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Abstract

Precision in cancer treatment builds upon targeted strategies tailored to the genomic
traits of patients instigating pathological abnormalities. Extrapolating phenotype to
genotype translations to oncology clinics has led to a less costly and more efficient can-
cer care model. However, its implementation remains challenging due to the complex
analysis trajectory requiring various bioinformatics tools and databases. It relies on the
individual expertise of MTBs executing a non-standard framework with a limited num-
ber of pharmacogenomics sources. The disadvantages of existing tools emanate from
requiring programmatic skills, not addressing data privacy concerns, the large number
of clinical evidence databases, and the lack of GUI tailored to MTB’s workflow.

We created ClinVAP, a cohesive framework for clinical annotation of genomic vari-
ants which automates the process of generating patient-specific diagnostic reports by
translating the long list of mutations to clinical implications. We enriched it with
the gene-gene interactions that also reveal the content of disrupted pathways. We
provided the combined results in an interactive GUI which isolates backend opera-
tions from the users and allows them to operate through the results. We measured
the adaptability of ClinVAP using retrospective cases to compare their contentwise
equality to the MTB’s implementation. The differences were mainly based on expert
opinion. The content and the structure of the automated patient reporting tools form
a comprehensive foundation to be used in decision making.

The future of precision oncology depends on the accessibility of the accumulated molec-
ular knowledge of the disease-contributing factors. The number of bioinformatics tools
and the sheer size of genome data is a barrier to making this information available in
hospitals. Our solutions not only increase their clinical applicability, but also demon-
strate the field’s readiness to generate automated solutions. Moreover, standardization
and archiving will facilitate population studies, allowing molecular analyses to be
archived and returned to the system as information.
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Zusammenfassung

Individualisierung in der Krebsbehandlung beruht auf gezielten Strategien, die auf die
genomischen Merkmale der Patienten zugeschnitten sind, die pathologische Anomalien
verursachen. Die Extrapolation von Phänotyp-Genotyp-Beziehungen auf onkologische
Kliniken hat zu einem weniger kostspieligen und effizienteren Krebsbehandlungsmo-
dell geführt. Die Umsetzung ist jedoch nach wie vor schwierig, da für die komplexe
Analyse verschiedene Bioinformatik-Tools und Datenbanken erforderlich sind. Sie be-
ruht auf dem individuellen Fachwissen der MTBs, die einen nicht standardisierten
Rahmen mit einer begrenzten Anzahl von Quellen ausführen. Die Nachteile bestehen-
der Tools bestehen darin, dass sie Programmierkenntnisse erfordern, den Datenschutz
nicht berücksichtigen, eine Vielzahl von Datenbanken mit klinischer Evidenz enthalten
und keine auf die Arbeitsabläufe von Molekularen Tumorboards (MTBs) zugeschnitte-
ne Benutzeroberfläche haben.

Wir haben ClinVAP entwickelt, ein kohärentes Framework für die klinische Annotation
von Genomvarianten, das den Prozess der Erstellung patientenspezifischer Diagnose-
berichte automatisiert, indem es die lange Liste von Mutationen in klinische Implikatio-
nen übersetzt. Wir haben es mit den Gen-Gen-Interaktionen angereichert, die auch den
Inhalt der gestörten Signalwege aufzeigen. Wir haben die kombinierten Ergebnisse in
einer interaktiven grafischen Benutzeroberfläche (GUI) bereitgestellt, die die Backend-
Operationen von den Nutzern isoliert und es ihnen ermöglicht, die Ergebnisse zu be-
arbeiten. Wir haben die Anpassungsfähigkeit von ClinVAP anhand von retrospektiven
Fällen gemessen, um ihre inhaltliche Gleichheit mit der manuellen Implementierung
im MTB zu vergleichen. Die Unterschiede beruhten hauptsächlich auf Expertenmei-
nungen. Der Inhalt und die Struktur der automatisierten Patientenberichts-Tools sind
eine umfassende Grundlage für die Entscheidungsfindung.

Die Zukunft der Präzisionsonkologie hängt von der Zugänglichkeit des gesammelten
molekularen Wissens über die krankheitsverursachenden Faktoren ab. Die Vielzahl der
Bioinformatik-Tools und die schiere Größe der Genomdaten stellen ein Hindernis für
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die Bereitstellung dieser Informationen in Krankenhäusern dar. Unsere Lösungen erhö-
hen nicht nur ihre klinische Anwendbarkeit, sondern zeigen auch, dass das Feld bereit
ist, automatisierte Lösungen zu entwickeln. Darüber hinaus werden Standardisierung
und Archivierung Populationsstudien erleichtern, da molekulare Analysen archiviert
und als Informationen an das System zurückgegeben werden können.
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Chapter 1

Introduction

Motivation

The advancements in the sequencing methods commercially enabled Next-Generation
Sequencing (NGS) technologies, which have revolutionized genomic research by pro-
ducing an unprecedented amount of data. With such advancements, 30 years after the
Human Genome Project, the sequencing cost is under 1,000 dollars per genome and
the rate of data growth is doubling every seven months 1,2. Our ability to generate
genomic data at reduced costs with speed makes sequencing the entire genome and
the whole exome possible and produces approximately one terabase of data per run
with today’s instruments3.

Rapid developments in NGS technologies have revealed genetic variability among
humans and other species. It leveraged the study of evolution and natural selection,
genome editing, and synthetic biology. One of the most compelling applications is
discovering novel molecular disease mechanisms to link genotypes with the complex
traits in the population with large-scale genome-wide association studies (GWAS).
GWAS has reached more than one million individuals and resulted in the risk loci
mappings for a vast amount of diseases with the identification of more than 50,000
unique single nucleotide variant (SNV)-trait associations4–6. Although such large-scale
population studies revealed the molecular rationale of monogenic diseases and led to
successful clinical applications, the lack of causal gene findings in polygenic complex
diseases among many associated traits has hampered its precise clinical translation.
Even though the promise of solving complex genetic diseases at the molecular level was
not fully achieved, NGS data provided information on inter-individual variations.
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1. Introduction

The discovery of the effect of individuals’ genetic mark-up on their healthcare pathway
from prevention to treatment emerged in precision medicine, which tailors the health-
care regimen based on the molecular patient profile to deliver the optimal treatment
with increased efficacy and reduced costs. It created an opportunity for translating
the molecular findings contributing to disease heterogeneity into the clinical routine.
It enabled patient stratification based on the existence of biomarkers contributing to
disease progression and defining the response to the therapy. Precision medicine has
especially shown promising applications in oncology, as cancer is a complex genomic
disease that resulted in the accumulation of mutations and the alteration of molecular
paths7.

The conventional methods of clinical oncology heavily rely on morphological and
histopathological diagnostic methods as well as on surgical removal of tumor tissue
and/or chemo- or radiation therapy as a treatment. However, this first line of treatment
methods frequently lead to complications such as the increased risk of surgery-related
micro-metastases, therapy resistance, toxicity, short relapse time, and increased risk of
secondary tumors8–10. The problems in the standard therapies have compelled patient
care to shift from conventional clinical workflow to patient-specific biomarker-driven
targeted therapies, so-called precision oncology.

Target identification has been accelerated with the advancements in genomics by link-
ing aberrations to therapies. Data from big consortia such as ICGC and TCGA have
been analyzed individuals systematically and created a large catalog of the driver genes
which provide a selective advantage to the cells to initiate uncontrolled proliferation.
The shift from population-based to biomarker-driven clinical trials yields a growing
arsenal of drugs. As we know more about molecular cancer mechanisms, biological
reasons, and the pathways involved, translation of this information to clinics is getting
more and more promising. However, target identification is complex and follows a
long data analysis trajectory from sequencing of the genetic material to concluding on
a responsive therapy option based on a set of informative and actionable variants. One
of the main bottlenecks in closing the gap between clinics and the genomics field is
the complexity of the analysis platforms and the labor-intensive work of clinical anno-
tations. Thereby refinement of in silico methods is needed to integrate genomics into
the clinical routine to improve healthcare by increasing the usability of these platforms
for healthcare professionals. Corroboration is needed in selecting optimal analytical
platforms, standardization of the sequencing assays, reporting metrics, and assessing
the efficacy of the selected therapies 11.
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In this thesis, we provide several approaches to translate genomic data into patient-
specific cancer profiling. Our contributions cover a wide range of steps in the clinical
decision-making workflow varying from the development of a fully automated pipeline
for molecular profiling of cancer patients to combining different levels of clinical infor-
mation and provide a visual analytic decision as support tool.

Part I: ClinVAP

Targeted therapy is proven as a gateway to treatment with an increased overall survival
rate in various cancer types such as metastatic renal cell carcinoma, non-small-cell lung
cancer, and ovarian cancer, due to data-driven decision(s) which are made based on the
patient’s unique disease profile12–14. The complexity of target identification emerges
from the need of translating large and unstructured data into clinical information
using bioinformatics tools. The amount of data to be processed, the variety of the
annotation tools and data sources together with the complex programmatic interfaces
provide oncology clinics a disadvantage15. Hence, there is a need for automated
pipelines to respond to the data analysis needs of clinics such as ensuring data security,
reproducibility, scalability, and interoperability.

In the first part of the thesis, we implemented a fully automated pipeline to convert
genomic data into concise clinical information. Our method includes the functional
variant annotation that prioritizes the long list of mutations to identify molecular
mechanisms that drive carcinogenesis. For therapeutic target and response identifica-
tion, we developed a clinical variant annotation method that also integrates clinical
evidence from a wide range of publicly available information sources. The results
give evidence-based therapeutic suggestions based on the level of gene disruption in a
patient’s cancer profile.

Part II: Case profiling with reports and networks via visual analytic

tool

Cancer is a complex system disease16. Not only driver genes but also driver events
are important in target identification due to the additive effects of the mutations on
oncogenic signaling pathways17. Additionally, a big part of the human cancer genome
is not yet directly druggable with FDA-approved drugs18 19,20. This makes the off-label
use and re-purposing of the available drugs crucial in optimizing treatments using the
clinical evidence based on upstream of driver genes. Therefore a patient’s molecular

3



1. Introduction

profile together with networks showing the molecular interactions of genes would
give a complete case overview, present opportunities for identifying re-purposing drug
candidates as well as pointing out the secondary drug resistance mechanisms, and
reveal pathways to take action on. Such clinomics approaches are arduous due to the
complex nature of data and the lack of comprehensive tools which conduct variant
and network annotation and visualize the results with an effective graphical user
interface.

In the second part of the thesis, we developed a visual analytics tool that combines
evidence-based case reports with the networks showing the other molecular players in
the proximity of the disrupted genes. It provides the results in a compendious graphical
user interface. Our tool has an added value in the precision oncology clinical setup
as it provides multi-level information at once which is necessary in clinical decision
making and enables users to conduct a more comprehensive case analysis.

Part III: Systematic MTB data analysis and comparison

As targeted therapies were introduced to the standard line of care, oncology clinics
established molecular tumor boards (MTBs), a multi-disciplinary committee that is
assigned to make treatment suggestions based on the patient’s genomics information.
Although precision oncology has proven to be beneficial in various studies21–24, lack
of reproducibility and reliability remain its major hurdles25. The low agreement rate
between the MTBs is associated with the absence of the standard workflows26,27. As-
signing significance to the aberrations mostly rely on the expertise of individual MTBs,
which is often an error-prone manual task. All these obstacles assert the need for stan-
dardized and automated workflows to increase user acceptance in clinics. In addition
to the software requirements of decision support tools, it is of crucial importance to
assess the reliability of the produced results for clinical implementation.

In the third part of the thesis, we conducted a stratified case-cohort analysis to demon-
strate the reliability of ClinVAP which was developed to offer a solution for MTBs in
their need of a standardized, automated, and reproducible analysis tool. We assessed
the adaptability of our annotation tool over the current clinical practice in therapeutic
decision-making. With the retrospective genomics data analysis, we have shown the
efficiency of our in silico treatment stratification by proving the completeness of its
content in comparison to manually prepared case reports.
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Chapter 2

Background

2.1 The Human Genome

The genetic material of all living species is composed of deoxyribonucleic acid (DNA)
which encloses all the information to define the molecular composition of an organ-
ism28. The genetic information is decoded via transcription, forming messenger ri-
bonucleic acid (RNA) that governs protein synthesis. This process that is termed as
central dogma of molecular biology29 assembles the proteins, the building blocks of
organisms carrying out the essential functions including the catalyzing the reactions
and generating the defense units of the immune system.

The genetic material is densely compacted as chromosomes in the cells’ nucleus. Hu-
man cells contain 23 pairs of chromosomes28 that approximately consists of 3 billion
DNA bases30. The DNA regions corresponding to the total of the protein-coding units
(genes) makes up approximately 1% of the overall base count30. The remaining por-
tion of DNA which was perceived as junk two decades ago is found to have essential
regulatory roles30 in orchestrating many processes varying from cell differentiation to
coding for untranslated regulatory RNAs (e.g. microRNAs).

Each genome contains fragmented chunks of exon sequences, which are the protein-
coding domains interspersed with DNA’s non-coding fragments, introns. RNA poly-
merase (RNAP) initiates transcription by binding to the promoter region located in the
5’ terminus of the DNA. This process is orchestrated by transcription factors (TFs) to
regulate the transcription of the specific regions at a specific time. RNAP moves along
the sequence from the 5’ to 3’ end and creates an immature RNA (pre-mRNA) copy of
the DNA. pre-mRNA is transduced into mature RNA (mRNA) by removing introns it
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2. Background

contains via the splicing process. Then mRNA moves to the cytoplasm and synthesizes
proteins.

It is estimated that the human genome contains 24,000 protein-coding genes which
encode more than 100,000 different proteins. The mechanism leading to large protein
diversity is found to be the alternative splicing through exon arrangements during the
maturation of the pre-mRNA31. It provides evolutionary benefits to the organisms by
efficiently forming new functionalities with the inclusion or exclusion of the exons
without changing the source of information32.

The developments in sequencing technologies paved the way to assemble the human
reference genome. It has been continually improved over the years to increase its
coverage which reached 90% in the latest releases, GRCh37 and GRCh3833. Although
the field is turning toward generating population-specific consensus genomes34, the
available versions have been a valuable source in understanding the genetic structure
of humankind and contributed to improving health care.

2.1.1 Genetic Variation

Genetic variation is introduced by mutations and sexual reproduction during meiosis
through the independent assortment of the chromosomes and the cross-over. Mutations
affecting an organism manifest themselves in two major settings depending on the cell
type they occurred in. Germline variants take place in reproductive cells (sperm or
eggs) and are passed to the offspring with the zygote formation of either the mutated
sperm or the oocyte. Somatic variants are the post-zygotic mutations that occur in any
type of the cells other than the germ cells; thus, they are non-heritable.

Human genome analysis revealed that 99.9% of the genetic material of the humans
are identical and the individuality manifests itself in the 0.1% fraction35. Through
comparative genomic studies focusing on the small fraction of the genome, the link
between the genomic variation and the phenotype has started to be established. Ge-
netic variation is expressed in a wide range of alteration classes varying from single
nucleotide variants (SNVs) to large chromosomal rearrangements. SNVs are the result
of single nucleotide substitution where the amino acid length is preserved and they are
found to be the most abundant variant type in the human genome36. Small INDELs
are the insertions and deletions between 1 bp to 9,989 bp in length37, the second
most prevalent in the population after SNVs38. Structural variant (SV) is an umbrella
term covering large chromosomal aberrations including copy number variants (CNVs),
inversions, translocations, and segmental uniparental disomies. CNVs denote the du-
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The Human Genome

plications, insertions, and deletions causing changes in the copy number compared to
the reference genome35. The aberrations such as translocations, inversions, and inser-
tions might emerge gene fusions39 which may form chimeric RNA translating novel
proteins40 or deregulate transcription by affecting the regulatory DNA regions41.

Genetic variation is the main source of the phenotypic diversity determining the unique
traits of a person with polymorphisms shared within the populations with the line of an-
cestry. Genetic diversity does not only control the phenotypic distinctions but also gov-
erns a person’s susceptibility to diseases and their treatment responses. The pathogenic
effects of the acquired mutations through the change of protein structure and function
are found to be the underlying causes of many diseases emphasizing the importance
of the population studies to assign significance to the observed variation.

2.1.2 Genetic Variations in Diseases

The advancements in sequencing technologies facilitated to generate genomics data for
millions of individuals. Although this substantial influx of data has been translating into
immense progress in the clinical understanding of the molecular disease mechanisms,
it remains challenging to identify the associated loci with the complex traits.

The disease phenotype association of the genetic variations requires large screenings
among the different populations before predicting their impact to catalog them based
on their pathogenesis. Genotyping is one of the SNV discovery and screening meth-
ods that are used to identify variants based on genotyping assays for detection. The
method uses the regions harboring the variants as a backbone and imputes the space
between the fragments with haplotypes. It is heavily used in genome-wide associa-
tion studies (GWAS) to map complex traits and the loci by comparing the population
exhibiting a certain disease phenotype with the healthy individuals. One problem
with the genotyping assays is that the statistical significance might not be the main
cause of the disease traits. The assays may fail to capture the rare alleles which are
the main contributors to the anomalies42. Moreover, the variants found significant
in GWAS studies need further investigation since due to the linkage disequilibrium,
multiple variants are found associated and the process requires more examination of
this overestimation to pinpoint the causative variants43.

Another method to identify the variants is through sequencing technologies. Panel
sequencing is used to test the patients for specific exonic regions that are known to be
associated with a disease trait. It requires a pre-defined set of targets, it is cost and
time-efficient; hence, it has the properties of a diagnostic tool that is routinely used
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in clinics rather than the function of assigning significance to the novel genes. Whole
exome sequencing (WES) has the advantage over panel sequencing since it profiles
all the DNA coding regions, provides information also on the CNVs and provides the
set of aberrations that are readily interpretable. It has more sensitivity in identifying
the regions that fall outside of the main target regions compared to its equivalent
genotyping methods. However, it fails to detect large chromosomal changes such as
the SVs44. Moreover, even though its interpretation is still challenging, the mutations
in the non-coding regions of the DNA are also known as resembling the crucial part of
the disease relevancy due to their function in regulatory mechanisms such as histone
modification and transcription45. Thus, whole-genome sequencing (WGS) is another
method for obtaining the entire genome including both coding and non-coding regions.
The ability of WES and WGS to identify the potentially disruptive genes without having
a prior candidate gene promotes their usage in both research and clinical diagnostics.
However, the knowledge about disease-causing mutation has a modest translation to
clinical diagnosis with the average molecular diagnosis rate being approximately 30%,
differing based on the disease46,47.

The challenges of increasing the known variant associations with diseases lie within
the various aspects such as the elusive process of capturing SVs with short-read se-
quencing technologies and the high cost of alternative methods based on long reads36,
the under-representation of the large chromosomal variances in the reference genome
and the need for more diverse, multiple reference genomes36, the difficulties in eluci-
dating the effect of non-coding variants and accounting for incomplete penetrance48.
Regardless of these bottlenecks, the field is progressing rapidly through large-scale
national sequencing consortiums and global collaborations of data sharing. In efforts
to distinguish the disease-related variants among the ones that are attributing unique
non-benign traits to humans, there are immense efforts to collect complete genomics
data not only from the unhealthy individuals but also from the healthy individuals.
Consortia such as All of Us launched in the USA aiming to sequence millions of indi-
viduals49. Another initiative 1,000 Genomes are collecting variants with 1 % or higher
frequency among the population from the healthy individuals50. The large consortium
created collaborative efforts to collect genomic data from large populations with di-
verse ethnicity and medical backgrounds such as the UK Biobank and FinnGen project,
each genotyping 500,000 individuals51. Large databases are hosting the available data
from the established associations closing the gap between the research and clinical
practice laying the stepping stones for mitigating the complex process of establishing
the molecular diagnosis and discovering more associations.
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2.1.3 From Raw Reads to Variants

Making biological interpretations of the data produced by WES, WGS, and panel se-
quencing technologies lays the foundation for understanding human pathology. How-
ever, the process of extracting biological meaning from the copious amount of raw
sequence reads is a challenging task. The process of identifying not yet alone SNVs but
also the insertions, deletions, structural and copy number variations requires sophisti-
cated and well-established tools to make inferences from the sequencing data. Calling
the variants is a major step of NGS data analysis which is conducted with the pipelines
developed for the specific type of analysis that the data required. While SNV calling
focuses on finding the short deviations from the reference genome, the algorithms to
call large SVs differ from the ones pinpointing SNVs and INDELs since they focus on
recognizing the breakpoints where an unexpected change is observed on sequencing
depth or misalignment of paired read ends52.

A standard pipeline to call somatic SNVs and small INDELs from DNA sequencing data
usually encompasses the main steps of pre-processing the raw sequences, mapping
them to the reference genome, and annotating the variants, using a wide range of
refined tools tackling the individual steps of the analysis. Pre-processing of the raw
sequence reads provided as FASTQ file format, includes the quality control of the
reads which leads to trimming the low-quality read ends to increase the success of the
mapping with tools such as FastQC53, Sickle54 or Cutadapt55. The processed reads
are then mapped to the reference genome to find the genomic locations of the short
reads. There are many tools available for read mapping such as Bowtie256 or BWA57.
The benchmarking studies showed that there is no one tool outperforming the others
in each test and the method should be chosen based on the needs of users such as
the tolerated amount of the false positives or the run time58. The read mapping pro-
cess generates Binary Alignment Map (BAM), or its uncompressed version, Sequence
Alignment Map (SAM) files from the raw sequencing reads FASTQ files. After con-
ducting the post-processing steps such as filtering the mappings based on the mapping
quality or eliminating the duplicate fragments, variant calling algorithms are imple-
mented to pinpoint the variants observed in the data in comparison to the reference
genome. Among various variant calling algorithms, Genome Analysis Toolkit (GATK)59,
SAMtools60, VarScan61 and Strelka62 are the most popular variant calling tools each
employing a different algorithm. The variant calling algorithms are specialized based
on the analysis type mainly clustered around single sample variant calling, matched
tumor-normal variant calling, and unique molecular identifiers (UMI) based variant
calling. Over 40 publicly available somatic variant calling tools each specialized in one
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of the aforementioned types of analysis and their base algorithms are reviewed by 52.
The result of the variant calling step is the variant call format (VCF) which represents
the genomic variation. VCF file is also generalized in the way of representing large
chromosomal changes. The next step in extracting biological inference is to predict
the potential effects of the observed variants which are discussed in the following
Section.

A VCF file is a generic text file storing the SNVs, INDELs, and large SVs with standard
specifications. It includes the meta-information, header, and the data lines showing
the indexed variants (Figure 2.1). The meta-information section introduces the tags
and the annotation used by the NGS analysis tools which enable users to tailor the
format based on the information produced by the tools. It also incorporates the details
of the tool that generated the data such as the name and version of it, the date that the
data was created, the reference genome used in mapping, and the version of the VCF
format. The header line introduces the category names of the columns. The mandatory
columns are the chromosome number (CHROM), the starting position of the variant
(POS), the ID of the observed variant (ID), reference and the alteration bases (REF, ALT),
the quality score (QUAL), the filtering column (FILTER), and the info column (INFO)
showing the annotation tags and their corresponding values. The mandatory columns
are followed by the FORMAT column which indicates the genotype-related fields such
as the read depth and the genotype quality. If the experiment contained more than
one sample, their corresponding columns follow the FORMAT column (Figure 2.1).
Having the variants in a generic standard format improves the interoperability of the
tools producing the data and the results63.

