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Abstract

Progress in science is driven through the formulation of hypotheses about phenomena of interest and by

collecting evidence for their validity or refuting them. While some hypotheses are amenable to deductive

proofs, other hypotheses can only be accessed in a data-driven manner. For most phenomena, scientists cannot

control all degrees of freedom and hence data is often inherently stochastic. This stochasticity disallows to

test hypotheses with absolute certainty. The field of statistical hypothesis testing formalizes the probabilistic

assessment of hypotheses, enabling researchers to control the error rates, for example, at which they reject a

true hypothesis, while aiming to reject false hypotheses as often as possible.

But how do we come up with promising hypotheses, and how can we test them efficiently? Can we use

machine learning systems to automatically generate promising hypotheses? This thesis studies different

aspects of this question.

A simple rule for statistical hypothesis testing states that one should not peek at the data when formulating

a hypothesis. This is indeed true if done naively, that is, when the hypothesis is then simply tested with

the data as if one had not looked at it yet. However, we show that in principle using the same data for

learning the hypothesis and testing it is feasible if we can correct for the selection of the hypothesis. We treat

this in the case of the two-sample problem. Given two samples, the hypothesis to be tested is whether the

samples originate from the same distribution. We can reformulate this by testing whether the maximum

mean discrepancy over a (unit ball of a) reproducing kernel Hilbert space is zero. We show that we can

learn the kernel function, hence the exact test we use, and perform the test with the same data, while still

correctly controlling the Type-I error rates. Likewise, we demonstrate experimentally that taking all data into

account can lead to more powerful testing procedures than the data splitting approach. However, deriving

the formulae that correct for the selection procedure requires strong assumptions, which are only valid for a

specific, the linear-time, estimate of the maximum mean discrepancy. In more general settings it is difficult, if

not impossible, to adjust for the selection.

We thus also analyze the case where we split the data and use part of it to learn a test statistic. The maximum

mean discrepancy implicitly optimizes a mean discrepancy over the unit ball of a reproducing kernel Hilbert

space, and often the kernel itself is optimized on held-out data. We instead propose to optimize a witness

function directly on held-out data and use its mean discrepancy as a test statistic. This allows us to directly

maximize the test power, simplifies the theoretical treatment, and makes testing more efficient. We provide

and implement algorithms to learn the test statistics. Furthermore, we show analytically that the optimization

objective to learn powerful tests for the two-sample problem is closely related to the objectives used in

standard supervised learning tasks, namely the least-square loss and cross-entropy loss. This allows us to

indeed use existing machine learning tools when learning powerful hypotheses. Furthermore, since we use

held-out data for learning the test statistic, we can use any kind of model-selection and cross-validation

techniques to maximize the performance. To facilitate this for practitioners, we provide an open-source

Python package ’autotst’ implementing an interface to existing libraries and running the whole testing

pipeline, including the learning of the hypothesis. Our presented methods reach state-of-the-art performance

on two-sample testing tasks. We also show how to trade off the computational resources required for the test

by sacrificing some statistical power, which can be important in practice. Furthermore, our test easily allows

interpreting the results.

Having more computational power potentially allows extracting more information from data and thus obtain

more significant results. Hence, investigating whether quantum computers can help in machine learning tasks

has gained popularity over the past years. We investigate this in light of the two-sample problem. We define

the quantum mean embedding, mapping probability distributions onto quantum states, and analyze when

this mapping is injective. While this is conceptually interesting on its own, we do not find a straight-forward

way of harnessing any speed-up. The main problem here is that there is no known way to efficiently create

the quantum mean embedding. On the contrary, fundamental results in quantum information theory show

that this might generally be hard to do.



For two-sample testing, the usage of reproducing kernel Hilbert spaces has been established for many years

and proven important both theoretically and practically. In this case, we thus focused on practically relevant

aspects to make the tests as powerful and easy to use as possible. For other hypothesis testing tasks, the

usage of advanced machine learning tools still lags far behind. For specification tests based on conditional

moment restrictions, popular in econometrics, we do the first steps by defining a consistent test based on

kernel methods. Our test already has promising performance, but optimizing it, potentially with the other

insights gained in this thesis, is an open task.



Zusammenfassung

The ’Zusammenfassung’ is a machine translated version of the abstract via www.DeepL.com/Translator and slightly adopted.

Fortschritt in der Wissenschaft wird durch die Formulierung von Hypothesen über Phänomene von

Interesse und durch das Sammeln von Evidenz für deren Gültigkeit oder deren Widerlegung erzielt.

Während einige Hypothesen deduktiv bewiesen werden können, lassen sich andere Hypothesen nur

auf datengestützte Weise überprüfen. Bei den meisten Phänomenen können Wissenschaftler nicht alle

Freiheitsgrade kontrollieren, und daher sind die Daten oft von Natur aus stochastisch. Diese Stochastik macht

es unmöglich, Hypothesen mit absoluter Gewissheit zu prüfen. Der Feld der statistischen Hypothesentests

formalisiert die probabilistische Bewertung von Hypothesen und ermöglicht es Forscher:innen, beispielsweise

die Fehlerquoten zu kontrollieren, mit denen sie eine wahre Hypothese ablehnen, während sie versuchen,

falsche Hypothesen so oft wie möglich abzulehnen.

Aber wie kommen wir zu vielversprechenden Hypothesen und wie können wir sie effizient testen? Können

wir maschinelle Lernsysteme einsetzen, um automatisch vielversprechende Hypothesen zu generieren? In

dieser Arbeit werden verschiedene Aspekte dieser Frage untersucht.

Eine einfache Regel für statistische Hypothesentests besagt, dass man bei der Formulierung einer Hypothese

nicht auf die Daten schauen sollte. Das stimmt tatsächlich, wenn man es naiv macht, d. h. wenn man die

Hypothese einfach mit den selben Daten testet, als hätte man sie noch nicht angeschaut. Wir zeigen jedoch,

dass es prinzipiell möglich ist, dieselben Daten zum Lernen der Hypothese und zum Testen derselben zu

verwenden, wenn wir für Auswahl der Hypothese korrigieren können. Wir behandeln dies am Beispiel des

Zwei-Stichproben-Problems. Gegeben zwei Stichproben besteht die zu prüfende Hypothese darin, ob die

Stichproben aus der gleichen Verteilung stammen. Wir können dies umformulieren, indem wir testen, ob die

maximale mittlere Diskrepanz über einem (Einheitsball eines) reproduzierenden Kernel-Hilbert-Raums Null

ist. Wir zeigen, dass wir die Kernel-Funktion lernen können, also den genauen Test, den wir verwenden, und

den Test mit denselben Daten durchführen können, während wir die Typ-I-Fehlerraten immer noch korrekt

kontrollieren. Ebenso zeigen wir experimentell, dass die Berücksichtigung aller Daten zu leistungsfähigeren

Testverfahren führen kann als der Ansatz der Datenaufteilung. Die Ableitung der Formeln, die für das

Auswahlverfahren korrigieren, erfordert jedoch strenge Annahmen, die nur für eine bestimmte, nämlich die

linear-skalierende Schätzung der maximalen mittleren Diskrepanz gültig sind. In allgemeineren Situationen

ist es schwierig, wenn nicht gar unmöglich, die Auswahl zu korrigieren.

Wir analysieren daher auch den Fall, dass wir die Daten aufteilen und einen Teil davon zum Lernen einer

Teststatistik verwenden. Die maximale mittlere Diskrepanz optimiert implizit eine mittlere Diskrepanz

über die Einheitskugel eines reproduzierenden Kernel-Hilbert-Raums, und oft wird der Kernel selbst auf

separaten Daten optimiert. Wir schlagen stattdessen vor, eine Zeugenfunktion direkt auf separaten Daten

zu optimieren und ihre mittlere Diskrepanz als Teststatistik zu verwenden. Dies ermöglicht eine direkte

Maximierung der Testleistung, vereinfacht die theoretische Behandlung und macht das Testen effizienter. Wir

stellen Algorithmen zum Lernen der Teststatistiken bereit und implementieren sie. Darüber hinaus zeigen

wir analytisch, dass das Zielfunktion zum Erlernen leistungsfähiger Tests für das Zwei-Stichproben-Problem

eng mit den Zielfunktionen verwandt ist, die bei Standardaufgaben des überwachten Lernens verwendet

werden, nämlich der kleinsten quadratischen Abweichung und der logistischen Regression. Dies ermöglicht

es uns, beim Lernen leistungsfähiger Hypothesen tatsächlich bestehende maschinelle Lernwerkzeuge zu

verwenden. Da wir für das Lernen der Teststatistiken separate Daten verwenden, können wir außerdem alle

Arten von Modellauswahl- und Kreuzvalidierungstechniken einsetzen, um die Leistung zu maximieren. Um

dies den Praktikern zu erleichtern, stellen wir ein quelloffenes Python-Paket "autotst" zur Verfügung, das

eine Schnittstelle zu bestehenden Bibliotheken implementiert und die gesamte Testpipeline, einschließlich

des Lernens der Hypothese, ausführt. Die von uns vorgestellten Methoden erreichen die beste Leistung bei

Zwei-Stichproben-Tests. Wir zeigen auch, wie man die für den Test erforderlichen Rechenressourcen durch

den Verzicht auf eine gewisse statistische Aussagekraft verringern kann, was in der Praxis wichtig sein kann.

Außerdem lassen sich die Ergebnisse unseres Tests leicht interpretieren.



Mit mehr Rechenleistung lassen sich potenziell mehr Informationen aus den Daten extrahieren und somit

aussagekräftigere Ergebnisse erzielen. Daher hat die Untersuchung, ob Quantencomputer bei Aufgaben

des maschinellen Lernens helfen können, in den letzten Jahren an Popularität gewonnen. Wir untersuchen

dies im Hinblick auf das Zwei-Stichproben-Problem. Wir definieren das Quantum Mean Embedding, das

Wahrscheinlichkeitsverteilungen auf Quantenzustände abbildet, und analysieren, wann diese Abbildung

injektiv ist. Obwohl dies für sich genommen konzeptionell interessant ist, finden wir keinen einfachen

Weg, um einen Rechenzeitvorteil zu nutzen. Das Hauptproblem dabei ist, dass es keine bekannte Methode

gibt, das quantum mean embedding effizient zu erstellen. Im Gegenteil, grundlegende Ergebnisse der

Quanteninformationstheorie zeigen, dass dies im Allgemeinen schwer zu bewerkstelligen sein dürfte.

Für Zwei-Stichproben-Tests hat sich die Verwendung von reproduzierenden Kern-Hilbert-Räumen seit vielen

Jahren etabliert und sowohl theoretisch als auch praktisch als wichtig erwiesen. In diesem Fall haben wir uns

daher auf praktisch relevante Aspekte konzentriert, um die Tests so leistungsfähig und benutzerfreundlich

wie möglich zu gestalten. Bei anderen Hypothesentests hinkt der Einsatz von fortgeschrittenen Methoden

des maschinellen Lernens noch weit hinterher. Für Spezifikationstests auf der Grundlage von bedingten

Momentenrestriktionen, die in der Ökonometrie weit verbreitet sind, haben wir die ersten Schritte unternom-

men, indem wir einen konsistenten Test auf der Grundlage von Kernelmethoden definiert haben. Unser Test

hat bereits eine vielversprechende Leistung, aber seine Optimierung, möglicherweise mit den anderen in

dieser Arbeit gewonnenen Erkenntnissen, ist eine offene Aufgabe.
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1: The 𝑝-value is defined as the probabil-

ity under 𝐻0 of observing a test statistic

(here 𝐾) at least as large as the actually

observed one.

2: 5% is an arbitrary choice that is com-

mon in the literature, but should be set

depending on the practical application.

3: In fact this would be a Type-II error,

as a was rolled with probability 1/2
the way the data was generated.

Is data splitting necessary for two-stage hy-
pothesis tests?

4: xkcd.com/882/ gives a nice illustra-

tion of 𝑝-value hacking.

0.1. Introduction

Imagine you would have to asses whether a (six-sided) die is fair, i.e.,

the probability of all outcomes is equally given as 1/6. What is a good

strategy to test the null hypothesis 𝐻0: ’the die is fair’ against the alternative
hypothesis ’the die is unfair’? How can we make this quantitative? What

errors could we make?

Suppose we are allowed to role the die 20 times. A conceptually very

simple approach would be to role the die ten times, look at the outcomes,

and formulate a concise hypothesis about what is unfair. Then role

the die another ten times, and test whether this is indeed statistically

significant.

Let’s do the experiment: The first ten roles yield , , , , , , , ,

, . Without much knowledge about statistics an intuitive and concise

alternative hypothesis would be ’the probability of obtaining a is larger

than 1/6’. We then role the die another ten times and obtain , , , , ,

, , , , . Denoting by 𝐾 the number of sixes, we observe 𝐾 = 4. Is

this statistically significant? To check this, we can look at the distribution

under the null hypothesis, where we have that the probability of rolling

a is 1/6. Under the null hypothesis 𝐾 follows a binomial distribution,

i.e.,

0 2 4 6 8 10
k

0.0

0.1

0.2

0.3

Figure 1.: Probability mass function for

observing 𝑘 sixes when rolling a fair die

ten times.

Pr [𝐾 = 𝑘] =
(
10

𝑘

) (
1

6

) 𝑘 (
5

6

)
10−𝑘

.

Thus the 𝑝-value
1

is given as Pr [𝐾 ≥ 4] ≈ 7%. The question of whether

or not to reject the null hypothesis now depends on two types of error

that we need to balance:

Type-I error: We reject 𝐻0 although it was true.

Type-II error: We do not reject 𝐻0 although it was false.

In this thesis our goal is to devise tests that control the Type-I error

at (or below) a specified significance level 𝛼, oftentimes set to 5%,
2

and

given Type-I error control the goal is to make the Type-II error rate as

small as possible. We will also speak of test power, which is simply the

rate of rejection given the null hypothesis is wrong, and thus simply

1 − rate of Type-II errors. In our example, given 𝛼 = 5% we could not

reject the null hypothesis.
3

Although, this thesis will not be about rolling dice, this small example

nicely brings up questions that we will discuss in the following. Among

others these are:

Is data splitting necessary for two-stage hypothesis tests?
How can we learn the most promising hypothesis in the first stage?
How applicable is a test for non-expert users?
How many computational resources does the test require?

Let us briefly comment on those four questions. Data splitting is not
necessary but very convenient. Nevertheless, data is often split to prevent

(accidental) ’𝑝-value hacking’.
4 𝑝-value hacking happens when one takes

the same data to formulate a hypothesis (via a test statistic) and tests on

the same data without adjusting for it. This leads to unreliable 𝑝-values

and thus useless results. In the above example, this would have happened,

https://xkcd.com/882/
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[1]: Lehmann et al. (2005), Testing statisti-
cal hypotheses

[2]: Fithian et al. (2017), Optimal Inference
After Model Selection

How can we learn the most promising hy-
pothesis in the first stage?

How applicable is a test for non-expert users?

5: github.com/jmkuebler/auto-tst

How much computational resources does the
test require?

if we tested the significance of ’the probability of obtaining a is larger

than 1/6’ with the prescribed method, but on the first dataset. There exist

methods to obtain reliable tests even without data splitting. A classic way

is to use Bonferroni correction [1, Theorem 9.1.1]: we can simultaneously

test whether any of the six outcomes has probability larger than 1/6
and adjust the significance level for each test to 𝛼/6. A more modern

approach is to derive a distribution of the test statistic conditionally on

it being selected [2]. While the first approach can be quite conservative,

especially with a large number of different tests, the latter requires strong

analytic understanding of the problem. In this work, we will extend the

second approach, but also fall back to data splitting, since this allows us

to define more flexible tests.

In the die example, one could also uniformly at random pick one of the

sides of the die in the first stage and then test whether its probability is

too large on the second sample. Clearly, this does not make good use of

the data of the first sample. Since we want to maximize the test power

(minimize Type-II error), we should instead pick a hypothesis for which,

based on the data in the first sample, we see the highest chances of the

test rejecting on the second sample. If the hypotheses we consider are

simply to pick one number and check its probability, then our choice of

picking was optimal; based on the data in the first sample it is most

likely that checking probability of is leads to rejection. However, if

our set of hypotheses is not that simple, finding the optimal one might

be challenging. In this work, we focus on strategies that optimize the

asymptotic test power, i.e., are optimal in the large data regime.

Arguably the testing procedure above is relatively simple and applicable

with minimal statistical knowledge and tools. But what if learning

the right hypothesis requires advanced machine learning tools? Most

literature in hypothesis testing focuses on statistical and theoretical

aspects, while the implementation details and practical aspects are

often less worked out. Arguably, engineering matters just as much for

hypothesis testing as it does for standard machine learning (say regression

and classification tasks). One reason that the engineering part is not

so popular, might be that it will usually require data splitting in order

to prevent (accidental) 𝑝-value hacking. But if we split the data, we

are on the safe side. The autotst Python package
5

developed during

this doctoral studies, builds on existing automated machine learning

techniques and uses them for two-sample testing. It requires minimal

knowledge of the user and automates the engineering part when learning

a powerful hypothesis.

When working with larger datasets not only statistical but also compu-

tational considerations come into play. This will sometimes result in a

trade-off between statistical aspects in form of test power and computa-

tional aspects like runtime and space requirements. As a bold example:

simply ignoring half of the available data and running a test only on the

other half will be faster but also (likely) lead to worse results. Fortunately,

we will present more sophisticated aspects to balance this trade-off in

this work. Ideally, an unexperienced user could easily state their available

computational resources, which we also achieve in the autotst package,

simply by integrating existing methods.

https://github.com/jmkuebler/auto-tst
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Figure 2.: The two-sample problem: Are

the images on the left drawn from the

same distribution as the images on the

right? (Subsampled from MNIST [3].)

[4]: Schölkopf et al. (2001), Learning with
Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond
[5]: Gretton et al. (2012), A kernel two-
sample test

[6]: Gretton et al. (2012), Optimal kernel
choice for large-scale two-sample tests; [7]:

Sutherland et al. (2017), Generative models
and model criticism via optimized maximum
mean discrepancy; [8]: Liu et al. (2020),

Learning Deep Kernels for Non-Parametric
Two-Sample Tests

[9]: Lopez-Paz et al. (2017), Revisiting
Classifier Two-Sample Tests

Two-sample tests. The major part of this thesis deals with a specific

hypothesis testing problem: Testing whether two samples originate from

the same distribution. This is an important problem in scientific discovery,

for example, testing whether two differently treated groups of patients

show different characteristics is a two-sample problem. More recently,

the problem of detecting distribution shift has also been a use case of

two-sample tests. Let us denote by 𝕏 an i.i.d. sample drawn from the

distribution 𝑃 and by 𝕐 an i.i.d. sample drawn from distribution 𝑄. The

null hypothesis will then be 𝑃 = 𝑄. While there exist classical tests like

Student’s two-sample 𝑡-test or the Kolmogorov-Smirnov test, for complex

datasets as in Figure 2 one needs more flexible approaches. In this thesis

we will work with approaches that rely on machine learning and will

now introduce two flexible approaches.

For two distributions 𝑃, 𝑄, the Maximum Mean Discrepancy (MMD) is

defined as

MMD(𝑃, 𝑄 | H) = max

ℎ∈H,∥ℎ∥≤1

𝔼𝑋∼𝑃 [ℎ(𝑋)] − 𝔼𝑌∼𝑄 [ℎ(𝑌)].

Here H is commonly a reproducing kernel Hilbert space (RKHS) [4]. [5]

use an empirical estimate of the (squared) MMD as a test statistic for

two-sample testing. One can think of the MMD as an implicit two-stage

procedure, where first the function that maximizes the mean discrepancy

is found and then its (squared) mean discrepancy is taken as a test statistic.

However, in practice, one directly estimates its squared value. On the other

hand, choosing a good RKHS Hhas also been done in a data-driven way,

which then relied on data splitting once more [6–8] making MMD into

an explicit two-stage procedure. Furthermore, computational-statistical

trade-offs have also found consideration, since [5] propose both a linear-

and a quadratic-runtime estimator. We will show that in the linear-time

case, we can learn Heven without data splitting. Furthermore, we will

argue that if we use data-splitting, we should rather directly estimate a

witness function whose mean-discrepancy has best test power, instead of

learning a kernel and its associated RKHS.

An other way to test the two-sample hypothesis is to train a classifier

between the two-samples and then to check whether its accuracy is

significantly above chance [9]. This procedure is intrinsically tied to a

two-stage procedure and to data splitting. While the MMD basically is its

own branch of machine learning, the classifier two-sample test can use

existing frameworks for classification. However, using a binary classifier

was criticized for two reasons: First, binary outcomes are discrete and

introduce significant noise in areas where the decision is uncertain.

Second, optimizing classification accuracy does not really optimize test

power.

We will connect classification-based tests to tests based on the mean

discrepancy of a witness function (similar to MMD), and will show that

optimizing a cross-entropy loss and taking the predicted probabilities as

witness function indeed optimizes asymptotic test power.

While most of the presented research of this thesis has a direct practical

impact, we also investigated more fundamental questions in machine

learning during my doctoral studies. In particular, we investigated the role

and impact future quantum computers could have on machine learning
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[10]: Kübler et al. (2019), Quantum mean
embedding of probability distributions; [11]:

Kübler et al. (2020), An adaptive opti-
mizer for measurement-frugal variational
algorithms; [12]: Kübler

∗
et al. (2021), The

inductive bias of quantum kernels; [13]: Jerbi

et al. (2023), Quantum machine learning
beyond kernel methods

[14]: Chwialkowski et al. (2016), A Kernel
Test of Goodness of Fit
[15]: Gretton et al. (2007), A kernel statis-
tical test of independence
[16]: Zhang et al. (2011), Kernel-based con-
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causal discovery

[6]: Gretton et al. (2012), Optimal kernel
choice for large-scale two-sample tests

[17]: Lee et al. (2016), Exact post-selection
inference, with application to the lasso

[10–13]. Most of this is not of direct relevance for this dissertation, except

for [10]. We will thus also discuss in this work whether we can use

quantum computers to speed-up two-sample tests. We will see that with

the current state of the theory this does not seem to be the case.

Other hypothesis testing problems. Beyond two-sample testing there

are other hypothesis testing problems that are nowadays tackled via

machine learning methods, in particular kernel methods. These are for

example, goodness-of-fit tests [14], independence testing [15], and condi-

tional independence testing [16]. We add a novel test to this collection

called the kernel conditional moment test. This test can check whether a

given model violates constraints given as conditional moment restrictions

and has applications in econometrics and causality.

0.2. Outline

This thesis will be split in three parts. The first part covering Chapters 1

to 4 will focus on the two-sample problem and the question ’how can we

learn test statistics that lead to powerful tests.’ The first part can also be

read independently of the other two parts. We give a general introduction

to two-sample testing and review related work in Chapter 1. We will

particularly focus on related work that considers the maximization of

test power and will already give outlooks how our later results fit in.

Furthermore a focus will be put on kernel-based hypothesis tests working

with the maximum mean discrepancy.

In Chapter 2 we will present an approach that allows us to learn a

powerful hypothesis test without splitting the data. The test will be

based on linear-time estimates of the MMD. Linear-time MMD tests are

very scalable, as the name indicates, their runtime only scales linearly

with the sample size. On the downside, the test is statistically not very

efficient as it ignores some informative terms. The test considers a finite

set of base kernels and optimizes their linear combination by optimizing

an asymptotic test power criterion corresponding to a signal-to-noise

ratio. What enables this method is that the linear-time MMD estimate

is asymptotically normally distributed under the null and alternative

hypothesis. Our procedure follows the same idea as in [6], but we

overcome the need to split the data. The main theoretical contribution of

Chapter 2 is a generalization of the post-selection inference framework

[17], shown in Theorem 2.3.2, which is of independent interest. This

allows us to derive the distribution of the test statistic under the null

hypothesis, conditional on it being selected. Hence we can find reliable

test thresholds without data splitting. We provide experiments showing

the improvements over the previously existing approach based on data

splitting. Interestingly, we managed to obtain improved performance

over [6], without increased computational cost.

The approach of Chapter 2, however, crucially relies on asymptotic

normality of the test statistic under the null hypothesis and is thus tied to

the linear-time MMD estimates. The downside of the linear-time MMD

estimate is that it has a very high variance and thus requires large datasets

for powerful tests. At present it is not feasible to extend the post-selection



6

[7]: Sutherland et al. (2017), Generative
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autotst is installable via pip install

autotst and is available on

github.com/jmkuebler/auto-tst

inference framework also to settings working with the quadratic-time

MMD estimate. In Chapter 3 we thus focus on approaches to optimize the

kernel for the quadratic-time MMD estimate. Prior work [7, 8] derived a

test power criterion based solely on the asymptotic distribution under

the alternative hypothesis, which is also normal for the quadratic time

estimate. Hence the optimization objective is also a signal-to-noise ratio.

We propose that instead of learning a kernel, we should directly learn

a one-dimensional witness function. In fact, in the simplest case, we

use previously proposed methods to optimize the kernel function but

additionally use the training data again to estimate the MMD-witness

function. This leads us to the more general definition of witness two-

sample tests (WiTS-tests). WiTS tests use the mean discrepancy of a

witness function ℎ as a test statistic

𝜏(𝑃, 𝑄) = 𝔼𝑋∼𝑃 [ℎ(𝑋)] − 𝔼𝑌∼𝑄 [ℎ(𝑌)]. (0.1)

The witness function itself is optimized on held-out data via an asymp-

totic test power criterion, which once more correspond to a signal-to-noise

ratio, i.e., the empirical estimate of 𝜏(𝑃, 𝑄) divided by the empirical stan-

dard deviation of the estimator. We show how to solve the corresponding

optimization problem over functions in a reproducing kernel Hilbert

space via kernel Fisher discriminant analysis. We also show how to solve

this optimization procedure efficiently using the Nyström approximation

and conjugate gradient. This once more allows us to trade some statistical

significance for computational efficiency. The WiTS tests are an example

where in the first stage we can use any sort of engineering we want

without the danger of (accidental) 𝑝-value hacking. As a simple example,

we use cross-validation to select the kernel and the regularization in

the optimization stage. We also obtain insights into the kernel optimiza-

tion when using MMD. In fact, optimizing the RKHS to maximize test

power, corresponds to tweaking the RKHS such that its MMD-witness

function has optimal test power when used in a WiTS test. Empirically,

the WiTS test, although conceptually simpler, can outperform existing

approaches.

Chapter 4 has a very practically oriented agenda. The main shortcoming

of Chapter 3 is that the signal-to-noise ratio determining the test power

of a witness function is a rather uncommon optimization objective. While

we were able to solve it over an RKHS, it is unclear how to optimize this

in other machine learning frameworks. As we find, it is unnecessary to

develop new methods specifically for optimizing the witness, since we

show that in fact optimizing the signal-to-noise ratio is (asymptotically)

equivalent to finding the function minimizing a squared loss or a cross-

entropy loss. This suddenly enables us to deploy WiTS tests with any

existing machine learning framework. In particular, it allows to harvest

recent advancements in automated machine learning and building on

well-engineered machine learning pipelines. We call the resulting test

AutoML two-sample test. Besides the theoretical insights, we discuss the

application of two-sample tests to detect distribution shift and run a large

distribution shift benchmark [18], where we use the same method for

all experiments. This is a great advantage over prior work, which often

uses different hyperparameters on different testing problems. To make

testing as user friendly as possible, we provide the open-source Python

package autotst, which wraps existing machine learning frameworks

https://github.com/jmkuebler/auto-tst
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and implements the witness two-sample testing pipeline. With its default

setting, given two sample arrays sample_P and sample_Q, computing

𝑝-values with autotst requires only 3 lines of code:

import autotst

tst = autotst.AutoTST(sample_P, sample_Q)

p_value = tst.p_value()

Beyond the default settings, autotst is easy to customize and to use with

other machine learning frameworks. We will not include a detailed discus-

sion of the package in this thesis. Instead we refer to the documentation

github.com/jmkuebler/auto-tst.

In Chapters 1 to 4 the computational cost of the various tests plays an

important role: In Chapter 2 we use a linear-time test, in Chapter 3 we in-

troduce a test that naively runs in cubic time, but propose an approximate

solution, and in Chapter 4 we leverage existing AutoML frameworks that

explicitly allow control of the resources, by setting runtime and/or stor-

age limits. In the second part of the thesis (Chapter 5) we briefly explore

whether we can use quantum computers to speed up the estimation

of the maximum mean discrepancy. To do this we define the quantum

mean embedding, which generalizes the kernel mean embedding [19] by

mapping a probability distribution onto a pure quantum state. We show

under which conditions it is a one-to-one representation of probability

distributions. We then discuss the constraints of quantum information

that seem to block the road to a quantum speedup. In particular, it is

known that there cannot exist a machine which given as input some

quantum states, creates the superposition of those states. But this is

exactly what is needed to create the quantum mean embedding. So

although the initial idea of using a quantum computer to speed up MMD

estimation seems promising, there are conceptual problems that hinder

this. Although not directly relevant to this thesis, we further explored

other aspects of quantum machine learning during my doctoral studies

[11–13]. In particular the NeurIPS 2021 paper [12] provided a thorough

statistical analysis of learning with quantum kernels and its limitations.

The third part of the thesis (Chapter 6) presents a new type of kernel-

based hypothesis test, i.e., for a task different than two-sample testing.

The kernel conditional moment test represents conditional moment

restrictions in the reproducing kernel Hilbert space. This leads to a handy

test statistic to assess whether a given model violates a given set of

conditional moment restrictions.

The thesis ends with a summarizing conclusion and outlooks for potential

future work.

0.3. Underlying manuscripts and contributions

The research covered in this thesis was published in diverse papers with

different collaborators. The chapters of this thesis are often built verbatim
on these publications. The following lists the papers and describes my

personal contributions. Papers I contributed to during my PhD studies

that are not part of this thesis are also included at the end.

https://github.com/jmkuebler/aut-tst
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Learning powerful test statistics for
two-sample testing



This chapter introduces the two-sample

problem and related literature in depth

and prepares for the subsequent three

chapters.

[1]: Lehmann et al. (2005), Testing statisti-
cal hypotheses

1: We will mostly use 𝛼 = 5% in our

experiments. In practice, users should

always think carefully how to choose

the significance level. This has to take

into account the severity of Type-I and

Type-II errors. Increasing 𝛼 decreases the

Type-II error at an increased Type-I error

and vice versa [1, p. 57].

[1]: Lehmann et al. (2005), Testing statisti-
cal hypotheses

Introduction to two-sample
testing and related work 1.

1.1. Hypothesis testing

Testing statistical hypotheses is at the core of scientific discovery. Given a

hypothesis about phenomenon it prescribes a principled way of using

data to find statistical evidence against such a hypothesis [1]. We will test

a null hypothesis 𝐻0 against a specific alternative hypothesis 𝐻1. While the

hypotheses state something about a data-generating process, we will use

the collected data to compute a real-valued test statistic, often denoted as

𝜏. Thus 𝜏 will be a random variable and we will translate the null and

alternative hypotheses into hypotheses about the distribution of 𝜏. The

hypotheses we usually consider is that the mean of 𝜏 is zero under the

𝐻0 and positive under 𝐻1. We will thus reject the null hypothesis if the

observed value of 𝜏 is significantly larger than what we would expect

under the null hypothesis. Since 𝜏 is a random variable, this can lead to

two types of errors:

Type-I error: We reject 𝐻0 although it was true.

Type-II error: We do not reject 𝐻0 although it was false.

Our tests will be designed to control the Type-I error at a prespecified

significance level 𝛼 ∈ (0, 1) and we will then aim to minimize the Type-II

error. For a given test statistic and significance level 𝛼1
, we define the test

threshold 𝑡𝛼 such that

Pr [𝜏 ≥ 𝑡𝛼 | 𝐻0] ≤ 𝛼. (1.1)

The test then rejects the null hypothesis if 𝜏 ≥ 𝑡𝛼 . Note that such a testing

procedure is inherently asymmetric in the sense that failing to reject does

not provide direct evidence that null hypothesis is true.

Alternatively to computing a threshold, we can also assign a 𝑝-value to the

observed test statistic, which is defined as the "smallest significance level

[...] at which the hypothesis could be rejected for the given observation"

[1, Chapter 3.3].

Choice of test statistic. A central question in the practical application

of hypothesis tests is how to best choose the test statistic. As mentioned

earlier our goal will be to maximize the test power, i.e., minimize the

rate of Type-II errors, while controlling the Type-I error at level 𝛼. In this

part of the thesis, we will do this for the two-sample problem, which

we introduce in more detail next. We will explicitly learn powerful tests

by using the observed data. Note that for some people ’choosing’ a test

statistic might be slightly disconcerting. However, using a prefixed test

statistic only superficially is different. After all some scientist had to

choose this test statistic. Usually this process is neither questioned nor

justified. Since this choice happens (hopefully) independently of the data

it is not a conceptual problem. But this illustrates that a data-driven

approach of choosing a test statistic is conceptually nothing different, it

is just more explicit than the standard approach.
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2: For conciseness, whenever we use 𝑋

or𝑌 in expressions without explicit spec-

ification, we intend that they are ran-

dom variables distributed according to

𝑃 and 𝑄, respectively, e.g., 𝔼 [ 𝑓 (𝑋)] =
𝔼𝑋∼𝑃 [ 𝑓 (𝑋)].

[1]: Lehmann et al. (2005), Testing statisti-
cal hypotheses

1.2. The two-sample problem

We now introduce the two-sample problem. Let 𝑋 and 𝑌 be random

variables with (unknown) probability distributions 𝑃 and𝑄 over X⊆ ℝ𝑑

for some 𝑑 ∈ ℕ.
2

Given samples 𝕏 = {𝑥1 , . . . , 𝑥𝑛} drawn i.i.d. from 𝑃

and 𝕐 = {𝑦1 , . . . , 𝑦𝑚} drawn i.i.d. from 𝑄, with sample sizes 𝑛, 𝑚 ∈ ℕ,

our goal is to test the null hypothesis

𝐻0 : 𝑃 = 𝑄

against the alternative hypothesis

𝐻1 : 𝑃 ≠ 𝑄.

We will usually not (explicitly) assume much more about the distributions

that we consider. Generally, and particularly without strong parametric

assumptions it will not be possible to define a uniformly most powerful test
(UMP) test, i.e., a test that has highest power for all possible distributions

that fall under the alternative hypothesis [1, Chapter 3]. An example,

with strong assumptions is the following:

Example 1.2.1

0 1(1 )
1
n + 1

m

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Figure 1.1.: Test power for Example 1.2.1.

The green area corresponds to the rate of

Type-II errors. The larger the difference of

means 𝜉−𝜂 and the larger the samplesize,

the larger the test power is.

Let 𝑃 = N(𝜉, 1) and 𝑄 = N(𝜂, 1). Consider 𝐻0 : 𝜉 = 𝜂
and the one-sided alternative 𝐻1 : 𝜉 > 𝜂. Then using the mean

discrepancy as test statistic

𝜏(𝕏, 𝕐 ) = 1

𝑛

𝑛∑
𝑖=1

𝑥𝑖 −
1

𝑚

𝑚∑
𝑗=1

𝑦 𝑗

and rejecting the null hypothesis when it is too large, leads to a uni-

formly most powerful test against all possible alternative hypotheses [1,

Problem 3.61]. To derive the test threshold 𝑡𝛼 , we use that under the null

hypothesis 𝜏(𝕏, 𝕐 ) ∼N(0, 1

𝑛 + 1

𝑚 ) and thus set 𝑡𝛼 =

√
1

𝑛 + 1

𝑚Φ
−1(1−𝛼),

where Φ denotes the cumulative distribution function (CDF) of the

standard normal, and Φ−1
its inverse. We would then reject the test

whenever 𝜏(𝕏, 𝕐 ) ≥ 𝑡𝛼 and thus by definition control the Type-I error

at 𝛼. We can even directly compute the test power because under a

fixed alternative 𝜉 > 𝜂 we have 𝜏(𝕏, 𝕐 ) ∼N(𝜉 − 𝜂, 1

𝑛 + 1

𝑚 ) and thus

Pr [𝜏(𝕏, 𝕐 ) ≥ 𝑡𝛼 | 𝜉 > 𝜈)]

=Pr


𝜏(𝕏, 𝕐 )√

1

𝑛 + 1

𝑚

≥ 𝑡𝛼√
1

𝑛 + 1

𝑚

| 𝜉 > 𝜈)


=Pr

𝑍 ≥ −
©­­«

𝜉 − 𝜂√
1

𝑛 + 1

𝑚

−Φ−1(1 − 𝛼)
ª®®¬ | 𝑍 ∼N(0, 1)


=Φ

©­­«
𝜉 − 𝜂√
1

𝑛 + 1

𝑚

−Φ−1(1 − 𝛼)
ª®®¬ .

We illustrate this graphically in Figure 1.1. As might intuitively be

expected, the larger the difference 𝜉 − 𝜂 the higher the test power.
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[25]: Bishop et al. (2006), Pattern recogni-
tion and machine learning

3: Removing the bias term, leads to un-

controllable Type-I errors [26]. For illus-

tration consider 𝐵 = 1. The probability

that 𝜏(ℤ) ≤ 𝜏(ℤ𝜋
1 ) can be arbitrary close

to 1/2. We would then have 𝑝̂ = 1

2
with

probability close to 1/2 and we can thus

not control Type-I errors for 𝛼 < 1/2. For-

getting the bias term is a common issue

and also happened to us in the original

publications of [21, 22]. It also happens

in popular packages like SciPy, which

we fixed with pull request #16469.

We emphasize that the existence of a UMP test for the problem in

Example 1.2.1 is only possible through strong assumptions. If for ex-

ample, we had 𝐻1 : 𝜂 ≠ 𝜉, i.e., a two-sided alternative there does not

exists a UMP test anymore. A reasonable test would then be to use(
1

𝑛

∑𝑛
𝑖=1
𝑥𝑖 − 1

𝑚

∑𝑚
𝑗=1

𝑦 𝑗

)
2

as test statistic and reject for too large values.

This test is reasonable in the sense that it is consistent against any fixed

alternative, i.e., its power approaches 1 as the sample sizes go to infinity.

However, this two-sided test would have lower power than the test in

Example 1.2.1 for any alternative with 𝜉 > 𝜂, thus it is not UMP. Choosing

a good test statistic is thus a delicate task: We can choose a test that

is consistent against all alternative hypotheses, or choose a test that is

inconsistent against some alternatives but provides larger test power

on others. This is reminiscent of the bias-variance tradeoff in supervised

machine learning [25, Chapter 3.2].

Given this insight and that we will be interested in testing on complex

datasets, the goal of this work cannot be to find the best two-sample test.

Rather, we will provide procedures that find good test statistics in a

principled way and allow to incorporate prior knowledge, for example

by choosing a particular model class or machine learning framework.

𝑝-values based on permutations. For many test statistics we will

encounter in this thesis it is infeasible to directly derive the finite sample

distribution under the null hypothesis. In two-sample testing we can

alternatively obtain 𝑝-values by permuting the samples. We will now

illustrate this in detail and use it many times throughout this thesis.

Let 𝜏 be an arbitrary test statistic. Let ℤ = {𝑥1 , . . . , 𝑥𝑛 , 𝑦1 , . . . , 𝑦𝑚}
denote the pooled sample and let 𝜏(ℤ) = 𝜏(𝕏, 𝕐 ) be a test statistic that

is computed by taking the first 𝑛 elements of ℤ as 𝕏 and the last 𝑚

elements as 𝕐 . Let Π be the uniform distribution over all permutations

𝜋 : {1, . . . , 𝑛+𝑚} → {1, . . . , 𝑛+𝑚} and denote byℤ𝜋
the corresponding

permutation of ℤ. Assume that the null hypothesis holds and thus

ℤ ∼ 𝑃(𝑛+𝑚), then for 𝛼 ∈ (0, 1)

Prℤ∼𝑃(𝑛+𝑚) [Pr𝜋∼Π [𝜏(ℤ) ≤ 𝜏(ℤ𝜋)] ≤ 𝛼] ≤ 𝛼. (1.2)

The statement follows since 𝑃(𝑛+𝑚) is invariant under permutations

(see proof of Lemma 1.2.1 below). Equation 1.2 implies that for a given

realization ℤ we can define a 𝑝-value as

𝑝 (𝜏(ℤ)) = Pr𝜋∼Π [𝜏(ℤ) ≤ 𝜏(ℤ𝜋)] .

Since computing all possible permutations quickly gets infeasible (there

are (𝑛+𝑚)! different permutations of𝑛+𝑚 elements), we will approximate

𝑝-values through 𝐵 ∈ ℕ random permutations 𝜋1 , . . . ,𝜋𝐵 and use a

biased
3

estimator

𝑝̂ (𝜏(ℤ)) = 1

𝐵 + 1

(
1 +

𝐵∑
𝑖=1

I [𝜏(ℤ) ≤ 𝜏(ℤ𝜋𝑖 )]
)
, (1.3)

where I is the indicator function. As we state in the next Lemma, rejecting

the null hypothesis whenever 𝑝̂ ≤ 𝛼 correctly controls the Type-I error for

any sample size 𝑛, 𝑚 ∈ ℕ and number of permutations 𝐵 ∈ ℕ.

https://github.com/scipy/scipy/pull/16460


1. Introduction to two-sample testing and related work 14

Lemma 1.2.1 Let 𝑛, 𝑚, 𝐵 ∈ ℕ and 𝑃 be an arbitrary distribution over X.
Then for 𝑝̂(𝜏(ℤ)) defined as in Equation 1.3

Prℤ∼𝑃(𝑛+𝑚) [𝑝̂(𝜏(ℤ)) ≤ 𝛼] ≤ 𝛼.

Since this is quite fundamental, and of general relevance, we include the

proof here in the main part.

Proof. If we have 𝐵 + 1 real random variables 𝐴1 , . . . , 𝐴𝐵 and 𝐴∗ that

are independently and identically distributed according to an arbitrary

distribution 𝐷. Then we have for 𝐾 ∈ {0, . . . , 𝐵}

Pr𝐴∗∼𝐷
𝐴𝑖∼𝐷

[
𝐵∑
𝑖=1

I [𝐴∗ ≤ 𝐴𝑖] ≤ 𝐾
]
≤ 𝐾 + 1

𝐵 + 1

. (1.4)

Next, observe that 𝑃(𝑛+𝑚) is invariant under permutations, meaning that

if ℤ ∼ 𝑃(𝑛+𝑚) and 𝜋∗ ∼ Π, then ℤ𝜋∗ ∼ 𝑃(𝑛+𝑚) as well. Thus we have that

𝑝̂(𝜏(ℤ)) follows the same distribution as 𝑝̂(𝜏(ℤ𝜋∗)) and we can write

Prℤ∼𝑃(𝑛+𝑚) [𝑝̂(𝜏(ℤ)) ≤ 𝛼]
=Prℤ∼𝑃(𝑛+𝑚)Pr𝜋∗∼Π

[
𝑝̂(𝜏(ℤ𝜋∗)) ≤ 𝛼

]
=Prℤ∼𝑃(𝑛+𝑚)Pr𝜋∗∼Π

𝜋𝑖∼Π

[
1

𝐵 + 1

(
1 +

𝐵∑
𝑖=1

I
[
𝜏(ℤ𝜋∗) ≤ 𝜏(ℤ𝜋𝑖𝜋∗)

] )
≤ 𝛼

]
(𝑎)
= Prℤ∼𝑃(𝑛+𝑚)Pr𝜋∗∼Π

𝜋𝑖∼Π

[
1

𝐵 + 1

(
1 +

𝐵∑
𝑖=1

I
[
𝜏(ℤ𝜋∗) ≤ 𝜏(ℤ𝜋𝑖 )

] )
≤ 𝛼

]
(𝑏)
= Prℤ∼𝑃(𝑛+𝑚)Pr𝐴∗∼𝐷(ℤ)

𝐴𝑖∼𝐷(ℤ)

[
1

𝐵 + 1

(
1 +

𝐵∑
𝑖=1

I [𝐴∗ ≤ 𝐴𝑖]
)
≤ 𝛼

]
=Prℤ∼𝑃(𝑛+𝑚)Pr𝐴∗∼𝐷(ℤ)

𝐴𝑖∼𝐷(ℤ)

[
𝐵∑
𝑖=1

I [𝐴∗ ≤ 𝐴𝑖] ≤ 𝛼(𝐵 + 1) − 1

]
=Prℤ∼𝑃(𝑛+𝑚)Pr𝐴∗∼𝐷(ℤ)

𝐴𝑖∼𝐷(ℤ)

[
𝐵∑
𝑖=1

I [𝐴∗ ≤ 𝐴𝑖] ≤ ⌊𝛼(𝐵 + 1) − 1⌋
]

(1.4)

≤ ⌊𝛼(𝐵 + 1) − 1⌋ + 1

𝐵 + 1

=
⌊𝛼(𝐵 + 1)⌋
𝐵 + 1

≤ 𝛼.

In (𝑎)we used that the distribution of a permutation is invariant under

concatenation with another permutation and in (𝑏) we defined the

random variable 𝐴∗ = 𝜏(ℤ𝜋∗) for a given ℤ and denoted its distribution

with 𝐷(ℤ). Analogously , we define 𝐴𝑖 for 𝑖 = 1 . . . , 𝐵. Where we used

(1.4), we also used that this holds for all ℤ.

