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CHAPTER 1

Introduction

1.1 Abstract

In this thesis we study toric hypersurfaces in the context of higher-dimensional
algebraic geometry. The topics are quite complicated but restricting to generic
situations and almost smooth birational models (minimal models), we are able
to get good results. We ask how to calculate invariants like the Plurigenera
or the Hodge numbers of toric hypersurfaces. Deforming such hypersurfaces
within the surrounding toric variety we study a Kodaira-Spencer map, param-
eterizing infinitesimal deformations one-to-one and the infinitesimal Torelli
theorem, bridging deformation theory and Hodge theory, both by very explicit
formulas, though for this part we restrict to surfaces in toric 3-folds.

People familiar to toric geometry and toric hypersurfaces should get a stronger
insight of how much interest this topic is in higher-dimensional algebraic
geometry. People working on complex algebraic geometry should find these
results helpful both for checking open problems within this region and getting
a large set of examples. Based on knowledge in complex algebraic geometry
we use several preworks like famous works on toric hypersurfaces and many
written books on complex geometry, algebraic geometry and toric geometry.
We list some particular important sources as well as the notation at the end
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of the introduction referencing to the sources within the introduction by the
letters a) to g).

1.2 Historical Motivation
Let us broach just one issue of this thesis by giving some historical motivation:
Given a nondegenerate Laurent polynomial

f “
ÿ

mP∆XM

am ¨ xm (1.1)

with n-dimensional Newton polytope ∆ let

Zf :“ tf “ 0u Ă T.

We are looking for a good compactification of Zf realized as closure in a
suitable projective toric variety. The Newton polytope ∆ defines a projective
toric variety P∆ via its normal fan and there is a diagram

“ smooth compactification of Zf
hkkikkj

Z̃f P̃

Zf Z∆,f
loomoon

“ closure of Zf in P∆

P∆

p

Ď

p

Ď Ď

where p denotes a toric resolution of singularities and Z̃f the preimage of Z∆,f

under p. In 1986 Vladimir I. Danilov and Askold G. Khovanskii invented
ideas how the Hodge-Deligne numbers of Zf and the Hodge numbers of Z̃f

could be calculated. In examples this program works nice in lower dimensions
or if the normal fan Σ∆ of ∆ is simplicial.

Criticism and open questions:

• The mixed Hodge components

Hn´k,k´1Hn´1
c pZf ,Cq (1.2)

of weight n ´ 1 and their dimensions are of particular interest for us.
There is neither a natural basis for these components nor a uniform
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equation or formula for the Hodge-Deligne numbers depending just on
n P N (the formulas of Danilov and Khovanskii get very complicated
already for n “ 4 or n “ 5).

• The authors stay somehow ”loose“ in specifying a nice compactification
of Zf : They do not construct or deal with special compactifications,
that are of great importance in higher-dimensional algebraic geometry,
though their methods are quite general and if Σ∆ is simplicial the
compactification Z∆,f is already useful enough for the calculations of
the Hodge numbers.

First improvement (due to V. Batyrev):

One breakthrough was made in ([Bat22]). There it is constructed a pro-
jective toric variety P to a fan Σ, such that the closure

Zf Ă Yf Ă P

of Zf gets a minimal model of Zf , that is

• Yf has terminal singularities and

• The canonical divisor KYf
is nef.

In the first part of this thesis we heavily exploit these results: Concerning the
birational model Y “ Yf we extend results of ([DK86]) by giving an explicit
formula for the plurigenera PmpY q of Y , that specialize to the geometric genus
for m “ 1. The Kodaira dimension and the canonical volume of Y are then
gotten from the asymptotic behavior of the plurigenera.

Second improvement:

We find a vector space representation of the mixed Hodge components (1.2)
as quotient of a vector space L˚pk ¨ ∆q by a subspace Uf,k of which we specify
generators. This is necessary for dealing with the concept of an infinitesimal
variation of Hodge structure (due to Philipp Griffiths) for toric hypersurfaces
in the last chapter.

A deficit is that these generators of Uf,k are not linearly independent for
k ě 3, that is the goal to obtain the Hodge-Deligne numbers directly is much
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to optimistic. But still the results we get are sufficient for our purposes.

Further common methods with Danilov, Khovanskii and Batyrev:

• We reduce the calculation of the Hodge component Hn´k,k´1pYf ,Cq to
the calculation of 1.2 (similarly to (b)) but restricting to n “ 3.

• We follow (e) to define the jacobian ring Rf and the (interior) module
RInt,f over Rf which identifies the components (1.2) with vector spaces
defined by the lattice geometry of integral multiples of ∆.

1.3 The combinatorial construction of mini-
mal models

In the dissertation ([Fine83]) Jonathan Fine, a student of Miles Reid, came
up with the idea of associating a polytope F p∆q, the so called Fine interior
of ∆, to a lattice polytope ∆ Ă MR (in connection with the resolution of
singularities). This polytope has been resumed by Miles Reid and many
years later by V. V. Batyrev, with most success in (a). This polytope plays a
decisive role in the construction of P: At the very basic P is shown to exists
if and only if the Fine interior F p∆q is nonempty.

In case ∆ is reflexive F p∆q equals the origin and the adjoint divisor KP ` Y
is trivial. In general given a lattice polytope ∆ with F p∆q ‰ H the Fine
interior equals the polytope associated to this adjoint divisor, thereby gener-
alizing the classical case of Calabi-Yau minimal toric hypersurfaces. Besides
to construct P another polytope Cp∆q, the canonical closure of ∆ has to
be recalled from (a) (definition 3.1.5). The following inclusions set some
superficial understanding on the relationship between these polytopes

convhull
`

Intp∆q X M
˘

Ď F p∆q Ĺ ∆ Ď Cp∆q,

Quite often the last inclusion turns out to be an equality, for example if ∆
is reflexive, though at least in higher dimensions there are examples where
Cp∆q is just a rational polytope.
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1.4 Birational invariants of Y

In (a) it is shown that the Kodaira dimension of Y “ Yf is given by

κpY q “ min
´

dim F p∆q, n ´ 1
¯

.

We get a higher result

Theorem 1.4.1. Let ∆ be an n-dimensional lattice polytope with k :“
dim F p∆q ě 0. The plurigenera PmpY q :“ h0pY, mKY q are given by

PmpY q “

$

&

%

lpm ¨ F p∆qq ´ l˚ppm ´ 1q ¨ F p∆qq, k “ n
lpm ¨ F p∆qq ` l˚ppm ´ 1q ¨ F p∆qq, k “ n ´ 1
lpm ¨ F p∆qq k ă n ´ 1,

with exception of the special case n “ 0 and m “ 1.

This answers a problem stated by M. Reid in ([Rei87, (4.12),(4.13)]). Restrict-
ing to birational models of Y with at most terminal singularities PmpY q, m ě 1
are birational invariants.

Thereafter we deduce an explicit formula for the Canonical volume of
Y (see Corollary 4.3.1), that is the maximal self-intersection number Kn´1

Y of
the canonical class KY of Y . We are very granted V.V. Batyrev, who already
knew and proved this formula earlier, for the hint that it follows pretty easily
from Theorem 1.4.1 and the characterization of Kn´1

Y as leading coefficient of
PmpY q, considered as a polynomial in m of degree n.

1.5 Infinitesimal deformations of Yf

Beginning with chapter 5 we get results which are partly oriented on known
results and proofs, though basically we work with skillful and own ideas and
much more general methods, approximately comparable to the relationship
between projective and toric hypersurfaces. Throughout the chapters 5 and 6
we set 3 restrictions on ∆ (conditions p`q)

• n “ 3

• l˚p∆q ą 0
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• Cp∆q is a lattice polytope.

Concerning more general assumptions we guess the conditions n ě 2 and
F p∆q ‰ H are sufficient for our results (with the exception n “ 2, dim F p∆q P

t0, 1u), though this requires some efforts in proving (see [Gie22a], still missing
the generalization F p∆q ‰ H, unpublished).

Let Uregp∆q denote the set of nondegenerate Laurent polynomials with New-
ton polytope ∆ and let B “ Bp∆q denote the projectivization of Uregp∆q.
The second projection

X :“ tpx, fq P P ˆ B | x P Yf u
pr2
Ñ B

defines a natural deformation of Yf over B. Given a tangent vector v : C Ñ

B at f P B, where C denote the dual numbers we build the pullback diagram

X ˆ C X

C B

pr1

pr2ˆid pr2

v

(1.3)

to construct an infinitesimal deformation (abbreviate inf.def.) Xv : X ˆ

C
pr2ˆid

Ñ C of Yf in X (that is also one in P). Switching from X to Xv some
information get losted, though restricting to Xv is still enough to obtain
usefull results.

In ([KoSp58]) Kunihiko Kodaira and Donald C. Spencer introduced a linear
map, the Kodaira-Spencer map, that allows to parameterize (infinitesi-
mal) deformations of (algebraic) varieties. Their thoughts were influenced
by methods from complex analysis and differential equations, but later the
ideas were extended mainly by people working on deformation theory, Hodge
theory and (complex) algebraic geometry.

We study this situation under the assumptions p`q : For this we identify

LpCp∆qq{C ¨ f – t Inf. def. of Y in P u{iso. H1pY, TY q

Lp∆q{C ¨ f – t Inf. def. of Y in X u{iso. t Inf. def. of Y u{iso.

κP,f

–

Ď κf

(1.4)
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κP,f is a connecting homomorphism (called the Kodaira-Spencer map) and
κf its restriction. These maps parameterize the infinitesimal deformations of
Y in P (in X respectively) one to one.

The kernel of κP,f :

The family X Ñ B is isotrivial, that is all fibres are isomorphic, if and
only if κf ” 0 for all f P B. The kernel of κP,f has been calculated for
curves in toric surfaces pn “ 2q by Jan Koelman in (c) and for (quasi-)smooth
hypersurfaces in projective or weighted projective spaces P by Phillip Grif-
fiths, Joseph Steenbrink and others, see (f). Other questions on κP,f include
the study of isotrivial deformations, an iterated Kodaira-Spencer map, the
Shafarevich conjecture (see [Kov05]) and extensions of κf say to a logarithmic
context. The main result of chapter 5 is

Theorem 1.5.1. Given the conditions p`q

kerpκP,f q – Lie AutpPq, (1.5)

where AutpPq denotes the automorphism group of P and Lie AutpPq the Lie
algebra of AutpPq.

The cokernel of κP,f :

Concerning all infinitesimal deformations there might be some additional, not
in ImpκP,f q, namely

• deformations of Yf induced by deformations of P in H1pP, TPq.

• In some (more exceptional) cases there are other (non-projective) defor-
mations (Example: K3-surfaces, see section 1.9, Example 5.6.2).

These questions have been studied in an explicit way for Calabi-Yau toric
hypersurfaces in ([Mav03]): If ∆ is (quite general n-dimensional and) reflex-
ive then H1pY, TY q splits into infinitesimal deformations of Y inside P and

”non-polynomial“infinitesimal deformations of Y . The later are induced by
deformations of P inside a larger toric variety PΣpΓ˚q, where Γ˚ varies over
the 2-dimensional faces of the dual polytope of ∆.
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1.6 Explicit calculations of the kernels of the
Kodaira-Spencer maps

Classically to the fan Σ (or similarly any other complete fan) there are integral
vectors RpN, Σq, so called roots (due to M. Demazure, [Dem70]).

˝ ˝ ˝ ˝ ˝

˝ ˝ ˝ ˝

˝ ˝ ˝

˝ ˝ ˝ ˝

˝ ˝ ˝ ˝ ˝

Example: The 2-dimensional standard simplex (left), its normal fan (middle)
and the 4 roots of the normal fan (thick, right)

The point is that each root αi gives an element zpαiq in the Lie algebra of
the automorphism group of P and

Lie AutpPq – LiepT q ‘

r
à

i“1
zpαiq ¨ C r :“ |RpN, Σq|, (1.6)

see ([Cox95]). In view of the last section we specify Laurent polynomials
supported on Cp∆q and ∆ giving bases for kerpκP,f q and kerpκf q: Here we
heavily exploit the results from Bruns and Gubeladze ([BG99]) and thereby
define certain new Laurent polynomials w´αpfq for every root α of Σ:

w´αpfq :“
ÿ

mP∆XM

ht´αpmq ¨ am ¨ xm´α.

Our results:

Corollary and Theorem 1.6.1. Given the conditions p`q

kerpκP,f q –

A

xi ¨
Bf

Bxi

| i “ 1, 2, 3, w´αpfq, α P RpN, Σq

E

.
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The roots of Σ∆ form a subset of the roots of Σ and

kerpκf q –

A

xi ¨
Bf

Bxi

| i “ 1, 2, 3, w´αpfq α P RpN, Σ∆q

E

.

This result is much explicit both in specifying a basis of Laurent polynomials
for the kernel and in dealing with a concrete situation (f varying in B), being
useful in examples.

1.7 Mixed Hodge components of Zf

In chapter 7 we deal with the Hodge components of Hn´1pYf ,Cq. Apart from
one result, that should generalize with minor changes, we do not restrict to
n “ 3. The cohomological data of Yf that is of interest is already contained
in the affine part Zf , that is to say given the inclusions j : Zf Ñ Yf and
ι : Yf Ñ P the pullback homomorphism

j˚Hn´1
pYf ,Cq “ Grn´1

W Hn´1
pZf ,Cq pmodulo ι˚H2

pP,Qqq,

defines an isomorphism onto a graded component Grn´1
W :“ W n´1{W n´2,

modulo cohomology classes that arise as restrictions of cohomology classes
from P.

We recall the definition of the (graded) jacobian ring of Batyrev Rf and
the (graded) interior module RInt,f over Rf , that settles an isomorphism

Hn´k,k´1Hn´1
pZf ,Cq “ Grn´k

F Grn´1
W Hn´1

pZf ,Cq – Rk
Int,f ,

as is shown in (e), thereby reducing the calculation of the mixed Hodge
components of weight n ´ 1 to a lattice geometric problem.

Illustrating the module RInt,f at some 3-dimensional polytopes gave us in-
tuition that the construction of RInt,f given in (e) might be improved: The
original construction defines RInt,f as a graded Rf -module, leaving a picture
for the homogeneous components Rk

Int,f widely open. Concerning the dimen-
sions the situation is not much better: dim Rk

Int,f stays mysterious except for
k “ 1, 2, n, n ` 1 and that the dimensions are symmetric around the middle
index. We introduce slightly different polynomials gΓpfq, where Γ ď ∆,

gΓpfq :“
ÿ

mPMX∆
am ¨ pxnΓ, my ´ Min∆pnΓqq ¨ xm
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to give a more precise presentation of Rk
Int,f :

Proposition 1.7.1. Given an n-dimensional lattice polytope ∆ with l˚p∆q ą 0
and f P Uregp∆q take facets Γ1, ..., Γn`1 of ∆ with nΓ1 , ..., nΓn`1 affine linearly
independent. Then

Rk
Int,f – L˚

pk ¨ ∆q{Uf,k for k “ 1, ..., n ` 1,

where Uf,k denotes the C-vector space spanned by

gΓi
pfq ¨ xv i “ 1, ..., n ` 1, v P Intppk ´ 1q ¨ ∆q X M (1.7)

gΓpfq ¨ xv Γ ď ∆, v P Intppk ´ 1q ¨ Γq X M. (1.8)

This seems promising but still for k ě 3 the generators in (1.7) and (1.8) fail
to be linear independent. Nevertheless this result is sufficient for us.

1.8 Infinitesimal Variation of Hodge struc-
tures

Given the conditions p`q in chapter 8 we define a period map

B Q f ÞÑ rH0
pYf , Ω2

Yf
qs.

This map is holomorphic and by results of Griffiths the differential of PB,f

factors through κf (working with κf and not κP,f is no restriction here)

Lp∆q{C ¨ f H1pYf , TYf
q

HompR1
Int,f , R2

Int,f q

dPB,f

κf

Φf (1.9)

The classical infinitesimal Torelli Theorem (ITT) for Yf asks Φf to be
injective. The period map arises from complex geometry and the dimension of
its kernel might very well depend on the (less generically) chosen f . The ITT
is of interest as roughly speaking it gives information in as much the classical
Hodge numbers serve for the classfication of (smooth) algebraic varieties. Of
course the period map PB,f itself and questions concerning the injectivity
of this map (the global Torelli theorem) would give more direct and global
geometric information.
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After dealing with some preparations on a quotient Mp∆q of B by a canonical
action of the torus T on B in a rather technical part, we turn to the kernel
of dPB,f : In peq the differential dPB,f is shown to be simply induced by the
addition map

Lp∆q Ñ HompL˚
p∆q, L˚

p2 ¨ ∆qq (1.10)
m ÞÑ pm1

ÞÑ m ` m1
q.

Here we work with the representation of Proposition (1.7.1) for Rk
Int,f .

Our idea is straightforward: Working with diagram 1.9 calculate the kernel
of dPB,f and compare it with the kernel of κf to deduce on the kernel of
Φf |Im κf

. Despite of the simpleness of (1.10) we did not tackled the problem
of calculating kerpdPB,f q but instead end up with a conjecture, where only
the inclusion Ě is clear.

Conjecture 1.8.1. Let ∆ be a 3-dimensional lattice polytope with p0, 0, 0q P

Intp∆q X M and Intp∆q X M Ę E (plane). Then

kerpdPB,f q
mod LiepT q

“ xgΓpfq ¨ xw
P Lp∆q{C ¨ f | Γ ď ∆ a facet,

w ` v P
`

Intp∆q Y IntpΓq
˘

X M, @ v P Intp∆q X My.

