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As machine learning systems become increasingly complex and autonomous, the integra-

tion of uncertainty quantification becomes crucial, especially in high-stakes domains like

healthcare and autonomous driving, where ambiguity can lead to severe consequences.

By offering a clear gauge of prediction confidence, uncertainty quantification supports

informed decision-making and risk management.

Within the realm of healthcare, where diagnostic procedures often depend on var-

ious imaging modalities, modern machine-learning methods are being harnessed to

aid diagnosis. Current advancements in generative machine learning explore the syn-

thesis of different medical imaging modalities, predominantly through image-to-image

translations. Our work demonstrates that integrating aleatoric uncertainty in Generative

Adversarial Networks (GANs) for these translation tasks can amplify interpretability and

accuracy. Consequently, this empowers healthcare professionals with better diagnostic

and treatment decisions, thus enhancing patient outcomes.

In the context of autonomous driving and similar applications, ensuring resilience

to unforeseen perturbations is vital. Traditional deterministic models may falter when

confronted with new situations, constituting a safety hazard. We address this by im-

plementing a probabilistic approach to dense computer vision tasks and utilizing the

Likelihood Annealing technique for uncertainty estimation. These methods amplify

the robustness to unexpected situations and provide a calibrated uncertainty measure,

contributing to the development of safer autonomous systems.

While creating new probabilistic machine learning solutions for vital applications is

a key research area, it’s equally significant to develop methods that leverage large-scale

pretrained models. These deterministic models can be adapted to estimate uncertainties

in a cost-efficient manner regarding data, computation, and other resources, a direction we

explore in this thesis. The work presented herein addresses this issue within the context

of current computer vision systems, including large-scale vision language models crucial

for enabling intelligent multimodal systems.
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Übersetzung mit “Google Translate”. Mit zunehmender Komplexität und Autonomie

von maschinellen Lernsystemen wird die Integration der Unsicherheitsquantifizierung

unerlässlich, insbesondere in hochriskanten Bereichen wie dem Gesundheitswesen und

dem autonomen Fahren, wo Unklarheiten schwerwiegende Folgen haben können. Durch

die Bereitstellung eines klaren Maßes für die Vorhersagegenauigkeit unterstützt die Unsi-

cherheitsquantifizierung fundierte Entscheidungen und Risikomanagement. Bereich der

Gesundheitsversorgung, in dem diagnostische Verfahren oft auf verschiedenen Bildge-

bungsmodalitäten beruhen, werden moderne maschinelle Lernmethoden zur Unterstüt-

zung der Diagnose eingesetzt. Aktuelle Fortschritte im generativen maschinellen Lernen

erforschen die Synthese verschiedener medizinischer Bildgebungsmodalitäten, haupt-

sächlich durch Bild-zu-Bild-Übersetzungen. Unsere Arbeit zeigt, dass die Integration von

aleatorischer Unsicherheit in Generative Adversarial Networks (GANs) für diese Überset-

zungsaufgaben die Interpretierbarkeit und Genauigkeit erhöhen kann. Dies ermöglicht es

medizinischen Fachleuten, bessere diagnostische und therapeutische Entscheidungen zu

treffen und somit die Patientenergebnisse zu verbessern. Kontext des autonomen Fahrens

und ähnlicher Anwendungen ist die Gewährleistung der Widerstandsfähigkeit gegen un-

vorhergesehene Störungen von entscheidender Bedeutung. Traditionelle deterministische

Modelle können versagen, wenn sie mit neuen Situationen konfrontiert werden, was ein Si-

cherheitsrisiko darstellt. Dies wird durch die Anwendung eines probabilistischen Ansatzes

für dichte Computer Vision-Aufgaben und die Verwendung der Likelihood Annealing-

Technik zur Unsicherheitsschätzung adressiert. Diese Methoden erhöhen die Robustheit

gegenüber unerwarteten Situationen und liefern ein kalibriertes Unsicherheitsmaß, das

zur Entwicklung sichererer autonomer Systeme beiträgt. Während die Entwicklung neuer

probabilistischer maschineller Lernlösungen für wichtige Anwendungen ein Schlüsselbe-

reich der Forschung ist, ist es ebenso wichtig, Methoden zu entwickeln, die großskalige

vortrainierte Modelle nutzen. Diese deterministischen Modelle können angepasst wer-

den, um Unsicherheiten auf kosteneffiziente Weise in Bezug auf Daten, Berechnungen

und andere Ressourcen zu schätzen, eine Richtung, die wir in dieser Dissertation un-

tersuchen. Die hier vorgestellten Arbeiten befassen sich mit diesem Thema im Kontext

aktueller Computersichtsysteme, einschließlich großskaliger Vision-Sprachmodelle, die

für die Ermöglichung intelligenter multimodaler Systeme unerlässlich sind.
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1.1 Conceptual relation between different chapters of this thesis (along with their

publication venues). Chapters 2, 3, and 5 discuss various methods where un-

certainty quantification can help in the existing deep learning-based methods

for various problems in computer vision. Chapters 4 and 6 discuss methods

to leverage pretrained large-scare deterministic computer vision models and

estimate the uncertainty for the same efficiently. Chapter 7 discusses a faster

method to estimate the uncertainty of the deep neural network. . . . . . . . 2

2.1 Uncertainty-guided Progressive GANs (UP-GAN): The primary GAN takes

the input image from domain �, while subsequent GANs absorb outputs from

the preceding GAN (see Eq. 2.3 and 2.4). Explicitly guided by the attention

maps, the uncertainty maps are estimated from the preceding GAN. . . . . 8

2.2 Outputs from different phases of UP-GAN (with M=3). (Top) The input (uncor-

rected PET), the corresponding ground-truth CT, mean residual values over

different phases, mean uncertainty values over different phases. (Bottom) Each

row shows the predicted output, the residual between the prediction and the

ground-truth, the predicted scale (�) map, the predicted shape (�) map, the

uncertainty map, and the uncertainty in high residual regions. . . . . . . . 11

2.3 Qualitative results. (Top) PET to CT translation. (Bottom) Undersampled MRI

reconstruction (left), and MRI motion correction (right). We note that UP-GAN

consistently generates higher-quality output that captures much finer details

as compared to baselines such as pix2pix, MedGAN, UP-GAN w/o guidance. 12

2.4 Quantitative results in the presence of limited labeled training data. We

compare the performance of UP-GAN and baselines like pix2pix, PAN, and

MedGAN in terms of metrics like SSIM, PSNR, and MAE with different num-

bers of training samples. We note that UP-GAN performs better than baselines

with limited training samples. . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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3.1 Our UGAC framework with the cycle between two generators. For translat-

ing from � to ⌫ (� ! ⌫), the input 08 is mapped to generalized Gaussian

distribution parameterized by {1̂8 , �̂
1
8
, �̂1

8
}. The backward cycle (� ! ⌫ ! �)

reconstructs the image distribution parameterized by {0̄8 , �̄
0
8
, �̄0

8
}. UGAC uses

L�� objective function in Eq. 3.8 and adversarial losses in Eq. 3.10 and 3.11. 16

3.2 Probability density function (pdf) for generalized Gaussian distribution. Dif-

ferent scale (�) and shape (�) parameters lead to different tail behaviour.

(�, �) = (1, 2) represents Gaussian distribution. . . . . . . . . . . . . . . . . 19

3.3 Evaluation of different methods on Cityscapes with Gaussian perturbation

under varying noise levels. NL0 denotes clean images without noise, NL1,

NL2, NL3 are unseen noise levels. ACC.Segm, IoU.Segm, IoU.P2P are three

metrics for evaluating translation quality. Higher is better. . . . . . . . . . . 22

3.4 Qualitative results on Cityscapes, Google Maps, CMP Facade, and IXI. Outputs

of clean image (at NL0) and perturbed image (at NL3) are shown. (a) input, (1)–

(7) outputs from compared methods, and (8) output from UGAC, (b) ground-

truth images. Outputs of UGAC are much closer to groundtruth images (better

in quality) than the other methods in the presence of noise perturbations. . 24

3.5 Adaptive (�, �)=pred vs. fixed (�, �)=(1, 1) and (�, �)=(1, 2) norm. . . . . . 25

3.6 Visualization of uncertainty maps for noisy input at NL3 (sample from IXI

test-set). (a) Noisy T1w MRI input. (b) Corresponding ground-truth T2w MRI.

(c) Predicted T2w MRI. (d)-(e) Predicted � and � maps. (f) Uncertainty maps

from predicted � and � maps. (g) Absolute residual between the prediction

and the ground-truth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Residual scores vs. uncertainty scores. . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Computer vision models for image enhancements and translations determin-

istically map input to output without producing the uncertainty in the lat-

ter (example on the right shows depth estimation using MonoDepth2 [81]).

BayesCap approximates the underlying distribution and adds uncertainty to

the predictions of pretrained models efficiently, details in Section 4.4.3. . . . 30

4.2 BayesCap (Ω(·; ))) in tandem with the pretrained network with frozen param-

eters (Ψ(·;⇤)) (details in Section 4.4.3). While the pretrained network cannot

estimate the uncertainty, the proposed BayesCap feeds on the output of the

pretrained network and maps it to the underlying probability distribution that

allows computation of well calibrated uncertainty estimates. . . . . . . . . . 34

4.3 Input (LR,x) and output of pretrained SRGAN (SR,ŷ) along with output of

BayesCap ({ỹ, �̃, �̃}). Spatially varying parameters (�̃, �̃) lead to well-calibrated

uncertainty �̃2, highly correlated with the SRGAN error, |y � ŷ|2. . . . . . . 38

4.4 Qualitative example showing the results of the pre-trained SRGAN model

along with the uncertainty maps produced by BayesCap and the other methods.

Uncertainty derived from BayesCap has better correlation with the error. . 38
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4.5 Qualitative example showing the results of the pretrained DeblurGANv2 and

DeepFillv2 on image deblurring (left) and inpainting (right) tasks along with

the uncertainty maps produced by different methods. . . . . . . . . . . . . 39

4.6 Qualitative example showing the results of the pretrained UNet for T1 to T2

MRI translation along with the uncertainty produced by different methods. 40

4.7 Impact of the identity mapping. Degrading the quality of the identity mapping

(SSIM) at inference, leads to poorly calibrated uncertainty (UCE). � represents

the magnitude of noise used for degrading the identity mapping. . . . . . . 41

4.8 BayesCap can be trained to achieve optimal performance in fewer epochs (left),

while being more data-efficient (achieves better results with fewer samples) as

compared to Scratch (middle and right), shown for super-resolution. . . . 41

4.9 BayesCap with MonoDepth2 [81] for depth estimation in autonomous driving.

Trained on KITTI and evaluated on (a) KITTI, (b) Indian Driving Dataset, and

(c) Places365. (d) and (e) Plots show mean uncertainty values and ROC curve

for OOD detection respectively, as described in Section 4.5.4. . . . . . . . . . 43

5.1 The proposed framework USIM-DAL. (Left-to-right) We train a probabilistic

deep network for a dense regression task (e.g., super-resolution) on synthetic

samples obtained from statistical image models as described in Section 6.4. The

pre-trained model is used to identify the high-uncertainty samples from the

domain-specific unlabeled set. Top-K highly uncertain samples are chosen for

labeling on which the pre-trained network is further fine-tuned. . . . . . . . 45

5.2 Samples generated from Statistical Image Models (combination of Spectrum +

WMM + Color histogram). The abstract images generated from such a model

capture the Fourier, Wavelet, and color histogram properties of the color natural

images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Output of the pre-trained probabilistic deep network (which is trained using

synthetic images sampled from statistical image models) on samples from

unseen natural image datasets. (a) LR input, (b) HR groundtruth, (c) Predicted

output, SR, from the network, (d) Predicted uncertainty from the network,

(e) Error between SR and groundtruth. . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Distribution of mean uncertainty for samples in Statistical Image Noise, Pat-

ternNet (satellite), Camelyon (medical), Visual Genome (natural) datasets. . 52

5.5 Evaluation of various methods on histopathology medical domain (i.e., Came-

lyon dataset) and satellite imaging domain (i.e., PatternNet dataset) at various
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1.1 Motivation

The growing demand for intelligent systems in healthcare, autonomous driving, climate

& weather predictions, financial forecasting systems, etc., calls for innovative techniques

based on probabilistic machine learning that allows uncertainty quantification in the

predictions made by the models that can potentially be extremely useful in designing

robust models and also triggering human expert interventions for highly unreliable

predictions, preventing fatal outcomes.

For instance, consider healthcare, where the diagnostic process often relies on imaging

modalities. Recent works in the field often seek to apply modern machine-learning meth-

ods to help in the diagnosis. In fact, recent advancements in generative machine learning

are being explored to synthesize various medical imaging modalities that eventually help

in diagnosis. However, widely used deep learning-based methods are often deterministic

in nature and do not provide a mechanism to flag a wrong/highly-unreliable prediction

post-deployment in the real world. The presence of such a mechanism which can correctly

quantify the uncertainty in the predictions by machine learning models is critical in de-

signing human-in-the-loop systems with real-world experts. For instance, in a healthcare

setting, this may look like the following: A highly accurate probabilistic machine learning

model that produces well-calibrated uncertainty estimates may help healthcare practition-

ers in two ways. (i) The high accuracy of the model may allow significant automation in

the diagnosis pipeline reducing the burden on the practitioners. (ii) The well-calibrated

uncertainty estimates may allow flagging of erroneous or unreliable predictions that get

diverted to human experts, demanding their attention only in critical cases, again easing

the workload on healthcare practitioners while being cognizant about efficient use of

resources in critical scenarios.

Furthermore, many applications in the real world are often embedded in an evolving

environment that may change the nature or quality of the input data over time, also known

as “data drift” a machine learning model trained with a static dataset will potentially

degrade over a time as the data drift becomes stronger. In a healthcare setting, this may

1



CHAPTER 1. THESIS INTRODUCTION

Figure 1.1: Conceptual relation between different chapters of this thesis (along with their
publication venues). Chapters 2, 3, and 5 discuss various methods where uncertainty
quantification can help in the existing deep learning-based methods for various problems
in computer vision. Chapters 4 and 6 discuss methods to leverage pretrained large-scare
deterministic computer vision models and estimate the uncertainty for the same efficiently.
Chapter 7 discusses a faster method to estimate the uncertainty of the deep neural network.

manifest in several forms. For example, the model may be trained with certain demography

of the patients, but over time the demography of incoming patients at the healthcare center,

where the original model is deployed, changes. Even in these scenarios, if the model can

quantify the predictive uncertainty, then one can potentially use it to detect substantial

drift in the data and trigger retraining the model with an updated dataset in order to have

a more robust and reliable model.

Above mentioned scenarios are some of the examples highlighting the importance of

well-calibrated uncertainty quantification in machine learning-based solutions for critical

applications. Therefore, studying and designing such systems are essential for modern

machine-learning models, and this thesis highlights several contributions in this direction.

1.2 Contributions

This thesis primarily deals with tackling uncertainty quantification in the computer vision

domain. It highlights novel use cases of the derived uncertainties and proposes new ways

of estimating the uncertainty in some important concepts in computer vision. Figure 1.1

shows the concept map for this thesis, i.e., how different chapters of the thesis are related

(along with the venues where these chapters are published).

A variety of tasks are considered in the course of work, including image translation,

image enhancement, out-of-distribution detection, and robustness. Moreover, we also

consider recent advanced large-scale multimodal models such as vision-language models
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(VLMs). In the following sections, we discuss several lines of contributions.

First, we consider an important class of problems in computer vision called image-

to-image translation. These applied problems have often been tackled using generative

models like generative adversarial networks (GANs). In particular, we consider medi-

cal image-to-image translation tasks using GANs that have shown impressive outcomes.

However, conventional GAN-based frameworks lack the ability to estimate the uncertain-

ties in the predictions made by the network, a key aspect in making informed medical

decisions. To overcome this limitation, our work proposes an uncertainty-guided progres-

sive learning scheme for image-to-image translation. It effectively incorporates aleatoric

uncertainty as attention maps for GANs that are trained by progressively focussing on

the region in the synthesized images that are highly unreliable (i.e., high uncertainty),

achieving superior performance in several medical image translation tasks.

Second, building on the concept of image-to-image translation, it’s essential to address

the issue of learning inter-image-domain mapping without corresponding image pairs,

a process known as unpaired image-to-image translation. Existing methods often fail to

account for robustness to outliers, causing performance degradation in the face of unseen

perturbations. Our work proposes a novel probabilistic method based on Uncertainty-

aware Generalized Adaptive Cycle Consistency (UGAC) to address this issue, exhibiting

significant robustness towards unseen perturbations in test data.

Third, while probabilistic machine learning techniques are valuable in estimating

uncertainty, training them on large-scale datasets remains a challenge, especially for

many problems in computer vision, often failing to deliver models competitive with non-

Bayesian counterparts. Our work proposes a novel method named “BayesCap”, offering a

memory-efficient solution that can be trained on a small fraction of the original dataset on

top of a large-scale pretrained deterministic computer vision model. This not only equips

pretrained non-Bayesian computer vision models with calibrated uncertainty estimates

but also does so without hampering the model’s performance or necessitating expensive

retraining.

Fourth, while uncertainty estimates have been incorporated in active learning for

classification settings and scalar regression settings, however, it has not been studied if

uncertainty estimates can be used to design active learning methods for dense regression

tasks in computer vision (e.g., image-to-image translation). Our work proposes an active

learning method for dense regression tasks in computer vision models which leverages the

statistical properties of color images to learn informative priors that help in quantifying

uncertainty and serves as a proxy for error, guiding the active learning process. The active

learning method provides a promising solution for addressing the high cost of annotation

and labeling in computer vision, demonstrated for applications in medical imaging and

remote sensing.

Fifth, our proposed work also explores probabilistic approaches in the realm of vision-

language models (VLMs), with a focus on estimating probability distributions for the

embeddings of pre-trained VLMs. By aligning inter/intra-modal, our proposed work

3
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accurately estimates multi-modal embedding uncertainties. Furthermore, estimated un-

certainty aids active learning and model selection, extending the model’s usability.

Lastly, our work highlights a method that learns to estimate calibrated uncertainty

for regression tasks with improved convergence of deep regression models, providing

calibrated uncertainty without any post hoc calibration phase. This is a significant im-

provement on the conventional optimization problem involved in training a model capable

of estimating regression uncertainty, which often produces poorly calibrated uncertainty

estimates that need to be corrected in a post hoc fashion.

In summary, this thesis explores various methods of quantifying uncertainty in widely

applicable machine learning-based computer vision methods and leveraging the derived

uncertainty estimates to enhance the capabilities and/or performance of machine learning-

based computer vision methods.

1.3 Outline

This section briefly overviews every thesis chapter, referencing respective publications and

collaborations, including their contribution to the overall work. Four chapters, i.e., 2,3,4,5,

correspond to the published content, and chapter 6&7 corresponds to two under-review

preprints. All the publications are first-author or shared first-author publications.

Chapter 1: Thesis introduction.

This chapter motivates uncertainty quantification in machine learning-based computer

vision methods, along with the summary of contributions and the outline for the thesis.

Chapter 2: Uncertainty-Guided Progressive GANs for Medical Image Translation.

This chapter corresponds to a published paperat MICCAI 2021, where Tobias Hepp and

Sergios Gatidis played medical advisors, whereas Yabei Chen and Zeynep Akata played

machine learning advisors. The chapter presents a novel approach to improving the

performance of generative adversarial networks (GANs) in medical imaging. It proposes

an uncertainty-guided progressive learning scheme for image-to-image translation where

aleatoric uncertainty estimates are incorporated as attention maps, allowing the GAN to

produce progressively high-fidelity images, leading to improvements in various medical

image translation tasks.

Chapter 3: Robustness via Uncertainty-aware Cycle Consistency.

This chapter corresponds to a published paper at NeurIPS 2021, where Yabei Chen and

Zeynep Akata played advisors. It introduces a novel probabilistic method for unpaired

image-to-image translation. It explains how the model, capable of handling heavy-tailed

distributions, enhances robustness to outliers and unseen perturbations in test data.

Comparisons with other state-of-the-art methods on diverse tasks further highlight the

strengths of the proposed approach.

Chapter 4: BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen

Neural Networks.
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This chapter corresponds to a published paper at ECCV 2022, where Shyamgopal

Karthik was the joint first author, and Massimilano Mancini, Yabei Chen, and Zeynep

Akata played advisors. It proposes BayesCap, a method that allows the estimation of

uncertainty in pre-trained frozen deterministic deep-learning computer vision models.

This approach works by learning a Bayesian identity mapping for pretrained models,

enabling the provision of calibrated uncertainty estimates. The method emphasizes

BayesCap’s memory-efficient nature and ability to enhance various computer vision

models.

Chapter 5: USIM-DAL: Uncertainty-aware Statistical Image Modeling-based Dense

Active Learning for Super-resolution

This chapter corresponds to a published paper at UAI 2023, where Vikrant Rangnekar

was the joint first author, and Biplab Banerjee and Zeynep Akata played advisors. It

dives into the intersection of active learning and dense regression models. It proposes a

new framework, USIM-DAL, that uses probabilistic deep neural networks and aleatoric

uncertainty for active learning in high-dimensional computer vision regression tasks. The

effectiveness of this approach is demonstrated through a variety of applications, including

natural images, medical imaging, and remote sensing.

Chapter 6: ProbVLM: Probabilistic Adapter for Frozen Vison-Language Models.

This chapter corresponds to a preprint (under review), where Shyamgopal Karthik

was the joint first author, and Massimilano Mancini and Zeynep Akata played advisors.

This chapter introduces ProbVLM, a probabilistic adapter for pretrained vision-language

models (VLMs). Itdetails how the methodestimates multi-modalembedding uncertainties.

Furthermore, this chapter explores the use of estimated uncertainty for active learning

and model selection in real-world tasks using vision-language models.

Chapter 7: Likelihood Annealing: Fast Calibrated Uncertainty for Regression.

This chapter corresponds to a preprint (under review), where Jae Myung Kim, Cordelia

Schmidt, Bernhard Schölkopf, and Zeynep Akata played advisors. This presents a fast-

calibrated uncertainty estimation method for regression tasks named Likelihood Anneal-

ing. It explains how the approach accelerates the convergence of deep regression models

and provides calibrated uncertainty without a post hoc calibration phase.

Chapter 8: Thesis Discussion and Conclusion.

This chapter completes the thesis and puts its results into the perspective of the research

field. We discuss the contributions and point to the limitations of our current approaches,

and suggest how they could be addressed in the future.

This arrangement of chapters encapsulates the breadth and depth of the research

conducted, offering insights into each of the investigated areas.
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2.1 Abstract

Image-to-image translation plays a vital role in tackling various medical imaging tasks

such as attenuation correction, motion correction, undersampled reconstruction, and

denoising. Generative adversarial networks have been shown to achieve the state-of-

the-art in generating high fidelity images for these tasks. However, the state-of-the-art

GAN-based frameworks do not estimate the uncertainty in the predictions made by

the network that is essential for making informed medical decisions and subsequent

revision by medical experts and has recently been shown to improve the performance

and interpretability of the model. In this work, we propose an uncertainty-guided

progressive learning scheme for image-to-image translation. By incorporating aleatoric

uncertainty as attention maps for GANs trained in a progressive manner, we generate

images of increasing fidelity progressively. We demonstrate the efficacy of our model

on three challenging medical image translation tasks, including PET to CT translation,

undersampled MRI reconstruction, and MRI motion artefact correction. Our model

generalizes well in three different tasks and improves performance over state of the art

under full-supervision and weak-supervision with limited data. Code is released here:

https://github.com/ExplainableML/UncerGuidedI2I

2.2 Introduction

In the medical domain, each imaging modality reflects particular physical properties of

the tissue under examination. This results in images with different dimensionality, spatial

resolution, and contrast. Various imaging modalities provide a complimentary stream of

information for clinical diagnostics or technical pre and post-processing steps. Moreover,

acquiring medical images is susceptible to various kinds of noise and modality-specific

artefacts. To remedy these issues, translating images between different domains is of great

importance.

6
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2.2. INTRODUCTION

Inter-modal image-to-image translation can potentially replace additional acquisition

procedures, reducing examination costs and time. Besides, intra-modality image-to-

image translation enables complex artefact and noise correction. For example, attenuation

correction of positron emission tomography (PET) data is challenging in situations where

no density distribution is available from computed tomography (CT) data, as in the case

for stand-alone PET scanners or combined PET/magnetic resonance imaging (MRI). In

these situations, the generation of pseudo-CTs from PET data can be helpful. Further

examples are related to image reconstruction and/or correction in MRI: Reconstruction of

undisturbedartifact-free images is hard to achieve with traditionalmethods; deep-learning-

based image-to-image translation can solve this challenge. In particular, generative

adversarial networks (GAN) based on convolutional neural networks (CNN) have proven

to provide a high visual quality of the generated synthetic images. However, predictions

of GANs can be unreliable, and particularly in medical applications, the quantification of

uncertainty is of high importance for the interpretation of the results. In this work, we

propose a generic end-to-end model that introduces high-capacity conditional progressive

GANs to synthesize high-quality images, using aleatoric uncertainty estimates as the guide

to focus on improving image quality in regions where the network is highly uncertain

about the prediction. We perform experiments on three challenging and vital medical

imaging tasks: PET to CT translation, undersampled MRI reconstruction, and motion

correction in MRI. Moreover, we empirically demonstrate the efficacy of our model under

weak supervision with limited data.

2.2.1 Related Works

Traditional machine learning techniques for medical image translation rely on explicit

feature representations [101, 330, 136, 222]. More recently, convolutional neural networks

have been proposed for various image translation tasks [158, 235, 56, 93, 115, 32] and

state-of-the-art performance is achieved by generative adversarial networks [186, 295,

307, 321, 107, 313, 116, 5, 7, 259, 260]. The existing methods propose conditional GAN

architectures with deterministic outputs that typically uses L1/L2-based fidelity loss

for the generator assumes a pixel-wise homoscedasticity and also assumes the pixel-wise

error (i.e., residual) to be independent and identically distributed (i.i.d) following a Laplace

or Gaussian distribution. This is a limiting assumption as explained in [119, 262, 278].

While these methods can provide synthetic images of high visual quality, the image

content may still deviate significantly from the corresponding ground-truth. This results

in overconfidence or misinterpretation with negative consequences, particularly in the

medical domain. There have been recent works on quantifying aleatoric and epistemic

uncertainty in task-specific medical imaging algorithms like classification, segmentation,

super-resolution etc [182, 278, 280, 279, 250] quantifying it for general image-to-image

translation problem largely remains unexplored. Thus, the central motivation of our

work is to provide measures of uncertainty for image-to-image translation tasks that can
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CHAPTER 2. UNCERTAINTY-GUIDED PROGRESSIVE GANS FOR MEDICAL

IMAGE TRANSLATION

Figure 2.1: Uncertainty-guided Progressive GANs (UP-GAN): The primary GAN takes the
input image from domain �, while subsequent GANs absorb outputs from the preceding
GAN (see Eq. 2.3 and 2.4). Explicitly guided by the attention maps, the uncertainty maps
are estimated from the preceding GAN.

contribute to safe applications of results.

Moreover, recent work has shown that high-capacity generators that are progressive

in nature lead to high-quality results as described in [5, 7, 116]. However, the progressive

generation of high-quality images remains unguided without specifically attending to

poorly translated regions. Priorworks indicate a correlation between estimated uncertainty

and prediction error [327, 250, 262]. We exploit this relationship for the progressive

enhancement of synthetic images, which has not been investigated by prior work before.

2.3 Uncertainty-Guided Progressive GAN (UP-GAN)

Let � and ⌫ be two image domains with a set of images (� := {01 , 02...0=} and (⌫ :=

{11 , 12...1<} where 08 and 18 represent the 8C⌘ image from domain � and ⌫ respectively.

Let each image drawn from an underlying unknown probability distribution P�⌫, i.e.,

(08 , 18) ⇠ P�⌫88 have  pixels, and D8: represent the :C⌘ pixel of a particular image D8 . Our

goal is to learn a mapping from domain � to ⌫ (�! ⌫) in a paired manner, i.e., learning

the underlying conditional distribution P⌫|� from the set of given samples {(08 , 18)},

following the distribution P�⌫. For a given image 08 in domain �, the estimated image in

domain ⌫ is called 1̂8 . The pixel wise error is defined as &8 9 = 1̂8 9 � 18 9 . While the existing

framework models the residual as the i.i.d as described above, we relax that assumption

by modelling the residual as non i.i.d variables and learning the optimal distribution from

the dataset, as described in the following.

Figure 6.2 shows our model that consists of cascaded GANs, where each generator

is capable of estimating the aleatoric uncertainty, along with generating images. Our

solution alleviates the aforementioned limitations of recent methods by modelling the

underlying per-pixel residual distribution as independent but non-identically distributed

zero-mean generalized Gaussian distribution (GGD) as in [262], where the network learns to

predict the optimal scale (�) and shape (�) of the GGD for every pixel, Therefore, 1̂8 9 = 18 9+&8 9

with, &8 9 ⇠ ⌧⌧⇡(&; 0, �8 9 , �8 9) ⌘ �8 9(2�8 9�(�
�1
8 9
))�1 exp

⇣
���1

8 9
|& |�8 9

⌘
. We generate images in
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2.3. UNCERTAINTY-GUIDED PROGRESSIVE GAN (UP-GAN)

multiple phases, with each phase generating output images along with the aleatoric

uncertainty estimates. The outputs from one phase serve as the input to the subsequent

GAN in the next phase, explicitly guided by the attention map derived from uncertainty

estimates. Importantly, this uncertainty-based guidance enforces the model to focus

on refining the uncertain regions that are likely to be poorly synthesized, resulting in

progressively improving quality.

