Aus der
Universitätsklinik für Zahn-, Mund- und Kieferheilkunde
Poliklinik für Zahnerhaltung

Nachuntersuchung von tief subgingivalen
Kompositrestaurationen in vivo

Inaugural-Dissertation
zur Erlangung des Doktorgrades
der Zahnheilkunde
der Medizinischen Fakultät
der Eberhard Karls Universität
zu Tübingen

vorgelegt von
Zamorska, Nadja Nicole

2023
Dekan: Professor Dr. B. Pichler

1. Berichterstatter: Professorin Dr. D. Wolff
2. Berichterstatter: Professor Dr. F. Rupp

Tag der Disputation: 05.12.2023
Meinen lieben Eltern in Dankbarkeit gewidmet
Inhaltsverzeichnis

Inhaltsverzeichnis .. 4

Abkürzungsverzeichnis .. 7

Abbildungsverzeichnis ... 8

Tabellenverzeichnis ... 12

1 **Einleitung** ... 14
 1.1 Biologische Breite .. 14

 1.2 Studienlage für die Proximal Box Elevation ... 18
 1.2.1 In vitro Studien ... 18
 1.2.2 Klinische Studien .. 19
 1.2.3 Übersichtsarbeiten ... 20

 1.3 Klinisches Vorgehen bei der Proximal Box Elevation .. 21
 1.3.1 Direkte und indirekte Restauration des Defektes .. 22
 1.3.2 Voraussetzungen für eine reizfreie Versorgung .. 23
 1.3.3 Neuartige Matrizensysteme für irritationsfreie Restaurationsränder ... 24

 1.4 Exemplarischer Ablauf einer R2-Versorgung ... 28
 1.4.1 Darstellung und Trockenlegung der Kavität .. 29
 1.4.2 Erster Restaurationsschritt ... 29
 1.4.3 Zweiter Restaurationsschritt ... 31
 1.4.4 Anpassung von Interdentalbürsten ... 33

 1.5 Ziel der Studie ... 34
 1.5.1 Arbeitshypothese .. 34
 1.5.2 Zielkriterien ... 34

2 **Material und Methoden** .. 35
 2.1 Ethikantrag ... 35

 2.2 Studiendesign ... 35

 2.3 Ein- und Ausschlusskriterien ... 35

 2.4 Teilnehmerrekrutierung ... 36

 2.5 Studiendurchführung ... 37
2.5.1 Intraorale Inspektion ... 38
2.5.2 Erhebung der FDI-Kriterien an Zähnen mit einer Kastenbodenelevation 38
2.5.3 Erhebung des Gingiva Index nach Silness/Löe 40
2.5.4 Messung der Sulkus sondierungstiefen und des klinischen Attachmentverlust ... 40
2.5.5 Erhebung des Bleeding on Probing Score (BOP) 41
2.5.6 Erhebung des Plaque Index (Quigley-Hein-Index, modif. nach Turesky 1970) ... 41
2.5.7 Anlegen der Datensätze ... 42

2.6 Statistisches Design und Methodik ... 43

3 Ergebnisse .. 45
3.1 Deskriptive Statistik .. 45
 3.1.1 Kollektiv der Probanden/Probandinnen .. 45
 3.1.2 Tiefsubgingivale Kompositestaurationen ... 45
 3.1.3 Deskriptive Analyse allgemeiner Parameter 45
 3.1.4 Deskriptive Analyse gingivaler und parodontaler Zustände 47
3.2 Analyse: Sondierungstiefe (ST lokal), klinischer Attachmentverlust (CAL lokal), Gingivaler Index (Silness/Löe lokal), Plaque Index (modif. Turesky lokal) und Parodontitis-Klassifikation lokal ... 51
3.3 Lineare Regression .. 56
3.4 FDI-Kriterien .. 62

4 Diskussion .. 72
4.1 Diskussion des Studiendesigns und der Methodik 72
4.2 Diskussion der Ergebnisse ... 79
 4.2.1 Klinische Beschreibung des Zahnhalteapparates im Bereich der subgingivalen
 Restauration und am gesunden Kontrollzahn und lineare Regressionen 79
 4.2.2 Qualitätsparameter der tief subgingivalen Kompositrestaurationen 95
4.3 Schlussfolgerungen .. 105

5 Zusammenfassung .. 107

6 Literaturverzeichnis ... 109

7 Anhang .. 124
 7.1 Vergleich einzelner Parodontitis-Parameter (restaurierte Zähne versus
 Referenzzähne) ... 124
7.2 Patienteninformation ... 132
7.3 Einverständniserklärung ... 136
7.4 Studienbogen .. 138
7.5 FDI-Kriterien ... 146
8 Erklärung zum Eigenanteil .. 149
9 Veröffentlichungen ... 150
10 Danksagung ... 151
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOP</td>
<td>Bleeding On Probing (dt. Bluten auf Sondieren)</td>
</tr>
<tr>
<td>CAL</td>
<td>Clinical Attachment Level (dt. Klinischer Attachmentverlust)</td>
</tr>
<tr>
<td>CRF</td>
<td>Case Report Form</td>
</tr>
<tr>
<td>FDI</td>
<td>World Dental Federation</td>
</tr>
<tr>
<td>GBI</td>
<td>Gingival Bleeding Index</td>
</tr>
<tr>
<td>IDB</td>
<td>Interdentalbürsten</td>
</tr>
<tr>
<td>max</td>
<td>Maximum</td>
</tr>
<tr>
<td>min</td>
<td>Minimum</td>
</tr>
<tr>
<td>n</td>
<td>Anzahl</td>
</tr>
<tr>
<td>n.a.</td>
<td>nicht auswertbar</td>
</tr>
<tr>
<td>p</td>
<td>p-Wert</td>
</tr>
<tr>
<td>PA</td>
<td>Parodontitis</td>
</tr>
<tr>
<td>PBE</td>
<td>Proximal Box Elevation</td>
</tr>
<tr>
<td>PCR</td>
<td>Plaque Control Record</td>
</tr>
<tr>
<td>SD</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>ST</td>
<td>Sulkussondierungstiefe</td>
</tr>
<tr>
<td>TML</td>
<td>Thermomechanical Loading</td>
</tr>
<tr>
<td>USPHS</td>
<td>United States Public Health Service</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 1: (a) Histologischer Sulkus, (b) Saumepithel, (c) bindegewebige Befestigung, (d) Biologische Breite (b+c) | Quelle: Nadja Zamorska 15

Abbildung 3: Darstellung der Snowplough-Technique | Quelle: Nadja Zamorska ... 30

Abbildung 8: Vergleich der relativen Häufigkeiten (%) von BOP "Ja" und BOP "Nein" von Test- und Referenzzähnen ... 47

Abbildung 9: Vergleich der relativen Häufigkeiten (%) des Auftretens einer gingivalen Blutung nach Ausstreichen mit der Sonde ... 49
Abbildung 10: Vergleich der relativen Häufigkeiten (%) bei der lokalen Plaqueakkumulation

Abbildung 11: Boxplots der Durchschnittswerte Sondierungstiefe (ST\textsubscript{lokal}), Klinischer Attachmentverlust (CAL\textsubscript{lokal}), Gingiva-Index (Silness/Löe\textsubscript{lokal}), Plaque-Index (modif. Turesky\textsubscript{lokal}) für die restaurierten Zähne (Restaurationsstelle) und Referenzzähne (Referenzstelle) | T=Testzahn, R=Referenzzahn

Abbildung 12: Bewertung der FDI-Kriterien zur klinischen Qualität der subgingivalen Kompositrestaurationen

Abbildung 13: Deskriptive Analyse der FDI-Kriterien (Ästhetische Parameter) | Bezeichnungen der Bewertungsnummerierungen siehe Material und Methoden

Abbildung 14: Deskriptive Analyse der FDI-Kriterien (Funktionelle Parameter) | Bezeichnungen der Bewertungsnummerierungen siehe Material und Methoden

Abbildung 15: Probanden-Nr. 07, Aufnahme: 01.08.2018 Zahn 16 – okklusal/distal R2, Alter der Restauration am Aufnahmedatum: 6 Monate, Untersuchung am 13.02.2020, | Quelle: Universitätsklinikum Tübingen

Abbildung 16: Probanden-Nr. 09, Aufnahme: 02.06.2016 Zahn 26 – okklusal/distal R1, Aufnahme direkt postoperativ, Untersuchung am 11.02.2020 | Quelle: Universitätsklinikum Tübingen

Abbildung 23: Deskriptive Analyse der FDI-Kriterien (Biologische Parameter) | Bezeichnungen der Bewertungsnummerierungen siehe Material und Methoden .. 71

Abbildung 24: Boxplots für ST (in mm) zu allen sechs Messwerten pro Zahn (restaurierte Zähne und Referenzzähne) | T=Testzahn, R=Referenzzahn 124

Abbildung 25: Boxplots für CAL in mm zu allen sechs Messwerten pro Zahn (restaurierte Zähne und Referenzzähne) | T=Testzahn, R=Referenzzahn 125

Abbildung 26: Boxplots für den Gingiva-Index (Silness/Löe) zu allen sechs Messwerten pro Zahn (restaurierte Zähne versus Referenzzähne) | T=Testzahn, R=Referenzzahn .. 126

Abbildung 27: Boxplots für den Plaque-Index (Quigley-Hein-Index, modifiziert nach Turesky) zu allen sechs Messwerten pro Zahn (restaurierte Zähne versus Referenzzähne) | T=Testzahn, R=Referenzzahn .. 127

Abbildung 28: Patienteninformation (Seite 1) ... 132

Abbildung 29: Patienteninformation (Seite 2) ... 133

Abbildung 30: Patienteninformation (Seite 3) ... 134

Abbildung 31: Patienteninformation (Seite 4) ... 135

Abbildung 32: Einverständniserklärung (Seite 1) .. 136
Abbildung 33: Einverständniserklärung (Seite 2) .. 137
Abbildung 34: CRF (Seite 1) .. 138
Abbildung 35: CRF (Seite 2) .. 139
Abbildung 36: CRF (Seite 3) .. 140
Abbildung 37: CRF (Seite 4) .. 140
Abbildung 38: CRF (Seite 5) .. 141
Abbildung 39: CRF (Seite 6) .. 141
Abbildung 40: CRF (Seite 7) .. 142
Abbildung 41: CRF (Seite 8) .. 142
Abbildung 42: CRF (Seite 9) .. 143
Abbildung 43: CRF (Seite 10) ... 144
Abbildung 44: Probandenformular .. 145
Abbildung 45: FDI-Kriterien (Ästhetische Eigenschaften) 146
Abbildung 46: FDI-Kriterien (Funktionelle Eigenschaften) 147
Abbildung 47: FDI-Kriterien (Biologische Eigenschaften) 148
Tabellenverzeichnis

Tabelle 1: Bewertungskriterien (FDI/USPH-Kriterien) .. 39
Tabelle 2: Benotung (FDI-Kriterien) ... 39
Tabelle 3: Gingiva Index nach Silness/Löe (1963) ... 40
Tabelle 4: Quigley-Hein-Index, modif. nach Turesky (1970) ... 41
Tabelle 5: Allgemeine Parameter bezogen auf die gesamte Dentition 46
Tabelle 6: Kreuztabelle für die Variable "BOP" an Test- und Referenzzähnen 48
Tabelle 7: Kreuztabelle für die Variablen "BOP am Testzahn" und „Nutzung von Interdentalbürsten“ ... 48
Tabelle 8: Kreuztabelle für die Variablen "BOP am Testzahn" und „Raucherstatus“ 49
Tabelle 9: Kreuztabelle für die Variable "Blutung nach Ausstreichen des Sulkus" an Test- und Referenzzähnen .. 50
Tabelle 10: Kreuztabelle für die Variable "Lokale Plaqueakkumulation" an Test- und Referenzzähnen .. 51
Tabelle 11: Deskriptive Auflistung der statistischen Kennwerte für die Durchschnittswerte von Sondierungstiefe (ST\textsubscript{lokal}), Klinischer Attachmentverlust (CAL\textsubscript{lokal}), Gingival Index (Silness/Löe\textsubscript{lokal}), Plaque Index (modif. Turesky\textsubscript{lokal}) . 54
Tabelle 12: Übersicht der Stadien-Aufteilung der Test- und Referenzzähne (PA-Klassifikation) - abhängig von CAL | 0: gesund, I: Staging Stadium I (CAL: 1-2mm), II: Staging Stadium II (CAL: 3-4mm), III: Staging Stadium III (CAL: ≥ 5mm) ... 55
Tabelle 13: Kreuztabelle zur Parodontitis-Klassifikation von Test- und Referenzzähnen .. 56
Tabelle 14: Kreuztabelle für die Variable „Parodontitis-Klassifikation am Testzahn“ und „Raucherstatus“ .. 56
Tabelle 15: Ergebnisse (lineare Regression "Einschluss") für ST 58
Tabelle 16: Ergebnisse (lineare Regression "Einschluss") für CAL 59
Tabelle 17: Ergebnisse (lineare Regression "Einschluss") für den Gingiva-Index (Silness/Löe) .. 60
Tabelle 18: Ergebnisse (lineare Regression "Einschluss") für BOP 61
Tabelle 19: Deskriptive Auflistung der statistischen Kennwerte für ST (in mm) zu allen sechs Messwerten pro Zahn .. 128
Tabelle 20: Deskriptive Auflistung der statistischen Kennwerte für CAL (in mm) zu allen sechs Messwerten pro Zahn .. 129
Tabelle 21: Deskriptive Auflistung der statistischen Kennwerte für den Gingiva-Index (Silness/Löe) zu allen sechs Messwerten pro Zahn 130
Tabelle 22: Deskriptive Auflistung der statistischen Kennwerte für den Plaque-Index (Quigley-Hein-Index, modifiziert nach Turesky) zu allen sechs Messwerten pro Zahn .. 131
1 Einleitung

1.1 Biologische Breite

Bei der konservierenden oder prothetischen Versorgung eines Zahnes definiert sich die biologische Breite als Abstand zwischen Restaurationsrand und Alveolarknochen und sollte gemäß Literatur idealerweise 3 mm nicht unterschreiten (Ingber et al., 1977; Schmidt et al., 2013). Diese Aussage beruht auf der Annahme, dass es durch Unterschreiten dieses Mindestabstandes zu schädigenden Irritationen am Parodont, wie chronischer Gingivitis, Attachmentverlust und Knochenresorption kommen kann (Jorgić-Srdjak et al., 2000; Maynard & Wilson, 1979; Nevins & Skurow, 1984; Newcomb, 1974). Klinisch stellt sich dies in Form von vertieften und entzündeten Parodontaltaschen oder Gingivarezessionen dar (Padbury et al., 2003; Paniz et al., 2016). Nevins & Skurow empfahlen 1984 die Ausdehnung subgingivaler Restaurationsränder auf maximal 0,5-1mm zu begrenzen (Nevins & Skurow, 1984). Nugala et al. beschrieben die Beziehung zwischen parodontaler Gesundheit und der Restauration eines Zahnes als untrennbar, da die gingivale Gesundheit die Langlebigkeit der Restauration beeinflusst. Durch Platzierung des Restaurationsrandes weit subgingival, werde eine dauerhafte Entzündung

eine supragingivale Platzierung der Restaurationsränder dagegen erleichtere Patienten und Patientinnen die Reinigung und dem/der Zahnarzt/Zahnärztin die Untersuchung, insbesondere die Detektion von Sekundärkaries (Lanning et al., 2003). Arneberg et al. bezeichnen supragingivale Restaurationsränder als Idealfall, um langfristig entzündungsfreie Verhältnisse zu schaffen. In der Studie

subgingivalen Kavitätenrändern, aber perfekten, nicht überkonturierten Restaurationsrändern, eine gingivale Gesundheit oder nur eine initiale Gingivitis beobachtet werden konnte (Lang et al., 1983).

Im Folgenden wird ein Verfahren beschrieben, welches unter Anwendung von Kompositmaterialien eine Versorgung subgingivaler Defekte ermöglicht. In der Literatur wird es Kastenelevationsverfahren (Zaruba et al., 2013), proximal box elevation (Frankenberger et al., 2013; Frese et al., 2014d; Ilgenstein et al., 2015; Roggendorf et al., 2012) oder R2-Technik (Frese et al., 2014d) bezeichnet und beschreibt die Anhebung des subgingivalen Kavitätenbodens auf ein para- bzw. supragingivales Niveau. Anschließend kann der Restdefekt direkt oder indirekt restauriert werden. Auf eine chirurgische Kronenverlängerung oder kieferorthopädische Extrusion wird hierbei verzichtet. Die biologische Breite wird bei diesem Verfahren, sofern dies nicht anders möglich ist, bewusst unterschritten.

1.2 Studienlage für die Proximal Box Elevation

In den vergangenen Jahren hat die Versorgung subgingivaler Defekte mithilfe einer Kastenbodenelevation zunehmend an Interesse gewonnen, vor allem in Hinblick auf die geringe Invasivität. Seit den 2010er Jahren sind einige Veröffentlichungen publiziert worden.

1.2.1 In vitro Studien

Ilgenstein et al. evaluierten 2015 den marginalen Randschluss und die Frakturreistenz von endodontisch behandelten Zähnen mit und ohne „proximal box elevation“ nach thermomechanischer Belastung (TML). Im Allgemeinen konnte kein negativer Einfluss der „proximal box elevation“ auf die Randschlussqualität oder das Frakturverhalten gezeigt werden (Ilgenstein et al., 2015).

2012 verglichen Roggendorf et al. die marginale Qualität und den Übergang zwischen PBE (3mm unterhalb der Schmelz-Zement-Grenze) und

Weitere Autoren/Autorinnen konnten zeigen, dass weniger Keramikfrakturen stattfinden, wenn vor der Versorgung bei Defekten unterhalb der Schmelz-Zement-Grenze eine Kastenelevation durchgeführt wird (Vertolli et al., 2020). In einer anderen Studie konnte kein statistisch signifikanter Einfluss einer PBE auf die Bruchfestigkeit von keramischen Restaurationen festgestellt werden (Bresser et al., 2020).