1.9 Some set of illustrating examples
We mention/work with some Examples.

• Smooth projective curves in toric surfaces. Given a lattice polygon
∆ with F p∆q ‰ H we have l˚p∆q ą 0 and Cp∆q “ ∆ is automatic.
Computing the main invariants of Y reduces to the genus formula
gpY q “ | Intp∆q X M |. The kernel kerpκf q has been computed in the
dissertation of J. Koelman (c). The ITT is known to be true except if

dim F p∆q “ 1, | Intp∆q X M | ě 3,

that is if Yf is hyperelliptic of genus ě 3. In this case the ITT fails,
though this failure could not be seen from the infinitesimal defomrations
of Yf in Impκf q.
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• Nondegenerate surfaces Y Ă P3 of degree d ě 4 (the case of
hypersurfaces Y Ă Pn, n ě 4 is almost the same). Here ∆ “ d ¨ ∆3 with
∆3 the standard 3-simplex). The invariants PmpY q and K2

Y are known
(see [BHPV04]). Given d ě 5 the Kodaira-Spencer map κf is surjective.
In case d “ 4 then Y is a K3-surface and there are non-algebraic
deformations of Y (in this case κP,f is not surjective).

kerpκf q “ Jd
f , Jf :“

´

Bfhom

Bx0
, ...,

Bfhom

Bx3

¯

⊴ Crx0, ..., x3s,

where fhom denotes the homogenization of f . This result is due to
Griffiths and Jf is called the jacobian ring of Griffiths. The ITT is
known to be true, see (f).

• Kanev/Todorov surfaces. Beginning with certain 3-dimensional
lattice polytopes ∆ we study minimal surfaces Y with

pgpY q “ 1, qpY q “ 0, K2
Y “ 1,

loomoon

Kanev surfaces

2.
loomoon

Todorov surfaces

in section 4.4 and section 8.4. Depending on the coefficients pamqmP∆XM

we obtain examples with

dim kerpΦf |Im κf
q “

$

&

%

2, Yf “ Kanev surfaces
3, Yf “ Todorov surfaces
0, in both cases

(1.11)

that is the ITT may fail though all of our counterexamples seem to be
known see ([Cat78], [SSU85]).

1.10 Improvements, open problems and sub-
sequent issues

Deformation theory, Hodge theory and moduli spaces of
(higher dimensional) algebraic varieties or toric hypersurfaces:

• Generalize the results beginning with chapter 5 by replacing the con-
ditions p`q by n ě 2 and F p∆q ‰ H (with the exception n “ 2,
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dim F p∆q ď 1). This seems to get a bit complicated but should be
done since it puts everything into a nice framework, see ([Gie22b]) for
some attempts. We omit such attempts here due to the larger amount
of work and the non-triviality of finding (counter-)examples in this
context, that would be necessary for a better understanding.

• Given say κpY q “ 2 work with the invariants pχ :“ χpY q, K :“ K2
Y q of

Y and (similarly to [Cat11] or other articles) the (Giesecker-)moduli
space Mχ,K of surfaces of general type with these invariants. Determine
the dimension of those rXs P Mχ,K2 ”isomorphic“ to a nondegenerate
toric hypersurface, or say ”deformation equivalent“, or ”up to smooth-
ing“(similarly to what is done in [Mav03] for Calabi-Yau varieties).
Generalize this to higher dimensions n ě 4. This enters a vast region.

• The work we have done in this thesis includes other topics from Hodge-
theory concerning toric hypersurfaces: The generic Picard number, the
Noether-Lefschetz locus, the Hodge numbers or even the Hodge conjecture
just to mention very important ones (see [BrGr10], [BrGr17], [BrMo22]).

• Study cokerpκf q and the remaining part kerpΦf |coker κf
q of the ITT.

Generalize this to n ě 4 (This might get very complicated).

Higher-dimensional algebraic geometry:

• In higher-dimensional algebraic geometry the plurigenera of a suffi-
ciently smooth (projective) variety X are of much interest: There are
current (open) questions concerning PmpXq for the case κpXq “ n,
on the pluricanonical embeddings of X or connections between the
Kodaira dimension and the Iitaka fibration of X for 0 ď κpXq ď n (see
[BiZh15], [ViZh08]). Work with the deformation equivalence of PmpXq

on projective birational models of X with say terminal singularities (see
[Tsu02]) to see in as much our formulas for PmpY q and the subsequent
results in ([Gie22a]) apply.

Generalizing the framework:

• Work with quasismooth toric hypersurfaces (defined by the quotient
construction of simplicial projective toric varieties), and similar questions
for this setting, compare the two situations.
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• Replace the assumption f P Uregp∆q on f by other generic conditions on
f P Lp∆q introduced by I. Moissejewitsch, M. Michailowitsch Kapranov
and Andrei Zelevinsky (see [GKZ94]) to get a more complete picture.

• Generalize the theory/ideas/results of this thesis to complete intersec-
tions in toric varieties.

• Working with f P Lp∆q having Newton polytope slightly smaller than
∆ might get interesting for examples and subfamilies of X Ñ B with
monomial bases.
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1.12 Main references to our topics:
(a) Minimal models of toric hypersurfaces: The article ([Bat22]) of V.V.

Batyrev.

(b) The Hodge-Deligne numbers: The article ([DK86]) of V.I. Danilov and
A.G. Khovanskǐi.

(c) Infinitesimal deformations and the Kodaira Spencer map for curves in
toric surfaces: The PhD thesis ([Koe91]) of J. Koelman.

(d) The automorphism group of a (normal projective) toric variety and its
Lie algebra: The article ([BG99]) of W. Bruns and J. Gubeladze.

(e) The jacobian ring and the variations of (mixed) Hodge structures for non-
degenerate toric hypersurfaces: The article ([Bat93]) of V.V. Batyrev.
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(f) The infinitesimal Torelli theorem for smooth hypersurfaces in Pn: The
chapter 6 of the second volume of the classical book of C. Voisin on
Hodge theory and complex algebraic geometry ([Voi03]).

(g) General results on toric varieties, including toric vanishing theorems
and toric Serre duality theorems: The classical book ([CLS11]) of D.A.
Cox, J.B. Little and H.K. Schenck.

1.13 Notation
We recapitulate some standard notation (though most of our notions are
defined within this thesis).

w.r.t.: ”with respect to“
|A|: The cardinality of a (finite) set A.
gcd: The greatest common divisor.

convhullpSq: The convex hull of a subset S of some vector space.
xv1, ..., vky: The span of v1, ..., vk as a pQ, R or C)-vector space (in case

k “ 2 also the scalar product).

M : The standard lattice Zn. MR :“ M bZ R.
N : The dual lattice of M . NR :“ N bZ R.
T : The torus N bZ C˚.

Given a rational polytope P Ă MR let

ConepP ˆ t1uq: The cone over the polytope P .
IntpP q: The relative interior of P , that is the interior of P in an

affine subspace of MR of the same dimension as P .
BoundpP q: The set P z IntpP q.

LpP q: The C-vector space with basis the characters
tχm | m P P X Mu.

L˚pP q: The C-vector space with basis the characters
tχm | m P IntpP q X Mu.

lpP q : dimC LpP q “ |P X M |.
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l˚pP q : dimC L˚pP q “ | IntpP q X M |.
Σ∆: The normal fan of ∆.
P∆: The projective toric variety to the normal fan Σ∆ of ∆.
PΣ: The toric variety to the fan Σ.

Given an n-dimensional lattice polytope ∆ Ă MR and f P Lp∆q let
Uregp∆q: The set of nondegenerate Laurent polynomials with Newton poly-
tope ∆.

We assume the following standard notation:

∆ “ tx P MR| xx, νiy ě ´bi, i “ 1, ..., ru, (1.12)

and setting Γ ď ∆ to denote a facet of ∆ we use the notation

Γi :“ tx P MR | xx, νiy ě ´biu X ∆, i “ 1, ..., r.

Zf : tf “ 0u Ă T .

Z∆,f : The Zariski closure of Zf in P∆.

ZΣ,f : The Zariski closure of Zf in PΣ.

A variety X over a field k is understood in the sense of Hartshorne (see
[Hart77, Ch.I, Def. after Remark 3.1.1, Ch.II, Prop.2.6]). We always assume
k “ C. Given a smooth projective variety X, dim X “ n, let

Ωp
X : The sheaf of differential p-forms on X

KX : The canonical line bundle Ωn
X (in case X is singular KX is

defined in section 5.1).
TX : The tangent sheaf pΩ1

Xq˚ on X

Given another normal projective algebraic variety Y , we denote a morphism
between X and Y by X

p
Ñ Y and a rational map by X

p
99K Y .

Given a sheaf F on X (F is always either a coherent sheaf of OX-modules
or one of the constant sheaves Z,Q,R,C) and Cartier divisors D, D1 and
D1, ..., Dn on X let
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OXpDq: The invertible sheaf (of OX-modules) associated to D
(In case D is a Weil divisor OXpDq is just a rank 1 reflexive
sheaf)

p˚pFq: The pushforward sheaf of F under p
(given an open subset H ‰ U Ă Y : p˚pFqpUq :“ Fpp´1pUqq).

F˚: The dual sheaf of F .

HkpX, Fq: The k-th sheaf cohomology group of F .

Hp,qpX,Cq: The Hodge component of Hp`qpX,Cq of type pp, qq.

Hp,q
c HkpZf ,Cq: The mixed Hodge component of coh. with support of

Zf of weigth k and type pp, qq.

hp,qpX,Cq: The dimension of Hp,qpX,Cq.

hp,q
c HkpZf ,Cq: The dimension of Hp,q

c HkpZf ,Cq.

D „lin D1: D is linear equivalent to D1.

D1....Dn: The (topological) intersection number of D1, ..., Dn

(compare [Laz00, Ch. 1.1.C]).

Dn : Abbreviation for D....D
loomoon

n-times

.
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CHAPTER 2

Toric varieties and nondegenerate toric hypersurfaces

In this first chapter we recall some basic definitions from algebraic geometry,
the definition of projective toric varieties, toric morphisms, divisors on toric
varieties and nondegenerate toric hypersurfaces. By an (algebraic) variety we
always mean an irreducible variety over the complex numbers C. A curve
(surface) is an algebraic variety of dimension 1 (2).

Let X be a normal projective variety: A divisor D on X is a Weil divi-
sor, that is a Z-linear combination of subvarieties of X of codimension 1. D
is Cartier if there is a covering tUiuiPI of X such that

D|Ui
“ divpfiq

is the divisor associated to a rational function fi. D is Q-Cartier if m ¨ D is
Cartier for some m P Ně1. Whether D is (Q-)Cartier or not just depends
on the linear equivalence class of D. The sheaves OXpDq and OXpD1q are
isomorphic as OX-modules if and only if D „lin D1 (see [Rei79, App. to §1]).

X is Q-factorial if every Weil divisor is Q-Cartier. Given normal algebraic
varieties X, Y , a surjective morphism ϕ : X Ñ Y let D be a Cartier divisor on
X with D|U “ divpfq on some Zariski open subset U . Then on V :“ ϕ´1pUq

the pullback ϕ˚pDq of D is defined as
ϕ˚

pDq|V “ divpf ˝ ϕ|V q.
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ϕ˚pDq is again Cartier and the functor ϕ˚ respects linear equivalence.

Definition 2.0.1. A divisor D on an n-dimensional complete normal variety
X is called nef if

D.C ě 0
for all irreducible curves C Ă X. A nef divisor D is called big if Dn ą 0.

For X, Y normal algebraic varieties,

ϕ : X Ñ Y

a surjective morphism and D Ă Y a Cartier divisor, then D is nef if and only
if ϕ˚pDq is nef ([Laz00, Ex.1.4.4]).

2.1 Toric Vaieties
In this section we recall some basic facts about toric varieties from ([CLS11]):
Let M denote an n-dimensional lattice Zn with dual lattice N . We write MR
for M b R and let

T :“ N bZ C˚
– pC˚

q
n

be the n-dimensional torus. By a rational polytope F Ă MR we mean a
polytope, whose vertices have coordinates in Q. We may represent a rational
polytope F as intersection of finitely many half-planes

F “ tx P MR| xx, νiy ě ´bi, i “ 1, ..., ru,

where νi P N are primitive and bi P Q. To F is associated a normal fan
ΣF . The normal fan consists of a collection of cones in NR, such that the
1-dimensional cones in ΣF have cone generators ni and different ni’s span a
cone in ΣF if and only if the facets the ni are normal to intersect.

We denote the i-dimensional cones of a fan Σ by Σris. For i “ 1 we iden-
tify Σr1s with the primitive lattice points ni generating the rays. For ∆ an
n-dimensional lattice polytope or more generally a rational polytope let

Min∆pνq :“ min
mP∆

xm, νy, ν P N,

such that Min∆pνiq “ ´bi. Given a complete fan Σ, that is a fan whose
support equals NR, we associate a complete normal toric variety, which we
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denote by PΣ. If Σ “ ΣF is the normal fan to F , PΣF
is projective and we

denote it by PF . Since we construct toric varieties via fans all toric varieties
we consider are normal as algebraic varieties. If ∆ Ă MR is a lattice polytope
there is a different way to construct P∆: Take the cone Conep∆ ˆ t1uq over
∆ and the semigroup algebra

S∆ :“ CrConep∆ ˆ t1uq X pM ˆ Zqs.

By ([CLS11, Thm.7.A.1])
P∆ – ProjpS∆q.

Conep∆ ˆ t1uq

∆ Σ∆r1s

The polytope ∆ in the middle and two possible constructions of P∆: Via the
cone over ∆ (on the left) and via the normal fan (on the right).

To σ P Σrn ´ ks is associated a k-dimensional torus orbit Opσq of PΣ. The
closure V pτq of Opτq in PΣ equals

V pτq “
ď

τďσ

Opσq.

By definition the canonical divisor KPΣ is the divisor on PΣ associated to
a rational differential form, for example the form

dx1

x1
^ ... ^

dxn

xn

which is regular on T . We get

KPΣ “ ´
ÿ

νiPΣr1s

Di. (2.1)
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Proposition 2.1.1. ([CLS11, Prop.4.2.7])
PΣ is Q-factorial if and only if each cone σ P Σ is simplicial, that is the
generators νi of σ are linearly independent over R.

Construction 2.1.2. Given lattices N and N 1, fans Σ and Σ1 in N and N 1

and a homomorphism of lattices

ϕ : N Ñ N 1

with R-linear extension ϕR : N 1
R Ñ NR assume that for every σ1 P Σ1 there is

σ P Σ with
ϕRpσ1

q Ă σ.

Using T – N bZ C˚, T 1 – N 1 bZ C˚ the homomorphism

n b z ÞÑ ϕpn1
q b z

between tori continues to a morphism ϕ : PΣ1 Ñ PΣ between toric varieties
([CLS11, Ch.3.3, Thm.3.3.4]). By definition ϕ is a toric morphism. By
([HLY02, Prop.2.1.4]) any irreducible fiber of ϕ admits again the structure of
a toric variety.
Proposition 2.1.3. ([CLS11, Ch.3.3])
Given two complete fans Σ and Σ1 such that Σr1s and Σ1r1s belong to the
same lattice N and Σ1 refines Σ there is an induced birational morphism
p : PΣ1 Ñ PΣ.

∆ “ 4 ¨ ∆2
Σ∆r1s

Illustration of the blow up of P2 at a torus fixed point: The normal fan Σ∆
gets refined by inserting the dashed ray p1, 1q. By cutting off the vertex p0, 0q

in the picture for ∆ on the left we get a new polytope ∆1 whose normal fan
Σ∆1 equals the refinement on the right.



2.1. Toric Vaieties 29

Proposition 2.1.4. ([CLS11, Prop.3.3.7])
Let N 1 Ă N be a sub-lattice of finite index pN : N 1q and let Σ1 Ă N 1

R be a fan.
With respect to the lattice N , the fan Σ is denoted by Σ1. Then the inclusion
N 1 Ă N induces a finite toric morphism PΣ1 Ñ PΣ of degree pN : N 1q.

Example 2.1.5. For the following figure let

N2 :“ t p2n1, 2n2, 2n3q | n1, n2, n3 P N u Ă N.

and PΣ “ P2. Write pt0 : t1 : t2q for the homogeneous coordinates on P2 and

T “

!

ˆ

1,
t1

t0
,
t2

t0

˙

P P2
| t0, t1, t2 ‰ 0

)

for the torus in P2. The inclusion ϕ2 : N 1 Ñ N induces the following
homomorphism pϕ2qT between tori

pϕ2qT

´

1,
t1

t0
,
t2

t0

¯

:“
˜

1,

ˆ

t1

t0

˙2

,

ˆ

t2

t0

˙2
¸

.

pϕ2qT continues to the toric morphism

ϕ2 : P2
Ñ P2

pt0 : t1 : t2q ÞÑ pt2
0 : t2

1 : t2
2q.

Given a toric variety P and l P Ně1 in Construction 5.3.2 we recall a multipli-
cation map ϕl due to Fujino generalizing the map ϕ2 from above.

Illustration of the fan Σ∆2 of P2 with respect to the standard lattice N (on
the left) and with respect to the sub-lattice N2 (on the right).
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Construction 2.1.6. To a divisor

D “

r
ÿ

i“1
aiDi, ai P Z

on a complete toric variety PΣ we associate a polytope

PD :“ tx P MR| xx, νiy ě ´ai, νi P Σr1su, (2.2)

which is at least rational, and which computes the global sections of D, that
is (compare [CLS11, Prop.4.3.3])

H0
pPΣ, OPΣpDqq –

à

mPPDXM

C ¨ χm,

where for m “ pm1, ..., mnq the function χm denotes the character

t “ pt1, ..., tnq ÞÑ tm :“ tm1
1 ¨ ... ¨ tmn

n

of T . Note that given k ě 1 the polytope PkD associated to k ¨ D equals k ¨ PD

([CLS11, Exc. 4.3.2]).

Example 2.1.7. Up to isomorphism there is only one complete 1-dimensional
fan Σ, namely

with toric variety PΣ – P1. It follows that given complete fans Σ in NR and
Σ1 in N 1

R, where
dim N 1

R “
`

dim NR
˘

` 1
and a toric morphism p : PΣ1 Ñ PΣ of relative dimension 1, the fiber F of p
is isomorphic to P1 since p is proper.

Example 2.1.8. Let ∆ be an n-dimensional lattice simplex, that is |Σ∆r1s| “

n ` 1, say
Σ∆r1s “ tν0, ..., νnu,

then P∆ is denoted a fake weighted projective space. In this case there
are unique q0, ..., qn P Ně1 with gcdpq0, ..., qnq “ 1 and

n
ÿ

i“0
qiνi “ 0.
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The numbers q0, ..., qn are the weights of P∆. If ν0, ..., νn generate the lattice
N then P∆ is a weighted projective space. The weights q0, ..., qn determine
P∆ up to isomorphism and we write

P∆ “ Ppq0, ..., qnq.