Remark 1.2.1 Three points should be considered when choosing the

number of permutations 𝐵:

1. To make the last inequality in the proof tight (and thus make

the rate of rejections highest) one should choose 𝐵 such that

⌊𝛼(𝐵 + 1)⌋ is as close as possible to 𝛼(𝐵 + 1), ideally equal.
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[4]: Schölkopf et al. (2001), Learning with
Kernels: Support Vector Machines, Regular-
ization, Optimization, and Beyond

[19]: Muandet et al. (2017), Kernel Mean
Embedding of Distributions: A Review and
Beyond

2. 𝑝̂ ≥ 1

𝐵+1
by Equation 1.3. Hence, to even have the possibility to

reject the null we should have that
1

𝐵+1
≤ 𝛼 which is the case

whenever 𝐵 ≥ 1

𝛼 − 1. Thus we should choose 𝐵 at least of this

size.

3. 𝑝̂ is random given ℤ. It is desirable to minimize this additional

randomness and choose 𝐵 as large as possible. Of course this

should be traded-off with the computational cost of using many

permutations.

1.3. Maximum mean discrepancy

As we have seen in the previous section using the mean discrepancy

in the one-dimensional case can be UMP under strong assumptions

(Example 1.2.1). However, such a test is unable to reliably detect differences

of distributions when their means are the same. A classic test that

consistently detects arbitrary (fixed) differences in univariate distributions

is the Kolmogorov-Smirnov test, using as a test statistic the maximal

difference of the empirical cumulative distribution function of 𝕏 and 𝕐 .

In this work we focus on test built with machine learning models. We

will now introduce kernel methods [4] to then later define flexible tests

based on the maximum mean discrepancy.

Definition 1.3.1 (Positive Definite Kernel, see Defintion 2.5 of [4]) Let
X be a nonempty set. A symmetric function 𝑘 : X×X→ ℝ such that for
all 𝑛 ∈ ℕ and 𝑥1 , . . . , 𝑥𝑛 ∈ X, and all 𝑐1 , . . . , 𝑐𝑛 ∈ ℝ∑

𝑖 , 𝑗

𝑐𝑖𝑐 𝑗 𝑘(𝑥𝑖 , 𝑥 𝑗) ≥ 0

is called positive definite kernel.4 4: We will usually simply say ’kernel’.

Furthermore, we limit ourselves here to

real kernels, although the definition gen-

eralizes to complex kernels.

Associated with a kernel is a unique reproducing kernel Hilbert space
(RKHS) Hof functions 𝑓 : X→ ℝ for which the reproducing property

⟨ 𝑓 , 𝑘(·, 𝑥)⟩ = 𝑓 (𝑥)

holds for all 𝑓 ∈ Hand 𝑥 ∈ X [4, Chapter 2.2.3].

Instead of embedding a single point in the RKHS via 𝑥 ↦→ 𝑘(·, 𝑥) we can

also embed a whole probability distribution in the RKHS, via the kernel

mean embedding [19, Chapter 3]

𝜇𝑃 = 𝔼𝑋∼𝑃 [𝑘(·, 𝑋)]. (1.5)

We have that𝜇𝑃 ∈ Hif𝔼𝑋∼𝑃 [𝑘(𝑋, 𝑋)] is finite [19, Lemma 3.1]. In this case

the expectation of a function 𝑓 ∈ His given by𝔼𝑋∼𝑃 [ 𝑓 (𝑋)] = ⟨ 𝑓 , 𝜇𝑃⟩. We

will use 𝜇𝕏 to denote the mean embedding of the empirical distribution

of a sample 𝕏.

We will now use kernel methods to define a test statistic that can be

consistent against arbitrary fixed alternatives. The underlying idea is that

if two distributions differ, then there exists a function such that the mean

under 𝑃 is different than the mean under 𝑄. The idea of the maximum
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[5]: Gretton et al. (2012), A kernel two-
sample test
5: The MMD was introduced in a series

of works [27–29] which was then sum-

marized and extended in [5].

6: See Chapter 7.1 of [5]. We also note

that the MMD is an integral probability

metric [30].

[31]: Fukumizu et al. (2008), Kernel Mea-
sures of Conditional Dependence

7: We will now simply say MMD, even

though we will always work with the

squared MMD

[5]: Gretton et al. (2012), A kernel two-
sample test

mean discrepancy (MMD) is to find the function that maximizes the mean

discrepancy over a unit ball in an RKHS [5].
5

Definition 1.3.2 (Maximum mean discrepancy, Definition 2 of [5]) Let
Fbe a class of functions 𝑓 : X→ ℝ and let 𝑃 and 𝑄 be two distributions
over X. We define the MMD as

MMD(𝑃, 𝑄 | F) := sup

𝑓 ∈F
𝔼𝑋∼𝑃 [ 𝑓 (𝑋)] − 𝔼𝑌∼𝑄 [ 𝑓 (𝑌)]. (1.6)

While the definition holds for arbitrary function spaces F,
6

it becomes

particularly useful when using a unit ball of an RKHS H for which 𝜇𝑃
and 𝜇𝑄 exist. In this case we have 𝔼 [ 𝑓 (𝑋)] −𝔼 [ 𝑓 (𝑌)] = ⟨𝜇𝑃 − 𝜇𝑄 , 𝑓 ⟩ for

all 𝑓 ∈ H. The function that witnesses the maximum mean discrepancy is

then aligned with the difference in mean embeddings and we will refer

to it as MMD witness. The squared MMD then simply is [5, Lemma 4]

MMD
2(𝑃, 𝑄 | H) :=

 sup

𝑓 ∈H
∥ 𝑓 ∥≤1

𝔼 [ 𝑓 (𝑋)] − 𝔼 [ 𝑓 (𝑌)]


2

= ∥𝜇𝑃 − 𝜇𝑄 ∥2H.

(1.7)

Whenever, we write MMD(·, · | H) for an RKHS Hwe leave implicit that

we constrain the supremum to the unit ball. We will also occasionally

write MMD(·, · | 𝑘), for a kernel 𝑘 instead of using its associated RKHS

or simply MMD(𝑃, 𝑄) and leave the dependence implicit.

From Equation 1.7 it follows that the squared MMD is a metric on

probability distributions if the mean embedding is injective. This has been

formalized through the notion of characteristic kernels [31]. In particular

we can then translate our abstract null and alternative hypothesis into

concise mathematical theses, i.e., 𝐻0 : MMD
2(𝑃, 𝑄 | H) = 0 versus

𝐻1 : MMD
2(𝑃, 𝑄 | H) > 0. Then we can use an empirical estimate of

the squared MMD to perform a two-sample test and consistently detect

any (fixed) different distributions. Of course, this does not imply that

at a fixed sample size the test will actually have high power against

arbitrary alternatives [5, Chapter 3.2], otherwise this thesis would not be

necessary.

Empirical estimates. To define a hypothesis test, we will use an em-

pirical estimate of the MMD as test statistic.
7

Here, we solely introduce

common test statistics. Approaches to derive test thresholds will be

introduced later when relevant. For an overview we refer to [5]. Using the

reproducing property and denoting with 𝑋′ ∼ 𝑃, 𝑌′ ∼ 𝑃 independent

copies of 𝑋,𝑌, we can rewrite Equation 1.7 as

MMD
2(𝑃, 𝑄) = 𝔼 [𝑘(𝑋, 𝑋′) − 𝑘(𝑋,𝑌′) − 𝑘(𝑋′, 𝑌) + 𝑘(𝑌,𝑌′)]. (1.8)
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[5]: Gretton et al. (2012), A kernel two-
sample test
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A straight-forward (biased) estimator of the MMD is given by replacing

the expectation with the empirical expectation leading to

�MMD

2

𝑏(𝕏, 𝕐 ) =
1

𝑛2

𝑛∑
𝑖 , 𝑗=1

𝑘(𝑥𝑖 , 𝑥 𝑗)

− 2

𝑚𝑛

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑘(𝑥𝑖 , 𝑦𝑗)

+ 1

𝑚2

𝑚∑
𝑖 , 𝑗=1

𝑘(𝑦𝑖 , 𝑦𝑗).

(1.9)

We can think of the biased estimator as using the available data first to

’learn’ the witness function and then use the same data to estimating the

mean discrepancy. A minimum-variance unbiased estimator is given by

leaving out the terms 𝑘(𝑥𝑖 , 𝑥𝑖) and 𝑘(𝑦𝑖 , 𝑦𝑖) [5, Lemma 6]

�MMD

2

𝑢(𝕏, 𝕐 ) =
1

𝑛(𝑛 − 1)
𝑛∑
𝑖=1

𝑛∑
𝑗≠𝑖

𝑘(𝑥𝑖 , 𝑥 𝑗)

− 2

𝑚𝑛

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑘(𝑥𝑖 , 𝑦𝑗)

+ 1

𝑚(𝑚 − 1)
𝑚∑
𝑖=1

𝑚∑
𝑗≠𝑖

𝑘(𝑦𝑖 , 𝑦𝑗).

(1.10)

One can then use these quantities as test statistic and there exist dif-

ferent approaches to estimate test thresholds [5]. A popular approach

is to permute the data and reestimate the quantities as described in

Lemma 1.2.1.

Both of the above estimators have a cost scaling quadratically in the

sample size. If we have equal sample size 𝑛 = 𝑚 we can also define

an estimator whose cost only scales linearly with the sample size. Let

us define 𝑍 = (𝑋, 𝑋′, 𝑌, 𝑌′) ∼ 𝑃 ⊗ 𝑃 ⊗ 𝑄 ⊗ 𝑄 and ℎ(𝑍) = 𝑘(𝑋, 𝑋′) −
𝑘(𝑋,𝑌′) − 𝑘(𝑋′, 𝑌) + 𝑘(𝑌,𝑌′). Then we can rewrite Equation 1.8 as

MMD
2(𝑃, 𝑄) = 𝔼 [ℎ(𝑍)]. (1.11)

Assuming for simplicity that 𝑛 is even, we can split the samples and define

𝑧𝑖 = (𝑥𝑖 , 𝑥𝑛/2+𝑖 , 𝑦𝑖 , 𝑦𝑛/2+𝑖) for 𝑖 = 1, . . . , 𝑛/2. The linear time estimate is

then simply [5, Lemma 14]

�MMD

2

lin
(𝕏, 𝕐 ) = 1

𝑛/2

𝑛/2∑
𝑖=1

ℎ(𝑧𝑖). (1.12)

Since this estimator is simply an empirical mean its asymptotic distribu-

tion is characterized by the Central Limit Theorem and is asymptotically

normal [32] [5, Corollary 16]. This allows to define asymptotic thresholds

in closed-form, a property we will exploit in Chapter 2.

1.4. Classifier two-sample tests

Another machine-learning based approach to two-sample testing is

built on classification accuracy. Intuitively, if there exists a classifier that
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achieves accuracy significantly above chance level when classifying data

from 𝑃 and 𝑄 we can conclude that 𝑃 ≠ 𝑄 [9, 33]. For simplicity we

will assume equal sample size 𝑚 = 𝑛. The idea is to split the available

data 𝕏, 𝕐 into disjoint training and test sets 𝕏tr ,𝕏te, and 𝕐tr , 𝕐te. One

labels data from 𝕏 with ’1’ and data from 𝕐 with ’0’ and trains a classifier

𝑓 : X→ {0, 1} on the training samples. The classification accuracy on

the test set then serves as test statistic:

𝜏̂(𝕏te , 𝕐te | 𝑓 ) =
1

2

(
1

𝑛te

𝑛te∑
𝑖=1

𝑓 (𝑥𝑖) +
1

𝑛te

𝑛te∑
𝑖=1

(1 − 𝑓 (𝑦𝑖))
)

𝑝-values can then be estimated either by permuting the test data or directly

by using the distribution of 𝜏̂(𝕏te , 𝕐te | 𝑓 ) under the null hypothesis,

where the accuracy equals 1/2 [9, Section 3.1]. Since 𝑝-values are only

estimated on the test data, one can use cross-validation or any other

technique in the training phase [9, Section 3.2].

1.5. Related work

The two prior subsections introduced the MMD and classifiers as popular

examples of two-sample tests. We shall now introduce a few more works

that cover details about such tests and which are of particular relevance

to this thesis. We will start by introducing methods that optimize the

kernel for MMD-based two sample tests.

Initially people used the median heuristic or simply maximized the

MMD [34] when choosing a good kernel function for two-sample testing.

[6] was the first work that introduced a principled optimization of the

test power when choosing the kernel function. They worked with the

linear-time MMD estimate (1.12). Since this statistic is asymptotically

normally distributed, deriving an asymptotic test power criterion is quite

simple. Essentially it is the same idea presented in Example 1.2.1 and

Figure 1.1. To minimize the rate of Type-II errors (green area in Figure 1.1)

one maximizes the signal-to-noise ratio of the distribution under the alter-

native hypothesis. Visually this means that one maximizes the distance

of means of the two distributions, normalized by their width – hence the

signal-to-noise ratio (SNR). When using 𝑑 ∈ ℕ different base kernels, their

corresponding linear-time MMD estimates will asymptotically jointly

follow a multivariate normal distribution. Using that the sum of kernel

functions is again a kernel function, [6] propose to learn the (positive)

linear combination of base kernels that minimizes the SNR. They used

data splitting when learning the kernel combination and observe that

their principled approach indeed leads to improved performance. We

will show how to overcome data splitting in this approach in Chapter 2.

While the linear-time estimates are fast to compute even on large data

and have appealing asymptotic distributions, they use the information

inefficiently.

[7] generalized the approach of optimizing the asymptotic SNR to the

quadratic-time MMD estimate (1.10). We here use a slightly modified
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version given as

�MMD

2

𝑢 =
1

𝑛(𝑛 − 1)
∑
𝑖≠𝑗

𝐻𝑖 𝑗 , (1.13)

with 𝐻𝑖 𝑗 = ⟨𝑘(𝑥𝑖 , ·) − 𝑘(𝑦𝑖 , ·), 𝑘(𝑥 𝑗 , ·) − 𝑘(𝑦 𝑗 , ·)⟩ and again assuming

𝑛 = 𝑚. This is a U-statistic. Under the null hypothesis, the asymp-

totic distribution of this test statistic is a (potentially infinite) sum of

weighted independent chi-square variables [8, Proposition 2][5, Theorem

12]

𝑛�MMD

2

𝑢

𝑑→
∑
𝑙

𝜎𝑙(𝜒2

𝑙
− 2), (1.14)

where 𝜒2

𝑙
= 𝑍2

𝑙
with 𝑍𝑙 ∼ N(0, 1), and 𝜎𝑙 depend on the kernel and

on 𝑃. It is usually thus infeasible to directly compute quantiles of this

distribution. Under the alternative hypothesis and assuming for the

chosen kernel 𝜇𝑃 ≠ 𝜇𝑄 the asymptotic distribution is asymptotically

normal [32, Section 5.5.1], [8, Proposition 2]

√
𝑛

(�MMD

2

𝑢 −MMD
2

)
𝑑→N(0, 𝜎2

𝐻1

), (1.15)

with 𝜎2

𝐻1

= 4(𝔼 [𝐻12𝐻13] − 𝔼 [𝐻12]2). Assuming that 𝑡𝛼 was the 1 − 𝛼

quantile
8

of the asymptotic null distribution (1.14) used as threshold and

that the alternative hypothesis holds, by a reasoning similar to Figure 1.1

one can compute the asymptotic test power [8]

Pr

[
𝑛�MMD

2

𝑢 > 𝑟
]
→ Φ

(√
𝑛MMD

2

𝜎𝐻1

− 𝑡𝛼√
𝑛𝜎𝐻1

)
. (1.16)

Since the second term asymptotically goes to zero, it is the first term that

dominates the asymptotic test power. Therefore [7, 8] use an empirical

estimate of

𝐽 =
MMD

2

𝜎𝐻1

(1.17)

to optimize the kernel function. They also rely on data splitting. [8] use

a gradient-based optimization to continuously optimize a deep kernel.

These works conclude that it is beneficial to learn a kernel function

and to use Equation 1.13 as a test statistic. In Chapters 3 and 4 we will

challenge this idea, by showing that only learning a one-dimensional

witness function and using a WiTS test can lead to more powerful tests

that are furthermore easier to implement and use.
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Learning kernel tests without
data splitting 2.

Modern large-scale kernel-based tests such as maximum

mean discrepancy (MMD) and kernelized Stein discrepancy

(KSD) optimize kernel hyperparameters on a held-out sample

via data splitting to obtain the most powerful test statistics.

While data splitting results in a tractable null distribution,

it suffers from a reduction in test power due to smaller test

sample size. Inspired by the selective inference framework,

we propose an approach that enables learning the hyperpa-

rameters and testing on the full sample without data splitting.

Our approach can correctly calibrate the test in the presence

of such dependency, and yield a test threshold in closed form.

At the same significance level, our approach’s test power is

empirically larger than that of the data-splitting approach,

regardless of its split proportion.

2.1. Introduction

Traditionally, test statistic for a hypothesis test are usually fixed prior to the

testing phase. In modern-day hypothesis testing, however, practitioners

often face a large family of test statistics from which the best one must

be selected before performing the test. For instance, the popular kernel-

based two-sample tests [5, 6] (Section 1.3) and goodness-of-fit tests [14,

35] require the specification of a kernel function and its parameter values.

Abundant evidence suggests that finding good parameter values for

these tests improves their performance in the testing phase [6, 7, 36,

37]. As a result, several approaches have recently been proposed to

learn optimal tests directly from data using different techniques such

as optimized kernels [6, 8, 37–40], classifier two-sample tests [9, 33],

and deep neural networks [41, 42], to name a few. In other words, the

modern-day hypothesis testing has become a two-stage “learn-then-test”

problem.

Special care must be taken in the subsequent testing when optimal tests

are learned from data. If the same data is used for both learning and

testing, it becomes harder to derive the asymptotic null distribution

because the selected test and the data are now dependent. In this case,

conducting the tests as if the test statistics are independent from the data

leads to an uncontrollable false positive rate, see, e.g., our experimental

results. While permutation testing (Section 1.2) can be applied [43], it is

too computationally prohibitive for real-world applications. Up to now,

the most prevalent solution is data splitting: the data is randomly split

into two parts, of which the former is used for learning the test while

the latter is used for testing. Although data splitting is simple and in

principle leads to the correct false positive rate, its downside is a potential

loss of power.

In this chapter, we investigate the two-stage “learn-then-test” problem

in the context of modern kernel-based tests [5, 6, 14, 35] where the

choice of kernel function and its parameters play an important role.
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The key question is whether it is possible to employ the full sample for both
learning and testing phase without data splitting, while correctly calibrating
the test in the presence of such dependency. We provide an affirmative

answer if we learn the test from a vector of jointly normal base test

statistics, e.g., the linear-time MMD estimates (Equation 1.12) of multiple

kernels. The empirical results suggest that, at the same significance

level, the test power of our approach is larger than that of the data-

splitting approach, regardless of the split proportion (cf. Section 2.5).

The code for the experiments of this chapter is available at https:

//github.com/MPI-IS/tests-wo-splitting.

2.2. Preliminaries

We start with some background material on conventional hypothesis

testing and review linear-time kernel two-sample tests. In what follows,

we will use [𝑑] := {1, . . . , 𝑑} to denote the set of natural numbers up to

𝑑 ∈ ℕ, 𝝁 ≥ 0 to denote that all entries of 𝝁 ∈ ℝ𝑑
are non-negative, 𝑒𝑖 to

denote the 𝑖-th Cartesian unit vector, and ∥ · ∥ := ∥ · ∥2.

Statistical hypothesis testing. Let 𝑍 be a random variable taking values

in Z ⊆ ℝ𝑝
distributed according to a distribution 𝑃. The goal of statistical

hypothesis testing is to decide whether some null hypothesis 𝐻0 about 𝑃

can be rejected in favor of an alternative hypothesis 𝐻𝐴 based on empirical

data [1, 44]. Let ℎ be a real-valued function such that 0 < 𝔼
[
ℎ2(𝑍)

]
< ∞.

In this chapter, we consider testing the null hypothesis 𝐻0 : 𝔼 [ℎ(𝑍)] = 0

against the one-sided alternative hypothesis 𝐻1 : 𝔼 [ℎ(𝑍)] > 0 for

reasons which will become clear later. To do so, we define the test statistic
𝜏(ℤ𝑛) = 1

𝑛

∑𝑛
𝑖=1

ℎ(𝑧𝑖) as the empirical mean of ℎ based on a sample

ℤ𝑛 := {𝑧1 , ..., 𝑧𝑛} drawn i.i.d. from 𝑃𝑛 . We reject 𝐻0 if the observed test

statistic 𝜏̂(ℤ𝑛) is significantly larger than what we would expect if 𝐻0 was

true, i.e., if 𝑃(𝜏(ℤ𝑛) < 𝜏̂(ℤ𝑛) | 𝐻0) > 1 − 𝛼. Here 𝛼 is a significance level
and controls the probability of incorrectly rejecting 𝐻0 (Type-I error). For

sufficiently large 𝑛we can work with the asymptotic distribution of 𝜏(ℤ𝑛),
which is characterized by the Central Limit Theorem [32].

Lemma 2.2.1 Let 𝜇 := 𝔼 [ℎ(𝑍)] and 𝜎2
:= Var [ℎ(𝑍)]. Then, the

test statistic converges in distribution to a Gaussian distribution, i.e.,
√
𝑛 (𝜏(ℤ𝑛) − 𝜇)

𝑑→N(0, 𝜎2).

Let Φ be the CDF of the standard normal and Φ−1
its inverse. We define

the test threshold 𝑡𝛼 =
√
𝑛𝜎Φ−1(1 − 𝛼) as the (1 − 𝛼)-quantile of the

null distribution so that 𝑃 (𝜏(ℤ𝑛) < 𝑡𝛼 | 𝐻0) = 1 − 𝛼 and we reject 𝐻0

simply if 𝜏̂(ℤ𝑛) > 𝑡𝛼. Besides correctly controlling the Type-I error, the

test should also reject 𝐻0 as often as possible when 𝑃 actually satisfies

the alternative 𝐻1. The probability of making a Type-II error is defined as

𝑃 (𝜏(ℤ𝑛) < 𝑡𝛼 | 𝐻1), i.e., the probability of failing to reject 𝐻0 when it is

false. A powerful test has a small Type-II error while keeping the Type-I

error at 𝛼. Since Lemma 2.2.1 holds for any 𝜇, and thus both under null

and alternative hypotheses, the asymptotic probability of a Type-II error

is [6] (see also Example 1.2.1 and Figure 1.1)

https://github.com/MPI-IS/tests-wo-splitting
https://github.com/MPI-IS/tests-wo-splitting
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𝑃(𝜏(ℤ𝑛) < 𝑡𝛼 | 𝐻1) ≈ Φ

(
Φ−1(1 − 𝛼) − 𝜇

√
𝑛

𝜎

)
. (2.1)

Since Φ is monotonic, this probability decreases with 𝜇/𝜎, which we

interpret as a signal-to-noise ratio (SNR). It is therefore desirable to find

test statistics with high SNR.

Kernel two-sample testing. As an example that can be expressed in

the above form we present kernel two-sample tests, which we already

introduced in Chapter 1 and shortly review here. Given two samples 𝕏𝑛

and 𝕐𝑛 drawn from distributions 𝑃 and 𝑄, the two-sample test aims to

decide whether 𝑃 and𝑄 are different, i.e., 𝐻0 : 𝑃 = 𝑄 and 𝐻1 : 𝑃 ≠ 𝑄. A

popular test statistic for this problem is the maximum mean discrepancy

(MMD) of [5]. We use the form of Equation 1.8

MMD
2(𝑃, 𝑄) = 𝔼 [𝑘(𝑋, 𝑋′) − 𝑘(𝑋,𝑌′) − 𝑘(𝑋′, 𝑌) + 𝑘(𝑌,𝑌′)]

= 𝔼 [ℎ(𝑍)],

where𝑋, 𝑋′ are independent draws from 𝑃,𝑌,𝑌′ are independent draws

from𝑄, and ℎ(𝑋, 𝑋′, 𝑌, 𝑌′) := 𝑘(𝑋, 𝑋′)+𝑘(𝑌,𝑌′)−𝑘(𝑋,𝑌′)−𝑘(𝑌, 𝑋′) =
ℎ(𝑍). A minimum-variance unbiased estimator of MMD

2

is given by a

second-order𝑈-statistic (Equation 1.10). However, this estimator scales

quadratically with the sample size, and the distribution under 𝐻0 (Equa-

tion 1.14) is not available in closed form. Thus it has to be simulated either

via a bootstrapping approach or via a permutation of the samples. For

large sample size, the computational requirements become prohibitive

[5]. In this chapter, we assume we are in this regime. To circumvent

these computational burdens, [5] suggest a ’linear-time’ MMD estimate

that scales linearly with sample size and is asymptotically normally

distributed under both null and alternative hypotheses (Section 1.3).

Specifically, let 𝕏2𝑛 = {𝑥1 , . . . , 𝑥2𝑛} and 𝕐2𝑛 = {𝑦1 , . . . , 𝑦2𝑛}, i.e., the

samples are of the same (even) size. We can define 𝑧𝑖 := (𝑥𝑖 , 𝑥𝑛+𝑖 , 𝑦𝑖 , 𝑦𝑛+𝑖)
and 𝜏(ℤ𝑛) := 1

𝑛

∑𝑛
𝑖=1

ℎ(𝑧𝑖) as the test statistic, which by Lemma 2.2.1

is asymptotically normally distributed. Furthermore, if the kernel 𝑘 is

characteristic [45], it is guaranteed that MMD
2(𝑃, 𝑄) = 0 if 𝑃 = 𝑄 and

MMD
2(𝑃, 𝑄) > 0 otherwise. Therefore, a one-sided test is sufficient.

Other well-known examples are goodness-of-fit tests based on the ker-

nelized Stein discrepancy (KSD), which also has a linear-time estimate

[14, 35]. In our experiments, we focus on the kernel two-sample test, but

point out that our theoretical treatment in Section 2.3 is more general

and can be applied to other problems, e.g., KSD goodness-of-fit tests, but

also beyond kernel methods.

2.3. Selective hypothesis tests

Statistical lore tells us not to use the same data for learning and testing.
We now discuss whether it is indeed possible to use the same data for

selecting a test statistic from a candidate set and conducting the selected

test [2]. The key to controllable Type-I errors is that we need to adjust the

test threshold to account for the selection event. As before, let ℤ𝑛 denote

the data we collected. Let 𝑇 = {𝜏𝑖}𝑖∈I be a countable set of candidate test
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statistics that we evaluate on the data ℤ𝑛 , and {𝑡 𝑖𝛼}𝑖∈I the respective test

thresholds. Assume that {𝐴𝑖}𝑖∈I are disjoint selection events depending

on ℤ𝑛 and that their outcomes determine which test statistic out of 𝑇 we

apply. Thus, all the tests and events are generally dependent via ℤ𝑛 . To

define a well-calibrated test, we need to control the overall Type-I error,

i.e., 𝑃(reject | 𝐻0). Using the law of total probability, we can rewrite this

in terms of the selected tests

𝑃(reject | 𝐻0) =
∑
𝑖∈I

𝑃(𝜏𝑖 > 𝑡 𝑖𝛼 | 𝐴𝑖 , 𝐻0)𝑃(𝐴𝑖 | 𝐻0). (2.2)

To control the Type-I error 𝑃(reject | 𝐻0) ≤ 𝛼, it thus suffices to control

𝑃(𝜏𝑖 > 𝑡 𝑖𝛼 | 𝐴𝑖 , 𝐻0) ≤ 𝛼 for each 𝑖 ∈ I, i.e., the test thresholds need

to take into account the conditioning on the selection event 𝐴𝑖 . A naive
approach would wrongly calibrate the test such that 𝑃(𝜏𝑖 > 𝑡 𝑖𝛼 | 𝐻0) ≤
𝛼, not accounting for the selection 𝐴𝑖 and thus would result in an

uncontrollable Type-I error. On the other hand, this reasoning directly

tells us why data splitting works. There 𝐴𝑖 is evaluated on a split

of ℤ𝑛 that is independent of the split used to compute 𝜏𝑖 and hence

𝑃(𝜏𝑖 > 𝑡 𝑖𝛼 | 𝐴𝑖 , 𝐻0) = 𝑃(𝜏𝑖 > 𝑡 𝑖𝛼 | 𝐻0).

Selecting tests with high power. Our objective in selecting the test

statistic is to maximize the power of the selected test. To this end, we

start from 𝑑 ∈ ℕ different base functions ℎ1 , ..., ℎ𝑑. Based on observed

data ℤ𝑛 = {𝑧1 , . . . , 𝑧𝑛} ∼ 𝑃𝑛 , we can compute 𝑑 base test statistics

𝜏𝑢 := 𝜏𝑢(ℤ𝑛) = 1

𝑛

∑𝑛
𝑖=1

ℎ𝑢(𝑧𝑖) for 𝑢 ∈ [𝑑]. Let 𝝉 := (𝜏1 , . . . , 𝜏𝑑)⊤ and

𝝁 := 𝔼 [𝒉(𝑍)], where h(𝑍) = (ℎ1(𝑍), . . . , ℎ𝑑(𝑍))⊤. Asymptotically, we

have

√
𝑛(𝝉 − 𝝁) 𝑑→N(0,Σ), with the variance of the asymptotic distribu-

tion given by Σ = Cov[𝒉(𝑍)].1 Now, for any 𝜷 ∈ ℝ𝑑 \ {0} that is inde-

pendent of 𝝉, the normalized test statistic 𝜏𝜷 :=
𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

is asymptotically

normal, i.e.,

√
𝑛

(
𝜏𝜷 − 𝜷⊤𝝁

(𝜷⊤Σ𝜷)
1

2

)
𝑑→N(0, 1). Following our considerations

of Section 2.2, the test with the highest power is defined by

𝜷∞ : = argmax

∥𝜷∥=1

𝜷⊤𝝁

(𝜷⊤Σ𝜷) 1

2

=
Σ−1𝝁

∥Σ−1𝝁∥ , (2.3)

where the constraint ∥𝜷∥ = 1 is to ensure that the solution is unique,

since the objective of the maximization is a homogeneous function of

order zero in 𝜷. The explicit form of 𝜷∞ is proven in Appendix A.3.2.

Obviously, in practice, 𝝁 is not known, so we use an estimate of 𝝁 to

select 𝜷. The standard strategy to do so is to split the sample ℤ𝑛 into two

independent sets and estimate 𝝉tr and 𝝉te, i.e., two independent training

and test realizations [6, 8, 36, 37]. One can then choose a suitable 𝜷 by

using 𝝉tr as a proxy for 𝝁. Then one tests with this 𝜷 and 𝝉te. However,

to our knowledge, there exists no principled way to decide in which

proportion to split the data, which will generally influence the power, as

shown in our experimental results in Section 2.5.

Our approach to maximizing the utility of the observed dataset is to

use it for both learning and testing. To do so, we have to derive an

adjustment to the distribution of the statistic under the null, in the spirit

of the selective hypothesis testing described above. We will consider
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three different candidate sets 𝑇 of test statistics, which are all constructed

from the base test statistics 𝝉. To do so, we will work with the asymptotic

distribution of 𝝉 under the null. To keep the notation concise, we include

the

√
𝑛 dependence into 𝝉. Thus, we will assume 𝝉 ∼N(0,Σ), where Σ is

known and strictly positive. We provide the generalization to singular

covariance in Appendix A.5.

To select the test statistics, we maximize the SNR 𝜏𝜷 = 𝜷⊤𝝉/(𝜷⊤Σ𝜷) 1

2 and

thus the test power over three different sets of candidate test statistics:

1. 𝑇base =
{
𝜏𝜷 | 𝜷 ∈ {𝑒1 , . . . , 𝑒𝑑}

}
, i.e., we directly select from the base

test statistics,

2. 𝑇Wald =
{
𝜏𝜷 | ∥𝜷∥ = 1

}
, where we allow for arbitrary linear combi-

nations,

3. 𝑇OST =
{
𝜏𝜷 |Σ𝜷 ≥ 0, ∥Σ𝜷∥ = 1

}
, where we constrain the allowed

values to increase the power (see below).

The rule for selecting the test statistic from these sets is simply to select the

one with the highest value. To design selective hypothesis tests, we need

to derive suitable selection events and the distribution of the maximum

test statistic conditioned on its selection.

2.3.1. Selection from a finite candidate set

We start with 𝑇base =
{
𝜏𝜷 | 𝜷 ∈ {𝑒1 , . . . , 𝑒𝑑}

}
and use the test statistic

𝜏base = max𝜏∈𝑇
base

𝜏. Since the selection is from a countable set and the

selected statistic is a projection of 𝝉, we can use the polyhedral lemma

of [17] to derive the conditional distributions. Therefore, we denote

𝑢∗ = argmax𝑢∈[𝑑]
𝜏𝑢
𝜎𝑢

, with 𝜎𝑢 := (Σ𝑢𝑢)
1

2 , and obtain 𝜏base =
𝜏𝑢∗
𝜎𝑢∗

. The

following corollary characterizes the conditional distribution. The proof

is given in Appendix A.3.1.

Corollary 2.3.1 Let 𝝉 ∼N(𝝁,Σ),

𝒛 := 𝝉 − Σ𝑒𝑢∗𝜏𝑢∗

𝜎2

𝑢∗
, V−(𝒛̂) = max

𝑗∈[𝑑], 𝑗≠𝑢∗
𝜎𝑢∗ 𝑧̂ 𝑗

𝜎∗𝑢𝜎𝑗 − Σ𝑢∗ 𝑗
, (2.4)

and TN(𝜇, 𝜎2 , 𝑎, 𝑏) denote a normal distribution with mean 𝜇 and variance
𝜎2 truncated at 𝑎 and 𝑏. Then the following statement holds:[

𝜏𝑢∗

𝜎𝑢∗

�����𝑢∗ = argmax

𝑢∈[𝑑]

𝜏𝑢
𝜎𝑢
, 𝒛 = 𝒛̂

]
𝑑
= TN

(
𝜇𝑢∗

𝜎𝑢∗
, 1, V−(𝒛̂), V+ = ∞

)
.

(2.5)

This scenario arises, for example, in kernel-based tests when the kernel

parameters are chosen from a grid of predefined values determining for

example kernel type and bandwidth [5, 6]. Corollary 2.3.1 allows us to

test using the same set of data that was used to select the test statistic, by

providing the corrected asymptotic distribution (2.5). The only downside

is its dependence on the parameter grid. To overcome this limitation,

several works have proposed to optimize for the parameters directly [6,

37–40]. Unfortunately, we cannot apply Corollary 2.3.1 directly to this

scenario.
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2.3.2. Learning from an uncountable candidate set

To allow for more flexible tests, in the following we consider the candidate

sets 𝑇Wald and 𝑇OST that contain uncountably many tests. For these sets,

we cannot directly use Equation 2.2 to derive conditional tests, since the

probability of selecting some given tests is 0. However, we show that it is

possible in both cases to rewrite the test statistic such that we can build

conditional tests based on Equation 2.2. First, for 𝑇Wald, we rewrite the

entire test statistic including the maximization in closed form. Second,

for 𝑇OST we derive suitable measurable selection events that allow us

to rewrite the conditional test statistic in closed form and derive their

distributions in Theorem 2.3.2.

Wald Test. We first allow for arbitrary linear combinations of

the base test statistics 𝝉. Therefore, define 𝑇Wald =
{
𝜏𝜷 | ∥𝜷∥ = 1

}
and 𝜏Wald := max𝜏∈𝑇

Wald
𝜏. We denote the optimal 𝜷 for this set as

𝜷Wald := argmax∥𝜷∥=1

𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

. This optimization problem is the same as

in Equation 2.3, hence 𝜷Wald = Σ−1𝝉
∥Σ−1𝝉∥ , and we can rewrite the "Wald" test

statistic as

𝜏Wald =
𝜷⊤

Wald
𝝉

(𝜷⊤
Wald

Σ𝜷Wald)
1

2

= (𝝉⊤Σ−1𝝉) 1

2 = ∥Σ− 1

2 𝝉∥. (2.6)

Note that 𝑇Wald contains uncountably many tests. However, instead of

deriving individual conditional distributions, we can directly derive the

distribution of the maximized test statistic, since 𝜏Wald can be written in

closed form. In fact, under the null, we have Σ−
1

2 𝝉 ∼N(0, 𝐼𝑑) and 𝜏Wald

follows a chi distribution with 𝑑 degrees of freedom. Surprisingly, the

presented approach results in the classic Wald test statistic [46], which

originally was defined directly in closed form.

One-sided test (OST). The original Wald test was defined to optimally

test 𝐻0 : 𝝁 = 0 against the alternative 𝐻1 : 𝝁 ≠ 0 [46]. Thus, it ignores

the fact that we only test against the "one-sided" alternative 𝝁 ≥ 0,

which suffices since we consider linear-time estimates of the squared

MMD as test statistics and their population values are non-negative.

Multiplying Equation 2.3 with Σ yields Σ𝜷∞ =
𝝁

∥Σ−1𝝁∥ . Using 𝝁 ≥ 0, we

find Σ𝜷∞ ≥ 0. Thus, we have prior knowledge over the asymptotically

optimal combination 𝜷∞. To incorporate this, we a priori constrain

the considered values of 𝜷 by the condition Σ𝜷 ≥ 0. Thus we define

𝑇OST =
{
𝜏𝜷 |Σ𝜷 ≥ 0, ∥Σ𝜷∥ = 1

}
, where the norm constraint ∥Σ𝜷∥ = 1 is

added to make the maximum unique. We suggest using the test statistic

𝜏OST := max𝜏∈𝑇OST
𝜏. Before we derive suitable conditional distributions

for this test statistic, we rewrite it in a canonical form.

Remark 2.3.1 Define 𝜶 := Σ𝜷, 𝝆 := Σ−1𝝉, and Σ′ := Σ−1ΣΣ−1 =

Σ−1. This implies 𝝆 ∼ N(0,Σ′) and 𝜏OST := max∥Σ𝜷∥=1,Σ𝜷≥0
𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

=

max∥𝜶∥=1,𝜶≥0
𝜶⊤𝝆

(𝜶⊤Σ′𝜶)
1

2

.
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Thus in the following, we focus on the canonical form, where the con-

straints are simply positivity constraints. For ease of notation, we stick

with 𝝉 and Σ instead of 𝝆 and Σ′. We will thus analyze the distribution

of

max

∥𝜷∥=1,𝜷≥0

𝜷⊤𝝉

(𝜷⊤Σ𝜷) 1

2

=
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗) 1

2

, (2.7)

where 𝜷∗(𝝉) := argmax∥𝜷∥=1,𝜷≥0
𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

. We emphasize that 𝜷∗(𝝉) is a

random variable that is determined by 𝝉. For conciseness, however, we

will use 𝜷∗ and keep the dependency implicit. We find the solution of

Equation 2.7 by solving an equivalent convex optimization problem,

which we provide in Appendix A.2. We need to characterize the distribu-

tion of Equation 2.7 under the null hypothesis, i.e., 𝝉 ∼N(0,Σ). Since we

are not able to give an analytic form for 𝜷∗, it is hard to directly compute

the distribution of 𝜏OST as we did for the Wald test. In Subsection 2.3.1 we

were able to work around this by deriving the distribution conditioned

on the selection of 𝜷∗. In the present case, however, there are uncountably

many values that 𝜷∗ can take, so for some the probability is zero. Hence,

the reasoning of Equation 2.2 does not apply and we cannot use the PSI

framework of [17].

Our approach to solving this is the following. Instead of directly con-

ditioning on the explicit value of 𝜷∗, we condition on the active set. For

a given 𝜷∗, we define the active set as U := {𝑢 | 𝛽∗𝑢 ≠ 0} ⊆ [𝑑]. Note

that the active set is a function of 𝝉, defined via Equation 2.7. In Theo-

rem 2.3.2 we show that given the active set, we can derive a closed-form

expression for 𝜷∗, and we can characterize the distribution of the test

statistic conditioned on the active set. Figure 2.1 depicts the intuition

behind Theorem 2.3.2 and Appendix A.1 contains the full proof. In the

following, let 𝜒𝑙 denote a chi distribution with 𝑙 degrees of freedom and

TN (0, 1, 𝑎,∞) denote the distribution of a standard normal RV truncated

from below at 𝑎, i.e., with CDF 𝐹𝑎(𝑥) = Φ(𝑥)−Φ(𝑎)
1−Φ(𝑎) .

Theorem 2.3.2 Let 𝝉 ∼N(0,Σ) be a normal RV in ℝ𝑑 with positive definite
covariance matrix Σ. Let 𝜷∗ be defined as in Equation 2.7, U := {𝑢 | 𝛽∗𝑢 ≠ 0},
𝑙 := |U|, 𝒛 :=

(
𝐼𝑑 − Σ𝜷∗𝜷∗⊤

𝜷∗⊤Σ𝜷∗

)
𝝉, and V− as in Corollary 2.3.1. Then, the

following statements hold.

1.) If 𝑙 = 1:
[

max

∥𝜷∥=1,𝜷≥0

𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

��� U, 𝒛 = 𝒛̂

]
𝑑
= TN (0, 1, V−(𝒛̂),∞) .

2.) If 𝑙 ≥ 2:
[

max

∥𝜷∥=1,𝜷≥0

𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

��� U]
𝑑
= 𝜒𝑙 .

With Theorem 2.3.2 and Remark 2.3.1, we are able to define conditional

hypothesis tests with the test statistic 𝜏OST. First, we transform our

observation 𝝉̂ according to Remark 2.3.1 to obtain it in canonical form,

i.e., 𝝉̂→ Σ−1𝝉̂ and Σ→ Σ−1
. Then we solve the optimization problem of

Equation 2.7 to find𝜷∗. Next, we define the active set U, by checking which

entries of 𝜷∗ are non-zero. Theorem 2.3.2 characterizes the distribution

𝜏OST conditioned on the selection. We can then define a test threshold 𝑡𝛼
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𝜏1

𝜏2

𝑙 = 2

𝜷∗ =
𝝉̂

∥𝝉̂∥

𝑙 = 1

𝜷∗ = 𝑒1

𝑙 = 1

𝜷∗ = 𝑒2

𝜏1

𝜏2

𝝉̂

𝜷∗

𝒛̂

V−

𝜷∗⊤ 𝝉̂

(𝜷∗⊤Σ𝜷∗)
1

2

Figure 2.1.: Geometric interpretation of Theorem 2.3.2 for 𝑑 = 2 and unit covariance Σ = 𝐼 (denoted by the black dotted unit-circle). Left:
If 𝝉̂ is in the positive quadrant (green), the constraints of the optimization are not active and the optimal direction is the same as for the

Wald test, hence the distribution of the test statistic follows 𝜒2. When 𝝉̂ is in the orange or purple zone, one of the constraints is active

and 𝜷∗ is a canonical unit-vector. Right: If 𝑙 = 1, for example when only the first direction is active, we additionally condition on 𝒛 = 𝒛̂,

which is independent of the value of 𝜷∗⊤𝝉 since 𝒛 is orthogonal to 𝜷∗. For the observed value 𝒛̂, we only select 𝜷∗ = 𝑒1 if 𝜷∗⊤𝝉 ≥ V−. If

this was not the case, then 𝝉 would lie in the orange/vertically lined region and we would select 𝜷∗ = 𝑒2. This explains the truncated

behavior and is in analogy to the results of [17].
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that accounts for the selection of U, i.e.,

𝑡𝛼 =

{
Φ−1 ((1 − 𝛼)(1 −Φ(V−)) +Φ(V−)) if |U| = 1,

Φ−1

𝜒𝑙 (1 − 𝛼) if |U| = 𝑙 ≥ 2,
(2.8)

with Φ−1

𝜒𝑙 being the inverse CDF of a chi distribution with 𝑙 degrees of

freedom, which we can evaluate using standard libraries, e.g., [47]. We

can then reject the null, if the observed value of the optimized test statistic

exceeds this threshold, i.e., 𝜏̂OST > 𝑡𝛼 . We summarize the entire approach

in Algorithm 1.

2.4. Related work

The present chapter is best positioned in the context of modern statistical

tests with tunable hyperparameters. [6] were the first to propose a

kernel two-sample test that optimizes the kernel hyperparameters by

maximizing the test power. This influential work has led to further

development of optimized kernel-based tests [7, 8, 36–40]. Since any

universally consistent binary classifier can be used to construct a valid

two-sample test [34, 48], [9, 33] used classification accuracy as a proxy

to train machine learning models for two-sample tests. [42, 49] studied

this further, and [41] proposed using the difference of a trained deep

network’s expected logit values as the test statistic for two-sample tests.

