

a

Ï
U

b,j

Ï

2
, (4.77)

B
ij

2.5 = ≠2
(3)

I
ij(t) , (4.78)

K
i

2.5
= 2

3x
k

(4)

I
ik(t) ≠

2
9

(4)

I
ikk(t) +4

9Á
mik

(3)

J
mk(t) . (4.79)

To calculate the source terms of our wave equations to the final order needed,

we substitute all prior results of this section in Eqs. (4.19) and (4.30) to obtain

·
00 = ‡ ≠ ‡

ii + 4‡U ≠
7

8fi
(ÒU)2 + 1

8fi
“ab”

ij
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a,i
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Ï
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Substituting this into Eqs. (4.31a), (4.31c), and (4.31d), yields
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Ẍ

b

Ï

1
U

c

Ï

2
+ 3

2“
a

bc
P

1
Ü
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(3)

I
kk(t) ≠4X

,kl

(3)

I
kl(t) , (4.86)

B2.5 = ≠
1
3r

2

(5)

I
ii(t) +2

9x
k

(5)

I
iik(t) +8

9x
k
Á

mki

(4)

J
mi(t) ≠

2
3

(3)

M
iikk(t) , (4.87)

Ï
a

2.5
= ≠

1
3r

2

(3)

M
a

Ï
(t) ≠4r

2
x

j

(5)

a
I

j

Ï
(t) +(4x

kl + 2r
2
”

kl)
(5)

a
I

kl

Ï
(t) ≠4x

k

(5)

a
I

kll

Ï
(t)
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+
(5)

a
I

kkll

Ï
(t) +1

3U
a

Ï

(3)

I
kk(t) ≠X

a,kl

Ï

(3)

I
kl(t) . (4.88)

We again present the most important mathematical identities used to arrive

at these equations. Of course, the metric potentials to 2 PN and 2.5 PN orders

are quite involved, so we will try to explain the methods more generally and in a

way that can be adapted to multiple scenarios. Of course, the identities explained

at the end of Section 4.3.1, Eqs. (4.56)–(4.63), are still valid and useful here. For

general and su�ciently regular fields f, g, we have

P (Òf · Òg) = ≠
1
2

1
fg + P

1
fÒ

2
g

2
+ P

1
gÒ

2
f

2
≠ BP (fg)

2
(4.89)

where the surface integral BP (fg) is given as in Eq. (4.57). This formula becomes

especially useful if either f or g is a Newtonian-like potential U , Eq. (4.37a), or

U
a

Ï
, Eq. (4.37b), since then we can utilize the Poisson’s equation

Ò
2
U = 4fi‡ , (4.90)

Ò
2
U

a

Ï
= 4fi‡

a

Ï
. (4.91)

Other things we encounter while integrating the 2 PN sources Eqs. (4.81)–

(4.82) are potentials including three factors such as

fÒU · ÒU , fÒU
a

Ï
· ÒU , fÒU

a

Ï
· ÒU

b

Ï
. (4.92)

These kinds of potentials are, in general, di�cult to integrate. One instance is
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given as

P (fÒU · ÒU) = ≠
1
2

1
fU

2 + P

1
U

2
Ò

2
f

2
≠ 2�(fU) + 4P (UÒU · Òf)

≠BP

1
fU

2
22

. (4.93)

We already used Poisson’s equation here, and for f = U
a

Ï
this would simplify

further as

P

1
U

2
Ò

2
U

a

Ï

2
= �a

Ï

1
U

2
2

. (4.94)

Generally, again for su�ciently regular fields f, g, h, we calculate

P (fÒg · Òh) = ≠
1
2

C

fgh + 2P (gÒf · Òh) + 2P (hÒf · Òg) + P (fgÒ
2
h)

+P (fhÒ
2
g) + P (hgÒ

2
f) ≠ BP (fgh)

D

. (4.95)

This identity tells us that for di�erent functions f, g, and h, we cannot simplify

those potentials much further. This is not much of an issue in GR or STTs, at

least not to this order here, but in TMST, we do have source terms of the form

UÒU
a

Ï
· ÒU

b

Ï
. (4.96)

In GR, no other Newtonian-like potential despite U appears where in STTs it is

at most one, namely Us [15]. TMST allows for n + 1 di�erent versions, hence the

di�culties arising here.

Other valuable in-between calculations include of 2 PN sources include, using

again the identities Eqs. (4.69) and (4.69),

P (X) = ≠
1
12Y , (4.97)
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P (Xa

Ï
) = ≠

1
12Y

a

Ï
, (4.98)

P

1
ÒU · ÒẌ

2
= ≠

1
2UẌ + 1

2�(Ẍ) ≠ P (UÜ) + O(Á4) , (4.99)

P

1
ÒU

a

Ï
· ÒẌ

b

Ï

2
= ≠

1
2U

a

Ï
Ẍ

b

Ï
+ 1

2�a

Ï
(Ẍb

Ï
) ≠ P (Ua

Ï
Ü

a

Ï
) + O(Á4) . (4.100)

Another essential part of integrating the 2 PN sources Eqs. (4.81)–(4.82) are

the Poisson superpotentials Eq. (4.36), generally given as

S(f) :=
⁄

M
f(t, xÕ)|x ≠ xÕ

| d3
x

Õ
, (4.101)

with the property

S

1
Ò

2
f

2
= 2P (f) + BS(f) , (4.102)

where the boundary this time as calculated as

BS(f) := 1
4fi

j

M

C

f(t, xÕ)|x ≠ xÕ
|ˆ

Õ
r
log

A
f(t, xÕ)
|x ≠ xÕ|

BD

rÕ=R
R

2 d�Õ
. (4.103)

Applying this to the TMST source

ÒU
a

Ï
· ÒU

b

Ï
= 1

2Ò
2

1
U

a

Ï
U

b

Ï

2
≠ U

a

Ï
Ò

2
U

b

Ï
≠ U

b

Ï
Ò

2
U

a

Ï
, (4.104)

yields

S

1
ÒU

a

Ï
· ÒU

b

Ï

2
= 1

2S

1
Ò

2
1
U

a

Ï
U

b

Ï

22
≠ S

1
U

a

Ï
Ò

2
U

b

Ï

2
≠ S

1
U

b

Ï
Ò

2
U

a

Ï

2
+ O(Á4)

= P

1
U

a

Ï
U

b

Ï

2
≠ X

b

Ï

1
U

a

Ï

2
≠ X

a

Ï

1
U

b

Ï

2
+ O(Á4) . (4.105)

Since the superpotential in the expansions Eq. (4.31) appear as second order
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time derivatives, we calculate further

S̈

1
ÒU

a

Ï
· ÒU

b

Ï

2
= P

1
ˆ

2

t

1
U

a

Ï
U

b

Ï

22
≠ Ẍ

b

Ï

1
U

a

Ï

2
≠ Ẍ

a

Ï

1
U

b

Ï

2
+ O(Á4)

= P

1
U

a

Ï
Ü

b

Ï

2
+ P

1
U

b

Ï
Ü

a

Ï

2
+ 2P

1
U̇

a

Ï
U̇

b

Ï

2

≠Ẍ
b

Ï

1
U

a

Ï

2
≠ Ẍ

a

Ï

1
U

b

Ï

2
+ O(Á4) . (4.106)

In GR, we simply get

S̈

1
Ò

2
U

2
2

= 2P̈

1
U

2
2

+ O(Á4) = 4G1 + 4G2 + O(Á4) , (4.107)

for G1 and G2 as defined after Eq. (4.37).