If
rN : Z ¨ q0 ` ... ` Z ¨ qns ą 1,

then P∆ depends on q0, ..., qn and the torsion in ClpP∆q (see [Kas09]).

2.2 Nondegenerate hypersurfaces in toric va-
rieties

Definition 2.2.1. Let f be a Laurent polynomial with presentation

f “
ÿ

mPA

amzm, am P C (2.3)

for some finite nonempty subset A Ă M . The support of f is defined as

Supppfq :“
!

m P A | am ‰ 0
)

.

The Newton polytope is the convex hull of Supppfq.

The presentation in (2.3) we be our standard notation for f . We always
assume that the affine span of A over R equals MR, though A is not required
to generate M affinely over Z.

Definition 2.2.2. Given a Laurent polynomial f with Newton polytope ∆
we call f nondegenerate w.r.t. ∆ (or ∆-regular) if Zf is smooth and for
every face σ of ∆ with associated torus orbit Opσq of P∆ the intersection
Z∆,f X Opσq is either empty or smooth of codimension one in Opσq.

Remark 2.2.3. This condition may also be expressed by saying that Zf is
smooth and for every face Γ of ∆

f|Γ, x1 ¨
Bf|Γ

Bx1
, ..., xn ¨

Bf|Γ

Bxn

(2.4)
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have no common zero in pC˚qn, where

f|Γ :“
ÿ

mPAXΓ
amxm.

We denote the set of nondegenerate Laurent polynomials f P Lp∆q by Uregp∆q.
Throughout this thesis f is always assumed to be nondegenerate. We take
abbreviations like: For a lattice polytope ∆ and a given f to mean that f is
a nondegenerate Laurent polynomial with Newton polytope ∆.

Remark 2.2.4. Given an n-dimensional lattice polytope ∆ and A “ ∆ X M
the condition for f to be ∆-regular is a Zariski open nonempty condition on
the coefficients pamqmPA, given by the non-vanishing locus of the principal
A-determinant EA (see [GKZ94, Ch.10]) for the case that A affinely generates
M and [Bat03, Prop.2.16] else).

Let us check at hand that the condition in Remark 2.2.3 is true on a nonempty
Zariski open subset of C#A if A consists just of the vertices of an n-dimensional
lattice polytope ∆:

Let Γ be a k-dimensional face of ∆. Choose k ` 1 affine linear indepen-
dent vertices of Γ and take the k-dimensional simplex Γ1 which is the convex
hull of these vertices. Assume that the assertion holds for simplices then it is
fulfilled for Γ1.

Varying the coefficients of the remaining vertices of Γ in a Zariski open
subset does not violate the condition in Remark 2.2.3. Thus iterating over
all faces Γ of ∆ we have to intersect finitely many nonempty Zariski open
subsets to get our subset. We are left to deal with the case that ∆ is a
simplex with vertices v0, ..., vn. We apply an unimodular transformation to
∆ (this is allowed by [GKZ94, Ch.9 Prop.1.4, Ch.10 Thm.1.2]) such that
v0, ..., vn´1 P txn “ 0u. Setting

xn ¨
Bf

Bxn

“ 0

in (2.4) we must have xvn “ 0 and there is no solution in the torus pC˚qn.
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A lattice polygon ∆ and a subsimplex whose vertices are also vertices of ∆.

Construction 2.2.5. Given f P Lp∆q the closure Yf in the toric variety PΣ
to an n-dimensional complete fan Σ is a Weil divisor linear equivalent to

Yf „lin ´
ÿ

νiPΣr1s

Min∆pνiq ¨ Di. (2.5)

(see [Bat22, Prop.7.1]). Therefore we are just interested in the linear equiva-
lence class of Yf . Since ∆ is always a lattice polytope Y is an integral divisor.
The divisor Y is Cartier if and only if Min∆ is a support function for Y , that
is

Min∆ : NR Ñ R

is linear on each cone of Σ and Min∆pNq Ă Z. Similarly Y is Q-Cartier if
just Min∆pNq Ă Q.
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CHAPTER 3

Minimal models of nondegenerate toric hypersurfaces

In this chapter we introduce the necessary definitions and methods both
from the combinatorial point of view and from the background in algebraic
geometry to construct minimal models of nondegenerate toric hypersurfaces.
Largely we follow the article ([Bat22]).

3.1 Modifications of the Newton polytope ∆
Definition 3.1.1. An n-dimensional rational polytope ∆ Ă MR has a presen-
tation

∆ “ tx P MR | xx, νiy ě Min∆pνiq, νi P Σ∆r1su

and we define the Fine interior F p∆q of ∆ as

F p∆q :“ tx P MR| xx, νy ě Min∆pνq ` 1, ν P Nzt0uu.

Remark 3.1.2. The Fine interior was introduced by J. Fine in ([Fine83]). In
general it is only a rational polytope though if dim ∆ “ 2 and ∆ is a lattice
polytope then F p∆q turns out to be a lattice polytope as well, namely it
equals the convex span of the interior lattice points of ∆ ([Bat17, Prop.2.9]).
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F p∆q

∆

F p∆q

∆

Illustration of the construction of the Fine interior F p∆q from ∆.

Remark 3.1.3. In order to construct the Fine interior F p∆q of ∆ we have
to move every hyperplane which touches some face of ∆ ”one step“ into
the interior of ∆. In general it is not enough to move just the hyperplanes
defining facets one step into the interior (see Figure 3.1). Even worse it might
happen that an hyperplane cuts out a facet of ∆ but does not touch F p∆q

after replacing one step into the interior of ∆. This happens if and only if
∆ ‰ Cp∆q (see Lemma 3.1.7 below).

Obviously we have LpF p∆qq “ L˚p∆q. If ∆ :“ d ¨ ∆n with ∆n the n-
dimensional standard simplex we have

F p∆q “ pd ´ n ´ 1q ¨ ∆n.

This is because if we just move the facets of ∆ one step into the interior we
already get the lattice polytope pd ´ n ´ 1q ¨ ∆n “ convhullpIntp∆q X Mq.

Definition 3.1.4. Let ∆ be a rational polytope with F p∆q ‰ H. The set of
lattice points ν P Nzt0u with

MinF p∆qpνq “ Min∆pνq ` 1

is called the support SF p∆q of F p∆q to ∆.
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Figure on the support vectors: On the left ∆ and on the right Σ∆r1s. F p∆q

equals the unique interior lattice point of ∆. By ([Bat22, Prop.3.11]) the
support vectors SF p∆q are always contained in the convex span of the rays
Σ∆r1s. In particular SF p∆q is a finite set. The above pictures show that
p0, ´1q P SF p∆q.

Definition 3.1.5. For ∆ a rational polytope with F p∆q ‰ H

Cp∆q :“ tx P MR | xx, νy ě Min∆pνq @ ν P SF p∆qu

is called the canonical closure of ∆. ∆ is canonically closed if Cp∆q “ ∆.

Remark 3.1.6. ([Bat22, Prop.3.17(b), Cor.3.19, Prop.4.4])

Given a lattice polytope ∆ with F p∆q ‰ H

∆ Ă Cp∆q, CpCp∆qq “ Cp∆q, F pCp∆qq “ F p∆q.

Besides

• dimp∆q “ 2 : Cp∆q “ ∆.

• dimp∆q “ 3: Cp∆q “ ∆ in all known examples.

• dimp∆q ě 4: Cp∆q is just a rational polytope in general.

Let us summarize useful properties of Cp∆q in a technical lemma:

Lemma 3.1.7. ([Bat22, Prop.3.17a), Cor.3.18, Prop.4.3]
An n-dimensional lattice polytope ∆ with F p∆q ‰ H is canonically closed if
and only if Σ∆r1s Ă SF p∆q. Besides SF pCp∆qq “ SF p∆q and for ν P SF p∆q

MinCp∆qpνq “ Min∆pνq.
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Construction 3.1.8. ([Bat22, Thm.6.3])
Let ∆ Ă MR be an n-dimensional lattice polytope with F p∆q ‰ H. Define

∆̃ as Minkowski sum
∆̃ :“ Cp∆q ` F p∆q

The normal fan Σ∆̃ is the coarsest refinement of ΣCp∆q and ΣF p∆q. Besides

Σ∆̃r1s Ă SF p∆q.

Let Σ be a simplicial fan with Σr1s “ SF p∆q, which refines Σ∆̃.

3.2 The construction of minimal models
For convenience we write P instead of PΣ and denote the closure of Zf in P
by Yf or Y . There is a diagram

P

P∆̃

PCp∆q PF p∆q

π

ρ θ

(3.1)

where π and ρ are birational since both Σ∆̃ refines ΣCp∆q and Σ refines Σ∆̃ in
N . The morphism θ is birational if and only if

dimpF p∆qq “ dimp∆q.

Summarizing results: We explain the notions ”terminal “and ”canonical“
singularities in the Appendix of this chapter (section 3.5).

Theorem 3.2.1. ([Bat22, Thm.7.5])
Let ∆ be an n-dimensional lattice polytope with F p∆q ‰ H. Then the closures
Z∆̃,f and Yf of Zf define normal algebraic varieties, since they do not contain
any pn ´ 2q-dimensional torus orbit of P∆̃ and P.

Proposition 3.2.2. ([Bat22, Prop.7.4])
The divisor Y Ă P is nef, big and Q-Cartier.
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Definition 3.2.3. Given a normal projective variety Y birational to Zf with
at most terminal singularities and KY nef Y is called a minimal model of Zf .

Theorem 3.2.4. ([Bat22, Cor.6.6])
Given an n-dimensional lattice polytope ∆ Ă MR with F p∆q ‰ H, the toric
variety P has at most terminal singularities. The adjoint divisor KP ` Y is
nef.

Remark 3.2.5. The adjunction formula

KY “ pKP ` Y q|Y

applies since Y does not contain any pn ´ 2q-dimensional torus orbit of P (see
[Bat22, Thm.7.5]).

Corollary 3.2.6. [Bat22, Thm.8.2]
Let ∆ be an n-dimensional lattice polytope with F p∆q ‰ H. Then Y “ Yf is
a minimal model of Zf .

Remark 3.2.7. P∆̃ has at most canonical singularities and the morphism
π : P Ñ P∆̃ is crepant, that is π˚pKP∆̃

q “ KP and similarly for Z∆̃,f and the
morphism Yf Ñ Z∆̃,f (see [Bat22, Cor.6.5, Thm.8.1]).

3.3 Further properties of Y

Lemma 3.3.1. Y Ă P is Cartier if and only if Cp∆q is a lattice polytope.

Proof. We work with the representation of the linear equivalence class of Yf

from Construction 2.2.5. By Lemma 3.1.7 given ν P Σr1s “ SF p∆q

Min∆pνq “ MinCp∆qpνq.

The function MinCp∆q : NR Ñ R is linear on the cones of Σ since Σ refines
the normal fan of Cp∆q. Thus

Y Ă P Cartier ô MinCp∆qpNq Ă Z ô Cp∆q is a lattice polytope.
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Remark 3.3.2. (Compatibility of nondegeneracy of f with the fan Σ)

Given an n-dimensional lattice polytope ∆ and a Laurent polynomial f
the singular locus Psing of P always equals the union of torus orbits of P
([CLS11, Prop.11.1.2]). We mention two easier cases

• Cp∆q “ ∆: Here Σ refines Σ∆ and Y intersects the toric strata of
P transversely in a subset of codimension 1 ([Bat94], see also [Tre10,
Prop.5.1.3]) and Y behaves nondegenerate w.r.t. P just as Z∆ does
w.r.t. P∆. As a consequence

Ysing “ Y X Psing.

• Cp∆q is a lattice polytope: Here Y Ă P is Cartier by Lemma 3.3.1 and
Ysing Ą Y X Psing by the jacobian criterion for smoothness (see [Hart77,
Ch.I.5 Definition]).

General situation: In general Y should define a quasismooth hypersurface
in P. This would imply

Ysing Ă Y X Psing

by ([BaCo94, Def.3.2, Rem.3.3]).

Remark 3.3.3. For an n-dimensional lattice polytope ∆ with F p∆q ‰ H and
a given f , the polytope associated to Y “ Yf equals Cp∆q by Construction
2.1.6, that is

H0
pP, OPpY qq – LpCp∆qq.

Besides the polytope associated to Y ` KP equals F p∆q by Construction 2.2.5
and formula (2.2.5).
Definition 3.3.4. Given a normal projective surface Y , we write κpY q for
the Kodaira dimension of Y , which is defined to be the Kodaira dimension
of a resolution of singularities Y 1 of Y . The latter could be defined as the
number κ :“ κpY 1q measuring the growth of the plurigenera of Y 1, that is

a ¨ mκ
ď h0

pY 1, mKY 1q ď A ¨ mκ

for some constants a, A ą 0 and all sufficiently large and divisible m P N (see
[Laz00, Cor.2.1.38]).
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Theorem 3.3.5. ([Bat22, Thm.9.2])
Let ∆ Ă MR be an n-dimensional lattice polytope with F p∆q ‰ H and
k :“ dim F p∆q. Then Y has Kodaira dimension

κpY q “

$

&

%

n ´ 1, k “ n
n ´ 1 k “ n ´ 1
k k ă n ´ 1.

.

Example 3.3.6. Given ∆ “ d ¨ ∆n with d ě n ` 1 then

F p∆q “ pd ´ n ´ 1q ¨ ∆n ‰ H, Cp∆q “ ∆

and P “ P∆ “ Pn. Given an f the closure Y “ Z∆,f Ă Pn is smooth (even
slightly more special) and KY is nef.

Definition 3.3.7. A reflexive polytope ∆ is a lattice polytope with facet
presentation

∆ “ tx P MR| xx, νiy ě ´1u.

Example 3.3.8. Given such a polytope

F p∆q “ t0u, Cp∆q “ ∆ ñ ∆̃ “ ∆

and SF p∆q equals the lattice points on the boundary of the dual polytope of
∆ by ([Bat22, Prop.4.9]).

3.4 Three-dimensional lattice polytopes ∆ with
l˚p∆q “ 1 and dim F p∆q “ 3

Example 3.4.1. There are 49 three-dimensional lattice polytopes ∆ with

Intp∆q X M “

!

¨

˝

0
0
0

˛

‚

)

, dim F p∆q “ 3.

(see [Sch18, Appendix A.3]). We list them in Tables 9.1 and 9.2 and picture
those with Cp∆q “ ∆ in Figures 9.1 and 9.2.

Remark 3.4.2.
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• The 49 polytopes are similar to reflexive polytopes: There is exactly
one Γ ď ∆ with integral distance 2 to p0, 0, 0q (see the pictures). All
other facets have distance 1 to p0, 0, 0q.

• Up to unimodular equivalence there are just 5 rational polytopes P
occurring as Fine interior F p∆q “ P .

• For P one of these 5 polytopes there is exactly one maximal polytope
∆ w.r.t. ”Ă“with F p∆q “ P .

• Given a maximal polytope ∆ up to replacing ∆ the Fine interior F p∆q

is proportional to ∆.

Dividing the 49 polytopes into classes aq, bq, cq, dq and eq according to their
Fine interior, we picture the maximal polytopes in Figure 3.3. In aq and cq

the maximal polytopes are simplices, P∆ is a fake weighted projective space
to the weights

aq : p2, 1, 1, 1q, cq : p2, 2, 1, 1q.

In cq, dq and eq the Fine interior F p∆q equals

cq : F p∆q “ xp0, 0, 0q, p1, 1{2, 2q, p1, 1{4, 1q, p1, 3{4, 1qy

dq : F p∆q “ xp0, 0, 0q, p1, ´1{2, 1q, p1, ´1{2, 0q, p1, ´3{4, 1{2q, p1, ´1{4, 1{2qy

eq : F p∆q “ xp0, 0, 0q, p1, 3{2, ´1q, p1, 3{4, 0q, p1, 1{2, 0q, p1, 3{4, ´1{2qy

Concerning the other 46 polytopes we list the Fine interior in the Tables 9.1
and 9.2 and Figure 3.3.
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The maximal polytopes in the classes aq, bq, cq, dq and eq.

aq :∆ “ xa “ p2, 1, ´2q, b “ p2, 0, 1q, d “ p2, 2, 1q, p “ p´4, ´2, 1qy

bq :∆ “ xa “ p2, ´3, 1q, b “ p2, ´1, 2q, c “ p2, 0, 1q, d “ p2, ´1, 0q, p “ p´4, 3, ´2qy

cq :∆ “ xa “ p2, 1, 5q, p “ p´2, ´1, ´3q, b “ p2, 0, 1q, d “ p2, 2, 1qy

dq :∆ “ xa “ p2, ´1, 3q, b “ p2, 0, 1q, c “ p2, ´1, ´1q, d “ p2, ´2, 1q,

p “ p´2, 1, ´1qy

eq :∆ “ xa “ p2, 0, 1q, b “ p2, 1, ´1q, c “ p2, 4, ´3q, d “ p2, 1, 1q, p “ p´2, ´2, 1qy
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3.5 Appendix: Singularities of the minimal
model program

In order to complete the definition of this chapter we mention the following
results:

Definition 3.5.1. [Rei83, (1.11)]
Consider a fan Σ in NR and a cone σ of Σ. Then σ is called canonical (of
index j P N), if there exists a primitive vector m P M such that

xm, νiy “ j for νi P σr1s

and

xm, ny ě j for n P σ X N, n R tp0, ..., 0qu Y σr1s. (3.2)

σ is called terminal if we have strict inequality in (3.2). The fan Σ is called
canonical (terminal) if all its cones are canonical (terminal).

Definition 3.5.2. ([Rei87])
A normal algebraic variety Y (over Cq is said to have at most terminal
(canonical) singularities if KY is Q-Cartier and writing m for the smallest
natural number with mKY Cartier, then for every resolution of singularities
σ : Y 1 Ñ Y we have

mKY 1 “ σ˚
pmKY q `

r
ÿ

i“1
aiEi, (3.3)

where ai are integers with ai ą 0 (ai ě 0). Here E1, ..., Er are the exceptional
divisors of σ.

