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Summary

Dynamic biological phenomena such as the development of immunity due to

vaccination or the division of a single zygote into the ∼37 trillion cells in an adult

human are triggered and driven by bio-molecular interactions. The bio-molecular

species involved in these interactions are categorised based on their molecular

properties and physiological function. Typically, the abundance or characteris-

tics of only a single category of molecular species are measured in experimental

protocols, and the data generated is noisy, biased and incomplete.

Due to the limitations of measurement technology, computational models can-

not represent bio-molecular interactions in full mechanistic detail and have to

be restricted to operational definitions of complex biological phenomena. Despite

these constraints, computational models tailored to the idiosyncracies of data gen-

erated by various technologies enable the identification of bio-molecular species

and interactions relevant to particular biological processes.

A cell is composed of various bio-molecular species such as nucleic acids, pro-

teins, metabolites etc. The entire bio-molecular composition of a cell is known

as a cell-state. mRNA are polymeric bio-molecules whose sequence encodes in-

formation for the production of proteins. While proteins are ultimately respon-

sible for the execution of cellular functions, mRNA can be measured much more

comprehensively with single-cell RNA sequencing technology. mRNA sequences

corresponding to different protein segments are called transcripts, and the rela-

tive abundance of the various transcripts indicates the functional properties of the

cell. Therefore, the cell-state can be approximated as a vector of mRNA transcript

abundance.

The change of the cell-state over the course of a biological process is called

differentiation. This thesis presents three models of cell differentiation and their

application for different scRNAseq. experimental protocols and discovery goals.

The first two models are based on the simulation of cell differentiation with Markov

chains. The first model provides a generally applicable trajectory inference ap-

proach to model differentiation in any biological system with no topological con-

straints. The second model utilises simulations to model differentiation as a latent

state-space process and is used to cluster cells based on transcriptional activity

in order to identify transitional cell-states. The third model is based on ordinal

logistic regression and is used to identify transcripts whose expression varies along

a specified ordinal axis, even in data with other prominent sources of variation.





Zusammenfassung

Dynamische biologische Phänomene wie die Entwicklung von Immunität durch

eine Impfung oder die Teilung einer einzigen Zygote in die 37 Billionen Zellen eines

erwachsenen Menschen werden durch biomolekulare Wechselwirkungen ausgelöst

und vorangetrieben. Die an diesen Wechselwirkungen beteiligten biomoleku-

laren Spezies werden anhand ihrer molekularen Eigenschaften und physiologis-

chen Funktion kategorisiert. In der Regel werden in Versuchsprotokollen nur

die Häufigkeit oder die Eigenschaften einer einzigen Kategorie von Molekülarten

gemessen, und die dabei gewonnenen Daten sind verrauscht, verzerrt und un-

vollständig.

Aufgrund der Beschränkungen der Messtechnik können Computermodelle

die biomolekularen Wechselwirkungen nicht in allen mechanistischen Details

darstellen und müssen sich auf operative Definitionen komplexer biologischer

Phänomene beschränken. Trotz dieser Einschränkungen ermöglichen Computer-

modelle, die auf die Besonderheiten der mit verschiedenen Technologien erzeugten

Daten zugeschnitten sind, die Identifizierung von biomolekularen Spezies und

Wechselwirkungen, die für bestimmte biologische Prozesse relevant sind.

Eine Zelle besteht aus verschiedenen biomolekularen Spezies wie Nuk-

leinsäuren, Proteinen, Metaboliten usw. Die gesamte biomolekulare Zusam-

mensetzung einer Zelle wird als Zellzustand bezeichnet. mRNA sind polymere

Biomoleküle, deren Sequenz Informationen für die Herstellung von Proteinen

kodiert. Während Proteine letztlich für die Ausführung zellulärer Funktionen ver-

antwortlich sind, kann mRNA mit der Einzelzell-RNA-Sequenzierungstechnologie

viel umfassender gemessen werden. mRNA-Sequenzen, die verschiedenen Pro-

teinsegmenten entsprechen, werden als Transkripte bezeichnet, und die relative

Häufigkeit der verschiedenen Transkripte gibt Aufschluss über die funktionellen

Eigenschaften der Zelle. Daher kann der Zellzustand als ein Vektor der mRNA-

Transkript-Häufigkeit angenähert werden.

Die Veränderung des Zellzustands im Verlauf eines biologischen Prozesses

wird als Differenzierung bezeichnet. In dieser Arbeit werden drei Mod-

elle der Zelldifferenzierung und ihre Anwendung für verschiedene scRNAseq.-

Experimentierprotokolle und Forschungsziele vorgestellt. Die ersten beiden Mod-

elle basieren auf der Simulation der Zelldifferenzierung mit Markov-Ketten. Das

erste Modell bietet einen allgemein anwendbaren Ansatz zur Trajektorieninferenz,

um die Differenzierung in jedem biologischen System ohne topologische Ein-

schränkungen zu modellieren. Das zweite Modell nutzt Simulationen, um die



Differenzierung als Prozess in einem latenten Zustandsraum zu modellieren, und

wird verwendet, um Zellen auf der Grundlage der Transkriptionsaktivität zu grup-

pieren, um Übergangszellzustände zu identifizieren. Das dritte Modell basiert auf

einer ordinalen logistischen Regression und wird verwendet, um Transkripte zu

identifizieren, deren Expression entlang einer bestimmten ordinalen Achse vari-

iert, selbst in Daten mit anderen auffälligen Variationsquellen.
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1. Introduction

1.1 Tissue development and organisation

Complex, multi-cellular life forms rely on the coordinated activity of hundreds

of specialised cell-types1. In the early days of cell biology, after the invention of

the compound microscope and subsequent discovery of cells as the atomic unit of

biological organisation, cells were characterised based on morphology, tissue local-

isation and sub-cellular organisation. The discovery of the molecular, biochemical

basis of biological activity ushered in a new understanding of a cell-type. The

current view includes bio-molecular composition and the corresponding impact on

biological function as criteria for cell-type categorisation [2].

Cell differentiation is the process by which cells change in bio-molecular com-

position and, therefore, in biological functionality. The change in biological func-

tionality leads to the development of specialised cell-types that multi-cellular or-

ganisms are composed of. For example, the development of the human body from

a single zygote is a cell differentiation process. The process by which naive T-cells

are activated and acquire cytotoxic functions in response to a viral infection is also

an example. Even cell division can be framed as a differentiation process consider-

ing cell-cycle stages analogous to cell-types. In general, cell differentiation involves

the emergence of cells with distinct functional characteristics, or cell-types, from

cells of a different type [3].

The concept of discrete cell-types defined based on tissue functions, morphol-

ogy, and bio-molecular composition is challenged by considerable cell-to-cell varia-

tion within cell-types. This variation can be attributed to individual genetics, the

influence of the external environment and the prior cellular micro-environment.

In the context of differentiation, such variation suggests that cell-types arise from

gradual changes in bio-molecular composition rather than discrete shifts. A cell-

state is the exact bio-molecular composition of a cell without reference to its

functional identity or other cells. The ontological relationship between cell-types

defined on common functional or phenotypic properties and cell-states defined on

bio-molecular composition has not been fully resolved [2].

1Cell ontology of the human cell atlas already categorises ∼1900 cell-types and their relation-

ships [1].
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1.2 Molecular measurements in single-cell biology

The central dogma of molecular biology describes the hierarchical relationship

of bio-molecular species within a living system [4]. The study of different bio-

molecular species is comprehensively organised into various omics domains. Ge-

nomics is the study of the genetic code (DNA), which is common to all cells in

an organism. Transcriptomics is the study of the transcriptional products of the

genome, which are RNA molecules. The biological activity of a cell is regulated

by the differential expression of genes leading to differences in function between

cell-types. messenger RNA (mRNA) are transcriptional products of gene expres-

sion that encode information for the synthesis of proteins. Proteins are molecular

machines that execute physiological processes. Proteomics involves the study of

proteins, their structure, function, and interactions. Epigenomics is the study

of non-structural modifications of the genetic code that regulate gene expression,

such as DNA methylation and histone modifications [5].

Genomic and transcriptomic measurement technologies have improved dramat-

ically in scale, mainly due to the super-exponential decrease in sequencing costs

and the development of microfluidics. These technologies are commonly called

high throughput sequencing technologies [5]. The advent of single-cell resolution

measurements has enabled highly resolved investigations of cell-state changes in

the context of differentiation. In particular, single-cell RNA sequencing (scR-

NAseq.) technologies measure the expression of the entire set of genes/transcripts

at cellular resolution, providing a broad and detailed view of the transcriptional

composition of a cell. In contrast, single-cell proteomic measurements are re-

stricted in the number of distinct species that can be measured and single-cell

epigenomic measurements are highly sparse. Therefore, single-cell transcriptomic

measurements via RNA sequencing have been widely adopted to study biological

systems at single-cell resolution [6]. scRNAseq. measurements also have addi-

tional properties that make them particularly suited to modelling differentiation

processes that will be detailed in the forthcoming sections.

1.3 Conceptual models of cell differentiation

C. H. Waddington’s epigenetic landscape model has been very influential in con-

ceptualising cell differentiation and continues to be widely used. The epigenetic

landscape represents transitions toward specialised cell-types as a slope with val-

leys and ridges. In this analogy, cells act as marbles released from the top of the

slope. The marbles will roll down and, despite variation in initial positioning,

be canalised into the valleys. As the marbles roll down, the number of potential
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paths they could take reduces, reflecting the increasing specialisation of cells and

an irreversible commitment. The marbles come to rest in positions with no down-

ward inclination, representing the terminal cell-types beyond which cells no longer

differentiate [7].

While not entirely correct2, the landscape analogy provides a useful abstrac-

tion of the regulatory mechanisms that drive cell-type transitions. The biological

activity of a cell is the result of a complex biochemical interaction; however, ex-

perimental bio-molecular techniques do not produce comprehensive measurements

of the bio-molecular composition of cell-states and are typically restricted to par-

tial measurements of a single bio-molecular species. Therefore, the abstraction3

of molecular mechanisms is essential in modelling differentiation processes from

experimental data4. For example, the change in expression of transcripts is reg-

ulated by a class of proteins called transcription factors. Transcription factors

are themselves the products of corresponding transcripts. In general, the effect of

the expression of a transcript on another is indirect and mediated via intermedi-

ate bio-molecules like proteins. However, a model of cell differentiation based on

scRNAseq. data can only represent the interaction between transcripts as direct

interactions [11]. Furthermore, information such as the epigenetic state of the

genome, which governs the allele variant expressed, cannot be represented at all.

1.4 Differentiation models with single-cell transcriptomics

In the context of transcriptomics, a cell-state is the amount of expression of all

genes/transcripts in a cell. Differentiation processes are interpreted as sustained

changes in gene/transcript expression. Change in expression leads to a change in

functional properties of the cell, thus giving rise to a different cell-type. In contrast

to the description of cell differentiation as transitions between cell-types, models

developed on single-cell measurements typically consider transitions between cell-

states. Interpretation of differentiation in terms of cell-type transitions, along with

the development of models of cell-state transitions, presents unresolved challenges.

2Although Waddington’s landscape would appear to suggest an analogy to the change in

potential energy of marbles rolling down a hill, several mechanisms exist by which cells lower in

the landscape can transition into cells upper in the landscape or transition laterally over ridges.

The de-differentiation of terminal cells into stem-like cancerous cells and cellular reprogramming

of skin cells into induced pluripotent stem cells are two such examples [8][9].
3Conceptual abstraction being the process of selecting aspects of a concept relevant to a

specific purpose.
4Experimental protocols that allow for the measurement of multiple omics modalities are

increasingly common. Such data-sets are expected to enable the inference of biologically causal

mechanisms, thus reducing the need for abstraction [10].
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A common approach is to cluster cell-states and identify clusters of cell-states

as functional cell-types. Subsequently, a model of cell-type transitions is devel-

oped, and variability within clusters is discarded as biological or technical stochas-

ticity [12]. Alternatively, differentiation can be modelled with greater resolution.

In the latter formulation, change in expression is gradual and measured cell-states

may represent transitional states that are possibly intermediate in both expression

and function. For differentiation processes with multiple outcomes, an incremental

commitment towards terminal fates is suggested [13][14].

scRNAseq. measurements read out the number of molecules of each

gene/transcript in a single cell. The process of gene expression is influenced by

individual genetics, the epigenetic state of the genome and external conditions.

Models of cell differentiation seek to distinguish sources of variation in cell-states

that represent a change in biological activity and functionality. It is implicitly

assumed that not all variation in cell-states is physiologically meaningful. Con-

versely, whether experimental techniques capture the entire spectrum of cell-states

in a differentiation process is unknown.

Descriptive models of differentiation processes characterise cell-state transi-

tions along the differentiation axis and can be used to discover relevant genes in

an associative fashion. It is relatively difficult to model the data-generating process

even with modelling approaches agnostic to mechanistic accuracy. For example,

whether interpolating measured cell-states or generative models [15][16] would pro-

duce physiologically viable cell-states is unclear. Thus far, no universal functional

mapping between expression and biological activity has been established. Fur-

thermore, experimental investigation of predicted or simulated cell-states remains

challenging due to the absence of experimental tools capable of inducing exact

expression profiles5.

Conceptually, scRNAseq. measurements enable the development of highly re-

solved models of expression dynamics. In practice, measurement noise, biological

stochasticity and the phenomenon of dropout6 lead to a trade-off between resolu-

tion and confidence. In addition, technical variability between data from different

experiments is high and is referred to as a batch-effect7.

5Perturbation screens provide a degree of control over gene expression and can be used to

investigate the biology of induced cell-states however, these interventions affect expression levels

coarsely [17].
6single-cell RNA sequencing protocols begin with the isolation of single-cells, followed by the

capture of individual mRNA molecules. Lastly, a data matrix is entered with the number of

molecules of each gene/transcript for each cell. This matrix is very sparse, and the current

understanding of this phenomenon is that most missing values represent a technical inability

to capture mRNA molecules rather than an absence of transcription. The sparsity precludes

partitioning of cells on a restricted selection of well-characterised genes.
7Batch-effects are a combined effect of stochastic biological differences between samples, dif-

4



scRNAseq measurements can be conducted using either a time-series protocol

or single samples called snapshots. In time-series experiments, biological samples

are collected at regular intervals over a period of time. The expression dynamics

over time, possibly for multiple cell-types, can be modelled with such data. The

activation of differentiation in biological systems is often asynchronous; therefore,

individual samples in both protocols will measure a mixture of cell-states at various

stages of the differentiation process.

Models of cell differentiation, commonly called lineage inference or trajectory

inference, aim to order the measured cell-states along an estimated differentiation

coordinate known as pseudotime representing the continuum of differentiation.

Models developed on time-series data can additionally utilise temporal labels as-

sociated with each sample as side information, prior knowledge, or for supervised

learning. Time-series data also enables modelling changes in different cell-types’

frequency as differentiation progresses. If multiple differentiation processes are

active in the biological sample being measured, then in addition to pseudotime,

cell-states are assigned to co-occurring lineages, each corresponding to one termi-

nal fate [18].

1.5 Transcriptional dynamics-based differentiation models

The life-cycle of mRNA molecules comprises three steps, first is the transcription

of the DNA sequence to produce unspliced mRNA transcripts that contain both

exonic and intronic sequences. In the second step, unspliced transcripts are spliced

to create a mature spliced transcript that can be read by a ribosome. Finally,

mRNA transcripts are degraded by ribonuclease back into individual nucleotides.

scRNAseq. protocols are designed to measure spliced transcripts; however,

through several mechanisms, unspliced transcripts are also measured8. The de-

tection of both mature, spliced mRNA and nascent, unspliced mRNA has been

used to develop models that make a local prediction of a cell’s future state. These

models are commonly known as RNA velocity [20]. RNA velocity models produce

estimates of each gene’s rate of change of expression by fitting parameters for the

transcription-splicing process described above.

Several challenges of this modelling approach have been outlined, primarily on

measurement biases due to unintentional capture of unspliced transcripts and the

over-simplification of biological processes [21]. Despite these issues9, RNA velocity

ferences in scRNAseq. protocol, technical variability due to different sequencing runs and differ-

ences in library preparation.
8The mechanisms by which unspliced transcripts are measured, and the proportion of such

measurements vary depending on the scRNAseq. protocol [19].
9RNA velocity modelling is an active topic of computational and experimental research.
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models have been useful in modelling cell differentiation with scRNAseq. data.

Models that do not utilise RNA velocity rely on distance measures to arrange

cells into a pseudo-temporal ordering. The lack of directed cell-state transitions

limits the ability to model the directionality of repeating or convergent differen-

tiation patterns. Furthermore, the overall direction of differentiation has to be

inferred from the biological context, an approach that can be challenging to apply

to under-characterised biological systems. RNA velocity-based models consider

the rate of change of expression, therefore, can infer pseudo-temporal ordering

reflecting the temporal distance between cell-states rather than approximate it

with distance in gene expression. This leads to a pseudotime that is a better

representation of differentiation dynamics.

Protocols specifically designed to capture this signal combined with more sophisticated modelling

of the transcription-splicing process have been published since the original publication by La

Manno et. al. in 2018 [22][23].
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2. Objectives

The ultimate goal of differentiation modelling is to identify transitional rela-

tionships between cell-states and cell-types and aid in the identification of relevant

bio-molecular interactions. scRNAseq. measurements performed for the study of

various biological conditions under different experimental protocols differ in the

availability of prior biological knowledge, data from other modalities and contex-

tual information. This necessitates the development of models of differentiation

that address specific research goals. I developed and applied differentiation models

during my doctoral research, particularly utilising RNA velocity.

Trajectory inference methods either cannot model non-tree-like differentiation

patterns that require revisiting cell-states or use specialised approaches only ap-

plicable to cyclical patterns. Since such models do not have a signal for directed

cell-state transitions, they do not discriminate between cell-states with similar ex-

pression but different transitions. Typically, biological context is required to assign

the overall directionality of the modelled lineage. I developed a model that utilises

RNA velocity to overcome the limitations of conventional methods. The model

performs trajectory inference with no assumptions about the topology of the pro-

cess and is generally applicable, including cyclical and convergent patterns. The

model allows data-driven identification of differentiation processes and therefore

finds application in under-characterised biological systems [Manuscript 1].

Due to the high variability and dropout, the functional identity of cell-states

is typically established by clustering cell-states and then identifying clusters as

cell-types. While aiding interpretability, the exclusive assignment of cell-states to

cell-types may hinder the discovery of transitional cell-states. Clustering cell-states

on only expression does not utilise dynamical information from RNA velocity. I

developed a latent state-space model that models differentiation dynamics in a

discrete latent state-space. The model can perform kinetic soft clustering of cells

which aids the discovery of transitional cell-states while also producing highly

resolved estimates of pseudotime and cell-fate.[Manuscript 3].

Prior information on the ordering of cell-types or the sequential order of scR-

NAseq. data from multiple samples, if utilised as input, can enable the charac-

terisation of differentiation processes even if there are large technical or unrelated

biological sources of variation. I benchmarked and applied a regularised ordinal

logistic regression-based modelling approach for estimating pseudotime and iden-

tifying genes in scRNAseq. data with ordinal labels [Manuscript 4].
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3. Results

The following sections summarise the manuscripts included in this thesis. Each

section covers one differentiation model and consists of the primary motivation for

developing the model, the model specification and a description of analyses of

scRNAseq. data with the model to demonstrate key utilities.

3.1 Simulation-based trajectory inference

RNA velocity models estimate the rate of change of gene expression of cell-states

measured in a scRNAseq. experiment. This estimated velocity can be used to

predict the future state of a cell; however, since velocity cannot be assumed to

be constant over time, only local predictions can be made. Assuming that the

measured cell-states are representative of cell-states that arise during the differ-

entiation process, the differentiation process can be simulated as a Markov chain

of cell-state transitions [20]. The probability of transitioning from cell ca to cell

cb, pab is estimated as following,

pab ∝ ecos (θab) (3.1)

where θab is the angle between the difference of gene expression vectors ca, and

cb, and the velocity vector of ca.

Manuscript 1 reports Cytopath, a data-driven trajectory inference method that

utilises properties of RNA velocity to infer pseudotime, trajectories and cell-fate

probabilities with no assumptions on the topology of the differentiation process.

The method aims to improve upon prior trajectory inference methods, particularly

for non-tree-like topologies like cycles, convergence and interlaced processes, by

incorporating the directional signal from RNA velocity.

3.1.1 Cytopath: Modelling differentiation with Markov chains

Cytopath estimates trajectories from root to terminal cell-states of a differentiation

process [Figure 3.1A]. The method involves four steps. First, multiple simulations

of the differentiation processes are produced by Markov sampling of cell-state

sequences initialised at pre-defined root states [Figure 3.1B.1].

The cell-state cij at step i of the simulation is selected randomly according to

the transition probability matrix T from the nearest neighbours of ci−1. Let F be

8



the cumulative probability distribution of T . A value κ is sampled from a uniform

distribution over [0, 1) and,

ci = argmin
c∈C

(F ( c
ci−1

)− κ) ∋ F ( c
ci−1

) ≥ κ (3.2)

Second, simulations with a common terminal state are aligned using Dynamic

Time Warping to establish a common differentiation coordinate (pseudotime) [Fig-

ure 3.1B.2]. Third, consensus expression states are estimated by averaging cell-

states at each step of the aligned sequence to obtain the trajectory. Last, cell-states

are then assigned to the trajectory; for a cell with neighbours K, its alignment

score to step i of a trajectory is calculated as,

ξfi =
1

|K|
K∑

k

cos(ηfk ) · exp(γk) (3.3)

where η is the cosine angle between the section of the trajectory and all possible

transition partners k ∈ K of the cell. γ is the cosine similarity between the velocity

vector of the cell with the distance vector between the cell and its neighbours

[Figure 3.1B.3]. Following the assignment, pseudotime and cell-fate scores are

estimated per cell [Figure 3.1C.2-3].
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Figure 3.1: Cytopath overview. (A) Inputs for Cytopath trajectory inference subsequent to

a RNA velocity analysis. (A.1.) Single-cell gene expression profiles, RNA velocity profiles, (A.2.)

Transition probability matrix, (A.3.) Root and terminal state annotation. (shown here: inferred

using RNA velocity) (B) Steps performed during Cytopath inference. (B.1.) Simulations of the

differentiation process generated by sampling a Markov chain based on the cell-to-cell transition

probabilities. Sampling is initialized on cells annotated as root states. (B.2.) Simulations are

performed for a fixed number of steps that are automatically selected using the properties of

the transition probability matrix. Simulations are aligned using Dynamic Time Warping. After

alignment, cells at each transition step represent the same consensus state. (B.3.) Cells along

the inferred trajectory are assigned to multiple trajectory segments based on the alignment of

their average transition vector (with respect to neighbours) and the trajectory segment. (C)

Outputs from Cytopath trajectory inference. (C.1.) The frequency of simulations terminating

at each cell highlights regions of switch in transcriptional programs as well as terminal regions.

(C.2.) Trajectories are inferred independently for each terminal region. The trajectories are

composed of multiple segments. The pseudotime of a cell is estimated as the weighted average

segment rank of all the segments it aligns with. (C.3.) Differential alignment scores to multi-

ple trajectories are used to estimate the cell-fate probability with respect to the terminal regions.

Figure reproduced from figure 1 of manuscript 1.
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3.1.2 Modelling non-tree-like differentiation topologies

Modelling of tree-like differentiation topologies can be accomplished by assuming

that a greater difference in gene expression between cell-states corresponds to

a greater difference in progress along the differentiation axis. Cell-states with

divergent gene expression trends may be grouped into lineages representing parallel

differentiation processes in the sample. RNA velocity-enabled trajectory inference

may better estimate branch points in such data. However, methods that assume

the differentiation topology can be modelled as a Minimum Spanning Tree (MST)

are conceptually suitable.

However, modelling convergent differentiation topologies requires an increase

in the similarity of gene expression profiles of cell-states to correspond to the

progress of the differentiation process. Cyclical processes require modelling os-

cillating patterns of gene expression. Conceptually, Cytopath enables modelling

such topologies by relying on directed transitions estimated using RNA velocity,

that are asymmetric between pairs of cell states. Therefore, sequences of cell-state

transitions sampled from the transition probability matrix can navigate through

gene expression space that may appear isotropic.

Cell cycle reconstruction

Cytopath’s utility in modelling differentiation processes with a cycle followed by

further linear differentiation was demonstrated with an analysis of scRNAseq.

data of cells undergoing cell-cycling [24]. Cell-cycle stages were experimentally

annotated based on the fluorescence intensity of Green and Red fluorescent pro-

tein tagged proteins. Cell cycle stage annotations were only used to validate the

analysis. Trajectory inference with Cytopath modelled an unbroken trajectory

starting in the G1 stage (root states inferred with RNA velocity) through the in-

termediate stages back to the G1 stage and further into the G1-checkpoint stage

[Figure 3.2C].

Cells in the G1 stage can be partitioned into two groups based on pseudo-

time inferred by Cytopath [Figure 3.2G]. The expression of markers associated

with cell cycle is significantly higher in early-pseudotime G1 cells than in those

committed towards the G1 checkpoint phase and, accordingly, are associated with

higher pseudotime [Figure 3.2H]. The partitioning of cells in the G1 stage and the

difference in marker expression can be observed as two separate bands of G1 cells

(blue) in the radial plot [Figure 3.2A]. Comparative analysis with non-velocity-

based methods highlighted issues arising from the inability to incorporate RNA

velocity (see Manuscript 1).
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Figure 3.2: Reconstruction of cell cycle in U2OS cell line. (A) RNA velocity stream

plot overlayed on the UMAP projection, annotated with the cell cycle phase adapted from

Mahdessian et al. [24] Considering all cell-to-trajectory alignments binned into percentiles, the

radial heatmap shows cell cycle phase fraction (outer set of rings) and marker expression (inner

set of rings) sorted by trajectory step. The directionality of the radial heatmap is clockwise,

with the origin at zero degrees (B) The separation of the G1 phase into G1 and G1-chk

was performed based on marker expression of cell cycle genes. (C–F) Trajectories inferred

and pseudotime per cell by (C) Cytopath, (D) Angle, (E) ReCAT, (F) PAGA and velocity

pseudotime (vpt). (G) Distribution of Cytopath pseudotime for cells in the G1 cluster. (H)

Normalized expression of cells classified as early and late G1 cells (blue/orange, respectively).

Significance was estimated by an independent t-test for each marker.

Figure reproduced from figure 3 of manuscript 1
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Figure 3.3: Reconstruction of convergent differentiation in developing neonatal

mouse inner ear. (A) Known differentiation trajectories from [25]. (B) Probability estimated

based on RNA velocity of a cell being a root and terminal states, respectively. (C) RNA velocity

overlayed on the PCA projection of neonatal mouse inner ear data annotated with stages of

differentiation. (D) Inferred trajectories and mean pseudotime by Cytopath. (E) Spearman

correlations between known lineage ordering of cell types and pseudotime inferred by Cytopath

(10 runs).

Figure reproduced from figure 5 of manuscript 1

Reconstruction of convergent differentiation in developing neonatal

mouse inner ear

The development of hair cells (HCs) in the sensory epithelium of the utricle origi-

nates from transitional epithelial cells (TECs) via support cells (SC). A secondary

differentiation path from TECs to HCs and a transitional zone where cells can

easily switch fate results in two convergent differentiation trajectories [25] [Fig-

ure 3.3A].

Root and terminal state probability estimation using RNA velocity was used

to select root and endpoints. A PCA projection of the data was generated, as

indicated in the original study. Trajectory inference with Cytopath reproduced

the two differentiation trajectories in a completely data-driven manner. The cor-

relation between known cell type ordering and pseudotime estimated by Cytopath

is robust for either lineage [Figure 3.3D-E].

13



Figure 3.4: Reconstruction of convergent differentiation in developing neonatal

mouse inner ear. (A) Root and terminal state probability inferred using RNA velocity.

(B) UMAP projection annotated with the duration of stimulation for each cell. (C) UMAP

projection annotated with trajectory and pseudotime inferred by Cytopath. (D) Cytopath

pseudotime per cell with respect to stimulation duration. Note the monotonic relationship

between median pseudotime and stimulation duration. (E) Pearson correlation between

pseudotime inferred by Cytopath, non-velocity-based pseudotime estimated using Cytopath

trajectory inference (Cytopath-Euclidean) and baseline methods.

Figure reproduced from figure 6 of manuscript 1

3.1.3 Approximating the real rate of differentiation

RNA velocity is an estimate of the rate of change of expression. Therefore, pseu-

dotime estimated based on RNA velocity can order cell-states along a coordinate

that represents progress along the differentiation process, unlike prior methods

that only measure the difference in expression values and do not account for the

difference in the rate of change of expression.

Pseudotime inference was performed for scRNAseq. data from mouse corti-

cal neurons stimulated for various durations within the range of 0-120 minutes.

14



Asynchronous activation of differentiation typically precludes the use of time-series

labels as a proxy for differentiation progress in individual cells. Therefore, only

gene expression of activity-regulated genes was considered for the analysis, and

thus the duration of stimulation would indicate differentiation progress [22].

Pseudotime inferred by Cytopath had a monotonic relationship with stimula-

tion time [Figure 3.4D]. Comparative analysis with pseudotime estimated using

both velocity and non-velocity-based methods revealed higher Pearson (linear)

correlations between pseudotime and stimulation time for velocity-based methods

[Figure 3.4E].

The impact of RNA velocity-based cell-to-trajectory assignment with Cytopath

was assessed by computing a pseudotime (Cytopath-Euclidean pseudotime) using

non-velocity Euclidean distance-based cell assignment to the trajectory inferred

by Cytopath. Cytopath-Euclidean pseudotime had a lower correlation with stim-

ulation time but outperformed non-velocity-based methods.

3.1.4 Fate trajectories of CD8+ T cells in chronic LCMV infection

CD8+ T cells are cytotoxic cells essential for the clearance of viral infections.

Under conditions of chronic infection, these cells undergo a process of exhaus-

tion during which they lose the ability to clear the viral load but persist in a

senescent-like state. This state is characterised by reduced effector function and

the expression of co-inhibitory receptors due to persistent T-cell receptor (TCR)

stimulation. Manuscript 2 reports a study on CD8 T cell differentiation towards

either terminally-exhausted or memory-like-exhausted CD8+ T cell subsets. Tra-

jectory inference with Cytopath [Manuscript 1] suggested an early commitment

of CD8+ T cells towards either the terminally-exhausted or the memory-like-

exhausted CD8+ T cell fate.

Comprehensive multi-sample scRNAseq. time-series data captured from the

induction of infection to terminal exhaustion in CD8+ T cells was produced to

investigate lineage relationships between the cell-types that arise during the pro-

cess. scRNAseq. data was produced post-infection corresponding to early phases

(day 1-4), peak phase (day 7), contraction phase (day 14) and late phase (day

21) [Figure 3.5A]. Root and terminal cell states were inferred data-driven using

RNA velocity. Subsequently, trajectory inference was performed using Cytopath

[Manuscript 1] to model the terminally-exhausted and memory-like lineages.
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Figure 3.5: Overview of CD8+ T cell trajectory inference with Cytopath. (A) Trans-

genic P14 CD8 T cells were sampled in a time-series protocol under chronic infection with LCMV.

The samples were acquired from four phases of the infection activation (day 1-4), effector (day

7), early exhaustion (day 14) and late exhaustion (d21), and scRNAseq was performed using

the 10x Genomics platform. Figure reproduced from figure 1 of manuscript 2. (B) UMAP

projection of scRNAseq. data. (b.1) Color indicates the time-point after infection, at which

cells were isolated for scRNAseq. (b.2) Louvain cluster assignment (b.3) Cell composition of

the phenotypic clusters by sample time-point. (b.4) phenotypic cluster annotation based on

marker and differentially expressed genes. Figure adapted from figure 2 of manuscript 2. (C)

RNA velocity analysis of scRNAseq. data. (c.1) Stream plot visualising transitions between

cells inferred from RNA velocity (c.2) The stationary distribution of the backward and the for-

ward transition matrix, respectively, indicate root and terminal cell-state. Figure adapted from

figure 4 of manuscript 2. (D) Trajectory inference with Cytopath. (d.1) Trajectory path and

pseudotime for the terminally-exhausted and memory-like cell-types projected on UMAP. (d.2)

Cell-fate commitment of cells towards either lineage. Figure adapted from figures 5 and figure 6

of manuscript 2.
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Inference of CD8+ T cell exhaustion lineages

Cell states were assigned cell-type labels based on the over-expression of canon-

ical marker genes [Figure 3.5B.4]. Root cell probability was high in a subset

of early-phase cells, and terminal state probability was high in cells assigned to

the terminally-exhausted and memory-like-exhausted groupings [Figure 3.5C.2].

Trajectory inference for either terminal cell-type was performed. Early phase cells

were assigned to both trajectories, and subsequently, the two trajectories diverged,

with cells being assigned exclusively to one of the two trajectories [Figure 3.5D].

Several marker genes were found to have differential expression patterns along

the two trajectories. Slamf6, Ccr6, Tnfsf8, Xcl1 and Cxcl10 were expressed at

higher levels in the memory-like trajectory. Slamf6, Ccr6, Tnfsf8 gradually in-

creased in expression along the trajectory. A pattern of increasing expression of

Cxcr6, Ccl5 and Nkg7 was observed in the terminally-exhausted trajectory. Ifngr1

and Lgals3 were transiently up-regulated in the exhausted trajectory exclusively

but subsequently decreased in expression.

Early phase cell-fate commitment in CD8+ T cell exhaustion

Cells were probabilistically assigned to lineages by computing an assignment score

per cell per lineage. The lineages were considered to have branched when cells

were only assigned to a single lineage. In the early phase, the cell-states appeared

to have equal assignment scores on average but rapidly branch between steps 800-

1200 [Figure 3.5D.2]. Most cell-states from the sample corresponding to day 7

were already exclusively committed to either lineage. Cell-states with the lowest

pseudotime appeared to be uncommitted. This suggested that the commitment

may occur between days 5-6 after infection.

Cell-states in the early phase could be separated into three categories based on

cell-fate scoring with phenotypes indicative of a pre-committed state, a commit-

ted state towards the terminally-exhausted endpoint or the memory-like endpoint.

A linear classifier identified genes predictive of these categories. CXCR6 and

TCF1 were chosen as the candidates for sorting the branches into pre-committed

(CXCR6- TCF1-), memory-like (CXCR6- TCF1+) and exhausted (CXCR6+

TCF1-) cells.

Validation of cell-fate commitment via adoptive transfer experiments

Cells committed towards the terminally-exhausted lineage, memory-like lineage

and uncommitted cells were isolated based on CXCR6 and TCF at day 5 post-

LCMV infection in a follow-up experiment. The isolated cells were transferred to

infection-matched hosts. At day 12 from the start of the experiment, the CD8+
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T cell population arising from the transferred cells was extracted [Figure 3.6A-

B]. Cells predicted to be committed to the terminally-exhausted lineage gave rise

to terminally-exhausted cells, and cells predicted to be uncommitted gave rise to

both terminally-exhausted and memory-like cells. Cells predicted to be commit-

ted towards the memory-like lineage gave rise to both terminally-exhausted and

memory-like-exhausted cells [Figure 3.6C].