4.4 Energy-Momentum Tensor and its Expan-

sion

4.4.1 Expansion of Mass Distribution

As a matter model, we use the idea of modeling compact bodies as skeletonized

point masses. This approach has already been used in [15, 21] and is based on the

work in [329, 330]. The model involves using ”-functions for encoding boundary

conditions derived from the e�ects of scalar gravitational fields. The Einstein

frame matter action then takes the form

Smatt = ≠
ÿ

A

⁄
mA (Ï (zµ

A
))

Ò
≠g–— (zµ

A
) dz

–

A
dz

—

A
, (4.108)
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where we sum over the various bodies A (not to be conflicted with the conformal

factor A(Ï)), and mA = mA(Ï) denotes the Einstein frame masses of the objects

corresponding to the worldlines z
µ

A
.

In the matter action (4.108), it is taken into account that the mass of self-

gravitating objects mA can depend explicitly on the scalar fields, i.e., to have

compact objects such as neutron star or a black hole endowed with scalar hair.

This will e�ectively bring an additional contribution to the scalar fields equation

(2.14) connected with the derivative of the energy-momentum tensor with respect

to the scalar fields that can now be nonzero [15, 329]. It was demonstrated in

[21] that this additional contribution can be encoded in an elegant way in the

expression of –a(Ï) appearing in Eq. (2.14). More precisely, instead of employing

Eq. (2.17) that is valid for non-self-gravitating objects, we can generalize the

expression for –a(Ï) in the following way

–
A

a
(Ï) := ˆ log (mA(Ï))

ˆÏa
= m

≠1

A
(Ï)ˆmA(Ï)

ˆÏa
. (4.109)

We see that –
A

a
(Ï) practically acts as an e�ective coupling function between

compact object A and the contribution of the scalar fields. Following [21] one can

show that

–
A

a
(Ï) = –a(Ï) + ˆ log (ÊmA(Ï))

ˆÏa
, (4.110)

where –a(Ï) is defined in Eq. (2.17) and ÊmA is the Jordan frame mass of the objects

connected to the Einstein frame one via the conformal factor mA = A(Ï)ÊmA.

Clearly, for non-self-gravitating objects, ÊmA is independent of the scalar field, and

the second term in the above equation is zero.
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For convenience, one can define

MA(zA) := mA(Ï) 1
Ò

≠g(zA)
1

Ò
≠g–—(zA) v

–

A
v

—

A

, (4.111)

with the 4-velocities of the Ath compact object

u
–

A
= dz

–

A

dz
0

A

=
A

1,
dzA

dt

B

. (4.112)

Put together, varying the action in Eq. (4.108) and inserting the quantities above

yields the distributional Einstein frame energy-momentum tensor

T
–— (t, x) =

ÿ

A

MA(t)u–

A
u

—

A
”

3 (x ≠ zA(t)) . (4.113)

To get the matter quantity to desired order, we need to expand the Ï dependent

masses and hence the coupling function (4.109) around the asymptotic values of

the extra scalar fields Ï
a

Œ. Remember that without loss of generality, we have

assumed that these are zero, similar to [21]. Formally, this yields

mA(Ï) = mA0

5
1 + –

A0

a
Ï

a + 1
2

1
–

A0

a
–

A0

a
+ —

A0

ab

2
Ï

a
Ï

b

+1
6

1
–

A0

a
–

A0

a
–

A0

a
+ —

A0

ab
–

A0

a
+ –

A0

a
—

A0

ac
+ –

A0

a
—

A0

bc
+ —

A0

abc

2
Ï

a
Ï

b
Ï

c

6

+O

1
Ï

4
2

. (4.114)

Here, as in [21, 27], we introduced the notation mA0 = mA(ÏŒ) and collected

the covariant derivatives Da of the target space metric “ab(Ï) in the symmetric

quantity

—
A

ab
:= Da Db log(mA(Ï)) = Da b–A , (4.115)
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and —
A

abc
:= Da —

A

bc
. The superscript A0 denotes an evaluation of the derivative at

the background value ÏŒ.

Now, following [15], we introduce the shorthand mA(Ï) =: mA0[1 + S(–, Ï)] +

O(Á4), where – collects all –a fields. To expand the energy tensor completely, we

make use of the fact that in GR (see, e.g., [11]), we have

T
–— = fl

ú
Ô

≠g
u

–
u

—(u0)≠1
, (4.116)

where the newly introduced quantity fl
ú satisfies the continuity equation

ˆfl
ú
/ˆt + Ò · (flúv) = 0 . (4.117)

As in the single scalar field case in [15], we can identify baryonic mass in the

density fl
ú as point masses via the delta distribution to get

fl
ú =

ÿ

A

mA0 ”
3 (x ≠ zA) . (4.118)

Substituting this in Eq. (4.116) then yields

T
–— = fl

ú
Ô

≠g
v

–
v

—
u

0[1 + S(–, Ï)] , (4.119)

with the ordinary velocities u
– = u

0
v

– and v
– := dx

–
/dt = (1, v). The task for

the rest of this section is to express all ‡-densities related to the energy-momentum

tensor (Eqs. (4.23)) via fl
ú:

‡ = T
00 + T

ii = fl
ú

Ô
≠g

u
0

1
1 + v

2
2

[1 + S(–, Ï)] , (4.120a)

‡
i = T

0i = fl
ú

Ô
≠g

u
0
v

i [1 + S(–, Ï)] , (4.120b)
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‡
ij = T

ij = fl
ú

Ô
≠g

u
0
v

i
v

j [1 + S(–, Ï)] . (4.120c)

Note that these equations look algebraically similar to the single scalar field theory.

The di�erence in our frame choice, the conformal Einstein frame, compared to the

physical Jordan frame used in [15] is hidden in the velocities, and the contribution

of the multiple scalar fields is encrypted in [1 + S(–, Ï)].