1.2.2 Klinische Studien

Ferrari et al. untersuchten in einer Studie aus dem Jahr 2018 mit Kastenbodenelevationen versorgte Zähne in Bezug auf Entzündungsparameter. Die Zähne wurden auf Blutung auf Sondieren (BOP) untersucht und Gingiv- sowie Plaque-Indizes erhoben, wobei die Erhebung 12 Monate nach der

1.2.3 Übersichtsarbeiten

Kielbassa & Philipp recherchierten für ihre Publikation aus dem Jahr 2015 in digitalen Datenbanken nach relevanten Artikeln zum Thema PBE. Die Autoren
schlussfolgerten, dass die PBE ein vielversprechendes zweiphasiges Behandlungsschema darstellt, mit dem Vorteil die Dentinwunde direkt zu verschließen und die Versorgung von Kavitäten mit subgingivalen Restaurationsrändern zu erleichtern. Trotzdem seien weitere klinische Studien erforderlich, um die bisherigen Ergebnisse anzuerkennen (Kielbassa & Philipp, 2015).

1.3 Klinisches Vorgehen bei der Proximal Box Elevation

Als Proximal Box Elevation (Frankenberger et al., 2013; Roggendorf et al., 2012) bezeichnet man die Idealisierung einer subgingivalen Kavität mit Kompositmaterial. Gleichartige Konzepte zur Verbesserung der Kavitätenmorphologie findet man in der Literatur unter den Bezeichnungen „sandwich technique“ (Dietrich et al., 1999) oder „cervical margin relocation“ (Veneziani, 2010).

Die Anhebung des Kavitätenbodens vor der weiteren Versorgung, auch Kastenbodenelevation genannt, kann dazu dienen, die endgültige Restauration des Zahnes substanzschonend möglich zu machen. Staehle et al. beschrieben

1.3.1 Direkte und indirekte Restauration des Defektes

Approximal tief subgingivale Defekte können ein- oder zweizeitig versorgt werden. Zudem ist eine direkte und eine indirekte Restauration möglich.

1.3.2 Voraussetzungen für eine reizfreie Versorgung

Um eine Entzündung des Parodonts nach der Versorgung zu verhindern, müssen bei der Restauration einige Punkte beachtet werden.

Sofern der Zahn vollständig mit Komposit restauriert wird, sollte auch in der zweiten Restaurationsphase, nach Abstrahlen der ersten Phase mit Aluminiumoxidpulver sowie Bonding, die Schneepflug-Technik angewendet werden. In diesem Fall wird ein glatter Übergang zwischen beiden Kompositphasen erreicht (Frese et al., 2014b).
Unverzichtbar für die Wiederherstellung und/oder den postoperativen Erhalt eines entzündungsfreien Parodonts ist die Auswahl passgenauer Interdentalbürstchen. Die Patienten/Patientinnen müssen eine Unterweisung zur richtigen Reinigung erhalten, um eine Entzündung durch Plaqueakkumulation zu vermeiden (Frese et al., 2014b).

1.3.3 Neuartige Matrizensysteme für irritationsfreie Restaurationsränder

Auch die Indikationsbereiche für die Versorgung mit Kompositrestaurationen haben sich in den letzten Jahren erweitert. Die Anwendung von

Teilmatrizen, also offene Systeme, sind den geschlossenen Matrizen vor allem in Hinblick auf die Approximalkontaktgestaltung überlegen (Wirsching et al., 2011). Während bei der Anwendung geschlossener Matrizen lediglich ein interdentaler Keil zur Verdrängung der Nachbarzähne dient, wird hier mit einer zusätzlichen mechanischen Separationstechnik gearbeitet. Heute werden hierfür meist Separationsringe verwendet. Die Ringe werden interdental platziert und üben lateralen Druck auf Zähne und Parodont aus – die benachbarten Zähne

Eine bildliche Darstellung der oben bereits beschriebenen R2-Versorgung wird im folgenden Kapitel im Detail gezeigt.
1.4 Exemplarischer Ablauf einer R2-Versorgung

Im Folgenden wird ein Fallbericht mit allen Arbeitsschritten dargestellt:

(a) Tiefzerstörter Prämolar nach Kariesexkavation und Gingivektomie

(b) Blutungskontrolle und Defektdarstellung mit der Fadentechnik

(c) Erste Restaurationsphase

(d) Erste Restaurationsphase nach Entfernung von Überschüssen
1.4.1 Darstellung und Trockenlegung der Kavität

1.4.2 Erster Restaurationsschritt

Sollte es während der Adhäsivtechnik zu einer Kontamination der Kavität kommen, muss die Restauration gut abgesprüht und der Adhäsivprozess wiederholt werden, um einen ausreichend guten Verbund zu erreichen (Wolff et al., 2015b). Potentielle marginale Überhänge werden direkt im Anschluss mit einem feinkörnigem Diamanten sowie mit einem sichelförmigem Skalpell (Nr. 12) entfernt und die Ränder geprüft (Frese et al., 2014b). Sofern die Einsicht sich bei der Restauration dieser ersten Kompositphase schwierig gestaltet hat, kann bereits eine Röntgenkontrolle erfolgen.

Da sich der Kavitätenboden nun auf Gingivaniveau befindet, ist im nächsten Schritt eine absolute Trockenlegung möglich.
1.4.3 Zweiter Restaurationschritt

(a) Angelegter Kofferdaum mit Teilmatrize, Separationsring und Keil
(b) Modellation des Approximalkontaktes mithilfe eines Kontaktpunktformers
(c) Zweite Restaurationsphase | Abdruck des Approximalkontaktformers sichtbar
(d) Fertige Restauration

Die erste Restaurationsphase wird gereinigt und mit Aluminiumoxidpulver (50μm) angeraut. Jetzt wird eine Teilmatrize im approximalen Bereich positioniert und mit einem Separationsring fixiert. Die Abdichtung der Matrize nach zervikal wird

Die postoperative Röntgenkontrolle zeigt im vorliegenden Fall eine gute subgingivale Adaptation des Komposites ohne Überhänge (Abbildung 5).

1.4.4 Anpassung von Interdentalbürsten

Zur Plaquekontrolle muss eine Instruktion des/der Patienten/in mit Auswahl passgenauer Interdentalbürsten erfolgen (Frese et al., 2014b).

1.5 Ziel der Studie

Das Hauptziel der Studie ist die Beschreibung des Effektes tief subgingivaler, die biologische Breite verletzender Kompositrestaurationen auf das parodontale Attachment und auf den Entzündungsstatus der behandelten Zähne.

Dabei wurden die restaurierten Zähne zum Zeitpunkt der Nachuntersuchung mit gesunden Kontrollzähnen verglichen.

1.5.1 Arbeitshypothese

Die Arbeitshypothese ist, dass an subgingivalen Restaurationen, die mit Hilfe des beschriebenen R1- und R2-Verfahrens angefertigt wurden, trotz Unterschreitung der „biologischen Breite“ gleichartige parodontale Verhältnisse und Entzündungszustände bestehen wie an gesunden Kontrollzähnen.

1.5.2 Zielkriterien

Hauptzielkriterien:

- Klinischer Attachmentlevel (CAL), Sondierungstiefe (ST), Bleeding-on-Probing (BOP): Beschreibung des Zustandes des Zahnhalteapparates im Bereich der subgingivalen Restauration und am gesunden Kontrollzahn

Nebenzieklkriterien:

- Qualitätsparameter der Restaurationen mittels modifizierter FDI/USPH Kriterien (ästhetische, funktionelle und biologische Eigenschaften)
- Mundhygienezustand anhand Plaque-Index (Quigley-Hein-Index, modifiziert nach Turesky)
2 Material und Methoden

2.1 Ethikantrag

Der Prüfplan wurde vor Studienbeginn der Ethikkommission der Medizinischen Fakultät der Eberhard-Karls-Universität Tübingen vorgelegt und von dieser bewilligt (Projekt-Nr. 522/2019BO2).

2.2 Studiendesign

2.3 Ein- und Ausschlusskriterien

Einschlusskriterien:

- Patient/Patientin ≥ 18 Jahre alt
- Patient/Patientin ist einwilligungsfähig
- Patient/Patientin hat mindestens eine subgingivale Kompositrestauration gemäß R1- oder R2-Verfahren
- Patient/Patientin hat keine unbehandelten kariösen Läsionen an einem Test- oder Kontrollzahn
- Patient/Patientin hat keine unbehandelte Parodontalerkrankung
- Patient/Patientin ist in der Lage normale häusliche Mundhygiene durchzuführen

Ausschlusskriterien:

- Patient/Patientin hat körperliche Einschränkungen oder Behinderungen, die normale Mundhygiene nicht ermöglichen
- Zeichen von stark vernachlässigter Mundhygiene
- Patientin ist schwanger oder stillt

2.4 Teilnehmerrekrutierung

Zur Rekrutierung der Studienteilnehmer/innen wurden sowohl digitale als auch analoge Patientenakten nach potentiellen Behandlungsfällen gescreent.

Anhand von Dokumentationen aus dem klinischen Studentenkurs (Schein II der Poliklinik für Zahnerhaltungskunde) aus den Jahren 2008 bis 2021 wurden die Akten der Patienten/Patientinnen heraussucht und Verweise auf eine Kastenbodenelevation vor der Versorgung herausgefiltert.

Weiterhin wurden Behandlungsfälle von Zahnärztinnen und Zahnärzten aus der Poliklinik für Zahnerhaltung nach oben genannten Kriterien gescreent.

Die potentiellen Behandlungsfälle wurden in eine Tabelle überführt. Es wurden insgesamt 50 mögliche Teilnehmer/innen gefunden. Hiervon wurden alle telefonisch kontaktiert. 7 Personen konnten nicht erreicht werden, weil die Kontaktdaten nicht mehr aktuell waren.

13 Personen hatten kein Interesse an der Studie teilzunehmen. Da sich der Untersuchungszeitraum zwischen Februar 2020 und Februar 2022 erstreckte, gab es darunter 5 Absagen aufgrund der Corona-Pandemie. 7 Personen lehnten die Teilnahme aus persönlichen Gründen ab (Parkgebühren im Umkreis der Zahnklinik, weiter Anfahrtsweg, zeitliche Einschränkungen). Eine Person gab an, dass sie nicht an der Studie teilnehmen könne, da der Zahn aufgrund eines Abszesses gezogen werden musste. Keine Person, die nicht an der Studie
teilnehmen wollte gab Unzufriedenheit mit der Behandlung als Grund für die Absage an. Es ist außerdem allgemein festzustellen, dass bei Problemen mit der Versorgung eher damit zu rechnen gewesen wäre, dass die Patienten vorstellig geworden wären.

2.5 Studiendurchführung

Alle Untersuchungen wurden am Universitätsklinikum Tübingen (Poliklinik für Zahnerhaltung) von cand. med. dent./Zahnärztin Nadja Zamorska durchgeführt. Zu Beginn der Studie erfolgte eine Einweisung, Kalibrierung und Supervision an 3 Studienteilnehmer/Studienteilnehmerinnen durch die Betreuerin Frau Professorin Wolff.

Der Untersuchungsablauf gestaltete sich wie folgt:

1. Aufklärung mündlich und schriftlich
2. Unterschrift der Einverständniserklärung
3. Anamnese gemäß Studienbogen
4. Intraorale Inspektion (zahnärztlicher Befund)
5. Erhebung der FDI-Kriterien
6. Erhebung des Gingiva Index (Silness/Löe)
7. Messung der Sulkussondierungstiefen und Attachmentlevel an 6 Stellen pro Zahn mit Dokumentation des BOP
8. Erhebung des Plaque-Index (Quigley-Hein-Index, modifiziert nach Turesky)
9. Professionelle Zahnreinigung und Mundhygienetraining als Aufwandsentschädigung

Nach schriftlicher Einwilligung wurde bei jedem Proband und jeder Probandin die Untersuchung standardisiert wie oben beschrieben durchgeführt.

Nach Screening der Ein- und Ausschlusskriterien wurde eine allgemeinmedizinische Anamnese erhoben, wobei Allgemeinerkrankungen und die Einnahme von Medikamenten erfragt wurden.

2.5.1 Intraorale Inspektion

Die intraorale Untersuchung umfasste die Erhebung eines ausführlichen Zahnbefundes sowie die visuelle und palpatorische Beurteilung der Schleimhäute.

Der Zahnstatus wurde in der digitalen Akte dokumentiert, wobei direkte Restaurationen, Zahnersatz sowie fehlende Zähne und kariöse Läsionen in das Befundschema eingetragen wurden.

2.5.2 Erhebung der FDI-Kriterien an Zähnen mit einer Kastenbodenelevation

Alle angewendeten Bewertungskriterien sind in Tabelle 1 dargestellt.
Tabelle 1: Bewertungskriterien (FDI/USPH-Kriterien)

<table>
<thead>
<tr>
<th>Ästhetische Eigenschaften</th>
<th>Oberflächenglanz</th>
<th>Oberflächenverfärbung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Farbstabilität und Transluzenz</td>
<td>Anatomische Form</td>
</tr>
<tr>
<td>Funktionelle Eigenschaften</td>
<td>Fraktur und Retention</td>
<td>Marginale Adaption</td>
</tr>
<tr>
<td></td>
<td>Verschleiß</td>
<td>Kontaktpunkt</td>
</tr>
<tr>
<td></td>
<td>Patienteneindruck (Kaukomfort)</td>
<td></td>
</tr>
<tr>
<td>Biologische Eigenschaften</td>
<td>Postoperative Hypersensibilität</td>
<td>Karies, Erosion, Abfraktion</td>
</tr>
<tr>
<td></td>
<td>Parodontale Reaktion</td>
<td></td>
</tr>
</tbody>
</table>

Zu jedem Bewertungskriterium kann eine Schulnote zwischen 1 und 5 vergeben werden. Die Kriterien für die jeweiligen Benotungsmöglichkeiten sind in Tabelle 2 aufgelistet.

Tabelle 2: Benotung (FDI-Kriterien)

<table>
<thead>
<tr>
<th></th>
<th>Klinisch exzellent / sehr gut</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klinisch gut</td>
</tr>
<tr>
<td>2</td>
<td>Klinisch suffizient / befriedigend</td>
</tr>
<tr>
<td>3</td>
<td>Klinisch nicht akzeptabel (reparierbar)</td>
</tr>
<tr>
<td>4</td>
<td>Klinisch schlecht (muss ausgetauscht werden)</td>
</tr>
</tbody>
</table>
2.5.3 Erhebung des Gingiva Index nach Silness/Löe

Tabelle 3: Gingiva Index nach Silness/Löe (1963)

<table>
<thead>
<tr>
<th>Grad</th>
<th>Bewertungskriterien</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal aussehende Gingiva, keine Blutung</td>
</tr>
<tr>
<td>1</td>
<td>Leichte Entzündung: leichte Farbveränderung, leichte ödematöse Schwellung, keine Blutung bei Palpation</td>
</tr>
<tr>
<td>2</td>
<td>Mäßige Entzündung mit Rötung, ödematöse Schwellung, Blutung bei Ausstreichen mit der Sonde</td>
</tr>
<tr>
<td>3</td>
<td>Schwere Entzündung, deutliche Rötung und Schwellung, Tendenz zu spontaner Blutung, Ulzerationen</td>
</tr>
</tbody>
</table>

2.5.4 Messung der Sulkussondierungstiefen und des klinischen Attachmentverlust

An 6 Stellen pro Zahn (mesio-bukkal, bukkal, disto-bukkal, mesio-oral, oral, disto-oral) wurde mithilfe einer millimeterskalierten Parodontalsonde (Hu-Friedy PCPUNC15) die Sondierungstiefe bestimmt, also die Tiefe der Zahnfleischtasche. Eine erhöhte Sulkussondierungstiefe (ab 4 Millimeter) wird mit einer Entzündung des Zahnhalteapparates in Verbindung gebracht (Hahn, 2010). Für jede Stelle wurde auch der Attachmentverlust angegeben, d.h. der Abstand der Schmelz-Zement-Grenze zum Taschenboden (Sivertson & Burgett,
Die Messung erfolgte mit einer Krafteinwirkung von etwa 0,25N an allen vorhandenen Zähnen.

2.5.5 Erhebung des Bleeding on Probing Score (BOP)

Im Rahmen der Erhebung des Parodontalstatus (s. 2.5.4) wurde für jede gemessene Stelle, an der nach Sondierung eine Blutung auftrat, dokumentiert.

2.5.6 Erhebung des Plaque-Index (Quigley-Hein-Index, modif. nach Turesky 1970)

<table>
<thead>
<tr>
<th>Grad</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Keine Plaque vorhanden</td>
</tr>
<tr>
<td>1</td>
<td>Vereinzelte Plaqueinseln am Gingivarand</td>
</tr>
<tr>
<td>2</td>
<td>Dünne, zusammenhängende Plaquelinie (bis 1mm) am Gingivarand</td>
</tr>
<tr>
<td>3</td>
<td>Plaquelinie von mehr als 1mm, weniger als ein Drittel der Zahnoberfläche bedeckend</td>
</tr>
<tr>
<td>4</td>
<td>Plaqueausdehnung bis ins mittlere Zahndrittel</td>
</tr>
<tr>
<td>5</td>
<td>Plaqueausdehnung bis ins koronale Zahndrittel</td>
</tr>
</tbody>
</table>
2.5.7 Anlegen der Datensätze

Die erhobenen Daten wurden nach Untersuchung der Probanden/Probandinnen in der pseudonymisierten Form in die Microsoft Excel Datenbank übertragen. Mithilfe des ausführlichen zahnärztlichen Befundes wurde ein Referenzzahn ermittelt und in der Datenbank vermerkt. Hierbei wurde jeweils die nächste an der R1/R2-Restauration angrenzende unversorgte Zahnfläche ausgewählt. Aus

2.6 Statistisches Design und Methodik

Nach Anlegen der Datensätze wie oben beschrieben, wurden erhobene Parameter mithilfe des Statistikprogramms SPSS deskriptiv dargestellt. Bei nominalen oder ordinalen Parametern erfolgte eine Darstellung der absoluten und relativen Häufigkeiten. Metrische Zielgrößen wurden anhand Mittelwert, Standardabweichung (SD), Median, Q1, Q3 sowie Minimum und Maximum dargestellt.