According to [Rei83, (1.12)] we have the following result:

Theorem 3.5.3. The toric variety P has at most canonical (terminal) singu-
larities if and only if the fan Σ is canonical (terminal).

Remark 3.5.4. ([Rei87])
A normal algebraic surface X has canonical (terminal) singularities if and
only if it has at most rational double points (is smooth). A variety with
terminal singularities has a locus of singularities of codimension ě 3.



CHAPTER 4

The plurigenera of minimal models

In this section we compute the plurigenera h0pY, mKY q of a minimal toric
hypersurface and derive from this a formula for the maximal self intersection
number Kn´1

Y . Together with the vanishing qpY q “ 0 this allows us to
compute the main invariants of the algebraic surfaces from section 3.4.

4.1 Two toric vanishing Theorems
There are two vanishing Theorems which we will use several times:

Theorem 4.1.1. (Demazure’s vanishing Theorem), ([CLS11, Thm.9.2.3])
Let P be a complete normal toric variety and D a Q-Cartier nef divisor on P.
Then

Hp
pP, OPpDqq “ 0, p ą 0.
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Theorem 4.1.2. (Batyrev-Borisov vanishing Theorem) , ([CLS11, Thm.9.2.7])
For D a Q-Cartier nef divisor D on a complete normal toric variety P

Hp
pP, OPp´Dqq “

#

0 p ‰ dim PD
À

mPL˚p´PDq

C ¨ χm p “ dim PD
,

Remark 4.1.3. (Toric Serre duality)
Let P be an n-dimensional complete normal toric variety, then for D a
Q-Cartier divisor we have

Hp
pP, OPpDqq

˚
– Hn´p

pP, OPp´D ` KPqq

by ([CLS11, Thm.9.2.10a)]). There is an action of the character group M
on the cohomology groups and in the situation of Theorem 4.1.2 we have
splittings

Hn´p
pP, OPpKP ` Dqq –

à

mPM

Hn´p
pP, OPpKP ` Dqqm ¨ χm

Hp
pP, OPp´Dqq –

à

mPM

Hp
pP, OPp´Dqqm ¨ χm.

By ([CLS11, Ex.9.12 formula (9.2.9)]) Serre duality restricts to a duality

Hn´p
pP, OPpKP ` Dqqm –

`

Hp
pP, OPp´Dqq´m

˘˚
.

Due to the change of sign at m we get

Hn´p
pP, OPpKP ` Dqq –

#

0 p ‰ dim PD
À

mPL˚pPDq

C ¨ χm p “ dim PD

In chapter 5 we deal with a complicated vanishing Theorem where the sheaves
of differential p-forms Ωp

P appear for 1 ď p ď n.

4.2 The Plurigenera
Theorem 4.2.1. Let ∆ be an n-dimensional lattice polytope with k :“
dim F p∆q ě 0. Then the plurigenera PmpY q :“ h0pY, mKY q are given by

PmpY q “

$

&

%

lpm ¨ F p∆qq ´ l˚ppm ´ 1q ¨ F p∆qq, k “ n
lpm ¨ F p∆qq ` l˚ppm ´ 1q ¨ F p∆qq, k “ n ´ 1
lpm ¨ F p∆qq k ă n ´ 1.

with exception of the special case n “ 0 and m “ 1.
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Proof.
H0

pP, mpKP ` Y qq – Lpm ¨ F p∆qq m P Ną0,

since the polytope associated to m ¨ pKP ` Y q equals m ¨ F p∆q. We use an
ideal sheaf sequence for Y and apply the adjunction formula

KY “ pY ` KPq|Y

to get an exact sequence

0 Ñ H0
pP, pm ´ 1qpKP ` Y q ` KPq Ñ H0

pP, mpKP ` Y qq (4.1)
Ñ H0

pY, mKY q Ñ H1
pP, pm ´ 1qpKP ` Y q ` KPq Ñ 0

Here we have applied Theorem 4.1.2 to the divisor KP ` Y which is Q-Cartier
and nef by (Theorem 3.2.4).

H1
pP, mpKP ` Y qq “ 0

by Theorem 4.1.1. If m “ 1 then

h0
pP, KPq “ 0, h1

pP, KPq “ 0

by Remark 4.1.3 and P1pY q is given by

P1pY q “ lpF p∆qq “ l˚
p∆q.

Given m ě 2 we apply Serre duality to the Q-Cartier divisor D :“ pm ´ 1q ¨

pKP ` Y q and use Remark 4.1.3

H0
pP, D`KPq –

"

0, dim F p∆q ď n ´ 1
L˚ppm ´ 1q ¨ F p∆qq, dim F p∆q “ n

and

H1
pP, D`KPq –

"

L˚ppm ´ 1q ¨ F p∆qq, dim F p∆q “ n ´ 1
0, dim F p∆q ‰ n ´ 1

The result follows by adding the dimensions in the exact sequence 4.1.
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Example 4.2.2. If dimp∆q “ 2 and F p∆q ‰ H then Y :“ Z∆ is a smooth
curve and we distinguish

Y “

$

&

%

elliptic curve if dim F p∆q “ 0
hyperelliptic curve, gpY q ě 2 if dim F p∆q “ 1
non-hyperelliptic curve, gpY q ě 3 if dim F p∆q “ 2

This assertion follows from

gpY q “ P1pY q “ l˚
p∆q.

Given dim F p∆q “ 1 then by Example 2.1.7

PF p∆q – P1

and θ ˝ π : P Ñ P1 induces a morphism Y Ñ P1 of degree 2. It remains to
check that this morphism coincides with the morphism induced by the linear
system |KY | to see that Y is hyperelliptic (see [Gie22a, section 6]).

4.3 The invariants Kn´1
Y and qpY q

The lattice normalized volume VolZpF q of a rational polytope F may be
defined by

VolZpF q “ lim
mÑ8

lpm ¨ F q ¨ pdim F q!
mdim F

(4.2)

([BR09, Lemma 3.19]). Here normalized means that the standard n-simplex
∆n has VolZp∆nq “ 1. See ([BR09]) for details.

Corollary 4.3.1. Let ∆ be an n-dimensional lattice polytope, where n ě 2,
with k :“ dim F p∆q ě 0. Then

Kn´1
Y “

$

’

&

’

%

VolZpF p∆qq `
ř

QďF p∆q

VolZpQq k “ n

2 ¨ VolZpF p∆qq k “ n ´ 1
0 k ă n ´ 1

Proof. By ([Laz00, Remark after Def. 2.2.31]) we have

Kn´1
Y “ lim

mÑ8

pn ´ 1q! ¨ h0pY, mKY q

mn´1 .
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By the formula of Theorem (4.2.1) given dim F p∆q ă n ´ 1 then Kn´1
Y “ 0.

Given dim F p∆q “ n ´ 1 then

lim
mÑ8

pn ´ 1q! ¨ l˚ppm ´ 1q ¨ F p∆q

mn´1 “ lim
mÑ8

pn ´ 1q! ¨ lpm ¨ F p∆qq

mn´1 “ VolZpF p∆qq

by ([BR09, Thm.4.1]). If dim F p∆q “ n then write

PmpY q “ lpm¨F p∆qq´lppm´1q¨F p∆qq`lppm´1q¨F p∆qq´l˚
ppm´1q¨F p∆qq.

By formula 4.2 we have

lim
mÑ8

lpmF p∆qq ´ lppm ´ 1qF p∆qq

mn´1{pn ´ 1q! “ VolZpF p∆qq.

Finally by ([BR09, Thm.5.6]) we have

lim
mÑ8

lppm ´ 1qF p∆qq ´ l˚ppm ´ 1qF p∆qq

mn´1{pn ´ 1q! “
ÿ

QďF p∆q

VolZpQq.

We deduce from the article of Danilov and Khovanskii:

Proposition 4.3.2. Let ∆ be a 3-dimensional lattice polytope with F p∆q ‰ H.
Then

qpY q :“ h0
pY, Ω1

Y q “ 0.

Proof. By the Hodge decomposition it is enough to show that H1pY,Cq “ 0
(see chapter 7). By ([DK86, Prop.3.4]) we have

H1
pZ∆,Cq “ 0.

Choose a partial toric resolution of singularities σ : P1 Ñ P∆ modifying just
the 1-dimensional torus orbits of P∆ such that σ : Z 1 Ñ Z∆ is a resolution of
singularities. This works since by nondegeneracy Z∆ does not pass through
the torus fixed points of P∆. For E a σ-exceptional curve on Z 1 we have
E – P1. An argument using the Mayer-Vietoris sequence shows that

h1
pZ 1,Cq “ 0.

Since Z 1 is gotten by blowing up Y at several points ([BHPV04, Ch. III
Cor.4.4]), H1pY,Cq “ 0.
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4.4 Kanev and Todorov surfaces
The main invariants of (smooth) algebraic surfaces include the geometric
genus pgpY q :“ P1pY q, the irregularity qpY q and K2

Y .

Example 4.4.1. In case n “ 3 and ∆ is reflexive then

pgpY q “ 1, qpY q “ 0,

and by the adjunction formula KY “ OY . Y is called a K3 surface.

For the 49 examples from section 3.4 we get

K2
Y P t1, 2u, pgpY q “ 1, qpY q “ 0.

Definition 4.4.2. (compare ([Cat78a]))
A Kanev (or Kunev/Kynev) surface is a minimal complex projective surface
Y with

pgpY q “ 1, qpY q “ 0, K2
Y “ 1.

Remark 4.4.3. By ([Cat78, Thm.2.2]) these surfaces are simply connected.
Surfaces Y with

pgpY q “ 1, qpY q “ 0, K2
Y “ 2

are deal with in ([CD89]). Given such a surface Y the linear system |2 ¨ KY |

defines a finite morphism ϕ2¨KY
: Y Ñ P3. If the image of Y is a quadric cone

then Y has fundamental group

π1pY q – Z{2Z. (4.3)

For our Examples the spaces H0pY, m ¨ KY q have monomial bases by Theorem
4.2.1 and we may compute such bases for m “ 2 in cq, dq and eq:

cq : w0 :“ p0, 0, 0q, w1 :“ p2, 1, 4q, w2 :“ p2, 1, 3q, w3 :“ p2, 1, 2q

dq : w0 :“ p0, 0, 0q, w1 :“ p2, ´1, 2q, w2 :“ p2, ´1, 1q, w3 :“ p2, ´1, 0q

eq : w0 :“ p0, 0, 0q, w1 :“ p2, 1, 0q, w2 :“ p2, 2, ´1q, w3 :“ p2, 3, ´2q.

This notation means that the characters t ÞÑ twi build a basis of H0pY, 2 ¨KY q.
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In cq, dq and eq we have 2 ¨ w2 “ w1 ` w3. Since the morphism ϕ2KY
as-

sociated to |2 ¨ KY | restricted to the torus T is given by

t “ pt1, t2, t3q ÞÑ ptw1 , tw2 , tw3q

ϕ2KY
pY q is a quadric cone in cq, dq and eq and (by [CD89]) π1pY q – Z{2Z.

Remark 4.4.4. Interestingly some Kanev surfaces and surfaces of the second
type where K2

Y “ 2 are closely related to K3 surfaces: For Y a Kanev surface
2KY defines a finite morphism ϕ2KY

: Y Ñ P2 of degree 4. If this morphism
factors through a K3 surface with R.D.P. then in the literature Y is called
special. These special Kanev surfaces are of particular interest (see chapter
8).
For Y a surface with

pgpY q “ 1, qpY q “ 0, K2
Y “ 2

the morphism ϕ2KY
: Y Ñ P3 is of degree 1, 2, 4 or 8. If ϕ2KY

factors through
a K3 surface with R.D.P. then Y is called a Todorov surface. In fact for the
definition of a Todorov surface there condition K2

Y “ 2 is weakened to the
condition

K2
Y P t1, ..., 8u

([Mor87]). Some of these surfaces are known to fail the infinitesimal Torelli
Theorem.

Example 4.4.5. Consider the sub-lattice

M 1 :“ tpm1, m2, m3q P M | m1 P 2 ¨ Zu Ă M

of index 2 in M with dual lattice N 1 Ą N . Let ∆1 be the polytope ∆ with
respect to the lattice M 1. Then ∆1 is a lattice polytope since all vertices of
∆ have even first coordinate and ∆1 turns out to be reflexive. The inclusion
N Ñ N 1 induces a degree 2 toric morphism

ϕ1 : P∆ Ñ P∆1 .

We compute bases of H0pY, 2KY q:

aq : p0, 0, 0q, p2, 1, 0q, p2, 1, ´1q

bq : p0, 0, 0q, p2, ´1, 1q, p2, ´2, 1q.
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It follows that given an f as in (2.3) with am “ 0 for

m P pMzM 1
q X ∆

then ϕ2KY
factors through the restriction of ϕ1 to Y . Since ∆1 is reflexive Z∆1

gets a K3 surface with R.D.P (Example 3.3.8 and Remark 4.4.1) and Y is
special.

Thus we find subfamilies of special Kanev surfaces by setting the follow-
ing monomials to zero (only in the maximal polytopes)

aq, bq : b1, d1, ab, bc, ad, cd.

Similarly in cq, dq and eq we get Todorov surfaces if we set the coefficients to
the following monomials to zero:

cq, dq, eq : ab, ad, bc, cd.



CHAPTER 5

The Kodaira-Spencer maps κP,f and κf and their kernels

Given an n-dimensional Newton polytope ∆ with F p∆q ‰ H the toric variety
P does not depend on the Laurent polynomial f . In fact even more: P is the
same for all lattice polytopes ∆ with F p∆q ‰ H and fixed Cp∆q. In this way
we get explicit deformations of Yf by varying f P Uregp∆q.

Throughout this and the next chapter we restrict to (conditions p`q)

• n “ 3

• l˚p∆q ą 0

• Cp∆q is a lattice polytope

The first point ensures that Y is smooth. The second point is exploited
in order to prove h0pY, TY q “ 0 (see Proposition 5.4.3) and the third point
guarantees that Y defines a Cartier divisor on P by Lemma 3.3.1.

In this rather technical chapter we introduce a Kodaira-Spencer map κf

parameterizing one-to-one the infinitesimal deformations of Yf arising when
varying f . We extend κf by introducing a second Kodaira-Spencer map κP,f

parameterizing the infinitesimal deformations of Yf in P.
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We abstractly identify kerpκP,f q and kerpκf q with some vector spaces, post-
poning the explicit calculations of

kerpκP,f q Ă LpCp∆qq{C ¨ f

kerpκf q Ă Lp∆q{C ¨ f

to the next chapter.

5.1 Tangent sheaf, Normal sheaf and Sheaves
of differential p-forms

Since P is not necessarily smooth we have to recall the notion of reflexive
sheaves which weakens the definition of locally free sheaves.

Definition 5.1.1. A coherent sheaf F on a normal variety X is called
reflexive if the natural map F Ñ F˚˚ is an isomorphism, where F˚˚ denotes
the double dual (reflexive hull) of the sheaf F .

Remark 5.1.2. ([CLS11, Prop.8.0.1, Thm.8.0.4])
If X is normal and j : U Ă X an open subset with CodimpXzUq ě 2, a
reflexive sheaf is uniquely determined by its restriction to U , that is

F – j˚pF|U q. (5.1)

Conversely if F is a coherent sheaf with F|U locally free and codimpXzUq ě 2
then j˚pF|U q is reflexive ([Sch08, Prop.2.12]). The dual of a coherent sheaf
on a normal variety is always reflexive, in particular the reflexive hull of a
coherent sheaf is reflexive.

Remark 5.1.3. With this definition the map

tWeil divisors on Xu Ñ trank one reflexive sheaves on Xu

D ÞÑ OXpDq

gets linear, that is OXpD ` D1q – OXpDq br OXpD1q.

If F is reflexive and L a line bundle on X then F b L is easily seen to
be reflexive by checking the condition with the double dual stalk-wise using
([Hart77, Ch.3, Prop.6.8]).
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Definition 5.1.4. Given an n-dimensional normal algebraic variety X we
define the reflexive sheaves

Ωp
X :“ ι˚Ωp

U 1 ď p ď n,

TX :“ pΩ1
Xq

˚,

where ι : U Ñ X denotes the inclusion of the smooth locus of X.

Remark 5.1.5. If X is smooth then

TX – Ωn´1
X b OXp´KXq

by ([Hart77, Ch. II Ex.5.16b)]). Applying this to the inclusion of the smooth
locus ι : U Ñ P and taking the push-forward under the inclusion ι gives

TP – Ω2
P br OPp´KPq,

which we will use later.

Definition 5.1.6. Assume that n :“ dim ∆ “ 3 and that Y Ă P is Cartier.
Then we define the normal sheaf of Y in P as NY {P :“ OPpY q|Y “ pI{I2

Y q˚.

Remark 5.1.7. Given a normal variety X there is still a different method
for the construction of the tangent sheaf TX : Let Ωp

X,Kähl denote the sheaf of
Kähler p-differentials on X and

TX,Kähl :“ pΩ1
X,Kählq

˚

ist dual (compare [Hart77, Ch.II.8]). TX,Kähl is reflexive since Ω1
X,Kähl is

coherent, and coincides with TX on the smooth locus U of X. As a consequence

TX,Kähl – TX .

Note that

H0
pX, TX,Kählq – LiepAutpXqq, (5.2)

by ([MuOd15, Ch.VI.1]), where LiepAutpXqq denotes the Lie algebra of the
automorphism group of X. In particular h0pX, TXq “ 0 if AutpXq is a finite
group.

For V a normal projective toric variety AutpV q is an algebraic group ([Cox95,
Prop.4.3]) of finite type. If V is not toric it is possible that h0pY, TY q “ 0
though AutpY q is a discrete space with infinitely many components.
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Example 5.1.8. Take the Fermat quartic Y Ă P3

0 “ x4
0 ` ... ` x4

3,

which defines a K3 surface. Then h0pY, TY q “ 0 but Y has infinite automor-
phism group (see [ShIn10, Thm.5]).

