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Abstract

Alternative representations may differ in what entities or types of information they make explicit. As
suggested by David Marr, this can be illustrated by the following example: the number thirty-seven can be
represented as 37 in the decimal numeral system, and as 100101 in the binary one. What is made explicit
in the decimal representation is the number’s decomposition into powers of ten; in contrast, the binary
representation makes explicit its decomposition into powers of two.

Information about the external world is often available to learning systems, both biological and artificial,
only in an unstructured form: artificial networks trained for object recognition take collections of pixels
as inputs; visual information processing in biological systems starts in photoreceptors, where incoming
light is converted into biological signals. In both cases, some complex processing is required in order for
certain aspects (e.g., the position, dimension and colour of objects in an image) to be made explicit and easily
accessible. Central questions are then what information should be made explicit, and how to do so.

We consider two problems in representation learning. The first one is the cocktail-party problem, where a
number of conversations happen in parallel in a room, and the task is to recover (or separate) the voices of the
individual speakers from recorded mixtures—also termed blind source separation. The second one is what
we call the independent-listeners problem: given two listeners in front of some loudspeakers, the question is
whether, when processing what they hear, they will make the same information explicit, identifying similar
constitutive elements. Rather than the reconstruction of a ground truth, what interests us here is that both
process the same auditory signals, and we want to compare their representations thereof.

These questions can be studied with the approach of independent component analysis (ICA). This entails
establishing whether, under some technical assumptions (most importantly statistical independence of the
latent components, either unconditional or conditional on some other variable), representations can be
uniquely specified—up to some ambiguities deemed tolerable, and except for a small number of corner cases.
In technical terms, this corresponds to characterising identifiability of the model: in ICA, this is a central
theoretical question and a prerequisite to the practical estimation of representations from data.

A key result of ICA theory is that, when the mixing is nonlinear, the model is provably nonidentifiable: in
other words, the cocktail-party problem cannot be solved. A first question is therefore under what additional
assumptions (ideally as mild as possible) the problem becomes identifiable; the following one is what
estimation algorithms should be used.

The contributions presented in this thesis address these questions, and revolve around two main principles.

The first principle is to learn representation where the latent components influence the observations
independently. Here the term “independently” is used in a non-statistical sense—which, inspired by causal
inference and the principle of independent causal mechanisms (ICM), can be loosely thought of as absence of
fine-tuning between distinct elements of a generative process. In the context of the cocktail-party problem,
our independence postulate amounts to stating that the speakers’ positions are not fine-tuned to the room
acoustics and placement of the recording devices, or to each other.

Firstly, we formalise this principle as the condition that the columns of the Jacobian of the mixing function
(which represent influences of the corresponding latent components on the observed mixtures) should be
orthogonal. We call this independent mechanism analysis (IMA), and provide theoretical and empirical
evidence that our approach circumvents a number of nonidentifiability issues arising in nonlinear blind
source separation. Whereas ICA had already been useful in the context of causal inference, providing the
backbone for successful causal discovery algorithm, this is to the best of our knowledge the first attempt to
use ideas from causality to make progress in the difficult task of nonlinear blind source separation.

We then study a popular approach to unsupervised learning, variational autoencoders (VAEs), through the
lens of independent mechanism analysis. VAEs provide an efficient way to train deep latent variable models
by maximising a tractable, approximate variational approximation of the intractable, exact likelihood. While



VAEs are commonly used for representation learning, it is unclear why maximisation of this variational
objective (the evidence lower bound, or ELBO) would be useful in that context, since maximising the exact
likelihood corresponds to estimating a provably nonidentifiable model. We show that, in a regime which we
term near-deterministic, Gaussian VAEs perform independent mechanism analysis: the difference between
the exact likelihood and the ELBO (or ELBO gap) equals a regularisation term which favours VAE decoders
with column-orthogonal Jacobians. We formally prove this for the near-deterministic regime, and show in
experiments on synthetic and image data that VAEs uncover the true latent factors when the data generating
process satisfies the IMA principle.

The IMA principle is expressed as a constraint on the Jacobian of the mixing function, and optimisation of
functions of a Jacobian is a central problem in probabilistic modelling: for example, in deep density models,
where the likelihood includes the log-determinant of the Jacobian. Because of this term, their likelihood-based
training is computationally expensive. We propose a new approach for exact training of a class of deep
density models. Based on relative gradients, we exploit the matrix structure of neural network parameters
to compute updates efficiently even in high-dimensional spaces: the computational cost of the training is
quadratic in the input size, in contrast with the cubic scaling of naive approaches. This is achieved without
constraining the Jacobian to be triangular, in contrast to autoregressive normalizing flows.

Whereas in the first part of this thesis observations are modelled as independent and identically distributed
(i.i.d.) draws from a given distribution, in the second part we investigate a different setting, based on the
following principle: representations can be learned from paired observations or views, where mixtures of the
same latent variables are observed, and they (or a subset thereof) are perturbed in one of the views. We call
this the multi-view setting.

Our first result establishes identifiability for a multi-view nonlinear ICA model, where views are nonlinear
mixtures of component-wise corruptions of the same latent sources. We present novel identifiability proofs
showing that the mixing can theoretically be undone under the assumption of sufficiently distinct views:
intuitively, the two views should be sufficiently different from one another, resulting in more information
being available in totality than from each view individually. In contrast with the previous part of this thesis,
which relied on constraints on the mixing function, the setting with paired observations allows identifiability
for any invertible, nonlinear mixing, provided that multiple, sufficiently different noisy views are available.
To the best of our knowledge, this is the first identifiability result for the nonlinear multi-view setting.

We then apply multi-view ICA to model group studies in neuroimaging: we consider settings where multiple
subjects are exposed to the same experimental stimulus. Data from each subject are then modelled as mixtures
of shared components, representing responses evoked by the common stimulus, plus subject-specific noise,
accounting for each individuals’ deviation from the shared response. Unlike in the previous contribution, the
mixing is assumed to be linear and, contrary to most group-ICA procedures, the likelihood of the model
is available in closed form. We develop an alternate quasi-Newton method for maximizing the likelihood,
and demonstrate the usefulness of our approach on fMRI and magnetoencephalography (MEG) data, where
our model demonstrates better sensitivity in identifying common sources among subjects than alternative
methods, as well as lower between-session variability.

Finally, we study a widespread and successful approach to self-supervised learning, where representations
are learned from the original images together with augmentations, where hand-crafted transformations are
intended to leave the semantics of the data invariant.We formulate the augmentation process as a latent
variable model by postulating a partition of the latent representation into a content component, which is
assumed invariant to augmentation, and a style component, which is allowed to change. Unlike prior work
on disentanglement and independent component analysis, we allow for both non-trivial statistical and causal
dependencies in the latent space. We study the identifiability of the latent representation based on pairs
of views of the observations and prove sufficient conditions that allow us to identify the invariant content
partition up to an invertible mapping.

In the conclusion, we discuss the connections between identifiability in representation learning and causal
inference; we comment on the significance of identifiability theory for current empirical practice in machine
learning; and outline some potential directions to extend the works presented in this thesis.



Zusammenfassung

Alternative Darstellungen können sich darin unterscheiden, welche Einheiten oder Arten von Informationen
sie deutlich werden. Wie von David Marr eindrücklich beschrieben, lässt sich das durch den Vergleich ver-
schiedener Zahlensysteme veranschaulichen. Nehmen wir die Zahl Siebenunddreißig: Im binären Zahlensystem
kann sie als 100101 dargestellt werden, im dezimalen als 37. Während die dezimale Darstellung die Zerlegung
der Zahl in Zehnerpotenzen ausdrückt, stellt die binäre Darstellung ihre Zerlegung in Zweierpotenzen dar.
Beide Versionen sind valide Darstellungen derselben Information aber für verschiedene Anwendungen ist
die eine oder die andere zu bevorzugen.

Informationen über die Außenwelt stehen lernenden Systemen—sowohl künstlichen als auch biologischen—
oft nur in unstrukturierter Form zur Verfügung: Künstliche neuronale Netze, die für die Objekterkennung
trainiert werden, nehmen Informationen in Form von Pixeln aus Bildern auf; die visuelle Informationsverar-
beitung in biologischen Systemen beginnt in den Photorezeptoren, wo das einfallende Licht in biologische
Signale umgewandelt wird. In beiden Fällen ist eine komplexe Verarbeitung dieser Eingaben erforderlich,
damit bestimmte Aspekte (z.B. die Position, Größe und Farbe von Objekten in einem Bild) offengelegt und
leicht zugänglich gemacht werden können. Die zentrale Frage ist daher, welche Informationen extrahiert
werden sollen und wie dies geschehen kann.

Wir betrachten zwei Probleme des Repräsentationslernens. Das erste ist das sogenannte Cocktail-Party-
Problem, bei dem eine Reihe von Gesprächen parallel in einem Raum stattfinden und die Aufgabe darin
besteht, die Stimmen der einzelnen Sprecher aus einer Aufzeichnung zu rekonstruieren (oder zu trennen)
- auch als blinde Quellentrennung bezeichnet. Das zweite ist das so genannte Problem der unabhängigen
Zuhörer: Bei zwei Zuhörern, die sich vor einer Reihe von Lautsprechern befinden, stellt sich die Frage,
ob sie bei der Verarbeitung des Gehörten die gleichen Informationen herausfiltern, indem sie ähnliche
Grundbausteine identifizieren. Im Gegensatz zum vorigen Problem geht es dabei nicht um die Rekonstruktion
des wahren Signals, sondern um den Vergleich der Repräsentationen desselben auditiven Signals zwischen
den beiden Zuhörern.

Diese Fragen können mit dem Ansatz der unabhängigen Komponentenanalyse (engl. independent component
analysis - ICA) untersucht werden. Dies bedeutet, dass unter bestimmten technischen Annahmen (vor Allem
der statistischen Unabhängigkeit der latenten Komponenten, möglicherweise bedingt durch eine andere
Variable), Repräsentationen eindeutig spezifiziert werden können—bis zu einer gewissen Mehrdeutigkeit, die
als tolerierbar erachtet wird, und mit Ausnahme einer kleinen Anzahl von Grenzfällen. Technisch gesehen
entspricht dies der Charakterisierung der Identifizierbarkeit des Modells. Dies ist eine zentrale theoretische
Frage der ICA und eine Voraussetzung für das praktische Lernen von Repräsentationen aus Daten.

Ein zentrales Ergebnis der ICA-Theorie ist, dass das Modell nachweislich nicht identifizierbar ist, wenn die
Mischung nichtlinear ist. Dies bedeutet beispielsweise, dass das Cocktail-Party-Problem nicht gelöst werden
kann. Die Frage ist daher, unter welchen zusätzlichen Annahmen (idealerweise so wenige wie möglich) das
Problem identifizierbar wird und welche Lösungsmethoden verwendet werden können.

Die in dieser Arbeit vorgestellten Beiträge befassen sich mit diesen beiden Fragen und drehen sich um zwei
Hauptprinzipien.

Das erste Prinzip besteht darin, Repräsentationen zu lernen, in denen die einzelnen latenten Komponenten
einen voneinander unabhängigen Einfluss auf die Beobachtungen haben. Der Begriff unabhängig bezieht
sich hierbei nicht auf statistische Unabhängigkeit sondern Unabhängigkeit im Sinne des Prinzips der
unabhängigen kausalen Mechanismen (engl. independent causal mechanisms - ICM) aus dem Feld der
kausalen Inferenz—als Abwesenheit von Feinabstimmungen zwischen verschiedenen Elementen eines
generativen Prozesses. Im Kontext des Cocktail-Party-Problems bedeutet dieses Unabhängigkeitspostulat,
dass die Positionen der Sprecher weder aufeinander, noch auf die Raumakustik oder die Platzierung der
Aufnahmegeräte abgestimmt sind.



Zunächst formalisieren wir dieses Prinzip als die Bedingung, dass die Spalten der Jacobi-Matrix der
Mischfunktion, die die Einflüsse der entsprechenden latenten Komponenten auf die beobachteten Mischungen
darstellt, orthogonal sein sollten. Wir nennen dies unabhängige Mechanismusanalyse (engl. independent
mechanism analysis - IMA) und liefern theoretische und empirische Beweise dafür, dass unser Ansatz eine
Reihe von Problemen der Nicht-Identifizierbarkeit umgeht, die bei der nichtlinearen blinden Quellentrennung
auftreten. Die ICA hat sich bereits im Kontext der kausalen Inferenz als nützlich erwiesen und bildet das
Rückgrat für erfolgreiche Algorithmen zur kausalen Entdeckung. Dies ist unseres Wissens nach der erste
Versuch, Ideen aus dem Feld der Kausalität zu nutzen, um Fortschritte bei der herausfordernden Aufgabe
der nichtlinearen blinden Quellentrennung zu erzielen.

Anschließend untersuchen wir einen beliebten Ansatz für unüberwachtes Lernen, den Variational-Auto-
Encoder (VAE), aus dem Blickwinkel der Analyse unabhängiger Mechanismen. VAEs bieten eine effiziente
Möglichkeit, tiefe neuronale Netze als Modelle der latenten Variablen zu trainieren, indem sie eine lösbare,
Variationsapproximation der nicht zugänglichen, exakten Likelihood maximieren. Obwohl VAEs häufig für das
Lernen von Repräsentationen verwendet werden, ist unklar, warum die Maximierung dieser Zielfunktion (die
untere Schranke der Evidenz oder ELBO) in diesem Zusammenhang nützlich sein sollte, da die Maximierung
der exakten Likelihood dem Lernen eines nachweislich nicht identifizierbaren Modells entspricht. Wir zeigen,
dass Gaußsche VAEs in einem System, das wir als nahezu deterministisch bezeichnen, eine unabhängige
Komponentenanalyse durchführen: Die Differenz zwischen der exakten Likelihood und der ELBO entspricht
einem Regularisierungsterm, der VAE-Decoder mit spaltenorthogonalen Jacobi-Matrizen begünstigt. Wir
beweisen dies formal für das nahezu deterministische Regime und zeigen in Experimenten mit synthetischen
(Bild-)Daten, dass VAEs die wahren latenten Faktoren identifizieren, wenn der Datengenerierungsprozess
das IMA-Prinzip erfüllt.

Das IMA-Prinzip wird als Einschränkung der Jacobi-Matrix der Mischfunktion ausgedrückt. Die Optimierung
von Funktionen einer Jacobi-Matrix ist ein zentrales Problem bei der probabilistischen Modellierung,
beispielsweise bei tiefen Density-Modellen, bei denen die Likelihood die Log-Determinante der Jacobi-Matrix
enthält. Aufgrund dieses Zusammenhangs ist Likelihood-basiertes Training im Allgemeinen rechenintensiv.
Wir entwickeln einen neuen Ansatz für das exakte Training einer Klasse von tiefen Density-Modellen. Auf
Grundlage relativer Gradienten nutzen wir die Matrixstruktur der Parameter des neuronalen Netzes, um
Aktualisierungen selbst in hochdimensionalen Räumen effizient zu berechnen: Die Rechenkosten für das
Training sind quadratisch mit der Größe der Eingaben, im Gegensatz zur kubischen Skalierung naiver
Ansätze. Dies wird erreicht, ohne Triagonalität der Jacobi-Matrix zu erfordern, wie es bei autoregressiven
Normalizing-Flows der Fall ist.

Während im ersten Teil dieser Arbeit die Beobachtungen als unabhängige und identisch verteilte (engl.
independent and identically distributed - i.i.d.) Ziehungen aus einer gegebenen Verteilung modelliert werden,
untersuchen wir im zweiten Teil eine andere Situation, die auf folgendem Prinzip beruht: Repräsentationen
können aus gepaarten Beobachtungen oder Perspektiven gelernt werden, bei denen Mischungen der gleichen
latenten Variablen beobachtet werden und diese (oder eine Teilmenge davon) in einer der Perspektiven
gestört werden. Wir nennen dies die Multi-View-Situation.

Unser erstes Ergebnis beweist die Identifizierbarkeit eines nichtlinearen ICA-Modells mit mehreren Per-
spektiven, bei dem die Perspektiven nichtlineare Mischungen von komponentenweisen Störungen der
selben latenten Variablen sind. Wir präsentieren neuartige Identifizierbarkeitsbeweise, die zeigen, dass die
Vermischung theoretisch rückgängig gemacht werden kann, wenn hinreichend unterschiedliche Perspektiven
angenommen werden: Intuitiv sollten sich die Perspektiven hinreichend voneinander unterscheiden, was
dazu führt, dass in der Gesamtheit mehr Informationen zur Verfügung stehen als aus jeder einzelnen
Perspektive. Im Gegensatz zum vorangegangenen Teil dieser Arbeit, der sich auf Beschränkungen der
Mischfunktion stützte, ermöglicht die Betrachtung von gepaarten Beobachtungen die Identifizierbarkeit
für jede invertierbare, nichtlineare Mischung, vorausgesetzt, dass mehrere, hinreichend unterschiedliche,
verrauschte Perspektiven verfügbar sind. Soweit wir wissen, ist dies das erste Identifizierbarkeitsergebnis für
die nichtlineare Multiview-Situation.

Anschließend wenden wir die Multiview-ICA an, um Gruppenstudien im Neuroimaging zu modellieren: Wir
betrachten Situationen, in denen mehrere Probanden demselben experimentellen Stimulus ausgesetzt sind.



Die Daten der einzelnen Versuchspersonen werden dann als Mischungen aus gemeinsamen Komponenten
modelliert, die die durch den gemeinsamen Stimulus hervorgerufenen Reaktionen darstellen, sowie aus
subjektspezifischem Rauschen, das die Abweichungen der einzelnen Personen von der gemeinsamen Reaktion
berücksichtigt. Anders als im vorherigen Beitrag wird die Mischung als linear angenommen und im Gegensatz
zu den meisten Gruppen-ICA-Verfahren ist die Likelihood des Modells in geschlossener Form verfügbar. Wir
entwickeln eine alternative Quasi-Newton-Methode zur Maximierung der Likelihood und demonstrieren
die Nützlichkeit unseres Ansatzes anhand von fMRI- und Magnetoenzephalographie (MEG)-Daten, bei
denen unser Modell eine bessere Sensitivität bei der Identifizierung gemeinsamer Quellen zwischen den
Probanden, sowie eine geringere Variabilität zwischen den Sitzungen zeigt als alternative Methoden.

Schließlich untersuchen wir einen weit verbreiteten und erfolgreichen Ansatz des selbstüberwachten Lernens,
bei dem Repräsentationen aus Originalbildern zusammen mit Augmentationen gelernt werden, bei denen die
von Hand vorgenommenen Transformationen dazu dienen, die Semantik der Daten unverändert zu lassen.
Im Gegensatz zu früheren Arbeiten zu Disentanglement und unabhängigen Komponentenanalyse erlauben
wir sowohl nicht-triviale statistische als auch kausale Abhängigkeiten im latenten Raum. Wir untersuchen
die Identifizierbarkeit der latenten Repräsentation anhand von Paaren von Beobachtungen und beweisen
hinreichende Bedingungen, die es uns erlauben, die invariante inhaltliche Partition bis zu einer invertierbaren
Abbildung zu identifizieren.

Im Schlussteil diskutieren wir die Verbindungen zwischen Identifizierbarkeit beim Repräsentationslernen
und kausaler Inferenz. Wir kommentieren die Bedeutung der Theorie der Identifizierbarkeit für die aktuelle
empirische Praxis des maschinellen Lernens und skizzieren einige mögliche Richtungen, um die in dieser
Arbeit vorgestellten Arbeiten zu erweitern.
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1: we take the transpose to stress that
here and in the rest of this thesis we use
column vectors.
2: In the following we will neglect the
temporal structure of the signals and
drop the time index 𝑡 for simplicity.

Motivation: Learning
Representations 1

In this chapter, we introduce and discuss two metaphors: the cocktail-party
problem (§ 1.1) and the independent-listeners problem (§ 1.2). These are meant
to illustrate without much technical overhead some of the questions
studied in the rest of this thesis. In § 1.3, we will discuss the significance
of the two metaphors in the context of representation learning. The
terminology used in this chapter is largely nontechnical: in Chapter 2,
we present a framework to formalise and solve these problems under
suitable technical assumptions.

1.1 The Cocktail-Party Problem

Cocktail parties are usually noisy (successful ones at least), with multiple
conversations taking place simultaneously in the same room. To success-
fully engage in social interaction, attendees should be able to discern the
voices of individual speakers.

In its simplest version, the cocktail-party problem features two speakers
talking simultaneously in a room. Two recording devices (microphones,
or the ears of a listener) are placed in the same room. Due to the physics
of sound propagation, the shape of the room and arragement of objects
therein, and influenced by the position of the speakers relative to the
recording devices, these pick up mixtures of the two voices.

If we call s(𝑡) = (𝑠1(𝑡), 𝑠2(𝑡))⊤ the vector containing the soundwaves 𝑠𝑖(𝑡)
emitted by the speakers at a given time 𝑡,1 and denote the mixing process
by f, we may write the mixtures picked up by the microphones as the
vector x(𝑡) = f(s(𝑡)).2

𝑥1

𝑥2

𝑠1

𝑠2

Figure 1.1: A visualisation of the cocktail-
party problem.

We consider the following problem: Given only the recorded mixtures x,
can we recover the individual voices of the speakers 𝑠1 and 𝑠2?

This is also referred to as the problem of blind source separation: the
voices of the individual speakers 𝑠𝑖 are called sources and we want to
separate them in the sense that we want to transform the mixtures x into
y = (𝑦1 , 𝑦2)⊤ such that each 𝑦𝑖 component only retains one of the two
voices.

Some comments on the metaphor above may be necessary:
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(i) While the number of speakers and the number of recording devices in
the example is arbitrary, we deliberately chose the two to be equal and
we will assume that the mixing process involves no loss of information.
See for more comments on this § 1.3.3.

(ii) The example is heavily stylised and neglects many realistic aspects
of audio mixing. For example, the mixing of audio signals is often not
instantaneous. See [1, Sec 24.2] for some of the complexities presented by
the problem of audio separation uncaptured in the stylised metaphor
above.

1.2 The Independent-Listeners Problem

Consider now two attendees of the cocktail party, Alice and Bob. Both of
them are exposed to the same audio signals, e.g., music played over some
loud-speakers. Suppose that each of them (or rather each brain or auditory
pathway) tries to solve the blind source separation problem of § 1.1. Each
will then produce their own attempt at source separation—yAlice for Alice
and yBob for Bob.

Figure 1.2: A visualisation of the
independent-listeners problem.

We then ask: Are the two vectors yAlice and yBob necessarily equal? If
not, how are they related?

This question focuses on the listeners, not on the speakers—unlike in § 1.1.
As long as we are solely interested in the yAlice and yBob vectors, Alice
and Bob may in fact be performing a different task from blind source
separation. For the question to be interesting, trivial transformations of
the input signals (e.g., mapping to a constant vector regardless of the
input) should be ruled out though, and the task of blind source separation
ensures this; different tasks, for example related to classification, may also
work under suitable conditions. We will come back to this in § 2.4.2.

In fact, in this context we would like to abstract away the true generating
process of the auditory signals (and wheteher blind source separation is
achieved) as much as possible, and just think of x = (𝑥1 , 𝑥2)⊤ as sounds
emitted by some stereo loud-speakers. The main aspect that is of interest
to us here is that both Alice and Bob engage in the same signal processing
task, and we want to study and compare the outputs of these processes.
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[2]: Marr (2010), Vision: A computational
investigation into the human representation
and processing of visual information

3: this is true in a formal sense if, for ex-
ample, the transformation f is invertible,
which we will often assume in this work.

1.3 Learning Representations

We will now discuss the problems in § 1.1 and § 1.2 in the context of
machine learning, and particularly representation learning.

Why learning? In blind source separation, listeners may not know
in advance (may be blind to) what the speakers will say, what their
locations are and what the precise arrangement of objects in the room
and the mechanisms of sound propagation are: if these mechanisms were
known precisely in advance, the listeners would simply have to invert it.
However, due to their ignorance about these aspects, learning strategies
not requiring prior specification of such details may be helpful to solve
the problem.

1.3.1 What is a Representation?

According to David Marr [2],

A representation is a formal system for making explicit certain
entities or types of information, together with a specification
of how the system does it.

If we want to interpret this definition based on the metaphors in § 1.1
and § 1.2, we could think of the vectors y and yAlice, yBob as representations
of the observations, or data, x. For example, in the context of § 1.1, the x
vector may contain the same information as the s vector does,3 but in s
some information is made explicit (the separation between voices of the
two speakers) with respect to x. In blind source separation, we would
like this same information to be made explicit in y. Specifying “how the
system does it” could then be interpreted as specifying (how the system
learns) a function g such that y = g(x)makes the kind of information we
are interested in explicit (i.e., it separates the sources).

Marr additionally argues that alternative representations may differ in
what information they make explicit:

The Arabic, Roman, and binary numeral systems are all
formal systems for representing numbers. [...] What [the
Arabic numeral system] makes explicit is the number’s de-
composition into powers of 10. The binary numeral system’s
description of the number thirty-seven is 100101, and this
description makes explicit the number’s decomposition into
powers of 2.

For example, the decomposition of a number into powers of 2 (respectively
10) can be discussed based on either representation, but it is made explicit
in the binary (respectively Arabic) numeral system.

Representations and downstream tasks. This naturally leads to the
following consideration: How information is represented can greatly
affect how easy it is to do different things with it [2].
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[3]: Eastwood et al. (2022), ‘On the DCI
Framework for Evaluating Disentangled
Representations: Extensions and Connec-
tions to Identifiability’

4: such unpredictability may be part of
what makes social interactions interest-
ing.

[4]: Bengio et al. (2013), ‘Representation
learning: A review and new perspectives’

5: If the data Alice and Bob apply their
algorithms to, the initial conditions and
the algorithms they use are equal and
deterministic, no difference is to be ex-
pected among yAlice and yBob. However,
in some cases, the problem may admit
many equally good outputs or solutions,
and slight perturbations of the aforemen-
tioned conditions may lead to large dif-
ferences. We will articulate this more
formally in § 2.4.1.
6: This difference between hearing and
interpreting auditory signals mirrors a
similar distinction in visual perception,
where Kanizsa posited the separation
between a low-level visual information
processing termed seeing and a high-level
one termed thinking [6].
7: Such focus on representations might
appear as a violation of the so-called
Vapnik principle “never to solve a prob-
lem which is more general than the one we
actually need to solve” [7].

[10]: Hinton (2007), ‘Learning multiple
layers of representation’

This is evident even from our numbers example: It is easy to
add, to subtract, and even to multiply if the Arabic or binary
representations are used, but it is not at all easy to do these
things–especially multiplication–with Roman numerals. This
is a key reason why the Roman culture failed to develop
mathematics in the way the earlier Arabic cultures had.

In other words, different representations may be more or less suited for
different things we may want to do with them, termed downstream tasks.
These may or may not require source separation [3]: in the cocktail party,
source separation may not be required to answer certain questions—for
example, what is the overall perceived volume of the voices of the two
speakers. In answering this question, and many others, some information
may safely be discarded.

However, the downstream task may be a priori unclear: cocktail party
attendees may be unable to predict exactly what questions they will have
to ask or answer.4 It has therefore been argued that for an intelligent
system in a complex environment (be it an artificial neural network or a
biological party attendee) a good strategy could be to learn representa-
tions that “discard as little information about the data as is practical” while still
“disentangl[ing] as many factors [of variation] as possible” [4]. In the context
of § 1.1, if we think of the speakers’ voices as factors of variation, we may
then say that solving blind source separation (thereby “disentangling” the
voices of the two speakers) can be a helpful first step to answer many
questions about their voices or what they say (although not always a
necessary one).

In a different spirit, we could otherwise study the problem of representa-
tions in a task-dependent manner: What are the characteristics of, and
how to learn, good or optimal data representations for a given task? In
this context, one might want to compare representations extracted by
similar systems performing the same task, much in the spirit of § 1.2, see
also [5].5 The degree of similarity between these representations may
also affect how easy it is for intelligent agents to communicate about
them: loosely speaking, if Alice and Bob later want to have a conversation
about the x signals, communication would be easier if they heard similar
things (although the interpretation or meaning they assign to what they
hear may be quite different).6

1.3.2 Representations in Machine Learning

From a machine learning perspective, all of this might sound unneces-
sarily complicated. If we are interested in a downstream task, one might
wonder why is it even necessary to talk about representations:7 Should
we not simply focus on developing algorithms which are good at solving
the task we are interested in [8]?

Deep learning and representation learning. One possible answer is
that many successful machine learning algorithms—in particular deep
neural networks [9]—are characterised by learning representations of
the data which enable solving tasks of interest efficently. This takes
inspiration from computational theories of the brain [10]:
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[9]: LeCun et al. (2015), ‘Deep learning’

[4]: Bengio et al. (2013), ‘Representation
learning: A review and new perspectives’

8: However, many other aspects of the
perspective on representation learning
presented in [4] are uncaptured by § 1.1,
most prominently the so called “mani-
fold hypothesis” which we will discuss
in § 1.3.3. We also note that many other
interpretations of disentanglement ex-
ist, see, e.g., [11–13] for some different
perspectives.
9: for an example in the context of how
representation learning has provided
computational models for early vision,
see, e.g., [14].

10: at the same time, in visual perception
a lot of information may be missing (e.g.,
due to occlusions) and must be guessed
by the brain, see [15] and [16, Chapter
10].

11: Lossless compression arguably still
falls into the how category.

[22]: Tishby et al. (2015), ‘Deep learning
and the information bottleneck principle’

[29]: Xie et al. (2022), ‘A random energy
approach to deep learning’

[30]: Saxe et al. (2019), ‘On the informa-
tion bottleneck theory of deep learning’

To achieve its impressive performance in tasks such as speech
perception or object recognition, the brain extracts multiple
levels of representation from the sensory input.

Similarly, deep learning models learn representations of data with “multi-
ple levels of abstraction” [9], and have the capability to learn representations
which “can entangle and hide more or less the different explanatory factors of
variation behind the data” [4].

A metaphor such as the one in § 1.1 provides a way to interpret the
sentence above: in the cocktail-party example, it is tempting to consider
the voices of individual speakers as factors of variation. A representation
which uncovers or “disentangles” them may be one which solves the
problem of blind source separation.8 So the study of representations
and representation learning is related to deep neural networks and may
suggest how to improve them, and it may in turn inspire computational
neuroscience models.9

1.3.3 What is Represented and How

In the cocktail-party example of § 1.1, we considered equal number of
microphones and speakers and and no information loss. However, in
many settings, representation learning may involve different dimension-
alities of the observed and latent variables, and information may be
compressed or discarded in the representations. This is true for rep-
resentation learning both in the brain and in machine learning. For
example, in the context of human perception, there is evidence that a lot
of information is discarded by the visual system.10 In machine learning,
the manifold hypothesis [4, 17, 18] posits that in many problems of interest
observations lie in the vicinity of a low-dimensional manifold embedded
in a higher-dimensional space; see also [19] for a related hypothesis in
the context of physics and biochemistry. Classic statistical methods suchs
as Principal Component Analysis (PCA) [20, 21] can be used to find a
low-dimensional representation while preserving as much information
as possible, in a task-agnostic manner.

Representations may therefore also differ in the information they discard,
or in their effectiveness at compressing information. This may be described
as the problem of what information present in the raw data (e.g., pixel
level information for images) is captured or retained in the representation,
as opposed to the problem of how it is represented.11

What and how in deep learning. To connect to our discussion of deep
learning in § 1.3.2, we note that the what and how categories also play a
role in some proposed theories of generalisation for deep learning. In
the context of supervised learning, a view is that the success of deep
learning may be studied through the process of discarding information
which is irrelevant to the downstream task of interest [22], [23, 24].
The problem of optimal information compression in learning machines
has also been studied based on intrinsic properties of the data [25–28].
Overall, according to these works, “learning entails extracting a compressed
representation [...] of the structure of statistical dependencies of the data” [29].
A different line of work focuses instead on how information is encoded:
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12: While not the main focus of this the-
sis, the formalism introduced in Chap-
ter 2 has also been used to study the how
question in supervised deep learning [5].
13: Note that while throughout this the-
sis we mainly consider the problem of di-
mensionality reduction as separate from
blind source separation, dimensionality
reduction may be a necessary compo-
nent of certain identifiability results, see,
e.g., [32].

for example, [30] argued that networks that do not compress may still
be capable of generalization; and [31] showed that invertible (up to the
penultimate layer) neural networks can be trained to solve large-scale
supervised problems.12

While both what and how are interesting aspects of representation learn-
ing,13 this thesis will mainly focus on the former, although we will
also discuss the latter in one of the original contributions presented
in Chapter 8.

In Chapter 2, we will introduce a way to formalise and study the cocktail-
party problem: independent component analysis. An important aspect we
will focus on, and of crucial importance in the context of the problems § 1.1
and § 1.2, is the notion of identifiability, which we will introduce formally
in § 2.3.



1: The terms “latent” and “unobserved”
are sometimes use to refer to variables
of which only corrupted observations are
available (e.g., due to noise in the gener-
ative process). Here, we also use them to
refer to variables when we only observe
mixtures thereof, even when there is no
loss of statistical information between
sources and mixtures.

𝑠1 𝑠2

𝑥1 𝑥2

Figure 2.1: ICA setting with 𝑛 = 2
sources (shaded nodes are observed,
white ones are unobserved). Here arrows
indicate deterministic relations.

Independent Component
Analysis: Identification and

Estimation 2
Independent component analysis (ICA) provides a way to formalise
and (under suitable assumptions) solve the blind source separation
problem § 1.1. A key assumption in ICA is that the unobserved sources
should be statistically independent, thus justifying the method’s name.
We will start by introducing the generative model postulated in ICA.

2.1 Independent Component Analysis (ICA)

We assume the following data-generating process

x = f(s) , s i.i.d.∼ 𝑝s , 𝑝s(s) =
∏𝑛

𝑖=1 𝑝𝑠𝑖 (𝑠𝑖) , (2.1)

where the observed mixtures x ∈ ℝ𝑛 result from applying a smooth and
invertible mixing function f : ℝ𝑛 → ℝ𝑛 to a set of unobserved, independent
signals or sources s ∈ ℝ𝑛 with smooth density 𝑝s. Due to joint uncondi-
tional independence of the latent components, 𝑝s can be expressed as a
product of the univariate densitites 𝑝𝑠𝑖 .1

The goal of ICA is to learn an unmixing function g : ℝ𝑛 → ℝ𝑛 such that
y = g(x) has independent components. Blind source separation (BSS), on
the other hand, aims to recover the true unmixing f−1 and thus the true
sources s (up to tolerable ambiguities, as we will see below).

Whether performing ICA corresponds to solving BSS is related to the
concept of identifiability of the model class (f, 𝑝s). Intuitively, identifiability
is the desirable property that all models which give rise to the same mixture
distribution should be “equivalent” up to certain ambiguities.

2.2 Linear ICA

We start by considering a well studied subcase of the model in (2.1),
where the mixing function is linear—i.e., linear ICA.

Our brief account of linear ICA is not meant as a comprehensive treat-
ment of the topic: we refer the reader to [1, 33, 34] for comprehensive
introductions. Rather, our main aim is to present ICA as a case study in
identifiability for latent variable models. In the following, we:

(i) introduce the model and discuss what ambiguities should a priori
be considered as tolerable, § 2.2.1;

(ii) characterise its identifiability, including corner cases where it is
not achievable, § 2.2.2.

Finally, we briefly discuss estimation in § 2.2.3. Linear ICA thus provides
a way to illustrate the main features of our approach to the study of latent
variable models, in particular with respect to identifiability. Later the
main focus will be on nonlinear ICA, and we introduce a more formal
language to articulate identifiability results in § 2.3.
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2: If this is not true, one can always apply
some simple preprocessing to make it
hold, see [1, Sec. 7.2.4].

3: Here we are using the terms “rotation”
and “orthogonal matrix” interchange-
ably. Note also that this reduces the num-
ber of parameters required to specify the
mixing: in fact, orthogonal 𝑛×𝑛matrices
only have 𝑛(𝑛−1)/2 degrees of freedom.

2.2.1 The Model

Linear ICA corresponds to the setting in which a linear mixing is applied
to the independent sources, i.e.,

x = As , s i.i.d.∼ 𝑝s , 𝑝s(s) =
∏𝑛

𝑖=1 𝑝𝑠𝑖 (𝑠𝑖) , (2.2)

where A ∈ ℝ𝑛×𝑛 is an invertible mixing matrix.

Tolerable ambiguities. Recall that in ICA the x variables are observed,
whereas both the matrix A and the vector s are not (see also Fig. 2.1). In
the specification of these unobserved quantities, two ambiguities will
necessarily hold:

(i) The variance of the latent components cannot be determined.
In fact, since both s and A are unknown, the effect of multiply-
ing a scalar times the 𝑖-th source 𝑠𝑖 can always be cancelled by
multiplying the inverse scalar times the 𝑖-th column of the A matrix,

x =
∑
𝑖

(
1
𝛼𝑖

a𝑖
)
(𝑠𝑖𝛼𝑖) ,

where 𝛼𝑖 is a scalar and a𝑖 denotes the 𝑖-th column of A. It is
therefore customary to fix the source variances, e.g., to 𝔼[ss⊤] = I.
This still leaves the sign indeterminacy; for most applications, this
is inconsequential.

(ii) The ordering of the sources cannot be determined. It is easy to see
that we can permute the ordering of the sources and simultaneously
permute the columns of the matrix A without affecting the obser-
vations. Given a permutation matrix P, we have x = As = AP−1Ps,
with AP−1 (resp. Ps) a new unmixing matrix (resp. a new set of
sources).

In short, scale (and sign) and ordering of the sources are two unresolvable
ambiguities in the context of linear ICA. Note that as long as our objective
is to separate the sources, ordering and scale are both inconsequential:
we will therefore also refer to them as “tolerable” ambiguities.

Additional assumptions w.l.o.g. When studying model (2.2) it is cus-
tomary to make some additional simplifying assumptions. Firstly, the
source variables s can be assumed to have zero mean without affecting
estimation of the mixing matrix.2 Additionally, it can be shown that
without loss of generality one can assume that the mixing matrix is or-
thogonal, AA⊤ = I. This is because we can always whiten x first through
an invertible linear transformation and obtain an orthogonal mixing. We
explain this in more detail in Appendix A.1.

As shown in Fig. 2.2, this reduces the problem of linear ICA to the problem
of resolving a rotation.3 The key result of linear ICA identifiability is
that statistical independence of the sources, together with minimal
assumptions on their distributions, is sufficient to resolve this rotation.
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Figure 2.2: Whitening does not separate
the independent components: Left: Uni-
form, independent sources s; Center: Lin-
ear mixtures, i.e., observations x; Right:
Whitened (decorrelated) mixtures. We
still have to resolve an orthogonal ma-
trix, i.e., a rotation.

4: See [38] and [1, Section 1.4] for some
historical notes on ICA and blind source
separation.

[39]: Pavan et al. (2018), ‘On the Darmois-
Skitovich Theorem and Spatial Indepen-
dence in Blind Source Separation’

2.2.2 Identification

We will assume w.l.o.g. that A is an orthogonal matrix. Now suppose
that we are given an orthogonal matrix B ∈ ℝ𝑛×𝑛 such that the vector

y = Bx = BAs (2.3)

has independent components. Then C = BA is also orthogonal and the
following type of identifiability holds [35–37].

Theorem 2.2.1 (Identifiability of linear ICA; based on Thm. 11 of [37])
Let s be a vector of 𝑛 independent components, of which at most one is Gaussian
and whose densities are not reduced to a point mass. Let C ∈ ℝ𝑛×𝑛 be an
orthogonal matrix. Then y = Cs has (mutually) independent components iff.
C = DP, with D a diagonal matrix and P a permutation matrix.

In short, Thm. 2.2.1 shows that the two ambiguities deemed unresolvable
in § 2.2.1 (i.e., scale and ordering of the sources) are, in fact, the only
ambiguities, as long as at most one of the 𝑠𝑖 is Gaussian. That is, linear
ICA is identifiable up to rescaling and permutation of the sources.

The consequence of identifiability of the linear ICA model is that ICA
can solve blind source separation: if the model in Equation 2.2 holds,
linearly transforming the observations x into independent components is
equivalent to separating the sources.

Note that the terms ICA and blind source separation are sometimes used
as synonyms and interchangeably in the literature. Here, we chose to
present blind source separation as the overarching goal of separating
some latent sources when only given mixtures thereof, and ICA as a
specific formalisation of this problem in which transforming observa-
tions into independent components is equivalent to separating the true
sources (also assumed to be statistically independent) as a consequence
of identifiability.4

Gaussianity and independence. One might wonder why nongaussian-
ity is sufficient to resolve the rotation ambiguity left by whitening. To
provide some intuition, we will briefly mention two ways to think about
the importance of nongaussianity, see also [39].

(i) The relationship between Gaussianity and independence has been
studied by several authors. J. C. Maxwell investigated this in the con-
text of studying molecule velocity distributions in three-dimensional
space [40], and proved that the multivariate normal distribution with
identity covariance matrix and zero mean is the only spherically symmetric
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5: a rigorous proof that this is possible
is however a bit more involved [37, 39].

6: Interestingly, in the context of nonlin-
ear ICA, nonstationarity and time corre-
lation are special cases of a more general
framework based on auxiliary variables,
see also § 2.4.2.

distribution with independent components. Therefore, all other distributions
where the components are independent will not be spherically symme-
tryc (or rotationally invariant). This gives some hope that rotation can be
resolved in ICA.5

(ii) Loosely speaking, an implication of the central limit theorem (see,
e.g., [1, Section 2.5.2]) is that summing (non-Gaussian) independent
random variables makes the resulting variables more Gaussian than
the original ones. Therefore, if we assume the model in (2.2) and de-
fine a variable 𝑦 as a linear combination of the observed components,
𝑦 =

∑
𝑏𝑖𝑥𝑖 , it will be maximally nongaussian if it equals one of the origi-

nal independent components. In fact, many methods for linear ICA work
by maximising the nongaussianity of the estimated components. It can
be shown that, under certain conditions, this objective is also related to
those of projection pursuit and sparse coding, see [1, Sec. 1.3.3].

Beyond nongaussianity. In the context of linear ICA, other deviations
from a Gaussian i.i.d. setting can also lead to identifiability: for example,
nonstationarity [41] and time correlation [42]. A general information-
geometric framework links these three different routes to identifiabil-
ity [43]. A different line of research employs a tensorial framework to
achieve source separation [44].6

2.2.3 Estimation

Once the identifiability of the ICA model is established, the problem
remains how to estimate the sources from data.

There is a multitude of approaches for estimation in linear ICA. To
provide an example, we will briefly mention one method: maximising
the likelihood under the generative model in Equation 2.2.

The likelihood of the ICA model. As a starting point, we write the
likelihood of a single datapoint x under the model in (2.2). Define
B = A−1; through a change of variable, we find

𝑝x(x) = | det B|𝑝s(s) = | det B|
∏
𝑖

𝑝𝑠𝑖 (𝑠𝑖) . (2.4)

It is useful to express the likelihood as a function of the observed variables
x and the unmixing matrix B = (b1 , . . . , b𝑛)⊤, where b𝑖 is the 𝑖-th row of
B, which yields

𝑝x(x) = | det B|
∏
𝑖

𝑝𝑠𝑖
(
b⊤𝑖 x

)
. (2.5)

Maximum likelihood estimation. A natural approach for estimation is
then to maximise the likelihood above as a function of the parameters of
a tentative unmixing matrix W, assuming some factorised distribution
𝑝(y) = ∏

𝑖 𝑝𝑦𝑖 (𝑦𝑖) for the sources, where the 𝑝𝑦𝑖 are nongaussian. Similar
to the expression of the true log-likelihood (2.5), we get

log 𝑝W(x) =
𝑛∑
𝑖=1

log 𝑝𝑦𝑖
(
w⊤𝑖 x

)
+ log | det W| . (2.6)
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Here we indicated the log-likelihood on the LHS with 𝑝W to stress that it
is the likelihood of the data under our model (specified by the parameters
W = (w1 , . . . ,w𝑛)⊤—as well as by the choice of 𝑝𝑦𝑖 , which we will get
back to later), and to distinguish it from the true likelihood (2.5).

Maximising this log-likelihood w.r.t. the parameters of an unmixing W is
equivalent to

W∗ = arg max
W

𝔼x∼𝑝x [log 𝑝W(x)]

= arg max
W

𝔼x∼𝑝x

[
log 𝑝y(Wx) + log |det W|

]
= arg max

W
𝔼x∼𝑝x

[∑
𝑖

log 𝑝𝑦𝑖 (w⊤𝑖 x) + log |det W|
]
. (2.7)

In practice, the expectation in (2.7) is substituted with a finite sample
average: given a collection of𝑁 samples {x(𝑗)}𝑁

𝑗=1, we seek to determine

W∗ = arg max
W

1
𝑛

𝑁∑
𝑗=1

[∑
𝑖

log 𝑝𝑦𝑖 (w⊤𝑖 x(𝑗)) + log |det W|
]
. (2.8)

Choice of the latent distribution. One issue with the approach above
is how to choose 𝑝𝑦𝑖 . The true likelihood in (2.5) is expressed in terms
of the univariate source distributions 𝑝𝑠𝑖 . In practice, as the sources are
unobserved, their distributions might be unknown a priori. This would
complicate the problem, as one should simultaneously (i) estimate the
unmixing matrix W and (ii) estimate the source density 𝑝𝑠𝑖 (in principle
a nonparametric, hard problem).

However, it turns out that (small) misspecifications of the source densities
𝑝𝑠𝑖 are inconsequential for source separation: this can be shown rigorously,
see, e.g., [34, Sec. 1.4.2] and [1, Sec. 9.1.2], as well as [45]. We therefore want
to stress that in practice, for source separation, it may not be necessary to
guess or estimate the true source densities, which simplifies the problem.
In practice, many algorithms work by either fixing a nongaussian form
for the source densities, or by adopting more sophisticated approaches.

A gradient-based algorithm. How do we solve the problem in (2.8) in
practice? A natural way to do so is by gradient ascent. We start by taking
the gradient of the log-likelihood in (2.2) with respect to the parameters
W (here we compute the gradient for a single sample, corresponding to
online or stochastic gradient descent):

𝜕 log 𝑝W(x)
𝜕W

=
[
W⊤

]−1 + g(Wx)x⊤ , (2.9)

where g(y) = (𝑔𝑖 (𝑦𝑖) , . . . , 𝑔𝑛 (𝑦𝑛)) is a component-wise vector function
defined as

𝑔𝑖 =
(
log 𝑝𝑦𝑖

)′
=
𝑝′𝑦𝑖
𝑝𝑦𝑖

.

This corresponds to the Bell-Sejnowski algorithm for source separa-
tion [46, 47].
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7: Identifiability of a model may how-
ever be insufficient to ensure that it can
be estimated from data [49, 50]. We will
come back to this in Chapter 9.

Note that computing the right hand side of (2.9) involves a matrix inver-
sion, which has cubic cost in the dimensionality 𝑛 of the observations.
This may be computationally inefficient, and many gradient-based al-
gorithms involve ways to sidestep this expensive computation.We will
come back to this in Chapter 5.

2.2.4 Concluding Remarks on Linear ICA

We summarise some take home messages we consider relevant beyond
the specific form of the model in Equation 2.2, and which will recur in
our study of different and possibly nonlinear latent variable models.

▶ Certain ambiguities are unavoidable from the outset (in linear
ICA, permutation and scale) and may be deemed tolerable given
the problem we want to solve (as they would still allow source
separation).

▶ An identifiability result defines under which conditions the only
unresolvable ambiguities are those deemed tolerable from the
outset. This usually holds apart from a (hopefully small) number of
corner cases which can be characterised (in linear ICA, when there
are more than two Gaussian components).

▶ Certain assumptions can be made without loss of generality given
the assumed model (e.g., orthogonality of the mixing matrix). This
might simplify both the theoretical analysis (see § 2.2.2) and the
estimation (see note 3 and, e.g., [48]).

▶ Estimation of an identifiable model comes with its own problems
(e.g., statistical, computational efficiency), which can be addressed
separately from the problem of identification.7

An additional remark is that we introduced (linear) ICA as the estimation
of an (identifiable) generative model. This is motivated by blind source
separation and the metaphor we introduced in § 1.1. However, ICA may
also be motivated differently. For example, it may sometimes be unrealistic
to assume that the model in Equation 2.2 holds exactly. It might however
still be useful to find a (linear) map which transforms the obervations
into a vector whose components are as independent as possible. This can
be motivated as a good sensory coding strategy [1, Chapter 10]. We might
then be interested in comparing the representations extracted by two
learning systems adopting the same sensory coding strategy, as in the
metaphor of § 1.2, regardless of the ground truth generative process.

Finally, while we focused on introducing the model and formalism,
we want to mention that applications of linear ICA are ubiquitous,
including signal processing [51], text mining [52], financial time series
analysis [53] and neuroimaging [54]. Another example is in the context
of astronomy [55] and separation of astrophysical emissions [56–58]. The
application to neuroimaging of a model based on linear ICA will also be
the topic of Chapter 6.

2.3 Identifiability

Now that we presented our case study based on linear ICA, we will
define identifiability more formally.
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[59]: Wasserman (2004), All of statistics: a
concise course in statistical inference
[60]: Lehmann et al. (2006), Theory of point
estimation
[61]: Casella et al. (2021), Statistical infer-
ence
8: While this definition is based on the
likelihood of two different models, a sim-
ilar definition could in principle be given
substituting 𝑝� with a function different
from the likelihood.

9: A trivial example of an equivalence
relation is equality (=), which would lead
back to (2.10). In the context of linear
ICA, one can consider equivalence up to
permutation and scale of the columns of
the mixing matrix.

10: Defn. 2.3.2 was originally intro-
duced in [63], on which the contribution
in Chapter 3 is based.

Identifiability in statistics. Traditionally [59–61], identifiability for a
class of models 𝑝� for observed data x parametrised by� ∈ Θ is expressed
as the condition that there needs to be a one-to-one mapping between
the space of models and the space of parameters, i.e., the model class 𝑝�
is said to be identifiable if8

∀�, �′ ∈ Θ : 𝑝�(x) = 𝑝�′(x) ∀x =⇒ � = �′. (2.10)

However, the equality on the right hand side of (2.10) is a very strong
condition which makes this type of identifiability impractical for many
settings. For example, as we mentioned in section 2.2, for linear ICA the
ordering of the sources cannot be determined, so identifiability in the
sense of (2.10) is infeasible for the parameters of the unmixing matrix.

Identifiability in terms of equivalence relations. The equality in
parameter space on the right hand side of the implication in (2.10) is
therefore sometimes replaced by an equivalence relation denoted with
∼ [62].

Definition 2.3.1 An equivalence relation ∼ on a set 𝐴 is a binary relation
which satisfies the following three properties:

1. Reflexivity: 𝑎 ∼ 𝑎, ∀𝑎 ∈ 𝐴.
2. Symmetry: 𝑎 ∼ 𝑏 =⇒ 𝑏 ∼ 𝑎, ∀𝑎, 𝑏 ∈ 𝐴.
3. Transitivity: (𝑎 ∼ 𝑏) ∧ (𝑏 ∼ 𝑐) =⇒ 𝑎 ∼ 𝑐.

An equivalence relation on a set 𝐴 imposes a partition into disjoint
subsets. Each such subset corresponds to an equivalence class, i.e., the
collection of all elements which are ∼-related to each other. For example,
[𝑎] = {𝑏 ∈ 𝐴 : 𝑎 ∼ 𝑏} denotes the equivalence class containing the
element 𝑎.9

Given a suitable equivalence relation, we can then define the following
notion of identifiability: The model class 𝑝� is ∼-identifiable if

∀�, �′ ∈ Θ : 𝑝�(x) = 𝑝�′(x) ∀x =⇒ � ∼ �′ . (2.11)

Defining an appropriate equivalence class for the problem at hand
therefore allows us to specify exactly the type of indeterminancies which
cannot be resolved and up to which the true generative process can be
recovered.

Separate constraints on the mixing and on the latent variables. Since
the generative process of nonlinear ICA (2.1) is determined by the choice
of mixing function and source distribution, the space Θ from (2.11),
in this case, corresponds to the product space of the space of mixing
functions F and source distributions P. Moreover, the pushforward
density f∗𝑝s denotes the density of the transformed variable x = f(s),
corresponding to the density of the observed mixtures—𝑝�(x) in (2.10).
Based on this observation, we now provide an alternative formulation of
the identifiability defined in (2.11).10
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[62]: Khemakhem et al. (2020), ‘Varia-
tional Autoencoders and Nonlinear ICA:
A Unifying Framework’

11: Together with the operation of ordi-
nary matrix multiplication, Flin defines
the general linear group or order 𝑛.

Definition 2.3.2 (∼-identifiability) Let Fbe the set of all smooth, invertible
functions f : ℝ𝑛 → ℝ𝑛 , and P be the set of all smooth, factorised densities 𝑝s
with connected support onℝ𝑛 . Let M ⊆ F×Pbe a subspace of models and let
∼ be an equivalence relation on M. Denote by f∗𝑝s the push-forward density
of 𝑝s via f. Then the generative process (2.1) is said to be ∼-identifiable on
M if

∀(f, 𝑝s), (f̃, 𝑝s̃) ∈M : f∗𝑝s = f̃∗𝑝s̃ =⇒ (f, 𝑝s) ∼ (f̃, 𝑝s̃) .
(2.12)

Here we used a similar notation to [62, Sec. 2.2]: we use f ∈ Fto refer to
functions, not parameters. For example, in the case of a neural network, f
refers to the input-output mapping implemented by the network, and
not to the parameters (e.g., weights and biases) in which one usually
performs gradient ascent.

The equality f∗𝑝s = f̃∗𝑝s̃ requires that the two models give rise to the same
observational distribution: for any modification f→ f̃, the distribution
𝑝s needs to be modified accordingly 𝑝s → 𝑝s̃ such that the observed
distributions f∗𝑝s and f̃∗𝑝s̃ are the same.

Identifiability of linear ICA. As a matter of example, we will restate
the result on identifiability of linear ICA in terms of our notation.

Firstly, in (2.2), the mixing is an invertible matrix, so we take Flin to be
the space of invertible 𝑛 × 𝑛 matrices.11 Moreover, since identifiability
holds if at most one of the latent components is Gaussian, we take
and Plin as the space of source distributions 𝑝s =

∏
𝑖 𝑝𝑠𝑖 with at most

one Gaussian 𝑝𝑠𝑖 . The subspace of models we consider in linear ICA is
therefore Mlin = Flin ×Plin.

We discussed how linear ICA is identifiable up to permutation and
rescaling of the sources. In terms of an equivalence relation, linear ICA is
∼lin-identifiable on Mlin, where ∼lin is defined as

Definition 2.3.3 (∼lin) The equivalence relation ∼lin on Flin ×Plin defined
as in Defn. 2.3.2 is given by

(A, 𝑝s) ∼lin (Ã, 𝑝s̃) ⇐⇒ ∃D, P s.t. (A, 𝑝s) = (ÃDP, [P−1D−1]∗𝑝s̃) ,
(2.13)

with D a diagonal matrix and P a permutation matrix.

As we discussed in § 2.2.2, linear ICA is identifiable up to ∼lin on
the subspace Mlin of pairs of invertible matrices (constraint on F) and
factorizing densities for which at most one 𝑠𝑖 is Gaussian (constraint on
P).

Motivating our notation. We deliberately choose to define identifia-
bility and to express the observed distribution in terms of the source
distribution and the mixing function—as opposed to in terms of the ob-
served distribution and the unmixing function as in some prior work [64–
66]—because this is aligned with the causal direction of data generation,
something we will exploit in Chapter 3 and come back to in Chapter 9.
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12: Note that the model that maximises
the likelihood is also the one which min-
imises the Kullback-Leibler divergence
between the model distribution and the
true data distribution, see, e.g., [67, 68].
13: We however remark that, as we men-
tioned in § 2.2.3, source separation can
be achieved even if the likelihood un-
der the learnt model does not match the
true likelihood, e.g., if the source den-
sity is (slightly) misspecified. Note also
that all above considerations are in the
population limit

We also believe that, in this framework, separate constraints on the space
of mixing functions Fand source distributions P are expressed more
naturally. As we showed, the former may, for example, suitably encode
that the considered models in (2.2) are linear, whereas the latter may
be used to specify the class of latent distribution (e.g., independent
components) and articulate exceptions (e.g., more than two Gaussian
components). The equivalence class “∼” specifies then “up to” what class
of unresolvable ambiguities we can achieve identification.

Where did the ground truth end up? The formulation in Defn. 2.3.2
does not mention a true generative process: by comparing two models
(f, 𝑝s), (f̃, 𝑝s̃), without explicit reference to a ground truth, the definition
may sound closer in spirit to the independent-listeners problem § 1.2
than to the one in § 1.1. One way to view the connection to § 1.1 is
as follows: suppose that the model in Equation 2.2 corresponds to
the ground truth, denoted by (A, 𝑝s), and we consider a learnt linear
model (Ã, 𝑝s̃) ∈ Mlin such that the true distribution and the model
distribution for the observed mixtures, respectively 𝑝x = A∗𝑝s and
𝑝x̃ = Ã∗𝑝s̃, are equal.12 Identifiability of linear ICA guarantees that,
under the assumptions in Thm. 2.2.1, the learnt model recovers the
ground truth sources up to the ambiguities in Defn. 2.3.3—i.e., for § 1.1,
it solves blind source separation.13 In practice, we may be unable to know
whether the model distribution matches the ground truth distribution,
since the latter may be unknown to us. Nevertheless, if we believe that the
linear ICA model (2.2) holds, and under the assumptions of Thm. 2.2.1, it
is sufficient to know that the learnt model belongs to Mlin—i.e., that Ã is
an invertible mixing matrix and that 𝑝s̃ is a distribution with independent
components. The model is then guaranteed to separate the sources.

2.4 Nonlinear ICA

Whereas we presented linear ICA as a case study in identifiability,
nonlinear ICA can be considered as a case study in nonidentifiability.

However, as we will discuss, the implications of nonidentifiability of
nonlinear ICA are broader. In fact, the proof technique used to show that
nonlinear ICA is not identifiable can also be used to show nonidentifiabil-
ity of any nonlinear latent variable model in the i.i.d. setting. The results
therefore have very broad implications as an impossibility result for
representation learning (specifically for blind source separation) without
strong assumptions and constraints.

We will start by analysing the nonlinear ICA model and show that it is
not identifiable in § 2.4.1. We will then move on (§ 2.4.2) to defining a set
of additional assumptions under which it can become identifiable.

2.4.1 Nonidentifiability

Model and tolerable ambiguities. The nonlinear ICA model is given
by the equation (2.1) (i.e., no constraints on Fbeyond smoothness and
invertibility).
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14: these can be considered as generali-
sations of the scale ambiguity in linear
ICA.

15: Note that by applying the construc-
tion in Equation 2.15 to the first compo-
nent of the observed vector, 𝑥1, one can
transform its distribution into a uniform
distribution through the (unconditional)
CDF transform.

Similar to what we did for linear ICA, it is natural to define what
ambiguities should be deemed unresolvable a priori, and whether they
are tolerable for blind source separation. An important observation is
that if 𝑠𝑖 and 𝑠 𝑗 are independent random variables, then so are ℎ𝑖(𝑠𝑖)
and ℎ 𝑗(𝑠 𝑗) for any functions ℎ𝑖 and ℎ 𝑗 . Therefore, in addition to the
permutation ambiguity we encountered in § 2.2.1, such element-wise
nonlinear transformations h(s) = (ℎ1(𝑠1), . . . , ℎ𝑛(𝑠𝑛)) cannot be resolved
either.14

For nonlinear ICA, the desired notion of identifiability—in the sense
of the strongest feasible type of identifiability that is possible without
further assumptions—is captured by ∼bss defined as follows.

Definition 2.4.1 (∼bss) The equivalence relation ∼bss on F×P defined as
in Defn. 2.3.2 is given by

(f, 𝑝s) ∼bss (f̃, 𝑝s̃) ⇐⇒ ∃P, h s.t. (f, 𝑝s) = (f̃◦h−1 ◦P−1 , (P◦h)∗𝑝s̃)
(2.14)

where P is a permutation and h(s) = (ℎ1(𝑠1), ..., ℎ𝑛(𝑠𝑛)) is an invertible,
element-wise function.

While the ambiguity defined in Defn. 2.4.1 is larger than that in linear
ICA Defn. 2.3.3, it is still tolerable in the context of blind source separation:
if we were able to achieve it, we would still separate the sources in the
sense that, while they may be nonlinearly distorted with respect to the
true ones, the would not be mixed in our representation.

However, as we will now show, a fundamental obstacle—and a crucial
difference to the linear problem—is that in the nonlinear case, different
mixtures of 𝑠𝑖 and 𝑠 𝑗 can be independent even in the nongaussian case: i.e.,
solving nonlinear ICA is not equivalent to solving blind source separation.
Therefore we cannot even guarantee reconstruction of the sources up
to these ambiguities. This can be shown through suitably constructed
counterexamples or “spurious solutions”.

The Darmois construction. A prominent example of this is given by
the Darmois construction [69, 70].

Definition 2.4.2 (Darmois construction) The Darmois construction
gD : ℝ𝑛 → (0, 1)𝑛 is obtained by recursively applying the conditional
cumulative distribution function (CDF) transform:

𝑔D
𝑖
(x1:𝑖) := ℙ(𝑋𝑖 ≤ 𝑥𝑖 |x1:𝑖−1) =

∫ 𝑥𝑖

−∞ 𝑝(𝑥
′
𝑖
|x1:𝑖−1)𝑑𝑥′𝑖 (𝑖 = 1, ..., 𝑛).

(2.15)

The resulting estimated sources yD = gD(x) are mutually-independent
uniform r.v.s by construction: by applying a change of variables, we can
see that the transformed variables in (2.15) are uniformly distributed in the
open unit cube, thereby corresponding to independent components [71,
§ 2.2].15 However, they need not be meaningfully related to the true
sources s, and will, in general, still be a nonlinear mixing thereof [70].
Consider, e.g., a mixing f with full Jacobian which yields a contradiction
to Defn. 2.4.1, due to Remark 2.4.1.
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16: However see [73], eq. (7), for the dif-
ferential functional equation solutions
to nonlinear ICA need to satisfy. See
also [74] for a recent example where a
spurious solution was used to illustrate
nonidentifiability issues in the context of
causal representation learning.

Remark 2.4.1 gD has lower-triangular Jacobian, i.e., 𝜕𝑔D
𝑖 /𝜕𝑥 𝑗 = 0

for 𝑖 < 𝑗. Since the order of the 𝑥𝑖 is arbitrary, applying gD after
a permutation yields a different Darmois solution. Moreover, (2.15)
yields independent components yD even if the sources 𝑠𝑖 were not
independent to begin with.

Denoting the mixing function corresponding to (2.15) by fD = (gD)−1

and the uniform density on (0, 1)𝑛 by 𝑝u, the Darmois solution (fD , 𝑝u)
thus allows construction of counterexamples to ∼bss-identifiability on
F×P.

Measure-preserving automorphisms. Another well-known obstacle to
identifiability are measure-preserving automorphisms (MPAs) of the source
distribution 𝑝s: these are functions a which map the source space to itself
without affecting its distribution, i.e., a∗𝑝s = 𝑝s [70].

A particularly instructive class of MPAs is the following [62, 72].

Definition 2.4.3 (“Rotated-Gaussian” MPA) Let R ∈ 𝑂(𝑛) be an or-
thogonal matrix, and denote by Fs(s) = (𝐹𝑠1(𝑠1), ..., 𝐹𝑠𝑛 (𝑠𝑛)) and 𝚽(z) =
(Φ(𝑧1), ...,Φ(𝑧𝑛)) the element-wise CDFs of a smooth, factorised density 𝑝s
and of a Gaussian, respectively. Then the “rotated-Gaussian” MPA aR(𝑝s) is

aR(𝑝s) = F−1
s ◦𝚽 ◦ R ◦𝚽−1 ◦ Fs . (2.16)

aR(𝑝s) first maps to the (rotationally invariant) standard isotropic Gaus-
sian (via𝚽−1◦Fs), then applies a rotation, and finally maps back, without
affecting the distribution of the estimated sources. Hence, if (f̃, 𝑝s̃) is
a valid solution, then so is (f̃ ◦ aR(𝑝s̃), 𝑝s̃) for any R ∈ 𝑂(𝑛). Unless R
is a permutation, this constitutes another common counterexample to
∼bss-identifiability on F×P.

Other spurious solutions. Despite their prominent role in the liter-
ature, the two classes of spurious solutions we just presented do not
necessarily exhaust all possible spurious solutions: we are not aware of an
analytical characterisation of all possible solutions yielding independent
components.16 An implication is that ruling out these constructions by
suitable restrictions on the model class or latent distribution does not
correspond to proving identifiability of a model.

Spurious solutions vs. identifiability “except when”. We remark
that there is a fundamental difference between the counterexamples we
presented and the “exception” constituted by Gaussian components in the
identifiability of linear ICA. In fact, both counterexamples in Defn. 2.4.2
and Defn. 2.4.3 can be constructed for any choice of 𝑝s ∈ P and f ∈ F:
unlike the exception of Gaussian in linear ICA, they cannot be simply
ruled out by choosing a restricted class of models M ⊂ F×P.

A first implication of the counterexamples presented above is that nonlin-
ear ICA is not identifiable: solving nolinear ICA does not solve blind source
separation.
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17: The converse implication is that any
smooth distribution which is fully sup-
ported on ℝ𝑛 can be written as the
mixture of 𝑛 independent components
through the Darmois construction.

18: The observation that the Darmois
construction implies that not only fac-
torised priors, but any unconditional
prior is insufficient for identifiability can
be found, e.g., in [62, App. D.2].

19: where gCDF = g𝐷◦hCDF, and hCDF is
the element-wise unconditional CDF of a
zero mean standard normal distribution.

20: The two formulations here are in-
tended to mirror the cocktail-party prob-
lem in § 1.1 and the independent-listeners
problem in § 1.2, and imply an impossi-
bility for both.

21: as we will see, in some cases u ∈ ℝ𝑑 ,
where 𝑑 does not need not be equal to
the data dimensionality 𝑛; in some other
cases it is a categorical variable.

Implications for unsupervised machine learning. Note that Defn. 2.4.2
does not require that the observations are generated by the model in Equa-
tion 2.1: the Darmois construction can be applied even if the observed
distribution is not generated by mixing independent components to begin
with.17

Therefore, an even more radical implication of the Darmois construction
is that it can be used to show that unsupervised representation learning
is impossible (in the setting with i.i.d. observations) without additional
constraints: in fact, this is true even if we were to postulate a different model
wherethe latent distribution has non-independent components.18

To show this for a general prior on z (i.e., one with non-independent com-
ponents), it is enough to point out that we can transform any variable into
independent (Darmois) Gaussian (element-wise inverse Gaussian CDF
transform) variables; apply a rotation O to the resulting Gaussian vari-
ables; transform them back to uniform random variables (element-wise
Gaussian CDF transform) and finally invert the Darmois construction.
By doing so, we get a nonlinear transformation z′ = g−1

CDF(O ◦ gCDF(z)),
where z′ has exactly the same distribution as z but is a complex nonlinear
transformation (and mixture) thereof.19

To summarise, by looking at the (i.i.d.) data alone and without further assump-
tions, it is not possible to recover the true latents, no matter what the prior may
be. Or in other terms: representations extracted by two different models
fitting the data equally well may be arbitrarily entangled with respect to
one another.20

Is all hope for identifiability in nonlinear representation learning lost?
One is then left wondering whether there is any hope for identifiability
in (nonlinear) representation learning.

The case of linear ICA, together with our formulation in Defn. 2.3.2,
suggests that a path to recover identifiability could be to constrain the
class of the mixing functions F. As we saw, if the class is constrained
to only include linear invertible functions, we recover the useful notion
of identifiability up to Defn. 2.3.3 under mild conditions. It therefore
seems reasonable to believe that it should be possible to define a broader
class of (nonlinear) functions such that some interesting notion of iden-
tifiability might still be achievable. We will review some of the work
on this in Chapter 3, where we additionally present one of the original
contributions of this thesis, where we defined a function class based on
constraints inspired by principles of causal inference.

2.4.2 Nonlinear ICA with Auxiliary Variables

In addition to adding assumptions on F, another possible avenue, which
we explore below, would be to add assumptions to the source distribution
𝑝s. In this spirit, a modification of the basic generative model (2.1) which
has received significant attentionis to consider settings where an auxiliary
variable u renders the sources conditionally independent [64–66]:21 the
assumption on 𝑝s in (2.1) is therefore replaced with

s i.i.d.∼ 𝑝s|u , 𝑝s|u(s|u) =
∏𝑛

𝑖=1 𝑝𝑠𝑖 |u(𝑠𝑖 |u) . (2.17)
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22: In this case, u = s(𝑡 − 1)—or rather,
conditioning on obsereved variables,
u = x(𝑡 − 1); note that conditioning on
x(𝑡 − 1) or s(𝑡 − 1) is the same since the
two are related by deterministic transfor-
mations. Note that autocorrelation and
nonstationarity, which are classically con-
sidered as separate criteria in linear ICA,
are in fact both special cases of the gen-
eral auxiliary variables setting [66]. The
idea of exploiting temporal structure for
nonlinear blind source separation had
already been discussed in [75, 76].
23: It has been argued that the i.i.d. as-
sumption, which is ubiquitous in ma-
chine learning, is problematic, and that
moving beyond such assumption will
be required to solve many of the im-
portant problems in modern machine
learning [77].

𝑠1 𝑠2 𝑠3

u

Figure 2.3: The auxiliary variable u can
be seen as a parent of the 𝑠𝑖 variables in
a directed acyclic graph. The conditional
independence in Equation 2.17 would
also be consistent with the case where
the arrows between u and s are undi-
rected; however they cannot be in the
inverse direction—otherwise condition-
ing on u (a collider) would create depen-
dence among the 𝑠𝑖 . Note that in this fig-
ure arrows indicate probabilistic relations,
unlike the deterministic ones in Fig. 3.3b.
Observations x = f(s) are given by a de-
terministic mixing as in Fig. 3.3b.

Under some technical assumptions, identifiability up to suitable equiv-
alence classes, and in some cases even up to Defn. 2.4.1, can then be
achieved without further restrictions on the nonlinear mixing f.

It may sound surprising that such a strategy could succeed at all: after all,
we remarked in Subsection 2.4.1 that the Darmois construction provides
a way to show nonidentifiability even beyond the setting where 𝑝s ∈ P has
independent components. So it might appear as if additional conditions
on P in Defn. 2.3.2 would not help us recover interesting notions of
identifiability.

However, the Darmois construction rests on the assumption that the
datapoints are independent and identically distributed samples from a
distribution 𝑝s, i.e.,

s i.i.d.∼ 𝑝s .

It turns out that the auxiliary variable setting can in fact be interpreted as
a deviation from the i.i.d. assumption. A special case where this deviation
has a clear interpretation is the one where the observations are nonlinear
mixtures of latent variables whose distribution is nonstationary [64]:
observations can then be grouped into time segments indexed by time-
segment labels u. Within a time segment, the latent vector s is sampled
i.i.d.; but the distribution changes across time segments, giving rise to
nonstationarity. A different criterion relies on a different kind of temporal
structure, autocorrelation [65]: the sources are sampled from a stochastic
process where 𝑝s(𝑡)|s(𝑡−1) has independent components.22

In both cases, the variable u indicates a deviation from the i.i.d. setting: any
two s variables may be nonidentically distributed (in the nonstationary
case their distribution changes depending on the time-segment label u),
or not independent (due to autocorrelation). Deviations from the i.i.d.
assumption therefore help solving the problem of identifiability.23

A possible interpretation of the conditional independence statement
in (2.17) is that it posits that u is a parent of the sources s, see also Fig. 2.3.

Other settings with auxiliary variables. The results based on au-
tocorrelation and nonstationarity are special cases of a more general
framework [66]. Depending on the setting, u can then be interpreted
as an environment index, a time segment, class label or indicate other
kinds of auxiliary information and complex structures such as spatial
dependencies [5, 62, 64–66, 78, 79]. In many cases u is assumed to be
observed separately from x, though [78] is an exception, and already
in [65] the authors exploit dynamics of time series instead of a separate
u variable.

Contrastive learning. In the setting described above, a constructive
proof of identifiability can be attained by exploiting contrastive learn-
ing [66, 80]. This technique transforms a density ratio estimation problem
into one of supervised function approximation. This idea, which we
recapitulate in Appendix E.1, has a long history [81], and provides the
foundation for many approaches to learning generative models [80, 82].

For nonlinear ICA with auxiliary variables, contrastive learning can be
exploited by training a classifier to distinguish between a tuple sampled
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from the joint distribution, which we denote as (x, u), and one where
u∗ is a sample generated from the marginal 𝑝(u) independently of x,
(x, u∗). For example, in the nonstationary setting, a tuple (x, u∗)may be
given by an observation at time 𝑡, x(𝑡), together with a time segment
index u(𝑡′), 𝑡 ≠ 𝑡′, which may be different from the true one u(𝑡), and
taken at random from the collection of time indices. The marginals of
both distributions are equal, and the classifier must learn to distinguish
between positive samples (x, u) and negative samples (x, u∗). It turns out
that, under suitable assumptions on the regression function employed
by the classifier, this problem is solved optimally when the final layer
features used for classification are the latent sources up to some tolerable
ambiguities. We will see an example of this in Chapter 6, where we will
present an original contribution of this thesis based on [83] where an
identifiability result based on this proof technique is given.

Equivalence classes and assumptions on 𝑝s|u. In order to prove iden-
tifiability in this setting, further technical assumptions on the effect of
variations in u on x are required, leading to identifiability up to differ-
ent equivalence classes or tolerable ambiguities. One such condition,
introduced in [66], is termed variability. Intuitively, variability demands
that u has a sufficiently diverse influence on x. Technically, it requires
linear independence of vectors of first and second derivatives of scalar
functions 𝑞1 , . . . , 𝑞𝑛 , which equal the univariate conditional densities of
the sources given u (see Appendix A.2 for the formal definition). Under
this assumption, it is possible to achieve identifiability up to the equiva-
lence class in Defn. 2.4.1 (see [66, Thm.1]). The variability assumption is
however hard to interpret, since it is not immediately apparent whether
a given density satisfies it or not; [66, Thm. 2] provides some intuition on
when variability is satisfied.

A different approach, also proposed in [66, Thm. 3], is to assume that
the conditional distribution in (2.17) is an exponential family. A different
set of assumptions can then be adopted: this leads to a weaker form of
identifiability, which can be interpreted in terms of sufficient statistics of
the conditional exponential family and for which we refer the interested
reader to [66, Thm.1] and [84, 85].

Auxiliary variables: supervised or unsupervised? We remark that the
auxiliary variables setting might appear closer to a supervised than to
an unsupervised learning scenario, particularly if u is interpreted as a
(class) label. However, if we take blind source separation as the main
objective, we can think of the auxiliary variables as providing a handle
to perform feature extraction, rather than being targets of a regression
or classification problem. Additionally, [5] studies supervised learning
problems, but focusing on the final layer representations extracted by
different neural network classifiers—in the spirit of the independent-
listeners problem we outlined in § 1.2, and establishing an identifiability
result in that context where the proof technique is also inspired by the
auxiliary variables setting.

Contrastive learning: identification or estimation? It is worth remark-
ing that, in the works we reviewed, contrastive learning provides both a



2 Independent Component Analysis: Identification and Estimation 21

[64]: Hyvärinen et al. (2016), ‘Unsu-
pervised feature extraction by time-
contrastive learning and nonlinear ICA’

proof of identifiability and suggests how to perform estimation, thereby
apparently mixing identification and estimation. In fact, most of the re-
sults of identifiability originally expressed through contrastive learning
can be rephrased in terms of likelihood, and are more similar to (2.11), as
noted in [84]. Moreover, since [66], many other estimation procedures
have been proposed, including variational autoencoders [84] and energy
based models [85].

For estimation, a computational advantage of contrastive learning es-
timation over naive maximum likelihood is the following. The model
likelihood for the nonlinear ICA generative model (2.1) can be written
as

log 𝑝x(x) =
𝑛∑
𝑖=1

log 𝑝𝑠𝑖 (𝑔𝑖(x)) + log
��det Jg(x)

��︸          ︷︷          ︸
“Jacobian Term”

(2.18)

Where g = f−1 and the Jacobian matrix Jg(x) ∈ ℝ𝑛×𝑛 is defined by
[Jg(x)]𝑖 𝑗 = 𝜕𝑔𝑖(x)/𝜕𝑥 𝑗 .

As we will review in Chapter 5, the “Jacobian Term” makes optimisation
of this likelihood problematic. There, we will also present one of our
original contributions in estimation based on [86]: A method to optimise
the exact maximum likelihood objective (2.18) efficiently for a class of
deep neural networks.

2.4.3 Summary

Independent component analysis provides a principled approach to the
study of some central problems in representation learning. In particular,
it provides a way to answer the motivating problems we introduced
in § 1.1, § 1.2. The focus on model identifiability, and the methodological
separation between identification and estimation, will recur in most of
the contributions presented in this thesis.

Starting with [64], there has been a renaissance of results in identifiability
for nonlinear ICA or closely inspired by it [62, 65, 66, 78, 79, 85, 87–91].
Recently, the problem of learning representations where the components
are not statistically independent received significant attention [92]: for
example, we may be interested in learning latent variables which are
causally related [13, 93, 94]; or where latent variables should faithfully re-
produce symmetries of the world [11, 95, 96]. The theory of nonlinear ICA
presented in § 2.4.1 bears important implications even for these settings,
and beyond the assumption of statistically independent components,
for example in the form of impossibility results for fully unsupervised
nonlinear representation learning, see [62, 72, 74].

ICA is also important beyond the problems in § 1.1 and § 1.2. Estimation
of independent components is central to unsupervised learning and
probabilistic modeling even beyond identifiability, see [97–99]; moreover,
estimation of models with non-independent components can be inspired
by extensions of the ICA model [100, 101]. Finally, many methods for
causal discovery are based on identifiable ICA models [102–105].
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[5]: Roeder et al. (2021), ‘On linear iden-
tifiability of learned representations’
[85]: Khemakhem et al. (2020), ‘ICE-
BeeM: Identifiable Conditional Energy-
Based Deep Models Based on Nonlinear
ICA’
24: Interestingly, here the term “inde-
pendently” is not used in the usual statis-
tical sense and might be closer in spirit
to the some nonstatistical interpretations
thereof used in the context of causal in-
ference, see [106] and § 3.2.1.
25: It may sometimes be unclear what
the ground truth latent variables are
in the first place, or whether they can
be unambiguously defined: for example,
a given causal system may be equiva-
lently described by different sets of vari-
ables [107] or at different levels of abstrac-
tion [108–110].
26: The question of how representations
extracted by different neural network
models relate to each other has also been
the subject of extensive empirical investi-
gation, see, e.g., [111, 112].

2.4.4 Concluding Remarks on the Cocktail-Party and the
Independent-Listeners problems

In § 1.1 and § 1.2, we described the two metaphors of the cocktail-party
and independent-listerners problems. At different points throughout this
chapter we referred to one or the other metaphor to illustrate different
aspects of identifiability. Some concluding comments might be necessary
to relate the nontechnical metaphors in Chapter 1 to the technical content
of this chapter and the rest of this manuscript.

We would like to stress that studying the similarity of representations
learned by different intelligent systems, as in § 1.2, might be relevant
beyond the question whether such representations faithfully reconstruct
some ground-truth and invert the true data-generating process—which
is the objective of blind source separation and § 1.1. Comparing repre-
sentations extracted by neural networks trained “independently” on the
same dataset is the objective of some works we referred, e.g., [5, 85],24

where various notions of identifiability are discussed to this end without
any explicit notion of a ground truth generating process.25

For example, in [85, Sec. 2], the authors are interested in the outputs
(extracted features) of conditional energy-based models, for which they
characterise uniqueness up to certain equivalence classes based on
suitable assumptions: only in a later part of the paper [85, Sec. 3] they
link this identifiability to a generative model—Independently Modulated
Components Analysis (IMCA), an extension of ICA allowing for some
correlation among the latent variables—and to reconstruction of some
ground truth latent variables.

In conclusion, the question introduced in (§ 1.2) through the independent-
listeners problem may be considered separately from that of identifiying
a ground truth (§ 1.1), and the notion of identifiability may be relevant to
investigate both.26



Structure and Contributions of
this Manuscript

The structure and contributions of this thesis are as follows.

In the first part, we focus on identification and estimation in the fully
unsupervised setting with independent and identically distributed (i.i.d.)
observations. As mentioned in § 2.4.1, identifiability in this setting
requires restrictions on the mixing function. In Chapter 3 we introduce a
setting termed independent mechanism analysis (IMA), where a restriction
of the mixing function class is derived, inspired by the principle of
independent causal mechanisms [106], and its benefits for identifiability
are discussed. In Chapter 4 we then show that variational autoencoders
(VAEs), a prominent approach to unsupervised learning, optimise the
IMA objective in a certain regime and under mild assumptions. Finally,
in Chapter 5, we discuss the role of the Jacobian term of (2.18) in maximum
likelihood estimation, and present a way to efficiently optimise it (and
the whole likelihood) for a class of neural networks, based on relative
gradients.

In the second part, we instead present results on identification and
estimation of models where multiple (possibly corrupted) views of the
same latent souces are available. In Chapter 6, we present an identifiability
result for nonlinear ICA with multiple views. In Chapter 7, a related
(linear) model is applied to the statistical analysis of group studies
in neuroimaging. Closely related to the multi-view setting is the so
called “weakly supervised” setting [94, 113, 114]: taking inspiration from
it, in Chapter 8, we present an identifiability result for self-supervised
learning with data augmentations. This theory will not require statistically
independent components, and will instead focus on a suitable notion
of identifiability (block-identification) for a subspace encoding those
components which remain invariant under data augmentation.

In the conclusion, we present concluding remarks on the work presented
in this thesis and on identifiability in representation learning, causal
inference and connections with current machine learning practice.

Detailed list of contributions. The results presented in this thesis
are based on work published with multiple venues and with different
collaborators. Each of the chapters from Chapter 3 to Chapter 8 are based
on the original published works almost verbatim; minor changes have
been made with respect to the original works.

Part I:

▶ Chapter 3 is based on:
L. Gresele*, J. von Kügelgen*, V. Stimper, B. Schölkopf, and M.
Besserve. ‘Independent mechanisms analysis, a new concept?’ In:
Advances in Neural Information Processing Systems 34 (NeurIPS 2021).
*equal contribution. Curran Associates, Inc., Dec. 2021
My contributions included suggesting that the ICM principle could
inspire useful constraints for nonlinear ICA, and, together with my
co-authors, conceptualising the project, developing the theory and
devising the experiments. The background section in the original
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paper provided the basis for § 2.3, and part of the conclusion was
moved to Chapter 9.

▶ Chapter 4 is based on:
P. Reizinger*, L. Gresele*, J. Brady*, J. von Kügelgen, D. Zietlow,
B. Schölkopf, G. Martius, W. Brendel, and M. Besserve. ‘Embrace
the Gap: VAEs Perform Independent Mechanism Analysis’. In:
Advances in Neural Information Processing Systems 35 (NeurIPS 2022).
*equal first authorship. Curran Associates, Inc., Dec. 2022
This project was lead by P.R., and all authors were involved in
structuring the research question. My contributions included in-
vestigating the link between normalizing flows and VAEs, and
conceiving and discussing the theory and experiments with the
other authors.

▶ Chapter 5 is based on:
L. Gresele*, G. Fissore*, A. Javaloy, B. Schölkopf, and A. Hyvärinen.
‘Relative gradient optimization of the Jacobian term in unsuper-
vised deep learning’. In: Advances in Neural Information Processing
Systems 33 (NeurIPS 2020). *equal contribution. Curran Associates,
Inc., Dec. 2020
My contributions included conceptualising the project together
with A.H. and the other authors, and working with them on the
theoretical analysis and implementation of the method.

Part II:

▶ Chapter 6 is based on:
L. Gresele*, P. K. Rubenstein*, A. Mehrjou, F. Locatello, and B.
Schölkopf. ‘The Incomplete Rosetta Stone problem: Identifiability
results for Multi-view Nonlinear ICA’. In: Proceedings of the 35th
Conference on Uncertainty in Artificial Intelligence (UAI). Vol. 115.
Proceedings of Machine Learning Research. *equal contribution.
PMLR, July 2019
My contributions included proposing that the multi-view setting
in nonlinear ICA could be identifiable, structuring the research
questions and working on identifiability theory together with P.K.R.
and all other authors.