Bei der deskriptiven Darstellung der gingivalen und parodontalen Parameter in Balkendiagrammen wurden zusätzlich Vier-Felder-Tafeln erstellt und mit dem McNemar-Test geprüft, ob Test- und Referenzzähne Unterschiede aufweisen.

Bei der Analyse der Parameter ST, CAL, Plaque-Index (Turesky) und Gingiva-Index (Silness/Löe) wurden die Messwerte zwischen Test- und Referenzzähnen mittels Boxplots gegenübergestellt und zusätzlich in Form von Tabellen deskriptiv dargestellt.

Zur Untersuchung des Einflusses des Restaurationsalters, des DMFT-Wertes, des Gingiva-Index (Silness/Löe), des Plaque-Index (modif. Turesky), des Rauchverhaltens und der Interdentalbürstennutzung sowie des lokalen CAL auf die Mittelwerte der parodontalen Parameter an den Testzähnen wurden
multivariate lineare Regressionen durchgeführt. Als abhängige Variablen wurden Sondierungstiefe (ST), klinischer Attachmentverlust (CAL), Gingiva-Index (Silness/Löe) sowie Bluten auf Sondieren (BOP) gewählt. Die Regressionsanalyse erfolgte im Einschlussmodell, das heißt, dass alle Variablen des Blocks in einem einzigen Schritt aufgenommen wurden.

Kategoriale Variablen (FDI-Kriterien) wurden rein deskriptiv dargestellt.

Es handelt sich hier um eine rein explorative Analyse. Alle p-Werte sind deshalb rein deskriptiv zu interpretieren.
3 Ergebnisse

3.1 Deskriptive Statistik

3.1.1 Kollektiv der Probanden/Probandinnen

Die prozentuale Verteilung der Studienteilnehmer/innen (n=30) betrug 43% (n=13) weibliche und 57% (n=17) männliche Teilnehmer/innen.

Das Durchschnittsalter der Probanden/Probandinnen betrug im Mittel 54,8 Jahre, wobei der/die jüngste Proband/in 29, der/die älteste 83 Jahre alt war.

3.1.2 Tiefsubgingivale Kompositestaurationen

Am Kollektiv der Probanden/Probandinnen von n=30 wurden 35 tiefsubgingivale Restaurationen mittels R1/R2-Verfahren durchgeführt. Bei allen Studienteilnehmern/Studienteilnehmerinnen, die mehr als eine Restauration erhalten haben, wurde jeweils durch Zufall eine Restauration ausgewählt und analysiert. Insgesamt wurden n=30 Restaurationen für die Auswertung eingeschlossen. 67% der Restaurationen waren im Oberkiefer, 33% im Unterkiefer lokalisiert. 7% der Restaurationen befanden sich im Frontzahnbereich (1-3), 93% im Seitenzahnbereich (4-7).

3.1.3 Deskriptive Analyse allgemeiner Parameter

Das durchschnittliche Alter der Restaurationen lag bei 1,4 ± 1,2 Jahren. 6 Probanden/Probandinnen (20,0%) gaben an aktive Raucher/innen zu sein, 6 (20,0%) waren ehemals Raucher/innen und 18 Probanden/Probandinnen (60,0%) gaben an Nichtraucher/innen zu sein. Der DMFT-Index unter den Studienteilnehmern und Studienteilnehmerinnen lag im Mittel bei 16,9 ± 4,67. Der BOP lag im Durchschnitt bei 19,0% ±4,67. Der Plaque Control Record (PCR) lag durchschnittlich bei 73,3% ± 19,35, der modifizierte Plaque-Index nach Turesky bei 1,88 ± 0,74. Der GBI lag im Mittel bei 8,9% ± 8,11, der Gingiva Index nach
Silness/Löe ergab einen Mittelwert von 0,16 ± 0,12. Durchschnittlich lag der Messwert der Sulkussondierung bei 2,2mm ± 0,56, der Mittelwert des klinischen Attachmentverlustes lag bei 2,4mm ± 0,67. 56,7% der Studienteilnehmer/Studienteilnehmerinnen gaben an regelmäßig Interdentalbürsten zu verwenden, 43,3% gaben an keine Interdentalbürsten zu benutzen (Tabelle 5).

Tabelle 5: Allgemeine Parameter bezogen auf die gesamte Dentition

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mittelwerte ± Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter der Restauration (in Jahren)</td>
<td>1,4 ± 1,2</td>
</tr>
<tr>
<td>Interdentalbürstennutzung</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>17 (56,7%)</td>
</tr>
<tr>
<td>Nein</td>
<td>13 (43,3%)</td>
</tr>
<tr>
<td>Raucher/in</td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>6 (20,0%)</td>
</tr>
<tr>
<td>Ehemalig</td>
<td>6 (20,0%)</td>
</tr>
<tr>
<td>Nein</td>
<td>18 (60,0%)</td>
</tr>
<tr>
<td>D-Wert (zerstörte Zähne)</td>
<td>1,8 ± 3,30</td>
</tr>
<tr>
<td>M-Wert (fehlende Zähne)</td>
<td>2,0 ± 2,50</td>
</tr>
<tr>
<td>F-Wert (gefüllte Zähne)</td>
<td>13,0 ± 4,53</td>
</tr>
<tr>
<td>DMFT-Index</td>
<td>16,9 ± 4,67</td>
</tr>
<tr>
<td>BOP_{gesamt} (in %)</td>
<td>19,0 ± 13,52</td>
</tr>
<tr>
<td>PCR_{gesamt} (in %)</td>
<td>73,3 ± 19,35</td>
</tr>
<tr>
<td>Plaque-Index</td>
<td>1,88 ± 0,74</td>
</tr>
<tr>
<td>(Turesky_{gesamt})</td>
<td></td>
</tr>
<tr>
<td>GBI_{gesamt} (in %)</td>
<td>8,9 ± 8,11</td>
</tr>
<tr>
<td>Gingiva-Index</td>
<td>0,16 ± 0,12</td>
</tr>
<tr>
<td>(Silness/Löe_{gesamt})</td>
<td></td>
</tr>
<tr>
<td>ST_{gesamt} (in mm)</td>
<td>2,2</td>
</tr>
<tr>
<td>CAL_{gesamt} (in mm)</td>
<td>2,4</td>
</tr>
</tbody>
</table>
3.1.4 Deskriptive Analyse gingivaler und parodontaler Zustände

BOP lokal (Bluten auf Sondieren)

An den Testzähnen trat mit 76,7% häufiger als an den Kontrollzähnen mit einer relativen Häufigkeit von 60,0% ein Bluten auf Sondieren auf (Abbildung 8). In 15 Fällen konnte sowohl am Testzahn, als auch am Referenzzahn ein BOP festgestellt werden. „BOP“ wurde als verbundene Stichprobe mit dem McNemar-Test untersucht. Es waren keine signifikanten Unterschiede ($p=0,227$) zwischen Test- und Kontrollzähnen vorhanden (Tabelle 6).

Abbildung 8: Vergleich der relativen Häufigkeiten (%) von BOP "Ja" und BOP "Nein" von Test- und Referenzzähnen
Tabelle 6: Kreuztabelle für die Variable "BOP" an Test- und Referenzzähnen

<table>
<thead>
<tr>
<th>BOP am Testzahn</th>
<th>Ja</th>
<th>Nein</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenzzahn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>15</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>Nein</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>Gesamt</td>
<td>23</td>
<td>7</td>
<td>30</td>
</tr>
</tbody>
</table>

Das Auftreten eines BOP wurde in Hinblick auf die Interdentalbürstennutzung untersucht und gegenübergestellt. In 13 Fällen trat trotz der Nutzung von Interdentalbürsten ein BOP am Testzahn auf. Lediglich bei 4 Probanden/Probandinnen zeigten die Testzähne bei Nutzung von Interdentalbürsten keinen BOP. Der McNemar Test ergab einen p-Wert von 0,18, somit einen nicht signifikanten Zusammenhang (Tabelle 7).

Rauchverhalten und BOP wurden ebenfalls deskriptiv gegenübergestellt. Alle ehemaligen Raucher/innen (n=6) wiesen einen BOP auf. 13 Nichtraucher/innen wiesen einen BOP auf, während bei 5 Nichtrauchern/Nichtraucherinnen kein BOP feststellbar war. 4 Raucher/innen zeigten einen BOP, bei 2 Rauchern/Raucherinnen lag kein BOP vor (Tabelle 8).

Tabelle 7: Kreuztabelle für die Variablen "BOP am Testzahn" und „Nutzung von Interdentalbürsten“

<table>
<thead>
<tr>
<th>Nutzung von Interdentalbürsten</th>
<th>Nein</th>
<th>Ja</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ja</td>
<td>4</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Nein</td>
<td>3</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7</td>
<td>23</td>
<td>30</td>
</tr>
</tbody>
</table>
Tabelle 8: Kreuztabelle für die Variablen "BOP am Testzahn" und „Raucherstatus“

<table>
<thead>
<tr>
<th>BOP am Testzahn</th>
<th>Nein</th>
<th>Ja</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtraucher/in</td>
<td>5</td>
<td>13</td>
<td>18</td>
</tr>
<tr>
<td>Ehemaliger/r</td>
<td>0</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Raucher/in</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Blutung nach Ausstreichen des Sulkus

Abbildung 9: Vergleich der relativen Häufigkeiten (%) des Auftretens einer gingivalen Blutung nach Ausstreichen mit der Sonde
Tabelle 9: Kreuztabelle für die Variable "Blutung nach Ausstreichen des Sulkus" an Test- und Referenzzähnen

<table>
<thead>
<tr>
<th>Blutung nach Ausstreichen des Sulkus</th>
<th>Testzahn</th>
<th>Referenzzahn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja</td>
<td>Nein</td>
</tr>
<tr>
<td>Referenzzahn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ja</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Nein</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7</td>
<td>23</td>
</tr>
</tbody>
</table>

PCR lokal (Lokale Plaqueakkumulation)

Der PCR lokal lag bei den Testzähnen mit einer Häufigkeit von 93,3% geringfügig unter dem Wert der Referenzzähne (96,7%) (Abbildung 10).

In 28 Fällen konnte sowohl am Testzahn, als auch am Referenzzahn Plaque festgestellt werden. Der p-Wert nach Durchführung des McNemar-Tests beträgt 1,0, somit liegen keine signifikanten Unterschiede vor (Tabelle 10).

Abbildung 10: Vergleich der relativen Häufigkeiten (%) bei der lokalen Plaqueakkumulation
Tabelle 10: Kreuztabelle für die Variable "Lokale Plaqueakkumulation“ an Test- und Referenzzähnen

<table>
<thead>
<tr>
<th>Lokale Plaqueakkumulation</th>
<th>Testzahn</th>
<th>Referenzzahn</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ja</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Referenzzahn</td>
<td>28</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Nein</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gesamt</td>
<td>29</td>
<td>2</td>
<td>30</td>
</tr>
</tbody>
</table>

3.2 Analyse: Sondierungstiefe (ST_{lokal}), klinischer Attachmentverlust (CAL_{lokal}), Gingivaler Index (Silness/Löe_{lokal}), Plaque Index (modif. Turesky_{lokal}) und Parodontitis-Klassifikation_{lokal}

Für die Parameter ST, CAL, Gingiva-Index (Silness/Löe) und Plaque-Index (modif. Turesky) wurden Boxplots erstellt. Hiermit sollen die Unterschiede zwischen restaurierten Zähnen (Testzähnen) und den Referenzzähnen dargestellt werden. In der folgenden Abbildung 11 werden jeweils die Unterschiede speziell zwischen den restaurierten Zahnstellen und den, wie oben beschrieben, ausgewählten Referenzstellen verglichen. Wenn der mit der R1/R2-Technik versorgte Zahn beispielsweise mesial versorgt wurde, dann fließen in die unten abgebildete Auswertung auch nur die Messwerte von mesial (gemittelt) ein. Die Auswertung wurde zudem noch deskriptiv in Tabelle 11 dargestellt.

Der Median von ST liegt bei den Testzähnen bei 3,25 mm, bei den Referenzzähnen bei 2,5 mm. Der Interquartilsabstand beträgt bei den restaurierten Zähnen (Testzähne) 1,5 mm (Q1: 2,5, Q3: 4,0), bei den Kontrollzähnen 1,0 mm (Q1: 2,0, Q3: 3,0) (Abbildung 11). Die Streuung ist bei den Testzähnen höher (SD(T): 0,896, SD(R): 0,817). Die Messwerte bei den Testzähnen variieren zwischen 1,5 mm und 5,5 mm, bei den Referenzzähnen ebenfalls zwischen 1,5 mm und 5,5 mm. Der Mittelwert ist bei den Testzähnen (3,2 mm) im Vergleich zu den Referenzzähnen (2,717 mm) erhöht (Tabelle 11).
Für den Parameter ST wurde ein verbundener t-Test durchgeführt, um zu überprüfen, ob die Durchschnittswerte zwischen Test- und Referenzzähnen Unterschiede aufweisen. Es ergab sich ein \(p\)-Wert von 0,003. Somit sind die Ergebnisse signifikant.

Der Median für CAL beträgt bei den restaurierten Zähnen 3,5mm, bei den Kontrollzähnen 2,5mm (Abbildung 11). Die Interquartilsabstände betragen 1,12 (T) und 0,62 (R). Bei CAL ist die Standardabweichung, anders als bei ST, bei den Kontrollzähnen höher (SD(T): 0,870, SD(R): 0,997), wobei die Messwerte bei den Testzähnen zwischen 2,0mm und 5,5mm liegen, bei den Referenzzähnen zwischen 1,5mm und 6,0mm. Der Mittelwert für CAL beträgt für Testzähne 3,467mm, für Kontrollzähne 2,883mm (Tabelle 1).

Der verbundene t-Test für CAL ergab einen \(p\)-Wert von 0,001 und somit signifikante Unterschiede zwischen Test- und Referenzzähnen (Tabelle 1).

Der Median sowohl der Test-, als auch der Referenzzähne beim Parameter „Gingiva-Index“ liegt auf der Nulllinie. In den Boxplots sind bei den Testzähnen Extremwerte bis maximal Grad 2 sichtbar, die übrigen Testzähne weisen einen Gingiva-Index nach Silness/Löe gleich Null auf. Bei den Referenzzähnen gibt es einen Ausreißer bei Grad 1, alle übrigen Messwerte werden Grad 0 zugeordnet (Abbildung 11). Der Mittelwert liegt bei den Testzähnen bei 0,32 (SD: 0,650), bei den Referenzzähnen bei 0,17 (SD: 0,379) (Tabelle 1).

Um Unterschiede zwischen Test- und Referenzzahn für den Gingiva-Index nach Silness/Löe festzustellen, wurde ein Wilcoxon-Vorzeichen-Rang-Test durchgeführt. Es konnte kein signifikanter Unterschied (\(p\)-Wert = 0,187) festgestellt werden (Tabelle 1).

Der Median beim Plaque-Index nach Turesky liegt bei den Testzähnen bei 2,25, Q1 liegt bei 1 und Q3 bei 3,5 (Interquartilsabstand: 2,5). Die Referenzzähne weisen einen geringfügig größeren Median von 2,5 auf und einen Interquartilsabstand von 1,37 (Q1: 1,88, Q3: 3,25) auf. Der Mittelwert für die Testzähne liegt bei 2,3, für die Referenzzähne bei 2,583. Die Streuung ist bei den
Testzähnen geringfügig höher (SD: 1,317) als bei den Referenzzähnen (SD: 1,253) (Abbildung 11, Tabelle 11).

Der Wilcoxon-Vorzeichen-Rang-Test ergab für den Parameter „Plaque-Index“ einen p-Wert von 0,225 und somit keine signifikanten Unterschiede zwischen Test- und Referenzzähnen (Tabelle 11).

Abbildung 11: Boxplots der Durchschnittswerte Sondierungstiefe (ST_{lokal}), Klinischer Attachmentverlust (CAL_{lokal}), Gingiva-Index (Silness/Löe$_{\text{lokal}}$), Plaque-Index (modif. Turesky$_{\text{lokal}}$) für die restaurierten Zähne (Restaurationsstelle) und Referenzzähne (Referenzstelle) | T=Testzahn, R=Referenzzahn
Tabelle 11: Deskriptive Auflistung der statistischen Kennwerte für die Durchschnittswerte von Sondierungstiefe (ST\textsubscript{lokal}), Klinischer Attachmentverlust (CAL\textsubscript{lokal}), Gingival Index (Silness/Löe\textsubscript{lokal}), Plaque Index (modif. Turesky\textsubscript{lokal})

<table>
<thead>
<tr>
<th></th>
<th>Testzahn</th>
<th>Kontrollzahn</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>30 (100,0%)</td>
<td>30 (100,0%)</td>
</tr>
<tr>
<td>ST\textsubscript{lokal}</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,200 (0,896)</td>
<td>2,717 (0,817)</td>
</tr>
<tr>
<td>Median</td>
<td>3,25</td>
<td>2,50</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,50, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>1,5, 5,5</td>
<td>1,5, 5,5</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,003</td>
<td></td>
</tr>
<tr>
<td>CAL\textsubscript{lokal}</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,467 (0,870)</td>
<td>2,883 (0,997)</td>
</tr>
<tr>
<td>Median</td>
<td>3,50</td>
<td>2,50</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,88, 4,00</td>
<td>2,38, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>2,0, 5,5</td>
<td>1,5, 6,0</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,001</td>
<td></td>
</tr>
<tr>
<td>Silness/Löe\textsubscript{lokal}</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,32 (0,650)</td>
<td>0,17 (0,379)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,13</td>
<td>0,00, 0,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 1</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,187</td>
<td></td>
</tr>
<tr>
<td>Modif. Turesky\textsubscript{lokal}</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>2,300 (1,317)</td>
<td>2,583 (1,253)</td>
</tr>
<tr>
<td>Median</td>
<td>2,250</td>
<td>2,500</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>1,00, 3,50</td>
<td>1,88, 3,25</td>
</tr>
<tr>
<td>Min, max</td>
<td>0,0, 4,0</td>
<td>0,0, 5,0</td>
</tr>
<tr>
<td>p-Wert</td>
<td>0,225</td>
<td></td>
</tr>
</tbody>
</table>
Parodontitisklassifikation lokal

Die Messwerte für den lokalen Attachmentverlust (CAL lokal) der Test- und Kontrollzähne wurden herangezogen, um die Verteilung der Parodontitis-Stadien gemäß aktueller Parodontitis-Klassifikation (PA-Klassifikation) darzustellen (Tabelle 12).