The updated density of the scalar fields can be calculated as

‡
a

Ï
= ≠

fl
ú

u0
Ô

≠g
[–a

A
+ –

a

A
S(–, Ï)] . (4.121)

Before continuing to expand all those densities to the desired order, note that we

can calculate u
0 via

u
0 = 1

Ò
≠g00 ≠ 2g0iv

i ≠ gijv
ivj

= 1 + Á

31
4N0 + 1

2v
2

4
+ Á

2

3
≠

3
32N

2

0
+ 1

4N1 + 1
4B1 ≠ v

i
K

i

1

≠
1
8N0v

2 + 3
8v

4

4
+ Á

5/2

31
4N1.5 + 1

4B1.5

4
+ O(Á3) , (4.122)

and remember that

1
Ô

≠g
= 1 ≠ Á

1
2N0 + Á

2
1
2

3
≠N1 + 3

4N
2

0
+ B1

4
+ Á

5/2
1
2 (≠N1.5 + B1.5) + O(Á3) .

(4.123)

To expand all of the above ‡-densities we need to insert the metric (4.22) and the

expansion (4.39) to get

‡ = fl
ú
C

1 + Á

33
2v

2
≠ U‡ + –

A0

a
U

a

Ï‡

4
+ Á

2

37
8v

4 + v
2
U‡ ≠ 4v

j
V

j

‡
≠

1
4N1
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+3
4B1 + 5

2U
2
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+ —
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, (4.124a)
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2
+ O(Á2)
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, (4.124b)

‡
ij = fl

ú
v

i
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j

C

1 + O(Á)
D

, (4.124c)
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, (4.124d)

where the subscript ‡ in U‡, U
a

Ï‡
, and V

j

‡
indicates definition via the ‡-potentials.

Similarly, the ‡-densities stemming from all extra scalar fields are then given as

‡
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Ï
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. (4.125)

With those new densities, one can express all other fields stemming from the

potentials (4.35) and (4.36) in terms of the redefined sources (4.124) and (4.125).

Similar to [15], to avoid overcrowding the notation, we will use the same notation

as before and redefine

U :=
⁄

M

fl
ú(t, xÕ)

|x ≠ xÕ|
d3

x
Õ
, (4.126a)

U
a

Ï
:=

⁄

M

–
a

A
(t, xÕ)flú(t, xÕ)

|x ≠ xÕ|
d3

x
Õ
, (4.126b)

with the analogous rewritten potentials and superpotentials �, X, and Y as in

[15]. Calulating these potentials, we obtain
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U‡ = U + Á
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Ẍ

a

Ï

2

+3
2–

A0

a
�

1
U

a

Ï
v

2
2

+ 1
2�

11
–

A0

a
–

A0

b
+ —

A0

ab

2
U

a

Ï
U

b

Ï

2
+ –

A0

a
�

1
U

a

Ï
U

2<

+Á
5/2

Y
]

[≠
4
3U

(3)

I
jj (t) ≠ 2U

Ï

a
Ṁ
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To arrive at these conversions between the ‡- and fl
ú-densities we relied on the

identities

�(–af) = �Ï

a
(f) , (4.129)

�(–af
a) = �Ï

a
(fa) , (4.130)

�(xk
f) = x

k�(f) ≠ X
,k(f) , (4.131)
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�(xk
–af

a) = x
k�Ï

a
(fa) ≠ X

Ï,k

a
(fa) , (4.132)

valid for any (vector-) fields f, f
a. The first two follow directly from the definitions

whereas the ladder require partial integration to obtain the identity.

Using these to the fl
ú-density converted potentials, we can rewrite also the

pseudo energy-momentum tensor ·
–—, Eq. (4.12) in terms of these new fields. The

pseudo energy-momentum tensor written in this form is actually the starting point

of analyzing the near-zone contribution to h
–—(t, x) evaluated for radiation-zone

events (t, x) œ W . We will expand on that in more detail how this source term is

used in the Outlook Section of Chapter 6 and the Appendix A.

4.4.2 Christo�el Symbols and their Expansion

In order to calculate the equation of motion, we first need to calculate the

expansions of the Christo�el symbols to our desired order. Due to working in the

Einstein frame, our metric expansion (4.22) is algebraically the same as in pure

GR in [11]. Hence, calculating the Christo�el symbols via the standard identity

�–

—“
= 1

2g
–⁄ (g⁄—,“ + g⁄“,— ≠ g—“,⁄) (4.133)

yields
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2

31
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ij
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4(Ṅ1 ≠ Ḃ1)”ij

≠ K
[i,j]

2 + 1
2Ḃ
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Examining these Christo�el symbols more closely, we immediately recognize that

the Newtonian-like potential U , Eq. (4.126a), contributes to each symbol at its

lowest order. This potential contributes either as its time derivative U̇ or as

the Newtonian acceleration field U
,j. This suggests that the equation of motion

calculated in the following section will have this acceleration potential as the

lowest term and then add post-Newtonian corrections.
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4.4.3 Equation of Motion to 2.5 PN Order

Derivation of Equation of Motion

From the general contracted Bianchi identity applied to the field equation (2.13),

we obtain

Ò‹T
µ‹ = –a(Ï)T Ò

µ
Ï

a
. (4.135)

This TMST version of the conservation law valid for the Einstein frame energy-

momentum tensor naturally di�ers from its physical Jordan frame counterpart,

where the right-hand side vanishes. In our case here, the right-hand side in-

corporates self-gravitating e�ects in terms of the –a(Ï) coupled to the matter

trace T as explained below Eq. (4.109) in the previous section. Now, using the

energy-momentum tensor as given in (4.113),

T
µ‹ = 1

Ô
≠g

1
u0

mA(Ï)uµ
u

‹
”

3 (x ≠ zA) , (4.136)

we can project both sides of Eq. (4.135) via the operator P
—

µ
= ”

—

µ
+ uµ u

—. This

projection yields a modified geodesic identity for each compact body of the form

u
‹
Ò‹u

— = ≠ –a(Ï)
Ë
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—
Ï

a + u
—
uµÒ

µ
Ï

a
È

. (4.137)

In this form, we already see a derivative of a velocity on the left-hand side, and

we realize that the right-hand side depends on the scalar fields in two ways. Both

involve only the derivatives due to the equation stemming from a contracted

Bianchi identity. Still, they di�er because the latter contribution is a directional

derivative along the velocity u
µ. Now, replacing –a(Ï) with the appropriate mass
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dependent version of Eq. (4.109)

–
A

a
(Ï) = ˆ log(mA(Ï))

ˆÏa
= 1

mA(Ï)
ˆmA(Ï)

ˆÏa
, (4.138)

and rewriting the covariant derivatives in terms of the Christo�el symbols (4.134),

we obtain via a 3 + 1 decomposition of the form
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Equation of Motion in terms of Metric Potentials

It is time to calculate the Equation of Motion to our desired order in terms of

the 3-velocities v
j

≥
Ô

Á and v
0 = v0 ≥ O(1). We collect all previously calculated

terms and sort them according to their post-Newtonian contribution via the

expansion
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Now, substituting all relevant fields in (4.139), we obtain our final Newtonian

order coe�cients as
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The first post-Newtonian correction is given as
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Similar to single STTs [15], but unlike GR [44], we have 1.5 PN correction to

the motion as

a
j
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1.5 . (4.143)

Finally, we present the 2 and 2.5 PN coe�cients
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Ḃ1v

j
≠

1
4v

2

0
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Chapter 5

Self-Gravitating Bodies and

Compact Binaries in TMST

Parts of our work in this chapter are based on the publication „Tensor-multiscalar gravity:
Equations of motion to 2.5 post-Newtonian order“, in Phys. Rev. D, 105.0640341 [19] by
O. Schön, and D. D. Doneva. Please refer to our Contribution Statement at the beginning
of this dissertation for more information.