▶ Chapter 7 is based on:
H. Richard*, L. Gresele*, A. Hyvärinen, B. Thirion, A. Gramfort,
and P. Ablin. ‘Modeling Shared responses in Neuroimaging Studies
through MultiView ICA’. In: Advances in Neural Information Process-
ing Systems 33 (NeurIPS 2020). *equal contribution. Red Hook, NY:
Curran Associates, Inc., Dec. 2020
This project was lead by H.R. and conceptualised together with all
the authors. My contributions included proposing the application
of multi-view ICA to the statistical analysis of group studies in neu-
roimaging, heuristically deriving the objective (7.4), and suggesting
to P.A. that an estimation procedure based on his previous linear
ICA work could be derived. All authors contributed to writing the
paper.

▶ Chapter 8 is based on:
J. von Kügelgen*, Y. Sharma*, L. Gresele*, W. Brendel, B. Schölkopf,
M. Besserve, and F. Locatello. ‘Self-supervised learning with data
augmentations provably isolates content from style’. In: Advances
in Neural Information Processing Systems 34 (NeurIPS 2021). *equal
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contribution. Curran Associates, Inc., Dec. 2021
The project was lead by J.v.K. and conceptualised with F.L. and
all co-authors. My contributions included suggesting to study the
problem in connection to the multi-view setting, working with
other authors on the causal interpretation of the problem and
discussing the experiments and theory (particularly in connection
with nonlinear ICA theory) with all co-authors.

Other works I published in journals or at conferences during my PhD
and which are not included in this thesis:

▶ Luigi Gresele and Matteo Marsili. ‘On maximum entropy and
inference’. In: Entropy 19.12 (2017)

▶ G. Parascandolo*, A. Neitz*, A. Orvieto, L. Gresele, and B. Schölkopf.
‘Learning explanations that are hard to vary’. In: 9th International
Conference on Learning Representations (ICLR). *equal contribution.
May 2021

▶ J. von Kügelgen*, L. Gresele*, and B. Schölkopf. ‘Simpson’s paradox
in Covid-19 case fatality rates: a mediation analysis of age-related
causal effects’. In: IEEE Transactions on Artificial Intelligence 2.1 (2021).
*equal contribution

▶ L. Gresele*, J. von Kügelgen*, J. M. Kübler*, E. Kirschbaum, B.
Schölkopf, and D. Janzing. ‘Causal Inference Through the Structural
Causal Marginal Problem’. In: Proceedings of the 39th International
Conference on Machine Learning (ICML). Vol. 162. *equal contribution.
PMLR, July 2022
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Independent Mechanism
Analysis, A New Concept? 3

Independent component analysis provides a principled framework for
unsupervised representation learning, with solid theory on the identifia-
bility of the latent code that generated the data, given only observations
of mixtures thereof. While as reviewed in § 2.4.1 the model is provably
nonidentifiable when the mixing is nonlinear, identifiability can be recov-
ered in settings where auxiliary variables are included in the generative
process (§ 2.4.2). In this chapter, we investigate an alternative path and
consider instead including assumptions reflecting the principle of indepen-
dent causal mechanisms exploited in the field of causality. Specifically, our
approach is motivated by thinking of each source as independently influ-
encing the mixing process. This gives rise to a framework which we term
independent mechanism analysis. We provide theoretical and empirical
evidence that our approach circumvents a number of nonidentifiability
issues arising in nonlinear blind source separation.

3.1 Introduction

One of the goals of unsupervised learning is to uncover properties of
the data generating process, such as latent structures giving rise to the
observed data. Identifiability formalises this desideratum: under suitable
assumptions, a model learnt from observations should match the ground
truth, up to well-defined ambiguities. In order to achieve identifiability
in nonlinear BSS, a growing body of research postulates additional
supervision or structure in the data generating process, often in the form
of auxiliary variables (§ 2.4.2) or multiple views (Chapter 6).

In this chapter, we investigate a different route to identifiability by drawing
inspiration from the field of causal inference [106, 122] which has provided
useful insights for a number of machine learning tasks, including semi-
supervised [123, 124], transfer [125–135], reinforcement [136–143], and
unsupervised [13, 117, 144–149] learning. To this end, we interpret the
ICA mixing as a causal process and apply the principle of independent
causal mechanisms (ICM) which postulates that the generative process
consists of independent modules which do not share information [106,
123, 150].

In this context, “independent” does not refer to statistical independence
of random variables, but rather to the notion that the distributions and
functions composing the generative process are chosen independently
by Nature [150, 151]. While a formalisation of ICM [150, 152] in terms of
algorithmic (Kolmogorov) complexity [153] exists, it is not computable,
and hence applying ICM in practice requires assessing such non-statistical
independence with suitable domain specific criteria [154]. The goal of
our work is thus to constrain the nonlinear ICA problem, in particular the
mixing function, via suitable ICM measures, thereby ruling out common
counterexamples to identifiability which intuitively violate the ICM
principle.
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Figure 3.1: For the cocktail-party prob-
lem, the ICM principle as traditionally
understood would say that the content
of speech 𝑝s is independent of the mix-
ing or recording process f (microphone
placement, room acoustics). IMA refines,
or extends, this idea at the level of the
mixing function by postulating that the
contributions 𝜕f/𝜕𝑠𝑖 of each source to f,
as captured by the speakers’ positions
relative to the recording process, should
not be fine-tuned to each other.
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Figure 3.2: We formalise t independence
between the 𝜕f/𝜕𝑠𝑖 , which are the columns
of the Jacobian Jf, as an orthogonality con-
dition: the absolute value of the determi-
nant |Jf |, i.e., the volume of the paral-
lelepiped spanned by 𝜕f/𝜕𝑠𝑖 , should de-
compose as the product of the norms of
the 𝜕f/𝜕𝑠𝑖 .

1: For additional intuition and possible
violations in the context of the cocktail-
party problem, see Appendix B.1.4.

Traditionally, ICM criteria have been developed for causal discovery,
where both cause and effect are observed [155–158]. They enforce an indepen-
dence between (i) the cause (source) distribution and (ii) the conditional
or mechanism (mixing function) generating the effect (observations), and
thus rely on the fact that the observed cause distribution is informative.
As we will show, this renders them insufficient for nonlinear ICA, since
the constraints they impose are satisfied by common counterexamples to
identifiability. With this in mind, we introduce a new way to characterise
or refine the ICM principle for unsupervised representation learning tasks
such as nonlinear ICA.

Motivating example. To build intuition, we return to the cocktail-party
problem of § 1.1, where a number of conversations are happening in
parallel and the task is to recover the individual voices 𝑠𝑖 from the
recorded mixtures 𝑥𝑖 . The mixing or recording process f is primarily
determined by the room acoustics and the locations at which microphones
are placed. Moreover, each speaker influences the recording through their
positioning in the room, and we may think of this influence as 𝜕f/𝜕𝑠𝑖 , as
illustrated in Fig. 3.1. Our independence postulate then amounts to stating
that the speakers’ positions are not fine-tuned to the room acoustics and
microphone placement, or to each other, i.e., the contributions 𝜕f/𝜕𝑠𝑖 should
be independent (in a non-statistical sense).1

Our approach. We formalise this notion of independence between the
contributions 𝜕f/𝜕𝑠𝑖 of each source to the mixing process (i.e., the columns
of the Jacobian matrix Jf of partial derivatives) as an orthogonality
condition, see Fig. 3.2. Specifically, the absolute value of the determinant
|Jf |, which describes the local change in infinitesimal volume induced
by mixing the sources, should factorise or decompose as the product of
the norms of its columns. This can be seen as a decoupling of the local
influence of each partial derivative in the pushforward operation (mixing
function) mapping the source distribution to the observed one, and
gives rise to a novel framework which we term independent mechanism
analysis (IMA). IMA can be understood as a refinement of the ICM
principle that applies the idea of independence of mechanisms at the
level of the mixing function.

Structure and contributions of this Chapter.
▶ We review existing ICM criteria (§ 3.2.1), and show that the latter

do not sufficiently constrain nonlinear ICA (§ 3.3);
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[106]: Peters et al. (2017), Elements of causal
inference: foundations and learning algo-
rithms
[122]: Pearl (2009), Causality

[150]: Janzing et al. (2010), ‘Causal in-
ference using the algorithmic Markov
condition’

2: “This can be seen as an algorithmic analog
of replacing the empirically undecidable ques-
tion of statistical independence with practical
independence tests that are based on assump-
tions on the underlying distribution” [150].

▶ We propose a more suitable ICM criterion for unsupervised rep-
resentation learning which gives rise to a new framework that we
term independent mechanism analysis (IMA) (§ 3.4); we provide ge-
ometric and information-theoretic interpretations of IMA (§ 3.4.1),
introduce an IMA contrast function which is invariant to the inher-
ent ambiguities of nonlinear ICA (§ 3.4.2), and show that it rules
out a large class of counterexamples and is consistent with existing
identifiability results (§ 3.4.3);

▶ We experimentally validate our theoretical claims and propose a
regularised maximum-likelihood learning approach based on the
IMA constrast which outperforms the unregularised baseline (§ 3.5);
additionally, we introduce a method to learn nonlinear ICA solu-
tions with triangular Jacobian and a metric to assess BSS which
can be of independent interest for the nonlinear ICA community.

3.2 Background and Preliminaries

Our work builds on and connects related literature from the fields of
independent component analysis (§ 2.1) and causal inference. We start by
assuming the generative model in (2.1). To recover identifiability, rather
than relying only on additional assumptions on P (e.g., via auxiliary
variables), we seek to further constrain (2.1) by also placing assumptions
on the set Fof mixing functions f. To this end, we draw inspiration from
the field of causal inference [106, 122]. Below we review concepts from
causal inference relevant for our work.

3.2.1 Causal Inference and the Principle of Independent
Causal Mechanisms (ICM)

Of central importance to our approach is the Principle of Independent
Causal Mechanisms (ICM) [123, 150, 159].

Principle 3.2.1 (ICM principle [106]) The causal generative process of a
system’s variables is composed of autonomous modules that do not inform or
influence each other.

These “modules” are typically thought of as the conditional distributions
of each variable given its direct causes. Intuitively, the principle then
states that these causal conditionals correspond to independent mechanisms
of nature which do not share information. Crucially, here “independent”
does not refer to statistical independence of random variables, but rather
to independence of the underlying distributions as algorithmic objects. For
a bivariate system comprising a cause c and an effect e, this idea reduces
to an independence of cause and mechanism, see Fig. 3.3c. One way to
formalise ICM uses Kolmogorov complexity 𝐾(·) [153] as a measure of
algorithmic information [150].

However, since Kolmogorov complexity is is not computable, using ICM
in practice requires assessing Principle 3.2.1 with other suitable proxy
criteria [106, 145, 157, 158, 160–167].2 Allowing for deterministic relations
between cause (sources) and effect (observations), the criterion which
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Figure 3.3: (a) Any observed density 𝑝𝑥 can be mapped to a uniform 𝑝𝑦 via the CDF transform 𝑔(𝑥) = ℙ(𝑋 ≤ 𝑥); Darmois
solutions (fD , 𝑝u) constructed from (2.15) therefore automatically satisfy the independence postulated by IGCI (3.1). (b)
ICA setting with 𝑛 = 2 sources (shaded nodes are observed, white ones are unobserved). (c) Existing ICM criteria typically
enforce independence between an observed input or cause distribution 𝑝c and a mechanism 𝑝e|c (independent objects are
highlighted in blue and red). (d) IMA enforces independence between the contributions of different sources 𝑠𝑖 to the
mixing function f as captured by 𝜕f/𝜕𝑠𝑖 .

3: For a similar criterion which assumes
linearity [157, 158] and its relation to
linear ICA, see Appendix B.1.1.

is most closely related to the ICA setting in (2.1) is information-geometric
causal inference (IGCI) [155, 156].3 IGCI assumes a nonlinear relation
e = f(c) and formulates a notion of independence between the cause
distribution 𝑝c and the deterministic mechanism f (which we think of
as a degenerate conditional 𝑝e|c) via the following condition (in practice,
assumed to hold approximately),

𝐶igci(f, 𝑝c) :=
∫

log |Jf(c)| 𝑝c(c)𝑑c −
∫

log |Jf(c)| 𝑑c = 0 , (3.1)

where (Jf(c))𝑖 𝑗 = 𝜕 𝑓𝑖/𝜕𝑐 𝑗(c) is the Jacobian matrix and | · | the absolute value
of the determinant. 𝐶igci can be understood as the covariance between 𝑝c
and log |Jf | (viewed as r.v.s on the unit cube w.r.t. the Lebesgue measure),
so that 𝐶igci = 0 rules out a form of fine-tuning between 𝑝c and |Jf |. As
its name suggests, IGCI can, from an information-geometric perspective,
also be seen as an orthogonality condition between cause and mecha-
nism in the space of probability distributions [156], see Appendix B.1.2,
particularly Equation B.4 for further details.

3.3 Existing ICM Measures are Insufficient for
Nonlinear ICA

Our aim is to use the ICM Principle 3.2.1 to further constrain the space
of models M ⊆ F× P and rule out common counterexamples to
identifiability such as those presented in § 2.4.1.

Intuitively, both the Darmois construction (2.15) and the rotated Gaussian
MPA (2.16) give rise to “non-generic” solutions which should violate ICM:
the former, (fD , 𝑝u), due the triangular Jacobian of fD (see Remark 2.4.1),
meaning that each observation 𝑥𝑖 = 𝑓 D

𝑖
(y1:𝑖) only depends on a subset of

the inferred independent components y1:𝑖 , and the latter, (f ◦ aR(𝑝s), 𝑝s),
due to the dependence of f ◦ aR(𝑝s) on 𝑝s (2.16).

However, the ICM criteria described in § 3.2.1 were developed for the
task of cause-effect inference where both variables are observed. In contrast,
in this work, we consider an unsupervised representation learning task
where only the effects (mixtures x) are observed, but the causes (sources s)
are not. It turns out that this renders existing ICM criteria insufficient
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4: In fact, many ICM criteria can be
phrased as special cases of a unifying
group-invariance framework [145].

5: The title of the paper in which the ma-
terial presented in this chapter was orig-
inally published is thus a reverence to
Pierre Comon’s seminal 1994 paper [37].

for BSS: they can easily be satisfied by spurious solutions which are
not equivalent to the true one. We can show this for IGCI. Denote by
Migci = {(f, 𝑝s) ∈ F×P : 𝐶igci(f, 𝑝s) = 0} ⊂ F×P the class of nonlinear
ICA models satisfying IGCI (3.1). Then the following negative result
holds.

Proposition 3.3.1 (IGCI is insufficient for ∼bss-identifiability) (2.1) is
not ∼bss-identifiable on Migci.

Proof. IGCI (3.1) is satisfied when 𝑝s is uniform. However, the Darmois
construction (2.15) yields uniform sources, see Fig. 3.3a. This means
that (fD ◦ aR(𝑝u), 𝑝u) ∈ Migci, so IGCI can be satisfied by solutions
which do not separate the sources in the sense of Defn. 2.4.1, see § 2.4.1
and [70].

As illustrated in Fig. 3.3c, condition (3.1) and other similar criteria enforce
a notion of “genericity” or “decoupling” of the mechanism w.r.t. the
observed input distribution.4 They thus rely on the fact that the cause
(source) distribution is informative, and are generally not invariant to
reparametrisation of the cause variables. In the (nonlinear) ICA setting, on
the other hand, the learnt source distribution may be fairly uninformative.
This poses a challenge for existing ICM criteria since any mechanism is
generic w.r.t. an uninformative (uniform) input distribution.

3.4 Independent Mechanism Analysis (IMA)

As argued in § 3.3, enforcing independence between the input distribution
and the mechanism (Fig. 3.3c), as existing ICM criteria do, is insufficient
for ruling out spurious solutions to nonlinear ICA. We therefore propose
a new ICM-inspired framework which is more suitable for BSS and which
we term independent mechanism analysis (IMA).5 All proofs are provided
in Appendix B.2.

3.4.1 Intuition Behind IMA

As motivated using the cocktail party example in § 1.1 and Fig. 3.1, our
main idea is to enforce a notion of independence between the contributions or
influences of the different sources 𝑠𝑖 on the observations x = f(s) as illustrated
in Fig. 3.3d—as opposed to between the source distribution and mixing
function, cf. Fig. 3.3c. These contributions or influences are captured by
the vectors of partial derivatives 𝜕f/𝜕𝑠𝑖 . IMA can thus be understood as
a refinement of ICM at the level of the mixing f: in addition to statistically
independent components 𝑠𝑖 , we look for a mixing with contributions 𝜕f/𝜕𝑠𝑖
which are independent, in a non-statistical sense which we formalise as
follows.

Principle 3.4.1 (IMA) The mechanisms by which each source 𝑠𝑖 influences
the observed distribution, as captured by the partial derivatives 𝜕f/𝜕𝑠𝑖 , are
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6: This has also been used as a “leading
intuition” [sic] to interpret IGCI in [156].

7: To provide additional intuition on
how IMA differs from existing principles
of independence of cause and mecha-
nism, we give examples, both technical
and pictorial, of violations of both in Ap-
pendix B.1.4.

independent of each other in the sense that for all s:

log |Jf(s)| =
𝑛∑
𝑖=1

log
 𝜕f
𝜕𝑠𝑖
(s)

 (3.2)

Geometric interpretation. Geometrically, the IMA principle can be
understood as an orthogonality condition, as illustrated for 𝑛 = 2 in Fig. 3.2.
First, the vectors of partial derivatives 𝜕f/𝜕𝑠𝑖 , for which the IMA principle
postulates independence, are the columns of Jf. |Jf | thus measures the
volume of the 𝑛−dimensional parallelepiped spanned by these columns,
as shown on the right. The product of their norms, on the other hand,
corresponds to the volume of an 𝑛-dimensional box, or rectangular
parallelepiped with side lengths ∥𝜕f/𝜕𝑠𝑖 ∥, as shown on the left. The two
volumes are equal if and only if all columns 𝜕f/𝜕𝑠𝑖 of Jf are orthogonal.
Note that (3.2) is trivially satisfied for 𝑛 = 1, i.e., if there is no mixing,
further highlighting its difference from ICM for causal discovery.

Independent influences and orthogonality. In a high dimensional
setting (large 𝑛), this orthogonality can be intuitively interpreted from
the ICM perspective as Nature choosing the direction of the influence of
each source component in the observation space independently and from an
isotropic prior. Indeed, it can be shown that the scalar product of two
independent isotropic random vectors in ℝ𝑛 vanishes as the dimension-
ality 𝑛 increases (equivalently: two high-dimensional isotropic vectors
are typically orthogonal). This property was previously exploited in
other linear ICM-based criteria (see [168, Lemma 5] and [157, Lemma
1 & Thm. 1]).6 The principle in (3.2) can be seen as a constraint on the
function space, enforcing such orthogonality between the columns of the
Jacobian of f at all points in the source domain, thus approximating the
high-dimensional behavior described above.7

Information-geometric interpretation and comparison to IGCI. The
additive contribution of the sources’ influences 𝜕f/𝜕𝑠𝑖 in (3.2) suggests
their local decoupling at the level of the mechanism f. Note that IGCI (3.1), on
the other hand, postulates a different type of decoupling: one between
log |Jf | and 𝑝s. There, dependence between cause and mechanism can
be conceived as a fine tuning between the derivative of the mechanism
and the input density. The IMA principle leads to a complementary, non-
statistical measure of independence between the influences 𝜕f/𝜕𝑠𝑖 of the
individual sources on the vector of observations. Both the IGCI and IMA
postulates have an information-geometric interpretation related to the in-
fluence of (“non-statistically”) independent modules on the observations:
both lead to an additive decomposition of a KL-divergence between the effect
distribution and a reference distribution. For IGCI, independent modules
correspond to the cause distribution and the mechanism mapping the
cause to the effect (see (B.4) in Appendix B.1.2). For IMA, on the other
hand, these are the influences of each source component on the observa-
tions in an interventional setting (under soft interventions on individual
sources), as measured by the KL-divergences between the original and
intervened distributions. See Appendix B.1.3, and especially (B.7), for a
more detailed account.
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8: See Table 1 in [169] for a long list of
definitions from the literature.

We finally remark that while recent work based on the ICM principle has
mostly used the term “mechanism” to refer to causal Markov kernels
𝑝(𝑋𝑖 |𝑃𝐴𝑖) or structural equations [106], we employ it in line with the
broader use of this concept in the philosophical literature.8 To highlight
just two examples, [170] states that “Causal processes, causal interactions,
and causal laws provide the mechanisms by which the world works; to under-
stand why certain things happen, we need to see how they are produced by
these mechanisms”; and [171] states that “Mechanisms are events that alter
relations among some specified set of elements”. Following this perspective,
we argue that a causal mechanism can more generally denote any pro-
cess that describes the way in which causes influence their effects: the
partial derivative 𝜕f/𝜕𝑠𝑖 thus reflects a causal mechanism in the sense
that it describes the infinitesimal changes in the observations x, when an
infinitesimal perturbation is applied to 𝑠𝑖 .

3.4.2 Definition and Useful Properties of the IMA
Contrast

We now introduce a contrast function based on the IMA principle (3.2)
and show that it possesses several desirable properties in the context of
nonlinear ICA. First, we define a local contrast as the difference between
the two integrands of (3.2) for a particular value of the sources s.

Definition 3.4.1 (Local IMA contrast) The local IMA contrast 𝑐ima(f,) of f
at a point s is given by

𝑐ima(f,) =
𝑛∑
𝑖=1

log
 𝜕f
𝜕𝑠𝑖
(s)

 − log |Jf(s)| . (3.3)

Remark 3.4.1 This corresponds to the left KL measure of diagonal-
ity [172] for

√
Jf(s)⊤Jf(s).

The local IMA contrast 𝑐ima(f,) quantifies the extent to which the IMA
principle is violated at a given point s. We summarise some of its
properties in the following proposition.

Proposition 3.4.1 (Properties of 𝑐ima(f,)) The local IMA contrast 𝑐ima(f,)
defined in (3.3) satisfies:

(i) 𝑐ima(f,) ≥ 0, with equality if and only if all columns 𝜕f/𝜕𝑠𝑖(s) of Jf(s)
are orthogonal.

(ii) 𝑐ima(f,) is invariant to left multiplication of Jf(s) by an orthogonal ma-
trix and to right multiplication by permutation and diagonal matrices.

Property (i) formalises the geometric interpretation of IMA as an orthogo-
nality condition on the columns of the Jacobian from § 3.4.1, and property
(ii) intuitively states that changes of orthonormal basis and permutations
or rescalings of the columns of Jf do not affect their orthogonality. Next,
we define a global IMA contrast w.r.t. a source distribution 𝑝s as the
expected local IMA contrast.
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Figure 3.4: An example of a (non-
conformal) orthogonal coordinate
transformation from polar (left) to
Cartesian (right) coordinates.

Definition 3.4.2 (Global IMA contrast) The global IMA contrast𝐶ima(f, 𝑝s)
of f w.r.t. 𝑝s is given by

𝐶ima(f, 𝑝s) = 𝔼s∼𝑝s[𝑐ima(f, s)] =
∫
𝑐ima(f, s)𝑝s(s)𝑑s . (3.4)

The global IMA contrast 𝐶ima(f, 𝑝s) thus quantifies the extent to which the
IMA principle is violated for a particular solution (f, 𝑝s) to the nonlinear
ICA problem. We summarise its properties as follows.

Proposition 3.4.2 (Properties of 𝐶ima(f, 𝑝s)) The global IMA contrast
𝐶ima(f, 𝑝s) from (3.4) satisfies:

(i) 𝐶ima(f, 𝑝s) ≥ 0, with equality iff. Jf(s) = O(s)D(s) almost surely w.r.t.
𝑝s, where O(s),D(s) ∈ ℝ𝑛×𝑛 are orthogonal and diagonal matrices,
respectively;

(ii) 𝐶ima(f, 𝑝s) = 𝐶ima(f̃, 𝑝s̃) for any f̃ = f ◦ h−1 ◦ P−1 and s̃ = Ph(s),
where P ∈ ℝ𝑛×𝑛 is a permutation and h(s) = (ℎ1(𝑠1), ..., ℎ𝑛(𝑠𝑛)) an
invertible element-wise function.

Property (i) is the distribution-level analogue to (i) of Proposition 3.4.1
and only allows for orthogonality violations on sets of measure zero w.r.t.
𝑝s. This means that 𝐶ima can only be zero if f is an orthogonal coordinate
transformation almost everywhere [173–175], see Fig. 3.4 for an example.
We particularly stress property (ii), as it precisely matches the inherent
indeterminacy of nonlinear ICA: 𝐶ima is blind to reparametrisation of the
sources by permutation and element wise transformation.

3.4.3 Theoretical Analysis and Justification of 𝐶ima

We now show that, under suitable assumptions on the generative
model (2.1), a large class of spurious solutions—such as those based
on the Darmois construction (2.15) or measure preserving automor-
phisms such as aR from (2.16) as described in § 2.4.1—exhibit nonzero
IMA contrast. Denote the class of nonlinear ICA models satisfying (3.2)
(IMA) by Mima = {(f, 𝑝s) ∈ F×P : 𝐶ima(f, 𝑝s) = 0} ⊂ F×P. Our first
main theoretical result is that, under mild assumptions on the observa-
tions, Darmois solutions will have strictly positive 𝐶ima, making them
distinguishable from those in Mima.

Theorem 3.4.3 Assume the data generating process in (2.1) and assume that
𝑥𝑖 ⊥̸⊥ 𝑥 𝑗 for some 𝑖 ≠ 𝑗. Then any Darmois solution (fD , 𝑝u) based on gD

as defined in (2.15) satisfies 𝐶ima(fD , 𝑝u) > 0. Thus a solution satisfying
𝐶ima(f, 𝑝s) = 0 can be distinguished from (fD , 𝑝u) based on the contrast 𝐶ima.

The proof is based on the fact that the Jacobian of gD is triangular
(see Remark 2.4.1) and on the specific form of (2.15). A specific example
of a mixing process satisfying the IMA assumption is the case where f is
a conformal (angle-preserving) map.

Definition 3.4.3 (Conformal map) A smooth map f : ℝ𝑛 → ℝ𝑛 is
conformal if Jf(s) = O(s)�(s) ∀s, where � : ℝ𝑛 → ℝ is a scalar field, and
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9: Note that Corollary 3.4.4 holds for any
dimensionality 𝑛.

O ∈ 𝑂(𝑛) is an orthogonal matrix.

Corollary 3.4.4 Under assumptions of Thm. 3.4.3, if additionally f is a
conformal map, then (f, 𝑝s) ∈Mima for any 𝑝s ∈ P due to Proposition 3.4.2
(i), see Defn. 3.4.3. Based on Thm. 3.4.3, (f, 𝑝s) is thus distinguishable from
Darmois solutions (fD , 𝑝u).

This is consistent with a result that proves identifiability of conformal
maps for 𝑛 = 2 and conjectures it in general [70].9 However, conformal
maps are only a small subset of all maps for which𝐶ima = 0, as is apparent
from the more flexible condition of Proposition 3.4.2 (i), compared to the
stricter Defn. 3.4.3.

Example 3.4.1 (Polar to Cartesian coordinate transform) Consider
the non-conformal transformation from polar to Cartesian coordi-
nates (see Fig. 3.4), defined as (𝑥, 𝑦) = f(𝑟, �) := (𝑟 cos(�), 𝑟 sin(�))
with independent sources =(𝑟, �), with 𝑟 ∼ 𝑈(0, 𝑅) and � ∼ 𝑈(0, 2𝜋).a
Then, 𝐶ima(f, 𝑝s) = 0 and 𝐶ima(fD , 𝑝u) > 0 for any Darmois solution
(fD , 𝑝u)—see Appendix B.3 for details.
a For different 𝑝s, (𝑥, 𝑦) can be made to have independent Gaussian components ([73],

II.B), and 𝐶ima-identifiability is lost; this shows that the assumption of Thm. 3.4.3 that
𝑥𝑖 ⊥̸⊥ 𝑥 𝑗 for some 𝑖 ≠ 𝑗 is crucial.

Finally, for the case in which the true mixing is linear, we obtain the
following result.

Corollary 3.4.5 Consider a linear ICA model, x = As, with 𝔼[s⊤s] = I, and
A ∈ 𝑂(𝑛) an orthogonal, non-trivial mixing matrix, i.e., not the product of a
diagonal and a permutation matrix DP. If at most one of the 𝑠𝑖 is Gaussian,
then 𝐶ima(A, 𝑝s) = 0 and 𝐶ima(fD , 𝑝u) > 0.

In a “blind” setting, we may not know a priori whether the true mix-
ing is linear or not, and thus choose to learn a nonlinear unmixing.
Corollary 3.4.5 shows that, in this case, Darmois solutions are still
distinguishable from the true mixing via 𝐶ima. Note that unlike in Corol-
lary 3.4.4, the assumption that 𝑥𝑖 ⊥̸⊥ 𝑥 𝑗 for some 𝑖 ≠ 𝑗 is not required
for Corollary 3.4.5. In fact, due to Theorem 11 of [37], it follows from the
assumed linear ICA model with non-Gaussian sources, and the fact that
the mixing matrix is not the product of a diagonal and a permutation
matrix (see also § 2.2.2).

Having shown that the IMA principle allows to distinguish a class of
models (including, but not limited to conformal maps) from Darmois
solutions, we next turn to a second well-known counterexample to
identifiability: the “rotated-Gaussian” MPA aR(𝑝s) (2.16) from Defn. 2.4.3.
Our second main theoretical result is that, under suitable assumptions,
this class of MPAs can also be ruled out for “non-trivial” R.

Theorem 3.4.6 Let (f, 𝑝s) ∈ Mima and assume that f is a conformal map.
Given R ∈ 𝑂(𝑛), assume additionally that ∃ at least one non-Gaussian 𝑠𝑖
whose associated canonical basis vector e𝑖 is not transformed by R−1 = R⊤
into another canonical basis vector e𝑗 . Then 𝐶ima(f ◦ aR(𝑝s), 𝑝s) > 0.
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10: the latter possibly due to the in-
creased difficulty of the learning task
for larger 𝑛

Thm. 3.4.6 states that for conformal maps, applying the aR(𝑝s) transfor-
mation at the level of the sources leads to an increase in 𝐶ima except for
very specific rotations R that are “fine-tuned” to 𝑝s in the sense that they
permute all non-Gaussian sources 𝑠𝑖 with another 𝑠 𝑗 . Interestingly, as
for the linear case, non-Gaussianity again plays an important role in the
proof of Thm. 3.4.6.

3.5 Experiments

Our theoretical results from § 3.4 suggest that 𝐶ima is a promising contrast
function for nonlinear blind source separation. We test this empirically
by evaluating the 𝐶ima of spurious nonlinear ICA solutions (§ 3.5.1), and
using it as a learning objective to recover the true solution (§ 3.5.2).

We sample the ground truth sources from a uniform distribution in
[0, 1]𝑛 ; the reconstructed sources are also mapped to the uniform hyper-
cube as a reference measure via the CDF transform. Unless otherwise
specified, the ground truth mixing f is a Möbius transformation [176]
(i.e., a conformal map) with randomly sampled parameters, thereby
satisfying Principle 3.4.1. In all of our experiments, we use JAX [177]
and Distrax [178]. For additional technical details, equations and plots
see Appendix B.4. The code to reproduce our experiments is available at
https://github.com/lgresele/independent-mechanism-analysis.

3.5.1 Numerical Evaluation of the 𝐶ima Contrast for
Spurious Nonlinear ICA Solutions

Learning the Darmois construction. To learn the Darmois construction
from data, we use normalising flows, see [71, 179]. Since Darmois solutions
have triangular Jacobian (Remark 2.4.1), we use an architecture based
on residual flows [180] which we constrain such that the Jacobian of the
full model is triangular. This yields an expressive model which we train
effectively via maximum likelihood.

𝐶ima of Darmois solutions. To check whether Darmois solutions (learnt
from finite data) can be distinguished from the true one, as predicted
by Thm. 3.4.3, we generate 1000 random mixing functions for 𝑛 = 2,
compute the 𝐶ima values of learnt solutions, and find that all values are
indeed significantly larger than zero, see Fig. 3.5 (a). The same holds for
higher dimensions, see Fig. 3.5 (b) for results with 50 random mixings for
𝑛 ∈ {2, 3, 5, 10}: with higher dimensionality, both the mean and variance
of the 𝐶ima distribution for the learnt Darmois solutions generally attain
higher values.10 We confirmed these findings for mappings which are
not conformal, while still satisfying (3.2), in Appendix B.4.5.

𝐶ima of MPAs. We also investigate the effect on 𝐶ima of applying an
MPA aR(·) from (2.16) to the true solution or a learnt Darmois solution.
Results for 𝑛 = 2 dim. for different rotation matrices R (parametrised
by the angle �) are shown in Fig. 3.5 (c). As expected, the behavior is
periodic in �, and vanishes for the true solution (blue) at multiples of 𝜋/2,

https://github.com/lgresele/independent-mechanism-analysis
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Figure 3.5: Top. Visual comparison of different nonlinear ICA solutions for 𝑛 = 2: (left to right) true sources; observed
mixtures; Darmois solution; true unmixing, composed with the measure preserving automorphism (MPA) from (2.16)
(with rotation by 𝜋/4); Darmois solution composed with the same MPA; maximum likelihood (� = 0); and 𝐶ima-regularised
approach (� = 1). Bottom. Quantitative comparison of 𝐶ima for different spurious solutions: learnt Darmois solutions for
(a) 𝑛 = 2, and (b) 𝑛 ∈ {2, 3, 5, 10} dimensions; (c) composition of the MPA (2.16) in 𝑛 = 2 dim. with the true solution
(blue) and a Darmois solution (red) for different angles. (d) 𝐶ima distribution for true MLP mixing (red) vs. Darmois
solution (blue) for 𝑛 = 5 dim., 𝐿 ∈ {2, 3, 4} layers.

i.e., when R is a permutation matrix, as predicted by Thm. 3.4.6. For the
learnt Darmois solution (red, dashed) 𝐶ima remains larger than zero.

𝐶ima values for random MLPs. Lastly, we study the behavior of spurious
solutions based on the Darmois construction under deviations from our
assumption of 𝐶ima = 0 for the true mixing function. To this end, we use
invertible MLPs with orthogonal weight initalisation and leaky_tanh

activations [86] as mixing functions; the more layers 𝐿 are added to the
mixing MLP, the larger a deviation from our assumptions is expected. We
compare the true mixing and learnt Darmois solutions over 20 realisations
for each 𝐿 ∈ {2, 3, 4}, 𝑛 = 5. Results are shown in figure Fig. 3.5 (d):
the 𝐶ima of the mixing MLPs grows with 𝐿; still, the one of the Darmois
solution is typically higher.

Summary. We verify that spurious solutions can be distinguished from
the true one based on 𝐶ima.

3.5.2 Learning Nonlinear ICA Solutions with
𝐶ima-Regularised Maximum Likelihood

Experimental setup. To use 𝐶ima as a learning signal, we consider a reg-
ularised maximum-likelihood approach, with the following objective:

L(g) = 𝔼x[log 𝑝g(x)] − �𝐶ima(g−1 , 𝑝y) , (3.5)

where g denotes the learnt unmixing, y = g(x) the reconstructed sources,
and � ≥ 0 a Lagrange multiplier. For � = 0, this corresponds to standard
maximum likelihood estimation, whereas for � > 0, L lower-bounds the
likelihood, and recovers it exactly iff. (g−1 , 𝑝y) ∈Mima. We train a residual
flow g (with full Jacobian) to maximise L. For evaluation, we compute (i)
the KL divergence to the true data likelihood, as a measure of goodness
of fit for the learnt flow model; and (ii) the mean correlation coefficient
(MCC) between ground truth and reconstructed sources [62, 64]. We also



3 Independent Mechanism Analysis, A New Concept? 40

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

KL
D

0.0 0.5 1.00

10

20

30

40

50

KL
D

0.0 0.5 1.00.0

0.5

1.0

Am
ar

i d
ist

an
ce

0.0 0.5 1.00.0

0.5

1.0

1.5

Am
ar

i d
ist

an
ce

0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

M
CC

0.0 0.5 1.00.5

0.6

0.7

0.8

0.9

1.0

M
CC

n = 5
n = 7

Figure 3.6: BSS via 𝐶ima-regularised MLE for, side by side, 𝑛 = 5 (blue) and 𝑛 = 7 (red) dim. with � ∈ {0.0, 0.5, 1.0}. (Left)
KL-divergence between ground truth likelihood and learnt model; (center) nonlinear Amari distance given true mixing
and learnt unmixing; (right) MCC between true and reconstructed sources.

11: models with 𝑛 = 7 have high outlier
KL values, seemingly less pronounced
for nonzero values of �

12: In Appendix B.4.5, we also show that
our method is superior to a linear ICA
baseline, FastICA [182].

introduce (iii) a nonlinear extension of the Amari distance [181] between
the true mixing and the learnt unmixing, which is larger than or equal to
zero, with equality iff. the learnt model belongs to the BSS equivalence
class (Defn. 2.4.1) of the true solution, see Appendix B.4.5 for details.

Results. In Fig. 3.5 (Top), we show an example of the distortion induced
by different spurious solutions for 𝑛 = 2, and contrast it with a solution
learnt using our proposed objective (rightmost plot). Visually, we find
that the 𝐶ima-regularised solution (with � = 1) recovers the true sources
most faithfully. Quantitative results for 50 learnt models for each � ∈
{0.0, 0.5, 1.0} and 𝑛 ∈ {5, 7} are summarised in Fig. 3.6 (see Appendix B.4
for additional plots). As indicated by the KL divergence values (left),
most trained models achieve a good fit to the data across all values of
�.11 We observe that using 𝐶ima (i.e., � > 0) is beneficial for BSS, both in
terms of our nonlinear Amari distance (center, lower is better) and MCC
(right, higher is better), though we do not observe a substantial difference
between � = 0.5 and � = 1.12

Summary: 𝐶ima can be a useful learning signal to recover the true
solution.

3.6 Discussion

Assumptions on the mixing function. Instead of relying on weak
supervision in the form of auxiliary variables or multiple views, our
IMA approach places additional constraints on the functional form of
the mixing process.

In a similar vein, the minimal nonlinear distortion principle [183] proposes
to favor solutions that are as close to linear as possible. Another example
is the post-nonlinear model [73, 103], which assumes an element-wise
nonlinearity applied after a linear mixing. IMA is different in that it
still allows for strongly nonlinear mixings (see, e.g., Fig. 3.4) provided
that the columns of their Jacobians are (close to) orthogonal. In the
related field of disentanglement [4, 72], a line of work that focuses on
image generation with adversarial networks [82] similarly proposes to
constrain the “generator” function via regularisation of its Jacobian [184]
or Hessian [185], though mostly from an empirically-driven, rather than
from an identifiability perspective as in the present work.
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Towards identifiability with 𝐶ima. The IMA principle rules out a large
class of spurious solutions to nonlinear ICA. While we do not present a
full identifiability result, our experiments show that 𝐶ima can be used to
recover the BSS equivalence class, suggesting that identifiability might
indeed hold, possibly under additional assumptions—e.g., for conformal
maps [70].

IMA and independence of cause and mechanism. While inspired by
measures of independence of cause and mechanism as traditionally used
for cause-effect inference [155–158], we view the IMA principle as address-
ing a different question, in the sense that they evaluate independence be-
tween different elements of the causal model. Any nonlinear ICA solution
that satisfies the IMA Principle 3.4.1 can be turned into one with uniform
reconstructed sources—thus satisfying IGCI as argued in § 3.3—through
composition with an element-wise transformation which, according
to Proposition 3.4.2 (ii), leaves the 𝐶ima value unchanged. Both IGCI (3.1)
and IMA (3.2) can therefore be fulfilled simultaneosly, while the former
on its own is inconsequential for BSS as shown in Proposition 3.3.1.

BSS through algorithmic information. Algorithmic information the-
ory has previously been proposed as a unifying framework for identifiable
approaches to linear BSS [186, 187], in the sense that commonly-used
contrast functions could, under suitable assumptions, be interpreted
as proxies for the total complexity of the mixing and the reconstructed
sources. However, to the best of our knowledge, the problem of specifying
suitable proxies for the complexity of nonlinear mixing functions has not
yet been addressed. We conjecture that our framework could be linked
to this view, based on the additional assumption of algorithmic inde-
pendence of causal mechanisms [150], thus potentially representing an
approach to nonlinear BSS by minimisation of algorithmic complexity.

Conclusion. We introduced IMA, a path to nonlinear BSS inspired
by concepts from causality. We postulate that the influences of different
sources on the observed distribution should be approximately indepen-
dent, and formalise this as an orthogonality condition on the columns
of the Jacobian. We prove that this constraint is generally violated by
well-known spurious nonlinear ICA solutions, and propose a regularised
maximum likelihood approach which we empirically demonstrate to be
effective in recovering the true solution. Our IMA principle holds exactly
for orthogonal coordinate transformations, and is thus of potential interest
for learning spatial representations [188], robot dynamics [189], or physics
problems where orthogonal reference frames are common [175].





[191]: Kingma et al. (2014), ‘Auto-
Encoding Variational Bayes’
[192]: Rezende et al. (2014), ‘Stochastic
Backpropagation and Approximate In-
ference in Deep Generative Models’

Embrace the Gap: VAEs Perform
Independent Mechanism

Analysis 4
Variational autoencoders (VAEs) are a popular framework for modeling
complex data distributions; they can be efficiently trained via variational
inference by maximizing the evidence lower bound (ELBO), at the expense
of a gap to the exact (log-)marginal likelihood. While VAEs are commonly
used for representation learning, it is unclear why ELBO maximization
would yield useful representations, since unregularised maximum like-
lihood estimation cannot invert the data-generating process. Yet, VAEs
often succeed at this task. We seek to elucidate this apparent paradox by
studying nonlinear VAEs in the limit of near-deterministic decoders. We
first prove that, in this regime, the optimal encoder approximately inverts
the decoder—a commonly used but unproven conjecture—which we
refer to as self-consistency. Leveraging self-consistency, we show that the
ELBO converges to a regularized log-likelihood. This adds an inductive
bias towards decoders with column-orthogonal Jacobians, and allows
VAEs to perform independent mechanism analysis. The gap between
ELBO and log-likelihood is therefore welcome, since it bears unantici-
pated benefits for nonlinear representation learning. In experiments on
synthetic and image data, we show that VAEs uncover the true latent
factors when the data generating process satisfies the IMA assumption.

4.1 Introduction

Latent Variable Models (LVMs) allow to effectively approximate a complex
data distribution and to sample from it [67, 190]. Deep LVMs employ a
neural network (the decoder or generator) to parameterize the conditional
distribution of the observations given latent variables, which are typically
assumed to be independent. However, Maximum Likelihood Estimation
(MLE) of the model parameters is computationally intractable. In VAEs
[191, 192], the exact log-likelihood is substituted with a tractable lower
bound, the ELBO. This objective introduces an approximate posterior of
the latents given the observations (the encoder) from a suitable variational
distribution whose mean and covariance are parametrized by neural
networks. The encoder is introduced to efficiently train a deep LVM:
however, it is not explicitly designed to extract useful representations [68,
193].

Nonetheless, VAEs and their variants are widely used in representation
learning [194, 195], where they often recover semantically meaningful
representations [196–199]. Our understanding of this empirical success
is still incomplete, since the theory reviewed in § 2.4.1 shows that (deep)
LVMs with independent latents are nonidentifiable from i.i.d. data:
different models fitting the data equally well may yield arbitrarily different
representations, thus rendering the recovery of a ground truth generative
model impossible. While specific model constraints [70, 183, 200, 201] can
help identifiability, and one such constraint was discussed in Chapter 3,
the mechanism through which the ELBO may enforce a useful inductive
bias remains unclear, despite recent efforts [199, 202–205].
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Figure 4.1: Modeling choices in VAEs promote Independent Mechanism Analysis. We assume a Gaussian VAE (4.3), and prove that in
the near-deterministic regime the mean encoder approximatetely inverts the mean decoder, g𝜽≈f𝜽−1 (self-consistency, Proposition 4.3.1).
Bottom: Closing the gap requires matching the covariances of the variational (LHS, 𝑞𝝓(s|x)) and the true posterior (RHS, approximated
by g𝜽

∗ [𝑝𝜽(x|s)], cf. § 4.3.2 for details). Under self-consistency, an encoder with diagonal covariance enforces a row-orthogonal encoder
Jacobian Jg𝜽 (x)—or equivalently, a column-orthogonal decoder Jacobian Jf𝜽 (s). Through this regularization, VAEs effectively performs
independent mechanism analysis: the connection therefore elucidates unintended benefits of using the ELBO for representation learning.
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In this work, we investigate the benefits of optimizing the ELBO for
representation learning by analyzing VAEs in a near-deterministic limit for
the conditional distribution parametrized by the nonlinear decoder. Our
first result concerns the encoder’s optimality in this regime. Previous
works relied on the intuitive assumption that the encoder inverts the
decoder in the optimum [203, 205, 206]; we formalize this self-consistency
assumption and prove its validity for the optimal variational posterior
in the near-deterministic nonlinear regime.

Using self-consistency, we show that the ELBO tends to a regularized
log-likelihood—rather than to the exact one as conjectured in previous
work [206]. The regularization term encourages column orthogonality of
the decoder’s Jacobian, and thus allows VAEs to perform IMA (Chapter 3).
This generalizes previous findings based on linearizations or approxima-
tions of the ELBO [202, 203, 207], and allows us to characterize the gap
with respect to the log-likelihood in the deterministic limit. Our results
elucidate the gap between ELBO and exact log-likelihood as a possible
mechanism through which the ELBO implements a useful inductive bias.
We verify this by training VAEs in experiments on synthetic and image
data, showing that they can recover the ground truth factors when the
IMA assumptions are met.

Structure and contributions of this Chapter.

▶ In (§ 4.3.1), we characterize and prove self-consistency of VAEs in the
near-deterministic regime (i.e., when the decoder variance tends to
zero), justifying its usage in previous works.

▶ In (§ 4.3.2), we show that under self-consistency, the ELBO converges
to a regularized log-likelihood, and discuss its possible role as a useful
inductive bias in representation learning;

▶ In (§ 4.4), we test the applicability of our theoretical results in experi-
ments on synthetic and image data, and show that VAEs recover the
true latent factors when the IMA assumptions are met.
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1: note that the RHS of the change of
variables is often written in terms of x
and the inverse of f𝜽 ; cfr. (2.18).

4.2 Background

We will connect two unsupervised learning objectives: the ELBO in VAEs
and the IMA-regularized log-likelihood. Both stem from LVMs with latent
variables s distributed according to a prior 𝑝s(s), and a mapping from s
to observations x given by a conditional generative model 𝑝𝜽(x|s).

Variational Autoencoders. Optimizing the data likelihood 𝑝𝜽(x) in deep
LVMs—i. e., finding decoder parameters𝜽maximizing

∫
𝑝𝜽(x|s)𝑝s(s)𝑑s—

is intractable in general, so approximate objectives are required. Vari-
ational approximations [208] replace the true posterior 𝑝𝜽(s|x) by an
approximate one, called the variational posterior 𝑞𝝓(s|x), which is a stochas-
tic mapping x ↦→ s with parameters 𝝓. This allows to evaluate a tractable
evidence lower bound (ELBO) [191, 192] of the model’s log-likelihood
that can be defined as

ELBO(x, 𝜽,𝝓) = 𝔼𝑞𝝓(s|x) [log 𝑝𝜽(x|s)] − KL
[
𝑞𝝓(s|x)| |𝑝s(s)

]
. (4.1)

The two terms in (4.1) are sometimes interpreted as a reconstruction term
measuring the sample quality of the decoder and a regularizer—the
Kullback-Leibler Divergence (KL) between the prior and the encoder [209].
The variational approximation trades off computational efficiency with a
difference with respect to the exact log-likelihood, which is expressed
alternatively as (see [193, 209] and Appendix C.1)

ELBO(x, 𝜽,𝝓) = log 𝑝𝜽(x) − KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
, (4.2)

where the KL between variational and true posteriors characterizes the
gap: if the variational family of 𝑞𝝓(s|x) does not include 𝑝𝜽(s|x), the ELBO
will be strictly smaller than log 𝑝𝜽(x).

VAEs [191] rely on the variational approximation in (4.1) to train deep
LVMs where neural networks parametrize the encoder 𝑞𝝓(s|x) and the
decoder 𝑝𝜽(x|s). Common modeling choices include constraining the
variational family of 𝑞𝝓(s|x) to be a factorized Gaussian with posterior
means �

𝝓
𝑘
(x) and variances 𝜎

𝝓
𝑘
(x)2 for each 𝑠𝑘 |x, and with a diagonal

covariance Σ𝝓
s|x ; and the decoder to a factorized Gaussian, conditional

on s, with mean f𝜽 (s) and an isotropic covariance in 𝑛 dimensions,

𝑠𝑘 |x ∼N(�𝝓
𝑘
(x), 𝜎𝝓

𝑘
(x)2) ; x|s ∼N

(
f𝜽 (s) , 𝛾−2I𝑛

)
. (4.3)

The deterministic limit of VAEs. The stochasticity of VAEs makes it
nontrivial to relate them to generative models with deterministic de-
coders such as Independent Component Analysis (see paragraph below),
though postulating a deterministic regime (where the decoder precision
𝛾2 becomes infinite) is possible. Interestingly, [206] explored this de-
terministic limit and argued that deterministic VAEs optimize an exact
log-likelihood, similar to normalizing flows [71, 210]. Normalizing flows
model arbitrarily complex distributions with a simple base distribution
𝑝s(s) and a juxtaposition of deterministic and invertible transformations f𝜽
through the change of variables1

log 𝑝𝜽(x) = log 𝑝s(s) − log |Jf𝜽 (s)| . (4.4)
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2: both the ELBO and �̂� depends on the
decoder precision 𝛾: we will omit this in
the following for simplicity

The comparison is nontrivial, since VAEs contain an encoder and a
decoder, whereas normalizing flows consist of a single architecture.
[206] made this analogy by resorting to what we call a self-consistency
assumption, stating that the VAE encoder inverts the decoder. We define
self-consistency in the near-deterministic regime: as the decoder variance
goes to zero, i.e. 𝛾→ +∞.

Definition 4.2.1 ((Near-deterministic) self-consistency) For a fixed 𝜽,
assume that mean encoder f𝜽 is invertible with inverse g𝜽, and that a map
associates each choice of decoder parameters and observation (𝜽, 𝛾, x) to an
encoder parameter (𝜽, 𝛾, x) ↦→ �̂�(𝜽, 𝛾, x), we say the VAE is self-consistent
whenever

𝝁𝝓(x) → g𝜽(x) and 𝝈𝝓(x)2 → 0 , as 𝛾→ +∞ . (4.5)

The encoder parameter map reflects the choice of a particular encoder
model for each (𝜽, 𝛾) pair:2 in § 4.3.1, we study this problem by intro-
ducing and justifying a particular choice for 𝝓 (see also § 4.5). This
self-consistency assumption appears central to deterministic claims [203,
206], but has not yet been proven. In particular, [206] assume that taking
the deterministic limit is well-behaved. However, VAEs’ near-deterministic
properties have not been investigated analytically.

4.3 Theory

Our theoretical analysis assumes that all the model’s defining densities
(𝑝s(s), 𝑞𝝓(s|x) and 𝑝𝜽(x|s)) are factorized. We also assume a Gaussian
decoder, matching common modeling practice in VAEs.

Assumption 4.3.1 (Factorized VAE class with isotropic Gaussian de-
coder and log-concave prior) We are given a fixed latent prior and three
parameterized classes of ℝ𝑛 → ℝ𝑛 mappings: the mean decoder class
𝜽 ↦→ f𝜽, and the mean and standard deviation encoder classes, 𝝓 ↦→ 𝝁𝝓

and 𝝓 ↦→ 𝝈𝝓 s.t.

(i) 𝑝s(s) ∼
∏

𝑘 𝑑(𝑠𝑘), with 𝑑 being smooth and fully supported on ℝ,
having a bounded non-positive second-order, and bounded third-order
logarithmic derivatives;

(ii) the encoder and decoder are of the form in (4.3), with isotropic decoder
covariance 1/𝛾2I𝑛 ;

(iii) the variational mean and variance encoder classes are universal ap-
proximators;

(iv) for all 𝜽, f𝜽 : ℝ𝑛 → ℝ𝑛 is a bĳection with inverse g𝜽, and both are
𝐶2 with bounded first and second order derivatives.

Crucially, both the mean encoder and the mean decoder can be nonlinear.
Moreover, the family of log-concave priors contains the commonly-used
Gaussian distribution as a special case. We study the near-deterministic
decoder regime of such models, where 𝛾→+∞. This regime is expected
to model data generating processes with vanishing observation noise
well—in line with the typical ICA setting—and is commonly considered
in theoretical analyses of VAEs, e.g. in [206] (which additionally assumes
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quasi-deterministic encoders), and in [203, 207]. Unlike [206], we consider
a large but finite 𝛾, not at the limit 𝛾 =∞, where the decoder is fully
deterministic. In fact, for any large but finite 𝛾, the objective is well-
behaved and amenable to theoretical analysis, while the KL-divergence
is undefined in the deterministic setting. The requirement in assumption
(iv) deviates from common practice in VAEs—where observations are
typically higher-dimensional—but it allows to connect VAEs and exact
likelihood methods such as normalizing flows [206] (see also § 4.5).

Due to considering 𝛾→ +∞, results are stated in the following “big-O”
notation for an integer 𝑝:

𝑓 (x, 𝛾) = 𝑔(x, 𝛾)+𝑂𝛾→+∞(1/𝛾𝑝) ⇐⇒ 𝛾𝑝 ∥ 𝑓 (x, 𝛾)−𝑔(x, 𝛾)∥ is bounded as 𝛾→ +∞ .

4.3.1 Self-Consistency

In this section, we will prove a self-consistency result in the near-deterministic
regime. This rests on characterizing optimal variational posteriors (i.e.,
those minimizing the ELBO gap with respect to the likelihood) for a par-
ticular point x and fixed decoder parameters 𝜽. Based on (4.2), any associated
optimal choice of encoder parameters satisfies

𝝓(x, 𝜽) ∈ arg max
𝝓

ELBO(x;𝜽,𝝓) = arg min
𝝓

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
.

(4.6)
We call self-consistent ELBO the resulting achieved value, denoted

ELBO∗(x;𝜽) = ELBO(x;𝜽,𝝓(x, 𝜽)) . (4.7)

The expression in (4.6) corresponds to a problem of information projec-
tion [67, 211] of 𝑝𝜽(s|x) onto the set of factorized Gaussian distributions.
This means that given a variational family, we search for the optimal
𝑞𝝓(s|x) to minimize the KL to 𝑝𝜽(s|x). While such information projection
problems are well studied for closed convex sets where they yield a unique
minimizer [212], the set projected onto in our case is not convex (convex
combinations of arbitrary Gaussians are not Gaussian), making this prob-
lem of independent interest. After establishing upper and lower bounds
on the KL divergence (exposed in Prop. C.3.1-C.3.2 in Appendix C.3.2),
we obtain the following self-consistency result.

Proposition 4.3.1 [Self-consistency of near-deterministic VAEs] Under
Assumption 4.3.1, for all x, 𝜽, as 𝛾 → +∞, there exists at least one global
minimum solution of (4.6). These solutions satisfy

𝝁𝝓(x) = g𝜽 (x) + 𝑂(1/𝛾) and 𝜎
𝝓
𝑘
(x)2 = 𝑂(1/𝛾2) , for all 𝑘 . (4.8)

Proposition 4.3.1 states that minimizing the ELBO gap (equivalently,
maximizing the ELBO) with respect to the encoder parameters 𝝓 implies
in the limit of large 𝛾 that the encoder’s mean 𝝁𝝓(x) tends to g𝜽(x), the
image of x by the inverse decoder. We can interpret this as the decoder
“inverting” the encoder. Additionally, the variances of the encoder will
converge to zero, in line with empirical observations of practitioners.
This is also stated as one property of the polarized regime (cf. Definition 1
in [202]).
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Figure 4.2: Self-consistency (Proposition 4.3.1) in VAE training, on a log-log plot, cf. 4.4.1 for details. Left: convergence of 𝜎𝝓
𝑘
(x)2 to 0;

Center: connecting 𝜎
𝝓
𝑘
(x)2, 𝛾2, and the column norms of the decoder Jacobian via LHS and RHS of (4.11); Right: convergence of 𝝁𝝓(x) to

g𝜽 (x)

Let us now consider the relevance of this result for training VAEs, i. e.,
maximizing the expectation of the ELBO for an observed distribution
𝑝(x). While maximization only with respect to 𝝓 in (4.6) does not match
common practice—which is learning 𝜽 and 𝝓 jointly—it models this
process in the limit of large-capacity encoders. Indeed, in this case, (4.6)
can be solved for each x as a separate learning problem, which entails
that the following inequality is satisfied for any parameter choice

𝔼x∼𝑝(x) [ELBO(x;𝜽,𝝓)] =
∫
𝑝(x)ELBO(x;𝜽,𝝓)𝑑x

≤
∫
𝑝(x)ELBO(x;𝜽,𝝓(x, 𝜽))𝑑x =: 𝔼x∼𝑝(x) [ELBO∗(x;𝜽)] . (4.9)

The joint optimization of encoder and decoder parameters thus reduces to
optimizing the subset of pairs (𝜽,𝝓(x, 𝜽)), and is equivalent to optimizing
the expected self-consistent ELBO, that is

min
𝜽,𝝓

𝔼x∼𝑝(x) [ELBO(x;𝜽,𝝓)] ⇐⇒ min
𝜽

𝔼x∼𝑝(x) [ELBO∗(x;𝜽)] (4.10)

This problem reduction is aligned with the original purpose of the ELBO:
building a tractable but optimal likelihood approximation. Namely, (i)
ELBO∗ depends on the same parameters as the likelihood (x, 𝛾 and 𝜽), (ii)
its gap KL

[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
is minimal. Clearly, the problem reduction

of (4.10) is more informative only at the critical points of the VAE loss,
since it allows us to compare the optimality of different decoders and
Proposition 4.3.1 allows us to study this question for near-deterministic
decoders.

4.3.2 Self-Consistent ELBO, IMA-Regularized
Log-Likelihood and Identifiability of VAEs

We want to investigate how the choice of 𝑞𝝓(s|x) and 𝑝𝜽(x|s) implicitly
regularizes the Jacobians of their means 𝝁𝝓(x) and f𝜽 (s) in the near-
deterministic regime. Exploiting self-consistency, we are able to precisely
characterize how this happens: we formalize this in Thm. 4.3.2.
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Theorem 4.3.2 [VAEs with a near-deterministic decoder approximate the
IMA objective] Under Assumption 4.3.1, the variational posterior satisfies

𝜎
𝝓
𝑘
(x)2 =

(
−𝑑

2 log 𝑝0

𝑑𝑠2
𝑘

(𝑔𝜽
𝑘
(x)) + 𝛾2

[Jf𝜽
(
g𝜽(x)

)]
:𝑘

2
)−1

+ 𝑂(1/𝛾3) ,

(4.11)
and the self-consistent ELBO (4.7) approximates the IMA-regularized log-
likelihood (3.5):

ELBO∗(x;𝜽) = log 𝑝𝜽(x) − 𝑐IMA(f𝜽 , g𝜽(x)) + 𝑂𝛾→∞ (1/𝛾2) . (4.12)

Proof is in Appendix C.2. Below, we provide a qualitative argument on
the interplay between distributional assumptions in the VAE and implicit
constraints on the decoder’s Jacobian and its inverse.

Modeling assumptions implicitly regularize the mean decoder class
f𝜽 under self-consistency. In the near deterministic regime, 𝑝𝜽(x) gets
close to the pushforward distribution of the prior by the mean de-
coder f𝜽∗ [𝑝s(s)], which can be used to show that the true posterior
𝑝𝜽(s|x) = 𝑝𝜽(x|s)𝑝s(s)/𝑝𝜽(x) is approximately the pushforward through
the inverse mean decoder g𝜽

∗ [𝑝𝜽(x|s)] (see Appendix C.1 for more details).
If we select a given latent s0 and denote its image by f𝜽 (s0) , then we can
locally linearize g𝜽 by its Jacobian Jg𝜽 = Jg𝜽 (f𝜽 (s0)), yielding a Gaussian
for the pushforward distribution g𝜽

∗ [𝑝𝜽(x|s)] with covariance 1/𝛾2Jg𝜽 J𝑇g𝜽 .
As the sufficient statistics of a Gaussian are given by its mean and covari-
ance, the structure of the posterior covariance Σ𝝓

s|x (which is by design
diagonal, cf. (4.3)) is crucial for minimizing the gap in (4.2). Practically,
this implies that in the zero gap limit, the covariances of 𝑞𝝓(s|x) and
𝑝𝜽(s|x) should match, i. e., 1/𝛾2Jg𝜽 J𝑇g𝜽 will be diagonal with entries 𝜎𝝓

𝑘
(x)2

and therefore Jg𝜽 has orthogonal rows. We can express the decoder Jaco-
bian via the inverse function theorem as Jf𝜽 (s0) = Jg𝜽 (f𝜽 (s0))−1. As the
inverse of a row-orthogonal matrix has orthogonal columns, f𝜽 satisfies
the IMA principle. Additionally, we can relate the variational posterior’s
variances to the column-norms of Jf𝜽 as 𝜎

𝝓
𝑘
(x)2 = 1/𝛾2∥ [Jf𝜽 (s0)]:𝑘 ∥−2.

The self-consistent ELBO therefore converges to the IMA-regularized
log-likelihood (3.5).

Our argument indicates that minimizing the gap between the ELBO and
the log-likelihood encourages column-orthogonality in Jf𝜽 by matching
the covariances of 𝑞𝝓(s|x) and g𝜽

∗ [𝑝𝜽(x|s)]. When 𝑞𝝓(s|x)=𝑝𝜽(s|x), the
gap is closed; this is only possible if the decoder is in the IMA class,
for which 𝑐IMA vanishes and the ELBO tends to an exact log-likelihood. To
the best of our knowledge, we are the first to prove this for nonlinear
functions, extending related work for linear VAEs [207].

Implications for identifiability of VAEs. While previous works argued
that the VAE objective favors decoders with a column-orthogonal Jaco-
bian [202, 203], they did not exactly characterize how: our result shows
that the self-consistent ELBO tends to a regularized log-likelihood, where
the regularization term 𝑐IMA explicitly enforces this (soft) constraint. Thus,
it possibly explains why VAEs are successful in learning disentangled
representations: namely, the IMA function class provably rules out cer-
tain spurious solutions for nonlinear Independent Component Analysis
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(ICA) (§ 2.4.1), and the IMA-regularized log-likelihood was empirically
shown to be beneficial in recovering the true latent factors when the
data generating process satisfies the IMA principle (Chapter 3). Thus, we
speak about embracing the gap, as its functional form equips VAEs with a
useful inductive bias.

In the following, we empirically corroborate that VAEs: 1) recover the
ground truth sources when the mixing satisfies IMA, and thereby 2)
achieve unsupervised disentanglement.

4.4 Experiments

Our experiments serve three purposes: 1) demonstrating that self-consistency
holds in practice (§ 4.4.1); 2) showing the relationship of the self-consistent
ELBO∗, the IMA-regularized and unregularized log-likelihood objectives
(§ 4.4.2); and 3) providing empirical evidence that the connection to the
IMA function class in VAEs can lead to success in learning disentangled
representations (§ 4.4.3). More details are provided in Appendix C.6.

4.4.1 Self-Consistency in Practical Conditions

Experimental setup. We use a 3-layer MultiLayer Perceptron (MLP)
with smooth Leaky ReLU nonlinearities [86] and orthogonal weight
matrices—which intentionally does not belong to the IMA class, as our
results are more general. The 60,000 source samples are drawn from a
standard normal distribution and fed into a VAE composed of a 3-layer
MLP encoder and decoder with a Gaussian prior. We use 20 seeds for
each 𝛾2 ∈ {1e1; 1e2; 1e3; 1e4; 1e5}.
Results. Fig. 4.2 summarizes our results, featuring the logarithms on each
axes. The left plot shows that the posterior variances 𝜎

𝝓
𝑘
(x)2 converge

to zero with a 1/𝛾2 rate, as predicted by (4.8). The center plot shows that
the expression for 𝜎

𝝓
𝑘
(x)2 corresponds to (4.11) in the optimum of the

ELBO by comparing both sides of the equation. The right plot shows
approximate convergence of the mean encodings 𝝁𝝓(x) to g𝜽(x)with a
1/𝛾 rate (see § 4.5). As f𝜽 is not guaranteed to be invertible, we use instead
the optimal encoder and decoder parameters to compare f𝜽(𝝁𝝓(x)) to x.

Figure 4.3: Left: 𝑐IMA and Mean Correlation Coefficient (MCC) for 3-dimensional Möbius mixings Right: MCC depending on the
volume-preserving linear map’s 𝑐IMA (𝛾2 = 1e5)
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Figure 4.4: Comparison of the ELBO∗,
the IMA-regularized and unregularized
log-likelihoods over different 𝛾2. Error
bars are omitted as they are orders of
magnitudes smaller

4.4.2 Relationship between ELBO∗, IMA-Regularized,
and Unregularized Log-Likelihoods

Experimental setup. We use an MLP f𝜽 with square upper-triangular
weight matrices and invertible element-wise nonlinearities to construct a
mixing not in the IMA class [63] and fix the VAE decoder to the ground
truth such that (4.4) gives the true data log-likelihood. This way, we en-
sure that the unregularized and IMA-regularized log-likelihoods differ
and make the claim of [206] comparable to ours. With a fixed decoder,
the ELBO∗ depends only on 𝝓, therefore we only train the encoder with
𝛾2 values from [1e1; 1e5] (5 seeds each).
Results. Fig. 4.4 compares the difference of the estimate of ELBO∗ and
the unregularized/IMA-regularized log-likelihoods after convergence
over the whole dataset. As the decoder and the data are fixed, log 𝑝𝜽(x)
and 𝐶IMA will not change during training, only ELBO∗ does. The figure
shows that as 𝛾→+∞, ELBO∗ approaches LIMA(f𝜽, s), as predicted by
Thm. 4.3.2, and not log 𝑝𝜽(x), as stated in [206]—the difference is 𝐶IMA.

4.4.3 Connecting the IMA Principle, 𝛾2, and
Disentanglement

Experimental setup (synthetic). We use 3-dimensional conformal mix-
ings (i. e., the Möbius transform [176]) from the IMA class with uniform
ground-truth and prior distributions. Our results quantify the relation-
ship of the decoder Jacobian’s IMA-contrast and identifiability with
MCC [64] and show how this translates to disentanglement—we note
that MCC was already used to quantify disentanglement [88, 213]. To
determine whether a mixing from the IMA class is beneficial for disen-
tanglement, we apply a volume-preserving linear map after the Möbius
transform (using 100 seeds) to make 𝑐IMA ≠ 0. Other parameters are the
same as in § 4.4.1, with the exception of picking the best 𝛾2 = 1e5.
Results (synthetic). The left of Fig. 4.3 empirically demonstrates the
benefits of optimizing the IMA-regularized log-likelihood. By increasing
𝛾2, MCC increases, while 𝑐IMA decreases, suggesting that VAEs in the
near-deterministic regime encourage disentanglement by enforcing the
IMA principle. The right plot shows that when the mixing is outside the
IMA class, MCC decreases, corroborating the benefits of such mixings
for disentanglement.
Experimental setup (image). We train a VAE (not 𝛽-VAE) with a fac-
torized Gaussian posterior and Beta prior on a Sprites image dataset
generated using the spriteworld renderer [214] with a Beta ground truth
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Figure 4.5: Left: 𝑐IMA and MCC for Sprites [214] during training (𝛾2=1); Center: true and estimated latent factors for the best trained
VAE on Sprites; Right: the corresponding latent interpolations and MCC values (from top to bottom): 𝑦- (0.989), 𝑥-position (0.996), scale
(0.933), and color (0.989)

distribution. Similar to [215], we use four latent factors, namely, x- and
y-position, color and size, and omit factors that can be problematic, such
as shape (as it is discrete) and rotation (due to symmetries) [202, 213].
Our choice is motivated by [201, 216] showing that the data-generating
process presumably is in the IMA class.
Results (image). The left of Fig. 4.5 indicates that VAEs can learn the true
latent factors and MCC is anticorrelated with 𝑐IMA, reinforcing the hypoth-
esis that the data-generating process belongs to the IMA class. The center
plot compares estimated and true latent factors from the best model (scal-
ing and permutation indeterminacies are removed), whereas the right
plot shows the corresponding latent interpolations—thus, connecting
identifiability (measured by MCC) to disentanglement.

4.5 Limitations

The near-deterministic regime. Our theory relies on 𝛾→+∞; this is
the regime where posterior collapse may be avoided [207], and where
calculating the reconstruction loss may be possible even without sam-
pling [203]. However, in practice it may be unclear when 𝛾2 is large
enough. This seems to be problem-dependent [202, 207], and possibly
tied to the covariance of the observations [217, 218]. Moreover, large values
of 𝛾2 may be harder to optimize due to an exploding reconstruction term
in (4.1). This may be one explanation for the slight deviation of Fig. 4.2,
right from our theory’s predictions: while convergence of 𝝁𝝓(x) to g𝜽

matches the prediction in Proposition 4.3.1, its rate is not precisely the
one predicted for the self-consistent ELBO (4.7). Another cause could
be the encoder’s finite capacity. Nonetheless, we have experimentally
shown that for realistic hyperparameters, VAEs’ behavior matches the
predictions of our theory for the near-deterministic regime.

Dimensionality. The setting in § 4.3 requires same dimensionality of s
and x. This matches most work on normalizing flows [71] and connecting
these to VAEs [206], as well as most of the work on nonlinear ICA [65, 66,
78] (but see, e.g., [62]). Nonetheless, we could empirically verify that the
predictions of our theory also hold for dimensionality reduction (§ 4.4.3).
Extending our theory to this setting could rely on, e.g., [219, 220] and is
left for future work.

The ELBO, the self-consistent ELBO, and amortized inference. There
are in principle multiple ways to obtain self-consistency (Defn. 4.2.1). No-
tably, one could simply force the variational mean and variance encoder



4 Embrace the Gap: VAEs Perform Independent Mechanism Analysis 53

maps to behave this way; unlike [203], we model the actual behavior of
VAEs trained under ELBO maximization, and obtain self-consistency as
a result. For this, we assume that the optimal encoder, which minimizes
the gap between ELBO and log-likelihood, can be learnt. This is not guar-
anteed in general, since it requires universal approximation capability
of the encoder. On the other hand, (4.7) requires unamortized inference to
introduce ELBO∗ , which does not depend on 𝝓. As in practice amortized
inference may be used to efficiently estimate a single set of 𝝓 for all x [221],
it can lead to a suboptimal gap to the log-likelihood and discrepancies
with our theoretical predictions.

4.6 Discussion

On disentanglement in unsupervised VAEs. It is widely believed that
unsupervised VAEs cannot learn disentangled representations [62, 72],
motivating work on models with, e.g., conditional priors [62] or sparse
decoding [32]. We show that under certain assumptions, ELBO optimiza-
tion can implement useful inductive biases for representation learning,
yielding disentangled representations in unsupervised VAEs. However,
while our results are formulated for VAEs, some of the most successful
models at disentanglement are modifications thereof—e.g., 𝛽-VAEs [194,
199], with an additional parameter 𝛽 multiplying the KL in (4.1). Self-
consistency is harder to prove for 𝛽-VAEs, as they deviate from the
information projection setting considered in § 4.3.1. However, conver-
gence of the loss in Thm. 4.3.2, mainly relies on self-consistency to hold.
We thus conjecture that our results would be applicable to 𝛽-VAEs as well,
as long as they are in a regime that satisfies self-consistency. Investigating
this question is left to future work. Overall, we stress that we uncover one
possible mechanism through which VAEs may achieve disentanglement.
By connecting to IMA [63], we discuss implications on recovering the
ground truth under suitable assumptions, extending uniqueness results
presented in [203]. We speculate that our success in disentanglement is
probably due to selecting data sets where the mixing is in the IMA class
(cf. [201, 216]), which presumably was not the case in [72].

Characterizing the ELBO gap for nonlinear models. Thm. 4.3.2 char-
acterizes the gap between ELBO and true log-likelihood for nonlinear
VAEs, and extends the linear analysis of [207]; we also empirically char-
acterize the gap in the deterministic limit in § 4.4.2. An unanticipated
consequence of this result is that—consistent with [207]—VAEs optimize
the IMA-regularized log-likelihood in the near-deterministic limit, and
not the unregularized one, as stated in [206].

Extensions to related work. Several papers discuss the (near-)deterministic
regime [202, 203, 206]. For example, [206] postulate a deterministic VAE
with the encoder inverting the decoder. Also [203] work in that regime,
but without justifying the relationship between the encoder and de-
coder. Although they show that the choice of 𝑝s(s) and 𝑞𝝓(s|x) influences
uniqueness (by, e.g., ruling out rotations), this does not imply recov-
ering the true latents. Our approach formalizes (Defn. 4.2.1), proves
(Proposition 4.3.1), and demonstrates the practical feasibility of (§ 4.4)
the near-deterministic regime. To the best of our knowledge, all previous
work relied on the linear case [207] or a (linear) approximation and the
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evaluation of the ELBO around a point to show the inductive bias on the
decoder Jacobian. However, our main result (Thm. 4.3.2) yields a nonlin-
ear equation where the decoder Jacobian can be evaluated at any point
and is equipped with a convergence bound. Moreover, the consistency
of VAE estimation for identifiable models [62] requires guarantees on
𝑞𝝓(s|x); our result helps proving these. We discuss extended connections
to the literature in Appendix C.4 and Appendix C.5.

Covariance structure and IMA. We have shown that specific choices
for encoder and decoder covariances regularize the decoder Jacobian.
Assuming factorized 𝑞𝝓(s|x) and isotropic 𝑝𝜽(x|s), IMA holds only for the
decoder; since in the other direction the pushforward of 𝑞𝝓(s|x) through
f𝜽 has covariance Jf𝜽 (s)Σ

𝝓
s|xJf𝜽 (s)𝑇 , which cannot be simplified in the

general case. Additionally assuming an isotropic encoder would make
IMA hold in both directions and would yield conformal Jacobians (as
both Jf𝜽 (s) and Jg𝜽 (x) need to be column-orthogonal). On the other hand,
if the observation model is non-isotropic, IMA would only hold for
the encoder Jacobian. Covariance structure has an intuitive meaning: an
isotropic 𝑝𝜽(x|s) covariance equals having i.i.d. noise for each 𝑥𝑖 . For
data recorded by the same device (e.g., pixels) this may be reasonable,
but multi-view settings with non-isotropic noise could require different
modeling choices.

Conjecture for VAEs with isotropic encoder and decoder covariances.
Following our intuition (Fig. 4.1), we suspect that an isotropic encoder en-
tails a decoder with conformal Jacobian (i. e., the product of a scalar field
and an orthogonal matrix). This is an interesting constraint, especially
as there is growing evidence that nonlinear ICA with conformal mixings
may be identifiable: the two-dimensional case was proven by [70] and
IMA was shown to rule out certain spurious solutions for conformal
mixings [63]. Based on these, we conjecture:

Conjecture 4.6.1 (Unsupervised VAEs with isotropic 𝑞𝝓(s|x) and
𝑝𝜽(x|s) are identifiable) When 𝑞𝝓(s|x) and 𝑝𝜽(x|s) have (possibly data-
dependent) isotropic covariances, i. e., Σs|x=𝛼(x)I𝑛 and Σx|s =𝛽(s)I𝑛 , and
self-consistency holds, then unsupervised VAEs are identifiable.

Conclusion. We provide a theoretical justification for the widely-used
self-consistency assumption in the near-deterministic regime of small de-
coder variance. Using this result, we show that the self-consistent ELBO
converges to the IMA-regularized log-likelihood, and not to the unregu-
larized one. Thus, we can characterize the gap between ELBO and true log-
likelihood and reason about its possible role as an inductive bias for repre-
sentation learning in nonlinear VAEs. We characterize a set of assumptions
under which unsupervised VAEs can be expected to disentangle and we
demonstrate this behavior in experiments on synthetic and image data.
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Relative Gradient Optimization
of the Jacobian Term in

Unsupervised Deep Learning 5
Learning expressive probabilistic models correctly describing the data
is a ubiquitous problem in machine learning. A popular approach for
solving it is mapping the observations into a representation space with a
simple joint distribution, which can typically be written as a product of
its marginals — thus drawing a connection with nonlinear independent
component analysis. Deep density models have been widely used for
this task. Unfortunately, as we saw in § 2.2.3, their maximum likelihood
based training requires estimating the log-determinant of the Jacobian
and is computationally expensive, thus imposing a trade-off between
computation and expressive power. In this work, we propose a new
approach for exact training of such neural networks. Based on relative
gradients, we exploit the matrix structure of neural network parameters
to compute updates efficiently even in high-dimensional spaces; the
computational cost of the training is quadratic in the input size, in
contrast with the cubic scaling of naive approaches. This allows fast
training with objective functions involving the log-determinant of the
Jacobian, without imposing constraints on its structure, in stark contrast
to autoregressive normalizing flows.

5.1 Introduction

Many problems of machine learning and statistics involve learning invert-
ible transformations of complex, multimodal probability distributions
into simple ones. One example is density estimation through latent
variable models under a specified base distribution [222], which can
also have applications in data generation [97, 223, 224] and variational
inference [210]. Another example is nonlinear ICA, where we want to
extract simple, disentangled features out of the observed data.

One approach to learn such transformations, introduced in [225] in the
context of density estimation, is to represent them as a composition of sim-
ple maps, the sequential application of which enables high expressivity
and a large class of representable transformations. Deep neural networks
parameterize functions of multivariate variables as modular sequences
of linear transformations and component-wise activation functions, thus
providing a natural framework for implementing that idea, as already
proposed in [226].

Unfortunately, however, typical strategies employed in neural networks
training do not scale well for objective functions like the aforementioned
ones; in fact, through the change of variable formula, the logarithm of
the absolute value of the determinant of the Jacobian appears in the
objective. Its exact computation, let alone its optimization, quickly gets
prohibitively computationally demanding as the data dimensionality
grows.

A large part of the research on deep density estimation, generally referred
to under the term autoregressive normalizing flows, has therefore been ded-
icated to considering a restricted class of transformations such that the
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computation of the Jacobian term is trivial [97, 179, 210, 227–229], thus
imposing a tradeoff between computation and expressive power. While
such models can approximate arbitrary probability distributions, the
extracted features are strongly restricted based on the imposed triangular
structure, which prevents the system from learning a properly disen-
tangled representation. Other strategies involve the optimization of an
approximation of the exact objective [230], and continuous-time analogs
of normalizing flows for which the likelihood (or some approximation
thereof) can be computed using relatively cheap operations [224, 231].

In this chapter, we provide an efficient way to optimize the exact maximum
likelihood objective for deep density estimation as well as for learning
disentangled representations by latent variable models. We consider a
nonlinear, invertible transformation from the observed to the latent space
which is parameterized through fully connected neural networks. The
weight matrices are merely constrained to be invertible. The starting
point is that the parameters of the linear transformations are matrices;
this allows us to exploit properties of the Riemannian geometry of matrix
spaces to derive parameter updates in terms of the relative gradient,
which was originally introduced as the natural gradient in the context
of linear ICA [232, 233], and which can be feasibly computed. We show
how this can be integrated with the usual backpropagation employed
to compute gradients in neural network training, yielding an overall
efficient way to optimize the Jacobian term in neural networks. This
is a general optimization approach which is potentially useful for any
objective involving such a Jacobian term, and is likely to find many
applications in diverse areas of probabilistic modelling, for example
in the context of Bayesian active learning for the computation of the
information gain score [234], or for fitting the reverse Kullback-Leibler
divergence in variational inference [235, 236].

The computational cost of our proposed optimization procedure is
quadratic in the input size — essentially the same as ordinary backpropa-
gation — which is in stark contrast with the cubic scaling of the naive way
of optimizing via automatic differentiation. The joint asymptotic scaling
of forward and backward pass as a function of the input size is therefore
the same that aforementioned alternative methods achieve by imposing
strong restrictions on the neural network structure [210] and thus on the
class of functions they can represent. In contrast, our approach allows to
efficiently optimize the exact objective for neural networks with arbitrary
Jacobians.

Structure and contributions of this Chapter. In § 5.2 and § 5.3 we
review maximum likelihood estimation for latent variable models, back-
propagation and the Jacobian term for neural networks, and discuss the
complexity of the naive approaches for optimizing the Jacobian term.
Then in § 5.4 we discuss the relative gradient, and show how it can
be integrated with backpropagation resulting in an efficient procedure.
We verify empirically the computational speedup our method provides
in § 5.5.
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1: The forward transformation could
also be parameterized, but here we only
explicitly parameterize its inverse.

5.2 Background

5.2.1 Maximum Likelihood for Latent Variable Models

Consider a generative model of the form

x = f(s) (5.1)

where s ∈ ℝ𝑛 is the latent variable, x ∈ ℝ𝑛 represents the observed
variable and f : ℝ𝑛 → ℝ𝑛 is a deterministic and invertible function,
which we refer to as forward transformation. Under the model specified
above, the log-likelihood of a single datapoint x can be written as

log 𝑝𝜽(x) = log 𝑝s(g𝜽(x)) + log | det Jg𝜽 (x)| , (5.2)

where g𝜽 is some representation with parameters 𝜽 of the inverse transfor-
mation1 of f; Jg𝜽 (x) ∈ ℝ𝑛×𝑛 its Jacobian computed at the point x, whose
elements are the partial derivatives [Jg𝜽 (x)]𝑖 𝑗 = 𝜕𝑔 𝑖𝜽(x)/𝜕𝑥 𝑗 ; and 𝑝𝜽 and
𝑝s denote, respectively, the probability density functions of x and of the la-
tent variable s under the specified model. In many cases, it is additionally
assumed that the distribution of the latent variable is sufficiently simple;
for example, that it factorizes in its components, thereby recovering an
objective with the same functional form as (2.18),

log 𝑝𝜽(x) =
∑
𝑖

log 𝑝𝑖(g𝑖𝜽(x)) + log | det Jg𝜽 (x)| . (5.3)

In this case, the problem can be interpreted as nonlinear independent
component analysis (nonlinear ICA), and the components of g𝜽(x) are
estimates of the original sources s. In the identifiable auxiliary variable
settings § 2.4.2, where the latent variables are not unconditionally indepen-
dent, but rather conditionally independent given an additional, observed
variable u, the model likelihood can be written as

log 𝑝𝜽(x|u) =
∑
𝑖

log 𝑝𝑖(g𝑖𝜽(x)|u) + log | det Jg𝜽 (x)| . (5.4)

Maximum likelihood estimation for the model parameters amounts
to finding, through optimization, the parameters 𝜽∗ such that the ex-
pectation of the likelihood given by the expression in equation (5.3) is
maximized. For all practical purposes, the expectation will be substituted
with the sample average. Specifically, for optimization purposes, we will
be interested in the computation of a gradient of such term on mini-
batches of one or few datapoints, such that stochastic gradient descent
can be employed.

5.2.2 Neural Networks and Backpropagation

Neural networks provide a flexible parametric function class for rep-
resenting g𝜽 through a sequential composition of transformations,
g𝜽 = g𝐿 ◦ . . . ◦ g2 ◦ g1 , where 𝐿 defines the number of layers of the
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2: Note that invertible neural networks
provide the possibility to not save, but
rather recompute the intermediate acti-
vations during the backward pass, thus
providing a memory efficient approach
to backpropagation [239].

network. When an input pattern x is presented to the network, it pro-
duces a final output z𝐿 and a series of intermediate outputs. By defining
z0 = x and z𝐿 = g𝜽(x), we can write the forward evaluation as

z𝑘 = g𝑘(z𝑘−1) for 𝑘 = 1, . . . , 𝐿 . (5.5)

Each module g𝑘 of the network involves two transformations,

(a) a coupling layer 𝐶W𝑘
, that couples the inputs to the layer with the

parameters W𝑘 to optimize;
(b) other arbitrary manipulations 𝝈 of inputs/outputs. Typically, these

are element-wise nonlinear activation functions with fixed parame-
ters; we can for simplicity think of them as operations of the form
𝝈(x) = (𝜎 (𝑥1) , . . . , 𝜎 (𝑥𝑛)) applied to vector variables.

The resulting transformation can thus be written as g𝑘(z𝑘−1) = 𝝈(𝐶W𝑘
(z𝑘−1)).