Our framework is composed of a sequence of " GANs, where the <C⌘ GAN is repre-

sented by a pair of networks, generator and discriminator, given by, (G<(·;<),D<(·; )<)).

Both the generator and discriminator can have arbitrary network architecture as long

as generator can estimate aleatoric uncertainty as described in [262]. We choose all the

discriminators to be the patch discriminators from [107] and generators to be modified

U-Net [217], where the head is split into three to estimate the parameters of the GGD as

shown in Figure 6.2 and in [262].
Primary GAN. We train the first GAN (G0) using the dataset(� and(⌫. The predictions

of the generator are given by (�̂[0]8 , �̂[0]8 , 1̂[0]8). The network is trained with an adaptive
fidelity loss function L⌧

�� [262] and an adversarial loss L⌧
adv [338], combined as L⌧

tot for
the generator (G0(·;0) : �! ⌫):

L⌧
��(1̂[0]8 , �̂[0]8 , �̂[0]8 , 18) =

1

 

’

9

 
|1̂[0]8 9 � 18 9 |

�̂[0]8 9

! �̂[0]8 9
� log

�̂[0]8 9

�̂[0]8 9
+ log�(�̂�1

[0]8 9
) (2.1)

L⌧
adv = L2(D1(1̂[0]8), 1) and L⌧

tot = ⌫1L⌧
�� + ⌫2L⌧

adv. (2.2)

The patch discriminator (D1) is trained using the adversarial loss from [338] given by

L⇡
adv = L2(D�(18), 1) + L2(D�(1̂[0]8), 0).

Subsequent GANs. The <C⌘ GAN (where < > 0) takes the output produced by the

(<�1)C⌘ GAN, i.e. (�̂[<�1]8 , �̂[<�1]8 , 1̂[<�1]8), along with the original sample 08 from domain

� as its input and generates a refined output. The image estimated by the (< � 1)C⌘ GAN

along with its uncertainty map learns to create the input feature 5[<]8 for the <C⌘ GAN,

where the uncertainty map serves as an attention mechanism to highlight the uncertain

regions in the image. The input 0[<]8 for the <C⌘ generator is given by concatenating 08
and 5[<]8 , i.e.,

�̂[<�1]8 = �̂[<�1]8

vt
�(3/�̂[<�1]8)

�(1/�̂[<�1]8)
, and 5[<]8 = 1̂[<�1]8 �

�̂[<�1]8Õ
9 �̂[<�1]8 9

(2.3)

0[<]8 = concat( 5[<]8 , 08) (2.4)

The input 0[<]8 for the <C⌘ GAN encourages the generator to further refine the highly

uncertain regions in the image given the original input context. The generator and the

discriminator are trained using L⌧
tot and L⇡

adv, respectively.

Progressive training scheme. We initialize the parameters  [ ) sequentially. First,

we initialize 1 [ )1 using the training set ((� , (⌫) to minimize the loss function given

by L⌧
tot and L⇡

adv. Then, for the subsequent GANs, we initialize the < [ )< (< > 1) by

9
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fixing the weights of all the previous generators and training the <C⌘ GAN alone (see

Eq. 2.3 and 2.4 with losses L⌧
tot and L⇡

adv). Once all the parameters have been initialized

(i.e., < [ )<8<), we do further fine tuning by training all the networks end-to-end by

combining the loss functions of all the intermediate phases and a significantly smaller

learning-rate.

2.4 Experiments

In this section, we first detail the experimental setup and comparative methods in Section

7.5.1, and present the corresponding results in Section 2.4.2.

2.4.1 Experimental Setup

Tasks and datasets. We evaluate our method on the following three tasks.

(i) PET to CT translation: We synthesize CT images from PET scans to be used for the

attenuation correction, e.g. for PET-only scanners or PET/MRI. We use paired data sets of

non-attenuation-corrected PET and the corresponding CT of the head region of 49 patients

acquired on a state-of-the-art PET/CT scanner (Siemens Biograph mCT), approved by

ethics committee of the Medical Faculty of the University of Tübingen. Data is split into

29/5/15 for training/val/test sets. Figure 2.2 shows exemplary slices for co-registered

PET and CT.

(ii) Undersampled MRI reconstruction: We translate undersampled MRI images to

fully-sampled MRI images. We use MRI scans from the open-sourced IXI 1 dataset that

consists of T1-weighted (T1w) MRI scans. We use a cohort of 500 patients split into

200/100/200 for training/val/test, and retrospectively create the undersampled MRI with

an acceleration factor of 12.5⇥, i.e., we preserve only 8% of the fully-sampled k-space

measurement (from the central region) to obtain the undersampled image.

(iii) MRI Motion correction: We generate sharp images from motion corrupted images.

We retrospectively create the motion artefacts in the T1w MRI from IXI following the

transformations in the k-space as described in [233]. Figure 2.3-(ii) shows the input MRI

scan with artefacts and ground-truth.

Training details and evaluation metrics. All GANs are first initialized using the

aforementioned progressive learning scheme with (⌫1 ,⌫2) in Eq. 2.2 set to (1, 0.001). We

use Adam [122], with the hyper-parameters �1 := 0.9, �2 := 0.999, an initial learning

rate of 0.002 for initialization and 0.0005 post-initialization that decays based on cosine

annealing over 1000 epochs, using a batch size of 8. We use three widely adopted metrics

to evaluate image generation quality: PSNR measures 20 log MAX�/
p

MSE, where MAX�

is the highest possible intensity value in the image and MSE is the mean-squared-error

between two images. SSIM computes the structural similarity between two images [289].

1from https://brain-development.org/ixi-dataset/
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2.4. EXPERIMENTS

Figure 2.2: Outputs from different phases of UP-GAN (with M=3). (Top) The input
(uncorrectedPET), the corresponding ground-truthCT, mean residualvalues overdifferent
phases, mean uncertainty values over different phases. (Bottom) Each row shows the
predicted output, the residual between the prediction and the ground-truth, the predicted
scale (�) map, the predicted shape (�) map, the uncertainty map, and the uncertainty in
high residual regions.

MAE computes the mean absolute error between two images. Higher PSNR, SSIM, and

lower MAE indicate a higher quality of the generated images (wrt ground-truth).

Compared methods. We compare our model to representative state-of-the-art methods

for medical image translation, including Pix2pix [107], a baseline conditional adversarial

networks for image-to-image translation tasks using GANs, PAN [277], and MedGAN [5],

a GAN-based method that relies on external-pre-trained feature extractors, with a generator

that refines the generated images progressively. MedGAN is shown to perform superior to

methods like, Fila-sGAN [328], ID-cGAN [321], and achieve state-of-the-art performance

for several medical image-to-image translation problems.

2.4.2 Results and Analysis

Qualitative results. Figure 2.2 visualizes the (intermediate) outputs of the generators at

different phases of the framework. The visual quality of the generated image content

increasingly improves along the network phases (as shown in the first column, second

11
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Figure 2.3: Qualitative results. (Top) PET to CT translation. (Bottom) Undersampled
MRI reconstruction (left), and MRI motion correction (right). We note that UP-GAN
consistently generates higher-quality output that captures much finer details as compared
to baselines such as pix2pix, MedGAN, UP-GAN w/o guidance.

Methods
PET to CT Undersampled MRI Recon. MRI Motion Correction

SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR MAE

pix2pix [107] 0.89±0.04 26.0±2.0 38.5±10.7 0.92±0.03 28.5±0.9 27.6±9.3 0.94±0.06 29.6±1.4 26.3±8.2

PAN [277] 0.90±0.08 26.5±4.5 37.2±15.6 0.93±0.05 28.8±0.7 26.2±10.4 0.95±0.10 30.1±2.8 24.9±9.7

MedGAN [5] 0.90±0.04 27.1±2.5 35.4±11.8 0.94±0.02 29.7±1.9 24.2±8.7 0.95±0.04 30.8±1.8 23.6±9.1

UP-GAN 0.95±0.05 28.9±0.4 24.7±12.9 0.97±0.07 29.4±2.1 24.1±7.5 0.96±0.03 32.1±0.3 22.8±11.1

Table 2.1: Evaluation of various methods on three real-world medical image translation
tasks: PET to CT translation, undersampled MRI reconstruction, and MRI motion correc-
tion. We note that UP-GAN consistently performs better than baselines such as pix2pix,
PAN, and MedGAN in terms of metrics like SSIM, PSNE, and MAE.

row onward). At the same time, prediction error and uncertainty decrease continuously

(second column and fifth column, second row onward, respectively). High uncertainty

values are found in anatomical regions with fine osseous structures, such as the nasal

cavity and the inner ear in the petrous portion of the temporal bone. Particularly in such

regions of high uncertainty, we achieve a progressive improvement in the level of detail.

Figure 2.3-(Top) visualizes the generated CT images from the PET for all the compared

12
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Figure 2.4: Quantitative results in the presence of limited labeled training data. We
compare the performance of UP-GAN and baselines like pix2pix, PAN, and MedGAN in
terms of metrics like SSIM, PSNR, and MAE with different numbers of training samples.
We note that UP-GAN performs better than baselines with limited training samples.

methods along with our methods. We observe that more high-frequency features are

present in our prediction compared to the previous state-of-the-art model (MedGAN).

We also observe that the overall residual is significantly lower for our method compared

to the other baselines. MedGAN performs better than pix2pix in synthesizing high-

frequency features and sharper images. Figure 2.3-(Bottom) shows similar results for the

undersampled MRI reconstruction task and MRI motion correction task. In both cases,

our model yields superior images, as can be seen via relatively neutral residual maps.

Quantitative results. Table 2.1 shows the quantitative performance of all the methods

on the three tasks; forall the tasks, ourmethodoutperforms the recentmodels. In particular,

for the most challenging task, PET to CT translation, our method with uncertainty-based

guide outperforms the previous state-of-the-art method, MedGAN (that relies on task-

specific external feature extractor), without using any external feature extractor. Therefore,

the uncertainty guidance reduces the burden of having an externally trained task-specific

feature extractor to achieve high fidelity images. The same trend holds for undersampled

MRI reconstruction and motion correction in MRI. The statistical tests on SSIM values of

MedGAN and our UP-GAN gives us a p-value of 0.016 for PET-to-CT translation, 0.021

for undersampled MRI reconstruction, and 0.036 for MRI motion correction. As all the

p-values are < 0.05, results are statistically significant.

Ablation study. We study the model that does not utilize the estimated uncertainty

maps as attention maps and observe that the model without the uncertainty as the

guide performs inferior to the UP-GAN with a performance (SSIM/PSNR/MAE) of

(0.87/25.4/40.7), (0.93/27.3/38.7), and (0.92/26.2/35.1) for PET to CT translation, under-

sampled MRI reconstruction, and MRI motion correction, respectively. UP-GAN model

leverages the uncertainty map to refine the predictions where the model is uncertain,

which is also correlated to the regions where the translation is poor. The model with-

out uncertainty-based guidance does not focus on the regions mentioned above in the

prediction and is unable to perform as well as UP-GAN.

Evaluating models with weak supervision. We evaluate all the models for PET to CT

synthesis by limiting the number of paired image samples used for training. We define
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five supervision levels corresponding to different amounts of cross-domain pairwise

training sample slices. For this experiment, we train the recent state-of-the-art models

with a varying number of patients in the training stage, i.e., we use 5, 10, 15, 20, and

29 patients, respectively. Figure 2.4 shows the performance of all the models at varying

supervision levels. We observe that our model with uncertainty guidance outperforms

all the baselines at full supervision (with 29 patients). Moreover, our model sharply

outperforms the baselines with limited training data (with < 29 patients). UP-GAN

produces intermediate uncertainty maps that have higher values under weak supervision

(compared to the full supervision case), but this still allows UP-GAN to focus on highly

uncertain regions, that the current state-of-the-art models do not have access to, hence are

not able to leverage that to refine the predicted images.

2.5 Conclusion

In this work, we propose a new generic model for medical image translation using

uncertainty-guided progressive GANs. We demonstrate how uncertainty can serve as an

attention map in progressive learning schemes. We demonstrate the efficacy of our method

on three challenging medical image translation tasks, including PET to CT translation,

undersampled MRI reconstruction, and motion correction in MRI. Our method achieves

state-of-the-art in various tasks. Moreover, it allows the quantification of uncertainty and

shows better generalizability with smaller sample sizes than recent approaches.
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3.1 Abstract

Unpaired image-to-image translation refers to learning inter-image-domain mapping

without corresponding image pairs. Existing methods learn deterministic mappings

without explicitly modelling the robustness to outliers or predictive uncertainty, leading to

performance degradation when encountering unseen perturbations at test time. To address

this, we propose a novel probabilistic method based on Uncertainty-aware Generalized

Adaptive Cycle Consistency (UGAC), which models the per-pixel residual by generalized

Gaussian distribution, capable of modelling heavy-tailed distributions. We compare

our model with a wide variety of state-of-the-art methods on various challenging tasks

including unpaired image translation of natural images, using standard datasets, spanning

autonomous driving, maps, facades, and also in medical imaging domain consisting of

MRI. Experimental results demonstrate that our method exhibits stronger robustness

towards unseen perturbations in test data. Code is released here: https://github.com/

ExplainableML/UncertaintyAwareCycleConsistency.

3.2 Introduction

Translating an image from a distribution, i.e. source domain, to an image in another

distribution, i.e. target domain, with a distribution shift is an ill-posed problem as

a unique deterministic one-to-one mapping may not exist between the two domains.

Furthermore, since the correspondence between inter-domain samples may be missing,

their joint-distribution needs to be inferred from a set of marginal distributions. However,

as infinitely many joint distributions can be decomposed into a fixed set of marginal

distributions [159, 66, 156], the problem is ill-posed in the absence of additional constraints.

Deep learning-based methods tackle the image-to-image translation task by learning

inter-domain mappings in a paired or unpaired manner. Paired image translation meth-

ods [107, 287, 324, 169, 274, 219] exploit the inter-domain correspondence by penalizing
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Figure 3.1: Our UGAC framework with the cycle between two generators. For translating
from � to ⌫ (� ! ⌫), the input 08 is mapped to generalized Gaussian distribution
parameterized by {1̂8 , �̂

1
8
, �̂1

8
}. The backward cycle (� ! ⌫ ! �) reconstructs the image

distribution parameterized by {0̄8 , �̄
0
8
, �̄0

8
}. UGAC uses L�� objective function in Eq. 3.8

and adversarial losses in Eq. 3.10 and 3.11.

the per-pixel residual (using ;1 or ;2 norm) between the output and corresponding ground-

truth sample. Unpaired image translation approaches [159, 338, 195, 257, 329, 110] often

use adversarial networks with an additional constraint on the image or feature space

imposing structure on the underlying joint distribution of the images from the different

domains.

Both paired and unpaired image translation approaches often learn a deterministic

mapping between the domains where every pixel in the input domain is mapped to a fixed

pixel value in the output domain. However, such a deterministic formulation can lead

to mode collapse while at the same time not being able to quantify the model predictive

uncertainty important for critical applications, e.g., medical image analysis. It is desirable

to test the performance of the model on unseen perturbed input at test-time, to improve

their applicability in the real world. While robustness to outliers is a focus in some

domains [98, 77, 92, 23], it has not attracted as much attention in unpaired translation.

To address these limitations, we propose an unpaired (unsupervised) probabilistic

image-to-image translation method trained without inter-domain correspondence in an

end-to-end manner. The probabilistic nature of this method provides uncertainty estimates

for the predictions. Moreover, modelling the residuals between the predictions and the

ground-truth with heavy-tailed distributions makes our model robust to outliers and

various unseen data. Accordingly, we compare various state-of-the-art models and our

model in their capacity to handle samples from similar distribution as training-dataset as

well as perturbed samples, in the context of unpaired translation.

Our contributions are as follows. (i) We propose an unpaired probabilistic image-to-

image translation framework based on Uncertainty-aware Generalized Adaptive Cycle

Consistency (UGAC). Our framework models the residuals between the predictions

and the ground-truths with heavy-tailed distributions improving robustness to outliers.

Probabilistic nature of UGAC also provides uncertainty estimates for the predictions.

(ii) We evaluate UGAC on multiple challenging datasets: natural images consisting
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Cityscapes [42], Google aerial maps and photos [107], CMP Facade [258] and medical

images consisting of MRI from IXI [213]. We compare our model to seven state-of-the-art

image-to-image translation methods [257, 68, 159, 195, 338, 13]. Our results demonstrate

that while UGAC performs competitively when tested on unperturbed images, it improves

state-of-the-art methods substantially when tested on unseen perturbations, establishing

its robustness. (iii) We show that our estimated uncertainty scores correlate with the

model predictive errors (i.e., residual between model prediction and the ground-truth)

suggesting that it acts as a good proxy for the model’s reliability at test time.

3.3 Related Work

Image-to-image translation. Image-to-image translation is often formulated as per-pixel

deterministic regression between two image domains of [300, 161, 104]. In [107], this

is done in a paired manner using conditional adversarial networks, while in [338, 159,

257, 68, 195] this is done in an unpaired manner by enforcing additional constraints on

the joint distribution of the images from separate domains. Both CycleGAN [338] and

UNIT [159] learn bi-directional mappings, whereas other recent methods [257, 68, 195]

learn uni-directional mappings.

Quantification of uncertainty in the predictions made by the unpaired image-to-image

translation models largely remains unexplored. Our proposed method operates at the

intersection of uncertainty estimation and unsupervised translation. Critical applications

such as medical image-to-image translation [270, 306, 49, 6, 260, 259] is an excellent testbed

for our model as confidence in the network’s predictions is desirable [172, 228] especially

under the influence of missing imaging modalities.

Uncertainty estimation. Among two broad categories of uncertainties that can be

associated with a model’s prediction, epistemic uncertainty in the model parameters is

learned with finite data whereas aleatoric uncertainty captures the noise/uncertainty

inherent in the data [114, 119]. For image-to-image translation, various uncertainties

can be estimated using Bayesian deep learning techniques [119, 127, 70, 139, 87]. In

critical areas like medical imaging, the errors in the predictions deter the adoption of such

frameworks in clinical contexts. Uncertainty estimates for the predictions would allow

subsequent revision by clinicians [335, 97, 14, 311, 182, 278, 113, 263, 246, 250, 251].

Existing methods model the per-pixel heteroscedasticity as Gaussian distribution for

regression tasks [119]. This is not optimal in the presence of outliers that often tend to

follow heavy-tailed distributions [189, 26]. Therefore, we enhance the above setup by

modelling per-pixel heteroscedasticity as generalized Gaussian distribution, which can

model a wide variety of distributions, including Gaussian, Laplace, and heavier-tailed

distribution.
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3.4 Uncertainty-aware Generalized Adaptive Cycle-consistency

(UGAC)

We present the formulation of the unpaired image-to-image translation problem. We

discuss the shortcomings of the existing solution involving the cycle consistency loss

called CycleGAN [338]. Finally, we present our novel probabilistic framework (UGAC)

that overcomes the described shortcomings.

3.4.1 Preliminaries

Formulation. Let there be two image domains � and ⌫. Let the set of images from

domain � and ⌫ be defined by (i) (� := {01 , 02...0=}, where 08 ⇠ P� 88 and (ii) (⌫ :=

{11 , 12...1<}, where 18 ⇠ P⌫ 88, respectively. The elements 08 and 18 represent the 8C⌘

image from domain � and ⌫ respectively, and are drawn from an underlying unknown

probability distribution P� and P⌫ respectively.

Let each image have  pixels, and D8: represent the :C⌘ pixel of a particular image D8 .

We are interested in learning a mapping from domain � to ⌫ (�! ⌫) and ⌫ to � (⌫ ! �)

in an unpaired manner so that the correspondence between the samples from P� and P⌫
is not required at the learning stage. In other words, we want to learn the underlying joint

distribution P�⌫ from the given marginal distributions P� and P⌫. This work utilizes

CycleGANs that leverage the cycle consistency to learn mappings from both directions

(� ! ⌫ and ⌫ ! �), but often we are only interested in one direction and the second

direction is the auxiliary mapping that aids in learning process. We define the mapping

�! ⌫ as primary and ⌫ ! � as auxiliary.

Cycle consistency. Learning a joint distribution from the marginal distributions is

an ill-posed problem with infinitely many solutions [156]. CycleGAN [338] enforces an

additional structure on the joint distribution using a set of primary networks (forming

a GAN) and a set of auxiliary networks. The primary networks are represented by

{G�(·;G
�
),D�(·;

D
�
)}, whereG� represents a generatorandD� represents a discriminator.

The auxiliary networks are represented by {G⌫(·;G
⌫
),D⌫(·;

D
⌫
)}. While the primary

networks learn the mapping �! ⌫, the auxiliary networks learn ⌫ ! � (see Figure 3.1).

Let the output of the generator G� translating samples from domain � (say 08) to domain

⌫ be called 1̂8 . Similarly, for the generator G⌫ translating samples from domain ⌫ (say 18)

to domain � be called 0̂8 , i.e., 1̂8 = G�(08 ;G
�
) and 0̂8 = G⌫(18 ;G

⌫
). To simplify the notation,

we will omit writing parameters of the networks in the equation. The cycle consistency

constraint [338] re-translates the above predictions (1̂8 , 0̂8) to get back the reconstruction

in the original domain (0̄8 ,1̄8), where, 0̄8 = G⌫(1̂8) and 1̄8 = G�(0̂8), and attempts to make

reconstructed images (0̄8 , 1̄8) similar to original input (08 , 18) by penalizing the residuals

with L1 norm between the reconstructions and the original input images, giving the cycle

consistency Lcyc(0̄8 , 1̄8 , 08 , 18) = L1(0̄8 , 08) + L1(1̄8 , 18).

Limitations of cycle consistency. The underlying assumption when penalizing with
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(UGAC)

the L1 norm is that the residual at every pixel between the reconstruction and the input

follow zero-mean and fixed-variance Laplace distribution, i.e., 0̄8 9 = 08 9 + &0
89

and 1̄8 9 = 18 9 + &1
89

with,

&089 , &
1
89 ⇠ !0?;024(&; 0,

�p
2
) ⌘ 1p

2�2
4�

p
2
|&�0|
�
, (3.1)

where �2 represents the fixed-variance of the distribution, 08 9 represents the 9C⌘ pixel

in image 08 , and &0
89

represents the noise in the 9C⌘ pixel for the estimated image 0̄8 9 .

This assumption on the residuals between the reconstruction and the input enforces the

likelihood (i.e., L (⇥ |X) = P(X |⇥), where ⇥ := G
�
[ G

⌫
[ D

�
[ D

⌫
and X := (� [ (⌫) to

follow a factored Laplace distribution:

L (⇥ |X) /
÷

8 9?@

4�
p

2| 0̄8 9�089 |
� 4�

p
2|1̄?@�1?@ |

�
, (3.2)

where minimizing the negative-log-likelihood yields Lcyc with the following limitations.

The residuals in the presence of outliers may not follow the Laplace distribution but

instead a heavy-tailed distribution, whereas the i.i.d assumption leads to fixed variance

distributions for the residuals that do not allow modelling of heteroscedasticity to aid in

uncertainty estimation.

3.4.2 Building Uncertainty-aware Cycle Consistency

Figure 3.2: Probability density

function (pdf) for generalized

Gaussian distribution. Differ-

ent scale (�) and shape (�) pa-

rameters lead to different tail

behaviour. (�, �) = (1, 2) repre-

sents Gaussian distribution.

We propose to alleviate the mentioned issues by mod-

elling the underlying per-pixel residual distribution as

independentbutnon-identically distributed zero-mean gen-

eralized Gaussian distribution (GGD) (Figure 3.2), i.e., with

no fixed shape (� > 0) and scale (� > 0) parameters.

Instead, all the shape and scale parameters of the distri-

butions are predicted from the networks and formulated

as follows:

&089 , &
1
89 ⇠ ⌧⌧⇡(&; 0, �̄8 9 , �̄8 9) ⌘

�̄8 9

2�̄8 9�(
1
�̄8 9
)
4
�
✓
|&�0|
�̄8 9

◆ �̄8 9
. (3.3)

For each &8 9 , the parameters of the distribution {�̄8 9 , �̄8 9}

may not be the same as parameters for other &8:s; there-

fore, they are non-identically distributed allowing mod-

elling with heavier tail distributions. The likelihood for

our proposed model is,

L (⇥ |X) =
÷

8 9?@

G (�̄089 , �̄
0
89 , 0̄8 9 , 08 9)G (�̄1?@ , �̄

1
?@ , 1̄?@ , 1?@), (3.4)
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where (�̄0
89
) represents the 9C⌘ pixel of domain �’s shape parameter �0

8
(similarly for others).

G (�̄D
89
, �̄D

89
, D̄8 9 , D8 9) is the pixel-likelihood at 9C⌘ pixel of image D8 (that can represent images

of both domain � and ⌫) formulated as,

G (�̄D89 , �̄
D
89 , D̄8 9 , D8 9) = ⌧⌧⇡(D8 9 ; D̄8 9 , �̄

D
89 , �̄

D
89), (3.5)

The negative-log-likelihood is given by,

� ln L (⇥ |X) = �
’

8 9?@

2666664
ln

�̄0
89

2�̄0
89
�( 1

�̄0
89

)
4
�
✓
| 0̄8 9�089 |

�̄0
89

◆ �̄0
89

+ ln
�̄1?@

2�̄1?@�(
1
�̄1?@

)
4
�
✓
|1̄?@�1?@ |

�̄1?@

◆ �̄1?@ 3777775
(3.6)

minimizing the negative-log-likelihood yields a new cycle consistency loss, which we

call as the uncertainty-aware generalized adaptive cycle consistency loss Lucyc, given

A = {0̄8 , �̄
0
8
, �̄0

8
, 08} and B = {1̄8 , �̄

1
8
, �̄1

8
, 18},

Lucyc(A ,B) = L��(A ) + L��(B), (3.7)

where L��(A ) = L��(0̄8 , �̄
0
8
, �̄0

8
, 08) is the new objective function corresponding to domain

�,

L��(0̄8 , �̄
0
8 , �̄

0
8 , 08) =

1

 

’

9

 
| 0̄8 9 � 08 9 |

�̄0
89

! �̄0
89

� log
�̄0
89

�̄0
89

+ log�(
1

�̄0
89

), (3.8)

where (0̄8 , 1̄8) are the reconstructions for (08 , 18) and (�̄0
8
, �̄0

8
), (�̄1

8
, �̄1

8
) are scale and shape

parameters for the reconstruction (0̄8 , 1̄8), respectively.

TheL1 norm-basedcycle consistency (Lcyc) is a special case ofLucyc with (�̄0
89
, �̄0

89
, �̄1

89
, �̄1

89
) =

(1, 1, 1, 1)88 , 9. To utilize Lucyc, one must have the � maps and the � maps for the recon-

structions of the inputs. To obtain the reconstructed image, � (scale map), and � (shape

map), we modify the head of the generators (the last few convolutional layers) and split

them into three heads, connected to a common backbone. Therefore, for inputs 08 and 18
to the generator G� and G⌫, the outputs are:

(1̂8 , �̂
1
8 , �̂

1
8 ) = G�(08) and (0̄8 , �̄

0
8 , �̄

0
8 ) = G⌫(1̂8)

(0̂8 , �̂
0
8 , �̂

0
8 ) = G⌫(18) and (1̄8 , �̄

1
8 , �̄

1
8 ) = G�(0̂8), (3.9)

The estimates are plugged into Eq. (3.7) and the networks are trained to estimate all

the parameters of the GGD modelling domain � and ⌫, i.e. (0̄8 9 , �̄089 , �̄
0
89
) and (1̄8 9 , �̄189 , �̄

1
89
)

88 9.
Furthermore, we apply adversarial losses [338] to the mapping functions, (i) G� :

�! ⌫ and (ii) G⌫ : ⌫ ! �, using the discriminators D� and D⌫. The discriminators are

inspired from patchGANs [107, 338] that classify whether 70x70 overlapping patches are

real or not. The adversarial loss for the generators (L⌧
adv [338]) is,

L⌧
adv = L2(D�(1̂8), 1) + L2(D⌫(0̂8), 1). (3.10)
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The loss for discriminators (L⇡
adv [338]) is,

L⇡
adv = L2(D�(18), 1) + L2(D�(1̂8), 0) + L2(D⌫(08), 1) + L2(D⌫(0̂8), 0). (3.11)

To train the networks we update the generator and discriminator sequentially at every

step [338, 107, 83]. The generators and discriminators are trained to minimize L⌧ and

L⇡ as follows:

L⌧
= ⌫1Lucyc + ⌫2L⌧

adv and L⇡
= L⇡

adv. (3.12)

Closed-form solution foraleatoric uncertainty. Although predicting parameters of the

output image distribution allows to sample multiple images for the same input and com-

pute the uncertainty, modelling the distribution as GGD gives us the uncertainty (�aleatoric)

without sampling from the distribution as a closed form solution exists, �2
aleatoric =

�2�( 3
� )

�( 1
� )

.

Epistemic uncertainty (�epistemic) is calculated by multiple forward passes () = 50 times)

with dropouts activated for the same input and computing the variance across the out-

puts (D̂C), i.e., �2
epistemic = (

Õ
C(D̂C �

Õ
C
D̂C
) )

2)/). We define the total uncertainty (�) as

�2
= �2

aleatoric + �2
epistemic.

3.5 Experiments

In this section, we first describe our experimental setup and implementation details.We

compare our model to a wide variety of state-of-the-art methods quantitatively and

qualitatively. Finally we provide an ablation analysis to study the rationale of our model

formulation.