There are various pipelines combining the aforementioned tools to process the NGS
data from raw reads to called variants64–67. However, the benchmarking studies demon-
strated that there is no high concordance between the results of different pipelines
due to the lack of standards for handling the experimental artifacts reflected in the
raw data. Thus, it is difficult to suggest one size fits all solution and the user needs
to optimize the combinations of available tools to increase the accuracy of the called
variants68.
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##fileformat=VCFv4.1
##fileDate=20120308
##source=strelka
##startTime=Thu Mar  8 08:26:15 2012
##content=strelka somatic snv calls
##germlineSnvTheta=0.001
##priorSomaticSnvRate=1e-06
##INFO=<ID=QSS,Number=1,Type=Integer,Description="Quality score for any somatic snv, ie. for the ALT allele to be present at a significantly different frequency in the tumor and normal">
##INFO=<ID=TQSS,Number=1,Type=Integer,Description="Data tier used to compute QSS">
##INFO=<ID=NT,Number=1,Type=String,Description="Genotype of the normal in all data tiers, as used to classify somatic variants. One of {ref,het,hom,conflict}.">
##INFO=<ID=QSS_NT,Number=1,Type=Integer,Description="Quality score reflecting the joint probability of a somatic variant and NT">
##INFO=<ID=TQSS_NT,Number=1,Type=Integer,Description="Data tier used to compute QSS_NT">
##INFO=<ID=SGT,Number=1,Type=String,Description="Most likely somatic genotype excluding normal noise states">
##INFO=<ID=SOMATIC,Number=0,Type=Flag,Description="Somatic mutation">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read depth for tier1 (used+filtered)">
##FORMAT=<ID=FDP,Number=1,Type=Integer,Description="Number of basecalls filtered from original read depth for tier1">
##FORMAT=<ID=SDP,Number=1,Type=Integer,Description="Number of reads with deletions spanning this site at tier1">
##FORMAT=<ID=SUBDP,Number=1,Type=Integer,Description="Number of reads below tier1 mapping quality threshold aligned across this site">
##FORMAT=<ID=AU,Number=2,Type=Integer,Description="Number of 'A' alleles used in tiers 1,2">
##FORMAT=<ID=CU,Number=2,Type=Integer,Description="Number of 'C' alleles used in tiers 1,2">
##FORMAT=<ID=GU,Number=2,Type=Integer,Description="Number of 'G' alleles used in tiers 1,2">
##FORMAT=<ID=TU,Number=2,Type=Integer,Description="Number of 'T' alleles used in tiers 1,2">
##FILTER=<ID=DP,Description="Greater than 3x chromosomal mean depth in Normal sample">
##FILTER=<ID=BCNoise,Description="Fraction of basecalls filtered at this site in either sample is at or above 0.4">
##FILTER=<ID=SpanDel,Description="Fraction of reads crossing site with spanning deletions in either sample exceeeds 0.75">
##FILTER=<ID=QSS_ref,Description="Normal sample is not homozygous ref or ssnv Q-score < 15, ie calls with NT!=ref or QSS_NT < 15">
##maxDepth_chr1=267.579155527985
##maxDepth_chrX=132.476374945268

#CHROM    POS    ID    REF    ALT    QUAL    FILTER    INFO    FORMAT    NORMAL    TUMOR

chr1    12170228      .    C    T    .    PASS    NT=ref;QSS=355;QSS_NT=104;SGT=CC->TT;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    76:0:0:0:0,0:76,77:0,0:0,0    57:0:0:0:0,0:0,0:0,0:57,57
chr1    35944648      .    G    A    .    PASS    NT=ref;QSS=341;QSS_NT=105;SGT=GG->AA;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    78:0:0:0:0,0:0,0:78,78:0,0    58:0:0:0:56,57:0,0:2,2:0,0
chr1    118166116    .    C    A    .    PASS    NT=ref;QSS=141;QSS_NT=125;SGT=CC->AC;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    122:0:0:0:0,0:122,122:0,0:0,0    66:2:0:0:25,27:39,39:0,0:0,0
chr1    153391771    .    G    T    .    PASS    NT=ref;QSS=95;QSS_NT=93;SGT=GG->GT;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    58:0:0:0:0,0:0,0:58,68:0,0    92:1:0:0:0,1:0,0:56,64:35,35
chr1    155264487    .    C    T    .    PASS    NT=ref;QSS=164;QSS_NT=105;SGT=CC->CT;SOMATIC;TQSS=1;TQSS_NT=2    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    81:1:0:0:0,0:80,80:0,1:0,0    115:2:0:0:0,0:56,57:0,0:57,60
chr1    156235781    .    G    A    .    PASS    NT=ref;QSS=678;QSS_NT=120;SGT=GG->AA;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    112:0:0:0:0,0:0,0:112,113:0,0    136:1:0:0:134,136:0,0:1,1:0,0
chr1    166991079    .    C    G    .    PASS    NT=ref;QSS=224;QSS_NT=114;SGT=CC->CG;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    96:0:0:0:0,0:96,96:0,0:0,0    136:2:0:0:0,0:61,61:73,73:0,0
chrX    17742491      .    G    A    .    PASS    NT=ref;QSS=350;QSS_NT=90;SGT=GG->AA;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    44:0:0:0:0,0:0,0:44,44:0,0    88:0:0:0:88,91:0,0:0,0:0,0
chrX    54482154      .    G    A    .    PASS    NT=ref;QSS=87;QSS_NT=85;SGT=GG->AG;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    45:0:0:0:0,0:0,0:45,45:0,0    71:0:0:0:32,32:0,0:39,39:0,0
chrX    68381326      .    G    A    .    PASS    NT=ref;QSS=287;QSS_NT=94;SGT=GG->AA;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    53:0:0:0:0,0:0,0:53,53:0,0    58:0:0:0:58,58:0,0:0,0:0,0
chrX    70776564      .    T    C    .    PASS    NT=ref;QSS=127;QSS_NT=95;SGT=TT->CT;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    55:0:0:0:0,0:0,0:0,0:55,56    60:0:0:0:0,0:35,35:0,0:25,25
chrX    125685750    .    G    A    .    PASS    NT=ref;QSS=190;QSS_NT=75;SGT=GG->AA;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    28:1:0:0:0,0:0,0:27,30:0,0    54:3:0:0:51,54:0,0:0,0:0,0
chrX    129362963    .    G    A    .    PASS    NT=ref;QSS=307;QSS_NT=91;SGT=GG->AA;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    46:0:0:0:0,0:0,0:46,47:0,0    75:4:0:0:71,75:0,0:0,0:0,0
chrX    152226437    .    C    T    .    PASS    NT=ref;QSS=260;QSS_NT=91;SGT=CC->TT;SOMATIC;TQSS=1;TQSS_NT=1    DP:FDP:SDP:SUBDP:AU:CU:GU:TU    47:0:0:0:0,0:47,47:0,0:0,0    64:2:0:0:0,0:1,1:0,0:61,65
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Figure 2.1: Meta-information section encapsulates i) the file format version and the details on file generation including the tool and the date, time
ii) ##INFO lines providing the name, description and the data type of the annotations, iii) ##FORMAT lines giving the description and the data
types of the genotypical tags, iv) ##FILTER lines stating the filtering constraints applied to the data set followed by additional annotations, which is
##maxDepth_chr in this example provided as a demonstration of user-tailored annotation fields. Header denotes the column names of the data fields
which contain two samples in this example which are NORMAL and TUMOR whose genotype information is provided following the FORMAT column
tag order. The data is a subset of the publicly available VCF file provided by Strelka62
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2.1.4 Variant Effect Prediction

Variant effect prediction is an essential step in NGS analysis forming the concrete foun-
dation for interpreting the consequences of the observed variations on the molecular
level. Predicted consequences of the variants enable the scientists to develop a broad
understanding of the molecular rationale for the non-infectious diseases that are very
common in the population such as cardiovascular diseases, cancer, and diabetes, which
then translated into clinical usage.

There are various methods in the literature such as SnpEff69, ANNOVAR70 and Ensembl
Variant Effect Predictor (VEP)71, with different algorithms factoring into the informa-
tion such as the genomic location, evolutionary conservation, searching databases for
known variants and the reference-query sequence similarity to predict the functional
effects of the variants. We will give the details about the Ensembl VEP in the following
section, since it was selected for our projects due to advantages on the VCF file support
as both input and output, being a command line tool that enables its integration into
workflows and its offline option ensuring the data security.

2.1.4.1 Ensembl Variant Effect Predictor

Ensembl VEP is one of the most commonly used tools to assess the severity of the vari-
ants over the transcripts, proteins, and regulatory functions. It provides annotations on
SNVs, small INDELs, and the large structural variants exceeding 50 base pairs in length.
It incorporates the phenotype information and the allele frequency into its annotations
for the known variants. It is an open-source tool that is well maintained with stable
releases ensuring reproducibility of the results. It is developed in Perl programming
language and supported with the C programming language for the components where
the runtime was a constraint.

The algorithm reads the input in blocks and converts them into a variant object with
the genomic location and the set of alleles information. For the VCF inputs, the variants
undergo pre-processing to create Ensembl compatible variant coordinates for the un-
balanced variants. Forking functionality spawns sub-processes of the aforementioned
steps to ensure fast data processing whose results are combined upon the completion
of the analysis. The quality control step checks for the potential errors in the data
such as a mismatch between the allele length and the coordinates, or a mismatch
among the reference alleles of the same position between the data and the reference
genome.
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Enseml VEP has multiple files stored as VEP cache, containing DNA fragments larger
than 1,000 kb, which are referred to as "regions". In the analysis, the regions that
are overlapping the variants are converted into objects carrying the information of the
region’s corresponding transcripts, regulatory regions e.g. promoters and known vari-
ants. Those regions are cached in the memory to provide a time advantage to prevent
loading the same region from the disk for another overlapping variant. Each variant
object is annotated with the reference and alteration bases if the algorithm detects an
overlap with the transcript. The variant consequences calculated by the API through
a set of functions are added to the variant annotation in standard Sequence Ontology
(SO) terms. Configurations supplied by the user such as implementing plugins are
applied after the consequence prediction. After the HGVS enrichment of the results,
the variant objects are converted into the output.

Transcript annotation. Ensembl VEP provides a comprehensive annotation on tran-
script information using GENCODE or RefSeq as the prediction source of transcript
isoforms72,73. Due to alternative splicing, one alteration allele may overlap multiple
regions resulting in transcript isoforms. VEP reports all the annotations for those mul-
tiple isoforms in a single data line for a given allele. It uses multiple internal and
external data sources to pinpoint the dominantly expressed transcripts73–75 and tools
to predict and prioritize their consequences76,77.

Protein annotation. Ensembl VEP annotates the effect of amino acid changes on
the biophysical features of the proteins which provides an advantage in evaluating
the severity of the change, even when the alteration does not have a prior phenotype
association.

VEP predicts the impact of missense variants as "moderate" which is an umbrella term
implying that the change might cause alterations in the expression levels of the protein.
For a more scrupulous assessment of their impact, it employs Sorting Intolerant From
Tolerant (SIFT) and Polymorphism Phenotyping (PolyPhen) as plugins to the main
application. SIFT utilizes a conservation-based approach based on the assumption
that the mutations observed in highly conserved regions are more likely to have a
detrimental effect than the ones not highly conservative and already exhibiting varia-
tion78,79. Additionally, high chemical similarities between the amino acid conversions
are considered less disruptive, such as the change from valine to leucine where the
hydrophobic feature is kept80. SIFT labels the mutations as "tolerated" or "deleterious"
based on the normalized position-specific probability estimations of an amino acid to
be observed at a certain position78. PolyPhen which is another commonly used tool to
assess the pathogenicity of non-synonymous SNVs incorporates both the sequence and
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the protein structure features into its naive Bayes classifier model. It returns qualita-
tive labels for the variants such as "benign", "possibly damaging", "probably damaging"
or "unknown"81. VEP also allows the incorporation of other tools such as LOFTEE to
identify the alterations leading to the loss of function in nonsense, splice site, and
frameshift variants82.

Non-coding annotation. VEP provides annotation of the variants harbored in the
regulatory parts of the non-coding regions. The annotations are based on the Ensembl
Regulatory Build83 which is constructed as a human regulatory region catalog using
data associated with epigenomic and transcription factor regulatory elements from
publicly available databases84–86. It also provides further prioritization of the non-
coding variants through additional plugins (e.g., Combined Annotation Dependent
Depletion (CADD)87, GWAVA88).

In addition to the functional annotation of the variants, it incorporates information
related with the known phenotypic indications89–92, provides cross-references for the
known variants93–95, and variant allele frequencies50,96,97 from various publicly avail-
able databases. it supports standard inputoutput data formats as well as using stan-
dardized terms such as SO and HGVS nomenclature in its annotations. Next to the
web interface and application programming interface (API), it supports running the
tool through VEP scripts which is powerful since it gives users to do customized config-
urations and it can be used as an annotation module in larger pipelines and workflows.
Its offline mode provides additional data security and enables it to be a module as a
part of larger applications and workflows71. Input and output formats include the VCF
file which is the standard data format - another advantage.

2.2 Molecular Mechanisms of Cancer

Cancer is a complex genetic disease in which the acquired series of mutations derive the
normal cells into malignant cells which gain selective growth advantage and undergoes
uncontrollable proliferation. Large cohort studies have revealed a set of genes, known
as driver genes, conferring the selective growth advantage to the cells, differentiated
from passenger mutations based on their mutation frequency and predicted effects
on the protein functions. For example in solid tumors from brain, breast, pancreas
or colon, 33 to 66 genes are found to have mutations altering their protein product,
whereas in melanomas and lung tumors, this number increases to approximately 200
missense mutations. Tumor in the tissues without self renewing property such as
leukemia manifest fewer mutations than the other types7. It is estimated that there
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are up to 10 driver genes dictating tumorigenesis in lung and colorectal cancer7,98,99.
Although the mutational load varies between different cancer types, when compared to
the overall mutation rate, it is clear to see the distinction between the driver events and
the accompanying passenger mutations which are forming the 99% of the mutations,
tolerated and not subject to negative selection99.

Driver genes have two distinct features. They work through oncogenes, which gains
function through mutations, shows high expression profile and takes role in governing
abnormal proliferation. Other mechanism works though tumor suppressor genes (TSG)
acquiring loss of function, leaving the checkpoints of the cell cycle unregulated. Driver
genes affect the core cellular processes which are related with the cell fate, the survival
and the genome stability through repair, checkpoint and division control events7. The
molecular mechanisms involved in core cellular processes forms the eight hallmarks
of cancer100 which are briefly explained in the following sections.

2.2.1 Sustaining Cell Proliferation

Cell proliferation is a process where the cell enters into the division cycle which in-
volves cell growth (G1), synthesis (S) where the DNA is replicated, mitosis preparation
(G2) and the mitosis (M) where two daughter cells are created101. This cell cycle
is stimulated by the growth-promoting signals which are thoroughly controlled and
regulated in the healthy tissues100.

The most distinctive feature of cancer is the recurring and uncontrolled cell division due
to the alterations in growth factor signaling leading unbalanced tissue homeostasis100.
The chronic state of cell proliferation is acquired through distinct mechanisms such
as i) the cells gaining autonomy through the autocrine secretion of growth factors102,
ii) the cells prompting the surrounding normal cells to supply growth factors100, iii)
overexpression or mutation in the surface receptor proteins resulting in hypersensitivity
to the available growth factors17. The cells also sustain proliferation through the
deregulation downstream of the growth signaling pathways via constitutive mutations,
such as the hyperactivation of the Ras-ERK pathway due to the mutations in Ras
protein103, or responding oncogenes by discarding the cell senescence or apoptotic
signalling cascades100.

2.2.2 Escape from Antigrowth Signals

The extracellular space is equipped with the agents monitoring the external signals
which prevents cells to advance through G1 state when necessary. While normal cells
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have mechanisms to revert the cycle back to the quiescence state (G0), the cycle escapes
the checkpoint controllers by evading antigrowth signals. This process mostly advances
due to tumor suppressor genes undergoing a loss-of-function alteration100.

RB protein processes the signals from extracellular space. It functions as a switch
for G1-S checkpoint (determines whether the cell proceeds to S-phase) by forming
a complex with E2F gene in the beginning of G1104. Based on its activity of either
releasing E2F later in the phase or not, it dictates the prospect of the cycle such as
prohibiting the transitioning to S phase as a response to antigrowth signals (Figure 2.2).
Its inactivation through mutations or as an after effect of disturbance in upstream
regulators are highly correlated with causing neoplasms105.
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Figure 2.2: RB cell cycle regulation. The cell cycle phases are i) growth (G1), ii) synthesis (S) in which
DNA replication occurs, iii) mitosis preparation (G2), iv) mitosis (M) where the active cell division
occurs. RB protein forms a complex with E2F and blocks its transcriptional activity. When RB releases
E2F through its phosphorylation, E2F binds to the promotors of proteins required for cell division.
Deregulation of E2F is frequently seen in most cancers.

TP53 gets the signals within the cell to maintain the genomic stability. A wide range
of stressor events such as DNA damage or growth stimulating signals trigger TP53 to
intervene the cell cycle progression until the conditions reach an optimum state, or
impose apoptosis100,106. The disturbances in TP53 pathway due to the inactivation of
TP53 oncogene is one of the most frequently observed mechanisms in various cancer
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types106, since it leaves the cells vulnerable to the stressor events by disturbing the
repair mechanisms.

The cells also exhibit insensitivity to antigrowth stimulus by evading the differentiation
machinery, which results in a permanent intermitotic state17. One of such mechanisms
occur through c-myc oncogene. When it is overexpressed, it causes the cell to skip the
differentiation and to go through the growth process107.

2.2.3 Avoiding of Apoptosis

Apoptosis is the programmed cell death mechanisms that exists in every cell across
the tissues in a quiescent form. When triggered, it eliminates the unwanted cells in
response to numerous stress signals including an increased oncogenic activity and
DNA damage. In the healthy cells, this process functions through transmitting the
signal via ligands binding to cell surface death receptors to activate the apoptosis
effectors cascade108. Mithocondrial pathway orchestrated by Blc-2 family proteins
adjusting cytochrome-c release109 and endoplasmic reticulum pathway activating the
apoptotic program due to non-repairable damages of the organelle110 have a major
role in dictating the fate of the cell.

Apoptosis is one of the most pre-eminent program that cancer cells circumvents through
various strategies. Disrupted expression levels of Bcl-2 family of proteins and inac-
tivation of TP53 tumor suppressor gene have pivotal role in enhancing tumor cell
survival108. Downregulation of the main effectors initiating the apoptotic pathway or
breaking down the cellular structures during the apoptosis is another major mechanism
of cell survival108,111. Impairments in apoptosis pathways due to downregulation of
the death receptors or abnormal levels of decoy receptors, also result in the inhibition
of the process108.

2.2.4 Unlimited Proliferative Potential

Healthy cells go through a limited number of growth-division cycle and the majority
of them reach the senescence state in which cells are stable without being able to
proliferate. In vivo studies showed that the cells that defer the senescence state are
observed to enter a crisis phase after additional division, which is characterized as the
massive cell death of the most senescence-surpassing cells. There is a third state which
characterizes the cells that escaped the senescence and crisis states and acquired the
trait of limitless proliferation, which is referred as cell immortality. Both in vivo and in
vitro studies showed that cancer cell populations acquired immortality112.
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Telomeres are the hexanucleotide repeats located at the end of the chromosomes
functioning as protective caps preventing the chromosome end-to-end fusions and pro-
viding genomic stability113. In normal cells these regions get gradually shortened after
every division which is a phenomenon known as "end replication problem"114. When
the length reaches a critical point, cell death mechanism is triggered as a DNA damage
response115. In cancer cells, telomerase (the enzyme elongating the chromosome by
adding repeated tandem regions) is often found to be abnormally upregulated. While
the shortening of telomeres together with the lack of telomerase function as tumor
suppressor mechanism, cancer overcomes it by abnormally upregulating telomerase
which elongates the telomeres and provides the cells immortality116.

2.2.5 Aberrant Angiogenesis

Both healthy and tumor tissues provide their need of oxygen and nutrients and dispose
of cellular waste products using the vascular system. In adults, the formation of new
blood vessels and sprouting branches from the existing vessels (angiogenesis) are in
a dormant state, except the temporary activation of angiogenesis due to physiologic
processes (e.g., wound healing). However, in tumor tissues, angiogenesis is transduced
from quiescent to active state creating new capillaries from the existing vasculature to
provide sustenance117.
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Figure 2.3: Angiogenic switch. VEGF-A is a major pro-angiogenic gene that is found to be up-regulated
in various cancer types. FGF family genes indirectly activates new blood vessel formation through
increasing the VEGF expression levels.

Coupling of signaling proteins with the surface receptors of the vascular endothelial
cells regulates the process of neovascularization through the balance between the
pro- and anti-angiogenic factors. "Angiogenic switch" shifts this balance in favor of
the pro-angiogenic factors118. Vascular endothelial growth factor-A (VEGF-A) is a
major pro-angiogenic gene that encodes for ligands regulating the neovasculature for-
mation during the embryonic and postnatal development. Fibroblast growth factor
(FGF) gene family also promotes angiogenesis through indirectly inducing VEGF ex-
pression119,120. Both of them are found to be up-regulated in various cancer types as
a response to oncogenic signalling that enable tumors to grow through blood vessel
formation120,121.

2.2.6 Adaptations for Invasion and Metastasis

Metastasis is the process of cancer cells spreading to the distant tissues to form new
colonies where the resources is less limited, which is known as a primary cause of
deaths122. It encompasses a multistep cascade of invading the local tissues, intravasa-
tion to near by vessels, extravasation from blood stream to adjacent tissues, forming
micrometastatic colonie and formation of macroscopic tumor masses100.
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Metastasis mechanisms are interrelated to the aforementioned characteristics of can-
cer cells with additional molecular adaptations. The known molecular mechanisms
for determining invasion and metastasis phenotypes involve the genes encoding for
cell-to-extracellular matrix (ECM) and cell-to-cell adhesion molecules such as inte-
grins, cadherin and immunoglobin protein families17. Those molecules have various
functions in maintaining tissue architecture, forming epithelial sheets, regulating cell
migration and the crosstalk between cells. Decreased expression levels in cadherins
found to be inducing the malignant cell migration phenotype. Integrins are also ob-
served to be up-regulated in various cancer types123,124.

2.3 Precision Oncology

With NGS technologies becoming widely available due to the decrease in cost and the
short turn-over time, the amount of genomics data has burgeoned. Large population
studies enabled researchers to link underlying genotypes to disease phenotypes and to
create molecular atlases encompassing predictive and prognostic biomarkers. Rapid
growth in uncovering complex molecular traits of various cancer types extrapolated
to oncology clinics as an emerging medical care model termed precision oncology. It
has introduced a therapeutic paradigm shift towards targeted therapies which are new
drugs affecting a specific molecular target that is considered as the main factor in the
disease initiation and progression. Targeted therapy strategies factor in the unique ge-
netic make-up of the individuals to create a molecular map of the patient’s mutational
landscape which is used to identify the driver mechanisms and predictive biomark-
ers. The implementation of precision oncology follows the steps of obtaining patients’
genomic data from sequencing technologies, identification of variants of known signifi-
cance, coupling the genetic aberrations and the therapeutics based on clinical evidence,
and providing the treating physician with the overall annotations.

