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Abstract

Neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), can
lead to a partial or complete paralysis of the body, and patients in these con-
ditions are considered to be in locked-in (LIS) or complete locked-in state
(CLIS). Before reaching these advanced states, patients usually communicate
by moving the eyes with the help of assistive and augmentative communica-
tion devices. With the progression of the disease these devices become use-
less due of ocular abnormalities that prevent the correct detection of the eye
movements and gaze fixation. A valuable solution for these patients is the im-
plementation of brain-computer interfaces (BCls) which, by decoding neural
signals directly acquired from the brain activity, can be used to develop com-
munication paradigms without the need of relying on any muscular activity.

Several preliminary neurophysiological analyses have been conducted to
assess possible pathological signs in the neural activity of ALS patients in LIS
and CLIS. The published results included in the dissertation indicate het-
erogeneous conditions that, in most cases, highlight abnormal neural signals.
Nevertheless, no result indicates significative cognitive problems that might
affect the BCI performance.

The development of communications techniques has been implemented
in a modular way by keeping the signal acquisition and signal processing
phases separate from the implementation of the communication paradigms.
Several acquired signals have been used to target different patient popula-
tions: electrooculography, electroencephalography, functional near-infrared
spectroscopy, and intracortical neural activity. In each study, the signal was
processed differently, but patients were always asked to modulate their brain
activity in only two different ways; the signal was then decoded using a binary
classifier. The output of the classifier has been used to control different de-
veloped communication paradigms: from simple yes/no questions, to a full
speller that allowed the patient to form words and sentences.

The results show several combinations of different signal acquisition tech-
niques with various communication paradigms, taking advantage of the mod-
ularity of the developed systems. Most of the communication paradigms have
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also been successfully deployed to LIS or CLIS patients, including two cases
in which the speller system has been used by patients with no other means of
communication.
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Zusammenfassung

Neurodegenerative Erkrankungen wie Amyotrophe Lateralsklerose (ALS)
konnen zu teilweiser oder vélliger Lihmung des Korpers fithren, Patienten
in diesem Zustand koénnen dann als eingeschlossen (LIS) oder véllig einge-
schlossen (CLIS) bezeichnet werden. Bevor Menschen diese Zustinde erlei-
den, kommunizieren sie heutzutage meist mit Augenbewegungen, mit de-
nen sie Kommunikationshilfen bedienen. Mit dem weiteren Fortschreiten
der Erkrankung werden diese Gerite tiblicherweise nutzlos, da man Augen-
bewegungen nicht mehr registrieren kann. Dann gibt es fir diese Patien-
ten nur noch die Lésung von Gehirn-Computer-Schnittstellen (BCI, brain-
computer-interface), bei denen mit Hirnsignalen ohne Vermittlung von Mus-
kelaktivitit solche Kommunikationshilfen bedient werden kénnen.

Obwohl die erfassten Hirnsignale bei solchen Patienten oft pathologisch
sind, hatte dies bisher keinen nennenswerten Einfluss auf die Entschlisselung
ihrer Hirnsignale und ihre Kommunikationsleistungen mit einem BCI wie
diese Dissertation zeigt.

Bei der Entwicklung solcher Kommunikationshilfen mit BCI ging man
modular vor, indem man die Signalerfassung und -analyse getrennt von den
Kommunikationsaufgaben und Kommunikationsleistungen hielt.

Verschiedene physiologische Parameter wurden fiir unterschiedliche Pati-
entengruppen und Aufgaben verwendet: Elektrookulographie (EOG), Elek-
troenzephalographie (EEG), Nah-Infrarotspektroskopie (NIRS) und intra-
kortikale Hirnsignale. Obwohl die Signale unterschiedlich verarbeitet wur-
den, ist allen Versuchen, so auch unseren, gemeinsam, dass die Patienten ler-
nen mussten, ihre Hirnsignale willentlich zu modulieren. Nach Klassifizie-
rung des physiologischen Signals konnte der/die Patientin damit unterschied-
liche Kommunikations-Paradigmen kontrollieren (z.B. ein ,,Ja“ oder ,,Nein®
auswihlen). Wir haben hier verschiedenen Paradigmen bis hin zur hirngesteu-
erten Auswahl von Buchstaben und Bildung von Sitzen berichtet.

Wir stellen hier verschiedene Kombinationen von Signalaufnahmen und
-verarbeitungen in unterschiedlichen Kommunikationssituationen vor. Die
meisten davon wurden erfolgreich bei eingeschlossenen (LIS) und vollig ein-
geschlossenen Patienten (CLIS) erprobt. Es werden auch zwei Patienten be-
richtet, die tiber keine andere Kommunikationsméglichkeit mehr verfiigten.
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M. Noirtier, immobile comme un cadavre, regardait avec des yeux intelligents
et vifs ses enfants, dont la cérémonieuse révérence lui annongait quelque dé-
marche officielle inattendue.

La vue et louie étaient les deux seuls sens qui animassent encore, comme denx
étincelles, cette matiére humaine déja aux trois quarts fagonnée pour la tombe;
encore, de ces deux sens, un seul pouvait-il révéler au debors la vie intérieure qui
animait la statue : et le regard qui dénongait cette vie intérienre était semblable
& une de ces lumiéres lointaines qui, durant la nuit, apprennent an voyagenr
perdu dans un désert qu’il y a encore un étre existant qui veille dans ce silence
et cette obscurité.

Alexandre Dumas, Le Comte de Monte-Cristo

Introduction

Alexandre Dumas, in The Count of Monte Cristo, describes the character of
Noirtier de Villefort as an old man completely paralyzed whose only mean of
communication is the movement of the eyes. The condition well portrayed
in the novel is the locked-in syndrome (LIS) and can be caused by several
neuronal disorder, such as brain stem stroke, or amyotrophic lateral sclerosis
(ALS), among others (Birbaumer, 2006). For persons in this state, communi-

cation is one of the biggest challenges: while for the early stage of the paralysis



commercial tools are available and provide reliable communication, there is
no device available for patients affected by advanced paralysis of the body. For
this reason, many research groups focus their attention on brain-computer in-
terfaces (BCls), in order to acquire and decode signals directly from the brain
activity and thus, to avoid using the unreliable muscles activity.

This dissertation focuses on techniques to decode two different signals
from the brain and translate them into a binary classification used for com-

munication purposes.

1.1 AMYOTROPHIC LATERAL SCLEROSIS

Amyotrophic lateral sclerosis (ALS) is a neurogenerative disease with no avail-
able treatment that affects motor neurons, whose incidence in Europeis 2.16
per 100 0oo person-years (95%, CI 2.0-2.3) (Logroscino et al., 2010). The eti-
ology of the disease is still unclear, but the scientific community is reaching
a consensus on identifying a multifactorial mechanism underlying the devel-
opment of ALS with interactions between genetic and molecular pathways
(Chou & Norris, 1993). Although the underlying reasons for the develop-
ment of the disease remain uncertain, it is well known that ALS might affect
both upper and lower motor neurons (UMN and LMN). In case of UMN
the degradation affects the neural pathways between the cerebral cortex and
the spinal cord and leads to spasticity and weakness; on the contrary, when
LMN are involved, the degeneration alters the communication between the

UMN and the associated muscles and results in fasciculations, wasting, and



weakness (Kiernan et al., 2011); often both UMN and LMN are affected
and therefore all these symptoms are present. In either UMN- or LMN-
predominant ALS, the neuromuscular disease is relentlessly progressive and
leads to a loss of the entire motor control: starting from the limbs, it advances
up to a total paralysis of the body, involving also respiratory failure that are
the cause of death in 60% of those patients that do not accept artificial venti-
lation (Wolf et al., 2017).

In general, the progress of ALS is not related with a decrease in cognitive
functions (Schnakers et al., 2008), although it is often reported a develop-
ment of frontotemporal dementia (Lomen-Hoerth et al., 2003; Stanton et al.,
2007). The exact rate of ALS patients affected by dementia is unclear: dif-
ferent studies reported rates varying between 5% and s0% (Lomen-Hoerth
et al.,, 2003; Ringholz et al., 2005). Nonetheless, at least half of ALS popu-
lation (but probably more) has no symptoms indicating frontotemporal de-
mentia or cognitive dysfunction, and it has been suggested that sensory per-
ception and cognitive abilities remain intact even in the late stage of the dis-
ease (Kiibler & Birbaumer, 2008).

With the progression of the disease, the paralysis proceeds leading the
patients to a locked-in syndrome (LIS), defined as a state of total immobil-
ity except for eye movements that, usually, are the least muscles affected by
ALS. Some studies report the voluntary movement of other muscles, such as
sphincter muscles, even after the complete loss of eye control (Murguialday

etal,, 2011). When all the remaining volitive movements are lost, the patients



are said to be in complete locked-in syndrome (CLIS) (Bauer et al., 1979).
Persons with no cognitive impairment in these very advanced conditions

are the patients object of this dissertation.

1.2 AUGMENTATIVE AND ALTERNATIVE COMMUNICATION DEVICES

Most of the patients in LIS that are not able to speak continue to commu-
nicate using an augmentative and alternative communication (AAC) device
(Ball et al., 2004), i.e., a device that displays an interface with letters and/or
words and allows to select them using some remaining movement, for exam-
ple by using a mouse, a keyboard, a joystick, or by tracking the line of gaze
on the screen using an eye tracker device (Beukelman & Light, 2020). When
communication is restored through any AAC tool, the will to live for the pa-
tients increase significatively (Linse et al,, 2018).

In most cases, ALS patients in LIS are completely paralyzed except for the
control of ocular muscles; hence, once patients lose speech capabilities, the
primary channel for communication is eye movement, that is converted to
speech through an eye tracker device (Beukelman etal., 2011). These systems
are formed by two parts: one screen that is placed in front of the patient and
shows a grid of letters and words, and one or multiple cameras, usually placed
below or above the screen, that track the eye movement, and detect the gaze
point by analyzing the pupil position. The usage of these commercial prod-
ucts is fast and very reliable and allows a patient to communicate by naturally

looking at the screen and selecting letters and words by fixating the gaze.



The main problems with eye trackers are intrinsic to the nature of the tech-
nology: they are based on visual feedback, eye movement and gaze fixation,
therefore if just one of these three is missing or become pathological, the sys-
tem will no longer function properly.

Even if ocular muscles are one of the last muscles lasting in ALS, with the
progression of the disease ocular abnormalities and dysfunctions appear fre-
quently in all the stages of disease (Jacobs et al., 1981; Donaghy et al., 20115
Kangetal., 2018; Cozza etal., 2021) and involve among others saccadic move-
ments (Donaghy et al., 2010), smooth pursuit (Abel et al., 1995), and blink
suppression (Byrne et al., 2013). Moreover, ALS patients show slow eye
movement, inability on gaze fixation, blurred vision, and dryness of cornea
(Jacobs et al., 1981; Palmowski et al., 1995; Spataro et al., 2014; Cozza et al.,
2021). With the advancement of these ocular dysfunctions, the usability of
eye trackers declines to such an extent that the precision of the tracking soft-

ware becomes useless for communication purpose.

1.3 NEUROPHYSIOLOGICAL SIGNALS FOR COMMUNICATION

Once a patient loses the ability to use eye tracker devices there is no commer-
cial tool that can be used to restore communication. Nevertheless, many
research groups have conducted studies to provide communication by us-
ing different neurophysiological signals (Chaudhary et al., 2016). The sys-
tems that use such signals are generally called Human-Computer Interfaces

(HClIs), but in the specific case of neural signals usually people refer to them



as Brain-Computer Interfaces (BClIs).

One of the main signals used in HCI is the electromyography (EMG), i.e.,
the electrical potential generated by the activation of muscle cells. EMG is
usually recorded by placing some electrodes on the monitored muscles and
observing the changes in the electrical activity when the muscles are con-
tracted or relaxed. The electrical signal generated by the muscles activation is
orders of magnitude bigger than the underlying electrical activity of the brain,
and therefore it is a valid tool for detecting even micromovements that can-
not be directly observed. In patients affected by LIS the monitor of muscular
activity is overall useless due to the general paralysis of the body, nevertheless
this same technique can be used to inspect the movement of the eye balls by
measuring the change in the electrical potential between the cornea and the
retina, and, in this specific case, the recording is called electrooculography
(EOG). In normal conditions EOG can be used to record both horizontal
and vertical eye movement, and, in absence of abnormalities or ocular dys-
function, the signal can be used to completely reconstruct the ocular move-
ments of the recorded subject.

Brain signals acquisition systems can be divided in two categories: non-
invasive and invasive systems (Figure 1.1). The first category includes all sig-
nals that can be recorded externally from the scalp by placing some specific
sensors, while invasive systems require a surgery to place the recording elec-
trodes below the scalp.

The vast majority of BCIs are based on electroencephalographic (EEG)
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Figure 1.1 - General framework of brain-computer interface (BCl) systems. Invasive BCl| approaches
(left) include the measurement of local field potentials (LFPs), single-unit activity (SUA), multi-unit activ-
ity (MUA), and electrocortico- graphy (ECoG). Noninvasive BCI approaches (right) include EEG, blood
oxygenation level-dependent (BOLD) functional MRI, and near-infrared spectroscopy (NIRS). Brain sig-
nals are processed to extract features relevant to the aim of the BCI (for example, communication) and
then classified using a translational algorithm to construct a control signal that drives the BCI. BCls can
be classified as assistive to help patients with communication or movement, or as rehabilitative to help
recover neural function. Reprinted from Chaudhary et al. (2016).

signals which represent the electrical activity generated by the neurons of the
brain, firstly recorded in humans in 1924 (Berger, 1929). EEG recording is
performed by placing electrodes on the scalp, using one electrode as ground
(usually placed on the forehead) and one as reference (usually placed at the
center of the head or below the ear), and measuring the potential difference
between each electrode and the reference. The acquisition is done through an
amplifier that usually works with a sampling rate between 250 and 2000 Hz.
The location of each electrode usually follows a standard called 10-20 system

(indicating the distance of each adjacent electrode); the position is very impor-



Name Frequency
Delta 0.5—3Hz
Theta 4 —7Hz
Alpha 8 —12Hz
Beta 15 — 30 Hz
Gamma > 30Hz

Table 1.1 - List of the EEG frequency bands commonly used.

tant since each electrode records the neural activity generated by the underly-
ing brain section, and every brain region is mainly activated by specific tasks
and maps different parts of the body. Brain activity is composed by neural
oscillations at different frequencies (more details can be found in Jackson &
Bolger (2014)), for this reason one of the features often analyzed is the power
spectrum restricted to some specific bands: the bands usually analyzed are
listed in Table 1.1.

Another widely used system to record brain activity is functional near-
infrared spectroscopy (fNIRS): a neuroimaging technique that estimates
hemodynamic activity of the brain with optical sensors placed on the surface
of the scalp. The use of near-infrared light to detect changes of cortical oxy-
genation was firstly demonstrated in adults in 1977 (Jébsis, 1977). fNIRS
setup includes a couple of sensors that work at specific wavelengths between
650 and 9oo nm, the sensors are a light emitter and a light detector. The prin-
ciple behind this technique is that near-infrared light can penetrate the tissues
of the head and it is absorbed by hemoglobin, therefore, knowing the amount

of light emitted and detected, is possible to estimate the level of concentration



of oxy- or deoxy-hemoglobin in the blood flow, and consequently to estimate
the neural activation. One of the main pros in using fNIRS-BCI is the low
sensitivity to motion artifacts, that are one of the biggest problems in EEG sys-
tems; moreover, fNIRS has also a better spatial resolution than EEG (Wilcox
& Biondi, 2015). Nevertheless, the hemodynamic change reaches the peak
only after s s, therefore, in contrast to EEG, fNIRS have very low temporal
resolution.

The noninvasive systems usually require long setup procedures and are
in general prone to environmental noise. These two drawbacks can be over-
come by using invasive acquisition systems like electrocorticography (ECoG)
or microelectrode arrays (MEAs). The principle of ECoG is the same of EEG
and the signal is also very similar since it records the electrical potential of the
underlying neurons. The main difference is that in ECoG electrodes larger
2-3 mm are placed directly on the cortex giving the possibility to acquire an
electrical signals that are not attenuated by the skull (Buzsiki et al., 2012). Fi-
nally, with a more invasive procedure, is possible to place MEA directly in the
cortex. These microelectrodes systems can record extracellular action poten-
tials from single neurons. The action potentials (or spikes) are events fired
by the neurons when they are activated, and each single electrode, depending
on its position, can record the activity from a single neuron (or single-unit ac-
tivity) or from multiple neurons (multi-unit activity). Spikes events last for
approximately 2 ms, therefore the time resolution of MEA is extremely high,

and BCI systems based on this signal can provide an immediate feedback of



the recorded neural activity.

1.4 COMMUNICATION IN LOCKED-IN SYNDROMES

BCI communication systems for ALS person in LIS can be based on visual
feedback, auditory feedback or on both. The very first BCI system for pa-
tients in LIS was developed by Birbaumer et al. (1999) and used slow cor-
tical potentials of EEG signal to binary select letters from a screen. After
this study many other researches focused on developing faster and more re-
liable systems. Patients that still have voluntary eye control can benefit from
EOG-based BCI systems, and a system that uses involuntary ocular activity
has been tested in two ALS patients for binary communication (Kim et al.,
2018). Most BCI systems use EEG signals, and the most used technique to
decode patient’s intention is by analyzing the evoked responses generated in
the EEG after the presentation of a stimulus. Each stimulus, either auditory
or visually presented, induces a positive or negative event-related potential
(ERP) in the brain whose shape appears constant over time. One of the most
used ERP components is P300: a positive potential with peak approximately
300 ms after a stimulus onset elicited during decision making process by in-
frequent stimuli. This EEG feature has been used in multiple studies with
LIS participants by showing a keyboard on a screen and highlighting differ-
entgroups of letters: by analyzing the P300 component during multiple trials
it is possible to determine if the letter thought by the participant is included

in the group of highlighted letters (Sellers et al., 2010; McCane et al., 20143
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Ryan etal., 2018). P300 system can also be used with a combination of visual
and auditory feedback (Kibler et al., 2009). Some of these systems provided
good spelling performance, but all of them have been tested with patients
with some residual movements. Other BCI systems used auditory evoked po-
tentials by presenting sequences of different sounds and detecting on which
the patient was focusing by analyzing the negative potentials at 100 ms and
200 ms after the stimulus onset (N1 and N2) and P300 component (Hill
et al., 2014). The proposed auditory paradigm shows single sessions perfor-
mance above chance for a basic “yes” / “no” communication, nevertheless
the performance decreased when classifier weights are transferred from ses-
sion to session. Another widely used BCI paradigm is based on steady state
visual evoked potential (SSVEP): when a visual stimulation at specific blink-
ing frequency is presented, the brain naturally responds generating electrical
activity at the same frequency. The generated brain response is greater for the
stimuli to which the patient pays attention, therefore presenting multiple vi-
sual stimulations at the same time at different frequencies, the EEG power
spectrum shows peaks corresponding to the frequency attended by the pa-
tient and to its harmonics. This signal has been used in different communi-
cation paradigms: binary questions (Lim etal., 2013; Lesenfants et al., 2014),
multiple choice selection (Hwang et al., 2017) and by implementing a full
speller system (Peters et al., 2020). Some of the results look promising, how-
ever SSVEP has some drawbacks (e.g., it might provoke epileptic seizures, and

it causes eye and mental fatigue) that do not allow paradigms to last for very

II



long, and therefore such systems are not suitable for long communication
sessions. Invasive BCI systems have also been used for communication with
ALS, in particular ECoG signal has been used with a LIS patient (Vansteensel
etal, 2016). The patient was trained to imagine moving the hand and the
decoded signal was used to select letters from a screen. Another study involv-
ing two ALS patients classified local field potentials from intracortical MEAs,
and both patients were able to modulate the brain signal to compose messages
(Milekovic et al., 2018).

Despite all the promising results, all the reported studies target patients in

LIS that still have other channel of communication, for example eye trackers.

1.5 COMMUNICATION IN COMPLETE LOCKED-IN SYNDROMES

Performing experiments with patients in CLIS is extremely more challeng-
ing than targeting LIS population, mainly because researchers cannot receive
any feedback from the patient and, therefore, the reasons of low decoding in
a given session can vary from patient being sleeping or tired to patient not
able to perform the requested task. A study shows that BCI performance
are not affected by the progression of ALS and there is no significant differ-
ence between neurophysiological signals of patient before and after entering
CLIS (Silvoni et al., 2013), nevertheless a patient implanted with ECoG sys-
tem shows that after the transition between LIS and CLIS the usual BCIs do
not succeed (Murguialday et al., 2011). Kiibler & Birbaumer (2008) tried to

explain the reasons by theorizing an extinction of goal-directed thinking in
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CLIS patients, but, at least for one case, this theory has been proved wrong
in the single-case study reported in Paper III. A first NIRS-based BCI system
used different imagery techniques to get a binary classification (Fuchino et al.,
2008), results were not sufficient to provide communication, but most of the
tasks were successfully performed and suggested the potential of NIRS-BCI
systems in CLIS patients. A first successful NIRS-BCI was implemented by
decoding different modulations corresponding to “yes” and “no” responses
of the patient (Gallegos-Ayala et al., 2014; Borgheai et al., 2020). The hemo-
dynamic response shows significant difference in the deoxygenation levels
for positive and negative answers and half of the sessions show better-than-
chance accuracy using a support vector machine trained with data from cal-
ibration session. EEG-BCI have been proven to work in one CLIS patient
using SSVEP signal (Okahara et al., 2018), but in this study the patient was
trained to use the BCI paradigm when he still had voluntary eye movement.
Like in the NIRS-BCI studies, the performed communication was limited to

binary yes/no answers.

1.6 OVERVIEW

In this dissertation, I propose several communication systems that can be
used by LIS and CLIS patients, analyzing both the signal acquisition step
and the communication interface.

The first problem that I had to address was to define the CLIS condition

and to quantify when the condition was affecting the cognitive capabilities of
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the patients. In Paper VI (Neurophysiological aspects of the completely locked-
in syndrome in patients with advanced amyotrophic lateral sclerosis) our re-
search group studied some EEG features acquired from CLIS patients, while
in Paper X (Sleep in the completely locked-in state (CLIS) in amyotrophic lateral
sclerosis) the sleep pattern of those patients is more deeply analyzed. Longitu-
dinal studies of the EEG in LIS and CLIS patients are reported in Paper VII
(Electroencephalography of completely locked-in state patients with amyotrophic
lateral sclerosis) and Paper VIII (EEG power spectral density in locked-in and
completely locked-in state patients: a longitudinal study), with the first one fo-
cused on differences between healthy subjects and CLIS patients, while the
second one analyzes the evolution over time of LIS and CLIS patients.

After this neurophysiological analysis of patients in LIS and CLIS, I re-
port different developed communication systems based on binary input sig-
nal, each of them built in a modular way so the acquired signal and its process-
ing can be independent from the communication program. In Paper I (Audi-
tory Electrooculogram-based Communication System for ALS Patients in Tran-
sition from Locked-in to Complete Locked-in State) we proposed a system based
on residual ocular movement, and its valuable dataset has been published in
Paper V (4 dataset of EEG and EOG from an auditory EOG-based commau-
nication system _for patients in locked-in state). The underlying experimental
software, designed to acquire simultaneously EEG and NIRS signals in a user-
friendly interface, is presented in Paper XI (4 General-Purpose Framework for

a Hybrid EEG-NIRS-BCI). The speller communication interface has later
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been reused in Paper III (Spelling interface using intracortical signals in a com-
pletely locked-in patient enabled via auditory neurofeedback training), asingle-
case study that reports for the first time full communication with an ALS pa-
tient in CLIS using MEAs. Noninvasive BCI in CLIS has been studied also
in Paper IV (Binary Semantic Classification Using Cortical Activation with
Pavlovian-Conditioned Vestibular Responses in Healthy and Locked-In Indi-
viduals) with a novel EEG system based on vestibular stimulation. Finally,
the acquisition of EOG signal using open-source device has been investigated
in Paper IX (Open Software/Hardware Platform for Human-Computer In-
terface Based on Electrooculography (EOG) Signal Classification), and a new
paradigm for communication with a binary signal is proposed in Paper II (4

20-questions-based binary spelling interface for communication systems).
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Objectives and expected outcome

The main objective of this thesis is the development of a system to restore
communication for patients in LIS and CLIS. The work is focused on ALS
patients in an advanced stage of the disease, when usual AAC systems do not
work due to the progressive paralysis that affects all the muscles of the body.
For this reason, a system has been developed to work both with minimal oc-
ular movements, in case of patients still able to generate recordable muscular

activity, and directly with brain signals, for the patients completely paralyzed
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in the late stage of the disease. Therefore, the development of the commu-
nication system is split in two phases: the first one is focused on the signal
analysis and it aims to retrieve features useful for classification from the ac-
quired neurophysiological signals; the second one is the implementation of
techniques that can use these signals to select letters and words or, more in
general, to communicate.

The most obvious result expected from such system is the restoration of
the communication in ALS patients in the latest stage of the disease. But,
due to the progressive nature of the disease, it is not possible to expect that a
system based on one specific signal can be successfully used for a long period
of time. Therefore, the more general expected outcome is a customized HCI
or BCI that follows the course of the disease. For this reason, the acquired
signal will be categorized with a general binary classifier and the implemented

system will use this signal-agnostic classification to allow communication.
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Results and discussion

The following paragraphs describe the methods and the techniques devel-
oped to achieve communication in late-stage ALS patients. The chapter is
divided in two sections: the first is a description of the signal acquisition and
signal processing techniques that have been applied, and the second depicts
the methods that have been developed to achieve the actual communication.

It is important to keep in mind that these two sections are tightly related,

and often they have been developed in parallel. Nonetheless, in the discus-
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Figure 3.1 - The general trial structure includes a baseline period of a fixed plus random time; the
auditory presentation of the stimulus; a rest period; the response period during which the patient is
asked to perform the task; a second rest period; and a feedback of the classified response given to the
patient auditory.

sion I preferred to keep the two topics separate, because all the communica-
tion techniques can be independently applied with respect to the acquisition
method that the experimental paradigm requires.

Since all developed communication methods are based on a binary input,
the final step of the signal processing will always be related to the extraction
of features to feed a binary classifier, while the pipeline followed always the
same schema: calibration, validation, and finally the communication applica-
tion. Both calibration and validation phases are based on the trial structure
reported in Figure 3.1: it starts with few seconds of baseline, followed by the
instruction of the trial (i.e., the stimulus presentation), then a response time
where the patient is asked to perform the required task and finally a feedback

)

thatindicates the end of the trial. The paradigms are always binary (e.g., “yes’
or “no”, “up” or “down”), and during the response time the patient is asked
to modulate the acquired signal in two different ways, for example to move
the eyes to reply “yes” and not to move to reply “no”. The data acquired in

these binary trials is used to build the classifier.

Even if the communication methods shared the same trial structure, each
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Publication ~ Signal Feature Instructions  Classification
method
Paper I EOG Amplitude Move the eyes  Support Vec-
in two differ- tor Machine
ent ways
Paper III Intracortical ~ Spikes, Modulate Threshold
Spike  band neural activ- crossing,
power ity in two Logistic
different ways  regression
Paper IV EEG EEG  corti- Think “yes” Offline classi-
cal  current or“no” fication

source

Table 3.1 - List of the different paradigms developed for communications. All the paradigms have been
tested in LIS or CLIS patients. The table reports the signal that has been used, the feature of the signal
used for classification, the instructions given to the patient and the classification method.

experimental paradigm was developed in a specific way. The data acquisition
systems and communication methods are detailed described in Sections 3.2
and 3.3, but a summary of the different paradigms that have been designed
is reported in Table 3.1 listing signals, features, instructions and classification

methods that have been used.

3.1 LIS anD CLIS SUBJECTS

All performed studies are focused on ALS patients in LIS or CLIS showing
no significant cognitive impairments. This assumption is difficult to be done
for person who do not communicate, therefore in case of complete paralyzed
patients we included only patients that were cognitively intact before tran-
sitioning to CLIS. The findings on LIS and CLIS states are summarized in
Table 3.2.
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Publication  Findings in LIS Findings in CLIS

Paper VI - Slowing in EEG and attenuation of &
wave activity.
Altered somatosensory and auditory

evoked potentials.

Paper VII - Power reduction in high o, 3 and 7y
bands.

Paper VIII Healthy EEG pattern. ~ Slowing in EEG, o peak between 4 and
s Hz.

Paper X - Healthy sleep pattern with preserved cir-

cadian rhythm.

Table 3.2 - Findings for LIS and CLIS patients. The papers listed here are the ones included in the
dissertation.

In order to find a metric for impairment, Paper VI analyzes the neurophys-
iological signals in four of these patients and it shows altered metrics in all of
them, even if it was not possible to determine a unique and common pat-
tern. Nevertheless, similarities among all the patients were found in a general
slowing of EEG and attenuation of alpha wave activities. The other neuro-
physiological metrics analyzed include auditory and somatosensory evoked
potentials and show absence or altered responses in the patients compared to
healthy population, but without a general pattern that could be applied to all
the subjects.

The study also analyzes the sleep signals of these patients and replicates
the results achieved in Paper X where it has been shown that CLIS patients
have, despite some irregularities, a healthy sleep pattern. For cognitive assess-
ment it was very important to prove that these patients conserve a day-night

self-regulation and, in particular, a clear circadian rhythm. These findings,
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even if they do not guarantee any level of cognitive capabilities, are important
because the absence of these markers would have meant serious cognitive de-
cline.

The resting state EEG traces of CLIS patients have been compared to
healthy EEG in Paper VII, and results confirm a significant power reduction
in high alpha, beta and gamma bands indicating dominance of slower EEG
frequencies in the oscillatory activity. Nevertheless, any conclusion about a
relationship between these pathological signals and cognitive abilities was not
possible, since a clear metric of consciousness is still undefined. However, the
study suggests that the slowness of the EEG spectrum might be associated
with the complete immobility of CLIS subjects and the consequent depriva-
tion of the environmental stimuli, including the communication.

This thesis is reinforced by Paper VIII where EEG signals is compared be-
tween CLIS and LIS patients in a longitudinal study. The study, performed
across multiple sessions, shows a significant difference in the power spectrum
of CLIS patients without any means of communication with respect to LIS
patient that was using an AAC device. In general, the EEG power spectrum
of CLIS patients, as highlighted in Papers VI, VII, and X, appears with dom-
inant slow waves and a pathological alpha frequency between 4 and 5 Hz.
Moreover, the recordings performed over one year show a general slowness
of the EEG traces in CLIS patients. On the contrary, the patient in LIS dur-
ing the same time showed no degradation in the EEG components and in

general a healthy EEG pattern with an alpha peak constantly at 9 Hz.
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The analyses performed in these papers were fundamental to develop the

communication paradigms with LIS and CLIS patients.

3.2 SIGNAL ACQUISITION AND SIGNAL PROCESSING

During the experiments, four signals have been used: EOG, EEG, NIRS, and
intracortical signal. In the following paragraphs the acquisition process used
for all these signals will be described, highlighting the pro and cons, and the

patient population that can be targeted.

3.2.1 MICRO-OCULAR MOVEMENTS

Eye movement is usually the last remnant voluntary movement in ALS pa-
tients, and it is widely used to communicate thanks to eye-tracking AAC
devices that allow patients to select letters and words by fixating them on a
screen. During the transitional state from LIS to CLIS, patients become un-
able to maintain gaze-fixation and, therefore, unable to use eye-tracking AAC
technologies. Nonetheless, some remaining controllable muscles of the eyes
continue to function, and it is therefore possible to use this muscular signal
to provide a means of communication during this transition.

In Paper I, we recorded EOG signals from four ALS patients unable to use
eye-tracking devices. Signals were recorded with Ag/AgCl active electrodes
placed on the standard EOG positions SO1, IO1 (vertical EOG) and LO1,
LO2 (horizontal EOG), as depicted in Figure 3.2. The amplitude of the ac-

quired signal was very small compared to ocular activity of healthy subjects:

24



er.
(Rigth Mastoid)

Figure 3.2 - Montage for the minimum number of EOG channels for each recorded session, using the
locations LO1 (left cantus) and LO2 (right cantus) for horizontal eye movement, and SO1 (above superior
orbit) and 101 (below inferior orbit) for vertical eye movement. Modified from Paper V.

while in normal conditions the amplitude of the EOG signal varies from so
to 3500 WV, the patients were able to generate a signal six times smaller, in
the best case. In particular one patient was able to move the eyes in a range
of 300 uV, while the other patients were generating an ocular movement in
an approximate range of 100 uV.

Figure 3.3 shows the horizontal eye movement for a paradigm with two
different conditions, in which each patient was asked to generate two differ-
ent movements for “yes” and “no” trials. The amplitude values clearly indi-
cate a pathological condition in all patients, but they also show that even in
presence of these micro-ocular movements, the traces are clearly separable be-
tween two conditions. In order to extract the features, the signals were first
filtered between o.1 Hz and 3 5 Hz, and then normalized against a baseline sig-
nal. The choice of the actual feature to use for classification was data-driven:
for the two patients with a highly separable signal (P15 and P16) we used

the range of signal amplitude (i.c., the difference between the maximum and
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Figure 3.3 - Horizontal eye movement during feedback sessions for all patients. Differential channel
EOGL - EOGR for a particular feedback session performed by (A) P11, (B) P13, (C) P15, and (D) P16
during the first visit. In each subfigure, the x-axis is the response time in seconds, and the y-axis is

the amplitude of the eye- movement in microvolts (V). The thin and thick red trace corresponds to a
single “yes” response and average of all the “yes” responses, respectively. The black thin and thick trace
corresponds to a single “no” response and average of all the “no” response. The box at the bottom right
of each subfigure lists the number of trials classified as “yes” and “no” by the Support Vector Machine
classifier for that particular session. Reprinted from Paper I.
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Figure 3.4 - Progressive decline of the eye-movement amplitude along the visits for P11. Depicts the
trend of decline in the range of the amplitude of the EOG signal for yes/no questions answered by the
patient during the period March 2018 to March 2019. The figure shows the mean and the standard
error of the mean of the extracted range of the amplitude of the horizontal EOG signal across each day
for yes and no trials. The x-axis represents the month of the sessions, and the y-axis represents the
amplitude in microvolts. The asterisk (* - p-value less than 0.05; ** - p-value less than 0.01; *** - p-value
less than 0.001) in the figure represents the results of the significance test performed between yes and
no for horizontal EOG employing the Mann-Whitney U-test. Reprinted from Paper I.

minimum values), while for the other two patients we took into account also
the dynamic of the response by extracting the maximum and minimum val-
ues of the signal together with the respective occurrence time. The features
obtained during the training sessions were used to train a support vector ma-
chine classifier that was validated through s-fold cross-validation.

It is important to highlight that the ocular signal might be used only for
a short period of time, because the degeneration of the disease will lead to a
complete paralysis of the ocular muscles. This decline can be seen in Figure

3.4: the amplitude of the EOG signal recorded from P11 decreases over time,
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up to the point to be indistinguishable among the two conditions. These
valuable datasets have been published in Paper V with the aim to help redefine
the course of the progression in ALS.

Moreover, following this study, a prototype of an open-source hardware
for communication with EOG has been developed. The prototype has never
been tested with patients, butitisa proof of concept that such system can also
be built using non expensive components and, therefore, it might be widely
used by patients. The whole software/hardware platform is described in de-

tail in Paper IX.

3.2.2 EEG anD fNIRS: THE HyBRIDBCI

When a patient completes the transition from LIS to CLIS all residual move-
ments of the eyes are lost, and the patient becomes completely paralyzed. This
condition obviously implies that the recording of muscular activity (even
from the eyes) becomes useless for the purpose of communication. There-
fore, the only signal that can be acquired and used for this purpose is the elec-
trical signal coming directly from the brain. In particular, we focused on two
types of signals that are suitable for home use experiments: EEG and fNIRS.
Several systems have been already proposed for BCI applications with non-
invasive signals, such as BCI2000, BioSig, OpenVibe, and Mushu, but none
of them was suitable to be easily used with ALS-CLIS patients. For example,
most of these platforms are focused only on the paradigm design or on the sig-

nal acquisition, but it is difficult to design a full experiment that is completely

28



auditory; moreover, in these patients EEG and NIRS signals are significantly
altered and change with the progression of the disease, therefore the analysis
pipeline should be highly customizable for each patient individually.

To overcome these problems in Paper XI we have proposed HybridBCI: a
new framework for BCI experiments completely focused on the need of ALS-
CLIS patients. HybridBCI has been designed following the object-oriented
programming principles in order to be flexible and extendable. The frame-
work is written in Matlab with a file-based structure (Figure 3.5) and a graphic
user interface is used to change the settings that can be necessary to run the
experiment at patient’s bedside, giving the flexibility to adapt the configura-
tion of the experiment at every single run. The platform provides an easy-to-
use software to conduct experiments (focused on the communication) with
ALS patients in LIS or CLIS, starting from the signal acquisition phase, im-
plementing the signal processing and features extraction algorithms, up to
the communication paradigm.

HybridBCl is designed to work with both EEG and NIRS signals, and the
synchronization of the two is done via hardware triggers. A basic preprocess-
ing pipeline has been implemented for both signals (Figure 3.6), and it can
be easily extended by just adding a new function in the proper directory of
the Matlab code. The default preprocessing pipeline for EEG includes a fil-
ter that can be wideband or automatically set to any of the specific EEG band,
while for NIRS it converts the signal acquired as pair of wavelengths belong-

ing to the near-infrared spectral rage directly to hemodynamic concentrations
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Figure 3.5 - HybridBCl System Design and file organization. Two main software modules, ModelBul-
der.mlapp and HybridBCl.mlapp (white boxes), and three Matlab instances (Matlab icons) control the
experimental procedure and online data acquisitions. For each functionality of the system, a folder is
dedicated (yellow boxes) and the HybridBCl automatically recognizes new .m files in these folders and
extends its’' functionality accordingly. Reprinted from Paper XI.

of oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and total hemoglobin
(HbT), and it filters the signal to provide the hemodynamic response. After
the preprocessing phase, the signal can be normalized with respect to a base-
line, a common average reference can be applied, and features are extracted
from it. A subset of more than twenty common processing algorithms is al-
ready implemented (e.g., mean, kurtosis, standard deviation, mean of the en-
velope, and more), but the modularity of the system allows to add any specific
feature by just including a new file with the corresponding function. Finally,
the framework provides classification algorithms, such as support vector ma-
chine, to build a model that can provide a binary classification of the trials.
For the experimental applications the classification provides a binary in-
put that can be used in different communication techniques. The framework
already includes a basic yes-no communication and a spelling communication

system, that will be discussed in the Sections 3.3.1 and 3.3.2.
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Figure 3.6 - Six steps of the analysis pipeline used in ModelBuilder. Step 1 is for loading the data and
select/deselect channels. Step 2 is designed for the preprocessing of the NIRS and EEG signals based.
Step 3 is used to select the desired features to be extracted from NIRS and EEG. In step 4 before pass-
ing the features to classifiers in step 5, the dimension of the feature space is reduced. Finally, in step 6
the acquired model is validated on the data that has not been used for training the classifier. Reprinted
from Paper XI.

3.2.3 EEG AND GALVANIC VESTIBULAR STIMULATION

One of the most famous experiment in neuroscience shows that if a dog re-
peatedly listens to the sound of a bell preceding feeding, then the animal will
associate the ring of the bell to the idea of food and it will start salivating in
anticipation of food. This salivation is unconscious and unvoluntary, hence
it will appear also if the dog is not fed anymore, and the sound of the bell can
be used to make the dog salivating (Pavlov, 1927). This important finding,
called Pavlovian conditioning, can be directly translated to human and can
be used to train the brain to unconsciously respond to a stimulus. Using this
principle, in Paper IV we developed a conditioning paradigm that associate
the answers “yes” and “no” to a small electrical current applied on the left or
right vestibular labyrinth behind the ears, i.e., galvanic vestibular stimulation
(GVS). GVS is nonpainful and safe, however the stimulation applied to the
vestibular system causes an equilibrium distortion sensation and reflexive re-
sponses such as visual rotation and tilt of the body. These automatic reflexes

have been used to condition the patient with a long sequence of known bi-
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Figure 3.7 - Experimental concept and paradigm. Upper panel: Two GVS electrodes were placed behind
the ears, an anode (red) electrode behind the right ear, and a cathode (blue) behind the left ear. Three
positive half cycles of 0.5 Hz sine waves were provided for thought of “yes” which resulted in right-ear-
down tilt sensation. In the case of thought of “no” 3 negative half cycles of 0.5 Hz sine waves were
given to induce left-ear-down tilt sensation. Lower panel: Conceptual diagram of the thought of yes/no,

GVS, and brain activity caused by EDS aligned with examples of Pavlovian conditioning. Modified from
Paper IV.

nary questions: when the expected answer was positive a left stimulation was
applied, when negative the stimulation was applied on the right side (Figure
3.7)-

After many trials of conditioning sessions, we performed trials with the
same structure but without any stimulation. In 85.3% of the validation trials
the effect of the conditioning was reflected in the EEG and it was possible
to correctly distinguish “yes” and “no” patterns for trials respectively with

expected positive or negative answer.
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3.2.4 INTRAcCORTICAL BCI

The use of non-invasive BCI systems is extremely wide and powerful, but
when applied in ALS patients in CLIS it often failed, and, even in the few
positive case reported, it was never accurate enough to provide full communi-
cation to the patient (Chaudhary et al., 2016). For these reasons, in Paper III
a single-case study of an ALS patient in CLIS is reported: the patient has
been implanted with two 64 microelectrode arrays in the supplementary and
primary motor cortex and was able to use an intracortical BCI system to com-
municate. The patient was not new to BCI: before the implantation he was
communicating with his residual eye movement in an experimental setup in-
volving HybridBCI framework. The patient of this single-case study is P11
of Paper I.

The intracortical BCI setup and a schema of the communication
paradigm is shown in Figure 3.8. The raw neural signal was acquired at
30 kHz from 128 channels, it was bandpass filtered with a window of 250-
7500 Hz, and action potentials (i.e., spikes) from single- and multi-unit were
extracted. The feature that has been used to get a binary classification was the
firing rate, calculated as the number of spikes generated in a time window of
one second. On the 86™ day after implantation the patient was finally able
to modulate his neural activity, using an auditory feedback that was directly
mapping the firing rate to a sound. At that time the patient had a good con-
trol over the signal, and we decided not to apply any further machine learning

algorithm, but to use directly the normalized firing rate: a trial was classified
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Figure 3.8 - Setup and neurofeedback paradigm. a Experimental setup. Two microelectrode arrays
were placed in the precentral gyrus and superior frontal gyrus (insert, L: left central sulcus, A-P: midline
from anterior to posterior). An amplifying and digitizing headstage recorded signals through a percuta-
neous pedestal connector. Neural signals were pre-processed on a Neural Signal Processor and further
processed and decoded on a laptop computer. b Daily sessions began with Neurofeedback training. If
the performance criterion was reached, the patient proceeded to speller use. If the criterion was not
reached, parameters were re-estimated on neurofeedback data, and further training was performed. c
Schematic representation of auditory neurofeedback and speller. Action potentials were detected and
used to estimate neural firing rates. One or several channels were selected, their firing rates normal-
ized and mixed (two channels shown here for illustration; see Online Methods). Options such as letter
groups and letters were presented by a synthesized voice, followed by a response period during which
the patient was asked to modulate the normalized and mixed firing rate up for a positive response and
down for a negative response. The normalized rate was linearly mapped to the frequency of short tones
that were played during the response period to give feedback to the patient. The patient had to hold
the firing rate above (below) a certain threshold for typically 500 ms to evoke a “Yes” (“No”) response.
Control over the neural firing rates was trained in neurofeedback blocks, in which the patient was in-
structed to match the frequency of target tones. Reprinted from Paper Ill.
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Figure 3.9 - Example of letter selection during a free spelling block. a Firing rate of the channels 25 and
100 used for “yes"/“no” classification on day 108. b Normalized firing rate and the speller state during
the same 90 s period of a speller block. “Yes"/“no”/ timeout decisions are marked by vertical lines and
the option selected in green and not selected in red. This example is part of the phrase “dekubitus po er
soll arme maximal”, referring to bedsore and instructing the aide to change arm position. Reprinted from
Paper lll.

as “yes” if the modulation was kept above a certain threshold, and as “no” if
it was below another threshold. This direct mapping of the spike activity is
shown in Figure 3.9.

Paper III reports the evolution of the BCI performance up to 470 days af-
ter the implantation, but the case study continued afterwards. After approx-
imately two years the firing rate started to decline, the electrodes’ impedance
started to decrease, and, in general, the intracortical signal started to degrade.
It was then decided to change the acquisition software to a custom one and,
instead of using the spike rate as feature for classification, we started to use the
spike band power. Moreover, the binary classification value has been changed
from the simple thresholding method described above, to a more sophisti-

cated logistic regression classifier. It is important to highlight that the output
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of the classification was always a binary value independently of the process-
ing pipeline, this allowed us to keep in place the same communication appli-
cations that were used before, and the patient was able to communicate for

one more year.

3.3 COMMUNICATION TECHNIQUES

In the following paragraphs I will analyze the techniques that have been de-
veloped to allow communication in LIS and CLIS patients once that a binary
classifier was built. The first two paragraphs will describe actual communica-
tion methods that have been used directly with patients, while the last one
describes a proof of concept for an innovative system that could overcome
some of the problem that an auditory binary communication intrinsically
has, for example the slowness of the selections and the dealing with false clas-
sifications. All paradigms will be discussed independently of the nature of

the acquired signal.

3.3.1 BASIC YES-NO COMMUNICATION

The most basic technique that can be applied to a binary system is to directly
ask yes and no questions to a patient. After the model has been built its out-
put is a binary classification value, therefore one simple way to achieve com-
munication with a patient is to use the same trial structure depicted in Figure
3.1 where now the stimulus presentation is a yes/no question with unknown

answer, for example “Do you have pain?”. It is clear that such a system, not
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only provides just a very small communication freedom, but also — more im-
portant — needs to have a very accurate classification in order to reduce the
number of wrong yes/no answers. For this reason, the system has been used
only when the cross-validation accuracy of the selected classifier was at least
80%, than chance level for a 2-class BCI with 20 trials (Miiller-Putz et al.,
2008), moreover, all questions were repeated multiple times to confirm the
result.

This basic communication system has been implemented in HybridBCI
(Paper XI), and it was used with the acquisition methods described in Papers
I, 11, and IV.

In the continuation of the study described in Paper III, the reliability of
the yes/no communication was slightly improved by asking the patient to re-
ply five consecutive times to the question and other five times to reply the
opposite of the correct answer. For example, if the question was “Do you
have pain?” and the patient wanted to reply “no”, then he had to reply “no”
for five trials and “yes” for the following five trials. As mentioned before, the
paradigm is completely auditory since it is not possible to rely on the sight
of LIS/CLIS patients. This implies that each trial lasts for about 10 seconds,
therefore, to receive a simple binary answer, it takes around 2 minutes: in

order to be reliable this system is very slow.

3.3.2 SPELLING COMMUNICATION SYSTEM

A more advanced communication can be achieved using a speller system,
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Figure 3.10 - Schema of the speller designed for the four patients. Speller schemas used for (A) P11, (B)
P13, (C) P15, and (D) P16. In each schema the letters are grouped in sectors proposed to the patient:

in (A) and (B) “yellow”, “red”, “green”, “blue” and “white”, in (C) “1”, “2”, “3" and “4”, and in (D) “1”, “2", “3",
“4” and “5”. The special characters represent in (A) and (B) “space” and “backspace”, and in (C) and (D)
“space”, “backspace” and “delete word”. Reprinted from supplementary material of Paper .

where a subject can form entire sentences by selecting single letters or words.
The speller system has originally been developed in Paper I, and continued to
be successfully in Paper III.

The speller layout was implemented by optimizing a design previously de-
veloped by patients’ caretakers, in order to avoid unnecessary new learning
phases for the patients. The speller consists of letters grouped in different sec-
tors, plus one sector containing special characters as space and delete. The

layout of the spellers used by the four patients of Paper Iis reported in Figure

3.10.
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In order to customize the BCI schema for every individual, the previous
patients’ communication systems were investigated and the BCI was adapted
accordingly: for two of them the groups were indexed as colors, while for
the other two patients the groups were indexed as sequential numbers. In
one case (Figure 3.10A) the letters were originally ordered alphabetically, but
in order to improve the BCI performance, the letters inside each sector have
been ordered based on the letters frequency distribution of german language.
The communication algorithm obviously works indifferently of the conven-
tion that is used, but this simplifies the usability of the speller for the patients

since they have to know by hard to which sector each letter belongs.
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Keeping in mind that the output of the classifier (or the input of the
speller) is always binary, it becomes clear that a patient will have to select a
sector first, and only afterwards he will be asked to select a letter. In particu-
lar the selection of each letter proceeds with the following algorithm (Figure
3.11):

1. The first sector is presented to the patient;

2. The patient will reply “yes” to select it, or “no” to skip it;

(a) If the sector is skipped, the next sector is presented (back to 1.);

3. Once the patient selects a sector the first letter of that sector is pre-
sented;

4. The patient will reply “yes” to select it, or “no” to skip it;
(a) If the letter is skipped, the next letter is presented (back to 3.);
5. Oncealetter is presented, go back to the selection of sector to start the
next letter selection.

By replying just “yes” or “no” to confirm or skip a selection, a patient will be
able to form words and sentences by selecting each single letter.

One drawback of this layout is that with a single wrong “yes” classification
a patient might end in a wrong sector. For this reason, if the patient skips all
the letter of a sector he will be asked if he wants to exit from that sector, and if
the answer is affirmative the program will present the following sector, other-
wise it will restart the presentation of the letters of that same sector. A second
precaution to avoid wrong selection was added: each time a “yes” answer is
decoded, the same sector or letter is presented to confirm the answer. The ra-

tional behind this choice of double confirmation is that it is better to miss one
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selection, rather than selecting a wrong sector or letter. Assuming a classifier
accuracy of 80% using a double confirmation strategy the rate of correct selec-
tions decreases from 80% to 64%, but the rate of wrong selections is reduced
from 20% to 4%.

The typing speed of the speller has been improved by adding a word pre-
diction algorithm that, after each letter selection, would suggest a full word
based on the context and on the incomplete word selected up to that point.
In order to predict a word a conditional frequency distribution (CFD) is
computed based on the n-gram (sequence of n words) analysis of a corpus
of 10000 sentences (Goldhahn et al,, 2012). The CFD is computed for all
the sequences of one, two or three consecutive words (unigrams, bigrams and
trigrams), and whenever a letter is selected the program returns the CFD of
all the words starting with the current non-completed word, giving priority
to one belonging to trigrams, then to bigrams and unigrams. If one word
is highly probable, that word is presented to the patient and, as usual, he can
selectit or skip it. In this implementation, a word is defined to be highly prob-
able if its CFD is higher than 50% the CFDs of all the other possible words.
A more complete explanation of the word prediction algorithm can be found
in Paper L.