3.5.1 Experimental Setup

Tasks. We study the robustness of unpaired image-to-image translation methods, where

different methods are first trained on clean images and then evaluated on perturbed images

The clean images are referred as noise-level 0 (NL0); while the perturbed images with

increasing noise are referred as NL1, NL2, and NL3. We test three types of perturbation

including Gaussian, Uniform, and Impulse. From NL0 to NL3, the standard deviation

of the additive Gaussian noise is gradually increased. Similarly, for additive uniform

noise, different levels are obtained by gradually increase the upper-bound of the uniform

sampling interval [210] and for impulse noise we gradually increase the probability of

pixel-value replacement [137].

Datasets. We evaluate on four standard datasets used for image-to-image transla-

tion: (i) Cityscapes [42] contains street scene images with segmentation maps, including

2,975 training and 500 validation and test images; (ii) Google maps [107] contains 1,096

training and test images scraped from Google maps with aerial photographs and maps;

(iii) CMP Facade [258] contains 400 images from the CMP Facade Database including
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Figure 3.3: Evaluation of different methods on Cityscapes with Gaussian perturbation
under varying noise levels. NL0 denotes clean images without noise, NL1, NL2, NL3
are unseen noise levels. ACC.Segm, IoU.Segm, IoU.P2P are three metrics for evaluating
translation quality. Higher is better.

architectural facades labels and photos. (iv) IXI [213] is a medical imaging dataset with

15,000/5,000/10,000 training/test/validation images, including T1 MRI and T2 MRI.

Translation quality metrics. Following [13], we evaluate the translation quality of

the generated segmentation maps and images, for the datasets with segmentation maps

(e.g., Cityscapes). First, to evaluate the generated segmentation maps, we compute the

Intersection over union (IoU.SEGM) and mean class-wise accuracy (Acc.SEGM) between

the generated segmentation maps and the ground-truth segmentation maps. Second, to

evaluate the generated images, we first feed the generated images -CA to a pre-trained

pix2pix model [107] (denoted as ?2?, which is trained to translate images to segmentation

maps) to obtain the segmentation maps ?2?(-CA). Then, we feed the original images ->A6
to the same pix2pix model to obtain another segmentation maps ?2?(->A6), and compute

the IoU between two outputs ?2?(-CA) and ?2?(->A6) (IoU.P2P).

Metrics for model robustness. We define two metrics similar to [13] to test model

robustness towards noisy inputs. (i) AMSE is the area under the curve measuring the MSE

between the outputs of the noisy input and the clean input under different levels of noise,

i.e., AMSE =

Ø ◆max

◆min
(MSE(G�(08 + ◆),G�(08)))3◆, where ◆ is the noise level, G� denotes the

generator that maps domain sample 08 (from domain �) to domain ⌫. (ii) ASSIM is the area

under the curve measuring the SSIM [289] between the outputs of the noisy input and the

clean input under different levels of noise, i.e., ASSIM =
Ø ◆max

◆min
(SSIM(G�(08 + ◆),G�(08))3◆.

These two metrics show how much the output deviates when fed with the corrupted input

from the output corresponding to clean input, averaged over multiple corruption/noise

levels.

Implementation details. In our framework, the generator is a cascaded U-Net that

progressively improves the intermediate features to yield high-quality output [6], we use a

patch discriminator [107]. All the networks were trained using Adam optimizer [123] with

a mini-batch size of 2. The initial learning rate was set to 2⇥10�4 and cosine annealing was

used to decay the learning rate over 1000 epochs. The hyper-parameters, (⌫1 ,⌫2) (Eq. 3.12)

were set to (10, 2). For numerical stability, the proposed network produces 1
� instead of

�. The positivity constraint on the output (for predicted �, �) is enforced by applying the

ReLU at the end of the output layers in the network.
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P Methods
Cityscapes Maps Facade IXI

AMSE (std)# ASSIM (std)" AMSE (std)# ASSIM (std)" AMSE (std)# ASSIM (std)" AMSE (std)# ASSIM (std)"
gcGAN [68] 107.83 (10.8) 0.62 (0.09) 117.21 (10.6) 0.43 (0.07) 138.21 (11.5) 0.41 (0.05) 108.32 (8.7) 0.67 (0.12)

CUT [195] 108.34 (8.7) 0.51 (0.12) 119.32 (8.9) 0.51 (0.11) 123.22 (17.6) 0.58 (0.09) 87.12 (10.4) 0.64 (0.07)

Cy.GAN [338] 121.32 (10.3) 0.31 (0.13) 107.32 (7.5) 0.61 (0.13) 134.23 (15.3) 0.45 (0.07) 98.14 (9.1) 0.70 (0.09)

nCy.GAN [13] 107.76 (11.2) 0.60 (0.08) 96.14 (9.3) 0.68 (0.05) 109.32 (10.4) 0.68 (0.06) 88.36 (8.2) 0.77 (0.09)

UGAC (ours) 80.19 (10.4) 0.78 (0.09) 72.32 (8.4) 0.82 (0.07) 95.37 (9.3) 0.77 (0.04) 68.38 (9.8) 0.87 (0.11)

gcGAN [68] 96.76 (18.2) 0.66 (0.03) 104.83 (11.7) 0.49 (0.09) 129.54 (15.1) 0.47 (0.09) 91.45 (13.3) 0.71 (0.08)

CUT [195] 98.45 (9.8) 0.59 (0.09) 108.21 (7.5) 0.53 (0.14) 114.45 (21.9) 0.55 (0.12) 75.31 (8.3) 0.78 (0.15)

Cy.GAN [338] 111.17 (15.4) 0.35 (0.08) 91.47 (10.8) 0.70 (0.10) 158.57 (25.2) 0.39 (0.16) 85.24 (9.5) 0.72 (0.05)

nCy.GAN [13] 97.89 (12.1) 0.64 (0.04) 75.97 (10.7) 0.78 (0.16) 106.79 (18.7) 0.69 (0.14) 70.89 (8.8) 0.81 (0.09)

UGAC (ours) 63.77 (8.5) 0.83 (0.07) 51.24 (6.6) 0.88 (0.11) 92.77 (13.2) 0.78 (0.07) 43.54 (6.2) 0.89 (0.05)

gcGAN [68] 105.64 (17.3) 0.60 (0.07) 116.55 (15.8) 0.45 (0.11) 134.56 (10.7) 0.40 (0.11) 121.31 (17.4) 0.66 (0.13)

CUT [195] 90.56 (11.6) 0.52 (0.11) 97.21 (7.8) 0.65 (0.09) 118.89 (15.9) 0.52 (0.07) 98.66 (9.7) 0.69 (0.09)

Cy.GAN [338] 122.48 (19.6) 0.30 (0.12) 112.38 (9.8) 0.62 (0.13) 174.65 (19.2) 0.33 (0.14) 106.16 (14.8) 0.67 (0.12)

nCy.GAN [13] 95.78 (10.6) 0.61 (0.05) 90.17 (13.2) 0.77 (0.08) 119.89 (12.8) 0.57 (0.09) 96.91 (10.57) 0.73 (0.06)

UGAC (ours) 78.85 (6.9) 0.80 (0.10) 66.58 (10.4) 0.86 (0.05) 103.83 (9.4) 0.72 (0.09) 70.54 (10.4) 0.85 (0.07)

Table 3.1: Evaluating methods on four datasets under Gaussian, Uniform and Impulse
perturbations, evaluated with AMSE (lower better) and ASSIM (higher better) across varying
noise levels. “P” = perturbation. We show results with best performing four methods.

3.5.2 Comparing with the State of the Art

Compared methods. We compare ourmodel to seven state-of-the-art methods forunpaired

image-to-image translation, including (1) distanceGAN [17] (disGAN): a uni-directional

method to map different domains by maintaining a distance metric between samples of

the domains. (2) geometry consistent GAN [68] (gcGAN): a uni-directional method that

imposes pairwise distance and geometric constraints. (3) UNIT [159]: a bi-directional

method that matches the latent representations of the two domain. (4) CUT [195]: a

uni-directional method that uses contrastive learning to match the patches in the same

locations in both domains. (5) CycleGAN [338] (Cy.GAN): a bi-directional method that

uses cycle consistency loss. (6) guess CycleGAN [13]: a variant of CycleGAN that uses

an additional guess discriminator that “guesses" at random which of the image is fake in

the collection of input and reconstruction images. (7) adversarial noise CycleGAN [13]

(nCy.GAN): another variant of CycleGAN that introduces noise in the cycle consistency

loss. Note that both guess CycleGAN [13] and adversarial noise CycleGAN [13] improve

the model robustness to noise.

Quantitative evaluation. As described in Section 7.5.1, we trained the models using

the clean images (NL0) and evaluated them at varying noise levels (NL0, NL1, NL2, NL3),

results are detailed next.

Figure 3.3 shows the quantitative results on Cityscapes dataset with Gaussian pertur-

bation. When increasing the noise levels, we observe that the performance of compared

methods degrade significantly, while our method remains more robust to noise – e.g., the

mean IoU.SEGM values are changed from around 0.24 to 0.2 for our model but degrades

from around 0.24 to 0.05 for the baseline Cy.GAN. Similarly, our model outperforms two

strong competitors (gCy.GAN, nCy.GAN) that are built to defend noise perturbation on
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Figure 3.4: Qualitative results on Cityscapes, Google Maps, CMP Facade, and IXI. Outputs
of clean image (at NL0) and perturbed image (at NL3) are shown. (a) input, (1)–(7) outputs
from compared methods, and (8) output from UGAC, (b) ground-truth images. Outputs
of UGAC are much closer to groundtruth images (better in quality) than the other methods
in the presence of noise perturbations.

higher noise levels. Similar trends are observed for other datasets. This indicates that our

model offers better translation quality at higher noise levels.

To evaluate model robustness, we tested different methods using the metrics AMSE and

ASSIM to quantify the overall image quality under increasing noise levels as defined in Sec-

tion 7.5.1. Table 7.1 shows the performance of all the models on different datasets for three

types of perturbations, i.e., Gaussian, Uniform, and Impulse. We can see that the proposed

UGAC model performs better than other methods. For instance, when adding Gaussian

noise, UGAC obtains a much better ASSIM of 0.78/0.82/0.77/0.87 vs. 0.60/0.68/0.68/0.77

yielded by the best competitor nCy.GAN on Cityscapes/Maps/Facade/IXI. When adding

Uniform noise or Impulse noise, we can also find that our model outperforms the other

methods by substantial margins. Overall, the better performance of UGAC on different

datasets suggests its stronger robustness towards various types of perturbations.
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Qualitative results. Figure 3.4 visualizes the generated output images for Cityscapes,

Google Maps, CMP Facade, and IXI datasets where all the models are trained with

clean images and tested with either clean images or perturbed images. The test-time

perturbation is of type Gaussian and corresponds to noise-level NL2. We see that, while

all the methods generate samples of high quality when tested on unperturbed clean input;

whereas when tested with perturbed inputs, we observe results with artifacts but the

artifacts are imperceptible in our UCAC method.

The results on Cityscapes dataset (with the primary direction, translating from seg-

mentation maps to real photo) demonstrate that with perturbed input, methods such as

disGAN, gcGAN, UNIT generate images with high frequency artifacts (col.1 to 3), whereas

methods such as CUT, Cy.GAN, gCy.GAN and nCy.GAN (col.4 to 7) generate images with

low frequency artefacts. Both kinds of artefact lead to degradation of the visual quality

of the output. Our method (col.8) generates output images that still preserve all the high

frequency details and are visually appealing, even with perturbed input. Similar trends

are observed for other datasets including Maps (with primary translation from maps to

photo) and Facade (with primary translation from segmentation maps to real photo).

For the IXI dataset (with primary translation from T1 to T2 MRI scans), we observe that

the other models fail to reconstruct medically relevant structures like trigeminal-nerve

(in the centre) present in the input T1 MRI scans. Moreover, high-frequency details

throughout the white and grey matter in the brain are missing. In contrast, our method

gracefully reconstructs many of the high-frequency details. It shows that our model is

capable of generating images of good quality at higher noise levels.

3.5.3 Analyzing the Model Uncertainty

Figure 3.5: Adaptive (�, �)=pred vs.

fixed (�, �)=(1, 1) and (�, �)=(1, 2)norm.

Evaluating the generalized adaptive norm. We

study the performance of our method by mod-

elling the per-pixel residuals in three ways on

IXI dataset. First, i.i.d Gaussian distribution,

i.e., (�8 9 , �8 9) is manually set to (1, 2)88 , 9, which

is equivalent to using fixed ;2 norm at every

pixel in cycle consistency loss (L��

��
�=1,�=2

). vi-

sual quality when given perturbed input. Sec-

ond, i.i.d Laplace distribution, i.e., (�8 9 , �8 9) is

manually set to (1, 1)88 , 9, which is equivalent

to using fixed ;1 norm at every pixel in cycle

consistency loss (L��

��
�=1,�=1

). Third, indepen-

dent but non-identically distributed general-

ized Gaussian distribution (UGAC), which is

equivalent to using spatially varying ;@ quasi-norms where @ is predicted by the network

for every pixel (L��

��
pred).
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Figure 3.6: Visualization of uncertainty maps for noisy input at NL3 (sample from IXI test-
set). (a) Noisy T1w MRI input. (b) Corresponding ground-truth T2w MRI. (c) Predicted
T2w MRI. (d)-(e) Predicted � and � maps. (f) Uncertainty maps from predicted � and �
maps. (g) Absolute residual between the prediction and the ground-truth.

Fig 3.5 shows the quantitative performance of these three variants across different noise

levels for IXI datasets. We see that spatially adaptive quasi-norms perform better than fixed

norms, even at higher noise levels (i.e., presence of outliers). Note that our GGD based

heteroscedastic model subsumes the Gaussian (� = 1, � = 2) and Laplacian (� = 1, � = 1).

Moreover, the heteroscedastic versions of Gaussian and Laplacian can be obtained by fixing

�, i.e., for Laplacian (� = 1) and for Gaussian (� = 2), and varying �. Modeling residuals

as GGD is more liberal than both homo/hetero-scedastic Gaussian/Laplacian distribution

because it is able to capture all the heavier/lighter-tailed distributions (along with all

possible Gaussian/Laplacian distributions) that are beyond the modeling capabilities of

Gaussian/Laplacian alone.

Visualizing uncertainty maps. We visualize our uncertainty maps for the T1w MRI

(domain �) to T2w MRI (domain ⌫) translation task, on IXI dataset, with perturbations

in the input (NL3). Figure 3.6-(a) shows input axial slices (T1w at NL3). The perturba-

tions have degraded the high-frequency features (see green ROI). Figure 3.6-(b) shows

the corresponding ground-truth axial slice (T2w MRI). Figure 3.6-(c) shows that our

method recovers high-frequency details. However, we observe a higher contrast (com-

pared to ground-truth) (green ROI). The subtle disparity between the contrast has been

picked up by our scale-map (�) and shape-map (�) as shown in Figure 3.6-(d) and (e),

respectively. Moreover, we see that, although our formulation assumes independent

(but non-identically) likelihood model for the pixel level residuals, the structure in the �

and the � (Figure 3.6-(d) and (e)) shows that the model learns to exploit the correlation

in the neighbourhood pixels. The pixel-level variation in the � and � yields pixel-level

uncertainty values in the predictions as described in Section 7.5.1.

Figure 3.6-(f) shows the uncertainty map (�) for the predictions made by the network.

We see that the disparity in the contrasts between the prediction and the ground-truth is

reflected as high uncertainty in the disparity region, i.e., uncertainty is high where the

reconstruction is of inferior quality, indicated by high-residual values shown in Figure 3.6-

(g). The correspondence between uncertainty maps (Figure 3.6-(f)) and residual maps

(Figure 3.6-(g)) suggests that uncertainty maps can be used as the proxy to residual maps

(that are unavailable at the test time, as the ground-truth images will not be available) and

can serve as an indicator of image quality.
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Residual vs. uncertainty scores. To further study the relationship between the un-

certainty maps and the residual maps across a wide variety of images, we analyze the

results on IXI test set. We show the density and the scatter-plot between the residual

score and uncertainty score in Figure 3.7, where every point represents a single image.

Figure 3.7: Residual scores vs.

uncertainty scores.

For an image, the mean residual score (on the H-axis) is

derived as the mean of absolute residual values for all

the pixels in the image. Similarly, the uncertainty score

(on the G-axis) is calculated as the mean of uncertainty

values of all the pixels in that image.

From the plot, we see that across the test-set, the

mean uncertainty score correlates positively with the

mean residual score, i.e., a higher uncertainty score cor-

responds to a higher residual. An image with a higher

residual score represents a poor-quality image. This fur-

ther supports the idea that uncertainty maps derived

from our method can be used as a proxy to residual

that indicates the overall image quality of the output

generated by our network. Therefore, the predicted un-

certainty maps can potentially be used for designing a quality check triggering mechanism

where poor quality predictions are evaluated by human experts.

3.6 Discussion and Conclusion

In this work, we propose an uncertainty-aware generalized cycle consistency for unpaired

image translation along with uncertainty estimation. Our formulation assumes the pixel-

wise independent (but non-identically) distributed likelihood model for the residuals,

relaxing the i.i.d. assumption made by the previous work. However, our experiments also

show that the model learns the underlying structure between the neighbourhood pixels

and predicts the structured/correlated parameters for the output distribution (i.e., �, �

for MRI translation shown in Figure 3.6-(d) and (e)).

We demonstrate the efficacy of the proposed method on robust unpaired image trans-

lation on various datasets spanning autonomous driving, maps, facades, and medical

images consisting of MRI scans. We also demonstrate the robustness of our method by

evaluating the performance in different kinds of perturbations in the input with varying

severity and show that our method outperforms all the baselines by generating superior

images in terms of quantitative metrics and appearance. In addition, we show that the

uncertainty estimates (derived from the estimated parameters of the distribution, � and

�) are faithful proxy to the residuals between the predictions and the ground truth.

It is worth noting that robustness towards various kinds of perturbation can also

be achieved by data augmentation techniques that include the perturbed images in the

training phase. However, this is orthogonal to the concept proposed in this work that
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achieves robustness via the a new modeling technique. In principle, one could combine

both the augmentation techniques and modeling techniques to obtain more robust models.

In this work, we used relatively small neural networks (in terms of parameters based on

UNet), while this network has not been used previously for this problem, we employ it to

train our models with limited compute with reasonable training time and a lower memory

footprint (details of the networks available in the Appendix A.5). This however affects

the performance of the networks, and leads to images with artifacts/distortions (specially

with small datasets consisting few hundred samples). Our method can be applied to

deeper neural networks with more parameters/higher capacity and trained with higher

resolution images, which would lead to significantly better performance, given enough

compute.

An interesting avenue for further exploration is the analysis of uncertainty maps when

presented with anomalous inputs, beyond perturbations, with stronger shifts between

training and test data distribution which will be investigated in future.

Broader Impact

Modern deep-learning-based image translation schemes are becoming more popular.

They allow the generation of synthetic datasets, e.g., for the segmentation use case in

autonomous driving, faster image acquisition via algorithmic super-resolution, image

enhancement in computational photography, faster and cheaper medical diagnosis by

translating between different imaging modalities. However, critical areas like medical

imaging and autonomous driving require methods that are robust towards various per-

turbations and, at the same time, can also provide uncertainty estimates in the predictions.

Estimating the uncertainty in the prediction can help trigger expert intervention prevent-

ing fatal scenarios. We introduced a novel image-to-image translation model capable

of estimating uncertainty along with the predictions and is shown to be beneficial in

ensuring good image translation quality and good model performance on downstream

tasks even in the presence of unseen noisy patterns in input images at inference time.

Furthermore, our method is potentially applicable to detect ambiguities in the images.

These merits could bring positive societal impacts to various critical application domains,

such as medical imaging and autonomous driving.
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4.1 Abstract

High-quality calibrated uncertainty estimates are crucial for numerous real-world appli-

cations, especially for deep learning-based deployed ML systems. While Bayesian deep

learning techniques allow uncertainty estimation, training them with large-scale datasets

is an expensive process that does not always yield models competitive with non-Bayesian

counterparts. Moreover, many of the high-performing deep learning models that are

already trained and deployed are non-Bayesian in nature and do not provide uncertainty

estimates. To address these issues, we propose BayesCap that learns a Bayesian identity

mapping for the frozen model, allowing uncertainty estimation. BayesCap is a memory-

efficient method that can be trained on a small fraction of the original dataset, enhancing

pretrained non-Bayesian computer vision models by providing calibrated uncertainty

estimates for the predictions without (i) hampering the performance of the model and

(ii) the need for expensive retraining the model from scratch. The proposed method is

agnostic to various architectures and tasks. We show the efficacy of our method on a

wide variety of tasks with a diverse set of architectures, including image super-resolution,

deblurring, inpainting, and crucial application such as medical image translation. More-

over, we apply the derived uncertainty estimates to detect out-of-distribution samples

in critical scenarios like depth estimation in autonomous driving. Code is available at

https://github.com/ExplainableML/BayesCap.

4.2 Introduction

Image enhancement and translation tasks like super-resolution [143], deblurring [134, 135],

inpainting [317], colorization [326, 104], denoising [253, 200], medical image synthesis [339,

6, 40, 260, 259, 264, 246], monocular depth estimation in autonomous driving [67, 81],
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Figure 4.1: Computer vision models for image enhancements and translations determin-
istically map input to output without producing the uncertainty in the latter (example
on the right shows depth estimation using MonoDepth2 [81]). BayesCap approximates
the underlying distribution and adds uncertainty to the predictions of pretrained models
efficiently, details in Section 4.4.3.

etc., have been effectively tackled using deep learning methods generating high-fidelity

outputs. But, the respective state-of-the-art models usually learn a deterministic one-

to-one mapping between the input and the output, without modeling the uncertainty

in the prediction. For instance, a depth estimation model predicts a depth map from

the input RGB image (Figure 4.1-(Left)), without providing uncertainty. In contrast,

learning a probabilistic mapping between the input and the output yields the underlying

distribution and provides uncertainty estimates for the predictions. This is a vital feature

in safety-critical applications such as autonomous driving and medical imaging. For

instance, well-calibrated uncertainty estimates can be used to trigger human/expert

intervention in highly uncertain predictions, consequently preventing fatal automated

decision making [39, 227, 224]. The conventional approach for obtaining uncertainty

estimates is to train Bayesian models from scratch. However, Bayesian deep learning

techniques are difficult to train and are not scalable to large volumes of high-dimensional

data [50]. Moreover, they cannot be easily integrated with sophisticated deterministic

architectures and training schemes tailored for specific tasks, vital to achieving state-of-

the-art in vision applications [55, 80].

To address the above challenges, we enhance the predictions of pretrained state-

of-the-art non-Bayesian deterministic deep models with uncertainty estimation while

preserving their strong model performances. There is limited literature tackling the

similar problem [278, 9, 50] but these methods do not yield well-calibrated uncertainty

estimates or do not scale to high-dimensional cases such as image synthesis, translation,

and enhancement.

In this work, we propose BayesCap, shown in Figure 4.1-(Right), an architecture

agnostic, plug-and-play method to generate uncertainty estimates for pretrained models.

The key idea is to train a Bayesian autoencoder over the output images of the pretrained

network, approximating the underlying distribution for the output images. Due to its

Bayesian design, in addition to reconstructing the input, BayesCap also estimates the

parameters of the underlying distribution, allowing us to compute the uncertainties.

BayesCap is highly data-efficient and can be trained on a small fraction of the original
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dataset. For instance, BayesCap is 3-5⇥ faster to train as compared to a Bayesian model

from scratch, while still achieving uncertainty estimates that are better calibrated than the

baselines.

To summarize, we make the following contributions. (1) We propose BayesCap,

a simple method for generating post-hoc uncertainty estimates, by learning a Bayesian

identity mapping, over the outputs of image synthesis/translation tasks with deterministic

pretrained models. (2) BayesCap leads to calibrated uncertainties while retaining the

performance of the underlying state-of-the-art pretrained network on a variety of tasks

including super-resolution, deblurring, inpainting, and medical imaging. (3) We also

show that quantifying uncertainty using BayesCap can help in downstream tasks such as

Out-of-Distribution (OOD) detection in critical applications like autonomous driving.

4.3 Related Works

Image Enhancement and Translations. Advances in computer vision led to tackle chal-

lenging problems such as super-resolution [54, 143], denoising [253, 200], deblurring [181,

134, 135], inpainting [197, 317], depth estimation [67, 81] among others. Such problems are

tackled using a diverse set of architectures and learning schemes. For instance, the popular

method for super-resolution involves training a conditional generative adversarial networks

(GANs), where the generator is conditioned with a low-resolution image and employs a

pretrained VGG network [238] to enforce the content loss in the feature space along with

the adversarial term from the discriminator [143]. Differently, for the inpainting task, [317]

uses a conditional GAN with contextual attention and trains the network using spatially

discounted reconstruction loss. In the case of monocular depth estimation, recent works

exploit the left-right consistency as a cue to train the model in an unsupervised fashion [80].

While these methods are highly diverse in their architectures, training schemes, supervi-

sory signals, etc., they typically focus on providing a deterministic one-to-one mapping

which may not be ideal in many critical scenarios such as autonomous driving [170]

and medical imaging [263, 264, 261]. Our BayesCap preserves the high-fidelity outputs

provided by such deterministic pretrained models while approximating the underlying

distribution of the output of such models, allowing uncertainty estimation.

Uncertainty Estimation. Bayesian deep learning models are capable of estimating

the uncertainties in their prediction [138, 120]. Uncertainties can be broadly divided

into two categories; (1) Epistemic uncertainty which is the uncertainty due to the model

parameters [85, 24, 50, 291, 34, 138, 70]. (2) Aleatoric uncertainty which is the underlying

uncertainty in the measurement itself, often estimated by approximating the per-pixel

residuals between the predictions and the ground-truth using a heteroscedastic distribution

whose parameters are predicted as the output of the network which is trained from scratch

to maximize the likelihood of the system [120, 158, 10, 278, 284, 142]. While epistemic

uncertainty is important in low-data regimes as parameter estimation becomes noisy,

however, this is often not the case in computer vision settings with large scale datasets
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where aleatoric uncertainty is the critical quantity [120]. However, it is expensive to train

these models and they often perform worse than their deterministic counterparts [192, 212,

50]. Unlike these works, BayesCap is a fast and efficient method to estimate uncertainty

over the predictions of a pretrained deterministic model.

Post-hoc Uncertainty Estimation. While this has notbeen widely explored, some recent

works [50, 59] have tried to use the Laplace approximation for this purpose. However,

these methods computes the Hessian which is not feasible for high-dimensional modern

problems in computer vision [326, 197, 67, 134, 200]. Another line of work to tackle this

problem is test-time data augmentation [278, 9] that perturbs the inputs to obtain multiple

outputs leading to uncertainties. However, these estimates are often poorly calibrated [75].

It is of paramount importance that the uncertainty estimates are well calibrated [131, 87,

140, 142, 199, 323]. In many high-dimensional computer vision problems the per-pixel

output is often a continuous value [197, 134, 143, 326], i.e., the problem is regression in

nature. Recent works focused on Uncertainty Calibration Error that generalizes to high

dimensional regression [131, 147, 140, 142]. Unlike prior works [9, 50, 278, 59], BayesCap

scales to high-dimensional tasks, providing well-calibrated uncertainties.

4.4 Methodology: BayesCap - Bayesian Identity Cap

We first describe the problem formulation in Section 7.4.1, and preliminaries on uncertainty

estimation in Section 4.4.2. In Section 4.4.3, we describe construction of BayesCap that

models a probabilistic identity function capable of estimating the high-dimensional com-

plex distribution from the frozen deterministic model, estimating calibrated uncertainty

for the predictions.

4.4.1 Problem formulation

Let D = {(x8 , y8)}
#
8=1

be the training set with pairs from domain X and Y (i.e., x8 2 X, y8 2
Y,88), where X,Y lies in R< and R= , respectively. While our proposed solution is valid

for data of arbitrary dimension, we present the formulation for images with applications

for image enhancement and translation tasks, such as super-resolution, inpainting, etc.

Therefore, (x8 , y8) represents a pair of images, where x8 refers to the input and y8 denotes

the transformed/enhanced output. For instance, in super-resolution x8 is a low-resolution

image and y8 its high-resolution version. Let Ψ(·;) : R< ! R= represent a Deep Neural

Network parametrized by  that maps images from the set X to the set Y, e.g. from

corrupted to the non-corrupted/enhanced output images.

We consider a real-world scenario, where Ψ(·;) has already been trained using the

dataset D and it is in a frozen state with parameters set to the learned optimal parameters

⇤. In this state, given an input x, the model returns a point estimate of the output, i.e.,

ŷ = Ψ(x;⇤). However, point estimates do not capture the distributions of the output

(PY|X) and thus the uncertainty in the prediction that is crucial in many real-world
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applications [120]. Therefore, we propose to estimate PY|X for the pretrained model in a

fast and cheap manner, quantifying the uncertainties of the output without re-training

the model itself.

