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Abstract

In the last decade, machine learning evolved from a sub-field of computer science into
one of the most impactful scientific disciplines of our time. While this has brought im-
pressive scientific advances, there are now increasing concerns about the applications
of artificial intelligence systems in societal contexts. Many concerns are rooted in the
fact that machine learning models can be incredibly opaque. To overcome this prob-
lem, the nascent field of explainable machine learning attempts to provide human-
understandable explanations for the behavior of complex models. After an initial pe-
riod of method development and excitement, researchers in this field have now recog-
nized the many difficulties inherent in faithfully explaining complex models. In this
thesis, we review the developments within the first decade of explainable machine
learning. We outline the main motivations for explainable machine learning, as well
as some of the debates within the field. We also make three specific contributions that
attempt to clarify what is and is not possible when explaining complex models. The
first part of the thesis studies the learning dynamics of the human-machine decision
making problem. We show how this learning problem is different from other forms of
collaborative decision making, and derive conditions under which it can be efficiently
solved. We also clarify the role of algorithmic explanations in this setup. In the second
part of the thesis, we study the suitability of local post-hoc explanation algorithms in
societal contexts. Focusing on the draft EU Artificial Intelligence Act, we argue that
these methods are unable to fulfill the transparency objectives that are inherent in the
law. Our results also suggest that regulating artificial intelligence systems implicitly
via their explanations is unlikely to succeed with currently available methods. In the
third part of the thesis, we provide a detailed mathematical analysis of Shapley Val-
ues, a prominent model explanation technique, and show how it is connected with
Generalized Additive Models, a popular class of interpretable models. The last part
of the thesis serves as an interesting case study of a connection between a post-hoc
method and a class of interpretable models.
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Zusammenfassung

In der letzten Dekade hat sich das Maschinelles Lernen von einem Teilbereich der
Informatik zu einer der bedeutendsten wissenschaftlichen Disziplinen unserer Zeit
entwickelt. Obwohl dies beeindruckende wissenschaftliche Fortschritte mit sich ge-
bracht hat, gibt es nun zunehmende Bedenken hinsichtlich des Einsatzes von Künst-
licher Intelligenz in gesellschaftlichen Kontexten. Ein Hauptproblem besteht dabei
in der Intransparenz der komplexen gelernten Funktionen. Um dieses Problem zu
lösen versucht das Feld des Erklärbaren Maschinellen Lernens allgemeinverständliche
Erklärungen für das Verhalten komplexer Modelle zu finden. Nach einer anfänglichen
Phase der Entwicklung vieler verschiedener Erkläralgorithmen haben Wissenschaftler
nun die vielen Schwierigkeiten erkannt, die mit dem Erklären komplexer Modelle ver-
bunden sind. In dieser Arbeit betrachten wir die Entwicklungen im ersten Jahrzehnt
des Erklärbaren Maschinellen Lernens. Wir skizzieren die Hauptmotive für Erklärbares
Maschinelles Lernen, und einige der wichtigsten Debatten in diesem Bereich. Weiter
leisten wir drei Beiträge zur Erkärbarkeit komplexer Modelle. Im ersten Teil der Arbeit
untersuchen wir die Lerndynamik zwischen Mensch und Maschine. Wir zeigen, wie
sich dieses Lernproblem von anderen Formen der gemeinsamen Entscheidungsfind-
ung unterscheidet und leiten Bedingungen ab, unter denen effizientes Lernen möglich
ist. Außerdem klären wir die Rolle algorithmischer Erklärungen im Lernprozess. Im
zweiten Teil der Arbeit untersuchen wir die Eignung einer prominenten Klasse von
Methoden - sogenannter local post-hoc Erkläralgorithmen - in gesellschaftlichen Kon-
texten. In Bezug auf den draft EU Artificial Intelligence Act argumentieren wir, dass
die Methoden nicht in der Lage sind, die in dem Gesetz verankerten Transparen-
zkriterien zu erfüllen. Der dritte Teil der Arbeit enthält eine detaillierte mathema-
tische Analyse von Shapley-Werten, einer prominenten Technik der Modellerklärung.
Wir zeigen, wie Shapley-Werte mit Generalized Additive Models, einer prominenten
Klasse interpretierbarer Modelle, zusammenhängen. Der letzte Teil der Arbeit dient
als interessante Fallstudie für die Zusammenhänge zwischen Erklärmethoden und in-
terpretierbaren Modellen.
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Chapter 1

Introduction

We begin the thesis by tracing the growing need for explainable machine learning (Sec-
tion 1.1). We then discuss why the classic paradigm of evaluating machine learning
models solely by their test accuracy is increasingly being seen as insufficient (Section
1.2). Starting with a famous paper by Matthew Zeiler and Rob Fergus, we then out-
line the development of explainable machine learning as a research area (Section 1.3).
Based on this, we review a number of different motivations for explainable machine
learning (Section 1.4) and debate the promises and limitations of the field (Section 1.5).
Finally, we lay out the specific contributions of this thesis (Section 1.6).

1.1 Explainable Machines - Why now?

At the time of the writing of this thesis, public debates about the restriction and reg-
ulation of artificial intelligence are at an all-time high. The most immediate reason
for this is breakthroughs in generative AI, exemplified by ChatGPT, a language model
optimized for dialogue (OpenAI, 2023; Ouyang et al., 2022), and Stable Diffusion, a
model that generates realistically-looking images (Rombach et al., 2022). While most
observers agree that the technology itself is impressive - ChatGPT has changed our
understanding of what is possible in natural language processing (Bubeck et al., 2023)
- there are increasing concerns about its effects on society and democracy (Acemoglu
and Johnson, 2023). Among others, concerns about the regulation of artificial intelli-
gence have led to a number of hearings before the US Senate (Kang, 2023).

Taking a step back, generative AI is not the only form of machine learning to cause
a stir in recent years. In 2016, for example, investigative journalists at ProPublica wrote
a much-discussed article about the COMPASS program, a piece of software that assists
judges in deciding cases of criminal bail in the United States (Angwin et al., 2016). The
journalists claimed that the program was biased against blacks, a claim that has since
been much discussed (Rudin et al., 2020).

A main concern about the usage of artificial intelligence systems in societal con-
texts is that these systems are incredibly opaque. This is problematic insofar as these
systems are usually being deployed by institutions that are already relatively pow-
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2 CHAPTER 1. INTRODUCTION

erful, leading to concerns that artificial intelligence might adversely affect the fun-
damental rights of individuals and the balance of power in society (Acemoglu and
Johnson, 2023). Given that many machine learning systems have already been found
to be discriminatory and amplify historical biases, these are not empty concerns but
major hurdles towards the adoption of artificial intelligence (Barocas et al., 2019).

It is important to distinguish two different reasons for the opaqueness of currently
existing systems. One reason is that companies often attempt to keep any details about
their developed models a secret. For example, it is not known what exactly the in-
puts to the COMPASS program are. In their analysis, the journalists at ProPublica
had to reconstruct the behavior of the underlying model from publicly available data
about criminal records (Larson et al., 2016). The case of ChatGPT is similar. While
the general principles of the underlying technology are well-known (Vaswani et al.,
2017; Ziegler et al., 2019), any details about the training data, schedule, and various
stages of fine-tuning with human feedback remain unknown to the public or general
scientific community.

The most important reason for the opaqueness of today’s machine learning mod-
els, however, is simply the current state of the technology. Modern machine learning
models consist of millions of parameters. While they are mathematically well-defined
functions, their inner workings are not directly transparent to any human. For this
reason, these models are often referred to as black boxes.

Why do intransparent black box models dominate modern machine learning re-
search? One reason for this can be found in the history of the field of machine learn-
ing. To abandon debates about model internals and data-generating processes, ma-
chine learners invented the test set paradigm. According to this research paradigm,
a model is evaluated solely by its accuracy on held-out test data, ignoring any model
internals and the way in which the model was obtained (Breiman, 2001b). As a conse-
quence, machine learners developed increasingly large and complex models, without
ever caring about model interpretability.

While this historical development is certainly important, many would argue that
there are other, more fundamental reasons as to why current models are intranspar-
ent. In fact, Leo Breiman gave an argument for accurate but not interpretable models
more than 20 years ago, in his famous article ”Statistical modeling: The two cultures”
(Breiman, 2001b). Breiman argues that

”[...] nature produces data in a black box whose insides are complex, mysterious,
and, at least, partly unknowable.”

If we accept this argument, then it is obvious to expect that the behavior of an accu-
rate model for natural phenomena must also be partially unknowable. In other words,
it might be impossible to interpret the behavior of many accurate models in human-
understandable terms. With Breiman, many would argue that the opaqueness of cur-
rently existing models is not a failure of the technology, but a necessary property of
accurate models that arises directly from the properties of the problem that we attempt
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to solve.1 According to this argument, the black box properties of natural phenomena
are also the reason why we need the methods of machine learning in the first place.
If there were simple and interpretable solution strategies to problems such as image
classification and complex gameplay, scientists would have solved these problems by
explicit programming.

In this current moment of highly accurate black box models, the nascent field
of explainable machine learning attempts to make the behavior of complex systems
transparent by providing human-understandable ”explanations”. At a high level, this
comes with two main motivations. One motivation is the societal need to gain trans-
parency and control over complex machine learning systems, as outlined in the intro-
ductory paragraphs above. The other motivation is entirely scientific, and rooted in
a relatively straightforward critique of Breiman: To what degree, exactly, are complex
natural phenomena ”partially unknowable”? Since we have found valid interpreta-
tions of complex phenomena like quantum mechanics, why can’t we find interpretable
yet accurate solutions to other complex phenomena?

As we are going to see in this thesis, the field of explainable machine learning
has had notable successes, including, but not limited to, the building of relatively
accurate interpretable models. As the field has matured over the last couple of years,
however, it has also become clear that most of the explanation algorithms that have
been proposed in the literature are much less potent than what has been suggested
by their inventors. As such, at a fundamental level, most of the interesting research
questions in explainable machine learning are still unanswered.

1.2 The Rise and Fall of Accuracy for Model Evaluation

In this section, we briefly review the shortcomings of evaluating models by their pre-
dictive accuracy on held-out test data. Since the idea of accuracy as the sole criterion of
model performance is opposed to the idea of model interpretability (Breiman, 2001b),
this sets the stage for our discussion of explainability research in the next section.

Historically, focusing on the predictive accuracy on held-out test data has been a
key innovation of machine learning research that set the field apart from other disci-
plines. Under this research paradigm, sometimes called the common task framework
(Donoho, 2017), the performance of a statistical model is judged solely by its predic-
tive accuracy, ignoring any model internals and the way in which the model was ob-
tained. Arguably, this approach allowed for a lot of innovation in model design and
contributed to the success of machine learning as a scientific discipline.

Around 2012, machine learning models began to ”solve” challenging predictive
tasks in terms of their accuracy on held-out test data. This is exemplified by AlexNet
(Krizhevsky et al., 2012) and increasing performance on the ImageNet Large Scale Vi-
sual Recognition Challenge (Deng et al., 2009). In 2014, the best-performing model on

1A modern version of this argument is given by Dziugaite et al. (2020).



4 CHAPTER 1. INTRODUCTION

this benchmark reached an accuracy roughly comparable with that of human annota-
tors (Russakovsky et al., 2015).

Relatively quickly, machine learning researchers began to observe that models that
had high accuracy on held-out test data could still dramatically fail to solve the real-
world problems that they were meant to address. A particularly prominent failure
case is documented by Buolamwini and Gebru (2018), who showed that commer-
cial facial recognition software was significantly worse at detecting darker-skinned
females than white-skinned males. In a certain sense, the reason for this was an avoid-
able failure of model building: The data sets that were available at the time almost
exclusively contained images of white-skinned people. As a consequence, in this par-
ticular case, the problem could be addressed by collecting more representative and
equitable data sets of human faces. At a fundamental level, however, the underlying
problem of data set composition remains hard to address: Even very big data sets
scarcely represent the real-world problems that we would actually like to solve. At
the moment, this is again more than evident in discussions about the composition of
the training data of large language models.

Apart from the difficulty of collecting a truly representative data set, another im-
portant limitation of the test set paradigm is that it relies, by construction, on the i.i.d.
assumption. This means that we assume that the test examples follow exactly the same
distribution as the training examples. The real world, however, is frequently charac-
terized by distribution shifts. This umbrella term describes all the different ways in
which the data that we collect about the same problem changes over time, such as
when, for example, the invention of a new drug changes the relationship between
blood pressure and health status.

In fact, there are even more failure cases of the test accuracy, such as adversarial
examples. What is important for us, however, is only that the failures of test accu-
racy to reliably translate into desirable real-world behavior have led machine learning
researchers to develop novel criteria by which model behavior can be judged. And
while explainable machine learning is by far not the only candidate - many researchers
would invoke notions of model robustness, for example - more interpretable models
remain an important contender to achieve more desirable real-world behavior.

1.3 Explainable Machine Learning: An Overview

In this section, we give a brief overview of recent developments within the field of
explainable machine learning. We mostly abstain from enumerating all the different
methods and focus on the main intellectual developments within the field. As is the
case with many topics in machine learning, aspects of the questions that are studied in
explainable machine learning are also being considered in earlier literature on statis-
tics. Concrete examples are attempts to measure the importance of different variables
(Breiman, 2001a) and build interpretable models (Lin et al., 2020). In order to be con-
cise, we restrict ourselves to the machine learning literature.
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The modern literature on explainable machine learning started around ten years
ago with two publications that attempted to make the inner workings of neural net-
works transparent. These publications are ”Visualizing and Understanding Convo-
lutional Networks” by Matthew Zeiler and Rob Fergus (Zeiler and Fergus, 2014) and
”Deep Inside Convolutional Networks: Visualising Image Classification Models and
Saliency Maps” by Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman (Si-
monyan et al., 2013). In the first paper, the authors analyzed a convolutional neu-
ral network similar to the AlexNet model that had been released the year before
(Krizhevsky et al., 2012). Quoting from the abstract, their objective was to introduce

”a novel visualization technique that gives insight into [...] the operation of
the classifier. [..] This enables us to find model architectures that outperform
Krizhevsky et a. on the ImageNet classification benchmark.”

Today, understanding and improving models are still among the main motivations of
explainable machine learning (compare Section 1.4.1 below). In the second paper, the
authors proposed to compute the gradient of the class score of a convolutional neural
network with respect to the input image (Simonyan et al., 2013). This technique is still
the basis of many gradient-based interpretability methods. Interestingly, both papers
do not yet use the words ”explanation” or ”explain”. Instead, they employ the term
”understanding”.

Apart from these two papers, early contributions to the field of explainable ma-
chine learning have been made by Rich Caruana, Cynthia Rudin, and Been Kim (Chris-
tian, 2020, Chapter 3). Caruana and Rudin are known for their work on interpretable
model building (Caruana et al., 2015; Rudin et al., 2022), a topic that we discuss in
Section 1.5.3. Been Kim was among the first researchers who explicitly advocated for
another main objective of explainable machine learning: Human-machine collabora-
tion. In her 2015 PhD thesis, titled ”Interactive and interpretable machine learning
models for human machine collaboration” (Kim, 2015), Kim wrote

”I envision a system that enables successful collaborations between humans and
machine learning models by harnessing the relative strength to accomplish what
neither can do alone.”

The perspective of Kim is still very relevant today, since the debates about the degree
to which machines should act autonomously, or be decision-support tools for humans,
are still far from settled (Narasimhan et al., 2022).

After a period of increasing interest in the topic (Bach et al., 2015), around 2016/2017
the field of explainable machine learning began to take shape. Among others, this is
evidenced by two very influential papers on post-hoc feature attribution methods.
The first paper, by Marco Ribeiro, titled ”’Why Should I Trust You?’: Explaining the
Predictions of Any Classifier”, proposed to explain any function by learning an inter-
pretable model locally around the prediction (Ribeiro et al., 2016). The second paper,
by Scott Lundberg, titled ”A unified approach to interpreting model predictions” pro-
posed the SHAP method, a game-theoretic approach to feature attribution that is still
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heavily used today (Lundberg and Lee, 2017). Both papers stand out in two impor-
tant ways. For one, they explicitly use the terminology to ”explain” functions. While
this is not the first use of this terminology, these two papers exemplify that it became
commonly used around the time. What is more, both papers stand out for their ex-
ceedingly broad claims. Specifically, the papers claimed that the respective methods
could explain ”any function”, and directly fulfill challenging interpretative goals like
trust.

The year 2017 also saw the publication of ”Grad-CAM: Visual Explanations from
Deep Networks via Gradient-based Localization” (Selvaraju et al., 2017) and ”Ax-
iomatic attribution for deep networks” (Sundararajan et al., 2017). These works are
similar in spirit to Simonyan et al. (2013), using gradients and backpropagation to ex-
plain the predictions of deep neural networks. Unlike LIME and SHAP, which do not
make use of model internals and only rely on querying access, these two papers make
use of the specific architecture of deep neural networks.

The growing interest in explainable machine learning around 2016/2017 is also
evidenced by a number of panels and workshops at the NeurIPS conference, the pre-
mier conference in machine learning. In 2016, there was a NeurIPS panel on ”Explain-
able AI”. In 2017, there were workshops on ”Interpreting, Explaining and Visualizing
Deep Learning - Now what?” and ”Transparent and interpretable Machine Learning
in Safety Critical Environments”. Finally, in 2020, there was a tutorial by Himabindu
Lakkaraju, Julius Adebayo, and Sameer Singh on ”Explaining ML Predictions: State-
of-the-art, Challenges, and Opportunities”.

After 2017, the papers on LIME, SHAP, Grad-CAM, and Integrated Gradients gave
rise to an entire literature of papers that attempted to improve the respective methods.
Prominent examples from this literature are ”Grad-CAM++: Improved Visual Expla-
nations for Deep Convolutional Networks” (Chattopadhay et al., 2018), and ”Feature
relevance quantification in explainable AI: A causal problem” (Janzing et al., 2020).

The increasing popularity of explainable machine learning around this time also
gave rise to attempts to conceptualize the field (Doshi-Velez and Kim, 2017), as well as
an increasing amount of scepticism as to what the different proposed methods were
really doing (Lipton, 2018). It also gave rise to books and surveys that reviewed the
different proposed methods (Molnar, 2020; Rudin et al., 2022; Samek et al., 2021).

The extremely broad claims in papers on LIME and SHAP, as well as many other
early contributions in the field of explainable machine learning, illustrate an early op-
timism to ”solve” the problem of model understanding. As the field gained traction
and popularity, however, researchers increasingly started to question the inner work-
ings of the proposed methods, as well as some of the overly broad claims in early
papers. In 2018, Julius Adebayo and co-authors published the paper ”Sanity checks
for saliency maps” (Adebayo et al., 2018). This widely recognized paper empirically
tested a number of different saliency methods for how sensitive they were to the un-
derlying model. The paper found that many saliency maps were not sensitive to the
weights of the last layer of a neural network, meaning that they were insensitive to the
ultimate predictions. This famous paper is the first contribution in a line of work that



1.4. OBJECTIVES OF EXPLAINABLE MACHINE LEARNING 7

started to empirically probe the properties of the different proposed explanation algo-
rithms. Other prominent papers from this literature include the Remove-And-Retrain
(ROAR) benchmark (Hooker et al., 2019), as well as the follow-up work by Julius Ade-
bayo ”Debugging tests for model explanations” (Adebayo et al., 2020). As researchers
began to critically analyze the different proposed methods, it also became apparent
that almost all of them were subject to adversarial attacks (Dombrowski et al., 2019;
Slack et al., 2020). In addition to this empirical work, researchers also began to study
the properties of different explanation algorithms theoretically. A notable early con-
tribution to this literature is the analysis of LIME by Damien Garreau (Garreau and
von Luxburg, 2020).

In addition to a critical analysis of explanation algorithms, researchers have also
attempted to move beyond the paradigm of feature attributions, which dominated
much of the first decade of interpretability research (Section 1.5.2). Early works that
proposed different notions of explanations are ”Counterfactual Explanations without
Opening the Black Box: Automated Decisions and the GDPR” (Wachter et al., 2017),
”Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Ac-
tivation Vectors (TCAV)” (Kim et al., 2018), and ”Anchors: High-Precision Model-
Agnostic Explanations ” (Ribeiro et al., 2018). These works introduced counterfactual
explanations, concepts, and certificates, all of which are now widely accepted notions
of model explanations.

1.4 Objectives of Explainable Machine Learning

In addition to a large variety of different methods and algorithms, explainable ma-
chine learning is also characterized by a large variety of different motivations. What
is the purpose of explaining a model? Sometimes the motivations are very explicit,
as in the title of the LIME paper (Ribeiro et al., 2016). At other times the motives
behind explanations are more implicit, given via benchmarks and example applica-
tions of particular methods (Lundberg and Lee, 2017). The large variety of methods
and motivations makes it surprisingly hard to assess the field of explainable machine
learning. In fact, this is not a new phenomenon. In 2016, Zachary Lipton observed in
”The Mythos of Model Interpretability” (Lipton, 2018) that

”[...] the task of interpretation appears underspecified. Papers provide diverse
and sometimes non-overlapping motivations for interpretability, and offer myriad
notions of what attributes render models interpretable.”

Similarly, researchers Finale Doshi-Velez and Been Kim observed in 2017 that (Doshi-
Velez and Kim, 2017)

”[..] there is little consensus on what interpretability in machine learning is and
how to evaluate it [..]”

To provide a basis for our discussion in Section 1.5, this section gives a short
overview of the most common motivations for explainable machine learning.
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1.4.1 Model Debugging, Understanding and Improvement

Model understanding and improvement are the main objectives in some of the ear-
liest works on explainable machine learning (Simonyan et al., 2013; Zeiler and Fer-
gus, 2014). From the perspective of most applied machine learning researchers, they
remain among its most important objectives today. An example of this is given by
Julius Adebayo’s 2022 PhD thesis, titled ”Towards Effective Tools for Debugging Ma-
chine Learning Models” (Adebayo, 2022). In comparison with other objectives of ex-
plainable machine learning, model debugging and improvement are relatively modest
goals. In practice, a model developer might use a variety of tools to debug a model
and choose the most appropriate ones on a case-by-case basis. In this scenario, it can
already be a success case if at least some of the methods are useful at least some of the
time. Wrong or unhelpful explanations don’t hurt much. In the worst case, they might
lead to a failed attempt to improve a model. A concrete sucess case of explainable ma-
chine learning for model debugging is the ability of feature attribution methods to
highlight localized spurious features in images (Adebayo et al., 2020).

Model understanding in its general form is both adjacent and alternative to ex-
plainable machine learning. An example of this is given by the recent work of Been
Kim on the acquisition of chess knowledge in AlphaZero (McGrath et al., 2022). The
authors write that

”[..] the system [..] appears to learn concepts analogous to those used by hu-
man chess players. [..] probes applied to AlphaZero’s internal state enable us to
quantify when and where such concepts are represented in the network.”

The main difference between explainable machine learning, as it is commonly per-
ceived, and model understanding as exemplified by the above quote is that under-
standing must not necessarily come in the form of ”explanations”. Another concrete
example, timely during the writing of this thesis, is the attempts to understand the
behavior and capabilities of large language models like GPT-4 (Bubeck et al., 2023).

1.4.2 Human-AI Collaboration

The idea to develop computer programs that assist human decision makers - we can
think of the somewhat stereotypical example of a doctor who is assisted by a computer
program - goes back at least to the development of expert systems in the 1970s (Rus-
sell, 2010). As we have seen in Section 1.3, improving human-AI collaboration is also
one of the initial goals of explainable machine learning. One of the main reasons for
this objective is that human domain experts are often dissatisfied with opaque black
box models. Instead, they would like to gain insights into how a computer program
arrived at a decision and incorporate these insights into their own reasoning.

In terms of the proposed methods, somewhat confusingly, human-AI collaboration
has often seen the same tools as model understanding and debugging (for example,
saliency maps for images). The important difference, however, is that the human who
receives the explanations is not a machine learning engineer who wants to debug a
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model, but a domain expert who is going to make a potentially consequential deci-
sion. As we are going to discuss in more detail in Section 1.5.2, the goal of improving
human-AI collaboration is much more demanding than model debugging and im-
provement.

Similarly to model understanding, human-AI collaboration in its general form
exceeds the field of explainable machine learning. A concrete example is a recent
line of work on ”learning to defer” which studies the learning problem when a com-
puter program can decide to make a decision on its own or defer to a human expert
(Narasimhan et al., 2022).

1.4.3 Transparency, Regulation and Alignment

As machine learning has increasingly impacted the world, policymakers have be-
gun to call for the regulation and oversight of the usage of machine learning systems
(Kang, 2023). As we have already outlined in Section 1.1, a main concern is that the
opaqueness of machine learning models might adversely affect the balance of power
in society (Acemoglu and Johnson, 2023). Another concern, shared by some but not by
all machine learning researchers, is that models might become increasingly intelligent
while not being aligned with human preferences.

Perhaps unsurprisingly, explainable machine learning has been seen as a poten-
tial candidate to provide transparency and oversight of complicated machine learning
models. At a very high level, the intuitive idea is that intelligent machines might
justify and explain their decisions in a way that is similar to human experts. More
concretely, it is sometimes believed that explanations might constrain the adverse be-
havior of a system, in the sense that a system that is discriminatory would necessarily
have to reveal this in its explanations. Unfortunately, as we are going to argue exten-
sively in the second part of the thesis (Section 1.6.2), such beliefs are largely misplaced,
at least given currently existing explanation algorithms.

1.5 Debates and Limitations

Ten years after Zeiler and Fergus published their paper on visualizing and under-
standing neural networks, the field of explainable machine learning has seen early
excitement, considerable growth, and increased skepticism. In this section, we give a
selective overview of current debates within the field of explainable machine learning.

1.5.1 Explaining Any Function

An important point where the debate within the field of explainable machine learning
has progressed from 2017/2018 is that the problem of explaining arbitrary black box
functions is increasingly being seen as ill-posed. In other words, explaining requires
assumptions.

We give three main arguments why this is the case. The first two are empirical
observations, and the third is of theoretical nature. The first empirical observation
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is that for almost all of the methods in explainable machine learning, there are some
scenarios where they ”work well”, and others where they don’t. Papers that intro-
duce new methods usually contain applications to showcase the good performance
of these methods. Subsequent research then identifies failure modes where the pro-
posed method is not able to hold up to its initial promises. The generality of the cases
where the method works is then subject to intense debate. As a concrete example,
consider the ability of feature attribution methods to highlight spurious correlations.
The LIME paper contains a famous application of spurious correlation detection with
dogs, wolves, and snow (Ribeiro et al., 2016). Later research by Julius Adebayo has
tried to identify the conditions under which feature attribution methods can identify
spurious correlation and found that there are many scenarios where they cannot (Ade-
bayo, 2022; Adebayo et al., 2020). Still, many researchers believe, probably justifiably
so, that feature attributions are a useful tool to detect at least certain forms of spurious
correlations.

The second empirical observation is that explanation algorithms are generally sub-
ject to adversarial attacks. By an adversarial attack, we mean a modification to the
function f that we want to explain that keeps the predictions of the function on the
data distribution constant but arbitrarily modifies the explanations. For LIME and
SHAP, this has been demonstrated in (Slack et al., 2020). For gradient-based explana-
tion methods, a general argument is contained in (Dombrowski et al., 2019).

The third argument for why explaining any function is not possible is of theoretical
nature. In the literature on the theory of machine learning, it is a well-known fact that
there exists no universal learning algorithm (Wolpert, 1996). In other words, there
exist so many possible functional relationships that every learning algorithm must
invariably choose a preference for some functions over others. Given this fundamental
impossibility result for learning functions, it seems highly unlikely that there exists a
universal explainer for explaining functions. Interestingly, however, the literature on
explainable machine learning has so far not seen any impossibility results that are as
convincing as those for learning.

To summarize, while the field of explainable machine learning has seen many pa-
pers that propose to explain arbitrary functions, researchers now believe that this is
generally not possible. Instead, we must identify the particular conditions and as-
sumptions under which explainability is possible. In most interesting cases, the spe-
cific form and practical relevance that these assumptions will take are yet to be dis-
covered.

1.5.2 The Utility of Feature Attributions

In the last decade, the most prominent type of explanation has been the feature at-
tribution. Feature attributions comprise scalar attributions for tabular data, saliency
maps for images, and highlighted words in sentences. Many different explanation al-
gorithms ultimately provide feature attributions, including LIME, SHAP, Grad-CAM,
and Integrated Gradients (Lundberg and Lee, 2017; Ribeiro et al., 2016; Selvaraju et al.,
2017; Sundararajan et al., 2017).
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Perhaps due to their popularity, there has been a lot of debate about the utility of
feature attributions. This debate can be confusing because all of the different objectives
of explainable machine learning have at one point or another been associated with fea-
ture attributions (Section 1.4). A literature that begins with Zeiler and Fergus (2014)
uses feature attributions and visualizations in order to debug, understand and im-
prove models. This includes spurious correlation detection, already discussed above
(Adebayo et al., 2020). However, Scott Lundberg, the inventor of SHAP, has suggested
that his method might also be useful for doctors who want to understand the predic-
tions of black box models (Lundberg et al., 2020). In addition, there are many who
have suggested that saliency methods might be useful for doctors in medical imaging
tasks, leading to studies like ”Using a deep learning algorithm and integrated gradi-
ents explanation to assist grading for diabetic retinopathy” (Sayres et al., 2019). Also
with regard to transparency and regulation, many have suggested that, for example,
the fairness of classifiers might be assessed using feature attribution methods.

In the domain of model debugging and improvement, feature attributions have
arguably been a success case. A prime example of this is their ability to detect localized
forms of spurious correlation (Adebayo, 2022). However, as we have discussed in
Section 1.4.1, model debugging and improvement are also the most modest goal of
explainable machine learning. A more challenging domain where feature attribution
methods seem to be useful, at least in certain cases, is scientific discovery. For example,
Janizek et al. (2023) report that feature attributions can accelerate data-driven cancer
pharmacology.

With regard to the objective of human-AI collaboration, feature attribution meth-
ods, unfortunately, do not seem to bring any real benefit. For example, there does
not seem to exist a single high-quality study that unambiguously demonstrates the
benefits of saliency maps on doctors’ decision-making. In one of the few existing
high-quality studies on the topic of human machine decision-making in the medi-
cal domain, ”Human–computer collaboration for skin cancer recognition” (Tschandl
et al., 2020), the authors did not even try any saliency methods but instead resorted to
prototype-based explanations. In the end, the main result of this study was that the
relatively simple mechanism of delivering multi-class probabilities allowed doctors
to make the best diagnoses. Similarly, Sayres et al. (2019), who explicitly tested the
efficacy of saliency maps to assist doctors in grading images for diabetic retinopathy,
conclude that

”For most cases, Grades + Masks was as only effective as Grades Only [...]”

implying that feature attributions did not bring any real benefit on the considered task.
With regard to transparency and regulation, it is important to note that there have

already been many discoveries of biases in algorithms. This includes the gender
shades study discussed in Chapter 1.2, as well as many other examples collected in
Barocas et al. (2019, Chapter 1). However, none of these discoveries seem to have come
through feature attributions methods, or explainable machine learning more generally.
Instead, the literature on algorithmic bias develops clever context-specific tests.
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In summary, feature attributions have turned out to be useful for model debug-
ging, understanding and improvement. While they have also been heralded for more
complex tasks, there does not seem to exist any empirical evidence in order to support
these claims.

1.5.3 The Success of Interpretable Models

One of the biggest success cases of explainable machine learning are inherently inter-
pretable models. In contrast to the approach of first building a model, then interpret-
ing it, this approach aims to build models that are interpretable from the start. The
two most important classes of interpretable models are small decision trees and Gen-
eralized Additive Models (GAMs) with few interactions (Caruana et al., 2015; Rudin
et al., 2022). The most important result of recent years is that these models are often
able to reach competitive accuracy on tabular data. Interpretable models have also
shown promising capabilities at detecting defects in data sets (Lengerich et al., 2022).
This makes them promising candidates both for model debugging and improvement,
as well as for human-AI collaboration in domains such as health care. Some scholars
have even argued that post-hoc explanation algorithms should not be used for tabular
data at all (Rudin, 2019).

