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Abstract

Metagenomics studies the collective microbial genomes extracted from a
particular environment without requiring the culturing or isolation of individ-
ual genomes, addressing questions revolving around the composition, func-
tionality, and dynamics of microbial communities. The intrinsic complexity
of metagenomic data and the diversity of applications call for e�cient and
accurate computational methods in data handling. In this thesis, I present
three primary projects that collectively focus on the computational analysis
of metagenomic data, each addressing a distinct topic.

In the first project, I designed and implemented an algorithm named
Mapbin for reference-free genomic binning of metagenomic assemblies. Bin-
ning aims to group a mixture of genomic fragments based on their genome
origin. Mapbin enhances binning results by building a multilayer network
that combines the initial binning, assembly graph, and read-pairing informa-
tion from paired-end sequencing data. The network is further partitioned
by the community-detection algorithm, Infomap, to yield a new binning re-
sult. Mapbin was tested on multiple simulated and real datasets. The results
indicated an overall improvement in the common binning quality metrics.

The second and third projects are both derived from ImMiGeNe, a collab-
orative and multidisciplinary study investigating the interplay between gut
microbiota, host genetics, and immunity in stem-cell transplantation (SCT)
patients. In the second project, I conducted microbiome analyses for the
metagenomic data. The workflow included the removal of contaminant reads
and multiple taxonomic and functional profiling. The results revealed that
the SCT recipients’ samples yielded significantly fewer reads with heavy con-
tamination of the host DNA, and their microbiomes displayed evident signs of
dysbiosis. Finally, I discussed several inherent challenges posed by extremely
low levels of target DNA and high levels of contamination in the recipient
samples, which cannot be rectified solely through bioinformatics approaches.

The primary goal of the third project is to design a set of primers that can
be used to cover bacterial flagellin genes present in the human gut microbiota.
Considering the notable diversity of flagellins, I incorporated a method to
select representative bacterial flagellin gene sequences, a heuristic approach
based on established primer design methods to generate a degenerate primer
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set, and a selection method to filter genes unlikely to occur in the human gut
microbiome. As a result, I successfully curated a reduced yet representative
set of primers that would be practical for experimental implementation.
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Zusammenfassung

Die Metagenomik untersucht kollektive mikrobielle Genome, die aus einer
bestimmten Umgebung extrahiert werden, ohne dass Kultivierung der Mikro-
ben oder Isolierung einzelner Genome notwendig sind. Durch diese Metho-
dik werden Fragen über die Zusammensetzung, Funktionalität und Dynamik
mikrobieller Gemeinschaften behandelt. Die inhärente Komplexität metage-
nomischer Daten und die Vielfalt der Anwendungen erfordern e�ziente und
präzise computergestützte Methoden zur Datenverarbeitung. In dieser Ar-
beit präsentiere ich drei Hauptprojekte, die sich mit verschiedenen Themen
befassen, allerdings alle der Methodik der computergestützten Analyse me-
tagenomischer Daten bedienen. Im ersten Projekt habe ich einen Algorith-
mus namens Mapbin für das referenzfreie genomische Binning von metage-
nomischen Assemblies entworfen und implementiert. Binning zielt darauf ab,
eine Mischung genomischer Fragmente basierend auf ihrer genetischen Her-
kunft zu gruppieren. Mapbin verbessert die Binning-Ergebnisse, indem es ein
Multilayer-Netzwerk aufbaut, welches das ursprüngliche Binning, den Assem-
blierungsgraphen und die Informationen zur Paar-End-Sequenzierung kom-
biniert. Das Netzwerk wird mit Hilfe des Community-Detection-Algorithmus
Infomap weiter aufgeteilt, um ein neues Binning-Ergebnis zu erzielen. Mapbin
wurde anhand mehrerer simulierter und realer Datensätze getestet. Die Er-
gebnisse zeigten insgesamt eine Verbesserung der gängigen Qualitätsmetriken
für das Binning. Das zweite und dritte Projekt sind abgeleitet von ImMiGe-
Ne, einer kollaborativen und interdisziplinären Studie, die das Zusammen-
spiel zwischen Darmmikrobiota, Wirt-Genetik und Immunität bei Stamm-
zelltransplantationspatienten (SCT) untersucht. Im zweiten Projekt führte
ich Mikrobiomanalysen für die metagenomischen Daten durch, wobei der
Workflow Entfernung von kontaminierten Reads sowie die taxonomische und
funktionelle Profilerstellung umfasste. Die Ergebnisse zeigten, dass die Pro-
ben der Transplantationsempfänger signifikant weniger Reads mit einer star-
ken Kontamination durch die Wirt-DNA aufwiesen und ihre Mikrobiome
deutliche Anzeichen von Dysbiose zeigten. Schließlich diskutierte ich mehre-
re inhärente Herausforderungen, die durch extrem niedrige Konzentrationen
von Ziel-DNA und hohe Kontaminationsraten in den Proben der Empfänger
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entstehen und die nicht allein durch bioinformatische Ansätze behoben wer-
den können. Das Hauptziel des dritten Projekts besteht darin, einen Satz
von Primern zu entwerfen, mit denen die bakteriellen Flagellin-Gene des
menschlichen Darmmikrobioms abgedeckt werden können. Angesichts der be-
merkenswerten Vielfalt der Flagelline habe ich eine Methode integriert, um
repräsentative, bakterielle Flagellin-Gensequenzen auszuwählen, einen heu-
ristischen Ansatz basierend auf etablierten Methoden zur Primerentwicklung
verwendet, um einen degenerierten Primer-Satz zu generieren, und eine Aus-
wahlmethode angewendet, um Gene auszufiltern, die unwahrscheinlich im
menschlichen Darmmikrobiom vorkommen. Als Ergebnis konnte ich einen
reduzierten, aber repräsentativen Satz von Primern erstellen, der für experi-
mentelle Anwendungen geeignet ist.

iv



“The moral I draw is that the writer should seek his reward in the pleasure
of his work and in release from the burden of his thoughts”

- The Moon and Sixpence
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Prologue

Early microbiologists already noticed that the vast majority of microorgan-
isms did not show up on the Petri dishes. After decades of culturing, scientists
came to realize that a more e↵ective way is to study all microbes from a cer-
tain environment as a bulk rather than as individual isolates. Earlier work
using PCR amplification of phylogenetic marker genes, like 16S ribosomal
RNA (rRNA) gene, has led to an era of culture-independent microbial stud-
ies and revolutionized our understanding of microbial diversity. However,
with these methods, it is di�cult to deduce information about the microbial
genomes apart from their phylogenetic relationships.

In 1998, the term “metagenome” made its debut, coined by Jo Handels-
man and her colleagues to describe the “collective genomes” of soil microbes
[1]. Metagenomics as a field has come a long way since then. Extracting
and sequencing large DNA fragments and producing data of high through-
put used to be the biggest technical obstacle in the early days, but now it has
been e↵ectively overcome by the advances in sequencing technology. Today’s
metagenomics is marked by an immense amount of data generated from the
widespread use of next-generation sequencing (NGS) and long-read sequenc-
ing, covering a spectrum of ecosystems. The great legacy of metagenomic
data accumulated so far, and the readiness to generate more, have been the
ever-lasting source of inspiration for new methods and applications.

We are able to keep up with the exploding data volume thanks to ground-
breaking advances in both computer hardware and software. Today, hard-
ware accelerators such as graphical processing units (GPUs) have been fre-
quently used in large-scale biology projects. The mainstream algorithms
are highly e�cient, optimized, and automated. The computation can be
well distributed, and data e↵ectively compressed. A plethora of new meth-
ods have been developed to flexibly transform metagenomic data to address
various biological or medical questions. Classic computational problems for
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metagenomics, such as genome assembly, binning, and taxonomic profiling,
may arguably serve as the gateway to all explorations of metagenomic data.
Their fundamental importance may have been indicated by the subtopics of
the Critical Assessment of Metagenome Interpretation (CAMI) challenge [2].
And analyses such as functional annotation, correlation analysis, and gene
screening bring the sequencing data to the context of other fields, such as
biochemistry and ecology.

Metagenomics has become an indispensable tool for navigating the mi-
crobial realm. It has enriched genome databases with numerous high-quality
metagenome-assembled genomes (MAGs), unveiling the genetic makeup of
many previously uncharacterized microbial species. It also unlocks microbial
ecological and evolutionary studies at a scale that would be impossible in the
past. For example, the NIH Human Microbiome Project (HMP1), as well as
its second phase, Integrative HMP (iHMP) (https://www.hmpdacc.org/),
is a specimen of today’s multi-omics studies of microbiota. Samples were
collected at multiple time points from hundreds of individuals, generating
more than 40 terabytes of sequencing data in total. The data have led to a
wealth of MAGs, which served as a great source to establish references for
human microbiome studies [3, 4]. Linking the microbiome data to a variety
of factors sheds light on the role of the microbiome in human health and dis-
ease by characterizing the human microbiome dynamics under various host
health conditions [4, 5].

This thesis will delve into both software development and applications of
metagenomics. Three topics will be presented. The first one focuses on the
metagenomic binning problem, coming up with a software named Mapbin.
The second and third ones were derived from the same multi-disciplinary
study of the human gut microbiome, which is named ImMiGeNe. We will
dig into the processing and interpretation of the metagenomic data in the
second topic and the primer design problem in the third.
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Chapter 1

Background

1.1 Metagenomics brought about a paradigm
shift in microbial research

Our modern view of microbes is the result of a series of greatest technolog-
ical revolutions. For centuries, microbiological research was dominated by
culture-based methods, and we understood microbial diversity from what
could be grown in the laboratories. However, compared to that of ani-
mals and plants, the morphological descriptions of microbes were limited
and intrinsically di↵erent. Adopting the then-popularized criteria in plant
and animal genealogy to microbial evolution was met with incredible di�-
culty. As a result, for a long time, the genealogy of microbes stayed vague
to microbiologists [6]. With the advent of nucleotide sequence, in 1977, Carl
R. Woese published with George E. Fox a pioneering work that had the
phylogenetic taxonomy based on the 16S ribosomal RNA (rRNA) genes [7].
Using this molecular marker, Archaea was also added as a domain for the
first time onto the tree of life. Since then, sequencing technology has paved
the way for decades of thriving culture-independent microbiological research.
Today’s sequencing depth and bioinformatics advances allow a deep look
into a complex microbial sample with mixed populations without a priori
knowledge about their composition. A growing number of studies incor-
porate multi-omics methods, including metagenomics, metatranscriptomics,
metaproteomics, epigenomics, and metabolomics, to study known and un-
known microbes in a variety of environments. Essentially, the meta-omics
terms all share the notion of analyzing the collection of microbial contents
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from environmental samples. The beginning of such a notion is marked by
the advent of metagenomics.

Metagenomics is a field that analyzes genetic material from all microbial
organisms in a bulk sample retrieved directly from the environment they
inhabit, without requiring the separation of individual genomes or species
[1, 8]. In ecology, the collection of microbial organisms coexisting in a specific
ecosystem is referred to as a microbial community. Metagenomics provides
a comprehensive overview of the composition and diversity of the microbial
communities and allows for extrapolation of their metabolic capacities. In
the following section, we briefly review the technology backbone of metage-
nomics, and highlight some key achievements that transformed our percep-
tion of microbial research.

1.1.1 Metagenomic studies powered by advances in se-
quencing technology

Ever since the early days, metagenomics has relied on shotgun sequencing
to generate data [9]. Shotgun sequencing refers to the DNA library prepara-
tion method which breaks DNA molecules into smaller fragments. The frag-
ments will subsequently be sequenced and yield reads. Di↵erent sequencing
platforms require di↵erent sample preparation and produce reads of varying
lengths.

Next-generation sequencing (NGS)

In the early 2000s, following the completion of human genome assembly, a
new generation of sequencers became commercially available. They include
the now-discontinued pyrosequencing and sequencing by ligation, the Ion
Torrent sequencing, and the widely used Illumina sequencing. They vary in
technical details and performances but, in general, produce short reads (un-
der 400 bp per read) in a massively parallel manner, which di↵erentiates them
from first-generation sequencing technologies such as Sanger sequencing[10].
The sequencing usually involves tethering the DNA templates to a surface
with adapter hybridization, and amplifying them into a cluster. The sequenc-
ing is done by measuring the fluorescent signal released when fluorescently
tagged nucleotides are added onto the single-stranded templates one posi-
tion at a time with DNA polymerases. These technologies are commonly
called next-generation sequencing (NGS). Their advantages are marked by
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the high throughput, high accuracy (99.9% and above at the base level) and
low cost[10].

Long read sequencing

In the 2010s, a third generation of sequencing began. Dominated by PacBio
Single Molecule, Real-Time (SMRT) sequencing, and Oxford Nanopore se-
quencing, these technologies typically produce reads of kilobases or even
megabases, which are commonly referred to as long reads. Long reads are
not uniform in length like short reads. PacBio HiFi reads usually range from
10 to 25 kb in lengths[11]. Nanopore long reads are usually within 10 to 100
kb, and ultra-long reads 100 to 300 kb. The new technologies have also made
groundbreaking achievements in the throughput. Illumina NovaSeq sequenc-
ing platform achieved a new level of throughput in 2017, yielding 3000 Gb
reads in a single run[10]. This record is now surpassed by the third-generation
sequencers. For instance, Nanopore PromethION sequencers could yield up
to 290 Gb per flow cell, and generate terabases in total [12, 13]. The two tech-
nologies are completely di↵erent in sequencing mechanisms. PacBio SMRT
sequences the DNA as a part of a single-stranded circular molecule shaped
like a bell (SMRTbell). The sequencing is performed in a well by measuring
the fluorescent signals[14, 11]. Nanopore uses ion current to drive a single-
stranded DNA through a nanoscale protein pore, and measures the current
change to determine the base that passes. Initially, long reads are signif-
icantly more error-prone in terms of the base level accuracy compared to
short reads, but the gap has been diminished gradually with the technical
upgrades of both PacBio and Nanopore[15, 16]. The most recent technologies
achieve an accuracy of 99.5% for PacBio and 99% for nanopore[16, 17, 11, 13].

Besides short and long read sequencing, some alternatives, such as Hi-C
[18, 19] and read-cloud sequencing [20], have also been applied to metage-
nomic studies. With powerful modern sequencing technologies as the engine,
metagenomics has revolutionized our perception of microbiology in many
ways in the last decade.

1.1.2 Genome-resolved era of metagenomics

Retrieving the constituent genomes from read data has been a goal for
metagenomics since the very beginning of the field. Initially, this could only
be achieved with desirable output in low-diversity microbial communities,
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such as those in the acid mine drainage (AMD), an extreme environment
with a handful of detectable microbes [9]. Nowadays, the high volume of
data and the rapidly upgraded computational hardware and software have
extended this application to complex systems, such as soil microbiomes.

Resolving individual genomes from metagenomic data is commonly done
by assembling the reads into contigs. Modern metagenomic assembly algo-
rithms like short read assemblers metaSPAdes [21] and MEGAHIT [22], and
long read assemblers metaFlye [23], hifiasm-meta [24], Canu [25], HiCanu [26]
and Shasta [27] have been reported in a wide range of application cases with
metagenomic data. With short reads, usually, all the contigs in an assembly
are fragments of complete microbial genomes. Long reads can achieve re-
markably greater sequence contiguity. The performance is further enhanced
when assembly is coupled with contig polishing, using tools such as Racon
[28], Medaka (for Nanopore assembly, https://github.com/nanoporetech/
medaka) and Pilon [29]. This could lead to a few complete, closed genomes
[30, 31]. Recently, it has been reported that the newest technology can lead
to more excellent performance without the polishing step [17].

Most metagenome-assembled contigs are still far from being a complete
genome. A binning step can be applied to further separate the mixture of con-
tigs based on their source taxa, resulting in lineage-deconvoluted clusters of
contigs. These clusters are commonly referred to as metagenome-assembled
genomes (MAGs). We will discuss the computation of contig bins in more
detail in Chapter 1.2. Due to the computational di�culties in separating re-
lated genomes during both assembly and binning, the resultant MAGs vary in
quality and many consist of contigs from multiple species or strains. Among
the bins, the most valuable are those with low contamination and encom-
passing all or nearly all the content of the microbial genome. These bins can
be documented as a microbial genome in a public database because, despite
perhaps the fragmented nature, they are able to provide most of the genomic
information of a microbial lineage. Genomes of many unculturable microbes
are now available in the format of MAGs [32]. MAGs have become indis-
pensable to modern genome databases and profoundly expanded the tree of
life. Although alternative methods, such as single-cell genomics, can also
retrieve microbial genomes culture-free, metagenomic approaches have made
the most prominent contribution due to their cost-e↵ectiveness in obtaining
and mining the data. In the last decade, hundreds of thousands of near-
complete MAGs have been produced from large-scale metagenomic projects,
such as Human Microbiome Project [5, 4], the Earth Microbiome Project
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(https://earthmicrobiome.org/ [33], and research e↵orts by Parks et al.
[32], Almeida et al. [34] Pasolli et al. [35], and Nayfach et al. [36].

We used to be informed of the existence of a microbe via its activities, such
as manifestations of its metabolic processes, or the presence of its molecular
markers, such as its 16S rRNA gene. Now we are right in an era in which the
entire genomes of the unknown can be made available, and their metabolic
potential predicted upon the confirmation of their existence. And the in-
ferences of their existence are highly automated, statistics-based, and batch
produced. Genomes of various unknown or understudied microbes can be
generated all at once by automated pipeline from one or more metagenomic
datasets [37, 34, 36]. The novelty of their lineages can be verified via genome
comparison despite the lack of description or evidence regarding their phys-
iology [32]. With the genome-resolving power, metagenomics revolutionized
the way we study microbial lives.

1.1.3 Linking functions to microbial genomic sequences

Gaining a large number of genomes is not the ultimate goal. The genomes
are the most meaningful to be read as a recipe for various cellular func-
tions. Our view of evolution is also based on the comparison of the biological
functions encoded by the genomes. A primary feature that distinguishes
metagenomics from other cultivation-independent genomics methods (e.g.,
16S rRNA sequencing) is that it is able to directly reveal the metabolic
capacity of the targeted microbiome. We highlight two important aspects re-
garding the functional analysis: Genome annotation and functional profiling
of microbial communities.

Annotating genomes or genomic fragments is a common crucial task for
genomic studies. Compared to the eukaryotes, such a task is less complicated
with prokaryotes, because both bacterial and archaeal genomes are densely
packed with protein-encoding genes in an almost non-overlapping manner
[38]. Tools like Prodigal [39] and GeneMarkS [40] allow for e�cient gene pre-
diction of microbial genomes. Because 70 to 80% of protein-encoding genes
on prokaryotic genomes are conserved even over a long evolutionary distance
[41, 38], the functions of the predicted genes can be annotated based on the
multiple sequence alignment to known genes. Another basis is that many
prokaryotic genes are organized in the genetic unit of an operon, and the
function of the unknown could also be deduced from the known genes which
are consistently neighboring them [42, 38]. With these, we have discovered
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from the newly reconstructed MAGs a substantial number of putative or
hypothetical genes and even new homologs [43], which further broaden our
view of microbial gene orthology.

The enriched gene ortholog databases greatly facilitate the functional
profiling of microbial communities. The goal of functional profiling is to
quantify the metabolic content of a community. It is commonly performed by
assigning the reads to a nucleotide or protein reference which has already been
functionally annotated [44, 45]. Functional profiling reveals the metabolic
state of a community, and e↵ectively highlights changes in key processes,
which can serve as a roadmap for designing subsequent biochemical or cellular
experiments [46, 47].

1.1.4 The expansion and alteration of the microbial
tree of life

Metagenomics has also made a profound impact on our understanding of mi-
crobial phylogenies. The first and most obvious contribution is the discovery
of new lineages. It is estimated that for both bacteria and archaea, culture-
free methods expanded the domains by a scale of around five folds [43], a
majority contributed by metagenomic data. Single-cell methods are also able
to resolve genomes, but they have been shown to have lower throughput and
produce assembled genomes that are generally not as complete as MAGs
[48, 43, 49]. Large-scale metagenomic studies are also much more frequently
reported than single-cell studies.

One famous recent example is the discovery of the archaea superphylum,
the Asgard group. Initially, 16S rRNA gene-based study on deep marine sed-
iments hinted at the existence of certain uncharacterized new species [50].
This study was quickly followed by metagenomic sequencing of the same
sample, leading to the discovery of a subgroup Lokiarchaeota (now Lokiar-
chaeia) with a 92% complete genome successfully reconstructed [51]. Two
years later, the Asgard superphylum was reported with additional groups of
uncultivated archaea, adding a brand new clade to the archaeal phylogenetic
tree [52].

Some taxonomic groups were only identified with few representatives at
the time of their discovery, and therefore could only be tentatively placed
on the tree of life. Their lineages and phylogenetic relationships with oth-
ers were later refined with a flood of newly reconstructed genomes, many
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of which were MAGs. Besides Asgard, the new discoveries of the bacterial
candidate phyla radiation (CPR) and the archaeal radiation DPANN (an
acronym for its five major subgroups Diapherotrites, Parvarchaeota, Aenig-
marchaeota, Nanoarchaeota and Nanohaloarchaeota) have led to topological
changes to the tree of life. In the late 1990s, Dr. Norman Pace Jr. and
colleagues uncovered a candidate “division” named OP11 [53]. This division
was later found to encompass several groups at the phylum level, includ-
ing the Microgenomates and Parcubacteria. Later, based on the analysis
of rRNA gene and protein sequences derived from metagenomic data, these
were further clustered as CPR [54, 55]. Analogous to CPR, DPANN were also
initially a few groups of nanoorganisms recovered by di↵erent technologies,
otherwise poorly identified in the pre-metagenomics era. The availability of
new genomes allows for genome comparison, based on which the supergroup
DPANN was proposed [54]. So far, thousands of high-quality genomes are
available for Asgard, CPR, and DPANN, enabling the delineation of many
new candidate phyla within them.

More importantly, phylogenetic placement of Asgard, CPR and DPANN
showed their unique position on the tree of life. A considerable proportion
of the proteins predicted from Asgard MAGs have homologs only or mainly
belonging to eukaryotes. This includes the cell structural protein actins and
many other actin-related proteins, as well as small GTPases that are neces-
sary for the phagocytosis process in cellular organisms [51, 47]. These findings
support an intriguing hypothesis that eukaryotes might have evolved from
certain archaea. Asgard archaea are now widely acknowledged as the closest
to eukaryotes among known prokaryotes [52, 47]. Both CPR and DPANN
are organisms with very small genomes (between 0.5 to 1 Megabases) and
cell sizes. The functional annotation of their genomes revealed a lack of
key biosynthesis-related genes, leading to the common inference that they
are mostly symbionts that rely on other community members to survive
[56, 38, 43]. Both groups contain an astonishing level of diversity, the extent
of which is still an unsettled question. Analyses derived from the annotation
of the genomes suggested that the diversity within CPR can be a quarter
of what is observed in all other bacteria combined [32]. CPR and DPANN
both display as major radiations, and the presence and absence of genes in
each radiation are highly similar in patterns, raising questions about their
evolutionary history. They may have resulted from rapid evolution, but it
is also likely that they are descendants of very ancient microorganisms with
small genomes, and the long branches within the radiations may result from
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undersampling [43, 38]. This question can only be addressed through deeper
genomic comparison with additional distinct genomes.

1.1.5 Genome taxonomy database (GTDB): a concep-
tual shift in microbial taxonomy

Another major conceptual shift lies in the advent of GTDB. Taxonomy is a
scientific classification of organisms into hierarchical groups, ideally based on
and reflecting their evolutionary relationships [57]. Before GTDB came out,
the mainstream taxonomy of organisms, such as the NCBI taxonomy, was es-
sentially a product of successive historical updates, bearing inconsistency and
conflicts within their classification systems. Many taxonomic groups are clas-
sified by their phenotypes, which are hard to standardize, and the taxonomic
ranks reflect the evolutionary distances inconsistently [57, 58]. Although the
notion of sequence comparison-based phylogenies has been circulating for
a few decades [6], a genome-based taxonomy could not have been success-
fully constructed without a su�cient number of microbial genomes. In 2018,
Parks et al. reported the success in creating a standardized bacterial taxon-
omy, using genomes from RefSeq as well as a considerable number of MAGs
from an extensive metagenomic assembly project that they conducted earlier
[57, 32]. The taxonomy was based on an underlying genome tree constructed
from a concatenated alignment of ubiquitous single-copy proteins and ini-
tially annotated with NCBI taxonomy. Polyphyletic groups were removed,
and the threshold of taxonomic ranks was consistently redefined based on the
relative evolutionary divergence (RED), or for the species clusters, average
nucleotide identity (ANI) [57, 59]. GTDB has gone through several updates,
which integrated the archaea domain and introduced impressive expansions
of the tree (over 270% increase in the number of genomes integrated, and a
200% increase in the number of species clusters compared to the first release)
[60, 61, 59]. As a phylogenetically consistent, comprehensive, and up-to-date
taxonomy, GTDB has been widely applied to microbial studies since its re-
lease [37, 36, 62]. By mentioning this, we do not mean to make the unjustified
argument that GTDB prevails over traditional taxonomic systems in all sce-
narios [63], but rather to emphasize the conceptual innovation it has brought
about. Unlike its predecessors, it does not strive for a delicate balance be-
tween multiple aspects such as the historical labeling, microbial morphology,
physiology, and genomics, in order to define prokaryotic taxa [63, 58, 59].
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It instead focuses sorely on features derived from the genomes themselves.
This method also allows for better inclusion of uncultivated microbes and
provides a more comprehensive framework for integrating lineages derived
from metagenomic samples.

1.1.6 From metagenomics to pangenomics

The lavish wealth of assembled microbial genomes means not just the in-
clusiveness of previously undiscovered lineages but also a high number of
genomes available for each species on average. This advancement firstly high-
lights the question of strain variations. There is a growing trend among the
bioinformatics community towards developing strain-aware tools and adopt-
ing the strain-level resolution as a performance evaluation metric [64, 65, 66,
2]. Furthermore, the copious availability of genomes allows us to compare
genomes within or across phylogenetic groups. This leads us to the field of
pangenomics. Pangenome is a concept first introduced by a study in 2005
focusing on multiple strains of the species Streptococcus agalactiae [67, 68].
They described the set of genes present in all strains as the “core genome”
and the set of genes occasionally absent in some trains as the “dispensable
genome”. Genes in the dispensable genome can be further categorized as
“unique”, if they are exclusive to one strain, or “accessory”, if they are
shared in multiple strains but not all [68]. Arguably, the pangenome concept
addresses a challenge to the traditional definition of a genome. In the earlier
time, due to the scarcity of fully sequenced genomes, the genome of a species
usually refers to a reference genome. Nowadays, with tens or even thousands
of complete genomes available for one species, we are able to inspect the
diversity within.

Even in Carl Woese’s time, the potential versatility of the genomic con-
tent has been well noted [6]. Preceding the advent of sequence analysis-driven
microbial studies, researchers made many attempts to use physiological traits
to classify bacteria. However, this hit a bottleneck because many physiologi-
cal traits that could be used to cluster a group of organisms were not always
found in their close relatives, which led to a fundamental problem of defining
a bacterial species [6]. This issue was not resolved until Carl Woese proposed
the use of a phylogenetic marker, 16S rRNA gene, as the basis to define
lineages [7, 6]. Today, the overabundance of assembled microbial genomes
brings a conceptual reminiscence of the previous problem. In a sense, the
phylogenetic marker approaches unified the taxonomic classification system
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of bacteria and archaea, and such classification eventually guided us to return
to the previously perplexing physiological diversity within a lineage.

Within one species, while many metabolic activities are common to all
members, some strains may exhibit unique traits such as drug resistance and
pathogenicity. Pangenomic approaches are immensely helpful in linking these
metabolic observations to the genomic mechanisms. Recently, Pöntinen et al.
uncovered the adaptation mechanism of the hospital pathogen, Enterococcus
faecalis, by analyzing its pangenome derived from genomes collected from
1936 to 2018 [69]. Pangenomic analyses have also led to the identification
of virulent genes in species like Helicobacter pylori and Escherichia coli [68].
Pangenomic analyses are especially useful for mining MAGs recovered from
longitudinal or spatial studies, providing valuable insights into the ecological
mechanisms of a given species by examining patterns in its gene content
[70]. For instance, the gene content of each metagenomic sample could be
predicted by annotating the MAGs. Generally speaking, in these studies,
each sample comes from a specific ecological setup. By performing the meta-
analysis of the genes in all metagenomic samples, we can address the question
of whether a gene is a generalist, common to all samples due to shared
ecological factors, or a specialist, found only in one or a subset of samples
because of certain ecological factors specific to these samples. Tierney et
al. conducted a pangenomic analysis of multi-body site human microbiomes,
and built a gene catalog based on the comparison of gene content. These
results provided a comprehensive overview of the metabolic landscape of the
human microbiome [71].

In summary, metagenomics is the primary means for reconstructing the
genomes and phylogenies of the uncultivated vast majority of microbes.
Metagenomics has taken microbial research to a new era in which the ge-
nomic blueprint of the research targets is readily obtained and utilized as
a guide for future studies. The constant influx of MAGs has not only ex-
tended and refined the tree of life, but also expanded the diversity of gene
orthologs, which has tremendously facilitated the functional analyses of mi-
crobial communities. The explosive growth of metagenomic data is leading
us to new and deeper questions about microbial evolutionary history. The
overall abundance of metagenome-derived genomic data further brought in
the concept of pangenome, broadening our perspectives of microbial genomic
studies.
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1.2 Metagenomic contig binning

A highly informative end of metagenomic sequencing data analysis is to re-
trieve individual genomes. This has brought us unprecedentedly close to
the uncultivated majority of microbes. As of today, our understanding of
the microbial world has been greatly enriched by the tens of thousands of
reference-quality microbial genomes reconstructed from metagenomic sam-
ples. Commonly, this is done by means of de novo metagenomic assembly.

Recent assembly methods are able to produce highly accurate genomic
fragments (termed contigs) of members in a microbial community. But to
further complete them to full-length genomes is a di�cult task. Many mi-
crobial communities contain closely related members, and their genome-level
similarity prohibits assembly algorithms from correctly putting their frag-
ments together [72, 73]. Such limitation could be compensated subsequently
by binning. Metagenomic binning is a computational step to cluster bio-
logical sequences by their organism of origin. By a broad definition, the
sequences could be genomic fragments of any kind, such as sequencing reads
or assembled contigs or sca↵olds. The goal is to deconvolute the sequence
mixture and place sequences into taxonomic units of a certain level.

Binning could be computed with or without references [74]. In reference-
based binning, or supervised binning, bins are inferred from the sequence
comparison between input and reference [2]. As sequence comparison is able
to produce meaningful results for sequences as short as 100bp, this binning
approach has the advantage of low requirement for input sequence lengths.
However, the taxonomy of the resultant bins is derived from that of the refer-
ence genomes. Therefore, the performance of this approach heavily depends
on the inclusiveness of the reference. It works best when the source genomes
of the input sequences are either included or closely related to those in the
reference. Benefiting from the high e�ciency of current sequence comparison
algorithms, many reference-based binning approaches are e�cient, achieving
satisfactory sensitivity and specificity. But they usually perform poorly for
sequences from unknown or unclassified organisms [74].

On the other hand, reference-free binning, or unsupervised binning infers
the bins by analyzing the intrinsic characteristics of the input sequences
and therefore requires no prior knowledge of the constituent genomes [74]. It
typically works with longer sequences. It suits well contigs from metagenomic
assemblies, as they typically contain longer pieces that might originate from
undocumented genomes [2].
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Unsupervised binning in general consists of two key steps, to quantify the
input sequence properties, and based on that, to cluster the sequences. It is
a lively field with a constant flux of new algorithms. We may navigate their
novelties from the said two aspects, which we will briefly summarize here.

1.2.1 Genomic features used for unsupervised binning

Oligonucleotide composition and abundance patterns are two sequence prop-
erties that are conventionally used to infer sequence clusters. DNA fragments
from the same genome are believed to have a similar short oligonucleotide
(or k-mer) usage pattern. These oligonucleotides are usually 2-5 bases, typi-
cally tetranucleotide (4-mer) [75, 76]. Abundance or coverage-based methods
assume that the abundance or coverage of subsequences from the same or-
ganism shall be strongly correlated in samples. For a single sample, this
means the read coverage of contigs from the same chromosome follows the
Lander-Waterman statistics [77], or in other words, their abundance profiles
shall be similar. For multiple samples, contigs from the same genome shall
be co-abundant, or in other words, the covariance of their abundances across
the samples shall be high [78, 79, 80].

Both sequence properties have been adopted by the field of metagenomics
for over a decade. In 2009, Dick et al. studied microbial communities from
acidophilic biofilms. Using tetranucleotide frequency (TNF) patterns as a
genome-specific signature, they successfully partitioned contigs and revealed
a list of previously unknown organisms [76]. Iverson et al. were the first to
unveil a closed genome from the marine group II Euryarchaeota in 2012, with
the help of TNF to cluster the sca↵olds [81]. Abundance statistics-assisted
binning can be dated back to 2013, when Albertsen et al. segregated some
dominant species from wastewater samples [79]. In 2014, both Canopy [80]
and CONCOCT [82] came out, bringing this method further by introducing
co-abundance across multiple samples, typically coupled with co-assembly of
metagenomic samples. CONCOCT was one of the first programs to adopt
both features, followed by several other widely-used binning tools, such as
MetaBAT 2.0 [83], MaxBin 2.0 [84] and GroopM [85].

Other sequence features have also been employed to deduce bins. Con-
ventional binning methods all work with assembled contigs. With paired-end
sequencing, read pairs could provide extra linkage between contigs. COCA-
COLA leverages this information to improve its performance [86]. Binnacle
pipeline sca↵olds the contigs first, and then computes and evaluates read
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coverage, and detects the misassemblies, before passing them to an existent
binning algorithm [87].

Very recently, some attention was drawn to the contiguity information
in the assembly graph. Mallawaarachchi et al. implemented GraphBin, a
binning refinement program that reevaluates the bins by checking in the
assembly graph the linkage of their constituent contigs [88]. Later, Lamurias
et al. released GraphMB, a deep learning (DL)-based binning algorithm
that encodes into embeddings not only contig statistical features but also
the assembly graph. Compared to GraphBin, it integrates the assembly
graph into the binning process instead of post-processing. It also addresses
the lack of focus on long-read assemblies in currently available tools [89].

We shall point out that the innovations in binning methods go beyond
what was discussed above. DNA sequencing is a fast-moving field and new
types of sequencing data always come out. This means, while the data clus-
tering part of the binning problem may remain a classic mathematical ques-
tion, what to be clustered gets updated rapidly with the sequencing tech-
nology. Alternative genomic features can always be incorporated as part of
the clustering data. For instance, several new methods came out recently
for high-throughput chromosome conformation capture (Hi-C) metagenomic
data [90, 19, 91, 92],. Hi-C technique captures topological proximity of DNA
segments in vivo. It was initially invented for the human genome, and later
found its application in metagenomics. With the assistance of the crosslink-
ing proteins bound to them, spatially adjacent DNA fragments get ligated,
and a library for Illumina shotgun sequencing is prepared. With Hi-C data,
a contact map between assembled DNA segments can be generated [93, 94].
Hi-C binners typically interpret and integrate sequence connectivity infor-
mation o↵ered by the contact map to perform clustering [90, 19, 91]. These
methods altogether have demonstrated that a high-quality characterization
of the di↵erences between constituent genomes in the data is crucial for bin-
ning. The more distinct genomic signatures used as the clustering basis, the
better extraction of individual genomes from metagenomic data.

1.2.2 Clustering methods used for unsupervised bin-
ning

Binning is a clustering problem by nature. The descriptions “supervised” and
“unsupervised” in fact are terminology from machine learning. All binners,
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after preparing the data, need to fit the data to a model to perform clustering.
There are myriad clustering algorithms. Here we sort them out into 3 broad
categories: classic, network-based, and DL-based.

Classic algorithms here refer to some basic methods that do not involve a
network analysis or DL. It includes centroid-based models such as K-means
and K-medoids, distribution-based ones such as Gaussian-mixture models,
and density-based ones such as density-based spatial clustering of applica-
tions with noise (DBSCAN). From the input data, the similarity between
data points is quantified and passed on to the clustering algorithm. Early
binning tools used to rely on these algorithms. One primary concern with
these approaches is their request of the number of clusters to be predeter-
mined. MaxBin [95] and MaxBin 2.0 [84] both rely on expectation maxi-
mization (EM). They first work out the pairwise sequence similarities and
then use that as a basis to compute the probability of a sequence coming
from a certain genome. And the number of bins is estimated from the anal-
ysis of single-copy marker genes. MetaBAT kneads the TNF and coverages
into one sequence similarity score, and in its original version, it uses a K-
medoids model to cluster [96]. CONCOCT, after using a combined vector to
represent the genomic features of contigs and applying principal component
analysis (PCA) for dimensionality reduction, uses a Gaussian mixture model
to cluster [82].

Network-based methods use a graph structure to represent the relation-
ships between the objects, i.e., contigs for the binning problem. Our notion
here excludes neural network-related approaches, and refers only to methods
like Markov clustering, label propagation, and community detection algo-
rithms such as the Louvain algorithm and the more recent Leiden algorithm.
MetaBAT 2.0 has turned to modified label propagation clustering instead
of K-medoids [83]. The binning refinement tool GraphBin also uses a label
propagation algorithm [88]. As for community-detection algorithms, both
Louvain and Leiden algorithms partition the network by computing the mod-
ularity and trying to optimize it [97]. These methods are particularly useful
for complex, dense graphs, which could be the case in binning depending on
how edges are established between the contig nodes. Community detection
algorithms have been adopted by some Hi-C binners. Bin3C uses a Louvain
algorithm-derived method Infomap to perform the binning [19], and HiCBin
a Leiden algorithm [91]. Our binning method, as will be explained in full
detail later, also adopts the Infomap algorithm [98]. So far as we know, bin-
ners for regular metagenomic assemblies using community-detection network
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clustering have not yet been published.
And finally, DL-based methods are those that perform the clustering us-

ing neural networks. DL has only made its debut in metagenomic binning
quite recently, in VAMB, GraphMB, CLMB and etc., yet has already been
reported to be of high performance [99, 89, 100]. VAMB uses variational
autoencoders (VAE), a DL method, to autoencode the TNF and abundance
features to perform the clustering [99]. CLMB uses the same features, but
before training, it augments some simulated statistical noises to the fea-
tures, then uses the VAMB framework to get the bins [100]. GraphMB adds
the assembly graph into its feature learning process. It uses graphic neu-
ral networks (GNNs), an application of deep neural networks to graph data
structure [89]. As developers of these methods pointed out, the advantage of
DL is that it is able to encode latent features, and thus has great potential
for data whose underlying statistic model is challenging to figure out. An-
other positive factor is that embeddings are low-dimensioned compared to
the original features.

Table 1.1: Summary of open-access metagenomic binning tools. TNF:
tetranucleotide frequency; ABD: abundance statistics (or coverage).

Name
Recent
update

Features clustering method
Input data
optimized for

Ref.