All the aforementioned “learn-then-test” approaches optimize hyperpa-

rameters (e.g., kernels, weights in a network) on a training set which is

split from the full dataset. While the null distribution becomes tractable

due to the independence between the optimized hyperparameters and

the test set, there is a potential reduction of test power because of a smaller

test set. This observation is the main motivation for our consideration

of selective hypothesis tests, which allow the full dataset to be used for



2. Learning kernel tests without data splitting 28

[50]: Taylor et al. (2015), Statistical learning
and selective inference
[17]: Lee et al. (2016), Exact post-selection
inference, with application to the lasso
[51]: Tibshirani (1996), Regression Shrink-
age and Selection via the Lasso
[52]: Yamada et al. (2018), Post Selection In-
ference with Kernels; [53]: Slim et al. (2019),

kernelPSI: a Post-Selection Inference Frame-
work for Nonlinear Variable Selection
[54]: Yamada et al. (2019), Post Selection
Inference with Incomplete Maximum Mean
Discrepancy Estimator
[55]: Lim et al. (2019), Kernel Stein Tests
for Multiple Model Comparison
[17]: Lee et al. (2016), Exact post-selection
inference, with application to the lasso

[54]: Yamada et al. (2019), Post Selection
Inference with Incomplete Maximum Mean
Discrepancy Estimator
[56]: Janson (1984), The asymptotic distri-
butions of incomplete U-statistics
[57]: Zaremba et al. (2013), B-test: A non-
parametric, low variance kernel two-sample
test
[54]: Yamada et al. (2019), Post Selection
Inference with Incomplete Maximum Mean
Discrepancy Estimator
[57]: Zaremba et al. (2013), B-test: A non-
parametric, low variance kernel two-sample
test
[6]: Gretton et al. (2012), Optimal kernel
choice for large-scale two-sample tests

[46]: Wald (1943), Tests of Statistical Hy-
potheses Concerning Several Parameters
When the Number of Observations is Large
[58]: Kudo (1963), A multivariate analogue
of the one-sided test

[59]: Shapiro (1988), Towards a Unified
Theory of Inequality Constrained Testing in
Multivariate Analysis

[9]: Lopez-Paz et al. (2017), Revisiting
Classifier Two-Sample Tests; [41]: Cheng et

al. (2019), Classification Logit Two-sample
Testing by Neural Networks; [42]: Kirchler

et al. (2020), Two-sample Testing Using
Deep Learning; [49]: Cai et al. (2020), Two-
sample test based on classification probability

both training and testing by correcting for the dependency, as we discuss

in Section 2.3.

More broadly, properly assessing the strength of potential associations

that have been previously learned from the data falls under an emerging

subfield of statistics known as selective inference [50]. A seminal work of

[17] proposed a post-selection inference (PSI) framework to characterize

the valid distribution of a post-selection estimator where model selection

is performed by the Lasso [51]. The PSI framework has been applied to

kernel tests, albeit in different context, for selecting the most informative

features for supervised learning [52, 53], selecting a subset of features

that best discriminates two samples [54], as well as selecting a model with

the best fit from a list of candidate models [55]. All these applications

of the PSI framework consider a finite candidate set. Our Theorem 2.3.2

can be seen as an extension of the previously known results of [17] to

uncountable candidate sets. To our knowledge, the presented work is

the first to explicitly maximize test power by using the same data for

selecting and testing.

Unfortunately, we cannot directly use our results to optimize tests based

on complete U-statistics estimates of the MMD, which would be desirable

since those estimates have lower variance than the linear version we use.

The difficulty arises since our method requires asymptotic normality

under the null, which is not the case for complete U-statistics, see

Equation 1.14. To circumvent this problem, [54] considered incomplete

U-statistics [56] and [57] used a Block estimate of the MMD. Under the

null, these approaches either have approximately asymptotic normal

distribution [54] or require a higher sample size to reach the asymptotic

normality [57]. In principle thus our approach is applicable with these

methods if one is willed to assume asymptotic normality and to neglect

the induced errors. Besides that, since the linear-time estimate has lowest

computational cost, it should generally be used in the large-data, constraint-
computation regime [6]. On the other hand one should consider the other

approaches when the computational efforts are not the limiting factor.

Moreover, under the assumption that 𝝉 ∼N(𝝁,Σ), similar scenarios have

previously been investigated in the traditional statistical literature, but

the idea of data splitting is not considered there. In particular, our con-

struction of 𝜏Wald turned out to coincide with the test statistic suggested

in [46]. The one-sided version 𝜏OST also has a twin named “chi-bar-square”
test previously considered in [58]. While their test statistic is constructed

to be always non-negative, our 𝜏OST can be negative. Furthermore, they

derived the distribution of the test statistic by decomposing the distribu-

tion into 2
𝑑

selection events, which, however, “may represent a quite difficult
problem” [59, p. 54]. The approach presented in this chapter circumvents

this difficulty by defining a conditional test, which does not require

calculating any probability of the selection events. Another difference is

that our approach only defines 2
𝑑 − 1 different active sets, by enforcing

𝜷 ≠ 0. It is instructive to note that there exist other more complicate

settings of “learn-then-test” scenarios in which the normality assumption

may not hold [9, 41, 42, 49]. Extending our work towards these scenarios

remains an open, yet promising problem to consider.
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Figure 2.2.: Type-II errors from differ-

ent experiments. The rows (columns)

correspond to different datasets (sets of

base kernels). For all considered cases,

OST outperforms all the (well-calibrated)

competing methods, i.e., Split and Wald.
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2.5. Experiments

We demonstrate the advantages of OST over data-splitting approaches

and the Wald test with kernel two-sample testing problems as described

in Section 2.2. For an extensive description of the experiments we refer to

Appendix A.4. We consider three different datasets with different input

dimensions 𝑝.

1. DIFF VAR (𝑝 = 1): 𝑃 = N(0, 1) and 𝑄 = N(0, 1.5).
2. MNIST (𝑝 = 49): We consider downsampled 7x7 images of the

MNIST dataset [3], where 𝑃 contains all the digits and 𝑄 only

uneven digits.

3. Blobs (𝑝 = 2): A mixture of anisotropic Gaussians where the

covariance matrix of the Gaussians have different orientations for

𝑃 and 𝑄.

We denote by 𝑘lin the linear kernel, and 𝑘𝜎 the Gaussian kernel with

bandwidth 𝜎. For each dataset we consider three different base sets of

kernels Kand choose 𝜎̃ with the median heuristic:

1. 𝑑 = 1: K= [𝑘𝜎̃],
2. 𝑑 = 2: K= [𝑘𝜎̃ , 𝑘lin],
3. 𝑑 = 6: K= [𝑘0.25𝜎̃ , 𝑘0.5𝜎̃ , 𝑘𝜎̃ , 𝑘2𝜎̃ , 𝑘4𝜎̃ , 𝑘lin].

From the base set of kernels we estimate the base set of test statistics using

the linear-time MMD estimates. We compare four different approaches:

1. OST,

2. Wald,

3. split: Data splitting similar to the approach in [6], but with the

same constraints as OST. split0.1 denotes that 10% of the data are

used for learning 𝜷∗ and 90% are used for testing,

4. naive: Similar to splitting but all the data is used for learning and

testing without correcting for the dependency. The naive approach

is not a well-calibrated test.
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For all the setups we estimate the Type-II error for various sample sizes

at a level 𝛼 = 0.05. Error rates are estimated over 5000 independent

trials and the results are shown in Figure 2.2. In Appendix A.4.1, we also

investigate the Type-I error and show that all methods except for naive

correctly control the Type-I error at a rate 𝛼. Note that all of the methods

scale with O(𝑛) and the difference in computational cost are negligible.

The experimental results in Figure 2.2 support the main claims of this

chapter. First, comparing OST with split, we conclude that using all the

data in an integrated approach is always better (or equally good) than any

data splitting approach. Second, comparing OST to Wald, we conclude

that adding a priori information (𝝁 ≥ 0) to reduce the class of considered

tests in a sensible way leads to higher (or equally high) test power. Another

interesting observation is in the results of the data-splitting approach.

Looking at the diff var experiment, in the leftmost plot, we can see that

the errors are monotonically increasing with the portion of data used

to select the test. Since there is only one test, the more data we use to

select the test, the higher the error (less data remains for testing). In the

middle plot, selection becomes important. Hence, we can see that the gap

in performance between all data-splitting approach reduces. However,

the order is still consistent with the previous plot. Interestingly, in the

rightmost plot, learning becomes even more important. Now, the order

changes. If we use too little data for learning the test (split0.1), the error

is high. However, if we use too much data for learning the test (split0.8),

the error will be high as well. That is, there is a trade-off in how much

data one should use for selecting the test, and for conducting the test.

The optimal proportion depends on the problem and can thus in general

not be determined a priori.

In Appendix A.4.3 we also compare 𝜏base to a selection of a base test via

the data-splitting approach. Here, split0.1 consistently performs better

than the other split approaches, which is plausible, since the class of

considered tests 𝑇base is quite small. Split0.1 can even be better than 𝜏base,

see discussion in Appendix A.4.3.

In Figure 2.3, we additionally consider a constructed 1-D dataset where

the distributions share the first three moments and all uneven moments

vanish (see Figure A.4). We compare the results for different sets of 𝑑 ∈ [5]
base kernels K= [𝑘1

pol
, . . . , 𝑘𝑑

pol
], where 𝑘𝑢

pol
(𝑥, 𝑦) = (𝑥 · 𝑦)𝑢 denotes the

homogeneous polynomial kernel of order 𝑢. By construction, 𝑘𝑢
pol

does

not contain any information about the difference of 𝑃 and 𝑄, for 𝑢 ≠ 4.

Thus, for 𝑑 ≤ 3 the well-calibrated methods have a Type-II error of 1 − 𝛼.

Only the naive approach already overfits to the noise. Adding the fourth

order polynomial adds helpful information and all the methods improve

performance. However, adding the fifth order, which again only contains

noise, leads to an increased error rate. We interpret this as bias-variance

tradeoff that should be considered in the choice of the base set K.

In Appendix A.4.2 we compare how the constraints 𝜷 ≥ 0, as suggested

in [6], work in comparison to the OST approach. We find that while the

constraints Σ𝜷 ≥ 0 lead to consistently higher power than the Wald test,

the simple positivity constraints can lead to both, better or worse power

depending on the problem. We thus recommend using the OST.
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Algorithm 1 One-Sided Test (OST)

Input: Σ, 𝝉̂ =
√
𝑛�MMD

2(𝑃, 𝑄), 𝛼
𝝉̂ = Σ−1𝝉̂ ⊲ Apply Remark 2.3.1

Σ = Σ−1 ⊲ Apply Remark 2.3.1

𝜷∗ = argmax∥𝜷∥=1,𝜷≥0
𝜷⊤ 𝝉̂

(𝜷⊤Σ𝜷)
1

2

U= {𝑢 |𝑢 ∈ [𝑑], 𝛽∗𝑢 > 0}
𝒛̂ = 𝝉̂ − Σ𝜷∗ 𝜷∗⊤ 𝝉̂

𝜷∗⊤Σ𝜷∗

𝑙 = |U|
if 𝑙 ≥ 2 then

𝑡𝛼 = Φ−1

𝜒𝑙 (1 − 𝛼)
if 𝑙 = 1 then

V− = max𝑢∉U
𝑧̂𝑢 (𝜷∗⊤Σ𝜷∗)

1

2

Σ
1

2

𝑢𝑢 (𝜷∗⊤Σ𝜷∗)
1

2 −(Σ𝜷∗)𝑢
𝑡𝛼 = Φ−1 ((1 − 𝛼)(1 −Φ(V−)) +Φ(V−))

if 𝑡𝛼 <
𝜷∗⊤ 𝝉̂

(𝜷∗⊤Σ𝜷∗)
1

2

then

Reject 𝐻0

[6]: Gretton et al. (2012), Optimal kernel
choice for large-scale two-sample tests

2.6. Chapter conclusion

Previous work used data splitting to exclude dependencies when optimiz-

ing a hypothesis test. This chapter provided the first step towards using

all the data for learning and testing. Our approach uses asymptotic joint

normality of a predefined set of test statistics to derive the conditional

null distributions in closed form. We investigated the example of kernel

two-sample tests, where we use linear-time MMD estimates of multiple

kernels as a base set of test statistics. We experimentally verified that an

integrated approach outperforms the existing data-splitting approach

of [6]. Thus data splitting, although theoretically easy to justify, does

not efficiently use the data. Further, we experimentally showed that

a one-sided test (OST), using prior information about the alternative

hypothesis, leads to an increase in test power compared to the more

general Wald test. Since the estimates of the base test statistics are linear

in the sample size and the null distributions are derived analytically,

the whole procedure is computationally cheap. However, it is an open

question whether and how this work can be generalized to problems

where the class of candidate tests is not directly constructed from a base

set of jointly normal test statistics.
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A witness two-sample test 3.
The Maximum Mean Discrepancy (MMD) has been the state-

of-the-art nonparametric test for tackling the two-sample

problem. Its statistic is given by the difference in expectations

of the witness function, a real-valued function defined as the

mean of kernel evaluations on a set of basis points. Typically

the kernel is optimized on a training set, and hypothesis

testing is performed on a separate test set to avoid overfitting

(i.e., control Type-I error). That is, the test set is used to

simultaneously estimate the expectations and define the

basis points, while the training set only serves to select the

kernel and is discarded. In this chapter, we propose to use

the training set to also define the weights and the basis

points for better data efficiency. We show that 1) the new test

is consistent and has a well-controlled Type-I error; 2) the

optimal witness function is given by a precision-weighted

mean in the reproducing kernel Hilbert space associated

with the kernel; and 3) the test power of the proposed test is

comparable or exceeds that of the MMD and other modern

tests, as verified empirically on challenging synthetic and

real problems (e.g., Higgs data).

3.1. Introduction

In this chapter we continue to tackle the two-sample problem: given two

samples, do they differ significantly enough that we can conclude they

originate from two different distributions (see Section 1.2)? This is a

common task in many life sciences such as bioinformatics and cancer

diagnosis [27]. To decide the two-sample problem, one can perform

a two-sample test, whose goal is to reject the null hypothesis "the prob-

ability distributions are the same" in favor of the alternative hypothesis
"the probability distributions are not the same" based on data [1]. To

quantitatively assess this, one defines a test statistic and estimates its

value on the observed samples. If we know (or are able to simulate) the

distribution of this test statistic under the null, we can reject the null if

the observed value is significantly larger than what we would expect

if the null was true. Traditional hypothesis tests have test statistics that

are defined a priori. A simple example are 𝑡- or 𝑧-tests, which only test

whether the empirical means of both samples differ significantly [1] (see

Example 1.2.1). However, such a simple approach is not sufficient to

detect differences of distributions with the same mean but, for example,

different variance, skewness, or kurtosis.

To detect any differences between two distributions we focus on two

categories of tests closely tied to machine learning, but note that various

other methods exist [60, 61]. The former first transforms data into a

high-dimensional feature space based on a pre-defined feature map, e.g.,

kernel function. The test statistics can then be defined in terms of the

embeddings of the two distributions in the feature space [5, 62]. The
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second approach instead learns to distinguish the two distributions by

training a classifier, e.g., via a deep neural network. Based on the learned

model, the test statistics is then computed on an independent set of

samples, e.g., through data splitting [9, 33, 41, 48].

The popular kernel two-sample test based on the Maximum Mean Discrep-
ancy (MMD) in principle does not require data splitting and is completely

determined a priori by a positive definite kernel function [5]. However,

recent research has shown that optimizing the kernel function on a held-

out dataset increases the power of the MMD-based tests [6–8, 42]. Thus

most modern MMD-based tests are used as two-stage procedures with

data splitting, although it is in principle possible to use the entire dataset

for kernel selection and testing [63, 64] as we have seen in Chapter 2. In

particular, as opposed to Chapter 2 we will now focus on the quadratic

time MMD estimates (Section 1.3). [65] recently proposed an aggregated

MMD two-sample test working without data splitting.

To obtain maximally significant results in the testing phase, we advocate

that in a ’two-stage’ two-sample test, it is more appropriate to learn a test

statistic that is as problem-specific as possible. For the MMD tests, this

means that we advocate to learn a one-dimensional witness function and

not a kernel. To formalize this, we propose a general two-stage witness

two-sample test (WiTS test). The introduced WiTS test has the following

properties:

▶ The test statistic is the difference in means of a one-dimensional

function called the witness function and is thus asymptotically normal

under both the null and alternative hypotheses. This allows for a simple

theoretical treatment (cf. Theorem 3.3.1 and Proposition 3.3.2).

▶ Compared to [7] and [8], the WiTS test has a simpler test power

criterion as a training objective and test thresholds can be simulated

more efficiently (cf. Section 3.3 & Equation 3.7).

▶ The WiTS tests empirically outperform the benchmark tests of [8] and

classification-based tests on challenging synthetic and real problems,

e.g., Higgs data (cf. Figure 3.3).

The rest of this chapter is organized as follows. Section 3.2 reviews MMD

based two-sample tests with a focus on the witness function and discusses

our motivation. We then present the general WiTS test framework in

Section 3.3, followed by a specific example in Section 3.4. Next, we discuss

related work in detail in Section 3.5. Finally, Section 3.6 provides the

empirical results comparing the proposed WiTS tests to existing ones

on several benchmark datasets. The code to reproduce the experiments

of this chapter is published under https://github.com/jmkuebler/

wits-test.

3.2. Background and motivation

Notation and definitions. We again consider the two-sample problem

as introduced in Chapter 1. When we consider data splitting, we use

𝕏tr ,𝕏te and 𝕐tr , 𝕐te to denote the disjoint training and test sets with

𝑛 = 𝑛tr + 𝑛te, 𝑚 = 𝑚tr +𝑚te. We define the shorthands [𝑛] := {1, . . . , 𝑛},
ℤ = {𝕏, 𝕐 }, ℤtr = {𝕏tr , 𝕐tr} and ℤte = {𝕏te , 𝕐te}.

https://github.com/jmkuebler/wits-test
https://github.com/jmkuebler/wits-test
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Although most of our analysis applies to more general function spaces,

we will consider a reproducing kernel Hilbert space (RKHS) H with

positive definite kernel 𝑘 : X× X→ ℝ (Definition 1.3.1). By the Riesz

representation theorem, we have that 𝑓 (𝑥) = ⟨ 𝑓 , 𝑘(𝑥, ·)⟩ for all 𝑥 ∈ X

and 𝑓 ∈ H. We assume that

(A1): 𝔼 [𝑘(𝑋, 𝑋)] < ∞, 𝔼 [𝑘(𝑌,𝑌)] < ∞

holds. (A1) ensures the kernel mean embeddings of 𝑃 and 𝑄 exist, i.e.,

𝜇𝑃 = 𝔼 [𝑘(𝑋, ·)], 𝜇𝑄 = 𝔼 [𝑘(𝑌, ·)], and that we can write 𝔼 [ 𝑓 (𝑋)] =
⟨ 𝑓 , 𝜇𝑃⟩ for all 𝑓 ∈ H [19]. For a sample 𝕏, we define the empirical mean

embedding as 𝜇𝕏 = 1

|𝕏|
∑
𝑥∈𝕏 𝑘(𝑥, ·).

MMD and witness function. We introduced the MMD in Section 1.3.

The function that witnesses the MMD is argmax 𝑓 ∈H,∥ 𝑓 ∥≤1
{𝔼 [ 𝑓 (𝑋)] −

𝔼 [ 𝑓 (𝑌)]} = (𝜇𝑃−𝜇𝑄)/∥𝜇𝑃−𝜇𝑄 ∥ [5, Sec. 2.3]. We define its unnormalized

version as ℎ
𝑃,𝑄

𝑘
= 𝜇𝑃 − 𝜇𝑄 and obtain

MMD
2 = ⟨𝜇𝑃 − 𝜇𝑄 , 𝜇𝑃 − 𝜇𝑄⟩ = ⟨𝜇𝑃 − 𝜇𝑄 , ℎ𝑃,𝑄𝑘 ⟩

= 𝔼
[
ℎ
𝑃,𝑄

𝑘
(𝑋)

]
− 𝔼

[
ℎ
𝑃,𝑄

𝑘
(𝑌)

]
.

(3.1)

With a characteristic kernel [45], 𝜇𝑃 = 𝜇𝑄 if and only if 𝑃 = 𝑄. Hence, the

squared MMD (3.1) can be used to test the hypothesis 𝐻0 : 𝑃 = 𝑄 against

𝐻1 : 𝑃 ≠ 𝑄.

MMD-BOOT test statistics. We can estimate the squared MMD (3.1)

by replacing the witness ℎ
𝑃,𝑄

𝑘
and the expectations in Equation 3.1 with

their empirical counterparts ℎℤ
𝑘
= 𝜇𝕏 − 𝜇𝕐 and obtain a biased estimate

(Equation 1.9)

�MMD

2

′𝑏𝑜𝑜𝑡′(ℤ|𝑘)

=
1

𝑛

∑
𝑥∈𝕏

ℎℤ𝑘 (𝑥) −
1

𝑚

∑
𝑦∈𝕐

ℎℤ𝑘 (𝑦)

=

〈
1

𝑛

∑
𝑥∈𝕏

𝑘(𝑥, ·) − 1

𝑚

∑
𝑦∈𝕐

𝑘(𝑦, ·), ℎℤ𝑘 (·)
〉

=
1

𝑛2

∑
𝑥,𝑥′∈𝕏

𝑘(𝑥, 𝑥′) + 1

𝑚2

∑
𝑦,𝑦′∈𝕐

𝑘(𝑦, 𝑦′) − 2

𝑛𝑚

∑
𝑥∈𝕏,𝑦∈𝕐

𝑘(𝑥, 𝑦).

(3.2)

The latter expression is a sum of 𝑉-statistics and up to the biased terms

where 𝑥 = 𝑥′ or 𝑦 = 𝑦′ equals the unbiased 𝑈-statistic (Equation 1.10),

which is the standard MMD estimate [5]. The witness itself depends

on the same data ℤ used to evaluate the test statistic (3.2). Hence to

compute the test threshold, the null distribution has to be simulated via

permutation of the samples (or bootstrapping) [5]. Thus, we refer to this

approach as ’mmd-boot’.
1

OPT-MMD-BOOT test statistics. A drawback of ’mmd-boot’ is that the

kernel 𝑘 has to be chosen a priori before observing the data. Kernel choice,

however, critically affects the performance of MMD based two-sample

tests [6–8, 37] as we have also seen in the previous chapter. Since for
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the quadratic-time MMD estimates no similar procedure to Chapter 2 is

known, it is common to split the data intoℤ = (ℤtr ,ℤte) and optimize the

kernel only on the held-out set ℤtr. For the moment, without specifying

how the kernel is optimized, we denote the resulting optimized kernel

as 𝑘tr with a subscript tr to indicate that it depends on the training data.

After optimizing the kernel, the standard ’mmd-boot’ test is conducted on

ℤte with the optimized kernel 𝑘tr [7, 8]. Hence, the empirical expectations

and witness function in Equation 3.2 are still dependent on the same

data ℤte, and the null distribution still has to be bootstrapped, for the

same reason as in the case of ’mmd-boot’. We will refer to this approach

as ’opt-mmd-boot’ with the test statistic

�MMD

2

′𝑜𝑝𝑡−𝑏𝑜𝑜𝑡′(ℤte |𝑘tr) =
1

𝑛te

∑
𝑥∈𝕏te

ℎ
ℤte

𝑘tr

(𝑥) − 1

𝑚te

∑
𝑦∈𝕐te

ℎ
ℤte

𝑘tr

(𝑦).
(3.3)

Our Motivation. This is the starting point of our investigations: Al-

though the kernel is optimized, it is still a multidimensional represen-

tation of the data. While this makes the test statistic applicable to other

problems [8, 42], features that contain little information about the dif-

ferences of 𝑃 and 𝑄 will mainly add noise to the test statistic. Generally,

the noisier the test statistic, the harder it is to obtain significant test

results. Motivated by this drawback, we propose to formulate a test

statistic that is more specific to the observed difference in ℤtr. Being

more specific to the training data (that is all we know about 𝑃 and 𝑄),

comes at the risk of overfitting, which we mitigate via regularization

and model selection (cf. Section 3.3). Specifically for MMD, after the

kernel is optimized, we define the witness directly on the training data by

replacing ℎ
ℤte

𝑘tr

with ℎ
ℤtr

𝑘tr

= 1

𝑛tr

∑
𝑥∈𝕏tr

𝑘tr(𝑥, ·) − 1

𝑚tr

∑
𝑦∈𝕐tr

𝑘tr(𝑦, ·). We call

this ’opt-mmd-witness’:

�MMD

2

′𝑜𝑝𝑡−𝑤𝑖𝑡𝑛𝑒𝑠𝑠′
(
ℤte |ℎℤtr

𝑘tr

)
=

1

𝑛te

∑
𝑥∈𝕏te

ℎ
ℤtr

𝑘tr

(𝑥) − 1

𝑚te

∑
𝑦∈𝕐te

ℎ
ℤtr

𝑘tr

(𝑦).

(3.4)

This test statistic comes with numerous advantages. Firstly, the expec-

tations (defined via ℤte) are now independent of the witness function

(defined via ℤtr). Thus, the test statistic is asymptotically normal. Sec-

ondly, as we will see in the following sections, Equation 3.4 allows us

to compute asymptotic test thresholds in closed form and allows for a

simpler derivation of a test power criterion than in the case of ’opt-mmd-

boot’ [7, 8]. Lastly, our empirical results suggest that ’opt-mmd-witness’

outperforms ’opt-mmd-boot’ on datasets considered in [8].

3.3. Witness two-sample test (WiTS test)

Similar to Equation 3.4, the WiTS tests we propose are by design two-stage

procedures: In Stage I, we learn the witness function ℎ with the training

data ℤtr. This ensures that ℎ is independent of the test data ℤte, used in
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Stage II to define a test statistic

𝜏̂(ℤte |ℎ) ∝
1

𝑛te

∑
𝑥∈𝕏te

ℎ(𝑥) − 1

𝑚te

∑
𝑦∈𝕐te

ℎ(𝑦). (3.5)

We reject the null hypothesis 𝐻0 : 𝑃 = 𝑄 if the observed value is larger

than a test threshold. We start presenting Stage II and analyze the test’s

asymptotic power for a given function ℎ. Then, we will use this test power

criterion as the objective when optimizing the witness function in Stage

I.

3.3.1. Stage II - testing with the witness function

We start with a basic result on asymptotic normality of empirical means

([32], Proof in Appendix B.1.1).

Theorem 3.3.1 (Asymptotic normality of WiTS test) For a witness function
ℎ : X→ ℝ, let 𝜎2

𝑃
:= Var[ℎ(𝑋)] and 𝜎2

𝑄
:= Var[ℎ(𝑌)] such that 0 <

𝜎2

𝑃
, 𝜎2

𝑄
< ∞. Let {𝑋𝑖}𝑖∈[𝑛]

i.i.d.∼ 𝑃, {𝑌𝑗} 𝑗∈[𝑚]
i.i.d.∼ 𝑄, and 𝑐 := 𝑛

𝑛+𝑚 ∈ (0, 1)
as 𝑛 + 𝑚 → ∞. Denote by ℎ̄𝑃 := 𝔼 [ℎ(𝑋)] and ℎ̄𝑄 := 𝔼 [ℎ(𝑌)]. We
define the empirical means ℎ̂𝑛

𝑃
:= 1

𝑛

∑
𝑖∈[𝑛] ℎ(𝑋𝑖), ℎ̂𝑚𝑄 := 1

𝑚

∑
𝑖∈[𝑚] ℎ(𝑌𝑖)

and denote the sample variance as 𝜎̂2

𝑐 (ℎ) := 𝜎̂2

𝑃
/𝑐 + 𝜎̂2

𝑄
/(1 − 𝑐). Then

√
𝑛 + 𝑚
𝜎̂𝑐(ℎ)

[(
ℎ̂𝑛𝑃 − ℎ̄𝑃

)
−

(
ℎ̂𝑚𝑄 − ℎ̄𝑄

)]
𝑑→N(0, 1) .

For any fixed ℎ and for sufficiently large sample sizes, we can thus work

with the asymptotic distribution of test statistics of the form 𝜏(·|ℎ) in

Equation 3.5 to compute test thresholds and derive an asymptotic test-

power objective for choosing ℎ based on the training data ℤtr in Stage I.

Data splitting ensures that ℎ is independent of ℤte, which is necessary for

Theorem 3.3.1 to hold. In the following, to make the comparison between

different choices of ℎ easier, we consider the standardized test statistic

on the test samples ℤte

𝜏(ℤte |ℎ) =
√
𝑛te + 𝑚te

1

𝑛te

∑
𝑥∈𝕏te

ℎ(𝑥) − 1

𝑚te

∑
𝑦∈𝕐te

ℎ(𝑦)

𝜎̂𝑐(ℎ)
,

where 𝑐 =
𝑛te

𝑛te+𝑚te

and 𝜎̂𝑐(ℎ) is the empirical estimate of the pooled

variance as in Theorem 3.3.1 based on ℤte. To control the Type-I error

at a significance level 𝛼, we need to find a test threshold 𝑡𝛼 such that

𝑃(𝜏(ℤte |ℎ) > 𝑡𝛼 |𝐻0) ≤ 𝛼. By Theorem 3.3.1, we can define the threshold

to be the (1 − 𝛼) quantile of the asymptotic null distribution. Under the

null hypothesis we have ℎ̄𝑃 = ℎ̄𝑄 and obtain 𝑡𝛼 = Φ−1(1 − 𝛼) where Φ−1

denotes the inverse CDF of the standard normal.

Note that we only consider a "one-sided" test, since we choose ℎ in stage

I with the appropriate sign, i.e., such that it has larger expectation under

𝕏tr than under 𝕐tr. A "two-sided" test ignores this and may lead to a

reduction in test power.

We reject the null hypothesis𝐻0 : 𝑃 = 𝑄 if 𝜏(ℤte |ℎ) > 𝑡𝛼 . As an advantage

of the asymptotic normality under the alternative and the closed form of
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the threshold of our test, we can write the asymptotic Type-II error rate

in closed form, similar as in Example 1.2.1 and Figure 1.1

𝑃(𝜏(ℤte |ℎ) < 𝑡𝛼) ≈ Φ

(
Φ−1(1 − 𝛼) −

√
𝑛te + 𝑚te

ℎ̄𝑃 − ℎ̄𝑄
𝜎𝑐(ℎ)

)
. (3.6)

An important consideration in designing a hypothesis test is test con-

sistency. A hypothesis test is called consistent, if for a fixed alternative

hypothesis, its test power converges to one as sample size goes to infinity.

With Equation 3.6, we can characterize for which functions ℎ the statistic

𝜏ℎ leads to a consistent test.

Proposition 3.3.2 (Consistency of WiTS test) Assume 0 < 𝜎𝑐(ℎ) < ∞,
where 𝜎𝑐(ℎ) is defined in Theorem 3.3.1. A WiTS test based on ℎ is consistent
against a fixed alternative hypothesis 𝑃 ≠ 𝑄 if and only if ℎ̄𝑃 > ℎ̄𝑄 .

Proposition 3.3.2 ensures that, for a given alternative hypothesis, our

proposed test will eventually (in the limit of the sample size) reject the

null hypothesis 𝐻0 when it is false. Associated with this notion is the

test power, the probability that the test rejects 𝐻0 when it is false; this

quantity is equivalent to 1− Type-II error. Defining the signal-to-noise
ratio SNR(ℎ) = ℎ̄𝑃−ℎ̄𝑄

𝜎𝑐 (ℎ) , it follows from Equation 3.6 that the asymptotic

test power of our test is

𝛽ℎ ≈ 1 −Φ
(
Φ−1(1 − 𝛼) −

√
𝑛te + 𝑚te SNR(ℎ)

)
. (3.7)

Since Φ increases monotonically, the test power grows monotonically

with the signal-to-noise ratio (SNR).

3.3.2. Stage I - finding an optimal witness

We now propose an objective to find an optimal witness function. Based

on our test power consideration, we argue that in the first stage one

should find a witness by maximizing a, possibly regularized, empirical

estimate of the SNR in Equation 3.7. Let Fbe a function class containing

candidates for the witness. We propose using the witness ℎ̂𝜆 defined

as

ℎ̂𝜆 = argmax

𝑓 ∈F

𝑓𝕏tr
− 𝑓𝕐tr

𝜎ℤtr

𝑐,𝜆( 𝑓 )
,

with 𝑓𝕏tr
=

1

𝑛tr

∑
𝑥∈𝕏tr

𝑓 (𝑥), 𝑓𝕐tr
=

1

𝑚tr

∑
𝑦∈𝕐tr

𝑓 (𝑦),
(3.8)

and 𝜎ℤtr

𝑐,𝜆( 𝑓 ) = ((𝜎
ℤtr

𝑐 ( 𝑓 )2 + 𝜆Ω( 𝑓 ))
1

2 , where 𝜎ℤtr

𝑐 ( 𝑓 ) corresponds to 𝜎̂𝑐(ℎ)
defined in Theorem 3.3.1 and Ω is a regularizer. We remark that the

optimal witness is generally not uniquely defined since the SNR is

invariant to rescaling the function. Correctly rejecting 𝐻0 when it is false

is at the core of hypothesis testing. Our choice of maximizing the SNR in

Equation 3.7 is in line with this principle: it leads to a test that maximizes

the asymptotic test power. By contrast, while other objectives such as

classification loss[9, 33], softmax loss [41], or the MMD statistic itself
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[5], can be used to learn the witness function, their relationship to the

test power may be indirect. We will come back to other loss functions in

Chapter 4.

OPT-MMD-Witness. In Section 1.5 we discussed the asymptotic test

power criterion used by [7, 8] to optimize the kernel for quadratic

time MMD estimates. This is given by 𝐽 = MMD
2

𝜎𝐻
1

in Equation 1.17. In

Appendix B.1.5, we examine this quantity in more detail, and show that

𝐽(𝑃, 𝑄 |𝑘) = 1/
√

2 SNR

(
ℎ
𝑃,𝑄

𝑘

)
. (3.9)

For a given class of kernels and corresponding (empirical) MMD wit-

nesses, this implies that selecting the optimal witness according to our

SNR criterion leads to the same function as first optimizing the kernel

with the 𝐽 criterion and defining the MMD witness afterwards.

Algorithm 2 WiTS test with ’kfda-witness’

1: Input: 𝕏, 𝕐 , 𝛼, paramGrid, 𝑟

2: 𝕏tr ,𝕏te , 𝕐tr , 𝕐te ← RandomSplit(𝕏, 𝕐 , 𝑟)

3: # Optionally perform model selection

4: 𝑘,𝜆← GridSearchCV(paramGrid, ℤtr)

5: # Stage I - Optimize Witness

6: ℎ ← kfdaWitness(ℤtr , 𝑘,𝜆) ⊲ App. Alg.4

7: # Stage II - Test

8: return: witnessTest(ℤte , ℎ, 𝛼)

9: function witnessTest(ℤte , ℎ(·), 𝛼, 𝐵 = 200)

10: ℎℤte
← [ℎ(𝑧) for 𝑧 in ℤte]

11: 𝜏← mean(ℎℤte
[: 𝑛te]) − mean(ℎℤte

[𝑛te :])
12: 𝑝 ← 1/(𝐵 + 1) ⊲ simulate 𝑝-value via permutations

13: for 𝑖 in [𝐵] do
14: ℎℤte

← Permute(ℎℤte
)

15: if mean(ℎℤte
[: 𝑛te]) −mean(ℎℤte

[𝑛te :]) ≥ 𝜏 then
16: 𝑝 ← 𝑝 + 1/(𝐵 + 1)
17: if 𝑝 ≤ 𝛼 then return: 1 else return: 0

Model selection and optimization. The choice of function class Fand

regularization parameter 𝜆 affects the learned witness in Equation 3.8.

We therefore recommend that practitioners use standard tools for model

selection such as cross-validation (CV) for finding suitable “hyperpa-

rameters” and to validate that the learned witness actually has a high

SNR (see also Chapter 4). CV ensures that the witness actually learns the

differences between 𝑃 and𝑄 and does not solely overfit the training data.

Model selection on ℤtr is legit since in Stage II we only use ℤte, which are

independent of ℤtr. While this is also possible in classifier two-sample

tests [9], in the standard ’mmd-boot’ this is not done.

Our objective Equation 3.7 can be used with a variety of function classes

F. For instance, Fcan be defined based on an RKHS, or parameterized

by a deep neural network. Note that optimization methods to maximize

Equation 3.8 are generally function class specific, and may require an

iterative procedure. In Chapter 4 we will show that equivalently to

maximizing the SNR we can also minimize a squared loss, which makes

it easy to use standard libraries. When F is an RKHS, we can derive the

closed-form solution to Equation 3.8, as shall be explained in Section 3.4.

Algorithm 2 shows the general procedure for the two-stage WiTS test.

Permutation-based thresholds. For our theoretical analysis we used

the asymptotic threshold. However, the witness is also chosen in a

data-dependent manner. Thus, we generally recommend to simulate the
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threshold via permutations in order to ensure Type-I error control at finite

sample size. In this case, for simplicity and ease of implementation, we

compute the test statistic without normalization and simply take the

difference in means. We first compute the value of the witness function on

all points in ℤte and store it in an array. Then we compute the simplified

test statistic by taking the difference in means of𝕏te and 𝕐te (as computed

from the array that stores all the witness evaluations). We then iterate

over 𝐵 ∈ ℕ permutation runs to estimate the 𝑝-value of the computed

test statistic. For each run, we permute the array storing the witness

evaluations, and then compute the difference in means of the first 𝑛te

and the last 𝑚te entries. We then estimate the 𝑝-value as detailed in

Equation 1.3 and Lemma 1.2.1. After all permutations, if the p-value is

smaller or equal than 𝛼, we reject (see Algorithm 2). By Lemma 1.2.1

this correctly controls Type-I errors. Since for this procedure we only

need to compute the witness once on each data point the overall cost is

𝑂((𝑛te + 𝑚te)𝐵). Note that simulating the null for ’mmd-boot’ instead

has cost 𝑂((𝑛te + 𝑚te)2𝐵) [8, Sec. 5].

3.4. KFDA-witness

In this section, we consider the function class in Equation 3.8 to be

an RKHS, and show that this choice leads to a closed form solu-

tion for the optimal witness. To start, let H be an RKHS associated

with a positive definite kernel 𝑘 (see Section 3.2). Additionally to the

mean embeddings 𝜇𝑃 , 𝜇𝑄 , we define the (centered) covariance operator

Σ𝑃 = 𝔼 [𝑘(𝑋, ·) ⊗ 𝑘(𝑋, ·)] −𝜇𝑃 ⊗𝜇𝑃 (analogously for𝑄) whose existence

is ensured by Assumption (A1) [19, Sec. 3]. For any function in the RKHS

we then have 𝔼 [ 𝑓 (𝑋)] = ⟨𝜇𝑃 , 𝑓 ⟩ and Var[ 𝑓 (𝑋)] = ⟨ 𝑓 ,Σ𝑃 𝑓 ⟩, and analo-

gously for 𝑄. We define the pooled covariance operator Σ =
Σ𝑃
𝑐 +

Σ𝑄

1−𝑐 .
Then for all 𝑓 ∈ Hwith non-zero variance we have

SNR( 𝑓 ) =
⟨𝜇𝑃 − 𝜇𝑄 , 𝑓 ⟩
⟨ 𝑓 ,Σ 𝑓 ⟩

1

2

, (3.10)

where SNR is defined in Equation 3.7. This objective corresponds to

Kernel Fisher discriminant analysis (KFDA)’s learning objective [66].

For singular covariance operator the SNR can diverge, and for infinite-

dimensional RKHS, the empirical estimation of the covariance operator

is ill-posed. In the following, we therefore consider a regularized (𝜆 > 0)

version of Equation 3.10 and call its solution (regularized) KFDA witness:

ℎ𝜆 = argmax

𝑓 ∈H

⟨𝜇𝑃 − 𝜇𝑄 , 𝑓 ⟩
⟨ 𝑓 , (Σ + 𝜆 𝐼) 𝑓 ⟩

1

2

. (3.11)

The solution of Equation 3.11 is given by the solution to the generalized

eigenvalue problem (Σ + 𝜆 𝐼)ℎ𝜆 = 𝛾(𝜇𝑃 − 𝜇𝑄) [67, Sec.3.2], thus

ℎ𝜆 = 𝛾(Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄), (3.12)

where 𝛾 > 0 is an arbitrary positive constant we fix to 1, unless stated

otherwise. We will refer to the test with the witness function ℎ𝜆 as the

’kfda-witness’ test. Next, we show how we can estimate the KFDA-witness

with the training data.
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Estimation of the KFDA witness. Let ℤtr = {𝑥1 , . . . , 𝑥𝑛tr
, 𝑦1 , . . . , 𝑦𝑚tr

}
denote the pooled training sample and 𝐾 denote the kernel matrix

such that 𝐾𝑖 𝑗 = 𝑘(𝑧𝑖 , 𝑧 𝑗) for 𝑖 , 𝑗 ∈ [𝑛tr + 𝑚tr]. Further, we define 𝛿 =

( 1

𝑛tr

, . . . , 1

𝑛tr

,− 1

𝑚tr

, . . . ,− 1

𝑚tr

)⊤ ∈ ℝ𝑛tr+𝑚tr
. For 𝑙 ∈ {𝑛tr , 𝑚tr}, we define

the idempotent centering matrix 𝑃𝑙 = 𝐼𝑙 −𝑙−11𝑙1⊤𝑙 , where 𝐼𝑙 denotes the

identity operator and 1𝑙 the 𝑙 dimensional vector with all ones. With

this we define the (𝑛tr +𝑚tr) × (𝑛tr +𝑚tr)matrix 𝑁𝑐 =

(
1

𝑐𝑃𝑛tr
0

0
1

1−𝑐𝑃𝑚tr

)
.

Using the representer theorem [68], we can empirically estimate the

KFDA witness (more detail in Appendix B.1.3) as

ℎ̂𝜆(·) =
𝑛tr+𝑚tr∑
𝑖=1

𝛼̂𝑖 𝑘(𝑧𝑖 , ·), (3.13)

𝛼̂ =

(
𝐾𝑁𝑐𝐾

𝑛tr + 𝑚tr

+ 𝜆𝐾
)−1

𝐾𝛿. (3.14)

ℎ̂𝜆(·) can be viewed as a precision-weighted (inverse covariance) mean

of the embeddings of the basis points ℤtr in the RKHS. Since 𝜇𝕏tr
, 𝜇𝕐tr

,

and Σ̂ are consistent estimates of 𝜇𝑃 , 𝜇𝑄 , and Σ, for fixed regulariza-

tion, we have ℎ̂𝜆 → ℎ𝜆 = (Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄) (see Appendix B.1.4).

For the asymptotic witness ℎ𝜆 we can compute the difference in expec-

tation under 𝑃 and 𝑄 in closed form: ℎ̄𝜆,𝑃 − ℎ̄𝜆,𝑄 = ⟨𝜇𝑃 − 𝜇𝑄 , ℎ𝜆⟩ =
⟨𝜇𝑃 − 𝜇𝑄 , (Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄)⟩. This difference is positive, and hence by

Proposition 3.3.2 we obtain a consistent WiTS test, if and only if 𝜇𝑃 ≠ 𝜇𝑄 .

We can ensure this for arbitrary 𝑃 ≠ 𝑄 by using a characteristic kernel

[45], the same condition as for MMD-based tests.

Based on our experimental results, we observe that, for a fixed kernel

𝑘, fixed regularization 𝜆 > 0, and sufficiently large sample size, the

splitting ratio 𝑟 = 1/2 appears to give the highest test power in many

cases, compared to other values of 𝑟. Generally, identifying the optimal

splitting ratio remains an open problem. We observe (middle panel of

Figure 3.1) that if we include model selection in stage I, it is favorable to

use more than half of the data for the first stage, i.e., 𝑟 > 1/2. However,

since we cannot quantify how much "more" data we should use, we

generally recommend using a 50/50 split.

The cost of computing the exact solution 𝛼̂ in Equation 3.13 is 𝑂((𝑛tr +
𝑚tr)2) in space (storing the kernel matrix) and𝑂((𝑛tr+𝑚tr)3) time (matrix

inversion). In Appendix B.3, we adopt recent advances in large-scale

kernel machines [69, 70] to obtain approximate solutions with lower time

and space complexity and thus scale to large datasets. Using the Nyström

approximation [71] to approximate the solution and approximately

solving it with conjugate gradient, we obtain a complexity of 𝑂((𝑛tr +
𝑚tr)𝑀𝑡+𝑀3) in time and𝑂(𝑀2) in space, where 𝑀 denotes the number

of Nyström centers and 𝑡 the number of conjugate gradient iterations. For

stage II we then only need (𝑛te+𝑚te)𝑀 kernel evaluations to compute the

test statistic. This makes our approach scalable to large-scale dataset.
2

Connection of ’opt-mmd-witness’ and ’kfda-witness’. To empha-

size the relationship between optimizing the MMD and using KFDA,

consider a fixed kernel 𝑘 and denote by A the set of bounded posi-

tive operators on H𝑘 . We consider the nonparametric class of kernels
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Table 3.1.: Overview of kernel-based two-sample tests. a priori means that the kernel/regularization is chosen independently of the data.

The present work proposes the "witness" methods.

Method kernel choice reg. 𝜆 witness obj. witness estim. test data threshold

’kfda-witness’(proposed) CV CV SNR ℤtr ℤte analytic

’kfda-boot’[62] a priori a priori SNR ℤ (implicit) ℤ bootstrap

’mmd-boot’[5] a priori - MMD ℤ (implicit) ℤ bootstrap

’opt-mmd-witness’(proposed) 𝐽 with ℤtr - MMD ℤtr ℤte analytic

’opt-mmd-boot’[7] 𝐽 with ℤtr - MMD ℤte (implicit) ℤte bootstrap
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Figure 3.1.: Instructive experiments on "Blobs" dataset. Left: Fixed kernel and fixed regularization for sample size 𝑛 = 𝑚 = 100.