2.3.1 Targeted Therapies

Malignant cell colonies emanate from the disregulations in biochemical cascades re-
sponsible for the proliferation, stress response, cell migration and extracellular com-
munication. Functional abnormalities in tumor suppressor genes and oncogenes are
found to be the fundamental cause of the biochemical disturbances, which are either
directly involved in the corresponding pathways or serve as an upstream regulator.
However, standard treatment strategies with antineoplastics, radiotherapy and surgery
are dissonant with the complex genetic nature of the disease. The empirical treat-
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ment approaches tackles uncontrolled proliferation by introducing toxicity to the cells,
killing it with radiation or removing it with surgery, as a standalone method or in
combination. While providing the benefits on the shrinkage of the tumor mass, they
often entail high toxicity for healthy tissue as well, lead to micrometasis or secondary
tumors, contribute to developing treatment resistance and short relapse free survival
times8–10. Targeted therapies aim to provide more efficient care by impeding the tumor
growth and metastasis with therapeutic agents specialized for certain molecules, in
stead of targeting a wide range of cells with rapid growth. The mechanism of action
of this new generation of precision drugs works through small inhibitory molecules
and monoclonal antibodies125,126.

Kinases are enzymes that catalyze the phosphorylation of intracellular proteins which
play an important role in many essential signaling cascades such as growth, prolifera-
tion and apoptosis whose deregulation is strongly found associated with developing
carcinogenesis127,128. Thereby, they are successful target candidates for tumors whose
growth depend on this specific kinase activity. Imatinib is the first example for this
drug class which was approved by FDA in 2001129. It was proven to create a very effec-
tive treatment response for the chronic myeloid leukemia with the patients harboring
a mutant kinase fusion protein, BCR-ABL. Imatinib inhibits the fusion protein’s ABL
domain to prevent constant ABL kinase activation130. The effective use of kinase in-
hibitors in treatment was followed by many example such as sorafenib targeting VEGFR
in hepatocellular carcinoma, or gefitinib inhibiting EGFR activation131. Inhibition of
small molecules strategy is extended to targeting the activated oncogenic pathways
in the absence of its negative tumor suppressor regulator. One example is the effect
of loss-of-function mutations in the PTEN tumor suppressor gene which results in the
upregulation of (PI3K)AktmTOR pathway regulated by mTOR inhibitors132.

Monoclonal antibodies are the agents engineered in the laboratory to recognize specific
proteins that are involved in malignancy. They utilize the immune system by various
mechanisms, such as enhancing the immune system by blocking its inhibitors, working
as a tumor cell flag for detection and mimicking the immune system by triggering
antibody dependent cytotoxicity131. This class of drugs are also effective to elude the
cell crosstalk within the tumor stroma which harbors pro-oncogenic features132, such
as the effect of bevacuzimab on VEGF-A in reducing angiogenesis126,133.

Molecularly defined treatment strategies have created a momentum in changing the
histology-based clinical trial study design to the biomarker-driven trials. Similar to the
targeted therapy strategies, biomarker-based oncology trials require the stratification
of the population based on the shared molecular profile which involves well-defined
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biomarkers whose validity is already proven. Single targets are studied in basket
trials, which clusters patients from various disease types harboring a specific biomarker.
Umbrella trials assess a set of biomarkers from a single disease histology. Both methods
provide the opportunity of investigating the molecular heterogeneity and revealing new
drug-target associations which move towards closing the gap between the undruggable
oncological targets and the available pharmaceuticals134.

2.3.1.1 Network-based Approach

Pathways represent specific biological activities through the molecular interactions
of their components. Directly connected nodes imply higher functional relation then
the ones in the distant neighborhoods. An aberration in the upstream regulator of a
specific pathway might disregulate other mechanisms due to the high complexity and
connectivity of biochemical networks. In the literature, module detection algorithms
are implemented to examine the systematic effect of cancer genes to identify novel
driver genes, synergistic drug combinations and driver pathways which are thoroughly
reviewed in Ozturk et al.,2018.135.

The therapeutic potential of targeting driver genes has revolutionized the cancer health-
care. However, the alternative tumor mechanisms were found in the unresponsive
patients receiving this new line of treatment. For instance, while in melanoma BRAF
V600E inhibition has a high response rate, patients with colorectal cancer were resis-
tant to the therapy since they exhibited EGFR activation136. Similar studies pointed out
the fact that cancer mechanisms are highly heterogeneous and the functional impact
of somatic mutations are transmitted to the collateral gene products137. Additionally,
the focus on the accumulated effects rather than the single causative gene enables new
treatment strategies for patients who lack actionable targets, via targeting essential
pathways such as the cell cycle regulation cascades138,139.The molecular interplay of
network members is used to estimate the therapy efficiency, to identify driver modules,
to assess therapeutic response and to select combination therapies135. The hypothesis
that the genes that are outside of the core disease pathways also contribute to the
pathogenicity in polygenic traits (termed as omnigenic model) is utilized to project the
mutational profile to interaction networks (i.e. protein-protein interaction, pathway-
pathway interactions) and implement a scoring schema to extend the affected nodes
based on the parameters such as proximity to candidate genes, mutational burden,
similar biochemical properties in making inferences.
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Network-based methods have also been adopted in population studies to accurately
stratify patients into cancer subtypes. It enables further clustering of patients who
manifest a similar phenotype with molecular differences such as having the same core
pathway activated through different mutant genes135,140. Identifying the sub-networks
(aka modules) relies on the assumption that the genes causing similar phenotypes are
likely to interact with each other through the involvement of the similar biochemical
mechanisms or harboring variants linked with the same disease. Network-based strati-
fication (NBS) method implements the similar phenotype-connected node assumption
by projecting the candidate genes to the interaction network and iteratively propa-
gating the network to the near by nodes based on their gene proximity score until
convergence141.

2.3.2 Pharmacogenomics

Pharmacogenomics (PGx) is the study of the correlation between an individual’s ge-
nomic make-up and their response to a drug. Its sub-field pharmacodynamics (PD)
concerns with the effect of mutant targets on the response, whereas pharmacokinetics
(PF) relates how the variation in the absorption, distribution, metabolism, or elimina-
tion (ADME) genes influences the effect of a drug142.

The underlying molecular complexity of cancer renders it crucial to depend its thera-
peutic strategies to PGx. Molecular differences of the same organ and histology malig-
nancies define the disease subtypes requiring the precision in target-drug selections.
The prognostic estimation of the selected treatment depends on the genetic variation
assessment methods similar to GWAS studies, where molecular case control analysis is
conducted to find significant variants on the drug response, dose adjustment or adverse
effects. The known associations from medical publications are publicly available and
accumulated in many databases (e.g. the Pharmacogenomics Knowledge Base (Phar-
mGKB)143, Clinical Interpretation of Variants, in Cancer (CIViC)144, Cancer Genome
Interpreter (CGI)145, OncoKB146 and MyCancerGenome147) which provide the data
integration service, standard ontological representation of variants, curated datasets
with the association significance level score.

The PGx effect does not only depend on the monogenic cause for most cases, but rather
is manifests as a cumulative effect of the disrupted genes on the oncological pathways
(e.g. the combinatorial effect of EGFR and KRAS mutations EGFR inhibitor cetuximab
response which is rendered unresponsive due to the KRAS involvement in the EGFR
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pathway148). The identification of such mechanisms requires mapping the mutational
profile to associated pathways to infer the level of pathway disruption.

In clinical trials, it is not always possible to factor in the effect of rare variants since
they are observed in less than 1% of the population. However, it is known that the
rare variants in the proximity of the targets involved in mechanism of action (MoA)
alter can the drug response. The assessment method in such cases builds upon the in
silico tools explained in Section 2.1.4 to predict the variant impact and match their
profile with the list of MoA genes. Some publicly available databases such as DrugBank
provide the list off molecules involved in the drug mechanism149.

The molecular knowledge from PGx studies continually increases with additional meth-
ods of non-coding region variants effect prediction and the 3D space simulations to pin-
point the broken mechanism with protein docking and chemical molecular dynamics.
However, due to the complexity of these methods, they are rather research questions
than the direct methods involved in clinical routine. But the results might be used in
the clinical decision making process through the publicly available databases curating
the corresponding publication, which again emphasis the overall clinical workflow PGx
studies which is the sequential step of impact prediction, variant mapping to existing
clinical evidence through databases and interpreting the prognostics.

2.3.3 Clinical Applications

Molecular tumor boards (MTBs) are the interdisciplinary advisory bodies for precision
oncology in larger clinics. Their clinical workflow revolves around two major phases
of case preparation and discussion. Case preparation involves collecting and inter-
preting the molecular data to create patient-specific reports which are presented to
the committee in the discussion phase. After a patient is referred to the personalized
oncology program by the treating physician, a clinical coordinator manages the patient
consent and collects all necessary clinical documentation. Typically the pathology unit
examines the biopsy sample to diagnose the tumor type and evaluate tumor content.
The tissue block with high tumor content is sent to a sequencing facility for sequencing
and bioinformatics analysis. The hospital obtains the results containing the patient’s
genomics sequence together with the mutational signatures. The case preparation
team implements clinical annotation which is the process of interpreting the reported
aberrations in terms of the clinical actionability and druggability. A variant is selected
as actionable if it i) predicts the prognosis of a particular drug, ii) regulates a cancer
gene which can be targeted directly or indirectly, iii) is an enrollment pre-condition
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for open clinical trials, iv) is known for causing adverse effects, v) increases the cancer
susceptibility and subject to preventive therapy150. The team refers to the literature
and the publicly available data sources briefly mentioned in the previous section to
couple the relevant variants with their targeting drugs and prioritize based on the
significance level of their variant association. As a result, a case-specific molecular
report is prepared together with the clinical data (e.g. treatment history, diagnosis,
patient demographics). As a last step, the MTB, consists of specialists from various
fields, discusses the options and suggests the optimal therapy strategy based on the
information reported11.

In 2012, Moores Cancer Center identified a small cohort of 12 patients who exhausted
multiple conventional therapies and found eligible for targeted therapy. They reported
partial response for three patients who were resistant to their prior therapies. The
remaining patients could not be administered with the therapy due to logistic, in-
surance, or lack of actioable problems151. This modest number of clinical success
was scaled up to larger cohorts. The same center applied targeted therapy to 87
patients among a cohort of 347 and reported longer progression free survival and
overall survival rates152. The Danish Renal Cancer Group reported increased overall
survival times of 744 metastatic cancer patients12. Many other retrospective cohort
studies utilizing molecular patient stratification reported successful clinical implemen-
tation22,24,153–156.

Two decades of precision oncology practices pinpointed the challenges of the field.
While demonstrated utility was criticized of selecting the most suitable patients, the
requirement of exhausting conventional therapies was claimed to lower the efficiency
of the method. Additionally, the lengthy turnaround time to retrieve the mutational sig-
natures151, not having a standardized system of analysis leading to non-reproducibility
of the results25, and the labor intensive, mostly manual and thus error-prone process
of actionability assessment challenged physicians to integrate the robust precision
oncology workflows to the clinical routine.

2.3.4 Data Requirements of Precision Oncology

Efficient implementation of precision oncology necessitates a framework for standard-
izing the vocabulary and minimum information required to report the somatic variants.
Clinically relevant data being scattered over many publicly available databases each
with a different database model exacerbate the data integration efforts. Addition-
ally, the lack of ontology use creates discrepancies between the vocabulary of similar

25



2. Background

Allele Descriptive Fields

Information field Details

Assembly version GRCh37 or GRCh38

Chromosome number Number or letter representation of the chromo-
some of the variant

Variant position DNA position in HGVS format

Transcripts RefSeq identifiers of all possible transcripts

Proteins RefSeq identifiers of proteins

Table 2.1: Complete list of required allele descriptive fields.

data fields from different sources which hinder standardizing the information to be
reported.

Major cancer data stakeholders such as Clinical Genome Resource (ClinGen), Clin-
VAR, American Society of Clinical Oncology (ASCO), Global Alliance For Genomics
and Health (GA4GH) created a consensus on reporting clinical relevance of somatic
variants157–159 to improve interoperability. Standardized representation is organized
on descriptive and interpretative categories based on the information represented. Al-
lele descriptive fields mostly includes allele-specific coordinate and identifier properties
(e.g., the chromosome number and variant start position on DNA). Allele interpretive
fields represent the functional classification of the variants such as the variant class, the
predicted consequence and the sequence alterations. Cancer interpretive fields contains
the clinically relevant information of the variants such as the therapy relevance and
drug response160. The entire list of requirements are given in Table 2.1-Table 2.3.
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Allele Interpretive Fields

Information field Details

Variant category somatic, germline, unknown

DNA substitution and po-
sition

HGVS format

Protein substitution and
position

HGVS format

Variant type SNV, INS, DEL, multinucleotide variant (MNV)

Variant consequences Sequence Ontology (SO) terms, i.e. Nonsense, mis-
sense, frameshift

Supportive publications PubMed identifier

Table 2.2: Complete list of required allele interpretive fields.

Cancer Interpretive Fields

Information field Details

Diagnosis International Classification of Diseases (ICD) cod

Biomarker type Prognostic, diagnostic, predictive

Drug association FDA approved drugs, National Comprehensive
Cancer Network (NCCN), DrugBank

Drug response Resistant, responsive, not-responsive, sensitive, re-
duced sensitivity

Evidence level There is not a consensus on the level stratification.

Supportive publications PubMed identifier

Table 2.3: Complete list of required cancer interpretive fields.
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Chapter 3

Targeted Therapy Identification in

Precision Oncology

The content of this chapter is an extended version of the article:

Sürün, B., Schärfe, C. P., Divine, M. R., Heinrich, J., Toussaint, N. C.,
Zimmermann, L., ... & Kohlbacher, O. (2020). ClinVAP: a reporting strategy from

variants to therapeutic options. Bioinformatics, 36(7), 2316-2317161.

3.1 Introduction

Understanding a patient’s genetic-molecular profile to assess clinical actionability is
a key to establishing a working model of precision oncology where the ultimate goal
is the selection of patient-specific molecular target(s) with the evidence of treatment
response to a cancer drug. In clinics, this assessment is conducted by MTBs who make
case-specific decisions based on a set of therapy informing biomarkers obtained from
the patient’s genomic data. In this respect, extracting the list of genes that have a major
contribution to the disease progression is essential for therapeutic decision-making as
well as the identification of variants that are amenable to drug treatment or possibly
conferring treatment resistance.

The decreasing price of NGS technologies combined with its critical role in precision
oncology has resulted in large amounts of genomics data. While elucidating links
between phenotypes and underlying molecular causes, it came with an additional
cost of data analysis complexity. The arduous search for clinical significance requires
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annotation methods to extract major molecular players which would form a basis for
MTBs for therapeutic decision making.

The efforts in understanding tumorigenesis led to the discovery of cancer driver genes
which provide a selective advantage to the cells resulting in malignancy162. Various
strategies have been applied to big cancer cohorts to capture positive selection signals
of genes and resulted in driver gene catalogs7,94,163–167. Additionally, the advancements
in the PGx field revealed the underlying causes of inter-individual variation in drug
response which utilizes the genomic data as an indicator to estimate treatment suc-
cess. Unveiling the promoting effect of driver genes and the clinical evidence on drug
response leveraged the potential of targeted therapies. However, the major drawback
in its application lies within the same system that equipped us with the knowledge
in the first place: information is scattered over many different sources. It is very
time-consuming to query those sources manually. Moreover, sending patient-related
information to the web services for such annotations creates data privacy issues and
thus hinders the use of services such as PharmGKB168 and Cancer Genome Interpreter
(CGI)145. On the other hand, variants have to be examined within the context of the
severity of the observed mutation, which requires employing tools70,71 to predict the
potential effect of the variants on the cell functioning. The local instances of such
functional annotation tools can be difficult to use due to often complex command-line
interfaces. All these complexities impede the use of annotation tools in the clinical
routine and require fast and robust data analysis pipelines that automatize the arduous
task of variant annotation.

In 2018, Perera et al. developed a local tool that generates evidence-driven reports of
treatment options from somatic variants. They assembled a PGx dataset from GDKB,
CIViC, and TARGET as the main source of clinical evidence on drug-gene associa-
tions169. Their tool eases the therapeutic search by automatically matching genes to
this dataset and provides a ranked list of suggestions based on the strength of drug-
variant associations and their relatedness to a given tumor type. Nevertheless, it skips
the assessment of gene disruption levels and lacks standard rules to filter them based
on their predicted consequences. Hence, it requires input pre-processing prior to the
analysis. Moreover, it has shortcomings in its implementation due to the difficulties in
installation caused by package dependencies and reproducibility due to lacking con-
sistent versioning. In overall, it fails to encompass the entire analysis framework and
software requirements.

CGI is another source to annotate the cancer genome. It has a rich database involving a
catalog of known and predicted driver genes compiled via OncodriveMUT, and molec-
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ular actionability gathered from publicly available sources145. Although it provides a
complete clinical annotation, it does not support a standard VCF input file and thus
requires additional input preparation. Not having a publicly available local instance is
another disadvantage since it requires transferring sensitive patient data to their web
servers and stores the analysis results for six months, which violates many clinical data
protection guidelines. And lastly, it gets variant impacts by matching their coordinates
to the database entries, which could result in overlooking rare variants in the dataset.
oncoPDSs is another web-based tool similar to CGI, with the focus on emphasizing the
expected outcome of variant-drug associations170. Even though it has a variant effect
prediction mechanism, the aforementioned data security and lack of reproducibility
concerns are also pertinent for it.

Swiss Molecular Tumor Board (SwissMTB) created a comprehensive workflow covering
each step of annotation from variant calling to report generation by systematic variant
prioritization. Although their workflow fulfills the needs of MTBs, it is a standard
operating procedure (SOP) rather than an automated pipeline since report generation
solely relies on manual work for obtaining gene-drug associations and assessing their
therapy relevance171. Other disadvantages of their system are not systematically re-
porting driver genes, and leaving the relevance of genes to the clinicians’ judgment on
a mutated gene frequency chart. Since it relies on manual work, consistent versioning
is not ensured which creates a lack of reproducibility because of the dynamic content
of annotation databases due to updates. They also lack the generalizability of their
evidence levels since it is specialized in Swissmedic-approved drugs.

This chapter introduces Clinical Variant Annotation Pipeline (ClinVAP) which is an
automated pipeline to create patient-specific reports based on their mutational profile.
It processes SNVs to extract functionally significant variants and augments the variants
with a user-provided list of CNVs which are then annotated by driver gene status
and druggability. ClinVAP is available as a fully containerized, self-contained pipeline
maximizing reproducibility and scalability allowing the analysis of large-scale data. It
works with standard data files and eliminates an additional input preparation step.
The resulting JSON-based report is suited for automated downstream processing, but
ClinVAP can also automatically render the information into a user-defined template to
yield a human-readable report.
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3.2 Design and Implementation

ClinVAP is intended as a self-contained pipeline with one-way data flow. Its target au-
dience are clinical practitioners with an MTB and this audience also shaped the design
choices. Custom scripts are written in Python 3.0 and the pipeline is implemented in
Nextflow.

3.2.1 Design Concepts and Principles

The main factor defining users acceptance of a decision support tool in health care is
the ease of use since the target users generally are not trained in bioinformatics. We
built our pipeline around this principle by mainly focusing on two important aspects.
First aspect was to ensure simple and smooth installation. Second aspect was to make
it a simple command tool, so that running it would not be complex and prone to user
mistakes. Another decision that contributes to this purpose was to limit the number
of parameters that are required from the user. To limit the parameter space, we
used widely accepted standards on functional and clinical annotation of the variants.
We also created extensive documentation and a clear step by step guide to run the
pipeline.

Discussions with MTB members revealed that the key requirement was to automate
the analysis at the highest level and to produce a complete case report that is broad
enough to not to leave any significant therapy-related information out and yet be
as concise as it can be. Although the latter is mostly related to the data analysis
content, it indeed pointed to the key functionality which is to produce one complete
case report via automated processing. To achieve maximum level of automation we
limited input types to standard data formats (VCF for SNVs, TSV for CNVs, ICD10
code for diagnosis), which enables users to directly channel the data from sequencing
centers into the pipeline. As an addition to machine-readable case reports, we produce
the output in a human readable form (PDF and Microsoft Word DOCX). Working with
the standard data formats also increases the pipeline’s level of interoperability.

Another main design principle was reproducibility. It represents the software’s ability
of producing same results in different operating systems with the same source code
and data. It is especially important for clinics to produce same case report in different
analysis runs, and backtrack the source of the information.

Bioinformatics tools have two main aspects that hamper reproducibility. The first issue
is mainly applicable for the tools which rely on publicly available databases in their
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enrichment and annotation steps like ClinVAP. Due to the immense acceleration in the
field, those data sources are frequently updated in a way that they either include more
entries or have more curated results. This emerges the need of storing a snapshot of
the background sources in order to get the same results in a future execution. We solve
this problem via an integrated background knowledge base, in which we fixed versions
of different sources, and provided knowledge base versioning that is maintained as
GitHub releases.

The second issue is related with the effect of configuration, dependencies and the
operating system on software installation. Not providing a fixed environment for the
software with all the dependencies cause problems from installation of it to produc-
ing identical results. A general solution is the usage of container technologies such
as Docker and Singularity which enables the shipment of the code in its suitable op-
erating system with configured environment and installed dependencies with fixed
versions. To ensure reprodicibility, our first strategy was to create Docker and Sin-
gularity versions of our pipeline. High-performance computing (HPC) clusters do
not support Docker due to its security vulnerability of having root rights from the
Docker daemon. Although Singularity does not have this specific feature, it did not
support image orchestration at that time. Our efforts to create one version of the core
pipeline with both Docker and Singularity resulted in two different architectures and
raised maintainability issues since both version required their own configuration and
standards. The issue became more problematic with the developments of the second
version of the pipeline, since it became more complex and required the separation the
main code into different processes based on their functionality. The solution which
will ensure reproducibility, supporting the process based implementation and enabling
reproducibility and maintainability, was found in NextFlow framework.

3.2.2 Architecture

ClinVAP is implemented as a NextFlow framework (Figure 3.1) which forms a cohesive
pipeline from the individual tasks communicating through input/output channels172.
Reproducibility is ensured via NextFlow’s compatibility with Docker, an image contain-
ing the conda environment with pre-installed dependencies in which the NextFlow
script is executed. Automated integration between the GitHub code repository and
Docker Hub is set via Docker Hub’s continuous integration feature which ensures the
automated build of the Docker image subsequent to GitHub code commits. The scripts
of the processes except for the ones employing the Ensembl VEP tool are written in
Python3. The clinical annotation process encapsulates three modules responsible for
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Figure 3.1: ClinVAP implementation in Nextflow. The processes are channeled linearly through their
input/output files. Ensembl VEP depends on the cache and api files. If they are not provided in
the working directory, "VEP file download" initiates the downloading process. The main input of the
workflow is the VCF file containing SNVs which is passed to "Clinical Annotation" after being pre-
processed. The processes "Processing on Diagnosis" is triggered only when the ICD code of the diagnosis
is given in the metadata file (in JSON format). The human readable case report rendering relies on
the default report template if a customized template is not provided by the users. In the case of the
presence of the CNVs (as TSV file), the clinical annotation applied to those separately and two reports
one for each generated as a result.

processing the annotated input types, querying the knowledge base, and creating
the table contents. The input and output types of every process are shown in the
Figure 3.1 pointing out that the data flow is mostly linear and the pipeline builds
up the results based on the process dependencies. Inputs and the outputs are man-
aged in a way to support the highest level of generalization which is the reason for
choosing the widely used standard data formats. The entire pipeline is available at
https://github.com/KohlbacherLab/nextflow-clinvap under MIT license.