Mit dem Wilcoxon-Vorzeichen-Rang-Test wurde überprüft, ob ein signifikanter Unterschied bei der Parodontitisklassifikations-Zuteilung vorliegt. Es ergab sich ein *p-Wert* von 0,02 und somit eine hohe statistische Signifikanz (Tabelle 13).

Tabelle 12: Übersicht der Stadien-Aufteilung der Test- und Referenzzähne (PA-Klassifikation) - abhängig von CAL | 0: gesund, I: Staging Stadium I (CAL: 1-2mm), II: Staging Stadium II (CAL: 3-4mm), III: Staging Stadium III (CAL: ≥ 5mm)

<table>
<thead>
<tr>
<th>Zähne</th>
<th>PA-Klassifikation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Testzähne (n)</td>
<td>0</td>
</tr>
<tr>
<td>Referenzzähne (n)</td>
<td>0</td>
</tr>
</tbody>
</table>
Tabelle 13: Kreuztabelle zur Parodontitis-Klassifikation von Test- und Referenzzähnen

<table>
<thead>
<tr>
<th>Referenzzahn</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testzahn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>18</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Da der Raucherstatus gemäß Literatur eine bedeutende Rolle bei der Entstehung einer Parodontitis spielt (Haber, 1994; Haber et al., 1993; Tomar & Asma, 2000), wurden Kreuztabellen erstellt, wobei der Raucherstatus und die Parodontitis-Klassifikation an den Testzähnen gegenübergestellt wurde (Tabelle 14).

Der McNemar-Bowker-Test ergab einen \(p \text{-Wert} \) von \(<0,001\). Es liegen signifikante Unterschiede zwischen der Parodontitis-Klassifikation in Bezug auf den Raucherstatus vor.

Tabelle 14: Kreuztabelle für die Variable „Parodontitis-Klassifikation am Testzahn“ und „Raucherstatus“

<table>
<thead>
<tr>
<th>Parodontitis-Klassifikation am Testzahn</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nichtraucher/in</td>
<td>1</td>
<td>15</td>
<td>2</td>
<td>18</td>
</tr>
<tr>
<td>Ehemalige/r Raucher/in</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Raucher/in</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

3.3 Lineare Regression

Mit Hilfe der linearen Regressionsanalyse soll bestimmt werden, welchen Einfluss verschiedene erklärende Variablen auf bestimmte abhängige Variablen haben. Die abhängigen Variablen, die im Modell getestet wurden, sind die Sondierungstiefen (ST), der klinische Attachmentverlust (CAL), der Gingiva-

Die Regressionsanalyse im Modell für ST ergibt einen Nulleffekt des DMFT-Werts sowie des modifizierten Turesky-Index auf die Sondierungstiefe. Die Ergebnisse sind allerdings nicht statistisch signifikant ($p(DMFT) = 0,978$, $p(Turesky) = 0,785$). Das Alter der Restauration geht mit einem negativen Effekt auf die Sondierungstiefe einher, der allerdings nicht signifikant ist ($p = 0,209$). Der Gingiva-Index (Silness/Löe) hat einen positiven Effekt auf die Sondierungstiefe (Schätzer: 2,460). Aufgrund eines großen Standardfehlers (1,593) ist auch dieser nicht signifikant ($p = 0,136$). Rauchen hat einen leicht positiven (Schätzer: 0,515), insignifikanten ($p = 0,226$) Effekt auf die Sondierungstiefe. Die Nichtnutzung von Interdentalbürsten zeigt ebenfalls keine signifikanten Einflüsse ($p = 0,717$) auf ST. Somit hatte keine der Variablen einen statistisch signifikanten Einfluss auf die Sondierungstiefe am Testzahn (Tabelle 15).
Tabelle 15: Ergebnisse (lineare Regression "Einschluss") für ST

<table>
<thead>
<tr>
<th></th>
<th>Schätzer</th>
<th>Standard-Fehler</th>
<th>T</th>
<th>p-Wert</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Konstante)</td>
<td>2,764</td>
<td>0,865</td>
<td>3,194</td>
<td>0,004</td>
<td>0,974 – 4,553</td>
</tr>
<tr>
<td>Alter der Restauration</td>
<td>-0,194</td>
<td>0,150</td>
<td>-1,293</td>
<td>0,209</td>
<td>-0,503 – 0,116</td>
</tr>
<tr>
<td>DMFT-Wert</td>
<td>0,001</td>
<td>0,037</td>
<td>0,028</td>
<td>0,978</td>
<td>-0,075 – 0,077</td>
</tr>
<tr>
<td>Silness/Löe gesamt</td>
<td>2,460</td>
<td>1,593</td>
<td>1,544</td>
<td>0,136</td>
<td>-0,835 – 5,755</td>
</tr>
<tr>
<td>Modif. Turesky gesamt</td>
<td>0,064</td>
<td>0,231</td>
<td>0,277</td>
<td>0,785</td>
<td>-0,413 – 0,541</td>
</tr>
<tr>
<td>Raucher/in("Ja")</td>
<td>0,515</td>
<td>0,414</td>
<td>1,245</td>
<td>0,226</td>
<td>-0,341 – 1,371</td>
</tr>
<tr>
<td>IDB-Nutzung("Nein")</td>
<td>0,138</td>
<td>0,377</td>
<td>0,366</td>
<td>0,717</td>
<td>-0,641 – 0,917</td>
</tr>
</tbody>
</table>

Im Regressionsmodell für CAL hat der DMFT-Wert keinen statistischen Einfluss auf CAL (Schätzung: -0,007). Das Alter der Restauration hat ebenfalls kaum Einfluss auf CAL (Schätzung: -0,075). Beide erklärenden Variablen weisen keine statistische Signifikanz auf (p(DMFT) = 0,832, p(Alter) = 0,602). Der Plaque-Index (modif. Turesky) sowie die Nichtnutzung von Interdentalbürsten haben einen gering positiven Effekt (Schätzung(Turesky): 0,167, Schätzung(IDB_nein): 0,210). Die Ergebnisse sind hier ebenfalls nicht signifikant (p(Turesky) = 0,451, p(IDB_nein = 0,561). Einen deutlich positiven Effekt auf CAL zeigt der Gingiva-Index nach Silness/Löe (Schätzung: 1,904). Der p-Wert liegt hier bei 0,217 und ist somit nicht statistisch signifikant. Rauchen hat auf CAL einen signifikant positiven Effekt (Schätzung: 0,998, p = 0,018). Damit konnte nur Rauchen als statistisch signifikanter, positiver Einflussfaktor auf CAL identifiziert werden (Tabelle 16).
Tabelle 16: Ergebnisse (lineare Regression "Einschluss") für CAL

<table>
<thead>
<tr>
<th></th>
<th>Schätzer</th>
<th>Standard- Fehler</th>
<th>T</th>
<th>p-Wert</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Konstante)</td>
<td>2,761</td>
<td>0,816</td>
<td>3,386</td>
<td>0,03</td>
<td>1,074 – 4,448</td>
</tr>
<tr>
<td>Alter der Restauration</td>
<td>-0,075</td>
<td>0,141</td>
<td>-0,529</td>
<td>0,602</td>
<td>-0,366 – 0,217</td>
</tr>
<tr>
<td>DMFT-Wert</td>
<td>-0,007</td>
<td>0,035</td>
<td>-0,215</td>
<td>0,832</td>
<td>-0,79 – 0,064</td>
</tr>
<tr>
<td>Silness/Löe gesamt</td>
<td>1,904</td>
<td>1,501</td>
<td>1,268</td>
<td>0,217</td>
<td>-1,202 – 5,010</td>
</tr>
<tr>
<td>Modif. Turesky gesamt</td>
<td>0,167</td>
<td>0,217</td>
<td>0,766</td>
<td>0,451</td>
<td>-0,283 – 0,616</td>
</tr>
<tr>
<td>Raucher/in("Ja")</td>
<td>0,998</td>
<td>0,390</td>
<td>2,558</td>
<td>0,018</td>
<td>0,191 – 1,804</td>
</tr>
<tr>
<td>IDB-Nutzung("Nein")</td>
<td>0,210</td>
<td>0,355</td>
<td>0,590</td>
<td>0,561</td>
<td>-0,525 – 0,944</td>
</tr>
</tbody>
</table>

Bei der Regressionsanalyse des Gingiva-Index nach Silness/Löe wurden keine nennenswerten Schätzer identifiziert (-0,074, 0,001, -0,113, -0,035, -0,223, 0,270). Alle p-Werte sind hier insignifikant. Es konnte also kein statistisch signifikanter Einfluss der erklärenden Variablen auf den Gingiva-Index am Testzahn festgestellt werden (Tabelle 17).
Tabelle 17: Ergebnisse (lineare Regression "Einschluss") für den Gingiva-Index
(Silness/Löe)

<table>
<thead>
<tr>
<th></th>
<th>Schätzer</th>
<th>Standard-Fehler</th>
<th>T</th>
<th>p-Wert</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Konstante)</td>
<td>-0,404</td>
<td>0,745</td>
<td>-0,541</td>
<td>0,593</td>
<td>-1,946 – 1,138</td>
</tr>
<tr>
<td>Alter der Restauration</td>
<td>-0,074</td>
<td>0,108</td>
<td>-0,681</td>
<td>0,503</td>
<td>-0,298 – 0,150</td>
</tr>
<tr>
<td>DMFT-Wert</td>
<td>0,014</td>
<td>0,027</td>
<td>0,529</td>
<td>0,602</td>
<td>-0,041 – 0,069</td>
</tr>
<tr>
<td>Modif. Turesky gesamt</td>
<td>-0,113</td>
<td>0,171</td>
<td>-0,661</td>
<td>0,515</td>
<td>-0,466 – 0,241</td>
</tr>
<tr>
<td>Raucher/in(“Ja”)</td>
<td>-0,039</td>
<td>0,335</td>
<td>-0,117</td>
<td>0,908</td>
<td>-0,733 – 0,654</td>
</tr>
<tr>
<td>IDB-Nutzung(“Nein”)</td>
<td>-0,223</td>
<td>0,241</td>
<td>-0,926</td>
<td>0,364</td>
<td>-0,722 – 0,276</td>
</tr>
<tr>
<td>CAL\textsubscript{lokal}</td>
<td>0,270</td>
<td>0,157</td>
<td>1,717</td>
<td>0,099</td>
<td>-0,055 – 0,595</td>
</tr>
</tbody>
</table>

Die Regressionsanalyse des BOP auf die erklärenden Variablen (Alter der Restauration, DMFT-Wert, Gingiva-Index, Plaque-Index, Raucher/in(“Ja), IDB-Nutzung(„nein“)) zeigt einen Nulleffekt des DMFT-Wertes (Schätzer: -0,004) sowie des Alters der Restauration (Schätzer: 0,000) auf den BOP. Es liegt ein minimal negativer Effekt des Plaque-Index nach Turesky sowie der Variable „Rauchen“ auf den BOP vor (Schätzer(Tureksy): -0,158, Schätzer(Rauchen): -0,295). Die p-Werte sind allerdings nicht signifikant. Auch hier zeigt der Gingiva-Index (Silness/Löe) mit 0,721 als einzige erklärende Variable einen Schätzer der nicht nahe Null ist. Es liegt ein positiver Effekt auf den BOP vor, allerdings ist dieser aufgrund des hohen Standardfehlers (0,762) nicht signifikant (p = 0,355). Die Nichtnutzung von Interdentalbürsten hat keinen signifikanten Einfluss auf den BOP (p = 0,632). CAL\textsubscript{lokal} zeigt einen signifikant positiven Effekt (Schätzer: 0,225, p-Wert: 0,039) auf den BOP. Folglich zeigt von allen eingeschlossenen Variablen nur CAL\textsubscript{lokal} einen statistisch signifikanten Effekt auf den BOP – je höher CAL, umso eher tritt ein BOP am Testzahn auf (Tabelle 18).
Tabelle 18: Ergebnisse (lineare Regression "Einschluss") für BOP

<table>
<thead>
<tr>
<th></th>
<th>Schätzer</th>
<th>Standard-Fehler</th>
<th>T</th>
<th>p-Wert</th>
<th>95% Konfidenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Konstante)</td>
<td>0,244</td>
<td>0,490</td>
<td>0,499</td>
<td>0,623</td>
<td>-0,771 – 1,260</td>
</tr>
<tr>
<td>Alter der Restauration</td>
<td>0,000</td>
<td>0,070</td>
<td>-0,004</td>
<td>0,997</td>
<td>-0,145 – 0,144</td>
</tr>
<tr>
<td>DMFT-Wert</td>
<td>-0,004</td>
<td>0,017</td>
<td>-0,231</td>
<td>0,819</td>
<td>-0,039 – 0,031</td>
</tr>
<tr>
<td>Silness/Löe gesamt</td>
<td>0,721</td>
<td>0,762</td>
<td>0,946</td>
<td>0,355</td>
<td>-0,860 – 2,301</td>
</tr>
<tr>
<td>Modif. Turesky gesamt</td>
<td>-0,158</td>
<td>0,108</td>
<td>-1,464</td>
<td>0,157</td>
<td>-0,382 – 0,066</td>
</tr>
<tr>
<td>Raucher/in(“Ja”)</td>
<td>-0,295</td>
<td>0,217</td>
<td>-1,362</td>
<td>0,187</td>
<td>-0,745 – 0,154</td>
</tr>
<tr>
<td>IDB-Nutzung(“Nein”)</td>
<td>0,085</td>
<td>0,175</td>
<td>0,486</td>
<td>0,632</td>
<td>-0,279 – 0,449</td>
</tr>
<tr>
<td>CAL lokal</td>
<td>0,225</td>
<td>0,102</td>
<td>2,199</td>
<td>0,039</td>
<td>0,013 – 0,437</td>
</tr>
</tbody>
</table>
3.4 FDI-Kriterien

Abbildung 12: Bewertung der FDI-Kriterien zur klinischen Qualität der subgingivalen Kompositrestaurationen

Bei den ästhetischen Parametern wurde die „Farb stabilität und Transluzenz“ mit 73,3% „sehr gut“ am besten bewertet. Auch bei „Oberflächenverfärbung“ mit 66,7%, „Oberflächenglanz“ mit 56,7% und „Anatomische Form/Kontaktpunkt“ mit 50,0% wurden die Restaurationen in der Mehrheit mit „sehr gut“ bewertet. Beim Parameter „Oberflächenverfärbung“ wurde eine Restauration (3,3%) mit „befriedigend“ bewertet. 4 Restaurationen (13,3%) wurden bei „Anatomische

Abbildung 13: Deskriptive Analyse der FDI-Kriterien (Ästhetische Parameter) | Bezeichnungen der Bewertungsnummernungen siehe Material und Methoden
Die funktionellen Parameter „Fraktur und Retention“, „Verschleiß“ und „Marginale Adaptation“ wurden alle mit „sehr gut“ oder „gut“ bewertet, wobei „Fraktur und Retention“ mit 86,7% „sehr gut“ am besten bewertet wurde. Im Parameter „Patienteneindruck/Kaukomfort“ gaben 66,7% der Probanden/Probandinnen ein „sehr gut“ an. 6,7% bewerteten den Kaukomfort nur als „befriedigend“. Ein/e Proband/in gab den Kaukomfort nach der Restauration als „nicht akzeptabel“ (3,3%) an (Abbildung 14).
Zu den funktionellen Parametern gemäß Hickel et. al wird auch die radiologische Untersuchung der Restaurationen gezählt (Hickel et al., 2010). Im Rahmen der Studienuntersuchung wurden keinerlei Röntgenbilder angefertigt. Im Folgenden
sind einige postoperative Röntgenbilder gezeigt, die nach der Versorgung der subgingivalen Defekte durch den/die behandelnde/n Zahnarzt/Zahnärztin angefertigt wurden (Abbildungen 15-22). Auf eine deskriptive Darstellung der Ergebnisse der radiologischen Untersuchung (Benotung gemäß FDI-Kriterien) wird hier verzichtet, da unter den 30 Studienteilnehmern nur n=8 Röntgenbilder zu finden waren.