Canopy 2014 ABD (genes) Self-defined Short reads [80]

CONCOCT 2019 TNF, ABD Gaussian mixture
models

Short reads [82]

GroopM 2014 TNF, ABD Self-defined Short reads [85]

COCACOLA 2017 TNF, ABD K-means
Short reads
(paired-end)

[86]

MetaBAT
2.0

2019 TNF, ABD Label propagation Short reads [83]

MaxBin
2.0

2020 TNF, ABD Expectation
maximization

Short reads [84]

VAMB 2022 TNF, ABD Variational
autoencoder

Short and long
reads

[99]

GraphBin2 2020 Assembly graph Label propagation
Short and long
reads

[88]

CLMB 2022 TNF, ABD Deep learning
based on VAMB

Short and long
reads

[100]
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GraphMB 2022
TNF, ABD,
assembly graph

Graphic neural
networks

Short and long
reads

[89]

Bin3C 2019 Hi-C read-pairs Infomap Hi-C reads [19]

HiCBin 2022 Hi-C read-pairs Leiden algorithm Hi-C reads [91]

1.2.3 From binning to high-quality MAGs

As introduced in Chapter 1.1, binning is the key step to retrieve MAGs from
metagenomic assemblies, but the quality of resultant MAGs varies between
bins. Studies have widely acknowledged the use of completeness and con-
tamination as the two key metrics of MAG quality. Completeness refers to
the inclusiveness of all genomic components of a given genome, and contam-
ination means the presence of contigs from other organisms or sources other
than the target. To be inclusive of the undocumented genomes, the assess-
ment of a bin is usually based on the inference of the gene content rather
than aligning the bin directly against existing genomes. CheckM [101] is one
of the most popular tools to assess the MAGs from unsupervised binning.
CheckM uses a reference genome tree that has been annotated for lineage-
specific marker genes. An inquiry putative genome is first predicted for its
marker gene content. Based on this, it is placed to a specific lineage on the
reference tree. Completeness and contamination are estimated based on the
inclusiveness of the marker gene content in the lineage [101].

Most genome databases have established quality standards for registering
a MAG, and genomic research communities have also put forward a few gen-
eral criteria for reporting microbial genomes. The Genomic Standards Con-
sortium (GSC) developed the minimum information about a metagenome-
assembled genome (MIMAG) standard for MAGs. A MAG is deemed as
of high quality if it has completeness over 90% and contamination below
5%, contains 16S and 23S rRNA genes, and a minimum of 18 tRNA genes
[102]. But a technical problem with implementing such a standard is that the
rRNA gene regions are highly similar among di↵erent lineages, and common
de novo assembly tools are not optimized to reconstruct these regions well
[103, 35, 34]. Therefore, many studies report near-complete or high-quality
MAGs with no or relaxed criteria for the rRNA regions [34, 99, 89].
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1.3 The gut microbiota and host immunity

The human body comprises at least half, if not more, microbial cells - bac-
teria, archaea, viruses, fungi and other microorganisms [104, 5, 105]. In the
biomedical field, the most extensively studied human-associated microbiome
is the gut microbiome. Above 90% of microorganisms found in the human
body reside in the intestine [105], and the microbial community is colloquially
referred to as the gut microbiome.

Strictly speaking, the gut microbiome refers to the community living in
close proximity to and interacting with the intestinal mucosa. In practice, the
“human gut microbiome” in many studies refers to the microbial communities
in the large intestine or the colon [106]. As direct sampling of the mucosal
microbes is not feasible for human subjects due to its invasiveness, fecal
samples are the most commonly used proxies for the mucosal microbiota.
Alternative sources of samples, such as cecal samples, could also be collected,
but usually only in animal studies (e.g., with chicken and mice), and may
require the sacrifice of the animals [107, 108].

Although gut microbiota composition varies between individuals, at a
higher phylogenetic level, for healthy adults, certain similarities can be ob-
served. Generally speaking, the human gut is a highly anaerobic environ-
ment, and the microbiota mainly consists of anaerobic bacteria and archaea
[109]. In healthy adults, the gut microbiota typically comprises some hun-
dreds to a thousand bacterial species, with a dominant proportion of the
phyla Bacteroides and Firmicutes, a small fraction of Actinobacteria and
Proteobacteria, alongside a variety of other organisms of lower abundances
[110, 106, 111]. A vast majority of the gut microbes are beneficial or at
least harmless to the host [110]. For over a decade, intensive research e↵orts
have been devoted to uncovering the taxonomic composition of the gut mi-
crobiome, and now we have gained near-complete knowledge of the microbial
lineages present in the regular human gut, at least at the genus and species
level and higher. In other words, the gut microbiota is essentially comprised
of species that have been characterized [112].

The significance of the gut microbiome to human health is becoming in-
creasingly clear, providing biomedical researchers an excellent opportunity
to explore the potential of therapeutic interventions targeting the gut mi-
crobiome [113, 114]. A thorough understanding of the microbial interactions
with the host is crucial in this regard. Studies often describe the relationship
between the gut microbial community and the human host as an “interplay”,
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as the host environment helps shape the microbial community and, in turn,
the community can impact the health conditions of the host [115, 104]. While
certain diseases, such as cholera, salmonellosis and gastroenteritis, can be at-
tributed to specific infectious agents, many other human health issues are
associated with changes in the composition and metabolic functions of the
microbial community [112, 104]. The widespread use of sequencing technolo-
gies has led to the discovery of connections between gut microbial commu-
nities and a wide range of health issues, including gastrointestinal diseases
[116, 37], obesity [117, 118], immune disorders [115, 119, 120], cancer [121],
and mental disorders [122]. These studies indicated that the impact of host-
gut microbiota relationships could be far-reaching rather than confined to the
gut. The connections are established through the comparison of sequencing
data collected over time (longitudinally) or across di↵erent geographical lo-
cations (spatially) [112]. However, these findings are observational in nature.
At the moment, the field is gradually shifting toward revealing the underlying
metabolic or ecological mechanisms.

Perhaps the first layer to probe into is the interplay between the gut mi-
crobiota and the immune system, as the immune system is directly responsi-
ble for the regulation of the microbiota [123, 124]. Following the discoveries
from association studies, the underlying metabolic dynamics could be directly
addressed from multiple angles. These include using animal models such as
germ-free (presence of microbes eliminated) or gnotobiotic (gut microbiota
configuration pre-defined) mice to look into specific metabolic pathways, or
integrating the host immune profiles to identify the causality [115]. These
mechanistic studies help bridge the gap between statistical correlations and
their potential therapeutical applications.

In this thesis, we focus on linking the gut microbiota to host immunity,
a theme that is well-addressed by the project ImMiGeNe. Here, we will
introduce the project and present some foundational knowledge in this area.

1.3.1 The ImMiGeNe project

ImMiGeNe is a project aiming to study the relationship between the gut
microbiota, host immunity and genetics in stem cell transplantation (SCT)
patients. This is a longitudinal study integrating multi-omics and clinical
data from 20 patients and their stem cell donors. Feces, urine, and blood
samples were collected, and used to obtain the fecal microbiota sequencing
data, host physiological measures, whole-exome sequencing (WES), and tran-

20



scriptomic data. A detailed sample collection agenda and data analysis will
be presented in Chapters 3 and 4. Overall, the project focuses on three main
aspects:

1. Impact that the transferred donor immune system may have on the recip-
ients’ gut microbiota

2. Linking the alterations in the post-SCT microbiome to the immunogenic-
ity of gut microbes.

3. Matching of donor-recipient biomarkers apart from human leukocyte anti-
gens (HLA). While donor-recipient HLA “matching” is commonly known
as the prerequisite of SCT, it is unlikely to be the sole factor determining
the compatibility. The project aims to explore other factors in the host
genetics that have an impact on the matching.

ImMiGeNe brings together a multi-disciplinary collaboration. Our role
in the project mainly revolves around questions (1) and (2).

SCT patients typically undergo intensive chemotherapy, long-term medi-
cation, hospitalization, and broad-spectrum antibiotic treatment, besides the
SCT itself. Subject to these strong perturbations to their body systems, the
patients are usually not in a state of homeostasis throughout the treatment
process. Their immune systems have been compromised from the outset and
further destroyed by chemotherapy. The unstable host physiological condi-
tions lead to dysbiotic microbiota, which is further depleted by the heavy use
of antibiotics. During the engraftment phase, both the host immune system
and the gut microbiota struggle to restore balance. Tracking the development
of the microbiota and examining it jointly with the host genetics and phys-
iology can provide valuable insights into the mechanism of host-microbiome
co-regulation.

1.3.2 The human immune system

The immune system is comprised of all the cells, substances, and metabolic
processes that protect the human body from foreign or potentially harmful
agents, such as microbes, toxins, damaged cells, and cancer cells. In ver-
tebrates, it consists of both the innate and adaptive immune systems. The
innate immune system is characterized by its quick and non-specific response,
while the adaptive immune system is highly specific to antigens [125]. Upon
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the recognition of potentially harmful agents, innate immunity tries to elim-
inate invading entities by initializing physiological changes such as fever and
lower pH, inflammation, and phagocytosis which neutralizes pathogens with
macrophages and neutrophils [126]. Adaptive immunity, on the other hand,
relies on the activation and di↵erentiation of antigen-specific T and B cells
to contain and neutralize infectious agents, and to keep an immunological
memory for long-term protection against future infections of the same agent
[126].

The innate immune receptors recognize a relatively fixed set of molecules,
some of which are commonly found in microbes as a result of evolutionary
conservation [125, 127]. It has evolved to detect microbial intruders by rec-
ognizing the shared patterns of these molecules, commonly referred to as
microbe- or pathogen-associated molecular patterns (MAMPs or PAMPs),
through receptor proteins known as pattern recognition receptors (PRRs).
The most well-studied PRRs in mammals include the Toll-like receptors
(TLRs) and nucleotide-binding and oligomerization domain (NOD)-like re-
ceptors (NLRs) [128, 125, 127]. Generally speaking, innate immune receptors
are highly similar within the same species.

By contrast, the adaptive immune system comprises specialized immune
cells, the T and B lymphocytes, as well as antibodies [125]. Antigen-presenting
cells process the antigen and present them to be recognized by T and B cells,
by the specific receptors they express (T- and B- cell receptor, TCR and
BCR). The recognition leads to the activation and proliferation of the T
and B cells and the production of molecules such as antibodies [129]. The
specificity of receptors to antigens is generated via site-specific DNA recom-
bination [125, 130]. These TCRs or BCRs form a repertoire to enhance the
chances of detecting any antigens that the host has encountered. These im-
mune repertoires are individual-specific, decided by factors like host genetics
and the set of antigens they encounter through their lifetime [125, 130].

1.3.3 An overview of the host-gut microbiome interac-
tions

Having co-evolved for eons, the gut microbiota and the human hosts are in
a complex symbiotic (commensalistic, mutualistic, or parasitic) relationship.
The gut microbiota starts to develop at birth, and continues until it reaches
a stable, resilient state of a climax community in late childhood or adoles-

22



cence, during which time the host immune system also develops and matures
[131]. Throughout our lifetime, our gut microbiome and host immune sys-
tem are closely interconnected through a network of intertwined metabolic
pathways. They regulate and educate each other, and their overall stability
is maintained interdependently. As a result, perturbations in one can result
in significant changes to the other [115, 132].

A long-standing prevalent view was that only pathogens elicit immune
responses from the host, as a defense mechanism. But later, it was proved
that commensal microbes are also recognized by the immune system[133].
This transformed our understanding about the interconnections between the
two entities, demonstrating that the host pattern recognition of the microbial
components can also act as an integral part of daily physiological processes,
and a crucial mechanism to the mutual regulation of each other and the
defense against pathogens[134, 135].

Both our innate and adaptive immune systems are being molded by the
gut microbiota since birth, through their metabolic communications. A num-
ber of studies have uncovered how certain microbial lineages or metabolic
pathways mediate immune maturation and help shape immune cell dynam-
ics. Mazmanian et al. proved in a murine model that Bacteroides fragilis,
a pioneer species in neonates’ gut, produces a polysaccharide for dendritic
cells, the antigen presentation cells for mammals. This leads to the expansion
of T cells and a correction of imbalanced T helper (Th) 1/Th2 cells (both
di↵erentiated from näıve CD4+ T cells) [136]. Ivanov et al. showed that
segmented filamentous bacteria (SFB) introduced to the small intestines of
mice induces the di↵erentiation of Th17 cells and enhances the antimicrobial
or inflammatory immune responses, leading to increased immunity against
the gut pathogen Citrobacter rodentium. Such e↵ect is not observed in other
lineages even if they are closely related to SFB [137]. Research has indicated
that some immunoregulatory e↵ects are not exclusive to specific microbial
strains, but rather are shared by microbes that possess certain metabolite-
producing abilities. For instance, short-chain fatty acid (SCFAs) is produced
by a range of gut commensals via fermentation processes. Regulatory T cells
(Tregs) are pivotal to immune homeostasis. Smith et al. demonstrated that
SCFAs expand Tregs in mice and protect against experimentally-induced col-
itis [138]. Chang et al. reported that N-butyrate, a type of SCFAs, is able
to mediate the macrophage activities by down-regulating the production of
pro-inflammatory cytokines [139]. Wampach et al. revealed that compared
to the gut microbiota of caesarean section delivered neonates, that of the
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vaginally delivered neonates are enriched with the biosynthetic pathways of
lipopolysaccharide (LPS), a ligand to the TLR4. The recognition stimulates
the production of interleukin 18 (IL-18) and tumor necrosis factor (TNF-↵),
which are pro-inflammatory mediators [140]. Such cross-talk could poten-
tially contribute to the development of the innate immune system.

In a nutshell, the microbial community as a whole can influence the host’s
immune state through their fundamental metabolic activities. Meanwhile,
certain microbial lineages may exert a more pronounced e↵ect, due to their
extra immunogenicity, unique metabolic capabilities, or close proximity to
host mucosal cells. In ImMiGeNe, with the metagenomic sequencing data,
we aim to investigate the metabolic landscape of the gut microbial communi-
ties, and also explore the lineage-specific immunogenicity by examining the
flagellins produced by di↵erent microbial species.

1.3.4 Gut microbial energy metabolism landscape un-
der host homeostasis and inflammation

The intestinal epithelial cells are responsible for nutrient uptake and im-
munomodulation. Gut microbes live in a race to compete for limited re-
sources, and it is crucial to their fitness to be able to utilize what is allowed
to be available by the host cells [141].

Healthy human gut is maintained as an anaerobic environment that pro-
motes the fitness of obligate anaerobic microbes. These microbes can convert
complex dietary carbohydrates into energy by fermentation, and at the same
time, generate metabolites that are beneficial for the host [141]. These mi-
crobes encode a variety of glycoside hydrolase genes, which allow them to
catabolize a wide range of polysaccharides for energy and therefore adapt
well to the anoxic gut environment [109]. Facultative anaerobic microbes, in
comparison, are able to survive, but their energy metabolism is not optimally
configured for living in an environment lacking oxygen [141, 109].

Alongside fermentation, gut microbes all have certain mechanisms to
respire, because compared to fermentation, respiration is much more e�cient
in producing energy. One main di↵erence between the two is, respiration in-
volves the electron transport chain (ETC), while fermentation does not. An
oxidizing agent is used as the terminal acceptor in ETC, such as oxygen in
aerobic and nitrate in anaerobic respiration. Strict anaerobes like Clostrid-
ium spp. and Roseburia spp. evolve to have a simple ETC that uses fumarate
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as the terminal electron acceptor, reducing it to succinate [142]. Fumarate
is made available by gut microbes as a fermentation product. Facultative
anaerobes like Gammaproteobacteria do not commonly have fumarate as a
terminal electron acceptor; instead, they encode several families of oxidore-
ductases to e�ciently make use of exogenous electron acceptors that are
rarely available under homeostatic conditions [142, 123].

Under inflammatory conditions, changes in nutrient availability reshu✏e
the fitness of microbes. During inflammation, the host immune system pro-
duces a variety of antimicrobial radicals like reactive oxygen species (ROS)
(such as superoxide and hydrogen peroxide), and reactive nitrogen species
(RNS) (such as peroxynitrite and nitric oxide). Despite being non-toxic to
the host themselves, these radicals will further form by-products that can
serve as terminal electron acceptors in anaerobic respiration. They include
nitrate, nitrite, and trimethylamine N-oxide (TMAO), and dimethyl S-oxide
(DMSO). Using these chemicals to respire requires terminal oxidoreductases,
which can be found in many facultative anaerobes but rarely in obligate
anaerobes [143, 46]. And compared to fumarate respiration, through which
many obligate anaerobes can respire, these are stronger oxidizing agents that
release more energy. Therefore, these exogenous electron acceptors greatly
enhance the fitness of the facultative anaerobes, allowing for their signifi-
cant expansion and the depletion of their obligate anaerobic counterparts.
Studies have also suggested that these electron acceptors allow facultative
anaerobes to e�ciently utilize alternative carbon sources, such as succinate,
ethanolamine, and l-lactate, which are common metabolites produced by the
host or obligate anaerobes [144, 145, 132]. This further reinforces the notion
that facultative anaerobes can e�ciently exploit the physiological changes
for their own growth.

Another key factor in immune homeostasis is the low oxygen levels. The
intestinal epithelial cells actively maintain the anoxic gut environment through
their metabolism. One pathway involves butyrate, an SCFA that is pro-
duced exclusively through anaerobic fermentation by gut commensals such
as Clostridia [132, 123]. The colonic epithelial cells, colonocytes, use butyrate
as an energy source, which consumes a considerable amount of oxygen. This
helps maintain the low-oxygen level in the colonic lumen, favoring the domi-
nance of obligate anaerobes [132, 123]. The presence of butyrate also leads to
a significant decrease in host-derived nitrate, through the suppression of the
inducible nitric oxide synthase (iNOS) synthesis by the host. By providing
the host with butyrate, obligate anaerobes restrict the access of facultative
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anaerobes to two potential electron acceptors, oxygen and nitrate, thereby
limiting their expansion [123, 146].

Inflammation or antibiotic use can lead to the depletion of butyrate-
producing anaerobes, thus cutting o↵ the butyrate supply to the host. In
the absence of butyrate, the epithelial cells switch to glycolysis and lactate
fermentation instead, which do not consume oxygen. This leads to elevated
oxygen levels and further intensifies the shifts in the metabolic landscape
of the microbial communities [123]. Evidently, oxygen inhibits the growth
of strictly anaerobic commensals, and promotes the expansion of faculta-
tive anaerobes like Enterobacteriaceae, whose most optimal way to generate
energy is through aerobic respiration using the superior electron acceptor,
oxygen [46, 147]. Furthermore, it has been reported in a mouse model that
colitis could be alleviated using a microbiota-engineering method that in-
hibits certain respiratory pathways of Enterobacteriaceae. This implies that
some facultative anaerobes may not only benefit from inflammation, but also
plays a role in amplifying its e↵ect [148].

It has been established that gut microbiome can display significant di↵er-
ences in composition between healthy and diseased host conditions [149, 150].
The host-microbiome correlations could be largely driven by the metabolic
interactions, as demonstrated above. Investigating fundamental metabolic
processes like energy production at the community level can facilitate our
understanding of the mechanisms behind the correlations.

1.3.5 Bacterial flagellin and host innate immune recog-
nition

As previously mentioned, the intestinal innate immune system is able to
recognize both commensal and pathogenic gut microbes via MAMP-PRR
signaling, which is a basis for the symbiotic relationship between the host
and gut microbiome. But recognition of pathogens commonly leads to pro-
inflammatory responses, while recognition of commensals does not. It is
therefore intriguing to explore the various immune responses di↵erent mi-
crobes can elicit, i.e., their immunogenicity. One of the most well-studied
MAMP-PRR interactions is the recognition of microbial flagellin by TLR5.

Flagellins are the basic units of flagella. A flagellum is a hollow lash-
shaped organelle that enables the organism’s motility. TLRs are transmem-
brane PRR proteins capable of binding to various components on microbial
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cell surfaces. Among them, TLR5, a protein commonly found in epithe-
lial cells of mucosal barriers, recognizes microbial flagellins by binding to a
phylogenetically conserved domain, D1, of the protein.

Both commensal and pathogenic microbes could be flagellated, but the
host immune responses they stimulate could di↵er vastly in intensity. This
can be attributed to the structural variations of the flagellin proteins, as well
as the versatility of gene expression. Several studies have indicated that some
types of flagellins could evade TLR5 recognition. For instance, it has been
demonstrated that pathogens from alpha- and epsilon-proteobacteria have
significant amino acid changes in their flagellin, which preserve the microbes’
motility while evading TLR5 activation [151]. A recent study tested di↵erent
types of flagellins that are commonly found in the human gut [152]. Previous
studies based on the well-characterized FliC model reported that although
TLR5 recognition site is at domain D1, D0 is necessary for the activation
[153]. Consistent with these findings, this study pinpointed an additional
binding site on the D0 domain that is necessary for the activation of TLR5.
Commensal bacteria such as Roseburia hominis lack such site and bind sorely
to the epitope instead of the full-length TLR5, resulting in weakly activated
TLR5. This mechanism is referred to as “silent recognition”[152].

Some microbes carry and express only one flagellin gene, e.g., Escherichia
coli encodes only FliC [154]. Others can carry multiple genes which may not
be expressed all at the same time. For example, Salmonella in general has
fliC and fljB that they expressed in two di↵erent phases of their life cycle
[154].

The TLR5 recognition of di↵erent flagellins is an interesting illustration
of how di↵erent microbes have varying abilities in influencing host immu-
nity. The gut microbiome is potentially a reservoir of enteropathogens to
the host [132]. Analyzing the diversity of flagellin can help us unravel the
contributions of individual microbial taxa to the host immune responses.

1.3.6 Looking into human gut microbiome through the
lens of metagenomics

Like other microbiomes, the most relevant questions related to a gut micro-
biome include (1) the community’s taxonomic composition; (2) the functional
activities of the community members; (3) the ecological factors that shape
the community. A majority of human gut microbiome studies rely on sample

27



comparison to highlight group di↵erences, or establish the roles of certain
host or environmental factors.

The fundamental questions can be e↵ectively addressed by sequence-
based methods, primarily 16S rRNA and metagenomic sequencing. While
16S rRNA sequencing remains a very popular, cost-e↵ective, and scalable
way to examine the taxonomic composition of microbial communities, it bears
the intrinsic limitation of containing only the information of bacterial and
archaeal 16S rRNA genes. And conventional short read 16S rRNA methods
only have a decent resolution at the genus level and above [155]. Metage-
nomic sequencing is able to overcome these issues. Commonly, metagenomic
data could reveal species-level composition, and more recently, there has been
a trend of pursuing the strain-level resolution [156, 157]. Such improvement
is especially relevant for human gut microbiome studies. Metagenomics en-
hances the accuracy and specificity of the microbiome comparison and func-
tional analyses. For instance, Costea et al. identified subspecies based on
the single-nucleotide variation (SNVs) analyses in a large-scale human gut
microbiome dataset. The gene content analysis further demonstrated that
some subspecies-specific genes, such as certain pro-inflammatory flagellum
operons in two of three subspecies of Eubacterium rectale, may be linked to
some key factors like microbiome diversity and host BMI [158, 112]. This sug-
gested that higher resolution provided by metagenomic data can shed light
on some overlooked microbiome functions and host-microbiome interactions
that happen at more refined taxonomic levels.

With metagenomic data, one could also reconstruct the constituent genomes.
MAGs are particularly useful for genomic comparison and gene screening.
MAGs from large projects like MetaHIT [159] and HumanMicrobiome Project
[5, 4] has contributed considerably to our current understanding of the base-
line compositions and functions of the gut microbiome [112].

Metagenomic data allows for in-depth functional analyses, as they are
meant to target all gene contents of a sample. The functional potentials of
a microbiome can be estimated by gene prediction and annotation. Long
sequences such as assembly sequences and certain kinds of long reads may
contain multiple genes. Gene prediction is used to find out the coordinates
of each possible gene [40, 39]. Annotation assigns functional information
to a given sequence. A query sequence can be annotated by mapping it to
functionally-annotated reference sequences [160]. Alternatively, genes can
also be directly assembled from reads [161]. Functional analyses boosted
comparative analyses between metagenomes, providing valuable guidance
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for inferring the mechanisms behind their compositional di↵erences. For
instance, Chng et al. compared gut microbiomes that either did or failed to
recover from antibiotic treatments. They identified key species crucial for
microbiome recovery. By combining this finding with the functional analy-
ses, they hypothesized that the recoveries were related to the enrichment of
carbohydrate metabolism, which was supported by subsequent experiments
using a mouse model [162].

While metagenomics provides a comprehensive genomic landscape of given
microbiomes, its functional readouts only indicate the potential existence of
a set of genes, and no information regarding their expression levels or their
roles in biological processes. Furthermore, despite our relatively complete
taxonomic knowledge of the human gut microbial species, a significant pro-
portion of the genes predicted in the metagenomes are still uncharacterized
[112]. Correlations drawn from metagenomic analyses are also only indicative
and serve as a guide for generating hypothesis, but do not establish causation
nor imply directionality of the impact [112].

In recent years, human gut microbiome studies are increasingly com-
pensating these limitations by employing metagenomics in conjunction with
other meta-omics methods, such as metatranscriptomics, metaproteomics,
and metabolomics, as well as perturbation or intervention experiments in
vitro and in vivo [37, 163, 164, 165]. These methods are able to provide
more direct profiles of gene expression, proteins, and metabolites. Hypothe-
ses based on the metagenomic analyses can be tested using animal models
or human interventional experiments [46, 163, 115].

1.4 Outline of the projects

Three main projects are involved in this thesis. Chapter 2 focuses on a soft-
ware development project, in which we developed a tool named Mapbin, for
metagenomic binning refinement. The chapter first demonstrates the core
algorithm behind Mapbin, the Python implementation, and the performance
on synthetic and real-world datasets. Chapter 3 is about the microbiome
data analysis in the ImMiGeNe project. In this chapter, we will explain the
data processing and taxonomic and functional analyses first, linking them
to the biological theme of ImMiGeNe. We will then evaluate the methodol-
ogy of the data analysis, including its practicality and potential limitations.
In Chapter 4, we will design a list of PCR primers suitable for batch am-
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plification of bacterial flagellin in the microbiome samples from ImMiGeNe.
We will elucidate computational challenges associated with primer design,
present various algorithms and techniques to solve them, and demonstrate
the application of these methods in our specific case. Altogether, this thesis
covers a wide range of topics in metagenomics, including theories, algorithms,
and real-world applications.
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Chapter 2

Mapbin: versatile refinement of
metagenomic binning using
multilayer networks

2.1 Introduction

2.1.1 Community detection algorithm Infomap

Networks are instrumental in representing large-scale data of complex sys-
tems. A network is a form of graph composed of edges and nodes. To
schematize the organization structure of a complex system, we often use the
nodes (or vertices) to represent the objects in the system and the edges (or
links) to represent their connections or interactions. By analyzing the net-
work, the structure of the system can be revealed. In the binning problem,
we could model the sequences and the connections between them as a net-
work. The binning problem is then solved on top of a network structure,
i.e. network clustering. The goal is to find communities in the network. A
community is a subset of nodes (which makes a subgraph) that are more
close-knit, with edges connecting them internally significantly denser than
the external ones. They are also called modules or clusters. By detecting
the communities in a network, the network gets divided into subgraphs, and
therefore it is also termed network partitioning[166, 167].

A network can be partitioned in countless ways, with some depicting
the underlying structure better than others. Generally speaking, community
detection algorithms search for possible partitioning and evaluate which is
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the best. The evaluation is usually via an objective function, and the search
process aims to optimize it. The search and evaluate methods define an
algorithm[166, 167, 168]. Infomap is one community detection method that
searches for partitioning by tracing the information flow, using an objective
function which is called the map equation[98, 169, 170].

Network flow is a concept from information theory. The structure of the
network can be depicted by tracing the information flows through the net-
work, which is driven by the interactions between nodes[171, 168]. Infomap
captures the flow by recording the path of a random walk across the net-
work. In short, the walk is initiated at a random node, and the probability
of its possible next move is determined by its edges and their weights. The
random walker can also teleport, which means at each step, it can jump to a
random node on the network with a predefined probability. This is to ensure
the walker does not get stuck due to node disconnection so that it can visit
all nodes in a finite number of steps. The path of the walk is encoded in bit
strings. In a given partition, the encoding scheme, or a codebook, is based
upon the community structure. Each node is given an address as if on a
map. The moves between nodes in the same community can be described
with fewer bits compared to those between communities. Because the in-
teractions inside a community are supposed to be denser than the outside,
a good partitioning will end up using shorter strings, as it is more faith-
ful to the true community structure. In other words, it is able to achieve
better compression of the path description. The cost function of Infomap,
the map equation, measures the e�ciency of the coding length for a given
partitioning[170, 169]. Infomap is agglomerative. It is initiated with every
node as its own cluster, then proposes a move by clustering a node to its
neighbor. The proposal is accepted if the encoding cost is reduced and re-
jected if not. Each accepted proposal rebuilds the network, with the newly
accepted cluster making a node of one level higher, in replacement for the
nodes constituting it. The clustering stops when no moves can reduce the
coding lengths. The resultant clustering is hierarchical[98, 169]. The general
conceptual framework is shown in Figure 2.1 (a).

Infomap has the backbone of Louvain algorithm, the famous community
detection algorithm using a random walk[169, 168]. The algorithmic modifi-
cation was meant to circumvent the clustering of poorly linked nodes, which
is a major disadvantage of Louvain algorithm. As the communities are gen-
erated in a dynamic manner, a clustering proposal that seemed optimal in an
early stage might turn out to be disadvantageous later on[97, 169]. In Lou-
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vain algorithm, the clustering is barely reversible, and Infomap algorithm
tries to allow some changes in the clustering to alleviate such a problem.
The cost function is also part of Infomap’s originality[98]. By comparison,
Louvain’s objective function measures modularity, a concept that can be gen-
erally interpreted as the contrast between intra- and inter-community edge
density[168].

2.1.2 Multilayer network analysis with Infomap

The model above, which is sometimes referred to as the first-order network,
depicts only dyadic relations between each pair of nodes[172, 173]. For com-
plex systems, this can be insu�cient. Two nodes can have multiple links
of di↵erent natures, or links that are present at di↵erent times. In the bin-
ning problem, as discussed earlier, two nodes of contigs can be linked due to
their similarity in sequence compositional patterns and abundance profiles,
or they have an overlap in the assembly graph. One possible way to model
these links of di↵erent types is to construct a multilayer network. Multilayer
network is a genre of high-order networks that can come in several di↵erent
shapes[173, 174]. It can model multiple types of interactions between exactly
the same set of nodes (multiplex networks), or interactions that happen at dif-
ferent time points between the same set of nodes (multi-slice networks), and
also that between di↵erent sets of nodes (network of networks)[175, 176]. In
Infomap, all these multilayer networks are modeled with a uniform approach.
Infomap introduces the notion of physical and state nodes for objects in the
complex system. The physical nodes represent the objects themselves, and
the state nodes are used to model the interactions. An object can have one
physical node and multiple state nodes if its interactions with others are from
di↵erent data sources. Each layer represents one data source[173].

Just like in the first-order networks, the random walker chooses its next
node to visit based on its edges. Note that the walker travels between state
nodes. The edges of a state node can be intra- or inter-layer. Let ↵i be the
state node of a physical node i that is on layer ↵, ↵i�j the edge between state
node ↵i and �j. The move via ↵i�j is inter-layer when ↵ 6= �, and intra-layer
when ↵ = �. But because in reality a lot of data come without inter-layer
links, the model also allows the walker to move between layers via state nodes
of the same physical node at a certain relax rate r. In other words, in such
a network where the inter-layer links are missing, the walker moves within
the same layer at probability 1 � r, following the edges of state nodes. It
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jumps to a di↵erent layer at probability r, following the edges of any state
node of the current physical node. And finally, just like in the single-layer
network, the walker can teleport at a rate, so that every state node can be
visited[172, 173].

The algorithm still tries to minimize the code length needed to describe
the random walker’s path. The objective function is still the map equation at
its core, but the path directly involves the state nodes instead of the physical
ones. Or, to put it simply, the goal is to cluster the state nodes. And as a
result, the output clusters can overlap, assigning the state nodes of the same
physical nodes into di↵erent clusters[172, 173]. Figure 2.1 (b) illustrates the
conceptual framework of the Infomap multilayer network partitioning.

Input network Random walk Network partitioning

(a) First-order network

(b) Multilayer network

!

"

!

"

Figure 2.1: Framework of the Infomap algorithm. (a) A basic first-order
network partitioning, adapted from [98] (b) Multilayer network partitioning,
adapted from [172]. There are 11 and 7 physical nodes in (a) and (b), re-
spectively. In (b), except for Nodes 4 and 6, all nodes have two state nodes.
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2.1.3 Using Infomap multilayer network to cluster metage-
nomic contigs

Here we present a binning algorithm, Mapbin, that uses the Infomap multi-
layer network partitioning algorithm to refine metagenomic binning. Mapbin
models the metagenomic contigs as the nodes in the network. Transforming
a user-provided binning result into a base layer, Mapbin constructs addi-
tional layers of the network with either the assembly graph, the read pairing
from paired-end sequencing data, or both, and calls the Infomap algorithm
to obtain new clustering of the input contigs. In this chapter, we will first
demonstrate the algorithm of Mapbin in detail, and then showcase the per-
formance of Mapbin using several datasets of various data volumes.

2.2 The algorithmic framework of Mapbin

A majority of binning programs use TNF and abundance features of the
contigs. Mapbin is designed to refine their binning results by taking into
consideration two additional sources of information regarding the relation-
ships between contigs, namely the assembly graph and read pairing provided
paired-end sequencing data of the same metagenome exist. Mapbin trans-
forms such features of the contigs into a multilayer network and relies on the
Infomap algorithm to partition the nodes in the network. It follows three key
steps: (1) parse the input contig and binning data and construct the mul-
tilayer network, with nodes representing contigs; (2) call Infomap algorithm
and cluster the nodes; (3) create new bins based on the partitioning result.

In the first step, Mapbin handles at maximum three types of associations
between contigs, the binning result, the assembly graph, and the read pairing
information. Mapbin tries to model the contig connectivity as a layer. For
the binning result, Mapbin connects contigs in each bin as a grid subgraph.
For the assembly graph, Mapbin reformats the graph using contigs as the
nodes, and the overlaps between contigs as edges. Assembly graphs produced
by certain assembly tools, such as SPAdes, feature segments as the basic
unit, and contigs are generated from paths of segments. In this case, the
reformatting computes the connectivity of contigs based on their paths. For
the read pairs, Mapbin requires as input the alignment of paired-end reads
to the contigs and creates an edge between two contigs when a pair of reads
are aligned to them.
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Mapbin builds the network layer by layer. Users are free to choose to use
any combination of the three features. Given a binning result together with
paired-end read-to-contig alignment, the assembly graph, or both, Mapbin
will use the latter to refine the former. This shall be the most regular usage
of Mapbin. Other usages are not recommended for the common binning
practice, although they may assist certain sequence analyses or fulfill certain
testing purposes. Given only a binning result, Mapbin constructs a first-
order network that returns exactly the same clustering as the input. Given
only the alignment or assembly graph, Mapbin outputs the clustering based
on only the sequence connectivity, which may work for simple communities
with unrelated organisms.

A summary of the overall algorithm is shown in Figure 2.2. A detailed
description of the network-building algorithm is illustrated in the following
sections.

Assembly graph

Binning results to refine Multilayer contig network

Network partitioning using Infomap

Read pairing

Binned contig

Unbinned contig bin_1 bin_2 bin_3

OutputInput

Figure 2.2: The conceptual framework of Mapbin.

2.2.1 Mapbin network construction: the binning layer

The basic algorithm to construct the binning, assembly, and read-pairing
layers is presented in Figure 2.3. To refine a binning result, Mapbin requires
a directory of bins as input. Contigs of the same bin shall be concatenated
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as one fasta file. For each bin, Mapbin makes a connected subgraph that is
close to a two-dimensional lattice graph (see Figure 2.3 (a)).

Given a bin of n contigs, Mapbin makes a subgraph consisting of n nodes
representing these contigs:

• if n = 1, only add a single node;

• if n = 2, add the two nodes and pairwise directed links;

• if 2 < n  5, add the nodes and create a Hamiltonian cycle using all
nodes;

• if n > 5, add the nodes and make a subgraph close to a triangular lattice
graph, using all nodes. In this case, the number of rows is calculated as
nrow = d

p
Ne, and the number of columns ncol = dn/nrowe. All rows

shall have ncol nodes but the last one, which may have less.

With this method, we could represent an existing binning as a set of
disconnected subgraphs, all of which are lattice-graph-like. When given only
the binning result, with such network topology, Infomap is able to produce
identical clustering results in a time as short as under a second. This means
the binning result can be accurately integrated into the new analysis. We
argue that this topology is practical because, firstly, each subgraph is or is
close to being regular, so every member in the bin is impartially connected.
Secondly, the cost of construction of such a graph scales linearly with the
number of nodes. This is important for the binning problem, because the
number of contigs in a bin can range from one to thousands. And finally,
the entire graph remains sparse, so the clustering algorithm could work out
a solution fast even with a large number of contigs or bins.

Some input bins may contain contamination, and linking the falsely-
placed contig to other contigs may reinforce the contamination. To alleviate
this problem, we constructed the lattice subgraphs with the edge weight and
node ordering not randomly assigned. The nodes are sorted by their esti-
mated coverages, and edges are only added between two neighboring nodes if
their coverages are relatively close (coverage of the higher no more than twice
that of the lower), as contigs with disparate coverages are unlikely to belong
to the same genome. Two edges of opposite directions are added between
each pair of neighboring nodes.

It is widely agreed that in the binning problem, shorter contigs are less
likely to be able to generate strong and reliable sequence features[95, 83, 99].
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Therefore the edge weights are assigned proportionally to the contig length
of the source node.

(a)

N = 21N = 16

N = 3 N = 4 N = 5 N = 6

(b)

contig a:
contig b:

contig a contig b

(c)

contig a contig b

contig a contig b

Figure 2.3: Construction of network layers in Mapbin. (a) Representation of
the initial bins in the binning layer. The nodes represent contigs. Mapbin
constructs a Hamiltonian cycle for a bin when it contains no more than 5
contigs, otherwise a lattice-graph lookalike. (b) Creating edges based on the
assembly graph. The contigs are presented as a path of segments in the
assembly graph. The magenta and green segments are unique to the two
contigs, and the yellow ones are shared. An edge can be created between two
contigs when their paths intersect or overlap. (c) Adding edges in the read
pairing layer. Thick long lines on the left represent contigs and short dashes
of the reads. Highlighted reads of the same color belong to the same pair
but are found on di↵erent contigs.
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2.2.2 Mapbin network construction: the assembly layer

The assembly layer network is constructed by parsing the assembly graph.
Mapbin first computes all the possible linkages between a pair of contigs by
comparing their paths. Paths of contigs consist of sequence segments. Be-
tween a pair of contigs, an edge can be established either from the segments
they share or from the segment overlaps. For the segment overlaps, Mapbin
considers only those that happen at the ends of the two contigs and ignores
internal segment overlaps. Internal segment overlaps occur at a high fre-
quency, and most of them are a result of sequence similarity at short local
regions. Compared to the end overlaps, they lack specificity for the purpose
of our network. This strategy is visualized in Figure 2.4.