In the present dissertation, we have derived a ready-to-use version of the

equation of motion to 2.5 post-Newtonian order in a general class of Tensor

Multi-Scalar Theories (TMST) as introduced in [21]. To achieve this, we adapted

the direct integration of the relaxed field equations approach [9–14] beyond general

relativity and the single scalar field case. Due to the specifics of the TMST and the

significant simplification of the field equations, we have performed our calculations

in the conformal Einstein frame similar to [21, 27] and in contrast to previous PN

studies in the single scalar field case that employs the physical Jordan frame [15,

16, 94–96, 101]. Thus, as a complementary result of our studies, the Einstein frame
1Copyright © 2022 by American Physical Society (APS). All rights reserved.
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2.5 PN single scalar field equation of motion follows our results when multiple

scalar fields are contracted to one.

We have consistently performed PN expansion of the metric and the scalar

field up to 2.5 PN order. Using a skeletonization procedure to describe matter

and compact objects in general, we have derived the generalized Binachi identity

and the equation of motion in TMST. We have considered the possibility that a

compact object’s mass can depend on the scalar field for self-gravitating objects.

In all these calculations, we have kept a general form of TMST admitting an

arbitrary number of scalar fields without imposing restrictions on the target space

metric.

Below we will summarize some of the main di�erences compared with previous

studies in the single scalar field case and GR. We will also emphasize the physical

interpretation of our result, especially concerning inspiraling binary compact

objects.

5.1 Target Space Involvement

Among the most important di�erences between Tensor Multi-Scalar Theories to

other alternative theories is the addition of the target space (T n
, “ab). Remember

that this n-dimensional Riemannian manifold allows us to interpret the n extra

scalar fields Ï = (Ï1
, . . . , Ï

n) of our analyzed theory of gravity as generalized

coordinates of this target space Ï : spacetime æ target space such that

d‡
2 = “ab(Ï) dÏ

a dÏ
b (5.1)
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is the line element of said target space. The addition of this construct naturally

gives rise to the physical interpretation of said space. In particular, it is interesting

how this manifold’s curvature contributes to the TMST analysis. We try to hint

at some answers here. First, note that we kept our work as general as possible

concerning the target space, i.e., we did not choose any coordinates or make any

topology/symmetry assumptions. Those two methods are generally the first steps

to simplify equations involving the manifold (T n
, “ab). For example, choosing

specific coordinates would allow the Christo�el symbols in Eqs. (4.27)-(4.28) to

vanish at lowest order. However, since derivatives of these Christo�el symbols also

enter our equations and as any choice of coordinates cannot guarantee globally

both the symbols and their derivatives to vanish, some curvature terms will

inevitably contribute to our post-Newtonian analysis here.

First, as explained in Section 4.2, the target space Christo�el symbols are con-

tracted with the scalar fields and their derivatives in the source (4.30). This source

then is integrated with the scalar field expansion (4.31d). Due to the coupling

with the scalar fields, these curvature terms do not contribute to Newtonian order

but rather start at first PN order in Ï
a

1
as evident from Eq. (4.52). As seen in the

1.5 PN spacetime metric (4.70), Ï
a

1
and hence the Christo�el symbols do not enter

the gravitational fields g–—. This means that the tensorial waveform calculated

in future work will be una�ected by these symbols to 1.5 PN order making the

explicit curvature a 2 PN order e�ect. After that, we see multiple contributions

from the Christo�el symbols in N2 and B2 given by Eqs. (4.83)-(4.84), and, of

course, Ï
a

2
in Eq. (4.85). These contributions are always linked to some form

of the Newtonian-like potentials U and U
a

Ï
through Eqs. (4.126a) and (4.126b).

In Ï
a

2
, we even have the occurrence of products of Christo�el symbols as seen

in Eq. (4.85), making the contribution of the target space curvature even more
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prominent.

From all the contributions mentioned above, it is clear that the geometry of

the target space has a physical relevance in the post-Newtonian motion of compact

objects. While these contributions are small in the sense that they occur at a

higher post-Newtonian order than, for example, the contribution of the scalar

fields themselves, the number of terms containing target space curvature fields

is quite numerous in N2 and B2 (see Eqs. (4.83)-(4.84)). Hence, we expect their

noticeable contributions to the tensorial waveform and detectable di�erences from

general relativity and single scalar-tensor theories.

5.2 Self-Gravitating Bodies

Binaries consisting of strongly self-gravitating bodies play an important role in

studying generalized theories of gravity. In the series [329–331], Eardley and Will

showed that in a wide class of Brans-Dicke theories, such binaries are governed by

dipole-radiation term. This term promised some new physics as no GR counterpart

exists; hence, it is quite useful to distinguish GR from various versions of STTs.

As explained in Section 4.4.1, the method to measure self-gravitating e�ects is

in generalizing the coupling coe�cients –a(Ï) = ˆ log(A(Ï))/ˆÏ
a given in Eq.

(2.17), to

–
A

a
(Ï) = ˆ log(mA(Ï))

ˆÏa
= –a(Ï) + ˆ log(ÊmA(Ï))

ˆÏa
, (5.2)

for the physical Jordan frame masses ÊmA(Ï) = A
≠1(Ï) mA(Ï) and each self-

gravitating compact object A. Hence, the magnitude of the coe�cients –
A

a
(Ï)

captures the coupling strength of the self-gravitating forces of a compact object A

to the multiple scalar fields. This is manifested in the wave equation (4.14), as to
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lowest order it yields

⇤Ï
a = ≠4fiGı

ÿ

A

–
a

A
TA + O(Á) , (5.3)

for the localized version of T at body A.

We want to point out that we follow the approach of [21, 27] and work with

–
A

a
(Ï) that is di�erent from the standard sensitivities sA defined in the Jordan

frame formulation of the single scalar field PN approach (see, e.g., [15]) and is

connected to the scalar charge of the body. The exact relation between –
A

a
(Ï)

and sA is extensively discussed in [15]. Here we will point out only that –
A

a
(Ï) is

proportional to 1 ≠ 2sA in the case of a single scalar field which means that the

standard value of sA = 1/2 for a GR black hole translates to –
A

a
(Ï) = 0.