4.4.2 Preliminaries: Uncertainty Estimation

To understand the functioning of our BayesCap that produces uncertainty estimates

for the frozen or pretrained neural networks, we first consider a model trained from

scratch to address the target task and estimate uncertainty. Let us denote this model by

ΨB(·; ✓) : R< ! R= , with a set of trainable parameters given by ✓. To capture the irreducible

(i.e., aleatoric) uncertainty in the output distribution P. |- , the model must estimate the pa-

rameters of the distribution. These are then used to maximize the likelihood function. That

is, for an input x8 , the model produces a set of parameters representing the output given by,

{ŷ8 , ⇡̂8 . . . ⌧̂8} := ΨB(x8 ; ✓), that characterizes the distribution P. |-(y; {ŷ8 , ⇡̂8 . . . ⌧̂8}), such

that y8 ⇠ P. |-(y; {ŷ8 , ⇡̂8 . . . ⌧̂8}). The likelihood L (✓;D) :=
Œ#

8=1 P. |-(y8 ; {ŷ8 , ⇡̂8 . . . ⌧̂8}) is

then maximized in order to estimate the optimal parameters of the network. Moreover,

the distribution P. |- is often chosen such that uncertainty can be estimated using a closed

form solution F depending on the estimated parameters of the neural network, i.e.,

{ŷ8 , ⇡̂8 . . . ⌧̂8} := ΨB(x8 ; ✓) (4.1)

✓⇤ := argmax
✓

L (✓;D) = argmax
✓

#÷
8=1

P. |-(y8 ; {ŷ8 , ⇡̂8 . . . ⌧̂8}) (4.2)

Uncertainty(ŷ8) = F (⇡̂8 . . . ⌧̂8) (4.3)

It is common to use a heteroscedastic Gaussian distribution for P. |- [120, 278], in which

case ΨB(·; ✓) is designed to predict the mean and variance of the Gaussian distribution, i.e.,

{ŷ8 , �̂
2
8
} := ΨB(x8 ; ✓), and the predicted variance itself can be treated as uncertainty in the

prediction. The optimization problem becomes,

✓⇤ = argmax
✓

#÷
8=1

1q
2��̂2

8

4
� |ŷ8�y8 |

2

2�̂2
8 = argmin

✓

#’
8=1

|ŷ8 � y8 |
2

2�̂2
8

+
log(�̂2

8
)

2
(4.4)

Uncertainty(ŷ8) = �̂2
8 . (4.5)

The above equation models the per-pixel residual (between the prediction and the

ground-truth) as a Gaussian distribution. However, this may not always be fit, especially

in the presence of outliers and artefacts, where the residuals often follow heavy-tailed

distributions. Recent works such as [261, 264] have shown that heavy-tailed distributions

can be modeled as a heteroscedastic generalized Gaussian distribution, in which case

ΨB(·; ✓) is designed to predict the mean (ŷ8), scale (�̂8), and shape (�̂8) as trainable parameters,
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Figure 4.2: BayesCap (Ω(·; ))) in tandem with the pretrained network with frozen param-
eters (Ψ(·;⇤)) (details in Section 4.4.3). While the pretrained network cannot estimate
the uncertainty, the proposed BayesCap feeds on the output of the pretrained network
and maps it to the underlying probability distribution that allows computation of well
calibrated uncertainty estimates.

i.e., {ŷ8 , �̂8 , �̂8} := ΨB(x8 ; ✓),

✓⇤ := argmax
✓

L (✓) = argmax
✓

#÷
8=1

�̂8

2�̂8�(
1
�̂8
)
4�(|ŷ8�y8 |/�̂8)

�̂8
= argmin

✓

� log L (✓)

= argmin
✓

#’
8=1

✓
|ŷ8 � y8 |

�̂8

◆ �̂8
� log

�̂8
�̂8

+ log�(
1

�̂8
) (4.6)

Uncertainty(ŷ8) =
�̂2
8
�( 3

�̂ 8
)

�( 1
�̂ 8
)

. (4.7)

Here �(I) =
Ø 1

0
GI�14�G3G, 8I > 0, represents the Gamma function [8]. While the above

formulation (Eq. (4.4)-(4.7)) shows the dependence of various predicted distribution

parameters on one another when maximizing the likelihood, it requires training the

model from scratch, that we want to avoid. In the following, we describe how we address

this problem through our BayesCap.

4.4.3 Constructing BayesCap

In the above, ΨB(·; ✓) was trained from scratch to predict all the parameters of distribution

and does not leverage the frozen model Ψ(·;⇤) estimating y8 using ŷ8 in a deterministic

fashion. To circumvent the training from scratch, we notice that one only needs to estimate

the remaining parameters of the underlying distribution. Therefore, to augment the

frozen point estimation model , we learn a Bayesian identity mapping represented by

Ω(·; )) : R= ! R
= , that reconstructs the output of the frozen model Ψ(·;⇤) and also

produces the parameters of the distribution modeling the reconstructed output. We

refer to this network as BayesCap (schematic in Figure 6.2). As in Eq. (4.7), we use

34



4.5. EXPERIMENTS

heteroscedastic generalized Gaussian to model output distribution, i.e.,

Ω(ŷ8 = Ψ(x8 ;
⇤); )) = {ỹ8 , �̃8 , �̃8}, with y8 ⇠

�̃8

2�̃8�(
1
�̃8
)
4�(|ỹ8�y8 |/�̃8)

�̃8 (4.8)

To enforce the identity mapping, for every input x8 , we regress the reconstructed output

of the BayesCap (ỹ8) with the output of the pretrained base network (ŷ8). This ensures that,

the distribution predicted by BayesCap for an input x8 , i.e., Ω(Ψ(x8 ;⇤); )), is such that

the point estimates ỹ8 match the point estimates of the pretrained network ŷ8 . Therefore,

as the quality of the reconstructed output improves, the uncertainty estimated by Ω(·; ))

also approximates the uncertainty for the prediction made by the pretrained Ψ(·;⇤), i.e.,

ỹ8 ! ŷ8 =) �̃2
8 =

�̃2
8
�(3/�̃8)

�(1/�̃8)
! �̂2

8 (4.9)

To train Ω(·; )) and obtain optimal parameters ()⇤), we minimize the fidelity term

between ỹ8 and ŷ8 , along with the negative log-likelihood for Ω(·; )), i.e.,

)⇤
= argmin

)

#’
8=1

⌫ |ỹ8 � ŷ8 |
2|    {z    }

Identity mapping

+

✓
|ỹ8 � y8 |

�̃8

◆ �̃8
� log

�̃8
�̃8

+ log�(
1

�̃8
)

|                                     {z                                     }
Negative log-likelihood

(4.10)

Here ⌫ represents the hyperparameter controlling the contribution of the fidelity term

in the overall loss function. Extremely high ⌫ will lead to improper estimation of the (�̃)

and (�̃) parameters as other terms are ignored. Eq. (4.10) allows BayesCap to estimate the

underlying distribution and uncertainty.

Eq. (4.8) and (4.10) show that the construction of Ω is independent of Ψ and the Ω

always performs the Bayesian identity mapping regardless of the task performed by Ψ.

This suggests that task specific tuning will have minimal impact on the performance of

Ω. In our experiments, we employed the same network architecture for BayesCap with

the same set of hyperparameters, across different tasks and it achieves state-of-the-art

uncertainty estimation results without task specific tuning (as shown in Section 7.5),

highlighting that BayesCap is not sensitive towards various design choices including

architecture, learning-rate, etc.

4.5 Experiments

We first describe our experimental setup (i.e., datasets, tasks, and evaluation metrics)

in Section 7.5.1. We compare our model to a wide variety of state-of-the-art methods

quantitatively and qualitatively in Section 7.5.2. Finally in Section 4.5.3, we provide an

ablation analysis along with a real world application of BayesCap for detecting out-of-

distribution samples.
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4.5.1 Tasks and Datasets

We show the efficacy of our BayesCap on various image enhancement and translation

tasks including super-resolution, deblurring, inpainting, and MRI translation, as detailed

below. In general, image enhancement and translation tasks are highly ill-posed problems

as an injective function between input and output may not exist [160, 261], thereby necessi-

tating the need to learn a probabilistic mapping to quantify the uncertainty and indicate

poor reconstruction of the output images. For each task we choose a well established

deterministic pretrained network, for which we estimate uncertainties.

Super-resolution. The goal is to map low-resolution images to their high-resolution

counterpart. We choose pretrained SRGAN [143] as our base model Ψ(·;⇤). The

BayesCap model Ω(·; )) is trained on ImageNet patches sized 84 ⇥ 84 to perform 4⇥
super-resolution. The resulting combination of SRGAN and BayesCap is evaluated on the

Set5 [22], Set14 [320], and BSD100 [167] datasets.

Deblurring. The goal is to remove noise from images corrupted with blind motion.

We use the pretrained DeblurGANv2 [135] which shows improvements over the original

DeblurGAN [134]. The BayesCap model is evaluated on the GoPro dataset [181], using

standard train/test splits.

Inpainting. The goal is to fill masked regions of an input image. We use pretrained

DeepFillv2 [316], that improves over DeepFill [317], as the base model for inpainting. Both

the original base model and the BayesCap are trained and tested on the standard train/test

split of Places365 dataset [331].

MRI Translation. We predict the T2 MRI from T1 MRI, an important problem in

medical imaging as discussed in [30, 27, 102, 312, 314]. We use the pretrained deterministic

UNet as base model [264, 218]. Both the base model and BayesCap are trained and tested

on IXI datatset [214] following [264].

Baselines. For all tasks, we compare BayesCap against 7 methods in total, out of which

6 baselines can estimate uncertainty of a pretrained model without re-training and one

baseline modifies the base network and train it from scratch to estimate the uncertainty.

The first set of baselines belong to test-time data augmentation (TTDA) technique [9, 281, 278],

where we generate multiple perturbed copies of the input and use the set of corresponding

outputs to compute the uncertainty. We consider three different ways of perturbing the

input, (i) per-pixel noise perturbations TTDAp [9, 281], (ii) affine transformations TTDAa [9,

281] and (iii) random corruptions from Gaussian blurring, contrast enhancement, and color

jittering (TTDAc) [9, 281]. As additional baseline, we also consider TTDApac that generates

the multiple copies by combining pixel-level perturbations, affine transformations, and

corruptions as described above.

Another set of baselines uses dropout [244, 118, 70, 141, 164] before the final predictions.

This is possible even for the models that are not originally trained with dropout. We refer to

this model as DO. In addition, we consider a baseline that combines dropout with test-time

data augmentation (DOpac). Finally, we also compare against a model trained from scratch
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to produce the uncertainty as described in [120]. We refer to this as Scratch.

Metrics. We evaluate the performance of various models on two kinds of metrics

(i) image reconstruction quality and (ii) predicted uncertainty calibration quality. To

measure reconstruction quality, we use SSIM [289] and PSNR. For inpainting we also

show mean ✓1 and ✓2 error, following the convention in original works [317, 316]. We

emphasize that all the methods, except Scratch, can use the output of the pretrained

base model and only derive the uncertainty maps using different estimation techniques

described above. Therefore image reconstruction quality metrics like SSIM, PSNR, mean

✓1 and ✓2 error remain the same as that of base network. However, Scratchmethod does

not have access to the pretrained model, therefore it has to use its own predicted output

and uncertainty estimates.

To quantify the quality of the uncertainty, we use the uncertainty calibration error

(UCE) as described in [140, 87] for regression tasks. It measures the discrepancy between

the predictive error and predictive uncertainty, given by, UCE :=
Õ"
<=1 |⌫< |# |err(⌫<) �

uncer(⌫<)|, where ⌫< is one of the uniformly separated bins, err(⌫<) := 1|⌫< |
Õ
82⌫< | |ŷ8�

y8 | |
2, and uncer(⌫<) := 1|⌫< |

Õ
82⌫< �̂2

8
. We also use correlation coefficient (C.Coeff.) between

the error and the uncertainty, as high correlation is desirable.

Implementation Details. We optimize Eq. 4.10 using the Adam optimizer [122] and a

batch size of 2 with images that are resized to 256⇥ 256. During training we exponentially

anneal the hyperparameter ⌫ that is initially set to 10. This guides the BayesCap to learn

the identity mapping in the beginning, and gradually learn the optimal parameters of the

underlying distribution via maximum likelihood estimation.

4.5.2 Results

Super-resolution. Table 4.1 shows the image reconstruction performance along with the

uncertainty calibration performance on the Set5, Set14, and the BSD100 datasets for all

the methods. We see that BayesCap significantly outperforms all other methods in terms

of UCE and C.Coeff while retaining the image reconstruction performance of the base

model. For instance, across all the 3 sets, the correlation coefficient is always greater than

0.4 showing that the error and the uncertainty are correlated to a high degree. The model

trained from scratch has a correlation coefficient between 0.22-0.31 which is lower than

BayesCap. The baselines based on dropout and test-time data augmentation show nearly

no correlation between the uncertainty estimates and the error (C.Coeff. of 0.03-0.17). A

similar trend can be seen with the UCE where BayesCap has the best UCE scores followed

by the model trained from scratch, while the test-time data augmentation and the dropout

baselines have a very high UCE (between 0.33 and 0.83) suggesting poorly calibrated

uncertainty estimates.

Qualitatively, Figure 7.3 shows the prediction of the pretrained SRGAN along with

the predictions of the BayesCap showing per-pixel estimated distribution parameters

along with the uncertainty map on a sample from Set5 dataset. High correlation between
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Figure 4.4: Qualitative example showing the results of the pre-trained SRGAN model along
with the uncertainty maps produced by BayesCap and the other methods. Uncertainty
derived from BayesCap has better correlation with the error.

the per-pixel predictive error of SRGAN and uncertainties from BayesCap suggests that

BayesCap produces well-calibrated uncertainty estimates. Moreover, Figure 4.4 shows

that uncertainty produced by other baselines are not in agreement with the error (e.g.,

TTDAp does not show high uncertainty within the eye, where error is high) indicating that

they are poorly calibrated.

Deblurring. We report the results on the GoPro dataset in Table 4.2. DeblurGANv2

achieves significantly better results than Scratch (29.55 vs 26.16 PSNR). In terms of

UCE, BayesCap outperforms all the methods by achieving a low score of 0.038. While the

Scratch is close and achieves a UCE of 0.076, all the other methods have a UCE that is

nearly 10 times higher suggesting that BayesCap estimates the most calibrated uncertainty.

This is also visible in Figure 4.5-(left) where the uncertainties provided by BayesCap is

correlated with the error (C.Coeff. of 0.32) unlike methods from TTDA and DO class that

have very low correlation between the uncertainty and the error (C.Coeff of 0.03 - 0.17).

While Scratch achieves a reasonable score, second only to BayesCap, in terms of UCE

(0.076 vs. 0,038) and C.Coeff (0.21 vs. 0.32), it has much poorer image reconstruction

output with a PSNR of 26.16 and SSIM of 0.8136. The poor reconstruction also justifies
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D Metrics SRGAN TTDAp TTDAa TTDAc TTDApac DO DOpac Scratch BayesCap
S

et
5

PSNR" 29.40 29.40 29.40 29.40 29.40 29.40 29.40 27.83 29.40

SSIM" 0.8472 0.8472 0.8472 0.8472 0.8472 0.8472 0.8472 0.8166 0.8472

UCE# NA 0.39 0.40 0.42 0.47 0.33 0.36 0.035 0.014

C.Coeff" NA 0.17 0.13 0.08 0.03 0.05 0.07 0.28 0.47

S
et

14

PSNR" 26.02 26.02 26.02 26.02 26.02 26.02 26.02 25.31 26.02

SSIM" 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7397 0.7162 0.7397

UCE# NA 0.57 0.63 0.61 0.69 0.48 0.52 0.048 0.017

C.Coeff" NA 0.07 0.04 0.04 0.06 0.08 0.04 0.22 0.42

B
S

D
10

0

PSNR" 25.16 25.16 25.16 25.16 25.16 25.16 25.16 24.39 25.16

SSIM" 0.6688 0.6688 0.6688 0.6688 0.6688 0.6688 0.6688 0.6297 0.6688

UCE# NA 0.72 0.77 0.81 0.83 0.61 0.64 0.057 0.028

C.Coeff" NA 0.13 0.09 0.11 0.09 0.10 0.08 0.31 0.45

Table 4.1: Quantitative results showing the performance of pretrained SRGAN in terms
of PSNR and SSIM, along with the quality of of uncertaintiy maps obtained by BayesCap
and other baselines, in terms of UCE and Correlation Coefficient (C.Coeff). All results on
3 datasets including Set5, Set14, and BSD100.

Figure 4.5: Qualitative example showing the results of the pretrained DeblurGANv2
and DeepFillv2 on image deblurring (left) and inpainting (right) tasks along with the
uncertainty maps produced by different methods.

D Metrics DeblurGANv2 TTDAp TTDAa TTDAc TTDApac DO DOpac Scratch BayesCap

G
oP

ro

PSNR" 29.55 29.55 29.55 29.55 29.55 29.55 29.55 26.16 29.55

SSIM" 0.9340 0.9340 0.9340 0.9340 0.9340 0.9340 0.9340 0.8136 0.9340

UCE# NA 0.44 0.45 0.49 0.53 0.52 0.59 0.076 0.038

C.Coeff" NA 0.17 0.13 0.08 0.03 0.05 0.07 0.21 0.32

Table 4.2: Results showing the performance of pretrained DeblurGANv2 in terms of
PSNR and SSIM, along with the quality of of uncertaintiy obtained by BayesCap and other
methods, in terms of UCE and C.Coeff on GoPro dataset.

the relatively higher uncertainty values for Scratch (as seen in Figure 4.5-(left)) when

compared to BayesCap.

Inpainting. Table 4.3 shows the results on Places365 dataset. The pretrained base

model DeepFillv2 [316] achieves a mean L1 error of 9.1%, however Scratch is much

worse, achieving a mean L1 error of 15.7%. This again demonstrates that training a

Bayesian model from scratch often does not replicate the performance of deterministic
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D Metrics DeepFillv2 TTDAp TTDAa TTDAc TTDApac DO DOpac Scratch BayesCap
P

la
ce

s3
65

m. ✓1 err.# 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 9.1% 15.7% 9.1%

m. ✓2 err.# 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 5.8% 1.6%

PSNR" 18.34 18.34 18.34 18.34 18.34 18.34 18.34 17.24 18.34

SSIM" 0.6285 0.6285 0.6285 0.6285 0.6285 0.6285 0.6285 0.6032 0.6285

UCE# NA 0.63 0.88 0.87 0.93 1.62 1.49 0.059 0.011

C.Coeff" NA 0.26 0.11 0.12 0.08 0.09 0.12 0.44 0.68

Table 4.3: Performance of pretrained DeepFillv2 in terms of mean ✓1 error, mean ✓2 error,
PSNR and SSIM, along with the quality of uncertainty obtained by BayesCap and other
methods, in terms of UCE and C.Coeff on Places365 dataset.

Figure 4.6: Qualitative example showing the results of the pretrained UNet for T1 to T2
MRI translation along with the uncertainty produced by different methods.

counterparts. Also, BayesCap retains the reconstruction performance of DeepFillv2 [316]

and provides well-calibrated uncertainties, as demonstrated by highest C.Coeff. (0.68),

and the lowest UCE (0.011). Methods belonging to TTDA and DO classes are unable to

provide good uncertainties (C.Coeff. of 0.08-0.26). The example in Figure 4.5-(right) also

illustrates an interesting phenomenon. Although, the uncertainties are predicted for the

entire image, we see that BayesCap automatically learns to have extremely low uncertainty

values outside the masked region which is perfectly reconstructed. Within the masked

region, uncertainty estimates are highly correlated with the error.

MRI Translation. We perform T1 to T2 MRI translation as described in [264, 261] which

has an impact in clinical settings by reducing MRI acquisition times [30, 27, 102, 312, 314].

The quantitative results on the IXI dataset are show in Table 4.4. The pretrained base model

employing U-Net architecture, achieves a SSIM score of 0.9272 which is nearly matched by

Scratch (0.9169). However, we see that BayesCap performs better than Scratch in terms

of UCE (0.036 vs. 0.029) and C.Coeff (0.52 vs. 0.58). Other methods are poorly calibrated,
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D Metrics UNet TTDAp TTDAa TTDAc TTDApac DO DOpac Scratch BayesCap
IX

I

PSNR" 25.70 25.70 25.70 25.70 25.70 25.70 25.70 25.50 25.70

SSIM" 0.9272 0.9272 0.9272 0.9272 0.9272 0.9272 0.9272 0.9169 0.9272

UCE# NA 0.53 0.46 0.41 0.44 0.38 0.40 0.036 0.029

C.Coeff" NA 0.05 0.14 0.16 0.08 0.13 0.47 0.52 0.58

Table 4.4: Performance of pretrained UNet for MRI translation in terms of PSNR and
SSIM, along with the quality of of uncertainty obtained by BayesCap and other methods,
in terms of UCE and C.Coeff on IXI Dataset.

Figure 4.7: Impact of the identity mapping. Degrading the quality of the identity mapping
(SSIM) at inference, leads to poorly calibrated uncertainty (UCE). � represents the magni-
tude of noise used for degrading the identity mapping.

Figure 4.8: BayesCap can be trained to achieve optimal performance in fewer epochs (left),
while being more data-efficient (achieves better results with fewer samples) as compared
to Scratch (middle and right), shown for super-resolution.

as indicated by high UCE and low C.Coeff. This is also evident from Figure 4.6, indicating

high correlation between the BayesCap uncertainty and error, while low correlation of the

same for other methods.

4.5.3 Ablation Studies

As discussed in Section 4.4.3, BayesCap can help in estimating uncertainty for the frozen

model only if BayesCap provides perfect reconstruction. To study this, we design an

experiment that deteriorates the identity mapping learned by BayesCap, leading to poor

uncertainty estimates. Moreover, we also demonstrate that BayesCap is much more data

and compute efficient when compared to Scratch (i.e., model capable of estimating the

uncertainty, trained from scratch).

Figure 4.7 shows that preserving the identity mapping is essential to providing well-

calibrated post-hoc uncertainty estimates using BayesCap. Here, we gradually feed

increasingly noisy samples (corrupted by zero-mean Gaussian with variance given by �2)

to the model that leads to poor reconstruction by BayesCap and as a result degrades the

identity mapping. As the quality of the identity mapping degrades (decreasing SSIM),
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we see that quality of uncertainty also degrades (increasing UCE). For instance, for super-

resolution, with zero noise in the input the reconstruction quality of the BayesCap is at its

peak (SSIM, 0.8472) leading to almost identical mapping. This results in well-calibrated

uncertainty maps derived from BayesCap (UCE, 0.014). However, with � = 0.15, the

reconstruction quality decreases sharply (SSIM of 0.204) leading to poorly calibrated

uncertainty (UCE of 0.0587), justifying the need for the identity mapping.

We also show that BayesCap is more efficient than training a Bayesian model from

scratch both in terms of time and data required to train the model in Figure 4.8-(Left). On

all the 4 tasks, BayesCap can be trained 3-5⇥ faster than Scratch. For super-resolution,

we show that BayesCap can achieve competitive results even when trained on a fraction

of the dataset, whereas the performance of Scratch reduces sharply in low data regime,

as shown in Figure 4.8-(Middle and Right). For instance, with just 50% of training data,

BayesCap performs 33% better than Scratch in terms of SSIM. This is because BayesCap

learns the autoencoding task, whereas Scratch learns the original translation task.

4.5.4 Application: Out-of-Distribution Analysis

The proposed BayesCap focuses on estimating well-calibrated uncertainties of pretrained

image regression models in a post-hoc fashion. This can be crucial in many critical real-

world scenarios such as autonomous driving and navigation [302, 120, 286, 174]. We

consider monocular depth estimation (essential for autonomous driving) and show that

the estimated uncertainty can help in detecting out-of-distribution (OOD) samples. We

take MonoDepth2 [81] that is trained on the KITTI dataset [76]. The resulting model

with BayesCap is evaluated on the validation sets of the KITTI dataset, the India Driving

Dataset(IDD) [271] as well as the Places365 dataset [331]. The KITTI dataset captures

images from German cities, while the India Driving Dataset has images from Indian

roads. Places365 consists of images for scene recognition and is vastly different from

driving datasets. Intuitively, both IDD and Places365 represent OOD as there is a shift

in distribution when compared to training data (KITTI), this is captured in Figure 4.9-

(a,b,c,d), representing degraded depth and uncertainty on OOD images. The uncertainties

also reflect this with increasingly higher values for OOD samples as also shown in the bar

plot (Figure 4.9-(d)). This suggests that mean uncertainty value for an image can be used

to detect if it belongs to OOD.

To quantify this, we plot the ROC curve for OOD detection on a combination of the

KITTI (in-distribution) samples and IDD and Places365 (out-of-distribution) samples in

Figure 4.9-(e). Additionally, we compare using uncertainty for OOD detection against

(i) using intermediate features from the pretrained model [211] and (ii) using features

from the bottleneck of a trained autoencoder [332]. Samples are marked OOD if the

distance between the features of the samples and mean feature of the KITTI validation

set is greater than a threshold. We clearly see that using the mean uncertainty achieves

far superior results (AUROC of 0.96), against the pretrained features (AUROC of 0.82)
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Figure 4.9: BayesCap with MonoDepth2 [81] for depth estimation in autonomous driving.
Trained on KITTI and evaluated on (a) KITTI, (b) Indian Driving Dataset, and (c) Places365.
(d) and (e) Plots show mean uncertainty values and ROC curve for OOD detection
respectively, as described in Section 4.5.4.

and autoencoder based approach (AUROC of 0.72). Despite not being specifically tailored

for OOD detection, BayesCap achieves strong results. This indicates the benefits of its

well-calibrated uncertainty estimates on downstream tasks.

4.6 Conclusion

We proposed BayesCap, a fast and cheap post-hoc uncertainty estimation method for

pretrained deterministic models. We show that our method consistently produces well-

calibrated uncertainty estimates across a wide variety of image enhancement and transla-

tion tasks without hampering the performance of the pretrained model. This is in sharp

contrast to training a Bayesian model from scratch that is more expensive and often not

competitive with deterministic counterparts. We demonstrate that derived calibrated

uncertainties can be used in critical scenarios for detecting OOD and helping decision-

making. One limitation of our model is the assumption that the input is sufficiently

contained in the output of the target task. Future works may address this limitation, as

well as extending BayesCap to discrete predictions.
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5.1 Abstract

Dense regression is a widely used approach in computer vision for tasks such as im-

age super-resolution, enhancement, depth estimation, etc. However, the high cost of

annotation and labeling makes it challenging to achieve accurate results. We propose

incorporating active learning into dense regression models to address this problem. Active

learning allows models to select the most informative samples for labeling, reducing the

overall annotation cost while improving performance. Despite its potential, active learning

has not been widely explored in high-dimensional computer vision regression tasks like

super-resolution. We address this research gap and propose a new framework called

USIM-DAL that leverages the statistical properties of colour images to learn informative

priors using probabilistic deep neural networks that model the heteroscedastic predictive

distribution allowing uncertainty quantification. Moreover, the aleatoric uncertainty from

the network serves as a proxy for error that is used for active learning. Our experiments

on a wide variety of datasets spanning applications in natural images (visual genome,

BSD100), medical imaging (histopathology slides), and remote sensing (satellite images)

demonstrate the efficacy of the newly proposed USIM-DAL and superiority over several

dense regression active learning methods.

5.2 Introduction

The paradigm of dense prediction is very important in computer vision, given that pixel-

level regression tasks like super-resolution, restoration, depth estimation etc., help in

holistic scene understanding. A common example of a pixel-level (i.e., dense) regression
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Figure 5.1: The proposed framework USIM-DAL. (Left-to-right) We train a probabilistic
deep network for a dense regression task (e.g., super-resolution) on synthetic samples
obtained from statistical image models as described in Section 6.4. The pre-trained model
is used to identify the high-uncertainty samples from the domain-specific unlabeled set.
Top-K highly uncertain samples are chosen for labeling on which the pre-trained network
is further fine-tuned.

task is Image super-resolution (SR) is the process of recovering high-resolution (HR) images

from their low-resolution (LR) versions. It is an important class of image processing

techniques in computer vision, deep learning, and image processing and offers a wide

range of real-world applications, such as medical imaging [151], satellite imaging [273],

surveillance [29] and security [82], and remote sensing [304], to name a few. The well-

performing techniques for super-resolution often rely on deep learning-based methods

that are trained in a supervised fashion, requiring high-resolution data as groundtruth.

However, the acquisition of high-resolution imaging data (to be served as labels) for

many real-world applications may be infeasible. Consider the example of histopathology

microscopy from medical imaging, where the typical digital microscope takes significantly

longer to acquire the high-resolution scans (i.e., at high magnification) image of the slide

than low-magnification [1, 90]. Moreover, the acquired high-resolution scans also have

a significantly larger memory footprint leading to an increase in storage resources [18].

Similarly, acquiring high spatial resolution images from satellites for remote sensing

requires expensive sensors and hardware and has significantly higher operating costs [46,

45]. In such scenarios, generating a large volume of training samples is infeasible.

As a remedy, concepts like zero-shot SR or single-image SR have been proposed. Nev-

ertheless, zero-shot SR still requires ample supervision from the test image patches [236]

to learn the transferrable model for novel scenarios with divergent distributions [240],

and the performance of the single-image SR models is still affected by the lack of suffi-

cient labeled data [153]. Notwithstanding these discussions, there are situations where

there are restrictions on dealing with training samples within a pre-defined budget. For

example, in histopathology microscopy, the constraint on available resources may allow

high-resolution acquisition for only a limited number of patients/microscopy slides. One

of the viable solutions in this regard is to select a subset of highly representative train-

ing samples from the available training set while respecting the budget and deploying

them to train the SR model. This corresponds to the notion of active learning for subset
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selection. However, selecting the subset is challenging considering the fact that we need a

quantitative measurement for the eligibility of a given training LR-HR pair to be selected.

Many works have explored different query functions to select a subset to label from a

larger dataset [16, 84, 220]. However, most of them have been applied to classification or

low-dimensional regression problems [109], and there still exists a gap on how to address

this for dense regression tasks (e.g., super-resolution). Active learning technique to label

those points for which the current model is least certain has been studied well in the

context of classification [309]. While there are recent advances in uncertainty estimation

using neural networks for dense regression [121, 267], it is yet to be studied if they can be

leveraged in active learning for dense regression.