5.2 Kodaira-Spencer maps
Let B :“ πpUregp∆qq, where π : Lp∆q Ñ PLp∆q denotes the natural projec-
tion. Take

X :“ tpx, fq P P ˆ B| x P Yf u.
pr2
Ñ B. (5.3)

and the normal sheaf

NY {X :“
`

IY {I2
Y q

˚
“ OX pY q|Y ,

where IY denotes the ideal sheaf of Y in X . Under the conditions p`q there
are two tangent sheaf sequences

0 Ñ TY Ñ TP|Y Ñ NY {P Ñ 0. (5.4)
0 Ñ TY Ñ TX |Y Ñ NY {X Ñ 0 (5.5)

Definition 5.2.1. The two coboundary maps

κP “ κP,f : H0
pY, NY {Pq Ñ H1

pY, TY q

κ “ κf : H0
pYf , NY {X q Ñ H1

pY, TY q

are called Kodaira-Spencer maps for Y Ă P and Y Ă X .

To motivate these Kodaira-Spencer maps geometrically let us recall some
facts from deformation theory: For this let D :“ Spec Crϵs{pϵ2q denote the
dual numbers, then the underlying topological space of D is just a point, but
obviously D is a non-reduced scheme.

Definition 5.2.2. A deformation of Yf over D (also called a first order
infinitesimal deformation) is a flat surjective morphism Y Ñ D such that



5.2. Kodaira-Spencer maps 57

the fiber over the underlying point tfu of D equals Yf . If Y Ă X ˆ D (or
Y Ă P ˆ D) and

Y X ˆ D

D

pr2

commutes (similarly for Y Ă P ˆ D) then Y Ñ D is called an infinitesimal
deformation of Yf in X (in P).

A tangent vector in TB,f is the same as a morphism

D Ñ B

which maps the underlying point of D to f ([Hart77, Ch. II Ex.2.8]). Given
such a tangent vector we get an induced infinitesimal deformation

X ˆB D Ñ D

of Yf in X by using the fiber product.

Remark 5.2.3. We recall ([Ser06])

H0
pY, NY {X q – tinf. def. of Y in X u{iso.

H0
pY, NY {Pq – tinf. def. of Y in Pu{iso.

H1
pY, TY q – tinf. def. of Y {iso.

Then κf (and κP,f ) map an infinitesimal deformation of Yf in X (in P) onto
its equivalence class in H1pYf , TYf

q. In Proposition 5.5.1 we prove that κP,f

restricts to κf . The dimension dim Impκf q is called the number of moduli of
X Ñ B.

Remark 5.2.4. Taking the exact sequence

0 Ñ OP Ñ OPpY q Ñ NY {P Ñ 0 (5.6)

and the vanishing H1pP, OPq “ 0 due to Demazure we get

H0
pY, NY {Pq – H0

pP, OPpY qq{H0
pP, OPq – LpCp∆qq{C ¨ f.

where we have used Remark 3.3.3.
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Remark 5.2.5. The normal sheaf NYf {X is trivial, that is

NYf {X “

lp∆q´1
à

i“1
OYf

– TB,f bC OYf
.

One argument works as follows: Write tfu “ H1 X ... X Hlp∆q´1 as intersection
of projective hyperplanes intersecting transversely. Switching to hyperplanes
H 1

i „lin Hi with f R H 1
1 X ...XH 1

lp∆q´1 and setting Gi “ pr˚
2 pHiq, G1

i “ pr˚
2 pH 1

iq

we get
OYf

pGi|Yf
q – OYf

pG1
i|Yf

q – OYf

and the first result follows. B is a nonempty open subset of Plp∆q´1 and
TB,f – TClp∆q,f {C ¨ f . In particular

H0
pYf , NYf {X q – Lp∆q{C ¨ f.

5.3 Mavlyutov’s Vanishing Theorem
Theorem 5.3.1. ([CLS11, Thm.9.3.3])
Let V be an n-dimensional complete toric variety to a simplicial fan. If D is
a nef Cartier divisor on V , then

Hp
pV, Ωq

V b OpDqq “ 0
for p ą q.
Construction 5.3.2. (Multiplication morphism)
([Fuj06, 2.5, Prop.3.2], [CLS11, Lemma 9.2.6, Proof of Thm. 9.3.1])
Let V be a normal toric variety, D a divisor on V and m P Ně1 such that
m ¨ D is Cartier. There is a construction due to Fujita:

Namely given l P Ně1 the map ϕl : N Ñ N given by
n ÞÑ l ¨ n

induces a toric morphism ϕl : V Ñ V . There results an injection (Remark
5.1.3)

Hp
pV, Ωq

V br OpDqq Ñ Hp
pV, Ωq

V br OplDqq

– Hp
pV, Ωq

V b OplDqq, p, q ě 0.

This result becomes powerful for us especially when combined with Theorem
5.3.1 above.
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5.4 The Computation of kerpκP,fq

The following three sections deal with cohomological applications of what we
have introduced before.

Theorem 5.4.1. Under the conditions p`q

kerpκP,f q – Lie AutpPq. (5.7)

Proof. Given Y “ Yf by the tangent sheaf sequence (5.4), Remark 5.1.7 and
Proposition 5.4.3 below we have to show that

H0
pY, TP|Y q – H0

pP, TPq.

The ideal sheaf sequence

0 Ñ TP b OpY q Ñ TP Ñ TP|Y Ñ 0

produces the cohomology sequence

0 Ñ H0
pP, TP b Op´Y qq Ñ H0

pP, TPq Ñ H0
pY, TP|Y q

Ñ H1
pP, TP b Op´Y qq.

We conclude with the following Lemma.

Lemma 5.4.2.

h0
pP, TP b Op´Y qq “ h1

pP, TP b Op´Y qq “ 0.

Proof. By Remark 5.1.3 TP b Op´Y q is reflexive and with Remark 5.1.5 we
get

TP b Op´Y q – Ω2
P br Op´Y ´ KPq.

By Construction 5.3.2 replacing Op´Y ´ KPq by a multiple

Op´mY ´ mKPq

which is a line bundle and br by b does not affect the cohomology groups.
Besides

Hk
pP, Ω2

P b Op´mY ´ mKPqq – H3´k
pP, Ω1

P b OpmY ` mKPqq k “ 0, 1.

by Serre duality ([CLS11, Thm. 9.2.10b)]). The right hand side is 0 by
Theorem 5.3.1.



60 5. The Kodaira-Spencer maps κP,f and κf and their kernels

Proposition 5.4.3. Given a 3-dimensional lattice polytope ∆ with l˚p∆q ą 0
and Y “ Yf then

H0
pY, TY q “ 0.

Proof. h0pY, OpKY qq “ l˚p∆q ą 0 by assumption and Theorem 4.2.1. The
vanishing

h0
pY, TY q ď h0

pY, TY b OpKY qq “ h0
pY, Ω1

Y q “ 0

follows from Proposition 4.3.2 and Remark 5.1.5.

It seems hard (or at least much harder than we have done) to generalize this
Proposition to the case F p∆q ‰ H.

5.5 The computation of kerpκfq

Proposition 5.5.1. Under the conditions p`q κP,f restricts to κf .

The following reduction step has essentially been carried out in ([Koe91,
Ch.2.1] and [Voi03, Lemma 6.15]).

Proof. The two tangent sheaf sequences

0 Ñ TY Ñ TX |Y Ñ NY {X Ñ 0

0 Ñ TY Ñ TP|Y Ñ NY {P Ñ 0
are related via the differential

ppr1q˚ : TX |Y Ñ TP|Y ,

of the first projection pr1 : X Ñ P. pr1 induces an isomorphism

Yf ˆ tfu Ñ Yf

ppr1q˚ restricts to the identity on TY . The map

ppr1q˚ : NY {X – H0
pY, NY {X q b OY Ă H0

pY, NY {Pq b OY Ñ NY {P
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is just given by multiplication of sections. The result of the Proposition
follows from the commutative diagram

0 H0pY, TX |Y q H0pY, NY {X q H1pY, TY q

0 H0pY, TP|Y q H0pY, NY {Pq H1pY, TY q

ppr1q˚

κf

id

κP,f

Remark 5.5.2. Given the conditions p`q (Cp∆q should be a lattice polytope)
replacing ∆ ÞÑ Cp∆q gives κf “ κP,f , that is not much is lost in restricting
to κf .

5.6 Appendix: Additional infinitesimal defor-
mations of Yf

Remark 5.6.1. Apparently

H1
pY, NY {Pq “ 0

by the exact sequence (5.6) and Theorem 4.1.1. Thus the cokernel of κP,f

equals
H1

pY, TP|Y q

and the infinitesimal deformations of P in H1pP, TPq induce infinitesimal
deformations of Y (see [Ser06, Prop.3.4.23]).

We see this by an ideal sheaf sequence for Y Ă P and Lemma 5.4.2

0 Ñ H1
pP, TPq Ñ H1

pY, TP|Y q Ñ H2
pP, TP b Op´Y qq.

Very remarkably
H1

pP, TPq

parameterizes all infinitesimal deformations of P by a Theorem of Schlessinger
([Sch71]) since dim P “ 4 and P has just isolated quotient singularities, though
for general singular toric varieties Y the situation is much more complicated
(see [IlTu18]).



62 5. The Kodaira-Spencer maps κP,f and κf and their kernels

Example 5.6.2. Let P “ P3, ∆ “ 4 ¨ ∆3 then dim ImpκPq “ 19 and
H1pP, TPq “ 0. But h1pY, TY q “ 20 since Y is a K3 surface ([Huy16]). In
([Gie22b]) we show that if n :“ dim ∆ ě 4 then such a phenomenon does not
occur.



CHAPTER 6

Explicit bases of the kernels of κP,f and κf

In this chapter we compute explicit bases of kerpκP,f q Ă LpCp∆qq{C ¨ f and
kerpκf q Ă Lp∆q{C ¨ f .

6.1 A basis for kerpκP,fq

This part is rather technical and summarizing. The statments, most essential
for the first reading, are formula 6.1, formula 6.2 and Corollary 6.1.5.

Definition 6.1.1.

RpN, Σq :“ tα P M | xα, npαqy “ 1 for some npαq P Σr1s

and xα, njy ď 0 for nj P Σr1sztnpαquu

denote the Demazure roots of the fan Σ (see [Cox95]). Likewise we define
RpN, ΣCp∆qq and RpN, Σ∆q by replacing Σ by ΣCp∆q and Σ∆.

There are inclusions

ΣCp∆qr1s Ă
loomoon

psince Σ refines ΣCp∆qq

Σr1s Ă
loomoon

pFigure 3.2q

convhullpΣ∆r1sq. (6.1)
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Lemma 6.1.2. Let ∆ be a 3-dimensional lattice polytope with F p∆q ‰ H.
Then

RpN, Σ∆q Ă RpN, Σq “ RpN, ΣCp∆qq.

Proof. To the second equality: Let α P RpN, ΣCp∆qq, that is

xα, npαqy “ 1, xα, njy ď 0 for nj P ΣCp∆qr1sztnpαqu.

ñ xα, njy ď 0 for nj P Σr1sztnpαqu, that is α P RpN, Σq. Conversely assume
α P RpN, Σq. If ni R ΣCp∆qr1s then α would have scalar product ď 0 with
all vectors in ΣCp∆qr1s and thus would be zero since Σ refines ΣCp∆q, a
contradiction. The first inclusion follows similarly by using (6.1).

We ask for a basis of Laurent polynomials for

Lie AutpPq Ă LpCp∆qq{C ¨ f.

Remember the results from ([BG99]): Given f P B there is a map

ϕf : T Ñ B

pt1, t2, t3q ÞÑ

´

px1, x2, x3q ÞÑ fpt1x1, t2x2, t3x3q

¯

.

By differentiating ϕf we get an injective homomorphism pdϕf qe : LiepT q Ñ

TB,f where e “ p1, 1, 1q with

Impdpϕf qeq “

A

x1 ¨
Bf

Bx1
, ..., x3 ¨

Bf

Bx3

E

.

For m P M X Cp∆q and α P RpN, ΣCp∆qq define

ht´αpmq :“ maxtk P Ně0| m ´ k ¨ α P Cp∆qu. (6.2)

Given α P RpN, ΣCp∆qq we denote by Γ´α ď Cp∆q the facet to which npαq is
normal.

Remark 6.1.3. Assuming

Γ´α “ tx P MR| xx, nΓy “ bΓu X Cp∆q

and m P M X Cp∆q then

ht´αpmq “ xm, nΓy ´ bΓ. (6.3)
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1 1 1

2 2

3

Γ´α

´α

On the left: The vector ´α and all lattice points m P Cp∆q with ht´αpmq ą 0.
On the right: A replacement and the support vectors of w´αpfq (thick).

The function ht´α continues linearly to a map SCp∆q Ñ SCp∆q, which respects
the grading on SCp∆q (see section 2.1 for the definition of SCp∆q). Define a
graded automorphism eλ

´α : SCp∆q Ñ SCp∆q by

eλ
´αpxm

q :“ xm
¨ p1 ` λ ¨ x´α

q
ht´αpmq λ P C

(see [BG99, section 3]). eλ
´α induces an automorphism of PCp∆q by the

description PCp∆q – ProjpSCp∆qq and by functoriality of taking ”Proj “.

Corollary 6.1.4. ([BG99, Lemma 3.1, Thm.3.2b), Thm.5.4])
Lie AutpPq has a basis of derivations acting on LpCp∆qq as follows

xi
B

Bxi

: xm
ÞÑ mi ¨ xm, i “ 1, 2, 3,

zpαq :“ Beλ
´α

Bλ |λ“0
: xm

ÞÑ ht´αpmq ¨ xm´α, α P RpN, ΣCp∆qq.

By definition of the tangent sheaf sequence the homomorphism

j : H0
pP, TPq – H0

pY, TP|Y q Ñ H0
pY, NY {Pq – LpCp∆qq{C ¨ f

is given by applying the derivations from Lie AutpPq to f and restricting to
Y “ Yf . We get

Corollary 6.1.5. Under the conditions p`q

kerpκP,f q Ă LpCp∆qq{C ¨ f
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equals the span of the Laurent polynomials

x1 ¨
Bf

Bx1
, ..., x3 ¨

Bf

Bx3
, w´αpfq, α P RpN, ΣCp∆qq,

where
w´αpfq :“

ÿ

mP∆XM

ht´αpmq ¨ am ¨ xm´α.

6.2 Examples
Example 6.2.1. Given

∆ “ d ¨ ∆3,

and f then Yf is a smooth degree d surface in P3. By ([Voi03, Lemma 6.15])

kerpκP,f q “ kerpκf q – Jd
f,griff , (6.4)

if we work with the family X Ñ Uregp∆q (if we projectivize then we have
to mod out f from the kernel). Here Jd

f,griff denotes the d-th homogeneous
component of Griffiths Jacobian ideal

Jf,griff :“
´

Bf

Bx0
, ...,

Bf

Bx3

¯

⊴ Crx0, ..., x3s,

since
dim AutpP3

q “ dim PGLp3,Cq “ 15
where PGLp3,Cq denotes the projective linear group. There are 12 roots in
RpN, Σq. These roots are given by

˘ei, i “ 1, 2, 3, ˘ei ¯ ej, i, j “ 1, 2, 3, i ‰ j

and if d ě 4 Proposition 6.1.5 restricts to (6.4) up to homogenization.

Example 6.2.2. For the maximal polytope in aq we have

RpN, Σq “

!

¨

˝

0
0

´1

˛

‚,

¨

˝

2
1

´1

˛

‚

)
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and for the maximal polytope in cq we have

RpN, Σq “

!

¨

˝

0
0
1

˛

‚

)

.

In bq, dq and eq we have RpN, Σq “ H. Starting with a maximal polytope ∆
we get for the number of moduli:

aq : dim Impκf q “ 12, bq : dim Impκf q “ 14,

cq : dim Impκf q “ 10, dq, eq : dim Impκf q “ 11.

By ([Tod80, Thm.2]) all Kanev surfaces vary in a single family with number
of moduli h1pY, TY q “ 18. Similarly by ([SSU85, (1.3.2)]) all minimal surfaces
Y with

pgpY q “ 1, qpY q “ 0, K2
Y “ 2, π1pY q – Z{2Z

vary in a single family with number of moduli h1pY, TY q “ 16.

6.3 A basis for kerpκfq

x1¨
Bf
Bx1

, ..., x3¨
Bf
Bx3

belong to Lp∆q but given ∆ ‰ Cp∆q the Laurent polynomials
w´αpfq need not have support on ∆ as the following example shows. We
found this example with a computer search.

Example 6.3.1. Consider the following polytope

∆ “

A

¨

˝

´1
´1
´1

˛

‚,

¨

˝

5
1
3

˛

‚,

¨

˝

´1
10
0

˛

‚,

¨

˝

´1
´1
0

˛

‚

E

,

with l˚p∆q “ 3, dim F p∆q “ 1 and Cp∆q has the additional vertex p1, ´1, 1q.
We obtain a family of elliptic surfaces X Ñ B.

RpN, Σq “

!

¨

˝

´3
´1
´2

˛

‚,

¨

˝

´1
´4
´1

˛

‚,

¨

˝

´1
´3
´1

˛

‚,

¨

˝

´1
´2
´1

˛

‚,

¨

˝

´1
´1
´1

˛

‚,

¨

˝

´1
0

´1

˛

‚,

¨

˝

0
´1
0

˛

‚

)

and

RpN, Σ∆q “ RpN, Σq Y

!

¨

˝

1
´1
1

˛

‚

)

.
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The column vector ´α “ p1, 0, 1q belongs to the facet

Γ´α “

A

¨

˝

5
1
3

˛

‚,

¨

˝

´1
10
0

˛

‚,

¨

˝

´1
´1
0

˛

‚,

¨

˝

1
´1
1

˛

‚

E

of Cp∆q.
¨

˝

´1
´1
´1

˛

‚

loomoon

vertex of ∆

R Γ´α

and
´α ` p´1, ´1, ´1q “ p0, ´1, 0q R ∆.

Thus only 6 of the roots in RpN, Σq reduce the number of moduli.

Theorem 6.3.2. Under the conditions p`q

kerpκf q –

A

xi
Bf

Bxi

, i “ 1, ..., 3

w´αpfq, α P RpN, Σ∆q

E

.