Abbildung 15: Probanden-Nr. 07, Aufnahme: 01.08.2018 Zahn 16 – okklusal/distal R2, Alter der Restauration am Aufnahmedatum: 6 Monate, Untersuchung am 13.02.2020, | Quelle: Universitätsklinikum Tübingen
Abbildung 16: Probanden-Nr. 09, Aufnahme: 02.06.2016 Zahn 26 – okklusal/distal R1, Aufnahme direkt postoperativ, Untersuchung am 11.02.2020 | Quelle: Universitätsklinikum Tübingen

In der Bewertungskategorie „Biologische Parameter“ wurde der Parameter „Karies, Erosion, Abfraktion“ am besten bewertet. 90,0% der Restaurationen wurden der Kategorie „sehr gut“ zugewiesen, 6,7% der Kategorie „gut“. Eine Restauration (3,3%) wurde in diesem Bewertungskriterium mit „befriedigend“ bewertet. In 80% der Fälle gaben die Probanden/Probandinnen an, dass keinerlei postoperative Hypersensibilitäten aufgetreten seien. In diesen Fällen wurde das Kriterium in dieser Bewertungskategorie als „sehr gut“ eingestuft. 6,7% wurden in die Kategorie „gut“, 10,0% in die Kategorie „befriedigend“ und 3,3% in die Kategorie „nicht akzeptabel“ eingestuft. In der Bewertungskategorie „Parodontale Reaktion“ wurde das Kriterium „gut“ und „befriedigend“ mit jeweils 43,3% am häufigsten vergeben. Als „sehr gut“ wurden 13,3% der restaurierten Zähne eingestuft (Abbildung 23).
Postoperative Hypersensibilität

<table>
<thead>
<tr>
<th>Bewertungsnummerierung</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut</td>
<td>24</td>
<td>80,0%</td>
</tr>
<tr>
<td>gut</td>
<td>2</td>
<td>6,7%</td>
</tr>
<tr>
<td>befriedigend</td>
<td>3</td>
<td>10,0%</td>
</tr>
<tr>
<td>nicht akzeptabel</td>
<td>1</td>
<td>3,3%</td>
</tr>
</tbody>
</table>

Parodontale Reaktion

<table>
<thead>
<tr>
<th>Bewertungsnummerierung</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut</td>
<td>4</td>
<td>13,3%</td>
</tr>
<tr>
<td>gut</td>
<td>13</td>
<td>43,3%</td>
</tr>
<tr>
<td>befriedigend</td>
<td>13</td>
<td>43,3%</td>
</tr>
</tbody>
</table>

Karies, Erosion, Abfraktion

<table>
<thead>
<tr>
<th>Bewertungsnummerierung</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>sehr gut</td>
<td>27</td>
<td>90,0%</td>
</tr>
<tr>
<td>gut</td>
<td>2</td>
<td>6,7%</td>
</tr>
<tr>
<td>befriedigend</td>
<td>1</td>
<td>3,3%</td>
</tr>
</tbody>
</table>

Abbildung 23: Deskriptive Analyse der FDI-Kriterien (Biologische Parameter) | Bezeichnungen der Bewertungsnummerierungen siehe Material und Methoden
4 Diskussion

4.1 Diskussion des Studiendesigns und der Methodik

Teilnehmer/innen waren zwar parodontal vorbelastet, nahmen aber am regelmäßigen Parodontitis-Recallprogramm teil. So konnten alle Freiwilligen in die Studie aufgenommen werden. Das Kollektiv an Probanden/Probandinnen wurde heterogen gewählt (29 bis 83 Jahre), um die Verhältnisse an die Versorgung in der klinischen Praxis anzuleichen. Die einzige Voraussetzung war, dass der/die Proband/in volljährig ist.

Die Restauration der Testzähne wurde in 33% der Fälle durch eine/n approbierte/n Zahnarzt/Zahnärztin durchgeführt, in 57% der Fälle durch eine/n Studenten/Studentin aus dem Kurs der Zahnerhaltungskunde I oder II. In 3 Fällen (10%) ist der/die Behandler/in unbekannt. Aufgrund der unterschiedlichen Behandler/innen mit variabler Erfahrung sind die Ergebnisse dieser Studie gut auf die klinische Routineversorgung übertragbar. Es ist zu erwähnen, dass die behandelnden Studenten/Studentinnen von einem erfahrenen Zahnarzt oder einer erfahrenen Zahnärztin in der Versorgung angeleitet wurden, da das

unwahrheitsgemäße Beantwortung der Fragen hätte durch einen anonymen Fragebogen, anstatt eines persönlichen Gesprächs, verhindert werden können.

4.2 Diskussion der Ergebnisse

4.2.1 Klinische Beschreibung des Zahnhalteapparates im Bereich der subgingivalen Restauration und am gesunden Kontrollzahn und lineare Regressionen

Die Arbeitshypothese dieser Studie war die Annahme, dass an tiefsubgingival versorgten Testzähnen gleichartige parodontale Verhältnisse wie an gesunden Kontrollzähnen bestehen. Um diese Ansicht zu untersuchen, wurden Test- und Referenzzähne in Kapitel 3.1.4 in Bezug auf BOP, Blutung nach Ausstreichen des Sulkus und lokale Plaqueakkumulation (PCR lokal) diskretiv gegenübergestellt. Neben der graphischen Darstellung, wurden Kreuztabellen erstellt, um eventuelle Zusammenhänge bei Test- und Kontrollzähnen aufzuzeigen. Ferner wurden die Stichproben mittels McNemar-Test auf Unabhängigkeit untersucht.

In der Literatur wird davon ausgegangen, dass die subgingivale Platzierung von Restaurationsrändern negative Einflüsse auf den Zustand des Zahnhalteapparates mit sich zieht. Die Rede ist mitunter von Erhöhung der Sondierungstiefen mit Auftreten von Blutungen (BOP) und lokaler Gingivitis (Ercoli et al., 2021; Ferrari et al., 2018; Padbury et al., 2003). Der Parameter BOP wurde hier an Test- und Referenzzähnen untersucht. Es konnte an Testzähnen mit 76,7% im Vergleich zu den Referenzzähnen (60,0%) häufiger eine Blutung festgestellt werden. Aus der Kreuztabelle (Tabelle 6) ist ersichtlich, dass bei 15 Personen sowohl am Testzahn, als auch am Referenzzahn eine Blutung auf Sondierung aufgetreten ist. Es kann der Rückschluss gezogen werden, dass bei diesen Probanden/Probandinnen generalisiert eine Entzündung des Zahnhalteapparates vorliegt, die nicht ausschließlich auf die restaurierten Zähne zurückzuführen ist. Somit bestehen bei diesen 15 Personen gleichartige Verhältnisse an Test- und Referenzzähnen in Bezug auf den Entzündungsparameter BOP. Nur in 8 Fällen trat am Testzahn eine Blutung auf, während der Referenzzahn keine Blutung zeigte. Der McNemar-Test konnte erwartungsgemäß keine statistisch signifikanten Unterschiede ($p=0,227$)
zwischen Test- und Kontrollzähnen aufzeigen. Die Ergebnisse zeigen also, dass es durch die Versorgung subgingivaler Defekte, anders als in der Literatur beschrieben, nicht zwingend zu einer chronischen Entzündung (Maynard & Wilson, 1979; Newcomb, 1974) kommen muss.

künstlich herbeigeführt - es lag vorher keine subgingivale kariöse Läsion vor und somit keine Besiedelung mit gegebenenfalls parodontalpathogenen Keimen.

Um den Einfluss der Interdentalbürstennutzung auf das Vorhandensein eines BOP an den Testzähnen zu beurteilen, wurde eine Kreuztabelle (Tabelle 7) erstellt. Der McNemar-Test ergab einen insignifikanten \(p \)-Wert von 0,18. In der vorliegenden Studienpopulation konnte der Einfluss der Nutzung von Interdentalbürsten auf das Vorhandensein eines BOP also nicht sicher evaluiert werden. Auch in der gemeinsamen Publikation mit dem Universitätsklinikum Heidelberg wurde der Einfluss der Interdentalbürstennutzung auf den BOP untersucht. Hier wurde ein logistisches Regressionsmodell zur Auswertung gewählt. Es konnte ebenfalls kein statistisch signifikanter Einfluss der IDB-Nutzung auf den BOP \((p=0,24) \) festgestellt werden (Muscholl et al., 2022).

Im Vergleich hierzu konnte eine Studie von Bourgeois et al. zeigen, dass die bakterielle Besiedelung mit parodontalpathogenen Keimen, unter anderem des roten Komplexes nach Socransky (Socransky et al., 1998), durch Interdentalbürstennutzung signifikant reduziert werden kann (Bourgeois et al., 2019). Der hohe BOP-Wert in der hier vorliegenden Untersuchung könnte die Ursache einer vernachlässigten Mundhygiene im Restaurationsbereich sein, obwohl \(n=17 \) Probanden/Probandinnen angaben Interdentalbürsten zu benutzen. Es ist nämlich nicht bekannt wie häufig die IDB tatsächlich angewendet werden. Ferrari et al. beschreiben einen Zusammenhang zwischen proximalen subgingivalen Restaurationen und einem erhöhten BOP (Ferrari et al., 2018). Diese Tatsache, in Verbindung mit den Ergebnissen von Bourgeois et al., zeigt, dass eine adäquate und regelmäßige interdentale Reinigung bei Patienten/Patientinnen, die mir einer PBE versorgt wurden unabdingbar ist und ein subgingivales Geschehen durch Interdentalbürstennutzung kontrolliert werden kann, auch wenn in der vorliegenden Studie aufgrund der geringen Datenlage kein Zusammenhang festgestellt werden konnte. Da die Restaurationen in unserer Studie von vielen unterschiedlichen Behandlern/Behandlerinnen durchgeführt wurden, ist nicht nachvollziehbar, ob
die Personen tatsächlich auf die Wichtigkeit der approximalen Reinigung im Restaurationsbereich hingewiesen wurden.

Jedoch konnte auch bei der größeren Studienpopulation (n=63) der gemeinsamen Publikation mit dem Universitätsklinikum Heidelberg kein statistisch signifikanter Einfluss des Rauchverhaltens auf den BOP an den Testzähnen festgestellt werden ($p=0,112$) (Muscholl et al., 2022).

Aus der gemeinsamen Publikation mit der Poliklinik für Zahnerhaltungskunde des Universitätsklinikums Heidelberg ist ersichtlich, dass auch bei der größeren Population die Häufigkeit einer Blutung bei den Testzähnen im Vergleich zu den Referenzzähnen erhöht war. Die Unterschiede sind statistisch ebenfalls nicht signifikant ($p=0,228$). Es konnte allerdings ein signifikanter negativer Einfluss

Da eine schlechte oder erschwerte Reinigung mit der Folge einer erhöhten Plaqueakkumulation die Entstehung einer parodontalen Erkrankung begünstigt (Chapple et al., 2015; Hellström et al., 1996; Socransky et al., 1998), wurden Test- und Referenzzähne auf das Vorhandensein von Plaque (PCRlokal) untersucht. An Testzähnen konnte in 93,3% der Fälle eine lokale Plaqueanlagerung festgestellt werden, an den Kontrollzähnen war geringfügig häufiger (96,7%) Plaque sichtbar. Die allgemein hohen Werte sind darauf zurückzuführen, dass beim verwendeten Plaque-Index (modif. Turesky, Grad 0-5) bereits vereinzelte Plaque-Inseln (Grad 1) oder eine dünne Plaquelinie am Gingivarand (Grad 2) als Plaque „Ja“ gewertet wird. Die Ergebnisse der beschriebenen deskriptiven Darstellung zeigen auf, dass keine bedeutenden Unterschiede zwischen Test- und Referenzzähnen vorliegen (p = 1,0). Interessant ist hier, dass die Testzähne seltener Plaqueanlagerungen aufweisen, als die Kontrollzähne. Grundsätzlich ist die Schwierigkeit bei einer nach subgingival reichenden Restauration die adäquate Reinigung, weshalb dieses Ergebnis unerwartet ist. Eine mögliche Erklärung wäre, dass die Probanden/Probandinnen an den restaurierten Zähnen eine bessere Reinigung durchführen, nachdem, wie oben empfohlen, passgenaue Interdentalbürsten für die Reinigung des restaurierten Bereiches ausgesucht wurden. Möglich wäre allerdings auch ein zufälliger Effekt aufgrund der geringen Studienpopulation, vor
allem, weil die Ergebnisse an den Test- und Kontrollstellen nur geringfügig voneinander abweichen.

In Kapitel 3.2 wurden die Parameter ST, CAL, Gingiva-Index (Silness/Löe) und Plaque-Index (modif. Turesky) zwischen Test- und Kontrollzähnen verglichen und in Boxplots sowie Tabellen dargestellt. Redundant zur oben aufgeführten Analyse ist die Beschreibung des Plaque- sowie Gingiva-Index. Hier wurde allerdings nicht nur das Vorhandensein von Plaque oder einer Blutung („Ja/Nein“) untersucht, sondern die Ergebnisse gemäß ihrem Grading dargestellt.

In Abbildung 11 und Tabelle 11 sind die Durchschnittswerte der Sondierungstiefen (ST) und des klinischen Attachmentverlustes (CAL) von Test- und Referenzzähnen in Boxplots dargestellt. Sowohl Median, als auch Mittelwerte waren für beide Parameter bei den Testzähnen im Vergleich zu den Referenzzähnen erhöht. Die Unterschiede zeigten sich statistisch signifikant (p(ST) = 0,003, p(CAL) = 0,001).

Die gemeinsame Publikation mit der Gesamtpopulation von n=63 zeigt ebenfalls signifikant erhöhte Werte für CAL bei den Testzähnen im Vergleich zu den Kontrollzähnen (p=0,001). Hier wurde noch der Einfluss einer parodontalen Vorerkrankung auf den CAL untersucht. Probanden mit parodontaler Vorerkrankung zeigten einen signifikant erhöhten CAL an den Testzähnen im Vergleich zu Probanden ohne parodontale Erkrankung (p=0,001). Die

vorliegenden Nachuntersuchungen wurden dagegen 0,21 bis 3,95 Jahre nach
der Restauration durchgeführt. Die statistisch signifikanten Unterschiede
zwischen Testzähnen und den gesunden Kontrollzähnen waren in unserer Studie
ohnehin zu erwarten. Die tiefsubgingivale Versorgung der Testzähne erfolgte
aufgrund eines vorher bestehenden subgingivalen Zahndefekt – der
Attachmentverlust war also bereits vor der Restauration vorhanden.

Beim Parameter Gingiva-Index (Silness/Löe) konnten keine statistisch
signifikanten Unterschiede zwischen Test- und Referenzzähnen nachgewiesen
werden \((p = 0,187)\). Zudem zeigt die Auswertung, dass sowohl bei den
Testzähnen, als auch bei den Referenzzähnen weitgehend gesunde gingivale
Verhältnisse bestehen. Die Median-Werte liegen sowohl für Test- als auch für die
Referenzzähne bei 0,00. Der Gingiva-Index für Testzähne versus Kontrollzähne
wurde in der Publikation von Muscholl et al. nicht deskriptiv dargestellt (Muscholl
et al., 2022).

Ferrari et al. verwendeten in ihrer bereits oben erwähnten Studie ebenfalls den
Gingiva-index nach Silness/Löe. Es wurden \(n=35\) Restaurationen untersucht,
wobei die Verteilung der Ergebnisse ähnlich wie in der hier vorliegenden Studie
ausfiel. Bei der Untersuchung nach 12 Monaten lag in 68,6\% der Fälle \((n=24)\) ein
Gingiva-Index Grad 0 nach Silness/Löe an der Teststelle vor. In der vorliegenden
Studie konnte bei der Nachuntersuchung in 76,7\% \((n=23)\) Grad 0 festgestellt
werden. Bei 20\% der Teststellen stellten Ferrari et al. einen Grad 1 fest. Bei
dieser Studie wiesen 13,3\% der Testzähne einen Gingiva-Index Grad 1 auf.
Ferrari et al. fanden in 4 Fällen (11,5\%) einen Grad 2, während in dieser Studie
in 3 Fällen (10,0\%) ein Grad 2 festgestellt wurde. Grad 3 nach Silness/Löe wurde
in beiden Studien nicht vergeben. Außerdem wurden in der Kontrollgruppe in
beiden Studien geringfügig bessere Ergebnisse erzielt. Ferrari et al. stellten in
18,5\% der Fälle einen Grad 1 fest, während in unserer Studie in 16,7\% Grad 1
festgestellt wurde. Höhere Scores wurden in beiden Studien bei der
Kontrollgruppe nicht vergeben. Signifikante Unterschiede zwischen Test- und
Kontrollgruppe konnten in beiden Studien nicht gefunden werden (Ferrari et al.,
2018). Die Schlussfolgerung aus diesen Ergebnissen ist, dass keine statistisch
signifikante gingivale Entzündung an tiefsubgingival versorgten Zähnen festgestellt werden kann und gleichartige gingivale Verhältnisse zwischen Test- und Referenzzähnen bestehen.

Da der Raucherstatus bedeutend für die Entstehung oder das Vorhandensein einer Parodontitis ist (Haber et al., 1993), ist es wichtig, diesen in Bezug auf die Parodontitis-Klassifikation an den Testzähnen miteinzubeziehen und darzustellen. Die oben beschriebenen Ergebnisse zeigen erhöhte Parodontitis-Stadien für die Testzähne auf. Nicht beachtet wurde in dieser Darstellung das Rauchverhalten der Studienteilnehmer/innen. So kann es sein, dass die Testzähne zwar im Parodontitis-Staging hoch eingeordnet werden, die Ursache dafür aber auch das Rauchverhalten sein kann. In Tabelle 14 ist die PA-Klassifikationen und das Rauchverhalten (Nichtraucher/in/ehemalige/r Raucher/in/Raucher/in) gegenübergestellt. Es ist ersichtlich, dass keiner der aktiven Raucher/innen (n=6) oder ehemaligen Raucher/innen (n=6) ein Parodontitis-Stadium 0 oder I aufweist. Unter den aktiven Rauchern und Raucherinnen liegt an zwei Testzähnen ein Stadium III vor, während unter den Nichtrauchern/Nichtraucherinnen (n=18) ebenfalls an zwei Testzähnen ein

Parodontale Parameter (ST, CAL, BOP, Gingiva-Index nach Silness/Löe) wurden in Kapitel 3.3 als abhängige Variablen herangezogen, um den Einfluss verschiedener erklärender Variablen auf diese festzustellen. Es wurden lineare Regressionen im Einschlussmodell durchgeführt (Tabelle 15-18). Die erklärenden Variablen sind das Alter der Restauration, der DMFT-Wert, der Gesamt-Gingiva-Index (Silness/Löe), der Gesamt-Plaque-Index (modif.
Turesky), der Raucherstatus (Rauchen\textquotedbl{}Ja\textquotedbl{}), die Nutzung von Interdentalbürsten (IDB\textquotedbl{}nein\textquotedbl{}) und der lokale CAL (CAL\textsubscript{lokal}).

Nur im Modell \textquotedbl{}CAL\textquotedbl{} und \textquotedbl{}BOP\textquotedbl{} konnten signifikante \textit{p-Werte} ermittelt werden.