Unfortunately, interpretable models also face an important limitation. Despite a
number of recent attempts at this problem (Chen et al., 2019), they do not work well
for image and text data. Thus, while interpretable models are an incredibly useful
tool, they are unlikely to replace black box models in many important domains.

1.6 Thesis Contributions

This thesis is based on the following publications.

Bordt, S. and von Luxburg, U. (2022) A Bandit Model for Human-Machine
Decision Making with Private Information and Opacity. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS). https://proceedings.ml
r.press/v151/bordt22a.html

Bordt, S., Finck, M., Raidl, E., von Luxburg, U., (2022) Post-Hoc Expla-
nations Fail to Achieve their Purpose in Adversarial Contexts. In FAccT ’22:
2022 ACM Conference on Fairness, Accountability, and Transparency. https:

//dl.acm.org/doi/abs/10.1145/3531146.3533153

https://proceedings.mlr.press/v151/bordt22a.html
https://proceedings.mlr.press/v151/bordt22a.html
https://dl.acm.org/doi/abs/10.1145/3531146.3533153
https://dl.acm.org/doi/abs/10.1145/3531146.3533153
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Bordt, S. and von Luxburg, U. (2023) From Shapley Values to Generalized
Additive Models and back. In International Conference on Artificial Intelligence
and Statistics (AISTATS). https://proceedings.mlr.press/v206/bordt23a.
html

I also published the following workshop paper.

Bordt, S., Upadhyay, U., Akata, Z., von Luxburg, U. (2023) The Manifold
Hypothesis for Gradient-Based Explanations. In Explainable AI for Computer
Vision Workshop, Conference on Computer Vision and Pattern Recognition (CVPR).
https://arxiv.org/abs/2206.07387

I also co-authored the following paper on kernel clustering which was accepted
for an oral presentation at AISTATS.

Vankadara, L.C., Bordt, S., von Luxburg, U., Ghoshdastidar, D. (2022) Re-
covery Guarantees for Kernel-based Clustering under Non-parametric Mixture
Models. In International Conference on Artificial Intelligence and Statistics (AIS-
TATS). https://proceedings.mlr.press/v130/vankadara21a.html

The following paper is currently available as a pre-print on arxiv.

Bordt, S. and von Luxburg, U. (2023) ChatGPT Participates in a Computer
Science Exam arXiv preprint. https://arxiv.org/abs/2303.09461

We now outline the contributions of the different parts of the thesis and how they
relate to the research questions within the field of explainable machine learning.

1.6.1 A Bandit Model for Human-Machine Decision Making with Private
Information and Opacity

In the first part of the thesis, we consider the learning dynamics of the human-machine
decision making problem. Improving human-AI collaboration is one of the main ob-
jectives of explainable machine learning (Section 1.4.2). Nevertheless, the learning
dynamics of this problem - How can a human and a machine jointly learn to solve
difficult problems? - has received little explicit treatment. We introduce a formal
framework to study the learning dynamics of the human-machine decision making
problem. Our main objective is to clarify the way in which human-machine decision
making is different from other forms of collaborative decision making problems. We
study the role of two salient aspects that set human-machine decision making apart:

https://proceedings.mlr.press/v206/bordt23a.html
https://proceedings.mlr.press/v206/bordt23a.html
https://arxiv.org/abs/2206.07387
https://proceedings.mlr.press/v130/vankadara21a.html
https://arxiv.org/abs/2303.09461
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(1) the presence of private information that is accessible only to one of the two decision
makers, and (2) opacity, that is an imperfect understanding between the two decision
makers.

Formally, our framework is a two-player variant of the contextual bandit model
(Lattimore and Szepesvári, 2020). Private information is modeled as part of the con-
text vectors of the respective players. Opacity is modeled via the policy spaces of the
respective players. This means that there is opacity if a player does not know another
player’s policy space. The learning objective in our model is a straightforward exten-
sion of the contextual bandit problem: The two players try to find decision rules that
minimize the expected regret.

In our model, we are then able to show that both private information and opacity
can present significant barriers to learning. Specifically, in the absence of private in-
formation and opacity, learning in our model is easy. Under the presence of private
information or opacity, however, efficient learning becomes impossible, at least in the
worst case. Intuitively, the two players are stuck with trial and error on all possible
combinations of policies. An interesting insight from our formal modeling approach
is that private information and opacity can have very similar consequences.

Intuitively, a main conclusion from the first part of the thesis is that human-machine
interaction depends on good priors of what comprises successful interaction. In other
words, since there is little potential to learn sophisticated strategies of human-machine
interaction, we are essentially stuck with trial-and-error on a few strategies that we
deem plausible in the first place.

Importantly, the first part of the thesis also informs about the role of algorithmic
explanations in the human-machine decision making problem. This is because the
hardness results in the paper also apply to the problem of learning explanations. By
this, we mean the problem setup where a computer has access to a parameterized
space of explanation algorithms and tries to learn the explanations that work best for
the human decision maker. Intuitively, the results in the first part of the thesis imply
that there is no efficient way in which a computer can automatically identify the best
explanations. This again means that we need to rely on our prior knowledge of what
might comprise useful explanations for human decision makers.

1.6.2 Post-Hoc Explanations Fail to Achieve their Purpose in Adversarial
Contexts

In the second part of the thesis, we study the suitability of a particular class of meth-
ods - local post-hoc explanation algorithms - in societal contexts. As outlined in Sec-
tion 1.4.3, it is often believed that explainable machine learning might be useful as a
regulatory tool, in order to enhance the transparency of automated decision making
systems. We ask whether local post-hoc explanation algorithms (for example, feature
attributions) can fulfill the transparency requirements inherent in the draft Artificial
Intelligence Act. The Artificial Intelligence Act is a major piece of EU legislation that
attempts to specifically regulate AI. As such, it presents an important case study for
the potential of explainable machine learning in societal contexts. Using an interdisci-
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plinary approach including philosophy, law and computer science, we argue that local
post-hoc explanation algorithms are unable to achieve the transparency objectives that
are inherent in the law.

Our argument rests on the observation that the law usually attempts to regulate
what we call adversarial decision making contexts. In an adversarial decision mak-
ing context, the incentives of the different actors - the entity that deploys the machine
learning system, the provider of the explanations, and the individual that is affected
by the machine prediction, are not aligned. As a consequence, the provider of the
explanations has an incentive to manipulate the explanations to her end. From a tech-
nical perspective, it is extremely hard if not altogether impossible to safeguard against
such manipulations. The reason for this is the high degree of ambiguity of post-hoc
explanations in realistic application scenarios. Ground-truth explanations of compli-
cated black-box functions do not exist, and from a technical perspective, the problem
of providing post-hoc explanations is undetermined. In other words, the provider of
the explanations has to make many choices that allow her to manipulate the explana-
tions towards her end.

An important question about machine learning in societal contexts is to what de-
gree the auditing of such systems is possible. In most cases, the entity that deploys
the machine learning system - for example, a bank or a university - would not like the
system to come under too much scrutiny, in order to avoid the detection of any poten-
tial form of malpractice. However, regulators could potentially specify that systems
must be accessible for certain forms of testing.

Overall, the second part of the thesis provides a cautionary tale regarding the po-
tential of explainable machine learning for transparency and regulation in societal
contexts. At any rate, post-hoc explanations are unlikely to expose undesirable model
behaviors such as biases, given that the provider of the explanations has an incen-
tive to hide them. An interesting alternative to the usage of post-hoc explanations in
critical applications might be the usage of interpretable models (Section 1.5.3). While
these models can also hide indirect effects that occur due to the correlation between
the different variables, they are overall much more transparent and potentially much
simpler to audit.

1.6.3 From Shapley Values to Generalized Additive Models and back

The third part of the thesis develops connections between post-hoc explanation al-
gorithms and interpretable models (Section 1.5.3). Specifically, we outline theoretical
connections between Shapley Values - a prominent feature attribution method - and
Generalized Additive Models (GAMs) - a popular class of interpretable models. This
is interesting insofar as post-hoc methods and interpretable models are often framed
as different or even opposing approaches towards interpretability (Rudin, 2019). By
highlighting the connections between the two - if only for one particular pair of meth-
ods - we suggest that there are general ideas of interpretability that underlie both in-
terpretable models and post-hoc explanation techniques. In addition, the third part of
the thesis also presents a detailed analysis of Shapley Values as a model explanation
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technique, identifying GAMs without variable interactions as the class of functions
that Shapely Values are able to explain without loss of information.

In order to outline the connections between Shapley Values and GAMs in some
generality, we introduce n-Shapley Values. n-Shapley Values are a family of local post-
hoc explanation algorithms that explain individual predictions with interaction terms
up to order n (that is, n-Shapley Values extend feature attributions with terms for
variable interactions up to order n). We then show that n-Shapley Values are able
to faithfully represent GAMs with variable interactions up to order n. This means
that if the function that we want to explain can be represented as a GAMs of order
n, then n-Shapley Values will implicitly provide such a representation, in the sense
that the different terms involved in the explanations correspond to the evaluations
of the respective component functions of the GAM. This result provides a direct link
between the complexity of the model class and the complexity of the explanations that
are required in order to faithfully explain it. A consequence of this general result is
that the original Shapley Values are able to faithfully represent Generalized Additive
Models of order n = 1, that is functions without variable interactions.

Overall, the third part of the thesis provides an interesting example of what a de-
tailed theoretical analysis of a post-hoc explanation algorithm can look like. In par-
ticular, we demonstrate exactly how the post-hoc method relates to the properties of
the function that we want to explain. What is more, the third part of the thesis also
reveals the limitations of an entirely mathematical analysis of model explanations. In
particular, if one believes that the presented analysis provides a relatively complete
characterization of the mathematical properties of Shapley Values, which seems plau-
sible, then it becomes clear that some of the more ambitious goals of explainable ma-
chine learning are likely not directly amenable to mathematical analysis. For example,
the presented mathematical analysis of Shapley Values does not directly allow us to
answer whether these explanations would be useful as a decision aid for doctors.



Chapter 2

Publications

17



18 CHAPTER 2. FIRST PUBLICATION

2.1 A Bandit Model for Human-Machine Decision Making with
Private Information and Opacity



A Bandit Model for Human-Machine Decision Making
with Private Information and Opacity

Sebastian Bordt Ulrike von Luxburg
University of Tübingen
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Abstract

Applications of machine learning inform hu-
man decision makers in a broad range of
tasks. The resulting problem is usually for-
mulated in terms of a single decision maker.
We argue that it should rather be described
as a two-player learning problem where one
player is the machine and the other the hu-
man. While both players try to optimize
the final decision, the setup is often char-
acterized by (1) the presence of private in-
formation and (2) opacity, that is imperfect
understanding between the decision makers.
We prove that both properties can compli-
cate decision making considerably. A lower
bound quantifies the worst-case hardness of
optimally advising a decision maker who is
opaque or has access to private information.
An upper bound shows that a simple coor-
dination strategy is nearly minimax optimal.
More efficient learning is possible under cer-
tain assumptions on the problem, for exam-
ple that both players learn to take actions in-
dependently. Such assumptions are implicit
in existing literature, for example in medi-
cal applications of machine learning, but have
not been described or justified theoretically.

1 Introduction

The number of applications where machine learning
informs human decision makers is steadily growing
(Board of Governors, 2007; Angwin et al., 2016; Tonek-
aboni et al., 2018). In this work, we argue for a spe-

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

cific perspective on machine learning systems that in-
form human decision makers: We want to understand
them as attempts to solve joint human-machine deci-
sion making problems where both sides have to learn to
act optimally. This perspective will help to understand
limitations and potential pitfalls of such systems. We
believe that this is an important step towards robust
and reliable systems (Rahwan et al., 2019).

Our motivation is the growing number of applications
where machine learning advises human decision mak-
ers. For example:

(1) The COMPAS program that assists judges dur-
ing criminal trials (Angwin et al., 2016). The
program provides a risk assessment score for de-
fendants in criminal law. Judges then use this
score, among others, to decide whether a defen-
dant should await trial at home or in jail, and to
determine the length of prison sentences (Klein-
berg et al., 2018; Forrest, 2021).

(2) Cardiac arrest and other forms of adverse event
prediction. In medicine and beyond, it can be
of great value to know when adverse events such
as cardiac arrest are likely to occur (Tonekaboni
et al., 2018; Shamout et al., 2020; Baker et al.,
2020). This can often be predicted based on a
limited amount of information. Computer pro-
grams alert doctors when a patient’s condition is
likely to become critical. Doctors respond with
a treatment adapted to the patient’s condition,
which may include ignoring the alert.

(3) Diabetic retinopathy detection (Raghu et al.,
2019). Deep learning has shown great capabili-
ties to detect diabetic retinopathy in pictures of
the eye. This has led to computer programs that
inform doctors by assigning scores to to images.
Doctors incorporate these scores into their deci-
sion making (Beede et al., 2020).

In all three examples, machine learning provides ad-
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Figure 1: Illustrated application of our model: The computer is advising a human doctor. The computer
recommends to perform action A or B. After consulting her additional private information, the human finally
decides to perform action B.

vice, but final decisions are left to the human. More-
over, human decision makers base their decisions on
additional private information that is unavailable to
the machine. In the COMPAS example, the judge ob-
tains additional information from the trail and the in-
teraction with the defendant, attorney and prosecutor
(Lakkaraju et al., 2017). In the medical example, pri-
vate information might consist of non-digitized parts
of the patient’s medical history, or diseases that run in
the family of the patient (Goldenberg and Engelhardt,
2019). Even in the diabetic retinopathy example, the
final treatment decision is typically based on more in-
formation than just the picture of the eye.

In addition to the presence of private information, it
has long been argued that human-machine cooperation
is hampered by a certain degree of opacity (Leonelli,
2020). Indeed, despite a lot of work on explainable
machine learning, computers cannot explain their de-
cisions to humans the way other humans can, and com-
puters cannot really understand free-form human ex-
planations.

How can we design computer programs that optimally
advise human decision makers in tasks such as (1)-(3)?
What does “optimally” even mean in these contexts?
To provide precise answers to these questions, we pro-
pose a contextual bandit model with two players that
aims to capture the most important properties of the
above decision problems.

The two players in our model, who we refer to as “the
human” and “the machine”, interact according to the
following protocol (illustrated in Figure 1). In every
round, the first player (the machine) receives private
contextual information and makes a recommendation
to the second player (the human). This recommen-
dation can be a suggested action, but it can also be
a confidence region, a colorfully highlighted image or
any other summary of the received context. In the

COMPAS example, the recommendation is the risk
assessment score. Given the recommendation and her
own private contextual information, the human finally
decides on an action. Conditional on context and the
chosen action, a reward signal is obtained. Action and
reward are observed by both players, and they share
the same goal: to maximize the obtained rewards.

We endow each of the players with a finite set of de-
cision rules or policies, which is the simplest possible
learning setting. The goal is to minimize the minimax
regret with respect to the two decision rules that work
best together. We first analyze the case where the hu-
man does not attempt to learn (Section 4). However,
we believe that the fact that human decision makers
have to learn how to “interpret” machine recommen-
dations is a crucial aspect of human-machine decision
making. In cardiac arrest prediction, for example, doc-
tors have reported to learn over time how to interpret
machine alerts and integrate them into existing clinical
practice. We therefore also consider the problem where
human and machine both have to learn (Section 5).

The main objective of this paper is to gain a the-
oretical understanding of an emerging number of
human-machine decision making problems, such as
(1)-(3). By considering the interaction between two
abstract decision makers in the presence of private
information and opacity, we aim to provide a general
analysis of the potential and limitations of human-
machine decision making. While our main intention
is to set a theoretical baseline for more applied work
in human-machine interaction, we also hope that
our proposed model and newly introduced problems
will spark theoreticians interest into various aspects
of the human-machine learning problem. Our main
contributions are the following.
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• We prove that private information and opacity
significantly impact the hardness of two-player de-
cision making. Private information and opacity
each lead to a worst-case lower bound of order√
TN1 (Theorem 3). Here N1 is the number of

policies of the first player. Without private infor-
mation and opacity, the two players can obtain
an efficient expected regret of

√
2TK ln(N1N2)

(Proposition 1). Here N2 is the number of poli-
cies of the second player.

• We show that a simple coordination device –
telling the machine which policy to use – allows
the human to learn efficiently. Specifically, the
P2-EXP4 algorithm allows to upper bound the
expected minimax regret by

√
2TKN1 ln(N1N2)

(Theorem 4), also in the presence of private infor-
mation and opacity.

• We derive a criterion – policy space independence
– that allows to learn with an expected regret
of
√
8T max{K, |R|} ln(max{N1, N2}) (Theorem

6). Here |R| is the number of possible machine
recommendations. If policy space independence
holds and |R| is small, the two players can learn
efficiently.

• In Sections 6 and 7, we show that various ap-
proaches in the literature can be better under-
stood within the context of our model. In par-
ticular, policy space independence is implicit in
much of the existing literature. The peculiar case
of treatment recommendations is left as Conjec-
ture 7.

2 Our model: The computer reports
to the human, who then decides

Formally, our model is a contextual bandit model
with two players, depicted in Figure 2. In round
t = 1, . . . , T , Player 1 (the machine) first observes con-
text xt ∈ X . Player 1 then chooses a recommendation
rt ∈ R, potentially at random. Here, R is the space of
all possible recommendations that the first player can
make. Next, Player 2 (the human) observes context
zt ∈ Z and the chosen recommendation rt. Player 2
then, potentially at random, chooses an action at ∈ A.
This action is revealed to both players, and they re-
ceive a reward signal yt ∈ [0, 1]. Here X and Z are ar-
bitrary spaces of private contexts (one for each player),
and A = {1, . . . ,K} is a finite set of K actions.

2.1 Formal setup

Both players are endowed with a finite set of policies.
Their common goal is to take optimal actions. Let

In round t = 1, ..., T

1. Context xt ∈ X is revealed to Player 1

2. Player 1 decides on a recommendation rt ∈ R

3. Context zt ∈ Z and recommendation rt are
revealed to Player 2

4. Player 2 decides on an action at ∈ A

5. Reward yt ∈ [0, 1] and action at are revealed
to both players

Figure 2: Interaction in our contextual bandit model.

Π1 ⊆ RX be a finite set of policies for the first player,
and Π2 ⊆ AR×Z a finite set of policies for the second
player. Given two policies f ∈ Π1 and g ∈ Π2, we
obtain the resulting joint policy π(x, z) = g(f(x), z).
This joint policy is a complete decision rule for the
problem, translating context into actions. Let Π =
Π2 × Π1 be the space of all combinations of policies
that the two players can possibly realize. For a tuple
π = (g, f) ∈ Π, we slightly abuse notation and write
π(x, z) = g(f(x), z) to refer to the corresponding joint
policy.1 Moreover, we denote the number of policies
N1 = |Π1| and N2 = |Π2|. We have N = |Π| = N1N2.

An algorithm for the two players is a pair A =
(A1, A2). Here A1 = (A1,t)

T
t=1 and A2 = (A2,t)

T
t=1

are two collections of measurable functions that spec-
ify the decision rules of both players at all points in
time. The domains of these functions specify which
variables are observable to which player at what time.
Thus, A1,t is a function of x1, . . . , xt, whereas A2,t is
a function of r1, . . . , rt and z1, . . . , zt. The details of
this can be found in Supplement A.1.

Let D be a probability distribution over X×Z×[0, 1]A.
We consider an i.i.d. contextual bandit model where
tuples (xt, zt, Yt) are i.i.d. draws from D. Let Y (π) =
E(x,z,Y )∼D [Y (π(x, z))] be the expected reward of a
joint policy π. Let π⋆ ∈ argmaxπ∈Π Y (π) be a
policy combination that maximizes the expected re-
ward. The expected regret after T rounds is given

by RegT = E
[
T Y (π⋆)−∑T

t=1 Yt(at)
]
, where the ex-

pectation is over D and the randomly selected ac-
tions and recommendations. The central quantity
of analysis is the minimax regret, given by RT =
infA supD sup|Π1|=N1

sup|Π2|=N2
RegT .

1Depending on Π1 and Π2, different tuples (g, f) can
give rise to the same policy π : X × Z → A.
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2.2 First thoughts and discussion of
modelling assumptions

Private context. This is our approach to model pri-
vate information. In real-world decision making prob-
lems such as (1)-(3), humans often have access to in-
formation that is not available to any algorithm. A
reason for this might be that some information, such
a detailed health record, is not yet available in elec-
tronic form. However, we also believe that in many of
the tasks where machine learning is increasingly being
deployed at, formulating all relevant aspects as inputs
to an algorithm is impossible. This is because ma-
chine learning is increasingly being deployed in social
contexts where researchers have long accepted the fact
that its impossible to exhaustively collect all relevant
variables (Angrist and Pischke, 2008). Our model also
allows for private contextual information of the ma-
chine. In the medical domain, an algorithm might have
access to a patient’s genome data, which could never
be entirely surveyed by a human. Unobserved vari-
ables might also occur in unexpected situations, such
as when both decision makers coordinate a decision
based on the same image. Here algorithms have been
shown to rely on high-frequency patterns that are im-
perceptible to humans (Ilyas et al., 2019; Makino et al.,
2020).

Private policy spaces. We model opacity by keep-
ing knowledge about the policy spaces to the respective
players. Intuitively, this means that the players cannot
deliberate about what happened: The machine does
not know which actions the human would have chosen
had it chosen a different recommendation. Similarly,
the human does not know which recommendations the
machine considered but decided against. While pol-
icy spaces are private, we place no restrictions on the
algorithms that both players might run.

The space of recommendations. The space of rec-
ommendations R is the interface by which the first
player can transmit information to the second player
(Goodrich and Schultz, 2007). For the first player, it
plays the role of an action space (providing a recom-
mendation is the action that the first player takes).
For the second player, it resembles additional contex-
tual information. In the analysis, will turn out to be
useful to restrict the size of the space of recommen-
dations (Section 6). A large space of recommenda-
tions allows the machine to provide the human with
rich contextual information. This includes the sce-
nario where the machine attempts to “explain” pre-
dictions in some rich space. A concrete example of
this would be when the machine provides a saliency
map (Simonyan et al., 2014; Selvaraju et al., 2017).
In contrast, a small space of recommendations allows
the machine to suggest concrete actions, or to raise an

alert. A priori, it seems unclear which of these two ap-
proaches will be more useful. On one hand, we might
want the machine to provide the human with as much
information as possible. On the other hand, it might
be more efficient if the machine directly suggests which
actions to perform. In Sections 3-5, we remain agnos-
tic about the nature of the space of recommendations.
The special case of treatment recommendations is dis-
cussed in Section 7.

What makes the model difficult? For both play-
ers, the difficulty arises from the fact that contextual
information and policy space of the other player are
unknown. This gives rise to a coordination problem.
Each player would like to find the optimal policy that
works best in combination with the strategy chosen by
the other player. This is difficult because knowledge
about the other player’s decision problem is limited.

Online learning. Our model is an online learning
model. This allows us to study the process by which
the two decision makers coordinate and arrive at de-
cisions. In practice, an algorithm would always be
trained on a historical dataset before it starts to in-
teract with a human decision maker. However, if we
continuously gather data in order to retrain and im-
prove our algorithm, we are implicitly engaging in an
online learning procedure. We are directly considering
an online learning model since this allows us to study
the principal limitations and possibilities of various ap-
proaches. For more details on online and repeated su-
pervised learning we refer the reader to Supplement E.

Worst-case analysis. Intuitively, a strategy of the
two players might work well for some decision problems
and fail for others. Considering the minimax regret
means that we would like to find guarantees that can
be achieved under all possible circumstances. That
said, it is interesting to ask how much better the two
players can do if we assume that the decision problem
is ’benign’ – a question that we turn to in Section 6.

3 Two baselines for the expected
regret

How well can we expect the two players to coordinate,
and what are the consequences of private information
and opacity for two-player decision making? To pro-
vide answers to these questions, we are first going to
consider our model without private information and
opacity. No private information means that X = Z
and xt = zt for all t. No opacity means that the algo-
rithm of the first player is also a function of the policy
space of the second player and vice-versa.

Proposition 1. (Regret without private infor-
mation and opacity) Without private information
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and opacity, the two players can obtain an expected
regret of √

2TK ln(N1N2).

All proofs are deferred to the Supplement. The regret
bound in Proposition 1 is as good as we can expect at
all.2 It is the same regret that would be achieved by a
hypothetical single decision maker who had access to
all contextual information and both policy spaces, us-
ing EXP4 (Auer et al., 2002; Lattimore and Szepesvari,
2019). Proposition 1 demonstrates that our hardness
result (Theorem 3) is a consequence of private infor-
mation and opacity, and not due to the way in which
the two players interact in our model.

A second baseline is given by the coordination strat-
egy where players naively try all policy combinations.
This strategy also works with private information and
opacity. Using the MOSS algorithm by Audibert and
Bubeck (2010):

Proposition 2. (Naively trying all policy com-
binations) By treating the policies in Π as different
arms of a stochastic bandit, we obtain

RT ≤ O
(√

TN1N2

)
.

Under private information and opacity, can the two
players do better than what is suggested by Proposi-
tion 2? The question becomes whether it is possible to
move N1 and N2 inside the logarithm, at the expense
of a factor of K. Why is this important? A regret
bound of order

√
N means that the policy space is not

dealt with efficiently. It corresponds to systematic trial
and error on every single policy. Quite to the contrary,
a regret bound of order

√
lnN means that the decision

maker can compare many policies simultaneously. It
prepares the way to deal with infinite policy spaces and
learn rich function classes (Beygelzimer et al., 2010).

4 A lower bound for optimal
algorithmic advice

Before we turn to the full problem where human and
machine both have to learn, we focus on the problem
of the machine. That is we assume that the human
does not have to learn how to interpret machine rec-
ommendations. This is a significant simplification, but
the result will be instructive. We are going to show
that private information and opacity each lead to a
lower of order

√
TN1.

2For adversarial contextual bandits, the bound√
TK ln(N) has been shown to be tight up to a factor

of lnK by Seldin and Lugosi (2016). Note that we are con-
cerned with statistical optimality and set computational
concerns aside.

Formally, we assume that the second player follows a
fixed decision rule that deterministically translates rec-
ommendations rt and contextual information zt into
actions. The first player has N1 different policies and
wants to learn the best one. How difficult is this learn-
ing problem? Note that we do not place any restric-
tions on the space of recommendations R. However,
the ultimate number of actions K is small. Can the
first player make use of this fact and solve the problem
efficiently? In the presence of private information or
opacity, this is not the case.

Theorem 3. (Lower bound in the number of
policies of the first player) Assume that Player 2
only plays actions that are suggested by policies in Π2.
Let N2 = 1 and K = 2. There exists a universal con-
stant c > 0 such that

RT ≥ c
√
TN1.

The lower bound in Theorem 3 is as strong as it can
possibly be. It shows that the first player has to solve
a bandit problem that depends not on the number of
actions K, but on the number of policies N1.

Supplement A.4 contains two proofs of Theorem 3.
The first proof constructs problem instances with pri-
vate information but without opacity, and the second
proof constructs problem instances with opacity but
without private information.3 In conclusion, both pri-
vate information and opacity can significantly impact
on the hardness of two-player decision making.

Remark 1. The reader might be worried by the fact
that we fixed Player 2. Indeed, even if the policy space
of the second player consists of a single decision rule,
it might be optimal to deviate in order to facilitate co-
ordination. To alleviate such concerns, Supplement C
presents a problem class that allows the second player
to choose actions arbitrarily. We discuss the general
issue of encoding information about the policy spaces
in actions and recommendations in Supplement F.

5 Efficient learning for a human who
controls the machine

We now consider the full problem of human-machine
learning where the human learns how to interpret ma-
chine recommendations. Intuitively, the human tries
to figure out how to act on machine advice. At the
same time, the machine tries to determine how to ad-
vise the human. How should the two players coordi-
nate? Is it possible that both explore simultaneously?

3From a theoretical perspective it might not be surpris-
ing that private information and opacity have the same
consequences. Ultimately, what matters are the expert
predictions that result from the interaction of context and
policy (Cesa-Bianchi and Lugosi, 2006).
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Algorithm P2-EXP4

Parameters: η > 0, γ > 0
Initialization: Q1 ∈ [0, 1]N1×N2 with Q1,ij = 1

N1N2

For each t = 1, ..., T

1. Player 2 tells Player 1 to play policy it according
to qti =

∑N2
j=1 Qt,ij

2. Player 1 recommends rt = fit(xt)

3. Player 2 chooses action at according to (1)

4. Players receive reward yt and Player 2 estimates

ŷtk = 1− 1{at=k}
qt,itptk+γ

(1− yt)

5. Player 2 propagates rewards to policies

Ŷt,ij = 1{it ̸=i} + 1{it=i}ŷt,gj(rt,zt)

6. Player 2 updates Qt using exponential weighting

Qt+1,ij =
exp(ηŶt,ij)Qt,ij∑

l,m exp(η(Ŷt,lm)Qt,lm

Figure 3: The P2-EXP4 algorithm allows the second
player to explore efficiently.

From Theorem 3 in the previous section, we already
know that the learning problem of the machine is hard,
even if the human sticks to a single policy. We are
now going to show that a simple coordination device
allows the human to explore efficiently: We allow the
human to tell the machine which policy to use. Intu-
itively, we can perceive the N1 different policies of the
machine as different computer programs. The human
tries to learn which of these computer programs to use.
In doing so, the human can explore with exponential
weighting, but only on its own policy space, and not
on the policy space of the machine. This idea is for-
malized in the P2-EXP4 (Player 2-EXP4) algorithm,
depicted in Figure 3. Theorem 4 shows that P2-EXP4
nearly allows to match the lower bound in Theorem 3.

Theorem 4. (Logarithmic regret in the number
of policies of the second player) The P2-EXP4
algorithm with η =

√
2 log(N1N2)/(TKN1) and γ = 0

satisfies

RT ≤
√
2TKN1 ln(N1N2).

The proof of Theorem 4 is in Supplement A.5. We now
describe the algorithm. Player 2 maintains a probabil-
ity distribution Qt over the space of all policies Π. In
every round t, Player 2 first chooses a policy fit for
Player 1 by drawing it from the marginal distribution
of Qt over Π1. After obtaining a recommendation rt
and context zt, Player 2 draws at according to the in-

duced probability distribution over actions

P(at = k) = ptk with ptk =

∑N2

j=1 Qt,it,j1{gj(rt,zt)=k}∑N2

j=1 Qt,it,j

.

(1)
With the reward signal yt, Player 2 computes
importance-weighted reward estimates for all policies
and then uses an exponential weighting scheme to up-
date Qt.

Remark 2. The proof of Theorem 4 relies on the fact
that the updates performed by P2-EXP4 are equiva-
lent to the updates performed by EXP4 on a related
bandit problem with KN1 actions. As a consequence,
all results for EXP4 carry over to P2-EXP4. In par-
ticular, for γ > 0, P2-EXP4 is a variant of EXP4-
IX (Neu, 2015). This implies that P2-EXP4 enjoys
high-probability regret guarantees. Furthermore, The-
orem 4 also holds when contexts and payoffs are de-
termined by an adversary.

6 Efficient learning for the machine,
subject to further assumptions

We now discuss additional assumptions on the struc-
ture of the problem that allow for more efficient learn-
ing. The first idea is to restrict the size of the space of
recommendations R. If the machine directly recom-
mends actions, for example, we have R = A. The sec-
ond idea is to resolve the coordination problem. This
can be done via an assumption on the function spaces
of both players that we term policy space independence.
While policy space independence is an abstract crite-
rion, we outline a number of practical examples where
it is satisfied.

This section also relates our work to a number of re-
cently proposed techniques for human-machine inter-
action (Madras et al., 2018; Raghu et al., 2019; Wilder
et al., 2020). We will show that policy space indepen-
dence is implicit in much of the existing literature on
human-machine decision making.

6.1 Policy space independence

We now give an abstract condition that resolves the co-
ordination problem and allows both players to learn in-
dependently. It is an assumption on the policy spaces.
The rationale is that assumptions on the policy spaces
can implicitly define how human and machine interact.