Let us now discuss these self-gravitating e�ects in the context of our post-

Newtonian analysis here. The explicit contributions of the sensitivities –
A

a
to

the expanded equation of motion potentials (4.141)–(4.145) is due to the direct

dependency of the Einstein frame masses mA(Ï) and its derivative on the right-

hand side of the TMST equation of motion (4.139). All contributions are products

and covariant derivatives with respect to the target space connection of the above

given –
A

a
(Ï), namely

—
A

ab
= Da –

A

b
= ˆa–

A

b
≠ “

c

ab
–

A

c
, (5.4a)

—
A

abc
= DaDb –

A

c
. (5.4b)

Due to the way we have formulated the expanded equation of motion (4.141)–

(4.145), we see that all explicit scalar field contributions get contracted with

combinations of the here listed coupling fields. Of course, implicit scalar field
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contributions in the potentials N1, B1, B
ij

2 , K
i

2
, N2, and B2. Still, those fields’

free target space indices get contracted with the Riemannian metric “ab and its

Christo�el symbols. Hence, we can easily distinguish the scalar field contributions

related to self-gravitating e�ects as the explicit appearances in (4.141)–(4.145). In

the case of non-self-gravitating bodies, the physical Jordan frame masses ÊmA(Ï)

are then independent of the multiple scalar fields Ï
a and the body-dependent

fields (5.2) and (5.4) will reduce to their natural body-independent counterpart.

The exact influence of these self-gravitating e�ects, especially about the dipole-

radiation phenomena of TMST, is beyond the scope of this work and will be

analyzed much more profoundly in future work when we tackle gravitational

waveforms and scalar flux.

5.3 Binary Compact Objects

Studying the dynamics of binary compact objects and the observed waveforms its

full complexity requires one to derive, on the one hand, the integrals of motion,

as well as the equation of motion in the center-of-mass frame, and on the other

to derive the expansion of the fields in the radiation zone that is prone to future

work. In Appendix A, we already lay the groundwork for this analysis. Here

we will discuss some conclusions that can be drawn from the equation of motion

presented in this paper.

5.3.1 Binary Black Holes

It is well-known that black holes in single scalar field theories obey no-scalar-hair

theorems that cover many possibilities (see, e.g., [332] and references therein).

Their PN dynamics are also indistinguishable from GR at least up to 3 PN orders.
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The nonlinear numerical simulations of binary black hole mergers confirm this

also for regimes beyond the validity of the PN approach [333]. If we consider

nonrotating black holes, similar conclusions will also be valid in TMST [334].

Using the results in the present dissertation, we can study whether the dynamics

of binary black hole systems will also converge to GR if the conditions of this

no-hair theorem in [334] are satisfied. If we assume that the scalar field is a

constant (or zero) and the black hole mass is independent of the scalar field, then

–
A

a
(Ï) and its derivatives are zero. If one examines closely the di�erent terms

entering the equation of motion (4.141)-(4.145), it is clear that the scalar field

contribution will be held in ‡
a

Ï
, similar to the single scalar field case [15], that are

the sources of the field equations of the multiple scalar fields. The explicit form

of these sources written in terms of –
A

a
(Ï) and its derivatives is given in (4.125).

Clearly, zero –
A

a
(Ï) would lead to vanishing ‡

a

Ï
. Therefore, the motion of bald

black holes in TMST will coincide with GR at least up to the 2.5 PN order.

The extension to multiple scalar fields brings a higher degree of complexity to

the equation of motion and o�ers possibilities for new phenomenology. Namely, it

is possible to violate the no-scalar hair theorem and produce rotating black holes

in TMST with nonzero scalar field [39] that is not allowed in the single scalar field

case. The scalar field should have a nonzero scalar field potential, though, that is

beyond the studies in the present paper and is a topic of future work (we refer

the reader to [103, 105] for calculations in the single scalar field case performed

though to a lower PN order).
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5.3.2 Binary Neutron Stars

Neutron stars, unlike black holes, can easily develop scalar hair in modified gravity

since the matter has a nonzero trace of the energy-momentum tensor and thus

acts as a scalar field source. Again this is encoded in the PN formalist through

the quantities –
A

a
(Ï) and its derivatives. What is interesting in TMST is that we

can have a set of –
A

a
(Ï) associated with every scalar field that can be significantly

di�erent depending on the target space manifold and its metric. This will lead to

exciting possibilities. For example, in TMST, topological and scalarized neutron

star solutions have nonzero scalar hair with a vanishing scalar charge [34, 36]. It

will be interesting to see how the resulting waveforms di�er from GR, which can

be done once we develop the PN formalist in TMST in the radiation zone.

5.3.3 Black Hole – Neutron Star Dynamics

First, let us limit ourselves to the case of nonrotating black holes with zero –
A

a BH
(Ï)

while we allow for a nonvanishing –
A

a NS
(Ï) for the neutron star. In the single

scalar field case, it was argued that the equation of motion at least up to 3 PN

order depends on only a single combination of parameters involving the –
A

a NS
(Ï)

[15, 16, 94]. This dependence appears so that it is impossible to distinguish

Brans-Dicke theory from other single scalar field theories based on mixed black

hole-neutron star binary observations up to this PN order. Such a statement is not

valid for the general case of TMST because we have an additional structure that

is the target space equipped with a nontrivial metric “ab. As extensively discussed

above, this metric and its first and second derivatives enter the PN expansion

nontrivially, one of the main qualitative di�erences between the TMST and the

single scalar field. The detailed analysis of the two body equation of motion and



Chapter 5. Self-Gravitating Bodies and Compact Binaries in TMST 147

the related conserved quantities will be the topic of the second publication of this

series. The basis of the calculations performed in the present paper is that one can

conclude that the dynamics of a black hole-neutron star system will depend on

the particular TMST under consideration, at least for a proper nontrivial choice

of the target space metric. Thus the GW observations of such systems can help

us discriminate between di�erent subclasses of TMST.

We should, of course, always keep in mind that if one allows for rotating black

holes in TMST, the scalar field and thus –
A

a BH
(Ï) can be nonzero leading to a

much more complicated and rich dynamics compared to the single scalar field

case.
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Chapter 6

Conclusion and Outlook

6.1 Conclusion

We adapted established mathematical machinery known as direct integration of

the relaxed field equations (DIRE) [6–14] to a vast class of Tensor Multi-Scalar

Theories (TMSTs) [21], a generalization of single Scalar Field Theories (SFTs)

and, in turn, General Relativity (GR) itself. TMSTs are interesting for several

reasons, including that they are a vast class of theories when adding fields to the

Einstein-Hilbert action. Hence, it is a logical next step to test GR to calculate

gravitational wave templates obtained from said theories. Our work here starts

this process by analyzing the near-zone dynamics of compact objects in TMSTs.