2 3 5
1

4
(c)  Not connected:

2 3
41

5

6 7 8
9

(a)  Connected by shared segments: 1-3-5-7-92-3-4-6-7-8

42
1 3

(b)  Connected by end overlaps: 31-2 41-2

Figure 2.4: Assembly parsing strategy of Mapbin. The bars are segments
of contigs, and lines are overlaps between segments. Segments from the
same contig are shown in the same color. (a) Contigs are linked by shared
segments in their paths. The striped bars, 3 and 7, are shared by the two
contigs. (b) Two links are established between three contigs by the overlaps
at their ends (highlighted in red). (c) The overlaps between contigs only
happen at Segment 3, which is internal for the green contig, and no links are
established.

When parsing the graph, Mapbin rejects links between contigs that seem
to di↵er significantly in coverage. The coverage is estimated from the segment
coverage recorded in the assembly graph. Given a pair of contigs, Ca and Cb,
consisting of segment sets Si = {si1, si2, . . . , sik} and Sj = {sj1, sj2, . . . , sjk},
the contig coverages cova and covb are estimated as the median coverages
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of Si and Sj, respectively. The suggested link between Ca and Cb will be
rejected if cova and covb di↵er more than a user-defined threshold (default:

30), or
��� cova�covb
cova+covb

��� > 1
5 .

Once the assembly graph is parsed into edges between contigs, Mapbin
performs a round of filtering to get rid of spurious edges. The filtering strat-
egy is explained in a later section.

2.2.3 Mapbin network construction: the read-pairing
layer

In paired-end sequencing, reads in a pair are sequenced from the same ge-
nomic fragment. Therefore two di↵erent contigs can be potentially bridged
if a pair of reads are found to be on them respectively. Similar to sca↵olding,
the connection can be established between contigs even though the exact frag-
ment bridging them is unknown. Mapbin uses contig-to-contig alignments
to locate reads on the contigs, then computes the links between contigs by
analyzing read pairs that fall on di↵erent contigs. And unlike it is in scaf-
folding, there is no need for computing the relative orientation of the paired
contigs in the binning problem.

The read-pairing layer is established by parsing the alignment file in SAM
or BAM format. The weight of a contig link reflects the length of the interval
where the bridging read pairs occur. That is, given a pair of contigs, Ca

and Cb, let a read pair that bridge them be ri and r
0
i, and denote their

start and end positions on the contigs as (si, ei) and (s0i, e
0
i); Ca and Cb are

linked by a set of read pairs {(r1, r01), (r2, r02), . . . , (rk, r0k)}, which is sorted by
their alignment start positions si, and the linked interval between them is
calculated as lab = ek � s1 and lba = e

0
k � s

0
1.

For each pair of potentially linked contigs, Mapbin compiles the set of
read pairs they share and decide whether to add an edge between them. A
pair of contigs sharing less than 3 read pairs are not considered significant
enough to be linked. Edges will also not be added if the read-pairing is
likely a result of sequence similarity. The read-pairing network is established
under the assumption that the two reads in a pair come from the same
source genome. However, as local similarity can be frequently found even
between very remotely related genomes, reads in a pair may not necessarily
be aligned to the same genome. To avoid establishing edges due to secondary
alignments, two contigs are not to be linked if the linkage can be established
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from read-pairing at multiple non-consecutive regions of the contigs, or if it
does not happen at the ends of the contigs. This strategy is illustrated in
Figure 2.5.

Similar to the generation of the assembly layer, Mapbin performs for the
read-pairing links a round of filtering to remove spurious links. The details
are explained in the following section.

contigs
reads not used to link the contigs

read pairs linking the contigs

da db
da < insert size
db < insert size

Linked
interval

Linked
interval

Figure 2.5: Mapbin’s strategy to establish contig-contig links from read align-
ment. Mapbin selects for each contig a consecutive interval located near the
contig ends that is covered by reads. The distances of the intervals to the
ends, da and db shall not exceed the insert size. Note that the contigs may
overlap.

2.2.4 Network edge filtering before clustering

The construction of the assembly or read-pairing layers is followed by a qual-
ity control step to filter out spurious edges and correct the bin assignment
of some contigs. The construction of the binning layer follows subsequently.
Quality control of edges is implemented for two main reasons. First, the con-
tig linkages suggested by assembly graph and read-pairing come from a small
fraction of the contigs and they do not reflect the full-length characteristics
of contigs like TNF and sequence abundance. Both of the two layers alone
have a limited capacity to resolve closely-related genomes. Second, com-
pared to the binning layer, both the assembly and read-pairing layers are
much sparser. In sparse networks, spurious edges have a more pronounced
impact on the network topology compared to dense networks. Consequently,
the presence of these edges can strongly mislead the final clustering output.
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Aware of these issues, Mapbin preprocesses the potential edges by lever-
aging the provided binning result and other sequence attributes. Mapbin
performs two rounds of filtering, at the contig level and at the bin level, re-
spectively, with the goal of removing hubs from the network. A hub refers to
a node in a network that has a number of edges that is significantly greater
than the average. Hubs are a natural topological structure of networks, but
in the context of genome binning, they arise mostly due to repeats or regions
of high local similarity rather than authentic sequence connectivity.

In an ideal scenario, a repeat-free contig can have at most two edges
with other contig nodes. A complete, contamination-free genome bin has
only internal edges between its constituent contigs, and a semi-complete bin
associates only with bins of the same genome. The number of external edges
a bin has roughly correlates positively with the number of contigs it contains.
In reality, binning programs often produce a certain number of contaminated
bins. For them, the more sources of contamination, the more number of other
bins it can be connected to, and the more likely it is to form a hub. A heavily
contaminated bin with contigs from all bacterial genomes has the potential
to be linked to all the bacterial bins at present.

A hub, at either the contig or bin level, enhances network connectivity
and facilitates the integration of clusters within the network. However, in the
genome binning problem, they increase the risk of bridging bins of di↵erent
genomes. The Infomap algorithm is based on the information flow of the
network, and a hub will naturally attract flow and induces the formation of
a supercluster between loosely connected clusters in highly sparse networks
like the assembly and read-pairing layers. An example of a hub bin bringing
together multiple disconnected bins is shown in Figure 2.6.

Apart from the hub, Infomap may also cluster weakly connected small
clusters into one top-level cluster in the presence of a large cluster. This
is a prominent issue in metagenomic binning. Sizes of bins from the same
dataset can vary drastically, from small bins of less than 10 contigs to large
bins of thousands of contigs, leading to the occurrence of such topology. An
example of this problem is shown in Figure 2.7.

Based on this, Mapbin implements a filtering strategy to circumvent the
formation of misleading network topology, tailored specifically to work with
the Infomap algorithm. Mapbin detects and removes edges of a hub firstly at
the contig level. Mapbin computes the degree of each node, i.e., the number
of edges linked to the node, and treats nodes with a degree greater than five
as a hub. Contig hubs happen frequently in the assembly network due to
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Figure 2.6: Example of Infomap algorithm applied to a 2-layer subgraph
involving a hub. Nodes and edges in the two layers are flattened onto one
plane. The contigs are shown in small circles with the size reflecting the flow.
Each color denotes a top-level cluster in Infomap’s solution. Clusters 2, 3,
and 4 all interact with the hub but share very few edges with each other.
With the presence of the hub, Infomap clustered 0, 2, 3, and 4 into one large
cluster, which will likely end up as a combined and heavily contaminated
bin. The figure is generated by [177].

Figure 2.7: Example of Infomap algorithm applied to a 2-layer subgraph
involving two loosely connected small clusters and one large cluster. Nodes
and edges in the two layers are flattened onto one plane. The contigs are
shown in small circles with the size reflecting the flow. Each color denotes
a top-level cluster in Infomap’s solution. The two small clusters in green
only share one edge. Due to the presence of the large bin in red, they are
assigned by Infomap to the same cluster, forming a combined and potentially-
contaminated bin. The figure is generated by [177].
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local regions of similarity. All edges linking to a hub node will be removed.
Moreover, a contig that was assigned to a certain bin, Bx, will be reassigned
to Bin By, if it has more than three edges and all its edges are formed with
contigs from By.

Next, the pre-clustered bins are treated as high-level nodes, and have
their linkages inspected by Mapbin to detect hub bins.

We consider a bin Bx to be significantly connected to another bin By if
the number of external edges of Bx to By is above 0.05 ·nx, with nx denoting
the number of contigs in Bx. A bin is considered a hub if it is linked to more
than 3 bins (regardless of being significant or not), or significantly linked
to more than one bin. We argue that a highly incomplete but pure bin is
unlikely to be falsely flagged as a hub, because they also contain less genomic
content, which heavily limits the number of both internal and external edges
they may have. It is also proven in the benchmarking step, which we will
elaborate on later on, that the hub bins Mapbin detects are mostly truly
contaminated.

Hub bins are detected by checking the external edges of each bin. Upon
detection, the hub bin will be resolved by either removing the contig from the
bin, or by removing their edges. If a hub Bh has signigicant edges with Bx,
all contigs linked to Bx will be removed from Bh to form a new bin Bhx. In
plain words, in this case, the subgroup which are all linked to the same other
bin will be severed from the initial bin and the subdivision will participate in
the final network clustering. Mapbin requires a minimum number of external
edges to be present for the removal of contigs from the hub to prevent rigorous
removal at the cost of bin completeness.

Further, for non-hub bins, if two bins are not significantly connected, the
edges between them will also be deleted.

2.2.5 Inspecting the contig length distribution

Binners often face the challenge of clustering highly fragmented genomes that
consist of hundreds or even thousands of contigs. This problem commonly
arises when complex genomes are sequenced with insu�cient coverage. Due
to the limited sequence contiguity throughout the genome, the majority of
the assembled contigs are relatively small (e.g., under 10kbp). Generally
speaking, misclustering rate is higher among small contigs due to their less
distinctive, stable, and reliable sequence features [96]. Additionally, during
the clustering step, a large cluster formed by these small contigs can falsely
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recruit longer contigs, further compromising the quality of the resulting bin.
We implemented in Mapbin a step to inspect the contig length distri-

bution in bins with more than 50 contigs. This will detect contigs whose
lengths are extreme high outliers in the bin. Our rationale is that the great
majority being short contigs suggests a fragmented assembly of the under-
lying genome. In this case, it is highly improbable to successfully assemble
an ultra-long region of the genome while failing at all the remaining parts.
Therefore, the ultra-long contigs are more likely derived from other source
genomes.

To determine the contig length upper bound for a bin with n contigs
(where n > 5), we calculate the lower q-th percentile Ql and higher (100�q)-
th percentile Qh, in which q = min{0.05, 50/n} · 100. The upper bound for
contig lengths lmax is then set as lmax = Qh + 50 · (Qh �Ql). Contigs whose
lengths are above the upper bound are identified as high outliers and will
be removed from their assigned bin. Note that this step specifically targets
contigs with extreme deviation in length within bins that are evidently from
highly fragmented underlying genomes. Longer contigs within a reasonable
length range are not a↵ected. This step is designed to address the contami-
nation caused by ultra-long contigs, which can lower the bin quality greatly
due to their substantial contribution to the bin’s base count. We do not rely
on the previously described network-based contamination detection step to
identify the misplacement of these contigs, because the networks only involve
a small fraction of contigs and may not include them.

Mapbin also extracts ultra-long contigs from the set of unbinned contigs
after the network partitioning step, and outputs each of them as an individual
bin. The default minimum length to form a standalone bin is 1 Mbp.

2.2.6 Infomap network partitioning and the generation
of bins

Once the network is formed, the core Infomap algorithm is called to perform
the partitioning. In short, nodes will be assigned to modules by Infomap.
Each module forms a bin.

Overall, Mapbin’s method to increase bin completeness is by targeting
genomes that are divided into multiple bins. Mapbin is not designed to target
each individual contig. Mapbin rearranges the bin assignment of contigs
by moving them in clusters rather than individually. By nature, both the
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assembly and read-pairing networks are only able to involve a minority of
all contigs. The rest usually have no overlaps with any other contig and
therefore have no edges with others in these two layers. If a contig is isolated
in the two layers, its placement usually follows its original bin assignment.

2.3 Mapbin implementation

Mapbin is an open-source software implemented in Python. The git reposi-
tory is available on GitHub: https://github.com/u-xixi/mapbin. A brief
user manual is included in the repository.

Mapbin requires Infomap Python module with Version 2.0 or above, and
the Pysam module with a recent version (e.g., 0.18.0 and above). Users need
to provide the input contig sequences and output directory. A pre-computed
binning result shall be provided to perform refinement using assembly graphs
or read pairing. For assembly graph-enhanced binning, users need to provide
the assembly graph. Currently, Mapbin is designed to work with short-read
assembly generated by SPAdes [21], requiring the graph in GFA format.
SPAdes only output the GFA formatted graph for sca↵olds. If the input
sequences are contigs, the contig path file shall also be provided. For read
pairing-enhanced binning, the user shall provide the coordinate-sorted, in-
dexed alignment file in SAM or BAM format. Both single and multiple
alignment files are acceptable by Mapbin.

It is also important to clarify a few trivial details regarding the imple-
mentation of Mapbin.

2.3.1 Overlapping bin output of Mapbin

Unlike many conventional binning algorithms, bins produced by Mapbin
could be overlapping. Metagenomic assemblies usually contain a number
of short contigs, e.g., under 3000 bp. Fragments of such length could possi-
bly be shared among multiple genomes. Mapbin enables overlapping output
to allow certain fragments to be shared by di↵erent genomes.

The overlapping bin output is enabled by the algorithm of Infomap. As
introduced previously, in the multilayer network, there are physical and state
nodes. State nodes are generated based on the physical nodes, and the net-
work partitioning is based on the state nodes only. The overlapping happens
when state nodes of the same physical node are assigned to di↵erent modules.
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Non-overlapping output can also be produced by randomly choosing a
bin for a shared contig or completely removing it from the binning result.

2.3.2 Other details

Infomap gives hierarchical clustering results, and Mapbin takes only the top
modules as the basis of bins.

Infomap could detect trivial modules with few nodes. But in the genome
binning problem, a bin with few very short contigs may not be of interest.
Mapbin allows users to set a lower limit of total bases contained in a bin,
below which the bin will not appear in the final output.

2.4 Benchmarking Mapbin and other binners

2.4.1 Benchmarking dataset

We ran performance tests on two datasets simulated by ourselves, five syn-
thetic human microbiome datasets from the CAMI challenge, and four real-
istic human gut microbiome datasets. Five other publicly available tools are
included in the benchmarking: MetaBAT2, CONCOCT, VAMB, MaxBin2,
and GraphBin2.

Simulated Datasets Random and Half-random

The datasets Random and Half-random were generated by simulating paired-
end reads from a set of complete genomes available on NCBI, using InSili-
coSeq [178]. The abundances of the chromosomes of the genomes were ran-
domly sampled from a log-normal distribution. If plasmids are present, their
abundances are k times that of the chromosome, with k randomly drawn
from a uniform distribution between 1.5 and 2.5. The reads were assembled
by SPAdes v3.15.5 [21]. The contigs were used for binning, and ground truth
bin assignment was made by mapping the contigs to the source genomes.

Both the Random and Half-random datasets contain 50 microbial genomes,
among which there are 32 bacteria, ten archaea, five viruses, and three fungi.
Each dataset contains 100 million reads. The source genomes of the Ran-
dom dataset were randomly chosen from a set of reference-quality microbial
genome assemblies in the NCBI database. All these genome assemblies are
complete, and most are either listed as a reference genome by NCBI or were
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assembled from type strains. The Half-random dataset contains 25 genomes
from predefined microbial species, and the other half was made by random se-
lection. The predefined 25 genomes are from the bacterial species Escherichia
coli, P. aeruginosa, the bacterial genus Nostoc and Rhizobium, as well as the
archaeal genus Methanobacterium, five genomes each taxon.

A detailed list of genomes used to simulate the two datasets are listed in
Supplementary Tables A.2 and A.3.

CAMI II toy human microbiome datasets

We used the five synthetic datasets from the second Critical Assessment
of Metagenomic Interpretation (CAMI). They are toy microbiome of 5 hu-
man body sites: gastrointestinal (GI), airways (air), oral, skin, and urogen-
ital (urog). All data are available at https://data.cami-challenge.org/
participate. We used the gold standard assembly as the input contigs. As
the gold standard assemblies were provided without assembly graphs, they
were used to demonstrate Mapbin’s read pairing refinement. A gold standard
bin assignment is available for each of these datasets.

Four real datasets

The four real-world datasets are human gut microbiome DNA samples pre-
pared and sequenced on Illumina platforms by our collaborators. Mock is a
mock community of 15 commercially available bacterial and archaeal strains
commonly found in human gut microbiomes. To highlight the challenge of
closely-related genomes, Mock was designed to have ten strains from the
same genus, Bifidobacterium. The strains used in Mock are listed in Supple-
mentary Table A.4.

Sample2, Sample3 and Sample4 are samples from the TwinsUK project
(see https://twinsuk.ac.uk/). Sample2 and Sample3 were originally the
same sample but di↵ered in that Sample2 was selected for fragment size be-
tween 8 to 20 kb, while no size selection was performed for Sample3. Sample4
is a di↵erent community with a size selection between 8 to 20 kb. For them,
the ground truth binning is not available.
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2.4.2 Assembly statistics of the benchmarking datasets

The basic statistics of all benchmarking datasets are summarized in Table 2.1.
Contigs with lengths above 1500 bp were used as the input sequences for
the benchmarking. In the calculations, L50 and N50 are measures for the
assembly contiguity. Given a set of genomic assembly, L50 is the minimum
number of contigs from this set required to cover up half of the total assembly
size. And N50 refers to the size of the smallest contig included in the minimal
set of contigs that make up half of the total assembly size, or in other words,
the length of the contig that separates the assembly into the larger and
smaller halves. For example, in the original airways dataset, 77,837 largest
contigs are needed to cover up half of the total size, which is 1,938,277,766
bp. And the smallest among the 77,837 has a length of 2555 bp. Therefore,
its N50 is 2555, and its L50 is 77,837.

Table 2.1: Basic statistics of the assemblies from the benchmarking datasets

No.
samples

No.
contigs

(K)

Total bp
(106)

L50 N50
Longest
(Mbp)

Avg.
GC

Original Random and Half-random

random 1 26.4 273 301 177,663 3.34 0.52

half-random 1 35.3 265 258 179,434 3.49 0.50

Filtered Random and Half-random (> 1500 bp)

random 1 10.5 265 278 189,514 3.34 0.52

half-random 1 7.6 252 223 195,969 3.49 0.50

Original CAMI

air 10 1,971 1,938 77,837 2,555 6.19 0.48

GI 10 211 933 120 1,949,862 6.53 0.48

oral 10 1,287 1,670 15,593 7,227 5.50 0.44

skin 10 753 1,527 13,037 9,045 5.64 0.46

urog 9 207 666 143 660,741 7.12 0.49

Filtered CAMI (> 1500 bp)

airways 10 162 1,131 3,093 26,695 6.19 0.47

GI 10 38.6 848 102 2,807,504 6.53 0.48

oral 10 123 1,128 609 120,855 5.50 0.43

skin 10 156 1,228 2,292 30,599 5,64 0.45

urogenital 9 38.2 577 104 1,667,350 7.12 0.48
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Original real datasets

Mock 1 44 71 245 33,813 1.22 0.57

Sample 2 1 744 660 43,465 1,758 0.92 0.49

Sample 3 1 739 646 44,926 1,673 1.10 0.49

Sample 4 1 760 672 49,775 1,733 0.68 0.49

Filtered real datasets (>1500 bp)

Mock 1 3.8 54 109 113,096 1.22 0.57

Sample 2 1 53 346 3,375 15,721 0.92 0.48

Sample 3 1 52 334 3,365 15,371 1.10 0.48

Sample 4 1 60 352 4,545 11,593 0.68 0.48

2.4.3 Benchmarking tools and metrics

For datasets Random, Half-random, and CAMI datasets, since the ground
truth binning is available, we used AMBER 2.0.3 to assess the qualities of
the binning results[179]. AMBER is a binning evaluation toolkit originating
from the CAMI challenge. It provides the calculation of common metrics
such as accuracy, precision, completeness, and contamination, as well as data
visualization. For the real-world datasets, due to the lack of a gold standard,
we used CheckM 1.2.2 to estimate the quality of the binning results. CheckM
[101] is a toolkit for the evaluation of genomes reconstructed from all kinds
of genomic sequencing data. The estimation is based on single-copy marker
genes that are specific to and ubiquitous within a phylogenetic clade. The
clade can be of di↵erent taxonomic ranks.

The binning quality evaluation is based on the genome or taxonomic
assignment of each bin. In AMBER, first, a source genome is assigned to each
contig, then each bin gets assigned to the genome that contains the largest
number of its contigs. CheckM evaluation is similar, but as the ground
truth is unavailable, the actual source genome is unknown, and thus the
taxon placement is used instead. With genome or taxonomic information
as a reference, every contig falls under the four classes: true positive (TP),
false positive (FP), true negative (TN), and false negative (FN). Assume a
bin from genome or taxon X and a contig which the bin contains, if the
binner does assign the contig to X, then it is a TP for the contig, otherwise
a FN. Assume a bin of X and a contig from another genome Y . If the
contig gets assigned to X, then it is an FP, otherwise, a TN. For the samples
with gold standard binning available, We used the following measures for
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the assessment, following AMBER’s definition[179, 74]. In the formulas, GX

denotes the number of X in the scope of a genome, and BX the number of X
in the scope of a bin, X 2 {TP, TN, FP, FN}.

Completeness (or recall)

completeness = recall =
GTP

GTP +GFN

Purity (or precision)

purity = precision =

Pn
i=1BTPiPn
i=1 Ni

comtamination = 1� purity

Note that purity is calculated for each bin and does not account for
the unbinned contigs. AMBER computes purity and CheckM computes
contamination.

Both completeness and purity are computed for each genome or bin.
AMBER can calculate the metrics based on the number of sequences or base
counts. Unless specified, the metrics used in the context of this chapter are
all based on the latter. As CheckM uses no ground truth, it computes the
two metrics from the number of single-copy genes.

For the simulated datasets, AMBER estimates two types of overall statis-
tics, the sample-wide statistics based on the total set of underlying genomes
and the average statistics based on the computed bins. For realistic datasets
evaluated by CheckM, due to the di�culty of unambiguously defining the
set of underlying genomes, and the various taxonomic levels at which the
bins are identified, no overall statistics are calculated. Only the number of
high-quality bins will be reported.

Number of high-quality (HQ) bins

The number of HQ bins are bins with over 90% completeness and over 95%
purity.

Average completeness

avg. completeness =
nX

i

Ni

N
· completenessi
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Average purity

avg. purity =
nX

i

Ni

N
· purityi

Here n is the number of bins, N is the total number of bases, and Ni denotes
the number of bases contained in the i-th bin.

Accuracy

accuracy =

Pn
i=1 BTPi

N

BTPi represents the TP in the i-th bin. Note that this metric is based on
the computed bins rather than the source genomes.

F1-score

F1 = 2⇥ purity ⇥ completeness

purity + completeness

Adjusted Rand Index (ARI)

The use of ARI in the binning evaluation was popularized by Alneberg et al.
in their work demonstrating CONCOCT[82]. We denote the binning result
as a K ⇥ S matrix, in which K represents the number of bins and S is the
number of species. Nij represents the number of contigs clustered to i-th bin
and j-th species.

ARI =

P
i,j

�
Nij

2

�
� E3

1
2(E1 + E2)� E3

with E1 =
PK

i

�PS
j Nij

2

�
, E2 =

PS
j

�PK
i Nij

2

�
, E3 =

E1E2

(N2 )
.

The Rand Index quantifies how close a clustering result is compared to
the ground truth. ARI adjusts the value by the expectation of the Rand
Index of random clustering.

2.4.4 Performance on Random and Half-random

The metagenomic assemblies of Random and Half-random recovered 48 and
45 out of the original 50 genomes, respectively. We used binning results from
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CONCOCT, MetaBAT2, and MaxBin2, and tested Mapbin in three ways:
with the assembly graphs, with the read-pairing, or with both. The bin-
ning refinement tool GraphBin is also tested with the three original binning
results.

Table 2.2 shows the number of HQ bins for each run, and the overall bin
quality statistics are visualized in Figure 2.8. We compare the performance
of Mapbin as well as GraphBin to that of the original binners. Mapbin
e↵ectively addressed the low bin purity problem with MaxBin2 output and
successfully reduced the contamination rate. MetaBAT2 and CONCOCT
both achieved a good balance between completeness and purity. For these
two, Mapbin enhanced the completeness, F1-score, and ARI of the resulting
bins, although the extent of improvement was not as pronounced. Notably,
Mapbin tends to work well with MetaBAT2 results, as it was able to combine
bins that are incomplete but pure and boosted the number of HQ bins.
Compared to the other binning refiner, GraphBin, Mapbin was able to retain
the advantages of the original tools. In most of the runs, GraphBin obtained
fewer HQ bins compared to the original tool, and the decrease was especially
prominent in the case of CONCOCT. And it worsened the other metrics in
all the runs with MetaBAT2 and CONCOCT, although it did significantly
improve the results from MaxBin2 more than Mapbin.

Table 2.2: Numbers of high-quality bins obtained with Mapbin, GraphBin,
and the original tools from datasets Random and Half-random. Mapbin-a,
-p, and -ap refer to using Mapbin with the assembly graph, the read-pairing,
and both features, respectively.

MetaBAT2 CONCOCT MaxBin2
Original 35 33 22

+ GraphBin -1 -9 -2
+ Mapbin-a 0. 0. 0.
+ Mapbin-p +1 +1 0.
+ Mapbin-ap +2 +1 -1

Original 19 26 6
+ GraphBin -3 -10 0.
+ Mapbin-a +3 -2 0.
+ Mapbin-p +1 -1 -1
+ Mapbin-ap +3 -2 -1

Random

Half-random
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(a) Random

(b) Half-random

Figure 2.8: Bin quality metrics on the simulated short-read datasets Random
and Half-random.

Given a typical single-sample short-read assembly dataset, Mapbin usu-
ally refines the overall bin quality but achieves only modest success in increas-
ing new HQ bins. This is primarily due to the limited presence of supportive
edges for merging bins of the same genome. When contigs belonging to the
same genome are initially distributed across multiple bins, edges between
these bins must exist for Mapbin to merge them as one. However, the net-
works typically only involve a small fraction of contigs. This is inherent to
metagenomic data, where less abundant genomes may exhibit missing re-
gions in short-read assemblies. As a result, the occurrence of bin-bridging
edges is not always guaranteed. An example can be found with CONCOCT
runs. Eight out of the total 42 genomes in the original CONCOCT output
are contained in more than one bin. But only three out of the eight have
edges between their member bins, among which two have insu�cient num-
bers (below 5% of the number of contigs in the bin) of edges to support the
merging of the bins. Consequently, Mapbin did not drastically increase the
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number of HQ bins, but mainly corrected the misplacement of a few contigs.
Among Mapbin’s three modes, Mapbin-a (assembly only), Mapbin-p (read-

pairing only), and Mapbin-ap (assembly and read-pairing), the latter two
achieved higher overall bin quality. This can be attributed to the denser na-
ture of the read-pairing networks compared to the assembly graphs. However,
Mapbin-ap sometimes may show inferior performance compared to Mapbin-
p. This discrepancy is mainly because Mapbin-ap goes through a round of
quality control at each network layer, which can sometimes lead to excessive
correction of initial bin assignments and filtering of edges.

Investigating the case of MaxBin2 runs, we noticed that MaxBin2 was the
only original tool that performed poorly with several large genomes in both
datasets. Large genomes have a greater influence on the overall performance
statistics due to their larger contribution of bases and contigs. MaxBin2
achieved very limited success with all fungal genomes, and in dataset Half-
random, it binned only a small portion of closely related genomes from genera
Rhizobium and Nostoc with heavy contamination. Mapbin and GraphBin
were then responsible for clustering the contigs from these genomes from
scratch. Mapbin generated a few small yet pure bins, while GraphBin pro-
duced large bins with higher contamination. This result aligns with Mapbin’s
algorithm, which avoids creating large new bins from scratch to prevent merg-
ing closely related genomes. In contrast, from our understanding, GraphBin
is more inclusive of edges that are likely a result of genome relatedness,
allowing the formation of larger new bins from unbinned contigs. This ap-
proach led to bins with completeness above 50% or even 90%. The generation
of large new bins boosted GraphBin’s performance scores more significantly
than the production of trivial small bins did for Mapbin. However, it’s worth
noting that GraphBin’s large new bins typically have contamination levels
above 10% or even 50%, as the algorithm tended to confuse unrelated contigs
which have certain sequence similarities.

2.4.5 Performance on the CAMI human microbiome
datasets

The gold standard assembly sequences used in our analysis cover 703, 242,
561, 710, and 233 genomes in Air, GI, Skin, Oral and UG samples, respec-
tively. As we intended to use the gold standard assemblies, we skipped the de
novo assembly step, and as a result, no assembly graphs are available. We
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used Mapbin only in the read-pairing mode, and replaced GraphBin with
VAMB as the former also requires an assembly graph. Note that VAMB
was not used in the single-sample datasets because it is optimized for multi-
sample datasets with large numbers of contigs (e.g., above 20,000), as pointed
out by the developers [99]. Our single-sampled datasets all have much fewer
contigs which are expected to cause an overfitting problem for VAMB.

The performances of Mapbin and original binners are presented in Fig-
ure 2.9. Mapbin added a remarkable number of new HQ bins to all original
binning results. It also improved the purity and accuracy of all four original
binners in all samples. As for sample-wide completeness, Mapbin achieved
the most notable improvement with MaxBin2 bins, and it also significantly
enhanced that of VAMB bins in dataset GI and UG. The completeness of
MetaBAT2 and CONCOCT bins was not further improved. However, the
F1-score and ARI indicated that Mapbin successfully achieved a more fa-
vorable balance between completeness and purity compared to the original
tools, delivering binning results that are closer to the ground truth.

The enhancement of initial bins by Mapbin was found to be more pro-
nounced on the CAMI datasets compared to the Random and Half-random
datasets. Such di↵erence is likely because the CAMI datasets have more
contigs that are close to full-length genomes. As explained in Section 2.2.5,
Mapbin analyzes the contig length distribution within each middle-to-large
sized bin and removes contigs whose lengths are extreme outliers. This led to
the separation of a number of near-complete contigs from their initial bins,
resulting in more single-contig bins with high completeness and purity. In
contrast, short read assemblies like the Random and Half-random datasets
commonly contain very few near-complete contigs, and deviations in contig
length distribution were non-existent for almost all the initial bins.

The CAMI datasets are much more complex than Random and Half-
random, but their lower read coverage led to sparser networks. As a result,
Mapbin was unable to bin a significant number of initially unbinned contigs.
However, it was e↵ective in identifying bin contamination using the networks
and correcting the bin assignment of already binned contigs, which made key
contributions to the enhanced bin quality.
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(a)

(b)

Figure 2.9: Performance of Mapbin and other binners on the five CAMI II
toy human microbiome datasets.

It is worth noting that Mapbin employs a multi-step refinement pro-
cess, wherein the e↵ectiveness of each step varies depending on the specific
limitations of the original binners. Of the four original binners we used,
MetaBAT2 and CONCOCT clustered a majority of contigs and rarely left
out long contigs. However, the benchmarking results showed that their large
clusters seemingly have a strong a�nity for attracting ultra-long contigs,
causing near-complete contigs to be mixed into these clusters. Mapbin was
able to resolve the contamination of their large clusters by analyzing its
networks and creating bins of single, long contigs. VAMB, on the other
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hand, left a small fraction of long contigs unbinned. In datasets GI and
UG, which had denser networks than the rest, Mapbin successfully clustered
a number of contigs initially unbinned by VAMB. Together with its ability
to decontaminate bins, Mapbin eventually raised the completeness of these
two datasets for VAMB. Similar to its performance on datasets Random and
Half-random, MaxBin2 left the highest number of contigs unbinned, many
of which are in fact ultra-long. This aspect in fact significantly contributed
to its higher purity compared to MetaBAT2, VAMB, and CONCOCT. In
the case of MaxBin2, Mapbin was able to integrate a notable fraction of its
unbinned contigs into the network, leading to a substantial enhancement in
completeness.

2.4.6 Performance on the real-world datasets

As explained in Section 2.4.3, for the four experimentally generated datasets,
we will mainly report the number of HQ bins. A summary is presented in
Table 2.3. Since bins of low contamination and relatively high complete-
ness (> 50%) are generally considered desirable, we also provide a detailed
report on the number of bins with less than 5% contamination and 90%,
70%, and 50% completeness in Supplementary Table A.5. Overall, Map-
bin’s results on these datasets are in line with its performance on Random
and Half-random datasets, which is unsurprising as all are short-read assem-
blies. The results indicated that Mapbin was more e↵ective in producing
new HQ bins for MetaBAT2 output than other tools. For the Mock dataset,
some genomes were split into multiple bins by MetaBAT2, and they were
successfully merged by Mapbin, resulting in four new bins with enhanced
completeness (see Table 2.4). Given the fact that this dataset has only 15
source genomes, the improvement was substantial. Mapbin had limited suc-
cess with Sample2 and Sample3, but managed to increase the number of
MetaBAT2’s HQ bins in Sample4 by 28%. In contrast, Mapbin did not
generate any additional high-quality (HQ) bins when used with CONCOCT
on all samples. Similarly, when applied to MaxBin2’s results, only small
increases in the number of medium- to high-quality bins can be observed.

In the Mapbin algorithm, the input binning results do not a↵ect the as-
sembly and read-pairing network topology by design, but di↵erent binning
solutions result in di↵erent landscapes of intra- and inter-bin edges. With
binning results of acceptable quality, most edges are between contigs from
the same bin. But the refinement process is mostly driven by inter-bin edges.
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Table 2.3: Numbers of high-quality bins obtained from four real-world
datasets using di↵erent binners.

Mock Sample2 Sample3 Sample4
MetaBAT2 6 38 32 32
+ GraphBin -3 -28 -24 -18
+ Mapbin-a +1 0. 0. +4
+ Mapbin-p +2 +1 +1 +8
+ Mapbin-ap +2 0. +1 +8

CONCOCT 7 39 39 40
+ GraphBin -2 -28 -21 -26
+ Mapbin-a 0. -1 -1 0.
+ Mapbin-p 0. -1 -2 -1
+ Mapbin-ap 0. -2 -2 0.

MaxBin2 4 17 13 15
+ GraphBin -2 -9 -7 -10
+ Mapbin-a 0. +1 +2 +1
+ Mapbin-p 0. -1 +1 0.
+ Mapbin-ap 0. 0. +1 0.

Examining the internal data generated from the network filtering step, we
observed that CONCOCT results have the least proportion of between-bin
edges in the assembly and read-pairing layers. This indicated that CON-
COCT clustering solutions were often the most agreeable with the sequence-
connectivity data. This may explain the lack of major bin merging or struc-
tural changes in the new clustering solution. We shall point out that this
may not necessarily serve as proof of CONCOCT bins’ perfect quality, but
rather indicates that the two additional networks did not provide much new
information to challenge CONCOCT’s initial result.

All the benchmarking tools displayed consistent performance across dif-
ferent short-read assembly datasets. CONCOCT tended to bin the largest
proportion of input contigs. MetaBAT2, on the other hand, occasionally
fragmented one genome in multiple yet pure bins. MaxBin2 demonstrated
more limitations in handling closely-related genomes, producing less number
of bins with higher contamination on average. Consequently, Mapbin showed
a higher proficiency in merging broken bins from MetaBAT2, and mitigating
bin contamination for MaxBin2 results.

We again observed a critical loss of HQ bins in the output of GraphBin.
We use the small datasetMock as an example to break down the performance
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Table 2.4: Bins Mapbin-ap merged from original MetaBAT2 bins in dataset
Mock. Comp.: Completeness, Cont.: Contamination. Both metrics are eval-
uated by CheckM.

Mapbin-ap taxon
Comp. 
(%)

Cont. 
(%)

Comp. 
(%)

Cont. 
(%) MetaBAT2 taxon

89.53 0.47 o__Burkholderiales
0 0 root

33.95 0.51 g__Prevotella
56.9 0 k__Bacteria
42.4 0.46 f__Bifidobacteriaceae
22.41 0 k__Bacteria
68.44 1.44 o__Actinomycetales

0 0 root

0.47

1.01

0.88

0

f__Bifidobacteriaceae

90.81

98.31

77.59

62.25f__Bifidobacteriaceae

o__Burkholderiales

g__Prevotella

di↵erence between Mapbin and GraphBin (see Figure 2.10). The diagrams
summarize the whereabouts of contigs in di↵erent binning results, and the
heights of bins are proportional to their total base counts. Despite the notice-
able di↵erences between their output, Mapbin and GraphBin did make a few
similar modifications to the original binning result. Both made fewer contig
shu✏ing on CONCOCT results compared to that from MetaBAT2. And the
two appeared to reach a certain agreement regarding bin merging. For in-
stance, MetaBAT2 Bin 1 and 5 were merged by both methods. However, it
is plain to see that GraphBin removed the bin assignments of a considerable
fraction of contigs (which are colored gray in the original bins). This was
most likely due to the entanglement of shared regions in closely related source
genomes, given that a majority of genomes in this dataset are from the same
genus. GraphBin labels contigs in the assembly graph with bin IDs, and
this issue possibly led to conflicts in contig labels that were unresolved by
the algorithm. Moreover, GraphBin falsely exchanged a few contigs between
MetaBAT2 bins while, as a matter of fact, no bins produced by MetaBAT2
su↵ered from a high level of contamination. This issue suggests that it is
essential to remove dubious edges arising from sequence similarity. Indeed,
when designing Mapbin, we checked the authenticity of all edges in the raw
network using the ground truth in simulated datasets, and our edge filtering
rules were based on the findings. The benchmarking performance further
verified the adequacy of these rules.
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Figure 2.10: Alluvial diagram of binning results on the Mock Dataset. (a)
Bins generated by CONCOCT, and by Mapbin and GraphBin based on
CONCOCT bins. (b) Bins generated by MetaBAT2, and by Mapbin and
GraphBin based on MetaBAT2 bins. In (b), Mapbin bins that are merged
from multiple original bins are labeled with red triangles at the right end.

2.4.7 Runtime and memory usage

A summary of the running time and the peak RAM usage of all benchmarking
runs is shown in Table 2.5 and 2.6, respectively. We tested Mapbin using
eight threads on the CAMI datasets and a single thread on the other datasets.
It is worth mentioning that Infomap may use additional threads it detected,
but this is an internal process and the parameter is not adjustable from its
Python API wrapper.

Overall, Mapbin’s runtime and RAM usage scale linearly with the number
of input contigs and sizes of the original. The two factors directly decide
the size and density of the multilayer network which, in turn, determine
Infomap’s time and space usage. For the read-pairing mode, parsing reads-
to-contigs alignment is the most computationally demanding step, and the
size of the alignment file is a key factor for resource usage.

Among all the benchmarking datasets we used, Random, Half-random
and Mock are the smallest and the CAMI datasets the largest. The other
three experimentally generated datasets, Sample2 to Sample4, are of medium
complexity, but their reads-to-contigs alignment files are the largest in size.
As expected, the CAMI runs were computationally the most intensive. Map-
bin finished within ten minutes with all binning results from MetaBAT2,
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VAMB, and MaxBin2, as well as the CONCOCT bins for the GI and UG
datasets, but the elapsed times for the other CONCOCT runs were between
22 to 23 minutes. This may be explained by the fact that CONCOCT binned
nearly all the contigs and its binning layer networks were always the most
complex among the original binning results, requiring more resources for the
network clustering step. The peak RAM usage in these runs showed a roughly
linear correlation with the maximum total size of alignment files being pro-
cessed at the same time. Among the CAMI datasets, UG ’s alignments were
the smallest, and the peak memory usage for UG runs ranged from 29 to 37
GB. Air runs required the most RAM, ranging from 71 to 78 GB.