Definition 5 (Policy space independence). We
say that the two policy spaces Π1 and Π2 are indepen-
dent with respect to D if, for all f1, f2 ∈ Π1 and all
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g1, g2 ∈ Π2,

Y
(
g1(f1(x), z)

)
− Y

(
g1(f2(x), z)

)

= Y
(
g2(f1(x), z)

)
)− Y

(
g2(f2(x), z)

)
.

Intuitively, whether policy f1 performs better than
policy f2 does not depend on the policy chosen by
the second player. Similarly, whether policy g1 per-
forms better than policy g2 does not depend on the
policy chosen by the first player. Hence, the learning
problems of both players are decoupled. The following
theorem shows that policy space independence allows
to efficiently learn both policy spaces.

Theorem 6 (Logarithmic regret under policy
space independence). Under policy space indepen-
dence, if both players explore independently using
EXP4,

RT ≤
√
8T max{K, |R|} ln(max{N1, N2}).

The proof of Theorem 6 is in Supplement A.6. In
contrast to Theorem 4, both N1 and N2 appear inside
the logarithm. This is at the expense of a factor |R|.

6.2 Allocating decisions between human and
machine

If |R| is small and policy space independence holds,
the two players can obtain an efficient expected regret
(Theorem 6). But what does this amount to in prac-
tice? First note that we can constrain the policy space
of the human by specifying rules for how to interact
with the machine. For example: “If the machine de-
picts ’action a’, then perform action a”. This leads
to the following example: Policy space independence
holds when there exists a fixed rule that allocates ev-
ery decision to either the human or the machine. In
medical applications, this would mean that there ex-
ists some procedure that determines whether a given
case should be decided by the doctor or the machine.
For diabetic retinopathy detection, such a procedure
was recently proposed by Raghu et al. (2019), who
also demonstrate that the approach can lead to sub-
stantial benefits in practice. In our model, the rule can
be any predicate P (z), that is the human decides who
decides. It can also be any predicate P (x), that is the
machine decides who decides. Importantly, in order
to satisfy policy space independence, the rule cannot
be learned while the decision makers learn themselves.
We formally show in Supplement B how fixed rules
that allocate decisions result in policy space indepen-
dence.

6.3 Learning to defer

Another example of policy space independence is given
by learning to defer (Madras et al., 2018; Mozannar

and Sontag, 2020). Learning to defer is characterized
by two assumptions. First, the human is a fixed de-
cision maker who does not learn. Second, the space
of recommendations is given by R = A ∪ {D}, where
D denotes that the decision is deferred to the human.
As can be seen from Definition 5, fixing any of the two
decision makers always results in policy space indepen-
dence. According to Theorem 6, the regret of learning
to defer is thus bounded by

√
8T (K + 1) ln(N1).

4

6.4 Other approaches

With some notable exceptions (Hilgard et al., 2019),
the literature on human-machine decision making of-
ten relies on assumptions similar to fixed rules that
allocate decisions and learning to defer (De et al.,
2020a,b). It is usually assumed that the human is a
fixed decision maker whose performance on the given
task can be queried or deferred to (Wilder et al., 2020;
Pradier et al., 2021). Specifically, the human does not
have to learn how to interact with the machine. More-
over, machine recommendations usually equal actions,
with some room for special recommendations in order
to involve the human. Viewed through the lens of our
model, all of these approaches satisfy policy space in-
dependence. In light of Theorem 6, they all allow for
efficient learning.

7 How difficult are treatment
recommendations?

In the last section, we have seen that the learning prob-
lem of the machine can be simplified by (1) choosing
R = A and (2) fixing the human decision maker. In
Section 4, we have seen that the condition R = A is
crucial (after all, the lower bound was derived for a
fixed human decision maker). But is it equally neces-
sary to choose |Π2| = 1? This is interesting because
R = A is satisfied, among others, in screening scenar-
ios. These are the binary classification problems stud-
ied in the literature on fairness and machine learning
(Kleinberg et al., 2019; Barocas et al., 2019). Here a
decision problem might be whether to give a loan or
to admit a student to a university. It is often argued
that such machine suggestion should still be reviewed
by humans (De-Arteaga et al., 2020).

In our model, binary predictions that are reviewed by
humans correspond to R = A = {0, 1} and |Π2| > 1
(assuming that the human learns when to override ma-
chine predictions). If either N1 = 1 or N2 = 1, EXP4
allows to bound the expected regret by

√
4T ln(N2)

and
√
4T ln(N1), respectively. Therefore, consider the

corner case N1 = N2. If we assume that the sec-

4For N2 = 1, the constant could be improved to 2.
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ond player can tell the first player which policy to
use, P2-EXP4 allows to bound the expected regret by√
8TN1 ln(N1). We conjecture that this is tight up

to a constant factor, i.e. that treatment recommenda-
tions are difficult.

Conjecture 7. (Lower bound in the number of
policies if R and A are small) Let R = A = {0, 1}
and N1 = N2. We conjecture that there exists a uni-
versal constant c > 0 such that

RT ≥ c
√
TN1 lnN1.

Supplement D details a problem instance that we be-
lieve to be worst-case.5

8 Related Literature

Researchers have long asked how humans can interact
with computers and robots (Sheridan and Verplank,
1978; Goodrich and Schultz, 2007; Parasuraman et al.,
2000). In machine learning, researchers increasingly
study how humans and automated decision making
systems can interact (Tonekaboni et al., 2019; Car-
roll et al., 2019; Lucic et al., 2020; De-Arteaga et al.,
2020). A number of recent works have argued that
joint human-machine decision making can outperform
a single human or a single machine (Lakhani and Sun-
daram, 2017; Raghu et al., 2019; Patel et al., 2019).
Human-computer interaction and the social sciences
study the different ways in which machine recommen-
dations can influence and alter human decisions (Di-
etvorst et al., 2015; Green and Chen, 2019).

Multi-player multi-armed bandits (Kalathil et al.,
2014; Boursier and Perchet, 2019; Mart́ınez-Rubio
et al., 2019), economic game theory (Mas-Colell et al.,
1995; Von Neumann and Morgenstern, 2007) and com-
binations thereof (Sankararaman et al., 2021) also
study the interaction between multiple players. How-
ever, models in economic game theory are competi-
tive, and the cooperative models in multi-player multi-
armed bandits, often inspired by applications in wire-
less networks (Avner and Mannor, 2016), are symmet-
ric. In contrast, interaction our model is cooperative
and asymmetric – only the second player decides on
a payoff-relevant action. Insofar as implicit communi-
cation between the two players is concerned, our work
probably relates most closely to Bubeck et al. (2020),
who study implicit communication in a symmetric col-
lision problem (compare also Supplement F).

5The reader might wonder whether interaction terms
betweenK andR appear in any bound. Beyond the special
regime R = A = {0, 1} and N1 = N2, this might well be
the case.

9 Discussion

The consequences of private information and
opacity. We have shown that private information
and opacity can have a significant effect on human-
machine decision making. In the worst-case, the ma-
chine cannot advance beyond simple trial and error on
a small number of policies (Theorem 3). Does this im-
ply that we can never obtain good results in general
human-machine decision making problems where we
cannot make plausible assumptions on the presence of
private information and opacity? Not necessarily. It
does, however, imply that we need good priors for what
comprises successful human-machine cooperation on a
given task. Note that in practice, researchers often
obtain a small number of candidate machine policies
from historical data, then evaluate which one works
best with human decision makers (Sayres et al., 2019;
Tschandl et al., 2020). This approach is closely related
to running the P2-EXP4 algorithm: The policy space
of the machine consists of the candidate decision rules
that were obtained form historical data. In the absence
of further assumptions about the problem, we show
this approach to be essentially minimax optimal. In
some applications, it might be relatively easy to come
up with good machine policies. There are, however,
also problems where it is hard say how the machine
should best inform the human. Consider the exam-
ple where the machine informs the human about an
image: While there have been many empirically suc-
cessful attempts at such problems, there is still a big
debate about post-hoc explainability methods, what
properties they should have, and whether they should
be used at all (Adebayo et al., 2018; Rudin, 2019).

Different modalities of human-machine decision
making. We have seen in Section 6 that our model
possesses sufficient generality to analyze a wide ar-
ray of interaction protocols between humans and ma-
chines. Of course, there are many different settings
of human-machine decision making, and our model
can only serve as first step towards a formal analy-
sis. From a theoretical perspective, it remains an in-
teresting open question whether there are weaker as-
sumptions than policy space independence that allow
for efficient learning (Theorem 6). One might also ask
whether distributional assumptions that restrict the
influence of unobserved variables on the outcome can
result in improved bounds. From a practitioner’s point
of view, the most important question is which assump-
tions are plausibly satisfied in applications.

Prediction problems. In many decision support sys-
tems, machine learning is merely used to solve a spe-
cific prediction or classification problem, whose out-
come is then transferred to the human. Examples are
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scores to predict criminal recidivism, cardiac arrest
and severity of diabetic retinopathy. While such an
approach is a straightforward way of human-machine
interaction, nothing guarantees that the approach will
be successful. For example, there have been numerous
concerns about the consequences of COMPAS scores
on the decision making of judges (Forrest, 2021). In
our view, the belief that the humans should be in-
formed with the scores of a particular prediction prob-
lem is a very strong prior on the policy space of the
machine: the policy space consists of a single policy. In
order to credibly identify successful forms of human-
machine cooperation, we should however consider a
variety of plausible machine policies, and also account
for the fact that human decision makers have to learn
how to interact with them. This is exactly the setting
that we consider in this paper.

Human learning model. In our model, there are
no constraints on the algorithm that the two players
might run. We also remain entirely agnostic about the
policy spaces of both players. This serve the purpose
of generality and keeps our work closely aligned with
the extant literature on contextual bandits. However,
these two assumptions are also major simplifications,
especially insofar as the human decision maker is con-
cerned. Indeed, it is a well-known fact that humans
are not perfectly rational decision makers and have
problems to deal with probabilities (Gigerenzer and
Kurzenhaeuser, 2005; Kahneman and Frederick, 2005).
A human would not be able to correctly perform the
updates prescribed by P2-EXP4, MOSS, or any other
bandit algorithm for that matter. The results provided
in this paper apply to two perfectly rational decision
makers who have access to arbitrary computational
and cognitive resources. Two decision makers who
only have access to limited computational and cogni-
tive resources might hope to achieve as much, but will
in general not be able to do any better. Of course it is
an interesting question to ask how specific behavioral
assumptions on the the human decision maker, such as
bounded rationality (Selten, 1990) or biases when deal-
ing with machine recommendations (Green and Chen,
2019) influence optimal interaction. In the context of
our model, such assumptions might take the form of
assumptions on the policy space of the human, or the
way in which the second decision maker selects policies
in every round. This might be an interesting avenue
for future research. Note, however, that in the context
of our model, “the human” does not necessarily corre-
spond to a single (biological) human. In most applica-
tions that we are interested in (compare (1)-(3) in Sec-
tion 1), there are many different judges or doctors that
interact with a given machine learning system. While
these human decision makers certainly learn individu-
ally how to interpret machine recommendations, they

also engage in a collective learning procedure (Rakoff,
2021). While questions around the correct modelling
of human-machine interaction are certainly very inter-
esting, our objective in this paper is not to propose
a universal model of human-machine interaction. In-
stead, our objective is to propose a model that is as
simple as possible while still being able to capture the
relations that we are interested in.

Exploration in high-stakes decision making
problems. In many human-machine decision mak-
ing problems, direct exploration is highly problematic
(for example in medical applications). In these appli-
cations, it is often impossible to explore according to
an online algorithm during deployment. Instead, ex-
ploration is only possible during certain development
stages (e.g. when we evaluate in a controlled study
how doctors respond to different kinds of machine rec-
ommendations). In bandit models in particular, there
are a number of different approaches – such as batch-
ing and offline learning – that can be taken in order to
model constraints on exploration (Amani et al., 2019;
Liu et al., 2020). In any case, full online learning, that
is the modelling approach taken in this paper, can only
serve as a simple theoretical model for the process in
which algorithmic decision aids are developed, tested
and refined in practice (compare also Supplement E).

Ethical impact. This work discusses statistical ef-
ficiency, which is in itself not a sufficient criterion to
justify automation. This is especially true in medicine,
an area that is believed to experience the widespread
deployment of machine learning systems in the future
(Froomkin et al., 2019; Grote and Berens, 2020). Au-
tomated decision making may also arise in undesired
contexts. However, it remains important to under-
stand it in the scenarios where it is desirable. As our
work concerns theoretical foundations, theorems and
proofs, we do not believe that it will have immediate
negative consequences.
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Supplementary Material:
A Bandit Model for Human-Machine Decision Making

with Private Information and Opacity

A Proofs of theorems in the main paper

A.1 Additional definitions

LetH1,t ∈ (X×R×A×[0, 1])t andH2,t ∈ (R×Z×A×[0, 1])t be the histories of Player 1 and Player 2, respectively.
Let D(X) denote the space of probability distributions over a space X, and F(X) the set of all finite subsets of
X. An algorithm A is a pair A = (A1, A2) of two collections of measurable functions A1 = (A1,t)

T
t=1 and A2 =

(A2,t)
T
t=1. For t = 1, we have A1,1 : F(RX )×X → D(R) and A2,1 : F(AR×Z)×R×Z → D(A). For t = 2, . . . , T ,

we have A1,t : F(RX )× X ×H1,t−1 → D(R) and A2,t : F(AR×Z)×R×Z ×H2,t−1 → D(A). In Section 5, we
allow Player 2 to tell Player 1 which policy to use. This means that there is an additional collection of measurable
functions (A3,t)

T
t=1 with A3,1 : F(AR×Z) → D({1, . . . , N1}) and A3,t : F(AR×Z) × H2,t−1 → D({1, . . . , N1})

for t = 2, . . . , T . These functions specify the (possibly randomized) policies that Player 2 tells Player 1 to use.
A1 consists of the fixed functions that implement the said policy choices for the first player. Additionally, the
history of Player 2 and domain of functions in A2 contain the policy that Player 1 was told to use.

A.2 Proof of Proposition 1

Proof. Without private information and opacity, the two players can perform actions that are equivalent to
EXP4 run on the joint policy space Π (the EXP4 Algorithm is reproduced in Supplement Figure 4). Note that
without opacity, both players have access to Π. Since xt = zt, they are also able to evaluate π(xt, zt) for all
π ∈ Π. Hence, a trivial solution would be that the second player ignores the recommendations made by the first
player and simply performs EXP4. The result then follows from the standard analysis of EXP4 (Lattimore and
Szepesvari, 2019, Theorem 18.1). A solution more in line with the interaction in our model would be that the
first player recommends, in each round, rt according to P(rt = r) = qtr where

qtr =

N1∑

i=1

N2∑

j=1

Qt,ij1{fi(xt)=r}.

Here Qt ∈ RN1×N2 is the matrix maintained by EXP4 as described in Supplement Figure 4. The second player
would then choose at according to P(at = k) = ptk with

ptk =

∑N1

i=1

∑N2

j=1 Qt,ij1{fi(xt)=rt∧gj(rt,zt)=k}
qt,rt

,

i.e. there is a policy gt ∈ Π2 s.t. at = gt(rt, zt), while the action is again chosen exactly as in EXP4.

A.3 Proof of Proposition 2

Proof. Both players privately label their policies from 0, . . . , N1 − 1 and 0, . . . , N2 − 1. Before the game starts,
both players agree on a deterministic strategy for solving an N -armed stochastic bandit problem. In round t,
where arm 0 ≤ i ≤ N − 1 is to be pulled in the N -armed stochastic bandit problem, for i = a · N2 + b with
0 ≤ b < N2, Player 1 plays policy a and Player 2 plays policy b. Since a deterministic strategy determines the
next arm to be pulled solely on the basis of past pulled arms and obtained rewards, both players know which
of the N arms is to be pulled in each round. Agreeing on MOSS (Minimax Optimal Strategy in the Stochastic
case), a variant of UCB, allows the two players to bound the minimax regret by 25

√
TN (Audibert and Bubeck

(2010), Theorem 24).
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A.4 Proof of Theorem 3

A.4.1 Proof with private information

Proof. The idea is to construct a decision problem where the first player has to solve an N1-armed stochastic
Bernoulli bandit. The result then follows from the lower bound for stochastic Bernoulli bandits (e.g. Exercise
15.4 in Lattimore and Szepesvari (2019)). Note that Player 2 has only a single policy, i.e. Π2 = {g}. Thus,
the assumption that Player 2 only plays actions that are suggested by policies in Π2 effectively fixes A2, the
algorithm of the second player.

Let (X1t, . . . , XN1,t) ∈ {0, 1}N1 be the payoffs associated with an N1-armed stochastic Bernoulli bandit in round
t. By assumption K = 2, so A = {1, 2}. Player 1 does not need to receive any context, so let X = {∅}. Choose
R = {1, . . . , N1} and Π1 = {fi|fi = i, i = 1, . . . , N1}. That is Player 1 has N1 policies, and policy fi constantly
suggests recommendation i. In effect, recommendations and policies are really the same, namely the arms of a
stochastic bandit. Let Z = {0, 1}N1 and Π2 = {g} with g(r, z) = 1 + zr. For simplicity, let the payoff of Action
1 be 0 in all rounds. Conversely, let the payoff Action 2 be 1 in all rounds. Let the context vector zt of Player 2
be given by the payoffs associated with the Bernoulli bandit, i.e. zt = (X1t, . . . , XN1,t).

In round t, when arm i ∈ {1, . . . , N1} of the Bernoulli bandit has payoff Xit, Player 2 assigns recommendation
i to action 1 +Xit. This results in a reward of Xit. Thus, in round t, where Player 1 chooses recommendation
rt ∈ {1, . . . , N1}, the observes reward is Xrt,t. To sum up, in every round, Player 1 incurs the reward of one of
the arms of the Bernoulli bandit, and this arm can be freely chosen by choosing the recommendation. Since zt is
not observed by Player 1, the payoffs of all other arms of the Bernoulli bandit remain unknown. Every algorithm
for Player 1 gives rise to an algorithm for stochastic Bernoulli bandits and vice-versa, and we obtain the lower
bound.

A.4.2 Proof with opacity

Proof. As above, let A = {1, 2} and R = {1, . . . , N1}. Let (X1t, . . . , XN1,t) ∈ {0, 1}N1 be the payoffs associated
with an N1-armed stochastic Bernoulli bandit in round t. Now, in every round, both players receive the same
context vector x ∈ {1, . . . ,M}. The recommendations of policies of Player 1 are as before and independent of
the context vector, Π1 = {fi|fi = i, i = 1, . . . , N1}.
The important part is the policy of Player 2, which is based on a function ĝ : {1, . . . ,M} → {0, 1}N1 . Instead of
obtaining the payoffs of the Bernoulli bandit directly as contextual information, Player 2 now uses the private
function ĝ to obtain these payoffs from x. Naturally, ĝ is not known to Player 1. As above, the policy of Player
2 is given by g(r, x) = 1 + ĝ(x)r and action payoffs are fixed to 0 and 1.

Let the context vector be uniformly distributed over {1, . . . ,M}. We have to make sure that the same context
vectors do not appear too often, since otherwise the first player could start to infer the payoffs associated with
them. By choosing M large enough, context vectors up to time T are unique with probability arbitrarily close
to 1.

We still have to specify how to choose ĝ as a function from {1, . . . ,M} to {0, 1}N1 . For N1 and M fixed, there
are only finitely many of these functions. In order to realize a single desired Bernoulli bandit, draw ĝ according
to the probability distribution D̂ given by

PD̂(ĝ) =
M∏

i=1

P
(
(X11, . . . , XN1,1) = ĝ(i)

)
.

In other words, for all i = 1, . . . ,M , the distribution of ĝ(i) over {0, 1}N1 is exactly that of the Bernoulli bandit.

By the same argument as in the prove with unknown context, if ĝ is drawn according to D̂, Player 1 has to solve
the Bernoulli bandit given by (X1t, . . . , XN1,t). Now recall that the minimax regret is given by

RT = inf
A1

sup
D

sup
|Π1|=N1

sup
|Π2|=1

RegT .

In particular,

sup
|Π2|=1

RegT ≥ sup
D̂

Eĝ∼D̂

[
RegT

]
,
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EXP4

Parameters: η > 0, γ > 0
Initialization: Vector Q1 ∈ [0, 1]N with Q1i =

1
N

For each t = 1, ..., T

1. Receive context xt

2. Choose action at according to ptk =
∑N

i=1 Qti1{πi(xt)=k}.

3. Receive reward yt and estimate ŷtk = 1− 1{at=k}
ptk+γ

(1− yt)

4. Propagates rewards to experts Ŷti = ŷt,πi(xt)

5. Player 2 updates Qt using exponential weighting

Qt+1,i =
exp

(
ηŶti

)
Qti

∑
j exp

(
ηŶtj

)
Qtj

Figure 4: EXP4. Adapted from Algorithm 11 in Lattimore and Szepesvari (2019).

which shows the lower bound in terms of the minimax expected regret for N1-armed stochastic Bernoulli bandits.

A.5 Proof of Theorem 4

Proof. Recall the EXP4 algorithm, reproduced in Supplement Figure 4. The idea of the proof is as follows. In
P2-EXP4, Player 2 maintains a probability distribution over the space of all policy combinations Π and performs
importance-weighted updates. Player 2 does not know the policy space and context of Player 1. Therefore, in
every round, he only obtains information on policy combinations where fit , the function that the first player
actually played, is present. This restricts Player 2 and does not allow him to perform the sames updates as
EXP4. However, assume that all policy combinations where fit is not present had suggested different actions
than the policy combinations where fit is present. In this case, the updates in P2-EXP4 would be equivalent
to the updates of EXP4. Therefore, we now construct a bandit problem where two different policies of Player 1
never suggest the same action, and show that Algorithm 1 is equivalent to EXP4 on this related bandit problem.

Consider the adversarial contextual bandit problem with KN1 actions and policy space

Π̃ =
{
hi,j

∣∣i = 1, . . . , N1, j = 1, . . . , N2,

hi,j : X × Z → {1, . . . ,KN1},
hi,j(x, z) = (i− 1)K + gj(fi(x), z)

}
.

This policy space consists of N policies, and there exists a natural bijection I between Π̃ and Π given by
hi,j 7→ gj(fi(·), ·). Let the adversarial payoffs of this new problem be a function of the (adversarial or i.i.d.)
payoffs of the original problem, namely

x̃t = (xt, zt)

and

Ỹt(k) = Yt

(
1 + ((k − 1)modK)

)
,

for all t = 1, . . . , T and k = 1, . . . ,KN1. Here Yt ∈ [0, 1]A contains the payoffs of the original problem, and
Ỹt ∈ [0, 1]{1,...,KN1} the payoffs of the new problem. By construction,

Ỹt

(
hi,j(x̃t)

)
= Yt

(
gj(fi(xt), zt)

)
.
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Therefore,

max
π̃∈Π̃

T∑

t=1

Ỹt

(
π̃(x̃t)

)
= max

π∈Π

T∑

t=1

Yt

(
π(xt, zt)

)
. (2)

We are now going to show that P2-EXP4 is equivalent to EXP4(-IX) on this adversarial contextual bandit
problem. In this proof, we denote all variables related this problem and EXP4 with a ∼. For example, ãt is the
action chosen by EXP4 in round t, resulting in a payoff of ỹt. Since both P2-EXP4 and EXP4 are randomized,
equivalence means that there exists a coupling of the random variables drawn by both algorithms under which, in
all rounds, the probability distribution Qt maintained by P2-EXP4 is the probability distribution Q̃t maintained
by EXP4 (with respect to bijection I), ãt = (it − 1)K + at and ỹt = yt.

We proceed by induction over t. The induction hypothesis is that equivalence holds up to round t. This is
obviously true in the first round since both Qt and Q̃t are initialized to be uniform. In round t, EXP4 chooses an
action ãt ∈ {1, . . . ,KN1}. This action ãt can be uniquely written as ãt = (̂it−1)K+ ât for some ît ∈ {1, . . . , N1}
and ât ∈ {1, . . . ,K}. By construction, it is exactly policies hi,1, . . . , hi,N2

that suggest actions

(i− 1)K + 1, . . . , iK.

Hence,

P
(
ît = i

)
=

N2∑

j=1

Qt,ij = P(it = i),

where the first equality is due to the induction hypothesis and the second due to the definition of qti in P2-EXP4.
Since they have the same distribution, ît and it can be perfectly coupled. Additionally, and already subject to
this coupling,

P(ât = k | it = i) =
P(ãt = (i− 1)K + k)

P(it = i)

=

∑N2

j=1 Qt,ij1{
hi,j(x̃t)=(i−1)K+k

}
∑N2

j=1 Qt,ij

= P(at = k | it = i)

where we used the definition of at in Equation (1) of the main paper and the fact that

hi,j(x̃t) = (i− 1)K + k ⇐⇒ gj(fi(xt), zt) = k.

Thus, conditional on it, ât and at have the same distribution. Therefore, ât and at can be perfectly coupled,
too, and we arrive at ãt = (it − 1)K + at. From the definition of Ỹt, it follows that ỹt = yt.

It remains to show that the update Qt → Qt+1 in P2-EXP4 agrees with EXP4. We have to show that Ŷt in
P2-EXP4 agrees with the importance-weighted reward estimates of EXP4. We distinguish three cases. The first
case is i = it and gj(fi(xt), zt) = at. Here it holds that

Ŷt,ij = 0 + 1− 1

qt,it pt,at + γ
(1− yt)

= 1− 1

p̃tk + γ
(1− ỹt).

The second case is i = it and gj(fi(xt), zt) ̸= at. Here it holds that Ŷt,ij = 0 + 1 = 1. The third case is i ̸= it.

Here it holds that Ŷt,ij = 1 + 0 = 1, too. In all three cases, the update agrees exactly with EXP4.

We have shown that
∑T

t=1 yt =
∑T

t=1 ỹt. Subtracting this from (2), we see that

max
π∈Π

T∑

t=1

Yt

(
π(xt, zt)

)
−

T∑

t=1

yt = max
π̃∈Π̃

T∑

t=1

Ỹt

(
π̃(x̃t)

)
−

T∑

t=1

ỹt. (3)
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From the analysis of EXP4, e.g. from Theorem 18.1 in Lattimore and Szepesvari (2019), we know that

E

(
max
π̃∈Π̃

T∑

t=1

π̃(x̃t)−
T∑

t=1

ỹt

)
≤
√
2TKN1 ln(N1N2)

for γ = 0 and η =
√
2 log(N1N2)/(TKN1), which implies the desired bound.

A.6 Proof of Theorem 6

Proof. Assume that |R| < ∞, otherwise the bound is vacuous. Let f1 and f2 be two policies of Player 1. In
general, the expected regret under f1 and f2 depends on the policy choice of Player 2. Specifically, there might be
g1 and g2 such that Y

(
g1(f1(x), z)

)
> Y

(
g1(f2(x), z)

)
and Y

(
g2(f1(x), z)

)
< Y

(
g2(f2(x), z)

)
. Let π⋆ = (g⋆, f⋆)

be an optimal policy combination. Under policy space independence, the quantities

Reg(f) = Y
(
g(f⋆(x), z)

)
− Y

(
g(f(x), z)

)

and
Reg(g) = Y

(
g⋆(f(x), z)

)
− Y

(
g(f(x), z)

)

are well-defined. Moreover,
Y
(
π⋆

)
− Y

(
g(f(x), z)

)
= Reg(g) + Reg(f).

That both players explore independently using EXP4 means the following. Player 2 uses EXP4 on A with
η1 =

√
2 log(N2)/(TK) and γ1 = 0. Player 1 considers recommendations as actions and uses EXP4 on R with

η2 =
√
2 log(N1)/(T |R|) and γ2 = 0. In round t, there exist policies fit and gjt such that rt = fit(xt) and

at = gjt(fit(xt), zt). Player 1 solves the adversarial contextual bandit problem with context xt, action space R
and policy space Π1. Player 2 solves the adversarial contextual bandit problem with context (rt, zt), action space
A and policy space Π2. Player 1 provides adversarial context for Player 2, and Player 2 provides adversarial
payoff for Player 1. Because of policy space independence, this independent exploration strategy also controls
the joint expected regret.

First note that it and jt are functions of the history and can be considered drawn before the tuple (xt, zt, Yt).
The expected regret in round t is given by

E(xt,zt,Yt)∼D
[
Yt(g⋆(f⋆(xt), zt)− Yt(gjt(fit(xt), zt))

]
= Y

(
g⋆(f⋆(x), z)

)
− Y

(
gjt(fit(x), z)

)
.

Making use of policy space independence, the right hand side can be rewritten as

Y
(
g⋆(f⋆(x), z)

)
− Y

(
g⋆(fit(x), z)

)
+ Y

(
g⋆(fit(x), z)

)
− Y

(
gjt(fit(x), z)

)

= Y
(
gjt(f⋆(x), z)

)
− Y

(
gjt(fit(x), z)

)
+ Y

(
g⋆(fit(x), z)

)
− Y

(
gjt(fit(x), z)

)
.

Summing over t, the expected regret is given by

RegT =
T∑

t=1

[
Y
(
gjt(f⋆(x), z)

)
− Y

(
gjt(fit(x), z)

)]

+

T∑

t=1

[
Y
(
g⋆(fit(x), z)

)
− Y

(
gjt(fit(x), z)

)]
.

The first sum is the expected regret in the adversarial contextual bandit problem of the first player. The second
sum is the expected regret in the adversarial contextual bandit problem of the second player. From the analysis
of EXP4, e.g. from Theorem 18.1 in Lattimore and Szepesvari (2019), we obtain

T∑

t=1

[
Y
(
gjt(f⋆(x), z)

)
− Y

(
gjt(fit(x), z)

)]
≤
√

2T |R| lnN1

and
T∑

t=1

[
Y
(
g⋆(fit(x), z)

)
− Y

(
gjt(fit(x), z)

)]
≤
√
2TK lnN2,

which implies the desired bound.
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B Fixed rules that allocate decisions result in policy space independence

In this section we formalize the example given in Section 6.2. We show that fixed rules that allocate decisions to
either the human or the machine result in policy space independence. Let R = A (treatment recommendations),
D : Z 7→ {0, 1} (the human decides who decides), Π̃2 : Z → A (the human’s own decision rules) and

Π2 = {g|g = D(z)g̃(z) + (1−D(z))r, g̃ ∈ Π̃2}.

Here r = f(x) where f ∈ Π1 is the decision rule used by the machine. Now, for all f ∈ Π1 and g ∈ Π2, and all
distributions D,

Y (g(f(x), z)) = E(x,y,z)∼D[Y (g(f(x), z))]

= P(D(z) = 0)E[Y (g(f(x), z))|D(z) = 0]

+ P(D(z) = 1)E[Y (g(f(x), z))|D(z) = 1]

= P(D(z) = 0)E[Y (f(x))|D(z) = 0] + P(D(z) = 1)E[Y (g̃(z))|D(z) = 1].

Thus,

Y (g1(f1(x), z))− Y (g1(f2(x), z)) = P(D(z) = 0)E[Y (f1(x))− Y (f2(x))|D(z) = 0]

= Y (g2(f1(x), z))− Y (g2(f2(x), z))

for all f1, f2 ∈ Π1, g1, g2 ∈ Π2 and all distributions D. In the key step of the derivation, we did not use the fact
that D was a (measurable) function of Z. Indeed, the sample space can be partitioned with respect to any event
D.

C Fixed second player in Theorem 3

In Theorem 3, we assumed that Player 2 only plays actions that are suggested by policies in Π2. We are
convinced that this assumption can be dropped if the problem instances in the respective proofs are modified in
the following two ways.

First, in every round, the relation between policies and recommendations should be entirely random. Concretely,
let the policies of Player 1 depend on a context vector x ∈ {1, . . . ,M}. In every round, let xt be uniform on
{1, . . . ,M}. Moreover, choose M large enough such that every context vector occurs at most once up to time T .
For every x ∈ {1, . . . ,M}, randomly draw a permutation πx ∈ SN1

. Choose the policy space of the first player
such that given context xt, policy fi recommends πxt

(i). In effect, up to time T , the policies of Player 1 make
random recommendations, subject to the constraint that all recommendations be different.