In summary, our contributions are as follows: (i) We show how statistical image models

can help alleviate the need for a large volume of high-resolution imaging data. (ii) We

show that probabilistic deep networks, along with the statistical image models, can be

used to learn informative prior about niche domain datasets that may allow limited access

to high-resolution data. (iii) Our probabilistic deep network trained with the statistical

image models allows us to estimate the uncertainty for the sample in a niche domain that

can be leveraged for active learning as illustrated in Figure 6.2.

5.3 Related Work

Active Learning. These are a set of techniques that involve selecting a minimal data subset

to be annotated, representing the entire dataset, and providing maximum performance

gains. Querying strategies for active learning can be broadly categorized into three cat-

egories: heterogeneity-based, performance-based, and representativeness-based models.

Uncertainty sampling [16, 84, 283, 220, 57], a type of heterogeneity-based model, is a stan-

dard active learning strategy where the learner aims to label those samples which have

the most uncertain labelings. Non-Bayesian approaches[28, 288] dealing with entropy,

distance from decision boundary, etc., also exist but are not scalable for deep learning

[229]. Representation-based methods that aim at increasing the diversity in a batch[109]

have also been studied. However, most of these works have been studied in the context

of classification or low-dimensional regression problems, and the literature on dense

regression is still sparse.

Statistical Image models. The = ⇥ = RGB images occupy the space of R3=2
. However,

the structured images occupy a small region in that space. The statistical properties of

the samples in this small structured space can be leveraged to generate synthetic data

that have similar statistics to real-world structured images. For instance, the observation

that natural images follow a power law with respect to the magnitude of their Fourier

Transform (FT) formed the basis for Wiener image denoising[237], Dead Leaves models

[145] and fractals as image models [208, 117]. Similarly, works like [63, 237, 129] showed

that outputs of zero mean wavelets to natural images are sparse and follow a generalized

Laplacian distribution. Works like [94, 202] showed statistical models capable of producing
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realistic-looking textures. The recent work [12] takes this research a step closer to realistic

image generation by learning from procedural noise processes and using the generated

samples for pre-training the neural networks. However, it is only applied to classification.

Super-resolution. This consists of CNN-based methods to enhance the resolution of

the image [144, 285, 260, 259]. Attention mechanism has proven to be ubiquitous, with

[296] introducing channel and spatial attention modules for adaptive feature refinement.

Transformers-based endeavors such as [152], achieve state-of-the-art results using multi-

head self-attention for SR. [223] uses a probabilistic diffusion model and performs SR

through an iterative denoising process. Works like [236, 25] use internal and external

recurrence of information to get superior SR performance during inference. However,

these works do not consider the problem of super-resolution in the active learning context,

leaving a gap in the literature.

Uncertainty Estimation. Quantifying uncertainty in machine learning models is crucial

for safety-critical applications [182, 246, 263, 265, 261]. Uncertainty can be broadly catego-

rized into two classes: (i) Epistemic uncertainty (i.e., uncertainty in model weights [24, 50,

85, 121]). (ii) Aleatoric uncertainty (i.e., noise inherent in the observations) [10, 278]. The

dense predictive uncertainty may be considered as a proxy for error and can be used for

active learning purposes [142].

5.4 Method

We first formulate the problem in Section 6.4.1, andpresentpreliminaries on active learning,

statistical image models, and uncertainty estimation in Section 5.4.2. In Section 5.4.3, we

describe the construction of USIM-DAL that learns a prior via statistical image modeling,

which is later used to select the most informative samples from the unlabeled set for

labeling and further improving the model.

5.4.1 Problem formulation

Let D* = {x8}
#
8=1

be the unlabeled set of input images from domain X (i.e., x8 2 X88). We

consider the task where images (x) are to be mapped to another set of dense continuous

labels (y, e.g., other images, such that y8 2 Y88). We want to learn a mapping Ψ for

the same, i.e., Ψ : X ! Y. However, we want to learn it under the constraint that we

do not have sufficient budget to “label” all the # samples in D* (i.e., acquire all the

corresponding y), but we do have a budget to label a significantly smaller subset of D*

with  << # samples, say D 
*

. This is a real-world constraint, as discussed in Section 5.3.

In this work, we focus on the problem of super-resolution where the domain Y consists of

high-resolution images (corresponding to the low-resolution images in domain X).

We tackle the problem of choosing the set of  << # samples (D 
*

) that are highly

representative of the entire unlabeled training set D* , such that the learned mapping Ψ

on unseen data from a similar domain performs well.
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5.4.2 Preliminaries

Active Learning. As discussed above, given a set of # unlabeled images D* , we want to

choose a set of  << # samples (D 
*

) that are highly representative of the entire unlabeled

training set D* . This is the problem of active learning, which consists of query strategies

that maps the entire unlabeled set D* to its subset. That is, the query strategy (constrained

to choose  samples and parameterized by )) is given by, Q ,) : D* ! D 
*

. Many works

explore designing the query strategy Q ,) [16, 84, 283]. However, they seldom attempt to

design such a strategy for dense regression.

Figure 5.2: Samples generated from Statistical Image Models (combination of Spectrum +
WMM + Color histogram). The abstract images generated from such a model capture the
Fourier, Wavelet, and color histogram properties of the color natural images.

Statistical Image Models (SIM). As discussed in [12], the statistical properties of RGB

images can be exploited to generate synthetic images that can serve as an excellent pre-

training learning signal. The generative model (based on statistical properties of RGB

images) is described as G(·;⌧) : z ! x where z is a stochastic latent variable and

x is an image. The image generation is modelled as a hierarchical process in which,

first, the parameters of a model are sampled. Then the image is sampled given these

parameters and stochastic noise. Previous works [12] highlight the following statistical

models. (i) Spectrum: based on the magnitude of the Fourier transform (FT). The FT

of many natural images follows a power law, i.e., 1
| 5 |�

, where | 5 | is the magnitude of

frequency 5 , and � is a constant close to 1. For generative models, the sampled images are

constrained to be random noise images that have FT magnitude following 1
| 5G |0+| 5H |1

with

a and b being two random numbers uniformly sampled as detailed in [12]. (ii) Wavelet-

marginal model (WMM): Generates the texture by modeling their histograms of wavelet

coefficient as discussed in [237, 129]. (iii) Color histograms: As discussed in [12], this
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generative model follows the color distribution of the dead-leaves model [12]. Combining

all these different models allows for capturing colour distributions, spectral components,

and wavelet distributions that mimic those typical for natural images. Figure 5.2 shows

examples of generated samples from such models.

Uncertainty Estimation. Various works [138, 121] have proposed different methods to

model the uncertainty estimates in the predictions made by DNNs for different tasks.

Interestingly recent works [121, 267] have shown that for many real-world vision applica-

tions, modeling the aleatoric uncertainty allows for capturing erroneous predictions that

may happen with out-of-distribution samples. To estimate the uncertainty for the regres-

sion tasks using deep network (say Ψ(·; ✓) : X ! Y), the model must capture the output

distribution P. |- . This is often done by estimating P. |- with a parametric distribution

and learning the parameters of the said distribution using the deep network, which is

then used to maximize the likelihood function. That is, for an input x8 , the model pro-

duces a set of parameters representing the output given by, {ŷ8 , ⇡̂8 . . . ⌧̂8} := Ψ(x8 ; ✓), that

characterizes the distribution P. |-(y; {ŷ8 , ⇡̂8 . . . ⌧̂8}), such that y8 ⇠ P. |-(y; {ŷ8 , ⇡̂8 . . . ⌧̂8}).

The likelihood L (✓;D) :=
Œ#

8=1 P. |-(y8 ; {ŷ8 , ⇡̂8 . . . ⌧̂8}) is then maximized to estimate the

optimal parameters of the network. Typically, the parameterized distribution is chosen

to be heteroscedastic Gaussian distribution, in which case Ψ(·; ✓) is designed to predict the

mean and variance of the Gaussian distribution, i.e., {ŷ8 , �̂2
8
} := Ψ(x8 ; ✓). The optimization

problem becomes,

✓⇤ = argmin
✓

#’
8=1

|ŷ8 � y8 |
2

2�̂2
8

+
log(�̂2

8
)

2
(5.1)

With Uncertainty(ŷ8) = �̂2
8
. An important observation from Equation 5.1 is that,

ignoring the dependence through ✓, the solution to Equation 5.1 decouples estimation of

ŷ8 and �̂8 . That is, for minimizing with respect to ŷ8 we need,

%
⇣Õ#

8=1
|ŷ8�y8 |

2

2�̂2
8

+
log(�̂2

8
)

2

⌘
%ŷ8

= 0 (5.2)
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8
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2

⌘
%ŷ2

8

> 0 (5.3)

Equation 5.2 & 5.3 lead to ŷ8 = y8 88. Similarly for minimizing with respect to �̂8 we need,

%
⇣Õ#

8=1
|ŷ8�y8 |

2

2�̂2
8

+
log(�̂2

8
)

2

⌘
%�̂8

= 0 (5.4)

%2
⇣Õ#

8=1
|ŷ8�y8 |

2

2�̂2
8

+
log(�̂2

8
)

2

⌘
%�̂2

8
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Figure 5.3: Output of the pre-trained probabilistic deep network (which is trained using
synthetic images sampled from statistical image models) on samples from unseen natural
image datasets. (a) LR input, (b) HR groundtruth, (c) Predicted output, SR, from the net-
work, (d) Predicted uncertainty from the network, (e) Error between SR and groundtruth.

Equation 5.4 & 5.5 lead to �̂2
8
= |ŷ8 � y8 |

2 88. That is, the estimation �̂2
8

should perfectly

reflect the squared error. Therefore, a higher �̂2
8

indicates higher error. We leverage this

observation to design our dense active learning framework as described in Section 5.4.3.

5.4.3 Constructing USIM-DAL

To tackle the problem mentioned in Section 6.4.1 (i.e., choosing a small subset), we leverage

the fact that even before training the model with the labelled set, we can train a model

based on the samples that we get from statistical image model as described above, which

can then be used to make inference on the unlabeled domain-specific dataset identifying

the high-uncertainty samples. The high-uncertainty samples can then be labelled and

used to fine-tune the model.

We constraint the generative process for statistical image models as, Similar to [12], we

treat image generation as a hierarchical process in which first the parameters of a model,

⌧, are sampled. Then the image is sampled given these parameters and stochastic noise,

i.e.,

⌧ ⇠ ?A8>A(⌧) and z ⇠ ?A8>A(z) (5.6)

x = G(z;⌧) (5.7)

In particular, for super-resolution, we create a large (synthetic) labelled dataset using

the samples from the statistical image models, say D(! = {(low(xB ,8), xB ,8)}
"
8=1

. Where xB ,8

are generated samples from statistical image model and low(·), is the 4⇥ down-sampling

operation. We then train the network Ψ(·; ✓) on D(! using Equation 5.1, leading to the

optimal parameter ✓⇤
(!

, as shown in Figure 6.2. The trained model Ψ(·; ✓⇤
(!
) is then run in

inference mode on all the samples of the unlabeled set D* and gather the top uncertain
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samples for labeling, that is,

{ŷ8 , �̂8} := Ψ(x8 ; ✓
⇤
(!) 8x8 2 D* (5.8)

D 
* := {x9}89 2 topK

⇣
{h�̂8i}#8=1

⌘
(5.9)

Where, h·i represents the mean operation, and topK
�
{h�̂8i}#8=1

�
returns the indices of

“top-K” most uncertain samples (i.e., mean uncertainty is high). We then acquire the labels

for the samples in D 
*

, giving us, D 
*!

= {(x9 , y9)}. As discussed in Section 5.4.2, the input

samples in D 
*!

serve as a proxy to the set of  samples that would have the highest error

between the prediction made by the model Ψ(·; ✓⇤
(!
) and the ground truth. That leads to

better fine-tuning. The model Ψ(·; ✓⇤
(!
) is then fine-tuned on D 

*!
via Equation 5.1, leading

to the final state of the model Ψ(·; ✓⇤
 !
) (shown in Figure 6.2) that can be used for inferring

on the new sample.

USIM-DAL models the aleatoric uncertainties in the prediction. Still, it is crucial to

note that it leverages the Statistical Image Modeling (SIM)-based synthetic images for

pertaining and learning important priors for color images that broadly capture different

niche domains such as medical images, satellite images, etc. Therefore, the initial model,

capable of estimating the aleatoric uncertainty (trained on SIM-based synthetic images),

can reasonably capture the uncertainty as a proxy for reconstruction error for domain-

specific images that are not necessarily out-of-distribution images. Moreover, picking

samples with high reconstruction errors for subsequent fine-tuning of the model yields

better performance on similar highly erroneous cases, iteratively improving the model.

Furthermore, in high-dimensional regression cases, the aleatoric and epistemic uncertainty

often influence each other and are not independent [121, 267, 327].

5.5 Experiments and Results

We provide an overview of the experiments performed and the results obtained. In

Section 5.5.1, we describe the task and various methods used for comparison. Section 5.5.3

analyzes the performance of various dense active learning algorithms for super-resolution

andshows thatourproposedmethodUSIM-DAL can help greatly improve the performance

when constrained with a limited budget.

5.5.1 Tasks, Datasets, and Methods

We present the results of all our experiments on the super-resolution task. We demonstrate

our proposed framework using a probabilistic SRGAN (which is the adaptation of SR-

GAN [144] that estimates pixel-wise uncertainty as described in [121]) model. We evaluate

the performance of various models on a wide variety of domains like (i) Natural Images

(with Set5, Set14, BSD100, and Visual Genome dataset [144, 166, 130]). (ii) Satellite Images

(with PatternNet dataset [337]). (ii) Histopathology Medical Images (with Camelyon

dataset [157]). The evaluation protocol is designed to constraint all the training domain
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datasets to be restricted by a small fixed number of images (also called training budget). We

used different training budgets of 500, 1000, 2000, 3000 and 5000 images for natural and

satellite domains. For both natural and satellite images, the input image resolution was

set to 64 ⇥ 64. For natural images the training dataset was obtained from Visual Genome

(separate from the test-set). Similarly, for the histopathology medical images, the input

image resolution was set to 32⇥ 32 and we used training budgets of 4000, 8000, 12000, and

16000.

We compare the super-resolution performance in terms of metrics MSE, MAE, PSNR,

and SSIM [289] for the following methods on respective test sets: (i) SRGAN model

trained from scratch with a randomly chosen subset satisfying the training budget from

the entire training data (called Random). (ii) SRGAN model trained from scratch on

a large synthetically generated dataset via statistical image modeling (as described in

Section 5.4.2). This model is called SIM. (iii) SRGAN model trained from scratch on a

large synthetically generated dataset via statistical image modeling and then fine-tuned

on a randomly chosen subset satisfying the training budget from the entire training data,

called SIM+Random. (iv) SRGAN model trained from scratch on a large synthetically

generated dataset via statistical image modeling and then fine-tuned on a subset chosen

using uncertainty estimates, satisfying the training budget from the entire training data,

called USIM-DAL.

5.5.2 Dense Active Learning via Uncertainty Estimation

Figure 5.4: Distribution of mean uncertainty

for samples in Statistical Image Noise, Pat-

ternNet (satellite), Camelyon (medical), Vi-

sual Genome (natural) datasets.

Our method proposes to utilize a proba-

bilistic network that is learned from syn-

thetic images sampled from statistical im-

age models (i.e., Ψ(·; ✓⇤
(!
) mentioned in Sec-

tion 5.4.3). Figure 5.3 shows the output of

probabilistic SRGAN trained on synthetic

images evaluated on samples from natu-

ral images. We observe that (i) The pre-

dicted super-resolved images (Figure 5.3-

(c)) are still reasonable. (ii) The uncer-

tainty estimates (Figure 5.3-(d)) still resem-

ble the structures from the images and are

a reasonable proxy to the error maps (Fig-

ure 5.3-(e)) between the predictions and

the ground truth, even though the model

has never seen the natural images.

We use the predicted uncertainty from

this model to identify the samples from

the real-world domain that would lead to
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D Methods

Budgets (Number of images)

500 1000 2000 3000 5000

MSE|{z}
⇥103

/ MAE|{z}
⇥102

/ PSNR| {z }
⇥100

/ SSIM|{z}
⇥102

MSE|{z}
⇥103

/ MAE|{z}
⇥102

/ PSNR| {z }
⇥100

/ SSIM|{z}
⇥102

MSE|{z}
⇥103

/ MAE|{z}
⇥102

/ PSNR| {z }
⇥100

/ SSIM|{z}
⇥102

MSE|{z}
⇥103

/ MAE|{z}
⇥102

/ PSNR| {z }
⇥100

/ SSIM|{z}
⇥102

MSE|{z}
⇥103

/ MAE|{z}
⇥102

/ PSNR| {z }
⇥100

/ SSIM|{z}
⇥102

Se
t5

Random 4.129 / 3.854 / 24.784 / 7.232 3.898 / 3.720 / 24.957 / 7.319 3.660 / 3.588 / 25.271 / 7.422 3.586 / 3.529 / 25.334 / 7.465 3.500 / 3.420 / 25.514 / 7.539

SIM 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541 3.431 / 3.524 / 25.641 / 7.541

SIM + Random 2.976 / 3.139 / 26.283 / 7.839 2.958 / 3.099 / 26.377 / 7.872 2.941 / 3.081 / 26.435 / 7.896 2.934 / 3.088 / 26.436 / 7.910 2.912 / 3.056 / 26.546 / 7.935

USIM-DAL 2.926 / 3.088 / 26.484 / 7.869 2.884 / 3.069 / 26.550 / 7.894 2.848 / 3.027 / 26.619 / 7.931 2.843 / 3.029 / 26.644 / 7.944 2.831 / 3.025 / 26.699 / 7.943

Se
t1

4

Random 6.254 / 4.750 / 22.535 / 6.333 6.111 / 4.669 / 22.576 / 6.382 5.942 / 4.564 / 22.701 / 6.468 5.862 / 4.539 / 22.616 / 6.488 5.800 / 4.450 / 22.886 / 5.594

SIM 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383 4.852 / 4.303 / 22.897 / 6.383

SIM + Random 4.488 / 3.907 / 23.748 / 7.016 4.485 / 3.871 / 23.787 / 7.082 4.444 / 3.828 / 24.106 / 7.159 4.426 / 3.828 / 24.162 / 7.179 4.396 / 3.798 / 24.090 / 7.198

USIM-DAL 4.376 / 3.836 / 23.810 / 6.984 4.366 / 3.816 / 23.818 / 7.000 4.331 / 3.767 / 24.288 / 7.177 4.317 / 3.749 / 24.422 / 7.208 4.292 / 3.728 / 24.553 / 7.227

B
SD

10
0

Random 4.857 / 4.338 / 23.357 / 6.072 4.778 / 4.294 / 23.427 / 6.098 4.670 / 4.226 / 23.583 / 6.160 4.630 / 4.207 / 23.598 / 6.187 4.600 / 4.160 / 23.703 / 6.214

SIM 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713 3.526 / 3.738 / 24.805 / 6.713

SIM + Random 3.362 / 3.578 / 25.007 / 6.786 3.352 / 3.559 / 25.043 / 6.794 3.328 / 3.539 / 25.092 / 6.812 3.323 / 3.540 / 25.085 / 6.816 3.305 / 3.519 / 25.137 / 6.834

USIM-DAL 3.299 / 3.520 / 25.174 / 6.826 3.293 / 3.520 / 25.191 / 6.830 3.282 / 3.504 / 25.207 / 6.838 3.277 / 3.496 / 25.212 / 6.844 3.262 / 3.486 / 25.263 / 6.854

V
is

u
al

G
en

om
e

Random 4.442 / 3.946 / 23.935 / 6.853 4.346 / 3.892 / 24.033 / 6.889 4.231 / 3.818 / 24.200 / 6.954 4.182 / 3.797 / 24.216 / 6.983 4.120 / 3.718 / 24.353 / 7.032

SIM 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826 4.310 / 3.963 / 24.055 / 6.826

SIM + Random 4.038 / 3.721 / 24.396 / 7.036 4.026 / 3.690 / 24.423 / 7.056 3.993 / 3.663 / 24.496 / 7.088 3.977 / 3.661 / 24.515 / 7.101 3.943 / 3.631 / 24.563 / 7.126

USIM-DAL 3.966 / 3.668 / 24.543 / 7.056 3.949 / 3.657 / 24.570 / 7.069 3.925 / 3.623 / 24.624 / 7.109 3.908 / 3.608 / 24.656 / 7.126 3.880 / 3.593 / 24.721 / 7.143

Table 5.1: Evaluating different methods on natural image datasets ( Set5, Set14, BSD100,
Visual Genome) using MSE, MAE, PSNR, SSIM. Lower MSE/MAE is better. Higher
PSNR/SSIM is better. “D”: Datasets. Best results are in bold.

high errors. Figure 5.4 shows the distribution of mean uncertainty values for samples

in (i) Statistical Noise (ii) Natural (ii) Satellite (iii) Medical image datasets. We notice

that the model trained on synthetic images leads to a gaussian distribution for the mean

uncertainty values on the synthetic image datasets. We obtain similar distributions for

other datasets from different domains. This further emphasizes that uncertainty estimates

obtained from Ψ(·; ✓⇤
(!
) can be used as a proxy to identify the highly uncertain (therefore

erroneous) samples from different domains (i.e., the samples close to the right tail of the

distributions).

5.5.3 USIM-DAL for Super-resolution

Table 5.1 shows the performance of different methods on multiple natural image datasets,

including Set5, Set14, BSD100, and Visual Genome (VG). We observe that with the

smallest training budget of 500 images, USIM-DAL performs the best with a PSNR/-

MAE of 25.174/0.035 (Table 5.1 shows the results with a scaling factor for better ac-

commodation) compared to SIM+Random with PSNR/MAE of 25/0.039 and SIM with
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PSNR/MAE of 24.8/0.037. We also notice that at this budget, choosing the random

subset of the training dataset to train the model from scratch performs the worst with

PSNR/MAE of 23.36/0.043. As the budget increases (left to right in Tabel 5.1), the

performances of all the methods also improve. However, a similar trend is observed

where the USIM-DAL performs better than SIM+Random, SIM, and Random. We observe

a similar trend for other natural image datasets. This allows us to make the following

observations: (i) Using a synthetic training image dataset (sampled from the statistical

image model, discussed in Section 5.4.2) leads to better performance than using a small

random subset of training images from the original domain (i.e., SIM better than Random).

Figure 5.5: Evaluation of various

methods on histopathology medi-

cal domain (i.e., Camelyon dataset)

and satellite imaging domain (i.e.,

PatternNet dataset) at various fine-

tuning budgets. The yellow curve

is the SIM baseline. The red curve

is the SIM model fine-tuned with

random samples (i.e., SIM+Random).

The blue curve is the SIM model

fine-tuned with the highest uncer-

tain samples (i.e., USIM-DAL).

(ii) Using the above synthetic training image dataset

to train a model and later fine-tuning it with domain-

specific samples lead to further improvements (i.e.,

both USIM-DAL and SIM+Random better than SIM).

(iii) With a limited budget, fine-tuning a model

(pre-trained on synthetic training image dataset)

using high-uncertainty samples from the training

set (as decided by the USIM-DAL) is better than

using the random samples from the training set

(i.e., USIM-DAL better than SIM+Random). We per-

form a similar set of experiments with other imag-

ing domains, namely, (i) Satellite imaging (using

PatternNet dataset) and (ii) Medical imaging (using

Camelyon histopathology dataset). We observe a

similar (to natural images) trend in these domains.

Figure 5.5 shows the performance (measured us-

ing PSNR) for different methods on these two do-

mains, with varying training budgets. For satel-

lite imaging, at the lowest training budget of 500

images, USIM-DAL with PSNR of 23.5 performs

better than SIM+Random with PSNR of 23.4 and

SIM with a PSNR of 23.2. We observe that as the

training budget increases to 2000 images, USIM-

DAL (with PSNR of 23.6) outperforms SIM+Random

(with PSNR of 23.35) with an even higher mar-

gin. As we increase the training budget further,

the SIM+Random model starts performing simi-

larly to USIM-DAL. With a budget of 5000 sam-

ples, USIM-DAL has a performance of 23.62, and SIM+Random has a performance of

23.60. Given a domain with large (specific to datasets) training budgets, the perfor-

mance achieved from random sampling and active learning strategies will converge.
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Figure 5.7: Qualitative results from different methods (performing 4⇥ super-resolution)
including (b) Random, (c) SIM, (e) SIM+Random, (f) USIM-DAL on (i) BSD100, (ii) Vi-
sual Genome, (iii) PatternNet, and (iv) Camelyon datasets. (a) LR input, and (d) HR
groundtruth. Input resolution for BSD100, Visual Genome, and PatternNet is 64⇥ 64, and
for Camelyon is 32 ⇥ 32. (f) USIM-DAL produces the most visually appealing outputs.

Figure 5.6: Relative % boost in PSNR ofUSIM-

DAL relative to SIM+Random over SIM base-

line (Equation 5.10) at optimal budget for six

datasets across three domains.

For Camelyon dataset, we use the in-

put image resolution of 32⇥32. We ob-

serve that USIM-DAL performs the best

across all budgets when compared to

SIM+Random and SIM. We also note that

high-frequency features that are typically

present in high-resolution scans (i.e., ob-

tained at 20⇥ or 40⇥ magnification from

the histopathology microscope) make the

super-resolution problem harder and re-

quire more data to achieve good perfor-

mance. Figure 5.6 summarizes the perfor-

mance gain (in terms of PSNR) by using

USIM-DAL (i.e., uncertainty-based active learning strategy for dense regression) com-

pared to SIM+Random (i.e., no active learning, randomly choosing a subset from real

training domain), relative to SIM (i.e., no real samples used from the domain) at best

performing limited budgets. That is, the relative percentage boost in performance is
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reported as:

(PSNRUSIM-DAL � PSNRSIM+Random) ⇤ 100

PSNRSIM+Random � PSNRSIM
(5.10)

We note that USIM-DAL consistently performs better than SIM+Random, with the relative

percentage boost in PSNR of 26.14% for Set5 to 142.69% for PatternNet. Figure 5.7 shows

the qualitative outputs of different models on multiple datasets. On all the datasets, we

notice that the output obtained by USIM-DAL is better than the output of SIM+Random

that is better than SIM and Random.

5.6 Conclusion

In this work, we presented a novel framework called USIM-DAL that is designed to

perform active learning for dense-regression tasks, such as image super-resolution. Dense-

regression tasks, such as super-resolution, are an important class of problem for which

deep learning offers a wide range of solutions applicable to medical imaging, security, and

remote sensing. However, most of these solutions often rely on supervision signals derived

from high-resolution images. Due to the time-consuming acquisition of high-resolution

images or expensive sensors, hardware, and operational costs involved, it is not always

feasible to generate large volumes of high-resolution imaging data. But in real-world

scenarios, a limited budget for acquiring high-resolution data is often available. This calls

for active learning that chooses a subset from large unlabeled set to perform labeling to

train the models. While multiple querying strategies (in the context of active learning)

exist for the classification tasks, the same for dense regression tasks are seldom discussed.

Our work paves the way for using modern uncertainty estimation techniques for active

learning in dense regression tasks. We show that a large synthetic dataset acquired using

statistical image models can be used to learn informative priors for various domains,

including natural images, medical images, satellite images, and more. The learned prior

can then be used to choose the subset consisting of high-uncertainty samples that can then

be labeled and used to fine-tune the prior further. Through extensive experimentation, we

show that our approach generalizes well to a wide variety of domains, including medical

and satellite imaging. we show that active learning performed by proposed querying

strategy (i.e., USIM-DAL) leads to gains of upto 140% / 53% with respect to a random

selection strategy (i.e., SIM+Random) relative to no dataset-specific fine-tuning (i.e., SIM)

on satellite/medical imaging.
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6.1 Abstract

Large-scale vision-language models (VLMs) like CLIP successfully find correspondences

between images and text. Through the standard deterministic mapping process, an

image or a text sample is mapped to a single vector in the embedding space. This is

problematic: as multiple samples (images or text) can abstract the same concept in the

physical world, deterministic embeddings do not reflect the inherent ambiguity in the

embedding space. We propose ProbVLM, a probabilistic adapter that estimates probability

distributions for the embeddings of pre-trained VLMs via inter/intra-modal alignment in a

post-hoc manner without needing large-scale datasets or computing. On four challenging

datasets, i.e., COCO, Flickr, CUB, and Oxford-flowers, we estimate the multi-modal

embedding uncertainties for two VLMs, i.e., CLIP and BLIP, quantify the calibration of

embedding uncertainties in retrieval tasks and show that ProbVLM outperforms other

methods. Furthermore, we propose active learning and model selection as two real-world

downstream tasks for VLMs and show that the estimated uncertainty aids both tasks.

Lastly, we present a novel technique for visualizing the embedding distributions using a

large-scale pre-trained latent diffusion model.

6.2 Introduction

Recently, large vision-language models (VLMs) [205, 177, 150, 239, 4, 112] have become

exceedingly popular due to their ability to align images and text. These models such as

CLIP [205] and BLIP [150] are trained on large-scale datasets such as LAION-400M [225]

and YFCC-100M [252] and have shown strong performance when evaluated in a zero-shot

fashion (i.e without requiring fine-tuning on specific datasets) for a variety of downstream

tasks. One of the most popular applications of VLMs is cross-modal retrieval [276,

282] i.e retrieving images (text) for a queried text (images). However, image-to-text

matching (and vice-versa) is fundamentally ill-posed due to the inherent ambiguity in
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Figure 6.1: We provide probabilistic embeddings for deterministic pre-trained vision-
language models that are frozen. By capturing the ambiguity inherently present in the
inputs, we obtain well-calibrated uncertainty estimates.

either modality [305], i.e. the same caption (or image) can be valid for multiple images (or

captions). Therefore, it becomes essential to model the ambiguity inherently present in

the various modalities, and combinations thereof.