This spelling algorithm has been used by LIS patients using EOG signal
(PaperI) and more extensively by the patient that, after the transition to CLIS,
has been implanted with microelectrodes and was able to continue using the

speller through the modulation of his neural activity, becoming the first per-
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Signal Patient # Sessions  # Characters  Speed (char/min)

EOG P11 5/9 11.60+8.79 0.57 029
EOG P13 10/11 13.00* 10.34 0.48 t0.24
EOG Py 4/5 26.27£19.14 0.68 £0.13
EOG P16 3/3 14.00t 4.36  0.64%o0.13

Spikes  Kor (P11) 44/107 4631t 57.30 1.07t0.66

Table 3.3 - Results of the spelling sessions performed by the four patients of Paper | and by the patient
of Paper lll. The first column indicates the signal used for classification; the second the identifier of

the patient as reported in the publications; in the third column is reported the number of intelligible
sessions and the total number of performed sessions; the fourth and fifth columns report the number
of spelled characters in the included sessions and the typing speed calculated in characters per minute,
both values are reported as mean * standard deviation. Modified from Paper .

son in CLIS able to communicate (Paper III). In particular this patient used
the developed speller for 107 days producing intelligible output on 44 of
them. The intelligible sessions were performed over 5338 min, and during
these sessions the patient also gave suggestions to improve his performance
by spelling for example “TURN ON WORD RECOGNITION?, “IS IT
EASY BACK ONCE CONFIRMATION?”, and “TELL ALESSANDRO I
NEED TO SAVE EDIT AND DELETE WHOLE PHRASES AND ALL
OF THAT INTO THE LIST”. Usually, when he was communicating with
non-German speakers the patient spelled in English.

It is important to notice that, due to the binary nature of the algorithm,
the speller algorithm is very slow in comparison to other communication pro-
grams: the average typing speed is lower than 1 character/min (see Table 3.3).

Nevertheless, the developed paradigm is fully auditory and, since it works
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with a binary signal, is easy to learn and to use. These two characteristics
make the system a valid (if not the only) option for patients in LIS and CLIS

to communicate.

3.3.3 20-QUESTIONS BASED COMMUNICATION SYSTEM

As mentioned in the previous paragraph, the main two drawbacks of the
speller are the low typing speed and the wrong selections in case of low classi-
fication accuracy. To overcome these problems, in Paper II T have proposed a
communication system that is not based on the selections of letters or words,
but on the guess of the final sentence based on twenty yes/no questions.

The idea behind this paradigm comes from the popular 20 questions
game, where a subject (or a software) is allowed to ask up to twenty yes/no
questions in order to guess a word. In the usual game, the guesser will ini-
tially ask more general questions (e.g. if the target is a person one typical ini-
tial question is whether it is male or female), and it will proceed with always
more specific questions. What makes the game interesting for communica-
tion purpose is that it works with just a binary input and often is possible to
guess the correct word even in presence of some wrong answers, therefore, if
applied to a BCI system, it might allow to form a word or a sentence in twenty
trials even if some of the trials gets misclassified.

The algorithm of the paradigm has been developed as an artificial neural
network (ANN) that links two databases: in the first one all the possible final

statements are stored, while in the second one all the possible yes/no ques-
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tions are stored. The two databases are linked through a weight matrix that
assigns to each target statement the probability of the answer to each ques-
tion. The ANN presents the questions stored in the database, choosing each
question based on the weight matrix and on the previous answers. After a
question is made, the ANN updates an internal probability matrix using the
weights of the received answer and uses this probability matrix to compute
which target statement is the most probable and which question should be
ask next in order to maximize the probability of one or another statement.
Finally, after twenty questions, the ANN estimation is the target statement
with highest probability, and if the estimation is correct it will update the gen-
eral weight matrix using the new received answers, allowing a learning process
that refines and improves the stored probabilities. The schema of the pro-
posed algorithm is reported in Figure 3.12.

The proposed 20-questions based communication system has been tested
using a web-based implementation and it has been validated with offline sim-
ulations, but it has not been deployed in a real BCI environment, due to the
limited available time during experiments with patients.

In the web-based implementation participants were asked to think a sen-
tence and to answer to the proposed questions with “yes”, “no”, or “unsure”.
After twenty questions the program proposed the most probable sentence
and the participant was asked to mark if it was correct or not and, if it was
not present at all in the databases, to add it into the system. Moreover, the

participants were also allowed to add new questions to the system. This im-
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plementation was available on the internet and it has been used 92 times, out
of which 45 times the target was not present in the system. For the remaining
47 times, the system estimated the correct statement 65.95% of the time (31
correct estimation).

Using the databases updated by the online attempts, in order to emulate
anon-optimal BCI classification, the system has been validated programmat-
ically simulating different classification accuracies: given a target statement,
each answer had a certain probability of being wrong. The results of the simu-
lation, reported in Figure 3.13, show thatin presence of a binary classification
with accuracy of 80%, most of the time the program correctly estimates the
target sentence (as first, second or third estimation).

The results of the simulation are not sufficient to allow a patient in CLIS
to communicate reliably, and for this reason the system has not been tested
in a real environment. Nevertheless, the results are promising and suggest
that this communication system could reliably work by restricting the possi-
ble target statements to more specific topics and/or to single words, and by
fine-tuning the probability matrix. Moreover, the typing speed reached by
such a system is vastly superior to the typing speed of a binary letter-based

speller, since it can form full sentences by using just twenty binary trials.
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Conclusions

In this dissertation I have described different techniques used to build binary
communication systems for patients in LIS and CLIS. The most important
achieved results are published in Papers I and III where the developed soft-
ware has been successfully tested to restore communication in four LIS pa-
tients by decoding ocular movements and in one CLIS patient by classifying

his intracortical activity. In particular, Paper IIT is the first study ever that es-
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tablished communication with a patient completely paralyzed allowing him
to form words and sentences.

The developed software have been structured in a modular way, by sepa-
rating the signal acquisition part from the proper communication interface.
Due to the challenge in acquiring signals from paralyzed patients, my research
group decided to reduce the number of variables by focusing on binary clas-
sification techniques asking the patients to modulate their activity in just
two different ways (or even one single modulation that was classified against
no modulation). On one side this decision simplified the development of
paradigms for calibration and validation, and it allowed us to use basic binary
classification methods, but, on the opposite, it drastically reduced the degrees
of freedom that could be used to communicate. Nevertheless, a speller system
controlled by binary signal has been designed by optimizing the letter order,
making more robust the letter selection, and introducing word suggestion,
but at the same time keeping the interface as simple as possible due to the
difficulties that the condition of these patients introduces in teaching new
paradigms. The modularity of the developed system allowed to use the same
speller algorithm with EEG and fNIRS signals (Paper XI), EOG signal (Pa-
per I), and intracortical signal (Paper III). Moreover, these different signals,
including also EEG response induced by classical conditioning (Paper IV),
have also been used for a more basic binary yes/no communication.

Therefore, the novelty of the findings should not be searched in very ad-

vanced and theoretically perfect techniques, but in the translational impact
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of efficient interfaces simple enough to be learned by patients that have no
means to give any feedback, and flexible enough to be used with several neu-
rophysiological signals of different nature that can be acquired from patients
in different conditions.

The positive results of this thesis show that is possible to build a commu-
nication system for ALS patients in advanced stage of the disease, neverthe-
less they also suggest limitations in using just a binary input to command
such a system. The most obvious perspective is introducing paradigms that
allow a multiclass classification, in order to allow a more natural communica-
tion at a higher speed. Some studies (Herft' & Schultz, 2016; Rabbani et al.,
2019) have already tried to directly decode speech from the brain signals, but
these techniques are in very early research stage. Any improvement in com-
munication techniques will become a breakthrough when it will be finally
deployed for home-use for the large public outside the scientific community,
since, at the moment, the vast majority of LIS and CLIS patients are left un-
able to communicate once commercial AAC devices stop working. As stated
by philosopher Ludwig Hohl: “The Human being lives according to its ca-

pacity to communicate, losing communication means losing life”.
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Auditory Electrooculogram-
based Communication System for
ALS Patients in Transition from
Locked-in to Complete Locked-in
State

Alessandro Tonin'?, Andres Jaramillo-Gonzalez!?, Aygul Rana(®?, Majid Khalili-Ardali?,
Niels Birbaumer* & Ujwal Chaudhary (»*?>

Patients in the transition from locked-in (i.e., a state of almost complete paralysis with voluntary eye
movement control, eye blinks or twitches of face muscles, and preserved consciousness) to complete
locked-in state (i.e., total paralysis including paralysis of eye-muscles and loss of gaze-fixation,
combined with preserved consciousness) are left without any means of communication. An auditory
communication system based on electrooculogram (EOG) was developed to enable such patients

to communicate. Four amyotrophic lateral sclerosis patients in transition from locked-in state to
completely locked-in state, with ALSFRS-R score of 0, unable to use eye trackers for communication,
learned to use an auditory EOG-based communication system. The patients, with eye-movement
amplitude between the range of 200V and 40V, were able to form complete sentences and
communicate independently and freely, selecting letters from an auditory speller system. A follow-up
of one year with one patient shows the feasibility of the proposed system in long-term use and the
correlation between speller performance and eye-movement decay. The results of the auditory speller
system have the potential to provide a means of communication to patient populations without gaze
fixation ability and with low eye-movement amplitude range.

Swiss philosopher Ludwig Hohl stated that “The Human being lives according to its capacity to communicate, los-
ing communication means losing life”!. Our ability to communicate ideas, thoughts, desires, and emotions shapes
and ensures our existence in a social environment. There are several neuronal disorders, such as amyotrophic lat-
eral sclerosis (ALS), or brain stem stroke, among others, which paralyzes the affected individuals severely impair-
ing their communication capacity?~*. The affected paralyzed individuals with intact consciousness, voluntary eye
movement control, eye blinks, or twitches of other muscles are said to be in locked-in state (LIS)*-!".

Early and modern descriptions of ALS disease emphasize that oculomotor functions are either spared or
resistant to the progression of the disease’, and consequently, eye-tracking devices can be used to enable patients
in the advanced state of ALS to communicate'>'*. Besides, longitudinal studies evaluating eye-tracking as a tool
for cognitive assessment report that the progression of the disease does not affect eye-tracking performance’.
Nevertheless, a subset of the literature reports a wide range of oculomotor dysfunctions in these patients'*!”
that might prevent the use of eye-tracking devices'®. The most used metric to evaluate the patient’s degree of
functional impairment is the revised ALS functional rating scale (ALSFRS-R)'?, which is not a precise measure of
the ability to communicate. A patient with an ALSFRS-R score of zero can still have eye-movement capability or
control over some other muscles of the body, which can be used for communication®.

CLIS is an extreme type of LIS, which leads to complete body paralysis, including paralysis of eye-muscles
combined with preserved consciousness®*; therefore, even if the individuals are incapable of voluntary con-
trol of any muscular channels of the body, they might remain cognitively intact’. Several systemic or traumatic
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neurological diseases may result in a LIS with the potential to progress towards CLIS, such as ALS, Guillain-Barré,
pontine stroke, end-stage Parkinson disease, multiple sclerosis, traumatic brain injury and others with different
etiological and neuropathological features*”!°. In the case of ALS patients in LIS who survive longer attached to
life-support systems, the disease progression might ultimately destroy the oculomotor control in many patients,
leading to the loss of gaze-fixation'”. Thus, patients become unable to use eye-tracker-based communication tech-
nologies and are therefore left without any means of communication. This raises the question, what happens with
those ALS patients in transition from LIS to CLIS with highly compromised oculomotor skills unable to retain
gaze-fixation, and therefore unable to use eye-tracking systems to communicate?

There is a considerable amount of research related to patients in the early stages of ALS who can success-
fully achieve communication by using gaze-fixation-based assistive and augmentative communication (AAC)
technologies or brain-computer interfaces (BCIs). These patients have intact cognitive skills, residual voluntary
movements, intact or partial vision with complete gaze-fixation capabilities. Several examples of communica-
tion technologies for ALS patients in LIS can be found in the literature. Concerning BCI-based communica-
tion, different types of systems have been developed to provide a means of communication to LIS patients®!®!!,
among the most recognized are the ones based in features of the EEG, as the slow cortical potential®!, or evoked
potentials, mainly the P300%2-2 or SSVEP?; or the BCIs based in metabolic features, as NIRS*-*!. Concerning
the use of eye-tracking systems, as long as the patients have intact vision and control gaze fixation, commercial
systems are an accessible and reliable option to allow them limited communication®. Other types of eye-tracking
technologies as the scleral search soils, infrared reflection oculography, or video-oculography (or video-based
eye-tracking)®, have not yet been tested on LIS patients to our knowledge. Except for two studies?®*, all the
developed BCIs for ALS patients describe patients with remnant muscular activity, remnant eye movement con-
trol, or even without assisted ventilation, and in general with ALSFSR-R score above 15.

The progress of ALS often, if not always, diminishes the general capabilities of the patients making BCI-based
communication impossible’?%. On the other hand, even though eye movement might be the last remnant volun-
tary movement before CLIS*, during this transitional state from LIS to CLIS, patients become unable to maintain
gaze-fixation and, unable to use eye-tracking AAC technologies.

Some electrooculogram (EOG) -based systems have been presented to overcome the limitations of other AAC
technologies. However, most of the studies were performed on healthy participants or tested in LIS patients in the
early stages of ALS, reporting results of single sessions or sessions performed closely in time, allowing the patients
in advanced LIS to reply yes/no questions, but without the feasibility of freely communicate spelling sentences*>*.
To our knowledge, no studies report on the long-term use of EOG or eye-tracking for patients on the transition
from LIS to CLIS, and how this progression affects communication capabilities using these AAC technologies.
Either in clinical descriptions or technical applications, very little is known about how this LIS to CLIS progres-
sion affects the oculomotor capabilities precluding the patient's communication.

Considering ALS patients in an advanced state, a first meta-analysis has shown that there is a correlation
between the progression of physical impairment and BCI performance’, and a recent one has suggested that the
performance of CLIS patients using BCI cannot be differentiated from chance®. The only available long-term
studies are either single cases for patients able to perform with a P300-based BCI**** or a thoroughly home-based
BClI longitudinal study* that shows favorable results. However, these studies do not provide details on how the
progression affected the performance, particularly for the patients with the lowest ALSFSR-R score.

It has been shown in a single case report*, that during the transition from LIS to CLIS, despite compro-
mised vision due to the dryness and necrosis of the cornea and inability to fixate, some remaining controllable
muscles of the eyes continue to function. Hence, there is an opportunity to develop a technology to provide a
means of communication in this critical transition. Such a technology would extend these patients’ communica-
tion capacities until the point the disease progression destroys any volitional motor control. Pursuing that goal,
an EOG-based auditory communication system was developed, which enabled patients to communicate inde-
pendent of their gaze fixation ability and independent of intact vision. This study was performed with four ALS
patients in transition from the locked-in state to the completely locked-in state, with ALSFRS-R score of 0, and
unable to use eye-trackers effectively for communication, i.e., without any other means of communication. The
patients, with eye-movement amplitude between the range of 200 1V and 40 .V, were able to form complete
sentences and communicate independently and freely, selecting letters from an auditory speller system. Moreover,
the study shows the possibility of using the proposed system for a long-term period, and, for one patient, it shows
the decay in the oculomotor control, as reflected in EOG signals, until the complete loss of eye control. Such a
communication device will have a significant positive effect on the quality of life of completely paralyzed patients
and improve mandatory 24-hours-care.

Results

Four advanced ALS patients (P11, P13, P15, and P16) in the transition from LIS to CLIS, all native German
speakers (Table 1), used the developed auditory communication system to select letters to form words and hence
sentences. All the patients attended to four different types of auditory sessions: training, feedback, copy spelling,
and free spelling session. Each training and feedback sessions consisted of 20 questions with known answers (10
questions with “yes” answer and 10 questions with “no” answer, presented in random order), for example, “Berlin
is the capital of Germany” vs. “Paris is the capital of Germany”. All the questions were presented auditorily. While
in the copy and free spelling sessions, the patients were presented the group of characters and each character
auditorily (see “Methods" section for the details). Patients were instructed to move the eyes (“eye-movement”) to
say “yes” and not to move the eyes (“no eye-movement”) to say “no”. Features of the EOG signal corresponding
to “eye-movement” and “no eye-movement” or “yes” and “no” were extracted to train a binary support vector
machine (SVM) to identify “yes” and “no” response. This “yes” and “no” response was then used by the patient
to auditorily select letters to form words and hence sentences during the feedback and spelling sessions. Due
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Gender/
Patient | Age ALS type Medical history Visits

Aug 2015: Diagnosis
Pil M/33 Non-bulbar 10 visits over 13 months from March 2018 onwards
Aug 2017: Last use of AAC

Jan 2011: Diagnosis
P13 M/58 Bulbar 4 visits over 12 months from Jun 2018 onwards
Jan 2018: Last use of AAC

Lower motor neuron Feb 2017: Diagnosis
predominant (ICD-10: G12.2) | Nov 2018: Last use of AAC

P15 Fl63 2 visits over 5 months from Feb 2019 onwards

Dec 2012: Diagnosis
P16 M/56 Lower motor neuron 2 visits over 3 months from March 2019 onwards
Jun 2018: Last use of AAC

Table 1. List of participants. The table lists the patient’s number, the gender and the age at the time of the first
visit, the type of diagnosed ALS, year of diagnosis, and the last use of assistive and augmentative communication
(AAC) technologies, and the number of performed visits and their time range.

to the degradation of vision in ALS patients'*!®'7, the system was designed to work only in the auditory mode

without any video support. We frequently traveled to the patient’s home to perform the communication sessions.
Each visit (V) lasted for a few days (D), during which the patient performed different session (S) as listed in
Supplementary Tables S1-S4.

Eye movement. According to the literature, in healthy subjects, the amplitude of the EOG signal varies from
50 to 3500 uV; and its behavior is practically linear for gaze angles of +-30 degrees and changes approximately 20
uV for each degree of eye movement''*2. Nevertheless, like any other biopotential, EOG is rarely deterministic; its
behavior might vary due to physiological and instrumental factors®. For LIS patients in the transition to CLIS, the
range and angle of movement are affected by the progress of the ALS disease, affecting the range of voltage ampli-
tude as well. Figure 1 depicts the horizontal eye movement of P11, P13, P15, and P16 during one of the feedback
sessions of their first visit (V01). In each plot, for a particular feedback session, all the questions’ responses clas-
sified as “yes” or “no” by the SVM models were grouped and averaged. Figure 1 elucidates the differences in the
dynamics of the signals corresponding to the “yes” and “no” responses, and it can be observed that each patient
used different dynamics to control the auditory communication system.

Figure 2 depicts a decrease in horizontal eye-movement amplitude of P11 over 13 months. During the 12
months period, from March 2018 (VO01) to February 2019 (V09), P11 performed feedback sessions with a predic-
tion accuracy above chance level, in which small eye-movements recorded with EOG allow classification of “yes”
and “no” signals. Employing the same eye-movement dynamics with an approximate amplitude range smaller
than 440 uV over 4 months, from V06 (November 2018) to V09 (February 2019), P11 was able to select letters,
words and form sentences using the speller. The eye-movement amplitude range decreased to £30 uV during
V10, i.e., 12 months after the first BCI sessions, because of the progressive paralysis typical of ALS. During V10,
model-building for prediction during feedback and spelling sessions was unsuccessful. Thus, V10 was the last visit
for a communication attempt by P11 using this paradigm. During this visit, even if this training session allowed to
build a model of 80% of cross-validation accuracy (Supplementary Table S1), it proved unsuccessful for predict-
ing any classes from the data (50% accuracy).

In the case of P13, the progression of the disorder has been slower, which can be ascertained by the relatively
high and constant amplitude of EOG, in an approximate range of 300 uV, but still, he was unable to commu-
nicate with the commercial eye-tracker technology. Employing the eye-movement strategy, as shown in Fig. 1B,
P13 was able to maintain a constant dynamic to control the auditory communication system for feedback and
spelling sessions (see Supplementary Table S2). Similar observations can be drawn for P15 and P16 EOG plots in
Fig. 1C,D. During two visits each, they achieved successful performance for feedback and spelling sessions (see
Supplementary Tables $3 and $4), with stable eye-movement dynamics.

Spellerresults. The performance of the SVM during all the feedback sessions by each patient is reported in
Fig. 3 as a Receiver-Operating Characteristic (ROC) space. The ROC space of P11, who was followed for one year
from March 2018 to March 2019, shows a trend in the performance of the feedback sessions. As shown in Fig. 3A,
during the initial visits P11 exhibited a successful feedback performance (markers located in the upper-left corner
in the ROC space), while during the later visits, particularly V08 and V09, P11 exhibited a decrease in feedback
performance and ultimately by V10, it was impossible to perform a successful feedback session. This negative
trend is due to the progressive neurodegeneration associated with ALS®, which leads to the complete paralysis
of all muscles, including eyes muscles. For each of the three patients P13, P15, and P16, the feedback sessions’
performances are located mostly in the upper-left region of the ROC space, which means successful feedback per-
formance. Nevertheless, for each of these three patients, a few feedback sessions also fall in the lower-right region
of the ROC space. This might be due to a learning process of the patients in which they improved or adjusted their
eye-movement strategy or due to the suboptimal performance of the SVM classifier during the first few feedback
sessions.

The patients were asked to attempt a spelling session when a model was validated with a successful feedback
session, i.e., results above random™. After the feedback session, patients performed two different types of spelling
sessions: copy spelling and free spelling, i.e., sessions in which the patient was asked to spell a predetermined
phrase, and sessions in which the patient spelled the sentence she/he desired.
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Figure 1. Horizontal eye movement during feedback sessions for all patients. Differential channel EOGL-
EOGR for a particular feedback session performed by (A) P11, (B) P13, (C) P15, and (D) P16 during the first
visit. In each subfigure, the x-axis is the response time in seconds, and the y-axis is the amplitude of the eye-
movement in microvolts (V). The thin and thick red trace corresponds to a single “yes” response and average
of all the “yes” responses, respectively. The black thin and thick trace corresponds to a single “no” response and
average of all the “no” response. The box at the bottom right of each subfigure lists the number of trials classified
as “yes” and “no” by the SVM classifier for that particular session.
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Figure 2. Progressive decline of the eye-movement amplitude along the visits for P11. Depicts the trend of
decline in the range of the amplitude of the EOG signal for yes/no questions answered by the patient during

the period March 2018 to March 2019. The figure shows the mean and the standard error of the mean of the
extracted range of the amplitude of the horizontal EOG signal across each day for yes and no trials. The x-axis
represents the month of the sessions, and the y-axis represents the amplitude in microvolts. The asterisk (*

- p-value less than 0.05; ** - p-value less than 0.01; *** - p-value less than 0.001) in the figure represents the
results of the significance test performed between yes and no for horizontal EOG employing the Mann-Whitney
U-test.
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Figure 3. ROC space of feedback sessions for the four patients. Receiver operating characteristic (ROC) space
for the performance of the binary support vector machine (SVM) classifier during the total number of feedback
sessions performed by (A) P11, (B) P13, (C) P15, and (D) P16. In the figures, the x-axis is the false positive rate
(FPR), and the y-axis is the true positive rate (TPR). The diagonal line dividing the ROC space represents a 50%
level. Points above the diagonal represent good classification results (accuracy better than 50%), points below
the line represent poor classification results (accuracy worse than 50%). In each subfigure, FPR vs. TPR for the
feedback sessions are indicated by different arbitrary symbols according to the visit (V) they belong and the
date, as defined in the legend at the bottom right side of each subfigure. The rectangular box at the bottom right
of each subfigure lists the visit'’s month and the number of feedback sessions performed during each visit. Some
feedback sessions have the same coordinate values in the ROC space, and their symbols overlapped; in these
cases, the number of overlapped symbols is specified in parenthesis close to the symbols.

In the developed auditory communication system, the letters have been grouped in different sectors in a layout
that was personalized for each patient to match the paper-based layout developed independently by each family
(Supplementary Fig. S1). To select one letter, every sector was sequentially presented to the patient and the patient
auditorily selected or skipped a sector, once a sector was selected the letters inside the sector were presented audi-
torily. This select/skip paradigm (i.e., yes/no answer to auditory stimuli) allows the system to work using just a
binary yes/no response. The patient could form words by selecting every single letter, but the speed of the system
was improved by a word predictor, which, based on the previous selections, suggested the completion of a word
whenever it was probable. The speller algorithm is described in detail in the section Speller algorithm.

The results of the copy spelling sessions performed by all the patients are reported in Supplementary Table S5.
As shown in Table 2, P11 performed 14 copy-spelling sessions out of which 7 times he correctly copy-spelled the
target phrase. Moreover, in one of the other cases, he just miss-selected one letter, and in another one, he selected
only one of the two requested words. P13 over 8 sessions copy spelled correctly the target word 6 times. P15
selected correctly the target phrase 3 times out of 5 sessions. Finally, P16 was able to correctly copy spell a target
phrase 3 out of 5 sessions. The typing speed achieved by each patient is shown in Table 2.

The system can present one question every 9seconds, which implies an information transfer rate of 6.7 bits/
min. The optimal speed of the speller, along with the user accuracy, depends on the two factors mentioned: first,
the speller design for the letter selection (Supplementary Fig. S1); second, the collection of stored sentences (i.e.,
corpus) needed for the word prediction. In order to describe and evaluate the performance, the sentence “Ich
bin” (German for “I am”) followed by the name of the patient was considered as a standard example for P11 and
P13, while the name of the spouse was considered for P15 and P16. These standard example sentences are com-
posed of 13, 11, 5, and 6 characters for P11, P13, P15, and P16, respectively. Therefore, considering no errors in
the answers’ classification, the average typing speed for the sentence mentioned above is 1.14 char/min for P11,
1.19 char/min for P13, 1.08 char/min for P15, and 0.87 char/min for P16. These theoretical results show that, due
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Numberof | Characters Speed (char/
Type |Patient |sessions | selected min)
P11 7/14 528+3,59 0,540,30
P13 6/8 4,00+ 1,67 0,50+0,35
Copy
P15 3/5 5,00+0,00 0,4920,30
P16 3/5 500£1,73 0,69+0,14
P11 5/9 1L60£879 | 0,57+0,29
P13 10/11 13,00+10,34 0,48+0,24
Free
P15 /5 26671914 [ 0,68+0,13
P16 3/3 14,00 + 4,36 0,64+0,13

Table 2. Results of the spelling sessions performed by the four patients. The columns indicate the type

of sessions, the patient, the number of considered sessions over the total number of sessions, the number

of characters selected (mean + standard deviation), and the typing speed in characters per minute

(mean =+ standard deviation). For the copy and free spelling sessions, only the sessions in which the target was
spelled correctly, and the spelled sentence was meaningful, respectively, have been considered. Sessions have
been excluded a priori if an error in the code occurred, if the signal was noisy, if they terminated before 15 trials,
if the patient did not select any letter, or if all the answers have been classified only as “yes” or only as “no”: in
total 6 sessions from P11, 2 sessions from P13, 10 sessions from P15, and 3 sessions from P16 were excluded.

to the word prediction, the performance of the speller improves when the patient auditorily spells a complete
sentence rather than a single word. The difference between the theoretical and the real typing speed is due to the
nature of the speller that requires many inputs to correct a mistake, e.g., if a sector is wrongly skipped, to select
that sector again the patient must first skip all the other sectors.

After successful copy spelling sessions, the patients were free to form words and sentences of their choice. The
results of these free spelling sessions performed by all the patients are reported in Supplementary Table S6. The
typing speed in these sessions is similar to the speed achieved by each patient during the copy spelling; one excep-
tion is P13 who due to the low number of errors and to better words prediction reached the speed of 1.02 char/
min during one of the sessions shown in Supplementary Table S6. In most of the sessions, the patients were able
to form complete sentences communicating their feelings and their needs. Nonetheless, some of the performed
sessions were not successful. Videos of selected spelling sessions are available in Supplementary Videos S1-S3.

Discussion

The auditory communication system enabled four ALS patients, with ALSFRS-R score of 0, on the verge to CLIS
to select letters and words to form sentences. Three out of the four patients (P13, P15, and P16) showed, during
all the sessions, a preserved eye movement. One patient (P11), followed over one year from March 2018 to March
2019, demonstrated an effective eye-movement control until the penultimate visit (V09 in February 2019), despite
August 2017 being the last successful communication with a commercial AAC device. However, the progression
of the disease varies from patient to patient.

Nonetheless, P11’s successful results of V09, even if not perfect, are very encouraging since they show the
possibility of communicating even with an eye-movement amplitude range of +-30 pV. Even if the developed
auditory communication system was used only from V06, the evolution of eye movements of P11 (Fig. 2) indi-
cates that the eye signal was clear enough to be used for communication purposes since the first visit in March
2018. The results of the feedback sessions confirm this during the initial five visits (Fig. 3A). Speed is the main
limitation of the developed system since the spelling of one single word could take up to 10 minutes. In the liter-
ature, other spelling systems have been successfully tested with ALS patients, and they achieved an information
transfer rate of 16.2 bits/min** and 19.95 bits/min**. However, since all of them are based on visual paradigms,
except a single study where the patients communicated just “yes” or “no” using an auditory system*®, comparison
with the here proposed system is difficult. The slow speed of our system is an intrinsic characteristic of its auditory
nature, even though the spelling time can be reduced by optimizing the speller schema and improving the word
prediction with the creation of a corpus of words personalized for each patient. Even though the user experience
was not assessed with a questionnaire, it is vital to notice that the patients showed no frustration for this slow
speed, which they indicated by moving their eyes when questioned, “Would you like to continue?”. The patient
formed sentences like, “I am Happy”, “I am happy to see my grandchildren growing up”, and “Ilook forward to a
vacation” indicating their willingness to communicate. From these, we infer speculatively that the slow speed did
not frustrate the patients, probably because even this slow communication is preferred and valued in comparison
to the isolation experienced without a functioning eye-tracker. It is essential to employ such a paradigm and
follow these patients regularly to elucidate their eye-movement dynamics further and provide them a means of
communication.

In conclusion, the long-term viability of an EOG based auditory speller system in ALS patients on the verge
of CLIS (with ALSFSR-R score of 0) unable to use eye-tracking based AAC technologies were explored. For
one of the patients, it was possible to perform a long-term recording, capturing the changes in the EOG signal,
evidencing a correlation between speller performance and progressive degeneration of the oculomotor control.
After a follow-up of one year, the patient was unable to take advantage of the spelling system proposed because
of the complete loss of oculomotor control. Although the reported system cannot be considered as the ultimate
communication solution for these patients according to the best of the authors’ knowledge, this is the only system
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that, during the period of transition from LIS to CLIS, might offer a means of communication that otherwise is
not possible. Nevertheless, whether this can be generalized to other patient populations or not is an empirical
question.

Methods

The Internal Review Board of the Medical Faculty of the University of Tubingen approved the experiment
reported in this study. The study was performed per the guideline established by the Medical Faculty of the
University of Tubingen. The patient or the patients’ legal representative gave informed consent with permission
to publish the results and to publish videos and pictures of patients. The clinical trial registration number is
ClinicalTrials.gov Identifier: NCT02980380.

Instrumentation. During all the sessions, EOG channels were recorded with a 16 channel EEG amplifier
(V-Amp DC, Brain Products, Germany) with Ag/AgCl active electrodes. A total of four EOG electrodes were
recorded (positions SO1 and 101 for vertical eye movement, and LO1 and LO2 for horizontal eye movement).
During some sessions, a minimum of seven EEG channels were recorded for analysis, not directly related to the
purpose of this paper. All the channels were referenced to an electrode on the right mastoid and grounded to the
electrode placed at the FPz location on the scalp. For the montage, electrode impedances were kept below 10 kQ.
The sampling frequency was 500 Hz.

Patients. Four ALS patients with ALSFRS-R score of 0 participated in this study. Table 1 summarizes the
clinical history of each patient and lists the number of visits (V). After the last successful use of AAC, all the four
patients were still communicating with the relatives saying “yes” and “no” by moving and not moving the eyes.
Using this technique, patients P11, P13, and P15 were forming words by selecting letters from a paper-based lay-
out (Supplementary Fig. S1A-C) developed, independently, by each family. These same layouts were integrated
into our developed system to provide each patient with a personalized schema for selecting letters. For patient
P16, based on the feedback and suggestions of the family members, we proposed and tested the spelling schema
shown in Supplementary Fig. S1D.

Paradigm. The developed paradigm is based on a binary system, in which a patient is asked to reply to an
auditorily presented question by moving the eyes to say “yes” and by not moving the eyes to say “no”. The para-
digm includes four different types of sessions: training, feedback, copy spelling, and free spelling session. Each
training and feedback session consists of 10 questions with a “yes” answer and 10 questions with a “no” answer
well known by the patient. Each question represents a trial. Copy and free spelling sessions consist of yes/no
questions (i.e., trial) in which a patient is asked whether he wants to select a particular letter or group of letters
(see the below paragraph Speller algorithm). Each of these trials consists of the baseline (i.e., no sound presented),
the stimulus (i.e., auditory presentation of the question and the speller options), the response time (i.e., time for
the patient to move or not move the eyes), and feedback (i.e., auditory feedback to the patient to indicate the
end of the response time). The training sessions differ from the feedback sessions in terms of the feedback that
is provided to the patient. During the training sessions, the feedback is a neutral stimulus (“Danke” - “Thank
you” in English) to indicate the end of the response time, while during the feedback sessions, the feedback is the
answer that the program classifies (see Online analysis for details). Copy and free spelling sessions differ in terms
of the instruction given to the patient. During the copy spelling sessions, the patient was asked to spell a specific
sentence, while during the free spelling sessions, the patient was asked to spell whatever he desired.

The length of the response time-window was determined according to the progress and performance of the
patient as described in the Supplementary Tables S1-S4 and varies between 3 and 10 seconds. The duration of
each trial varies accordingly between 9 and 20 seconds. Therefore, each training and feedback session lasted for
3-7 minutes. The spelling sessions were usually longer (up to 57 minutes), but no fixed time can be indicated since
the number of trials is different from session to session; on average, the copy and free spelling sessions lasted
respectively for 10 and 27 minutes.

Speller algorithm.  After the patients were unable to communicate with the commercial eye-tracker based
AACs devices, the primary caretakers developed a speller design/layout. The auditory speller layouts used here
were developed by optimizing and automatizing the schematics already used by the primary caretakers. The spell-
ers used by the patients are shown in Supplementary Fig. S1. The spellers consist of letters grouped in different
sectors, plus one sector with some special characters (“space’, “backspace” for P11 and P15, and for P13 and P16
along with these the additional option, “delete the word”). Despite the different layouts, the same algorithm, as
described below, drives all the spellers. The spellers enable the patients to auditorily select letters and compose
words. To increase the speed of the sentence completion, the speller predicts and proposes words based on the
letters previously chosen. The auditory speller developed to enable patients without any means of communication
to spell letters, words freely, and form sentences auditorily have two main components called “Letter selection”
and “Word prediction”, which are described below.

Letter selection.  The patient, in order to select a letter, first must select the corresponding sector, and only once
he is inside the sector, he can select the letter. The selection is made, answering “yes” or “no” to the auditory pres-
entation of a sector or a letter. As schematized in the diagram in Supplementary Fig. S2, to avoid false positives,
the speller uses a single-no/double-yes strategy. If the recognized answer is “no” the sector is not selected, and the
following sector will be asked, if the answer is “yes” the same sector is asked a second time as a confirmation: the
sector is selected if the patient replies “yes” also the second time. If the last sector is not selected, the program asks
the patient whether he wants to quit the program. If he replies “yes”, and confirms the answer, the program is quit.
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Otherwise, the algorithm restarts from the first sector. Once a sector is selected, the paradigm for selecting
a letter (or a special character) uses the same single-no/double-yes strategy as described above. If none of the
letters in a sector is selected, the patient is asked to exit the sector. If he replies a confirmed “yes” the speller goes
back asking the sectors starting from the one after the current, otherwise, if he replies “no’, the algorithm asks the
letters of the current sector again starting from the first one. Whenever a letter or a special character is selected,
the speller updates the current string and gives auditory feedback reading the words already completed (i.e.,
followed by a space) and spelling the last one if it is not complete. After every selected letter, the speller searches
for probable words based on the current string (the details are explained in the paragraph below). If a word is
probable, the program presents that word auditorily. Otherwise, it starts the letter selection algorithm from the
first sector again.

Word prediction.  To speed up the formulation of sentences, the speller is provided with a word predictor that
compares the current string with a language corpus to find if there is any word that has a high probability of being
the desired one. To have a complete and reliable vocabulary, the German general corpus of 10000 sentences com-
piled by the Leipzig University"” was used. Since the developed speller contains only English letters, firstly the cor-
pus is normalized converting the special German graphemes (4, , ii, ) with their usual substitutions (ae, oe, ue,
ss). Thus, a conditional frequency distribution (CFD) is created based on the n-gram analysis of the normalized
corpus; for word prediction, we considered the frequencies of the single words (i.e., unigrams), of two consecutive
words (i.e., bigrams), and three consecutive words (i.e., trigrams). Whenever a letter is added to the current string,
the program returns the CFD of all the words starting with the current non-completed word (if the last word is
complete, it considers all the possible words). For these words first, the frequency value is considered concerning
the two previous words, i.e., trigram frequency. Then, if for the current string, there is any stored trigram in the
corpus, the program considers only the last complete word and checks the bigram frequency. Finally, if it is not
possible to find any bigram, it considers the overall frequency value of the single word, i.e., unigram frequency.
Once all the frequency values of the words are stored, considered as trigrams, bigrams, or unigrams, the program
establishes if any of these words are highly probable comparing their values to a predefined threshold. To predict
words, we considered a word as probable if its frequency value is more significant than half of the sum of all the
frequency values of the possible words. If a word is detected as probable, the speller, after a letter is selected,
instead of restarting the algorithm from the first sector, proposes that word to the patient, and if a confirmed “yes”
is answered it adds the word followed by a space to the current string.

Online analysis. The EOG data were acquired online in real-time throughout all the sessions. During all
the trials belonging to a session (except for the training sessions), the signal of the response time was processed
in real-time to extract features to be fed to a classification algorithm for classifying the “yes” and “no” answers.
Features computed from the trials of the training sessions were used to train an SVM classifier that was validated
through 5-fold cross-validation. The obtained SVM classifier was used to classify feedback and speller sessions
only if its accuracy was higher than the upper threshold of chance-level*.

To extract the features from the signal during the response time, the time-series were first preprocessed with a
digital finite impulse response (FIR) filter in the passband of 0.1 to 35 Hz and with a notch filter at 50 Hz. The first
50 data points were removed to eliminate filtering-related transitory border effects at the beginning of the signal.
Then all the channels were standardized to have a mean of zero and a standard deviation of one. Subsequently,
features were extracted from all the data series from the “yes” and “no” answer for all the channels.

Different features were extracted for the different patients: for P11 and P13 the maximum and minimum
amplitude and their respective value of time occurrence feature were used; while for P15 and P16 the range of
the amplitude (i.e., the difference between the values of maximum and minimum amplitude) feature was used.

The code was developed and run in Matlab_R2017a. For the SVM classification, the library LibSVM* was
used. The detailed list of sessions used for building the model and, therefore, perform feedback and spelling ses-
sions are described in the Supplementary Tables S1-S4.

Receiver-operating characteristic space. For binary classifiers in which the result is only positive or
negative, there are four possible outcomes. When the outcome of the prediction of the answer is yes (positive),
and the actual value is positive, it is called True Positive (TP); however, if the actual answer to a positive question
response is negative, then it is a False Negative (FN). Complementarily, when the predicted answer is negative,
and the actual answer is also negative, this is a True Negative (TN), and if the prediction outcome is negative and
the actual answer is positive, it is a False Negative (FN). With these values, it is possible to formulate a confu-
sion or contingency matrix, which is useful to describe the performance of the classifier employing its tradeoffs
between sensitivity and specificity. The contingency matrix can be used to derive several evaluation metrics, but
it is particularly useful for describing and visualizing the performance of classifiers via the Receiver-Operating
Characteristic (ROC) space®. A ROC space depicts the relationship between the True Positive Rate (TPR) and
the False Positive Rate (FPR). TPR and FPR were calculated for each feedback session, and they were then used
to draw ROC space, as shown in Fig. 3.

Data availability
The data and the scripts are available without any restrictions. The correspondence between sessions and the
corresponding raw files are listed in Supplementary Table S7. Data link: https://doi.org/10.5281/zenodo.3605395.
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Abstract: Brain computer interfaces (BCls) enables people with motor impairments to communicate
using their brain signals by selecting letters and words from a screen. However, these spellers
do not work for people in a complete locked-in state (CLIS). For these patients, a near infrared
spectroscopy-based BCI has been developed, allowing them to reply to “yes”/”no” questions with
a classification accuracy of 70%. Because of the non-optimal accuracy, a usual character-based speller
for selecting letters or words cannot be used. In this paper, a novel spelling interface based on the
popular 20-questions-game has been presented, which will allow patients to communicate using
only “yes”/”no” answers, even in the presence of poor classification accuracy. The communication
system is based on an artificial neural network (ANN) that estimates a statement thought by the
patient asking less than 20 questions. The ANN has been tested in a web-based version with healthy
participants and in offline simulations. Both results indicate that the proposed system can estimate
a patient’s imagined sentence with an accuracy that varies from 40%, in the case of a “yes”/"no”
classification accuracy of 70%, and up to 100% in the best case. These results show that the proposed
spelling interface could allow patients in CLIS to express their own thoughts, instead of only answer
to “yes”/”no” questions.

Keywords: brain computer interface; complete locked-in state; communication; Artificial Neural Network;
20-questions-game

1. Introduction

In the past decades, many alternative communication systems have been developed for people
with speech, language, or motor impairments. Brain computer interfaces (BCI) were developed
to provide a means of communication for people with severe motor disabilities (for review see
Chaudhary et al., 2016) [1-3]. The most commonly used non-invasive BCI spelling application is based
on the electroencephalography (EEG) based P300 event-related brain potential, where a patient can
select letters from a matrix in which each character is transiently illuminated [4]. Another BCI system
commonly used to select letters from a screen is based on steady state visually evoked potential
(SSEVP) [5,6]. Other BCI communication systems are based on slow cortical potential [7], and on the
sensorimotor rhythm of the EEG [8,9] to control cursors or keyboards on a screen. These systems,
even using different signals and different interfaces, are all based on the same general paradigm,
namely, that patients communicate by selecting letters or words from a screen. Different features and
classification techniques are used to decode the intention of patients [10-12]. Independently from
the signal type, all of these BCI systems are based on the control of a neuroelectric brain response,
and the learning process is based on feedback and reward. Despite the good results achievable using
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these systems with patients suffering from disorders leading to loss of communication, none of these
techniques were able to provide a means of communication to amyotrophic lateral sclerosis (ALS)
patients in a completely locked-in state (CLIS). An explanation of the non-applicability of the standard
BCI in complete paralysis with otherwise intact cognitive processing, Kiibler and Birbaumer suggested
the theoretical psychophysiological notion of “extinction of goal directed cognition and thought” in
CLIS [13]. Following this idea, a BCI based on functional near-infrared spectroscopy (fNIRS) was
developed for ‘reflexive’ communication in CLIS. Unlike the other communication systems, it allows
the patient to answer short questions affirmatively (“yes”) and negatively (“no”), using the blood
oxygenation change of their fronto-central brain regions. The best accuracy reported for correctly
classified “yes”/”no” answers is 70% in CLIS [14,15]. The low classification accuracy and the only
binary “yes”/”no” answers do not allow the patients to express their own thoughts using a classic
character-selection-based speller, but only to answer prerecorded questions.

The limitations of the fNIRS-BCI, especially the restriction to a binary “yes”/”no” signal and
a substantial error rate, are common not only to all non-invasive BCI systems, but also to all the
telecommunication systems. Using telecommunication words, the BCI problem involves the correct
detection of a communication between two agents through a noisy channel. The communication, both in
the general case of telecommunication or in the particular case of the “yes”/”"no”-BCl, is a binary message
sent from the sender (or the brain) to the receiver (the computer), whose information may be distorted in
the transmission due to the noise in the channel (wrong classification), and the task of the receiver is to
recover the message reconstructing the corrupted signal [16].

The BClI-spellers usually solve the problem of the wrong signal classification with a redundant
number of inputs (e.g., flashing each letter multiple times in order to be sure that the selection was
not due to a false positive). With the fNIRS-BCI, this technique is because of the characteristic of the
fNIRS signal; the fNIRS-BCI system is slow and allows the patient to answer approximately only one
question every 20 s. The solution for this kind of BCI would be a speller capable of correcting the
errors in the classification of the answers, allowing a patient to communicate using minimum number
of inputs.

A solution can be found in a popular game, the 20-questions-game. In this game, a player has
to guess what the other player is thinking within 20 “yes”/”no” questions. An electronic version of
the game, which has been played more than 88 millions times, can correctly guess what someone is
thinking with 80% precision, by asking 20 questions (95% of the time with 25 questions) [17]. The game
was mathematically formalized by Alfred Rényi [18] and it was later proposed in a different version by
Stanistaw Ulam [19]. The Rényi——Ulam game and its variations have been used to solve many different
problems [20-22], in this paper we propose to use the game as a spelling interface for a binary BCI,
like the fNIRS-based BCI described in Chaudhary et al. (2017). This kind of communication system
may allow patients in CLIS to express their own thoughts and not just to reply to prerecorded questions.

The rest of the paper is structured as follows: in Section 2, the method used to design the
communication system is described, and in particular, in Sections 2.1 and 2.2 describe the algorithm
of the Rényi-Ulam game and its application to the popular 20-questions-game using an artificial
neural network, and in Section 2.3, the implementation as an interface for a BCI system is described.
In Section 3, the proposed algorithm is explained in detail. Then, in Section 4, we present the results of
the algorithm, both for an online version of the game played by real persons (Section 4.1) and for an
offline version with computer simulations (Section 4.2). The results are discussed and followed by the
conclusion in Section 5. While the databases used for the results are described in Appendix A.
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2. Materials and Methods

2.1. Rényi-Ulam Game

The 20-questions-game is a popular game played by two players. The rules of the game are as
follows: the first player (player A, the Responder) imagines a famous person, while the second (player B,
the Questioner) must guess the person by asking twenty “yes”/”no” questions (e.g., “Is the person alive?”).

The game has been mathematically described by Rényi and Ulam, as follows: the Responder
can imagine any target statement that is contained in a fixed search space (i.e., the topic, e.g., famous
people), while the Questioner has to guess the statement using less than n (e.g., 20) “yes”/"no”
questions. Moreover, the Responder is allowed to lie up to e times on the answers given to the
“yes”/"no” questions (i.e., they can give wrong answers). The lies are a formalization of the wrong
answer that a player can give if their knowledge about the statement is different from the knowledge
of the other player (e.g., the Responder thinks that a person is alive, but instead it is dead).

The complete description of the game is outlined below:

The game is played by two players: A (the Responder) and B (the Questioner).
A set S of target statements (the search space) is fixed.

A number n > 0 of questions is fixed.

An upper bound e > 0 of number of lies is fixed.

B can ask questions in the form of “Is x in T?”, where T is a subset of S.

A must reply “yes” or “no”, and he can lie up to e times.

NGk N

B wins if he can correctly guess x after n questions.

The number of questions 7 to solve the Rényi-Ulam game depends linearly on the cardinality of
S and on the maximum number of lies e, but for the general case of an arbitrary number of lies, there is
no general solution and only heuristic methods have been proposed [23].

2.2. Artificial Neural Network

A heuristic solution of the Rényi-Ulam game with arbitrary number of lies can be found using
an artificial neural network (ANN). This method was first developed by Robin Burgener [24] for 20g,
an electronic version of the 20-question-game. This version is slightly different from the Rényi-Ulam

"o

game; for instance, the allowed answers are not only “yes” and “no”, but also “unknown”, “irrelevant”,
“sometimes”, “depends”, etc. Here, we propose an ANN for the original Rényi-Ulam game with
binary answers only.

The ANN will play the role of the Questioner, that is, it will ask questions, and it will estimate
a particular target statement (e.g., a person) imagined by a Responder. Therefore, in order to work,
the ANN needs two databases, one with the target statements belonging to the search space (e.g., all of
the possible famous people), and one with the possible “yes”/”no” questions (e.g., “Is it alive?”, “Is it
a woman?”, etc.).

The main core of the ANN is the relation between the statements and questions. Each target
statement is connected to each question, and the strength of this connection is indicated by a weight.
The weights can be negative if the statement and question are not related (i.e., the expected answer is
“no”) and positive if they are related (i.e., the expected answer is “yes”). All of the weights are stored
in a matrix called a weight matrix.

The ANN will present to the Responder the questions stored in the database. The choice of the
question is based on the weight table and on the previous questions.

The final estimation of the ANN is the statement that, based on the received answers, is the most
probable. In order to calculate this probability, after each question, the ANN will penalize or reward,
based on the answer, the target statements (e.g., if the answer to “Is she a woman?” is “yes”, all male
persons will be penalized).
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Finally, after each correct final estimation, the weight matrix is updated based on the received
answer, allowing a learning process.

Using ANN has two advantages. First, if the Responder occasionally lies, the ANN will not
exclude any possible target statement, based on that single answer, but it will only change the
probability for the final estimation. Second, the estimation of the target statement will improve with
frequent usage of ANN, because the learning process improves the reliability of the weight table.

2.3. 20-Questions-Based Interface for Communication Systems

2.3.1. Proposed BCI Implementation

We endeavor to use the 20-questions-game as a communication system for patients that do not
have a reliable means of communication, like patients in a complete locked-in state (CLIS). This system
is based on an ANN that interacts with the patient in a 20-questions-based paradigm, in order to
estimate their thoughts.

For this purpose, the ANN can be developed as part of a brain-computer interface; the computer
proposes auditorily the questions to the patient, and it records a brain signal (e.g., fNIRS). The BCI
classifies the brain signal in a binary answer (“yes” or “no”), which will be the answer required by
the ANN. In this implementation, the patient will play the role of the Responder, while the ANN will
be the Questioner. The patient can think of any word or sentence that is stored in the database of the
ANN, and the ANN will ask questions, also stored in the database, in order to estimate the patient’s
thought. The “yes”/“no” classification accuracy achieved using BCI systems with CLIS patients is
around 70% [14,15]. Using the 20-questions-based system, the errors on the “yes”/“no” classification
will be considered as the lies of the Rényi-Ulam game, therefore, they will not automatically lead to
a wrong estimation of the sentence.

The proposed 20-questions-based communication system is depicted in Figure 1. The system has
been tested as a communication system, independently from the brain signal records, with healthy
participants, using a web interface, and with computer simulations.

2.3.2. Web-Based Implementation

The web-based version of the algorithm (www.alsbci.eu) was written in Python and it has been
translated into three languages, English, German, and Italian.

In the website, the user is asked to put himself in a complete locked-in patient’s shoes, playing
the 20-questions-game by thinking a sentence that could be asked by a patient in such conditions.
The search space was intentionally left ambiguous and not bound to a specific topic, in order to check
the performance of the system in a not optimal scenario. The user had also the option to check the list
of target statements already stored in the database.

During the game, the ANN presented the questions to the user, who had the opportunity to reply
“yes”, “no”, or “unsure”. In the case of an “unsure” answer, the ANN ignored the answer and, instead,
it was asking a different question. At the end of each game, the ANN tried to estimate the thought
sentence three times, proposing to the users the three most probable targets (i.e., the three statements
with the highest current value). Finally, if none of the proposed target statements was the correct one,
the user could select (or, if not present, insert) the thought sentence directly from the database.

From the website, the users had also the opportunity to improve the databases of the ANN by
adding new statements and questions.

The web-based version was initialized with an initial database manually populated with a set
of 41 target statements and 25 questions. The website has been online, accessible to everyone since
November 2017. Since then, the game has been played 92 times, and 50 new statements and 113 new
questions have been added to the system, bringing the total number to 91 statements and 138 questions,
respectively (see Appendix A).
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Figure 1. Flow chart of the proposed 20-questions-based communication system.