Second, in every round, it should be entirely random which action gives the payoff of 1. Thus, for every
x ∈ {1, . . . ,M}, randomly drawn one action to give a payoff of 1, and set the payoff of the other action to 0.

In the first proof of Theorem 3 (unknown context), permute the context vector z of Player 2 so that every policy
still gets the same payoff as it would in the original construction (considering both πx and the permuted payoffs).
In the second proof of Theorem 3 (unknown policy), let the policy of Player 2 encode the appropriately permuted
context vector.

Intuitively, if Player 2 knew which policies suggested which recommendations, Player 2 could effectively learn
for Player 1. This is since Player 2 does always know the relation between recommendations and actions. In the
given problem instance, the relation between policies and recommendations is impossible to know, at least up to
time T .

D Problem instance for Conjecture 7

In this section we give a problem instance for Conjecture 7. We conjecture that it is a worst-case instance for
which the lower bound stated in Conjecture 7 holds.
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In every round, let one action give a payoff of 0 and the other a payoff of 1. Randomly decide in every round
which action gives the payoff of 1. Choose the context vector and policy class of Player 1 such that he uniformly
receives one of the 2N1 possible expert recommendations in every round. Ahead of time, select a policy of Player
1 and Player 2, respectively (the optimal policies). In every round, a policy for Player 2 gives a map R → A.
With R = A = {0, 1}, there are 4 possible maps that we denote by (0, 0), (1, 0), (0, 1) and (1, 1). Here (1, 0) is
the map that maps recommendation 0 to Action 1 and recommendation 1 to action 0. For the optimal policy of
Player 2, let the relation between recommendations and actions be such that every policy of Player 1 except the
optimal policy receives an expected payoff of 0.5, and the optimal policy receives an expected payoff of 0.5 +∆.
This can be achieved as follows. In round t, where the optimal policy recommends rt, map recommendation rt
to the action with a payoff of 1 with probability 0.5 + ∆. Similarly, map recommendation 1 − rt to the action
with a payoff of 1 with probability 0.5 − ∆. Note that since context vectors of Player 1 are drawn uniformly
at random, each policy makes the same recommendation as the optimal policy exactly half of the time. For all
other policies of Player 2, draw one of the 4 possible maps from recommendations to actions according to

P
(
(0, 0)

)
= 0.25−∆2, P

(
(1, 0)

)
= 0.25 + ∆2

P
(
(0, 1)

)
= 0.25 + ∆2, P

(
(1, 1)

)
= 0.25−∆2.

This distribution is chosen such that all other policies have the same marginal distribution over the maps from
recommendations to actions as the optimal policy.

Let us quickly outline why we think that this is a difficult problem instance. Imagine that in every round, both
players choose a policy according to some decision rule. If both players choose their optimal policy, the expected
payoff is 0.5+∆. Should any of the two players not choose their optimal policy, the expected payoff is 0.5 (for all
policy choices of the other player, also the optimal policy). Now consider what happens in the first round of the
game. Assume that both players choose a policy uniformly at random (uniformly choosing recommendations,
maps or actions does not reveal any information at all). Then, the expected payoff of the optimal policies of
both players is 0.5+ ∆

N1
. Thus, at least in the first round, the magnitude of the signal is ∆

N1
, while the magnitude

of the regret is ∆. While the magnitude of the signal increases as the other player starts to identify the optimal
policy, this strongly suggests that the regret does not scale logarithmically in N1.

E Online learning and repeated supervised learning

In this section we give some more detail on why online learning is the correct approach to study human-machine
decision making. Indeed, full online learning, as studied in our paper, is the most general and unrestricted way
to understand how decisions evolve over time. This is despite the fact that machine learning algorithms are often
not deployed in an online fashion. One reason for the latter is that online learning entails exploration which
usually requires informed consent of the individuals who are impacted by the decisions.

In practice, machine learning algorithms are usually trained on a historical dataset. In a human-machine decision
making context, one would then evaluate how well humans perform with the trained algorithm, or a given number
of trained algorithms. This might include some form of training for human decision makers plus a randomized
controlled trial. If one finds that a given system performs sufficiently well, it might be deployed . Although this
procedure is not an explicit online learning procedure, it is subject to the same limitations as online learning,
at least insofar as coordination between the two decision makers is concerned. Viewed through the lens of our
model, it could be interpreted as follows. First, the human makes a number of decisions, ignoring the machine
(this produces the historical dataset). Second, the machine decides on a number of candidate policies (this is the
supervised learning part). Third, the human tries to learn how to interpret the candidate policies of the machine
(as in Section 5). A slightly different interpretation would be to consider the result of supervised learning as
the initial policy space of the machine. More generally, full online learning is the theoretical limit of all sorts of
procedures that iterate between machine learning on a given dataset, evaluating how well something works with
humans in a real-world setting, collecting a bigger dataset, retraining our model in order to improve performance,
evaluating again with humans, and so on. Importantly, online learning covers the scenario where we continuously
collect data as a given system is running and then re-train it, say, once a year. In fact, full online learning places
as few constraints on learning as possible. For example, re-training a system only at fixed intervals introduces
an additional constraint often referred to as batching.
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F Opacity and implicit communication

In this section we discuss a theoretical subtlety that arises due to the way in which we set the problem up. This
gives more details on the discussion at the end of Section 4 and in Supplement C.

We model opacity by keeping knowledge about the policy spaces to the respective players. As is apparent from
the definition of the minimax regret in section 2.1, both players first fix the way in which they want to approach
the problem (the algorithm), then get to see the respective policy spaces. Importantly, we decided to place
no restrictions on the algorithm that the two players might run. This is because the algorithm is part of the
solution and not part of the problem. It also keeps our work closely aligned with the extant literature on online
learning. This assumption has, however, a subtle consequence. Namely, the algorithms of both players can be
arbitrarily well adapted. In a sense, before the game starts, the two players are allowed to get together in order
to discuss how the problem might be approached. During the game, players might then try to implicitly encode
information about policy spaces and context in actions and recommendations – according to some protocol that
they agreed upon in advance.

With regard to our original research question, elaborate implicit communication protocols between the two
players are of course unrealistic and even violate the idea of opacity. After all, it is implausible that a computer
program and a human decision maker would communicate with such means. In this regard, note that we ruled
out implicit communication protocols in Theorem 3 by assuming that the second player follows his one (and
only) policy.

From a theoretical perspective, the question of whether implicit communication protocols would make a difference
nevertheless remains interesting (Bubeck et al., 2020). As we argue in Supplement C, we believe that this is not
the case.
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ABSTRACT
Existing and planned legislation stipulates various obli-
gations to provide information about machine learning
algorithms and their functioning, often interpreted as
obligations to “explain”. Many researchers suggest using
post-hoc explanation algorithms for this purpose. In this
paper, we combine legal, philosophical and technical ar-
guments to show that post-hoc explanation algorithms
are unsuitable to achieve the law’s objectives. Indeed,
most situations where explanations are requested are
adversarial, meaning that the explanation provider and
receiver have opposing interests and incentives, so that
the provider might manipulate the explanation for her
own ends. We show that this fundamental conflict can-
not be resolved because of the high degree of ambiguity
of post-hoc explanations in realistic application scenar-
ios. As a consequence, post-hoc explanation algorithms
are unsuitable to achieve the transparency objectives
inherent to the legal norms. Instead, there is a need to
more explicitly discuss the objectives underlying “ex-
plainability” obligations as these can often be better
achieved through other mechanisms. There is an urgent
need for a more open and honest discussion regarding
the potential and limitations of post-hoc explanations in
adversarial contexts, in particular in light of the current
negotiations of the European Union’s draft Artificial
Intelligence Act.
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1 INTRODUCTION
Explainability is one of the concepts dominating debates
about the ethics and regulation of machine learning
algorithms. Intuitively, requests for explainability are re-
actions to the prevalent unease about machine learning
algorithms, including concerns regarding discrimina-
tion, biases, manipulation, and data protection. The fact
that machine learning systems are often “black boxes”
is considered a major hurdle towards their implementa-
tion, supervision and control, and explainability is often
praised as a remedy against such risks. Existing legisla-
tion such as the EU General Data Protection Regulation
(’GDPR’) has sometimes been interpreted as containing
a “right for explanation”. The draft Artificial Intelligence
Act, a piece of proposed EU legislation, alludes to ex-
plainability but does, in its current form, not make clear
whether and when exactly explainability is legally re-
quired. On the technical side, explainability has evolved
into its own field of research [33]. The current machine
learning literature knows two different approaches to-
wards explainability. One approach is to build machine
learning models that are constrained to be “inherently
interpretable” [42]. The other approach is to use any
machine learning model, even a “back-box”, and then
employ any of an increasing number of approaches in
order to “explain” the behavior of the black-box after
the decision has been made (“post-hoc”). Because there
exists no general way to summarize the entire behavior
of a black-box model, these explanations are usually lo-
cal, meaning that they only describe the behavior of the
function for a single prediction or decision. The natural
advantage of local post-hoc explanation methods, such
as feature highlighting methods [30, 41] and counterfac-
tual explanations [60], is that they place no constraints
on model complexity and do not require model disclo-
sure [7]. This has led a number of researchers to suggest
that thesemethodsmight be able to complywith existing
legal requirements [7, 60].

In this paper, we put forward an important distinction
that has not yet been extensively discussed in the lit-
erature on explainable AI: whether the explanation’s
context is adversarial or cooperative. By “cooperative
contexts” we broadly summarize situations where all
involved parties have aligned interests. This includes
model development and debugging, scientific discovery,
and, to a degree, areas such as medical diagnosis. In a

40 CHAPTER 2. SECOND PUBLICATION



FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea Sebastian Bordt, Michèle Finck, Eric Raidl, and Ulrike von Luxburg

cooperative context, the explanation provider and the
explanation receiver share the same interests: to identify
the most suitable and insightful explanation algorithm
for the given problem. In “adversarial contexts”, in con-
trast, parties have opposing interests. This is the case for
example when a bank denies a customer a loan and the
customer wants to contest the decision because it was
discriminatory. Since the explanation provider antici-
pates that one might use the provided explanations to
challenge the functioning of the system, the explanation
provider does not have any incentive to provide “true”
insights into the functioning of the system; but rather to
render the internal functioning of the machine learning
system incontestable. Indeed, it has been pointed out
repeatedly that post-hoc explanation algorithms can be
manipulated or cheated upon [5, 47, 48]. Many machine
learning papers on explanation algorithms implicitly
consider collaborative contexts where explanations are
used to improve machine learning algorithms and can
help developers to understand the biases of complex
systems, or where they are used in an explorative spirit
towards new scientific discoveries [63]. In contrast, the
legal discussion focuses predominantly on adversarial
scenarios. Here explainability is portrayed as a mecha-
nism to add more transparency, fairness and account-
ability to AI, and post-hoc explanations are often seen
as a technical tool to achieve these goals.

Combining insights from computer science, philosophy
and law, we offer a critical multidisciplinary perspec-
tive on the usage of post-hoc explanations to achieve
transparency and accountability obligations in adver-
sarial contexts. We highlight the blurry legal landscape
around explainability as well as the philosophical and
technical limitations of post-hoc explanations. In Sec-
tion 2 we introduce different scenarios – cooperative and
adversarial – under which an external examiner might
audit a black-box and its generated explanations. We
focus on adversarial scenarios – where the explanation
provider has opposing interests to the explanation re-
ceiver – and local post-hoc explanations – where the
explanation explains a single decision for one particular
person. In Section 3 we argue that existing and planned
legislation,specifically the GDPR and the EU Artificial
Intelligence Act, can either be read as portraying ex-
plainability as one possible mechanism to achieve more
transparency or as presenting it as a free-standing objec-
tive. We also highlight the current lack of legal certainty
as to how existing legal norms around explainability
ought to be interpreted and implemented. These issues
have been the source of confusion and uncertainty. This
is why we propose to capture the role of explainabil-
ity by a discussion of its motivations: Explanations are
thought to build trust, and also enable actions, such as
debugging, contesting, recourse. In Section 4 we show
from a philosophical and technical perspective that the
goals associated with explainability are unlikely to be
achieved by post-hoc explanations. The reason is that
the truth assumptions under which explanations are

expected to fulfill their legal goal are lacking in the ad-
versarial context. To the contrary, due to the inherent
geometric ambiguity of local post-hoc explanations, the
explanation provider has a multitude of options to influ-
ence explanations in a subtle, undetectable way and to
pick those that suit her goals. In Section 5 we show that
testing explanations is also problematic. While at best
we can test for internal consistency of the explanation
with the decision, in more typical cases the explanations
become redundant and we would better rely on testing
decisions and predictions directly. In Section 6 we con-
clude and argue that there needs to be a deeper and more
honest debate about what the underlying objectives of
explainability obligations are. We also argue that one
needs to be honest about the fact that using a black-box
entails considerable discretion: Neither post-hoc expla-
nation methods, nor regulation can completely compel
the deployer of a black-box to align his interests with
the public good. As such, if one is absolutely unwilling
to award any discretion to the deployer of the black-
box, the only solution is to forbid its deployment and
favor inherently interpretable or otherwise constrained
machine learning methods. The question under which
circumstances the deployment of a black-box might still
be admissible depends on our ability to examine and
audit the black-box. How exactly this might be done is
still an area for future research. We hope that our paper
contributes to an open discussion regarding the (lack of)
potential of post-hoc explanations in the context of the
on-going negotiation of the Artificial Intelligence Act.

2 EXPLANATIONS IN COOPERATIVE
AND ADVERSARIAL CONTEXTS

In this work we broadly distinguish between “coopera-
tive” and “adversarial” explanation contexts. In a coop-
erative context, all parties involved in the process of
building the system, providing explanations and using
the system share the same goal: to create a system as
good and supportive as possible. Prototypical examples
are model debugging and scientific research. But also a
company building a medical decision support system,
say for skin cancer detection, will closely collaborate
with the doctors who use it [53]. The company’s goal
would be to provide explanations that are as helpful
as possible. The situation is very different in adversar-
ial contexts, where parties do not share the same goal,
such as in the oft-repeated example of a denial of a loan
application. Here, the applicant and bank have opposing
interests and incentives. Accordingly, should the bank be
mandated to provide the applicant with an explanation,
this explanation will be shaped by the bank’s incentives
and existing power asymmetries. For reasons that we
outline below, the distinction between cooperative and
adversarial contexts is crucial. In particular, we argue
that local post-hoc explanations, which have a variety
of use-cases in the cooperative scenario, are pointless or
even harmful in adversarial contexts.
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2.1 Parties involved in the adversarial
explanation process

We consider adversarial explanation contexts where an
AI decision system is used to make decisions about indi-
viduals. Prominent examples are university admissions,
job and loan applications, or bail and sentencing deci-
sions. Under existing and planned legislation, such as
the EU Artificial Intelligence Act, the creator of the sys-
tem ought to provide information about how the system
comes to its decisions (see Section 3 below for a detailed
discussion of the legal background). The creator of the
system is the entity that has built the machine learning
system and uses it to support decision making.1 The
creator could be a private company (such as a bank) or a
public entity (such as a university). The decision subject
is the person about whom the automated system makes
a decision: the person who applies for a loan, or the
person who applies to for university admission. After
the decision has been communicated, the explanation re-
cipient asks for an explanation, which is communicated
by the explanation provider. The explanation recipient
could be the decision subject herself, or an external ex-
aminer who is supposed to investigate the decisions or
explanations on behalf of the decision subject or to de-
fend her interests. The explanation provider is typically
the creator of the system.2

2.2 Machine learning problem:
Supervised learning, tabular data,
point-wise post-hoc explanations

In our technical discussion, we assume that the inputs
x ∈ Rd of a decision algorithm are given in tabular
form. Each dimension of the input encodes a different
property of a person, for example age, income, etc. Typi-
cally, the number of dimensions d is large: persons are
described by dozens or hundreds of features. A machine
learning algorithm is used to learn a decision function
f : Rd → R. The resulting decision y = f (x) for input x
could be a binary decision (“receives the loan” or “does
not receive the loan”) or a numeric risk score on which
such a decision is based, as in the often discussed COM-
PAS algorithm to predict recidivism risk. We focus on
supervised machine learning, where f is learned based
on training data consisting of pairs (x1,y1), ..., (xn ,yn )
with xi the training points and yi the training labels. An
explanation algorithm E is an algorithm operating on
a decision function with the purpose of explaining it.
We focus on local post-hoc explanation algorithms:
The explanation algorithm E gets queried with a data
point x and the corresponding decision y, and produces
an explanation E(x ,y). Internally, the algorithm has ac-
cess to the decision function f , and in some cases also to
the training data. The explanation E(x ,y) is supposed to
explain why the decision function f came to decidey for

1The creator is mainly the developer. But since the developer develops
the system for a user, their interests typically align. Hence we do not
distinguish developer and user, and use the term “creator” instead.
2Similar distinctions were introduced by [52].

x . The explanation can be in linguistic form. For exam-
ple, “The low income of Mr. Smith was relevant for the
refusal of the loan” or “Mr. Smith would have received
the loan had his income been 10.000 Euros higher”.

2.3 Explanation algorithms that fall
into this framework

In this paper we consider local post-hoc explanation
algorithms such as LIME, SHAP, and DiCE [30, 34, 41].
The explanations generated by these algorithms do not
provide a global or holistic view of the decision func-
tion f but merely try to explain individual decisions
y = f (x). The often-cited advantage of these algorithms
is that they work, at least in principle, for any decision
function [7, 41]. Different algorithms take different ap-
proaches as to what constitutes an explanation: LIME
and SHAP provide feature attributions that aim to quan-
tify the influence of the different input-features for the
particular decision. Feature attributions correspond to
the linguistic form “The low income of Mr. Smith was
relevant for the refusal of the loan”. Another approach is
to provide counterfactual explanations [60]. These expla-
nations are based on searching for a sufficiently close or
the closest alternative point x ′ to the actual input point
x that yields a decision y′ = f (x ′) that differs from the
original decision y = f (x). Comparing the two we can
arrive at factors that are relevant to the decision [24].
The resulting counterfactual explanations have the lin-
guistic form “Mr. Smith would have received the loan
had his income been 10.000 Euros higher”.

3 LEGAL FRAMEWORK:
EXPLAINABILITY IN EU LAW

This paper argues that post-hoc explanation algorithms
are unsuitable in adversarial contexts. Before we elabo-
rate this from a philosophical and technical perspective
(Section 4), it is important to understand the related legal
framework. We focus on European Union law as the EU
has often been a first-mover regarding the regulation
of data and its analysis, and over time its legislation
will likely inspire other jurisdictions (for a broader view,
see [21]). Our analysis focuses on the draft Artificial
Intelligence Act (AIA), a piece of proposed legislation
that would be the first to specifically target AI. This pi-
oneering approach would be a global blueprint for the
regulation of AI. In its current form it creates different le-
gal obligations for different AI applications on the basis
of the perceived risks. The AIA would apply to general
AI systems (Section 3.1). We also consider the General
Data Protection Regulation (GDPR), which applies to
the processing of personal data (Section 3.2). It will be
seen that whereas EU law contains various obligations
to provide information about a machine learning algo-
rithm and its functioning, it remains unclear how these
legal norms should be implemented from a technical
perspective and whether explainability should be under-
stood as a free-standing legal obligation or whether it
should rather be seen as one of various mechanisms to
achieve algorithmic transparency (Section 3.3). To better
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understand the latter we also review their underlying
rationales and objectives from a philosophical and legal
perspective (Section 3.4).

3.1 The draft Artificial Intelligence Act
(AIA)

The current draft of the AIA defines AI systems as “soft-
ware (...) that can, for a given set of human-defined ob-
jectives, generate outputs such as content, predictions,
recommendations, or decisions influencing the environ-
ments they interact with”. Generally, the AIA regulates
AI on the basis of its perceived risk by introducing four
different categories of AI.Most relevant to our discussion
are the two categories of systems that are high-risk, as
opposed to systems that are not high-risk (the remaining
two categories are practices that are subject to qualified
prohibitions, and a residual category of AI systems that
includes law enforcement software, emotion recogni-
tion system, biometric categorisation systems and deep
fakes) [54]. The stronger the risk, the heavier regulatory
obligations apply, also regarding transparency and in-
terpretability.

There are two categories ofhigh-riskAI systems. First,
AI systems that relate to products that are already sub-
ject to supranational harmonisation, namely AI systems
intended to be used as a safety component of a prod-
uct, which are themselves products covered by Union
harmonising legislation or which are required to un-
dergo third-party conformity assessments. Second, a
list of systems that are currently considered to carry a
high-risk such as, for instance, biometric identification
systems, systems for the management and operation
of critical infrastructure, those used in education and
employment, some law enforcement systems as well as
others (see further Art 3(1) of the draft AIA). Article 13
governs explainability for high-risk AI systems, which
have to be “designed and developed in such a way to
ensure that their operation is sufficiently transparent to
enable users to interpret the system’s output and use it
appropriately”. Furthermore, users (the entity deploying
the AI) need to have access to instructions for use in
an appropriate digital format that contains information
about the characteristics, capabilities and limitations of
performance, including information about the level of
accuracy, robustness and cybersecurity, risks to health,
safety or fundamental rights, specifications for the input
data, expected lifetime of the AI system and necessary
maintenance measures. Finally, human oversight must
be ensured. These measures are designed to minimize
risks to health, safety or fundamental rights. Human
oversight shall either be (i) identified and built into the
system by the provider before it is placed on the mar-
ket or put into service, or (ii) identified by the provider
before the system is placed on the market or put into
service but only implemented by the user.

In its current version, the AIA would thus require that
high-risk AI systems are sufficiently transparent to enable
the interpretation of the system’s output. Is this an ex-
plainability obligation? Recital 47 sheds some light on
how to interpret these notions. It specifies that high-risk
AI systems should be transparent to a “certain degree”
to “address the opacity that may make certain AI sys-
tems incomprehensible to or too complex for natural
persons”. To this end, users “should be able to interpret
the system output and use it appropriately” through the
provision of “relevant documentation and instructions
of use”. This does not read like an obligation to make sys-
tems explainable in the sense that the way in which data
has been processed must be entirely traceable. Rather, the
AIA would require that an “interpretation” of the output
must be facilitated through sufficient transparency. Im-
portantly, this does not necessarily seem to imply that an
absolute truth must be identified post-hoc (see Sections
4.1 and 4.2 below) but rather the overall functioning of
the system and how it comes to an output. The draft
AIA leaves open the question of what transparency and
interpretability imply from a technical perspective. This
certainly includes the elements listed in its Article 16
such as technical documentation, keeping logs or quality
management systems. Article 13 leaves open whether
there are additional requirements and what, exactly, in-
terpretability requires from a technical perspective. If
input data ought to be entirely traceable, “black-box” sys-
tems cannot be used in high-risk applications. This high-
lights that it is important to think about the objectives of
transparency and explainability. If these can be achieved
through alternative means, excluding black-box systems
such as deep neural networks from high-risk scenarios
(such as healthcare as devices falling under the Medical
Devices Regulation qualify as high-risk) might unduly
hinder innovation in important domains.

Article 52 AIA creates some general transparency obli-
gations for AI systems that are not high-risk. These
are general disclosure obligations such as to (i) inform
users that they are interacting with an AI system unless
this is obvious from context, (ii) users of an emotion
recognition system or biometric categorization system
shall inform natural persons exposed thereto, (iii) deep
fakes must be disclosed as such. Some exceptions apply
where the AI is used in the context of law enforcement.
These are thus obligations of transparency that require
disclosure that AI is used, as opposed to how it is used.

To summarize, the draft AIA would thus not, in its current
form, create a general explainability obligation for ma-
chine learning systems. Such an obligation clearly is not
foreseen in relation to AI systems that are not qualified
as high-risk. Arguably, there is also no explainability
obligation in relation to high-risk AI systems. Rather,
what is required is transparency of the system’s func-
tioning and output generation. This transparency must
make these elements interpretable but not necessarily
amount to the provision of an explanation as it is com-
monly understood in computer science.
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3.2 The General Data Protection
Regulation (GDPR)

The GDPR creates some general transparency require-
ments that form part of the data controller’s (the entity
that determines the purposes and means of processing)
general informational obligations vis-à-vis the data sub-
ject (the natural person that personal data relates to).
In addition, it also contains a specific regime for “solely
automated data processing”. In contrast to the draft AIA,
which creates vague obligations resting on the user, the
GDPR creates specific rights for the individual subjected
to such decisions.

Article 13 requires that data controllers provide spe-
cific information to data subjects where personal data
is collected from them at the time of collection such
as whether “automated decision-making” is used, and,
if so, provide “meaningful information about the logic
involved 3, as well as the significance and the envisaged
consequences of such processing”. Article 14(1)(h) creates
the same obligation in cases where data is not directly
collected from the data subject. Pursuant to Recital 62
this information does not have to be provided where it
is redundant, or where compliance proves impossible
or involves a disproportionate effort. The same wording
can also be found in Article 15, which deals with the
data subject’s right to access data. Whereas Articles 13
and 14 relate to the pre-processing stage, data subjects
can exercise their rights under Article 15 at any time, in-
cluding after processing has taken place. This raises the
question of whether – despite the identical wording of
these provisions – Article 15 may substantively require
something different when referring to the “logic” of the
automated decision-making process.

There is no general right to an explanation under the GDPR.
Some explainability requirements may, however, arise
in respect of machine learning algorithms that produce
legal effect or similarly significantly affect a data sub-
ject. Article 22 creates a qualified prohibition of “solely
automated data processing”, including profiling. This
implies that such techniques can only be used in some
circumstances, namely (i) where necessary to enter into
or perform a contract between the data subject and con-
troller, (ii) where it is authorized by law or where the
data subject has provided explicit consent. In these cir-
cumstances automated processing can take place, but
the data subject has the right to human intervention and
to express her point of view and to contest the decision.
Recital 71 mentions an additional element, namely that
the data subject has the right “to obtain an explanation”
after human review of the decision “and to challenge
this decision”.4 Recitals, however, do not have the same
legally binding force as the text of the GDPR itself.

3The exact interpretation of “logic” in the GDPR is not settled but likely
does not refer to understandings of this term in philosophy or computer
science.
4Children should not be subject to automated decision-making.

Over the past years there has been a vivid academic de-
bate around whether the reference to “an explanation”
in Recital 71 amounts to a “right to an explanation” that
data subjects can exercise via-à-vis controllers [59] [32]
[45] [14]. The Article 29 Working Party’s guidance sug-
gests that Article 22, read in conjunction with Recital 71,
should be understood to require that controllers (i) tell
data subjects that they are engaging in automated deci-
sion making, (ii) deliver meaningful information about
the logic, and (iii) explain the processing’s significance
and envisaged consequences. The information provided
should include details about the categories of data; why
data is seen as pertinent; how profiles are built; why the
profile is relevant for the decision-making process and
how it is used to reach a decision about the data sub-
ject. The last three criteria appear to apply to profiling
only [36]. Information with respect to the “logic” means
“simple ways to tell the data subject about the rationale
behind, or the criteria relied on in reaching the decision”.
What is required is “not necessarily a complex expla-
nation of the algorithms used or disclosure of the full
algorithm”. Nonetheless, the information transmitted to
the data subject should be sufficiently comprehensive
to “understand the reasons for the decision”. Thus, an
explanation of algorithms or disclosure of the full algo-
rithm isn’t “necessarily” required and that the controller
ought to find “simple ways to tell the data subject about
the rationale behind, or the criteria relied on in reaching
the decision”. Unfortunately, this guidance leaves a lot of
room for doubt regarding what exactly is required of con-
trollers. In any event the GDPR does not create a general
right to an explanation but applies only to automated
decision-making that legally affect the data subject or
have similarly significant effects on them.

3.3 Explainability as a sub-component
of transparency

While there is a persistent myth that EU law requires
that all decisions based on AI are “explainable” our anal-
ysis has painted a more nuanced picture. First, there
is no overarching explainability norm that would ap-
ply to any usage of AI. To what degree secondary law
requires explanations has not been authoritatively set-
tled. Ultimately, the Court of Justice of the European
Union will need to settle this question in respect of the
GDPR. Concerning the draft AIA, however, legislators
should clarify in the final text whether explainability is
a free-standing legal obligation in respect of high-risk
AI systems or whether it should rather be understood
as a sub-component of transparency. As shown above,
it is indeed possible to read references to explainabil-
ity as elements of the broader transparency obligation.
Article 13 AIA is explicitly about transparency, but the
reference that this transparency must allow users to
“interpret the system’s output” has been understood as
an explainability obligation by some. Further iterations
should clarify the link between transparency and ex-
plainability to enhance legal certainty. An analysis of
the history behind the AIA confirms the lack of precision
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of the AIA itself. The EU High Level Expert Group on
AI’s report on the one hand portrayed explainability as a
component of transparency. On the other hand, it repeat-
edly referred to another concept, “explicability”, which
was introduced as an ethical principle and as the “proce-
dural dimension” of fairness. In contrast, the AIA White
Paper made no reference to explainability other than
to mention that symbolic reasoning could help make
deep neural networks more explainable. This part of the
AIA legislative history underlines the lack of consen-
sus about what exactly explainability is. Similarly, the
GDPR could also be read as referring to explainability as
a sub-component of transparency. Articles 12-15 derive
from the core data protection principle of transparency
in Article 5(1)(a) and likewise, one reading of Article
22 in conjunction with relevant recitals could also be
understood as a more general transparency rather than
explainability obligation.

This, of course, raises the question of what transparency
means and what it should enable. There is broad con-
sensus that the GDPR requires that decisions reached
through automated decision making be justifiable. In-
deed, Hildebrandt has highlighted that data protection
requires “the justification of such decision-making rather
than an explanation in the sense of its heuristics” (p. 113
in [18]). Kamimski and Urban deem that justification
should enable “understanding, revealing and making
challengeable the normative grounds of a decision” (p.
1980 in [21]). Wachter, Mittelstadt and Russell have ar-
gued that explainability is ultimately designed to help
the data subject understand, contest and alter decisions
and that this could also be achieved by counterfactual
explanations [60]. If explainability is merely one means
of achieving transparency, there needs to be a more thor-
ough discussion as to what other, alternative, means of
achieving transparency there are, particularly in situa-
tions where explainability strictu sensu proves impos-
sible. Considering the lack of consensus as to how the
legislative texts of the AIA and the GDPR ought to be in-
terpreted and applied in practice, it is helpful to consider
their underlying objectives.

3.4 Rationale and objectives of
explainability norms in an
adversarial setting

The vague formulation of explainability rights, coupled
with uncertainty regarding their function makes it legiti-
mate to ask whether explanations serve any meaningful
purpose. Indeed, as Edwards and Veale [14] have argued,
“the search for a legally enforceable right to an explana-
tion may be at best distracting and at worst nurture a
new kind of transparency fallacy”. This is essentially a
warning that if explainability obligations just become a
box-ticking exercise, they might give a misleading ap-
pearance of compliance rather than to be of any real
value to the decision subject. In addition, explainability

rights in the GDPR inevitably also suffer from the gen-
eral shortcomings of the low enforcement of the GDPR.