3.3 Materials and Methods

3.3.1 Clinical Annotation Knowledge Base

We created a clinical annotation knowledge base (KB) an annotation source of the
pipeline which is queried by the reporting application for each variant and disrupted
gene observed in the sample. It is designed to integrate various publicly available
databases and cover several annotation categories (e.g., mechanistic drugs, PGx, and
adverse effects) each contributing to a different layer of the informed decision-making
process with various specificity, as summarized in Table 3.1.
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Materials and Methods

3.3.1.1 Data integration

The KB was constructed using the complete set of 42,596 genes sourced from HGNC
and UniProt databases164,173. This number surpasses the approximately 21,000 genes
reported in the neXtProt release174, as the genes from HGNC and UniProt do not consist
of only protein-coding genes.

The genes were annotated with driver genes, PGx information, mechanistic drug tar-
gets, and adverse effects. Each annotation is enriched with its source name and source
id to keep track of the origin of the information. While integrating data from different
background sources, gene names were normalized by converting their corresponding
identifiers to HGNC id and HGNC gene symbol.

Data structures and the annotation content show differences from source to source.
To unify the data model with the least amount of missing data, we implemented
integration strategies including information extraction with cross-referencing among
different sources and processing text fields for keywords and notations.
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Table 3.1: Knowledge Base Sources

(a) Driver Gene Source

Data Source Version

Literature Vogelstein et al.

Intogen 2014.12

UniProtKB 2020.02

COSMIC v90

TSGene v2.0

(b) Mechanistic Drugs

Data Source Version

Literature Santos et al.

TTD 7.1.01

IUPHAR 2017.5

DrugBank 5.1.4

(c) Pharmacogenomics Effects

Data Source Version

CGI 2018.01

CIViC 2019.11

DrugBank 5.1.4
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Figure 3.2: Knowledge base schema. It is designed as one collection with embedded documents. For readability, the common data fields were not
repeated but presented as a subset of embedded or array of embedded documents. Embedded documents have one-to-one relationships and the array
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3.3.1.2 Driver gene catalog

A driver gene catalog was assembled from literature and publicly available databases,
TSGene2.0, COSMIC v90, UniProtKB, IntoGen (Table 3.11) 7,94,163–165.

To obtain the driver gene catalog from UniProt, we queried UniProtKB database using
the keywords "tumor suppressor" and "proto-oncogene". We only selected the results
if they were curated and marked as reviewed. The corresponding disease information
was also included in the results. We obtained the mutation and cancer types by parsing
the disease involvement column using a set of keywords. Then we finalized the disease
information by manually curating the initial list.

The information contained in the catalog denotes the driver gene type i.e., oncogene,
tumor suppressor gene (TSG), or Oncogene/TSG. To ensure precise querying on the
driver gene catalog, we further processed corresponding data columns to label the
mutation categories as SNV, CNV, and FUSION. The same strategy is applied to retrieve
the cancer types in which the genes were identified as drivers. As a final step, the
information from these sources was merged after gene name normalization using
HGNC id conversion via HGNC gene symbols, Entrez, and UniProt ids.

3.3.1.3 Clinical evidence catalog

PGx information is collected from Cancer Biomarkers Database (CGI, 2018.01), CIViC
(2019.11), and DrugBank (5.1.4) (Table 3.1c). Data integration required data specific
pre-processing before merging information from different sources, to standardize the
content and data structure.

Evidence score mapping: For variants with documented effects, we adopted a scoring
schema to provide a metric that shows the confidence of the provided association. We
used CIViC’s evidence level schema as a base and extended it to cover the associations
coming from clinical guidelines144. We conducted evidence-level mappings for CGI
based on the schema given in Table 3.2.

Genome assembly mapping: Even though the most recent human genome assembly
is GRCh38, both GRCh37 and GRCh38 assembly versions are still in use. Thus, not all
publicly available databases are up to date with the most recent version of the human
genome assembly. In order to provide clinical annotations for the sequencing data
coming from both assemblies, we converted the variant coordinates to GRCh38, if it
was not available.
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Evidence Level Mapping

Level Name Definition

A Validated association Proven association or association with medical con-
sensus

B Clinical evidence Association proven by clinical trials or with other
primary patient data

A/B Clinical guidelines Associations given by the clinical guidelines such
as FDA, NCCN, CPIC etc.

C Case study Associations given by the individual case reports
of clinical journals

D Preclinical evidence Associations supported by in vitro or in vivo exper-
iments

E Inferential association Association is inferred but not directly measured

Table 3.2: Evidence level schema used in cross reference evidence mapping.

For CGI and CIViC, we used NCBI ReMap to convert the genomic coordinates from
GRCh37 to GRCh38175. We applied a two-step control of the conversions to ensure its
robustness. First, we obtained the reference base of the newly converted coordinates
using samtools faidx and compare those with that of GRCh37. Second we checked
whether the new coordinates were mapped to the same genes as in GRCh37. Since
the variant coordinates were not given in DrugBank database, we mined them from
RefSeq database for both assemblies using the corresponding RefSeq identifiers. For
the RefSeq ids representing more than one type of base change in the same region,
extraction of the coordinates was made by matching the base changes reported in
DrugBank with the HGVS notation of interest.

Further data standardization: We made the drug response vocabulary consistent
between the resources. For better categorization of the data, we assigned the variant
class to each entry. This information was either obtained from RefSeq database or
assigned by linking variant consequences to variant classes using the SO hierarchies176.
We separated PGx effects from adverse effects. We re-structured the data entries
pointing to a combined effect of more than one variant. We pre-filtered CIViC data
based on variant origin (somatic), evidence status (accepted), and evidence direction
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(supports). As a final step, we merged the processed data to create separate data files
for pharmacogenomic effects and adverse effects.

3.3.1.4 Drug mechanism catalog

We further annotated genes with drug target data compiled from DrugBank 5.1.4,
Therapeutic Target Database (TTD), IUPHAR Guide to Pharmacology 2017.5, and the
manually curated dataset by Santos et al. (Table 3.1b)177–180.

Data-specific pre-processing steps were required to put the data into a standard form.
We extracted a cancer drug catalog from the sources by processing their drug type
information fields. Cancer drugs were identified from 1) DrugBank by processing ATC
codes, then by searching the keywords ’immunotherapy’, ’antineoplastic agents’ or
’Lutetium’ (a radioligand therapeutic agent that is not listed under the other keywords)
in the drug category if an ATC code is not available; 2) TTD by processing ATC codes,
then by searching drug-disease links given in the database, for a defined set of can-
cer vocabulary to identify drugs associated with cancer even when their ATC code is
absent; 3) IUPHAR by searching drug-disease links retrieved via IUPHAR API calls,
for a pre-defined cancer vocabulary to associate drugs with cancer; 4) SANTOS by
cross-referencing drugs with the ones contained by DrugBank to retrieve cancer drug
status since none of the information to extract such association was given in the data
file.

We standardized the drug approval status among the sources. DrugBank’s approval
status did not need any pre-processing and its vocabulary was taken as standard. TTD
provides more than one approval status for a drug due to its different indications. For
such cases, the highest approval status was used unless the drug has a withdrawn
or preclinical label for any of its indications. In this strategy, a false negative is pre-
ferred over a false positive in case of ambiguity of the approval labels. IUPHAR’s and
TTD’s approval status vocabulary is standardized to have the same notation among
the data sources. SANTOS did not provide approval status; hence, we completed this
field by cross-referencing between sources using DrugBank ids, drug names, or drug
synonyms.

After bringing the data into the same format from different sources by completing infor-
mation fields, assigning DrugBank ids to other sources if possible, and gene identifier
normalization, we merged them and created a mechanistic drug targets table.
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3.3.2 Variant Annotation

We annotate the variants to reveal their functional effects and the clinical evidence on
their contribution to treatment response.

3.3.2.1 Functional variant annotation

We implemented a functional variant annotation step to predict the potentially dam-
aging effects of somatic SNVs. Prior to functional annotation, the pipeline filters the
variants which did not pass the quality control measures of its NGS pipeline. Pre-
filtering provides an advantage in reducing the size of the data; thus, decreasing the
time required to annotate the file. We use Ensembl VEP v9571 to annotate the remain-
ing variants and calibrated the tool to run offline to ensure data security by restricting
input data from being sent outside of our local application.

In addition to obtaining the severity of the variant effects from Ensembl VEP, we pre-
dict the functional effects of variants on the canonical transcripts using SIFT and
Polyphen181,182. We then pass the results to the clinical annotation step for further
processing.

3.3.2.2 Clinical variant annotation

In this step, the descriptive and interpretive information on variants such as DNA po-
sition, variant consequence, etc., are retrieved after parsing the VEP-annotated VCF
file for SNVs160. Among the variants annotated with more than one functional effect
due to alternative splicing possibilities in each region, we choose the one that is most
damaging. We excluded the variants that are predicted as non-coding and low effect
(harmless) by VEP. Furthermore, we set additional filters to remove the variants pre-
dicted as "tolerated" or "tolerated low confidence" by SIFT and "benign" by PolyPhen.
We also included a step to calculate variant allele frequencies (VAF) of the SNVs if they
are from Strelka variant caller, as described in version 2.9 user guide183. Data from
other variant callers is not subject to the same calculation due to the non-standard
VCF fields and the lack of documentation. We query the KB, with the remaining list of
SNVs and the user-provided list of CNV, at variant and gene levels using base coordi-
nates and HGNC identifiers to reveal driver genes and gather clinical evidence on the
actionability of those variations.

As a part of clinical annotation, we convert "evidence level" to a "match level" indicator,
which is an extension to the evidence schema with the predicted variant consequence
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match. It ranks the level of matches between the observed variant and the KB results.
When there is not an exact match in the KB for the given variant, we search for
other variants of the same gene and assign priorities to evidence levels based on
the functional effect of that variant. While level 1 represents an exact match for the
variant, level 2 depicts different variants, same gene, same consequence, and level
3 points to the different variants, same gene, different consequence. For CNVs, we
create the same ranking through the CNV type, i.e., amplification or deletion. In this
way, we rank the KB results based on their compatibility with the observed variants
and the directness of their potential impact on the treatment response.

We equipped the pipeline with an optional step to further process the data based on
diagnosis, which provides an advantage in particularization of the KB results for a
given cancer type. Since disease names used in our KB data sources do not follow a
standardized ontology, any data processing attempts based on diagnosis require either
standardization or a name matching strategy on the disease keywords. We created
a hybrid approach, which searches for exact matches and if there is no exact match,
calculates a similarity score between nonstandard disease names and standard ICD10
codes based on their common features (e.g., organ type, system, and histology). To
achieve this, we created a KB diagnosis look-up table 1) by mapping ICD10 codes to
disease names when it is possible, 2) by dissecting the disease terms into main disease
features. We created an ICD10 code look-up table by applying the same dissection to
its vocabulary. If the KB disease term equivalent of the ICD10 code of interest is not
found in the KB look-up table, the similarity score between the ICD10 code and the
KB disease terms is calculated by dividing the number of common features between
them by the number of total features.

Particularization of the results can be done in three ways. The first option is to filter
clinical annotation results that do not belong to the diagnosis of interest. The second
option is to sort those results based on the diagnosis similarity score. The third option
is to show all the results for evidence levels A, B, and C, and only show the results that
belong to the same diagnosis for evidence groups D and E.

3.3.3 Report Generation

We structure the results into categories based on their context, e.g. PGx and mech-
anistic drugs, and the specificity, e.g. drugs directly targeting the observed variant
or targeting another variant of the mutated gene. We use JSON structure to store
the reports in machine-readable form. Since human-readable formats are preferred
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in clinics, we render the .JSON into a .DOCX template using python-docx-template
library184 that creates the document through Jinja2 package tags and filters in the pro-
vided word template. The pipeline is configurated to accept the template as one of the
optional parameters which enable users to customize the report based on the preferred
structure and corporate design elements. For the simplicity of the generated reports,
we create separate reports for SNVs and CNVs through the same process.

3.4 Results

3.4.1 ClinVAP Overview

We devised a fully automated pipeline which takes SNVs and CNVs of a patient as
input and creates evidence based patient specific reports as output (Figure 3.3). The
multistep process builds on Ensembl VEP for functional SNV annotation. It is followed
by a clinical annotation step constructed on processing the query results obtained from
a knowledge base using disrupted genes and user provided list of CNVs, to reveal
existing clinical evidence for therapeutic strategies. Final results are rendered into a
reporting template. The whole pipeline is available as a NextFlow workflow on GitHub
https://github.com/KohlbacherLab/nextflow-clinvap

Patient 
Referral

Sequencing 
Center

Variant Effect 
Prediction

Driver Gene 
Annotation

Drug-Gene 
Annotation

Drug-Variant 
Annotation Patient Report

Figure 3.3: ClinVAP overview in the clinical setting. The targeted therapy cycle starts with the patient’s
referral to the MTB program. ClinVAP processes the sequencing data through variant effect prediction,
driver gene annotation, actionability/druggability of disrupted genes and the observed variants, struc-
turing and rendering the results into a final case report, consecutively. The resulting report serves as
the pre-MTB case preparation which then is used as a major resource in the MTB discussion.

3.4.2 Clinical Annotation Knowledge Base

We integrated in total 11 publicly available data sources and created a clinical annota-
tion knowledge base. The resulting knowledge base consists of three main information
levels for each gene which are driver gene annotation, mechanistic drugs and PGx
information including adverse effects. The knowledge base created as one document
encapsulating embedded documents of each information category in JSON structure
which is compatible with MongoDB.
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Driver gene catalog:

We integrate the sources Vogelstein et al., IntOGen, UniProt, COSMIC, TSGene and
created a driver gene catalog which includes the details of the driver genes such as
driver role, mutational class, tumor type and the source of information. Figure 3.5
represents contribution of each sources to the catalog. It points out that each of
our background sources has an essential contribution to the KB. The sources contain
different amount of information for the same variant class. In addition, some sources
have specialized in specific classes, for instance TSGene covers mostly the content for
SNV driver genes while COSMIC contributes mainly to the structural variant class of
driver genes. Moreover, the sources do not have a large intersection apart from the
content of Vogelstein which is due to the common use of it in performance assessment
of the new classification tools.

Integrating those 5 complementary sources resulted in a comprehensive catalog of
1,727 SNV driver genes, 102 CNV driver genes and 429 fusion driver gene pairs. The
total number of genes that are classified as driver for at least one of these variant
classes is 1,883.

Drug mechanisms: We integrated the data from Santos et al.180, TTD178, IUPHAR/BPS
Guide to Pharmacology179, DrugBank149 and created a mechanistic cancer drugs cat-
alog. It includes the details of the mechanistic drugs such as approval status, drug
type, target action and the source of information. Our catalog includes 2,626 cancer
drugs/compound in total, that are known to target at least one gene mechanistically.
Among those cancer therapeutics, there are 324 drugs approved by a regulatory agency
for at least one drug indication. The amount of drugs which are in clinical and pre-
clinical trial phase are 1,868 and 454, respectively. Figure 3.4 shows the contribution
of each source to the mechanistic cancer drugs catalog. The diagrams indicate that
the main contribution to the catalog is rooted in DrugBank and TTD, whereas Santos
and IUPHAR have rather a limited number of approved drugs which provides more
evidence for the corresponding association subsets of DrugBank and TTD.
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Figure 3.5: Source specific driver gene numbers per variant class. (A) shows the distribution of SNV driver genes. (B)
shows the distribution of CNV driver genes. (C) shows the distribution of fusion driver gene pairs. In each class, diagram (1)
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drug numbers coming from each sources. (B) shows the source intersections for approved drugs. (C)
and (D) show the intersection between data sources for drug in clinical trials and in pre-clinical trials,
respectively.

Pharmacogenomics data: We integrated the sources Cancer Genome Interpreter,
CIViC, and DrugBank and created a catalog of the drugs which have a known docu-
mented clinical response on the observed variants and disrupted genes. The catalog
includes descriptive properties of variants such as their location and the base changes,
and interpretative details on the variant-drug associations such as predicted variant
consequences and observed drug response. It includes information on 943 gene-drug
pairs from a total of 243 genes. CGI, CIViC, and DrugBank contribute with 430, 592,
and 11 gene-drug pairs, respectively. CGI and CIViC only have 100 common gene-drug
pairs.

Adverse effect data: We integrated the sources DrugBank and CGI and created a
catalog showing the documented adverse effects of 52 drug-gene pairs from a total
of 31 genes, in the presence of specific variants. 42 of the gene-drug associations
were provided by DrugBank. We obtained only 4 associations from CGI that were not
included in DrugBank.

3.4.3 Patient-Specific Case Reports

The main result of the pipeline is the clinical annotations of the SNVs and CNVs that 1)
occur in a known cancer driver gene, 2) have been observed previously in the context
of altered treatment response, or 3) fall in the coding region of the mechanistic target
gene of cancer therapeutic, 4) cause adverse effects for treatment. They are classified
into six categories and saved as a JSON file (the structure is given in APPENDIX).
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The report in DOCX format is then created by rendering the JSON file into the report
template by Python mail merging tool184 using the default template. Given a case,
the reports for SNVs and CNVs are generated separately. We prioritized the results by
selecting the most damaging effect/impact for SNVs, identifying driver genes to reveal
the difference between the contribution of damaging variants to cancer initiation and
progression, and providing a match level rank to indicate the strength of the database
entry’s association with the observed variant.

We used a three-tier system in drug content categorization. The complete case overview
is presented starting from variant-specific information to gene-specific information with
the option of further narrowing down the results based on the cancer type. The table
views are shown in Figure 3.6 and 3.7.

Patient Data table holds patient information and general statistics of the molecular
profile. Since the name and the birthdate are personal identifiers, the pipeline is
agnostic to such input. Those together with the additional information cells are inputted
by the clinicians. Another field requiring a post-report registry is the tumor mutation
load. It is the total number of nonsynonymous mutations per coding area185. Since
its calculation factors in the length of the sequenced regions that vary on experiment
design which is not a part of inputs, the pipeline does not determine it.

Somatic Mutations in Known Driver Genes table represents the results of driver gene
annotation. The columns driver type, tumor type and references are returned from the
KB by gene level queries. The remaining fields are obtained as a result of functional
annotation. Variant and gene column represent the observed mutations and the gene
that the variant is mapped on, respectively.

Somatic Mutations with Known Pharmacogenetic Effects is dedicated to therapeutics
that have a clinical evidence of targeting the observed variants of the mutated genes
regardless of the cancer type, aka list of direct drug-gene association. For example,
the corresponding table in Figure 3.6 shows the example of T878A variant of gene
AR is resistant to abiraterone in prostate adenocarcinoma cases and the association is
supported by clinical trials or other primary patient data.

Somatic Mutations in Pharmaceutical Target Proteins has two sub-tables. Pharma-
cogenomics Summary of Drugs Targeting Affected Genes lists the therapeutics with the
evidence of targeting another variant in the affected gene. The corresponding table
of Figure 3.6 suggests that W742 variant of AR gene causes resistance when treated
with bicalutamide. The evidence level D suggests that there is a preclinical evidence.
The match level indication ’2’ given as a part of evidence level represents that variant
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W742 has a same consequence of the observed variant in gene AR. Summary of Cancer
Drugs Targeting Affected Genes gives the list of drugs that are known to mechanistically
target the genes. In this table, the strength of the clinical association is replaced by
the approval status of the drugs 3.7.

References and Appendix tables have the supplementary content of the main tables.
The Reference table provides the publications supporting the annotations given in the
main tables. Providing the source of information strengthens the clinical adaptability
of the pipeline and allows users to expand their investigations with further literature.
Additionally, we provide an entire list of non-synonymous mutations of the case in the
Appendix table together with the mapped genes, VAFs. We link the known variants to
their dbSNP or COSMIC id. This table is the main source to identify the rare variants
that do not have clinical evidence of a therapeutic association.

As a final remark, providing the reports as a JSON file paves the way for integrating
results into electronic health records and the Word document version allows users to
store custom information such as the sensitive fields and the measures from sequencing
experiments such as chromosomal instability or mutational load.
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Patient Data 

Patient           John Doe                      

Birthdate       16.02.1967                     

Diagnosis       C61: Malignant neoplasm of prostate                      
 

Mutation load                            Number of non-synonymous SNVs     8 

Number of oncogenes                          1 Number of tumor suppressor genes     1 

Additional information                         
 
 

Somatic Mutations in Known Driver Genes 
List of cancer driver genes along with the mutations observed in the patient. Reference column gives the list of sources 
that catalogued the corresponding gene as driver. 

Gene Mutation Consequence Driver Type Tumor Type VAF References 

AR T878A missense_variant Oncogene Prostate 0.56 1,2 

APC L1564nan frameshift_variant TSG Colorectal|Pancreatic|Des
moid|LIHB|Glioma 0.18 2 

 
 

Somatic Mutations with Known Pharmacogenetic Effect 

List of drugs with the evidence of targeting the observed variant of the mutated gene regardless of the cancer type. The 
information is obtained from CIViC, CGI and DrugBank.  

Gene Mutation Therapy Effect Disease Evidence1 References 
AR T878A abiraterone Resistance PRAD B-1 3 

AR T878A flutamide Resistance PRAD C-1 4 

 
 

Somatic Mutations in Pharmaceutical Target Proteins 

Pharmacogenomics Summary of Drugs Targeting Affected Genes 
Therapies that have evidence of targeting the affected gene. The information is obtained from CIViC, CGI and 
DrugBank.  

Gene Mutation Therapy Effect Disease Evidence1 References 
AR W742 bicalutamide Resistance Prostate Carcinoma D-2 6 

APC MUTATION jw55 Sensitivity/Response Colon Carcinoma D-3 5 

 

 
1 CIViC evidence levels are used. A = Validated association, B = Clinical evidence, C = Case study, D = Preclinical evidence, E = 
Inferential association 
 

Figure 3.6: Case report of SNVs of a mock dataset. The report consists of tables for i) patient data and
molecular overview, ii) mutations in driver genes, iii) the list of drug associations with a direct effect
on the observed variants, and iv) the list of drug associations with the effect on the disrupted gene.
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Summary of Cancer Drugs Targeting Affected Genes 
List of cancer drugs targeting the mutated gene. Information is obtained from DrugBank, Therapeutic Target Database, 
IUPHAR, and Santos et al.  

Gene Status Therapy References 
FLT4 approved pazopanib 7,8 

 
 
 

Adverse Effects 

List of drugs with known adverse effects  

Gene Mutation Therapy Effect Variant Type Evidence References 

DPYD D949V Tegafur Increased Toxicity SNV A1 9 

 
 
 

References 
The publications of the reference IDs given in the tables above. 