2.3.3. Simulation

Using an offline version of the website, we tested the algorithm by changing the possible answers
and simulating a BCI with errors on the classification of the “yes” and “no” answers.
Regarding the possible answers, we considered three different cases, as follows:

"o
’

1. “yes”,“no”, and “unsure” answers, with the questions answered as “unsure” excluded from the
total number of questions (same as the online system);

2. “yes”,”no”, and “unsure” answers, with the questions answered as “unsure” included in the
total number of questions; and

3. “yes” and “no” answers only.

As the expected answer is a direct expression of the target-question weight, we considered a “yes”
answer when the weight was positive, “no” when negative, and “unsure” when the weight was zero.
In the third case, considering the “yes” and “no” answers only, if the target-question weight was zero,
we chose “yes” or “no” randomly.

In order to emulate the non-optimal BCI classification, according to the simulated accuracy,
each answer had a certain probability of being wrong (if “unsure”, the answer was not changed).
The algorithm performance has been tested, varying the classification accuracy between 50%
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(i.e., random classification) and 100% (i.e., perfect classification). As for the online and the offline
analyses, we considered a statement as correctly estimated if, after 20 questions, it was among the
three most probable target statements.

3. Algorithm

3.1. Definitions

The two main agents of the ANN are the target statements (i.e., the possible final sentences) and
the questions (i.e., the descriptors of the sentences). Both of the target statements and sentences are
stored in a database, therefore, the only possible sentences and questions are the ones present in the
communication system.

As explained in Section 2.2, the core of the ANN is the weight matrix that puts in relation the
target statements and questions. The weight depends on the answer that each statement is required
from each question (i.e., if the expected answer is “yes”, the weight will be positive, if “no”, it will
be negative).

A value is assigned to each statement. This value indicates the probability of each statement
to be the final target; the higher the value assigned to one statement, the higher the probability
of that statement to be the thought one. The value is updated after each question, based on the
statement—question weight and on the received answer.

The elements of the ANN are shown in Figure 2, and are summarized below:

e N targets (T; with i = 1:N) (i.e., sentences thought by the patient);

e Each target is described by M descriptors (D; with j = 1:M) (i.e., “yes”/"no” questions);
e Strength of T-D connection is expressed by a weight (Wr; p; with i = 1:N, j = 1:M); and
e Each target T; is ranked using a current value (Vy; with i = 1:N).

Statements
= Ham relaosd
| Statements Score
= lam often deprassed
| #| - | am noluxed w0
- Fid like 1o go out more ofien |
| | - 1am ofton doproased -4
5-|um»mmmm 17
Nitargets
Questions

18 it samahing posithe?

151t & human 5t raéatod o
« 18 It & human behavigur? Doy Sioep?

2 2
s it nelaesd bo tha sleep?

3 1

2 4

M deseriploes

Figure 2. Structure of the artificial neural network. In particular, the structure of the databases of
statements and questions, of the table of current values, and of the weight table are shown.
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3.2. Current Value Adjustment

During each run, all of the target statements start with the same probability of being the final
sentence, therefore, all of the current values Vr are initialized to 0. This probability (i.e., the current
value) changes after each presented question, based on the answer of the user. In particular, if D; is the
n-th question presented to the user, for each target statement T;, the current value Vr, is updated using
the formula, as follows:

Vr,(n) = Vr,(n—1) + Wy p, if answer is “yes”

i

Vr,(n) = Vr,(n—1) — Wr, p, if answer is “no”

i

where 7 is the number of the question, and Wr, p, is the weight between question D; and statement T;.
It is positive if the expected answer is “yes” and negative if the expected answer is “no”. Therefore,
the formula increases the current value if the given answer is the expected one, and decreases it otherwise.
In order to decrease the impact of the wrong answers, the adjustment of the current value has been
increased for those statements that receive many answers coherent with the expected ones. After each
question, every statement where the expected answer matches with the received one is marked as
a ‘priority target’. This priority is lost whenever the statement receives an answer that does not match
with the expected answer. The priority targets receive an adjustment for their current value, equal to
double the weight. This leads to the following modified formula for updating the current value:

Vr,(n) = Vr,(n —1) + Wr, p,(x2 if T; has priority) if answer is “yes”

Vr,(n) = Vr,(n — 1) — Wr, p,(x2 if T; has priority) if answer is “no”
where the variables are the same as described above.

3.3. Choice of the Question

One of the crucial points of the algorithm is the choice of the question. The best question is the
one whose answer will give more information about the most probable targets, or, in other words,
the one whose answer splits the most probable targets in two similar sets. Therefore, the best question
is the one that maximizes the entropy

H(Dj) = 3 —p(x)log; p(x)
xeX
where X is the two classes of statements with positive and negative weights, with respect to the
question Dj; and p(x) is the proportion of the most probable statements that belong to the class x.

In the implementation, all of the targets with a positive current value were considered as the most
probable targets. It is possible to choose the most probable targets in a different way, using a more or
less strict definition (e.g., the targets with a current value greater than a certain threshold), and this
will obviously change the choice of the questions accordingly.

3.4. Estimate the Target

The goal of the ANN is to estimate the target statement that the patient is thinking. After 15 questions,
the ANN will check if there is only one target statement with a positive value; if this happens, it will
estimate that statement. If this condition never occurs, after 20 questions, the ANN will estimate the target
statement with the highest current value.

The lower threshold of 15 questions is based on the minimum number of questions needed
for an optimal solution of the Rényi-Ulam game; considering a search space of 91 statements and
a signal classification accuracy of 75%, the minimum number of questions for a deterministic optimal
solution is 23 (Table 2.3 from Cicalese, 2013, p. 28). We decided to check whether there was only one
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statement with a positive value after two thirds of the minimum number of questions for an optimal
solution. This condition is meant to speed up the communication process, avoiding asking unnecessary
questions when one statement is likely the correct target.

3.5. Learning Step

The last step of the algorithm is teaching the neural network. After each correct estimation,
the system will update the weight matrix. For each question that was asked during the run, it will
update the weight that associates that question to the correctly estimated statement, based on the
answer that the user gave; if the given answer is “yes”, it will increase the weight value, otherwise it
will decrease it. In order to avoid excessive values, the weights are upper and lower bounded.

4. Results

In the next paragraphs the online and offline results of the proposed algorithm will be presented.
The results are based on the web-based version and on the simulations descripted in Sections 2.3.2
and 2.3.3, respectively.

4.1. Online Results

The results of the games played online are reported in Table 1. Half of the time the game was
played with a statement that was not in the system; considering that only the games that played
with statements already in the system, the percentage of correct estimations is 65.95%, against 34.04%
of games where the ANN was not able to correctly estimate the thought sentence. Focusing on the
sentences correctly estimated, 67.74% of the time the sentence was estimated on the first attempt.

Table 1. Results of the game played online on the website. The table lists the total number of times of
the game play. The game was played for a total of 92 times, out of which it was played for 45 times
on new statements (not in the database) and 47 times on old statements (in the database). For the
statements already in the database, the table also lists the number of times that they were estimated
incorrectly and correctly. For the correctly estimated statements the table lists the number of times the
statements were the first, second, or third guess.

New Statements Old Statements
45 47
Incorrect Correct
16 31

1st Estimation ~ 2nd Estimation ~ 3rd Estimation

21 5 5

4.2. Offline Results

The offline results, reported in Figure 3, were obtained by simulating the performance of the
ANN in the cases mentioned in Section 2.3.3. For each of the three cases, the simulation was
performed by varying the signal classification accuracy between random (i.e., 50%) and perfect
(i.e., 100%). Figure 3a—c represents the percentage of statements correctly estimated by the ANN after
1000 simulations, with respect to the simulated BCI classification accuracy of “yes” and “no”. In each
figure, blue, green, and yellow represent the percentage of statements correctly estimated as the most,
second most, and third most probable statement, respectively.

In order to evaluate the time performance of the proposed communication system, we compared
the typing speed of the ANN to those of the classic P300-based matrix speller [25]. The fNIRS-based
BCI developed for CLIS patients is able to present one question every 20 s [15]. Therefore, a spelling
interface that uses this BCI has an information transfer rate (ITR) of 3 bits/min, while the matrix speller
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reaches 12 bits/min, which means a typing speed of approximately one character every 26 s. The target
statements in the database of the ANN (Table A1) have an average length of 23.625 characters. Hence,
as in the simulations, the statements were estimated in 20 questions, the fNIRS-BCI for the CLIS
patients using the 20-questions-based spelling interface will have an average typing speed of one
character every 17 s.
T
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Figure 3. Results of the offline simulation in the three different cases. Blue, green, and yellow represent
the percentage of statements correctly estimated as most, second most, and third most probable
statement, respectively. (a) Simulated results using “yes”, “no”, and “unsure” answers, with the
questions answered as “unsure” excluded from the total number of questions; (b) simulated results

using “yes”, “no”, and “unsure” answers, with the questions answered as “unsure” included in the
total number of questions; and (c) simulated results using “yes” and “no” answers only.

5. Discussion and Conclusions

The results in the offline analyses show that the performances are very similar in the first two
analyzed cases, discarding and including “unsure” answers. Surprisingly, when giving random
answers instead of “unsure”, the results improve. We believe that this is due to the randomization of
the target statements and does not represent a real improvement in the results.

Figure 3a—c shows that considering a classification accuracy of 100%, the ANN is always able to
correctly estimate the target statement. This result means that, using a BCI that perfectly classifies
“yes” and “no” answers, a patient could communicate entire words, or even sentences, by answering
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only 20 questions. The result is very promising, considering that, under the condition of a perfect
signal classification, in order to select one character, a usual 6 x 6 grid-based speller needs at least
12 inputs [26].

However, we also notice that if the accuracy drops down to 80%, the correct rate decreases to 57%.
Nevertheless, we have to consider that we did not put any constraint on the possible target statements,
50 in the same database, there were very different sentences like, “This movie is beautiful” and “I would
like to go more out from the bed”. This generality of the sentences put the program in a bad case
scenario. Although, it is important to notice that these results are still significant, as, considering
a random classification (accuracy of 50%), the correct rate is close to 0%.

Both in the online games and in the simulations, the system always asked 20 questions, therefore,
after 15 questions, there were always at least two statements with positive value. Hence, the ANN
always estimated the final target statement with a certain degree of uncertainty, probably because
the number of played games was not enough for an optimal training of the weight table. In order to
decrease the uncertainty, a possibility is to increase the number of questions from 20 to the optimal
solution number, which depends on the cardinality of the search space and on the signal classification
accuracy, as shown in Table 2.3, from Cicalese, 2013, p. 28. Nonetheless, we decided to keep the upper
limit of 20 questions in order to build a communication system that could be used in a reasonable time,
even using a fNIRS-based BCI (20 s for each question).

The comparison between the 20-questions-based system and the P300 matrix speller shows that,
despite a lower ITR, the average typing speed of the proposed spelling interface is higher. Even if this
result cannot be taken as a real typing speed comparison because the ANN can estimate only entire
sentences, it shows that the proposed system has time performance comparable to the usual spellers
and could allow communication in a reasonable time, even in presence of a slow signal like the fNIRS
(3 bits/min).

Correlating the online and the offline results, we can say that the users gave the expected answers
up to 85% of the time. Obviously, in that case, there were no errors in the signal classification, but we
could not expect a perfect result because the questions could have been very general, and with a not
unique answer (e.g., considering the sentence “I sleep a lot”, the question “Is it positive?” could be
answered “yes” or “no” depending on the positive or negative connotation that a person gives to
sleeping a lot).

The results show that the 20-questions-based system can be a valid interface for any BCI that
uses a slow signal and/or has a classification with a low accuracy rate. Even in presence of fast
signal (e.g., EEG), the proposed system can improve the typing speed performance, allowing the
formulation of entire sentences using only 20 binary inputs. The main drawback, already highlighted
in the previous sections, is that the only sentences that the ANN can estimate are the ones stored
in the database, therefore, a patient will not be free to formulate his own sentences. This limitation,
an intrinsic characteristic of a 20-questions-system, can be overcome by building an exhaustive database
personalized for each patient. Before initiating any BCI session, the patients will be provided an option
to choose between the proposed 20-questions-based system and a character-selection speller that gives
more freedom at the expense of the typing speed and the error handling.

In the future, we will test the system by narrowing the possible sentences to a more restricted
topic and personalizing the weight table for only one person, in order to adapt the weights to his
or her individual biography and personality. Moreover, the system will be improved to work with
multi-class BCIs, in order to have more possible answers and, therefore, better estimations. Finally,
the interface will be tested with a BCI to study the reaction of the patients to this different approach
of communication.

The results are promising and show that a communication system based on this algorithm could
replace the usual speller-based approach. The main limitation of the 20-questions-based interface is
that it does not allow the patient to create new sentences or new questions. Nevertheless, it could allow
patients in CLIS to express their own thoughts and desires, instead of only answering to “yes”/”no”
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questions chosen by someone else. For this reason, the communication system based on the proposed
algorithm could be applied to estimate the inner mental and thought process of patients in CLIS.
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Appendix

Reported here is the complete list of the statements and questions used both in the online and

offline results.

Table Al. List of statements and questions used for the online 20-questions-system and offline simulations.

Statements

Questions

“Iam pleased with life”

“I want to travel”

“Would you like to
be killed?”

“Is it related to a particular
time of day?”

“Iam living
with pleasure”

“Ilove my brothers”

“Are you suffering?”

“Is it related to a means
of transport?”

“I feel good right now”

“Iwant to sleep”

“Are you happy with your
ife?”

“Is it pleasant?”

“I feel bad right now”

“Tam thirsty”

“Should I bring
you something?”

“Is it just something
about fantasy?”

“Most of the time I
feel good”

“How beautiful is
this movie!”

“Is it something about
everyday life?”

“Is it intriguing?”

“Most of the time I
feel bad”

“I want to know what the
weather will be tomorrow”

“Is it about someone
you know?”’

“Is it funny?”

“Isleep mostly good”

“Iwant a beer”

“Is it a daily human need?”

“Is it fun?”

“Isleep mostly bad”

“Ilove my child”

“It involves a difficult test?”

“Is it exciting?”

“Isleep a lot”

“I'would like to go on
holiday in Sardinia”

“It has to do with the sea?”

“Is it an
entertainment activity?”

“I'sleep less”

“Twould like to win
scientific recognition”

“Is it a desire?”

“Is it an activity that can be
associated with routine?”

“Lalso sleep during
the day”

“I want an orange juice”

“Is this something that needs
to be cooked?”

“Is it about your hygiene?”

“I sleep only in
the night”

“I'want to play the guitar”

“Is this something about
your career?”

“Is it about the weather?”

“I can concentrate myself
on questions”

“I want to have a shower”

“Is there anyone able to do
the imagined action?”

“Is it about the future?”

“I cannot concentrate
myself on questions”

“Lam happy”

“Is the desire
for enjoyment?”

“Is it about the bed?”

“Iwould like to go more
out from the bed”

“The music”

“Is it something you do
before you sleep?”

“Is it about sex?”

“Ilike to stay in bed”

“Twant to read the
newspaper”

“Is it something that you
want to do often?”

“Is it about meeting
your dreams?”

“I feel very relaxed”

“I'had a nice dream”

“Is it something that you do
in your house?”

“Is it about human needs?”

“I feel very stressed”

“Some people are
really idiots”

“Is it something that you can
do without?”

“Is it about food?”

“Iam stressed”

“I am stupid”

“Is it something related to
a specific season?”

“Is it about an animal?”
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Table A1. Cont.

12 0f 14

Statements

Questions

“I am relaxed”

“I want to drink a coffee”

“Is it the result of
hard work?”

“Is it a wish?”

“I'would like to have
more visitors”

“Iwant to play football”

“Is it something you want to
do now?”

“Is it a pastime?”

“I'would like to have
less visitors”

“I wish the best for my
loved ones”

“Is it something you eat?”

“Is it a human behavior?”

“I wish more rest”

“I'want to go to the gym”

“Is it something to
do indoor?”

“Is it a feeling?”

“Lam glad when
someone visits me”

“My cats are beautiful”

“Is it something to do in the
open air?”

“Does it open your mind?”

“My life is good”

“Iwant to go boating”

“Is it something to
do alone?”

“Does it need many attempts
and failures?”

“My life is bad”

“I want to eat chocolate”

“Is it something to
do accompanied?”

“Does it involve
taking revenge?”

“Timagine I am walking”

“I'would like to go out
more often”

“Is it something that makes
you happy?”

“Does it imply a shift?”

“Iimagine I am running”

“Iam rarely depressed”

“Is it something related to
your city?”

“Does it have two eyes?”

“I imagine often [
am flying”

“Tam often depressed”

“Is it something regarding
your loved ones?”

“Does it have to do
with music?”

“limagine often I
am eating”

“Ilaugh often inside myself”

“Is it something positive?”

“Does it have something to do
with drinking?”

“I dream a lot”

“Ilaugh rarely
inside myself”

“Is it something physical?”

“Does it have something to do
with a candy?”

“T dream less”

“I am hungry”

“Is it something negative?”

“Does it have anything to do
with you?”

“T often think soon I will
get better”

“I want a cat”

“Is it something emotional?”

“Does it concern
your feelings?”

“Rarely I think I will get
better soon”

“Iwant to have sex”

“Is it something abstract?”

“Does it concern nature?”

“Iwould like it if ... will
be more often by me”

“Tlike to ride a bike”

“Is it something about
your family?”

“Does it concern an
anatomical part of a person?”

“Lam glad that ... is
by me”

“Lam sleepy”

“Is it something about the
sense of hearing?”

“Do you think about it often?”

“Is it something about
the drinks?”

“Do you need company?”

“Is it something about
being free?”

“Do you need an instrument?”

“Is it something about
a primary need?”

“Do you need a ball?”

“Is it related with the body
(care, etc.)?”

“Do you have a need?”

“Is it related to the present”

“Do you do it for being in
the company?”

“Is it related to the night?”

“Do you do it either alone or
in company?”

“Is it related to the day?”

“Do you do because you
need it?”

“Is it related to sleep?”

“Can you do it alone?”

“Is it related
to imagination?”

“Are you sleepy?”

“Is it related to a sport?”

“A tool is needed?”
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Patients with amyotrophic lateral sclerosis (ALS) can lose all muscle-based routes of com-
munication as motor neuron degeneration progresses, and ultimately, they may be left
without any means of communication. While others have evaluated communication in people
with remaining muscle control, to the best of our knowledge, it is not known whether neural-
based communication remains possible in a completely locked-in state. Here, we implanted
two 64 microelectrode arrays in the supplementary and primary motor cortex of a patient in a
completely locked-in state with ALS. The patient modulated neural firing rates based on
auditory feedback and he used this strategy to select letters one at a time to form words and
phrases to communicate his needs and experiences. This case study provides evidence that
brain-based volitional communication is possible even in a completely locked-in state.
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myotrophic lateral sclerosis (ALS) is a devastating neu-
A rodegenerative disorder that leads to the progressive loss
of voluntary muscular function of the body!. As the dis-
order typically progresses, the affected individual loses the ability
to breathe due to diaphragm paralysis. Upon accepting artificial
ventilation and with oro-facial muscle paralysis, the individual in
most cases can no longer speak and becomes dependent on
assistive and augmentative communication (AAC) devices®3, and
may progress into the locked-in state (LIS) with intact eye-
movement or gaze control®®, Several invasive®~!0 and non-
invasive!I-1® brain-computer interfaces (BCIs) have provided
communication to individuals in LIS!7-20 using control of
remaining eye-movement or (facial) muscles or neural signals.
Once the affected individual loses this control to communicate
reliably or cannot open their eyes voluntarily anymore, no
existing assistive technology has provided voluntary commu-
nication in this completely locked-in state (CLIS)!7-20, Non-
invasive!1-16 and invasive®~10 BCIs developed for communica-
tion have demonstrated successful cursor control and sentence
formation by individuals up to the stage of LIS. However, none of
these studies has demonstrated communication at the level of
voluntary sentence formation in CLIS individuals, who lack stable
and reliable eye-movement/muscle control or have closed eyes,
leaving the possibility open that once all movement - and hence
all possibility for communication - is lost, neural mechanisms to
produce communication will concurrently fail. Several hypotheses
have been formulated, based on the past BCI failures, to explain
the inability of ALS-patients in CLIS to select letters to form
words and sentences ranging from extinction of intentions?!
related to protracted loss of sensory input and motor output,
cognitive dysfunction, particularly when it occurs in association
with fronto-temporal degeneration. A successful demonstration
of any BCI enabling an individual without reliable eye-movement
control and with eyes closed (CLIS) to form a complete sentence
would upend these hypotheses, opening the door to commu-
nication and the investigation of psychological processes in the
completely paralyzed ALS patients and probably also other dis-
ease or injury states leading to CLIS.

Here, we established that an individual was in the CLIS state
and demonstrated that sentence-level communication is possible
using a BCI without relying upon the patient’s vision. This
individual lacked reliable voluntary eye-movement control and,
consequently, was unable to use an eye-tracker for communica-
tion. The patient was also ultimately unable to use a non-invasive
eye-movement-based computerized communication system?2. To
restore communication in CLIS, this participant was implanted
with intracortical microelectrode arrays in two motor cortex
areas. The legally responsible family members provided informed
written consent to the implantation, according to procedures
established by regulatory authorities. The patient, who is in home
care, then employed an auditory-guided neurofeedback-based
strategy to modulate neural firing rates to select letters and to
form words and sentences using custom software. Before
implantation, this person was unable to express his needs and
wishes through non-invasive methods, including eye-tracking,
visual categorization of eye-movements, or an eye movement-
based BCI-system. The patient started using the intracortical BCI
system for voluntary verbal communication three months after
implantation. With ALS progression, the patient lost the ability to
open his eyes voluntarily as well as visual acuity, but he is still
employing the auditory-guided neurofeedback-based strategy
with his eyes closed to select letters and form words and sen-
tences. Therefore, a CLIS patient who was unable to express his
wishes and desires is employing the BCI system to express himself
independent of vision.

88

Results

One day after the implantation, attempts were initiated to
establish communication. The patient was asked to use his pre-
viously effective communication strategy employing eye move-
ments to respond to questions with known “yes” and “no”
answers, which did not result in a classifiable neural signal, no
difference in spike rate and multi-unit-activity (MUA). Passive
movements of the patient’s right fingers, thumb, and wrist evoked
consistent neural firing rate modulations on several electrodes on
both arrays. However, when we instructed the patient to attempt
or imagine hand, tongue, or foot movements, we could not detect
consistent responses. Subsequently, the communication strategy
was changed on the 86t day after implantation, and
neurofeedback-based paradigms (described in the Online Meth-
ods section) were employed, as shown in Fig. 1. In this setting, the
patient was provided auditory feedback of neural activity by
mapping a spike rate metric (SRM) for one or more channels to
the frequency of an auditory feedback tone, as displayed in Fig. 1
(described in the “Neurofeedback communication” section of
Online Methods, see sample Supplementary Video V1). The
patient was able to modulate the sound tone on his first attempt
on day 86 and subsequently was able to successfully modulate the
neural firing rate and match the frequency of the feedback to the
target for the first time on day 98. Employing the neurofeedback
strategy, the patient was able to modulate the neural firing rate
and was able to use this method to select letters and to free spell
from day 106 onwards. The Results reported here include data
from days 106-462 after implantation. Three of the authors (UC,
NB and AT) frequently traveled to the patient’s home to perform
communication sessions about every two weeks for 3 or 4 con-
secutive days until February 2020. Because of the COVID pan-
demic from March 2020 to June 2020, all the sessions were
performed via secured remote access to the patient’s laptop.
During these sessions, the patient’s wife performed locally all
required hardware connections, and the experimenters, either UC
or AT, controlled the software remotely. During the experimental
period reported here, the authors UC, AT, and NB performed
experimental sessions on 135 days. The patient was hospitalised
due to unrelated adverse events between days 120 and 145, 163
and 172, and 212 and 223 after implantation, during which time
no sessions were performed.

Each session day, we started with a 10-minutes baseline
recording, where the patient was instructed to rest. During this
time period the experimenter ran a software program to deter-
mine the firing rate of different individual channels and select
their parameters for the first neurofeedback session-block. Two
different types of neurofeedback sessions were performed con-
secutively on each day, “feedback without reward” and “feedback
with reward” with the goal (1) to select channels suitable for
voluntary control by the patient and (2) to train the patient to
control the selected channels’ spiking activity voluntarily. The
first paradigm (“feedback without reward”) provided successive
target tones, and the patient was asked to match the frequency of
the feedback tone to the target tone. The second paradigm
(“feedback with reward”) was the same. However, upon reaching
and holding (during a configurable number of interactions, each
interaction lasting 250 ms) the feedback tone within a predefined
range around the target frequency, an additional reward sound
was delivered for 250 ms, indicating successful performance to the
patient. Holding the feedback tone at the high (low) end of the
range for a minimum of 250 ms was then interpreted as a suc-
cessful “yes” (“no”) response. After the first “feedback without
reward” session, individual channels’ firing rate distributions were
automatically calculated. The experimenter selected channels with
differential modulation for the high and low target tones and
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Fig. 1 Setup and neurofeedback paradigm. a Experimental setup. Two microelectrode arrays were placed in the precentral gyrus and superior frontal gyrus
(insert, L: left central sulcus, A-P: midline from anterior to posterior). An amplifying and digitizing headstage recorded signals through a percutaneous
pedestal connector. Neural signals were pre-processed on a Neural Signal Processor and further processed and decoded on a laptop computer. b Daily
sessions began with Neurofeedback training. If the performance criterion was reached, the patient proceeded to speller use. If the criterion was not
reached, parameters were re-estimated on neurofeedback data, and further training was performed. € Schematic repr t

1 of auditory neur k
and speller. Action potentials were detected and used to estimate neural firing rates. One or several channels were selected, their firing rates normalized
and mixed (two channels shown here for illustration; see Online Methods). Options such as letter groups and letters were presented by a synthesized
voice, followed by a response period during which the patient was asked to modulate the normalized and mixed firing rate up for a positive response and
down for a negative response. The normalized rate was linearly mapped to the frequency of short tones that were played during the response period to give
feedback to the patient. The patient had to hold the firing rate above (below) a certain threshold for typically 500 ms to evoke a “Yes” (“No") response
Control over the neural firing rates was trained in neurofeedback blocks, in which the patient was instructed to match the frequency of target tones

updated the parameters for subsequent sessions. Employing this
iterative procedure on each day, we performed several neuro-
feedback blocks within a particular day to remind the patient of
the correct strategy to control the firing rate, each typically
consisting of 10 high-frequency target tones and 10 low-
frequency target tones presented in pseudo-random order and
also to tune and validate the classifier. Typically, if the patient
could match the frequency of the feedback to the target in 80% of
the trials, we proceeded with the speller.

89

Neurofeedback sessions. Figure 2a shows individual neurofeed-
back trials, including an error trial, of one representative block.
Over the reported period, there were 1176 feedback sessions as
shown in Supplementary Fig. S1. In the 281 neurofeedback blocks
preceding the speller blocks, 4936 of 5700 trials (86.6%) were
correct (Fig. 2b), i.e., for target tone up (higher frequency) the
decision was up (a “yes” answer), and for target down (low fre-
quency) the decision was down (a “no” answer). The difference in
error rates between ‘up’ and ‘down’ trials, i.e., the fraction of trials
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example for normalized and mixed firing rate during ten high (red) and ten low (blue)

target tone frequency feedback trials of day 247. The patient was asked to match the target tone by modulating the normalized and weighted firing rate,
and he succeeded in all but one trial of this example. Trials were completed as soon as the firing rate was held above or below the upper or lower threshold,

respectively. As defined in the Materials and Methods section, these feedbacl

k blocks were performed every day of recording for training, parameter

selection, and validation of the selected parameters. The grey-shaded region from —1to O s depicts the time period during which the high or low target

tones were presented to the patient. The horizontal line at 0.3 and 0.7 shows

the lower and upper threshold, respectively. Source data are provided as a

Source Data file. b True positive rate vs. false positive rate of the trials in auditory neurofeedback blocks directly preceding speller blocks on days 123-462.
Each circle represents one neurofeedback block; circles are jittered for better visibility. The blue insert at the bottom right corner shows the contingency
table of all neurofeedback trials directly preceding speller blocks on days 123-462. In the blue insert—TP stands for true positive, i.e., up trials classified as
up; FP stands for false positive, i.e, up trials classified as down; FN—stands for false negative, i.e., down trials classified as up; TN—stands for true negative,

i.e., down trials classified as down; Time out denotes the trials that were uncl

in which the modulated tone did not match the target tone,
(13.2% and 12.2%, respectively), was significant (Pearson’s x? test:
p<0.01). The patient maintained a high level of accuracy in the
neurofeedback condition throughout the reported period: on
52.6% of the days, the accuracy was at least 90% during at least
one of the feedback trials blocks, ie., the patient was able to
match the frequency of the feedback to the target 18 out of 20
times. We observed considerable within-day variability of neural
firing rates and hence performance of the neurofeedback classi-
fier, necessitating manual recalibration throughout the day (see
Supplementary Fig. S1). In the last feedback sessions before
speller sessions, the median accuracy was 90.0%, the minimum
was 50.0% (chance level). In 17.1% of the sessions, accuracy was
below 80.0%.

Speller sessions. We continued with the speller paradigm when
the patient’s performance in a neurofeedback block exceeded an
acceptance threshold (usually 80%). To verify that good perfor-
mance in the neurofeedback task translated to volitional speller
control (based on correct word spelling), we asked the patient to
copy words before allowing free spelling. On the first three days
of speller use, the patient correctly spelled his own, his son’s, and
his wife’s names. After an unrelated stay at the hospital, we again
attempted the speller using the same strategy on day 148.

Afterward, we relied on a good performance in the neurofeed-
back task, i.e., the patient’s ability to match the frequency of the
feedback to the target in 80% of trials, to advance to free spelling.
The selection of two letters from a speller block on day 108 is
shown in Fig. 3. Supplementary Video V2 presents a representa-
tive speller block.

Over the reported period, out of 135 days, speller sessions were
attempted on 107 days, while on the remaining 28 days use of the
speller was not attempted because the neurofeedback perfor-
mance criterion was not reached. The patient produced
intelligible output, as rated independently by three observers,
on 44 of 107 days when the speller was used (Fig. 4). On average,
121 min were spent spelling and the average length of these
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lassified. Source data are provided as a Source Data file.

communications was 131 characters per day. The patient’s
intelligible messages comprised 5747 characters produced over
5338 min, corresponding to an average rate of 1.08 characters per
minute. This rate varied across blocks (min/median/max: 0.2/1.1/
5.1 characters per minute). Over the reported period, there was
no apparent trend in spelling speed. There were 312 pairs of
speller blocks and preceding neurofeedback blocks. The speller
output was rated 0 for unintelligible by raters, 1 for partially
intelligible, 2 for intelligible. The Spearman correlation between
Neurofeedback task accuracy and subsequent speller intelligibility
was 0.282 (p =4.002e—07). The Spearman correlation between
Neurofeedback accuracy and number of letters spelled was 0.151
(p=7.671e—03). The information transfer rate (ITR) during
intelligible speller sessions was 5.2 bits/minute on average (min/
median/max: 0.3/4.9/21.4 bits/minute).

On the second day of free spelling, i.e., on the 107th day after
implantation, the patient spelled phrases, spelled in three-time
episodes, thanking NB and his team (‘erst mal moechte ich mich
niels und seine birbaumer bedanken’ - ‘first I would like to thank
Niels and his birbaumer’). Many of the patient’s communications
concerned his care (e.g. ‘kop?f immerlqz gerad’ - ‘head always
straight’, day 161; ‘kein shirt aber socken” - ‘no shirts but socks
[for the night]’, day 244; ‘mama kopfmassage’ - ‘Mom head
massage’, day 247; ‘erstmal kopfteil viel viel hoeh ab jetzt imm’ -
“first of all head position very high from now’, day 251; ‘an alle
muessen mir viel oefter gel augengel’ - ‘everybody must use gel
on my eye more often’, day 254; ‘alle sollen meine haende
direkten auf baubch’ - ‘everybody should put my hand direct on
my stomach’, day 344; ‘zum glotze und wenn besuchen da ist das
kopfteil immer gaaanz rauf - ‘when visitors are here, head
position always very high’ on day 461. The patient also
participated in social interactions and asked for entertainment
(‘come tonight [to continue with the speller]’, day 203, 247, 251,
294, 295, ‘wili ch tool balbum mal laut hoerenzn’ — ‘I would like
to listen to the album by Tool [a band] loud’, day 245, ‘und jetwzt
ein bier’ - ‘and now a beer’, day 247 (fluids have to be inserted
through the gastro-tube), 251, 253, 461. He even gave suggestions
to improve his speller performance by spelling ‘turn on word
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Fig. 3 Example of letter selection during a free spelling block. a Firing rate

of the channels 25 and 100 used for “yes"/"no" classification on day 108. b

Normalized firing rate and the speller state during the same 90 s period of a speller block. “Yes"/“no"/ timeout decisions are marked by vertical lines and
the option selected in green and not selected in red. This example is part of the phrase “dekubitus po er soll arme maximal”, referring to bedsore and
instructing the aide to change arm position. Source data are provided as a Source Data file.

a
o
2 600 7
‘g 500 °
8 400 °
S 300 . . : :
S 200 . . . .
& 100 . e . .
E o S = DA o . . S et .
z

100 150 200 250 300 350 400 450
b

5 O
og 4 .
32 s :
gE 2
58 4 . oo LY . %
. . e o g N r 2 D ry . . - o o .

100 150 200 250 300 350 400 450

¢ Day with successful speller use ‘ Day with unsuccessful speller use Day with experiment but no speller use

100

150 200 250

300 350 400

Days since implantation

Fig. 4 Overview of BCl use. a Number of characters spelled by the patient during speller sessions whose output was rated ‘intelligible’ (rating described in
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which speller use was attempted, but no intelligible output was produced (63 days). On 28 days, speller use was not attempted (red). Source data are

provided as a Source Data file.

recognition’ on day 183, ‘is it easy back once confirmation’ on
Day 253, ‘tell alessandro i need to save edit and delete whole
phrases and all of that into the list where (patient’s son name) on
day 295, ‘why cant you leave the system on. ifind that good’ on
day 461, in English as the patient knew that the experimenter UC
and AT are not native German speakers and mostly spoke in
English with the patient. On day 247 he gave his feedback on
speller as, jungs es funktioniert gerade so muehelos’, - ‘boys, it
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works so effortlessly’. The patient expressed his desire to have
different kind of food in his tube as, ‘mixer fuer suppen mit
fleisch’ - ‘instructed his wife to buy a mixer for soup with meat’
on day 247’; ‘gulaschsuppe und dann erbsensuppe’ - ‘Gulash soup
and sweet pea soup’ on day 253; ‘wegen essen da wird ich erst mal
des curry mit kartoffeln haben und dann bologna und dann
gefuellte und dann Kartoffeln suppe’ - ‘for food I want to have
curry with potato then Bolognese and potato soup on day 462. He
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interacted with his 4 years old son and wife, ‘(son’s name) ich
liebe meinen coolen (son’s name) - ‘I love my cool son’ on day
251; ‘(son’s name) willst du mit mir bald disneys robin hood
anschauen’ ‘Do you want to watch Disney’s Robin Hood with
me’ on day 253; ‘alles von den dino ryders und brax autobahnund
alle aufziehautos’ - ‘everything from dino riders and brax and
cars’ on day 309; ‘(son’s name) moechtest du mit mir disneys die
hexe und der zauberer anschauen auf amazon’ - ‘would you like
to watch Disney’s witch and wizard with me on amazon’ on day
461; ‘mein groesster wunsch ist eine neue bett und das ich
morgen mitkommen darf zum grillen’ - ‘My biggest wish is a new
bed and that tomorrow I come with you for barbecue’ on day 462.

Discussion

We demonstrate that a paralyzed patient, according to the pre-
sently available physiological and clinical criteria in the com-
pletely locked-in state (CLIS), could volitionally select letters to
form words and phrases to express his desires and experiences
using a neurally-based auditory neurofeedback system indepen-
dent of his vision. The patient used this intracortical BCI based
on voluntarily modulated neural spiking from the motor cortex to
spell semantically correct and personally useful phrases. Proper-
ties of the multielectrode array impedance and recordings across
sessions are shown in the Supplementary Fig. S2. In all blocks,
measurable spike rate differentiation between “yes” and “no”
during the neurofeedback trials and “select” and “no select during
speller blocks appeared in only a few channels in the SMA
(supplementary motor area) out of all active channels, as shown
in Supplementary Fig. S3a. After the establishment of successful
communication after day 86, similar channels from the Supple-
mentary Motor Cortex array were used for communication ses-
sions with the patient, as shown in Supplementary Fig. S3b.
Mainly electrode 21 and neighbouring electrodes were used,
which demonstrated differential control of the feedback tones
during the neurofeedback sessions before spelling. Because the
neurofeedback procedure was the prerequisite for successful
communication after 86 days of attempted, but unsuccessful
decoding, a multichannel decoding algorithm was not imple-
mented following our clinical judgment based on learning
principles?® that such a substantial change in the procedure might
impede or extinguish the successful control of the patient and
spelling. In addition, after this failure, we attempted a neural
feedback approach, based on learning principles, capitalizing on
the observation that neural firing rates could be used to achieve
levels suitable to make yes/no choices. For the speller sessions,
only one to four channels were used for control, as shown in
Supplementary Fig. S3. There was insufficient time to explore
other decoding approaches, and we wanted to establish that
communication was feasible at all in CLIS. We cannot explain
why the other electrodes did not provide modulation suitable for
multichannel decoding. Perhaps with further sessions and other
strategies, not possible in this experiment, we might have iden-
tified faster, or more accurate approaches. Speller use duration
was highly variable, ranging from a few minutes to hours. As
shown in Fig. 4, the patient generated a different number of
characters on different days. He spelled only under 100 characters
on some days, while on other days, he produced more than 400
characters. Despite the huge variation in the number of characters
spelled, the number of characters spelled per minute was mostly
around 1 character per minute, and ITR averaged 5 bits/minute.
Communication rates are lower than in other studies using
intracortical arrays’-?, but comparable to EEG P300 spellers for
ALS patients?»25 and much faster than an SSVEP EEG BCI for
advanced ALS patients!2. These apparent poor performances are
primarily due to the completely auditory nature of these systems,
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which are intrinsically slower than a system based on visual
feedback. Lastly it was noteworthy that free voluntary spelling
mainly concerned requests related to body position, health status,
food, personal care and social activities suggesting that even with
this slow speller the patient could relay his needs and desires to
caretakers and family.

Our study showed communication in a patient with CLIS. It is
worth mentioning that no universally accepted clinical definition
exists to distinguish LIS from CLIS; the current standard criteria
to differentiate LIS from CLIS is the presence or absence of means
of communication. During the transition from LIS to CLIS,
patients are initially left with limited, and finally, no means of
communication. The time course of this transition process is
patient and disease specific. In theory, other voluntary muscles
than eye-movements could have been used for Electromyography
(EMG)-based communication attempts. Particularly face muscles
outside the extraocular muscles may remain under voluntary
control in some cases even after the loss of eye-muscle control. To
the best of the authors’ knowledge, no study has extensively
investigated the remaining muscle activity of CLIS patients, but in
previous studies?>2¢ the authors showed that during the transi-
tion from LIS to CLIS some remaining muscles of the eyes con-
tinue to function and can be used for successful communication.

In the case of the patient described here, extensive electro-
oculogram (EOG) recordings were performed to demonstrate
that no other measurable neuromuscular output existed- a way to
confirm CLIS. The patient employed an EOG-based BCI for
communication successfully for the last time in February 2019
when the amplitude of EOG signal decreased below 20 pV.
Nevertheless, extensive post-hoc EOG analysis showed a sig-
nificant difference in the maximum, mean, and variance feature
of the eye movement corresponding to “yes” and “no” even after
the patient’s inability to employ the EOG-based system. This
failure to communicate despite the presence of a significant dif-
ference in some of the features may be due to the limitations of
the EOG-based BCI system. However, as differences of eye
movement amplitudes were only detectable over tens of trials and
not reliably from session to session, EOG was not a practical
signal for communication. In this study, caretakers and family
members denied the existence of any possible reliable commu-
nication from February 2019 onwards, when this study occurred.
Thus, we conclude based on our reported measurements that the
patient described was in a CLIS a few weeks before and also after
implantation. This statement does not exclude the possibility that
even more sensitive measurements of somatic-motor control
could reveal some form of volitional control, which would render
the diagnostic statement of CLIS at least for this case inaccurate.
Nevertheless, by the measures we describe here no muscle-based
signals useful for communication were evident, leading us to
conclude that this patient could be classified as in the chronic
complete locked in state but was able to communicate using an
implanted BCI system usefully.

The present BCI communication demonstrates that an indi-
vidual unable to move for protracted periods is capable of
meaningful communication. Still, the current neurofeedback
based BCI system has several limitations, as several software and
hardware modifications would need to be implemented before the
system could be used independently by the family or caretakers
without technical oversight. The BCI-software is presently being
modified to improve communication quality and rate and the
self-reliance of the family.

In this study, communication rates were much lower compared
to other studies using intracortical arrays, which include com-
munication with a point-and-click screen keyboard’-?, and
decoding of imagined handwriting in a spinal cord injured
patient?’. People with ALS and not apparently completely locked-
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in have been able to use multi neuron-based decoders for more
rapid communication than seen here. The differences might be
both technical—a failure of the electrode—or biological, i.e.,
related to the disease state. While the multielectrode array (MEA)
used here typically shows some variable level of degradation in
the quality and number of recordings over time, such arrays
reportedly provide useful signals for years?$2°,

Our MEA retained impedances in the useful range across the
entire experimental period of this study (Fig. S2) and neurons
were recorded on many channels suggesting that the loss of
recordable neural waveforms cannot explain performance dif-
ferences. The most striking difference in the present data was the
inability to record neurons that modulated with the participant’s
volitional intent. This could be the result of the disease processes
on the neurons themselves or the protracted loss of sensory-
motor input itself. The observation that control was intermittent
may reflect changes in neural connectivity or the ability to be
activated. Lack of any somatic sensory feedback, especially that
from muscles, might impede voluntary modulation of neural
activity. Participants with ALS enrolled in previous trials appar-
ently had at least some residual voluntary control of muscles,
whereas this participant had lost all control by the time of
implantation. Additionally, advanced ALS may have led to cog-
nitive or affective changes such as shortened attention span or
modified motivational systems that may have made it difficult to
achieve reliable modulation of large numbers of neurons (dozens
to hundreds) achieved in other ALS participants with similar BCI
systems implanted. Altered cortical evoked response amplitudes
and latencies®” seen in this individual may be a reflection of these
abnormal states. CLIS patients with ALS show highly variable and
often pathological neurophysiological signatures®' such as het-
erogeneous sleep-waking cycles®? that may also affect the ability
to engage neurons. Lastly, auditory cues may engage motor
processes that will activate neurons in frontal areas outside of the
motor cortex3, which may have contributed to the changes with
the auditory task used here.

To conclude, this case study has demonstrated that a patient
without any stable and reliable means of eye-movement control
or identifiable communication route employed a neurofeedback
strategy to modulate the firing rates of neurons in a paradigm
allowing him to select letters to form words and sentences to
express his desires and experiences. It will be valuable to extend
this study to other people with advanced ALS to address the
aforementioned issues systematically.

Methods

The medical procedure was approved by the Bundesinstitut fiir Arzneimittel und
Medizinprodukte (“BfArM”, The German Federal Institute for Drugs and Medical
Devices). The study was declared as a Single Case Study and has received a special
authorization (“Sonderzulassung”) by BfArM, according to §11 of the German
Medical Device Law (“Medizin-Produkte-Gesetz”) on December 20, 2018, with
Case Nr. 5640-5-036/18. The Ethical Committee of the Medical Faculty of the
Technische Universitit Miinchen Rechts der Isar provided support to the study on
19 Jan 2019, along with the explicit permission to publish on 17 February 2020.
Before the patient transitioned into CLIS, he gave informed consent to the surgical
procedure using his eye movements for confirmation. The patient was visited at
home by authors HT and JL, and thorough discussions were held with the legally
responsible family members (wife and sister) in order to establish convincing
evidence of the patient’s informed consent and firm wish to undergo the procedure.
The legally responsible family members then provided informed written permis-
sion to the implantation and the use of photographs, videos, and portions of his
protected health information to be published for scientific and educational pur-
poses. In addition, a family judge at the Ebersberg county court gave the permis-
sion to proceed with the implantation after reviewing the documented consent and
a visit to the patient. The patient received no compensation for the participation.

Patient. The patient, born in 1985, was diagnosed with progressive muscle atrophy,
a clinical variant of non-bulbar ALS, selectively affecting spinal motor neurons in
August 2015. He lost verbal communication and the capability to walk by the end
of 2015. He has been fed through a percutaneous endoscopic gastrostomy tube and
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artificially ventilated since July 2016 and is in home care. He started using the
MyTobii eye-tracking-based assistive and augmentative communication (AAC)
device in August 2016. From August 2017 onwards, he could not use the eye-
tracker for communication because of his inability to fixate his gaze. Subsequently,
the family developed their own paper-based spelling system to communicate with
the patient by observing the individual’s eye movements. According to their
scheme, any visible eye movement was identified as a “yes” response, lack of eye
movement as “no”. The patient anticipated complete loss of eye control and asked
for an alternative communication system, which motivated the family to contact
authors NB and UC for alternative approaches. Initial assessment sessions were
performed in February 2018. During this interval, the detection of eye movements
by relatives became increasingly difficult, and errors made communication
attempts impossible up to the point when communication attempts were aban-
doned. The patient and family were informed that a BCI-system based on elec-
trooculogram (EOG) and/or electroencephalogram (EEG) might allow “yes” - “no”
communication for a limited period.

The patient began to use the non-invasive eye movement-based BCI-system
described in Tonin et al.2!. The Patient was instructed to move the eyes (“eye-
movement”) to say “yes” and not to move the eyes (“no eye-movement”) to say
“no”. Features of the EOG signal corresponding to “eye-movement” and “no eye-
movement” or “yes” and “no” were extracted to train a binary support vector
machine (SVM) to identify “yes” and “no” response. This “yes” and “no” response
was then used by the patient to auditorily select letters to form words and hence
sentences. The patient and family were also informed that non-invasive BCI-
systems might stop functioning satisfactorily, and in particular, selection of letters
might not be possible if he became completely locked-in (where no eye movements
could be recorded reliably). In that case, implantation of an intracortical BCI-
system using neural spike-based recordings might allow for voluntary
communication. As the patient’s ability to communicate via non-invasive BCI
systems d, in June 2018, p ions for the i of an
intracortical BCI system were initiated. To this end, HT and JL and GF were
approached in order to prepare the surgical procedure and ensure clinical care in a
hospital close to the patient’s home. The patient was able to use the non-invasive
BCI system employing eye-movement to select letters, words, and sentences until
February 2019, as described in Tonin et al.21:3%, By the time of implantation, the
EOG/EEG based BCI system failed, as signals could not be used reliably for any
form of communication in this investigational setting. The EOG/EEG recordings
and their analysis are described in Note 1 and 1
Fig. S4. Additionally, the patient reported low visual acuity caused by the drylng of
the cornea.

Surgical procedure. A head MRI scan was performed to aid surgical planning for
electrode array placement. The MRI scan did not reveal any significant structural
abnormalities, in particular no brain atrophy or signs of neural degeneration. A
neuronavigation system (Brainlab, Munich, Germany) was used to plan and per-
form the surgery. In March 2019, two microelectrode arrays (8x8 electrodes each,
1.5 mm length, 0.4 mm electrode pitch; Blackrock Microsystems LLC) were
implanted in the dominant left motor cortex under general anaesthesia. After a left
central and precentral trephination, the implantation sites were identified by

ang of the brain surface. A pneumatic
inserter was used® to insert the electrode arrays through the arachnoid mater,
where there were no major blood vessels. The pedestal connected to the micro-
electrode arrays connected via a bundle of fine wires (Blackrock Microsystems
LLC), was attached to the calvaria using bone screws and was exited through the
skin. The first array was inserted into the hand area region of the primary motor
cortex?, and the second array was placed 2 cm anteromedially from the first array
into the region of the supplementary motor area (SMA) as anatomically identified.
No implant-related medical adverse events were observed. After three days of post-
operative recovery, the patient was discharged to his home.

Neural signal processing. A digitizing headstage and a Neural Signal Processor
(CerePlex E and NSP, Blackrock Microsystems LLC) were used to record and
process neural signals. Raw signals sampled at 30kS/s per channel were bandpass
filtered with a window of 250-7500 Hz. Single and multi-unit action potentials
were extracted from each channel by identifying threshold crossings (4.5 times
root-mean-square of each channel’s values). Depending on the activity and noise
level, thresholds were manually adjusted for those channels used in the BCI ses-
sions after visual inspection of the data to exclude noise but capture all of the
visible spikes above the threshold. Neural data were further processed on a separate
computer using a modified version of the CereLink library (https://github.com/
dashesy/CereLink) and additional custom software. For communication, we used
spike rates from one or more channels. A spike rate metric (SRM) was calculated
for each channel by counting threshold crossings in 50 ms bins. The SRM was
calculated as the mean of these bins over the past one second.

Custom software written in Python and C + + was used to perform and control
all BCI sessions. The software managed the complete data flow of the raw signals
provided by the NSP, allowing manual configuration of recording parameters,
selection of individual channels for neurofeedback and storing of neural data, and
meta-information (timing information of trigger events, etc.) required for offline
analysis.
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The software enabled the experimenter to configure different experimental
protocols, to select an experimental paradigm for each session, and to trigger the
start and end of a session. The software-controlled the presentation of auditory
stimuli to the patient, including the presentation of feedback from his neural
activity. It also provided live feedback to the experimenter regarding ongoing
progress, e.g. the currently spelled phrase. Also, the software provided live
visualization of neural activity, including the original firing rate activity of selected
channels and normalized firing rate activity used for neurofeedback. To secure
smooth real-time processing and to avoid potential performance bottlenecks, the
software supported mulupmcessmg Thal is, all cnucal processes, mcludmg data

data storage, ang were.
executed in separated cores.

Neurofeedback communication. The patient was provided auditory feedback of
neural activity levels by mapping the SRM for one or more channels to the fre-
quency of an auditory feedback tone, as shown in Fig. 1. Single channel spike rates
were normalized according to the spike rate distribution of each channel. Selected
channels’ normalized SRMs were then summed and linearly mapped to the range
of 120-480 Hz, determining the frequency of the feedback tone produced by an
audio speaker. Feedback tones were updated every 250 ms. The firing rate ; of each
selected channel was constrained to the range [a,b;], normalized to the interval
[0,1], and optionally inverted, and the resulting rates were averaged:

max(min(r,(1), ), a,)
bv — 4

)

+¢

2

where r(t) is the overall normalized firing rate, and the ¢; are 1 or —1. The nor-
malized rate was then linearly mapped to a frequency between 120 and 480 Hz for
auditory feedback. Feedback tones were pure sine waves lasting 250 ms each.
Initially, channels were selected randomly for feedback. Then the parameters a; byc;
as well as the channels used for control were chosen and iteratively optimized each
day in the neurofeedback training paradigms.

The first paradigm (“feedback without reward”) provided successive target
tones at 120 or 480 Hz, and the patient was asked to match the frequency of the
feedback to the target (typically 20 pseudorandom trials per block). In the
“feedback with reward” paradigm, was essentially the same, however, upon
reaching and holding (during a configurable number of interactions, each
interaction lasting 250 ms) the feedback tone within a predefined range around
the target frequency, an additional reward sound was delivered for 250 ms
indicating successful performance to the patient. Holding the feedback tone at the
high (low) end of the range for 250 ms was then interpreted by the patient upon
instruction as a Yes (No) response (see Supplementary Video V1 as a typical
example). The “feedback with reward” paradigm served to train and validate the
responses.