Instead of mapping inputs to embeddings, probabilistic embedding methods [190,

37] learn to map input samples to distributions. This is achieved by parameterizing the

distributions of the embeddings and training a deep neural network to maximize its

likelihood. Although they model ambiguities in the embedding space, such probabilistic

models require training deep networks from scratch. This requires access to the large-scale

datasets and the computational resources of the recent VLMs [205, 112, 177, 239, 150].

We propose ProbVLM, a post-hoc probabilistic adapter, the first method to convert

the deterministic embeddings provided by a frozen large-scale vision-language models

into probabilistic ones, as shown in Figure 6.1. This enables us to efficiently retain the

benefits of large-scale pre-training while learning distributions that model the inherent

ambiguities in the different modalities. Our ProbVLMmodels the embedding distribution

as a heteroscedastic probability distribution and is trained using a combination of intra-

modal and cross-modal alignment objectives and provides well-calibrated uncertainty

estimates, useful for several tasks.

We demonstrate on two large vision-language datasets, i.e., COCO [154] andFlickr [201],

and on two fine-grained image datasets, i.e., CUB [275] and Oxford-Flowers [187] with

sentences from [209], that ProbVLM learns calibrated uncertainties without requiring

large-scale models to be trained from scratch. This sharply contrasts previous works on

probabilistic embeddings [190, 37] that train new models from scratch. We perform a series

of analyses to understand the impact of the training objective and to study the properties of

the resulting uncertainties. Furthermore, we demonstrate that our uncertainty estimates

can be used to select the optimal model from a set of finetuned vision-language models

on an unlabeled target dataset. They can also be used to choose the most suitable samples

for fine-tuning the model in an active learning setup. Finally, with the help of a pretrained
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Figure 6.2: Proposed framework (ProbVLM) takes an existing vision-language model and
introduces a probabilistic adapter over the image and text encoders. These adapters
predict the parameters of a parameterized distribution for a given embedding. Models
are trained by minimizing an objective consisting of intra/cross-modal supervision as
detailed in Section 6.4.

latent diffusion model [216], i.e., Stable Diffusion, we decode sampled embeddings from

predicted distribution to visualize the predicted embedding distributions. We show that

the predicted embedding distributions indeed capture meaningful modes of variation,

that may be interpretable.

6.3 Related Work

Vision-Language Models. Such models [205, 177, 239, 4, 150, 162, 149, 310, 315, 290] have

become ubiquitous in recent times due to their various applications in image classifica-

tion [333, 71, 334, 175], cross-modal retrieval [11], as well as open-vocabulary semantic

segmentation [78, 301]. The most notable among these is CLIP [205], which consists of an

image and text encoder trained on 400M image-text pairs with a contrastive objective [89,

191]. As a result, the model is able to project images and text to a shared embedding

space. In this paper, we focus on using the shared embedding space for the task of

cross-modal retrieval [201, 154]. Recent works have predominantly relied on large-scale

pre-training [205, 177, 239, 4, 325, 225, 226] to project images and text to the same metric

space. However, it is essential to note that all of these vision-language models [205, 177,

150, 239, 4] provide deterministic mappings that do not model the inherent ambiguity in

the inputs. In this work, we turn a deterministic model (i.e., CLIP) into a probabilistic one,

without the need of a large-scale dataset.

Probabilistic Embeddings. These methods [190, 37, 148] provide an elegant solution

to estimate the ambiguity present in the inputs [124]. The key idea here is to map inputs to
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probability distributions in the embedding space, as opposed to point estimates, thereby

modeling the inherent ambiguity present in the input. In the context of cross-modal

retrieval, this was done by optimizing a probabilistic analog of the contrastive objective to

learn distributions for the image and text inputs [37]. Other works have further improved

the performance [148, 194, 111], extended this formulation to achieve compositional

retrieval [185], and have applied it to other tasks such as video retrieval [194, 61] and

tasks like pose estimation [247]. However, most of these works focus on training a model

from scratch, thereby not leveraging the power of the pre-trained models that are widely

present. The notable exception to this is Probabilistic Face Embedding (PFE) [234] that

proposed to learn a probabilistic embedding while retaining a deterministic pre-trained

model for the task of learning face embeddings. However, this was done in a unimodal

setting using only images. In this work, we aim to utilize pre-trained vision-language

models while providing probabilistic embeddings for both modalities. The probabilistic

embeddings derived from our proposed ProbVLM are consistent with cross-modal learning

at the core of pretrained vision-language models.

Uncertainty Estimation. These techniques have been widely explored for different

tasks in computer vision [120, 24, 139, 142, 188, 318, 268, 184, 256, 88, 221, 319, 207, 261,

246, 263]. Uncertainties can be broadly categorized into aleatoric [120, 74, 10, 284, 48, 9,

278, 188, 299] and epistemic [85, 24, 139, 291, 70, 108, 64, 65] uncertainties. Uncertainty

estimation has been used for a variety of tasks, such as identifying model failure [58,

20, 19, 292] and is extensively used in active learning to select the best samples to train

the model [230, 125, 206, 232, 309, 308, 203, 179]. While several of these methods focus

on training a new Bayesian model from scratch for quantifying the uncertainties in the

prediction, some recent works like [268, 318, 96] have proposed methods to estimate the

uncertainties for the pre-trained frozen models. However, these works tackle data from a

single modality. This work efficiently estimates the uncertainty for the pre-trained frozen

large-scale vision-language model.

6.4 Method

We first describe the problem formulation in Section 6.4.1. In Section 6.4.2, we describe

our proposed method ProbVLM that estimates the complex probability distributions for

the embeddings of the frozen deterministic vision-langue encoders, quantifying the

uncertainties for their predictions.

6.4.1 Problem Formulation

Let D = (I , C) denote a vision and language dataset, where I is a set of images and C a

set of captions The two sets are connected via ground-truth matches where multiplicity

is plausible. For a caption 2 2 C (respectively an image 8 2 I), the set of corresponding

images (respectively captions) is given by �(2) ✓ I (respectively �(8) ✓ C). Recent
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advances in cross-modal vision-language models [205, 177, 239] often involve learning

a shared embedding space, Z ✓ R⇡ (⇡-dimensional space), for images and texts. This

allows quantifying the similarity between cross-modal elements based on their distances

in the shared embedding space. The shared embedding space is learned via a set of two

encoders: ΦV(·;V) : I ! Z for the images and ΦT (·;T ) : C ! Z for the texts, where

V and T are the parameters for the respective mapping functions.

We consider a real-world scenario where the above set of encoders have already been

trained on vast datasets using large models with high computational cost, e.g., CLIP [205],

SLIP [177], Flava [239] and BLIP [150], are in frozen state, i.e., we have ΦV(·;⇤
V) and

ΦT (·;⇤
T ), where ⇤

V , ⇤
T represents the parameters of the pretrained frozen encoders.

These encoders are deterministic and map an image/text to vectors in the shared space,

i.e., given a sample image xV (and similarly sample text xT ), the encoder provides

an embedding zV := ΦV(xV ;⇤
V) (and similarly, zT := ΦT (xT ;⇤

T )). However, the

point estimates, z, do not capture the ambiguity inherent to these embeddings [190,

37, 61] that are better represented by the probability distribution %z|x. Therefore, we

propose to estimate %z|x for the pretrained model efficiently, using ProbVLM, quantifying

the uncertainties of the output without re-training the encoders.

6.4.2 Building ProbVLM

Despite being deterministic, large-scale frozen encoders already provide high-quality point

estimates. Our proposed method leverages this fact, using the embeddings z as estimates

for the mean of the desired distribution %z|x, and estimating the remaining parameters.

%z|x can be modeled as a parametric distribution %z|x(z|{ẑ, ⇡̂...⌧̂}) where the parameters

can be estimated using a deep neural network [70, 120, 139]. Therefore, we introduce

ProbVLM,

Ψ(·; ✓) := (ΨV(·; ✓V),ΨT (·; ✓T )) (6.1)

where ΨV and ΨT represents the vision and text encoders parameterized by ✓V and

✓T , respectively. Also, ✓ := ✓V [ ✓T represents the overall parameters for ProbVLM. that

learns to estimate the parameters {ẑ, ⇡̂...⌧̂} with the help of frozen encoders ΦV(·;⇤
V) and

ΦT (·;⇤
T ). The functions ΨV(·; ✓V) and ΨT (·; ✓T ) operate on image and text embeddings

respectively, but during training depend on both modalities, as discussed later. We design

the learning scheme for Ψ(·; ✓) such that: (i) Estimated parameter ẑ should remain faithful

to the original unimodal embedding z (intra-modal alignment), this makes the uncertainty

of the ProbVLM serve as a good proxy for the uncertainty of frozen encoders. (ii) Estimated

parameters {⇡̂...⌧̂} should capture the ambiguities and uncertainties present within and

across modalities (cross-modal alignment). Figure 6.2 depicts ProbVLM in tandem with the

frozen VLM.

Intra-modal Alignment. To ensure that the mean of the distribution estimated by

Ψ(·; ✓) reflects the point estimates provided by the frozen encoders, we set up a proba-

bilistic reconstruction problem for the embeddings within the modalities. That is, for a
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given sample x (either from image or text modality), we obtain the embedding from the

frozen encoder z = Φ(x;) (using the appropriate encoder), then the modality-specific

component of Ψ(·; ✓) learns to reconstruct the z (let the reconstruction be called ẑ). The

modality-specific component of Ψ(·; ✓) is designed to (i) relax the i.i.d constraints by assum-

ing independent but not identically distributed residuals and (ii) learn the heteroscedasticity

for the residuals at the time of reconstruction that may follow the heavy-tailed distribu-

tions [268, 266, 133, 132, 100]. The modality-specific component is learned by maximizing

the likelihood, L(✓; {z8}
#
8=1

) for the embeddings of # samples in the datasets. That is, the

modality-specific optimal parameters are given by,

✓⇤ := argmax
✓

L(✓; {z8}
#
8=1) =

#÷
8=1

�̂84�(|ẑ8�z8 |/�̂8)
�̂8

2�̂8�(1/�̂8)
(6.2)

In the above equation, �̂8 4
�(|ẑ8�z8 |/�̂8 )

�̂8

2�̂8�(1/�̂8)
represents the generalized Gaussian distribution (GGD,

represented byG) that is capable of modeling heavy-tailed distributions (note the Gaussian

and Laplace are special cases of G with � = 1, � = 2 and � = 1, � = 1, respectively). The

variables ẑ8 , �̂8 , �̂8 are the predicted mean, scale, and shape parameters of G from our

modality-specific components for the given input z8 . We obtain modality-specific optimal

parameters by minimizing negative log-likelihood (equivalent to Equation 6.2). Given z

and predicted ẑ, �̂, �̂, loss is given by,

!rec(✓) :=

✓
|ẑ � z|

�̂

◆ �̂
� log

�̂

�̂
+ log�(

1

�̂
) (6.3)

Therefore, the vision-specific component of ProbVLM, Ψ(·; ✓V)), is trained by minimizing

the Eqation 6.3 using image embeddings, we denote this loss as !Vrec(✓+ ). Similarly the

text-specific component, Ψ(·; ✓T ), is trained by minimizing !Trec(✓)). As discussed next, we

also enforce cross-modal alignment so that the predicted distribution of ProbVLM captures

the uncertainties across modalities from one-to-many correspondences for an embedding.

Cross-modal Alignment. While the intra-modal alignment seeks to match the means

of the output distribution from ProbVLM to the embeddings derived from frozen vision-

language encoders, we also enforce the image and text embedding output distribution

(from ProbVLM) belonging to similar concepts to remain close to each other. That is, given

an image and text embedding pair (zV , zT ) (from frozen model) representing similar

concepts, the output distributions from Ψ(·; ✓), G(z; ẑV , �̂V , �̂V) and G(z; ẑT , �̂T , �̂T )

(later referred to as GV(z)) and GT (z)) should match. This can be measured directly from

the likelihood as, ?(zE = zD), where zE ⇠ GV(z) and zD ⇠ GT (z) as in [234] , i.e.,

?(zE = zD) :=

∫
GV(zE)GT (zD)⇣(zE � zD)3zE3zD (6.4)

where ⇣(·) refers to the Dirac-delta distribution. The above integral can be simplified further

by defining �z = zE � zD and seeking ?(�z) = 0. As both zE and zD are GGD random
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variables, �z follows the distribution based on the Bivariate Fox H-function [243, 165, 168]

given by,

�I ⇠ 1
2�(1/�̂V ),�(1/�̂T )

⇥π
H 1,1

1,2

"
�C2

��(1 � 1
ẑV

,

1
ẑT

)

(0, 1)( 1
2 , 1)

#
H 1,1

1,2

"
⌫C2

��(1 � 1
ẑT

,

1
ẑT

)

(0, 1)(1
2 , 1)

#
cos C(⇠ � I)3C (6.5)

Where � =

�̂2
V�(1/�̂V )

4�(3/�̂V )
, ⌫ =

�̂2
T �(1/�̂T )

4�(3/�̂T )
, ⇠ = ẑE � ẑD , and H is the Fox H function [243, 165,

168]. Equation B.2 does not provide a scalable objective function suitable for training

deep neural networks. Hence, we propose an approximation that is easily scalable for

deep-learning models given by,

?(zE = zD) =

∫
GV(zE)GT (zD)⇣(zE � zD)3zE3zD

⇡
π

1

2
(GV(z)⇣(z � zT ) + GT (z)⇣(z � zV)) 3z (6.6)

The appendix shows details of the above equation. The first term in the integral,Ø
GV(z)⇣(z � zT )3z, is the likelihood of the text embedding zT under the predicted

distribution, GV(z), for the visual embedding. Similarly, the second term is the likelihood

of the visual embedding zV under the predicted distribution, GT (z), for the text embed-

ding. Negative log of Equation B.4 leads to a scalable objective function that can be used

to learn the optimal parameters for vision and text components of ProbVLM (ΨV(·; ✓V) and

ΨT (·; ✓T )),

!cross(✓V , ✓T ) :=

✓
|ẑV � zT |

�̂V

◆ �̂V
� log

�̂V
�̂V

+ log�(
1

�̂V
)

|                                            {z                                            }
Cross-modal: vision!text

+

✓
|ẑT � zV |

�̂T

◆ �̂T
� log

�̂T
�̂T

+ log�(
1

�̂T
)

|                                           {z                                           }
Cross-modal: text!vision

(6.7)

The overall objective used for ProbVLM is designed to be,

!ProbVLM(✓V , ✓T ) = !Vrec(✓V) + !Trec(✓T ) + ⌫cross!cross(✓V , ✓T ) (6.8)

where ⌫2A>BB is a hyperparameter controlling the relative contribution of inter-intra modal-

ity terms.

Uncertainty Quantification. Given embedding z from a frozen encoder, predicted

distributions from the trained ProbVLM (output from the appropriate component) allows

aleatoric uncertainty estimation as �̂2
aleatoric =

�̂2�(3/�̂)

�(1/�̂)
. Moreover, we design both ΨV and

ΨT to be simple 3-layer MLPs with dropout layers (with dropout probability set to 0.1

during training). Activating dropouts during inference, with multiple forward passes (say

"), allows estimating the epistemic uncertainty, �̂2
epistemic =

1
"

Õ"
<=1(ẑ< � 1

"

Õ"
9=1 ẑ9)

2. We

estimate total uncertainty as,

�̂2
total = �̂2

epistemic + �̂2
aleatoric (6.9)
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Figure 6.3: Measuring the calibration with various post-hoc method for Image-to-Text and
Text-to-Image retrieval when trained on (top) CUB and (bottom) COCO, and evaluated on
CUB, COCO, Flickr, FLO.

6.4.3 Latent Diffusion for Probabilistic Embeddings

For a given text embedding zT , the distribution estimated via ProbVLM, G(z; ẑT , �̂T , �̂T )

can be visualized by drawing samples from the predicted distribution of vectors (say,

{ẑT ,8}
&
8=1

) and passing them through a latent diffusion model, e.g., Stable Diffusion (say,

Ω(·;⇤
⌦
)) using CLIP text encoder, to synthesize the set of samples (say, �) from the

corresponding distribution of images, i.e.,

� := {Ω(ẑ8 ;⌦)}
&
8=1

(6.10)

Section 6.5.4 uses this to visualize the predicted distributions.

6.5 Experiments and Results

We start by highlighting our tasks, datasets, and evaluation metrics. We also compare our

model to various state-of-the-art methods quantitatively and qualitatively in Section 6.5.1.

In Section 6.5.2, we provide an ablation analysis, and Section 6.5.3 demonstrates some

real-world applications of ProbVLM for model selection and active learning.

Datasets, Metrics, and Baselines. We use the MS-COCO [154], Flickr-30k [201],

and the CUB [275] as they are widely used for cross-modal retrieval [37, 60, 242].
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i2t t2i

VL M Metrics COCO Flickr FLO CUB COCO Flickr FLO CUB

C
L

IP

P
ro

bV
L

M S # -0.99 -0.70 -0.90 -0.60 -0.30 -0.70 -0.99 -0.89

R2 " 0.93 0.71 0.62 0.67 0.35 0.50 0.99 0.70

-SR2 " 0.93 0.49 0.56 0.40 0.10 0.35 0.99 0.63

P
FE

*[
23

4] S # -0.79 -0.19 0.60 -0.60 0.79 0.30 -0.89 -0.10

R2 " 0.59 0.01 0.30 0.28 0.74 0.44 0.52 0.00

-SR2 " 0.47 0.00 -0.18 0.17 -0.59 -0.13 0.47 -0.00

P
C

M
E

*[
37

] S # -0.89 -0.30 -0.30 -0.60 0.30 0.09 -0.70 0.30

R2 " 0.75 0.07 0.07 0.20 0.16 0.01 0.57 0.01

-SR2 " 0.68 0.02 0.02 0.12 -0.05 -0.00 0.40 -0.00

T
T

D
A

[9
] S # -0.79 -0.30 0.00 -0.60 -0.10 -0.19 -0.89 -0.50

R2 " 0.69 0.09 0.00 0.41 0.26 0.071 0.80 0.15

-SR2 " 0.55 0.03 0.00 0.24 0.00 0.01 0.73 0.07
B

L
IP

P
ro

bV
L

M S # -0.87 -0.79 -0.74 -0.66 -0.43 -0.38 -0.31 -0.22

R2 " 0.92 0.83 0.68 0.61 0.52 0.48 0.45 0.38

-SR2 " 0.80 0.66 0.50 0.40 0.22 0.18 0.14 0.08

P
FE

*[
23

4] S # -0.82 -0.74 -0.63 -0.63 -0.39 -0.32 -0.28 -0.18

R2 " 0.72 0.76 0.62 0.44 0.48 0.38 0.39 0.37

-SR2 " 0.58 0.57 0.39 0.27 0.19 0.12 0.11 0.07

P
C

M
E

*[
37

] S # -0.76 -0.53 -0.60 -0.44 -0.28 -0.26 -0.28 -0.21

R2 " 0.81 0.56 0.60 0.53 0.50 0.34 0.44 0.36

-SR2 " 0.62 0.29 0.36 0.23 0.14 0.09 0.12 0.08

T
T

D
A

[9
] S # -0.44 -0.33 -0.74 -0.60 -0.19 -0.26 -0.21 -0.21

R2 " 0.66 0.56 0.42 0.55 0.49 0.23 0.35 0.36

-SR2 " 0.29 0.18 0.31 0.33 0.10 0.06 0.07 0.08

Table 6.1: Metrics to evaluate the calibra-

tion of the uncertainty estimates for both

CLIP [205] and BLIP [150] Vision-Language

models for all considered methods, trained

on COCO and evaluated on COCO, Flickr,

CUB, and FLO.

Furthermore, we adapt the Oxford-Flowers

102 (FLO) dataset [187] similar to [37] as

an additional benchmark for cross-modal re-

trieval in a fine-grained setting. We evalu-

ate the performance of both Image-to-Text re-

trieval and Text-to-Image Retrieval using the

Recall@k (R@k) metric. To evaluate the cal-

ibration of the uncertainty estimates, we de-

fine uncertainty levels [37] and use the Spear-

man rank correlation (denoted by () between

the uncertainty level and the Recall@k for

retrieval. For an ideal model, performance

would decrease monotonically with increas-

ing uncertainty levels, leading to a score of

-1. We also compute the '2 for the regres-

sion fit between the uncertainty levels and

R@1 performances to measure if the drop in

performance follows a linear trend. Finally,

we also measure the product of these two

scores (as a unified metric), i.e., �('2, which

should be 1.0 for an ideal model.

Since there is no prior work to estimate

probabilistic embeddings from a determinis-

tic model in a cross-modal setting, we adapt

a few existing ideas for the task. The first

baseline is adapted from PFE [234], where

we learn the covariances for the heteroscedas-

tic Gaussian distribution while keeping the

mean fixed to the embeddings derived from

the frozen encoders in each modality. The

second is to use the soft-contrastive objective

of PCME[37] to train a probabilistic adapter

in a post-hoc fashion. Finally, we also have a baseline that performs perform Test-Time

Data Augmentation (TTDA) on the inputs [9, 278]. This is done by perturbing the images

and masking out words in the text. While TTDA does not require additional training, we

train our ProbVLM and other baselines on datasets like COCO, Flickr, CUB, and FLO.

Implementation Details. Our ProbVLM consists of a Multi-Layer Perceptron (MLP) for

both the image and text encoder, each consisting of an input layer going from embedding

dimension to 256, a hidden layer of size 256, and an output layer going from 256 to

embedding dimensions. This is trained for 100 epochs with a learning rate of 14�4. More

details are available in the supplementary.
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Figure 6.4: Visualizing the uncertainties of the vision encoder captured by ProbVLM. Fixing
an image from CUB, we obtain the predicted embedding distribution and compute the
likelihood of all other samples in CUB and COCO. We observe that the images in COCO
are similar/ambiguous to CUB overlap (Top). However, deterministic embeddings lead
to a separation between the two datasets (Bottom).

6.5.1 Calibrated Uncertainty via ProbVLM

We investigate the calibration of the uncertainty derived from ProbVLM for the cross-modal

retrieval task. All models trained on CUB and COCO were evaluated on all four datasets.

Calibration plots are illustrated in Figure 6.3. We observe that the R@1 performance

consistently drops for ProbVLM as we increase the uncertainty levels, whereas the baselines

rarely see a monotonic drop in performance. We quantify this performance in Table 6.1.

The highest score of 0.93 for �('2 (i2t) on the COCO dataset indicates a decreasing

performance trend with increasing uncertainty. Notably, the uncertainty estimates indicate

the average performance in different bins even when ProbVLM is evaluated on datasets

that are different from the train set. In some cases, we see that ProbVLM even achieves a

nearly perfect score (�('2 of 0.99, with CLIP VLM on FLO, after training on COCO for

Image-to-Text Retrieval). On the contrary, we find that the baselines often achieve poor

scores. It is important to note that all these models use the same underlying embeddings

and achieve the same performance on the retrieval task. Of all the considered methods,

ProbVLM provides the most calibrated uncertainty estimates. We see similar trends for

ProbVLMwith BLIP [150], where ProbVLM achieves a �('2 of 0.80, when trained on COCO

and evaluated on COCO, compared to other methods like PFE⇤ (0.58), PCME⇤ (0.62), and

TTDA (0.29).

Figure 6.4-(Top) visualizes the ambiguities captured by ProbVLM on the visual embed-

dings. We take a bird image (source) from the CUB dataset and obtain the probability

distribution for the visual embedding of that sample; we then compute the likelihood of

the visual embeddings (i.e., point estimates derived from CLIP) for the other samples of

CUB and COCO datasets, under the source distribution. We notice that within the CUB

dataset, the bird images similar to the source image have a higher likelihood compared

to other bird images. Also, the images from the COCO dataset tend to have a lower

likelihood. However, some images from the COCO dataset have a likelihood similar to

the samples from CUB. We visualize these samples and discover them to be bird images.
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Figure 6.5: Plot indicating (left) necessity of

the cross-modal alignment and (right) data

required to train ProbVLM.

Moreover, the overlapping region between

CUB and COCO has samples from the

COCO dataset that are ambiguous and re-

lated to bird images as they have similar

backgrounds, etc. On the contrary, when

a similar analysis is performed using the

CLIP (by measuring the distance between

the embeddings instead of likelihood, Fig-

ure 6.4-(Bottom)), we notice that the two

datasets are well separated and ambigui-

ties are not captured.

6.5.2 Ablations

Figure 6.6: Uncertainty increases with in-

creased masking of the input images (Left)

and texts (Right). Results with three vision

encoders and one language encoder from

CLIP.

We ablate different components of our pro-

posed ProbVLM, to provide a deeper under-

standing of its workings. First, we perform

a sensitivity analysis on the cross-modal

reconstruction objective, as shown in Fig-

ure 6.5-(Left), for ProbVLM on BLIP using

the COCO dataset. We need a non-zero

coefficient of the cross-modal loss to en-

sure that ProbVLM learns meaningful uncer-

tainties that capture the ambiguities across

modalities and are well-correlated with its

performance on the downstream retrieval

task. Similarly, having a large co-efficient

for the cross-modal loss could hinder learning a faithful identity reconstruction, thereby

hampering the performance of the downstream evaluation.

Next, we investigate the amount of data that is required to train ProbVLM in Figure 6.5-

(Right). We get satisfactory calibration of the uncertainty estimates while using only 50%

of the dataset (shown for ProbVLM on BLIP using COCO), indicating that ProbVLM is highly

data-efficient.

Further, we investigate the uncertainties by masking out increasing portions of the

input image/text in Figure 6.6. We use three different CLIP backbones for the images,

ViT-B/32, ViT-B/16, ResNet50, and GPT-based language encoder from CLIP [205, 204].

The mean uncertainty steadily increases as we mask increasing amounts of input.

6.5.3 Applications

We study the utility of the uncertainty estimates derived from ProbVLM on two critical

applications not well reviewed for VLMs: active learning and model selection.
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Figure 6.8: Visualizing the predicted embedding distributions from ProbVLM using a
large-scale pre-trained diffusion model, i.e., Stable Diffusion. The example is shown for
two different captions from CUB dataset, for which the point-estimate embedding vector
is obtained via CLIP, and the distribution is obtained via ProbVLM.

Figure 6.7: Results for active learning, with

different vision encoders and varying train-

ing budgets. For a given encoder, uncertainty-

based sampling outperforms random sam-

pling.

Active Learning. Here, we choose a

small subset of the unlabeled dataset to

fine-tune the model [41]. In this case, we

wish to finetune the CLIP modelon the FLO

dataset while using a limited amount of la-

beled data. To achieve this, we estimate the

uncertainty of the image embeddings using

ProbVLM (trained using a diverse dataset

like COCO). We then select the top-k sam-

ples sorted by their mean uncertainty in the

visual embeddings and fine-tune the CLIP

model using them with a contrastive objec-

tive [205]. Results with varying budgets

are shown in Figure 6.7. Selecting samples

based on uncertainty scores significantly

outperforms random sampling for all considered visual backbones.

Pretrained Model Selection. We are given a set of models trained on different data

distributions. We aim to select the best model for the target distribution for which we

have unlabeled samples. This has been explored mostly in the context of classification

previously [73, 86, 33, 36, 51, 52].

We consider the specific case of having the CLIP models fine-tuned on three datasets,

and the fourth dataset is held out, for which we only have the images. We compute the

mean uncertainty on these images using ProbVLMwhose weights are interpolated from all

the source datasets [297, 298, 106, 105]. This is to ensure that the uncertainties on all these

models are comparable. The results for this experiment are shown in Table 6.2. On CUB,

Flickr, and COCO, the source model with the lowest uncertainty has the best performance

on the target dataset, and on FLO dataset, the model with the least uncertainty has the

2nd best performance (R@1 of 47.9 vs 49.5 for the best model). This indicates that the
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uncertainties provided by ProbVLM can be used as a signal to predict the performance on

unlabelled samples for retireval.

6.5.4 Latent Diffusion for Embedding Uncertainty

Metrics

D Models Uncertainty score R@1 R@5 R@10

C
U

B

CLIP-ViT32-COCO 11.92 31.5 61.0 75.8

CLIP-ViT32-Flickr 9.37 32.4 64.2 76.9

CLIP-ViT32-FLO 15.43 22.8 49.8 64.9

FL
O

CLIP-ViT32-COCO 11.83 47.9 79.2 88.5

CLIP-ViT32-Flickr 13.55 49.5 84.6 93.9

CLIP-ViT32-CUB 18.39 37.7 69.4 82.8

Fl
ic

k
r CLIP-ViT32-COCO 9.61 88.8 97.8 99.8

CLIP-ViT32-CUB 16.49 25.8 47.4 55.6

CLIP-ViT32-FLO 13.67 52.8 77.8 85.2

C
O

C
O

CLIP-ViT32-Flickr 7.28 58.1 80.9 88.2

CLIP-ViT32-CUB 15.37 8.8 21.7 29.8

CLIP-ViT32-FLO 12.44 23.9 46.6 58.8

Table 6.2: Results for the model selection ex-

periment. ProbVLM accurately identifies the

best performing source model using only

unlabeled samples of the target dataset.