We will focus on fully connected modules, where the coupling 𝐶W is
simply a matrix-vector multiplication between the weights W𝑘 and the
input to the 𝑘-th layer; overall, the transformation operated by such a
module can be expressed as 𝝈(W𝑘z𝑘−1). Another kind of coupling layer
is given by convolutional layers, typically used in convolutional neural
networks [237].

The parameters of the network are randomly initialized and then learnt
by gradient based optimization with an objective function L, which is a
scalar function of the final output of the network. At each learning step,
updates for the weights are proportional to the partial derivative of the
loss with respect to each weight.

The computation of these derivatives is typically performed by back-
propagation [238], a specialized instance of automatic differentiation.
Backpropagation involves a two-phase process. Firstly, during a forward
pass, the intermediate and final outputs of the network z1 , . . . , z𝐿 are
evaluated and a value for the loss is returned. Then, in a second phase
termed backward pass, derivatives of the loss with respect to each individ-
ual parameter of the network are computed by application of the chain
rule. The gradients are computed one layer at a time, from the last layer
to the first one; in the process, the intermediate outputs of the forward
pass are reused, employing dynamic programming to avoid redundant
calculations of intermediate, repeated terms.2

In matrix notation, the updates for the weights of the 𝑘-th fully connected
layer W𝑘 can then be written as

ΔW𝑘 ∝ z𝑘−1𝜹
⊤
𝑘 , (5.6)

where 𝜹𝑘 is the cumulative result of the backward computation in the
backpropagation step up to the 𝑘-th layer, also called backpropagated
error. We report the full derivation in Appendix D.1. We adopt the
convention of defining x, z𝑘 and 𝜹𝑘 as column vectors.
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5.2.3 Difficulty of Optimizing the Jacobian Term of
Neural Networks

In the case of the objective function specified in Eq. (5.3), we have
L(x) = log 𝑝𝜽(x). By defining

L𝑝(x) =
∑
𝑖

log 𝑝𝑖(g𝑖𝜽(x)); L𝐽(x) = log
��det Jg𝜽 (x)

�� , (5.7)

the objective can be rewritten as L(x) = L𝑝(x) +L𝐽(x). The evaluation
of the gradient of the first term L𝑝 can be performed easily if a simple
form for the latent density is chosen, as it only requires simple operations
on top of a single forward pass of the neural network. Given that the
loss is a scalar, as backpropagation is an instance of reverse mode
differentiation [240], backpropagating the error relative to it in order
to evaluate the gradients does not increase the overall complexity with
respect to the forward pass alone.

In contrast, the evaluation of the gradient of the second term, L𝐽 , is very
problematic, and our main concern in this chapter. The key computational
bottleneck is in fact given by the evaluation of the Jacobian during the
forward pass. Since the Jacobian involves derivatives of the function
g𝜽 with respect to its inputs x, this evaluation can again be performed
through automatic differentiation. Overall, it can be shown [240] that
both forward and backward mode automatic differentiation for a 𝐿-layer,
fully connected neural network scale as O(𝐿𝑛3), with 𝐿 the number of
layers. This is prohibitive in many practical applications with a large data
dimension 𝑛.

Normalizing flows with simple Jacobians. An approach to alleviate the
computational cost of this operation is to deploy special neural network
architectures for which the evaluation of L𝐽 is trivial. For example, in
autoregressive normalizing flows [97, 179, 227, 228] the Jacobian of the
transformation is constrained to be lower triangular. In this case, its
determinant can be trivially computed with a linear cost in 𝑛. Notice
however that the computational cost of the forward pass still scales
quadratically in 𝑛; the overall complexity of forward plus backward pass
is therefore still quadratic in the input size [210].

Most critically, such architectures imply a strong restriction on the
class of transformations that can be learnt. While it can be shown,
based on [70], that under certain conditions this class of functions has
universal approximation capacity for densities [179], that is less general
than other notions of universal approximation [241, 242]. In fact it is
obvious that functions with such triangular Jacobians cannot be universal
approximators of functions, since, for example, the first variable can
only depend on the first variable. This is a severe problem in learning
features for disentanglement, for example by nonlinear ICA, which would
usually require unconstrained Jacobians. In other words, such restrictions
might imply that the deployed networks are not general purpose: [230]
showed that constrained designs typically used for density estimation
can severely hurt discriminative performance. We further elaborate on
this point in Appendix D.5. Note that fully connected modules have
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3: Comprehensive reviews on normaliz-
ing flows can be found in [71, 98]. Other
related methods are reviewed in Ap-
pendix D.2.

4: Though slightly more favorable ex-
ponents can in principle be obtained,
see Appendix D.3.

elsewhere been termed linear flows [71], and are a strict generalization of
autoregressive flows.3

5.3 Log-Determinant of the Jacobian for Fully
Connected Neural Networks

As a first step toward efficient optimization of the L𝐽 term, we next
provide the explicit form of the Jacobian for fully connected neural
networks. As a starting point, notice that invertible and differentiable
transformations are composable; given any two such transformations,
their composition is also invertible and differentiable. Furthermore, the
determinant of the Jacobian of a composition of functions is given by the
product of the determinants of the Jacobians of each function,

det Jg2◦g1(x) = det Jg2 (g1(x)) · det Jg1(x) . (5.8)

The log-determinant of the full Jacobian for a neural network therefore
simply decomposes in a sum of the log-determinants of the Jacobians
of each module, L𝐽(x) =

∑𝐿
𝑘=1 log | det Jg𝑘 (z𝑘−1)|. We will focus on the

Jacobian term relative to a single submodule 𝑘 with respect to its input
z𝑘−1; with a slight abuse of notation, we will call it L𝐽(z𝑘−1). As we
remarked, fully connected g𝑘 are themselves compositions of a linear
operation and an element-wise invertible nonlinearity; applying the same
reasoning, we then have

L𝐽(z𝑘−1) =
𝑛∑
𝑖=1

log
��𝜎′(𝑦 𝑖

𝑘
)
�� + log |det W𝑘 | =: L1

𝐽 (y𝑘) +L2
𝐽 (z𝑘−1) . (5.9)

where y𝑘 = W𝑘z𝑘−1. The first term L1
𝐽

is a sum of univariate functions of
single components of the output of the module, and it can be evaluated
easily with few additional operations on top of intermediate outputs of a
forward pass; gradients with respect to it can be simply computed via
backpropagation, not unlike the L𝑝 term introduced in § 5.2.3.

The second term L2
𝐽

however involves a nonlinear function of the deter-
minant of the weight matrix. From matrix calculus, we know that the
derivative is equal to

𝜕 log | det W𝑘 |
𝜕W𝑘

=
(
W⊤𝑘

)−1
. (5.10)

Therefore, the computation of the gradient relative to such term involves
a matrix inversion, with cubic scaling in the input size.4 For a fully
connected neural network of 𝐿 layers, given that we have one such
operation to perform for each of the layers, the gradient computation for
these terms alone would have a complexity of O(𝐿𝑛3), thus matching the
one which would be obtained if the Jacobian were to be computed via
automatic differentiation as discussed in § 5.2.

It can therefore be seen that these inverses of the weight matrices are the
problematic element in the gradient computation. In the next section, we
show how this problem can be solved using relative gradients.
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5: For linear blind source separation, this
approach also corresponds to the natural
gradient, which can be justified with an
information-geometric approach [233].
See also § 7.2.2, where we used relative
gradients for the MultiviewICA model
of Chapter 7.

5.4 Relative Gradient Descent for Neural
Networks

We now derive the basic form of the relative gradient, following the
approach in [232].5 The starting point is that the parameters in a neural
networks are matrices, in particular invertible in our case. Thus, we
can make use of the geometric properties of invertible matrices, while
they are usually completely neglected in gradient optimization in neural
networks.

Relative gradient based on multiplicative perturbation. In a classical
gradient approach for optimization, we add a small vector 𝝐 to a point x
in a Euclidean space. However, with matrices, we are actually perturbing
a matrix with another, and this can be done in different ways. In the
relative gradient approach, we make a multiplicative perturbation of the
form

W𝑘 → (I + 𝝐)W𝑘 (5.11)

where 𝝐 is an infinitesimal matrix. If we consider the effect of such a
perturbation on a scalar-valued function 𝑓 (W𝑘), we have

𝑓 ((I+𝝐)W𝑘)− 𝑓 (W) = ⟨∇ 𝑓 (W𝑘), 𝝐W𝑘⟩+𝑜(W𝑘) = ⟨∇ 𝑓 (W𝑘)W⊤𝑘 , 𝝐⟩+𝑜(W𝑘)
(5.12)

which shows that the direction of steepest descent in this case is given by
making 𝝐 = �∇ 𝑓 (W𝑘)W⊤𝑘 where � is an infinitesimal step size. Further-
more, when we combine this 𝝐 with the definition of a multiplicative
update, we find that the best perturbation to W is actually given as

W𝑘 →W𝑘 + �∇ 𝑓 (W𝑘)W⊤𝑘 W𝑘 (5.13)

That is, the classical Euclidean gradient is replaced by ∇ 𝑓 (W𝑘)W⊤𝑘 W𝑘 , i.e.
it is multiplied by W⊤

𝑘
W𝑘 from the right. This is the relative gradient.

A further alternative can be obtained by perturbing the weight matrices
from the right, as W𝑘 →W𝑘(I + 𝝐). A similar derivation shows that in
this case, the optimal 𝝐 is given by W𝑘W⊤𝑘 ∇ 𝑓 (W𝑘); we refer to this as
transposed relative gradient. In the context of linear ICA, the properties
of the relative and transposed relative gradient were discussed in [243].
This version of the relative gradient might be useful in some cases; for
example, the transposed relative gradient can be implemented more
straightforwardly in neural network packages where the convention is
that vectors are represented as rows.

The relative gradient belongs to the more general class of gradient
descent algorithms on Riemannian manifolds [244]. Specifically, relative
gradient descent is a first order optimization algorithm on the manifold
of invertible 𝑛 × 𝑛 matrices. Almost sure convergence of the parameters
to a critical point of the gradient of the cost function can be derived
even for its stochastic counterpart, with decreasing step size and under
suitable assumptions (see e.g. [245]).

Jacobian term optimization through the relative gradient. In § 5.3,
we showed that the difficulty in computing the gradient of the log-
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determinant is in the terms L2
𝐽
, whose gradient involves a matrix inver-

sion. Now we show that by exploiting the relative gradient, this matrix
inversion vanishes. In fact, when multiplying the right hand side of
equation (5.10) by W⊤

𝑘
W𝑘 from the right we get(

W⊤𝑘
)−1 W⊤𝑘 W𝑘 = W𝑘 , (5.14)

and similarly when multiplying by W𝑘W⊤𝑘 from the left. Most notably,
we therefore have to perform no additional operation to get the relative
gradient with respect to this term of the loss; it is, so to say, implicitly
computed — as we know that the update for the parameters in W𝑘 with
respect to the error term L2

𝐽
is proportional to W𝑘 matrix itself.

As for the remaining terms of the loss,L𝑝 andL1
𝐽
, simple backpropagation

allows us to compute the weight updates given by the ordinary gradient
in equation (5.6), which still need to be multiplied by W⊤

𝑘
W𝑘 to turn it into

a relative gradient. We will next see that we can do this avoiding matrix-
matrix multiplications, which would be computationally expensive. Note
that backpropagation necessarily computes the 𝜹𝑘 vector in equation (5.6)
and for our model, by applying the relative gradient carefully, we can
avoid matrix-matrix multiplication altogether by computing

(ΔW𝑘)W⊤𝑘 W𝑘 ∝ z𝑘−1
( (
𝜹⊤𝑘 W⊤𝑘

)
W𝑘

)
. (5.15)

Thus, we have a cheap method for computing the gradient of the log-
determinant of the Jacobian, and of our original objective function.
In Appendix D.4 we provide an explanation of how our procedure can
be implemented with relative ease on top of existing deep learning
packages.

While we so far only discussed update rules for the weight matrices
of the neural network, our approach can be extended to include biases.
Including bias terms in our multilayer network endows it with stronger
approximation capacity. We detail how to do this in Appendix D.6.

Complexity. Note that the parentheses in equation (5.15) stress the
point that the relative gradient updates only require matrix-vector or
vector-vector multiplications, each of which scales as O(𝑛2), in a fixed
number at each layer; that is, overall O(𝐿𝑛2) operations. They therefore do
not increase the complexity of a normal forward pass. Furthermore, the
overall complexity with respect to the input size is quadratic, resulting
in an overall quadratic scaling with the input size as in normalizing flow
methods [210], but without imposing strong restrictions on the Jacobian
of the transformation.

Extension to convolutional layers. As we remarked in § 5.2.2, the for-
malism we introduced includes convolutional neural networks (CNNs) [237].
A natural question is therefore whether our approach can be extended to
that case. The first natural question pertains the invertibility of convolu-
tional neural networks; the convolution operation was shown [246] to be
invertible under mild conditions (see Appendix D.7), and the standard
pooling operation can be by replaced an invertible operation [31]. We
therefore believe that the general formalism can be applied to CNNs;
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this would require the derivation of the relative gradient for tensors. We
believe that this should be possible but leave it for future work.

Invertibility and generation. Given that invertible and differentiable
transformations are composable, as discussed in § 5.3, invertibility of
our learnt transformation is guaranteed as long as the weight matrices
and the element-wise nonlinearities are invertible. Square and randomly
initialized (e.g. with uniform or normally distributed entries) weight
matrices are known to be invertible with probability one; invertibility of
the weight matrices throughout the training is guaranteed by the fact that
the L2

𝐽
terms would go to minus infinity for singular matrices (though

high learning rates and numerical instabilities might compromise it in
practice), as in estimation methods for linear ICA [46, 182, 232]. We
additionally employ nonlinearities which are invertible by construction;
we include more details about this in Appendix D.8. If we are interested
in data generation, we also need to invert the learnt function. In practice,
the cost of inverting each of the matrices is O(𝑛3), but the operation
needs to be performed only once. As for the nonlinear transformation,
the inversion is cheap since we only need to numerically invert a scalar
function, for which often a closed form is available.

5.5 Experiments

In the following we experimentally verify the computational advantage
of the relative gradient. The code used for our experiments can be found
at https://github.com/fissoreg/relative-gradient-jacobian.

Computation of relative vs. ordinary gradient. As a first step, we
empirically verify that our proposed procedure using the formulas
in § 5.4 leads to a significant speed-up in computation of the gradient of
the Jacobian term. We compare the relative gradient against an explicit
computation of the ordinary gradient, as described in § 5.3, and with a
computation based on automatic differentiation, as discussed in § 5.2.3,
where the Jacobian is computed with the JAX package [177]. While the
output and asymptotic computational complexity of the ordinary gradient
and automatic differentiation methods should be the same, a discrepancy
is to be expected at finite dimensionality due to differences in how the
computation is implemented. In the experiment, we generate 100 random
normally distributed datapoints and vary the dimensionality of the data
from 10 to beyond 20,000. We then define a two-layer neural network
and evaluate the gradient of the Jacobian. The main comparison is run
on a Tesla P100 Nvidia GPU. For the main plots, we deactivated garbage
collection. Plots with CPU and further details on garbage collection can be
found in Appendix D.8.1. For each dimension we computed 10 iterations
with a batch size of 100. Results are shown in figure 5.1, left. On the y-axis
we report the average of the execution times of 100 successive gradient
evaluations (forward plus backward pass in the automatic differentiation
case). It can be clearly seen that the relative gradient is much faster, typically
by two orders of magnitude. Autodiff computations could actually only
be performed for the smallest dimension due to a memory problem. We
report additional details on memory consumption in Appendix D.8.1.

https://github.com/fissoreg/relative-gradient-jacobian
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Figure 5.1: Left: Comparison of the average computation times of a single evaluation of the gradient of the log-likelihood; the standard
error of the mean is not reported as it is orders of magnitude smaller then the scale of the plot. Right: Time-evolution of the negative
log-likelihood for deterministic full-batch optimization for the two methods with the same initial points.

Figure 5.2: Illustrative examples of two-dimensional density estimation. Samples from the true distribution and predicted densities are
shown, in this order, side by side.

6: Notice that there’s no need to com-
pare to autodiff in this case because the
computed gradient should be exactly the
same as the ordinary gradient with the
formulas in § 5.3.

Optimization by relative vs. ordinary gradient. Since the method
presented in this chapter and the original publication [86] is, to the best
of our knowledge, the first one proposing relative gradient optimization
for neural networks (though other kinds of natural gradients have been
studied [233]), we want to verify that the learning dynamics induced by
the relative as opposed to the ordinary gradient do not bias the training
procedure towards less optimal solutions or create other problems. We
therefore perform a deterministic (full batch) gradient descent for both
the relative and the ordinary gradient.6 We employ 1,000 datapoints
of dimensionality 2 and a two-layer neural network. We take 10 initial
points and initialize both kinds of gradient descent at those same points.
On the x-axis we plot the training epoch, while on the y-axis we plot
the value of the loss. Figure 5.1, right shows the results: there is no big
difference between the two gradient methods. There may actually be a
slight advantage for the relative gradient, but that is immaterial since
our main point here is merely to show that the relative gradient does not
need more iterations to give the same performance.

Combining these two results, we see that the proposed relative gradient
approach leads to a much faster optimization than the ordinary gradient.
Perhaps surprisingly, the results exhibit a rather constant speed-up factor
of the order of 100 although the theory says it should be changing with the
dimension 𝑛; in any case, the difference is very significant in practice.

Density estimation. Although our main contribution is the computa-
tional speed-up of the gradient computation demonstrated above, we
further show some simple results on density estimation to highlight
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the potential of the relative gradient used in conjuction with the un-
constrained factorial approximation in § 5.2.1. We use a fairly simple
feedforward neural network with a smooth version of leaky-ReLU as
activation function. Our empirical results show that this system, despite
having quite minimal fine-tuning (details in Appendix D.8.3), achieves
competitive results on all the considered datasets compared with existing
models—which are all tailored and fine-tuned for density estimation.
First, we show in Figure 5.2 different toy examples that showcase the
ability of our method to convincingly model arbitrarily complex densities.
Second, in order to show the viability of our method in comparison
with well-established methods we perform, as in [247], unconditional
density estimation on four different UCI datasets [248] and a dataset
of natural image patches (BSDS300) [249], as well as on MNIST [250].
The results are shown in Table 5.1. To achieve a fair comparison across
models, the number of parameters was tuned so that the number of
trainable parameters are as similar as possible. Note that, as we can
perform every computation efficiently, all the experiments are suitable to
run on usual hardware, thus avoiding the need of hardware accelerators
such as GPUs. As a final remark, the reported results make no use of
batch normalization, dropout, or learning-rate scheduling. Therefore, it
is sensible to expect even better results by including them in future work.

Table 5.1: Test log-likelihoods (higher is better) on unconditional density estimation for different datasets and models (same as in Table 1
of [247]). Models use a similar number of parameters; results show mean and two standard deviations. Best performing models are in
bold. More details in Appendix D.8.3

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

Ours 0.065 ± 0.013 6.978 ± 0.020 −21.958 ± 0.019 −13.372 ± 0.450 151.12 ± 0.28 −1375.2 ± 1.4
MADE −3.097 ± 0.030 3.306 ± 0.039 −21.804 ± 0.020 −15.635 ± 0.498 146.37 ± 0.28 −1380.8 ± 4.8
MADE MoG 0.375 ± 0.013 7.803 ± 0.022 −18.368 ± 0.019 −12.740 ± 0.439 150.84 ± 0.27 −1038.5 ± 1.8
Real NVP (10) 0.182 ± 0.014 8.357 ± 0.019 −18.938 ± 0.021 −11.795 ± 0.453 153.28 ± 1.78 −1370.7 ± 10.1
Real NVP (5) −0.459 ± 0.010 6.656 ± 0.020 −20.037 ± 0.020 −12.418 ± 0.456 151.76 ± 0.27 −1323.2 ± 6.6
MAF (5) −0.458 ± 0.016 7.042 ± 0.024 −19.400 ± 0.020 −11.816 ± 0.444 149.22 ± 0.28 −1300.5 ± 1.7
MAF (10) −0.376 ± 0.017 7.549 ± 0.020 −25.701 ± 0.025 −11.892 ± 0.459 150.46 ± 0.28 −1313.1 ± 2.0
MAF MoG (5) 0.192 ± 0.014 7.183 ± 0.020 −22.747 ± 0.017 −11.995 ± 0.462 152.58 ± 0.66 −1100.3 ± 1.6

5.6 Conclusion

Using relative gradients, we proposed a new method for exact optimiza-
tion of objective functions involving the log-determinant of the Jacobian
of a neural network, as typically found in density estimation, nonlinear
ICA, and related tasks. The relative gradient approach proposed here is
quite simple, yet rather powerful. The importance of the optimization
of the log-determinant of the Jacobian is well-known, but it has not
been previously shown that there is a way around its difficulty for the
class of models we considered. This allows for employing models which,
unlike typical alternatives in the normalizing flows literature, have no
strong limitation on the structure of the Jacobian. We use modules with
fully connected layers, thus strictly generalizing normalizing flows with
triangular Jacobians, while still supporting efficient combination of for-
ward and backward pass. These neural network modules can represent a
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larger function class than autoregressive ones, which can only represent
transformations with triangular Jacobians. Our method can therefore
provide an alternative in settings where more expressiveness is needed
to learn a proper inverse transformation, such as in identifiable nonlinear
ICA models.



Multiple Views and Data Augmentation





The Incomplete Rosetta Stone
Problem: Identifiability Results
for Multi-View Nonlinear ICA 6

We consider the problem of recovering a shared latent source vector
with independent components from multiple views. This applies for
example to settings in which a variable is measured with multiple
experimental modalities, and where the goal is to synthesize the disparate
measurements into a single unified representation; or to group studies
where multiple subjects are exposed to the same experimental stimulus,
and we are interested in their common or shared response to it. We
consider the case that the observed views are a nonlinear mixing of
component-wise corruptions of the shared sources. When the views
are considered separately, this reduces to nonlinear ICA, for which it
is provably impossible to undo the mixing—as shown in § 2.4.1. We
present novel identifiability proofs that this is instead possible when the
multiple views are considered jointly, showing that the mixing can be
undone using function approximators such as deep neural networks. In
contrast to known identifiability results for nonlinear ICA, we prove that
independent latent sources with arbitrary mixing can be recovered as
long as multiple, sufficiently different noisy views are available.

6.1 Introduction

Consider the setting described by the following generative model

x1 = f1(s) (6.1)
x2 = f2(s) (6.2)

𝑝s(s) =
∏
𝑖

𝑝𝑠𝑖 (𝑠𝑖) , (6.3)

where x1 , x2 , s ∈ ℝ𝑛 and f1 , f2 are arbitrary smooth and invertible transfor-
mations of the latent variable s = [𝑠1 , . . . , 𝑠𝑛]with mutually independent
components. The goal is to recover s, undoing the mixing induced by the
f𝑖 , in the case where only observations of x1 and x2 are available. The
two decoupled problems defined by considering pairs of Equations (6.1),
(6.3) and (6.2), (6.3) separately are instances of nonlinear ICA.

As we reviewed in § 2.4.2, a breakthrough in the nonlinear ICA problem
was to leverage contrastive learning, recasting the problem of unsu-
pervised learning as a supervised one [64–66, 80]. This is a powerful
proof technique, which additionally provides algorithms which can be
practically implemented using modern deep learning frameworks. The
setup with auxiliary variables makes strong assumptions on the data
generating mechanism, but allows for arbitrary nonlinear mixing of the
sources. However, the unconditional independence assumption on the
source components ((6.3)) is replaced by a conditional independence (as
in (2.17)).

In this chapter, we employ contrastive learning to address the setting
specified by Equations 6.1–6.3. This corresponds to cases in which multi-
ple recordings of the same process, acquired with different instruments
and possibly different modalities, are available, and the goal is to find an
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Figure 6.1: Left: The Rosetta Stone, a
stele found in 1799, inscribed with three
versions of a decree issued at Memphis,
Egypt in 196 BC. The top and middle
texts are in Ancient Egyptian using hi-
eroglyphic script and Demotic script, re-
spectively, while the bottom is in Ancient
Greek. From [256]. Right: The Incom-
plete Rosetta Stone Metaphor: (a) The
Rosetta Stone, with the known language
denoted by an exclamation mark and
the unknown ones denoted by question
marks; (b) The Incomplete Rosetta Stone.
Illustration courtesy of Alexander Neitz.

[255]: Champollion (1828), Précis du sys-
teme hiéroglyphique des anciens Egyptiens,
ou Recherches sur les élémens premiers de
cette écriture sacrée, sur leurs diverses combi-
naisons, et sur les rapports de ce systeme avec
les autres méthodes graphiques égyptiennes
avec un volume de planches

unambiguous representation of the latent state common to all. Multiview
settings of this sort are common in large biomedical and neuroimag-
ing datasets [251–254], motivating the need for reliable statistical tools
enabling simultaneous handling of multiple sets of variables.

6.1.1 The Incomplete Rosetta Stone Metaphor

As a metaphor for such a setting, consider the story of the Rosetta Stone, a
stele discovered during Napoleon’s campaign in Egypt in 1799, inscribed
with three versions of a decree issued at Memphis in 196 BC. The realisa-
tion that the stone reported the same text translated into three different
languages led the French philologist Champollion to succeed in translat-
ing two unknown languages (Ancient Egyptian, in hieroglyphic script
and Demotic script) by exploiting a known one (Ancient Greek) [255].
We instead consider the radically unsupervised task in which, given a
Rosetta Stone with only two texts, both in unknown languages (Fig. 6.1),
we want to learn an unambiguous common representation for both of
them.

The main contribution presented in this chapter is to show that jointly
addressing multiple demixing problems allows for identifiability with
assumptions which do not require abandoning the assumption of un-
conditional independence, nor restricting the class of mixing functions,
but rather to the conditional probability distribution of one observation
given the other. This provides identifiability results in a novel setting,
with assumptions entailing a different interpretation - namely, that the
views have to be sufficiently diverse.

Structure and contributions of this Chapter. In § 6.2 we present our
main results, providing identifiability for different multi-view settings.
In § 6.3 we discuss other related works in the literature. Finally, we
summarise and discuss our results in § 6.4.

6.2 Nonlinear ICA with Multiple Views

We described how naively splitting Equations 6.1, 6.2 and 6.3 into two
separate nonlinear ICA problems renders both problems non-identifiable,
unless strong assumptions are made on the f𝑖 or the distribution of s.
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1: This was first realised by Paul K.
Rubenstein. Unfortunately, this was not
included in the original publication.

In the Rosetta stone story, awareness that different texts reported on
the stele were linked by a common topic helped solving the translation
problem; similarly, in our setting, matched observations of the two
views are linked through the shared latent variable s. Thus the central
question we investigate is whether these assumptions can be relaxed
by exploiting the structure of the generative model; that is, whether
jointly observing x1 and x2 provides sufficient constraints to the inverse
problem, thus removing the ambiguities present in the vanilla nonlinear
ICA setting. We consider a contrastive learning task in which a classifier
is trained to distinguish between pairs (x1 , x2) corresponding to the same
s and (x1 , x∗2) corresponding to different realisations of s. In loose terms,
the classifier will be forced to employ the information shared by the
simultaneous views in order to distinguish the two classes. As we show,
this ultimately results in recovering the sources up to the equivalence
class in Defn. 2.4.1.

Component-wise corruptions of the sources. Our method requires
some stochasticity in the relationship between s and at least one of the x𝑖
for technical reasons discussed in Appendix E.1. A deviation from the
basic setting described in (6.1)-(6.3) is required not only by our specific
method and proof technique, based on contrastive learning: in fact,
starting from that model and the true solution, we could simply apply a
measure-preserving automorphism as those presented in § 2.4.1 to the
true sources s and generate spurious solutions.1

We will therefore consider a component-wise independent corruption
of our sources, i.e., x1 = f1 ◦ g1(s, n1)with 𝑔1𝑖(s, n1) = 𝑔1𝑖(𝑠𝑖 , 𝑛1𝑖), where
the components of n1 are mutually independent, and similar for x2. The
noise variables n1, n2 and the sources s are assumed to be mutually
independent. Note that this only puts constraints on the way the signal
is corrupted by the noise, namely g, and not on the mixing f. We will
refer to such g as component-wise corrupter throughout, and to its output
as corruption. In the the vanilla ICA setting, inverting the mixing and
recovering the sources s are equivalent; in the setting that we consider,
the inversion of the mixing f only implies recovering the sources up to
the effect of the corrupter g. This holds in general for noisy extensions
of the ICA model: while the basic model in, e.g., (2.2) is noiseless and
identifiability allows reconstruction of the random variable s up to scale
and permutation, noisy models only allow reconstruction of the variables
up to some uncertainty (see e.g. [62, Sec. 4.1]).

We will consider three instances of the general setting, providing identi-
fiability results for each.

I. First we consider the case that only one of the observations, x2, is
corrupted with noise. This corresponds, for instance, to a setting in
which one accurate measurement device is supplemented with a
second noisy device. We show that in this setting it is possible to
fully reconstruct s using the noiseless variable (Section 6.2.1).

II. Next, we consider the case that both variables are corrupted with
noise. In this setting, it is possible to recover s up to the corruptions.
Furthermore, we show that s can be recovered with arbitrary
precision in the limit that the corruptions go to zero (Section 6.2.2).
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s n

x1 x2

Figure 6.2: The setting considered
in § 6.2.1. Two views of the sources are
available, one of which, x1, is not cor-
rupted by noise. In this and all other
figures in this chapter, each node is a
deterministic function of all its parents
in the graph.

III. Finally, we consider the case of having 𝑁 simultaneous views
of the source s rather than just two. When considering the limit
𝑁 →∞, we prove sufficient conditions under which it is possible
to reconstruct s even if each observation is corrupted by noise
(Section 6.2.3).

To the best of our knowledge, no result of identifiability of latent sources
from multiple (corrupted) mixtures thereof, or views, had been given
before the work on which this chapter is based.

6.2.1 One Noiseless View

Consider the generative model

x1 = f1(s) (6.4)
x2 = f2(g(s, n)) (6.5)

𝑝(s) =
∏
𝑖

𝑝𝑖(𝑠𝑖)

𝑝(n) =
∏
𝑖

𝑝𝑖(𝑛𝑖) (6.6)

where f1 and f2 are invertible, g is a component-wise corrupter, n ⊥⊥ s
and x1 and x2 are observed. This is represented in Fig. 6.2.

Subject to some assumptions, it is possible to recover s up to the equiva-
lence class in Defn. 2.4.1.

Theorem 6.2.1 The difference of the log joint probability and log product
of marginals of the observed variables in the generative model specified by
Equations 6.4-6.6 admits the following factorisation:

log 𝑝(x1 , x2) − log 𝑝(x1)𝑝(x2)
= log 𝑝(x2 |x1) − log 𝑝(x2)

=

(∑
𝑖

𝛼𝑖(𝑠𝑖 , 𝑔𝑖(𝑠𝑖 , 𝑛𝑖)) + log det Jf−1
2 (x2)

)
−

(∑
𝑖

𝛿𝑖(𝑔𝑖(𝑠𝑖 , 𝑛𝑖)) + log det Jf−1
2 (x2)

)
=

∑
𝑖

𝛼𝑖(𝑠𝑖 , 𝑔𝑖(𝑠𝑖 , 𝑛𝑖)) −
∑
𝑖

𝛿𝑖(𝑔𝑖(𝑠𝑖 , 𝑛𝑖)) (6.7)

where 𝑠𝑖 = 𝑓 −1
1𝑖 (x1), 𝑔𝑖 = 𝑓 −1

2𝑖 (x2), and Jf−1
2 (x2) is the Jacobian of the

transformation f−1
2 computed in x2 (note that the introduced Jacobians cancel).

Suppose that

1. 𝜶 satisfies the Sufficiently Distinct Views assumption (see after this
theorem).

2. We train a classifier to discriminate between

(x1 , x2) vs. (x1 , x∗2) ,

where (x1 , x2) correspond to the same realisation of s and (x1 , x∗2)
correspond to different realisations of s.
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3. The classifier is constrained to use a regression function of the form

𝑟(x1 , x2) =
∑
𝑖

𝜓𝑖(ℎ𝑖(x1), x2)

where h = (ℎ1 , . . . , ℎ𝑛) are invertible, smooth and have smooth inverse.

Then, in the limit of infinite data and with universal approximation capacity,
h inverts f1 in the sense that the ℎ𝑖(x1) recover the independent components
of s up to component-wise invertible transformations and permutation.

The proof can be found in Appendix E.3.1. The assumption of invertibility
for h could be satisfied by, e.g., the use of normalizing flows [210, 231] or
deep invertible networks [31].

We remark that at several points in this paper we consider the difference
between two log-probabilities. In all of these cases, the Jacobians intro-
duced by a change of variables cancel out as in Equation 6.7. For brevity
we omit explanation of this fact in the rest of the results.

The Sufficiently Distinct Views (SDV) assumption specifies in a technical
sense that the two views available are sufficiently different from one
another, resulting in more information being available in totality than
from each view individually. In the context of Theorem 6.2.1, it is an
assumption about the log-probability of the corruption conditioned on
the source. Informally, it demands that the probability distribution of
the corruption should vary significantly as a result of conditioning on
different values of the source.

Definition 6.2.1 (Sufficiently Distinct Views) Let 𝛼𝑖(𝑦𝑖 , 𝑡𝑖), 𝑖 = 1, . . . , 𝑁
be functions of two arguments. Denote by 𝜶 the vector of functions and define

𝛼′𝑖(𝑦𝑖 , 𝑡𝑖) = 𝜕𝛼𝑖(𝑦𝑖 , 𝑡𝑖)/𝜕𝑡 , (6.8)

𝛼′′𝑖 (𝑦𝑖 , 𝑡𝑖) = 𝜕2𝛼𝑖(𝑦𝑖 , 𝑡𝑖)/𝜕𝑡2 (6.9)
𝒘𝜶(𝒚, 𝒕) = (𝛼′′1 , . . . , 𝛼′′𝐷 , 𝛼

′
1 , . . . , 𝛼

′
𝐷). (6.10)

We say that 𝜶 satisfies the assumption of Sufficiently Distinct Views (SDV)
if for any value of 𝒚, there exist 2𝐷 distinct values 𝒕 𝑗 , 𝑗 = 1, . . . , 2𝐷 such
that the vectors 𝒘(𝒚, 𝒕 𝑗) are linearly independent.

This is closely related to the Assumption of Variability in [66], see also Ap-
pendix A.2. We provide simple cases of conditional log-probability
density functions satisfying and violating the SDV assumption in Ap-
pendix E.2.

Theorem 6.2.1 shows that by jointly considering the two views, it is
possible to recover s, in contrast to the single-view setting. This result can
be extended to learn the inverse of f2 up to component-wise invertible
functions and permutations.

Corollary 6.2.2 Consider the setting of Theorem 6.2.1, and the alternative
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factorisation of the log joint probability given by

log 𝑝(x1 , x2) − log 𝑝(x1)𝑝(x2)
= log 𝑝(x1 |x2) − log 𝑝(x1)
=

∑
𝑖

𝛾𝑖(𝑠𝑖 , 𝑔𝑖(𝑠𝑖 , 𝑛𝑖)) −
∑
𝑖

𝛽𝑖(𝑠𝑖)) . (6.11)

Suppose that 𝜸 satisfies the SDV assumption. Replacing the regression
function with

𝑟(x1 , x2) =
∑
𝑖

𝜓𝑖(x1 , ℎ𝑖(x2))

results in h inverting f2 in the sense that the ℎ𝑖(x2) recover the independent
components of g(s, n) up to component-wise invertible transformations.

The proof can be found in Appendix E.3.2. These two results together
mean that it is possible to learn inverses h1 and h2 of f1 and f2, and there-
fore to recover s and g(s, n), up to component-wise intertible functions.
Note, however, that doing so requires running two separate algorithms.
Furthermore, there is no guarantee that the learnt inverses h1 and h2 are
‘aligned’ in the sense that for each 𝑖 the components h1𝑖(x1) and h2𝑖(x2)
correspond to the same components of s.

This problem of misalignment can be resolved by changing the form of
the regression function.

Theorem 6.2.3 Consider the settings of Theorem 6.2.1 and Corollary 6.2.2.
Suppose that both 𝜶 and 𝜸 satisfy the SDV assumption. Replacing the
regression function with

𝑟(x1 , x2) =
∑
𝑖

𝜓𝑖(ℎ1,𝑖(x1), ℎ2,𝑖(x2)) (6.12)

results in h1, h2 inverting f1, f2 in the sense that the ℎ1,𝑖(x1) and ℎ2,𝑖(x2)
recover the independent components of s and g(s, n) up to two different
component-wise invertible transformations. Furthermore, the two representa-
tions are aligned, i.e. for 𝑖 ≠ 𝑗,

ℎ1,𝑖(x1) ⊥⊥ ℎ2, 𝑗(x2)

The proof can be found in Appendix E.4.

Note that Theorem 6.2.3 is not a generalisation of Theorem 6.2.1 or
Corollary 6.2.2, since it makes stricter assumptions by imposing the SDV
assumption on both 𝜶 and 𝜸. In contrast, Theorem 6.2.1 and Corollary
6.2.2 require that only one is valid for each.

For cases in which finding aligned representations for s and g(s, n) are
desired, Theorem 6.2.3 should be applied. If the only goal is recovery of
s, the assumptions of Theorem 6.2.1 are simpler to verify.

In practical applications, the multi-view scenario is useful in multimodal
datasets where one of the two acquisition modalities has much higher
signal to noise ratio than the other one (e.g., in neuroimaging, when
simultaneous fMRI and Optical Imaging recordings are compared). In
such cases, jointly exploiting the multiple modalities would help to
discern a meaningful and identifiable latent representation which could
not be attained through analysis of the more reliable modality alone.
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[65]: Hyvärinen et al. (2017), ‘Nonlinear
ICA of Temporally Dependent Stationary
Sources’

n1 s n2

x1 x2

Figure 6.3: Setting with two views of the
sources s, both corrupted by noise.

Equivalence with Permutation Contrastive Learning for time-dependent
sources. Note that the analysis of Theorem 6.2.1 covers the case of tem-
porally dependent stationary sources analysed in [65]. Indeed, if it is
further assumed that s and g(s, n) are uniformly dependent [65, Def-
inition 1], they can be seen as a pair of subsequent time points of an
ergodic stationary stochastic process for which the analysis of Theorem 1
of [65] would hold. In other words, we can define a stochastic process
as 𝑝(s𝑡+1 |s𝑡) := 𝑝(g(s, n)|s). Note that while the two formulations are
theoretically equivalent, our view offers a wider applicability as it covers
the asynchronous sensing of s, provided that multiple measurements
(i.e. x1 , x2) are available; additionally, our Sufficiently Distinct Views as-
sumption does not necessarily imply uniform dependency. Furthermore,
while [65] considers a generative model of the form x(𝑡) = f(s(𝑡)), thus
constraining the mixing function to be the same for any two data points
x(𝑡1), x(𝑡2), in our setting we consider two different mixing functions, f1
and f2, for the two different views. Finally, we study this setting as an in-
termediate step for the following two sections, in which no deterministic
function of the sources is observed, learning to invert any of the f𝑖 can
only recover s up to the corruption operated by g.

6.2.2 Two Noisy Views

We next consider the setting in which both variables are corrupted by
noise. Consider the following generative model (represented in Fig. 6.3):

x1 = f1(g1(s, n1))
x2 = f2(g2(s, n2)) ,

where all variables take value inℝ𝑛 , and f1 and f2 are nonlinear, invertible,
deterministic functions, g1 and g2 are component-wise corrupters, and s
and the n𝑖 are independent with independent components. This class of
models generalises the setting of § 6.2.1 since by taking g1(s, n1) = s we
reduce to the case of one noiseless observation.

The difference log 𝑝(x1 , x2) − log 𝑝(x1)𝑝(x2) admits similar factorisations
to those given in Equations 6.7 and 6.11:

log 𝑝(x1 , x2) − log 𝑝(x1)𝑝(x2)
= log 𝑝(x1 |x2) − log 𝑝(x1)
=

∑
𝑖

�𝑖(𝑔1𝑖(𝑠𝑖 , 𝑛𝑖1), 𝑔2𝑖(𝑠𝑖 , 𝑛2𝑖)) −
∑
𝑖

�𝑖(𝑔1𝑖(𝑠𝑖 , 𝑛1𝑖) (6.13)

= log 𝑝(x2 |x1) − log 𝑝(x2)
=

∑
𝑖

�𝑖(𝑔2𝑖(𝑠𝑖 , 𝑛2𝑖), 𝑔1𝑖(𝑠𝑖 , 𝑛1𝑖)) −
∑
𝑖

�𝑖(𝑔2𝑖(𝑠𝑖 , 𝑛2𝑖)) (6.14)

Since we only have access to corrupted observations, exact recovery of
s is not possible. Nonetheless, a generalisation of Theorem 6.2.3 holds
showing that the f𝑖 can be inverted and s recovered up to the corruptions
induced by the n𝑖 via g𝑖 .

Theorem 6.2.4 Suppose that 𝜼 and 𝝀 satisfy the SDV assumption. The
algorithm described in Theorem 6.2.1 with regression function specified in
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s n𝑖

x𝑖
𝑖 = 1, ..., 𝑁

Figure 6.4: Setting with 𝑁 corrupted
views of the sources.

Equation 6.12 results in h1 and h2 inverting f1 and f2 in the sense that
the ℎ1,𝑖(x1) and ℎ2,𝑖(x2) recover the independent components of g1(s, n1)
and g2(s, n2) up to two different component-wise invertible transformations.
Furthermore, the two representations are aligned, i.e., for 𝑖 ≠ 𝑗,

ℎ1,𝑖(x1) ⊥⊥ ℎ2, 𝑗(x2)

The proof can be found in Appendix E.4.

We can thus recover the common source s up to the corruptions g𝑖(s, n𝑖).
In the limit of the magnitude of one of the noise variables going to zero,
the reconstruction of the sources s attained through the corresponding
view is exact up to the component-wise invertible functions, as stated in
the following corollary.

Corollary 6.2.5 Let n(𝑘)1 = 1
𝑘
· ñ for 𝑘 ∈ ℕ, where ñ ∈ ℝ𝐷 is a fixed random

variable, and n2 be a random variable that does not depend on 𝑘. Let h(𝑘)1 , h(𝑘)2
be the output of the algorithm specified by Theorem 6.2.4 with noise variables
n(𝑘)1 and n2.

Suppose that the corrupters g𝑖 satisfy the following two criteria:

i) ∃a ∈ ℝ𝐷
>0 s.t.

��� 𝜕g1(s,n)
𝜕n

���
n=0
≤ a for all s

ii) ∃b ∈ ℝ𝐷
>0 s.t. 0 < 𝜕g1(s,0)

𝜕s ≤ b

Then, denoting by E the set of all scalar, invertible functions, we have that

lim
𝑘→∞

inf
e∈E

s − e(h(𝑘)1 (x1))
 = 0

The proof can be found in Appendix E.5.

Corollary 6.2.5 implies that in the limit of small noise, the sources s can
be recovered exactly. Condition i) upper bounds the influence of n on
the corruption: we can not hope to retrieve s if g(s, n) contains too little
signal. Condition ii) ensures that the function g is invertible with respect
to s when n is equal to zero. If this were not satisfied, some information
about s would be washed out by g even in absence of noise. This would
make the recovery of s trivially impossible.

6.2.3 Multiple Noisy Views

The results of § 6.2.2 state that in the two noisy view setting, s can be
recovered up to the corruptions. In the limit that the magnitude of the
noises goes to zero, the uncorrupted s can be recovered. The intuition
is that the less noise there is, the more information each observation
provides about s.

In this section we consider the multi-view setting, where 𝑁 distinct noisy
views of s are available,

x𝑖 = f𝑖(g𝑖(s, n𝑖)) , 𝑖 = 1, . . . , 𝑁 , (6.15)
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and the noise variables n𝑖 are mutually independent, as represented
in Fig. 6.4. Since each view provides additional information about s, we
ask: in the limit as 𝑁 →∞, is it possible to reconstruct s exactly?

By applying Theorem 6.2.4 to the pair (x1 , x𝑖) it is possible to recover
(g1(s, n1), g𝑖(s, n𝑖)) such that the components are aligned, but up to
different component-wise invertible functions k1 and k𝑖 . Running the
algorithm on a different pair (x1 , x𝑗)will result in recovery up to different
component-wise invertible functions k′1 and k′

𝑗
.

Note that these will not necessarily result in k𝑖 ◦g𝑖(s, n𝑖) and k′
𝑗
◦g𝑗(s, n𝑗)

being aligned with each other. However, the components of k1 ◦ g1(s, n1)
and k′1 ◦ g1(s, n1) are the same, up to permutation and component-
wise invertible functions. This permutation can therefore be undone
by performing independence testing between each pair of components.
Components that are ‘different’ will be independent; those that are the
same will be deterministically related. Therefore, they can be used as
a reference to permute the components of k′

𝑗
and make it aligned with

k𝑖 .

The problem is then how to combine the information from each aligned
k𝑖 ◦ g𝑖(s, n𝑖) to more precisely identify s. The fact that the components
are recovered up to different scalar invertible functions makes combining
information from different views non-trivial.

As a first step in this direction, we consider the special case that each
g𝑖 acts additively and each n𝑖 is zero mean and each of s and the n𝑖 are
independent with independent components.

x𝑖 = f𝑖(s + n𝑖)
𝔼n𝑖 = 0

}
𝑖 ∈ ℕ (6.16)

Suppose to begin with that we are able to recover each s + n𝑖 without the
usual component-wise invertible functions. Then, writing n to denote all
of the n𝑖 , it is possible to estimate s as

s ≈ Ω𝑁 (s, n) = 1
𝑁

𝑁∑
𝑖=1
(s + n𝑖) .

Subject to mild conditions on the rate of growth of the variances Var(n𝑖)
as 𝑖 → ∞, Kolmogorov’s strong law implies that Ω𝑁 (s, n) is a good
approximation to s as 𝑁 → ∞ in the sense that Ω𝑁 (s, n) 𝑎.𝑠.−→ s. This
implies moreover that it is possible to reconstruct the n𝑖 by considering
the residue 𝑅𝑁

𝑖
(s, n) = (s + n𝑖) −Ω𝑁 (s, n) 𝑎.𝑠.−→ n𝑖 .

In the presence of the unknown functions k𝑖 , we would be able to
reconstruct s and the n𝑖 if we were able to identify the inverses e𝑖 = k−1

𝑖

for each 𝑖. For any component-wise invertible functions e𝑖 , define

Ω𝑁
e (s, n) =

1
𝑁

𝑁∑
𝑖=1

e𝑖 ◦ k𝑖(s + n𝑖)

𝑅𝑁e,𝑖(s, n) = e𝑖 ◦ k𝑖(s + n𝑖) −Ω𝑁
e (s, n).



6 The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA 78

e𝑖 is something we can choose and k𝑖(s + n𝑖) = h𝑖(x𝑖) is the output of
the algorithm, and hence Ω𝑁

e (s, n) and 𝑅𝑁e,𝑖(s, n) are random variables
with known distributions. Subject to mild conditions, the dependence of
these quantities on most or all of the n𝑖 becomes increasingly small as 𝑁
grows and disappears in the limit 𝑁 →∞.

Lemma 6.2.6 Suppose that the sequence 𝔼n[Ω𝑁
e (s, n)] = 1

𝑁

∑𝑁
𝑖=1 𝔼n𝑖 [e𝑖 ◦

k𝑖(s + n𝑖)] converges as 𝑁 →∞ for almost all s, and write

Ωe(s) = lim
𝑁→∞

𝔼n[Ω𝑁
e (s, n)].

Suppose further that there exists 𝐾 such that𝑉e𝑖 = Var (e𝑖 ◦ g𝑖(s + n𝑖)) ≤ 𝐾
for all 𝑖. Then

Ω𝑁
e (s, n)

𝑎.𝑠.−→ Ωe(s)

𝑅𝑁e,𝑖(s, n)
𝑎.𝑠.−→ 𝑅e,𝑖(s, n𝑖) = e𝑖 ◦ k𝑖(s + n𝑖) −Ωe(s)

The proof can be found in Appendix E.6. Given some choice of e, we
can think of Ωe(s) and 𝑅e,𝑖(s, n𝑖) as our putative candidates for s and n𝑖
respectively. As discussed earlier, if we could identify e𝑖 = k−1

𝑖
, then we

would have Ωe(s) = s and 𝑅e,𝑖(s, n𝑖) = n𝑖 , and thus Ωe and 𝑅e,𝑖 would
satisfy the same independences and other statistical properties as s and
n𝑖 respectively. Can we use these properties as criteria to identify good
choices of e𝑖?

The following theorem gives a set of sufficient conditions under which
each e𝑖 inverts k𝑖 up to some affine ambiguity which is the same for every
𝑖.

Theorem 6.2.7 Suppose there exists 𝐶 > 0 such that Var(n𝑖) ≤ 𝐶 for all 𝑖
and let G𝐾 =

{
{e𝑖} s.t.

𝑉e𝑖 ≤ 𝐾 ∀𝑖 (6.17)
Ωe(s) < ∞ for almost all s (6.18)
𝑅e,𝑖 ⊥⊥ 𝑅e, 𝑗 ∀𝑖 ≠ 𝑗 , (6.19)
𝔼𝑅e,𝑖 = 0 ∀𝑖 (6.20)
𝑅e,𝑖(s, n𝑖) = 𝑅e,𝑖(n𝑖) ∀𝑖

}
(6.21)

Then,

G𝐾 ⊆
{
{𝜶k−1

𝑖 + 𝜷} : 𝜶 ∈ ℝ𝐷
≠0 , 𝜷 ∈ ℝ𝐷

}
where 𝜶k−1

𝑖
denotes the element-wise product with the scalar elements of

𝜶. If 𝐾 ≥ Var(s) + 𝐶, then {k−1
𝑖
} ∈ G𝐾 , and so G𝐾 is non-empty for 𝐾

sufficiently large.

The proof can be found in Appendix E.7. It follows that it is possible
recover s and n𝑖 up to 𝜶 and 𝜷 via Ωe(s) = 𝜶s + 𝜷 and 𝑅e,𝑖(n𝑖) = 𝜶n𝑖 .

We remark that each of the conditions 6.17–6.20 can be verified from
known information. We conjecture that condition 6.21 can be relaxed to
assuming the verifiable condition of independence between Ωe(s) and
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[257]: Hotelling (1936), ‘Relations be-
tween two sets of variates.’

[258]: Bach et al. (2005), ‘A probabilistic
interpretation of canonical correlation
analysis’

[263]: Schölkopf et al. (2016), ‘Modeling
confounding by half-sibling regression’

𝑅e,𝑖(s, n𝑖) for all 𝑖 along with additional regularity assumptions on the
functional form of 𝑅e,𝑖 (e.g. smoothness).

To conclude, Theorem 8 provides sufficient conditions under which it
is possible to fully reconstruct s with corrupted views. In contrast to
previous results in Sections 6.2.1 and 6.2.2, this result leverages infinitely
many corrupted views rather than vanishingly small corruption of finitely
many views.

6.3 Related Work

A central concept in our work is that of multiple simultaneous views and
joint extraction of features from them. We briefly review some related
work considering similar settings.

6.3.1 Canonical Correlation Analysis

Given two (or more) random variables, the goal of Canonical Correlation
Analysis (CCA) [257] is to find a corresponding pair of linear subspaces
that have high cross-correlation, so that each component within one
of the subspaces is correlated with a single component from the other
subspace [190]. In dealing with correlation instead of independence, CCA
is more closely related to Principal Component Analysis (PCA) than to
ICA.

CCA can be interpretated probabilistically [258] and is equivalent to
maximum likelihood estimation in a graphical model which is a special
case of that depicted in Fig. 6.3. The differences compared to our setting are
(i) the latent components retrieved in CCA are forced to be uncorrelated,
whereas our method is retrieves independent components; (ii) in CCA,
mappings between the sources s and x are linear, whereas our method
allows for nonlinear mappings.

At a high level, the model we consider in § 6.2.2 is to CCA as nonlinear
ICA is to PCA. Nonlinear extensions of the basic CCA framework have
been proposed [259–262], and we review some additional work on
unsupervised learning from multiple views in Appendix E.8. However,
identifiability results in the sense we consider in this work are lacking.

6.3.2 Half-Sibling Regression

Half-sibling regression [263] is a method to reconstruct a source from
noisy observations by exploiting other sources that are affected by the
same noise process—but otherwise independent from it.

Suppose that a latent variable of interest 𝑄 is not directly available, and
that we can only observe corrupted versions of it, denoted as𝑌, where the
corruption is due to a noise 𝑁 . Without knowledge of 𝑁 , it is impossible
to reconstruct 𝑄. However, if one or more additional variables 𝑋, also
influenced by 𝑁 , are observed, we can exploit them to model the effect
of 𝑁 on 𝑌 by regressing 𝑌 on 𝑋.
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2: Cfr. also Fig. 6.2 and Fig. 1 in [263].

Subtracting this from the observed 𝑌 recovers the latent variable 𝑄 up to
a constant offset, provided that (1) the additivity assumption

𝑌 = 𝑄 + 𝑓 (𝑁)

holds, and (2) that 𝑌 contains sufficient information about 𝑓 (𝑁). Analo-
gous to our aim of recovering s, the goal of half-sibling regression is not
to infer only the distribution of 𝑄, but rather the random variable itself
(almost surely).2 Half-sibling regression provides an identifiability result
for an overcomplete latent variable model, and serves as inspiration for
the results presented in this chapter.

6.4 Discussion and Conclusion

We presented identifiability results in a novel setting by extending the
formalism of nonlinear ICA. We have investigated different scenarios of
multi-view latent variable models and provided theoretical proofs on the
possibility of inverting the mixing function and recovering the sources in
each case. Our results thus extend the scarce literature on identifiability
for nonlinear ICA models.

In the classical noiseless ICA setting, the deterministic relationship
between the sources and observations means that inverting the mixing
function and recovering the sources are equivalent. In contrast, we
consider views of corrupted versions of the common sources, resulting in
the decoupling of the demixing and retrieval of the sources. Remarkably,
Theorem 6.2.7 points towards the possibility of simultaneously solving
the two problems in the limit of infinitely many views.

Classical nonlinear ICA is provably non-identifiable because a single
view is not sufficiently informative to resolve non-trivial ambiguities
when recovering the sources. In this chapter we considered exploiting
additional views to constrain the problem. Intuitively, if a second view is
identical to the first, then nothing is gained by its observation. Hence,
in order for the second view to assist in resolving ambiguity, it must
be sufficiently different from the first. This is the intuition behind the
technical assumption of sufficiently distinct views.

Typically, noise is a nuisance variable that would be preferably non-
existent. In our setting, however, the noise variables acting on the sources
are a crucial component, without which the contrastive learning approach
could not be applied. Furthermore, the assumption of sufficiently distinct
views is ultimately an assumption about the complexity of the joint
distribution of the (corrupted) sources corresponding to each view.
Without the noise variables the sufficiently distinct views assumption
could not hold.

Our setting is relevant in a number of practical real-world applications,
namely in all datasets that include multiple distinct measurements
of related phenomena. In practice, it may be better to think of the
noise variables rather as intrinsic sources of variability specific to each
view. An exemplary application of our method can be found in the
field of neuroimaging. Consider a study involving a cohort of subjects
(perceivers), measuring their response to the presentation of the same
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stimulus. One of the key problems in the field is how to extract a shared
response from all subjects despite high inter-subject variability and
complex nonlinear mappings between latent source and observation [264,
265]. Our results provide principled ways to extract and decompose the
components of the shared response. In particular, the setting described
in our model is suited to account for the high variability of the responses
throughout the cohort, since the measurement corresponding to each
subject is given by a combination of individual variability and shared
response. In fact, in Chapter 7, we will present an application of the
multiview ICA setting to neuroimaging.

We note that Theorem 6.2.7 builds on the setting of Theorem 6.2.4 which
only makes use of pairwise information from the observations. A natural
extension of this work should investigate algorithms that explicitly make
use of 𝑁 > 2 views, which we conjecture would allow relaxation of the
additivity assumption on the corruptions. Furthermore, Theorem 6.2.7
provides results that only hold for the asymptotic limit as the number
of views becomes large. Other extensions to this result could include
analysis of the case of finitely many views.





Modeling Shared Responses in
Neuroimaging Studies through

MultiView ICA 7
Group studies involving large cohorts of subjects are important to draw
general conclusions about brain functional organization. However, the
aggregation of data coming from multiple subjects is challenging, since it
requires accounting for large variability in anatomy, functional topogra-
phy and stimulus response across individuals. Data modeling is especially
hard for ecologically relevant conditions such as movie watching, where
the experimental setup does not imply well-defined cognitive operations.
We propose a novel MultiView ICA model for group studies, where
data from each subject are modeled as a linear combination of shared
independent sources plus noise. Contrary to most group-ICA procedures,
the likelihood of the model is available in closed form. We develop an
alternate quasi-Newton method for maximizing the likelihood, which
is robust and converges quickly. We demonstrate the usefulness of our
approach first on fMRI data, where our model demonstrates improved
sensitivity in identifying common sources among subjects. Moreover,
the sources recovered by our model exhibit lower between-session vari-
ability than other methods. On magnetoencephalography (MEG) data,
our method yields more accurate source localization on phantom data.
Applied on 200 subjects from the Cam-CAN dataset it reveals a clear
sequence of evoked activity in sensor and source space.

7.1 Introduction

The past decade has seen the emergence of two trends in neuroimaging:
the collection of massive neuroimaging datasets, containing data from
hundreds of participants [253, 266, 267], and the use of naturalistic stimuli
to move closer to a real life experience with dynamic and multimodal
stimuli [268]. Large scale datasets provide an unprecedented opportunity
to assess the generality and validity of neuroscientific findings across
subjects, with the potential of offering novel insights on human brain
function and useful medical biomarkers. However, when using ecological
conditions, such as movie watching or simulated driving, stimulations are
difficult to quantify. Consequently the statistical analysis of the data using
supervised regression-based approaches is difficult. This has motivated
the use of unsupervised learning methods that leverage the availability
of data from multiple subjects performing the same experiment; analysis
on such large groups boosts statistical power.

Independent component analysis is a widely used unsupervised method
for neuroimaging studies. It is routinely applied on individual subject elec-
troencephalography (EEG) [269], magnetoencephalography (MEG) [270]
or functional MRI (fMRI) [54] data. The identifiability theory of ICA
states that having non-Gaussian independent sources is a strong enough
condition to recover the model parameters (§ 2.2.2). ICA therefore does
not make assumptions about what triggers brain activations in the stim-
uli, unlike confirmatory approaches like the general linear model [271,
272]. This explains why, in fMRI processing, it is a model of choice
when analysing resting state data [273] or when subjects are exposed to
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natural [274, 275] or complex stimuli such as simulated driving [276]. In
M/EEG processing, it is widely used to isolate acquisitions artifacts from
neural signal [277], and to identify brain sources of interest [278, 279].

However, unlike with univariate methods, statistical inference about
multiple subjects using ICA is not straightforward: so-called group-ICA
is the topic of various studies [280]. Several works assume that the
subjects share a common mixing matrix [281, 282]. Instead, we focus on
a model where the subjects share common sources, but have different
mixing matrices. When the subjects are exposed to the same stimuli, the
common sources corresponds to the group shared responses. Most methods
proposed in this framework proceed in two steps [283, 284]. First, the
data of individual subjects are aggregated into a single dataset, often
resorting to dimension reduction techniques like Principal Component
Analysis (PCA). Then, off-the-shelf ICA is applied on the aggregated
dataset. This popular method has the advantage of being simple and
straightforward to implement since it resorts to customary single-subject
ICA method. However, it is not grounded in a principled probabilistic
model of the problem, and does not have strong statistical guarantees
like asymptotic efficiency.

We propose a novel group ICA method called MultiView ICA. It models
each subject’s dataset as a linear combination of a common sources matrix
with additive Gaussian noise. Importantly, and inspired by the models
discussed in Chapter 6, we consider that the noise is on the sources and not
on the sensors. This greatly simplifies the likelihood of the model which
can even be written in closed-form. Despite its simplicity, our model
allows for an expressive representation of inter-subject variability through
subject-specific functional topographies (mixing matrices) and variability
in the individual response (with noise in the source domain). To the best
of our knowledge, this is the first time that such a tractable likelihood
is proposed for multi-subject ICA. The likelihood formulation shares
similarities with the usual ICA likelihood, which allows us to develop a
fast and robust alternate quasi-Newton method for its maximization.

Structure and contributions of this Chapter. In § 7.2, we introduce the
MultiView ICA model and characterise its identifiability. We then write
its likelihood in closed form, and maximize it using an alternate quasi-
Newton method. We also provide a sensitivity analysis for MultiView
ICA, and show that the choice of the noise parameter in the algorithm
has little influence on the output. In § 7.3, we compare our approach to
other group ICA methods. Finally, in § 7.4, we empirically verify through
extensive experiments on fMRI and MEG data that it improves source
identification with respect to competing methods, suggesting that the
expressiveness and robustness of our model make it a useful tool for
multivariate neural signal analysis.



7 Modeling Shared Responses in Neuroimaging Studies through MultiView ICA 85

1: The model in (7.1) is a special case
of the one in (6.15), where the mixing
functions are linear—i.e., for z ∈ ℝ𝑛 ,
f𝑖(z) = A𝑖z, and the corrupter function
corrseponds to a sum—i.e., g(s, n𝑖) =
s + n𝑖 .

2: All proofs are deferred to Ap-
pendix F.3

3: Unlike in Equation 2.6, here we write
the likelihood in terms of the mixing ma-
trices W1 , . . . ,W𝑚 to make the depen-
dence on those parameters which are
optimised explicit, and denote it with
the symbol L to improve readability.

7.2 Multiview ICA for Shared Response
Modeling

7.2.1 Model, Likelihood and Approximation

Given 𝑚 subjects, we model the data x𝑖 ∈ ℝ𝑛 of subject 𝑖 as

x𝑖 = A𝑖(s + n𝑖), 𝑖 = 1, . . . , 𝑚 (7.1)

where s = [𝑠1 , . . . , 𝑠𝑛]⊤ ∈ ℝ𝑛 are the shared independent sources,
n𝑖 ∈ ℝ𝑛 is individual noise, A𝑖 ∈ ℝ𝑛×𝑛 are the individual mixing matrices,
assumed to be full-rank. We assume that samples are observed i.i.d. For
simplicity, we assume that the sources share the same density, 𝑝𝑠𝑖 = 𝑑 ∀𝑖,
so that the distribution of the source vector can be written as 𝑝s(s) =∏𝑛

𝑗=1 𝑑(𝑠 𝑗). Finally, we assume that the noise is Gaussian decorrelated
of variance 𝜎2, n𝑖 ∼N(0, 𝜎2I𝑛), and that the noise is independent across
subjects and independent from the sources. The assumption of additive
white noise on the sources models individual deviations from the shared
sources s. It is equivalent to having noise on the sensors with covariance
𝜎2A𝑖

(
A𝑖

)⊤, i.e., a scaled version of the noiseless data covariance.1

Since the sources are shared by the subjects, there are many more observed
variables than sources in the model: there are 𝑛 sources, while there
are 𝑛 × 𝑚 observations. Therefore, model (7.1) bears some similarities
with the setting of undercomplete ICA. The goal of multiview ICA is
to recover the mixing matrices A𝑖 from observations of the x𝑖 . The
following proposition extends the standard idenfitiability theory of
ICA reviewed in § 2.2.2 to multiview ICA, and shows that recovering
the sources/mixing matrices is a well-posed problem up to scale and
permutation, as in Defn. 2.3.3.2

Proposition 7.2.1 (Identifiability of MultiView ICA) Consider x𝑖 , 𝑖 =
1 . . . 𝑚, generated from (7.1). Assume that x𝑖 = A′𝑖(s′ + n′𝑖) for some
invertible matrices A′𝑖 ∈ ℝ𝑛×𝑛 , independent non-Gaussian sources s′ ∈ ℝ𝑛

and Gaussian noise n′𝑖 . Then, there exists a scale and permutation matrix
P ∈ ℝ𝑛×𝑛 such that for all 𝑖, A′𝑖 = A𝑖P.

We propose a maximum-likelihood approach to estimate the mixing
matrices. We denote by W𝑖 = (A𝑖)−1 the unmixing matrices, and view
the likelihood as a function of W𝑖 rather than A𝑖 . As shown in Ap-
pendix F.1.1, the negative log-likelihood can be written by integrating
over the sources3

L(W1 , . . . ,W𝑚) = −
𝑚∑
𝑖=1

log |W𝑖 |+

− log

(∫
s
exp

(
− 1

2𝜎2

𝑚∑
𝑖=1
∥W𝑖x𝑖 − s∥2

)
𝑝(s)𝑑s

)
,

(7.2)

up to additive constants. Since this integral factorizes (i.e., the integrand
is a product of functions of 𝑠 𝑗) we can perform the integration as shown



7 Modeling Shared Responses in Neuroimaging Studies through MultiView ICA 86

in Appendix F.1.2. We define a smoothened version of the logarithm of
the source density 𝑑 by convolution with a Gaussian kernel as

𝑓 (𝑠) = log
(∫

exp(− 𝑚

2𝜎2 𝑧
2)𝑑(𝑠 − 𝑧)𝑑𝑧

)
, (7.3)

and s̃ = 1
𝑚

∑𝑚
𝑖=1 W𝑖x𝑖 the source estimate. The negative log-likelihood

becomes

L(𝑊1 , . . . ,𝑊𝑚) = −
𝑚∑
𝑖=1

log |W𝑖 | + 1
2𝜎2

𝑚∑
𝑖=1
∥W𝑖x𝑖 − s̃∥2 + 𝑓 (s̃). (7.4)

Multiview ICA is then performed by minimizing L, and the estimated
shared sources are s̃. For the reasons discussed in § 2.2.3—namely, that
for the purpose of source separation slight misspecifications of the true
source densities are inconsequential—we can in practice fix 𝑓 to be some
nongaussian log-pdf.

The negative log-likelihood L is quite simple, and importantly, can be
computed easily given the parameters of the model and the data; it does
not involve any intractable integral.

For one subject (𝑚 = 1), L(W1) simplifies to the (negative) log-likelihood
of ICA Equation 2.6, and we recover Infomax [46, 47], where the source
log-pdf is replaced with the smoothened 𝑓 .

7.2.2 Alternate Quasi-Newton Method for MultiView ICA

The parameters of the model are estimated by minimizing L. We propose
a combination of quasi-Newton method and alternate minimization for
this task. First, L is non-convex: it is only defined when the W𝑖 are
invertible, which is a non-convex set. Therefore, we only look for local
minima as usual in ICA. We propose an alternate minimization scheme,
where L is alternatively diminished with respect to each W𝑖 . When all
matrices W1 , . . . ,W𝑚 are fixed but one, W𝑖 , L can be rewritten, up to an
additive constant, as

L𝑖(W𝑖) = − log |W𝑖 | + 1 − 1/𝑚
2𝜎2 ∥W𝑖x𝑖 − 𝑚

𝑚 − 1
s̃−𝑖 ∥2+

+ 𝑓
(
1/𝑚 W𝑖x𝑖 + s̃−𝑖

)
, (7.5)

with s̃−𝑖 = 1/𝑚∑
𝑗≠𝑖 W𝑗x𝑗 . This function has the same structure as the

usual maximum-likelihood ICA cost function: it is written L𝑖(W𝑖) =
− log |W𝑖 | + 𝑔(W𝑖x𝑖), where 𝑔(y) = ∑𝑘

𝑗=1 𝑓 (
𝑦𝑗
𝑚 + s̃−𝑖

𝑗
)+ 1−1/𝑚

2𝜎2 (𝑦 𝑗− 𝑚
𝑚−1 s̃−𝑖

𝑗
)2.

Fast quasi-Newton algorithms [48, 285] have been proposed for mini-
mizing such functions. We employ a similar technique as [285], which
we now describe.

Quasi-Newton methods are based on approximations of the Hessian of
L𝑖 . As we mentioned in Chapter 5, the relative gradient (resp. Hessian)
of L𝑖 is defined as the matrix G𝑖 ∈ ℝ𝑘×𝑘 (resp. tensor H𝑖 ∈ ℝ𝑘×𝑘×𝑘×𝑘)
such that for an infinitesimal matrix 𝝐 ∈ ℝ𝑘×𝑘 , we have

L𝑖((I𝑘 + 𝝐)W𝑖) ≃ L𝑖(W𝑖) + ⟨G𝑖 ,W𝑖⟩ + 1
2
⟨𝝐,H𝑖𝝐⟩ . (7.6)
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[181]: Amari et al. (1996), ‘A new learning
algorithm for blind signal separation’
[232]: Cardoso et al. (1996), ‘Equivariant
adaptive source separation’
4: See, e.g., [286].

This kind of multiplicative perturbation of the unmixing matrices lies
at the core of some classic approaches to linear ICA [181, 232]. For the
gradient and Hessian, the expression in (7.6) yields4

G𝑖 =
1
𝑚
𝑓 ′(s̃)(y𝑖)⊤ + 1 − 1/𝑚

𝜎2 (y𝑖 − 𝑚

𝑚 − 1
s̃−𝑖)(y𝑖)⊤ − 𝐼𝑘 , where y𝑖 = W𝑖x𝑖

(7.7)

H𝑖
𝑎𝑏𝑐𝑑

= 𝛿𝑎𝑑𝛿𝑏𝑐+𝛿𝑎𝑐
(

1
𝑚2 𝑓

′′(s̃𝑎) +
1 − 1/𝑚

𝜎2

)
y𝑖
𝑏
y𝑖
𝑑
, for 𝑎, 𝑏, 𝑐, 𝑑 = 1 . . . 𝑘

(7.8)

Newton’s direction is then−
(
H𝑖

)−1 G𝑖 . However, this Hessian is costly to
compute (since it has ≃ 𝑘3 non-zero coefficients) and invert (it can be seen
as a big 𝑘2 × 𝑘2 matrix). Furthermore, to enforce that Newton’s direction
is a descent direction, the Hessian matrix should be regularised in order
to eliminate its negative eigenvalues [287], and H𝑖 is not guaranteed to
be positive definite. These obstacles render the computation of Newton’s
direction impractical.

Luckily, if we assume that the signals in y𝑖 are independent, severall
coefficients cancel, and the Hessian simplifies to the approximation

𝐻 𝑖
𝑎𝑏𝑐𝑑

= 𝛿𝑎𝑑𝛿𝑏𝑐 + 𝛿𝑎𝑐𝛿𝑏𝑑Γ
𝑖
𝑎𝑏

with Γ𝑖
𝑎𝑏

=

(
1
𝑚2 𝑓

′′(s̃𝑎) +
1 − 1/𝑚

𝜎2

) (
y𝑖
𝑏

)2
.

(7.9)
This approximation is sparse: it only has 𝑘(2𝑘−1) non-zero coefficients. In
order to better understand the structure of the approximation, we can com-
pute the matrix

(
𝐻 𝑖M

)
for M ∈ ℝ𝑘×𝑘 . We find

(
𝐻 𝑖M

)
𝑎𝑏

= Γ𝑖
𝑎𝑏
𝑀𝑎𝑏 +𝑀𝑏𝑎 :

i.e., (𝐻 𝑖M)𝑎𝑏 only depends on 𝑀𝑎𝑏 and 𝑀𝑏𝑎 , indicating a simple block
diagonal structure of 𝐻 𝑖 . The tensor 𝐻 𝑖 is therefore easily regularised

and inverted:
(
(𝐻 𝑖)−1M

)
𝑎𝑏

=
Γ𝑖
𝑏𝑎
𝑀𝑎𝑏−𝑀𝑏𝑎

Γ𝑖
𝑎𝑏
Γ𝑖
𝑏𝑎
−1

. Finally, since this approxima-

tion is obtained by assuming that the y𝑖 are independent, the direction
−

(
𝐻 𝑖

)−1 G𝑖 is close to Newton’s direction when the y𝑖 are close to in-
dependence, leading to fast convergence. Algorithm 1 alternates one
step of the quasi-Newton method for each subject until convergence.
A backtracking line-search is used to ensure that each iteration leads
to a decrease of L𝑖 . The algorithm is stopped when maximum norm
of the gradients over one pass on each subject is below some toler-
ance level, indicating that the algorithm is close to a stationary point.
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Algorithm 1: Alternate quasi-Newton method for MultiView ICA
Input: Dataset (x𝑖)𝑚

𝑖=1, initial unmixing matrices W𝑖 , noise parameter
𝜎, function 𝑓 , tolerance �

1 Set tol= +∞, s̃ = 1/𝑚∑𝑘
𝑖=1 W𝑖x𝑖

2 while tol> � do
3 tol = 0
4 for 𝑖 = 1 . . . 𝑚 do
5 Compute y𝑖 = W𝑖x𝑖 , s̃−𝑖 = s̃ − 1

𝑚y𝑖 , gradient G𝑖 (eq. (7.7)) and
Hessian 𝐻 𝑖 (eq. (7.9))

6 Compute the search direction S = −
(
𝐻 𝑖

)−1 G𝑖

7 Find a step size 𝜌 such that L𝑖((I𝑘 + 𝜌S)W𝑖) < L𝑖(W𝑖)with
line search

8 Update s̃ = s̃ + 𝜌
𝑚SW𝑖x𝑖 , W𝑖 = (I𝑘 + 𝜌S)W𝑖 ,

tol= max(tol, ∥G𝑖 ∥)
9 end

10 end
11 return Estimated unmixing matrices W𝑖 , estimated shared sources s̃

7.2.3 Robustness to Model Misspecification

Algorithm 1 has two hyperparameters: 𝜎 and the function 𝑓 . The latter
is usual for an ICA algorithm, but the former is not. We study the
impact of these parameters on the separation capacity of the algorithm,
when these parameters do not correspond to those of the generative
model (7.1).

Proposition 7.2.2 We consider the cost function L in eq. (7.4) with noise
parameters 𝜎 and function 𝑓 . Assume sub-linear growth on 𝑓 ′: | 𝑓 ′(𝑥)| ≤
𝑐 |𝑥 |𝛼 + 𝑑 for some 𝑐, 𝑑 > 0 and 0 < 𝛼 < 1. Assume that x𝑖 is generated
following model (7.1), with noise parameter 𝜎′ and density of the source 𝑑′
which need not be related to 𝜎 and 𝑓 . Then, there exists a diagonal matrix
D such that (D(A1)−1 , . . . ,D(A𝑚)−1) is a stationary point of L, that is
G1 , . . . ,G𝑚 = 0 at this point.

The sub-linear growth of 𝑓 ′ is a customary hypothesis in ICA which
implies that 𝑑 has heavier-tails than a Gaussian, and in Appendix F.3.2
we provide other conditions for the result to hold. In this setting, the
shared sources estimated by the algorithm are s̃ = D(s + 1

𝑚

∑𝑚
𝑖=1 n𝑖),

which is a scaled version of the best estimate of the shared sources under
the Gaussian noise hypothesis.

This proposition shows that, up to scale, the true unmixing matrices
are a stationary point for Algorithm 1: if the algorithm starts at this
point it will not move. The question of stability is also interesting: if
the algorithm is initialised close to the true unmixing matrices, will it
converge to the true unmixing matrix? In Appendix F.3.3, we provide
an analysis similar to [45], and derive sufficient numerical conditions
for the unmixing matrices to be local minima of L. We also study the
practical impact of changing the hyperparameter 𝜎 on the accuracy of
a machine learning pipeline based on MultiviewICA on real fMRI data
in the appendix Sec. F.5.5. As expected from the theoretical study, the
performance of the algorithm is barely affected by 𝜎.
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7.2.4 Dimensionality Reduction

So far, we have assumed that the dimensionality of each view (subject)
and that of the sources is the same. This reflects the standard practice in
ICA of having equal number of observations and sources which we also
discussed in § 1.3.3. In practice, however, we might want to estimate fewer
sources than there are observations per view; the original dimensionality
of the data might in practice not be computationally tractable. The
problem of how to perform subject-wise dimensionality reduction in
group studies is an interesting one per se, and out of the main scope of
this work. For our purposes, it can be considered as a preprocessing step
for which well-known various solutions can be applied. We discuss this
further in § 7.3 and in Appendix F.6.

7.3 Related Work

Many methods for data-driven multivariate analysis of neuroimaging
group studies have been proposed. We summarize the characteristics of
some of the most commonly used ones. A more thorough description
of these methods can be found in Appendix F.6. For completeness, we
start by describing PCA. For a zero-mean data matrix X of size 𝑝 × 𝑛
with 𝑝 ≤ 𝑛, we denote X = UDV⊤ the singular value decomposition of
X where U ∈ ℝ𝑝×𝑝 , V ∈ ℝ𝑛×𝑝 are orthogonal and D the diagonal matrix
of singular values ordered in decreasing order. The PCA of X with 𝑘

components is Y ∈ ℝ𝑘×𝑛 containing the first 𝑘 rows of DV⊤, and it does
not hold in general that YY⊤ = I𝑘 : for the rest of the paper, what we call
PCA does not include whitening of the signals.

Group ICA. When datasets are high-dimensional, a three steps proce-
dure is often used: first dimensionality reduction is performed on data of
each subject separately; then the reduced data are merged into a common
representation; finally, an ICA algorithm is applied for shared source
extraction. The merging of the reduced data is often done by PCA [288]
or multi set CCA [289]. This is a popular method for fMRI [283] and
EEG [290] group studies. These methods directly recover only group level,
shared sources; when individual sources are needed, additional steps
are required (back-projection [288] or dual-regression [291]). In contrast,
MultiView ICA finds individual and shared independent components
in a single step. Finally, in contrast to the methods described above,
our method maximizes a likelihood, which brings statistical guarantees
like consistency or asymptotic efficiency. The SR-ICA approach of [292]
performs dimension reduction, merging and independent component
estimation. It is therefore similar to our method. However, they propose
to modify the FastICA algorithm [182] in a rather heuristic way, without
specifying an optimization problem, let alone maximizing a likelihood.
In the experiments on fMRI data in Appendix F.5.4, we obtain better
performance with MultiView ICA than the reported performance of
SR-ICA.
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Likelihood-based models. One can consider the more general model
x𝑖 = A𝑖s𝑖 + n𝑖 , where the noise covariance can be learnt from the data [293].
The likelihood for this model involves an intractable high dimensional
integral that is cumbersome to evaluate, and is then optimised with the
Expectation-Maximization (EM) algorithm, which is known to converge
slowly and unreliably [294, 295]. Having the simpler model (7.1) leads to
a closed-form likelihood, that can then be optimised by more efficient
means than the EM algorithm. In model (7.1), the noise can be interpreted
as individual variability rather than sensor noise. In Appendix F.9, we
generate data following model x𝑖 = A𝑖s𝑖 + n𝑖 and report the recon-
struction error. The difference in performance between algorithms is
small.

Structured mixing matrices. One strength of our model is that we only
assume that the mixing matrices are invertible and still enjoy identifiabil-
ity whereas some other approaches impose additional constraints. For
instance tensorial methods [296] assume that the mixing matrices are the
same up to diagonal scaling. Other methods impose a common mixing
matrix [297–300]. Like PCA, the Shared Response Model [264] (SRM)
assumes orthogonality of the mixing matrices. While the model defines
a simple likelihood and provides an efficient way to reduce dimension,
the SRM model is not identifiable as shown in Appendix F.4, and the
orthogonal constraint may not be plausible.

Matching sources a posteriori. A different path to multi-subject ICA is
to extract independent components with individual ICA in each subject
and align them. We propose a simple baseline approach to do so called
PermICA. Inspired by the heuristic of the hyperalignment method [265]
we choose a reference subject and first match the sources of all other
subjects to the sources of the reference subject. The process is then
repeated multiple times, using the average of previously aligned sources
as a reference. Finally, group sources are given by the average of all
aligned sources. We use the Hungarian algorithm to align pairs of mixing
matrices [301]. Alternative approaches involving clustering have also
been developed [302, 303].

Deep Learning. Deep Learning methods, such as convolutional auto-
encoders (CAE), can also be used to find the subject specific unmix-
ing [304]. While these nonlinear extensions of the aforementioned meth-
ods are interesting, these models are hard to train and interpret. In the
experiments on fMRI data in Appendix F.5.4, we obtain better accuracy
with MultiView ICA than that of CAE reported in [304].

Correlated component analysis. Other methods can be used to recover
the shared neural responses such as the correlated component approach
of Dmochowski [305]. We benchmark our method against its probabilistic
version [306] called BCorrCA in Fig. 7.3. Our method yields much better
results.
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5: The code for MultiViewICA is avail-
able online at https://github.com/

hugorichard/multiviewica.
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Figure 7.1: Synthetic experiment: recon-
struction error of the algorithms on data
following model (7.1).

Autocorrelation. Another way to perform ICA is to leverage spectral
diversity of the sources rather than non-Gaussianity. These methods
are popular alternative to non-Gaussian ICA in the single-subject set-
ting [42, 307, 308] and they output significantly different sources than
non-Gaussian ICA [279]. Extensions to multiview problems have been
proposed [309, 310].

7.4 Experiments

All code for the experiments is written in Python. We use Matplotlib for
plotting [311] , scikit-learn for machine-learning pipelines [312], MNE for
MEG processing [313], Nilearn for fMRI processing and for its CanICA
implementation [314], Brainiak [315] for its SRM implementation. In
the following, the noise parameter in MultiviewICA is always fixed to
𝜎 = 1. We use the function 𝑓 (·) = log cosh(·), giving the non-linearity
𝑓 ′(·) = tanh(·). We use the Infomax cost function [46] with the same
non-linearity to perform standard ICA, with the Picard algorithm [48]
for fast and robust minimization of the cost function. Picard is applied
with the default hyper-parameters.5

We compare the following methods to obtain 𝑘 components: GroupPCA
is PCA on spatially concatenated data. It corresponds to a transposed
version of [316]. PermICA is described in the previous section. SRM
is the algorithm of [264]. GroupICA is ICA applied after GroupPCA.
PCA+GroupICA corresponds to GroupICA applied on subject data that
have been first individually reduced by PCA with 𝑘 components. These
two approaches correspond to transposed versions of [299], and are
similar to [290]. CanICA corresponds to PCA+GroupICA where the
merging is done using multi set CCA rather than PCA. The dimension
reduction in MultiView ICA and PermICA is performed with SRM in fMRI
experiments and subject-specific PCA in MEG experiments. Initialization
is discussed in Appendix F.2. A summary of our quantitative results on
real data is available in Appendix F.10.

Synthetic experiment. We validate our method on synthetic data
generated according to the model in equation (7.1). The sources are
generated i.i.d. from a Laplace density 𝑑(𝑥) = 1

2 exp(−|𝑥 |). The mixing
matrices A1 , . . . ,A𝑚 are generated with i.i.d. entries following a normal
law. Each compared algorithm returns a sequence of estimated unmixing
matrices W1 , . . . ,W𝑚 . The performance of an algorithm is measured
by the reconstruction error between the estimated sources and the true
sources. We use 𝑚 = 10 datasets, 𝑘 = 15 sources and 𝑛 = 1000 samples.
Each experiment is repeated with 100 random seeds. We vary the noise
level in the data generation from 10−2 to 10.

Multiview ICA has uniformly better performance than the other algo-
rithms, which illustrates the strength of maximum-likelihood based
methods. In accordance with results of § 7.2, it is able to separate the
sources even with misspecified noise parameter and source density.

https://github.com/hugorichard/multiviewica
https://github.com/hugorichard/multiviewica
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fMRI data and preprocessing. We evaluate the performance of our
approach on four different fMRI datasets. The sherlock dataset [317]
contains recordings of 16 subjects watching an episode of the BBC TV
show "Sherlock" (50 mins). The forrest dataset [318] was collected while 19
subjects were listening to an auditory version of the film "Forrest Gump"
(110 mins). The clips dataset [319] was collected while 12 participants
were exposed to short video clips (130 mins). The raiders dataset [319]
was collected while 11 participants were watching the movie "Raiders
of the Lost Ark" (110 mins). The raiders-full dataset [319] is an extension
of the raiders dataset where the first two scenes of the movie are shown
twice (130 mins). Like [292], we used full brain data. The rest of the
preprocessing is identical to [317]. See F.5.1 for a detailed description of
the datasets and preprocessing steps. Unless stated otherwise we use
spatially unsmoothed data, except for the sherlock dataset, for which the
available data are already preprocessed with a 6 mm spatial smoothing.
All datasets are built from successive acquisitions called runs that typically
last 10 minutes each. We define the chance level as the performance of
an algorithm that computes unmixing matrices and projections to lower
dimensional space by sampling random numbers from a standard normal
distribution.