Table 2.5: Elapsed times (in seconds) of benchmarking runs.

Mock Sample2 Sample3 Sample4 Random Half-random
MetaBAT2 136 958 1361 1470 141 187
GraphBin 54 2661 2365 3849 64 79
Mapbin-a 17 62 60 59 12 16
Mapbin-p 306 670 699 691 373 388
Mapbin-ap 265 608 641 699 358 262
CONCOCT 235 1068 1122 1360 760 715
GraphBin 47 3319 3186 3755 38 40
Mapbin-a 8 35 28 30 12 15
Mapbin-p 266 645 622 676 376 383
Mapbin-ap 264 611 636 666 348 378
MaxBin2 106 7751 7240 8303 177 159
GraphBin 23 4169 3934 4878 53 66
Mapbin-a 13 58 58 57 10 12
Mapbin-p 299 637 650 692 235 382
Mapbin-ap 270 648 638 666 237 369

Air GI Skin Oral UG
Mapbin-MetaBAT2 614 547 565 562 577
Mapbin-CONCOCT 1376 511 1399 1392 651
Mapbin-VAMB 580 532 617 567 479
Mapbin-MaxBin2 602 532 570 592 382

MetaBAT2 1517 713 1788 1379 817
CONCOCT 4141 2749 4148 4156 2133
VAMB 1606 655 1894 1625 926
MaxBin2 50242 9014 59811 92783 7519

(a) 

(b)

All the runs on Random, Half-random and Mock were finished within
6.5 minutes using less than 1.5 GB RAM. Mock runs took similar time but
used less than 0.5 GB RAM. The assembly-only mode of Mapbin, Mapbin-a,
was the most time and space e�cient among the three modes. Compared
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Table 2.6: Peak RAM usage (in MB) of benchmarking runs

Mock Sample2 Sample3 Sample4 Random Half-random
MetaBAT2
GraphBin 149 2205 2110 3005 158 215
Mapbin-a 177 908 891 950 518 493
Mapbin-p 538 1847 1822 2172 1760 1446
Mapbin-ap 539 1847 1822 2168 1760 1430
CONCOCT
GraphBin 150 2950 2912 3231 141 173
Mapbin-a 187 914 896 958 515 513
Mapbin-p 536 1860 1838 2182 1760 1441
Mapbin-ap 534 1864 1838 2183 1760 1438
MaxBin2
GraphBin 141 2419 2159 2428 157 203
Mapbin-a 205 912 894 953 688 657
Mapbin-p 536 1860 1831 2184 1760 1437
Mapbin-ap 540 1861 1831 2183 1759 1447

Air GI Skin Oral UG
Mapbin-MetaBAT2 73713 45191 72757 68263 37996
Mapbin-CONCOCT 78623 46865 74384 70888 29937
Mapbin-VAMB 77470 43335 71800 68587 35987
Mapbin-MaxBin2 76863 43098 69849 68603 38373

(a)

(b)

to the other assembly graph-assisted bin refiner, GraphBin, Mapbin-a ran
significantly faster. However, for these three datasets, most of the Mapbin-a
runs required more memory. The peak space usage for Mapbin-a appeared
at the internally parallelized Infomap clustering step.

For Sample2 to Sample4, Mapbin-a finished within one minute for all
original binning results, requiring 920 MB RAM on average. Mapbin-p and
Mapbin-ap runs took around 10 to 12 minutes, using around 2 GB RAM.
Mapbin is able to process multiple alignment files in parallel, but the compu-
tation on a single alignment file is limited to a single thread. Consequently,
some Mapbin runs on these datasets took even longer time than the more
complex CAMI datasets. Compared to GraphBin, all three Mapbin modes
showed markedly higher time and space e�ciency, indicating that Mapbin
scales better with the increased data volume.
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2.5 Discussion

Both assembly graphs and read-pairing networks extract sequence-connectivity
information from the data that is conventionally underused. Our benchmark-
ing results demonstrate the power of the multilayer network data structure
in proposing the merging of bins, detecting bin contamination, and adjust-
ing the placement of contigs accordingly. The core concept of Mapbin is to
minimize the disagreements between the original contig clustering solution
and the contig linkage derived from assembly graphs and read alignments.
By transforming all input data into a uniform network structure, the dis-
agreement can be e�ciently pinpointed. Preprocessing the network partially
solves some disagreements and is potentially solved by merging bins, moving
contigs between clusters, or removing dubious edges. And by using the fast
Infomap algorithm, a new clustering solution can be produced quickly.

Assembly graphs and reads-to-contigs alignments can indicate both gen-
uine connections between contigs from the same genomes in close proximity
and sequence similarities between di↵erent genomes. We designed Mapbin to
be aware of this caveat. We implemented a few precautions against relying
solely on the assembly and read-pairing networks for the clustering, as it can
lead to merged bins of contigs from closely related genomes. As a result,
non-trivial bins produced by Mapbin are expected to be a modification of
original bins rather than clustered from scratch based on the assembly and
read-pairing networks alone. In this way, Mapbin is able to avoid major
drops in bin quality caused by sequence similarity-induced edges. The ne-
cessity and e↵ectiveness of our measures were indicated in the benchmarking
performance. Unlike GraphBin, Mapbin did not display a tendency to lose
a critical number of HQ bins or erroneously remove the original bin assign-
ment of many contigs. However, it should be acknowledged that while our
algorithm is indeed e↵ective in selecting trustworthy edges between contigs,
it may have a minor side e↵ect of preventing unbinned contigs from forming
large new clusters. Therefore, it may not be the optimal choice when working
with original binners that leave out a notable number of long contigs.

As explained previously, an inherent limitation of our method is that
the assembly graphs and read-pairing network layers only involve a small
fraction of contigs by nature, but Mapbin’s algorithm cannot work on contigs
represented by isolated nodes. This issue becomes more pronounced in cases
of more fragmented assemblies and lower read coverage. We observed that
bins with noticeable contamination can be easily detected even at a lower
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network density, as seen in the CAMI cases. But merging bins and clustering
initially unbinned contigs were more dependent on the network density. For
datasets consisting of contigs with low sequence contiguity and insu�cient
coverage, Mapbin may primarily improve the bin purity but have a limited
impact on completeness.

Although we did not test Mapbin on conventional long-read assemblies,
the comparison between Mapbin’s performance on the CAMI datasets and
the short-read datasets suggests that Mapbin may have a more substantial
e↵ect on long-read assemblies as they are statistically similar to the CAMI
datasets. Mapbin’s read-pairing mode is compatible with both short- and
long-read assemblies as long as paired-end sequencing data of the same DNA
sample is available. But the current version of Mapbin supports only short-
read assembly graphs. We could further broaden Mapbin’s scope of appli-
cations by adding modules for handling the common formats of long-read
assembly graphs.

While Mapbin was demonstrated to scale well with the input data vol-
ume, we suggest the alignment parsing step may be further optimized. In
the current version of Mapbin, each record in the alignment is inspected to
extract the read pairs aligned to di↵erent contigs. Parallelization of this step
may significantly improve the runtime of Mapbin-p and Mapbin-ap.

2.6 Conclusion

We designed Mapbin, an algorithm that refines genomic binning results by
using assembly graphs and read-pairing information from paired-end sequenc-
ing data. Mapbin constructs a network individually from the original binning
result, the assembly graph, and the reads-to-contigs alignments. These net-
works are then integrated into a multilayer network with nodes representing
contigs. By applying the community-detection algorithm, Infomap, Mapbin
clusters the network to produce a refined binning result. We demonstrated
Mapbin’s performance on multiple simulated and real-world datasets of vary-
ing complexity. In summary, Mapbin is a versatile tool suitable for both short
and long-read assemblies. It is proven e↵ective in detecting and mitigating
contamination in the given binning results, correcting contig misclustering,
and enhancing overall bin quality. In our benchmarking, Mapbin’s perfor-
mance in boosting the number of HQ bins was generally limited on short-read
assemblies but quite pronounced with assemblies of higher sequence contigu-
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ity, such as gold standard assemblies of the CAMI datasets. Mapbin scales
e�ciently with the growing complexity of input data volume. The resource
usage is dependent mainly on the number of contigs, the number of bins,
and the reads-to-contigs alignment file sizes. These results demonstrated the
value of sequence connectivity information in improving metagenomic bin-
ning quality and the power of multilayer networks in seamlessly integrating
them into the binning process.
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Chapter 3

Metagenomic analysis of
human gut microbiome during
stem cell transplantation

3.1 Introduction and dataset description

This chapter reviews our microbiome analysis for the project ImMiGeNe, a
longitudinal multi-omics study investigating the associations between human
gut microbiota and the host immune systems in stem cell transplantation
(SCT) patients. SCT is a strong intervention that drastically reshapes the
immune system and gut microbiota of the patients. It is of great interest
to understand how the microbiome changes over the period of treatment in
response to a variety of factors.

To this end, feces samples from the subjects were collected over the entire
treatment period and subjected to shotgun metagenomic sequencing. We an-
alyzed the data to characterize and identify patterns of their gut microbiome
at di↵erent therapeutic stages, in the hope to delineate their developmen-
tal trajectory. It should be noted that this chapter focuses on documenting
and demonstrating data-related computational work, and a detailed descrip-
tion of the research design and setup, such as sample collection methods,
medical treatment and biomedical characteristics of the patients, laboratory
protocols, etc. will be excluded here.

Twenty stem cell donor-recipient pairs were recruited in ImMiGeNe and
the sample collection spanned the entire time window of the treatment. A
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Figure 3.1: Stool sample collection schedule in the ImMiGeNe project.

summary of the sample collection plan is shown in Figure 3.1. The patients
first underwent enteric decolonization with antibiotics, a standard preopera-
tive prophylaxis to help reduce the risks of potential infection. The procedure
uses broad-spectrum antibiotics and usually results in the radical removal of
existing gut microbes. Next, they received high-dose chemotherapy which
was to destroy cells in the bone marrow to prepare a clean slate for receiving
the donor’s stem cells. At this time point (myeloablative chemotherapy in
Figure 3.1), a severely compromised immune system was expected. The next
procedure was stem cell transplantation. Antibiotics treatment continued for
some time after the SCT. Our sample collection started at one time point
shortly before the administration of antibiotics, at which both the donor
and their recipients’ stool samples were collected (t�1). This was the only
time point with donors’ samples. For the recipients, there was a round of
stool sample collection between their chemotherapy and SCT (t0). Samples
collected after the SCT started from t1, with four time points during the
antibiotic treatment and three more afterwards.

Due to their medical condition, many patients in this study were unable
to o↵er samples consistently. Almost for each patient and at each time point,
some missing samples could be expected. After the removal of missing or low-
quality samples, all of the donors’, and 17 out of the 20 recipients’ data were
used for the microbiome analyses.
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3.2 Raw data processing

Initially, we obtained a dataset of 146 paired-end shotgun sequencing sam-
ples, 8 of which are blank control samples. The goal of raw data processing
was to remove reads that are of low quality, duplicates, or of human origin.
It is not only crucial as a standard procedure for quality control, but also
key to keeping patient-sensitive data out of the analysis.

We used Trimmomatic[180] to remove low-quality reads. For host read
removal, we mapped reads against human genome reference GRCh38 (hg38,
RefSeq ID GCF 000001405.39) using Bowtie 2[181]. Reads that were un-
mapped were kept. At this step, we found human reads prevalent in the
recipient samples (see Figure 3.2. In many samples, human reads consti-
tuted more than half of the total. This was mainly due to the low target
DNA concentration in these samples. We noticed that this problem is also
frequently combined with other issues such as low complexity reads (e.g.
AAAAAAAAAAAAAAAAAAAAAAAAAT). Due to their high base qual-
ity, these reads were not removed by Trimmomatic, and due to their low
complexity, they were unaligned to the human genome. We performed one
round of data preprocessing and found that, out of all 138 samples, 36 had
less than 1 million reads, and 62 had less than 10 million.

Compared to large-scale gut microbiome analysis such as The Integra-
tive Human Microbiome Project[182], the read yields of these samples were
moderate to low. To retain more microbial reads, we re-processed the data,
and treated the paired-end reads as single-end for the alignment against the
human genome, and re-paired them afterwards. This yielded a higher pro-
portion of unpaired reads, but left more reads for downstream analysis. In
some samples, duplicates were also prominent. This is a known problem with
samples that are too fragmented or have low target DNA concentration[183].

The overall statistics of the preprocessing are shown in Figure 3.2. Sam-
ples from the healthy donors turned out to be of better quality, with few
human genome contamination and duplicates, and also showed much less
individual di↵erences. For the SCT patients, the samples collected before
the treatment (first bar in each cell in the figure) were of good quality on
average, but those collected since the antibiotic treatment varied a lot. Many
of them were low in read count or heavily contaminated by human reads.

As none of the blank samples yielded a su�cient number of reads (more
than 1000), nor contained any taxa detectable by our taxonomic analysis, we
subsequently excluded them in the findings section.
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Figure 3.2: Statistical summary of ImMiGeNe raw metagenomic data pro-
cessing. Each stacked bar is a metagenomic sample. The horizontal lines
separate the samples by individuals. Each individual’s samples are sorted
by the sampling time points. Kept : reads that can be used for downstream
analysis; dup: discarded duplicates; bad : discarded low quality reads; hu-
man: discarded human reads. The samples from donors are on the top left,
highlighted with a blue frame. All the rest are from the recipients.

3.3 Taxonomic and functional profiling

We characterized the gut microbiome of the donors and recipients with DI-
AMOND+MEGAN pipeline[184]. We first aligned the filtered reads against
NCBI-nr database (retrieved via NCBI ftp in December 2020) using DIA-
MOND 2.0.11[185]. Then we performed taxonomic and functional profiling
using MEGAN 6 Ultimate Edition[186].
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3.3.1 Compositional instability of gut microbiota among
the recipients

The taxonomic profiling was based on both NCBI Taxonomy and the Genome
Taxonomy Database (GTDB[59]). The result showed a high level of sim-
ilarity in the gut microbiome of the healthy donors, and great instability
in that of the recipients. We examined the composition both intra- and
inter-individually. For each recipient (see Figure 3.3), we compared their gut
microbiome over time, and to that of their donor. The results revealed signif-
icant deviation from that of the healthy donors and erratic fluctuations over
time. All but one donor’s gut microbiome were alike. However, for the ma-
jority of the recipient cohort, there was little similarity, and abrupt changes
in the taxonomic composition. A lot of samples appeared to be dominated by
very few taxa, which appeared to be present by chance. And the succession
of dominant taxa occurred frequently and dramatically. They also had little
consensus when compared between individuals within the same time group
(see Figure 3.4).

Additionally, the composition at the species level (see Figure 3.3 (B))
revealed that most of the dominant taxa in the recipients’ samples were ei-
ther multidrug-resistant species, or pathogens known to be associated with
inflammation in the gastrointestinal tract. This includes and is not limited
to Escherichia coli, Klebsiella pneumoniae, Enterobacter spp, Enterococcus
faecium, Salmonella enterica, Ruminococcus gnavus, Streptococcus parasan-
guinis, etc[187, 188, 189]. It implies that the precarious physical conditions
of the host and the heavy use of antibiotics had disrupted the colonization
of beneficial commensal gut microbes.

One important signature of gut microbiota dysbiosis is the decreased
abundance of strict anaerobes. The majority of their samples are dominated
by the classes Gammaproteobacteria and Bacilli, while that of the donors
Bacteroidia, followed by Clostridia. The major metabolic di↵erence between
the two groups is that the former is facultative anaerobic, while the latter is
obligate anaerobic. Previous studies have indicated that such di↵erence in
the microbial nutrient metabolic landscape is closely correlated with changes
in the available nutrients in the colon during inflammation[109, 46, 143]. This
inspired us to investigate the related metabolic pathways in the functional
analysis.
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Figure 3.4: Gut microbiome composition over time. (a) disparate post-SCT
microbiota development of recipients. The taxa are at the GTDB genus level;
(b) Enrichment of Gammaproteobacteria and Bacilli in the recipients. The
taxa are at the GTDB class level. The leftmost columns show all donors,
and each row is one donor-recipient pair, with their IDs on the y-axis. Each
of the other columns are samples from the same time point.

Fungi and viruses can only be detected using the NCBI taxonomy. While
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GTDB does provide a taxonomic hierarchy that is phylogenetically more
consistent than the NCBI taxonomy, it is a database only for bacteria and
archaea. One non-trivial caveat is that some viruses are mislabelled as their
host bacteria and end up in the GTDB database too. Their presence may in-
troduce computational inflation of the abundance of the host. We recommend
using both NCBI and GTDB taxonomies in the context of inflammation- and
disease-related gut microbiome study for a more comprehensive analysis.

Using the NCBI taxonomy, we found a considerable amount of Mastade-
noviruses, from the family Adenoviridae, as well as fungi like Candida spp..
Mastadenoviruses have been frequently reported to be associated with gas-
trointestinal infection in children[190, 191]. Candida spp., on the other hand,
is a prevalent component of human microbiome[131].

3.3.2 Marked contrast of microbial diversity between
donors and recipients

We further computed the alpha and beta diversity of the samples. The alpha
diversity measures the diversity within one sample, while the beta diversity
measures the di↵erences between di↵erent samples. We used the Shannon-
Weaver index (or Shannon index) as the measurement of alpha diversity,
which is computed as

H
0 = �

nX

i=1

p(i) · log(p(i))

where H 0 is the Shannon index, p(i) is the relative abundance of the i-th
species in the microbial community (sample).

The Bray-Curtis dissimilarity is used to measure the beta diversity, the
formula is:

D =

P
|A(i)� B(i)|P
(A(i) +B(i))

It computes the dissimilarity between a pair of samples A and B. A(i) and
B(i) are the relative abundances of the i-th species, respectively. All samples
are subsampled (rarified) to the read count of the smallest sample 1000 times.

Additionally, we sought to explain the variations between samples with
the following factors: cohort (that is, whether the sample comes from a
donor or a recipient), individual, sample collection time, and read counts of
the samples. We performed a multivariate analysis using a generalized linear
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model. The number of reads was included in the analysis because it varied
significantly between samples, and the recipient samples typically had fewer
reads compared to the donors’. This might have contributed to their low
diversity. The analysis was done with mvabund package in R, tested with
log-likelihood ratio statistics.

The results, shown in Figure 3.5 confirmed the loss of microbial diversity,
and the erratic nature and lack of consistency in the development trajectories
of the recipients’ gut microbiome. Overall, all except for one sample in the
donor cohort showed a great level of similarity. In contrast, the recipient
cohort displayed great individual di↵erences and deviated greatly from the
donors. The read count di↵erences did not significantly correlate with the
microbial diversity.

3.3.3 Key genes in respiratory pathways enriched in
the recipient cohort

Since the taxonomic profiles indicated that facultative anaerobes overtook
their fastidiously anaerobic competitors following antibiotic use, in our func-
tional analysis, we focused on the genes that may give the facultative anaer-
obes the upper hand. As introduced in Chapter 1.3.4, their metabolic ver-
satility is manifested in their ability to utilize energetically valuable termi-
nal electron acceptors that emerge with the onset of inflammation. These
include nitrate, nitrite, DMSO, TMAO, which can be used in anaerobic res-
piration, and oxygen which enables aerobic respiration. We selected the key
enzyme-encoding genes of interest based on a study conducted by Hughes
and colleagues[46], and categorized them roughly into two groups, one re-
lated to aerobic and the other to anaerobic electron transport chain. Most
of the genes encoding the key enzymes in these respiratory pathways are not
commonly found in the genomes of obligate anaerobes. Note that we put for-
mate dehydrogenases under aerobic respiratory pathways. This is because,
under a microaerobic environment, commensal Enterobacteriaceae tends to
couple formate oxidation with aerobic respiration, using formate as electron
donor and oxygen as the terminal electron acceptor[46].
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Figure 3.5: Statistical analysis demonstrates the largest variations are be-
tween di↵erent cohorts and individuals. (a) Shannon diversity of the micro-
bial profiles at the species level. (b) Principal coordinates analysis (PCoA)
based on Bray-Curtis dissimilarity at the species level. In the top figure,
samples are colored by the individuals and each donor-recipient pair has the
same coloring. In the bottom one, donors are all in red and recipients in
blue. The shades of blue distinguish the sampling time point. (c) Multivari-
ate analysis, at the family level. The numbers are the percentage of variance
explained by di↵erent factors. For instance, the cell at the top left corner
shows 31% of the variance of Bacteroidaceae abundances across samples can
be explained by the cohort. ⇤ ⇤ ⇤ : P  0.001.

Metabolic functions of the gut microbiome are generated based on the
orthologous groups in two databases: Kyoto Encyclopedia of Genes and
Genomes (KEGG)[192] and evolutionary genealogy of genes: Non-supervised
Orthologous Groups (eggNOG)[193]. KEGG hierarchy is based on sequence
similarities. EggNOG on the other hand, on top of that, also takes into
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consideration the phylogenetic relationships of the source organisms of the
genes. We compiled a list of KEGG orthologs (KOs) and Clusters of Ortholo-
gous Groups (COGs) by searching each enzyme by name. The enzymes, KOs
and COGs are listed in Table 3.1 A.6, and A.7, respectively. The functional
profiling was performed by MEGAN 6 based on the reads-to-nr alignments.
One important di↵erence is that the KOs can be more fine-grained than the
COGs in terms of gene functions. Some COGs include multiple genes in the
list, such as dmsB and nrfC in E. coli are both under COG0437, but in
KEGG they are under K07307 and K04104 respectively.

Table 3.1: Enzymes in the respiratory electron transport chain.

Symbol Enzyme
Anaerobic respiratory enzymes
Nap periplasmic nitrate reductase
Nar respiratory nitrate reductase
DmsABC anaerobic dimethyl sulfoxide reductase
YnfFGH Tat-targeted selenate reductase
TOR trimethylamine-N-oxide reductase
NrfABCD nitrite reductase
FrdABCD succinate dehydrogenase
Aerobic respiratory enzymes
CyoABCD cytochrome o ubiquinol oxidase
CydAB cytochrome bd ubiquinol oxidase
FDN formate dehydrogenase-N
FDO formate dehydrogenase-O
HydABC NAD(H)-dependent [FeFe]-hydrogenase

The results, shown in Figure 3.6, once again indicated the dysbiotic nature
of the gut microbiome among the recipients. Using the median of the donors’
measurements as a reference, we found genes encoding the key enzymes in
respiratory pathways were highly abundant. Both the formate dehydrogenase
and cytochrome oxidase, which are associated with oxygen respiration, were
found to be enriched by 1000 fold in many recipient samples. As for anaerobic
respiratory potentials, the level of genes encoding the nitrate, nitrite, TMAO,
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and DMSO respiration enzymes was also significantly augmented.
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Figure 3.6: Functional analysis of the respiratory pathway-related oxidore-
ductase genes. The orthologs are from (a) KEGG, and (b)eggNOG. Their
abundances are normalized against the total read count, and the values in-
dicate their abundances compared to the median of the values in the donor
group. The samples are sorted according to the time point. The top and
bottom halves are anaerobic and aerobic respiration-related, respectively.

78



Linking the taxonomic to the functional analysis provides insights into
the functional similarities of taxonomically di↵erent groups. As shown in
Figure 3.4 (b), taxonomic dominance seemed to oscillate between the classes
Bacilli and Gammaproteobacteria in the recipient cohort (see Individual 4,
5, 7, 11, 12, 13, 15, 16, 17, 18, 20 and 21). But in the functional anal-
ysis, elevated abundances of oxygen, nitrate, nitrite, TMAO, and DMSO
respiration-related genes were observed in almost all recipient samples. This
hints that the functional similarity of the two dominant groups may help
them colonize the strongly disrupted new environment.

3.3.4 The donor and recipient gut microbiome encode
di↵erent flagellins

We also performed an analysis of the flagellin content. As introduced in
Chapter 1.3.5, a wide range of gut microbes are flagellated, but they pro-
duce structurally di↵erent flagella, which elicit distinct immune responses
from the host. Since FliC encompasses all bacterial flagellins, and they are
under the same ortholog in both KEGG and eggNOG, we used a customized
database to capture the flagellin content. The database was provided as a
courtesy by Andrea Borbon from Max Planck Institute for Developmental
Biology. It was curated by compiling all 33051 bacterial and archaeal flag-
ellins available on NCBI at that time. Dereplicated sequences were predicted
for domains with InterProScan (https://www.ebi.ac.uk/interpro/) us-
ing Pfam (hosted now at https://www.ebi.ac.uk/interpro/) and PAN-
THERhttp://www.pantherdb.org/ databases, and those predicted to be
bacterial with both C- and N-termini or archaeal flagellin were kept.

The results are shown in Figure 3.7. In the donor cohort, the flagellin
are mostly coming from the family Lachnospiraceae. Despite having moder-
ate abundance, they are highly prevalent among the samples. The flagellin
profiles echo the taxonomic profile of the flagellated microbes. For the recip-
ients, Enterobacteriaceae flagellins are the most abundant, followed by those
of Enterococcus origin.
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Figure 3.7: Flagellin content of the samples. The tree is based on GTDB
taxonomy, reflecting the source genome of the flagellins. Prevalence measures
how frequently a taxon occurs across samples, whereas abundance describes
the average count of a taxon among samples where it occurs.

3.4 Ecological interpretations based on the
metagenomic analysis

The prolonged microbiota dysbiosis may be linked to a plethora of factors,
including:

Compromised host immune system which has a profound impact on
the gut microbiome developmental trajectory, possibly since as early as the
primary succession process at their birth;

Long-term use of medications and therapeutic interventions which con-
stantly cause major environmental stress to the gut microbes, leading to
chronic instability of the community;
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Exposure to nosocomial pathogens which can prolong the inflammation
and interrupt the re-colonization of beneficial commensals.

Each of these factors may have been extensively studied individually, but
rarely combined. The gut microbiome under the impact of SCT is a rather
intriguing subject to study: the microbial communities may be much less
complex than common human gut microbiomes, but the ecological mecha-
nism behind the dysbiosis could be fairly complicated to infer.

In this study, in the patient cohort, SCT treatment combined with antibi-
otic use destroyed their initial gut microbial community, creating a typical
secondary succession scenario[131, 162]. Secondary succession is the process
of re-colonization of a community of organisms in an ecosystem after a distur-
bance event. Conceptually it is in contrast to the primary succession which
happens at birth when a few pioneer microbes establish the gut microbiome
in the newborn. The disturbance that led to the secondary succession in our
context was the radically invasive treatment which removed most of the ex-
isting microbes and drove the gut microbiota to start re-colonizing on a clean
slate. The secondary succession can be expected to happen in roughly three
stages. First, a stochastic process will happen for a certain time, in which
the first settlers arrive and grow not as a result of their defined ecological
fitness, but due to a chance event. The trajectory is pushed towards a more
deterministic second stage when a few “keystone species” arrive. Like pio-
neer species in primary succession, they are able to establish symbiosis with
the host by utilizing host-derived nutrients, and produce metabolites that
favor the growth of obligate anaerobes. The return of obligate anaerobes
marks the third stage, culminating in the ecological recovery of the microbial
community[194, 131].

Our data showcased the relative stability of gut microbiota in healthy
adults, and pronounced volatility of that in the SCT patients. The metage-
nomic analysis implied that the process of re-establishing ecological equi-
librium in the recipients is most likely longer than the span of our study.
A majority of the recipients started o↵ at t�1 with an already imbalanced
microbiome, characterized by the dissimilarity between individuals, lack of
overall diversity and strict anaerobes’ dominance, and overgrowth of known
pathogens. After the major disturbance at t0, and until t7, what we wit-
nessed the most was the blooming facultative anaerobes. Occasionally, there
are signs of emerging fibre degraders, but they barely dominated, and usually
got replaced right at the next time of sampling. Chng et al. conducted an
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inter-study analysis regarding human gut microbiome recovery after antibi-
otic treatment, and suggested a list of keystone species that are consistently
positively associated with rapid community rebound. These species turned
out to be specializing in metabolizing complex polysaccharides[162, 194]. In
our recipient samples, none of the 21 taxa were frequently detected with
noticeable abundances. Instead, we found our samples displaying typical
features of the “non-recoverers”, which are the community whose microbial
diversity did not recover even three months after the antibiotic treatment in
the other study[162]. At the final sampling time, all patients still seemed to
be in the very first phase, where the primary species, i.e., the opportunistic
pathogens occupied their gut. The secondary succession and keystone species
hypotheses may help us understand the slow recovery of microbiota in these
patients, providing valuable perspectives for medical intervention-aided mi-
crobiome restoration.

3.5 Limitations and caveats of the data anal-
ysis

In this discussion, we address the limitations stemming from the dataset itself
as well as the chosen microbiome analysis methods.

3.5.1 Contamination issue with low-biomass samples

The gut dysfunction of the SCT patients leads to feces samples of low
biomass, or a limited quantity of endogenous microbial DNA that is our
sequencing target. This was a common problem among the patient group,
which was also manifested in the low yield of reads[195]. The most promi-
nent issue with low-biomass samples is the contaminants, or o↵-target DNA
material, which can potentially undermine microbiome analysis. Contamina-
tion can come from the sample itself, and also the laboratory environment.
It happens not simply due to the negligence of the experimenters. Contam-
inants are commonly present in most microbial samples, but their impact
is minimal in regular samples due to the much stronger signal from target
sequences. However, in low-biomass samples, even a trivial amount of con-
taminants could outnumber the targets, and introduce a considerable amount
of noise to the data.

82



Host DNA contamination

We have addressed the host DNA contamination problem previously in the
analysis. Due to the lack of microbial content, many samples were full of hu-
man DNA. The impact of host DNA contamination on metagenomic analysis
has been elucidated previously. In short, it leads to distorted relative abun-
dances of di↵erent taxa and reduced capability to capture low-abundance
species. This is demonstrated in case studies using synthetic samples in two
ways: by gradually increasing[196] or depleting host DNA[197, 198] in the
samples. One possible explanation is that the overwhelming presence of host
DNA diminishes the chances for microbial genomes to be sequenced, result-
ing in insu�cient coverage of microbial genomes in general[196]. The strong
presence of host DNA adds considerable uncertainty to the data interpreta-
tion. And computational removal of host reads could not remedy the data
distortion it caused. Pereira-Marques et al.[196] demonstrated with their
study case that, with high levels of host contamination, species with below
1% relative abundance (based on 16S as well as genome copies) already be-
come occasionally undetectable. For metagenomics, this level is typically
considered to be still quantitatively relevant.

One key observation about our recipient samples was that many of them
seemed to be of extremely low diversity, consisting of several pathogens.
However, it is possible that the pathogen content was overrepresented, and
other community members were undetected, due to the high ratio of host to
microbial genomic content. Or promisingly, the dominance of the pathogens
may not be as strong as it appeared, and the keystone fiber-degraders (see
Section 3.4) may still be present, but poorly represented by the sample.

Laboratory contamination

Besides the host DNA, some other contaminants might be introduced by the
laboratory practice, such as the reagents, DNA extraction procedure, the
researcher, and lab facilities[199]. Our study involves a few control samples
(“blanks”). However, we warn that they are insu�cient proof to conclude
that the samples are free from contaminants. The completely empty profile
could be a consequence of limited detection sensibility. It is also not clear
how the blank samples were made and what types of DNA contamination
issues they intended to address.

Weyrich et al.[195] illustrated that a regular laboratory environment is
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expected to introduce a substantial amount of contamination to delicate sam-
ples of low-biomass. Moreover, di↵erent types of “blanks” vary a lot in their
detection capabilities. In the study, they introduced two types of control
samples, extraction blank controls (EBCs) and no-template amplification
controls (NTCs). EBCs involve the use of empty tubes during the DNA ex-
traction step, and NTCs are amplified without the DNA input. NTCs alone
are unable to tell contaminants introduced from DNA extraction, which can
constitute half of the total contamination. Another study, conducted by
Salter et al., addressed the impact of reagent contamination[200]. Their tar-
get DNA dilution series demonstrated the presence of reagent contaminants
is comparable to or able to overpower that of the target species. Further,
the impact of reaction kit contamination could mislead microbiota studies
with low-biomass samples, such as those taken from nasopharyngeal swabs,
as they may explain the variations even better than the other ecological fac-
tors considered. Interestingly, the common contaminants identified in this
study as well as earlier studies are also common members of human gut
microbiota[200, 195].

Moreover, contaminant taxa may also have certain common metabolic
pathways. One example is nitrogen fixation pathways, which are likely en-
riched because nitrogen gas is widely used in the industrial production of
ultrapure water[201]. This is especially relevant to our case, because the
low-biomass problem was limited to the recipient samples. The contrast of
metabolic pathways in the two groups might be attributed to the contami-
nation rather than the target microbiota.

There is no basis for computational depletion of environmental contami-
nants in the lack of proper control samples as reference, as the background
“noise” may have a lot in common with the target microbiota in terms of
the taxonomic makeup. We stress that the purpose of using control samples
is not to deny the presence of contaminants, but rather to accurately detect
them. Failure to detect DNA material of low concentration is not a proper
means of prevention against contaminants, because it also leads to skewed
microbiota profile with poor resolution.
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3.5.2 Partial coverage of genomic regions in low-biomass
samples

Even for the most abundant species, the recipient samples did not accu-
rately capture all parts of their genomes. It happened frequently that, even
for taxa with a large number of assigned reads, a significant proportion of
their genomic elements were still missing from the data. This implies that
the genomic material in the library was likely quite fragmented, and a high
abundance of a taxon was probably generated by sequencing several frag-
ments from its genome over and over again. In other words, the samples
took only a small and biased subset of all genomic components in the com-
munity. Clearly, this further confounds diversity analysis, leading to the
overestimation of dominant taxa.

The likely incomplete genomic material further limited the information we
could extract from the data. We have also attempted a few other analyses
apart from what was mentioned above. Metagenomic assembly was only
successful for the donor group. For the recipients, many of the read libraries,
even if their read counts were not too low, were characterized by high coverage
over some short windows on the genomes of abundant species, such as E.coli.
They could not come together to an informative length.

We also noticed that functional annotation worked out poorly when per-
formed at a finer grain. Looking back on the oxidoreductase and flagellin
analyses, the former gathers content from orthologs of non-trivial gene fam-
ilies, while the latter looks for genes with a specific source species. Inter-
estingly, for recipient samples, the amount of functional content scales with
the read counts of relevant species, only at the ortholog, but not more spe-
cific level. Take the flagellin content analysis as an example (see Figure 3.8).
Roseburia spp. and Escherichia spp. were the most prevalent flagellated
bacteria in the donor and the recipient samples, respectively. In the donor
samples, there was a positive correlation between the taxon-level abundance
and the flagellin content detected in the sample, as we expected. In the recip-
ient samples, however, the taxonomic profiling indicated quite a few samples
had as many as above 106 reads assigned to the genus Escherichia, but few
to none of them were identified as flagellin-encoding. Some other samples
contained a few tens of thousands of reads, but above hundreds of them
came from flagellin genes. A similar pattern for Roseburia was observed in
the samples where it was present. Based on this, we chose not to pursue
additional analysis that would suggest high specificity, such as antibiotic-
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resistance gene analysis, as the comparison between samples would not be
made with great confidence.
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Figure 3.8: Number of reads assigned to genera Roseburia and Escherichia
(x-axis) and their flagellins (y-axis). The numbers are absolute counts. A
linear regression line is plotted for Roseburia in donor, and Escherichia in
recipient samples.

3.5.3 Potential biases in the sequence abundance esti-
mation

Sun et al. have recently called attention to the di↵erentiation between se-
quence and taxonomic abundance estimation in microbial profiling. Both
types estimate the abundance from reads-to-reference alignment. Sequence
abundance derives from the alignment to a whole set of microbial elements,
while taxonomic abundance is based on the alignment to markers[202]. In
other words, the former calculates how much genomic content comes from
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an individual taxon, while the latter estimates the number of organisms.
Tools like Kraken2[203], DIAMOND[185], and Kaiju[204], which are based
on reads to reference genomes or proteins, estimate sequence abundances,
while others like MetaPhlAn[205] and mOTUs[206] perform profiling based
on the marker genes. Sun et al performed benchmarking, with which they
concluded that microbiome diversity analysis based on sequence abundance
has the tendency to overestimate the microbes of larger genome size and the
other way around for the smaller genomes.

Our taxonomic profiling was based on the sequence abundance. MEGAN+
DIAMOND pipeline was able to capture taxonomic information to an extent,
because using the entire nr as a reference compensates for the impact of miss-
ing genomic regions. However, we warn that the lack of proper representation
of the metagenome potentially added a great cost to the accuracy of abun-
dance estimation, especially for the recipient samples. And for our dataset,
the bias was not only introduced by the intrinsic size di↵erences between
individual genomes. In the low-biomass samples, genomes with larger frag-
ments included in the sample are likely to be overestimated than the rest.
As for taxonomic abundance, to our knowledge, many microbial single-copy
marker genes frequently appear in close proximity to each other. Given the
high possibility that many genomic regions may be absent in our recipient
samples, the calculation of taxonomic abundance can be even more prone
to bias than that of sequence abundance. While the sequence abundance-
based analysis provided evidence for the significant di↵erences between the
two groups, it shall not be taken as a conclusive or definitive ground for any
quantitative interpretations.

3.6 Conclusion

We performed the metagenomic analysis for ImMiGeNe, a project that fol-
lows the gut microbiota development of patients who underwent SCT treat-
ment, as well as their stem cell donors. The ImMiGeNe consortium focuses on
the dynamics between the host immune system and the gut microbial commu-
nity. To address this goal, we first removed contaminating components from
the raw data, then performed a series of taxonomic and functional analyses.
An evident contrast was revealed between the donor and recipient groups.
Compared to the raw data of donor samples, that of the recipients typically
yielded fewer reads, and many su↵ered from a high level of host DNA contam-
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ination and duplicates. We identified that the donor gut microbiomes were
marked by a highly similar abundance of obligate anaerobic microbes, and
that of the recipient had a highly dissimilar dominance of facultative anaer-
obes, among which many were known pathogens. Further, in the functional
analysis, we focused on the respiratory pathways, as they have been widely
reported to be strongly associated with colonic inflammation. The result
showed an enrichment of key genes in both anaerobic and aerobic electron
transport chain, in the recipient group. This suggested that the recipient
gut microbiota were likely undergoing a secondary succession process. Even
till the end of the sample collection, a functional, balanced ecological equi-
librium had not been achieved. This implies a long span of gut microbiota
development under a compromised host immune system. We also addressed
the major challenges and limitations to the metagenomic analysis, many of
which came from the fact that the recipient samples contained extremely low
levels of DNA of the targeted gut microbial community (low-biomass). These
samples are susceptible to both host and laboratory contamination, and tend
to represent the metagenome only partially. Despite the computational pre-
cautions, this likely has led to the distortion of microbial profiles, hindered
the feasibility of other regular microbial analyses, potentially narrowing the
scope and undermining the credibility of the taxonomic, functional, and eco-
logical interpretations of the dataset. Altogether, we provided a detailed
description of the metagenomic makeup of gut microbiota inhabiting a chal-
lenging and unique physiological environment. We also o↵ered insights into
the metabolic landscape, linking it to the hidden ecological processes at play.
These findings point to some promising new directions for further research
of the ImMiGeNe consortium. Additionally, this work highlights the uncon-
ventionality of our samples and the importance of careful sample preparation
and data generation.
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Chapter 4

Designing primers for diverse
flagellins in human gut

Di↵erent types of flagellins exhibit distinct levels of immunogenicity. One
possible way to obtain various flagellins is to extract their genes by PCR,
clone and express them in vivo. Bacterial flagellins make up an immensely
diverse family. A quick browse through UniProt database (https://www.
uniprot.org/) shows 47,568 entries, at the time of the chapter being writ-
ten. Generally speaking, structurally, the two terminal domains of flagellins,
D0 and D1, form a helical core and are relatively conserved. They are con-
nected by a hypervariable region consisting of a few other domains. The
amplification must be able to cover all the domains in order to have a fully
functional protein in the end. The challenging tasks are (1) to compile a
coherent list of flagellin genes; (2) to design a reasonable set of primers that
could e�ciently amplify as many of the genes as possible. We use FliC pro-
teins and their encoding genes as a start, but the workflow could also serve
as a protocol in general for a lab design problem of this kind.