Middle: For multiple candidate kernels (K10) kernel optimization becomes more important and the difference of ’kfda-witness’ and

’opt-mmd-witness’ becomes smaller. Further, ’opt-mmd-witness’ already outperforms ’opt-mmd-boot’. Right: Same kernels as in the

middle figure and 𝑟 = 1/2. All the tests are consistent, i.e., converge to power equal 1.
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K = {𝑘𝐴 |𝑘𝐴(𝑥, 𝑦) = ⟨𝐴𝑘(𝑥, ·), 𝐴𝑘(𝑦, ·)⟩ , 𝐴 ∈ A}. For this class of ker-

nels, we show in Appendix B.1.6 that using ’opt-mmd-witness’ leads to

the same witness function as using ’kfda-witness’.

’kfda-boot’. It turns out that KFDA-like test statistics were considered

before [62], but in settings without data splitting. Indeed, for a fixed 𝑘 and

𝜆 > 0, we can use the whole data, i.e., 𝕏, 𝕐 for learning the witness (Σ̂ +
𝜆)−1(𝜇𝕏−𝜇𝕐 ) and computing the test statistic (empirical mean difference).

The test statistic thus is 𝜏′𝑘 𝑓 𝑑𝑎−𝑏𝑜𝑜𝑡′ = ⟨𝜇𝕏 − 𝜇𝕐 , (Σ̂ + 𝜆)−1(𝜇𝕏 − 𝜇𝕐 )⟩ ,
and we call its population version KFDA

2(𝑃, 𝑄 |𝑘,𝜆). This, is the test

statistic as studied by [62]. As for ’mmd-boot’, the same data is used

for estimating the witness and computing the mean difference, hence

Theorem 3.3.1 does not hold anymore. We thus need to bootstrap the null

distribution via permutations of the samples; thus, we refer to it as ’kfda-

boot’. ’kfda-boot’ has similar drawbacks as ’mmd-boot’: 1. simulating the

null distribution via permutations has cost O((𝑛 +𝑚)3𝐵) for 𝐵 ∈ ℕ draws

from the null distribution; and 2. we have to fix 𝑘 and 𝜆 a priori, and

their choices strongly affect the test power. [62] do not provide guidance

for how to choose 𝑘 and 𝜆.

3.5. Related work

Besides the kernel-based tests we discussed so far, [73] proposed tests

based on smooth characteristic functions (SCF), and projected mean embed-
dings (ME) of the distributions where the mean embeddings are projected

to 𝐽-dimensional Euclidean vectors for 𝐽 ∈ ℕ. In fact, the normalized

ME statistic in [73, Eq. 13] can be seen as a variant of the KFDA where

the function classes is restricted by the 𝐽 projection directions. Note that
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[75]: Balasubramanian et al. (2021), On
the Optimality of Kernel-Embedding Based
Goodness-of-Fit Tests
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for two-sample testing; [41]: Cheng et al.

(2019), Classification Logit Two-sample Test-
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(2003), On multivariate goodness of fit and
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Two-sample test based on classification prob-
ability
3: In Chapter 4 we will show that opti-

mizing a cross-entropy loss actually op-

timizes test power.

[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests

for a finite-dimensional RKHS and without regularization, ’kfda-boot’

corresponds to the Hotelling’s 𝑇2
statistic [74]. [37] improve the approach

of [73] by optimizing the features in the first stage. However, they also

discard the training data after learning the 𝐽 projection directions. [42]

propose to learn a deep finite-dimensional representation of the data and

to use this for a subsequent MMD or KFDA test. However, their training

objective does not directly maximize the test power [42, Sec. 3.1.1]. [8]

propose a deep version of ’opt-mmd-boot’. They learn a deep-kernel

(’mmd-d’) of the form

𝑘𝜔(𝑥, 𝑥′) =
[
(1 − 𝜖)𝜅(𝜙𝜔(𝑥), 𝜙𝜔(𝑥′))) + 𝜖

]
𝑞(𝑥, 𝑥′), (3.15)

where 𝜖 ∈ (0, 1), 𝜅 and 𝑞 are Gaussian kernels and 𝜙𝜔 is a deep repre-

sentation optimized via the criterion 𝐽, see Appendix B.1.5. They also

consider a version called ’mmd-o’ which is 𝑘𝜔(𝑥, 𝑥′) = 𝜅(𝜙𝜔(𝑥), 𝜙𝜔(𝑥′))
and conclude that learning a full kernel (they advocate ’mmd-d’) is better

than learning a one-dimensional representation.

Most of the aforementioned works focus on developing a practical

testing procedure for a specific dataset at hand. However, there also exist

more theoretical work on the statistical optimality of different kernel-

based approaches. [75] show that a moderated MMD approach (which

is related to KFDA) leads to optimal rates when testing against local

alternatives. A similar discussion can be found in the long version of

[76, Sec.5.1]. This resonates our findings, that a witness based on KFDA

is more powerful than simply using the MMD witness. Furthermore,

[77] show how the choice of scaling parameter in Gaussian kernels

affects the statistical optimality. However, such theoretically optimal

tests oftentimes are unpractical to use. [75], for example, requires the

eigendecomposition of the kernel function, which generally is hard to

obtain. Furthermore, without data splitting also these works cannot find

a good kernel function.

Since our proposed witness function is one-dimensional, it is closely

related to classification based two-sample tests [9, 33, 41, 48, 49]. [9]

proposed learning a deep classifier and using its classification accuracy

as test statistic. We refer to this as ’c2st-s’, where ’s’ stands for sign. The

method has two drawbacks. First, classification loss does optimize the 0-1

loss, whereas we directly maximize test power [9, Remark 2].
3

Second,

it only uses the sign of the classification function and thus neglects

information by weighting all points equally. [41] address the second issue

by considering the network’s output before thresholding the function into

a classifier. They train with a softmax loss, which also does not directly

address test power. The connections of these methods to kernel-based

tests were also thoroughly discussed by [8] and, in accordance, we refer

to the approach of [41] as ’c2st-l’.

3.6. Experiments

We empirically assess the test power of the proposed WiTS tests in

two settings. First, we perform instructive experiments to highlight the

differences of the methods summarized in Table 3.1. Second, we perform

benchmark experiments on two challenging datasets and compare the



3. A witness two-sample test 43

1000 1500 2000 2500 3000 3500 4000 4500 5000
Samplesize

0.0

0.2

0.4

0.6

0.8

1.0

kfda-witness MMD-D-witness MMD-D MMD-O C2ST_L C2ST_S ME SCF

100 150 200 250 300 350 400 450
Samplesize

0.0

0.2

0.4

0.6

0.8

1.0

Re
je

ct
io

n 
Ra

te Figure 3.3.: Benchmark experiments

adapted from [8] Left: Blobs, Right:
HIGGS. Computing the MMD witness af-

ter kernel optimization and performing a

witness test (’mmd-d-witness’) improves

the test power over ’mmd-d’. Directly

learning the ’kfda-witness’ also leads to

high power.
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Figure 3.2.: Top: Draws from Blobs

dataset for the instructive experiments.

The distributions are mixtures of nine

Gaussians, with anisotropic covariance

(but the same covariance matrix across

blobs). The covariance matrix of 𝑄 is

rotated by 𝜃 = 𝜋/4 relative to the covari-

ance matrix of 𝑃. To simulate the null

hypothesis we use 𝜃 = 0, which corre-

sponds to drawing both samples from 𝑃.

Bottom: Blobs dataset used for Figure 3.3

as suggested by [8, Figure 1]. In this case,

𝑃 has isotropic Gaussian, the blobs in

𝑄 are anisotropic and have different co-

variance matrices. To simulate the null

hypothesis, we draw both samples from

𝑃.

[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests
4: Note that in Figure 3.3 we used differ-

ent approaches to estimate the rejection

rates, see Appendix B.2. This explains

that at the same rejection rate we can

have differently large errors.

[6]: Gretton et al. (2012), Optimal kernel
choice for large-scale two-sample tests

[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests

[37]: Jitkrittum et al. (2016), Interpretable
Distribution Features with Maximum Test-
ing Power

performance of the introduced WiTS tests (’kfda-witness’ and ’opt-mmd-

witness’) to the benchmarks (’mmd-d’, ’mmd-o’, ’me’, ’scf’, ’c2st-s’,

’c2st-l’) introduced in Section 3.5. For the benchmarks, we reuse the

implementation provided by [8] without changing any hyperparameters.

Throughout our experiments we set the level 𝛼 = 0.05. Appendix B.2

contains experiments for correct Type-I error control. The shaded regions

contain ± one standard error of the estimates.
4

Instructive experiments. In Figure 3.1, we consider a Blobs dataset

[6] where 𝑃 and 𝑄 are mixtures of nine anisotropic 2-d Gaussians

with 𝑄 having the covariance matrix rotated by an angle 𝜃 = 𝜋/4,

see Figure 3.2. For the left panel of Figure 3.1, we consider a single

Gaussian kernel 𝑘𝜎(𝑥, 𝑥′) = exp (−∥𝑥 − 𝑥′∥2/𝜎2)with bandwidth 𝜎 = 0.2

and a regularization parameter for the ’kfda’ methods of 𝜆 = 10
−2

(in

Appendix B.2 we additionally show the effect of the regularization in

Figure B.2. Note that for 𝜆→∞, ’kfda’ and ’mmd’ methods coincide).

We showcase the effect of varying splitting ratios 𝑟 when the kernel is

fixed a-priori (thus we can apply ’mmd-boot’ and ’kfda-boot’). With

fixed kernel, ’opt-mmd-boot’ essentially discards the training data. We

estimate the test power (rejection rate) with fixed overall sample size

𝑛 = 𝑚 = 100. We observe that the witness methods achieve highest

power for a 50/50 split, given a fixed kernel and fixed regularization. We

also observe that the boot approaches outperform the witness methods

in this case.

However, in practice, it is unlikely that we can pick a powerful kernel

and regularization a priori. Therefore, for the middle panel of Figure 3.1,

we optimize the kernel function over a class of kernels K10 consisting

of ten Gaussian kernels with bandwidths on a logarithmic range from

10
−3

to 10
1
. Additionally, for ’kfda-witness’ we cross-validate over five

candidate regularizations on a log range from 10
−4

to 10
3
. In this case,

the witness methods attain the highest power at a splitting ratio 𝑟 > 1/2,

and ’opt-mmd-witness’ outperforms ’opt-mmd-boot’ for the majority of

splitting ratios and also globally. For the right panel, we use the same

setting, but fix the splitting ratio at 𝑟 = 1/2 and vary the sample size. As

we expect, all tests are consistent and we observe that both WiTS test

approaches outperform ’opt-mmd-boot’ at a 50/50 split.

Benchmark Experiments. [8] benchmarked several deep classification

two-sample tests (’c2st-l’, ’c2st-c’) against MMD with an optimized deep

kernel (’mmd-d’, ’mmd-o’) and the optimized tests (’me’, ’scf’) of [37].

We implement ’opt-mmd-witness’ on top of their proposed method
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’mmd-d’, which optimizes a deep kernel [8, Section 5]. Therefore after

the kernel optimization, we use the training data to define the MMD

witness function (Equation 3.4) and then proceed with ’WitnessTest’

from Algorithm 2. We also run ’kfda-witness’ with grid search over

the same kernels and regularization as for the previous experiments.

We run the experiments on two benchmarks. First, an adopted Blobs
problem, with multiple different covariances [8, Figure 1] (see Figure 3.2),

introduced to show the limitations of MMD with translation-invariant

kernels. Second, the Higgs dataset [78] where "we compare the jet 𝜙-

momenta distribution (𝑑 = 4) of the background process, 𝑃, which

lacks Higgs bosons, to the corresponding distribution 𝑄 for the process

that produces Higgs bosons" (cited from [8]). For the Higgs dataset we

consider sample sizes larger than a thousand per class. To speed up the

computation of the ’kfda-witness’, we approximate the solution with

𝑀 = 500 Nyström centers, see Appendix B.3, which underlines the

scalability of our approach. For both datasets we observe higher power

of the WiTS tests we propose, see Figure 3.3. We emphasize that we used

the implementation of [8], without changing the deep architecture or any

hyperparameters.

3.7. Chapter Conclusion

We introduced a principled approach to learn optimal witness functions

for two-sample testing. The approach consists of two-stages: First, we

learn a witness on a subset of the observations by maximizing a test-

power criterion. In the second stage, we simply test whether the witness

function attains the same mean on the test samples, and efficiently

simulate the null distribution via permutations. We further showed how

to adopt recent tests based on optimized Maximum Mean Discrepancy

into a witness two-sample test. [8] advocated optimizing a (deep) kernel

in the training stage. Our experiments show, however, that explicitly

learning a one-dimensional witness can perform better than learning

a high-dimensional representation (a kernel function) in the training

stage.

Our results extend beyond kernel methods since we derive a principled

objective to train a one-dimensional function optimal for two-sample

testing. This objective and the proposed testing procedure can be applied

with any function class. The proposed framework thus not only allows

domain experts to perform two-sample tests with the models most

suitable to the data at hand, but can also easily incorporate model

selection techniques developed for classification and regression tasks to

optimize for the best parameter settings. This will be the focus of the next

chapter.
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AutoML two-sample test 4.
Two-sample tests are important in statistics and machine

learning, both as tools for scientific discovery as well as

to detect distribution shifts. This led to the development

of many sophisticated test procedures going beyond the

standard supervised learning frameworks, whose usage can

require specialized knowledge about two-sample testing. We

use a simple test that takes the mean discrepancy of a witness

function as the test statistic and prove that minimizing a

squared loss leads to a witness with optimal testing power.

This allows us to leverage recent advancements in AutoML.

Without any user input about the problems at hand, and using

the same method for all our experiments, our AutoML two-

sample test achieves competitive performance on a diverse

distribution shift benchmark as well as on challenging two-

sample testing problems.

We provide an implementation of the AutoML two-sample

test in the Python package autotst.

4.1. Introduction

Testing whether two distributions are the same based on data is a

fundamental problem in data science. A classical application is to test

whether two differently treated groups have the same characteristics or

not [79–81]. Testing independence of two random variables can also be

phrased as a two-sample problem by testing whether the joint distribution

equals the product of the marginal distributions [82]. A more recent

application in machine learning is to detect distribution shifts, i.e.,

whether the distribution a model was trained on equals the distribution

the model is deployed on [18, 83, 84].

Classical methods have a fixed test statistic that makes strong parametric

assumptions. For example, Student’s two-sample 𝑡-test only tests whether

the distributions have equal mean, assuming both distributions follow

a normal distribution with the same (but unknown) variance (Exam-

ple 1.2.1). With modern datasets, which are often high-dimensional, such

test cannot be applied because the strong assumptions are often not

justified. Nonparametric kernel-based test such as the Maximum Mean

Discrepancy (MMD) [5] are very flexible and, theoretically, can detect

differences of any kind given enough data. However, this generality

often harms test power at finite data size. This can simply be understood

in terms of a classical bias-variance tradeoff. As we have discussed in

the prior chapters, it is common to optimize a kernel (Section 1.5) or a

witness function (Chapter 3). However, the derived objective as well as

optimizing a kernel function are no standard tasks in machine learning

and no automated packages exist, making it hard for practitioners to

apply them.

https://github.com/jmkuebler/auto-tst


4. AutoML two-sample test 46

Input:𝕏, 𝕐

𝕏tr , 𝕐tr

𝕏te , 𝕐te

AutoML:

ℎ = fit((𝕏tr , 1), (𝕐tr , 0); MSE, 𝑡max)

ℎ𝕏te
= ℎ(𝕏te),ℎ𝕐te

= ℎ(𝕐te)

𝜏 = ℎ̄𝕏te
− ℎ̄𝕐te

𝜏′ = ℎ̄𝐴 − ℎ̄𝐵
ℎ𝐴 , ℎ𝐵 = Permute&Split(ℎ𝕏te

, ℎ𝕐te
)

𝑝 = Prob[𝜏′ ≥ 𝜏]
Out: 𝑝

?

≤ 𝛼

Figure 4.1.: AutoML two-sample test: 𝕏, 𝕐 denotes the available data from 𝑃 and 𝑄, which is first split into two parts of equal size. A

witness ℎ : X→ ℝ is trained using a (weighted) squared loss Equation 4.6, denoted by MSE, and using AutoML to maximize predictive

performance. Users can easily control important properties, for example the maximal runtime 𝑡max. The test statistic 𝜏 is the difference

in means on the test sets. Permuting the data and recomputing 𝜏 allows the estimation of the 𝑝-values. The null hypothesis 𝑃 = 𝑄 is

rejected if 𝑝 ≤ 𝛼.
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Tests that fit well into the standard machine learning pipeline are based

on the classification accuracy. First, a classifier is trained to detect the

difference between the two samples, and then its accuracy on a held-out

set is taken as a test statistic [9, 33, 49, 81, 85]. [8] argued, however,

that optimizing classification accuracy does not directly optimize test

power and considered this one reason why kernel-based test outperform

classifier tests. Our results of Chapter 3 challenged this and we considered

the mean of an optimized witness function as test statistic finding that

kernels are not necessary for good performance. Generally, such two-stage

procedures are very intuitive and arguably also how a human would

approach the two-sample problem on complicated data. One could look

at some part of the data, try to come up with a simple hypothesis, and

then try to test its significance on held-out data (Section 0.1).

Despite the recent progress in the theoretical understanding of machine

learning-based two-sample tests [8, 33], there is still little guidance

on how to apply these tests in practice and a substantial amount of

engineering and expertise is required to implement them. On the contrary,

in supervised learning, namely regression and classification, the past

years have shown tremendous advancements in making machine learning

models applicable essentially without any expert knowledge leading to

the field of Automated Machine Learning (AutoML) [86–88]. The goal of

AutoML is to automate the full machine learning pipeline: Data cleaning,

feature engineering and augmentation, model search, hyperparameter

optimization, and model ensembling [89]. All of it with the goal of

achieving the best possible predictive performance on unseen data.

The goal of this chapter is to bring the advancements of AutoML research

to the field of two-sample testing. Our main contributions are:

1. We prove that minimizing a squared loss is equivalent to maximiz-

ing the unwieldy signal-to-noise ratio, which determines the asymp-

totic test power of a witness two-sample test (Subsection 4.3.1).

2. Thanks to the former result we can use AutoML to learn the test

statistic, thereby harnessing the power of many advancements in

machine learning such as hyperparameter optimization, bagging,

and ensemble learning in a user-friendly manner (Subsection 4.3.2).

3. Our test is usable without any specific knowledge and skills in

two-sample testing. Users can easily specify how many resources

they want to use when learning the test, for example the maximal
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training time (Subsection 4.3.2 and Section 4.5). Furthermore, one

can easily interpret the results (Subsection 4.3.3).

4. We extensively study the empirical performance of our approach

first by considering the two low-dimensional datasets Blob and

Higgs followed by running a large benchmark on a variety of

distribution shifts on MNIST and CIFAR10 data. We observe very

competitive performance without any manual adjustment of hyper-

parameters. Our experiments also show that a continuous witness

outperforms commonly used binary classifiers (Section 4.5).

5. We provide the Python Package autotst implementing our testing

pipeline.

The proposed testing pipeline is described in Figure 4.1: First, the two

samples are split into training and test sets. Then a witness function ℎ

is trained by first labeling samples in 𝕏tr with 1 and samples from 𝕐tr

with 0 and then minimizing a (weighted) Mean Squared Error (MSE) to

maximize test power, see Section 4.3 for further details. To maximize the

predictive performance and to require as little user input as possible, we

use AutoGluon [90], an existing AutoML framework, when optimizing

the witness. Our test statistic is then simply the difference in means of the

test sets 𝕏te , 𝕐te, see Section 4.2. 𝑝-values are computed via permutation

of the samples [81], which is a standard technique in two-sample testing

(Section 1.2).

4.2. Preliminaries

We use the same notation as introduced in Section 3.2. Unless otherwise

stated, we assume that the data is split in equal halves, which is the

default approach [8, 9].

Witness two-sample test. We consider a witness-based hypothesis

test as introduced in the previous chapter, however, only consider the

unnormalized version. Given a function ℎ : X→ ℝ, called witness, the

mean discrepancy is

𝜏(𝑃, 𝑄 | ℎ) = 𝔼𝑋∼𝑃 [ℎ(𝑋)] − 𝔼𝑌∼𝑄 [ℎ(𝑌)], (4.1)

and we use its empirical estimate on the test set as test statistic

𝜏(𝕏te , 𝕐te | ℎ) =
1

𝑛te

∑
𝑥∈𝕏te

ℎ(𝑥) − 1

𝑚te

∑
𝑦∈𝕐te

ℎ(𝑦). (4.2)

As we show in Section 4.4, this test statistic can be seen as a continuous

extension of classifier two-sample tests [9]. We assume that 𝑐 = 𝑛te

𝑛te+𝑚te

converges to a constant. With 𝜎2

𝑐 (ℎ) =
(1−𝑐)Var𝑋∼𝑃 [ℎ(𝑋)]+𝑐Var𝑌∼𝑄 [ℎ(𝑌)]

𝑐(1−𝑐) we

showed in Theorem 3.3.1 that the test statistic is asymptotically normally

distributed

√
𝑛te + 𝑚te [𝜏(𝕏te , 𝕐te | ℎ) − 𝜏(𝑃, 𝑄 | ℎ)] 𝑑→N

(
0, 𝜎2

𝑐 (ℎ)
)
. (4.3)

Let us for now assume that we know 𝜎𝑐(ℎ). For any level 𝛼 ∈ (0, 1) we

can set the analytic test threshold to 𝑡𝛼 =
𝜎𝑐 (ℎ)√
𝑛te+𝑚te

Φ−1(1 − 𝛼), where Φ

https://github.com/jmkuebler/auto-tst
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denotes the CDF of a standard normal and Φ−1
its inverse. We can then

compute the asymptotic probability of rejecting as:

Pr [reject] = Pr [𝜏(𝕏te , 𝕐te |ℎ) > 𝑡𝛼]

→ Φ

(√
𝑛te + 𝑚te

𝜏(𝑃, 𝑄 | ℎ)
𝜎𝑐(ℎ)

−Φ−1(1 − 𝛼)
)
.

(4.4)

Under the null hypothesis 𝑃 = 𝑄 we have 𝜏(𝑃, 𝑄 | ℎ) = 0. Therefore,

Equation 4.4 reduces to Φ
(
−Φ−1(1 − 𝛼)

)
= 1 − Φ

(
Φ−1(1 − 𝛼)

)
= 𝛼.

Hence, the asymptotic test correctly controls Type-I error. On the other

hand, for given 𝑃 ≠ 𝑄, Equation 4.4 corresponds to the test power. Since

Φ is a monotonically increasing function, the test power is maximized by

the witness ℎ that maximizes

SNR(ℎ) = 𝜏(𝑃, 𝑄 | ℎ)
𝜎𝑐(ℎ)

, (4.5)

where SNR is the Signal-to-Noise Ratio. In Section 3.4 we showed that

the optimal witness can be learned when using kernel methods (using

kernel Fisher Discriminant Analysis), but it was left open how this can

be done efficiently with other machine learning frameworks. Such an

SNR is not commonly implemented and also common approaches like

mini-batching are not easily adapted, as an estimate of the SNR based on

a mini batch would be a biased estimate. In the next section, we show

how to circumvent this and optimize a squared loss instead.

4.3. The AutoML two-sample test

4.3.1. Equivalence of squared loss and signal-noise ratio

Since it is known for linear models that minimizing a squared loss over

two labelled samples is equivalent to Fisher Discriminant Analysis [67,

91], we attempt to find a more general relation between the squared loss

and the SNR. Our goal is to use the squared loss as the optimization

objective when learning the witness. Let 𝑐 = 𝑛tr

𝑛tr+𝑚tr

analogously to the

above. Let us mark all data from 𝑃 with a label
′
1
′
and all data from 𝑄

with a label
′
0
′
. We define the following (weighted) squared loss

𝐿𝑃,𝑄,𝑐(ℎ) = (1 − 𝑐)𝔼𝑋∼𝑃
[
(1 − ℎ(𝑋))2

]
+ 𝑐 𝔼𝑌∼𝑄

[
(0 − ℎ(𝑌))2

]
, (4.6)

Note that the weights (1 − 𝑐) and 𝑐 are swapped as it will be more

important to fit the set with fewer samples. Given a function ℎ, notice that

shifting and scaling it leaves the SNR (4.5) invariant. We can then show

the following relationship of its squared loss and its SNR.

Lemma 4.3.1 Let the function ℎ be fixed. We apply the linear transformation
ℎ → 𝛾ℎ + 𝜈 with 𝛾 ∈ ℝ and 𝜈 ∈ ℝ. Let (𝛾∗ , 𝜈∗) be the minimum of the
quadratic function (𝛾, 𝜈) ↦→ 𝐿(𝛾ℎ + 𝜈). Then, the following holds true:

𝐿(𝛾∗ℎ + 𝜈∗) = 𝑐(1 − 𝑐)
1 + SNR(ℎ)2 .

We defer the proof to Appendix C.1.
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Let us assume that the supports of the two distributions 𝑃, 𝑄 overlap.

Hence, for any function the loss 𝐿𝑃,𝑄,𝑐 is strictly positive. Assume that ℎ∗

is the function that minimizes the loss over all possible functions. This

implies that 𝛾∗ = 1 and 𝜈∗ = 0, as otherwise one could still improve the

loss by scaling or shifting. Thus, by Lemma 4.3.1 we have:

Proposition 4.3.2 Assume that ℎ∗ minimizes the squared loss (4.6). Then
ℎ∗ maximizes the signal-to-noise ratio, i.e.,

𝐿(ℎ∗) = min

ℎ
𝐿(ℎ) ⇒ SNR(ℎ∗) = max

ℎ
SNR(ℎ).

Proof. A solution that minimizes the loss has ℎ̄∗
𝑃
≥ ℎ̄∗

𝑄
and hence a non-

negative SNR. Assume there exists ℎ̃ such that SNR(ℎ̃) > SNR(ℎ∗). Then

Lemma 4.3.1 implies the existence of 𝛾̃, 𝜈̃ such that 𝐿(𝛾̃ ℎ̃ + 𝜈̃) < 𝐿(ℎ∗),
which is a contradiction.

We can further derive a closed-form solution for the population optimal

witness:

Proposition 1 (Optimal Witness) Assume 𝑃 and 𝑄 have densities 𝑝(𝑥)
and 𝑞(𝑥). The function minimizing Equation 4.6 is

ℎ∗(𝑥) = (1 − 𝑐)𝑝(𝑥)
(1 − 𝑐)𝑝(𝑥) + 𝑐 𝑞(𝑥) . (4.7)

Proof. We rewrite Equation 4.6 as

𝐿(ℎ) =
∫
X

(1 − 𝑐)𝑝(𝑥)(1 − ℎ(𝑥))2 + 𝑐 𝑞(𝑥)ℎ2(𝑥) 𝑑𝑥.

Minimizing the integrand for each 𝑥 yields the claimed result. A similar

result was obtained by [92].

Remark 4.3.1 Consider the balanced case 𝑐 = 1/2, i.e., equal prior

probabilities of labels ’1’ and ’0’. Then ℎ∗(𝑥) is the posterior probability

that the example 𝑥 came from 𝑃, or, using our defined labels, ℎ∗(𝑥) =
Pr [1|𝑥]. Thus, minimizing a log loss, i.e. the binary cross-entropy,

and using its output probability for class 1 as witness function also

maximizes test power.

Notice that for 𝑐 ≠ 1/2, we need to weight our samples with the inverse

weights, i.e., it is more important to get the less frequent samples right.

Proposition 4.3.2 and Remark 4.3.1 lead to the main conclusion of this

chapter: To find an optimal witness, we can simply optimize the (weighted)
squared error or a cross-entropy loss. This allows us to seamlessly integrate

existing AutoML frameworks, which are designed to solve this task in

an automated fashion, to learn powerful witnesses. In the following we

mainly focus on the squared error.
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1: Asymptotic p-values are strictly speak-

ing only valid for fixed ℎ as the size of

𝕏te , 𝕐te goes to infinity.

4.3.2. Practical implementation

Stage I - optimization. In the first stage, we optimize the witness

function to minimize the MSE via the training data 𝕏tr and 𝕐tr, as

motivated in the previous section. We simply label the data with
′
1
′
or

′
0
′
depending on whether they come from 𝑃 or 𝑄. We can then use any

library that implements an optimization of a squared loss. If 𝑐 ≠ 1/2 we

additionally need to specify weights according to Equation 4.6. Note that,

unsurprisingly, the relevant quantity for the test power is the loss on the

test data and not on the training data. Thus, it is of crucial importance

to find a witness with good generalization performance. To make this

as simple as possible for practitioners, we propose to use an AutoML

framework. This also has the advantage that users can specify runtime

and memory limits, and can explicitly trade computational resources for

better statistical significance.

Although we strongly argue towards using AutoML for the test, this can

of course not circumvent the no-free-lunch theorem. Thus, whenever

users have good intuition about how their two samples might differ, we

strongly encourage taking this into account when designing the test. To

put it to the extreme: If one knows that their (one-dimensional) data

follows a normal distribution and only differs in mean (if at all), one

should use a classic 𝑡-test rather than our approach.

Stage II - testing. Given a witness function ℎ learned as detailed in the

previous section, we compute the test statistic as in Equation 4.2. To com-

pute a p-value or decide whether to reject the null hypothesis 𝑃 = 𝑄, we

can either approximate the asymptotic distribution or use permutations

(Chapter 3). To estimate an asymptotically valid 𝑝-value
1

we first estimate

𝜎2

𝑐 (ℎ) (see Equation 4.3) based on 𝕏te , 𝕐te, which we denote as 𝜎̂2

𝑐 (ℎ). The

𝑝-value is then given as 1 −Φ
(√
𝑛te + 𝑚te𝜏(𝕏te , 𝕐te |ℎ)/𝜎̂𝑐(ℎ)

)
.

For two-sample tests, a cheap alternative that guarantees correct Type-I

error control even at finite sample size is based on permutations as we

described in Section 1.2. In case of witness functions, one can simply

permute the values ℎ(𝑥1), . . . , ℎ(𝑥𝑛te
), ℎ(𝑦1), . . . , ℎ(𝑦𝑚te

) and split them

in two sets of size 𝑛te and 𝑚te, respectively. One then recomputes the test

statistic and estimates the 𝑝-value based on the empirical quantile over

𝐵 ∈ ℕ iterations. We reject whenever 𝑝 ≤ 𝛼. We emphasize that we do

not need to retrain the model, and it even suffices to evaluate the witness

once on all elements of the test sets. We can then directly permute the

witness’ values.

Runtime. The overall runtime of the AutoML based witness test is the

sum of the runtimes of the training phase, the evaluation of the witness,

and the evaluation of the test statistic. We denote the scaling of the former

by 𝑠train[𝑛tr + 𝑚tr], where the square brackets emphasize that this is not

a product. It will depend on the AutoML framework but can usually

be controlled by setting a time limit. Even with a limit of one minute

or less AutoGluon can already train powerful models on large datasets

and even performs model-selection, hyperparameter optimization, and

so on. In contrast, deep kernel-based methods typically train a neural

network with a fixed architecture, which can be expensive. Although
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Figure 4.2.: Testing MNIST against shift-
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ues to the images on the right, allowing

us to interpret the difference.
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neural networks belong to the suite of models AutoGluon trains, they

are optimized for speed and if the runtime limit does not permit training

them another faster model will be selected.

The scaling of evaluating ℎ, denoted by 𝑠eval[𝑛tr+𝑚tr], is usually linear in

the dataset size, but it can be sublinear if the evaluation is parallelized. It

can also be controlled with AutoGluon by using different hyperparameter

presets which might optimize the model selection towards fast inference

times. Compared to that, kernel-based tests have a quadratic runtime.

Furthermore, the test statistic has to be evaluated on the original partition

of the data as well as 𝐵 permutations requiring (𝑛tr + 𝑚tr)(𝐵 + 1) steps.

In practice, this is usually the cheapest step, but it could also be further

reduced by parallelization. The overall runtime is given by

𝑂 (𝑠train[𝑛tr + 𝑚tr] + 𝑠eval[𝑛te + 𝑚te] + (𝑛te + 𝑚te)(𝐵 + 1)) . (4.8)

Generally, training the witness will be the most expensive step of our

test. A main advantage of our test over others is that practitioners can

easily trade-off spending more time and resources on the training phase

to potentially get a better witness and thus to more significant results.

Thanks to AutoML, specifying the time and resources does not require

any detailed knowledge of the underlying algorithm and is hence easily

done.

4.3.3. Interpretability

Suppose our test finds a significant difference between 𝕏 and 𝕐 . An

additional task would be to interpret how the distributions differ. This

is particularly simple in our framework and shown in Figure 4.2: We

can check which examples attained the highest value of the witness to

find which inputs are much more likely under 𝑃 than under 𝑄. On the

other hand, inputs with small witness values are more likely under 𝑄.

Similar procedures were used in [9, 18, 37]. An additional advantage of

using the AutoML framework AutoGluon is that it allows to compute

feature importance values easily. Therefore, for datasets which are hard to

visualize the important features of data points with high or low witness

values can be identified.

4.4. Related work

We already discussed most related work in previous chapters. In Ap-

pendix C.1.2 we show that our results in Subsection 4.3.1 similarly apply

to learning kernels [7, 8]. Concretely, instead of using the signal-to-noise

ration Equation 1.17 one can also use a squared loss or cross-entropy loss

when optimizing the kernel and the asymptotically optimal kernel is

given as

𝑘∗(𝑥, 𝑥′) = ℎ∗(𝑥)ℎ∗(𝑥′), (4.9)

with ℎ∗ given in Equation 4.7.

We shortly also mention two newer works. [65] test with a finite collection

of different kernels and reject if one of these MMD-based tests rejects. To
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ensure correct Type-I error control, they need to aggregate the test and

modify the test thresholds to account for the multiple testing (MMDAgg).

This allows them to use the full dataset, without having to split in train

and test sets, but in turn this only enables using a countable candidate set.

Recently, [93] proposed a general framework that also includes MMD.

We now discuss the relation to classifier two-sample tests (C2ST) in more

detail. They also rely on a data splitting approach and have extensively

been studied in the literature [9, 33, 48, 49, 81, 85]. For simplicity, we

focus on the balanced case. A C2ST trains a classifier with 𝕏tr, labelled

with ’1’ and 𝕐tr labelled with ’0’ and then estimates its classification

accuracy on 𝕏te , 𝕐te. If the estimated accuracy is significantly above

chance (that’s what it would be under the null hypothesis), the test rejects.

Let 𝑓 : X→ {0, 1} denote the binary classifier, then we can write the

accuracy as
1

2
+ 𝜀 and estimate it as

1

2

+ 𝜀̂ =
1

2

(
1

𝑛te

𝑛te∑
𝑖=1

𝑓 (𝑥𝑖) +
1

𝑛te

𝑛te∑
𝑖=1

(1 − 𝑓 (𝑦𝑖))
)

=
1

2

+ 1

2

(
1

𝑛te

𝑛te∑
𝑖=1

𝑓 (𝑥𝑖) −
1

𝑛te

𝑛te∑
𝑖=1

𝑓 (𝑦𝑖)
)

=
1

2

+ 1

2

𝜏(𝕏te , 𝕐te | 𝑓 ).

Thus using the classification accuracy as test statistic is equivalent to

using the mean discrepancy as test statistic with the binary classifier 𝑓

as witness function in Equation 4.2. However, using binary classifiers

is quite limiting and results in quite high variance. Using continuous

witness functions allows for higher power.
2

Some might also speak

of ’classifier’ test when referring to a witness test, but using the term

’witness’ emphasizes that it is continuous.

[83] proposed to use a pretrained classifier to detect label shift. [18]

extended this to detect covariate shift. They investigate different ways

of reducing the dimensionality and then applying different (classical)

hypothesis test on them. While they also consider a basic C2ST, their

best performing method uses the softmax outputs of a pretrained image

classifier. They then run a univariate Kolmogorov-Smirnov test on each

of the output ’probabilities’ separately and correcting via Bonferroni

correction. We refer to this as (univariate) BBSDs (black box shift detection

- soft). For more details on their other methods, we refer the reader to

their work directly.

4.5. Experiments

To show the power of utilizing AutoML we use the same setup for all

datasets we consider. The data is split into two equally sized parts since

this is the standard approach [8, 9, 18]. We label data from 𝑃 with ’1’, data

from 𝑄 with ’0’ and fit a least square regression with AutoGluon’s

TabularPredictor [90]. We use the configuration presets=’best_-

quality’ and by default optimize with a five-minute time limit. For

more details, we refer to the AutoGluon documentation. We run all

experiments with significance level 𝛼 = 5%. Results of correct Type-I

https://auto.gluon.ai/stable/index.html
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Figure 4.3.: Experiments on low dimen-

sional problems. The simple approach

of learning a one-dimensional witness

function with AutoML or optimizing a

witness via kfda and a grid search can

outperform more involved approaches.

Left: Blob, Right: Higgs.

Table 4.1.: Shift detection on MNIST and CIFAR10 based on [18].

(a) Test power across all simulated shifts on MNIST and CIFAR10.

We propose the AutoML methods, and additionally run new base-

lines (MMDAgg, MMD-D).

Test DR

Number of samples from test

10 20 50 100 200 500 1,000 10,000

U
n

i
v
.
t
e
s
t
s

NoRed 0.03 0.15 0.26 0.36 0.41 0.47 0.54 0.72

PCA 0.11 0.15 0.30 0.36 0.41 0.46 0.54 0.63

SRP 0.15 0.15 0.23 0.27 0.34 0.42 0.55 0.68

UAE 0.12 0.16 0.27 0.33 0.41 0.49 0.56 0.77

TAE 0.18 0.23 0.31 0.38 0.43 0.47 0.55 0.69

BBSDs 0.19 0.28 0.47 0.47 0.51 0.65 0.70 0.79

𝜒2
BBSDh 0.03 0.07 0.12 0.22 0.22 0.40 0.46 0.57

Bin Classif 0.01 0.03 0.11 0.21 0.28 0.42 0.51 0.67

M
u

l
t
i
v
.
t
e
s
t
s

NoRed 0.14 0.15 0.22 0.28 0.32 0.44 0.55 –

PCA 0.15 0.18 0.33 0.38 0.40 0.46 0.55 –

SRP 0.12 0.18 0.23 0.31 0.31 0.44 0.54 –

UAE 0.20 0.27 0.40 0.43 0.45 0.53 0.61 –

TAE 0.18 0.26 0.37 0.38 0.45 0.52 0.59 –

BBSDs 0.16 0.20 0.25 0.35 0.35 0.47 0.50 –

AutoML (raw) 0.17 0.24 0.37 0.46 0.50 0.62 0.67 0.87
AutoML (pre) 0.18 0.29 0.42 0.47 0.47 0.64 0.65 0.72

AutoML (class) 0.19 0.19 0.38 0.46 0.52 0.61 0.67 0.87
AutoML (bin) 0.03 0.14 0.31 0.43 0.49 0.51 0.59 0.86

MMDAgg 0.19 0.24 0.31 0.32 0.40 – – –

MMD-D 0.22 0.19 0.25 0.36 0.40 0.48 0.56 0.65

(b) Test power depending on the shift for the AutoML test on the

raw features (raw) vs. the AutoML test on the output of pretrained

features (pre).

Shift Test

Number of samples from test

10 20 50 100 200 500 1,000 10,000

s_gn

raw 0.20 0.27 0.33 0.40 0.43 0.50 0.63 0.80

pre 0.00 0.03 0.10 0.03 0.00 0.10 0.03 0.03

m_gn

raw 0.27 0.23 0.33 0.43 0.43 0.53 0.63 0.83

pre 0.00 0.03 0.17 0.00 0.00 0.13 0.07 0.13

l_gn

raw 0.23 0.33 0.53 0.67 0.70 0.77 1.00 1.00

pre 0.17 0.27 0.50 0.57 0.60 0.73 0.80 0.90

s_img

raw 0.13 0.27 0.30 0.33 0.40 0.50 0.53 0.83

pre 0.20 0.30 0.60 0.57 0.67 0.83 0.83 1.00

m_img

raw 0.03 0.00 0.03 0.00 0.10 0.20 0.30 0.57

pre 0.07 0.03 0.13 0.10 0.13 0.33 0.47 0.60

l_img

raw 0.20 0.07 0.27 0.37 0.40 0.50 0.47 0.83

pre 0.10 0.03 0.07 0.23 0.27 0.57 0.63 0.70

adv

raw 0.07 0.10 0.37 0.37 0.43 0.70 0.67 0.90

pre 0.27 0.33 0.53 0.67 0.60 0.83 0.80 0.87

ko

raw 0.17 0.33 0.37 0.50 0.60 0.83 0.83 0.97

pre 0.27 0.47 0.57 0.77 0.67 0.87 0.87 0.97

m_img raw 0.00 0.03 0.23 0.53 0.53 0.67 0.67 1.00

+ko pre 0.17 0.43 0.50 0.73 0.80 1.00 1.00 1.00

oz raw 0.37 0.77 0.97 1.00 1.00 1.00 1.00 1.00

+m_img pre 0.60 0.93 1.00 1.00 1.00 1.00 1.00 1.00

error control are provided in Appendix C.2. The sample size we report is

always the size of the datasets before splitting, i.e, 𝑛 = 𝑚, since we only

consider balanced problems.

All experiments in this chapter were done on servers having only CPUs

and we spend around 100k CPU hours on doing all the experiments

reported in this chapter, which is mainly because we did various config-

urations and many repetitions for all the test cases we consider. Further

details are given in Appendix C.2.

Blob & Higgs. We first compare the performance on the two low-

dimensional datasets Blob and Higgs that we already used for the

benchmark experiments in Section 3.6. As baselines, we use MMD-D, ME,

SCF, and kfda-witness as reported in Section 3.6. We report the results in

Figure 4.3, where ±1 standard error are shown as shaded regions. Since

we estimated the performance over 500 runs, we obtain a smaller error

than the other methods. We observe that both approaches based on the

mean difference of a witness function (kfda-witness, AutoML) perform

competitively. AutoML performs best on Blob, and kfda-witness is best

on Higgs.
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Detecting distribution shift. [18] introduced a large benchmark for

the detection of distribution shifts. We repeat their experiments by

considering the datasets MNIST [3] and CIFAR10 [94]. We consider

sample sizes 𝑛, 𝑚 ∈ {10, 20, 50, 100, 200, 500, 1000, 10000}. Each shift

is applied on a fraction 𝛿 ∈ {0.1, 0.5, 1.0} of the second sample in

different runs. We consider the following shifts: Adversarial (adv): Turn

some images into adversarial examples via FGSM [95]; Knock-out (ko):
Remove samples from class 0; Gaussian noise (gn): Add gaussian noise

to images with standard deviation 𝜎 ∈ {1, 10, 100} (denoted s_gn, m_gn,

and l_gn); Image (img): Natural shifts to images through combinations

of random rotations, (𝑥, 𝑦)-axis-translation, as well as zoom-in with

different strength (denoted s_img, m_img, and l_img); Image + knock-out
(m_img+ko): Fixed medium image shift and a variable knock-out shift;

Only-zero + image (oz+m_img): Only images from class 0 in combination

with a variable medium image shift. More details are given in [18]. In

total, we run 33 different shift experiments on MNIST and CIFAR10 each

and for each sample size. Every setting is repeated for 5 times.

The methods of [18] perform a dimensionality reduction by using the

whole training set (50.000 images for MNIST, 40.000 images for

10). The actual tests compare examples from the validation set (10.000

images) to examples from the shifted test set (10.000 images). They also

consider a C2ST trained on the raw features, i.e. without seeing the whole

training set.

We add four univariate AutoML witness tests: a) AutoML (raw) trains

a regression model on the raw data with MSE, which is our default, b)

AutoML (pre) uses the same setting, but trains on the softmax output

of a pretrained classifier for MNIST/CIFAR10 respectively, which is the

same representation as BBSDs used, c) AutoML (class) trains a classifier

and uses its predicted probabilities of class ’1’ as witness function, d)

AutoML (bin) uses the same as c) but only considers binary outputs.

As additional baselines we also, for the first time, run the shift detection

pipeline with MMD-D [8] and MMDAgg [65], where we use the settings

recommend in their paper. For MMD-D we use the exact architectures

and hyperparameters that [8] used for their MNIST and CIFAR10 Tasks.

For MMDAgg, we use Gaussian kernels with bandwidth in {2𝑐𝜆med |
𝑐 ∈ {10, 11, . . . , 19, 20}, as recommended for MNIST [65, p.26]. With the

implementation of MMDAgg, we received a memory error for sample

size larger than 200, so results are only reported up to 200.