We also validated the Yes/No responses in a question paradigm, in which the
answers were assumed to be known to the patient. Furthermore, we used an
‘exploration” paradigm to test if the patient’s attempted or imagined movements
could lead to modulation of firing rates.

Finally, in an auditory speller paradigm, the patient could select letters and
words using the previously trained Yes/No approach. The auditory speller
paradigm is depicted in Fig. 1c. The speller system described here avoids long
adaptation and learning phases because it is identical to the one used previously
when he was still in control of eye movements. The original arrangement of the
letters in their respective groups was chosen according to their respective frequency
in the patient’s native German language.

The speller’s output was rated for mlelllglblllty by three of the authors (UC v,
and JZ). Three categories were used: uni and i
Ambiguous speller output includes grammatically correct words that could not be
interpreted in the context as well as strings of letters that could give rise to
uncertain interpretations. Intelligible phrases may contain words with spelling
mistakes or incomplete words, but the family or experimenter identified and agreed
upon their meaning.

To evaluate the performance of the speller, the information transfer rate’® (ITR)
B during speller sessions that were rated as intelligible was calculated as:

@)

where N is the number of possible speller selections (30 including space, delete,
question mark and end program), and P is the probability that a correct letter was
selected. Multiplication with selected symbols and division by session duration
yields bits per minute.

1—
B =log,N + Plog,P + (1~ P) log, y-—

Data handling. Software and procedures were designed to provide redundancy and
automation to ensure that crucial information is always saved with each recording:

1. The BCI software was impl

each session:

d with extensive

d logging for

a. neural data (spike rates) used for BCI control

o

configuration used to run the particular session, including channel
selection, normalization parameters, thresholds for yes/no detection, task
timings, arrangement of letters in speller, etc.

source code of the KIAP BCI software used on that day. The BCI
software was kept under version control using git. The hash of the
current commit was saved along with any changes compared to that

il

commit.

2. Specific instructions were given to the personnel performing the experi-
mental sessions to acquire raw neural data collected in parallel to the BCI
data, which included loading a configuration file, starting data recording
before a BCI session, and stopping the recording at the end. Two
experimenters were on-site, when possible, to divide system operation and
patient interaction tasks.

3. Information about each recording session was entered into a session log in a
shared Excel file (which has a history of edits). Information logged include
for each session:

a. kind of experiment
b. file names of raw data and KIAP BCI data
c. any additional EEG recordings if performed
d. names of video files if performed
e. experimenters present
f. observations/abnormalities for the session
g data recording abnormalities, etc.
4. During the experiments, known issues were fixed, for example, a change in

log file format was implemented (as noted in the accompanying dataset),
which allowed to more easily interpret the data. The post hoc analysis, i.e.,
parsing log files and data compilation was checked manually for several
sessions. Co-authors reviewed the results and the process.

Data handling procedures were implemented to ensure that data integrity
was maintained from recording to safe storage.

Dataset reported in this article. The dataset here spans days 106 to 462 after
implantation. For the analysis of neurofeedback trials in Fig. 2 and the corre-
sponding main text, only blocks after day 123 were used because of a change in
paradlgm (before day 123, incorrect trials and time-outs were not differentiated).

For 1 y Fig. 1, all dback blocks were used, as time-out trials
were counted as mcorrecl as well. All speller sessions performed between days 106
and 462 were included in the analysis. The BCI data of one neurofeedback and one
speller session were lost during data transfer and the loss was only discovered after
the original data had been deleted. These sessions were therefore excluded from the
analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The data upon which the findings in this paper are based (neural firing rates, event log
files for data presented in Figs. 2, 3, 4, S1, $3; electrode impedances and spike event files
for data presented in Fig, S2) are available at https://do.org/10.12751/g-node.jdwmjd?”.
The EOG data which Fig. $4 is based on is available at https://doi.org/10.12751/g-
node.ngdfr . Source data are provided with this paper. The raw neural recordings is
available upon request to J.B.Z., yet owing to the potential sensitivity of the data, an
agreement between the researcher’s institution and the Wyss Center is required to
facilitate the sharing of these datasets. Source data are provided with this paper.

Code availability
The code used to run the BCI system is available at https:/doi.org/10.12751/g-
node.ihc6gn®.
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Abstract

To develop a more reliable brain-computer interface (BCI) for patients in the completely locked-in state (CLIS), here we
propose a Pavlovian conditioning paradigm using galvanic vestibular stimulation (GVS), which can induce a strong sensation
of equilibrium distortion in individuals. We hypothesized that associating two different sensations caused by two-directional
GVS with the thoughts of “yes” and “no” by individuals would enable us to emphasize the differences in brain activity
associated with the thoughts of yes and no and hence help us better distinguish the two from electroencephalography (EEG).
‘We tested this hypothesis with 11 healthy and 1 CLIS participant. Our results showed that, first, conditioning of GVS with the
thoughts of yes and no is possible. And second, the classification of whether an individual is thinking “yes” or “no” is
significantly improved after the conditioning, even in the absence of subsequent GVS stimulations. We observed average
classification accuracy of 73.0% over 11 healthy individuals and 85.3% with the CLIS patient. These results suggest the
establishment of GVS-based Pavlovian conditioning and its usability as a noninvasive BCL.

Key words: brain-computer interface, completely locked-in state, electroencephalography, galvanic vestibular stimulation,
Pavlovian conditioning
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease
that leads to loss of all motor control, including movements
of eyes, face, limbs, and external sphincter in the late stage
of the disease (Kiernan et al. 2011). The state, after loss of all
motor control, is called the completely locked-in state (CLIS),
and patients in this state lose all communication channels with
their surroundings (Murguialday et al. 2011). In order to improve
their quality of life by providing communication, many stud-
ies have attempted to develop brain-computer interfaces (BCIs)
using electroencephalography (EEG) and functional near-infrared
spectroscopy (fNIRS). A semantic “Yes/No BCI,” where the BCI
directly decodes whether an individual is thinking “yes” or “no”
to a particular question, has been of great interest (Kiibler and
Birbaumer 2008; Murguialday et al. 2011; De Massari et al. 2013;
Gallegos-Ayala et al. 2014; Chaudhary et al. 2017; Okahara et al.
2018; Han et al. 2019; Khalili Ardali et al. 2019). A Yes/No BCI can
enable natural communication between the CLIS patients and their
family and caretakers, without requiring the patients to perform
any other cognitive tasks unrelated to the question posed to
them, such as number calculation or motor imagery, in order
for the BCI to decode and understand their answers. However,
the neural representations of “yes” and “no” are arguably quite
different depending on questions and individual experiences and
memory background. Therefore, it may be helpful to introduce a
procedure that emphasizes the difference between the thought
of yes/no in neural activation and in addition enhances the
signal-to-noise ratio of electrocortical activity.

In order to evoke additional brain activity allowing to better
distinguish the neural response to the thought of yes/no, classi-
cal conditioning, also known as Pavlovian conditioning, seems to
be a promising method. As shown in the famous example (Pavlov
1927), if a dog repeatedly listens to the sound of a bell preceding
feeding, the mere sound of the bell will cause the animal to
salivate in anticipation of the food (Fig. 1a). The salivation occurs
unconsciously and cannot be controlled voluntarily. Here, the
important point is to associate two previously unrelated events
(the conditioned stimulus (CS), in this example the sound of
the bell, and the unconditioned stimulus (US), in this example
the sight of food), with the unconditioned response (UR, i.e.,
salivation), which before conditioning is a reflexive response
induced by food (the US).

For establishing Pavlovian conditioning, we introduced gal-
vanic vestibular stimulation (GVS) as a US because equilibrium
distortion sensations (EDS) such as visual rotation and tilt of
the body caused by GVS are reflexive responses and expected
to serve as a UR. GVS is a variation of transcranial direct cur-
rent stimulation (tDCS) and excites the vestibular system that
controls our body balance (Fitzpatrick and Day 2004; Utz et al.
2010). Being noninvasive, nonpainful, and safe, GVS has drawn
attention not only for scientific purposes but also for applications
in clinical and engineering disciplines (Maeda et al. 2005; Pan
et al. 2008; Sra et al. 2017; Dlugaiczyk et al. 2019; Liu et al.
2019). Existing literature of fMRI analysis during GVS and the
anatomical connections between the vestibular nuclei revealed
involvement of sensorimotor-related areas (Mountcastle 1957;
Lobel et al. 1998) and parietal areas to the vestibular functions
(Stephan et al. 2005; Lopez et al. 2012; Reichenbach et al. 2016).

In this study, we established associations between thoughts
of (i.e., covert) yes/no answers to questions and two EDSs with
a Pavlovian conditioning paradigm. Using a differential condi-
tioning paradigm as shown in Figure 1a (Razran 1971), two types
of EDSs with different directions were constructed by altering
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the polarity of the current from two electrodes (one anode and
one cathode) attached to the mastoids behind the ears (Utz et al.
2010), and the two EDSs were associated with thoughts of yes
and no, respectively. In this paradigm, the thought of yes/no
is expected to function as the neutral stimulus (NS, i.e., sound
of the bell) that will become a conditioned stimulus (CS) after
establishing the conditioning successfully. If the conditioning
succeeds, brain activity evoked by the EDSs will become the
conditioned response (CR) as does salivation. Although attempts
to associate yes/no with auditory and tactile stimulation in con-
ditioning paradigms have been made in other studies (Furdea
et al. 2012; De Massari et al. 2013; Ruf et al. 2013), GVS has not
been used in this paradigm. Given the reflexive nature of the EDS
compared with auditory and tactile perception, EDS is expected
to be easier to associate it with thought of yes/no compared with
other stimulations usually with additional auditory (such as two
sounds with different frequencies) or visual cues or different
types of imagery. In the context of this BCI, it is the stimulus
question including its semantic content asked to the patient
requiring a yes or no answer together with the GVS, which
constitutes the conditioned stimulus. As in the original Pavlovian
experimental situation, we assume—following Pavlov—that the
pairing of the neutral CS with a biologically significant stimulus
(sight of food) will make an associative contingency more stable
and resistant to extinction than the semantic content and the
sounds of the question alone. In our case, the biologically sig-
nificant stimulus consists of the two types of GVS that cause
EDS, which is impossible to escape and of obvious biological
significance in order to keep the body balance. This is particularly
important in the case of a CLIS patient when questions may lose
their power to elicit a response through an extinction process
because yes or no answers are not possible anymore due to the
complete paralysis and have no biologically relevant effects (i.e.,
no answer responses from the social environment) and thus will
lose the contingency through extinction. On the subjective level,
this may be experienced as disattention and loss of interest to
answer any question with a yes or no response.

To anticipate our results, we found that EDS could be clearly
associated with the thoughts of “yes” and “no,” which we could
verify using functional magnetic resonance imaging (fMRI) where
we observed clear activation in sensorimotor-related and parietal
areas induced by the thought of yes/no (after association). Fol-
lowing the conditioning, we performed a classification analysis
for the thought of “yes” versus “no” using EEG cortical current
source (EEG-CCS) signals. The methodology showed appreciable
performance not only with healthy participants but also with a
CLIS patient.

Materials and Methods
Participants

Eleven healthy human participants (H1 to H11) from 23 to
55 years old (M=34.5, SD=12.7, 10 males and 1 female) and an
ALS patient in the CLIS (P1) (male, 39 years old) participated in
this study. Six participants (H1 to H6) participated in the fMRI
experiment to examine brain activation difference between the
pre- and postconditioning sessions. These participants then
participated in an EEG experiment to examine the decoding
accuracy after the conditioning. Next, we invited five naive
participants (H7 to H11) to the EEG experiment to examine the
conditioning effect by comparing the yes versus no classification
accuracies between the pre- and postconditioning sessions.



Binary Semantic Classification Using Cortical Activation Yoshimura et al.

(a) B i )
ackview GVS current amplitude
+15-+25mA
Right-ear down
L R
.+
GVS current amplitude ~ ——>
-15--25mA
Left-ear down
Food Salivation
i Unrelated Reflexively
- * event induced
Yes-thinking _> Positive current GVS _> EDS: Right-ear down
- e
Ll R
No-thinking Negative current GVS EDS: Left-ear down

Neutral stimulus Unconditioned stimulus

Conditioned stimulus

Unconditioned response

Conditioned response

After conditioning
(b) GVS conditioning sessions Question sessions
Rest
Answer thinking 35:EEG
T L ovs 35 S L 1s 08 Aswertinng 35 Rest 39)
I 1 1 Time ; 1 t Time
") ") ") ") ") o)
YesorNo  High-tone beep Low-tone beep [ MMRI experiment Question  High-tone beep Low-one beep
(Thinking start) (Thinking stop) (Thinking start) (Thinking stop)
(C) EEG experiment fMRI experiment
Pre Conditioning Post Pre Conditioning Post
Question —| 40 trials > Question Question > 16 trials > Question
40 trials x 3 40 trials 16 trials x2 16 trials

P>

Figure 1. Experimental concept and paradigm. (a) Upper panel: Two GVS electrodes were placed behind the ears, an anode (red) electrode behind the right ear, and a
cathode (blue) behind the left ear. Three positive half cycles of 0.5 Hz sine waves were provided for thought of “yes,” which resulted in right-ear-down tilt sensation. In
the case of thought of “no,” 3 negative half cycles of 0.5 Hz sine waves were given to induce left-ear-down tilt sensation. Lower panel: Conceptual diagram of the thought
of yes/no, GVS, and brain activity caused by EDS aligned with examples of Pavlovian conditioning. (b) One-trial time flow of GVS conditioning and question sessions. In
both sessions, participants started thinking the answer after a high-tone beep and stopped thinking when they heard a low-tone beep. In fMRI experiments, they rated
the EDS direction on a visual analog scale after the answering period of the conditioning sessions. (¢) Session structures for EEG and fMRI experiments. Both EEG and
fMRI data were used to investigate additional activated brain areas caused by the EDS after the conditioning (i.e., postconditioning sessions). We estimated EEG-CCS

from EEG sensor signals, and the EEG-CCS signals were used for the yes/no classification analysis.
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This is an exploratory study that aimed at formulating a basis
for a clear hypothesis on the GVS conditioning effect for future
studies with CLIS patients. In terms of applying this method
to BCI, we intended to evaluate its effectiveness with a large
effect size. In the past BCI studies, we found that even those with
large effect sizes of decoding accuracies were in the range of
0.8 to 10 (Ruf et al. 2013; Fukuma et al. 2018; Irimia et al. 2018).
Therefore, we calculated the effect size using our data from the
six participants (H1-H6) and obtained a value of d=2.26 (Mean
accuracy+S.D.=61.59+5.31; Mean chance+S.D.=51.43+3.51).
Then, a power analysis of the t-test was conducted using
Gxpower 3.1 (Faul et al. 2007) with power set at 0.8, effect size
at 2, and alpha at 0.05, resulting in a sufficient sample size
of five participants. Therefore, we recorded EEG from GVS-
naive five participants (H7-H11) to examine the significance of
the conditioning effect between the pre- and postconditioning
sessions. The effect size calculated from the results was d=1.64.
Since this value is higher than Cohen’s recommendation for
a large effect size (i.e,, 0.8) (Cohen 1988), we assumed that
a significant effect would allow a clear hypothesis for the
future investigation with CLIS patients. An effect size of d=2.46
was obtained using the comparison to chance level from all
11 participants.

The patient was diagnosed with bulbar ALS in 2009. He lost
speech and capability to move by 2010. He has been artificially
ventilated since April 2010 and is in home care. No communi-
cation with eye movements, other muscles, or assistive commu-
nication devices was possible since 2012. The study protocol for
the healthy participant was approved by the ethics committee of
the Tokyo Institute of Technology, Japan (Approval No. 2019017),
and the protocol for the patient was approved by the Institu-
tional Review Board of the Medical Faculty of the University of
Tiibingen, Germany; and the experiments were carried out in
accordance with the Declaration of Helsinki. Written informed
consent was obtained from each of the healthy participants
before the experiment and, in the case of the patient, from the
patient’s legal representative.

GVS Procedure

The positive and negative half cycle of 0.5 Hz sine waves were
created by MATLAB R2014a (The MathWorks, Inc.) and sent to
the DC Stimulator Plus (neuroConn, neuroCare Group GmbH) via
a digital-analog converter (NI USB-6225, National Instruments
Corporation) to provide the electrical current to the two elec-
trodes placed behind the ears. As shown in Figure 1a, 3 rep-
etitions of the positive or negative half cycle wave were pro-
vided in one trial (i.e., during thoughts of “yes” or “no”), which
resulted in 3-s stimulation per trial. The positive waves were
provided during thoughts of yes, and the negative waves were
used for the thought of no. The anode (positive) electrode was
placed behind the right ear, and the cathode (negative) electrode
was placed behind the left ear. Therefore, the direction of the
EDS was different depending on the content of the thought;
the EDS occurs toward the anode, which means persons felt
a right-ear-down EDS during the thought of “yes” and a left-
ear-down EDS during the thought of “no.” The absolute maxi-
mum value of the sine waves was in a range of 1.0-3.0 mA as
determined by each participant’s scaling before the experiment
so that she or he could recognize the direction difference of
the EDS. For the CLIS patient, his sister (legal representative)
decided the amplitude as 2.0 mA based on her own experience of
the GVS.

Experimental Paradigms of Classical Conditioning and
Question Sessions

The experiment was conducted in the following order: a
preconditioning question session, conditioning sessions, and a
postconditioning question session (Fig. 1c). GVS was provided
to the participants only in the conditioning sessions (Fig. 1b).
Both the fMRI and EEG experiments were conducted with the
participants lying in supine position with their eyes closed so as
to replicate the CLIS patient’s posture. All the participants were
instructed about the task sequence described below before the
experiment.

In the conditioning sessions, GVS was applied to the partici-
pants when they thought “yes” and “no.” Specifically, in one trial,
they first heard the spoken word “yes” or “no” and started think-
ing that word after they heard a high-tone beep sound. Positive
GVS, for “yes” (right-ear-down distortion), and negative GVS, for
“no” (left-ear-down distortion), were given to the participants
1 s after the high-tone beep. The participants were instructed
to stop thinking after 3 s when hearing a low-tone beep. In the
case of the fMRI experiments, we asked the participants to report
their perceived direction of EDS in each trial (Fig. 1b, left panel).
The number of trial repetitions in one session varied between
the EEG and fMRI experiments (See sections fMRI Experiment and
EEG Experiment). We confirmed the effect of the conditioning by
checking after each conditioning session whether the partici-
pants could easily or spontaneously associate the two types of
EDS with the thoughts of “yes” and “no” answers. Precisely, after
the training session, we confirmed that the participants could
remember the difference of EDS between the thoughts of yes
and no.

In the question sessions, the participants thought “yes” or
“no” as an answer for an auditorily presented question in the
absence of GVS. The question was randomly selected from 23
pairs of yes and no questions shown in Supplementary Table 1.
All the questions were simple, and the answers were known to
the participants and experimenters. The questions used for the
CLIS patient in the EEG experiment were personal and chosen
by his family, and the patient knew the answers to the ques-
tions according to family’s information. The experiment with the
patient was performed at the patient’s home. The same beep
sounds as in the conditioning sessions were used to provide
starting and stopping cues.

The high- and low-tone beep sounds were created by extract-
ing a portion of the “burn_failed.wav,” a standard tone in the win-
dows OS at sampling rates of 25000 Hz and 8000 Hz, respectively.
The “Yes” and “No” words and questions for the patient were
recorded by the patient’s legal representative, whereas the words
for the healthy participants were synthesized using the Text-to-
Speech function in the Macintosh OS.

fMRI Experiment

Six of the eleven healthy participants (H1-H6) participated in the
fMRI experiment. The fMRI experiment consisted of two condi-
tioning sessions and two question sessions including one pre-
conditioning session and one postconditioning session (Fig. 1c).
The auditory stimuli were presented to the participants via MRI-
compatible earphones (KMR-512(S), KOBATEL Corporation) in an
MRI scanner. In a conditioning session, 8 yes and 8 no audi-
tory stimuli (i.e., 16 trials in total) were provided in random
order. After the thought period, a visual analog scale asking the
direction of the EDS was displayed (see Fig. 1b), and the par-
ticipants answered it using an MRI-compatible trackball mouse
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(HHSC-TRK-2, Current Designs Inc.). In a question session, 8 yes
and 8 no questions were randomly selected from the list in
Supplementary Table 1 and presented. The participants thought
“yes” or “no” after the high-tone beep. The experimental software
used for the conditioning and question sessions, such as present-
ing the auditory stimuli and sending the sine waves for GVS, were
all written in MATLAB R2018b, using the Psychophysics Toolbox
extensions (Brainard 1997; Pelli 1997; Kleiner et al. 2007).

A 3 T Magnetom Prisma MRI scanner equipped with a 32-
channel array coil (Siemens) was used for the functional and
anatomical MRI acquisition. During the experiment, the partici-
pants lay on the scanner bed in a supine position with eyes closed
to replicate the posture of the CLIS patient. In the conditioning
sessions, they opened their eyes when they heard the low-tone
beep sound to indicate the direction of the GVS. The visual
analog scale was displayed on a 32-inch BOLDscreen (Cambridge
Research Systems) and presented to the participants through
a mirror that was mounted over their faces. Functional data
were acquired with a T2*-weighted gradient-echo, echo-planar
imaging sequence using the following parameters: repetition
time (TR) =2.5 s; echo time (TE) =30 ms; flip angle (FA) =80°; field
of view (FOV) =212 x 212 mm; matrix size =64 x 64; 40 slices; slice
thickness=3.2 mm. In the conditioning sessions, we did not
fix the time for the participants to report the direction of GVS
using the trackball mouse after the thoughts of yes and no. In
the question sessions, the time period required for presenting
questions was different from one question to another. A brain
fMRI volume refers to one complete 3D image of the brain. The
time taken to record one volume is TR (i.e., repetition time). Due
to difference in the response time by our participants (which
was not fixed) and due to differences in the length of questions
presented to the participants, the length of the fMRI sessions
and hence the number of brain volumes varied across sessions
and participants. A 3D anatomical image was acquired using
an MPRAGE T1-weighted sequence (TR=1900 ms; TE=2.52 ms;
FA=9°; FOV =256 x 256 mm; matrix size =256 x 256; 192 slices;
slice thickness =1.2 mm).

fMRI Data Analysis

fMRI data analysis was performed using SPM12 (Wellcome
Department of Cognitive Neurology; http://www.filion.ucl.ac.u
k/spm) running on MATLAB R2016b for individual participant
analysis. Statistical analyses were performed using a general
linear model (GLM) after the standard preprocessing (i.e.,
spatial realignment to the mean EPI image, slice timing
corrections, coregistration of a bias-corrected T1-weighted
anatomical image to the realigned images, normalization to
the Montreal Neurological Institute (MNI) standard brain, and
smoothing with a full-width spatial Gaussian kernel of 8 mm
at half maximum). The yes/no thought periods were modeled
using boxcar functions and convolved with the hemodynamic
response function. After the model parameters estimation,
statistical parametric maps for each participant were created
using four conditions: Yes > No (in preconditioning), No >
Yes (in preconditioning), Yes > No (in postconditioning), and
No > Yes (in postconditioning) with P <0.001 (uncorrected for
multiple comparisons). One-sample t-tests were conducted
for the group analysis using the four contrasts from the six
participants by setting the regions of interest (ROIs). Based on
the existing literature on GVS and galvanic vestibular system
(Mountcastle 1957; Lobel et al. 1998; Stephan et al. 2005; Lopez
et al. 2012; Reichenbach et al. 2016), we fixed the ROI to
sensorimotor-related areas [postcentral gyrus, precentral gyrus,
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and supplemental motor areas (SMA)] and parietal areas (angular
gyrus, precuneus, parietal operculum, supramarginal gyrus,
and superior parietal lobule) using maximum probability tissue
labels derived from the Neuromorphometric atlas (provided by
Neuromorphometrics, Inc. http://Neuromorphometrics.com) as
implemented in SPM12.

EEG Experiment

The EEG experiment consisted of three consecutive conditioning
sessions with 40 trials, followed by one question session (post-
conditioning session) with 40 questions (Fig. 1c). For the partic-
ipants H7-H11, preconditioning session with 40 questions was
performed before the conditioning sessions. The auditory stimuli
were presented using stereo speakers. In one conditioning ses-
sion, 20 yes and 20 no auditory stimuli were presented in random
order. In a question session, 20 yes and 20 no questions were
randomly selected from the list in Supplementary Table 1 and
presented. As in the fMRI experiment, the participants thought
“yes” or “no” after the high-tone beep and were instructed to stop
the thought when they heard the low-tone beep. The experimen-
tal program was written using MATLAB R2014b.

For the healthy participants, EEG signals were recorded from
64-channel active electrodes placed according to the extended
international 10-20 system layout using the ActiveTwo system
and the ActiView software (BIOSEMI) with a sampling rate of
512 Hz. The 64-channel locations are Fp1, AF7, AF3, F1, F3, F5, F7,
FT7,FC5,FC3, FC1, C1, C3, C5, T7, TP7, CPS5, CP3, CP1, P1, P3, PS5, P7,
P9,P07,P03,01, 0z,1z, POz, Pz, CPz, Fpz, Fp2, AF8, AF4, Afz, Fz,F2,
F4,F6, F8, FT8, FC6, FC4, FC2, FCz, Cz, C2, C4, C6, T8, TP8, CP6, CP4,
CP2, P2, P4, P6, P8, P10, PO8, PO4, and O2. During the experiment,
they lay on a bed in a supine position in an electrically shielded
soundproof room (AMC-3515, 0'HARA & Co., Ltd) with eyes closed
so as to replicate the CLIS patient’s posture.

For the patient, EEG signals were recorded from 32-channel
active electrodes using a BrainAmp DC amplifier and actiCAP
snap (Brain Products GmbH) with a sampling rate of 500 Hz. The
32-channel locations are Fp1, Fz, F3,F7,FT9, FC5, FC1, C3, T7, TP9,
CP5, CP1, Pz, P3, P7, 01, Oz, 02, P4, P8, TP10, CP6, CP2, Cz, C4, T8,
FT10, FC6, FC2, F4, F8, and Fp2. The patient also lay on a bed at
his home in a supine position, which he usually stays in. His eyes
were closed (only manual opening is possible in CLIS). We did
not perform preconditioning session by considering the burden
of the patient.

EEG Data Preprocessing

EEG raw data were loaded into MATLAB using the EEGLAB toolbox
(https://scen.ucsd.edu/wiki/EEGLAB) (Delorme and Makeig 2004).
The loaded data were band-pass filtered between 0.5 Hz and
40 Hz, and epoched in reference to the onset of GVS that started
1s after the high-tone beep sound that indicated the start of the
imagery. Each epoch had a duration of 6 5, 2 s of preonset and 4 s
of postonset. The epoched 3-dimensional matrix (i.e., channel x
timepoints x trials) were saved with other information that was
required for the following EEG-CCS estimation.

EEG-CCS Estimation

‘We examined whether the thoughts of yes and no could be
discriminated using the EEG-CCS signals. EEG-CCS was esti-
mated using the distributed source localization methods called
Variational Bayesian Multimodal EncephaloGraphy method
(VBMEG) toolbox (ATR Neural Information Analysis Laboratories;
http://vbmeg.atr.jp/?lang=en) (Sato et al. 2004). The coordinate
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positions of 9731 vertices are defined on the cortical surface
of the MNI standard brain (Fig. 1c, pink dots in the left-bottom
panel), and time series of the vertices (i.e., EEG-CCS) were
estimated from the 64-channel EEG sensor signals (32-channels
for the CLIS patient) using a hierarchical Bayesian framework
(Sato et al. 2004). A T1-weighted MRI anatomical image is often
used to create an individual brain model for each person. In
this study, however, considering the difficulty of obtaining MRI
images from patients in the CLIS, we used an MNI standard brain
model and a lead-field matrix that is provided by the toolbox
also for the healthy participants, instead of using their individual
MRI images. The brain model includes XYZ coordinates of 9731
vertices, and the lead-field matrix is a forward filter to calculate
EEG signals from the defined EEG-CCS signals based on sulci and
gyri geometry and difference of electrical conductivities between
scalp, skull, and cerebrospinal fluid (CSF). A Bayesian framework
was used to estimate an inverse filter that calculates EEG-CCS
signals from EEG sensor signals. We used default parameters
defined by VBMEG throughout the EEG-CCS estimation. The
inverse filter was estimated using all the trial data including
both answers with the Bayesian activation prior as “uniform,”
and EEG-CCSs were calculated by applying the preprocessed EEG
data to the inverse filter. The EEG-CCSs were estimated for the
whole cortex.

Yes/No Classification Using EEG-CCS

‘We performed a binary classification analysis between the
thoughts of yes and no using the estimated EEG-CCS and Sparse
Logistic Regression (SLR) toolbox version 1.2.1 alpha (Yamashita
et al. 2008) (ATR Computational Neuroscience Laboratories;
https://bicr.atr.jp/~oyamashi/SLR_WEB.html). Since locations
of current source vertices are assigned to the cortical areas
according to the automated anatomical labeling atlas (AAL)
(Tzourio-Mazoyer et al. 2002) in the toolbox, we can select EEG-
CCS signals to be used for the classification analysis based on
anatomically defined areas. In order to examine the conditioning
effect on the classification accuracy, it is desirable to use signals
from all areas of six sensorimotor-related areas (i.e., left and
right precentral, postcentral, and SMA) and twelve parietal areas
(left and right superior parietal gyrus, inferior parietal gyrus,
supramarginal gyrus, angular gyrus, precuneus, and paracentral
lobule). However, the total number of vertices in the areas are
2648 that will not provide high accuracy due to overfitting.
On the other hand, there are countless combinations of areas
to select some of the 18 areas, and the aim of this study is
not developing an algorithm but proposing the concept of the
GVS conditioning to enhance binary semantic classification
performance. Therefore, at first, we examined the conditioning
effect using the average time series of each of the 18 anatomical
areas. Next, to see the possibility to achieve higher accuracies,
we performed a classification analysis using unaveraged signals,
by selecting anatomical areas on a trial-and-error basis, with
sensorimotor-related areas as the priority. For participants
except H2, H3, HS, and H7, in cases where the classification
accuracy was less than 60% when using areas from the six
areas only, other areas were additionally selected on a trial-
and-error basis by referring to activation areas observed by
individual fMRI analysis results of participants H1-H6. The mean
classification accuracy was calculated using 20-times 20-fold
cross-validations for each pre- and postconditioning session (i.e.,
using 40 trials data consisting of 20-yes and 20-no). Statistical
analyses were performed using a two-sample t-test. Chance
levels were calculated in a data-driven manner by randomizing

the dataset labels of the postconditioning session in order to test
for significance more rigorously.

Results
Association between the EDSs and Thought of Yes/No

Reports from all participants who performed the fMRI experi-
ment (H1-H6) revealed that they recognized the GVS directions in
all trials without any inconsistency in the conditioning sessions.
All of the participants (H1-H11) reported that they felt their own
EDSs even in the absence of GVS in the question sessions. The
type of EDS varied from participant to participant, with some
reporting that their body was being pushed from one side or
pulled, their vision was rotating, or they felt as if the center of
their body was rotating.

Activations in the Sensorimotor-Related and Parietal Areas
during Thoughts of Yes and No after the GVS Conditioning

Figure 2a shows the results of the fMRI group analysis depicting
the difference in brain activity during the thought of yes and
no in participants H1-H6. Although the laterality differences in
activity varied depending on the participants, the group analy-
sis revealed significant difference mainly in the angular gyrus,
precuneus, and postcentral gyrus with a higher activation during
“no” with respect to “yes” (T=19.63, 15.73, and 15.31 for the
areas, respectively, degrees of freedom=5 and P <0.001 for all,
uncorrected, Table 1). The difference was observed not in the
preconditioning session but in the postconditioning session only,
and no significant higher activation difference was observed
during “yes” with respect to “no” (T =1.48, degrees of freedom =5,
P=0.095, uncorrected, for the highest activation in the precentral
gyrus right). Table 1 shows detailed information of the significant
activity differences in the selected areas.

Next, we examined the brain areas of strong activity in the
EEG-CCS during the postconditioning session as well. High acti-
vation tended to be observed in the postcentral gyrus as shown
in Figure 2b, although the exact location and the intensity of the
activity varied among participants.

GVS Conditioning Improves on the Yes/No Classification
Using EEG-CCS Signals

The classification accuracy using the average signals of the
18 anatomical areas in sensorimotor-related and parietal
areas was significantly higher in the postconditioning session
63.87 +7.96) than in the preconditioning session
53.09+4.86) (T=3.19, P=0.03, effect size d=1.64,
five participants). The results from the 11 participants also
showed that the mean accuracy significantly exceeded the
mean chance level (postconditioning session: mean+S.D. =
62.63+£6.39; chance level: mean+S.D. = 50.37+3.00; T=5.91,
P=1.49e—04, effect size d=2.46).

Next, we investigated the possibility of obtaining higher accu-
racies by using unaveraged signals in anatomical areas selected
on a trial-and-error basis. Figures 3a, b show the comparisons
between individual mean accuracies of the postconditioning
session and the chance level and the individual mean accura-
cies of the preconditioning session, respectively. As shown in
Figure 3a, our methodology showed the mean accuracies signifi-
cantly higher than chance level with all the participants (H1-H11)
and the CLIS patient (P1). The mean accuracy (+standard devia-
tion) across the participants and the patient was 74.0 + 8.7%. In
addition, as shown in Figure 3b, we also confirmed that the mean
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Figure 2. Differential brain-activity areas during the pre- and postconditioning sessions. (a) Results of an fMRI group analysis displaying areas of higher activity during
no” with respect to “yes” before and after conditioning. Each map represents the difference between the thoughts of yes and no, and the ROIs were set to sensorimotor-
related (the postcentral, the precentral gyri, and the SMA on the left and right hemi d parietal (the angular gyrus, parietal i
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axial, and sagittal views. The areas are statistically significant without multiple comparison corrections, uncorrected P <0.001. (b) Brain topographical maps showing
averaged EEG-CCS activation during the thought of “no” in the itioni ion in parti H3. The dark gray and the light gray areas represent sulci and gyri,
respectively. The high activation area was located in the postcentral gyrus around 500-1000 ms after the “expected” GVS onset when GVS was supposed to be applied.
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accuracies of the postconditioning session were significantly
higher than those of the preconditioning for all participants
(H7-H11). Table 2 summarizes brain areas used for the yes/no
classification analysis by each participant. The postcentral gyrus
contributed to the significant accuracy in all participants, four of
the participants (H2, H3, H5, and H7) showed significant accu-
racies using areas in sensorimotor-related areas only, and the
other participants required other areas such as parietal areas:
the right angular gyrus, the left calcarine, the bilateral medial
superior frontal gyrus (mSFG), the bilateral cuneus, the right
inferior parietal gyrus (IPG), the left precuneus, the left inferior
temporal gyrus, and the right superior parietal gyrus (SPG). Our
methodology also showed high significant classification accu-
racy (85.3+5.4%) for the CLIS patient using sensorimotor-related
areas as well as the healthy participants.

To visualize the activation difference between the thoughts
of yes and no in EEG-CCS, the temporal patterns from represen-
tative participant H2 and patient P1 are shown in Figure 4. We

found that the healthy participants tended to show activation
difference between the thoughts of yes and no in sensorimotor-
related areas mainly within 1 s after the expected GVS onset
(note that GVS was not actually presented). On the other hand,
the CLIS patient showed high activity in the postcentral gyrus
in the EEG-CCS topographical map as well as the healthy
participants, but the temporal peak differences between yes
and no especially in the precentral and postcentral gyri were
observed later in time than in the healthy participants (i.e.,
around 2 s after the GVS onset).

Discussion

Based on the hypothesis that GVS, which evokes reflexive EDS,
is suitable for Pavlovian conditioning, the present study tested
whether EDS can be conditioned to thoughts of “yes” and “no.”
In addition, we also investigated whether sensorimotor-related
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Table 1. Brain areas showing increased differential activation between thoughts of yes and no during the postconditioning session from the

fMRI analysis

Name of area MNI coordinates T-values
Angular gyrus right [34, 58, 46] 19.63
Precuneus left [-6, —60, 46] 15.73
Postcentral gyrus left [-32, —34, 68] 15.31
Supramarginal gyrus right [62, —42, 34] 9.53
Superior parietal lobule left [-34, -52,50] 9.14
Precentral gyrus right [48, 2, 48] 870
Postcentral gyrus left [-56, —18, 24] 8.63
Angular gyrus left [-50, —52, 50] 8.17
Superior parietal lobule left [~30, 56, 38] 7.82
Supramarginal gyrus left [-56, —40, 48] 7.69
Postcentral gyrus right [50, —22, 54] 7.43
Precentral gyrus left [-60, 10, 22] 7.34
Angular gyrus left [-28, -68, 36] 7.15
Supramarginal gyrus left [-42, -36, 38] 6.99
Angular gyrus left [-38, —68, 40] 6.85
Supramarginal gyrus left [-58, —44, 28] 6.79
SMA left [-2,4,70] 6.74
Precentral gyrus left [-58,8,18] 6.57
Precentral gyrus left [-62, 8,20] 6.56

The statistical analysis was performed by restricting the ROI to the left and right postcentral and precentral ey, and the SMA, angular gyrus, precuneus, paneral
of the

operculum, supramarginal gyrus, and superior parietal lobule, respectively, with no multiple

P =0.001). XYZ

centroid of the activated areas were defined according to Montreal Neurological Institute (MNI) coordinate system.

and parietal areas were activated by the EDS contingent with
the thoughts of yes and no using fMRI and examined whether
EEG-CCSin those areas improved the accuracy of predicting “yes”
and “no” covert (i.e., cognitive) responses. All healthy participants
reported that the EDS was induced by the thoughts of yes and no
after conditioning, and not only fMRI but also EEG-CCS analyses
confirmed that the difference in brain activity between “yes”
and “no” was especially found in the postcentral gyrus. Further-
more, prediction of cognitive “yes” and “no” responses using EEG-
CCS signals after conditioning achieved significant classification
accuracies not only with all the healthy participants but also with
the CLIS patient (73.0 + 8.3% for healthy, 85.3 + 5.4% for the CLIS
patient).

Activation Areas Induced by the EDS in the Postconditioning

Consistent with the classical conditioning literature (Razran
1971), we verified that after conditioning, EDS occurred as
expected even in the absence of GVS and was associated with the
thoughts of yes and no. GVS evokes EDS as UR to keep the body
balance in equilibrium against gravity and constitutes an ideal
biologically relevant US without producing negative emotional
side effects of painful or unpleasant USs (Utz et al. 2011).

As shown in Figure 2, comparing the results between the pre-
and postconditioning sessions using the fMRI group analysis, it
was confirmed that the brain activity indicating the difference
between “yes” and “no” was increased in the sensorimotor-
related and parietal areas, especially in the angular gyrus,
precuneus, and postcentral gyrus. This finding is not only
consistent with previous fMRI (Lobel et al. 1998; Stephan et al.
2005), TMS (Reichenbach et al. 2016), and GVS (Lopez et al.
2012; Ganesh et al. 2018) research, but also with an anatomical
study in cats showing that the vestibular nuclei project to the
primary somatosensory cortex via the thalamus (Mountcastle
1957). Therefore, the present results, in which vestibular-related
activity was observed even while the GVS was not given, may
indicate successful conditioning.

In addition, it is noteworthy that the relevant area was rec-
ognized by the EEG-CCS topographical maps as well as the fMRI
analysis, which may support the validity of the significant clas-
sification accuracies in this study. In the EEG-CCS classification
analysis, not only the postcentral gyrus but also the precentral
gyrus and SMA showed high differentiation in some participants.
Since the precentral gyrus and SMA are included in the represen-
tative areas related to motor control, conditioned reflexes evoked
by EDS may include neural activity related to motor control as
well as sensory perception.

Contribution of Other Areas to the Yes/No Classification

Conditioning induced differential activity in areas other than
sensorimotor-related areas used in the EEG-CCS classification
analysis in some participants. The areas were the right angular
gyrus, the left calcarine, the bilateral mSFG, the bilateral cuneus,
the right IPG, the left precuneus, the left ITG, and the right SPG.
Among these areas, the angular gyrus, IPG, precuneus, and SPG
are included in parietal areas, which have been reported to be
activated by GVS in several studies (Stephan et al. 2005; Lopez
et al. 2012; Reichenbach et al. 2016; Ganesh et al. 2018).
Regarding the involvement of the other areas (i.e., calcarine,
mSFG, cuneus, and ITG), the calcarine cortex (used by H4), the
bilateral cuneus (used by H6 and H11), and the ITG (used by P1)
have been reported to be involved in visual processing. The cal-
carine cortex is located in the primary visual cortex, and an EEG
study has indicated its involvement in visuospatial attention (Di
Russo et al. 2003). The cuneus is also located in the primary visual
cortex and receives visual information from the primary visual
area V1 (Vanni et al. 2001), and the ITG is reported to be involved
in visual processing via the inferior occipital gyrus (Kastner and
Ungerleider 2000). The mSFG used by H6 and H9 is involved
in motor control since it includes SMA and presupplementary
motor area. These findings suggest that all areas used for the
classification along with the sensorimotor-related areas in all
participants are involved in sensorimotor integration and visual
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processing, contributing to the classification of the different EDS
between the thoughts of yes and no.

Efficacy of the GVS for Differential Conditioning
The significant accuracies in the yes/no classification revealed
the effectiveness of the GVS for differential conditioning both for
the healthy and the CLIS participants.

A similar conditioning approach has been used in yes/no BCI
studies with healthy participants, a CLIS patient, and two LIS

(locked-in-state with intact eye movements) (Furdea et al. 2012;
De Massari et al. 2013; Ruf et al. 2013). In one of these studies
with CLIS and LIS patients, only thought of “yes” as a CS and a
tactile sensation of electrical stimulation over the left thumb as
a US were used (De Massari et al. 2013), but mean accuracies
were around chance level though in some sessions yes/no
classification accuracies of 70% were reached. The remaining
studies tried a differential paradigm with healthy participants
using pink and white noises as USs to condition thoughts of yes
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Table 2. Brain areas used in the yes/no classification for the partic-
ipants and the patient

D Areas used for the classification analysis

H1 Postcentral right, SMA left, Angular right

H2 Postcentral right, Precentral right, SMA right

H3 Postcentral right and left, Precentral right and left, SMA right
and left

H4 Postcentral left, Precentral left, SMA left, Calcarine left, mSFG
right

HS Postcentral left, Precentral left, SMA right

H6 Postcentral right, SMA left, Cuneus right, mSFG left and right
H7 Postcentral left, Precentral left, SMA left

H8 Postcentral left, Precentral left, IPG right

H9 Postcentral left, SMA right, mSFG left and right

H10 Postcentral right, SMA left, IPG right, Precuneus left
H11 Postcentral right, SMA right, ITG left, Cuneus left
P1 Postcentral right, Precentral right, SPG right, ITG left

All of them showed EEG-CCS signals from the postcentral gyrus.
SMA, supplementary motor area; IPG, inferior parietal gyrus; mSFG, medial
superior frontal gyrus; ITG, inferior temporal gyrus; SPG, superior parietal
gyrus.

and no as CSs, and at most around 70% accuracies were observed.
Considering that mean accuracy across the 11 participants
and the CLIS patient in our study was 74.0+8.7% (+standard
deviation) and the accuracies may be further improved by
expanding and optimizing the areas used for classification,
the current results suggest efficacy of GVS for differential
conditioning to create an association between the thoughts
of yes and no and the EDS. The USs used in the previous
studies (i.e., tactile sensation by electrical stimulation and
auditory stimuli) may not activate a stable and/or intensive and
biologically relevant response compared with galvanic vestibular
responses. In GVS, the participants felt not only the sensation
on the skin caused by the electrical stimulation but also the
EDS that adds to the unconditioned response complex. This
might have been the key to the success of the current study
as hypothesized.

Differences between Healthy Participants and a CLIS Patient

Our methodology also showed high yes/no classification accu-
racy of 85.3% in the CLIS patient using mainly the sensorimotor-
related areas as shown in the healthy participants. Under the
plausible assumption that the galvanic vestibular function
remains unchanged by the disease, we expected the GVS
conditioning to be also effective for the patient.

The brain areas that provided the high accuracy included the
postcentral gyrus right and the precentral gyrus right that are
known to be crucial sensorimotor areas. Although we did not
ask the patient if he felt the EDS because of the communication
deficit, the brain activity patterns in these areas shown by EEG-
CCS (Fig.4) and the high accuracy suggested intact galvanic
vestibular function in the patient. In addition, we observed a
notable difference between healthy participants and the CLIS
patient, which may be important for future BCI developments
for CLIS: While healthy participants differentiated between the
two requested responses for the thoughts of yes and no within
1 s after the expected GVS onset, the patient showed a delayed
response (around 2 s after the onset). This might suggest delayed
neural response in the CLIS patient, which may be correlated
with the dominance of slow EEG frequencies in CLIS patients

(Hohmann et al. 2018; Malekshahi et al. 2019; Maruyama et al.
2021). Also, the patient involved in this study shows a dominant
slow EEG of 2-4 Hz during waking hours, compared with the
dominant 10 Hz frequency in healthy people, which may indicate
lower arousal and/or slower cognitive processing.

Toward Clinical Application: Critical Comments

We need to address the following issues to develop a practi-
cal application based on this methodology. At first, identifica-
tion of brain areas used for the classification should be opti-
mized. In this study, we aimed to clarify the efficacy of the
GVS conditioning. Therefore, we used brain areas primarily from
sensorimotor-related areas and did not optimize the accura-
cies using other areas. Despite significant accuracies, there may
be better area combinations for each participant. To develop a
practical application, as a next step, we are going to develop
an algorithm to select optimal brain areas for each participant
using EEG-CCS.

In the process of the algorithm development, the second
issue, reproducibility, also needs to be considered for online clas-
sification. The significantly high accuracies revealed the physio-
logical stability of topographically specific brain responses across
participants and between fMRI and EEG-CCS, and they also sug-
gest the possibility of the classical conditioning paradigm as a
robust and reproducible basis for BCI development (Birbaumer
2006). Since we calculated yes/no classifiers using data selected
from a session from the same day as the data used for test, we
need to investigate further the effectiveness of classification in
those areas using data from other days. Reproducibility is the
most challenging problem of BCIs based on machine learning.
Recent developments of machine learning techniques have pro-
vided powerful means to extract detailed information hidden
in the brain data, especially for noninvasively recorded brain
activity that consists of a complex combination of physiological
processes. However, when it comes to applications of online
BCIs, such detailed information extracted from experimental
data rarely shows reproducibility, and it is difficult to obtain high
classification accuracies with a classifier calculated with data
from another day.

Among the BCIs that try to extract covert thoughts from
neural activity, a paradigm based on event-related desynchro-
nization (ERD) occurring with motor imagery has shown reliable
results (Pfurtscheller et al. 1996; Pfurtscheller and Neuper 2001).
The “thinking” paradigm used here constitutes a comparable
approach. Considering that neural activity relative to ERD can
also be observed in fMRI (Halder et al. 2011), the key to develop
a reliable BCI will be the use of a paradigm that shows robust
differential activation in most noninvasive brain measures such
as EEG, fMRI, and NIRS. Since our results suggest the physiological
stability of the CRs in terms of topographical brain responses
between fMRI and EEG-CCS, the challenge will be to prove the
efficacy of classifiers calculated from different days.

The third issue is optimization of the conditioning learning
process. The most effective procedures to secure stable asso-
ciations between CS-CR need to be varied systematically. It is
usually assumed that the association between CS and US will
become stronger as the number of conditioning trials increases.
However, a few participants reported decreasing EDS (i.e., percep-
tion) as the number of conditioning trials increased, indicating
habituation. That might be due to the low electrical currents
used, and on the other hand, the brain activation still might
occur even if participants do not perceive the EDS consciously.

106



(a) Participant H2

Binary Semantic Classification Using Cortical Activation Yoshimura et al.

Precentral right

Postcentral right

11

5 5
o 2 o
k=
()
5§ -5
E 2 4 -2 0
5 time (sec) time (sec)
2
o
3 SMA right
‘g 5 —— Yes-thinking
N‘{’ — No-thinking 0 ms: GVS onset
0
: Time-range used for classification
-5
-2 4
time (sec)
(b) Patient P1 Precentral right Postcentral right
5 5
o
o
e -2
(5]
£ -4 5
g -2 o 2 4 2 )
® time (sec) time (sec)
°
S Parietal sup right Temporal Inf left
o 5 4
o
3 2
& o
N o
5 -2
-2 o 2 4 -2 0
time (sec) time (sec)
1
=
M
3
8
°
8
]
E
S
=
0
Time after GVS onset 500 — 1000 ms 2000 - 2500 ms

Figure 4. EEG-CCS activation pattern comparison between thoughts of yes and no. Mean time-series activation patterns of representative participant H2 (a) and patient
P1 (b) were plotted. Red and blue lines represent the thoughts of yes and no, respectively. The gray-shaded time range was used for the classification. Al time-series
signals were band-pass filtered for the range of 5-15 Hz. The brain topographical maps at the bottom panel show averaged EEG-CCS activation during the question
session of patient P1. The dark gray areas represent sulci and the light gray areas represent gyri. The highest activation area located in the postcentral gyrus around
2000-2500 ms after the GVS onset when GVS was supposed to be applied.

In any case, we may need to optimize and individualize the
timing, frequencies, and strength of GVS to keep the conditioning
effect. Even though activation areas differ between participants,

observing the regional transitions of activation before, during,
and after conditioning could provide insights into the process of
learning.
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Supplementary Material

Supplementary material can be found at Cerebral Cortex
Communications online.

Funding

Japan-Germany Research Cooperative Program between JSPS
and DAAD [grant number JPJSBP 120193510]; Tokyo Tech World
Research Hub Initiative from Tokyo Institute of Technology; JST
PRESTO (Precursory Research for the Embryonic Science and
Technology) [grant number JPMJPR17JA]; Deutsche Forschungs-
gemeinschaft (DFG, Kosellek) [grant number BI 195/77-1]; BMBF
(German Ministry of Education and Research) [grant number
16SV7701] CoMiCon; LUMINOUS-H2020-FETOPEN-2014-2015-
RIA [grant number (686764)]; Eva and Horst Kohler-Stiftung;
DAAD (German Academic Exchange Service: Japanese-German
Exchange program).

Notes

We deeply thank the CLIS patient, his family, and the healthy
participants. Conflict of Interest: N.Y., G.G., and Y.K. have a pend-
ing patent regarding the method demonstrated in this study
(Japanese Patent application number: 2020-108 549).

References

Birbaumer N. 2006. Breaking the silence: brain-computer inter-
faces (BCI) for communication and motor control. Psychophysi-
ology. 43:517-532.

Brainard DH. 1997. The psychophysics toolbox. Spat Vis.
10:433-436.

Chaudhary U, Xia B, Silvoni S, Cohen LG, Birbaumer N. 2017.
Brain-computer interface-based communication in the com-
pletely locked-in state. PLoS Biol. 15:1-25.

Cohen J. 1988. Statistical power for the social sciences. Hillsdale (NJ):
Laurence Erlbaum and Associates.

De Massari D, Ruf CA, Furdea A, Matuz T, Van Der Heiden L,
Halder S, Silvoni S, Birbaumer N. 2013. Brain communication
in the locked-in state. Brain. 136:1989-2000.

Delorme A, Makeig S. 2004. EEGLAB: an open source toolbox for
analysis of single-trial EEG dynamics including independent
component analysis. ] Neurosci Methods. 134:9-21.