Proof. The proof is rather technical. By Proposition 5.5.1

kerpκf q “ kerpκP,f q X Lp∆q

and RpN, Σ∆q Ă RpN, ΣCp∆qq by Lemma 6.1.2. Let R :“ RpN, ΣCp∆qqzRpN, Σ∆q.
The Theorem is a consequence of the three points below.

• α P RpN, Σ∆q ñ w´αpfq P Lp∆q.

• α P R ñ w´αpfq R Lp∆q.

• Varying α P R the w´αpfq are linearly independent in LpCp∆qq{Lp∆q.

The necessity of the first two points is obvious and the last point assures that
no linear combination of the w´αpfq, where α P R, lies in kerpκf q.
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First point: To α P RpN, Σ∆q is associated both Γ´α ď ∆ and Γ1
´α ď Cp∆q.

We show

Γ´α Ă Γ1
´α, (6.5)

since then for m P M X ∆, m R Γ´α we get m ´ α P ∆, that is w´αpfq P Lp∆q.
Concerning (6.5): Given ni P Σ∆r1s with xα, niy “ 1 and nj P ΣCp∆qr1s with
xα, njy “ 1 then ni “ nj by (6.1). It follows Γ´α Ă Γ1

´α since

MinCp∆qpniq “ Min∆pniq.

Thus Γ´α Ă Γ1
´α.

Second point: There is a facet Γ´α of Cp∆q such that

m ´ α P Cp∆q for m P Cp∆q X M, m R Γ´α.

First assume that Γ´α X ∆ is also a facet of ∆. There is nj P Σ∆r1sztnΓ´αu

with xα, njy ą 0 since α R RpN, Σ∆q. Given m P V ertpΓjq, then m P Supppfq

and m ´ α R ∆ since
xm ´ α, njy ă Min∆pnjq.

ñ w´αpfq R Lp∆q. Assume that Γ´α X ∆ is a face of ∆ of dimension ă n ´ 1.
The convex span

xm P V ertp∆q | m ´ α R ∆y

is of dimension ě n ´ 1. ñ there is m P V ertp∆q with

m R Γ´α, m ´ α R ∆,

that is w´αpfq R Lp∆q.

Third point: Given a fixed facet Γ “ Γ´α of Cp∆q all

α P RpN, ΣCp∆qqzRpN, Σ∆q

with Γ´α “ Γ build the lattice points on a lattice polytope P Ă MR.
Given α P V ertpP q there is m P Supppfq such that xm´α does not appear
in the support of any other w´α1pfq. Thus w´αpfq does not appear with
nonzero coefficient in any relation between the w´α1pfq. We then break down
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P vertex by vertex.

Let Γ1, Γ2 be two different facets of Cp∆q and α1, α2 P RpN, ΣCp∆qqzRpN, Σ∆q

roots to these facets. Given a relation in

LpCp∆qq{Lp∆q

in which both w´α1pfq and w´α2pfq appear with nonzero coefficients there is
v P Supppfq with

xv ´ α1, n1y ă Min∆pn1q, v ´ α1 ` α2 P M X ∆.

Then
xv ´ α1 ` α2, n1y ě Min∆pn1q,

but xα2, n1y ď 0 since α2 is a root for n2 ‰ n1, a contradiction.



CHAPTER 7

Hodge components and Jacobian rings

In this chapter we recall the purely combinatorial construction of the jacobian
ring Rf of Batyrev and the interior module RInt,f over Rf . Both Rf and
RInt,f are Ně0-graded. RInt,f serves to calculate the cohomology classes in
Hn´1pZf ,Cq of minimal weight W n´1. We represent

Rk
Int,f “ L˚

pk ¨ ∆q{Uf,k

for some subspace Uf,k we specify generators of (see Proposition 7.2.3). The
big problem remaining open is to specify a basis for Uf,k. This seems to be
out of reach for us, though in some cases like ∆ “ d ¨ ∆n this problem might
be written of from the combinatorics of the multiples k ¨ ∆.

7.1 The Jacobian ring of Batyrev
In the sections 7.1 and 7.2 we do not restrict to the dimension n “ 3.

Definition 7.1.1. Let ∆ be an n-dimensional lattice polytope and S∆ denote
as in section 2.1 the subalgebra of Crx0, x˘

1 , ..., x˘
n s spanned as C-vector space

by 1 and all monomials

xk
0xm1

1 ...xmn
n , where k P Ně1, m1, ..., mn P Z,
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such that the rational point
m

k
:“

´m1

k
, ...,

mn

k

¯

belongs to ∆. Denote the k-th graded piece of S∆ by Sk
∆. The subalgebra S˚

∆
is defined in the same way except that we require that m{k belongs to the
interior of ∆.
We identify lattice points m P M with monomials xm P Crx˘1

1 , ..., x˘1
n s.

Construction 7.1.2. [Bat93]
Given a Laurent polynomial f in the variables x1, ..., xn with n-dimensional
Newton polytope ∆ let

F px0, x1, ..., xnq :“ x0fpx1, ..., xnq ´ 1
which is an equation for the complement T zZf Ă T :“ pC˚qn`1.
Consider the logarithmic derivatives

Fipx0, xq :“ xi
B

Bxi

F px0, xq “ xi
Bpx0fq

Bxi

0 ď i ď n.

Definition 7.1.3. [Bat93]
The graded ideal J∆,f within S∆ generated by F0, ..., Fn is called the jacobian
ideal and the quotient ring

Rf :“ S∆{J∆,f

is called the Jacobian ring of Batyrev (associated to the Laurent polynomial
f). We denote the k-th homogeneous component of Rf by Rk

f .
Theorem 7.1.4. [Bat93, Thm.4.8]
The jacobian ring Rf is a graded ring. It is finite dimensional as C-vector
space if and only if f is nondegenerate. In this case the dimensions of Rk

f are
independent of the polynomial f . f is nondegenerate if and only if F0, ..., Fn

are algebraically independent over C.
Definition 7.1.5. We denote the homogeneous ideal Rf X S˚

∆ of Rf by RInt,f

and its k-th homogeneous component by Rk
Int,f . We call RInt,f the interior

Rf -module.
Remark 7.1.6. Poincaré duality on H2pY,Cq restricts to an isomorphism

pRk
Int,f q

˚
– R4´k

Int,f

by ([Bat93, Remark 9.5, Prop.9.7]). In ([Bat93, Ch.9]) RInt,f is denoted by
Hf and should not be confused with the dualizing Rf -module Df .
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7.2 Construction of the components Rk
Int,f

Remark 7.2.1. By definition

R1
Int,f – L˚

p∆q

(independently of f). More interestingly

Rk
Int,f – L˚

pk∆q
L

´

Jk
∆,f X L˚

pk∆q

¯

, (7.1)

Since Jk
∆,f is a graded ideal of S∆ inductively

Jk
∆,f “ Lppk ´ 1q∆q ¨ J1

∆,f

Aim: Switching to different generators of J1
∆,f allows us to describe the

relations in Rk
Int,f more explicitly.

R2
Int,f

v1 ` ∆ v2 ` ∆

v3 ` ∆

v1 v2

v3

2v1 2v2

2v3

Illustration of the construction of R2
Int,f for a 2-simplex ∆ “ xv1, v2, v3y and

f having support on the vertices of ∆. The shaded regions do not belong to
R2

Int,f , there are 4 points left in R2
Int,f .

Construction 7.2.2. Let ∆ be an n-dimensional lattice polytope with given
f as in (2.3). Given a facet Γ “ Γi ď ∆, where i P t1, ..., ru, define

gΓpfq :“
ÿ

mPMX∆
am ¨ pxni, my ` biq ¨ x0x

m
“

loomoon

ptransformingq

`biF0 `

n
ÿ

j“1
pniqjFj P J1

∆,f ,
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where ni “ ppnΓq1, ..., pnΓqnq and bi “ ´ Min∆pniq. The first representation
implies that

SupppgΓpfqq Ă
`

∆ X M
˘

z
`

Γ X M
˘

.

In case ∆ is an n-simplex and

Supppfq “ Vertp∆q

then gΓi
pfq « xvi where vi is the vertex opposite to Γi (« means up multipli-

cation with a nonzero scalar). Conversely the matrix
¨

˚

˝

b1 pnΓ1q1 ... pnΓ1qn
... ...
br pnΓr q1 ... pnΓr qn

˛

‹

‚

(7.2)

has rank n ` 1 since nΓ1 , ..., nΓr span NR and pb1, ..., brq ‰ p0, ..., 0q. Thus
F0, ..., Fn are linear combinations of gΓ1pfq, ..., gΓr pfq and we get new genera-
tors

J∆,f “ pgΓ1pfq, ..., gΓr pfqq. (7.3)

Proposition 7.2.3. Let ∆ be an n-dimensional lattice polytope with l˚p∆q ą

0 and a given f . Given Γ1, ..., Γn`1 ď ∆ with nΓ1 , ..., nΓn`1 affine linear
independent. Then

Rk
Int,f “ L˚

pk ¨ ∆q{Uf,k k “ 1, ..., n ` 1

where Uf,k denotes the vector space over C spanned by

gΓi
pfq ¨ xv i “ 1, ..., n ` 1, v P Intppk ´ 1q ¨ ∆q X M (7.4)

gΓpfq ¨ xv Γ ď ∆, v P Intppk ´ 1q ¨ Γq X M (7.5)

If k “ 2 these polynomials are linearly independent.

Proof. The inclusion
Uf,k Ď

´

Jk
∆,f X L˚

pk∆q

¯

.

is a consequence of the definition of J∆,f .

To show: All relations

h ¨ g P L˚
pk ¨ ∆q, h P J1

∆,f , g P Lppk ´ 1q ¨ ∆q (7.6)
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are of type (7.4) or (7.5). First if Supppgq Ď Intppk ´ 1q ¨ ∆q X M then
the equation 7.6 is a linear combination of the relations (7.4) and without
restriction

Supppgq Ă Boundppk ´ 1q ¨ ∆q X M.

Write

h “
ÿ

Γ
cΓ ¨ gΓpfq

and take F ď ∆ with

Supppgq X

´

pk ´ 1q ¨ F X M
¯

‰ H,

(this assumption makes sense since Supppgq ‰ H). Then

Suppphq X pF X Mq “ H

by (7.6). In case cΓ “ 0 except for Γ “ F , then

Supppgq Ă ppk ´ 1q ¨ F q

and we get a relation of type (7.5). Restricting h to F X M we get

h|F XM “
ÿ

Γ
cΓ ¨

`

´ bΓF0|Γ1 `

n
ÿ

i“1
pnΓqiFi|Γ1

˘

P xF0|Γ1 , ..., Fn|Γ1y.

Expanding and restricting to F this means
ÿ

Γ
cΓ

ÿ

mPF XM

am

`

xnΓ, my ´ bΓ
˘

x0x
m

“ 0. (7.7)

The left hand side in (7.7) equals

ÿ

Γ
cΓ ¨

`

´ bΓF0|Γ1 `

n
ÿ

i“1
pnΓqiFi|Γ1

˘

P xF0|Γ1 , ..., Fn|Γ1y.

The Fi are algebraically independent over C (Theorem 7.1.4), since f is nonde-
generate with respect to ∆. Besides f|Γ1 remains nondegenerate with respect
to Γ1 (by the definition of nondegeneracy) and it follows that there is (up
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to scaling) only one relation between F0|Γ1 , ..., Fn|Γ1 , the one of the second type.

For k “ 2 we know the dimension ([Bat93, Thm.9.8])

dim R2
Int,f “ l˚

p2 ¨ ∆q ´ pn ` 1q ¨ l˚
p∆q ´

ÿ

Γ
l˚

pΓq,

where sum ranges over all facets Γ of ∆. Thus the last statement follows by
comparing dimensions.

Example 7.2.4. Let ∆ be a simplex with vertices v0, ..., vn and assume that
f has support on the vertices of ∆. Then as already noted

gΓi
pfq “ xvi ,

where Γi denotes the facet opposite to vi. In this case we get a monomial
basis for example of R2

Int,f by taking the quotient of L˚p2 ¨ ∆q by the span of

xvi`v i “ 0, ..., n, v P
`

Intp∆q Y IntpΓiq
˘

X M.

Remark 7.2.5. For k ą 2 the polynomials in the Proposition will not be
linear independent over C since we have the trivial relations

gΓi
pfq ¨ gΓj

pfq ¨ xv
´ gΓj

pfq ¨ gΓi
pfq ¨ xv

for v P L˚ppk ´ 2q∆q. It would be very interesting to find a minimal set of
relations between the gΓi

in Rk
Int,f (see Remark 7.4.4 below).

7.3 Hodge and mixed Hodge structures
In this section we recall some general facts on (mixed) Hodge structure,
thereby introducing the necessary notation. Let ∆ be a 3-dimensional lattice
polytope with F p∆q ‰ H and a given f . The ”interesting“ cohomology
classes of Y “ Yf lie in H2pY,Cq by Proposition 4.3.2, Poincaré duality and
since Y is compact.

There is a Hodge decomposition ([Del75])

H2
pY,Cq – H2,0

pY q ‘ H1,1
pY q ‘ H0,2

pY q,
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with Hp,2´ppY q “ H2´p,ppY q. Equivalently there is a descending filtration

H2
pY,Cq “ F 0

Ą ... Ą F 3
“ 0, where F i

“
à

pěi

Hp,2´p
pY q.

with HkpY,Cq “ F p X F 3´p. The filtration F i is said to put a Hodge structure
of weight 2 on the complex vector space H :“ H2pY,Cq. The inclusion
ι : Zf Ñ T gives a pullback homomorphism

ι˚ : H i
pT,Cq Ñ H i

pZf ,Cq, (7.8)

which is an isomorphism for i ă 2 and injective for i “ 2 by the Lefschetz
theorem for hypersurfaces in tori ([DK86, Remark 3.10]) and the cohomology
groups of T are well known since T is homotopy equivalent to S1 ˆ S1. We
define the primitive cohomology of Zf

PH2
pZf ,Cq “ coker

´

H2
pT,Cq Ñ H2

pZf ,Cq

¯

.

There are two filtrations:

H2
pZf ,Cq “ F 0

Ą ... Ą F 3
“ 0 (Hodge filtration)

0 “ W1 Ă ... Ă W4 “ H2
pZf ,Qq (Weight filtration)

Set
Gri

F :“ F i
{F i`1, Grj

W :“ Wj{Wj´1.

The filtration F i induces a Hodge structure of weight r on

Grr
W :“ pWr{Wr´1q bQ C.

Definition 7.3.1. Given j P t0, 1, 2u and i P t0, ..., j ` 2u the vector spaces

Hp,2´p
pY q, H i,j`2´iH2

pZf ,Cq :“ Gri
F Grj`2

W H2
pZf ,Cq

are called the Hodge components of H2pY,Cq and H2pZf ,Cq and their dimen-
sions the Hodge numbers of Y and the Hodge-Deligne numbers of Zf .
Remark 7.3.2. The inclusion j : Zf Ñ Y “ Yf induces a pullback homo-
morphism

j˚ : Hk
pY,Cq Ñ Hk

pZf ,Cq

with

j˚
pF iH2

pY,Cqq Ă F iH2
pZf ,Cq, j˚H2

pY,Cq Ď W2H
2
pZf ,Cq

(see [Voi02, Ch.7]).
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Remark 7.3.3. The natural (intersection) pairing

H2
pY,Cq b H2

pY,Cq Ñ C

implies that
H1,1

pY q –
`

H2,0
pY q ‘ H0,2

pY q
˘K

(see [Voi02, Lemma 7.30]), where K means orthogonal w.r.t. this pairing.

7.4 The Hodge components of H2pZf ,Cq and
H2pYf ,Cq

Remark 7.4.1. By ([Bat93, Cor.3.10]) the image of

H2
pT,Cq Ñ H2

pZf ,Cq

is contained in Gr4
W H2pZf ,Cq. The filtrations F i and Wj respect the primitive

cohomology.

Remark 7.4.2. We have an isomorphism of C vector spaces ([Bat93, Thm.6.9,
Cor.6.10])

PH2
pZf ,Cq – Rf .

This allows us to transport the Hodge and the weight filtration onto Rf (see
[Bat93, Thm.6.9, Thm.8.2]): The Hogde filtration on Rf is given by the
reverse integral grading on Rf and the weight filtration on Rk

f is induced by
the subdivision of k ¨ ∆ into j-dimensional faces where j “ 0, ..., 3. In this
thesis we just need the following result:

Theorem 7.4.3. ([Bat93, Prop.9.2])
There is an isomorphism

Grn´1
W Hn´1

pZf ,Cq – RInt,f .

which respects the Hodge filtration, that is

Grp
F Grn´1

W Hn´1
pZf ,Cq – Rn´p

Int,f .

Remark 7.4.4. Knowing a minimal set of relations between the gΓ’s would
allow us to compute the dimensions of the Hodge components of Hn´1pZf ,Cq

of minimal weight.
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Remark 7.4.5. Let ∆ be a 3-dimensional lattice polytope with F p∆q ‰ H.
Write

Y zZf “

h
ď

i“1
Gi Y S

where Gi :“ V pτiq are irreducible curves and S equals the union of the fixed
points of P, that are isolated on Y .

Construction 7.4.6. Let Z :“ Y zD, where

D :“ G1 ` ... ` Gh.