We found out that some unique characteristics of TMSTs, such as the geometry of

the target space, a n-dimensional Riemannian Manifold (T n
, “ab) equipped with

Riemannian metric “ab acting as the image of the scalar fields as

(Ï1
, . . . , Ï

n) = Ï : space time æ target space. (6.1)

149
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It is very much an open problem how to interpret the target space and its geometry

in a physically meaningful way. We established in our work here that the curvature

of (T n
, “ab) explicitly impacts the equation of motion in TMSTs, hence the physical

dynamics of compact objects. Work in TMSTs often relies on making symmetry

assumptions to the target space to simplify the equations considerably [33, 35, 36,

39]. We did not limit ourselves to these cases and kept our equations in a general

form to try to understand how exactly the target space involves itself.

The DIRE machinery allowed us to accurately calculate the equation of motion

in TMST to 2.5 PN order. We iterated the relaxed field equations and the extra

scalar fields wave equations in a post-Minkowskian setting to achieve this. We

then incorporated slow-motion conditions to end up in a proper post-Newtonian

analysis. Our study agrees with previous results obtained in GR and STTs [10,

15] when collapsed to no or one single scalar field, respectively. We found that

compact binaries behave as expected from previous results with the interesting new

dynamics from the target space. Another main di�erence in this work compared

to GR is the existence of a 1.5 PN contribution to the equation of motion. This is

not surprising due to its presence in STTs already. In our case, however, the 1.5

PN term is a sum over n Newtonian-like potentials allowing for further deviations

to GR than STTs would allow.

Our analysis also includes the auxiliary result of studying STTs in the Einstein

frame to an accuracy of 2.5 PN order by collapsing the equations to one single

scalar field as demonstrated in Section 4.3.2. This allows for a more intuitive

comparison of TMST and, hence, STT, to GR as it represents a closer relation in

the action.
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6.2 Outlook

This work can be considered a starting point of a series of papers to obtain a

large set of gravitational wave templates in the vast space of Tensor Multi-Scalar

Theories of Gravitation. This is necessary to further test General Relativity against

viable alternatives and generalizations to gain further impact on a fundamental

theoretical level.

This dissertation is concerned with generalizing previous fundamental results

obtained in General Relativity and single Scalar Field Theories to a much broader

class of Tensor Multi-Scalar Theories. This previous research contains the inception

and implementation of the direct integration of the relaxed field equations (DIRE)

in Relativity itself [6–14] as well as the more recent calculations in theories

appending a scalar field [15–18]. As explained in Chapter 3, discussing any

action motivated theory of a spacetime (M, g) with DIRE involves calculating the

gravitational potentials h
–— via

÷
–— (t, x) ≠

Ô
≠g g

–— (t, x)

=: h
–— (t, x) =

Y
___]

___[

h
–—

N (t, x) + h
–—

W (t, x) for (t, x) œ N (t, x) ,

h
–—

N (t, x) + h
–—

W (t, x) for (t, x) œ W(t, x) ,

(6.2)

where ÷
–— is the flat Minkowski metric, in the form of a post-Newtonian expansion

in terms of a parameter Á ≥ Gmc/c
2
rc for the gravitational constant G, the speed

of light c and the characteristic mass mc and radius rc of the physical system

we are modeling separated in the near zone N (t, x) and wave zone W(t, x). In

cases of added fields to the action, as in our work here, a similar equation for the

added fields needs to be solved. We emphasize only the concept of the calculations
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needed here.

Hence, adapting the DIRE machinery, the first region to analyze is the near

zone, as we have done to an accuracy of 2.5 PN order in the presented dissertation.

For SFTs, the same work was done in [15]. Calculating the wave, or far away,

zone dynamics is the second step, as results from the near zone can be adapted

to lessen the number of calculations needed. This entails the second part of

the cases presented in Eq. (6.2). Again, for single SFTs, this has been done

already in [16–18]. Thus, the logical next step is to generalize these results to

obtain the complete picture of TMSTs in a post-Newtonian setting via DIRE.

The bulk of the work needed to calculate h
–— (t, x) for a wave zone event (t, x)

is again in obtaining the near zone contribution via calculating fields known as

multi-index Epstein-Wagoner moments [6]. More precisely, it can be shown that

the spatial near-zone dynamics h
ij

N (t, x) for a wave-zone field point (t, x) œ W

can be calculated as

h
ij

N (t, x) = 2
R

d2

dt2

Œÿ

m=0

N̂
k1 . . . N̂

kmI
ijk1...km
EW

(·) , (6.3)

where N̂ = x/R for R ∫ R, that is, in a regime far away from the matter world

tube with radius R where a gravitational wave detector may operate. This is

obtained by expanding the gravitational potentials h
–—

N in powers of 1/R and only

keeping the lowest order term, most relevant for detectors satisfying R ∫ R, in

addition to the conservation law related to the Lorenz gauge condition [16]

·
–—

,—
= 0 . (6.4)

The Epstein-Wagoner moments, as well as more details and possible challenges of
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this novel approach to TMST, are given in Appendix A

It is worth noticing that the results as mentioned above [16–18] have been

checked via a di�erent framework than DIRE, namely a symmetric trace-free

approach [101]. The authors did find inconsistencies with [17] in the scalar and

energy flux calculations and went into great detail on how these might arise.

Hence, continuing the work in multiple scalar fields might shed some light on the

discrepancies published in the paper mentioned above.
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Appendix A

Epstein-Wagoner Moments in

TMST

Let us briefly discuss how this dissertation might be continued in the future and

which problems might arise by generalizing previous work to TMST. First, the

formal solutions obtained using the retarded Green’s functions, Eqs. (4.16) and

(4.16), can be expanded in the near-zone in powers of |xÕ
|/R for a radiation-zone

event (t, x) and retarded time · = t ≠ R to get [8, 16]

h
–—

N (t, x) = 4
Œÿ

q=0

(≠1)q

q!

3 1
R

M
–—k1···kq

4

,k1···kq

, (A.1)

Ï
a

N (t, x) = 2
Œÿ

q=0

(≠1)q

q!

3 1
R

a
M

k1···kq

4

,k1···kq

, (A.2)

with the multipoles

M
–—k1···kq(·) :=

⁄

M
·

–—(·, xÕ)xÕk1 · · · x
Õkq d3

x
Õ
, (A.3)

a
M

k1···kq(·) :=
⁄

M
·

a(·, xÕ)xÕk1 · · · x
Õkq d3

x
Õ
, (A.4)
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where we have used

|x ≠ xÕ
|
q =

Œÿ

m=0

(≠x
Õ)i1...imR

q

,i1...im
. (A.5)

A critical di�erence between the integration here and the near-zone contribution as

given in Eq. (3.35) is that the manifold M is now a hypersurface with respect to

the constant retarded time · = t ≠ R. First, remember that for any gravitational

wave detector, only the spatial part of the gravitational potential, h
ij

N (t, x), matter.

After that, we impose a far-away condition R ∫ R, reasonable for a detector on

earth and far away from, e.g., compact binaries. This allows us only to keep the

leading 1/R term to obtain

h
ij

N (t, x) = 4
R

Œÿ

m=0

1
m!