4.1 The primer design problems

For almost four decades, PCR has been widely used to amplify specific regions
of nucleic acids from meager to desirable amounts. PCR could fulfill the goal
only if the primers are properly designed. The configuration of the primer
design problem depends on what the PCR is applied to. It could be to detect
certain genetic elements or variations, identify gene expression or epigenetic
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changes, prepare transcripts for gene cloning and etc. The goal may be
extracting one specific sequence from the sample, retrieving a few loci from
one genome at the same time, or capturing a family of genes simultaneously
from some DNA mixture. In this chapter, we mainly focus on the primer
design problems that deal with genetic variations. We first have a look at
the computational problems, reviewing a few variants roughly in the order
of their complexity.

4.1.1 Basic primer design problem

We shall first clarify a few terms to avoid confusion. A target site is the region
on the template that we want the PCR product to flank. The amplification
site is the region that is actually amplified into PCR products. The two are
not exactly the same. The amplification site shall surround the target site.
The annealing site is the region that anneals to the primer.

A DNA segment can be amplified with a pair of primers that have com-
plementary sequences to its two ends. But sequence complementarity itself
does not ensure the success of PCR. Usually, more factors shall be carefully
considered too. We list a few most common aspects as follows:

1. specificity of the primers. It is crucial to make sure the primers have lit-
tle chance to bind to anything else but the target DNA. This means the
annealing sites shall be found only at the target region. To ensure this,
first, primer lengths shall be su�cient to avoid random occurrence. Con-
ventionally, they are 18 to 30 bp in length. Second, ideally, the annealing
sites shall have no other copies at unintended genomic locations.

2. melting temperature of the primers (Tm). This is the temperature at
which half of the primers would bind to the template. The Tm di↵erence
between the forward and reverse primers should also be within 5 °C;

3. the GC content of the primers, which not only a↵ects Tm, but also decides
the stability of the primer during its synthesis;

4. avoiding the formation of primer-dimers, in which the forward and reverse
primers form a dimer, and the formation of a hairpin, in which one primer
with palindrome subsequences forms a hairpin secondary structure on its
own.
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5. GC clamps, which are the presence of guanine (G) or cytosine (C) bases
within the last 5 bases of the 3’ end of a primer. This is because a GC
clamp enhances primer binding specificity.

Designing eligible primer pairs for one specific DNA template is what we
consider a basic type of primer design problem. The template sequence is
given. Usually, the goal is to have PCR products containing certain target
regions. The product sizes are limited to not exceed the template length, nor
what was allowed by the sequencing platform to be used next.

Such a problem can be solved in two steps: first, come up with candidate
pairs of primers, and second, check the eligibility of the candidate primers.
In the first step, exhaustively find out all possible amplification sites, then
for each of them, come up with a pair of oligos that are complementary to
its two ends. They are candidate forward and reverse primer sequences. In
the second step, candidates that do not fit the constraints are eliminated.
Those that are closer to the optimum are prioritized. The constraints and
optimums are usually set in light of the aforementioned aspects. For instance,
the minimum and maximum product sizes are constraints, and at the same
time, sizes within a certain range could be the most ideal. The same goes
for Tm.

One widely used toolkit that addresses this problem is Primer3[207]. It
contains a group of programs that are capable of handling a variety of PCR
primer design scenarios, such as proposing primers for amplifying a DNA seg-
ment, evaluating given primers for given templates, or designing hybridiza-
tion probes. Specific needs of the application case are described in the form
of constraints and optimums for the PCR reaction, and the algorithm looks
for suitable solutions by obeying the constraints and optimizing the objective
functions. We adapted an example in the Primer3 manual to demonstrate
a use case (Table 4.1). We input a 108bp template, asking the program to
design a primer pair that is able to flank a CA repeat, along with other spec-
ified parameters. The program outputs a primer pair for amplifying an 88bp
segment, with characteristics such as Tm and GC content just as specified.
(See Table 4.2, original program output in Supplementary Fig A.3.)

This basic form of the problem serves as the building bricks of some
more complex questions. For instance, primers for a few tens or hundreds
of template sequences can be designed by repeatedly using the method that
designs primers for a single template. However, with a large number of
template sequences, this clearly can soon become fastidious. Besides, it o↵ers
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Table 4.1: An example of picking PCR primers for amplifying a target se-
quence using Primer3.

Content to set Primer3 Boulder-IO line

Basic settings
Template sequence SEQUENCE TEMPLATE=GTAGTCAGTAGACNATG

ACNACTGACGATGCAGACNACACAACACACACAGC
ACACAGGTATTAGTGGGCCATTCGATCCCGACCCA
AATCGATAGCTACGATGACG

Target site located at the 37th base with
a length of 21

SEQUENCE TARGET=37,21

Pick left and right primers, not internal
primers

PRIMER PICK LEFT PRIMER=1
PRIMER PICK INTERNAL OLIGO=0
PRIMER PICK RIGHT PRIMER=1

Design a primer pair for sequence detec-
tion (not for other purposes like evaluat-
ing primers)

PRIMER TASK=generic

Constraints
Minimum primer size PRIMER MIN SIZE=15

Maximum primer size PRIMER MAX SIZE=21

PCR product size range PRIMER PRODUCT SIZE RANGE= 75-100

Maximum Tm of the primers PRIMER MAX TM=45.0

Minimum Tm of the primers PRIMER MIN TM=75.0

Maximum Tm di↵erence between forward
and reverse primers

PRIMER PAIR MAX DIFF TM=5.0

Number of consecutive Gs and Cs at the
3’ end of both forward and reverse primers
(not required)

PRIMER GC CLAMP=0

Allowed Ns in primer PRIMER MAX NS ACCEPTED=1

Optimums
Optimal primer length PRIMER OPT SIZE=18

Optimal GC content PRIMER OPT GC PERCENT=50.0

Optimal Tm PRIMER OPT TM=60.0
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Table 4.2: Primer3 output for the example input in Table 4.1. The primer
pair is selected from 4,124 candidates.

1 GTAGTCAGTAGACNATGACNACTGACGATGCAGACNACACACACACACACAGCACACAGG
61 TATTAGTGGGCCATTCGATCCCGACCCAAATCGATAGCTACGATGACG
⇤ annealing sites in blue; target site in brown. The numbers are base indices.

Sequence Start length Tm GC%
Forward ATGACNACTGACGAT 15 18 51.58 47.06
Reverse CGTAGCTATCGATTTG 102 20 55.85 50.00

no condensation of the number of primers yielded. If there is a lack of
consensus between the proposed primers for each sequence, the number of
primers needed can grow unrealistic for experiment implementations. In
the case of a large number of target sequences, the top priority will be to
e�ciently come up with a set of primers that is as concise as possible to cover
as many targets as possible.

4.1.2 Primer degeneracy

Incorporating positional ambiguity within the primers proves advantageous
in e↵ectively increasing primer coverage. This approach is especially applica-
ble in scenarios where template sequences are closely related and thus have
variations at only a few sites while the rest are identical. Another use case
is when the target is a protein, and only its amino acid (AA) sequences are
known. To design the primer, the encoding gene is deduced from all the
possible combinations of the codons of each AA, which will result in a few
sites with multiple possible bases. The uncertain sites can be designed with
ambiguous bases to cover all possibilities.

A primer is degenerate if some of its positions are made of a mixture
of possible bases. Such primer represents the whole set of all possible base
combinations. Degenerate primers are as commercially available as non-
degenerate ones. As more wobble positions are allowed, more targets could
be covered by the primer, but at the same time, the specificity of the primer
decreases. Highly degenerate primers would lead to a lot of o↵-target se-
quence patterns that are not present in the input sequence set and as a
result, create unwanted amplicons. Therefore, the tradeo↵ is between the
degeneracy of primers and the target coverage.

The degeneracy of a primer for a set of targets is calculated as the sequence
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product of the number of possible bases at every position. Or precisely,
for a degenerate primer p, let pi be the set of all possible bases at the ith

position in p (p = p1p2 . . . pk). The degeneracy d of p is
kQ

i=1
|pi|. For instance,

p = {A, T}{C}{A, T,G} has degeneracy of 6. A primer is considered to be
able to cover a target if the target sequence is one of its combinations.

Introducing degeneracy to the primers could be particularly useful when
dealing with multiple template sequences, although it does add to the com-
plexity of the computational problem. In the following context, we sort the
primer design problem for a set of templates into two types, based on whether
the primers are degenerate or not.

4.1.3 Classic non-degenerate primer design for multi-
ple template sequences

The goal is to pick a minimum set of primers for a given set of target se-
quences. This problem can be applied to studies of a gene family of interest.
Proper primer design based on a few known members of a gene family can
lead to the discovery of undocumented novel genes. In this case, although
designing a distinct pair of primers for every given target sequence can be
carried out as demonstrated in Section 4.1.1, it will likely end in a large
number of primers. Moreover, the high specificity of the primers usually
hinders the discovery of undocumented genes. Therefore, we instead seek a
method to reduce the candidate primers to a succinct set that is able to take
advantage of the sequence similarity and capture as many related sequences
as possible.

A few notions are di↵erent in this context compared to the basic primer
design problem. First, the template sequences are reduced to the regions
where the genes occur, and the rest of the target sequences are ignored.
Second, forward and reverse primers are no longer designed simultaneously.
Here, one end is processed at a time, and the algorithm is repeated for the
other end.

This is an NP-complete, decision problem[208, 209] that could come in
a variety of forms. For better understanding, we first introduce a classic
variant that addresses the goal of gene detection, which means the primers
only need to capture the distinction of the templates even if the resulting
product only contains a partial gene sequence.
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In plain words, the problem is to minimize the number of non-degenerate
primers required to amplify a set of DNA sequences. To describe it mathe-
matically, a DNA sequence is a string. For a set of template sequences, a set
of primers is a cover for the templates if it allows all targets to be amplified.
The lengths of the primers do not have to be uniform in practice, but we set
a specified length for all primers for the sake of simplicity. In this way, the
basic form of the problem can be formulated mathematically as follows[208]:

(Non-degenerate) optimal primer cover problem (OPC). Given a set
of n strings S = {s1, s2, ...sn} over alphabet ⌃ = {A, T,G,C}, integers k,
find a minimum set Pnd of strings of length k that covers S.

This could be generalized to a set cover problem[208], a classic com-
binatorial problem (See Supplementary A.1.1), which is proven to be NP-
complete[210]. As described in [208], the OPC problem could be deemed
as a special case of the set cover problem, and therefore is NP-complete
as well. As the latter is proven to be NP-complete[210], OPC problem is
also NP-complete. But there are a few established heuristics for this classic
combinatorial problem that can be adopted to solve OPC problem[208, 211].

4.1.4 Classic degenerate primer design for multiple tem-
plate sequences

When the template sequences are not in a broad consensus, degeneracy can be
introduced to primers to increase the coverage. Similar to its non-degenerate
counterpart, in this problem, the forward and reverse primers are designed
separately. The objective is to maximize the coverage among targets while
minimizing the primer degeneracy. This is crucial as higher degeneracy in-
creases the likelihood of amplifying o↵-target regions.

The very basic form of the degenerate primer design problem is, given a
set of templates, design a primer with a defined length and degeneracy of
no more than a threshold that could amplify as many templates as possible.
Mathematically, it is:

Degenerate primer design problem (DPD). Given a set of n strings
S = {s1, s2, ...sn} over alphabet ⌃ = {A, T,G,C}, integers k and d, come
up with a degenerate primer pd of length k and degeneracy at most d that
maximizes the number of covered strings c in S.

95



To simplify the problem, we assume that the correspondent locations of the
primer have already been extracted from each template. In this way, the
problem is reduced to finding a consensus string for a list of strings. The
strings in S are assumed to be of the same length as the primer. Locating
in each template string the substring that matches the primer string is not
included in this definition. In reality, it is fulfilled by picking a gap-free
window as the primer annealing region from the multiple sequence alignment
(MSA) of templates.

The primer length, k, is always bounded (to 18-30bp, for instance). To
come up with a solution, we also bound the degeneracy d to an upper limit
while trying to optimize the coverage c. Note that it is impractical the other
way around, seeking a minimal d needed for achieving full coverage, as in
most real-world cases, the resultant d would be too high to be practical.

DPD problem alone is NP-complete. Linhart and Shamir, authors of
HYDEN, proved so by reduction from the clique decision problem[209], which
is another classic complexity problem[212]. The detailed explanations can be
found in Supplementary A.1.2.

A few heuristics can be used for the problem. Two example heuristics are
contraction and expansion[209]. They both make approximations by turning
the coverage maximization problem into a mismatch minimization problem,
that is, to minimize the number of sequences that the primer fails to cover.
The first step is to calculate the base distribution matrix from a block of
MSA. The matrix takes note of the counts of A, T, G, and C in each column
of the MSA. Then we flatten the matrix into an array and sort it by the base
counts. Next, for contraction, we start with a primer of full degeneracy, i.e.,
a primer that encompasses all possible bases at each column. This primer
covers all the sequences in the MSA, but its degeneracy is usually higher than
the required upper limit. If it is the case, we remove a base of the smallest
count because they would cost the least coverage loss for the primer. Then
we recalculate the degeneracy and repeat this step until the degeneracy meets
the requirement.

Expansion algorithm works the other way around. We start with a primer
of 0 or very low degeneracy, so the starting point meets the degeneracy
requirement, but at the same time, in most cases, leaves quite a few input
sequences not covered by the primer. Then in order to increase the coverage,
we gradually add alternative bases to the primer until the degeneracy rises
to the upper limit.

For our own use case, we have implemented a heuristic based on the con-
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traction algorithm, whose details are demonstrated later on in Section 4.5.2.

4.1.5 Degenerate primer design problem with mismatches

More intricate variants of the DPD problem can be built by including ad-
ditional factors. We will first introduce the variant involving mismatches
between the primer and template.

In the previous discussion, a degenerate primer is considered to be able
to cover a template sequence only when one of its combinations is an exact
match to the template. In reality, a primer could still anneal with a few
mismatching positions involved, especially when they are closer to the 5’ ends.
We add the parameter e as the maximum number of mismatches allowed for
the primer to anneal to a template, and a degenerate primer covers a template
when at least one of its combinations matches the template with at most e
mismatches. This problem is inspired by the MD-EDPD problem in [209].

DPD with mismatches. Given a set of n strings S = {s1, s2, ...sn} over
alphabet ⌃ = {A, T,G,C}, integers k, d and e, come up with a degenerate
primer pd of length k and degeneracy at most d that maximizes the number
of covered strings c in S with up to e mismatches.

4.1.6 Degenerate primer set design problem

The basic DPD seeks to find one primer for a set of templates. We extend the
objective to finding a limited number of primers. This could be generalized to
the following two DPD variants that aim to find a set of degenerate primers,
which are similar to the MP-DPD problem in [209].

Minimum primer set size DPD Given a set of n strings S = {s1, s2, ...sn}
over alphabet ⌃ = {A, T,G,C}, integers k and d, find a minimum set Pd of
strings of length k that covers all of S, with degeneracy up to d.

Maximum primer set coverage DPD. Given a set of n strings S = {s1,
s2, ...sn} over alphabet ⌃ = {A, T,G,C}, integers k and d, find a set Pd of up
to m strings, each string of length k, that maximizes the number of covered
strings c in S, with degeneracy up to d.

The first looks for optimization of the primer set size that achieves full
coverage, and the second looks for optimization of the coverage while con-
straining the size of the primer set.
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4.2 Software that designs primers for multi-
ple template sequences

There are a variety of primer design programs, both open-source and com-
mercial, motivated by the evolving specialization of PCR applications. As
illustrated in Section 4.1.1, designing primers for one or a handful of tem-
plate sequences is, in general, a basic task that can be solved with a quick,
straightforward use of Primer3. Many online tools or simple programs also
serve this goal. But with a larger number of templates, some di↵erent compu-
tational concerns arise. Theoretically, Primer3 is an all-encompassing toolkit
that could be tailored to address such new concerns. However, to customize
it properly, it takes much meticulous manual configuration and parameter
manipulation[213].

We will briefly discuss some more e�cient and automated methods. We
aim to target the application to large gene families and therefore focus on
degenerate primer designs.

4.2.1 Computational framework to design a set of de-
generate primer

We outline a 3-step general framework as follows, including not only the
aforementioned DPD problems but also certain necessary pre- and post-
processing:

1. Compute MSA of the template sequences. As mentioned earlier, the DPD
problem operates on a window of MSA. The windows shall be some locally
aligned regions of the template sequences that have zero or very few gaps
involved. In this step, we first make MSA for the template sequences, then
locate the regions where it is suitable for the forward and reverse primers
to be designed at, and pass them on to the next step.

2. Solve the DPD problems. In this step, for each window given by the last
step, solve the DPD problem and output a primer or a primer set, which
will be treated as the candidate degenerate primers for the next step. Note
that the forward and reverse primers are designed separately here.

3. Pair up the forward and reverse primers and check their eligibility. First,
the separately designed two ends shall be combined as a pair. Next, calcu-
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late their chemical properties as discussed in Section 4.1.1, and filter out
those that fail to satisfy the reaction conditions.

4.2.2 HYDEN: a computer program for degenerate primer
design

We will use HYDEN as an example for the workflow above. HYDEN is a
software for degenerate primer designs. It could handle hundreds or thou-
sands of DNA sequences, with extremely high degeneracy upper limit (e.g.,
107). Its algorithm consists of 3 major steps, written in C++: (1) Find
ungapped, conserved windows in the alignment. The conservation of a win-
dow is quantified with an entropy score. (2) Solve the DPD problem using
adapted contraction and expansion algorithms. (See Section 4.1.4) (3) Per-
form a greedy hill-climbing to improve the fitness of the primer solution,
then output a primer that gives the highest coverage. The algorithm solves
one DPD problem case at a time, but after designing one primer pair, the
procedure could be repeated on the target sequences that were not covered
by the first solution. In the end, the program is able to come up with a set
of primers that covers the target sequence set well[209].

4.2.3 Other available software for degenerate primer
design

Although a variety of primer design tools has been released since PCR tech-
nology emerged in the 1980s, as it has become a routine task in biological lab-
oratories, primer design has seen fewer software implementations and updates
recently. Here we will briefly name a few more software besides HYDEN that
are capable of designing degenerate primers for multiple target sequences, au-
tomated, free, non-commercial, and still runnable as of today. PriFi takes
the alignments of a group of phylogenetically related sequences, finds highly
conserved regions, and proposes primer pairs which are scored based on the
fitness of their properties. It is available as a web server[214]. GeneFisher is
another web-based tool that proposes degenerate primers from the MSA of
input sequences. It could take multiple sequences and perform the alignment
itself. Besides DNA sequences, GeneFisher also works on protein sequences,
for which it will perform a back-translation to DNA sequences. GeneFisher
was released in 1998 and had a few upgrades over the next decade to improve
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its user-friendliness[215]. A more recent tool is Gemi, which comes with a
graphic user interface. It works with MSA as input and also proposes primers
with a report about their chemical properties[216]. We noticed a dearth of
such programs in recent years, except for a few niche products that are made
for specific application cases.

4.3 Designing primers for bacterial flagellin
genes

In the ImMiGeNe project, our goal was to characterize microbial flagellins
in the human gut comprehensively. To achieve this, we encountered the
challenge of designing primers that would enable us to extract the target
genes from stool samples accurately.

4.3.1 Amplifying a set of genes from environmental
samples

Amplifying a group of related genes from mixed-population samples such as
environmental samples (eDNA) is not a new nor recent practice. Since the
beginning of the NGS era, researchers have been profiling taxonomic groups
in the samples by amplifying and sequencing phylogenetic marker genes. Am-
plicon sequencing targeting 16S rRNA genes for prokaryotes and 18S rRNA
genes or ITS regions for fungi are widely used methods to investigate micro-
bial diversity. In animal studies, mitochondrial cytochrome c oxidase subunit
I gene (COI or cox-1 ) is used as the genetic barcode[217]. But note that an
important factor that ensures the success with marker genes is that they have
certain well-conserved regions so that they could be covered with a handful of
universal primers. In fact, many other widespread gene families, despite con-
servation in their function, may display greater divergence in the sequences,
which places a major challenge for designing universal primers or probes.
And being environmental samples is already a factor contributing to prob-
lem complexity, as it means no prior knowledge about the source genomes of
target genes. As a result, studies that work with eDNA tend to work with a
set of target genes whose diversity is at a manageable level. A good example
of non-marker gene is that Razavi and colleagues amplified class I integron
gene cassettes from river sediments, with only 3 primer pairs[218]. And quite
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a few studies that involve large, divergent gene families choose to limit the
target to a subset, for instance, members from certain taxonomic groups.

4.3.2 Scope of the project

The purpose of this project is to design a set of primers that are able to
amplify at least a great majority of bacterial fliC genes in the metagenomic
samples. The ImMiGeNe project involves human stool samples, which were
collected for the characterization of the gut microbiome. As cloned genes are
expected to be further expressed into fully functioning proteins, the ampli-
cons must include all regions that encode all essential domains of the FliC
proteins.

Studies involving amplifying fliC genes mostly use a single species or
strain as the DNA material, and their primers are designed for a single bac-
terial genome. To our knowledge, no universal primers targeting the entirety
of the flagellin diversity have been publicly available. Few studies have tack-
led the complexity of environmental samples and the whole fliC gene family
at the same time. In fact, very rarely has a study reported the e↵ort of
simultaneously capturing a large group of divergent genes from eDNA.

A few key details shall be highlighted. Firstly, for the FliC protein prod-
uct to contain all essential domains, the primer pair must be designed to
include start and stop codons. Therefore there is no freedom to consider
other conservative regions but the two ends of the genes. Secondly, the goal
of our work is to design only the annealing part of the primer. A full-length
primer has its very 3’ end to anneal to the target sequence, and the 5’ tail
could contain additional sequences such as restriction sites, linker sequences,
etc. The design of the 5’ tail is not included in this work. The primers in this
chapter generally refer to the segments that anneal to the target sequences.
Despite their availability, the aforementioned degenerate primer design soft-
ware will not be adopted for our project, for a few reasons. Most prominently,
it is due to the sheer volume of our target sequence set, as we will explain in
the next section (see Section 4.4). Most of these tools were designed for the
volume of sequencing data a decade ago, and would not expect as many as
tens of thousands of target sequences. Another key reason is that a common
core feature of these programs is the selection of conservative regions, which
is unnecessary for our project, as we have fixed primer sites. Finally, we will
not make a real MSA for the sequences, which we will also explain later (see
Section 4.4). Therefore, we could not o↵er the input those programs require.

101



4.4 Collection of the target fliC genes

4.4.1 Acquiring FliC protein and gene sequences from
AnnoTree database

To analyze the diversity of FliCs and design primers, both their protein and
encoding gene sequences are needed. Popular protein databases such as NCBI
(https://www.ncbi.nlm.nih.gov/), UniProt (https://www.uniprot.org/),
Pfam (https://pfam.xfam.org/), TigrFam (http://tigrfams.jcvi.org)
and InterPro (http://www.ebi.ac.uk/interpro) could be used to navigate
reported flagellins by their similarity. But despite their crosslinks to nu-
cleotide databases, they are usually protein-oriented, and tracing back pro-
teins to their source genomes can be challenging. Therefore, we opted for
an alternative approach using AnnoTree, which allows us to obtain CDS and
their corresponding proteins. AnnoTree leverages prokaryotic genomes from
GTDB to generate a functionally-annotated, interactive tree of life for bac-
teria and archaea[219]. It ensures a standardized and consistent dataset for
our analysis.

We used KEGG ortholog (KO) ID K02406 to search for FliC, with percent
identity 70%, E-value 1e�5, percent subject alignment 70%, and percent
query alignment 70%. This yields 18,667 hits, with their protein sequences,
source genome, and taxonomic information recorded. AnnoTree visualization
of their distribution on the bacterial tree of life is shown in Figure 4.1(a).
The detailed taxonomic statistics can be found in Supplementary Table A.8.
They are the basis for all the subsequent sequence analyses.

4.4.2 Sequence diversity analysis

First, we evaluate the sequence variability of the targets. Out of the 18,667
hits, 392 are duplicates. Overall, the hits are from 9379 species and 55 phyla
(su�xed names are counted independently, not as one). Over 11,000 hits
come from Proteobacteria, and over 3,000 are from Firmicutes (including Fir-
micutes, Firmicutes A, Firmicutes B, . . . , Firmicutes G). Other main clades
are Spirochaetota, Campylobacterota, and Actinobacteriota. (See Figure 4.1
(a) and (b)).

The lengths of the flagellin protein sequences range from below 100 to
above 1000 AA, 349 AA on average (see Figure 4.1 (c)). Following the primer
length conventions, we set to design primers of lengths between 18 and 30bp.
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Figure 4.1: Summary of AnnoTree FliC (KO K02406) hits. (a) AnnoTree
visualization of the hits in the bacterial phylogenetic tree. The tree uses
GTDB taxonomy[59]. Tree leaves and labels are at the class and phylum
levels, respectively. Clades in blue are hits. (b) Taxonomic summary of the
hits at the class level. (c) Flagellin protein sequence length distribution.
(d) and (e) conservation and gap bar charts of each position in the first 12
residues in the HMM alignment of the N-terminus and the last 12 in that of
the C-terminus. X-axis directions are both from N- to C- terminus.
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Our focus is on the two ends, N- and C- termini, while the variability of
the sequences in between is irrelevant. To check the conservation of the
AA residues, we aligned the two terminal HMM profiles to the AnnoTree
flagellin sequences respectively (Pfam Flagellin N and Flagellin C, PF00769
and PF00700), using hmmsearch from HMMER [220] package (E-value 1e�5,
other parameters as default). With the alignment, we capture the location
of terminal domains in each protein sequence and, correspondently, in each
nucleotide sequence. The forward primer will be designed at the start of the
N-terminal codons and the reverse at the end of C-terminal codons. Although
the primer locations are anchored, their lengths could still be adjusted.

The terminal domain alignments are low in gaps, which is a positive
factor for primer design. But among the very first residues at N-terminus
and the very last at C-terminus, many sites are not highly conserved (see
Figure 4.1(d) and (e)). The nucleotides at those sites show even higher
sequence diversity (see Figure 4.2 (a) and (b)). On the DNA template, at
both ends, especially 3’, many sites have below 60% conservation.

4.5 Primer design for target fliC genes

4.5.1 Non-degenerate primer design

To design primers for the targets, we first formulate an OPC problem (see
Section 4.1.3), as this could quickly give us an impression about the com-
putational scale. The question in a biological context is, for a given set of
target DNA sequences, design a minimum set of non-degenerate primer pairs
that cover them all. We add mismatches e as a parameter. That is, for a
primer to anneal to the target, it could have at most e mismatches to the
target. Compared to the classic OPC illustrated in Section 4.1.3 (or [208]),
our problem is much simplified because our primer site is strictly limited.
There is no need to decide the locations of the match. We simply approxi-
mated our problem as a clustering problem. For the forward primer design,
we take the k bases from the 5’ end of the N-terminal nucleotide MSA, and
for the reverse, from the 3’ end of that of the C-terminus. Note that in real-
ity, mismatch location matters. It is more problematic when it happens near
3’ end. But to simplify, we will leave out this factor.

To cluster these fragments of length k, we used CD-HIT-est[221], taking
them as paired-end at a sequence identity of (k�e)/k. With k = 21 and e =
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Figure 4.2: Statistical summary of DNA templates and primer coverages. (a)
and (b) nucleotide sequence conservation rate per position, 30bp from the
start of the HMM pattern of the N-terminus and 30bp to that of the end of
the C-terminus. Both x-axes are from 5’ to 3’. (c) The number of pairs of
primers needed to cover all AnnoTree flagellins. Primers are sorted by the
number of sequences (nseq) they could cover, then counted. In other words,
an x-axis value of N means the top N primer pairs sorted by their nseq, and
its y-axis value is the total number of sequences they could cover.

3, 5643 clusters are yielded. Each cluster can be covered by a representative,
which leads to one non-degenerate primer pair that could cover the whole
cluster. This gives a solution to the problem that requires 5643 pairs of
primers to cover all targets.

Here, the trade-o↵ is between the number of primers and that of cov-
ered targets. Alternatively, and more practically, we seek for a minimum
primer set that achieves certain coverage. As shown in Figure 4.2 (c), 500
primer pairs could selectively cover more than half of the targets. But as the
other half of targets exist only in small clusters or exist only as a singleton,
they largely extended Pnd. We could not expect to cover a vast majority of
the input target sequences without employing thousands of non-degenerate
primers.
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4.5.2 Degenerate primer design

As more than five thousand primers are far from being feasible, we now ex-
plore the possibility of using degenerate primers. The problem is formulated
as a DPD problem (see Section 4.1.4), and more precisely, a combination of
the DPD problem with mismatches (see Section 4.1.5, and minimum primer
set size DPD (see Section 4.1.6). We define it as, for a given set of target
DNA sequences, finding a minimum set of primers with a fixed length, an
upper limit for their degeneracy, and an upper limit for their mismatches to
the targets. Or mathematically:

Minimum primer set design with mismatches. Given a set of n strings
S = {s1, s2, ...sn} over alphabet ⌃ = {A, T,G,C}, integers k, d and e, find a
minimum set Pd of strings of length k that covers all of S, with degeneracy
up to d, and mismatches up to e.

As explained in Section 4.1.4, the forward and reverse sequence sets were
processed separately and combined only at the end. We took a few approxi-
mation methods in order to find a solution. First, we took the same clustering
result in Section 4.5.2 to remove the mismatch factor, so we have a set of
5643 representative sequences for each end, which we set S as. Next, We
took two steps to approximate the set design problem: (1) turning it into
a collection of subproblems of basic DPD; (2) using heuristics to solve the
basic DPD.

We partitioned the input string set into subgroups based on sequence
similarity. Then, for each subgroup, the goal is to design one degenerate
primer, given its length k and degeneracy upper limit d, which is a basic
DPD problem by nature. Since CD-HIT-est only clusters at a high sequence
identity, we used a�nity propagation clustering[222] with a pairwise ham-
ming distance matrix of S, and retrieved 409 and 393 clusters, respectively
for 5’ and 3’ ends. Note that this only partitions the input data, but gives
no guarantee that an ideal degenerate primer must be found for each clus-
ter. The clustering manifests low similarity between 3’-end sequences, as the
convergence is more di�cult to achieve at the same damping factor.

For a cluster Si ✓ S, we use the contraction algorithm to find a de-
generate primer. This is a simple approximation method similar to the H-
CONTRACTION algorithm used by HYDEN [209]. Let matrix of D be the
base distribution for Si, D(char, loc) denotes the number of character char
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at the position loc for the MSA of Si. An example is shown below, in which
D(G, 2) = 2 means there are 2 Gs in Column 2 of the alignment.

(a) Sequence strings (Si)

A T C C
A G G C
T G T G

(b) D

1 2 3 4
A 2 0 0 0
T 1 1 1 0
G 0 2 1 1
C 0 0 1 2

The algorithm first makes a primer that encompass all possible base com-
binations, and therefore with full degeneracy. Then it remove low-frequency
bases one by one, until the degeneracy is reduced to or below required level
d. The pseudocode is shown in Algorithm 1.

We used this approach to find an optimal primer for each cluster and
computed its coverage within the cluster. The result shows that a good
trade-o↵ between primer degeneracy and sequence coverage is di�cult to
achieve due to the high sequence diversity. For our metagenomic samples,
we do not expect high degeneracy d could achieve great specificity. Therefore,
we computed only for degeneracy no more than 105. Setting d to 128 and
k as small as 18, the average coverage of primer is only 0.62 and 0.50 for 5’
and 3’ ends, even with 1 more mismatch allowed between the primer and the
target (Figure 4.3). Even with d as high as 2048, the average coverage of the
primers is still below 0.8. This means, even with a few hundred degenerate
primers, the full landscape of bacterial flagellin diversity is unlikely to be well
captured. Furthermore, pairing up the forward and reverse primers ended in
4156 unique pairs. This is unsurprising, as similarity in one terminus does not
indicate that in the other. As a snippet of the resultant primers, Table 4.4
lists those that cover a subgroup of more than 100 targets at coverage above
0.8.

Surely our approximation method could be further optimized, but the
chance of significant improvement is slim. Practically, it is di�cult to avoid
using a large number of primers to counter the e↵ect of high sequence di-
versity without compromising coverage or annealing specificity. Our method
divides the input sequences into small similarity groups of less than 50 se-
quences and assigns one primer for each group. But even with a highly
elevated level of degeneracy, the number of primers needed in this scenario is
intensive to be implemented in regular wet lab experiments, and the coverage
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is far from satisfactory. Until this point, it is clear that if we target full-range
bacterial flagellins for amplification, it is very unlikely we could find a realis-
tic balance between the amplification specificity, number of primers needed,
and target coverage.

Algorithm 1 Contraction

Flatten D as an array A

A = {(char1, loc1), (char2, loc2), . . . , (chark, lock)}
sort A, so that for Ai 2 A, D(A1) < D(A2) < . . . < D(Ak))
p = p1p2 . . . pk

for loc  1 to k do
pi  ;
for char 2 ⌃ do

if D(char, loc) > 0 then
add char to pi . initialize p at full degeneracy

dp  CalculateDegeneracy(p)
while dp > d do

(char, loc)  pop A1 . update A

if |ploc| > 1 then . no action if there is only 1 base left
remove char from ploc . update p

dp  CalculateDegeneracy(p)
return p

Table 4.4: Universal forward and reverse primers designed for all bacterial
fliC genes. The primers are degenerate, with ambiguous bases following
the IUPAC nucleotide code. Every primer listed here represents a subgroup
of more than 100 targets and its coverage of said group is above 0.8. d:
degeneracy; c: coverage; n:size of the subgroup. The forward and reverse
sequences are not presented as pairs because most pairs are only able to
represent a very small (n < 10) subgroup. Unconventional bases: M: A or
C; R: A or G; W: A or T; S: C or G; Y: C or T; K: G or T; V: A, C or G;
H: A, C or T; D: A, G or T; B: C, G or T; N: A, C, G or T.

Forward primer d c n Forward primer d c n
ATTAACMACAAYATYKCD 48 0.89 199 GTAAAYACAAAYTAHRGB 72 0.85 40
ATMAATCAYAAYATGRRH 96 0.95 186 ATYAAYWCCAAYACWTYA 64 0.89 40
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ATYAATACHAACRSYCTS 96 0.93 177 ATTAAYRCCAAYMYKGCY 128 0.85 40
ATYAATCACAAYVYKAGY 96 0.92 172 ATTWMHCACAATMTTART 48 0.9 38
ATMAAYCACAACATMAVY 48 0.91 166 ATMAACACYAAYKYGKSC 128 0.87 38
ATYAACCAGAACATSRNS 64 0.92 163 GTSMACACSAATCAGSYN 128 0.83 37
ATCAAYAMCAACSWSTCS 64 0.81 150 ATCMMGMMCAACRTBGAG 96 0.82 33
GTAAATACHAACGTBDCN 108 0.86 145 ATTAACACDAACDTMSCS 72 0.82 32
ATCAAYMACAACMTSARY 64 0.89 134 ATHAATCATAACWTRRRY 96 0.86 31
RTMAAYACCAACGTBTCD 72 0.84 131 ATYKYGACSAAYGTGKCK 128 0.89 30
ATCAATMAYAACHWDATG 72 0.86 129 ATTCTKACRAACTCNRGY 64 0.86 28
ATCAACWCCAAYRTYMAR 64 0.81 123 GTVAAYACCAATGTSRGY 48 0.92 27
GTYAAYACAAATGYNARY 128 0.89 116 ATYAACKYCAAYKCCRGC 64 0.89 26
ATCAACACSAACKTKNMM 128 1.0 84 ATCAAYAMMAAYSTGCMR 128 0.85 26
ATCCTCACSAAYSWYGCB 96 0.9 82 ATTAWBACGAACACBBCK 108 0.85 26
GTACARCAYAATTTAWMV 48 0.81 81 GTYARCACSAAYGYGTCB 96 0.92 24
ATYAAYCACAACWTBTCN 96 0.87 75 ATTCAATCHAAYRYRGCK 96 1.0 22
GTSAACACSAACWMVGGY 96 0.85 73 ATTTCRACWAACGTDKCW 48 0.85 22
ATTAATACSAAYAWHTYM 96 0.93 70 ATCCTGACGAACNCDKCN 96 0.9 21
ATTAAYCATAAYATYYMD 96 0.82 65 ATTTAYMACAACATTBMN 96 0.89 20
ATYAAYMAYAAYAYSATG 128 0.85 64 ATTGGTACGAMTRTYWYR 64 0.83 20
ATTCARCACAACMTNKCH 96 0.88 62 GTSAACACGAAYYMWGGN 128 1.0 18
ATCAACACVAACAHNTCB 108 0.84 60 CACACTAACYMCRCMHAS 96 1.0 17
ATMAAKACRAAYGTYSCS 128 0.89 57 ATCGGAACAAAYRYRKCR 64 0.88 17
GTHAAYACTAACRTKAVC 72 0.81 54 GTCAATAVYAATCHGKCD 108 1.0 16
ATYAACACAAACGTMMHN 96 1.0 52 RTCMABACAAATAYSGGR 96 1.0 15
ATWYTKACHAACAATGGY 48 1.0 52 ATYAACACAAACACDSMR 48 0.88 14
ATTCTKACRAATWYNTCS 128 1.0 51 ATAYTWACWAAYAGVTCY 96 1.0 13
ATTAACMATAATATBAVY 36 0.86 50 RTCAACCAYAACSWVATG 48 1.0 13
GCGCTTYAYRTVYTGCGY 96 1.0 46 ATTAAYACSAATMTRHTM 96 0.88 11
ATMAATCACAATCDHWTG 36 1.0 45 AKTTYTYTAAWYCAAACT 32 1.0 11
RTCAAYACCAATAYTKCN 64 0.92 43 GTRAAYACMAACRKMGGW 128 1.0 11
Reverse primer d c n Reverse primer d c n
YAAYTGYAAHACRCYTTG 96 0.84 269 YWRAGCATAATCWRCRTC 64 0.89 39
GAGMGAVARGATRBTCTG 72 0.86 264 YARRCYNAGWACTCCCTG 128 0.86 38
RAKDGAMAGWACWCCCTG 96 0.83 255 SAGMGACAKGRCCRKCTG 64 0.92 31
NARCTKCAKSACRCCCTG 128 0.86 89 MAGWBYCAWAACACCYTG 96 1.0 26
GAGCTGSAGRAYGSYYTS 128 0.86 71 YARGCTCAKRSCRAGCTG 64 0.83 17
HAGHGATARBGCTACYTG 108 0.9 61 HARYTGTAARGCSAGYTG 96 0.86 16
YWMGGYATRATCWACGTC 64 1.0 42 RTTGCGCAGBGTGTCBGG 18 1.0 11
CAGGCKCRDCRCCGYTTG 48 0.82 40 YARYTTGAGRATHGCKTC 96 1.0 11
BACBGTRTCGTABGTSGC 108 1.0 39 TRSYTGWGAAACCATRCT 32 1.0 11
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Figure 4.3: Coverages of primers at di↵erent upper limits of primer degener-
acy, using the full set of bacterial flagellins as the target. Forward and reverse
primers are considered separately, not as a pair. Each primer is expected to
cover a cluster of similar sequences.