1 Vogelstein et al., Cancer genome landscapes., Science (New York, N.Y.), 339, 6127, 1546-58, 2013 

2 Futreal et al., A census of human cancer genes., Nature reviews. Cancer, 4, 3, 177-83, 2004 

3 Romanel et al., Plasma AR and abiraterone-resistant prostate cancer., Science translational medicine, 7, 312, 
312re10, 2015 

4 
Veldscholte et al., A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells 
affects steroid binding characteristics and response to anti-androgens., Biochemical and biophysical research 
communications, 173, 2, 534-40, 1990 

5 Waaler et al., A novel tankyrase inhibitor decreases canonical Wnt signaling in colon carcinoma cells and 
reduces tumor growth in conditional APC mutant mice., Cancer research, 72, 11, 2822-32, 2012 

6 Hara et al., Novel mutations of androgen receptor: a possible mechanism of bicalutamide withdrawal syndrome., 
Cancer research, 63, 1, 149-53, 2003 

7 Santos et al., A comprehensive map of molecular drug targets., Nature reviews. Drug discovery, 16, 1, 19-34, 
2017 

8 Sonpavde et al., Pazopanib: a novel multitargeted tyrosine kinase inhibitor., Current oncology reports, 9, 2, 115-
9, 2007 

9 
Caudle et al. Clinical Pharmacogenetics Implementation Consortium guidelines for dihydropyrimidine 
dehydrogenase genotype and fluoropyrimidine dosing., Clinical Pharmacology & Therapeutics 94, 6, 640-645, 
2013 

 
 
 

Appendix 
All the somatic variants of the patient with their dbSNP and COSMIC IDs. 

Gene Mutation Consequence VAF dbSNP COSMIC 
APC p.Leu1564Ter frameshift_variant 0.18   

FLT4 p.Val418Gly missense_variant 0.23  COSM4685079,COSM468
5080,COSM4685081 

IGF2 p.Arg206Met missense_variant 0.05   

MUC16 p.His2077Leu missense_variant 0.20   

AR p.Thr878Ala missense_variant 0.56 rs137852578 COSM236693,COSM2366
94,COSM5570417 

DPYD p.Asp949Val missense_variant 0.16   

 

Figure 3.7: Case report of SNVs continued. The report consists of tables for i) the list of therapeutics
with the evidence of targeting the disrupted genes mechanistically, ii) the list of variant drug associations
coupled with a known adverse effect, iii) the list of publications that are referenced in the tables, iv)
the list of all the non-synonymous mutations observed in the patient.
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The report structure has slight differences for the clinical annotations of CNVs. The
consequence column is removed from the known driver genes table and the effect of
the change in the copy number e.g. deletion or amplification is represented with the
mutation column (Figure 3.8). In the same table, VAF is replaced with copy number
(Figure 3.8). One major difference is the removal of the adverse effects table (Fig-
ure 3.9), since the KB does not have any adverse effect records associated with the
copy number changes. The appendix table is modified to represent the type and the
amount of the change in the copy number (Figure 3.9).
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Patient Data 

Patient               John Doe                   

Birthdate           16.02.1967                 

Diagnosis           C61: Malignant neoplasm of prostate                 
 

Mutation load                            Number of CNVs  

Number of oncogenes                          1 

Number of tumor suppressor genes     2 

Additional information                         

 
 
 
 

Copy Number Variations in Known Driver Genes 
List of cancer driver genes along with the mutations observed in the patient. Confidence column shows the number of 
the driver gene sources that catalogued the corresponding gene as driver and Reference column gives the list of those 
sources. 

Gene Mutation Driver Type Tumor Type Copy 
Number References 

PTEN del TSG 
BRCA|COREAD|GBM|HNSCC|
LUSC|PRAD|CM NA 1,2 

CDK4 amp Oncogene GBM|LGG|LUAD|CM NA 1 

CDKN2B del TSG BLCA|BRCA|GBM|CCRCC 0 1,2 

 
 
 
 
 

Copy Number Variations with Known Pharmacogenetic Effect 

List of drugs with the evidence of targeting the observed variant of the mutated gene regardless of the cancer type. The 
information is obtained from CIViC, CGI and DrugBank.  

Gene Mutation Therapy Effect Disease Evidence1 References 
CDKN2B loss palbociclib Sensitivity/Response RCC D-1 3 

 
 

 
1 CIViC evidence levels are used. A = Validated association, B = Clinical evidence, C = Case study, D = Preclinical evidence, E = 
Inferential association 

Figure 3.8: Case report of CNVs of a mock data. The report consists of tables for i) patient data and
molecular overview, ii) mutations in driver genes, iii) the list of drug associations with a direct effect
on the observed variants, and iv) the list of drug associations with the effect on the disrupted gene.
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Copy Number Variations in Pharmaceutical Target proteins 

Pharmacogenomics Summary of Drugs Targeting Affected Genes 
Therapies that have evidence of targeting the affected gene. The information is obtained from CIViC, CGI and 
DrugBank. Results are filtered according to cancer type, if it is provided in metadata. 

Gene Mutation Therapy Effect Disease Evidence2 References 
PTEN DELETION everolimus Sensitivity/Response Prostate Cancer B-2 4 

 
Summary of Cancer Drugs Targeting Affected Genes 

List of cancer drugs targeting the mutated gene. Information is obtained from DrugBank, Therapeutic Target Database, 
IUPHAR, and Santos et al.  

Gene Status Therapy References 
CDK4 approved|investigational abemaciclib 5 

 
 
 
 
 

References 
The publications of the reference IDs given in the tables above. 

1 
Rubio-Perez et al., In silico prescription of anticancer drugs to cohorts of 28 tumor types reveals targeting 
opportunities., Cancer cell, 27, 3, 382-96, 2015 

2 Futreal et al., A census of human cancer genes., Nature reviews. Cancer, 4, 3, 177-83, 2004 

3 
Logan et al., PD-0332991, a potent and selective inhibitor of cyclin-dependent kinase 4/6, demonstrates 
inhibition of proliferation in renal cell carcinoma at nanomolar concentrations and molecular markers 
predict for sensitivity., Anticancer research, 33, 8, 2997-3004, 2013 

4 
Templeton et al., Phase 2 trial of single-agent everolimus in chemotherapy-naive patients with castration-
resistant prostate cancer (SAKK 08/08)., European urology, 64, 1, 150-8, 2013 

5 
Gelbert et al., Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-
dependent/independent anti-tumor activities alone/in combination with gemcitabine., Investigational new 
drugs, 32, 5, 825-37, 2014 

 
 
 
 
 

 
 
 
 
 
 
 

 
2 CIViC evidence levels are used. A = Validated association, B = Clinical evidence, C = Case study, D = Preclinical evidence, E = 
Inferential association 

Appendix 
All the somatic variants of the patient with their dbSNP and COSMIC IDs. 
Gene Type Copy Number 
PTEN del NA 

GATA2 amp 4.0 

CDK4 amp NA 

CDKN2B del 0 

Figure 3.9: Case report of CNVs continued. The report consists of tables for i) the list of therapeutics
with the evidence of targeting the disrupted genes mechanistically, ii) the list of publications that are
referenced in the tables, iii) the list of all CNVs observed in the patient.
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3.4.4 Large-scale Data Processing

3.4.4.1 Deployment and Performance

ClinVAP is available as a self-contained Nextflow workflow configured to use Docker
or Singularity image environments186,187. Through the containerized execution envi-
ronment of the pipeline, we ensured easier versioning, full reproducibility of results,
and convenient execution on large-scale datasets.

In order to test the robustness and performance of ClinVAP, we processed 500 VCF files
from 430 donors containing simple somatic mutations from ICGC cancer projects188.
The pipeline is executed over the processes VCF QC filter (filter_vcf), Ensemble VEP
(vep_on_input_file), clinical annotation (snv_report_generation) and report rendering
(render_report_snv).

We executed the pipeline in an interactive compute node with 80 cores and 256 GB
RAM. We utilized Nextflow’s built-in support for container technologies that provides
containers as execution environment with the workflow dependencies. We configured
ClinVAP execution to use Singularity container engine that converted the existing
ClinVAP Docker image (kohlbacherlab/nextflow-clinvap) registered in Docker Hub
into Singularity image. The overall run time was 39m 59s corresponding to 9.6 CPU
hours (Table 3.3).

The resource usage metrics of ClinVAP large-scale run is generated by Nextflow’s
tracing and visualisation feature. Figure 3.10A shows the amount of CPU resources
used by each process. CPU usage is calculated based on the weighted average of
amount of CPUs that the tasks are distributed over and the total duration of each
tasks189. The most demanding process was the functional annotation with Ensemble
VEP (vep_on_input_file) of which the tasks were distributed over 4 CPUs where as
the mean of the CPU usage for this process is slightly over 2 CPUs (Table D.1). Fig-
ure 3.10B shows the amount of RAM that is used by a process190. The most memory
demanding process is again vep_on_input_file due to the fact that it works with the
large scale data that is not filtered due to the requirements of the clinical annotation
step yet. Figure 3.10C shows the execution time for each process191. As consistent
with previous metrics, the most time consuming step is vep_on_input_file.

3.4.4.2 Case Content Statistics

Among 500 VCF files, 59 of them did not return any variant which passed the ClinVAP’s
functional annotation filters. We obtained 441 case reports with content. The number
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Table 3.3: ClinVAP execution summary.

Nextflow command

nextflow run main.nf --skip_vep false --vcf “data/*.vcf.gz” -profile singularity

Run time duration                                    39m 59s

CPU-hours                                               9.6

Workflow profile                                       singularity

Workflow container                                  kohlbacherlab/nextflow-clinvap:latest

Container engine                                      singularity

Nextflow version                                      20.01.0

of driver genes identified per case is shown in Figure 3.11A. The majority of the cases
had zero to 20 driver genes. Among 441 case reports, 93% of them had non-empty
driver gene list. The median and the mean of the driver genes per report were four and
7.3 respectively, with individual donors having up to 162 driver genes. The number
of suggested drugs showed more variation between the cases (Figure 3.11B). The
median and the mean of drugs per case were found 12 and 49, respectively. 79% of
the non-empty case reports had that least one therapeutics suggestion. Only 6% of the
non-empty case reports returned neither driver genes nor suggested therapeutics

ClinVAP reported 26,068 genes (11601 unique) with non-synonymous mutations in
total. All the case reports had at least one variant with a predicted functional impact.
The median of the genes containing non-synonymous mutations was 29, whereas the
average was 59 (Figure 3.11C). The majority of the cases had zero to 100 variants,
with few cases having over a thousand variants.

3.4.4.3 Benchmarking

We compared ClinVAP with MTB-Report169 which is another tool for generating evidence-
driven reports from somatic mutations for MTBs (Table 3.4). Even though, MTB-Report
is developed to generate case reports of the druggabble targets via searching its back-
ground databases for mutations, it does not conduct functional variant annotation
and variant prioritization steps. It relies on a tab-separated input format for SNVs
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containing gene name, variant classification and protein change. It uses fewer sources
to annotate actionable genes.

Table 3.4: ClinVAP’s comparison with MTB-Report

ClinVAP

SNV processing

CNV processing

VCF input support

Functional variant annotation

Command line tool

GUI

Containerization

Language

Actionability databases

MTB-Report

                                                                                          
Pipeline:  Nextflow
Scripts:   Python 3.9

GCI 2018.01
CIViC 2019.11
DrugBank 5.1.4
TTD 7.1
IUPHAR 2017.5
Santos et al. (2017)

GDKD v20.0 
CIViC 2018.12
Target v3
Meric-Bernstam et.al (2015)

Scripts: R Cran

Since MTB-Report is not available as a command line tool, we used its GUI to obtain
the case reports and compare the contents with that of ClinVAP’s. Unfortunately, none
of the cases returned a result from MTB-Report since the tool kept crashing in its
attempts to search GDKD knowledge base.

3.5 Discussion

The precision oncology era requires translational workflows from bench to bedside
to identify the treatments that are optimal given a molecular profile. Another aspect
of improving cancer care involves efficient archiving and re-usage of the patient data
which have the potential to contribute to decisions on similar future cases and pop-
ulation stratification. Even though targeted therapies are found to improve cancer
care, the clinical implementations of phenotype-genotype associations are precluded
due to the complexity of the data, the abundance of publicly available databases with
complementary content, and the variety of bioinformatics tools required for a complete
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annotation workflow, of which many necessitates programming background. The avail-
able methods fail to comply with the requirements of a complete pipeline facilitating
various steps from functional variant assessment to clinical annotations.

We addressed these issues with ClinVAP, a fully automated, fast, and robust annota-
tion pipeline to equip clinicians with evidence-based patient reports which reveal the
molecular driving forces in cancer formation and actionable therapeutic targets among
the patients’ somatic variants. Nextflow implementation of the pipeline provides re-
producibility and scalability. Besides Nextflow’s feature of running the pipeline in a
pre-installed Docker environment, we fix the data source versions of the KB, so that the
report content does not deviate due to database updates. We proved the robustness of
the pipeline with stress tests using 500 VCF files including simple somatic mutations
from the ICGC cancer projects188. In addition to the therapeutic content, we provide a
complete list of non-synonymous variants to notify the users of the variants of unknown
significance. The local installation of ClinVAP with offline functional annotation and
knowledge base access prevents sending the patient data to remote servers, ensures
patient confidentiality, and abides by the data security regulations. The pipeline pro-
vides clinicians the flexibility to add additional annotations/notes via outputting the
report directly to a Microsoft Word Document. The idea here is that the physicians
have reports that they can file for insurance and administrative purposes. The JSON
version of the report comes with the advantage of interoperability with the electronic
health record systems or digital medical data archiving solutions.

ClinVAP is specialized on somatic variants. Germline variants are out of its scope due
to the strict legal regulations on their usage. Additionally, germline testing is not a
standard procedure for patients who do not satisfy certain eligibility criteria192. How-
ever, germline alterations are associated with increased susceptibility to cancer and
influence therapy choice and clinical trial eligibility193 (e.g., the heritable alterations
on FANC genes increasing the risk of cancer). The mutations in FANC genes disrupt
the FA pathway causing genomic instability194. They drive Falconi anemia which is not
cancer but induces pre-disposition for various tumor types195. Evaluating somatic and
germline mutations together with automated decision support tools can increase the
sensitivity of treatment suggestions. However, the prerequisite of implementing such a
feature would be germline testing becoming prevalent in the clinical decision-making
workflow.

Throughout the chapter, we referenced the publicly available databases as a source
of actionability and tumorigenesis impact information of genomic variants of our
KB94,144,145,163,177–179. Although they do not follow the same update cycle, some of
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them have more dynamic content change than others for example, the CIViC database
continuously curates its none-approved entries. This suggests an overwhelmingly
frequent necessity of updating KB. However, the content of the sources is mutually in-
clusive, and we do not expect the minor updates would result in significant content loss.
The manual effort of MTBs also includes a PubMed search for recent developments.
However, this nonsystematic and time-consuming approach brings disadvantage to
reproducibility and increase fallibility. Implementing a systematic search module over
PubMed for the recent relevant publications can be considered as a solution that comes
with the cost of introducing noise due to the lack of manual curation and explodes the
content of the case reports. Therefore, we suggest a yearly update cycle for the KB
and consider MTBs as the responsible body for conducting a rigorous PubMed search
when they see the need.

In conclusion, offering automated, concise, and robust solutions to the daunting chal-
lenge of translating genomics data into clinical information increases the efficiency of
cancer care. Although the precision oncology field is still in constant evolution and the
current requirements will need enrichment, ClinVAP responds to the crucial aspects of
the current MTB workflow.
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Figure 3.10: ClinVAP’s resource usage. A) CPU usage. The most CPU demanding process is
vep_on_input_file which is the step of functional annotation on 500 files. B) Memory usage. The
most memory demanding process is vep_on_input_file since it works with the large scale unprocessed
data. Although its overall memory usage is less than vep_on_input_file, snv_report_generation requires
up to 5GB of memory for the tasks that work with large processed-vcf-inputs C) Execution time. As
consistent with other metrics, vep_on_input_file process executes the most time-consuming tasks.
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Figure 3.11: The distribution of driver genes, drugs and non-synonymous mutations over the cases. A)
Driver genes. The majority of the cases had zero to 20 driver genes. The average driver gene number
per report was 7.3 and the median is four. B) Drugs. The median number of drugs was 12 and the
average number of drugs per case was 49. The number of suggested drugs showed higher variation
between the cases. C) Genes with non-synonymous mutations. All cases returned at least one such
gene. The average number of mutated genes per case was 59 and the median was 29.
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Chapter 4

Interactive Case Exploration with

PeCaX

The content of this chapter is an extended version of the article:

Figaschewski, M., Sürün, B., Tiede, T., & Kohlbacher, O. (2023). The personalized
cancer network explorer (PeCaX) as a visual analytics tool to support molecular

tumor boards. BMC bioinformatics, 24(1), -11196.

4.1 Introduction

NGS data becoming widely available with reduced costs and short turn-over time
enabled a deeper understanding of disease mechanisms. Oncology clinics adopted
precision oncology operations to guide clinical decisions based on the patients’ unique
molecular profiles. Precision oncology has evolved around the identification of ge-
nomic biomarkers to predict the likely drug response and the possible drug resistance
mechanisms197 to create personalized therapeutic interventions which would increase
the treatment efficiency with reduced costs.

Biomarker profiling starts with referring the biopsy sample from patients selected for
targeted treatment, usually after exhausting conventional therapies, to sequencing fa-
cilities. Clinics obtain a list of pre-processed variants that are likely to have a damaging
effect and significant contribution to the disease progression. Personalized medicine
units investigate the long list of variants to prioritize them based on the therapy rele-
vancy. Institutional MTBs then hold a discussion based on the processed list of variants
to identify targeted therapy strategies. It is an arduous, mostly manual, and thus

61



4. Interactive Case Exploration with PeCaX

error-prone task to identify targeted therapies tailored to the patient. Moreover, addi-
tional challenges are introduced to genome-based cancer care such as acquired drug
resistance mechanisms and "undruggable" cancer targets18,198.

The most common acquired resistance mechanism seen in oncogene-based therapies
is the re-activation of the proliferation pathway which circumvents the drug action
through alternate routes affecting downstream signal transduction pathways199. The
compensatory mechanisms are formed by either the crosstalk with another pathway,
byproducts substituting each other within the same pathway, or by a parallel pathway
performing a similar cell function200. Another factor contributing is the co-occurring
loss of function variant(s) in a tumor suppressor gene downstream of the proliferation
pathway resulting in cell death inhibition200. Sequence-based comparison methods201

in combination with pathway annotations is a common strategy to demonstrate both
acquired and intrinsic resistance mechanisms through gene-gene and drug-gene inter-
actions in close proximity to disrupted genes. Revealing affected pathways can also
result in the identification of the independent parallel pathways that contribute to
resistance, which then creates the rationale for combination therapies to circumvent
drug resistance202.

Another bottleneck for precision oncology implementations is the fact that only 10-20
% of the cancer genome is directly targetable18. This limits the therapy options for
patients who do not have any actionable targets. One potential mitigation strategy
is to exploit gene interactions to trigger metabolic inhibition creating a shift from
targeting driver genes to defining driver events. Understanding the interactions of
undruggable genes would contribute to reveal driver events that could be targeted by
taking advantage of their protein-protein interaction (PPI) network to disrupt their
oncogenic function. The network-based methods also have a notable potential to
stratify patients based on their molecular profile to factor in the genomic heterogeneity
of cancer into the treatment plan. All that emphasizes the importance of assessing not
only the observed aberrations but also their network interactions.

To overcome those challenges, assessing the patient’s susceptibility to drug resistance
should be streamlined to a clinical cancer care routine in addition to actionable target
evaluation. Since the data is intrinsically complex, it is difficult to combine clinical
annotations with a network layer of information manually. Thus, pipelines to de-
termine actionability/druggability (elaborated in Chapter 3) require an extension to
automate network generation and pathway annotation for providing an overall view
of the patient’s mutational landscape with the least amount of programmatic efforts.
The clinical acceptance of such pipelines is strongly tied to the user-friendliness of the
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graphical user interface (GUI) which allows users to operate through results such as fil-
tering, sorting, note-taking, and cross-referencing to other sources to enable thorough
investigation.

There are available tools designed for specific steps of the multiplex process of precision
oncology workflow with the least amount of required programming knowledge. VCF
visualization tools such as VCF-Miner and VCF-Explorer203,204 provide users from non-
bioinformatics backgrounds an interface to conduct VCF operations such as presenting
the file content in a human-readable format, allowing users to conduct operations such
as filtering with customized options while favoring the memory efficiency of the oper-
ations. However, they mainly rely on the variant annotation conducted before the VCF
operations. Thus, they do not reduce the complexity of analyzing genomic data and
are neither advantageous nor preferable in the clinical routine where a quick turnover
time for the genomic analysis is prioritized. Any additional steps those tools require,
such as conducting the annotation, re-shaping data based on the required input format,
and selection of quality control filters based on experimental measurements, increase
the workload in clinics making them inapplicable in the health care routine.

Other available tools do not solely focus on variant operations but specialize in the
clinical annotation to create a concise list of therapy-relevant variants reviewed in
Chapter 3.1169,170. They do not integrate gene-gene interaction networks to their
results; therefore, they fail to enable users to assess cumulative resistance mechanisms
and alternative therapeutic options required for undruggable targets.

Another major obstacle hindering the use of these tools is their lack of an interactive
GUI supporting MTB actions. Overall, the field lacks one central tool which is capable
of conducting necessary operations to explore genomic data with a clinomics approach
of integrating interaction networks with the pathway information in a user-friendly
GUI allowing clinicians to examine a case in depth.

This chapter introduces Personalized Cancer Network Explorer (PeCaX), a clinical de-
cision support tool that performs clinical annotation on the genomics data, provides
gene-drug interaction networks of the identified aberrations, and ensures commu-
nication with clients with its interactive GUI. PeCaX is compliant with microservice
architecture with each component containerized with Docker attributing the ease of
maintenance, deployment, and reproducibility to the software. It is a local application
ensuring data security by performing all the analysis on the local infrastructure and
removing the input data once the analysis is completed. It is supported by all modern
web browsers across platforms. Its usage requires no programming knowledge since
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all the backend operations are hidden from the users. It is easily integrable into di-
agnostic and MTB workflows to investigate the relevance of variants from individual
cases or patient cohorts.

4.2 Design and Implementation

PeCaX is intended as a microservice-based tool consisting of individual and indepen-
dently deployable components that communicate via the REST API. Its web-based fron-
tend is implemented using the NuxtJS framework. The main target users for the tool
are MTB members preparing the cases and selected representatives of these users were
consulted during the design phase to increase its adoption in clinical routine.

4.2.1 Design Concepts and Principles

Since the main objective of PeCaX is to provide a decision support system for MTBs to
assist the task of case preparation and discussion, we determined user acceptability
as the most important design principle. One of the most important requirements was
providing a tool that does not require any programming knowledge and is free of
complex programming interfaces. Hence, we isolated all the backend operations from
the user and limited users’ interaction with our application through the GUI.

We designed our tool to work with standard data formats to eliminate the manual input
preparation step. Additionally, we focused on boosting the user-friendliness of the GUI
to receive the input, provide the results as concisely as possible while allowing the
users to interact with it, and provide convenient archiving options such as downloading
the results in a human and machine-readable format. The frontend is a web service
that works on any modern browser independent of the operating system. It supports
concurrent use allowing access from browsers not running on the same machine but
within the same network.

Another important aspect that shaped our design was the data privacy concerns as
genomics data is intrinsically highly confidential. To avoid sending data to servers for
analysis, we constructed PeCaX as a local application and ensured that sensitive data
is only processed on the machine PeCaX is installed on, not the machines that access it
via the GUI. We prevent unauthorized data access by deleting the main input genomics
data as soon as the data analysis is completed.