Memory-like exhausted CD8+ T cells retain the capacity for proliferation and

recall response [26]. In a separate set of adoptive transfer experiments, the three

categories of cells committed towards the terminally-exhausted lineage, memory-

like lineage and uncommitted cells were transferred into infection-matched hosts

infected with an escape mutant of the LCMV virus. The mutant virus did not

activate the TCR receptors of the transferred cells. In the absence of TCR stim-

ulation, the cells pre-disposed towards the memory-like lineage only give rise to

memory-like cells at day 12, suggesting that in the absence of further stimulation,

the bifurcation model of differentiation is correct [Figure 3.6D].
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Figure 3.6: Adoptive transfer of fate-biased cell populations into infection-matched

hosts. (A) The three P14 lineage populations were isolated at 5-day post-infection (dpi)

from high-dose Clone-13 infected mice (that had been transferred with naive P14 cells prior

to infection) and transferred into infection-matched hosts, and their phenotype was assessed 7

days post-transfer. (B) Flow cytometry gates used to sort cells committed towards terminally-

exhausted lineage, memory-like lineage and uncommitted cells. (C) Phenotype of the recovered

P14 cells at 12 dpi from spleens after high-dose Clone-13 infection and transfer of either

exhausted, memory-like or pre-committed cell populations isolated at 5 dpi. Cells are gated on

P14 cells. (D) Phenotype of the recovered cells at 12 dpi from spleens after transfer into hosts

infected with Clone-13 P14 escape mutant. Näıve P14 cells were first transferred into naive

C57BL6 mice, followed by Clone-13 infection. At 5 dpi, terminally-exhausted, memory-like and

uncommitted populations were sorted and adoptively transferred into infection-matched hosts

with Clone-13 escape mutant. Recovered P14 cells are shown.

Figure reproduced from figure 8 of manuscript 2.
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3.2 Latent state-space process model of differentiation

scRNAseq. data measures individual cell-states, but due to the high amount of

variation as well as the phenomenon of dropout, functional interpretation of cell-

states is difficult. Therefore, the clustering of cell-states is an essential step in

interpreting scRNAseq. data from a biological functions perspective. The identi-

fication of clusters of cell-states as cell-types forms the basis for the interpretation

of associative analysis such as differential expression testing. Differentiation pro-

cesses are often described in the literature as a hierarchy of transitions between

functional cell-types. However, the increase in interpretability has an associated

decrease in resolution.

Clustering implicitly assumes that variation within a cluster does not reflect

changes in the functional identity assigned to the cluster. This assumption is in-

valid for scRNAseq. data of differentiation processes, where sustained and gradual

changes in gene expression lead to transitions between functional identities. Sim-

plified, coarse-grained models of cell-type transitions are restricted to modelling

the likelihood of transition between cell-types and do not model the dynamics of

these transitions [12]. Manuscript 3 reports a factorial latent state-space model

that infers dynamics in a smaller latent space vis-a-vis the number of measured

cell-states. The model is used to perform kinetic clustering of cell-states and

identify transitional cell-states.

3.2.1 Kinetic clustering and lineage inference

Model input

For the set of measured cell-states (observed states) O = {o(1), . . . , o(n)}, an initial

probability vector Y0 = {P (o(1) | i = 0), . . . , P (o(n) | i = 0)}, is estimated using the

process for obtaining root state probabilities (aforementioned).

The transition probability matrix T over observed states is used to simulate

the differentiation process as a sequence of probability vectors Y. The simulation

is performed as,

Yi = Yi−1 ·T = Y0 ·Ti (3.4)

The simulation is considered to have converged if Yi = Yi−1, i.e. when the

simulation reaches the stationary state of the Markov chain with the transition

matrix T. The latent dynamic model considers the simulated process,

Y = {Yi} = {{P (o(1) | i), . . . , P (o(n) | i)}} ∀i = 0, 1, . . . , I (3.5)
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as input. In the following text, Po is used to indicate a probability vector

over states O such as Yi = Po(o | i). It is assumed that the observed states are

emissions from a lower dimensional latent state-space, and the dynamics in the

observed state-space are caused due to dynamics in the latent space.

Model specification

With latent states S = {s(1), . . . , s(m)} and analogous to the simulation over ob-

served states, we describe the dynamics over latent states as

Q = {Qi} = {{P (s(1) | i), . . . , P (s(m) | i)}} ∀i = 0, 1, . . . , I (3.6)

Let H be the transition probability matrix over latent states S, then corre-

sponding to the simulation (Eq. (3.4)), a Markov chain in the latent space has the

form,

Qi = Qi−1 ·H = Q0 ·Hi (3.7)

With the assumption of constant emission probabilities of observed states over

the latent process P (o | s, i) = P (o | s), we express Yi as

Yi =
∑
s∈S

Po(o, s | i) =
∑
s∈S

Po(o | s)P (s | i) (3.8)

and due to Eq. (3.7):

Yi =
∑
s∈S

Po(o | s) ·Qi =
∑
s∈S

Po(o | s) · (Q0 ·Hi) (3.9)

Lineages L are modelled as independent Markov chains in the latent

space. Furthermore, restricting the lineages to a common latent state-space

P (o | s, l) = P (o | s),

Yi =
∑
l∈L

P (l)
∑
s∈S

Po(o | s) · (Q(l)
0 ·H(l)) (3.10)

where H(l) is the latent state transition probability matrix for lineage l ∈ L

and,

Q(l) = {Q(l)
i } = {{P (s(1) | i, l), . . . , P (s(m) | i, l)}} ∀i = 0, 1, . . . , I

(3.11)
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Model training

The trainable parameters of the model are the conditional latent state transition

probability matrices H,

H
(l)
ij = P (si | sj, l) ∀s ∈ S, l ∈ L (3.12)

the emission probabilities E,

E(s) = Po(o | s) ∀s ∈ S (3.13)

the lineage weights W ,

W = P (l) ∀l ∈ L (3.14)

and the initial latent state probabilities Q0,

Q
(l)
0 = P (s | i = 0, l) ∀s ∈ S, l ∈ L (3.15)

Let Ŷ be the model estimate of Y. The estimated sequence Ŷ is obtained as,

Ŷi =
∑
L

∑
S

WQ
(l)
i E (3.16)

The parameters of the model are optimized by minimising the element-wise

Kullback–Leibler (KL) divergence using gradient descent.

KL(Ŷ,Y) =
∑
i∈I

∑
o∈O

Y
(o)
i log(

Y
(o)
i

Ŷ
(o)
i

) (3.17)

Model output

The emission probabilities are a soft assignment of cells to latent states. The ap-

proach to clustering cell-states considering the transitional nature of cells during

differentiation is termed kinetic clustering. The model enables the representa-

tion of intermediate cell-states and gradual divergence of branching events while

simultaneously aiding the interpretation of differentiation processes at the level

of functional cell-type identities. The condition probability of latent states with

respect to observed states O is used to assign cluster memberships,

argmax
s∈S

P (S = s | o) (3.18)

The transition entropy of a cell is the sum of the entropy of the joint probability

of a cell and each latent state.
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− ∑
s∈S

P (o, s) · ln(P (o, s)) (3.19)

The model accommodates multiple concurrent differentiation processes by con-

sidering them as independent sequences of latent state transitions. Each lineage

l ∈ L is a sequence of transitions in a common state space S. The trajectories of

lineages in latent state space are represented as sequences of most probable latent

states at each step i,

{argmax
s∈S

P (S = s | l, i)} ∀i = 1, . . . , I (3.20)

3.2.2 Transitional-cell identification in developing human forebrain

The developing human forebrain dataset consists of the glutamatergic neuronal

lineage in human embryonic cells. The process follows a linear differentiation path

from Radial-glia (progenitor) cells via a neuroblast (intermediate) population that

is locked into the neuron (mature) fate [20]. The intermediate neuroblasts are

highly motile cells that migrate to target brain regions before terminal differenti-

ation [27] [28].

Root and terminal states inferred with RNA velocity correspond to the Radial-

glia and mature neurons, respectively, as has been previously reported [Fig-

ure 3.7A.3-4] [20]. Kinetic clustering partitioned the data into two clusters [Fig-

ure 3.7B.1]. Static clusters computed using the Leiden algorithm overlap exclu-

sively with one of the kinetic clusters except Leiden cluster 3, which appears to

be split between the two kinetic clusters [Figure 3.7B.3].

Pseudotime estimated using RNA velocity has high variance in Leiden cluster 3,

suggesting that this cluster may contain transitional cells [Figure 3.7C.1]. Transi-

tional cells were identified as cells with high transitional entropy [Figure 3.7C.2-3].

Marker genes for neuroblasts were enriched in the set of genes positively correlated

with transitional entropy [Figure 3.7D.1] [29].

Cells high in the expression of EOMES [20] and of NHLH1 [30], canonical

markers for neuroblast cells, are spread across multiple Leiden clusters. Cells

expressing marker genes overlap with cells identified as transitional [Figure 3.7D.2].

This analysis concluded that transitional entropy is a useful criterion for selecting

transitional cells.
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Figure 3.7: Identifying transitional cells in developing human forebrain. (A) Outputs

of standard workflow scRNAseq. and RNA velocity analysis annotated on the first two principal

components. (A.1.) Leiden clustering of cell states, (A.2.) RNA velocity vectors and estimated

pseudotime. The pseudotime of a cell is calculated as the mean step weighted by the probability

of observing a cell at each step. (A.3.) Root and (A.4.) Terminal cell states inferred using

RNA velocity. (B) Outputs of our latent state space model. (B.1.) Kinetic clustering of cell

states which is the most probable latent state per cell. (B.2.) Most probable latent state at

each simulation step. (B.3.) Ratio of overlapping cells in each static (Leiden) and kinetic

cluster. (C) Identification of transitional cell states. (C.1.) Pseudotime distribution of cells

in each static cluster. (C.2.) Transition entropy of cells; computed as the entropy of the joint

probability of a cell and each latent state; distribution over static clusters. The red line is the

threshold to discriminate transitional cells from the rest. (C.3.) Transition entropy of cells. (D)

Biological identification of transitional cells as neuroblasts. (D.1.) Pearson correlation between

gene expression and transitional entropy of cells. (D.2.) Marker genes’ (EOMES, NHLH1 )

expression distribution in transitional cells vs rest and for each Leiden cluster.

Figure reproduced from figure 1 of manuscript 3

24





3.3 Modelling scRNAseq. data with ordinal labels

scRNAseq. measurements performed in a time-series protocol can utilise the tem-

poral labels as additional information for modelling differentiation. Ordinal labels

may also be used to incorporate a prior hypothesis in the modelling of both single1

and multi-sample dataset2. Manuscript 4 reports psupertime, a regression-based

approach to infer pseudotime and identify genes relevant to the differentiation

process using ordinal labels as supervision. An application of psupertime on scR-

NAseq. data is presented in manuscript 5

Unsupervised pseudotime inference methods are primarily designed to model

cell-state and cell-type transitions without reference to the sample identity. The

sample-to-sample variation in scRNAseq. measurements referred to as batch

effects present challenges in clustering and identifying similar cell-states across

batches. In this context, supervised analysis with ordinal labels enables the char-

acterisation of differentiation processes in single-cell RNA-seq data with sequential

labels, even in the presence of substantial unrelated variation.

psupertime is a supervised pseudotime approach based on regularised ordinal

regression modelling. psupertime identifies a concise set of genes that exhibit

coherent variations over the samples’ sequential ordering. It assigns pseudotime

values to individual cells based on a linear combination of these genes, approxi-

mating the specified order of the sequential labels. The model can also be used as

a classifier for estimating labels in new data. Benchmarking psupertime against

unsupervised pseudotime models suggests that psupertime performs better at iden-

tifying time-varying genes and at pseudotime estimation in time-series scRNAseq.

protocols.

3.3.1 Regularised ordinal regression for pseudotime inference

psupertime is an L1 regularised proportional odds ordinal logistic regression model.

Normalised, log-transformed and z-scored expression data is used to predict the

ordinal labels as specified below. A concise set of genes characterising the differ-

entiation process is identified by selecting genes with non-zero coefficients. The

linear combination of gene expression produces a predicted position of the cell

that may lie between ordinal labels and is interpreted as the pseudotime.

Ordinal logistic regression extends the concept of logistic regression to ordi-

nal response variables. The model can be interpreted as simultaneous logistic

1For example, an ordering of cell-type labels may be used to incorporate prior knowledge of

cell-type transitions in a single-sample scRNAseq. analysis.
2An example of non-temporal labels could be disease status. Samples collected from healthy

and diseased individuals could be ordered based on disease severity.
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regressions with the same coefficients for input features. Each regression pre-

dicts a different binary response variable derived from the ordinal labels. For the

proportional odds formulation of ordinal logistic regression, the models estimate

log(P (Y ≥ j)/P (Y < j)) where j is each of the ordinal categories. The propor-

tional odds formulation will fit larger coefficients for features that vary across the

entire range of ordinal labels. Alternatively, for the continuation ratio formula-

tion, the models estimate log(P (Y = j)/P (Y < j)) and thus, features that vary

within a subset of the ordinal labels will be selected.

For input data X ∈ Rn×p and y ∈ Nn ordinal labels, the ordinal logistic

regression has the following cumulative distribution function,

P (yi ≤ j | Xi) = ϕ(θj − βTXi) =
1

1+(βTXi−θj)
(3.21)

Xi and yi are the ith input and label respectively. j is the index of the ordinal

categories. β are the coefficients and θj are the thresholds between labels. ϕ is

the logit link function. The unregularised likelihood is,

L(β, θ | y,X) =
N∏
i=1

(ϕ(θyi − βTXi)− ϕ(θyi−1
− βTXi)) (3.22)

With the L1 penalty, we obtain the optimal values of β and θ by minimizing

the following regularised loss function,

argmin
βθ

(λ
p∑

k=1

|βp| − log(L(β, θ | y,X))) (3.23)

The regularisation strength λ is selected via cross-validation.

3.3.2 Performance benchmarks against unsupervised methods

Cell-level pseudotime orderings identified by psupertime were compared with those

from three alternative, unsupervised pseudotime techniques [Figure 3.8]. As a sim-

ple and interpretable baseline, projection of scRNAseq. on the first PCA compo-

nent was the first comparison. Monocle2 with start cell selection was the second

comparison [31]. Slingshot, which permits the selection of both start and end

cell states and, therefore can be considered a semi-supervised approach, was the

third comparison [14]. The methods were chosen for being commonly used and

high performing in a comparison of trajectory inference methods [18]. Tempora,

a method that performs supervised analysis with temporal labels but produces

predictions for cell-types rather than cell-states, was also compared [32].
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Figure 3.8: Absolute Kendall’s τ correlation coefficient between label sequences (treated as sets

of integers 1,...J) and calculated pseudotimes. Error bars show a 95% confidence interval over

1000 bootstraps. Figure adapted from figure 2E of manuscript 4.

3.3.3 Marker discovery in intestinal organoids

Manuscript 5 reports a droplet-based scRNAseq. protocol designed for efficient

cell capture for samples with a low (<1000) number of cells. The technology

was validated by performing scRNAseq. measurements of intestinal organoids.

Organoids mimic adult intestinal mucosa on key geometric, architectural and cel-

lular hallmarks and are generated from intestinal stem cells through a stochastic

self-organisation process on 3D matrices. Even under identical in-vitro conditions,

organoids exhibiting diverse morphologies may form.

Intestinal organoids were developed from cultured cells, differentiation was

allowed to occur at day 2, and daily samples were collected from days 3-6 (S0-3)

from the initiation of the protocol. The sampled organoids were selected in a

biased manner to maximise diversity in size and morphology. psupertime analysis

was performed to discover differentiation-associated genes in each organoid. Apart

from known markers, the analysis discovered additional genes expressed in subsets

of the organoids, such as Gastric inhibitory polypeptide (Gip), Zymogen granule

protein 16 (Zg16 ), Vanin 1 (Vnn1 ) and Defensin alpha 24 (Defa24 )
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4. Discussion

The scientific understanding of biological systems can be expressed as concep-

tual models such as the central dogma of molecular biology or Waddington’s land-

scape. Statistical analysis and simulation further require mathematical formalism

to be applied to the conceptual model. In theory, each bio-molecular entity and its

interactions can be parameterised; however, the complexity of biological interac-

tions and, more importantly, the limitations of experimental technology make this

an untenable proposition. Therefore, computational modelling of biological sys-

tems works with operational definitions, i.e. definitions of biological phenomena

based on what can be measured. For example, the effect of a gene’s expression on

another gene depends on several intermediate biological mechanisms, but these re-

lationships are considered direct effects in modelling with scRNAseq. data. Since

operational limitations make the development of comprehensive, universal models

infeasible, the development of differentiation models suited to particular research

goals is required.

The statistical characteristics of experimental data inform the choice in the

class of models and assumptions regarding the distribution of random variables.

Prior biological knowledge and contextual information must also be incorporated

into the model. The information can be used to constrain the structure of the

model in terms of the relationship between variables or as constraints on optimisa-

tion. For example, scRNAseq. data is sparse; therefore, zero-inflated distributions

are typically used to model gene expression. Neighbourhood graphs between cell-

states are constructed based on top principal components since genes’ expression

are highly correlated. Depending on the pre-processing, the distributions used

can be discrete or continuous, and each of these assumptions implicitly impacts

the conceptualisation of the biological phenomenon under study. The models pre-

sented in this dissertation were developed to produce outputs that enable further

investigation of biological mechanisms with scRNAseq. data derived from different

experimental protocols or biological systems.

The concept of RNA velocity has had a profound impact on differentiation

modelling. Prior methods estimated the ordering of cells with only gene expres-

sion profiles. However, the similarity of gene expression does not necessarily imply

a common differentiation state. Cytopath [Manuscript 1] utilises directionality im-

parted by RNA velocity to enable the inference of cyclical differentiation patterns

where cell-states entering or exiting stages of the cycle will have similar expres-

sion. Conversely, for convergent patterns, dissimilarity of expression does not
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indicate divergence. Several conventional trajectory inference methods fit a Mini-

mum Spanning Tree to model differentiation and are thus conceptually unsuitable

for modelling cyclical and convergent patterns. However, since no topological con-

straints are placed on trajectory inference with Cytopath, convergent patterns can

be modelled. Even for bifurcating differentiation processes, RNA velocity enables

more sensitive detection of divergence by complementing differences in expression

with divergence in transitions, an example being the detection of early heterogene-

ity in CD8+ T cell differentiation presented in Manuscript 2.

scRNAseq. allows the study of variation in gene expression between and

within cell-types. Molecular phenotyping of cell-types has conventionally been

based on the presence of molecular products corresponding to a few characteristic

marker genes. In contrast, the feature space of scRNAseq. data is comprehensive

with respect to genes and, therefore, can offer a more resolved view of cell-states.

While comprehensive, scRNAseq. measurements suffer from dropout; therefore,

individual genes’ expression cannot be used to partition or compare cell-states.

Clustering-based approaches have become standard in grouping cell-states and

identifying cell clusters as functional cell-types. While the functional identity of

cell clusters can be established relatively easily, there may be low frequency cell-

states with distinct, divergent or transitional expression that are also functionally

relevant—identifying and characterising these cell-states with scRNAseq. data

continues to be challenging. Using a latent state-space model to model the tran-

scriptional dynamics of cell-state, in manuscript 3, a joint approach to trajectory

inference and clustering enabled the identification of transitional cell-states.

scRNAseq. measurements are not absolute quantification of gene expression

and are biased with respect to genes. Large technical variation between experi-

ments remains a challenge for comparative data analysis from multiple scRNAseq.

libraries. Therefore, models of differentiation are generally restricted to the mea-

sured cell-state space, even if gene expression is parameterised using continuous

and unbounded distributions. The purpose of lineage inference models is the

construction of pseudo-temporal ordering of measured cell-states and quantifying

relative association with co-occurring lineages.

While RNA velocity may appear to be an approach that could enable the es-

timation of intermediate cell-states based on a vector field approach, there are

several outstanding challenges [21]. RNA velocity models operate with very sim-

plified assumptions on the splicing dynamics. The models assume constant rates of

expression, splicing and degradation. Furthermore, the parameters are estimated

and scaled independently for each gene and therefore, the gene-wise velocity com-

ponents are not on a common scale. The models are also not discrete and consider

expression to be continuous. Thus, while RNA velocity enables local predictions
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of a cell’s future state, the predictions, in general, cannot be expected to be biolog-

ically plausible cell-states. And so, even RNA velocity-based trajectory inference

remains restricted to the measured cell-state space.

Computational biology has been essential in producing testable experimental

hypotheses from experimental data that is often noisy, biased and incomplete.

Advances in experimental technologies are usually accompanied by model devel-

opment to utilise the data effectively. Typically, computational modelling with

scRNAseq. data has been used to discover relevant genes, define cell-types and

perform pathway enrichment. The analysis is usually validated in subsequent ex-

periments, and a conceptual mechanistic model is developed to explain the find-

ings. The models presented in this dissertation work within this paradigm.

While biological interactions are complex, representation of biological processes

could be possible with sufficient experimental data and appropriate models. Deep

learning has emerged as a popular modelling approach in this context. For exam-

ple, autoencoder-based factorisation models have been used to learn embeddings

with latent nodes representing interacting gene modules such as regulatory pro-

grams or molecular pathways [33]. Supervised models have been used to map

cell-states to functional outcomes such as drug response. Generative models have

been used to sample cell-states corresponding to counterfactual scenarios [34]. In

the context of differentiation, deep generative models have been used to sample

intermediate cell-states [15].

Experimental advances in perturbation screening have enabled high through-

put screens over thousands of gene perturbations in a single experiment, and this

data could contribute to the development of generative models that can be used to

sample cell-states corresponding to single and combination of perturbations. How-

ever, the higher fitting power of deep learning models typically results in lower

interpretability; therefore, extracting knowledge from these models is challeng-

ing. Furthermore, so far, such models have struggled with generating cell-states

corresponding to out-of-distribution scenarios suggesting that the models do not

learn generalisable rules of biological organisation. A possible reason for the lack

of generalisation could be the limited information in scRNAseq. measurements

relative to the complexity of the biological system.

Apart from gene expression, single-cell measurements can be performed for

other data modalities such as chromatin accessibility, surface protein markers or

spatial orientation. Multi-modal single-cell measurements with various combina-

tions are increasingly being applied instead of simple scRNAseq [35]. The simul-

taneous measurement of multiple bio-molecular species in a single cell as well as

interventional data, may enable the inference of biological interactions underlying

the measurements and thus reduce the need for abstraction.
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Mechanistic models structurally encode prior biological knowledge and are an

expression of a hypothesis on the working of a biological system. The parameter

space of a mechanistic model is interpretable by design and more suited to the

discovery of general rules of biological interactions than statistical associations or

black-box deep learning models. I presented two approaches for modelling differ-

entiation based on the simulation of the biological process with relatively simple

parameterisations. For example, the parameters of the latent state-space dynamic

model presented in manuscript 3 are not identifiable with scRNAseq. data, how-

ever, additional information on the chromatin accessibility of regulators may allow

the latent states to be identified as regulatory regimes of the biological process.

More generally, in the context of differentiation processes, state-space mod-

elling is a useful formalism to develop mechanistic models that can encode the

hierarchical flow of information in biological systems. The conceptual model can

flexibly be parameterised based on the characteristics of the data measured for each

modality. Simulation of biological systems with mechanistic models can expand

computational modelling from associative analyses to the inference of mechanisms.

Advances in likelihood-free inference have increased the viability of such an ap-

proach to complex biological systems [36]. In combination with the increasing

availability of high throughput perturbation screening and multi-modal data, new

modelling approaches focused on in-silico experimentation and causal inference

may become possible.
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SUMMARY

We report Cytopath, a method for trajectory inference that takes advantage of transcriptional activity infor-
mation from the RNA velocity of single cells to perform trajectory inference. Cytopath performs this task by
defining a Markov chain model, simulating an ensemble of possible differentiation trajectories, and con-
structing a consensus trajectory. We show that Cytopath can recapitulate the topological and molecular
characteristics of the differentiation process under study. In our analysis, we include differentiation trajec-
tories with varying bifurcated, circular, convergent, and mixed topologies studied in single-snapshot as
well as time-series single-cell RNA sequencing experiments. We demonstrate the capability to reconstruct
differentiation trajectories, assess the association of RNA velocity-based pseudotime with actually elapsed
process time, and identify drawbacks in current state-of-the art trajectory inference approaches.

INTRODUCTION

Biological processes such as cell type differentiation,1–3 immune

response,4 or cell division5 can be conceptualized as temporal

sequences of coordinated, phenotypic state changes in the

context of possibly heterogeneous cell populations. Such

phenotypic states can be characterized by, e.g., epigenetic,

transcriptional, and proteomic cell profiles. These differentiation

processes are often triggered asynchronously. The differentia-

tion processes give rise to state sequences with varying

topologies, including bifurcating, multi-furcating, cyclical, and

convergent trajectories.

This situation requires single-cell approaches to measure and

ultimately investigate these processes. The repertoire of suitable

technologies to monitor different types of molecular profiles has

increased dramatically over the last years. In particular, single-

cell RNA sequencing (scRNA-seq) has gained widespread use

because of the broad applicability of sequencing technology.

Although thesemeasurements are information rich, their analysis

and interpretation are challenged by high dimensionality, low

sequencing depth, measurement noise, and its destructive na-

ture, only yielding snapshots of the whole process.

Different computational approaches have been proposed to

model differentiation processes from scRNA-seq data, specif-

ically covering the tasks of pseudotime estimation, trajectory

inference, or cell fate prediction. These tasks are related but typi-

cally require different approaches (Table S1). The goal of cell fate

prediction is to determine the terminal differentiation state (fate)

of any cell, possibly already early in the differentiation process.

Such methods generate a score or probability per cell with

respect to terminal differentiation states.6,7

Pseudotime estimation addresses the task of ordering

observed cells into a sequence of cell states traversed by a dif-

ferentiation process. Typically, the estimated pseudotime values

MOTIVATION Trajectory inference from single-cell RNA sequencing data has the potential to systemati-
cally reconstruct complex differentiation processes, but inferring trajectories that accurately model the bio-
logical characteristics of varied processes continues to be a challenge, regardless of themany available so-
lutions. In general, trajectory and pseudotime inference methods have so far suffered from the ambiguity of
static single-cell transcriptome snapshots lacking a concept of directionality and rate of transcriptional ac-
tivity.

Cell Reports Methods 2, 100359, December 19, 2022 ª 2022 The Authors. 1
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are interpreted as temporal ordering, not capturing the pace of

differentiation. It has been suggested that RNA velocity-based

pseudotime has the potential to overcome this limitation.8

Although pseudotime estimation might constitute sufficient

characterization of a linear differentiation process, the descrip-

tion of complex processes with more involved topologies, such

as bifurcations, requires an additional step of trajectory infer-

ence. Trajectory inference methods seek to infer a representa-

tive sequence of states that characterizes the possibly multiple

differentiation processes in branching or convergent differentia-

tion.9–12

Typical trajectory inference methods are guided by the

assumption that phenotypic similarity reflects temporal prox-

imity. However, static expression profiles are ambiguous with

respect to the directionality of potential cell state transitions.

This ambiguity is a major limitation of pseudotime ordering and

trajectory inference and specifically precludes data-driven

assignment of root and terminal states without previous knowl-

edge about the process as well as resolving complex (i.e.,

cyclical5 or convergent3) process topologies. It has now become

possible to estimate transcriptional activity from scRNA-seq

data via RNA velocity analysis,1 enabling inference of likely tran-

sitions between different cell states in a data-driven fashion,

ultimately opening the possibility to mitigate the limitations of

the aforementioned reconstruction approaches.

In this work we present Cytopath, a simulation-based trajec-

tory inference approach that takes advantage of RNA velocity.

We demonstrate that Cytopath infers accurate and robust cell

state trajectories of known differentiation processes with linear,

circular, bifurcated, tree-like, and convergent topologies from

scRNA-seq datasets. We show that Cytopath has the potential

to model interlaced processes with different topologies as well

as detect regions of transcriptional program switching. We

also assess the ability of pseudotime estimated by Cytopath to

represent the biological process time, also referred to as the

‘‘internal clock’’ of a cell. Trajectory inference with Cytopath

addresses the limitations of state-of-the-art trajectory inference

approaches as well as recently developed RNA velocity-based

methods.11,12

RESULTS

Here, we present an overview of Cytopath and its trajectory

inference performance, assessed on six scRNA-seq datasets

consisting of cellular differentiation processes with various to-

pologies.1–5,13 We compare the performance of Cytopath with

the best trajectory inference models for each topology:14 Sling-

shot9 for tree-like topology, Angle14 for cell cycle, and parti-

tion-based graph abstraction (PAGA; directionality enabled by

velocity pseudotime)8,15 for graph models. We also include a

comparison with Monocle316 as well as two approaches ac-

counting for RNA velocity information: VeTra11 and Cellpath.12

Simulation-based trajectory inference with Cytopath
Trajectory inference with Cytopath is performed downstream of

the RNA velocity analysis of an scRNA-seq dataset and is specif-

ically based on the resulting cell-to-cell transition probability ma-

trix. The transition probability matrix considers each cell to be a

node in a graph, and each node is assumed to represent a

possible state of the differentiation process under study. The en-

tries of this matrix are the probabilities of transitioning from a

given state to any other state represented in the graph.1,8

Although we base our analysis on an RNA velocity analysis, in

principle, any cell-to-cell transition probability matrix can be

used as input for trajectory inference (Figure 1A.2).

The objective of trajectory inference with Cytopath is to esti-

mate trajectories from root to terminal cell states, which corre-

spond to the origin and terminus of the differentiation process

under study. Root and terminal states can be derived from a

Markov random-walk model utilizing the transition probability

matrix itself (Figure 1A.3), as described by La Manno et al.,1 or

can be supplied by the user based on suitable prior knowledge.

The trajectory inference process is divided into four steps (Fig-

ure 1B; STAR Methods). In the first step, Markov sampling of

consecutive cell state transitions is performed based on the

probabilities of the transition matrix, resulting in an ensemble

of simulated cell state sequences. Sampling is initialized at pre-

defined root states and performed for a fixed number of steps

until a sufficient number (auto-selected with default settings) of

unique cell state sequences terminating within clusters contain-

ing the terminal states have been generated (Figure 1B.1). A pre-

computed clustering can be provided to Cytopath to determine

terminal regions; otherwise, a clustering is computed internally

using Louvain.

Thegenerated cell state sequences are individual simulations of

the differentiation process from root to terminal state. Because of

the stochastic nature of the sampling process, the cell state se-

quences cannot be considered aligned with respect to the cell

states at each transition step. Consequently, in the second step,

simulations that terminate at a common terminal state are aligned

using dynamic time warping, an algorithm for comparing and

aligning temporal sequences with a common root and terminus

but possibly different rates of progression. The procedure aligns

simulations with a common differentiation coordinate so that cell

states fromany simulation at a particular differentiation coordinate

(pseudotime) represent similar cell states (Figure 1B.2).

Third, consensus expression states across the steps of the

aligned simulations are estimated, giving rise to the reported tra-

jectory. Cell states at every step of the ensemble of aligned

simulations are averaged, and the average value is considered

the consensus state of the trajectory at the particular step (Fig-

ure 1C.2). Alternatively, trajectories can be anchored to

observed cell states by choosing the cell state closest to the

aforementioned average value. Subsequently, the coordinates

of the trajectory with respect to the expression space as

well as any lower dimensional embeddings, such as UMAP or

t-SNE, are calculated.

In the final step, cells are assigned to each step of the inferred

trajectory. Assignment is based on an alignment score that eval-

uates for each cell the similarity of its static as well as the velocity

profile with each trajectory step. For efficiency, this alignment

score evaluation is restricted to cells in the neighborhood around

each trajectory step. However, the user can optionally compute

alignment of every cell for every step of every trajectory. The cell

level score is used to estimate position in the trajectory (i.e.,

pseudotime) as well as the relative association of a cell state to
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possibly multiple branches of a differentiation processes with

complex topology (i.e., cell fate) (Figures 1C.2 and C.3).

Reconstruction of neuronal differentiation in the
developing mouse hippocampus
We assessed the capability to reconstruct developmental pro-

cesses with multiple branching, which is a frequent topology

for scRNA-seq datasets generated from experiments studying

differentiation processes. To this end, we applied Cytopath

and baseline methods to the developing mouse hippocampus

dataset, whichwas first used to demonstrate RNA velocity of sin-

gle cells. This dataset is composed of 18,140 cells. The dataset

comprises five terminal regions and a common root state. The

topology of the data is multi-furcating, with development

branches arising directly from the root state (astrocytes and

oligodendrocyte precursors [OPCs]) but also as branches

from intermediate states (neuroblast and Cajal-Retzius [CA]

differentiation).

Figure 1. Cytopath overview

(A) Inputs for Cytopath trajectory inference subsequent to an RNA velocity analysis (shown here: inferred using RNA velocity).

(A.1.) Single-cell gene expression profiles and RNA velocity profiles.

(A.2.) Transition probability matrix.

(A.3.) Root and terminal state annotation.

(B) Steps performed during Cytopath inference.

(B.1.) Simulations of the differentiation process generated by sampling a Markov chain based on the cell-to-cell transition probabilities. Sampling is initialized on

cells annotated as root states.

(B.2.) Simulations are performed for a fixed number of steps that are automatically selected using the properties of the scRNA-seq dataset. Transition steps are

aligned using dynamic time warping. After alignment, cells at each transition step represent the same consensus state.

(B.3.) Cells along the inferred trajectory are assigned to multiple trajectory segments based on the alignment of their average transition vector (with respect to

neighbors) and the trajectory segment.

(C) Outputs from Cytopath trajectory inference.

(C.1.) The frequency of simulations terminating at each cell highlights regions of switch in transcriptional programs as well as terminal regions.

(C.2.) Trajectories are inferred independently for each terminal region. The trajectories are composed of multiple segments. The pseudotime of a cell is estimated

as the weighted average segment rank of all segments with which it aligns.

(C.3.) Differential alignment scores to multiple trajectories are used to estimate the cell fate probability with respect to the terminal regions.
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We recreated the analysis outputs, including RNA velocity and

the transition probability matrix, as indicated in the original

publication, using scripts made available by the authors. RNA

velocity was used to estimate the root and terminal state

probabilities.1

Spearman correlation of inferred pseudotime with the cell type

identities and their ordering reported in the initial study (Fig-

ure 2A) were used for trajectory inference performance assess-

ment (Figures 2D and 2E). Cytopath was run using default

parameters. It internally selects root and terminal states based

on the root and terminal state probabilities estimated in the prior

velocity analysis. We also supply the known root and terminal

states as supervision to Slingshot and Monocle3 (which accepts

root states only) to get the best performance from these

methods. This could not be done for VeTra andCellpath because

these approaches do not allow inclusion of this supervision. We

also assessed the performance of PAGA with velocity-pseudo-

time-based directionality and scvelo latent time. The latter two

are not trajectory inference methods; PAGA only generates a

coarse graph of cluster connectivities, and latent time is only a

pseudotime that does not compute lineage association of cells.

However, as RNA velocity-based methods that have a partial

overlap with Cytopath’s core functionality, this comparison is

of interest to the community.

Trajectories and pseudotime estimated by each method are

shown in Figure 2B. Cytopath estimates a single trajectory to

each terminal state as expected from known biology. The

Spearman correlation between pseudotime inferred by Cytopath

for each trajectory to known ordering of cell types is high (Fig-

ure 2D) and robust across multiple runs (Figure 2E). Slingshot

also produces trajectories to each terminal state with high corre-

lation but generated one or more spurious trajectories in each

run. Although themedian Spearman correlation of trajectories in-

ferred by Slingshot is high, it appears to have high variability in its

performance, with substantially lower correlation for some runs.

This may be due to projection artifacts in the embedding gener-

ated in those instances. Monocle3 fails to produce a connected

trajectory, producing a disjoint graph, and is therefore unable to

estimate pseudotime for a large portion of the dataset. Monocle3

pseudotime, velocity pseudotime, and latent time are inferred

per cell, and, unlike other methods presented here, do not parti-

tion cells into trajectories. We used known cell type ordering to

select cells relevant to each lineage to perform the correlation

analysis.

The velocity-pseudotimemethod appears to compute a global

pseudotime that is incompatible with known differentiation of lin-

eages in this dataset. Consequently, the directionality of cluster

transitions for PAGA appears to be reversed for CA1-Sub and

CA2-3-4 lineages and is unclear for OPC and astrocyte lineages.