Reconstructing the BOLD signal of missing subjects. We want to
show that once unmixing matrices have been learnt, they can be used to
predict evoked responses across subjects, which can be useful to perform
transfer learning [320]. We split the data into three groups. First, we
randomly choose 80% of all runs from all subjects to form the training set.
Then, we randomly choose 80% of subjects and take the remaining 20%
runs as testing set. The left-out runs of the remaining 20% subjects form
the validation set. The compared algorithms are run on the training set
and evaluated using the testing and validation sets. After an algorithm
is run on training data, it defines for each subject a forward operator that
maps individual data to the source space and a backward operator that
maps the source space to individual data. For instance in ICA the forward
operator is the product of the dimensionality reduction projection and
unmixing matrix. We estimate the shared responses on the testing set
by applying the forward operators on the testing data and averaging.
Finally, we reconstruct the individual data from subjects in the validation
set by applying the backward operators to the shared responses. We
measure the difference between the true signal and the reconstructed
one using voxel-wise 𝑅2 score. The 𝑅2 score between two series x ∈ ℝ𝑛

and y ∈ ℝ𝑛 is defined as 𝑅2(x, y) = 1 − 1
𝑛 Var(y)

∑𝑛
𝑡=1(𝑥𝑡 − 𝑦𝑡)2, where

Var(y) = 1
𝑛

∑𝑛
𝑡=1(𝑦𝑡 −

1
𝑛

∑𝑛
𝑡′=1 𝑦𝑡′)2 is the empirical variance of y. The 𝑅2

score is always smaller than 1, and equals 1 when x = y. The experiment
is repeated 25 times with random splits to obtain error bars.

In this experiment we apply a 6 mm spatial smoothing to all datasets.
The 𝑅2 score per voxel depends heavily on which voxel is considered.
For example voxels in the visual cortex are better reconstructed in the
sherlock dataset than in the forrest dataset (see Fig. F.1 in Appendix F.5.2).
In Fig. 7.2 (top) we plot the mean 𝑅2 score inside a region of interest
(ROI) in order to leave out regions where there is no useful information.
ROIs are chosen based on the performance of GroupICA (more details
in Appendix F.5.2). MultiView ICA has similar or better performance
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Figure 7.2: Top: Reconstructing the
BOLD signal of missing subjects. Mean
𝑅2 score between reconstructed data and
true data (higher is better). Bottom: Be-
tween subjects time-segment matching.
Mean classification accuracy. Error bars
represent a 95 % confidence interval over
cross validation splits.

than the other methods on all datasets. This demonstrates its ability to
capture inter-subject variability, making it a candidate of choice to handle
missing data or perform transfer learning.

Between subjects time-segment matching. We reproduce the time-
segment matching experiment of [264]. We split the runs into a train and
test set. After fitting the model on the training set, we apply the forward
operator of each subject on the test set yielding individual sources
matrices. We estimate the shared responses by averaging the individual
sources of each subjects but one. We select a target time-segment (9
consecutive timeframes) in the shared responses and try to localize the
corresponding time segment in the sources of the left-out subject using a
maximum-correlation classifier. This is a standard evaluation of SRM-like
methods also used in [264], [321], [322] or [292]. The time-segment is
said to be correctly classified if the correlation between the sample and
target time-segment is higher than with any other time-segment (partially
overlapping time windows are excluded). We use 5-Fold cross-validation
across runs: the training set contains 80% of the runs and the test set 20%,
and repeat the experiment using all possible choices for left-out subjects.
The mean accuracy is reported in Fig. 7.2 (bottom). MultiView ICA
yields a consistent and substantial improvement in accuracy compared
to other methods on the four datasets. We see a marked improvement
on the datasets sherlock and forrest. A possible explanation lies in the
preprocessing pipeline. Sherlock data undergo a 6 mm spatial smoothing
and Forrest data are acquired at a higher resolution (7T vs 3T for other
data). This affects the signal to noise ratio. In Appendix F.5.5, we compute
the accuracy of MultiviewICA on the sherlock dataset with 10 components
when the noise parameter varies. MultiviewICA performs consistently
well for a wide range of noise parameter values, and only breaks at very
high values. It supports the theoretical claim of Prop 7.2.2 that the noise
parameter is of little importance.

In Appendix F.5.3, we present a variation of this experiment. We measure
the ability of each algorithm to extract meaningful shared sources that
correlate more when they correspond to the same stimulus than when
they correspond to distinct stimuli and show the improved performance
of MultiView ICA. In Appendix F.8, we plot the average forward operator
across subjects of MultiView ICA and GroupICA with 5 components on
the forrest, sherlock, raiders and clips datasets.
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Phantom MEG data. We demonstrate the usefulness of our approach
on MEG data. The first experiment uses data collected with a realistic
head phantom, which is a plastic device mimicking real electrical brain
sources. Eight current dipoles positioned at different locations can be
switched on or off. We view each dipole as a subject and therefore have
𝑚 = 8. We only consider the 102 magnetometers. An epoch corresponds
to 3 s of MEG signals where a dipole is switched on for 0.4 s with an
oscillation at 20 Hz and a peak-to-peak amplitude of 200 nAm. This yields
a matrix of size 𝑝 × 𝑛 where 𝑝 = 102 is the number of sensors, and 𝑛 is
the number of time samples. We have access to 100 epochs per dipole. For
each dipole, we chose 𝑁𝑒 = 2, . . . , 16 epochs at random among our set
of 100 epochs and concatenate them in the temporal dimension. We then
apply algorithms on these data to extract 𝑘 = 20 shared sources. As we
know the true source (the timecourse of the dipole), we can compute the
reconstruction error of each source as the squared norm of the difference
between the estimated source and the true source, after normalization to
unit variance and fixing the sign. We only retain the source of minimal
error. We also estimate for each forward operator the localization of the
source by performing dipole fitting using its column corresponding to the
source of minimal error. We then compute the distance of the estimated
dipole to the true dipole. These metrics are reported in Fig. 7.3 when the
number of epochs considered 𝑁𝑒 varies. We also compare our method to
the Bayesian Canonical Correlation Analysis (BCorrCA) of [306]. On this
task, BCorrCA is outperformed by ICA methods. MultiView ICA requires
fewer epochs to correctly reconstruct and localize the true source.

Experiment on Cam-CAN dataset. Finally, we apply MultiView ICA
on the Cam-CAN dataset [266]. We use the magnetometer data from the
MEG of 200 subjects. Each subject is repeatedly presented an audio-visual
stimulus. The MEG signal corresponding to these trials are then time-
averaged to isolate the evoked response, yielding individual data. The
MultiView ICA algorithm is then applied to extract 20 shared sources.
9 sources were found to correspond to noise by visual inspection, and
the 11 remaining are displayed in Fig. 7.3. We observe that MultiView
ICA recovers a very clean sequence of evoked potentials with sharp
peaks for early components and slower responses for late components.
In order to visualize their localization, we perform source localization
for each subject by solving the inverse problem using sLORETA [323],
providing a source estimate for each source. Then, we register each source
estimate to a common reference brain. Finally, the source estimates are
averaged, and thresholded maps are displayed in Fig. 7.3. Individual
maps corresponding to each source are displayed in Appendix F.7. The
figure highlights both early auditory and visual cortices, also suggesting
a propagation of the activity towards the ventral regions and higher level
visual areas.
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Figure 7.3: Left: Experiment on MEG
Phantom data. Reconstruction error is
the norm of the difference between the
estimated and true source. Localization
error is the distance between the esti-
mated and true dipole. Right: Experi-
ment on 200 subjects from the CAM-
can dataset Top: Time course of 11 shared
sources (one color per source). We re-
cover clean evoked potentials. Bottom:
Associated brain maps, obtained by av-
eraging source estimates registered to a
common reference.

7.5 Conclusion

In this chapter, we described an unsupervised algorithm that reveals
latent sources observed through different views. The model is similar
to the one introduced in Chapter 6, but its identifiability can be proved
under much milder assumption due to linearity of the mixing. In contrast
to previous approaches, the proposed model leads to a closed-form
likelihood, which we then optimize efficiently using a dedicated alternate
quasi-Newton approach. Our approach enjoys the statistical guarantees of
maximum-likelihood theory, while still being tractable. We demonstrated
the usefulness of MultiView ICA for neuroimaging group studies both
on fMRI and MEG data, where it outperforms other methods. In the
experiments on fMRI data, we used temporal ICA in order to make use
of the fact that subjects were exposed to the same stimuli. However,
applying MultiViewICA on transposed data would carry out spatial ICA.
Therefore MultiViewICA can be readily used to analyse different kind of
neuroimaging data such as resting state data. Our method is not specific to
neuroimaging data and could be relevant to other observational sciences
like genomics or astrophysics where ICA is already widely used.





Self-Supervised Learning with
Data Augmentations Provably

Isolates Content from Style 8
Self-supervised representation learning has shown remarkable success
in a number of domains. A common practice is to perform data augmen-
tation via hand-crafted transformations intended to leave the semantics
of the data invariant. We seek to understand the empirical success of this
approach from a theoretical perspective. We formulate the augmentation
process as a latent variable model by postulating a partition of the latent
representation into a content component, which is assumed invariant to
augmentation, and a style component, which is allowed to change. Unlike
prior work on disentanglement and independent component analysis, we
allow for both nontrivial statistical and causal dependencies in the latent
space. We study the identifiability of the latent representation based on
pairs of views of the observations and prove sufficient conditions that
allow us to identify the invariant content partition up to an invertible
mapping in both generative and discriminative settings. We find numeri-
cal simulations with dependent latent variables are consistent with our
theory. Lastly, we introduce Causal3DIdent, a dataset of high-dimensional,
visually complex images with rich causal dependencies, which we use to
study the effect of data augmentations performed in practice.

8.1 Introduction

Over the last decade, self-supervised learning (SSL) has emerged as one
of the dominant paradigms for learning good representations of high-
dimensional observations [18, 324–335]. The main idea behind SSL is
to extract a supervisory signal from unlabelled observations by lever-
aging known structure of the data, which allows for the application of
supervised learning techniques—in a similar spirit to what we discussed
in § 2.4.2.

A common approach is to directly predict some part of the observation
from another part (e.g., future from past, or original from corruption),
thus forcing the model to learn a meaningful representation in the
process. While this technique has shown remarkable success in natural
language processing [336–343] and speech recognition [344–347], where
a finite dictionary allows one to output a distribution over the missing
part, such predictive SSL methods are not easily applied to continuous or
high-dimensional domains such as vision. Here, a common approach is
to learn a joint embedding of similar observations or views such that their
representation is close [17, 348–350]. This multiview setting is related to
the ones discussed in Chapter 6 and Chapter 7: different views can come,
for example, from different modalities (text & speech; video & audio) or
time points. However, still images lack such multi-modality or temporal
structure: recent advances in representation learning have therefore
relied on generating similar views by means of data augmentation.

In order to be useful, data augmentation is thought to require the
transformations applied to generate additional views to be generally
chosen to preserve the semantic characteristics of an observation, while
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Figure 8.1: Overview of our problem
formulation. We partition the latent vari-
able z into content c and style s, and allow
for statistical and causal dependence of
style on content. We assume that only
style changes between the original view
x and the augmented view x̃, i.e., they
are obtained by applying the same de-
terministic function f to z = (c, s) and
z̃ = (c, s̃).

[354]: Schölkopf (2019), ‘Causality for
machine learning’

1: E.g., [359], Fig. 11 where dependence
between latents was demonstrated for
multiple natural video data sets.

changing other “nuisance” aspects. While this intuitively makes sense and
has shown remarkable empirical results, the success of data augmentation
techniques in practice is still not very well understood from a theoretical
perspective—despite some efforts [351–353]. In the present chapter,
we seek to better understand the empirical success of SSL with data
augmentation by formulating the generative process as a latent variable
model (LVM) and studying identifiability of the representation.

Related work and its relation to this Chapter. Prior work on unsuper-
vised representation learning from an LVM perspective often postulates
mutually independent latent factors: this independence assumption is, for
example, at the heart of independent ICA, as we reviewed in Chapter 2. In
works using auxiliary variables (§ 2.4.2) or multiple views (Chapter 6) to
identify the individual independent latent factors, it is typically assumed
that there is a chance that each factor changes across views, environments,
or time points.

Our contribution—being directly motivated by common practices in SSL
with data augmentation—differs from these works in the following two
key aspects (see Fig. 8.1 for an overview). First, we do not assume inde-
pendence and instead allow for both nontrivial statistical and causal relations
between latent variables. This is in line with a recently proposed [354] shift
towards causal representation learning [13, 63, 146, 148, 149, 355–358],
motivated by the fact that many underlying variables of interest may not
be independent but causally related to each other.1 Second, instead of a
scenario wherein all latent factors may change as a result of augmentation,
we assume a partition of the latent space into two blocks: a content block
which is shared or invariant across different augmented views, and a style
block that may change. This is aligned with the notion that augmentations
leave certain semantic aspects (i.e., content) intact and only affect style,
and is thus a more appropriate assumption for studying SSL. In line with
earlier work [62, 64, 66, 70, 72, 83, 88, 114, 359], we focus on the setting of
continuous ground-truth latents, though we believe our results to hold
more broadly.

Structure and contributions of this Chapter. Following a review of
SSL with data augmentation (§ 8.2), we formalise the process of data
generation and augmentation as an LVM with content and style vari-
ables (§ 8.3). We then establish identifiability results of the invariant
content partition (§ 8.4), validate our theoretical insights experimen-
tally (§ 8.5), and discuss our findings and their limitations in the broader
context of SSL with data augmentation (§ 8.6). We highlight the following
contributions:
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2: Note that recent work has investigated
automatically discovering good augmen-
tations [360, 361].

3: If the only goal is to make represen-
tations of augmented views similar, a
degenerate solution which simply maps
any observation to the origin trivially
achieves this goal.

▶ we prove that SSL with data augmentations identifies the invariant
content partition of the representation in generative (Thm. 8.4.1)
and discriminative learning with invertible (Thm. 8.4.2) and non-
invertible encoders with entropy regularisation (Thm. 8.4.3); in
particular, Thm. 8.4.3 provides a theoretical justification for the
empirically observed effectiveness of contrastive SSL methods that
use data augmentation and InfoNCE [325] as an objective, such as
SimCLR [329];

▶ we show that our theory is consistent with results in simulating
statistical dependencies within blocks of content and style variables,
as well as with style causally dependent on content (§ 8.5.1);

▶ we introduce Causal3DIdent, a dataset of 3D objects which allows
for the study of identifiability in a causal representation learning
setting, and use it to perform a systematic study of data augmenta-
tions used in practice, yielding novel insights on what particular
data augmentations are truly isolating as invariant content and
discarding as varying style when applied (§ 8.5.2).

8.2 Preliminaries and Background

Self-supervised representation learning with data augmentation. Given
an unlabelled dataset of observations (e.g., images) x, data augmentation
techniques proceed as follows. First, a set of observation-level transfor-
mations t ∈ Tare specified together with a distribution 𝑝t over T. Both
Tand 𝑝t are typically designed using human intelligence and domain
knowledge with the intention of not changing the semantic characteristics of
the data (which arguably constitutes a form of weak supervision).2 For
images, for example, a common choice for Tare combinations of random
crops [362], horizontal or vertical flips, blurring, colour distortion [362,
363], or cutouts [364]; and 𝑝t is a distribution over the parameterisation
of these transformations, e.g., the centre and size of a crop [329, 364].
For each observation x, a pair of transformations t, t′ ∼ 𝑝t is sampled
and applied separately to x to generate a pair of augmented views
(x̃, x̃′) = (t(x), t′(x)).

The joint-embedding approach to SSL then uses a pair of encoder
functions (g, g′), i.e. deep nets, to map the pair (x̃, x̃′) to a typically
lower-dimensional representation (z̃, z̃′) = (g(x̃), g′(x̃′)). Often, the two
encoders are either identical, g = g′, or directly related (e.g., via shared
parameters or asynchronous updates). Then, the encoder(s) (g, g′) are
trained such that the representations (z̃, z̃′) are “close”, i.e., such that
sim(z̃, z̃′) is large for some similarity metric sim(·), e.g., the cosine sim-
ilarity [88, 329], or negative L2 norm [88]. The advantage of directly
optimising for similarity in representation space over generative alterna-
tives is that reconstruction can be very challenging for high-dimensional
data. The disadvantage is the problem of collapsed representations.3 To
avoid collapsed representations and force the encoder(s) to learn a mean-
ingful representation, two main families of approaches have been used:
(i) contrastive learning (CL) [324–329]; and (ii) regularisation-based SSL [330,
331, 365].

The idea behind CL is to not only learn similar representations for
augmented views (x̃𝑖 , x̃′𝑖) of the same x𝑖 , or positive pairs, but to also use
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4: While x may be high-dimensional
𝑛 ≪ 𝑑, invertibility of f implies that
X is an 𝑛-dim. sub-manifold of ℝ𝑑 .

other observations x𝑗 (𝑗 ≠ 𝑖) to contrast with, i.e., to enforce a dissimilar
representation across negative pairs (x̃𝑖 , x̃′𝑗). In other words, CL pulls
representations of positive pairs together, and pushes those of negative
pairs apart. Since both aims cannot be achieved simultaneously with
a constant representation, collapse is avoided. A popular CL objective
function (used, e.g., in SimCLR [329]) is InfoNCE [325] (based on noise-
contrastive estimation [80, 366]):

LInfoNCE(g; 𝜏, 𝐾) = 𝔼{x𝑖 }𝐾𝑖=1∼𝑝x

[
−∑𝐾

𝑖=1 log exp{sim(z̃𝑖 ,z̃′𝑖 )/𝜏}∑𝐾
𝑗=1 exp{sim(z̃𝑖 ,z̃′𝑗 )/𝜏}

]
(8.1)

where z̃ = 𝔼t∼𝑝t[g(t(x))], 𝜏 is a temperature, and 𝐾 − 1 is the number of
negative pairs. InfoNCE (8.1) has an interpretation as multi-class logistic
regression, and lower bounds the mutual information across similar views
(z̃, z̃′)—a common representation learning objective [46, 47, 367–373].
Moreover, (8.1) can be interpreted as alignment (numerator) and uniformity
(denominator) terms, the latter constituting a nonparametric entropy
estimator of the representation as 𝐾 →∞ [374]. CL with InfoNCE can
thus be seen as alignment of positive pairs with (approximate) entropy
regularisation.

Instead of using negative pairs, as in CL, a set of recent SSL methods only
optimise for alignment and avoid collapsed representations through dif-
ferent forms of regularisation. For example, BYOL [330] and SimSiam [331]
rely on “architectural regularisation” in the form of moving-average
updates for a separate “target” net g′ (BYOL only) or a stop-gradient oper-
ation (both). BarlowTwins [365], on the other hand, optimises the cross
correlation between (z̃, z̃′) to be close to the identity matrix, thus enforc-
ing redundancy reduction (zero off-diagonals) in addition to alignment
(ones on the diagonal).

8.3 Problem Formulation

We specify our problem setting by formalising the processes of data
generation and augmentation. We take a latent-variable model perspec-
tive and assume that observations x (e.g., images) are generated by a
mixing function f which takes a latent code z as input. Importantly, we
describe the augmentation process through changes in this latent space
as captured by a conditional distribution 𝑝z̃|z, as opposed to traditionally
describing the transformations t as acting directly at the observation
level.

Formally, let z be a continuous r.v. taking values in an open, simply-
connected 𝑛-dim. representation space Z ⊆ ℝ𝑛 with associated probability
density 𝑝z. Moreover, let f : Z→ Xbe a smooth and invertible mapping to
an observation space X ⊆ ℝ𝑑 and let x be the continuous r.v. defined as
x = f(z).4 The generative process for the dataset of original observations
of x is thus given by:

z ∼ 𝑝z , x = f(z). (8.2)

Next, we formalise the data augmentation process. As stated above, we
take a representation-centric view, i.e., we assume that an augmentation
x̃ of the original x is obtained by applying the same mixing or rendering
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5: We investigate this correspondence
between changes in observation and la-
tent space empirically in § 8.5.

function f to a modified representation z̃ which is (stochastically) related
to the original representation z of x. Specifying the effect of data aug-
mentation thus corresponds to specifying a conditional distribution 𝑝z̃|z
which captures the relation between z and z̃.

In terms of the transformation-centric view presented in § 8.2, we can
view the modified representation z̃ ∈ Zas obtained by applying f−1 to
a transformed observation x̃ = t(x) ∈ X where t ∼ 𝑝t, i.e., z̃ = f−1(x̃).
The conditional distribution 𝑝z̃|z in the representation space can thus
be viewed as being induced by the distribution 𝑝t over transformations
applied at the observation level.5

We now encode the notion that the set of transformations Tused for
augmentation is typically chosen such that any transformation t ∈ T

leaves certain aspects of the data invariant. To this end, we assume that
the representation z can be uniquely partitioned into two disjoint parts:

(i) an invariant part c which will always be shared across (z, z̃), and
which we refer to as content;

(ii) a varying part s which may change across (z, z̃), and which we refer
to as style.

We assume that c and s take values in content and style subspaces
C ⊆ ℝ𝑛𝑐 and S ⊆ ℝ𝑛𝑠 , respectively, i.e., 𝑛 = 𝑛𝑐 + 𝑛𝑠 and Z = C× S.
W.l.o.g., we let c corresponds to the first 𝑛𝑐 dimensions of z:

z = (c, s), c := z1:𝑛𝑐 , s := z(𝑛𝑐+1):𝑛 ,

We formalise the process of data augmentation with content-preserving
transformations by defining the conditional 𝑝z̃|z such that only a (random)
subset of the style variables change at a time.

Assumption 8.3.1 (Content-invariance) The conditional density 𝑝z̃|z over
Z×Z takes the form

𝑝z̃|z(z̃|z) = 𝛿(c̃ − c)𝑝s̃|s(s̃|s)

for some continuous density 𝑝s̃|s on S× S, where 𝛿(·) is the Dirac delta
function, i.e., c̃ = c a.e.

Assumption 8.3.2 (Style changes) Let A be the set of subsets of style
variables 𝐴 ⊆ {1, ..., 𝑛𝑠} and let 𝑝𝐴 be a distribution on A. Then, the style
conditional 𝑝s̃|s is obtained via

𝐴 ∼ 𝑝𝐴 , 𝑝s̃|s,𝐴(s̃|s, 𝐴) = 𝛿(s̃𝐴c − s𝐴c)𝑝s̃𝐴 |s𝐴 (s̃𝐴 |s𝐴) ,

where 𝑝s̃𝐴 |s𝐴 is a continuous density onS𝐴×S𝐴,S𝐴 ⊆ Sdenotes the subspace
of changing style variables specified by 𝐴, and 𝐴c = {1, ..., 𝑛𝑠} \ 𝐴 denotes
the complement of 𝐴.

Note that Assumption 8.3.2 is less restrictive than assuming that all style
variables need to change, since it also allows for only a (possibly different)
subset of style variables to change for any given observation. This is in
line with the intuition that not all transformations affect all changeable
(i.e., style) properties of the data: e.g., a colour distortion should not affect
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6: The recently proposed Indepen-
dently Modulated Component Analysis
(IMCA) [85] extension of ICA is a no-
table exception, but only allows for triv-
ial dependencies across z in the form of
a shared base measure.

positional information, and, in the same vein, a (horizontal or vertical)
flip should not affect the colour spectrum.

The generative process of an augmentation or transformed observation x̃
is thus given by

𝐴 ∼ 𝑝𝐴 , z̃|z, 𝐴 ∼ 𝑝z̃|z,𝐴 , x̃ = f(z̃). (8.3)

Our setting for modelling data augmentation differs from that commonly
assumed in (multi-view) disentanglement and ICA in that we do not assume
that the latent factors z = (c, s) are mutually (or conditionally) independent,
i.e., we allow for arbitrary (non-factorised) marginals 𝑝z in (8.2).6

Causal interpretation: data augmentation as counterfactuals under
soft style intervention. We now provide a causal account of the above
data generating process by describing the (allowed) causal dependencies
among latent variables using a structural causal model (SCM) [122]. As
we will see, this leads to an interpretation of data augmentations as
counterfactuals in the underlying latent SCM. The assumption that c
stays invariant as s changes is consistent with the view that content
may causally influence style, c→ s, but not vice versa, see Fig. 8.1. We
therefore formalise their relation as:

c := fc(uc), s := fs(c, us), (uc , us) ∼ 𝑝uc × 𝑝us

where uc , us are independent exogenous variables, and fc , fs are determin-
istic functions. The latent causal variables (c, s) are subsequently decoded
into observations x = f(c, s). Given a factual observation xF = f(cF , sF)
which resulted from (uF

c , uF
s ), we may ask the counterfactual question:

“what would have happened if the style variables had been (randomly) perturbed,
all else being equal?”. Consider, e.g., a soft intervention [375] on s, i.e., an
intervention that changes the mechanism fs to

𝑑𝑜(s := f̃s(c, us , u𝐴)),

where u𝐴 is an additional source of stochasticity accounting for the
randomness of the augmentation process (𝑝𝐴 × 𝑝s̃|s,𝐴). The resulting
distribution over counterfactual observations xCF = f(cF , sCF) can be com-
puted from the modified SCM by fixing the exogenous variables to their
factual values and performing the soft intervention:

cCF := cF , sCF := f̃s(cF , uF
s , u𝐴), u𝐴 ∼ 𝑝u𝐴 .

This aligns with our intuition and assumed problem setting of data
augmentations as style corruptions. We note that the notion of augmen-
tation as (hard) style interventions is also at the heart of ReLIC [357], a
recently proposed, causally-inspired SSL regularisation term for instance-
discrimination [324, 348]. However, ReLIC assumes independence be-
tween content and style and does not address identifiability. For another
causal perspective on data augmentation in the context of domain gen-
eralisation, c.f. [376].
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7: For notational simplicity, we present
our theory for pairs (x, x̃) rather than for
two augmented views (x̃, x̃′), as typically
used in practice but it also holds for the
latter, see § 8.6 for further discussion.

8.4 Theory: Block-Identifiability of the Invariant
Content Partition

Our goal is to prove that we can identify the invariant content partition c
under a distinct, weaker set of assumptions, compared to existing results
in nonlinear ICA and disentanglement. We stress again that our primary
interest is not to identify or disentangle individual (and independent)
latent factors, unlike what discussed in § 2.3 and Defn. 2.4.1. Instead, our
aim is to separate content from style, such that the content variables can
be subsequently used for downstream tasks. We first define this distinct
notion of block-identifiability.

Definition 8.4.1 (Block-identifiability) We say that the true content
partition c = f−1(x)1:𝑛𝑐 is block-identified by a function g : X→ Z if the
inferred content partition ĉ = g(x)1:𝑛𝑐 contains all and only information
about c, i.e., if there exists an invertible function h : ℝ𝑛𝑐 → ℝ𝑛𝑐 s.t. ĉ = h(c).

Defn. 8.4.1 is related to independent subspace analysis [377–380], which
also aims to identify blocks of random variables as opposed to individ-
ual factors, though under an independence assumption across blocks, and
typically not within a multi-view setting as studied in the present work.

8.4.1 Generative Self-Supervised Representation Learning

First, we consider generative SSL, i.e., fitting a generative model to pairs
(x, x̃) of original and augmented views.7 We show that under our specified
data generation and augmentation process (§ 8.3), as well as suitable
additional assumptions (stated and discussed in more detail below), it
is possible to isolate (i.e., block-identify) the invariant content partition.
Full proofs are included in Appendix G.1.

Theorem 8.4.1 (Identifying content with a generative model) Consider
the data generating process described in § 8.3, i.e., the pairs (x, x̃) of original
and augmented views are generated according to (8.2) and (8.3) with 𝑝z̃|z as
defined in Assumptions 8.3.1 and 8.3.2. Assume further that

(i) f : Z → X is smooth and invertible with smooth inverse (i.e., a
diffeomorphism);

(ii) 𝑝z is a smooth, continuous density on Z with 𝑝z(z) > 0 almost
everywhere;

(iii) for any 𝑙 ∈ {1, ..., 𝑛𝑠}, ∃𝐴 ⊆ {1, ..., 𝑛𝑠} s.t. 𝑙 ∈ 𝐴; 𝑝𝐴(𝐴) > 0;
𝑝s̃𝐴 |s𝐴 is smooth w.r.t. both s𝐴 and s̃𝐴; and for any s𝐴, 𝑝s̃𝐴 |s𝐴 (·|s𝐴) > 0
in some open, non-empty subset containing s𝐴.

If, for a given 𝑛𝑠 (1 ≤ 𝑛𝑠 < 𝑛), a generative model (�̂�z , �̂�𝐴 , �̂�s̃|s,𝐴 , f̂) assumes
the same generative process (§ 8.3), satisfies the above assumptions (i)-(iii),
and matches the data likelihood,

𝑝x,x̃(x, x̃) = �̂�x,x̃(x, x̃) ∀(x, x̃) ∈ X×X,

then it block-identifies the true content variables via g = f̂−1 in the sense
of Defn. 8.4.1.
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8: This step is partially inspired by [114];
the technique used to prove the second
main step is entirely novel.

9: which also uses a fixed content-style
partition for multi-view data, but as-
sumes that all latent factors are mutually
independent, and that all style variables
change between views, independent of
the original style;

Proof sketch. First, show (using (i) and the matching likelihoods) that
the representation ẑ = g(x) extracted by g is related to the true z by a
smooth invertible mapping h = g ◦ f such that ĉ = h(z)1:𝑛𝑐 is invariant
across (z, z̃) almost surely w.r.t. 𝑝z,z̃.8 Second, show by contradiction
(using (ii), (iii)) that h(·)1:𝑛𝑐 can, in fact, only depend on the true content c
and not on style s, for otherwise the invariance from step 1 would be
violated in a region of the style (sub)space of measure greater than zero.

Intuition. Thm. 8.4.1 assumes that the number of content (𝑛𝑐) and style
(𝑛𝑠) variables is known, and that there is a positive probability that each
style variable may change, though not necessarily on its own, according to
(iii). In this case, training a generative model of the form specified in § 8.3
(i.e., with an invariant content partition and subsets of changing style
variables) by maximum likelihood on pairs (x, x̃) will asymptotically (in
the limit of infinite data) recover the true invariant content partition up
to an invertible function, i.e., it isolates, or unmixes, content from style.

Discussion. The identifiability result of Thm. 8.4.1 for generative SSL is
of potential relevance for existing variational autoencoder (VAE) [191]
variants such as the GroupVAE [381],9 or its adaptive version AdaGVAE [114].
Since, contrary to existing results, Thm. 8.4.1 does not assume indepen-
dent latents, it may also provide a principled basis for generative causal
representation learning algorithms [148, 149, 355]. However, an important
limitation to its practical applicability is that generative modelling does
not tend to scale very well to complex high-dimensional observations,
such as images.

8.4.2 Discriminative Self-Supervised Representation
Learning

We therefore next turn to a discriminative approach, i.e., directly learning
an encoder function g which leads to a similar embedding across (x, x̃).
As discussed in § 8.2, this is much more common for SSL with data
augmentations. First, we show that if an invertible encoder g is used,
then learning a representation which is aligned in the first 𝑛𝑐 dimensions
is sufficient to block-identify content.

Theorem 8.4.2 (Identifying content with an invertible encoder) Assume
the same data generating process (§ 8.3) and conditions (i)-(iv) as in Thm. 8.4.1.
Let g : X→ Z be any smooth and invertible function which minimises the
following functional:

LAlign(g) := 𝔼(x,x̃)∼𝑝x,x̃

[��������g(x)1:𝑛𝑐 − g(x̃)1:𝑛𝑐

��������2
2

]
(8.4)

Then g block-identifies the true content variables in the sense of Defini-
tion 8.4.1.
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Proof sketch. First, we show that the global minimum of (8.4) is reached
by the smooth invertible function f−1. Thus, any other minimiser g must
satisfy the same invariance across (x, x̃) used in step 1 of the proof
of Thm. 8.4.1. The second step uses the same argument by contradiction
as in Thm. 8.4.1.

Intuition. Thm. 8.4.2 states that if—under the same assumptions on the
generative process as in Thm. 8.4.1—we directly learn a representation
with an invertible encoder, then enforcing alignment between the first 𝑛𝑐
latents is sufficient to isolate the invariant content partition. Intuitively,
invertibility guarantees that all information is preserved, thus avoiding a
collapsed representation.

Discussion. According to Thm. 8.4.2, content can be isolated if, e.g., a
flow-based architecture [97, 99, 223, 227, 247] is used, or invertibility is
enforced otherwise during training [31, 382]. However, the applicability
of this approach is limited as it places strong constraints on the encoder
architecture which makes it hard to scale these methods up to high-dimensional
settings. As discussed in § 8.2, state-of-the-art SSL methods such as
SimCLR [329], BYOL [330], SimSiam [331], or BarlowTwins [365] do not use
invertible encoders, but instead avoid collapsed representations—which
would result from naively optimising (8.4) for arbitrary, non-invertible
g—using different forms of regularisation.

To close this gap between theory and practice, finally, we investigate how
to block-identify content without assuming an invertible encoder. We
show that, if we add a regularisation term to (8.4) that encourages maxi-
mum entropy of the learnt representation, the invertibility assumption
can be dropped.

Theorem 8.4.3 (Identifying content with discriminative learning and a
non-invertible encoder) Assume the same data generating process (§ 8.3)
and conditions (i)-(iv) as in Thm. 8.4.1. Let g : X→ (0, 1)𝑛𝑐 be any smooth
function which minimises the following functional:

LAlignMaxEnt(g) := 𝔼(x,x̃)∼𝑝x,x̃

[��������g(x) − g(x̃)
��������2

2

]
− 𝐻 (g(x)) (8.5)

where 𝐻(·) denotes the differential entropy of the random variable g(x) taking
values in (0, 1)𝑛𝑐 . Then g block-identifies the true content variables in the
sense of Defn. 8.4.1.

Proof sketch. First, use the Darmois construction [69, 70] to build a
function d : C→ (0, 1)𝑛𝑐 mapping c = f−1(x)1:𝑛𝑐 to a uniform random
variable. Then g★ = d ◦ f−1

1:𝑛𝑐 attains the global minimum of (8.5) because
c is invariant across (x, x̃) and the uniform distribution is the maximum
entropy distribution on (0, 1)𝑛𝑐 . Thus, any other minimiser g of (8.5) must
satisfy invariance across (x, x̃) and map to a uniform r.v. Then, use the
same step 2 as in Thms. 8.4.1 and 8.4.2 to show that h = g◦f : Z→ (0, 1)𝑛𝑐
cannot depend on style, i.e., it is a function from C to (0, 1)𝑛𝑐 . Finally, we
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show that h must be invertible since it maps 𝑝c to a uniform distribution,
using a result from [88].

Intuition. Thm. 8.4.3 states that if we do not explicitly enforce invert-
ibility of g as in Thm. 8.4.2, additionally maximising the entropy of the
learnt representation (i.e., optimising alignment and uniformity [374])
avoids a collapsed representation and recovers the invariant content
block. Intuitively, this is because any function that only depends on c
will be invariant across (x, x̃), so it is beneficial to preserve all content
information to maximise entropy.

Discussion. Of our theoretical results, Thm. 8.4.3 requires the weak-
est set of assumptions, and is most closely aligned with common SSL
practice. As discussed in § 8.2, contrastive SSL with negative samples
using InfoNCE (8.1) as an objective can asymptotically be understood as
alignment with entropy regularisation [374], i.e., objective (8.5). Thm. 8.4.3
thus provides a theoretical justification for the empirically observed effectiveness
of CL with InfoNCE: subject to our assumptions, CL with InfoNCE asymp-
totically isolates content, i.e., the part of the representation that is always
left invariant by augmentation. For example, the strong image classi-
fication performance based on representations learnt by SimCLR [329],
which uses color distortion and random crops as augmentations, can be
explained in that object class is a content variable in this case. We exten-
sively evaluate the effect of various augmentation techniques on different
ground-truth latent factors in our experiments in § 8.5. There is also an
interesting connection between Thm. 8.4.3 and BarlowTwins [365], which
only uses positive pairs and combines alignment with a redundancy
reduction regulariser that enforces decorrelation between the inferred
latents. Intuitively, redundancy reduction is related to increased entropy:
g★ constructed in the proof of Thm. 8.4.3—and thus also any other min-
imiser of (8.5)—attains the global optimum of the BarlowTwins objective,
though the reverse implication may not hold.

8.5 Experiments

We perform two main experiments. First, we numerically test our main
result, Thm. 8.4.3, in a fully-controlled, finite sample setting (§ 8.5.1), using
CL to estimate the entropy term in (8.5). Second, we seek to better under-
stand the effect of data augmentations used in practice (§ 8.5.2). To this end,
we introduce a new dataset of 3D objects with dependencies between a
number of known ground-truth factors, and use it to evaluate the effect
of different augmentation techniques on what is identified as content.
Additional experiments are summarised in § 8.5.3 and described in more
detail in Appendix G.3. Code to reproduce the experiments is available
at: https://www.github.com/ysharma1126/ssl_identifiability.

8.5.1 Numerical Data

Experimental setup. We generate synthetic data as described in § 8.3.
We consider 𝑛𝑐 = 𝑛𝑠 = 5, with content and style latents distributed as

https://www.github.com/ysharma1126/ssl_identifiability
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10: chosen to lead to invertibility almost
surely by following the settings used by
previous work [64, 65]

Generative process 𝑹2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s

1.0 ✗ ✗ 1.00 ± 0.00 0.07 ± 0.00
0.75 ✗ ✗ 1.00 ± 0.00 0.06 ± 0.05
0.75 ✓ ✗ 0.98 ± 0.03 0.37 ± 0.05
0.75 ✓ ✓ 0.99 ± 0.01 0.80 ± 0.08

Table 8.1: 𝑅2 scores for content and style
in our synthetic experiment.

11: e.g., our causal graph entails hares
blend into the environment (object hue
centered about background & spotlight
hue), a form of active camouflage ob-
served in Alaskan [390], Arctic [391], &
Snowshoe hares.

c ∼N(0,Σ𝑐) and s|c ∼ N(a + 𝐵c,Σ𝑠), thus allowing for statistical depen-
dence within the two blocks (viaΣ𝑐 andΣ𝑠) and causal dependence between
content and style (via 𝐵). For f, we use a 3-layer MLP with LeakyReLU
activation functions.10 The distribution 𝑝𝐴 over subsets of changing style
variables is obtained by independently flipping the same biased coin for
each 𝑠𝑖 . The conditional style distribution is taken as 𝑝s̃𝐴 |s𝐴 = N(s𝐴 ,Σ𝐴).
We train an encoder g on pairs (x, x̃) with InfoNCE using the negative
L2 loss as the similarity measure, i.e., we approximate (8.5) using em-
pirical averages and negative samples. For evaluation, we use kernel
ridge regression [67] to predict the ground truth c and s from the learnt
representation ĉ = g(x) and report the 𝑅2 coefficient of determination.
For a more detailed account, we refer to Appendix G.4.

Results. In Tab. 8.1, we report mean ± std. dev. over 3 random seeds
across four generative processes of increasing complexity covered by
Thm. 8.4.3: “p(chg.)”, “Stat.”, and “Cau.” denote respectively the change
probability for each 𝑠𝑖 , statistical dependence within blocks (Σ𝑐 ≠ I ≠ Σ𝑠),
and causal dependence of style on content (𝐵 ≠ 0). An 𝑅2 close to one
indicates that almost all variation is explained by ĉ, i.e., that there is a
1-1 mapping, as required by Defn. 8.4.1. As can be seen, across all settings,
content is block-identified. Regarding style, we observe an increased score
with the introduction of dependencies, which we explain in an extended
discussion in Appendix G.3.1. Finally, we show in Appendix G.3.1 that a
high 𝑅2 score can be obtained even if we use linear regression to predict
c from ĉ (𝑅2 = 0.98 ± 0.01, for the last row).

8.5.2 High-Dimensional Images: Causal3DIdent

Causal3DIdent dataset. 3DIdent [88] is a benchmark for evaluating
identifiability with rendered 224 × 224 images which contains hallmarks
of natural environments (e.g. shadows, different lighting conditions, a
3D object). For influence of the latent factors on the renderings, see
Fig. 2 of [88]. In 3DIdent, there is a single object class (Teapot [383]),
and all 10 latents are sampled independently. For Causal3DIdent, we
introduce six additional classes: Hare [384], Dragon [385], Cow [386],
Armadillo [387], Horse [388], and Head [389]; and impose a causal
graph over the latent variables, see Fig. 8.2. While object class and
all environment variables (spotlight position & hue, background hue)
are sampled independently, all object latents are dependent,11 see Ap-
pendix G.2 for details. The Causal3DIdent dataset is publicly available at
https://zenodo.org/record/4784282.

https://zenodo.org/record/4784282
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Figure 8.2: (Left) Causal graph for the Causal3DIdent dataset. (Right) Two samples from each object class.
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Figure 8.3: 𝑅2 score as a function of
dim(ĉ) for various latent factors.

Experimental setup. For g, we train a convolutional encoder com-
posed of a ResNet18 [392] and an additional fully-connected layer, with
LeakyReLU activation. As in SimCLR [329], we use InfoNCE with cosine
similarity, and train on pairs of augmented examples (x̃, x̃′). As 𝑛𝑐 is un-
known and variable depending on the augmentation, we fix dim(ĉ) = 8
throughout. Note that we find the results to be, for the most part, robust
to the choice of dim(ĉ), see Fig. 8.3. We consider the following data
augmentations (DA): crop, resize & flip; colour distortion (jitter & drop);
and rotation ∈ {90°, 180°, 270°}. For comparison, we also consider directly
imposing a content-style partition by performing a latent transformation
(LT) to generate views. For evaluation, we use linear logistic regression
to predict object class, and kernel ridge to predict the other latents from
ĉ. See Appendix G.3.2 for results with linear regression, as well as eval-
uation using a higher-dimensional intermediate layer by considering a
projection head [329].

Results. The results are presented in Tab. 8.2. Overall, our main findings
can be summarised as:

(i) it can be difficult to design image-level augmentations that leave
specific latent factors invariant;

(ii) augmentations & latent transformations generally have a similar
effect on groups of latents;

(iii) augmentations that yield good classification performance induce
variation in all other latents.

We observe that, similar to directly varying the hue latents, colour distor-
tion leads to a discarding of hue information as style, and a preservation of

Table 8.2: Causal3DIdent results: 𝑅2 mean ± std. dev. over 3 random seeds. DA: data augmentation, LT: latent transformation, bold:
𝑅2 ≥ 0.5, red: 𝑅2 < 0.25. Results for individual axes of object position & rotation are aggregated, see Appendix G.3 for the full table.

Views generated by Class Positions Hues Rotations
object spotlight object spotlight background

DA: colour distortion 0.42 ± 0.01 0.61 ± 0.10 0.17 ± 0.00 0.10 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.33 ± 0.02
LT: change hues 1.00 ± 0.00 0.59 ± 0.33 0.91 ± 0.00 0.30 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.01

DA: crop (large) 0.28 ± 0.04 0.09 ± 0.08 0.21 ± 0.13 0.87 ± 0.00 0.09 ± 0.02 1.00 ± 0.00 0.02 ± 0.02
DA: crop (small) 0.14 ± 0.00 0.00 ± 0.01 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00
LT: change positions 1.00 ± 0.00 0.16 ± 0.23 0.00 ± 0.01 0.46 ± 0.02 0.00 ± 0.00 0.97 ± 0.00 0.29 ± 0.01

DA: crop (large) + colour distortion 0.97 ± 0.00 0.59 ± 0.07 0.59 ± 0.05 0.28 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.74 ± 0.03
DA: crop (small) + colour distortion 1.00 ± 0.00 0.69 ± 0.04 0.93 ± 0.00 0.30 ± 0.01 0.00 ± 0.00 0.02 ± 0.03 0.56 ± 0.03
LT: change positions + hues 1.00 ± 0.00 0.22 ± 0.22 0.07 ± 0.08 0.32 ± 0.02 0.00 ± 0.01 0.02 ± 0.03 0.34 ± 0.06

DA: rotation 0.33 ± 0.06 0.17 ± 0.09 0.23 ± 0.12 0.83 ± 0.01 0.30 ± 0.12 0.99 ± 0.00 0.05 ± 0.03
LT: change rotations 1.00 ± 0.00 0.53 ± 0.33 0.90 ± 0.00 0.41 ± 0.00 0.00 ± 0.00 0.97 ± 0.00 0.28 ± 0.00

DA: rotation + colour distortion 0.59 ± 0.01 0.58 ± 0.06 0.21 ± 0.01 0.12 ± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.33 ± 0.04
LT: change rotations + hues 1.00 ± 0.00 0.57 ± 0.34 0.91 ± 0.00 0.30 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.28 ± 0.00
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12: class is distinguished by shape, a fea-
ture commonly unused by convolutional
neural networks in downstream tasks on
natural images [396]

(object) position as content. Crops, similar to varying the position latents,
lead to a discarding of position as style, and a preservation of background
and object hue as content, the latter assuming crops are sufficiently large.
In contrast, image-level rotation affects both the object rotation and
position, and thus deviates from only varying the rotation latents.

Whereas class is always preserved as content when generating views
with latent transformations, when using data augmentations, we can
only reliably decode class when crops & colour distortion are used in
conjunction—a result which mirrors evaluation on ImageNet [329]. As
can be seen by our evaluation of crops & colour distortion in isolation,
while colour distortion leads to a discarding of hues as style, crops lead to a
discarding of position & rotation as style. Thus, when used in conjunction,
class is isolated as the sole content variable. See Appendix G.3.2 for
additional analysis.

8.5.3 Additional Experiments and Ablations

We also perform an ablation on dim(ĉ) for the synthetic setting from § 8.5.1,
see Appendix G.3.1 for details. Generally, we find that if dim(ĉ) < 𝑛𝑐 ,
there is insufficient capacity to encode all content, so a lower-dimensional
mixture of content is learnt. Conversely, if dim(ĉ) > 𝑛𝑐 , the excess capacity
is used to encode some style information (as that increases entropy).
Further, we repeat our analysis from § 8.5.2 using BarlowTwins [365]
(instead of SimCLR) which, as discussed at the end of § 8.4.2, is also
loosely related to Thm. 8.4.3. The results mostly mirror those obtained
for SimCLR and presented in Tab. 8.2, see Appendix G.3.2 for details.
Finally, we ran the same experimental setup as in § 8.5.2 also on the
MPI3D-real dataset [393] containing > 1 million real images with ground-
truth annotations of 3D objects being moved by a robotic arm. Subject to
some caveats, the results show a similar trend as those on Causal3DIdent,
see Appendix G.3.3 for details.

8.6 Discussion

Theory vs practice. We have made an effort to tailor our problem formu-
lation (§ 8.3) to the setting of data augmentation with content-preserving
transformations. However, some of our more technical assumptions,
which are necessary to prove block-identifiability of the invariant content
partition, may not hold exactly in practice. This is apparent, e.g., from
our second experiment (§ 8.5.2), where we observe that—while class
should, in principle, always be invariant across views (i.e., content)—
when using only crops, colour distortion, or rotation, g appears to encode
shortcuts [394, 395].12 Data augmentation, unlike latent transformations,
generates views x̃ which are not restricted to the 11-dim. image mani-
fold X corresponding to the generative process of Causal3DIdent, but
may introduce additional variation: e.g., colour distortion leads to a rich
combination of colours, typically a 3-dim. feature, whereas Causal3DIdent
only contains one degree of freedom (hue). With additional factors, any
introduced invariances may be encoded as content in place of class.
Image-level augmentations also tend to change multiple latent factors
in a correlated way, which may violate assumption (iii) of our theorems,
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i.e., that 𝑝s̃𝐴 |s𝐴 is fully-supported locally. We also assume that z is con-
tinuous, even though Causal3DIdent and most disentanglement datasets
also contain discrete latents. This is a very common assumption in the
related literature [62, 64, 66, 70, 72, 83, 88, 114, 359] that may be relaxed
in future work. Moreover, our theory holds asymptotically and at the
global optimum, whereas in practice we solve a non-convex optimisation
problem with a finite sample and need to approximate the entropy
term in (8.5), e.g., using a finite number of negative pairs. The resulting
challenges for optimisation may be further accentuated by the higher
dimensionality of X induced by image-level augmentations. Finally, we
remark that while, for simplicity, we have presented our theory for pairs
(x, x̃) of original and augmented examples, in practice, using pairs (x̃, x̃′)
of two augmented views typically yields better performance. All of our
assumptions (content invariance, changing style, etc) and theoretical
results still apply to the latter case. We believe that using two augmented
views helps because it leads to increased variability across the pair: for if x̃
and x̃′ differ from x in style subsets 𝐴 and 𝐴′, respectively, then (x̃, x̃′)
differ from each other (a.s.) in the union 𝐴 ∪ 𝐴′.

Beyond entropy regularisation. We have shown a clear link between
an identifiable maximum entropy approach to SSL (Thm. 8.4.3) and
SimCLR [329] based on the analysis of [374], and have discussed an
intuitive connection to the notion of redundancy reduction used in
BarlowTwins [365]. Whether other types of regularisation such as the
architectural approach pursued in BYOL [330] and SimSiam [331] can also
be linked to entropy maximisation, remains an open question. Deriving
similar results to Thm. 8.4.3 with other regularisers is a promising
direction for future research, c.f. [397].

The choice of augmentation technique implicitly defines content and
style. As we have defined content as the part of the representation
which is always left invariant across views, the choice of augmentation
implicitly determines the content-style partition. This is particularly
important to keep in mind when applying SSL with data augmentation to
safety-critical domains, such as medical imaging. We also advise caution
when using data augmentation to identify specific latent properties,
since, as observed in § 8.5.2, image-level transformations may affect the
underlying ground-truth factors in unanticipated ways. Also note that, for
a given downstream task, we may not want to discard all style information
since style variables may still be correlated with the task of interest and
may thus help improve predictive performance. For arbitrary downstream
tasks, however, where style may change in an adversarial way, it can be
shown that only using content is optimal [134].

What vs how information is encoded. In this chapter, we focused on
what information is retained in representations learnt by SSL with data
augmentations: block-identifying the content variables corresponds to
discarding information about the style variables. The notion of block
identifiability Defn. 8.4.1 is not informative on how the content variables
are encoded (individual causes may be arbitrarily entangled in the
learnt representation). Orthogonal to our contribution, a different line
of work instead studies how information is encoded in a task-dependent
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manner, in the sense of analysing the sample complexity needed to solve
a given downstream task using a linear predictor [397–402]. Provided that
downstream tasks only involve content, we can draw some comparisons.
Whereas our results recover content only up to arbitrary invertible
nonlinear functions (see Defn. 8.4.1), our problem setting is more general:
[398, 400] assume (approximate) independence of views (x, x̃) given
the task (content), while [401, 402] assume (approximate) independence
between one view and the task (content) given the other view, neither of
which hold in our setting.

Conclusion. Existing representation learning approaches typically
assume mutually independent latents, though dependencies clearly
exist in nature [13]. We demonstrate that in a non-i.i.d. scenario, e.g., by
constructing multiple views of the same example with data augmentation,
we can learn useful representations in the presence of this neglected
phenomenon. More specifically, the contribution in this chapter is, to the
best of our knowledge, the first: (i) identifiability result under arbitrary
dependence between latents; and (ii) empirical study that evaluates the
effect of data augmentations not only on classification, but also on other
continuous ground-truth latents. Unlike existing identifiability results
which rely on change as a learning signal, our approach aims to identify
what is always shared across views, i.e., also using invariance as a learning
signal. We hope that this change in perspective will be helpful for
applications such as optimal style transfer or disentangling shape from
pose in vision, and inspire other types of counterfactual training to recover
a more fine-grained causal representation.
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Perspectives





1: [201] was published at the same con-
ference as our work [63], and considers
a related, but more restrictive class of
mixing functions, i.e., isometries.

2: For example, [403] introduces a
stochastic estimator based on Hutchin-
son’s trace estimator and finite differ-
ences.

3: [404] studied an objective a special
case of which is equivalent to IMA, and
discussed how to combine it with dimen-
sionality reduction [404, Sec. 3.2].

Closing Remarks 9
In § 9.1, we summarise some open questions and potential avenues for
future research based on the contributions presented in this thesis. We
then present some concluding remarks on identifiability, mentioning its
role in causal inference and how it connects to the perspective presented
in this manuscript (§ 9.2); finally, in § 9.3, we present some reflections on
its significance in current machine learning practice.

9.1 Potential Avenues of Future Research

9.1.1 Extensions of Independent Mechanism Analysis

Identifiability. One important open question is the full characterisation
of identifiability of the model proposed in Chapter 3. While the IMA
function class has not yet been shown to be identifiabile, such results exist
for special cases such as conformal maps (the case 𝑛 = 2 was discussed
in [70]), isometries [201] and for closely-related unsupervised nonlinear
ICA models [89].

Since the original work was published, there have already been works
providing initial answers to this, see [89, 90], or proposing related models,
see [201].1 [90] proved a weaker form of identifiability (termed “local
identifiability”) for the IMA function class, and characterised a set of
corner cases where identifiability is impossible (similar to the Gaussian
case in linear ICA). This progress will hopefully lead to a more thorough
characterisation of IMA and to an explanation of its empirical success in
blind source separation, as observed in Chapter 3 and Chapter 4.

Estimation. Another question concerns efficient estimation of IMA: as
discussed in Chapter 5, optimisation of the Jacobian term is hard, and
the IMA regularisation might not scale well to high-dimensional data. In
part, this is already implicitly solved in Chapter 4 by using VAEs (which
sidestep expensive Jacobian computations) to estimate IMA. However,
VAEs may not be the most efficient way to enforce column orthogonality
of the Jacobian. A direction for future research would be to develop
efficient ways of enforcing orthogonality of the Jacobian which avoid
expensive computations via automatic differentiation,2 in a similar spirit
to the contribution in Chapter 5 for unconstrained Jacobians.

Fewer sources than observed components. It may be interesting to
study undercomplete settings (where the number of latent sources is
lower than the number of observed components) for IMA, since this is
arguably the most typical setting in representation learning. In Chapter 4,
and particularly in the experiments of § 4.4.3, we showed empirical
results where VAEs appear to achieve blind source separation on high-
dimensional, image data: however, an extension of the IMA theory to
such setting is still missing.3
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4: In the context of contrastive learning,
an analysis which also takes into consid-
eration the computational budget, and
characterises the optimal noise distribu-
tion for a fixed budget, was presented
in [418].

Robustness of IMA to model misspecification. Another open question
concerns robustness of IMA to model misspecification. While the results
presented in Chapter 3 assume a certain ground truth model to hold,
in many practical situations we may expect some degree of violation of
the assumptions. A first empirical study [405] gave encouraging results,
showing a degree of robustness of IMA to violations of the underlying
assumptions. A theoretical characterisation of the model’s performance in
these cases might, however, require a novel approach—see, e.g., [406].

9.1.2 Other avenues

Multiple layers of representation. While most of the work on identi-
fiability we presented concerns the final layer representations of neural
networks, fewer works investigate the intermediate layer representations
(in § 1.3.2, one of our motivations for studying representation learning
was that deep learning extracts “multiple layers of representation” [10]). For
example, it is well-known that neural networks trained on natural images
consistently recover Gabor filters in the early layers [407, 408]. Previous
work also analysed the transferability of features extracted at different
layers [409], finding that it decreases with depth.

The identifiability theory we presented does not directly account for
such intermediate representations extracted by end-to-end training—as it
would only concern the final layers. Given the observed reproducibility of
some intermediate layer features, this seems like an interesting problem to
be studied through the lens of identifiability, as also observed in [410].

Hierarchical latent variable models for subgroup differences. An
extension of latent variable models which would be interesting to con-
sider in future work are hierarchical latent variable models [411–416]. For
example, for statistical analysis of experimental studies (e.g., when a
treatment and a control group are involved), it would be interesting to
extend the work in Chapter 6 to model subgroup-specific variability
(besides differences across individuals, as in Chapter 6) in a hierarchical
fashion. Interesting questions may arise both with respect to model
identifiability and estimation.

Statistical efficiency and finite-sample analysis of identifiable methods.
A question we did not address in this thesis is finite-sample performance
of different estimation procedures for identifiable methods. For nonlinear
ICA, a recent contribution in this direction was [417], which characterised
finite-sample behaviour of contrastive-learning based estimation.4 An-
other paper, which studies a model closely related to the one presented
in Chapter 8, is [419], in particular Theorem 3 on Sample Complexity.

9.2 Identifiability in Representation Learning
and Causal Inference

In Chapter 2, we described the ICA approach to representation learning,
and mentioned (§ 2.2.4) that it postulates a separation between the
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[66]: Hyvärinen et al. (2019), ‘Nonlinear
ICA using auxiliary variables and gener-
alized contrastive learning’

[122]: Pearl (2009), Causality

5: See, e.g., [420, Definition 1] for a
technical definition. [420] remark that a
ground truth SCM is postulated “whether
or not we, as an epistemological matter, know
much about it”.
[420]: Bareinboim et al. (2022), ‘On
Pearl’s hierarchy and the foundations
of causal inference’
[421]: Pearl et al. (2018), The book of Why:
the new science of cause and effect
6: The example questions are taken
from [421].

7: In this context, the identifiability re-
quirement is articulated in [422, Def. 2].
Note that this definition is closer in spirit
to the one in (2.10) than to the one based
on equivalence relations (2.11).

problems of identification and estimation. According to [66],

The essential difference [between nonlinear ICA and] most
methods for unsupervised representation learning is that the
approach starts by defining a generative model in which the
original latent variables can be recovered, i.e. the model is
identifiable by design.

Here we want to briefly review how this perspective on identifiability is
related to the one in causal inference, and in particular to the approach
presented in [122].

9.2.1 Identifiability in Causal Inference

Following [122, 420], we postulate that the ground truth data generating
process can be represented in the form of a Structural Causal Model
(SCM).5 Each SCM induces a causal hierarchy [420], also termed the
ladder of causation [421], which can be thought of as a taxonomy of causal
questions organised in three distinct levels or rungs:

(i) Rung 1: Association (“What does a symptom tell me about a disease?”);
(ii) Rung 2: Intervention (“If I take an aspirin, will my headache be cured?”);

(iii) Rung 3: Counterfactuals (“Was it the aspirin that stopped my headache?”).6

Causal inference is especially difficult since we typically only have
measurements from lower rungs, but want to reason about higher ones:
for example, knowledge about statistical associations (rung 1 knowledge)
within some observed variables, may be insufficient to identify causal
effects and answer questions on how their distribution would change
under interventions (rung 2 queries). Moreover, counterfactual (rung 3)
questions (i.e., questions of the form “what would have happened if”)
might not be uniquely answered even if experiments (rung 2) are at hand.
As argued in [420], “it is generically impossible to draw higher-layer inferences
using only lower-layer information”.

A key question of causal inference is what assumptions and measure-
ments are required to unambiguously answer, or identify, a given causal
query.7 A central contribution in this field is the do-calculus [423, 424],
which provides a way to determine whether a given causal query can
be unambiguously answered based on the available measurements (pos-
sibly a combination of experimental and observational data), based on
assumptions including a directed acyclic graph (DAG) summarising the
causal relations occurring among the considered variables.

In a recent interview, Judea Pearl described his contribution to causality
as follows [425]:

I have focused on the problem of identification, rather than
estimation. This calls for transforming the desired causal
quantity into an equivalent probabilistic expression (called
estimand) that can be estimated from data. Once an estimand
is derived, the actual estimation step is no longer causal,
and can be accomplished by standard statistical methods.
This is indeed where machine learning excels, unlike the
identification step in which machine learning and standard
statistical methods are almost helpless. It is for this reason
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8: Identifiability is a central aspect
of causal inference beyond [122] (e.g.,
see [426–428]), but the special focus on
algorithms to infer identifiability given a
complex model is arguably a distinguish-
ing feature of the approach in [122]; see
also [429] and discussion therein.

9: Note that in these partial identifiabil-
ity results bounds are derived for the pop-
ulation limit, i.e., in the context where
infinite datapoints are available: they are
conceptually different from finite-sample
confidence intervals.

10: Some recent results of identifiabil-
ity for latent causal models do exploit
graphical criteria in their identifiability
proofs [434, 435]. Also, in a loose anal-
ogy, diagrammatic proofs of identifia-
bilty have been given in [94] based on
category theory and string diagrams.

11: These are often implicitly assumed
in ICA literature.

that I focus on identification – this is where the novelty of
causal thinking lies, and where a new calculus had to be
developed.

The focus on identifiability is therefore a common theme between this
approach to causal inference and nonlinear ICA.8 Besides this analogy, it
is worth making some further remarks:

▶ Causal inference typically focuses on identifiability of queries (e.g.,
“Will I get a headache if I take an aspirin?”), not models (but see,
e.g., [121]); whereas nonlinear ICA focuses on identification of
(un)mixing functions and latent variables (these latter two are
equivalent in the noiseless case we introduced in (2.1)).

▶ Moreover, for causal queries, when full identification is not achiev-
able, partial identification sometimes still yields informative bounds
based on empirically observable quantities [430–433]. To the best
of our knowledge, similar partial identification results are missing in
nonlinear ICA literature.9

As a final remark, identifiability is easier to assess in the graphical
approach to causal inference than it is in representation learning. In fact,
under suitable assumptions, the do-calculus provides a way to translate a
question about identification into a question about graphical properties of
an underlying DAG, which can be solved algorithmically. A similar tool,
through which a question regarding identifiability could be translated
into a graphical or diagrammatic one, would be quite helpful also in the
context of representation learning theory.10

Identifiability and estimability. Identifiability of a query or model
may however be insufficient to ensure that it can be estimated from data:
for example, [49, 50] distinguish the notions of identifiability from the
one of estimability, and argue that estimability is more suited to answer
the question of what can be estimated from data. In short, estimability
may require some additional smoothness assumptions on the considered
distributions.11

Identifiability and falsifiability. Identifiability is also related to fal-
sifiability. For example, any interventional model may be consistent
with many structural causal models [420]; and it may be impossible to
distinguish the true SCM within a family of (observationally or inter-
ventionally) equivalent ones based on empirical measurements. These
alternative SCMs might entail entirely different counterfactual inferences,
but due to their equivalence on any statistical or interventional question
they are to all effects unfalsifiable. In turn, when a model or query is
identifiable, all but one of the solutions (or a subset thereof in case of
partial identifiability) are ruled out, i.e., falsified—see [121, Sec. 7] and
discussion therein).

9.2.2 ICA for Causal Inference & Causality for ICA

ICA can be used in causal inference as a method to solve the problem of
causal discovery—that is, the problem of discovering the DAG representing
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12: Interestingly, these methods identify
the underlying SCMs, something which
is impossible in general but which may
become possible under certain restric-
tions on the model class [102, 105] or
when diverse enough data (e.g., nonsta-
tionary) is available [104].
13: In this spirit, Aapo Hyvärinen sug-
gested [438] that the ICA model (2.1)
should be written as x := f(s), adopting
the notation used to define structural as-
signments in SCMs, thus implicitly con-
sidering x as the effect of s through the
mechanism f.

[13]: Schölkopf et al. (2021), ‘Toward
causal representation learning’

14: In the different setting of post-hoc
concept discovery, related ideas have also
been explored in [444].

causal relations among some considered variables, instead of assuming
it a priori based on domain knowledge [436].

In this context, identifiability results establish whether the DAG sum-
marising the causal relations can be unambiguously determined based
on assumptions on the data generating process. While causal discovery
from observational data is only possible up to the Markov equivalence
class of the true DAG [437], causal discovery methods based on ICA
allow going beyond this—subject to additional assumptions mirroring
those used for identifiability of ICA [102, 104, 105, 280].12

In turn, causality might provide a different perspective to think of prob-
lems in ICA and representation learning.13 The contribution presented
in Chapter 3 constitutes, to the best of our knowledge, the first effort
to use ideas from causality (specifically ICM) to make progress on the
challenging problem of nonlinear blind source separation.

9.2.3 Toward Causal Representation Learning

As mentioned already in § 2.4.3, the study of latent variable models
with non-independent components, and in particular those where the
latent components are connected by causal relations and support causal
reasoning [13], is an exciting avenue of research [93, 94, 434, 439]. Based
on the works presented in this thesis, the problem of causal representation
learning may be further explored in different ways.

On the one hand, the multi-view setting discussed in Chapter 6 may be
extended by allowing causal dependence among the latent variables, and
considering pairs of views (x, x̃) as observations of the same system before
and after a given intervention. In the context of data augmentation, a first
step was discussed in Chapter 8, where a causal interpretation of the data-
augmentation process was presented (§ 8.3). This may be further explored
and extended to model other kinds of actions or interventions; for
example, the interactions between an agent and a system, thus grounding
representation learning in the comparison between measurements of the
same system before and after an intervention [93, 94, 440]. This may be
relevant in the context of reinforcement learning [441], where the role of
different representations is a topic of active research, with new datasets
and benchmarks [442, 443].

On the other hand, an application of the IMA principle in causal represen-
tation learning [13] may also be an interesting direction for future work.
The IMA principle enforces constraints on the mixing function class,
which are orthogonal to constraints on the source distribution, and could
therefore be combined with a different assumption from independence
on the latent components,14 including latent causal models. It is possible
that the IMA constraint on the mixing function may be helpful to solve
the representation learning problem even with non-independent latent
components. In fact, many existing works on identifiability test their
results on high-dimensional datasets through estimation procedures
based on modifications of the VAE model, e.g., [94, 114, 359]. Such works
provide identifiability proofs based on principles such as, e.g., weak
supervision [94, 114], and completely unrelated to the implicit functional
constraint of VAEs discussed in Chapter 3. It would therefore be inter-
esting to investigate whether the implicit IMA regularisation of VAEs
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[445]: D’Amour et al. (2020), ‘Underspec-
ification presents challenges for credibil-
ity in modern machine learning’
15: Following [445], we consider a super-
vised learning setting where the goal is
to learn a predictor 𝑓 : X ↦→ Y map-
ping inputs 𝑥 ∈ X to labels 𝑦 ∈ Y. A
model is specified by a function class F

from which the predictor 𝑓 will be cho-
sen; a pipeline takes training data D from
a given distribution ℙ and produces a
trained model, or predictor, 𝑓 (𝑥).

16: In the authors’ own words [445], for
the analysis of the underspecification
phenomenon “there are opportunities to
import ideas from the sensitivity analysis
and partial identification subfields in causal
inference and inverse problems”.

described in Chapter 3 is also present in these modified VAE models
(and others, e.g., [101]), and whether it might play a role in explaining
their empirical effectiveness.

9.3 Identifiability and Current Empirical
Practice in Machine learning

Underspecification. Besides representation learning, a problem in
current machine learning practice which may be related to identifiability
is underspecification [445]. A machine learning pipeline is underspecified
when it can return many predictors with equivalently strong held-out
performance in the training domain.15 This may be problematic when
the model is required to encode some essential structure of the problem
at hand, allowing it to perform well beyond its training set.

The problem diagnosed in [445] is that many existing machine learning
pipelines allow highly non-unique predictors: that is, predictors trained
to the same level of held-out performance on some training data can
show widely divergent behaviour when applied to real-world settings.
The authors argue that underspecification in machine learning pipelines
is a key obstacle to reliable training of models that behave as expected
in deployment; and that it is ubiquitous in modern applications of
machine learning, with substantial practical implications undermining
its credibility.

It would therefore be interesting to explore whether the characterisation
of identifiability discussed in this manuscript might be helpful to address
this problem from a theoretical perspective.16

Empirical practice in representation learning. Advancements in the
fields of representation learning and disentanglement have been largely
driven by an empirical perspective. While many effective self-supervised
or fully unsupervised methods were developed without being explic-
itly grounded in identifiability theory, their empirical success might a
posteriori be interpreted in this light.

In the case of self-supervised learning methods, it has been argued [66]
that nonlinear ICA, and specifically the identifiability theory based on
auxiliary variables (§ 2.4.2), establishes mathematical principles under-
lying a strand of self-supervised approaches which rely on videos and
exploit the correspondence between the visual and audio streams [446,
447] .We believe that the contribution in Chapter 8 adds another element
to the puzzle by investigating commonly deployed data augmentation
strategies [329].

In unsupervised representation learning, an interesting empirical finding
is that, despite the intrinsic limitations and impossibility results for
fully unsupervised representation learning [70, 72], VAE and 𝛽-VAE
architectures appear in some cases to have the ability to transform raw,
unstructured data into a semantically meaningful set of latent variables
(e.g., [194, 199] and § 4.4.3). As argued in, e.g., [448], this contributed to
making VAEs part of some state-of-the-art world-models in the context of
reinforcement learning [449, 450]. The contribution in Chapter 4 aims at
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providing a partial explanation of this phenomenon, by linking the ELBO
gap to the IMA-regularisation introduced in Chapter 3 (although, as
argued in § 4.6, further work might be required to elucidate the specificity
of 𝛽-VAE models).

Summarising, empirical practice in representation learning appears to
have developed methods whose success may be interpreted through
the lens of identifiability theory, even though they were not originally
conceived based on it. In the future, it will be interesting to see whether
the study of identifiability will be useful to explain success of novel
machine learning methods (e.g., recent self-supervised approaches such
as masked autoencoders [451]; or popular models such as the VQ-
VAE [452]), improve them or suggest new approaches to representation
learning.
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[1]: Hyvärinen et al. (2001), Independent
Component Analysis

A
Additional Material for Chapter 2

A.1 Whitening in the context of linear ICA

We give a brief account of the role of whitening in linear ICA, which was
mentioned in § 2.2.2 and which again plays a role in B.1.1. The following
exposition is largely based on [1], §7.4.2.

A zero-mean random vector, say y, is said to be white if its components
are uncorrelated and their variances equal unity. In other words, the
covariance matrix of y is equal to the identity matrix:

𝔼
[
yy⊤

]
= I .

It is always possible to whiten a zero-mean random vector x through a
linear operation,

z = Vx . (A.1)

As an example, a popular method for whitening uses the eigenvalue
decomposition (EVD) of the covariance matrix,

𝔼
[
xx⊤

]
= EDE⊤

where E is the orthogonal matrix of eigenvectors of 𝔼 [xx⊤] and D is the
diagonal matrix of its eigenvalues, D = diag (�1 , . . . ,�𝑛). Note that the
covariance matrix is a symmetric matrix, therefore it is diagonalisable.
Whitening can then be performed by substituting in (A.1) the matrix

V = ED−1/2E⊤ . (A.2)

so that
𝔼[zz⊤] = ED−1/2E⊤EDE⊤ED−1/2E⊤ = I

Whitening is only half ICA. Assume a linear ICA model,

x = As . (A.3)

and suppose that the observed data is whitened, for example, by the
matrix V given in (A.2). Whitening transforms the mixing matrix into a
new one, Ã = VA. We have from (A.3) and (A.2)

z = VAs = Ãs

Note that whitening does not solve linear ICA, since uncorrelatedness is
weaker than independence. To see this, consider any orthogonal transforma-
tion U of z:

y = Uz.
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Due to the orthogonality of U, we have

𝔼
[
yy⊤

]
= 𝔼

[
Uzz⊤U⊤

]
= U𝔼

[
zz⊤

]
U⊤ = UIU⊤ = I ,

so, y is white as well. Thus, we cannot tell if the independent components
are given by z or y using the whiteness property alone. Since y could be
any orthogonal transformation of z, whitening gives the independent
components only up to an orthogonal transformation.

On the other hand, whitening is useful as a pre-processing step in ICA:
its utility resides in the fact that the new mixing matrix Ã = VA is
orthogonal. This can be seen from

𝔼
[
zz⊤

]
= Ã𝔼

[
ss⊤

]
Ã⊤ = ÃÃ⊤ = I.

We can thus restrict the search for the (un)mixing matrix to the space of
orthogonal matrices. Instead of having to estimate 𝑛2 parameters (the
elements of the original matrix A), we only need to estimate an orthogonal
mixing matrix Ã which contains 𝑛(𝑛 − 1)/2 degrees of freedom; e.g., in
two dimensions, an orthogonal transformation is determined by a single
angle parameter. For larger 𝑛, an orthogonal matrix contains only about
half of the number of parameters of an arbitrary matrix.

Whitening thus “solves half of the problem of ICA”. Because whitening
is a very simple and standard procedure—much simpler than any ICA
algorithm—it is a good idea to reduce the complexity of the problem this
way. The remaining half of the parameters has to be estimated by some
other method.

A.2 The variability assumption [66]

Here we report the definition of the assumption of variability, presented
in [66]:

Definition A.2.1 (Assumption of Variability) For any y ∈ ℝ𝑛 , there exist
2𝑛 + 1 values for u, denoted by u𝑗 , 𝑗 = 0 . . . 2𝑛 such that the 2𝑛 vectors in
ℝ2𝑛 given by

(w (y, u1) −w (y, u0)) , (w (y, u2) −w (y, u0)) ,
. . . , (w (y, u2𝑛) −w (y, u0))

with
w(y, u) =

(
𝜕𝑞1 (𝑦1 , u)

𝜕𝑦1
, . . . ,

𝜕𝑞𝑛 (𝑦𝑛 , u)
𝜕𝑦𝑛

𝜕2𝑞1 (𝑦1 , u)
𝜕𝑦2

1
, . . . ,

𝜕2𝑞𝑛 (𝑦𝑛 , u)
𝜕𝑦2

𝑛

)
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Overview
▶ Appendix B.1 contains additional discussion of existing ICM criteria

and their relation to IMA.
▶ Appendix B.2 presents the full proofs for all theoretical results

from Chapter 3.
▶ Appendix B.3 contains a worked out computation of the value of
𝐶ima for the mapping from radial to Cartesian coordinates.

▶ Appendix B.4 contains experimental details and additional results.
▶ Appendix B.5 contains additional background on conformal maps

and Möbius transformations

B.1 Existing ICM criteria and their relationship
to ICA and IMA

Here, we provide additional discussion of the ICM principle and its
connection to ICA and IMA. First, we introduce a linear ICM criterion
and discuss its relation with linear ICA in Appendix B.1.1.

B.1.1 Trace method

As mentioned in § 3.2.1, besides IGCI, another existing ICM criterion that
is closely related to ICA due to also assuming a deterministic relation
between cause c and effect e is the trace method [157, 158]. The trace method
assumes a linear relationship,

e = Ac, (B.1)

and formulates ICM as an “independence” between the covariance matrix
𝚺 of c and the mechanism A (which, as for IGCI, we can again think of
as a degenerate conditional 𝑝e|c) via the condition

𝜏(A𝚺A⊤) = 𝜏(𝚺)𝜏(AA⊤) (B.2)

where 𝜏(·) denotes the renormalized trace. Intuitively, this condition (B.2)
rules out a fine-tuning of A to the eigenvectors of 𝚺 which would violate
the assumption of no shared information between the cause distribution
(specifically, its covariance structure) and the mechanism.

As with IGCI and nonlinear ICA, it can be seen by comparing (B.1)
and (2.2) that the trace method assumes the same generative model as linear
ICA (where the cause c corresponds to the independent sources s and the
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1: A premetric on a set X is a function
𝑑 : X × X → ℝ+ ∪ {0} such that (i)
𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥 and 𝑦 in X and (ii)
𝑑(𝑥, 𝑥) = 0 for all 𝑥 ∈ X.

effect to the observed mixtures x). While the focus of the present work is
on nonlinear ICA, we briefly discuss the usefulness of the trace method
as a constraint for achieving identifiability in a linear ICA setting.

As is clear from (B.2), the trace condition is trivially satisfied if the
covariance matrix of the sources (causes) is the identity, 𝚺 = I. However,
as explained in Appendix A.1, in the context of linear ICA this can easily
be achieved by whitening the data. As with IGCI, the trace method was
developed for cause-effect inference where both variables are observed,
and thus relies on the observed cause distribution being informative.
This renders is unsuitable (on its own) to constrain the unsupervised
representation learning problem of linear ICA problem where the sources
are unobserved.

Note, however, that this is qualitatively different from the IGCI argument
presented in § 3.3, as whitening on its own does not necessarily lead
to independent variables, but only uncorrelated ones, and thus does
not solve linear ICA—unlike the Darmois construction in the case of
nonlinear ICA which also yields independent components.

B.1.2 Information geometric interpretation of the ICM
principle

There is a well-established connection between IGCI and the trace
method [156]. At the heart of this derivation lies an information-geometric
interpretation of the ICM principle for probability distributions, which
we sketch in this section. First, we need to review some basic concepts.

Background on information geometry. Information geometry [488,
489] is a discipline in which ideas from differential geometry are applied
to probability theory. Probability distributions correspond to points on
a Riemannian manifold, known as statistical manifold. Equipped with
the Kullback-Leibler (KL) divergence, also called the relative entropy
distance, as a premetric,1 one can study the geometrical properties of the
statistical manifold. For two probability distributions 𝑃 and𝑄, we denote
their KL divergence by 𝐷𝐾𝐿(𝑃∥𝑄), which is defined for 𝑃 absolutely
continuous with respect to 𝑄 as:

𝐷𝐾𝐿(𝑃∥𝑄) =
∫

𝑑𝑃 log
𝑑𝑃

𝑑𝑄
.

An interesting property of the KL divergence is its invariance to reparametri-
sation. Consider an invertible transformation ℎ, mapping random vari-
ables𝑋 and𝑌 to ℎ(𝑋) and ℎ(𝑌), respectively (the domains and codomains
being arbitrary spaces, e.g., discrete or Euclidean of arbitrary dimen-
sion). Then the KL divergence between 𝑃𝑋 and 𝑃𝑌 is preserved by the
pushforward operation implemented by ℎ, such that

𝐷𝐾𝐿(𝑃ℎ(𝑋)∥𝑃ℎ(𝑌)) = 𝐷𝐾𝐿(𝑃𝑋 ∥𝑃𝑌) . (B.3)
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Figure B.1: Interpretation of the ICM
principle as an orthogonality prin-
ciple in information space. The ir-
regularity of the effect distribution,
as measured by 𝐷𝐾𝐿(𝑃𝑌 ∥𝑈𝑌), can
be decomposed into the irregular-
ities of the cause, as measured by
𝐷𝐾𝐿(𝑃𝑋 ∥𝑈𝑋 ), and the irregularity
of the mechanism 𝑓 , as measured
by 𝐷𝐾𝐿( ®𝑃𝑌 ∥𝑈𝑌). Here,𝑈𝑋 and𝑈𝑌
denote the orthogonal projections
of 𝑃𝑋 and 𝑃𝑌 onto the manifold E

of regular distributions, and ®𝑃𝑌 de-
notes the pushforward of the regu-
lar distribution𝑈𝑋 via 𝑓 . Note that
the KL divergence is invariant to
reparametrisation by invertible func-
tions.

2: Here “regular” is only meant in an
intuitive sense, not implying any fur-
ther mathematical notion. If E is the set
of Gaussians, for instance, the distance
from Emeasures non-Gaussianity.

Interpretation of ICM as orthogonality condition in information space.
Consider a deterministic causal relationship of the form 𝑌 := 𝑓 (𝑋),

and denote by 𝑃𝑋 and 𝑃𝑌 the marginal distributions of the cause 𝑋 and
the effect 𝑌, respectively. The “irregularity” of each distribution can be
quantified by evaluating their divergence to a reference set Eof “regular”
distributions,2

𝐷𝐾𝐿(𝑃𝑋 ∥E) = inf
𝑈∈E

𝐷𝐾𝐿(𝑃𝑋 ∥𝑈), 𝐷𝐾𝐿(𝑃𝑌 ∥E) = inf
𝑈∈E

𝐷𝐾𝐿(𝑃𝑌 ∥𝑈).

Let us assume that these infima are reached at a unique point, their
projections onto E:

𝑈𝑋 = arg min
𝑈∈E

𝐷𝐾𝐿(𝑃𝑋 ∥𝑈), 𝑈𝑌 = arg min
𝑈∈E

𝐷𝐾𝐿(𝑃𝑌 ∥𝑈).

As elaborated in [156, §4], the choice of E is context-dependent. For
example, in the context of the trace method [157], 𝑋 and𝑌 are assumed to
be 𝑛-dimensional multivariate Gaussian random vectors, and E is taken
as the set of multivariate isotropic Gaussian distributions. In contrast,
when IGCI is applied in contexts where the considered mechanism is a
deterministic non-linear diffeomorphism, the reference distributions are
typically uniform distributions [155, 490].

Overall, it can be shown that the independence postulate underlying
these approaches leads to the following decomposition of the irregularity
of 𝑃𝑌 (see [156, Thm. 2]):

𝐷𝐾𝐿(𝑃𝑌 ∥𝑈𝑌) = 𝐷𝐾𝐿(𝑃𝑌 ∥ ®𝑃𝑌) + 𝐷𝐾𝐿( ®𝑃𝑌 ∥𝑈𝑌)

where ®𝑃𝑌 denotes the distribution of 𝑓 (𝑈𝑋), i.e., the hypothetical distri-
bution of the effect that would be obtained if the cause 𝑋 were replaced
by the random variable𝑈𝑋 (which corresponds to the closest regularly
distributed random variable to 𝑋).

Since applying the bĳection 𝑓 −1 preserves the KL divergences, see (B.3),
we can obtain the equivalent relation

𝐷𝐾𝐿(𝑃𝑌 ∥𝑈𝑌) = 𝐷𝐾𝐿(𝑃𝑋 ∥𝑈𝑋) + 𝐷𝐾𝐿( ®𝑃𝑌 ∥𝑈𝑌) . (B.4)
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This relation can be interpreted as an orthogonality principle in information
space by considering the KL divergences as a generalization of the

squared Euclidean norm for the difference vectors
−−−−→
𝑃𝑌𝑈𝑌 ,

−−−−→
𝑃𝑌 ®𝑃𝑌 and

−−−−→
®𝑃𝑌𝑈𝑌 . It can thus be viewed as a Pythagorean theorem in the space of

distributions, see Fig. B.1 for an illustration.

The orthogonality principle (B.4) thus captures a decomposition of
the irregularity 𝐷𝐾𝐿(𝑃𝑌 ∥𝑈𝑌) of 𝑃𝑌 on the LHS into the sum of two
irregularities on the RHS: the irregularity 𝐷𝐾𝐿(𝑃𝑋 ∥𝑈𝑋) of 𝑃𝑋 , and the
term 𝐷𝐾𝐿( ®𝑃𝑌 ∥𝑈𝑌) which measures the irregularity of the mechanism
𝑓 indirectly, via the “irregularity” of the distribution resulting from
applying 𝑓 to a regular distribution𝑈𝑌 .

Overall, the decomposition (B.4) links the postulate of independence
between the cause distribution, on the one hand, and the mechanism,
on the other hand, to an orthogonality of their irregularities in information
space (namely the statistical manifold of information geometry). As
proposed in [156], this can be intuitively interpreted as a geometric form
of independence if we assume that Nature chooses such irregularities
independently of each other, and “isotropically” in a high-dimensional
subspace of irregularities.

While, to date, we are not aware of similar results in the context of
information geometry (i.e., on the statistical manifold), this intuition
is supported by concentration of measure results in Euclidean spaces.
Indeed, in high-dimensions, it is likely that two vectors are close to
orthogonal if they are chosen independently according to a uniform
prior [491].

We will take inspiration of the decomposition (B.4) to justify IMA in the
following section.

B.1.3 Decoupling of the influences in IMA and
comparison with IGCI

In contrast to Appendix B.1.2, in this section we will, for notational
consistency with the main paper, assume that all distributions have a
density with respect to the Lebesgue measure, and thus consider, with
a slight abuse of notation, that the KL divergence is a distance between
two densities on the relevant support, such that

𝐷𝐾𝐿(𝑝∥𝑞) =
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) 𝑑𝑥 .

Overview. In line with the information-geometric interpretation of
IGCI presented in Appendix B.1.2, we also consider an interpretation
of IMA in information space. We consider the KL-divergence between
the observed density 𝑝x of x = f(s) and an interventional distribution 𝑝x̂
of x̂ = f̂(s), resulting from a soft intervention that replaces the mixing
function f with another mixing f̂. We take 𝐷𝐾𝐿(𝑝x∥𝑝x̂) as a measure of
the causal effect of the soft intervention (or perturbation) that turns f into
f̂—similarly to how 𝐷𝐾𝐿(𝑃𝑌 ∥𝑈𝑌) is used as a measure of the irregularity
of the effect distribution in the context of IGCI (Appendix B.1.2).
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As we will show, under suitable assumptions, the functional form imposed
on f by the IMA Principle 3.4.1 can lead to a decomposition of the
causal effect of an intervention on the mechanism into a sum of terms,
corresponding to the causal effects of separate soft interventions on the
mechanisms associated to each source. In contrast, IGCI decomposes
irregularities of the effect distribution into two terms, one irregularity of the
cause and one irregularity of the mechanism.