We highly prioritized reproducibility of the results to provide standard and coherent
analysis through consistent versioning and containerization of our application. We
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fixed all the versions of third-party analysis tools and annotation sources to avoid
the uncontrolled effects of software and database updates on the results. We used
containerization technologies to ship our application with all the package and platform
dependencies.

PeCaX is easy to maintain due to its microservice architecture design. We separated
the main components based on their functionality such as clinical annotation, network
generation, and GUI in a way that each component is a stand-alone service indepen-
dent of the other. We containerized each microservice separately and orchestrated
them through Docker compose. We established microservice communication via REST
APIs and consistent data sharing among the individual containers through Docker data
volumes. Microservice architecture together with each service working with standard
data formats also provides added advantage on healthcare interoperability, since it
enables the results to be integrated into electronic health records, it also allows em-
ploying the services in a larger application ensuring the communication with REST
APIs.

4.2.2 Implementation

4.2.2.1 Architecture

We implemented a microservice-based architecture with three main service layers to
provide clinical annotation, network generation, and the GUI to visualize the results
and enable users to interact with the tool (Figure 4.1). The clinical annotation service
employs ClinVAP161 to create patient-specific case reports from the patient’s genomic
data. Network generation service utilizes SBML4j205 to create gene-gene and gene-
drug interaction networks of the disrupted genes observed in a patient. Visualization
service is a GUI including two main modules, one providing the results from the clinical
annotation in a tab-separated table format and the second module, BioGraphVisart to
provide network visualization206. We also implemented an additional data manage-
ment module as an ArangoDB database. It creates a collection to store unique job ids,
selected parameters, and the analysis results which enable users to retrieve a previous
session or start a new session from the previously downloaded results. We container-
ized every service layer individually using Docker and orchestrated via docker-compose.
We used Docker volumes to store and share the data within the individual services. We
set up service communications via a client/server model mediated by RESTful APIs
handling HTTP requests.
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Figure 4.1: Overall PeCaX Architecture. The communication between the backend services and the
client is established via the GUI. User inputs are SNVs in .VCF format, CNVs in .TSV format and additional
arguments such as the human genome version and the diagnosis passed to the application as JSON. Data
sharing between the services are ensured via the data management module implemented in ArangoDB.
SNVs, CNVs and the arguments are passed to the clinical annotation module. The resulting case report
is sent to the report visualization module. A list of genes from the case report is passed to the network
generation module. The resulting networks (GraphML) are sent to the network visualization module.
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4.2.2.2 Clinical Annotation Service

We converted ClinVAP (Chapter 3) into a PeCaX service component to generate the case
reports from functional and clinical annotations of a mutational profile. We equipped
ClinVAP with an Nginx webserver to handle HTTP protocols. We used Flask, a WSGI-
compliant web application Python framework, to provide access from the server to
the backend application. ClinVAP Nextflow pipeline (Chapter 3.2.2) is used as the
backend application providing the clinical annotation functionality.

Clinical annotation service is consistent with microservice design principles. It incorpo-
rates Nginx, Flask, Nextflow, and VEP file deployment services, each is an independent
component of the overall service. Each microservice is containerized separately with
Docker containerization technology (Figure 4.2). We implemented minor changes to
the ClinVAP Nextflow pipeline to encapsulate the whole pipeline in a Docker image.
Instead of providing pipeline dependencies as a Docker image and running the script
within this environment, we replaced the dependency image with a Conda environ-
ment management system, to avoid the unrecommended use of running a Docker
container within a Docker container.

Once the application is up, the Nginx container starts the web server and publishes
the port to receive and process the requests and return the response. Flask container
monitors the published port, accepts the users’ requests, and calls the application
method. ClinVAP Nextflow container constantly observes the data volume through a
Python FileSystemEventHandler script for newly created VCF files to auto-
matically start the pipeline. When the process finishes, the same event handler deletes
the inputted SNVs, CNVs, and additional arguments file. The data sharing among
the microservices is ensured via local Docker volumes. Flask and ClinVAP Nextflow
containers have common volumes to pass the input and output files between them-
selves. Additionally, to establish fast file transfer for Ensembl VEP cache and FASTA
files required for offline variant effect prediction, we created a VEP file deployment
image that contains all the required files and copies them to one of the shared Docker
volumes on ClinVAP Nextflow container, if they are absent.
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Figure 4.2: Clinical annotation service architecture. Each component is containerized with Docker
and orchestrated with docker-compose. ClinVAP pipeline image depends on Flask and VEP file transfer
services. Flask framework transfers the user inputs to ClinVAP uploads and configuration volumes.
Python event handler watches the uploads volume for newly created VCF files to trigger the Nextflow
pipeline. VEP file transfer image carries the cache and FASTA files necessary for offline variant effect
prediction. It delivers those files to ClinVAP downloads volume. The resulting case reports are shared
with the Flask framework through the downloads volume and exposed to the client upon request. Nginx
web server and Flask framework services work together to ensure communication with the client.

We exposed endpoints to receive input parameters and data files, publish the driver
gene list and the entire case report in JSON format, and signal PeCaX GUI when the
analysis is done or interrupted due to an error.

The REST endpoint /upload-input is modeled as POST method and dedicated
to send input files and parameters to the server. It is realized with the content-type
multipart/form-data since the aim is to transfer different types of data in
one request. It transports two input files: SNVs as VCF and CNVs in TSV format.
The validity of files to be uploaded is checked by the file name extension. The files
are rejected if they have a different extension than the allowed ones. Next to the
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input files, it requests the parameters human genome assembly version,
filtering type and ICD10 code from the user.

The only required argument is the VCF file. Uploading a CNV file and the remaining pa-
rameters are optional. The parameters human genome assembly version
and filtering type have a default value, if not provided. The transferred files
are saved to Docker volume clinvap_uploads. Additional arguments are bun-
dled in a JSON file and saved to clinvap_conf volume as the Nextflow pipeline’s
configuration file.

1 requestBody:
2 description:
3 content:
4 multipart/form-data:
5 schema:
6 type: object
7 properties:
8 filename:
9 type: array

10 properties:
11 snv:
12 type: string
13 format: binary
14 cnv:
15 type: string
16 format: binary
17 arguments:
18 type: object
19 properties:
20 assembly:
21 type: string
22 diagnosis:
23 type: string
24 filter:
25 type: string

Listing 4.1: Definition of the POST request, uploading inputs

The endpoint /results/<filename>/status is modeled as a GETmethod to
handle the request of the pipeline’s run status. It accesses the pipeline’s log file on the
data volume. It parses the log file and reports the pipeline’s status at the moment of the
request as a JSON object with response code 200. The responses signaling the status
of the pipeline are "finished with errors", "finished with success" and "running". It also
handles the FileNotFoundError as an exception and returns a 404 response if
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the log file is not in the data volume indicating that the pipeline has not been started
and the request is invalid.

/results/<path:filename> endpoint is modeled as a GET method to send
the case report as a JSON file attachment for users to download. The route takes the
filename as a variable to create a path under the static folder "results" which is the
base directory in the local Docker volume in which the pipeline saves the resulting
report. The users’ access to the folder is controlled with the filename variable
which is the name of the inputted VCF file with JSON extension. The endpoint also
handles FileNotFoundError as an exception and returns a 404 code if the report
does not exist in the path.

/results/<filename>/tables/driver-genes is modeled as a GET
method to handle users’ request of obtaining the driver gene list. It parses the case
report to extract the driver gene list and returns it as a JSON response. Similar to the
previous endpoint, it takes the filename as a variable and searches for the case
report in the created path under the static results folder. It returns a 404 file not
found error code if the case report does not exist in the path.

4.2.2.3 Network Generation Service

The indirect or accumulated effect of disrupted genes on the biological regulatory
mechanisms harbors the potential to be informative in clinical decision-making. The
interplay of such genes within their proximity has the potential to reveal possible drug
resistance mechanisms. Moreover, examining disrupted genes in their network creates
the possibility of finding alternative paths for drug intervention indirectly affecting an
undruggable target. Hence, precision oncology requires examining the interactions
between the observed biomarkers in their network neighborhood.

PeCaX infers the genes which are up- and downstream of a candidate target concern-
ing gene regulatory and signaling pathways together with the drugs associated with
the genes included in the networks. It enables the network-level examination of a
patient’s molecular aberrations by employing SMBL4j205 to generate the gene-gene
and gene-drug interaction networks. SBML4j is a service hub that provides biolog-
ical network management and querying the graph data. It provides a standardized
REST API which enables its integration into bioinformatics pipelines and workflows.
It persists biological models in the Systems Biology Markup Language (SBML) format,
a standard representation of biological networks, in a graph database. It is coded
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in the Java spring framework which is able to communicate with its Neo4j backend
database.

SBML4j is a broad application with diverse functionality in network operations. Its
usage in PeCaX depends on the knowledge graph generated from KEGG pathways and
the drug-gene annotations obtained from DrugBank177,207. Given a set of genes with
HGNC symbols as identifiers, SBML4j creates a sub-network of the paths connecting
them and extends the network with their first neighbors.

PeCaX communicates with SBML4j through its REST APIs. Using the POST request
/overview, PeCaX publishes the list of gene symbols as JSON object to trigger the
sub-network generation. The universally unique identifier (UUID) of the generated
network is provided by SBML4j as a response and the network is stored in its local
database. To access the network’s GraphML content, PeCaX sends a GET request
to SBML4j’s /networks/UUID endpoint. The resulting networks are annotated
with the pathway information through a POST request, /mapping/UUID. PeCaX
conducts this operation for the list of genes given in every table category separately to
present the corresponding networks of every table.

Additionally, SBML4j obtains the list of driver genes from the case reports and integrate
the driver gene information into the mapped network. SBML4j also provides links to
the additional publicly available sources i.e., ENCODE, Ensembl, HGNC, MD Anderson,
KEGG, and UniProt as node annotations, which are processed by PeCaX and included
in the user interface for enabling users to expand their investigation.

SBML4j is deployed with Docker as a part of PeCaX’s micro service-oriented application.
It is based on a Neo4j database image mounted to a local Docker volume for storing
the data needed for the network database such as the configurations, data sources,
and plugins. Another image it depends on contains the SBML4j service itself with a
data volume assigned to keep its log files.

4.2.2.4 GUI Service

Since PeCaX’s main user group is MTBs, the most important design principle was
achieving high user acceptance. It required minimizing the programmatic efforts to
use the tool and presenting the results in the most concise way to not overwhelm users
with the deluge of data attributing vital importance to the design of the graphical user
interface and the biological data visualization methods.
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Our GUI’s first main function is to ensure the user’s initial communication with the tool
in providing inputs and receiving the results of the analysis. Another crucial function
is to enable users to conduct operations on the results, by providing them in a concise,
structured, and interactive manner for users to understand the data and gain insights
from the results. For this purpose, we implemented two main modules, one is to
visualize the clinically annotated genomics data and the other one is for the networks
generated from the disrupted genes.

The case report visualization module, implemented in the Nuxt.js framework, displays
the results generated by ClinVAP in an interactive tabular form with the same table
structure as described in Chapter 3.4.3. The network visualization module employs
BioGraphVisart206, which is an automated tool designed for visualizing biological net-
works based on Gene Regulatory Networks (GRNs). BioGraphVisart is a web-based
tool written in the Node.js JavaScript library that can handle many connections con-
currently. Additionally, it inherits the functionality of Cytoscape via Cytoscape.js. It
surpasses Cytoscape’s functionality with its features to include extra node annotations
such as grouping the genes based on their pathway involvement and allows to incorpo-
rate additional node types such as drugs with the targeting relationship to the genes.
BioGraphVisart uses GraphML files as input and creates a Cytoscape core network
object from the nodes and edges obtained from the input file. It initializes the network
object from the nodes and automates i) the layout of the network graph, ii) the label-
ing of nodes (genes, drugs) and edges (interactions), iii) the edge style for different
interaction types, iv) the node coloring according to easily modifiable node attributes,
and v) the generation of legends. GUI service and the BioGraphVisart are deployed
separately with Docker containerization technology with GUI services dependent on
BioGraphVisart.

4.2.2.5 Data Management

Data management between the microservices of GUI, network generation, and clinical
annotation is ensured with a local ArangoDB database. Upon the start of the analysis,
an empty ArangoDB database collection is created with a unique job ID. When the
user uploads the variant files and enters the parameters, the empty JSON collection
is appended by the arguments of the ICD10 code, assembly version, and the filtering
option. The arguments are then posted to ClinVAP via its REST API. Once the clinical
annotation of the uploaded variants is finished, the resulting case report is added to the
database collection and the original variant files are deleted from PeCaX. PeCaX sends
the list of genes and their annotation labels to SBML4j to generate the networks. The
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UUID of the generated network is sent back to the database and stored in the project
collection. The corresponding networks are saved to the Neo4j database and sent to
the BioGraphVisart for visualization. The custom notes made by the users through the
GUI are also appended to the analysis collection.

The main advantage of the data management module is to store the analysis results
and enable the user to access the previous analysis results with the job id and the
project name. It also offers the advantage of performing multiple analyses gathered
in one collection (e.g., holding the analysis results of different patients presented in
one MTB session).

4.2.2.6 Deployment and Availability

PeCaX can be installed locally on a personal computer or for groups of users in an
access-controlled intranet. It is deployed with pre-built docker containers and orches-
trated with docker-compose. Complete deployment is enabled with all the depen-
dencies required for the software installation and the configuration via Docker. The
reproducibility of the results is also achieved with containerization since all the de-
pendencies and the source code itself are built on fixed package versions, tools, and
data sources. Local Docker data volumes are used to store and share the data between
PeCaX’s service components.

PeCaX is an open-source tool under the MIT license. The source code is main-
tained in GitHub repository https://github.com/KohlbacherLab/
PeCaX-docker. All the Docker images are publicly available in the Docker hub
PeCaX repository, https://hub.docker.com/repositories/pecax.
Due to its microservice architecture, the changes in the microservices are automatically
reflected in the PeCaX software due to the continuous integration functionality of the
Docker hub based on the new commits on GitHub.

4.3 Results

4.3.1 Initialization and Data upload

PeCaX requires a local submission of the data to initialize the analysis. To trigger the
automated process the main requirement is the VCF file upload. If a TSV file containing
the list of CNVs is provided, PeCaX factors it into the clinical annotation process. Other
optional parameters are 1) the human genome assembly version which was used in the
variant calling step of the NGS pipeline with a default value GRCh37, 2) the diagnosis
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given as ICD10 code, 3) the filtering option only factored into the analysis as described
in Chapter 3.3.2.2 if the diagnosis is provided (Figure 4.3). When the data upload
and parameter selection is completed, PeCaX groups the data sets and the results and
attributes them to a specific project which provides the advantage of saving the session
information which might include more than one patient entity.

Figure 4.3: PeCaX data upload and parameter initialization interface. The values of assembly, diagnosis,
and diagnosis based filtering is selected from the drop-down menu. If the optional parameter diagnosis
is not provided, the annotation skips the diagnosis based filtering.

Another option to start the PeCaX session is to upload a previously downloaded JSON
file or to enter the corresponding job ID which will skip the clinical annotation and
directly load the results to GUI. All job IDs of a given project are listed on a subpage
where the user can select and delete them individually. Deletion of a job ID removes
all information stored for this ID in the project database as well as the generated
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networks from the network database to ensure data privacy. In the same manner, it is
also possible to delete the entire project (Figure 4.4).

Figure 4.4: PeCaX initialization from previous sessions. The results can be retrieved with the job id, or
the previously downloaded JSON file.

4.3.2 Interactive visualizations

The results are rendered as interactive, responsive tables. The structure of the case
report follows the same representation as described in Chapter 3.4.3 where the tables
are separated based on 1) the list of known driver genes observed in the patient, 2)
the list of drugs with the evidence of targeting a specific variant of the gene and their
documented drug response, 3) the therapies that have evidence of targeting the af-
fected gene, 4) the list of cancer drugs targeting the mutated gene mechanistically,
5) the list of variant-drug pairs known as causing adverse effects, 6) the list of scien-
tific publications supporting the associations found for the mutational profile and the
therapy options, 7) the complete list of non-synonymous variants observed with their
dbSNP and COSMIC IDs. Each table has an information text displayed upon selection
to provide the table explanations which is useful for users who are not familiar with
the report structure.

The GUI enables users to query, sort, and filter the content of the columns of each table
(Figure 4.5A,B). The table view supports a wide range of table operations to simplify
navigation of the data such as hiding/showing columns (Figure 4.5B), highlighting
rows across sections (Figure 4.5C), collapsing/expanding tables, searching the tables
based on a column value even with a partial text, and choosing the number of displayed
entries which is ten by default. For each gene listed, the tables contain cross-links to the
external data sources (Figure 4.5D) Uniprot208, KEGG207, Ensembl209 and HGNC210

which are accessible through the drop-down menu next to the gene symbol. Similarly,
the references of the extracted associations are directly linked to the web page of the
related publications on PubMed (Figure 4.5E). The content of all external sources is
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shown in a separate browser tab upon selection. The GUI also allows users to download
each table along with customized notes (Figure 4.5F). At the end of each section, the
tables contain a text field dedicated to entering custom notes which are stored along
with the annotation data(Figure 4.5 G).

A

B

C

D

E

F

G

Figure 4.5: PeCaX table interactive view. A and B) show the individual column operations (e.g.,
filtering, sorting). C) demonstrates the row highlight function. D) is the drop down menu for gene
cross referencing. E) provides the links to the evidence publications. F) points to the table download
button. G) shows the field for customized note taking.

The networks are generated separately for each table except the appendix tables if
at least one gene symbol is associated with an entry in the SBML4j database. The
networks are displayed side by side with their corresponding table (Figure 4.7). In
the networks, the nodes are either the genes or the drugs. The edges represent the
interactions between them such as signaling, regulation (Figure 4.6 A). Genes that are
sourced from the tables are specified with the color red and labeled with their HGNC
symbol (Figure 4.6 B). The drugs associated with any of the genes are represented
with diamond-shaped nodes and labeled with their drug name (Figure 4.6 B). Multiple
drug nodes targeting the same genes are merged into one expandable hub, providing
the advantage of a more concise network representation. Different interaction types
are depicted by different edge styles. If two nodes have multiple interactions, their
edges are merged into one by default. Since drug and gene names may become very
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long, they are shortened, and moving the mouse over a node reveals the full node
name. The same principle is applied to the edge types.

A B

C D

E

Figure 4.6: PeCaX network interactive view. A) shows the different interaction types and their symbols.
B) represents displays the network properties such as the difference in the node shapes for drugs and
genes, the highlighted regions based on their pathway involvement and collapsing the drug nodes and
edges to provide a simpler view. C) shows the menu to alter the layout, node shape and colors. D) is the
menu for node search, undo the layout changes and retrieve the deleted nodes. E) shows the pathway
menu. Upon the selection of a pathway, corresponding regions are highlighted.

The default network layout is selected as Compound Spring Embedder211 which can
be replaced with additional four layouts from the drop-down menu (Figure 4.6 C).
It also supports manual alteration of the network’s layout by dragging the nodes,
arranging the network at users’ convenience, and modifying the content by deleting
certain edges and the nodes. The networks have the search function by node label
(Figure 4.6 D). The pathway information is displayed on the networks by grouping the
genes and highlighting the associations extracted from KEGG pathways (Figure 4.6 E).
Drug nodes harbor the link to a drug overview page that includes cross-references to
external drug databases, i.e., Drugbank149, HGNC212, and PDB213.
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Figure 4.7: PeCaX side by side view of tables and corresponding networks.
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4.3.3 Exporting tables and networks

The entire case report including the custom user notes can be exported as a PDF
file as well as the individual table sections. It is possible to download entire case
report in JSON format which can be incorporated into other programmatic work-
flows or uploaded back to PeCaX to re-create the visualization. The gene-drug interac-
tion networks are available for download individually in the formats PNG, SVG, and
GraphML.

4.3.4 Performance

Since genome data is highly sensitive, its usage and sharing are regulated by laws.
We created synthetic data to evaluate the performance of PeCaX. We downloaded
the list of cancer biomarkers from the CGI database. We partitioned it into subsets
each specific to a cancer type. For SNVs, we converted those files into VCF format by
extracting the coordinates and other standard VCF fields. For CNVs, we prepared
TSV files that are compatible with our tools. We chose nine cancer types as our
test set, which vary in terms of the number of variants they contain (Table D.4) and
thus provide a good measure of PeCaX’s behavior with changing data sizes. All the
example datasets are available at https://github.com/KohlbacherLab/
PeCaX-docker/tree/main/test_files.

We measured the time from 1) job submission to case report display, 2) gene list
submission to SBML4j to network display and 3) the job submission to display of the
entire results. For each test file, we run the analysis 3 times. The performance in terms
of average time is provided in Table 4.1 and the detailed performance evaluation is
given in Table D.5. The performance was evaluated on a MacBook Pro with a 3.1 GHz
Dual-Core Intel Core i5 processor and 16 GB 2133 MHz LPDDR3 memory with a local
installation of PeCaX.

PeCaX needs about 92 s on average to analyze the VCF data and display the results.
When the CNV file is included, the time required increases to 352 s. The main reason
for the increase is the genenames.org REST API calls to retrieve the gene symbols
of the provided gene list. The average time PeCaX requires to create and display
the networks is 58.19 s which is more than the time required for report generation
instinctively due to the computationally expensive network operations such as tree
traversing. Overall, PeCaX needs 205 s on average for the analysis of the data until
the results are displayed.
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Input file Clinical Annotation Network Generation Overall

SNV 45.5 58.2 91.8

SNV & CNV 177.4 203.4 352.4

Overall 103.2 121.7 205.8

Table 4.1: Average processing time [s].

4.4 Discussion

Since NGS data has become widely accessible with the drop in sequencing costs, it
has entered the routine practice in oncology clinics as a foundation of targeted ther-
apy applications. Even though the targeted therapy strategies increase the treatment
efficiency, translating genomics data into clinical implications remains challenging
due to the complexity and the multiplicity of the bioinformatics tools. Requiring pro-
grammatic knowledge decreases the clinical adaptability of such tools and instigates
personalized medicine units to conduct time-consuming and error-prone manual anno-
tations. Besides the strenuous efforts to analyze the large influx of data, the clinicians
face other difficulties in finding strategies for undruggable targets and assessing the
cumulative effect of the variants leading to the drug resistance. Resolving these issues
requires incorporating the interaction networks in the analysis as an additional layer
of information which further complicates the entire process.

We addressed these issues with PeCaX, which is a novel tool developed as a decision
support system for oncology to analyze the genomics data for extracting gene biomark-
ers and exploring their systematic effect on the interaction networks in developing
targeted therapy strategies tailored to the unique molecular profile of the patients. It
automates the entire workflow by eliminating the need for manual annotations and
data preparation. It contains an interactive GUI that enables users to initialize the
workflow and obtain the results without requiring any programmatic knowledge. It
is deployed as Docker containers with all the package and data dependencies which
not only attribute complete reproducibility to PeCaX but also provide easy installation
since it is independent of the operating system. It ensures data security by keeping the
data in the local system and deleting the input files as soon as the analysis is finished.
Besides the convenience it provides due to its software design and architecture, the
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combination of clinical annotation, interaction networks visualizing variants in their
pathway context, and interactive web-based visualizations make PeCaX unique in the
precision oncology practice.