The latent timemethod appears to have a similar correlation pro-

file to known lineages as Cytopath (Figure 2D).

VeTra and Cellpath infer erroneous trajectories that initiate at

terminal or intermediate states. Cellpath generates a large num-

ber of trajectories far exceeding the number of known lineages.

This is a pattern that is consistent across several datasets; thus,

a quantitative comparison as performed for other methods

presented here is not feasible (Figure S1). Both methods also

exclude a large number of cells from the trajectory inference pro-

cess. Because VeTra and Cellpath initialize trajectories in inter-

mediate states, cell assignment by these methods does not

correspond to a pattern expected for a hierarchical branching

structure (Figures S2A.3 and A.4).

Cell cycle reconstruction
We hypothesized that the ability to infer repeating patterns dur-

ing differentiation likely differentiates RNA velocity-based

trajectory inference from other methods that are based on sim-

ilarity of expression. First, revisiting the root state implies that

inferring the overall direction of the trajectory is not trivial.

Second, cells at the origin are a mix of late- and early-stage

states that are co-located in expression space but can be ex-

pected to have differing velocities. To assess this hypothesis,

we compared the reconstruction of the cell cycle in a dataset

comprising 1,067 U2OS cells generated using the SMART-

Seq2 protocol.5

Based on the comparatively low expression of the cell cycle

marker genes Ccne2, Cdk1, Ccna2, and Birc5 (Figures 3A and

3B), we annotated a portion of G0-stage cells (cluster 5) as a

G1 checkpoint (Figure S4A). The cell cycle phase annotation

per cell from Mahdessian et al.5 was determined using the fluo-

rescence intensity of GFP-tagged GMNN (530 nm) and RFP-

tagged CDT1 (585 nm). Therefore, the association between cell

cycle phase and expression levels of markers is not in phase, un-

like computational cell cycle phase prediction (Figures S4B and

S4C). We use phase annotations only to validate the trajectory

reconstruction but not for inference. Root and terminal states

were selected based on probabilities estimated using scvelo.8

Cytopath generates a full circular trajectory without interrup-

tions from the cells in G1 stage through the intermediate stages

back to the G1 stage and further into the cells in the G1 check-

point stage (Figure 3C). The lower expression of relevant cell

cycle markers in the terminal region of the trajectory inferred

by Cytopath indicates that the pseudotime inferred by Cytopath

is a valid representation of the temporal process. Cytopath infers

a second linear trajectory, indicated in red (Figure 3C). This is not

unexpected because, apart from the circular route, a direct

Figure 2. Reconstruction of neuronal differentiation in the developing mouse hippocampus

(A) t-SNE projection of the dentate gyrus scRNA-seq dataset annotated with stages of neuronal differentiation.

(B) Trajectory and/or pseudotime inference using (B.1.) Cytopath, (B.2.) Slingshot, (B.3.) Cellpath, (B.4.) Monocle3, (B.5.) VeTra, (B.6.) PAGA + velocity pseu-

dotime (vpt), and (B.7.) scvelo latent time.

(C) Root and terminal state probability used by Cytopath to select root and terminal regions.

(D) Spearman correlation of pseudotime inferred by each method with known ordering of cell types for each lineage.

(E) Methods were run 10 times to assess the effect of stochasticity in inference (Cytopath) and stochastic estimation of the UMAP embedding (Slingshot and

Monocle3). Monocle3 produced disconnected graphs in two of 10 runs corresponding to the CA1-Sub and CA2-3-4 lineages, and the correlation value could not

be calculated for these two runs.
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connection of the root to the terminal region is also a possible

outcome.

Because Slingshot and Monocle3 assume a tree-like topol-

ogy, they are inherently unsuited to model cyclical trajectories.

To compare Cytopath with non-velocity-based baseline

methods, we selected Angle and ReCAT, methods intended to

model the cell cycle in scRNA-seq data. In contrast to trajec-

tories inferred by Cytopath, the pseudotime inferred by Angle

and ReCAT is inconsistent with marker expression and cell cycle

phase annotation. Both methods fail to correctly model the cell

cycle, possibly because of the presence of G1 checkpoint cells

that are not actively participating in the cycling process.

Figure 3. Reconstruction of the cell cycle in the U2OS cell line

(A) RNA velocity stream plot overlayed on the UMAP projection, annotated with the cell cycle phase adapted from Mahdessian et al.5 Considering all cell-to-

trajectory alignments binned into percentiles, the radial heatmap shows cell cycle phase fraction (outer set of rings) and marker expression (inner set of rings)

sorted by trajectory step. The directionality of the radial heatmap is clockwise, with the origin at zero degrees.

(B) The separation of G1 phase into G1 and G1-chk was performed on the basis of marker expression of cell cycle genes.

(C–F) Trajectories inferred and pseudotime per cell by (C) Cytopath, (D) Angle, (E) ReCAT, (F) PAGA and vpt.

(G) Distribution of Cytopath pseudotime for cells in the G1 cluster.

(H) Normalized expression of cells classified as early and late G1 cells (blue/orange, respectively). Significance was estimated by an independent t test for each

marker.
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Although pseudotime inferred by Angle represents a partially

correct sequence of clusters, the G1 checkpoint cluster is not

distinguished from the G1 cluster. S phase is incorrectly identi-

fied as the terminal state. ReCAT successfully identifies the G1

checkpoint as the terminal state but detects an incorrect

sequence of cell cycle phases (Figures 3D and 3E).

With respect to the second part of our hypothesis, we observe

that cells in the G1 cluster can be divided into two groups on the

basis of pseudotime inferred by Cytopath (Figure 3G). Expres-

sion of markers associated with cell cycle is significantly higher

in early-pseudotime G1 cells than in those destined to move

into G1 checkpoint phase and, accordingly, associated with

higher pseudotime (Figure 3H). After trajectory inference, cells

are assigned to trajectories using the alignment procedure

shown in Figure 1B.3.We sort these cell-to-trajectory alignments

by trajectory step percentile and then compute cell cycle phase

frequency and average marker expression. Partitioning of G1

cells into early and late stage as well as the difference in marker

expression can be clearly observed as two separate bands of G1

(blue) in the radial plot (Figure 3A).

We assessed PAGA with directionality inferred using velocity

pseudotime (Figure 3F). PAGA failed to estimate an unbroken

sequence of cluster transitions with a default threshold (connec-

tions in black), and when the entire connectivity graph is consid-

ered (all connections), there are several spurious connections.

Although the underlying velocity pseudotime is positively corre-

lated with cell cycle phase, G1 cells are not partitioned into early-

and late-stage states. Latent time also correctly models the

sequence of cell cycle phases and identifies G1 checkpoint

phase as the terminus. However, similar to velocity pseudotime,

G1-phase cells are not partitioned into early- and late-stage

states (Figure S3B.3).

Finally, VeTra and Cellpath, which are RNA velocity-enabled

trajectory inference methods, fail to correctly reconstruct the

cell cycle. The pseudotime inferred by VeTra appears to be

inconsistent with the root and terminal state probabilities. Both

methods infer erroneous trajectories that do not capture the

cyclical process, both originating and terminating in intermediate

states. Both methods do not assign large number of cells to any

trajectory (Figures S1B.3, S1B.4, S2B.3, and S1B.4).

Reconstruction of interlaced cell cycling and bifurcated
differentiation in pancreatic endocrinogenesis
We next assessed trajectory inference performance for pro-

cesses with multiple interlaced non-trivial topologies. To this

end, we considered a dataset studying pancreatic endocrino-

genesis with lineages to four terminal states (alpha, beta,

gamma, and delta cells) and dominant cell cycling at the onset

of differentiation.2,8 Pre-processing, RNA velocity, and transition

probability matrix estimation were performed with scvelo8 using

parameters indicated in the notebook associated with this

dataset.

Cell type annotation from Bastidas-Ponce et al.2 and Bergen

et al.8 was used to provide terminal state supervision to Cytopath

(Figure 4A), whereas root states were inferred using RNA veloc-

ity. The inferred terminal state probability only identifies the beta

terminal state (Figure S5A3). If the other terminal states are not

manually specified, then this exclusively data-driven approach

would report only the trajectory corresponding to the beta line-

age. However, Cytopath can be used to generate undirected

simulations not constrained to terminate at a fixed terminal re-

gion (STARMethods). For each cell, the frequency of simulations

terminating at that state can be used to discover regions of

transcriptional state switching. Using this approach, two more

terminal states (alpha and delta) could be recovered (Figure 4C).

However, the trajectory to the epsilon terminal state could only

be constructed by explicitly providing it as a terminal state.

The set of trajectories estimated by Cytopath corresponding to

the four terminal cell types captures the expected differentiation

events of endocrinogenesis (Figure 4B).

The trajectories visualized on the UMAP indicate a potentially

cycling structure in early-stage (root-region) cells. To investigate

this, we initialized simulations at random cells in the dataset (Fig-

ure 4C). We observed an enrichment of terminal states of these

undirected simulations in Louvain cluster 0 (Figure S4D). We pro-

pose that this observation suggests that this differentiation pro-

cess is structured in two stages, a cycling and a commitment

stage, with the cells in Louvain cluster 0 corresponding to a re-

gion of transcriptional switch away from cell cycling. The

following inquiries aim to identify evidence for this hypothesis.

Cell cycle scoring of cells in the root region was performed and

clearly revealed distinct cell cycle states (Figure 4D). This inter-

pretation is also supported by the differential expression of cell

cycle marker genes in the root region (Figure 4E). The trajectory

inferred by Cytopath from the ensemble of 8,000 simulations

appears to recapitulate the circular structure of the cell cycle

(Figure 4G1). Spearman correlation of cell cycle phase with the

transition steps of each simulation indicates faithful recapitula-

tion of the cell cycle stages at the single-simulation level

(Figure 4F).

The simulation-based approach of Cytopath ensures that,

even in the absence of explicit supervision, cyclic transcriptional

patterns are reconstructed faithfully. In contrast, possibly

because of the absence of RNA velocity information, the desig-

nated root states appear to be isotropic for conventional trajec-

tory inference approaches like Slingshot; therefore, they are

unable to capture structured transcriptional heterogeneity in

this region (Figure 4G.2).

We also show the trajectory estimation with respect to the full

pancreatic endocrinogenesis process. Slingshot and Monocle3

produce spurious or too few trajectories, respectively, when

provided with all root and endpoints. VeTra reports a spurious

trajectory that terminates at the ductal stage, whereas trajec-

tories to beta and alpha are initialized in intermediate or terminal

cell states. VeTra and Cellpath exclude a large number of

cells from the trajectory inference process (Figures S1C, S2C,

and S3C).

Reconstruction of convergent differentiation in the
developing neonatal mouse inner ear
Burns et al.3 have shown that the development of hair cells (HCs)

in the sensory epithelium of the utricle originates from transitional

epithelial cells (TECs) via support cells (SC). This study also

demonstrated a secondary differentiation path from TECs to

HCs and put forward the existence of a transitional zone

where cells can easily switch fate, resulting in two convergent
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differentiation trajectories3 (Figure 5A). This dataset presents a

challenge for typical trajectory inference methods, given its rela-

tively small size of 157 cells as well as a convergent differentia-

tion topology that violates the topology-related assumptions of

several methods.

Root and terminal state probability estimation using RNA

velocity was used to select root and endpoints. Principal-

component analysis (PCA) projection of the data was generated

as indicated in the original study. Cytopath successfully models

the two differentiation trajectories demonstrated in the

study. The correlation between known cell type ordering and

pseudotime inferred by Cytopath is robust for either lineage

(Figures 5D and 5E).

Slingshot, VeTra, and Cellpath generate spurious trajectories

that terminate at intermediate states (Figures S1D.2–S1D.4).

None of these methods infer the convergent process. PAGA

does not return an unbroken chain of cluster transitions with the

default threshold (Figure S3D.4) Monocle3 requires a UMAP

embedding; therefore, it was not benchmarked in this analysis.

Cytopath pseudotime inference approximates the
internal clock of cells
The difference between two expression states is sufficient to or-

der the cells with respect to progression (difference in expres-

sion profiles), but without information about the rate of change

of gene expression at any state, the pace of differentiation (i.e.,

the difference in expression profile relative to the internal clock)

cannot be inferred. RNA velocity-based trajectory inference

and pseudotime inference have the potential to resolve this

drawback because RNA velocity provides an approximation of

the rate of change of gene expression for each cell.

Single-cell metabolically labeled new RNA tagging sequencing

(scNT-seq) was developed as ameans to experimentallymeasure

the age of cells undergoing active transcription. To validate their

Figure 4. Reconstruction of interlaced cell cycling and bifurcated differentiation in pancreatic endocrinogenesis

(A) UMAP projection of pancreas scRNA-seq data annotated with stages of differentiation.

(B) Trajectories inferred by Cytopath and mean pseudotime per cell.

(C) Log terminal state frequency per cell of undirected simulations initialized at randomly chosen cells.

(D) Computational cell cycle phase prediction.

(E) Cell cycle marker gene expression in the early stage (Louvain clusters 9, 0, and 4) (Figure S4D).

(F) Spearman correlation of cell cycle phase with the transition step of individual Cytopath simulations.

(G) Trajectories and pseudotime inferred by (G.1) Cytopath and (G.2) Slingshot in the root region and (G.3) cell cycle phase annotation.
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method, Qiu et al.13 generated a dataset of mouse cortical neu-

rons stimulated for durations ranging from 0–120 min (Figure 6B).

The authors also identified a set of activity-regulated genes

(ARGs) whose expression can be directly linked to the duration

of stimulation. Unlike typical time-series scRNA-seq datasets,

where the asynchronous expression of cells implies that the

experimental time is decoupled from the internal clock, in the

setting described above, the duration of stimulation is a represen-

tation of the biological process (internal clock) timewith respect to

the ARGs. We performed RNA velocity analysis followed by tra-

jectory inference considering only ARG expression (Figures 6A

and 6C). Pseudotime inferred by Cytopath has a monotonic rela-

tionship with stimulation time and high Pearson (linear) correlation

(Figures 6C and 6D). To assess the specific relevance of RNA

velocity in inferring a pseudotime that better approximates the in-

ternal clock, we computed a non-velocity-based pseudotime us-

ing the trajectory inferred previously by Cytopath (Cytopath-

Euclidean pseudotime). This non-velocity pseudotime has lower

median correlation over 10 runs thanCytopath pseudotime. Other

velocity-based pseudotime estimates also have relatively

higher correlation compared with non-velocity-based methods

(Figure 6E).

In response to stimulation, neuronal cells undergo a relatively

fast polarization phase and subsequently slowly return to a de-

polarized state that is similar to the root state in terms of expres-

sion but not rate of change of expression; i.e., RNA velocity.

Cytopath-Euclidean pseudotime does not have a monotonic

relationship with stimulation duration and places the 120-min

group at a lower pseudotime. We observed the same pattern

with Slingshot and Monocle3. However, this may partly be due

to poor trajectory inference as well as non-velocity-based pseu-

dotime inference. Surprisingly, latent time and velocity pseudo-

time, which are also RNA velocity-based pseudotime methods,

also showed a similar pattern of lower pseudotime associated

with the 120-min group of cells (see notebooks).

In the absence of an experimental measure of process time, it

is difficult to conclusively explore the association of pseudotime

with process time in other datasets presented in this paper.

However, if we assume that RNA velocity is a good approxima-

tion of the transcriptional rate of change, then we find that pseu-

dotime inferred using Cytopath outperforms non-velocity-based

methods at approximating the real rate of change of transcrip-

tion. The similarity of a cell’s velocity to each of its neighbors in-

dicates the pace of coherent change of transcription in a region

of transcriptional space. To quantify this property we define ve-

locity cohesiveness (STAR Methods). High velocity cohesive-

ness indicates that the cell is present in a region of coherent

and therefore rapid transcriptional change because the cell has

Figure 5. Reconstruction of convergent differentiation in the developing neonatal mouse inner ear

(A) Known differentiation trajectories from Burns et al.3

(B) Probability estimated based on RNA velocity of a cell being a root state and terminal state, respectively.

(C) RNA velocity overlayed on the PCA projection of neonatal mouse inner ear data, annotated with stages of differentiation.

(D) Inferred trajectories and mean pseudotime by Cytopath.

(E) Spearman correlations between known lineage ordering of cell types and pseudotime inferred by Cytopath (10 runs).
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a high transition probability to similarly oriented transition part-

ners. Conversely, low velocity cohesiveness indicates that the

rate of transcriptional change is low and that the cell transitions

to its neighbors are less coherently directed. Because simula-

tions generated by Cytopath are based on the aforementioned

transitions, we expect that the pseudotime estimated by Cyto-

path better reflects the rate of real transcriptional change

compared with a non-RNA velocity-based pseudotime that, by

design, is forced to assume a uniform rate of transcription.

We tested this hypothesis by comparing pseudotime esti-

mated using Slingshot and Cytopath for the pancreatic endocri-

nogenesis dataset. For each lineage, we estimated the relative

rate of change of Slingshot pseudotime with respect to Cytopath

pseudotime per cell. The high positive correlation between ve-

locity cohesiveness and velocity magnitude indicates that, in re-

gions with lower velocitymagnitude, Slingshot has a lower rate of

change in pseudotime compared with Cytopath and vice versa

(Figures S4G and S4H). We define the simulation step density

of a cell as the number of unique simulation steps visiting this

cell. The negative correlation between simulation density per

cell and velocity cohesiveness indicates an enrichment of transi-

tions in regions of slower transcriptional change and vice versa

(Figure S4I). The overall trajectory inferred from these simula-

tions assigns a larger range of pseudotime values to regions

with lower velocity cohesion because smaller changes in expres-

sion are associated with relatively larger passage of time

compared with regions of higher velocity cohesiveness.

Reconstruction of bifurcating differentiation of CD8+

T cells from scRNA-seq time series data
We assessed the performance of Cytopath on an scRNA-seq

time series dataset from CD8 T cell differentiation in chronic lym-

phocytic choriomenengitis virus [LCMV] infection.4 In this infec-

tion model system, CD8 T cells differentiate from early-activated

cells into exhausted and memory-like cells over a period of

3 weeks. Samples were collected at eight experimental time

points after infection with LCMV to cover all stages of the pro-

cess and were sequenced in four batches (Figure 7A). Although

these samples are heterogeneous snapshots of a spectrum of

differentiation states at a particular time point, they provide an

Figure 6. Reconstruction of ARG expression trajectory in mouse cortical neurons

(A) Root and terminal state probability inferred using RNA velocity.

(B) UMAP projection annotated with duration of stimulation for each cell.

(C) UMAP projection annotated with trajectory and pseudotime inferred by Cytopath.

(D) Cytopath pseudotime per cell with respect to stimulation duration. Note the monotonic relationship between median pseudotime and stimulation duration.

(E) Pearson correlation between pseudotime inferred by Cytopath, non-velocity-based pseudotime inferred using Cytopath trajectory inference (Cytopath-

Euclidean), and baseline methods.
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Figure 7. Reconstruction of bifurcating development of CD8+ T cells from scRNA-seq time series

(A) Ordering of samples with respect to time of LCMV inoculation.

(B and C) Probability estimated based on RNA velocity of the cell being (B) a root state (C) a terminal state. (D) Trajectories inferred and mean pseudotime per cell

by Cytopath.

(E) Correlation of pseudotime estimated by each method, with markers relevant to memory-like CD8+ T cell differentiation and exhausted CD8+ T cell differ-

entiation, respectively.

(F) Kendall’s tau correlation between marker expression and Cytopath pseudotime.

(G) Normalized expression of key marker genes in each Cytopath pseudotime decile per lineage. Top row (Slamf6, Tcf7, and Il7r) markers are expected to be

expressed in the memory-like lineage. Ccl5 and Cxcr6 are expected to be expressed only in the exhausted lineage. Gzmb is not expected to be differentially

expressed between the two lineages.
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approximate development coordinate. Starting from a popula-

tion of cells at an early-activated state, differentiation leads

into the two distinct terminal states within 5 days of LCMV infec-

tion. This differentiation process is characterized by strong tran-

scriptional changes and expression of different surface genes.

We identified the root and terminal states of the process using

scvelo8 (Figures 7B and 7C). The terminal states were validated

by expression levels of known marker genes.4 The exhausted

terminal state showed high expression in co-inhibitory markers

like CD39 (Entpd1), CD160 (Cd160), and PD-1 (Pdcd1). The

memory-like terminal state had high expression of TCF1 (Tcf7)

and interleukin-7R (IL-7R; Il7r). Trajectory inference with Cyto-

path resulted in two trajectories that led from a shared starting

region to the two expected terminal regions. The two trajectories

overlapped in the beginning of the process but then sharply

diverged at a branchpoint (Figure 7D).

Comparing the pseudotime estimates from Cytopath with the

discrete experimental time labels from the samples showed high

agreement of the two. The experimental time labels, correspond-

ing roughly to the developmental coordinate, were ordered

correctly and with high Spearman correlation between pseudo-

time and time labels (Figure 7E). Unlike analysis of the neuronal

activation dataset’s ARGs, the experimental time in this setting

is not a precise representation of the internal clock of every

cell. This is due to asynchronous activation of expression arising

from cell-to-cell variation of antigen exposure times. Therefore,

we only expect a correct ordering of experimental time labels

with respect to median pseudotime per experimental sample

and not a perfect correlation of pseudotime and experimental

time label per cell.

Cytopath suggests a bifurcating trajectory model with trajec-

tories originating at biologically relevant root states and terminat-

ing at either of the expected terminal states (Figure 7D).

Slingshot also inferred trajectories to either terminus but gener-

ated a third spurious trajectory in the early-stage cell group

that cannot be matched to any expected infection-induced dif-

ferentiation trajectory (Figure S1F.2). VeTra and Cellpath infer

multiple erroneous trajectories that do not initiate at the root

state and estimate pseudotime that does not correspond to

the differentiation process at all (Figures S1F.3, S1F.4, S2F.3,

and S1F.4). Monocle3 reconstructs the global structure of the

data but includes additional loops and branches in the exhaus-

tion branch (Figure S3F.2).

We also assessed the correlation of pseudotime estimates

with canonical gene expression markers of the memory-like

(Slamf6, Tcf7, and Il7r) and exhaustion branch (Ccl5 and

Cxcr8). We observe that pseudotime inferred by Cytopath is

highly correlated with lineage-specific markers (Figure 7F).

We then tested the validity of the average trajectories of Cyto-

path by the expression profiles of known lineagemarker genes in

the differentiation process. The chemokine receptor CXCR6 has

been shown to mark exhausted T cells in chronic LCMV infec-

tion.17 The average expression of Cxcr6 increases in the trajec-

tory toward the exhausted cluster just prior to divergence of

the two branches (Figure 7G), indicating that the paths are

indeed governed by the exhaustion process. Conversely, T cell

factor 1 (TCF1) and expression of its gene Tcf7 are established

markers of memory-like cells.18 Expression of this gene was

increased in memory-like cells just after the cells started to

diverge after the bifurcation point. Toward the memory-like ter-

minal state at late time points, Tcf7 expression is exclusive to

the memory-like population. An additional observation is the

high expression ofGzmb early in both branches that drops off to-

ward later time points (Figure 7G). The expression of Gzmb is a

shared feature of both branches and known to decrease in

both branches as the infection progress and expression is low

toward late timepoints.19

Cytopath is able to reconstruct biologically relevant differenti-

ation trajectories from a long-term time series dataset in a more

accurate and reproducible manner than widely used tools. We

identified correct differentiation branches of CD8 T cells in

chronic infection, demonstrated by correct ordering of the

experimental time labels and expression levels of branch-spe-

cific gene expression markers. For this system, several pheno-

typic populations and characteristic markers have been

described before, but the connecting differentiation trajectories

of those populations are a subject of ongoing research.20–23

These studies provide evidence of branching in the development

process, and only recently, in conjunction with simulation-based

trajectory inference, has it been possible to resolve this event in

more detail.4

DISCUSSION

Trajectory inference is a challenging task since scRNA seq data

is noisy and - until recently - has been evaluated to achieve only

static expression profile snapshots. Trajectory inference tools

typically operate in low-dimensional embeddings, especially

two-dimensional projections such as UMAP and t-SNE, possibly

obfuscating complex trajectory topologies such as multifurca-

tions and cycles because of more dominant sources of variation.

Inclusion of directional transcriptional activity estimates from

RNA velocity analyses is expected to achieve more precise

and sensitive trajectory inference. With Cytopath, we present

an approach that takes advantage of this information.

The transition probability matrix used to generate simulations

is computed from high-dimensional gene expression and veloc-

ity profiles. Because Cytopath is based on transitions that use

the full expression and velocity profiles of cells, it is less prone

to projection artifacts distorting expression profile similarity.

This approach specifically considers likely and discards unlikely

transitions and therefore is able to identify, for instance, cyclic

trajectories in an apparently diffusely populated and isotropic re-

gion of expression space (Figures 3 and 4). These hidden tran-

scriptional patterns are made apparent by the simulation-based

approach without any explicit supervision. Non-RNA velocity-

based methods struggle to discriminate between cells corre-

sponding to different stages or branches of cyclical and

convergent processes, respectively, because the cells appear

to be co-located in expression space. However, even RNA ve-

locity-based methods6 do not readily present this information

to the user, even when the pseudotemporal ordering or cell

fate scoring estimated by these tools captures these patterns.

Cytopath analysis requires specification of the root and termi-

nal regions. This requirement is met easily when the cellular pro-

cess is sufficiently well characterized up to the level of a priori
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definition of these regions. However, even when this is not the

case, Cytopath can detect and utilize tentative root and terminal

states from the cell-to-cell transition probability matrix using

scvelo.8 We found pseudotime inferred by Cytopath to be robust

to root and terminal probability thresholdswithin a range of [0.85,

1] (data not shown). Simulations generated using Cytopath can

also aid identification of terminal cell types. Compared with the

absorbing Markov process-based inference of terminal states

implemented in velocyto and scvelo, this approach appears to

highlight more terminal states in the pancreatic dataset (Fig-

ure S5B3). Intermediate quasi-stationary cell states induced,

for instance, by a switch of transcriptional programs appear to

be highlighted by this procedure, as indicated by the switch

from the cell cycle to islet cell differentiation in the pancreatic en-

docrinogenesis study.

Although Cytopath is primarily a trajectory inference tool, we

leverage the alignment-based association of cells to inferred tra-

jectories to generate additional results that overlap in function-

ality with other RNA velocity-based tools. For instance, Cytopath

can also be used to predict cell fate. Differentiation potential of

cells estimated as the entropy of cell fate probability across

the terminal states can be used to investigate branching events

(Figure S6).

Other RNA velocity-based trajectory inference tools, VeTra

and Cellpath, appear to perform significantly worse than non-ve-

locity-based methods used as benchmarks in this study

(Figures S1, S2, and S3). We assume that the reason for the dif-

ficulty to recapitulate trajectories could be their built-in lack to

guide trajectory inference by separately providing root and ter-

minal states. This appears to be a contrived problem because

biological knowledge regarding the identity and role of cells is

typically available or, as discussed before, can be estimated

separately. Ignoring this information seems to make trajectory

inference unnecessarily difficult and could be the reason why

Cytopath, as well as Slingshot and Monocle3, perform better

than VeTra and Cellpath. Regarding trajectory inference with Cy-

topath, we find that automatic selection of root and terminal

states tends to match biologically relevant root and terminal

states, with the strong exception of the pancreatic endocrino-

genesis dataset. In general, we recommend that root and termi-

nal state selection should be done by synthesizing all available

sources of information, including application-relevant cell type

marker expression profiles, analytically derived probabilities

based on RNA velocity, and simulations using Cytopath.

PAGA15 is another popular tool that can include RNA velocity

to infer directed connectivity between clusters of an scRNA-seq

dataset. Velocity pseudotime allows directed edges to be in-

ferred using PAGA, but an unbroken sequence of connections

is not guaranteed (Figures S3A.4–S3F.4). The coarse graph

approach has a few disadvantages compared with trajectory

inference methods. Dedicated trajectory inference methods

such as Cytopath, Slingshot, and Monocle3 can model gradual

divergence of lineages. Cell fate scoring estimated by Cytopath

constitutes fuzzy assignment of cells to multiple lineages. These

methods also support relatively diffuse regions of branching. In

contrast, PAGA considers cells in a cluster to be homogeneous

with respect to lineage assignment; therefore, branching can

only be defined at the cell cluster level.

Addition of RNA velocity is expected to allow pseudotime

inference that is a better representation of the internal clock of

the cell that corresponds to the pace of differentiation. We

show that pseudotime inferred by Cytopath has a monotonic

relationship with the process time. We show three points of evi-

dence in this study. The first is the ability to partition cells in the

G1 phase of the cell cycling dataset into late- and early-stage

cells. From the perspective of gene expression profiles, these

cells are co-clustered and appear as a single cell type. However,

the RNA velocity-based cell-to-trajectory alignment procedure

implemented in Cytopath assigns these cells to an early trajec-

tory step corresponding to G1-S phase transition or a late stage

indicating G1-to-G1 checkpoint transition. The biological rele-

vance of this partitioning can be validated by the significant dif-

ference in gene expression of a selected set of cell cycle marker

genes (Figure 3A). Second, we investigate in more detail the cor-

relation of pseudotime inferred by Cytopath with stimulation

duration for the neuronal activation dataset. By restricting the

analysis to ARGs whose expression is triggered in response to

stimulation and, hence, synchronized per cell, we can consider

the experimental time ordering to be coupled to the process

time in this dataset (Figure 6). Third, we examine the relationship

between velocity magnitude and rate of change of pseudotime.

Intuitively, regions with high velocity magnitude are expected to

have relatively larger change of expression with respect to the

internal clock of cells and vice versa. We show that this relation-

ship is better modeled by Cytopath than non-velocity-based

methods (Figures S4G–S4I). Aforementioned results suggest

that pseudotime estimated by Cytopath is an improvement on

approximating of real rate of change of gene expression.

Cytopath considers generic properties of scRNA-seq data-

sets, such as the total number of cells and number of inferred

root and terminal states, to initialize the hyperparameters of

the trajectory inference process. This selection is done with the

objective of computational efficiency as well as robust detection

of trajectories. All analyses presented in this study utilized the

default automatic hyperparameter selection approach, but users

still have the option of performing manual tuning.

We expect simulation-based trajectory inference approaches

like Cytopath to enable sufficiently precise and unambiguous

trajectory inference to achieve testable hypotheses to identify

drivers and derive mathematical models of complex differentia-

tion processes.

Limitations of the study
In certain datasets, RNA velocity estimation could be unrepre-

sentative of the true transcriptional dynamics. These issues arise

from the simplifying assumptions of time-invariant rates of

transcription, splicing, and degradation as well as the assump-

tion of each gene operating under a single regulatory regime.

Although these issues typically lead to erroneous inference of

dynamics for only a few genes, it is possible for the overall

process to be incorrectly modeled when the dynamics of a

high proportion of genes are modeled incorrectly. Particular sce-

narios where RNA velocity estimation fails to recapitulate known

dynamics have been explored by Bergen et al.24

In the context of trajectory inference with Cytopath, the

overall structure and directionality is inferred using the transition
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probability matrix, which, in turn, represents the aggregate

behavior of RNA velocity of all genes included in the analysis.

We do not expect that trajectory inferencewith Cytopath ismean-

ingful when the underlying RNA velocity estimation itself is faulty.

Specifically, incorrect RNA velocity estimation has an effect on

inference of root and terminal cell states (Figure S7). For the

erythroid gastrulation dataset, a spurious set of root points is in-

ferred toward the terminus of the expected process, and the end-

points are spuriously inferred in the middle of the expected

ordering of cell types (Figure S7B). With the parameterization

used byBergen et al.,24 we generated a simulated dataset (scvelo

simulation function) consisting of features with time-dependent

degradation rates (Figures S7E and S7F) and observed a similarly

spurious inference of root and terminal states. RNA velocity ap-

proaches are typically further challenged when the dataset is

composed of mature, terminally differentiated cell types. In a da-

taset composed of cells representing hepatocyte zonation, we

observe a clear directionality inferred using RNA velocity even

though no expression dynamics are expected. The root cell prob-

ability estimation appears to be fuzzy, and the root cell probability

is distributed across the dataset with no discernible pattern

(Figures S7C and S7D). We do not recommend performing trajec-

tory inferencewithCytopathwhen the root and terminal cell states

are not clearly identifiable. Although not applicable in every sce-

nario when independent sources of information regarding the bio-

logical identity of cells are available, such as expression of vali-

dated expression markers, we recommend that users verify the

plausibility of root and terminal states before proceeding with tra-

jectory inference.
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Materials availability
This study did not generate new unique reagents.
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Weng et al.11 https://github.com/wgzgithub/VeTra

Cellpath v0.2.dev0 Zhang et al.12 https://github.com/PeterZZQ/CellPath

Cellrank v1.5.1 Lange et al.6 https://github.com/theislab/cellrank

scvelo v0.2.4 Bergen et al.24 https://github.com/theislab/scvelo

dynverse/ti_angle:v0.9.9.02 Saelens et al.14 https://github.com/dynverse/dynmethods/blob/

master/R/ti_angle.R

dynverse/ti_recat:v0.9.9.01 Saelens et al.14 https://github.com/dynverse/dynmethods/blob/
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Python v3.8.6 Python Software Foundation. https://www.python.org/
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Other
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Data and code availability
d Raw data for all datasets analyzed in this study are accessible on public repositories. The accession numbers are listed in the

key resources table. Links to processed data, if available, have also been provided.

d Cytopath has been implemented as a python package and can be found at the following GitHub repository (https://github.com/

aron0093/cytopath) and at https://doi.org/10.5281/zenodo.7278035.

d Cytopath is also available for installation via PyPI using the command ‘pip install cytopath’.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Trajectory inference with cytopath
Cell clustering

Any grouping of cell states, such as clustering from widely used community detection algorithms or cell type annotations generated

by domain experts can be provided as input to Cytopath.

For the set of all cells C and the set of all clusters S, the clustering is fs : C/S where jSj< jCj.
By default Cytopath will perform clustering of cells using Louvain via scvelo.8

Stationary state selection

Root ðPrÞ and terminal ðPtÞ state probabilities are used to determine the stationary states as described previously.1,8 By default, a

threshold of 0.99 is used.

The set of root cells Cr is defined as fc ˛C : PrðcÞ R0:99g. Similarly, the set of all terminal cells Ct is defined as

fc ˛C : PtðcÞ R0:99g. Terminal regions St are defined as ffsðcÞ ˛S : c ˛Ctg.
When prior biological knowledge regarding the data exists, users can also manually specify root and terminal cell states or desig-

nate entire clusters as root or terminal regions.

Simulations

Simulations are initialized at random cell states selected uniformly within the defined root cells and consist of a fixed number of cell to

cell transitions.

At each step, a single transition from the current cell state is realised based on the cell to cell transition probability matrix P . Each

row of the matrix contains the probability of transition from the current state (row index) to another cell in the dataset (column index).

The cell state cij at step i of simulation j is selected randomly according to P from the nearest neighbors of cði� 1Þj.
Let F be the cummulative probability distribution of P . A value k is sampled from a uniform distribution over [0, 1) and,

cij = argminc˛ C
�
F
�
c
�
cði� 1Þj

� � k
�
HF

�
c
�
cði� 1Þj

�
R k

Technical parameter selection

Under default settings, the number of simulation steps and minimum number of simulations to be generated are automatically

adjusted based on the size of the dataset and number of terminal regions. The purpose of this adjustment is to make the sampling

process computationally efficient. The scaling parameters were determined by empirical testing.

The number of simulations steps imax is initialised as ½5 � log10 ðjCjÞ� This represents an increase of five simulation steps per order of

magnitude increase in the size of the dataset. The minimum number of unique simulations to be generated per terminal region m is

selected as ½500 � log10 ðjCjÞ�.
Subsequently the number of simulation steps and number of simulations to be sampled are adjusted during the sampling process

in an iterative fashion based on the proportion of simulations that terminate at terminal regions in the previous iteration, until the min-

imum number of unique simulations per terminal region have been generated.