Our findings are reported in Table 4.1. From Table 4.1a we see that Au-

toML (raw) achieves overall very competitive performance in detecting

the shifts, especially for large sample sizes. Moreover, we see that Au-

toML (raw) and AutoML (class) achieve comparable performance which

confirms our findings of Remark 4.3.1. Thresholding the classification

probabilities to binary outputs always harms the performance, see Au-

toML (class) vs. AutoML (bin). We can also compare AutoML (bin) with

’classif’, as reported by [18]. While both use binary classifiers for the

testing, ’classif’ used a fixed architecture across all shifts. This illustrates

the power of using AutoML, as we find significantly better performance

across all sample sizes. If instead of training on the raw features we start

from the ten dimensional pretrained features, i.e. AutoML (pre), the
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performance is improved when the sample size is small. For large sample

sizes, instead working with the raw features gives higher power.

We also see that the AutoML test outperforms MMDAgg and MMD-D

except for very small sample size.

In Table 4.1b we report the test power for comparing AutoML (raw) with

AutoML (pre) for the different shifts. Using the pretrained probabilities

of the softmax output, it is extremely hard to detect Gaussian noise, while

AutoML (raw) does a fairly good job here. This is consistent with the

findings of [18, Table 1(b)]. Apparently, the output probabilities of the

pretrained models are quite invariant under small and medium noise on

the inputs. For the other shifts, such as knock-outs, using the pretrained

features improves performance, particularly at small sample sizes.

The code to reproduce our experiments of this chapter is provided at:

github.com/jmkuebler/autoML-TST-paper.

4.6. Discussion

Bias-variance tradeoff. Our results on the distribution shift benchmark

indicate a bias-variance tradeoff when optimizing the witness in stage-

I. Learning the witness function over a ten dimensional pretrained

representation gives good test power for some shifts even for small

sample sizes, however, at the cost of being almost unable to detect other

shifts, such as local Gaussian noise. Thus, learning on pretrained features

introduces a strong bias. On the other hand, learning directly on the raw

features introduces little bias, even more so since we used AutoGluon’s

TabularPredictor, which is not specifically designed for images. This

has the effect that on small sample sizes the test power is reduced, but

when large data is available, we observe good test power across almost

all shifts. For practical applications this implies that using models with

the right bias when learning hypothesis tests is just as important as in

any other supervised learning setting.

Stand on the shoulders of giants. As we see from the Blob and Higgs

experiments the conceptually simple witness two-sample test can outper-

form more sophisticated test statistics like the deep MMD. This is possible

through both the use of cross-validation (kfda-witness) or a full AutoML

pipeline. In the distribution shift benchmark, we saw much better perfor-

mance even when comparing a binary classifier (AutoML (bin)) with a

classifier having a prespecified architecture (classif). Furthermore, using

an AutoML framework allows practitioners to stand on the shoulders of

giants and removes the need for specialized expertise. Instead, they can

directly control how much time and resources to spend on optimizing

the witness, which can lead to improved significance and/or inference

time.

Which test to use? Obviously, there is no general answer to this question,

and we are not claiming that our AutoML two-sample test should always

be used. In special settings, a simple parametric test would perform

much better than our AutoML witness test. Similarly, using MMD with a

https://github.com/jmkuebler/autoML-TST-paper
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kernel can be the right choice in some settings. Nevertheless, a few points

should be considered. For example, we demonstrate that a test using

binary outputs of a classifier underperforms a test using the predicted

probabilities of the same classifier. Therefore, we do recommend choosing

the latter instead of the former. Furthermore, when using data splitting

we should ensure that in the first stage we are actually optimizing the

test power or a directly related proxy loss. To this end, it is important

to use techniques that ensure good predictive performance and prevent

overfitting. This brings us to the last point: We should also consider the

resources available, both computational and human, that are relevant

when implementing the test. That is, a testing framework should be

easy to apply by a large group of users and should be adaptable to the

computational resources the user is willed to spend on the test. The

AutoML witness test can tick off all boxes. It learns a continuous witness

function to optimize test power, leverages well-engineered toolboxes

to maximize predictive performance, and requires little engineering

expertise to apply and gives easy control over the computational resources

used to learn the test, by setting a time limit and providing the available

hardware.

4.7. Chapter conclusion

We showed that optimizing a squared loss or cross-entropy loss leads

to a witness function that maximizes test power, when using the mean

discrepancy of the witness as a test statistic. This allows us to harness

the advances in Automated Machine Learning, where regression and

classification are the standard tasks, for two-sample testing. Although less

studied, the use of a well-engineered toolbox to maximize the predictive

performance of the learned function is just as important for hypothesis

testing as it is for supervised learning tasks. The result is a testing pipeline

that is theoretically justified, leads to competitive performance, and is

simple to apply in various settings. Our work thus constitutes a step

towards fully automated statistical analysis of complex data [96].
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Quantum mean embedding of
probability distributions 5.

In Equation 1.5 we introduced the kernel mean embedding

of probability distributions. As we discussed it is used in

machine learning as an injective mapping from distributions

to functions in an infinite dimensional Hilbert space. It al-

lows us, for example, to define a distance measure between

probability distributions, called maximum mean discrepancy

(MMD). In this chapter we propose to represent probabil-

ity distributions in a pure quantum state of a system that

is described by an infinite dimensional Hilbert space and

prove that the representation is unique if the corresponding

kernel function is 𝑐0-universal. This enables us to work with

an explicit representation of the mean embedding, whereas

classically one can only work implicitly with an infinite di-

mensional Hilbert space through the use of the kernel trick.

We show how this explicit representation can speed up meth-

ods that rely on inner products of mean embeddings and

discuss the theoretical and experimental challenges that need

to be solved in order to achieve these speedups.

5.1. Introduction

In machine learning, kernel methods are used to implicitly evaluate inner

products in high dimensional feature spaces. Popular linear algorithms

such as the support vector machine [97, 98] or principal component

analysis [99] can be expressed solely in terms of inner products between

data points. These methods become more expressive if the data is first

mapped onto a high dimensional feature space. Instead of evaluating the

inner product explicitly in the feature space, whose cost scales linearly

with the feature space dimension, a more efficient evaluation can be

done implicitly in the original space using a positive definite kernel

function. This is known as the kernel trick [4]. Since it does not require an

explicit feature map, the kernel trick even allows us to work with infinite

dimensional feature spaces, e.g., using a Gaussian kernel. The downside

of most kernel-based methods is that they scale polynomially with the

size of the data sets. This problem has been tackled in the realm of

quantum computation and exponential speedups have been conjectured

[100, 101]. However, such speedups are still highly controversial [12, 102,

103].

Only recently has the cost of a single kernel evaluation been the target

of quantum computing research [104–106]. Speedups might be possible,

since the cost of explicitly evaluating inner products of quantum states

only grows logarithmically with the system size [107], as opposed to

linear on a classical computer. Schuld and Killoran further conjecture

the usage of continuous variable quantum systems for working with

classically intractable, i.e., hard to compute, kernels in infinite dimensions

[105], but it is unclear whether problems exist for which such kernels

can lead to an improvement [12]. Furthermore, the recent suggestions do
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not address the polynomial scaling of kernel methods with the sample

size, leaving the application of quantum computing in large-scale kernel

methods a challenging problem.

The idea of explicitly representing an infinite dimensional feature vector

as a quantum state opens a way to tackle this problem. While it is

impossible classically to sum two infinite dimensional vectors, a quantum

mechanical superposition of two states can be constructed explicitly, even

for infinite dimensional systems, see, e.g., [108]. On the other hand, the
evaluation of inner products in an infinite dimensional quantum Hilbert space
is independent of the number of states in a superposition. We identify methods

involving the kernel mean embedding [19, 28, 109] as a branch of machine

learning techniques that suffer from the fact that on a classical computer

the cost of the evaluation of inner products of sums of feature maps is

not independent of the number of data points involved.

The contribution of this chapter is to adapt the notion of kernel mean

embedding to quantum mechanics, point out how quantum mechanics

can lead to speedups, and make transparent what the challenges are in

order to realize this in an experiment. The chapter is organized as follows.

We start by introducing the kernel mean embedding from a classical

perspective, point out the main problem it has in big data applications,

and present its relevance in current machine learning research through

some real-world applications. We then define the quantum mean embedding
as a modified version of the kernel mean embedding, which makes it

suitable for investigation in the context of quantum computation, and

show that this modification still allows for the usage in conventional

applications. We present how the quantum mean embedding can be

used, in principle, to overcome the problems faced classically. Since this

cannot be done on nowadays hardware, we continue with a section on

the challenges left. Finally, we sum up with a discussion of our results.

5.2. Kernel mean embedding

Let Xbe a locally compact and Hausdorff space. A function 𝑘 : X×X→
ℂ is called a positive definite kernel function, or kernel function for

brevity, if for all 𝑛 ∈ ℕ, 𝑥1 , ..., 𝑥𝑛 ∈ X, and 𝑐1 , ..., 𝑐𝑛 ∈ ℂ, it holds that∑𝑛
𝑖,𝑗=1

𝑐∗
𝑖
𝑐 𝑗 𝑘(𝑥𝑖 , 𝑥 𝑗) ≥ 0 [4]. For every kernel function there exists a unique

reproducing kernel Hilbert space (RKHS) H𝑘 such that 𝑘(·, 𝑥) ∈ H𝑘 for

all 𝑥 ∈ X and the reproducing property 𝑓 (𝑥) = ⟨ 𝑓 , 𝑘(·, 𝑥)⟩H𝑘
holds for

all 𝑓 ∈ H𝑘 and 𝑥 ∈ X. We call the mapping 𝜙 : X → H𝑘 given by

𝜙(𝑥) := 𝑘(·, 𝑥) the canonical feature map of 𝑘, i.e., 𝑘(𝑥, 𝑦) = ⟨𝜙(𝑦), 𝜙(𝑥)⟩
[110].

Let 𝑃 be a probability measure over X. The kernel mean embedding

(KME) of 𝑃 is defined as [28, 109]

𝜇𝑃 :=

∫
X

𝑘(·, 𝑥)d𝑃(𝑥) =
∫
X

𝜙(𝑥)d𝑃(𝑥). (5.1)

The embedding 𝜇𝑃 exists and is a function in H𝑘 if 𝔼𝑋∼𝑃 [𝑘(𝑋, 𝑋)] < ∞
[28]. In practice we do not have access to the true probability distribution

𝑃. Instead, we observe a finite i.i.d. sample 𝕏 = {𝑥1 , ..., 𝑥𝑛} drawn from
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𝑃. Based on the sample 𝕏, an empirical estimate of 𝜇𝑃 is given by the

KME of the empirical distribution 𝑃̂ = 1

𝑛

∑𝑛
𝑖=1

𝛿𝑥𝑖 :

𝜇𝕏 :=
1

𝑛

𝑛∑
𝑖=1

𝜙(𝑥𝑖), (5.2)

which converges to the true embedding of 𝑃 in the Hilbert space metric

at a rate of 𝑛−
1

2 [19].

The kernel function 𝑘 is said to be characteristic if the map 𝜇 : 𝑃 ↦→ 𝜇𝑃
is injective [31, 45]. In other words, working with a characteristic kernel

enables us to represent (all properties of) a probability distribution

by a function in the RKHS, which is why the notion of characteristic

kernels plays an important role in kernel methods [111]. The notion of

characteristic kernels is closely related to the notion of universal kernels

[112]. Here we call a kernel universal if the corresponding RKHS is dense

in the space of continuous functions over X that vanish at infinity, which

corresponds to 𝑐0-universality [111]. For 𝑐0-universal kernels the KME is

injective even for finite signed measures [111]. Popular universal kernels

include the Gaussian kernel 𝑘(𝑥, 𝑦) = exp(−∥𝑥− 𝑦∥2/2𝜎2) and Laplacian

kernel 𝑘(𝑥, 𝑦) = exp(−∥𝑥 − 𝑦∥1/𝜎), where 𝜎 is a bandwidth parameter

[45, 113].

The expressiveness of characteristic kernels comes at a price. Since there

exist distributions with infinite moments, the corresponding RKHS must

have infinite dimensions to ensure no information loss. Consequently,

it is impossible for a classical computer to represent and manipulate

𝜇𝕏 directly. However, if we only care about inner products of mean

embeddings, which is usually the case in most algorithms, we can

resort to the “kernel trick” and replace inner products with kernel

evaluations [4]. That is, given i.i.d. samples 𝕏 = {𝑥1 , . . . , 𝑥𝑛} from 𝑃 and

𝕐 = {𝑦1 , . . . , 𝑦𝑛} from 𝑄 1
, we can evaluate

⟨𝜇𝕏 , 𝜇𝕐 ⟩ =
1

𝑛2

𝑛∑
𝑖 , 𝑗=1

⟨𝜙(𝑥𝑖), 𝜙(𝑦 𝑗)⟩ =
1

𝑛2

𝑛∑
𝑖 , 𝑗=1

𝑘(𝑥𝑖 , 𝑦𝑗)

=: 𝐾(𝕏, 𝕐 ). (5.3)

The inevitable drawback of this trick is that algorithms based on 𝐾(𝕏, 𝕐 )
have a runtime complexity that scales at least quadratically with the

number of data points 𝑛.

In the following we present essential applications of the KME, which

suffer from the above limitation.

1. Learning on probability distributions: Classical machine learning

algorithms were originally developed for training data consisting

of points in some vector space. In several domains such as astronomy

and high-energy physics, however, data are represented naturally

as probability distributions, e.g., clusters of galaxies and groups of

collision events. The KME (5.1) allows us to generalize algorithms

to the space of probability distributions [114–117] through the

distributional kernel function

𝐾(𝑃, 𝑄) = ⟨𝜇𝑃 , 𝜇𝑄⟩H𝑘
=

∬
X

𝑘(𝑥, 𝑦)d𝑃(𝑥)d𝑄(𝑦). (5.4)
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Given i.i.d samples 𝕏 = {𝑥1 , . . . , 𝑥𝑛} from 𝑃 and 𝕐 = {𝑦1 , . . . , 𝑦𝑛}
from 𝑄, 𝐾(𝑃, 𝑄) can be approximated by

𝐾(𝑃, 𝑄) ≈ 1

𝑛2

𝑛∑
𝑖 , 𝑗=1

𝑘(𝑥𝑖 , 𝑦𝑗) = 𝐾(𝕏, 𝕐 ). (5.5)

The main drawback of (5.5) is that given samples 𝕏1 , . . . ,𝕏𝑁 from

𝑁 input distributions, each of size 𝑛, the runtime complexity of

evaluating the kernels 𝐾(𝕏𝑖 ,𝕏𝑗) for all 𝑖 , 𝑗 = 1, . . . , 𝑁 is 𝑂(𝑁2𝑛2).
This is prohibitive for many real-world applications of learning

problems on probability distributions.

2. Maximum mean discrepancy (MMD): The MMD is a discrepancy

measure between any two distributions 𝑃 and 𝑄 [5, 27] that we

extensively discussed in the previous chapters. Recall that is given

by the distance of the corresponding mean embeddings of the

distributions [5, Lemma 4] and can be expressed solely in terms of

inner products of mean embeddings (assuming a real kernel):

MMD
2(𝑃, 𝑄 | H𝑘) = ∥𝜇𝑃 − 𝜇𝑄 ∥2

= ⟨𝜇𝑃 , 𝜇𝑃⟩ − 2 ⟨𝜇𝑃 , 𝜇𝑄⟩ + ⟨𝜇𝑄 , 𝜇𝑄⟩ .
(5.6)

For characteristic kernels, MMD
2(𝑃, 𝑄 | H𝑘) = 0 ⇔ 𝑃 = 𝑄 [5,

Theorem 5]. Given i.i.d. samples 𝕏 = {𝑥1 , ..., 𝑥𝑛} drawn from 𝑃

and 𝕐 = {𝑦1 , ..., 𝑦𝑛} drawn from 𝑄, it is possible to estimate the

MMD by evaluating (5.6) with the embeddings 𝜇𝕏 and 𝜇𝕐 [5,

Eq. (5)]:

MMD
2(𝕏, 𝕐 | H𝑘) = ∥𝜇𝕏 − 𝜇𝕐 ∥2

= 𝐾(𝕏,𝕏) − 2𝐾(𝕏, 𝕐 ) + 𝐾(𝕐 , 𝕐 ),
(5.7)

whose cost is determined by that of evaluating 𝐾(𝕏, 𝕐 ), 𝐾(𝕏, 𝕐 ),
and 𝐾(𝕐 , 𝕐 ).

3. Deep learning: The applications of KMEs in deep learning have

gained a lot of attention in the past few years. Notably, the MMD

has been used as an objective function for training deep generative

models [118–120]. For a deep generative model 𝐺𝜃 parametrized

by a parameter vector 𝜃, the idea is to learn 𝜃 by minimizing the

MMD
2(𝑃, 𝑄𝜃 | H𝑘), where 𝑃 is the data distribution and 𝑄𝜃 is

the distribution induced by the generative model 𝐺𝜃. Again, the

downside of the MMD in this area is its computational cost as we

usually have to deal with huge amount of data [121].

All of the above applications require the estimation of terms like 𝐾(𝕏, 𝕐 ),
which scale quadratically with the sample size 𝑛, and hence become pro-

hibitive for large 𝑛. To enable large-scale learning with KMEs, a common

approach is to approximate 𝜇𝕏 by a finite dimensional representation,

e.g., using random Fourier features [122] or the Nyström method [71],

after which it can be manipulated directly in a classical computer without

resorting to the kernel trick. For a 𝑑 dimensional approximation, the

cost drops to 𝑂(𝑛 + 𝑑), which is linear in 𝑛. The downside is that the

embedding defined in terms of this representation can no longer be

injective, which is an essential requirement in most applications of the

KME.

Recent work [105, 106] showed how one can in principle evaluate a 𝑑
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supremacy: quantum advantage and training
of an Ising Born machine
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2: In order to emphasize that we deal

with a quantum state, we shall abuse

notation by denoting the image of a point

𝑥 under the mapping 𝜑 as |𝜑(𝑥)⟩ instead

of 𝜑(𝑥). Mathematically |𝜑(𝑥)⟩ denotes

the same function in Has 𝜑(𝑥)
[105]: Schuld et al. (2019), Quantum Ma-
chine Learning in Feature Hilbert Spaces;
[106]: Havlicek et al. (2019), Supervised
learning with quantum-enhanced feature
spaces
[125]: Nielsen et al. (2010), Quantum Com-
putation and Quantum Information

dimensional approximation of the kernel function using only 𝑂(log 𝑑)
qubits. Furthermore, [123] has investigated quantum kernels in the

context of the MMD. [124] formulates quantum graphical models in

terms of the kernel mean embedding and uses a density matrix as a mean

map. On the contrary, we focus on the quadratic scaling when using an

infinite dimensional feature map which has not been addressed before

in the quantum community.

5.3. Quantum mean embedding

Let Hbe the Hilbert space of a quantum system and 𝜑 : X→ H, 𝑥 ↦→
|𝜑(𝑥)⟩ a quantum feature map that assigns a quantum state |𝜑(𝑥)⟩, i.e., a

normalized function in H, to each point in the input domain 𝑥 ∈ X.
2

This

defines a kernel 𝑘(𝑥, 𝑥′) = ⟨𝜑(𝑥)|𝜑(𝑥′)⟩ [105, 106] with the constraint

𝑘(𝑥, 𝑥) = 1 for all 𝑥 ∈ X, due to the normalization of quantum states

[125].

Let 𝑃 be a probability distribution over the input domain. We define the

quantum mean embedding (QME)

|𝜈𝑃⟩ :=
1

N𝑃

∫
X

|𝜑(𝑥)⟩ d𝑃(𝑥), (5.8)

where the normalization N𝑃 ensures the physicality of the state and is

given by the norm of the corresponding KME (5.1), i.e., N𝑃 := ∥𝜇𝑃 ∥H𝑘
.

The QME exists for all probability distributions due to the constraint

𝑘(𝑥, 𝑥) = 1. A subtle difference between the KME and the QME are the spaces
in which the embeddings live. While the KME is a function in the RKHS H𝑘

and uniquely defined by the kernel 𝑘, the QME depends on the quantum

systems Hilbert space H and the choice of the feature map 𝜑. Even

though the embeddings live in different spaces, for any two probability

distributions 𝑃 and 𝑄 we have

⟨𝜇ℙ , 𝜇𝑄⟩H𝑘
= N𝑃 ·N𝑄 ⟨𝜈𝑃 |𝜈𝑄⟩H . (5.9)

That is, their inner products have a fixed relation independent of H.

Hence, the important difference is that the QME maps every probability

distribution on the unit sphere in a Hilbert space, whereas the KME does

not enforce this, see Figure 5.1. In the following theorem we show that if

the kernel is universal we do not lose information about a probability

measure when using the QME.

Theorem 5.3.1 Injectivity of the QME
Let 𝜑 : X → H, 𝑥 ↦→ |𝜑(𝑥)⟩ be a mapping such that 𝑘(𝑥, 𝑦) =

⟨𝜑(𝑥)|𝜑(𝑦)⟩ is a universal kernel for the space of continuous functions
over X that converge to zero at infinity C0(X). Let P be the space of Borel
probability measures over the measurable space (X,A), where Adenotes the
Borel sigma algebra. For a universal kernel 𝑘, the QME (5.8), is injective over
P, i.e., |𝜈𝑃⟩ = |𝜈𝑄⟩ ⇔ 𝑃 = 𝑄 for any 𝑃, 𝑄 ∈ P.

The proof is included in Appendix D.1. For a finite sample 𝕏 we define
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Figure 5.1.: Schematic comparison of the

classical KME and the QME: The KME

maps probability distributions 𝑃 onto

functions in the RKHS H𝑘 . The QME ad-

ditionally enforces that the mapping is

onto the unit ball (denoted by the circle)

in the RKHS. Theorem 5.3.1 shows the in-

jectivity of the QME for universal kernels.

For visualization we choose H= H𝑘 .

an empirical QME as

|𝜈𝕏⟩ :=
1

N𝕏

1

𝑛

𝑛∑
𝑖=1

|𝜑(𝑥𝑖)⟩ , (5.10)

with the normalization constant

N𝕏 = ∥𝜇𝕏∥H𝑘
=

√√
1

𝑛2

𝑛∑
𝑖 , 𝑗=1

𝑘(𝑥𝑖 , 𝑥 𝑗). (5.11)

As discussed before, for infinite dimensional feature maps, the KME

cannot be described explicitly and only used via inner products. The

advantage of the QME is that it is possible, in principle, to explicitly create

|𝜈𝕏⟩ in the lab, even for infinite dimensional cases. Here it is important

that an experimenter only needs to create a state that is proportional to∑𝑛
𝑖=1
|𝜑(𝑥𝑖)⟩. The prefactor (5.11) is enforced by the laws of physics and is

not required for the state preparation. Given this explicit representation,

it allows us to decouple the cost of the inner product evaluation from the

sample size 𝑛, see Figure 5.2.

Conjecture 5.3.2 Suppose we are given a routine that prepares states of the
form Equation 5.10 with cost 𝑂(𝑛) for a feature map 𝜑. In addition we are
given a routine that can evaluate inner products of arbitrary states in H in
constant time. Then for two samples 𝕏 = {𝑥1 , ..., 𝑥𝑛} and 𝕐 = {𝑦1 , ..., 𝑦𝑛}
one can evaluate𝐾(𝕏, 𝕐 ), defined in (5.3), with cost𝑂(𝑛), whereas a classical
computer scales with 𝑂(𝑛2).

Proof. By assumption we can prepare |𝜈𝕏⟩ and |𝜈𝕐 ⟩ with linear cost

in 𝑛. Furthermore we can evaluate ⟨𝜈𝕏 |𝜈𝕐 ⟩ in constant time, given the

individual states. Together the cost of evaluating the term ⟨𝜈𝕏 |𝜈𝕐 ⟩ scales

at most with 𝑂(𝑛). The normalizations N𝕏 and N𝕐 can also be estimated

with cost 𝑂(𝑛), see Section 5.4. Using relation (5.9), we obtain

𝐾(𝕏, 𝕐 ) = ⟨𝜇𝕏 , 𝜇𝕐 ⟩H𝑘
= N𝕏N𝕐 ⟨𝜈𝕏 |𝜈𝕐 ⟩H . (5.12)

Compared to the classical KME, this conjecture implies that under the

stated assumptions it is possible to simultaneously reduce the cost of

the QME while preserving its expressibility guarantee given in Theo-

rem 5.3.1.
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Given an efficient evaluation of 𝐾(𝕏, 𝕐 ), it is possible to speed up the

methods presented earlier, which rely on inner products of the KMEs. In

the next section we discuss the assumptions of Conjecture 5.3.2. Apart

from using the QME to speed up the evaluation of inner products of

the KMEs, it follows from the proof of Theorem 5.3.1 that the QME

is also important on its own, as it can uniquely represent probability

distributions. However, it is unclear to what extend the applications of

the KME could be rephrased solely in terms of inner products of the QME

instead of taking the detour over 𝐾(𝕏, 𝕐 ), where we need to determine

the normalizations.

5.4. Challenges

In order to harvest a potential quantum speedup it is necessary to create

the QME efficiently, i.e., with resources and time linear in the sample

size. We phrase this as the first challenge:

Given a quantum feature map 𝜑, find an experimental strategy, de-
noted𝐸𝜑 , such that for an arbitrary input sample𝕏 = {𝑥1 , ..., 𝑥𝑛},
with 𝑛 ∈ ℕ, it creates |𝜈𝕏⟩, using resources that scale at most
linear in 𝑛.

In case of coherent states as feature map (see Appendix D.2), superpo-

sitions similar to |𝜈𝕏⟩ have already been experimentally realized for

specific cases and are known as “cat-states” [108, 126, 127]. However, it

is an open question how these approaches scale, even theoretically, for

superposing a large number of states, see [128] for an overview on similar

experimental approaches. In general, the rigorous study of resources re-

quired to construct superpositions of quantum states and the connections

to entanglement are subject of current research [129, 130]. Particularly for

the case of superpositions of nonorthogonal states, as it is the case for our

proposed embedding, the theory becomes more involved [130, III.K.4].

Note that we explicitly allow for an experimental setup 𝐸𝜑 that is specific

to the given quantum feature map 𝜑, i.e., a specific kernel function. This

is necessary because a universal machine that builds a superposition of

completely arbitrary and unknown quantum states cannot exist [131, 132].

Furthermore, we emphasize that this work does not require a qRAM

[133].

Given the QMEs, at the core of our approach lies the estimation of the

inner product of two arbitrary quantum states in H. Formally, this can be

done by using the swap test routine of [134], see right side of Figure 5.2.

The swap test works independently of the input states, which for our

purpose we denote by |𝜈𝕏⟩ , |𝜈𝕐 ⟩ ∈ H. These inputs are each in one

register and a single ancilla qubit in the state |0⟩ in an additional register.

The test itself consists of a Hadamard transformation 𝐻 on the qubit,

followed by a controlled swap of the two states conditioned on the state

of the qubit, and another Hadamard transformation on the qubit. This

circuit maps the initial state |0⟩ |𝜈𝕏⟩ |𝜈𝕐 ⟩ onto

|0⟩ (|𝜈𝕐 ⟩ |𝜈𝕏⟩ + |𝜈𝕏⟩ |𝜈𝕐 ⟩) + |1⟩ (|𝜈𝕐 ⟩ |𝜈𝕏⟩ − |𝜈𝕏⟩ |𝜈𝕐 ⟩)
2

,

see [134, Eq. (4)]. At the end, the qubit is measured in the computational
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Creation of QME Swap test

|0⟩ H H

𝕏 𝐸𝜑 |𝜈𝕏⟩

𝕐 𝐸𝜑 |𝜈𝕐 ⟩

Figure 5.2.: The quantum approach sep-

arates the creation of the QME from the

inner product estimation. It requires two

subroutines. First, on the left, an exper-

imental setup 𝐸𝜑 that creates the QME

efficiently. Second, on the right, a circuit

to estimate inner products of arbitrary

states in H whose runtime is indepen-

dent of the states. Here we chose the

swap test, which uses an ancillary qubit.

This approach detaches the estimation of

the inner product from the sample size.

[105]: Schuld et al. (2019), Quantum Ma-
chine Learning in Feature Hilbert Spaces

[107]: Cincio et al. (2018), Learning the
quantum algorithm for state overlap

[135]: Filip (2002), Overlap and
entanglement-witness measurements; [136]:

Pregnell (2006), Measuring Nonlinear
Functionals of Quantum Harmonic
Oscillator States; [137]: Jeong et al.

(2014), Detecting the degree of macroscopic
quantumness using an overlap measurement

basis. This results in outcome 0 with probability 𝑝0 = (1+ | ⟨𝜈𝕏 |𝜈𝕐 ⟩ |2)/2
and outcome 1 with probability 𝑝1 = 1 − 𝑝0. Repetitive application of

this routine allows for an estimation of 𝑝0 and 𝑝1 from which one can

infer | ⟨𝜈𝕏 |𝜈𝕐 ⟩ |2 = 2𝑝0 − 1. When using a Gaussian kernel, we know a

priori that ⟨𝜈𝕏 |𝜈𝕐 ⟩ > 0, thus ⟨𝜈𝕏 |𝜈𝕐 ⟩ =
√

2𝑝0 − 1. If we cannot guarantee

the positivity of ⟨𝜈𝕏 |𝜈𝕐 ⟩, we need a phase sensitive estimation of inner

products, as discussed in the supplemental material of [105]. Crucially,

the swap test works independently of the size of the samples 𝕏 and 𝕐 .

For finite dimensional systems, [107] recently proposed an implementa-

tion that scales logarithmically with the dimension of the Hilbert space.

But this approach does not translate to systems of infinite dimension. The

infinite dimensional case has been studied in [135–137]. However, they

do not give an explicit solution and we are not aware of any experimental

realization of a universal swap test for the infinite dimensional case. This

marks the second challenge arising from this chapter. At the stage of

preparing superpositions in the form of Equation 5.10 on a quantum

device, it is not necessary to know the value of the normalization N𝕏.

However, if the goal is to estimate 𝐾(𝕏, 𝕐 )with the help of a quantum

device, then knowledge of the normalizations is needed, see (5.12). The

naive approach, i.e., using its definition (5.11), takes 𝑂(𝑛2) operations

and would prohibit the polynomial advantage. In Appendix D.3 we

show how one can estimate N𝕏. The suggested strategy only relies on the

previous two challenges and hence does not pose a difficulty by itself.

5.5. Chapter conclusion

In this chapter, we adapted the concept of kernel mean embeddings to

quantum mechanics, by defining the quantum mean embedding. While

the kernel mean embedding maps a probability distribution to a function

in a reproducing kernel Hilbert space, the quantum mean embedding

can only map onto the unit sphere of a Hilbert space, a necessity that

arises due to the normalization of quantum states. Despite this additional

constraint, we showed that the quantum mean embedding is still injective

if the induced kernel is 𝑐0-universal. Since the quantum mean embedding

can, in principle, be created in the lab, it allows for a polynomial speedup

when computing inner products between mean embeddings of empirical

distributions. We highlighted the relevance of this task by describing use

cases in recent machine learning applications. We made explicit which

requirements need to be fulfilled by the quantum hardware in order to

harvest the polynomial advantage.



5. Quantum mean embedding of probability distributions 66

These insights open multiple paths for further research. On the quantum

side, the experimental creation of superpositions of a large number

of states and the estimation of inner products thereof. Furthermore,

the quantum mean embedding is a new way of encoding probability

distributions in quantum states, which allows us to use the results known

from the kernel theory. For machine learning research, it is an open

question what the possible applications of the embedding of probability

distributions onto the unit sphere in the reproducing kernel Hilbert space

could be.
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Kernel conditional moment test 6.
In this chapter we leave the two-sample problem behind

and propose a new family of specification tests called kernel

conditional moment (KCM) tests. Our tests are built on a

novel representation of conditional moment restrictions in a

reproducing kernel Hilbert space (RKHS) called conditional

moment embedding (CMME). After transforming the condi-

tional moment restrictions into a continuum of unconditional

counterparts, the test statistic is defined as the maximum

moment restriction (MMR) within the unit ball of the RKHS.

We show that the MMR not only fully characterizes the origi-

nal conditional moment restrictions, leading to consistency

in both hypothesis testing and parameter estimation, but

also has an analytic expression that is easy to compute as

well as closed-form asymptotic distributions. Our empirical

studies show that the KCM test has a promising finite-sample

performance compared to existing tests.

6.1. Introduction

Many problems in causal inference, economics, and finance are often

formulated as a conditional moment restriction (CMR): for correctly

specified models, the conditional mean of certain functions of data is

almost surely equal to zero [138, 139]. Rational expectation models—

widely used in many fields of macroeconomics—specify how economic

agents exploit available information to form their expectations in terms of

conditional moments [140]. Recent advances in causal machine learning

also rely on the CMR including a generalized random forest (GRF) [141],

orthogonal random forest (ORF) [142], double machine learning (DML)

[143], and nonparametric instrumental variable regression [144, 145]

among others; see also [146–148] and references therein.

Checking the validity of these moment restrictions is the first and foremost

step to ensure that a model is correctly specified which constitutes

a fundamental assumption for its estimation and inference. A model

misspecification often creates biases to parameter estimates, inconsistency

of standard errors, and invalid asymptotic distributions that hinder our

subsequent inference based on the model. An overidentifying restriction

test in the generalized method of moments (GMM) framework is one of

the standard approaches to test a finite number of unconditional moment

conditions [149, 150]. The 𝐽-test is an example of such tests [149, 151],

and numerous tests have been developed in econometrics to deal with

various sources of misspecification; see, e.g., [152] for a review. This

chapter focuses on an important class of CMR-based specification tests

known as the conditional moment (CM) tests [153, 154] which have a

long history in econometrics [152, 155, 156].

Testing conditional moment restrictions becomes more challenging as

an infinite number of equivalent unconditional moment restrictions

(UMR) must be examined simultaneously (Section 6.3). At first, [153]
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Figure 6.1.: Conditional moment em-
bedding (CMME): The conditional mo-

ments 𝔼[𝝍(𝑍;𝜃)|𝑋] for different param-

eters 𝜃 are uniquely (𝑃𝑋 -almost surely)

embedded into the RKHS. The RKHS

norm of 𝝁𝜃 measures to what extent

these restrictions are violated and hence

is used as a test statistic for conditional

moment tests.
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1: [165] and their follow-up work are the

most relevant works from the economet-

ric literature. We discuss this connection

in Section 6.5.

and [154] proposed to perform the overidentifying restriction test on a

finite subset of the UMR. Unfortunately, the CM tests that rely only on

a finite number of moment conditions cannot be consistent against all

alternatives. Additional assumptions such as the global identification

of selected moment conditions and sample-size dependent moment

conditions are required to guarantee consistency [157, 158]. To overcome

this limitation, [159] introduced the first consistent CM tests—known

as integrated conditional moment (ICM) tests—by checking all moment

conditions simultaneously [160]. However, the ICM test depends on

parametric weighting functions and nuisance parameters that limit its

practical use. An alternative class of consistent CM tests, known as

smooth tests, employ nonparametric kernel estimation [161, 162] which

also forms a basis for the generalized empirical likelihood approach [163,

164]. However, they have non-trivial power only against local alternatives

that approach the null at a slower rate than 1/
√
𝑛, and are susceptible to

the curse of dimensionality (see Section 6.5 for the discussion).

Inspired by a surge of kernel-based tests [5, 14, 35], we propose to embed

the CMR in a reproducing kernel Hilbert space (RKHS). By transforming

CMR into a continuum of UMR in RKHS, the test statistic is defined

as the maximum moment restriction (MMR) within the unit ball of the

RKHS (Section 6.3). We then show that the MMR corresponds to the

RKHS norm of a Hilbert space embedding of conditional moments. Not
only can the MMR capture all information about the original CMR, but it also
has a closed-form expression that enables the practical ease of implementation
(Theorems 6.3.3 and 6.3.4). The MMR allows us to develop a class

of consistent CM tests that we call kernel conditional moment (KCM)

tests (Section 6.4). Furthermore, it considerably simplifies the parameter

estimation problems based on the CMR. Our framework has relationships

to existing methods in econometrics and machine learning (Section 6.5).

To the best of our knowledge, the Hilbert space embedding of conditional

moment restrictions has not appeared elsewhere in the literature.
1

All proofs can be found in Appendix E.4. The code of the experiments of

this chapter is available at https://github.com/krikamol/kcm-test.

6.2. Background

We introduce the CMR in Subsection 6.2.1 and then review the concepts

of kernels and RKHS in Subsection 6.2.2. Finally, we discuss the main

assumptions in Subsection 6.2.3.

https://github.com/krikamol/kcm-test
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6.2.1. Conditional moment restrictions

Let 𝑍 be a random variable taking values in Z ⊆ ℝ𝑝
with distribution 𝑃𝑍 ,

𝑋 a subvector of 𝑍 taking values in X ⊆ ℝ𝑑
with distribution 𝑃𝑋 , and

Θ ⊂ ℝ𝑟
a parameter space. Following [138], we consider models where

the only available information about the unknown parameter 𝜃0 ∈ Θ is a

set of conditional moment restrictions

M(𝑋;𝜃0) := 𝔼[𝝍(𝑍;𝜃0)|𝑋] = 0, 𝑃𝑋 -a.s., (6.1)

where 𝝍 : Z× Θ→ ℝ𝑞
is a vector of generalized residual functions whose

functional forms are known up to the parameter𝜃 ∈ Θ. The expectation is

always taken over all random variables that are not conditioned on. Note

that there can be two different models that are observationally equivalent
on the basis of (6.1) alone although an ideal parameter 𝜃0 is unique.

Several statistical problems can be formulated as Equation 6.1. In non-

parametric regression models, 𝑍 = (𝑋,𝑌)where 𝑌 ∈ ℝ is a dependent

variable and 𝝍(𝑍;𝜃) = 𝑌 − 𝑓 (𝑋;𝜃). For conditional quantile models,

𝑍 = (𝑋,𝑌) and 𝝍(𝑍;𝜃) = 1{𝑌 < 𝑓 (𝑋;𝜃)} − 𝜏 for the target quantile

𝜏 ∈ [0, 1]. In heterogeneous effect estimation, 𝑍 = (𝑋, 𝑇, 𝑌) where 𝑇 is

a vector of treatments and 𝝍(𝑍;𝜃(𝑋)) = (𝑌 − ⟨𝜃(𝑋), 𝑇⟩)𝑇. For instru-

mental variable regression, 𝑍 = (𝑋,𝑊,𝑌)where𝑊 is an instrumental

variable and 𝝍(𝑍;𝜃) = (𝑌 − 𝑓𝜃(𝑋)) and 𝔼[𝝍(𝑍;𝜃)|𝑊] = 0 almost surely.

When 𝑍 admits the density 𝑝(𝑧;𝜃), we can define the moment conditions

in terms of the score function as 𝝍(𝑍;𝜃) = ∇𝜃 log 𝑝(𝑍;𝜃) and use it for

local maximum likelihood estimation.

Conditional moment tests. Given an independent sample (𝑥𝑖 , 𝑧𝑖)𝑛𝑖=1

drawn from a distribution that satisfies the conditional moments (6.1)

and an estimate 𝜃̂ of 𝜃0, our goal is to perform specification testing: Given
a function 𝝍 and a parameter estimate 𝜃̂, we test the null hypothesis

𝐻0 : 𝔼[𝝍(𝑍; 𝜃̂) | 𝑋] = 0, 𝑃𝑋 -a.s. (6.2)

For instance, in the test of functional form of the nonlinear regres-

sion model [155], the null hypothesis can be expressed as 𝐻0 : 𝔼[𝑌 −
𝑓 (𝑋; 𝜃̂)|𝑋] = 0 where 𝜃̂ = arg min𝜃∈Θ 𝔼[(𝑌 − 𝑓 (𝑋;𝜃))2]. In this case,

𝑍 = (𝑌, 𝑋) and 𝝍(𝑍;𝜃) = 𝑌 − 𝑓 (𝑋;𝜃). This test allows us to detect

misspecifications of the functional form of 𝑓 .

In this work, we assume that 𝜃̂ is obtained independently of the data

that is used to test the null hypothesis (6.2). In many cases, however, 𝜃̂ is

estimated using this data and hence the test performance is also subject

to the estimation error. A generalization of our framework to those cases

will require more involved analyses, and we leave it to future work.

6.2.2. Reproducing kernels

We superficially introduced reproducing kernels in Chapter 1. Here we

give a more detailed introduction to relevant concepts. Let Xbe a non-

empty set and Fa Hilbert space consisting of functions on Xwith ⟨·, ·⟩F
and ∥ · ∥F being its inner product and norm, respectively. The Hilbert

space F is called a reproducing kernel Hilbert space (RKHS) if there
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exists a symmetric function 𝑘 : X×X→ ℝ called the reproducing kernel

of F such that (i) 𝑘(𝑥, ·) ∈ F for all 𝑥 ∈ X and (ii) 𝑓 (𝑥) = ⟨ 𝑓 , 𝑘(𝑥, ·)⟩F
for all 𝑓 ∈ Fand 𝑥 ∈ X. The latter is called the reproducing property of

F. Every positive definite kernel 𝑘 uniquely determines the RKHS for

which 𝑘 is a reproducing kernel [110].

Let {(𝜆 𝑗 , 𝑒 𝑗)} be pairs of positive eigenvalues and orthonormal eigenfunc-

tions of 𝑘, i.e.,

∫
𝑒𝑖(𝑥)𝑒 𝑗(𝑥)d𝑥 = 1 if 𝑖 = 𝑗 and zero otherwise. By Mercer’s

theorem [98, Thm 4.49], the kernel 𝑘 has the spectral decomposition

𝑘(𝑥, 𝑥′) =
∑
𝑗

𝜆 𝑗𝑒 𝑗(𝑥)𝑒 𝑗(𝑥′), 𝑥, 𝑥′ ∈ X, (6.3)

where the convergence is absolute and uniform. As a result, for any

𝑓 ∈ F, we have 𝑓 (𝑥) = ∑
𝑗 𝑓𝑗𝑒 𝑗(𝑥)with

∑
𝑗 𝑓

2

𝑗
/𝜆 𝑗 < ∞where 𝑓𝑗 = ⟨ 𝑓 , 𝑒 𝑗⟩F,

⟨ 𝑓 , 𝑔⟩F =
∑
𝑗 𝑓𝑗 𝑔𝑗/𝜆 𝑗 , and ∥ 𝑓 ∥2

F
= ⟨ 𝑓 , 𝑓 ⟩F =

∑
𝑗 𝑓

2

𝑗
/𝜆 𝑗 .

Next, we introduce the notion of integrally strictly positive definite (ISPD)

kernels and Bochner’s characterization.

Definition 6.2.1 A kernel 𝑘(𝑥, 𝑥′) is integrally strictly positive definite
(ISPD) if for any function 𝑓 that satisfies 0 < ∥ 𝑓 ∥2

2
< ∞,∫

X

𝑓 (𝑥)𝑘(𝑥, 𝑥′) 𝑓 (𝑥′)d𝑥 d𝑥′ > 0.

ISPD kernels are an important notion in kernel methods and are closely

related to characteristic and universal kernels, see, e.g., [111].

The next result characterizes shift-invariant kernels 𝑘(𝑥, 𝑥′) = 𝜑(𝑥 − 𝑥′)
for some positive definite 𝜑.

Theorem 6.2.1 (Bochner) A continuous function 𝜑 : ℝ𝑑 → ℂ is positive
definite if and only if it is the Fourier transform of a finite nonnegative Borel
measure Λ on ℝ𝑑:

𝜑(𝑡) = 1

(2𝜋)𝑑/2

∫
ℝ𝑑

𝑒−𝑖𝑡
⊤𝜔

dΛ(𝜔)

for 𝑡 ∈ ℝ𝑑.

Examples of popular kernels are the Gaussian RBF kernel 𝑘(𝑥, 𝑥′) =
exp(−∥𝑥 − 𝑥′∥2

2
/2𝜎2), 𝜎 > 0, Laplacian kernel 𝑘(𝑥, 𝑥′) = exp(−∥𝑥 −

𝑥′∥1/𝜎), 𝜎 > 0, and inverse multiquadric (IMQ) kernel 𝑘(𝑥, 𝑥′) = (𝑐2 +
∥𝑥 − 𝑥′∥2

2
)−𝛾, 𝑐, 𝛾 > 0. See, e.g., [98, Ch. 4] for more examples.

6.2.3. Main assumptions

Our subsequent analyses rely on these key assumptions.

(A1) The random vector (𝑋, 𝑍) forms a strictly stationary process with

the probability measure 𝑃𝑋𝑍 .

(A2) Regularity conditions: (i) the function 𝝍 : Z×Θ→ ℝ𝑞
where 𝑞 < ∞

is continuous on Θ for each 𝑧 ∈ Z; (ii) 𝔼[𝝍(𝑍;𝜃)|𝑥] exists and
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is finite for every 𝜃 ∈ Θ and 𝑥 ∈ X for which 𝑃𝑋(𝑥) > 0; (iii)

𝔼[𝝍(𝑍;𝜃)|𝑥] is continuous on Θ for all 𝑥 ∈ X for which 𝑃𝑋(𝑥) > 0.

(A3) Global identification: there exists a unique 𝜃0 ∈ Θ for which

𝔼[𝝍(𝑍;𝜃0)|𝑋] = 0 a.s., and 𝑃(𝔼[𝝍(𝑍;𝜃)|𝑋] = 0) < 1 for all

𝜃 ∈ Θ, 𝜃 ≠ 𝜃0.