ˆ
m

ˆtm

⁄

M
·

ij(·, xÕ)
1
N̂ · xÕ

2
m

d3
x

Õ + O

1
R

≠2
2

, (A.6)

Ï
a

N (t, x) = 2
R

Œÿ

m=0

1
m!

ˆ
m

ˆtm

⁄

M
·

a(·, xÕ)
1
N̂ · xÕ

2
m

d3
x

Õ + O

1
R

≠2
2

, (A.7)

utilizing

·
,i = ≠N̂

i := x
i

R
(A.8)

for the detector direction N̂ .

Now, to obtain the tensorial gravitational waveform, we can further simplify

h
ij

N (t, x) using the already in Chapter 6 mentioned conservation law Eq. (4.9), in

its spatial form

·
ij = 1

2
1
·

00
x

ij
2

,00
+ 2

1
·

l(i
x

j)
2

,l
≠

1
2

1
·

kl
x

ij
2

kl
, (A.9)

·
ij

x
k = 1

2
1
2·

0(i
x

j)
x

k
≠ ·

0k
x

ij
2

,0
+ 1

2
1
2·

l(i
x

j)
x

k
≠ ·

kl
x

ij
2

,l
. (A.10)
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Substituting this in Eq. (A.6) yields the final form

h
ij

N (t, x) = 2
R

d2

dt2

Œÿ

m=0

N̂
k1 . . . N̂

kmI
ijk1...km
EW

(·) + O

1
R

≠2
2

, (A.11)

where the Epstein-Wagoner moments [6] are explicitly given as

I
ij

EW
:=

⁄

M
·

00
x

ij d3
x

+ d≠2

dt≠2

j

ˆM

5
4·

l(i
x

j)
≠

1
·

kl
x

ij
2

,k

6
R

2
n̂

l d2� , (A.12)

I
ijk

EW
:=

⁄

M

1
2·

0(i
x

j)k
≠ ·

0k
x

ij
2

d3
x

+ d≠1

dt≠1

j

ˆM

Ë
2·

l(i
x

j)k
≠ ·

kl
x

ij
È

R
2
n̂

l d2� , (A.13)

I
ijk1...km
EW

:= 2
m!

dm≠2

dtm≠2

⁄

M
·

ij
x

k1...km d3
x , (A.14)

for the boundary ˆM of the hypersurface M with outward pointing unit normal

n̂
l. Writing the gravitational potentials in terms of these Epstein-Wagoner mo-

ments comes with the advantage that the energy-momentum pseudotensor in the

integrand is always evaluated at the same retarded time · = t ≠ R. We would

also expect multiple R-dependent terms arising in the expansion. As before, we

disregard these terms as they necessarily need to cancel out with radiation-zone

counterparts. During the calculation, there is another way to simplify the process.

Only the transverse-traceless (TT) part of the gravitational potential tensor is

needed for a gravitational wave. The TT contribution of any tensor can be

obtained via a projection

h
ij

TT
=

3
P

ip
P

jq
≠

1
2P

ij
P

pq

4
h

ij
, (A.15)

where P
pq = ”

pq
≠ N̂

p
N̂

q is the transverse projection operator [16]. Hence,
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potentials that cannot contain a TT contribution might be dropped immediately.

Calculating the Epstein-Wagoner moments is the bulk of the work in [16]. It

should also be noted that no such conservation law as described above exists for

the scalar-field source ·
a, making the calculations of the scalar energy flux more

complicated [17]. There is also a debate about the potentials given in [17] as they

do not coincide with results obtained using a symmetric trace-free approach in

[101].

To evaluate these Epstein-Wagoner moments, we first need to transform the

energy-momentum pseudotensor ·
–—, Eq. (4.12), in terms of the fl

ú-density, Eq.

(4.118), introduced in Section 4.4.1. Using the fl
ú-density converted potentials,

Eqs. (4.128) and (4.128), and substituting them, for instance in the expanded

·
00, Eq. (4.81), we calculate

·
00 = fl

ú
;

1 + 1
2v

2 + 3U + –aU
a

Ï
+ 1

2�1 ≠ 3�2 ≠ 14�Ï

a

1
U

a

Ï

2
+ 3

2Ẍ

+9
2U

2
≠

17
2 “abU

a

Ï
U

b

Ï
+ 2v

2
U + 5

2v
2
–aU

a

Ï
+ 5–aU

a

Ï
U + 3

8v
4

≠4v
j
V

j + 1
2 (–a–b + —ab) U

a

Ï
U

b

Ï
≠

1
2–a�a

Ï
(v2) + 2–a�a

Ï
(U)

≠–a�a

Ï

1
–bU

b

Ï

2
+ 1

2–aẌ
a

Ï
≠ –a“

a

bc

1
U

b

Ï
U

c

Ï
+ 2�b

Ï

1
U

c

Ï

22<

+ 1
4fi

;
≠

7
2(ÒU)2 + 5

2U̇
2

≠ 4UÜ ≠ 8U̇
,k

V
k + 2V

i,j
1
3V

j,i + V
i,j

2

+1
2“ab”

ij
U

a,i

Ï
U

a,j

Ï
≠ 4U

,ij�ij

1 + 8ÒU · Ò�1 ≠ 4ÒU · Ò�2 ≠
7
2ÒU · ÒẌ

≠10U(ÒU)2
≠ 4U

,ij
1
P

ij

2 ≠ “abP

1
U

a,i

Ï
U

b,j

Ï

22
≠ 6“abU

a

Ï
ÒU · ÒU

b

Ï

+4V̇
j
U

,j
≠ 6“abÒUÒ�a

Ï

1
U

b

Ï

2
+ 4“abUÒU

a

Ï
· ÒU

b

Ï
+ 1

2“abU̇
a

Ï
U̇

b

Ï

≠“ab“
b

cd
ÒU

a

Ï
· Ò

1
U

c

Ï
U

d

Ï

2
≠ 2“ab“

b

cd
ÒU

a

Ï
· Ò�c

Ï

1
U

d

Ï

2
≠ “abÒU

a

Ï

◊Ò�b

Ï
(U) + 1

2“abÒU
a

Ï
· ÒẌ

b

Ï
+ 1

2“ab,cU
c

Ï
ÒU

a

Ï
· ÒU

b

Ï

<

+O

1
flÁ

5/2
2

. (A.16)
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To arrive at this form of ·
00, we must carefully evaluate all possible contributions.

The most potentials in Eq. (A.16) stem from the ‡-density counterpart Eq. (4.81).

We also have to count in the contribution of ‡ an ‡
ii, Eq. (4.124), inside the

source ·
00, Eq. (4.81). Furthermore, inside the potentials ‡ an ‡

ii, Eq. (4.124),

we have contributions of the 1 PN potentials N1, B1, and Ï
a

1
, Eqs. (4.49), (4.51),

and (4.52), which also need to be included to the correct order in Eq. (A.16).