Let J be the set of all simulations generated in an iteration and Jt be the set of simulations terminating in terminal regions. If
��Jt��%

0:1 � jJj then the number of simulation steps is doubled.

Let Jtlag be the set of simulations terminating at the terminal region with least number of simulations, min
s˛St

��Jts��. If
���Jtlag

���< 0:6 �m then

the number of simulation steps are incremented by imax � ðm =maxðimax;
���Jtlag

���ÞÞ.
If the two conditions above are met and the minimum number of unique simulations per terminal region are not obtained for any

terminal region then more samples are generated until
���Jtlag

��� = = m.

Trajectory inference

Simulations that terminate within terminal regions are considered for trajectory inference. Trajectory inference is performed by first

clustering the simulations and then aligning them using Dynamic Time Warping, which is an algorithm that allows alignment of tem-

poral sequences with a common origin and terminus that possibly have different rates of progression.

For any two simulations A = fc0a.ciag and B = fc0b.cibg, the Euclidean Hausdorff distance HðA;BÞ is defined as,

HðA;BÞ = max

�
max
ca ˛A

�
min
cb ˛B

dðca; cbÞ
�
;max
cb ˛B

�
min
ca ˛A

dðcb; caÞ
��
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where d is Euclidean distance. Simulations terminating within a single terminal region Jts for s˛St, are clustered using Louvain based

on Euclidean Hausdorff distance.

Each cluster of simulations is then aligned in a greedy-pairwise fashion using the fastdtw python package to generate a single

ensemble sequence per cluster which we refer to as a sub-trajectory.29

The mean value of coordinates of cells at each step of the aligned simulations is the coordinate of the (sub-) trajectory at that step.

Subsequently, a second round of clustering and alignment is performed, using the sub-trajectories from the first round to produce

trajectories that are reported by Cytopath. By default the number of expected trajectories per terminal region is not specified allowing

from unbiased inference of multiple trajectories per terminal region. However, users have the option to manually enforce the number

of trajectories to infer per terminal region.

Identification of compositional clusters

For each trajectory compositional clusters are identified from the set of clusters provided in the step cell clustering. For each step i of

the trajectory, its neighborhoodMi in PCA space is recovered with a K-dimensional tree search.30 Cell clusters with a representation

larger than a threshold frequency (Default:0.3) for at least one Mi are considered compositional clusters of that trajectory.

Alignment score

After the trajectory coordinates have been inferred, the cell-to-trajectory association is computed. Trajectories inferred by Cytopath

are segmented and cells in the compositional clusters of a trajectory are aligned to the segments of the trajectory.

For a cell with neighbors K, its alignment score to step i of a trajectory is the maximum of two scores. The score with respect to the

trajectory segment b from steps i � 1 to i, xbi is calculated as,

xbi =
1

jKj
XK
k

cos
�
hb
k

�
,expðgkÞ

where h is the cosine angle between the section of the trajectory and all possible transition partners k of the cell. g is the cosine sim-

ilarity between the velocity vector of the cell with the distance vector between the cell and its neighbors.

The score with respect to the trajectory segment f from steps i to i + 1, xfi is calculated similarly,

xfi =
1

jKj
XK
k

cos
�
hf
k

�
,expðgkÞ

The alignment score is an extension of the transition probability estimation implemented in scvelo by weighting each transition of a

cell with respect to its alignment to a trajectory. The score is used for assessing the position of a cell with respect to a trajectory (pseu-

dotime) and subsequently to compute a fate score with respect to multiple lineages. The alignment score pi of the cell with respect to

step i is maxðxbi ;xfi Þ.
For each cell the final alignment score pwith respect to a particular trajectory is an average of its alignment scores to multiple step

segments of the trajectory. By default, it is the mean, however other averages can also be used.

Cell fate score

For each cell its alignment score, relative to multiple trajectories is the cell fate score. Cell fate score ftraj for cell with respect to a

trajectory is

ftraj =
ptrajP

trajectoriesptraj

Differentiation potential

For each cell the entropy of its cell fate distribution over all terminal states of the dataset was estimated using scipy.stats.entropy

function. The values were scaled to range [0, 1] over the dataset.

Pseudotime estimation

For each trajectory cells that have an alignment score greater than zero and also belong to a compositional cluster of the trajectory

are assigned a pseudotime value with respect to the trajectory. Since a cell can align to multiple steps within a trajectory, the mean

step value of a cell weighted by alignment score is taken as its pseudotime value, for each trajectory. Optionally, other averages can

also be used.

QUANTIFICATION AND STATISTICAL ANALYSIS

Evaluating dynamical properties of cytopath pseudotime
Terminal state identification using undirected simulations

For each dataset, five thousand simulations were initialized at randomly chosen cells from the dataset and sampling was

performed for 30 steps. The log of total count of simulations, from all the clusters, terminating at each cell, rescaled to range [0,1]

is reported as propensity for constituting either a terminal state or an intermediate state representing a switch in transcriptional

programme.
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Cytopath-Euclidean pseudotime

Cytopath-Euclidean pseudotime was computed by considering all the cell-to-trajectory alignments inferred by Cytopath. The cell

was assigned to the trajectory segment with minimum Euclidean distance between the cell and the segment in PCA space.

Velocity cohesiveness

Cosine similarity of the distance vector between a cell to its transition partners, and the cell’s velocity vector, per cell is stored as the

velocity graph. Velocity cohesiveness of cells are the mean values of each row of this matrix.

Pseudotime comparison

Cells were ordered by Cytopath pseudotime. For each cell a window of 50 cells centered on the cell was considered. For each win-

dow a linear model was fit with respect to Slingshot andCytopath pseudotime using scipy.stats.linregress function. Rate of change of

Slingshot pseudotime vs Cytopath pseudotime was assessed by estimating the slope.

Simulation step density

Simulation step density per cell is the log of the count of simulation steps that are a transition to the cell.

Runtime analysis

process_time function from the time package was used to record the time taken for each trajectory inference procedure.

Comparison of trajectory inference approaches
Parameter settings

Default settings were used for all methods except VeTra and Cellpath. Recommended settings based on information published by

the authors were used for VeTra andCellpath. Cytopath was run using default parameters for all datasets. The same root and terminal

states used for trajectory inference with Cytopath were provided to other methods. Figure S5 shows the root and terminal state prob-

abilities estimated using scvelo for each dataset.

Pseudotime comparison

Spearman correlation of the pseudotime values generated by eachmethod with the cell type cluster ordering for each biological line-

age was used to compare the performance of the methods. Kendall’s tau was used to assess the correlation of marker expression

with the estimated pseudotime. For each dataset and method, analysed with the correlation analysis described above, the analysis

was performed on the dataset with ten independent initialisations of the entire processing pipeline.

RNA velocity analysis
Pre-processed data was used wherever available. Subsequent analysis was performed with scvelo using standard workflow.

Dentate gyrus

Prepossessing was performed as indicated by the authors of the original study using code published by La Manno et al.1

Neonatal mouse inner ear

Raw sequencing data was downloaded from the NCBI GEO database under accession code GSE71982. Quality control including

read filtering and adaptor trimmingwas performed using fastp.31 Readswere aligned to theGRCm39mouse genome assembly using

STAR version=2.7.8a-2021- 04-2.32 Spliced and unspliced counts were estimated using the velocyto run-smartseq2 command

following the recommendation of the developers.

CD8 development

Read counts were realigned and sorted for spliced and unspliced counts using the analysis pipeline from velocyto.1 Other contam-

inating cell types were removed from the dataset based on outliers in diffusion components.4

Hepatocyte zonation

Data corresponding to clusters Hep 1, 2 and 4 from patient 3 was used to perform the analysis.27

Read counts were realigned and sorted for spliced and unspliced counts using the analysis pipeline from velocyto.1

ADDITIONAL RESOURCES

Trajectory inference analysis with Cytopath including pre-processing and velocity analysis for each dataset presented in this paper

can be found at https://github.com/aron0093/cytopath-notebooks. Download links for anndata objects for each dataset are also

available in the corresponding notebook.

Documentation including installation instructions can be obtained at https://cytopath.readthedocs.io/.
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ABSTRACT

In chronic infections CD8+ T cells acquire a state termed “exhaustion” which is characterized by
impaired effector functions and expression of co-inhibitory receptors as response to continuous TCR
stimulation. Recently, the pool of exhausted T cells has been shown to harbor multiple functionally
distinct populations with memory-like and effector-like features, though differentiation and lineage
relations between these are unclear. In this work we present a comprehensive scRNAseq time-series
analysis from beginning of infection to established exhaustion in CD8 T cells. We apply lineage
inference using informed cell transitions derived from RNA velocity to identify differential start and
end states and connections between them. We identify a branch region early during chronic infection
where pre-committed cells separate into an exhausted and a memory-like lineage and discovered
molecular markers demarcating this branch event. Adoptive transfer experiments confirmed fate-
commitment of cells only after this branch point. We additionally linked the progression along
developmental lineages to antigenic TCR stimulation.

Keywords LCMV · chronic infection · single cell · transcriptome · trajectory · computational
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1 Introduction

Viral infections with human immunodeficiency virus (HIV), hepatitis C virus (HCV) and in mice with lymphocytic
choriomenengitis virus can result in chronic infection with ongoing viral replication and high antigenic load for weeks
or months. This continuous exposure to antigen drives CD8+ T cells into a functionally distinct phenotype, termed
exhaustion [1]. This state is characterized by functional, transcriptional and epigenetic changes that result in expression
of co-inhibitory receptors such as PD-1, LAG-3, 2B4 and CD160, decreased secretion of cytokines like INFγ and TNFα
as well as reduced proliferation and survival. Acquisition of this exhausted phenotype is a continuous and gradual
process driven by excessive TCR stimulation [2].

In this context of chronic antigen exposure, CD8 T cells undergo a differentiation program that differs markedly from
the one observed during acute resolved infection. Previous studies have analyzed and inferred differentiation trajectories
of virus-specific CD8 T cells using bulk or single cell transcriptomic profiling in various systems, including the model
of chronic LCMV infection [3, 4, 5]. Most of these studies have inferred differentiation trajectories based on bulk or
single cell analyses performed at one or two time points during chronic LCMV infection [4, 5].

Asynchronicity in this process as well as different micro-environments that CD8+ T cells experience result in a
heterogeneous population of cells at a given time point of the infection. One sub-population of virus-specific T cells
acquires a phenotype that shares properties with memory T cells from acute infection and has been linked to the
expression and activity of T cell Factor 1 (TCF1) [3] [6]. In contrast to terminally exhausted or effector T cells, these
cells retain proliferative activity and have better survival in the infected host [4]. It is not yet fully understood how and
when these different cell states arise during the course of the infection and which intermediate cell states precede these.

Recent advances in sequencing technologies have made it possible to profile cells genome wide on the transcriptional
level using single-cell RNA sequencing (scRNAseq). This technology allows capturing the transcriptional heterogeneity
of multiple cell populations and to computationally infer sequences of cell states traversed during dynamic processes
such as T cell differentiation in chronic infections. When analyzing scRNAseq datasets, cells are treated as points
in transcriptome space based on their expression profile. Dimensionality reduction techniques like t-SNE [7] and
UMAP [8] construct two-dimensional representations for analysis and interpretation of the high dimensional single-cell
expression data. Pseudotime and lineage inference methods aim at constructing likely transitions between cell states [9].

Recent studies aimed at reconstructing cell state sequences of CD8+ T cell differentiation in chronic LCMV infection
[4], [5], [10]. They discovered multiple phenotypic subsets, namely memory-like, terminally exhausted and effector-like
cells and investigated likely transitions between these subsets. However, these studies lack temporal resolution to
reliably infer trajectories and to identify potential branching events in the differentiation process. Samples were either
generated from different infection settings at single time-points, or at far spaced time-points. Further, applied trajectory
inference methods infer pseudotime and lineages based on similarity of transcripts and lack taking advantage of all the
information present in the scRNA seq data. Directionality information is now – in principle – available for trajectory
inference via RNA velocity analysis. RNA velocity [11] considers additional information about the ratio of un-spliced
to spliced mRNA in transcript data, which serves as a measure to determine the stage (early, intermediate, late) of
individual gene expressions and allows to predict the future expression state and hence to better infer the directionality
towards their neighbors in the high-dimensional transcriptional space. So far no study leveraged RNA velocity in order
to include this information to disambiguate the results from conventional trajectory inference.

In this work we conducted scRNAseq measurements at multiple time-points ranging from the beginning of chronic
LCMV infection until manifestation of exhaustion three weeks after infection. This level of time resolution allows
more detailed identification of cell states and their differentiation. We further included information from RNA velocity
analysis to perform simulation based trajectory inference of differentation events leading to the different terminal CD8+

T cell states observed in chronic LCMV infection. This is the first attempt to make use of RNA velocity to produce
informed differentiation trajectories that connect the different cell states. This analysis allowed us to construct faithful
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lineage trajectories towards the two endpoints of differentiation, namely a terminally exhausted and a TCF1+ cell
population. We identified a potential branching point in the initially shared trajectories and validated our findings using
adoptive transfer experiments of cells arising before or after the branching point. We confirmed that cells before the
branch point gave rise to both exhausted and TCF1+ cells, whereas exhausted cells after the branch point maintained
their phenotype. Additionally, we demonstrated that TCF1+ cells largely retained their phenotype in absence of antigen
stimulation, corroborating the end-point differentiation characteristics of this population. However, if exposed to antigen
stimulus, the TCF1+ population has the ability to differentiate into terminally exhausted cells, in line with previous
adoptive transfer experiments.

2 Results

We first investigated the differentiation landscape of CD8 T cells, followed by RNA velocity analysis to reveal
developmental endpoints. Afterwards we identified two branching trajectories towards memory-like and exhausted cell
states, respectively. We validated commitment to the branches using adaptive transfer experiments and additionally
highlight the importance of antigen stimulation during development.

2.1 Differentation landscape of CD8 T cells during chronic LCMV infection

We acquired single cell transcriptomic data from multiple time points during chronic infection, covering the very early
phases (day 1-4), peak phase (day 7), contraction phase (day 14) and late phase (day 21) (Fig. 1), with the aim to
capture an increased spectrum of the transcriptional landscape during the course of the infection that would allow a
time-resolved analysis of single cell heterogeneity and possibly more accurate inference of differentiation trajectories of
virus-specific CD8 T cells. To this end, T cell receptor (TCR) transgenic (tg) LCMV gp33-41-specific CD8 T cells
(P14 cells) were adoptively transferred into naïve C57BL/6 mice, followed by infection with LCMV clone 13 (Cl13).
Activated and expanded P14 cells were isolated at the above indicated time points and subjected to single cell RNAseq
(scRNAseq) analysis using the 10x Genomics platform.

CD8+ T cells

Virus

M
ag

ni
tu

de

14
days post infection

activation effector early
exhaustion

late
exhaustion

2171 2 3 4

single cell RNA sequencing

Figure 1: Transgenic P14 CD8 T cells were sampled longitudinally during infection. The samples were acquired from
four phases of the infection activation (day 1-4), effector (day 7), early exhaustion (day 14) and late exhaustion (d21)
and scRNAseq was performed using the 10x Genomics platform.

For exploratory analysis of the transcriptome data of the multiple time points, we applied commonly used filtering
and scaling of the raw data [12] and applied principal component analysis to reduce noisy signals. The resulting
multidimensional data was projected into two dimensions using UMAP [8].
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Figure 2: UMAP projections of the filtered and normalized transcript counts are shown. (a) Color indicates the
time-point after infection, at which cells were isolated for scRNAseq (b) louvain cluster assignment based on the first
50 PCs (c) phenotypic cluster annotation based on previous marker genes and differentially expressed genes [4] (d) Cell
composition of the phenotypic clusters by sample time-point.

The UMAP projection revealed a continuous structure of the data emerging from the time-resolved samples, supporting
a continuous developmental process (Fig. 2a). Louvain clustering [13] defined 11 distinct clusters across all samples
(Fig. 2b,d, Supp. Fig. S3). Based on previously described markers for the exhausted subsets, such as CD160, CX3CR1
and TCF1 [3, 1, 4], we further aggregated these cluster into 6 phenotypic groups (Fig. 2c). Activated cells from day 1
to 4 post infection (dpi) clustered at one peripheral region in the data, termed in the following early group (green in
Fig. 2c). Differential expression revealed that the early group presented expression patterns of proliferation as well as
of exhaustion, indicated by expression of Mki67, Cdca3 but also Cd160.

Conversely, two distinct populations from the latest time point at 21 dpi clustered at the other extremes of the spectrum.
Of these “late” endpoints, one population showed high expression of a number of inhibitory receptors, including
PD-1 (Pdcd1), CD39 (Entpd1), LAG-3 (Lag3) and CD160 (Cd160) (Fig. 3a, b), indicating a terminally exhausted
phenotype [14]. This terminally exhausted group (grey in Fig 2c) was composed of clusters from d7 and 14 and
had the highest expression in co-inhibitory receptors and additionally showed high expression of the transcription
factor EOMES. The other end-point populations showed high expression of the transcription factor Tcf7 (Fig. 3a, b),
the memory-marker Il7r as well as Slamf6, revealing this cluster as the previously described memory-like population
[3]. This memory-like group (blue in Fig 2c) was composed of two clusters from day 7, 14 and 21, all having high
expression of Tcf7.
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Cells from 7 and 14 dpi were situated in between the 14 dpi and 21 dpi samples, with the 7 dpi samples being similar
to cells from early time-points on one end of the spectrum, but also connecting to already splitting trajectories into
exhausted and memory-like populations on dpi 14. At day 7 was one cluster identified that presented clear signatures of
exhausted CD8 T cells but retained some expression of Gzmb but also apoptotic genes like Anxa1, we termed this the
exhauted group (yellow in Fig. 2c).

At 14 dpi, some of the cells were still connected to the 7dpi cell states but a considerable fraction of cells had already
further differentiated towards the two endpoints of 21dpi, in particular towards the memory-like endpoint. One cluster
expressing Cx3cr1 exclusively was termed effector-like group (purple in Fig. 2c). Differential expression analysis
(Fig. 3a, Supp. Fig. S3) revealed higher expression levels of Cx3cr1 and additionally killer lectin receptor genes (Klre1,
Klra3). These effector-like cells were only present in samples from day 14 and 21.

We also identified a strong cell cycle component in the two clusters presenting high expression levels of e.g. Mki67
(cluster 1 & 6) (Fig. 3b). Further, we calculated scores for cell cycle and cell division genes based on the three different
cell cycle stages G1 phase, S phase and G2/M phase (Supp. Fig. S4). We observed that this proliferating group (brown
in Fig. 2c) presented high scores for G2/M phase and was composed of cells from the 7 and 14 dpi and to a lesser
degree from the 21 dpi time-point.
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Figure 3: (a) Heatmap of normalized gene expression for a selection of group specific genes. Columns are individual
cells arranged by phenotypic groups. The genes in the rows are grouped according to their phenotypic assignment.
(b) UMAP projection of expression pattern of identified group specific genes for the terminally exhausted (Cd160),
memory-like (Tcf7), proliferating (Mki67) and effector-like group (Cx3cr1)
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2.2 RNA velocity analysis reveals developmental end points

Having mapped serial single cell transcriptomes into a continuous landscape of cellular states, we next aimed at inferring
informed differentiation trajectories into this landscape. To this end we leveraged RNA velocity [11] and applied it to
our longitudinal data set, revealing a vector field demarcating likely transitions between all cell states in the dataset.
Applied to our dataset, this analysis clearly revealed a transition flow from early activated cells at 1-4 dpi towards early
(dpi 7) and late exhausted cells (dpi 14 & 21) (Fig. 4a).

Using the calculated cell transitions, we defined a Markov process with cells as the states and transition probability
estimates from RNA velocity (see Method section). Computing the equilibrium distribution of the forward Markov
process corresponded biologically to the most differentiated phenotypes as the cells transitioned to more differentiated
states until they had acquired their final transcriptional state and did not differentiate further. Conversely, we inverted the
transition probabilities and computed the equilibrium of the backward Markov process. Cell states thereby transitioned
to their most likely previous transcriptional state resulting in the most undifferentiated state, having the highest
probability.

This allowed us to assign cells that are most likely at the start and at the end of the differentiation process. The highest
probably of a start region was at the edge region of the early group (Fig. 4b). This seemed plausible, as we would
expect that the differentiation process started at the edge of the earliest sample (dpi 1-4), where there are no preceding
cell states. This region showed gene signatures indicating strong DNA synthesis and cell cycle activity, that conferred
an activated phenotype (Supp. Fig. S6).

The highest probability for end points was in regions from dpi 21 in the terminally exhausted group (0.5 on average in
cluster, maximum 1.0). In this region many signaling related genes had changed expression, which could be a result of
co-inhibitory receptor signaling (Supp. Fig. S6). Additionally, there was a local maximum in end point probability
in the memory-like group from dpi 21 (0.1 on average, maximum 0.3). Differentially expressed genes in this region
comprised typical genes of the memory-like signature, namely Il7r and Tcf7 (Supp. Fig. S6). Both the terminally
exhausted cells as well as the memory-like cells seemed to comprise an endpoint of differentiation state.

We assessed and confirmed the robustness of the velocity fields by confirming the practical equivalence of start and
endpoint estimates across 574 parameter variants (Supp Fig. S5).

RNA velocity analysis additionally indicated that the process from the start to the end-points is gradual, since there
were a multitude of intermediate transcriptional states between the two extremes. We observed also transitions between
all these intermediate states (Fig. 4a).

2.3 Simulation based inference reveals trajectories towards exhausted and memory-like phenotypes

Based on the high-dimensional vector field resulting from the RNA velocity analysis, we calculated a transition matrix
that contains likely future states for each cell. This transition matrix we used to simulate differentiation trajectories from
cells in the start region. We aimed at understanding the developmental paths that an activated CD8+ T cell could follow
to acquire the two differentiated end-point phenotypes. The probability of a cell moving from one transcriptional state
to another can be approximated by the transition probabilities from RNA velocity. We used the calculated root cells
(Fig. 4b) as starting points for stochastic simulations. Each differentiation step in the transition matrix was simulated
according to the transition probability until one of the previously defined end stages (Fig. 4b) was reached. This
sequence of steps approximated one possible path of differentiation for each cell (Supp. Fig. S7). We simulated 2000
trajectories per endpoint to sample the whole spectrum of possible differentiation trajectories. We observed a strong
disbalance in preference for the endpoints. Only about 1% of the simulated sequences ended up in the memory-like
cluster, whereas the remaining ones differentiated into the exhausted endpoint. We expected the ratio to be shifted
towards the exhausted phenotype but not to this extent, since we measured around 10% memory-like cells at day 21. We
performed more simulations towards the memory-like endpoint to balance the number of trajectories. All the obtained
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Figure 4: (a) stream plot visualizing likely transitions between cells inferred from RNA velocity
(b) The stationary distribution of the backward and the forward transition matrix, respectively, indicate start and end
cell states.

trajectories were then aligned using dynamic time warping and clustered to generate average trajectories. Each cell was
assigned to the nearest average trajectory according to the alignment score (Method section 4), calculated from cosine
distance of its RNA velocity with the direction of the trajectory (Fig. 6a). This resulted in a temporal ordering of the
cells in conjunction with a score to which trajectory it belongs. The detailed procedure of Cytopath is described in [15]).

Our analysis revealed two main trajectories, one towards the exhausted endpoint the other to the memory-like endpoint
(Fig. 5). Both trajectories shared the same cell populations up to a region that was composed of cells obtained from
around 4 dpi. From thereon the trajectories started to diverge into the two phenotypic branches. The differentiation
trajectory towards the exhausted path included the cell population with high cell cycle activity. The memory-like
trajectory did not seem to pass the region of high proliferation, but diverged earlier and transitioned towards the
memory-like endpoint.

Multiple genes were found to be differentially expressed between the two trajectories (Supp. Fig. S8). In the memory-
like trajectory Slamf6, Ccr6, Tnfsf8, Xcl1 and Cxcl10 were expressed at higher levels. Many of them showing gradually
increasing expression towards the differentiated endpoint (Slamf6, Ccr6, Tnfsf8). Xcl1 was highest at the start of
the trajectory and later decreased but was still maintained at much higher levels than on the exhausted branch. The
exhausted branch showed increasingly higher expression of Cxcr6, Ccl5 and Nkg7 as the trajectory progressed towards
the end point. The two genes Ifngr1 and Lgals3 were transiently upregulated in the exhausted trajectory exclusively, but
decreased towards the end point (Supp. Fig. S8).
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Figure 5: Lineage trajectories after simulations towards the two endpoint populations using cytopath. The average
simulation steps to arrive at a cell are color coded per cluster. The coordinates of the average trajectory after alignment
is depicted as black line. The shown average trajectories are based on 2000 simulations per endpoint.

2.4 Branching point of differentiation towards the end points

Based on the simulated mean trajectories we wanted to identify a branching point at which the trajectories of cells
moving towards the exhausted and the memory-like endpoints would diverge. This branching region would demarcate
the point after which a cell would be committed to only one endpoint.

We therefore computed the ratio of the alignment score for each cell to the two average trajectories (Fig 6a). We
observed that in the unstructured early region all cells had equal scores for both the exhausted and the memory-like
fate. However, between average simulation step 800 and 1200, the cells started to be uniquely assigned to only one of
the two trajectories. Interestingly, we observed a region along the differentiation trajectories where some cells aligned
clearly to the exhausted trajectory, some to the memory-like trajectory and some to both. It seemed that this region was
where bifurcation took place. Using a threshold on the alignment score we assigned all cells to either the exhausted
branch (blue), memory-like branch (orange) or pre-committed branch (green, Fig. 6).

To determine which biological time-point would correspond to the identified branch region, we investigated the branch
composition of the four samples (Fig. 6c). The earliest samples were almost exclusively composed of pre-committed
cells, whereas the day 7 sample contained already a large fraction of lineage-committed cells. We reasoned that
bifurcation must take place between day 5 and 6 after infection.

Differential gene expression between the branching region and its immediately adjacent committed branches did not
reveal any clear transcriptional signatures, that would precede or succeed bifurcation. However the trajectory assignment
clearly implied that after the branching region, cells were fully committed to their lineage. Since the alignment score
also considers the velocity direction of each cell, alignment to only one trajectory indicates that differentiation will take
place along this path. The abrupt increase in the alignment score after the branch region suggests that cells beyond the
bifurcation do exhibit coherent and significant velocity away from the bifurcation and this process is unlikely to be
reversible.

2.5 Identification of marker genes predictive for different developmental fates

To further demarcate markers that would specify the branching point, we searched for genes that were characteristic
for this bifurcation - either being expressed at divergent levels before, at, or after the branching point. We trained a
classifier to predict the assigned branch label from the transcriptional profile of each cell (see Method section). If
a gene was expressed in one branch but not the other, it was considered relevant for the prediction. To validate the

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423929doi: bioRxiv preprint 



A PREPRINT - DECEMBER 22, 2020

exh
mem-like
pre

exh
mem-like
pre

d1-4 d7 d14 d21

exh
mem
pre

a b

c

Figure 6: Cells are aligned to the branches of the two fates exhausted (exh), memory-like (mem) or the pre-commited
branch (pre).
(a) The two average trajectories (black) towards the exhausted (blue) and the memory-like fate (orange) with an
pre-commited shared part (green).
(b) Alignment score ratio along the cytopath simulation steps. High values indicated preferential alignment with the
exhaustion trajectory, low values alignment with the memory-like trajectory.
(c) sample time-point composition with respect to branch assignment.

identified branching markers later on a protein level using flow cytometry, we restricted the transcriptional input to
genes transcribing proteins with validated antibodies for staining. The result of this analysis variant allowed us to sort
and experimentally analyze the differentiation potential of pre-committed and committed cell states in later validation
experiments.

The classifier identified 12 genes that were most relevant to distinguish the three branches (Fig. 7). These included
already described markers of the memory-like population, such as Il7r (IL7R), Tcf7 (TCF1) and Slamf6 (Ly108) [3, 4],
but revealed also potential new candidates Icos (CD278), Ly6e (SCA-2) and Itgb1 (CD29) that are highly expressed
in cells from the memory-like branch. Markers relevant for the exhausted branch contained Cxcr6 (CXCR6), Ifngr1
(IFNGR1) and Cd3g (CD3G) but also Selplg (CD162), of which only CXCR6 has been linked previously to exhaustion
[16]. The pre-committed branch showed high expression of Gzmb (Granzyme B) and Mif (MIF) both of which were
expressed at lower levels in the other lineages.

Predicting the branch labels using only these markers resulted in good prediction accuracy (0.85). Additionally, using
only these genes as input to UMAP showed a good separation into the three branches (Supp. Fig. S9).

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2020. ; https://doi.org/10.1101/2020.12.22.423929doi: bioRxiv preprint 



A PREPRINT - DECEMBER 22, 2020

Cxcr6 Ifngr1 Gzmb

Selplg Cd3g Il7r

Ly6e Tcf7 Slamf6

Icos Itgb1 Mif

normalized pseudotime

no
rm

al
iz

ed
ex

pr
es

si
on

exh
mem
pre

Figure 7: The 12 genes identified by the classifier to predict the three branch labels. Boxplot of normalized expression
are shown along normalized pseudotime from cytopath. Color indicates the branch the cells were assigned to based on
the Cytopath alignment score, exhausted (exh), memory-like (mem) or the pre-commited branch (pre).

2.6 Experimental transfer of cells with a presumably pre-committed or committed phenotype show distinct
differentiation potential

To experimentally validate our branch classification, we set out to identify and later sort LCMV-specific CD8 T cells with
phenotypes indicative of a pre-committed state, a committed state towards the exhausted endpoint or the memory-like
endpoint. For validation of phenotypic markers classifying these three cell states, we tested all 12 identified markers for
their ability to discriminate early populations to then test their fate potential. Specifically, we transferred naïve P14 cells
into naïve C57BL/6 mice, followed by chronic LCMV infection. 5 days post infection (when representatives of all three
populations of interest had formed, i.e. the uncommitted cells and the committed exhausted and memory-like cells),
P14 cells were analyzed according to the markers identified using the classifier (data not shown). We first identified
protein markers that showed high variance at the branching time-point. We determined CXCR6 and TCF1 as the
prime candidates for sorting the branches into pre-committed (CXCR6− TCF1−), memory-like (CXCR6− TCF1+)
and exhausted (CXCR6+ TCF1−) cells.

Having identified markers that allowed to distinguish between uncommitted and committed cells into the exhausted
and memory-like branch, we used these markers to isolate the respective populations 5 days into chronic LCMV
infection. Specifically, we transferred naïve P14 T cells expressing GFP under the TCF1 promoter into C57BL/6 mice
and infected them with high dose LCMV Clone-13 (Fig. 8a). At dpi 5 we sorted P14 cells from the three branches
according to expression of CXCR6 and TCF1 (detected by GFP) and transferred them into infection-matched hosts
(Fig. 8b). At one week after transfer (at dpi 12 from the initial infection), we analyzed the progeny of cells originating
from the three branches in the spleen (Fig. 8c). We observed that cells recovered after transfer of exhausted cells into
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infection-matched recipients retained their exhausted phenotype. Cells recovered after transfer of the memory-like
branch exhibited phenotypes of both exhausted and memory-like cells, confirming previous results of differentiation
from memory-like into exhausted cells [4] but contradicting our finding of a memory-like endpoint. Recovered cells after
transfer of pre-committed cells exhibited both a memory-like or an exhausted phenotype, confirming their differentiation
potential into both memory-like and exhausted cells. However, there was a strong bias towards differentiation along
the exhaustion branch, which might be explained by much more extensive proliferation of these cells compared to
memory-like cells.

2.7 Differentiation transitions are driven by antigenic TCR stimulation

Since our RNA velocity and trajectory analysis had revealed the memory-like cells as an end-point of differentiation, we
speculated that their unexpected differentiation into terminally exhausted cell states after adoptive transfer is triggered
by external cues that drastically changed their state. We investigated the possibility of TCR stimulation as such a cue by
transferring cells belonging to the three branches (isolated from mice at 5 dpi following adoptive transfer of P14 cells
and induction of chronic infection with Clone-13) into hosts infected with a LCMV Clone-13 strain that expresses a
variant of the gp33 peptide that is not recognized by P14 cells (Fig. 8a).

We recovered cells from spleen and lymph nodes and analyzed their phenotype based on CXCR6 and Ly108 expression
(Fig. 8d). The recovered cells after transfer of the exhausted branch again retained their exhausted phenotype.
Surprisingly, we recovered much fewer cells with an exhausted phenotype after transfer of memory-like cells and a
major fraction retained their memory-like phenotype, indicating that further differentation was largely halted in the
absence of antigen. The transfer of pre-committed cells resulted in recovery of cells with a largely undifferentiated
phenotype of neither terminally exhausted nor memory-like, largely retaining their pre-committed state. These results
clearly pointed towards TCR stimulation being a major driver of differentiation during chronic infection for both the
pre-committed state and for further differentiation of the memory-like state into fully exhausted cells.

3 Discussion

We analyzed differentiation trajectories of virus-specific CD8+ T cells during chronic LCMV infection using scRNAseq
time-series data from four different time points covering activation, peak, contraction and late phase of the response.
The time-resolved traversal of the transcriptional landscape revealed a continuous and bifurcating process, with early
activated cells at the beginning and both terminally exhausted as well as memory-like cells at the end of this process.
We observed cells with an exhausted phenotype and an effector-like cell population as transient states during early and
late stages of this process, respectively. We further observed for all time points a population of cells with transcriptional
profiles of proliferation.

Applying RNA velocity analysis to our single-cell transcriptional data allowed us to estimate transitions between the
cell states during the progressing immune response. We computed most likely end and start regions and identified
two major differentiation paths leading to the exhausted population and the memory-like population respectively. At
the early time-points until about day 5, the two average trajectories were nearly indistinguishable, but then diverged
increasingly towards their respective endpoints.

We identified a branching region in the early stages of infection before day 5 post infection. Before this branching
point, pre-committed cells would still have the potential to differentiate into both the exhausted and the memory-like
phenotype, whereas cells that had passed the branching point would be destined to differentiate into the endpoint they
had committed to.

Although it is conceivable that factors that were not revealed by transcriptional analysis might be involved to already
pre-determine cell fate during early activation [17] and regulate differentiation, this is not evident on a transcriptional
and protein expression level, where branching of the two main fates manifested itself around day 5 post infection.
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Figure 8: (a) The three P14 branch populations were isolated at 5 dpi from high-dose Clone-13 infected mice (that had
been transferred with naive P14 cells prior to infection) and transferred into infection matched hosts and their phenotype
was assessed 7 days post transfer.
(b) flow cytometry gates used to sort exhausted, memory-like and pre-committed branch
(c) phenotype of the recovered P14 cells at 12 dpi from spleens after high-dose Clone-13 infection and transfer of either
exhausted, memory-like or pre-committed cell populations isolated at 5 dpi. Cells are gated on P14 cells.
(d) phenotype of the recovered cells at 12 dpi from spleens after transfer into hosts infected with Clone-13 P14 escape
mutant. Naïve P14 cells were first transferred into naive C57BL6 mice, followed by Clone-13 infection. At 5 dpi,
exhausted, memory-like and pre-committed populations were sorted and adoptively transferred into infection matched
hosts with Clone-13 escape mutant. Recovered P14 cells are shown.