(A4) The kernel 𝑘 is ISPD, continuous, and bounded, i.e.,

𝑠𝑢𝑝𝑥∈X
√
𝑘(𝑥, 𝑥) < ∞.

Assumption (A1) ensures that all expectations of functions of (𝑋, 𝑍)
are independent of time. The regularity conditions (A2) are standard

assumptions [150, Ch. 3] which ensure that 𝝍 is well-defined, and hold

in most models considered in the literature [150]. By contrast, (A3) may

not hold, especially in non-linear models. A local identifiability can

be assumed instead by imposing additional constraints on Θ. Testing

whether the constraints are sufficient can then be done, for example, by

examining the Jacobian at some parameter values [150, pp. 54]. Lastly,

(A4) implies that the RKHS Fconsists of bounded continuous functions

[98, Sec. 4.3] and is expressive enough (Theorem 6.3.3).

6.3. Mamximum moment restriction

This section presents the RKHS representation of the CMR. Let F be a

set of measurable functions on X. Then,

𝔼𝑋𝑍[𝝍(𝑍;𝜃) 𝑓 (𝑋)] = 𝔼𝑋[𝔼𝑍[𝝍(𝑍;𝜃) 𝑓 (𝑋)|𝑋]] = 𝔼𝑋[M(𝑋;𝜃) 𝑓 (𝑋)]

for any 𝑓 ∈ F by the law of iterated expectation. That is, the CMR in

Equation 6.1 implies an infinite set of unconditional moment restrictions

𝔼[𝝍(𝑍;𝜃0) 𝑓 (𝑋)] = 0, ∀ 𝑓 ∈ F. (6.4)

Equivalently, any 𝜃0 ∈ Θ that satisfies Equation 6.4 must also satisfy

what we call a maximum moment restriction (MMR)

sup

𝑓 ∈F
∥𝔼[𝝍(𝑍;𝜃0) 𝑓 (𝑋)]∥2

2
= 0. (6.5)

It is known that the implied moment restrictions (6.4) and (6.5) can be

insufficient to globally identify the parameters of interest. We call F for

which Equation 6.5 implies Equation 6.1 a sufficient class of instruments. In

the context of this work, F must consist of infinitely many instruments

for the CM test to be consistent against all alternatives. However, the sup

operator also makes it hard to optimize Equation 6.5. We resolve these

issues by choosing F to be a unit ball in a RKHS, which we show to be a

sufficient class of instruments. As a result, Equation 6.5 can be solved

analytically, the parameters of interest can be consistently estimated, and

the resulting CM test is consistent against all fixed alternatives.

Recently, [145] and [144] also propose to estimate 𝜃0 based on Equation 6.5

and F that is parameterized by deep neural networks. While they

consider an estimation problem, we focus on hypothesis testing problems.

Nevertheless, our formulation of CMR can also be used to estimate 𝜃0

(Subsection 6.3.2 and Appendix E.2). Note that the algorithms proposed
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in [145] and [144] require solving a minimax game, whereas our approach

for estimation is simply a minimization problem.

6.3.1. Conditional moment embedding

To express Equation 6.5 using the RKHS, we first develop a representation

of the CMR in a vector-valued RKHS of functions 𝑓 : X→ ℝ𝑞
[166].

Let F be the RKHS of real-valued functions on X with reproducing

kernel 𝑘 and F𝑞
the product RKHS of functions 𝑓 := ( 𝑓1 , . . . , 𝑓𝑞)where

𝑓𝑖 ∈ Ffor all 𝑖 with an inner product ⟨ 𝑓 , 𝑔⟩F𝑞 =
∑𝑞

𝑖=1
⟨ 𝑓𝑖 , 𝑔𝑖⟩F and norm

∥ 𝑓 ∥F𝑞 =

√∑𝑞

𝑖=1
∥ 𝑓𝑖 ∥2F. For 𝜃 ∈ Θ, we define an operator 𝑀𝜃 on F𝑞

as

𝑀𝜃 𝑓 := 𝔼[𝝍(𝑍;𝜃)⊤ 𝑓 (𝑋)] =
𝑞∑
𝑖=1

𝔼[𝜓𝑖(𝑍;𝜃) 𝑓𝑖(𝑋)],

where 𝜓𝑖 denotes the 𝑖-th component of 𝝍. This operator takes an

instrument 𝑓 ∈ F𝑞
as input and returns the corresponding conditional

moment restrictions.

The following lemma shows that 𝑀𝜃 satisfies the property of the original

conditional moment restrictions.

Lemma 6.3.1 For all 𝑓 ∈ F𝑞 , 𝑀𝜃0
𝑓 = 0.

Moreover, by Assumption (A2) and (A4),

𝑀𝜃 𝑓 | ≤
𝑞∑
𝑖=1

∥ 𝑓𝑖 ∥F𝑖
√
𝔼[𝜓𝑖(𝑍;𝜃)𝜓𝑖(𝑍′;𝜃)𝑘(𝑋, 𝑋′)] < ∞,

where (𝑋′, 𝑍′) is an independent copy of (𝑋, 𝑍). Hence, 𝑀𝜃 is a bounded

linear operator. By Riesz’s representation theorem, there exists a unique

element 𝝁𝜃 in F𝑞
such that 𝑀𝜃 𝑓 = ⟨ 𝑓 , 𝝁𝜃⟩F𝑞 for all 𝑓 ∈ F𝑞

. Indeed, by

the reproducing property,

𝑀𝜃 𝑓 =

𝑞∑
𝑖=1

〈
𝑓𝑖 ,𝔼[𝜉𝑖𝜃(𝑋, 𝑍)]

〉
F𝑖

= ⟨ 𝑓 ,𝔼[𝝃𝜃(𝑋, 𝑍)]⟩F𝑞 ,

where 𝝃𝜃(𝑥, 𝑧) :=
(
𝜓1(𝑧;𝜃)𝑘(𝑥, ·), . . . ,𝜓𝑞(𝑧;𝜃)𝑘(𝑥, ·)

)
is the feature map

in F𝑞
and 𝜉𝑖𝜃 denotes the 𝑖-th element of 𝝃𝜃. The equalities above are

well-defined since 𝝃𝜃(𝑥, 𝑧) is Bochner integrable [98, Def. A.5.20], i.e.,

𝔼∥𝝃𝜃(𝑋, 𝑍)∥F𝑝 ≤
√
𝔼∥𝝃𝜃(𝑋, 𝑍)∥2F𝑝 =

√
𝔼[𝝍(𝑍;𝜃)⊤𝝍(𝑍;𝜃)𝑘(𝑋, 𝑋)] <

∞.

In other words, 𝝁𝜃 := 𝔼[𝝃𝜃(𝑋, 𝑍)] is a representer of 𝑀𝜃 in F𝑞
. We

define 𝝁𝜃 as conditional moment embedding (CMME) of 𝔼[𝝍(𝑍;𝜃)|𝑋] in
F𝑞

relative to 𝑃𝑋 .

Definition 6.3.1 For each 𝜃 ∈ Θ, let

𝝃𝜃(𝑥, 𝑧) :=
(
𝜓1(𝑧;𝜃)𝑘(𝑥, ·), . . . ,𝜓𝑞(𝑧;𝜃)𝑘(𝑥, ·)

)
∈ F𝑞 .
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The conditional moment embedding (CMME) is defined as

𝝁𝜃 :=

∫
X×Z

𝝃𝜃(𝑥, 𝑧) 𝑑𝑃𝑋𝑍(𝑥, 𝑧) ∈ F𝑞 . (6.6)

The CMME 𝝁𝜃 takes the form of a kernel mean embedding of 𝑃𝑋𝑍
with 𝝃𝜃 as the feature map [19]. This is illustrated in Figure 6.1. Hence,

given an i.i.d. sample (𝑥𝑖 , 𝑧𝑖)𝑛𝑖=1
from 𝑃𝑋𝑍 , we can estimate 𝝁𝜃 simply

by 𝝁̂𝜃 := 1

𝑛

∑𝑛
𝑖=1

𝝃𝜃(𝑥𝑖 , 𝑧𝑖). The following theorem establishes the

√
𝑛-

consistency of this estimator.

Theorem 6.3.2 Let 𝜎2

𝜃 := 𝔼∥𝝃𝜃(𝑋, 𝑍)∥2F𝑞 and assume that

∥𝝃𝜃(𝑋, 𝑍)∥F𝑞 < 𝐶𝜃 < ∞

almost surely. Then, for any 0 < 𝛿 < 1, with probability at least 1 − 𝛿,



𝝁̂𝜃 − 𝝁𝜃




F𝑝 ≤

2𝐶𝜃 log
2

𝛿

𝑛
+

√
2𝜎2

𝜃 log
2

𝛿

𝑛
. (6.7)

Remarkably, 𝝁̂𝜃 converges at a rate 𝑂𝑝(𝑛−1/2) that is independent of the

dimension of (𝑋, 𝑍) and the RKHS F𝑞
. This is an appealing property

because estimation and inference based on 𝝁̂𝜃 become less susceptible to

the curse of dimensionality (see, e.g., [167] and references therein for the

discussion). Under certain assumptions, [168] established the minimax

optimal rate for the kernel mean estimators like 𝝁̂𝜃.

The next theorem shows that 𝝁𝜃 provides a unique representation of the

CMR M(𝑋, 𝜃) in F𝑞
relative to 𝑃𝑋 .

Theorem 6.3.3 Assume that the kernel 𝑘 is ISPD. Then, for any 𝜃1 , 𝜃2 ∈ Θ,
M(𝑥;𝜃1) = M(𝑥;𝜃2) for 𝑃𝑋 -almost all 𝑥 if and only if 𝝁𝜃1

= 𝝁𝜃2
.

To better understand Theorem 6.3.3, consider when 𝑞 = 1 and 𝑘(𝑥, 𝑥′) =
𝜑(𝑥 − 𝑥′) is a shift-invariant kernel. First, we have

𝝁𝜃(·) = 𝔼𝑋[𝔼𝑍[𝝍(𝑍;𝜃)𝑘(𝑋, ·)|𝑋]]
= 𝔼𝑋[𝔼𝑍[𝝍(𝑍;𝜃)|𝑋]𝑘(𝑋, ·)]
= 𝔼𝑋[M(𝑋;𝜃)𝑘(𝑋, ·)].

It is then easy to show using Theorem 6.2.1 that

𝝁𝜃(·) =
∫
ℝ𝑑

𝜙(𝜔;𝜃)𝑐(𝜔, ·)dΛ(𝜔)

where 𝑐(𝜔, 𝑦) = exp(𝑖𝜔⊤𝑦) ≠ 0 and

𝜙(𝜔;𝜃) := 𝔼𝑋[M(𝑋;𝜃) exp(𝑖𝜔⊤𝑋)]

is the Fourier transform (or characteristic function) of the Borel mea-

surable function M(𝑥;𝜃) relative to 𝑃𝑋 . Hence, if supp(Λ) = ℝ𝑑
, the

uniqueness of 𝝁𝜃 follows from the uniqueness of 𝜙(𝜔;𝜃). [159] was

the first to observe the characterization of the CMR in terms of the

integral transform and then used it to construct the consistent CM tests

of functional form (cf. Section 6.5).
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Theorem 6.3.3 shows that 𝝁𝜃 captures all information about 𝔼[𝝍(𝑍;𝜃)|𝑥]
for every 𝑥 ∈ X for which 𝑃𝑋(𝑥) > 0. Consequently, estimation and

inference on CMR can be performed by means of 𝝁𝜃 using the existing

kernel arsenal. As mentioned earlier, for each 𝑓 ∈ F𝑞
and 𝜃 ∈ Θ, the

inner product ⟨ 𝑓 , 𝝁𝜃⟩F𝑞 = ⟨ 𝑓 ,𝔼[𝝃𝜃(𝑋, 𝑍)]⟩F𝑞 can be interpreted as a

restriction of conditional moments with respect to 𝑓 . Moreover, the

investigator can inspect 𝝁𝜃(𝑥, 𝑧), which measures to what extent the

moment conditions are violated at (𝑥, 𝑧), i.e., structural instability, in

order to understand the nature of misspecification.

6.3.2. Maximum moment restriction with reproducing
kernels

Based on the CMME 𝝁𝜃, we can now define the MMR as

𝕄(𝜃) := sup

∥ 𝑓 ∥F𝑞 ≤1

𝑀𝜃 𝑓 = sup

∥ 𝑓 ∥F𝑞 ≤1

⟨ 𝑓 , 𝝁𝜃⟩F𝑞 = ∥𝝁𝜃∥F𝑞 . (6.8)

By Theorem 6.3.3, 𝕄(𝜃) ≥ 0 and 𝕄(𝜃) = 0 if and only if 𝜃 = 𝜃0. Put

differently, 𝕄(𝜃) measures how much the models associated with 𝜃
violate the original CMR in Equation 6.1.

To obtain an expression for 𝕄(𝜃), we define a real-valued kernel ℎ𝜃 :

(X×Z) × (X×Z) → ℝ based on the feature map 𝝃𝜃 : X×Z→ F𝑞
as

follows:

ℎ𝜃((𝑥, 𝑧), (𝑥′, 𝑧′)) := ⟨𝝃𝜃(𝑥, 𝑧), 𝝃𝜃(𝑥′, 𝑧′)⟩F𝑞

= 𝝍(𝑧;𝜃)⊤𝝍(𝑧′;𝜃)𝑘(𝑥, 𝑥′). (6.9)

Then, a closed-form expression for 𝕄(𝜃) in terms of the kernel ℎ𝜃 follows

straightforwardly.

Theorem 6.3.4 Assume that 𝔼[ℎ𝜃((𝑋, 𝑍), (𝑋, 𝑍))] < ∞. Then, 𝕄2(𝜃) =
𝔼[ℎ𝜃((𝑋, 𝑍), (𝑋′, 𝑍′))] where (𝑋′, 𝑍′) is independent copy of (𝑋, 𝑍) with
the same distribution.

Finally, Mercer’s representation (6.3) of 𝑘 allows us to interpret ℎ𝜃 and

𝕄(𝜃) in terms of a continuum of unconditional moment restrictions.

Theorem 6.3.5 Let {(𝜆 𝑗 , 𝑒 𝑗)} be eigenvalue/eigenfunction pairs associated
with the kernel 𝑘 and 𝜻

𝑗

𝜃(𝑥, 𝑧) :=
(
𝜓1(𝑧;𝜃)𝑒 𝑗(𝑥), . . . ,𝜓𝑞(𝑧;𝜃)𝑒 𝑗(𝑥)

)
.

Then, for each 𝜃 ∈ Θ, ℎ𝜃((𝑥, 𝑧), (𝑥′, 𝑧′)) =
∑
𝑗 𝜆 𝑗𝜻

𝑗

𝜃(𝑥, 𝑧)⊤𝜻
𝑗

𝜃(𝑥′, 𝑧′)
and 𝕄2(𝜃) = ∑

𝑗 𝜆 𝑗 ∥𝔼[𝜻
𝑗

𝜃(𝑋, 𝑍)]∥
2

2
.

That is, we can interpret 𝔼[𝜻 𝑗𝜃(𝑋, 𝑍)] as the UMR with 𝑒 𝑗 acting as an

instrument. Moreover,𝕄2(𝜃) can be viewed as a weighted sum of moment

restrictions based on the sequence of weights and instruments (𝜆 𝑗 , 𝑒 𝑗)𝑗 .
As a result, the CM test based on 𝕄2(𝜃) as a test statistic examines an

infinite number of moment restrictions. Note that (𝜆 𝑗 , 𝑒 𝑗)𝑗 are defined

implicitly by the choice of 𝑘.
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[32]: Serfling (1980), Approximation theo-
rems of mathematical statistics

2: Note that the asymptotic distribution

takes the same form as the asymptotic dis-

tribution of the quadratic time MMD es-

timates that we introduced in Section 1.5.

6.4. Kernel conditional moment test with
bootstrapping

By virtue of Theorem 6.3.3, we can reformulate the CM testing problem

(6.2) in terms of the MMR as

𝐻0 : 𝕄2(𝜃) = 0, 𝐻1 : 𝕄2(𝜃) ≠ 0.

Given an i.i.d. sample {(𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1
from the distribution 𝑃𝑋𝑍 , we consider

the test statistic

𝕄̂2

𝑛(𝜃) =
1

𝑛(𝑛 − 1)
∑

1≤𝑖≠𝑗≤𝑛
ℎ𝜃((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗)), (6.10)

which is in the form of𝑈-statistics [32, Section 5]. Although there exist

several potential estimators for 𝕄2(𝜃), we focus on Equation 6.10 as it is a

minimum-variance unbiased estimator with appealing asymptotic prop-

erties. Moreover, Equation 6.10 also provides a basis for the estimation

of 𝜃0 simply by minimizing 𝕄̂2

𝑛(𝜃) with respect to 𝜃 ∈ Θ. Preliminary

results on estimation are given in Appendix E.2.

Next, we characterize the asymptotic distributions of 𝕄̂2

𝑛(𝜃) under the

null and alternative hypotheses.
2

Theorem 6.4.1 Assume that 𝔼[ℎ2

𝜃((𝑋, 𝑍), (𝑋′, 𝑍′))] < ∞ for all 𝜃 ∈ Θ.
Let𝑈 := (𝑋, 𝑍) and𝑈′ := (𝑋′, 𝑍′). Then, the following statements hold.

(1) If 𝜃 ≠ 𝜃0, 𝕄̂2

𝑛(𝜃) is asymptotically normal with

√
𝑛

(
𝕄̂2

𝑛(𝜃) −𝕄2(𝜃)
)

𝑑→N(0, 4𝜎2

𝜃),

where 𝜎2

𝜃 = Var𝑈 [𝔼𝑈′[ℎ𝜃(𝑈,𝑈′)]].
(2) If 𝜃 = 𝜃0, then 𝜎2

𝜃 = 0 and

𝑛𝕄̂2

𝑛(𝜃)
𝑑→
∞∑
𝑗=1

𝜏𝑗
(
𝑊2

𝑗 − 1

)
, (6.11)

where𝑊𝑗 ∼N(0, 1) and {𝜏𝑗} are the eigenvalues of ℎ𝜃(𝑢, 𝑢′), i.e., they
are the solutions of 𝜏𝑗𝜙 𝑗(𝑢) =

∫
ℎ𝜃(𝑢, 𝑢′)𝜙 𝑗(𝑢′)𝑑𝑃(𝑢′) for non-zero

𝜙 𝑗 .

As we can see, 𝑛𝕄̂2

𝑛(𝜃) < ∞ with probability one under the null 𝜃 = 𝜃0

and diverts to infinity at a rate 𝑂(
√
𝑛) under any fixed alternative 𝜃 ≠ 𝜃0.

Hence, a consistent CM test can be constructed as follows: if 𝛾1−𝛼 is the

1 − 𝛼 quantile of the CDF of 𝑛𝕄̂2

𝑛(𝜃) under the null 𝜃 = 𝜃0, we reject the

null with significance level 𝛼 if 𝑛𝕄̂2

𝑛(𝜃) ≥ 𝛾1−𝛼.

Proposition 6.4.2 ([169]; p. 671) Assume the conditions of Theorem 6.4.1.
The test that rejects the null 𝜃 = 𝜃0 when 𝑛𝕄̂2

𝑛(𝜃) > 𝛾1−𝛼 is consistent
against any fixed alternative 𝜃 ≠ 𝜃0, i.e., the limiting power of the test is one.

Unfortunately, the limiting distribution in Equation 6.11 and its 1 − 𝛼
quantile do not have an analytic form. Following recent work on kernel-
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Algorithm 3 KCM Test with bootstrapping

Input: Bootstrap sample size 𝐵, significance level 𝛼
for 𝑡 ∈ {1, . . . , 𝐵} do

Draw (𝑤1 , . . . , 𝑤𝑛) ∼ Mult(𝑛;
1

𝑛 , . . . ,
1

𝑛 )
𝜌𝑖 ← (𝑤𝑖 − 1)/𝑛 for 𝑖 = 1, . . . , 𝑛

𝕄̂∗𝑛(𝜃) ←
∑
𝑖≠𝑗 𝜌𝑖𝜌 𝑗ℎ𝜃((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗))

𝑎𝑡 ← 𝑛𝕄̂∗𝑛(𝜃)
𝛾̂1−𝛼 := empirical (1 − 𝛼)-quantile of {𝑎𝑡}𝐵𝑡=1

Reject 𝐻0 if 𝛾̂1−𝛼 < 𝑛𝕄̂2

𝑛(𝜃) (see (6.10))

[5]: Gretton et al. (2012), A kernel two-
sample test; [14]: Chwialkowski et al.

(2016), A Kernel Test of Goodness of Fit;
[35]: Liu et al. (2016), A Kernelized Stein
Discrepancy for Goodness-of-fit Tests
[169]: Arcones et al. (1992), On the Boot-
strap of𝑈 and𝑉 Statistics; [170]: Huskova

et al. (1993), Consistency of the Generalized
Bootstrap for Degenerate𝑈-Statistics

[159]: Bierens (1982), Consistent model
specification tests; [171]: Bierens (1990),

A Consistent Conditional Moment Test of
Functional Form
[157]: Jong (1996), The Bierens test under
data dependence
[160]: Bierens et al. (1997), Asymptotic The-
ory of Integrated Conditional Moment Tests
[158]: Donald et al. (2003), Empirical Like-
lihood Estimation and Consistent Tests with
Conditional Moment Restrictions
[161]: Zheng (1996), A consistent test of
functional form via nonparametric estima-
tion techniques; [162]: Li et al. (1998), A
simple consistent bootstrap test for a para-
metric regression function; [172]: Fan et al.

(2000), Consistent model specification tests:
Kernel-Based tests versus Bierens’ ICM tests
[163]: Delgado et al. (2006), Consistent
Tests of Conditional Moment Restrictions;
[172]: Fan et al. (2000), Consistent model
specification tests: Kernel-Based tests versus
Bierens’ ICM tests
[153]: Newey (1985), Maximum Likelihood
Specification Testing and Conditional Mo-
ment Tests
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els
[157]: Jong (1996), The Bierens test under
data dependence
[158]: Donald et al. (2003), Empirical Like-
lihood Estimation and Consistent Tests with
Conditional Moment Restrictions

based tests [5, 14, 35], we propose to approximate the critical values

using the bootstrap method proposed by [169, 170], which was previously

used in [35]. Specifically, we first draw multinomial random weights

(𝑤1 , . . . , 𝑤𝑛) ∼ Mult(𝑛;
1

𝑛 , . . . ,
1

𝑛 ) and compute the bootstrap sample

𝕄̂∗𝑛(𝜃) = (1/𝑛2)∑
1≤𝑖≠𝑗≤𝑛(𝑤𝑖 − 1)(𝑤 𝑗 − 1)ℎ𝜃((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗)). We then

calculate the empirical quantile 𝛾̂1−𝛼 of 𝑛𝕄̂∗𝑛(𝜃). For degenerate 𝑈-

statistics, 𝛾̂1−𝛼 is a consistent estimate of 𝛾1−𝛼 [169, 170].

We summarize our bootstrap kernel conditional moment (KCM) test in

Algorithm 1. Note that the proposed test checks the CMR for a given
parameter 𝜃 and does not take into account the estimation error of 𝜃.

We defer a full treatment of interplay between parameter estimation and

hypothesis testing to future work.

6.5. Related work

Existing CM tests can generally be categorized into two classes. The former

is based on a transformation of CMR into a continuum of unconditional

counterparts, e.g., [159, 171], [157], [160], and [158] to name a few. The

latter employs nonparametric kernel estimation which includes [161,

162, 172] among others. While both classes lead to consistent tests, they

exhibit different asymptotic behaviors; see, e.g., [163, 172] for detailed

comparisons.

A continuum of unconditional moments. One of the classical ap-

proaches is to find a parametric weighting function 𝑤(𝑥, 𝜂) such that

𝔼[𝝍(𝑍;𝜃)|𝑋] = 0 a.s. ⇔ 𝔼[𝝍(𝑍;𝜃)𝑤(𝑋, 𝜂)] = 0,

for almost all 𝜂 ∈ Ξ ⊆ ℝ𝑚
where 𝜂 is a nuisance parameter. [153] and

[154] proposed the so-called M-test using a finite number of weighting

functions. Since it imposes only a finite number of moment conditions,

the test cannot be consistent against all possible alternatives and power

against specific alternatives depends on the choice of these weighting

functions. [157] and [158] showed that this issue can be circumvented

by allowing the number of moment conditions to grow with sample

size. Although our KCM test generally relies on infinitely many moment

conditions, one can impose finitely many conditions using the finite

dimensional RKHS such as those endowed with linear and polynomial

kernels or resorting to finite-dimensional kernel approximations.
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[173]: Stinchcombe et al. (1998), Consistent
Specification Testing with Nuisance Parame-
ters Present Only under the Alternative
[159]: Bierens (1982), Consistent model
specification tests
[171]: Bierens (1990), A Consistent Condi-
tional Moment Test of Functional Form
[174]: Escanciano (2006), A Consistent Di-
agnostic Test for Regression Models Using
Projections
[163]: Delgado et al. (2006), Consistent
Tests of Conditional Moment Restrictions

[159]: Bierens (1982), Consistent model
specification tests

[171]: Bierens (1990), A Consistent Condi-
tional Moment Test of Functional Form
[160]: Bierens et al. (1997), Asymptotic The-
ory of Integrated Conditional Moment Tests

[159]: Bierens (1982), Consistent model
specification tests

[19]: Muandet et al. (2017), Kernel Mean
Embedding of Distributions: A Review and
Beyond

[165]: Carrasco et al. (2000), Generaliza-
tion of GMM to a Continuum of Moment
Conditions

[173] showed that there exists a wide range of 𝑤(𝑥, 𝜂) that lead to

consistent CM tests. They call these functions “totally revealing”. For

instance, [159] proposed the first consistent specification test for nonlinear

regression models using 𝑤(𝑥, 𝜂) = exp(𝑖𝜂⊤𝑥) for 𝜂 ∈ ℝ𝑑
. Similarly, [171]

used 𝑤(𝑥, 𝜂) = exp(𝜂⊤𝑥) for 𝜂 ∈ ℝ𝑑
. An indicator function 𝑤(𝑥, 𝜂) =

1(𝛼⊤𝑥 ≤ 𝛽)with 𝜂 = (𝛼, 𝛽) ∈ 𝕊𝑑×(−∞,∞)where𝕊𝑑 = {𝛼 ∈ ℝ𝑑
: ∥𝛼∥ =

1}was used in [174] and [163]. Other popular weighting functions include

power series, Fourier series, splines, and orthogonal polynomials, for

example. In light of Theorem 6.3.5, the KCM test falls into this category

where weighting functions are eigenfunctions associated with the kernel

𝑘.

Since 𝑤(𝑥, 𝜂) depends on the nuisance parameter 𝜂, [159] suggested to

integrate 𝜂 out, resulting in an integrated conditional moment (ICM) test

statistic:

𝑇𝑛(𝜃) =
∫
Ξ

∥𝑍𝑛(𝜂)∥2
2

d𝜈(𝜂), (6.12)

where Ξ is a compact subset of ℝ𝑑
, 𝜈(𝜂) is a probability measure on Ξ,

and 𝑍𝑛(𝜂) := (1/
√
𝑛)∑𝑖 𝝍(𝑧𝑖 ;𝜃)𝑤(𝑥𝑖 , 𝜂). The limiting null distribution

of the ICM test was proven to be a zero-mean Gaussian process [171].

[160] also characterizes the asymptotic null distribution of a general class

of real-valued weighting functions.

The following theorem establishes the connection between the KCM and

ICM test statistics.

Theorem 6.5.1 Let 𝑘(𝑥, 𝑥′) = 𝜑(𝑥 − 𝑥′) be a shift-invariant kernel on ℝ𝑑.
Then, we have

𝕄2(𝜃) = 1

(2𝜋)𝑑/2

∫
ℝ𝑑



𝔼[𝝍(𝑍;𝜃) exp(𝑖𝜔⊤𝑋)]


2

2

dΛ(𝜔)

where Λ is a Fourier transform of 𝑘.

This theorem is quite insightful as it describes the KCM test statistic

as the ICM test statistic 𝑇𝑛(𝜃) of [159] where the distribution on the

nuisance parameter 𝜔 is a Fourier transform of the kernel. For instance,

the Gaussian kernel 𝑘(𝑥, 𝑥′) = exp(−∥𝑥 − 𝑥′∥2
2
/2𝜎2) corresponds to the

Gaussian density Λ(𝜔) = exp(−𝜎2∥𝜔∥2
2
/2); see [19, Table 2.1] for more

examples. Note that both weighting functions and integrating measures

are implicitly determined by the kernel 𝑘. Unlike ICM tests, KCM tests can

be evaluated without solving the high-dimensional numerical integration

in Equation 6.12 explicitly. Moreover, KCM tests can be easily generalized

to X that is not necessarily a subset of ℝ𝑑
.

[165] also considers a similar setting that involves a continuum of moment

conditions in RKHS. Their approach, however, differs significantly from

ours. First, they consider a specific case where the Hilbert space is a set of

square integrable functions of a scalar 𝑡 ∈ [0, 𝑇]with the unconditional

moment conditions 𝔼[𝝍𝑡(𝑋, 𝜃0)] = 0 for all 𝑡 ∈ [0, 𝑇]. Second, their key

question is to identify the optimal choice of weighting matrix in GMM.

Third, estimation is actually based on a truncation of infinite moment

conditions. Lastly, they also proposed the CM test similar to the ICM tests,

but it can handle only the case with 𝑍 ∈ ℝ, while our test is applicable to

any domain with a valid kernel.
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Nonparametric kernel estimation. The second class of tests, known as

smooth tests [161, 162, 172], adopts the statistic of the form

𝑇(𝜃) = 𝔼[𝝍(𝑍;𝜃)⊤𝔼[𝝍(𝑍;𝜃)|𝑋] 𝑓 (𝑋)]. (6.13)

Based on the kernel estimator of 𝔼[𝝍(𝑍;𝜃)|𝑋] 𝑓 (𝑋), the empirical esti-

mate of (6.13) can be expressed as

𝑇𝑛(𝜃) =
1

𝑛(𝑛 − 1)ℎ𝑑
∑

1≤𝑖≠𝑗≤𝑛
𝝍(𝑧𝑖 ;𝜃)⊤𝝍(𝑧 𝑗 ;𝜃)𝐾𝑖 𝑗 (6.14)

where 𝐾𝑖 𝑗 = 𝐾((𝑥𝑖 − 𝑥 𝑗)/ℎ), 𝐾(·) : ℝ𝑑 → ℝ is a normalized kernel

function and ℎ is a smoothing parameter. Here, we emphasize that

existing smooth tests rely on the kernel density estimator (KDE) in

which the kernel used is not necessarily a reproducing kernel. For the

smooth test to be consistent, ℎ must vanish as 𝑛 → ∞, whereas our

KCM test is consistent even when the kernel is fixed. Nevertheless, if 𝐾(·)
is a reproducing kernel, the test statistic 𝑇𝑛(𝜃) with a fixed smoothing

parameter ℎ resembles the KCM test statistic (6.10). In fact, [172] has

shown that the ICM test is a special case of the kernel-based test with

a fixed smoothing parameter. However, the critical drawback of the

nonparametric kernel-based tests is that they have non-trivial power only

against local alternatives that approach the null at a slower rate than

1/
√
𝑛, due to the slower rate of convergence of kernel density estimators,

i.e., 𝑂((𝑛ℎ𝑑/2)−1/2) as ℎ → 0 [172]. Moreover, these tests are susceptible

to the curse of dimensionality.

Last but not least, the kernel estimator is also a key ingredient in empirical

likelihood-based CM tests [164, 175, 176].

Kernelized Stein discrepancy (KSD). Stein’s methods [177] are among

the most popular techniques in statistics and machine learning. One

notable example is the Stein discrepancy which aims to characterize

complex, high-dimensional distribution 𝑝(𝑥) = 𝑝̃(𝑥)/𝑁 with intractable

normalization constant 𝑁 =
∫
𝑝̃(𝑥)d𝑥 using a Stein operator A𝑝 such

that

𝑝 = 𝑞 ⇔ 𝔼𝑥∼𝑞[A𝑝 𝑓 (𝑥)] = 0, ∀ 𝑓 , (6.15)

where A𝑝 𝑓 (𝑥) := ∇𝑥 log 𝑝(𝑥) 𝑓 (𝑥) + ∇𝑥 𝑓 (𝑥). Here, we assume for simplic-

ity that 𝑥 ∈ ℝ. The Stein operator A𝑝 depends on the density 𝑝 through

its score function 𝑠𝑝(𝑥) := ∇𝑥 log 𝑝(𝑥) = ∇𝑥𝑝(𝑥)
𝑝(𝑥) , which is independent of

𝑁 . When 𝑝 ≠ 𝑞, the expectation in (6.15) gives rise to a discrepancy

𝕊 𝑓 (𝑝, 𝑞) := 𝔼𝑥∼𝑞[A𝑝 𝑓 (𝑥)]
= 𝔼𝑥∼𝑞[(𝑠𝑝(𝑥) − 𝑠𝑞(𝑥)) 𝑓 (𝑥)]. (6.16)

See, also, [35, Lemma 2.3]. The Stein discrepancy has led to numerous

applications such as variance reduction [178] and goodness-of-fit testing

[14, 35], among others.

Like Equation 6.4, we can observe that Equation 6.15 is indeed a set

of unconditional moment conditions. To make an explicit connection

between Stein discrepancy and CMR, we need to assume access to the

probability densities. Let PΘ be a space of probability densities 𝑝(𝑧;𝜃)
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such that 𝜃 ↦→ 𝑝(𝑧;𝜃) is injective. We choose 𝝍(𝑧;𝜃) = ∇𝑧 log 𝑝(𝑧;𝜃) =:

𝑠𝜃(𝑧) as the associated score function.
3

This yields the following CMR:

𝔼[∇𝑧 log 𝑝(𝑍;𝜃0) | 𝑋] = 0, 𝑃𝑋 -a.s. (6.17)

For any 𝜃 ∈ Θ, it follows that 𝔼[𝝍(𝑍;𝜃)⊤ 𝑓 (𝑋)] = 𝔼[𝑠𝜃(𝑍)⊤ 𝑓 (𝑋) −
𝑠𝜃0
(𝑍)⊤ 𝑓 (𝑋)] = 𝔼[(𝑠𝜃(𝑍)− 𝑠𝜃0

(𝑍))⊤ 𝑓 (𝑋)] =: Δ 𝑓 (𝜃, 𝜃0). While Δ 𝑓 (𝜃, 𝜃0)
resembles the Stein discrepancy in Section 6.5, we highlight the key

differences. First, this characterization requires that the model is correctly

specified, i.e., 𝑝(𝑧;𝜃0) is observationally indistinguishable from the

underlying data distribution. Second, like the Stein discrepancy, it can

be interpreted as the 𝑓 (𝑥)-weighted expectation of the score difference

𝑠𝜃 − 𝑠𝜃0
. In contrast, the weighting function 𝑓 (𝑥) in our setting depends

only on 𝑋, which is a subvector of 𝑍. We provide further discussion

about this discrepancy measure in Appendix E.1. The following theorem

follows directly from the preceeding observation.

Theorem 6.5.2 Let PΘ be a space of probability densities 𝑝(𝑧;𝜃). Assume
that 𝜃 ↦→ 𝑝(𝑧;𝜃) is injective and 𝜃0 ∈ Θ. If 𝝍(𝑧;𝜃) = ∇𝑧 log 𝑝(𝑧;𝜃) and
𝑋 = 𝑍, we have 𝕊 𝑓 (𝑝(𝑧;𝜃), 𝑝(𝑧;𝜃0)) = Δ 𝑓 (𝜃, 𝜃0).

Mostly related to our work are the RKHS-based Stein’s methods [14,

35]. Specifically, if we assume the conditions of Theorem 6.5.2 and that

𝑓 belongs to the RKHS, it follows that Δ(𝜃, 𝜃0) := sup 𝑓 ∥Δ 𝑓 (𝜃, 𝜃0)∥2
coincides with the kernelized Stein discrepancy (KSD) proposed in [35]

and [14].

6.6. Experiments

We report the finite-sample performance of the KCM test against two

well-known consistent CM tests, namely ICM test and smooth test, as

discussed in Section 6.5. We evaluate all tests with a bootstrap size

𝐵 = 1000 and a significance level 𝛼 = 0.05.

(1) KCM: The bootstrap KCM test using𝑈-statistic in Algorithm 3. We

use the RBF kernel with bandwidth chosen by the median heuristic.

(2) ICM: The test based on an integration over weighting functions. Fol-

lowing [179] and [163], we use Equation 6.12 as the test statistic with

𝑤(𝑥, 𝜂) = 1(𝑥 ≤ 𝜂) = ∏𝑑
𝑗=1

1(𝑥 𝑗 ≤ 𝜂 𝑗) where 1(·) is an indicator

function. The density 𝜈 is chosen to be the empirical distribution

of 𝑋. This leads to a simple test statistic 𝑡𝑛 =
∑𝑛
𝑖=1
𝑟𝑛(𝑥𝑖)⊤𝑟𝑛(𝑥𝑖)

where 𝑟𝑛(𝑥) := 1

𝑛

∑𝑛
𝑖=1

𝝍(𝑧𝑖 ;𝜃)1(𝑥𝑖 ≤ 𝑥). We follow the bootstrap

procedure in [163, Sec. 4.3] to compute the critical values.

(3) Smooth: The test based on nonparametric kernel estimation. We

use Equation 6.14 as the test statistic. The kernel is the standard

Gaussian density function whose bandwidth is chosen by the rule-

of-thumb ℎ = 𝑛−1/5
. Note that the median heuristic is not applicable

here because the bandwidth ℎ does not vanish, as required. The

critical values are obtained using the same bootstrap procedure as

in [163, Sec. 4.2].
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Figure 6.2.: The test powers of KCM, ICM, and smooth tests averaged over 300 trials as we vary the values of 𝑛 (top) and 𝛿 (bottom).

Type-I errors of these tests are shown in Figure E.1 in Appendix E.3.2. See main text for the interpretation.
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Testing a regression function (REG). We follow a similar simulation of

regression model used in [180]. In this setting, for a given estimate 𝜷̂ of

the regression parameters, the null hypothesis is

𝐻0 : 𝔼[𝑌 − 𝜷̂⊤𝑋 | 𝑋] = 0 a.s.

where 𝑋 ∈ ℝ𝑑
and 𝑌 is a univariate random variable, i.e., 𝑍 = (𝑌, 𝑋).

The data are generated from the data generating process (DGP):

𝑌 = 𝜷⊤
0
𝑋 + 𝑒.

We set 𝜷0 = 1, and 𝑋 ∼ N(0, 𝐼𝑑). For the error term 𝑒, we consider two

scenarios: (i) Homoskedastic (HOM): 𝑒 = 𝜖, 𝜖 ∼N(0, 1) and (ii) Heteroskedastic
(HET): 𝑒 = 𝜖

√
0.1 + 0.1∥𝑋∥2

2
. In each trial, we obtain an estimate of 𝜷0 by

𝜷̂ = 𝜷0 + 𝛾 where 𝛾 ∼N(0, 𝛿2𝐼𝑑). In this experiment, we set 𝑑 = 5. When

𝛿 = 0, the CMR are fulfilled, whereas they are violated, i.e., 𝐻0 is false, if

𝛿 ≠ 0. Different values of 𝛿 correspond to different degrees of deviation

from the null.

Testing the simultaneous equation model (SIMEQ). Following [181]

and [163], we consider the equilibrium model

𝑄 = 𝛼𝑑𝑃 + 𝛽𝑑𝑅 +𝑈, 𝛼𝑑 < 0, (Demand)

𝑄 = 𝛼𝑠𝑃 + 𝛽𝑠𝑊 +𝑉, 𝛼𝑠 > 0, (Supply)

where 𝑄 and 𝑃 denote quantity and price, respectively, 𝑅 and 𝑊 are

exogeneous variables, and𝑈 and 𝑉 are the error terms. In this setting,

𝑍 = (𝑄, 𝑃, 𝑅,𝑊) and 𝑋 = (𝑅,𝑊). The null hypothesis can be expressed

as

𝐻0 : 𝔼

[
𝑄 − 𝛼𝑑𝑃 − 𝛽𝑑𝑅

X

𝑄 − 𝛼𝑠𝑃 − 𝛽𝑠𝑊

]
=

[
0

0

]
a.s. for some 𝜃0 = (𝛼𝑑 , 𝛽𝑑 , 𝛼𝑠 , 𝛽𝑠). We generate data according to

𝑄 = 𝜆11𝑅 + 𝜆12𝑊 + 𝑉1 and 𝑃 = 𝜆21𝑅 + 𝜆22𝑊 + 𝑉2 where 𝑅 and
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𝑊 are independent standard Gaussian random variables while 𝑉1

and 𝑉2 are correlated standard Gaussian random variables with 10
−3

variance and 10
−3/
√

2 covariance, and independent of (𝑅,𝑊). We set

(𝜆11 ,𝜆12 ,𝜆21 ,𝜆22) = (1,−1, 1, 1) and provide the details on how to find

the true parameters 𝜃0 in Appendix E.3.1. The estimate 𝜃̂ is obtained as

in the previous experiment. The null hypothesis corresponds to 𝛿 = 0

and different values of 𝛿 corresponds to alternative hypotheses. Rejecting

𝐻0 means that the functional form of the supply and demand curves are

misspecified.

Figure 6.2 depicts the empirical results for 𝑛 ∈ {1, 2, 4, 6, 8, 10} × 10
2

and 𝛿 ∈ {10
−4 , 2× 10

−3 , 4× 10
−3 , 6× 10

−3 , 8× 10
−3 , 10

−2}. First, it can be

observed that KCM, ICM, and smooth tests are all capable of detecting the

misspecification as the sample size and 𝛿 are sufficiently large. Second,

the KCM test tends to outperform both ICM and smooth tests in terms of

the test power, especially in a low sample regime (see Figure 6.2a–6.2c)

and a small deviation regime (see Figure 6.2d–6.2f). In addition, the

smooth test and the ICM test are competitive: there is no substantial

evidence to conclude that one is always better than the other. Lastly,

Figure E.1 in Appendix E.3.2 depicts that the Type-I errors of all tests are

correctly controlled at 𝛼 = 0.05.

Lastly, we point out that this work does not elaborate on the effect of

parameter estimation. In practice, the candidate parameter 𝜃̂ has to

be estimated from the observed data, which changes the asymptotic

distribution of the test statistic. We envision the interplay between

parameter estimation and hypothesis testing as an important arena for

future work.

6.7. Chapter conclusion

To conclude this chapter: we propose a new conditional moment test

called the KCM test whose statistic is based on a novel representation

of the conditional moment restrictions in a reproducing kernel Hilbert

space. This representation captures all necessary information about the

original conditional moment restrictions. Hence, the resulting test is

consistent against all fixed alternatives, is easy to use in practice, and

also has connections to existing tests in the literature. It also has an

encouraging finite-sample performance compared to those tests. While

the conditional moment restrictions have a long history in econometrics

and so does the concept of reproducing kernel Hilbert spaces in machine

learning, the intersection of these concepts remains unexplored. We

believe that this work gives rise to a new and promising framework for

conditional moment restrictions which constitute numerous applications

in econometrics, causal inference, and machine learning.
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Conclusion and outlook 7.
Hypothesis testing is a subfield of statistics that until today remained

much more in the hand of rigorous theory than other statistics-related

fields like for example supervised machine learning. While also in

supervised learning great progress has been made through theoretical

analysis, much of its empirical success is due to persistent engineering

and clever heuristics.

In this thesis we attempted to improve hypothesis tests somewhere in

between. We did not make any assumptions about how our distributions

differ and hence also were not able to theoretically show that our proce-

dures are statistically optimal in any sense. Other works are able to derive

optimal results under appropriate assumptions [65, 182]. Nevertheless

in practice, it can be either hard to make such strong assumptions or

there are still some hyperparameters left for the user to choose. We thus

focused on deriving theoretically well-motivated strategies with the goal

of improving the testing pipeline in practice. These contributions were

quite conceptual and should be applicable to a wide range of problems.

Incorporating expert knowledge about the problem at hand is thus still

left to the practitioners. Therefore, we did also not put much focus on

engineering for a particular type of data. After all, one of our main

insights (Chapter 4) was that we can reuse approaches developed for

supervised learning.

We now give an outlook on a few (non exhaustive) aspects that are

worthwhile and should be considered in the future:

1. What strategies other than selective inference can be used to avoid

data splitting?

2. Do the practical benefits of data splitting outweigh the decrease of

the set on which the significance is computed?

3. If we split the data, is there a way to choose in which proportion to

split the training and test set?