Im Modell \textquotedbl{}CAL\textquotedbl{} zeigt Rauchen\textquotedbl{}(\textit{Ja})\textquotedbl{} einen positiven Effekt (Schätzer: 0,998) auf CAL bei einem statistisch signifikanten \textit{p-Wert} von 0,018. Dieses Ergebnis veranschaulicht, dass Rauchen den CAL positiv beeinflusst. Diese Beobachtung deckt sich mit den Erkenntnissen aus der Literatur (Gonzalez et al., 1996; Gunsolley et al., 1998; Haffajee & Socransky, 2001a). In Bezug auf unsere Studienergebnisse ist dieses Ergebnis bezogen auf die Messwerte für CAL von Bedeutung. Die erhöhten CAL-Werte bei Rauchern beeinflussen die Auswertung. Somit sind die Durchschnittswerte für CAL erhöht. Ohne Berücksichtigung des Raucherstatus ließe sich aus den erhöhten Messwerten für CAL schließen, dass diese durch die subgingival platzierte Restauration bedingt sind. Die Ergebnisse der Regressionsanalyse zeigen allerdings den Einfluss von Rauchen auf den CAL und somit schlechtere Ergebnisse für CAL. Eine Vergleichsstudie, die subgingivale Restaurationen evaluiert und den Einfluss des Rauchverhaltens auf den CAL im Bereich der Versorgungen untersucht hat, war zum jetzigen Zeitpunkt nicht zu finden.

Im Regressionsmodell \textquotedbl{}BOP\textquotedbl{} zeigt CAL\textsubscript{lokal} einen signifikant positiven Effekt (Schätzer: 0,0225) auf den BOP (\textit{p} = 0,039). Auch in der Gesamtkohorte (n=63) aus der gemeinsamen Publikation mit der Poliklinik für Zahnerhaltungskunde des Universitätsklinikums Heidelberg zeigt CAL einen signifikant positiven Einfluss auf den BOP (\textit{p}=<0,001) (Muscholl et al., 2022). Es tritt also wahrscheinlicher ein BOP am Testzahn auf, wenn der CAL erhöht ist. Das Resultat ist auch sinnvoll, da bei einem erhöhten Attachmentverlust die Reinigungsfähigkeit erschwert ist. Das Auftreten eines BOP, spricht in diesem Zusammenhang für eine subgingivale Entzündung an den betroffenen Zähnen.

Alle übrigen Modelle und Variablen zeigten keine statistisch signifikanten \textit{p}-Werte. Da es sich in der vorliegenden Studie um eine Nachbeobachtung mit einer geringen Studienpopulation handelt (n=30), waren signifikante Ergebnisse nicht
zungend zu erwarten. Bei Außerachtlassen der p-Werte für die übrigen Variablen sind jedoch einige Auffälligkeiten zu beobachten:

Der DMFT-Wert zeigt in allen Modellen (ST, CAL, Gingiva-Index, BOP) einen Nulleffekt. Die Schätzer variieren jeweils zwischen -0,007 und 0,014. Der DMFT scheint folglich keinerlei Einfluss auf die abhängigen Variablen ST, CAL, BOP und Gingiva-Index zu haben. In der Gesamtpopulation aus der Publikation mit dem Universitätsklinikum Heidelberg stellt sich der Einfluss des DMFT auf die gewählten abhängigen Variablen ähnlich dar. Hier wurden BOP, GBI und PCR als abhängige Variablen herangezogen. Der DMFT zeigt in keinem der Modelle statistisch signifikante p-Werte. Im Modell GBI und PCR zeigt sich ebenfalls ein Nulleffekt (Schätzer(GBI): -0,002), Schätzer(PCR): -0,058). Auf den BOP hat der DMFT einen leicht positiven, insignifikanten Einfluss (Schätzer: 0,361) (Muscholl et al., 2022).

In der vorliegenden Studie hat die erklärende Variable „Alter der Restauration“ in allen Modellen einen tendenziell leicht negativen Effekt auf ST, CAL, Gingiva-Index und BOP (Schätzer: -0,194 – 0,000). Dieses Ergebnis deckt sich mit den Beobachtungen von Bertoldi et al. und Schätzle et al., die in Bezug auf Sondierungstiefen und den klinischen Attachmentverlust nach längeren Beobachtungszeiträumen bessere Werte aufzeigen konnten (Bertoldi et al., 2020; Schätzle et al., 2001). Bei Schätzle et al. war der Gingiva-Index, im Gegensatz zu den hier vorliegenden Ergebnissen, mit dem Restaurationsalter leicht erhöht. In der Studie von Muscholl et al. konnte kein nennenswerter Einfluss des Alters der Restauration auf die untersuchten Variablen GBI und BOP festgestellt werden (Muscholl et al., 2022).

Der Geamt-Gingiva-Index nach Silness/Löe, der nur in den Modellen ST, CAL und BOP aufgenommen wurde, weist in allen Regressionen einen verhältnismäßig großen Schätzer auf (0,721 – 2,460). Je größer der Gingiva-Index für die gesamte Mundhöhle, desto größer stellen sich die Werte an den Testzähnen für ST und CAL dar und desto wahrscheinlicher tritt ein Bluten auf Sondieren (BOP) auf. Dieses Ergebnis ist mit Erkenntnissen aus der Literatur vereinbar, die belegen, dass sich eine Parodontitis mit erhöhten

Die erklärende Variable Rauchen(„Ja“) weist in den Modellen „ST“ und „CAL“ positive Schätzer auf (0,515(ST), 0,998(CAL)). Die Ergebnisse sind allerdings nur im Modell „CAL“ statistisch signifikant. Trotzdem ist der positive Einfluss auf ST und CAL mit Daten aus der Literatur vereinbar (Gunsolley et al., 1998; Haber et al., 1993). In den Modellen „Gingiva-Index“ und „BOP“ finden sich für den Parameter „Rauchen“ leicht negative Schätzer (-0,039(Gingiva-Index), -0,0295(BOP). Auch diese Ergebnisse sind nicht statistisch signifikant. Ein negativer Einfluss des Rauchens auf das Auftreten von gingivalen Blutungen ist allerdings auch in der Literatur zu finden, wie bereits oben beschrieben (Dietrich et al., 2004).

vorliegenden Studie, bei der Gesamtpopulation aus Personen am Standort Tübingen (n=24) und Heidelberg (n=39) ein signifikant negativer Einfluss der Nutzung von Interdentalbürsten auf den Blutungsindex festgestellt werden (p=0.01). In der hier vorliegenden Studie ergab sich im Regressionsmodell für den Gingiva-Index ein statistisch insignifikanter p-Wert von p=0.364 (Schätzer: -0.22) für die Nichtnutzung von IDB. Das insignifikante Ergebnis in der hier vorliegenden Studie ist aus der kleineren Studienpopulation herzuleiten (Muscholl et al., 2022).

Trotz der überwiegend fehlenden statistischen Signifikanz in der hier vorliegenden Studie, ist das Ergebnis als Schlussfolgerung interessant. Genauso wie das Rauchverhalten, hat auch die Plaquemenge einen Einfluss auf ST und CAL (Haber et al., 1993; Listgarten, 1988). Die Tatsache muss bei der Interpretation der Studienergebnisse berücksichtigt werden. Erhöhte Messwerte für ST und CAL sind demnach nicht allein auf die tiefsubgingivale Restauration, sondern auch auf das Rauchverhalten und die häusliche Plaquekontrolle zurückzuführen.

4.2.2 Qualitätsparameter der tief subgingivalen Kompositrestaurationen

In Abbildung 13 sind die Ergebnisse der ästhetischen Parameter („Oberflächenglanz“, „Oberflächenverfärbung“, „Farbstabilität und Transluzenz“, „Anatomische Form/Kontaktpunkt“) dargestellt. Bei der Einflussgröße „Farbstabilität und Transluzenz“ wurden ausschließlich die Bewertungsoptionen...
„sehr gut“ (73,3%) und „gut“ (26,7%) vergeben. Die Mehrheit der Restaurationen wies bei den übrigen ästhetischen Parametern ebenfalls die Note „sehr gut“ auf. Der Oberflächenglanz wurde in 56,7% der Fälle als „klinisch exzellent“ und in 36,7% als „gut“ bewertet. In zwei Fällen lag die Bewertungsoption „befriedigend“ (6,7%) vor. Die Oberflächenverfärbung wurde bei 66,7% der Restaurationen als „sehr gut“ und bei 30,0% als „gut“ bewertet. Eine Restauration (3,3%) wies eine moderate Verfärbung auf und wurde als „befriedigend“ bewertet. In der vorliegenden Studie wurden die beiden FDI-Kriterien „Anatomische Form“ und „Kontaktpunkt“ zu einem Parameter zusammengefasst. Es wurde also nicht nur die Ästhetik und Funktionalität der Zahnanatomie im Kontaktpunktbereich bewertet, sondern auch die Stärke des Approximalkontaktes. Die gemeinsame Betrachtung beider Qualitätsparameter ist sinnvoll, da die Kontaktpunktstärke mit der anatomischen Form zusammenhängt. Ein idealer Approximalkontakt liegt im koronalen Drittel des Zahnes. Während sich dieser beim Jugendlichen punktförmig darstellt, wird er mit zunehmendem Alter flächiger (Hanscho, 2014). Diese Leitlinien gilt es bei der Beurteilung dieses Parameters zu beachten. In der vorliegenden Studie zeigten 15 Restaurationen (50,0%) eine ideale Form und optimale Kontaktpunktstärke. 36,7% der Restaurationen wiesen eine leichte Abweichung von der idealen anatomischen Form oder einen etwas zu starken Kontakt auf. 4 Restaurationen (13,3%) konnten in Bezug auf diesen Parameter nur als „befriedigend“ bewertet werden, da der Kontakt entweder etwas zu schwach oder die anatomische Form eine Abweichung aufwies. Bei keinem der ästhetischen Bewertungskriterien wurde die Benotung „klinisch nicht akzeptabel“ oder schlechter vergeben.

Studienpopulation mit n=63 wurden 25% der Restaurationen in Bezug auf die anatomische Form als „befriedigend“ oder sogar „klinisch nicht akzeptabel“ bewertet. Ein Grund für die Abweichung in der Gesamtbetrachtung könnte sein, dass die Beurteilung der FDI-Kriterien in der hier vorliegenden Studie nur durch mich durchgeführt wurde, während die Daten in der Publikation von unterschiedlichen Untersuchern mit subjektiv abweichenden Bewertungsmustern stammen (Muscholl et al., 2022).

Die FDI-Kriterien wurden seit der Neuaufgabe im Jahr 2010 in zahlreichen Studien angewandt (Bresser et al., 2019; Donmez et al., 2016; Farag et al., 2011; Favetti et al., 2021; Hashem et al., 2019; Maillet et al., 2022; Staehle et al., 2015). Es sind allerdings kaum Studien vorhanden, die die FDI-Kriterien an Zähnen, die mit einer PBE versorgt wurden, untersucht haben. Als Vergleichsstudie, war hier, abgesehen von unserer Veröffentlichung in Zusammenarbeit mit dem Universitätsklinikum Heidelberg, nur eine Publikation zu finden.

Bewertungsoptionen „sehr gut“ und „gut“ in über 85% der Fälle vergeben (Muscholl et al., 2022).

Bresser et. al vergaben bei den funktionellen Parametern folgende Bewertungen: Das Bewertungskriterium „Fraktur“ wurde in 92% der Fälle mit „sehr gut“ bewertet, in 6% der Fälle als „gut“ und in 2% der Fälle als „befriedigend“. Schlechtere Benotungen wurden hier nicht vergeben. Die marginale Adaptation wurde bei 18% der Restauration als „klinisch exzellent“ eingestuft. 52% der Restaurationen wurden hier als „gut“ bewertet und 30% als befriedigend. Bei 63% der Restaurationen konnte keinerlei Verschleiß festgestellt werden (Score „sehr gut“). Die übrigen Restaurationen wurden in diesem Parameter als „gut“ bewertet. Das Bewertungskriterium „Patienteneindruck“ wurde in dieser Studie nicht untersucht (Bresser et al., 2019).

Zu den funktionellen Parametern nach Hickel et al. zählt auch die Beurteilung gegebenenfalls vorhandener Röntgenbilder der restaurierten Zähne. Nach Durchsicht vorhandener Aufnahmen, die nach der Restauration der tiefsubgingivalen Restaurationen angefertigt wurden, konnten 8 postoperative Bilder ausfindig gemacht werden, die in den Abbildungen 15 bis 22 dargestellt sind. Die Mehrheit der Aufnahmen zeigt einen dichten und reizfreien Abschluss des Restaurationsrandes im subgingivalen Bereich. Die Abbildungen 16 und 21

meisten der Restaurationen als suffizient einzustufen ist, besteht die Annahme, dass der Rückgang des Alveolarknochens nicht auf die Restauration zurückzuführen ist, sondern bereits auf die subgingivale kariöse Läsion (und die Reaktion des Alveolarknochens auf die Mikroorganismen), die vor der Versorgung bestand. In diesem Zusammenhang muss darauf hingewiesen werden, dass die Aufnahmen der restaurierten Zähne mit den Abbildungsnummern 16, 18 und 19 bereits am Tag der Restauration angefertigt wurden. Abbildung 16 und 18 zeigen wie oben beschrieben einen rein horizontalen Knochenverlust – ein Knochenrückgang im Restaurationsbereich könnte hier gegebenenfalls erst zu einem späteren Zeitpunkt beobachtet werden. Die Restauration der die Abbildungsnummer 19 zugeordnet ist, zeigt bereits auf dem Röntgenbild vom Tag der Restauration einen vertikalen Knochenrückgang im Restaurationsbereich. Dies untermauert die These, dass das reduzierte Knochenangebot bereits auf die subgingivale kariöse Läsion zurückzuführen ist. Um dies zu stützen, wäre eine Untersuchung vor der Versorgung dieser Defekte nützlich gewesen.

Im Abschnitt „Biologische Parameter“ (Abbildung 23) wurden beim Bewertungskriterium „Karies, Erosion, Abfraktion“ die besten Ergebnisse erzielt. Bei 90,0% der Restaurationen konnte keinerlei kariöse Läsionen, Erosionen oder Frakturen festgestellt werden. Eine Restauration (3,3%) wurde mit „befriedigend“ bewertet. Die Bewertungsoptionen „klinisch nicht akzeptabel“ oder „klinisch schlecht“ wurden bei diesem Parameter nicht vergeben. Zwei Probanden/Probandinnen gaben leichte postoperative Hypersensibilitäten an (Score 2), 24 (80,0%) hatten keinerlei Hypersensibilitäten nach der Versorgung (Score 1). 4 Personen hatten stärkere Beschwerden nach der Restauration (10,0% „befriedigend“, 3,3% „klinisch nicht akzeptabel“). Der am schlechtesten bewertete biologische Parameter war „Parodontale Reaktion“. Nur vier Personen (13,3%) zeigten im Restaurationsbereich keinerlei Entzündungszeichen. 13 Restaurationen (43,3%) wurden in diesem Parameter mit „gut“ bewertet. Ebenfalls 13 (43,3%) der Restaurationen wiesen eine Gingivitis und moderat erhöhte parodontale Taschentiefen auf und wurden deshalb nur als „klinisch akzeptabel“ bewertet.
Die Auswertung der Gesamtkohorte in der gemeinsamen Publikation im Rahmen unserer bizentrischen Studie ergab vergleichbare Ergebnisse für die Parameter „Postoperative Hypersensibilität“ und „Karies, Erosion, Abfraktion“. Beim Parameter „parodontale Reaktion“ fiel das Gesamtergebnis für die Studienpopulation von n=63 mit der Bewertung „befriedigend“ oder schlechter in unter 30% der Fälle besser aus. Grund für die Abweichung könnte eine strengere Beurteilung durch den Untersucher sein. Zudem ist die Beurteilung dieses Parameters anspruchsvoll, da sowohl die lokale Plaqueakkumulation, der Blutungsindex, als auch die Sondierungstiefe mitberücksichtigt werden müssen, was potentiell Unterschiede in der subjektiven Bewertung bei unterschiedlichen Untersuchern hevorrbringen kann (Muscholl et al., 2022).

In der Nachuntersuchung von Bresser et al. trat in 99% der Fälle keinerlei postoperative Hypersensibilität auf. Lediglich 0,5% der Probanden/Probandinnen gaben eine leichte Hypersensibilität an, ebenfalls 0,5% gaben eine moderate Empfindlichkeit an. In 95% der Fälle gab es keinen Anhalt auf Sekundärkaries am Restaurationsrand. In 5% der Fälle konnte Sekundärkaries festgestellt werden. Die parodontale Reaktion wurde in 39% der Fälle als „sehr gut“ bewertet, in 50% der Fälle konnte ein Bluten auf Sondieren festgestellt werden (Score „gut“). Bei 11% der untersuchten Restaurationen konnten parodontale Probleme mit Attachmentverlust festgestellt werden (Bresser et al., 2019).

Die Anzahl an Studien, die mit PBE versorgte Restaurationen mittels FDI-Kriterien bewerten, ist äußerst gering. Um Studienergebnisse besser in die
aktuelle Forschung einordnen zu können, sollten mehr Untersuchungen dieser Art erfolgen.
4.3 Schlussfolgerungen

5 Zusammenfassung

In der vorliegenden retrospektiven Studie wurde die klinische Qualität von subgingival platzierten Kompositrestaurationen bewertet und der Entzündungsstatus des umliegenden parodontalen Gewebes beurteilt.

Es handelt sich um eine bizentrische Studie, die in Zusammenarbeit mit der Poliklinik für Zahnerhaltungskunde des Universitätsklinikums Heidelberg durchgeführt wurde. Aus den Studienergebnissen beider Standorte ist eine gemeinsame Publikation hervorgegangen, wobei 24 Probanden/Probandinnen vom Standort Tübingen und 39 Personen vom Standort Heidelberg in die Publikation eingeschlossen wurden.