We derived a small set of gene markers that separate cells into the pre-committed (TCF1neg CXCR6neg), exhausted
(TCF1neg CXCR6hi) and memory-like branch (TCF1hi CXCR6neg) by a classification model. Adoptive transfer of
cells sorted according to these markers, and thereby likely belonging to the three branches, at day five post chronic
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LCMV infection into infection-matched new hosts, confirmed the plasticity of pre-committed cells to acquire both
exhausted as well as memory-like phenotype. Conversely, progeny from committed exhausted cells largely retained their
phenotypes. Although, our velocity and trajectory analysis suggested the memory-like cells to represent a developmental
end-point, we still recovered both memory-like and exhausted cells after transfer of cells from the memory-branch.
These transitions might be rare (and fast) events in the integral setting of an infected mouse, and thus not be represented
in the scRNAseq data. Additionally, i.v. adoptive transfer of memory-like cells into circulation might expose them to
different antigenic burden compared to their natural niches, thereby accelerating a differentation process.

Previously published work used scRNAseq to study CD8 T cell differentiation during chronic infection, isolating virus
specific T cells at different time-points [4, 5, 10, 18]. They made use of dimensionality reduction and computational
tools for trajectory inference. Although, these studies used fewer time-points and the lineage inference included one
time-point only. All these studies consistently described the memory-like and the terminally exhausted cell state, which
we also identified. Some studies [5, 18] additionally described an effector-like CX3CR1+ population arising late during
the infection, which we also found in our late samples from 14 & 21 dpi.

Two studies [4, 5] investigated plasticity and differentiation of the memory-like cells computationally by lineage
inference on a single time-point and through adoptive transfer experiments, concluding that memory-like cells partially
maintain their phenotype and can give rise terminally exhausted and effector-like cells. Our lineage inference across
multiple time-points suggests that the exhausted and the memory-like lineages are separate. We could not exclude, that
we missed certain cellular states in our data set, since we only studied CD8 cells isolated from the spleen of infected
animals. We were unable study developmental stages that are spatially restricted to lymph nodes or specific anatomical
regions within secondary lymphoid organs, or specific differentiation processes that are restricted to non-lymphoid
organs [16]. Additionally, if cell state transitions are rare or fast, it is unlikely that we would capture them in our
snapshot analysis.

Our adoptive transfer experiments of memory-like cells revealed extensive transitions to terminally exhausted states,
which our lineage inference did not detect. However, our transfer experiments into Clone-13 P14 escape mutant infected
hosts suggested that theses transitions were strictly dependent on antigenic TCR stimulation. This could imply that we
did not observe these transitions in our scRNAseq data because memory-like cells receive little TCR stimulation from
their microenvironment in a natural setting. Isolation of memory-like cells by removing them from their niche and
transferring them via intravenous injections could expose them to excessive antigen and trigger differentiation towards
terminally-exhausted cells.

Chen et al. [4] studied early bifurcation events towards either an effector state or TCF+ precursor state. However, the
population they termed “effector” cells already expressed many co-inhibitory receptors like our exhausted group from
7 dpi. They found this early effector cells to be very short-lived and disappear between 8 and 12 dpi. Although our
data suggested a similar bifurcation into effector and memory-like lineage, our exhausted trajectory placed the early
exhausted cells as an intermediate state on the differentiation towards terminally exhausted states. Since Chen et al. used
KLRG1 to identify their effector population, the disappearance of these cells could be explained by down-regulation of
Klrg1 during differentiation towards terminal exhaustion.

The velocity based endpoint analysis did not reveal either the early exhausted or the effector-like states to compose
stable end-points, but that all those states differentiated into terminally exhausted cells. The velocity transitions did
show some flow out of these populations though, which could indicate migration out of the tissue or apoptosis of these
cells, although we did not find strong apoptotic signatures in our data. Considering, that apoptotic cells are cleared very
fast by the phagocytes, clearance of apoptotic cells might be too fast to capture.

Our classification analysis of the branch point revealed a set of genes that discriminates between the three branches. Even
though, our validation experiments confirmed that CXCR6 and TCF1 expression patterns capture the differentiation
potential of CD8 T cells early during the infection, other identified genes might still be relevant in shaping this
bifurcation. Both genes Ifngr1 and Selplg are transiently upregulated around the birfucation point, which could
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imply some influence on cell fate. Considering, that withdrawing T cells from antigen stimulation practically halted
differentiation of pre-committed cells and maintained their state, points towards a significant role of TCR stimulation
and signaling in this bifurcation and decision process.

This work provides additional insights into the differentiation process of CD8 T cells using a combined approach of
scRNAseq analysis, computational trajectory inference and adoptive transfer experiments. Our study revealed an early
bifurcation event, that shaped the differentiation fate during the course of a chronic infection and additionally highlights
TCR stimulation as a significant driver of this differentiation.

4 Material & Methods

Infections and cell isolation

Mice Wild-type male C57BL/6J mice were purchased from Janvier Elevage. Nr4a1-GFP mice expressing GFP under
the control of the NUR77 promoter [19], P14 transgenic (CD45.1) mice expressing a TCR specific for LCMV peptide
gp33–41 [20] and TCF1-GFP mice expressing GFP under the control of the Tcf7 promoter [3] were housed and bred
under specific pathogen–free conditions at the ETH Phenomics Center Hönggerberg. All mice used in experiments
were between 6–16 weeks of age. P14-Nr4a1-GFP mice were generated by crossing Nr4a1-GFP mice to P14 mice.
P14-TCF1-GFP mice were generated by crossing TCF1-GFP mice to P14 mice. All animal experiments were conducted
according to the Swiss federal regulations and were approved by the Cantonal Veterinary Office of Zürich (Animal
experimentation permissions 147/2014, 115/2017).

Virus LCMV clone 13 [21] was propagated on baby hamster kidney 21 cells. LCMV clone 13 P14 escape mutant [2]
was propagated on MC57G cells. Viral titers of virus stocks were determined as described previously [22].

Infection 104 transgenic cells (P14, P14-TCF1-GFP or P14-Nr4a1-GFP) were adoptively transferred 1 day prior
LCMV clone 13 intravenous (IV) infection with 2 x 106 ffu/mouse. For isolation at 1, 2, 3, 4 days post-infection,
105 P14-Nr4a1-GFP cells were transferred.

Cell isolation from tissues After 1, 2, 3, 4, 7, 14 and 21 days of chronic infection, mice were sacrificed with carbon
dioxide and organs (spleen, lymph nodes) were isolated. Spleens and lymph nodes were mashed through 70 µm filters
with a syringe (1 mL) plunger. Cell suspensions were filtered (70 µm) and treated with ammonium-chloride-potassium
buffer (150 mM NH4Cl, 10 nM KHCO3, 0.1 mM EDTA in water) to lyse erythrocytes for 5 min at room temperature.

Cell sorting Spleen samples were depleted of CD4 and B cells by incubating splenocyte suspensions in enrichment
buffer (PBS, 1%FCS, 2 mM EDTA) with biotinylated α-CD4 and α-B220 antibodies at room temperature for 20 min,
followed by incubation with streptavidin-conjugated beads (Mojo, Biolegend) (4%) for 5 min at room temperature.
Cells were then placed on a magnetic separator (StemCell) for 10 min at room temperature, followed by collection
of supernatant. For scRNAseq samples, cell suspensions of spleens isolated from five mice were pooled in samples
from day 7, 14 and 21 post infection and from three mice for samples from early timepoints at day 1, 2, 3 and 4 order
to ensure the samples were representative of a population. All samples from day 1 to 4 were pooled for sorting and
sequencing due to the low frequency of P14 cells in these samples. Enriched samples from the spleen or cell suspensions
from lymph nodes were stained with α-CD8-PerCP, α-CD45.1-APC and fixable lifedead marker to sort live P14 cells
(ARIA cell sorter, BD Biosciences).

Single-cell RNA sequencing & analysis

Sorted P14 cells from different time-points were washed and resuspended in 0.04% BSA. The single cell sequencing
was performed at the Functional Genomics Center Zurich. The cell lysis and RNA capture was performed according
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to the 10XGenomics protocol (Single Cell 3’ v2 chemistry). The cDNA libraries were generated according to the
manufacturer’s protocol (Illumina) and further sequenced (paired-end) with NovaSeq technology (Illumina). The
transcripts were mapped with 10Xgenomics CellRanger pipeline (version 2.0.2).

Pre-processing & Normalization Read counts were realigned and sorted for spliced and unspliced counts using the
analysis pipeline from velocyto [11]. Contaminating other cell types were removed from the dataset based on outliers in
diffusion components. Reads were filtered and normalized according to the Zheng recipe [12] of the scanpy analysis
pipeline [23] retaining 5000 highly variable genes. Louvain clustering and UMAP projection were computed using
standard parameters, using the first 50 principle components.

RNA velocity RNA velocity uses the relative abundance in reads of un-spliced to spliced mRNA to infer the future
state of a particular cell, with a high ratio of un-spliced / spliced mRNA being indicative of recent gene activation,
a balanced ratio of un-spliced / spliced mRNA being indicative of gene expression equilibrium, and a low rate of
un-spliced / spliced mRNA being indicative for terminating gene expression. Integrating the expression levels of the
corresponding genes in neighboring cells allows computing likely transitions between different cellular states in our
data set, revealing a vector field demarcating likely transitions.

Scvelo [24] was used to estimate RNA velocity and infer transition probabilities between cells. The transition
probabilities were used to construct a Markov process. Inference of RNA velocity relies an a set of assumptions that
can be adjusted through several parameters before analysis. The type of pre-processing used, the number of principle
components used as well as the neighborhood size for imputation may influence the resulting transition matrix. We
conducted an extensive assessment of a many parameter combinations to validate the stability of our RNA velocity
analysis. Comparing the equilibrium distributions across 574 parameter sets revealed that the global structure of the
transition matrix was quite stable. The parameter set we have chosen for further analysis produced results found in an
overwhelming majority of tested sets (Supp. Fig. S5).

We estimated gene moments using neighborhood connectivities using 50 principle components, 30 neighbors with the
UMAP method. Velocity was inferred using “stochastic” mode.

Cytopath Cytopath is RNA velocity based lineage inference tool [15]. We applied scvelo’s terminal states routine to
compute equilibrium distributions of the forward and backward Markov process, excluding self transitions. Regions
with terminal state probability higher than 0.3 were identified and the louvain clusters corresponding to these regions
used as start and endpoints. Markov simulations were initialized at the start points and simulated for a maximum of
2000 steps or until they reached the endpoint. We simulated 2000 trajectories from random cell states in the starting
region. All simulated paths were aligned to average trajectories from startpoint to each endpoint using dynamic time
warping. Neighboring cells (2000 nearest neighbors) were aligned to the trajectories using an alignment score, which
was computed based on distance and cosine distance between the cell’s velocity and the direction of the trajectory. Cells
that aligned to only one trajectory were assigned to the exhausted or memory-like branch, respectively. Cells at the
beginning of the infection that aligned to both trajectories were assigned to the pre-commited branch.

All cells were assigned exhausted, memory-like or pre-commited fate according to their alignment score to the
trajectories. Gene expression profiles of 650 genes coding for antibody stainable proteins were then used to predict
these labels using L1-penalized Logistic Regression. We used cross validation to identify the optimal L1-penalty that
would give a reasonably small number of genes but still good prediction accuracy at C=0.1. The resulting prediction
using 12 proteins still classified most cells correctly (accuracy: 0.85). These proteins were then stained on P14 cells
from chronic infection at d5 to sort the branches and adoptively transfer them into infection matched hosts.
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Adoptive transfer experiments

After 5 days of chronic infection, CD8 T cell enriched samples from the spleen or cell suspensions from lymph nodes
were stained with α-CD8-PerCP, α-CD45.1-APC/FITC and α-Cxcr6-PE and α-Ly108-APC to sort P14 cells into the
exhausted, memory-like and pre-commited populations. (ARIA cell sorter, BD Biosciences).

Sorted cells from exhausted (106 cells), memory-like (2x105 cells) and pre-committed (5x104 cells) populations were
transferred via intravenous (IV) injection into infection matched hosts infected with either Clone-13 or Clone-13
P14esc mutant. Cells were recovered from from spleens of these mice 12 days post infection prior to phenotypic
characterization.

Flow cytometry

Surface staining was performed at room temperature for 30 minutes in FACS buffer (2% FCS, 1% EDTA in PBS).
LIVE/DEAD™ Fixable Near-IR Dead (Thermo Fisher) was used to discriminate alive from dead cells. Fluorophore-
conjugated antibodies used for flow cytometry were purchased from BioLegend (Lucerna Chem AG, Luzern, Switzer-
land) (α-CD45.1 BV711 A20; α-CD45.1 APC A20; α-CD8 PerCP 53-6.7; α-CD8 BV395 53-6.7; α-PD-1 PE-BV605
29F.1A12; α-Cxcr6 PE SA051D1; α-Ly108 APC 330-AJ; α-CD8 BV395 53-6.7). Data was acquired LSR II Fortessa
using Diva software (BD Biosciences, Allschwil, Switzerland) and analyzed in FlowJo (BD Biosciences, Allschwil,
Switzerland). Gating and plotting was done using FlowJo (BD Bioscience, Allschwil, Switzerland).
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Abstract

Single-cell RNA sequencing (scRNAseq) protocols measure the abundance of expressed transcripts8

for single cells. Gene expression profiles of cells (cell-states) represent the functional properties9

of the cell and are used to cluster cell-states that have a common functional identity (cell-type).10

Standard clustering methods for scRNAseq data perform hard clustering based on KNN graphs. This11

approach implicitly assumes that variation among cell-states within a cluster does not correspond to12

changes in functional properties. Differentiation is a directed process of transitions between cell-types13

via gradual changes in cell-states over the course of the process. We propose a latent state-space14

Markov model that utilises cell-state transitions derived from RNA velocity to model differentiation15

as a sequence of latent state transitions and to perform soft kinetic clustering of cell-states that16

accommodates the transitional nature of cells in a differentiation process. We applied this model to17

the differentiation of Radial-glia cells into mature neurons and demonstrate the utility of our method18

in discriminating between functional and transitional cell-states.19

Keywords single-cell RNA sequencing · Hidden Markov models · Lineage inference · Kinetic clustering20

Introduction21

Differentiation processes are typically represented as hierarchical transitions between functional cell-types. In contrast,22

it is widely assumed that scRNAseq data capture incremental shifts of gene expression along the differentiation process.23

Gene expression profiles of single cells measured using scRNAseq contain information about the functional properties24

of cell-states, and a differentiation model of incremental change of cell-states i.e. change in gene expression, is not25

consistent with the former model of discrete cell-type transitions. The latter model of differentiation allows for the26

existence of transitional cell-states that may be intermediate in both expression and function [1].27

In standard scRNAseq analysis workflow, a k-nearest neighbours (KNN) graph of cell-states is used to cluster cells28

using community detection algorithms like Louvain or Leiden [2][3][4][5]. Clusters of cell-states are identified as29

cell-types based on marker gene expression and differential expression analysis. Grouping cells in this manner aids30

interpretability; however, since cell-states within a cluster are all assigned the same label, variation within the clusters is31

implicitly discarded as uninteresting noise in further analyses.32

For scRNAseq data from differentiation processes, lineage inference models seek to impose a transitional relationship33

between cell-states. The models compute pseudotime, a score representing progress along the differentiation axis and34

also partition cell-states between multiple co-occurring lineages. Pseudotime estimation can model incremental shifts35

in gene expression, but due to the high sparsity of scRNAseq data, inferring the functional properties of individual cell-36

states from gene expression is challenging. Therefore, the clustering of cell-states remains important for interpretation.37

Prior work has attempted to develop models of cell-type transitions, mainly by building minimum spanning trees among38

cell-state clusters [6][7] or by aggregating the connectivity between cell-states for each cluster [8]. The underlying39

clustering itself is not informed by cell-state transitions since a KNN graph is undirected and symmetric; in contrast, the40

directed signal obtained from RNA velocity enables the estimation of transition probabilities between cell-states. This41

information can be represented as a directed and asymmetric graph [9].42

We introduce a latent state-space model based on cell-state transitions that enable the clustering of cells based on43

their transition dynamics. We refer to this form of clustering as kinetic clustering. Cell state transitions are assumed44

to be observed emissions from dynamics in a smaller latent state-space. The model allows for the probabilistic soft45

assignment of cells towards latent states and can be used to identify transitional cell-states. The dynamics of the46

differentiation process are captured by transitions between latent states. Multiple lineages can be further modelled with47

additional factors representing parallel sequences of latent state transitions [10].48

1



Method49

Model Input50

RNA velocity of single cells can be used to estimate transition probabilities among cell-states [9][11].51

For the set of measured cell-states (observed states) O = {o(1), . . . , o(n)} and an initial probability vector52

Y0 = {P (o(1) | i = 0), . . . , P (o(n) | i = 0)}, the transition probability matrix T over observed states is used to simu-53

late the differentiation process as a sequence of probability vectors Y. The simulation is performed as,54

Yi = Yi−1 ·T = Y0 ·Ti (1)

The simulation is considered to have converged if Yi = Yi−1, i.e. when the simulation reaches the stationary state of55

the Markov chain with the transition matrix T. The latent dynamic model considers the simulated process,56

Y = {Yi} = {{P (o(1) | i), . . . , P (o(n) | i)}} ∀i = 0, 1, . . . , I (2)

as input. In the following text, Po is used to indicate a probability vector over states O such as Yi = Po(o | i).57

Model Specification58

With latent states S = {s(1), . . . , s(m)} and analogous to the simulation over observed states, we describe the dynamics59

over latent states as60

Q = {Qi} = {{P (s(1) | i), . . . , P (s(m) | i)}} ∀i = 0, 1, . . . , I (3)

Let H be the transition probability matrix over latent states S, then corresponding to the simulation (Eq. (1)), a Markov61

chain in the latent space has the form,62

Qi = Qi−1 ·H = Q0 ·Hi (4)

With the assumption of constant emission probabilities of observed states over the latent process P (o | s, i) = P (o | s),63

we express Yi as64

Yi =
∑
s∈S

Po(o, s | i) =
∑
s∈S

Po(o | s)P (s | i) (5)

and due to Eq. (4):65

Yi =
∑
s∈S

Po(o | s) ·Qi =
∑
s∈S

Po(o | s) · (Q0 ·Hi) (6)

Lineages L are modelled as independent Markov chains in the latent space. Furthermore, restricting the lineages to a66

common latent state-space P (o | s, l) = P (o | s),67

Yi =
∑
l∈L

P (l)
∑
s∈S

Po(o | s) · (Q(l)
0 ·H(l)) (7)

where H(l) is the latent state transition probability matrix for lineage l ∈ L and,68

Q(l) = {Q(l)
i } = {{P (s(1) | i, l), . . . , P (s(m) | i, l)}} ∀i = 0, 1, . . . , I (8)
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Model Training69

The trainable parameters of the model are the conditional latent state transition probability matrices H,70

H
(l)
ij = P (si | sj, l) ∀s ∈ S, l ∈ L (9)

the emission probabilities E,71

E(s) = Po(o | s) ∀s ∈ S (10)

the lineage weights W ,72

W = P (l) ∀l ∈ L (11)

and the initial latent state probabilities Q0,73

Q
(l)
0 = P (s | i = 0, l) ∀s ∈ S, l ∈ L (12)

Let Ŷ be the model estimate of Y. The estimated sequence Ŷ is obtained as,74

Ŷi =
∑
L

∑
S

WQ
(l)
i E (13)

The parameters of the model are optimized by minimising the element-wise Kullback–Leibler (KL) divergence using75

gradient descent.76

KL(Ŷ,Y) =
∑
i∈I

∑
o∈O

Y
(o)
i log(

Y
(o)
i

Ŷ
(o)
i

) (14)

The training is regularised for sparsity in the latent state transition matrix with the addition of element-wise KL77

divergence between the diagonal value of the latent transition matrix and a vector of ones to the loss.78

KL(diag(
∑
L

WH),1s) (15)

In order to obtain non-redundant latent states, in lieu of model selection, the Jensen-Shannon divergence of the79

conditional probability vectors of observed states given latent states is minimised.80

JSD(Po(o | s(1)), . . . , Po(o | s(m))) =
∑
o∈O

1
|S| ·

∑
s∈S

KL(Po(o | s), ρS) (16)

where,81

ρS = 1
|S| ·

∑
s∈S

Po(o | s) (17)

Model Output82

The pseudotime of any cell o ∈ O is estimated as the mean step of a cell weighted by the probability of observing a cell83

at each step i,84

∑
i∈I

P (o|i)·i
∑
i∈I

P (o|i) (18)

The conditional probability of latent states with respect to observed states (cells) is used to assign kinetic cluster85

memberships,86
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argmax
s∈S

P (S = s | o) (19)

The transition entropy of a cell is the sum of the entropy of the joint probability of a cell and each latent state,87

− ∑
s∈S

P (o, s) · ln(P (o, s)) (20)

Each lineage l ∈ L is a sequence of transitions in a common state space S. The trajectories of lineages in latent state88

space are represented as sequences of most probable latent states at each step i,89

{argmax
s∈S

P (S = s | l, i)} ∀i = 1, . . . , I (21)

Data availability90

Developing human forebrain91

Data was downloaded from scvelo v0.2.592

Code availability93

Notebooks94

All datasets were processed using standard scRNAseq and RNA velocity workflow. Details of the analyses can be found95

in the following notebooks. https://github.com/aron0093/cy2path_notebooks.96

Implementation97

The model was implemented using PyTorch and Python code for the project can be found at the following repository98

https://github.com/aron0093/cy2path.99

Results100

Factorial state space modelling for differentiation processes101

The observed state-space is considered to be discrete and composed of all observed cell-states. The differentiation102

process is conceptualized as the evolving probability distribution over the observed states and is modelled by simulating103

the RNA velocity-derived transition probability matrix of cell-states. The purpose of the latent state-space model is to104

create an interpretable summary of the simulation.105

Under the latent state-space model, the differentiation process is the transitions between discrete latent states with106

probabilistic emissions of observed states. The model is parameterised with a transition probability matrix over latent107

states and emission probabilities of observed states for each latent state. Analogous to the simulation over observed108

states, the dynamics over latent states are learnt by minimizing the divergence between the simulation and the estimate109

from the latent state-space model.110

Dynamics over the latent states are more interpretable since the number of latent states is much lower than the observed111

states. The probabilistic assignment of cells towards latent states is referred to as kinetic clustering. Kinetic clustering112

of cells is based on state transitions unlike clustering based solely on gene expression profiles. Kinetic clusters group113

cell-states that arise together during the differentiation process. Lineages are modelled as transitions between latent114

states and are also informative of the relative persistence of latent states. Multiple co-occurring lineages are modelled115

as independent Markov chains in latent state-space and can be considered independent components of the observed116

differentiation dynamics.117

Identifying transitional cells in developing human forebrain118

The developing human forebrain dataset consists of the glutamatergic neuronal lineage in human embryonic cells.119

The process follows a linear differentiation path from Radial-glia (progenitor) cells via a neuroblast (intermediate)120

4



Figure 1: Identifying transitional cells in developing human forebrain. (A) Outputs of standard workflow
scRNAseq and RNA velocity analysis annotated on the first two principal components. (A.1.) Leiden clustering of cell
states, (A.2.) RNA velocity vectors and estimated pseudotime. The pseudotime of a cell is calculated as the mean step
weighted by the probability of observing a cell at each step. (A.3.) Root and (A.4.) Terminal cell states inferred using
RNA velocity. (B) Outputs of our latent state space model. (B.1.) Kinetic clustering of cell states which is the most
probable latent state per cell. (B.2.) Most probable latent state at each simulation step. (B.3.) Ratio of overlapping cells
in each static (Leiden) and kinetic cluster. (C) Identification of transitional cell states. (C.1.) Pseudotime distribution of
cells in each static cluster. (C.2.) Transition entropy of cells; computed as the entropy of the joint probability of a cell
and each latent state; distribution over static clusters. The red line is the threshold to discriminate transitional cells
from the rest. (C.3.) Transition entropy of cells. (D) Biological identification of transitional cells as neuroblasts. (D.1.)
Pearson correlation between gene expression and transitional entropy of cells. (D.2.) Marker genes’ (EOMES, NHLH1)
expression distribution in transitional cells vs rest and for each Leiden cluster.
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population that is locked into the neuron (mature) fate [9]. The intermediate neuroblasts are highly motile cells that121

migrate to target brain regions before terminal differentiation [12] [13].122

Root and terminal states inferred with RNA velocity correspond to the Radial-glia and mature neurons, respectively, as123

has been previously reported [Figure 1A.3-4] [9]. The model was fit using default parameters [Notebooks] . Kinetic124

clustering partitioned the data into two clusters [Figure 1B.1]. Static clusters computed using the Leiden algorithm125

overlap exclusively with one of the kinetic clusters except Leiden cluster 3, which appears to be split between the two126

kinetic clusters [Figure 1B.3].127

Pseudotime estimated using RNA velocity has high variance in Leiden cluster 3, suggesting that this cluster may contain128

transitional cells [Figure 1C.1]. Transitional cells were identified as cells with high transitional entropy [Figure 1C.2-129

3]. Marker genes for neuroblasts were enriched in the set of genes positively correlated with transitional entropy130

[Figure 1D.1] [14].131

Cells high in the expression of EOMES [9] and of NHLH1 [15], canonical markers for neuroblast cells, are spread132

across multiple Leiden clusters. Cells expressing marker genes overlap with cells identified as transitional [Figure 1D.2].133

This analysis concludes that transitional entropy is a useful criterion for selecting transitional cells.134

Discussion135

Differentiation processes are generally represented as a sequence of transitions between cell-types. Intermediate136

cell-types represent distinct, physiological stages of the process. Clustering of cell-states based on gene expression137

profiles is an essential step in the study of both terminally differentiated and differentiating cells. Groups of cells138

obtained in this manner are identified as canonical cell-types by marker identification and functional analysis. In139

contrast, lineage inference approaches utilise the highly resolved measurement of cell-states with scRNAseq, to model140

cell-state transitions as gradual processes and not as discrete transitions between cell clusters [16][11]. These methods141

infer differentiation coordinates for individual cells in the form of pseudotime and cell fate probability.142

Inference of the identity and function of individual cell-states is challenging due to dropout of genes measured in143

scRNAseq and high biological stochasticity between similar cell-states. Dimensionality reduction is a necessary step to144

compensate for missing measurements by exploiting correlation in genes’ expression. While dimensionality reduction145

reduces the number of features, clustering is an analogous process of reducing the number of states. Cells within a146

cluster are assigned the same label and subsequent analysis such as differentiation expression testing implicity assumes147

variation between these cell-states to be uninformative variation. The reduction of states aids interpretabiltiy and148

discovery of functional associations between genes.149

For scRNAseq data from differentiation processes, unlike terminally differentiated cells, some variation within clusters150

corresponds to the differentiation process itself. A model of transitions between clusters, while interpretable, cannot151

faithfully represent an incremental process as well as gradual divergence of lineages. Information on transitional cells,152

the relative time of transitions and the persistence of intermediate states is lost in such a representation [8][6][7].153

The asynchronous differentiation of cells is the fundamental basis for constructing models of differentiation processes154

from scRNAseq data. It can therefore be expected that biological samples collected at different time points will have155

different distributions of cell-states. Therefore, we propose an approach that models the differentiation process as an156

evolving probability distribution over observed cell-states. Such an approach allows for the simultaneous persistence157

of cell-states in different stages of the process while also capturing the sequence of transitions as well as the relative158

temporal coordinate. RNA velocity of single cells has enabled the estimation of asymmetric transitions between159

cell-states and several methods have used these transitions for lineage inference [9][11]. In prior work, we demonstrated160

the utility of a Markov simulation-based lineage inference approach that exploits emergent properties not discernable via161

analytical formulations [17]. While simulations over cell-states have the desired properties for our modelling approach162

to differentiation processes, a simulation over several thousand cell-states is not interpretable.163

Therefore, we introduce a latent state-space model where we consider the simulation over cell-states to be driven164

by a latent Markov process over a much smaller number of latent states. The inferred latent process has higher165

interpretability while retaining the attributes of our approach to differentiation processes. Kinetic clustering of cells is166

based on state transitions, unlike clustering based on only expression profiles. In the analysis of the human forebrain167

dataset, we demonstrate that kinetic clustering groups cells with temporal similarity and the utility of this approach168

in the identification of transitional cells. The model has been implemented using pyTorch and can make use of GPU169

parallelisation. The code relies on standard packages in the field and can easily be incorporated into RNA velocity-based170

trajectory inference workflows.171
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Abstract

Motivation: Improvements in single-cell RNA-seq technologies mean that studies measuring multiple experimental
conditions, such as time series, have become more common. At present, few computational methods exist to infer
time series-specific transcriptome changes, and such studies have therefore typically used unsupervised pseudo-
time methods. While these methods identify cell subpopulations and the transitions between them, they are not ap-
propriate for identifying the genes that vary coherently along the time series. In addition, the orderings they estimate
are based only on the major sources of variation in the data, which may not correspond to the processes related to
the time labels.

Results: We introduce psupertime, a supervised pseudotime approach based on a regression model, which explicit-
ly uses time-series labels as input. It identifies genes that vary coherently along a time series, in addition to pseudo-
time values for individual cells, and a classifier that can be used to estimate labels for new data with unknown or dif-
fering labels. We show that psupertime outperforms benchmark classifiers in terms of identifying time-varying
genes and provides better individual cell orderings than popular unsupervised pseudotime techniques. psupertime
is applicable to any single-cell RNA-seq dataset with sequential labels (e.g. principally time series but also drug dos-
age and disease progression), derived from either experimental design and provides a fast, interpretable tool for tar-
geted identification of genes varying along with specific biological processes.

Availability and implementation: R package available at github.com/wmacnair/psupertime and code for results re-
production at github.com/wmacnair/psupplementary.

Contact: manfred.claassen@med.uni-tuebingen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA-sequencing studies have been used to define the
transcriptional changes in biological time series, including embryon-
ic development (Petropoulos et al., 2016), response to stimulus
(Treutlein et al., 2016), differentiation (Bendall et al., 2014) and
ageing (Enge et al., 2017). Such studies are based on single-cell
RNA-seq measurements over a sequence of experimental labels of
the successive timepoints. These data are typically analysed using
unsupervised pseudotime techniques to extract the corresponding
temporal sequence of transcriptomic states. These approaches use
similarities between cells to computationally order them along tra-
jectories, allowing researchers to identify high-level cell subpopula-
tions and the transitions between them. However, unsupervised
methods are not designed to identify genes associated with a process
unfolding over time. In addition, they assume that the major driver
of variation in the data is most indicative of the time series-induced
cell orderings. This means that where the changes along the time

series are subtle, or where there are strong additional sources of vari-
ation, the orderings they identify may not be those associated with
the time series (Saelens et al., 2019). Only recently, approaches have
been published to derive or refine pseudotime with time-series infor-
mation (Shao et al., 2021; Tran and Bader, 2020). To further ad-
dress this methodological gap, we introduce a supervised
pseudotime technique, psupertime, which explicitly uses time-series
labels as input (Fig. 1A). psupertime is based on penalized ordinal
regression (Fig. 1B), a statistical technique used where data have cat-
egorical labels that follow a sequence. psupertime produces three
outputs. Firstly, it learns a small, interpretable set of genes that vary
coherently over the time series. Secondly, a linear combination of
these genes assigns a pseudotime value to each cell, which approxi-
mately recapitulates the ordering specified by the sequence of labels.
Thirdly, it can be used to classify new data according to the process
labelled in the data used for training. These outputs allow for
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targeted characterization of processes for any single-cell RNA-seq
data where sequential labels are available (such as time, disease pro-
gression or unidimensional spatial measurements), despite substan-
tial variation not associated with the process of interest. Full details
of the method are given in Section 2.

We demonstrate psupertime on a dataset comprising 411 acinar
cells from the pancreas, from eight human donors with ages from 1

to 54 years (Enge et al., 2017). Acinar cells perform the exocrine
function of the pancreas, producing enzymes for the digestive sys-
tem. This dataset was selected because each set of cells was obtained
from different donors, resulting in significant variation in the dataset
unrelated to donor age (Fig. 1C). Despite this variation, psupertime
finds a cell-level ordering which respects the age progression, while
separating the labels from each other (Fig. 1D). We show that the

Fig. 1. (A) Inputs to psupertime are single-cell RNA-seq data, where the cells have sequential labels associated with them. psupertime then identifies a sparse set of ordering

coefficients for the genes. Multiplying the gene expression values by this vector of coefficients gives pseudotime values for each cell, which place the labels approximately in se-

quence. (B) Cartoon of statistical model used by psupertime, including thresholds between labels. Where there is a sequence of K condition labels, psupertime learns K�1 sim-

ultaneous (i.e. sharing coefficients) logistic regressions, each seeking to separate labels 1 . . . k� 1 (out) from k . . . K (in). (C) Dimensionality reduction of 411 human acinar cell

data with ages ranging from 1 to 54 (Enge et al., 2017). Representations in two dimensions via non-linear dimensionality reduction technique UMAP. Colours indicate donor

age. (D) Distributions of donor ages for acinar cells over the pseudotime learned psupertime. Vertical lines indicate thresholds learned by psupertime distinguishing between

earlier and later sets of labels; colour corresponds to the next later label. (E) Expression values of selected genes (five with largest absolute coefficients; see Supplementary Fig.

S2 for 20 largest). The x-axis is psupertime value learned for each cell; y-axis is z-scored log 2 gene expression values. Gene labels also show the Kendall’s s correlation between

sequential labels (treated as a sequence of integers 1; . . . ;K) and gene expression

Supervised pseudotime i291
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performance of psupertime is robust, including perturbations in
labels (see Supplementary Results S1).

2 Materials and methods

2.1 Overview of psupertime methodology
psupertime requires two inputs: (i) a matrix of log read counts from
single-cell RNA-seq, where columns correspond to genes and rows

correspond to cells; and (ii) a set of labels for the cells, with a
defined sequence for the labels (e.g. a set of cells could have labels
day1, day3, day1, day2, day3). (Note that not all cells need to be

labelled: psupertime can also be run on a labelled subset.) psuper-
time then identifies a set of ordering coefficients, bi, one for each

gene (Fig. 1A). Multiplication by this vector of coefficients converts
the matrix of log gene expression values into pseudotime values for
each individual cell. The set of pseudotime values recapitulates the

known label sequence (so the cells with labels day1 will on average
have lower pseudotime values than those labelled day2 and so on).

The vector of coefficients is sparse, in the sense that many of the val-
ues are zero; these therefore have no influence on the ordering of the
cells. Genes with non-zero coefficients are therefore identified by

psupertime as relevant to the process which generated the sequential
labels.

Suppose the sequence of condition labels we have is 1; . . . ;K.
Intuitively, psupertime learns a weighted average of gene expression
values that separates the cells with label 1 from the cells with labels

2; . . . ;K, at the same time as separating 1, 2 from 3; . . . ;K, and 1, 2,
3 from 4; . . . ;K and so on (Fig. 1B). This can be thought of as solv-

ing K—1 simultaneous logistic regression problems and is termed or-
dinal logistic regression (McCullagh, 1980).

As described so far, psupertime can be thought of as minimizing
a cost, where the cost is the error in the resulting ordering. To make
the results more interpretable, we would like psupertime to use a

small set of genes for prediction. To do this, we add a cost for each
coefficient bi used, so that psupertime is minimizing

errorþ k
P

i jbij; approaches like this are termed regularization, and
in this case L1 regularization. The parameter k controls the balance
between minimizing error, and minimizing the ‘coefficient cost’. The

method for implementing this approach is based on the R package
glmnetcr, which we have extended with an additional statistical
model.

The results of this procedure are: (i) a small and therefore inter-
pretable set of genes with non-zero coefficients; (ii) a pseudotime

value for each individual cell, obtained by multiplying the log gene
expression values by the vector of coefficients; and (iii) a set of val-

ues along the pseudotime axis indicating the thresholds between suc-
cessive sequential labels (these can then be used for classification of
new samples). Where the data do not have condition labels, psuper-

time can be combined with unsupervised clustering to identify rele-
vant processes (see Supplementary Results S3).