To further understand the semantics of the

predicted embedding distribnutions from

the ProbVLM, we visualize the text embed-

ding distributions by sampling the embed-

ding vectors from the predicted distribution

for a caption (converted to embedding vector

using CLIP) and passing it through the pre-

trained latent diffusion model using CLIPs

text encoder, stable diffusion, as shown in

Figure 6.8 and described in details in Sec-

tion 6.4.3. We observe from Figure 6.8 that

the samples obtained closer to the mean (i.e.,

sampled embedding vector similar to the one

generated by CLIP for the caption) lead to

meaningful variations in the generated im-

ages, e.g., for the left caption, close to the

mean of the distribution, the generated sam-

ples show variations in the shape and colour

of the beak, wings, and feet. Whereas far

away from the mean of the distributions, i.e., on the tails, we start seeing images with

strong artifacts that no longer preserves the semantics of the caption. We observe this for

another example as well shown in Figure 6.8-(Right).

6.6 Conclusion

We introduce ProbVLM, a post-hoc method for estimating the embedding distribution

for a frozen large-scale deterministic vision-language model. We efficiently estimate

calibrated uncertainties using our framework and show that such calibrated estimates

have a variety of applications in downstream tasks such as model selection and active

learning. Furthermore, we perform experiments to interpret embedding distribution

predicted by ProbVLM using a large-scale pre-trained latent diffusion model (i.e., Stable

Diffusion). We hope our work highlights and inspires future work on efficient methods for

probabilistic embeddings.
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7.1 Abstract

Recent advances in deep learning have shown that uncertainty estimation is becoming

increasingly important in applications such as medical imaging, natural language process-

ing, and autonomous systems. However, accurately quantifying uncertainty remains a

challenging problem, especially in regression tasks where the output space is continuous.

Deep learning approaches that allow uncertainty estimation for regression problems often

converge slowly and yield poorly calibrated uncertainty estimates that can not be effectively

used for quantification. Recently proposed post hoc calibration techniques are seldom

applicable to regression problems and often add overhead to an already slow model

training phase. This work presents a fast calibrated uncertainty estimation method for

regression tasks called Likelihood Annealing, that consistently improves the convergence of

deep regression models and yields calibrated uncertainty without any post hoc calibration

phase. Unlike previous methods for calibrated uncertainty in regression that focus only on

low-dimensional regression problems, our method works well on a broad spectrum of re-

gression problems, including high-dimensional regression. Our empirical analysis shows

that our approach is generalizable to various network architectures, including multilayer

perceptrons, 1D/2D convolutional networks, and graph neural networks, on five vastly

diverse tasks, i.e., chaotic particle trajectory denoising, physical property prediction of

molecules using 3D atomistic representation, natural image super-resolution, and medical

image translation using MRI.

7.2 Introduction

Uncertainty estimation is an essential building block to provide interpretability and secure

reliability in modern machine learning systems [231, 126, 272, 99] that offer intelligent
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solutions for numerous real-world applications, ranging from medical analytics [146,

79, 263] to autonomous driving [302, 231, 21]. Recent advances have explored various

formulations to provide accurate predictions and uncertainty estimates for deep neural

networks, as represented by Bayesian approaches [70, 120, 164], ensembles [138], pseudo-

ensembles [171, 65], and quantile regression [215, 303, 62] methods. However, these

existing methods are often computationally expensive – e.g., slow convergence rate during

training or inefficient inference cost due to multiple forward passes – while being poorly

calibrated for uncertainty estimates. Moreover, some of these methods are proposed

for low-dimensional regression tasks [38, 336, 31] (i.e., regressing a scalar value) and

do not scale for high-dimensional regression (i.e., regressing large matrices or tensors).

This paper presents a unified formulation to resolve these issues for estimating fast,

well-calibrated uncertainty in deep regression models for a wide spectrum of regression

problems, including chaotic particle trajectory denoising, physical property prediction of

molecules using 3D atomistic representation, natural image super-resolution, and medical

image translation using MRI.

We propose to revisit deep regression models trained via maximum likelihood esti-

mation (MLE), which assumes a Gaussian distribution over the regression output and

optimizes the negative log-likelihood to estimate the target and uncertainty. Although

such models can ensure low regression error (i.e., high accuracy) and encapsulate the

predictive uncertainty, they often converge slowly at the beginning of training due to a

flat gradient landscape. Further, they may even risk gradient explosion caused by a steep

gradient landscape when reaching the optima (detailed in Section 7.4.1), leading to poorly

calibrated uncertainty estimates that do not offer credible interpretability for the model

and cannot be used for downstream applications.

To reshape the aforementioned ill-posed gradient landscape that causes slow conver-

gence and poorly calibrated uncertainty, we propose a novel Likelihood Annealing (LIKA)

scheme for deep regression models that alters the original gradients by formulating a

temperature-dependent improper likelihood to be optimized during the learning phase.

In contrast to the standard likelihood for regression that enforces a fixed Gaussian distri-

bution on the target, we introduce a temperature hyperparameter to impose an evolving

distribution.

The proposed temperature-dependent likelihood brings crucial properties to regres-

sion uncertainty. First, the multimodal distribution on the regression target ensures that

at high residuals (between output and ground truth, occurring in the initial learning

phase), the gradients are much larger than the standard unimodal Gaussian distribution

(explained in detail in Section 7.4 and Figure 7.1) leading to faster convergence at the be-

ginning of the learning phase. Second, we also anneal the learning rate over the course of

training along with the temperature that avoids gradient explosion towards the end of the

learning phase, a problem with the standard heteroscedastic Gaussian-based likelihood

distribution with sharp gradients at lower errors. Third, we construct the temperature-

dependent likelihood such that the predicted uncertainty is encouraged to be calibrated at
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every step, by being close to the error between the prediction and ground truth.

The standard unimodal distribution faces slow convergence in the beginning and

potential gradient explosion towards the end of the learning phase and provides poorly

calibrated uncertainty estimates. In contrast, our LIKA method allows faster convergence

and offers well-calibrated uncertainty estimates for a broad spectrum of regressions. This

also differs from uncertainty regression methods that estimate the full quantile as they

are often shown to be effective on low-dimensional regression.

Contributions. We introduce a temperature-dependent likelihood annealing scheme

for deep regression models with uncertainty estimation that leads to faster model con-

vergence and offers better-calibrated uncertainty (detailed in Section 7.4.3). We conduct

a comprehensive evaluation on various datasets, including chaotic particle trajectory

denoising, physical property prediction of molecules using 3D atomistic representation,

image super-resolution, and medical image translation using MRI images, presented in

Section 7.5.

7.3 Related Work

Deep neural networks (DNNs) typically estimate inaccurate uncertainty due to their de-

terministic form that is insufficient for characterizing the accurate confidence [69, 87].

Bayesian inference has been widely studied to effectively estimate uncertainty. Directly

performing Bayesian inference on deep nonlinear networks is infeasible due to intractable

computations. Hence, approximate inference has been explored by variational inference

[85, 24, 50, 164] or MCMC-based approximation [291, 34]. However, due to its approxima-

tion, the estimated uncertainty may fail to follow the true uncertainty quantification [138].

Moreover, compared with typical DNNs, approximate Bayesian inference is computation-

ally more expensive and has slower convergence in practice. Non-Bayesian methods have

been proposed as an alternative. For instance, [120, 138] modeled two terms, i.e. predictive

mean and variance, as an output of DNN to estimate the uncertainty directly from the

network’s output. Another line of work estimates the uncertainty in the prediction in a

non-parametric manner by estimating different quantiles for a given input [155, 31, 336,

38]. Moreover, there are also works from conformal predictions that quantify uncertainty

by constructing prediction intervals, which are sets of possible outcomes that are believed

to contain the true value with a certain probability [293, 173, 322].

In general, there are two broad types of uncertainties in deep learning: (i) Aleatoric

and (ii) Epistemic. Aleatoric uncertainty is the uncertainty that arises from the inherent

randomness in the data. In contrast, Epistemic uncertainty is the uncertainty that arises

due to a lack of knowledge or information about the data. In real-world scenarios with

access to large datasets, aleatoric uncertainty is often critical because it is directly related

to the variability in the data, which is essential to modeling real-world scenarios [176,

178, 9]. For example, in medical imaging, different patients may have different degrees of

variability in their images due to different factors such as the presence of diseases, body
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types, or imaging equipment [278, 269, 53]. By modeling aleatoric uncertainty, we can

better capture this variability and improve the accuracy of the model. On the other hand,

epistemic uncertainty can be reduced by acquiring more data or improving the model

architecture [35, 120, 248]. This work focuses on estimating the aleatoric uncertainty in

deep regression problems.

Calibrating the inaccurate uncertainty is another way to estimate accurate uncertainty

[87]. In the regression task, calibration was first defined in a quantile manner [131]. That

is, the estimated credible interval with confidence level � (e.g. 95%) is calibrated if �% of

the ground-truth target is covered in that interval. There are post-processing methods for

regression calibration [131, 198, 249]. For instance, [131] introduced an auxiliary model

to adjust the output of the pre-trained model based on Platt-scaling, while others use

Gaussian process [241] or maximum mean discrepancy [47]. However, an auxiliary model

with enough capacity will always be able to recalibrate, even if the predicted uncertainty

is completely uncorrelated with the real uncertainty [142]. Recently, [147] extended

the definition of calibration where a regressor is well calibrated if the predicted error is

equal to the difference between the ground truth and the predicted mean. Using this

definition, [142] proposed unbiasing the predicted error by optimizing a scaling factor in

the post-processing step. However, such methods often add overhead to an already slow

model training phase.

7.4 Methodology: Likelihood Annealing

Our framework called Likelihood Annealing (LIKA) belongs to the family of models that

are designed to predict a distribution for the outputs [120, 142, 128, 264, 261, 267] and the

model is trained via a loss function derived from maximum likelihood estimation (MLE).

We describe the problem formulation and related methods along with their limitations in

Section 7.4.1. We present LIKA that constructs temperature-dependent likelihood to learn

faster, better-calibrated regression uncertainty in Section 7.4.2, and analyze the effects of

temperature annealing in Section 7.4.3.

7.4.1 Background and Motivation

Let D = {(x8 , y8)}
8=#
8=1

be the dataset that comprises of samples from domain X and Y (i.e.,

x8 2 X, y8 2 Y,88), where X,Y lies in R< and R= , respectively. The goal of a regression

task is to learn a function Ψ(·;) : R< ! R= (parameterized by ) that maps the input x to

the output y. Let y8 := Ψ(x8 ;) be the estimate for the y8 and &8 := y8 � y8 be the residual

between the prediction and the ground-truth. The optimal parameters (⇤) are learned by

minimizing the error (e.g., ✓1 or ✓2 loss) between the prediction and ground truth using the

labeled dataset. The ✓1/✓2 loss function to train regression models originate by treating the

residuals (i.e., &8) as following the i.i.d Laplace/Gaussian distribution. However, the i.i.d
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Figure 7.1: (Left) Objective function based on negative log-likelihood of standard het-
eroscedastic Gaussian distribution (blue) and temperature-dependent regularizer (orange)
from Equation 7.4 as a function of residual and the estimated standard deviation.
(Right) The 2D plot showing surfaces for a fixed predicted variance. The error and
predicted variance are high at the beginning of the learning phase. The gradient of the
temperature-dependent regularizer is higher (orange) than the gradient for the standard
objective (blue), see Point a on both curves. Towards the end of training (with small error,
predicted variance, and low temperatures), the objective from Equation 7.4 is dominated
by the negative log-likelihood of standard heteroscedastic Gaussian with non-zero gradi-
ents. While gradients from the regularizer are zero, see Point b.

assumption will not capture the heteroscedasticity, and will allow uncertainty estimation

with the limiting assumption of identical, i.e., homoscedastic, uncertainty values.

To estimate the uncertainty, the existing works [120] relax the i.i.d assumption and learn

to model the heteroscedasticity as well. Such models are learned by maximizing the likeli-

hood. Assuming that residuals follow Gaussian distribution, i.e., &8 ⇠ N(0, �̂8), the likeli-

hood, %(D |), is a factored Gaussian distribution, %(D |) =
Œ8=#

8=1
1p

2��̂2
8

exp(� |ŷ8�y8 |
2

2�̂2
8

). the

MLE estimates for the parameters are obtained by minimizing the negative-log likelihood,

� log%(D |) =
8=#’

8=1

log �̂2
8

2
+

|ŷ8 � y8 |
2

2�̂2
8

+ ⇠>=BC . (7.1)

The DNN is modified to output both the prediction (i.e., the mean of Gaussian) as

well as the uncertainty estimate (i.e., the variance of Gaussian) learned using the above

equation, i.e., Ψ(x8 ;) = {ŷ8 , �̂8}. While this method allows predicting the uncertainty

estimates in single forward pass post training, it has several downsides, as discussed in the

following. The blue surface in Figure 7.1-(Left) shows the loss from Equation 7.1 (which

is derived by taking the negative log of Gaussian likelihood). It consists of two variables:

the residual y8 � ŷ8 (denoted by D) and the standard deviation �̂8 (denoted by E). At the

beginning of the training phase, the residual between the prediction and the ground truth

is large along with significantly large predicted variance. Still, the corresponding gradient

at that point is small (see Point a on the blue curve in Figure 7.1-(Right)), leading to slower

convergence towards optima. As the learning progresses, the residual between prediction
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and ground truth reduces substantially and so does the predicted variance, which leads to

very high gradients potentially causing gradient explosion, a phenomenon often observed

in practice (see Point b on the blue curve in Figure 7.1-(Left)). Together, this leads to

slower model convergence as gradients, in the beginning, are too small. At the same time,

the learning rate would also have to be substantially smaller to avoid gradient explosion

later. Moreover, the works in [142, 147, 199] have shown that this method requires an

additional post hoc calibration phase to tackle miscalibration.

7.4.2 Constructing Temperature Dependent Improper Likelihood

To tackle the slow convergence issue while providing well-calibrated uncertainty esti-

mates, we formulate a temperature-dependent likelihood function that facilitates faster

convergence with the help of temperature annealing. Our formulation imposes an explicit

condition on the uncertainty estimates, keeping them calibrated throughout the learning

phase, leading to calibrated uncertainty estimates without any post-hoc calibration phase.

While Equation 7.1 denotes the negative log-likelihood for the standard Gaussian distribu-

tion, We formulate a new improper likelihood distribution on the network output given

by,

%(D |) =
8=#÷

8=1

4

�|ŷ8�y8 |
2

(2�̂2
8
)q

2��̂2
8

⇥ 4�)2(|ŷ8�y8 |
2) ⇥ 4

�)3

8>><
>>:
|ŷ8 � (y8 + �̂8)|2 , ŷ8 � y8

|ŷ8 � (y8 � �̂8)|2 , ŷ8 < y8

9>>=
>>; (7.2)

Where, )2 ,)3 are hyper-parameters that we refer to as temperature. We then use the

improper maximum likelihood estimator, as also used in [44, 43, 2] to derive an objective

function. We do this by taking the negative log of improper likelihood from Equation 7.2,

leading to the following objective (omitting the constants for clarity and simplification):

8=#’

8=1

log �̂2
8

2
+

|ŷ8 � y8 |
2

2�̂2
8

+ )2(|ŷ8 � y8 |
2) + )3

(
|ŷ8 � (y8 + �̂8)|2 , ŷ8 � y8

|ŷ8 � (y8 � �̂8)|2 , ŷ8 < y8

)
. (7.3)

We note that the above equation can be re-written as,

8=#’

8=1

log �̂2
8

2
+

|ŷ8 � y8 |
2

2�̂2
8

+ )2(|ŷ8 � y8 |
2) + )3(|�̂8 � |ŷ8 � y8 | |

2). (7.4)

Equation 7.4 has two additional terms (i.e., )2(|ŷ8 � y8 |
2) and )3(|�̂8 � |ŷ8 � y8 | |

2)) com-

pared to Equation 7.1. To understand the effects of our proposed temperature-dependent

improper likelihood, we first, look at the newly introduced temperature-dependent regu-

larizers, represented by Lreg given by,

Lreg = )2(|ŷ � y|2) + )3(|�̂ � |ŷ � y| |2). (7.5)
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Figure 7.1-(Left) shows the surface corresponding to Lreg in orange for substantially

large temperature values. We notice that at the beginning of the training phase, with

temperature hyper-parameters set to high values, Equation 7.4 is dominated by Lreg. As

shown in Figure 7.1-(Right), the corresponding gradient at the beginning of the training

(dominated by Lreg) is much higher (see Point a on the orange curve). This encourages

faster convergence at the beginning of the training phase, unlike the Equation 7.1.

Figure 7.2: Schematic of the

temperature-dependent regularizer

characterized by {y, ŷ, �̂}. This en-

forces the prediction to be close to

ground truth and the uncertainty es-

timate to be close to the error, i.e.,

calibrated (shown in orange). When

the predicted variance is small, all

the optimums come close to each

other (shown in blue).

To further understand the effects of the newly in-

troduced temperature-dependent regularizers, we

look at the conceptual schematic, shown in Fig-

ure 7.2, that illustrates the soft constraint imposed by

the regularizers, represented by Lreg. As discussed

above, we propose to start with high values for the

)2 and )3 hyper-parameters and gradually decrease

them during the course of training. We observe that

at high temperatures (i.e., at the beginning of the

training phase), the objective function from Equa-

tion 7.4 is dominated by the last two terms that are

controlled by )2 and )3. We show these two terms

(i.e., Lreg) in Figure 7.2 as a function of ŷ for a fixed

ground truth y and a fixed �̂, and note that minimiz-

ing Lreg encourages the prediction ŷ to be close to

the ground truth y, while also ensuring that the dis-

crepancy between the prediction and ground truth

|ŷ� y|2 is close to the predicted variance �̂2, encour-

aging calibration of the predicted variance without

the need of post-hoc techniques (orange bold curve

in Figure 7.2).

Moreover, as the training progresses and the temperature decreases, ŷ comes closer

to y and the predicted variance �̂ also decreases, we notice that this leads to the local

optimums coming closer, and eventually collapsing at y = y in the limit (blue bold

curve in Figure 7.2). Throughout the early phase of training (with high temperature), the

regularizer encourages the prediction ŷ to be close to ground truth y and the predicted

variance �̂2 to be close to error |ŷ � y|2. This way, the regularizer imposes a soft constraint

for calibration of the predicted uncertainty estimate throughout the training.

7.4.3 Effects of Temperature Annealing

The temperature-dependent improper likelihood in Equation 7.2 leads to objective in

Equation 7.4 that allows us to control the contribution of individual terms by changing

the temperature hyper-parameters )2 ,)3. As described in Section 7.4.2, annealing the
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temperature hyperparameters allow faster convergence of the uncertainty-aware regres-

sion with better-calibrated uncertainty methods. We start by initializing )2 ,)3 with a

high value of 100 and progressively reduce them according to the training epochs using

exponential annealing – referred to as temperature annealing. At higher temperatures, the

Figure 7.3: Effects of temperature annealing. As we anneal the temperature in Equation
7.4, the proposed temperature-dependent regularizer Lreg from Equation 7.5 (shown in
orange) gradually changes from (a), (b), (c) to (d), which provides faster convergence at
the beginning of training while ensuring convergence to the same optima as the standard
objective function as described in Equation 7.1 (shown in blue).

overall objective is dominated by the temperature-dependent terms (Lreg). Figure 7.3-(a))

shows the loss surface for the negative log-likelihood derived from standard Gaussian

(i.e., Equation 7.1) and the newly introduced temperature-based regularize Lreg. As the

temperatures decrease, the overall loss is close to the standard loss function. This can also

be seen from Figure 7.3-(b,c), where the surface corresponding to Lreg flattens out at lower

temperature, eventually coming close to plane surface as temperatures approach 0 as

shown in Figure 7.3-(d)). Note that, when temperatures are zero Lreg = 0 and Equation 7.4

reduces to Equation 7.1. This dynamic contribution from different terms allows the net-

work to converge faster in the beginning (as gradients from the temperature-dependent

loss terms are higher than the standard loss term), and ensures stable convergence to the

same optima as the standard loss, thus leading to faster, better-calibrated uncertainty.

7.4.4 Normalizing the improper Likelihood

We further study ourproposed improper likelihood (presented at Equation 7.2) and convert

it to proper likelihood by normalizing Equation 7.2. Let the normalizing constant be /8 .

Then the proper likelihood is,

%(D |) =
8=#÷

8=1

/84

�|ŷ8�y8 |
2

(2�̂2
8
) ⇥ 4�)2(|ŷ8�y8 |

2) ⇥ 4
�)3

8>><
>>:
|ŷ8 � (y8 + �̂8)|2 , ŷ8 � y8

|ŷ8 � (y8 � �̂8)|2 , ŷ8 < y8

9>>=
>>; (7.6)
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7.5 Experiments

We first provide a detailed description of our experimental setup, including the datasets

used for training and evaluation, the evaluation metrics employed to assess the per-

formance of our model in Section 7.5.1. We compare our model to a wide variety of

state-of-the-art methods quantitatively and qualitatively in Section 7.5.2. Finally, we

also provide an ablation analysis in Section 7.5.2 to study the rationale of our model

formulation.

7.5.1 Experimental Setup

Datasets and Tasks. We conduct experiments on five datasets (three small scale problems,

two large scale problems) to solve the regression task and provide uncertainty estimation.

We choose the following three low-dimensional regression problems. They highlight

the different complexities and network architectures that are required to solve them. In

Chaotic System using Lorenz Attractor (referred to as Lorenz Attractor), the Lorenz equations

describe non-linear chaotic systems given by, %I1

%C
= 10(I2 � I1),

%I2

%C
= I1(28 � I3) � I2,

%I3

%C
= I1I2 � 8I3/3. Similar to [72], to generate a trajectory we run the Lorenz equations

with a %C = 10�5 from which we sample with a time step of C = 0.05. Each point is then

perturbed with Gaussian noise of standard deviation 0.5 to produce pairs of noisy and

clean trajectories split into non-overlapping train/validation/test sets. We use a 1D CNN

to map the noisy input to clean output. The Physical Properties of Molecules (Atom3D) [255]

is a 3D molecular structure dataset aiming to predict the physical property such as the

dipole moment given the 3D atomistic representation. We use the standard Graph Neural

Network (GNN) for this task. The House Price Prediction (Boston-housing) [91, 15] dataset is

used to predict the house prices using various attributes using Multi Layer Perceptrons

(MLPs).

To show the generalization of our method to high-dimensional regression problems,

we use the following two datasets. In Super-resolution of Natural Images (Super-resolution), we

learn mapping from low-resolution to high-resolution images using CNNs, using DIV2K

dataset [254, 103]. We do 4x downsampling to create the corresponding low-resolution

78



7.5. EXPERIMENTS

images. The dataset is split into 800/100/100 images for training/val/test sets. In Medical

Image Translation (MRI Translation), We translate one imaging modality to another, i.e., T1

MRI to T2 MRI images. As T1 and T2 MRI from the same patient in the same orientation

are often not available and T2 takes longer to acquire, learning a mapping from T1 to T2

is desirable. As in [261], we use T1 and T2 MRI of 500 patients from IXI dataset [214]

(200/100/200 for training/val/test) in a 2D CNN based on U-Net [218].

Evaluation Metrics. To measure the quality of regression output, we adopt the stan-

dard metrics: mean absolute error (MAE) and mean square error (MSE). In addition,

for the super-resolution and medical image translation tasks, we use PSNR and SSIM to

measure the structural similarity between two images [289]. To measure the quality

of uncertainty estimates (�̂2), we compute (i) the correlation coefficient (Corr. Coeff.)

between uncertainty estimates (�̂2) and the error (|ŷ � y|2). (ii) Uncertainty calibration

error (UCE) for regression tasks [142, 147]. Following [87], the uncertainty output �̂2

of a deep model is partitioned into " bins with equal width (each represented by ⌫<
for 8< 2 {1, 2..."}). A weighted average of the difference between the predictive er-

ror and uncertainty is used, UCE =

Õ"
<=1

|⌫< |
# |err(⌫<) � uncer(⌫<)|. Where, err(⌫<) :=

1
|⌫< |

Õ
82⌫< | |ŷ8 � y8 | |

2 and uncer(⌫<) := 1
|⌫< |

Õ
82⌫< �̂2

8
. (iii) UCE for the re-calibrated uncer-

tainty estimates (R.UCE). We use post-hoc calibration technique introduced in [142], called

�-scaling, that optimizes for the scaling factor (B), post training to produce uncertainty

estimates (�̂2) and predictions (ŷ) using, B⇤ = argmin
B

h
# log(B) + 1

2B2

Õ#
8=1

|ŷ8�y8 |
2

�̂2
8

i
. In addi-

tion, we present the (iv) expected calibration error (ECE) and (v) sharpness (Sharpness). While

ECE is another metric to quantify the calibration of the uncertainty estimates, one must

note that it may be possible to have an uninformative, yet average calibrated model [38,

336]. Therefore it is necessary to also present the Sharpness metric that encourages

more-concentrated distributions. Finally, we present the (vi) predictive log-likelihood that

assesses how well the predicted conditional distribution fits the data.

Implementation Details. Our LIKA method is generalizable across different types

of architectures. Here we perform experiments with MLPs, 1D/2D CNNs, and GNNs.

We take the well-established networks for the respective problems and modify them to

produce the uncertainty estimates as described in [120, 246]. All the networks were trained

using Adam optimizer [122]. The initial learning rate was set to 244 and cosine annealing

was used to decay the learning rate over the course of the learning phase. The hyper-

parameters, ()2 ,)3) (Equation 7.4) were set to (100, 100) and scheduled to exponentially

decay over the course of the training. We provide the code in the supplementary.

7.5.2 Comparing to Uncertainty Estimation Methods

Compared methods. For each of the regression tasks, we compare our model (LIKA and

its derivatives like Ens-LIKA, DO-LIKA, LIKA-Norm) to eight representative state-of-the-

art methods for uncertainty estimation using DNNs for regression tasks, belonging to a

diverse class of methods, i.e. Bayesian ensemble, test-time data augmentation, maximum
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Figure 7.4: Plots comparing the required convergence time (number of epochs to converge)
for different methods and corresponding ECE during the training on (i) Super-resolution,
(ii) MRI translation, (iii) Atom3D.

likelihood and variants of the same, and finally quantile regression methods. In addition,

we evaluate LIKA-Norm for some of our experiments. This method uses proper likelihood-

based objective to train the network given by Equation 7.6.

Maximum likelihood methods: In this method (NLL) [120, 246] the network is modified

to predict the mean and variance and then trained by optimizing negative log-likelihood.

The variance head then provides uncertainty estimates for the prediction at the inference

time. We also evaluate [245] (called NLL-FH) that uses a modified objective instead of the

NLL of heteroscedastic Gaussian, using a backbone architecture similar to NLL (and other

methods in this work), with the head split to predict both mean and variance as [120].

Test-time Data Augmentation Methods: In Test Time Data Augmentation (TTDA) [278, 9,

75] multiple perturbed copies of the input are passed through a deterministic network to

estimate the predictive uncertainty at the inference stage.

Ensemble Methods: In Deep Ensemble (Ens) [138] multiple deterministic networks are

trained to make the final prediction with uncertainty estimates. While the above estimates

epistemic uncertainty, to capture the aleatoric uncertainty, We also evaluate Ens-NLL,

which is an ensemble of 5 similar models except for the head of each model in the ensemble

is split into two to predict both the mean and variances using the Gaussian-NLL loss.

Each ensemble model is trained independently, with different weight initializations. The

aleatoric uncertainty considered in evaluation of Ens-NLL is the mean of variance head

for all the models in the ensemble. Similarly, we create an ensemble of LIKA (Ens-LIKA)

for the evaluation.

Bayesian methods: In (DO) [70] the weights of the neural network are randomly dropped

at training and inference time. Multiple forward passes for the same input at inference

time allow us to estimate the uncertainty. While the above methods only consider the

epistemic uncertainty, we also evaluate DO-NLL, which is similar to DO, except the head

is split into two to predict both the mean and variances using the Gaussian-NLL loss
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function, along with dropouts during training and evaluation. For DO-NLL, we consider

the aleatoric uncertainty for evaluation obtained as the mean of variance head outputs at

evaluation for a single sample with 100 forward passes and dropouts activated. Similarly,

we create DO-LIKA for the evaluation.

Quantile Regression Methods: In Calibrated Quantile Regression Method (BPLoss) [38]

proposes a model that specifies the full quantile function for the predictions and achieves

a balance between calibration and sharpness. In Collaborating Networks for estimating

uncertainty intervals (CN) [336] two networks are trained simultaneously, one to estimate

the cumulative distribution function, and the other approximates its inverse. We note that

some baseline methods (i.e., BPLoss and CN) have only been proposed for low-dimensional

regression settings (where the output of a model is single scalar) and it is non-trivial and

inefficient to scale it to high-dimensional regression settings (e.g., image translation, where

the output for an input is a high-dimensional matrix/tensor). Therefore such models are

compared only on low-dimensional regression tasks where they are applicable.

Quantitative results on convergence. In this experiment, we train different models to

perform the different kinds of regression task and keep track of the training and validation

loss to identify if the model has converged. For all the models we used the same optimizer

(i.e., Adam [122]) with the same initial learning rate (i.e., lr= 2 ⇥ 10�4) and identical

decaying schedule (i.e., cosine annealing for lr).

We observe in Figure 7.4 that the baseline methods consistently take longer time to

converge while our proposed method (LIKA) consistently has faster convergence. For

instance, on the super-resolution task, our method takes about 4,000 epochs to converge

while the other baseline methods consistently take longer than 8000 epochs to converge.