4. How do we need to adapt existing heuristics?

Avoiding data splitting. In Chapter 2 we focused on the post-selection

inference framework to circumvent data splitting. This required strong

assumptions about the distribution of the test statistic under the null

hypothesis, which limits its applications. It turns out, however, that one

can think of other approaches to circumvent data-splitting. One way is

to define a test statistic that completely contains the optimization. In

principle, it could even contain model selection and cross-validation et

cetera. In the two-sample problem, we could then still estimate valid

𝑝-values via permutations (Lemma 1.2.1). Note that in this case, however,

for each permutation the whole pipeline has to be reran, including all

engineering steps. This likely yields a prohibitive cost for many applica-

tions. Instead, in our proposed witness test one only needs to train once,

evaluate the witness on the test set once and the cost of computing the

𝐵 ∈ ℕ permutations is in practice negligibly small (Equation 4.8). We are

not aware of any work that investigated the possibility of simulating the

whole pipeline in detail.
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As we briefly introduced in the introduction using a Bonferroni correction

is a simple way to combine multiple tests, but that commonly leads

to overly conservative tests. [65, 183] recently proposed a procedure

to aggregate multiple kernel tests that determines the threshold by a

joint simulation of the aggregated test. They make an initial (empirical)

comparison to the OST introduced in Chapter 2, but from a theoretical

viewpoint it remains to be understood which approach is better.

Practical benefits of data splitting. The procedure of [65] also works

with the quadratic-time MMD estimates, thus overcoming a limitation of

our OST which relied on the less accurate linear-time estimate. However,

the aggregated test also has the limitation of only combining finitely

many predefined test statistics. This blocks to harness the benefits of

gradient-based optimization, which in turn has also been argued to be

helpful for hypothesis testing [8]. As mentioned above, if simulating

the 𝑝-value by repeating the entire optimization pipeline, of course

gradient-based optimization becomes feasible again. But beyond this, it

is hard to imagine a procedure that does not repeat the entire pipeline

and still can appropriately adjust for continuous or even non-convex

optimization strategies. As we have seen, being able to adjust the tests

required well-behaved null distributions (Chapter 2) or finitely many

tests [65]. Either way, it is important to analytically understand the

optimization. This is not the case for more general optimization strategies.

We thus conclude that for the time being, the only practically feasible

method to include complex optimization strategies is to split the data.

Beyond this, data splitting also prevents from accidental 𝑝-value hacking,

which might indeed be a problem for practitioners when handling to

complex procedures without data splitting.

Is online partitioning of data useful? Let us come back to the data-

splitting approaches once more. As we have seen in Chapters 2 and 3,

the proportion in which the data is split into training and testing part

influences the test power. Qualitatively speaking, the larger the class

of tests we optimize over, the more data should be used for training.

In the extreme case, if we do not learn anything, i.e., the test is fixed

upfront, clearly we should use no data for learning, and instead all

the data for testing. Beyond these qualitative insights, we were not

able to give guidance on choosing the splitting ratio in practice and

defaulted to a 50/50 split. But due to its relevance for the performance,

investigating the splitting ratio in more detail, seems a promising and

relevant direction for both theoretical and practical research. On the

theoretical side, understanding how the splitting ratio should be scaled

as a function of the sample size could bring important insights. For the

practical aspect, we shortly sketch a potential strategy.

Firstly, note that if we use data splitting, the testing phase should control

the Type-I error independently of the sample size used for testing. We

only need to ensure that the testing data is independent of the training

data. This allows us to dynamically assign more and more data for

training. If, say, after using 10% of the data, we estimate that using more

data for training, there is nothing that stops us from decreasing the

testing set and increasing the training set. Note that, of course, the other
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way is not allowed, i.e., once some data was in the training set, we cannot

put it back into the test set.

A rough idea for a strategy in case of a witness two-sample test could

be the following: during training one keeps an estimate of the SNR of

the witness function. Using the asymptotic distribution and the size of

the held-out samples, one could then estimate the probability that the

test would reject given the prespecified level 𝛼. On the other hand, one

could try to track how much the SNR would improve if more data was

used for training. Based on this information one could estimate whether

improving the SNR at the cost of a decreased test set could improve the

test power. If this is the case, one could assign more data to the learning

phase. Otherwise one stops the training and continues with the testing

phase. Working out such a strategy would give us yet another practical

tool to optimize hypothesis tests.

Adaption of heuristics. While our contributions are theoretically

founded, this thesis is nevertheless also a call for pragmatism in hy-

pothesis testing. We showed that we can largely incorporate tools and

heuristics that initially are developed for other tasks. While our empirical

results show that this works well, it is nevertheless conceivable that some

heuristics need adaption. One reason is that when testing hypotheses,

the signal might generally be much lower than, say, in a standard classi-

fication task, where one knows that the classes are different and solely

maximizes performance.

Statistical significance does not imply relevance. We end this thesis

with some remarks of cautiousness. We focused on making tests as

powerful as possible. If a test rejects, we conclude that there is a statistically

significant violation of the null hypothesis. But this does not necessarily

imply that this violation is relevant in the considered setting. Firstly,

notice that even the faintest violation can be detected if the datasets are

appropriately large. Secondly, the detected violation, although strong,

might be irrelevant for us. In the two-sample problem, imagine we would

compare image data, collected at two hospitals. Our goal would be to

test whether there is a difference in the groups from which the data

was collected. But additionally there is a defect in one pixel at the first

hospitals imaging device. Our test might then spot this and reject the null

hypothesis, although this is not what we initially looked for. There are a

few ways to prevent such situations. After detecting a significant violation

of the null hypothesis, one could interpret the data to understand how

this violation came about. In the two-sample problem, this could be done

by interpreting the data as in Subsection 4.3.3 and Figure 4.2. Experts

should then be able to determine whether the found difference is indeed

relevant to them. An alternative way is to test the hypothesis on pretrained

features that are relevant to the task at hand. In the distribution shift

benchmark, for example, we did this by using pretrained features. [18]

also classified shifts into harmful and harmless changes. Recently, [93] also

tried to detect relevant changes in distributions.
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Appendix of Chapter 2 A.
A.1. Proof of Theorem 2.3.2

In this section we prove the main theorem. The outline of the proof is as

follows: We first characterize the "selection event", i.e., we characterize

under which conditions each active set U is selected. This is done

with Lemmas A.1.1 and A.1.2. For the case 𝑙 = 1 we then show that

the PSI framework of [17] can be applied and we recover the result

of Corollary 2.3.1. It is not surprising, that for the case 𝑙 = 1 the PSI

framework works, since U corresponds to a single fixed 𝜷∗ and the

probability of selecting it is greater than 0. For the case 𝑙 ≥ 2, we

show, that the considered test statistic essentially takes the same form

as the Wald test but only on the active dimensions. Thus it follows a

𝜒𝑙 distribution. This distribution does not change even if we explicitly

condition on the selection of U. This is because the randomness that

determines which active set is selected is independent of the value of

the selected test statistic. Before we start with the proof we collect some

notation we introduce for the proof.

Notation:

▶ The objective of the optimization 𝑓 (𝜷) :=
𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

.

▶ Projector onto the active subspace (leaving the dependency on U

implicit):

Π :=
∑
𝑢∈U

𝑒𝑢𝑒
⊤
𝑢 ,

where 𝑒𝑢 denotes the 𝑢-th Cartesian unit vector in ℝ𝑑
.

▶ 𝒛 :=

(
𝐼𝑑 − Σ𝜷∗𝜷∗⊤

𝜷∗⊤Σ𝜷∗

)
𝝉 = 𝝉 − Σ𝜷∗ 𝜷∗⊤𝝉

𝜷∗⊤Σ𝜷∗ .

▶ Σ̄ denotes the pseudoinverse of ΠΣΠ.

As a first step, we need to characterize which values of 𝝉 correspond

to which active set U. This is done with Lemma A.1.1, which we prove

separately in Appendix A.1.1.

Lemma A.1.1 Let U := {𝑢 | 𝛽∗𝑢 ≠ 0}. Then,

𝜷∗ = argmax

∥𝜷∥=1,𝜷≥0

𝜷⊤𝝉

(𝜷⊤Σ𝜷) 1

2

if and only if all of the following conditions hold:

1. 𝜕
𝜕𝛽𝑢

𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

����
𝜷=𝜷∗

{
≤ 0 if 𝑢 ∉ U (𝑎),
= 0 if 𝑢 ∈ U (𝑏),

2. 𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

≥ 𝜏𝑢√
Σ𝑢𝑢

, ∀𝑢 ∉ U,

3. 𝜷∗𝑢 = 0 ∀𝑢 ∉ U (𝑎),
𝜷∗𝑢 > 0 ∀𝑢 ∈ U (𝑏),
∥𝜷∗∥ = 1 (c).
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Intuitively, Condition 1(b) ensures that 𝜷∗ is a local maximum of the

objective function for the active dimensions. Condition 1(a) ensures that

if 𝑢 ∉ U, increasing 𝛽∗𝑢 does not improve the SNR. Condition 2 is harder

to interpret, but is needed in cases where all entries of 𝝉 are negative.

Condition 3 enforces that 𝜷∗ lies in the feasible set of Equation 2.7.

Note that 𝜷∗⊤𝝉 is essentially a one-dimensional RV. We define another

random variable

𝒛 :=

(
𝐼𝑑 −

Σ𝜷∗𝜷∗⊤

𝜷∗⊤Σ𝜷∗

)
𝝉 = 𝝉 − Σ𝜷∗

𝜷∗⊤𝝉

𝜷∗⊤Σ𝜷∗
. (A.1)

In Appendix A.1.2, we show that 𝒛 is closely related to the partial

derivatives of the objective function and we have

𝜕

𝜕𝛽𝑢

𝜷⊤𝝉

(𝜷⊤Σ𝜷) 1

2

�����
𝜷=𝜷∗

=
𝒛(

𝜷∗⊤Σ𝜷∗
) 1

2

. (A.2)

We can then rewrite the conditions of Lemma A.1.1 as follows.

Lemma A.1.2 The conditions of Lemma A.1.1 are equivalent to

1.

{
𝑧𝑢 ≤ 0 ∀𝑢 ∉ U (𝑎),
𝑧𝑢 = 0 ∀𝑢 ∈ U (𝑏),

2. 𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

≥ V−(𝒛), with

V−(𝒛) := max𝑢∉U
𝑧𝑢 (𝜷∗⊤Σ𝜷∗)

1

2

Σ
1

2

𝑢𝑢 (𝜷∗⊤Σ𝜷∗)
1

2 −(Σ𝜷∗)𝑢
,

3. 𝜷∗𝑢 = 0 ∀𝑢 ∉ U (𝑎),
𝜷∗𝑢 > 0 ∀𝑢 ∈ U (𝑏),
∥𝜷∗∥ = 1 (c).

Proof of Lemma A.1.2. Condition 1 directly follows from (A.2). The second

condition follows by inserting the definition of 𝒛

𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗) 1

2

≥ 𝜏𝑢√
Σ𝑢𝑢

⇔
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗) 1

2

≥ 𝑧𝑢√
Σ𝑢𝑢
+ 𝑒⊤𝑢 Σ𝜷∗

𝜷∗⊤𝝉

𝜷∗⊤Σ𝜷∗
√
Σ𝑢𝑢

⇔
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗) 1

2

(
1 −

𝑒⊤𝑢 Σ𝜷
∗

(𝜷∗⊤Σ𝜷∗) 1

2

√
Σ𝑢𝑢

)
≥ 𝑧𝑢√

Σ𝑢𝑢

⇔
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗) 1

2

(
(𝜷∗⊤Σ𝜷∗) 1

2

√
Σ𝑢𝑢 − 𝑒⊤𝑢 Σ𝜷∗

)
≥ 𝑧𝑢(𝜷∗⊤Σ𝜷∗) 1

2

⇔
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗) 1

2

≥
𝑧𝑢(𝜷∗⊤Σ𝜷∗) 1

2(
(𝜷∗⊤Σ𝜷∗) 1

2

√
Σ𝑢𝑢 − 𝑒⊤𝑢 Σ𝜷∗

) ,
where we used Σ

1

2

𝑢𝑢(𝜷∗⊤Σ𝜷∗)
1

2 − (Σ𝜷∗)𝑢 > 0, which holds since Σ is

positive and we only consider 𝑢 such that 𝑒𝑢 ≠ 𝜷∗.
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Figure A.1.: Numerical verification of

Theorem 2.3.2. For the histogram, we

generate a random covariance matrix

Σ ∈ ℝ4×4
and sample 𝝉 ∼ N(0,Σ). We

solve (2.7) and only accept the samples

for which the active set is U = {1, 2}.
The orange line is the theoretical dis-

tribution according to Theorem 2.3.2,

which is given by a chi distribution

with two degrees of freedom. For the

specific example the acceptance rate is

𝑃(U= {1, 2}) ≈ 4%.

1: For intuition, assume without loss of

generality that U= {1, . . . , 𝑙}. The pseu-

doinverse is then simply the inverse of

the 𝑙 × 𝑙 blockmatrix padded with zeros.

Note that V−(𝒛) is always non-positive by Condition 1 and the positivity

of Σ. With the above two lemmas we are able to prove Theorem 2.3.2.

Proof of Theorem 2.3.2. We prove the two cases 𝑙 = 1 and 𝑙 ≥ 2 separately.

1.): Let 𝑢∗ ∈ [𝑑] such that U= {𝑢∗}. In this case, by Condition 3, 𝜷∗ = 𝑒𝑢∗ .

We shall now see how Lemma A.1.2 constrains the distribution of 𝜏𝑢∗ .
For Condition 1(b), we have 𝑧𝑢∗ = 0 by the definition of 𝒛. So there only

remain the constraints 1(a) and 2. Using the definition (A.1) of 𝒛, we can

rewrite 1(a) as((
𝐼𝑑 − Σ𝑒𝑢∗

𝑒⊤𝑢∗

Σ𝑢∗𝑢∗

)
𝝉

)
𝑢

≤ 0 ∀𝑢 ∉ U⇐⇒ 𝐴[1(𝑏)]𝝉 ≤ 0,

where 𝐴[1(𝑏)] is the matrix

(
𝐼𝑑 − Σ𝑒𝑢∗

𝑒⊤
𝑢∗

Σ𝑢∗𝑢∗

)
and we used that its 𝑢-th

row contains only zeros. Note that Condition 2 is the same as used in

Subsection 2.3.1. Thus we can define the matrix 𝐴[2] as we do in the proof

of Corollary 2.3.1. We have now all the remaining constraints as linear

inequalities of 𝝉 and thus we can find the conditional distribution by

applying Theorem A.3.1. Defining 𝜼 =
𝑒𝑢∗

(𝜷∗𝑇Σ𝜷∗)
1

2

and 𝒄 := Σ𝜼 (𝜼⊤Σ𝜼)−1

,

we get 𝐴[1(𝑏)]𝒄 = 0. Note that whenever (𝐴𝒄)𝑗 = 0, the constraint does

not change anything in Theorem A.3.1. Thus the result follows by using

𝐴 = 𝐴[2] and application of Theorem A.3.1.

An alternative proof can be done by noting that 𝒛 is independent of

𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

if we consider 𝜷∗ = 𝑒𝑢∗ as fixed. Thus, the fulfillment of Condi-

tion 1b) is independent of

𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

. Since the unconditional distribution

of

𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

follows a standard normal, adding Condition 2 results in a

truncated normal.

2.) Next, we consider the case |U| ≥ 2. Again we will be considering

the conditions as stated in Lemma A.1.2. As we state in Equation A.9,

we have 𝜷∗⊤𝝉 ≥ 0 and thus Condition 2 is fulfilled, since V− is always

non-positive. Thus, we can neglect Condition 2. Our first step will be

to find a closed form function ℎU such that 𝜷∗ = ℎU(𝝉) (this function

will only hold true if U is actually the active set). Defining the projector

onto the active subspace Π :=
∑
𝑢∈U 𝑒𝑢𝑒

⊤
𝑢 , by Condition 3(a) we have

𝜷∗ = Π𝜷∗. Using Equation A.1, we can rewrite Condition 1(b) as

Π𝒛 = 0
(A.1)

⇔ Π𝝉 = ΠΣ𝜷∗
𝜷∗⊤𝝉

𝜷∗⊤Σ𝜷∗

3(𝑎)
⇔ Π𝝉 = ΠΣΠ𝜷∗

𝜷∗⊤𝝉

𝜷∗⊤Σ𝜷∗
. (A.3)

This defines a system of 𝑙 non-trivial equations and by Condition 3, 𝜷∗

has 𝑙 free parameters. We define Σ̄ as the pseudoinverse of ΠΣΠ.
1

For

the pseudoinverse it is easy to show Σ̄ = ΠΣ̄ = Σ̄Π. Since Σ has full

rank, a possible solution of Equation A.3 necessarily has to be of the

form 𝜷∗ = 𝑐 · Σ̄𝝉 for some 𝑐 ∈ ℝ. Plugging this into Equation A.3, we get

𝑐 =
𝜷∗⊤Σ𝜷∗

𝜷∗⊤𝝉 . Using Equation A.9 we get 0 ≤ 𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

= 1

𝑐 . Hence, 𝑐 ≥ 0.

Using ∥𝜷∗∥ = 1 we get 𝑐 = 1

∥Σ̄𝝉∥ . Thus, given that the active set is U, we
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found a closed-form solution for 𝜷∗ as a function of 𝝉, i.e.,

𝜷∗ = ℎU(𝝉) :=
Σ̄𝝉

∥Σ̄𝝉∥
. (A.4)

Note that so far we did not use Condition 3(b), so this formula itself does

not ensure the positivity of 𝜷∗.

Replacing 𝜷∗ in the definition (A.1) of 𝒛 with its closed form, the constant

𝑐 cancels, and we get

𝒛 = 𝝉 − ΣΣ̄𝝉.

Note that Σ̄ΠΣΠΣ̄ = Σ̄ and (ΣΣ̄)𝑢𝑢′ = 𝛿𝑢𝑢′ if 𝑢, 𝑢′ ∈ U. This implies that

𝑧𝑢 = 0 if 𝑢 ∈ U and thus also 𝒛⊤Σ̄𝝉 = 0.

Let us now define 𝑋̃ := (Σ̄) 1

2 𝝉, resulting in 𝑋̃𝑢 = 0 for all 𝑢 ∉ U. Since

𝑋̃ and 𝒛 are both linear transformations of 𝝉 they are jointly normally

distributed. In Appendix A.1.3 we show that 𝑋̃ and 𝒛 are uncorrelated.

This, together with the joint normality, implies that they are independent,

i.e.,

𝑋̃ ⊥⊥ 𝒛. (A.5)

Further the non-zero coordinates of 𝑋̃ are jointly distributed according

to a 𝑙-dimensional standard normal distribution. Hence, its euclidean

norm follows a chi-distribution

∥𝑋̃∥2 ∼ 𝜒𝑙 . (A.6)

Let us summarize how we used all the conditions of Lemma A.1.2 and

finish the proof. We used 1(b), 3(a), and 3(c) to show Equation A.4. We

thus still need to condition on 1(a), and 3(b). Conditioning on 1(a) can

be done using the independence of 𝒛 and 𝑋̃. To condition on 3(b), we

rewrite it in terms of 𝑋̃, i.e., for all 𝑢 ∈ Uwe have

𝜷∗𝑢 > 0⇔
(
Σ̄𝝉

)
𝑢
⇔

(
(Σ̄) 1

2 𝑋̃
)
𝑢
> 0⇔

(
(Σ̄) 1

2

𝑋̃

∥𝑋̃∥

)
𝑢

> 0.

Thus it only depends on the direction of 𝑋̃. Since the non-trivial entries

of 𝑋̃ follow a standard normal, the direction of 𝑋̃ is independent of its

norm, i.e.,

∥𝑋̃∥2 ⊥⊥
𝑋̃

∥𝑋̃∥2
. (A.7)

In the end we get[
𝜷∗𝝉

(𝜷∗Σ𝜷∗) 1

2

��
Conditions 1, 2, 3

]
(A.4)

→ 𝑑
=

[
𝝉⊤Σ̄𝝉

(𝝉Σ̄𝝉) 1

2

��
Conditions 1(𝑎), 3(𝑏)

]
𝑑
=

[
∥𝑋̃∥2

�� {𝑧𝑢 ≤ 0 ∀𝑢 ∉ U,(
(Σ̄) 1

2
𝑋̃

∥𝑋̃∥

)
𝑢
> 0 ∀𝑢 ∈ U

]
(A.5)

→
(A.7)

𝑑
=

[
∥𝑋̃∥2

] 𝑑
= 𝜒𝑙 .
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A.1.1. Proof of Lemma A.1.1

Proof of Lemma A.1.1. Since the objective is a homogeneous function of

order zero in 𝜷, we can make the proof by considering the optimization

without the constraint ∥𝜷∥ = 1.

The necessity of the conditions is trivial to show. We thus only show the

sufficiency. The fourth condition ensures that 𝜷∗ is in the feasible set. For

the other conditions, assume there exists 𝝃 ∈ ℝ𝑑
such that 𝜉𝑢 ≥ 0 for

all 𝑢 ∈ [𝑑] and
𝝃⊤𝝉

(𝝃⊤Σ𝝃)
1

2

>
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

. In the following we show that this

implies that at least one of the conditions above is violated, and hence

the conditions are sufficient. We separate two cases, 𝑖)where 𝜷∗⊤𝝉 ≥ 0,

and 𝑖𝑖) 𝜷∗⊤𝝉 < 0.

i) Assume 𝜷∗⊤𝝉 ≥ 0. We have

𝝃⊤∇𝜷
𝜷⊤𝝉(

𝜷⊤Σ𝜷
) 1

2

������
𝜷=𝜷∗

=
∑
𝑢∈[𝑑]

𝜉𝑢
𝜕

𝜕𝛽𝑢

𝜷⊤𝝉(
𝜷⊤Σ𝜷

) 1

2

������
𝜷=𝜷∗

=
𝝃⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 1

2

−
𝜷∗⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 3

2

𝝃⊤Σ𝜷∗

=
(𝝃⊤Σ𝝃)

1

2(
𝜷∗⊤Σ𝜷∗

) 1

2

©­« 𝝃⊤𝝉

(𝝃⊤Σ𝝃)
1

2

−
𝜷∗⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 1

2

𝝃⊤Σ𝜷∗(
𝜷∗⊤Σ𝜷∗

) 1

2 (𝝃⊤Σ𝝃)
1

2

ª®¬
>
(𝝃⊤Σ𝝃)

1

2(
𝜷∗⊤Σ𝜷∗

) 1

2

©­«
𝜷∗⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 1

2

−
𝜷∗⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 1

2

𝝃⊤Σ𝜷∗(
𝜷∗⊤Σ𝜷∗

) 1

2 (𝝃⊤Σ𝝃)
1

2

ª®¬
=
(𝝃⊤Σ𝝃)

1

2(
𝜷∗⊤Σ𝜷∗

) 1

2

𝜷∗⊤𝝉(
𝜷∗⊤Σ𝜷∗

) 1

2

©­«1 −
𝝃⊤Σ𝜷∗(

𝜷∗⊤Σ𝜷∗
) 1

2 (𝝃⊤Σ𝝃)
1

2

ª®¬
≥ 0,

where we used the assumption
𝝃⊤𝝉

(𝝃⊤Σ𝝃)
1

2

>
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

for the first

inequality and 𝜷∗⊤𝝉 ≥ 0 and the Cauchy-Schwarz inequality to

arrive at the last line. Since, by assumption, 𝜉𝑢 ≥ 0 for all 𝑢, this

implies
𝜕

𝜕𝛽𝑢

𝜷⊤𝝉

(𝜷⊤Σ𝜷)
1

2

�����
𝜷=𝜷∗

> 0 for some 𝑢 and thus is a contradiction

to Condition 1.

ii) Assume 𝜷∗⊤𝝉 < 0. We define 𝑢∗ = argmax

𝑢∈[𝑑]

𝜏𝑢

(𝑒⊤𝑢 Σ𝑒𝑢)
1

2

. By the third

condition and the assumption 𝜷∗⊤𝝉 < 0, we have

0 >
𝜷∗⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 1

2

≥ 𝜏𝑢∗(
𝑒⊤𝑢∗Σ𝑒𝑢∗

) 1

2

.
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This implies 𝜏𝑢∗ < 0. We then get

𝝃⊤𝝉

(𝝃⊤Σ𝝃)
1

2

=
∑
𝑢∈[𝑑]

𝜉𝑢
𝜏𝑢

(𝝃⊤Σ𝝃)
1

2

=
∑
𝑢∈[𝑑]

𝜉𝑢
𝜏𝑢 (𝑒⊤𝑢 Σ𝑒𝑢)

1

2

(𝝃⊤Σ𝝃)
1

2 (𝑒⊤𝑢 Σ𝑒𝑢)
1

2

≤
∑
𝑢∈[𝑑]

𝜉𝑢
𝜏𝑢∗ (𝑒⊤𝑢 Σ𝑒𝑢)

1

2(
𝑒⊤𝑢∗Σ𝑒𝑢∗

) 1

2 (𝝃⊤Σ𝝃)
1

2

=
𝜏𝑢∗(

𝑒⊤𝑢∗Σ𝑒𝑢∗
) 1

2

∑
𝑢∈[𝑑] 𝜉𝑢(𝑒⊤𝑢 Σ𝑒𝑢)

1

2

(𝝃⊤Σ𝝃)
1

2

≤ 𝜏𝑢∗(
𝑒⊤𝑢∗Σ𝑒𝑢∗

) 1

2

≤
𝜷∗⊤𝝉(

𝜷∗⊤Σ𝜷∗
) 1

2

,

where to arrive at the last line we used 𝜏𝑢∗ < 0 and the

triangle inequality

∑
𝑢∈[𝑑] 𝜉𝑢(𝑒⊤𝑢 Σ𝑒𝑢)

1

2 =
∑
𝑢∈[𝑑] 𝜉𝑢 ∥Σ

1

2 𝑒𝑢 ∥ ≥
∥∑𝑢∈[𝑑] 𝜉𝑢Σ

1

2 𝑒𝑢 ∥ = ∥Σ 1

2 𝝃∥ = (𝝃⊤Σ𝝃)
1

2
. Thus this violates the

assumption
𝝃⊤𝝉

(𝝃⊤Σ𝝃)
1

2

>
𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

.

Note that the above inequalities also hold for

𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

. Thus we

get that

𝜷∗⊤𝝉

(𝜷∗⊤Σ𝜷∗)
1

2

=
𝜏𝑢∗

(𝑒⊤𝑢∗Σ𝑒𝑢∗)
1

2

. This implies that 𝑙 = |U| = 1. Thus

the following statements hold true:

𝑖) 𝜷∗⊤𝝉 < 0 ⇒ 𝑙 = 1, (A.8)

𝑖𝑖) 𝑙 ≥ 2 ⇒ 𝜷∗⊤𝝉 ≥ 0. (A.9)

A.1.2. Gradient of objective

We overload the notation and define 𝒛 := 𝝉 − Σ𝜷
𝜷⊤𝝉
𝜷⊤Σ𝜷 similar as in

Equation A.1 but for any 𝜷. Then

∇𝜷 𝑓 (𝜷) = ∇𝜷 ©­«
𝜷⊤𝝉(

𝜷⊤Σ𝜷
) 1

2

ª®¬
=
(𝜷⊤Σ𝜷) 1

2∇𝜷(𝜷⊤𝝉) − 𝜷⊤𝝉∇𝜷((𝜷⊤Σ𝜷)
1

2 )
𝜷⊤Σ𝜷

=
(𝜷⊤Σ𝜷) 1

2 𝝉 − 1

2
𝜷⊤𝝉((𝜷⊤Σ𝜷)− 1

2 ) · 2𝜷⊤Σ
𝜷⊤Σ𝜷

=
1

(𝜷⊤Σ𝜷) 1

2

(
𝝉 − Σ𝜷

(
𝜷⊤𝝉

(𝜷⊤Σ𝜷)

))
(A.10)

=
1

(𝜷⊤Σ𝜷) 1

2

𝒛.

A.1.3. Proof of Equation A.5

In the proof of Theorem 2.3.2 we used that 𝑋̃ and 𝒛 are independent.

Which we prove here. Since 𝑋̃ and 𝒛 are jointly normal, we only need to
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[6]: Gretton et al. (2012), Optimal kernel
choice for large-scale two-sample tests

show that they are uncorrelated. To do so recall that we are only interested

in the distribution under the null and hence 0 = 𝔼 [𝝉] = 𝔼
[
𝑋̃

]
= 𝔼 [𝒛].

Since 𝑋̃𝑢 = 0 for all 𝑢 ∉ U and 𝒛′𝑢 = 0 for all 𝑢′ ∈ U, it suffices to show

that 𝑋̃𝑗 is uncorrelated with 𝑧𝑖 for all 𝑖 ∉ U, 𝑗 ∈ U.

Cov

[
𝑧𝑖 , 𝑋̃𝑗

]
= 𝔼

[
𝑧𝑖𝑋̃𝑗

]
= 𝔼

[ (
𝜏𝑖 − (ΣΣ̄𝝉)𝑖

)
((Σ̄) 1

2 𝝉)𝑗
]

=
∑
𝑢∈U
((Σ̄) 1

2 )𝑗𝑢𝔼 [𝜏𝑖 , 𝜏𝑢] −
∑

𝑠,𝑡 ,𝑢∈U
((Σ̄) 1

2 )𝑗𝑢Σ𝑖𝑠Σ̄𝑠𝑡𝔼 [𝜏𝑡𝜏𝑢]

=
∑
𝑢∈U
((Σ̄) 1

2 )𝑗𝑢Σ𝑖𝑢 −
∑

𝑠,𝑡 ,𝑢∈U
((Σ̄) 1

2 )𝑗𝑢Σ𝑖𝑠Σ̄𝑠𝑡Σ𝑡𝑢

=

(
(Σ̄) 1

2Σ

)
𝑗𝑖
−

(
ΣΣ̄Σ(Σ̄) 1

2

)
𝑖 𝑗

=

(
(Σ̄) 1

2Σ

)
𝑗𝑖
−

(
Σ(Σ̄) 1

2

)
𝑖 𝑗
= 0.

Thus 𝑋̃ and 𝒛 are uncorrelated and independent.

A.2. Solution of the continuous optimization
problem

The presented solution is similarly described in Section 4 of [6]. There an

𝐿1 norm constraint was used, which, however does not change anything.

For completeness we include it here. We define

𝑓 (𝜷) :=
𝜷⊤𝝉

(𝜷⊤Σ𝜷) 1

2

,

and we want to find

𝜷∗ = argmax

𝜷≥0,∥𝜷∥=1

𝜷⊤𝝉

(𝜷⊤Σ𝜷) 1

2

.

Since 𝑓 is a homogeneous function of order 0 in 𝜷 we have 𝑓 (𝑐𝜷) = 𝑓 (𝜷)
for any 𝑐 > 0. We can thus solve the relaxed problem (we implicitly

exclude 𝜷 = 0)

𝜷′ = argmax

𝜷≥0
𝑓 (𝜷).

The solution of the original problem is then simply given as a rescaled

version of the relaxed problem 𝜷∗ =
𝜷′

∥𝜷′∥ . We shall solve the relaxed

problem for two different cases.

i) ∃𝑢 ∈ [𝑑] : 𝜏𝑢 ≥ 0.

In this case, we know that max𝜷≥0 𝑓 (𝜷) ≥ 0 and hence 𝜷′ =

argmax

𝜷≥0
𝑓 (𝜷) ⇔ 𝜷′ = argmax

𝜷≥0
𝑓 (𝜷)≥0

𝑓 2(𝜷). The set 𝑆 := {𝜷 ∈ ℝ𝑑 |𝜷 ≥

0, 𝑓 (𝜷) ≥ 0} is convex and the functions 𝑔1(𝜷) := (𝜷⊤𝝉)2 and

𝑔2(𝜷) := 𝜷⊤Σ𝜷 are convex (recall that Σ is a positive matrix). Thus
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our problem becomes

𝜷′ = argmax

𝜷∈𝑆

𝑔1(𝜷)
𝑔2(𝜷)

,

which is a concave fractional program. In our implementation we

solve it by fixing 𝜷⊤𝝉 = 𝑎 for some 𝑎 > 0 and then minimizing

the denominator. Thus we are solving the quadratic optimization

problem

minimize 𝜷⊤Σ𝜷

subject to: 𝜷 ≥ 0
𝜷⊤𝝉 = 𝑎.

We solve this problem with the CVXOPT python package [184].

ii) 𝜏𝑢 < 0∀𝑢 ∈ [𝑑].
In this case we have 𝜷∗⊤𝝉 < 0. By Equation A.9 we have 𝑙 = 1. Thus

we simply have 𝜷∗ = 𝑒𝑢∗ , where 𝑢∗ = argmax

𝑢∈[𝑑]

𝜏𝑢
Σ𝑢,𝑢

.

Note that in the case 𝝉 = 0, 𝜷∗ is not well defined and we could randomly

select any 𝜷∗. However, the probability of this happening is 0.

A.3. Other proofs

A.3.1. Proof of Corollary 2.3.1

As we pointed out in the Subsection 2.3.1, when selecting a test from a

countable number of test that can be written as projections of the base

tests 𝝉 we can use the results of [17]. For completeness we explicitly

include their relevant Theorem 5.2.

Theorem A.3.1 (Polyhedral Lemma) Let 𝝉 ∼ N(𝝁,Σ), 𝜼, 𝝁 ∈ ℝ𝑑, Σ ∈
ℝ𝑑×𝑑 positive definite, and 𝐴 ∈ ℝ𝑠×𝑑, 𝒃 ∈ ℝ𝑠 for some 𝑠 ∈ ℕ. Define
𝒄 := Σ𝜼 (𝜼⊤Σ𝜼)−1 and 𝒛 := (𝐼𝑑 − 𝒄𝜼⊤) 𝝉. Then we have[

𝜼⊤𝝉|𝐴𝝉 ≤ 𝒃, 𝒛 = 𝒛̂
] 𝑑
= TN

(
𝜼⊤𝝁, 𝜼⊤Σ𝜼, V−(𝒛̂), V+(𝒛̂)

)
,

where TN(𝜇, 𝜎2 , 𝑎, 𝑏) denotes a Gaussian distribution with mean 𝜇 and
variance 𝜎2 that is truncated at 𝑎 and 𝑏. Here

V−(𝒛) := max

𝑗:(𝐴𝒄)𝑗<0

𝒃 𝑗 − (𝐴𝒛)𝑗
(𝐴𝒄)𝑗

, V+(𝒛) := min

𝑗:(𝐴𝒄)𝑗>0

𝒃 𝑗 − (𝐴𝒛)𝑗
(𝐴𝒄)𝑗

.

Note that 𝒄 is simply a fixed vector. 𝒛 is a random variable that can

be shown to be independent of 𝜼⊤𝝉. The result enables us to draw a

realization 𝝉̂ of the random variable (RV) 𝝉 and select 𝜼 if 𝐴𝝉̂ ≤ 𝒃.

Since the truncation points of the Gaussian only depend on 𝒛̂, and 𝒛 is

independent of 𝜼⊤𝝉, we can compute a reliable 𝑝-value of 𝜼⊤𝝉̂ by using

Theorem A.3.1.

Proof of Corollary 2.3.1. We need the distribution of
𝜏𝑢∗
𝜎𝑢∗

after condition-

ing on the selection of 𝑢∗. To obtain this distribution we first need to
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characterize the event that leads to the selection of 𝑢∗. The selection

event simply is 𝑢∗ = argmax

𝑢∈[𝑑]

𝜏𝑢
𝜎𝑢
⇔ 𝜏𝑢∗

𝜎𝑢∗
≥ 𝜏𝑢

𝜎𝑢
for all 𝑢 ∈ [𝑑]. Therefore,

define the matrix 𝐴 := diag( 1

𝜎1

, . . . , 1

𝜎𝑑
)− 1

𝜎𝑢∗
𝐴(𝑢∗), where diag(·) defines

a 𝑑 × 𝑑 matrix with the arguments on its diagonal and zeros everywhere

else and 𝐴(·) is a 𝑑 × 𝑑 matrix with ones in the column given by its

argument and zeros everywhere else. It follows that (𝐴𝝉)𝑗 =
𝜏𝑗
𝜎𝑗
− 𝜏𝑢∗

𝜎𝑢∗
,

and 𝑢∗ = argmax

𝑢∈[𝑑]

𝜏𝑢
𝜎𝑢

is equivalent to 𝐴𝝉 ≤ 0 =: 𝒃. Apart from this we

define 𝜼 :=
𝑒𝑢∗
𝜎𝑢∗

, so that 𝜼⊤𝝉 =
𝜏𝑢∗
𝜎𝑢∗

. Then we can define 𝒄 := Σ𝜼 (𝜼⊤Σ𝜼)−1

and 𝒛 := (𝐼𝑑 − 𝒄𝜼⊤) 𝝉 as in Theorem A.3.1, and denote by 𝒛̂ the value of

the random variable 𝒛 that we observed (note that this coincides with

the definition we used for 𝒛 in the Corollary). By our definitions we

have (𝐴𝒄)𝑗 =
Σ𝑗𝑢∗/𝜎𝑗−𝜎𝑢∗

𝜎𝑢∗
= 1

𝜎𝑢∗ 𝜎𝑗

(
Σ𝑢∗ 𝑗 − 𝜎∗𝑢𝜎𝑗

)
. Since Σ is positive definite,

(𝐴𝒄)𝑗 < 0 if 𝑗 ≠ 𝑢∗ and (𝐴𝒄)𝑢∗ = 0. Thus according to Theorem A.3.1,

V+ is an optimization over an empty set and we can set it to∞. Further

(𝐴𝒛)𝑗 = 1

𝜎𝑢∗ 𝜎𝑗

(
𝜏𝑗𝜎𝑢∗ −

Σ𝑢∗ 𝑗
𝜎𝑢∗

𝜏𝑢∗
)
. Combining the previous two expressions

we obtain

−(𝐴𝒛)𝑗
(𝐴𝒄)𝑗 =

𝜏𝑗𝜎𝑢∗−
Σ𝑢∗ 𝑗
𝜎𝑢∗

𝜏𝑢∗

𝜎∗𝑢𝜎𝑗−Σ𝑢∗ 𝑗 =
𝜎𝑢∗ 𝑧 𝑗

𝜎∗𝑢𝜎𝑗−Σ𝑢∗ 𝑗 . We can then directly apply

Theorem A.3.1 and the result follows.

A.3.2. Proof of Equation 2.3

In Section 2.3 we omitted the proof of the closed form solution of 𝜷∞. We

thus need to show

argmax

∥𝜷∥=1

𝜷⊤𝝁

(𝜷⊤Σ𝜷) 1

2

=
Σ−1𝝁

∥Σ−1𝝁∥ .

Proof. We are only interested in 𝜷∞ if the alternative hypothesis is true

and thus at least one entry of 𝝁 is positive. We further assume that

the covariance Σ has full rank. Hence there exists a 𝑏 > 0 such that

𝜷⊤Σ𝜷 > 𝑏 for all 𝜷 with ∥𝜷∥ = 1, i.e., the denominator (𝜷⊤Σ𝜷) 1

2 is

strictly positive and has a lower bound. Since 𝝁 ≠ 0, this implies that

max∥𝜷∥=1

𝜷⊤𝝁

(𝜷⊤Σ𝜷)
1

2

> 0. Also the nominator has an upper bound which

is given by 𝜷⊤𝝁 ≤ 𝝁⊤𝝁/∥𝝁∥ if ∥𝜷∥ = 1. Hence the whole maximization

is upper bounded. Since the unit sphere in ℝ𝑑
is a compact set, we can

conclude that the maximum of the objective is attained. Thus it suffices to

show that for all 𝜷 ≠ 𝜷∞ the objective is not maximized. In the following,

we use that the objective of the maximization is a homogeneous function

of order 0 in 𝜷 and hence we can relax the constraint ∥𝜷∥ = 1 to 𝜷 ≠ 0
(note that this not affect the existence of the maximum). As we showed

in Appendix A.1.2, the gradient of the objective function is given by

∇𝜷
𝜷⊤𝝁

(𝜷⊤Σ𝜷) 1

2

=
1

(𝜷⊤Σ𝜷) 1

2

(
𝝁 − Σ𝜷

(
𝜷⊤𝝁

(𝜷⊤Σ𝜷)

))
.

Setting the gradient to zero we obtain

∇𝜷
𝜷⊤𝝁

(𝜷⊤Σ𝜷) 1

2

= 0⇔ 𝜷 = 𝑐 · Σ−1𝝁 for some 𝑐 ∈ ℝ.
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If 𝑐 < 0 the objective attains a negative value, since Σ−1
is a strictly

positive matrix, and thus does not correspond to the global maximum,

which we already know to be positive. Thus, the maximum has to be

attained for some 𝑐 > 0. Using the constraint ∥𝜷∥ = 1 it follows that the

global optimum is attained at 𝜷∞.

A.4. Experimental details and further
experiments

We first give some details on the experiments we showed in Section 2.5.

For all the experiments we start with a set of 𝑑 base kernels K =

[𝑘1 , . . . , 𝑘𝑑] that are chosen independently of the observed data samples

𝕏 = {𝑥1 , . . . , 𝑥2𝑛} ∼ 𝑃2𝑛
and 𝕐 = {𝑦1 , . . . , 𝑦2𝑛} ∼ 𝑄2𝑛

. First, we define

𝑧𝑖 := (𝑥𝑖 , 𝑥𝑛+𝑖 , 𝑦𝑖 , 𝑦𝑛+𝑖) and compile 𝕏 and 𝕐 into = {𝑧1 , . . . , 𝑧𝑛}. For

each kernel we define ℎ𝑖(𝑧) := ℎ𝑖(𝑥, 𝑥′, 𝑦, 𝑦′) := 𝑘𝑖(𝑥, 𝑥′) + 𝑘𝑖(𝑦, 𝑦′) −
𝑘𝑖(𝑥, 𝑦′)− 𝑘𝑖(𝑦, 𝑥′). For all the methods we estimate the covariance matrix

on the whole dataset as

Σ̂𝑖 𝑗 =
1

𝑛

𝑛∑
𝑘=1

ℎ𝑖(𝑧𝑘)ℎ 𝑗(𝑧𝑘) −
1

𝑛

𝑛∑
𝑘=1

ℎ𝑖(𝑧𝑘)
1

𝑛

𝑛∑
𝑘′=1

ℎ 𝑗(𝑧𝑘′).

We then further assume that Σ = Σ̂ which is justified since the CLT also

works with a consistent estimate of the covariance. For all the methods

that do not split the data (OST, Wald, and Naive) we estimate the entries

of 𝝉̂ as

𝜏̂𝑖 =
√
𝑛�MMD

2

lin
(𝑃, 𝑄) =

√
𝑛

1

𝑛

𝑛∑
𝑘=1

ℎ𝑖(𝑧𝑘),

i.e., we directly absorb the

√
𝑛 dependence of the asymptotic distribution

into 𝝉. For data splitting we estimate 𝝉̂tr on a split of the data and 𝝉̂te on

the other split. For example split0.3 means that 30% of the data are used

to estimate 𝝉̂tr and 70% used to estimate 𝝉̂te. We assume that the number

of samples in the respective subsets are even and otherwise neglect some

samples.

Methods We compare four different methods:

1. OST: The test we recommend to use, as described in Algorithm 1.

2. Wald: The Wald test, which does not take into account the prior

information 𝝁 ≥ 0.

3. split: Data splitting similar to the approach in [6]. split0.3 denotes

that 30% of the data are used for learning 𝜷∗ and 70% are used

for testing. Here we first, learn 𝜷∗ on the training sample, i.e.,

𝜷∗ = argmax

∥Σ𝜷∥=1,Σ𝜷≥0

𝜷⊤𝝉𝑡𝑟

(𝜷⊤Σ𝜷)
1

2

. We then use the test statistic

𝜷̂⊤𝝉𝑡𝑒

(𝜷̂⊤Σ𝜷̂)
1

2

,

which follows a standard normal under the null. This differs from

the approach in [6], since we optimize with the constraints Σ𝜷 ≥ 0,

whereas [6] suggested a simple positivity constraint 𝜷 ≥ 0. We

discuss this in Appendix A.4.2.

4. naive: Two stage procedure where all the data is used for learning

and testing without correcting for the dependency, i.e., without
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Figure A.2.: Samples from Blobs dataset.
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Figure A.3.: Samples from downsampled

MNIST dataset.𝑃 (left) contains all digits,

while 𝑄 (right) only contains uneven

digits.
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Figure A.4.: Probability density func-

tions used for the experiment in Figure

2.3 of the main paper. Both distributions

are symmetric and are constructed to

have the same variance.
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splitting the data. Thus the test statistic is the same as for OST, but

we work with the wrong null distribution, i.e., the one that is only

valid for data splitting. This approach is not a well-calibrated test,

see Figure A.5 and hence is useless.

Datasets The DIFF VAR dataset is a simple one-dimensional toy dataset,

where 𝑃 = N(0, 1) and 𝑄 = N(0, 1.5).

The Blobs dataset was constructed using a mixture of 2D Gaussians

on a 3 × 3 grid. The centers of the Gaussians are set to 𝜇1 , . . . , 𝜇9 =

(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) and the covari-

ances are Σ𝑃 = diag(0.1, 0.3) and Σ𝑄 = diag(0.3, 0.1). Samples from 𝑃

and 𝑄 are shown in Figure A.2. The Blobs dataset is constructed such

that the main variance in the data does not reflect the difference between

𝑃 and𝑄, which happens on a smaller length scale. This is inspired by [6],

where similar data has been considered to showcase that such problems

benefit from careful kernel choice. We can reproduce this behavior with

our results, which show that for this dataset the performance is bad if

one only considers the median heuristic Gaussian kernel together with a

linear kernel.