2.2 Pre-processing of data
To restrict the analysis to relevant genes and denoise the data, psu-
pertime first applies pre-processing to the log transcripts per million

values. Specifically, psupertime first restricts to highly variable
genes, as defined in the scran package in R, i.e. genes that show
above the expected variance relative to genes with similar mean ex-

pression (Lun et al., 2016). Genes that are only expressed in a small
number of cells (the default is 1%) are excluded. psupertime imple-

ment data denoising and dropout correction by calculating correla-
tions between the log expression values across all selected genes for
each pair of cells, using the correlations to identify the 10 nearest

neighbours for each cell and replacing the value for a given cell by
the mean value over these neighbours. Finally, the resulting log-

count values for each gene are scaled to have mean zero and stand-
ard deviation one.

2.3 Penalized ordinal logistic regression
psupertime applies cross-validated regularized ordinal logistic re-
gression to the processed data, using the labels as the sequence.
Ordinal logistic regression is an extension of binary logistic regres-
sion to an outcome variable with more than two labels, where the
labels have a known or hypothesized sequence. The likelihood for
ordinal logistic regression is defined by multiple simultaneous logis-
tic regressions, where each one models the probability of a given ob-
servation having an earlier or later label, with the definition of
‘early’/‘late’ differing across the simultaneous regressions (Fig. 1B).
The same linear combination of input variables is used across all in-
dividual logistic regressions. This specific model of ordinal logistic
regression, in which the simultaneous logistic regressions each seek
to separate labels 1 . . . k from labels kþ 1 . . . K, is termed propor-
tional odds. (A commonly used alternative is the continuation ratio
model, where the regressions seek to separate labels 1 . . . k from
label kþ1 alone. This is also implemented as an option in
psupertime.)

In the case where the number of input variables is high relative
to number of observations and may include many uninformative
variables, as is common in single-cell RNA-seq, it can be helpful to
introduce sparsity (i.e. to increase the number of zero coefficients).
psupertime uses L1 regularization to do this. Our approach is based
on that in the R package glmnetcr (Archer and Williams, 2012),
which reformulates the data and associated likelihood functions into
one single regression model, to take advantage of the fast perform-
ance of the glmnet package (Friedman et al., 2010). The model ori-
ginally implemented in glmnetcr is the continuation ratio likelihood;
we have extended this approach to implement the proportional odds
likelihood, as this model is more appropriate for assessing an entire
biological process. Under the proportional odds assumption, the
two categories are: categories j and higher, and categories lower
than j; the regression therefore estimates logðPðY >¼ jÞ=PðY < jÞÞ.
Under the continuation ratio assumption, the two categories are: j,
and categories lower than j; here, the regression estimates
logðPðY ¼ jÞ=PðY < jÞÞ. Intuitively, the proportional odds frame-
work models an observation’s global progression along the ordinal
values, while the continuation ratio framework models the probabil-
ity of proceeding to the next ordinal value. For most of the examples
that we have seen, such as studying development or ageing, the pro-
portional odds framework is appropriate. However, the continu-
ation ratio framework may be appropriate in some cases, for
example in disease progression, or evolutionary processes. Given in-
put data X 2 R

n�p and y 2 N
n condition labels (which for simplicity

we assume are integers), this results in the following cumulative dis-
tribution function for ordinal logistic regression:

Pðyi � jjXiÞ ¼ /ðhj � bTXiÞ ¼
1

1þ expðbTXi � hjÞ
:

Here, Xi and yi are the vector and integer corresponding to the
ith observation and label respectively, j indicates one of the possible
condition labels, b is the vector of coefficients and fhjg are the
thresholds between labels. / is the logit link function, which trans-
forms the linear combination of predictors into a probability. Note
that the probability given here is cumulative and that to calculate
the probability of an individual label, we have to calculate the differ-
ence between successive labels. This results in the following unpen-
alized likelihood:

Lðb; hjy;XÞ ¼
YN

i¼1

ð/ðhyi
� bTXiÞ � /ðhyi�1 � bTXiÞÞ;

where yi is the label of observation i. Including the L1 penalty, for a
given value of k, we obtain the optimal values of b and h by maxi-
mizing the following penalized objective function:

argmax
b;h

ðlog Lðb; hjy;XÞ � k
Xp

i¼1

jbijÞ:

psupertime uses cross-validation (with 5 folds as default) to identify
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the optimal level of L1 regularization: the optimal k is the value
with the highest mean score over all held-out folds (either accuracy
or cross-entropy may be selected as the score; the default is cross-
entropy). To increase sparsity, we use the highest value of k with
mean training score within one standard error of the optimal k, ra-
ther than take the optimal k itself [following Friedman et al.
(2010)]. The model is then retrained using all training data, with
this value of k, to obtain the best-fitting model.

Where psupertime is used to classify completely new data (e.g.
from a different experiment), to make the predictions more robust,
the cross-validation should take data structure into account (e.g.
selecting entire samples to be left out, rather than cells selected at
random).

2.4 Psupertime outputs
The psupertime procedure results in a set of coefficients for all input
genes (many of which will be zero) that can be used to project each
cell onto a pseudotime axis, and a set of cut-offs indicating the
thresholds between successive sequential labels (Fig. 1D). These can
be analysed in various useful ways.

The small, interpretable set of genes reported to have non-zero
coefficients permits both validation that the procedure has been suc-
cessful (by observation of genes known to be relevant to the process)
and discovery of new relevant genes. The magnitude of a coefficient
is a measure of the contribution of this gene to the cell ordering.
More precisely, for a gene i with coefficient bi, each unit increase in
log transcript abundance multiplies the odds ratio between earlier
and later labels by ebi . Where bi is small, a Taylor expansion indi-
cates this is approximately equal to a linear increase by a factor of
bi.

The thresholds indicate the points along the psupertime axis at
which the probability of label membership is equal for labels before
the cut-off, and after the cut-off. The distances between thresholds,
namely the size of transcriptional difference between successive
labels, are not assumed to be constant and are learned by psuper-
time. Distances between thresholds therefore indicate dissimilarity
between adjacent labels, and thresholds which are close together
suggest labels which are transcriptionally difficult to distinguish.

The learned geneset can also be used as input to dimensionality
reduction algorithms such as t-SNE or UMAP; this is discussed in
more detail in Supplementary Results S4.

Rather than learning a pseudotime for one fixed set of input
points, psupertime learns a function from transcript abundances to
the pseudotime. It can therefore be trained on one set of labels and
applied to new data with unknown or different labels: any data with
overlapping gene measurements can be assessed with regard to the
learned process. Furthermore, psupertime can be learned on two dif-
ferent datasets, with different labels, and then each applied to the
other dataset: the sequential labels from one dataset allow coeffi-
cients relevant to that sequence to be learned, which can then be
used to predict these labels for the second dataset. See
Supplementary Figure S23 for more discussion.

2.5 Simulations of single-cell RNA-seq data
psupertime is principally useful because it can identify genes which
vary over the course of time-series labels. To test this capability, we
simulated single-cell RNA-seq data to include three types of gene
profiles, defined in terms of their mean expression: mean varying as
a time series; sample-specific variation in the mean; and constant
mean expression. All genes have biological and technical noise
around this mean. This mimics the likely experimental setup, in
which the expression at each timepoint is composed of both proc-
esses related to the time series, and unrelated variability particular
to that sample, e.g. where the samples are derived from different
mice.

Our simulation procedure was as follows: (i) calculate relevant
statistics from a selected reference dataset, composed of multiple
labels, (ii) randomly sample latent time values for each cell, around
a common mean for the cell’s label, (iii) randomly assign one of the
three gene profile types to each gene and randomly sample some

parameters for each gene and (iv) sample counts for each cell and
gene based on the combination of cell- and gene-level parameters.
We discuss each of these steps in turn.

As a reference dataset, we used 575 mouse embryonic beta cells
(Qiu et al., 2017a), restricted to 2666 highly variable genes by the
procedure described in Lun et al., where the cells were labelled with
seven distinct time labels. The statistics used were library size for
each cell (i.e. the total number of reads observed) and the mean lg

and dispersion qg for each gene g (calculated using edgeR; Robinson
et al., 2010), assuming a negative binomial distribution. In each
simulation, the library sizes of cells were randomly permuted, and
the number of cells allocated to each label was randomly permuted.

To sample the latent time values for label i, li, we assumed an ex-
ponential distribution of time until the next timepoint. The first time
point label has mean value 0, then the time to each subsequent time-
point is drawn from an exponential distribution with rate 0.5 (i.e.
mean time difference of 2): lijli�1 � Expð0:5Þ þ li�1. To allow for
cell-to-cell variability, we then add Gaussian noise to the values for
each cell c, with mean 0 and standard deviation 1: tcjli � Nðli; 1Þ.
This results in a latent time value for each cell. We then scale these
values to have minimum 0 and maximum 1.

The three possible types of gene expression profile that we
defined were: time series; label-specific; and non-specific. Each gene
follows one of these profiles. Each gene has dispersion and base
mean expression defined by the reference dataset. The gene expres-
sion profiles were simulated as follows:

• Time-series genes have expression which changes with respect to

the latent time values for each cell, where the log fold change

relative to the mean follows a logistic curve. This curve is defined

by three values: t0, the curve’s midpoint; k, half the derivative of

the curve at that midpoint; and L, the asymptotic maximum

value of the curve. The log mean expression of this gene in a cell

with latent time value tc is therefore

logðlgÞ þ L � logisticððtc � t0Þ � kÞ. For each gene, we sampled t0
from a uniform distribution over ½0; 1�; k from a log10-normal

distribution with mean 1 and standard deviation 1; and L from a

gamma distribution with shape 4 and rate 2.
• Label-specific gene profiles are defined by two parameters: the

sample in which they show differential expression, and the log

fold change in that sample relative to the mean. For each gene,

we uniformly at random select a label, and sample the log fold

change from a gamma distribution with shape 4 and rate 2.
• Genes with non-specific expression are defined by the dispersion

and base mean identified from the reference dataset, and have no

difference in distribution across labels.

Each simulation has a defined set of proportions for each type of
gene profile, ðpts;plabel;pnonÞ. Each gene is randomly assigned one of
the types according to these probabilities.

We now have all the parameters required to sample counts for
each combination of cell and gene. The gene-level parameters define,
via the combination of base mean expression and possibly also a log
fold change relative to the base mean, the mean expression for a
given gene, plus its dispersion. The cell-level parameters define the
library size for each cell, which is used to scale the base mean. For
each cell and gene combination, we sample from the defined nega-
tive binomial distribution.

2.6 Simulations of single-cell RNA-seq data with cell

types
To simulate time-series data comprising multiple cell types, we used
fluorescence-activated cell-sorted stem cells at different stages of dif-
ferentiation (Koh et al., 2016), which had previously been used for
benchmarking (Duò et al., 2018). We assumed that genes had the
following four profile types: global time-series, cell-type time series,
batch effect and non-specific genes. Global time-series genes have
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the same timing and effect size on gene expression for all cell types;
cell-type time-series genes vary over time in all cell types, but the
timing and strength of effect are variable between cell types.
Specifically, we sampled the parameters defining the response to
time series in exactly the same way as for our previous simulations
(see Section 2.5); however, for globally varying genes, these parame-
ters were constant across cell types, while for cell-type varying
genes, these parameters were sampled independently for each cell
type. After simulating count data, we applied psupertime to each
cell type individually, and to all cell types grouped together.

2.7 Benchmarking of time-series gene identification

against classifiers
psupertime is a classifier that identifies a small subset of relevant fea-
tures. We therefore compared it to alternative classification meth-
ods, which also produce variable importance measures.

Multinomial regression is a simple baseline approach to classifi-
cation (Venables and Ripley, 2002). For each label, a linear logistic
regression is performed to distinguish label from non-label, resulting
in k coefficients for each gene. To identify relevant features, for each
gene, we calculate the sum of squares of the k coefficients; where a
gene is relevant for classifying many labels, or strongly relevant for
one label, it will have a large combined weight.

Random forest is a widely used classification algorithm that is
known to have good performance in many circumstances (Caruana
et al., 2008). One of the outputs produced by the algorithm is ‘im-
portance’, which is the (relative) mean increase in error when a given
variable is permuted. This can be used to identify which genes are
most critical to classification performance.

To assess performance, we simulated single-cell RNA-seq data
(as described in Section 2.5), assuming that mean gene expression
followed one of three possible profiles: time-series, label-specific or
a constant mean across labels. We varied the proportions of these
types of gene, so that the proportion of genes following time-series
profiles, pts, was 0.1, 0.3, 0.5, 0.7 or 0.9. The proportion of genes
following label-specific profiles, plabel, was between 0.1 and 1� pts.
The proportion of non-specific genes, pnon, accounted for the re-
mainder of genes.

For each triplet of distinct ðpts;plabel;pnonÞ values, we did 20 sim-
ulations starting from 20 different random seeds. For a given simula-
tion, applying psupertime and the benchmark methods resulted in
an ‘importance’ value for each gene. We used this variable to predict
time-series-specific genes, and calculated precision-recall curves for
each classifier on the basis of how successfully these values identified
the true time-series genes.

We note that due to different combinations of randomly selected
parameters, some time-series genes in the simulations will be easier
to detect and some more difficult. For example, a gene with low ab-
solute log fold change value L, and high dispersion q, will have a
poor signal-to-noise ratio for the detection of time-series trends.
This puts biologically realistic limits on the best performance pos-
sible for any algorithm, as for some genes any time-series trends will
be obscured by transcriptional variability. For this reason, and also

because psupertime is intended to identify a small set of genes, we
have restricted our analysis to values of recall between 0% and
10%.

2.8 Benchmarking of cell orderings against pseudotime

methods
Both psupertime and unsupervised pseudotime techniques produce a
cell ordering, which may or may not correlate with the label order-
ing. We compared psupertime against unsupervised pseudotime
methods, on five datasets with time-series labels (Table 1). We first
performed common pre-processing and identification of relevant
genes for each dataset, to identify either highly variable genes, or
genes showing high correlation with the label sequence. See
Supplementary Results S2 for further discussion.

To identify highly variable genes, we followed the procedure
described by Lun et al., using an false discovery rate (FDR) cut-off
of 10% and biological variability cut-off of 0.5 [see Lun et al.
(2016) for details of these parameters]. To identify genes showing
high correlation with the labels, we calculated the Spearman’s cor-
relation coefficient between sequential labels converted into inte-
gers, and log gene expression value. Genes with absolute correlation
>0.2 were selected.

For principle component analysis (PCA), we calculated the first
principal component of the log counts and used this as the pseudo-
time. Calculation of Monocle2 uses the following default settings:
genes with mean expression < 0:1 or expressed in <10 cells filtered
out; negbinomial expression family used; dimensionality reduction
method DDRTree; root state selected as the state with the highest
number of cells from the first label; function orderCells used to ex-
tract the ordering.

Calculation of slingshot uses the following default settings: first
10 PCA components used as dimensionality reduction; clustering via
Gaussian mixture model clustering using the R package mclust,
number of clusters selected by Bayesian information criterion; root
and leaf clusters selected as the clusters with highest number of cells
from the earliest and latest labels, respectively; lineage selected for
pseudotime is path from root to leaf cluster. Note: For cells very dis-
tant from the selected path, slingshot does not give a pseudotime
value. For these cells, we assigned the mean pseudotime value over
those that slingshot did calculate. Calculation of psupertime used
default settings, as described in Section 2.

We tested the extent to which each pseudotime method could
correctly order the cells by calculating measures of correlation be-
tween the learned pseudotime, and the sequential labels. Kendall’s s
considers pairs of points and calculates the proportion of pairs in
which the rank ordering within the pair is the same across both pos-
sible rankings.

To identify genes with high correlation with the sequential con-
dition labels (Supplementary Table S1), we treated the sequential
labels as the set of integers 1; . . . ;K, calculated the Spearman correl-
ation coefficient with the gene expression. Genes were selected that
showed absolute correlation of >0.2 with the sequential labels (few
genes showed high correlation with the sequential labels; this low

Table 1. Details of datasets used in benchmarking of pseudotime cell orderings

Dataset name Source Accession Labels used No. of labels No. of cells No. of highly varying genes

Acinar cells Enge et al. (2017) GSE81547 Donor age 8 411 827

Human germline, F Li et al. (2017) GSE86146 Age (weeks) 12 992 1081

Embryonic beta cells Qiu et al. (2017a) GSE87375 Developmental

stage

7 575 2666

Human ESCs Petropoulos et al. (2016) E-MTAB-3929 Embryonic day 5 1529 2876

MEF to neurons Treutlein et al. (2016) GSE67310 Days since

induction

5 315 1698

Colon cells Herring et al. (2017) GSE102698 User-selected

clusters

4, 5 1894 1515

iPSCs Schiebinger et al. (2019) GSE106340 Days during

reprogramming

11 3600 731
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cut-off was used to ensure that a sufficient number of genes was
selected).

2.9 Identification of relevant biological processes
To identify biological processes associated with the condition labels,
psupertime first clusters all genes selected for training (e.g. the de-
fault highly variable genes), using the R package fastcluster, using
five clusters by default. These are ordered by correlation of the
mean expression values with the learned pseudotime, i.e. approxi-
mately into genes that are up- or down-regulated along the course of
the labelled process. psupertime then uses topGO to identify bio-
logical processes enriched in each cluster, relative to the remaining
clusters; enriched GO terms are calculated using algorithm ¼
‘weight’ and statistic ¼ ‘fisher’ (Alexa and Rahnenführer, 2009).

3 Results

psupertime produces as output a set of ordering coefficients, one for
each gene, most of which are zero (i.e. the coefficient vector is
‘sparse’). A non-zero ordering coefficient indicates that a gene was
relevant to the label sequence. This balances the requirement for
predictive accuracy against that for a small and therefore interpret-
able set of genes. For example, applied to the acinar cells, psuper-
time used 82 of the 827 highly variable genes to attain a test
accuracy of 83% over the eight possible labels (Supplementary Fig.
S1). Many of the genes identified via their absolute coefficient values
are already known to be relevant to the ageing of pancreatic cells
(see expression profiles shown in Fig. 1E, Supplementary Figs. S2
and S3). For example, clusterin (CLU) plays an essential role in pan-
creas regeneration and is expressed in chronic pancreatitis (Lee
et al., 2011; Xie et al., 2002); a-amylase (AMY2B) is a characteristic
gene for mature acinar cells, encoding a digestive enzyme (Omichi
and Hase, 1993). In addition, psupertime suggests candidates for
further study: ITM2A has the highest absolute gene coefficient and
is highly differentially regulated in a model of chronic pancreatitis,
but has not been investigated in acinar cells (Ulmasov et al., 2013).
The genes identified by psupertime were not discussed in the source
manuscript, and, importantly, would not be found by naively calcu-
lating correlations between the sequential labels and gene expression
(see Supplementary Results S2).

GO term enrichment analysis provides further support for the
validity of the cell ordering identified by psupertime. We clustered
the expression profiles of the highly variable genes and identified
GO terms characteristic of each cluster (see Section 2). This proced-
ure identified genes related to digestion as being up-regulated in
early ages (‘proteolysis’ and ‘digestion’ enriched in cluster 1), and
terms related to ageing later in the process (‘negative regulation of
cell proliferation’ and ‘positive regulation of apoptotic process’
enriched in cluster 5; see Supplementary Figs. S4 and S5). This ana-
lysis confirms that the cell ordering learned by psupertime is
plausible.

To compare psupertime to other classifiers, we simulated single-
cell RNA-seq data to contain genes that vary over time, and also
genes with other profiles (see Section 2.5). We compared psuper-
time’s performance against two benchmark classification methods,
which also identify relevant features: multinomial regression, as a
simple baseline approach to classification (Venables and Ripley,
2002) and a popular classification algorithm that performs well
under many circumstances (Caruana et al., 2008). Both classifiers
give measures of importance for each variable (see Section 2); we
used these to determine how well the classifiers identified time-series
genes. We found that the coefficients identified by psupertime iden-
tify time-series genes more precisely than the benchmark classifiers
(Fig. 2D, Supplementary Fig. S6). In addition, psupertime is able to
recapitulate the true latent time values of the cells (Supplementary
Fig. S7). The other classifiers assume no structure across the labels
and identify any gene which is helpful for distinguishing one label
from another; this results in them also identifying genes with
sample-specific rather than time-varying variation. The model for

psupertime assumes and therefore identifies genes that vary coher-
ently over the timepoint labels.

Unsupervised projection techniques are commonly applied to
analyse time-series single-cell RNA-seq data. We therefore com-
pared the cell-level orderings identified by psupertime with those
from three alternative, unsupervised pseudotime techniques: projec-
tion onto the first PCA component, as a simple, interpretable base-
line; Monocle 2 (Qiu et al., 2017b), which is widely used, shown to
perform well in a benchmark study (Saelens et al., 2019) and per-
mits the selection of a starting point; and slingshot (Street et al.,
2018), which was also shown to perform well (Saelens et al., 2019)
and allows both the start and end point of a trajectory to be selected
(it is therefore semi-supervised). Applied to the acinar cells, low-
dimensional embeddings of the data (including PCA) indicate that
while donor-specific factors account for much of the variation, very
little transcriptional variation is related to age (Fig. 2A and B;
Supplementary Fig. S8). Acinar cell orderings identified by the
benchmark methods are not consistent with the known label se-
quence (Fig. 2C and E). In contrast, the one-dimensional projection
learned by psupertime (Fig. 2C) successfully orders the cells by
donor age (Kendall’s s correlation coefficient 0.86, which quantifies
the concordance between two orderings), while providing a sparse
interpretable gene signature related to age.

In addition to the acinar cells, we compared psupertime to the
three alternative methods on four further datasets, as specified in
Table 1. The correlation of the orderings from the benchmark meth-
ods with the labels varies considerably depending on the dataset
(Supplementary Table S2), and in particular, depending on the ex-
tent of variation unrelated to the labels (Supplementary Fig. S8):
both Monocle 2 and PCA show Kendall’s s values of 0.12 or below
for the human germline dataset (Li et al., 2017; Supplementary Fig.
S9), in comparison to values of at least 0.71 for the human embryon-
ic stem cells (ESCs) dataset (Petropoulos et al., 2016; Supplementary
Fig. S10). In all datasets considered, the cell ordering given by psu-
pertime has a higher correlation with the known label sequence than
the other pseudotime methods (Fig. 2E). The pseudotime methods
used for comparison do not use the timepoint label as input, so it is
not surprising that psupertime is better able to recapitulate the label
orderings. However, considering that unsupervised methods are fre-
quently used to analyse time series and other ordered data, this com-
parison is relevant for users. Where genes and processes associated
with time labels are the primary interest, our analysis shows that un-
supervised techniques alone are not appropriate (see also
Supplementary Results S6).

Many datasets comprise samples composed of multiple distinct
cell types. In a time-series experiment, this could in principle make it
more difficult for psupertime to identify relevant genes: time-related
signal for one cell type could be diluted when cell types are analysed
together. To test this, we generated synthetic time-series data from
multiple cell types, modelling genes that varied over time both glo-
bally, and individually within cell types (see Section 2.6). We found
that psupertime is best able to identify globally varying genes when
applied to all cell types together, and best able to identify cell-type-
specific genes via application to each cell type individually (see
Supplementary Results S5). In addition, we applied psupertime to a
biological dataset comprising multiple distinct trajectories leading to
different cell fates, specifically reprogramming mouse embryonic
fibroblast cells (MEFs) to induced pluripotent stem cells (iPSCs;
Schiebinger et al., 2019). We identified two clear branches
(Supplementary Fig. S20): one branch corresponding to reprogram-
ming from MEFs to iPSCs, and one to reprogramming from MEFs
to stromal cells. We then applied psupertime three times: to the en-
tire dataset; to the iPSC branch; and to the stromal branch. In each
case, we trained psupertime using the experimental days as labels.
psupertime identified relevant genes for the global process (e.g.
Dppa5a; Lee et al., 2014), for reprogramming to iPSCs (e.g. Cd24a;
Shakiba et al., 2015) and for reprogramming to non-pluripotent
cells (e.g. Xist; Minkovsky et al., 2012; Supplementary Fig. S21).
Taken together, these results show that sensible use of psupertime
can identify both globally varying and cell-type-specific time-
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Fig. 2. Performance of psupertime against benchmark methods. See Section 2.8 for details of data processing and use of benchmark methods. All results for (A–C) based on

411 aging human acinar cell data with ages ranging from 1 to 54 (Enge et al., 2017), using 827 highly variable genes. Colours indicate donor age. (A) Projection of acinar cells

into first two principal components (% of variance explained shown). Curves learned by slingshot shown (note that here we show the projection of these curves into the first

two principal components). (B) Projection of acinar cells into dimensionality reduction calculated by Monocle 2, annotated with pseudotime learned by Monocle 2 (Qiu et al.,

2017b). (C) Results of benchmark pseudotime methods applied to acinar data. For each method, the x-axis is a one-dimensional representation for each cell (see Section 2.8),

scaled to ½0; 1� and given the direction with the highest positive correlation with the label sequence. The y-axis is density of the distributions for each label used as input, as cal-

culated by the function geom_density in the R package ggplot2. (D) Performance of psupertime and benchmark classifiers in identifying simulated time-series genes. Precision-

recall curves based on identification of time-series genes via variable importance measures for each method (see Section 2.7). Line and area show mean and 62 standard error,

respectively, over 20 simulations. Recall is limited to range 0–10%. Panels correspond to simulations with different proportions of time-series (TS) genes; all panels include

10% batch effect genes which are sample-specific. (E) Absolute Kendall’s s correlation coefficient between label sequences (treated as sets of integers 1; . . . K) and calculated

pseudotimes. Error bars show 95% confidence interval over 1000 bootstraps, calculated with boot package in R. For Tempora, this calculation was performed using scipy

package in python. Datasets are specified in Table 1
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varying genes. (Details of both analyses are given in Supplementary
Results S5.)

Typical workflows for single-cell RNA-seq data first restrict to
highly variable genes. If the data are instead first restricted to genes
that correlate strongly with the sequential labels, the relative per-
formance of the benchmark methods might improve. Despite the se-
lection of genes that correlate with the labels, psupertime
consistently outperforms unsupervised methods in terms of identify-
ing individual cell orderings (Supplementary Results S2). This illus-
trates that the genes identified by psupertime as most relevant to the
process are not necessarily those with highest correlation; for ex-
ample, genes with expression profiles like AMY2B in Figure 1E
show a non-linear, step-like expression profile, which results in a
correlation of 0.11 with the condition labels. Despite low correl-
ation, such genes were nonetheless found to be useful for cell order-
ing and suggest that psupertime discovers meaningful non-linear
structure in the data.

The time taken for psupertime to run varies over the five test
datasets from 4 s for a dataset with �300 cells, to 32 s for one with
�1500 cells (Table 2). We empirically observe a linear runtime de-
pendency for the dataset size in terms of number of cells (�5 min/
10k cells). While maintaining classification accuracies of between
43% and 98%, psupertime uses a small set of genes: for example,
for a classification accuracy of 76% on 10% of the acinar cells held
out for testing, psupertime uses 10% of the input genes (Table 2).
psupertime is based on a form of penalized linear regression. We
show that the ordinal logistic model, rather than a linear model
based on regarding the sequential labels as integers, is both the nat-
ural and the best-performing model for this problem (see
Supplementary Results S2).

4 Discussion

The number of studies using single-cell RNA-seq is increasing expo-
nentially (Saelens et al., 2019), and many of these include time-series
labels. psupertime is explicitly designed to take advantage of such a
setting, complementing unsupervised pseudotime techniques. The
presence of time-series labels allows a simple, regression-based
model to identify relevant cell orderings; here, the more sophisti-
cated pseudotime approaches required for unlabelled data identify
the principal variation in the data, rather than that associated with
the labels. The potential asynchrony of dynamic processes is
expected to affect classification performance. Specifically, we expect
the misclassification rate to increase with stronger asynchrony.
While poor classification performance can have other causes than
asynchrony, we recommend to consider asynchrony as a possible
cause for poor psupertime classification performance and to resort
to other dedicated tools/experiments to investigate possible asyn-
chrony. psupertime uses L1 regularization to obtain a small set of
reported genes. However, this may result in exclusion of other rele-
vant genes: where there are multiple highly correlated genes that are
predictive of the sequential labels, L1 regularization will tend to re-
sult in only one of these genes being reported, and produce zero
coefficients for other correlated genes. This issue can be addressed
by calculating the psupertime ordering, and reviewing all genes that
have high correlations with the genes identified by psupertime.
Alternatively, a simple extension to psupertime would allow training

with a combination of L1 and L2 penalties (the elastic net), resulting
in a compromise between sparsity and prediction performance. psu-
pertime could possibly benefit from alternative normalization tech-
niques, such as regularized negative binomial regression resulting in
Pearson residuals (Butler et al., 2018), as well as combination with
RNA velocity-based pseudotime (Bergen et al., 2020). psupertime is
applicable to any experimental design with sequential labels, most
obviously time series but also to biological questions regarding drug
dose–response, and disease progression. psupertime could further be
used in situations without experimental labels by combining with
unsupervised techniques (see Supplementary Results S3) or to align
new data to orderings learned from alternative processes or separate
lineage branches (see Supplementary Results S5 and Figs. S19–S22).
More broadly, we have used it to improve dimensionality reduction
(see Supplementary Results S4) and are developing extensions
including to additional single-cell technologies such as mass cytome-
try (see Supplementary Results S6). This demonstrates the potential
of ordinal regression models for further methodological develop-
ments. psupertime has wide applicability and will enable quick and
effective identification of the genes and profiles relevant to state
sequences of biological processes in single-cell RNA-sequencing
data. We have developed an R package available for download at
github.com/wmacnair/psupertime.
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Single-cell RNA sequencing (scRNA-seq)1 induced a paradigm 
shift in biomedical sciences, given that it enables the dissection 
of cellular heterogeneity by high-dimensional data. Recent 

technological developments, particularly for cell capture and reac-
tion compartmentalization2–6, have led to a substantial increase in 
experimental throughput, enabling massive mapping efforts such as 
the fly, mouse and human cell-atlas studies5,7–9. However, given that 
the majority of scRNA-seq methods rely on stochastic cell capture, 
entailing large sample inputs, efficient processing of small samples 
(<1,000 cells) remains challenging. The three main reasons for this 
are, first, the high fixed run costs, which lead to a large expense 
per cell at low inputs. To reduce scRNA-seq costs, cell hashing 
approaches10–12 were developed that enable sample multiplexing. 
However, these are not applicable to small input samples due to high 
cell losses during the mandatory cell washing procedures. The sec-
ond reason is the requirement of minimum cell inputs. For example, 
fluorescence-activated cell sorting (FACS)-based or 10X Chromium 
systems require minimum cell inputs ranging between 10,000 and 
500 cells, respectively13,14. The third reason is the reduced effective-
ness at low inputs resulting from limited cell capture efficiencies 
or cell size-selective biases15 when processing small heterogeneous 
samples. To illustrate these limitations, we summarize the perfor-

mance of various scRNA-seq technologies on low-input samples 
in Table 1. Consequently, small samples involving, for instance, 
zebrafish embryos16, organisms such as Caenorhabditis elegans17, or 
intestinal organoids18–20 are still pooled to obtain cell numbers that 
are compatible with stochastic microfluidic or well-based technolo-
gies, or processed as whole individual tissues21. This particularly 
hampers research on emergent and self-organizing multicellular 
systems, such as organoids, which are heterogeneous and small at 
critical development stages.

In this study we develop a deterministic, mRNA-capture bead 
and cell co-encapsulation dropleting system (DisCo) for low cell 
input scRNA-seq. DisCo depends on machine-vision to actively 
detect cells and coordinate their capture in droplets, allowing for 
continuous operation and enabling free per-run scaling and serial 
processing of samples. We demonstrate that DisCo can efficiently 
process samples containing only a few hundred cells, a sample 
type that tends to fall outside the scope of current cell processing 
platforms (Table 1). To illustrate DisCo’s unique capabilities, we 
explored the heterogeneous, early development of individual intes-
tinal organoids at the single cell level. In total, we processed 31 sin-
gle organoids using DisCo at four developmental time points after 
symmetry breaking, and identified striking differences in cell type 

Deterministic scRNA-seq captures variation in 
intestinal crypt and organoid composition
Johannes Bues1,2,10, Marjan Biočanin1,2,10, Joern Pezoldt   1,2,10, Riccardo Dainese1,2, 
Antonius Chrisnandy   3, Saba Rezakhani3, Wouter Saelens1,2,4,5, Vincent Gardeux   1,2, 
Revant Gupta   6, Rita Sarkis   1, Julie Russeil   1,2, Yvan Saeys4,5, Esther Amstad7, Manfred Claassen6,8, 
Matthias P. Lutolf   3,9 and Bart Deplancke   1,2 ✉

Single-cell RNA sequencing (scRNA-seq) approaches have transformed our ability to resolve cellular properties across sys-
tems, but are currently tailored toward large cell inputs (>1,000 cells). This renders them inefficient and costly when pro-
cessing small, individual tissue samples, a problem that tends to be resolved by loading bulk samples, yielding confounded 
mosaic cell population read-outs. Here, we developed a deterministic, mRNA-capture bead and cell co-encapsulation dropleting 
system, DisCo, aimed at processing low-input samples (<500 cells). We demonstrate that DisCo enables precise particle and 
cell positioning and droplet sorting control through combined machine-vision and multilayer microfluidics, enabling continu-
ous processing of low-input single-cell suspensions at high capture efficiency (>70%) and at speeds up to 350 cells per hour. 
To underscore DisCo’s unique capabilities, we analyzed 31 individual intestinal organoids at varying developmental stages. 
This revealed extensive organoid heterogeneity, identifying distinct subtypes including a regenerative fetal-like Ly6a+ stem 
cell population that persists as symmetrical cysts, or spheroids, even under differentiation conditions, and an uncharacterized 
‘gobloid’ subtype consisting predominantly of precursor and mature (Muc2+) goblet cells. To complement this dataset and to 
demonstrate DisCo’s capacity to process low-input, in vivo-derived tissues, we also analyzed individual mouse intestinal crypts. 
This revealed the existence of crypts with a compositional similarity to spheroids, which consisted predominantly of regenera-
tive stem cells, suggesting the existence of regenerating crypts in the homeostatic intestine. These findings demonstrate the 
unique power of DisCo in providing high-resolution snapshots of cellular heterogeneity in small, individual tissues.
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composition between individual organoids. Among these organoid 
subtypes, we detected spheroids that are composed of regenerative 
fetal-like stem cells as well as a rare, novel subtype that is predomi-
nantly composed of precursor and mature goblet cells, which is why 
we named this subtype ‘gobloid’. Finally, we used DisCo to uncover 
cellular variation between individual intestinal crypts, providing 
evidence for this technology’s capacity to also process low cell input, 
in vivo-derived tissues.

Results
Engineering and operational features of DisCo. The main engi-
neering and operational features of our DisCo device are summa-
rized in Fig. 1 and Extended Data Fig. 1. The important points are the 
implementation of Quake-style microvalves22 to facilitate flow con-
trol during operation; the development of a machine-vision-based 
approach utilizing subsequent image subtraction for blob detection 
(Extended Data Fig. 1b); the induction of deterministic particle 
displacement patterns (Extended Data Fig. 1c) to move particles 
into the target region of interest with 95.9% of particles placed in 
an ~200-μm-wide region (Extended Data Fig. 1d); and the precise 
pressurization of the dropleting valve to enable accurate control of 
droplet volume (Extended Data Fig. 1e and Supplementary Video 1). 
With all components operating in tight orchestration, we were able 
to generate monodisperse emulsions with high co-encapsulation 
purity (Fig. 1e and Supplementary Video 2).