In order to better understand the above-examined norms
we propose to consider their underlying objectives. Be-
fore discussing legislative history let us recapitulate
what philosophers have identified as main objectives
for algorithmic explanations.5 One major motivation for
explainability of AI systems is the hope that this may fos-
ter trust in these systems [10, 26, 35, 57]. This has been
called the “Explainability-Trust” hypothesis [22].6 The
hypothesis is controversial, and it is not exactly clear
how explanations would induce trust. The underlying
rationale seems to rest on an analogy with human in-
teractions. Consider decisions made by human experts.
When the decision doesn’t satisfy us, we are drawn to ask
for an additional explanation. Given such an explanation,
we may check whether it conforms to our expectations
about good decision making. If so, this may be a ground
for further trusting the decision maker. This is not a one-
shot process, but an ever evolving interaction on a long
term time-scale. We tend to trust a person that proved
repeatedly to predict correctly, make good decisions, or
provide well informed explanations. The trust raising
potential of an explanation however requires that we
can submit explanations and decisions to tests, possibly
by delegating it to other experts. The trust raising po-
tential of a single explanation thus presupposes that the
explanation provider stays in the information-exchange
on the long run: only then does she have an incentive
to provide a correct explanation, since an incorrect one
would lead to a loss of trust in the long run but not in a
one-shot exchange. If an algorithm rather than a human
expert makes a decision, we might have similar expecta-
tions. We would like to engage in a similar information
exchange with an algorithm as we engage with humans.
The demand for an explanation is then a demand for a
piece of communicative interaction. The hope that this
builds trust stems from the intuition that the interaction
with the algorithm is similar to the interaction among
humans, as depicted above. This assumption may how-
ever fail either because the algorithmic explanations
cannot be submitted to sensible tests or because the ex-
change is one-shot and not long run. In the first case,
explanations loose their trust raising potential. In the
second, the explanation provider may not have the in-
centive to tell the truth. A second implicit motivation
for explainability stems from the idea that information
provided by explanations can be used to perform ac-
tions, and may in fact be needed for such actions. In
the adversarial setting, a data subject might want to use
an explanation to contest a decision [7, 60], by claiming,
or arguing that the decision is not right, not good, or
not fair. The data subject might also want to use the
5 Questions regarding “Explanations” have been discussed since the
beginning of philosophy, with a strong revival in the philosophy of
science of the last century, treating scientific explanations [1, 8, 17, 39,
43], causal explanations [28, 38, 49, 50, 61], and non-causal explanations
[40]. We refer the interested reader to [44, 62] and restrict our discussion
to the context of machine learning.
6For further references, see §2 therein.
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explanation for recourse, in order to do better next time
[4, 55, 60] (see also [2, 29]).7 But such explanations are
only of value when true or correct. A false explanation
will not help in doing better next time, and may even be
devised such as to render a decision incontestable.

The two motivations from philosophy — building trust
and enabling recipients to act — can also be found as
objectives in the legal texts. The EU High Level Expert
Group on AI described explainability as one tool to
achieve trust in AI systems [35].8 The AIA provides
that explainability norms are designed to allow users to
fully understand the capacities and limitations of high-
risk systems, leading again to trust. Partly related to
trust, one can understand explainability as a tool for risk
management, in line with the AIA’s overall risk-based
approach. Indeed, for high-risk AI systems, transparency
must be ensured by monitoring the system’s operation,
detect signs of anomalies, dysfunctions and unexpected
performance in order to counteract automation bias or
to potentially intervene in the system (the idea of a “stop
button”). The European Commission White Paper also
emphasized the risk-based approach and stressed that
due to the potential scale of AI systems [11]: a hidden
bias or an incorrect assumption of an AI system, say
deciding on tens of thousands of university admission
decisions, will have a large systemic effect. This differ-
entiates large-scale AI systems from human decision-
making systems. In philosophy explanations are con-
sidered as a tool towards future actions. Similarly, the
legal discussion also portrays explainability as an en-
abling right. The High-Level Expert Group on AI has
drawn attention to the fact that to be able to contest
decisions, they must be traceable. Also outside the AIA
and the GDPR, explainability serves a related purpose.
In consumer protection law, explainability is linked to
the unequal power dynamics between the business
and the consumer. In the public administration, it has
been argued that being subjected to an intransparent
black-box decision would undermine human dignity
and is also to be avoided, unlike in the private sector,
individuals cannot vote with their feet and go elsewhere.

Overall, the motivations for explanations seem to presup-
pose that such explanations are true or correct. Only then
does a single explanation raise trust, and only then can
an explanation be used to perform the intended actions,
such as contesting or recourse. We will, however, see
in the next section that this truth-presupposition for
explanations fails in adversarial scenarios of algorithmic
post-hoc explanations.

4 THE PROBLEMS WITH POST-HOC
EXPLANATIONS IN ADVERSARIAL
CONTEXTS

We now discuss the problems with post-hoc explana-
tions in adversarial scenarios. What can we expect from
an algorithmic explanation in these contexts?We roughly
know what to expect from human explanations. For ex-
ample, witnesses giving evidence in court are expected
to tell the truth. Can we expect something similar of
an algorithmic explanation? If the algorithm decided,
for example, to reject a loan application, can we expect
to discover the true reason why it decided to do so?
The answer is that we cannot, for two reasons. First,
the algorithm’s view of the world is coarse-grained and
incomplete, and this significantly restricts the vocabu-
lary available for potential explanations (Section 4.1).
Second, even within the limited picture of the world
that the algorithm has access to (the “algorithm’s own
world”) uniquely preferred or “ground truth” explana-
tions do not exist (Section 4.2). This directly ties with
the computer science perspective of why post-hoc ex-
planations should not be used in adversarial contexts:
the task of providing post-hoc explanations is underde-
termined. The objective of the adversary explanation
provider is to deploy a classifier that has high accuracy
and generate post-hoc explanations that cannot be con-
tested by the data subject or an examiner. We argue
that due to the high degree of ambiguity inherent to
algorithmic explanations, the adversary has sufficient
degrees of freedom to devise incontestable explanations
– even without explicitly optimizing against a particu-
lar explanation method [46, 47]. We identify four key
quantities that allow the adversary to influence the re-
sulting explanations: the choice of an explanation al-
gorithm and its particular parameters (Sections 4.3 and
4.4); the exact shape of the high-dimensional decision
boundary (Section 4.5); and, when applicable, the choice
of the reference dataset (Section 4.6). This section con-
tains a number of figures and simulation results. Ad-
ditional figures can be found in the supplement. The
code to replicate the results in this paper is available at
https://github.com/tml-tuebingen/facct-post-hoc.

4.1 The algorithm’s view of the world
is coarse-grained and incomplete -
this limits potential explanations

Learning and explanation algorithms only have access
to a coarse-grained description of the real world. Their
vocabulary is restricted to certain features, and possi-
ble relations between them. The “experience” of such
algorithms given by the finite training data is formu-
lated in the restricted vocabulary and provides only a
small window to the world. Overall, the algorithm’s
representation of the real world is coarse-grained and

7Other actions belong more properly to the collaborative setting, such as
debugging, improving, correcting, learning, understanding and testing.
8With the consequence that explainability would also play a role in
stimulating the adoption of AI and the competitiveness of the internal
market.
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(a) SHAP
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(b) LIME
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(c) DiCE
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(d) Interventional SHAP

Figure 1: Different explanation algorithms lead to different explanations. Depicted are the feature attri-
bution explanations of four different explanation algorithms: Exact SHAP for trees [31], LIME [41], DiCE
[24], and Interventional SHAP [20]. All four explanation algorithms attempt to explain the prediction for
the same individual with the same decision function (a gradient boosted tree) on the same dataset (Adult-
Income). The idea of feature attribution explanations is to determine how much each dimension of the
input contributed towards the decision. The figures depict these attributions by drawing a bar for each of
the 12 input dimensions. The larger the bar, the higher is the influence of the corresponding feature. Some
methods distinguish between positive and negative attributions. In the depicted example, the first bar in
Panel (a) is relatively large, which indicates that the SHAP algorithm determined that the value of the first
feature contributed strongly to the prediction. The DiCE algorithm in Panel (c), in contrast, determined
that the value of feature 9 contributed most strongly to the prediction. More figures showing results for
other data points can be found in the supplement.

incomplete.9 The learning algorithm just sees features
and training labels. The explanation algorithm, addition-
ally, sees the learning algorithm’s association between
input and output. This is what we call “the world of the
explanation algorithm”, and this is all what it can exploit.
As a consequence, all the explanation algorithm could
talk about are geometric properties in the world of the
algorithm: distances of points to the decision surface,
proximity between points, their true or predicted labels,
the gradient of the decision function at a point, the nec-
essary change of a feature to change the decision, etc.
Although a true explanation for a decision might exist
in the real world, it might not be represented in the data
or other aspects of the algorithm’s world, which could
thus not provide any such explanation. This is even the
case in a cooperative setting. Consider the example of
a medical diagnosis of a disease for which a true (say,
causal) explanation exists in the real world. If the learn-
ing algorithm was trained on feature-based data such
as age, blood pressure, etc, the explanation algorithm
could suggest that age was the cause. However, in reality
the cause for the disease may not be age, but rather a
smoking habit that was not represented in the data. So
even if a true explanation exists (say, a cause) this may
neither be identifiable nor expressible by the explanation
algorithm.

4.2 Even within the algorithm’s own
world, a unique preferred reason
does not exist

Even within the limited world that the explanation al-
gorithm has access to, a “true internal reason” why the
learned decision function comes to a certain decision

9Similar issues were discussed in [7, 19].

does generally not exist. This is particularly the case for
complicated black-box functions. Evenmachine learning
experts digging into the learning algorithm or properties
of the function could not reveal a unique true reason. All
we can do is to provide vague approximations of how
the algorithm arrives at its decision, by summarizing
which features contributed how much to the decision
(the approach of LIME and SHAP), or whether a change
in some features would alter the decision (the approach
of counterfactual explanations). For example, in the case
of a loan rejection, we might want to know whether it
was rather our low income or our postal code which
determined the decision, and whether we could change
something about the decision, if in the future we had
a higher income or moved to another area. However,
these explanation attempts are all subject to choices. A
mathematically unique way to determine how much
each feature of a complicated black-box function con-
tributed to the decision does not exist. Consequently, all
feature attribution methods rely on particular assump-
tions andmechanisms in order to construct explanations:
LIME, for example, looks at the gradient of the decision
function at the point to be explained [15, 41]. SHAP com-
pares the point with other datapoints from a reference
population [16, 30]. Yet another approach would be to
re-train the classifier on subsets of features or to use
counterfactual feature importance, where one looks at
the distance to the decision surface in various directions.
All these mechanisms and choices seem plausible but, as
we will see in the next section, they all deliver different
explanations.
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4.3 Different explanation algorithms
lead to different explanations

Different explanation algorithms lead to different expla-
nations [25]. This is true even if the algorithms have
access to exactly the same information (the geometry of
the data, the learned decision function, etc). In an adver-
sarial context, this is problematic because it means that
the creator of the system can modify the explanations
by choosing a particular explanation algorithm. In prac-
tice, different explanation algorithms lead to different
explanations even on the most simple machine learning
problems. In high dimensions, that is in real-world prob-
lems, the difference between the explanations obtained
from two different explanation algorithms can be so sig-
nificant that the explanations are entirely different. This
is illustrated in Figure 1. The figure depicts the feature
attribution explanations that four different explanation
algorithms determined for the same individual. From the
difference between the four panels in Figure 1 it is quite
clear that different explanation algorithms can lead to
markedly different explanations, even if they all attempt
to explain the same decision for the same individual.10
Details on the machine learning problem, dataset and
explanation algorithms can be found in the supplement.

That different explanation algorithms lead to different
explanations is also true for counterfactual explanation
methods [34, 60]. Indeed, there is a variety of ways in
which the optimization problem can be set up, which in
turn leads to different explanations. However, already a
single counterfactual explanation method can lead to a
large number of counterfactual explanations. In a coop-
erative context, being able to generate many different
counterfactual explanations for the same individual can
be beneficial [34]. In an adversarial context this is prob-
lematic because there is no principled way to choose
among different counterfactual explanations, and the
adversary is again awarded considerable discretion to
determine explanations. In realistic, high-dimensional
applications, the number of potential counterfactual ex-
planations can quickly become very large. Let us illus-
trate this point on the German Credit Dataset. The Ger-
man Credit Dataset is a 20-dimensional dataset with
features on credit history and personal characteristic.
The task is to predict credit risk in binary form. How
many different counterfactual explanations exist for a
single individual? With a common black-box decision
function, more than 100 different counterfactual expla-
nations exist for each individual.

At its core, the fundamental difficulty of explainable
machine learning is then the same as in other fields of
unsupervised learning: the lack of a ground truth ex-
planation impedes the development of an algorithmic

10The reader who is acquainted with the internal mechanics of the
depicted explanation method might feel that a direct comparison be-
tween the different methods is unwarranted, because different methods
measure different aspects of the underlying decision function [9]. Note,
however, that this is exactly the point that we want to make by explicitly
contrasting the different attributions.
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(a) SHAP
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(b) LIME

Figure 2: For any given datapoint, different expla-
nation algorithms might lead to very similar or
completely different explanations. In many cases,
however, there are both similarities and dissimi-
larities. The Figure depicts the SHAP and LIME
feature attributions for a datapoint in the folkta-
bles ACSIncome prediction task [13]: Are these at-
tributions similar or different? More figures show-
ing results for other data points can be found in
the supplement.

framework to automatically evaluate explanations. Ev-
ery explanation algorithm needs to make assumptions
about which properties of the decision function it seeks
to highlight. As a result, it is possible to develop sanity
checks for explanation algorithms and exclude unreason-
able approaches [3, 9], but not to discern whether any
of two post-hoc explanations is “more correct”, which
would be equivalent to discussing whether any of two
different clusterings is “more correct” [58] .

4.4 The explanation provider can
choose between a large number of
possible explanation algorithms
and parametrizations

Even for a single explanation algorithm, there can be
many different parameter choices that all lead to dif-
ferent explanations. LIME explanations, for example,
depend on the bandwidth and the number of perturba-
tions [15, 27, 46]. The uniqueness properties of Shapley
values non-withstanding, there is a multiplicity of ways
in which Shapley values can be operationalized to gener-
ate explanations [51]. Counterfactual explanation algo-
rithms depend on the underlying metric chosen to rep-
resent closeness (e.g. Euclidean distance vs. L1-norm)11
as well as additional hyperparameters to weight-off be-
tween closeness and prediction, and, at least in principle,
any number of additional penalty terms [34]. In certain
cases, it might be possible to come up with good default
parameter choices. For example, recent work has demon-
strated how to choose the bandwidth parameter of LIME
in a principled way or quantify uncertainty in the result-
ing explanations [27, 46, 64]. It is also possible to exclude
explanation algorithms and parametrizations that are
11This originates in the philosophical account: counterfactuals depend
on the way one measures proximity between facts and alternative
counter-facts [28].
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(a) Diabetes, Lin. Regr.
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(b) Diabetes, Random Forest
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(c) Cancer, 36% Accuracy
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(d) Cancer, 96% Accuracy

Figure 3: Explanations depend on the exact shape of the classifiers high-dimensional decision boundary.
Panel (a) and (b): On the diabetes dataset, linear regression and a random forest agree for 94% of their
predictions. Shown are the SHAP explanations on a data point where the prediction of bothmethods agree.
As we can see, the explanations differ. Panel (c) and (d): the dependence on the decision boundary is subtle.
It can even be hard to tell from the explanations whether the classifier had been trained trained at all. On
the Wisconsin Breast Cancer dataset, the SHAP explanations of a classifier trained to achieve an accuracy
of 96% are hard to distinguish from those of the same classifier trained on random labels. More figures
showing results for other data points can be found in the supplement.

completely unreasonable, for example because they are
not sensitive to the decision function [3, 9]. This never-
theless leaves an ever-increasing number of plausible
explanation algorithms and corresponding parametriza-
tions. Quite generally, different explanation algorithms
vary among many different dimensions, and there is
an ever increasing number of suggestions as to how
black-box functions might be explained. This can be
seen, for example, in the recent work of Covert et al.
[12], who summarize 25 existing methods in a unified
framework. As already discussed above, there are no
fundamental reasons that impede us from using any
particular method.12

4.5 Explanations depend on the exact
shape of the high-dimensional
decision boundary

Even if we fix a particular explanation method and its
parameters, the generated explanations still depend on
the exact shape of the learned decision boundary. In high
dimensions, there are often many different black-box
functions that solve a particular classification problem
to a desired accuracy, that is they represent the data
sufficiently well. However, these functions often lead to
different explanations. To a certain extent, we may say
that the exact shape of the learned decision boundary is
arbitrary, but since the explanations depend on it, these
turn out to be arbitrary as well. One of the reasons for
the sensitivity of the explanation to the function’s shape
is that many explanation methods evaluate the function
f at datapoints that are outside the data distribution
or at points that are unlike most points from the data
distribution. In the adversarial scenario, this is problem-
atic because the adversary can freely modify the values
12The distinction between two “different” explanation algorithms and
different parameter choices for the “same” explanation algorithm is
of course a matter of perspective: We might consider the question of
distributional versus intervential Shapley values as a question of how
to use “the” SHAP method [20], but we might as well perceive it as a
discussion as to which of two different methods to use.

of the function f outside the data distribution without
changing the classification behavior. Recent work has
demonstrated that this property can be used to explicitly
manipulate and attack explanation methods [47, 48]. But
even without explicit attacks, there are many different
choices, in particular hyperparameter and architecture
choices, that influence the shape of the decision bound-
ary, and thus the resulting explanations. For an external
examiner, this presents a challenging problem: while
certain explicit attacks on explanation methods could in
principle be detected through code review (see also Sec-
tion 5.2), it is far less clear how one would argue about
choosing one classifier over another, or any particular
choice of hyperparameters. This problem is illustrated
in Figure 3. Here, we solved the same machine learn-
ing problem both with linear regression and a random
forest. The two methods have comparable performance
on the test set, where 94% of their predictions agree.
Nevertheless, the explanations obtained for the two dif-
ferent decision functions can be quite different – even
for points that receive the same prediction.

Turning to counterfactual explanations, it is well-known
that these depend on the exact shape of the decision
boundary. Let us give an example, again using the Ger-
man Credit Dataset. Consider two different decision
functions, a gradient boosted tree and logistic regression.
If we generate a number of diverse counterfactual expla-
nations [34] for a typical individual with respect to one
decision function, are these also counterfactual explana-
tions with respect to the other decision function (at least
as long as both functions arrive at the same decision)? In
this simple experiment less than 50% of counterfactual
explanations that work for the gradient boosted tree also
work for logistic regression. As discussed above, the fact
that the explanations depend on the exact shape of the
decision boundary is problematic because it allows the
creator of the system to influence the resulting explana-
tions. The particular choice of the decision function can

49



Post-Hoc Expl. Fail to Achieve their Purpose in Adv. Contexts FAccT ’22, June 21–24, 2022, Seoul, Republic of Korea

(a) Dataset

Feature 1 Feature 20.6

0.4

0.2

0.0

0.2

0.4

0.6

Fe
at

ur
e 

At
tri

bu
tio

n

(b) Reference data set: Group 1 only
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(c) Reference data set: entire dataset

Figure 4: A simple toy example of how the choice of the explanation’s reference dataset can influence the
resulting explanations. The dataset in Panel (a) consists of two different population groups. The blue and
orange color depicts the binary label that the classifier is supposed to predict at each data point (to get an
intuition, youmight think of the groups as “male” and “female”, and the label as “is awarded the credit” or
“is not awarded the credit”). Panels (b) and (c) depict the interventional SHAP feature attributions [20] for
the same data point in Group 1. In Panel (b), the explanation’s reference dataset consists of the observations
of Group 1 only. In Panel (c), the reference dataset is the entire dataset. The example shows that changing
the reference dataset can almost completely change the feature attribution from one feature to another.

even determine whether certain types of counterfactual
explanations exist at all. Let us give an example on the
Wisconsin Breast Cancer Dataset. To demonstrate the
dependence on the decision boundary, we consider again
two different decision functions, linear regression and a
random forest. For linear regression, there exist a large
number of counterfactual explanations that modify only
a single variable. For the random forest, it is impossible
to find any such counterfactual explanations. This is
despite the fact that both classifiers exhibit similarly low
test error.

4.6 It is unclear how to choose the
reference dataset that many
explanations depend on

In recent years, there has been an increased focus on the
composition of datasets, for example on the representa-
tion of different sociodemographic groups in machine
learning datasets [6, 37]. In many real-world problems
such as credit lending, the criteria for choosing an ap-
propriate dataset are not clear. In both cooperative and
adversarial contexts, the creator of the system has to
make numerous choices, many of which can have signif-
icant effects on both the shape of the learned decision
boundary and the generated explanations. For exam-
ple, Anders et al. [5] have shown that gradient-based
explanations can be manipulated by adding additional
variables to the dataset. In this section, we highlight the
additional role that the dataset can have on algorithmic
explanations, even when keeping the learned decision
boundary constant. Indeed, while some explanation algo-
rithms such as LIME only rely on the learned decision
boundary, other methods such as SHAP and some coun-
terfactual explanation methods make additional use of
the data in order to generate explanations. The relevant
dataset could be the training data, but it could also be a
different dataset. We refer to it as the reference dataset.

While the usage of such a dataset to generate explana-
tions can be seen as a remedy to the vagaries of high
dimensions, or as a possibility to generate counterfactual
explanations that look like they come from the data, this
approach is problematic as long as the adversary deter-
mines the composition of the dataset. The reason is that
whether certain datapoints are included in the dataset
or not can determine whether an explanation algorithm
provides one or another explanation. Figure 4 illustrates
this with a simple example: By deciding between two
different reference datasets, one can effectively decide
whether one ore another feature was relevant to the
decision.

4.7 Bottom line: Post-hoc explanations
are highly problematic in an
adversarial context

It is extremely important to understand that an expla-
nation algorithm is based on many human choices that
are shaped by human objectives and preferences. While
many choices are plausible, there is no objective reason
to prefer one algorithm over the other, or one explana-
tion over the other. Apart from the explanation algo-
rithm and its particular parameters, explanations are
influenced by human choices such as the selection of the
classifier and the composition of the dataset. In adver-
sarial contexts it implies that the adversary can choose,
among many different plausible explanations, one that
suits their incentives. This complicated situation makes
it particularly difficult for external observers, including
judges and regulatory bodies, to determine whether an
explanation is acceptable. Explanation algorithms ap-
pear to provide objective explanations, yet as explained
above this is not the case (compare Section 4.2).
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5 ONCE AN EXAMINER IS ALLOWED
TO ASSESS THE PROVIDED
POST-HOC EXPLANATIONS, SHE’D
BETTER INVESTIGATE THE
DECISION FUNCTION DIRECTLY

So far we have discussed explainability obligations in Eu-
ropean Union law and their motivation (Section 3), and
pointed out theoretical (Sections 4.1-4.2) and practical
(Sections 4.3-4.6) shortcomings of post-hoc explanations.
In this section, we add yet another component to our
argument. In an adversarial setting, it is not only the AI
decision system itself but also the corresponding expla-
nation algorithm which might need to be examined by a
third party. Even if the examiner only attempts to assess
the most basic consistency properties of the provided
explanations, that is to check whether the explanations
relate to the AI decision system at all, this necessar-
ily requires that the examiner is able to query the AI
system. But then, the explanations become entirely re-
dundant: Rather than relying on explanations to enable
risk management, provide trust or bias and discrimi-
nation detection (compare Section 3.4), the examiner
could directly query the AI system for problematic deci-
sion behavior. Because the creator of the system and the
examiner have competing interests, it is important to dis-
tinguish degrees of transparent interaction between the
two. Naturally, the examiner would like to have access
to as much information as possible, whereas the adver-
sary creator wants to disclose as little information as
possible. We distinguish between a minimal and a fully
transparent scenario of information disclosure (Sections
5.1-5.2).

5.1 Minimalist scenario where decision
function and explanation
algorithm can be queried

To determine whether the adversary’s explanations actu-
ally correspond to the used decision function f instead
of being arbitrary justifications not related to the de-
cision process, the examiner needs to be able to query
the decision function and the generated explanations.13
This includes a fair amount of related knowledge, such as
which variables are input to the algorithm, but excludes
explicit access to the decision function, explanation al-
gorithm, source code and training dataset. A related but
slightlymore limited version of this scenario arises when
individuals jointly collect the decisions and explanations
from the creator of the system. In this minimalist sce-
nario, the examiner can validate the internal consistency
of the provided explanations. Researchers have proposed
a number of criteria that the examiner can test for such
as faithfulness to the model, robustness to local pertur-
bations, as well as necessity and sufficiency notions for

13This means that for any possible datapoint (or individual) x , the ex-
aminer is allowed to ask the adversary: “For this hypothetical datapoint
x , what would be the decision y = f (x ), and what would be the cor-
responding explanation E(x, y)? The adversary would then privately
compute both quantities and make them available to the examiner, but
not tell the examiner how the computation was performed.

individual feature attributions [3, 24, 56]. The examiner
might also want to perform tests as to whether the pro-
vided explanations have been manipulated [48]. More
importantly however, even just with the ability to query
the decision function, the examiner can ignore the expla-
nations and directly investigate the decision function for
problematic properties. For example, the examiner could
conduct a systematic evaluation of, say, fairness met-
rics such as equal opportunity and demographic parity,
based on an independent reference dataset of her choice
(see [6] for these and other notions of fairness and dis-
crimination). Indeed, because the adversary designing
the explanation algorithm has no interest in choosing
explanations that highlight any discriminatory behavior
of the decision algorithm, the examiner is well-advised
to simply ignore the explanations and test the decision
algorithm directly. Although such tests might be similar
to certain explanation algorithms, what is important is
that the examiner (as opposed to the creator) designs
and implements them. Note that we are not saying that
the minimalist scenario actually allows the examiner to
assess all legally relevant properties of the decision func-
tion. What exactly can be assessed with querying access
is a question that still requires more research. Our point
is that once we have querying access, the explanations
are useless.

5.2 Fully transparent scenario where
algorithms’ source code and
training data are disclosed

At the opposite end of the minimalist scenario is the fully
transparent scenariowhere the examiner is allowed to in-
vestigate the decision function, source code and training
data. An examiner could then scrutinize whether the ex-
planation algorithms have been implemented according
to the state of the art with sensible parameter choices.
This directly rules out the possibility for the creator of
the system to manipulate explanations. Are post-hoc ex-
planations useful in the transparent scenario, perhaps be-
cause the examiner now has the tools to verify whether
the adversary has chosen the “correct” explanations? As
we have already discussed above, the problem is that
there is no notion of “correct” explanation (Sections 4.2
and 4.3). Thus, except for notions of internal consistency
[3, 24], there is, in general, nothing the examiner can say
about the explanations. Another issue, already observed
in Sections 4.5 and 4.6, are hyperparameter choices and
decisions regarding the composition of the dataset. For
these decisions, it is highly non-trivial to come up with
uniquely reasonable defaults: If the adversary has found
a particular neural network architecture with hyperpa-
rameters that generalize well on the adversary’s own
dataset, how exactly could the examiner argue that this
is inappropriate? Nevertheless, all of these choices can
influence the resulting explanations, even if we fix a
particular explanation algorithm. Of course, the exam-
iner could scrutinize the source code, re-train the system
with different parameters, perform tests on the data, and
generate alternative explanations. Some have argued
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that this might be sufficient in order to assess a variety
of legal requirements [23]. While we think that more
research is needed on what can be realistically achieved
in the fully transparent scenario, it is quite clear that
the examiner can, at least in principle, perform a variety
of powerful tests (whether this is achievable in practice,
based on the limited resources of an examiner, is yet a
different story). At any rate, just as in the minimalist sce-
nario, the examiner is well-advised to examine and test
the system on her own, and to ignore the explanations
provided by the adversary creator.

6 DISCUSSION
Explainability is often praised as a tool to mitigate some
of the risks of black-box AI systems. Our paper demon-
strates that in adversarial contexts, post-hoc explana-
tions are of very limited use. From a technical and philo-
sophical point of view these explanations can never re-
veal the “unique, true reason” why an algorithm came
to a certain decision. In complicated black-box models,
such a true reason simply does not exist. We moreover
demonstrated that post-hoc explanations of standard
decision algorithms on simple datasets possess a high
degree of ambiguity that cannot be resolved in principle.
For these reasons, post-hoc explanations of black-box
systems are, to a certain degree, incontestable. In the
best case, post-hoc explanation algorithms can point
out some of the factors that contributed to a decision
— these algorithms are therefore useful for model de-
bugging, scientific discovery and practical applications
where all parties share a common goal. In adversarial
contexts, in contrast, we demonstrated that local post-
hoc explanations are either trivial or harmful. In the
worst case, the explanations may induce us into falsely
believing that a “justified”, or “objective” decision has
been made even when this is not the case.

It was also seen that it remains unclear how expectations
of explainability in the GDPR or the AIA ought to be
interpreted. The GDPR does not give rise to a general
explainability obligation, and the draft AI Act currently
would only require some degree of explainability in rela-
tion to high-risk applications of AI. We call on legislators
to formulate related provisions with more specificity in
order to create legal certainty in this respect. If the final
version of the AIA requires a strong version of explain-
ability for high-risk AI systems, black-boxes simply can-
not be used: they cannot be explained directly, and the
only indirect means of explaining them — local post-hoc
explanations — are unsuitable. In this case, one would
have to resort to the use of simple, inherently inter-
pretable machine learning models rather than black-box
models (compare [42]) although this may impede inno-
vations. We would expect that these algorithms and their
explanations are more robust and less susceptible to ma-
nipulation, such that large parts of our criticism would
not apply to inherently interpretable models. However,
future research needs to clarify whether this is the case,

because we are not aware of any research that investi-
gates inherently interpretable machine learning in an
adversarial setting. If, on the other hand, explainability
in the final version of the AIA is to be understood as
one of several means to achieve more transparency in
machine learning, other methods than post-hoc expla-
nations might be more suitable to achieve the desired
goals of transparency. For example, as far as testing for
biases and discrimination is concerned, it is unlikely
that the creator of the system will choose to generate
explanations that can be used to uncover hidden biases.
But there is a much more direct route to assess discrim-
ination than implicitly through explanations. Indeed,
external examiners could directly test the system for
discriminatory properties [23]. As such, the external ex-
amination of black-boxes may be a more suitable means
of enabling more accountable AI systems.

The current draft of the AIA already requires documen-
tation regarding the functioning of AI systems. However,
one has to be aware of the versatile manipulation possi-
bilities that lie in the development process of AI systems
itself, through choice of training data, features, algo-
rithms, parameters, and so on. Even in the fully trans-
parent scenario where the entire development pipeline
including the source code is open [23], a considerable
leeway for manipulations remains. In order to address
these, an external examiner would need access to con-
siderable manpower and resources. Even when training
data and source code can in principle be examined, al-
gorithms re-applied or even retrained, actually doing so
for a system that has been developed by a large team
might be very difficult if not impossible. More research
is needed to understand exactly which legal objectives
can be satisfied by such extended documentation of AI
systems, or whether the documentation would again just
serve as a means to provide an appearance of objectivity
without any real value.

Overall, we believe that the question of testing and cer-
tifying machine learning systems in an adversarial sce-
nario is a research direction that is still heavily under-
explored. There is no single way to achieve all the de-
sired transparency and control goals for such AI systems.
Even complete transparency, open code, open data might
not lead to all the desired goals. For this reason, it is im-
portant to investigate in more detail what objective can
be achieved by which means, and which goals might not
be possible to achieve at all. Only then can we engage in
a meaningful debate about responsible use of AI systems
in social contexts.

Finally, we recall that our criticism of explainability,
in particular local post-hoc explanations, concerns ad-
versarial scenarios. In cooperative scenarios, many in-
teresting discoveries might be made with the help of
explainable machine learning.
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A POST-HOC EXPLANATIONS FAIL TO ACHIEVE THEIR PURPOSE IN
ADVERSARIAL CONTEXTS: SUPPLEMENTARY MATERIALS

A.1 Code
The python code to replicate all results in this paper is available at https://github.com/tml-tuebingen/facct-post-hoc.

A.2 Datasets
In our experiments, we used the following datasets.

Adult-Income. This dataset contains information about individuals based on the 1994 US Census. It is available from
the UCI machine learning repository. We obtained it from the SHAP package https://github.com/slundberg/shap. The
dataset contains the 12 features age, workclass, education-num, marital status, occupation, relationship, race, sex,
capital gain, capital loss, hours per week, country. In the figures, the features are numbered F1-F12 in this order. The
machine learning problem is to predict whether whether an individual’s income is over $50,000. We trained a gradient
boosted tree which achieved a test accuracy of 87%.

German Credit. The German Credit Dataset is a dataset with 20 different features on individual’s credit history and
personal characteristic. The machine learning problem is to predict credit risk in binary form. We obtained the dataset
from the UCI machine learning repository. We trained a gradient boosted tree which achieved a test accuracy of 76%.
We also trained logistic regression which achieved a test accuracy of 74%.