Soft-interventions on the individual mechanisms. Assume f satisfies
the IMA principle. We consider interventions performed through the
element-wise transformation 𝝈 such that

𝝈 : s ↦→



𝜎1(𝑠1)
...

𝜎𝑗(𝑠 𝑗)
...

𝜎𝑛(𝑠𝑛)


.

This can be seen as a composition of 𝑛 soft interventions {𝝈𝑗} on each
individual source component 𝑗, implemented through univariate smooth
diffeomorphisms 𝜎𝑗 , such that

𝝈𝑗 : s ↦→



𝑠1
...

𝜎𝑗(𝑠 𝑗)
...

𝑠𝑛


,

and 𝝈 = 𝝈𝑛 ◦ · · ·◦𝝈1 (in arbitrary order, since the individual 𝝈𝑗 commute).
This soft intervention can be seen as turning the random variable s
into ŝ, yielding the intervened observations x̂ = f(̂s). Alternatively, the
intervention on x can be implemented by replacing f by f̂ = f ◦ 𝝈—
i.e., x̂ = f̂(s). Notably, since f satisfies the IMA principle, so does f̂
(due to Proposition 3.4.2, (ii), since 𝝈 is an element-wise nonlinearity).
Moreover, the partial derivatives of the intervened function are given
by

𝜕f
𝜕𝑠𝑖
(s) = 𝜕f

𝜕𝑠𝑖
(𝝈(s))

����𝑑𝜎𝑖𝑑𝑠𝑖

���� (𝑠𝑖) .
The classical change of variable formula for bĳection f yields the expres-
sion of the pushforward density of x as

𝑝x(x) = |𝐽f(f−1(x))|−1𝑝s(f−1(x)) ,

and for x̂ we get

𝑝x̂(̂x) = |𝐽f(̂f
−1(̂x))|−1𝑝s(̂f−1(̂x)) ,
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3: A leaf node in a DAG is one that does
not have any descendants.

Information geometric interpretation of IMA. Let us now compute
the KL divergence between the intervened and observed distribution,

𝐷𝐾𝐿(𝑝x∥𝑝x̂) =
∫

𝑝x(x) log
𝑝x(x)
𝑝x̂(x)

𝑑x . (B.5)

Expressing the density of the observed variables as a pushforward of the
density of the sources, and without additional assumptions on f and f̂
besides smoothness and invertibility, we get,

𝐷𝐾𝐿(𝑝x∥𝑝x̂) =
∫ ��Jf(f−1(x))

��−1
𝑝s(f−1(x)) log

��Jf(f−1(x))
��−1
𝑝s(f−1(x))���Ĵf(̂f−1(x))

���−1
𝑝s(̂f−1(x))

𝑑x .

We now consider a factorization of s over a directed acyclic graph (DAG),
such that

𝑝s(s) =
∏
𝑗

𝑝 𝑗(𝑠 𝑗 |pa(𝑠 𝑗)) ,

where pa(𝑠 𝑗) denotes the components associated to the parents of node 𝑗
in the DAG. Because 𝝈 is an element-wise transformation the factorization
will be the same for 𝑝ŝ.

If we now additionally assume that f and f̂ satisfy the IMA postulate, we
get

𝐷𝐾𝐿(𝑝x∥𝑝x̂) =
∫ ��Jf(f−1(x))

��−1
𝑝s(f−1(x))

𝑛∑
𝑖=1

log

 𝜕f
𝜕𝑠𝑖
(f−1(x))

−1
𝑝𝑖(f−1(x)𝑖 |pa(f−1(x)𝑖)) 𝜕f

𝜕𝑠𝑖
(̂f−1(x))

−1
𝑝𝑖 (̂f−1(x)𝑖 |pa(̂f−1(x)𝑖))

𝑑x .

By reparameterizing the integral in terms of the source coordinates, we
get (using f̂−1 = 𝝈−1 ◦ f−1)

𝐷𝐾𝐿(𝑝x∥𝑝x̂) =
𝑛∑
𝑖=1

∫
𝑝s(s) log

 𝜕f
𝜕𝑠𝑖
(s)

−1
𝑝𝑖(s𝑖 |pa(s𝑖)) 𝜕f

𝜕𝑠𝑖
(𝝈−1(s))

−1
𝑝𝑖 (𝝈−1(s)𝑖 |pa(𝝈−1(s)𝑖))

𝑑s .

(B.6)
such that the 𝐾𝐿 divergence can be written as a sum of 𝑛 terms, each
associated to the intervention on a mechanism 𝜕f

𝜕𝑠𝑖
. Positivity of these

terms would suggest that we can interpret each of them as quantifying the
individual contribution of a soft intervention 𝝈𝑗 applied to the original
sources.

In the following, we propose a justification for the positivity of these
terms in a restricted setting where only the 𝑚 leaf nodes of the graph are
intervened on (with 1 ≤ 𝑚 ≤ 𝑛).3 In the special case of independent
sources, all nodes are leaves and 𝑚 = 𝑛.

Under this assumption, we consider (without loss of generality) an
ordering of the nodes such that the 𝑚 first nodes are the leaf nodes in
the DAG. Then we argue that the terms of the right-hand side of (B.6)
associated to leaf nodes (𝑖 ≤ 𝑚) are positive, as they correspond to the
expectations of KL-divergences. Indeed, taking one of the first 𝑚 terms,
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Figure B.2: Illustration of the mapping
between lines in source space to a curve
in observation space. Ls−𝑖 is the line ob-
tained by varying 𝑠𝑖 while keeping the
value of all other sources fixed to s−𝑖 .
L𝝈−1(s−𝑖 ) is then defined by applying the
transformations in [𝝈−1]−𝑖 to Ls−𝑖 . Both
lines are mapped to the same image line
f[Ls−𝑖 ].

denoted 𝑖, we have the factorization

𝑝s(s) = 𝑝𝑖(𝑠𝑖 |pa(𝑠𝑖))
∏
𝑗≠𝑖

𝑝 𝑗(𝑠 𝑗 |pa(𝑠 𝑗)) ,

where ∏
𝑗≠𝑖 𝑝 𝑗(𝑠 𝑗 |pa(𝑠 𝑗)) does not depend on 𝑠𝑖 because node 𝑖 is a leaf

node. Moreover, as non-leaf nodes are not intervened on, the transfor-
mation 𝝈 does not modify the value of any parent variables in these
factorizations. As a consequence, the integral can be computed as an
iterated integral with respect to 𝑠𝑖 and s−𝑖 , where s−𝑖 denotes the vector
including all source variables but 𝑠𝑖 , such that∫

𝑝s(s) log

 𝜕f
𝜕𝑠𝑖
(s)

−1
𝑝𝑖(s𝑖 |pa(s𝑖)) 𝜕f

𝜕𝑠𝑖
(𝝈−1(s))

−1
𝑝𝑖(𝝈−1(s)𝑖 |pa(𝝈−1(s)𝑖))

𝑑s

= 𝔼s−𝑖∼
∏

𝑗≠𝑖 𝑝 𝑗 (𝑠 𝑗 |pa(𝑠 𝑗 ))


∫
𝑝(𝑠𝑖 |pa(𝑠𝑖)) log

 𝜕f
𝜕𝑠𝑖
(𝑠𝑖 , s−𝑖)

−1
𝑝𝑖(s𝑖 |pa(s𝑖)) 𝜕f

𝜕𝑠𝑖

(
𝜎−1
𝑖
(𝑠𝑖), 𝝈−1(s)−𝑖

)−1
𝑝𝑖(𝜎−1

𝑖
(𝑠𝑖)|pa(𝑠𝑖))

𝑑𝑠𝑖

 .
As illustrated in Fig. B.2, for a fixed s−𝑖 , consider the straight line Ls−𝑖 =

{(𝑠𝑖 , s−𝑖) : 𝑠𝑖 ∈ ℝ} in source space (parallel to the 𝑠𝑖 coordinate axis). This
line is mapped in observation space to the smooth curve f[Ls−𝑖 ], by f in
a smooth invertible way. Similarly, f̂ = f ◦ 𝝈 maps L𝝈−1(s−𝑖 ) to the same
image curve, since f̂[L𝝈−1(s−𝑖 )] = f ◦ 𝝈[L𝝈−1(s−𝑖 )] = f[Ls−𝑖 ].

By using the change of variable formula to represent the integral on
f[Ls−𝑖 ] indexed by the curvilinear coordinate ℓ , we get the expression of
the pushfoward distribution f∗𝑝𝑖( . |pa(𝑠𝑖)) on the curve f[Ls−𝑖 ][

f∗𝑝𝑖 ( . |pa(𝑠𝑖))
]
(ℓ ) =

 𝜕f
𝜕𝑠𝑖

(
f−1(ℓ ), s−𝑖

)−1

𝑝𝑖
(
f−1(ℓ )|pa(𝑠𝑖)

)
.

where, to simplify notation, f−1(ℓ ) denotes in this context the coordinate
𝑠𝑖 on Ls−𝑖 in bĳection with the curvilinear coordinate ℓ on f[Ls−𝑖 ].

Similarly, we get the expression of the pushfoward distribution f̂∗𝑝𝑖( . |𝝈−1(pa(𝑠𝑖)))
from L𝝈−1(s−𝑖 ) to the curve f[Ls−𝑖 ] (using again the fact that parent vari-
ables are not intervened on, and thus left unchanged by 𝝈)

[̂
f∗𝑝𝑖( . |𝝈−1(pa(𝑠𝑖)))

]
(ℓ ) =

 𝜕f
𝜕𝑠𝑖

(̂
f−1(ℓ ), 𝝈−1(s)−𝑖

)−1

𝑝𝑖

(̂
f−1(ℓ )|pa(𝑠𝑖)

)
.

These terms appear when rewriting the 𝑖-th term (for a leaf variable)



B Additional Material on Chapter 3 134

in (B.6) as a curvilinear integral:∫
𝑝s(s) log

 𝜕f
𝜕𝑠𝑖
(s)

−1
𝑝𝑖(s𝑖 |pa(s𝑖)) 𝜕f

𝜕𝑠𝑖
(𝝈−1(s))

−1
𝑝𝑖 (𝝈−1(s)𝑖 |pa(𝝈−1(s)𝑖))

𝑑s

= 𝔼s−𝑖∼
∏

𝑗≠𝑖 𝑝 𝑗 (𝑠 𝑗 |pa(𝑠 𝑗 ))

[∫  𝜕f
𝜕𝑠𝑖
(f−1(ℓ ), s−𝑖)

−1

𝑝𝑖(f−1(ℓ ) | pa(𝑠𝑖))

log

 𝜕f
𝜕𝑠𝑖
(f−1(ℓ ), s−𝑖)

−1
𝑝𝑖

(
f−1(ℓ ) | pa(𝑠𝑖)

) 𝜕f
𝜕𝑠𝑖
(̂f−1(ℓ ), 𝝈−1(s)−𝑖)

−1
𝑝𝑖

(̂
f−1(ℓ ) | pa(𝑠𝑖)

) 𝑑ℓ .
The inner integral term can thus be interpreted as the KL divergence
between two pushforward measures defined on f∗[Ls−𝑖 ] by f and f̂, that
we can denote by

𝐷𝐾𝐿

(
f∗𝑝𝑖 ( . |pa(𝑠𝑖)) ∥ f̂∗𝑝

(
. |𝝈−1(pa(s𝑖))

) )
.

To conclude, this implies that the causal effect of the soft intervention
f → f̂ can be decomposed as the following sum of 𝑚 positive terms
associated to interventions on each leaf variable, plus an additional
term for the remaining non-leaf variables, which further simplifies (in
comparison to (B.6)) due to the assumption that those variables are
unintervened.

𝐷𝐾𝐿(𝑝x ∥ 𝑝x̂) =
𝑚∑
𝑖=1

𝔼s−𝑖∼
∏

𝑗≠𝑖 𝑝 𝑗 (𝑠 𝑗 |pa(𝑠 𝑗 ))
[
𝐷𝐾𝐿

(
f∗𝑝 ( . |pa(𝑠𝑖) ∥ f̂∗𝑝

(
. |𝝈−1(pa(𝑠𝑖))

) )]
+

∑
𝑖>𝑚

∫
𝑝s(s) log

 𝜕f
𝜕𝑠𝑖
(s)

−1 𝜕f
𝜕𝑠𝑖
(𝝈−1(s))

−1 𝑑s . (B.7)

This expression suggests that the KL-divergences appearing in the first𝑚
terms each reflect the causal effect of an intervention on the mechanism
at the level of one single source coordinate 𝑖, turning 𝜕f

𝜕𝑠𝑖
into 𝜕f

𝜕𝑠𝑖
. When

the sources are jointly independent, we have 𝑚 = 𝑛 and the right hand
side of (B.7) contains only positive terms. An interesting direction for
future work would be to analyse the remaining term in the case of non
unconditionally independent sources.

In contrast to the decomposition (B.4) in the context of IGCI, the IMA
decomposition (B.7) involves 𝑚 (expectations of) KL-divergence terms in-
stead of two, each related to the intervention on the part of the mechanism
𝜕f
𝜕𝑠𝑖

that reflects the influence of a single source.

B.1.4 Independence of cause and mechanism and IMA

We now discuss an example in which a formalisation of the principle
of independence of cause and mechanism [157] is violated, and one in
which the IMA principle is violated.
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Violations of independence of cause and mechanism

In the context of the Trace method [157], used in causal discovery, a
technical example of fine-tuning can be constructed by taking a vector of
i.i.d. random variables with arbitrary (not diagonal) covariance matrix Σ

as the cause, and by constructing the mechanism as a whitening matrix,
turning the cause variables into uncorrelated (effect) variables. By doing
so, the singular values and singular vectors of the matrix (the mechanism)
are fine-tuned to the input covariance matrix (a property of the cause
distribution), and such fine-tuning can be quantified via the Trace method
(see [157], Section 1).

Violations of the IMA principle

Technical example. As mentioned in § 3.3, an example of a mixing
function f which is non-generic according to the IMA principle is an
autoregressive function, for example an autoregressive normalising
flow [71], where the 𝑘-th component of the observations only depends
on the 𝑘-th sources: intuitively, this would correspond to the unlikely
cocktail-party setting where the 𝑘-th microphone only picks up the voices
of the first speakers. More precisely, as we show in Lemma B.2.1, this
leads to positive 𝐶ima value for such mixing.

Pictorial example: Violations of the IMA principle in a cocktail party.
A cocktail party (Fig. 3.2, left) may violate our IMA principle when
the locations of several speakers and the room acoustics have been
fine tuned to one another. This is for example the case in concert halls
where the acoustics of the room have been fine-tuned to the position and
configuration of multiple locations on the stage, where the sources (i.e.,
the voices of the actors or singers) are emitted—in order to make the
listening experience as homogeneous as possible across the spectators
(that is, the influence of each of the sources on the different listeners
should not differ too much). This would lead to an increase in collinearity
between the columns of the mixing’s Jacobian, thus violating the IMA
principle.

Additionally, we recall that the ICM principle is often informally intro-
duced by referencing the fine-tuning and non-generic viewpoints giving
rise to certain visual illusions, such as the Beuchet chair (see [106], Section
2); in a similar vein, we can imagine that violations of the IMA principle in
the cocktail-party setting may be related to illusions in binaural hearing
such as for example the Franssen effect, where the listener is tricked into
incorrectly localizing a sound [492].

B.2 Proofs

We now provide the proofs of all theoretical results in Chapter 3.
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B.2.1 Proof of Proposition 3.4.1

Before giving the proof, it is useful to rewrite the local IMA constrast (3.3)
as follows:

𝑐ima(f,) =
𝑛∑
𝑖=1

log
 𝜕f
𝜕𝑠𝑖
(s)

 − log |Jf(s)|

=
1
2

(
log

��d𝑖𝑎𝑔 (
J⊤f (s)Jf(s)

) �� − log
��J⊤f (s)Jf(s)

��)
=

1
2
𝐷left
𝐾𝐿

(
J⊤f (s)Jf(s)

)
, (B.8)

where the quantity in (B.8) is called the left KL measure of diagonality of
the matrix J⊤f (s)Jf(s) [172] (see Remark 3.4.1):

𝐷left
𝐾𝐿 (A) = − log |(d𝑖𝑎𝑔(A))− 1

2 A(d𝑖𝑎𝑔(A))− 1
2 |

= log |d𝑖𝑎𝑔(A)| − log |A| .

From (B.8), it can be seen that 𝑐ima(f,) is a function of Jf(s) only through
J⊤f (s)Jf(s).

Proposition 3.4.1 (Properties of 𝑐ima(f,)) The local IMA contrast 𝑐ima(f,)
defined in (3.3) satisfies:

(i) 𝑐ima(f,) ≥ 0, with equality if and only if all columns 𝜕f/𝜕𝑠𝑖(s) of Jf(s)
are orthogonal.

(ii) 𝑐ima(f,) is invariant to left multiplication of Jf(s) by an orthogonal ma-
trix and to right multiplication by permutation and diagonal matrices.

Proof. For ease of exposition, we denote the value of the Jacobian of f
evaluated at the point s by Jf(s) = W. The two properties can then be
proved as follows:

(i) This is a consequence of Hadamard’s inequality, applied to the
expression on the RHS of (3.3), which states that, for a matrix W
with columns w𝑖 ,

∑𝑛
𝑖=1 log ∥w𝑖 ∥ ≥ log |W|; equality in Hadamard’s

inequality is achieved iff. the vectors w𝑖 are orthogonal.
(ii) We split the proof in three parts.

a. Invariance to left multiplication by an orthogonal matrix:
Let W̃ = OW, with O an orthogonal matrix, i.e., OO⊤ = I.
Then the property follows from writing 𝑐ima(f,) as in (B.8):

1
2
𝐷left
𝐾𝐿 (W̃

⊤W̃) = 1
2
𝐷left
𝐾𝐿 (W

⊤O⊤OW) = 1
2
𝐷left
𝐾𝐿 (W

⊤IW) = 1
2
𝐷left
𝐾𝐿 (W

⊤W)

b. Invariance to right multiplication by a permutation matrix:
Let W̃ = WP, with P a permutation matrix. Then W̃ is just W
with permuted columns. Clearly, the sum of the log-column-
norms does not change by changing the order of the sum-
mands. Further, log |W̃| = log |W| + log |P| = log |W|, because
the absolute value of the determinant of a permutation matrix
is one.

c. Invariance to right multiplication by a diagonal matrix:
Let W̃ = WD, with D a diagonal matrix. Consider the two
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terms on the RHS of (3.3). For the first term, we know that
the columns of W̃ are scaled versions of the columns of W,
that is w̃𝑖 = 𝑑𝑖w𝑖 , where 𝑑𝑖 denotes the 𝑖th diagonal element
of D. Then ∥w̃𝑖 ∥ = |𝑑𝑖 | ∥w𝑖 ∥. For the second term, we use the
decomposition of the determinant:

log |W̃| = log |W| + log |D| = log |W| +
𝑛∑
𝑖=1

log |𝑑𝑖 |.

Taken together, we obtain

𝑛∑
𝑖=1

log ∥w̃𝑖 ∥ − log |W̃| =
𝑛∑
𝑖=1

log (|𝑑𝑖 | ∥w𝑖 ∥) −
(
log |W| +

𝑛∑
𝑖=1

log |𝑑𝑖 |
)

=

𝑛∑
𝑖=1

log ∥w𝑖 ∥ +
𝑛∑
𝑖=1

log |𝑑𝑖 | − log |W| −
𝑛∑
𝑖=1

log |𝑑𝑖 |

=

𝑛∑
𝑖=1

log ∥w𝑖 ∥ − log |W|

B.2.2 Proof of Proposition 3.4.2

Proposition 3.4.2 (Properties of 𝐶ima(f, 𝑝s)) The global IMA contrast
𝐶ima(f, 𝑝s) from (3.4) satisfies:

(i) 𝐶ima(f, 𝑝s) ≥ 0, with equality iff. Jf(s) = O(s)D(s) almost surely w.r.t.
𝑝s, where O(s),D(s) ∈ ℝ𝑛×𝑛 are orthogonal and diagonal matrices,
respectively;

(ii) 𝐶ima(f, 𝑝s) = 𝐶ima(f̃, 𝑝s̃) for any f̃ = f ◦ h−1 ◦ P−1 and s̃ = Ph(s),
where P ∈ ℝ𝑛×𝑛 is a permutation and h(s) = (ℎ1(𝑠1), ..., ℎ𝑛(𝑠𝑛)) an
invertible element-wise function.

Proof. The properties can be proved as follows:

(i) From property (i) of Proposition 3.4.1, we know that 𝑐ima(f, s) ≥
0. Hence, 𝐶ima(f, 𝑝(s)) ≥ 0 follows as a direct consequence of
integrating the non-negative quantity 𝑐ima(f, s).
Equality is attained iff. 𝑐ima(f, s) = 0 almost surely w.r.t. 𝑝s, which
according to property (i) of Proposition 3.4.1 occurs iff. the columns
of Jf(s) are orthogonal almost surely w.r.t. 𝑝s.
It remains to show that this is the case iff. Jf(s) can be written as
O(s)D(s), with O(s) and D(s) orthogonal and diagonal matrices,
respectively. (To avoid confusion, note that orthogonal columns
need not have unit norm, whereas an orthogonal matrix O satisfies
OO⊤ = I.)
The if is clear since right multiplication by a diagonal matrix merely
re-scales the columns, and hence does not affect their orthogonality.
For the only if, let Jf(s) be any matrix with orthogonal columns
j𝑖(s), j𝑖(s)⊤j𝑗(s) = 0,∀𝑖 ≠ 𝑗, and denote the column norms by
𝑑𝑖(s) = | |j𝑖(s)| |. Further denote the normalised columns of Jf(s)
by o𝑖(s) = j𝑖(s)/𝑑𝑖(s) and let O(s) and D(s) be the orthogonal and
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diagonal matrices with columns o𝑖(s) and diagonal elements 𝑑𝑖(s),
respectively. Then Jf(s) = O(s)D(s).

(ii) Let f̃ = f◦h−1◦P−1 and s̃ = Ph(s), where P ∈ ℝ𝑛×𝑛 is a permutation
matrix and h(s) = (ℎ1(𝑠1), ..., ℎ𝑛(𝑠𝑛)) is an invertible element-wise
function. Then

𝐶ima(f̃, 𝑝s𝑡) =
∫

𝑐ima(f̃, s̃)𝑝s𝑡(s̃)𝑑s̃ =

∫
𝑐ima(f̃, s̃)𝑝s(s)𝑑s (B.9)

where, for the second equality, we have used the fact that

𝑝s𝑡(s̃)𝑑s̃ = 𝑝s(s)𝑑s .

since P ◦ h is an invertible tranformation (see, e.g., [493]). It thus
suffices to show that

𝑐ima(f̃, s̃) = 𝑐ima(f,) . (B.10)

at any point s̃ = Ph(s). To show this, we write

Jf̃(s̃) = Jf◦h−1◦P−1(Ph(s))
= Jf◦h−1

(
P−1Ph(s)

)
JP−1 (Ph(s))

= Jf◦h−1(h(s)) JP−1(Ph(s))
= Jf(h−1 ◦ h(s)) Jh−1(h(s)) JP−1(Ph(s))
= Jf(s)D(s)P−1 (B.11)

where we have repeatedly used the chain rule for Jacobians, as
well as that P−1P = I; that permutation is a linear operation, so
JP(s) = P for any s; and that h (and thus h−1) is an element-wise
transformation, so the Jacobian Jh−1 is a diagonal matrix D(s).
The equality in (B.10) then follows from (B.11) by applying property
(ii) of Proposition 3.4.1, according to which 𝑐ima is invariant to right
multiplication of the Jacobian Jf(s) by diagonal and permutation
matrices.
Substituting (B.10) into the RHS of (B.9), we finally obtain

𝐶ima(f̃, 𝑝s𝑡) = 𝐶ima(f, 𝑝s).

B.2.3 Remark on a similar condition to IMA, expressed in
terms of the rows of the Jacobian

We remark that the condition imposed by the IMA Principle 3.4.1 needs
to be expressed in terms of the columns of the Jacobian, and would not
lead to a criterion with desirable properties for BSS if it were instead
expressed in terms of its rows (which correspond to gradients of the
𝑓𝑖(s)). One way to justify this is that, for the same condition expressed on
the rows of the Jacobian, that is

𝑛∑
𝑖=1

log ∥∇ 𝑓𝑖(s)∥ − log |Jf(s)| = 0 ,
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property (ii) of Proposition 3.4.1 would not hold (because invariance
would hold w.r.t. right, not left, multiplication with a diagonal matrix).
As a consequence, the resulting global contrast would not be blind to
reparametrisation of the source variables by permutation and element-
wise invertible transformations, thereby not being a good contrast in the
context of blind source separation.

B.2.4 Proof of Thm. 3.4.3

Before proving the main theorem, we first introduce some additional
details on the Jacobian of the Darmois construction [70] which will be
important for the proof.

Jacobian of the Darmois construction for 𝑛 = 2. Consider the Darmois
construction for 𝑛 = 2,

𝑦1 = 𝑔D
1 (𝑥1) := 𝐹𝑋1(𝑥1) = ℙ𝑋1(𝑋1 ≤ 𝑥1)

𝑦2 = 𝑔D
2 (𝑦1 , 𝑥2) := 𝐹𝑋2 |𝑌1=𝑦1(𝑥2) = ℙ𝑋2 |𝑌1=𝑦1(𝑋2 ≤ 𝑥2 |𝑌1 = 𝑦1)

Its Jacobian takes the form

JgD(x) =
(
𝑝(𝑥1) 0
𝑐21(x) 𝑝(𝑥2 |𝑥1)

)
, (B.12)

where
𝑐21(x) =

𝜕

𝜕𝑥1

∫ 𝑥2

−∞
𝑝(𝑥′2 |𝑥1)𝑑𝑥′2 .

Jacobian of the Darmois construction: general case. In the general
case, the Jacobian of the Darmois construction will be

JgD(x) =
©«
𝑝(𝑥1) · · · 0

. . .
...

C(x) 𝑝(𝑥𝑛 |𝑥1 , . . . , 𝑥𝑛−1)

ª®®¬ (B.13)

where the components 𝑐 𝑗𝑖(x1:𝑗) of C(x) for all 𝑖 < 𝑗 are defined by

𝑐 𝑗𝑖(x1:𝑗) =
𝜕

𝜕𝑥𝑖

∫ 𝑥 𝑗

−∞
𝑝(𝑥′𝑗 |x1:𝑗−1)𝑑𝑥′𝑗 .

It is additionally useful to introduce the following lemmas.

Lemma B.2.1 A function f with triangular Jacobian has 𝐶ima(f, 𝑝s) = 0 iff.
its Jacobian is diagonal almost everywhere. Otherwise, 𝐶ima(f, 𝑝s) > 0.

Proof. Let f have lower triangular Jacobian at s, and denote Jf(s) = W.
Then we have

𝑐ima(f,) =
𝑛∑
𝑖=1

log

(√√
𝑛∑
𝑗=𝑖

𝑤2
𝑗𝑖

)
−

𝑛∑
𝑖=1

log |𝑤𝑖𝑖 | ,
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where 𝑤 𝑗𝑖 = [W]𝑗𝑖 . Since the logarithm is a strictly monotonically increas-
ing function and since √√

𝑛∑
𝑗=1

𝑤2
𝑗𝑖
≥ |𝑤𝑖𝑖 | ,

with equality iff. 𝑤 𝑗𝑖 = 0,∀𝑗 ≠ 𝑖 (i.e., iff. W is a diagonal matrix), we must
have 𝑐ima(f,) = 0 iff. W is diagonal.

𝐶ima(f, 𝑝s) is therefore equal to zero iff. f has diagonal Jacobian almost
everywhere, and it is strictly larger than zero otherwise.

Lemma B.2.2 A smooth function f : ℝ𝑛 → ℝ𝑛 whose Jacobian is diagonal
everywhere is an element-wise function, f(s) = ( 𝑓1(𝑠1), ..., 𝑓𝑛(𝑠𝑛)).

Proof. Let f be a smooth function with diagonal Jacobian everywhere.

Consider the function 𝑓𝑖(s) for any 𝑖 ∈ {1, ..., 𝑛}. Suppose for a contradic-
tion that 𝑓𝑖 depends on 𝑠 𝑗 for some 𝑗 ≠ 𝑖. Then there must be at least one
point s∗ such that 𝜕 𝑓𝑖/𝜕𝑠 𝑗(s∗) ≠ 0. However, this contradicts the assumption
that Jf is diagonal everywhere (since 𝜕 𝑓𝑖/𝜕𝑠 𝑗 is an off-diagonal element for
𝑖 ≠ 𝑗). Hence, 𝑓𝑖 can only depend on 𝑠𝑖 for all 𝑖, i.e., f is an element wise
function.

We can now restate and prove Thm. 3.4.3.

Theorem 3.4.3 Assume the data generating process in (2.1) and assume that
𝑥𝑖 ⊥̸⊥ 𝑥 𝑗 for some 𝑖 ≠ 𝑗. Then any Darmois solution (fD , 𝑝u) based on gD

as defined in (2.15) satisfies 𝐶ima(fD , 𝑝u) > 0. Thus a solution satisfying
𝐶ima(f, 𝑝s) = 0 can be distinguished from (fD , 𝑝u) based on the contrast 𝐶ima.

Proof. First, the Jacobian JgD(x) of the Darmois construction gD is lower
triangular ∀x, see (B.13).

Because CDFs are monotonic functions (strictly monotonically increasing
given our assumptions on f and 𝑝s), gD is invertible.

We can thus apply the inverse function theorem (with fD = (gD)−1) to
write

JfD(y) =
(
JgD(x)

)−1

Since the inverse of a lower triangular matrix is lower triangular, we
conclude that JfD(y) is lower triangular for all y = gD(x).

Now, according to Lemma B.2.1, we have 𝐶ima(fD , 𝑝u) > 0, unless JfD is
diagonal almost everywhere.

Suppose for a contradiction that JfD is diagonal almost everywhere.

Since f and 𝑝s are smooth by assumption, so is the push-forward 𝑝x = f∗𝑝s,
and thus also gD (CDF of a smooth density) and its inverse fD. Hence,
the partial derivatives 𝜕 𝑓 D

𝑖 /𝜕𝑦𝑗 , i.e., the elements of JfD are continuous.

Consider an off-diagonal element 𝜕 𝑓 D
𝑖 /𝜕𝑦𝑗 for 𝑖 ≠ 𝑗. Since these are zero

almost everywhere, and because continuous functions which are zero
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almost everywhere must be zero everywhere, we conclude that 𝜕 𝑓 D
𝑖 /𝜕𝑦𝑗 = 0

everywhere for 𝑖 ≠ 𝑗, i.e., the Jacobian JfD is diagonal everywhere.

Hence, we conclude from Lemma B.2.2 that fD must be an element-wise
function, fD(y) = ( 𝑓 D

1 (𝑦1), ..., 𝑓 D
1 (𝑦𝑛)).

Since y has independent components by construction, it follows that
𝑥𝑖 = 𝑓 D

𝑖
(𝑦𝑖) and 𝑥 𝑗 = 𝑓 D

𝑗
(𝑦 𝑗) are independent for any 𝑖 ≠ 𝑗.

However, this constitutes a contradiction to the assumption that 𝑥𝑖 ⊥̸⊥ 𝑥 𝑗
for some 𝑥 𝑗 .

We conclude that JfD cannot be diagonal almost everywhere, and hence,
by Lemma B.2.1, we must have 𝐶ima(fD , 𝑝u) > 0.

B.2.5 Proof of Corollary 3.4.4

Corollary 3.4.4 Under assumptions of Thm. 3.4.3, if additionally f is a
conformal map, then (f, 𝑝s) ∈Mima for any 𝑝s ∈ P due to Proposition 3.4.2
(i), see Defn. 3.4.3. Based on Thm. 3.4.3, (f, 𝑝s) is thus distinguishable from
Darmois solutions (fD , 𝑝u).

Proof. The proof follows from property (i) of Proposition 3.4.2: by defi-
nition, the Jacobian of conformal maps at any point s can be written as
O(s)�(s), with � : ℝ𝑛 → ℝ, which is a special case of O(s)D(s), with
D(s) = �(s)I.

B.2.6 Proof of Corollary 3.4.5

Corollary 3.4.5 Consider a linear ICA model, x = As, with 𝔼[s⊤s] = I, and
A ∈ 𝑂(𝑛) an orthogonal, non-trivial mixing matrix, i.e., not the product of a
diagonal and a permutation matrix DP. If at most one of the 𝑠𝑖 is Gaussian,
then 𝐶ima(A, 𝑝s) = 0 and 𝐶ima(fD , 𝑝u) > 0.

Proof. Since, by assumption, the mixing matrix is non-trivial (i.e., not the
product of a diagonal and permutation matrix), and at most one of the 𝑠𝑖
is Gaussian, according to Thm. 2.2.1 there must be at least one pair 𝑥𝑖 , 𝑥 𝑗 ,
with 𝑖 ≠ 𝑗, such that 𝑥𝑖 ⊥̸⊥ 𝑥 𝑗 .

We can then use the same argument as in the proof of Thm. 3.4.3 to
show that the Darmois construction has nonzero 𝐶ima, whereas the linear
orthogonal transformation A has orthogonal Jacobian, and thus 𝐶ima = 0
by property (i) of Proposition 3.4.2.

B.2.7 Proof of Thm. 3.4.6

Theorem 3.4.6 Let (f, 𝑝s) ∈ Mima and assume that f is a conformal map.
Given R ∈ 𝑂(𝑛), assume additionally that ∃ at least one non-Gaussian 𝑠𝑖
whose associated canonical basis vector e𝑖 is not transformed by R−1 = R⊤
into another canonical basis vector e𝑗 . Then 𝐶ima(f ◦ aR(𝑝s), 𝑝s) > 0.
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4: In short, if this were not the case,
this column would have a single non-
vanishing coefficient, which would need
to be one due to the unit norm of the rows
of this orthogonal matrix. Such structure
of the matrix R would entail that the
associated canonical basis vector e1 is
transformed by R−1 = R⊤ into a canoni-
cal basis vector e𝑗 which contradicts the
assumptions.

Proof. Recall the definition

aR(𝑝s) = F−1
s ◦𝚽 ◦ R ◦𝚽−1 ◦ Fs.

For notational convenience, we denote 𝝈 = 𝚽−1 ◦ Fs and write

aR(𝑝s) = 𝝈−1 ◦ R ◦ 𝝈 .

Note that, since both Fs and 𝚽 are element-wise transformations, so is 𝝈.

First, by using property (ii) of Proposition 3.4.2 (invariance of 𝐶ima to
element-wise transformation), we obtain

𝐶ima(f ◦ aR(𝑝s), 𝑝s) = 𝐶ima(f ◦ 𝝈−1 ◦ R ◦ 𝝈 , 𝑝s) = 𝐶ima(f ◦ 𝝈−1 ◦ R, 𝑝z) ,

with z = 𝝈(s) such that 𝑝z is an isotropic Gaussian distribution.

Suppose for a contradiction that 𝐶ima(f ◦ 𝝈−1 ◦ R, 𝑝z) = 0.

According to property (i) of Proposition 3.4.2, this entails that the matrix

Jf◦𝝈−1◦R(z)⊤Jf◦𝝈−1◦R(z) = R⊤ J𝝈−1(z)⊤ Jf(𝝈−1(z))⊤ Jf(𝝈−1(z)) J𝝈−1(z)R
(B.14)

is diagonal almost surely w.r.t. 𝑝z. Moreover, smoothness of 𝑝s and f
implies the matrix expression of (B.14) is a continuous function of z. Thus
(B.14) actually needs to be diagonal for all z ∈ ℝ𝑛 , i.e., everywhere (c.f.,
the argument used in the proof of Thm. 3.4.3, l.1008–1013).

Since (f, 𝑝s) ∈Mima by assumption, by property (i) of Proposition 3.4.2,
the inner term on the RHS of (B.14),

Jf(𝝈−1(z))⊤ Jf(𝝈−1(z)),

is diagonal. Moreover, since 𝝈 is an element-wise transformation, J𝝈−1(z)⊤
and J𝝈−1(z) are also diagonal. Taken together, this implies that

J𝝈−1(z) Jf(𝝈−1(z))⊤ Jf(𝝈−1(z)) J𝝈−1(z) (B.15)

is diagonal (i.e., (B.14) is of the form R⊤D(z)R for some diagonal matrix
D(z)).

Without loss of generality, we assume the first component 𝑠1 of s is
non-Gaussian and satisfies the assumptions stated relative to R (axis not
invariant nor sent to another canonical axis).

Now, since both the Gaussian CDF 𝚽 and the CDF Fs are smooth (the
latter by the assumption that of 𝑝s is a smooth density), 𝝈 is a smooth
function, and thus has continuous partial derivatives.

By continuity of the partial derivative, the first diagonal element 𝜕𝜎−1
1

𝜕𝑧1
of

J𝝈−1 must be strictly monotonic in a neighborhood of some 𝑧0
1 (otherwise

𝜎1 would be an affine transformation, which would contradict non-
Gaussianity of 𝑠1).

On the other hand, our assumptions relative to R entail that there are at
least two non-vanishing coefficients in the first row of R (i.e., first column
of R⊤).4 Let us call 𝑖 ≠ 𝑗 such pair of coordinates, i.e., 𝑟1𝑗 ≠ 0 and 𝑟1𝑖 ≠ 0.
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Now consider the off-diagonal term (𝑖 , 𝑗) of (B.14), which we assumed
(for a contradiction) must be zero almost surely w.r.t. 𝑝z. Since the term
in (B.15) is diagonal, this off-diagonal term is given by:

𝑛∑
𝑘=1

(
𝑑𝜎−1

𝑘

𝑑𝑧𝑘
(𝑧𝑘)

)2  𝜕f
𝑑𝑠𝑘
◦ 𝝈−1(z)

2

𝑟𝑘𝑖𝑟𝑘 𝑗 =
𝑛∑
𝑘=1

(
𝑑𝜎−1

𝑘

𝑑𝑧𝑘
(𝑧𝑘)

)2

�(𝝈−1(z))2𝑟𝑘𝑖𝑟𝑘 𝑗 = 0 .

where for the first equality we have used the fact that f is a conformal
map with conformal factor �(s) (by assumption), and where the second
equality must hold almost surely w.r.t. 𝑝z.

Since f is invertible, it has non vanishing Jacobian determinant. Hence,
the conformal factor � must be a strictly positive function, so

�(𝝈−1(z))2 > 0, ∀z.

Thus, for almost all z, we must have:

𝑛∑
𝑘=1

(
𝑑𝜎−1

𝑘

𝑑𝑧𝑘
(𝑧𝑘)

)2

𝑟𝑘𝑖𝑟𝑘 𝑗 = 0 . (B.16)

Now consider the first term
(
𝑑𝜎−1

1
𝑑𝑧1
(𝑧1)

)2
𝑟1𝑖𝑟1𝑗 in the sum.

Recall that 𝑟1𝑖𝑟1𝑗 ≠ 0, and that 𝑑𝜎−1
1

𝑑𝑧1
(𝑧1) is strictly monotonic on a neigh-

borhood of 𝑧0
1.

As a consequence,
(
𝑑𝜎−1

1
𝑑𝑧1
(𝑧1)

)2
𝑟1𝑖𝑟1𝑗 is also strictly monotonic with respect

to 𝑧1 on a neighborhood of 𝑧0
1 (where the other variables (𝑧2 , ..., 𝑧𝑛) are

left constant), while the other terms in the sum in (B.16) are left constant
because 𝝈 is an element-wise transformation.

This leads to a contradiction as (B.16) (which should be satisfied for all z)
cannot stay constantly zero as 𝑧1 varies within the neighbourhood of 𝑧0

1.

Hence our assumption that 𝐶ima(f ◦ aR(𝑝s), 𝑝s) = 0 cannot hold.

We conclude that 𝐶ima(f ◦ aR(𝑝s), 𝑝s) > 0.

B.3 Worked out example

Example B.3.1 (Polar to Cartesian coordinates) Consider the following
example of a nonlinear ICA model which represents a change of basis
from polar to Cartesian coordinates:

x =

(
𝑥1
𝑥2

)
= f(s) =

(
𝑓1(s)
𝑓2(s)

)
=

(
𝑟 cos(�)
𝑟 sin(�)

)
with sources

=

(
𝑠1
𝑠2

)
=

(
𝑟

�

)
, 𝑟 ∼ 𝑈[0, 𝑅], � ∼ 𝑈[0, 2𝜋],
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First, we consider the Jacobian of the true mixing f which is given by:

Jf(s) = Jf(𝑟, �) =
(
cos(�) −𝑟 sin(�)
sin(�) 𝑟 cos(�)

)
,

and its determinant and column norms are given by

|det Jf(s)| = 𝑟
(
cos2(�) + sin2(�)

)
= 𝑟 𝜕f

𝜕𝑠1
(s)

 =

 𝜕f
𝜕𝑟
(𝑟, �)

 = cos2(�) + sin2(�) = 1 𝜕f
𝜕𝑠2
(s)

 =

 𝜕f
𝜕�
(𝑟, �)

 = 𝑟
(
cos2(�) + sin2(�)

)
= 𝑟

In other words, the columns of Jf(s) are orthogonal for all s, so that
𝐶ima = 0 for the true solution.

Next, we apply the Darmois construction.

First, we write the joint density of (𝑥1 , 𝑥2) using the change of variable
formula:

𝑝(𝑥1 , 𝑥2) = | det Jf(𝑟, �)|−1𝑝(𝑟, �) = 𝑟−1 1
2𝜋𝑅

=
1√

𝑥2
1 + 𝑥2

2

1
2𝜋𝑅

.

Next, we compute the marginal density 𝑝(𝑥1). Note that the observa-
tions x live on the disk of radius 𝑅, ∥x∥ ≤ 𝑅, so 𝑝(𝑥1 , 𝑥2) = 0 whenever
𝑥2

1 + 𝑥2
2 > 𝑅2.

𝑝(𝑥1) =
∫ √𝑅2−𝑥2

1

−
√
𝑅2−𝑥2

1

𝑝(𝑥1 , 𝑥2)𝑑𝑥2 =
1

2𝜋𝑅

∫ √𝑅2−𝑥2
1

−
√
𝑅2−𝑥2

1

𝑑𝑥2√
𝑥2

1 + 𝑥2
2

=
1

2𝜋𝑅

∫ √𝑅2−𝑥2
1

−
√
𝑅2−𝑥2

1

𝑑𝑥2

𝑥1

√
1 + ( 𝑥2

𝑥1
)2

Applying the change of variable 𝑡 = 𝑥2
𝑥1

with 𝑑𝑡 = 𝑑𝑥2
𝑥1

, and using the
integral

∫
(1+ 𝑡2)− 1

2 𝑑𝑡 = arcsinh(𝑡) + 𝐶, as well as the fact that arcsinh
is an odd function, we obtain

𝑝(𝑥1) =
1

2𝜋𝑅

∫ √(
𝑅
𝑥1

)2
−1

−
√(

𝑅
𝑥1

)2
−1

𝑑𝑡√
1 + 𝑡2

=
1
𝜋𝑅

arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
Next, we compute the conditional density 𝑝(𝑥2 |𝑥1):

𝑝(𝑥2 |𝑥1) =
𝑝(𝑥1 , 𝑥2)
𝑝(𝑥1)

=
(2𝜋𝑅)−1 (

𝑥2
1 + 𝑥2

2
)−1

(𝜋𝑅)−1 arcsinh

(√(
𝑅
𝑥1

)2
− 1

) =
©«2

√
𝑥2

1 + 𝑥2
2 arcsinh ©«

√(
𝑅

𝑥1

)2

− 1ª®¬ª®¬
−1

Finally, we compute the off-diagonal term in the general form of the
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inverse Jacobian for Damois-style solutions in (B.12):

𝑐21(x) =
𝜕

𝜕𝑥1

∫ 𝑥2

−∞
𝑝(𝑥2 |𝑥1)𝑑𝑥2 =

𝜕

𝜕𝑥1

∫ 𝑥2

−
√
𝑅2−𝑥2

1

𝑑𝑥2

2
√
𝑥2

1 + 𝑥2
2 arcsinh

(√(
𝑅
𝑥1

)2
− 1

)

=
1
2

𝜕

𝜕𝑥1

©«arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−1 ∫ 𝑥2

−
√
𝑅2−𝑥2

1

𝑑𝑥2√
𝑥2

1 + 𝑥2
2

ª®®¬
=

1
2

𝜕

𝜕𝑥1

©«arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−1 ©«arcsinh(𝑥2) − arcsinh ©«−

√(
𝑅

𝑥1

)2

− 1ª®¬ª®¬
ª®®¬

=
1
2

𝜕

𝜕𝑥1

©«arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−1 ©«arcsinh(𝑥2) + arcsinh ©«

√(
𝑅

𝑥1

)2

− 1ª®¬ª®¬
ª®®¬

=
1
2

𝜕

𝜕𝑥1

©«
1 + arcsinh(𝑥2)

arcsinh

(√(
𝑅
𝑥1

)2
− 1

) ª®®®®®®¬
=

1
2

arcsinh(𝑥2)
𝜕

𝜕𝑥1

©«arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−1ª®®¬

= −1
2

arcsinh(𝑥2) arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−2

𝜕

𝜕𝑥1
arcsinh ©«

√(
𝑅

𝑥1

)2

− 1ª®¬
Using the derivative 𝜕

𝜕𝑡 arcsinh(𝑡) = (𝑡2+1)− 1
2 and repeatedly applying

the chain rule, we obtain:

𝑐21(x) = −
1
2

arcsinh(𝑥2) arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−2
𝑥1
𝑅

𝜕

𝜕𝑥1

©«
√(

𝑅

𝑥1

)2

− 1ª®¬
= −1

2
arcsinh(𝑥2) arcsinh ©«

√(
𝑅

𝑥1

)2

− 1ª®¬
−2
𝑥1
𝑅

1
2

1√(
𝑅
𝑥1

)2
− 1

(−2)𝑅2𝑥−3
1

=
𝑅

2𝑥1

√
𝑅2 − 𝑥2

1

arcsinh(𝑥2) arcsinh ©«
√(

𝑅

𝑥1

)2

− 1ª®¬
−2

Again, recall that this only holds inside the disk of radius 𝑅, otherwise
𝑐12 = 0 (as the CDF will be zero or one, irrespective of 𝑥1).
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The 𝐶ima for the Darmois solution thus takes the form:
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where the strict inequality in the last step follows from the fact that
the fraction inside the logarithm, and hence the entire integrand, is
strictly positive within the disk of integration.

We have thus shown that for the example of an orthogonal coordinate
transformation from polar to Cartesian coordinates, which is not a
conformal map, the 𝐶ima os the true solution is zero and that of the
Darmois construction is strictly greater than zero, hence the two can
be distinguished based on the value of the 𝐶ima contrast.



B Additional Material on Chapter 3 147

B.4 Experiments

For our experiments we used Jax [177], Distrax [178] and Haiku [494] to
implement our models; the Jacobian and 𝐶ima computation and optimi-
sation are performed with the automatic differentiation tools provided
in Jax.

B.4.1 Sampling random Möbius transformations.

In order to generate mixing functions with 𝐶ima = 0, we use Möbius
transformations (see Appendix B.5 and in particular Thm. B.5.2, for
additional details on this kind of functions) with randomly sampled
parameters, as specified below. A Möbius transformation fM : ℝ𝑛 → ℝ𝑛

is given by

fM(s) = t + 𝑟A(s − b)
∥s − b∥𝜖

, (B.17)

with parameters b, t ∈ ℝ𝑛 , 𝑟 ∈ ℝ, A is an orthogonal matrix and
𝜖 ∈ {0, 2}. The flow models we train have an diagonal affine layer at the
top with fixed shift and scale set to the mean and standard deviation
of the training data, thereby normalizing the inputs. Hence, without
loss of generality, we can set the t parameter to zero and 𝑟 to one. Since
𝜖 = 0 corresponds to a linear transformation, we generally set 𝜖 = 2 in
our experiments unless otherwise specified. We sample the orthogonal
matrix through the ortho_group function in scipy.stats [495]. To avoid
singularities given by a vanishing denominator in the second term on
the RHS of (B.17), which would yield observed distributions with strong
outliers and therefore hard to fit for our models, we restrict b to lie
outside the unit square s is sampled from. We achieve this by sampling
b from a normal distribution and reject the sample until it is located
outside of the unit square.

B.4.2 How to implement the Darmois construction

In the following, we describe how the Darmois construction can be
implemented based on normalising flow models [71]. The key idea is that
the components 𝑔D

𝑖
of the Darmois construction (2.15) are conditional

(cumulative) density functions corresponding to a given factorisation
𝑝(x) = ∏𝑛

𝑖=1 𝑝(𝑥𝑖 |x1:𝑖−1) of the likelihood. A flow model with triangular
Jacobian can be used to maximise the likelihood of the observations under
a change of variable respecting said factorisation, and learning to map
the observed variables onto a given (factorised) base distribution. After
training, and provided that the model is expressive enough, the CDF of
each component of the reconstructed sources should match that of the
base distribution. By further transforming each reconstructed variable
through said CDF, we achieve a global mapping of the observations
onto a Uniform distribution on the 𝑛-dimensional hypercube, with
a triangular Jacobian, matching the transformation operated by the
Darmois construction (see also see [71], section 2.2). Note that, for the
purpose of computing the 𝐶ima of the Darmois construction, this final
step can be omitted due to Proposition 3.4.2, (ii), stating that the contrast
is blind to element-wise reparametrisations of the sources.
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5: We describe how to implement a func-
tion with upper triangular Jacobian, but
the reasoning can be extended to imple-
ment functions whose Jacobian is lower
triangular.

We remark that, while the possibility of using normalising flows to
“learn” the Darmois construction is mentioned in [71, 179], where a
similar construction is mentioned in a theoretical argument to prove
“universal approximation capacity for densities” for normalising flow
models with triangular Jacobian, it has to the best of our knowledge not
been tested empirically, since autoregressive modules with triangular
Jacobian are typically used in combination with permutation, shuffling
or linear layers which overall lead to architectures with a non-triangular
Jacobian.

Expressive normalising flow with triangular Jacobian. To obtain an
expressive normalizing flow with triagular Jacobian, we modify the
residual flow model [180].5 A residual flow is a residual network which is
made invertible through spectral normalization. Each layer is given by

z′ = z + g(z), (B.18)

where z′, z ∈ ℝ𝑛 and g : ℝ𝑛 → ℝ𝑛 is a small neural network. Due to the
chain rule, for the Jacobian of the overall flow model to be triangular, a
sufficient condition is that all the layers have triangular Jacobian. Since
the Jacobian of f(z) = z is the identity matrix, we can restrict our attention
to the neural network g. In our experiments, this is going to be a fully
connected network. If it has 𝑙 layers and ℎ ≥ 𝑛 hidden units, it is given
by

g(z) = b1 +W1𝜙(b2 +W2𝜙(b3 +W3 · · · 𝜙(b𝑙 +W𝑙z) · · · )), (B.19)

where 𝜙 : ℝ𝑛 → ℝ𝑛 is an element-wise nonlinearity, b1 ∈ ℝ𝑛 , b2 , ..., b𝑙 ∈
ℝℎ are the biases, and W1 ∈ ℝ𝑛×ℎ , W2 , ...,W𝑙−1 ∈ ℝℎ×ℎ , W𝑙 ∈ ℝℎ×𝑛 are
the weight matrices. In order for the Jacobian of g to be triangular, 𝑔𝑛(z)
should only depend on 𝑧𝑛 , 𝑔𝑛−1(z) should only depend on 𝑧𝑛 and 𝑧𝑛−1,
and so on. To achieve this, we make the weight matrices block triangular
as indicated in (B.20), (B.21), and (B.22).

W1 =

©«

∗ ∗ ∗
...

...
...

∗ ∗ ∗
0 ∗ ∗
...

...
...

0 ∗ ∗
. . .

0 0 ∗
...

...
...

0 0 ∗

ª®®®®®®®®®®®®®®®®®®®¬

 ℎ1

 ℎ2

 ℎ𝑛
(B.20)

W𝑙 =

©«
∗ · · · ∗ ∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗ ∗ · · · ∗

. . .

︸     ︷︷     ︸
ℎ1

0 · · · 0 ︸     ︷︷     ︸
ℎ2

0 · · · 0 ︸    ︷︷    ︸
ℎ𝑛

∗ · · · ∗

ª®®®®¬
(B.21)
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6: Note that orthogonality of the weight
matrices in a MLP does not guarantee sat-
isfying Principle 3.4.1, due to the element-
wise nonlinearities between the layers,
which overall lead to a Jacobian whose
columns are in general not orthogonal.

7: while the objective in Subsection 3.5.2
involves an expectation over 𝑝x, we con-
sider the loss for a single point x here,
L(g; x).
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for 𝑖 ∈ {2, ..., 𝑙−1}

(B.22)

Here, ℎ𝑖 is the number of hidden units dedicated to transforming z𝑖
with the constraint ∑𝑛

𝑖=1 ℎ𝑖 = ℎ. We perform an even split such that the
ℎ𝑖 and ℎ 𝑗 differ by at most 1 for 𝑖 , 𝑗 ∈ {1, ..., 𝑛}. The weight matrices
are restricted to be block triangular during optimization by setting the
respective matrix elements to zero after each iteration of the optimizer.
The model can simply be made and kept invertible using the same spectral
normalization as is used for dense residual flows [180]. We train our
model to map onto a standard Normal base distribution.

B.4.3 Generating random MLP mixing functions

In order to generate random MLP mixing functions, we adopt the same
initalisation as in [86]: we initialise the square weight matrices to be
orthogonal,6 and use the leaky_tanh invertible nonlinearity.

B.4.4 Maximum likelihood with low 𝐶ima

The modified maximum likelihood objective described in Subsection 3.5.2
can be written as follows:7

L(g; x) = log 𝑝(x) − � · 𝑐ima(g−1 , 𝑝y)

=

𝑛∑
𝑖=1

log 𝑝𝑦𝑖 (g𝑖(x)) + log |Jg(x)| − � ·
(
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log
[Jg−1(g(x))]𝑖

 − log
��Jg−1(g(x))

��)
=

𝑛∑
𝑖=1

log 𝑝𝑦𝑖 (g𝑖(x)) + log |Jg(x)| − � ·
(
𝑛∑
𝑖=1

log
[J−1

g (x)]𝑖
 + log

��Jg(x)
��)

=

𝑛∑
𝑖=1

log 𝑝𝑦𝑖 (g𝑖(x)) + (1 − �) log |Jg(x)| − �
∑
𝑖

log
[J−1

g (x)]𝑖
 ,

(B.23)

where [J−1
g (x)]𝑖 represents the 𝑖-th column of the inverse of the Jacobian

of g computed at x.

We use the same model as the one described in Appendix B.4.2, but
without the constraint that the Jacobian should be triangular, and train
with a Logistic base distribution.
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Note that the computational efficiency of optimising objective (B.23) is
cubic in the input size 𝑛, due to a number of operations (matrix inversion,
Jacobian and determinant computation via automatic differentiation,
etc.) which are O(𝑛3). However, similarly to what already observed
in [78], we found that for data of moderate dimensionality computing
and optimising objective (B.23) with automatic differentiation is feasible.
For example, training a residual flow with 64 layers for 105 iterations
takes roughly 5.3 hours for 𝑛 = 2, 5.7 hours for 𝑛 = 5, and 6.3 hours
for 𝑛 = 7 on the same hardware (see section B.4.5). An interesting
direction for future work would be to find computationally efficient ways
of optimising (B.23).

When computing the 𝐶ima of the Darmois solutions of randomly gener-
ated functions, we restricted ourselves to Möbius transformations, i.e.
conformal maps. However, there are also nonconformal maps satisfy-
ing 𝐶ima = 0, e.g. the transformation of Cartesian to Polar coordinates,
see Appendix B.3. To test whether the 𝐶ima of the Darmois solutions is
actually bigger than 0, we gener

B.4.5 Evaluation

Mean correlation coefficient. To evaluate the performance of our
method, we compute the mean correlation coefficient (MCC) between
the original sources and the corresponding latents, see for example [62].
We first compute the matrix of correlation coefficients between all pairs
of ground truth and reconstructed sources. Then, we solve a linear sum
assignment problem (e.g. using the Hungarian algorithm) to match each
reconstructed source to the ground truth one which has the highest
correlation with it. The MCC matrix contains the Spearman rank-order
correlations between the ground truth and reconstructed sources, a
measure which is blind to nonlinear invertible reparametrisations of the
sources.

Nonlinear Amari metric. While the MCC metric evaluates BSS by com-
paring ground truth and reconstructed sources, we propose an additional
evaluation directly based on comparing the (Jacobians of the) true mixing
and the learnt unmixing. We take inspiration from an evaluation metric
used in the context of linear ICA, the Amari distance [181]: Given a learnt
unmixing W and the true mixing A, and defining the matrix R = AW,
the Amari distance is defined as

𝑑Amari(R) =
𝑛∑
𝑖=1

(
𝑛∑
𝑗=1

[R]2
𝑖 𝑗

max𝑙[R]2𝑖𝑙
− 1

)
+

𝑛∑
𝑖=1

(
𝑛∑
𝑗=1

[R]2
𝑗𝑖

max𝑙[R]2𝑙 𝑗
− 1

)
, (B.24)

and is greater than or equal to zero, canceling if and only if R is a scale
and permutation matrix, that is when the learnt unmixing is matching
the unresolvable ambiguities of linear ICA.

We extend this idea to the nonlinear setting: Given a true mixing f and a
learnt unmixing g, we define our nonlinear Amari distance as

𝑑n-Amari(g, f) = 𝔼x∼𝑝x

[
𝑑Amari (Jg(x)Jf(f−1(x))

) ]
. (B.25)
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8: The distribution of the KL values
contains outliers, and seemingly more
strongly for lower values of �.

Then, according to the definition of Amari distance (B.24), if the smooth
function g ◦ f is a permutation composed with a scalar function, thus
precisely matching the BSS equivalence class defined in Defn. 2.4.1,
this would result in its Jacobian (that is, the product of the Jacobians
Jg(x)Jf(f−1(x))) equalling the product of a diagonal matrix and a permu-
tation matrix at every point x: the quantity 𝑑n-Amari(g, f) would therefore
be equal to zero.

This metric can be of independent interest and potentially useful in
contexts where the reconstructed sources might be a noisy version of
the true ones, but the true unmixing is nevertheless identifiable. Our
implementation is based on the one for the (linear) Amari distance
provided in the code for [48].

𝐶ima of Darmois solutions for nonconformal maps satisfying the
IMA principle. When computing the 𝐶ima of the Darmois solutions
of randomly generated functions, we restricted ourselves to Möbius
transformations which are conformal maps. However, there are also
nonconformal maps satisfying 𝐶ima = 0, e.g., the transformation from
polar to Cartesian coordinates with 𝑛 = 2, see Appendix B.3. To test
whether the 𝐶ima of the Darmois solutions is actually bigger than 0, we
generate random radial transformations by imposing a random scale and
shift before applying the radial transformation, compute the Darmois
solution as we have done in Subsection 3.5.1, and calculate its 𝐶ima on
the test set. We did 50 runs and the results are shown in Fig. B.7.

Similar to Fig. 3.5 (a) we can clearly see that all 𝐶ima values of the final
models are larger than 0, with the smallest value being 0.01. This confirms
the result we have already shown theoretically.

Additional plots for Subsection 3.5.2. We show additional plots for the
quantitative experiments involving training with the objective described
in (B.23), see Fig. B.3, Fig. B.4 and Fig. B.5.

For 𝜖 = 0 (that is, ground truth mixing linear), there appears to be an
almost perfect recovery of the ground truth sources (resp. unmixing
function) for � ∈ {0.5, 1.0}, as can be seen by the high (resp. low) values
of the MCC (resp. nonlinear Amari distance) evaluations ; this is in
stark contrast with the distribution of the MCC (resp. nonlinear Amari
distance) values for models trained with � = 0, which are typically much
higher (resp. lower), indicating that the learnt solutions do not achieve
blind source separation (see 𝑛 = 2, Fig. B.3 (g), (h); 𝑛 = 5, Fig. B.4 (g), (h)).
All models achieve a comparably good fit, reflected in the KL-divergence
values (𝑛 = 2, Fig. B.3 (e); 𝑛 = 5, Fig. B.4 (e)).

The trend is confirmed when the true mixing is nonlinear (𝜖 = 2), with
slightly lower (resp. higher) values achieved with 𝐶ima regularisation
for the MCC (resp. nonlinear Amari) metrics; this possibly due to the
increased difficulty of fitting observations generated by a nonlinear
mixing, as can be seen from the higher values of the KL-divergence
(𝑛 = 2, Fig. B.3 (a); 𝑛 = 5, Fig. B.4 (a); 𝑛 = 7, Fig. B.5 (a));8 still, the
beneficial effect of � ∈ {0.5, 1.0} with respect to models trained with
� = 0 is clear, and is apparently stronger for � = 1.0 and with higher
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9: the experimental setting and the plots
for the normalising flow models corre-
spond to those already shown in the
paper, but here we modified the 𝑦-axis
scale to facilitate the comparison of all
methods

data dimensionality 𝑛 (𝑛 = 2, Fig. B.3 (c), (d); 𝑛 = 5, Fig. B.4 (c), (d);
𝑛 = 7, Fig. B.5 (c), (d)).

We additionally plot the 𝐶ima values for the all trained models, for
all values of �. It can be seen that solutions found by unregularised
maximum likelihood estimation typically learn functions with relatively
high values of 𝐶ima, while as expected the regularised version achieves
low values (𝑛 = 2, Fig. B.3 (b), (f); 𝑛 = 5, Fig. B.4 (b), (f); 𝑛 = 7, Fig. B.5
(b)).

Finally, in figure B.6, we report the same plot as in 3.5, top row, but with
a perceptually uniform colormap.

Comparison to FastICA. We compared the performance of our pro-
posed regularised maximum likelihood procedure to a state of the art
method for linear ICA, FastICA [182], in the implementation from the
Scikit-learn package [312], over 50 repetitions. Our experiments show
that our regularised method (� = 0.5, and particularly � = 1.0; � = 0.0
provides the unregularised nonlinear baseline) is superior in learning
the true unmixing and reconstructing the sources. This indicates that
the linearity assumption of FastICA does not allow enough flexibility to
solve blind source separation in our setting, whereas our criterion does
(see Fig. B.8, Fig. B.9 and Fig. B.10).9 While the spread in the distributions
of MCC and Amari distance can be largely attributed to the brittleness of
neural networks, the median values for the MCC (resp. nonlinear Amari
distance) are consistently higher (resp. lower) for our regularised method
than for FastICA. In contrast, the performance of FastICA is consistently
better than the unregularised baseline.

Details on resources used. All models were trained on compute in-
stances with 16 Intel Xeon E5-2698 CPUs and a Nvidia Geforce GTX980
GPU. The cluster we used has 204 thereof. Training the models took
between 4 and 16 hours depending mainly on the dimensionality 𝑛 and
number of samples in the dataset, and on the number of iterations used
for training. Overall, we trained around 2000 models, amounting to
roughly 18000 GPU hours.
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Figure B.3: BSS via 𝐶ima-regularised
MLE for 𝑛 = 2 dimensions with � ∈
{0.0, 0.5, 1.0}. The true mixing function
is a randomly generated Möbius transfor-
mation, nonlinear (with 𝜖 = 2) in (a)–(d)
and linear (with 𝜖 = 0) transformation
for (e)–(h). For each type of transforma-
tion and �, seeded runs are done. (a),
(e) KL-divergence between ground truth
likelihood and learnt model; (b), (f) 𝐶ima
of the learnt models; (c), (g) nonlinear
Amari distance given true mixing and
learnt unmixing; (d), (h) MCC between
true and reconstructed sources.

0.0 0.5 1.0

0.2

0.4

0.6

0.8

1.0

KL
D

(a) 0.0 0.5 1.00.0

0.5

1.0

c I
M

A

(b) 0.0 0.5 1.00.0

0.5

1.0

Am
ar

i d
ist

an
ce

(c) 0.0 0.5 1.0

0.6

0.7

0.8

0.9

1.0

M
CC

(d)

0.0 0.5 1.0
0

1

2

3

KL
D

(e) 0.0 0.5 1.00.0

0.5

1.0

1.5

2.0

c I
M

A

(f) 0.0 0.5 1.00.0

0.5

1.0

Am
ar

i d
ist

an
ce

(g) 0.0 0.5 1.00.5

0.6

0.7

0.8

0.9

1.0

M
CC

(h)

Figure B.4: BSS via 𝐶ima-regularised
MLE for 𝑛 = 5 dimensions with � ∈
{0.0, 0.5, 1.0}. The true mixing function
is a randomly generated Möbius transfor-
mation, nonlinear (with 𝜖 = 2) in (a)–(d)
and linear (with 𝜖 = 0) transformation
for (e)–(h). For each type of transforma-
tion and �, seeded runs are done. (a),
(e) KL-divergence between ground truth
likelihood and learnt model; (b), (f) 𝐶ima
of the learnt models; (c), (g) nonlinear
Amari distance given true mixing and
learnt unmixing; (d), (h) MCC between
true and reconstructed sources.

0.0 0.5 1.00

10

20

30

40

50

KL
D

(a) 0.0 0.5 1.00

1

2

3

4

c I
M

A

(b) 0.0 0.5 1.00.0

0.5

1.0

1.5

Am
ar

i d
ist

an
ce

(c) 0.0 0.5 1.00.5

0.6

0.7

0.8

0.9

1.0

M
CC

(d)

Figure B.5: BSS via 𝐶ima-regularised
MLE for 𝑛 = 7 dimensions with � ∈
{0.0, 0.5, 1.0}. The true mixing function
is a randomly generated Möbius transfor-
mation (with 𝜖 = 2). For each �, seeded
runs are done. (a) KL-divergence be-
tween ground truth likelihood and learnt
model; (b) 𝐶ima of the learnt models; (c)
nonlinear Amari distance given true mix-
ing and learnt unmixing; (d) MCC be-
tween true and reconstructed sources.

Ground truth Observations Darmois MPA /4 Darmois + MPA /4 MLE, = 0 CIMA, = 1

Figure B.6: Visual comparison of different nonlinear ICA solutions for 𝑛 = 2: (left to right) true sources; observed mixtures;
Darmois solution; true unmixing, composed with the measure preserving automorphism (MPA) from (2.16) (with
rotation by 𝜋/4); Darmois solution composed with the same MPA; maximum likelihood (� = 0); and 𝐶ima-regularised
approach (� = 1).
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Figure B.7: Histogram of the 𝐶ima values
of the Darmois solutions of 50 randomly
generated radial transformations.
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Figure B.8: Comparison between Fas-
tICA and our normalising flow method
with � ∈ {0.0, 0.5, 1.0}, 𝑛 = 2. (a) MCC;
(b) Amari distance.
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Figure B.9: Comparison between Fas-
tICA and our normalising flow method
with � ∈ {0.0, 0.5, 1.0}, 𝑛 = 5. (a) MCC;
(b) Amari distance.
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Figure B.10: Comparison between Fas-
tICA and our normalising flow method
with � ∈ {0.0, 0.5, 1.0}, 𝑛 = 7. (a) MCC;
(b) Amari distance.
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B.5 Additional background on conformal maps
and Möbius transformations

Similarities. A similarity of a Euclidean space is a bĳection f from the
space onto itself that multiplies all distances by the same positive real
number 𝑟, so that for any two points x and y we have

𝑑(f(x), f(y)) = 𝑟𝑑(x, y),

where 𝑑(x, y) is the Euclidean distance from x to y [496]. The scalar 𝑟 is
sometimes termed the ratio of similarity, the stretching factor and the
similarity coefficient. When 𝑟 = 1 a similarity is called an isometry (rigid
transformation). Two sets are called similar if one is the image of the
other under a similarity.

As a map f : ℝ𝑛 → ℝ𝑛 , a similarity of ratio 𝑟 takes the form

f(x) = 𝑟Ax + t,

where A is a orthogonal matrixn 𝑛×𝑛 and t ∈ ℝ𝑛 is a translation vector.

Note that such a similarity f has Jacobian Jf(x) = 𝑟A for any x.

Conformal maps. Conformal maps are angle preserving transforma-
tion, and in this sense, are a generalization of similarities. In short, let
𝑈 be an open subset of ℝ𝑛 , 𝜑 : 𝑈 → ℝ𝑛 is a conformal map if, for two
arbitrary curves 𝛾1(𝑡) and 𝛾2(𝑡) on ℝ𝑛 , where these curves intersect each
other with angle � in point p ∈ 𝑈 , then 𝜑 ◦ 𝛾1(𝑡) and 𝜑 ◦ 𝛾2(𝑡) intersect
each other with the same angle � in the point 𝜑(p).

A characterisation of conformal maps directly related to orthogonal
coordinate systems is the following.

Proposition B.5.1 (See e.g. [497]) Let 𝑈 be an open subset of ℝ𝑛 with
a 𝐶1-function 𝜑 : 𝑈 → ℝ𝑛 . Then 𝜑 is conformal iff there exists a scalar
function � : 𝑈 → ℝ such that �(x)−1J𝜑(x) is an orthogonal matrix for all x
in𝑈 . We call � the scale factor of 𝜑.

While it can be shown that linear conformal maps are similarities, an
interesting class of nonlinear conformal maps are the unit radius sphere
inversion (restriction to unit radius is only to avoid unnecessary notational
complexity):

𝐼b : ℝ𝑛 \ {0} → ℝ𝑛 \ {0}

x ↦→ x − b
∥x − b∥2 + b

We can notice that such transformation leaves the hypersphere of center
b and radius 1 invariant, while the points outside of the unit ball are
mapped to the interior of the unit ball, and vice-versa.

Interestingly, conformal maps in Euclidean spaces of dimension superior
or equal to 3 can be restricted to two kinds according to the following
result from Liouville.
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Theorem B.5.2 (see e.g. [498]) Let 𝑓 : 𝑈 → ℝ𝑛 be a conformal map defined
on a connected open subset of Euclidean space ℝ𝑛 of dimension 𝑛 ≥ 3. Then
𝑓 = 𝐿|𝑈 can be written either as the restriction of a similarity 𝐿 to𝑈 , or as
the composition 𝑓 = 𝐼 ◦ 𝐿|𝑈 of such a map with an inversion with respect to
a hypersphere of unit radius, centered at the origin.

The class of function described in Thm. B.5.2 corresponds exactly to the
Möbius transformations described in (B.17). These transformation can as
well be defined in dimension 2, with the specificity that they are only a
subset of the class conformal maps in this dimension.

Properties of sphere inversion. We characterize the properties of the
unit sphere centered at zero, that we denote 𝐼

𝐼 : ℝ𝑛 \ {0} → ℝ𝑛 \ {0}

x ↦→ x
∥x∥2

Now let us derive the Jacobian of 𝐼. A straightforward computation leads
to

J𝐼(x) =
1
∥x∥2

(
I𝑛 − 2

xx⊤

∥x∥2

)
where I𝑛 denote the identity matrix.

By noticing that xx⊤
∥x∥2 is rank one symmetric with eigenvalue 1 associated

with unit norm eigenvector x
∥x∥ , we can diagonalize this matrix in any

(space dependent) orthogonal basis that has x
∥x∥ as the first basis vector.

Let us thus pick the unit vectors associated to the hyperspherical coor-
dinates (which satisfy this condition by definition), and consider the
orthogonal matrix B( x

∥x∥ ) gathering these basis vectors as its columns (it
is parameterized by the unit vector x

∥x∥ , as this basis is radially invariant.
Then we can write

xx⊤

∥x∥2 = B
(

x
∥x∥

)
DB

(
x
∥x∥

)⊤
and thus

J𝐼(x) =
1
∥x∥2

(
I𝑛 − 2B

(
x
∥x∥

)
DB

(
x
∥x∥

)⊤)
=

1
∥x∥2 B

(
x
∥x∥

)
(I𝑛 − 2D)B

(
x
∥x∥

)⊤
with D a diagonal matrix with diagonal elements [1, 0, . . . , 0]. This leads
to

J𝐼(x) =
1
∥x∥2 B

(
x
∥x∥

)
D𝐼B

(
x
∥x∥

)⊤
with D𝐼 = I𝑛−2D a diagonal matrix with diagonal elements [−1, 1, . . . , 1].
The Jacobian thus takes the form predicted by the above proposition for
conformal maps

J𝐼(x) = �(x)O
(

x
∥x∥

)
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with scale factor �(x) = 1
∥x∥2 and O( x

∥x∥ ) = B
(

x
∥x∥

)
D𝐼B

(
x
∥x∥

)⊤
a space

dependent orthogonal matrix, which has the additional property to be
radially invariant for the specific case of sphere inversions.
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Additional Material on Chapter 4

C.1 Complementary notes

C.1.1 ELBO decompositions

Connection between (4.1) and (4.2). Here we show how the two de-
compositions of the ELBO objective in (4.1) and (4.2) can be connected.
We start from equation (4.2):

ELBO(x, 𝜽,𝝓) = log 𝑝𝜽(x) − KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
.

By definition of KL-divergence, and applying Bayes rule, we get

ELBO(x, 𝜽,𝝓) = log 𝑝𝜽(x) −
∫

𝑞𝝓(s|x)
(
log 𝑞𝝓(s|x) − log 𝑝𝜽(s|x)

)
𝑑s

= log 𝑝𝜽(x) −
∫

𝑞𝝓(s|x)
(
log 𝑞𝝓(s|x) − log

(
𝑝𝜽(x|s)

𝑝s(s)
𝑝𝜽(x)

))
𝑑s .

We observe that the two terms involving 𝑝𝜽(x) cancel, resulting in

ELBO(x, 𝜽,𝝓) = −
∫

𝑞𝝓(s|x)
(
log 𝑞𝝓(s|x) − log (𝑝𝜽(x|s)𝑝s(s))

)
𝑑s,

which leads to (4.1) by rearranging the terms:

ELBO(x, 𝜽,𝝓) = 𝔼𝑞𝝓(s|x) [log 𝑝𝜽(x|s)] − KL
[
𝑞𝝓(s|x)| |𝑝s(s)

]
.

Expressions for the two terms in equation (4.1) under Assumption 4.3.1.
The above two terms take the following form in our setting. For the
second (“KL”) term, we get

−KL
[
𝑞𝝓(s|x)| |𝑝s(s)

]
=

∫
𝑞𝝓(s|x) log 𝑝s(s)𝑑s−

∫
𝑞𝝓(s|x) log 𝑞𝝓(s|x)𝑑s

= 𝔼𝑞𝝓(s|x)[log(𝑝s(s))] + 𝐻(𝑞𝝓(s|x)) ,

where 𝐻 denotes the entropy. Writing the expression for the entropy
of univariate Gaussian variables (1/2 log(2𝜋𝜎2) + 1/2), we have under
Assumption 4.3.1

𝐻(𝑞𝝓(s|x)) =
𝑛

2 (log(2𝜋) + 1)+ 1
2

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)2 = �𝑛 +

1
2

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)2 ,
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1: because the conditional distribution
of the decoder tends to a Dirac measure
at f𝜽

where we introduce the dimension dependent constant�𝑛 = 𝑛
2 (log(2𝜋) + 1) .

This leads to

−KL
[
𝑞𝝓(s|x)| |𝑝s(s)

]
= 𝔼𝑞𝝓(s|x)[log(𝑝s(s))]+

1
2

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)2+�𝑛 . (C.1)

The first (“reconstruction”) term, under the isotropic Gaussian decoder
of Assumption 4.3.1, takes the form

𝔼𝑞𝝓(s|x) [log 𝑝𝜽(x|s)] = −
𝛾2

2
𝔼𝑞𝝓(s|x)

[
∥x − f𝜽 (s) ∥2

]
+𝑛 log 𝛾− 𝑛

2
log(2𝜋) .

(C.2)

Expression for the gap between ELBO and log-likelihood Let us now
write the KL divergence between variational and true posteriors, which
is the gap appearing in (4.2).

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= −

∫
𝑞𝝓(s|x) log 𝑝𝜽(x|s)𝑑s − 𝐻(𝑞𝝓(s|x))

Using again the expression of the entropy of Gaussian variables, this
leads to

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= −

∫
𝑞𝝓(s|x) log 𝑝𝜽(x|s)𝑑s−

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(𝑥)−𝑛

2 (log(2𝜋) + 1) ,

such that, using the Bayes formula for the true posterior and Assum. 4.3.1,
we get

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= −

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x) + 𝑐(x, 𝛾)

+ 1
2
𝔼𝑧∼𝑞𝝓(·|x)

[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑧𝑘)
]
, (C.3)

with additive constant 𝑐(x, 𝛾) = − 𝑛2
(
log(𝛾2) + 1

)
+ log 𝑝𝜽(x). Note the

log(2𝜋) term in the previous expression cancels with the one coming
from the true log posterior.

The analysis of the optima of (C.3) is non-trivial due to the second term
which involves taking expectations of functions of s w.r.t. its posterior
distribution 𝑞𝝓 parameterized by 𝝁𝝓 and 𝝈𝝓. Much of the derivations
to obtain our results will revolve around constructing bounds that no
longer involve such expectations, but instead only depend on 𝝁𝝓 and
𝝈𝝓.

C.1.2 Justification of the intuition

We add here more qualitative details to the statement of subsection 4.3.2
that the true posterior density is approximately the pushforward of
𝑝𝜽(x|s = s0). Note that they are not meant to replace a rigorous treatment,
which is deferred to Appendix C.2.

As the decoder becomes deterministic, the marginal observed density
becomes the pushforward1 of the latent prior by f𝜽 such that
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𝑝𝜽(x) ≈ 𝑝0

(
g𝜽(x)

)
|Jg𝜽 (x)| .

The true posterior is therefore approximately

𝑝𝜽(s|x) = 𝑝𝜽(x|s)𝑝s(s)/𝑝𝜽(x) ≈ 𝑝𝜽(x|s)𝑝s(s)/𝑝0

(
g𝜽(𝑥)

)
|Jg𝜽 (x)|−1 .

Conditioning on a given observation x = f𝜽 (s0), we get

𝑝𝜽(s|x = f𝜽 (s0)) = 𝑝𝜽(f𝜽 (s0) |s)𝑝s(s)/𝑝𝜽(x = f𝜽 (s0))

≈ 𝑝𝜽(f𝜽 (s0) |s)𝑝s(s)/𝑝0

(
g𝜽(f𝜽 (s0))

)
|Jg𝜽 (f𝜽 (s0)) |−1

≈ 𝑝𝜽(f𝜽 (s0) |s)𝑝s(s)/𝑝0 (s0) |Jg𝜽 (f𝜽 (s0)) |−1

Neglecting the variations of the prior relative to those of the posterior
(due to near-determinism), we make the approximation 𝑝s(s) ≈ 𝑝0 (s0)
such that the above approximation becomes

𝑝𝜽(s|x = f𝜽 (s0)) ≈ 𝑝𝜽(f𝜽 (s0) |s)|Jf𝜽 (s0) | .

Using the isotropic Gaussian decoder assumption, we get

𝑝𝜽(s|x = f𝜽 (s0)) ≈
𝛾𝑛
√

2𝜋
𝑛 exp

(
−𝛾

2

2
f𝜽 (s0) − f𝜽 (s)

2
)
|Jf𝜽 (s0) | .

In the near-deterministic regime, this posterior distribution should be
concentrated in the region where s is close to s0, we can then further
approximate this density using a Taylor formula

𝑝𝜽(𝑧 |x = f𝜽 (s0)) ≈
𝛾𝑛
√

2𝜋
𝑛 exp

(
−𝛾

2

2 ∥Jf𝜽 (s0) (s0 − s)∥2
)
|Jf𝜽 (s0) |

=

√
2𝜋
−𝑛

𝛾𝑛√��GG𝑇
�� exp

(
− 1
𝛾2 (s0 − s)𝑇

(
GG𝑇

)−1
(s0 − s)

)
,

with G = Jg𝜽 (f𝜽 (s0)) = Jf𝜽 (s0)−1, which is also matching the expression of
the pushforward of the Gaussian density 𝑝𝜽(x|s = s0) by the linearization
of g𝜽 around f𝜽 (s0) (i.e. replacing the mapping by its Jacobian at that
point, G).

C.1.3 A connection between the 𝛽 parameter of 𝛽-VAEs
and the decoder precision 𝛾2

In the context of disentanglement, a commonly used variant of standard
VAEs [191] is the 𝛽-VAE [194, 197, 198, 202, 203]. In this model, an
additional parameter 𝛽 is added to modify the weight of the KL term in
(4.1), whereas the decoder precision 𝛾2 is typically set to one [202, 203,
499, 500]. The 𝛽-VAE objective [194] can be written as

L𝛽(x;𝜽,𝝓) = 𝔼𝑞𝝓(s|x) [log 𝑝𝜽(x|s)] − 𝛽𝐾𝐿
[
𝑞𝝓(s|x)∥𝑝s(s)

]
. (C.4)

The influence of the decoder precision 𝛾2 and the 𝛽 parameters on
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the objective have been related in the literature, see for example [193,
§ 2.4.3]—and similar observations can be found in [218, § 3.1]. Under the
assumption of a Gaussian decoder, the ELBO from Equation 4.1 can be
written as

ELBO(x;𝜽,𝝓) = −KL
[
𝑞𝝓(s|x)| |𝑝s(s)

]
+ 𝔼𝑞𝝓(s|x) [log 𝑝𝜽(x|s)]

= −KL
[
𝑞𝝓(s|x)| |𝑝s(s)

]
− 𝛾2

2
𝔼𝑞𝝓(s|x)

[x − f𝜽 (s)
2

]
+𝑛 log 𝛾− 𝑛

2
log(2𝜋)

= 𝛾2
[
− 1
𝛾2 KL

[
𝑞𝝓(s|x)| |𝑝s(s)

]
− 1

2
𝔼𝑞𝝓(s|x)

[x − f𝜽 (s)
2

]
+ 𝑐(𝛾)

]
;

(C.5)

𝑐(𝛾) :=
𝑛

𝛾2 log 𝛾 − 𝑛

2𝛾2 log(2𝜋)

Given that usually optimization is performed with a fixed value for 𝛾
for the ELBO (and with fixed 𝛽 for L𝛽), this suggests that 𝛽 and 1/𝛾2, play
a similar role in (C.4) and (C.5)—since the 𝛾2 outside parenthesis only
changes the objective and its gradients by a global scaling factor.

Why is proving self-consistency for 𝛽-VAEs harder? The connection of
𝛽 and 𝛾2 above makes the following statement counterintuitive: proving
self-consistency for 𝛽-VAEs is harder. The reason is that 𝛽 is a parameter
in (C.4) (i. e., (4.1) is modified), whereas the proof for self-consistency uses
the ELBO-decompoisition with the log-likelihood and the KL between
variational and true posteriors (4.2). As we cannot express (C.4) in a form
with the gap as in (4.2) and it is not necessarily a lower bound (𝛽 can be
smaller than 1), proving self-consistency is more complicated.

C.2 Main Theoretical Results

C.2.1 Proof of Proposition 4.3.1

We proceed in two steps: first we prove the existence of variational
parameters that achieve a global minimum of the ELBO gap, then we
characterize its near-deterministic properties. We then combine these
results, which rely on specific assumptions, to obtain our main text result
under Assumption 4.3.1.

We initially use the following milder assumptions than in main text to
prove intermediate results.

Assumption C.2.1 (Gaussian Encoder-Gaussian Decoder VAE, minimal
properties) We are given a fixed latent prior and three parameterized classes
of ℝ𝑛 → ℝ𝑛 mappings: the mean decoder class 𝜽 ↦→ f𝜽, and the mean and
standard deviation encoder classes, 𝝓 ↦→ 𝝁𝝓 and 𝝓 ↦→ 𝝈𝝓 such that

(i) the latent prior has a factorized independent and identically distributed
(i.i.d.) density 𝑝s(s) ∼

∏
𝑘 𝑑(𝑠𝑘), with 𝑑 smooth fully supported on ℝ,

with concave log 𝑑,
(ii) conditional on the latent, the decoder has a factorized Gaussian density
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𝑝𝜽 with mean f𝜽 such that

x|s ∼N

(
f𝜽 (s) , 𝛾−2I𝑛

)
(C.6)

(iii) the encoder is factorized Gaussian with posterior mean and variance
maps �𝝓

𝑘
(x), 𝜎𝝓

𝑘
(x)2 for each component 𝑘, leading to the factorized

posterior density 𝑞𝝓(s|x) such that

𝑠𝑘 |x ∼N(�𝝓
𝑘
(x), 𝜎𝝓

𝑘
(x)2) (C.7)

(iv) the mean and variance encoders classes can fit any function,
(v) for all possible 𝜽, f𝜽 is a diffeomorphism of ℝ𝑛 with inverse g𝜽.