There is the following Gysin exact sequence (compare [DK86, Proof of
Thm.3.7]):

0 Ñ H1
pZf ,Cq

r
Ñ

h
à

i“1
H0

pGi,Cq
k˚
Ñ H2

pY,Cq

j˚

Ñ H2
pZf ,Cq

r
Ñ

h
à

i“1
H1

pGi,Cq Ñ 0,

since h1pY,Cq “ h3pY,Cq “ 0. The inclusion j : Zf Ñ Y yields the pullback
homomorphism j˚, r is called the residue map and k˚ the so called Gysin
map. To be more precise k˚ is the homomorphism Poincaré dual to

k˚ :“
h

à

i“1
k˚

i : H2
pY,Cq Ñ

h
à

i“1
H2

pGi,Cq,

where ki : Gi Ñ Y denotes the inclusion (compare [Voi02, 7.3.2]). r is in fact
a topological map (see [CMSP17, Ch.3.2]).
Setting

Z :“ Zf Y S

we get
Hk

pZf ,Cq – Hk
pZ,Cq k ě 1,

that is we may replace Zf by Z in the above sequence. The cohomology
groups HkpGi,Cq for k “ 0, 1 carry Hodge structures of weight 0 and 1. Then

rpGrj
W Hk

pZf ,Cqq Ă

h
à

i“1
Grj´2

W Hk´1
pGi,Cq k “ 1, 2.
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and the image of H0pGi,Cq under k˚ equals the image of OY pGiq under the
first chern map

c1 : PicpY q Ñ H1,1
pY,Cq X H2

pY,Zq

(compare [Voi02, Thm.11.33, Ch.11 Ex.1]). Thus we obtain the exact sequence

0 Ñ Gr2
W H1

pZf ,Cq
r

Ñ

h
à

i“1
H0

pGi,Cq
k˚
Ñ H2

pY,Cq (7.9)

j˚

Ñ Gr2
W H2

pZf ,Cq Ñ 0.

Theorem 7.4.7. Let ∆ be a 3-dimensional lattice polytope with F p∆q ‰ H

and let Y “ Yf be a minimal model of Zf . Then

Hp,2´p
pY q « Rp`1

Int,f (7.10)

where « means up to cohomology classes in P. These cohomology classes are
integral (that is they lie in H2pY,Zq, constant on the whole family and lie in
H1,1pY q).

7.5 Appendix: The algorithm of Danilov and
Khovanskii

In 1986 Vladimir I. Danilov and Askold G. Khovanskii invented ideas how
the Hodge-Deligne numbers of Zf and the Hodge numbers of a smooth
compactification of Zf could be calculated (see [DK86]). We shortly sketch
the inductive character of their algorithmic work: The authors work in
arbitrary dimension n but with a smooth (or at least quasismooth) birational
model of Zf . For this take a toric resolution of singularities p : P̃ Ñ P∆, in
which case the preimage

Z̃f :“ p´1
pZ∆,f q

is smooth. Poincaré duality yields a perfect pairing

Hk
c pZ̃f ,Cq ˆ H2n´2´k

pZ̃f ,Cq Ñ C
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respecting the Hodge filtrations, where Hk
c pZ̃f ,Cq denotes the cohomology

with compact support. For the calculations of main interest is the following
invariant of euler type

ep,q
pXq :“

n
ÿ

k“0
p´1q

k
¨ hp,q

c Hk
c pX,Cq (7.11)

for X a variety. Writing Z̃f “ Zf Y
Ť

Γ1ď∆1

ZΓ1,f for some polytope ∆1 majorizing

∆, then

ep,q
pZ̃f q “ ep,q

pZf q `
ÿ

Γ1ď∆1

ep,q
pZΓ1,f q (7.12)

(see [DK86, 5.2] for details). For p ` q ą n ´ 1

ep,q
pZf q “

"

ep,qpT q p “ q
0 p ‰ q

by a Lefschetz theorem. Thus (7.12) serves to get an inductive calculation of
ep,qpZ̃f q for p ` q ą n ´ 1. By Poincaré duality

ep,q
pZ̃f q “ en´1´p,n´1´q

pZ̃f q

is also known for p ` q ă n ´ 1 and the last remaining number ep,n´1´ppZf q

is gotten from the others and the relation

ÿ

q

ep,q
pZf q “ p´1q

p`n´1
¨

ˆ

n

p ` 1

˙

` ϕn´pp∆q

The term ϕn´pp∆q depends on the dimensions l˚pj ¨ ∆q for j ě 1 (see [DK86,
4.4] for the last term). Last but not least

ep,q
pZf q “ ˘hp,q

c Hn´1
c pZf ,Cq, ep,q

pZ̃f q “ ˘hp`q
pZ̃f ,Cq (7.13)

due to Theorems of Grothendieck and Lefschetz, giving the Hodge-Deligne
numbers (at least in theory).

Examples from: We list some examples from ([DK86, 5.11]):
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n “ 1 ñ Zf equals plp∆q ` 1q different points in C˚

n “ 2 :

h0,0H1
c pZf q h0,1H1

c pZf q

h1,0H1
c pZf q h1,1H1

c pZf q
= Π ´ 1 l˚p∆q

l˚p∆q 0

where Π :“ |tpoints in the 1-skeleton of ∆u|

“ lp∆q ´ l˚
p∆q.

n “ 3 :

h2,0H2
c pZf q h2,1H2

c pZf q h2,2H2
c pZf q

h1,0H2
c pZf q h1,1H2

c pZf q h1,2H2
c pZf q

h0,0H2
c pZf q H0,1H2

c pZf q h0,2H2
c pZf q

=

l˚p∆q 0 0
ř

Γ
l˚pΓq h1,1 0

Π ´ 1
ř

Γ
l˚pΓq l˚p∆q

where h1,1 :“ l˚p2 ¨ ∆q ´ 4 ¨ l˚p∆q ´ 3 ´
ř

Γ
l˚pΓq.



CHAPTER 8

The infinitesimal Torelli Theorem (ITT)

Varying f we are keen to know whether the Hodge components of H2pYf ,Cq

determine Yf in the family X Ñ B up to isomorphism. One could make this
problem precise by introducing and studying properties of the period map PB.
This leads to so called Torelli type Theorems. These are not really ”uniform
Theorems“ as there are algebraic varieties failing them, but such varieties
are often very exceptional.
In this chapter we restrict to the infinitesimal Torelli Theorem for X Ñ B.
We ask if the kernel of the differential dPB,f at f , which factors through the
Kodaira-Spencer map for X Ñ B, is strictly larger than the kernel of κf .
For this we establish a conjecture on the kernel of dPB,f which though we do
not prove. We conclude by showing that some of the surfaces of general type
to our 49 polytopes ∆ with

Intp∆q X M “

¨

˝

0
0
0

˛

‚, dim F p∆q “ 3

fail this infinitesimal Torelli Theorem.
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8.1 Properties of the period map and its dif-
ferential

Definition 8.1.1. ([Voi02, Thm.9.3, Ch.10.1.2, Ch.10.1.3])
Let ∆ be a 3-dimensional lattice polytope with F p∆q ‰ H and f P B. The
period map PB,f for the 2-th cohomology is defined by

PB,f :B Ñ ΓzD

f 1
ÞÑ rH2,0

pYf 1qs,

where
H2,0

pYf 1q Ă H2
pYf 1 ,Cq – H2

pYf ,Cq

Here

D : period domain (a quasiprojective variety)
Γ : The monodromy group π1pB, fq

We refer to ([Voi02, Ch.10], [Voi03, Ch.3]) for details.

Remark 8.1.2. H2,0pYf 1q determines the Hodge structure on H2pYf 1 ,Cq by
Remark 7.3.3. The period map PB,f is holomorphic (see [Voi02, Ch.10]). The
Torelli Theorem asks if the Hodge structure of a fiber of pr2 determines this
fibre (up to isomorphism). We study the situation infinitesimally.

Construction 8.1.3. (Result of Griffiths) ([Voi02, Thm.10.21])
The differential dPB,f of PB,f fits into a diagram

TB,f H1pYf , TYf
q

HompH0pYf , Ω2
Yf

q, H1pYf , Ω1
Yf

qq

dPB,f

κf

Φf (8.1)

Φf is the homomorphism between cohomology groups induced by cup product
and the contraction

TYf
ˆ Ω2

Yf
Ñ Ω1

Yf
.

This diagram is important since it connects the Hodge-theoretic homomor-
phism dPB,f with the Kodaira-Spencer map κf . Given the conditions p`q we
may replace κf by κP,f by replacing ∆ by Cp∆q (see Remark 5.5.2).
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Remark 8.1.4. Starting with a smooth proper deformation Y Ñ S of Yf

with S smooth, we define a Kodaira Spencer map κS,f and a period map PS,f

just as in the Definitions 5.2.1 and 8.1.1. The result of Griffiths remains valid:
dPS,f factors through κS,f and Φf , that is Φf is universal.

Definition 8.1.5. The infinitesimal Torelli Theorem (short: ITT) for Yf

asks if Φf is injective. The infinitesimal Torelli Theorem for Yf in X pr2
Ñ B

asks if Φf |Im κf
is injective. The infinitesimal Torelli Theorem for X pr2

Ñ B
asks if Φf |Im κf

is injective for f P B.

If κf is surjective of course the first and the third definition coincide. Choose
a reference point f P B and define a map from B into a mixed period domain
Dmix (which has to be defined) by

f 1 ϕf
ÞÑ R1

Int,f 1 Ă RInt,f 1 – RInt,f .

ϕf is the entry of a mixed period map, which maps f 1 onto the mixed Hodge
components of H2pZf 1 ,Cq. Apparently ϕf just depends on the affine part Zf

and not on the particular compactification Yf .

Remark 8.1.6. ([Voi02, Ch. 9.2.1, Ch.10])
Just as the Hodge decomposition fits into a general context by introducing
Hodge structures, the differential dPB,f fits into the context of an infinitesimal
variation of Hodge structure by introducing a Gauß-Manin connection: We
remember the construction without going into details:

Varying f P B the vector spaces H2pYf ,Cq build a holomorphic vector bundle
R2ppr2q˚pCq and similarly do Hp,2´ppYf q build the vector bundle Hp,2´p. The
Gauß-Manin connection

∇p,2´p : Hp,2´p
Ñ Hp´1,3´p

b Ω1
B

is a connection, which could be defined fibrewise

∇p,2´p
f : Hp,2´p

pYf q Ñ Hp´1,3´p
pYf q b Ω1

B,f

as the map with
dPB,f pvqpzq “ ∇2,0

f pzqpvq,
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for v P TB,f and z P H2,0pYf q, where the second bracket stand on the right
hand side means the contraction between TB,f and Ω1

B,f .

The cohomology groups with rational coefficients H2pYf ,Qq form a local
subsystem R2ppr2q˚pQq of H1,1 with

∇1,1
f pzq “ 0 for z P H2

pYf ,Qq.

We justify the fact that the above map ϕf is enough for us (here we are a
bit pedantic, but this is more clear to us than in ([Bat93, Prop.11.8])) by the
following lemma:

Lemma 8.1.7. dϕf has image in HompR1
Int,f , R2

Int,f q and dPB,f factors as
follows

TB,f HompR1
Int,f , R2

Int,f q

HompH0pYf , Ω2
Yf

q, H1pYf , Ω1
Yf

qq

dPB,f

dϕf

(8.2)

where the vertical map denotes the inclusion.

Proof.
H0

pYf , Ω2
Yf

q – R1
Int,f , H1

pYf , Ω1
Yf

q « R2
Int,f ,

by Theorem 7.4.7, where « means up to cohomology classes that come from
classes of P. The image of dϕf lies in

HompR1
Int,f , R2

Int,f q

by the result of Griffiths (Construction 8.1.3).
To show: Given v P TB,f and z P R1

Int,f then

dPB,f pvqpzq P R2
Int,f .

We prove

RInt,f “

´ h
à

i“1
H2

pGi,Cq

¯K

, (8.3)

w.r.t the pairing
x, y : H2

pYf ,Cq b H2
pYf ,Cq Ñ C
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Given this assertion is valid, take v P TB,f , x P
h

À

i“1
H2pGi,Cq and z P R1

Int,f

arbitrary.
ñ x∇2,0

f pzqpvq, xy “ ´xz, ∇1,1
f pxqpvqy

by ([Voi03, Prop.5.19 formula (5.14)]). Besides

∇1,1
f pxq “ 0

by Remark 8.1.6, that is

∇2,0
f pzqpvq P

´ h
à

i“1
H2

pGi,Cq

¯K

“ RInt,f

and ∇2,0
f pzqpvq P R2

Int,f by Construction 8.1.3.

Concerning (8.3): Since
G1 ` ... ` Gr

is an snc-divisor we get the inclusion ”Ą“ in (8.3). The Gysin exact sequence
7.9 is Poincaré dual to an exact sequence

0 Ñ

´

Gr2
W H2

pZf ,Cq

¯˚

Ñ H2
pY,Cq

k˚

Ñ

r
à

i“1
H2

pGi,Cq (8.4)

Poincaré duality on H2pY,Cq restricts to an isomorphism

pRk
Int,f q

˚
– R4´k

Int,f

by Remark 7.1.6, that is dualizing the first term in (8.4) simply means to
reverse the Hodge filtration. Let y P

r
À

i“1
H0pGi,Cq, x “ k˚pyq P

r
À

i“1
H2pGi,Cq

and z P RInt,f . Then

xx, zy “ xk˚pyq, zy “ xy, k˚
pzqy “ 0

by the projection formula ([Voi02, 7.3.2]), proving (8.3).
By the definitions of PB and ϕ as holomorphic maps mapping a Laurent
polynomial f onto the same vector spaces it is clear that dPB,f factors through
dϕf . We are left to show that for v P TB,f and z P R1

Int,f we have

dPB,f pvqpzq P R2
Int,f .
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We first show that

RInt,f “

´ r
à

i“1
H2

pGi,Cq

¯K

(8.5)

with respect to the intersection pairing

x , y : H2
pYf ,Cq b H2

pYf ,Cq Ñ C.

We call the cohomology classes on the right of (8.3) also the primitive coho-
mology classes of Yf .
Let v P TB,f , x be a primitive cohomology class of Yf and z P R1

Int,f . Then
as in ([Voi03, Prop.5.19 formula (5.14)]) we have

x∇2,0
f pzqpvq, xy “ ´xz, ∇1,1

f pxqpvqy.

But as noted in Remark 8.1.6

∇1,1
f pxq “ 0

and thus ∇2,0
f pzqpvq P RInt,f and by Griffiths transversality P R2

Int,f .

Remark 8.1.8. (see [Bat93, Prop.11.8])
dϕf is simply induced by the addition of lattice points

Lp∆q Ñ HompL˚
p∆q, L˚

p2∆qq.

8.2 Smooth and stable points of Mp∆q

We do not restrict to n “ 3 in this section. Given an n-dimensional lattice
polytope ∆ and some polynomial f , the torus T acts on Uregp∆q

pt1, ..., tnq.fpx1, ..., xnq “ fpt1x1, ..., tnxnq, pt1, ..., tnq P T.

T ¨ f denotes the orbit of f under T .

Let Mp∆q :“ B{T be the quotient of B by T . We omit equivalence classes
and write f P Mp∆q.
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Definition 8.2.1. ([MuFo82, Def.1.7])
Let v P Clp∆q`1 and x “ rvs. The point x is stable if the orbit T ¨ v is closed
and of dimension dim ∆ “ n. The second condition is equivalent to the
condition

# StabT pvq ă 8,

where
StabT pvq :“ tt P T | t.v “ vu

denotes the stabilizer of v w.r.t. the action of T .

Let r :“ lp∆q ´ 1. The set pPrqs of stable points of Pr is Zariski open in Pr

([MuFo82, §4]), but might be empty. Let

∆r :“ xem | m P M X ∆y

denote the r-dimensional standard simplex embedded into an affine hyperplane
in Rlp∆q. Then there is a map π : ∆r Ñ ∆ given by

ÿ

mPMX∆
λm ¨ em ÞÑ

ÿ

mPMX∆
λm ¨ m for

ÿ

mPMX∆
λm “ 1.

To ∆r is associated the toric variety Pr and given

a :“ pamqmPMX∆ P Pr

there is a natural pC˚qr orbit through a of some dimension k P t0, ..., ru. We
denote the k-dimensional face of ∆r corresponding to this orbit by Γpaq.

Proposition 8.2.2. ([KSZ, Prop.3.5])
pPrqs ‰ H if and only if

p0, ..., 0q P Intp∆q X M.

More precisely a P pPrqs is stable if and only if πpΓpaqq has full dimension n
and contains p0, ..., 0q in its interior.

Corollary 8.2.3. If p0, ..., 0q P Intp∆q X M and a :“ pamqmPMX∆ P Rlp∆q is
such that f as in (2.3) lies in Uregp∆q, then a is stable.

Proof. For m a vertex of ∆ we have am ‰ 0 and thus πpΓpaqq Ą Intp∆q, in
particular p0, ..., 0q P πpΓpaqq and πpΓpaqq is full-dimensional.
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Corollary 8.2.4. If p0, ..., 0q P Intp∆q then the quotient Mp∆q is smooth.

Proof. By definition Lp∆qzUregp∆q “ tEA “ 0u, where A :“ ∆ X M by
Remark 2.2.4. In effect Uregp∆q is affine.

The orbit T ¨ f is closed and n-dimensional since all f P Mp∆q are sta-
ble w.r.t. the action of T on Plp∆q´1. Applying Luna’s slice Theorem ([Dre12,
Prop.5.7]) to the affine variety Uregp∆q and the projection

Uregp∆q Ñ Mp∆q

gives us that Mp∆q is smooth at f if StabT ˆC˚pfq contains just the neutral
element p1, ..., 1q.

By definition

StabT pfq “ tpt, 1q “ pt1, ..., tn, 1q P T ˆC˚
| tmam “ am @m with am ‰ 0u.

Thus
StabT pfq Ă tt P T | tvi “ 1 @ vertices v1, ..., vku ˆ t1u

.

Consider n vertices v1, ..., vn which span MR and apply an unimodular trans-
formation U : M Ñ M such that

Upv1q, ..., Upvn´1q P tpm1, ..., mnq P M | mn “ 0u.

Replace vi by Upviq and note that for

pt1, ..., tnq P StabT pfq

the entry tn is uniquely determined by t1, ..., tn´1 and the relation 1 “ tvn .
Further if pt1, ..., tn´1q “ p1, ..., 1q then also tn “ 1. By this we have reduced
the assertion StabT pfq “ tp1, ..., 1qu to the lower-dimensional problem that
the only solution of

1 “ tv1 “ ... “ tvn´1

is t “ p1, ..., 1q. We continue inductively.
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Remark 8.2.5. Given p0, ..., 0q P Intp∆q X M and f P Mp∆q then f is
smooth and stable. Let ϕf : T Ñ B denote the map

pt1, ..., tnq ÞÑ fpt1x1, ..., tnxnq.