These origins might also include the Newtonian-like potentials U and U
a

Ï
, which

must be translated to fl
ú-density as in Eqs. (4.128) and (4.128), before calculating

them in here.

Let us look even closer at the first, the two-index, Epstein-Wagoner moment

Eq. (A.13). We start with the common decomposition of the form

I
ij

EW
=

⁄

M
·

00
x

i
x

j d3
x + I

ij

EW(surf)

=: I
ij

C
+ I

ij

F
+ I

ij

S
(A.17)

including the moment I
ij

C
only containing the compact support part of (A.16); the

moment including the field part I
ij

F
; and the surface integral part of Eq. (A.13)

d2

dt2
I

ij

EW(surf)
:= d2

dt2
I

ij

S
:=

j

ˆM

5
4·

l(i
x

j)
≠

1
·

kl
x

ij
2

,k

6
R

2
n̂

l d2� . (A.18)

Hence, the first thing on the to-do list is integrating the compact support

of ·
00, Eq. (A.16), weighted with the coordinates x

ij = x
i
x

j over the spatial

hypersurface M of constant retarded time · = t ≠ R. We have accommodated

this calculation by collecting all of the terms we have to analyze in the first curly

bracket in Eq. (A.16) above. All potentials naturally have the density fl
ú as a
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factor. From Eq. (4.118), we know

fl
ú =

ÿ

A

mA ”
3 (x ≠ xA) . (A.19)

Next, we will inspect the relevant terms of ·
00, Eq. (A.16), to the relevant

order to prepare for the integration. Using Eq. (4.124), we find

U(·, x) =
ÿ

A

mA

|x ≠ xA|

Q

a1 + 3
2v

2

A
+

ÿ

B ”=A

mB

|xA ≠ xB|

1
≠1 + –

A

a
–

a

B

2
R

b

+O(Á3) (A.20)

U
a

Ï
(·, x) =

ÿ

A

–
a

A
mA

|x ≠ xA|

Q

a1 ≠
1
2v

2

A
+

ÿ

B ”=A

mB

|xA ≠ xB|

1
3 ≠ –

A

b
–

b

B

2
R

b

+O(Á3) (A.21)

X(·, x) =
ÿ

A

mA|x ≠ xA| (1 + O(Á)) (A.22)

X
a

Ï
(·, x) =

ÿ

A

–
a

A
mA|x ≠ xA| (1 + O(Á)) (A.23)

V
k(·, x) =

ÿ

A

mAv
k

A

|x ≠ xA|
+ O(Á5/2) . (A.24)

The superpotentials X and X
a

Ï
appear as second time-derivatives. Hence, we

calculate

ˆ
2

t
X =

ÿ

A

mA

|x ≠ xA|

S

Uv
2

A
≠

A
x ≠ xA

|x ≠ xA|
· vA

B
2
T

V ≠
ÿ

A

mAaA

x ≠ xA

|x ≠ xA|
, (A.25)

for the acceleration aA. To the Newtonian order, this acceleration is given as

≠
ÿ

B ”=A

mB

|xA ≠ xB|3
(xA ≠ xB) . (A.26)
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The calculation can exactly be adopted to obtain the counterpart result for Ẍ
a

Ï
in

ˆ
2

t
X

a

Ï
=

ÿ

A

–
a

A
mA

|x ≠ xA|

S

Uv
2

A
≠

A
x ≠ xA

|x ≠ xA|
· vA

B
2
T

V ≠
ÿ

A

–
a

A
mAaA

x ≠ xA

|x ≠ xA|
. (A.27)

Naively trying to carry out the integration runs into immediate problems not

often discussed in the literature. Take, for instance, the potentials fl
ú
U and fl

ú
U

a

Ï

directly from ·
00, Eq. (A.16). Those terms each include two sums over the bodies.

Naturally, at one point, the sum reaches the same body, and fractions like

ÿ

A

m
2

A

”
3 (x ≠ xA)
|x ≠ xA|

, and
ÿ

A

–
a

A
m

2

A

”
3 (x ≠ xA)
|x ≠ xA|

, (A.28)

occur. This expression is not a well-defined distribution, as we encounter a "1/0"

situation here. This reflects the problems of describing an extended, compact

body as a point particle in GR, a highly nonlinear theory. To avoid ambiguity in

the evaluation of the radiative quadrupole moment, we can, however, impose a

regularization prescription of the form [44]

”
3 (x ≠ xA)
|x ≠ xA|

:= 0 , (A.29)

making the integral well-defined. This is generally known as Hadamard regular-

ization [335, 336]. This regularization is implied in all calculations from this point

moving forward.

Finally, inserting Eqs. (A.19)–(A.27) together with the other compact support

potentials in ·
00, Eq. (A.16), into I

ij

C
, always keeping the regularization (A.29) in
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mind, we find

I
ij

C
=

ÿ

A

mAx
ij

A

Y
]

[1 + 1
2v

2

A
+

ÿ

B ”=A

mB

|xA ≠ xB|

1
3 ≠ “ab–

a

A
–

b

B

2
Z
^

\ + 3
8

ÿ

A

mAx
ij

A
v

4

A

+
ÿ

A

ÿ

B ”=A

mAmBx
ij

A

|xA ≠ xB|

Y
]

[v
2

A

3
2 + 5

2“ab–
a

A
–

b

B

4
+ 2v

2

B
≠ 4vA · vB

≠

Q

aaB · (xA ≠ xB) +
A

vB ·
xA ≠ xB

|xA ≠ xB|

B
2
R

b
33
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It gets more complicated for the field moment I
ij

F
and the surface moment I

ij

S
.

Exactly as in [16], we have 24 potentials to integrate in ·
00, Eq. (A.16). For GR

as well as single STTs, this is less complicated than in TMST here. For instance,

in STT, the treatment of potentials of the form (ÒU)2 and (ÒUs)2 is essentially

indistinguishable, whereas, in TMST, the ladder term would read ÒU
a

Ï
· ÒU

b

Ï
.

This makes integration much more di�cult, as the same mathematical machinery

can not be used for di�erent gradients. Furthermore, also potentials involving

three factors become more di�cult as all three Newtonian-like potentials can di�er

in terms like

U
c

Ï
ÒU

a

Ï
· ÒU

b

Ï
, (A.31)

making a big di�erence to the single STT version Us(ÒUs)2. Other three factor

potentials include

U
a

Ï
ÒU · ÒU

b

Ï
, and UÒU

a

Ï
· ÒU

b

Ï
. (A.32)
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Again, in pure GR these terms do, of course, not exist and in their STT counter-

parts they read

UsÒU · ÒUs , and U (ÒUs)2
. (A.33)

Having only two di�erent potentials makes a big di�erence in the methods used

to evaluate. As we advance, we need to develop new techniques to capture these

di�erences and overcome these challenges.
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The End

Exterior of a Schwarzschild black hole. The end is somewhere in the middle.
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