PeCaX is designed for MTBs with a high focus on user adaptability which implies that
its powerful back-end operations are based on the MTB case preparation requirements
and separated from the presentation layer. While its MTB-specific design increases its
adaptability in oncological clinics, it may prompt limitations to some user groups such
as the researchers aiming to customize the VCF operations, investigate the variants of
unknown significance, conduct cohort studies, and make inferences based on patient
similarity.

To reduce the complexity, the clinical annotation step uses a standard filter on the
quality control metrics of the called variants. It accepts the variants labeled as PASS in
the VCF file, which means all the quality control measures for those reads were over
the cut-off threshold. This might be a limitation for users who require to customize
the quality control metrics to filter variants prior to the variant effect prediction. Such
functionality would require a GUI for VCF file content visualizations which do not fall
within the focus of our tool since it contradicts our aim to eliminate manual process-
ing and automatize the analysis pipeline. Thus, the limitations on VCF operations
would require users to implement these operations prior to the import of the VCF into
PeCaX.

In a similar manner to variant filtering, clinical annotation services apply pre-defined
de facto filters to the predicted consequences of the remaining variants. Next to filtering
the low-impact variants, it also does not report the ones falling into the non-coding
regions and labeled as modifier impact by its annotation tool, which implies that either
the prediction is difficult or there is no evidence of the impact. Even though ClinVAP
provides a complete list of the non-synonymous variants as an appendix regardless of
their actionability to the case reports, the SNVs contained in non-coding regions with
the modifier impact are not reported. Although these filters are found to be robust for
the MTB use cases, filtering modifier impact variants might be a limitation for users
who aim to investigate the variants of unknown significance.

PeCaX manages the data on a case-by-case basis and treats every case individually
due to its MTB-specific design. However, it has considerable potential to serve as
a data analysis medium in large cohort analysis which requires additional features
of batch data upload and patient similarity assessment to provide stratified clusters
based on molecular profiles. In future work, we plan to allow the upload of multiple
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VCF files at once and provide patient similarity based on their network overlap which
has already been implemented in the stand-alone version of the visualization module,
BioGraphVisart206.

In conclusion, PeCaX offers a user-friendly platform for MTBs to perform case prepa-
ration and detailed case investigation. The combination of variant annotations with
interaction networks holds the potential to unravel complex phenotypes. PeCaX em-
powers clinicians and researchers to navigate large-scale datasets, foster evidence-
based decision-making and improve healthcare efficiency in oncology clinics.
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Chapter 5

Clinical Assessment of Evidence-based

Reporting Strategy in the Precision

Oncology Workflow

5.1 Introduction

The advancements in NGS technologies have increased the knowledge of underlying
molecular disease mechanisms, which revealed the effect of inter-individual variation
on disease progression and therapeutic response. These information have been extrap-
olated to clinics for establishing biomarker-driven targeted therapies. Clinical transla-
tion of the high-throughput data created a paradigm shift towards precision oncology
due to cancer being a complex and individualized genetic disease7. Using NGS has
became mainstream clinical practice arising from the need for consistent frameworks
to evaluate the diagnostic and predictive biomarkers. In oncology clinics, developing
such workflows is delegated to institutional MTBs which are multidisciplinary commit-
tees involving experts from related disciplines such as oncology, biology, bioinformatics,
pathology, and genetics. Although it is a non-standardized procedure varying between
institutes, the underpinning of MTB operations is constructed by patient selection,
tumor profiling, clinical annotation, and treatment strategy assessment214. Patients for
whom the conventional therapy options are exhausted are enrolled in the MTB system.
The discussion content emanates from diagnostics reports containing an initial set of
pre-processed and -filtered variants produced by NGS laboratories. The identification
of actionable variants from those reports mainly relies on labor-intensive and error-
prone manual processing. Discussion content is used by the committee to evaluate the
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therapy options with possible outcomes (e.g., enrollment of patients in clinical studies
or suggesting off-label drugs with the evidence of treatment response). Even though
it is viewed as an unproven hypothesis215, precision oncology has been demonstrated
to increase the healthcare efficiency and/or overall survival times for various cancer
types such as ovarian cancer, colorectal cancer, non-small-cell lung cancer, metastatic
renal cell carcinoma12–14,216. However, the major bottleneck of the MTB process is
that the entire process lacks reliability and reproducibility25. Due to the absence of
standard workflows, different MTBs have been found to exhibit low agreement on the
same patients26. The variability in decision-making heavily relies on the differences
in the interpretation of the clinical assessment of the molecular profiles.

Diagnostic reports provided by NGS laboratories cannot be directly translated into
clinical action due to liability issues and lack of information prioritization217, requiring
specialists to evaluate the reported aberrations218. Moreover, these reports introduce
discrepancies to MTB procedures due to non-standardized annotations made by a non-
transparent set of operations. Since there is no standard scale of assigning clinical
significance to reported alterations219, the efforts rely heavily on MTB workflows utiliz-
ing a small set of technologies and biomarker databases, manually. The complexity of
assessing actionability/druggability is precluding the effective clinical use of genomics
data and thus pointing to the need for standardized systems utilizing a large pool of
data sources and bioinformatics tools. However, the standardization solely relies on the
expertise of individual MTBs, mostly with the efforts of creating an in-house biomarker
database and a standard operating procedure25,171. Available decision support tools do
not match the extensive needs of MTBs. The major issues are not supporting standard
data formats and the need for input preparation, the absence of the gene disruption
level assessment, and relying on the prioritized list of variants provided by users145,169.
Moreover, many of those tools hinder patient privacy due to sending sensitive data to
servers145,170,217.

Retrospective comparisons as a performance measure of the available tools focused
on a small set of data. The coverage was limited to the final MTB recommendations
without extending the analysis to the overall reported molecular diagnostics169,171.
The assessments based on follow-up patient data on survival intervals do not focus on
the discussion content overlap but on the utilities of the entire MTB workflow25,220.
Another performance measure is to calculate the percentage of the cases for which
the tools were able to make a targeted therapy suggestion171 without comparing the
results to the MTBs’ decisions.
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We previously published ClinVAP as a fully automated and self-contained pipeline to
generate case reports, ensuring data privacy, covering all aspects of therapy relevant
molecular players, working with standard data formats, and ensuring reproducibil-
ity161. In this work, we implemented a comparison analysis to demonstrate the utility
of ClinVAP in precision oncology workflow using retrospective neuro-oncology cases
from University Hospital Tübingen (UKT). We showed its content-wise equivalence
with the current MTB case preparation step and evaluated its advantages in identifying
actionable variants.

5.2 Materials and Methods

5.2.1 Retrospective Patient Data Pre-processing

The target population is selected among neuro-oncology cases that were enrolled in
the personalized medicine program between January 2016 - April 2020. The study
design and the data access request were approved by the responsible internal review
board (IRB, 192/2020BO2) for the patients who are older than 18 years and signed
a broad consent for the scientific use of their data. We obtained genomics data in
VCF file for SNVs and variant exports as .TXT files for CNVs. Additionally, we received
case discussion content including the therapy-relevant variants and the MTB protocol
excerpts stating the clinical action(s) suggested by the committee. We digitized the
case presentations from PDF to JSON format concordant to the categories included
in the slides. We extracted the selected targets and therapeutic options from the
protocols with the suggestions’ priority rank for a given case and included them in the
case evaluation JSON file (evaluation JSON object 5.4). Case digitization revealed
ambiguities such as the cases that were sequenced twice or recommended for a second
discussion based on additional immunohistochemical staining (IHC) test results. For
such cases, the evaluation files were compiled from the newest data when the complete
case information content was available. Otherwise, the evaluation content was created
from the early data since case completeness was prioritized. The same strategy was
applied to the cases for which a second discussion was suggested but did not take place.
The cases were excluded if 1) the case was not presented to the MTB committee, 2)
the case data set were not complete i.e., missing variant export or VCF files, not being
presented to MTB, missing MTB case presentation, or the resulting protocol, or 3) the
case was not subject to targeted therapy or found eligible for immunotherapy.
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1 {
2 "point_mutation_schema": {
3 "type": "dict",
4 "properties": {
5 "cell_type": {"type": "str"},
6 "gene_symbol": {"type": "str"},
7 "variant": {"type": "str"},
8 "hgvsc": {"type": "str"},
9 "hgvsp": {"type": "str"},

10 "predicted_consequence": {"type": "str"},
11 "functional_change": {"type": "str"},
12 "priority": {"type": "str"}
13 }
14 }
15 }

defined vocabularies:
cell_type: somatic, germline
priority: high, null, low

JSON object 5.1: Point mutation schema for SNVs and small INDELs. The information fields are used

to represent the content of SNVs, insertions, deletions and INDELs provided in MTB case presentations.

1 {
2 "rearrangement_schema": {
3 "type": "dict",
4 "properties": {
5 "gene_symbol": {"type": "str"},
6 "location": {"type": "str"},
7 "functional_change": {"type": "str"},
8 "priority": {"type": "str"}
9 }

10 }
11 }

defined vocabulary:
priority: high, null, low

JSON object 5.2: Chromosomal re-arrangement schema. The information fields are used to represent

the content of fusions and inversions provided in MTB case presentations.

1
2 {
3 "drug_schema": {
4 "type": "dict",
5 "properties": {
6 "drug_name": {"type": "str"},
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7 "drugbank_id": {"type": "str"},
8 "drug_drug_relationship": {"type": "str"},
9 "drug_class": {"type": "str"},

10 "evidence_level": {"type": "str"},
11 "target": {"type": "str"}
12 }
13 }
14 }

defined vocabulary:
drug_drug_relationship: combination, substitution

JSON object 5.3: Drug schema. The information fields are used to represent the content of the

therapeutics that was either suggested or selected through the MTB process.
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1 {
2 "type": "object",
3 "properties": {
4 "mtb_id": {"type": "str"},
5 "patient_id": {"type": "str"},
6 "sample_id": {"type": "str"},
7 "target": {"type": "str"},
8 "suggestion": {"type": "boolean"},
9 "icd_10": {"type": "str"},

10 "driver_genes": {
11 "type": "array",
12 "properties": {
13 "gene_symbol": {"type": "str"},
14 "variant": {"type": "str"},
15 "hgvsc": {"type": "str"},
16 "hgvsp": {"type": "str"},
17 "predicted_consequence": {"type": "str"},
18 "variant_type": {"type": "str"},
19 "driver_type": {"type": "str"},
20 "priority": {"type": "str"}
21 }
22 },
23 "snv": {
24 "type": "array",
25 "properties": "point_mutation_schema"
26 },
27 "insertion": {
28 "type": "array",
29 "properties": "point_mutation_schema"
30 },
31 "deletion": {
32 "type": "array",
33 "properties": "point_mutation_schema"
34 },
35 "indel": {
36 "type": "array",
37 "properties": "point_mutation_schema"
38 },
39 "cnv": {
40 "type": "array",
41 "properties": {
42 "cell_type": {"type": "str"},
43 "gene_symbol": {"type": "str"},
44 "cnv_type": {"type": "str"},
45 "functional_change": {"type": "str"},
46 "allelic_change": {"type": "str"},
47 "priority": {"type": "str"}
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48 }
49 },
50 "fusion": {
51 "type": "array",
52 "properties": "rearrangement_schema"
53 },
54 "inversion": {
55 "type": "array",
56 "properties": "rearrangement_schema"
57 },
58 "suggested_targets": {
59 "type": "array",
60 "properties": {
61 "gene_symbol": {"type": "str"},
62 "variant_type": {"type": "str"}
63 }
64 },
65 "suggested_drugs": {
66 "type": "array",
67 "properties": "drug_schema"
68 },
69 "selected_targets": {
70 "type": "array",
71 "properties": {
72 "gene_symbol": {"type": "str"},
73 "variant_type": {"type": "str"},
74 "recommendation_type": {"type": "str"}
75 }
76 },
77 "selected_drug": {
78 "type": "array",
79 "properties": "drug_schema"
80 }
81 }
82 }

defined vocabularies:
cnv_type: amplification, deletion
variant_type: snv, insertion, deletion, indel, cnv, fusion,

inversion
recommendation_type: main recommendation, alternative

recommendation
priority: high, null, low

JSON object 5.4: Evaluation schema. It represents the information of an entire case.
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5.2.2 Annotation Knowledge Base Coverage on MTB Case Contents

Driver genes exhibit the properties of potential therapeutic targets145,162, which at-
tributes importance to their categorization on diagnostic reports. Thus, broad coverage
of our annotation KB (Section 3.4.2) over the genes reported as drivers in MTB case
presentations is of critical importance. To measure the KB’s driver gene representation,
we calculated the percentage of the genes that are labelled as driver in both KB and
the MTB case presentations over the total number of MTB driver genes.

We investigated MTB driver genes without coverage in the KB through a manual
PubMed search to find evidence of the established driver labeling for them to identify
the reasons for the misclassifications.

Target identification is an arduous task requiring a total mutational profile investi-
gation. Thus, not only driver genes contribute to target prioritization but also the
variants with damaging and non- tolerated impact on the protein function. Conse-
quently, it is of crucial importance to have a broad KB representation of the overall
molecular profile utilized in MTB. We used all the mutated genes that were reported
on the MTB case presentations at least once, to assess the KB’s coverage over the
patients’ molecular profile favored by MTB. We expanded this strategy to different
variant priority levels to see the coverage distribution over the therapeutically related
information. We distributed MTB molecular data into different priority levels based on
their MTB labeling. All the genes that were mentioned at least once in the MTB case
slides were categorized as "reported genes". "Priority genes" assigned to MTB genes
given as "potential therapy targets" in the MTB cases. "Target candidates" was used for
the genes that were suggested as targets by the case preparation committee. Genes
that were recommended as targets and those selected as the main target as a result of
the committee’s discussion were labeled as "targets" and "main targets", respectively.
We then calculated the coverage individually for every priority level as a percentage
using the amount of overlap with the KB over the total number of genes of a given
level.

5.2.3 Content Comparison on an Individual Case Level

We measured the robustness of ClinVAP’s variant filtering constraints by showing the
content equality of its case reports to the MTB case presentations, to exhibit its utility
at the case level. We compared the list of MTB genes with the ones predicted as non-
synonymous variants by ClinVAP on a case-specific level. We then calculated the case
overlap ratio of the number of genes that were shared between two instruments over
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the total number of MTB genes. We only considered SNVs in the analysis since ClinVAP
does not apply impact-based filters on the reported list of CNVs.

We investigated the underlying reasons for the non-overlapping MTB genes (MTB-
specific genes) by using unfiltered ClinVAP functional variant annotations. We obtained
variant impacts and SO terms of the consequences predicted by Ensembl VEP for all mu-
tations, and by SIFT and PolyPhen for the mutations affecting the gene coding regions.
We gathered similar information for MTB-specific genes to investigate the annotation
differences, the severity of them and their contribution to MTB’s decisions.

5.2.4 ClinVAP Case Report Coverage on MTB Recommendations

We demonstrated ClinVAP’s utility in providing a complete framework of druggability
by testing the reports’ coverage on drug-gene associations that were recommended by
MTB as a therapeutic action plan. We first conducted a binary search on covering the
recommended gene-drug pairs in ClinVAP reports. Then, we investigated the cases
where a full match was not observed. We excluded the cases in which 1) the target was
a germline variant, 2) the suggested drug-target association is not well established in
the literature, but was made based on expert opinion, 3) the suggestion was not made
entirely on a molecular rationale but based on a known increase in the efficiency of
the suggested drug by a variant, 4) the genes that are not given in the somatic CNV
files, but falling -entirely or partially- to the reported CNV coordinates.

We assigned cases to "zero coverage" if the recommendation was not included in the
ClinVAP report. We used "partial coverage" if, among multiple selected targets, at
least one drug-gene pair was included in the ClinVAP report. We used the same term
for the cases where ClinVAP offers another drug from the same class of the main
recommendation. We assigned the cases to "full coverage" if their recommendations
were covered entirely.

5.3 Results

5.3.1 Patient Cohort

We obtained 131 MTB identifiers of the patients enrolled in the targeted cancer ther-
apy program. 40 of the total cases were not referred to the MTB committee due to
either decision of continuing conventional therapies, patient withdrawal, or death
before the start of the treatment. Among 71 patients whose case was discussed by
the MTB committee, only 44 of them had an archived VCF and CNV variant export
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files. We filtered the data based on the existence of actionable targets with therapeutic
suggestions which led to 33 eligible cases.

5.3.2 KB’s Coverage on Overall MTB Case Content

Driver genes. Driver genes exhibit a high potential for actionability due to their
function in tumorigenesis. Thus, pinpointing the driver genes of a case together with
their druggability has a profound impact on unveiling promising therapy options. To
demonstrate our annotation source’s comprehensiveness, we calculated its coverage
over the MTB driver genes. We revealed that our KB covers 99% of the driver genes
reported in MTB case presentations. Driver gene annotation is underrepresented in
MTB case presentations due to the different reporting formats and the content used
by the sequencing labs. It suggests that MTB’s decision-making is agnostic to the
driver gene annotation and the selection of a set of candidate genes depends on expert
knowledge. The comprehensiveness of our KB in driver annotation would enable MTBs
to obtain a complete driver landscape and further expand their expert-knowledge-
based list of significant genes.

The initial coverage on MTB driver genes was found as 89% with 11 misclassifications.
MTB diagnostic reports did not include the information source for their driver annota-
tion which decreases the reliability of the provided information. Our literature review
revealed that even though most of the misclassified genes are known as increasing can-
cer susceptibility, driver classification is not yet established for nine of them195,221–230.
We could only find the driver associations for FRS2 and PAK1(Figure 5.1A)231–234. After
the literature review, our KB’s driver gene coverage increased to 99%.

Next, we uncovered the impact of not classifying FRS2 and PAK1 as drivers. PAK1 was
seen in two cases, identified as driver only for one of them, and neither suggested nor
selected as a therapy target. FRS2 was observed in three cases, categorized as a driver
in two of them, and selected as a target for one of those cases. However, the case that
it was selected did not include driver gene information which points to inconsistent
annotations between the cases harboring similar aberrations. We concluded that the
effect of FRS2 was well-known to MTB and their decision was agnostic to its driver
gene annotation. To prove this misclassification does not result in missing target-drug
content, we searched our KB for therapeutics targeting FRS2 which revealed that KB
links it to therapeutic options which would still provide a good content coverage for
MTB.
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Figure 5.1: Annotation knowledge bases (KB) coverage on MTB case content. A) KB’s coverage on
the driver genes reported in MTB case discussion contents. Among MTB driver genes, 11 of them do
not have the same labeling in our KB. In the literature, no established driver annotation was found for
nine of them which are shown as MTB misclassifications. Our KB has only two driver misclassifications
for the genes FRS2 and PAK1. B) KB’s coverage on the genes that are reported in MTB case discussion
contents. Its coverage is calculated separately for every gene category provided in the case contents.
Initial coverage on the genes reported at least once in MTB case presentations was 52.5%. The KB’s
coverage increased with the therapeutic relevance of the reported genes.

MTB’s content of altered genes. MTB case presentations provide a complete mu-
tational profile of patients categorized as "potential therapy targets", "strong therapy
candidates", and "other observed mutations". However, regardless of the completeness
of a case’s mutational profile, MTB case presentations do not concentrate on the action-
ability/druggability of the aberrations and report non-therapy informant variations.
Our annotation KB is specialized in therapy relevance exhibiting high coverage on
the "strong target candidates", pointing to its ability to precise MTB content towards
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actionability. The differences found between the strong therapy targets and the KB
were mainly for the connections that are not well established but depend on expert
opinion.

We measured the KB’s coverage over the genes reported in MTB case content sepa-
rately for every priority level that we assigned based on their labeling on the case
presentations and protocol excerpts ( 5.1B). The coverage over the genes that were
mentioned in the MTB slides at least once was 52.8%. This increased to 96% on the
MTB main selected targets and 87.5% on MTB selected targets.

We investigated the differences between the KB’s content and the MTB’s selected targets.
For the main selected targets, the only difference was ERG-TMPRSS2 fusion whose
case received the combination of PARP inhibitors with radiotherapy as a treatment
suggestion. Even though our KB annotates ERG-TMPRSS2 as a driver aberration and
lists PARP inhibitors for TMPRSS2 fusions, we could not find established targeted
therapy options with clinical evidence for ERG-TMPRSS. Evaluating the biomarker
together with its treatment suggestion revealed that PARP inhibitors increase the effect
of radiotherapy235. Thus, this case was not subject to targeted therapy and was out of
ClinVAP’s scope.

Another difference was found for NBN, PMS2, POLQ, and C11orf30. C11orf30 was
suggested for one case together with germline BRCA2 mutation as a target for PARP
inhibitors. C11orf30 is frequently over-expressed in cancer and its amplification is
known as impairing the DNA damage repair236. However, its association with increased
sensitivity to PARP inhibitors is not yet fully established237. The lack of evidence both
in literature and the MTB case protocol suggests that the therapy option was identified
based on expert opinion.

We identified that NBN, PMS2, and POLQ were observed in the same case and reported
with BRCA1/2 which was a clustered set of mutations on the DNA repair genes. After
visiting MTB’s evidence publications, the difference was reduced to only NBN because
two out of three pieces of evidence belong to clinical trials with no focus on genomic
biomarkers238,239 and the third one only provides evidence on NBN240. PMS2 and POLQ
have supporting roles identified based on expert knowledge due to their function in
DNA repair mechanisms. Our KB provides the same evidence as MTB on the effect of
PARP inhibitors for BRCA1/2 deletions which implies that the absence of NBN does
not have any negative effect on the suggestions overall.
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5.3.3 Case Report Content Analysis

We investigated the robustness of ClinVAP’s variant filtering constraints by showing
the content equality of its case reports to the corresponding MTB case presentations.
ClinVAP provided the same annotations for the set of genes that were only reported in
MTB case contents (MTB-specific genes) and filtered them out due to their predicted
low impact. We observed that most MTB-specific genes did not contribute to MTB’s
decisions. While MTB content included many aberrations regardless of the severity of
their potential impact, ClinVAP focused on reporting the high-impact variants with a
higher potential to be selected as targets.

Case-by-case comparisons lead to the identification of 55 ClinVAP-specific variants
from 14 cases and 59 MTB-specific variants from 23 cases. We could not investigate
the reason that ClinVAP-specific variants were not reported by the sequencing centers,
since we did not know their analysis configurations. We investigated the reporting dif-
ferences by clustering MTB-specific genes based on their functional annotation.

17 of the MTB-specific genes were predicted as synonymous mutations where the im-
pact was low implying that the change was harmless. ClinVAP had the same annotation
for 16 of them (Figure 5.2A). One gene’s coordinates were reported differently in the
VCF file than the one in variant export which led ClinVAP to predict it as an intron
variant.