Existence of at least one global minimizer of the gap between true and
variational posterior is given by the following proposition.

Proposition C.2.1 (Existence of global minimum) Under Assumption C.2.1.
For a fixed 𝜽 assume additionally that g𝜽 is Lipschitz continuous with Lips-
chitz constant 𝐵 > 0, in the sense that

∀x, 𝒚 ∈ ℝ𝑛 :
g𝜽 (x) − g𝜽(𝒚)


2 ≤ 𝐵∥x − 𝒚∥2 .

Then there exists at least one choice (𝝁𝝓 ∈ ℝ𝑛 , 𝝈𝝓 ∈ ℝ𝑛
>0) that achieves the

minimum of KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
.

Proof. Using Prop. C.3.1, we have the lower bound

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x) + log 𝑑(�𝝓

𝑘
)
]
+ 𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
. (C.8)

We then notice (see lemma C.3.4) that for all 𝑘,

𝜎
𝝓
𝑘
(x) → − log 𝜎

𝝓
𝑘
(x) + 𝛾2

2
𝐵−2𝜎

𝝓
𝑘
(x)2

achieves a global minimum 𝑚(𝐵, 𝛾) = − log(𝐵/𝛾) + 1/2 at 𝜎𝝓
𝑘
(x) = 𝐵/𝛾.

For arbitrary 𝑘0, we now 1) lower bound the 𝑘 ≠ 𝑘0 terms by 𝑚(𝐵, 𝛾); 2)
lower bound and all the log 𝑑 terms by their global maximum, which
exists by Assum. 1i (log-concave prior); and 3) drop the non-negative
squared norm term, leading to the following weaker lower bound:

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ (𝑛 − 1)𝑚(𝐵, 𝛾) − log 𝜎

𝝓
𝑘0
(x)

− 𝑛max
𝑡
(log𝑚(𝑡)) + 𝑐(x, 𝛾) +

𝛾2

2
𝐵−2

[
𝜎
𝝓
𝑘0
(x)2

]
. (C.9)

The KL divergence is well-defined and finite for any choice of parameters
in their domain, therefore it achieves a particular value 𝐾0 ≥ 0 at one
arbitrary selected point of the domain. Since for all 𝑘, the lower bound
tends to +∞ for both 𝜎

𝝓
𝑘
→ +∞ (as the quadratic term dominates the
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− log term) and 𝜎
𝝓
𝑘
→ 0+, there exist 𝑎 > 𝑏 > 0 (possibly dependent on

(𝛾, x)) such that KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
> 𝐾0 for any 𝜎

𝝓
𝑘
< 𝑏 or 𝜎𝝓

𝑘
> 𝑎.

Moreover, starting again from the lower bound from Prop. C.3.1,

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x) + log 𝑑(�𝝓

𝑘
)
]
+ 𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
, (C.10)

we now focus on 𝝁𝝓 and lower bound all 𝝈𝝓 terms. With this, we get the
following weaker lower bound in terms of 𝝁𝝓:

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ 𝑛𝑚(𝐵, 𝛾) − 𝑛max

𝑡
(log𝑚(𝑡)) + 𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2

]
. (C.11)

The lower bound also tends to+∞ for ∥𝝁𝝓∥ → +∞, so there exists a radius
𝑅 > 0 (possibly dependent on (𝛾, x)) such that KL

[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
>

𝐾0 if ∥𝝁𝝓∥ > 𝑅.

As a consequence, the infimum (≤ 𝐾0) of the minimization problem
(4.6) cannot be achieved outside the compact set (𝝁𝝓 , 𝝈𝝓) ∈ {𝝁𝝓 ∈ ℝ𝑛 :
∥𝝁𝝓∥ ≤ 𝑅} × [𝑎, 𝑏]𝑛 . Since the divergence is continuous in (𝝁𝝓 , 𝝈𝝓),
there exists a value (𝝁𝝓 , 𝝈𝝓) in this compact set achieving the minimum
of the KL over the whole parameter domain, and all values achieving
this minimum are in this compact set.

For given x, 𝜽 and 𝛾 > 0, the variational posterior KL divergence
mapping

(𝝁𝝓(x), 𝝈𝝓(x)) → KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
thus has a minimum, and by smoothness of this mapping, this minimum
can be characterized by the vanishing gradient of the KL divergence
with respect to the parameters. Now, let us try to characterize how this
minimum behaves for large 𝛾.

Proposition C.2.2 (Self-consistency of the encoder in the deterministic
limit) Under Assumption C.2.1, assume additionally f𝜽 and g𝜽 are Lipschitz
continuous with respective Lipschitz constants 𝐶, 𝐵 > 0, in the sense that

∀s,𝒘 ∈ ℝ𝑛 :
f𝜽 (s) − f𝜽(𝒘)


2 ≤ 𝐶∥s −𝒘∥2 , (C.12)

∀x, 𝒚 ∈ ℝ𝑛 :
g𝜽 (x) − g𝜽(𝒚)


2 ≤ 𝐵∥x − 𝒚∥2 . (C.13)

Assume additionally that − log 𝑑 is quadratically dominated, in the sense that

∃𝐷 > 0, 𝐸 > 0 : − log 𝑑(𝑢) ≤ 𝐷 |𝑢 |2 + 𝐸 , ∀𝑢 ∈ ℝ.
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Then for all x, 𝜽, as 𝛾→ +∞, any global minimum of (4.6) satisfies

𝝁𝝓(x) = g𝜽 (x) + 𝑂(1/𝛾) (C.14)

𝝈𝝓(x)2 = 𝑂(1/𝛾2) . (C.15)

More precisely, for all x ∈ ℝ𝑛 , 𝛾 > 0g𝜽 (x) − 𝝁𝝓(x)
2
≤ 𝐵2 2𝑛

𝛾2

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
+

+𝑀 + 1
2

log(𝐵2)
)
.

and

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2 ≤ 𝐵2 4𝑛

𝛾2

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
+

+𝑀 + 1
2

(
log(2𝐵2)

) )
.

Proof. We start from the lower bound expression of Prop. C.3.1

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x) + log 𝑑(�𝝓

𝑘
)
]
+ 𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
,

with 𝑐(x, 𝛾) = − 𝑛2
(
log(𝛾2) + 1

)
+ log 𝑝𝜽(x). For any � ∈ (0, 1], we can

thus write

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥

𝑛∑
𝑘=1

[
− log 𝜎

𝝓
𝑘
(x) + �𝛾2𝐵−2 𝜎

𝝓
𝑘
(x)2

2
− log 𝑑(�𝝓

𝑘
)
]
+𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓
2 + (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
.

Now, from lemma C.3.4 we get

∀𝑢 > 0 : − log 𝑢 + 𝛼𝑢2/2 ≥ 1
2

log(𝛼) + 1
2
.

We exploit this lower bound to obtain

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ 𝑛

2
(
log(�𝛾2𝐵−2) + 1

)
−

𝑛∑
𝑘=1

[
log 𝑑(�𝝓

𝑘
)
]
+𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓
2 + (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
.
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Using the expression of 𝑐(x, 𝛾)we get

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ 𝑛

2
(
log(�𝐵−2) + log 𝛾2 + 1

)
−

𝑛∑
𝑘=1

[
log 𝑑(�𝝓

𝑘
)
]
−𝑛

2
(
log 𝛾2 + 1

)
+ log 𝑝𝜽(x) +

𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓
2 + (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
.

and both the “𝑛 log 𝛾” as well as “𝑛/2” terms cancel out such that

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ 𝑛

2
(
log(�𝐵−2)

)
−

𝑛∑
𝑘=1

[
log 𝑑(�𝝓

𝑘
)
]
+ log 𝑝𝜽(x)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓
2 + (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
.

Finally, using Prop. C.3.2, the above right hand side is bounded from
above by a constant as 𝛾→ +∞, and as a consequence, the positive factor
of the 𝛾2 term must vanish (by continuity assumption and its limits note
− log 𝑑 is bounded from below)g𝜽 (x) − 𝝁𝝓

2 + (1 − �)
𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2 → 0

This entails that both positive terms it comprises must vanish too.

More precisely, we get the inequality between lower and upper bounds
at the optimal solution

𝑛

2
(
log(�𝐵−2)

)
−

𝑛∑
𝑘=1

[
log 𝑑(�𝝓

𝑘
)
]
+ log 𝑝𝜽(x)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2
+ (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
≤ 𝑛

(
1
2
𝐶2 + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

] )
− 𝑛

2
+ log 𝑝𝜽(x),

which simplifies to

𝑛

2
(
log(�𝐵−2)

)
−

𝑛∑
𝑘=1

[
log 𝑑(�𝝓

𝑘
)
]
+𝛾

2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2
+ (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
≤ 𝑛

(
1
2
𝐶2 + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

] )
− 𝑛

2
.

Moreover by continuity assumption and its limits, − log 𝑑 is bounded
from below by −𝑀 = −max𝑡 log 𝑑(𝑡), yielding

𝑛

2
(
log(�𝐵−2) − 2𝑀

)
+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2
+ (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
≤ 𝑛

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

] )
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such that

𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2
+ (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
≤ 𝑛

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
− 1

2
(
log(�𝐵−2) − 2𝑀

) )
and finally

𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2
+ (1 − �)

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
≤ 2𝑛

𝛾2

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
+𝑀 + 1

2
log(𝐵2/�)

)
(C.16)

Taking � = 1 in (C.16) we get the first intended inequalityg𝜽 (x) − 𝝁𝝓(x)
2
≤ 𝐵2 2𝑛

𝛾2

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
+𝑀 + 1

2
log(𝐵2)

)
.

Alternatively, (C.16) implies

(1 − �)
𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2 ≤ 𝐵2 2𝑛

𝛾2

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
+𝑀 + 1

2
(
log(𝐵2/�)

) )
Taking a fixed value of �, say 1/2, we get the second intended inequality

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2 ≤ 𝐵2 4𝑛

𝛾2

(
1
2
(𝐶2 − 1) + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

]
+𝑀 + 1

2
(
log(2𝐵2)

) )
.

We now restate the main text proposition and provide the proof.

Proposition 4.3.1 [Self-consistency of near-deterministic VAEs] Under
Assumption 4.3.1, for all x, 𝜽, as 𝛾 → +∞, there exists at least one global
minimum solution of (4.6). These solutions satisfy

𝝁𝝓(x) = g𝜽 (x) + 𝑂(1/𝛾) and 𝜎
𝝓
𝑘
(x)2 = 𝑂(1/𝛾2) , for all 𝑘 . (4.8)

Proof. We only have to check that Assumption 4.3.1 allow fulfilling the
following requirements of Prop. C.2.2:

▶ the Lipschitz continuity requirements in Prop. C.2.2 results from
the boundedness of the first order derivatives of the decoder mean
and of its inverse (by using the multivariate Taylor theorem),
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▶ concavity of log 𝑑, required by Assumption C.2.1, is a direct conse-
quence of non-positivity of the second-order logarithmic derivative
of 𝑚 in Assumption 4.3.1i,

▶ quadratic domination of − log 𝑑 comes from the boundedness of
the second-order logarithmic derivative of𝑚 (by integrating twice).

Then Prop. C.2.2 follows and the 𝑂(1/𝛾) convergence of the variational
posterior mean of the inverse, as well as the 𝑂(1/𝛾2) convergence of the
variational posterior variance.

Finer approximation of parameter values We now derive a finer result
for the convergence of the mean, that we will exploit in Thm. 4.3.2. This
relies on the existence of an optimum shown by Prop. C.2.1.

At such optimum 𝝓 we thus have for all 𝑘

𝜕

𝜕�
𝝓
𝑘

[
KL

[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

] ]
|𝝓 = 0 ,

and
𝜕

𝜕𝜎
𝝓
𝑘

[
KL

[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

] ]
|𝝓 = 0 .

We derive the constraints entailed by the first expression:

𝜕

𝜕�
𝝓
𝑘

[
KL

[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

] ]
|𝝓 =

1
2

∫
𝜕

𝜕�
𝝓
𝑘

𝑞𝝓(s)
[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
𝑑s

=
1
2

∫ ∏
𝑗≠𝑘

𝑞
𝑗

𝝓(𝑧 𝑗)
𝜕𝑞𝑘𝝓(𝑠𝑘)

𝜕�
𝝓
𝑘

[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
𝑑s

with
𝜕𝑞𝑘𝝓(𝑠𝑘)

𝜕�
𝝓
𝑘

=
�
𝝓
𝑘
− 𝑠𝑘

𝜎
𝝓
𝑘

2 𝑞𝑘𝝓(𝑠𝑘),

which leads to a set of constraints at optimum∫
𝑞𝝓(s)�

𝝓
𝑘
(x)

[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
𝑑s

=

∫
𝑞𝝓(s)𝑠𝑘

[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
𝑑s , ∀𝑘 (C.17)

Based on this expression we derive the following result.

Proposition C.2.3 Under Assumption 4.3.1, as 𝛾→ +∞

f𝜽(𝝁𝝓(x)) = x + 1
𝛾2 J−𝑇

f𝜽 |𝝁𝝓(x)
𝑛′(𝝁𝝓(x)) + 𝑂(1/𝛾3). (C.18)
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and

𝝁𝝓(x) = g𝜽 (x) + 1
𝛾2 J−1

f𝜽 |g𝜽(x)J
−𝑇
f𝜽 |g𝜽(x)𝑛

′(g𝜽 (x)) + 𝑂(1/𝛾3) (C.19)

Proof. We start from the constraints of (C.17) that we rewrite∫
𝑞𝝓(s)

(
𝑠𝑘 − �𝝓

𝑘
(x))

) [
∥x − f𝜽 (s) ∥2𝛾2] 𝑑s

=

∫
𝑞𝝓(s)

(
𝑠𝑘 − �𝝓

𝑘
(x))

) [
2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
𝑑s

We then proceed to approximate the left hand side using a Taylor formula.
Assuming bounded Hessian components, we can upper and lower bound
using third order centered absolute moments of the Gaussian as

𝛾2
∫

𝑞𝝓(s)
(
𝑠𝑘 − �𝝓

𝑘
(x)

) [
∥x − f𝜽(𝝁𝝓(x)) − Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))∥2
]
𝑑s+𝑂(1/𝛾),

which we can rewrite (by 1) expanding the norm of the sum; 2) removing
constants in the bracket, which lead to zeros after multiplying the zero
mean variable and taking the expectation; 3) using Gaussianity, all
centered third order terms vanish.)

𝛾2
∫

𝑞𝝓(s)
(
𝑠𝑘 − �𝝓

𝑘
(x)

) [
∥x − f𝜽(𝝁𝝓(x))∥2 + ∥Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))∥2

−2
〈
x − f𝜽(𝝁𝝓(x)), Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))
〉]
𝑑s + 𝑂(1/𝛾)

= 𝛾2
∫

𝑞𝝓(s)
(
𝑠𝑘 − �𝝓

𝑘
(x)

) [
∥Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))∥2

−2
〈
x − f𝜽(𝝁𝝓(x)), Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))
〉]
𝑑s + 𝑂(1/𝛾)

= 𝛾2
∫

𝑞𝝓(s)
(
𝑠𝑘 − �𝝓

𝑘
(x)

) [
(s − 𝝁𝝓(x))𝑇J𝑇

f𝜽 |𝝁𝝓(x)
Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))

−2
〈
x − f𝜽(𝝁𝝓(x)), Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))
〉]
𝑑s + 𝑂(1/𝛾)

= 𝛾2
∫

𝑞𝝓(s)
(
𝑠𝑘 − �𝝓

𝑘
(x)

) [
−2

〈
x − f𝜽(𝝁𝝓(x)), Jf𝜽 |𝝁𝝓(x)(s − 𝝁

𝝓(x))
〉]
𝑑s+𝑂(1/𝛾)

Finally computing this integral we get the left hand side as

−2𝛾2𝜎
𝝓
𝑘
(x)2

〈
x − f𝜽(𝝁𝝓(x)), [Jf𝜽 |𝝁𝝓(x)].𝑘

〉
+ 𝑂(1/𝛾)

For the right hand side we get using a Taylor expansion (with notation
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𝑛 : s→ log(𝑑(s)))∫
𝑞𝝓(s)

(
𝑠𝑘 − �𝝓

𝑘
(x))

) [
2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
𝑑s

=

∫
𝑞𝝓(s)

(
𝑠𝑘 − �𝝓

𝑘
(x))

) [
2

𝑛∑
𝑘=1

log 𝑑(�𝝓
𝑘
(x)) + 𝑛′(�𝝓

𝑘
(x))(𝑠𝑘 − �𝝓

𝑘
(x))

]
𝑑s+𝑂(1/𝛾2)

= 2𝜎𝝓
𝑘
(x)2𝑛′(�𝝓

𝑘
(x)) + 𝑂(1/𝛾2).

Equating the non-negligible terms of the left and right-hand sides we get
for each 𝑘

𝛾2
〈
x − f𝜽(𝝁𝝓(x)), [Jf𝜽 |𝝁𝝓(x)].𝑘

〉
= −𝑛′(�𝝓

𝑘
(x)) + 𝑂(1/𝛾)

such that

(x − f𝜽(𝝁𝝓(x)))𝑇Jf𝜽 |𝝁𝝓(x) = −
1
𝛾2 𝑛

′(𝝁𝝓(x)) + 𝑂(1/𝛾3),

where 𝑛′ is applied component-wise. Because the Jacobian is everywhere
invertible (implicit consequence of Lipschitz assumptions), we can solve
for this equations and get

f𝜽(𝝁𝝓(x)) = x + 1
𝛾2 J−𝑇

f𝜽 |𝝁𝝓(x)
𝑛′(𝝁𝝓(x)) + 𝑂(1/𝛾3). (C.20)

Using again a similar Taylor approximation we get

𝝁𝝓(x) = g𝜽 (x) + 1
𝛾2 J−1

f𝜽 |𝝁𝝓(x)
J−𝑇

f𝜽 |𝝁𝝓(x)
𝑛′(𝝁𝝓(x)) + 𝑂(1/𝛾3).

This equation has the shortcoming of still referring to the posterior mean
on both sides. To fix this, we first note that it implies, by boundedness of
the Jacobian, that

|𝝁𝝓(x) − g𝜽 (x) | ≤ 1
𝛾2𝐾 |𝑛

′(𝝁𝝓(x))| + 𝑂(1/𝛾3).

By bounding the second-order derivative of the log prior, we get

|𝝁𝝓(x) − g𝜽 (x) | ≤ 1
𝛾2𝐾 |𝑛

′(g𝜽 (x)) + 𝑂(𝝁𝝓(x) − g𝜽 (x))| + 𝑂(1/𝛾3),

which implies
𝝁𝝓(x) = g𝜽 (x) + 𝑂(1/𝛾2) ,

i. e., we obtain an improved convergence rate. Using this rate and Tay-
lor theorem, we obtain the final equation by replacing the variational
posterior mean by the inverse decoder in (C.20)

𝝁𝝓(x) = g𝜽 (x) + 1
𝛾2 J−1

f𝜽 |g𝜽(x)J
−𝑇
f𝜽 |g𝜽(x)𝑛

′(g𝜽 (x)) + 𝑂(1/𝛾3)
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C.2.2 Proof of Theorem 4.3.2

This will be a corollary of the following result, that uses as a key assump-
tion a rate of 𝑂(1/𝛾2) in the convergence of the self-consistency equation
of the variational mean.

Proposition C.2.4 (VAEs with log-concave factorized prior and close–
to-deterministic decoder approximate the IMA objective) Under As-
sumption 4.3.1, if additionally the VAE satisfies the following self-consistency
in the deterministic limit𝝁𝝓(x) − g𝜽 (x)

 = 𝑂𝛾→+∞(1/𝛾2) , (C.21)𝝈𝝓(x)2
2

= 𝑂𝛾→+∞(1/𝛾2) . (C.22)

then

𝜎
𝝓
𝑘
(x)2 =

(
−𝑛

2 log 𝑝0

𝑑𝑠2
𝑘

(𝑔𝜽
𝑘
(x)) + 𝛾2

[Jf𝜽
(
g𝜽(x)

)]
:𝑘

2
)−1

+ 𝑂(1/𝛾3) ,

(C.23)
and the self-consistent ELBO (4.7) approximates the IMA-regularized log-
likelihood (3.5):

ELBO∗(x;𝜽) = log 𝑝𝜽(x) − 𝑐IMA(f𝜽 , g𝜽(x)) + 𝑂𝛾→∞ (1/𝛾2) . (C.24)

Proof. We start from the self-consistent ELBO decomposition as “recon-
struction error plus posterior regularization” terms:

ELBO∗(x;𝜽) = −KL
[
𝑞�̂�(s|x)| |𝑝s(s)

]
+ 𝔼𝑞�̂�(s|x) [log 𝑝𝜽(x|s)] , (C.25)

and continue with reformulating both terms, based on Assumption 4.3.1.
That is, 𝑝0 is factorized with components i.i.d. distributed according to a
fully supported log-concave density 𝑠𝑘 ∼ 𝑑.

Posterior regularization term Assumption 4.3.1 gives us the formula
of (C.1) for this term in the ELBO. Taking optimal encoder parameters,
we get the posterior regularization term for the ELBO∗

−KL
[
𝑞�̂�(s|x)| |𝑝s(s)

]
= 𝔼𝑞�̂�(s|x)[log(𝑝s(s))] +

1
2

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x)2

]
+ �𝑛 ,

with �𝑛 = 𝑛
2 (log(2𝜋) + 1) . Using the factorized Gaussian encoder and

i.i.d. prior assumptions we get

−KL
[
𝑞�̂�(s|x)| |𝑝s(s)

]
=

𝑛∑
𝑘=1

𝔼
𝑠𝑘∼N(�

𝝓
𝑘
(x),𝜎𝝓

𝑘
(x)2)
[log(𝑑(𝑠𝑘))]+

1
2

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x)2

]
+�𝑛 ,

where we rewrote the distribution 𝑝0 as 𝑝0 =
∏

𝑘 𝑚(𝑠𝑘).

Based on the Taylor theorem, with a residual in Lagrange form of
𝑛 = log 𝑑, we have that for all 𝑘 and 𝑢 there exists � ∈ [�𝝓

𝑘
(x), 𝑢] if
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2: see e.g. https://arxiv.org/pdf/

1209.4340

𝑢 ≥ �
𝝓
𝑘
(x), or � ∈ [𝑢, �𝝓

𝑘
(x)] if 𝑢 ≤ �

𝝓
𝑘
(x) such that

𝑛(𝑢) = log(𝑑(𝑢)) = log(𝑑(�𝝓
𝑘
(x))) + 𝑛′(�𝝓

𝑘
(x))(𝑢 − �𝝓

𝑘
(x))

+ 1
2
𝑛′′(�𝝓

𝑘
(x))(𝑢 − �𝝓

𝑘
(x))2 + 1

3!
𝑛(3)(�)(𝑢 − �𝝓

𝑘
(x))3

We assumed that |𝑛(3) | is bounded over ℝ by 𝐹, such that

− 𝐹
����𝑢 − �𝝓

𝑘
(x)

����3 ≤ log(𝑑(𝑢)) − log(𝑑(�𝝓
𝑘
(x))) − 𝑛′(�𝝓

𝑘
(x))(𝑢 − �𝝓

𝑘
(x))

− 1
2
𝑛′′(�𝝓

𝑘
(x))(𝑢 − �𝝓

𝑘
(x))2 ≤ 𝐹

����𝑢 − �𝝓
𝑘
(x)

����3 .
Taking the expectation and using the expression of centered Gaussian
absolute moments2����𝔼𝑠𝑘∼N(�𝝓

𝑘
(x),𝜎𝝓

𝑘
(x)2)
[log(𝑑(𝑠𝑘))] − log(𝑑(�𝝓

𝑘
(x))) − 1

2
𝑛′′(�𝝓

𝑘
(x))𝜎𝝓

𝑘
(x)2

����
≤ 𝐹𝔼

[����𝑢 − �𝝓
𝑘
(x)

����3] = 𝐹𝜎
𝝓
𝑘
(x)3 23/2
√
𝜋
. (C.26)

As the assumptions entail that optimal posterior variances 𝜎
𝝓
𝑘
(x)2 get

small for 𝛾 large (cf. (C.22)), this implies the near-deterministic approxi-
mation

𝔼
𝑠𝑘∼N(�

𝝓
𝑘
(x),𝜎𝑘 (x)2)

[log(𝑑(𝑠𝑘))] = log(𝑑(�𝝓
𝑘
(x)))+1

2
𝑛′′(�𝝓

𝑘
(x))𝜎𝝓

𝑘
(x)2+𝑂𝛾→+∞(1/𝛾3) .

In addition, using again a Taylor formula and the self-consistency as-
sumption for the mean

log(𝑑(�𝝓
𝑘
(x))) = log(𝑑(𝑔𝜽

𝑘
(x)))+𝑛′(𝑔𝜽

𝑘
(x))(�𝝓

𝑘
(x)−𝑔𝜽

𝑘
(x))+𝑂𝛾→+∞(1/𝛾2)

= log(𝑑(𝑔𝜽
𝑘
(x))) + 𝑂𝛾→+∞(1/𝛾2).

Moreover, using again a Taylor formula for 𝑛′′ under boundedness of
𝑛(3) and again using the self-consistency assumption for the mean yields

𝑛′′(�𝝓
𝑘
(x)) = 𝑛′′(𝑔𝜽

𝑘
(x)) +𝑂(�𝝓

𝑘
(x) − 𝑔𝜽

𝑘
(x)) = 𝑛′′(𝑔𝜽

𝑘
(x)) +𝑂𝛾→+∞(1/𝛾2) .

Overall this leads to the approximation of the posterior regularization
term

−KL
[
𝑞�̂�(s|x)| |𝑝s(s)

]
=

𝑛∑
𝑘=1

log(𝑑(𝑔𝜽
𝑘
(x)))+1

2
𝑛′′(𝑔𝜽

𝑘
(x))𝜎𝝓

𝑘
(x)2+1

2
log 𝜎

𝝓
𝑘
(x)2

+ �𝑛 + 𝑂𝛾→+∞(1/𝛾2) . (C.27)

Reconstruction term Now switching to the first (reconstruction) term
of the ELBO∗, adapting the decomposition of (C.2) by using optimal

https://arxiv.org/pdf/1209.4340
https://arxiv.org/pdf/1209.4340
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encoder parameters we get

𝔼𝑞�̂�(s|x) [log 𝑝𝜽(x|s)] = −
𝛾2

2
𝔼𝑞�̂�(s|x)

[
∥x − f𝜽 (s) ∥2

]
+ 𝑛 log 𝛾− 𝑛

2
log(2𝜋).

Then in the small encoder noise limit 𝜎𝑘(x)2 ≪ 1,∀𝑘 (justified by Proposi-
tion 4.3.1), we rely on a Taylor approximation around the posterior mean
s𝑜 = 𝝁𝝓(x) based on Lemma C.3.3, which bounds this approximation as
follows

𝔼𝑞𝝓(s|x)


f𝜽 (s) − f𝜽(𝝁𝝓(x)) −

𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑠𝑘 |s𝑜
(𝑠𝑘 − �𝝓

𝑘
(x))

2 ≤ 𝑛3

4
3𝐾2 ∑

𝑖

𝜎
𝝓
𝑖
(x)4 .

(C.28)
The linear term in this approximation is easily computed using succes-
sively Lemma C.3.1 and Lemma C.3.2 to get an expression with the
squared column norms of the partial derivatives scaled by the standard
deviations 𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)

. We get

𝔼𝑞𝝓(s|x)


 𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑠𝑘 |𝑧𝑜
(𝑠𝑘 − �𝝓

𝑘
(x))

2 = trace

[
Cov

[
𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)
(𝑠𝑘 − �𝝓

𝑘
(x))

] ]

=

𝑛∑
𝑘=1


𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)

2

𝜎
𝝓
𝑘
(x)2

 . (C.29)

This term can be used as an approximation for the expectation term in
the reconstruction loss thanks to the following reverse triangle inequality������𝔼𝑞𝝓(s|x) [∥x − f𝜽 (s) ∥2

]
− 𝔼𝑞𝝓(s|x)


 𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑠𝑘 |𝑧𝑜
(𝑠𝑘 − �𝝓

𝑘
(x))

2
������

=

������𝔼𝑞𝝓(s|x) [∥x − f𝜽 (s) ∥2
]
−

𝑛∑
𝑘=1


𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)

2

𝜎
𝝓
𝑘
(x)2


������

≤ 𝔼𝑞𝝓(s|x)


x −

(
f𝜽 (s) −

𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑠𝑘 |𝑧𝑜
(𝑠𝑘 − �𝝓

𝑘
(x))

)2 ,
such that the resulting upper bound can be itself bounded as follows

𝔼𝑞𝝓(s|x)


x −

(
f𝜽 (s) −

𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑠𝑘 |s𝑜
(𝑠𝑘 − �𝝓

𝑘
(x))

)2
≤ 𝔼𝑞𝝓(s|x)

[x − f𝜽(𝝁𝝓(x))
2

]
+𝔼𝑞𝝓(s|x)


f𝜽 (s) − f𝜽(𝝁𝝓(x)) −

𝑛∑
𝑘=1

𝜕f𝜽

𝜕𝑠𝑘 |𝝁𝝓(x)
(𝑠𝑘 − �𝝓

𝑘
(x))

2 .
Each term of the upper bound can be bounded for the optimum encoder
parameters: using from left to right the assumption of (C.21) and (C.28),
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respectively, leading to������𝔼𝑞�̂�(s|x) [∥x − f𝜽 (s) ∥2
]
−

𝑛∑
𝑘=1


𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)

2

𝜎
𝝓
𝑘
(x)2


������

≤ 𝑂𝛾→+∞(1/𝛾4) + 𝑛
3

4
3𝐾2 ∑

𝑖

𝜎
𝝓
𝑖
(x)4 .

Getting back to the whole reconstruction term, using additionally the
variance self-consistency assumption (C.22), the above shows that we
can make the approximation

𝔼𝑞�̂�(s|x) [log 𝑝𝜽(x|s)] = −
𝛾2

2

𝑛∑
𝑘=1


𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)

2

𝜎
𝝓
𝑘
(x)2

+𝑛 log 𝛾−𝑛
2

log(2𝜋)+𝑂𝛾→+∞(1/𝛾2)

We can further replace the dependency of the derivatives on the encoder
mean using a Taylor formula for the derivative

𝜕f𝜽

𝜕𝑧𝑘 |𝝁𝝓(x)
=

𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)
+ 𝑂(𝝁𝝓(x) − g𝜽(x)) = 𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)
+ 𝑂(1/𝛾2)

such that

𝔼𝑞�̂�(s|x) [log 𝑝𝜽(x|s)] = −
𝛾2

2

𝑛∑
𝑘=1

[𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)

2

𝜎
𝝓
𝑘
(x)2

]
+ 𝑛 log 𝛾

− 𝑛
2

log(2𝜋) + 𝑂𝛾→+∞(1/𝛾2) (C.30)

ELBO∗ approximation As a consequence of (C.27) and (C.30) the ELBO∗
becomes

ELBO∗(x;𝜽) = −1
2

𝑛∑
𝑘=1

log
1

𝜎
𝝓
𝑘
(x)2
+ 𝜎

𝝓
𝑘
(x)2

(
−𝑛′′(𝑔𝜽 𝑘(x)) + 𝛾2

𝜕f𝜽

𝜕𝑧𝑘 |𝑔𝜽 𝑘

2
)

− 2 log(𝑑(𝑔𝜽 𝑘(x)))
]
+ 𝑛 log 𝛾 + �𝑛 −

𝑛

2
log(2𝜋) + 𝑂𝛾→∞(1/𝛾2)

= −1
2

𝑛∑
𝑘=1

log
1

𝜎
𝝓
𝑘
(x)2
− 1 + 𝜎

𝝓
𝑘
(x)2

(
−𝑛′′(𝑔𝜽 𝑘(x)) + 𝛾2

𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)

2
)

− 2 log(𝑑(𝑔𝜽 𝑘(x)))
]
+ 𝑛 log 𝛾 + 𝑂𝛾→∞(1/𝛾2)

= �ELBO(𝝈𝝓(x)2; x, 𝜽,𝝓) +
𝑛∑
𝑘=1

log(𝑑(𝑔𝜽 𝑘(x))) + 𝑂𝛾→∞(1/𝛾2) ,

where we isolated the terms that depend on parameters 𝜎𝝓
𝑘
(x)2 and 𝛾 in

the approximate objective �ELBO(𝝈2 = 𝝈𝝓(x)2; x, 𝜽,𝝓) that we define for
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arbitrary 𝝈2.

�ELBO(𝝈2; x, 𝜽,𝝓) = −1
2

𝑛∑
𝑘=1

[
log

1
𝛾2𝜎2

𝑘

− 1 + 𝜎2
𝑘

(
−𝑛′′(𝑔𝜽 𝑘(x)) + 𝛾2

𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)

2
)]

=

𝑛∑
𝑘=1

�ELBO𝑘(𝜎2
𝑘
; x, 𝜽,𝝓)

Where we further break this objective in𝑛 components�ELBO𝑘(𝜎𝝓
𝑘
(x)2; x, 𝜽,𝝓)

according to the terms of the sum as follows

�ELBO𝑘(𝜎2
𝑘
; x, 𝜽,𝝓) = −1

2

[
log

1
𝛾2𝜎2

𝑘

− 1 + 𝛾2𝜎2
𝑘

(
− 1
𝛾2 𝑛

′′(𝑔𝜽 𝑘(x)) +
𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)

2
)]

and where we note that −𝑛′′ ≥ 0 due to the log-concavity assumption.

Solving term in 𝑘 �ELBO𝑘(𝜎2
𝑘
) for optimal 𝛾2𝜎∗

𝑘
we get (see lemma C.3.4):

𝛾2𝜎∗2
𝑘
=

(
− 1
𝛾2 𝑛

′′(𝑔𝜽 𝑘(x)) +
𝜕f𝜽

𝜕𝑧𝑘 |𝑔𝜽 𝑘 (x)

2
)−1

(C.31)

and the resulting optimal value �ELBO
∗
𝑘(x, 𝜽,𝝓) = �ELBO𝑘(𝜎∗2𝑘 ; x, 𝜽,𝝓) is

�ELBO
∗
𝑘(x, 𝜽,𝝓)∗ = −

1
2

log

(
− 1
𝛾2 𝑛

′′(𝑔𝜽 𝑘(x)) +
𝜕f𝜽

𝜕𝑧𝑘 |𝑔𝜽 𝑘 (x)

2
)

A Taylor formula around this optimum leads, for some value �𝛾(x) lying
between 𝜎∗2

𝑘
and 𝜎2

𝑘
to (note the first order derivative vanishes, and the

second order derivative is upper bounded hence the second line)

�ELBO𝑘(𝜎2
𝑘
; x, 𝜽,𝝓) = �ELBO

∗
𝑘(𝜽,𝝓)+

𝑛�ELBO𝑘(x;𝜽,𝝓)
𝑑𝛾2𝜎2

𝑘 |𝜎∗2
𝑘

(𝛾2𝜎2
𝑘
−𝛾2𝜎∗2

𝑘
)

+ 𝑛
2�ELBO𝑘(x;𝜽,𝝓)
𝑑(𝛾2𝜎2

𝑘
)2 |�𝛾(x)

(𝛾2𝜎2
𝑘
− 𝛾2𝜎∗2

𝑘
)2

≤�ELBO
∗
𝑘(𝜽,𝝓) −

1
2

𝜕f𝜽

𝜕𝑧𝑘 |g𝜽(x)

2

(𝛾2𝜎2
𝑘
− 𝛾2𝜎∗2

𝑘
)2

as a consequence the non-approximate solution for the true optimal
ELBO∗, as 𝛾 grows, must achieve a value below this quadratic function,
up to a term in 𝑂(1/𝛾2), and at the same time above �ELBO

∗
, also up to a

term in 𝑂(1/𝛾2). This entails that it is restricted to a smaller and smaller
domain near the approximate solution and we get

𝜎
𝝓
𝑘
(x)2 = 𝜎∗2

𝑘
+ 𝑂(1/𝛾3) =

(
−𝑛′′(𝑔𝜽 𝑘(x)) + 𝛾2

𝜕f𝜽

𝜕𝑧𝑘 |𝑔𝜽 𝑘 (x)

2
)−1

+ 𝑂(1/𝛾3).

(C.32)
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Leading to the approximation of the true objective

ELBO∗(x;𝜽) =−1
2

𝑛∑
𝑘=1

log©«− 1
𝛾2 𝑛

′′(�𝝓
𝑘
(x)) +

𝜕f𝜽

𝜕𝑧𝑘 |�𝝓
𝑘
(x)

2ª®¬− 2 log(𝑑(�𝝓
𝑘
(x)))

+ 𝑂(1/𝛾2),

which reduces to

ELBO∗(x;𝜽) = log 𝑝0(g𝜽(x)) − 1
2

𝑛∑
𝑘=1

[
log

[Jf𝜽 (g𝜽(x))
]

:𝑘

2
]
+ 𝑂(1/𝛾2),

which is the IMA objective.

We now restate the main text theorem and provide its proof.

Theorem 4.3.2 [VAEs with a near-deterministic decoder approximate the
IMA objective] Under Assumption 4.3.1, the variational posterior satisfies

𝜎
𝝓
𝑘
(x)2 =

(
−𝑑

2 log 𝑝0

𝑑𝑠2
𝑘

(𝑔𝜽
𝑘
(x)) + 𝛾2

[Jf𝜽
(
g𝜽(x)

)]
:𝑘

2
)−1

+ 𝑂(1/𝛾3) ,

(4.11)
and the self-consistent ELBO (4.7) approximates the IMA-regularized log-
likelihood (3.5):

ELBO∗(x;𝜽) = log 𝑝𝜽(x) − 𝑐IMA(f𝜽 , g𝜽(x)) + 𝑂𝛾→∞ (1/𝛾2) . (4.12)

Proof. This is just a corollary of Proposition C.2.4 because Proposi-
tion C.2.3 entails through (C.19) the required 𝑂(1/𝛾2) rate of conver-
gence for the optimal variational mean in (C.21), while (C.22) is fulfilled
through Proposition 4.3.1.

C.3 Auxiliary results

C.3.1 Squared norm statistics

Lemma C.3.1 (Squared norm variance decomposition) For multivariate
RV 𝑋 with mean 𝑚

𝔼
[
∥𝑋∥2

]
= trace [Cov(𝑋)] + ∥𝑚∥2

Proof.
𝔼∥𝑋 − 𝑚∥2 = 𝔼 ⟨𝑋 − 𝑚, 𝑋 − 𝑚⟩ = 𝔼 [⟨𝑋, 𝑋⟩ − 2𝔼 ⟨𝑚, 𝑋⟩ + ⟨𝑚, 𝑚⟩]

hence
𝔼∥𝑋 − 𝑚∥2 = 𝔼

[
∥𝑋∥2

]
− ∥𝑚∥2

This leads to (using that the trace of a scalar is the scalar itself)

𝔼
[
∥𝑋∥2

]
= 𝔼

[
trace

[
∥𝑋 − 𝑚∥2

] ]
+∥𝑚∥2 = trace

[
𝔼

[
(𝑋 − 𝑚)𝑇(𝑋 − 𝑚)

] ]
+∥𝑚∥2



C Additional Material on Chapter 4 177

because trace[𝐴𝐵] = trace[𝐵𝐴]we get

𝔼
[
∥𝑋∥2

]
= trace

[
𝔼

[
(𝑋 − 𝑚)(𝑋 − 𝑚)𝑇

] ]
+∥𝑚∥2 = trace [Cov(𝑋)]+∥𝑚∥2

Lemma C.3.2 (Trace of transformed unit covariance) When the covariance
matrix 𝐶𝑜𝑣(𝝐) is the identity, then

trace[𝐶𝑜𝑣(𝐴𝝐)] =
∑
𝑘

∥[𝐴].𝑘 ∥2 ,

Proof. For arbitrary matrix 𝐴, 𝐶𝑜𝑣(𝐴𝝐) = 𝐴𝐶𝑜𝑣(𝝐)𝐴𝑇 and thus

trace[𝐶𝑜𝑣(𝐴𝝐)] = trace[𝐴𝐶𝑜𝑣(𝝐)𝐴𝑇] = trace[𝐴𝑇𝐴𝐶𝑜𝑣(𝝐)] .

Moreover, in our case 𝐶𝑜𝑣(𝝐) is the identity such that

trace[𝐶𝑜𝑣(𝐴𝝐)] = trace[𝐴𝑇𝐴] =
∑
𝑘

∥[𝐴].𝑘 ∥2 ,

C.3.2 KL divergence bounds

Proposition C.3.1 (Lipschtiz continuity-based lower bound) Assume
g𝜽 is Lipschitz continuous with Lipschitz constant 𝐵 > 0, in the sense

∀x, 𝒚 ∈ ℝ𝑛 ,
g𝜽 (x) − g𝜽(𝒚)


2 ≤ 𝐵∥x − 𝒚∥2 .

Then for any encoder parameter choice

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x) + log 𝑑(�𝝓

𝑘
)
]
+ 𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
, (C.33)

with 𝑐(x, 𝛾) = − 𝑛2
(
log(𝛾2) + 1

)
+ log 𝑝𝜽(x).

Proof. Starting from the KL divergence expression (C.3),

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= −

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)+1

2
𝔼s∼𝑞𝝓

[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
+𝑐(x, 𝛾)

with additive constant 𝑐(x, 𝛾) = − 𝑛2
(
log(𝛾2) + 1

)
+log 𝑝𝜽(x). By Lipschitz

continuity

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)

+ 1
2
𝔼s∼𝑞𝝓

[
𝐵−2∥g𝜽 (x) − s∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
+ 𝑐(x, 𝛾) .
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using Lemma C.3.1 applied to g𝜽 (x) − s, s ∼ 𝑞𝝓(s|x)we get

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)+𝛾

2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 + trace [𝐶𝑜𝑣 [s]]

]
− 𝔼s∼𝑞𝝓

[
𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
+ 𝑐(x, 𝛾)

≥ −
𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x) + 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
− 𝔼s∼𝑞𝝓

[
𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
+ 𝑐(x, 𝛾) .

Using Jensen’s inequality for − log 𝑑 (convex by Assum. 4.3.1(i)), we get

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x)

]
+𝛾

2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
−

𝑛∑
𝑘=1

[
log 𝑑(�𝝓

𝑘
)
]
+ 𝑐(x, 𝛾)

by reordering the terms we finally get

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≥ −

𝑛∑
𝑘=1

[
log 𝜎

𝝓
𝑘
(x) + log 𝑑(�𝝓

𝑘
)
]
+ 𝑐(x, 𝛾)

+ 𝛾2

2
𝐵−2

[g𝜽 (x) − 𝝁𝝓(x)
2 +

𝑛∑
𝑘=1

𝜎
𝝓
𝑘
(x)2

]
which is the stated KL lower bound.

Proposition C.3.2 (Optimal encoder KL divergence upper bound)
Assume f𝜽 is Lipschitz continuous with Lipschitz constant 𝐶 > 0, in the
sense that

∀s,𝒘 ∈ ℝ𝑛 :
f𝜽 (s) − f𝜽(𝒘)


2 ≤ 𝐶∥s −𝒘∥2 .

Assume, − log 𝑑 is quadratically dominated, in the sense that

∃𝐷 > 0, 𝐸 > 0,∀𝑢 ∈ ℝ,− log 𝑑(𝑢) ≤ 𝐷 |𝑢 |2 + 𝐸 .

Then for the optimal encoder solution of (4.6)

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≤ 𝑛

(
1
2
𝐶2 + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

] )
− 𝑛

2
+ log 𝑝𝜽(x) , (C.34)

and

lim sup
𝛾→+∞

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≤ 𝑛

(
1
2
𝐶2 + 𝐸

)
+ 𝐷∥g𝜽 (x) ∥2

− 𝑛
2
− log |Jf𝜽 (g𝜽 (x))| + log(𝑝0(g𝜽 (x))) (C.35)
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Proof. Starting from the KL divergence expression (C.3),

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= −

𝑛∑
𝑘=1

log 𝜎
𝝓
𝑘
(x)+1

2
𝔼s∼𝑞𝝓

[
∥x − f𝜽 (s) ∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]

+ 𝑐(x, 𝛾)

with additive constant 𝑐(x, 𝛾) = − 𝑛2
(
log(𝛾2) + 1

)
+ log 𝑝𝜽(x).

Let us choose the following posterior (by universal approximation capa-
bilities of the encoder):

𝝁𝝓∗(x) = g𝜽 (x) (C.36)

𝝈𝝓∗(x) = 1
𝛾

(C.37)

Using Lipschitz continuity we get

KL
[
𝑞𝝓∗(s|x)| |𝑝𝜽(s|x)

]
≤ −

𝑛∑
𝑘=1

log 𝜎
𝝓∗

𝑘
(x)+1

2
𝔼s∼𝑞𝝓∗

[
𝐶2∥𝝁𝝓∗(x) − s∥2𝛾2 − 2

𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]

+ 𝑐(x, 𝛾)

then, using

𝔼s∼𝑞𝝓∗
[
∥𝝁𝝓∗(x) − s∥2

]
=

𝑛∑
𝑘=1

𝔼
𝑠𝑘∼N(�

𝝓∗
𝑘
(x),𝜎𝝓∗

𝑘
(x)2)

[
|�𝝓∗

𝑘
(x) − 𝑠𝑘 |2

]
=

𝑛∑
𝑘=1

𝜎
𝝓∗

𝑘
(x)2 ,

we get

KL
[
𝑞𝝓∗(s|x)| |𝑝𝜽(s|x)

]
≤

𝑛∑
𝑘=1

(
− log 𝜎

𝝓∗

𝑘
(x) + 1

2
𝐶2𝜎

𝝓∗

𝑘
(x)2𝛾2

)
− 𝔼s∼𝑞𝝓∗

[
𝑛∑
𝑘=1

log 𝑑(𝑠𝑘)
]
+ 𝑐(x, 𝛾)

using quadratic domination

KL
[
𝑞𝝓∗(s|x)| |𝑝𝜽(s|x)

]
≤

𝑛∑
𝑘=1

(
− log 𝜎

𝝓∗

𝑘
(x) + 1

2
𝐶2𝜎

𝝓∗

𝑘
(x)2𝛾2

)
+ 𝔼s∼𝑞𝝓∗

[
𝑛𝐸 +

𝑛∑
𝑘=1

𝐷 |𝑠𝑘 |2
]
+ 𝑐(x, 𝛾)

≤
𝑛∑
𝑘=1

(
− log 𝜎

𝝓∗

𝑘
(x) + 1

2
𝐶2𝜎

𝝓∗

𝑘
(x)2𝛾2

)
+ 𝑛𝐸 + 𝐷𝔼s∼𝑞𝝓∗

[
|𝑠𝑘 |2

]
+ 𝑐(x, 𝛾)
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Using Lemma C.3.1 we get

KL
[
(𝑞𝝓∗(s|x)| |𝑝𝜽(s|x)

]
≤

𝑛∑
𝑘=1

(
− log 𝜎

𝝓∗

𝑘
(x) + 1

2
𝐶2𝜎

𝝓∗

𝑘
(x)2𝛾2

)
+ 𝑛𝐸 + 𝐷

[
∥𝝁𝝓∗(x)∥2 + ∥𝝈𝝓∗(x)∥2

]
+ 𝑐(x, 𝛾)

≤ 𝑛
(
log 𝛾 + 1

2
𝐶2

)
+𝑛𝐸+𝐷

[
∥g𝜽 (x) ∥2 + 𝑛

𝛾2

]
−𝑛

2
(
log(𝛾2) + 1

)
+log 𝑝𝜽(x)

hence for a parameter 𝝓 achieving the minimum divergence we get

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
≤ KL

[
𝑞𝝓∗(s|x)| |𝑝𝜽(s|x)

]
≤ 𝑛

(
log 𝛾 + 1

2
𝐶2

)
+ 𝑛𝐸 + 𝐷

[
∥g𝜽 (x) ∥2 + 𝑛

𝛾2

]
− 𝑛

2
(
log(𝛾2) + 1

)
+ log 𝑝𝜽(x)

≤ 𝑛
(
1
2
𝐶2 + 𝐸 + 𝐷

[
∥g𝜽 (x) ∥2

𝑛
+ 1

𝛾2

] )
− 𝑛

2
+ log 𝑝𝜽(x)

As 𝛾 → +∞, log 𝑝𝜽(x) → |Jf𝜽 (g𝜽 (x))|−1𝑝0(g𝜽 (x)) such that the KL
divergence for the optimal solutions is upper bounded by a finite number.

C.3.3 Taylor formula-based approximations

Lemma C.3.3 (Bound on expectation of multivariate Taylor expansion)
Assume 𝒇 : ℝ𝑛 → ℝ is 𝐶2 and assume s is a multivariate RV on ℝ𝑛 with
indepedent Gaussian components such that

𝑧𝑘 ∼N(�𝝓
𝑘
(x), 𝜎𝝓

𝑘
(x)2)

then for all s𝑜 ∈ ℝ𝑛

𝔼s


 𝒇 (s) − 𝒇 (s𝑜) −

∑
𝑘

𝜕 𝒇

𝜕𝑧𝑘 |s𝑜
(𝑧𝑘 − 𝑧𝑜𝑘)

2 ≤ 𝑛3

4
3𝐾2 ∑

𝑖

(
𝜎
𝝓
𝑖

)4

(C.38)

Proof. As described in [501, p. 162], for the 𝑙-th component of the function

𝑓𝑙(s) = 𝑓𝑙(s𝑜)+
∑
𝑘

𝜕 𝑓𝑙
𝜕𝑧𝑘 |s𝑜

(𝑧𝑘−𝑧𝑜𝑘)+
1
2!

∑
𝑖 , 𝑗

𝜕 𝑓𝑙
𝜕𝑧𝑖𝜕𝑧 𝑗 |s𝑜+𝑡𝑖 𝑗 (s−s𝑜 )

(𝑧𝑖−𝑧𝑜𝑖 )(𝑧 𝑗−𝑧
𝑜
𝑗 ) , 𝑡𝑖 𝑗 ∈ (0; 1) .

= 𝑓𝑙(s𝑜) +
∑
𝑘

𝜕 𝑓𝑙
𝜕𝑧𝑘 |s𝑜

(𝑧𝑘 − 𝑧𝑜𝑘) +
1
2!

∑
𝑖 , 𝑗

(s − s𝑜)𝑇H𝑘(s − s𝑜) , (C.39)

where the second line puts 1/2 of the partial derivatives in matrix form
(note it is not exactly the Hessian as derivatives are taken at different
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3: first inequality comes from Cauchy-
Schwartz: < 𝑥, 𝐴𝑥 >≤ ∥𝑥∥∥𝐴𝑥∥ ≤
∥𝑥∥∥𝐴∥2∥𝑥∥, second is a classical in-
equality between norms

points). As a consequence(
𝑓𝑙(s) − 𝑓𝑙(s𝑜) −

∑
𝑘

𝜕 𝑓𝑙
𝜕𝑧𝑘 |s𝑜

(𝑧𝑘 − 𝑧𝑜𝑘)
)2

=

(
(s − s𝑜)𝑇H𝑘(s − s𝑜)

)2
,

≤ ∥H𝑘 ∥22 ∥s − s𝑜 ∥4

≤ ∥H𝑘 ∥2𝐹 ∥s − s𝑜 ∥4

where ∥H𝑘 ∥2 is the spectral norm of the matrix and ∥H𝑘 ∥𝐹 is the
Frobenious norm 3 leading to the bound(

𝑓𝑙(s) − 𝑓𝑙(s𝑜) −
∑
𝑘

𝜕 𝑓𝑙
𝜕𝑧𝑘 |s𝑜

(𝑧𝑘 − 𝑧𝑜𝑘)
)2

≤ 𝑛2

4
𝐾2 ∥s − s𝑜 ∥4 ,

where 𝐾 is an upper bound on the absolute second order derivatives.
We have (𝑧𝑘 − 𝑧𝑜𝑘) = 𝜎

𝝓
𝑘
(𝑥)𝜖𝑘 , with 𝜖 multivariate normal, so taking the

expectation of the above simplifies to:

𝔼𝒁

(
𝑓𝑙(s) − 𝑓𝑙(s𝑜) −

∑
𝑘

𝜕 𝑓𝑙
𝜕𝑧𝑘 |s𝑜

(𝑧𝑘 − 𝑧𝑜𝑘)
)2

≤ 𝑛2

4
𝐾2𝔼𝒁 ∥s − s𝑜 ∥4 ,

=
𝑛2

4
𝐾2𝔼𝒁

∑
𝑖 , 𝑗

𝑧𝑖 − 𝑧𝑜𝑗 2 𝑧𝑖 − 𝑧𝑜𝑗 2

=
𝑛2

4
𝐾2 ∑

𝑖

𝔼𝒁
𝑧𝑖 − 𝑧𝑜𝑖 4

=
𝑛2

4
3𝐾2 ∑

𝑖

(
𝜎
𝝓
𝑖

)4
.

Now gathering all components 𝑓𝑙 to get the squared norm yields:

𝔼𝒁


 𝒇 (s) − 𝒇 (s𝑜) −

∑
𝑘

𝜕 𝒇

𝜕𝑧𝑘 |s𝑜
(𝑧𝑘 − 𝑧𝑜𝑘)

2 ≤ 𝑛3

4
3𝐾2 ∑

𝑖

(
𝜎
𝝓
𝑖

)4
.

C.3.4 Variational posterior variance optimization problem

Lemma C.3.4 For 𝛼 > 0, the function

ℎ𝛼 :ℝ>0 → ℝ

𝑢 ↦→ − log 𝑢 − 1
2
+ 𝛼𝑢2/2 =

1
2

log
1
𝑢2 −

1
2
+ 𝛼𝑢2/2

is strictly convex and achieves its global minimum min ℎ𝛼 = 1
2 log 𝛼 for

𝑢∗ = 1√
𝛼

.

Proof. Function ℎ𝛼 is stricly convex as a sum of two stricly convex
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functions. Its derivative,

𝑑ℎ𝛼

𝑑𝑢
(𝑢) = − 1

𝑢
+ 𝛼𝑢,

thus vanishes only at the minimum for 𝑢∗ = 1√
𝛼

. We then get that

min ℎ𝛼 = ℎ𝛼(𝑢∗) =
1
2

log 𝛼 .

C.4 Related work

C.4.1 Implicit inductive biases in the ELBO

[202] reason about the connection to Principal Component Analysis
(PCA) in the context of nonlinear Gaussian VAEs with an isotropic prior
and assume that the variational posterior has diagonal covariance with dis-
tinct singular values. The authors make it explicit that they investigate the
consequences of optimizing the ELBO. They locally linearize the decoder
to show the inductive bias in VAEs that promotes decoder orthogonality.
Their results hold for 𝛽-VAEs, where 𝛽 should be in the range of satisfying
the polarized regime assumption (i. e., when the VAE is close to partial
posterior collapse). The validity of the assumptions (polarized regime
and distinct singular values in Σ𝝓

s|x) are only experimentally investigated.
The same authors extend their work in [205], completing the connection
to PCA for linear models. Their experiments, inspired by the connection to
PCA for linear models, show that local perturbations in the data prohibit
disentanglement for non-linear models.

[207] prove that linear Gaussian VAEs with an isotropic prior give rise to
a column-orthogonal decoder and therefore uniquely recover the PCA coor-
dinate axes (not just the correct subspace, as Probabilistic Principal Com-
ponent Analysis (PPCA) [502] does), yielding identifiability for Gaussian
models—but only when the eigenvalues of the data covariance are distinct.
In their work, the decoder variance is shown to be small when avoiding
posterior collapse. More interestingly, the authors derive a formula for
the ELBO gap in the linear case that is remarkably similar to the IMA
objective. We show in Appendix C.5.1 that in the limit of a deterministic
decoder linear Gaussian VAEs optimize the IMA objective with � = 1.

[203] generalizes [202], as it admits a variational posterior 𝑞𝝓(s|x)with
block-diagonal covariance with a uniqueness result for diagonal Σ𝝓

s|x. The

authors derive a formula for the optimal Σ𝝓
s|x [203, Eq. 12], showing that

when the decoder Hessian H is diagonal, the decoder Jacobian will be
column-orthogonal even for non-Gaussian decoders. Their analysis relies
on a “concentrated” 𝑞𝝓(s|x) (i. e., they work in what we term the near-
deterministic regime) and sufficiently small values of 𝛽—this relationship
can be read off from [203, Eq. 12]. Interestingly, the authors also show
that rotations of the latents can be ruled out, though they do not connect
the decoder structure (especially, column-orthogonality of its Jacobian)
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to any specific generative model for the data, or to considerations on
identifiability of the ground truth sources.

C.4.2 (Near)-deterministic VAEs

Recent work was inspired by the normalizing flow literature and the
shortcomings of the stochastic VAE architecture to propose designs that
are (near)-deterministic. Arguments for this regime range from avoiding
posterior collapse (as demonstrated in [207]) to avoiding sampling for
the reconstruction loss term [203]. Several papers argued for a similar
setting: [202] refer to the polarized regime (a property of which is that
encoder variances are small, cf. [202, Definition 1]), [203] argue for “con-
centrated” variational posteriors. [500] substitute stochasticity with a
regularizer on the decoder Jacobian from an intuitive, whereas [503]
motivate these results from an injective flow perspective. [206] also take
a normalizing flow perspective to connect VAEs to deterministic models.
Besides benefits of avoiding posterior collapse or possible improvements
during optimization, this regime serves as a potential connection to the
identifiability literature.

C.5 Further remarks on the the IMA–VAE
connection

In this section, we elaborate on the connection between VAEs and IMA,
by showing that previous work on linear VAEs can be directly connected
to optimizing LIMA. Our intent with this analysis is to provide additional
insights about the role of 𝛾 in a simpler setting.

C.5.1 Linear VAE from [207]

We restate the linear VAE model of [207]:

𝑝𝜽(x|s) = N

(
Ws + 𝝁;

1
𝛾2 I𝑛

)
(C.40)

𝑞𝝓(s|x) = N
(
V

(
x − 𝝁

)
; D

)
, (C.41)

where D is a diagonal matrix, W the decoder and V the encoder weights,
𝝁 the mean latent representation.

The authors show that in stationary points, the optimal value for D is

D∗ =
1
𝛾2

(
d𝑖𝑎𝑔W𝑇W + 1

𝛾2 I𝑛
)−1

(C.42)

If we substitute this expression into the ELBO gap (i. e., the KL between the
variational and true posteriors), we get a similar expression to 𝑐IMA—as
formalized in Prop. C.5.1.

Proposition C.5.1 (The ELBO converges to LIMA for linear Gaussian
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VAEs if 𝛾 → +∞) For linear Gaussian VAEs, in the limit of 𝛾 → ∞, the
ELBO equals the IMA-regularized log-likelihood in stationary points with
� = 1.

Proof. In [207, Appendix C.2], it is shown that the gap between exact
log-likelihood and ELBO for linear Gaussian VAEs in stationary points
reduces to

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
=

1
2

(
log det M̃ − log det M

)
(C.43)

M = W𝑇W + 1
𝛾2 I𝑛 (C.44)

M̃ = d𝑖𝑎𝑔W𝑇W + 1
𝛾2 I𝑛 , (C.45)

where W is the decoder weight matrix. Reformulating the above expres-
sion, we arrive at :

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= log

���d𝑖𝑎𝑔W𝑇W + 1
𝛾2 I𝑛

������W𝑇W + 1
𝛾2 I𝑛

��� (C.46)

= log

���d𝑖𝑎𝑔W𝑇W + 1
𝛾2 I𝑛

������W𝑇W + 1
𝛾2 I𝑛

��� (C.47)

Noting that W𝑇W is symmetric with a Singular Value Decomposition
(SVD) of UΛU𝑇 (U is orthogonal, Λ𝑖𝑖 = ∥[W]:𝑘 ∥2), and I𝑛 = UU𝑇 ; thus:

W𝑇W + 1
𝛾2 I𝑛 = UΛU𝑇 + 1

𝛾2 UU𝑇 = U
[
Λ + 1

𝛾2 I𝑛
]

U𝑇

Therefore, (C.47) can be reformulated as the left KL-measure of diago-
nality [172] of the matrix U [Λ + 1/𝛾2I𝑛]U𝑇 :

KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= log

���d𝑖𝑎𝑔W𝑇W + 1
𝛾2 I𝑛

������W𝑇W + 1
𝛾2 I𝑛

��� (C.48)

= log

���d𝑖𝑎𝑔U
[
Λ + 1

𝛾2 I𝑛
]

U𝑇
������U [

Λ + 1
𝛾2 I𝑛

]
U𝑇

��� , (C.49)

which is by definition the local IMA contrast 𝑐IMA (cf. [63, Appendix C.1]).
When 𝛾→ +∞, the above expression converges to the left KL-measure
of diagonality for W𝑇W, i. e., the local IMA contrast for the decoder.

𝛾→+∞ thus means that the ELBO converges to the IMA regularized
log-likelihood LIMA with � = 1 :

ELBO = log 𝑝𝜽(x) − KL
[
𝑞𝝓(s|x)| |𝑝𝜽(s|x)

]
= log 𝑝𝜽(x) − 𝑐IMA(W, s),

which concludes the proof.
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Prop. C.5.1, especially (C.49), gives us intuitive understanding on why
and how 𝛾 influences how much the orthogonality of W is enforced.

1. Small 𝛾 (high observation noise) means that there is no reason to
promote the orthogonality of the decoder, as the high noise level
(i. e., low-quality fit of x) will drive (C.49) towards diagonality via
1/𝛾2.

2. On the other hand, when 𝛾→ +∞, then the orthogonality of the
decoder is promoted. That is, the decoder precision 𝛾2 acts akin
to a weighting factor influencing how strong the IMA principle
should be enforced.

We can observe that the ELBO recovers the exact log-likelihood for
column-orthogonal W:

Corollary C.5.1 (For column-orthogonal W the ELBO equals the exact
log-likelihood) When W is in the form W = OD, then d𝑖𝑎𝑔W𝑇W =

W𝑇W = DO𝑇OD = D2 , i. e. the ELBO corresponds to the exact log-
likelihood since (C.49) is zero.

Corollary C.5.1 also implies that 𝛾 does not affect the gap between ELBO
and exact log-likelihood for column-orthogonal W.

C.6 Experimental details

C.6.1 The relationship of weight matrix structures and the
IMA function class

During the experiments we have used different weight matrices either to
ensure that the mixing is within or to exclude it from the IMA function
class. Here we summarize our choices also including the depth of the
network as it can affect the mixing’s place w.r.t. the IMA function class.

When we use orthogonal weight matrices (§ 4.4.1,§ 4.4.2), then a single-layer
network is within the IMA class, but adding more layers with elements-
wise nonlinearities will move the MLP outside the function class. When
using triangular MLPs (§ 4.4.2), the network is also outside the IMA class
(triangular matrices are orthogonal when they are diagonal). Thus, we
would not need to use triangular weights to design a model outside the
IMA class (we could do this with orthogonal matrices). However, as we
need to analytically calculate the inverse, we choose triangular weights.

Notably, Möbius transforms [176] are conformal maps (thus, they are in
the IMA class) irrespective of the structure of the weight matrix used (cf.
Appendix C.6.4 for details).

C.6.2 Self-consistency in practical conditions (§ 4.4.1)

For the self-consistency experiments, the mixing is a 3-layer MLP with
smooth Leaky ReLU nonlinearities (see Chapter 5)and orthogonal weight
matrices—which intentionally does not belong to the IMA class, since
our self-consistency result is not constrained to the IMA class. The 60,000
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source samples are drawn from a standard normal distribution and fed
into a VAE composed of a 3-layer MLP encoder and decoder with a
Gaussian prior. We use 20 seeds for each 𝛾2 ∈ {1e1; 1e2; 1e3; 1e4; 1e5}.
Additional parameters are described in Tab. C.1. Training is continued un-
til the ELBO∗ improves on the validation set (we use early stopping [504]),
then all metrics are reported for the maximum ELBO∗ (Fig. 4.2).

Parameter Values

Encoder 3-layer MLP
Decoder 3-layer MLP
Activation smooth Leaky ReLU [86]
Batch size 64
# Samples (train-val-test) 42 − 12 − 6k
Learning rate 1e−3
𝑛 3
Ground truth Gaussian
𝑝s(s) Gaussian
Σ𝝓

s|x Diagonal
𝛾2 {1e1; 1e2; 1e3; 1e4; 1e5}
# Seeds 20

Table C.1: Hyperparameters for the self-
consistency experiments (§ 4.4.1)

C.6.3 Relationship between ELBO∗, IMA-regularized, and
unregularized log-likelihoods (§ 4.4.2)

Parameter Values

Encoder 3-layer MLP
Decoder 2-layer triangular MLP (ground truth)
Activation Sigmoid
Batch size 64
# Samples (train-val-test) 100 − 30 − 15k
Learning rate 1e−4
𝑛 2
Ground truth Gaussian
𝑝s(s) Gaussian
Σ𝝓

s|x Diagonal
𝛾2 [1e1; 1e5]
# Seeds 5
𝐶IMA (mixing) 7.072

Table C.2: Hyperparameters for the
triangular MLP (not from the IMA
class) ELBO∗–LIMA–log-likelihood ex-
periments (§ 4.4.2)

For the experiments comparing the ELBO∗, IMA-regularized, and unreg-
ularized log-likelihoods, data is generated by mixing points from a stan-
dard Gaussian prior using an invertible neural network. When the mixing
is not in the IMA-class (Tab. C.2), we use a two-layer neural network with
sigmoid nonlinearites and triangular weight matrices. When the mixing is
from the IMA-class (Tab. C.3), we use a one-layer neural network with or-
thogonal weight matrices. The data dimensionality in both cases is two.

Training is carried out using a VAE with a decoder fixed to the ground-
truth and separate encoder models for the means and variances of the
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Figure C.1: Comparison of the ELBO∗,
the IMA-regularized and unregularized
log-likelihoods over different 𝛾2 with
an IMA-class mixing

approximate posterior. The encoder comprises two three-layer neural
networks with ReLU non-linearities and a hidden layer size of 50. Due
to training instabilities when using a large 𝛾, we train the model by first
fixing the mean encoder to the ground-truth inverse of the mixing for
the first 30 epochs; thus, only training the variances. We then train both
for the remaining epochs. Training is stopped after the ELBO∗ plateaus
on the validation set. A training set of 100,000 samples is used, with a
validation set and test set of 30,000 and 15,000 samples, respectively. The
learning rate is 1e−4 and the batch size 64.

We provide additional results when the mixing is from the IMA class
(Tab. C.3): as𝐶IMA is zero, we expect that bothLIMA and the unregularized
log-likelihood match. Indeed, this is what Fig. C.1 demonstrates.

Parameter Values

Encoder 3-layer MLP
Decoder 1-layer orthogonal MLP (ground truth)
Activation Sigmoid
Batch size 64
# Samples (train-val-test) 100 − 30 − 15k
Learning rate 1e−4
𝑛 2
Ground truth Uniform
𝑝s(s) Uniform
Σ𝝓

s|x Diagonal
𝛾2 [1e1; 1e5]
𝐶IMA (mixing) 0

Table C.3: Hyperparameters for the
orthogonal MLP (from the IMA class)
ELBO∗–LIMA–log-likelihood experi-
ments (§ 4.4.2)

C.6.4 Connecting the IMA principle, 𝛾2, and
disentanglement (§ 4.4.3)

Synthetic data (Möbius transform) We use 3-dimensional conformal
mixings (i. e., the Möbius transform [176]) from the IMA class with the
functional form:

x = 𝒕 + 𝛼
W (s − 𝒃)
∥s − 𝒃∥𝜖

,

where 𝒕 , 𝒃 ∈ ℝ𝑛 , W ∈ ℝ𝑛×𝑛 , 𝛼 ∈ ℝ, and 𝜖 = 2 (to ensure nonlinearity)
with 𝑛 = 3. Both ground-truth and prior distributions are uniform to
avoid the singularity when s = 𝒃.



C Additional Material on Chapter 4 188

To determine whether a mixing from the IMA class is beneficial for
disentanglement, we apply a volume-preserving linear map after the
Möbius transform (using 100 seeds) to construct a mixing outside of the
IMA class. We fix 𝛾2 = 1e5 and report further parameters in Tab. C.4.
Training is continued until the ELBO∗ improves on the validation set (we
use early stopping [504]), then all metrics are reported for the maximum
ELBO∗ (Fig. 4.3).

Parameter Values

Encoder 3-layer MLP
Decoder 3-layer MLP
Activation smooth Leaky ReLU [86]
Batch size 64
# Samples (train-val-test) 42 − 12 − 6k
Learning rate 1e−3
𝑛 3
Ground truth Uniform
𝑝s(s) Uniform
Σ𝝓

s|x Diagonal
𝛾2 1e5
# Seeds 100
𝐶IMA (mixing) [0.398; 6.761]

Table C.4: Hyperparameters for the syn-
thetic (Möbius) IMA–disentanglement ex-
periments (§ 4.4.3) with a linear map

Image data (Sprites) We train a VAE (not 𝛽-VAE) with a factorized
Gaussian posterior and Beta prior on a Sprites image dataset generated
using the spriteworld renderer [214] with a Beta ground truth distribution.
Similar to [215], we use four latent factors, namely, x- and y-position, color
and size, and omit factors that can be problematic, such as shape (as
it is discrete) and rotation (due to symmetries) [202, 213]. Our choice
is motivated by [201, 216] showing that the data-generating process
presumably is in the IMA class. The architecture both for encoder and
decoder consists of four convolutional and three linear layers with ReLU
nonlinearities (Tab. C.5). Training is continued until the ELBO∗ improves
on the validation set (we use early stopping [504]), then all metrics are
reported for the maximum ELBO∗.

Parameter Values

Encoder 4-layer Conv2D + 3-layer MLP
Decoder 4-layer Conv2D + 3-layer MLP
Activation ReLU
Batch size 64
# Samples (train-val-test) 42 − 12 − 6k
Learning rate 1e−5
𝑛 3
Ground truth Beta
𝑝s(s) Beta
Σ𝝓

s|x Diagonal
𝛾2 1e0
# Seeds 10

Table C.5: Hyperparameters for the im-
age (Sprites) IMA–disentanglement ex-
periments (§ 4.4.3)
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C.7 Computational resources

The self-consistency (§ 4.4.1), the likelihood comparison (§ 4.4.2), and the
synthetic experiments with the Möbius transform (§ 4.4.3, particularly
Fig. 4.3) were ran on a MacBook Pro with a Quad-Core Intel Core i5 CPU
and required approximately nine days. The Sprites experiments (§ 4.4.3,
particularly Fig. 4.5) required approximately four and a half days on an
Nvidia RTX 2080 GPU.





D
Additional Material on Chapter 5

D.1 Backpropagation in neural networks

We will follow [505], Chapter 7, section 7.3.3 for the notation. Let us
define a two-layer neural network

g�(x) = 𝝈 (W2𝝈 (W1x)) (D.1)

where we also define

z2 = 𝝈 (W2z1)
z1 = 𝝈 (W1x) .

and

u2 = 𝝈′ (W2z1)
u1 = 𝝈′(W1x)

and

y2 = W2z1

y1 = W1x

We need to consider the contributions to the objective function due to
the terms L𝑝 and L1

𝐽
(the contribution due to L2

𝐽
will be dealt with

separately). For L𝑝 , we define

𝑒(𝑥) = 𝜕

𝜕𝑥
log 𝑝(𝑥′)|𝑥′=𝑥

and

e =

©«
𝑒(𝑧1

2)
𝑒(𝑧2

2)
...

𝑒(𝑧𝑛2 )

ª®®®®¬
To deal with the terms in L1

𝐽
, we define

ℎ(𝑥) = 𝜕

𝜕𝑥
log 𝑥′ |𝑥′=𝑥 (D.2)

=
1
𝑥

(D.3)
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and

h𝑘 =
©«
ℎ(𝑢1

𝑘
)

ℎ(𝑢2
𝑘
)

...

ℎ(𝑢𝐷
𝑘
)

ª®®®®¬
for 𝑘 = 1, 2. During forward propagation, we store the D𝑘 = diag (𝝈′ (y𝑘))
for 𝑘 = 1, 2,

D𝑘 =

©«
𝜎′(𝑦1

𝑘
) 0 · · · 0

0 𝜎′(𝑦2
𝑘
) · · · 0

...
...

. . .
...

0 0 · · · 𝜎′(𝑦𝑛
𝑘
)

ª®®®®¬
and the G𝑘 = diag (𝝈′′ (y𝑘)) for 𝑘 = 1, 2,

G𝑘 =

©«
𝜎′′(𝑦1

𝑘
) 0 · · · 0

0 𝜎′′(𝑦2
𝑘
) · · · 0

...
...

. . .
...

0 0 · · · 𝜎′′(𝑦𝑛
𝑘
)

ª®®®®¬
for example, if the nonlinearity were a sigmoid function 𝜎(𝑥) = (1 +
𝑒−𝑥)−1, the second derivative would be 𝜎′′(𝑥) = 𝜎(𝑥)(1−𝜎(𝑥)) (1 − 2𝜎(𝑥)).
Then

𝜹2 = D2e +G2h2

and
𝜹1 = D1W2𝜹2 +G1h1

In general, the following recursive relationship holds

𝜹𝑘 = D𝑘W𝑘+1𝜹𝑘+1 +G𝑘h𝑘 (D.4)

Which results in the update rule

ΔW𝑘 = −�z𝑘−1𝜹
⊤
𝑘 ,

where z0 = x. Notice that the only necessary operations are vector-matrix,
matrix-vector and vector-vector multiplications.

D.1.1 Relative gradient

Now if we want to use the relative/natural gradient trick each of these
terms needs to be multiplied by W⊤

𝑘
W𝑘 from the right.

ΔW𝑘 = −�z𝑘−1𝜹
⊤
𝑘 W⊤𝑘 W𝑘 .

Terms in L2
𝐽

The terms in L2
𝐽
, consisting of log |W𝑘 | give as gradient(

W⊤
𝑘

)−1
. This requires a 𝑛 × 𝑛 matrix inversion for each of the matrices.

Our strategy to avoid it is to substitute the ordinary gradient with a
relative gradient, where we multiply the gradient (with respect to the
whole objective but for each layer separately) by W⊤

𝑘
W𝑘 from the right.

In this case, the updates for the W𝑘 terms simply become proportional to
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the W𝑘 themselves. Therefore, the update rule becomes

ΔW𝑘 = −�(z𝑘−1𝜹
⊤
𝑘 W⊤𝑘 W𝑘 +W𝑘) . (D.5)

As we already noted, the operations involved in these updates can be
performed in a way such that no matrix-matrix multiplication needs to
be performed – only matrix-vector and vector-vector multiplication. This
is more apparent when the update rules are rewritten as below

ΔW𝑘 = −�
(
z𝑘−1

( (
𝜹⊤𝑘 W⊤𝑘

)
W𝑘

)
+W𝑘

)
. (D.6)

D.2 Related work

In the following, we present a review of related work in tractable deep
density estimation and invertible neural networks.

Normalizing flows The modern conception of normalizing flows was
introduced in [225], which discussed density estimation through the
composition of simple maps. In [226], it was then proposed that deep
density models implemented through neural networks could be used
in order to construct bĳective maps to a representation space and ob-
tain normalized probability density estimates. Since then, the focus
mainly shifted to scalability; [97, 227] introduced scalable architectures,
further refined in [223] to make them more scalable and suitable for
practical applications; [210] applied the results to variational inference.
Comprehensive reviews on normalizing flows can be found in [71, 98].

Autoregressive flows Autoregressive flows are among the most used
in practice. They involve maps which can be written as z′

𝑖
= 𝜏(z𝑖 ; 𝒉𝑖),

with 𝒉𝑖 = 𝑐𝑖 (z<𝑖). 𝜏 is termed the transformer and is a strictly monotonic
function of z𝑖 , and 𝑐𝑖 is termed the 𝑖-th conditioner. Its constraint is that
the 𝑖−th conditioner can only take variables with dimension indices
less than 𝑖 as an input. This results in an overall transformation with
a triangular Jacobian; the determinant is therefore tractable and can
be computed in O(𝑛) time. Autoregressive flows differ in the way the
transformer and conditioner are implemented; most commonly used are
affine autoregressive flows [97, 223, 227, 228, 247] and non-affine neural
transformers [179].

Linear flows A strict generalization of autoregressive flows, where the
Jacobian is not constrained to be triangular, is given by linear flows,
which are essentially transformations of the form z′ = Wz, where W is a
𝑛 × 𝑛 invertible matrix. The Jacobian of the trasformation is simply W
and both computing and optimizing its determinant takes time 𝑂(𝑛3)
in general. To obtain a better scaling behaviour, [97] and [506] proposed
to parameterize the invertible W matrix via matrix decomposition. One
possibility is to compute the PLU decomposition of W and optimize
the L and U triangular transformations. The drawback in this approach
is that the permutation matrix P cannot be learnt. A more flexible
alternative is to consider the QR decomposition of W, where Q is an
orthogonal matrix and R is upper triangular. However computing Q in
full generality requires 𝑂(𝑛3) operations, matching the complexity of the
naive optimization of linear flows. [507] showed that we can apply the
Q transformation as a sequence of at most 𝑛 symmetry transformations
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each taking linear time, effectively making it possible to compute and
optimize the QR parameterization of W in𝑂(𝑛2) time; note however that
the sequential nature of the computation makes the method unsuitable
for optimization on hardware accelerators. An experimental comparison
of the performance of the PLU and QR decompositions against the direct
optimization of W is found in [506].

Flows based on residual transformations Another class of normalizing
flows is based on invertible transformations of the form z′ = z + 𝑔𝜙(z);
this kind of flows are termed residual flows. Two main approaches can
be applied to build invertible residual flows: the first exploits the matrix
determinant lemma and also results in determinants with O(𝑛) computa-
tion time; however, there is no analytical way of computing their inverse.
Examples of these approaches are Sylvester flows [508], planar flows [210]
and radial flows [210, 225]. The second approach is that of contractive
flows [230]: in this case, the determinant can not be computed simply;
likelihood-based training of these models therefore needs to rely on a
Hutchkinson’s trace based approximation to the exact log-likelihood.

Continuous time flows A separate line of work focuses on building
continuous flows; in these approaches, the flow’s infinitesimal dynamics is
parametrized in continuous time, and the corresponding transformation
is then found by integration [224, 231]; Hamiltonian Flows [210] can also
be regarded as such kind of flows.

Other works Recently, many works have proposed ways of incorporating
convolutional modules in normalizing flows, for example see [223, 506,
509]. In particular, [510] presents a formalization of the problem which
bears some similarities to ours, while focusing on convolutional layers
instead of fully connected ones. Other work has been dedicated to
constructing invertible neural networks, see for example [31, 239, 511].

D.3 Complexity of mathematical operations
involved in gradient computation

We want to characterize the complexity of computing

∇𝜽 log | det Jg𝜽 (x)| , (D.7)

where g𝜽 is a neural network.

We will first recapitulate the computational complexity of the main math-
ematical operations we employ (see e.g. [512]). Then we’ll recapitulate
the complexity of forward evaluation and backpropagation in neural
networks. Finally, we’ll discuss the implications on the complexity of
computing the term in equation (D.7) with the three methods discussed
in the paper — namely, based on automatic differentiation, the standard
computation described in section 5.3 and the relative gradient based
computation.
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D.3.1 Matrix operations

Matrix-vector and vector-vector multiplication The multiplication of
a 𝑛 × 𝑛 matrix with a 𝑛 × 1 vector scales as O(𝑛2). Same for the outer
product between two vectors of dimension 𝑛 × 1.

Matrix-matrix multiplication For the multiplication of two square
matrices of size 𝑛 × 𝑛

▶ An implementation of the Bareiss algorithm would scale as O(𝑛3);
▶ An implementation of the Strassen algorithm would scale asO(𝑛2.807...)

;
▶ An implementation of the Coppersmith-Winograd algorithm would

scale asO(𝑛2.373...) .

In practice, what is usually implemented in linear algebra libraries is
some flavor of the Strassen algorithm (this is because the Coppersmith-
Winograd algorithm, while having a more favorable asymptotic behaviour,
is effectively slower if 𝑛 is not extremely high).

Matrix inversion To find the inverse of a matrix of size 𝑛 × 𝑛

▶ An implementation of Gauss-Jordan elimination would scale as
O(𝑛3);

▶ An implementation of the Strassen algorithm would scale as
O(𝑛2.807...) ;

▶ An implementation of the Coppersmith-Winograd algorithm would
scale as O(𝑛2.373...) .

Determinant To find the determinant of a matrix of size 𝑛 × 𝑛

▶ An implementation of the Bareiss algorithm would scale as O(𝑛3);
▶ Algorithms based on fast matrix multiplication scale asO(𝑛2.373...) .

For simplicity, in most of our considerations on complexity we assume
that the computation of the determinant, the computation of the inverse
and the multiplication of two square matrices have cubic cost. Notice that
the cost of these operations always dominates over that of matrix-vector
and vector-vector multiplication.

D.3.2 Other operations involved in the Jacobian term
computation

Other operations turn out to be ininfluent on the overall computational
complexity. Namely logarithms, absolute values, sums have no relevant
effect in terms of asymptotic scaling, since their computational cost
is dominated by that of the most expensive matrix operations listed
above.
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D.3.3 Complexity of neural network operations

Forward pass in a neural network The complexity of the forward
pass in a neural network depends on the neural network structure. For
simplicity, we will consider fully connected Neural Networks, which due
to their dense structure will provide an upper bound for the complexity
of most of the nets used in practice. Given an input vector, the forward
pass is comprised of a sequential series of matrix-vector operations,
plus elementwise operations on the resulting vector. The matrix-vector
operations dominate the complexity; for an 𝐿 layer neural network,
there are 𝐿 such operations. Therefore, for data of dimensionality 𝑛,
the complexity of a forward pass in a Neural Network for a single data
sample is O(𝐿𝑛2).

Minibatching The objectives should, in principle, be optimized on
the full batch. Stochastic optimization [513] relies on the idea that the
update steps in the optimization process can be performed on subsets of
the whole training data, called minibatches. In practice these objectives
will always be computed on minibatches, so the expected value must
be substituted with its empirical estimate over a single minibatch. The
minibatch size should in principle be considered when considering how
the algorithm scales. In the remainder, however, we will neglect this term,
as minibatches used in practice are usually quite small.

Gradient computation On top of this, we also need to consider the
gradient computation. Since the gradient is taken over the scalar loss
function, this implies (through backpropagation or reverse mode differ-
entiation) no increase in the asymptotic computational cost. We further
elaborate on this in the next section.

D.3.4 Computing the Jacobian with automatic
differentiation

Jacobian through automatic differentiation Automatic differentia-
tion [240] includes two main operational modes: the forward mode and
the backward mode. Consider the computation of the Jacobian of a
function g� : ℝ𝑛 → ℝ𝑑. The complexity of computing the Jacobian will
depend on whether we use forward or reverse mode AD. This changes
the complexity of the operation:

▶ forward mode requires 𝑛 𝑐 ops(g�) operations, where 𝑛 is the
dimensionality of the data and 𝑐 is a constant, 𝑐 < 6 and typically
𝑐 ∈ [2, 3] (see [514]);

▶ reverse mode requires 𝑑 𝑐 ops(g�) operations.

In the case of dimensionality reduction, reverse mode differentiation (of
which backpropagation represents an instance) is clearly more efficient.
This is the case when the output of the function is scalar (𝑑 = 1); thus,
this explains our claim that gradients computation with backpropagation
implies no increase in the asymptotic computational cost with respect to
the forward pass alone.
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For neural networks where all layers (including input and output) have
the same size, both methods result in the same complexity. So in that
case neither is better in terms of computational complexity — though
in practice it is known that reverse mode performs better [515]. For
such neural networks (including those we consider) therefore, given that
ops(g�) is O(𝐿𝑛2), the overall complexity of the Jacobian computation
via automatic differentiation is O(𝐿𝑛3).

The gradient of the objective can then be computed via backpropaga-
tion; however, the forward evaluation is what dominates the overall
complexity.

Standard and relative gradient computations The evaluation of the
two terms L𝑝 and L1

𝐽
requires a forward pass of the neural networks,

thus scaling as O(𝐿𝑛2). As we discussed, backpropagation to compute
the gradient does not increase the overall cost. For L2

𝐽
, as we have shown,

the gradient can be computed without need to actually evaluate the
corresponding term (that is, side-stepping the determinant computation).
However, the standard computation of the gradient still requires comput-
ing inverses of all the weight matrices, resulting in a cubic cost operation
for each layer — thus utimately in O(𝐿𝑛3) cost.