Di Russo F, Martinez A, Hillyard SA. 2003. Source analysis of
event-related cortical activity during visuo-spatial attention.
Cereb Cortex. 13:486-499.

Dlugaiczyk J, Gensberger KD, Straka H. 2019. Galvanic vestibular
stimulation: from basic concepts to clinical applications. ] Neu-
rophysiol. 121:2237-2255.

Faul F, Erdfelder E, Lang A-G, Buchner A.. 2007. GxPower 3: A flexi-
ble statistical power analysis program for the social, behavioral,
and biomedical sciences. Behav Res Methods. 39:175-191.

Fitzpatrick RC, Day BL. 2004. Probing the human vestibular sys-
tem with galvanic stimulation. ] Appl Physiol. 96:2301-2316.

Fukuma R, Yanagisawa T, Yokoi H, Hirata M, Yoshimine T, Saitoh
Y, Kamitani Y, Kishima H. 2018. Training in use of brain-
machine interface-controlled robotic hand improves accuracy
decoding two types of hand movements. Front Neurosci. 12:478.

Furdea A, Ruf CA, Halder S, De Massari D, Bogdan M, Rosenstiel W,
Matuz T, Birbaumer N. 2012. A new (semantic) reflexive brain-
computer interface: in search for a suitable classifier. ] Neurosci
Methods. 203:233-240.

108

Gallegos-Ayala G, Furdea A, Takano K, Ruf CA, Flor H, Bir-
baumer N. 2014. Brain communication in a completely locked-
in patient using bedside near-infrared spectroscopy. Neurology.
82:1930-1932.

Ganesh G, Nakamura K, Saetia S, Tobar AM, Yoshida E, Ando H,
Yoshimura N, Koike Y. 2018. Utilizing sensory prediction errors
for movement intention decoding: a new methodology. Sci Adv.
4:1-8.

Halder S, Agorastos D, Veit R, Hammer EM, Lee S, Varkuti B,
Bogdan M, Rosenstiel W, Birbaumer N, Kiibler A. 2011. Neural
mechanisms of brain-computer interface control. Neuroimage.
55:1779-1790.

Han CH, Kim YW, Kim DY, Kim SH, Nenadic Z, Im CH. 2019.
Electroencephalography-based endogenous brain-computer
interface for online communication with a completely locked-
in patient. ] Neuroeng Rehabil. 16:1-13.

Hohmann MR, Fomina T, Jayaram V, Emde T, Just ], Synofzik M,
Scholkopf B, Schéls L, Grosse-Wentrup M. 2018. Case series:
slowing alpha rhythm in late-stage ALS patients. Clin Neuro-
physiol. 129:406-408.

Irimia DC, Ortner R, Poboroniuc MS, Ignat BE, Guger C. 2018.
High classification accuracy of a motor imagery based brain-
computer interface for stroke rehabilitation training. Front
Robot Al 5:130.

Kastner S, Ungerleider LG. 2000. Mechanisms of visual attention
in the human cortex. Annu Rev Neurosci. 23:315-341.

Khalili Ardali M, Rana A, Purmohammad M, Birbaumer N, Chaud-
hary U. 2019. Semantic and BCI-performance in completely
paralyzed patients: possibility of language attrition in com-
pletely locked in syndrome. Brain Lang. 194:93-97.

Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O,
Burrell JR, Zoing MC. 2011. Amyotrophic lateral sclerosis. Lancet.
377:942-955.

Kleiner M, Brainard DH, Pelli DG, Broussard C, Wolf T, Niehorster
D. 2007. What's new in psychtoolbox-3? Perception. 36:1-16.

Kiibler A, Birbaumer N. 2008. Brain-computer interfaces and commu-
nication in paralysis: extinction of goal directed thinking in completely
paralysed patients? Clin Neurophysiol 119:2658-2666.

Liu SH, Yu NH, Chan L, Peng YH, Sun WZ, Chen MY. 2019. Phan-
tomlLegs: reducing virtual reality sickness using head-worn
haptic devices. In: 26th IEEE conference on virtual reality and 3D
user interfaces, VR 2019 - Proceedings. New York: IEEE.

Lobel E, Kleine JF, Le Bihan D, Leroy-Willig A, Berthoz A. 1998.
Functional MRI of galvanic vestibular stimulation. ] Neurophys-
iol. 80:2699-2709.

Lopez C, Blanke O, Mast FW. 2012. The human vestibular cortex
revealed by coordinate-based activation likelihood estimation
meta-analysis. Neuroscience. 212:159-179.

Maeda T, Ando H, Amemiya T, Nagaya N, Sugimoto M, Inami M.
2005. Shaking the world: galvanic vestibular stimulation as a
novel sensation interface. In: ACM SIGGRAPH 2005 Emerging
Technologies, SIGGRAPH 2005.

Malekshahi A, Chaudhary U, Jaramillo-Gonzalez A, Luna AL, Rana
A, Tonin A, Birbaumer N, Gais S. 2019. Sleep in the completely
locked-in state (CLIS) in amyotrophic lateral sclerosis. Sleep.
42:1-8.

Maruyama Y, Yoshimura N, Rana A, Malekshahi A, Tonin A,
Jaramillo-Gonzalez A, Birbaumer N, Chaudhary U. 2021.
Electroencephalography of completely locked-in state
patients with amyotrophic lateral sclerosis. Neurosci Res. 162:
45-51.

Mountcastle VB. 1957. Modality and topographic properties of
single neurons of cat’s somatic sensory cortex. ] Neurophysiol.
20:408-434.




Binary Semantic Classification Using Cortical Activation Yoshimuraetal. | 13

Murguialday AR, Hill J, Bensch M, Martens S, Halder S, Nijboer
F, Schoelkopf B, Birbaumer N, Gharabaghi A. 2011. Transition
from the locked in to the completely locked-in state: a physio-
logical analysis. Clin Neurophysiol. 122:925-933.

Okahara Y, Takano K, Nagao M, Kondo K, Iwadate Y, Birbaumer
N, Kansaku K. 2018. Long-term use of a neural prosthesis in
progressive paralysis. Sci Rep. 8:16787.

Pan W, Soma R, Kwak S, Yamamoto Y. 2008. Improvement of
motor functions by noisy vestibular stimulation in central
neurodegenerative disorders. ] Neurol. 255:1657-1661.

Pavlov IP. 1927. Conditioned reflexes. Oxford, UK: Oxford University
Press.

Pelli DG. 1997. The VideoToolbox software for visual psy-
chophysics: transforming numbers into movies. Spat Vis.
10:437-442.

Pfurtscheller G, Neuper C. 2001. Motor imagery and direct brain-
computer communication. Proc IEEE. 89:1123-1134.

Pfurtscheller G, Stancdk A, Neuper C. 1996. Event-related syn-
chronization (ERS) in the alpha band - an electrophysiological
correlate of cortical idling: a review. Int J Psychophysiol. 24:
39-46.

Razran G. 1971. Mind in evolution. Boston, USA: Houghton Mifflin.

Reichenbach A, Bresciani JP, Bulthoff HH, Thielscher A. 2016.
Reaching with the sixth sense: vestibular contributions to
voluntary motor control in the human right parietal cortex.
Neuroimage. 124:869-875.

Ruf CA, De Massari D, Furdea A, Matuz T, Fioravanti C, Van
Der Heiden L, Halder S, Birbaumer N. 2013. Semantic classi-
cal conditioning and brain-computer interface control: encod-
ing of affirmative and negative thinking. Front Neurosci. 7:
1-13.

Sato MA, Yoshioka T, Kajihara S, Toyama K, Goda N, Doya K,
Kawato M. 2004. Hierarchical Bayesian estimation for MEG
inverse problem. Neuroimage. 23:806-826.

Sra M, Xu X, Maes P. 2017. GalVR: a novel collaboration interface using
GVS. In: Proceedings of the ACM Symposium on Virtual Reality
Software and Technology, VRST.

Stephan T, Deutschlédnder A, Nolte A, Schneider E, Wiesmann
M, Brandt T, Dieterich M. 2005. Functional MRI of galvanic
vestibular stimulation with alternating currents at different
frequencies. Neuroimage. 26:721-732.

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F,
Etard O, Delcroix N, Mazoyer B, Joliot M. 2002. Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
Neuroimage. 15:273-289.

Utz KS, Dimova V, Oppenldnder K, Kerkhoff G. 2010. Electri-
fied minds: transcranial direct current stimulation (tDCS) and
Galvanic Vestibular Stimulation (GVS) as methods of non-
invasive brain stimulation in neuropsychology-a review of
current data and future implications. Neuropsychologia. 48:
2789-2810.

Utz KS, Korluss K, Schmidt L, Rosenthal A, Oppenlnder K, Keller
1, Kerkhoff G. 2011. Minor adverse effects of galvanic vestibular
stimulation in persons with stroke and healthy individuals.
Brain Inj. 25:1058-1069.

Vanni S, Tanskanen T, Seppa M, Uutela X, Hari R. 2001. Coincid-
ing early activation of the human primary visual cortex and
anteromedial cuneus. Proc Nat Acad Sci USA. 98:2776-2780.

Yamashita O, Sato MA, Yoshioka T, Tong F, Kamitani Y. 2008.
Sparse estimation automatically selects voxels relevant for the
decoding of fMRI activity patterns. Neuroimage. 42:1414-1429.

109






wwwAnature.co /scientificdata
11011
0111101
| A I 1101111
SC|EN |F|C D 0111°°

OPEN ' A dataset of EEG and EOG
DATA DESCRIPTOR | from an auditory EOG-based
communication system for
patients in locked-in state

Andres Jaramillo-Gonzalez(®?, Shizhe Wu?, Alessandro Tonin?, Aygul Rana?,
Majid Khalili Ardali(®?, Niels Birbaumer'? & Ujwal Chaudhary (>

. The dataset presented here contains recordings of electroencephalogram (EEG) and electrooculogram
: (EOG) from four advanced locked-in state (LIS) patients suffering from ALS (amyotrophic lateral
sclerosis). These patients could no longer use commercial eye-trackers, but they could still move their
: eyesand used the remnant oculomotor activity to select letters to form words and sentences using
anovel auditory communication system. Data were recorded from four patients during a variable
range of visits (from 2 to 10), each visit comprised of 3.22 +-1.21 days and consisted of 5.57 +2.61
sessions recorded per day. The patients performed a succession of different sessions, namely, Training,
Feedback, Copy spelling, and Free spelling. The dataset provides an insight into the progression of ALS
and presents a valuable opportunity to design and improve assistive and alternative communication
technologies and brain-comp interfaces. It might also help redefine the course of progression in
. ALS, thereby improving clinical judgement and treatment.

Background & Summary

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that, in its final stages, paralyzes affected
individuals impairing their ability to communicate'~*. Those patients with intact consciousness, voluntary eye
movement control, who can blink their eyes or twitch their muscles are said to be in a locked-in state (LIS)*®.
: Patients in LIS rely on eye-tracking based assistive and augmentative communication (AAC) technologies to
communicate”®. In the case of patients who survive attached to life-support systems, the progression of the
: disease ultimately destroys oculomotor control, leading to the loss of gaze-fixation and impeding the use of
eye-tracking based communication technologies®'!. Nevertheless, even in the late stages of this condition, some
remaining controllable muscles of the eyes continue to function for an unspecified length of time, which can be
: used to provide a means of communication to these patients'"!2,

An auditory electrooculogram (EOG) based communication system'? was developed to provide a means
of communication to ALS patients without gaze-fixation and who were unable to use the commercial AAC
eye-tracking devices, but who had remnant oculomotor control to form words, phrases, and sentences using the
. system described in Tonin & Jaramillo-Gonzalez et al.">. Four ALS patients with progressively decreasing EOG
signal amplitude in the range of 2001V to £40 LV were able to select letters to construct words to form sen-
tences and hence communicate freely using an auditory speller system. The auditory speller system is based on a
binary system in which a patient is asked to respond to auditory questions by moving the eyes to say “yes” and not
moving the eyes to say “no”. The system must use the auditory modality because, in these patients, vision is often
impaired due to drying and necrosis of the cornea and the partly or fully paralyzed eye-muscles. The study design
and paradigm are described in detail in the Methods section.

This data descriptor outlines the EEG and EOG recordings from four different patients recorded during their
. use of the auditory communication system, having first trained progressively, and then ultimately controlling the
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system to communicate. Electromyography (EMG) recordings are available for some sessions, according to the
clinical conditions.

There have been other studies with similar goals, but only one has an available online dataset'?, with different
features. To our knowledge, in the available open-access specialized repositories'*', there are no datasets with
similar properties to the one described here. It must be emphasized that the data described here are both the EOG
and EEG signals recorded with a dedicated set of electrodes for each type of signal simultaneously. These EEG and
EOG data are recorded from patients with ALS in the most advanced stage, whose disease progression is not well
defined and is, to a certain extent, unknown. The data highlight a phase in ALS where communication becomes
difficult and gradually impossible with existing commercial AAC. It includes recordings of over the course of a
year during which one of the users became unable to use the system because of disease progression. As a conse-
quence, we believe that the study of this dataset might help towards improving the clinical definition of ALS in its
very advanced state, the testing of hypotheses on the brain’s electrophysiological changes during this progression
and evaluating the impact of advanced ALS on the cognitive state of the patients. Nevertheless, even though the
data is quite specific, further investigation of the data can support novel clinical and therapeutic practices. It could
help develop augmentative and alternative assistive communication technologies and brain-computer interfaces
that can be generalized to other types of disorders and patients with pervasive communication deficits and motor
impairments due to CNS damage, such as stroke or high spinal cord injury. Lastly, although the system can be
considered successful in enabling communication, other analytical methods can still improve the system’s speed
and efficiency, for example, offline testing of other feature extraction methods or testing and comparing the per-
formance with different machine-learning methods to classify the patients’ response.

Methods

The Internal Review Board of the Medical Faculty of the University of Tubingen approved the experiment
reported in this study. The study was performed according to guidelines established by the Medical Faculty of the
University of Tubingen. The patient, or the patient’s legal representative, gave informed consent with permission
to publish the data. The clinical trial registration number is: ClinicalTrials.gov - Identifier: NCT02980380. The
methods described here are complementary to an in-depth description of the results derived from this dataset
that have been presented in related work!2.

Participating patients. Four ALS patients with amyotrophic lateral sclerosis with a functional rating scale
revised (ALSFRS-R)'7 score of 0 in the locked-in state (LIS) were visited on subsequent months starting from
Feb 2018 to May 2019. Team members travelled to the patient’s home to perform the communication sessions,
depending on the health status and convenience of the patient. The medical history of patients is described in our
related work'2. Every visit (V), lasted for a few days (D), during which the patient performed different session (S),
as detailed in the Online-only Tables 1-4, with the precise dates of all the visits and details of the sessions.

Auditory communication system.  Prerequisites for performing the study. In agreement with the patients’
caretakers and considering the patients” health and wellness and optimization of resources, it was established
that the visits should be performed every two months approximately, with each visit no longer than four days.
However, on some occasions the condition of the patients led to shorter visits, from three days to a single day. (see
Online-only Tables 1-4). For each visit, guided by the same criteria of health and wellness of the patient, two team
members transported all equipment and set up all systems in the patient’s home or accommodation.

Before the beginning of the study, at least 100 questions with known “yes” or “no” answers were formulated
and recorded by a family member or caretaker in their own voice, in close proximity to the patient. Each ques-
tion with a “yes” answer is paired with a similar question with “no” answer (e.g., “Paris is the capital of France”
and “Berlin is the capital of France”). Each question is saved as an audio file with an explicit identifier, a question
with a “yes” answer is saved with a 001_NUMBER identifier, and a question with “no” answer is saved with a
002_NUMBER identifier. The value of the label NUMBER is the same for a semantically paired sentence. The
same procedure was repeated with biographical-related questions with at least 100 for every patient. Sentences are
then stored on a laptop and accessed and played by the communication system during the sessions.

Study and paradigm.  The study consisted of patients performing four different types of sessions, namely, Training,
Feedback, Copy speller, and Free speller session, to train and enable the patient to employ an oculomotor strategy
to control the spelling system successfully. During the visit, the patient performed different sessions, as depicted in
Fig. 1. The patients developed a strategy to respond during successive trials to an auditory question (the questions
previously recorded) by moving the eyes to say “yes” and by not moving the eyes to say “no”. To control the activi-
ties during the trials, specific paradigms were designed for the different sessions, as depicted in Fig. 2.

The different sessions performed by the patients are described below.

a. Training session
The study on a single day always started with Training sessions during which the patients were instructed
to listen to a sequence of 20 personal questions consisting of 10 sentences with a “yes” answer and 10 with
“no” answer, presented in pseudo-random order. After the system presents an auditory question, patients
are asked to move their eyes to respond “yes” and not to move the eyes to respond “no” during a response
time window. The duration of the response segment depended on the patient’s performance, i.e., if the
patient could move his/her eye with ease, the duration was kept shorter and vice versa. Therefore, this win-
dow has a range from 3 to 10 seconds. For each Training session, the set of triggers indicating the sequence
of events were recorded on the raw file, using the labels shown in Fig. 2a. Alongside, the system creates a
questions sequence text file (Block_X_senlist.txt) that includes the list of identifiers of the presented audio/
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Fig. 1 The procedure performed during a single day. The figure depicts the sequence of the types of sessions
performed by patients and the criteria to progress from one type of session to the next. The patients first
performed the Training sessions during which the patient learned to move his/her eyes to generate the signal to
control the auditory communication system. At the end of the Training session, a classification model was built,
and when the accuracy of the built model was greater than 75% the patients performed the feedback session.
During the feedback sessions the patients were provided the feedback of their response, i.e., whether their
answer was classified as “yes” or “no”. When the feedback accuracy exceeded 75% the patients first performed a
copy speller session and then a free speller during which they could spell whatever they desired.

question files during the session (e.g., 001_13012a.wav), including also the label of the corresponding type
of answer (“0” for sentences with “no” as an answer, and “1” for sentences with “yes” as an answer). The.
txt lists are included inside the raw data folder structure, as described in the section Data Records. After at
least two consecutive Training sessions with a classification accuracy result greater than 75%, the patient
progresses to the Feedback sessions (see Fig. 1).

b. Feedback session
As in the Training session, the patients were presented with a sequence of a familiar question, but, at the
end of the response segment, they were provided with auditory feedback as to whether their answer was
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Fig. 2 Different types of trials in the study. (a) Paradigm describing the sequence of events and sequence of

the triggers’ labels used in a single trial for the Training and Feedback sessions. In these types of sessions, 20
questions with “yes” and “no” answers, known by the patient, are presented in a pseudo-random order. (b)
Paradigm describing the sequence of events and sequence of the triggers’ labels used during a single trial for the
Copy and Free spelling sessions. In these sessions, instead of questions, the patient is presented with options
that allow him/her to navigate through his/her predetermined spelling scheme (e.g., sectors, letters). For both
spelling sessions, the limit in the number of trials depends only on the patient’s attempts to spell the given target
(i.e., Copy speller sessions) or her/his desired sentence (i.e., Open speller sessions). For any type of session
recorded, the recording’s start and end are indicated by an “S 9” and an “S 15” trigger.

recognized as “yes” or “no” by the system. For each Feedback session, the triggers indicating the events’
sequence were recorded on the raw file, using the labels shown in Fig. 2a. The system creates a sentence
list (Block_X_senlist.txt) in the same way it was created for the Training sessions. In the case of Feedback
sessions, in addition to the sequence of the questions text file, the system creates a result file (Date_result_
f1_X.txt) listing the predicted results, i.e., “1” if the answer was recognized as “no”, “0” if the answer was
recognized as “yes”, and “2” if the answer was unable to be classified by the system. The system gives the
patient auditory feedback with the sentence: “Your answer was classified as yes/no”. Both.txt lists are also
included inside the raw data folder structure, as described in the section Data Records. After at least two
consecutive Feedback sessions with a classification accuracy result greater than 75%, the patient progresses
to the Copy spelling sessions (see Fig. 1).
The sequence of events and triggers (with their labels) for a single trial of the Training and Feedback ses-
sions is depicted in Fig. 2a. Each of these trials consists of the segment of baseline (i.e., no sound present-
ed), stimulus, during which the question is presented auditorily to the patients, followed by the segment of
response time, in which the patient moves or does not move the eye according to his/her answer, and lastly
the segment of feedback. For a Training session trail, the feedback is “thank you” to mark the end of the
response while for a Feedback session trail, the feedback is “yes” or “no” depending on the answer classified
by the system.
c. Copy spelling session

During the Copy spelling sessions, the patients were asked to spell a specific word described in our previ-

ous work'2. For each Copy spelling session, the set of triggers indicating the sequence of events was record-

ed on the raw file, as shown in Fig. 2b. For the Spelling sessions, there are no questions sequence text files,

but there are results files (Date_result_f1_X.txt) with the label of the predicted answer, listing the predicted

results as “1” if the answer was recognized as “no’, “0” if the answer was recognized as “yes”, and “2” if the

system was unable to classify the answer. The.txt lists are also included in the raw data folder structure

described in the section Data Records.

. Free spelling session

After completing the Copy spelling session, the patients were asked to spell whatever he/she desired. For

each Free spelling session, the set of triggers indicating the sequence of events were recorded on the raw

file, as shown in Fig. 2b. As in the Copy spelling case, each Free spelling session created a result file (Date_

result_fl_X.txt) using the same label code. The.txt lists are also included in the raw data folder structure

described in the section Data Records.

o

The trials for the Copy and Free spelling sessions do not consist of the pre-recorded personal questions, but
instead, of “yes”/"no” questions asking the patient whether to select or not, a particular letter, group of letters, or
command, from his/her particular speller scheme'?. Copy and Free spelling sessions differ in terms of the instruc-
tion given to the patient. During the Copy spelling sessions, the patient was asked to spell a specific word, while
during the Free spelling sessions, the patient was asked to spell whatever he/she desired. Consequently, instead
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Fig. 3 EOG and EEG setup. (a) Montage for the minimum number of EOG channels for each recorded session,
using the locations LO1 (left cantus) and LO2 (right cantus) for horizontal eye movement, and SO1 (above
superior orbit) and IO1 (below inferior orbit) for vertical eye movement. We used the labels EOGL, EOGR,
EOGU, and EOGD, respectively, for the online study. (b) Montage for the minimum number of EEG electrodes
for each recorded session, emphasizing the central motor (C4, Cz, C3) and prefrontal areas. In this latter case,
the location of used electrodes might vary between F3 and F4, or Af4 and Af3. Nevertheless, the total number
of electrodes might vary between days of the visits due to the patient’s wellness conditions. The exact number of
electrodes and labels used can be verified in the Online-only Tables S1-S4.

of being a fixed number, the number of trials in these sessions depends on the number of attempts performed by
the patient to spell the given target (for the Copy speller sessions) or his/her desired sentence (for the Free speller
sessions).

The sequence of events and triggers (with their labels) for a single trial for the Copy and Free spelling sessions
is depicted in Fig. 2b. The trials consist of the segment of baseline (i.e., no sound presented), stimulus, where
instead of questions the patient is presented with auditory options that allow him/her to navigate through his/
her predetermined spelling scheme'? (e.g., sectors, characters, letters), followed by the response time segment in
which the patient move or not move the eye according to his/her answer. Lastly, the feedback segment, during
which depending on the answer classified by the system, “yes” or “no” auditory feedback is given to the patient.

Regardless of the session type, the recording time’s start and end are labeled by “S 9” and “S 15” triggers.
During each trial, the sequence of events is presented to the patient and simultaneously, in a synchronized man-
ner, a system of digital triggers is created by a Matlab script interacting with the V-Amp amplifier, to indicate the
onset of each event in the time series. Both Fig. 2a,b show the sequence of triggers (their labels) as used in each
trial. Information on the onset and labels of each event is also provided (see section Data Records).

We have to add that during the setting up of the system or the sessions’ execution, patients’ care and well-
ness were a high priority; therefore, under any request or signal of unease, sessions or even the day’s study were
stopped.

System for data acquisiti The ication system is composed of the different el described below.

«  Laptop: The present setup uses a laptop with 8 GB RAM, Windows 7 operating system, and 3.3 GHz processor.

«  EEG amplifier and recorder: For each session, EEG and EOG channels were recorded according to the 10-20
EEG electrode positioning system, with a 16 channel EEG amplifier (V-Amp DC, Brain Products, Germany)
with Ag/AgCl active electrodes.

« EOG channels: at least four electrodes were recorded (positions SO1 and IO1 for vertical eye movement, and
LO1 and LO2 for horizontal eye movement).

« EEG channels: at least seven channels located in central and prefrontal areas were recorded (exact locations
per day in the Online-only Tables 1-4).

« EMG channels: on a limited number of sessions electrodes located on the chin of the patient or any other face
muscle with assumed remaining function.

All the channels were referenced to an electrode on the right mastoid and grounded to electrode FPz on the
forehead. For the montage, electrode impedances were kept below 10 k(2. The sampling frequency was 500 Hz.
The standard montage for the minimum number of available EOG and EEG electrodes is specified in Fig. 3. The
precise number and location of electrodes available for each session are detailed in the Online-only Tables 1-4,
including recording EMG electrodes.

SCIENTIFIC DATA| (2021) 8:8 | https://doi.org/10.1038/541597-020-00789-4 5

II§



www.nature.com/scientificdata/

Raw data folders

1. Patient ’ PN.

2.Visits

3. Days

4.Type of sessions
Training Feedback Speller

1
a) *.eeg a) *.eeg a) “.eeg
b) *.vhdr b) *vhdr b) *.vhdr
5. Files (n-times) persession 1 X L__o)«umik M XL evmik LR I -

d) Block_X_senlist.txt d) Block_X_senlist.txt €) Date_result_f1_Xtxt
&) Date_result_f1_Xtxt

Fig. 4 Raw data folder structure. Structure of nested folders containing the raw recordings of the study.
According to the patient identifier, the upper level is the folder, which can be PN, =11,13,15 or 16. In the next
level, VN, indicates the total number of visits available for that patient, and inside it, DN3 indicates the number
of days that the visit lasted. Each day’s folder stores subfolders for the Training, Feedback, and spelling (that
stores recordings from both the Copy and Free speller sessions). Each of these folders contains a set of files that
are the outcome of a recorded session (detailed in the section Data Records), times the number that particular
type of session (i.e., n;, n,, and n;) was respectively performed during the day.

«  Serial cable: This cable is used to connect the Laptop and the EEG amplifier to send the triggers with the cus-
tom Matlab code to mark the EEG-EOG recording with the different segments’ starting point.

« Loudspeakers: Loudspeakers connected to the laptop performs the function of delivering the audio stimuli to
patients during the Training/Feedback/Copy spelling/Free spelling sessions, as described below.

Data Records

Raw data folders. The data stream was recorded directly from the EEG amplifier and stored with the pro-
prietary BrainVision Recorder format'®'* during the sessions. According to the dongle key available during the
visit, the data were stored in two possible formats, necessary to access and use BrainVision Recorder, 42% of data
were recorded in *.ahdr and the rest 58% in *.vhdr format. For consistency here, we present the data in *.vdhr
after converting the other 42% of *.ahdr format data also to *.vhdr format. Thus, as an output of this recording
scheme, three output files per recording had the same name but different extension:

a. Header file (*.vhdr), containing recording parameters and further meta-information, as the scaling factor
necessary to convert the recorded raw amplitude to milivolts.

b. Marker file (*.vmrk) describes the events and their onset during the data recording, in this case, the se-
quence of triggers.

c. Raw EEG data file (*.eeg) is a binary file containing the EEG and EOG data and additional recorded signals.

Nevertheless, to assist with handling the unmodified raw data, we have used the BrainVision Analyzer® soft-
ware to export all the recordings to the more accessible.vhdr format, but without altering anyhow the content of
the data itself.

For storing the raw data, a database was created using a nested structure of five levels (see Fig. 4), from the top:

. Patient folder, where PN can be either P11, P13, P15, or P16.

. Visits folder, where VN, indicates the total number of visits available for each particular patient.

. Day folder, where DN; indicates the number of days that the particular visit lasted.

. Type of sessions, where data has been separated according to the type of sessions. Training, Feedback, and
Spelling sessions (consisting of both Copy and Free spelling sessions).

W~

At the 5 level, according to the type of session, there might be up to five types of files stored, times the num-
ber of that particular session recorded on the day, i.e., n;, 1, and n; (see Fig. 4). Namely, the hosted files can be:

(a) *.vhdr, the exported version of the *.ahdr file.

(b) *.vmrk, the exported version of the *. amrk file.

(c) *.eeg, that is a binary file with the recorded data.

(d) Block sentence list (Block_X_senlist.txt), where X is the counter of the number of ongoing sessions. This
type of *.txt file was only created for Training and Feedback sessions.

Result list (Date_result_f1_X.txt), with the Date in which the recording was made, and X is the counter of
the ongoing sessions. This type of *.txt file was only created for Feedback and both Speller sessions.

(e
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Fig. 5 Matlab data fields structure. Nested structure elements containing the values and features of recordings
from the study. According to the patient identifier, the upper level is the main structure, which can be

PN, =11,13,15 or 16. In the next level, VN, indicates the total number of visits available for that patient, and
inside it, DN3 indicates the number of days that the visit lasted. Inside each day, there are structures for the
Training and Feedback sessions and the spelling sessions (containing recordings from both the Copy and Free
speller sessions). Each of these contains a set of structures that result from exporting the *.vhdr raw files for
each recorded session, times the number of that particular session type (i.e., 1;, 1, and n;) was performed
during the day. Read the Data Records section for details on the data exporting.

Matlab data fields. Additionally, another format has been chosen to present and share the data obtained
from exporting the original raw files (details in the section Usage Notes). In this rectangular form, a Matlab varia-
ble is stored (*.mat), corresponding to the patient’s name, i.e., P11. In the variable, nested structures were created
using a somehow similar architecture for the raw files, as detailed in Fig. 5. The levels, from upper to lower, are:

. Patient structure, where PN, can be either P11, P13, P15, or P16.

. Visits structure, where VN, indicates the total number of visits available for each particular patient.

. Day structure, where DN indicates the number of days that the particular visit lasted.

. Type of sessions structure, where data has been separated according to the type of sessions. Training, Feed-
back, and Spelling sessions (containing both copy and free spelling sessions).

W =

At the 5™ level, according to the type of session, there are seven fields stored, times the number of that particu-
lar session recorded on the day, i.e., 1;, 11, and n; (see Fig. 6). The hosted fields are:

(a) .rawFileName: character type variable with the name of the original raw file that was exported

(b) .SessionType: character type variable with the label of the type of session that the data belongs to

(c) .Channels: cell array with 1xK dimensions, with K being the total number of EEG, EOG and EMG channels
recorded, where each cell element is the label of a channel.

.TriggerSequence: cell array with 1xM dimensions, including the Mth events of all the trials recorded and
the session as a sequence of triggers, with the labels indicated in Fig. 2., ¢,8.,5$9,510,5$5,54,51,S 11, ...,
S15

(e) .Data:a KxR dimensional matrix of numerical values, being K the number of channels recorded, and R the
number of data points in the time domain of the recording, each element being the amplitude values of the
recording. It is highly relevant to consider that the default amplitude of the recording needs to be multi-
plied for a scaling factor of 0.0488281 (+410 mV range in 24 bits) to convert to pV?>'. The scaling factor can
be verified inside every *.vhdr file produced for every recording

.EventsOnset; a IxR dimensional vector of numerical values, being R the number of data points in the time
domain of the recording, and to each time point we have assigned the numerical value of the trigger labels
(see Fig. 2) occurring at that time point, e.g., 9, 10, 5,4, 1,11, ..., 15, and a value of zero otherwise. This
vector aims to help quickly locate each event’s onset and nature in the time domain

.TimeVector: a 1xR dimensional vector of numerical values, being R the number of data points in the time
domain of the recording, where an element of R indicates the time value in seconds of the recording.

6

(f

(g

As an example of the previous variable description, Fig. 6 illustrates the data structure using P11’s data from
visit VO1 and day D03.
All the datasets described in this section can be freely downloaded from the open access repository?.

Technical Validation

The raw data referred to in this descriptor was recorded using a Brain Products V-Amp amplifier, without any
type of hardware or software filter besides the physical instrumental restriction of the amplifier (wideband filter
in the range of 0 Hz (DC) - 320 Hz or 4kHz for the high-speed mode)?'.
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Fig. 6 Example of a Matlab structure of the data using P11’s data. The figure illustrates the data structure
using P11’s data from visit V06 and day D03. (a) Indicates the selection of patient variables and the data fields
corresponding to a particular visit and day and inside it, the type and number of sessions performed on the
given day. (b) Depicts the presence of different fields upon selecting a session type, in this case, the number of
Feedback sessions performed by P11, upon selection of Field named Feedback, and their different elements, as
shown in the figure. Read the Data Records section for the detailed description.

The raw data recorded with BrainVision Recorder software (v2.1.0) in *.ahdr, *.amrk, *.eeg formats were
exported using BrainVision Analyzer software? (v2.2.0) to obtain the formats'® *.vhdr, *.vmrk and *.eeg.

The data given as a Matlab format variable (*.mat) has been exported from the raw files taking advantage of
the EEGLAB? toolbox (https://sccn.ucsd.edu/eeglab/index.php, v2019.0) and the “bva-io” plugin (https://sccn.
ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php, v1.5.13), to save in the described variable structure desired
features of the original raw file, as detailed in the Data Records section. No special parameter was used for export-
ing these data, and therefore we consider both raw and exported to the same values. Nevertheless, the amplitude
of the recorded data (either.eeg or exported files using the “bva-io” plugin) is defined by the ADC bit resolution
of the device, that is a = 410 mV range in 24 bits, and therefore, the amplitude value needs to be multiplied by the
scaling factor of 0.04882812! to be converted to uV (microvolts) units. The resolution of each recording can be
found per channel inside each *.vhdr given file.

The Matlab script used to export the raw files to Matlab variables (see Code Availability section) includes a
deactivated code line that can be used to convert to pV the amplitude.

EOG electrodes were located and placed according to the standard 10-20 system with EEG neoprene caps
(Neuroelectrics, Barcelona, Spain), inserted in the cap using plastic holders. Once the whole set of electrodes was
in place, they were filled with SuperVisc electrolyte gel (Easycap, Germany, GmbH). Impedance was measured
on the whole set using an ImpBox (Brain Products, Germany, GmbH), to achieve a target impedance of 10 KQ.
Researchers in charge of the study ensured that the recorded activity had the proper impedance and a clean signal
for all the channels. Recordings are not affected by muscular or blinking artifacts, besides eye movements related
to the patients’ intentions.

Usage Notes

Performance of the communication system. The communication system can present a question every
nine seconds with an information transfer rate of 6.7 bits/min. The system’s optimal speed can be improved
depending on the speller scheme’s design for each individual patient and the corpus of sentences stored for word
prediction. Descriptive statistics on each patient’s performance can be found in the related publication'2.

A minimal criterion for communicating using the system is the presence of eye-movements recordable with
sate of the art EOG recording devices in the microvolt range. For one of the patients, the progression of the dis-
ease over the course of a year eventually prevented him from controlling his oculomotor activity. He was however
capable of producing undifferentiated EOG activity with low amplitude in the range of 30 pV which reached
that minimal criterion. The other patients never arrived at such a total loss of control when the data described
here was recorded. Therefore, the duration of the transition period to CLIS, and whether voluntary communica-
tion with non-invasive physiological recording technologies, as described here, will be possible in CLIS, is still a
matter of future research.

Date and time of the recordings. The original timestamp of the beginning of a recorded session can be
found both inside the *.vhdr and the *.vmrk files, as the occurrence of the first marker in the recording. It can
also be found as the timestamp of the sentence lists (Block_X_senlist.txt), or indicating the end of a session in the
results text files (Date_result_f1_X.txt).

Name of the raw files. During the study, files recorded with BrainVision Recorder software (v2.1.0) (i.e.,
*vhdr, *.vmrk and *.eeg) were labeled by the experimenters, and therefore, human error or discrepancies might
have been committed during the labeling process. To clarify any possible confusion, the Online-only Tables 1-4
include a set of columns that show the correspondence between the name of the raw file, the session’s sequence,
and any *.txt files attached to it.
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Sessions

Patient | Visits | Days | Training Feedback Speller
PIL 9 27 68 (including 2 lost files) 56 26
P13 4 14 28 2 21
P15 2 7 7 16 (including 1 lost files) |18

P16 2 9 27 2 B

Table 1. The number of sessions in the dataset. Detail of the number of visits and total days of the study, and the
total number of different types of sessions recorded for each patient. Indicated in parenthesis are the numbers
of lost recordings. Copy speller and free speller sessions are considered in the same column. A more detailed
description of the days, dates, and sessions can be verified in the Online-only Tables 1-4.

The text lists (Block_X_senlist.txt and Date_result_fl_X.txt) were created automatically by a Matlab script
running during each session.

From the given recordings, either raw or Matlab fields, it can be noticed from the labels that some files or
sessions are lacking. This is because during the visits, sessions belonging to another paradigm for a different and
unrelated study were also recorded, and they have been deliberately removed from the actual data descriptor to
focus on the auditory communication recordings. Removed files are indicated in the Online-only Tables 1-4.
Additionally, a number of files were lost or corrupted; the precise number and sessions are indicated in Table 1
and Online-only Tables 1-4.

EEG locations and inconsistency. Working with patients who have critical health conditions means being
completely dependent on their current (minute by minute) state. These limitations were considered in the design
of the study. The number of EEG electrodes was limited by restrictions of accessibility of some scalp regions. Since
the patients lie on their backs most of the time, it is impossible to access occipital areas.

Nevertheless, the most relevant restriction is the time constraint, that is, to place a minimal number of EEG
electrodes in appropriate locations, in the minimum possible time, so to maximize the time available to work
with the patient before tiredness or another need (for example, sucking of saliva) prevents them from participat-
ing in the study. Consequently, the montages of electrodes might be affected by inconsistency in EEG electrode
locations, even for the same patient, and different visits, since it is always dependent on changing circumstances
of health and time.

Therefore, the criterion we follow aims to reach with the minimal number of electrodes the greatest coverage
of the prefrontal and mesial surfaces of the brain (besides the EOG electrodes), under the assumption that the
cognitive activity implicated in the processing of these questions might elicit changes in the electrical activity of
the aforementioned cortical regions.

Regardless of that, we managed to keep a constant number of seven EEG electrodes and four EOG electrodes
for most of the patients, for most of the visits, as can be verified in the Online-only Tables 1-4.

Audio files. The audio files (recorded questions) used in this research contains personal information of the
patients and their relatives and consequently, to make these audio files fully open and public will compromise
their identities. These data** have been uploaded with restricted access, therefore any researcher or laboratory
interested in accessing the data to perform the analysis will have to sign an identity protection agreement docu-
ment provided as a “Data Use Agreement” Supplementary material with this manuscript.

Code availability

The given Matlab data variables were obtained by exporting the raw files (i.e., *.vhdr, *.vmrk, and *.eeg) using
the EEGLAB? toolbox (v2019.1.0) and exporting the data using the “bva-io” plugin (v1.5.13). We wrote a
short Matlab script (ExportingCode_vhdr2mat.m) to export and save the desired features of the recordings, as
thoroughly detailed in the section Data Records. The code is included in the same repository as the rest of the
data, and it is panied by a brief d (ExportingCode_vhdr2mat.docx) explaining details of the code.
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Resting-EEG shows slow frequencies after complete paralysis in the advanced stage of amyotrophic
lateral sclerosis (ALS).

Neurophysiological metrics of ALS patients in completely locked-in syndrome (CLIS) are altered with
Keywords: highly variable patterns between patients.

Amyotrophic lateral sclerosis Heterogeneity of the results between patients precludes the use of single criteria to assess psy-
Completely locked-in syndrome chophysiological state in CLIS.

Resting-state

Somatosensory evoked potential

Auditory evoked potential ABSTRACT

Objective: Amyotrophic lateral sclerosis (ALS) patients in completely locked-in syndrome (CLIS) are inca-
pable of expressing themselves, and their state of consciousness and awareness is difficult to evaluate.
Due to the complete paralysis included paralysis of eye muscles, any assessment of the perceptual and
psychophysiological state can only be implemented in passive experimental paradigms with neurophys-
iological recordings.
Methods: Four patients in CLIS were investigated in several experiments including resting state, visual
stimulation (eyes open vs eyes closed), auditory stimulation (modified local-global paradigm),
somatosensory stimulation (electrical stimulation of the median nerve), and during sleep.
Results: All patients showed altered neurophysiological metrics, but a unique and common pattern could
not be found between patients. However, slowing of the electroencephalography (EEG) and attenuation
or absence of alpha wave activity was common in all patients. In two of the four patients, a slow dominant
frequency emerged at 4 Hz with synchronized EEG at all channels. In the other two patients slowing of EEG
appears less synchronized. EEGs between eyes open and eyes closed were significantly different in all
patients. The dominant slow frequency during the day changes during slow-wave sleep (supposedly sleep
stage 3) to even slower frequencies below 2 Hz. Somatosensory evoked potentials (SEPs) were absent or sig-
nificantly altered in comparison to healthy subjects, similarly for auditory evoked potentials (AEPs).
Conclusions: The heterogeneity of the results underscores the fact that no single neurophysiological index is
available to assess psychophysiological states in unresponsive ALS patients in CLIS. This caveat may also be
valid for the assessment of cognitive processes; a functioning BCI can be the solution.
Significance: Most of the studies of the neurophysiology of ALS patients focused on the early stage of the dis-
ease, and there are very few studies on the late stage when patients are completely paralyzed with no means
of communication (ie., CLIS). This study provides quantitative metrics of different neurophysiological
aspects of these patients.

© 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights

reserved.

1. Introduction

Completely locked-in syndrome (CLIS) was defined as total
*# Corresponding author. immobility with intact cognitive processing (Bauer et al., 1979)
E-mail address: niels.birbaumer@uni-tuebingen.de (N. Birbaumer).
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1388-2457/© 2021 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
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in which the patient is fully conscious but unable to express her-
selffhimself (Hayashi and Kato, 1989; Smith and Delargy, 2005).
By this definition, any disease such as quadriplegia and anarthria
or neurodegenerative motor neuron disease (MND) like amy-
otrophic lateral sclerosis (ALS) that is accompanied by total immo-
bility is categorized as CLIS as long as conscious awareness is
assumed to be intact (Patterson and Grabois, 1986). It has recently
been proposed to use a lack of communication as the main criteria
for CLIS (Chaudhary et al., 2020a), which we also use in this manu-
script. However, with this definition, the patients’ conscious and
cognitive state remains undefined, and differentiation to other
non-responsive states such as unresponsive wakefulness state
(UWS) is not possible. Existence of different approaches in the
assessment of consciousness precludes a clinical definition of CLIS
in unresponsive patients. Hence a clinical assessment of CLIS is not
established yet, and attempts to differentiate unresponsive disor-
ders of consciousness from CLIS with neurophysiological measures
and neuroimaging were mostly unsuccessful (Kotchoubey et al.,
2003; Kiibler et al., 2001).

All patients reported in this study suffer from ALS and are in
CLIS. CLIS however is not reserved for ALS only: subcortical stroke,
traumatic or infectious, or toxic brain damage may also lead to
locked-in syndrome (LIS) and/or CLIS. LIS can be differentiated
clearly from CLIS through intact voluntary eye movements in all
these etiologies (Smith and Delargy, 2005). ALS is a progressive
MND that causes loss of motor neurons and eventually completely
paralyzes the patient and leads to CLIS (Thorns et al., 2010). Pro-
gression of the disease is not necessarily correlated with a cogni-
tive deficit (Schnakers et al, 2008), although cognitive
dysfunction is reported in some cases (Huynh et al, 2020;
Stanton et al., 2007). It has been proposed that somatosensory
and auditory perception, as well as cognitive processing are pre-
served and not affected even after the transition to CLIS (Kiibler
and Birbaumer, 2008). These shreds of evidence are the main rea-
sons why it is hypothesized that in the final stage of the disease
when the patient is completely paralyzed and unable to express
herself/himself, s/he is still cognitively intact with preserved con-
sciousness. Of course, this is only a deductive argument, and valid
and reliable experimental clinical observations are required to val-
idate this claim. However, experimental findings have sometimes
challenged the idea of intact sensory processing of patients in CLIS.
A case study on a patient in CLIS with intracranial recordings
reported selective somatosensory dysfunction in joint-
mechanoreceptor pathways and raised doubts about the intactness
of proprioception in CLIS (Murguialday et al., 2011). Also, vision is
said to be impaired or absent in most patients in LIS and CLIS with
ALS due to drying and necrosis of the cornea (Tonin et al., 2020). A
theoretical analysis of cognition in CLIS based on a motor theory of
thinking (Ferster and Skinner, 2005; Washburn, 1916) has specu-
lated “extinction of goal-directed thinking” due to the lack of con-
tingent reinforcement after the transition to CLIS (Kiibler and
Birbaumer, 2008). The only hope for ALS-CLIS patients to commu-
nicate is through brain-computer interface (BCI) (Birbaumer, 2006;
Chaudhary et al., 2016, 2015) and so far, no case of non-invasive
BCI is reported with the ability of free spelling communication
(De Massari et al., 2013). However, an invasive approach resulted
in free spelling communication with a patient in CLIS and demon-
strated preserved cognitive functionality several months after
transitioning to CLIS (Chaudhary et al., 2020b). The failure of BCI
in most ALS-CLIS patients after transitioning to CLIS together with
the progressive nature of the disease provokes the question of
whether basic sensory processing as well as cognitive functionali-
ties are preserved in patients after transitioning to CLIS.

Two of the main approaches to assess the brain functionalities
in unresponsive patients are to investigate first the spontaneous
brain activity during wakeful resting and sleep, and second the
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brain reactivity to various external stimuli (Schnakers and
Majerus, 2012). Depending on the design of the experiment and
the performed analysis, it is commonly accepted that some of the
neurophysiological metrics are correlated with cognitive functions
(Squires et al., 1975; Sutton et al., 1965; Ulanovsky et al., 2003).
While spontaneous brain activity can uncover basic brain function,
event-related potentials (ERPs) may serve as correlates of higher
cognitive functionalities such as selective attention, memory
updating, semantic comprehension (Duncan et al., 2009). Early
ERPs (until 200 ms latency) are correlated with automatic, uncon-
scious processing of the stimuli, while later components are usu-
ally signs of conscious processing of an event. The early and late
ERP components are not mutually exclusive responses; rather they
follow each other in a proper experimental paradigm, but there are
occasions when they vary independently, particularly in neu-
ropathological cases (Kotchoubey et al., 2005). Bekinschtein et al.
(2009) proposed an experimental paradigm known as Local-
Global (LG) processing, in which the distinction between uncon-
scious and conscious processing in the auditory evoked potentials
(AEPs) is easier to distinguish (Bekinschtein et al., 2009) and sev-
eral versions of it have been modified and validated on healthy
people and patients with disorders of consciousness (DoC)
(Rohaut and Naccache, 2017). The main idea behind this paradigm
is that, in a set of consecutive sensory stimuli with Local and Global
pattern changes, two different types of ERP can be detected. The
Local pattern refers to the order of consecutive stimuli within a
trial, and the Global pattern refers to the order of trials within an
experimental block. Detecting any violation in the order of stimuli
within a trial (i.e., local pattern) only requires pre-attentive mech-
anisms and elicits the early evoked response (before 200 ms),
called local effect (LE), while detecting a violation in the order of
presented trials within an experimental block (i.e., global pattern)
requires controlled attention and memory updating and is
reflected in the later evoked potentials components (after
200 ms), called global effect (GE). In this study, a modified version
of LG was used to assess auditory perception and cognitive capac-
ities of patients in CLIS and compared to healthy subjects. In addi-
tion, somatosensory evoked potentials (SEPs) were investigated to
assess sensory processing in ALS-CLIS. SEPs are used to assess the
functional status of the somatosensory pathways and to identify
the sensory portion of the sensorimotor cortex (Toleikis, 2005)
and are expected to remain intact in CLIS due to ALS. However,
studies on ALS patients before the transition to CLIS suggested a
pathological slowing of the conduction along central sensory path-
ways (Constantinovici, 1993; Cosi et al., 1984; Murguialday et al.,
2011). Particularly, abnormal SEPs are reported in LIS and patients
in CLIS with no specific pattern of SEP abnormality (Bassetti et al.,
1994; Giitling et al., 1996). Furthermore, alpha suppression in elec-
troencephalography (EEG) recordings is known as a neural signa-
ture of an attentional arousal mechanism (Danko, 2006; Toscani
et al., 2010) which can even be detected in complete darkness with
no visual input (Boytsova and Danko, 2010).

Although there already exist several reports on neurophysiolog-
ical measurements in unresponsive patients, all previously pub-
lished reports include only a few patients with ALS in their
heterogeneous samples and mainly consists of patients with brain
damage and other origins than motor neuron disease such as ALS
(Laureys et al., 2005; Patterson and Grabois, 1986; Schnakers
et al.,, 2008). Previous studies focusing on CLIS patients with ALS
usually report single cases (Gallegos-Ayala et al, 2014;
Kotchoubey et al., 2003; Murguialday et al., 2011; Silvoni et al.,
2013). The literature still suffers from coherent studies on the topic
with different measurements for comparing of the same patients at
different time points with appropriate controls. Particularly in ALS,
in which the patients’ condition is constantly changing over time,
different neurophysiological indexes of different studies cannot
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be compared, because they report different metrics from different
patients investigated and measured at different stages of their dis-
ease. The few number of surviving patients and the fact that they
are usually kept at home-care dictates the problem of large enough
homogenous samples. Thus, we decided to perform a systematic
observational study of neurophysiological aspects of patients in
CLIS focusing only on ALS patients.

In this manuscript, we report neurophysiological measures in
four ALS patients in the advanced stages of the disease, with no
means of communication, i.e., in CLIS. We selected neurophysiolog-
ical indices which are known to correlate with cognitive and/or
perceptual processing. However, we are aware that existence or
non-existence of a particular measure in CLIS, as realized in this
study, do not allow generalization to cognition in these CLIS
patients or CLIS patients in general. However, they may serve as
generating new hypotheses and guide the clinician in the selection
of appropriate assessment instruments. We investigated the spon-
taneous brain activity during rest and sleep, as well as brain reac-
tivity to various external stimuli including AEPs, SEPs, and EEGs
after eye-opening. We also investigated the resting-state EEG of
patients in CLIS and identified the sources of the dominant slow
oscillations previously reported in the literature (Maruyama
et al, 2020). While spontaneous brain activity and variation of
EEG features during sleep and sensory responses to external stim-
uli uncover the brain’s capacity at perceptual levels, AEPs in the
Local-Global paradigm are shown to be correlated with higher cog-
nitive functionalities (Duncan et al., 2009). This study tries to
uncover basic brain functions in a very rare group of ALS patients
long after transitioning to CLIS. Due to the small sample size, which
is due to the nature of the disease, group analyses between
patients and healthy controls are not performed. However, analysis
pipelines are validated in the healthy control group and reported
along with patients. We intended to provide an individual neuro-
physiological picture with the same metrics for each patient and
compare it qualitatively with healthy people to emphasize partic-
ularly on the obvious pathophysiological changes.