4.5.3 Simplifying primer design by reducing targets

The di�culties mainly come from the high sequence diversity of our targets.
One practical way is to directly shrink the targets to reduce the sequence di-
versity. This could be considered from a few aspects. First, we could remove
irrelevant targets and focus on those that could possibly occur in our envi-
ronment of interest, the human gut. Second, depending on the study’s aim
and feature, the priorities might fall into only a handful of clades. Therefore,
we turned to inspect the occurrences of all flagellins, to o↵er the biologists a
statistical roadmap to evaluate the relevance of each flagellin to their study
interest, allowing them to tailor the range of their experimental subjects.

To estimate the prevalence of the AnnoTree flagellins in the human gut,
we used a dataset produced in an earlier phase of the ImMiGeNe project
as a reference. The dataset contains shotgun sequencing data from 51 non-
blank, non-redundant gut microbiome samples of healthy participants. We
aligned each sample to the AnnoTree flagellins using DIAMOND 2.0.11 [185].
The results indicate that many of the flagellin sequences are rarely found in
the metagenomic data. 5485 flagellins has no reads aligned in any of the
samples. And if the infrequently occurred are to be excluded, 6770 has no
more than 10 hits. The total number of sequences could be reduced to 2781
when the minimum number of reads is set to 50. We further document the
phylogenomic landscape of the protein family. Figure 4.4 summarizes by
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the level of phylum the occurrence of the 2781 non-redundant flagellins that
have at least 50 hits in all samples. Overall, it shows when the amplification
target is limited to those that are likely to occur in the human gut, the target
sequence diversity could be drastically reduced to a level that is much more
feasible. Prioritizing the more prevalent ones could further condense the list
of targets. We repeated the degenerate primer design steps in Section 4.5.2
for the aforementioned 2781 sequences. CD-HIT-est clustering was skipped,
as the set here could be easily handled by a�nity propagation. The forward
and reverse template sequences ended up as 153 and 176 clusters, at the same
damping factor and preference. We computed a primer for each cluster. On
average, these primers are with degeneracy below 32 and coverage of over 0.9,
when 3 mismatches or less are allowed (Figure 4.5). A detailed summary of
all primers designed is listed in Supplementary Table A.9. It is clear that
out of all the e↵orts demonstrated above, subsetting the target is by far the
most e↵ective way to tackle the overly large sequence diversity. Since their
phylogenomic origin is tightly linked to sequence diversity, we also propose
that one could make a shortlist by picking representatives for each taxon that
occurs or is of interest.

4.6 Discussion

As a part of the ImMiGeNe project, the goal of this project is to study the
diversity of microbial flagellins, which will serve as a crucial step towards
understanding their immunogenicity. We devised and carried out a feasible
workflow to design PCR primers for capturing a comprehensive collection of
flagellins that are able to represent the diversity of the protein family. First,
a non-redundant but all-encompassing set of gene sequences was compiled.
The primer design was based on sequence analysis of the genes. The greatest
challenge was to achieve a reasonable tradeo↵ between a realistic number
of primers and good coverage over the target set. Through our e↵ort to
design PCR primers for bacterial fliC gene, we first demonstrated using An-
noTree database to obtain the genes systematically, then illustrated a series
of approximation approaches for finding an optimal middle ground for the
primer coverage tradeo↵. Although the analysis is done on fliC genes only,
the addressed issues are of generic nature, and the workflow could be applied
to other protein-encoding gene families. To design primers for obtaining a
protein family from our metagenomic microbial samples, a computational
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DEUM01000018.1 17 HF998355.1 80

DJEU01000002.1 43 NZ JAEB01000001.1 54

NZ JAEB01000001.1 56 DBDL01000087.1 12

FR899350.1 18 DEGR01000070.1 57

NZ MJID01000014.1 218 URTV01000043.1 13

NZ ACFY01000021.1 8 NZ QRHS01000079.1 1

NZ LR027880.1 3654 NC 015977.1 127

URUD01000005.1 37 NZ MJHW01000006.1 354

NZ KB822482.1 261 NZ AUJG01000003.1 86

NZ AUJG01000003.1 88 NZ FNHZ01000004.1 114

NZ FNHZ01000004.1 116 NZ JNKW01000004.1 117

NZ JNKW01000004.1 119 NZ AUJG01000003.1 87

NZ FNHZ01000004.1 115 NZ JNKW01000004.1 118

NZ AUJG01000003.1 85 NZ FNHZ01000004.1 113

NZ JNKW01000004.1 116 DJDY01000106.1 2

DJDY01000172.1 1 FR886287.1 1

FR886297.1 5 NZ QRKY01000004.1 136

NZ QRKY01000004.1 158 NC 012778.1 224

NC 012778.1 246 NZ QRVH01000104.1 3

USBB01000038.1 2 USBB01000038.1 6

URGC01000173.1 1 FONU01000019.1 38

FONU01000019.1 39 URAI01000003.1 13

URYE01000053.1 15 NZ DS996921.1 925

NZ DS996921.1 926 ONBW01000039.1 2
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ONBW01000009.1 51 OMZG01000009.1 16

OMZG01000009.1 18 ONDO01000023.1 1

ONDO01000023.1 2 NZ JNIN01000001.1 1546

NZ FMXR01000012.1 52 NZ FMXR01000012.1 53
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NZ FMTN01000008.1 50 FR895384.1 22

UQZF01000047.1 1 NZ FOJI01000004.1 136
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NZ FOGW01000011.1 75 NZ FOPE01000049.1 20
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FR889211.1 24 NZ KI535371.1 53
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DJEI01000071.1 41 DKZK01000009.1 37
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NZ FPCC01000007.1 26 NZ RAIQ01000006.1 129
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NZ GG694008.1 311
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NZ KK211383.1 260

NZ KK211383.1 261

NZ FQYW01000015.1 17

SFMH01000030.1 5
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NZ FRBC01000013.1 63
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NC 014376.1 3440