When using the relative gradient, this inversion can be avoided, and
computing the gradients of L2

𝐽
implies no additional costs. The overall cost

of the gradient computation is therefore simply O(𝐿𝑛2).

D.4 Implementation details

To efficiently optimize our objective (e.g. equation (5.3) in the main paper)
we need to implement a variant of the backpropagation algorithm as
detailed in appendix D.1. In particular, we need to compute the updates
(equation (5.15) in the main paper) avoiding expensive matrix-matrix
multiplications. This section is devoted to the description of an implemen-
tation strategy that takes advantage of Automatic Differentiation (AD), in
order to have full flexibility in the definition of our model architectures
and loss functions.

Although all modern deep learning frameworks include automatic dif-
ferentiation libraries, they implement the standard backpropagation
algorithm. To implement our variant, we have two straightforward alter-
natives:

▶ tweak some existing AD libraries to let us access the extra terms
we need;

▶ implement our own AD library with the extra functionality we
need.

The second alternative is easily excluded as we don’t want to reinvent
the wheel and the development effort would be too much. The first
alternative is somewhat viable, but not future proof; we would be faced
with the need to support our own modifications on top of the AD library
we use.
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We obviate to these problems with a little trick: we introduce in our
architectures some dummy layers to accumulate the partial results that
the standard backpropagation computes in the backward pass. This
approach solves the previous problems by being:

▶ universal: it can be easily implemented on top of whatever AD
library that computes reverse-mode AD, without tweaking the
internals of the library;

▶ efficient: the dummy layer operations are O(1).

D.4.1 The Accumulator layer

To obtain the gradient updates (D.5) we need to compute the 𝜹 terms
(D.4). To better understand what these terms represent, we can consider
a simple 2-layers "scalar" network, i.e. a network in which inputs, outputs
and weights are scalar values:

𝑓 (𝑥;𝒘) = 𝑤2𝜎(𝑤1𝑥) (D.8)
= 𝑤2𝜎(𝑦1)
= 𝑤2𝑧1

= 𝑦2

where 𝒘 is the vector of scalar parameters, 𝜎 is the activation function of
choice and

𝑦1 = 𝑤1𝑥, 𝑦2 = 𝑤2𝑧1 , 𝑧1 = 𝜎(𝑦1) .

Given a loss function L, the gradient of Lwith respect to 𝑤1 is easily
computed with application of the chain rule

𝜕L

𝜕𝑤1
=

𝜕L

𝜕𝑦2

𝜕𝑦2

𝜕𝑧1

𝜕𝑧1

𝜕𝑦1

𝜕𝑦1

𝜕𝑤1
(D.9)

In this simple case, it is easy to isolate 𝛿 in the gradient equation:

𝜕L

𝜕𝑤1
= 𝛿1

𝜕𝑦1

𝜕𝑤1
(D.10)

Reverse mode AD libraries necessarily compute all the partial derivatives
in (D.9) and thus the 𝛿1 term we need. Unfortunately, the partial results are
usually not accessible by the users. To access such terms without dealing
with the internals of the AD libraries, we can introduce a parameterized
function

𝑎(𝑥;�) = 𝑥 + �

and redefine our scalar network as

𝑓 (𝑥;𝒘) = 𝑤2𝜎(𝑎(𝑦1)) (D.11)
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The gradient with respect to 𝑤1 becomes

𝜕L

𝜕𝑤1
=

𝜕L

𝜕𝑦2

𝜕𝑦2

𝜕𝑧1

𝜕𝑧1

𝜕𝑎

𝜕𝑎

𝜕𝑦1

𝜕𝑦1

𝜕𝑤1
(D.12)

The introduction of 𝑎 is only a trick; in order not to modify the gradients
nor the behaviour of the scalar network, we require

𝑎(𝑦1) = 𝑦1 (D.13)
𝜕𝑧1

𝜕𝑎
=

𝜕𝑧1

𝜕𝑦1

𝜕𝑎

𝜕𝑦1
= 1

which is easily achieved by setting � = 0.

The benefit of introducing this accumulator layer 𝑎 is that now we can
ask the AD library to compute the gradients with respect to the dummy
parameter �; it is easy to verify that

𝜕𝑎

𝜕�
= 𝛿1 (D.14)

thus making it possible to obtain the 𝛿 terms we need to compute (D.5).

D.5 Universal approximation capacity in
normalizing flows

Universal approximation for densities is a property often discussed
in the context of autoregressive normalizing flows. It can be shown,
based on the proof of existence and non-uniqueness of solutions to the
nonlinear ICA problem [70], that any distribution can be mapped onto
a factorized base distribution by an invertible function with triangular
Jacobian, provided that the function class used for this mapping is large
enough. Normalizing flows with triangular Jacobians and a high number
of parameters therefore have this approximation capacity (see e.g. [179]).
However, they can obviously not represent all possible functions — but
only those with triangular Jacobians. They can therefore not be used to
learn proper inverse functions and perform useful feature extraction.

A more general notion of universal approximation is the one usually dis-
cussed in the neural network literature, that is — universal approximation
for functions. It has been shown that standard multilayer feedforward
networks can approximate any continuous function to any degree of ac-
curacy. For example, [516] proved that a standard multilayer feedforward
network with a locally bounded piecewise continuous activation function
can approximate any continuous function to any degree of accuracy if
and only if the network’s activation function is not a polynomial. Biases
also play a crucial role in this proof, as universal approximation capacity
wouldn’t be possible without.
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While the proof above does not directly apply to our case, since it requires
hidden layers with arbitrary width, we discuss how to incorporate biases
in our training procedure in appendix D.6, in order to increase the
expressivity of our model. We describe the nonlinearities we employed
in appendix D.8.

D.6 Relative gradient for the augmented matrix

In order to allow for the training of neural networks with biases, we
present a heuristic based on the fact that affine transformations involv-
ing vector-matrix products plus biases can be represented as a single
matrix operation through the formalism of the augmented matrix (see
e.g. [505]).

Linear affine operations of the form y = Wx + b can be represented via
an augmented matrix as follows[

y
1

]
=

[
W b

0 . . . 0 1

] [
x
1

]
= W

[
x
1

]
, (D.15)

where we refer to the matrix W as augmented matrix.

The question is whether the relative gradient trick can be applied to the
augmented matrix. The main issue is that we would like, throughout
our optimization procedure, to remain on the manifold of augmented
matrices; that is, we do not want to change the last row of W𝑘 . Therefore,
the problem becomes a constrained optimization problem.

The L2
𝐽

term It is easy to see that det W𝑘 = det W𝑘 . The ordinary gradient
for all terms in the last column and row of W𝑘 will therefore be equal to
zero, and this will not be changed by the relative gradient trick; therefore,
the contribution of this term will not lead us away from the manifold of
augmented matrices.

TheL𝑝 andL1
𝐽

terms Both the y𝑘 and z𝑘 terms will however be influenced
by the presence of biases, so the gradients on the first 𝑛 elements of the
last column (that is b𝑘) will be nonzero. Through the multiplication with
W
⊤
𝑘 W𝑘 , the updates given by the relative gradient on the last row of W𝑘

will therefore in general be nonzero, thus implying moving outside of
the manifold we are interested in.

To solve this issue, we use a projected gradient algorithm, enforcing that
the update for the last row of W𝑘 at each step is equal to zero. We call
this algorithm projected relative gradient descent.

In practice, we can use the augmented matrix formalism to apply the
relative trick to the full parameters and then extract only the updates for
the parameters of interest W, b disregarding the dummy row in (D.15).
Denoting by G the gradients of W and by g𝑏 the gradients of b, we can
compute the relative gradients as[

G g𝑏
g 𝑔

]
W
⊤

W =

[
GW⊤W + g𝑏b⊤W GW⊤b + g𝑏b⊤b + g𝑏

. . . . . .

]
(D.16)
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The relative gradient updates we need are then given by

ΔW→ GW⊤W + g𝑏
(
b⊤W

)
(D.17)

Δb→ G
(
W⊤b

)
+ g𝑏(1 + b⊤b) (D.18)

Note that G is nothing more then the standard backpropagation update
(5.6), thus we can efficiently compute ΔW by avoiding matrix-matrix
multiplications as in (5.15). For Δb we can directly avoid matrix-matrix
multiplications by taking some care in the evaluation of (D.18).

D.7 Convolutions

The convolutional neural network [517] is composed of modules whose
main components are: (i) a convolution layer; (ii) a pooling layer; (iii) a
nonlinearity.

The convolution operation We follow the same notation as in [517].
Typically, inputs to the convolution layers are order 3 tensors with size
𝐻 𝑙 × 𝑊 𝑙 × 𝐷 𝑙 . A convolution kernel is also an order 3 tensor with
size 𝐻 ×𝑊 𝑙 × 𝐷 𝑙 . If 𝐷 convolutions are used, this results in a order
4 tensor ℝ𝐻×𝑊 𝑙×𝐷 𝑙×𝐷 of parameters. If the input is 𝐻 ×𝑊 𝑙 × 𝐷 𝑙 and
the kernel size is 𝐻 ×𝑊 𝑙 × 𝐷 𝑙 × 𝐷, the convolution result has size
(𝐻 𝑙 −𝐻 + 1) × (𝑊 𝑙 −𝑊 + 1) ×𝐷. In our setting, note that the number of
channels which can be used in practice is constrained, due to the formula
in equation (5.3), which requires the input and output dimensionalities
to be equal.

Are convolutional neural networks invertible? The convolution oper-
ation was shown to be invertible under some mild conditions. See [246]
and [510], section 3.3, describing how Gaussian (or Uniform) sampled
𝑐 × 𝑐 × 𝑟 × 𝑟 parameter tensors will yield invertible convolutional layers
with probability 1.

The pooling layer can be substituted with an invertible counterpart
(see [31], section 3; or [510], figure 3), which basically becomes a ten-
sorial extension of the permutation operation. As usual, an invertible
nonlinearity can be chosen.

Relative gradient for the convolution For a convolution layer that
preserves the number of channels in the input, we can directly write the
operation in the form of a square matrix. In this case we can compute
the relative gradient as explained in section 5.4, and we can obtain the
gradients with respect to the filter entries by careful application of the
chain rule. We however leave the precise theoretical derivation and
experiments for future work.
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D.8 Experiments

D.8.1 Computation of relative vs. ordinary gradient

Computational cost In section 5.5 and figure 5.1 we compared the
computational cost of computing log-likelihood gradients with our newly
proposed method and a naive backpropagation implementation when
using hardware accelerators. Specifically, we used one Tesla P100 GPU
card equipped with 16 GB of dedicated memory and circa 3500 computing
cores. In figure D.1 we show the same comparison for a computation
platform comprising 48 cpu threads (Intel Xeon Processor E5-2650 v4 @
2.20 GHz base frequency, 2.90 GHz max frequency) operating in parallel
with about 250 GB of available RAM memory. It is hard to spot the
expected theoretical improvement from 𝑂(𝑛3) to 𝑂(𝑛2), but a practical
gain of about 2 orders of magnitude in computation time emerges in
favor of the relative gradient computation.

In order to directly compare the execution times disregarding bottlenecks
due to memory operations, we performed all of the experiments with
no garbage collection. Anyways, by using always the same batch we
made our experiments not very memory intensive and repeating the
experiments with garbage collection enabled didn’t show any substantial
difference; we therefore don’t report the plot.

Memory consumption It is usual in deep learning to be constrained by the
memory consumption of the models in use, as the available memory on
hardware accelerators is typically scarce. To operate, a network needs to
store the data, the intermediate activations (needed to compute gradients)
and the parameters. For our simple architecture, the bottleneck is the
storage of the parameters; this is because we don’t employ very deep
architectures, so the amount of intermediate activations to store is limited,
and the size of the parameters grows quadratically with respect to the
data size, meaning that parameters storage clearly dominate over data
storage (this is assuming that data are loaded in small minibatches, which
is the norm). This is certainly problematic for very high-dimensional
datasets (i.e. high definition images) but even from this point of view
we have a clear advantage over an explicit optimization of the Jacobian
term with automatic differentiation. In this latter case, in fact, we need to
compute the full Jacobian of the affine transformations for each individual
data point; like for the weight matrices, the size of these terms grows
quadratically with the input size, further increasing the memory footprint
of the optimization procedure.

As a simple example, we can compare the approximate memory require-
ments of the two methods in the moderately high-dimensional case with
𝑛 = 20000. For a modest 2-layers network and employing Float32 weights
(each requiring 4 Bytes (B) for storage), the memory needed to store
the parameters amounts to 𝑛2 × 4𝐵 × 2(layers) = 3.2𝐺𝐵. Assuming a
minibatch size of 100, data and activations require around 10-100 MB
which is clearly negligible. The computed gradients will require the same
space as the parameters, raising the memory footprint to over 6GB. For
the gradient computations themselves, our method doesn’t require addi-
tional memory (theoretically), while explicit automatic differentiation
requires storing as many jacobian terms as the size of the minibatch, thus
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Figure D.1: Comparison of the average
computation times of a single evaluation
of the gradient of the log-likelihood over
a batch of size 100. Values are the mean
over 5 steps, and the experiments have
been run 5 times on a CPU cluster.

requiring over 300GB in our simple case. As this is clearly unfeasible on
common hardware accelerators, we can drop the parallelization of the ja-
cobian terms computation to considerably reduce memory consumption
(bringing it down to over 9GB in our case), but this comes at the cost of
further slowing down an already inefficient procedure.

While the simple analysis above shows a clear advantage for our proposed
method, from the practical point of view many additional technical details
might play a role in incrementing the memory requirements of both
methods (e.g. loading of libraries and computing environment, just-in-
time compilation steps, intermediate computations that can’t be fused
together...). In figure D.2 we report a simple profiling of the memory
consumption of the two methods, which shows how the difference is
relevant in practice.

D.8.2 Relative gradient optimization behaviour with
different optimizers

In this section we report some additional observations analyizing the
relative gradient optimization behaviour with different optimizers.

In figures D.3 and D.4 we compare the optimization behaviour using
vanilla Stochastic Gradient Descent (SGD) and Adam. Results on toy
datasets like those in figure 2 in the main paper are shown in figure D.3.
It can be seen that the data densities are modeled convincingly. We also
report (figure D.4) the evolution of the loss with SGD and Adam on density
estimation on MNIST. The two methods seem to reach convergence at
comparable speed: SGD is faster initially, but in the longer run Adam
appears to achieve a better performance faster. Ultimately, both methods
achieve a comparably good result.
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Data dimensionality: D = 5000
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Figure D.2: Comparison of the memory
consumption for a single gradient eval-
uation. With D = 5000 our simplified
analysis predicts a lower bound in the
memory consumption of 400 MB for stor-
ing the parameters and the computed
gradients; given that at startup time we
observe a base memory consumption of
almost 200 MB (computing environment
+ loaded libraries) we can see that our
relative gradient implementation comes
very close to the theoretical limit. For the
naive autodiff implementation, instead,
we compute a lower bound of 10.4 GB,
which is approximately reflected in the
empirical measurements (maximum con-
sumption is almost 13 GB). Note: mem-
ory consumption for the autodiff case is
reported in GiB, effectively making the
scale of the plot one order of magnitude
higher then in the relative gradient plot.

Figure D.3: 2D toy examples trained with SGD. True distribution on the left, predicted densities on the right.

D.8.3 Density estimation

Architecture Although mentioned all throughout the paper, let us
recall the neural network used for these experiments. We here rely
on the usual feedforward architecture, that is, a neural network for
which the input is sequentially passed through an interleaving series of
matrix multiplications and non-linear activation functions, being the last
operation a matrix multiplication.

Nonlinearities Note that, since we make use of square weight matrices,
the only two hyperparameters left in our architecture are the number
of layers in the network, 𝐿, and the non-linearity used. We consider
two types of non-linearities. First, a smooth version of the leaky-ReLU
activation function with a hyperparameter 𝛼,

sL(𝑥) = 𝛼𝑥 + (1 − 𝛼) log(1 + 𝑒𝑥). (D.19)

Second, a weighted sum of the identity and hyperbolic tangent functions
with two hyperparameters, 𝛼 and 𝛽, controlling the steepness and “level
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Figure D.4: Log-likelihood evolution on
MNIST validation set.
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1: We thank T. Anderson Keller and
Emiel Hoogeboom for pointing this out.

of linearity” of the activation function,

sT(𝑥) = tanh(𝛼𝑥) + 𝛽𝑥. (D.20)

However, in our experiments, these two hyperparameters for the 𝑠𝑇
nonlinearity are fixed to 𝛼 = 1 and 𝛽 = 0.1 always. Both of these
nonlinearities are relatively smooth, and while no closed form solution
for their inverse is available they can be inverted easily with a Newton
method; in practice, for our parameter choice, we use a fixed number of
100 iterations which seems to be (way) more than sufficient.

Toy examples For all the experiments shown in figure 5.2 of the main
paper, we always use Adam as optimizer, fix the batch size and number
of layers 𝐿 to 100, use biases, and fix the activation function to sL with
𝛼 = 0.3. We chose as base distribution (that is, the distribution of the latent
variables) the standard normal distribution. We plot, as in the quantitative
experiments, the best model found during the training. Regarding the
data, we sampled five-thousand samples for the training set and five-
hundred points for the test set. The only changing hyperparameters
across the figures is the learning rate and the number of epochs, which
are summarised in table D.1.

MoG half moons sine

learning rate 0.001 0.001 0.005
no. of epochs 2000 1300 4000

Table D.1: Hyperparameters used for
figure 2 of the main paper.

Quantitative results on MNIST To obtain the density results on the
MNIST dataset, the same preprocessing as in [247] has been applied.
Note that we do not include the contribution due to this preprocessing
in the reported log-likelihood values. 1 For the model architecture, we
fixed the number of layers to 2. Note that competing models reported in
table D.3 of the main paper are taken from [247] and employ a higher
number of parameters. We used the smooth Leaky-ReLU (D.19) with
𝛼 = 0.01 and a standard normal distribution as a distribution for the
latent variables. The optimization has been performed with Adam with
default parameters. The hyperparameters search has been performed
over learning rate values of 0.001, 0.0005, 0.0001 and batch sizes of 10, 100.
For each run, we selected the model whose performance did not improve
in the successive 30 epochs of training (i.e. we chose the model at epoch
10 if all the values of the loss for epochs 11 to 40 were higher then the
value after 10 epochs). The best hyperparameters selection is shown in
table D.3.

Convergence time on MNIST To get an idea of the running time of
our method in a real-world scenario, one epoch on MNIST (𝑛 = 784,
50k training samples) on a modern laptop CPU takes an order of tens
of seconds, a ∼ 4.5× speedup compared to “standard” optimization
(which is roughly consistent with figure D.1, which was obtained with a
slightly different experimental setup) and ∼ 50× speedup with respect
to “autodiff”. Our convergence time is ∼ 15 min. While the speed-up is
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already visible at this data dimensionality, the difference is expected to
be larger at higher dimensionality.

Quantitative results First, we want to remark that the data used for the
experiments shown in table 5.1 was pre-processed in the exact same way
as described in [247].

For the results shown in such table (MNIST excluded) a more exhaustive
hyperparameter search has been performed. Particularly, for each dataset
a grid-search was run with the options shown in table D.2, taking for
each experiment the model with best validation log-likelihood obtained
during training and, across experiments, getting the one with best test
log-likelihood. Experiments were again trained using Adam and, instead
of fixing the number of epochs, training was finished with an early-
stopping criteria that evaluates the validation set every 25 epochs and
has a patience of 5 trials. The best hyperparameters selection is shown in
table D.3.

Option #1 Option #2 Option #3

activation sL , 𝛼 = 0.3 sL , 𝛼 = 0.01 sT
no. layers 25 50 100
learning rate 0.001 0.0005 0.0001
batch size 10 50 100
base distribution standard normal hyperbolic secant
bias Yes No

Table D.2: Hyperparameters considered
for the grid search.

POWER GAS HEPMASS MINIBOONE BSDS300 MNIST

activation sL , 𝛼 = 0.3 sL , 𝛼 = 0.3 sL , 𝛼 = 0.3 sT sT sL , 𝛼 = 0.01
no. layers 50 100 50 25 25 2
learning rate 0.001 0.001 0.001 0.0001 0.0001 0.0001
batch size 100 100 50 100 100 10
base dist. std normal std normal hyper. secant std normal hyper. secant std normal
bias Yes Yes No Yes No Yes

Table D.3: Hyperparameters for the re-
sults in table 1 in the main paper.

Regarding the rest of the models shown in that table, we reproduce
the exact same experiments as those described in [247]. Therefore, the
considered models have the same architecture and stopping criteria as the
ones shown in table 1 of the aforementioned paper. The only difference
with respect to the results shown in table 1 of [247] and table 5.1 in our
paper is the number of trainable parameters. As mentioned in section 5.5,
in order to perform a fair comparison, we tweaked the hyperparameters
of each architecture so they have approximately the same number of
parameters.

Specifically, we first trained our model as described above and, once we
knew the number of parameters of the best-performing model (which is
approximately 𝐿𝑛2) we used the formulae shown in table 3 of [247] to
find to which values we should fix the hyperparameters 𝐿 and 𝐻 of their
models so that they have the same number of parameters.

As a final remark, note that there is one degree-of-freedom in those
equations (for every 𝐿 there is a value of 𝐻 solving the given equation).
Therefore, for each of the considered models and datasets, we run two
different experiments, one with 𝐿 = 1 and another with 𝐿 = 2 (as
similarly done in [247]), finding afterwards the proper value of 𝐻 to
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match the number of trainable parameters of our best model for that
same dataset.





[82]: Goodfellow et al. (2014), ‘Generative
adversarial nets’

E
Additional Material on Chapter 6

E.1 Why does classification result in the log
ratio?

Let us suppose that a variable 𝑋 is drawn with equal probability from
two distributions 𝑃0 and 𝑃1 with densities 𝑝0(𝑥) and 𝑝1(𝑥) respectively.
We train a classifier 𝐷 : 𝑥 ↦→ [0, 1] to estimate the posterior probability
that a particular realization of 𝑋 was drawn from 𝑃0 with the cross
entropy loss, i.e. the parameters of 𝐷 are chosen to minimize

𝐿(𝐷) = 𝔼𝑋∼𝑃0 [− log𝐷(𝑋)] + 𝔼𝑋∼𝑃1 [− log(1 − 𝐷(𝑋))] .

As shown in, for instance, [82], the global optimum of this loss occurs
when 𝐷(𝑥) = 𝑝0(𝑥)

𝑝0(𝑥)+𝑝1(𝑥) , which can be rewritten as

𝐷(𝑥) = 1
1 + 𝑝1(𝑥)/𝑝0(𝑥)

(E.1)

=
1

1 + exp(− log(𝑝0(𝑥)/𝑝1(𝑥)))
(E.2)

(E.3)

Recall that in our setting, the function 𝑟(𝑥1 , 𝑥2) is trained to classify
between the two cases that (𝑥1 , 𝑥2) is drawn from the joint distribution
ℙ𝑥1 ,𝑥2 (class 0) or the product of marginals ℙ𝑥1ℙ𝑥2 (class 1). 𝑟(𝑥1 , 𝑥2)
is trained so that 1

1+exp(−𝑟(𝑥1 ,𝑥2)) estimates the posterior probability of
(𝑥1 , 𝑥2) belonging to class 0. By comparing to Equation E.2, it can be seen
that

𝑟(𝑥1 , 𝑥2) = log (𝑝(𝑥1 , 𝑥2)/𝑝(𝑥1)𝑝(𝑥2))
= log 𝑝(𝑥1 |𝑥2) − log 𝑝(𝑥1)
= log 𝑝(𝑥2 |𝑥1) − log 𝑝(𝑥2)

Note that in order for the classification trick of contrastive learning to be
useful, the variables 𝑥1 and 𝑥2 cannot be deterministically related. If this
is the case, the log-ratio is everywhere either 0 or∞ and hence the learnt
features are not useful.

To see why this is the case, suppose that 𝑥1, and 𝑥2 are each𝑁-dimensional
vectors. If they are deterministically related, 𝑝(𝑥1 , 𝑥2) puts mass on an
𝑁-dimensional submanifold of a 2𝑁-dimensional space. On the other
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hand, 𝑝(𝑥1)𝑝(𝑥2) will put mass on a 2𝑁-dim manifold since it is the
product of two distributions each of which are N-dimensional.

In this case, the distributions 𝑝(𝑥1 , 𝑥2) and 𝑝(𝑥1)𝑝(𝑥2) are therefore not
absolutely continuous with respect to one another and thus the log-ratio
is ill-defined: 𝑝(𝑥1 , 𝑥2)/𝑝(𝑥1)𝑝(𝑥2) = ∞ at any point (𝑥1 , 𝑥2) at which
𝑝(𝑥1 , 𝑥2) puts mass and zero at points where 𝑝(𝑥1)𝑝(𝑥2) puts mass and
𝑝(𝑥1 , 𝑥2) does not.

E.2 The Sufficiently Distinct Views Assumption

We give the following two examples to provide intuition about the
Sufficiently Distinct Views (SDV) assumption - one regarding a case in
which it does not hold, and another one in which it does.

A simple case in which the assumption does not hold is when the
conditional probability of 𝒛 given 𝒔 is Gaussian, as in

𝑝(𝒛 |𝒔) = 1
𝑍

exp

[
−

∑
𝑖

(𝑧𝑖 − 𝑠𝑖)2/(2𝜎2
𝑖 )
]
, (E.4)

where 𝑍 is the normalization factor, 𝑍 = (2𝜋)𝑛/2 ∏
𝑖 𝜎𝑖 . Since taking

second derivatives of the log-probability with respect to 𝑠𝑖 results in
constants, it can be easily shown that there is no way to find 2𝐷 vectors
𝒛 𝑗 , 𝑗 = 1, . . . , 2𝐷, such that the corresponding 𝒘(𝒔 , 𝒛 𝑗) (see Definition 1)
are linearly independent.

The fact that the assumption breaks down in this case is reminiscent of
the breakdown in the case of Gaussianity for linear ICA. Interestingly, in
our work, the true latent sources are allowed to be Gaussian. In fact, the
distribution of 𝒔 does not enter the expression above.

An example in which the SDV assumption does hold is a conditional pdf
given by

𝑝(𝒛 |𝒔) = 1
𝑍(𝒔) exp

[
−

∑
𝑖

(𝑧2
𝑖 𝑠

2
𝑖 + 𝑧

4
𝑖 𝑠

4
𝑖 )
]
, (E.5)

where 𝑍(𝒔) is again a normalization function. Proving that this distribu-
tion satisfies the SDV assumption requires a few lines of computation.
The idea is that 𝒘(𝒔 , 𝒛) can be written as the product of a matrix and
vector which are functions only of 𝒔 and 𝒛 respectively. Once written in
this form, it is straightforward to show that the columns of the matrix
are linearly independent for almost all values of 𝒔 and that 2𝐷 linearly
independent vectors can be realized by different choices of 𝒛.
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E.3 Proof of Theorem 6.2.1 and corollary 6.2.2

E.3.1 Proof of Theorem 6.2.1

This proof is mainly inspired by the techniques employed by [66].

Proof. We have to show that, upon convergence, ℎ𝑖(𝒙1) are s.t.

ℎ𝑖(𝒙1) ⊥⊥ ℎ 𝑗(𝒙1),∀𝑖 ≠ 𝑗

We start by writing the difference in log-densities of the two classes:∑
𝑖

𝜓𝑖(ℎ𝑖(𝒙1), 𝒙2) =
∑
𝑖

𝛼𝑖( 𝒇 −1
1,𝑖 (𝒙1), 𝒇 −1

2,𝑖 (𝒙2))+

−
∑
𝑖

𝛿𝑖( 𝒇 −1
2,𝑖 (𝒙2))

We now make the change of variables

𝒚 = 𝒉(𝒙1)
𝒗(𝒚) = 𝒇 −1

1 (𝒉−1(𝒚))
𝒕 = 𝒇 −1

2 (𝒙2))

and rewrite the first equation in the following form:∑
𝑖

𝜓𝑖(𝑦𝑖 , 𝒙2) =
∑
𝑖

𝛼𝑖(𝑣𝑖(𝒚), 𝑡𝑖) (E.6)

−
∑
𝑖

𝛿𝑖(𝑡𝑖) (E.7)

We take derivatives with respect to 𝑦 𝑗 , 𝑦 𝑗′ , 𝑗 ≠ 𝑗′, of the LHS and RHS of
equation E.15. Adopting the conventions in 6.8 and 6.9 and

𝑣
𝑗

𝑖
(𝒚) = 𝜕𝑣𝑖(𝒚)/𝜕𝑦 𝑗 (E.8)

𝑣
𝑗 𝑗′

𝑖
(𝒚) = 𝜕2𝑣𝑖(𝒚)/𝜕𝑦 𝑗𝜕𝑦 𝑗′ , (E.9)

we have ∑
𝑖

𝛼′′𝑖 (𝑣𝑖(𝒚), 𝑡𝑖)𝑣
𝑗

𝑖
(𝒚)𝑣 𝑗

′

𝑖
(𝒚)

+ 𝛼′𝑖(𝑣𝑖(𝒚), 𝑡𝑖)𝑣
𝑗 𝑗′(𝒚) = 0 ,

where taking derivative w.r.t. 𝑦 𝑗 and 𝑦′
𝑗

for 𝑗 ≠ 𝑗′ makes LHS equal to
zero, since the LHS has functions which depend only one 𝑦𝑖 each. If
we now rearrange our variables by defining vectors 𝒂𝑖(𝒚) collecting all
entries 𝑣 𝑗

𝑖
(𝒚)𝑣 𝑗

′

𝑖
(𝒚), 𝑗 = 1, . . . , 𝑛, 𝑗′ = 1, . . . , 𝑗 − 1, and vectors 𝒃𝑖(𝒚) with

the variables 𝑣 𝑗
𝑖
(𝒚)𝑣 𝑗

′

𝑖
(𝒚), 𝑗 = 1, . . . , 𝑛, 𝑗′ = 1, . . . , 𝑗−1, the above equality

can be rewritten as ∑
𝑖

𝛼′′𝑖 (𝑣𝑖(𝒚), 𝑡𝑖)𝒂𝑖(𝒚)

+ 𝛼′𝑖(𝑣𝑖(𝒚), 𝑡𝑖))𝒃𝑖(𝒚) = 0 .
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The above expression can be recast in matrix form,

𝑴(𝒚)𝒘(𝒚, 𝒕) = 0 ,

where𝑴(𝒚) = (𝒂1(𝒚), . . . , 𝒂𝑛(𝒚), 𝒃1(𝒚), . . . , 𝒃𝑛(𝒚)) and𝒘(𝒚, 𝒕) = (𝛼′′1 , . . . , 𝛼′′𝑛 , 𝛼′1 , . . . , 𝛼′𝑛).
𝑴(𝒚) is therefore a 𝑛(𝑛−1)/2×2𝑛matrix, and𝒘(𝒚, 𝒕) is a 2𝑛 dimensional
vector.

To show that 𝑴(𝒚) is equal to zero, we invoke the SDV assumption. This
implies the existence of 2𝑛 linearly independent 𝒘(𝒚, 𝒕 𝑗). It follows that

𝑴(𝒚)[𝒘(𝒚, 𝒕1), . . . ,𝒘(𝒚, 𝒕2𝑛)] = 0 ,

and hence 𝑴(𝒚) is zero by elementary linear algebraic results. It follows
that 𝑣 𝑗

𝑖
(𝒚) ≠ 0 for at most one value of 𝑗, since otherwise the product of

two non-zero terms would appear in one of the entries of 𝑴(𝒚), thus
rendering it non-zero. Thus 𝑣𝑖 is a function only of one 𝑦 𝑗 .

Observe that 𝒗(𝒚) = 𝒔. We have just proven that 𝑣𝑖(𝑦𝜋(𝑖)) = 𝑠𝑖 . Since
𝑣𝑖 is invertible, it follows that ℎ𝜋(𝑖)(𝒙1) = 𝑦𝜋(𝑖) = 𝑣−1

𝑖
(𝑠𝑖) and hence the

components of 𝒉(𝒙1) recover the components of 𝒔 up to the invertible
component-wise ambiguity given by 𝒗, and the permutation ambiguity.

E.3.2 Proof of Corollary 6.2.2

Proof. This follows exactly by repeating the proof of Theorem 6.2.1 where
the roles of 𝒙1 and 𝒙2 are exchanged and the regression function in the
statement of the corollary is used.

E.4 Proof of Theorems 6.2.3 and 6.2.4

Theorem 6.2.3 is a special case of Theorem 6.2.4 by considering the case
𝒈1(𝒔 , 𝒏1) = 𝒔. We therefore prove only the more general Theorem 6.2.4.

Proof. We have to show that, upon convergence, ℎ𝑖(𝒙1) and 𝑘𝑖(𝒙2) are
such that

ℎ1,𝑖(𝒙1) ⊥⊥ ℎ1, 𝑗(𝒙1),∀𝑖 ≠ 𝑗 (E.10)
ℎ2,𝑖(𝒙2) ⊥⊥ ℎ2, 𝑗(𝒙2),∀𝑖 ≠ 𝑗 (E.11)
ℎ1,𝑖(𝒙1) ⊥⊥ ℎ2, 𝑗(𝒙2),∀𝑖 ≠ 𝑗. (E.12)

We start by exploiting Equations 6.13 and 6.14 to write the difference in
log-densities of the two classes∑

𝑖

𝜓𝑖(ℎ1,𝑖(𝒙1), ℎ2,𝑖(𝒙2))

=
∑
𝑖

�𝑖( 𝒇 −1
1,𝑖 (𝒙1), 𝒇 −1

2,𝑖 (𝒙2)) −
∑
𝑖

�𝑖( 𝒇 −1
1,𝑖 (𝒙1)) (E.13)

=
∑
𝑖

�𝑖( 𝒇 −1
2,𝑖 (𝒙2), 𝒇 −1

1,𝑖 (𝒙1)) −
∑
𝑖

�𝑖( 𝒇 −1
2,𝑖 (𝒙2)) (E.14)
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We now make the change of variables

𝒚 = 𝒉1(𝒙1)
𝒕 = 𝒉2(𝒙2)

𝒗(𝒚) = 𝒇 −1
1 (𝒉−1

1 (𝒚))
𝒖(𝒕) = 𝒇 −1

2 (𝒉−1
2 (𝒕))

and rewrite equation E.13 in the following form:∑
𝑖

𝜓𝑖(𝑦𝑖 , 𝑡𝑖)

=
∑
𝑖

�𝑖(𝑣𝑖(𝒚), 𝑢𝑖(𝒕)) −
∑
𝑖

�𝑖(𝑣𝑖(𝒚)) (E.15)

We first want to prove the condition in Equation E.10. We will show this
is true by proving that

𝑣𝑖(𝒚) ≡ 𝑣𝑖(𝑦𝜋(𝑖)) (E.16)

for some permutation of the indices 𝜋 with respect to the indexing of the
sources 𝒔 = (𝑠1 , . . . , 𝑠𝐷).

We take derivatives with respect to 𝑦 𝑗 , 𝑦 𝑗′ , 𝑗 ≠ 𝑗′, of the LHS and RHS of
equation E.15, yielding∑

𝑖

�′′𝑖 (𝑣𝑖(𝒚), 𝑢𝑖(𝒕))𝑣
𝑗

𝑖
(𝒚)𝑣 𝑗

′

𝑖
(𝒚)

+
∑
𝑖

�′𝑖(𝑣𝑖(𝒚), 𝑢𝑖(𝒕))𝑣
𝑗 𝑗′(𝒚) = 0

If we now rearrange our variables by defining vectors 𝒂𝑖(𝒚) collecting
all entries 𝑣 𝑗

𝑖
(𝒚)𝑣 𝑗

′

𝑖
(𝒚), 𝑗 = 1, . . . , 𝑛, 𝑗′ = 1, . . . , 𝑗 − 1, and vectors 𝒃𝑖(𝒚)

with the variables 𝑣 𝑗
𝑖
(𝒚)𝑣 𝑗

′

𝑖
(𝒚), 𝑗 = 1, . . . , 𝑛, 𝑗′ = 1, . . . , 𝑗 − 1, the above

equality can be rewritten as∑
𝑖

�′′𝑖 (𝑣𝑖(𝒚), 𝑢𝑖(𝒕))𝒂𝑖(𝒚)

+ �′𝑖(𝑣𝑖(𝒚), 𝑢𝑖(𝒕))𝒃𝑖(𝒚) = 0 .

Again following [66], we recast the above formula in matrix form,

𝑴(𝒚)𝒘(𝒚, 𝒕) = 0 , (E.17)

where𝑴(𝒚) = (𝒂1(𝒚), . . . , 𝒂𝑛(𝒚), 𝒃1(𝒚), . . . , 𝒃𝑛(𝒚)) and𝒘(𝒚, 𝒕) = (�′′1 , . . . , �′′𝑛 , �′1 , . . . , �′𝑛).
𝑴(𝒚) is therefore a 𝑛(𝑛−1)/2×2𝑛matrix, and𝒘(𝒚, 𝒕) is a 2𝑛 dimensional
vector.

To show that 𝑴(𝒚) is equal to zero, we invoke the SDV assumption on 𝜼.
This implies the existence of 2𝑛 linearly independent 𝒘(𝒚, 𝒕 𝑗). It follows
that

𝑴(𝒚)[𝒘(𝒚, 𝒕1), . . . ,𝒘(𝒚, 𝒕2𝑛)] = 0 ,

and hence 𝑴(𝒚) is zero by elementary linear algebraic results. It follows
that 𝑣 𝑗

𝑖
(𝒚) ≠ 0 for at most one value of 𝑗, since otherwise the product of
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two non-zero terms would appear in one of the entries of 𝑴(𝒚), thus
rendering it non-zero. Thus 𝑣𝑖 is a function only of one 𝑦 𝑗 = 𝑦𝜋(𝑖).

Observe that 𝒗(𝒚) = 𝒔. We have just proven that 𝑣𝑖(𝑦𝜋(𝑖)) = 𝑠𝑖 . Since
𝑣𝑖 is invertible, it follows that ℎ𝜋(𝑖)(𝒙1) = 𝑦𝜋(𝑖) = 𝑣−1

𝑖
(𝑠𝑖) and hence the

components of 𝒉(𝒙1) recover the components of 𝒔 up to the invertible
component-wise ambiguity given by 𝒗, and the permutation ambiguity.

For the condition in Equation E.11, we need

𝑢𝑖(𝒕) ≡ 𝑢𝑖(𝑡�̃�(𝑖)) , (E.18)

where the permutation �̃� doesn’t need to be equal to 𝜋. By symmetry,
exactly the same argument as used to prove the condition in Equation
E.16 holds, by replacing (𝒗 , 𝒚, 𝜼, 𝜽) with (𝒖 , 𝒕 , 𝝀, 𝝁), noting that the SDV
assumption is also assumed for 𝝀.

We have shown that 𝒚 = 𝒉1(𝒙1) and 𝒕 = 𝒉2(𝒙2) estimate 𝒈1(𝒔 , 𝒏1) and
𝒈2(𝒔 , 𝒏2) up to two different gauges of all possible scalar invertible
functions.

A remaining ambiguity could be that the two representations might be
misaligned; that is, defining 𝒛1 = 𝒈1(𝒔 , 𝒏1) and 𝒛2 = 𝒈2(𝒔 , 𝒏2), while

𝑧1,𝑖 ⊥⊥ 𝑧2, 𝑗∀𝑖 ≠ 𝑗 (E.19)

we might have
𝑦𝜋(𝑖) ⊥⊥ 𝑡�̃�(𝑗)∀𝑖 ≠ 𝑗 ,

where𝜋(𝑖), �̃�(𝑖) are two different permutations of the indices 𝑖 = 1, . . . , 𝑛.
We want to show that this ambiguity is also resolved; that means, our
goal is to show that

𝑦𝑖 ⊥⊥ 𝑡 𝑗 , ∀𝑖 ≠ 𝑗 (E.20)

We recall that, by definition, we have 𝑣𝑖(𝑦𝜋(𝑖)) = 𝑧1,𝑖 and 𝑢𝑗(𝑡�̃�(𝑗)) = 𝑧2, 𝑗 .
Then, due to equation E.19,

𝑣𝑖(𝑦𝜋(𝑖)) ⊥⊥ 𝑢𝑗(𝑡�̃�(𝑗)) ∀𝑖 ≠ 𝑗 (E.21)

=⇒ 𝑦𝜋(𝑖) ⊥⊥ 𝑡�̃�(𝑗) ∀𝑖 ≠ 𝑗 (E.22)

=⇒ 𝑦𝑖 ⊥⊥ 𝑡�̃�◦𝜋−1(𝑗) ∀𝑖 ≠ 𝑗 , (E.23)

where the implication E.21-E.22 follows from invertibility of 𝑣𝑖 and 𝑢𝑗 ,
and the implication E.22-E.23 follows from considering that, given that
we know E.22, we can define 𝑙 = 𝜋(𝑗) and 𝑘 = 𝜋(𝑖) and have

𝑦𝑘 ⊥⊥ 𝑡�̃�◦𝜋−1(𝑙) ∀𝑘 ≠ 𝑙.

Define
𝜏 = �̃� ◦ 𝜋−1

and note that it is a permutation. Then

𝑦𝑖 ⊥⊥ 𝑡𝜏(𝑗)∀𝑖 ≠ 𝑗 (E.24)

Fix any particular 𝑖. Our goal is to show that for any 𝑗 ≠ 𝑖 the independence
relation in Equation E.20 holds. There are two possibilities:
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i 𝜏(𝑖) = 𝑖

ii 𝜏(𝑖) ≠ 𝑖

In the first case, 𝜏 restricted to the set {1, . . . , 𝐷}\{𝑖} is still a permutation,
and thus considering the independences of Equation E.24 for all 𝑗 ≠ 𝑖

implies each of the independences of Equation E.20 and we are done.

Let us consider the second case. Then,

∃𝑙 ∈ {1, . . . , 𝐷} \ {𝑖} s.t. 𝑙 = 𝜏(𝑖) .

We then need to prove
𝑦𝑖 ⊥⊥ 𝑡𝑙 , (E.25)

which is the only independence implied by Equation E.20 which is not
implied by Equation E.24.

In order to do so, we rewrite equation E.15, yielding∑
𝑚

𝜓𝑚(𝑦𝑚 , 𝑡𝑚)

=
∑
𝑚

�𝑚(𝑣𝑚(𝑦𝜋(𝑚)), 𝑢𝑚(𝑡�̃�(𝑚))) −
∑
𝑚

�𝑖(𝑣𝑚(𝑦𝜋(𝑚))) (E.26)

We now take derivative with respect to 𝑦𝑖 and 𝑡𝑙 in E.25; noting that
�̃�−1(𝑙) = 𝜋−1(𝑖), we get

0 =
𝜕2

𝜕𝑣𝜋−1(𝑖)𝜕𝑢𝜋−1(𝑖)
�𝜋−1(𝑖)(𝑣𝜋−1(𝑖)(𝑦𝑖), 𝑢𝜋−1(𝑖)(𝑡𝑙))

× 𝜕

𝜕𝑦𝑖
𝑣𝜋−1(𝑖)(𝑦𝑖)

𝜕

𝜕𝑡𝑙
𝑢𝜋−1(𝑖)(𝑡𝑙) (E.27)

Since 𝑣𝜋−1(𝑖)(𝑦𝑖) is a smooth and invertible function of its argument,
the set of 𝑦𝑖 such that 𝜕

𝜕𝑦𝑖
𝑣𝜋−1(𝑖)(𝑦𝑖) = 0 has measure zero. Similarly,

𝜕
𝜕𝑡𝑙
𝑢𝜋−1(𝑖)(𝑡𝑙) = 0 on a set of measure zero.

It therefore follows that

𝜕

𝜕𝑦𝑖
𝑣𝜋−1(𝑖)(𝑦𝑖)

𝜕

𝜕𝑡𝑙
𝑢𝜋−1(𝑖)(𝑡𝑙) ≠ 0

almost everywhere and hence that

𝜕2

𝜕𝑣𝜋−1(𝑖)𝜕𝑢𝜋−1(𝑖)
�𝜋−1(𝑖)(𝑣𝜋−1(𝑖)(𝑦𝑖), 𝑢𝜋−1(𝑖)(𝑡𝑙)) = 0 . (E.28)

almost everywhere. We can thus conclude that

�𝜋−1(𝑖)(𝑣𝜋−1(𝑖)(𝑦𝑖), 𝑢𝜋−1(𝑖)(𝑡𝑙)) =
�
𝑦

𝜋−1(𝑖)(𝑣𝜋−1(𝑖)(𝑦𝑖)) + �𝑡𝜋−1(𝑖)(𝑢𝜋−1(𝑖)(𝑡𝑙))

This in turn implies that, for some functions 𝐴 and 𝐵, we can write

log 𝑝(𝑧1,𝜋−1(𝑖) |𝑧2,𝜋−1(𝑖)) − log 𝑝(𝑧1,𝜋−1(𝑖))
= 𝐴(𝑣𝜋−1(𝑖)(𝑦𝑖)) + 𝐵(𝑢𝜋−1(𝑖)(𝑡𝑙))
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and therefore

log 𝑝(𝑧1,𝜋−1(𝑖) , 𝑧2,𝜋−1(𝑖)) = 𝐶(𝑣𝜋−1(𝑖)(𝑦𝑖)) + 𝐷(𝑢𝜋−1(𝑖)(𝑡𝑙))

for some functions 𝐶 and 𝐷. This decomposition of the log-pdf implies

𝑧1,𝜋−1(𝑖) ⊥⊥ 𝑧2,𝜋−1(𝑖)

=⇒ 𝑧1,𝜋−1(𝑖) ⊥⊥ 𝑧2,�̃�−1(𝑙)

=⇒ 𝑣𝜋−1(𝑖)(𝑦𝑖) ⊥⊥ 𝑢�̃�−1(𝑙)(𝑡𝑙)
=⇒ 𝑦𝑖 ⊥⊥ 𝑡𝑙 ,

where the last implication holds due to invertibility of 𝑣𝜋−1(𝑖) and 𝑢�̃�−1(𝑙).

We have thus concluded the proof.

E.5 Proof of Corollary 6.2.5

Proof. Denoting by 𝒅(𝑘)1 the component-wise invertible ambiguity up to
which 𝒈(𝒔 , 𝒏(𝑘)1 ) is recovered, we have that

inf
𝒆∈𝑬

𝔼𝒙1

[𝒔 − 𝒆(𝒉(𝑘)1 (𝒙1))
2

2

]
(E.29)

= inf
𝒆∈𝑬

𝔼(𝒏(𝑘)1 ,𝒔)

[𝒔 − 𝒆 ◦ 𝒅(𝑘)1 ◦ 𝒈1(𝒔 , 𝒏(𝑘)1 )
2

2

]
(E.30)

= inf
�̃�∈𝑬

𝔼(𝒏(𝑘)1 ,𝒔)

[𝒔 − �̃� ◦ 𝒈1(𝒔 , 𝒏(𝑘)1 )
2

2

]
(E.31)

≤ 𝔼(𝒏(𝑘)1 ,𝒔)

[𝒔 − 𝒆∗ ◦ 𝒈1(𝒔 , 𝒏(𝑘)1 )
2

2

]
(E.32)

The lower bound holds for any 𝒆∗ ∈ 𝑬 by definition of infimum and in
particular for 𝒆∗ = 𝒈1 |−1

𝒏=0, the existence of which is guaranteed by the
assumptions on 𝒈1. Taking a Taylor expansion of 𝒆∗ ◦ 𝒈1(𝒔 , 𝒏(𝑘)1 ) around
𝒏(𝑘)1 = 0 yields

𝔼(𝒏(𝑘)1 ,𝒔)

[𝒔 − 𝒆∗ ◦ 𝒈1(𝒔 , 0)

+ 𝜕𝒆∗

𝜕𝒈1

𝜕𝒈1(𝒔 , 0)
𝜕𝒏(𝑘)1

· 𝒏(𝑘)1 + O(∥𝒏(𝑘)1 ∥
2)
2

2


= 𝔼(𝒏(𝑘)1 ,𝒔)


 𝜕𝒆∗𝜕𝒈1

𝜕𝒈1(𝒔 , 0)
𝜕𝒏(𝑘)1

· 𝒏(𝑘)1 + O(∥𝒏(𝑘)1 ∥
2)
2

2


−→ 0 as 𝑘 −→ ∞

where the last equality follows from fact that 𝒆∗ = 𝒈 |−1
𝒏=0 and the conver-

gence follows from the fact that 𝒏(𝑘)1 −→ 0 as 𝑘 →∞.
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E.6 Proof of Lemma 6.2.6

We will make crucial use of Kolmogorov’s strong law:

Theorem E.6.1 Suppose that 𝑋𝑛 is a sequence of independent (but not
necessarily identically distributed) random variables with

∞∑
𝑛=1

1
𝑛2 Var[𝑋𝑛] < ∞

Then,

1
𝑁

𝑁∑
𝑛=1

𝑋𝑛 − 𝔼[𝑋𝑛]
𝑎.𝑠.−→ 0

Fix 𝒔 and consider Ω𝑁
e (𝒔 , 𝒏) as a random variable with randomness

induced by 𝒏. We will show that for almost all 𝒔 this converges 𝒏-almost
surely to a constant, and hence Ω𝑁

e (𝒔 , 𝒏) converges almost surely to a
function of 𝒔.

The law of total expectation says that

Var𝒔 ,𝒏𝑖 [𝒆𝑖 ◦ 𝒌𝑖(𝒔 + 𝒏𝑖)]
= 𝔼𝒔 [𝑉𝑖(𝒔)] + Var𝒔 [𝔼𝒏𝑖 [𝒆𝑖 ◦ 𝒌𝑖(𝒔 + 𝒏𝑖)]]
≥ 𝔼𝒔 [𝑉𝑖(𝒔)] .

Since by assumption Var𝒔 ,𝒏𝑖 [𝒆𝑖 ◦ 𝒌𝑖(𝒔 + 𝒏𝑖)] ≤ 𝐾, we have that

𝔼𝒔

[
∞∑
𝑖=1

𝑉𝑖(𝒔)
𝑖2

]
≤ 𝐾𝜋2

6

and therefore ∑∞
𝑖=1

𝑉𝑖 (𝒔)
𝑖2

< ∞ with probability 1 over 𝒔, else the expecta-
tion above would be unbounded since 𝑉𝑖(𝒔) ≥ 0.

We have further that for almost all 𝒔,

Ω𝒆(𝒔) = lim
𝑁→∞

1
𝑁

𝑁∑
𝑖=1

𝐸𝒆𝑖 (𝒔)

exists. Therefore, for almost all 𝑠 the conditions of Kolmogorov’s strong
law are met by Ω𝑁

𝒆 (𝒔 , 𝒏) and so

Ω𝑁
𝒆 (𝒔 , 𝒏) − 𝔼𝒏[Ω𝑁

𝒆 (𝒔 , 𝒏)]
𝒏−𝑎.𝑠.−→ 0

Since 𝔼𝒏[Ω𝑁
𝒆 (𝒔 , 𝒏)]

𝒏−𝑎.𝑠.−→ Ω𝒆(𝒔), it follows that

Ω𝑁
𝒆 (𝒔 , 𝒏)

𝒏−𝑎.𝑠.−→ Ω𝒆(𝒔).

Since this holds with probability 1 over 𝒔, we have that

Ω𝑁
𝒆 (𝒔 , 𝒏)

𝒏−𝑎.𝑠.−→ Ω𝒆(𝒔).

It follows that we can write
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𝑅𝑁𝒆 ,𝑖(𝒔 , 𝒏) = 𝒆𝑖 ◦ 𝒌𝑖(𝒔 + 𝒏𝑖) −Ω𝑁
𝒆 (𝒔 , 𝒏)

𝑎.𝑠.−→ 𝑅𝒆 ,𝑖(𝒔 , 𝒏𝑖) := 𝒆𝑖 ◦ 𝒌𝑖(𝒔 + 𝒏𝑖) −Ω𝒆(𝒔)

E.7 Proof of Theorem 6.2.7

We will begin by showing that if 𝐾 ≥ Var(𝒔) + 𝐶 then {𝒌−1
𝑖
} ∈ G𝐾 .

For 𝒆𝑖 = 𝒌−1
𝑖

, we have that

Ω𝑁
𝒆 (𝒔 , 𝒏) =

1
𝑁

𝑁∑
𝑖=1

𝒔 + 𝒏𝑖
𝑎.𝑠.−→ 𝒔 = Ω𝑁

𝒆 (𝒔)

𝑅𝑁𝑖 = 𝒔 + 𝒏𝑖 −Ω𝒆(𝒔 , 𝒏)
𝑎.𝑠.−→ 𝒏𝑖 = 𝑅𝒆 ,𝑖(𝒏𝑖)

where the convergences follow from application of Kolmogorov’s strong
law, using the fact that Var(𝒏𝑖) ≤ 𝐶 for all 𝑖. Satisfaction of condition 6.17
follows from the fact that Var𝒔 ,𝒏𝑖 (𝒔 + 𝒏𝑖) ≤ 𝐶 + Var(𝒔) ≤ 𝐾. Since 𝒔 is a
well-defined random variable, Ω𝒆(𝒔) < ∞with probability 1, satisfying
condition 6.18. It follows from the mutual independence of 𝒏𝑖 and 𝒏 𝑗
that 𝑅𝒆 ,𝑖 and 𝑅𝒆 , 𝑗 satisfy condition 6.19. Condition 6.20 follows from the
fact that 𝔼[𝒏𝑖] = 0 Condition 6.21 follows from 𝑅𝒆 ,𝑖 being constant as a
function of 𝒔.

It therefore follows that {𝒌−1
𝑖
} ∈ G𝐾 for 𝐾 sufficiently large.

We will next show that if {𝒆𝑖} ∈ G𝐾 then there exist a matrix 𝜶 and
vector 𝜷 such that 𝒆𝑖 = 𝜶𝒌−1

𝑖
+ 𝜷 for all 𝑖. Since 𝒆𝑖 acts coordinate-wise, it

moreover follows that 𝜶 is diagonal.

First, we will show that each 𝒆𝑖 ◦ 𝒌𝑖 is affine, i.e. there exist potentially
different 𝜶𝑖 , 𝜷𝑖 such that 𝒆𝑖 = 𝜶𝑖𝒌−1

𝑖
+ 𝜷𝑖 for each 𝑖.

Then we will show that we must have 𝜶𝑖 = 𝜶 𝑗 and 𝜷𝑖 = 𝜷 𝑗 for all 𝑖 , 𝑗.

To see that 𝒆𝑖 is affine, we make use of that fact that 𝑅𝒆 ,𝑖 is constant as a
function of 𝒔. It follows that for any 𝑥 and 𝑦

𝒆𝑖 ◦ 𝒌𝑖(𝑥 + 𝑦) = 𝑅𝒆 ,𝑖(𝑥) +Ω𝒆(𝑦)
= 𝑅𝒆 ,𝑖(𝑥) +Ω𝒆(0) + 𝑅𝒆 ,𝑖(0) +Ω𝒆(𝑦)
− (𝑅𝒆 ,𝑖(0) +Ω𝒆(0))

= 𝒆𝑖 ◦ 𝒌𝑖(𝑥) + 𝒆𝑖 ◦ 𝒌𝑖(𝑦) − 𝒆𝑖 ◦ 𝒌𝑖(0)

It therefore follows that 𝒆𝑖 ◦ 𝒌𝑖 is affine, since if we define

𝐿(𝑥 + 𝑦) = 𝒆𝑖 ◦ 𝒌𝑖(𝑥 + 𝑦) − 𝒆𝑖 ◦ 𝒌𝑖(0)
= (𝒆𝑖 ◦ 𝒌𝑖(𝑥) − 𝒆𝑖 ◦ 𝒌𝑖(0))
+ (𝒆𝑖 ◦ 𝒌𝑖(𝑦) − 𝒆𝑖 ◦ 𝒌𝑖(0))

= 𝐿(𝑥) + 𝐿(𝑦)

then 𝐿 is linear and we can write 𝒆𝑖 ◦ 𝒌𝑖(𝑥) as the sum of a linear function
and a constant:

𝒆𝑖 ◦ 𝒌𝑖(𝑥) = 𝐿(𝑥) + 𝒆𝑖 ◦ 𝒌𝑖(0)
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Thus 𝒆𝑖 ◦ 𝒌𝑖 is affine, and we have some (diagonal) matrix 𝜶𝑖 and vector
𝜷𝑖 such that for any 𝑥

𝒆𝑖 ◦ 𝒌𝑖(𝑥) = 𝜶𝑖𝑥 + 𝜷𝑖

=⇒ 𝒆𝑖 (𝑥) = 𝜶𝑖𝒌−1
𝑖 𝑥 + 𝜷𝑖 .

Next we show that for the set of {𝒆𝑖 = 𝜶𝑖𝒌−1
𝑖
+ 𝜷𝑖}, it must be the case

that each 𝜶𝑖 = 𝜶 𝑗 and 𝜷𝑖 = 𝜷 𝑗 .

Observe that

Ω𝑁
𝒆 (𝒔 , 𝒏) =

1
𝑁

𝑁∑
𝑖=1

𝜶𝑖𝒔 + 𝜶𝑖𝒏𝑖 + 𝜷𝑖

=

(
1
𝑁

𝑁∑
𝑖=1

𝜶𝑖

)
𝒔 + 1

𝑁

𝑁∑
𝑖=1

𝜷𝑖 +
1
𝑁

𝑁∑
𝑖=1

𝜶𝑖𝒏𝑖

𝔼𝒏[Ω𝑁
𝒆 (𝒔 , 𝒏)] =

(
1
𝑁

𝑁∑
𝑖=1

𝜶𝑖

)
𝒔 + 1

𝑁

𝑁∑
𝑖=1

𝜷𝑖

Define

𝜶 = lim
𝑁→∞

1
𝑁

𝑁∑
𝑖=1

𝜶𝑖

𝜷 = lim
𝑁→∞

1
𝑁

𝑁∑
𝑖=1

𝜷𝑖

which exist by the assumption that Ω𝑁
𝒆 (𝒔 , 𝒏) converges as 𝑁 → ∞.

Thus

Ω𝒆(𝒔) = 𝜶𝒔 + 𝜷

𝑅𝒆 ,𝑖(𝒔 , 𝒏𝑖) = (𝜶𝑖 − 𝜶)𝒔 + 𝜶𝑖𝒏𝑖 + 𝜷𝑖 − 𝜷

Now, suppose that there exist 𝑖 and 𝑗 such that such that 𝜶𝑖 ≠ 𝜶 𝑗 . It
follows that

𝑅𝒆 ,𝑖(𝒔 , 𝒏𝑖) = (𝜶𝑖 − 𝜶)𝒔 + 𝜶𝑖𝒏𝑖 + 𝜷𝑖 − 𝜷

𝑅𝒆 , 𝑗(𝒔 , 𝒏 𝑗) = (𝜶 𝑗 − 𝜶)𝒔 + 𝜶 𝑗𝒏 𝑗 + 𝜷 𝑗 − 𝜷

There are two cases. If 𝜶𝑖 ≠ 𝜶, then 𝑅𝒆 ,𝑖(𝒔 , 𝒏𝑖) is not a constant function
of 𝒔. But if 𝜶𝑖 = 𝜶, then 𝜶 𝑗 ≠ 𝜶 and so 𝑅𝒆 , 𝑗(𝒔 , 𝒏 𝑗) is not a constant
function of 𝒔. This is a contradiction, and so 𝜶𝑖 = 𝜶 𝑗 for all 𝑖 , 𝑗.

Suppose similarly that there exist 𝜷𝑖 ≠ 𝜷 𝑗 . If 𝜷𝑖 ≠ 𝜷, then 𝔼[𝑅𝒆 ,𝑖(𝒏𝑖)] =
𝜷𝑖−𝜷 which is non-zero. If 𝜷𝑖 = 𝜷, then 𝜷 𝑗 ≠ 𝜷 and so𝔼[𝑅𝒆 , 𝑗(𝒏 𝑗)] = 𝜷 𝑗−𝜷
is non-zero. This is a contradiction, and so 𝜷𝑖 = 𝜷 𝑗 for all 𝑖 , 𝑗.

We have thus proven that set {𝒆𝑖} ∈ G𝐾 is of the form 𝒆𝑖 = 𝜶𝒌−1
𝑖
+ 𝜷 for

all 𝑖.
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E.8 Other Related Work on Multi-view Latent
Variable Models

Bearing a strong resemblance to our considered setting, [518] proposes
a sequence of diffusion maps to find the common source of variability
captured by multiple sensors, discarding irrelevant sensor-specific effects.
It computes the distance among the samples measured by different
sensors to form a similarity matrix for the measurements of each sensor;
each similarity matrix is then associated to a diffusion operator, which
is a Markov matrix by construction. A Markov chain is then run by
alternately applying these Markov matrices on the initial state. During
these Markovian dynamics, sensor specific information will eventually
vanish, and the final state will only contain information on the common
source. While the method focuses on recovering the common information
in the form of a parametrization of the common variable, our method both
inverts the mixing mechanisms of each view and recovers the common
latent variables.

[519] proves identifiability for multi-view, latent variable models, unifying
previously proposed spectral techniques [520]. However, while the setting
is similar to the one considered in this work, both the objectives and the
employed methods are different. The paper considers the setting in which
𝐿 variables 𝑋𝑙 , 𝑙 = 1, . . . , 𝐿 are observed; additionally, there exists an
unobserved latent variable𝐻, such that conditional distributions𝑃(𝑋𝑙 |𝐻)
are independent. While the setting bears obvious similarities with our
multi-view ICA, the method proposed in [519] is aimed at learning the
mixture parameters, rather than the exact realization of latent variables.
Their method is based on the mean embedding of distributions in a
Reproducing Kernel Hilbert Space and a result of identifiability for the
parameters of the mean embeddings of 𝑃(𝐻) and 𝑃(𝑋 |𝐻) is proved.

Another related field of study is multi-view clustering, which considers
a multiview setting and aims at performing clustering on a given dataset,
see e.g. [521] and [522]. While related to our setting, this line of work is
different from it in two key ways. Firstly, clustering can be thought of as
assigning a discrete latent label per datapoint. In contrast, our setting
seeks to recover a continuous latent vector per datapoint. Second, since
no underlying generative model with discrete latent variable is assumed,
identifiability results are not given.
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Overview

F.1 Likelihood

F.1.1 Initial form of likelihood

To derive the likelihood, we start by conditioning on s. Then, we make a
variable transformation from x𝑖 to n𝑖 = W𝑖x𝑖 − s, as opposed to the trans-
formation to s as is usual in ICA. Using the probability transformation
formula, we obtain

𝑝(x𝑖 |s) = |W𝑖 |𝑝 𝑖𝑛(W𝑖x𝑖 − s) (F.1)

where 𝑝 𝑖𝑛 is the distribution of n𝑖 . Note that the x𝑖 are conditionally
independent given s, so we have their joint probability as

𝑝(x|s) =
𝑚∏
𝑖=1
|W𝑖 |𝑝 𝑖𝑛(W𝑖x𝑖 − s) (F.2)

and we next get the joint probability as

𝑝(x, s) = 𝑝(s)
𝑚∏
𝑖=1
|W𝑖 |𝑝 𝑖𝑛(W𝑖x𝑖 − s) (F.3)

Integrating out s gives Eq. (7.2).

F.1.2 Integrating out the sources

The integral in question, after factorization, is given by∫
s

𝑘∏
𝑗=1

exp

(
− 1

2𝜎2

𝑚∑
𝑖=1
((w𝑖

𝑗)
⊤x𝑖 − 𝑠 𝑗)2

)
𝑑(𝑠 𝑗)𝑑s (F.4)
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which factorizes for each 𝑗. Denote 𝑦 𝑖
𝑗
= (w𝑖

𝑗
)⊤x𝑖 and 𝑠 𝑗 = 1

𝑚

∑𝑚
𝑖=1 𝑦

𝑖
𝑗
. Fix

𝑗, and drop it to simplify notation. Then we need to solve the integral∫
𝑠

exp

(
− 1

2𝜎2

𝑚∑
𝑖=1
(𝑦 𝑖 − 𝑠)2

)
𝑑(𝑠)𝑑𝑠

=

∫
𝑠

exp

(
− 1

2𝜎2 [𝑚(𝑠 − 𝑠)
2 +

𝑚∑
𝑖=1
(𝑦 𝑖 − 𝑠)2]

)
𝑑(𝑠)𝑑𝑠

= exp

(
− 1

2𝜎2

𝑚∑
𝑖=1
(𝑦 𝑖 − 𝑠)2

) ∫
𝑧

exp
(
− 𝑚

2𝜎2 𝑧
2
)
𝑑(𝑠 − 𝑧)𝑑𝑧

where we have made the change of variable 𝑧 = 𝑠 − 𝑠. The remaining
integral simply means that 𝑑 is smoothed by a Gaussian kernel, which
can be computed exactly if 𝑑 is a Gaussian mixture. We therefore define
𝑓 (𝑠) = log

(∫
𝑧

exp
(
− 𝑚

2𝜎2 𝑧
2
)
𝑑(𝑠 − 𝑧)𝑑𝑧

)
.

F.2 Initialization of MultiViewICA

Since the cost function L is non-convex, having a good initialization can
make a difference in the final result. We propose a two stage approach.
We begin by applying PermICA on the datasets, which gives us a first
set of unimixing matrices W1

1 , . . . ,W
𝑚
1 . Note that we could also use

GroupICA for this task. Next, we perform a diagonal scaling of the
mixing matrices, i.e. we find the diagonal matrices D1 , . . . ,D𝑚 such that
L(D1W1

1 , . . . ,D
𝑚W𝑚

1 ) is minimized. To do so, we employ Algorithm 1 but
only take into account the diagonal of the descent direction at each step:
the update rule becomes W𝑖 ← (I𝑘 + 𝜌diag(S))W𝑖 . The initial unmixing
matrices for Algorithm 1 are then taken as D1W1

1 , . . . ,D
𝑚W𝑚

1 .

Empirically, we find that this two stage procedure allows for the algorithm
to start close from a satisfactory solution.

F.3 Proofs of Section 7.2

F.3.1 Proof of Prop. 7.2.1

We fix a subject 𝑖. Since s has independent components, so does s + n𝑖 .
Following [37], Theorem 11, there exists a scale-permutation matrix P𝑖
such that A′𝑖 = A𝑖P𝑖 . As a consequence, we have s + n𝑖 = P𝑖(s′ + n′𝑖) for
all 𝑖.

Then, we focus on subject 1 and subject 𝑖 ≠ 1:

s + n1 − (s + n𝑖) = P1(s′ + n′1) − P𝑖(s′ + n′𝑖) (F.5)

n1 − n𝑖 = P1(s′ + n′1) − P𝑖(s′ + n′𝑖) (F.6)

⇐⇒ P1s′ − P𝑖s′ = P𝑖n′𝑖 − n𝑖 + n1 − P1n′1 (F.7)

Since the right hand side of equation (F.7) is a linear combination of
Gaussian random variables, this would imply that P1s′ − P𝑖s′ is also
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Gaussian. However, given that s′ is assumed to be non-Gaussian, the
equality can only hold if P1 = P𝑖 and both the right and the left hand
side vanish. Therefore, the matrices P𝑖 are all equal, and there exists a
scale and permutation matrix P such that A′𝑖 = A𝑖P.

F.3.2 Proof of Prop. 7.2.2

We consider W𝑖 = D(A𝑖)−1, where D is a diagonal matrix. We recall
x𝑖 = A𝑖(s+ n𝑖), so that y𝑖 = W𝑖x𝑖 = D(s+ n𝑖). The gradient of L is given
by eq. 7.7:

G𝑖 =
1
𝑚
𝑓 ′(s̃)(s + n𝑖)⊤D + 1 − 1/𝑚

𝜎2 D

(
n𝑖 −

1
𝑚 − 1

∑
𝑗≠𝑖

n𝑗
)
(s + n𝑖)⊤D − I𝑘

(F.8)

=
1
𝑚
𝑓 ′(D(s + 1

𝑚

∑
𝑗

n𝑗))(s + n𝑖)⊤D + 𝜎′2(1 − 1/𝑚)
𝜎2 D2 − I𝑘 (F.9)

where we write 𝑓 ′(s) =

𝑓 ′(𝑠1)
...

𝑓 ′(𝑠𝑘)

 . Therefore, G𝑖 is diagonal and constant

across subjects (because 𝑓 ′(D(s+ 1
𝑚

∑
𝑗 n𝑗))(n𝑖)⊤ = 𝑓 ′(D(s+ 1

𝑚

∑
𝑗 n𝑗))(n𝑖′)⊤).

Let us therefore consider only its coefficient (𝑎, 𝑎), and let D = D𝑎𝑎 :

𝐺𝑖𝑎𝑎 = 𝐺(�) = 𝜙(�)� + 𝜎′2(1 − 1/𝑚)
𝜎2 �2 − 1,

where 𝜙(�) = 1
𝑚 𝑓
′(�(𝑠𝑎 + 1

𝑚

∑
𝑗 𝑛

𝑗
𝑎))(𝑠𝑎 +𝑛 𝑖𝑎). One the one hand, we have

𝐺(0) = −1. On the other hand, if we assume for instance that 𝑓 ′ has sub
linear growth (i.e. | 𝑓 ′(𝑥)| ≤ 𝑐 |𝑥 |𝛼+ 𝑑 for some 𝛼 < 1) or that 𝜙 is positive,
we find that 𝐺(+∞) = +∞. Therefore, 𝐺 cancels, which concludes the
proof.

F.3.3 Stability conditions

We consider W𝑖 = D(A𝑖)−1 where D is such that the gradients G𝑖 all
cancel. We consider a small relative perturbation of W𝑖 of the form
W𝑖 ← (I𝑘 + 𝝐𝑖)W𝑖 , and consider the effect on the gradient. We define
Δ𝑖 = G𝑖

(
(I𝑘 + 𝝐1)W1 , . . . , (I𝑘 + 𝝐𝑚)W𝑚

)
. Denoting 𝐶 =

1−1/𝑚
𝜎2 and ñ =

1
𝑚

∑𝑚
𝑖=1 n𝑖 , we find:

Δ𝑖 =
1
𝑚
𝑓 ′

(
D(s + ñ) + 1

𝑚

𝑚∑
𝑗=1

𝝐 𝑗D(s + n𝑗)
)
(s + n𝑖)⊤D(I𝑘 + 𝝐𝑖)⊤︸                                                                       ︷︷                                                                       ︸

Δ𝑖1

+

𝐶

(
Dn𝑖 − 1

𝑚 − 1
∑
𝑗≠𝑖

Dn𝑗 + 𝝐𝑖D(s + n𝑖) − 1
𝑚 − 1

∑
𝑗≠𝑖

𝝐 𝑗D(s + n𝑗)
)
(s + n𝑖)⊤D(I𝑘 + 𝝐𝑖)⊤︸                                                                                                         ︷︷                                                                                                         ︸

Δ𝑖2

− I𝑘 (F.10)
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The first term is expanded at the first order, denoting 𝑆 =
∑𝑚
𝑗=1 𝝐

𝑗 :

Δ𝑖1 =
1
𝑚

(
𝑓 ′(D(s + ñ)) + 𝑓 ′′(D(s + ñ)) ⊙

(
1
𝑚

𝑚∑
𝑗=1

𝝐 𝑗D(s + n𝑗)
))
(s + n𝑖)⊤D(I𝑘 + 𝝐𝑖)⊤

=
1
𝑚
𝑓 ′(D(s + ñ))(s + n𝑖)⊤D(I𝑘 + 𝝐𝑖)⊤ + 1

𝑚2 𝑆 ⊙
(
𝑓 ′′(D(s + ñ))(s2)⊤D2)

+ 1
𝑚2 𝝐

𝑖 ⊙
(
𝑓 ′′(D(s + ñ))((n𝑖)2)⊤D2

)
(F.11)

The symbol ⊙ denotes the element-wise multiplication, 𝑓 ′(s) =

𝑓 ′(𝑠1)
...

𝑓 ′(𝑠𝑘)


and 𝑓 ′′(s) =


𝑓 ′′(𝑠1)
...

𝑓 ′′(𝑠𝑘)

 . Similarly, the second term gives at the first order:

Δ𝑖2 = 𝜎′2D2(I𝑘 + 𝝐𝑖)⊤ + (1 + 𝜎′2)𝝐𝑖D2 − 1
𝑚 − 1

(𝑆 − 𝝐𝑖)D2 (F.12)

Combining this, we find:

Δ𝑖 = (𝝐𝑖)⊤ + 𝝐𝑖 ⊙ Γ𝐸 + 𝑆 ⊙ Γ𝑆 (F.13)

where

Γ𝐸 =

(
1
𝑚2 𝑓

′′(D(s + ñ))((n𝑖)2)⊤ + (1 − 1
𝑚
)𝜎
′2

𝜎2 +
1
𝜎2

)
D2

Γ𝑆 =

(
1
𝑚2 𝑓

′′(D(s + ñ))(s2)⊤ − 1
𝑚𝜎2

)
D2

are 𝑘 × 𝑘 matrices, independent of the subject. This linear operator is the
Hessian block corresponding to the 𝑖-th subject: Denoting H the Hessian,
it is the mapping H(𝝐1 , . . . , 𝝐𝑚) = (Δ1 , . . . ,Δ𝑚).

The coefficient Δ𝑖
𝑎𝑏

only depends on (𝝐𝑖
𝑎𝑏
, 𝝐𝑖

𝑏𝑎
, 𝝐1

𝑎𝑏
, . . . , 𝝐𝑚

𝑎𝑏
). Therefore,

the Hessian is block diagonal with respect to the blocks of coordinates
(𝝐1
𝑎𝑏
, 𝝐1

𝑏𝑎
, . . . , 𝝐𝑚

𝑎𝑏
, 𝝐𝑚

𝑏𝑎
). Denote � = Γ𝐸

𝑎𝑏
, �′ = Γ𝐸

𝑏𝑎
, 𝛽 = Γ𝑆

𝑎𝑏
and 𝛽′ = Γ𝑆

𝑏𝑎
.

The linear operator for the block is:

𝐾(�, �′, 𝛽, 𝛽′) =

©«

� + 𝛽 1 𝛽 0 . . . 𝛽 0
1 �′ + 𝛽′ 0 𝛽′ . . . 0 𝛽′

𝛽 0 � + 𝛽 1 𝛽 0

0 𝛽′ 1 �′ + 𝛽′
. . . 0 𝛽′

...
...

. . .
. . .

...
...

𝛽 0 𝛽 0 . . . � + 𝛽 1
0 𝛽′ 0 𝛽′ . . . 1 �′ + 𝛽′

ª®®®®®®®®®®®¬
The positivity of H is equivalent to the positivity of this operator for all
pairs 𝑎, 𝑏. We now assume 𝛽𝛽′ > 0.
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First, we should note that𝐾(�, �′, 𝛽, 𝛽′) is congruent to𝐾(�
√

𝛽′

𝛽 , �
′
√

𝛽
𝛽′ ,

√
𝛽𝛽′,

√
𝛽𝛽′)

via the basis diag(( 𝛽
′

𝛽 )1/4 , (
𝛽
𝛽′ )1/4 , · · · , (

𝛽′

𝛽 )1/4 , (
𝛽
𝛽′ )1/4). We denote to sim-

plify notation 𝛼 = �
√

𝛽′

𝛽 , 𝛼′ = �′
√

𝛽
𝛽′ and 𝛾 =

√
𝛽𝛽′. We only have to

study the positivity of 𝐾(𝛼, 𝛼′, 𝛾, 𝛾). We have:

𝐾(𝛼, 𝛼′, 𝛾, 𝛾) = I𝑚 ⊗ 𝑀𝛼 + 𝛾𝟙 ⊗ I2 , 𝑀𝛼 =

(
𝛼 1
1 𝛼′

)
Since I𝑚 ⊗ 𝑀𝛼 and 𝛾𝟙 ⊗ I2 commute, the minimum value of Sp(𝐾) is
min(I𝑚 ⊗𝑀𝛼)+min(𝛾Sp(𝟙)) = 1

2 (𝛼+𝛼′−
√
(𝛼 − 𝛼′)2 + 4)+𝑚min(0, 𝛾).

Since we assumed 𝛽𝛽′ > 0 we have 𝛾 > 0. This is similar to the usual
ICA case, we find that the condition is 𝛼𝛼′ > 1.

If the following conditions hold for all pair of sources 𝑎, 𝑏, the sources
are a local minimum of the cost function:

▶ Γ𝑆
𝑎𝑏
Γ𝑆
𝑏𝑎
≥ 0

▶ Γ𝐸
𝑎𝑏
Γ𝐸
𝑏𝑎

> 1

F.4 Identifiability for Shared Response Model

The shared response model [264] (SRM) models the data x𝑖 ∈ ℝ𝑣 of
subject 𝑖 for 𝑖 = 1, . . . , 𝑚 as

x𝑖 = A𝑖s + n𝑖 with s ∼N(0,𝚺), n𝑖 ∼N(0, 𝜌2
𝑖 I𝑣), A𝑖⊤A𝑖 = I𝑘

where A𝑖 ∈ ℝ𝑣×𝑘 , s ∈ ℝ𝑘 and 𝚺 ∈ ℝ𝑘×𝑘 is a symmetric positive definite
matrix.

Proposition F.4.1 SRM is not identifiable

Proof. Let us assume the data x𝑖 𝑖 = 1, . . . , 𝑚 follow the SRM model
with parameters 𝚺,A𝑖 , 𝜌2

𝑖
𝑖 = 1, . . . , 𝑚.

Let us consider an orthogonal matrix O ∈ O𝑘 . We call A′𝑖 = A𝑖O and
𝚺′ = O⊤𝚺O. 𝚺′ is trivially symmetric positive definite.

Then the data also follows the SRM model with different parameters
𝚺′,A′𝑖 , 𝜌2

𝑖
𝑖 = 1, . . . , 𝑚.

Proposition F.4.2 We consider the decorrelated SRM model with an addi-
tional decorrelation assumption on the shared responses.

x𝑖 = A𝑖s + n𝑖 with s ∼N(0,𝚺), n𝑖 ∼N(0, 𝜌2
𝑖 I𝑣), A𝑖⊤A𝑖 = I𝑘

where 𝚺 is a positive diagonal matrix. We further assume that the values
in 𝚺 are all distinct and ranked in ascending order. The decorrelated SRM is

identifiable up to sign indeterminacies on the columns of


A1

...

A𝑚

 .
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Proof. The decorrelated SRM model can be written

x𝑖 ∼N(0,A𝑖𝚺A𝑖⊤ + 𝜌2
𝑖 I𝑣) with A𝑖⊤A𝑖 = I𝑘

where 𝚺 is a positive diagonal matrix with distincts values ranked in
ascending order.

Let us assume the data x𝑖 𝑖 = 1, . . . , 𝑚 follow the decorrelated SRM
model with parameters 𝚺,A𝑖 , 𝜌𝑖2 𝑖 = 1, . . . , 𝑚. Let us further assume
that the data x𝑖 𝑖 = 1, . . . , 𝑚 follow the decorrelated SRM model with
an other set of parameters 𝚺′,A′𝑖 , 𝜌′

𝑖
2 𝑖 = 1, . . . , 𝑚.

Since the model is Gaussian, we look at the covariances. We have for 𝑖 ≠ 𝑗

𝔼[x𝑖
(
x𝑗

)⊤
] = A𝑖𝚺A𝑗⊤ = A′𝑖𝚺′A′𝑗⊤ ,

The singular value decomposition is unique up to sign flips and permuta-
tion. Since eigenvalues are positive and ranked the only indeterminacies
left are on the eigenvectors. For each eigenvalue a sign flip can occur
simultaneously on the corresponding left and right eigenvector.

Therefore we have𝚺′ = 𝚺, A𝑖 = A′𝑖D𝑖 𝑗 and A𝑗 = A′𝑗D𝑖 𝑗 where D𝑖 𝑗 ∈ ℝ𝑘×𝑘

is a diagonal matrix with values in {−1, 1}. This analysis holds for every
𝑗 ≠ 𝑖 and therefore D𝑖 𝑗 = D is the same for all subjects.

We also have for all 𝑖

𝔼[x𝑖
(
x𝑖

)⊤
] = A𝑖𝚺A𝑖⊤ + 𝜌2

𝑖 I𝑣 = A′𝑖𝚺′A′𝑖⊤ + 𝜌′2𝑖 I𝑣

We therefore conclude 𝜌′2𝑖 = 𝜌2
𝑖
, 𝑖 = 1 . . . 𝑚.

Note that if the diagonal subject specific noise covariance 𝜌2
𝑖
I𝑣 is replaced

by any positive definite matrix, the model still enjoys identifiability.

F.5 fMRI experiments

F.5.1 Dataset description and preprocessing

The full brain mask used to select brain regions is available in the Python
package associated with the paper.

Sherlock In sherlock dataset, 17 participants are watching "Sherlock" BBC
TV show (beginning of episode 1). These data are downloaded from http:

//arks.princeton.edu/ark:/88435/dsp01nz8062179. Data were ac-
quired using a 3T scanner with an isotropic spatial resolution of 3 mm.
More information including the preprocessing pipeline is available
in [317]. Subject 5 is removed because of missing data leaving us with
16 participants. Although sherlock data are downloaded as a temporal
concatenation of two runs, we split it manually into 4 runs of 395 time-
frames and one run of 396 timeframes so that we can perform 5 fold
cross-validation in our experiments.

http://arks.princeton.edu/ark:/88435/dsp01nz8062179
http://arks.princeton.edu/ark:/88435/dsp01nz8062179
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FORREST In FORREST dataset 20 participants are listening to an audio
version of the Forrest Gump movie. FORREST data are downloaded from
OpenfMRI [523]. Data were acquired using a 7T scanner with an isotropic
spatial resolution of 1 mm (see more details in [318]) and resampled
to an isotropic spatial resolution of 3 mm. More information about the
forrest project can be found at http://studyforrest.org. Subject 10 is
discarded because not all runs available for other subjects were available
for subject 10 at the time of writing. Run 8 is discarded because it is not
present in most subjects.

RAIDERS In RAIDERS dataset, 11 participants are watching the movie
"Raiders of the lost ark". The RAIDERS dataset belongs to the Individual
Brain Charting dataset [319]. Data were acquired using a 3T scanner
and resampled to an isotropic spatial resolution of 3 mm. The RAIDERS
dataset reproduces the protocol described in [265]. Preprocessing details
are described in [319].

CLIPS In CLIPS dataset, 12 participants are exposed to short video
clips. The CLIPS dataset also belongs to the Individual Brain Charting
dataset ([319]). Data were acquired using a 3T scanner and resampled
to an isotropic spatial resolution of 3 mm. It reproduces the protocol of
original studies described in [524] and [525]. Preprocessing details are
described in [319].

At the time of writing of the original paper [116], the CLIPS and
RAIDERS dataset from the individual brain charting dataset https:
//project.inria.fr/IBC/ are available at https://openneuro.org/
datasets/ds002685. Protocols on the visual stimuli presented are avail-
able in a dedicated repository on Github:
https://github.com/hbp-brain-charting/public_protocols.

F.5.2 Reconstructing the BOLD signal of missing subjects:
Discussion on ROIs choice

The quality of the reconstructed BOLD signal varies depending on the
choice of the region of interest. In Figure F.1, we plot for GroupICA,
SRM and MultiViewICA, the R2 score per voxel using 50 components for
datasets sherlock, forrest, raiders and clips. As could be anticipated from
the task definition, forrest obtains high reconstruction accuracy in the
auditory cortices, while clips shows good reconstruction in the visual
cortex (occipital lobe mostly); the richer sherlock and raiders datasets
yield good reconstructions in both domains, but also in other systems
(language, motor). We also see visually see that data reconstructed by
MultiViewICA are a better approximation of the original data than other
methods. This is particularly obvious for the clips datasets where it is
clear that voxels in the posterior part of the superior temporal sulcus are
better recovered by MultiViewICA than by SRM or GroupICA.