2. Materials and methods

A four days visit occurred with all four patients in CLIS. On the
first day, the SEP stimulation experiment was performed. On the
second day, AEPs with a modified local-global paradigm
(Bekinschtein et al., 2011) was realized. On both days, resting-
state EEG was recorded while eyes were open and closed. On the
remaining two days, simultaneous EEG and fNIRS recordings were
performed in a BCI experiment. The BCI experiments resulted in a
negative outcome: none of the four patients achieved reliable yes-
no communication on this occasion. The BCI protocol is described
in Tonin et al. (2020). However, P1 had previously achieved signif-
icant yes-no communication with a NIRS-BCI (Gallegos-Ayala et al
2014). Two nights of sleep recording were performed in three
patients. The fourth patient (P1) had to decline because of health
problems. This article reports all the neurophysiological assess-
ments recorded during this visit, including the resting state analy-
sis, the EEG changes during sleep, and the brain response to SEPs
and AEPs on a dataset that has never been reported before.

All the EEG was recordings reported here were performed using
BrainAmp device (Brain Products Inc, Gmbh, Munich, Germany).
The recording sites were based on the 10-10 international systems
for electrode placement, using actiCAP from the same company,
and by manually adding extra electrodes. In these patients, occip-
ital electrodes cannot be used because patients rest for 24 hours a
day on their back in a supine position with the back of their head
on a pillow: attaching electrodes on the occipital region thus
causes pain and discomfort, as we know from reports of patients
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and healthy persons lying on their back with electrodes attached
at that position, therefore, the recording electrodes included the
following channels: Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC3, FC1,
FC2, FC4, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CPz, CP2, CP6. Moreover,
mastoids were recorded to be later used as a reference program-
matically. Bilateral Erb's points 2-3 c¢m above the clavicle were
recorded for the SEP analysis. Recordings were performed with a
500 Hz sampling rate referenced to FCz and grounded to Fpz. In
addition, two electrodes were used above and below one of the
eyes to record eye movements. Ten healthy subjects underwent
the same experiments with the same recording montage, with a
3000 Hz sampling rate resampled to the same frequency as the
patient group for the analysis. For the sleep recordings, eight pas-
sive electrodes were placed over Cz, C3, C4, Fz, F3, F4, AF3, and AF4,
referenced to the forehead and grounded to a mastoid. Also, four
electrodes were used to for electrooculography (EOG) recordings.
Two electrodes were placed on either side of the eyes close to
the lateral canthus, and two electrodes were placed above and
below one of the eyes, depending on the physical accessibility.

All the analyses reported in this paper are performed using Mat-
lab (Mathworks, 2018). The data was analyzed using Fieldtrip tool-
box (Oostenveld et al., 2011), and EEGLab (Delorme and Makeig,
2004) for some plots.

2.1. Ethical approval

The Internal Review Board of the Medical Faculty of the Univer-
sity of Tubingen approved the experiment reported in this study.
The study was performed per the guideline established by the
Medical Faculty of the University of Tubingen. The patient or the
patients’ legal representative gave informed consent with permis-
sion to publish the data. The clinical trial registration number is:
ClinicalTrials.gov - Identifier: NCT02980380.

2.2. Participants

Three patients except patient 17 were investigated in a sleep
study (Malekshahi et al., 2019) and also served as subjects in dif-
ferent studies previously investigating power spectral EEG-
densities (Maruyama et al., 2020; Secco et al., 2020). The here used
patient numbers (P1, P4, P9, P17) match the same patients’ num-
bering in all studies of our laboratory. In addition, 10 healthy sub-
jects (2 females) with mean age of 28.8 years (SD 4.5) underwent
the same procedure as the patients for comparison. Again, we note
that no statistical group comparison is possible because of the
apparent age and biographical differences and the small sample
size of these two groups. The healthy group served to validate
the correctness of the metrics used and as a contrast for the severe
pathophysiology of the patients.

Patient 1 (P1), female, 75 years old, and CLIS, was diagnosed
with sporadic bulbar ALS in May 2007, was diagnosed as locked-
in in 2009, and as completely locked-in May 2010, based on the
diagnosis of experienced neurologists. She has been artificially
ventilated since September 2007, fed through a percutaneous
endoscopic gastrostomy tube since October 2007, and was in
homecare. No communication with eye movements, other mus-
cles, or assistive communication devices was possible. She passed
away in 2019.

Patient 4 (P4), female, 29 years old, and CLIS, was diagnosed
with juvenile ALS in December 2012. She was completely para-
lyzed within half a year after diagnosis and has been artificially
ventilated since March 2013, fed through a percutaneous endo-
scopic gastrostomy tube since April 2013, and is in homecare.
She was able to communicate with the eye-tracking device from
early 2013 to August 2014 and was unable to use the eye-
tracking device after the loss of eye control in August 2014. After
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August 2014, family members were able to communicate with her
by training her to move her eyes to the right to answer “yes” and to
the left to answer “no” questions until December 2014. In January
2015, eye control was completely lost, and she tried to answer
“yes” by twitching the right corner of her mouth, and that too var-
ied considerably, and parents lost reliable communication contact.

Patient 9 (P9), male, 25 years old, and CLIS, was diagnosed with
juvenile ALS with FUS mutation heterozygote on Exon 14:
c.1504delG, gene mutation diagnosed in 2013. He has been artifi-
cially ventilated since August 2014 and is in homecare. He started
communication using Tobii eye-tracking device (Tobii Dynavox,
Danderyd, Sweden) in January 2015. He was able to communicate
until December 2015, after which the family members attempted
to communicate by training him to move his facial muscles to
answer “yes” but the response was unreliable. No communication
with eye movements, other muscles, or assistive communication
devices was possible since 2016.

Patient 17 (P17), male, 63 years old, and CLIS, was diagnosed
with ALS of the second motor neuron in spring 2009. He was not
able to breathe after one year, is artificially ventilated, and fed
through a percutaneous endoscopic gastrostomy tube since spring
2010. He was able to communicate with the Tobii eye tracking
device (Tobii Dynavox, Danderyd, Sweden) until 2014. After that
the family was trying to communicate based on his eye-
movements. Family members were able to communicate with
him by training him to move his eyes to the right to answer “yes”
and to the left to answer “no” to the questions. For the last 2—
3 years, it is almost not possible to recognize any voluntary
response. He had constant involuntary eye movements even when
his eyes were closed. Movements were similar to horizontal
optokinetic nystagmus with a large range of motion. He passed
away in 2019.

2.3. Resting-state EEG

The data acquired from each patient was filtered using a notch
filter at 50 Hz, and bandpass filtered between 0.5 Hz and 45 Hz.
Noisy channels were interpolated, and the signal was re-
referenced to both earlobes. Independent component analysis
(ICA) was performed and the components were extracted from
EEG, and noise components were removed manually by visual
inspection. This signal is referred to as “cleaned data” in this text.
For each patient, the 64 seconds of cleaned data in the eyes closed
condition are plotted, and the time domain EEG abnormalities are
highlighted. ICA was used to remove artifacts and plotted around
the EEG trace to illustrate the spatial distribution of the source of
the EEG activity. The power spectral density (PSD) for four repre-
sentative EEG channels are plotted to compare eyes open and
closed.

2.4. Source localization

Dynamic Imaging of Coherent Sources (DICS), as an optimal
Beamforming technique for solving the inverse problem (Fuchs,
2007; Gross et al., 2001; Jonmohamadi et al., 2014), was used to
localize the frequency of interest (FOI) for each subject. Partial
Canonical Coherence (PCC) which essentially implements DICS
and provides more flexibility in data handling (REF; FieldTrip,
2011) was used to calculate neural activity index using the fre-
quency transformation of the signal. For the forward model, the
standard head volume conduction model proposed by Oostenveld
et al. was used (Oostenveld et al., 2003). To validate the analysis
pipeline of the source localization method and the used hyperpa-
rameters, source of alpha activity in healthy controls was deter-
mined and compared with the literature. Then the same analysis
pipeline was used to localize the source of the dominant slow oscil-
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lations in patients. For healthy subjects, the individual alpha peak
frequency of eyes closed resting, and for patients, the dominant
slow frequency of eyes closed resting was selected as the FOI.

2.5. Eyes open vs. eyes closed

In the recordings of this study, the occipital region was not cov-
ered due to the patients’ physical condition (see above). Therefore,
the commonly used PSD comparison method might not be an
option to capture the difference between eyes open (EO) vs eyes
closed (EC). The commonly detected alpha blockade after eye-
opening in healthy people is also present at parietal sites and
sometimes even further anterior. Thus lack of occipital electrodes
should not invalidate the comparison of eyes opening and closing
on the EEG traces. To overcome this issue, in addition to the PSD
comparison, another metric called Second-order plots (SOP) was
used. SOP is based on the comparison of the variability of the sig-
nals in different conditions. SOP of the time-domain EEG data is
proposed to be more sensitive to the EEG changes than PSD com-
parison in healthy subjects (Thuraisingham et al., 2007).

All subjects were recorded 3 minutes in EO, followed by 3 min-
utes EC. In patients for EO recordings, the eyelids were taped open
by the experimenter (MKH) and using eye drops, the corneas were
kept wet, and for EC condition, the eyelids were closed passively
and covered with dark covers. In some recording of patients, the
time of EO was reduced by caretakers and varied between 2 and
3 min.

2.5.1. PSD comparison

The power spectrums were calculated on the cleaned EEG for
both conditions using a Welch'’s overlapping window of 5 seconds
and 30% overlap, using multitaper frequency transformation and
the boxcar taper. For each single frequency bin, a student t-test
was performed to compare EC and EO with 0.01 significant level,
corrected for multiple comparisons using the Bonferroni method.
Each channel is marked as different if it contained at least 10 con-
secutive frequency bins (equivalent to 2 Hz) with a significant dif-
ference between the two conditions below 25 Hz.

2.5.2. Second-order plots

For a cleaned EEG of each condition, the time domain EEG is
shifted one data point and subtracted from the original signal,
and denoted as X. Similarly, the signal is shifted two data points
and is subtracted from X and denoted as Y. Plotting X over Y rep-
resents the variability of the original signal in three consecutive
data points (embedding dimension equals to three). Measure for
central tendency was defined as the minimum radius for a circle
that holds at least 90% of all the data points in it and denoted as
r. Finally, r is calculated for every time window in the cleaned data,
epoched to five seconds with a 30% overlap. The variability of the r
in EO and EC is compared using student t-test with 0.01 significant
level, corrected for multiple comparisons; for details see
Thuraisingham et al. (2007).

2.6. Sleep

Patients in CLIS need constant medical care also during the
night, and patients are repositioned by caretakers during the night
to avoid decubitus. Thus displacement or detachment of recording
electrodes is very common in sleep recordings. Therefore, two
nights of sleep were recorded, and by visual inspection of the
raw data, one of the recordings with fewer artifacts, preferably
the second night, is analyzed and reported here. Selected record-
ings are then separated between EEG and EOG signals for visualiza-
tion. EEG signal is filtered between 0.5 Hz and 30 Hz and the EOG
signal is filtered between 5 Hz and 75 Hz. Noisy channels in EEG
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were interpolated. Noisy channels in EOG data were rejected. The
filtered data is segmented to 30 seconds data with no overlap,
and power spectral density is computed. For each frequency in
the 30-second window, the median of absolute power in all chan-
nels is calculated then normalized and plotted over the night. In
contrast to the previous study of our laboratory in which
Malekshahi et al. (2019) focused on the identification of sleep
stages in CLIS, in this study, we did sleep recordings again in order
to identify and differentiate the sources of the dominant slow-
wave activity during waking day hours from the slow activity dur-
ing sleep.

2.7. Somatosensory evoked potentials

Monophasic electrical square pulse with 200 us pulse width
~3 Hz rate was applied with the intensity of stimulation range pro-
posed by the American Clinical Neurophysiology Society (ACNS) at
30 mA (American Clinical Neurophysiology Society, 2009). For P4,
P9, and P17 for whom caretakers believed communication with
the patient seemed possible from time to time by movements of
a facial muscle or eyes at a very slow rate, the stimulation intensity
was determined with caretakers but still in range proposed by
ACNS. However, during this visit no reliable communication was
achieved with these patients. The stimulation was performed on
two blocks with 250 repetitions. Between the median nerve stim-
ulation, the tibial nerve of the contralateral site was stimulated
with the same protocol. Since the recording of spinal cord evoked
potentials (SCEPs) was not possible, the tibial stimulation is not
reported here. For the stimulation, bar electrodes with 8 mm diam-
eter and 3 cm distance by Technomed (Technomed, The Nether-
lands) were placed over the wrists, cathode proximal, and
connected to a D188 digital switch connected to DS7A constant
current Stimulator (Digitimer Ltd., Welwyn Garden City, UK). Ten
healthy subjects underwent the same procedure for comparison.

Data were resampled to 3000 Hz and the electrical noise of the
stimulation was removed by replacing the data points between the
beginning of stimulation (zero lag) to 7 ms after the stimulation by
aflat line (Waterstraat et al., 2015) and then filtered between 3 and
1000 Hz. Epochs from —15 ms to +150 ms were extracted and aver-
aged over all 500 trails. Representative channel was manually
selected from ERP images among the CP5/6, CP3/2, C1/2, or C3/
C4 channels and referenced to F1/F3. For plotting N9, Erb’s point
ipsilateral to the stimulation was referenced to the contralateral
Erb’s point. Topoplots for the P50 is plotted as the most significant
lateralized response to the stimulation.

2.8. Auditory evoked potentials

Auditory stimuli consisted of two pure tones with 500 Hz and
1000 Hz frequency with 50 ms duration, 5 ms rise up, and 5 ms rise
down. Five sets of auditory stimuli were presented with 100 ms
inter stimulus interval (ISI) and referred to as a stimulation epoch
in this text. A trial was defined as a repetition of 5 epochs with
650 ms ISI (Fig. 1). Brain response to the changes in the order of
auditory stimuli within an epoch was defined as a local effect
(LE) and the brain response to the change in the order of trials
within a block was defined as a global effect (GE). As depicted in
Fig. 1, two different global patterns in two experimental blocks
were used. Each block consisted of 120 trials with the first 20 as
training trials for the participant to learn the rule of global regular-
ity within that block. In each block, the order of presenting trials
was randomized with an 80% probability of the trials that were
not violating the global pattern (i.e., globally similar) and 20% for
the ones that were violating the global regularity (i.e., globally
deviant). The difference between the two blocks was in the pattern
of stimuli in one epoch (i.e., local pattern). In the first experimental
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block, in the first four epochs, all the auditory stimuli are the same
(i.e., locally similar), while in the second experimental block, the
last auditory stimulus is different from the first four (i.e., locally
deviant). In summary, as depicted in Fig. 1, four different condi-
tions resulted in two blocks, Globally Similar Locally Similar
(GSLS), Globally Similar Locally Deviant (GSLD), Globally Deviant
Locally Similar (GDLS), and Globally Deviant Locally Deviant
(GDLD). GSLS and GDLD are used as a control condition for GDLS
and GSLD, respectively. For details, see Bekinschtein et al. (2009).

The significant difference between the first four epochs in the
first and second block, which is only due to the violation of local
pattern, was calculated as LE. The significant difference between
the two conditions in the second block and their control condition
in the first block, which had the same local pattern while their glo-
bal pattern was changing, was calculated as the GE. The p-Value
obtained from the t-test comparison for LE and GE is scaled in 10
gradual levels and plotted for comparison, in which 0 indicates
no significant difference and 9 indicates a significant difference
at 0.01 level corrected for multiple comparisons. For the healthy
subjects’ plot, LE and GE are averaged across all subjects.

For the ERPs, the signal was resampled to 500 Hz and filtered
between 1 Hz and 20 Hz, noisy channels were interpolated, trials
averaged across conditions, and the baseline was removed. ICA
ran on epoched trials and noise components were removed, by
visual inspection, outliers were rejected, using the FieldTrip visual
inspection toolbox.

3. Results

A figure with the same structure is provided that summarizes
all the experimental findings for each patient. Fig. 2 for P1, Fig. 3
for P4, Fig. 4 for P9, and Fig. 5 for P17. Descriptive and analytic find-
ings of the most important findings for each experimental para-
digm in each patient are reported separately below.

3.1. Resting-State

All patients had an EEG amplitude range of +50 uV. The alpha
peak was completely missing in P1 and P9, but a minimal peak
at around 8 Hz can be detected in P4 and P17. In P4 and P9 a slow
oscillation at around 4 Hz with a huge power is emerged and can
be detected both in time domain and frequency domain plots
(Fig. 3a&b and Fig. 4a&b). Although the patient does not show
any visible and detectable eye movements for communication pur-
poses with caretakers, there exists eye activity in the list of ICA
components of all patients, except for P9, speculating the presence
of attenuated remaining eye activity after the patient is considered
to be CLIS. PSD pattern did not significantly change between eyes
open and eyes closed conditions in none of the patients (Figs. 2-
5b), which is described in detail in section 2.5. Eyes Open vs. Eyes
Closed.

In P4 and P9 abnormal EEG patterns can be detected that syn-
chronizes EEG in all channels at the same time and lasts for almost
two seconds (Fig. 3a and Fig. 4a). This pattern repeats periodically
every five to eight seconds and has a similar morphology to the
burst suppression and triphasic waves that can be found in coma
patients and anesthetic subjects (Emilia Cosenza Andraus et al.,
2011; Niedermeyer, 2009). This synchronization signal at ~4 Hz
dominates the background activity at all channels at the same time
with progressive increase and decrease of the amplitude (Figs. 3-
4a&b) and activities above 4 Hz that are superimposed with the
dominant slow frequency are not appearing in EEG plots. Thus
the EEG of these two patients shows more unpredictability than
the EEG of P1 and P17.



M. Khalili-Ardali, . Wu, A. Tonin et al.

EF1

> i —

ER2

EP3

Clinical Neurophysiology 132 (2021) 1064-1076

EPA

EFS

L] L] B
(111 B

L] ] ] B
(L1 B

Fig. 1. Design of experiment for modified local-global paradigm used for auditory stimulation in patients and healthy. Two blocks (B1 and B2), each consisting of five epochs
(EP1 to EP5), with local and global regularity patterns generate four conditions including Globally Similar Locally Similar (GSLS), Globally Deviant Locally Deviant (GDLD),

Globally Similar Locally Deviant (GSLD), and Globally Deviant Locally Similar (GDLS).
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Fig. 2. Neurophysiological map of P1 a) 60 seconds of resting-state electroencephalography (EEG) while eyes closed with the amplitude range of +31 uV; C7&C9 components
from independent component analysis (ICA) might indicate remaining eye activity b) Power spectral density (PSD) of four representative central and parietal EEG channels in
eyes closed (EC, red) vs. eyes open (EO, blue) c) Significant differences between EO vs. EC using PSD comparison (top) and second-order plot (SOP, down). d) Somatosensory
evoked potentials (SEPs) for the stimulation of the right and left median nerves; topo plots of most significant evoked response at 50 (P50); N9 responses recorded from Erb’s
points; cortical SEPs of right (top) and left (bottom) median nerves. e) The significance level of local (Top-Left) and global (Top-Right) effects in auditory evoked potentials
(AEPs) of local-global paradigm and their corresponding event-related potentials (ERPs) in four conditions: Globally Similar Locally Similar (GSLS, black), Globally Deviant
Locally Deviant (GDLD, red), Globally Similar Locally Deviant (GSLD, green), and Globally Deviant Locally Similar (GDLS, blue). ) Sleep recordings not available for this patient.

3.2. Source localization

As demonstrated in Fig. 6a, in every healthy subject, the alpha
activity source is reconstructed over the posterior cortices, even
though there was no electrode covering the occipital region. This
result validates the mathematically hired method as a proper tool
for localizing the source of a particular frequency of interest in EEG
activity with the recording montage used in this study. Source
localization results for patients (Fig. 7) demonstrate that in all
patients, deeper structures of the brain are the origin of the slow
dominant frequency. However, the exact location varied among
patients, and no common pattern could be found among patients.

3.3. Sleep

For P1 due to the family’s request only one night was
recorded, which contained a continuous recording noise that
could not be removed. In the other three patients, the domi-
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nant slow frequency in the EEG loses power periodically dur-
ing the episodes at night concurrent with an increase of the
power in the EOG channels. It should be noted that no volun-
tary EOG activity can be visually or instrumentally detected for
communication during the day. In P4, these episodes repeated
3 times during the night with the duration was almost an hour
(Fig. 3f). In P9, these episodes had a lower duration of approx-
imately 15 minutes but were more frequent (Fig. 4f). In P17,
the power of attenuated alpha activity at 8 Hz reduced during
episodes at night, and the dominant 2 Hz frequency of the day
is replaced by the dominant 1 Hz activity during the two epi-
sodes of supposedly slow-wave sleep; During these episodes at
night, the EOG activity increases in P4 and P17, for P9 that
EOG is not recorded. P4 receives a benzodiazepine (Lorazepam,
low dose 0,5mg) for anxiety problems, which does not seem to
affect on the sequence of slow-wave episodes during the night
as it is not differing from the other patients.
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Fig. 3. Neurophysiological map of P4 a) 60 seconds of resting-state electroencephalography (EEG) while eyes closed with the amplitude range of +36 uV; C7 component from
independent component analysis (ICA) might indicate remaining eye activity b) Power spectral density (PSD) of four representative central and parietal EEG channels in eyes
closed (EC, red) vs. Eyes Open (EO, blue) ¢) Significant differences between EO vs. EC using PSD comparison (top) and second-order plot (SOP, down). d) Somatosensory evoked
potentials (SEPs) for the stimulation of the right and left median nerves; topo plots of most significant evoked response at 50 (P50); N9 responses recorded from Erb's points;
cortical SEPs of right (top) and left (bottom) median nerves. e) Auditory evoked potentials data not available for this patient. f) Periodic decrease in the power dominant

frequency in the sleep EEG (top) and increase of electrooculogram (EOG) activity (bottom) during a night. Vertical lines represent environmental noises such as truing lights
on or off, medication, or auditory noises.

Fig. 4. Neurophysiological map of P9 a) 60 seconds of resting-state electroencephalography (EEG) while eyes closed with the amplitude range of +30 uV; b) Power spectral
density (PSD) of four representative central and parietal EEG channels in eyes closed (EC, red) vs eyes open (EO, blue) c) Significant differences between EO vs EC using PSD
comparison (top) and second-order plot (SOP, down). d) Somatosensory evoked potentials (SEPs) for the stimulation of the right and left median nerves; topo plots of most
significant evoked response at 50 (P50); N9 responses recorded from Erb’s points; cortical SEPs of right (top) and left (bottom) median nerves. e) The significance level of local
(Top-Left) and global (Top-Right) effects in auditory evoked potentials (AEPs) of local-global paradigm and their corresponding event-related potentials (ERPs) in four
conditions: Globally Similar Locally Similar (GSLS, black), Globally Deviant Locally Deviant (GDLD, red), Globally Similar Locally Deviant (GSLD, green), and Globally Deviant
Locally Similar (GDLS, blue). f) Periodic decrease in the power of dominant frequency in the sleep EEG during a night. Vertical lines represent environmental noises such as
truing lights on or off, medication, or auditory noises.
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Fig 5. Neurophysiological map of P17 a) 60 seconds of resting-state electroencephalography (EEG) while eyes closed with the amplitude range of +45 wV; C2, C4, & C17

from i

analysis (ICA) might indicate remaining eye activity b) Power spectral density (PSD) of four representative central and parietal EEG

channels in eyes closed (EC, red) vs. eyes open (EO, blue) c) Significant differences between EO vs. EC using PSD comparison (top) and second-order plot (SOP, down). d)
Somatosensory evoked potentials (SEPs) for the stimulation of the right and left median nerves; topo plots of most significant evoked response at 50 (P50); N9 responses
recorded from Erb's points; cortical SEPs of right (top) and left (bottom) median nerves. e) The significance level of local (Top-Left) and global (Top-Right) effects in auditory
evoked potentials (AEPs) of local-global paradigm and their corresponding event-related potentials (ERPs) in four conditions: Globally Similar Locally Similar (GSLS, black),
Globally Deviant Locally Deviant (GDLD, red), Globally Similar Locally Deviant (GSLD, green), and Globally Deviant Locally Similar (GDLS, blue). f) Periodic decrease in the
power dominant frequency in the sleep EEG (top) and increase of electrooculogram (EOG) activity (bottom) during a night. Vertical lines represent environmental noises such

as truing lights on or off, medication, or auditory noises.

3.4. Eyes open vs. eyes closed

Using bootstrapping, a 95% confidence interval for the number
of channels that showed a significant difference between EO and
EC, in the healthy subjects, was calculated between 20.4% and
45.6% using PSD comparison, and between 39.6% and 66.4% using
the SOP method (Fig. 6¢). In all healthy subjects, a significant dif-
ference in the PSD comparison was detected between EO and EC,
except for one healthy subject. In this subject, although a clear
alpha peak was present in the PSD, no significant difference was
detected in the PSD comparison in none of the channels, while in
the same subject using the SOP method, a significant difference
between the two conditions was detected in some channels. This
subject had no history of visual, neurological, or psychiatric disor-
ders and was excluded from the PSD method’s bootstrapping iter-
ations. None of the patients showed any EEG changes while
opening the eyes using the PSD comparison method, while the
SOP method captured significant differences at least in four chan-
nels in all patients (Figs. 2-5b&d).

3.5. Somatosensory evoked potentials

In all healthy subjects, the N9 component on Erb’s indicated
intact peripheral somatosensory pathway. The early and lateral-
ized component before 50 ms were detected in all subjects.
Although the SEP patterns were different among subjects and
inter-individual variability was high. Nevertheless, the non-
cephalic N9, and cortical P50, and the propagation of the stimula-
tion response in the brain were found in all healthy subjects.

In P1 and P17, the N9 is missing on the Erb’s point (Fig. 2c and
Fig. 5¢). This might indicate the absence of the sensory neural path-
ways or a considerable increase in the sensory threshold for
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stimulation intensity. However, the possibility of experimental
failure, as it is inherent in any experiment, cannot be excluded.
Replication of the experiment (as with all other paradigms used
here) with higher stimulation intensity can rule out an increased
threshold hypothesis. In P4 and P9 intactness of afferent fibers
could be detected with the N9 response on Erb’s points, the N20
was missing bilaterally and P50 was the most significant earliest
brain response (Figs. 3-4c), which propagated over the sensory cor-
tex bilaterally with a uniform spatial distribution.

3.6. Auditory evoked potentials

As presented in Fig. 6b results from healthy subjects indicate
that LE can be detected in earlier latencies (before 150 ms) in com-
parison to GE, which appears at latencies after almost 200 ms.
However, the inter-individual variability was high due to the small
number of subjects in the healthy group.

In P1, no LE was detected, while very late GE appeared after
500 ms in only some frontal channels. A closer look at the ERP pat-
tern in Fig. 2d indicates that in the deviant condition in block 1 (i.e.,
GDLD) a clear P3 peak can be found. However, this peak is not sta-
tistically significantly different from the baseline due to the large
variance of the baseline activity. In P9, also no LE could be detected
but there seems to be a strong GE. A closer look at the ERP raw sig-
nal in Fig. 4d clarifies that the highly synchronous sinusoidal back-
ground EEG is the main reason behind this statistical difference,
while no physiologically relevant response can be detected, which
means that a phase shift in the raw EEG signal is causing a signif-
icant difference between any two conditions independently from
experimental conditions. In P17, both LE and GE are present, how-
ever, the responses are delayed to 500 ms after the stimulation
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Fig. 6. Resting and Auditory evoked response in Healthy controls. A) Source of individual alpha peak frequency (IAPF) sum of all subjects. B) The local (Top-Left) and global
(Top-Right) effect in auditory evoked potentials (AEPLG) due to the auditory stimulation averaged of all subjects. C) Eyes open vs eyes closed (EOEC) comparison illustrates
the number of healthy subjects showing a significant difference between eyes open and eyes closed conditions, using two different metrics: Power spectral density (PSD)

comparison (left) and second-order plots (SOP, right).

onset. For P4, the experiment was terminated due to technical
issues no report is available.

4. Discussion

Each experiment’s results are discussed individually below, and
a summary discussion of all the findings is provided at the end.
This study reports for the first time a small sample of a particular
rare subcategory of patients with ALS after transitioning to CLIS.
Even though in P1 no sleep data are available and in P4 AEPs are
missing, some consistencies between the four patients emerge as
discussed below. One way to overcome the problem of small sam-
ple size of CLIS studies is that laboratories and clinicians with
access to such patients perform standardized neurophysiological
experimental paradigms and report it and release the dataset for
other researchers; Only with the accumulation of these small sam-
ple size reports a large dataset can be acquired. This report is one
step in that direction.

4.1. Resting-state EEG

Given that ALS patients before the transition to CLIS show nor-
mal or close to normal spontaneous EEG (Hohmann et al., 2018),
the large difference found here in every patient after the transition
to CLIS is considerable. This is not the first time that the slowing of
EEG activity is reported in patients in CLIS (Hohmann et al., 2018;
Malekshahi et al., 2019; Maruyama et al., 2020). Although EEG
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changes seem to be different from patient to patient, the slowing
of the signal is common in all of them. The slowing of the EEG
and lack of alpha peak is not limited to patients in CLIS and is also
found in aging (Scally et al., 2018), Alzheimer (Cantero et al., 2009),
attention-deficit hyperactivity disorders (Lansbergen et al., 2011).
However, a large increase in the power in a particular frequency
band below 5 Hz and synchronization of the signal in all channels
is unique in patients in CLIS and to some extent similar to coma
patients (Hofmeijer et al., 2014; Niedermeyer, 2009), particularly
for P4 and P9. Due to the neurodegenerative nature of ALS, loss
of motor neurons in the central nervous system, loss of mass and
volume, and atrophy of the brain are frequently reported
(Kassubek et al., 2005; Mezzapesa et al., 2007; Mioshi et al.,
2013), which alone can effectively change the EEG pattern in the
latest stage of the disease in CLIS. Unfortunately, due to patients’
physical condition, there is no structural MRI available of a CLIS
to validate this speculation. Overall, it seems that there are two
distinct EEG patterns in CLIS. In the first group EEG characteristics
are attenuation or loss of power in the alpha band, decrease in the
EEG amplitude, more complex and not predictable EEG, and weak
alpha-like activity at around 8 Hz, such as P1 and P17. The second
group is the lack of alpha waves and emergence of a very slow and
high power at around 4 Hz, which dominates the whole spectrum
and is phase synchronized in all the channels, such as P4 and P9. Of
course, a small sample of four patients is not enough to generalize
to all patients in CLIS but most of the patients reported by the
authors can be classified in one of the two mentioned categories
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Fig. 7. Source of slow activity in patients.

(Hohmann et al., 2018; Malekshahi et al., 2019; Maruyama et al.,
2020; Ramos-Murguialday et al., 2013, 2011).

4.2. Source localization

Different criticism could be raised against source localization
techniques, especially when the source of the activity is located
in the deeper structure of the brain, and when only a few elec-
trodes are used. The algorithm is forced to locate the source of
activity in such a way that the input data can be reproduced, and
the easiest way (in terms of computational costs) would be to
assume the source of the common activity in the center of the head
model. However, anatomically is also more plausible to find the
source of common slow activity that synchronizes all EEG record-
ing channels at the same time with no phase lag in a deeper struc-
ture of the brain with symmetric cortical accessibility. Particularly
in P4 and P9 that all EEG channels are episodically synchronized in
one particular low frequency without any phase shift between
channels, it is highly probable that the source of activity is subcor-
tical, probably, thalamic. In ALS patients, after total loss of upper or
lower motor neurons, brain networks with presynaptic and postsy-
naptic connections to the motor assemblies in the diencephalon
such as the subthalamic network that together with striatum are
controlling skeletal muscle movements might also be disrupted.
This is in line with different observations reporting atrophy and
shape changes of the cerebral and corticospinal tract in ALS
patients before transitioning to the CLIS (Kumar et al., 2016;
Mioshi et al., 2013; Rajagopalan et al., 2013). It has been reported
that the functional connectivity of the sensorimotor cortex (SMC)
to the cingulate cortex is increased in ALS patients prior to the
transition to CLIS (Agosta et al.,, 2011). Additionally, default mode
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network connectivity is reported to be increased in ALS patients
before the transition to CLIS (Chenji et al., 2016). Loss of inhibitory
motor neurons in ALS patients (Lloyd et al., 2000) is proposed as
the main reason for the increase in brain connectivity and baseline
activity (Chenji et al., 2016; Douaud et al., 2011) and are expected
to be even stronger after the transition to CLIS and might be the
reason behind the emergence of high power and slow activity in
EEG of patients in CLIS.

4.3. Sleep

Authors have recently reported that patients in CLIS have simi-
lar to normal sleep behavior and circadian rhythms, including 3
patients reported here (Malekshahi et al., 2019). Continuous sev-
eral days recordings of a single patient in CLIS have shown that
the sleep cycles are distributed during the day and are not only
limited to the night (Ramos-Murguialday et al., 2013). In this
report, we investigated the fluctuation of the dominant slow fre-
quency in the EEG data during the nighttime recordings and
demonstrated that in all patients, except for P1 where sleep was
not recorded, the dominant frequency of the day is slower at night,
down to 1 Hz in some patients. We also demonstrated cyclic
changes in the EEG band power during the night that might be cor-
related with different slow-wave sleep stages. However, due to the
patient’s significant changes in the EEG pattern, the classification
of different sleep stages with criteria from healthy subjects is not
possible in any of the patients. Overall, in all patients, the power
of slow dominant frequency in the EEG during the day is lost in
those cyclic episodes of ultraslow waves during the night. This
may suggest that the slow dominant background EEG that is com-
mon in all patients in CLIS should not necessarily be interpreted
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pathological and the ultraslow activity during the night might indi-
cate the typical slow-wave sleep episodes (Sleep stage 3). For the
sleep analysis see Malekshahi et al. (2019).

4.4. Eyes open vs. eyes closed

The increase of the confidence interval to detect EO vs. EC in
healthy subjects while using the SOP method in comparison to
the PSD comparison method supports the idea that SOP is more
sensitive than PSD comparison in detecting brain reactivity while
opening the eyes. Besides, lost or attenuated alpha peak in the
patients and failure of the PSD comparison method to detect the
EO condition indicates that the methodologies used healthy sub-
jects” analysis might be insufficient in patients with significantly
altered EEG. Although for P4 and P9, the number of channels that
showed significant differences using the SOP method is smaller
than in healthy subjects, the fact that there is some difference at
all might indicate some level of visual processing in patients. Also,
in these two patients only in one of the two days recordings, brain
reactivity to the opening of the eyes could have been detected.
With non-responsive patients like CLIS, it is a challenge to detect
arousal changes during an experiment; here, we assume that the
difference between the two days is due to the arousal level in
the recording of these days. Studies have shown that episodes of
sleep during the daytime are a common behavior in patients in
CLIS and it is a possibility that the patient is not attentively aroused
during an experiment.

4.5. Somatosensory evoked potentials

Diagnosis is not the primary function of SEPs, yet, loss of all cor-
tical and subcortical SEP components is usually associated with
brain death in anoxic coma (Cruccu et al., 2008). On the other hand,
ALS patients before the transition to CLIS show altered SEPs prob-
ably because of the compensatory activity of the sensory-motor
cortex (Hamada et al,, 2007). Considering that the pathology of
sensory pathways in ALS patients is not well known yet, any diag-
nosis based only on SEPs in ALS-CLIS patients should be avoided.

The absence of the N9 response on the Erb’s point in P1 and P17,
which only requires proper functioning of the peripheral
somatosensory neural pathway, may represent the dysfunction of
sensory pathways in the latest stage of the disease. Although
experimental failure cannot be ruled out, and no further hypothe-
ses can be given before repetition in the same subjects and others.
In P4 and P9, with the presence of N9 and bilaterally absence of
cortical responses before 50 ms, the patients’ condition might be
more critical, since the absence of bilateral N20 in median nerve
stimulation of anoxic coma has always been associated with severe
brain damage (Cruccu et al., 2008). But, as mentioned before, due
to the alteration of the SEPs in ALS before the transition to CLIS,
any diagnosis solely based on the SEPs should be avoided.

4.6. Auditory evoked potentials

Patients in CLIS, with altered background EEG, did not show
similar ERP response to auditory stimuli compared to healthy peo-
ple and each patient had a unique brain response. Although, lack of
LE and delayed GE was common in all patients, except for P4 for
which the AEPs were not recorded, which is in line with previous
findings reporting delayed auditory ERP response in CLIS
(Kotchoubey et al., 2003). Even with insufficient attentional early
analysis of the stimulus characteristics like modality and intensity,
a cognitive differentiation of differential characteristics (global or
local without the presence of both) is possible late in the process-
ing stream. Kotchoubey et al. (2005) reported similar paradoxical
findings in severe brain-damaged patients, where a semantic mis-
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match potential (N400) was present late in the processing stream
(at around 600 ms) while all early components such as the mis-
match negativity after 150-200 ms were completely absent
(Kotchoubey et al., 2005). Whether this indicates conscious pro-
cessing in the absence or only rudimentary early automatic differ-
entiation of stimulus characteristics is more a basic theoretical
question than an empirical question, but such a separation seems
possible. A similar paradox was observed in autistic savant
patients, where early (unconscious) processing ERP components
are excessively large while late (conscious) components are com-
pletely absent (Birbaumer, 1999).

5. Conclusion

The slow and high power 4 Hz signal emerged in two patients
out of the four cannot be compared with sleep slow-wave activity
in these patients because the sleep slow-wave episodes were
slower around 1,5 Hz. The two patients with slow and high ampli-
tude EEG with high synchronization in all the recording channels
were bilaterally missing the N20 to electrical stimulation of the
median nerves (SEPs) and the first peak was found at 50 ms, and
the SEPs were significantly different from the healthy. In the other
two patients, no response could be detected, and electrical stimu-
lation did not reach to the Erb’s point, consequently, did not cause
any cortical evoked response; reasons remained unclear. In the two
patients with dominant slow frequency at 4 Hz, no AEPs could be
found. While in the other two patients, pre-attentive evoked
responses were absent, and attentive late evoked responses were
retained but delayed to 500 ms. We proposed a pathology in the
early automatic perceptual sensory systems with an intact but
delayed higher cognitive processing system analogously to find-
ings in autistic spectrum disorder (Birbaumer, 1999). “Extinction
of goal-directed thinking” (Kiibler and Birbaumer, 2008) and lack
of contingent reinforcement and rewards in the absence of any
type of communication from a behavioral point of view, might
reduce cognitive capability after longer periods in CLIS. Due to
the small number of patients in this report, results are vulnerable
to bias and need to be validated with more patients. It is important
to follow patients longitudinally before the transition to CLIS until
months after that, to elucidate the relation between the progress of
the disease and changes in brain responses. It is unclear yet if these
changes are gradual or occur in a rapid stepwise fashion.

The extreme heterogeneity of the results of different brain mea-
sures in CLIS reflecting different neural and therefore different cog-
nitive processes remind us of a similar dilemma in the diagnosis of
conscious processes in the severe brain-damaged patients (Laureys
and Boly, 2007; Majerus et al., 2005; Real et al., 2016); while one
measure (i.e. SEP) denies any conscious or cognitive process the
other measurement points to the existence of highly complex
semantic thinking and reasoning in the same patient at the same
time. This warns us not only of seemingly consistent theoretical
explanations and theories in CLIS and DoC but also of any clinical
diagnostic statements and assurances; we just do not know what
is possible yet. From this work on patients in CLIS who were never
investigated with such measurements all at the same occasion
before we are forced to conclude that we have some neural indices
indicating intact or only deviant cognitive processing while others
suggest severe disorders of perception and reasoning.
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Patients in completely locked-in state (CLIS) due to amyotrophic lateral sclerosis (ALS) lose the con-
trol of each and every muscle of their body rendering them motionless and without any means of
communication. Though some studies have attempted to develop brain-computer interface (BCl)-based
communication methods with CLIS patients, little information is available of the neuroelectric brain
activity of CLIS patients. However, because of the difficulties with and often loss of communication, the
neuroelectric signature may provide some indications of the state of consciousness in these patients. We
recorded electroencephalography (EEG) signals from 10 CLIS patients during resting state and compared
their power spectral densities with those of healthy participants in fronto-central, central, and centro-
parietal channels. The results showed significant power reduction in the high alpha, beta, and gamma
bands in CLIS patients, indicating the dominance of slower EEG frequencies in their oscillatory activity.
This is the first study showing group-level EEG change of CLIS patients, though the reason for the observed
EEG change cannot be concluded without any reliable communication methods with this population.
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a progressive disease that
affects patients’ motor control. ALS patients suffer from progressing
impaired motor control, and often their options for communica-
tion methods become limited. In the advanced stage of ALS called
locked-in state (LIS), patients lose most voluntary body movements
but still can communicate using their eye movements or any other
muscular response. However, in the further advanced stage called
completely locked-in state (CLIS), patients lose all muscular con-
trol including their eyes and thus all communication methods are
lost, although cognitive function of CLIS patients is assumed to be
functioning (Kotchoubey et al., 2003; Fuchino et al., 2008).
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Some studies have attempted to establish brain-computer
interface (BCI)-based communication methods with CLIS patients
using brain signals such as electrocorticography (ECoG), electroen-
cephalography (EEG), and functional Near-Infrared Spectroscopy
(fNIRS) (Kiibler and Birbaumer, 2008; Murguialday et al., 2011;
Gallegos-Ayala et al., 2014; Okahara et al., 2018; Ardali et al., 2019;
Han et al., 2019). Though some of such attempts partly succeeded
in communication (Okahara et al,, 2018; Han et al,, 2019), it is
still a quite challenging problem. Characterization of EEG in CLIS
patients can assist in the development of EEG-BCI-based commu-
nication methods with CLIS patients because the knowledge of
the EEG frequency characteristics is crucial in the correct selection
and exclusion criteria of classification algorithms for BCIs (Nicolas-
Alonso and Gomez-Gil, 2012).

Though EEG of non-late-stage ALS patients during resting state
have been reported in some studies (Mai et al., 1998; Santhosh
et al,, 2005; lyer et al.,, 2015; Jayaram et al., 2015; Fraschini et al.,
2016, 2018; Nasseroleslami et al., 2019) and reviews (Kellmeyer
et al., 2018; Proudfoot et al., 2019), little EEG information is avail-
able of late-stage ALS patients such as LIS and CLIS. Only one case
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Table 1
Demographic data and EEG measurement conditions of the participants.

Participant ID Gender Age (years) ALS duration (years) Recording time (seconds) EEG sensor positions

ALS-CLIS Patients

P1 F 72 10 31 FCC3, FCC4, FCC5, FCC6, Cz*

P2 M 62 4 603 AF3, AF4, FC1°, FC5°, FC6°, CP1?, CP5°%, CP6*
P3 F 79 7 584 FC3, FC4, FC57, FC67, Cz*

P4 F 26 4 487 FC17, FC2, FC5%, FC6%, CP17, CP2, CP57, CP6*
P5 M 58 7 600 FC1%, FC2, FC5°, FC6°, CP1?, CP2, CP5%, CP6*
P6 M 37 8 623 FC5%, FC6%, C5, C6, Cz°, T9, T10

P7 F 56 7 753 FC3, FC4, FC5?, FC6?, Cz*

P8 F 33 6 630 FC12

P9 M 23 4 1032 F3,F4, C3, C4, Cz*

P10 M 25 5 641 FC5?, FC6°, C5, C6

Healthy Participants

H1 M 26 684

H2 F 29 1166 AF3, AF4, FC1?, FC2, FC3, FC4,

H3 F 51 682 FC5%, FC6%, C5, C6, Cz*, CP1°4,

H4" M 50 N.A.S 1268 CP2, CP57, CP67, Oz

H5 M 65 1258

H6 M 49 1272

H7 M 50 1214

2 EEG sensors used in the analysis.

b Data of H4 was excluded from the analysis due to recording failure and artefact contamination.

< Not applicable.

study investigated power spectral densities (PSDs) of 2 ALS-CLIS
patients (Hohmann et al., 2018). This study quantitatively reported
shifts of the alpha peak frequencies in the CLIS patients toward
the lower frequency ranges compared with healthy participants
and ALS patients who showed ALSFRS-R (The Revised ALS Func-
tional Rating Scale) (Cedarbaum et al., 1999) scores larger than 0.
Other single case studies also reported dominance of low EEG fre-
quencies in ALS-CLIS patients (Hayashi and Kato, 1989; Kotchoubey
et al., 2003). However, group-level comparison between ALS-CLIS
and healthy people has not been performed yet.

In this study, therefore, to describe the EEG characteristics of
ALS-CLIS patients at group level, we investigated the resting-state
PSDs of ALS-CLIS patients. The PSD analysis was performed for
signals recorded from fronto-central, central, and centro-parietal
sensors that could be placed over the scalp of the bedridden
patients.

2. Materials and methods

The Institutional Review Boards of the Medical Faculty of the
University of Tiibingen and Tokyo Institute of Technology approved
the study reported in this study. This study is in full compliance
with the ethical practice of Medical Faculty of the University of
Tiibingen and follows the criteria of the Helsinki Accords. Written
informed consent for this study was obtained from the patients’
legal representatives and the healthy participants.

2.1. Participants

We recorded EEG signals from 10 ALS-CLIS patients and 7
healthy participants. The number of healthy participants was
decided so that mean and variance of age were not significantly
different in each comparison, considering the different numbers
and positions of sensors between the patients due to clinical needs.
Table 1 shows the demographic data and EEG measurement condi-
tions. The mean age (standard deviation) was 47.1(19.7) in patients
and 45.7 (12.6) in healthy participants. All patients were in home
care and bed-ridden, artificially ventilated and fed. CLIS was defined
as inability to communicate with eye movements or any other vol-
untary muscle with use or non-use of eye trackers for more than
6 months. (After failure of eye-trackers caretakers tried to “read”
“yes”- signals from eye or face muscles, in none of the patients any

reliable communication was possible. A detailed description of the
patients can be found in Malekshahi et al., 2019). All of the patients
showed regular circadian patterns of slow wave sleep and waking
(Malekshahi et al., 2019).

2.2. EEG acquisition

In the EEG measurement, the CLIS patients and the healthy
participants were instructed to relax, try not to think anything,
and refrain from sleeping. Eyes of the CLIS patients were closed
(they can only be opened actively by caretakers). Healthy par-
ticipants were additionally instructed to keep their eyes closed
and not to move throughout the measurement. EEG sensors were
attached according to the 10-5 system, with one reference chan-
nel attached to their right mastoids. EEG signals were recorded
using a V-Amp amplifier and passive electrodes (Brain Products
GmbH, Gilching, Germany). In the measurement of the patients,
electrooculogram (EOG), chin electromyogram (EMG), and Near-
Infrared Spectroscopy (NIRS) sensors were also attached to faces
and heads for other clinical and research purposes. Due to clin-
ical needs, the numbers and positions of sensors were different
between the patients, while they were identical across the healthy
participants(Table 1). The EEG data were measured in the afternoon
for all the CLIS patients and healthy participants to equalize their
conditions in terms of the circadian rhythm. The EEG data from one
of the healthy participants (H4) was excluded from the analysis due
to recording failure of EEG sensors and artefact contamination.

2.3. EEG processing

EEG signals were processed using Matlab R2016b (The Math-
Works, Inc., Natick, Massachusetts, U.S.A.) and EEGLAB 14.1.1
software (Delorme and Makeig, 2004). In the preprocessing, a high-
pass finite impulse response (FIR) filter at 0.5 Hz and a low-pass
FIR filter at 45 Hz were applied to the raw EEG signals, followed
by down-sampling to 100 Hz to save computational cost. Subse-
quently, we extracted five 1-minute epochs (i.e., 5-minute data in
total) containing minimal artefacts such as muscle activities and
body movements by visual inspection.

Considering the difference of sensor positions in CLIS patients
due to clinical limitation, we decided to use 7 sensors FC5, FC6, Cz,
FC1, CP1, CP5, and CP6 (Table 1) for the PSD comparison analysis.
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Specifically, FC5 and FC6 were used for 7 patients (patient ID: P2, P3,
P4,P5,P6,P7,and P10), Cz was used for 5 patients (patient ID: P1,P3,
P6, P7, and P9), FC1 was used for 4 patients (patient ID: P2, P4, P5,
and P8), and CP1, CP5, and CP6 were used for 3 patients (patient ID:
P2, P4, and P5). For these 7 sensors (FC5, FC6, Cz, FC1, CP1, CP5, and
CP6), PSDs of these patients were compared with PSDs of all the 6
healthy participants (H1, H2, H3, H5, H6, and H7), respectively. For
each sensor, PSD for each 1-minute epoch was calculated by Fast
Fourier Transform (FFT) of 1-second time window with 0.25-second
overlap, and each participant’s PSD was obtained by averaging five
1-minute PSDs. Hann window was applied as the window function.
We averaged 1185 PSDs (237 PSDs per 1-minute epoch x 5 epochs)
to get each participant’s representative resting-state PSD. From the
PSD, delta (1-3 Hz), theta (4—7 Hz), low alpha (8—10 Hz), high
alpha (11-13 Hz), beta (14-30 Hz), and gamma (31-40 Hz) band
power was calculated by averaging power in the corresponding
frequencies.

2.4. Statistical analysis

Statistical tests were performed in free software R (R Core Team,
2018). Due to small sample sizes, we applied a two-tailed Wilcoxon
rank sum test to test the power difference between the CLIS patients
and the healthy participants for each frequency band and sensor.
The obtained p-values were False Discovery Rate (FDR) corrected
using the Benjamini-Hochberg method to compensate for the mul-
tiple comparison of 6 frequency bands and 7 sensors (Benjamini
and Hochberg, 1995). Additionally, at sensors where significant
difference of frequency band power was observed in the above
comparison, correlation between frequency band power and ALS
duration in the CLIS patients was tested based on Spearman’s rank
correlation coefficient for each frequency band. The obtained p-
values were FDR corrected for the multiple comparisons (Benjamini
and Hochberg, 1995).

3. Results

For each comparison the mean and the variance of age were not
significantly different between the CLIS patients and the healthy
participants (two-tailed t-test and F-test).

On Figs. 1A and B, we show filtered EEG time series of a repre-
sentative CLIS patient (Fig. 1A) and a healthy participant (Fig. 1B)
at sensor Cz. Figs. 1C and D show PSDs at Cz for the 5 CLIS patients
who could use Cz for the recording (patient ID: P1, P3, P6, P7, and
P9 as described above and in Table 1) and the 6 healthy partici-
pants, and their mean PSDs are compared in Fig. 1E. These figures
show the dominance of slow oscillations in the CLIS patients. In the
same manner, we also calculated PSDs of the other sensors (FC1,
FC5, FC6, CP1, CP5, and CP6), and frequency band power of the CLIS
patients and the healthy participants at all of the sensors are statis-
tically compared and summarized in Fig. 2. Figs. 2A-F show power
in the delta, theta, low alpha, high alpha, beta, and gamma bands,
respectively. In the high alpha band (Fig. 2D), power between the
two groups was significantly different at sensor FC5 (p = 0.044). In
the beta and gamma bands (Figs. 2E and F), power between the two
groups was significantly different at sensors FC1, FC5, FC6, and Cz
(p=0.044,0.016, 0.016, and 0.030 respectively in the beta band and
p =0.044,0.016, 0.024, and 0.030 respectively in the gamma band).

In the correlation analyses, we included only sensors FC1,
FC5, FC6, and Cz because significant differences of frequency
band power between the CLIS patients and the healthy partic-
ipants were observed at these sensors. Relationships between
frequency band power and ALS duration in the CLIS patients at
these 4sensors are depicted in Figs. 3A-F. Spearman’s rank cor-
relation coefficients at sensors FC1, FC5, FC6, and Cz were —0.32,
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0.17, —0.24, and —0.82 respectively in the delta band, —0.32,
—0.37, —0.71, and —0.87 respectively in the theta band, —0.63,
—0.51, —0.88, and —0.46 respectively in the low alpha band, —0.95,
—0.51, —0.88, and —0.46 respectively in the high alpha band,
—0.95, —0.75, —0.73, and —0.46 respectively in the beta band, and
—0.95, 0.15, —0.47, and —0.41 respectively in the gamma band.
No correlation coefficients were statistically significant after FDR
correction.