Then as in section 6.1 the tangent space at the orbit T ¨ f is given by

TT ¨f,f “ Imppdϕf qeq “ xx1
Bf

Bx1
, ..., xn

Bf

Bxn

y,

where pdϕf qe denotes the differential of ϕf at e “ p1, ..., 1q. We get

TMp∆q,f – TB,f {TT ¨f,f

– Lp∆q{xf, x1
Bf

Bx1
, ..., xn

Bf

Bxn

y – R1
f

where the first isomorphism follows from ([Bat93, Cor.11.3]).

8.3 Explicit description of dPMp∆q,f

Construction 8.3.1. (Computational description of dPMp∆q,f)
Assume p0, 0, 0q P Intp∆q X M . By Corollary 8.2.4 all points f P Mp∆q are
smooth. To the deformation X Ñ B Ñ Mp∆q there is a Kodaira-Spencer
map κMp∆q,f and a period map PMp∆q,f . We study the resulting map

R1
f

dϕf
Ñ HompR1

Int,f , R2
Int,f q

and its kernel.
The assertion of the following elementary Remark is also a consequence of
diagram 8.1 and the results of Chapter 5.
Remark 8.3.2. (Elementary proof that kerpκf q Ă kerpdPMp∆q,f q)
Let α P RpN, Σ∆q. Then there is Γ´α ď ∆ such that if v P Intp∆q X M then
by definition of the roots

v ´ α P Intp∆q X M or v ´ α P IntpΓ´αq X M.

By formula (6.3)
gΓ´αpfq ¨ x´α

“ w´αpfq.

We obtain
w´αpfq ¨ xv

“ gΓ´αpfq ¨ xv´α
P L˚

p2∆q.

Since gΓ´αpfq ¨ xv´α P J2
∆,f we verified explicitly that w´αpfq P kerpdPMp∆q,f q.
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The kernel kerpdPMp∆q,f q:

Remark 8.3.3. Assume p0, 0, 0q P Intp∆q X M . First by definition

kerpdPMp∆q,f q “ th P Lp∆q | @v P Intp∆q X M : h ¨ xv
P J2

∆,f u. (8.6)

and by Proposition 7.2.3

L˚
p2 ¨ ∆q X J2

∆,f “ xgΓpfq ¨ xw
|Γ ď ∆,

w P Intp∆q X M or w P IntpΓq X My.

Obviously

tgΓpfq ¨ xw
|Γ ď ∆ a facet ,

w ` v P
`

Intp∆q Y IntpΓq
˘

X M, @ v P Intp∆q X Mu.

is contained in kerpdPMp∆q,f q. In general given h P kerpdPMp∆q,f q

h ¨ xv
“

ÿ

Γ
hΓ,v ¨ gΓpfq (8.7)

for v P Intp∆q X M and SuppphΓ,vq Ă pIntp∆q Y IntpΓqq X M .

Note: Restricting the condition w P Intp∆q X M to 4 facets Γ1, ..., Γ4 with
nΓ1 , ..., nΓ4 affine linearly independent this representation is unique by Propo-
sition 7.2.3.

Remark 8.3.4. hΓ,v is completely determined by hΓ,p0,0,0q: Given h P

kerpdPMp∆q,f q and v P Intp∆q X M there are

hΓ,v P
`

Intp∆q Y IntpΓq
˘

X M

such that
h “

ÿ

Γ
hΓ,v ¨ gΓpfq ¨ x´v

Setting hΓ :“ hΓ,p0,0,0q the relation
ÿ

Γ
hΓ ¨ gΓpfq ¨ xv

“ h ¨ xv
“

ÿ

Γ
hΓ,v ¨ gΓpfq

implies
hΓ,v “ hΓ ¨ xv

by linear independence of the gΓpfq’s.
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Conjecture 8.3.5. Let ∆ be a 3-dimensional lattice polytope with p0, 0, 0q P

Intp∆q X M and Intp∆q X M Ę E (plane). Then

kerpdPMp∆q,f q “xgΓpfq ¨ xw
P R1

f | Γ ď ∆ a facet,
w ` v P

`

Intp∆q Y IntpΓq
˘

X M, @ v P Intp∆q X My.

The inclusion Ě is clear. The problem with the opposite inclusion is that it
might happen that

ÿ

Γ
hΓ ¨ gΓpfq P Lp∆q. (8.8)

but hΓ ¨ gΓpfq R Lp∆q for several Γ’s. Maybe under the additional assumption

Intp∆q X M Ę plane

a proof of the conjecture gets more handable. But we could not finish a
proof and just end up with two Lemmas in the direction of a possible proof:
Suppose given an element of the kernel as in (8.8). Let

Hn,l :“ tx P MR | xx, ny “ lu n P N, l P Z.

Lemma 8.3.6. Let RΓ :“ pIntp∆q Y IntpΓqq X M .

SuppphΓq Ă ConepIntpΓq X Mq X HnΓ,´lΓ X M, (8.9)

where lΓ denotes the smallest natural number ě 1 with

H ‰ HnΓ,´lΓ X RΓ

(if lΓ does not exist, then SuppphΓq “ H).

Proof. If
p0, 0, 0q ‰ m P SuppphΓq

then some multiple r ¨ m, r P Ně1, lies in IntpΓq X M by (8.7). Thus
m P ConepIntpΓq X Mq. If there were m1 P Intp∆q X M with

0 ą xm1, nΓy ą xm, nΓy
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then

pr ´ 1q ¨ m ` m1
P Intp∆q X M

ñ r ¨ m ` m1
“

´

pr ´ 1q ¨ m ` m1

loooooooomoooooooon

PIntp∆qXM

¯

` m
loomoon

PSuppphΓq

P
loomoon

byp8.7q

RΓ X M

by (8.7), a contradiction.

Lemma 8.3.7. Assume that

hΓ ¨ gΓpfq P Lp∆q

for some facet Γ. Then

xm
¨ gΓpfq P Lp∆q @ m P SuppphΓq (8.10)

Proof. This is simple: Assume to the contrary that xm ¨ gΓpfq R Lp∆q, say
that this polynomial jumps out of a facet Γ1. Then choose n P N suitable
and find a vertex v P V ertpΓ1q such that m ` v R ∆ X M and this vector
remains left in SuppphΓ ¨ gΓpfqq.

8.4 Examples and Counterexamples to the
ITT

Remark 8.4.1. Assume
ÿ

Γ
hΓ ¨ gΓpfq P kerpdPB,f q.

Given w P SuppphΓq by Lemma (8.3.6)

xw, nΓy “ ´lΓ ď 0, and xw, nΓy “ 0 ô w “ p0, 0, 0q.

In the latter case hΓ ¨ xw “ hΓ ” 0 P R1
f . Now given the conjecture 8.3.5 and

given
xw

¨ gΓpfq P kerpdPB,f q

we get

xw, nΓ̃y ě 0, @ Γ̃ ‰ Γ
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for else xw ¨ gΓpfq R Lp∆q. Thus if xw, nΓy “ ´1, then xw ¨ gΓpfq P kerpκf q.
The case

xw, nΓy ď ´2, xw, nΓ̃y ě 0 @ Γ̃ ‰ Γ
remains, which seems to be very exceptional. In the following two examplex
assume that Conjecture 8.3.5 is valid:
Example 8.4.2. By ([Fle86, Thm.3.1]) if

n ě 2 and pd, nq ‰ p3, 3q

then the ITT for smooth hypersurfaces Y Ă Pn of degree d is known to be
true. Assume that n “ 3 and note that in this case by [Voi03, Lemma 6.15]
the Kodaira-Spencer map is surjective if d ě 5.
Therefore we may prove the ITT for nondegenerate smooth surfaces in P3:
We have ∆ “ d ¨ ∆3. But obviously lΓ “ 1 for all facets Γ ď ∆ with the
notation of Lemma 8.3.6 and we are done with the remark above.
Example 8.4.3. Given a 3-dimensional polytope ∆ with

Intp∆q X M “ tp0, 0, 0qu

For ∆ reflexive, that is Cp∆q “ ∆ and F p∆q “ tp0, 0, 0qu, we get a K3
surface and K3-surfaces fulfill the ITT (see [Huy16, Ch.6]). We may check
kerpΦf |Im κf

q “ t0u here: We have lΓ “ 1 for all facets Γ. Given gΓpfq ¨ xw P

kerpdPMp∆q,f q if xw, nΓy ă 0 then xw, nΓy “ ´1 and we are done.
Example 8.4.4. Switching to the (maximal) polytopes from section 3.4, in
all examples there is exactly one facet Γ with distance 2 to the origin (all
other facets have distance 1 to the origin, Remark 3.4.2). The facet Γ has
2 (or 3) interior lattice points, that we denote them by ac1, ac2 in aq and bq

and by ac1, ac2, ac3 in cq, dq and eq, and

p ` aci P ∆.

p is the only vertex opposite to Γ and thus given f P B

gΓpfq ¨ xaci P kerpdPMp∆q,f q, gΓpfq ¨ xaci R kerpκf q.

On the other hand side if all coefficients pamqmPMX∆ are nonzero in f , then

gΓpfq ¨ xaci R Lp∆q for .

There are some lattice points on ∆ lying between the facet Γ and the plane
parallel to Γ through p0, 0, 0q, which prevent gΓpfq ¨ xv to have support on ∆.
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Corollary 8.4.5. For ∆ one of the 5 maximal polytopes and a given f generic
the ITT holds for X Ñ Mp∆q at Yf . But if we set the coefficients to the
following monomials (in all cases aq, bq, cq, dq, eq) to zero, then Yf fails the
ITT:

ab, ad, bc, cd.

In aq and cq there is an additional facet Γ1 with an v P IntpΓ1q X M such that

gΓpfq ¨ xv
P Lp∆q

but in this case v P ´RpN, Σ∆q, that is nothing changes (compare section
6.2). In fact it follows with results from ([Cat78]) that

aq, bq : dim kerpΦf |Im κf
q “ 2, cq, dq, eq : dim kerpΦf |Im κf

q “ 3.

Interestingly in cq, dq and eq the surfaces Yf failing the ITT are exactly those
surfaces in the family X Ñ B which are Todorov surfaces.

Remark 8.4.6. By section 4.4 the minimal model Y gets a Kanev surface,
in which case h1,1pY q “ 19 or a surface with

pgpY q “ 1, qpY q “ 0, K2
Y “ 2, π1pY q – Z{2Z,

in which case h1,1pY q “ 18.

There are known results on Kanev and Todorov surfaces failing the ITT: There
is a 14-dimensional family of Kanev surfaces, containing the 12-dimensional
family of special Kanev surfaces, such that every member of this family fails
the ITT (see [Cat78a]). Likewise a generic Todorov surfaces Y with K2

Y “ 2
fails the ITT (see [SSU85, (1.4.2.1)]). We guess that our examples are not
new (compare the above monomials with the monomials in Example 4.4.5)
but of course we applied different methods and our computations are more
explicit.

Concerning the other cases Cp∆q ‰ ∆ or dim F p∆q P t1, 2u we guess that
there are other counterexamples of polytopes ∆ with dim F p∆q “ 1 yielding
proper elliptic surfaces in toric 3-folds (for example from the lists [Sch18,
Appendix A.1,A.2]). For other ”new“ counterexamples we are more skeptical.
See the Example below for a naive approach.
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Example 8.4.7. We sketch a possible simplex ∆ with l˚p∆q “ 1 (p0, 0, 0q is
the only interior lattice point) and one facet Γ “ xv1, v2, v3y with distance 3 to
p0, 0, 0q and an interior lattice point v P IntpΓq X M . In case v4 ` v P ∆ X M
then we would get another counterexample to the ITT by choosing an f
which has support on the vertices of ∆ (In this case gΓpfq ¨ xv ” 0 in R2

Int,f

but v is not a root of Σ∆ since the facet Γ has distance 3 ą 1 to p0, 0, 0q).
But all lattice polytopes ∆ with

dim ∆ “ dim F p∆q “ 3, l˚
p∆q “ 1

have been classified in ([BKS19]) and there are just the 49 polytopes we have
studied.

v1

v2

v3

v4
0

v

1 2 3

Such a lattice polytope does not exist.
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9.1 The polytopes ∆ with Cp∆q “ ∆ in aq

a

d

p

b d
a

b

a2 d1b1

c2

d
a

b a1

d1b1

c2

d
a

b
a1

d1

c2

d
a

b a1

d1b1

d
a

b

d1b1

c2

d
a

b

a2
b1

d
a

b
a1

c2

d
a

b

a2

c1

d
a

b

b1
c2

ad

d
a

b ab

c2

ad

The 11 canonically closed polytopes out of 20 polytopes in the first class a).
The polytopes are ordered in rows descendingly by their number of lattice
points (The maximal polytope is additionaly put in the first row on the left).
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9.2 The polytopes ∆ with Cp∆q “ ∆ in bq

c

a

d

p

b

c

a

d

d1

b

b1

c2

a2

c

a

d

d1

b

b1

c2

a1

c

a

d

d1

b

b1

c1

a2

c

a

d

d1

b

b1

c1

a1

c

a

d

d1

b

c1

a2
c

a

d

d1

b

b1

c2

c

a

d

d1

b

c2

a1

c

a

db

c1

a2
c

a

db

c2

a1

c

a

d

d1

b ab

c2
c

a

d

d1

b

b1

c1

c

a

d

d1

b

bc
a2

c

a

db
ab

c2

ad

c

a

db

a2

bc cd

The 15 canonically closed polytopes out of 26 polytopes in the second class b)
with the same convention on the rows as in case a) and also with the maximal
polytope put in the first row on the left.
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9.3 Data of all polytopes in aq and bq

Polytopes in aq such that ∆can :“ xa, b, dy sorted as in Figure 9.1 from the top
to the bottom and from left to right. The arrows indicate that the polytopes
are not canonically closed and the ID of the canonical closure is the polytope
above the arrows (e.g. ID5389063 has canonical closure ID546219)

F p∆q “ xp0, 0, 0q, p1, 1{3, 0q, p1, 2{3, 0q, p1, 1{2, ´1{2qy

p :“ p´4, ´2, 1q, a2 :“ p´2, ´1, 0q, c2 :“ p´2, ´1, 1q, b1 :“ p´1, ´1, 1q,
d1 :“ p´1, 0, 1q, a1 :“ p0, 0, ´1q, 0 :“ p0, 0, 0q, c1 :“ p0, 0, 1q,
ab :“ p1, 0, 0q, bc :“ p1, 0, 1q, ad :“ p1, 1, 0q, cd :“ p1, 1, 1q,
b :“ p2, 0, 1q, a :“ p2, 1, ´2q, ac1 :“ p2, 1, ´1q, ac2 :“ p2, 1, 0q,
c :“ p2, 1, 1q, d :“ p2, 2, 1q

ID spanning set for number of
polytope ∆ points on ∆

547444 ∆can, p 18
474457 ∆can, a2, c2, d1, b1 17
ñ 545932 ∆can, a2, c2 15
ñ 532384 ∆can, a2, c2, d1 16
ñ 532606 ∆can, a2, d1, b1 16
483109 ∆can, d1, b1, c2, a1 16
534669 ∆can, c2, d1, a1 15
534866 ∆can, b1, a1, d1 15
534667 ∆can, c2, d1, b1 15
546062 ∆can, b1, a2 15
546205 ∆can, a1, c2 14
546219 ∆can, c1, a2 14
ñ 547524 ∆can, a2 11
ñ 546863 ∆can, a2, bc 12
ñ 539063 ∆can, a2, bc, cd 13
536498 ∆can, b1, ad, c2 14
537834 ∆can, ab, ad, c2 13
ñ 547525 ∆can, c2 11
ñ 546862 ∆can, ab, c2 12
ñ 546663 ∆can, ad, c2 12
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Polytopes in the class bq sorted as in Figure 9.2 from top to bottom, left to
right. (with ∆can :“ xa, b, c, dy and the same convention as in Table 9.1)

.

F p∆q “ xp0, 0, 0q, p1, ´1, 1{2q, p1, ´2{3, 1{3q, p1, ´1{2, 1{2q, p1, ´2{3, 2{3qy

p :“ p´4, 3, ´2q, c2 :“ p´2, 2, ´1q, a2 :“ p´2, 1, ´1q, b1 :“ p´1, 1, 0q

d1 :“ p´1, 1, ´1q, 0 :“ p0, 0, 0q, a1 :“ p0, ´1, 0q, c1 :“ p0, 1, 0q, cd :“ p1, 0, 0q,
ad :“ p1, ´1, 0q, ab :“ p1, ´1, 1q, bc :“ p1, 0, 1q, ac2 :“ p2, ´1, 1q,
ac1 :“ p2, ´2, 1q, d :“ p2, ´1, 0q, c :“ p2, 0, 1q, a :“ p2, ´3, 1q, b :“ p2, ´1, 2q

ID spanning set for number of
polytope ∆ points on ∆

545317 ∆can, p 18
354912 ∆can, c2, a2, d1, b1 17
ñ 533513 ∆can, c2, a2 15
ñ 481575 ∆can, c2, a2, d1 16
372528 ∆can, d1, b1, c2, a1 16
372973 ∆can, b1, d1, a2, c1 16
ñ 490511 ∆can, b1, d1, a2 15
388701 ∆can, a1, d1, b1, c1 15
ñ 499287 ∆can, a1, d1, b1 14
490485 ∆can, c1, a2, d1 15
490481 ∆can, c2, b1, d1 15
490478 ∆can, d1, c2, a1 15
535952 ∆can, a2, c1 14
536013 ∆can, a1, c2 14
495687 ∆can, d1, c2, ab 14
ñ 539313 ∆can, d1, c2 13
499291 ∆can, c1, b1, d1 14
ñ 538356 ∆can, b1, d1 13
499470 ∆can, a2, bc, d1 14
ñ 539304 ∆can, a2, d1 13
501298 ∆can, c2, ab, ad 13
ñ 547246 ∆can, c2 11
ñ 540602 ∆can, c2, ab 12
501330 ∆can, a2, bc, cd 13
ñ 547240 ∆can, a2 11
ñ 540663 ∆can, a2, bc 12
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