DisCo efficiently captures cells from low-input samples. As a first 
benchmarking experiment, we set out to determine the cell capture 
efficiency and the bead and cell co-encapsulation purity of DisCo. 
We found that on average, 91.4% of all droplets contain a cell and 
a bead, and only 1.7% contain an independent cell doublet (Fig. 
1f). Overall, the system provided high cell capture efficiencies of 
90% at around 200 cells per hour for a cell concentration of 2 cells 
per μl (Fig. 1g). At a higher cell concentration of 20 cells per μl, the 
processing speed could be increased to 350 cells per hour, although 
with a decreased capture efficiency of approximately 75%. Next, 
we benchmarked the performance of DisCo for scRNA-seq. With 
drastically reduced bead amounts contained in the generated sam-
ple emulsion, we used our previously developed and characterized 
chip-based complementary DNA generation protocol23. Initially, as 
a library quality measure, we performed a species mixing experi-
ment of human embryonic kidney (HEK) 293T and murine immor-
talized brown pre-adipocyte (IBA) cells. We observed clear species 

separation (Fig. 1h) and an increased read-utilization rate com-
pared with conventional Drop-seq experiments (Extended Data 
Fig. 2a). In addition, we were able to improve the detectable number 
of transcripts per cell as compared with published Drop-seq data-
sets on HEK 293T cells2,23 (Fig. 1i) by exploiting the uniquely low 
number of beads in DisCo samples (<500), which enabled us to 
identify and merge closely related barcodes (described in Methods) 
without compromising single cell purity (Extended Data Fig. 2b,c). 
Given that DisCo requires a longer time period to process cells (for 
example, compared with the 10X Chromium instrument), we also 
assessed time-dependent effects on the quality of the single cell data 
by analyzing HEK 293T cells that were loaded on our system (at 22 °C 
(room temperature)) for 0–20, 20–40 and 40–60 min. Furthermore, 
we sampled cells that were stored for 120 and 180 min on ice. Based 
on cell stress metrics such as mitochondrial read content and heat 
shock protein expression as well as further gene expression analy-
ses, we found artifacts only for cell suspensions that were stored for 
extended periods (>2 h) of time (Extended Data Fig. 2d,e).

Given that DisCo actively controls fluid flow on the microflu-
idic device and is capable of efficiently processing cells from the 
first cell on, we hypothesized that the system should provide reli-
able performance on small samples of <100 cells. To determine the 
overall cell capture efficiency of DisCo, we quantified the number of 
input cells using impedance measurements, which enabled accurate 
counting of the number of input cells as validated by microscopy 
(Extended Data Fig. 2f). We processed cell numbers of between 50 
and 200 cells, of which 74.9% (s.d. ±10.7%) of input cells had more 
than 500 unique molecular identifiers (UMIs) per cell (Fig. 1j). To 
contextualize these performance metrics, we performed similar 
experiments involving 38, 125 and 215 HEK 293T cells on DisCo’s 
closest competitor system for low cell input samples: the Fluidigm 
C1 platform (Table 1). We chose the 96-trap chip given that, 
according to the user manual, it is the more suitable chip for low 
cell inputs. We found that the Fluidigm C1 system achieves abso-
lute processing efficiencies between 30% and 45% (Extended Data  
Fig. 2g), matching the performance listed by the manufacturer for 
the 215-cell condition. Overall, these results, together with reported 
data, indicate that the DisCo approach outperforms other technolo-
gies that are capable of analyzing low input cell samples in terms of  
processing efficiency.

DisCo on individual intestinal organoids resolves cell types. As a 
real-world application, we used DisCo to explore the developmental  

Table 1 | Comparison of the performance of established scRNA-seq platform technologies with the DisCo system

Approach Droplets (stochastic) FACS & plate based traps Microwells Droplets 
(deterministic)c

Technology 10X Chromium inDrop Drop-seq Smart-seq2 Cel-seq2 Fluidigm C1 iCell8 Seq-well DisCo (this 
study)

Minimum input 500 (HT)/100 (LT) 1,000 50,000 10,000 10,000 <50 1,600 400 <50

Efficiency 45%a/30%a 25%a 2.3%a – – 30–45%a 43%b 30%a 75%a

US$ per cell (100 
output cells)

$20/$5.9 $2.1 $6 $10.6 $3.6 $29 (96 cells) $5 $2.2 $1

US$ per cell (100 input 
cells)

$44.4/$19.8 $8.4 $260.9 – – $62.2 $11.6 $7.5 $1.3

Additional remarks or 
limitations

Multiplexing possible but requires 
multiple washing procedures10,11 and thus 
substantial efficiency losses expected.

Fluorescent labeling 
necessary, expensive to 
scale up (automation).

Size-selective  
properties15,40.

High initial 
acquisition 
cost.

aEfficiency estimates including cell capture efficiency. bEfficiency estimates excluding cell capture efficiency. Performance metrics were derived from the literature. Noteworthy, as for lack of consensus 
experiments, efficiency metrics represent different values as elaborated in a and b. Furthermore, the cost per cell is calculated for 100 cells (output: 100 single cells that are successfully processed, thus not 
incorporating platform-specific processing inefficiencies; input: a sample of 100 total cells that are processed on the respective system, hence considering platform-specific processing inefficiencies) to 
match the sample size used for the DisCo experiments. (References and the calculation of metrics are detailed in the Methods section.) Performance metrics calculated for the DisCo system in this study.
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heterogeneity of intestinal organoids24. These polarized epithelial 
tissues are generated by intestinal stem cells in three-dimensional 
matrices through a stochastic self-organization process, and mimic 
key geometric, architectural and cellular hallmarks of the adult 
intestinal mucosa (for example, a striking crypt–villus-like axis)24. 
When grown from single stem cells, organoids of very different 
morphologies form under seemingly identical in vitro conditions 
(Fig. 2a and overview image in Extended Data Fig. 3a). Pooled tis-
sue scRNA-seq data have shed light on the in vivo-like cell type com-
position of these organoids18–20,25, but cannot resolve inter-organoid 
heterogeneity. Critical for organoid development is an early sym-
metry breaking event at day 2 (16–32-cell stage) that is triggered 

by cell-to-cell variability and which results in the generation of the 
first Paneth cell that is responsible for crypt formation18. Here, we 
were particularly interested in examining the emergence of hetero-
geneity between individual organoids subsequent to the symme-
try breaking time point. To do so, we isolated single cells that were 
positive for LGR5 (leucine-rich repeat-containing G-protein-coupled  
receptor 5) by FACS, and maintained them in a stem cell state 
using a mixture of CHIR99021 and valproic acid (CV)26. On day 
3 of culture, CV was removed to induce differentiation. In total, 
we sampled 31 single intestinal organoids across four time points  
(days 3–6, annotated as S0–S3) (Fig. 2a). These organoids were selected 
in a biased manner based on differences in morphology (for example, 

21

3

56 WasteSample

4 OilOil 4

Stop point

Camera

Cells Beads
a

Stop particles

Capture

Co-encapsulate

b c
Stop particles Droplet generation Co-encapsulate

d
Stop particles Wash channel Capture

e

0
10

80
90

100

D
ro

pl
et

s 
(%

)

f g

200 250 300 350

Speed (cells per h)

70

80

90

100

C
ap

tu
re

 e
ffi

ci
en

cy
 (

%
)

Concentration
(cells per µl)

2 5 10 20 
Species

Human Mixed Mouse

Human transcripts

M
ou

se
 tr

an
sc

rip
ts

h

0 10k 20k 30k 40k 50k

 0

10k

20k

30k

40k

50k

DisCo Drop-seq

1 2

1k

10k

100k
N

um
be

r 
of

 tr
an

sc
rip

ts

i
Efficiency (%)

80–90%

50–60%
70–80%

0 50 100 150 200

Dispencell quantified cells

0

50

100

150

200

D
is

C
o 

se
qu

en
ce

d 
ce

lls

j

Fig. 1 | overview and critical feature assessment of the DisCo system. a, Schematic diagram of the DisCo microfluidic device, which contains three inlet 
channels for cells, beads and oil (shown twice for illustration purposes); two outlets for waste and sample liquids, and several Quake-style microvalves 
(green boxes): 1, cell valve; 2, bead; 3, dropleting; 4, oil; 5, waste; 6, sample. Particles are detected by a camera and are placed at the Stop point. b, DisCo 
co-encapsulation process on the DisCo device (red, closed; green, open; light brown, dropleting pressure (partially closed)). c, The co-encapsulation 
process of two beads as observed on-chip. Dyed liquids were used to examine the liquid interface of the carrier liquids. Channel sections with white 
squares are 100 μm wide. d, The droplet capture process as observed on-chip. Valves are highlighted according to their actuation state (red, closed; green, 
open). e, Image of DisCo droplet contents. Cells (blue circles) and beads (red circles) were co-encapsulated and the captured droplets were imaged. 
Mean bead-size is approximately 30 μm. f, Droplet occupancy of DisCo-processed cells and beads (total encapsulations, n = 1,203). Bars represent the 
mean, and error bars represent ±s.d. g, Cell capture efficiency and speed for varying cell concentrations (2–20 cells per μl, total encapsulations, n = 1,203). 
h, DisCo scRNA-seq species separation experiment. HEK 293T and murine IBA cells were processed with the DisCo workflow for scRNA-seq, the 
barcodes merged and the species separation visualized as a Barnyard plot. i, Comparison of detected transcripts (UMIs) per cell of conventional Drop-seq 
experiments. UMIs per cell from HEK 293T data for conventional Drop-seq experiments (1, from ref. 23; 2, from ref. 2) are compared with the HEK 293T 
DisCo data. Drop-seq datasets were down-sampled to a similar sequencing depth. Box plot elements showing UMI counts per cell represent the following 
values: center line, median; box limits, upper and lower quartiles; whiskers, 1.5-fold the interquartile range; points, UMIs per cell. j, Total cell processing 
efficiency of DisCo at low cell inputs. Input cells (HEK 293T) ranging from 74 to 170 were quantified by impedance measurement. Subsequently, all cells 
were processed with DisCo, sequenced and quality filtered (>500 UMIs). The red line represents 100% efficiency, and samples were colored according to 
the recovery efficiency after sequencing.
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size variation and cystic versus non-cystic morphologies). As a qual-
ity control, we correlated the number of encapsulated cells with the 
number of retrieved barcodes, which was in approximate accordance 
(Extended Data Fig. 3b; for an overview of the number of sequenced 
cells per organoid see Supplementary Table 1). The even distribution 
of the number of reads mapping to ribosomal protein-coding genes 
and the observed low expression of heat shock protein-coding genes 
thereby indicated that most cells were not affected by dissociation 
and on-chip processing (Extended Data Fig. 3c).

We first jointly visualized all 945 cells passing the quality thresh-
olds using Uniform Manifold Approximation and Projection 
(UMAP). We found that the data were consistent with previously 
published pooled organoid scRNA-seq read-outs19,25 given that it 
showed expected cell types including Fabp1-expressing entero-
cytes, Muc2-expressing goblet cells, Reg3b-positive Paneth cells and 
Olfm4-expressing stem cells (Fig. 2b,c). In addition, a rare subset of 
cells had ChgA and ChgB expression, indicating the expected pres-
ence of enteroendocrine cells (Extended Data Fig. 3d). Noteworthy, 
we found that batch effects are correctable given that neither 
batch-based nor cell quality-driven clustering was observed after 
correction (Extended Data Fig. 3c,e). To further validate that batch 
effects between individual organoids can be corrected, we gener-
ated an independent dataset of an additional nine individual organ-
oids (Extended Data Fig. 4a). One of these nine organoids was split 
into two independent samples and processed with a 60 min time 
delay in between. We found that the two halves of the split organ-
oid were overlapping in the denominator UMAP (Extended Data 

Fig. 4b), indicating that batch effects between individual organoids 
with extended storage times are indeed correctable. These find-
ings support the cell type-resolving power of our DisCo platform 
(Fig. 2c, extensive heatmap in Extended Data Fig. 5a and list in 
Supplementary Table 2).

In addition to the expected cell types, we observed a distinct 
cluster marked by high expression of stem cell antigen 1 (Sca1 or 
Ly6a), Anxa1 and Clu (Extended Data Fig. 3d), as well as increased 
YAP1 target gene expression (Extended Data Fig. 5b), suggesting 
that these cells are most likely regenerative fetal-like stem cells27–29. 
The two remaining clusters did not show a striking marker gene sig-
nature, but probably represent stem cells and potential intermediate 
cells (PICs)30, given their occurrence at early developmental time 
points (Fig. 3a). To further leverage the temporal component in the 
DisCo data, we used slingshot trajectory analysis31 to infer lineage 
relationships between cell types and to identify genes that may be of 
particular significance for waypoints along differentiation (Fig. 3b).  
Beyond the previously utilized marker genes for cell type annota-
tion, for example Reg3b and Reg3g for Paneth cells, additional mark-
ers that were validated in previous studies32 were identified, such as 
Agr2 and Spink4, and Fcgbp for goblet cells (Fig. 3c). Overall, this 
suggests that the meta-data produced with our DisCo platform 
align with and expand prior knowledge.

DisCo uncovers heterogeneity in intestinal organoids. 
Intriguingly, we observed the maintained presence of the Ly6a+ 
stem cell population at S0, S1 and S3. Given that cells with similar  
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expression signatures were previously described under  
alternate culture conditions as belonging to a distinct organoid 
subtype termed “spheroids”33, we next aimed to verify the pres-
ence of such spheroids in the sampled organoids. To do so, we 
stratified the cells according to the individual organoids from 
which they were derived by mapping this information onto the 
reference scaffold (Fig. 4a). We observed strong heterogene-
ity within single organoids, showing that Ly6a+ cells were indeed 
present in a distinct subset of organoids, predominantly composed 
of these cells (Fig. 4a S1a, S3e). Furthermore, images obtained 
prior to dissociation showed that Ly6a+ cell-containing organoids  
(Fig. 4a S3e) had a larger, cystic-like structure (Extended Data  
Fig. 6a). To confirm the presence of Ly6a+ organoids in the cultures, 
we used an RNA fluorescence in situ hybridization assay, RNAscope 
(Fig. 4b, with controls in Extended Data Fig. 6b), to localize Ly6a, 
Muc2 and Fabp1 expression in organoid sections. These analyses 
showed canonical budding organoids, containing few Muc2+ goblet 
cells and Fabp1+ enterocytes, and Ly6a-expressing cells in spheri-
cal organoids that did not contain differentiated cell types such as 
enterocytes or goblet cells. The presence of Ly6a+ cells during the 
first day of sampling suggested that these cells constitute a second, 
Lgr5-independent stem cell population in the organoid culture, 
as further supported by the trajectory analysis (Fig. 3b,c). To test 
this, we sorted and differentiated LGR5+ LY6A− cells (3.3% com-
pared with 24.5% of LGR5− LY6A+ and only 0.4% of double positive 
cells, Fig. 4c), showing that both LGR5+ LY6A− and LGR5− LY6A+ 
cells can give rise to organoids of similar morphological hetero-
geneity (Fig. 4d). These results indicate that LGR5− LY6A+ cells 
have full stem cell potential, similar to that of previously described 

fetal-like stem cells33. Furthermore, the fact that LGR5− LY6A+ cells 
did not show a propensity towards spheroid formation suggests 
that environmental conditions (for example, variation in matrix 
stiffness) rather than the initial cell state dictate the formation  
of spheroids.

Besides the Ly6a+ cell-enriched organoids, the data suggested 
the presence of additional organoid subtypes in the per-organoid 
mappings (Fig. 4a). The two most striking additional subtypes were 
three organoids that contained mostly enterocytes (Fig. 4a S2c, 
S3a, S3d), and two that consisted predominantly of immature and 
mature goblet cells (Fig. 4a S1b and especially S2f). The identity of 
the observed subtypes was further substantiated when visualizing 
the cell type abundance per organoid (Fig. 4e) and marker gene 
expression in individual organoids (Extended Data Fig. 7a). Similar 
to the spheroids, both subtypes had aberrant morphologies, tending 
to be small and round, as compared with canonical organoids bear-
ing a crypt–villus axis (for example, S3c, Extended Data Fig. 6a). To 
detect more subtle molecular differences, we used psupertime34 to 
identify genes that are dynamically expressed during the develop-
ment of individual organoids. This analysis showed additional genes 
that are expressed in subsets of organoids, such as Gastric inhibi-
tory polypeptide (Gip), Zymogen granule protein 16 (Zg16), Vanin 
1 (Vnn1) and Defensin alpha 24 (Defa24) (Extended Data Fig. 7b).

Although organoids dominated by enterocytes have been pre-
viously described as enterocysts18, organoids displaying goblet cell 
hyperplasia, here termed ‘gobloids’, were unknown, to our knowl-
edge. To validate the existence of the uncovered organoid subtypes, 
we used RNAscope to localize the expression of enterocyte (Fabp1) 
and goblet cell (Muc2) markers (Fig. 4f, with controls in Extended 
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Data Fig. 6b). In agreement with our data and prior research, we 
detected organoids that exclusively contained Fabp1+ cells, most 
likely representing enterocysts. Most importantly, we were able to 
identify organoids that contained a high number of Muc2+ goblet 
cells, confirming the existence of gobloids.

DisCo reveals compositional differences among intestinal crypts. 
Finally, to complement the intestinal organoid data, we set out to 

analyze individual crypts that were isolated from the small intestine 
of adult C57BL/6J mice. However, we found that the dissociation 
of these crypts into single cells was more challenging than that of 
in vitro grown organoids, achieving efficiencies of only up to 20% 
with elevated multiplet rates (Supplementary Table 3 and Methods). 
In total, we analyzed 21 individual crypts involving 372 cells at a 
comparable cell recovery efficiency as for organoids (Extended Data 
Fig. 8a and Supplementary Table 1 for the number of sequenced 
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cells). Next, we also used DisCo to generate a reference map of 775 
cells derived from pooled crypts (bulk), which we integrated with 
the individual crypt cells to resolve their composition. This enabled 
us to identify distinct groups of cells: clusters marked by the expres-
sion of the cell cycle genes Orc6 and Top2a, suggesting that these 
represent transit amplifying cells in the G1/S phase and G2/M 
phase, respectively. We identified two enterocyte clusters, marked 
by Fabp1 and Apoa1 expression and a goblet cell cluster marked 
by Muc2 expression (Fig. 5a and Extended Data Fig. 8b). Most of 
these cell types were observed in bulk as well as in individual crypt 
samples, except for enterocytes, which were mainly detected in the 
bulk proportion, probably reflecting contamination by residual villi  
(Fig. 5b). Globally, the data overlapped with previously reported 
single cell data from bulk crypts25, except for the lack of rare entero-
endocrine cells and tuft cells, which had an expected abundance of 
only 1% in bulk crypt isolates25, and Paneth cells. However, we were 

able to identify the latter independent from clustering, namely by 
their gene expression signature (Extended Data Fig. 8c).

Next to the expected cell types, we observed an additional clus-
ter marked by the expression of Clu and Anxa1, which are estab-
lished markers of regenerative, or revival stem cells28. Interestingly, 
we found three crypts that contained only these regenerative stem 
cells and that (providing an accurate compositional representation 
after dissociation) are thus depleted of other intestinal cell types 
(Fig. 5c and all crypts in Extended Data Fig. 8d). Given that this 
observation aligned with our intestinal organoid (spheroid)-based 
findings, we integrated our crypt data with the previously gener-
ated organoid data to explore whether spheroids and crypts contain 
similar regenerative stem cells. This integration yielded a common 
dataset of 2,244 cells (Fig. 5d and Extended Data Fig. 9) with over-
lapping ‘regenerative stem cell’ clusters, suggesting that this cell state 
can be recovered in both intestinal crypts and organoids, and that 
thus spheroids and regenerating crypts are compositionally simi-
lar (Fig. 5e and all crypts and organoids in Extended Data Fig. 10). 
Although caution is warranted when interpreting these results given 
the encountered dissociation issues, the findings indicate that some 
organoid heterogeneity recapitulates in vivo tissue heterogeneity, 
but also that crypts that predominantly contain regenerative stem 
cells are present in the homeostatic intestine. Altogether, the crypt 
data support DisCo’s capacity to profile in vivo-derived small, indi-
vidual tissues, rendering the dissociation efficiency, and no longer 
the processing efficiency, as the overall limiting factor.

Discussion
A key feature of our DisCo approach is the ability to deterministi-
cally control the cell capture process. Despite lowering the through-
put compared with stochastic droplet systems2,3, our approach 
provides the advantage of being able to process low cell input 
samples at high efficiency and at a strongly decreased per-cell cost 
(Table 1). Thus, we believe that DisCo is filling an important gap 
in the scRNA-seq toolbox. Another critical feature of DisCo is the 
use of machine-vision to obtain full control of the entire bead and 
cell co-encapsulation process, enabling the correct assembly of most 
droplets and virtually eradicating confounding factors that arise due 
to failed co-encapsulation35,36. In concept, DisCo is thus fundamen-
tally different to passive particle pairing approaches such as traps37–39  
and, compared with these technologies, offers the advantage of 
requiring simpler and reusable chips without cell or particle size and 
shape selection biases15,40. This renders the DisCo approach univer-
sally applicable to any particle co-encapsulation application41,42, 
for example, cell–cell encapsulations, with the only limiting factor 
being particle visibility.

To demonstrate DisCo’s capacity to process small tissues and 
systems that were so far difficult to access experimentally, we have 
analyzed the cell heterogeneity of chemosensory organs from 
Drosophila melanogaster larvae43 and, as shown here, single intesti-
nal organoids and crypts. It is thereby worth noting that, based on 
our handling of distinct tissues, we found that not DisCo itself, but 
instead cell dissociation, has become the efficiency-limiting factor 
(see Methods), a well-recognized challenge in the field44,45.

scRNA-seq of individual organoids led us to uncover organoid 
subtypes of aberrant cell type distribution that were previously 
not resolved with pooled organoid scRNA-seq18,19,25. Of particu-
lar interest among the identified organoid subtypes is one that we 
termed ‘gobloid’ given that it predominantly consists of immature 
and mature goblet cells. Another subtype contained predomi-
nantly cells that were strikingly similar to previously described 
fetal-like stem cells or revival stem cells that occur during intestinal  
regeneration27–29. This subtype, previously described under alternate 
culture conditions as spheroid-type organoids20,33,46, was identified 
here under standard organoid differentiation conditions, indicat-
ing that these organoids are capable of maintaining their unique 
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state. Moreover, we found that these LGR5− LY6A+ cells readily 
give rise to canonical organoids, indicating that they are capable 
of providing a pool of multipotent stem cells. Interestingly, in our 
proof-of-principle single intestinal crypt DisCo dataset, we identi-
fied crypts that largely consisted of cells with a similar regenerative 
gene expression signature. Although crypts with these properties 
have been previously described upon injury, for example, by irradia-
tion28, our data suggest that such regenerating crypts are also pres-
ent in the homeostatic intestine.

Here, we demonstrate that our DisCo analysis of individual 
intestinal organoids and crypts is a powerful approach to explore 
in vitro and in vivo tissue heterogeneity, and to provide new insights 
into how this heterogeneity arises. As well as catalyzing research 
on other tissues or systems of interest, we believe that the technol-
ogy and findings of this study will contribute to future research on 
(intestinal) organoid development and thus aid the engineering of 
more robust organoid systems. Furthermore, we believe that the 
utility of the approach described here, extends to research on all 
developing multicellular organisms, and, coupled with lineage trac-
ing47, might offer an entirely new perspective on interindividual 
variation. Finally, we expect this approach to be applicable to rare, 
small clinical samples to gain detailed insights into disease-related 
cellular heterogeneity and dynamics.
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Methods
Animal experimentation. Intestinal organoids were generated from mouse small 
intestinal stem cells isolated from 5–10-week-old heterozygous, male/female, 
Lgr5‐eGFP‐IRES‐CreERT2 mice (Jackson Laboratory). These experiments were 
approved by the Service de la Consummation et des Affaires Vétérinaires in 
Epalinges, Switzerland (license number 2681.0). Intestinal crypts were isolated 
from 7-week-old male C57BL/6J mice. Crypt isolation was conducted under 
the license VD3406e granted by the local authorities: Direction Générale de 
l’Agriculture, de la Viticulture et des Affaires Vétérinaires in Epalinges, Switzerland. 
Mice were housed at a temperature of 22 °C ± 2 °C, relative humidity of 55% ± 10%, 
and a 12 h–12 h light–dark cycle (light at 7:00 and dark at 19:00).

System comparison metrics. Performance metrics for Table 1 were calculated in 
the following ways.

Minimum cell input estimates. The minimum cell input values were derived from 
the following sources: for 10X Chromium HT/LT48, the lowest cell input number 
given in the 10X Chromium manual (HT, CG000183 Rev C; LT, CG000399 Rev 
B); for inDrop3, the lowest numbers mentioned in the 1CellBio manual (Single 
Cell Encapsulation Protocol, version 2.4); for Drop-seq2, the lowest numbers used 
in ref. 49 (it is probable that lower cell numbers can be processed, but Drop-seq 
has been suggested to be used “When the sample is abundant”49); for FACS-based 
methods50,51, the input limits as described in ref. 13; for Fluidigm C1 (ref. 40), the 
lowest cell input number used for benchmarking experiments given in the present 
study; for Wafergen iCell8 (ref. 52), the lowest cell numbers derived from the iCell 
manual (CELL8 Single-Cell ProtocolD07-000025 Rev. C; according to the manual, 
80 µl of a suspension of 0.02 cells per nl are prepared for dispensing); for Seq-well4, 
the lowest cell number used for capture in ref. 4; and for DisCo, the lowest cell 
number processed in this study.

Efficiency estimates. Efficiency estimates were derived from varying sources and 
represent different efficiencies. The efficiencies for 10X Chromium HT, inDrop 
and Drop-seq were derived from ref. 49 from quantified cellular inputs (>1,000 
cells) and sequenced cells passing the quality thresholds. Given that these 
efficiencies stem from experiments that were performed with optimized cell inputs, 
we can assume lower efficiencies when processing low cell inputs (<1,000). For the 
10X Chromium LT kit, efficiencies were derived from the user manual CG000399 
Rev B. The efficiency for the Fluidigm C1 system was determined in the present 
study (Extended Data Fig. 1l). For the Wafergen iCell8 system, an efficiency 
estimate was derived from ref. 53 and represents the efficiency of conversion from 
captured to sequenced cells passing the quality thresholds, thus it does not include 
cell capture inefficiency. The efficiency for Seq-well was derived from ref. 4 at 
an input of 400 cells and represents an inferred efficiency from quantified cell 
input to sequenced cells passing the quality threshold. Specifically, the library 
conversion efficiency, that is, the percentage of captured cells identified in the 
sequencing data passing the quality threshold, was calculated based on the species 
mixing experiment involving 10,000 input cells. The library conversion efficiency, 
in combination with capture efficiencies at 400 cells, was used to determine the 
efficiency at low cell numbers. Hence, this is inferred from quantified cellular 
inputs to sequenced cells passing the quality thresholds. The efficiencies for DisCo 
were derived in this study and represent mean efficiencies for low cell inputs (50–
200), from quantified cell input to sequenced cells passing the quality thresholds.

Cost per cell estimates. Two cost estimates are listed for 100 cells: the cost for 
100 cells not considering system efficiencies (US$ per cell, 100 output cells), 
and the cost for 100 input cells considering the listed efficiencies (US$ per cell, 
100 input cells). The run costs for Smart-seq2, Cel-seq2, inDrop, Drop-seq and 
Seq-well were derived from Supplementary Table 8 in ref. 54. The run costs for 
10X Chromium HT, Fluidigm C1 (96) and Wafergen iCell8 were derived from 
table 2 in ref. 53. The costs for 10X Chromium LT were derived from the 10X price 
list of the École Polytechnique Fédérale de Lausanne (EPFL) Gene Expression 
Core Facility (GECF). For the Wafergen iCell8 it was assumed that eight samples 
(one per dispensing nozzle) can be processed on one chip in parallel, thus 
decreasing the cost by a factor of 8. The DisCo cost estimate includes reagents for 
library generation, that is, the cost for beads, oil, reverse transcription reaction, 
exonuclease treatments, polymerase chain reaction (PCR), and library preparation 
(Nextera XT).

DisCo experimental procedure. The experimental setup and all necessary steps 
are described in the step-by-step protocol: https://www.epfl.ch/labs/deplanckelab/
wp-content/uploads/2021/09/DisCo_protocol.pdf

Machine-vision software. The software for cell detection and coordination was 
implemented in C++. Camera images were obtained with the XiApi library 
(version 4.15). Images were processed in real time using the OpenCV computer 
vision library (version 3.4). A schematic visualization of the particle detection 
algorithm is given in Extended Data Fig. 1b. In brief, a detection region of 
interest (ROI) was extracted by cropping, after which a Gaussian blur was 
applied to the resulting image. Two subsequent images were subtracted, and 

the resulting image converted to a binary image by intensity thresholding. The 
binary image was dilated to fill potential holes. Finally, contours were detected 
using the findContours function, and classified for area and circularity. Upon 
particle detection, the particles were properly positioned by valve oscillation 
and monitoring of the ROI at the target zone (Extended Data Fig. 1c). Once two 
particles were positioned in their respective target zones, particles were co-ejected 
by pressurization of the dropleting valve, and the droplet was sheared by actuation 
of the oil valve.

Microfluidic chip design and fabrication. The design of the microfluidic chip 
for deterministic co-encapsulation is presented in Extended Data Fig. 1a and the 
computer-aided design (CAD) files are available in Supplementary Data 1. Chips 
were designed using Tanner L-Edit CAD software (Mentor, version 2016.2). The 
5-inch chromium masks were exposed in a VPG200 laser writer (Heidelberg 
instruments) for both the control and flow layers. Masks were developed using 
an HMR 900 mask processor (Hamatech). For the control layer, a thick SU8 
photoresist layer was deposited with an LSM-200 spin coater (Sawatec), exposed 
on an MJB4 single side mask aligner (SÜSS MicroTec), and manually developed. 
The SU8 processing steps were carried out according to the manufacturer’s 
instructions for the 3010 series (Microchem). For the flow layer, wafers were 
produced using the AZ40XT (Microchem) positive photoresist on the ACS200 
coating and developing system (Gen3, SÜSS MicroTec). Developed master-wafers 
were reflowed for 45–75 s at 120 °C on a hotplate until the channels appeared round 
under an inspection microscope. The control layer master-wafers were used as 
molds for polydimethylsiloxane (PDMS) chips after passivation with 1% silane 
dissolved in hydrofluoroether (HFE). For the flow layer, master-wafers were used 
to generate replica molds for chip production. To this end, the primary replica 
mold was obtained by mixing PDMS with curing agent at a ratio of 10:1 using a 
centrifugal mixer (Thinky), degassing for 15 min, and curing for 60 min at 80 °C. 
The PDMS-based primary replica mold was then sylanized and subsequently used 
to obtain secondary replica molds for PDMS flow layer production. The PDMS 
flow layer was fabricated using PDMS and curing agent at a ratio of 5:1, degassed 
and cured at 80 °C for 30 min. The control layer was fabricated by spin coating the 
PDMS and curing agent at a ratio of 20:1 on the flow layer wafer at 650 r.p.m. for 
35 s with a 15 s ramp time, followed by baking at 80 °C for 30 min. Cured PDMS 
was then cut from the flow layer secondary replica mold, and flow layer inlet 
holes were punched with a 0.5 mm diameter biopsy punch. The two PDMS layers 
were manually aligned and bonded at 80 °C for at least 60 min. Assembled and 
cured PDMS chips were cut from the molds, and the control layer inlet holes were 
punched. Finally, chips were oxygen plasma activated (45 s at ~500 mTorr O2) and 
bonded to a surface-activated glass slide followed by incubation at 80 °C for at least 
2 h. Materials and reagents are listed in the Material and reagent list, point 1.

Mammalian cell culture handling for the species mixing experiment. For 
benchmarking the DisCo platform, HEK 293T cells (American Type Culture 
Collection (ATCC) cat. no. SD-3515) and IBA cells (provided by C. Wolfrum’s 
laboratory, ETH Zürich) were used. Cells were cultured to 90% confluency in 
Glutamax DMEM supplemented with FBS and penicillin–streptomycin. Prior to 
use, the cells were washed with PBS, dissociated with Trypsin-EDTA, washed with 
cell wash buffer and counted with Trypan blue live–dead stain using a Countess 
cell counter (Invitrogen). Cells were mixed in a 1:1 ratio, adjusted to 20 cells per µl, 
resuspended in cell loading buffer, and finally loaded on the DisCo chip. Material 
and reagents are listed in the Material and reagent list, point 11.

Droplet content and co-encapsulation performance quantification. As for 
conventional DisCo runs, experiments were set up with Chemgen beads and 
varying concentrations of HEK 293T cells. Approximately 100 co-encapsulations 
were performed and recorded per condition. The recorded video data were 
manually reviewed and the droplet contents, and passing cells were counted  
(Fig. 1f).

Benchmarking DisCo efficiency using the DISPENCELL platform. To 
benchmark single-cell recovery efficiencies throughout the complete DisCo 
workflow, we quantified HEK 293T cells (ATCC cat. no. SD-3515) using the 
DISPENCELL pipetting robot (SEED Biosciences SA). Prior to use, HEK 293T cells 
were diluted to 20 cells per µl. Cells were loaded into the DISPENCELL tip and 
then dispensed directly into a Prot/Elec gel loading tip containing cell loading 
buffer. Cells were then processed with DisCo and the libraries prepared as 
described above.

Benchmarking the Fluidigm C1. To benchmark the cell recovery efficiency of 
the Fluidigm C1 platform, HEK 293T cells (ATCC cat. no. SD-3515) were diluted 
with Suspension Reagent (Fluidigm) to reach approximately 10, 20 and 40 cells per 
µl. The obtained suspensions were generated separately from the same stock and 
then quantified in triplicate using microscopy by examining a volume of 2 × 2.5 µl 
of the suspension between two coverslips. Counts of all triplicates were averaged to 
determine the cell input for 5 µl Cell Mix, and the same volume was subsequently 
loaded on the C1 integrated fluidic circuit (IFC). The experiments on the C1 
machine were performed according to the SMART-Seq v4 Ultra Low Input RNA 
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Kit for the Fluidigm C1 System, IFCs User Manual (Clontech Laboratories) using 
10–17 µm 96-trap C1 IFC OpenApp chips. The protocol was run on SMART-Seq 
version 4 (1861x/1862x/1863x) programs on the C1 machine. To verify successful 
loading and cell trapping, traps were examined using a Cell xCellence (Olympus) 
microscope. Final cDNA was quantified using the PicoGreen double-stranded (ds)
DNA assay and then fragmented and tagged (that is, tagmented) using the Nextera 
XT library preparation kit according to the manufacturer’s instructions.

Material and reagent list for Fluidigm C1 benchmarking. For single-cell chip loading 
and priming, the C1 Single-Cell mRNA Seq HT Reagent kit version 2 (Fluidigm, 
cat. no. SKU 101-3473) was used as well as the 10–17 µm 96-trap C1 IFC 
(Fluidigm, cat. no. SKU 100-8134). For cDNA generation, a SMART-Seq v4  
Ultra Low Input RNA Kit (Clontech Laboratories, cat. no. 634888) was used.  
cDNA was quantified using the PicoGreen high-sensitivity dsDNA assay 
(Invitrogen, cat. no. P11496) and then libraries were generated using Nextera XT 
(Illumina, cat. no. FC-131-1096) and the Nextera XT index kit set A (Illumina, cat. 
no. FC-131-2001).

Temporal batch effect experiment. A single-cell suspension of HEK 293T (ATCC 
cat. no. SD-3515) was loaded on the system as described above, and the remaining 
volume stored on ice. After 20 min, generated droplets were evacuated from the 
system and sequencing libraries prepared. A new cell loading tip was inserted into 
the sample outlet port and the experimental run was resumed. The previous steps 
were repeated after 40 and 60 min. After 120 min the system was loaded with cells 
stored on ice and the cells were captured for approximately 20 min. Subsequently, 
droplets were evacuated from the system, cDNA was generated, and sequencing 
libraries prepared as described above. The former steps were repeated for cells 
stored for 180 min on ice.