4. Discussion

We investigated resting-state EEG of ALS-CLIS patients to pro-
vide insight into their electric brain activities and possible state
of consciousness. The CLIS patients showed significant power
decrease in the high alpha band at sensor FC5 and in the beta and
gamma bands at sensors FC1, FC5, FC6, and Cz. This group-level
comparison using EEG data of CLIS patients and healthy participants
demonstrated clear EEG power differences.

Different state of consciousness and arousal is the most dis-
cussed reason for the power decrease in the alpha and beta bands.
Patients with Alzheimer’s dementia show a decrease of the absolute
power in the alpha and beta bands together with an increase in the
delta and theta bands in comparison with healthy participants dur-
ing eyes-closed resting state (Pucci et al., 1998). Some ALS patients
may also show cognitive impairment in various domains such as
executive function, language, and fluency (Phukan et al., 2007;
Raaphorst et al., 2010; Goldstein and Abrahams, 2013; Beeldman
et al, 2016). Mild cognitive deficits are more frequently observed
in the advanced stage of ALS than in the early stage (Crockford
et al., 2018). However, there is also a report with LIS patients suf-
fering from ALS who showed no signs of cognitive decline during
testing using an eye-tracking system (Linse et al., 2017). None of
the studies cited here found a significant relationship between the
reduction of band power and cognitive performance. At present,
testing of cognitive capacities becomes increasingly difficult with
progressing paralysis and finally impossible in LIS and CLIS. Thus,
any conclusion about such a relationship remains highly specula-
tive. However, a decreased state of central arousal during waking
seems plausible associated with the complete immobility and con-
sequent deprivation of environmental stimulation.

There are inconsistent reports about the relationship between
the decrease of the gamma band power and cognitive impairment.
Herrmann and Demiralp suggested relationship between the alter-
ation of the gamma band activity and disturbed cognitive function
(Herrmann and Demiralp, 2005), while van Deursen et al. reported
that patients with Alzheimer’s dementia showed power increase in
the gamma band during eye-open resting state in comparison with
healthy participants (van Deursen et al., 2008). In comparison with
healthy people, we should not ignore the effect of absence of mus-
cle activities in CLIS patients because high frequency bands such as
the gamma band are easily contaminated by muscle activities (Pope
et al., 2009). Though we instructed the healthy participants not to
move during the EEG recordings, the decrease of the gamma band
power in the CLIS patients in comparison with the healthy partici-
pants can be partly due to the loss of muscle activity. Accordingly,
it is premature to associate the gamma band power reduction with
cognitive impairment without reliable findings from a cognitive
testing procedure.

Another reason for the power decrease in the alpha band could
be reduced vigilance and outward attention, since the alpha peak
frequency is suggested to be associated with the activities in brain
regions modulating attention in healthy people (Jann et al., 2010).
The “extinction of goal-directed thinking” hypothesis formulated
by Kiibler and Birbaumer predicts the reduction of arousability and
vigilance in CLIS patients due to suppressed social-cognitive inter-
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action (Kiibler and Birbaumer, 2008). However, it is also impossible
to affirm a reduced vigilance and outward attention in CLIS patients
without any existing behavioral evidence. To investigate the atten-
tional and cognitive function in CLIS patients and their relationship
with the EEG characteristics, functioning BCI systems allowing
more flexible communication than simple yes/no responses are
necessary (Ardali et al., 2019).

Both, the decrease of the alpha and gamma band power may
be in part due to loss of motor control. Most EEG-based BCls use
power changes in the alpha band in accordance with preparation
and start and stop of imagined or executed body movements. These
phenomena are called event-related desynchronization (ERD) for
movement and event-related synchronization (ERS) for stopping
movements, and are commonly observed in EEG signals recorded
from central area (Pfurtscheller and Aranibar, 1979). Although the
exact neuro-physiological mechanisms of the phenomena have not

been clarified yet, CLIS patients may have less neural activation
in the motor related areas, which may be related to the power
decrease in the alpha band. Gamma band power is also reported
to be involved in action execution in studies using ECoG (Pistohl
et al., 2008; Nakanishi et al., 2013; Babiloni et al., 2016). On the
other hand, some BCI studies reported that LIS and non-late-stage
ALS patients succeeded in controlling a speller or a web browser
using neuronal signals from intracortical electrodes placed in the
hand area of dominant motor cortex (Vansteensel et al., 2016;
Pandarinath et al.,, 2017; Nuyujukian et al.,, 2018). Considering the
success of the BCl-use in these studies, the power decrease in the
frequency bands may just indicate shifts of alpha frequency to
lower frequencies such as theta or delta, which has been suggested
in previous studies (Hohmann et al., 2018; Malekshahi et al., 2019).
Our results may also indicate this tendency of a shift of alpha as
shown in Fig. 1.
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and Cz respectively.

We calculated the correlation coefficients between the EEG
power and the disease duration. Though we found no significant
correlation in this study and it is difficult to reach a conclusion
with such a limited number of patients, the frequency band power
at most sensors tended to decrease as the ALS duration was long.
In addition to the disease duration, other factors such as progres-
sion rate of the disease, age, and medication may be responsible
for such hypothetical relationships with the demonstrated power
reduction. An important factor affecting the difference between
CLIS patients and healthy participants may result from artificial res-
piration over extensive time periods, a rule in CLIS patients. Hyper-
as well as hypoventilation is strongly related with EEG-slowing
(Hoshietal., 1999). However, both, long-term hyperventilation and
lack of oxygen lasting minutes or more, are causing reduced central
and subjective arousal and are thus compatible with our conclu-
sion of lowered arousal level in CLIS. If resting-state EEG of ALS
patients progressing toward CLIS can be recorded longitudinally
before and after artificial respiration, it will reveal the relationship
between the EEG power and ALS progression and respiration-
related changes. Furthermore, if ALS patients would use a BCI-based
communication method already in the early stage of the disease, the
BCl-use might play a role as a device to prevent the power decrease
in the higher frequency bands due to continued cognitive demands
and increased environmental stimulation. For stroke patients, an
ERD-based BCI has been used as a rehabilitation to restore or reor-
ganize their neural processing for their partially paralyzed body
(Ramos-Murguialday et al., 2013). To investigate whether the use
of BCI-based communication has the effect of preventing the power
decreases and/or changing subjective arousal and activation in ALS
patients, studies applying BCI for ALS patients from the early stage
are needed. In addition, although the population of CLIS is small, a
study with more CLIS patients in comparison with non-late-stage
ALS patients is necessary to further quantify their EEG signatures.

In conclusion, this study showed altered oscillatory brain activi-
ties of CLIS patients compared with healthy participants. We found
significant power decrease in the high alpha, beta, and gamma
bands at fronto-central and/or central channels in the CLIS patients
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suggesting reduced central arousal. We think the observed EEG
change may indicate a shift of the alpha band toward lower fre-
quencies. This overall slowing may indicate a different state of
vigilance and attention and may not allow the application of com-
parable cognitive tasks as in healthy subjects for which most BCI
paradigms were developed. Thus, BCIs that entail tasks that seem
difficult for LIS and CLIS patients should be replaced. In addition,
many BCIs that rely on the classification of ERD/ERS using the
defined frequency band of 8-15 Hz will not function because in LIS
and CLIS frequency bands below 8 Hz seem to be relevant. Changes
of the target frequencies may be needed because the target brain
activities may be represented in the slower frequency ranges in CLIS
patients. Further investigation using longitudinal recordings and
use of BCIs are required to clarify the effect of BCI-use as arehabilita-
tion method and if the power decrease correlates with loss of motor
control, cognitive changes, reduced vigilance, and/or emergency
treatment effects such as artificial respiration and feeding.
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Abstract

Persons with their eye closed and without any means of communication is said to be in a completely locked-in state (CLIS)
while when they could still open their eyes actively or passively and have some means of communication are said to be in
locked-in state (LIS). Two patients in CLIS without any means of communication, and one patient in the transition from
LIS to CLIS with means of communication, who have Amyotrophic Lateral Sclerosis were followed at a regular interval
for more than 1 year. During each visit, resting-state EEG was recorded before the brain—computer interface (BCI) based
communication sessions. The resting-state EEG of the patients was analyzed to elucidate the evolution of their EEG
spectrum over time with the disease’s progression to provide future BCI-research with the relevant information to classify
changes in EEG evolution. Comparison of power spectral density (PSD) of these patients revealed a significant difference
in the PSD’s of patients in CLIS without any means of communication and the patient in the transition from LIS to CLIS
with means of communication. The EEG of patients without any means of communication is devoid of alpha, beta, and
higher frequencies than the patient in transition who still had means of communication. The results show that the change in
the EEG frequency spectrum may serve as an indicator of the communication ability of such patients.

Keywords Resting-state electroencephalogram (EEG) - Completely locked-in state (CLIS) - LIS (locked-in state) -
Power spectrum density (PSD) - Alpha frequency

Introduction

The cardinal feature of a patient in a locked-in state (LIS)
is paralysis of most of the voluntary motor function of the
body except the oculomotor function with preserved con-
sciousness (Bauer et al. 1979; Chaudhary et al. 2020a).
Because of the preserved oculomotor function and
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consciousness (Schnakers et al. 2008), patients in LIS have
several means of communication (Birbaumer et al. 1999;
Wolpaw and McFarland 2004; Kiibler et al. 2005; Sellers
et al. 2010; Lesenfants et al. 2014; Wolpaw et al. 2018;
Tonin et al. 2020). A patient can be in LIS because of the
severe brain injury or pontine stroke (Sacco et al. 2008;
Sara et al. 2018; Pistoia et al. 2010; Conson et al. 2010), or
progressive neurodegenerative motor neuron disorders
(Birbaumer 2006; Birbaumer et al. 2012; Chaudhary et al.
2015, 2016a, b). Amyotrophic lateral sclerosis (ALS) is a
severe of all progressive neurodegenerative disorder lead-
ing to complete paralysis with symptoms involving both
upper and lower motor neurons (Rowland and Shneider
2001). Like any other LIS patient, an ALS patient in LIS
are paralyzed with preserved voluntary eye movement
control, eye blinks or twitching of other muscles, and intact
consciousness. The LIS is not a final state for a patient who
has ALS. As the disorder progresses, ALS leads to a state
of complete paralysis, including eye movements, transfer-
ring patients to the completely locked-in state (CLIS)
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(Bauer et al. 1979; Chaudhary et al. 2020a). The transition
from LIS to CLIS is usually a gradual process that is
patient specific. During this transition phase from LIS to
CLIS, the patient starts losing their eye movement control
and ultimately losing the ability to open their eyes is lost.
ianllt, the patients in CLIS have their eyes closed all the
time, even in the CLIS, patients are assumed to preserve
their cognitive functions (Kiibler and Birbaumer 2008).

Many studies have compared electrophysiological sig-
natures from ALS patients and controls (Jayaram et al.
2015; Nasseroleslami et al. 2019; Dukic et al. 2019; Mar-
uyama et al. 2020), reporting features distinguishing the
two groups. The most reliable evidence found is a decrease
in alpha relative power, with a shift of the peak in the alpha
frequency band (generally present in healthy patients” EEG
power spectrum) to lower frequencies (Mai et al. 1998;
Hohmann et al. 2018). Several other studies with a dif-
ferent patient population such as depression (Goshvarpour
and Goshvarpour 2019), Alzheimer’s disease (Nobukawa
et al. 2019), stress (Subhani et al. 2018), autism (Gabard-
Durnam et al. 2019), epilepsy (Myers and Kozma 2018)
and Parkinson’s disease (Yi et al. 2017) have shown a
difference in EEG spectral power, fractal change, power
correlation and complexity of resting-state EEG as com-
pared with the healthy participants (Buiza et al. 2018).
However, how these features and biomarkers evolve during
the ALS progression, reaching a state where they separate
patients in different stages of the disease, is still unclear.

This study aims to perform a longitudinal analysis of
EEG frequency in three ALS patients, analyzing how the
power spectral densities of EEG resting-state recordings
evolve in each patient. Two out of three patients considered
here are in CLIS (P6 and P9), while the third patient was
first in the transition from LIS to CLIS (P11) and, ulti-
mately, in CLIS. The decrease in relative alpha band power
is registered in LIS and CLIS patients with respect to
controls (Babiloni et al. 2010) (Maruyama et al. 2020), but
a direct comparison between these states is still missing.
Investigating whether these conditions differ from the
electrophysiological point of view can help understand the
effects of the transition and possibly monitor the patients
for BCI use. In addition, an earlier report on several CLIS
patients (Maruyama et al. 2020) needs replication, finding a
reduction of higher frequencies in CLIS in a one-session
protocol. Whether such a change in spontaneous EEG
frequency spectrums indicates functional changes in the
central nervous system is now a question of further
investigations.

@ Springer

Materials and methods

The Internal Review Board of the Medical Faculty of the
University of Tubingen approved the experiment reported
in this study. The study was performed per the guideline
established by the Medical Faculty of the University of
Tubingen and Helsinki declaration. The patient or the
patients’ legal representative gave informed consent. The
clinical trial registration number is ClinicalTrials.gov
Identifier: NCT02980380.

Patients

The patients chosen for this study were selected from the
available database if the EEG resting-state recordings were
in a sufficient number for a longitudinal comparison and
covering a time range of at least 1 year. Table 1 lists the
most relevant clinical information for each patient and the
dates of the acquired EEG recordings.

EEG data acquisition

EEQG resting-state recordings were acquired during visits to
the patients for BCI experiments before the experimental
sessions started. From now on, “visits” refers to a period of
several subsequent days in which acquisitions were per-
formed. Usually, a single visit lasted for 4 to 5 days, and
two subsequent visits were at least 30 days apart from each
other.

During the resting state recordings, patients were lying
in their beds, being instructed to relax. EEG electrodes
were attached according to the 10-5 system, with reference
and ground channels placed respectively to their right
mastoid and the forehead. EEG signals were recorded using
a V-Amp amplifier and active electrodes (Brain Products,
Germany). The numbers and positions of electrodes were
different between patients and visits due to clinical and
experimental needs, as outlined in Supplementary Table 1.

EEG preprocessing

EEG data were processed using Matlab R2018_b (The
MathWorks, Inc., Natick, Massachusetts, U.S.A.) and
EEGLAB 14.1.1 (Delorme and Makeig 2004). First, a
windowed band-pass filter at 0.5 to 45 Hz was applied to
the raw EEG data, followed by down-sampling to 128 Hz.
Data were then cleaned from the ocular signal by removing
the artifacts using the AAR plug-in (Gémez-Herrero et al.
2006) of EEGLAB. The AAR toolbox process EEG data by
first decomposing the time series into spatial components
using a Blind Source Separation (BSS) algorithm, then
identifying the artifactual components and finally
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Table 1 List of patients—the table lists for each patient the respective ID, the age and gender, the ALS type diagnosed, a short report of the

progression of the disease, and the month and year of visits

Patient ID  Birthday/sex ~ ALS type Medical history Resting state data acquisition date
P6 40/M Bulbar 2009: Diagnosis May 2017
Sept 2010: Percutaneous feeding and artificial ventilation ~ September 2017
Dec 2010: Lost speech and walk April 2018
2012: Transition to CLIS May 2018
January 2019
P9 24/M Juvenile 2013: Diagnosis June 2017
Aug 2014: Percutaneous feeding and artificial ventilation November 2017
2016: Transition to CLIS March 2018
June 2018
P11 35/M Non-bulbar  Aug 2015: Diagnosis May 2018

Dec 2015: Lost of speech and walk
Jul 2016: Percutaneous feeding and artificial ventilation
March 2019: Transition to CLIS

August 2018
September 2018
November 2018
December 2018
January 2019
February 2019
March 2019
August 2019
September 2019

reconstructing the signals using the non-artifactual com-
ponents. For this study, the decomposition in independent
components was obtained through second-order blind
identification (SOBI) algorithm (Belouchrani et al. 1997),
and artifactual components were automatically identified
based on the value of the fractal dimension of the wave-
form (Gémez-Herrero et al. 2006). In particular, each EEG
recording (comprehensive of all the channels acquired) was
processed on sliding windows of 180 s, with an overlap
period equal to 60 s, and the components with smaller
fractal dimensions were selected as artifactual as they
correspond to the ones with less low-frequency compo-
nents. After ocular artifacts rejection was applied singu-
larly to each EEG resting-state record on the complete set
of channels, the Cz channel was selected for further
analysis.

PSD was obtained through Welch’s overlapped seg-
ments averaging estimator, using windows of 5 s length
with an overlap of 2 s on a segment of 180 s extracted from
the middle of each recording (samples were taken equally
before and after the central sample of the complete EEG
recording). Then, each PSD was normalized by its median
to reduce the effect of different offsets in the recordings.
The representative resting-state PSD of each visit was
obtained averaging Cz’s PSDs from recordings belonging
to the same visit.
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The relative band-power was then computed from each
PSD (for each visit-wise PSD of each patient) to compare
relative power values in the three patients quantitatively.
The frequency range was divided into delta (0—4 Hz), theta
(4-8 Hz), alpha (8-12 Hz), low beta (12-20 Hz), high beta
(20-30 Hz), and gamma (30-45 Hz) bands (Fig. 1).

Results

Statistical tests were applied using Matlab 2018b. Pear-
son’s linear correlation coefficient was computed on sub-
sequent values of relative band-power, obtained for each
patient’s set of visits, to investigate the correlation with the
corresponding timeline. Then, the Mann—Whitney U test
was applied to test the power difference between the three
patients for each frequency band at the Cz sensor, con-
sidering for each of them the whole set of PSDs. The
obtained p values were corrected through the False Dis-
covery Rate (FDR) using the Benjamini—-Hochberg method
(Benjamini and Hochberg 1995) to compensate for the
multiple comparisons of 6 frequency bands. The results are
reported through the visualization of the PSD profile’s
evolution within the period of observation for each patient
separately. The evolution of PSD of patients 6, 9, and 11
are shown in Figs. 2, 3, and 4, respectively. The results on
the variance within visits relative band power and power
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Fig. 1 Schematic workflow showing EEG’s processing steps

Fig. 2 EEG power spectral
density evolution in Patient 6. 25 i [ a
The PSDs corresponding to
different visits is shown in
different colors, as explained in
the box in the top right corner of
the figure. The x-axis represents
the frequency in Hz. The y-axis
represents the normalized
amplitude of the power spectral
densities on a logarithmic scale.
In dashed lines are shown the
frequency bands of interest. The
frequency range analyzed is
divided in the canonical
frequency bands, represented in
dashed lines in the figures: delta
(1 to 4 Hz), theta (4 to 8 Hz),
alpha (8 to 12 Hz), beta (12 to
30 Hz) and gamma (30 to

45 Hz)

10%0g w[F'nwar}

Fig. 3 EEG power spectral

density evolution in Patient 9. 25 é ¢ o
The details of the figure are the

same as explained in the legend

of Fig. 2 20
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spectral density of each patient is shown in Supplementary
Text 1, where we show that the variance within a visit to be
insignificant.

It can be observed from Figs. 2 and 3 that the frequency
content of patients 6 and 9, who are in CLIS, are shifted
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towards delta and theta frequency bands. During the
observation period reported in this paper, no general evo-
lution of trends could be seen in patients 6 and 9. While
Patient 11 has activity in the alpha band, present in all the
recordings within the observation period, as shown in
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Fig. 4 EEG power spectral
density evolution in Patient 11.
The details of the figure are the
same as explained in the legend
of Fig. 2

10°log, (Power)

Fig. 4. Nevertheless, a decrease in the power of the EEG
signal as the patient transitioned from LIS to CLIS and,
ultimately, in CLIS could be observed. The frequency
content of patients’ 6 and 9 EEG is very different from the
EEG of patient 11. This aspect is more evident in Fig. 5,
where the average of the PSDs related to all the visits
grouped for patients is presented. These results were con-
firmed by the results of the Mann—Whitney U test shown in
Fig. 6, which revealed the significant difference in the
relative band power between Patient 11 and the two CLIS
patients (Patients 6 and 9) at delta, alpha, and low-beta
frequency bands. On the other hand, no significant

Fig. 5 Comparison of average 2%

EEG power spectral densities in

Patients 6, 9, and 11. The red, g L] a
blue, and green traces
correspond to the average PSDs
at electrode Cz for patients 6, 9,
and 11, respectively. The x-axis
represents the frequency in Hz.
The y-axis represents the
normalized amplitude of the
power spectral densities in the
logarithmic scale. In dashed
lines are shown the frequency
bands of interest as described in
the legend of Fig. 2

1U'IogwlF'awel)
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difference was found over the values of relative power
between patients 6 and 9.

Discussion and conclusion

A longitudinal resting-state analysis of patients in LIS and
CLIS reveals a trend on the variation of EEG relative band
power within the observation period. Patient 6, who is in
CLIS since 2012 and was recorded for the first time in May
2017, shows a stable EEG frequency spectrum with dom-
inant frequency in the delta and theta band. Patient 9, who
is in CLIS since 2017 and was recorded for the first in June

— P06

—P11
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Frequency (Hz)
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Fig. 6 Relative band power at
electrode Cz. Error bars 08
represent standard deviations.
The figure depicts the
significant power differences
between patients 6, 9, and 11 in
the two-tailed Wilcoxon rank-
sum test with False Discovery
Rate correction are marked:

*p < 0.05. The x-axis
represents the different
frequency bands in Hz, and the
y-axis represents the relative
band power
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Relative bandpower
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2017 also shows a trend similar to patient 6. When we
started recording Patient 11 in May 2018, the patient had
control over his eye-movements but was unable to com-
municate with the eye-tracker based communication sys-
tem because of his inability to fixate his gaze. During every
visit to each patient, brain-computer interface (BCI)-based
communication was attempted after resting-state recording.
With patients 6 and 9, functional near-infrared spec-
troscopy (fNIRS) based communication was attempted,
except for the visit 1 of patient 6, we were not able to
establish a reliable means of communication using fNIRS
based BCI communication system (Chaudhary et al. 2017)
with these two patients. The fNIRS based BCI communi-
cation system was employed for patient 6 and 9 because it
was demonstrated earlier that EEG-based BCI system had
failed so far to provide a means of communication to the
patients in CLIS (Kiibler and Birbaumer 2008) except for a
short one-session period report (Okahara et al. 2018) while
fNIRS based BCI communication system showed some
promise (Gallegos-Ayala et al. 2014). Since the patient 11
still had eye-movement an electrooculogram (EOG) based
BCI communication was developed and implemented to
provide a means of communication to the patient. The
EOG-based communication by patient 11 is described in
Tonin et al. (2020). As described in Tonin et al. (2020),
patient 11 was able to employ his eye movement ability to
communicate his thoughts and desires until February 2019,
albeit with increasing difficulties due to the progressive
paralysis of his eye muscles associated with the progression
of the amyotrophic lateral sclerosis. From February 2019,
the patient 11 could not employ his eye-movement to drive
the EOG-based communication system (please refer to
(Tonin et al. 2020) for further details). Patient 11 could not
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communicate reliably with his eyes from March 2019
onwards. He was implanted with microelectrodes in the
motor region to provide him a means of communication
(Please refer to Chaudhary et al. 2020b for details). The
patient although in CLIS was able to form phrases and
sentences to express his desires and wishes (Chaudhary
et al. 2020b). His EEG spectrum remained constant
throughout the observation period reported in this paper.

Patients 6 and 9, although of different ages and being in
CLIS for different time periods, have the same EEG
spectrum, which is significantly different from patient 11,
who was first in LIS, then in the transition from LIS to
CLIS and ultimately in CLIS during the period of obser-
vation reported in this paper. The main difference between
patients 6 and 9 and patient 11 is that since we started
following patients 6 and 9, they never had any means of
communication. While we were able to provide a means of
communication to patient 11 despite his degrading oculo-
motor function. It can be stated that from the patients
reported in this longitudinal analysis, patients without any
means of communication have different EEG spectrums
than a patient who, despite being in CLIS, has a means of
communication. It can also be hypothesized that if a patient
has a means of communication despite being in CLIS the
general shift in EEG spectrum to the lower bands might not
occur, but to generalize these results to other patients in
LIS and CLIS with and without means of communication,
there is a need to perform such a longitudinal study on the
large patient population. Also, a contrary causality is pos-
sible: with loss of normal EEG power spectrum and the
underlying neurological functionality a loss of communi-
cation may be the consequence.
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These results are partly supporting an earlier report from
our lab of a remarkable reduction of higher frequencies in
CLIS (Maruyama et al. 2020), all without any means of
communication. It can also be hypothesized that the reason
for the failure to establish communication with patients
already in CLIS might be due to general shift of their EEG
spectrum to the lower bands and absence of alpha and
higher frequency bands since all the current EEG based
BCI communication systems rely on the alpha and higher
frequency bands (Jayaram et al. 2015; Lazarou et al. 2018).
Nevertheless, it can also be argued that lack of alpha, in
general, might also indicate reduced cognitive processing
or compromised vigilance state of the patient (Klimesch
1999). However, in a recent study reported by Khalili-
Ardali et al. (2019), patient in CLIS was shown to have the
ability to process sentences with motor semantic content
and self-related content better than control sentences
indicating comprehension and some level of cognitive
processing in CLIS in ALS patients. It can also be argued
that the patients might be asleep during the period of data
acquisition, but recently we showed in a larger sample of
patients in CLIS (Malekshahi et al. 2019) that despite a
general decrease in their EEG spectrum, patients in CLIS
still have an intact sleep and wake cycle.

Thus, there is a need to perform long-term longitudinal
studies with patients in LIS, the transition to LIS, and CLIS
and parallel cognitive evaluation with BCI assistance to
elucidate the evolution in their EEG signature, which
afterward may then be used in the development of more
efficient non-invasive BCI-systems.
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Abstract: Electrooculography (EOG) signals have been widely used in Human-Computer Interfaces
(HCI). The HCI systems proposed in the literature make use of self-designed or closed environments,
which restrict the number of potential users and applications. Here, we present a system for classifying
four directions of eye movements employing EOG signals. The system is based on open source
ecosystems, the Raspberry Pi single-board computer, the OpenBCI biosignal acquisition device,
and an open-source python library. The designed system provides a cheap, compact, and easy to
carry system that can be replicated or modified. We used Maximum, Minimum, and Median trial
values as features to create a Support Vector Machine (SVM) classifier. A mean of 90% accuracy was
obtained from 7 out of 10 subjects for online classification of Up, Down, Left, and Right movements.
This classification system can be used as an input for an HCI, i.e., for assisted communication in
paralyzed people.

Keywords: electrooculography (EOG); Human-Computer Interface (HCI); Support Vector Machine
(SVM)

1. Introduction

In the past few years, we have seen an exponential growth in the development of Human-Computer
Interface (HCI) systems. These systems have been applied for a wide range of purposes like controlling
a computer cursor [1], a virtual keyboard [2], a prosthesis [3], or a wheelchair [4-7]. They could also
be used for patient rehabilitation and communication [8-11]. HCI systems can make use of different
input signals such as voice [7], electromyography (EMG) [12], electroencephalography (EEG) [13],
near-infrared spectroscopy (NIRS) [14-16] or electrooculography (EOG) [5].

In this paper, we describe an EOG classification system capable of accurately and consistently
classifying Up, Down, Left, and Right eye movements. The system is small, easy to carry, with
considerable autonomy, and economical. It was developed using open hardware and software, not
only because of economic reasons, but also to ensure that the system could reach as many people as
possible and could be improved and adapted in the future by anyone with the required skills.

The end goal of this work is to build a system that could be easily connected to a communication
or movement assistance device like a wheelchair, any kind of speller application, or merely a computer
mouse and a virtual keyboard.

To achieve these objectives, we have developed and integrated the code needed for:

e Acquiring the Electrooculography (EOG) signals.

Sensors 2020, 20, 2443; doi:10.3390/520092443 www.mdpi.com/journal/sensors

I51



Sensors 2020, 20, 2443 20f13

e Processing these signals.
e  Extracting the signal features.
e Classifying the features previously extracted.

EOG measures the dipole direction changes of the eyeball, with the positive pole in the front [17].
The technique of recording these potentials was introduced for diagnostic purposes in the 1930s by
R. Jung [18]. The presence of electrically active nerves in the posterior part of the eyeball, where the
retina is placed, and the front part, mainly the cornea, creates the difference in potential on which EOG
is based [19]. This creates an electrical dipole between the cornea and the retina, and its movements
generates the potential differences that we can record in an EOG.

There are several EOG HCI solutions present in the literature. One of the issues with current
HCI systems is their size and lack of autonomy, the use of proprietary software, or being based
on self-designed acquisition and processing devices. Regarding the acquisition system, the most
common approach is to use a self-designed acquisition device [1,4,20-22]. In our view, this solution
dramatically restricts the number of users who can adopt this system. Other proposed systems make
use of commercial amplifiers [23,24], which in turn make use of proprietary software and require robust
processing systems, mainly laptops. This also reduces the number of potential users of the system
and its applications since it increases the cost of the system and reduces its flexibility, portability, and
autonomy. As far as signal processing is concerned, most systems choose to use a laptop to carry out
these calculations [1,20-22,24,25], but we can also find the use of self-designed boards [6,26]. Table 1
shows the characteristics of some solutions present in literature as a representation of the current state
of the art. The goal of our work is to achieve results equivalent to the present state of the art using an
open paradigm, demonstrating that it is possible to arrive at a solution using cheaper components that
could be modified to build a tailored solution. As far as we know, this is the first time that an open
system is presented in this scope.

Table 1. Comparison of results between different studies.

Study Movements Acquisition Processing Method Accuracy
Qietal. [27] Up, Down, Left, Right Commercial - Offline 70%
Guo et al. [28] Up, Down, Blink Commercial Laptop Online 84%
Kherlopian . . : o,
etal. [24] Left, Right, Center Commercial Laptop Online 80%

Up, Down, Left, Right,
Wu et al. [20] Up-Right, Up-Left, Self-designed Laptop Online 88.59%
Down-Right, Down-Left

Up, Down, Left, Right,

Self-designed +

Heo et al. [26] Self-designed Online 91.25%

Blink Laptop
Heo et al. [26] Double Blink Self-designed Self’f:;ii:ed * Online 95.12%
Erkay[r;;]z etal. Up, D‘;Svlvl:kl,d;?cl Right, Commercial Laptop Offline 93.82%
Meri[r;;]et al. Up, Down, Left, Right Commercial Laptop Online 94.11%
Hua[g% ]Et al Blink Self-designed Laptop Online 96.7%
Lvetal. [19] Up, Down, Left, Right Commercial Laptop Offline 99%
Yati\tuarﬁ?g\an Up, Down, Left, Right Self-designed Self-designed Online 99%
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In our system, the signal is acquired using the OpenBCI Cyton Board (Raspberry Pi 3B+
official website), a low-cost open software/hardware biosensing device, resulting in an open
hardware/software-based system that is portable, with considerable autonomy and flexibility.

Once we have the EOG signal, this is processed using a Raspberry Pi (OpenBCI Cyton official
website), a single board computer that allows installing a Linux-based distribution, which is small,
cheap, and gives us the option to use non-proprietary software.

Features are then extracted from the acquired signal and classified employing a machine learning
algorithm. The feature extraction process aims to reduce the dimensionality of the input data without
losing relevant information for classification [28] and maximizing the separation between elements of
different classes by minimizing it between elements of the same class [27]. To achieve this, several
models have been proposed on EOG feature extraction [29-32]. We employed Support Vector Machine
(SVM) to classify the data [33,34], which creates a boundary to split the given data points into two
different groups.

The result of this process, in the context of signal (EOG) mentioned in this article, is the classification
of the subject’s eye movement to be used as input commands for further systems. This process and the
tools used for it are explained in detail in Section 2. The Section 3 shows the performance achieved by
the system. Finally, in the Section 4, we discuss the designed system and compare our system with
existing related work along with the limitations of our system and future work.

2. Materials and Methods

2.1. Hardware-Software Integration

In the present study, OpenBCI Cyton board was used for the signal acquisition. This board
contains a PIC32MX250F128B microcontroller, a Texas Instruments ADS1299 analog/digital converter,
a signal amplifier and an eight-channel neural interface. This device is distributed by OpenBCI (USA).
Figure 1 depicts the layout of the system.

P e Wet P Wireless 3
Electrodes USB Dongle
Subject B — OpenBCl B Raspberry Pi
\ J L J

Figure 1. Block diagram with system connection.

This device gives us enough precision and sampling rate (250 Hz) for our needs, it has an
open-source environment (including a Python library to work with the boards (OpenBCI Python
repository)), it has an active and large community’ and it can be powered with a power bank, which is
a light and mobile solution. Attached to the board, we have 4 wet electrodes connected to two channels
on the board in a differential mode. Differential mode computes the voltage difference between the
two electrodes connected to the channel and doesn’t need a reference electrode. The two channels
correspond to the horizontal and vertical components of the signal.

The acquisition board is connected to a Raspberry Pi, a single-board computer developed by the
Raspberry Pi company based in the United Kingdom. Although its firmware is not open source, it
allows installing a Linux-based distribution keeping the open paradigm in our system. In this case,
we chose to install Raspbian, a Debian-based distribution. The hardware connection between the
OpenBClI board and the Raspberry Pi is made using a wireless RFDuino USB dongle. On the software
side, we used an open Python library released by OpenBCI. To run this library over the Raspberry Pi,
the source code of the mentioned library has been partially modified. It has also been necessary to
recompile some third-party libraries so that they could run on the Raspberry Pi. We decided to power
both the OpenBCI board and the Raspberry Pi via a USB connection to a power bank (20,000 mAh) to
maximize the system autonomy and mobility.

This hardware configuration offers us all the characteristics that we were looking for: it has
enough computational power to carry our calculations, it’s small and light, it allows us to use free and
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open-source software, and is economical. It should be noted that although we have used the OpenBCI
board as acquisition system there are some other solutions that fit our needs like the BITalino biosignal
acquisition board. This board offers an EOG acquisition module and an open environment which
includes a Python-based API for connection and signal acquisition over Raspberry Pi.

It should be mentioned that the data presented in this article have been processed using a
conventional laptop instead of the Raspberry Pi, just for the convenience of the experimenters. During
the development of the research, several tests were carried out that did not show any difference in the
data or the results depending on the platform used.

We decided to use EOG over other eye movement detection techniques like Infrared Reflection
Oculography (IROG) [35] or video-based systems [25], as the EOG technique does not require the
placement of any device that could obstruct the subjects’ visual field. Four electrodes were placed in
contact with the skin close to the eyes to record both the horizontal and the vertical components of the
eye movements [36,37].

2.2. Experimental Paradigm

Ten healthy subjects between 24 and 35 years old participated in the study and gave their informed
consent for inclusion. The signal acquisition was performed in two stages: training and online
prediction. For both stages, we asked the subjects to perform four different movements: Up, Down,
Left, and Right. Each movement should start with the subject looking forward and then look at one of
these four points already mentioned and look again at the center. For the training stage, we acquired
two blocks of 20 trials, 5 trials per movement. In these blocks, five “beep” tones were presented to
the subject at the beginning of each block in 3 s intervals to indicate the subject the interval that they
had to perform the requested action. After these initial tones, the desired action was presented via
audio, and a “beep” tone was presented as a cue to perform the action. The system recorded during
the 3 s after this tone was presented, and the system presented again another action to be performed.
For some of the subjects, these two training blocks were appended in a single data file. The schematic
of the training paradigm (offline acquisition) is shown in Figure 2a.

Stimulus cue Subject Response
| | | |
S \ \ \
3 seconds
stimulus cue Subject Response Calculations
| | | |
(b)
\ \ [ | |
3 seconds

5 seconds

Figure 2. Acquisition paradigm. (a) Offline acquisition. (b) Online acquisition.

The online classification was performed with a block of 40 trials, 10 per movement, on Subject
1. After this experiment, we decided to reduce the number of trials per block to 20, 5 per movement,
for the convenience of the subject. This online block had the same characteristics as the classification
blocks except that the five initial tones were not presented, and the actions to be performed were
separated by 5 s interval to have enough time for the prediction tasks. Furthermore, in these blocks,
the system recorded only during the 3 s after the cue tone was presented. During this stage, we
generate two auxiliary files: one with the acquired data and the other containing the action that the
user should perform and the action predicted. We only considered predicted actions with a prediction
probability higher than a certain threshold. For the first subject, we set this threshold as 0.7, but after
that experiment, we changed the threshold to 0.5. In this case, the auxiliary file corresponding to
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subject 1 contains the predictions made using 0.7 as a prediction probability threshold. Figure 2b
depicts the schematic of the online prediction paradigm.

2.3. Signal Processing

A second-order 20 Hz lowpass Butterworth filer [37] was used to remove the artifacts arising
from electrodes or head movements and illumination changes [19,27,38]. A 20 Hz lowpass filter was
used because the artifacts, as mentioned earlier, appear in the high frequencies [17], and the EOG
signal information is contained mainly in low frequencies [30]. The irregularities in the signal after the
lowpass filter were removed using a smoothing filter [30]. For applying these filters, we used the SciPy
library. This library is commonly used and has a big community supporting it.

The last step in pre-processing was to standardize the data. This is done to remove the baseline of
EOG signals [27]. The standardization was done using the following formula:

Xt~ pi
- _
O

Xp = ()]
where i is the sample that we are processing, t corresponds to a single datapoint inside a sample, X;
is the resulting datapoint, x; is the data point value before standardization, ; is the mean value of
the whole sample and o; is the standard deviation of the whole sample. An example of the processed
signal can be seen in Figure 3, which shows a single Down trial extracted from a classification block of
Subject 5.
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Figure 3. Down movement example taken from Subject 5. The x-axis depicts time (in seconds), and
Y-axis represents the signal amplitude (in millivolts). (a) Unfiltered vertical component. (b) Filtered
vertical component. (c) Unfiltered horizontal component. (d) Filtered horizontal component.

Figure 4 depicts the vertical and horizontal component for four different eye movement tasks
performed by subject 5.
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Figure 4. Processed signals examples taken from Subject 5. The x-axis depicts time (in seconds),
and Y-axis represents the signal amplitude (in millivolts). (a) Vertical component for Up movement.
(b) Vertical component for Down Movement. (c) Vertical component for Left movement. (d) Vertical
component for the Right movement. (e) Horizontal component for Up movement. (f) Horizontal
component for Down movement. (g) Horizontal component for Left movement. (h) Horizontal
component for Right movement.

2.4. Feature Extraction

An essential step in our system’s signal processing pipeline is feature extraction, which for each
sample, calculates specific characteristics that will allow us to maximize the distance between elements
in different classes and the similarity between those that belong to the same category. We use a model
based on the calculation of 3 features for the horizontal and vertical components of our signal, i.e., 6
total features per sample. The features are the following:

e Min: The minimum amplitude value during the eye movement.
e Max: The maximum amplitude value during the eye movement.
e Median: The amplitude value during the eye movement that has 50% values above as below.

2.5. Classification

Once we have calculated the features of each sample, we create a model using that feature values
and its class labels. Even though some biosignal-based HCI use other machine learning techniques,
such as artificial neural networks [29,36] or other statistical techniques [19], most of the HCI present in
the literature use the machine learning technique called Support Vector Machine. We have decided to
use SVM because of its simplicity over other techniques, which results in a lower computational cost
and excellent performance.

In this study, we have used the implementation of the SVM of Scikit-Learn, a free and open-source
Machine Learning Python library. This library has a high reputation in Machine Learning, and it has
been widely used. The selected parameters for creating the model are a Radial Basis Function (RBF) as
kernel [39], which allows us to create a model using data points that are not linearly separable [40],
and a One vs. One strategy [41], i.e., creating a classifier for each pair of movement classes. Finally, we
have performed 5-fold cross-validation [42], splitting the training dataset into 5 mutually exclusive
subsets and also creating 5 models, each one using one of these subsets to test the model and the other
four to create it. Our model accuracy is calculated as the mean of these 5 models.

3. Results

The acquired signal is processed to remove those signal components that contain no information,
resulting in a clearer signal. The data were acquired from 10 healthy subjects between 24 and 35 years
old. The result of signal processing can be seen in Figures 3 and 4, which shows the single trials of
a training block performed by Subject 5. As Figures 3 and 4 show, the result of this step is the one
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expected. For Subject 8, we found flat or poor-quality signals in the vertical and horizontal component,
so we decided to stop the acquisition and discard these data. Some trials extracted from this discarded
block can be seen in Figure 5 which shows no clear steps or any other patterns for the four movements.
This situation is probably due to an electrode movement, detachment, or misplacement that could not
be solved during the experiment.

mv

Figure 5. Example trials taken from Subject 8. The x-axis depicts time (each trial is 3 s), and Y-axis
represents the signal amplitude (in millivolts). (a) Vertical component. (b) Horizontal component.

After artifact removal, feature extraction is performed to reduce the dimensionality in input,
leading to characteristics that define the signal without information loss. As mentioned above, the
features used were Maximum, Minimum, and Median. It should be noticed that Up and Down
movements have relevant information only for the vertical channel of our signal as well as Left and
Right movements have this relevant information in the horizontal component. Figures 6 and 7 present
an example of this feature extraction process over two blocks of 20 trials, each corresponding to the
training data of Subject 5, who ended up with 100% accuracy. Figures 8 and 9 present an example of
the same feature extraction process over two blocks of 20 trials performed by Subject 6, who ended up
with 78.7% accuracy. In these figures, we can appreciate that Subject 5, with 100% accuracy, shows a
more evident difference in the data values than Subject 6, with 78.7% accuracy. Figures 8 and 9 show
some overlapping in the data values, which explains the lower classification accuracy achieved.

The last step in our pipeline is to build a model and perform an online classification of the subject’s
eye movements. As we mentioned before, we build our model using 5-fold cross-validation. Table 2
shows the model accuracy, the accuracy-related on how good the model has been classifying the
training data, as the mean of these five models for each subject. For the prediction accuracy—the
accuracy related to the prediction of unseen data—we have asked the subject to perform 20 movements
per block (five of each movement), as is explained in Section 2.2. We predicted those movements using
the pre-built model and, finally, validated how accurate that prediction was.

157



Sensors 2020, 20, 2443

[ v
azs . - " '
a
r ¢ , -
* . o R
0as{ 4 g 5 < y .
o10{ i 00 LI v
v o2
- ’ v
m Y 53 2 a1 6o mV o5 ot o5 ol ois ok o mv 5z <1 do @ o2
@ ©
az
o
ol
. 2 005 -010 "
0 7 . 020 v o v
(d O] "

8of13

-up

YDOWN

SLEFT
RIGHT

Figure 6. Values after Feature Extraction for Up, Down, Left, and Right movements performed
by Subject 5 (100% model accuracy). Both X-axis and Y-axis depict signal values (in millivolts).
(a) Horizontal Min vs. Max. (b) Horizontal Max vs. Median. (c) Horizontal Median vs. Min.
(d) Vertical Min vs. Max. (e) Vertical Max vs. Median. (f) Median vs. Min.
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Figure 7. Values after Feature Extraction for Up, Down, Left, and Right Movements performed
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Min. (e) Vertical Max. (f) Vertical Median.
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Figure 9. Values after Feature Extraction for Up, Down, Left, and Right Movements performed by
Subject 6 (78.7% model accuracy). The x-axis depicts movement class, and Y-axis depicts signal
amplitude (in millivolts). (a) Horizontal Min. (b) Horizontal Max. (c¢) Horizontal Median. (d) Vertical
Min. (e) Vertical Max. (f) Vertical Median.

Table 2. Model and Prediction Accuracies.

Subject Model Mean Accuracy Online Accuracy
Subject 1 100% 90%
Subject 2 100% 95%
Subject 3 92.5% 85%
Subject 5 100% 100%
Subject 6 78.7% 85%
Subject 7 97.5% 95%

Subject 10 90.8% 80%

MEAN 94.21% 90%
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As mentioned in Section 2.2., we only consider those predicted actions with a prediction probability
higher than 0.5. For subject 1, the prediction probability threshold was set to 0.7 during the
online acquisition, so the auxiliary file with the predictions corresponds to this threshold, and
after experimenting, we re-analyzed the online data using a 0.5 threshold.

We acquired one single online block for subjects 1, 2, 5 and 7. For subject 3, we acquired three
online blocks with 50%, 80%, and 85% accuracy. For subject 6, we acquired two online blocks with
80% and 85% accuracy. For subject 10, we acquired three online blocks with 55%, 70%, and 80%
accuracy. It can be seen that for all subjects, the online accuracy increases with each block acquisition.
The accuracy shown in Table 1 corresponds to those online blocks with the highest accuracy for each
subject. For subject 4, the training and online data have poor quality (66.7% accuracy for the model and
20% accuracy for the online prediction). Subject 9 had a good model accuracy (95%) but poor-quality
signals during online acquisition (50% and 20% accuracy). Post-experimental analysis of the data
revealed noisy and flat signals, showing no clear pattern in the signal acquired from subjects 4 and 9,
similar to the signal acquired from Subject 8 (Please see Figure 5 for the signal from patient 8). These
distortions may have arisen due to the probable electrode movement, detachment, or misplacement.
Thus, we decided to discard the data from Subjects 4, 8 and 9.

4. Discussion

It must be clear that in order to make a completely fair comparison between our system and the
state-of-the-art systems, some extensive testing would be required. These tests should process the data
acquired in this study with other processing pipelines, run our pipeline over the data acquired in other
studies, and adapt our acquisition and processing modules to be connected to further systems found
in the literature. The results obtained after this process would give us a full picture of the differences
between our system and those already in place. Unfortunately, due to lack of time and materials, these
tests could not be carried out.

Concentration loss and tiredness are two of the biggest challenges when it comes to EOG-based
HCIL As reported in Barea et al. [43], the number of failures using this kind of system increases over
time after a specific period of use. This has been seen during the development of this study, where
long periods of system use have led to the appearance of irritation and watery eyes. This could be
a problem for subjects who use the system for a long time. In the paper above mentioned [43], the
researchers deal with this problem by retraining the system.

Another challenge related to our system is the presence of unintentional eye blinks. Eye blinks
create artifacts in the EOG signal and, also, during the eye blinks, there is a slight eye movement [37].
The trials containing eye blinks can lead to a reduced model accuracy if it occurs in the training
stage or to a trial misclassification if it is in the online acquisition stage. Pander et al. [44], and
Merino et al. [30] have proposed methods to detect spontaneous blinks so these trials can be rejected.
Yathunanthan et al. [6] proposed a system where eye blinks are automatically discarded.

Our system, like most of the available systems in the literature [19-21,29,30,38,43], uses a discrete
approach, i.e., the user is not free to perform an action when desired, but the action must be performed
at a specific time. This affects the agility of the system by increasing the time needed to perform an
action. Barea et al. [38,43] and Arai et al. [25] have proposed systems with a continuous approach
where the subject has no time restrictions to perform an action.

There are different ways to improve our system in future work. First, we could put in place a
mechanism to detect and remove unintentional blinks. This would prevent us discarding training
blocks, or could improve the training accuracy in the cases in which these unintentional blinks occur.
In some cases, a continuous online classification means a considerable advantage. Therefore, it
would be interesting to add the necessary strategies to perform this type of classification. Finally, by
combining our system with further communication or movement assistance systems, we could check
its performance in a complete HCI loop.
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5. Conclusions

We have presented an EOG signal classification system that can achieve a 90% mean accuracy
in online classifications. These results are equivalent to other state-of-the-art systems. Our system is
built using only open components, showing that it is possible to avoid the usage of expensive and
proprietary tools in this scope. As intended, the system is small, easy to carry, and has complete
autonomy. This is achieved using OpenBCI and Raspberry Pi as hardware, connected to a power bank
as a power source.

Because of the use of open hardware and software technologies, the system is also open, easy to
replicate, and can be improved or modified by someone with the required skills to build a tailored
solution. The use of open technologies also helps us to obtain a cheap platform.

Finally, the resulting system is easy to connect to subsequent communication or movement
assistance systems.
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Abstract

Persons in the completely locked-in state (CLIS) suffering from amyotrophic lateral sclerosis (ALS) are deprived of many
zeitgebers of the circadian rhythm: While cognitively intact, they are completely paralyzed, eyes mostly closed, with
artificial ventilation and artificial nutrition, and social communication extremely restricted or absent. Polysomnographic
recordings in eight patients in CLIS, however, revealed the presence of regular episodes of deep sleep during night time

in all patients. It was also possible to distinguish an alpha-like state and a wake-like state. Classification of rapid eye
movement (REM) sleep is difficult because of absent eye movements and absent muscular activity. Four out of eight patients
did not show any sleep spindles. Those who have spindles also show K-complexes and thus regular phases of sleep stage

2. Thus, despite some irregularities, we found a surprisingly healthy sleep pattern in these patients.

Statement of Significance

The presence of circadian variation in EEG activity points to a conserved sleep-wake cycle in amyotrophic lateral scler-
osis (ALS) patients in completely locked-in state (CLIS). There are marked differences between these patients and healthy
participants, e.g. a complete loss of sleep spindles in some patients and the presence of sinusoid, high-amplitude theta
activity instead of alpha activity. Slow-wave generation, on the other hand, seems intact in all patients. Rapid eye move-
ment (REM) sleep is present in at least some patients, but it cannot be ascertained in all patients. The existence of intact
sleep in patients in CLIS is another important sign that their wakefulness is likewise intact. It also indicates that providing
undisturbed sleep opportunity will be important for the patients’ mental well-being.

Key words: movement disorders; neurological disorders; sleep/wake physiology; circadian rhythms; completely locked-in
state; polysomnography
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Introduction

The sleep-wake cycle is a crucial component of neural and
bodily development and restitution involved in a plethora of
homeostatic processes [1]. Different exogenous zeitgebers, such
as daylight, social stimulation, motor activity or food intake,
synchronize the various central and peripheral endogenous
oscillators [2-7] In the locked-in condition and the completely
locked-in state (CLIS) [8], most of these zeitgebers are absent or
attenuated due to complete immobility and absence of mus-
cular activity, artificial respiration, artificial feeding and artificial
lighting [9-12] Patients in CLIS suffering from advanced motor
neuron diseases such as amyotrophic lateral sclerosis (ALS),
who have an inability to open or close their eyes voluntarily,
have their eyes closed most of the day and during the night
to avoid drying of the immobile eyeball and cornea. In some
cases, the complete closure of the eyelids remains impossible,
leading to corneal lesions due to extensive drying with little
or no differentiated vision left. Artificial feeding and breathing
through a tracheostoma impose an extreme regularity on the
internal organ systems, impeding the differentiation between
day and nighttime. Social stimulation is certainly more frequent
during the day but 24-hour care entails multiple activities also
during the night (suction of saliva, excrements, eye care, pos-
ition changes to avoid decubitus, change of tubes and feeding
devices, etc.). The reduction of active social interaction and the
complete lack of (verbal or signing) communication further min-
imize the differences between daytime and nighttime stimula-
tion. Muscular paralysis also dramatically reduces the amount
of afferent proprioceptive inputs towards the spinal cord and
brain. Patients are bedridden and completely motionless over
months and years, except during short periods of passive pos-
ition changes. Although effects of constant conditions on
homeostatic and circadian processes and on sleep have been in-
vestigated in constant routine studies and forced desynchrony
protocols [13], in CLIS patients who constantly live in a con-
trolled environment, the effects on their circadian rhythm are
largely unknown [14]. Although, the scientific literature is rich
on circadian rhythm and sleep-wake cycle in healthy popula-
tions [15-19] and patients with other neurological disorders [14,
20-25], there exists virtually no information about circadian
rhythm and sleep-wake cycle in patients in the CLIS.