Folktables. Folktables is a Python package that provides access to datasets derived from recent US Censuses
https://github.com/zykls/folktables. We used this package to obtain the data from the 2016 Census in California.
The machine learning problem is the ACSIncome prediction task, that is to predict whether an individual’s income is
above $50,000, based on 8 personal characteristics. We trained a gradient boosted tree which achieved a test accuracy
of 83%.

Diabetes. The Diabetes dataset is a dataset of diabetes patient records. It is available from the UCI machine learning
repository. We obtained it from the scikit-learn machine learning library https://scikit-learn.org. The dataset contains
10 features about each individual at baseline: age, sex, body mass index, average blood pressure, and six blood serum
measurements. The machine learning problem is to predict disease progression one year after baseline. We converted
the scalar outcome into a binary by thresholding at the median. We trained linear regression which achieved a test
accuracy of 71%. We also trained a random forest which achieved a test accuracy of 74%.

Wisconsin Breast Cancer. The Wisconsin Breast Cancer dataset is a tabular dataset with features of breast mass
images. The dataset contains 30 features that describe the characteristics of the cell nuclei present in the image. The
dataset is available from the UCI machine learning repository. We obtained it from the scikit-learn machine learning
library https://scikit-learn.org. The machine learning problem is to predict the binary diagnosis (malignant/benign).
We trained linear regression which achieved a test accuracy of 96%. We also trained linear regression on random labels
which achieved a test accuracy of 36%.

A.3 Explanation Algorithms
In our experiments, we used the following explanation algorithms.

SHAP The SHAP algorithm was proposed by [30]. We use it via the accompanying python package https://github.
com/slundberg/shap. With (gradient boosted) trees, we use the exact computation method proposed in [31]. With all
other classifiers, we use the Kernel SHAP method. The approach by Janzing et al. [20] is also implemented in this
package. Whenever available, we use parametrizations proposed in the documentaion of the package.

LIME The LIME algorithm was proposed by [41]. We use it via via the accompanying python package https:
//github.com/marcotcr/lime. Whenever available, we use parametrizations proposed in the documentaion of the
package.

DiCE The DiCE algorithm was proposed by [34]. We use it via the accompanying python package https://github.com/
interpretml/DiCE. To generate counterfactual explanations, we used the model-agnostic randomized sampling method.
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A.4 Figures
To create the figures, we normalized the feature attributions to have 𝑙1-norm 1.

A.5 Additional Figures
The following pages contain additional figures. These follow the figures in the main paper and depict the first
observations from the test set, so they are not hand-selected in any way. The reader might notice that we selected the
figures in the main paper from these. Figures for all observations from the test are avaialble with the code that will be
made available upon publication.
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Additional Figures Related to Figure 1 in the Main Paper
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(a) SHAP (b) LIME (c) DiCE (d) Interventional SHAP

Figure A.1: Different explanation algorithms lead to different explanations (compare Figure 1 in the main
paper). Every row depicts the explanations of the four different explanation algorithms for another indi-
vidual. The Figure depicts the first 6 observations from the test set.
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Additional Figures Related to Figure 2 in the Main Paper

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.4

0.3

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.4

0.3

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.4

0.3

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.4

0.3

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.3

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.3

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.1

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.1

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.2

0.1

0.0

0.1

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.2

0.1

0.0

0.1

0.2

0.3

Fe
at

ur
e 

At
tri

bu
tio

n

AGEP
COW

SC
HL

MAR
OCCP

PO
BP

RELP
WKH

P
SE

X
RAC1P

0.2

0.1

0.0

0.1

0.2

0.3

Fe
at

ur
e 

At
tri

bu
tio

n

(a) SHAP (b) LIME

Figure A.2: For any given datapoint, different explanation algorithms might lead to very similar or com-
pletely different explanations. Inmany cases, however, there are both similarities and dissimilarities (com-
pare Figure 2 in the main paper). Every row depicts the explanations of the two different explanation
algorithms for another individual. The Figure depicts the first 6 observations from the test set.
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Additional Figures Related to Figure 3 (a), (b) in the Main Paper
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(a) Diabetes, Linear Regression (b) Diabetes, Random Forest

Figure A.3: Explanations depend on the exact shape of the decision boundary (compare Figure 3 in the
main paper). Every row depicts the explanations of the two different explanation algorithms for another
individual. The Figure depicts the first 6 observations from the test set.
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Additional Figures Related to Figure 3 (c), (d) in the Main Paper
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(a) Breast Cancer, 36% Accuracy (b) Breast Cancer, 96% Accuracy

Figure A.4: Explanations depend on the exact shape of the decision boundary (compare Figure 3 in the
main paper). Every row depicts the explanations of the two different explanation algorithms for another
individual. The Figure depicts the first 6 observations from the test set.
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Abstract

In explainable machine learning, local post-
hoc explanation algorithms and inherently inter-
pretable models are often seen as competing ap-
proaches. This work offers a partial reconciliation
between the two by establishing a correspondence
between Shapley Values and Generalized Addi-
tive Models (GAMs). We introduce n-Shapley
Values, a parametric family of local post-hoc ex-
planation algorithms that explain individual pre-
dictions with interaction terms up to order n. By
varying the parameter n, we obtain a sequence
of explanations that covers the entire range from
Shapley Values up to a uniquely determined de-
composition of the function we want to explain.
The relationship between n-Shapley Values and
this decomposition offers a functionally-grounded
characterization of Shapley Values, which high-
lights their limitations. We then show that n-
Shapley Values, as well as the Shapley Taylor-
and Faith-Shap interaction indices, recover GAMs
with interaction terms up to order n. This implies
that the original Shapely Values recover GAMs
without variable interactions. Taken together, our
results provide a precise characterization of Shap-
ley Values as they are being used in explainable
machine learning. They also offer a principled in-
terpretation of partial dependence plots of Shapley
Values in terms of the underlying functional de-
composition. A package for the estimation of dif-
ferent interaction indices is available at https:
//github.com/tml-tuebingen/nshap.

1 INTRODUCTION

Local post-hoc explanation algorithms and inherently inter-
pretable models are two of the most prominent approaches

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

in explainable machine learning (Molnar, 2020; Holzinger
et al., 2022). Despite a number of arguments about their rel-
ative benefits, the differences and similarities between these
two approaches remain largely unresolved Rudin (2019). In
the current literature, post-hoc explanations and inherently
interpretable models are often framed as different concepts,
with research papers, book chapters, and tutorials divided
along these lines (Lundberg et al., 2020; Molnar, 2020;
Lakkaraju et al., 2020). We take a different perspective and
highlight the similarities between post-hoc explanations and
interpretable models. We do so for the particular case of
Shapley Values, a prominent feature attribution method, and
GAMs, a popular class of interpretable models.

Post-hoc explanations with Shapley Values. The sem-
inal work by Lundberg and Lee (2017) introduced the
SHAP feature attributions. These are based on the literature
on Shapley Values in game theory. The authors showed
that for linear functions f(x) = wTx and statistically in-
dependent features, the SHAP attributions take the form
Φi = wi(xi − E(xi)), thus establishing a link between the
post-hoc explanation method and a very simple type of in-
terpretable model. This work has inspired a whole branch
of literature on explainable machine learning. Most relevant
to us are Shapley Interaction Values (Lundberg et al., 2020),
which extend Shapley Values with local interaction effects
between pairs of features.

An important building block of our work is the general-
ization of Shapley Interaction Values towards n-Shapley
Values, a novel type of Shapley-based post-hoc explana-
tion that is able to incorporate arbitrarily many variable
interactions. Similarly to the Shapley Taylor- (Sundararajan
et al., 2020) and the Faith-Shap interaction index (Tsai et al.,
2022), n-Shapley Values are a parametric family of local
post-hoc explanation algorithms that explain individual pre-
dictions with interaction terms up to order n. As n increases,
the explanations become more complex and expressive and
are able to faithfully explain more complex models.

Generalized Additive Models (GAMs hereafter) are a pop-
ular class of interpretable models with a restricted form of
non-linearity (Hastie and Tibshirani, 1990; Caruana et al.,
2015; Agarwal et al., 2021a). Traditionally, GAMs are
allowed to exhibit (arbitrary) non-linearity in individual
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features, but no interaction between features is allowed.
GA2Ms (Lou et al., 2012) relax this restriction and allow
for interaction between pairs of features. Conceptually, it
is straightforward to extend GAMs with interaction effects
of any desired order n (this comes, however, at the cost of
human interpretability). Important to us, the model class of
GAMs suffers from an identification problem. As soon as
we introduce variable interactions, the way in which a given
function can be written as a GAM is no longer uniquely
determined Lengerich et al. (2020).

Shapley-based explanations faithfully explain GAMs. In
this work, we show that different kinds of Shapley-based
post-hoc explanations (Lundberg and Lee, 2017; Lundberg
et al., 2020; Sundararajan et al., 2020; Tsai et al., 2022) are
completely faithful to GAMs: if the function to be explained
is a GAM, then the explanations recover its individual non-
linear component functions. We link the order of the GAM
– the maximum degree of variable interaction that is present
in a function – with the order of an explanation that we use
to explain that function. If the order of the explanation is
at least as large as the maximum variable interaction that
is (locally) present in the model, then the explanations are
guaranteed to recover a faithful representation of the func-
tion as a GAM. This result applies to the newly proposed
n-Shapley Values, as well as to the Shapley Taylor- and
Faith-Shap interaction indices. As a special case, our re-
sults imply that the interventional SHAP feature attributions
(Lundberg and Lee, 2017; Janzing et al., 2020) are perfectly
faithful to GAMs without variable interactions, even if the
features are arbitrarily dependent.

What is more, we show that Shapley-based post-hoc ex-
planations of any function implicitly solve the problem
of representing the function as a GAM (potentially with
variable interactions of very high order). This means that
our results provide insights into the mechanics of Shapley
Values not only if the function to be explained is a lower-
order GAM, but any (learned) function, for example a neural
network. Concretely, we identify a necessary and sufficient
regularity condition – subset compliance – under which a
value function gives rise to a well-defined functional decom-
position of the function that we attempt to explain. Because
this decomposition connects Shapley Values with GAMs,
we term it the Shapley-GAM.

Taken together, our results offer a precise functionally-
grounded analysis of Shapley Values, one of the most
widely used approaches in explainable machine learning
(Doshi-Velez and Kim, 2017). They also highlight the pecu-
liar properties of these explanations, and the way in which
they are different from other feature attribution methods
(Covert et al., 2021; Krishna et al., 2022). For example,
contrary to popular belief, Shapley Values only depend on
the coordinates of the point that we attempt to explain, but
not on the local neighbourhood of that point. This in turn
implies that the explanations are unrelated to the gradient

and do not perform any kind of local function approximation
(Han et al., 2022).

We consider n-Shapley Values to be a useful tool for prac-
titioners who want to debug black-box models. Moreover,
we introduce a novel method to plot feature attributions of
higher order that is consistent with the underlying theory (de-
picted, for example, in Figure 1). We also introduce a way
to estimate the amount of variable interaction that is neces-
sary to represent a given function. Finally, we study the link
between accuracy and the average degree of variable inter-
action present in different standard classifiers (Section 7).

2 RELATED WORK

Shapley Values. The seminal paper by Lundberg and Lee
(2017) has led to a line of work that investigates the usage
of Shapley Values in explainable machine learning (Chen
et al., 2020; Heskes et al., 2020; Slack et al., 2020; Al-
bini et al., 2022). Shapley Values originate in a literature
on economic game theory (Shapley, 1953), and our work
builds on a particular paper from this literature, namely the
seminal work by Grabisch (1997) on additive set functions.
The idea to extend Shapley Interaction Values towards n-
Shapley Values is closely related to other approaches that
also extend the Shapley Value (Grabisch, 1997; Lundberg
et al., 2020; Sundararajan et al., 2020; Tsai et al., 2022).
The efficient computation of Shapley Values is a topic of
ongoing research interest (Lundberg et al., 2020; Jethani
et al., 2021). Our results also relate to the debate about the
choice of value function (Sundararajan and Najmi, 2020;
Janzing et al., 2020). Shapley Values have been explored
in various tasks with human decision makers, a topic about
which there is much debate (Kumar et al., 2020).

Generalized Additive Models. Generalized additive mod-
els originate in statistics (Hastie and Tibshirani, 1990) and
have recently become popular in combination with trees
(Lou et al., 2012, 2013) and neural networks (Agarwal et al.,
2021a). On tabular data sets, interpretable GAMs with
few interactions (Caruana et al., 2015) can often achieve
competitive accuracy, which has led to an active line of re-
search on these models (Wang et al., 2022; Lengerich et al.,
2022). From a statistical perspective, the decomposition of
a function as a GAM is underdetermined, which has led to
the development of additional uniqueness criteria such as
functional ANOVA (Hooker, 2007; Lengerich et al., 2020).

Explainable Machine Learning. Shapley Values are one
of many different feature attribution methods (Ribeiro et al.,
2016; Sundararajan et al., 2017; Kommiya Mothilal et al.,
2021) about which there is a large literature (Lee et al., 2019;
Garreau and von Luxburg, 2020; Slack et al., 2021; Covert
et al., 2021; Krishna et al., 2022; Han et al., 2022) and much
debate (Lipton, 2018; Rudin, 2019; Bordt et al., 2022). Con-
siderable debate also exists around the question whether
there is an accuracy-explainability trade-off or a cost of us-
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ing interpretable models (Rudin, 2019; Moshkovitz et al.,
2020). Apart from GAMs, there are many other inter-
pretable models such as rule lists (Wang and Rudin, 2015)
and sparse decision trees (Lin et al., 2020). Since our work
is exclusively focused on Shapley Values and GAMs, we
do not offer a comprehensive review of the literature on
explainable machine learning. This can be found in many
other places (Molnar, 2020; Samek et al., 2021; Holzinger
et al., 2022; Rudin et al., 2022).

3 BACKGROUND AND NOTATION

We consider data points x ∈ Rd with d features, and a
function f : Rd → R whose behavior we want to explain.
We consider the local post-hoc explanation setting with
feature attributions: For a point x ∈ Rd, our goal is to
explain which input features (or combinations thereof) were
most influential in determining the “decision” f(x). In order
to do so, we assign real numbers to input features and their
combinations. The higher the absolute value of this number,
the more influential the feature is considered to be (for an
illustration consider Figure 1).

In what follows, we denote [n] = {1, . . . , n} and use
subsets of coordinates S = {s1, . . . , sn} ⊂ [d] to index
both data points xS = (xs1 , . . . , xsn) and collections of
functions fS(xS) = fxs1

,...,xsn
(xs1 , . . . , xsn) where we

assume the ordering s1 < · · · < sn.

3.1 Value Functions and Shapley Values

For a data point x ∈ Rd, a subset of coordinates S ⊂ [d],
and a function f , the value function v(x, S) is supposed to
quantify how much the features that are present in S con-
tribute towards the prediction f(x). Two important value
functions are the observational SHAP value function Lund-
berg and Lee (2017)

v(x, S) = Ez∼D [f(z) |xS ] (1)

and the interventional SHAP value function (Chen et al.,
2020; Janzing et al., 2020)

v(x, S) = Ez∼D [f(z) | do(xS)] . (2)

Shapley Values, denoted by Φi(x), are obtained from the
value function via the well-known Shapley formula (Shap-
ley, 1953). We first introduce the Shapley Interaction Index
(Grabisch and Roubens, 1999), given by ∆S(x) =

∑

T⊂[d]\S

(d− |T | − |S|)!|T |!
(d− |S|+ 1)!

∑

L⊂S

(−1)|S|−|L|v(x, L ∪ T ).

(3)
The Shapley Value Φi(x) of feature i at x is then simply
given by ∆i(x). Importantly, different value functions give
rise to different Shapley Values, so that there effectively
exists a multiplicity of possible Shapley Values, depending

on our choice of value function (Sundararajan and Najmi,
2020). The popular KernelSHAP algorithm (Lundberg and
Lee, 2017) approximates Shapley Values with respect to
the interventional SHAP value function. The corresponding
attributions are also known as the SHAP feature attributions.
The following regularity condition, satisfied by both (1) and
(2), will guarantee that the value function gives rise to a
well-defined functional decomposition of the function that
we attempt to explain.
Definition 1 (Subset-Compliant Value Function). We say
that v(x, S) is a subset-compliant value function for f :
Rd → R if v(x, [d]) = f(x) and if the value v(x, S) de-
pends only on those coordinates of x that are indexed by
S. For a subset-compliant value function, we also write
v(x, S) = v(xS , S).

3.2 Generalized Additive Models

We employ the following definition of a generalized additive
model (GAM) of order n.
Definition 2 (Generalized Additive Model of order n). We
say that f : Rd → R is a generalized additive model of
order n if f can be written in the form

f(x) =
∑

S⊂[d], |S|≤n

fS(xS) (4)

In words, the function f can be described as a simple sum
with interaction terms of at most n variables at a time. The
individual functions fS are called component functions of
f . GAMs with few interactions (n = 1, 2, 3) are often
considered interpretable and called Glassbox-GAMs (Lou
et al., 2012; Caruana et al., 2015). The reason for this is that
the feature-wise shape functions f1, . . . , fd can be easily
visualized, see for example Figure 4.

If we allow for interactions of arbitrary order, that is n = d,
then every function can be written as a GAM. However, it
is a well-known fact that representing an arbitrary function
according to (4) is under-determined: Many such represen-
tations might be possible for the same function. Any such
representation is called a functional decomposition of f .
This non-identifiability has led to the development of ad-
ditional criteria on the decomposition, such as functional
ANOVA, that resolve the identification problem (Hooker,
2007; Lengerich et al., 2020).

4 FROM SHAPLEY VALUES TO
GENERALIZED ADDITIVE MODELS

We now introduce n-Shapley Values, a parametric family of
local-post hoc explanation algorithms that extends Shapley
Values (Lundberg and Lee, 2017) and Shapley Interaction
Values (Lundberg et al., 2020). We then show that every
subset-compliant value function implicitly provides a func-
tional decomposition of the function that we attempt to
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Figure 1: n-Shapley Values generate a sequence of explanations of increasing complexity, ranging from the original Shapley
Values to the Shapley-GAM. From left to right: Shapley Values (n = 1), Shapley Interaction Values (n = 2), 4-Shapley
Values (n = 4) and the Shapley-GAM (n = d). In each plot, we distributed the higher-order interaction effects uniformly
onto all involved features (as justified by Theorem 6). Taking into account the signs of the attributions, the different
contributions to each of the bars sum to the Shapley Value of that feature (Equation (13)). Taking the overall sum over all
bars for all features recovers the prediction f(x). See Appendix Section B for more details regarding this visualization.
In this example, the function f is a random forest on the Folktables Income classification task, the data point is the first
observation in our test set, and we used the value function of interventional SHAP.

explain. Due to its connection with Shapley Values, we de-
nominate this decompositions the Shapley-GAM. We then
show that for n = d, n-Shapley Values are equal to this
decomposition.

4.1 n-Shapley Values

The definition of n-Shapley Values relates to the function f
that we want to explain implicitly via the value function.
Definition 3 (n-Shapley Values). Fix a function
f : Rd → R. Let v(x, S) be a value function for f .
n-Shapley Values Φn

S provide an an attribution to all
groups of at most n features at a time, that is for all sets
S ⊂ [d] with |S| ≤ n. We define them recursively, starting
from the original Shapley Values at n = 1 up to n = d, by

Φn
S =





∆S if |S| = n

Φn−1
S +Bn−|S|

∑

K⊂[d]\S
|K|+|S|=n

∆S∪K if |S| < n.

(5)
The coefficients Bn that balance the different terms are the
Bernoulli numbers (see Appendix A). All terms except the
Bernoulli numbers additionaly depend on the point x.

While this definition might seem rather abstract, n-Shapley
Values are actually a straightforward extension of Shapley
Interaction Values (Lundberg et al., 2020). These corre-
spond to the case n = 2. The original Shapley Values
correspond to the case n = 1. Similar to the original Shap-
ley Values, n-Shapley Values are additive and always sum

to the function value f(x) (when summed over all subsets
S ⊂ [d]) of size ≤ n).1 The overall intuition behind the
recursive definition of n-Shapley Values is that starting from
the original Shapley Values at n = 1, we successively add
higher-order variable interactions to the explanations.

n-Shapley Values give rise to a sequence of explanations of
increasing complexity, ranging from the original Shapley
Values up to a functional decomposition of the function that
we attempt to explain (see Theorem 4 below). Figure 1 de-
picts such a sequence of explanations for a random forest on
the Folktables Income classification task (Ding et al., 2021).
To visualize the n-Shapley Values, we evenly distribute all
higher-order interactions onto the involved features. As we
detail in Appendix B, this technique is justified by the re-
cursive relationship between n-Shapley Values of different
order. Note that n-Shapley Values of higher order are differ-
ent from those of lower order only if the function that we
attempt to explain actually contains higher-order variable
interactions (this intuition will be made precise in Section
6). For this reason, n-Shapley Values can be used as a tool
to assess the amount of variable interaction that is present
in a given black-box predictor. For the random forest, we
can see from the rightmost part of Figure 1 that it relies on
very high degrees of variable interaction (for a quantitative
analysis, see Section 7).

1The proof of Proposition 12 in the Appendix shows that the
Bernoulli numbers are exactly the coefficients that balance equa-
tion (5) in this way.
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Figure 2: As n → d, the n-Shapley Values provide increasingly precise representations of the component functions fS of the
Shapley-GAM. This figure depicts partial dependence plots of Φ1

AGEP (Shapley Values, n = 1), Φ2
AGEP (Shapley Interaction

Values, n = 2), Φ4
AGEP (4-Shapley Values, n = 4) and Φ10

AGEP (Shapley-GAM, n = d). The leftmost partial dependence plot
is the usual plot that is often used in order to visualize Shapley Values (Lundberg et al., 2020) (the plot depicts the original
Shapley Values for the observations in the test set). It takes the often observed form where the Shapley Values are scattered
around an overall functional relationship. Theorem 4 and Theorem 6 make this intuition precise by specifying how the
Shapley Values are related to the component functions of the Shapley-GAM. The middle and right plots illustrate that as
we move towards higher-order explanations, interaction effects can be appropriately represented. As a consequence, the
partial dependence plots of individual feature attributions approach the component functions of the Shapley-GAM. In this
example, the function f is a kNN classifier on the Folktables Income classification task. Appendix Figure K.8 depicts the
partial dependence plots of all other features.

4.2 The Shapley-GAM

The following Theorem 4 shows two things. First, a subset-
compliant value function gives rise to a well-defined func-
tional decomposition. Second, d-Shapley Values are equal
to this decomposition. The transformation of the value func-
tion that defines the decomposition is well-known as the
Harsanyi Dividend (Harsanyi, 1982) or Möbius transform.

Theorem 4 (d-Shapley Values provide a functional
decomposition of f ). Fix a function f : Rd → R. Let
v(x, S) be a subset-compliant value function for f . Then
the d-Shapley Values represent the function f as a specific
GAM that we denominate the Shapley-GAM. It is given by

f(x) =
∑

S⊂[d]

fS(xS) (6)

with component functions

f∅ = v(∅) and fS(xS) = Φd
S(x) (7)

where
Φd

S(x) =
∑

L⊂S

(−1)|S|−|L|v(xL, L). (8)

For intuition about Theorem 4, consider Figure 2. It is a
well-known fact that the Shapley Value of feature i not only
depends on the value of that feature, but also on the values of
the other features of x (compare the leftmost partial depen-
dence plot in Figure 2). The reason for this is that Shapley
Values subsume higher-order variable interactions into the
attributions of individual features (according to formula (11),
as we will see below). Now, as we successively increase n,
more and more variable interactions are appropriately repre-
sented in the explanations. This means that they no longer

have to be subsumed into lower-order effects, which implies
in turn that the lower-order components of the explanations
become more distinct (middle parts of Figure 2). For n = d,
all possible variable interactions can be represented in the
explanations, which implies that d-Shapley Values become
well-defined functions of the respective features (rightmost
plot in Figure 2).

n-Shapley Values depend on the value function, and so
does the associated functional decomposition. For the ob-
servational and interventional SHAP value functions, the
functional decompositions are given as follows.
Corollary 5 (Observational and Interventional SHAP). For
the observational SHAP value function (1), the component
functions of the Shapley-GAM are given by f∅ = E[f ],

fi(xi) = E[f |xi]− E[f ]

fi,j(x) = E[f |xi, xj ]− E[f |xi]− E[f |xj ] + E[f ]

fS(xS) =
∑

L⊂S

(−1)|S|−|L|E[f |xL].

(9)

For the interventional SHAP value function, the component
functions are given by the same expression, but with the
conditional expectations replaced by the causal do-operator.

As will see below (Theorem 7), there is actually a one-to-
one relationship between subset-compliant value functions
and different functional decompositions of f .

5 FROM GENERALIZED ADDITIVE
MODELS TO SHAPLEY VALUES

In the previous section, we have seen that Shapley Values
give rise to a functional decomposition of the original func-
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Main 2nd order 3rd order 4th 5th 6th 7th 8th 9th 10th order

Figure 3: Visualizing the Shapley-GAM of interventional SHAP. Figures depict d-Shapley Values, visualized as in Figure 1.
Different functions on different data sets require a different degree of variable interaction. (Left) A GAM without variable
interactions on the German Credit data set. (Middle Left) A gradient boosted tree on the California Housing data set.
(Middle Right) A kNN classifier on the Folktables Travel data set. (Right) The 8-dimensional checkerboard function (14).
Additional figures for more data points and classifiers can be found in Appendix K.

tion (via the associated value function). In this section, we
show that the original Shapley Values as well as n-Shapley
Values of any order are linear combinations of the com-
ponent functions of this decomposition. This provides a
novel motivation for Shapley Values that does not require
value functions or the Shapley formula. This alternative
motivation of Shapley Values is equivalent to the original
motivation via value functions: For every functional decom-
position of f , there is a corresponding subset-compliant
value function v such that the Shapley Values derived from
the decomposition and v are equal (and vice-versa).

5.1 Shapley Values from the Shapley-GAM

Theorem 6 specifies the way in which the different compo-
nent functions of the Shapley-GAM give rise to n-Shapley
Values.

Theorem 6 (n-Shapley Values from the Shapley-GAM). Let
f(x) =

∑
S⊂[d] fS(xS) be the decomposition of f provided

by the Shapley-GAM, and let Φn
S(x) be the n-Shapley Values

of f . Then, it holds that

Φn
S = fS +

∑

K⊂[d]\S
n+1≤|S|+|K|

Cn−|S|,|K| fS∪K (10)

with coefficients Cn,m =
∑n

k=0

(
n
k

)
Bk

1+m−k . Specifically,
the Shapley Value of feature i is given by

Φ1
i = fi+ · · ·+ 1

k + 1

∑

S⊂[d]\{i},|S|=k

fS∪{i}+ · · ·+ 1

d
f[d]

(11)
where all terms additionally depend on the point x.

Theorem 6 specifies how higher-order variable interactions
that are present in f are subsumed into lower-order expla-
nations. In the case of the original Shapley Values, this
is particularly intuitive: Higher-order effects are evenly
distributed among the involved features.2 Theorem 6 also
specifies what information about the function f is and is not
contained in Shapley Values. We see that different functions
f can give rise to the same n-Shapley Values as long as
n < d (Grabisch, 2016). We also see that it is impossible
to tell from individual Shapley Values whether the model
consists of main effects or complex variable interactions.
Furthermore, a feature can have zero attribution although it
appears in multiple interaction effects with different signs.

For a bit more intuition about the Shapley-GAM, Figure
3 illustrates the Shapley-GAM of interventional SHAP for
different functions. A main point is that different predictors
require a different degree of variable interaction in order to
be represented as a GAM. By definition, a Glassbox-GAM
(leftmost part of Figure 3) does not require any variable
interaction. The other extreme is the k-dimensional checker-
board function (14) (rightmost part of Figure 3), which only
consists of interaction terms of order k. Many learned func-
tions such gradient boosted trees (Figure 3, middle left) and
the k-Nearest Neighbor (kNN) classifier (Figure 3, middle
right) lie in between. Overall, there is a significant amount
of variation between different methods and problems. This
is also illustrated in many additional figures in Appendix K.
For a quantitative analysis, see Section 7.

2For individual value functions, equation (11) is known in the
literature on economic game theory (Grabisch, 1997)[Theorem 1].
Variants of it were independently re-discovered in Keevers (2020),
Herren and Hahn (2022) and Hiabu et al. (2023).
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5.2 From Functional Decompositions to
Subset-Compliant Value Functions

We have show that every subset-compliant value function
corresponds to a functional decomposition of f . We now
show that the reverse is also true, that is every functional
decomposition of f corresponds to a subset-compliant value
function. The transformation that defines the value function
is also known as the Zeta transform.

Theorem 7 (From Generalized Additive Models to Value
Functions). Let f(x) =

∑
S⊂[d] gS(x) be any functional

decomposition of f . Define the subset-compliant value func-
tion

v(x, S) =
∑

L⊂S

gL(x). (12)

Then the functional decomposition gS is the Shapley-GAM
with respect to the value function (12).

Taken together, Theorem 4 and Theorem 7 establish a bi-
jection between subset-compliant value functions and func-
tional decompositions of f . In a sense, this implies that
every functional decomposition implicitly corresponds to a
notion of feature attribution via its associated value function
and the Shapley formula (or, more directly, via equation
(11) which is just the same).

6 RECOVERY

In this section, we connect Shapley Values with interpretable
models by showing that n-Shapley Values, as well as the
Shapley Taylor- and Faith-Shap interaction indices, recover
GAMs. In order for this to be the case, the order of the ex-
planation has to be at least as large as the order of the GAM.

Theorem 8 (Shapley-based Explanations Recover GAMs).
Let f be a generalized additive model of order n. Assume
that either

(a) the value function is given by observational SHAP
and the individual features are independent random
variables, or

(b) the value function is given by interventional SHAP.

Then, n-Shapley Values, as well as the Shapley Taylor- and
Faith-Shap interaction indices of order n, recover a repre-
sentation of f as a GAM. In fact, all the interaction indices
are equal to each other and given by

Φn
S(x) = fS(xS)

where fS are the component functions of the Shapley-GAM.

Theorem 8 implies that the SHAP feature attributions re-
cover GAMs without variable interactions and that Shapley
Interaction Values recover GAMs with interactions of at

most two variables at a time. Unlike our previous results,
Theorem 8 depends on the choice of the value function.
This is because the recovery property holds if (1) the inter-
action index can be written like in equation (10), and (2) the
Shapley-GAM is a GAM or order n — and the second point
depends on the value function.

As it turns out, the independence assumption in part (a)
of Theorem 8 is indeed necessary (see Appendix D). This
is interesting insofar as it establishes the usefulness of the
interventional SHAP value function from a purely statistical
perspective, that is without any causal motivation (for a
discussion about the differences between observational and
interventional SHAP, see also Chen et al. (2020)).

Figure 4 (Top) illustrates the recovery result for a GAM
without variable interactions. For this example, we explic-
itly resort to the default implementation of the Kernel SHAP
algorithm, in order to see whether there is any significant ap-
proximation error (Kernel SHAP approximates the Shapley
Values of the interventional SHAP value function). The top
part of Figure 4 depicts the shape curve of the feature POW-
PUMA in the GAM (blue curve), as well as the associated
Kernel SHAP values (red dots). The Kernel SHAP values
lie almost exactly on the shape curve of the GAM, which
means that the recovery property holds fairly precisely, at
least in this simple example.

7 IS THERE AN ACCURACY-
COMPLEXITY TRADE-OFF?

In the previous sections, we have outlined the connections
between Shapley Values and GAMs on a theoretical level.
In this section, as well as in the next section, we turn to
more practical concerns. In this section, we investigate the
number of variable interactions that are present in various
standard classifiers. In order to do so, we rely on a number
of low-dimensional data sets on which we can reliably es-
timate the Shapley-GAM decompositions of the different
learned predictors (compare Section 8). It is interesting to
compare this against the accuracy: Because models with
more variable interactions can represent strictly more func-
tions than models with less variable interactions, it is natural
to suspect that more accurate classifiers might exhibit higher
degrees of variable interaction (Dziugaite et al., 2020).