NZ LT630003.1 3138

NZ AZUI01000001.1 2649

NZ QOHO01000012.1 83

NZ OAOF01000009.1 59

NZ RJLQ01000012.1 75

NZ LT732526.1 2391

NZ QGDS01000001.1 659

NZ KQ236744.1 176

NZ KQ236744.1 181

NZ QUES01000012.1 51

DFWH01000005.1 200

NZ GG657759.1 2010

NZ GG657759.1 2013

URMK01000009.1 2

NZ CP035281.1 320

NZ FBWL01000171.1 33

NZ KB822445.1 27

NZ KB822445.1 29

NZ KE159612.1 266

NZ UWOE01000001.1 2791

NZ UWOE01000001.1 2790

URCR01000017.1 2

DGRE01000068.1 46

NZ FOIP01000001.1 2137

DENA01000036.1 127

DIWW01000011.1 238

NZ QJKD01000022.1 28

NZ UYZY01000002.1 532

NZ RKRD01000001.1 1143

DCPV01000190.1 25

DGYI01000063.1 57

DGYI01000063.1 55

DIWF01000017.1 90

DDNC01000012.1 29

DCDU01000122.1 22

DHNU01000047.1 12

NZ OEQH01000001.1 660

DDAM01000052.1 61

DLNM01000038.1 46

NZ CCFG01000005.1 9

UREO01000137.1 2

DENA01000028.1 26

DDHX01000059.1 22

NZ RQSR01000001.1 475

NZ QTTN01000014.1 17

NZ SLZD01000006.1 51

NZ AP019308.1 5228

NZ NMQW01000015.1 65

NZ JXAK01000018.1 49

NZ BIMB01000046.1 8

NZ FMTT01000017.1 88

NZ JXAL01000006.1 168

NZ AUCP01000053.1 18

NZ BILZ01000023.1 11

NZ BIMF01000022.1 76

NZ AP019400.1 5512

NZ AP019400.1 5513

NZ AP019400.1 5511

NZ CP033433.1 3372

NZ BILX01000014.1 68

NZ JNVM01000011.1 98

NZ MBTG01000022.1 76

NZ KB895412.1 605

NZ MSZX01000008.1 170

NZ JTHN01000062.1 14

NZ RHHP01000016.1 25

NZ CP011388.1 2150

NZ RHHO01000044.1 12

NZ FMUS01000019.1 39

NZ SMGQ01000012.1 293

PLWQ01000033.1 109

SKJJ01000193.1 13

MFYT01000064.1 28

LIUH01000199.1 6

DDYL01000018.1 12

DDYL01000182.1 2

NC 006177.1 2933

NZ FNBG01000019.1 2

NZ LT732548.1 710

NZ LN884298.1 88

NZ CP034346.1 5218

NZ UGSI01000002.1 711

NZ GG695979.1 21

NZ RRCN01000001.1 865

NZ KB899817.1 56

NZ SSOB01000010.1 89

LZRU01000023.1 70

NZ ALKF01000204.1 90

NZ NDGJ01000027.1 217

NZ BALG01000027.1 24

NZ BALG01000092.1 1

NZ AHKH01000002.1 96

NZ FXAZ01000003.1 447

MOXJ01000027.1 20

NZ BIMK01000005.1 211

NZ QPJW01000005.1 89

NZ CP014167.1 3426

NZ CP011114.1 4066

NZ LN909044.1 290

NZ CP009286.1 4784

NZ CBQR020000152.1 18

NZ CTEK01000023.1 15

DIWC01000063.1 108

DHDH01000047.1 1

LFRS01000099.1 7

NZ CP032760.1 1000

MIBH01000009.1 30

MIBJ01000045.1 63

PGXY01000003.1 547

DHPI01000051.1 21

SCSX01000025.1 31

NZ RQHV01000061.1 298

NZ RQHW01000047.1 365

NZ BFBA01000007.1 403

NZ BFBB01000002.1 355

NZ AHOO02000006.1 292

NZ NPDL01000003.1 253

NZ ANIJ01000006.1 233

NZ NPDZ01000013.1 63

NZ RQEP01000019.1 281

NZ AKWX02000007.1 589

DDBL01000098.1 5

RFJE01000109.1 1

SCSX01000025.1 15

NZ FTMS01000020.1 26

NZ KB891747.1 97

PXBQ01000328.1 10

NC 017098.1 1460

NC 017098.1 796

QNBL01000197.1 2

MIAN01000010.1 2

MIAY01000001.1 217

DHVU01000013.1 36

NC 015732.1 10

MIBD01000016.1 11

NZ FOKY01000005.1 2

QNBN01000006.1 19

NZ CP006694.1 1316

NZ NPDS01000008.1 168

NZ AHMT02000047.1 89

NZ RQFA01000032.1 150

NZ AHMN02000004.1 824

NZ AKWY02000031.1 139

NZ NPEF01000294.1 5

NZ NPDU01000054.1 19

NZ RQEQ01000066.1 77

NZ ANIK01000034.1 2

NZ CP015217.1 1871

NC 010602.1 1811

NZ BFAZ01000006.1 348

NZ BFBB01000002.1 628

NZ RQGD01000009.1 50

NZ BFBA01000007.1 107

MIBH01000014.1 40

NC 017243.1 392

NZ CVLB01000002.1 266

NZ CP015910.2 2316

NZ KI912407.1 22

NZ JQIU01000008.1 1521

NC 014150.1 1042

NZ CP019914.1 1876

NZ ARQI01000091.1 17

NZ JH994110.1 522

NC 019908.1 1790

HF992427.1 18

NZ SJDU01000313.1 4

DHOO01000110.1 10

NZ AP014924.1 2280

LT608333.1 491

UQGC01000008.1 60

URHE01000175.1 3

QAMY01000099.1 2

NZ AUBP01000027.1 90

NZ FORX01000007.1 44

NZ FOTO01000001.1 615

NZ AUAR01000006.1 69

NC 011769.1 246

NZ KI632512.1 297

NZ AGFG01000005.1 80

NZ FNGA01000002.1 376

PCTK01000219.1 18

PCWG01000033.1 124

QJWD01000235.1 3

QJZQ01000093.1 9

MELE01000049.1 26

NZ LWGL01000046.1 15

NZ LWGL01000046.1 17

NZ LWGL01000046.1 16

NZ QAPD01000037.1 42

NZ SOZH01000008.1 113

NZ VCBY01000001.1 2845

NZ VCBY01000001.1 2846

NZ VCBY01000001.1 2844

NZ SMNA01000004.1 10

NZ FNGC01000018.1 41

NZ SSCL01000016.1 77

NZ CP035494.1 1770

NZ QMBN01000002.1 8

NZ AUPJ01000251.1 4

NZ VCCJ01000001.1 3285

NZ FPAY01000012.1 23

NZ RJAE01000001.1 108

NZ KI914781.1 45

NZ VHIM01000005.1 218

DKLT01000120.1 10

NZ SSDQ01000098.1 12

NZ PCOY01000005.1 118

NZ MOLR01000001.1 412

NZ MRDE01000072.1 52

NZ QKSN01000001.1 337

NZ RJKS01000001.1 428

NZ LMKB01000001.1 357

NZ CP014513.1 1124

NZ RBKS01000001.1 2674

NZ FNFU01000002.1 76

NZ SOFL01000058.1 16

NZ PJJL01000071.1 181

NZ RDSR01000003.1 30

NZ QZVU01000001.1 224

NZ SMTK01000003.1 701

NZ LMMR01000005.1 124

NZ CP012677.1 3272

NZ PJIO01000002.1 45

NZ PJIN01000003.1 9

NZ PPXC01000005.1 108

NZ RWKQ01000040.1 13

NZ FUZD01000027.1 32

NZ KB895554.1 57

NC 011886.1 3008

NZ RBED01000012.1 32

NZ CP040915.1 480

NZ QKWH01000002.1 38

NZ RXOZ01000007.1 43

NZ SOAM01000001.1 596

NZ BAFE01000043.1 43

PDSI01000163.1 18

NZ SPQK01000003.1 298

NZ SPQK01000026.1 39

NZ FOND01000023.1 32

NZ QOHI01000001.1 592

NZ QOHK01000008.1 132

NZ QOHJ01000003.1 359

NZ SPQL01000002.1 472

NZ JHVO01000012.1 186

NZ RJKN01000002.1 316

NZ FOAO01000009.1 60

NZ POQT01000049.1 15

NZ SPQP01000008.1 11

NZ OBQI01000001.1 535

FNAW01000004.1 57

NZ LMNY01000003.1 627

NC 009664.2 595

NZ PVZF01000001.1 480

NC 008578.1 847

NC 021191.1 7517

NZ CP023865.1 6781

NZ RBWV01000009.1 249

NZ RBWV01000009.1 250

NZ RBWV01000009.1 255

NZ RBWV01000009.1 266

NZ JPMW01000001.1 2261

NZ MWLL01000219.1 11

NZ KB913029.1 933

NZ BBQZ01000006.1 46

NZ LMHJ01000003.1 381

NC 017955.1 980

NZ SJEX01000088.1 12

NZ BAGZ01000026.1 10

NZ BAGZ01000026.1 8

NZ LN651330.1 167

PXCI01000013.1 4

DEIU01000006.1 34

DEIU01000027.1 6

NZ CP031165.1 41

NZ PGDQ01000001.1 235

DKFP01000007.1 77

NZ SMGG01000003.1 907

PKTM01000020.1 80

PKTN01000004.1 49

NC 013943.1 497

NZ ATWF01000002.1 414

NC 013939.1 2012

NC 014758.1 705

DDHP01000010.1 40

NZ ATWF01000002.1 374

NZ ATWF01000002.1 376

NZ CP035108.1 2516

NZ CP035108.1 2518

PKTM01000015.1 173

PKTN01000013.1 4

NC 013943.1 447

DDHP01000032.1 3

NC 013939.1 2009

DKFJ01000009.1 97

BEIR01000077.1 3

NZ FNWJ01000002.1 480

NZ FNWJ01000002.1 432

VAWY01000088.1 29

VAWY01000216.1 1

SYBY01000486.1 2

SYBY01000524.1 1

NZ ATUD01000012.1 1

BEIE01000002.1 563

NC 011961.1 175

BEID01000010.1 8

NZ JQMP01000001.1 437

NC 007503.1 894

DCUX01000052.1 71

NZ LT838272.1 1572

CP012333.1 1297

MKVQ01000004.1 11

NZBC01000135.1 30

NZBC01000208.1 12

DLTS01000047.1 6

NC 013523.1 555

NZ PDJQ01000001.1 2477

NZ PDJQ01000001.1 2478

BEIF01000001.1 1449

RFFU01000110.1 1

NZ BBJU01000010.1 76

NZ UCJU01000014.1 77

NZ PGEL01000022.1 156

NZ UBRU01000012.1 72

NZ UBTF01000008.1 51

NZ LMMM01000012.1 162

NZ UCLB01000035.1 93

DFNX01000003.1 676

DLSX01000048.1 7

NZ UBNQ01000010.1 86

DEZC01000031.1 79

NZ CP030827.1 266

NZ CP039691.1 2581

NZ LMMM01000012.1 164

NZ UCLA01000005.1 194

NZ UBNQ01000010.1 84

NZ UBXM01000052.1 9

DFNX01000003.1 677

DLSX01000048.1 8

NZ UBNQ01000010.1 85

DEZC01000031.1 78

NZ CP021371.1 872

NZ SBIP01000003.1 543

NZ SBIP01000003.1 544

NZ SBIP01000003.1 545

UCJA01000006.1 95

UCJA01000006.1 96

UBWZ01000008.1 64

UBWZ01000008.1 65

UBWZ01000008.1 67

UCJA01000006.1 93

NZ SMTL01000003.1 102

NZ SMTL01000003.1 103

NZ LMNX01000001.1 757

NZ LMNX01000001.1 756

NZ SMTL01000003.1 100

QFOR01000055.1 19

QFOR01000157.1 1

NZ BAYX01000010.1 2

NZ JUHG01000014.1 511

NZ JUHG01000014.1 512

NZ PCDP01000038.1 114

NZ PCDQ01000011.1 609

NZ SCFK01000003.1 410

NZ ATTQ01000085.1 3

NZ FMTM01000006.1 72

NZ CP017241.1 4076

KZ248238.1 110

NZ FWER01000010.1 56

UBJR01000019.1 153

UBUT01000011.1 70

KZ248006.1 1328

NZ AEYF01000044.1 178

NZ ATTQ01000014.1 2

NZ CP017241.1 696

NZ FWER01000011.1 64

NZ AEYE02000004.1 121

NZ UBMU01000006.1 183

NZ FOCV01000001.1 305

NZ AKKA01000073.1 158

NZ HF536772.1 1473

NZ AHZC01000022.1 14

NZ UBZT01000004.1 92

NZ LJHS01000041.1 23

NZ AZUW01000001.1 68

DDEX01000063.1 116

NZ QNUJ01000008.1 186

NZ AZNX01000001.1 820

NZ LMJE01000001.1 1161

NZ VFYP01000001.1 586

NZ LMJE01000001.1 1162

NZ VFYP01000001.1 585

NZ KQ410736.1 100

NZ KQ410736.1 101

UBJK01000006.1 389

UEGQ01000003.1 483

NZ QJRY01000001.1 790

DDFA01000023.1 35

DDFA01000023.1 36

NZ CP039888.1 329

NZ JOKI01000001.1 348

NZ STGV01000002.1 73

NZ PZZZ01000002.1 569

NZ AQWP01000001.1 525

NZ ATWE01000004.1 1

NC 009636.1 265

NZ JOKI01000001.1 349

NZ ATYB01000014.1 352

NZ BJNJ01000056.1 78

NZ CP019701.2 176

DJDU01000251.1 24

NZ FOKM01000003.1 497

NZ LBHV01000025.1 11

NZ MDDW01000002.1 8

NZ JOKI01000001.1 347

NZ MUXO01000046.1 48

NZ CABFWF010000018.1 343

DDFA01000023.1 31

NZ CP039903.1 218

NZ SGNY01000003.1 529

NZ CP019701.2 199

NZ FNBB01000001.1 448

NZ OBQD01000015.1 67

UBZP01000025.1 90

NZ PZZZ01000002.1 570

NZ JPYQ01000056.1 591

NZ LT009756.1 453

NZ SLVX01000019.1 112

NZ SLVX01000020.1 102

NC 012587.1 286

NZ AUTC01000135.1 2

NZ LPUX01000053.1 810

NZ KB905370.1 339

NC 018000.1 318

NZ CP024307.1 650

NZ LNQC01000062.1 73

MBFK01000100.1 112

NZ LNQB01000073.1 529

NZ AZNX01000001.1 818

NZ AZUW01000001.1 69

NZ AQWP01000001.1 527

NZ BJNJ01000118.1 2

NZ ATWE01000004.1 3

NC 009636.1 267

NZ ATYB01000014.1 354

NZ LYBW01000060.1 114

NZ MDDV01000001.1 90

NZ CP023067.1 240

DEZG01000004.1 70

NZ MYFQ01000012.1 98

DDEX01000063.1 112

NZ CP016450.1 2469

NZ QWBU01000002.1 626

NZ QNUJ01000008.1 189

NZ KQ410736.1 95

NZ SLVX01000020.1 97

NZ LMQB01000023.1 94

NZ UBPA01000003.1 393

NZ FJUR01000001.1 1229

NZ QJSR01000001.1 1005

NZ FOGR01000002.1 596

NZ MOOY01000008.1 233

NZ LMGD01000020.1 569

NZ STGA01000029.1 759

NZ STFZ01000034.1 362

NZ VJMG01000003.1 81

NZ QFBC01000001.1 196

NZ OCMG01000004.1 428

NZ UBMP01000012.1 182

NZ UBQX01000034.1 3

NZ JHXQ01000003.1 228

NZ QFBC01000001.1 195

NZ SLYW01000002.1 75

NZ VJMG01000003.1 79

NZ SRXN01000007.1 110

NVXQ01000021.1 201

NZ MBSS01000058.1 1

PAPH01000062.1 1

NZ KB894531.1 400

NZ KB894537.1 42

NZ JXMU01000029.1 43

NZ CP036532.1 1524

NZ CP036532.1 1525

NZXU01000050.1 79

NZ AEEB01000005.1 22

NZ CP006372.1 21

MKVW01000005.1 210

NZ FNSI01000001.1 4878

NZ FNSS01000001.1 3414

NZ FNSS01000001.1 3416

RXJK01000397.1 12

RXJK01000397.1 13

NZ FPHO01000003.1 691

NZ LMTR01000010.1 1

NZ CP028843.1 3007

NZ SPJX01000184.1 65

NZ UBZM01000035.1 45

DFBX01000023.1 3

NZ JWLL01000005.1 177

NZ FODS01000001.1 235

NC 003911.12 3494

NZ FMZV01000003.1 269

PAPN01000014.1 228

NZ FOEP01000011.1 99

NZ SSMD01000004.1 98

NZ LGXZ01000010.1 25

NZ SULI01000047.1 5

SELD02000037.1 96

VJYZ01000033.1 66

NC 022041.1 2146

NZ CP025408.1 1653

NZ QCYH01000006.1 19

NZ FOGU01000018.1 32

NZ SNAA01000004.1 71

NZ FWFV01000005.1 104

NZ NMZM01000013.1 16

NZVC01000008.1 34

NZ CP014327.1 1420

NZ FWFS01000001.1 188

NZ LQBQ01000023.1 46

NZ VCPD01000007.1 164

NZ SELQ01000006.1 72

NZ CP019312.1 3502

NZ RAPE01000005.1 235

NZ CP010681.1 3319

NZ KI421498.1 2449

NC 023137.1 3574

NZ CP016364.1 3294

NZ FREY01000002.1 182

NZ DS999213.1 2639

NZ FPAJ01000003.1 305

NZ CP025430.1 2351

NZ FMVT01000003.1 291

NZ SISK01000016.1 39

NZ AMGO01000047.1 74

NZ JQEY01000012.1 19

NZ OMPR01000010.1 361

NZ PZKF01000004.1 17

NC 014414.1 1465

NZ AUCF01000012.1 75

NZ CP029834.1 266

NZ CP012406.1 19

NZ CP015285.1 2552

NC 016624.1 32

NZ CP039646.1 34

NZ FXAK01000008.1 176

NZ CP039639.1 46

NZ LGRA01000013.1 555

NC 013859.1 112

NZ PDKW01000038.1 261

NZ LGQZ01000148.1 14

NZ CP019437.1 652

NZ PDJO01000001.1 433

NZ AQRC01000004.1 199

NZ MPZV01000001.1 1314

NZ NBXF01000005.1 199

NZ JALZ01000001.1 48

NZ JALZ01000001.1 49

NZ FOZW01000008.1 147

NZ LWEX01000379.1 37

NZ CP014674.1 2611

NZ CP014691.1 2651

NZ CP032485.1 653

NC 011420.2 3587

NZ JONW01000001.1 1

NZ LMFX01000004.1 106

NZ AUEO01000023.1 14

NZ AUEO01000011.1 112

NZ AUEO01000023.1 15

NZ LMFX01000003.1 114

NZ SLZL01000006.1 197

NC 010338.1 2892

NZ FORN01000067.1 17

NZ FORN01000023.1 2

NZ PEGG01000039.1 2

NZ CP013002.1 2614

NZ LNIY01000024.1 17

NZ QHJY01000077.1 1

NZ CP026100.1 2649

NZ CP026100.1 3997

NZ QDKQ01000021.1 16

NZ LNIY01000139.1 61

DDEY01000040.1 45

DDEY01000040.1 46

NZ DS989898.1 920

NZ KE386797.1 49

NZ BATC01000015.1 51

NZ LJHU01000086.1 5

NZ AQWM01000001.1 293

NZ AWGE01000007.1 193

NZ FMTS01000001.1 361

NZ AWGE01000007.1 192

NZ FMTS01000001.1 360

DDPE01000001.1 13

DDPE01000001.1 16

SSMZ01000107.1 19

DIGV01000005.1 61

NZ CP041025.1 2697

NZ VFIY01000004.1 271

QEVO01000001.1 838

RFJA01000261.1 1

NZ LRUA01000006.1 224

NZ LRUB01000007.1 62

SBGU01000011.1 30

NZ LRUA01000003.1 201

NZ LRUB01000029.1 93

NZ AIDW01000015.1 103

NZ JH584241.1 1678

NZ QDFY01000022.1 13

NZ CP029761.1 2679

NZ NFZT01000001.1 1745

NZ AORL01000009.1 129

DBTZ01000020.1 16

NC 023065.1 4096

VBWB01000008.1 162

NC 017059.1 2841

NC 023065.1 161

SKIC01000199.1 4

SKIC01000199.1 5

NC 010730.1 1013

NZ ABZS01000208.1 2

NC 014166.1 2918

NZ PDJV01000002.1 20

NZ ABCH01000019.1 58

NZ LQXO02000036.1 40

NZ BATJ01000003.1 142

NZ MCUW01000033.1 61

NZ MJIL01000051.1 57

NZ JZSK01000044.1 2

NZ LAFZ01000029.1 123

NZ PYNW01000008.1 162

NZ CCKK01000003.1 418

NZ SSHN01000001.1 377

NZ CP032094.1 309

NZ FUXU01000019.1 19

NZ JPRD01000031.1 37

NZ LIXM01000003.1 117

NZ AJYD02000013.1 727

NZ PFXK01000004.1 183

NZ QFWT01000006.1 85

NZ CP015864.1 1186

NZ APHW01000103.1 151

NZ CP014047.2 1466

NZ NBUS01000043.1 348

NC 022359.1 185

NZ BCUF01000063.1 1

NZ LNTY01000036.1 54

NZ PDJL01000003.1 853

NZ ACZP01000013.1 81

NZ FNDD01000004.1 166

NZ CP014035.2 615

NZ QLYY01000028.1 10

NZ RSFA01000132.1 8

NZ JXXU01000019.1 69

NZ JYJJ01000056.1 48

NZ BBJY01000019.1 97

NZ CDBL01000044.1 67

NZ LSGW01000001.1 79

NZ CDBV01000013.1 10

NZ JRGM01000147.1 53

NZ CDCG01000004.1 141

NC 016745.1 2799

NZ FNEM01000003.1 27

NZ KE384363.1 33

NZ JADX01000021.1 107

NZ MCVI01000029.1 95

NZ FQXG01000002.1 29

NZ FQXG01000002.1 30

NZ FQXG01000002.1 28

BBMQ01000224.1 24

NZ JYJN01000170.1 42

NZ CP005974.1 1062

NZ ACZP01000013.1 895

NZ ACZP01000013.1 896

NZ ACZP01000013.1 897

FTNJ01000001.1 534

NZ CP019113.1 2239

NZ FOYH01000002.1 498

NZ AUUA01000002.1 247

NZ BBNA01000044.1 20

NC 011751.1 278

NZ HE578949.1 75

DEOJ01000025.1 187

NZ NTMH01000003.1 280

DJSX01000009.1 53

NZ LR134290.1 218

NZ RFFN01000003.1 496

NZ AHIL01000063.1 35

NZ AHIL01000063.1 36

NZ AHIL01000063.1 37

NZ CP035300.1 2013

NZ MQNN01000011.1 70

NZ CCAE010000009.1 57

NYWD01000058.1 15

NZFT01000036.1 13

PAQL01000002.1 88

NYSW01000016.1 28

NC 017080.1 2899

RHLH01000001.1 1934

NZ QTZO01000003.1 183

ONVC01000052.1 10

NC 005363.1 3043

NZ CP020946.1 534

NC 019567.1 3258

NZ CP030034.1 1305

JTEV01000010.1 42

NZ LUKD01000001.1 821

NZ LUKF01000001.1 3

NZ LUKE01000001.1 719

NZ CP030082.1 756

NC 005363.1 2779

NZ CP002190.1 2173

NZ LUKD01000001.1 555

JTEV01000017.1 25

DFXZ01000004.1 1212

DDTZ01000105.1 8

DDVI01000002.1 28

NCGL01000040.1 52

DDTZ01000125.1 37

DDVI01000047.1 75

LNEB01000013.1 104

DKGG01000023.1 50

LWDK01000044.1 2

LNEB01000013.1 226

NC 005363.1 550

NZ CP020946.1 3058

NC 019567.1 575

JTEV01000003.1 89

NZ LUKD01000001.1 1913

DFXZ01000004.1 172

NZ CP030034.1 599

NZ CP030082.1 530

NZ NELQ01000002.1 1751

CP025734.1 2668

CP025734.1 573

NYZX01000056.1 32

RFKI01000290.1 6

DCMZ01000008.1 269

SKLV01000081.1 53

SKYF01000118.1 9

DKGG01000036.1 61

LWDK01000030.1 130

DJMA01000045.1 41

SXRI01000248.1 1

SYLX01000254.1 29

SXSP01000507.1 3

LNDT01000018.1 3

NC 019567.1 573

NZ CP020946.1 3060

NC 005363.1 547

LNDT01000031.1 4

SYLX01000260.1 1

NZ CP016094.1 2191

NZ SDHX01000002.1 176

NEUS01000019.1 45

NC 010571.1 386

PASP01000001.1 175

PCTW01000084.1 259

PBIO01000014.1 140

DGKJ01000032.1 19

DIUR01000033.1 166

NZ CP025704.1 1608

DJVH01000116.1 9

DJVH01000055.1 1

PBIO01000014.1 661

PBIO01000031.1 364

MEQL01000009.1 40

DKQD01000038.1 26

QNFX01000024.1 25

DFXY01000009.1 5

DISW01000016.1 86

SKIL01000285.1 4

SBGE01000012.1 4

DKQD01000066.1 20

PAZA01000098.1 21

DCQT01000008.1 17

DBAE01000291.1 7

DGKJ01000122.1 3

FWZT01000005.1 236

NZ BDFO01000001.1 1948

NZ AUMC01000009.1 130

NZ PPDJ01000008.1 131

NZ CP027772.1 108

NZ AUNE01000051.1 23

SBGE01000145.1 2

SKIL01000362.1 1

MEPP01000025.1 280

PBIO01000014.1 141

DFXY01000024.1 55

SXUH01000052.1 4

DIUE01000052.1 9

PAMZ01000014.1 39

PAVS01000002.1 30

PASN01000018.1 160

NZ AUNE01000038.1 55

SBGE01000059.1 50

MEQJ01000037.1 19

MEQJ01000037.1 20

DBAE01000075.1 9

DGKJ01000048.1 12

SKLV01000067.1 9

SKYF01000177.1 12

DCMZ01000015.1 114

DKGG01000032.1 83

PEZS01000004.1 17

DFOS01000007.1 39

DJMA01000046.1 128

SXRI01000311.1 2

SXSP01000143.1 5

DDUL01000009.1 17

LWDK01000031.1 38

SXSU01000102.1 37

CP025734.1 2867

MEPU01000013.1 561

CP025734.1 2866

DDIK01000120.1 29

NZAF01000046.1 4

MPCU01000005.1 324

NZ AUMC01000009.1 56

NZ CP027772.1 181

NZ AUNI01000021.1 342

MAAO01000016.1 285

NZ QOCL01000002.1 55

DFBJ01000003.1 268

NJER01000002.1 186

NC 016620.1 162

NZ AUNE01000038.1 56

SBGE01000059.1 51

DIUE01000025.1 140

PASP01000001.1 80

PCTW01000084.1 336

PBIO01000014.1 65

MEPW01000054.1 80

MEQB01000021.1 2

MEQL01000013.1 43

SMWT01000100.1 37

DFXX01000027.1 18

PAMZ01000014.1 40

DCQT01000081.1 26

PBCC01000042.1 28

PCUW01000003.1 54

MEPO01000012.1 2

MEPR01000051.1 41

MEQK01000025.1 11

DBAE01000075.1 12

MEQJ01000037.1 18

PBMP01000056.1 5

DGKJ01000048.1 11

DFXZ01000004.1 960

NZ CP002190.1 296

LNEB01000011.1 28

SXSU01000102.1 36

LWDK01000031.1 37

DDUL01000009.1 18

LNDT01000030.1 180

DKGG01000032.1 84

DJMA01000046.1 129

PEZS01000004.1 13

CP017834.1 1987

NZ AP019368.1 2051

QOVW01000069.1 17

NZ BDFO01000001.1 5706

NC 007760.1 1382

NZ BAZG01000152.1 11

NC 011891.1 2616

NC 007760.1 1378

NC 011891.1 2620

QMME01000012.1 24

NC 014355.1 2181

NZ FWEX01000005.1 326

CAADGJ010000324.1 6

JZQY01000061.1 72

NZ FJVM02000006.1 22

BDTA01000094.1 32

MTOV01000009.1 99

RFIY01000069.1 4

PFVX01000001.1 2

PIVY01000078.1 5

QNDV01000320.1 2

CAADGG010000060.1 83

SXPK01000086.1 1

SXPK01000282.1 3

SXPK01000282.1 2

SXPB01000213.1 3

PDSF01000026.1 116

SXUL01000029.1 16

NYXZ01000078.1 6

NYXZ01000078.1 7

PKCK01000011.1 83

PKCK01000011.1 84

SXKQ01000052.1 8

NZ CP012332.1 3299

QFWH01000003.1 302

QFWI01000031.1 81

QFWH01000003.1 303

QFWI01000031.1 80

MFRL01000007.1 8

MFRQ01000153.1 15

PUMX01000009.1 3

PUMX01000009.1 4

SLHB01000322.1 3

AWNW01000028.1 11

NC 007759.1 1263

NZ CP018835.1 833

NZ FQUH01000004.1 30

NZ FSSB01000007.1 79

NZ KL543968.1 411

NZ KQ947475.1 2089

NZ FULE01000014.1 146

NZ FXXI01000002.1 396

NZ FQXZ01000007.1 50

NZ FRFG01000019.1 55

NZ CP033078.1 744

NZ NBUS01000042.1 220

NZ BBJY01000007.1 220

NZ POSH01000005.1 196

NZ ADBD01000013.1 542

NZ LCUE01000003.1 44

NZ LOSL02000001.1 712

NZ ACZP01000012.1 98

NZ CP014035.2 390

NZ JXXV01000013.1 32

NZ MCUV01000035.1 78

ASHK01000737.1 4

NZ OANU01000123.1 100

NZ ABCH01000011.1 82

NZ LQXO02000016.1 78

NZ FNVG01000023.1 70

DDQR01000417.1 7

NZ JMCG01000002.1 435

NZ LOMK01000001.1 1064

NZ JZAM01000203.1 2

DDQN01000013.1 57

DDQR01000020.1 2

NZ PFXK01000001.1 786

NZ QFWT01000001.1 447

NZ AEIU01000110.1 35

NZ CP009354.1 831

NZ MJMI01000108.1 15

NZ LT960611.1 2085

NZ CP018835.1 872

NZ FQUH01000003.1 275

NZ FSSB01000007.1 119

NZ KL543968.1 363

NZ KQ947475.1 2140

NZ FULE01000014.1 201

NZ FXXI01000002.1 364

NZ FQXZ01000007.1 80

NZ FRFG01000019.1 23

NZ RJVQ01000002.1 323

NZ CP018835.1 832

NZ FQUH01000004.1 32

NZ KQ947475.1 2088

NZ FULE01000014.1 145

NZ KL543968.1 412

NZ FXXI01000002.1 398

NZ FQXZ01000007.1 49

NZ FRFG01000019.1 56

NZ RJVQ01000002.1 373

NZ QFWT01000001.1 448

NZ QFWT01000002.1 221

NZ RXYX01000338.1 2

NZ OMPC01000009.1 179

NZ SEZJ01000001.1 133

NC 006840.2 1881

NZ MSCO01000001.1 1818

NZ MSCP01000001.1 351

NC 011312.1 2420

NZ LN554846.1 2010

NZ MAJS01000079.1 467

NC 006840.2 1879

NZ SEZJ01000001.1 134

NZ ACZN01000009.1 90

NZ JXXU01000084.1 2

NZ LHPI01000011.1 80

NZ AEZC01000121.1 2

NZ MJMJ01000006.1 2

NZ BCUF01000047.1 1

NZ CP015863.1 785

NZ CP014046.2 1

NZ ATFJ01000005.1 44

NZ CP032093.1 2143

NZ LN554846.1 2012

NZ AMZO01000020.1 72

NZ PYMA01000006.1 107

NZ LDOV01000005.1 24

NZ CP020660.1 473

NZ BAXG01000009.1 98

NZ LT575468.1 804

NZ BALM01000017.1 54

NZ RKKD01000008.1 150

NZ NRIR01000005.1 256

NC 014541.1 1028

NZ FQXG01000007.1 231

NC 008322.1 1380

NZ SLWF01000008.1 49

NZ CP022272.1 2469

NZ NIJK01000039.1 49

NZ SZVP01000009.1 120

NZ FOLS01000001.1 101

NZ FZPC01000012.1 44

CP022198.1 3945

NZ MSCT01000008.1 82

NZ FNKV01000001.1 4363

NZ CP032618.1 1582

NZ JYLO01000002.1 345

NZ QUZT01000047.1 27

NZ QUZU01000061.1 17

NZ JENB01000005.1 69

NZ CP027727.1 3740

NZ PYWX01000001.1 9

NZ LR134290.1 1834

NZ QXDA01000001.1 1004

NZ FOWP01000002.1 400

NZ CP027657.1 4025

NZ JNHE01000007.1 45

NZ LSSW01000029.1 684

NZ NIQU01000002.1 197

NZ RFLV01000001.1 151

PGZH01000003.1 182

NZ FNJJ01000011.1 55

NZ JPMY01000031.1 79

NZ SCOM01000002.1 600

NC 009439.1 2840

NZ QASN01000020.1 84

NZ FMTL01000001.1 352

NZ FNAE01000008.1 57

PGZJ01000014.1 7

NZ CCSF01000001.1 1123

DLHB01000037.1 75

NZ ATKM01000009.1 47

NZ BATI01000006.1 7

NZ QAIG01000008.1 345

NZ FOXK01000006.1 272

NZ LKKK01000001.1 425

MHZN01000121.1 11

NZ FNSC01000001.1 4898

NZ FTNW01000001.1 459

NZ LSOF01000005.1 74

NZ QJRX01000009.1 142

NZ SBHR01000001.1 1571

NZ FOAS01000006.1 173

NZ KB822617.1 37

NZ FRBQ01000002.1 204

NZ JXQW01000015.1 46

NZ QKYW01000005.1 205

NZ MSXV01000019.1 65

LFTS01000231.1 2

NZ LNJZ01000005.1 279

NZ MSXW01000022.1 139

NZ FOMO01000002.1 493

NZ FOYD01000018.1 35

NZ NSLB01000002.1 125

DICJ01000004.1 59

NZ CP007511.1 1630

NZ FORS01000002.1 135

NZ BATO01000053.1 7

NZ FOJP01000003.1 73

NZ QAOJ01000007.1 168

NZ CP013987.1 2989

NZ FOQL01000001.1 304

NC 020829.1 1762

PEKX01000007.1 753

NZ SNYM01000006.1 44

NZ SNYM01000006.1 47

NZ PIZK01000003.1 63

NZ LK391969.1 2357

NZ UAPU01000005.1 564

NZ UAPU01000007.1 666

NZ UAPU01000007.1 704

NZ UAPU01000007.1 667

NZ UAPU01000007.1 639

NZ UAPU01000007.1 665

NZ UAPU01000007.1 638

NZ UAPU01000007.1 703

NZ UAPU01000005.1 932

NZ UAPU01000005.1 293

NZ UAPU01000007.1 145

NZ UAPU01000007.1 141

NZ UAPU01000007.1 142

NZ UAPU01000007.1 143

NZ UAPU01000007.1 144

UQQH01000117.1 5

NZ FOSF01000106.1 2

NZ FUXX01000019.1 34

SFIC01000007.1 38

SFIC01000021.1 25

NZ FOSF01000075.1 12

NZ FUXX01000013.1 47

NZ FPAH01000028.1 1

ONCB01000062.1 12

ONCB01000187.1 1

HF987952.1 91

OMZC01000118.1 3

DKDL01000068.1 12

SFIC01000044.1 5

DKDL01000068.1 11

OMZC01000118.1 2

HF987952.1 92

NZ FPAH01000093.1 1

ONFP01000009.1 36

NZ AXWV01000033.1 2

NZ AXWV01000061.1 6

NZ AXWV01000006.1 61

NZ AXWV01000091.1 4

NZ AXWV01000105.1 2

NZ AXWV01000057.1 1

NZ AXWV01000001.1 2

NZ AXWV01000091.1 5

NZ AXWV01000001.1 4

NZ AXWV01000091.1 7

NZ AXWV01000024.1 2

UQQH01000018.1 27

UQQH01000260.1 1

UQQH01000066.1 8

NZ UAPU01000005.1 366

NZ UAPU01000007.1 158

DKDL01000116.1 4

ONCB01000026.1 5

NZ FPAH01000031.1 8

NZ FUXX01000036.1 15

NZ GL995222.1 157

UQCV01000018.1 4

DFFT01000045.1 2

NZ KB899636.1 1518

UQCV01000038.1 13

NZ BDDS01000001.1 433

NZ LOFH01000003.1 154

NZ PDUS01000018.1 74

NZ CP011028.1 2420

NZ MXQF01000001.1 276

NZ MXQF01000001.1 278

DEYP01000013.1 185

NZ KB907714.1 32

DIBV01000017.1 395

NZ KE384352.1 2

NZ CP039852.1 2494

NZ JSEE01000010.1 84

NZ QNRF01000002.1 277

NC 009654.1 3612

NZ VFRR01000003.1 22

NZ VFRR01000003.1 23

NZ KB894503.1 19

NZ JRGM01000052.1 4

NC 008228.1 3160

NZ BAEM01000042.1 162

NZ BAEN01000049.1 97

VKKH01000006.1 369

NZ AUBH01000003.1 183

NZ AUBH01000003.1 184

NZ LSNE01000009.1 349

NZ BAEO01000056.1 31

QIJM01000237.1 13

NC 020514.1 3351

NZ BAEO01000056.1 30

NZ PJCF01000001.1 227

QIJM01000243.1 1

NZ LXWE01000001.1 762

NZ AUAV01000022.1 53

NZ PJAR01000044.1 42

NC 016041.1 2253

NZIK01000099.1 52

NZ RCUA01000070.1 97

NZ PEAY01000001.1 1071

NC 015554.1 2633

NZ CP013926.1 1957

NZGW01000077.1 103

NZ MDHN01000041.1 151

NZ BJKL01000005.1 56

NZ JQFW01000015.1 486

DDJQ01000150.1 24

NZ PVNP01000033.1 10

NZ ARZY01000017.1 28

NZ JH767526.1 29

NZ KQ130483.1 213

NZ AMRX01000007.1 94

NZ LAPT01000020.1 55

NZ JHUZ01000015.1 147

NZ PIPK01000003.1 101

NZ PIPK01000003.1 102

NZ PIPK01000003.1 100

NZ PIPK01000003.1 103

NZ PIPK01000003.1 111

NZ PIPL01000001.1 1307

NZ PIPL01000001.1 1310

NZ PIPN01000003.1 198

NZ PIPO01000006.1 41

NZ FXWH01000001.1 648

NZ FXWH01000001.1 650

NZ PIPS01000001.1 644

NZ SNXI01000002.1 243

NZ CP013021.1 948

NZ RAQO01000004.1 179

NZ CP011039.1 764

NZ CP011039.1 768

NZ CP011039.1 766

NZ CP011039.1 769

NZ CP011011.1 891

NZ CP011011.1 892

NZ QZCH01000005.1 19

NZ QUOT01000001.1 1157

NZ LNXS01000036.1 40

NZ LNYQ01000013.1 1708

NZ LBAW01000005.1 101

NZ LNZA01000001.1 1393

NZ FTNL01000001.1 88

NZ RZGX01000012.1 102

NZ LNYY01000021.1 746

NZ LR134173.1 1976

NZ LNYZ01000001.1 225

NZ CM001373.1 1171

NZ JH413849.1 46

NZ KE383999.1 59

NZ LNYR01000048.1 15

NZ LNZC01000002.1 277

NZ LNYT01000001.1 32

NZ QCXN01000007.1 100

NZ LNYA01000023.1 154

NZ NAAD01000001.1 208

DEIL01000253.1 13

QNAG01000246.1 4

NZ CP010311.1 2935

QKGY01000381.1 8

NZ CP015519.1 1143

NZ CP015519.1 1144

NZ AAEW02000014.1 33

PCCS01000008.1 24

NZ RXIU01000390.1 1

PDZV01000060.1 8

PDZX01000056.1 29

PEAP01000007.1 47

NZ LVJN01000016.1 8

NZ LVJN01000019.1 20

NZ JMFO01000056.1 2

PEAM01000036.1 8

PEAM01000036.1 9

PEAN01000110.1 10

NZ ATWI01000008.1 967

NZ MBPP01000035.1 3

NZ QFWX01000004.1 415

PYVH01000020.1 4

NZ AGTR01000023.1 22

NZ LT907980.1 196

CP001978.1 2369

NZ LT897781.1 620NZ JYNR01000001.1 634

NZ PXNO01000023.1 670NZ CP037934.1 486

NZ MEIY01000001.1 146NZ PXNN01000013.1 15

NZ SRPF01000002.1 144NVSC01000018.1 28

NZ JMLY01000001.1 3140NZ SRZX01000008.1 10

NZ FOHZ01000004.1 162CP001978.1 2368

NZ LT897781.1 621NZ CP011494.1 987

NZ LT907980.1 199NZ AAXY01000002.1 156

NZ CP011494.1 986NZ NIHC01000004.1 28

NZ FOYW01000002.1 375NZ PTIV01000013.1 13

NZ KZ319339.1 778NZ PSSW01000001.1 333

NZ SZYH01000001.1 1119NZ CP014754.1 823

NZ CP014754.1 822NZ PSSW01000001.1 334

NZ LFBU01000001.1 1175NVSC01000018.1 29

NZ CP037934.1 487NZ NXGV01000001.1 891

NZ ABCP01000018.1 6NZ CP007152.1 319

NZ LXYO01000001.1 269NZ QOCH01000015.1 24

NZ FYFA01000001.1 1793NZ LXRF01000002.1 316

DCUN01000112.1 19DDWW01000018.1 13

LADS01000071.1 47LADS01000071.1 56

DCUN01000112.1 20DDWW01000018.1 14

DIKT01000028.1 1QKIH01000047.1 50

NZ AUCV01000003.1 145PDTD01000011.1 41

NZ KE387005.1 104CP002364.1 2136

NZ JHZB01000003.1 91PDQK01000027.1 65

NZ AUCV01000087.1 3DGQR01000211.1 13

NZ CP015698.1 1954MESI01000041.1 5

NZ CP036282.1 3805LNEJ01000027.1 76

CP028296.1 3090CP028300.1 3812

NC 015138.1 4296NZ JMKU01000030.1 49

DHAE01000016.1 29NZ FNEY01000027.1 29

CP028300.1 3811NC 015138.1 4295

CP028296.1 3088DHAE01000016.1 28

NZ FNEY01000027.1 28SEAY01000240.1 1

NZ CP027667.1 2169DJJU01000010.1 27

MESI01000041.1 6MGPB01000011.1 34

NZ PTQY01000003.1 483NZ NOXW01000012.1 74

NZ CP019239.1 563DDXW01000081.1 7

NZ AUCN01000009.1 507NZ AMXE01000047.1 12

NZ AMXE01000047.1 6MTEI01000012.1 74

NZ NOIG01000001.1 29NZ LMLZ01000024.1 243

NZ PGEP01000001.1 718NZ MSYM01000011.1 278

NZ MSYM01000011.1 279NZ LMLZ01000001.1 352

NZ FNHP01000011.1 28RXJY01000236.1 1

NVVK01000015.1 61NC 015222.1 2083

NZ FNUX01000015.1 59NZ CP013341.1 1951

NZ PXXU01000006.1 66NZ CP036401.1 921

NZ KB908084.1 28DJAN01000045.1 2

QFOV01000016.1 3NZ KQ759763.1 1385

NZ SCOX01000007.1 126NZ VAHJ01000002.1 714

NZ NWMV01000089.1 21NZ JOMH01000001.1 1329

PAKU01000009.1 46NZ SMRQ01000001.1 11

NZ CP026003.1 2024NZ AHIL01000037.1 29

NZ BBVD01000014.1 29NZ UOOB01000001.1 625

NZ AWOR01000047.1 88NZ PEFL01000003.1 667

NZ UWPJ01000016.1 165AP019755.1 458

NZ SGXC01000003.1 775NZ CP031413.1 506

NZ KE384486.1 1055NZ SELT01000014.1 15

DHLY01000100.1 130NZ AQQV01000001.1 439

NZ JPOG01000001.1 817LT837803.1 2285

SCUD01000072.1 39NZ ATVI01000007.1 347

NZ FOFS01000004.1 218NZ PDZG01000047.1 26

PHSP01000001.1 1528SBAV01000156.1 2

JFAX01000021.1 12SZXR01000237.1 23

NZ FNOY01000107.1 6PADC01000008.1 165

NC 008340.1 706NZ RCDA01000001.1 917
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Figure 4.4: Phylogeny and frequencies of 2781 flagellins that are likely to
occur in human gut. The phylogeny on the right is based on their protein
sequences. Tree branches and color strip around the tree are colored accord-
ing to the phylum of the source genome. Its legend is in the middle. The
heatmap on the left shows the number of reads (log-transformed) the flag-
ellins get aligned to. Each row is a sample, and each column is a phylum
which aligns with the phylum name in the middle. The numbers are counted
non-redundantly, that is, when a read is only counted once when aligned to
multiple taxa in one phylum.
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Figure 4.5: Coverages of primers at di↵erent upper limits of primer degener-
acy, using as target the 2781 flagellins that are likely to occur in human gut.
The mismatch allowed between the primer and the target is 3.

framework is proposed as follows:

Compile target sequences. We recommend using AnnoTree for bacterial
and archaeal gene families to obtain the protein and their corresponding
genomic sequences.

Make HMM alignments. This step seeks to first look for a pair of con-
served domains and then use HMM search to locate them in the AnnoTree
sequences. This sets the range of amplification templates. The primer length
should be determined, and the primer annealing subsequences can be cap-
tured from the chosen conserved domains of the target sequences. Note that
conventional multiple sequence alignments could easily lead to an MSA full of
gaps in every region, which hinders the selection of possible primer sites. In
comparison, picking a predetermined conservative domain and using HMM
alignment can help bypass the hypervariable regions and generate nearly
gap-free alignments suitable for finding the primer annealing locations.

Analyze sequence diversity and select target. This analysis focuses on
evaluating the conservation and gap rate of the captured subsequences. Our
example shows that a large number of sequences with overly high diversity
already precludes a feasible primer set design. Therefore, we argue that in
a similar scenario, it is most e↵ective to directly cut down the number of
target sequences. The target could be narrowed down to genes or proteins
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that are likely to appear in the samples or are from specific taxa of interest.
We point out that this has more advantages over using a small database to
get fewer target sequences, as our method allows more flexibility in tailoring
the target based on the research interest.

Partition target sequences. The subsequences should be clustered based
on their pairwise similarity (hamming distance). The number of clusters shall
be consistent with the number of primers planned.

Design a degenerate primer for each cluster. In our analysis, we im-
plemented a simple contraction algorithm (Algorithm 1). One could also
adopt existing degenerate primer design programs such as HYDEN[209].
These programs are generally unable to deal with a large number of se-
quences, and therefore sequence partitioning is necessary.

Coverage estimation Lastly, the coverage of each primer is evaluated to
estimate the overall primer coverage.

There are some concerns or limitations with our method. First, a key step
in our method is sequence clustering, for which we introduced two algorithms,
CD-HIT and a�nity propagation. CD-HIT, just like many other sequence
clustering methods, is not designed for clustering extra short sequences at a
lower similarity level, like it is in our project. While general unsupervised
clustering algorithms that work on distance matrix could solve the problem
in theory, with more sequences, the distance matrix grows large, and the
computation becomes consuming. Second, there is no quantified evaluation
of the chances of o↵-target amplification. Our method is based on the general
rule of thumb that the higher the primer degeneracy, the shorter the primers,
the more the allowed mismatches, and the more o↵-targets the primers could
potentially bring.

Primer design is an everyday problem in molecular biology labs, but ex-
tending it to a large scale of targets brings about brand new issues as feasi-
bility becomes the top concern. In our work, we addressed the practicalities
of the problem in a real-world scenario, dissected it, and defined the sub-
problems. We outlined our strategy and illustrated ways of approximations
to get to a realistic solution. Our work highlights the complexity of large-
scale primer design problems and provides a reference or guidance to primer
design problems of similar nature.
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valho, W. Zhu, C. C. Gillis, L. Büttner, M. P. Smoot, C. L. Behrendt,
et al., “Microbial respiration and formate oxidation as metabolic sig-
natures of inflammation-associated dysbiosis,” Cell host & microbe,
vol. 21, no. 2, pp. 208–219, 2017.

[47] T. Rodrigues-Oliveira, F. Wollweber, R. I. Ponce-Toledo, J. Xu, S. K.-
M. Rittmann, A. Klingl, M. Pilhofer, and C. Schleper, “Actin cy-
toskeleton and complex cell architecture in an asgard archaeon,” Na-
ture, pp. 1–8, 2022.

[48] A. J. Probst, B. Ladd, J. K. Jarett, D. E. Geller-McGrath, C. M.
Sieber, J. B. Emerson, K. Anantharaman, B. C. Thomas, R. R. Malm-
strom, M. Stieglmeier, et al., “Di↵erential depth distribution of micro-
bial function and putative symbionts through sediment-hosted aquifers
in the deep terrestrial subsurface,” Nature microbiology, vol. 3, no. 3,
pp. 328–336, 2018.

[49] C. He, R. Keren, M. L. Whittaker, I. F. Farag, J. A. Doudna, J. H.
Cate, and J. F. Banfield, “Genome-resolved metagenomics reveals site-
specific diversity of episymbiotic CPR bacteria and DPANN archaea in

120



groundwater ecosystems,” Nature microbiology, vol. 6, no. 3, pp. 354–
365, 2021.

[50] S. L. Jørgensen, I. H. Thorseth, R. B. Pedersen, T. Baumberger, and
C. Schleper, “Quantitative and phylogenetic study of the deep sea ar-
chaeal group in sediments of the arctic mid-ocean spreading ridge,”
Frontiers in microbiology, vol. 4, p. 299, 2013.

[51] A. Spang, J. H. Saw, S. L. Jørgensen, K. Zaremba-Niedzwiedzka,
J. Martijn, A. E. Lind, R. Van Eijk, C. Schleper, L. Guy, and T. J.
Ettema, “Complex archaea that bridge the gap between prokaryotes
and eukaryotes,” Nature, vol. 521, no. 7551, pp. 173–179, 2015.

[52] K. Zaremba-Niedzwiedzka, E. F. Caceres, J. H. Saw, D. Bäckström,
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[69] A. K. Pöntinen, J. Top, S. Arredondo-Alonso, G. Tonkin-Hill, A. R.
Freitas, C. Novais, R. A. Gladstone, M. Pesonen, R. Meneses, H. Peso-
nen, et al., “Apparent nosocomial adaptation of enterococcus faecalis
predates the modern hospital era,” Nature communications, vol. 12,
no. 1, p. 1523, 2021.

[70] T. Li and Y. Yin, “Critical assessment of pan-genomic analysis of
metagenome-assembled genomes,” Briefings in Bioinformatics, vol. 23,
no. 6, p. bbac413, 2022.

[71] B. T. Tierney, Z. Yang, J. M. Luber, M. Beaudin, M. C. Wibowo,
C. Baek, E. Mehlenbacher, C. J. Patel, and A. D. Kostic, “The land-
scape of genetic content in the gut and oral human microbiome,” Cell
host & microbe, vol. 26, no. 2, pp. 283–295, 2019.

[72] O. Mineeva, M. Rojas-Carulla, R. E. Ley, B. Schölkopf, and N. D.
Youngblut, “DeepMAsED: evaluating the quality of metagenomic as-
semblies,” Bioinformatics, vol. 36, no. 10, pp. 3011–3017, 2020.

[73] L.-X. Chen, K. Anantharaman, A. Shaiber, A. M. Eren, and J. F. Ban-
field, “Accurate and complete genomes from metagenomes,” Genome
Research, vol. 30, no. 3, pp. 315–333, 2020.

[74] Y. Yue, H. Huang, Z. Qi, H.-M. Dou, X.-Y. Liu, T.-F. Han, Y. Chen,
X.-J. Song, Y.-H. Zhang, and J. Tu, “Evaluating metagenomics

123



tools for genome binning with real metagenomic datasets and CAMI
datasets,” BMC bioinformatics, vol. 21, no. 1, pp. 1–15, 2020.

[75] S. Karlin, J. Mrazek, and A. M. Campbell, “Compositional biases of
bacterial genomes and evolutionary implications,” Journal of bacteri-
ology, vol. 179, no. 12, pp. 3899–3913, 1997.

[76] G. J. Dick, A. F. Andersson, B. J. Baker, S. L. Simmons, B. C. Thomas,
A. P. Yelton, and J. F. Banfield, “Community-wide analysis of mi-
crobial genome sequence signatures,” Genome biology, vol. 10, no. 8,
pp. 1–16, 2009.

[77] E. S. Lander and M. S. Waterman, “Genomic mapping by fingerprint-
ing random clones: a mathematical analysis,” Genomics, vol. 2, no. 3,
pp. 231–239, 1988.

[78] S. N. Evans, V. Hower, and L. Pachter, “Coverage statistics for se-
quence census methods,” BMC bioinformatics, vol. 11, no. 1, pp. 1–10,
2010.

[79] M. Albertsen, P. Hugenholtz, A. Skarshewski, K. L. Nielsen, G. W.
Tyson, and P. H. Nielsen, “Genome sequences of rare, uncul-
tured bacteria obtained by di↵erential coverage binning of multiple
metagenomes,” Nature biotechnology, vol. 31, no. 6, pp. 533–538, 2013.

[80] H. B. Nielsen, M. Almeida, A. S. Juncker, S. Rasmussen, J. Li, S. Suna-
gawa, D. R. Plichta, L. Gautier, A. G. Pedersen, E. Le Chatelier, et al.,
“Identification and assembly of genomes and genetic elements in com-
plex metagenomic samples without using reference genomes,” Nature
biotechnology, vol. 32, no. 8, pp. 822–828, 2014.

[81] V. Iverson, R. M. Morris, C. D. Frazar, C. T. Berthiaume,
R. L. Morales, and E. V. Armbrust, “Untangling genomes from
metagenomes: revealing an uncultured class of marine Euryarchaeota,”
Science, vol. 335, no. 6068, pp. 587–590, 2012.

[82] J. Alneberg, B. S. Bjarnason, I. De Bruijn, M. Schirmer, J. Quick, U. Z.
Ijaz, L. Lahti, N. J. Loman, A. F. Andersson, and C. Quince, “Binning
metagenomic contigs by coverage and composition,” Nature methods,
vol. 11, no. 11, pp. 1144–1146, 2014.

124



[83] D. D. Kang, F. Li, E. Kirton, A. Thomas, R. Egan, H. An, and Z. Wang,
“MetaBAT 2: an adaptive binning algorithm for robust and e�cient
genome reconstruction from metagenome assemblies,” PeerJ, vol. 7,
p. e7359, 2019.

[84] Y.-W. Wu, B. A. Simmons, and S. W. Singer, “MaxBin 2.0: an au-
tomated binning algorithm to recover genomes from multiple metage-
nomic datasets,” Bioinformatics, vol. 32, no. 4, pp. 605–607, 2016.

[85] M. Imelfort, D. Parks, B. J. Woodcroft, P. Dennis, P. Hugenholtz,
and G. W. Tyson, “GroopM: an automated tool for the recovery of
population genomes from related metagenomes,” PeerJ, vol. 2, p. e603,
2014.

[86] Y. Y. Lu, T. Chen, J. A. Fuhrman, and F. Sun, “COCACOLA: binning
metagenomic contigs using sequence composition, read coverage, co-
alignment and paired-end read linkage,” Bioinformatics, vol. 33, no. 6,
pp. 791–798, 2017.

[87] H. S. Muralidharan, N. Shah, J. S. Meisel, and M. Pop, “Binnacle:
Using sca↵olds to improve the contiguity and quality of metagenomic
bins,” Frontiers in microbiology, vol. 12, p. 638561, 2021.

[88] V. Mallawaarachchi, A. Wickramarachchi, and Y. Lin, “GraphBin: re-
fined binning of metagenomic contigs using assembly graphs,” Bioin-
formatics, vol. 36, no. 11, pp. 3307–3313, 2020.

[89] A. Lamurias, M. Sereika, M. Albertsen, K. Hose, and T. D. Nielsen,
“Metagenomic binning with assembly graph embeddings,” Bioinfor-
matics, vol. 38, pp. 4481–4487, 08 2022.

[90] M. O. Press, A. H. Wiser, Z. N. Kronenberg, K. W. Langford,
M. Shakya, C.-C. Lo, K. A. Mueller, S. T. Sullivan, P. S. Chain, and
I. Liachko, “Hi-C deconvolution of a human gut microbiome yields
high-quality draft genomes and reveals plasmid-genome interactions,”
biorxiv, p. 198713, 2017.

[91] Y. Du and F. Sun, “HiCBin: Binning metagenomic contigs and recover-
ing metagenome-assembled genomes using hi-c contact maps,” Genome
biology, vol. 23, no. 1, pp. 1–21, 2022.

125



[92] Y. Du and F. Sun, “HiFine: integrating hi-c-based and shotgun-based
methods to refine binning of metagenomic contigs,” Bioinformatics,
vol. 38, no. 11, pp. 2973–2979, 2022.

[93] E. Lieberman-Aiden, N. L. Van Berkum, L. Williams, M. Imakaev,
T. Ragoczy, A. Telling, I. Amit, B. R. Lajoie, P. J. Sabo, M. O.
Dorschner, et al., “Comprehensive mapping of long-range interactions
reveals folding principles of the human genome,” science, vol. 326,
no. 5950, pp. 289–293, 2009.

[94] J. Han, Z. Zhang, and K. Wang, “3C and 3C-based techniques: the
powerful tools for spatial genome organization deciphering,” Molecular
Cytogenetics, vol. 11, no. 1, pp. 1–10, 2018.

[95] Y.-W. Wu, Y.-H. Tang, S. G. Tringe, B. A. Simmons, and S. W. Singer,
“MaxBin: an automated binning method to recover individual genomes
from metagenomes using an expectation-maximization algorithm,” Mi-
crobiome, vol. 2, no. 1, pp. 1–18, 2014.

[96] D. D. Kang, J. Froula, R. Egan, and Z. Wang, “MetaBAT, an e�-
cient tool for accurately reconstructing single genomes from complex
microbial communities,” PeerJ, vol. 3, p. e1165, 2015.

[97] V. A. Traag, L. Waltman, and N. J. Van Eck, “From louvain to leiden:
guaranteeing well-connected communities,” Scientific reports, vol. 9,
no. 1, pp. 1–12, 2019.

[98] M. Rosvall and C. T. Bergstrom, “Maps of random walks on com-
plex networks reveal community structure,” Proceedings of the national
academy of sciences, vol. 105, no. 4, pp. 1118–1123, 2008.

[99] J. N. Nissen, J. Johansen, R. L. Allesøe, C. K. Sønderby, J. J. A. Ar-
menteros, C. H. Grønbech, L. J. Jensen, H. B. Nielsen, T. N. Petersen,
O. Winther, et al., “Improved metagenome binning and assembly us-
ing deep variational autoencoders,” Nature biotechnology, vol. 39, no. 5,
pp. 555–560, 2021.

[100] P. Zhang, Z. Jiang, Y. Wang, and Y. Li, “CLMB: deep contrastive
learning for robust metagenomic binning,” in International Confer-
ence on Research in Computational Molecular Biology, pp. 326–348,
Springer, 2022.

126



[101] D. H. Parks, M. Imelfort, C. T. Skennerton, P. Hugenholtz, and G. W.
Tyson, “CheckM: assessing the quality of microbial genomes recovered
from isolates, single cells, and metagenomes,” Genome research, vol. 25,
no. 7, pp. 1043–1055, 2015.

[102] R. M. Bowers, N. C. Kyrpides, R. Stepanauskas, M. Harmon-Smith,
D. Doud, T. Reddy, F. Schulz, J. Jarett, A. R. Rivers, E. A. Eloe-
Fadrosh, et al., “Minimum information about a single amplified genome
(misag) and a metagenome-assembled genome (mimag) of bacteria and
archaea,” Nature biotechnology, vol. 35, no. 8, pp. 725–731, 2017.

[103] C. Yuan, J. Lei, J. Cole, and Y. Sun, “Reconstructing 16s rrna genes in
metagenomic data,” Bioinformatics, vol. 31, no. 12, pp. i35–i43, 2015.

[104] A. B. Shreiner, J. Y. Kao, and V. B. Young, “The gut microbiome
in health and in disease,” Current opinion in gastroenterology, vol. 31,
no. 1, p. 69, 2015.

[105] R. Sender, S. Fuchs, and R. Milo, “Revised estimates for the number
of human and bacteria cells in the body,” PLoS biology, vol. 14, no. 8,
p. e1002533, 2016.

[106] E. R. Davenport, J. G. Sanders, S. J. Song, K. R. Amato, A. G. Clark,
and R. Knight, “The human microbiome in evolution,” BMC biology,
vol. 15, no. 1, pp. 1–12, 2017.

[107] Q. Tang, G. Jin, G. Wang, T. Liu, X. Liu, B. Wang, and H. Cao,
“Current sampling methods for gut microbiota: a call for more precise
devices,” Frontiers in cellular and infection microbiology, p. 151, 2020.

[108] D. Stanley, M. S. Geier, H. Chen, R. J. Hughes, and R. J. Moore,
“Comparison of fecal and cecal microbiotas reveals qualitative similar-
ities but quantitative di↵erences,” BMC microbiology, vol. 15, no. 1,
pp. 1–11, 2015.

[109] M. A. Mahowald, F. E. Rey, H. Seedorf, P. J. Turnbaugh, R. S. Fulton,
A. Wollam, N. Shah, C. Wang, V. Magrini, R. K. Wilson, et al., “Char-
acterizing a model human gut microbiota composed of members of its
two dominant bacterial phyla,” Proceedings of the National Academy
of Sciences, vol. 106, no. 14, pp. 5859–5864, 2009.

127



[110] C. A. Lozupone, J. I. Stombaugh, J. I. Gordon, J. K. Jansson, and
R. Knight, “Diversity, stability and resilience of the human gut micro-
biota,” Nature, vol. 489, no. 7415, pp. 220–230, 2012.

[111] J. Lloyd-Price, G. Abu-Ali, and C. Huttenhower, “The healthy human
microbiome,” Genome medicine, vol. 8, no. 1, pp. 1–11, 2016.

[112] T. S. Schmidt, J. Raes, and P. Bork, “The human gut microbiome:
from association to modulation,” Cell, vol. 172, no. 6, pp. 1198–1215,
2018.

[113] L. V. Blanton, M. J. Barratt, M. R. Charbonneau, T. Ahmed,
and J. I. Gordon, “Childhood undernutrition, the gut microbiota,
and microbiota-directed therapeutics,” Science, vol. 352, no. 6293,
pp. 1533–1533, 2016.

[114] M. J. FitzGerald and E. J. Spek, “Microbiome therapeutics and patent
protection,” Nature Biotechnology, vol. 38, no. 7, pp. 806–810, 2020.

[115] S. P. Spencer, G. K. Fragiadakis, and J. L. Sonnenburg, “Pursu-
ing human-relevant gut microbiota-immune interactions,” Immunity,
vol. 51, no. 2, pp. 225–239, 2019.

[116] J. Halfvarson, C. J. Brislawn, R. Lamendella, Y. Vázquez-Baeza, W. A.
Walters, L. M. Bramer, M. D’amato, F. Bonfiglio, D. McDonald,
A. Gonzalez, et al., “Dynamics of the human gut microbiome in in-
flammatory bowel disease,” Nature microbiology, vol. 2, no. 5, pp. 1–7,
2017.

[117] P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R.
Mardis, and J. I. Gordon, “An obesity-associated gut microbiome with
increased capacity for energy harvest,” nature, vol. 444, no. 7122,
pp. 1027–1031, 2006.

[118] R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Human gut
microbes associated with obesity,” nature, vol. 444, no. 7122, pp. 1022–
1023, 2006.

[119] H.-J. Wu, I. I. Ivanov, J. Darce, K. Hattori, T. Shima, Y. Umesaki,
D. R. Littman, C. Benoist, and D. Mathis, “Gut-residing segmented

128



filamentous bacteria drive autoimmune arthritis via t helper 17 cells,”
Immunity, vol. 32, no. 6, pp. 815–827, 2010.

[120] S. Manfredo Vieira, M. Hiltensperger, V. Kumar, D. Zegarra-Ruiz,
C. Dehner, N. Khan, F. Costa, E. Tiniakou, T. Greiling, W. Ru↵,
et al., “Translocation of a gut pathobiont drives autoimmunity in mice
and humans,” Science, vol. 359, no. 6380, pp. 1156–1161, 2018.

[121] G. D. Sepich-Poore, L. Zitvogel, R. Straussman, J. Hasty, J. A. Wargo,
and R. Knight, “The microbiome and human cancer,” Science, vol. 371,
no. 6536, p. eabc4552, 2021.

[122] M. Valles-Colomer, G. Falony, Y. Darzi, E. F. Tigchelaar, J. Wang,
R. Y. Tito, C. Schiweck, A. Kurilshikov, M. Joossens, C. Wijmenga,
et al., “The neuroactive potential of the human gut microbiota in qual-
ity of life and depression,” Nature microbiology, vol. 4, no. 4, pp. 623–
632, 2019.

[123] M. X. Byndloss, E. E. Olsan, F. Rivera-Chávez, C. R. Ti↵any, S. A.
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and A. J. Bäumler, “Intestinal inflammation allows salmonella to use
ethanolamine to compete with the microbiota,” Proceedings of the Na-
tional Academy of Sciences, vol. 108, no. 42, pp. 17480–17485, 2011.

131



[146] Y. Litvak, M. X. Byndloss, and A. J. Bäumler, “Colonocyte
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Hughes, L. Büttner, E. de Lima Romão, C. L. Behrendt, C. A. Lopez,
et al., “Precision editing of the gut microbiota ameliorates colitis,”
Nature, vol. 553, no. 7687, pp. 208–211, 2018.

[149] Y. Litvak, M. X. Byndloss, R. M. Tsolis, and A. J. Bäumler, “Dysbiotic
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Appendix A

Appendix

A.1 Additional content

A.1.1 Reduction of optimal primer cover problem (OPC)
from the set cover problem

Set cover problem. Given a set of elements U (termed universe), and a
collection of sets M = {m1,m2, ...mn}, each member of which is a subset
of U , and their union covers U (mi 2 M , mi ⇢ U , [mi = U), is there a
minimum sub-collection of sets X ⇢ U that covers U?

If we represent each input string si 2 S in the OPC problem as a series of
k-mers, S is the universe to be covered, then we could solve the OPC problem
by solving the set cover problem. A toy example is shown below (Table A.1).

Table A.1: Formulate the OPC problem as a set cover problem: a toy example
for picking a primer cover of length 4, with k = 4 and |S| = 200. There are
44 = 256 possible 4-mers.

4-mer1 4-mer2 . . . 4-mer256

s1 0 1 . . . 0
s2 0 0 . . . 0
. . . . . . . . . . . . . . .

s200 1 0 . . . 1
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A.1.2 Reduction of the degenerate primer design prob-
lem (DPD) from the clique problem

In [209], the complexity of DPD problem (MC-DPD in the cited literature) is
demonstrated by way of reduction from the clique problem. In an undirected
graph, a subset of vertices is called a clique if any two of them are adjacent
to each other. The clique problem is formulated as follows:

Maximum clique problem. Given a graph G = (V,E), which consists of
a set of nodes V and a set of edges E, integer c, find a clique of size c in G.

Let the number of |V | = k, |E| = n, the clique of size c is the number of
input strings covered, i.e., coverage. Let integer a  k, b  k, va, vb 2 V . The
problem can be reduced to a DPD problem with binary alphabet (⌃ = {0, 1})
in Section 4.1.4: encode each edge ei = {va, vb} 2 E as a string si = t1t2 . . . tk

of length k, with the character tx being 1 if x 2 {a, b}. For instance, in the
example in A.1, e1 = {v1, v3}, it can be encoded to string 101000. The
degeneracy of the primer is given by 2c, which is 8.