For brain-computer interface (BCI) communication with
these patients, it is necessary to discriminate periods of sleep
and wakefulness in the individual EEG. It has been argued that
the main reason for decreased or random performance in BCI
communication might be the lack of attention and the presence
of micro sleep during the presentation of the questions [11]. In a
study of one CLIS and two LIS patients over a whole year it has
been shown that a reduced P300 amplitude during the BCI task
predicted lower performance, again suggesting reduced wake-
fulness and attention as a major limiting factor for BCI applica-
tions in these severely compromised patients [26].

To our knowledge, the sleep pattern of only one patient from
our lab shortly after the transition from the locked-in state to
the CLIS has been reported [27]. An irregular sleep pattern with
daytime episodes of slow-wave sleep disrupted slow-wave sleep
during the night and irregular appearance of different sleep
stages during day and night was reported in this patient. The
overall slow-wave sleep duration was normal for the age of the
patient. It is of clinical and theoretical importance to study sleep

in a larger sample of CLIS patients. The presence of distinguish-
able sleep and wake periods in these patients would consti-
tute another piece of evidence for their cognitive functioning.
Undisturbed sleep could also serve to prevent depression and
maintain sufficiently high quality of life in these patients [28].

Hence, to elucidate their sleep-wake cycle, we recorded sleep
in eight CLIS patients. We will outline criteria, which can be used
to delineate the sleep stages, and describe and discuss the sleep
cycles of the individual patients. Already at this point we need to
mention the main limitations of this research, which are dictated
by the clinical condition: the absence of eye movements and of
changes in muscular tone due to the complete paralysis compli-
cate scoring of rapid eye movement (REM) sleep. Mainly because
of this limitation, it is impossible to label each 30-second epoch
of the night with a sleep stage. We, therefore, refrain from pre-
senting hypnograms and percentages of sleep stages, but only
describe which sleep stages occur in a specific patient.

Materials and Methods

The Internal Review Board of the Medical Faculty of the
University of Tubingen approved the experiment reported in
this study and the patients’ legal representatives gave written
informed consent for the study with permission to publish the
results. The study is in full compliance with the ethical prac-
tice of Medical Faculty of the University of Tubingen. The clin-
ical trial registration number is ClinicalTrials.gov identifier:
NCT02980380.

Patients

The details of patients 1, 3, and 4 are described in Ref. [11] as
patients F, G, and W, respectively. The remaining patients are
described below.

Patient 5 (male, 50 years old, CLIS) was diagnosed with
bulbar sporadic ALS in May 2008, as locked-in in 2009, and as
completely locked-in May 2010, based on the diagnosis of neur-
ologists and on our recordings (see below and Ref. [11]). He has
been artificially ventilated since September 2009, fed through a
percutaneous endoscopic gastrostomy tube since October 2009,
and is in home care. No communication with eye movements,
other muscles, or assistive communication devices was possible
since 2010.

Patient 6 (male, 38 years old, CLIS) was diagnosed with
bulbar ALS in 2009. He lost speech and capability to move by
2010. He has been artificially ventilated since September 2010
and is in home care. No communication with eye movements,
other muscles, or assistive communication devices was possible
since 2012.

Patient 7 (female, 57 years old, CLIS) was diagnosed with
Mills’ syndrome of ALS with atypical progression at the begin-
ning of 2010. She lost speech and capability to walk by 2011. She
has been fed through a percutaneous endoscopic gastrostomy
tube since June 2010, artificially ventilated since June 2010, and
was in home care until she passed away in 2017. She started
using assistive communication devices employing eye move-
ment for communication in 2011. Eye-tracker-based communi-
cation failed at the beginning of 2015. The family and caretakers
communicated with her since the middle of 2015 based on her
thumb-movements, which after a year became unreliable.
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Patient 9 (male, 23 years old, CLIS) was diagnosed with ju-
venile ALS with FUS mutation heterozygote on Exon 14:
€.1504delG, gene mutation diagnosed in 2013. He has been ar-
tificially ventilated since August 2014 and is in home care. He
started communication using MyTobii eye-tracking device in
January 2015. He was able to communicate with MyTobii until
December 2015 after which the family members attempted to
communicate by training him to move his facial muscles near
the nose to answer “yes” but the response was unreliable. No
communication was possible since June 2016.

Patient 10 (male, 25 years old, locked-in state on the verge of
CLIS) was diagnosed with familial juvenile ALS with ALS 6-FUS
gene mutation in December 2012. He was completely para-
lyzed within a year after diagnosis, has been artificially venti-
lated since November 2013, and is in home care. He was able to
communicate with eye-tracking from early 2014 to August 2016
but was unable to use the eye-tracking device after the loss of
eye control in August 2016. No communication with eye move-
ments, other muscles, or assistive communication devices was
possible since 2016.

In none of these patients, voluntary eye movement re-
sponses to questions were recorded in any of the recording
sessions. None of these patients showed any brain disease un-
related to ALS. CLIS onset was on average 38 months after initial
diagnosis, which corresponds to expectations [29]. The propor-
tion of juvenile-onset ALS was higher in our sample than in the
general population of ALS patients [30].

Sleep recording

Sleep EEG was recorded consecutively for two nights from each
patient, except patient 4 and 7 (one night only). The first re-
cording was carried out in order to adapt the patients to the
electrodes. The second night EEG, EMG, and EOG were recorded
for later sleep scoring. As shown in Table 1, sleep EEG data was
acquired for more than 12 hours for all the patients, except
patient 4.

The sleep polysomnography was recorded with a multi-
channel EEG amplifier (Brain Amp DC, Brain Products,
Germany) from 11 Ag/AgCl passive electrodes mounted on a
head cap. Six electrodes (F3, F4, C3, C4, 01, and 02) were used
to acquire EEG signals, four electrodes were used to acquire
the vertical and horizontal EOGs, and one electrode was used
to acquire chin-EMG. EEG-channels were referenced to an
electrode on the right mastoid and grounded to the electrode
placed at the Fz location of the scalp. Electrode impedances
were kept below 10 kQ and the EEG signal was sampled at
500 Hz.

Table 1. Summary of findings for each patient
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Preprocessing

The recorded EEG and EOG signals were low-pass filtered using a
finite impulse response low-pass filter of 30 Hz. For the EMG, the
signal was filtered with a 50 Hz notch filter.

Sleep scoring

The EEG of patients in CLIS is dissimilar in large extents to
that of healthy participants. These patients show, e.g. regular
high-amplitude oscillatory activity in the theta (4-8 Hz) fre-
quency range for longer periods of time, which cannot be found
in healthy participants. Moreover, they have no detectable eye
movements during wakefulness and no muscle tone, due to their
condition. Thus, the standard sleep-scoring criteria, particularly
for REM sleep, have to be adapted to score the sleep stages from
patients in CLIS. still, initial visual inspection of the whole night
EEG shows already obvious variations of EEG patterns over time.
It can, therefore, be hypothesized that the states of arousal and
consciousness also fluctuate throughout the night. Based on
time of day and on interaction with the patient (movement arti-
facts), we had a starting point for a rough assumption of sleep
and wakefulness: during the night, longer quiet periods without
movement would have a higher probability of representing
sleep than morning recordings and periods directly after move-
ment (suction of saliva, repositioning of the patient). We then
applied the criteria of Rechtschaffen and Kales [31] to the re-
cordings to determine whether some features of sleep could be
found. This scoring was performed visually on 30-s epochs. It
resulted in the detection of a number of EEG patterns that gen-
eralized over patients, some of which resembled the classical
sleep stages. Scoring was done by an experienced sleep scorer
(S.G.) and discussed in detail among all authors. We describe the
criteria that had to be adjusted as well as the criteria that could
be applied directly in the results section.

Signal analysis

Power spectra were computed using Welch’s method with a
resolution of 0.5 Hz for each 30-second epoch for all EEG chan-
nels. Channels containing obvious artifacts were excluded from
further analysis. Whole-night spectrograms were calculated
based on the median of all artifact-free channels. The median
was used to further suppress artifacts and unusually high or
low power values. Spectrograms were normalized by subtracting
the median and dividing by the value of the 75th quantile of
each frequency, analogous to Z-standardization, in order to have
comparable ranges. The scale of the spectrograms is, therefore,

Patient  Startofrecording  Endofrecording W [active] W [inactive]  «-like freq.  SWS  REMsleep  Sleep spindles
1 10:34 pm 11:14 am + + 4-6Hz + O] -

3 10:00 pm 10:17 am ) + 47Hz + + (few)

4 10:14 pm 07:33 am + + 2-4Hz + (+) +

5 08:32 pm 05:11 pm + + 3-6Hz + + -

6 08:38 pm 03:45 pm + + 2-4Hz + (uncertain) -

7 09:10 pm 08:50 am (+) + 1-3Hz + (+) +

9 02:04 pm 09:04 am + + 3-5Hz + (+) +

10 06:49 pm 09:53 am (+) + 2-4Hz + (uncertain) -

+: clear signs of sleep stage present; (+): some signs of sleep stage present; (uncertain): possible signs of sleep stage present; -: no sign of sleep stage present.
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dimensionless. Additionally, for all patients, the power spectra
of a period of quiet wakefulness is presented to show peaks in
EEG power.

As the heartbeat was clearly reflected in the EMG trace of
two patients (Pat. 1 and Pat. 5), we used these recordings to cal-
culate the continuous heart rate. The 50 Hz notch-filtered EMG
channel was band-pass filtered between 5 and 70 Hz using an
IIR filter. Individual heart beats were detected as spikes in the
signal. Spikes that were too large or too small were removed as
outliers. Then, heart rate was calculated from the distance be-
tween spikes. Finally, outliers in heart rate were removed and
the whole time series filtered with a 30-point moving average
filter.

Results

Three main observations could be made during visual sleep
scoring: (1) All patients had cyclic changes in their brain activity
throughout the recording in the sense that we found alternating
periods with and without slow-wave activity. (2) The discrep-
ancy to healthy sleep EEG differed between patients. (3) Some
commonalities in EEG anomalies across patients could be found.

Because we observed that each patient has his or her own idio-
syncrasies in the sleep-wake cycle, the result of each patient will
be described first in this section. Subsequently, we will describe
common patterns between participants and suggest heuristics
for the scoring of sleep in CLIS patients. Exemplary epochs for
individual sleep stages and whole-night power spectrograms
can be found for each patient in the Supplementary Material.
Exemplary data for patient 9 is presented in Figure 1.

Patient 9

This patient shows clear high amplitude slow waves during the
night, starting at around 1:30 am (Figure 1). These waves are in
shape and in their clustered occurrence indistinguishable from
slow waves of healthy patients. In the spectrogram, they are vis-
ible as a strong <2 Hz band. For longer periods of up to 45 min-
utes, the criteria for slow-wave sleep (SWS), sleep stages 3 (S3) or
S4 are reached. For about 1 hour before the onset of S3, individual
slow waves (K-complexes) and sleep spindles can be found (S2).
In-between periods of 52, epochs dominated by bursts of regular,
sinusoidal EEG activity of 3-5 Hz with medium to high ampli-
tude can be found. These bursts have varying length, typically

Patient 9 . ¥
SWS

Wi WA sz

70 W00 00 0200 0500 0800

Tirne {hoirs)
" WAL n Wl
VLR -_“ g pil,
=] @
AP e - A e
eooo eoon
g

]!

" 52 F,

g
R S —

SWs

SIS "

Figure 1. Normalized spectrogram (upper left) and segments of selected sleep epochs of patient 9. Yellow color in the spectrogram reflects higher than average activity
in a frequency band; blue color signifies lower than average activity. Red lines on the spectrogram indicate epochs belonging to particular sleep stages. Twelve-second
segments of these epochs are shown in the other panels. Here, vertical lines represent 1-s intervals. The EEG during active wakefulness (W[A]) is largely similar to that of
healthy participants. EEG activity during inactive wakefulness (WII]) is around 5 Hz, but resembles alpha activity rather than typical theta activity. Stage 2 sleep (52) with
spindles and K-complexes as well as slow-wave sleep (SWS) can be clearly discerned in this patient. Note the large eye movements during REM sleep (R), which the pa-

tient is unable to perform ily during
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between 5 and 20 seconds. Because of its regularity and the dur-
ation of bursts, this activity is strongly reminiscent of alpha ac-
tivity (see Figure 1, section W[I]). It also occurs for longer periods
of several hours in the afternoon and in the evening before the
first signs of S2. Although having theta band frequency, these
waves have no similarity to the typical, irregular, sawtooth-
shaped theta activity of healthy participants. Except for its fre-
quency, this activity, therefore, in all other aspects seems to
be equivalent to alpha activity in healthy patients. We, there-
fore, use this alpha-like activity to score periods of inactive, re-
laxed wakefulness (W[I]). Starting around 6:00 am, after signs
of S2 have diminished, longer periods of low amplitude, high-
frequency activity appear. Frequencies are dominated by beta-
band activity, with a varying degree of intermixed irregular theta
activity. Because of its similarity to typical wake activity and
because of its strongest occurrence in the morning after sleep,
we score this activity pattern as active wakefulness (W[A]). In
the morning, this high-frequency activity is occasionally inter-
rupted by 5- to 20-second periods of regular theta activity as de-
scribed above (W[I]). In the afternoon, the pattern inverses and
long periods of W[I] are interrupted by epochs of W[A].

Unrelated to S2 or SWS sleep phases, there are some epochs
that show eye movements that resemble those typical for REM
sleep. These occur mainly in the afternoon in the middle of
longer periods of W[I], and are accompanied by a brief discon-
tinuation of the alpha-like regular theta activity and appearance
of irregular theta and beta waves. Although the timing of these
periods is not typical for REM sleep, we suggest that these signs
are indicative of REM sleep-like processes and score the corres-
ponding epochs as REM sleep (R).

Patient 1

This patient shows clear high amplitude slow waves (SWS)
during the night, starting at around 2:00 am (Supplementary
Figure S1). These waves are co-occurring with sinusoidal 4-7
Hz activity in some epochs. There are two more periods of SWS
around 5:30 am and 7:30 am. There are no signs of sleep spin-
dles throughout the night. The EEG in the evening before occur-
rence of SWS is dominated by the same regular, alpha-like 4-7
Hz (theta) activity (W[I]) as in patient 9, although with a lower
amplitude. It is intermixed with high-frequency, low-amplitude
activity (W[A]) to varying degrees. Interspersed throughout the
recording are periods of dominant irregular theta activity during
which REMs are manifest. Although the timing of these periods
is not typical for REM sleep, we again suggest that these signs
are indicative of REM sleep-like processes and score the cor-
responding epochs as R. Heart rate tendentially increases or
reaches maxima over periods during which we did not detect
any SWS (e.g. 10:30 pm - 02:00 am and 08:30 am - 10:30 am).
During periods of SWS (marked by strong < 1.5 Hz activity) heart
rate tendentially decreases.

Patient 3

The EEG of this patient is dominated by regular, high-amplitude,
alpha-like 4-7 Hz (theta) activity (W[I]), particularly in the
evening and in some parts of the night (Supplementary Figure
S2). Starting at 2:00 am, slow waves occur, first together with
the alpha-like activity then replacing it more and more. There
are several periods of SWS, alternating with periods of W[I]. In
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the morning, activity becomes more irregular (high-frequency
beta and irregular theta activity), especially after intervals
of (external) movement (W[A]); but still these periods con-
tain amounts of alpha-like theta activity. After awakening and
morning hygiene there is a 2-hour period of strong, continuous
REM, accompanied mainly by irregular (sawtooth) theta activity
and only little regular (sinusoidal) alpha-like theta activity. In
this patient, the eye movement and EEG activity provide strong
evidence for REM sleep. There is also evidence for a few sleep
spindles in the morning after the period of morning hygiene and
before REM sleep.

Patient 4

We find two >1-hour periods of extensive SWS, at 11:00 pm and
at 2:00 am (Supplementary Figure S3). During SWS, strong sleep
spindle activity (12-14 Hz) is present. Strong spindle activity is
also found during a 1-hour period around 4:00 am, which also
presents K-complexes (S2). In-between SWS periods, there are
periods dominated by 5- to 20-second bursts of regular, sinusoidal
2-4 Hz activity, which resemble the 4-7 Hz activity described in
the patients above. These also occur in the evening, intermixed
with high-frequency, low-amplitude activity. Because it shows
all properties of alpha activity except the frequency range, we
score these periods as W[I]. In the evening before sleep, the EEG
is dominated by irregular theta and low-amplitude beta activity
WIA]. In the morning starting around 6:00 am, we see similar ir-
regular theta and low-amplitude beta activity, but accompanied
by (mainly small and a few larger) REMs. Although difficult to
discriminate from WI[A], the quieter EMG (no external disturb-
ance), the REMs, and the absence of alpha-like activity lead us
to score R.

Patient 5

This patient shows several periods of SWS between 10:00 pm and
5:00 am (Supplementary Figure S4). The slow waves are slower
than usual and have a higher amplitude. In the evening before
sleep and for 1 hour after the end of SWS in the morning, the
EEG is dominated by 3-6 Hz alpha-like activity (W[I]). Starting at
6:00 am, the EEG becomes more mixed with irregular theta, beta,
and only little alpha-like activity (W[A]). Throughout the day,
periods of W[A] and W[I] alternate. In the afternoon at 05:00 pm,
a period of clear REM sleep with strong REMs, irregular theta and
low amplitude beta activity was found, which continued for >15
minutes until the end of the recording. No sleep spindles were
found in this patient. Heart rate is minimal during the night
period, during which strong <1.5 Hz activity is recorded (09:30
pm - 7:30 am). It increases in the morning during interaction
with the patient.

Patient 6

In patient 6, there are two clear periods of SWS between 4:30
am and 7:00 am (Supplementary Figure S5). In between these
two periods, we find several quiet epochs of low-amplitude,
high-frequency activity that contain a certain degree of small
eye movements. Because they do not resemble periods of wake-
fulness in this patient, we label these epochs tentatively as
uncertain R. The rest of the day alternates between periods of
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WI[I] (mainly in the evening) and W[A] (more abundant in the
morning), showing more or less alpha-like 2-4 Hz activity, re-
spectively. Again, no sleep spindles were found.

Patient 7

This patient shows about 1 hour of SWS with very slow, high-
amplitude EEG around midnight (Supplementary Figure S6).
Before this period, a few minutes of S2 sleep containing sleep
spindles was found. This period is also represented with a yellow
spotin the 12-15 Hz band in the spectrogram of this patient. The
rest of the recording contains mainly mixed frequency activity in
the 1-3 Hz, theta, and beta bands. The amount of low-frequency
activity varies throughout the recording, probably reflecting
WI[I] and W[A]. However, these variations are only gradual, so
that a clear distinction between these two stages is difficult in
this patient. Moreover, the 1-3 Hz low-frequency activity is less
regular and sinusoidal than the alpha-like activity of the pre-
vious patients. Although it lies in the delta band and could be
taken for slow-wave activity, it occurs also during periods where
caretakers interact with the patients, and it much faster than
the patients SWS activity, which can be clearly delineated in the
patient’s spectrogram. We, therefore, believe this activity corres-
ponds to the alpha-like activity in the other patients. During an
undisturbed period at the beginning of the night, we found ir-
regular theta activity together with some REMs and an absence
of 1-3 Hz activity. We score this as a brief period of R.

Patient 10

The spectrogram of this patient shows three periods of SWS be-
tween 3:00 am and 7:00 am (Supplementary Figure S7). During
these periods, very slow (<1 Hz) activity can be seen in the sleep
recording. These slow waves have the typical shape of sleep
slow waves. In the evening before 3:00 am, the EEG is dominated
by strong 2-4 Hz activity, which, as in patient 7, can be distin-
guished from SWS. Because of its regular sinusoidal shape, we
score it as alpha-like activity and W[I]. In the morning, alpha-
like activity alternates with slightly faster regular and irregular
theta activity, which we score as W[A]. During a period with only
a minimum of 2-4 Hz activity, we see a few small eye move-
ments that could represent REMs. We, therefore, score some
epochs as uncertain R. Sleep spindles were not found.

The power spectra of channel C3 of all eight patients can be
found in Supplementary Figure S8. The figure shows a single
peak in the spectrum in most patients. This peak is not found
in the alpha band, but in a lower range between 2 and 7 Hz de-
pending on the patient. The individual alpha-like frequency
band for each patient is shown in Table 1. Comparing all six re-
corded channels, we did not observe any obvious topography
(e.g. anterior-posterior) of alpha-like activity across the scalp.

Discussion

Polysomnographic recordings in CLIS patients show that these
patients have a circadian sleep-wake pattern. All patients show
<1 Hz slow-wave activity during one or several periods during
the night. In most patients, the dominant activity outside of
SWS was a regular, sinusoidal 4-6 Hz or 2-4 Hz activity, which re-
sembles alpha activity in its distribution and burst-like behavior.

This inactive wakefulness could be discriminated from active
wakefulness in most patients, with active wakefulness showing
irregular, higher frequency activity. Sleep spindles were absent
in half of the patients. REM sleep was clearly present in two pa-
tients and probably present in most. Impaired REM sleep and
lack of sleep spindles were independent, as the two patients
showing the strongest REM sleep did not present any sleep
spindles.

Slow activity dominates the EEG of CLIS patients during
sleep and wakefulness. The slow waves of SWS have their
typical frequency in some patients, in others they appear to
be distinctly slower. However, all patients have slow waves in
the range below 1 Hz, which can be easily detected by visual
scoring or automatic analysis in the EEG. The timing of this ac-
tivity, which occurs mainly after midnight and before 6:00 am
in the morning, and which represents the slowest activity for
each patient, leaves little doubt, that this activity actually rep-
resents SWS. All patients thus showed one or more periods of
clear S3 or S4 sleep. Consistent with expectations, in both pa-
tients for which heart rate data was available, heart rate was
decreasing or minimal during periods scored as SWS. During the
12-hour section of the circadian rhythm that we have recorded,
we found longer stretches with slow-wave activity, which were
mostly splitinto several consecutive periods. Night-time periods
with and without slow-wave activity did not differ systematic-
ally with regard to light or other stimulation, except that some-
times a period of slow-wave activity ended with EMG activation
(patient being moved). Our findings speak to an astonishingly
well-conserved circadian rhythm, at least within our period of
observation. It is, however, possible that there are additional
periods of sleep during daytime that we did not record in the
present study. Moreover, there might be periods of light S2 sleep,
which we have not detected because of the lack of sleep spindles
in most patients.

There is, however, another type of slow activity, which can be
confounded with SWS in more than half of the patients. Most of
the recordings are dominated by a regular oscillation in the upper
delta/lower theta range (2-7 Hz). Several reasons speak against
this activity being sleep-related. First, it appears at all times of
day throughout the recordings: more strongly in the evenings,
but also in the mornings. It often continues throughout periods
of interaction with the patient. Second, it is distinct from the
slower <1 Hz oscillations, which occur during the night, and
mostly disappear during these periods. Third, this oscillation
has a regular, sinusoidal shape, occurs in 5- to 20-second bursts,
and has a waxing and waning amplitude during these bursts.
Its shape clearly distinguishes it from theta and delta activity,
which is usually more sawtooth or rectangular shaped. In most
patients, it is also reflected by a single, pronounced peak in the
power spectrum. Apart from the lower frequency, it is therefore
strongly reminiscent of periods of alpha, which occur during
resting wakefulness with eyes closed in healthy participants.

CLIS patients have their eyes closed most of the time to pre-
vent drying of the eyeballs. It could, therefore, be expected to
see strong alpha oscillations, but none are found in the 8-12 Hz
range in any patient. Previous studies in locked-in ALS patients
also showed a significant reduction in the alpha band over the
central electrodes [32]. Moreover, our observations confirm the
observations of Hohmann et al. [33], who showed in two CLIS
patients that alpha frequency activity has completely dis-
appeared and shifted towards lower frequencies. We, therefore,
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hypothesize that the continuous alpha activity is gradually
slowing in frequency throughout the progression of the disease,
may be due to lack of sensory stimulation or overuse of alpha-
generating circuitry. This, however, remains open for further
investigation.

In fact, there are reports of “alpha coma” and dominant
alpha-theta activity in locked-in patients that are not com-
pletely locked-in [34, 35]. The alpha-like theta/delta oscillation
might, therefore, serve as an indicator of absence of slow-wave
sleep. In healthy participants, alpha activity serves, together
with rolling eye movements, as an indicator of falling asleep (S1).
No CLIS patient showed rolling eye movements. Because of the
persistence of alpha-like activity, the impossibility to describe
consistent and distinct features of wake EEG in these patients,
and the lack of light S2 sleep in most patients, it was impos-
sible to distinguish a transitory S1 sleep stage in CLIS patients.
‘We have therefore described the state of continuous (>50% of an
epoch) alpha-like activity as inactive wakefulness (W[I]). During
most parts of the day, this stage alternates with periods of ac-
tive wakefulness, which has faster more irregular activity with
lower amplitudes.

Sleep spindles (11-17 Hz), are the hallmark of light S2 sleep.
These were completely absent in four out of eight patients.
The lack of sleep spindles mirrors the findings by Pavlov et al.
[36], who also found few or no spindles in most of their non-
responsive (vegetative state) patients. It is yet unclear when and
why sleep spindles cease to occur in these patients. As spindles
have been linked to the reprocessing of new memories during
sleep [37], one might speculate that the daily routine of the pa-
tients with lack of change or new information renders sleep
spindles superfluous. It is conceivable that the frequency of
spindle oscillations also slows with the progression of the dis-
ease, but we have not found any indication of such a slowing. In
fact, in those patients with spindles, these had all typical charac-
teristics of sleep spindles in healthy participants. K-complexes,
which often have a higher frequency than full slow-waves, were
difficult to delineate. The presence of high-amplitude delta and
theta band activity during wakefulness prevents the clear defin-
ition of individual K-complexes. However, no periods resembling
S2 sleep (low-amplitude activity with a few, clearly delineated
high-amplitude waves) were found in patients that did not also
show sleep spindles.

Scoring of REM sleep according to standard rules relies
largely on eye movements and muscle tone changes. Although
patients in CLIS cannot produce any voluntary eye movements
or muscle contractions, we found strong REMs during sleep in
two patients and rudimentary eye movements during sleep
in another four patients. This finding indicates that voluntary
and autonomous eye movement control can be independent in
CLIS patients. REM sleep-like irregular theta activity with me-
dium amplitude was present during these REM periods. Scoring
of REM sleep by EEG alone, which is feasible by experienced
scorers in healthy patients, was impossible in our patients. The
EEG could only be used in conjunction with the eye movement
signal, and confident judgments of REM sleep were only possible
in a few patients. Heart rate, which was unfortunately available
only in patients 1 and 5, might be an additional helpful param-
eter for scoring REM sleep. In both patients, heart rate during
periods scored as REM sleep or potential REM sleep was higher
than during periods scored as sleep, and variability of the heart

Malekshahietal. | 7

rate was greater. Further studies should consider placing ex-
plicit ECG electrodes.

Although we did not find any increase in spectral power
during REM sleep, we noticed a distinctive decline in 2-3 Hz ac-
tivity in the spectrograms of those patients with strong REMs.
We found similar periods of distinctly decreased power in this
frequency band in most patients. Visual inspection of the EEG
during these periods visually confirmed REM sleep-like theta
activity with small deflections in the EOG trace that could not
be accounted for other than by eye movements (e.g. no cor-
responding activity in the EEG traces, no movement artifacts).
These eye movements are much smaller and fewer than those
habitually seen in healthy participants, but still, as there are no
other sources of artifacts in CLIS patients, they can be taken as
signs of autonomous eye movement activity. We can thus con-
firm the presence of REM sleep in some CLIS patients and the
presence of possible REM sleep in most. However, new rules
for scoring REM sleep, perhaps based on spectral EEG power,
should be developed to increase sleep scoring accuracy in these
patients. The present data indicates that REM sleep seems to
be uncoupled from the typical NREM-REM cycle and to occur
at different times of the day. This pattern might be related to
the lack of movement and structure in the daily routine of the
patients or to an uncoupling of circadian and ultradian cycles.
Comparison with other bed-ridden patients might illuminate
this aspect of CLIS sleep.

The analysis of the nighttime EEG demonstrates that pa-
tients in CLIS with ALS show slow-wave sleep episodes compar-
able to the healthy aged population. The two younger patients
(9 and 10), suffering from a genetically determined ALS, do not
substantially differ from the older ALS patients. Overall, sleep
is fragmented, as already noticed [27], in these completely in-
active patients, which spend most of their time, some of them
since more than 5 years, in a completely paralyzed state in their
bed, with only some transfer to the wheelchair during daytime.
This constant, mostly bedridden routine and closed eyes, weak-
ening the influence of light as the most potent zeitgeber, might
be one reason for the disruption of the NREM-REM cycle and
the absence of some of the typical sleep signs. Further studies
should include neuroimaging to allow a more mechanistic in-
vestigation of the relation between pathologic changes in the
brain and in sleep. Still, the maintenance of SWS in all pa-
tients might be an important factor contributing to preserve
the quality of life in patients in an advanced locked-in state.
Undisturbed nighttime sleep should, therefore, be aimed at in
CLIS patient care.

Supplementary material

Supplementary material is available at SLEEP online.
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C1 | Current Code version V155

C2 | Permanent link to code / repository used of this code version https://github.com/majidkhalili/HybridBCI

C3 | Legal Code License MIT license (MIT)

C4 | Code Versioning system used Git on Github.

C5 | Software Code Language used Matlab

C6 | Compilation requirements, Operating environments & Matlab R2018a, Psychtoolbox,
dependencies DSP System Toolbox (Only for EEG),

TextAnalytics Toolbox (Only for speller)
C7 | If available Link to developer documentation / manual https://github.com/majidkhalili/HybridBCI
C8 | Support email for questions Majidkhalili89@aim.com
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Abstract

Brain-computer interfaces (BCI), use brain signals to generate a control signal to control external
devices to assist paralyzed people in movement and communication. Electroencephalography
(EEG) and functional near-infrared spectroscopy (fNIRS) are the two most widely non-invasive
brain recording techniques to develop BCIs. This article describes a software tool called
“HybridBCI with an open-source framework for NIRS and EEG for a Hybrid BCI” application.
This HybridBCI has been successfully used to enable brain communication in patients without any
means of voluntary communication and has been recently reported by the authors. This software
tool is Matlab based, using modular object-oriented programming principles, and experimenters
can use it with different platforms and hardware to perform their BCI experiments and integrate

their custom modules according to their needs.

Keywords

Brain-computer interface (BCI), EEG, fNIRS, HybridBCI, Locked-in syndrome (LIS),
Completely locked-in syndrome (CLIS)
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Introduction

Several research labs have developed versions of BCIs to enable communication with the ALS-
patients and other patients with paralysis with heterogeneous results[1-6]. Recently Tonin et al.
reported the successful use of an eye-movement based BCI for communication with four patients
with amyotrophic lateral sclerosis (ALS) in the transition from locked-in state (LIS) to completely
locked-in state (CLIS) [7] and the data set was published by Jaramilo-Gonzalez et. al. [8]. Despite
the residual oculomotor activity, these patients could not use assistive and augmentative
communication devices for communication. An electrooculogram (EOG) based communication
system was developed using which the patients employed their remnant eye-movement activity to
spell freely and communicate expressing their desires. The study was performed using a software
tool, designed by the authors for the BCI application, called HybridBCI. HybridBClI is the result
of extensive development of BCI application for communication purposes in LIS and CLIS
patients using electroencephalography (EEG), and functional near-infrared spectroscopy (fNIRS)
signals [7-9]. With this report, we provide the source code for HybridBCI, which can be used for
human-computer interface (HCI) applications in patients, including but not limited to LIS and

CLIS.

HybridBCI is not just a programming toolbox but also consists of an experimental paradigm
allowing the user to implement any type of BCI using EEG, electrooculography (EOG),
electromyography (EMG), or fNIRS. HybridBCI benefits from a modular pattern; therefore, if the
user wants to implement a particular algorithm, s/he can add only that particular segment without
the need to know how the whole system works. HybridBCI is implemented in Matlab [10] widely
used by neuroscientists, and due to the interpreting nature of the Matlab, once a new functionality
is added, there is no need to recompile the code. Besides, in clinical applications, data organization
and experiment logging is crucial, and HybridBCI manages the file organization and properly logs
recording sessions. Although several platforms have already been proposed for BCI applications
[1,3.4], we are introducing HybridBCI because the primary goal of the HybridBClI is to be used in
ALS-CLIS patients with the possibility to be used in other disorders of consciousness. In ALS-
CLIS patients, the vision is impaired [7] and visual paradigms cannot be used. Therefore, the
experimental paradigm used in HybridBCI is completely auditory based and does not require intact
visual perception. In these patients, the EEG is significantly altered, and common EEG biomarkers

are missing in some patients [11,12], and even in patients with the same syndrome, a unique pattern
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cannot be found within a patient over time in different stages of the disease [13]. Therefore, the
analysis pipeline should be applicable and modified for each patient individually, and HybridBCI

gives us this flexibility in the analysis pipeline, as described below.

This paper proposes an experimental paradigm with an open-source framework of a BCI with a
clear and straightforward pipeline from data acquisition to signal analysis and classification with
a separate implementation of each part. New features at any step of the pipeline can be added to

the software by placing newly implemented .m files in the correct folders.

Paradigm

In the HybridBCI, regardless of the cognitive task used (e.g., mental calculation, the imagination
of hand/foot movement, covert thinking, etc.), a list of questions/sentences with answers known
by the experimenters is presented auditorily to the BCI user, and the user is asked to perform two
different tasks i.e., responding mentally *“ yes” or” no” (i.e., true/false or 1/0). The auditory channel
is used because many severely ill chronic patients suffer from impaired vision. HybridBCI uses
Psychotolbox [14] in presenting auditory stimuli to minimize the software delay. Questions are
repeated to the user with an equal, but random distribution of questions with Yes and No answer
(i.e.Your name is Majid. Your name is Ujwal) in an experimental block, and blocks are repeated
to acquire enough data for classification. The initial experimental blocks are called training blocks
since the user is familiarizing with the paradigm, and the data is collected to train a classifier. Once
enough trials are acquired, a classifier is trained to classify yes and no answers. If the classification
accuracy reaches above chance level, a feedback block is performed in which the user receives
feedback on what has been classified, which also serves as a reward. If the feedback accuracy in a
feedback block is also higher than chance, the model can be used for other applications with
unknown answers. The chance can be calculated as proposed by Miiller-Putz et al.[15] based on
the number of trials in each block. The proposed block diagram paradigm is depicted in Figure 1.
The number of blocks is dependent on the selected task, the number of trials in each block, and the
users' condition. The rule of thumb would be to have twenty trials per block in four training blocks

and one feedback block, which approximately takes one hour.
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Implementation

HybridBClI is implemented in Matlab based on object-oriented programming (OOP) principles,
and new features can be added by placing the user implemented .m file in the correct path to
guarantee the scalability [5] of the system. As depicted in Figure 2, the core structure of HybridBCI
is based on the two main modules named “HybridBCI.mlapp” and “ModelBuilder.mlapp”, which

do not need to be modified by users and are implemented using the Matlab App Designer[16].

1) Hybrid BCI
This module runs and controls the running experiment’s sequence, controls data acquisition
functions, handles the triggering, runs “ModelBuilder” and log the experimental report.
HybridBCI has three tabs, 'Configuration', 'Experiments', and 'Applications', which are used in an
experiment, respectively. In the first tab, the brain signal measuring techniques and their
corresponding recording handlers are selected, and the timing of the experiment is set (Figure 3A).
These pieces of information and other experimental information, such as the name of
experimenters, date and time of the experiment, and auditory stimuli list, are saved for each

experimental block in a single .mat file.

a. Trigger
The HybridBCI system's functioning relies on precise labeling and saving the paradigm's events
synchronized with the raw data recording. The correct timing is delivered by the HybridBCI
module to the acquisition devices through a set of symbols, named triggers. The proper sequence
of triggering values for blocks and trials is presented in Table 1. Any triggering device is an
instance of a class derived from ‘Device.m’ and needs to implement its’ abstract functions. With
this code, implementation of hardware triggering over the LPT port and the software triggering
through a TCP/IP protocol for Brain Products GmbH (Germany) for EEG recording and file-based
triggering for NIRx Medical Technologies (USA) for NIRS recording are implemented.

HybridBClI is designed not to have any cumulative error between blocks and trials.

b. Data acquisition
HybridBCI can run and handles two recording devices simultaneously as needed for NIRS and
EEG data acquisition, and it sends triggers to both of them at the same time. For each recording
device, a new instance of Matlab is loaded by clicking on the corresponding ‘RUN’ button in the

Experiment tab of the HybridBCI module (Figure 3B). New recording devices can be added by
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placing their .mlapp file in the “.\lib\Devices\EEGINIRSDevices\”. With this code, data
acquisition and/or triggering for BrainVision, StarStim, and NIRx are also implemented and can

be provided upon a request.

c. File Management
For each day of recording, a new folder is created in ‘.\Subjects\XX\’, in which the XX denotes
the date of recording (e.g. "22-Nov-2019’), and for each block, a configuration file is saved in it,
containing parameters of the performed experiment. Subjects’ audio files are stored with .wav
extension in °.\Subjects\XX\Audios\Questions\’, which is very helpful in experiments with
(C)LIS patients, in which audios needed to be recorded by the individuals’ family members. Audio
question files with yes answers are labeled as ‘001_FileName.wav’ while questions with no answer
are labeled as ‘002_FileName.wav’. The files are optional but are recommended to be named with
valid identifiers since they will be stored in each block's configuration file. A sample of 20 audio

files with yes and no answers are provided with this code.

d. Applications
Once a classification accuracy above the chance level is achieved, the same model can be used to
run different applications in which the intention of the user is not priory known for experimenters.
HybridBCI can automatically run and control the state transitions for any application that derives
from ‘Paradigm.m’. ‘Paradigm.m’ is a class with abstract methods that are needed for their
functionality in HybridBCI. Once a new paradigm class is defined, it can be accessed and run from
the ‘Application’ tab in the ‘HybridBCI’ module (Figure 3C). With this code, two primary
examples of such applications are provided, including OpenQuestion, in which the user can answer
the questions that the answers are unknown to the experimenters, and Speller in which the user

can freely spell what she/he has in mind [7].

2) Model Builder
“ModelBuilder” handles the analysis processing pipeline for NIRS and EEG in six steps (Figure
4) and stores it in a .mat file in the ‘Models’ folder for each subject to be used for giving feedback,
running applications, or to perform offline analysis. Each analysis step has a dedicated tab in the

GUI and is described below.
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a. Data Selection
This tab enables users to select data and reject noisy channels before performing any analysis,
which may arise due to displaced EEG electrodes or noisy NIRS channels, or other recording

issues (Figure 5A).
b. EEG Preprocessing

EEG preprocessing fulfills the purpose of cleaning the recorded signal from noise and artifacts
(such as eye blinking or movement) and performing transformations or reorganizations of the
recorded data or any other condition necessary for further analysis [1-3]. Following what is
suggested by the quoted references, for a basic EEG pipeline, we include preprocessing
functions commonly used in EEG preprocessing, that is, selection of the frequency bands and
filtering, simple linear transformations (normalization and baseline correction) and re-

referencing operations (common-average reference) (Figure 5).

It is important to note that the application of preprocessing steps depends on several aspects,
as the study’s goal, the experimental design, the physiological phenomena being investigated
and the searched features in the signal, or other custom analysis necessary for the experiment.
Therefore, there is no standard sequence of steps for preprocessing the EEG since each
preprocessing sequence is tailored depending on the aforementioned variables [3.4]. For
example, a survey for optimizing the work with event-related potentials (ERP) in the frame of
BCI [5], concludes that the best-practice guidelines for preprocessing are 1) use as many EEG
electrodes as is practical to record, avoiding the use of sub-montages or sub-sets of electrodes,
2) spectral filter to remove obvious noise components, with a close to the optimal passband of
0.5-12 Hz, 3) apply spatial filtering for “whitening” [6], for a final stage with a classification
method. Naturally, for different experimental designs, the guidelines change as verified in

other developed platforms (e.g., [7-10]).

With this requirement in mind, the preprocessing pipeline of this software allows us to select the
order in which the preprocessing functions are applied and include other additional functions
necessary for a custom EEG preprocessing (e.g., spatial filtering, re-referencing, temporal
windowing). Thus, the particular preprocessing pipeline of this software consist — as it can be

configured in the EEG Preprocessing tab of the ModelBuilder (Figure 5B) — of the following steps:
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1. Filtering
Previous to the filtering, two sets of options are provided for the user: First, Source Selection, in
which the user can select the types of signals to be considered in the analysis, either EEG, EOG,
or EMG channels. Second, Bands Selections, in which a group of traditional ranges of oscillations
commonly used in EEG analysis [27], Wideband (0.5-30 Hz), Delta (1-4 Hz), Theta (4-7 Hz),
Alpha (7-13 Hz) and Beta (13-30Hz), are offered to the user, with the possibility of using the
default given ranges, or manually introducing modifications to each range. Then we apply a
second-order Infinite Impulse Response (IIR) notch filter at 50 Hz, and after that, we included two
options for filtering: Finite impulse response (FIR) filter and Butterworth IIR filter design. Both
filters are applied so that the phase of the signal is not affected by [28]. We propose these two
types of filters to allow the user to consider each according to her/his needs and their particular

benefits or drawbacks applied to EEG signals [29].

1I.  Processing Functions
With this code, three of the most common amplitude correction methods are provided. First,
Normalization [30], by applying the z-score to the epoch (that is, subtraction of mean of each
window and division by the standard deviation [31]). Second, Baseline Correction, which in our
case is the simple subtraction of a pre-stimulus value (a predefined baseline) from the epoch, under
the assumption that any physiological effect recorded post-stimulus can be highlighted if compared
with a pre-stimulus “base” [32]. For this, it must be considered that the definition of a baseline
period varies depending on the physiological and analytical nature of the study [33]. Finally, the
Common Average Reference (CAR), to approach the recordings to an "inactive reference" — if all
the channels were recorded respective to the same physical reference — by subtracting to each
amplitude value the average of the amplitude values of all the channels at the same instant [33].
The user can choose the order in which they will be applied from the list of all available functions.
User implemented EEG processing functions can be added to the pipeline by placing the .m file in

in . \lib\EEG\Preprocessing\.

c. EEG Feature Extraction
With this code, an initial set of features used in the analysis of EEG in the field of BCI in the time
and frequency domain are included [34], including a series of range features for EEG time-series

(Figure 5C). Details on the implemented EEG features can be found on supplementary data. User
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implemented EEG feature can be added to the pipeline by placing the .m file in
“.\lib\EEG\Features\’.

d. NIRS Preprocessing
HybridBCI develops the pipeline for the NIRS pre-processing in two steps: first wavelength
conversion, second filtering. In the first step, a basic default function is developed to convert the
wavelength signal to hemodynamic concentration using the Modified Beer-Lambert Law (MBLL)
[35], while in the second group, the systemic components can be filtered using a bandpass filter

function [36].

The NIRS signal is acquired as a pair of wavelengths belonging to the near-infrared spectral range
between 650 nm to 950 nm [37]. To get a physiological signal, the most commonly used technique
is the MBLL [35] to convert the wavelength to optical density and the hemodynamic
concentrations: oxyhemoglobin (HbO), deoxyhemoglobin (HbR), and total hemoglobin
concentration (HbT) [38]. In the MBLL, two terms of the equation are the molar extinction
coefficient and the differential path length factor that accounts for the real distance the light travels
due to the scattering [35]; these two terms depend on many factors (e.g., age and gender of the
subject), and their values can be found on the literature [36,39]. The observed hemodynamic signal
is the result of the sum of neuronal and systemic components, thus to analyze functional changes,
many techniques have been developed to separate the different components and remove external
noise (see [40] for an extensive review). With this code, an implementation to convert wavelength
data to hemodynamic response is provided, and proper filters are designed to filter hemodynamic
responses (Figure 5B). User implemented functionalities can be added to the processing pipeline

by placing the .m file in *.\Lib\NIRS\PreProcessing\’.

e. NIRS features
Once the HbO, HbR, and HbT are pre-processed, it is possible to extract features to describe the
signal using only the data's relevant characteristics. The developed functions extract the features
for each of the three hemodynamic signals working on a single channel level, i.e., without
averaging or grouping different channels or different signal types. With this code, preliminary
features mostly used for NIRS signals are provided and listed in supplementary data. Any new

feature can be added to the pipeline by placing a related m file in ‘.\Lib\NIRS\Features\.
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f. Dimensionality
Once the pre-processing and feature extraction steps are concluded, the dataset’s size in the feature
space increases significantly. At this point, we incorporated two steps to reduce the dataset size

keeping only those features that have a more significant influence on the final result (Figure 5D).

1. Features consistency
This step is used to test the homogeneity of the features’ distribution across the different trials used
to train the classifier and results in a training sample with equal or fewer features than initially.
This process keeps only those features that are consistent over time and discards the rest. It also

reduces the calculations in future stages. For details, see [41-43].

1I. Dimension reduction
This step is used to reduce the training data's dimensionality by selecting an ordered set of the most
relevant features for classification [44—47]. Given a training sample with m features and a
percentage K specified by the user, a variable selection method is implemented, resulting in a
training sample with a number k percent of features. The implemented function is a variation on
the popular minimum redundancy maximum relevance (mRMR) method, originally created by
Ding and Peng [44] and Peng et al. [45] but using another association measure instead of “mutual
information”, as proposed by Berrendero et al. [46]. Their approach, which appears to work better
on small samples [46] and is thus relevant for BCI applications, consists of using squared “distance
correlation”, which measures dependency between variables and was introduced by Székely et al.

[47].

g. Classification
HybridBCI can use any classifier that is derived from the abstract class ‘Classifier.m’ in
‘.\Lib\Classifiers\'. Classes inheriting from this class need to implement two abstract functions,
including training the model with given features as input and predicting a single trial using the
same model. With this code, two well-known classification algorithms are provided: Support
Vector Machines (SVM's) and k-Nearest Neighbours (k-NN) [48,49] (Figure 5E). For a review of
classification methods for EEG based BCI, see [50], and for hybrid EEG and NIRS see, [51].
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h. Validation
One of the known issues in machine learning is the problem of overfitting the data, and it refers to
the problem that due to the incorrect tuning of the classifier, the model overfits the features space.
Therefore, it is necessary to check the classifier’s performance on the data other than the data that
has been used for training (simulating the online feedback in the BCI experiment). For this reason,
the Validation tab in the ‘ModelBuilder’ is provided to check the performance of each model on

other datasets (Figure 5F).

Discussion and conclusion

During several years of research and development in the field of BCI for communication in DoC
patients, several versions of this software have been used to perform studies. This version of
HybridBCl is the outcome of this process in our lab. A version of HybridBCI was used to enable
communication with ALS patients on the verge from LIS to CLIS when all other communication
means failed and reported a yes-no communication of more than chance level, and the possibility
for free spelling. Details for analysis pipeline and classification results can be found in Tonin et
al. (2020) [7]. The code is provided in the Matlab that most of the scientists in cognitive science
are already familiar with and easy to develop. HybridBCI has an OOP software design, and due to
the interpreting nature of the Matlab programming language, as opposed to compiling based
programming languages, new features and functionalities can be added to the system by placing
new .m files in the proper path without the need to know the whole system or recompiling the
project. The current version of the developed software enables simultaneous interfacing and data
acquisition from Brain Products” EEG and NIRX’s NIRS device. The software provides a user-
friendly interface to enable experimenters to select an appropriate EEG and NIRS data processing
pipeline. The experimenters can select the corresponding feature extraction method and machine
learning algorithm to classify the brain states. This software only has the functionality to select
features from EEG and NIRS signal separately, i.e., it does not have the functionality for hybrid
EEG and NIRS feature selection. However, an experimenter can easily implement their desired
hybrid feature selection method and integrate it with the HybridBCI software. An experimenter
can also implement his/her machine-learning algorithm as per need beyond what has been provided

in the current version of the software and integrate it with the HybridBCI, thereby further
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expanding the HybridBCI software's functionality. Thus, the modular design of the software

enables experimenters to further expand on what has been provided in the software.

The HybdridBCI software, through its six years of the developmental process, has been used to
enable communication with patients in LIS, in the transition from LIS to CLIS, and finally in CLIS.
During its development process, we encountered several challenges, such as lack of vigilance
markers in patients in CLIS, lack of clear sleep- cycle markers in CLIS, patients’ cognitive status,
and patient’s engagement in the experiment. We performed extensive studies to elucidate a sleep-
cycle marker in CLIS [11], resting-state state EEG in LIS and CLIS[12-14], performed a
preliminary study on the cognitive state of patients in CLIS [14,15] and attempted transcranial
direct current stimulation (tDCS) technique to target the vigilance network in CLIS. We found
that spontaneous brain activity in ALS-CLIS patients is significantly altered. Thus, commonly
used indexes of arousal state in healthy people do not necessarily serve the same purpose in these
patients' populations, and newly defined indexes should be introduced and validated. As we
continue further with our study with patients in LIS, in the transition from LIS to CLIS and finally
in CLIS, we aim to implement modules in the software to detect the vigilance and sleep stage of
the patient automatically so that the BCI communication sessions will be performed only if the
patient is vigilant and not sleeping. Thus, the present HybridBCI software is the first step towards

developing a tool to solve the challenge of enabling communication in patients who have none.
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List of Tables
Table 1: The table represents the 14 different triggers used by the HybridBCI for managing the
different events. These values are sent to the acquisition systems during the experiment and used

to keep track of the timing of the different events.

Tablel

Event Trigger values

Yes No Open
Question Question Question

Block Start 9

Baseline 10 11 12
Question 5 6 7
Thinking 4 8 13
Feedback 1 2 3
Block End 15
19
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List of Figures

Figure 1: Block diagram for HybridBCI paradigm for training (yellow), feedback (blue), and any
application (green) blocks. If the offline or online classification accuracy of the built model is more
than the chance level in each block, the next block can be performed. The ultimate goal is for the

patient to use his/her brain signal to freely spell what s/he has in mind.

Figure 2: HybridBCI System Design and file organization. Two main software modules,
ModelBulder.mlapp and HybridBCIL.mlapp (White boxes), and three Matlab instances (Matlab
Icons) control the experimental procedure and online data acquisitions. For each functionality of
the system, a folder is dedicated (Yello boxes) and the HybridBCI automatically recognizes new

.m files in these folders and extends its” functionality accordingly.

Figure 3: HybridBCI Module - A. Configuration tab for Selecting recording devices, setting the
timing of the experiment, selecting a list of experimenters, and controlling trigger devices. B.
Experiment tab for selecting patients, choosing a task, controlling the number of trials in each
block, running data acquisition Matlab instances, and running training and feedback blocks. C.

Application tab for selecting the desired application and the model to perform the task.

Figure 4: Six steps of the analysis pipeline used in ModelBuilder. Step 1 is for loading the data
and select/deselect channels. Step 2 is designed for the preprocessing of the NIRS and EEG signals
based. Step 3 is used to select the desired features to be extracted from NIRS and EEG. In step 4
before passing the features to classifiers in step 5, the dimension of the feature space is reduced.
Finally, in step 6 the acquired model is validated on the data that has not been used for training the

classifier.

Figure 5: ModelBuilder Module — A. Data tab for selecting data to be used for analysis and
rejecting noisy channels. B. Preprocessing pipeline for EEG (top) and NIRS (bottom). C. Selecting
features to be extracted from the signal. D. Dimensionality tab for reducing the size of the dataset
in features spaces. E. Classifier tab for choosing a classifier to build the model. F. Validation tab

for simulating online results and validating a model on previously recorded data.
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