The material and reagent list for the temporal batch effect experiment is given 
in the section ‘Mammalian cell culture handling for the species mixing experiment’.

Mouse intestinal organoid culture and handling. The isolation of stem cells 
harboring an enhanced green fluorescent protein expressed from the Lgr5 locus 
(Lgr5-eGFP stem cells) from 5- to 10-week-old Lgr5-eGFP-IRES-CreERT2 mice 
(Jackson Laboratory) and initial culture were performed as previously described55. 
For the developmental time-course experiments, organoids were dissociated 
to single cells, live LGR5+-eGFP cells were isolated using a FACS ARIA II (BD 
Biosciences) and were embedded in Matrigel. For sorting of LY6A+ LGR5− and 
LY6A− LGR5+, cells were surface stained with anti-mouse Anti-Sca1/Ly6A/E (0.2 μg 
per 1 million cells; Biolegend, cat. no. 122514) for 30 min in culture medium at 
4 °C. Subsequently, cells were washed by centrifugation in a 4 °C cooled centrifuge 
for 5 min at 774 ×g, and resuspended in organoid culture medium. Live–dead 
discrimination was carried out using 4,6-diamidino-2-phenylindole (DAPI) added 
shortly before sorting. The gating strategy is shown in Supplementary Fig. 1.

After Matrigel polymerization, cells were cultured in ENR CV medium 
(epidermal growth factor (E), Noggin mouse (mNoggin; N), R-spondin (R) and 
CV) supplemented with the ROCK inhibitor, thiazovivin. Growth factors (E, N, R, 
C, V) were replenished after 2 days of culture. At day 3 of culture, a full medium 
change was performed for the differentiation growth medium (ENR only). At day 
5, growth factors (E, N, R) were replenished. Organoids were sampled at day 3 (S0) 
prior to the medium change, at day 4 (S1), at day 5 (S2) and at day 6 (S3).

Single organoids were collected by dissolving Matrigel with ice-cold Cell 
Recovery Solution for approximately 5 min while carefully pipetting up and 
down with a 1,000 µl pipette. Subsequently, single organoids were isolated by 
hand-picking, after which they were transferred to a Nunc microwell culture 
plate with single-organoid dissociation mix. Single organoids were dissociated by 
combining trituration using siliconized pipette tips every 5 min and incubation 
at 37 °C for 15 min. Following dissociation, cell suspensions were diluted in cell 
loading buffer in the loading tip connected to the DisCo chip. Materials and 
reagents are listed in the Material and reagent list, points 12–16.

Intestinal organoids were cultured in Matrigel (Corning, cat. no. 356230) 
with organoid base medium (described in point 13) supplemented with ENR 
(and CV where indicated) and ROCK inhibitor (where indicated; Sigma, cat. 
no. Y0503). Organoid base medium was prepared using DMEM/F12 (Gibco, 
cat. no. 11320033), 100 mM HEPES (Gibco, cat. no. 15630056), 100 U per ml 
penicillin–streptomycin (Gibco, cat. no. 15140122), 1 µM B27 supplement (Gibco, 
cat. no. 17504-044), 1 µM N2 supplement (Gibco, cat. no. 17502001) and 1 µM 
N-acetyl-l-cysteine (Sigma, cat. no. A9165). ENR medium was prepared using base 
medium (as above), 50 ng per ml epidermal growth factor (E; LifeTechnologies, 
cat. no. PMG8043), 100 ng per ml mNoggin (N; produced in-house) and 1 µg per 
ml R-spondin (R; produced in-house). ENR CV medium was prepared with the 
addition of 3 µM CHIR99021 (C; CalBiochem) and 3 mM valproic acid (V; Sigma, 
cat. no. P4543) to the ENR medium. Single-organoid, single-cell dissociation 
mix was prepared using PBS (Gibco, cat. no. 14190-094), 10 mg per ml Bacillus 
licheniformis protease (Sigma, cat. no. P5380), 5 mM EDTA (Sigma, cat. no. 03690), 
5 mM EGTA (BioWorld, cat. no. 40520008-1), 10 µg per ml DNase I (Roche, cat. 
no. 11 284 932 001) and 0.68X Accutase (Sigma, cat. no. A6964) in a total volume 
of 20 µl per reaction. For single-organoid dissociation, Nunc MicroWell plates (cat. 
no. 438733) and siliconized p10 pipette tips (VWR, cat. no. 53509-134) were used.

Split organoid experiment. Organoids for the split organoid experiment were 
cultured in ENR medium as previously described20. Single organoids, derived 
from days 2–6 after crypt splitting, were isolated from Matrigel as described above. 
Subsequently, single organoids were isolated by hand-picking into a 384-well plate 
containing single-organoid dissociation mix. As before, single organoids were 
dissociated by combining triaturation using non-filter pipette tips every 5 min and 
incubation at 37 °C for 15 min in a 100 µl volume. Finally, the dissociation mix was 
diluted with cell loading buffer. The single-cell suspension of one organoid was 
split into two separate samples and introduced subsequently on the system.

Material and reagent list for the split organoid experiment. Intestinal organoids 
were cultured in Matrigel (Corning, cat. no. 356230) with organoid base 
medium supplemented with ENR (not containing CV). Organoid base medium 
was prepared using DMEM/F12 (Gibco, cat. no. 11320033), 100 mM HEPES 
(Gibco, cat. no. 15630056), 100 U per ml penicillin–streptomycin (Gibco, cat. no. 
15140122), 1 µM B27 supplement (Gibco, cat. no. 17504-044), 1 µM N2 supplement 
(Gibco, cat. no. 17502001) and 1 µM N-acetyl-l-cysteine (Sigma, cat. no. A9165). 
ENR medium was prepared using base medium (as above), 50 ng per ml epidermal 
growth factor (E; LifeTechnologies, cat. no. PMG8043), 100 ng per ml mNoggin (N; 
produced in-house) and 1 µg per ml R-spondin (R; produced in-house).

Single-cell isolation from the small mouse intestine. Crypts were isolated 
from the small intestines of single 7-week-old male C57BL/6J mice following the 
protocol in ref. 56. In brief, the small intestine of a single mouse was isolated and 
then washed both on the inside and outside with ice-cold PBS. The small intestine 
was cut open longitudinally and washed again with PBS. The intestine was then 
digested non-enzymatically for 3 min in PBS, EDTA and dithiothreitol (DTT). 
Next, the tissue was cut into small pieces and transferred into a 50 ml Falcon tube 
containing 20 ml ice-cold PBS. The PBS solution containing the tissue pieces 
was gently triturated 10 times using a 10 ml pipette. After tissue fragments had 
sedimented, the supernatant was removed and the process was repeated three 
more times until the supernatant was clear. Next, the supernatant was removed, 
PBS and EDTA were added and the sample incubated for 30 min at 4 °C on a 
rocking plate. After incubation, tissue fragments were left for sedimentation (up 
to 5 min), then the supernatant was removed. Subsequently, tissue fragments were 
triturated with ice-cold PBS by pipetting up and down. After large tissue fragments 
had sedimented (up to 5 min), the supernatant containing crypts was collected as 
fraction 1 (F1). Fraction collection was then repeated four times (F2–F5), followed 
by trituration with ice-cold PBS, while each fraction was stored separately. Each 
fraction was inspected for cell debris and villus contamination.

For single-cell bulk sample preparation, crypts from F2 or F3 were spun 
down at 600 ×g for 10 min (brake 5). Following centrifugation the supernatant 
was removed and the cells were enzymatically dissociated for 1 min at 37 °C. Cells 
were then washed twice in PBS containing 0.01% BSA and strained twice using 
a Flowmi 40 µm strainer to minimize the amount of multiplets. Cell suspensions 
were diluted in cell loading buffer and loaded on the DisCo chip.

For single-cell isolation from single crypts, crypts from F3 were transferred to 
FBS-coated 6-well plates. Subsequently, single crypts were isolated by hand-picking, 
after which they were transferred to a Nunc microwell culture plate containing 
single crypt dissociation mix. Single crypts were dissociated by combining 
trituration using non-filter pipette tips every 5 min and incubation at 37 °C for a 
total of 15 min. As also noted in the Results section, obtaining a true single-cell 
suspension proved highly challenging, despite testing several dissociation buffer 
compositions (Supplementary Table 3), given that many cells were lost or were only 
partially recovered in multiplets or clumps. Following dissociation, cell suspensions 
were diluted in cell loading buffer and loaded on the DisCo chip.

Material and reagent list for single-cell isolation from mouse intestinal crypts. 
For small intestine washing, PBS (Gibco, cat. no. 14190-094) was used. For the 
non-enzymatic dissociation of small intestinal pieces, PBS (Gibco, cat. no. 14190-
094), 3 mM EDTA (Sigma, cat. no. 3690) and 0.5 mM DTT (Applichem, cat. no. 
A2948,0005) were used. Intestinal pieces were incubated in PBS (Gibco, cat. no. 
14190-094) and 2 mM EDTA (Sigma, cat. no. 3690), followed by fraction collection 
in PBS (Gibco, cat. no. 14190-094). Bulk single-cell crypt preparations from the 
small intestine were prepared using PBS (Gibco, cat. no. 14190-094), 1X TrypLE 
select (Gibco, cat. no. A1217701) and 10 mg per ml DNase I (Roche, cat. no. 11 284 
932 001) in a total volume of 500 µl per reaction. Cells were then washed using PBS 
(Gibco, cat. no. 14190-094) and 0.01% BSA (Sigma, cat. no. B8667), and strained 
using a Flowmi 40 µm strainer (Sigma, cat. no. BAH136800040-50EA) into a 500 µl 
final volume. Single cells were dissociated from single crypts using PBS (Gibco, 
cat. no. 14190-094), 20 mg per ml B. licheniformis protease (Sigma, cat. no. P5380), 
10 mM EDTA (Sigma, cat. no. 03690), 10 mM EGTA (BioWorld, cat. no. 40520008-
1), 20 µg per ml DNase I (Roche, cat. no. 11 284 932 001) and 0.6X Accutase 
(Thermo Fisher, cat. no. A1110501) in a total volume of 20 µl per reaction. For 
single crypt dissociation, Nunc MicroWell plates (cat. no. 438733) and non-filtered 
10 µl pipette tips (VWR, cat. no. 53509-134) were used.

RNA fluorescence in situ hybridization (RNAscope) on intestinal organoids. 
For the RNAscope assay, organoids in Matrigel were fixed in paraformaldehyde 
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(PFA) at 4 °C overnight. The next day, organoids were washed with PBS and 
embedded in histogel. Histogel blocks were subsequently infiltrated with paraffin 
using a standard histological procedure (VIP6, Sakura). RNAscope Multiplex 
Fluorescent V2 assay was performed according to the manufacturer’s protocol on 
4 μm paraffin sections, hybridized with the probes Mm-Ly6a-C2, Mm-Fabp1-C1, 
Mm-Muc2-C2, Mm-PpiB-C2 positive control and Duplex negative control at 40 °C 
for 2 h and revealed with TSA Opal650 for the C1 channel and TSA Opal570 for 
the C2 channel. Tissues were counterstained with DAPI and mounted with Prolong 
Diamond Antifade Mountant. Slides were imaged on an Olympus VS120 whole 
slide scanner (Olympus). The resulting images were converted to the TIFF file 
format using the Fiji (version 1.52p) plugin BIOP VSI Reader (version 7). ROIs 
were extracted using a custom Python (version 2.7.15) script and the PIL library 
(version 6.2.2). Brightness of the extracted ROIs was adjusted in Fiji: images of 
one target were loaded, stacked, and the brightness adjusted for the whole stack 
using the setMinAndMax() function. Finally, images were unstacked, merged with 
other channels and exported as PNG files. Materials and reagents are listed in the 
Material and reagent list, points 17, 18.

Sequencing, analysis, barcode correction. The data analysis was performed using 
the Drop-seq tools package (version 2.3.0, https://github.com/broadinstitute/
Drop-seq/releases/tag/v2.3.0)2,57 on the EPFL Scientific IT and Application 
Support (SCITAS) High Performance Computing (HPC) platform. All data 
pre-processing steps were done according to the Drop-seq tools manual, except 
for the DetectBeadSubstitutionErrors function, which was replaced by the 
barcode merging strategy described below. After trimming and sequence tagging, 
reads were aligned to the human (hg38), mouse (GRCm38), or mixed reference 
genomes2 (GSE63269), depending on the origin of the cellular input material, using 
STAR (version 2.7.0.e)58. Following alignment, BAM files were processed to obtain 
initial read-count matrices (RCMs) per sample (note: DGE summary files were 
used for the experiments in Fig. 1h,i). Cell barcodes were prefiltered at >35 UMIs 
(for the species mixing experiment, the sum of 35 UMIs for both species was used 
as a prefiltering criterion). Graphs were built by identifying barcodes connected by 
Levenshtein distance 1. For each graph, the barcode containing the highest number 
of UMIs was identified as the central barcode. The graphs were pruned (barcodes 
removed) at a Levenshtein distance >2 to the central barcode, and the remaining 
barcodes in the graph were merged. The script for barcode merging is available in 
Supplementary Software 1.

For cell recovery efficiency experiments using the DISPENCELL platform (Fig. 
1j) and for Drop-seq comparison experiments (Fig. 1i), barcodes encompassing 
at least 500 UMIs were compiled into the RCMs. Additionally, for the Drop-seq 
comparison experiments, the processed BAM files were down-sampled to the same 
read depth using samtools (version 1.9) (http://www.htslib.org/doc/samtools.html).

Time course organoid kinetic analysis. RCMs were further processed via R 
(version 3.6.2) using Seurat (version 3.1.1) and uwot (version 0.1.3)59. For each 
individual organoid-RCM, cells with >800 features and <7.5% mitochondrial 
reads were retained in the analysis. The time course kinetics of organoids were 
processed in three independent experiments, which were considered as three 
individual batches. The three independent experiments were merged using FindI
ntegrationAnchors(list(experimental_batches), anchor.features = 80, dims = 1:12, 
k.filter = 200, k.anchor = 8) and IntegrateData(). Data were scaled and the principal 
components (PCs) computed using default settings. UMAP dimensional reduction 
via RunUMAP() and FindNeighbors() was performed using the first 12 principal 
component analysis (PCA) dimensions as input features. FindClusters() was 
computed at a resolution of 0.75.

The intestinal organoids for the split organoid experiment were processed in 
four independent experiments, which were considered as four individual batches, 
each encompassing at least two independent single intestinal organoids. The four 
independent experiments were merged using FindIntegrationAnchors(list(experi
mental_batches), anchor.features = 120, dims = 1:10, k.filter = 100, k.anchor = 12) 
and IntegrateData(). Data were scaled and the PCs computed using default 
settings. UMAP dimensional reduction via RunUMAP() and FindNeighbors() was 
performed using the first 14 PCA dimensions as input features. FindClusters() was 
computed at a resolution of 0.9.

The intestinal crypts were processed in five independent experiments, which 
were considered as five individual batches each encompassing single intestinal 
crypts and pooled (bulk) samples. The five independent experiments were merged 
using FindIntegrationAnchors(list(experimental_batches), anchor.features = 150, 
dims = 1:10, k.filter = 150, k.anchor = 10) and IntegrateData(). Data were scaled 
and the PCs computed using default settings. UMAP dimensional reduction 
via RunUMAP() and FindNeighbors() was performed using the first 15 PCA 
dimensions as input features. FindClusters() was computed at a resolution of 0.8.

Combined intestinal crypts and organoids were processed as eight independent 
batches. These eight batches were merged using FindIntegrationAnchors(list(expe
rimental_batches), anchor.features = 150, dims = 1:15, k.filter = 150, k.anchor = 10) 
and IntegrateData(). Data were scaled and the PCs computed using default 
settings. UMAP dimensional reduction via RunUMAP() and FindNeighbors() was 
performed using the first 15 PCA dimensions as input features. FindClusters() was 
computed at a resolution of 0.9. Merging retained the global grouping of the data 

but introduced minor annotation discrepancies in similar clusters between the 
individual and merged datasets. For example, cells that were annotated TA-G1 in 
the crypt data (Extended Data Fig. 8d) were annotated as stem cells in the merged 
data (Extended Data Fig. 10).

Merged data were visualized using the Seurat intrinsic functions VlnPlot(), 
FeaturePlot(), DotPlot() and DimPlot(). Differentially expressed genes per cluster 
were identified using FindAllMarkers() using default parameters. The Seurat object 
is accessible via GSE148093. Cumulative Z-scores were calculated based on the 
scaled expression per cell across the defined gene signatures18,27. Pie chart, bubble 
plot and bar graph visualizations were carried out with ggplot2. The analysis script 
is available in Supplementary Software 1.

C1 HEK library processing and analysis. Libraries were sequenced on a 
NextSeq500 sequencer (Illumina) in paired-end run format (read 1, 16 bp; read 2, 
59 bp) with an average of 3 × 106 reads per library. The read quality of sequenced 
libraries was evaluated with FastQC. Sequencing reads were aligned to the 
reference human genome assembly GRCh38.90 using STAR58. Reads aligned to 
annotated genes were quantified with htseq-count60.

Slingshot analysis. The trajectories were constructed using the Slingshot wrapper 
implemented in the dyno package (https://github.com/dynverse/dyno)61. The 
method was provided with the first five dimensions of a multi-dimensional scaling 
as dimensionality reduction, the clustering as described earlier, and the stem cell 
cluster as the starting cell population. All other parameters were left as the default 
settings. Genes that change along the trajectory were ranked using the calculate_
overall_feature_importance function from the dynfeature package (version 1.0, 
https://github.com/dynverse/dynfeature), and the top 50 differentially expressed 
genes were selected. The dynplot package (version 1.1, https://github.com/
dynverse/dynplot) was used to plot the trajectory within a scatterplot and heatmap.

Psupertime analysis. Cell labels and sample-day labels were extracted from the 
merged and batch-corrected meta-data of the Seurat object to run psupertime, 
a method of identifying genes relevant to biological processes using cell-level 
temporal labels to build an L1 regularized ordinal logistic regression model34. 
Sample-day labels indicating the experimental temporal order were used to 
conduct a psupertime analysis on batch-corrected and normalized gene expression 
data of cells, with selected cell type labels. The analysis was performed including 
all genes and encompassing a 10-fold cross-validation using default settings. Genes 
with coefficients (beta-values) greater than zero were considered relevant for 
the temporal expression dynamics. Expression of relevant genes was plotted per 
organoid per cell.

Material and reagent list for all experiments. Material information is listed in the 
following format: material name (vendor, ordering number). Reagent information 
is listed in the following format: reagent name (final concentration in the solution, 
vendor, order number).

 1. For microfluidic device fabrication, SU8 3010 (Microchem) negative pho-
toresist, AZ40XT (Microchem) positive photoresist, HFE-7500 (3 M, Novec 
297730-93-9), Trichloro(1H,1H,2H,2H-perfluorooctyl) silane (1%, Aldrich, 
448931) and biopsy punchers (Darwin microfluidics, KPUNCH05)  
were used.

 2. For microfluidic device handling Prot/Elec 200 µl gel loading tips (Biorad, 
223-9915), dH2O (Invitrogen, 10977035), Tygon tubing (Cole-Parmer, 
GZ-06420-02), beads (Chemgenes, lot 051917, Macosko-2011-10), droplet 
generation oil (Biorad, 186-4006), murine RNase inhibitor (100 U, NEB, 
M0314L) were used. Cell wash buffer was prepared using PBS (1X, Gibco, 
14190-094) and BSA (0.01%, Sigma, B8667). Cell loading buffer was prepared 
using PBS (1X, Gibco, 14190-094), Optiprep (6%, Sigma, D1556), and BSA 
(0.01%, Sigma, B8667). Lysis buffer was prepared from Optiprep (28%, Sigma, 
D1556), Sarkosyl (2.2%, Sigma, L7414), EDTA (20 mM, Sigma, 3690), Tris 
(100 mM, Sigma, T2944) and DTT (50 mM, Applichem, A2948,0005).

 3. For sample washing prior to reverse transcription, SSC (6X, Sigma, S6639) 
and dH2O (Invitrogen 10977035) were used.

 4. For the reverse transcription (RT) reaction, dH2O (Invitrogen, 10977035), 
Ficoll PM-400 (4%, Sigma, F5415), dNTPs (1 mM, Thermo, R0193), murine 
RNase inhibitor (100 U, NEB, M0314L), Maxima H Minus Reverse Tran-
scriptase (500 U, Thermo Scientific, EP0753) and Template Switching Oligo 
(AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG, 2.5 µM, IDT) were 
used in a total volume of 50 µl per reaction.

 5. For the exonuclease I reaction, exonuclease I (100 U, NEB, M0293L) and 
exonuclease buffer were used in a total volume of 50 µl per reaction.

 6. For cDNA amplification, Kapa HiFi Hot start ready mix 2X (Roche, KK2602), 
dH2O (Invitrogen, 10977035) and SMART PCR primer (AAGCAGTGGTAT-
CAACGCAGAGT, 0.8 µM, IDT) used in a total volume of 50 µl per reaction. 
CleanPCR magnetic beads (0.6X ratio, GC biotech, CPCR-0050), Fragment 
Analyzer (Agilent, DNF-474-0500 kit) and the Qubit High Sensitivity kit 
(Invitrogen, Q33231) were used for cDNA purification and quantification.

 7. For library preparation, Tn5 was produced in-house. To stop tagmentation, 
SDS was used (0.2%, Sigma, 71736). For library amplification the Kapa HiFi 
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kit with dNTPs (Roche, KK2102), P5 SMART PCR (AATGATACGGCGAC 
CACCGAGATCTACACGCCTGTCCGCGGAAGCAGTGGTATCAA 
CGCAGAGT*A*C, 0.3 µM, IDT), custom Nextera oligos62 (0.3 µM, IDT) and 
dH2O (Invitrogen, 10977035) were used. Libraries were purified and quanti-
fied using CleanPCR magnetic beads (0.6X ratio, GC biotech, CPCR-0050), 
Fragment Analyzer (Agilent, DNF-474-0500 kit) and Qubit High Sensitivity 
kit (Invitrogen, Q33231).

 8. TE-TW wash buffer was prepared in dH2O (Invitrogen, 10977035) using Tris 
(10 mM, Sigma T2944), EDTA (1 mM, Sigma, 3690), and Tween 20 (0.01%, 
Sigma, P9416).

 9. TE-SDS wash buffer was prepared in dH2O (Invitrogen, 10977035) using Tris 
(10 mM, Sigma, T2944), EDTA (1 mM, Sigma, 03690), and SDS (0.5%,  
Sigma, 71736).

 10. Tris wash buffer was prepared in dH2O (Invitrogen, 10977035) using Tris 
(10 mM, Sigma, T2944).

 11. For mammalian cell culture dissociation and counting, Trypsin-EDTA (Gib-
co, 25200056) and trypan blue were used (0.4%, Thermo Fisher Scientific, 
T10282). Cell culture medium was prepared using DMEM Glutamax (Gibco, 
10565018), FBS (10%, Gibco, 10270106) and penicillin–streptomycin (100 U 
per ml, Gibco, 15140122). Cell wash and cell loading buffers were prepared as 
described above.

 12. Intestinal organoids were cultured in Matrigel (Corning, 356230) with 
organoid base medium (described in point 13) supplemented with ENR (and 
CV where indicated) and ROCK inhibitor (where indicated, Sigma, Y0503). 
Matrigel was dissolved with Cell Recovery Solution (Corning, 354253).

 13. Organoid base medium was prepared using DMEM/F12 (Gibco,  
11320033), HEPES (100 mM, Gibco, 15630056), penicillin–streptomycin 
(100 U per ml, Gibco, 15140122), B27 supplement (1 µM, Gibco, 17504-044), 
N2 supplement (1 µM, Gibco, 17502001) and N-acetyl-l-cysteine (1 µM, 
Sigma, A9165).

 14. ENR medium was prepared using base medium (as above), EGF (E, 50 ng 
per ml, LifeTechnologies, PMG8043), mNoggin (N, 100 ng per ml, produced 
in-house) and R-spondin (R, 1 µg per ml, produced in-house).

 15. ENR CV medium was prepared with the addition of CHIR (C, 3 µM,  
CalBiochem, CHIR99021) and valproic acid (V, 3 mM, Sigma P4543) to  
ENR medium.

 16. Single-organoid single-cell dissociation mix was prepared using PBS (Gibco, 
14190-094), B. licheniformis protease (10 mg per ml, Sigma P5380), EDTA 
(5 mM, Sigma 03690), EGTA (5 mM, BioWorld, 40520008-1), DNase I (10 µg 
per ml, Roche 11 284 932 001) and Accutase (0.68X, Sigma, A6964) in a total 
volume of 20 µl per reaction. For single-organoid dissociation, Nunc MicroW-
ell plates (Nunc, 438733) and siliconized p10 pipette tips (VWR, 53509-134) 
were used.

 17. For intestinal organoid preparation for RNAscope, cold Cell Recovery  
Solution (Corning, 354253), Histogel (Thermo Scientific, HG-4000-012)  
and paraformaldehyde (4%, PFA, Electron Microscopy Sciences, 15714)  
were used.

 18. For the RNAscope assay, organoids were stained using RNAscope Multi-
plex Fluorescent V2 assay (ACD Bio-Techne, 323110), Ly6a probe (ACD 
Bio-Techne, 427571-C2), Fabp1 probe (ACD Bio-Techne, 562831), Muc2 
probe (ACD Bio-Techne, 315451-C2), PpiB probe (ACD Bio-Techne, 
313911-C2), Duplex negative control (ACD Bio-Techne, 320751), TSA 
Opal650 (Perkin Elmer, FP1496001KT), TSA Opal570 (Perkin Elmer, 
FP1488001KT) and Prolong Diamond Antifade Mountant (Thermo Fisher, 
P36965).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The GEO (Gene Expression Omnibus) accession number for scRNA-seq data 
reported in this paper is GSE148093. The raw data and count matrices for Fig. 1h 
and Extended Data Fig. 2c are stored under the access code GSM4454017. The 
raw data and count matrices for Fig. 1i and Extended Data Fig. 2a are available 
under the access code GSM4454017. The raw data and count matrices for Fig. 
1j are stored under the access codes GSM4454012–GSM4454016. The raw data 
and count matrices for Extended Data Fig. 2e,f are stored under the access codes 
GSM5567775–GSM5567779. The raw data and count matrices for Extended Data 
Fig. 2g are stored under the access codes GSM5567571–GSM5567730. The raw 
data and count matrices for Extended Data Fig. 4 are stored under the access codes 
GSM5567845–GSM5567854. The raw data for intestinal organoids embedded in 
Figs. 2 and 3, Extended Data Figs. 3–5, Figs. 4a,e and 5d,e and Extended Data Figs. 
7, 9 and 10 are stored under access codes GSM4453981–GSM4454011. The raw 
data and count matrices for intestinal crypts embedded in Fig. 5 and Extended 
Data Figs. 8–10 are stored under the access codes GSM5567818–GSM5567844. 
Additionally, dataset GSM1544799 and data from ref. 23 (https://doi.org/10.1039/
C9LC00014C, data available on request) were used for Fig. 1i and Extended 
Data Fig. 2a. In this study the following reference genomes were used: hg38 

(GCF_000001405.26), mm10 (GCF_000001635.20) and mixed reference genome 
(GSE63269) of hg19 combined with mm10.

Code availability
This technology has been developed as an open source platform, therefore all 
required information for its implementation is publicly available. The source 
code for the machine-vision software is available on github (https://github.com/
DeplanckeLab/DisCo_source) and the barcode merging script is supplied as 
Supplementary Software 1.
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Extended Data Fig. 1 | DisCo device features and their performance. (a) Schematic of the DisCo device design (blue: flow layer, green: control layer). 1. oil 
valve, 2. oil inlet, 3. cell inlet, 4. bead inlet, 5. cell valve, 6. dropleting valve, 7. bead valve, 8. sample valve, 9. waste valve, 10. sample outlet, 11. waste outlet. 
(b) Visualization of real-time image processing for particle detection. (c) Particle positioning by valve oscillation. Approaching particles are detected in the 
detection zone. Once a particle is detected, the channel valve is oscillated to induce discrete movements of particles. Oscillation is terminated once correct 
placement of a particle is achieved. (d) Stopping accuracy in a defined window. Beads (n = 744) were positioned using valve oscillation, their position 
was manually determined within the stopping area. Scale was approximated from channel width. (e) Volume-defined droplet on-demand generation by 
valve pressurization. Droplets (n = 68, ~8 per condition, 1 experiment) were produced by pressurizing the dropleting valve at different pressures. Size was 
determined by imaging the dropleting process. Volumes were calculated from the imaging data based on droplet length and channel geometry. Thus, they 
should be considered an approximation. Points represent mean values, error bars +/-SD. The channel width of displayed images is 250 μm.
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Extended Data Fig. 2 | Quality assessment of DisCo scRNA-seq data. (a) Cumulative reads per barcode (n = 500) for DisCo and two Drop-seq 
experiments2,23. (b) Hamming distances between all 12 nt barcodes of a Drop-seq experiment and generated 12 nt random barcode sequences 
representing the probability density for each set of barcodes. (c) Species purity (bars) and doublet ratio (dots) for unmerged (n = 949) and merged 
barcodes (n = 274). Data represent mean values, error bars standard deviation. (d-e) HEK 293T cells were processed with DisCo at 22 °C after 20, 40 or 
60 min or stored on ice for 120 or 180 min and subsequently processed. (d) UMAP embedding of all profiled HEK 293T cells from the five sampling time 
points, color-coded by sampling time. (e) Violin plots showing the percentage of UMIs per cell of heat-shock-protein (HSP), mitochondrial protein-coding 
(MT), or ribosomal protein-coding (RPL) genes. (f) Correlation of the number of manually counted cells by fluorescence microscopy and the number of 
cells quantified by the DISPENCELL platform. (g) A quantified number of HEK 293T cells was processed with the Fluidigm C1 system. Processing efficiency 
was calculated as the percentage of cells retrieved from the sequencing data respective to the quantified number of input cells. The red line represents 
100% efficiency, and samples were colored according to the recovery efficiency after sequencing.
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Extended Data Fig. 3 | DisCo performance on individual intestinal organoids and data analysis. (a) Representative bright-field image of a differentiated 
organoid culture from single LGR5+ cells, as performed for experiments shown in Fig. 2. (b) Correlation of encapsulated cells on-chip with the number 
of cells detected after sequencing (cells passing QC, filtered above 800 genes/cell). (c) UMAP embedding colored by the number of detected genes 
(nFeature) per cell, the number of detected UMIs (nCount) per cell, the percentage of mitochondrial (mt) reads per cell, and the percentage of reads 
mapping to genes coding for respectively heat-shock proteins (Hsp), and ribosomal proteins (Rpl) per cell. (d) UMAP embedding colored by expression 
of selected marker genes (Clu, Anxa1, Spink4, ChgB, ChgA, Agr2, Clca1, and Fcgbp). (e) UMAP embedding for each of the three independent experimental 
batches colored by cluster annotation.
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Extended Data Fig. 4 | Batch effect assessment on organoids by split organoid experiment. (a) UMAP embedding of cells collected from nine additional 
individual organoids (under maintenance conditions) for the purpose of evaluating batch effects. Left: All 748 processed cells clustered with k-means 
clustering, after which clusters were annotated according to marker gene expression. Right: Expression dot plot of selected marker genes. (b) Projection of 
cells (colored by cell type) derived from one organoid that was split into two independent samples (split organoid) on the reference UMAP shown in a). 
Organoid ‘S2_2’ was split into two batches, which were processed subsequently, with a one-hour delay, during which the second batch was stored at 4 °C.

NAtuRE MEthoDS | www.nature.com/naturemethods



Articles NATuRE METHoDS

Extended Data Fig. 5 | Marker genes and YAP1 target gene activity of intestinal organoid cells. (a) Heatmap of top DE genes per annotated cluster. (b) 
YAP1 target gene activity on a UMAP embedding. The expression of genes that are positively regulated by YAP127 was calculated as the cumulative Z-score 
and projected on the UMAP embedding of all sequenced cells.
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Extended Data Fig. 6 | Control images of DisCo- and RNAscope-processed organoids. (a) Selected organoids from Fig. 4, imaged in microwell plates 
before dissociation to single cells. Scale bar: 50 μm. (b) RNAscope controls for organoids shown in Fig. 4b,f. Positive control (PpiB), and negative control 
(Duplex negative). Scale bar: 50 μm.
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Extended Data Fig. 7 | Marker gene expression per individual organoid. (a) Violin plots showing marker gene expression (Fabp1, Muc2, Sox9, Olfm4, 
Reg3b, Ly6a) per organoid. (b) Violin plots showing the expression of selected genes (Defa24, Gip, Vnn1, Zg16) identified via psupertime analysis per 
individual organoid.
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Extended Data Fig. 8 | DisCo performance on individual intestinal crypts and data analysis. (a) Processing efficiency of DisCo for individual and bulk 
intestinal crypts. All cells processed with DisCo were manually counted during the experiment, and compared to cell numbers after quality filtering 
(>500 UMIs). The red line represents 100% efficiency, and samples are colored according to sample type. (b) Expression dot plot of marker genes for 
clusters shown in Fig. 5a. (c) Gene activity represented as the cumulative Z-score and projected on the UMAP embedding of all sequenced cells using the 
expression of Top: Paneth cell-associated genes encompassing Lyz1, Defa17, Defa24 and Ang4 and Bottom: genes that are positively regulated by YAP127. 
(d) Projection of cell types onto the reference UMAP of cells derived from the 21 individual crypts. Cells per single crypt were colored according to their 
global clustering and highlighted on the UMAP embedding of all sequenced cells. Enterocytes (Entero), PIC (Potential intermediate cells), RegStem, 
(Regenerative Stem), TA (Transit amplifying cells; G1: G1/S and G2: G2/M cell cycle phase).
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Extended Data Fig. 9 | Analysis of combined intestinal organoid and crypt data. (a) Combined UMAP embedding (as shown in Fig. 5d) stratified by 
the five individual batches of intestinal crypt samples and the three independent experimental batches of intestinal organoid differentiation samples, 
collectively embedded and colored by cluster annotation. (b) UMAP-based visualization of the expression of specific markers that were used for cluster 
annotation. (c) Bar graph depicting the cumulative Z-score of the expression of genes that are indicated within the respective bar graph. CanStem: 
canonical stem cell, RegStem: regenerative stem cell.
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Extended Data Fig. 10 | Individual organoids and crypts mapped onto the denominator uMAP. Projection of cell types onto the reference UMAP of the ex 
vivo cell preparation for the 21 individual intestinal crypts and bulk samples embedded together with the 31 individual intestinal organoids. Cells per single 
crypt or organoid are colored according to their global clustering and highlighted on the UMAP embedding of all sequenced cells.

NAtuRE MEthoDS | www.nature.com/naturemethods







- - -



 


	Summary
	Zusammenfassung
	Acknowledgements
	List of Publications
	Abbreviations
	Introduction
	Tissue development and organisation
	Molecular measurements in single-cell biology
	Conceptual models of cell differentiation
	Differentiation models with single-cell transcriptomics
	Transcriptional dynamics-based differentiation models

	Objectives
	Results
	Simulation-based trajectory inference
	Cytopath: Modelling differentiation with Markov chains
	Modelling non-tree-like differentiation topologies
	Approximating the real rate of differentiation
	Fate trajectories of CD8+ T cells in chronic LCMV infection

	Latent state-space process model of differentiation
	Kinetic clustering and lineage inference
	Transitional-cell identification in developing human forebrain

	Modelling scRNAseq. data with ordinal labels
	Regularised ordinal regression for pseudotime inference
	Performance benchmarks against unsupervised methods
	Marker discovery in intestinal organoids


	Discussion
	References
	Manuscripts