23 MTB-specific genes were clustered as missense mutations which correspond to the
amino acid changes on the protein-coding region with a moderate impact implying
that it might change the protein’s effectiveness. ClinVAP returned the same annotation
for 20 of them (Figure 5.2B). Additionally, ClinVAP predicted 20 of them as "tolerated
and benign" through SIFT and PolyPhen which was the main reason of their absence
in ClinVAP reports. The impact for those variants in MTB diagnostic reports was either
ambiguous or not available.
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Figure 5.2: Annotation comparison for MTB-specific genes. A) Synonymous. 16 have the same ClinVAP annotation. Ensembl VEP and MTB
predictions are in the inner and outer ring, respectively. They are not therapy informative, thus filtered by ClinVAP. B) Missense. The inner and
middle layers are for SIFT-PolyPhen and Ensembl VEP impacts, respectively. The third layer shows the MTB impacts. 20 have the same ClinVAP
annotation which states therapy insignificance.
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Another predominant category was the splice region intron variant of which nine of the
MTB-specific variants were labeled as low predicted impact. For seven of them, ClinVAP
provided the same annotation (Figure 5.3A). The remaining two were categorized
as synonymous splice region variants by ClinVAP suggesting that these were silent
mutations observed in the exon region. We used the NCBI genome data viewer to
reveal the region that the reported coordinates fall into, which confirmed that these
variants were indeed in the exon region and the ClinVAP’s annotations were robust.
None of those nine splice region intron variants were considered in target identification
which supports the reasoning behind their filtration.

Four of the MTB-specific variants were the upstream gene variants which are the
changes in the non-coding region or affecting non-coding genes. It has modifier impact
which means that there is no evidence of an impact or the impact assessment is tenuous,
which causes difficulty in assigning priority to such variants. All four variants observed
in this category belong to the TERT gene and ClinVAP filtered them due to their modifier
effect (Figure 5.3B). However, the same variants have an activating effect in MTB
diagnostic reports which suggests unjustified filtering, since activating mutation in
TERT is known for its role in cancer initiation241.

One MTB-specific variant had intron variant annotation which has a similar conse-
quence to the upstream gene variants and was filtered out by the ClinVAP due to its
non-assessable impact (Figure 5.4A). MTB diagnostics reports did not appoint any
significance to this variant. Its predicted impact was stated as ambiguous in MTB
diagnostic report, and it was not considered a candidate target.

We assigned five genes to the miscellaneous category (Figure 5.4B). Those are the genes
whose consequences were not given in MTB diagnostic reports. Four of them were
predicted as synonymous annotations by ClinVAP, that increase the redundancy in the
MTB content without contributing to the therapeutic decision-making. The remaining
one was not in ClinVAP due to a typo made in case presentations. Our conclusion
remains the same with the synonymous mutations that it is necessary to filter them to
not increase the amount of insignificant information in diagnostic reports.

5.3.4 Coverage on final MTB recommendations

We demonstrated ClinVAP’s ability to identify MTB recommended treatment strategies
by calculating its coverage on drug-target pairs at the case level. ClinVAP’s case re-
ports included an exact coverage for 81.5% and provided another drug from the same
class for 7.5% of the 51 final recommendations. We determined that the non-covered
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recommendations were identified based on expert knowledge of the recruiting clinical
trials.

We extracted 41 main and 10 alternative suggestions from MTB protocol excerpts of
31 cases that were subject to analysis. For the main suggestions, the full coverage
was 73% and the partial coverage was 15%. Only 5% of the recommendations had
zero coverage which corresponds to two cases (Figure 5.5). Both cases had EGFR
as the target and the same "Depatuxizumab mafodotin/Temozolomide" combination
therapy recommendation which is absent in our annotation KB. Even though it includes
depatuximab mafodotin in mechanistic cancer drugs, it was not returned in the results
due to its investigational drug tag. ClinVAP results did not list Temozolomide for EGFR
either. Besides the zero coverage cases, we identified three cases that only had partially
covered suggestions (Figure 5.6). For one case, the main target was FRS2 CNV coupled
with Regorafenib or Lenvatinib. ClinVAP listed FGFR inhibitors for FRS2 CNV, but it did
not specify a drug name that is classified by partial coverage on drug class. The second
case had EGFR CNV suggested as a target for AfatinibTemozolomide combination
therapy. ClinVAP included Afatinib for EGFR CNV but not the Temozolomide. The third
case had the target IDH1 SNV suggested for BAY1436032, which was a clinical trial.
ClinVAP listed PARP inhibitors considered as coverage on drug class. For the alternative
suggestions, ClinVAP had an exact coverage of the 90% of the suggestions. 10% of the
alternative and 7% of the main suggestions were excluded from the comparison due
to not following the eligibility criteria.
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Full coverage Partial coverage Zero coverage Excluded

Figure 5.5: MTB therapy suggestion coverage per case. It represents the number of MTB recommenda-
tions per case with their coverage status in ClinVAP case reports.
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CNV SNV

Figure 5.6: MTB suggested target distribution.

We then investigated the likelihood of overestimating the final decision coverage due
to the genes that were frequently used as a target by the MTB. As shown in Figure
4B, NF2, CDKN2A, and EGFR were used as a target more frequently than other genes.
However, there were also so to say non-mainstream target selections such as FRS2
which is altered in 0.78% of all cancer types. ClinVAP made at least one suggestion
for all these targets. Its coverage discrepancy started at the suggested therapeutics for
these targets. Among 22 selected targets, 13 of them were observed in less than 6% of
the patients in the literature. Those 13 targets were still identified by ClinVAP which
is an indication that it does not have a bias in favor of the well-known highly mutated
genes.

We then investigated the likelihood of overestimating the final decision coverage that
could have been originated from the genes that were frequently used as targets by
the MTB. As shown in Figure 3B, NF2, CDKN2A, EGFR were used as a target more
frequently than other genes. However, there were also so to say non-mainstream
target selections such as FRS2 which is altered in 0.78% of all cancer types. ClinVAP
made at least one suggestion for all these targets. Its coverage discrepancy started at
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the suggested therapeutics for these targets. Among 22 selected targets, 13 of them
were observed in less than 6% of the patients in the literature. Those 13 targets were
still identified by ClinVAP which is an indication that it does not have bias over the
well-known highly mutated genes.

Overall, ClinVAP exhibits complete coverage over the selected targets and high cover-
age on the suggested drugs. The discrepancies in the drug coverage mostly resulted
from the decisions based on expert opinion which cannot and not aimed to be replaced
by decision support mechanisms.

5.4 Discussion

The increasing amount of genomics data that needs to be processed to extract its
clinical implications necessitates automated, reproducible, and robust data processing
pipelines to support MTBs in their decision-making. Besides the software requirements
which increase the adaptability of such tools in the clinical setup, it is of crucial impor-
tance to demonstrate the content-wise equivalence of the results compared to current
clinical practice. Previously, we developed ClinVAP which processes genomics data to
create patient-specific case reports representing molecular actionability/druggability.
To evaluate its clinical utility, we measured its agreement with the MTB content of
retrospective patient data.

We measured the completeness of our annotation KB on the MTB content over the
driver and the altered gene lists. The KB exhibited extensive coverage on driver genes
and therapeutically relevant variants demonstrating a high focus on actionability. More-
over, we observed that the driver genes were underrepresented in MTB diagnostic
reports due to non-standardized reports varying between sequencing labs.

Case-by-case comparisons revealed that ClinVAP has stricter filters on predicted variant
impacts to classify them as relevant. Its filtering strategy does not leave out important
information, since most of the MTB-specific genes were proven insignificant for therapy
decisions. While MTB’s content covered complete mutational profiles including low or
non-impact variants, ClinVAP prioritized therapeutically informative ones with higher
impacts.

Finally, we revealed the high coverage of ClinVAP reports over the MTB suggested
therapeutic options. The discrepancies between MTB and ClinVAP contents were
predominantly due to the expert knowledge, fundamentally related to open clinical
trials, which is not aimed to be replaced by the evidence-based decision management
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systems. Although not listing the enrolling clinical trials could be perceived as a
disadvantage at the first glance, in the regular MTB set-up, this information is heavily
dependent on the current knowledge of the attending clinicians since the enrollment
criteria depend on many different parameters including the location. Therefore, expert
opinion/knowledge will remain an important parameter.

In our analysis, we also demonstrated the disadvantages of non-transparent data pro-
cessing and annotation procedures in creating MTB diagnostic reports. It was challeng-
ing to investigate the discrepancies between MTB and ClinVAP mainly because of the
unavailability of the information sources and the non-reproducibility of the filtering
constraints from sequencing centers. For instance, an unavailable source of information
that was used to label genes as drivers required us to conduct an extensive literature
review to distinguish true misclassifications. We had a similar bottleneck when we
attempted to investigate the reason for ClinVAP-specific genes being filtered out in the
diagnostic reports. Unfortunately, reverse engineering the filtering constraints set by
sequencing labs was not possible. These non-transparency problems together with the
under-represented information categories point to the need for standardizing the case
report structure and transparent and interoperable data management systems.

Another disadvantage of the current MTB system is the compatibility issues of the
molecular diagnostic reports with the electronic health records. MTBs receive the
reports in PDF format and they use the same format in case discussion content they
created. Processed genomics data do not become a part of patient stratification, and
no future conclusions are being drawn from it based on patient similarity. Lack of
data integration hinders the efficiency of clinical implications of precision oncology as
well as oncology research. The labor-intensive manual work we spent on digitizing the
MTB case presentations is a strong indicator of the essentiality of the machine-readable
molecular diagnostic reports. Next to a human-readable medium, ClinVAP produces
patient reports in JSON format integrable to data portals which enables clinicians and
researchers to re-use the previous data in drawing conclusions from patient similarity
and stratifying cohorts.

In conclusion, we assessed the comprehensiveness of our annotation KB and the
content-wise sufficiency of ClinVAP reports compared to the current clinical process.
We demonstrated the importance of standardized, reproducible, and transparent
pipelines to ensure delivering reliable and reproducible translation of molecular
aberrations. Even though the expert knowledge will stay an important component,
ClinVAP’s content is shown as comprehensive enough to be a basis for MTB case
discussions which increases the clinical efficiency by eliminating manual case
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preparation steps. Additionally, it has the potential of benefiting the population-level
studies by enhancing genomic data integration for patient stratification and research
on patient similarity combined with expected treatment outcomes.
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Chapter 6

Conclusion and Outlook

In this thesis, we presented our contributions to the challenges of the clinical adaptation
of precision oncology. We developed a pipeline that automates each step of clinical
annotation from deciphering the impact of the observed alterations to determining the
therapeutic associations of the actionable variants. We assembled a knowledge base
as the core source of the clinical implications of molecular aberrations by integrating
multiple publicly available databases. We composed an evidence-level index to depict
the strength of the clinical associations found, based on the study type of the initial
causation (e.g., pre-clinical study, clinical study) and the similarity of the reported
consequences to the observed variants. The commonality of the information among
the different sources is also depicted as an indication of the association’s strength. We
aggregated the results in a structured patient report as the final product of our pipeline
which can be integrated into the MTB workflow without any modification.

Moreover, we developed a clinomics approach that goes beyond the observed aberra-
tions by extending the case investigation to their neighboring gene interactions. With
our network approach, we cluster the main and adjacent genes into their corresponding
pathways to signal the user about the potentially affected cascades. We interpolated
the direct drug nodes to the neighboring extensions to indicate off-label therapeu-
tic candidates and possible drug combinations to bypass potential therapy resistance.
We implemented an interactive GUI to present the results in an organized form that
contains brief but comprehensive information. It also allows users to conduct MTB
operations for both case preparation and board discussion.

We started the development of the aforementioned decision support tools intending to
bridge the bench and the bedside. We demonstrated the benefits of our standardized
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and automated pipeline approach to clinical routine through a stratified case-cohort
study. We compared the case discussion contents and the therapeutic suggestions of the
neuro-oncology cases, retrospectively. Our analysis proved that the discrepancy found
in the automated report content is mostly introduced by expert opinionsknowledge.
We verified the content equivalence of ClinVAP reports indicating that it is suitable to
be integrated into the MTB workflow.

At the beginning of the 20th century, Sir Archibald Edward Garrod construed the phe-
notypical differences of manifesting alkaptonuria between the family members as
"chemical individuality"242. He reasoned that "...the thought naturally presents itself
that these [conditions] are merely extreme examples of variation of chemical behav-
ior which are probably everywhere present in minor degrees and that just as no two
individuals of a species are absolutely identical in bodily structure neither are their
chemical processes carried out on exactly the same lines" which stands out as an early
definition of interpersonal variation in the pre-genomic era243. A century later, factor-
ing in the effect of a person’s genomic markup on clinical decisions has soared and
paved the way for precision oncology. Observations such as the increased survival rates
among the patients treated with imatinib in the existence of bcr-abl fusion mutation244

increased the expectations from precision oncology. However, the premises have not
met the expectations. Clinical implementations estimated the number of patients who
are eligible for targeted therapy as 8.3% and among those patients, the ratio of re-
sponding to the therapy is estimated as 4.9% for 2018 and 7% in 2020245,246 pointing
that a very small part of the cancer population benefit from it.

Increasing the clinical efficiency of precision oncology heavily depends on an all-
encompassing translation of genome data into clinical implications varying from ac-
tionability/druggability assessment to forming drug repositioning strategies. That
translation relies heavily on existing knowledge. As the main pillar is to uncover more
molecular mechanisms, genome characterization through cohort studies will continue
to be at the center of the cancer research field. There are ongoing efforts to accel-
erate research and provide clinical benefit from large initiatives such as 1+ Million
Genomes (1+MG) and Beyond One Million Genomes (B1MG) through "FAIR"ification
of the genome data247,248. The largest cancer consortiums ICGCTCGA have entered a
new phase that focuses on the efficient use of the information generated over the last
decade in the genomic characterization of over 50 cancer types. With the Accelerating
Research in Genomic Oncology (ARGO) initiative, the community aims to factor in the
effect of regional diversity, uncover the new synergistic therapy strategies and evaluate
the commonalities and discrepancies in the therapy outcomes249. Most of the hurdles
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in the application of precision oncology are expected to be overcome by closing the
gap in our knowledge of genotype-phenotype links through such initiations that will
make the data available to research communities and enables its analysis together with
digitized healthcare data. This also requires a change in the phenotype-based clinical
trial design for the new therapeutics. It has been shown that the biomarker-based
trials have a significantly reduced timeline which creates a profound advantage for
decreasing the amount of undruggable genome250.

Concurrent with the aforementioned strategies, there are affords to make the knowl-
edge available to the community through publicly available databases, mostly imple-
mented by academia for thorough variant classification. One of the major obstacles
is that there is no single source that would serve as a "ground truth". Due to the
abundance of annotation sources, every MTB relies on a different subset which cre-
ates the discrepancy between and within MTBs. The same standardization problem
is valid for evidence-based clinical reporting tools. Querying every source through
their API services is not favorable due to the re-assembly risk of the sensitive genomics
data. Data integration is extremely challenging due to the number of different data
models which is equal to the number of sources. Among the sea of those databases,
the knowledge contribution to integration efforts ratio is hard to estimate resulting
in positive selection towards the well-known sources such as CIViC. To standardize
the clinical workflow, it is of crucial importance to have a knowledge base that is a
complete representation of the union of the available databases. Unfortunately, having
such a source is almost a utopia for the near future.

Apart from the scientific concerns, the availability and the processing of the data
require clear legislation. Patients and medical doctors need to be trained in the usage
of such data. Patients need to be informed and consented to the scientific use of their
data. Society’s trust has to be established in the secure storage of the genomics data.
From a financial aspect, democratizing genetic testing relies upon the reimbursement
of genetic testing by insurance companies. A tangible impact of precision oncology
can only be achieved when the regulations are aligned with scientific interests.
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Appendix A

Abbreviations

A

API Application Programming Interface

ARGO Accelerating Research in Genomic Oncology

ASCO American Society of Clinical Oncology

ATC Anatomical Therapeutic Chemical

B

BAM Binary alignment map

B1MG Beyond 1 Million Genomes

C

CGI Cancer Genome Interpreter

CIViC Clinical Interpretation of Variants in Cancer
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A. Abbreviations

ClinVAP Clinical variant annotation pipeline

ClinGen Clinical Genome Resource

CNV Copy number variant

COSMIC Catalogue of Somatic Mutations in Cancer

D

DNA Deoxyribonucleic acid

E

ECM Extra cellular matrix

F

FGF Fibroblast growth factor

G

GA4GH Global Alliance For Genomics and Health

GATK Genome Analysis Toolkit

GDKB Gene Drug Knowledge Base

GRN Gene Regulatory Network

GUI Graphical User Interface
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GWAS Genome-wide association study

H

HGNC HUGO Gene Nomenclature Committee

HGVS Human Genome Variation Society

HPC High Performance Computing

I

ICGC International Cancer Genome Consortium

ICD-10 International Classification of Diseases,Tenth Revi-
sion

IHC Immunohistochemical staining

INDEL Insertion/deletion

IRB Internal review board

J

JSON JavaScript Object Notation

K

KB Knowledge base

KEGG Kyoto Encyclopedia of Genes and Genomes
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A. Abbreviations

L

LOFTEE Loss-Of-Function Transcript Effect Estimator

M

MoA Mechanism of action

MTB Molecular Tumor Board

N

NBS Network-based stratification

NCBI National Center for Biotechnology Information

NGS Next-Generation Sequencing

NSCLC NonSmall Cell Lung Cancer

P

PD Pharmacodynamics

PGx Pharmacogenomics

PF Pharmacokinetics

PeCaX Personalized Cancer Network Explorer

PharmGKB Pharmacogenomics Knowledge Base

PolyPhen Polymorphism Phenotyping
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PPI Protein-protein interaction

R

REST Representational State Transfer

RNA Ribonucleic acid

RNAP RNA polymerase

S

SAM Sequence alignment map

SBML Systems Biology Markup Language

SNV Single nucleotide variant

SO Sequence ontology

SOP Standard Operating Procedure

SIFT Sorting Intolerant From Tolerant

SV Structural variant

SwissMTB Swiss Molecular Tumor Board

T

TARGET Tumor Alterations Relevant for Genomics-driven
Therapy

TCGA The Cancer Genome Atlas
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A. Abbreviations

TF Transcription factor

TSG Tumor suppressor gene

TSGene Tumor suppressor gene database

TTD Therapeutic Target Database

U

UKT University Hospital Tübingen

UMI Unique molecular identifier

UUID Universally unique identifier

V

VAF Variant allele frequency

VCF Variant call format

VEP Variant effect predictor

VEGF-A Vascular endothelial growth factor-A

W

WES Whole-exome sequencing

WGS Whole-genome sequencing

136



Appendix B

Contributions

All ideas, approaches and results presented in this work were developed and discussed
with my supervisors Prof. Dr. Oliver Kohlbacher (OK). The collaborators who con-
tributed to the different projects are:

• Bryant Joseph Gilot (BJG)

• Charlotta Scharfe(CH)

• Ghazaleh Tabatabai (GT)

• Julian Heinrich (JH)

• Lukas Zimmermann (LZ)

• Matthew Divine (MD)

• Mirjam Figaschewski (MF)

• Thorsten Tiede (TT)

Chapter 3: Targeted Therapy Identification in Precision Oncology

OK, CS, JH, MD and myself: Project concept and the study design, drafting or revis-
ing the manuscript; LZ: Insights on Singularity containers; BJG: Input on diagnosis
match score calculation via ICD10 term partitions. Implementation of ClinVAP, data
acquisition, stress test and interpretations of the results are performed by me.

137



B. Contributions

Chapter 4: Interactive Case Exploration with PeCaX

OK, MS, TT and myself: Project concept and the study design, drafting and revising the
manuscript; myself: Implementation of the PeCaX compatible version of the variant
annotation component; MF: Implementation of PeCaX GUI; TT: Implementation of the
network component SBML4j; MF, TT and myself: Implementation the communication
between PeCaX microservices and their deployment.

Chapter 5: Clinical Assessment of Evidence-based Reporting Strategy in the
Precision Oncology Workflow

OK, GT, BJG and myself: Project concept and the study design, drafting or revising the
manuscript; myself: data acquisition and data analysis; OK, GT and myself: interpre-
tations of the results.

138



Appendix C

Publications

2023

Figaschewski M., Sürün B., Tiede T., Kohlbacher O. (2023) "The personalized cancer
network explorer (PeCaX) as a visual analytics tool to support molecular tumor boards"
BMC Bioinformatics 24, 88.

2020

Sürün B., Schärfe C.P.I., Divine M.R., Heinrich J., Toussaint N.C., Zimmermann L., Beha
J., Kohlbacher O. (2020) "ClinVAP: a reporting strategy from variants to therapeutic
options" Bioinformatics 36, 2316-2317.

139





Appendix D

Supporting Tables

Table D.1: CPU usage

Resource Usage

% Single Core CPU Usage

filter_vcf

vep_on_input_file

snv_report_generation

render_report_snv

min maxmedian Q1 Q3 mean 

14.8 93 64.7 61.4 55.8 72.8 

38.3 417.7 210.6 212.0154.4 255.4 

48.6 99.5 83.2 80.6 79.8 86.6

34.0 97.7 93.2 85.3 91.5 94.5
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D. Supporting Tables

Table D.2: Memory usage

Resource Usage

Physical Memory Usage

filter_vcf

vep_on_input_file

snv_report_generation

render_report_snv

min maxmedian Q1 Q3 mean 

3M 19.3M 10.5M 12M10M 15.4M 

68M 1.1GB 700.3M 663.7M526.9M 841.6M 

265.5M 4.8GB 270.9M 935.8M 266.3M 318.7M

3.1M 228.2M 10.7M 40.7M 10.4M 11.1M

Table D.3: Execution time

Resource Usage

Execution Time (minutes)

filter_vcf

vep_on_input_file

snv_report_generation

render_report_snv

min maxmedian mean 

0.2 0 0 

0 8.90.9 1.9

0 1.1 0.1 0.2 

0 0 0 0 

0

~~

~~

~~

~~ ~~

~~ ~~

~~

~~
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Table D.4: Number of variants included in the PeCaX pseudo test data

Cancer type number of SNVs number of CNVs

Chronic myeloid leukemia 131 0

Any cancer type 82 30

Cutaneous melanoma 70 12

Lung cancer 54 10

Non-small cell lung cancer 53 3

Lung adenocarcinoma 43 12

Breast adenocarcinoma 31 22

Colorectal adenocarcinoma 18 19

Thyroid carcinoma 3 0
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D. Supporting Tables

Data Clinical Annotation Network generation Overall

1 2 3 1 2 3 1 2 3

Chronic myeloid
leukemia

SNV 42 50 53 10 9 9 52 59 62

Any cancer
type

SNV 36 42 43 122 140 130 158 182 173

SNV & CNV 381 374 382 248 291 349 629 665 731

Cutaneous
melanoma

SNV 42 42 53 63 48 55 105 90 108

SNV & CNV 194 166 183 183 221 208 377 387 391

Lung
cancer

SNV 42 52 42 22 28 30 64 80 72

SNV & CNV 208 163 172 86 133 136 294 296 308

NSCLC
SNV 42 42 52 16 20 25 58 62 77

SNV & CNV 85 112 82 21 38 33 106 150 115

Lung
adenocarcinoma

SNV 43 42 42 65 69 73 108 111 115

SNV & CNV 182 183 180 64 110 95 246 293 275

Breast
adenocarcinoma

SNV 43 46 43 23 20 20 66 66 63

SNV & CNV 283 289 296 63 82 88 346 371 384

Colorectal
adenocarcinoma

SNV 42 42 42 48 48 50 90 90 92

SNV & CNV 254 268 137 73 81 81 327 349 218

Thyroid
carcinoma

SNV 42 52 62 17 17 20 59 69 82

Table D.5: PeCaX’s processing time[s] on pseudo case data. It is measure from the start of the processes
until the results are displayed. Data was analyzed three times.
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