Ein Ziel dieser Studie war es zu untersuchen, ob sich die Hypothese, dass an tiefsubgingival mit der R1- oder R2-Technik restaurierten Zähnen, gleichartige parodontale Verhältnisse im Vergleich zu gesunden Kontrollzähnen bestehen, bestätigt.

Unter den Studienteilnehmern und Studienteilnehmerinnen lag das mittlere Alter der Restaurationen bei 1,4 ± 1,2 Jahren. In Bezug auf Gingivitis, Bluten auf Sondieren oder die lokale Plaqueakkumulation konnten keine signifikanten Unterschiede zwischen Test- und Referenzzähnen festgestellt werden. Sondierungstiefe sowie der klinische Attachmentverlust waren bei den Testzähnen signifikant erhöht (p(ST)= 0,003, p(CAL)= 0,001). Es konnte ein signifikanter Einfluss des Raucherstatus auf ST und CAL festgestellt werden.

Die linearen Regressionen ergaben einen signifikant positiven Effekt von Rauchen auf CAL (p = 0,018). CAL\textsubscript{lokal} hat einen statistisch signifikant positiven Einfluss auf BOP (p = 0,039). Es konnten keine weiteren signifikanten Einflüsse ermittelt werden. Trotzdem konnte ein Nulleffekt des DMFT auf ST, CAL, Plaque-Index und BOP festgestellt werden. Das Alter der Restauration beeinflusst ST und CAL negativ. Je größer der Gingiva-Index für die gesamte Mundhöhle, desto größer die Werte für CAL, ST und BOP. Die Bewertung der Qualitätsparameter zeigte für die restaurierten Zähne gute Ergebnisse.

In der gemeinsamen Publikation mit dem Universitätsklinikum Heidelberg mit einer größeren Studienpopulation von n=63 konnten in Bezug auf gingivale, parodontale und Qualitätsparameter ähnliche Ergebnisse erzielt werden.

6 Literaturverzeichnis

7 Anhang

7.1 Vergleich einzelner Parodontitis-Parameter (restaurierte Zähne versus Referenzzähne)

Abbildung 24: Boxplots für ST (in mm) zu allen sechs Messwerten pro Zahn (restaurierte Zähne und Referenzzähne) | T=Testzahn, R=Referenzzahn
Abbildung 25: Boxplots für CAL in mm zu allen sechs Messwerten pro Zahn (restaurierte Zähne und Referenzzähne) | T=Testzahn, R=Referenzzahn
Abbildung 26: Boxplots für den Gingiva-Index (Silness/Löe) zu allen sechs Messwerten pro Zahn (restaurierte Zähne versus Referenzzähne) | T = Testzahn, R = Referenzzahn
Abbildung 27: Boxplots für den Plaque-Index (Quigley-Hein-Index, modifiziert nach Turesky) zu allen sechs Messwerten pro Zahn (restaurierte Zähne versus Referenzzähne) | T=Testzahn, R=Referenzzahn
Tabelle 19: Deskriptive Auflistung der statistischen Kennwerte für ST (in mm) zu allen sechs Messwerten pro Zahn

<table>
<thead>
<tr>
<th></th>
<th>Testzahn</th>
<th>Kontrollzahn</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>30 (100,0%)</td>
<td>30 (100,0%)</td>
</tr>
<tr>
<td>disto-bukkal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,1 (1,09)</td>
<td>2,73 (1,08)</td>
</tr>
<tr>
<td>Median Q1, Q3</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>2,00, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>2, 6</td>
<td>1, 5</td>
</tr>
<tr>
<td>bukkal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>1,70 (0,702)</td>
<td>1,63 (0,615)</td>
</tr>
<tr>
<td>Median Q1, Q3</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>1,00, 2,00</td>
<td>1,00, 2,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 4</td>
<td>1, 3</td>
</tr>
<tr>
<td>Mesio-bukkal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>2,90 (0,960)</td>
<td>2,57 (0,858)</td>
</tr>
<tr>
<td>Median Q1, Q3</td>
<td>3,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>2,00, 3,25</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>2, 6</td>
<td>2, 6</td>
</tr>
<tr>
<td>Mesio-oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,20 (1,157)</td>
<td>2,87 (1,106)</td>
</tr>
<tr>
<td>Median Q1, Q3</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>2,00, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 7</td>
<td>1, 6</td>
</tr>
<tr>
<td>oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>2,23 (0,858)</td>
<td>2,00 (0,910)</td>
</tr>
<tr>
<td>Median Q1, Q3</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>2,00, 3,00</td>
<td>2,00, 2,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 5</td>
<td>0, 5</td>
</tr>
<tr>
<td>Disto-oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,00 (1,365)</td>
<td>2,77 (1,104)</td>
</tr>
<tr>
<td>Median Q1, Q3</td>
<td>3,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>2,00, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 8</td>
<td>2, 6</td>
</tr>
<tr>
<td></td>
<td>Testzahn</td>
<td>Kontrollzahn</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>N (%)</td>
<td>30 (100,0%)</td>
<td>30 (100,0%)</td>
</tr>
<tr>
<td>disto-bukkal n.a.(%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,37 (1,129)</td>
<td>2,93 (1,230)</td>
</tr>
<tr>
<td>Median</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,75, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>2, 6</td>
<td>1, 6</td>
</tr>
<tr>
<td>bukkal n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>2,60 (1,102)</td>
<td>2,33 (1,093)</td>
</tr>
<tr>
<td>Median</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,00, 3,00</td>
<td>1,75, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 5</td>
<td>1, 5</td>
</tr>
<tr>
<td>Mesio-bukkal</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,23 (1,040)</td>
<td>2,80 (0,961)</td>
</tr>
<tr>
<td>Median</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,00, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>2, 6</td>
<td>2, 6</td>
</tr>
<tr>
<td>Mesio-oral</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,27 (1,081)</td>
<td>2,93 (1,081)</td>
</tr>
<tr>
<td>Median</td>
<td>3,00</td>
<td>3,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,75, 4,00</td>
<td>2,00, 3,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>2, 7</td>
<td>1, 6</td>
</tr>
<tr>
<td>oral</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>2,43 (0,898)</td>
<td>2,23 (1,040)</td>
</tr>
<tr>
<td>Median</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,00, 3,00</td>
<td>2,00, 2,25</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 5</td>
<td>0, 5</td>
</tr>
<tr>
<td>Disto-oral</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>3,17 (1,315)</td>
<td>2,90 (1,242)</td>
</tr>
<tr>
<td>Median</td>
<td>3,00</td>
<td>2,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>2,00, 4,00</td>
<td>2,00, 3,25</td>
</tr>
<tr>
<td>Min, max</td>
<td>1, 8</td>
<td>2, 6</td>
</tr>
</tbody>
</table>
Tabelle 21: Deskriptive Auflistung der statistischen Kennwerte für den Gingiva-Index (Silness/Löe) zu allen sechs Messwerten pro Zahn

<table>
<thead>
<tr>
<th></th>
<th>Testzahn</th>
<th>Kontrollzahn</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (%)</td>
<td>30 (100,0%)</td>
<td>30 (100,0%)</td>
</tr>
<tr>
<td>disto-bukkal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,37 (0,765)</td>
<td>0,07 (0,365)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,00</td>
<td>0,00, 0,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 2</td>
</tr>
<tr>
<td>bukkal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,27 (0,691)</td>
<td>0,07 (0,365)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,00</td>
<td>0,00, 0,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 2</td>
</tr>
<tr>
<td>Mesio-bukkal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,20 (0,610)</td>
<td>0,07 (0,365)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,00</td>
<td>0,00, 0,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 2</td>
</tr>
<tr>
<td>Mesio-oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,37 (0,765)</td>
<td>0,40 (0,814)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,00</td>
<td>0,00, 0,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 2</td>
</tr>
<tr>
<td>oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,27 (0,691)</td>
<td>0,47 (0,860)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,00</td>
<td>0,00, 0,00</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 2</td>
</tr>
<tr>
<td>Disto-oral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td>Mittelwert (SD)</td>
<td>0,40 (0,814)</td>
<td>0,47 (0,860)</td>
</tr>
<tr>
<td>Median</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>Q1, Q3</td>
<td>0,00, 0,00</td>
<td>0,00, 0,50</td>
</tr>
<tr>
<td>Min, max</td>
<td>0, 2</td>
<td>0, 2</td>
</tr>
</tbody>
</table>
Tabelle 22: Deskriptive Auflistung der statistischen Kennwerte für den Plaque-Index (Quigley-Hein-Index, modifiziert nach Turesky) zu allen sechs Messwerten pro Zahn

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
<th>Testzahn</th>
<th>Kontrollzahn</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30 (100,0%)</td>
<td>30 (100,0%)</td>
</tr>
<tr>
<td>disto-bukkal</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (SD)</td>
<td>2,90 (1,539)</td>
<td>2,67 (1,709)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Q1, Q3</td>
<td>2,00, 4,00</td>
<td>2,00, 5,00</td>
</tr>
<tr>
<td></td>
<td>Min, max</td>
<td>0, 5</td>
<td>0, 5</td>
</tr>
<tr>
<td>bukkal</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (SD)</td>
<td>1,63 (1,497)</td>
<td>1,30 (1,418)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,00</td>
<td>1,00</td>
</tr>
<tr>
<td></td>
<td>Q1, Q3</td>
<td>0,00, 3,00</td>
<td>0,00, 3,00</td>
</tr>
<tr>
<td></td>
<td>Min, max</td>
<td>0, 5</td>
<td>0, 4</td>
</tr>
<tr>
<td>Mesio-bukkal</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (SD)</td>
<td>2,90 (1,561)</td>
<td>2,27 (1,760)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Q1, Q3</td>
<td>2,00, 4,00</td>
<td>1,00, 3,25</td>
</tr>
<tr>
<td></td>
<td>Min, max</td>
<td>0, 5</td>
<td>0, 5</td>
</tr>
<tr>
<td>Mesio-oral</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (SD)</td>
<td>2,20 (1,669)</td>
<td>2,47 (1,358)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,00</td>
<td>3,00</td>
</tr>
<tr>
<td></td>
<td>Q1, Q3</td>
<td>1,00, 3,25</td>
<td>1,00, 3,00</td>
</tr>
<tr>
<td></td>
<td>Min, max</td>
<td>0, 5</td>
<td>0, 5</td>
</tr>
<tr>
<td>oral</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (SD)</td>
<td>1,77 (1,357)</td>
<td>1,77 (1,165)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,00</td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td>Q1, Q3</td>
<td>0,75, 3,00</td>
<td>1,00, 2,25</td>
</tr>
<tr>
<td></td>
<td>Min, max</td>
<td>0, 5</td>
<td>0, 4</td>
</tr>
<tr>
<td>Disto-oral</td>
<td>n.a. (%)</td>
<td>0 (0,0%)</td>
<td>0 (0,0%)</td>
</tr>
<tr>
<td></td>
<td>Mittelwert (SD)</td>
<td>2,20 (1,424)</td>
<td>2,70 (1,418)</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2,00</td>
<td>2,50</td>
</tr>
<tr>
<td></td>
<td>Q1, Q3</td>
<td>1,00, 3,00</td>
<td>2,00, 4,00</td>
</tr>
<tr>
<td></td>
<td>Min, max</td>
<td>0, 5</td>
<td>0, 5</td>
</tr>
</tbody>
</table>
7.2 Patienteninformation

Patienteninformation

Nachuntersuchung zur klinischen Qualität von tief subgingivalen Restaurationen in vivo

Sehr geehrte Patientin/Dame, sehr geehrter Patient/Herr,
mit diesem Schreiben laden wir Sie ein, an der oben genannten Studie teilzunehmen. Bitte lesen Sie sich die folgenden Informationen sorgfältig durch. Sie können dann entscheiden, ob Sie teilnehmen möchten oder nicht. Lassen Sie sich ausreichend Zeit und stellen Sie den Studienmitarbeitern alle Fragen, die für Sie wichtig sind. Die Studie wird finanziert durch die Poliklinik für Zahnverhaltungskunde.

Bei Fragen können Sie sich an die Studienleiterin Frau Prof. Dr. med. dent. D. Wolff unter der Telefonnummer 07071 29-82157 wenden.

Welches Ziel verfolgt die Studie?
Sie haben im Rahmen Ihrer zahnärztlichen Behandlung in der Poliklinik für Zahnverhaltungskunde eine tief unter dem Zahnfleisch liegende Versorgung (Restauration) erhalten, eine sogenannte tief subgingivale Kompositrestauration. In solchen Fällen liegen die Ränder der Kompositrestauration in unmittelbarer Nachbarschaft zum Kieferknochen. Um chronische Entzündungen zu vermeiden, sollen die Ränder von zahnärztlichen Restaurationen idealerweise einen beschriebenen Mindestabstand von ca. 3 mm zum Knochen haben (sog. „Biologische Breite“ dargestellt in Abb.1). Ist dies nicht der Fall, müssen oft umfangreiche Vorbehandlungen, wie z.B. kleinere chirurgische Eingriffe, vorgenommen werden. Um dies zu vermeiden, wurde bei Ihrer Behandlung eine neuartige Behandlungsstrategie angewendet, mit deren Hilfe es möglich ist, tief subgingivale Defekte minimalinvasiv zu restaurieren und trotz Unterschreitung der Biologischen Breite entzündungsfreie Verhältnisse herzustellen. Im Rahmen dieser Studie möchten wir die klinische Qualität der Kompositrestaurationen sowie deren Einfluss auf den Zahnhalteapparat nachuntersuchen.
Abbildung 29: Patienteninformation (Seite 2)

Wie ist der Ablauf der Studie?

Wie ist der zeitliche Aufwand?
Der Zeitraufwand beträgt für die Untersuchung ca. 60 Minuten.

Habe ich einen persönlichen Nutzen?
Die Teilnahme an der Studie hat für Sie, außer einer zahnärztlichen Routinekontrolle (mit Stempel im Bonushelft), keinen zusätzlichen persönlichen Nutzen oder therapeutische Wirkung. Sollten wir jedoch bei Ihrer Untersuchung eine Erkrankung in der Mundhöhle feststellen, so werden wir Sie darüber aufklären und entsprechende Therapiemöglichkeiten anbieten.

Welche Risiken sind mit der Teilnahme verbunden?
Durch die Untersuchung entstehen keine Schäden oder Verletzungen an Zähnen und Zahnfleisch.

Informationen zum Datenschutz
Allgemein:

Der Verantwortliche für die studienbedingte Erhebung personenbezogener Daten ist:
Prof. Dr. med. dent. Diana Wolff
Poliklinik für Zahnheilkunde, Universitätstiefingen
Osianderstraße 2-8, 72076 Tübingen

Tel.: 07071 / 29-82157 oder E-mail: diana.wolf@med.uni-tuebingen.de

Bei Anliegen zur Datenverarbeitung und zur Einhaltung der datenschutzrechtlichen Anforderungen können Sie sich an folgenden Datenschutzbeauftragten der Einrichtung wenden:
Datenschutzbeauftragter Universitätsklinikum Tübingen
Martin Schurer
Grüningerstr. 3
72076 Tübingen
Tel.: 07071 29-87667
E-Mail: dsb@med.uni-tuebingen.de

Im Falle einer rechtswidrigen Datenverarbeitung haben Sie das Recht, sich bei folgender Aufsichtsbehörde zu beschweren:
Der Landesbeauftragte für den Datenschutz und die Informationsfreiheit Baden-Württemberg
Postfach 10 29 32, 70025 Stuttgart
Königstraße 10a, 70173 Stuttgart
Tel.: 0711/61 55 41 – 0
Fax: 0711/61 55 41 – 15
E-Mail: poststelle@lfdi.hw1.de
Internet: http://www.baden-wuerttemberg.datenschutz.de

Sie haben das Recht eine kostenlose Kopie der vorliegenden Unterlagen zu erhalten.

Freiwilligkeit / Rücktritt
Die Teilnahme an der Studie erfolgt freiwillig. Falls Sie teilnehmen möchten, bitten wir Sie, die beiliegende Einwilligungserklärung zu unterschreiben. Sie können diese Einwilligung jederzeit schriftlich oder mündlich ohne Angabe von Gründen widerrufen, ohne dass Ihnen dadurch Nachteile entstehen. Wenn Sie Ihre Einwilligung widerrufen möchten, wenden Sie sich bitte an die Studienleitung oder das Sie behandelnde Personal. Bei einem Widerruf können Sie entscheiden, ob die von Ihnen studienbedingt erhobenen Daten gelöscht werden sollen oder weiterhin für die Zwecke der Studie verwendet werden dürfen. Auch wenn Sie einer weiteren Verwendung zunächst zustimmen, können Sie nachträglich Ihre Meinung noch ändern und die Löschung der Daten / Vernichtung der Proben verlangen; wenden Sie sich dafür bitte ebenfalls an die Studienleitung oder das Sie behandelnde Personal. Beachten Sie, dass Daten, die bereits in wissenschaftliche Auswertungen eingeflossen sind oder Daten / Proben / Aufnahmen, die bereits anonymisiert wurden, nicht mehr auf Ihren Wunsch gelöscht / vernichtet werden können.

Entstehen mir durch die Teilnahme Kosten? / Erhalte ich eine Aufwandsentschädigung?
Die Studienteilnahme ist für Sie kostenlos. Als kleine Entschädigung für Ihren Aufwand erhalten Sie eine kostenfreie Prophylaxemaßnahme (Reinigung der Zähne).

Weitere Informationen
Für weitere Informationen sowie für Auskünfte über allgemeine Ergebnisse und den Ausgang der Studie steht Ihnen als Leiterin der Studie Frau Prof. Dr. med. dent. D. Wolff (Telefon: 07071 29-82157, Email: diana.wolf@med.uni-tuebingen.de) zur Verfügung.

Ethische und gesetzliche Grundlagen
Der Prüfplan und die Einverständniserklärung wurden vor Studienbeginn einer unabhängigen Ethikkommission zur Begutachtung vorgelegt.

WIR DANKEN IHNEN HERZLICH FÜR IHRE MITARBEIT!