We suggest to measure the extent of variable interaction that
is present in a given classifier with the following quantity

E
x∼D


∑

S⊂[d]

|S| · |fS(xS)|



/

E
x∼D


∑

S⊂[d]

|fS(xS)|


 .

(13)
where fS are the component functions of the Shapley-GAM
decomposition of f , using interventional SHAP.

Figure 4 (Middle) illustrates the relationship between the
predictive accuracy and our measure (13) for different pre-

68 CHAPTER 2. THIRD PUBLICATION



From Shapley Values to Generalized Additive Models and back

Figure 4: Top: Shapley Values recover GAMs without vari-
able interactions (Theorem 8). To create this figure, we first
trained a GAM on the Folktables Travel data set using the
InterpretML package (Nori et al., 2019). We then computed
the Kernel SHAP values for the decision function of the
GAM using the shap package (Lundberg and Lee, 2017).
For the feature POWPUMA, the Figure depicts the ground-
truth variable effect in the GAM in blue, and the associated
Kernel SHAP values for data points from the test set as red
dots. We see that the red dots lie on the blue line, that is
Kernel SHAP recovers the component function of the GAM.
Middle: The average degree of variable interaction (13)
in the Shapley-GAM of interventional SHAP for various
standard classifiers. The figure depicts predictive accuracy
versus the average degree of variable interaction. Bottom:
Estimating higher-order variable interactions requires pre-
cise evaluations of the value function. A simple way to study
this is by estimating the k-dimensional checkerboard func-
tion (14). Left: 3-way variable interactions can be precisely
estimated. Right: 7-way variable interactions can be reliably
detected, but precise estimation requires prohibitively many
samples.

dictors f . The figure depicts four different kinds of classi-
fiers: A Glassbox-GAM without variable interactions (Nori
et al., 2019), a gradient boosted tree (Chen and Guestrin,
2016), a random forest, and a kNN classifier (Pedregosa
et al., 2011). We compare these classifiers on four different
data sets: Folktables Travel and Income (Ding et al., 2021),
Iris, and German Credit. Details on the data sets and training
procedures are in Appendix J.

As far as accuracy is concerned, we see from Figure 4 that
GAMs without variable interactions perform fairly well
against the more complicated classifiers — a fact that has
often been observed in the literature (Caruana et al., 2015;
Agarwal et al., 2021a). On the more complex data sets,
however, there is usually a model with variable interactions
and slightly better accuracy3 As far as the degree of variable
interaction is concerned, we see that there is a large amount
of variation in between the different classifier.

Especially interesting is the kNN classifier. It tends to per-
form worse in terms of accuracy than the interpretable GAM,
but exhibits very high degree of variable interaction. Ob-
serve that the kNN classifier can also be considered inter-
pretable (by explaining the workings of the classifier and
providing the k data points that are responsible for the clas-
sification). Therefore, this example shows that a high degree
of variable interaction in the Shapley-GAM does not imply
that a function is hard to explain per se.

This simple empirical investigation suggests that the rela-
tion between accuracy and the average degree of variable
interaction in the Shapley-GAM is nuanced: While some
degree of interaction seems necessary in order to achieve
competitive accuracy, some classifiers seem to exhibit more
interaction than that. In some cases, the correlation might
even be negative (as for the kNN classifier).

8 COMPUTATION AND ESTIMATION

We now turn to the practical question of computing n-
Shapley Values. In this work, we take the trivial approach
and simply evaluate the value function for all possible sub-
sets S ⊂ [d], then combine the respective terms according
to Definition 3. A Python package to compute n-Shapley
Values, as well as the Shapley Taylor- and Faith-Shap in-
teraction indices, is available https://github.com/
tml-tuebingen/nshap. Even for the original Shap-
ley Values, it is well-known that the number of required
evaluations of the value function grows exponentially in the
number of features. For this reason, there exist efficient
approximations such as Kernel SHAP, as well as efficient
implementations for certain function classes such as tree
based models (Lundberg and Lee, 2017). We hold that

3The InterpretML package (Nori et al., 2019) allows to include
interactions between pairs of variables which reportedly allows to
be on par with black-box models on many data sets. Compare also
(Lou et al., 2012).
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such computationally efficient approximations are also be
possible for n-Shapley Values.

Instead of focusing on the well-known computational aspect
of the problem, we want to focus on the estimation aspect
which seems much less studied. Note that n-Shapley Values
are a statistic that is subject to sampling variation. The same
is true for our visualizations (as in Figure 1), which are
summary statistics of n-Shapley Values. This is because
both the observational and the interventional SHAP value
function require to estimate an expectation.

We now asses with a simple empirical analysis up to
which order interaction effects can be estimated in prac-
tice. We consider the k-dimensional checkerboard function
Bk : [0, 1]d → {0, 1} given by

Bk(x1, . . . , xd) =

{
0 if

∑k
i=0⌊(λ · xi)⌋ mod 2 = 0

1 otherwise
(14)

where λ > 2 parameterizes the number of checkers along
each axis. If data points are uniformly distributed in the
unit cube [0, 1]d, then the Shapely-GAM of interventional
SHAP of Bk is given by the single k-th order interaction
effect fx1,...,xk

(x1, . . . , xk) = Bk(x1, . . . , xk, 0, . . . , 0).
The question now is how precisely we have to estimate the
expectation Ez∼D [f(z) | do(xS)] if we want to precisely
estimate a kth-order interaction effect.

The bottom part of Figure 4 depicts the result of estimating
10-Shapley Values when the underlying function is the 3-
or 7-dimensional checkerboard function, respectively. The
x-axis depicts the number of samples used to estimate the
value function, ranging from 100 to 1 000 000. The y-axis
depicts the order of the estimated effects, with confidence
bands that account for 5 randomly sampled data sets. From
the figure, we observe that if the number of samples is small
in relation to the magnitude of the interaction effect, then
the estimation results in spurious lower-order effects. For
k = 3, these effects vanish with sufficiently many samples,
which means that the checkerboard function is precisely
estimated. For k = 7, the presence of the higher-order
interaction effect can be reliably detected, but not precisely
estimated given reasonably many samples.

In this simple analysis, we see that interaction effects of or-
der larger that 2 can be precisely estimated given sufficiently
many samples. We also see that functions with high-order
interactions are difficult to estimate and can result in arti-
facts. Figures for all interaction orders k = 2, . . . , 10 and a
discussion of the precision of the depicted visualizations of
n-Shapley Values can be found in Appendix C.

9 DISCUSSION

This work provides a functionally-grounded characteriza-
tion of Shapley Values as they are being used in explainable

machine learning (Doshi-Velez and Kim, 2017). Explain-
able machine learning is often believed to be an impor-
tant component in societal applications of machine learning
(Wachter et al., 2017; Kaminski and Urban, 2021; Kästner
et al., 2021). At the same time, current approaches face a
lot of criticism, for example because they are non-robust or
unable to provide the desired level of model understanding
(as well as for a variety of other concerns) (Lipton, 2018;
Kumar et al., 2020; Slack et al., 2020; Bordt et al., 2022).
In this situation, we believe that a precise understanding of
the mechanics of popular explainability methods, such as
the one presented in this work, is a good first step toward an
informed discussion of what we can and cannot achieve.

Some of our results stand in contrast to conventional wis-
dom around Shapley Values, and offer a novel perspective
on local-post hoc explanation algorithms. For example, we
have seen that Shapley Values depend on the coordinates
of the point that we attempt to explain, but not on the lo-
cal neighbourhood of that point — the recovery example
with the step function in Figure 4 suggests that this is also
the case for the approximations of the Shapley Value that
are used in practice. We have further seen that the original
Shapley Values are able to faithfully explain non-linear func-
tions, as long as the non-linearity is restricted to the specific
form permitted by GAMs. As such, our results highlight
the differences between Shapley Values and other feature
attribution methods, for example those that are related to the
gradient (Garreau and von Luxburg, 2020; Agarwal et al.,
2021b), and those that perform local function approximation
(Han et al., 2022).

The demonstrated connections between value functions and
functional decompositions effectively link the literature on
feature attributions with the tools developed in the statis-
tics literature on functional decompositions (Hooker, 2007;
Lengerich et al., 2020). This raises the question of whether
criteria for functional decompositions can be useful to un-
derstand feature attributions. Here, two concurrent works
made significant contributions: Hiabu et al. (2023) show that
the value function of interventional SHAP can be motivated
with a causal assumption on the associated functional de-
composition. Herren and Hahn (2022) outline connections
between observational SHAP and functional ANOVA.

While our work gives a functionally-grounded analysis of
Shapley Values for any function, as well as recovery guar-
antees for Shapley Values and GAMs, we do not claim
that Shapley Values are an appropriate post-hoc explanation
method for any function (Kumar et al., 2021; Tan et al.,
2022). Instead, the purpose of our work is to highlight the
connections between a post-hoc explanation method and a
class of interpretable models. Overall, however, we believe
that many properties of Shapley Values have the potential to
be more clearly understood using our perspective of func-
tional decompositions.
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A n-Shapley Values

This section details the properties of n-Shapley Values.

A.1 Bernoulli numbers

The Bernoulli numbers1 Bn are defined by B0 = 1 and

n∑

k=0

(
n+ 1

k

)
Bk = 0 ∀n ≥ 1. (15)

In this paper, the Bernoulli numbers arise as the coefficients that make n-Shapley Values sum to the prediction (Proposition
12). In fact, equation (15) arises directly from the proof of Proposition 12. The Bernoulli numbers can be computed
recursively by re-writing into (15)

Bn =
−1

n+ 1

n−1∑

k=0

Bk

(
n+ 1

k

)
∀n ≥ 1. (16)

In a certain sense, the entire combinatorics around n-Shapley Values relies on the properties of the Bernoulli numbers. In
particular, the proofs of Theorem 4 and Theorem 6 rely on the following two Lemmas.

Lemma 9. For all n ≥ 1, it holds that
n∑

k=1

Bk

n− k + 1

(
n

k

)
=

−1

n+ 1
. (17)

Proof. We re-arrange the sum to get

n∑

k=1

Bk

n− k + 1

(
n

k

)
=

1

n+ 1

n∑

k=0

(
n+ 1

k

)
Bk − B0

n+ 1
=

−1

n+ 1
(18)

where the second equality follows from (15).

Lemma 10. For all n,m ≥ 0, it holds that

n∑

k=0

m∑

l=0

(
n

k

)(
m

l

)
(n− k)!(m− l)!

(n+m− k − l + 1)!
(−1)lBk+l =




1 if n = 0

0 otherwise.
(19)

Lemma 10 follows from standard results for the Bernoulli numbers (Gould and Quaintance, 2014)[Theorem 2]. A proof is
contained in Appendix I.

A.2 Additivity and Efficiency

From the recursive definition of the n-Shapley Values in Definition 3, a straightforward calculation shows that

Φn
S(x) =

n−|S|∑

k=0

∑

K⊂[d]\S, |K|=k

Bk ∆S∪K(x) (20)

which is an alternative non-recursive definition of n-Shapley Values.

1An introduction and discussion about Bernoulli numbers can be found, for example, in the corresponding Wikipedia article at
https://en.wikipedia.org/wiki/Bernoulli_number.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Bn 1 −1
2

1
6 0 −1

30 0 1
42 0 −1

30 0 5
66 0 −691

2730 0 7
6 0 −3617

510 0 43867
798 0

Table A.1: The first 20 Bernoulli numbers.

Proposition 11 (Additivity). For all 1 ≤ n ≤ d and all f, g : Rn → R, we have

Φn
S(x; f + g) = Φn

S(x; f) + Φn
S(x; g). (21)

Proof. By definition, Φn
S is linear in ∆S , and ∆S is linear in the value function v. Therefore, the linearity of Φn

S in f
follows from the linearity of v in f , i.e. from the fact that vf+g(x, S) = vf (x, S) + vg(x, S).

Proposition 12 (Efficiency). For all 1 ≤ n ≤ d, it holds that

∑

S⊂[d]
1≤|S|≤n

Φn
S(x) = v([d])− v(∅). (22)

Proof. For n = 1, the statement follows from the efficiency of the original Shapley Values. We assume that the statement
holds for n− 1 and re-arrange the sum

∑

S⊂[d]
1≤|S|≤n

Φn
S(x) =

∑

S⊂[d]
1≤|S|<n

Φn
S(x) +

∑

S⊂[d]
|S|=n

Φn
S(x)

=
∑

S⊂[d]
1≤|S|<n


Φn−1

S (x) +Bn−|S|
∑

K⊂[d]\S
|K|+|S|=n

∆S∪K(x)


+

∑

S⊂[d]
|S|=n

∆S(x)

=
∑

S⊂[d]
1≤|S|≤n−1

Φn−1
S (x) +

∑

S⊂[d]
1≤|S|<n

∑

K⊂[d]\S
|K|+|S|=n

Bn−|S| ∆S∪K(x) +
∑

S⊂[d]
|S|=n

∆S(x).

(23)

Notice that the first term is equivalent to v([d])− v(∅) by the induction hypothesis. It remains to show that

∑

S⊂[d]
1≤|S|<n

∑

K⊂[d]\S
|K|+|S|=n

Bn−|S| ∆S∪K(x) +
∑

S⊂[d]
|S|=n

∆S(x) = 0. (24)

Notice that both sums are over sets of length n. In the first sum, each sets occurs multiple times. In the second sum, each set
occurs exactly once. By counting the occurrences of each set in the first sum we see that (24) holds if

n−1∑

s=1

Bn−s

(
n

s

)
+ 1 = 0. (25)

If we set B0 = 1, this holds if and only if
n−1∑

k=0

Bk

(
n

k

)
= 0, (26)

which is the defining property of the Bernoulli numbers (15). In summary, we see that the Bernoulli numbers are the
coefficients that balance the terms in the first sum in equation (24).
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(d) Example 4
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Figure B.1: Examples that illustrate the proposed visualization technique for n-Shapley Values.

A.3 Relationship Between n-Shapley Values of Different Order

The following proposition is a straightforward extension of Theorem 6.
Proposition 13 (Relationship Between n-Shapley Values of Different Order). For m ≤ n, let Φm

S and Φn
S be the m- and

n-Shapley Values, respectively. Then, the m-Shapley Values can be computed from the n-Shapley Values by

Φm
S (x) = Φn

S +
∑

K⊂[d]\S,
m−|S|<|K|≤n−|S|

βm−|S|,|K| Φ
n
S∪K(x). (27)

Specifically, it holds that

Φ1
i = Φn

i +
1

2

∑

j ̸=i

Φn
i,j + · · ·+ 1

n

∑

K⊂[d]\{i}
|K|=n−1

Φn
K∪i (28)

which is the basis for the visualizations in the paper.

Proof. The proposition follows from the counting argument used in the proof of Theorem 6.

B Visualizing n-Shapley Values

Due to the large number of terms involved in n-Shapley Values of higher order, visualizing these explanations is difficult.
However, Proposition 13 (which is really a variant of Theorem 6) states that higher-order variable interactions in n-Shapley
Values are related to the original Shapley Values via a simple lump-sum formula. This gives rise to the idea of simply
visualizing, for each feature, the respective components of the sum.

To illustrate this idea, let us consider a simple example. Let us begin with four different features and the usual Shapley
Values. Say the first two features have attribution zero, the third feature has attribution 0.2, and the fourth feature has
attribution −0.1. These Shapley Values can be visualized as usual, depicted in Figure B.1a. Now, let us add a second-order
interaction effect, say Φ2

2,3 = 0.1. Because this interaction effect would ultimately be added to the attributions of feature 2
and feature 3 with a factor of 1

2 , let us simply add two corresponding bars to the attributions of these features, with the color
indicating that it is a second-order effect. From the resulting Figure B.1b, it can then be seen that we have two main effects
and a single positive interaction effect between features 2 and 3. If there were another interaction effect, say Φ2

3,4 = −0.1,
we would proceed in the same way, taking care of the sign. From the resulting Figure B.1c, it can be seen that there are
two main effects and a number of second-order interactions. With higher-order interactions we proceed accordingly, as
illustrated for Φ3

2,3,4 = 0.1 (Figure B.1d) and Φ4
1,2,3,4 = −0.1 (Figure B.1d).

Note that while this form of visualization faithfully depicts the relative magnitude of the different variable interactions, it is
in general not possible to tell from the figures which variables interact with each other, for example when there are a number
of different second-order effects.

C Estimating n-Shapley Values

Here we collect some additional details regarding the estimation of n-Shapley Values. We note that the discussion here is
not exhaustive. Our objective is to (1) raise awareness for the fact that computing n-Shapley Values incurs an estimation
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Figure B.2: Estimating higher-order variable interactions requires precise evaluations of the value function. A simple way to
study this is by estimating the k-dimensional checkerboard function (14). Compare Figure 4 in the main paper.

problem, and (2) ensure that the results presented in the main paper are precisely estimated and not statistical artifacts.

Figure B.2 depicts the result of estimating the k-dimensional checkerboard function (14) for all values k = 2, . . . , 10
(compare Section 8 in the main paper). As already discussed in the main paper, we can see from the figure that estimation
becomes gradually harder as we increase the order of interaction.

In Figure C.3, we assess the degree up to which our visualizations are effected by the presence of spurious interaction effect
of intermediate order, as observed when estimating a checkerboard function with too few samples. The figure visualizes
the Shapley-GAM decomposition of a kNN classifier on the Folktables Travel data set, estimated with 500, 5000 and
133549 samples per evaluation of the value function, respectively. By comparing the left and middle part of Figure C.3
(estimation with 500 and 5000 samples, respectively), we see that 500 samples are to few and result in the presence of
spurious interaction effects, for example of of order 4 and 5. This can be seen from the fact that some of these effects vanish
as we increase the number of samples. By comparing the middle and right part of Figure C.3 (estimation with 5000 and
133549 samples, respectively), we see that estimation with 5000 samples is already quite precise for this kNN classifier.
This can be seen from the fact that significantly increasing the number of samples does not have any significant effect on the
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Figure C.3: Estimating higher-order interactions with too few samples can result in spurious interaction effects of intermediate
order. These effects are also visible in our visualizations. Left: Estimation with 500 samples per evaluation of the value
function results in spurious interaction effects. Middle: This can be seen from the fact that parts of the estimated effects
vanish if we increase the number of samples to 5000 per evaluation of the value function. Right: Using all 133549
observations in the training data per evaluation of the value function, we get almost the same visualization as for 5000
samples. The function in this example is a kNN classifier and the data set is the Folktables Travel data set.

visualization.2

Table K.2 depicts the individual terms that underlie the visualization in Figure C.3. From Table K.2, we see that main
effects are precisely estimated even with 500 samples. However, many relatively small higher-order coefficients are not very
precisely estimated even for N = 5000. Note that the latter point is not in contrast to the fact that Figure C.3 is precisely
estimated for N = 5000. Figure C.3 depicts summary statistics that are more precisely estimated than the individual
components.

D The Statistical Independence Assumption for Observational SHAP is Necessary

In this section we give a simple example to demonstrate that the assumption of independent random variables for the
observational SHAP value function in Theorem 8 is indeed necessary.

Consider the GAM of order 1
f(x1, x2) = x1 + x2.

Assume that x1 and x2 are correlated normal random variables
(
x1

x2

)
∼ N

((
0
0

)
,

(
1, ρ
ρ, 1

))

with 0 ≤ ρ ≤ 1. We have
E[x2|x1] = ρx1.

A simple calculation shows that the Shapley-GAM of observational SHAP is given by

f∅ = 0, f1(x1) = (1 + ρ)x1, f2(x2) = (1 + ρ)x2, f(x1, x2) = −ρ(x1 + x2).

According to Theorem 6, the observational SHAP values are then given by

Φ1 = (1 +
ρ

2
)x1 −

ρ

2
x2, Φ2 = (1 +

ρ

2
)x2 −

ρ

2
x1.

Clearly, recovery does not hold: Despite the fact that the underlying function is a GAM of order 1, the Shapley-GAM is a
GAM of order 2. The Shapley Values also depend on both coordinates – hence they are not well-defined functions of the
individual coordinates.

2This could of course be discussed much more rigorously.
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In contrast, the Shapley-GAM of the interventional SHAP value function is given by

f∅ = 0, f1(x1) = x1, f2(x2) = x2.

Moreover, the interventional SHAP values are given by

Φ1 = x1, Φ2 = x2,

that is recovery holds with the interventional SHAP value function (as guaranteed by Theorem 8).

E Proof of Theorem 4

Proof of Theorem 4. We are going to show that

Φd
S(x) =

∑

L⊂S

(−1)|S|−|L|v(xL, L). (29)

Note that the RHS evaluates the value function v only for sets L ⊂ S. From the assumption that the value function is
subset-compliant, it follows that the RHS is a well-defined function of xS . According to Proposition 12 (efficiency), the
d-Shapley Values sum to v(x)− v(∅) which implies the Theorem.

To show (29), we consider the non-recursive definition of n-Shapley Values 20 and then substitute the definition of ∆S(x)
from Definition 3.

Φd
S(x) =

d−|S|∑

k=0

∑

K⊂[d]\S, |K|=k

Bk ∆S∪K(x)

=

d−|S|∑

k=0

∑

K⊂[d]\S, |K|=k

Bk

∑

T⊂[d]\(S∪K)

(d− |T | − |S| − |K|)!|T |!
(d− |S| − |K|+ 1)!

∑

L⊂S∪K

(−1)|S|+|K|−|L|v(x, L ∪ T ).

=
∑

K⊂[d]\S

∑

T⊂[d]\(S∪K)

B|K|
(d− |T | − |S| − |K|)!|T |!

(d− |S| − |K|+ 1)!

∑

L⊂S∪K

(−1)|S|+|K|−|L|v(x, L ∪ T ).

(30)

Where the last equation follows from the realization that we are summing over all possible subsets of [d] \ S.

In equation (30), we are summing over the value of the same sets multiple times. Let us fix a set M = L ∪ T and count how
often it occurs in the sum. First note that v(x,M) occurs exactly once for every set K, namely by choosing T = M \(S∪K)
and L = M ∩ (S ∪K). Since the coefficients do not only depend on the size of K, but also on |T | and |L|, let us partition
the set K = K1 ∪K2 = {K ∩M} ∪ {K \M}. Let n1 = |M \ S| and n2 = |[d] \ (S ∪M)| denote the maximum sizes of
both partitions. With this counting argument, we arrive at

(−1)|S|−|M | ∑

K1⊂M\S

∑

K2⊂[d]\(S∪M)

B|K1|+|K2|
(n2 − |K2|)!(n1 − |K1|)!

(n1 + n2 − |K1| − |K2|+ 1)!
(−1)|K2| (31)

occurrences of the term v(x,M). Notice that equation (31) is equal to

(−1)|S|−|M |
n1∑

k1=0

n2∑

k2=0

(
n1

k1

)(
n2

k2

)
(n2 − k2)!(n1 − k1)!

(n1 + n2 − k1 − k2 + 1)!
(−1)k2Bk1+k2

(32)

The desired result now follows from the properties of the Bernoulli numbers. In particular, since M ⊂ S ⇐⇒ n1 = 0, we
see from Lemma 10 that (32) equals (−1)|S|−|M | if M ⊂ S and 0 otherwise. Comparing the terms for all possible sets
M ⊂ [d], we see that (30) equals (29).

Note that if we fix the point x, then the Shapley-GAM at x is equivalent to the Moebious transform of the measure v(x, ·).
From this perspective, Theorem 4 can be seen as an application of Theorem 2 in Grabisch (1997).
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F Proof of Theorem 6

Proof of Theorem 6. According to Theorem 4, the d-Shapley Values can be written as

Φd
S(x) = fS(x) (33)

where fS(x) are the component functions of the Shapley-GAM. Hence, the d-Shapley Values are a linear combination of
the component functions of the Shapley-GAM. From the recursive definition of the n-Shapley Values, we see that

Φn
S(x) = Φn+1

S (x)−B1+n−|S|
∑

K⊂[d]\S,|K|+|S|=n+1

Φn+1
S∪K(x) (34)

that is the n-Shapley Values are a linear combination of the terms involved in the n+ 1-Shapley Values. By induction, we
see that the n-Shapley Values are linear combinations of the component functions of the Shapley-GAM.

It remains to determine the coefficients Cn,m. We present a counting argument that is based on the recurrence relation (34).
In this counting argument, we first determine the coefficients Dn,m where the first index corresponds to the distance between
|S| and the order of the Shapley Values, and the second index corresponds to the different between the size of the interaction
effect and the order of the Shapley Values. Suppose that we are computing n-Shapley Values. If we use equation (34) to
proceed recursively from d-Shapley Values to n-Shapley Values, then the first time that the component function fS∪K is
being added to Φm

S is during the computation of the (|S|+ |K| − 1)-Shapley Values. According to equation (34), the linear
coefficient will simply be D|K|−1,1 = −B|K|. The second time that the component function fS∪K is being added to Φm

S is
during the computation of the (|S|+ |K| − 2)-Shapley Values. This is because we have previously added −B1fS∪K to all
the terms of order |S|+ |K| − 1 that are a subset of S ∪K. There are

(|K|
1

)
such terms, and we are now adding all of them

to fS , using the coefficient −B|K|−1. This means that we arrive at a total coefficient of

D|K|−2,2 = −B|K| +B|K|−1

(|K|
1

)
B1. (35)

By a similar argument we arrive at a coefficient of

D|K|−3,3 = −B|K| +B|K|−1

(|K|
1

)
B1 −B|K|−2

(|K|
2

)
B2 −B|K|−2

(|K|
2

)
B1

(
2

1

)
B1. (36)

for the (|S|+ |K| − 3)-Shapley Values. In general, that is when we compute n-Shapley Values, the component function
fS∪K is being added to Φn

S once for every possible pathway that goes from a set of order n + 1 to the set S ∪ K by
successively adding different numbers of elements. For k ≥ 1, let

Pk =

{
(p1, . . . , pk) ∈ Nk

≥0

∣∣∣∣
k∑

i=1

pi = k and pi = 0 =⇒ (pj = 0∀j > i)

}
(37)

be the set of pathways of length k. This means that we have P1 =
{
(1)
}

,

P2 =
{
(2, 0), (1, 1)

}
,

P3 =
{
(3, 0, 0), (2, 1, 0), (1, 2, 0), (1, 1, 1)

}
,

P4 =
{
(4, 0, 0, 0), (3, 1, 0, 0), (2, 2, 0, 0), (2, 1, 1, 0),

(1, 3, 0, 0), (1, 2, 1, 0), (1, 1, 2, 0), (1, 1, 1, 1)
}

(38)

and so on. By accounting for the coefficients Bk and the signs along each path, the coefficients can be written as

Dn,m =
∑

(p1,...,pm)∈Pm

(−1)
∑m

i=1 sign(pi)

(
n+m

n+ p1

)
Bn+p1

m∏

i=2

Bpi

(
m−∑i−1

j=1 pj
pi

)
(39)
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From this, we derive the special case

D0,m =
∑

(p1,...,pm)∈Pm

(−1)
∑m

i=1 sign(pi)

(
m

i1

)
Bp1

m∏

i=2

Bpi

(
m−∑i−1

j=1 pj
pi

)

=
∑

(p1,...,pm)∈Pm

(−1)
∑m

i=1 sign(pi)
m∏

i=1

Bpi

(
m−∑i−1

j=1 pj
pi

)

= −Bm −
m−1∑

p1=1

ap1

(
m

p1

) ∑

(p̂1,...,p̂m−p1 )∈Pm−p1

(−1)
∑m−p1

i=1 sign(pi)

m−p1∏

j=1

Bp̂j

(
m− i1 −

∑j−1
s=1 p̂s

p̂j

)

= −Bm −
m−1∑

p1=1

ap1

(
m

p1

)
β0,m−p1

= −Bm −
m−1∑

p1=1

ap1

(
m

p1

)
1

m− p1 + 1

= −
m∑

k=1

Bk

m− k + 1

(
m

k

)

=
1

m+ 1

(40)

where the last equality is due to Lemma 9. Now, this implies that

∆S(x) = Φ
|S|
S (x) = fS(x) +

∑

K⊂[d]\S, |K|≥1

D0,|K| fS∪K(x) =
∑

K⊂[d]\S

1

1 + |K|fS∪K(x) (41)

which is a version of Theorem 1 in Grabisch (1997). Using (41) and the explicit formula for n-Shapley Values (20), we get

Φn
S(x) =

n−|S|∑

k=0

∑

K⊂[d]\S, |K|=k

Bk ∆S∪K(x)

=

n−|S|∑

k=0

∑

K⊂[d]\S, |K|=k

Bk

∑

T⊂[d]\(S∪K)

1

1 + |T |fS∪K∪T (x)

(42)

From which we see that the component function fS∪K̃ is being added to Φn
S(x) exactly

Cn−|S|,|K̃| =
n−|S|∑

k=0

(
n− |S|

k

)
Bk

1 + |K̃| − k
(43)

times which concludes the proof.

G Proof of Theorem 7

Proof of Theorem 7. According to Theorem 4, the Shapley-GAM decomposition is given by

fS(x) =
∑

L⊂S

(−1)|S|−|L|v(xL, L). (44)
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By substituting the definition of the value function (12)

fS(x) =
∑

L⊂S

(−1)|S|−|L|v(xL, L)

=
∑

L⊂S

(−1)|S|−|L| ∑

T⊂L

gT (x)

=
∑

L⊂S

∑

T⊂L

gT (x)(−1)|S|−|L|

=
∑

T⊂S

gT (x)
∑

L⊂S\T
(−1)|S|−|L|−|T |

= gS(x)

(45)

Where we have re-arranged the sum to count the number of occurrences of the set T , and then used the fact that inner sum
averages to zero except for T = S.

H Proof of Theorem 8

We show a slightly more general result than what is stated in the main paper. In fact, we show that recovery holds for all
interaction indices that can be written as

InS (x) = fS(x) +
∑

K⊂[d]\S
n+1≤|S|+|K|

Cn,|S|,|K| fS∪K(x) ∀S ⊆ [d], |S| ≤ n (46)

where fS(x) are the component functions of the Shapley-GAM and Cn,|S|,|K| ∈ R are coefficients that depend on the
interaction index. n-Shapley Values can be written like this according to Theorem 6. For the Faith-Shap interaction index,
this representation is given in Theorem 19 in Tsai et al. (2022)

Faith-Shapn
S(x) = fS(x) +

∑

K⊂[d]\S
n+1≤|S|+|K|

(−1)n−|S| |S|
n+ |S|

(
n
|S|
)(|S|+|K|−1

n

)
(|S|+|K|+n−1

n+|S|
) fS∪K(x) ∀|S| ≤ n. (47)

Also the Shapley Taylor interaction index (Sundararajan et al., 2020) can, due to its symmetry, be written as

Shapley-TaylornS(x) =





fS(x) if |S| < n

fS(x) +
∑

K⊂[d]\S
n+1≤|S|+|K|

1

(|S|+|K|
|K| )

fS∪K(x) if |S| = n.
(48)

Proof of Theorem 8. We assume that the function f can be written as a GAM of order n, that is

f(x) =
∑

S⊂[d], |S|≤n

gS(xS). (49)

Notice that this GAM is not necessarily the Shapley-GAM, but just some way to write the function f as a GAM. Let fS be
the component functions of the Shapley-GAM. Now, n-Shapley Values, the Faith-Shap interaction index, as well as the
Shapley Taylor interaction index, can be written as a linear combination of the component functions of the Shapley-GAM

InS (x) = fS(xS) +
∑

K⊂[d]\S, |S|+|K|>n

Cn−|S|,|K| fS∪K(xS∪K) (50)

where the specific linear coefficients Cn,m depend on the interaction index (Theorem 6, equation (47), equation (48)).
According to equation (50), the interaction index equals fS(xS) plus some weighted components of the Shapley-GAM of
order greater than n. As a consequence, it remains to show is that the Shapley-GAM is a GAM of order n (then the second
sum vanishes and we arrive at InS (x) = fS(xS) which is what we want to show).
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It remains to show that the Shapley-GAM is a GAM of order n. According to Theorem 4, the component functions of the
Shapley-GAM are given by

fS(x) =
∑

L⊂S

(−1)|S|−|L|v(xL, L). (51)

We want to show that the component functions of degree greater than n vanish. Let us first consider observational SHAP.
Here we have

∑

L⊂S

(−1)|S|−|L|v(xL, L) =
∑

L⊂S

(−1)|S|−|L|E[f(x)|xL]

=
∑

L⊂S

(−1)|S|−|L|E


 ∑

T⊂[d], |T |≤n

gT (xT )
∣∣∣xL




=
∑

L⊂S

(−1)|S|−|L| ∑

T⊂[d], |T |≤n

E [gT (xT )|xL]

=
∑

T⊂[d], |T |≤n

∑

L⊂S

(−1)|S|−|L|E [gT (xT )|xL]

(52)

Consider the inner sum. If |S| > n, we can always pick an element i ∈ S \ T and write
∑

L⊂S\{i}
(−1)|S|−|L|

(
E [gT (xT )|xL]− E

[
gT (xT )|xL∪{i}

] )
(53)

If the input features are independent, then gT (xT ) and xi are independent, from which we get by the properties of the
conditional expectation that

E
[
gT (xT )|xL∪{i}

]
= E [gT (xT )|xL] (54)

It follows that the inner sum is zero for all sets T , and that the component functions of the Shapley-GAM of degree greater
than n are equal to zero, too.