In order to determine the ROIs, we focus on the R2 score per voxel
between the BOLD signal reconstructed by GroupICA and the actual
bold signal. We run GroupICA with 10, 20 and 50 components and select
the voxels that obtained a positive R2 score for all sets of components. We

http://studyforrest.org
https://project.inria.fr/IBC/
https://project.inria.fr/IBC/
https://openneuro.org/datasets/ds002685
https://openneuro.org/datasets/ds002685
https://github.com/hbp-brain-charting/public_protocols
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Figure F.1: Reconstructing the BOLD
signal of missing subjects: Reconstruc-
tion R2 score per voxel We plot for
GroupICA, SRM and MultiViewICA, the
R2 score per voxel using 50 compo-
nents for datasets sherlock, forrest, raiders
and clips. We visually see that data re-
constructed by MultiViewICA are more
faithful reproduction of the original data
than other methods.

forrest sherlock clips raiders

Figure F.2: Data-driven choice of ROI
Chosen ROIs for the experiment: Recon-
structing the BOLD signal of missing
subjects.

discard voxels with an R2 score above 80% as they visually correspond to
artefacts and apply a binary opening using a unit cube as the structuring
element. The chosen regions are plotted in figure F.2.

F.5.3 Between-runs time-segment matching

We measure the ability of each algorithm to extract meaningful shared
sources that correlate more when they correspond to the same stimulus
than when they correspond to distinct stimuli. We use the raiders-full
dataset, which allows this kind of analysis because subjects watch some
selected scenes from the movie twice, during the first two runs (1 and 2)
and the last two (11 and 12). First, the forward operators are learnt by fitting
each algorithm with 20 components on the data of all 11 subjects using all
12 runs. We then select a subset of 8 subjects and the shared sources are
computed by applying the forward operators and averaging. We select a
large target time-segment (50 timeframes) taken at random from run 1
and 2, and we try to localize the corresponding sample time-segment
from the 10 last runs using a single component of the shared sources. The
time-segment is said to be correctly classified if the correlation between
the target and corresponding sample time-segment is higher than with
any other time-segment (partially overlapping windows are excluded).
In contrast to the between subject time-segment matching experiment, we
obtain one accuracy score per component. We repeat the experiment 10
times with different subsets of subjects randomly chosen and report the
mean accuracy of the 3 best performing components in Figure F.3. Error
bars correspond to a 95 % confidence interval. MultiView ICA achieves
the highest accuracy.

We then focus on the 3 best performing components of MultiView ICA.
For each component, we plot in Figure F.4 (left) the shared sources during
two sets of runs where subjects were exposed to the same scenes of the
movie. We then study the localisation of these sources. We average the
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Figure F.3: Between runs time-segment
matching. Interesting sources correlates
more when they correspond to the same
stimulus (same scenes of the movie) than
when they correspond to distinct stimuli
(different scenes). We extract 20 sources
and report the mean accuracy of the 3
best performing sources

0 100 200 300 400 500 600 700

0.0

0.2

Shared source Component 1

Repetition 1 Repetition 2

0 100 200 300 400 500 600 700

−0.2

0.0

Shared source Component 2

0 100 200 300 400 500 600 700

0.0

0.2

Shared source Component 3

-0.064

-0.032

0

0.032

0.064

-0.14

-0.068

0

0.068

0.14

-0.044

-0.022

0

0.022

0.044

Spatial map Component 1

Spatial map Component 2

Spatial map Component 3

Figure F.4: Between-runs time segment
matching: spatial maps and timecourses
Left: Timecourses of the 3 shared sources
yielding the highest accuracy. The two
displayed set of runs correspond to the
same scenes in the movie. Right: Locali-
sation of the same shared sources in the
brain

forward operators across subjects and plot the columns corresponding to
the components of interest in Figure F.4 (right). As each column is seen
as a set of weights over all voxels, it represents a spatial map.

The component 1 of the shared responses follows almost the same
pattern in the two set of runs corresponding to the same scenes of the
movie. The spatial map corresponding to component 1 highlights the
language network. In component 2, the temporal patterns during the
viewing of identical scenes are also very similar. The corresponding
spatial map highlights the visual network especially the visual dorsal
pathway. In component 3, there exists a similarity however less striking
than with the two previous components. The corresponding spatial
map highlights a contrast between the spatial attention network and the
auditory network.

F.5.4 Reproducing time-segment matching experiment

We reproduce the time-segment matching experiments described in [304]
and [292] and use two fold classification over runs instead of 5-fold as
we have done in the main paper. We used the sherlock data available
at http://arks.princeton.edu/ark:/88435/dsp01nz8062179 and the
full brain mask provided in the Python package associated with the

http://arks.princeton.edu/ark:/88435/dsp01nz8062179
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Figure F.5: Reproducing the time-
segment matching experiment of [292,
304] Mean classification accuracy - error
bars represent 95% confidence interval
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Figure F.6: Effect of the parameter 𝜎: We
compute the accuracy of the multiview-
ICA pipeline on the time-segment match-
ing experiment for various values of the
𝜎 hyperparameter over a grid. The accu-
racy varies only marginally with 𝜎.

paper. We applied high-pass filtering (140 s cutoff) and the time series of
each voxel were normalized to zero mean and unit variance.

The results are available in Figure F.5.

F.5.5 Impact of the hyperparameter 𝜎

On top of the theoretical guarantees about the robustness of our method
to the choice of the 𝜎 parameter, we investigate its practical impact on
the time-matching segment experiment, on the Sherlock dataset with 10
components. We compute the accuracy of the multi-view ICA pipeline
with different choice of 𝜎. This is reported in Fig. F.6. The accuracy is
constant for a wide range of 𝜎, only decreasing when 𝜎 attains very high
values.
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F.6 Related Work

The following table describes some usual method for extracting shared sources from multiple subjects
datasets. The column "Modality/Source" describes the type of data for which each algorithm was initially
proposed, even though each algorithm could be applied on any type of data. The source type can be either
temporal if extracted sources are time courses or spatial if they are spatial patterns.

Method Modality/Source Dimensionality re-
duction

Description

SRM [264] fMRI/Temporal SRM The model is x𝑖 = A𝑖s + n𝑖 , with
Gaussian sources and orthogonal
mixing matrices A𝑖

GroupPCA [316] fMRI/Spatial GroupPCA A memory efficient implementa-
tion of PCA applied on tempo-
rally concatenated data.

GIFT [288] fMRI/Spatial Individual PCA +
Group PCA (on
component-wise
concatenated data)

Single-subject ICA is applied on
the aggregated data

EEGIFT [290] EEG/Temporal Individual PCA +
Group PCA (on
component-wise
concatenated data)

Single-subject ICA is applied on
the aggregated data

PermICA Any Any Single-subject ICA is applied on
each subject’s data, and the com-
ponents are matched using the
Hungarian algorithm

Clustering ap-
proach [302]

fMRI/Spatial Individual PCA Single-subject ICA is applied on
each subject’s data, and the com-
ponents are matched using a hi-
erarchical clustering algorithm.

Measure pro-
jection analy-
sis [303]

EEG/Temporal Individual PCA Single-subject ICA is applied on
each subject’s data, and the com-
ponents are matched using a hi-
erarchical clustering algorithm.

TensorICA [296] fMRI/Spatial Group PCA (on spa-
tially concatenated
data)

TensorICA incorporates ICA as-
sumptions into the PARAFAC
model. The mixing matrices
𝐴1 · · ·𝐴𝑛 are such that𝐴𝑖 = 𝐴𝐷𝑖

where 𝐴 is common to all sub-
jects and 𝐷𝑖 are subject specific
diagonal matrices.

Unifying Ap-
proach of [293]

fMRI/Spatial Group PCA (on spa-
tially concatenated
data) + GroupPCA
(on component-wise
concatenated data).

The model is x𝑖 = A𝑖s + n𝑖 with
a Gaussian mixture model on in-
dependent sources and a matrix
normal prior on the noise.

SR-ICA [292] fMRI/Temporal SR-ICA SR-ICA incorporates ICA as-
sumptions into the shared re-
sponse model.

CAE-SRM [304] fMRI/Temporal CAE-SRM A convolutional auto-encoder is
used to perform the unmixing.
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CanICA [289] fMRI/Spatial Individual PCA +
multi set CCA (on
component-wise con-
catenated data)

CanICA applies single-subject
ICA on data reduced with PCA
and CCA.

Spatial Concat-
ICA [282]

fMRI/Spatial Group PCA (on spa-
tially concatenated
data)

ICA is applied on spatially con-
catenated data. The mixing is
constrained to be the same across
all subjects.

Temporal Con-
catICA [297]

EEG/Temporal Group PCA (on tem-
porally concatenated
data)

ICA is applied on temporaly con-
catenated data. The mixing is
constrained to be the same across
all subjects.

coroICA [281] Any Any The model is x𝑖 = As𝑖 + n𝑖 . The
mixing is constrained to be the
same across all subjects.

An additional related model is described in [83]. Similarly to our work, the ICA model has noise on the source
side. However, the model involves nonlinear mixings, which are computationally unfeasible to optimize via
maximum likelihood; a contrastive learning scheme is therefore adopted, and the likelihood is not derived in
closed form. No evaluation on neuroimaging datasets is presented.
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F.7 Detailed Cam-CAN sources

We display each of the 11 shared sources found by Multiview ICA on
the Cam-CAN. The time-courses are on the left, the corresponding brain
maps are on the right.

−0.2 0.0 0.2 0.4

Time (s)

0

2

4

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

−2

0

2

4

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

2

4

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

2

4

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

2

4

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

2

4

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

1

2

3

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

2

A
m

pl
it

ud
e



F Additional Material on Chapter 7 234

−0.2 0.0 0.2 0.4

Time (s)

0

1

2

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

1

2

3

A
m

pl
it

ud
e

−0.2 0.0 0.2 0.4

Time (s)

0

1

2

A
m

pl
it

ud
e

F.8 Average forward operators on fMRI datasets

We display the average forward operator across subjects on the Raiders,
Forrest, Clips and Sherlock datasets obtained with MultiViewICA and
GroupICA with 5 components. A 5 mm spatial smoothing was applied on
all datasets, and the confound signals corresponding to the 5 components
with the highest variance were removed before applying MultiViewICA
or GroupICA.
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Figure F.7: Synthetic experiment with
model x𝑖 = A𝑖s𝑖 + n𝑖

F.9 Synthetic benchmark using the model
x𝑖 = A𝑖s + n𝑖

We generate data according to the model x𝑖 = A𝑖s + n𝑖 , where x𝑖 ∈ ℝ50,
s ∈ ℝ20, and n𝑖 ∼N(0, 𝜎2I50). After applying individual PCA to obtain
signals of dimension 20, we apply the different ICA algorithms and
report the reconstruction error in fig. F.7.

F.10 Summary of our quantitative results

Our quantitative results for the fMRI experiments of time-segment
matching and BOLD signal reconstruction and on for the MEG phantom
data experiment are summarized, respectively, in Table F.2, Table F.3 and
Table F.4. All methods are compared upon extraction of sources with the
same dimensionality (20 components).
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Dataset Method Accuracy Confidence interval
clips Chance 0.002 [0.001, 0.003]

CanICA 0.130 [0.112, 0.147]
PCA + GroupICA 0.124 [0.109, 0.139]

GroupICA 0.152 [0.133, 0.171]
PermICA 0.147 [0.126, 0.169]

SRM 0.115 [0.104, 0.126]
MultiViewICA 0.167 [0.142, 0.192]

forrest Chance 0.002 [0.001, 0.002]
CanICA 0.192 [0.170, 0.214]

PCA + GroupICA 0.088 [0.077, 0.098]
GroupICA 0.154 [0.137, 0.170]
PermICA 0.135 [0.118, 0.152]

SRM 0.188 [0.173, 0.203]
MultiViewICA 0.448 [0.411, 0.484]

raiders Chance 0.002 [0.001, 0.003]
CanICA 0.256 [0.220, 0.291]

PCA + GroupICA 0.331 [0.289, 0.372]
GroupICA 0.321 [0.281, 0.361]
PermICA 0.381 [0.341, 0.421]

SRM 0.265 [0.240, 0.289]
MultiViewICA 0.408 [0.358, 0.458]

sherlock Chance 0.005 [0.003, 0.006]
CanICA 0.607 [0.567, 0.648]

PCA + GroupICA 0.454 [0.416, 0.492]
GroupICA 0.519 [0.481, 0.556]
PermICA 0.399 [0.365, 0.434]

SRM 0.493 [0.465, 0.520]
MultiViewICA 0.873 [0.844, 0.903]

Table F.2: Timesegment matching: Sum-
mary of our quantitative results. We
report the mean accuracy across cross-
validation splits.
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Dataset Method R2 score Confidence interval
clips Chance 0.000 [0.000 ,0.000]

CanICA 0.110 [ 0.097 , 0.123]
PCA + GroupICA 0.075 [ 0.058 , 0.092]

GroupICA 0.077 [ 0.059 , 0.094]
PermICA 0.099 [ 0.087 , 0.111]

SRM 0.081 [ 0.069 , 0.094]
MultiViewICA 0.114 [ 0.099 , 0.128]

forrest Chance 0.000 [0.000 ,0.000]
CanICA 0.181 [ 0.169 , 0.193]

PCA + GroupICA 0.072 [ 0.054 , 0.090]
GroupICA 0.081 [ 0.062 , 0.099]
PermICA 0.098 [ 0.090 , 0.106]

SRM 0.180 [ 0.168 , 0.193]
MultiViewICA 0.191 [ 0.177 , 0.204]

raiders Chance 0.000 [0.000 ,0.000]
CanICA 0.136 [ 0.122 , 0.149]

PCA + GroupICA 0.063 [ 0.045 , 0.080]
GroupICA 0.062 [ 0.043 , 0.081]
PermICA 0.107 [ 0.091 , 0.124]

SRM 0.138 [ 0.121 , 0.154]
MultiViewICA 0.144 [ 0.124 , 0.164]

sherlock Chance 0.000 [0.000 ,0.000]
CanICA 0.156 [ 0.141 , 0.172]

PCA + GroupICA 0.087 [ 0.065 , 0.108]
GroupICA 0.091 [ 0.070 , 0.112]
PermICA 0.067 [ 0.055 , 0.078]

SRM 0.164 [ 0.147 , 0.181]
MultiViewICA 0.161 [ 0.142 , 0.180]

Table F.3: Reconstructing the BOLD sig-
nal of missing subjects: Summary of our
quantitative results. We report the mean
R2 score across cross-validation splits.

Method Reconstruction error 1st and 3d quartiles
MultiViewICA 0.0045 [0.0039, 0.0052]

GroupICA 0.1098 [0.0549, 0.1734]
PCA+GroupICA 0.1111 [0.0760, 0.1502]

PermICA 0.0730 [0.0423, 0.1037]

Table F.4: Phantom MEG data: Summary
of our quantitative results with 2 epochs.
We report the median reconstruction er-
ror across cross-validation splits.
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Additional Material on Chapter 8

Overview:
▶ Appendix G.1 contains the full proofs for all theoretical results

from the main paper.
▶ Appendix G.2 contains additional details and plots for the Causal3DIdent

dataset.
▶ Appendix G.3 contains additional experimental results and analy-

sis.
▶ Appendix G.4 contains additional implementation details for our

experiments.

G.1 Proofs

We now present the full detailed proofs of our three theorems which were
briefly sketched in the main paper. We remark that these proofs build on
each other, in the sense that the (main) step 2 of the proof of Thm. 8.4.1 is
also used in the proofs of Thms. 8.4.2 and 8.4.3.

G.1.1 Proof of Thm. 8.4.1

Theorem 8.4.1 (Identifying content with a generative model) Consider
the data generating process described in § 8.3, i.e., the pairs (x, x̃) of original
and augmented views are generated according to (8.2) and (8.3) with 𝑝z̃|z as
defined in Assumptions 8.3.1 and 8.3.2. Assume further that

(i) f : Z → X is smooth and invertible with smooth inverse (i.e., a
diffeomorphism);

(ii) 𝑝z is a smooth, continuous density on Z with 𝑝z(z) > 0 almost
everywhere;

(iii) for any 𝑙 ∈ {1, ..., 𝑛𝑠}, ∃𝐴 ⊆ {1, ..., 𝑛𝑠} s.t. 𝑙 ∈ 𝐴; 𝑝𝐴(𝐴) > 0;
𝑝s̃𝐴 |s𝐴 is smooth w.r.t. both s𝐴 and s̃𝐴; and for any s𝐴, 𝑝s̃𝐴 |s𝐴 (·|s𝐴) > 0
in some open, non-empty subset containing s𝐴.

If, for a given 𝑛𝑠 (1 ≤ 𝑛𝑠 < 𝑛), a generative model (�̂�z , �̂�𝐴 , �̂�s̃|s,𝐴 , f̂) assumes
the same generative process (§ 8.3), satisfies the above assumptions (i)-(iii),
and matches the data likelihood,

𝑝x,x̃(x, x̃) = �̂�x,x̃(x, x̃) ∀(x, x̃) ∈ X×X,

then it block-identifies the true content variables via g = f̂−1 in the sense
of Defn. 8.4.1.
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Proof. The proof consists of two main steps.

In the first step, we use assumption (i) and the matching likelihoods to
show that the representation ẑ = g(x) extracted by g = f̂−1 is related
to the true latent z by a smooth invertible mapping h, and that ẑ must
satisfy invariance across (x, x̃) in the first 𝑛𝑐 (content) components almost
surely (a.s.) with respect to (w.r.t.) the true generative process.

In the second step, we then use assumptions (ii) and (iii) to prove (by
contradiction) that ĉ := ẑ1:𝑛𝑐 = h(z)1:𝑛𝑐 can, in fact, only depend on the
true content c and not on the true style s, for otherwise the invariance
established in the first step would have be violated with probability
greater than zero.

To provide some further intuition for the second step, the assumed
generative process implies that (c,, s̃)|𝐴 is constrained to take values (a.s.)
in a subspace R of C× S× Sof dimension 𝑛𝑐 + 𝑛𝑠 + |𝐴| (as opposed to
dimension 𝑛𝑐 +2𝑛𝑠 for C×S×S). In this context, assumption (iii) implies
that (c,, s̃)|𝐴 has a density with respect to a measure on this subspace
equivalent to the Lebesgue measure on ℝ𝑛𝑐+𝑛𝑠+|𝐴| . This equivalence
implies, in particular, that this ”subspace measure” is strictly positive:
it takes strictly positive values on open sets of R seen as a topological
subspace of C× S× S. These open sets are defined by the induced
topology: they are the intersection of the open sets of C× S× Swith R.
An open set 𝐵 of𝑉 on which 𝑝(c,, s̃|𝐴) > 0 then satisfies 𝑃(𝐵|𝐴) > 0. We
look for such an open set to prove our result.

Step 1. From the assumed data generating process described in § 8.3 it
follows that

g(x)1:𝑛𝑐 = g(x̃)1:𝑛𝑐 (G.1)

a.s., i.e., with probability one, w.r.t. the model distribution �̂�x,x̃.

Due to the assumption of matching likelihoods, the invariance in (G.1)
must also hold (a.s.) w.r.t. the true data distribution 𝑝x,x̃.

Next, since f, f̂ : Z→ Xare smooth and invertible functions by assump-
tion (i), there exists a smooth and invertible function h = g ◦ f : Z→ Z

such that
g = h ◦ f−1. (G.2)

Substituting (G.2) into (G.1), we obtain (a.s. w.r.t. 𝑝):

ĉ := ẑ1:𝑛𝑐 = g(x)1:𝑛𝑐 = h(f−1(x))1:𝑛𝑐 = h(f−1(x̃))1:𝑛𝑐 (G.3)

Substituting z = f−1(x) and z̃ = f−1(x̃) into (G.3), we obtain (a.s. w.r.t. 𝑝)

ĉ = h(z)1:𝑛𝑐 = h(z̃)1:𝑛𝑐 . (G.4)

It remains to show that h(·)1:𝑛𝑐 can only be a function of c, i.e., does not
depend on any other (style) dimension of z = (c, s).



G Additional Material on Chapter 8 241

Step 2. Suppose for a contradiction that h𝑐(c, s) := h(c, s)1:𝑛𝑐 = h(z)1:𝑛𝑐
depends on some component of the style variable s:

∃𝑙 ∈ {1, ..., 𝑛𝑠}, (c∗ , s∗) ∈ C× S, s.t.
𝜕h𝑐
𝜕𝑠𝑙
(c∗ , s∗) ≠ 0, (G.5)

that is, we assume that the partial derivative of h𝑐 w.r.t. some style
variable 𝑠𝑙 is non-zero at some point z∗ = (c∗ , s∗) ∈ Z= C× S.

Since h is smooth, so is h𝑐 . Therefore, h𝑐 has continuous (first) partial
derivatives.

By continuity of the partial derivative, 𝜕h𝑐
𝜕𝑠𝑙

must be non-zero in a neigh-
bourhood of (c∗ , s∗), i.e.,

∃� > 0 s.t. 𝑠𝑙 ↦→ h𝑐
(
c∗ , (s∗−𝑙 , 𝑠𝑙)

)
is strictly monotonic on (𝑠∗𝑙−�, 𝑠

∗
𝑙+�),

(G.6)
where s−𝑙 ∈ S−𝑙 denotes the vector of remaining style variables except 𝑠𝑙 .

Next, define the auxiliary function 𝜓 : C× S× S→ ℝ≥0 as follows:

𝜓(c,, s̃) := |h𝑐(c, s) − h𝑐(c, s̃)| ≥ 0 . (G.7)

To obtain a contradiction to the invariance condition (G.4) from Step 1
under assumption (G.5), it remains to show that 𝜓 from (G.7) is strictly
positive with probability greater than zero (w.r.t. 𝑝).

First, the strict monotonicity from (G.6) implies that

𝜓
(
c∗ , (s∗−𝑙 , 𝑠𝑙), (s

∗
−𝑙 , 𝑠𝑙)

)
> 0 , ∀(𝑠𝑙 , 𝑠𝑙) ∈ (𝑠∗𝑙 , 𝑠

∗
𝑙 +�) × (𝑠

∗
𝑙 −�, 𝑠

∗
𝑙 ) . (G.8)

Note that in order to obtain the strict inequality in (G.8), it is important that
𝑠𝑙 and 𝑠𝑙 take values in disjoint open subsets of the interval (𝑠∗

𝑙
− �, 𝑠∗

𝑙
+ �)

from (G.6).

Since 𝜓 is a composition of continuous functions (absolute value of the
difference of two continuous functions), 𝜓 is continuous.

Consider the open set ℝ>0, and recall that, under a continuous function,
pre-images (or inverse images) of open sets are always open.

Applied to the continuous function 𝜓, this pre-image corresponds to an
open set

U ⊆ C× S× S (G.9)

in the domain of 𝜓 on which 𝜓 is strictly positive.

Moreover, due to (G.8):

{c∗} ×
(
{s∗−𝑙} × (𝑠

∗
𝑙 , 𝑠
∗
𝑙 + �)

)
×

(
{s∗−𝑙} × (𝑠

∗
𝑙 − �, 𝑠

∗
𝑙 )
)
⊂ U, (G.10)

so U is non-empty.

Next, by assumption (iii), there exists at least one subset 𝐴 ⊆ {1, ..., 𝑛𝑠}
of changing style variables such that 𝑙 ∈ 𝐴 and 𝑝𝐴(𝐴) > 0; pick one such
subset and call it 𝐴.

Then, also by assumption (iii), for any s𝐴 ∈ S𝐴, there is an open subset
O(s𝐴) ⊆ S𝐴 containing s𝐴, such that 𝑝s̃𝐴 |s𝐴 (·|s𝐴) > 0 within O(s𝐴).
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Define the following space

R𝐴 := {(s𝐴 , s̃𝐴) : s𝐴 ∈ S𝐴 , s̃𝐴 ∈ O(s𝐴)} (G.11)

and, recalling that 𝐴c = {1, ..., 𝑛𝑠} \ 𝐴 denotes the complement of 𝐴,
define

R := C× S𝐴c ×R𝐴 (G.12)

which is a topological subspace of C× S× S.

By assumptions (ii) and (iii), 𝑝z is smooth and fully supported, and
𝑝s̃𝐴 |s𝐴 (·|s𝐴) is smooth and fully supported on O(s𝐴) for any s𝐴 ∈ S𝐴.
Therefore, the measure �(c,s𝐴c ,s𝐴 ,s̃𝐴)|𝐴 has fully supported, strictly-positive
density on R w.r.t. a strictly positive measure on R. In other words,
𝑝z × 𝑝s̃𝐴 |s𝐴 is fully supported (i.e., strictly positive) on R.

Now consider the intersection U∩Rof the open set Uwith the topological
subspace R.

Since Uis open, by the definition of topological subspaces, the intersection
U∩ R ⊆ R is open in R, (and thus has the same dimension as R if
non-empty).

Moreover, since O(s∗
𝐴
) is open containing s∗

𝐴
, there exists �′ > 0 such that

{s∗−𝑙} × (𝑠
∗
𝑙
− �′, 𝑠∗

𝑙
) ⊂ O(s∗

𝐴
). Thus, for �′′ = min(�, �′) > 0,

{c∗} × {s∗𝐴c} ×
(
{s∗
𝐴\{𝑙}} × (𝑠

∗
𝑙 , 𝑠
∗
𝑙 + �)

)
×

(
{s∗
𝐴\{𝑙}} × (𝑠

∗
𝑙 − �

′′, 𝑠∗𝑙 )
)
⊂ R.

(G.13)
In particular, this implies that

{c∗} ×
(
{s∗−𝑙} × (𝑠

∗
𝑙 , 𝑠
∗
𝑙 + �)

)
×

(
{s∗−𝑙} × (𝑠

∗
𝑙 − �

′′, 𝑠∗𝑙 )
)
⊂ R, (G.14)

Now, since �′′ ≤ �, the LHS of (G.14) is also in U according to (G.10), so
the intersection U∩R is non-empty.

In summary, the intersection U∩R ⊆ R:

▶ is non-empty (since both U and R contain the LHS of (G.10));
▶ is an open subset of the topological subspace R of C×S×S (since

it is the intersection of an open set, U, with R);
▶ satisfies 𝜓 > 0 (since this holds for all of U);
▶ is fully supported w.r.t. the generative process (since this holds for

all of R).

As a consequence,

ℙ (𝜓(c,, s̃) > 0|𝐴) ≥ ℙ(U∩R) > 0, (G.15)

where ℙ denotes probability w.r.t. the true generative process 𝑝.

Since 𝑝𝐴(𝐴) > 0, this is a contradiction to the invariance (G.4) from Step
1.

Hence, assumption (G.5) cannot hold, i.e., h𝑐(c, s) does not depend on
any style variable 𝑠𝑙 . It is thus only a function of c, i.e., ĉ = h𝑐(c).

Finally, smoothness and invertibility of h𝑐 : C→ C follow from smooth-
ness and invertibility of h, as established in Step 1.
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This concludes the proof that ĉ is related to the true content c via a
smooth invertible mapping.

G.1.2 Proof of Thm. 8.4.2

Theorem 8.4.2 (Identifying content with an invertible encoder) Assume
the same data generating process (§ 8.3) and conditions (i)-(iv) as in Thm. 8.4.1.
Let g : X→ Z be any smooth and invertible function which minimises the
following functional:

LAlign(g) := 𝔼(x,x̃)∼𝑝x,x̃

[��������g(x)1:𝑛𝑐 − g(x̃)1:𝑛𝑐

��������2
2

]
(8.4)

Then g block-identifies the true content variables in the sense of Defini-
tion 8.4.1.

Proof. As in the proof of Thm. 8.4.1, the proof again consists of two main
steps.

In the first step, we show that the representation ẑ = g(x) extracted by any
g that minimises LAlign is related to the true latent z through a smooth
invertible mapping h, and that ẑ must satisfy invariance across (x, x̃)
in the first 𝑛𝑐 (content) components almost surely (a.s.) with respect to
(w.r.t.) the true generative process.

In the second step, we use the same argument by contradiction as in Step
2 of the proof of Thm. 8.4.1, to show that ĉ = h(z)1:𝑛𝑐 can only depend on
the true content c and not on style s.

Step 1. From the form of the objective (8.4), it is clear that LAlign ≥ 0
with equality if and only if g(x̃)1:𝑛𝑐 = g(x)1:𝑛𝑐 for all (x, x̃) s.t. 𝑝x,x̃(x, x̃) > 0.

Moreover, it follows from the assumed generative process that the global
minimum of zero is attained by the true unmixing f−1 since

f−1(x)1:𝑛𝑐 = c = c̃ = f−1(x̃)1:𝑛𝑐 (G.16)

holds a.s. (i.e., with probability one) w.r.t. the true generative process 𝑝.

Hence, there exists at least one smooth invertible function (f−1) which
attains the global minimum.

Let g be any function attaining the global minimum of LAlign of zero.

As argued above, this implies that (a.s. w.r.t. 𝑝):

g(x̃)1:𝑛𝑐 = g(x)1:𝑛𝑐 . (G.17)

Writing g = h ◦ f−1, where h is the smooth, invertible function h = g ◦ f
we obtain (a.s. w.r.t. 𝑝):

ĉ = h(z̃)1:𝑛𝑐 = h(z)1:𝑛𝑐 . (G.18)

Note that this is the same invariance condition as (G.4) derived in Step 1
of the proof of Thm. 8.4.1.
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Step 2. It remains to show that h(z)1:𝑛𝑐 can only depend on the true
content c and not on any of the style variables s. To show this, we use the
same Step 2 as in the proof of Thm. 8.4.1.

G.1.3 Proof of Thm. 8.4.3

Theorem 8.4.3 (Identifying content with discriminative learning and a
non-invertible encoder) Assume the same data generating process (§ 8.3)
and conditions (i)-(iv) as in Thm. 8.4.1. Let g : X→ (0, 1)𝑛𝑐 be any smooth
function which minimises the following functional:

LAlignMaxEnt(g) := 𝔼(x,x̃)∼𝑝x,x̃

[��������g(x) − g(x̃)
��������2

2

]
− 𝐻 (g(x)) (8.5)

where 𝐻(·) denotes the differential entropy of the random variable g(x) taking
values in (0, 1)𝑛𝑐 . Then g block-identifies the true content variables in the
sense of Defn. 8.4.1.

Proof. The proof consists of three main steps.

In the first step, we show that the representation ĉ = g(x) extracted by
any smooth function g that minimises (8.5) is related to the true latent z
through a smooth mapping h; that ĉ must satisfy invariance across (x, x̃)
almost surely (a.s.) with respect to (w.r.t.) the true generative process 𝑝;
and that ĉ must follow a uniform distribution on (0, 1)𝑛𝑐 .

In the second step, we use the same argument by contradiction as in Step
2 of the proof of Thm. 8.4.1, to show that ĉ = h(z) can only depend on
the true content c and not on style s.

Finally, in the third step, we show that h must be a bĳection, i.e., invertible,
using a result from [88].

Step 1. The global minimum of LAlignMaxEnt is reached when the first
term (alignment) is minimised (i.e., equal to zero) and the second term
(entropy) is maximised.

Without additional moment constraints, the unique maximum entropy
distribution on (0, 1)𝑛𝑐 is the uniform distribution [211, 526].

First, we show that there exists a smooth function g∗ : X→ (0, 1)𝑛𝑐 which
attains the global minimum of LAlignMaxEnt.

To see this, consider the function f−1
1:𝑛𝑐 : X→ C, i.e., the inverse of the

true mixing f, restricted to its first 𝑛𝑐 dimensions. This exists and is
smooth since f is smooth and invertible by assumption (i). Further, we
have f−1(x)1:𝑛𝑐 = c by definition.

We now build a function d : C→ (0, 1)𝑛𝑐 which maps c to a uniform
random variable on (0, 1)𝑛𝑐 using a recursive construction known as the
Darmois construction [69, 70].

Specifically, we define

𝑑𝑖(c) := 𝐹𝑖(𝑐𝑖 |c1:𝑖−1) = ℙ(𝐶𝑖 ≤ 𝑐𝑖 |c1:𝑖−1), 𝑖 = 1, ..., 𝑛𝑐 , (G.19)
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where 𝐹𝑖 denotes the conditional cumulative distribution function (CDF)
of 𝑐𝑖 given c1:𝑖−1.

By construction, d(c) is uniformly distributed on (0, 1)𝑛𝑐 [69, 70].

Further, d is smooth by the assumption that 𝑝z (and thus 𝑝c) is a smooth
density.

Finally, we define

g∗ := d ◦ f−1
1:𝑛𝑐 : X→ (0, 1)𝑛𝑐 , (G.20)

which is a smooth function since it is a composition of two smooth
functions.

Claim G.1.1 g∗ as defined in (G.20) attains the global minimum of
LAlignMaxEnt.

Proof of Claim G.1.1. Using f−1(x)1:𝑛𝑐 = c and f−1(x̃)1:𝑛𝑐 = c̃, we have

LAlignMaxEnt(g∗) = 𝔼(x,x̃)∼𝑝(x,x̃)

[��������g∗(x) − g∗(x̃)
��������2

2

]
− 𝐻 (g∗(x)) (G.21)

= 𝔼(x,x̃)∼𝑝(x,x̃)

[��������d(c) − d(c̃)
��������2

2

]
− 𝐻 (d(c)) (G.22)

= 0 (G.23)

where in the last step we have used the fact that c = c̃ almost surely w.r.t.
to the ground truth generative process 𝑝 described in § 8.3, so the first
term is zero; and the fact that d(c) is uniformly distributed on (0, 1)𝑛𝑐
and the uniform distribution on the unit hypercube has zero entropy, so
the second term is also zero.

Next, let g : X→ (0, 1)𝑛𝑐 be any smooth function which attains the global
minimum of (8.5), i.e.,

LAlignMaxEnt(g) = 𝔼(x,x̃)∼𝑝(x,x̃)

[��������g(x) − g(x̃)
��������2

2

]
− 𝐻 (g(x)) = 0. (G.24)

Define h := g ◦ f : Z→ (0, 1)𝑛𝑐 which is smooth because both g and f
are smooth.

Writing x = f(z), (G.24) then implies in terms of h:

𝔼(x,x̃)∼𝑝(x,x̃)

[��������h(z) − h(z̃)
��������2

2

]
= 0 , (G.25)

𝐻 (h(z)) = 0 . (G.26)

Equation (G.25) implies that the same invariance condition (G.4) used in
the proofs of Thms. 8.4.1 and 8.4.2 must hold (a.s. w.r.t. 𝑝), and (G.26)
implies that ĉ = h(z)must be uniformly distributed on (0, 1)𝑛𝑐 .
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Step 2. Next, we show that h(z) = h(c, s) can only depend on the true
content c and not on any of the style variables s. For this we use the same
Step 2 as in the proofs of Thms. 8.4.1 and 8.4.2.

Step 3. Finally, we show that the mapping ĉ = h(c) is invertible.

To this end, we make use of the following result from [88].

Proposition G.1.2 (Proposition 5 of [88]) Let M,Nbe simply connected
and oriented C1 manifolds without boundaries and ℎ : M → N be a
differentiable map. Further, let the random variable z ∈ M be distributed
according to z ∼ 𝑝(z) for a regular density function 𝑝, i.e., 0 < 𝑝 < ∞. If the
pushforward 𝑝#ℎ(z) of 𝑝 through ℎ is also a regular density, i.e., 0 < 𝑝#ℎ < ∞,
then ℎ is a bĳection.

We apply this result to the simply connected and oriented C1 manifolds
without boundaries M = C and N = (0, 1)𝑛𝑐 , and the smooth (hence,
differentiable) map h : C→ (0, 1)𝑛𝑐 which maps the random variable c
to a uniform random variable ĉ (as established in Step 1).

Since both 𝑝c (by assumption) and the uniform distribution (the push-
forward of 𝑝c through h) are regular densities in the sense of Proposi-
tion G.1.2, we conclude that h is a bĳection, i.e., invertible.

We have shown that for any smooth g : X→ (0, 1)𝑛𝑐 which minimises
LAlignMaxEnt, we have that ĉ = g(x) = h(c) for a smooth and invertible
h : C→ (0, 1)𝑛𝑐 , i.e., c is block-identified by g.

G.2 Additional details on the Causal3DIdent
data set

Using the Blender rendering engine [527], 3DIdent [88] is a recently
proposed benchmark which contains hallmarks of natural environments
(e.g. shadows, different lighting conditions, a 3D object), but allows for
identifiability evaluation by exposing the underlying generative factors.

Each 224 × 224 × 3 image in the dataset shows a coloured 3D object
which is located and rotated above a coloured ground in a 3D space.
Furthermore, each scene contains a coloured spotlight which is focused
on the object and located on a half-circle around the scene. The images are
rendered based on a 10-dimensional latent, where: (i) three dimensions
describe the XYZ position of the object, (ii) three dimensions describe
the rotation of the object in Euler angles, (iii) two dimensions describe
the colour (hue) of the object and the ground of the scene, respectively,
and (iv) two dimensions describe the position and colour (hue) of the
spotlight. For influence of the latent factors on the renderings, see Fig. 2
of [88].
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G.2.1 Details on introduced object classes

3DIdent contained a single object class, Teapot [383]. We add six addi-
tional object classes: Hare [384], Dragon [385], Cow [386], Armadillo [387],
Horse [388], Head [389].

G.2.2 Details on latent causal graph

In 3DIdent, the latents are uniformly sampled independently. We instead
impose a causal graph over the variables (see Fig. 8.2). While object
class and all environment variables (spotlight position, spotlight hue,
background hue) are sampled independently, all object variables are
dependent. Specifically, for spotlight position, spotlight hue, and back-
ground hue, we sample from 𝑈(−1, 1). We impose the dependence by
varying the mean (�) of a truncated normal distribution with standard
deviation 𝜎 = 0.5, truncated to the range [−1, 1].

Object rotation is dependent solely on object class, see Tab. G.1 for details.
Object position is dependent on both object class & spotlight position,
see Tab. G.2. Object hue is dependent on object class, background hue, &
object hue, see Tab. G.3. Hares blending into their environment as a form
of active camouflage has been observed in Alaskan [390], Arctic [391], &
Snowshoe hares.

object class �(𝜙) �(�) �(𝜓)
Teapot -0.35 0.35 0.35
Hare 0.35 -0.35 0.35

Dragon 0.35 0.35 -0.35
Cow 0.35 -0.35 -0.35

Armadillo -0.35 0.35 -0.35
Horse -0.35 -0.35 0.35
Head -0.35 -0.35 -0.35

Table G.1: Given a certain object class,
the center of the truncated normal dis-
tribution from which we sample rotation
latents varies.

object class �(𝑥) �(𝑦) �(𝑧)
Teapot 0 0 0
Hare − sin(posspl) − cos(posspl) 0

Dragon − sin(posspl) − cos(posspl) 0
Cow sin(posspl) cos(posspl) 0

Armadillo sin(posspl) cos(posspl) 0
Horse − sin(posspl) − cos(posspl) 0
Head sin(posspl) cos(posspl) 0

Table G.2: Given a certain object class &
spotlight position, the center of the trun-
cated normal distribution from which we
sample 𝑥𝑦-position latents varies. Note
the spotlight position posspl is rescaled
from [−1, 1] to [−𝜋/2,𝜋/2].

G.2.3 Dataset Visuals

We show 40 random samples from the marginal of each object class in
Causal3DIdent in Figs. G.1 to G.7.
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object class �(hue)
Teapot 0
Hare huebg+huespl

2
Dragon −huebg+huespl

2

Cow −0.35
Armadillo 0.7

Horse −0.7
Head 0.35

Table G.3: Given a certain object class,
background hue, and spotlight hue, the
center of the truncated normal distribu-
tion from which we sample the object hue
latent varies. Note that for the Hare and
Dragon classes, in particular, the object
either blends in or stands out from the
environment.

Figure G.1: 40 random samples from the
marginal distribution of the Teapot object
class.

Figure G.2: 40 random samples from the
marginal distribution of the Hare object
class.

Figure G.3: 40 random samples from
the marginal distribution of the Dragon
object class.
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Figure G.4: 40 random samples from the
marginal distribution of the Cow object
class.

Figure G.5: 40 random samples from the
marginal distribution of the Armadillo
object class.

Figure G.6: 40 random samples from the
marginal distribution of the Horse object
class.

Figure G.7: 40 random samples from the
marginal distribution of the Head object
class.
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G.3 Additional results

▶ Appendix G.3.1 contains numerical experiments, namely linear
evaluation & an ablation on dim(ĉ).

▶ Appendix G.3.2 contains experiments on Causal3DIdent, namely (i)
nonlinear & linear evaluation results of the output & intermediate
feature representation of SimCLRwith results for the individual axes
of object position & rotation, and (ii) evaluation of BarlowTwins.

▶ Appendix G.3.3 contains experiments on the MPI3D-real dataset [393],
namely SimCLR & a supervised sanity check.

G.3.1 Numerical Data

In Tab. G.4, we report mean ± std. dev. 𝑅2 over 3 random seeds across
four generative processes of increasing complexity using linear (instead
of nonlinear) regression to predict c from ĉ. The block-identification of
content can clearly still be seen even if we consider a linear fit.

In Fig. G.8, we perform an ablation on dim(ĉ), visualising how varying
the dimensionality of the learnt representation affects identifiability of
the ground-truth content & style partition. Generally, if dim(ĉ) < 𝑛𝑐 ,
there is insufficient capacity to encode all content, so a lower-dimensional
mixture of content is learnt. Conversely, if dim(ĉ) > 𝑛𝑐 , the excess capacity
is used to encode some style information, as that increases entropy.

Generative process 𝑹2 (linear)

p(chg.) Stat. Cau. Content c Style s

1.0 ✗ ✗ 1.00 ± 0.00 0.00 ± 0.00
0.75 ✗ ✗ 0.99 ± 0.00 0.00 ± 0.00
0.75 ✓ ✗ 0.97 ± 0.03 0.37 ± 0.05
0.75 ✓ ✓ 0.98 ± 0.01 0.78 ± 0.07

Table G.4: Results using linear regres-
sion for the experiment on numerical
data presented in Subsection 8.5.1
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Figure G.8: Identifiability of the content & style partition in the numerical experiment as a function of the model latent dimensionality

On Dependence. As can be seen from Tab. G.4, the corresponding
inset table in § 8.5.1, and Fig. G.8, scores for identifying style increase
substantially when statistical dependence within blocks and causal
dependence between blocks are included. This finding can be explained
as follows.

If we compare the performance for small latent dimensionalities (dim(ĉ) <
𝑛𝑐) between the first two (without) and the third plot (with statistical
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dependence) of Fig. G.8, we observe a significantly higher score in identi-
fying content for the latter (e.g., 𝑅2 of ca. 0.4 vs 0.2 at dim(ĉ) = 1). This
suggest that the introduction of statistical dependence between content
variables (as well as between style variables, and in how style variables
change) in the third plot/row, reduces the effective dimensionality of
the ground-truth latents and thus leads to higher content identifiability
for the same dim(ĉ) < 𝑛𝑐 . Since the 𝑅2 for content is already close to
1 for dim(ĉ) = 3 in the third plot of Fig. G.8 (due to the smaller effec-
tive dimensionality induced by statistical dependence between c), when
dim(ĉ) = 𝑛𝑐 = 5 is used (as reported in Tab. G.4), excess capacity is used
to encode style, leading to a positive 𝑅2.

Regarding causal dependence (i.e., the fourth plot in Fig. G.8 and fourth
row in Tab. G.4), we note that the ground truth dependence between c
and s is linear, i.e., 𝑝(|c) is centred at a linear transformation a + 𝐵c of c,
see the data generating process in Appendix G.4 for details. Given that
our evaluation consists of predicting the ground truth c and s from the
learnt representation ĉ = g(x), if we were to block-identify c according
to Defn. 8.4.1, we should be able to also predict some aspects of s from
ĉ, due to the linear dependence between c and s. This manifests in a
relatively large 𝑅2 for s in the last row of Tab. G.4 and the corresponding
table in § 8.5.1.

To summarise, we highlight two main takeaways: (i) when latent depen-
dence is present, this may reduce the effective dimensionality, so that
some style is encoded in addition to content unless a smaller represen-
tation size is chosen; (ii) even though the learnt representation isolates
content in the sense of Defn. 8.4.1, it may still be predictive of style when
content and style are (causally) dependent.

G.3.2 Causal3DIdent

Full version of Tab. 8.2: In Tab. G.5, we a) provide the results for the
individual axes of object position & rotation and b) present additional
rows omitted from Tab. 8.2 for space considerations.

Interestingly, we find that the variance across the individual axes is
significantly higher for object position than object rotation. If we compare
the causal dependence imposed for object position (see Tab. G.2) to
the causal dependence imposed for object rotation (see Tab. G.1), we
can observe that the dependence imposed over individual axes is also
significantly more variable for position than rotation, i.e., for 𝑥 the sine
nonlinearity is used, for 𝑦 the cosine nonlinearity is used, while for 𝑧, no
dependence is imposed.

Regarding the additional rows, we can observe that the composition of
image-level rotation & crops yields results quite similar to solely using
crops, a relationship which mirrors how transforming the rotation &
position latents yields results quite similar to solely transforming the
position latents. This suggests that the rotation variables are difficult to
disentangle from the position variables in Causal3DIdent, regardless of
whether data augmentation or latent transforms are used.
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Finally, we can observe that applying image-level rotation in conjunction
with small crops & colour distortion does lead to a difference in the encod-
ing, background hue is preserved, while the scores for object position &
rotation appear to slightly decrease. When using three augmentations as
opposed to two, the effects of the individual augmentations are lessened.
While colour distortion discourages the encoding of background hue,
both small crops & image-level rotation encourages it, and thus it is pre-
served when all three augmentations are used. While colour distortion
encourages the encoding of object position & rotation, both small crops
& image-level rotation discourage it, but as a causal relationship exists
between the class variable and said latents, the scores merely decrease,
the latents are still for the most part preserved. In reality, where complex
interactions between latent variables abound, the effect of data augmen-
tations may be uninterpretable, however with Causal3DIdent, we are
able to interpret their effects in the presence of rich visual complexity and
causal dependencies, even when applying three distinct augmentations
in tandem.

Table G.5: Full version of Tab. 8.2.

Views generated by Class Positions Hues Rotations

object(𝑥) object(𝑦) object(𝑧) spotlight object spotlight background object(𝜙) object(�) object(𝜓)
DA: colour distortion 0.42 ± 0.01 0.58 ± 0.01 0.75 ± 0.00 0.52 ± 0.01 0.17 ± 0.00 0.10 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.36 ± 0.01 0.33 ± 0.01 0.32 ± 0.00
LT: change hues 1.00 ± 0.00 0.81 ± 0.02 0.81 ± 0.02 0.15 ± 0.02 0.91 ± 0.00 0.30 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.02 0.30 ± 0.01 0.30 ± 0.01

DA: crop (large) 0.28 ± 0.04 0.04 ± 0.02 0.03 ± 0.01 0.19 ± 0.02 0.21 ± 0.13 0.87 ± 0.00 0.09 ± 0.02 1.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.00 0.02 ± 0.00
DA: crop (small) 0.14 ± 0.00 0.00 ± 0.00 0.01 ± 0.02 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
LT: change positions 1.00 ± 0.00 0.01 ± 0.00 0.47 ± 0.01 0.01 ± 0.00 0.00 ± 0.01 0.46 ± 0.02 0.00 ± 0.00 0.97 ± 0.00 0.30 ± 0.00 0.29 ± 0.00 0.28 ± 0.00

DA: crop (large) + colour distortion 0.97 ± 0.00 0.59 ± 0.03 0.52 ± 0.01 0.68 ± 0.01 0.59 ± 0.05 0.28 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.74 ± 0.01 0.78 ± 0.00 0.72 ± 0.00
DA: crop (small) + colour distortion 1.00 ± 0.00 0.72 ± 0.02 0.65 ± 0.02 0.70 ± 0.00 0.93 ± 0.00 0.30 ± 0.01 0.00 ± 0.00 0.02 ± 0.03 0.53 ± 0.00 0.57 ± 0.01 0.58 ± 0.01
LT: change positions + hues 1.00 ± 0.00 0.10 ± 0.10 0.49 ± 0.02 0.06 ± 0.05 0.07 ± 0.08 0.32 ± 0.02 0.00 ± 0.01 0.02 ± 0.03 0.34 ± 0.09 0.34 ± 0.04 0.34 ± 0.08

DA: rotation 0.33 ± 0.06 0.29 ± 0.03 0.11 ± 0.01 0.12 ± 0.04 0.23 ± 0.12 0.83 ± 0.01 0.30 ± 0.12 0.99 ± 0.00 0.02 ± 0.01 0.06 ± 0.03 0.07 ± 0.01
LT: change rotations 1.00 ± 0.00 0.78 ± 0.01 0.72 ± 0.03 0.09 ± 0.03 0.90 ± 0.00 0.41 ± 0.00 0.00 ± 0.00 0.97 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 0.28 ± 0.00

DA: rotation + colour distortion 0.59 ± 0.01 0.63 ± 0.01 0.57 ± 0.08 0.54 ± 0.02 0.21 ± 0.01 0.12 ± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.36 ± 0.03 0.34 ± 0.04 0.30 ± 0.03
LT: change rotations + hues 1.00 ± 0.00 0.80 ± 0.02 0.77 ± 0.01 0.13 ± 0.02 0.91 ± 0.00 0.30 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.28 ± 0.00 0.28 ± 0.01 0.28 ± 0.00

DA: rot. + crop (lg) 0.26 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 0.15 ± 0.04 0.04 ± 0.03 0.84 ± 0.06 0.10 ± 0.01 1.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 0.02 ± 0.00
DA: rot. + crop (sm) 0.15 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
LT: change rot. + pos. 1.00 ± 0.00 0.02 ± 0.03 0.48 ± 0.02 0.01 ± 0.01 0.02 ± 0.03 0.49 ± 0.03 0.03 ± 0.02 0.98 ± 0.00 0.29 ± 0.01 0.28 ± 0.01 0.28 ± 0.01

DA: rot. + crop (lg) + col. dist. 0.99 ± 0.00 0.69 ± 0.03 0.60 ± 0.01 0.70 ± 0.02 0.86 ± 0.03 0.28 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.60 ± 0.01 0.64 ± 0.02 0.61 ± 0.01
DA: rot. + crop (sm) + col. dist. 1.00 ± 0.00 0.61 ± 0.02 0.59 ± 0.01 0.64 ± 0.01 0.82 ± 0.01 0.38 ± 0.00 0.01 ± 0.01 0.78 ± 0.03 0.44 ± 0.00 0.48 ± 0.02 0.45 ± 0.01
LT: change rot. + pos. + hues 1.00 ± 0.00 0.20 ± 0.12 0.50 ± 0.04 0.14 ± 0.11 0.15 ± 0.12 0.32 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.33 ± 0.04 0.33 ± 0.02 0.32 ± 0.03

Linear identifiability: In Tab. G.6, we present results evaluating all
continuous variables with linear regression. While, as expected, 𝑅2 scores
are reduced across the board, we can observe that even with a linear fit,
the patterns observed in Tab. G.5 persist.

Table G.6: Evaluation results using a linear fit for not only class, but all continuous variables.

Views generated by Class Positions Hues Rotations

object(𝑥) object(𝑦) object(𝑧) spotlight object spotlight background object(𝜙) object(�) object(𝜓)
DA: colour distortion 0.42 ± 0.01 0.37 ± 0.03 0.20 ± 0.16 0.23 ± 0.02 0.01 ± 0.01 0.03 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 0.13 ± 0.01 0.04 ± 0.01 0.09 ± 0.02
LT: change hues 1.00 ± 0.00 0.72 ± 0.07 0.56 ± 0.04 −0.00 ± 0.00 0.65 ± 0.07 0.29 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 0.27 ± 0.01 0.26 ± 0.03 0.26 ± 0.01

DA: crop (large) 0.28 ± 0.04 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.07 0.08 ± 0.13 0.51 ± 0.05 0.03 ± 0.02 0.20 ± 0.04 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.00
DA: crop (small) 0.14 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 0.17 ± 0.05 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00
LT: change positions 1.00 ± 0.00 −0.00 ± 0.00 0.44 ± 0.02 −0.00 ± 0.00 −0.00 ± 0.00 0.29 ± 0.04 0.00 ± 0.00 0.73 ± 0.16 0.26 ± 0.01 0.25 ± 0.03 0.25 ± 0.04

DA: crop (large) + colour distortion 0.97 ± 0.00 0.12 ± 0.02 0.24 ± 0.03 0.21 ± 0.00 0.08 ± 0.03 0.13 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 0.14 ± 0.04 0.18 ± 0.05 0.22 ± 0.02
DA: crop (small) + colour distortion 1.00 ± 0.00 0.35 ± 0.02 0.50 ± 0.01 0.19 ± 0.03 0.80 ± 0.01 0.28 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 0.29 ± 0.00 0.30 ± 0.00 0.29 ± 0.01
LT: change positions + hues 1.00 ± 0.00 0.00 ± 0.00 0.42 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.27 ± 0.02 −0.00 ± 0.00 −0.00 ± 0.00 0.23 ± 0.07 0.26 ± 0.03 0.25 ± 0.04

DA: rotation 0.33 ± 0.06 0.04 ± 0.04 0.04 ± 0.00 0.02 ± 0.03 0.12 ± 0.08 0.46 ± 0.06 0.06 ± 0.04 0.30 ± 0.13 0.00 ± 0.00 0.04 ± 0.02 0.02 ± 0.00
LT: change rotations 1.00 ± 0.00 0.34 ± 0.21 0.48 ± 0.03 −0.00 ± 0.00 0.60 ± 0.15 0.28 ± 0.00 0.00 ± 0.00 0.59 ± 0.26 0.27 ± 0.01 0.27 ± 0.00 0.27 ± 0.01

DA: rotation + colour distortion 0.59 ± 0.01 0.31 ± 0.02 0.26 ± 0.06 0.25 ± 0.07 0.02 ± 0.00 0.03 ± 0.02 −0.00 ± 0.00 −0.00 ± 0.00 0.07 ± 0.01 0.06 ± 0.01 0.10 ± 0.01
LT: change rotations + hues 1.00 ± 0.00 0.68 ± 0.02 0.57 ± 0.01 −0.00 ± 0.00 0.72 ± 0.10 0.29 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 0.28 ± 0.00 0.28 ± 0.00 0.28 ± 0.00

DA: rot. + crop (lg) 0.26 ± 0.01 −0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.59 ± 0.05 0.02 ± 0.01 0.20 ± 0.04 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
DA: rot. + crop (sm) 0.15 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 0.29 ± 0.21 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00
LT: change rot. + pos. 1.00 ± 0.00 −0.00 ± 0.00 0.45 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 0.32 ± 0.02 0.00 ± 0.00 0.80 ± 0.09 0.27 ± 0.00 0.27 ± 0.01 0.27 ± 0.01

DA: rot. + crop (lg) + col. dist. 0.99 ± 0.00 0.23 ± 0.04 0.26 ± 0.07 0.26 ± 0.01 0.51 ± 0.14 0.21 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 0.21 ± 0.04 0.28 ± 0.02 0.22 ± 0.02
DA: rot. + crop (sm) + col. dist. 1.00 ± 0.00 0.26 ± 0.02 0.48 ± 0.01 0.21 ± 0.02 0.61 ± 0.01 0.31 ± 0.00 −0.00 ± 0.00 0.34 ± 0.02 0.30 ± 0.00 0.30 ± 0.01 0.29 ± 0.01
LT: change rot. + pos. + hues 1.00 ± 0.00 0.03 ± 0.05 0.46 ± 0.01 0.01 ± 0.01 0.01 ± 0.02 0.29 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 0.27 ± 0.00 0.28 ± 0.01 0.28 ± 0.01
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Intermediate feature evaluation: In Tab. G.7 and Tab. G.8, we present
evaluation based on the representation from an intermediate layer (i.e.,
prior to applying a projection layer [329]) with nonlinear and linear re-
gression for the continuous variables, respectively. Note the intermediate
layer has an output dimensionality of 100. While it is clear that all 𝑅2

scores are increased across the board, we can notice that certain latents
which were discarded in the final layer, were not in an intermediate layer.
For example, with “LT: change hues”, in the final layer the 𝑧-position
was discarded (𝑅2 = 0.15 in Tab. G.5), inexplicably we may add, as
position is content regardless of axis with this latent transformation.
But in the intermediate layer, 𝑧-position was not discarded (𝑅2 = 0.88
in Tab. G.7).

Table G.7: Evaluation of an intermediate layer. Logistic regression used for class, kernel ridge regression used for all continuous variables.

Views generated by Class Positions Hues Rotations

object(𝑥) object(𝑦) object(𝑧) spotlight object spotlight background object(𝜙) object(�) object(𝜓)
DA: colour distortion 0.71 ± 0.02 0.68 ± 0.02 0.80 ± 0.01 0.63 ± 0.01 0.25 ± 0.01 0.13 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.44 ± 0.01 0.48 ± 0.01 0.39 ± 0.00
LT: change hues 1.00 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.88 ± 0.01 0.98 ± 0.00 0.34 ± 0.01 −0.00 ± 0.00 0.20 ± 0.10 0.71 ± 0.02 0.68 ± 0.03 0.68 ± 0.02

DA: crop (large) 0.43 ± 0.03 0.41 ± 0.05 0.35 ± 0.05 0.32 ± 0.04 0.41 ± 0.13 0.88 ± 0.00 0.14 ± 0.03 1.00 ± 0.00 0.03 ± 0.02 0.06 ± 0.01 0.08 ± 0.00
DA: crop (small) 0.20 ± 0.01 0.04 ± 0.05 0.20 ± 0.02 0.01 ± 0.02 0.20 ± 0.03 −0.00 ± 0.00 −0.00 ± 0.00 1.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00
LT: change positions 1.00 ± 0.00 0.78 ± 0.02 0.90 ± 0.01 0.75 ± 0.01 0.59 ± 0.02 0.82 ± 0.01 0.18 ± 0.02 0.99 ± 0.00 0.64 ± 0.02 0.55 ± 0.02 0.56 ± 0.02

DA: crop (large) + colour distortion 1.00 ± 0.00 0.92 ± 0.00 0.83 ± 0.00 0.92 ± 0.00 0.90 ± 0.01 0.29 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.87 ± 0.00 0.90 ± 0.00 0.85 ± 0.00
DA: crop (small) + colour distortion 1.00 ± 0.00 0.92 ± 0.00 0.87 ± 0.01 0.90 ± 0.00 0.97 ± 0.00 0.46 ± 0.04 0.02 ± 0.02 0.58 ± 0.12 0.79 ± 0.01 0.83 ± 0.00 0.79 ± 0.00
LT: change positions + hues 1.00 ± 0.00 0.83 ± 0.04 0.90 ± 0.01 0.81 ± 0.04 0.75 ± 0.08 0.42 ± 0.09 0.04 ± 0.02 0.52 ± 0.20 0.72 ± 0.05 0.69 ± 0.07 0.67 ± 0.06

DA: rotation 0.46 ± 0.04 0.35 ± 0.04 0.19 ± 0.02 0.28 ± 0.04 0.34 ± 0.08 0.85 ± 0.01 0.35 ± 0.12 1.00 ± 0.00 0.03 ± 0.01 0.08 ± 0.02 0.10 ± 0.01
LT: change rotations 1.00 ± 0.00 0.97 ± 0.00 0.96 ± 0.01 0.84 ± 0.01 0.98 ± 0.00 0.82 ± 0.01 0.17 ± 0.02 0.99 ± 0.00 0.64 ± 0.02 0.59 ± 0.01 0.60 ± 0.03

DA: rotation + colour distortion 0.87 ± 0.02 0.76 ± 0.01 0.81 ± 0.01 0.71 ± 0.01 0.39 ± 0.08 0.19 ± 0.02 −0.00 ± 0.00 0.02 ± 0.02 0.55 ± 0.03 0.55 ± 0.03 0.48 ± 0.02
LT: change rotations + hues 1.00 ± 0.00 0.98 ± 0.00 0.97 ± 0.00 0.87 ± 0.00 0.99 ± 0.00 0.39 ± 0.05 0.04 ± 0.02 0.37 ± 0.21 0.69 ± 0.01 0.68 ± 0.01 0.68 ± 0.00

DA: rot. + crop (lg) 0.43 ± 0.03 0.38 ± 0.04 0.34 ± 0.02 0.28 ± 0.03 0.30 ± 0.05 0.86 ± 0.04 0.17 ± 0.02 1.00 ± 0.00 0.02 ± 0.00 0.05 ± 0.01 0.10 ± 0.01
DA: rot. + crop (sm) 0.20 ± 0.01 0.07 ± 0.03 0.09 ± 0.10 0.01 ± 0.01 0.20 ± 0.01 −0.00 ± 0.00 −0.00 ± 0.00 1.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00 −0.00 ± 0.00
LT: change rot. + pos. 1.00 ± 0.00 0.81 ± 0.01 0.90 ± 0.01 0.76 ± 0.01 0.67 ± 0.04 0.84 ± 0.01 0.28 ± 0.04 0.99 ± 0.00 0.62 ± 0.02 0.57 ± 0.01 0.55 ± 0.01

DA: rot. + crop (lg) + col. dist. 1.00 ± 0.00 0.92 ± 0.01 0.89 ± 0.00 0.92 ± 0.00 0.95 ± 0.01 0.30 ± 0.00 0.02 ± 0.02 0.18 ± 0.16 0.81 ± 0.00 0.84 ± 0.00 0.79 ± 0.00
DA: rot. + crop (sm) + col. dist. 1.00 ± 0.00 0.87 ± 0.00 0.85 ± 0.00 0.87 ± 0.00 0.93 ± 0.00 0.71 ± 0.02 0.33 ± 0.05 0.96 ± 0.00 0.72 ± 0.00 0.75 ± 0.00 0.71 ± 0.00
LT: change rot. + pos. + hues 1.00 ± 0.00 0.84 ± 0.02 0.91 ± 0.01 0.82 ± 0.02 0.78 ± 0.06 0.40 ± 0.01 0.06 ± 0.01 0.50 ± 0.05 0.72 ± 0.04 0.70 ± 0.05 0.67 ± 0.04

Table G.8: Evaluation of an intermediate layer. Logistic regression used for class, linear regression used for all continuous variables.

Views generated by Class Positions Hues Rotations

object(𝑥) object(𝑦) object(𝑧) spotlight object spotlight background object(𝜙) object(�) object(𝜓)
DA: colour distortion 0.71 ± 0.02 0.53 ± 0.01 0.70 ± 0.01 0.46 ± 0.01 0.13 ± 0.01 0.11 ± 0.01 −0.01 ± 0.00 0.00 ± 0.00 0.28 ± 0.01 0.19 ± 0.01 0.25 ± 0.01
LT: change hues 1.00 ± 0.00 0.93 ± 0.00 0.93 ± 0.00 0.60 ± 0.04 0.95 ± 0.00 0.31 ± 0.00 0.01 ± 0.01 0.06 ± 0.04 0.44 ± 0.02 0.41 ± 0.02 0.42 ± 0.00

DA: crop (large) 0.43 ± 0.03 0.18 ± 0.06 0.06 ± 0.01 0.17 ± 0.02 0.19 ± 0.14 0.82 ± 0.02 0.08 ± 0.04 0.98 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.05 ± 0.01
DA: crop (small) 0.20 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 0.00 ± 0.01 0.02 ± 0.01 −0.00 ± 0.00 −0.01 ± 0.00 0.99 ± 0.00 −0.01 ± 0.00 −0.01 ± 0.00 −0.00 ± 0.01
LT: change positions 1.00 ± 0.00 0.49 ± 0.04 0.72 ± 0.03 0.43 ± 0.03 0.19 ± 0.03 0.71 ± 0.02 0.09 ± 0.02 0.98 ± 0.00 0.39 ± 0.01 0.36 ± 0.01 0.35 ± 0.00

DA: crop (large) + colour distortion 1.00 ± 0.00 0.67 ± 0.03 0.56 ± 0.01 0.66 ± 0.02 0.67 ± 0.03 0.28 ± 0.00 −0.01 ± 0.00 0.01 ± 0.01 0.58 ± 0.02 0.61 ± 0.02 0.56 ± 0.01
DA: crop (small) + colour distortion 1.00 ± 0.00 0.76 ± 0.01 0.70 ± 0.02 0.68 ± 0.01 0.90 ± 0.00 0.38 ± 0.03 0.00 ± 0.01 0.39 ± 0.13 0.50 ± 0.02 0.50 ± 0.01 0.49 ± 0.01
LT: change positions + hues 1.00 ± 0.00 0.61 ± 0.09 0.74 ± 0.02 0.51 ± 0.08 0.40 ± 0.15 0.34 ± 0.04 0.02 ± 0.01 0.25 ± 0.22 0.47 ± 0.04 0.40 ± 0.02 0.41 ± 0.03

DA: rotation 0.46 ± 0.04 0.21 ± 0.02 0.10 ± 0.01 0.10 ± 0.02 0.21 ± 0.09 0.77 ± 0.01 0.25 ± 0.11 0.97 ± 0.01 0.02 ± 0.01 0.06 ± 0.02 0.08 ± 0.01
LT: change rotations 1.00 ± 0.00 0.92 ± 0.00 0.88 ± 0.01 0.51 ± 0.02 0.95 ± 0.00 0.70 ± 0.06 0.07 ± 0.02 0.98 ± 0.00 0.36 ± 0.01 0.34 ± 0.00 0.34 ± 0.01

DA: rotation + colour distortion 0.87 ± 0.02 0.60 ± 0.01 0.62 ± 0.03 0.52 ± 0.02 0.23 ± 0.02 0.18 ± 0.02 −0.01 ± 0.00 0.02 ± 0.01 0.33 ± 0.04 0.29 ± 0.01 0.28 ± 0.01
LT: change rotations + hues 1.00 ± 0.00 0.94 ± 0.00 0.92 ± 0.01 0.58 ± 0.01 0.96 ± 0.00 0.33 ± 0.02 0.02 ± 0.01 0.15 ± 0.10 0.40 ± 0.02 0.38 ± 0.01 0.41 ± 0.03

DA: rot. + crop (lg) 0.43 ± 0.03 0.24 ± 0.04 0.08 ± 0.02 0.16 ± 0.03 0.07 ± 0.01 0.80 ± 0.04 0.10 ± 0.01 0.98 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.06 ± 0.01
DA: rot. + crop (sm) 0.20 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 −0.00 ± 0.01 0.04 ± 0.01 −0.01 ± 0.00 −0.01 ± 0.00 0.99 ± 0.00 −0.01 ± 0.00 −0.01 ± 0.00 −0.00 ± 0.01
LT: change rot. + pos. 1.00 ± 0.00 0.55 ± 0.05 0.72 ± 0.02 0.44 ± 0.04 0.31 ± 0.08 0.76 ± 0.01 0.14 ± 0.01 0.99 ± 0.00 0.38 ± 0.01 0.35 ± 0.01 0.36 ± 0.02

DA: rot. + crop (lg) + col. dist. 1.00 ± 0.00 0.71 ± 0.01 0.69 ± 0.01 0.69 ± 0.00 0.84 ± 0.03 0.28 ± 0.00 −0.00 ± 0.00 0.07 ± 0.07 0.51 ± 0.01 0.50 ± 0.02 0.51 ± 0.01
DA: rot. + crop (sm) + col. dist. 1.00 ± 0.00 0.66 ± 0.00 0.69 ± 0.01 0.65 ± 0.02 0.83 ± 0.00 0.57 ± 0.03 0.18 ± 0.02 0.89 ± 0.01 0.46 ± 0.01 0.45 ± 0.02 0.44 ± 0.01
LT: change rot. + pos. + hues 1.00 ± 0.00 0.65 ± 0.04 0.75 ± 0.05 0.57 ± 0.03 0.49 ± 0.12 0.35 ± 0.01 0.02 ± 0.01 0.23 ± 0.04 0.48 ± 0.04 0.43 ± 0.01 0.43 ± 0.01

In [329], the value in evaluating an intermediate layer as opposed to a
final layer is discussed, where the authors demonstrated that predicting
the data augmentations applied during training is significantly more
accurate from an intermediate layer as opposed to the final layer, implying
that the intermediate layer contains much more information about the
transformation applied. Our results suggest a distinct hypothesis, the
value in using an intermediate layer as a representation for downstream
tasks is not due to preservation of style information, as can be seen, 𝑅2

scores on style variables are not significantly higher in Tab. G.7 relative
to Tab. G.5. The value is in preservation of all content variables, as we
can observe certain content variables are discarded in the final layer,
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Table G.9: BarlowTwins � = 0.0051 results: 𝑅2 mean ± std. dev. over 3 random seeds. DA: data augmentation, LT: latent
transformation, bold: 𝑅2 ≥ 0.5, red: 𝑅2 < 0.25. Results for individual axes of object position & rotation are aggregated.

Views generated by Class Positions Hues Rotations
object spotlight object spotlight background

DA: colour distortion 0.48 ± 0.02 0.51 ± 0.14 0.07 ± 0.01 0.08 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.21 ± 0.04
LT: change hues 1.00 ± 0.00 0.56 ± 0.20 0.76 ± 0.07 0.30 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.35 ± 0.01

DA: crop (large) 0.17 ± 0.02 0.10 ± 0.03 0.06 ± 0.02 0.29 ± 0.13 0.11 ± 0.05 0.99 ± 0.00 0.02 ± 0.01
DA: crop (small) 0.15 ± 0.00 0.04 ± 0.02 0.05 ± 0.02 0.02 ± 0.01 0.00 ± 0.01 1.00 ± 0.00 0.00 ± 0.01
LT: change positions 0.88 ± 0.00 0.19 ± 0.20 0.05 ± 0.00 0.50 ± 0.02 0.04 ± 0.01 0.98 ± 0.00 0.27 ± 0.03

DA: crop (large) + colour distortion 0.87 ± 0.02 0.49 ± 0.06 0.32 ± 0.03 0.25 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.50 ± 0.02
DA: crop (small) + colour distortion 0.81 ± 0.01 0.39 ± 0.07 0.42 ± 0.06 0.47 ± 0.04 0.03 ± 0.01 0.85 ± 0.02 0.30 ± 0.02
LT: change positions + hues 1.00 ± 0.00 0.28 ± 0.20 0.12 ± 0.05 0.31 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.37 ± 0.06

but are preserved in an intermediate layer. With that being said, our
theoretical result applies to the final layer, which is why said results were
highlighted in the main paper. The discarding of certain content variables
is an empirical phenomenon, likely a consequence of a limited number
of negative samples in practice, leading to certain content variables being
redundant, or unnecessary, for solving the contrastive objective.

The fact that we can recover certain content variables which appeared
discarded in the output from the intermediate layer may suggest that
we should be able to decode class. While scores are certainly increased,
we do not see such drastic differences in 𝑅2 scores, as was seen above.
The drastic difference highlighted above was with regards to latent
transformation, for which we always observed class encoded as a content
variable. So, unfortunately, using an intermediate layer does not rectify
the discrepancy between data augmentations and latent transformations.
While latent transformations allow us to better interpret the effect of
certain empirical techniques [329], as discussed in the main paper, we
cannot make a one-to-one correspondence between data augmentations
used in practice and latent transformations.

BarlowTwins: We repeat our analysis from § 8.5.2 usingBarlowTwins [365]
(instead of SimCLR) which, as discussed at the end of § 8.4.2, is also loosely
related to Thm. 8.4.3. The BarlowTwins objective consists of an invariance
term, which equates the diagonal elements of the cross-correlation matrix
to 1, thereby making the embedding invariant to the distortions applied
and a redundancy reduction term, which equates the off-diagonal el-
ements of the cross-correlation matrix to 0, thereby decorrelating the
different vector components of the embedding, reducing the redundancy
between output units.

In Tab. G.9 we train BarlowTwins with � = 0.0051, the default value
for the hyperparameter which weights the redundancy reduction term
relative to the invariance term. To confirm the insights are robust to the
value of �,in Tab. G.10, we report results with � increased by an order
of magnitude, � = 0.051. We find that the results mirror Tab. 8.2, e.g.
colour distortion yields a discarding of hue, crops isolate background
hue where the larger the crop, the higher the identifiability of object hue,
and crops & colour distortion yield high accuracy in inferring the object
class variable.
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Table G.10: BarlowTwins � = 0.051 results: 𝑅2 mean ± std. dev. over 3 random seeds. DA: data augmentation, LT: latent
transformation, bold: 𝑅2 ≥ 0.5, red: 𝑅2 < 0.25. Results for individual axes of object position & rotation are aggregated.

Views generated by Class Positions Hues Rotations
object spotlight object spotlight background

DA: colour distortion 0.52 ± 0.07 0.43 ± 0.18 0.07 ± 0.02 0.10 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.21 ± 0.05
LT: change hues 1.00 ± 0.00 0.55 ± 0.24 0.74 ± 0.02 0.30 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.33 ± 0.02

DA: crop (large) 0.19 ± 0.05 0.08 ± 0.02 0.05 ± 0.01 0.39 ± 0.36 0.08 ± 0.05 0.96 ± 0.05 0.01 ± 0.02
DA: crop (small) 0.15 ± 0.00 0.05 ± 0.02 0.07 ± 0.02 0.00 ± 0.01 0.01 ± 0.01 1.00 ± 0.00 0.00 ± 0.00
LT: change positions 0.89 ± 0.01 0.19 ± 0.20 0.05 ± 0.01 0.48 ± 0.04 0.05 ± 0.02 0.98 ± 0.00 0.25 ± 0.03

DA: crop (large) + colour distortion 0.86 ± 0.03 0.40 ± 0.07 0.23 ± 0.02 0.24 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.47 ± 0.04
DA: crop (small) + colour distortion 0.99 ± 0.01 0.63 ± 0.03 0.88 ± 0.01 0.32 ± 0.02 0.00 ± 0.00 0.16 ± 0.13 0.52 ± 0.03
LT: change positions + hues 1.00 ± 0.00 0.21 ± 0.22 0.07 ± 0.01 0.30 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.46 ± 0.06

Table G.11: MPI3D-real results: 𝑅2 mean ± std. dev. over 3 random seeds for dim(ĉ)= 5. DA: data augmentation, bold:
𝑅2 ≥ 0.5, red: 𝑅2 < 0.25.

Views generated by object color object shape object size camera height background color horizontal axis vertical axis

DA: colour distortion 0.39 ± 0.01 0.00 ± 0.00 0.16 ± 0.01 1.00 ± 0.00 0.09 ± 0.15 0.60 ± 0.06 0.42 ± 0.08

DA: crop (large) 0.65 ± 0.17 0.01 ± 0.02 0.31 ± 0.03 1.00 ± 0.00 1.00 ± 0.00 0.37 ± 0.06 0.08 ± 0.03

DA: crop (small) 0.09 ± 0.02 0.03 ± 0.00 0.19 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.21 ± 0.02 0.07 ± 0.00

DA: crop (large) + colour distortion 0.34 ± 0.00 0.00 ± 0.00 0.22 ± 0.03 1.00 ± 0.00 0.39 ± 0.02 0.54 ± 0.01 0.29 ± 0.01

DA: crop (small) + colour distortion 0.25 ± 0.02 0.00 ± 0.00 0.10 ± 0.01 1.00 ± 0.00 0.75 ± 0.16 0.54 ± 0.01 0.29 ± 0.03

G.3.3 MPI3D-real

We ran the same experimental setup as in § 8.5.2 also on the MPI3D-
real dataset [393] containing > 1 million real images with ground-truth
annotations of 3D objects being moved by a robotic arm.

As MPI3D-real contains much lower resolution images (64 × 64) com-
pared to ImageNet & Causal3DIdent (224 × 224), we used the standard
convolutional encoder from the disentanglement literature [72], and ran
a sanity check experiment to verify that by training the same backbone
as in our unsupervised experiment with supervised learning, we can
recover the ground-truth factors from the augmented views. In Tab. G.12,
we observe that only five out of seven factors can be consistently inferred,
object shape and size are somewhat ambiguous even when observing the
original image. Note that while in the self-supervised case, we evaluate
by training a nonlinear regression for each ground truth factor separately,
in the supervised case, we train a network for all ground truth factors
simultaneously from scratch for as many gradient steps as used for
learning the self-supervised model.

In Tab. G.11, we report the evaluation results in the self-supervised
scenario. Subject to the aforementioned caveats, the results show a similar
trend as those on Causal3DIdent, i.e. with colour distortion, color factors
of variation are decoded significantly worse than positional/rotational
information.
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Table G.12: Supervised MPI3D-real results: 𝑅2 mean ± std. dev. over 3 random seeds. DA: data augmentation. bold:
𝑅2 ≥ 0.5, red: 𝑅2 < 0.25.

Views generated by object color object shape object size camera height background color horizontal axis vertical axis

Original 0.90 ± 0.01 0.25 ± 0.02 0.61 ± 0.02 0.99 ± 0.00 0.97 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

DA: colour distortion 0.61 ± 0.01 0.11 ± 0.00 0.47 ± 0.01 0.98 ± 0.00 0.93 ± 0.00 0.99 ± 0.00 1.00 ± 0.00

DA: crop (large) 0.82 ± 0.01 0.05 ± 0.01 0.42 ± 0.02 0.97 ± 0.01 0.91 ± 0.00 0.96 ± 0.00 0.97 ± 0.01

DA: crop (small) 0.71 ± 0.04 0.01 ± 0.00 0.32 ± 0.02 0.95 ± 0.00 0.85 ± 0.01 0.79 ± 0.02 0.90 ± 0.01

DA: crop (large) + colour distortion 0.45 ± 0.02 0.02 ± 0.00 0.22 ± 0.00 0.95 ± 0.01 0.67 ± 0.01 0.91 ± 0.00 0.94 ± 0.00

DA: crop (small) + colour distortion 0.45 ± 0.02 0.00 ± 0.00 0.17 ± 0.02 0.91 ± 0.02 0.55 ± 0.03 0.69 ± 0.01 0.79 ± 0.08

G.4 Experimental details

Ground-truth generative model. The generative process used in our
numerical simulations (§ 8.5.1) is summarised by the following:

c ∼ 𝑝(c) = N(0,Σc), with Σc ∼Wishart𝑛𝑐 (I, 𝑛𝑐),

s|c ∼ 𝑝(s|c) = N(a + 𝐵c,Σs), with Σs ∼Wishart𝑛𝑠 (I, 𝑛𝑠), 𝑎𝑖 , 𝑏𝑖 𝑗
i.i.d.∼ N(0, 1),

s̃𝐴 |s𝐴 , 𝐴 ∼ 𝑝(s̃𝐴 |s𝐴) = 𝑁(s𝐴 ,Σ(𝐴)) with Σ ∼Wishart𝑛𝑠 (I, 𝑛𝑠),
(x̃, x) = (fMLP(z̃), fMLP(z)),

where the set of changing style vectors𝐴 is obtained by flipping a (biased)
coin with p(chg.) = 0.75 for each style dimension independently, and
where Σ(𝐴) denotes the submatrix of Σ defined by selecting the rows
and columns corresponding to subset 𝐴.

When we do not allow for statistical dependence (Stat.) within blocks of
content and style variables, we set the covariance matrices Σc, Σs, and Σ

to the identity. When we do not allow for causal dependence (Cau.) of style
on content, we set 𝑎𝑖 , 𝑏𝑖 𝑗 = 0,∀𝑖 , 𝑗.

For fMLP, we use a 3-layer MLP with LeakyReLU (𝛼 = 0.2) activation
functions, specified using the same process as used in previous work [64,
65, 88]. For the square weight matrices, we draw (𝑛𝑐 + 𝑛𝑠) × (𝑛𝑐 + 𝑛𝑠)
samples from𝑈(−1, 1), and perform 𝑙2 column normalisation. In addition,
to control for invertibility, we re-sample the weight matrices until their
condition number is less than or equal to a threshold value. The threshold
is pre-computed by sampling 24, 975 weight matrices, and recording the
minimum condition number.

Training encoder. Recall that the result of Thm. 8.4.3 corresponds to
minimizing the following functional (8.5):

LAlignMaxEnt(g) := 𝔼(x,x̃)∼𝑝x,x̃

[ (
g(x) − g(x̃)

)2] − 𝐻 (g(x)) .
Note that InfoNCE [325, 329] (8.1) can be rewritten as:

LInfoNCE(g; 𝜏, 𝐾) = 𝔼{x𝑖 ,x̃𝑖 }𝐾𝑖=1∼𝑝x,x̃

[
−∑𝐾

𝑖=1 sim(g(x)𝑖 , g(x̃)𝑖)/𝜏 + log∑𝐾
𝑗=1 exp{sim(g(x)𝑖 , g(x̃)𝑗)/𝜏}

]
.

(G.27)

Thus, if we consider 𝜏 = 1, and sim(𝑢, 𝑣) = −(𝑢 − 𝑣)2,
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1: see [88] for further details

LInfoNCE(g;𝐾) = 𝔼{x𝑖 ,x̃𝑖 }𝐾𝑖=1∼𝑝x,x̃

[ ∑𝐾
𝑖=1

(
g(x)𝑖 − g(x̃)𝑖

)2 + log∑𝐾
𝑗=1 exp{−(g(x)𝑖 − g(x̃)𝑗)2}

]
(G.28)

we can approximately match the form of (8.5). In practice, we use
𝐾 = 6, 144.

For g, as in [88], we use a 7-layer MLP with (default) LeakyReLU (𝛼 = 0.01)
activation functions. As the input dimensionality is (𝑛𝑐 +𝑛𝑠), we consider
the following multipliers [10, 50, 50, 50, 50, 10] for the number of hidden
units per layer. In correspondence with Thm. 8.4.3, we set the output
dimensionality to 𝑛𝑐 .

We train our feature encoder for 300, 000 iterations, using Adam [528]
with a learning rate of 10−4.

Causal3DIdent. We here elaborate on details specific to the experiments
in Subsection 8.5.2. We train the feature encoder for 200, 000 iterations
using Adam with a learning rate of 10−4. For the encoder we use a
ResNet18 [392] architecture followed by a single hidden layer with
dimensionality 100 and LeakyReLU activation function using the default
(0.01) negative slope. The scores are evaluated on a test set consisting of
25, 000 samples not included in the training set.

Data augmentations. We here specify the parameters for the data
augmentations we considered:

▶ colour distortion: see the paragraph labelled “Color distortion” in
Appendix A of [329] for details. We use 𝑠 = 1.0, the default value.

▶ crop: see the paragraph labelled “Random crop and resize to
224 × 224” in Appendix A of [329] for details. For small crops,
a crop of random size (uniform from 0.08 to 1.0 in area) of the
original size is made, which corresponds to what was used in the
experiments reported in [329]. For large crops, a crop of random
size (uniform from 0.8 to 1.0 in area) of the original size is made.

▶ rotation: as specified in the captions for Figure 4 & Table 3 in [329],
we sample one of {0°, 90°, 180°, 270°} uniformly. Note that for the
pair, we sample two values without replacement.

A visual overview of the effect of these image-level data augmentations
is shown in Fig. G.9.

Latent transformations. To generate views via latent transformations
(LT) in our experiments on Causal3DIdent (§ 8.5.2), we proceed as
follows.

Let z refer to the latent corresponding to the original image. For all latents
specified to change, we sample ẑ′ from a truncated normal distribution
constrained to [−1, 1], centered at z, with 𝜎 = 1.. Then, we use nearest-
neighbor matching to find the latent ẑ closest to ẑ′ (in 𝐿2 distance) for
which there exists an image rendering.1
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Figure G.9: Visual overview of the effect of different data augmentations (DA), applied to 10 representative samples. Rows correspond to
(top to bottom): original images, small random crop (+ random flip), large random crop (+ random flip), colour distortion (jitter & drop),
and random rotation.

Evaluation. Recall that Thm. 8.4.3 states that g block-identifies the true
content variables in the sense of Defn. 8.4.1, i.e., there exists an invertible
function h : ℝ𝑛𝑐 → ℝ𝑛𝑐 s.t. ĉ = h(c).

Since this is different from typical evaluation in disentanglement or
ICA in that we do not assume independence and do not aim to find a
one-to-one correspondence between inferred and ground truth latents,
existing metrics, such as MCC [64, 65] or MIG [197], do not apply.

We therefore treat identifying h as a regression task, which we solve using
kernel ridge regression with a Gaussian kernel [67]. Since the Gaussian
kernel is universal, this constitutes a nonparametric regression technique
with universal approximation capabilities, i.e., any nonlinear function
can be approximated arbitrarily well given sufficient data.

We sample 4096 × 10 datapoints from the marginal for evaluation. For
kernel ridge regression, we standardize the inputs and targets, and fit
the regression model on 4096 × 5 (distinct) datapoints. We tune the
regularization strength 𝛼 and kernel variance 𝛾 by 3-fold cross-validated
grid search over the following parameter grids: 𝛼 ∈ [1, 0.1, 0.001, 0.0001],
𝛾 ∈ [0.01, 0.22, 4.64, 100].

Compute. The experiments in Subsection 8.5.1 took on the order of
5-10 hours on a single GeForce RTX 2080 Ti GPU. The experiments
in Subsection 8.5.2 on 3DIdent took 28 hours on four GeForce RTX 2080
Ti GPUs. The creation of the Causal3DIdent dataset additionally required
approximately 150 hours of compute time on a GeForce RTX 2080 Ti.
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