Anonymisieren ist das Verändern personenbezogener Daten in der Weise, dass daraus sich ergebende Informationen über persönliche und sachliche Verhältnisse nicht mehr oder nur mit einem unverhältnismäßig großen Aufwand an Zeit, Kosten und Arbeitskraft einer bestimmten oder bestimmmbaren natürlichen Person zugeordnet werden können.
Einverständniserklärung

Nachuntersuchung zur klinischen Qualität von tief subgingivalen Restaurationen in vivo

Einwilligung

(Name, Vorname)
zur Teilnahme an der klinischen Untersuchung.

Datenschutz

1

Abbildung 32: Einverständniserklärung (Seite 1)
Ich möchte die Verwendung meiner Daten für andere/künftige Forschungszwecke wie folgt eingrenzen:

Aufklärende Person

Ort, Datum

Name, Vorname der aufklärenden Person

Person (in Druckbuchstaben)

Unterschrift der aufklärenden Person

Name, Vorname / Unterschrift des Studienteilnehmers

1Gemäß Art. 9 Abs. 1 DSGVO handelt es sich bei Gesundheitsdaten um personenbezogene Daten besonderer Kategorie in deren Verarbeitung der Studienteilnehmer ausdrücklich einwilligen muss. Gleiches gilt für Daten, aus denen die rassische und ethnische Herkunft, politische Meinungen, religiöse oder weltanschauliche Überzeugungen oder die Gewerkschaftszugehörigkeit hervorgehen, sowie für die Verarbeitung von genetischen Daten, biometrischen Daten zur eindeutigen Identifizierung

7.4 Studienbogen

<table>
<thead>
<tr>
<th>Probanden-Nr.:</th>
<th>Datum der Untersuchung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialen:</td>
<td></td>
</tr>
</tbody>
</table>

ALLGEMEINMEDIZINISCHE ANAMNESE

Daten zur Person

<table>
<thead>
<tr>
<th>Geburtsdatum:</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
</table>

Erkrankungen:

<table>
<thead>
<tr>
<th>Erkrankung</th>
<th>JA</th>
<th>NEIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herzerkrankung, Herzklappenerkrankung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blutdruckerkrankung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blutgerinnungsstörung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infektionserkrankung (HIV, Hepatitis, Tuberkulose)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asthma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rheuma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epilepsie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nierenerkrankung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoporose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medikamente:

Allergien:

<table>
<thead>
<tr>
<th>Unterschrift</th>
<th>Datum</th>
</tr>
</thead>
</table>

Abbildung 34: CRF (Seite 1)
<table>
<thead>
<tr>
<th>EINGANGFORMULAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>JA</td>
</tr>
<tr>
<td>Einverständniserklärung unterzeichnet</td>
</tr>
<tr>
<td>≥ 18 Jahre alt</td>
</tr>
<tr>
<td>einwilligungsfähig</td>
</tr>
<tr>
<td>Mindestens eine subgingivale Kompositrestauration gemäß R1- oder R2-Verfahren</td>
</tr>
<tr>
<td>In der Lage eine normale häusliche Mundhygiene durchzuführen</td>
</tr>
<tr>
<td>Keine stark vernachlässigte Mundhygiene</td>
</tr>
<tr>
<td>Keine Schwangerschaft oder Stillzeit</td>
</tr>
<tr>
<td>Keine bekannten Allergien gegen Testprodukte (z.B. Färbelösung für Plaque)</td>
</tr>
<tr>
<td>Keine gesundheitliche Einschränkung, die eine antibiotische Abschirmung vor Zahnarztbehandlungen notwendig macht</td>
</tr>
<tr>
<td>Proband eignet sich für die Teilnahme an der Studie (Alle Aussagen müssen mit "Ja" beantwortet sein)</td>
</tr>
</tbody>
</table>

Unterschrift Untersucher: [Unterschrift]
Datum: [Datum]

Abbildung 35: CRF (Seite 2)
Abbildung 36: CRF (Seite 3)

Abbildung 37: CRF (Seite 4)
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Kriterium</th>
<th>Beschreibung</th>
<th>Bewertung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Faustdruck</td>
<td>Kaukomfort</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Postoperative Hypersensibilität</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Karzinom, Erosion, Abfraktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Parodontale Reaktion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Failure
☐
Datum Failure : __________
Art : __________
Reparatur ☐

Unterschrift Untersucher : __________________
Datum : __________

Abbildung 38: CRF (Seite 5)

<table>
<thead>
<tr>
<th>Probanden-Nr.:</th>
<th>Initialen:</th>
<th>Datum:</th>
</tr>
</thead>
</table>

GINGIVA INDEX (LÖE & SILNESS)

OBERKEFFER

<table>
<thead>
<tr>
<th>BURKAL</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PALATINAL</th>
<th>17</th>
<th>16</th>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>P</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>M</td>
<td>G</td>
<td>P</td>
<td>D</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNTERKEFFER</th>
<th>47</th>
<th>46</th>
<th>45</th>
<th>44</th>
<th>43</th>
<th>42</th>
<th>41</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>BURKAL</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
<td>M</td>
<td>G</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LINGUAL</th>
<th>47</th>
<th>46</th>
<th>45</th>
<th>44</th>
<th>43</th>
<th>42</th>
<th>41</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>L</td>
<td>M</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>G</td>
<td>L</td>
<td>M</td>
<td>G</td>
<td>L</td>
<td>D</td>
</tr>
</tbody>
</table>

Unterschrift Untersucher : __________________
Datum : __________

Abbildung 39: CRF (Seite 6)
Abbildung 40: CRF (Seite 7)

Abbildung 41: CRF (Seite 8)
Abbildung 42: CRF (Seite 9)
Probanden-Nr.:
Datum der Untersuchung:
Initialen:

ABSCHLUSSFORMULAR

Kommentar zur Untersuchung:

Zähne poliert: Ja □ Nein □ Sonstiges: ____________________________

Der Proband hat eine Kopie der Patienteninformation und der Einverständniserklärung erhalten.
Ja □ Keine Kopie gewünscht □

Unterschrift Untersucher ____________________________ Datum ____________________________

Abbildung 43: CRF (Seite 10)
Probandenformular

Nachuntersuchung von tief subgingivalen Kompositrestaurationen *in vivo*

<table>
<thead>
<tr>
<th>Probanden-Nr.:</th>
<th>Datum der Untersuchung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialen:</td>
<td></td>
</tr>
</tbody>
</table>

Zahn mit R1/R2 Restauration:

<table>
<thead>
<tr>
<th>Herstellungsdatum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herstellungsort (Stud-Kurs/Assi):</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kompositmaterial:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adhäsivsystem:</td>
</tr>
<tr>
<td>R1/R2:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Versagen: Ja ☐ Nein ☐ Datum: ☐ Art:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reparatur:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Röntgenbild vorhanden: Ja ☐ Nein ☐ Art:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum Anfertigung:</td>
</tr>
<tr>
<td>Befund:</td>
</tr>
</tbody>
</table>

Abbildung 44: Probandenformular
7.5 FDI-Kriterien

Ästhetische Eigenschaften

<table>
<thead>
<tr>
<th>KATEGORIE</th>
<th>KLINISCHER SCORE</th>
<th>Oberflächenglanz</th>
<th>Oberflächenverfärbung</th>
<th>Farbstabilität und Transluzenz</th>
<th>Anatomische Form/Kontaktpunkt</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Klinisch exzellent/Sehr gut</td>
<td>Vergleichbar mit Schmelz</td>
<td>Weder Restaurationsrand, noch Oberfläche verfärbt</td>
<td>Gute passende Farbe, keine Abweichung in der Transluzenz</td>
<td>Ideale Form</td>
</tr>
<tr>
<td>2</td>
<td>Klinisch gut</td>
<td>(1) Leicht matt, unauffällig bei Sprechabstand (2) isolierte Poren</td>
<td>Leichte Oberflächen- oder Randverfärbung, leicht entferbar durch Politur</td>
<td>Geringe Abweichung</td>
<td>(1) Form weicht leicht ab (2) Kontakt etwas zu stark</td>
</tr>
<tr>
<td>3</td>
<td>Klinisch suffizient/befriedigend</td>
<td>(1) Matte Oberfläche, aber akzeptabel, wenn mit Speichel bedeckt (2) Poren auf mehr als 1/3 der Oberfläche</td>
<td>Moderate Oberflächen- oder Randverfärbung, ästhetisch noch akzeptabel</td>
<td>Deutliche Abweichung, aber akzeptabel, beeinflusst nicht die Ästhetik (1) Opaquer (2) Transluzenter (3) Dunkler (4) Heller</td>
<td>(1) Formabweichung von der Norm, aber ästhetisch akzeptabel (2) Zu schwacher Kontakt</td>
</tr>
<tr>
<td>4</td>
<td>Klinisch nicht akzeptabel/repairbar</td>
<td>(1) Raue Oberfläche, Politur allein nicht ausreichend, Intervention notwendig (2) Lufteinschlüsse</td>
<td>Inakzeptable Verfärbungen, umfangreiche Intervention zur Korrektur notwendig</td>
<td>Lokalisierte klinische Abweichung, korrigierbar (zu opak, zu transluzent, zu dunkel, zu hell)</td>
<td>(1) Beeinträchtigte Form, inakzeptable Ästhetik, Korrektur notwendig (2) Deutlich zu schwacher Kontaktpunkt (foodimpacts)</td>
</tr>
<tr>
<td>5</td>
<td>Klinisch schlecht/ Muss ersetzt werden</td>
<td>Sehr rau, inakzeptable plakarententive Oberfläche</td>
<td>Starke Oberflächenverfärbung und/oder tiefe Verfärbung (generalisiert oder lokalisiert, nicht durch Intervention zugänglich</td>
<td>Inakzeptabel, Austausch notwendig</td>
<td>(1) Form ist unbefriedigend und/oder verloren, Reparatur nicht möglich (2) Kontakt viel zu schwach/ nicht vorhanden</td>
</tr>
</tbody>
</table>

Abbildung 45: FDI-Kriterien (Ästhetische Eigenschaften)
Funktionelle Eigenschaften

<table>
<thead>
<tr>
<th>KATEGORIE KLINISCHER SCORE</th>
<th>Fraktur/Retention</th>
<th>Marginale Adaptation</th>
<th>Verschleiß</th>
<th>Patienteneindruck: Kaukomfort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Klinisch exzellent/ Sehr gut</td>
<td>Keine Frakturen/Risse</td>
<td>Harmonisches Aussehen, kein Spalt, keine Verfärbung</td>
<td>Physiologischer Verschleiß, vergleichbar mit Schmelz</td>
<td>Vollständig zufrieden mit Ästhetik und Funktion</td>
</tr>
</tbody>
</table>
| 2 Klinisch gut | Kleine Haarrisse | (1) Minimaler Spalt (< 150 µm) tastbar, Randverfärbung
(2) Kleine marginale Fraktur, durch Politur zu beseitigen
(3) Geringe Furchen, minimale Ungleichmäßigkeiten | Normal, etwas mehr als im Schmelz | Zufrieden, evtl. leichte Rauigkeit |
| 3 Klinisch suffizient/ befriedigend | Mehrere größere Haarrisse und/oder Materialfraktur, den Kontaktflächen oder Restaurationsrand nicht beeinflusst | (1) Randspalte < 250µm sondierbar, nicht entferbar
(2) Mehrere kleine marginale Frakturen;
(3) Größere Ungleichmäßigkeiten, Stufen | Wesentlich mehr Verschleiß als im Schmelz, klinisch noch befriedigend | Moderate Kritikpunkte, ästhetische Probleme, moderater Verlust des Kaukomforts |
| 4 Klinisch nicht akzeptabel/ reparierbar | (1) Fraktur/Chipping, die den Kontaktflächen oder Restaurationsrand betrifft
(1) Massive Frakturen mit Verlust von weniger als der halben Restauration | (1) Randspalte (> 250 µm) sondierbar oder Dentin liegt frei
(2) Starke marginale Frakturen
(3) Größere Ungleichmäßigkeiten oder Stufen (Reparatur erforderlich) | Überschreitet wesentlich den Verschleiß von Schmelz oder okklusale Kontaktflächen sind nicht mehr vorhanden | Wunsch nach Verbesserung, Ästhetik/Funktion |
| 5 Klinisch schlecht/ Muss ersetzt werden | Füllungsverlust (partiell oder vollständig) oder multiple Frakturen | (1) Restauration ist locker, aber in situ
(2) Generalisierte große Spalten oder generalisierte Ungleichmäßigkeiten | Klinisch inakzeptabler Verschleiß | Sehr unzufrieden; ggf. Schmerzen |

Abbildung 46: FDI-Kriterien (Funktionelle Eigenschaften)
Biologische Eigenschaften

<table>
<thead>
<tr>
<th>KATEGORIE</th>
<th>Postoperative Hypersensibilitäten</th>
<th>Karies/Erosion/Abfraktion</th>
<th>Parodontale Reaktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>KLINISCHER SCORE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Klinisch exzellent/Sehr gut</td>
<td>Keine</td>
<td>Keine Primär- oder Sekundärkaries</td>
<td>Keine Plaque, keine Entzündung, keine erhöhten Taschentiefen</td>
</tr>
<tr>
<td>2 Klinisch gut</td>
<td>Leichte Hypersensibilität für einen begrenzten Zeitraum</td>
<td>Kleine lokализierte (1) Demineralisation (2) Erosion (3) Abfraktion</td>
<td>Wenig Plaque, keine Gingivitis, keine erhöhten Taschentiefen</td>
</tr>
<tr>
<td>3 Klinisch suffizient/befriedigend</td>
<td>Mäßige Hypersensibilität</td>
<td>Größere Areale von (1) Demineralisation (2) Erosion (3) Abfraktion</td>
<td>Akzeptable Plaqueakkumulation, akzeptabler GBI, vertretbar erhöhte parodontale Taschentiefen</td>
</tr>
<tr>
<td>4 Klinisch nicht akzeptabel/reparierbar</td>
<td>Starke Hypersensibilität; Intervention, aber kein Austausch notwendig</td>
<td>(1) Kavitäre Karies (2) Erosion im Dentin (3) Abrasion/Abfraktion im Dentin, reparierbar</td>
<td>Nicht akzeptable Plaqueakkumulation, nicht akzeptabler GBI, erhöhte parodontale Taschentiefen</td>
</tr>
<tr>
<td>5 Klinisch schlecht/Muss ersetzt werden</td>
<td>Akute Pulpitis oder devitaler Zahn; endodontische Behandlung und Austausch notwendig</td>
<td>Tiefe Karies oder exponiertes Dentin; keine Reparatur möglich</td>
<td>Schwere akute Gingivitis oder Parodontitis</td>
</tr>
</tbody>
</table>

Abbildung 47: FDI-Kriterien (Biologische Eigenschaften)
8 Erklärung zum Eigenanteil

Die vorliegende Arbeit wurde in der Abteilung Poliklinik für Zahnerhaltung des Universitätsklinikums für Zahn-, Mund- und Kieferheilkunde Tübingen in Betreuung von Prof. Dr. Diana Wolff durchgeführt.

Die Fragestellung sowie das Studiendesign erfolgte durch Prof. Dr. Diana Wolff in Zusammenarbeit mit der Poliklinik für Zahnerhaltung am Universitätsklinikum Heidelberg.

Der Ethikantrag (Ethik-Kommission der Medizinischen Fakultät der Eberhard-Karls-Universität Tübingen) wurde durch Prof. Dr. Diana Wolff und mich, unter Berücksichtigung des Ethikantrages für eine ähnliche Studie am Universitätsklinikum Heidelberg, erstellt.

Die Rekrutierung der Studienteilnehmer/innen (Aktendurchsicht) wurde eigenständig durch mich durchgeführt.

Die standardisierte klinische Untersuchung aller Probanden und Probandinnen erfolgte eigenständig durch mich.

Die Datensatzübertragung in Microsoft Excel wurde eigenständig durch mich durchgeführt.

Die statistische Auswertung erfolgte nach einmaliger statistischer Beratung durch Dr. Gunnar Blumenstock und meinen Bruder, Pascal Zamorski, selbstständig durch mich.

Ich versichere, das vorliegende Manuskript selbstständig verfasst zu haben und keine weiteren als die von mir angegebenen Quellen verwendet zu haben.

Tübingen, den 01.11.22

Nadja Zamorska
9 Veröffentlichungen

Muscholl, Clara; Zamorska, Nadja; Schoilew, Kyrill; Sekundo, Caroline; Meller, Christian; Büsch, Christopher; Wolff, Diana; Frese, Cornelia: „Retrospective Clinical Evaluation of Subgingival Composite Resin Restorations with Deep-Margin Elevation“, The Journal of Adhesive Dentistry 24 (1), 335-344, 2022
10 Danksagung

Mein besonderer Dank gilt meiner Doktormutter Prof. Dr. Diana Wolff, die für mich, trotz Standortwechsel, stets erreichbar war und mich auf dem gesamten Weg vom Ethikantrag bis zur fertigen Disse ration begleitet und unterstützt hat.

Meinem Betreuer Herrn Prof. Dr. Christian Meller möchte ich danken für seine guten Ratschläge und die Unterstützung, vor allem im Bereich Probandenrekrutierung.

Ich danke allen Beteiligten aus der Abteilung Poliklinik für Zahnerhaltung für Ihren Einsatz im organisatorischen Bereich, der die Probandenuntersuchung, trotz schwieriger Umstände aufgrund der Corona-Pandemie, ermöglicht hat.

Herrn Dr. Gunnar Blumenstock aus dem Institut für Biometrie möchte ich für seine gute Beratung danken.

Ich danke meinen Freunden für alle Zusprüche und Ermutigungen.

Meinem Freund Wenny danke ich von Herzen für die mentale und fachliche Unterstützung vom ersten Studiensemester bis heute.

Mein großer Dank gilt meinen Eltern, die mir das Studium ermöglicht und mich auf diesem Weg begleitet haben.

Vor allem danke ich meinem Bruder, Pascal. Danke für die Motivation, zahlreiche wertvolle Tipps und die statistische Expertise.