This problem is NP-complete. For DNA primers, |⌃| = 4, and it is not
hard to see, the complexity will not be any less.

e6

e7

e4

e1
e2

e3e5
v3

v5 v6

v1

v2

v4

s1: 101000
s2: 100100
s3: 100010
s4: 100001
s5: 001001
s6: 001010
s7: 000011

Clique: {v1, v3, v5, v6} Output primer: ⇤0 ⇤ 0 ⇤ ⇤

Figure A.1: An example of reducing a clique problem to a DPD problem.
Adapted from [209]. The graph has 6 nodes and 7 edges, which is correspon-
dent to the 7 sequences of length 6. A 4-node clique is found in the graph,
resulting in the 4 degenerate positions in the DPD solution.
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A.2 Supplementary tables

Table A.2: Source genomes of the Random simulated dataset

RefSeq ID Name

GCF 013085055.1 Fusarium oxysporum Fo47
GCF 019915245.1 Fusarium musae
GCF 000011425.1 Aspergillus nidulans FGSC A4
GCF 000021265.1 Ureaplasma urealyticum serovar 10 str. ATCC 33699
GCF 001190745.1 Campylobacter gracilis
GCF 027626975.1 Streptomyces nigrescens
GCF 020736405.1 Odoribacter splanchnicus DSM 20712
GCF 002240355.1 Prauserella marina
GCF 020162295.1 Alysiella filiformis DSM 16848
GCF 011046555.1 Sphingobacterium lactis
GCF 001747425.1 Actinoalloteichus hymeniacidonis
GCF 002211785.1 Francisella halioticida
GCF 000242635.2 Solitalea canadensis DSM 3403
GCF 001025195.1 Bifidobacterium catenulatum DSM 16992 = JCM 1194 = LMG 11043
GCF 024181585.1 Treponema socranskii subsp. buccale
GCF 000055785.1 Chromohalobacter salexigens DSM 3043
GCF 008704495.1 Streptomyces kanamyceticus
GCF 000504085.1 Pseudothermotoga elfii DSM 9442 = NBRC 107921
GCF 000196135.1 Wolinella succinogenes DSM 1740
GCF 026651605.1 Alicyclobacillus dauci
GCF 015476235.1 Caldimonas thermodepolymerans
GCF 000196535.1 Mobiluncus curtisii ATCC 43063
GCF 003012915.1 Staphylococcus felis
GCF 000235605.1 Desulfosporosinus orientis DSM 765
GCF 000024085.1 Kangiella koreensis DSM 16069
GCF 900105065.1 Friedmanniella luteola
GCF 000024225.1 Lancefieldella parvula DSM 20469
GCF 000166055.1 Rhodomicrobium vannielii ATCC 17100
GCF 019443985.1 Liquorilactobacillus hordei DSM 19519
GCF 008806995.1 Neisseria animalis
GCF 000442645.1 Corynebacterium maris DSM 45190
GCF 000968375.1 Clostridium scatologenes
GCF 000024205.1 Desulfofarcimen acetoxidans DSM 771
GCF 001542625.1 Streptomyces griseochromogenes
GCF 024347055.1 Vibrio porteresiae DSM 19223
GCF 000025505.1 Ferroglobus placidus DSM 10642
GCF 000172995.2 Halogeometricum borinquense DSM 11551
GCF 000015145.1 Hyperthermus butylicus DSM 5456
GCF 000243255.1 Methanoplanus limicola DSM 2279
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GCF 000166095.1 Methanothermus fervidus DSM 2088
GCF 000016385.1 Pyrobaculum arsenaticum DSM 13514
GCF 018200015.1 Haloarcula sinaiiensis ATCC 33800
GCF 000091665.1 Methanocaldococcus jannaschii DSM 2661
GCF 000147875.1 Methanolacinia petrolearia DSM 11571
GCF 000016525.1 Methanobrevibacter smithii ATCC 35061
GCF 000861165.1 Enterovirus C
GCF 000837225.1 Escherichia phage Mu
GCF 000846805.1 Human mastadenovirus A
GCF 003094435.1 Escherichia phage T2
GCF 000880515.1 Human mastadenovirus B

Table A.3: Source genomes of the Half-random simulated dataset

RefSeq ID Name

GCF 000743255.1 Escherichia coli ATCC 25922
GCF 000019385.1 Escherichia coli ATCC 8739
GCF 003697165.2 Escherichia coli DSM 30083 = JCM 1649 = ATCC 11775
GCF 000464955.2 Escherichia coli O104:H21 str. CFSAN002236
GCF 007922655.1 Escherichia coli O157:H7
GCF 018141185.1 Methanobacterium alkalithermotolerans
GCF 000762265.1 Methanobacterium formicicum
GCF 000191585.1 Methanobacterium lacus
GCF 000214725.1 Methanobacterium paludis
GCF 002813695.1 Methanobacterium subterraneum
GCF 014023275.1 Nostoc edaphicum CCNP1411
GCF 002813575.1 Nostoc flagelliforme CCNUN1
GCF 001298445.1 Nostoc piscinale CENA21
GCF 000020025.1 Nostoc punctiforme PCC 73102
GCF 003443655.1 Nostoc sphaeroides
GCF 001687285.1 Pseudomonas aeruginosa
GCF 022699485.1 Pseudomonas aeruginosa
GCF 022699505.1 Pseudomonas aeruginosa
GCF 024507955.1 Pseudomonas aeruginosa
GCF 001045685.1 Pseudomonas aeruginosa DSM 50071
GCF 002531755.2 Rhizobium acidisoli
GCF 001664265.1 Rhizobium esperanzae
GCF 017352135.1 Rhizobium lentis
GCF 010669145.1 Rhizobium oryzihabitans
GCF 011046895.1 Rhizobium rhizoryzae
GCF 016861865.1 Aspergillus puulaauensis
GCF 026873545.1 Fusarium falciforme
GCF 019915245.1 Fusarium musae
GCF 000013325.1 Novosphingobium aromaticivorans DSM 12444

144



GCF 900637025.1 Streptococcus oralis ATCC 35037
GCF 000012485.1 Pelodictyon luteolum DSM 273
GCF 000517365.1 Spiroplasma mirum ATCC 29335
GCF 900090285.1 Micromonospora inositola
GCF 000512915.1 Barnesiella viscericola DSM 18177
GCF 000815065.1 Mesomycoplasma flocculare ATCC 27399
GCF 000233715.2 Desulfoscipio gibsoniae DSM 7213
GCF 000022325.1 Caldicellulosiruptor bescii DSM 6725
GCF 001275365.1 Francisella persica ATCC VR-331
GCF 000590925.1 Roseibacterium elongatum DSM 19469
GCF 000235405.2 Fervidobacterium pennivorans DSM 9078
GCF 000186365.1 Desulfurococcus mucosus DSM 2162
GCF 000147875.1 Methanolacinia petrolearia DSM 11571
GCF 946463545.1 Methanothermococcus thermolithotrophicus DSM 2095
GCF 000016525.1 Methanobrevibacter smithii ATCC 35061
GCF 026684035.1 Methanogenium organophilum
GCF 000871845.1 Dengue virus type 2
GCF 000894695.1 Hippeastrum mosaic virus
GCF 000836805.1 Chlamydia phage CPG1
GCF 000860865.1 Equine arteritis virus
GCF 000849665.1 Chlamydia phage 2

Table A.4: Intended composition of Mock benchmarking dataset

RefSeq ID Name
GCF 000771585.1 Bifidobacterium actinocoloniiforme DSM22766
GCF 000771685.1 Bifidobacterium reuteri DSM23975
GCF 003697165.1 Escherichia coli DSM30083
GCF 000016525.1 Methanobrevibacter smithii DSM861
GCF 000157935.1 Prevotella copri DSM18205
GCF 003047065.1 Lactobacillus acidophilus DSM20079
GCF 000010425.1 Bifidobacterium adolescentis DSM20083
GCF 000020425.1 Bifidobacterium longum subsp. infantis DSM20088
GCF 000771225.1 Bifidobacterium pseudolongum subsp. pseudolongum DSM20099
GCF 000771285.1 Bifidobacterium longum subsp. suis DSM20211
GCF 001311295.1 Bifidobacterium breve DSM20213
GCF 900104835.1 Bifidobacterium longum subsp. longum DSM20219
GCF 001042595.1 Bifidobacterium dentium DSM20436
GCF 001025135.1 Bifidobacterium bifidum DSM20456
GCF 900099625.1 Lactococcus lactis subsp. lactis DSM20481
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Table A.5: Numbers of high- to medium-quality bins generated by di↵erent
methods from four real-world datasets. All bins counted here have contami-
nation lower than 5%. Minimum completeness for bins of high quality: 90%,
moderate-high quality: 70%, medium quality: 50%.

Completeness (%) 90 70 50 90 70 50 90 70 50 90 70 50

MetaBAT2 6 7 11 38 70 83 32 63 78 32 58 70
GraphBin 3 4 8 10 41 54 8 35 59 14 36 49
Mapbin-a 7 8 11 38 71 82 32 59 73 36 60 68
Mapbin-p 8 9 13 39 72 84 33 64 79 41 58 67
Mapbin-ap 8 9 13 38 72 82 33 61 75 41 57 63

CONCOCT 7 8 8 39 62 69 39 62 68 40 54 60
GraphBin 5 7 7 11 47 59 8 47 57 14 41 52
Mapbin-a 7 8 9 38 61 68 38 62 68 40 54 60
Mapbin-p 7 8 8 38 61 68 37 63 69 39 55 61
Mapbin-ap 7 8 9 37 60 67 37 63 70 40 55 60

MaxBin2 4 5 7 17 22 27 13 19 23 15 22 26
GraphBin 2 4 5 8 14 18 6 16 21 5 20 23
Mapbin-a 4 5 7 18 22 27 15 22 24 16 23 28
Mapbin-p 4 5 7 16 21 27 14 23 28 15 22 24
Mapbin-ap 4 5 7 17 22 28 14 23 28 15 22 24

Mock Sample2 Sample3 Sample4
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Table A.6: KOs of microbial genes encoding key respiratory oxidoreductases.

Orthologs Function description in KEGG

Anaerobic respiratory enzyme-encoding genes
K02567 napA; nitrate reductase (cytochrome) [EC:1.9.6.1]
K02568 napB; nitrate reductase (cytochrome), electron transfer subunit
K02569 napC; cytochrome c-type protein NapC
K02573 napG; ferredoxin-type protein NapG
K02574 napH; ferredoxin-type protein NapH
K12636 napH; N-acetylpuromycin N-acetylhydrolase
K00370 narG, narZ, nxrA; nitrate reductase / nitrite oxidoreductase, alpha sub-

unit [EC:1.7.5.1 1.7.99.-]
K00371 narH, narY, nxrB; nitrate reductase / nitrite oxidoreductase, beta sub-

unit [EC:1.7.5.1 1.7.99.-]
K00374 narI, narV; nitrate reductase gamma subunit [EC:1.7.5.1 1.7.99.-]
K07306 dmsA; anaerobic dimethyl sulfoxide reductase subunit A [EC:1.8.5.3]
K07307 dmsB; anaerobic dimethyl sulfoxide reductase subunit B
K07308 dmsC; anaerobic dimethyl sulfoxide reductase subunit C
K07310 ynfF; Tat-targeted selenate reductase subunit YnfF [EC:1.97.1.9]
K07311 ynfG; Tat-targeted selenate reductase subunit YnfG
K07312 ynfH; Tat-targeted selenate reductase subunit YnfH
K03532 torC; trimethylamine-N-oxide reductase (cytochrome c), cytochrome c-

type subunit TorC
K07811 torA; trimethylamine-N-oxide reductase (cytochrome c) [EC:1.7.2.3]
K07812 torZ; trimethylamine-N-oxide reductase (cytochrome c) [EC:1.7.2.3]
K07821 torY; trimethylamine-N-oxide reductase (cytochrome c), cytochrome c-

type subunit TorY
K03385 nrfA; nitrite reductase (cytochrome c-552) [EC:1.7.2.2]
K04013 nrfB; cytochrome c-type protein NrfB
K04014 nrfC; protein NrfC
K04015 nrfD; protein NrfD
K00244 frdA; succinate dehydrogenase flavoprotein subunit [EC:1.3.5.1]
K00245 frdB; succinate dehydrogenase iron-sulfur subunit [EC:1.3.5.1]
K00246 frdC; succinate dehydrogenase subunit C
K00247 frdD; succinate dehydrogenase subunit D
K00239 sdhA, frdA; succinate dehydrogenase flavoprotein subunit [EC:1.3.5.1]
K00240 sdhB, frdB; succinate dehydrogenase iron-sulfur subunit [EC:1.3.5.1]
K00241 sdhC, frdC; succinate dehydrogenase cytochrome b subunit
K00242 sdhD, frdD; succinate dehydrogenase membrane anchor subunit
K18859 sdhD, frdD; succinate dehydrogenase subunit D
K18860 sdhD, frdD; succinate dehydrogenase subunit D
K25995 frdB, fdrB; succinate dehydrogenase iron-sulfur subunit [EC:1.3.5.1

7.1.1.12]
K25996 frdC, fdrC; succinate dehydrogenase subunit C
Aerobic respiratory enzyme-encoding genes
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K00424 cydX; cytochrome bd-I ubiquinol oxidase subunit X [EC:7.1.1.7]
K00425 cydA; cytochrome bd ubiquinol oxidase subunit I [EC:7.1.1.7]
K00426 cydB; cytochrome bd ubiquinol oxidase subunit II [EC:7.1.1.7]
K02257 COX10, ctaB, cyoE; heme o synthase [EC:2.5.1.141]
K02297 cyoA; cytochrome o ubiquinol oxidase subunit II [EC:7.1.1.3]
K02298 cyoB; cytochrome o ubiquinol oxidase subunit I [EC:7.1.1.3]
K02299 cyoC; cytochrome o ubiquinol oxidase subunit III
K02300 cyoD; cytochrome o ubiquinol oxidase subunit IV
K00122 FDH; formate dehydrogenase [EC:1.17.1.9]
K00123 fdoG, fdhF, fdwA; formate dehydrogenase major subunit [EC:1.17.1.9]
K00124 fdoH, fdsB; formate dehydrogenase iron-sulfur subunit
K00126 fdsD; formate dehydrogenase subunit delta [EC:1.17.1.9]
K00127 fdoI, fdsG; formate dehydrogenase subunit gamma
K08348 fdnG; formate dehydrogenase-N, alpha subunit [EC:1.17.5.3]
K08349 fdnH; formate dehydrogenase-N, beta subunit
K08350 fdnI; formate dehydrogenase-N, gamma subunit
K22338 hylA; formate dehydrogenase (NAD+, ferredoxin) subunit A

[EC:1.17.1.11]
K22339 hylB; formate dehydrogenase (NAD+, ferredoxin) subunit B

[EC:1.17.1.11]
K22340 hylC; formate dehydrogenase (NAD+, ferredoxin) subunit C

[EC:1.17.1.11]
K22515 fdwB; formate dehydrogenase beta subunit [EC:1.17.1.9]
K08348 fdnG; formate dehydrogenase-N, alpha subunit [EC:1.17.5.3]
K08349 fdnH; formate dehydrogenase-N, beta subunit
K08350 fdnI; formate dehydrogenase-N, gamma subunit
K00123 fdoG, fdhF, fdwA; formate dehydrogenase major subunit [EC:1.17.1.9]
K00124 fdoH, fdsB; formate dehydrogenase iron-sulfur subunit
K00127 fdoI, fdsG; formate dehydrogenase subunit gamma
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Table A.7: COGs of microbial genes encoding key respiratory oxidoreduc-
tases.

Orthologs Function description in eggNOG

Anaerobic respiratory enzyme-encoding genes
COG3043 anaerobic respiration
COG3005 denitrification pathway
COG0437 Nadh dehydrogenase
COG5013 belongs to the prokaryotic molybdopterin-containing oxidoreductase

family
COG1140 nitrate reductase beta subunit
COG2181 nitrate reductase activity
COG2180 chaperone-mediated protein complex assembly
COG3303 Catalyzes the reduction of nitrite to ammonia
COG2717 repairs oxidized periplasmic proteins containing methionine sulfoxide

residues
COG1053 succinate dehydrogenase
COG0479 belongs to the succinate dehydrogenase fumarate reductase iron-sulfur

protein family
COG3080 seems to be involved in the anchoring of the catalytic components of the

fumarate reductase complex to the cytoplasmic membrane
COG0437 4 iron, 4 sulfur cluster binding
COG5557 Polysulphide reductase, NrfD
COG1923 positive regulation of translation, ncRNA-mediated
COG3303 Catalyzes the reduction of nitrite to ammonia
Aerobic respiratory enzyme-encoding genes
COG1622 Cytochrome c oxidase subunit
COG0843 heme-copper terminal oxidase activity
COG1845 cytochrome c oxidase, subunit III
COG3125 oxidoreductase activity, acting on diphenols and related substances as

donors, oxygen as acceptor
COG1271 aerobic electron transport chain
COG1294 oxidative phosphorylation
COG2864 formate dehydrogenase
COG0243 molybdopterin cofactor binding

149



Table A.8: Summary of AnnoTree FliC (KO K02406) hits.

Count
Sequence length

min max mean
Proteobacteria 11648

Rhizobiaceae 1784 83 659 328.4
Burkholderiaceae 1379 126 989 384.1
Vibrionaceae 930 199 499 369.5
Alteromonadaceae 902 60 591 309.2
Enterobacteriaceae 790 115 677 380.5
Rhodobacteraceae 767 186 886 373.8
Pseudomonadaceae 675 87 692 381.7
others 4421 73 1344 346.4

Firmicutes 1567

Paenibacillaceae 301 154 686 327.4
Planococcaceae 195 192 1150 322.2
Bacillaceae A 133 75 820 351.9
Amphibacillaceae 119 70 550 292.0
Bacillaceae 79 160 604 326.1
others 740 70 801 336.8

Firmicutes A 1362

Lachnospiraceae 713 87 861 367.9
Clostridiaceae 279 73 577 307.0
others 370 54 851 345.1

Spirochaetota 811

Leptospiraceae 275 210 320 281.7
Treponemataceae 186 190 353 284.0
others 350 194 336 286.3

Campylobacterota 645

Campylobacteraceae 207 248 712 429.8
Helicobacteraceae 186 250 564 490.1
Arcobacteraceae 172 203 538 285.2
others 80 232 813 443.7

Actinobacteriota 571

Microbacteriaceae 172 194 441 314.0
Micrococcaceae 63 273 420 306.0
Cellulomonadaceae 58 188 404 331.4
others 278 196 529 313.1

Bdellovibrionota 481

Bacteriovoracaceae 217 69 335 277.3
Bdellovibrionaceae 154 240 282 276.7
others 110 205 307 277.5

Desulfobacterota 442

Desulfovibrionaceae 271 221 617 300.1
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others 171 139 933 389.8
Firmicutes C 219

Selenomonadaceae 180 266 954 460.6
others 39 252 984 446.9

Planctomycetota 161

SM1A02 43 442 530 497.3
Pirellulaceae 37 404 1190 684.1
Phycisphaeraceae 23 484 607 501.2
others 58 201 1041 374.1

Firmicutes B 127

Desulfitobacteriaceae 26 270 984 454.1
others 101 111 936 408.8

Thermotogota 77

Fervidobacteriaceae 31 118 532 347.3
Petrotogaceae 28 210 876 405.3
Thermotogaceae 18 252 517 345.3

Verrucomicrobiota 65

Opitutaceae 46 241 308 276.0
others 19 267 292 274.2

Nitrospirota 51

Nitrospiraceae 28 274 275 274.6
Leptospirillaceae 8 275 298 283.4
Thermodesulfovibrionaceae 6 502 533 519.7
others 9 249 282 272.0

Others 440 76 995 384.3
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Table A.9: Primers designed for bacterial fliC genes that are likely to occur in
human gut microbiome. The primers are degenerate, with ambiguous bases
following the IUPAC nucleotide code. d: degeneracy; c: coverage; n:size of
the subgroup. The forward and reverse sequences form 1574 unique primer
pairs. They are not presented as pairs because most pairs are only able to
represent a very small (n < 10) subgroup. Unconventional bases: M: A or
C; R: A or G; W: A or T; S: C or G; Y: C or T; K: G or T; V: A, C or G;
H: A, C or T; D: A, G or T; B: C, G or T; N: A, C, G or T.

Forward primer d c n Forward primer d c n
GTAMAACACAAYATTRCD 24 49 1.0 ATTCTKACSAACAACRGY 16 16 0.94
GTWCAGCAYAAYCTTWSA 32 47 0.98 GTYAAYACGAAYGTGTCS 16 16 1.0
GTWCAACAYAACATGCRR 16 45 1.0 ATYAATAACAAYATTCMR 16 16 1.0
GTACAACAYAATMTTHMA 24 43 1.0 ATCCAACATAATATCRBN 24 15 1.0
GTACARCAYAATMTKCAR 32 38 1.0 ATHGCAACAAAYAYCGCM 24 15 0.8
ATCAATACMAACATSAVS 24 36 1.0 ATMAAYCATAACWTRKCA 32 15 0.87
ATYAAYACTAACAGYHTG 24 35 0.91 ATYAAYACCAACTAYYTK 32 15 0.93
ATCATGACCAAYSCYGCS 16 35 0.97 ATYCARCACAACATVGCW 24 15 1.0
ATCAACACCAAYRTCRGY 16 33 1.0 ATTAAYAMYAACATYATG 16 15 0.93
RTCAAYAMCAACATCGCS 16 32 1.0 ATCAACACKAACGTYHYT 24 15 1.0
ATCAAYCAYAAYATNAGT 32 31 0.97 ATTAATACHAAYRTWTCA 24 15 0.87
GTWAATACWAACGTMKCW 32 31 0.9 GTAAAVHACAACATGTCC 9 15 1.0
ATTAATACYAACWTYGCW 16 30 1.0 AAYACCAAYKTGATGTCS 16 15 0.6
GTACAACAYAAYGTMMCA 16 30 0.97 GTTARTACTAAYGTSTCV 24 15 0.8
ATHAATMATAATATKTCM 24 30 1.0 ATWAATACCAACGTACYV 12 15 1.0
ATYAACACKAACGTDGGC 12 28 0.93 RTCAACACSAAYTCGGGS 16 15 1.0
ATYAATAAYAAYATTCAR 16 28 0.89 GTAAATACWAATGYKRGT 16 14 0.86
ATYAACCABAAYATYGCG 24 28 0.93 ATCAAYCAGAACATYKCY 16 14 0.93
GTACAGCAYAAYKTAWCW 32 27 1.0 ATYCAGCATAATATWGSH 24 14 0.93
RTCAACACCAACRTSTCK 16 27 0.93 ATTRYGACCAATGYGKCG 16 14 0.86
ATTAATCACAATMTDAVT 18 27 0.93 ATCCKGACGAACAYSGCY 16 14 0.79
ATCAACACCAAYGTBSSC 24 26 1.0 GTMAATACYAAYGTRAGC 16 14 1.0
RTCAATACCAACRTTGCD 12 26 1.0 GTTAAYACDAACGTTWCW 24 14 1.0
ATCAATACYAACCTKHTG 12 26 0.96 GTACAGCAYAACWTAAMW 16 14 0.93
ATYAATACAAACGTNBCA 24 25 0.92 GTAAAYASMAACMTTGCK 32 14 1.0
RTACAACACAAYTTAWCV 24 25 1.0 ATCARTACSAATGTTSCH 24 14 1.0
ATCAAYCACAATMTWARY 32 25 0.96 RTTAACWCAAAYRTAATG 16 13 0.92
RTCAATACCAAYRTCAMK 32 25 0.92 GTAAATACWAATATMAKB 24 13 0.85
CACACTAACTMCGCDTCR 12 25 0.96 GTAWCRACAAACATYGCR 16 13 0.85
GTHAARAACAABATGTCG 18 25 0.96 ATYAAYACCAACAGYMTC 16 13 1.0
ATYAAYCACAATATYKCW 32 25 0.96 ATTCAACAYAAYATTWCN 32 13 1.0
ATTCAACACAATATBRCW 12 25 1.0 GTCAACACAAACGTVKCN 24 13 1.0
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GTACAGCAYAAYATSACH 24 25 1.0 GTAAMCACYAACRTCASY 32 12 0.92
ATTAACACMAATGTKSCV 24 24 0.88 GTMAAKACMAATRTATCG 16 12 1.0
ATYAACACCAACAWBKCC 24 23 0.96 CACACWAAYTAYGCWTCR 32 12 1.0
ATWYTGACSAAYGTCGCR 32 23 0.96 ATCCKYACCAACAWYKCC 32 12 1.0
ATYAACACCAATRYCRST 32 23 1.0 ATTTCWACAAACRTRGCR 16 11 1.0
ATCAAYACSAAYMTCCWG 32 23 0.87 AATACMAAYATTTCTKCR 16 11 0.45
ATCAAYACSAACSTMGCG 16 23 1.0 ATTCAWACYAACTACWMC 16 11 0.91
GTHAATACCAATGTKTCH 18 23 0.96 GTAAATTATAAYGTDTCM 12 11 1.0
GTHAATACCAAYGTTKCA 12 22 0.95 ATACAACAYAATRTTARY 16 11 0.82
ATYCARCAYAAYATYATG 32 22 1.0 ATTACSAATAAYGTNCAR 32 11 0.91
GTAAATACTAAYGTTDCN 24 22 1.0 RTTAAYTACAAYRTATCS 32 11 0.91
ATTAAYACAAACGTHGSY 24 22 1.0 ATTAAYMAYAACATTCMR 32 11 1.0
ATYAACAMCAACMTSGCY 32 22 0.95 ATAGSAACWAATGTRGCW 16 11 0.82
GTTAAYACCAATGTCABB 18 21 1.0 ATTAAYAAYAAYTTAAWR 32 10 1.0
ATYAAYACCAAYGTSAWG 32 21 0.9 ATCCAGCATAATHTGASS 12 10 1.0
ATWAATWCAAATATYKCY 32 21 0.95 ATCCASAACAACGTSRMK 32 10 0.9
ATCAATACVAATATCGCH 9 21 0.95 ATTWTGACGAAYACYKCS 32 10 1.0
ATYAACACSAACGTYSCW 32 21 0.95 WTGTCWATYTTRAATAAY 32 9 0.89
ATTAAYMACAATATYGCW 16 21 1.0 GTTAACACYAAYGTRAGY 16 9 1.0
ATCAACAAYAATRTTYCW 16 21 1.0 ATCGGAASCAAYAYCKCR 32 9 1.0
ATCAATCACAACDTDAGY 18 20 1.0 GTWMAACACAATATCACH 12 9 1.0
ATTAACAAYAACWTSTCW 16 20 0.95 ATWAACCAYAAYTTAGCM 16 9 1.0
ATWAATCACAACATYGCD 12 20 0.9 ATYAAYKTCAACGCCAGY 16 9 0.89
ATTCTKACCAAYACYTCS 16 20 1.0 ATCAACCACAACMTGRSY 16 9 1.0
ATTAACCAYAATATTBCR 12 20 0.95 ACCAAYATSACGTCGYTR 16 9 0.89
GTCAAYACBAACGTTGCG 6 20 1.0 ATYAATTWTAAYGCATCR 16 8 1.0
ATTYTGACNAACAATGSC 16 20 1.0 CAAAACATCMYRKCTYTG 32 8 0.5
GTACARCACAAYYTDCAG 24 19 1.0 ATYAAYACMAATGYTCYG 32 8 1.0
GTAAACACRAATRTSTCH 24 19 1.0 ATYAATTAYAATGTKTCV 24 8 1.0
ATYAATCACAAYWTGWTG 16 19 0.95 AACACRAAYMTSATGTCT 16 8 0.75
GTACAACACAAYATGKSW 16 19 1.0 ATTTCTACKAACGTAYMH 24 8 1.0
GTMAACACCAACGTRKCN 32 19 0.95 TAYCAAAAYGTASCKGCT 16 7 0.71
GTSAACACCAATRYTGCV 24 19 0.95 ATYAACTTYAAYTCKTCY 32 7 1.0
ATTAACACYAACGTTDCR 12 18 1.0 ATCAATTACAWYSYATCW 32 7 1.0
ATTAAYCAYAATATMCMR 32 18 1.0 ATAAACARDAATWTRAGT 24 6 1.0
ATCAACACAAACATKBCR 12 18 1.0 ATGKCRATCCTGAATAAT 4 5 1.0
RTYAAAAAYAAYATGTCR 32 18 1.0 ATTTCAAACAATGTMCMD 12 4 1.0
ATYAATACMAACACCGCV 12 18 0.94 TTGTCGTCAATYAAWAVY 24 4 0.75
RTAAAYACWAACGTAKYA 32 18 1.0 ACCAACGTGWCHGCRATK 24 4 0.5
GTACAGCAYAAYHTKCAG 24 18 1.0 ACCAATATAGCBTCMATS 12 4 0.75
ATTTTGACAAACACHTCH 9 17 0.94 ACTGATATTGCWGRKGMW 32 3 0.67
ATTCTSACSAAYAMCGGY 32 17 1.0 AGCTCGGGCATGCDSAWY 24 3 0.67
ATTYTGACCAACHCMGCC 12 17 1.0 GTGACGCAGCAAASHYTG 12 3 1.0
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ATCAAYACCAACAYCHTK 24 17 0.94 CACACKAACTACGCCAAC 2 2 1.0
ATCAAYACCAAYWCKCTG 16 17 0.94 TTGAATGARWCRCAYTCR 32 2 1.0
ATTCTCACCAACRTHGCD 18 17 0.94 CACACGAACTACGCCAAC 1 1 1.0
ATYAAYASMAACATCARC 32 17 1.0
Reverse primer d c n Reverse primer d c n
SAKWGAAAGAACDCCCTG 24 50 1.0 SARGCTSAGTACRTTGGA 16 15 0.93
SAGVGMCAGCACGCCCTG 12 46 0.98 AAKCTGAAGNAYCTGKGA 32 15 0.93
AAGWGWMAGAACWCCCTG 16 45 1.0 WAGYTGTARTRCTGCCTG 16 14 1.0
MARCTKCAGCACRCCCTG 16 43 0.95 YAAYTGSAGTGCYARTTG 32 14 0.79
CAGVGACAKGAYGTTCTG 12 43 1.0 YAGTGAHAGDACGTTCTG 18 14 1.0
YARTTGTAAHACRCCTTG 24 38 1.0 SAGCTKSAGCGCGAKCTG 16 14 0.93
CAGNGHCAGMACGTTCTG 24 36 1.0 YAAGCTMAGMGCTGMMGA 32 14 0.79
CAGBGAYAGRGCCAGCTG 12 35 0.86 CARRCTYARTGCTGAGTT 16 14 1.0
VARCGAGAGVACGTTCTG 18 34 1.0 RAGYKRAAGAGCMATCTG 32 14 0.86
YAACTGRAGWACDCCCTG 24 34 1.0 YAACTGYARTAYCTGTGA 16 13 0.92
SARAGACAGRACRKTCTG 32 32 0.97 MAGGCTVAGGAYCGACGA 12 13 0.69
YAAYTGAAGMACDCCTTG 24 31 0.97 TAAGYTKARTGCRTTMTT 32 13 0.77
RAKTGATAATACDCYCTG 24 28 1.0 YAACTGGAGRAYAGMCTG 16 13 1.0
SAGGCTSAGVASGTTCTG 24 28 0.93 MAGYTTYAAWACAGCTTG 16 13 0.62
GAGCTGCAGKACDCCCKS 24 28 0.93 CARCTGCAGYGCMABCTG 24 13 1.0
GAGCGAVAKGAYGYTCTG 24 27 1.0 TAACTGYAWHACACCCTG 12 13 0.92
GAKHGAAAGTACWCCCTG 12 27 1.0 YRATTTCACYACYTGRTC 32 13 0.92
MAKCTGCARWACCTGCTG 16 27 0.96 BAGHGACATTGCCATGCY 18 13 0.92
VAGCGACAGCAYYTGYTG 24 26 0.92 HAGYTGCAACRCCGCCTG 12 12 0.92
SAGGCTGAGYACNGCCTG 16 26 1.0 CARYSKCAGGATGTTTTC 16 12 0.92
YAATGATAAWACRCYCTG 16 26 1.0 WAGYTGTAAYACWGACTG 16 12 0.92
MAKWGAMAGTACWCCCTG 32 25 1.0 CAGGSWMRTKACCATGCC 32 12 0.75
CAGCGMCAGRATSGHCTG 24 25 1.0 RAGCGARAGRACAGCSGA 16 12 0.83
YAACTGMARMACCTGYTG 32 25 0.96 CAAGCTCARWACGCYGYT 16 12 0.83
SAGKGACAGCATGGHCTG 12 25 0.96 CATTATWGMYTGRTTTTT 16 12 1.0
TAAKSMAAGTACRCCCTG 16 24 0.96 YARCTGYAAWGCAGCTTG 16 11 0.91
SAGCGASAKSACRCCCTG 32 23 1.0 CAGGCGSAGDATGTTYTC 12 11 1.0
TAATKGTAATACTRMYTG 16 22 0.86 SAGRCGCAGGATRTTYTS 32 11 0.91
TAARGATAAWACDCCYTG 24 22 1.0 YARTGWCAKYGCAGAGTT 32 11 1.0
TAGHGASATYGCCATRCC 24 22 0.91 WARMGACAATGCTRCCTG 16 11 1.0
RAGCTGMAGYRCCGACTG 16 22 0.91 YARYGAAAGWGCCAWTTG 32 10 0.8
YAATTKAAGWACRTTTTG 16 22 0.91 WARWGAWARTACACTTTG 32 10 1.0
TAWTGARAGAACRCCYTG 16 22 1.0 RAGWTTCAWAACACCYTG 16 10 1.0
SAGRGARAGTACWCCCTG 16 21 1.0 YARRCCAAGWGCAGCRTT 32 10 0.8
SAGCTKRAGCACGCYYTG 32 21 1.0 HARMGTMAGTGCAAGATT 24 10 0.7
TARCTGYARKACWCCTTG 32 21 1.0 YARYTTAAGAAYGGATTG 16 10 0.8
TAARGMMAGAACDCCCTG 24 21 0.95 YAGRCCCATYACCAGRCC 16 10 0.9
MAGDKACAGAACGCYCTG 24 20 0.95 TAARKATAAVGCSATATT 24 10 0.9

154



GAGCGASAGGAYCGWYTG 16 20 0.95 CARGCKAAGMGCAAYAGT 16 10 0.7
CAGCGASAGVACCGTYTG 12 20 0.95 YAGTCTYAGTGCAGAKTK 16 10 0.9
TARYTGWAGTACDCCTTG 24 20 0.95 CARCWGCAKCRGGGTYTG 32 10 0.8
CAATTKCAGWACGCYYTG 16 20 0.95 CAKRYTYAATACACCCTG 16 9 0.89
YAAKGACAWTACRCCCTG 16 20 1.0 HAGASWCATAGCAATTGA 12 9 0.78
KAGWGACAKMACWCCCTG 32 20 1.0 NAGAGWTAGWGCAGCYTG 32 9 0.89
MAGWGACARTACRCCCTG 16 19 0.79 CAGCGCSARSRCTKGCTG 32 9 1.0
RAGCTKSAGAAYGCCYTG 32 19 1.0 SAGGCTSARSGCCAGCTG 16 9 1.0
SAGYTKCARGACCTGYTG 32 19 1.0 WAGKCTYAAWGCCGCTTG 16 9 0.89
YAAGGACARYGCCARCTG 16 19 0.95 TAATTKWSTTAVCATTTG 24 9 1.0
SAGCTTSAGGAYGYTCTG 16 19 0.95 GAGCTGVAGRATGTTYTS 24 8 1.0
VAGGCTSAGSACGCCCTG 12 19 1.0 CAGGCTBGARACCATGCY 12 8 1.0
NAGYTGCARTACRCCTTG 32 19 0.95 TARTSCTAATGCWGCAYT 16 8 1.0
SAGTTTCAGHRCAGTCTG 12 19 0.84 AAGCTGCARYATCAKYTS 32 8 0.88
MAGCTGYAAYACCTSWGA 32 18 1.0 YTTCAKCGCYGCGYYCGG 32 8 0.75
YARTGWYARCGCAATTTG 32 18 0.83 TWMAGCATAATCWACSTC 16 8 0.75
CARYTTCAGTACRGCSGA 16 18 0.72 SAGCTGGAGRATRTTYTC 16 8 0.88
SAGCGACAGCRCGWTGTY 16 18 0.56 TARRGAWARWATGGTCTG 32 8 0.75
SAGRGASARWACCTGCTG 32 18 1.0 YAAKCKCAKYACTGACTG 32 8 0.75
CARCTKCARBACGTTTTG 24 18 0.94 NAGCTSCAGCACCGWMGA 32 8 0.88
GAGCGWSAGGAYGYTTTC 16 18 1.0 DAGTGAAAGTACYTGYTG 12 8 1.0
CAGMGWCAGKRCCGWCTG 32 18 0.94 RAGSCTYAATAYGCTCTG 16 7 0.86
CARYTGTAAAATYCCYTG 16 18 0.83 AAKCTGYAATACYTCASY 32 7 1.0
CARVGMCAGCACACCYTG 24 18 0.78 DCCATCKAACAGGTTCWT 12 7 0.43
SAGACTSAGHACAGCCTG 12 18 1.0 MAGDSCYAATGCTGCATT 24 7 0.86
CARAGACARHACYTGCTG 24 18 1.0 SAGSKTYAGAGCCACGGT 16 6 0.83
TARTTKYAATAYATTYTG 32 18 0.94 SATRTTGKTKTTSGCTTA 32 6 0.5
BAGACTTARWGCAATCTK 24 18 0.78 YARWGTCAKCACTTGGTT 16 6 1.0
SARCTTGAGGAYCRACTG 16 17 0.76 ACCCTTTAAYARGYATGW 16 6 0.5
GAGCGWSARAAYGTTCTG 16 17 0.94 YTTAAGGGCCGCWGMRCC 16 6 0.67
YARTTGAAGMACYTGYTG 32 17 0.94 YAAVGATARGACATTGTT 12 6 0.83
CAGAGACARDACWGTYTG 24 17 0.88 AYYCWGRATAGCCTGTGS 32 6 0.5
AAGYTGNAGAACWCCTTG 16 17 1.0 CAGCGMWGCCACMATCTS 16 6 0.83
SAGGCTSAGRACCGWGCT 16 17 0.88 YTTHARTGCCAATTGRTT 24 6 0.83
CAADGAHAGWACAGATTG 18 17 0.94 CGTSAGGATGYYYTCCGC 16 6 0.67
WAGYTKYARAGCCATTTG 32 16 0.81 BARTCYCAGGGCAYTTTT 24 6 0.83
WAGYTKAAGMACTGATTG 16 16 0.88 ASCYARTGCAWTCTTTGT 16 5 0.6
SAGGCTGAGNACCGMCTG 16 16 0.94 YTTSAKYGCAACTTGWGG 32 5 1.0
CARGCTMAGARCWCCYTG 32 16 0.94 MKTAAGRGCGTTAKTAST 32 5 0.6
CAGCCKCARAATCABCTG 12 16 1.0 RAGKKTSAGCACGGCACT 16 5 0.8
YARTTTTARAATSGAYTG 32 16 0.94 RTTCTTGSTGTAGKYAAC 16 4 1.0
WARCTGYAAWACCTGCTG 16 16 0.94 KCYKAGCACKGCTGAAGS 32 4 0.75
YARRCGCARRATCATCTG 32 16 1.0 MRTWGCYGTAGCTGCYTG 32 4 0.75
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KAGCTKCAKKGCCATCTK 32 15 1.0 TYTTARRGCTAGYTGAGG 16 4 0.5
CARTGAYAATRCTGAYTG 16 15 1.0 DYCTGCCTGAGSAAGAAT 12 4 0.5
CARACTCARYACTGCRCT 16 15 0.87 TCCAAGKGCKWYGTTAGC 16 3 0.67
CARTGACARYGCTGCYTG 16 15 0.8 RDWRTCGGCGTCACGGAT 24 3 0.67
CAGGCKCAGGACGVSCTG 12 15 0.93 YTTTAASMKATAGGTTTC 16 3 0.67
GAGCTGSAGRATRTTYTC 16 15 0.93 TTGATATAGCTTGAGYGC 2 2 1.0
YTTAAGMGCMAAYTGGTT 16 15 0.87 CTCAAGCATTGCKGTCGC 2 2 1.0
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A.3 Supplementary figures
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Figure A.2: Gut microbiota composition of all samples at the GTDB genus
level, grouped by donors (highlighted with a blue frame) or donor-recipient
pairs. The illustration style is similar to Fig. 3.3.
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Figure A.3: Primer3 output for the input in Table 4.1

Template masking not selected
No mispriming library specified
Using 1-based sequence positions
OLIGO start len tm gc\% any_th 3’_th hairpin seq
LEFT PRIMER 15 18 51.58 47.06 0.00 0.00 0.00 ATGACNACTGACGATGCA
RIGHT PRIMER 102 20 55.85 50.00 1.71 0.00 0.00 CGTAGCTATCGATTTGGGTC
SEQUENCE SIZE: 108
INCLUDED REGION SIZE: 108

PRODUCT SIZE: 88, PAIR ANY_TH COMPL: 0.00, PAIR 3’_TH COMPL: 0.00
TARGETS (start len

1 GTAGTCAGTAGACNATGACNACTGACGATGCAGACNACACACACACACACAGCACACAGG
>>>>>>>>>>>>>>>>>> *********************

61 TATTAGTGGGCCATTCGATCCCGACCCAAATCGATAGCTACGATGACG
<<<<<<<<<<<<<<<<<<<<

KEYS (in order of precedence):
****** target
>>>>>> left primer
<<<<<< right primer

ADDITIONAL OLIGOS
start len tm gc% any_th 3’_th hairpin seq

1 LEFT PRIMER 15 15 41.61 42.86 0.00 0.00 0.00 ATGACNACTGACGAT
RIGHT PRIMER 102 16 45.70 43.75 1.71 0.00 0.00 CGTAGCTATCGATTTG
PRODUCT SIZE: 88, PAIR ANY_TH COMPL: 0.00, PAIR 3’_TH COMPL: 0.00

Statistics
con too in in not no tm tm high high high high
sid many tar excl ok bad GC too too any_th 3’_th hair- poly end

ered Ns get reg reg GC\% clamp low high compl compl pin X stab ok
Left 62 17 0 0 0 0 0 7 0 0 0 23 0 0 15
Right 291 0 0 0 0 0 0 0 0 0 0 4 0 0 287
Pair Stats:
considered 4124, unacceptable product size 1444, tm diff too large 2678,
primer in pair overlaps a primer in a better pair 2379, ok 2

libprimer3 release 2.4.0
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