Let us now consider interventional SHAP. Just as for observational SHAP, we arrive at equation (53) using the linearity of
the expectation operator. Hence, we require that

E
[
gT (xT )|do(xL∪{i})

]
= E [gT (xT )|do(xL)] (55)

which follows from the properties of the causal do-operator. Intuitively, since gT does not depend on the value of feature i,
intervening on that feature has no effect.

I Proof of Lemma 10

Proof. Let us first consider the case n = 0. For n = 0 and m = 0, we have
(
0

0

)(
0

0

)
(0− 0)!(0− 0)!

(0 + 0− 0− 0 + 1)!
(−1)0B0 = 1. (56)

For n = 0 and m ≥ 1, we have
m∑

l=0

(
m

l

)
1

(m− l + 1)
(−1)lBl =

1

m+ 1

m∑

l=0

(
m+ 1

l

)
(−1)lBl

=
−2

m+ 1

(
m+ 1

1

)
B1 +

m∑

l=0

(
m+ 1

l

)

= −2B1 + 0 = 1.

(57)

where we used (15) and the fact that the odd Bernoulli numbers vanish except for n = 1. For m = 0 and n ≥ 1, we also
have from (15)

n∑

k=0

(
n

k

)
1

(n− k + 1)
(−1)0Bk =

1

n+ 1

n∑

k=0

(
n+ 1

k

)
Bk = 0. (58)
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It remains to show the general case n,m ≥ 1. According to a derivation by Gy (2022), the problem in this case is equivalent
to

(−1)n
m∑

l=0

Bn+l+1

n+ l + 1

(
m

l

)
+ (−1)m

n∑

k=0

Bm+k+1

m+ k + 1

(
n

k

)
= − 1

(n+m+ 1)
(
n+m
m

) (59)

Now, Theorem 2 in Gould and Quaintance (2014) with s = 1 states that for any sequence of numbers (an)n≥0, it holds that

m∑

k=0

(
m

k

)
an+k+1

n+ k + 1
=

n∑

k=0

(−1)n−k

(
n

k

)
bm+k+1

m+ k + 1
+

(−1)n+1a0

(m+ n+ 1)
(
m+n
n

) (60)

where the sequence (bn)n≥0 is the binomial transform of the sequence (an)n≥0, given by

bn =

n∑

k=0

(
n

k

)
ak. (61)

Setting an = Bn, we have from (15) that the binomial transform of the Bernoulli numbers is simply

bn =

n∑

k=0

(
n

k

)
Bk = (−1)nBn (62)

where the factor (−1)n takes care of the special case n = 1. Using (60) with an = Bn and bn = (−1)nBn, we get

(−1)n
m∑

k=0

(
m

k

)
Bn+k+1

n+ k + 1
= −

n∑

k=0

(−1)m
(
n

k

)
Bm+k+1

m+ k + 1
− 1

(m+ n+ 1)
(
m+n
n

) (63)

where we multiplied both sides with (−1)n. This is the same as (59) which concludes the proof.
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J Datasets and Models

In our experiments, we use the following data sets and models.

J.1 Datasets

Folktables Income. Folktables is a Python package that provides access to data sets derived from recent US Censuses
https://github.com/zykls/folktables. We used this package to obtain the data from the 2016 Census in
California. The machine learning problem is the ACSIncome prediction task, that is to predict whether an individual’s
income is above $50,000, based on 10 personal characteristics (Ding et al., 2021). The data set contains of 152 149
observations.

Folktables Travel Time. Folktables is a Python package that provides access to data sets derived from recent US Censuses
https://github.com/zykls/folktables. We used this package to obtain the data from the 2016 Census in
California. The machine learning problem is the ACSTravelTime prediction task, that is to predict whether an individual has
to commute to work longer than 20 minutes, based on 10 personal characteristics (Ding et al., 2021). The data set contains
133 549 observations.

German Credit. The German Credit Data set is a data set with 20 different features on individual’s credit history and
personal characteristic. The machine learning problem is to predict credit risk in binary form. We obtained the data set from
the UCI machine learning repository and reduced the number of features to 10 without any observed drop in accuracy. The
data set contains 1000 observations.

California Housing. The California Housing data set was derived from the 1990 U.S. census. The regression problem is to
predict the median house value, based on 8 characteristics. We obtained the data set form the scikit-learn library. The
data set contains 20 640 observations.

Iris. The Iris data set is a simple flower data set. The machine learning problem is to classify whether the flower is of a
particular kind or not, based on 4 different features. We obtained the data set form the scikit-learn library. The data
set contains 150 observations.

J.2 Models

Glassbox-GAM. We train the Glassbox-GAMs with the interpretML library (Nori et al., 2019) and default parameters
(no interactions).

Gradient Boosted Tree. We use the xgboost library (Chen and Guestrin, 2016) and train with 100 trees per model. This
setting allows to achieve competitive accuracy for gradient boosted trees.

Random Forest. We use the scikit-learn library (Pedregosa et al., 2011) and train with 100 trees per forest. This
setting allows to achieve competitive accuracy for random forests.

k-Nearest Neighbor. We use the scikit-learn library (Pedregosa et al., 2011). The hyperparameter k was chosen with
cross-validation to be 30, 80, 25, 10, 1 for the data sets as listed above.
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K Additional Plots and Figures

K.1 Folktables Income

K.1.1 Glassbox-GAM
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Figure K.4: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the Folktables Income data set.

K.1.2 Gradient Boosted Tree

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

At
tri

bu
tio

n

Shapley Values Shapley Interaction Values 3-Shapley Values 4-Shapley Values 5-Shapley Values

AG
EP

CO
W

SC
HL

M
AR

OC
CP

PO
BP

RE
LP

W
KH

P
SE

X
RA

C1
P

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Fe
at

ur
e 

At
tri

bu
tio

n

6-Shapley Values

AG
EP

CO
W

SC
HL

M
AR

OC
CP

PO
BP

RE
LP

W
KH

P
SE

X
RA

C1
P

7-Shapley Values

AG
EP

CO
W

SC
HL

M
AR

OC
CP

PO
BP

RE
LP

W
KH

P
SE

X
RA

C1
P

8-Shapley Values

AG
EP

CO
W

SC
HL

M
AR

OC
CP

PO
BP

RE
LP

W
KH

P
SE

X
RA

C1
P

9-Shapley Values

AG
EP

CO
W

SC
HL

M
AR

OC
CP

PO
BP

RE
LP

W
KH

P
SE

X
RA

C1
P

Shapley-GAM

Main 2nd order 3rd order 4th 5th 6th 7th 8th 9th 10th order

Figure K.5: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the Folktables Income
data set.
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K.1.3 Random Forest
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Figure K.6: n-Shapley Values for a Random Forest and the first observation in our test set of the Folktables Income data set.

K.1.4 k-Nearest Neighbor
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Figure K.7: n-Shapley Values for a kNN classifier and the first observation in our test set of the Folktables Income data set.
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Figure K.8: Partial dependence plots for the kNN classifier on the Folktables Income data set (compare Figure 2 in the main
paper). Depicted are the partial dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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From Shapley Values to Generalized Additive Models and back

K.2 Folktables Travel
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Figure K.9: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the Folktables Travel data set.
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Figure K.10: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the Folktables Travel
data set.
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K.2.3 Random Forest
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Figure K.11: n-Shapley Values for a Random Forest and the first observation in our test set of the Folktables Travel data set.
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Figure K.12: n-Shapley Values for a kNN classifier and the first observation in our test set of the Folktables Travel data set.
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Figure K.13: Partial dependence plots for the random forest on the Folktables Travel data set. Depicted are the partial
dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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K.3 German Credit
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Figure K.14: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the German Credit data set.
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Figure K.15: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the German Credit
data set.
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From Shapley Values to Generalized Additive Models and back
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Figure K.16: n-Shapley Values for a Random Forest and the first observation in our test set of the German Credit data set.
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Figure K.17: n-Shapley Values for a kNN classifier and the first observation in our test set of the German Credit data set.
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Figure K.18: Partial dependence plots for the Glassbox-GAM without interaction terms on the German Credit data set.
Depicted are the partial dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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From Shapley Values to Generalized Additive Models and back

K.4 California Housing
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Figure K.19: n-Shapley Values for a Glassbox-GAM and the first observation in our test set of the California Housing data
set.

K.4.2 Gradient Boosted Tree
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Figure K.20: n-Shapley Values for a Gradient Boosted Tree and the first observation in our test set of the California Housing
data set.
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Figure K.21: n-Shapley Values for a Random Forest and the first observation in our test set of the California Housing data
set.
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Figure K.22: n-Shapley Values for a kNN classifier and the first observation in our test set of the California Housing data set.
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From Shapley Values to Generalized Additive Models and back

0 2
Value of Feature MedInc

0

1

2

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

0 2
Value of Feature MedInc

Shapley Interaction Values

0 2
Value of Feature MedInc

4-Shapley Values

0 2
Value of Feature MedInc

Shapley-GAM

−1 0 1 2
Value of Feature HouseAge

−0.2

0.0

0.2

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

−1 0 1 2
Value of Feature HouseAge

Shapley Interaction Values

−1 0 1 2
Value of Feature HouseAge

4-Shapley Values

−1 0 1 2
Value of Feature HouseAge

Shapley-GAM

0 5 10
Value of Feature AveRooms

−0.5

0.0

0.5

1.0

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

0 5 10
Value of Feature AveRooms

Shapley Interaction Values

0 5 10
Value of Feature AveRooms

4-Shapley Values

0 5 10
Value of Feature AveRooms

Shapley-GAM

0 5 10 15
Value of Feature AveBedrms

−0.4

−0.2

0.0

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

0 5 10 15
Value of Feature AveBedrms

Shapley Interaction Values

0 5 10 15
Value of Feature AveBedrms

4-Shapley Values

0 5 10 15
Value of Feature AveBedrms

Shapley-GAM

0 2 4
Value of Feature Population

0.0

0.2

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

0 2 4
Value of Feature Population

Shapley Interaction Values

0 2 4
Value of Feature Population

4-Shapley Values

0 2 4
Value of Feature Population

Shapley-GAM

−0.1 0.0 0.1 0.2
Value of Feature AveOccup

0.0

0.5

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

−0.1 0.0 0.1 0.2
Value of Feature AveOccup

Shapley Interaction Values

−0.1 0.0 0.1 0.2
Value of Feature AveOccup

4-Shapley Values

−0.1 0.0 0.1 0.2
Value of Feature AveOccup

Shapley-GAM

−1 0 1 2
Value of Feature Latitude

−2

0

2

Fe
at

ur
e 

At
tri

bu
tio

n Shapley Values

−1 0 1 2
Value of Feature Latitude

Shapley Interaction Values

−1 0 1 2
Value of Feature Latitude

4-Shapley Values

−1 0 1 2
Value of Feature Latitude

Shapley-GAM

Figure K.23: Partial dependence plots for the gradient boosted tree on the California Housing data set. Depicted are the
partial dependence plots of Φn

i for n = {1, 2, 4, 10} and 7 different features.
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Subset S N=500 N=5000 N=133 549
(0,) 0.1128 0.1144 0.1165
(1,) 0.0005 -0.0006 0.0022
(2,) -0.1248 -0.1117 -0.1098
(3,) 0.0227 0.0283 0.0281
(4,) -0.0041 -0.0020 -0.0018
(5,) -0.0123 -0.0189 -0.0200
(6,) 0.0845 0.1003 0.0982
(7,) 0.2357 0.2478 0.2505
(8,) 0.0280 0.0329 0.0347
(9,) 0.0197 0.0238 0.0241
(0, 1) -0.0023 -0.0020 -0.0032
(0, 2) 0.0059 0.0005 -0.0025
(0, 3) -0.0146 -0.0128 -0.0126
(0, 4) 0.0089 0.0102 0.0102
(0, 5) 0.0038 0.0140 0.0141
(0, 6) -0.0244 -0.0242 -0.0213
(0, 7) -0.0452 -0.0416 -0.0426
(0, 8) -0.0032 -0.0028 -0.0038
(0, 9) -0.0043 -0.0055 -0.0071
(1, 2) -0.0012 -0.0009 -0.0022
(1, 3) -0.0004 0.0003 0.0007
(1, 4) -0.0006 0.0011 -0.0011
(1, 5) -0.0060 -0.0000 0.0004
(1, 6) 0.0027 0.0024 0.0014
(1, 7) 0.0093 0.0102 0.0079
(1, 8) -0.0017 0.0020 0.0007
(1, 9) 0.0048 0.0032 0.0027
(2, 3) 0.0029 -0.0006 -0.0016
(2, 4) -0.0419 -0.0534 -0.0547
(2, 5) -0.0128 -0.0095 -0.0115
(2, 6) 0.0389 0.0286 0.0290
(2, 7) 0.0752 0.0695 0.0677
(2, 8) -0.0031 -0.0044 -0.0070
(2, 9) 0.0151 0.0039 0.0031
(3, 4) -0.0112 -0.0093 -0.0091
(3, 5) 0.0006 0.0058 0.0055
(3, 6) -0.0068 -0.0116 -0.0099
(3, 7) -0.0286 -0.0298 -0.0304
(3, 8) -0.0135 -0.0165 -0.0181
(3, 9) 0.0038 -0.0036 -0.0041
(4, 5) -0.0016 0.0069 0.0071
(4, 6) -0.0279 -0.0295 -0.0298
(4, 7) -0.0100 -0.0070 -0.0079
(4, 8) -0.0019 -0.0037 -0.0043
(4, 9) -0.0091 -0.0116 -0.0122
(5, 6) 0.0026 0.0083 0.0079
(5, 7) 0.0084 0.0152 0.0157
(5, 8) -0.0000 0.0055 0.0045
(5, 9) 0.0015 0.0044 0.0041
(6, 7) -0.0551 -0.0603 -0.0581
(6, 8) -0.0132 -0.0174 -0.0182
(6, 9) -0.0053 -0.0140 -0.0126
(7, 8) -0.0125 -0.0102 -0.0127
(7, 9) -0.0102 -0.0151 -0.0161
(8, 9) 0.0052 0.0014 -0.0004
(0, 1, 2) -0.0058 -0.0026 -0.0014
(0, 1, 3) 0.0018 0.0028 0.0020
(0, 1, 4) -0.0000 -0.0030 -0.0021
(0, 1, 5) 0.0070 -0.0005 -0.0013
(0, 1, 6) 0.0060 0.0024 0.0030
(0, 1, 7) -0.0039 -0.0024 -0.0015
(0, 1, 8) 0.0073 0.0007 0.0014
(0, 1, 9) -0.0003 -0.0006 -0.0009
(0, 2, 3) 0.0038 0.0031 0.0030
(0, 2, 4) -0.0274 -0.0141 -0.0079
(0, 2, 5) 0.0088 0.0062 0.0081
(0, 2, 6) -0.0042 0.0006 -0.0006
(0, 2, 7) 0.0233 0.0242 0.0275
(0, 2, 8) 0.0043 0.0023 0.0055
(0, 2, 9) -0.0298 -0.0249 -0.0216
(0, 3, 4) 0.0149 0.0078 0.0091
(0, 3, 5) 0.0019 -0.0023 -0.0014
... ... ... ...

Subset S N=500 N=5000 N=133 549
... ... ... ...
(2, 7, 8, 9) 0.0043 0.0009 0.0005
(3, 4, 5, 6) -0.0101 -0.0143 -0.0135
(3, 4, 5, 7) 0.0045 -0.0030 -0.0049
(3, 4, 5, 8) -0.0020 -0.0053 -0.0047
(3, 4, 5, 9) -0.0064 -0.0049 -0.0054
(3, 4, 6, 7) 0.0097 0.0076 0.0079
(3, 4, 6, 8) -0.0058 -0.0058 -0.0047
(3, 4, 6, 9) 0.0032 0.0018 0.0017
(3, 4, 7, 8) 0.0007 -0.0011 -0.0011
(3, 4, 7, 9) 0.0041 0.0003 0.0004
(3, 4, 8, 9) 0.0006 0.0013 0.0021
(3, 5, 6, 7) 0.0052 0.0059 0.0071
(3, 5, 6, 8) -0.0024 -0.0011 -0.0000
(3, 5, 6, 9) -0.0044 -0.0023 -0.0019
(3, 5, 7, 8) -0.0023 -0.0014 -0.0011
(3, 5, 7, 9) -0.0007 -0.0031 -0.0024
(3, 5, 8, 9) -0.0010 -0.0007 -0.0005
(3, 6, 7, 8) 0.0035 0.0027 0.0034
(3, 6, 7, 9) -0.0034 -0.0052 -0.0045
(3, 6, 8, 9) -0.0019 -0.0011 -0.0004
(3, 7, 8, 9) 0.0018 0.0014 0.0003
(4, 5, 6, 7) -0.0052 -0.0020 -0.0037
(4, 5, 6, 8) -0.0025 -0.0001 0.0007
(4, 5, 6, 9) -0.0019 0.0005 0.0004
(4, 5, 7, 8) -0.0027 0.0009 0.0016
(4, 5, 7, 9) -0.0017 0.0005 0.0010
(4, 5, 8, 9) -0.0004 -0.0004 0.0000
(4, 6, 7, 8) -0.0000 -0.0003 0.0011
(4, 6, 7, 9) 0.0017 0.0005 0.0006
(4, 6, 8, 9) -0.0005 -0.0005 0.0005
(4, 7, 8, 9) 0.0007 -0.0000 -0.0001
(5, 6, 7, 8) -0.0041 -0.0024 -0.0012
(5, 6, 7, 9) -0.0038 -0.0046 -0.0039
(5, 6, 8, 9) 0.0013 -0.0009 -0.0007
(5, 7, 8, 9) -0.0003 0.0003 0.0004
(6, 7, 8, 9) 0.0022 0.0005 0.0003
(0, 1, 2, 3, 4) 0.0042 0.0010 0.0003
(0, 1, 2, 3, 5) 0.0004 0.0010 0.0012
(0, 1, 2, 3, 6) 0.0018 0.0004 0.0002
(0, 1, 2, 3, 7) 0.0014 0.0006 0.0012
(0, 1, 2, 3, 8) 0.0007 -0.0004 -0.0001
(0, 1, 2, 3, 9) 0.0006 0.0012 0.0015
(0, 1, 2, 4, 5) 0.0051 0.0013 0.0013
(0, 1, 2, 4, 6) 0.0016 0.0011 0.0010
(0, 1, 2, 4, 7) 0.0005 -0.0011 -0.0009
(0, 1, 2, 4, 8) 0.0022 0.0005 0.0008
(0, 1, 2, 4, 9) 0.0026 -0.0002 -0.0000
(0, 1, 2, 5, 6) 0.0025 0.0023 0.0038
(0, 1, 2, 5, 7) 0.0013 -0.0001 0.0003
(0, 1, 2, 5, 8) 0.0012 0.0011 0.0017
(0, 1, 2, 5, 9) 0.0017 -0.0008 -0.0006
(0, 1, 2, 6, 7) 0.0005 -0.0010 -0.0008
(0, 1, 2, 6, 8) -0.0003 -0.0008 -0.0001
(0, 1, 2, 6, 9) 0.0008 -0.0001 -0.0003
(0, 1, 2, 7, 8) 0.0003 -0.0010 -0.0005
(0, 1, 2, 7, 9) 0.0004 -0.0008 -0.0006
(0, 1, 2, 8, 9) -0.0004 -0.0006 -0.0003
(0, 1, 3, 4, 5) 0.0013 0.0002 -0.0007
(0, 1, 3, 4, 6) 0.0017 0.0009 -0.0001
(0, 1, 3, 4, 7) 0.0028 0.0010 0.0010
(0, 1, 3, 4, 8) 0.0032 -0.0004 -0.0000
(0, 1, 3, 4, 9) -0.0005 -0.0006 -0.0001
(0, 1, 3, 5, 6) -0.0012 0.0000 0.0003
(0, 1, 3, 5, 7) 0.0018 -0.0006 -0.0003
(0, 1, 3, 5, 8) 0.0003 -0.0001 0.0000
(0, 1, 3, 5, 9) -0.0012 -0.0000 0.0002
(0, 1, 3, 6, 7) 0.0011 0.0002 0.0009
(0, 1, 3, 6, 8) 0.0020 -0.0004 -0.0002
(0, 1, 3, 6, 9) -0.0000 0.0007 0.0004
(0, 1, 3, 7, 8) 0.0015 -0.0003 0.0001
(0, 1, 3, 7, 9) -0.0003 -0.0010 -0.0004
... ... ... ...

Subset S N=500 N=5000 N=133 549
... ... ... ...
(1, 2, 5, 6, 7, 8, 9) 0.0029 -0.0003 -0.0009
(1, 3, 4, 5, 6, 7, 8) 0.0005 -0.0032 -0.0035
(1, 3, 4, 5, 6, 7, 9) 0.0061 0.0051 0.0049
(1, 3, 4, 5, 6, 8, 9) 0.0062 0.0014 -0.0009
(1, 3, 4, 5, 7, 8, 9) 0.0002 0.0002 0.0009
(1, 3, 4, 6, 7, 8, 9) 0.0015 0.0015 0.0008
(1, 3, 5, 6, 7, 8, 9) 0.0002 -0.0026 -0.0004
(1, 4, 5, 6, 7, 8, 9) 0.0025 0.0026 0.0016
(2, 3, 4, 5, 6, 7, 8) -0.0038 0.0007 -0.0002
(2, 3, 4, 5, 6, 7, 9) 0.0039 0.0042 0.0036
(2, 3, 4, 5, 6, 8, 9) 0.0059 0.0022 0.0013
(2, 3, 4, 5, 7, 8, 9) -0.0042 -0.0016 -0.0010
(2, 3, 4, 6, 7, 8, 9) -0.0007 0.0013 0.0008
(2, 3, 5, 6, 7, 8, 9) -0.0046 -0.0029 -0.0015
(2, 4, 5, 6, 7, 8, 9) 0.0012 0.0018 0.0008
(3, 4, 5, 6, 7, 8, 9) 0.0014 0.0009 0.0011
(0, 1, 2, 3, 4, 5, 6, 7) -0.0021 -0.0027 -0.0019
(0, 1, 2, 3, 4, 5, 6, 8) 0.0037 0.0021 0.0014
(0, 1, 2, 3, 4, 5, 6, 9) 0.0018 -0.0006 -0.0015
(0, 1, 2, 3, 4, 5, 7, 8) 0.0002 0.0002 -0.0001
(0, 1, 2, 3, 4, 5, 7, 9) -0.0002 -0.0006 -0.0012
(0, 1, 2, 3, 4, 5, 8, 9) 0.0015 0.0018 -0.0001
(0, 1, 2, 3, 4, 6, 7, 8) 0.0005 0.0010 -0.0003
(0, 1, 2, 3, 4, 6, 7, 9) -0.0004 0.0013 0.0003
(0, 1, 2, 3, 4, 6, 8, 9) 0.0025 0.0014 0.0005
(0, 1, 2, 3, 4, 7, 8, 9) -0.0013 0.0001 -0.0003
(0, 1, 2, 3, 5, 6, 7, 8) 0.0037 0.0016 -0.0005
(0, 1, 2, 3, 5, 6, 7, 9) 0.0009 0.0008 -0.0009
(0, 1, 2, 3, 5, 6, 8, 9) 0.0018 0.0009 -0.0002
(0, 1, 2, 3, 5, 7, 8, 9) 0.0014 0.0010 -0.0002
(0, 1, 2, 3, 6, 7, 8, 9) 0.0000 0.0006 0.0001
(0, 1, 2, 4, 5, 6, 7, 8) 0.0030 0.0017 0.0002
(0, 1, 2, 4, 5, 6, 7, 9) -0.0009 -0.0002 0.0000
(0, 1, 2, 4, 5, 6, 8, 9) 0.0052 0.0014 0.0004
(0, 1, 2, 4, 5, 7, 8, 9) -0.0010 0.0006 -0.0001
(0, 1, 2, 4, 6, 7, 8, 9) -0.0013 0.0003 -0.0000
(0, 1, 2, 5, 6, 7, 8, 9) 0.0007 0.0003 -0.0004
(0, 1, 3, 4, 5, 6, 7, 8) -0.0013 0.0008 -0.0006
(0, 1, 3, 4, 5, 6, 7, 9) 0.0003 0.0017 0.0006
(0, 1, 3, 4, 5, 6, 8, 9) 0.0010 0.0005 -0.0001
(0, 1, 3, 4, 5, 7, 8, 9) -0.0006 0.0007 -0.0000
(0, 1, 3, 4, 6, 7, 8, 9) -0.0007 0.0005 0.0002
(0, 1, 3, 5, 6, 7, 8, 9) -0.0001 0.0008 0.0002
(0, 1, 4, 5, 6, 7, 8, 9) -0.0002 0.0010 0.0001
(0, 2, 3, 4, 5, 6, 7, 8) 0.0006 0.0001 -0.0007
(0, 2, 3, 4, 5, 6, 7, 9) -0.0005 0.0015 0.0003
(0, 2, 3, 4, 5, 6, 8, 9) 0.0012 0.0004 0.0001
(0, 2, 3, 4, 5, 7, 8, 9) -0.0005 0.0002 -0.0001
(0, 2, 3, 4, 6, 7, 8, 9) -0.0010 0.0002 0.0002
(0, 2, 3, 5, 6, 7, 8, 9) 0.0009 0.0004 -0.0000
(0, 2, 4, 5, 6, 7, 8, 9) -0.0007 0.0007 0.0001
(0, 3, 4, 5, 6, 7, 8, 9) -0.0010 0.0008 0.0006
(1, 2, 3, 4, 5, 6, 7, 8) -0.0131 -0.0081 -0.0069
(1, 2, 3, 4, 5, 6, 7, 9) -0.0018 0.0002 0.0013
(1, 2, 3, 4, 5, 6, 8, 9) -0.0073 -0.0006 0.0015
(1, 2, 3, 4, 5, 7, 8, 9) 0.0039 0.0040 0.0042
(1, 2, 3, 4, 6, 7, 8, 9) 0.0011 0.0000 0.0014
(1, 2, 3, 5, 6, 7, 8, 9) 0.0018 0.0036 0.0014
(1, 2, 4, 5, 6, 7, 8, 9) -0.0021 -0.0014 0.0005
(1, 3, 4, 5, 6, 7, 8, 9) -0.0036 -0.0048 -0.0048
(2, 3, 4, 5, 6, 7, 8, 9) -0.0021 -0.0039 -0.0038
(0, 1, 2, 3, 4, 5, 6, 7, 8) -0.0023 -0.0018 -0.0002
(0, 1, 2, 3, 4, 5, 6, 7, 9) -0.0008 -0.0013 0.0003
(0, 1, 2, 3, 4, 5, 6, 8, 9) -0.0063 -0.0024 -0.0003
(0, 1, 2, 3, 4, 5, 7, 8, 9) 0.0012 0.0000 0.0010
(0, 1, 2, 3, 4, 6, 7, 8, 9) 0.0012 -0.0003 0.0002
(0, 1, 2, 3, 5, 6, 7, 8, 9) -0.0017 -0.0008 0.0005
(0, 1, 2, 4, 5, 6, 7, 8, 9) 0.0003 -0.0004 0.0004
(0, 1, 3, 4, 5, 6, 7, 8, 9) -0.0000 -0.0019 -0.0009
(0, 2, 3, 4, 5, 6, 7, 8, 9) -0.0003 -0.0017 -0.0010
(1, 2, 3, 4, 5, 6, 7, 8, 9) -0.0041 -0.0008 -0.0022
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 0.0005 0.0012 -0.0002

Table K.2: The individual terms of the Shapley-GAM decomposition of a kNN classifier on the Folktables Travel data set.
The table depicts a number of selected terms of the full decomposition, estimated with 500, 5000 and 133549 samples per
evaluation of the value function. The depicted terms are visualized in Figure C.3. From the table, we see that many relatively
small higher-order coefficients are not very precisely estimated for N = 5000, whereas the overall sums (visualized in
Figure C.3) are.
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Chapter 3

Discussion

The first newspaper report of a machine that could ”walk, talk, see, write, reproduce itself
and be conscious of its existence” is now 65 years old (The New York Times, 1958). While
the early days of computing in the 1940s and 1950s did indeed see important concep-
tual contributions, the desire to build machines that could solve real-world tasks like
complex gameplay and image recognition remained elusive for the biggest part of the
20th century.

The last 15 years, however, have seen incredible advances in artificial intelligence,
up to the point where seasoned scholars started to question whether research should
continue at the current pace (Bengio, 2023). Long-standing open problems have been
solved to a degree that seemed implausible just 10 years ago. While current computer
programs and robots are arguably not conscious, they are indeed increasingly able
to walk, talk, see, and write. In some respect, machine learning research today is
therefore back to the debates that arose at its very beginning. What would be a valid
test for general intelligence? What does it take to build truly intelligent machines? But
also: How do today’s systems work, exactly?

Apart from these scientific debates, the impact of machine learning on society is
increasingly being seen as problematic. Notably, this is not an abstract concern but
is evidenced by a large number of systems that have been shown to be demonstrably
problematic (Barocas et al., 2019). At a high level, one of the main concerns about
the usage of artificial intelligence systems in social contexts is that these systems are,
by design, incredibly intransparent. This is problematic insofar as these systems are
usually being deployed by institutions that are already relatively powerful, leading
to concerns that artificial intelligence might adversely affect the balance of power in
society (Acemoglu and Johnson, 2023).

In this current moment, the nascent field of explainable machine learning attempts
to make model behavior transparent by providing human-understandable ”explana-
tions” for the behavior of complex machine learning systems. This approach has led to
demonstrable success cases, especially in the area of model debugging and improve-
ment. It has led, for example, to the discovery that models trained on medical images
tend to rely on doctors’ annotations instead of the underlying medical conditions.
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What is more, there is also evidence that explainable machine learning can be useful
for scientific discovery (Janizek et al., 2023).

With regard to the ambitious objectives of making complex systems generally trans-
parent, or providing explanations that are useful for domain experts and regulators,
explainable machine learning has so far been largely unsuccessful. At the time of the
writing of this thesis, there exists little to no evidence that demonstrates the usefulness
of post-hoc explanations in challenging application scenarios with human domain ex-
perts. A notable exception to this is the approach of building interpretable models.

In summary, it is now becoming increasingly clear that faithfully explaining com-
plex machine learning systems is not an easy task. This applies both to models in
computer vision, as well as to high-dimensional applications with tabular data. While
it has not been easy to make progress on the problem of model interpretability, the is-
sue of the opaqueness of currently available models remains nevertheless pressing. As
such, there are still many questions worth exploring in explainable machine learning.
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