In particular, the NLL baseline takes the longest to converge. We also note that in the early

phase of training, our LIKA has much higher loss, this is due to the additional temperature

dependent loss terms (in Equation 7.4) that contribute to the overall loss. However, the

higher values of the temperature )2 and )3 in the beginning of the training phase also

allow faster convergence, as explained in Section 7.4. Moreover, towards the end of the

training phase, the temperature parameters are annealed to a low value (close to zero)

and the over all loss function reduces to a low value.

Figure 7.4 (second row) shows the evolution of ECE for the derived uncertainty using

various methods during the training. Again we see that our LIKA achieves the lowest ECE

much faster than the other methods. A similar trend is observed for the other datasets.

For example, on Atom3D dataset, the proposed method converges at about 2000 epochs,

much faster than other baselines, similarly, it achieves the lowest ECE much faster than

other methods. These results show that our method converges much faster than the

other methods, which is in line with our motivation to ensure a faster convergence for

the regression uncertainty model along with better-calibrated uncertainty as described in

Section 7.4.3.

Quantitative results on regression and uncertainty. Uncertainty-aware regression

models must be evaluated on two fronts which are (i) the regression performance, i.e.,
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Figure 7.5: Qualitative results: input, predictions, groundtruth, and the error.

the quality of the target predictions and (ii) the quality of estimated uncertainty (the

uncertainty should be sharp and well calibrated). We evaluate the model performance

based on two set of metrics: (1) task-specific metrics that evaluate the regression results

using MAE, MSE, PSNR, SSIM, and (2) calibration-specific metrics that evaluate the quality of

the uncertainty estimates using C.Coeff., UCE, R.UCE, ECE, Sharp., andLog-likeli.Table

7.1 shows the quantitative results that evaluate regression and the quality of uncertainty

estimates for different methods on multiple regression tasks. Our LIKA method also

obtains high quality regression outputs. In two tasks (including super-resolution, and

MRI translation), our LIKA achieves the best or competitive performance compared to

the other methods. We note that while no single metric can indicate the “goodness” of

uncertainty estimates (as there is no groundtruth for uncertainty values), the collective

set of metrics such as C.Coeff., UCE, R.UCE, ECE, Log-likeli, Sharp. provide a holisitic

indication of “goodness” of uncertainty metric. The proposed method, LIKA, consistently

performs well in terms of the above metrics. Overall, these quantitative results show

that our method performs well in providing both satisfactory regression and uncertainty

estimates.

Qualitative results on regression and uncertainty. Figure 7.5 shows the regression

output on different datasets. Figure 7.5-(i) & (ii) visualizes the generated images for image

super-resolution and MRI translation tasks. While the other methods often generate

relatively blurry images with artifacts in colours, our model produces better output

visually more similar to the ground-truth. Moreover, Figure 7.5-(i) & (ii) also shows

the uncertainty maps, along with the prediction and error for super-resolution and MRI

translation. We observe that for compared methods, uncertainty maps do not always
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T Methods
Metrics

MAE # MSE # SSIM " PSNR " C.Coeff. " UCE# R.UCE.# Log-likeli. " ECE # Sharp. #

B
os

to
n

-h
ou

si
n

g

NLL [120] 2.663 10.75 - - 0.107 12.67 12.23 -2.42 11.5 8.21

NLL-FH [245] 2.551 10.14 - - 0.103 13.63 13.11 -2.62 11.7 8.33

TTDA [75] 2.584 10.30 - - 0.007 14.32 13.85 -2.24 11.8 9.28

Ens-NLL [138] 2.913 12.82 - - 0.114 10.38 9.98 -2.33 10.1 8.27

DO-NLL [120] 2.661 12.83 - - 0.116 8.783 8.226 -2.21 9.32 8.48

BPLoss [38] 2.684 11.49 - - 0.237 9.216 8.837 -2.11 9.72 9.01

CN [336] 2.594 11.13 - - 0.213 10.84 9.722 -2.23 9.65 9.67

DO [70] 2.851 13.26 - - 0.014 10.76 10.18 -2.46 10.2 8.66

Ens [138] 2.971 13.76 - - 0.011 11.26 10.78 -2.41 10.3 8.87

LIKA (ours) 2.593 10.51 - - 0.348 0.756 0.637 -2.06 6.37 8.22

LIKA-Norm (ours) 2.633 10.94 - - 0.311 0.818 0.682 -2.08 6.87 9.14

Ens-LIKA (ours) 2.774 10.83 - - 0.343 0.768 0.648 -2.11 6.55 8.51

DO-LIKA (ours) 2.643 10.76 - - 0.345 0.762 0.631 -2.14 6.82 8.85

A
to

m
3D

NLL [120] 0.498 0.463 - - 0.164 3.358 3.335 -0.22 1.38 3.32

NLL-FH [245] 0.507 0.582 - - 0.112 4.468 4.112 -0.32 2.24 3.82

TTDA [75] 0.903 1.301 - - 0.157 4.167 3.988 -0.38 1.94 4.78

Ens-NLL [138] 0.922 0.983 - - 0.166 4.115 3.977 -0.22 1.66 4.02

DO-NLL [120] 0.950 1.224 - - 0.135 4.177 3.956 -0.22 1.92 4.11

BPLoss [38] 0.527 0.873 - - 0.189 3.527 3.166 -0.21 1.55 3.12

CN [336] 0.521 0.845 - - 0.087 4.311 2.971 -0.16 1.77 3.18

DO [70] 1.950 5.828 - - 0.085 5.380 5.054 -0.24 2.12 4.32

Ens [138] 1.215 2.388 - - 0.138 4.623 4.376 -0.23 1.69 4.17

LIKA (ours) 0.513 0.495 - - 0.567 0.296 0.277 -0.18 1.37 3.17

LIKA-Norm (ours) 0.554 0.585 - - 0.511 0.377 0.315 -0.20 1.68 3.92

Ens-LIKA (ours) 0.502 0.536 - - 0.591 0.316 0.281 -0.15 1.52 3.07

DO-LIKA (ours) 0.535 0.574 - - 0.573 0.324 0.286 -0.17 1.58 3.11

L
or

en
z

A
tt

ra
ct

or

NLL [120] 0.172 0.048 - 31.28 0.588 2.368 1.933 -0.13 4.33 7.87

NLL-FH [245] 0.168 0.043 - 32.27 0.593 2.377 2.145 -0.12 4.56 8.13

TTDA [75] 1.391 3.764 - 29.16 0.438 3.325 3.077 -0.17 5.96 8.91

Ens-NLL [138] 0.175 0.051 - 31.11 0.567 2.491 2.213 -0.14 4.46 7.93

DO-NLL [120] 0.187 0.058 - 30.87 0.536 2.564 2.277 -0.15 4.53 8.10

DO [70] 1.373 3.463 - 29.85 0.281 2.864 2.134 -0.16 4.34 5.67

Ens. [138] 2.544 11.65 - 24.32 0.778 6.726 6.294 -0.22 10.4 8.43

LIKA (ours) 0.153 0.029 - 32.33 0.821 0.779 0.356 -0.11 4.36 9.12

LIKA-Norm (ours) 0.286 0.039 - 30.14 0.561 0.922 0.414 -0.12 4.83 9.37

Ens-Norm (ours) 0.164 0.032 - 31.66 0.801 0.833 0.372 -0.12 4.43 9.22

DO-Norm (ours) 0.175 0.035 - 31.37 0.787 0.862 0.394 -0.12 4.69 9.31

S
u

p
er

-r
es

ol
u

ti
on

NLL [120] 0.693 0.414 0.955 37.15 0.189 0.581 0.512 -0.36 1.45 2.73

NLL-FH [245] 0.671 0.394 0.958 37.33 0.195 0.531 0.491 -0.33 1.22 2.26

TTDA [75] 0.883 0.691 0.939 34.94 0.047 1.175 0.994 -0.39 11.3 10.3

Ens-NLL [138] 0.721 0.468 0.947 36.82 0.182 0.634 0.544 -0.38 1.95 3.36

DO-NLL [120] 0.744 0.493 0.941 36.22 0.178 0.661 0.553 -0.39 2.11 3.64

DO [70] 0.832 0.548 0.947 35.64 0.033 0.748 0.519 -0.38 4.67 6.32

Ens. [138] 0.793 0.462 0.953 36.61 0.029 0.941 0.733 -0.36 8.76 10.2

LIKA (ours) 0.618 0.351 0.962 37.87 0.518 0.104 0.053 -0.16 0.74 0.83

LIKA-Norm (ours) 0.691 0.418 0.943 36.62 0.186 0.388 0.193 -0.19 1.15 1.53

Ens-LIKA (ours) 0.663 0.392 0.955 36.88 0.447 0.192 0.081 -0.18 0.95 0.93

DO-LIKA (ours) 0.672 0.399 0.951 36.52 0.458 0.185 0.076 -0.17 0.92 0.89

M
R

I
T

ra
n

sl
at

io
n

NLL [120] 0.632 0.582 0.938 34.34 0.134 1.673 1.448 -0.28 4.03 5.12

NLL-FH [245] 0.591 0.511 0.947 34.91 0.196 1.611 1.142 -0.29 4.15 5.33

TTDA [75] 0.755 0.729 0.904 32.18 0.128 1.483 1.153 -0.37 7.21 9.74

Ens-NLL [138] 0.644 0.611 0.931 33.92 0.142 1.688 1.466 -0.30 4.23 5.65

DO-NLL [120] 0.648 0.627 0.924 33.24 0.139 1.714 1.535 -0.30 4.29 5.89

DO [70] 0.732 0.683 0.912 32.45 0.159 0.864 0.771 -0.33 4.48 6.23

Ens. [138] 0.681 0.611 0.927 33.76 0.110 1.143 0.974 -0.36 4.86 7.21

LIKA (ours) 0.615 0.537 0.946 35.27 0.432 0.098 0.062 -0.30 3.26 5.78

LIKA-Norm (ours) 0.687 0.613 0.935 34.33 0.266 0.158 0.088 -0.31 4.36 5.84

Ens-LIKA (ours) 0.598 0.502 0.949 35.31 0.416 0.138 0.071 -0.26 4.38 5.03

DO-LIKA (ours) 0.655 0.597 0.942 35.22 0.405 0.161 0.092 -0.30 4.39 5.89

Table 7.1: Evaluating different methods on five datasets using MAE, MSE, PSNR, SSIM (where
applicable, to evaluate regression) and C.Coeff., UCE, R.UCE, Log-Likeli., ECE, Sharp.
(to measure quality of uncertainty estimates). "/# indicates higher/lower is better. “T”:
tasks. Best results are in bold.

agree with error maps at pixel level (i.e., higher/lower uncertainty than the corresponding

error), whereas our uncertainty maps are in agreement with the errors. This suggests
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that our model provides better-calibrated uncertainty. Figure 7.5-(iii) shows the plots for

predictions vs ground-truth on the Atom3D dataset. We can see that compared to other

methods, our method yields predictions much closer to the ground-truth e.g., on the

Atom3D dataset, our method produces regression output more highly correlated with the

ground-truth. Figure 7.5-(iv) shows the input noisy trajectory, denoised output and the

corresponding ground-truth for the Lorentz attractor dataset. We can see that compared

to other methods, our method yields smoother trajectories.

7.5.3 Ablation Analysis of Annealing

Table 7.2 shows the ablation study of two temperature hyperparameters in our formulated

temperature-dependent likelihood (Equation 7.2) along with different choices of priors

for the super-resolution task.

We test the baseline that removes both temperature-dependent terms (i.e. )2 = )3 = 0)

with a uniform prior, this is equivalent to the NLL method and is shown in the first

row (MAE of 0.693). We then study the effect of fixing one of the temperatures at a non-

zero value while setting the other temperature to 0. With )2 = 100,)3 = 0, we see a

slight improvement in regression performance (MAE of 0.614 vs. 0.693) and much poorer

performance with respect to uncertainty calibration (UCE of 1.169 vs. 0.581), this is due to

more weighting of fidelity term between the prediction and the ground-truth along with

suppression of the default calibration effect of NLL. On the other hand, )2 = 0,)3 = 100

suppresses the default fidelity term for NLL, therefore the output is of significantly worse

quality (poor regression scores, MAE of 1.395 vs 0.693) this further degrades the quality

of the uncertainty estimates (UCE 3.733 vs 0.581). We notice that if the model does not

perform good regression, the quality of uncertainty estimate is also adversely effected.

We then study the effects of decaying one of the temperatures while setting other

to 0. With )2 decaying (i.e., )2 =#,)3 = 0) we see slightly better performance than

)2 = 100,)3 = 0 (MAE of 0.612 vs. 0.614 and UCE of 0.983 vs. 1.169), whereas with )2

decaying (i.e., )2 = 0,)3 =#) we see good regression performance but also an improved

calibration performance (UCE of 0.152 vs. 0.581). With both the parameters decaying

(i.e., )2 =#,)3 =#) we achieve improved regression and calibration results concluding

that annealing works the best. In addition to uniform prior setup (i.e., %() = U()),

we evaluate two other priors (i) Gaussian prior on the parameters of the network, i.e.,

%() = N() that is equivalent to ✓2 regularization of weights and (ii) Laplace prior, i.e.,

%() = E() that is equivalent to ✓1 regularization of weights. With Gaussian/Laplace

prior we achieve MAE of 0.625/0.612 showing that carefully crafted priors may further

boost the performance, designing such priors will be explored in future works.

7.5.4 Evaluation on Out-of-Distribution Data

Previous works have studied the performance of various uncertainty-aware methods in

the presence of out-of-distribution (OOD) samples at the inference time [193, 95, 183, 180].
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Methods
Metrics

MAE # MSE # PSNR " SSIM " C.Coeff. " UCE# R.UCE.# Log-likeli. " ECE # Sharp. #
)2 = 0,)3 = 0 0.693 0.414 37.15 0.955 0.189 0.581 0.512 -0.36 1.45 2.73

)2 = 10,)3 = 10 0.667 0.396 37.33 0.958 0.184 0.577 0.503 -0.31 1.42 2.24

)2 = 100,)3 = 0 0.614 0.384 37.72 0.961 0.062 1.169 0.833 -0.41 1.77 2.82

)2 = 0,)3 = 100 1.395 7.274 20.19 0.793 0.219 3.733 2.442 -0.44 2.12 3.11

)2 = 100 #,)3 = 0 0.612 0.344 37.76 0.961 0.077 0.983 0.797 -0.27 1.03 1.35

)2 = 0,)3 = 100 # 0.632 0.388 37.71 0.960 0.442 0.152 0.116 -0.20 0.85 0.98

)2 = 100 #,)3 = 100 # 0.618 0.351 37.87 0.962 0.518 0.104 0.083 -0.16 0.74 0.83

)2 = 100 #,)3 = 100 #
with %() = N() 0.625 0.358 36.98 0.952 0.488 0.168 0.133 -0.24 1.12 1.47

)2 = 100 #,)3 = 100 #
with %() = E() 0.612 0.353 37.92 0.966 0.503 0.118 0.102 -0.15 0.83 1.01

Table 7.2: Ablation study of temperature hyperparameters of the temperature-dependent
likelihood used in the proposed likelihood annealing (LIKA) method on image super-
resolution task.

Figure 7.6: Evaluation of different methods using out-of-distribution input samples for
MRI translation. While the models are trained on MRI samples at noise-level 0 (i.e., NL0),
they are evaluated on increasingly noisy samples (i.e., at noise levels NL1 and NL2). We
notice that the proposed method performs better than various baselines.

To evaluate if better quality of uncertainty estimates lead to better OOD performance, we

evaluate all the uncertainty trained model for MRI Translation on OOD samples. MRI

image acquisition is a noisy process that leads to noisy/corrupted images [163, 196, 294,

3]. Similar to [261, 264, 246], we study the performance of various uncertainty-aware

models in the presence of noisy input samples (corrupted with varying degrees of noise)

at test time. Figure 7.6-(left) shows the example of in-distribution (noise-level 0, NL0)

and out-of-distribution samples (NL1 and NL2). The severity of corruption gradually

increases from NL0 to NL2. From Figure 7.6-(middle and right), that shows the regression

and quality of uncertainty estimates in the presence of OOD samples, we observe that the

performance of various models degrades as severity of corruption increases from NL0 to

NL2, however our LIKA method performs much better than the compared methods even

at higher severity of corruption both in terms of regression and uncertainty calibration

metric.
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7.6 Conclusion

This paper introduces a novel approach to improve the calibration of uncertainty estimates

for regression tasks. We propose a temperature-dependent likelihood that allows for faster

and more accurate learning, while avoiding the need for post-hoc calibration. Our method

employs a temperature annealing technique during training, which has been shown to

lead to 1.5 to 6 times faster convergence compared to existing approaches. Additionally, we

demonstrate the effectiveness of our method in producing superior regression results with

better calibrated uncertainty estimates, compared to five existing uncertainty estimation

methods, across multiple datasets. We further investigate the potential of our approach

in out-of-distribution scenarios, showing its ability to generalize well and highlighting its

robustness. Our study also includes an ablation analysis, revealing key components of

our method and providing valuable insights for future research in uncertainty estimation.

Overall, our proposed temperature-dependent likelihood represents a promising direction

for improving the efficiency and accuracy of uncertainty estimation in regression tasks.
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This thesis deals with the problem setting of uncertainty quantification in the computer

vision domain. The purpose of our work is to quantify the uncertainty in the predictions

made by machine learning-based computer vision models and to leverage the derived

uncertainty to enhance the model capabilities.

In the previous chapters, a novel methods and applications of uncertainty quantifica-

tions for deep learning-based computer vision systems were established.

The following section reviews each contribution individually and collectively and

discusses their strong sides, as well as take a look at their current limitations, proposing

how the drawbacks could be overcome in the future.

8.1 Discussion of results

The investigation began with a novel approach to enhance the performance of GANs in

medical imaging tasks through the integration of uncertainty in a progressive fashion

to an existing GAN-based image translation method (Chapter 1). This exploration laid

the groundwork for the subsequent development of a unique probabilistic method based

on UGAC for unpaired image-to-image translation, offering a robust solution to address

unseen perturbations in test data (Chapter 2).

We further expanded the scope of our research to the realm of learning to quantify the

uncertainty in large-scale pretrained frozen computer vision models that often achieve

state-of-the-art performances but are deterministic in nature. We proposed innovative

techniques such as BayesCap (Chapter 3) to provide calibrated uncertainty estimates

without the need for retraining. The utility of derived uncertainty estimates for active

learning in dense regression models was also examined, culminating in the creation of the

USIM-DAL framework (Chapter 4), which demonstrated significant potential in a variety

of applications.

In an effort to enrich vision-language models (VLMs), we introduced ProbVLM (Chap-

ter 5), a probabilistic adapter for pretrained VLMs. The success of this approach in
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estimating multi-modal embedding uncertainties aiding active learning and model selec-

tion underlines the broad implications of this research.

Finally, our investigation into fast-calibrated uncertainty estimation for regression tasks

led to the development of Likelihood Annealing (Chapter 6). This approach showcases

how refined uncertainty estimation techniques can improve the convergence of deep

regression models across a spectrum of regression problems, including high-dimensional

tasks.

Collectively, the research undertaken in this thesis has advanced the field of machine

learning, specifically in the areas of uncertainty estimation, image translation, and active

learning. The results achieved not only improve upon current methodologies but also

provide a foundation for further advancements and exploration in these vital areas.

As the demand for reliable, efficient, and robust artificial intelligence systems contin-

ues to grow, the ability to accurately quantify and interpret uncertainty will remain an

essential component of these systems. The implications of these findings are far-reaching,

particularly in sectors such as healthcare and autonomous driving, where they can make

profound contributions. As we look ahead, it is anticipated that the findings and method-

ologies proposed in this thesis will serve as stepping stones for future research in these

critical areas of artificial intelligence.

8.2 Conclusion and future works

The research conducted throughout this doctoral journey has opened many exciting

avenues for future exploration. While substantial progress has been made in the realms

of uncertainty estimation, image translation, active learning, and dense regression tasks,

there are several aspects that warrant further investigation.

In the area of image-to-image translation, while our novel approach integrating

aleatoric uncertainty into GANs has demonstrated promising results in medical imaging

tasks, there is scope for broadening the application of this method to other domains.

The proposed probabilistic method based on UGAC has shown resilience to unseen

perturbations in unpaired image-to-image translation tasks. Extending this resilience to

a wider range of perturbations and scenarios could strengthen the robustness of such

systems further.

The introduction of BayesCap represented a significant advancement in providing

calibrated uncertainty estimates for non-Bayesian models. Future work could involve

refining this method to reduce its computational requirements even further and to explore

its applicability to different types of models beyond deep learning architectures.

Our exploration into the utility of uncertainty estimates for active learning in dense

regression models led to the creation of the USIM-DAL framework. Going forward, it

would be beneficial to investigate other statistical properties that could be leveraged to

enhance the efficacy of active learning strategies.
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The success of ProbVLM in enriching vision-language models suggests the potential

for further exploration of probabilistic approaches in this area. In particular, work could

be directed towards improving the model’s performance in more complex multi-modal

tasks.

Finally, the development of Likelihood Annealing, our method for fast calibrated un-

certainty estimation for regression tasks, has demonstrated considerable promise. Future

research could be directed towards developing techniques that can provide even faster and

more accurate uncertainty quantification and applying these to more complex regression

tasks.

In conclusion, while this research has made significant strides in uncertainty estimation,

image translation, and active learning, there are still numerous avenues for exploration

and development. We believe the techniques and methodologies proposed in this thesis

will serve as a solid foundation for future work in these critical areas of machine learning

and artificial intelligence.
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B.1 Additional Theoretical Support

We discuss Equation 4 from the main paper and how we simplify the same to obtain a loss

function suitable for training deep learning models. Given an image and text embedding

pair (zV , zT ) (from frozen model) representing similar concepts, the output distributions

from Ψ(·; ✓), G(z; ẑV , �̂V , �̂V) and G(z; ẑT , �̂T , �̂T ) (later referred to as GV(z)) and GT (z))

should match. This can be measured directly from the likelihood as, ?(zE = zD), where

zE ⇠ GV(z) and zD ⇠ GT (z) as in [234] , i.e.,

?(zE = zD) :=

∫
GV(zE)GT (zD)⇣(zE � zD)3zE3zD (B.1)

where ⇣(·) refers to the Dirac-delta distribution. The above integral can be simplified further

by defining �z = zE � zD and seeking ?(�z) = 0. As both zE and zD are GGD random

variables, �z follows the distribution based on the Bivariate Fox H-function [243] given by,
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Where � =
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, ⇠ = ẑE � ẑD , and H is the Fox H function [243] given

by,
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VISION-LANGUAGE MODELS

Figure B.1: Visualizing the approximation in Equation B.4.

Equation B.2 does not provide a scalable objective function suitable for training deep

neural networks. Hence, we propose an approximation that is easily scalable for deep-

learning models given by,

?(zE = zD) =

∫
GV(zE)GT (zD)⇣(zE � zD)3zE3zD

⇡
π

1

2
(GV(z)⇣(z � zT ) + GT (z)⇣(z � zV)) 3z (B.4)

To understand the above approximation, we refer to Figure B.1. We notice that the

integral in Equation B.1 tries to convolve the two distribution, with an additional constraint

of those distributions being equal in value. While convolving the two generalized gaussian

distributions is hard, Figure B.1 shows that a rough approximation for the same is to

convolve a generalized gaussian distribution with the Dirac-delta distribution. Further,

instead of using the estimated means from ProbVLM in the Dirac-delta distribution (that are

to be near-perfect reconstructions of the embeddings obtained from the frozen network),

we use the embeddings from the frozen encoders as shown in Figure B.1. This finally leads

to Equation B.4. The first term in the integral,
Ø
GV(z)⇣(z � zT )3z, is the likelihood of

the text embedding zT under the predicted distribution, GV(z), for the visual embedding.

Similarly, the second term is the likelihood of the visual embedding zV under the predicted

distribution, GT (z), for the text embedding. Negative log of Equation B.4 leads to a scalable

objective function that can be used to learn the optimal parameters for vision and text
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components of ProbVLM (ΨV(·; ✓V) and ΨT (·; ✓T )),

!cross(✓V , ✓T ) :=
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(B.5)

In practice, the exponential of � in the above equation often makes training unstable.

To make it more stable, we make use of the Taylor-series expansion and note that

✓
|ẑ � z|

�̂

◆ �̂
=

✓
1 + (

|ẑ � z|

�̂
� 1)

◆ �̂

⇡ 1 � �̂ + �̂(
|ẑ � z|

�̂
) (B.6)

This way, the variable �̂ no longer in exponent and as a result loss becomes more stable

during optimization.

Figure B.2: tSNE plot for MS-COCO and CUB image embeddings illustrating the diversity
of MS-COCO.
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VISION-LANGUAGE MODELS

Datasets

CUB Flowers Flickr COCO

M R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

V-B32

i2t

35.3 64.9 79.3 54.5 84.7 94.0 79.0 94.7 97.1 50.6 75.0 83.6

85.1 89.4 81.9 53.3 55.2 37.2 64.2 61.0 55.1 61.0 62.3 57.2

92.1 95.0 90.1 69.6 70.6 52.3 77.0 73.6 68.8 75.8 76.5 73.3

t2i

16.0 34.4 44.6 25.5 47.8 61.8 56.5 82.2 88.3 30.1 55.7 66.8

63.9 63.0 60.5 37.3 33.5 31.7 36.2 35.5 35.1 35.9 36.9 35.4

72.8 71.8 70.7 47.4 43.3 43.7 47.5 46.9 46.7 47.2 49.3 47.8

V-B16

i2t

34.2 66.2 80.4 52.1 82.8 91.6 82.7 96.2 98.9 53.0 77.1 85.1

85.1 89.4 81.9 53.3 55.2 37.2 64.2 61.0 55.1 61.0 62.3 57.2

92.1 95.0 90.1 69.6 70.6 52.3 77.0 73.6 68.8 75.8 76.5 73.3

t2i

15.0 33.3 44.1 25.4 46.4 57.9 61.0 84.2 89.6 33.3 58.6 68.9

63.9 63.0 60.5 37.3 33.5 31.7 36.2 35.5 35.1 35.9 36.9 35.4

72.8 71.8 70.7 47.4 43.3 43.7 47.5 46.9 46.7 47.2 49.3 47.8

RN-50

i2t

31.1 61.7 75.9 53.0 87.1 95.0 77.7 95.2 97.3 49.1 72.5 81.8

85.1 89.4 81.9 53.3 55.2 37.2 64.2 61.0 55.1 61.0 62.3 57.2

92.1 95.0 90.1 69.6 70.6 52.3 77.0 73.6 68.8 75.8 76.5 73.3

t2i

15.3 35.0 46.5 31.5 54.3 66.7 55.1 81.2 87.9 28.3 53.1 64.3

63.9 63.0 60.5 37.3 33.5 31.7 36.2 35.5 35.1 35.9 36.9 35.4

72.8 71.8 70.7 47.4 43.3 43.7 47.5 46.9 46.7 47.2 49.3 47.8

Table B.1: Zero-shot performance on COCO, Flickr, CUB and FLO with for both Image-to-
Text (i2t) and Text-to-Image (t2i) Retrieval for CLIP Models (M) with Vision Transformer
(V-B32, V-B16) and ResNet (RN-50) backbones.

B.2 Additional Quantitative Experiments

We provide the zero-shot results for the CLIP model trained with different visual backbones

in Table B.1, while the results after fine-tuning are presented in Table B.2. While Zero-

Shot CLIP achieves promising results on all four datasets, these are much worse when

compared to the results obtained when fine-tuning on the desired target dataset (42.3 vs.

15.0 for a ViT B/16 on CUB t2i R@1). However, this comes at the cost of worse performance

on the remaining datasets due to catastrophic forgetting and has to be mitigated via several

strategies.

Figure B.2 shows the tSNE plots for the CLIP embeddings obtained from a relatively

diverse dataset (e.g., COCO) compared to a niche dataset (e.g., CUB consisting of only

birds). As indicated in the plot, a niche dataset will likely not be able to capture all the

representations spread in the embedding space, leading to poor generalization, as shown
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CLIP backbones fine-tuned on

CUB Flowers Flickr COCO

D V-B32 V-B16 RN-50 V-B32 V-B16 RN-50 V-B32 V-B16 RN-50 V-B32 V-B16 RN-50

C
U

B

i2t 58.8 66.1 53.9 25.2 23.8 13.4 32.4 31.1 26.2 31.5 32.5 26.8

t2i 41.3 42.3 37.4 18.4 16.8 13.1 16.6 17.1 16.1 16.6 16.9 14.3

Fl
ow

er
s i2t 54.5 51.1 44.3 80.7 82.0 73.8 49.5 55.2 49.7 47.9 47.2 43.6

t2i 25.5 31.2 29.6 57.8 59.0 53.3 31.3 29.3 30.8 28.7 29.2 31.7

Fl
ic

k
r i2t 68.9 73.5 48.2 51.4 62.4 24.4 90.0 92.7 87.1 86.7 90.2 87.7

t2i 48.6 54.7 31.4 32.3 40.5 17.0 73.4 77.5 68.3 69.9 74.5 68.7

C
O

C
O i2t 32.6 42.6 22.0 24.8 31.8 8.9 56.9 61.5 52.0 73.4 69.5 64.3

t2i 19.5 27.1 12.5 32.3 19.7 6.8 38.7 43.9 33.0 49.8 52.3 45.3

Table B.2: Result for fine-tuning CLIP on different Datasets (D) for Image-to-Text (i2t) and
Text-to-Image (t2i) retrieval.

in Table B.2. This is because CUB has images that only contain birds, whereas COCO is a

much larger dataset containing 80 different object categories (including birds). Therefore,

fine-tuning either the VLM or ProbVLM on a larger, more diverse dataset such as COCO

would lead to better generalization and transferability across datasets.
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