The MNIST dataset was constructed by first downsampling all the images

to 7 × 7 pixels (originally 28 × 28), by simply averaging over fields of

4 × 4 pixels. We define 𝑃 to contain all the digits, while 𝑄 only contains

uneven digits. For our experiments we draw with replacement from the

images in the database. Some samples from both distributions are shown

in Figure A.3.

Experiments for Figure 2.3 For Figure 2.3 we constructed a 1-D data

set such that both 𝑃 and 𝑄 are symmetric (thus all uneven moments

vanish) and have the same variance, see Figure A.4.

A.4.1. Type-I errors

To verify which methods are theoretically justified, i.e., control the Type-I

error at a level 𝛼 = 0.05, we run the following experiments, similar to

the experiments in the main paper, where 𝑃 = 𝑄.

1. diff var (𝑝 = 1): 𝑃 = N(0, 1) and 𝑄 = N(0, 1).
2. MNIST (𝑝 = 49): We consider downsampled 7x7 images of the

MNIST dataset [3], where 𝑃 contains all the digits and 𝑄 = 𝑃.

3. Blobs (𝑝 = 2): A mixture of anisotropic Gaussians and 𝑃 = 𝑄.

The results are in Figure A.5. All the methods except naive correctly

control the Type-I error at a rate 𝛼 = 0.05 even for relatively small sample

sizes. Note that all the described approaches rely on the asymptotic

distribution. The critical sample size, at which it is safe to use, generally

depends on the distributions 𝑃 and 𝑄 and also the kernel functions.

A good approach to simulating Type-I errors in in two-sample testing

problems is to merge the samples and then randomly split them again. If

the estimated Type-I error is significantly larger that 𝛼, working with the

asymptotic distribution is not reliable.
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Figure A.5.: Type-I errors for similar dis-

tributions as the one considered in the

main paper. To simulate type-I errors we

choose distributions 𝑃 = 𝑄 that are simi-

lar to the ones considered for the Type-II

errors. We see that all well-calibrated

methods reliably control the Type-I er-

ror at a rate 𝛼 = 0.05, and conclude

that working with the asymptotic distri-

butions is well justified for the consid-

ered examples. The naive approach fails

to control the error, as it overfits in the

training phase without a correction in

the testing phase.

103
0.0

0.2

0.4

0.6

0.8

1.0
diff var

103

MNIST

103

Blobs

sample size n

Ty
pe

-II
 e

rro
r

β≥ 0 Σβ≥ 0 Wald

Figure A.6.: Comparison of the different

constraints: In the main paper we argue

that OST is a principled approach to con-

straint the class of considered tests, when

𝝁 ≥ 0 is guaranteed. [6] suggested a dif-

ferent constraint 𝜷 ≥ 0. With Theorem

2.3.2, we can also work with these con-

straints without data-splitting. The re-

sults suggest that indeed OST is a mean-

ingful way to constrain the class of tests,

as it consistently outperforms the Wald

test. On the other hand the constraint

suggested by [6], can only be seen as a

heuristic. For some cases it performs bet-

ter than the Wald test and the OST, but

it can also perform worse.
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A.4.2. Comparison of the constraints

In Subsection 2.3.2 we motivate to constrain the set of considered 𝜷
to obey Σ𝜷 ≥ 0, thus incorporating the knowledge 𝝁 ≥ 0. All our

experiments suggest that this constraint indeed improves test power as

compared to the general Wald test. In [6] a different constraint was chosen.

There 𝜷 is constrained to be positive, i.e., 𝜷 ≥ 0. The motivation for their

constraint is that the sum of positive definite (pd) kernel functions is

again a pd kernel function [4]. Thus, by constraining 𝜷 ≥ 0 one ensures

that 𝑘 =
∑𝑑
𝑢=1

𝛽𝑢 𝑘𝑢 is also a pd kernel. While this is sensible from a

kernel perspective, it is unclear whether this is smart from a hypothesis

testing viewpoint. From the latter perspective we do not necessarily care

whether or not 𝜷∗ defines a pd kernel. Our approach instead was purely

motivated to increase test power over the Wald test. In Figure A.6 we thus

compare the two different constraints to the Wald test on the examples

that were also investigated in the main paper with 𝑑 = 6 kernels (again

five Gaussian kernels and a linear kernel).

From Figure A.6 we observe that the positivity constraint of [6] does not

allow for general conclusions. Depending on the problem, the positivity

constraint can both lead to higher or lower test power than the Wald

test or tests with the constraint Σ𝜷 ≥ 0. It will thus generally depend

on the problem at hand which constraint is better. However, at least the

approach we recommend (Σ𝜷 ≥ 0) seems to guarantee a test power at

least as high as the Wald test, whereas the positivity constraint can also

be worse. As long as one has not a clear indication that the positivity

constraint leads to better performance, we thus recommend the constraint

Σ𝜷 ≥ 0.
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Figure A.7.: Type-II errors for discrete se-

lection, i.e., the class of considered tests

is 𝑇
base

. The rows (columns) correspond

to different datasets (sets of base ker-

nels). Similar as in Figure 2.2, our ap-

proach 𝜏
base

outperforms the splitting

approaches in most cases. However, for

the MNIST dataset and 𝑑 = 2 we see that

the splitting approach with 10% training

and 90% testing data (split0.1) performs

better.

A.4.3. Discrete selection from 𝑇base

In this experiment, we use the same datasets and base kernels as for

the experiment in Section 2.5. Instead of considering 𝑇Wald and 𝑇OST, we

consider 𝑇base. We thus only compare to a data-splitting approach where

also one of the base test statistics is selected. For completeness, we also

include the naive approach, which again overfits for 𝑑 > 1. Note that the

thresholds for 𝜏base can be computed with Corollary 2.3.1 and do not rely

on Theorem 2.3.2. The results are shown in Figure A.7, again averaged

over 5000 independent trials. In most of the cases, we observe that 𝜏base

outperforms the data-splitting approaches. However, for the MNIST

dataset and 𝑑 = 2, the splitting approach that uses 10% for learning and

90% for testing does perform slightly better. Our attempt to explain this

behavior lies in the truncation V− of the conditional distribution. While

for OST, we can show that V− ≤ 0 (see proof of Theorem 2.3.2), for

Corollary 2.3.1, V− cannot be bounded. If V− is very large, the selected

test is very conservative. We acknowledge that this is not a sufficient

analysis of this phenomenon, but leave a more theoretical treatment for

future work.

A.5. Singular covariance matrices

In Section 2.3 we assumed that Σ is strictly positive, i.e., non-singular.

However, in practice, some eigenvalues of the covariance matrix can

be sufficiently close to zero to cause numerical problems. In the case

of the kernel two-sample test, this can happen if we consider kernels

that are too similar and thus cause redundancy in our observations. In

practice, this happens for example if we consider Gaussian kernels with

too similar bandwidths on an easy problem.

Note on regularization: One strategy to recover the numerical stability

of the algorithm is to regularize the covariance matrix Σ → Σ + 𝜆 𝐼.
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Doing this indeed increases the numerical stability, since it leads to

a well-behaved condition number. However, it also makes the whole

approach more conservative, since the (artificially) increased variance

decreases the value of the test statistic compared to the threshold. This

leads to an increase of Type-II error and thus a loss of power. To evade

this, we suggest the more elaborate strategy below.

Since Σ is symmetric, there exists an orthonormal basis {𝑣𝑖}𝑖∈[𝑑] and

non-negative numbers {𝜆𝑖}𝑖∈[𝑑] such that

Σ =

𝑑∑
𝑖=1

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 .

If Σ is singular, we can assume without loss of generality that there exists

𝑑0 ∈ [𝑑] such that 𝜆𝑖 = 0 if 𝑖 ≤ 𝑑0 and hence

Σ =

𝑑∑
𝑖=𝑑0+1

𝜆𝑖𝑣𝑖𝑣
⊤
𝑖 .

Now if 𝑣⊤
𝑖
𝝉 ≠ 0 for some 𝑖 ∈ [𝑑0], we immediately know that 𝝁 ≠ 0 and

could reject. In other words the signal-to-noise ratio along this direction

is infinite. Thus, in the following we assume 𝑣⊤
𝑖
𝝉 = 0 for all 𝑖 ∈ [𝑑0], and

hence,

∑𝑑
𝑖=𝑑0+1

𝑣𝑖𝑣
⊤
𝑖
𝝉 = 𝝉. We can then rewrite the objective as follows

max

Σ𝜷≥0

𝜷⊤𝝉

(𝜷⊤Σ𝜷) 1

2

= max∑𝑑
𝑖=𝑑

0
+1

𝜆𝑖𝑣𝑖𝑣⊤𝑖 𝜷≥0

𝜷⊤
∑𝑑
𝑖=𝑑0+1

𝑣𝑖𝑣
⊤
𝑖
𝝉

(𝜷⊤∑𝑑
𝑖=𝑑0+1

𝜆𝑖𝑣𝑖𝑣⊤𝑖 𝜷)
1

2

.

Now define 𝜶 :=
∑𝑑
𝑖=𝑑0+1

𝜆𝑖𝑣𝑖𝑣⊤𝑖 𝜷. SinceΣ is symmetric its pseudoinverse

is given as Σ+ =
∑𝑑
𝑖=𝑑0+1

1

𝜆𝑖
𝑣𝑖𝑣
⊤
𝑖

and we get

max∑𝑑
𝑖=𝑑

0
+1

𝜆𝑖𝑣𝑖𝑣⊤𝑖 𝜷≥0

𝜷⊤
∑𝑑
𝑖=𝑑0+1

𝑣𝑖𝑣
⊤
𝑖
𝝉

(𝜷⊤∑𝑑
𝑖=𝑑0+1

𝜆𝑖𝑣𝑖𝑣⊤𝑖 𝜷)
1

2

= max

𝜶≥0

𝜶⊤Σ+𝝉

(𝜷⊤Σ+𝜷) 1

2

.

Similar as in Remark 2.3.1 we can define 𝝆 := Σ+𝝉 and Σ′ = Σ+. However,

in Theorem 2.3.2 we assumed that the covariance is not singular. Therefore

in Theorem 2.3.2 we used 𝑙 = |U|, which corresponded to the rank of

ΠΣΠ (see Appendix A.1). However, in the present case the rank of ΠΣ+Π
does not equal the number of non-zero entries of 𝜷. Therefore we use

𝑙 = rank(ΠΣ+Π). With this we can apply Theorem 2.3.2 and get the

conditional distribution under the null.

In practice, we have to treat the covariance matrix as singular if its

condition number is below some threshold, as otherwise the numerical

precision does not suffice to invert matrices faithfully.
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Appendix of Chapter 3 B.
B.1. Proofs

B.1.1. Proof of Theorem 3.3.1

Proof. Theorem 3.3.1 follows by the application of the CLT; see, e.g.,

Theorem A, Chapter 1.9.1 in [32]. The CLT implies

√
𝑛 + 𝑚(ℎ̂𝑛

𝑃
− ℎ̄𝑃) =√

𝑛/𝑐(ℎ̂𝑛
𝑃
− ℎ̄𝑃)

𝑑→N(0, 𝜎2

𝑃
/𝑐), analogously for 𝑄 and the variances add

up. Since 𝜎̂2

𝑐 (ℎ)
𝑝
→ 𝜎𝑐 := 𝜎2

𝑃
/𝑐 + 𝜎2

𝑄
/(1 − 𝑐), the result follows from

Slutsky’s theorem.

B.1.2. Proof of Proposition 3.3.2

Proof. Since we assume 𝜎𝑐(ℎ) > 0, it follows that

lim

𝑛te+𝑚te→∞
Φ

(
Φ−1(1 − 𝛼) −

√
𝑛te + 𝑚te

ℎ̄𝑃 − ℎ̄𝑄
𝜎𝑐(ℎ)

)
= 0, (B.1)

i.e., the asymptotic rate of type-II errors goes to zero, if and only if

ℎ̄𝑃 > ℎ̄𝑄 .

B.1.3. Derivation of Equation 3.13

We use the following definitions: Let 𝑍 = {𝑥1 , . . . , 𝑥𝑛tr
, 𝑦1 , . . . , 𝑦𝑚tr

}
denote the pooled training sample and 𝐾 denote the kernel matrix such

that 𝐾𝑖 𝑗 = 𝑘(𝑧𝑖 , 𝑧 𝑗) for 𝑖 , 𝑗 ∈ [𝑛tr + 𝑚tr]. Let us define 𝐺 ∈ H𝑛tr+𝑚tr

such that 𝐺𝑖 = 𝑘(𝑧𝑖 , ·). And we write 𝐾 = 𝐺⊤𝐺. Further we define

𝑣1 = ( 1

𝑛tr

, . . . , 1

𝑛tr

, 0, . . . , 0)⊤ ∈ ℝ𝑛tr+𝑚tr
, 𝑣2 = (0, . . . , 0, 1

𝑚tr

, . . . , 1

𝑚tr

)⊤ ∈
ℝ𝑛tr+𝑚tr

, and 𝛿 = 𝑣1 − 𝑣2. For 𝑙 = 𝑛tr , 𝑚tr we define the idempotent

centering operator 𝑃𝑙 = 𝐼𝑙 −𝑙−11𝑙1⊤𝑙 , where 𝐼 denotes the identity operator

and 1𝑙 the 𝑙 dimensional vector with all ones. With this we define the

(𝑛tr+𝑚tr)×(𝑛tr+𝑚tr)matrix𝑁𝑐 =

(
1

𝑐𝑃𝑛tr
0

0
1

1−𝑐𝑃𝑚tr

)
.With the preceding

definitions, we obtain 𝜇̂𝑃 − 𝜇̂𝑄 = 𝐺𝛿, Σ̂ = 1

𝑛tr+𝑚tr

𝐺𝑁𝑐𝐺
⊤

.

Starting from Equation 3.11 we estimate the KFDA witness based on the

empirical estimates of 𝜇𝑃 , 𝜇𝑄 ,Σ, i.e.,

ℎ̂𝜆 = argmax

𝑓 ∈H

⟨𝜇𝕏tr
− 𝜇𝕐tr

, 𝑓 ⟩

⟨ 𝑓 , (Σ̂ + 𝜆 𝐼) 𝑓 ⟩
1

2

. (B.2)

We first show a representer Theorem for KFDA [67, Sec. 3.4.3]. Therefore, we

decompose possible candidate functions 𝑓 = 𝑓1+ 𝑓2 ∈ Hinto a part 𝑓1 that

lies in the span of the training data𝑆tr = span({𝑘(𝑧𝑖 , ·)|𝑖 ∈ [𝑛tr+𝑚tr]}) and

𝑓2 which lies in the span’s orthogonal complement. Thus, by definition,

we have ⟨ 𝑓2 , 𝑘(𝑧𝑖 , ·)⟩ = 0 for all 𝑖 ∈ [𝑛tr + 𝑚tr]. Since 𝜇𝕏tr
and 𝜇𝕐tr

are

within 𝑆tr, we have ⟨𝜇𝕏tr
− 𝜇𝕐tr

, 𝑓 ⟩ = ⟨𝜇𝕏tr
− 𝜇𝕐tr

, 𝑓1⟩. Similarly, since Σ̂

is only defined via the training samples in 𝑍, Σ̂ maps functions from 𝑆tr
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[67]: Mika (2003), Kernel Fisher Discrimi-
nants
1: For a sanity check, simply compute

the gradient of Equation B.4 and set it to

zero.

to 𝑆tr and we have Σ̂ 𝑓2 = 0. Thus for the denominator of Equation B.2 we

get

⟨ 𝑓 , (Σ̂ + 𝜆 𝐼) 𝑓 ⟩ = ⟨ 𝑓1 , (Σ̂ + 𝜆 𝐼) 𝑓1⟩ + 𝜆∥ 𝑓2∥2 ≥ ⟨ 𝑓1 , (Σ̂ + 𝜆 𝐼) 𝑓1⟩ . (B.3)

We have shown that the nominator of Equation B.2 stays constant, if we

add a function 𝑓2 that is not is not in 𝑆tr and the denominator can only

grow. This implies that the maximum in Equation B.2 is attained for a

function in 𝑆tr and we can expand it as ℎ̂𝜆(·) =
∑𝑛tr+𝑚tr

𝑖=1
𝛼̂𝑖 𝑘(𝑧𝑖 , ·). Hence

the solution is

𝛼̂ = argmax

𝛼∈ℝ𝑛
tr
+𝑚

tr

⟨𝜇𝕏tr
− 𝜇𝕐tr

,
∑𝑛tr+𝑚tr

𝑖=1
𝛼𝑖 𝑘(𝑧𝑖 , ·)⟩

⟨∑𝑛tr+𝑚tr

𝑖=1
𝛼𝑖 𝑘(𝑧𝑖 , ·), (Σ̂ + 𝜆 𝐼)

∑𝑛tr+𝑚tr

𝑖=1
𝛼𝑖 𝑘(𝑧𝑖 , ·)⟩

1

2

(B.4)

= argmax

𝛼∈ℝ𝑛
tr
+𝑚

tr

𝛿⊤𝐾𝛼(
𝛼⊤

(
𝐾𝑁𝑐𝐾
𝑛tr+𝑚tr

+ 𝜆𝐾
)
𝛼
) 1

2

. (B.5)

The solution to this is [67, Sec. 3.2]
1(

𝐾𝑁𝑐𝐾

𝑛tr + 𝑚tr

+ 𝜆𝐾
)
𝛼̂ = 𝐾𝛿 ⇐⇒ 𝛼̂ =

(
𝐾𝑁𝑐𝐾

𝑛tr + 𝑚tr

+ 𝜆𝐾
)−1

𝐾𝛿.

B.1.4. Convergence of ℎ̂𝜆

We will show that ℎ̂𝜆 → ℎ𝜆 = (Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄) in probability.

Proof. First, we observe that

ℎ̂𝜆 − ℎ𝜆 = (Σ̂ + 𝜆𝐼)−1(𝜇𝕏tr
− 𝜇𝕐tr

) − (Σ + 𝜆𝐼)−1(𝜇𝑃 − 𝜇𝑄)
= (Σ̂ + 𝜆𝐼)−1(𝜇𝕏tr

− 𝜇𝕐tr
) − (Σ̂ + 𝜆𝐼)−1(𝜇𝑃 − 𝜇𝑄)

+ (Σ̂ + 𝜆𝐼)−1(𝜇𝑃 − 𝜇𝑄) − (Σ + 𝜆𝐼)−1(𝜇𝑃 − 𝜇𝑄)
= (Σ̂ + 𝜆𝐼)−1

[
(𝜇𝕏tr

− 𝜇𝕐tr
) − (𝜇𝑃 − 𝜇𝑄)

]
+

[
(Σ̂ + 𝜆𝐼)−1 − (Σ + 𝜆𝐼)−1

]
(𝜇𝑃 − 𝜇𝑄).

Thus it follows that

∥ ℎ̂𝜆 − ℎ𝜆∥H ≤ ∥(Σ̂ + 𝜆 𝐼)−1[(𝜇𝕏tr
− 𝜇𝕐tr

) − (𝜇𝑃 − 𝜇𝑄)]∥H
+ ∥[(Σ̂ + 𝜆 𝐼)−1 − (Σ + 𝜆 𝐼)−1](𝜇𝑃 − 𝜇𝑄)∥H

= (𝐴) + (𝐵).

Probabilistic bound on (𝐴). By the triangle inequality,

∥(Σ̂ + 𝜆 𝐼)−1[(𝜇𝕏tr
− 𝜇𝕐tr

) − (𝜇𝑃 − 𝜇𝑄)]∥H
≤ ∥(Σ̂ + 𝜆 𝐼)−1∥∥(𝜇𝕏tr

− 𝜇𝕐tr
) − (𝜇𝑃 − 𝜇𝑄)∥H

≤ ∥(Σ̂ + 𝜆 𝐼)−1∥(∥𝜇𝕏tr
− 𝜇𝑃 ∥H+ ∥𝜇𝑄 − 𝜇𝕐tr

∥H).

By the spectral theorem, ∥(Σ̂ + 𝜆𝐼)−1∥ = sup𝑙∈(𝑙𝑘 )∞𝑘=1

1

𝑙+𝜆 ≤ 1/𝜆 where

(𝑙𝑘)∞𝑘=0
are the eigenvalues of Σ̂ and by definition non-negative. Then,

the

√
𝑛-convergence of (𝐴) follows from the

√
𝑛-convergence of the
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kernel mean embeddings ∥𝜇𝕏tr
− 𝜇𝑃 ∥H = O𝑝(𝑛−1/2

tr
) and



𝜇𝑄 − 𝜇𝕐tr




H
=

O𝑝(𝑚−1/2
tr
); see, e.g., [19, Theorem 3.4]. That is, (𝐴) = O𝑝(min(𝑛tr , 𝑚tr)−1/2).

Probabilistic bound on (𝐵). Using the identity 𝐶−1 − 𝐷−1 = 𝐶−1(𝐷 −
𝐶)𝐷−1

, we can rewrite (𝐵) as

∥[(Σ̂ + 𝜆 𝐼)−1 − (Σ + 𝜆 𝐼)−1](𝜇𝑃 − 𝜇𝑄)∥H
= ∥(Σ̂ + 𝜆 𝐼)−1(Σ̂ − Σ)(Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄)∥H
≤ ∥(Σ̂ + 𝜆 𝐼)−1∥∥Σ̂ − Σ∥∥(Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄)∥H
≤ ∥(Σ̂ + 𝜆 𝐼)−1∥∥Σ̂ − Σ∥HS∥(Σ + 𝜆 𝐼)−1(𝜇𝑃 − 𝜇𝑄)∥H,

where we used that the operator norm is upper bounded by the Hilbert-

Schmidt norm. Let 𝑛 := 𝑛tr + 𝑚tr. Then, since ∥(Σ̂ + 𝜆 𝐼)−1∥ ≤ 1/𝜆,

the

√
𝑛-convergence of (𝐵) follows from the

√
𝑛-convergence of the

covariance operator, i.e., ∥Σ̂ − Σ∥HS = O𝑝(𝑛−1/2) [185, Lemma 4]. That is,

(𝐵) = O𝑝((𝑛tr + 𝑚tr)−1/2).

Combining the rates of (𝐴) and (𝐵) yields the overall rate of convergence:

∥ ℎ̂𝜆 − ℎ𝜆∥H = O𝑝(min(𝑛tr , 𝑚tr)−1/2).

B.1.5. Witness objective vs. kernel optimization objective
in MMD tests

In MMD-based two sample tests, the most common estimate of the MMD

is the U-statistic estimate, defined as [5]�
MMD

2

𝑢 =
1

𝑛(𝑛 − 1)
∑
𝑖≠𝑗

𝐻𝑖 𝑗 , (B.6)

with 𝐻𝑖 𝑗 = ⟨𝑘(𝑥𝑖 , ·) − 𝑘(𝑦𝑖 , ·), 𝑘(𝑥 𝑗 , ·) − 𝑘(𝑦 𝑗 , ·)⟩. The objective function

used in [7, 8] bases on the asymptotic variance of the estimator under

the alternative hypothesis. If the population value of MMD
2

is positive,

then the distribution of the estimate is asymptotically normal [32, Section

5.5.1],

√
𝑛

(�
MMD

2

𝑢 −MMD
2

)
𝑑→ N(0, 𝜎2

𝐻1

), with 𝜎2

𝐻1

= 4(𝔼 [𝐻12𝐻13] −
𝔼 [𝐻12]2) [8]. This can be used to derive an asymptotic test power criterion,

which is given as the signal-to-noise ratio 𝐽 = MMD
2

𝜎𝐻
1

[7, Sec. 2.1].

We show, that the power criterion 𝐽 = MMD
2

𝜎𝐻
1

corresponds to the SNR

criterion we derived in Equation 3.8. It is an easy exercise to show that

𝜎2

𝐻1

= 4

(
𝔼𝑋∼𝑃

[
⟨𝜇𝑃 − 𝜇𝑄 , 𝑘(𝑋, ·)⟩2

]
+ 𝔼𝑌∼𝑄

[
⟨𝜇𝑃 − 𝜇𝑄 , 𝑘(𝑌, ·)⟩2

]
− ⟨𝜇𝑃 − 𝜇𝑄 , 𝜇𝑃⟩2 − ⟨𝜇𝑃 − 𝜇𝑄 , 𝜇𝑄⟩2)

)
.

Recalling the definition of the covariance operator

Σ𝑃 = 𝔼 [𝑘(𝑋, ·) ⊗ 𝑘(𝑋, ·)] − 𝜇𝑃 ⊗ 𝜇𝑃 ,
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we obtain

𝜎2

𝐻1

= 4 ⟨𝜇𝑃 − 𝜇𝑄 , (Σ𝑃 + Σ𝑄)(𝜇𝑃 − 𝜇𝑄)⟩
= 2 ⟨𝜇𝑃 − 𝜇𝑄 , (2Σ𝑃 + 2Σ𝑄)(𝜇𝑃 − 𝜇𝑄)⟩
= 2 ⟨𝜇𝑃 − 𝜇𝑄 ,Σ(𝜇𝑃 − 𝜇𝑄)⟩ ,

where we usedΣ = Σ𝑃/𝑐+Σ𝑄/(1−𝑐) and 𝑐 = 1/2 for balanced samples.

Using ℎ
𝑃,𝑄

𝑘
= 𝜇𝑃 − 𝜇𝑄 , we have

𝐽(𝑃, 𝑄 |𝑘) = MMD
2

𝜎𝐻1

=
⟨𝜇𝑃 − 𝜇𝑄 , 𝜇𝑃 − 𝜇𝑄⟩

√
2 ⟨𝜇𝑃 − 𝜇𝑄 ,Σ(𝜇𝑃 − 𝜇𝑄)⟩

1

2

(B.7)

=
⟨𝜇𝑃 − 𝜇𝑄 , ℎ𝑃,𝑄𝑘 ⟩
√

2 ⟨ℎ𝑃,𝑄
𝑘

,Σℎ
𝑃,𝑄

𝑘
⟩

1

2

(B.8)

=
1√
2

SNR(ℎ𝑃,𝑄
𝑘
). (B.9)

B.1.6. MMD of nonparametrically optimized kernel
corresponds to KFDA

Consider a fixed kernel 𝑘 and denote by Athe set of bounded positive op-

erators on H𝑘 . For the nonparametric class of kernels K= {𝑘𝐴 |𝑘𝐴(𝑥, 𝑦) =
⟨𝐴𝑘(𝑥, ·), 𝐴𝑘(𝑦, ·)⟩ , 𝐴 ∈ A} using ’opt-mmd-witness’ leads to exactly

the same witness function as using ’kfda-witness’.

Proof. Writing inner products in the original RKHS with kernel 𝑘 for

kernel 𝑘𝐴 we have the regularized 𝐽 criterion

𝐽𝜆𝐴 =
⟨𝐴(𝜇𝑃 − 𝜇𝑄), 𝐴(𝜇𝑃 − 𝜇𝑄⟩)

⟨𝐴(𝜇𝑃 − 𝜇𝑄), 𝐴(Σ + 𝜆 𝐼)𝐴𝐴(𝜇𝑃 − 𝜇𝑄)⟩
1

2

.

We define 𝛿𝐴 := 𝐴2(𝜇𝑃 − 𝜇𝑄) and obtain

𝐽𝜆𝐴 =
⟨𝜇𝑃 − 𝜇𝑄 , 𝛿𝐴⟩)
⟨𝛿𝐴 , (Σ + 𝜆 𝐼)𝛿𝐴⟩

1

2

, (B.10)

which looks almost like Equation 3.11. The solution to Equation 3.11 is

Equation 3.12 which implies that 𝐴̃𝜆 = (Σ + 𝜆 𝐼)−
1

2 defines the optimal

kernel

𝑘𝜆(𝑥, 𝑥′) := ⟨(Σ + 𝜆 1)−
1

2 𝑘(𝑥, ·), (Σ + 𝜆 1)−
1

2 𝑘(𝑥′, ·)⟩H
= ⟨𝑘(𝑥, ·), (Σ + 𝜆 1)−1𝑘(𝑥′, ·)⟩H .

Based on the empirical estimates the MMD witness of the optimized

kernel would be (expressed in terms of the original kernel 𝑘)

ℎ
ℤtr

𝑘𝜆
= (Σ̂ + 𝜆 1)−1(𝜇𝕏tr

− 𝜇𝕐tr
) = ℎ̂𝜆 , (B.11)

i.e., the witness of ’opt-mmd-witness’ coincides with the ’kfda-witness’

in the original RKHS.
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Figure B.1.: Rejection Rates for true null hypothesis (TypeII error) at 𝛼 = 0.05. Left: Standard Blobs dataset (500 iterations). Middle:
Blobs dataset of [8], ’kfda-witness’ is only average over 100 trials the others over 10 × 100, therefore ’kfda-witness’ has higher variance.

Right: Higgs dataset
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Figure B.2.: Effect of regularization on KFDA. We consider the same setting as in the left panel of Figure 3.1 (fixed kernel and fixed

regularization and 𝑛 = 𝑚 = 100) but for different regularization. Left (𝜆 = 10
3): For large regularization KFDA converges to MMD.

Middle (𝜆 = 10
−2): For a good regularization the KFDA approaches clearly outperform the corresponding MMD approaches. Right

(𝜆 = 10
−4): If the regularization is too small for a given sample size (here 𝑛 = 100) , then KFDA overfits in the training phase, which

leads to a reduction in test power.

[78]: Baldi et al. (2014), Searching for exotic
particles in high-energy physics with deep
learning

[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests

B.2. Further experiments and details

This section provides supplementary information on our experiments.

Datasets. We used two different versions of the Blobs dataset. We

showed random draws for both cases in Figure 3.2. For the bench-

mark experiments we also used the Higgs dataset [78], which is

part of the UCI Machine Learning Repository (https://archive.ics.

uci.edu/ml/datasets/HIGGS). We used a version that is ready for

Python usage provided by [8] (https://drive.google.com/open?id=

1sHIIFCoHbauk6Mkb6e8a_tp1qnvuUOCc). To ensure the comparability

we follow the implementation of [8] and draw samples from the Higgs

dataset without replacement.

Effect of regularization of ’kfda-witness’. In the left panel of Figure 3.1,

we chose a fixed regularization 𝜆 = 10
−2

for the KFDA methods. In

Figure B.2, we show the effect of choosing a bad regularization. If the

regularization is too large (left), then KFDA coincides with MMD. On

the other hand, if the regularization is too small (right), then the effect of

inaccurately estimating the covariance operator might as well lead to a

reduced test power. For good performance it is thus important to chose

a suitable regularization. This can be automated by including a model

selection procedure, such as cross-validation, in the training stage.

https://archive.ics.uci.edu/ml/datasets/HIGGS
https://archive.ics.uci.edu/ml/datasets/HIGGS
https://drive.google.com/open?id=1sHIIFCoHbauk6Mkb6e8a_tp1qnvuUOCc
https://drive.google.com/open?id=1sHIIFCoHbauk6Mkb6e8a_tp1qnvuUOCc
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[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests

[69]: Rudi et al. (2017), FALKON: An Opti-
mal Large Scale Kernel Method; [70]: Meanti

et al. (2020), Kernel Methods Through the
Roof: Handling Billions of Points Efficiently
2: By our results of Chapter 4, we con-

clude that using Kernel Ridge Regression

instead of KFDA is perfectly suitable.

Nevertheless, the implementation of an

approximated KFDA procedure might

still be of independent interest.

Estimation of Rejection Rates. For the instructive experiments in

Figure 3.1 we estimate the rejection rates by repeating the whole two-

stage procedure 1000 times. For the benchmark experiments we use 100

iterations of the two-stage procedure for ’kfda-witness’. For all the other

methods in the benchmark experiments, we follow the implementation

of [8] and estimate the rejection rates by running the first stage ten times

and estimating the rejection rate over 100 independent test sets for each

run of the first stage. The reason for this is, that the first stage is quite

slow (training a neural network).

Type-I errors. We report Type-I errors for all three different datasets in

Figure B.1.

B.3. Approximate computation of the KFDA
witness

In this section we will use 𝑛 instead of 𝑛tr and 𝑚 instead of 𝑚tr to keep

the notation more concise. In Appendix B.1.3, we showed that the exact

solution for the estimate of the KFDA witness is given by

ℎ̂𝜆(·) =
𝑛+𝑚∑
𝑖=1

𝛼̂𝑖 𝑘(𝑧𝑖 , ·), (B.12)

𝛼̂ =

(
𝐾𝑁𝑐𝐾

𝑛 + 𝑚 + 𝜆𝐾
)−1

𝐾𝛿. (B.13)

Remark B.3.1 The problem with computing the KFDA witness is that

a naive implementation scales cubically with the pooled sample size.

In this section, we thus derive an approach that builds on recent results,

that show that one can essentially get optimal convergence guarantees

while only using 𝑂((𝑛 + 𝑚)3/2) time. Therefore two steps are needed.

First, the solution is approximated with 𝑀 = 𝑂((𝑛 + 𝑚) 1

2 ) Nystrom

centers. Second the solution with for the Nystrom centers is found via

conjugate gradient, where a preconditioner is computed again with

only 𝑀 datapoints.

We take an approach similar to [69, 70].
2

We will thus explicitly assume

that the function ℎ has the parametric form

ℎ𝛼̃(𝑥) =
𝑀∑
𝑚=1

𝛼̃𝑖 𝑘(𝑥, 𝑧̃𝑖), (B.14)

with𝑀 = {𝑧̃1 , . . . , 𝑧̃𝑀} ⊆ {𝑥1 , . . . , 𝑥𝑛 , 𝑦1 , . . . , 𝑦𝑚} (we overload notation

and use 𝑀 to denote the set itself as well as its size). We take the notation

introduced in Section 3.4 and constrain to the case 𝑐 = 1

2
. In this case

we can use 𝑁 =

(
𝑃𝑛 0

0 𝑃𝑚

)
=

𝑁𝑐

2
, instead of 𝑁𝑐 . Note that this only

affects the scaling of the solution (if we also scale 𝜆 accordingly), which

is unimportant for WiTS tests. Using 𝑁 instead of 𝑁𝑐 has the advantage

that 𝑁 itself is idempotent 𝑁 = 𝑁𝑁⊤, which makes the following easier.
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Algorithm 4 Pseudocode for the FdaFalkon algorithm. Adopted for

KFDA from [70]

1: function FdaFalkon(𝑍, 𝒚, 𝑘,𝜆, 𝑚, t)

2: 𝑍𝑚 , 𝒚𝑚 ← RandomSubsample((𝑍, 𝒚), 𝑚)

3: 𝑇, 𝐴← Preconditioner(𝑍𝑚 , 𝒚𝑚 ,𝜆)

4: function LinOp(𝜷)

5: 𝒗 ← 𝐴−1𝜷
6: 𝒄← 𝑘(𝑍𝑚 , 𝑍)𝑁𝑁⊤𝑘(𝑍, 𝑍𝑚)𝑇−1𝒗
7: return 𝐴−⊤(𝑇−⊤𝒄 + 𝜆𝑛𝒗)
8: 𝑅← 𝐴−⊤𝑇−⊤𝑘(𝑍𝑚 , 𝑍)𝒚
9: 𝜷← ConjugateGradient(LinOp, 𝑅, 𝑡)

10: return 𝑇−1𝐴−1𝜷, 𝑍𝑚

13: function Preconditioner(𝑍𝑚 , 𝒚𝑚 ,𝜆)

14: 𝐾𝑚𝑚 ← 𝑘(𝑍𝑚 , 𝑍𝑚)
15: 𝑇 ← chol(𝐾𝑚𝑚)
16: 𝐾𝑚𝑚 ← 1

𝑚𝑇𝑁𝑚𝑁𝑚𝑇
⊤ + 𝜆𝑰

17: 𝐴← chol(𝐾𝑚𝑚)
18: return 𝑇, 𝐴
19: function kfdaWitness(ℤtr , 𝑘,𝜆)

20: 𝑍← Concatenate(ℤtr)

21: 𝒚 = [1] ∗ len(𝕏tr) + [−1] ∗ len(𝕐tr)
22: 𝑚 = len(𝑍) ⊲ # Nyström centers

23: 𝛼, 𝑍← FdaFalkon(𝑍, 𝒚, 𝑘,𝜆, 𝑚)

24: return ℎ𝜆 =
∑𝑚
𝑖=1

𝛼𝑖 𝑘(𝑧𝑖 , ·)

[69]: Rudi et al. (2017), FALKON: An Op-
timal Large Scale Kernel Method

[69]: Rudi et al. (2017), FALKON: An Op-
timal Large Scale Kernel Method

Nevertheless, it is straightforward to use the below algorithm for any

𝑐 ∈ (0, 1), simply by using 𝑁𝑐 =

(
1√
𝑐
𝑃𝑛 0

0
1√
1−𝑐
𝑃𝑚

) (
1√
𝑐
𝑃𝑛 0

0
1√
1−𝑐
𝑃𝑚

)
.

In the following we denote with 𝐾𝑍𝑀 the (𝑛 + 𝑚) ×𝑀 matrix of entries

𝑘(𝑧𝑖 , 𝑧̃ 𝑗) and 𝐾𝑀𝑍 its transpose. We can then rewrite the terms in our

objective

⟨𝜇̂𝑃 − 𝜇̂𝑄 , ℎ𝛼̃⟩ = 𝛿⊤𝐾𝑍𝑀 𝛼̃, (B.15)

⟨ℎ𝛼̃ , (Σ̂ + 𝜆 1)ℎ𝛼̃⟩ = 𝛼̃⊤
(

1

𝑛 + 𝑚𝐾𝑀𝑍𝑁𝑁
⊤𝐾𝑍𝑀 + 𝜆𝐾𝑀𝑀

)
𝛼̃. (B.16)

Let us define 𝑅𝑀𝑍 := 𝐾𝑀𝑍𝑁 . This is a 𝑀 × (𝑛 + 𝑚)matrix. Note that 𝑁

is the sum of the identity and two 1-sparse matrices, hence computing

𝑅𝑀𝑍 requires only O((𝑛 + 𝑚) ·𝑀) operations.

With our considerations from above we can write the optimal coefficients

as

𝛼̃∗ =
(
𝑅𝑀𝑍𝑅

⊤
𝑀𝑍 + (𝑛 + 𝑚)𝜆𝐾𝑀𝑀

)−1

𝐾𝑀𝑍𝛿, (B.17)

⇔
(
𝑅𝑀𝑍𝑅

⊤
𝑀𝑍 + (𝑛 + 𝑚)𝜆𝐾𝑀𝑀

)
𝛼̃∗ = 𝐾𝑀𝑍𝛿 (B.18)

Computing 𝑅𝑀𝑍𝑅
⊤
𝑀𝑍

explicitly costs 𝑂((𝑛 + 𝑚)𝑀2) operations and

would thus dominate the cost of our previous operations. However,

Equation B.18 is now exactly in the same form as Eq. (8) in [69]. Thus

from this point onwards we can build on their results to efficiently find a

solution.

The key idea of [69] is to find an efficient way to precondition the system

of linear equations in Equation B.18. In analogy, we propose to use the

following preconditioner

𝐵𝐵⊤ =

(𝑛 + 𝑚
𝑀

𝑅𝑀𝑀𝑅
𝑇
𝑀𝑀 + 𝜆(𝑛 + 𝑚)𝐾𝑀𝑀

)−1

, (B.19)

where𝑅𝑀𝑀 := 𝐾𝑀𝑀𝑁𝑀 and𝑁𝑀 is defined in analogy to𝑁 but only with

the 𝑀 Nyström centers. The preconditioner (B.19) thus corresponds to

the ideal preconditioner of the problem without Nyström approximation

but only 𝑀 points to start with.

Using this preconditioner we use 𝑡 conjugate gradient steps to solve

𝐵⊤
(
𝑅𝑀𝑍𝑅

⊤
𝑀𝑍 + (𝑛 + 𝑚)𝜆𝐾𝑀𝑀

)
𝐵𝛽 = 𝐵⊤𝐾𝑀𝑍𝛿. (B.20)



B. Appendix of Chapter 3 109

If 𝛽̂ is the approximate solution after 𝑡 steps, we obtain an approximate

solution as

𝛼̂ = 𝐵𝛽̂. (B.21)

The algorithm is described in Algorithm 4 and has overall complexity of

𝑂((𝑛tr + 𝑚tr)𝑀𝑡 +𝑀3) in time and 𝑂(𝑀2).



Appendix of Chapter 4 C.
C.1. Equivalence of squared loss and

signal-to-noise ratio

C.1.1. Proof of Lemma 4.3.1

We now prove Lemma 4.3.1. While the simplicity of the relation suggests

that there is an instructive proof we here give a proof based on direct

calculation.

Proof of Lemma 4.3.1. After renaming we can assume that the minimizer

of (𝛾, 𝜈) → 𝐿(𝛾ℎ + 𝜈) is (𝛾∗ , 𝜈∗) = (1, 0), i.e., ℎ itself minimizes the loss.

We use the shorthand

ℎ̄𝑃 = 𝔼𝑃 [ℎ(𝑋)] and ℎ̄𝑄 = 𝔼𝑄 [ℎ(𝑌)] (C.1)

for the mean of ℎ under 𝑃 and 𝑄. Note that

0 =
d

d𝜈

����
𝜈=0

𝐿(ℎ + 𝜈) = 2(1 − 𝑐)𝔼𝑃 [ℎ(𝑋) − 1] + 2𝑐𝔼𝑄 [ℎ(𝑋)]. (C.2)

This implies

𝑐 ℎ̄𝑄 = (1 − 𝑐)(1 − ℎ̄𝑃). (C.3)

Similarly we get

0 =
d

d𝛾

����
𝛾=1

𝐿(𝛾ℎ) = 2(1 − 𝑐)𝔼𝑃 [ℎ(𝑋)(ℎ(𝑋) − 1)] + 2𝑐𝔼𝑄
[
ℎ(𝑌)2

]
.

(C.4)

We conclude that

(1 − 𝑐)𝔼𝑃
[
ℎ(𝑋)2

]
+ 𝑐𝔼𝑄

[
ℎ(𝑌)2

]
= (1 − 𝑐)ℎ̄𝑃 . (C.5)

We observe using (C.5) and (C.3) that

𝐿(ℎ) = (1 − 𝑐)
(
𝔼𝑃

[
ℎ(𝑋)2

]
− 2𝔼𝑃 [ℎ(𝑋)] + 1

)
+ 𝑐𝔼𝑄

[
ℎ(𝑌)2

]
= (1 − 𝑐) + (1 − 𝑐)ℎ̄𝑃 − 2(1 − 𝑐)ℎ̄𝑃
= (1 − 𝑐)(1 − ℎ̄𝑃) = 𝑐 ℎ̄𝑄 .

(C.6)

Recall that

𝜎2

𝑐 (ℎ) =
(1 − 𝑐)Var𝑋∼𝑃 [ℎ(𝑋)] + 𝑐Var𝑌∼𝑄 [ℎ(𝑌)]

𝑐(1 − 𝑐) . (C.7)
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[5]: Gretton et al. (2012), A kernel two-
sample test

[7]: Sutherland et al. (2017), Generative
models and model criticism via optimized
maximum mean discrepancy; [8]: Liu et

al. (2020), Learning Deep Kernels for Non-
Parametric Two-Sample Tests

[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests

1: Note that the MMD-witness is not de-

fined to maximize test power.

Using Var𝑃(ℎ(𝑋)) = 𝔼𝑃
[
ℎ(𝑋)2

]
− ℎ̄2

𝑃
and (C.5) we derive

𝑐(1 − 𝑐)𝜎2

𝑐 (ℎ) = (1 − 𝑐)𝔼𝑃
[
ℎ(𝑋)2

]
+ 𝑐𝔼𝑄

[
ℎ(𝑌)2

]
− (1 − 𝑐)ℎ̄2

𝑃 − 𝑐 ℎ̄
2

𝑄

= (1 − 𝑐)ℎ̄𝑃 − (1 − 𝑐)ℎ̄2

𝑃 − 𝑐 ℎ̄
2

𝑄

= (1 − 𝑐)ℎ̄𝑃(1 − ℎ̄𝑃) − 𝑐 ℎ̄2

𝑄

= 𝑐 ℎ̄𝑃 ℎ̄𝑄 − 𝑐 ℎ̄2

𝑄

= 𝐿(ℎ)(ℎ̄𝑃 − ℎ̄𝑄)
(C.8)

where we used (C.3) in the penultimate and (C.6) in the last step. Using

the second step from the last display we obtain

𝑐(1 − 𝑐)
(
𝜎2

𝑐 (ℎ) + (ℎ̄𝑃 − ℎ̄𝑄)2
)

=

(
(1 − 𝑐)ℎ̄𝑃 − (1 − 𝑐)ℎ̄2

𝑃 − 𝑐 ℎ̄
2

𝑄

)
+ 𝑐(1 − 𝑐)(ℎ̄2

𝑃 + ℎ̄
2

𝑄 − 2ℎ̄𝑃 ℎ̄𝑄)

= (1 − 𝑐)ℎ̄𝑃 − (1 − 𝑐)2 ℎ̄2

𝑃 − 𝑐
2 ℎ̄2

𝑄 − 2𝑐(1 − 𝑐)ℎ̄𝑃 ℎ̄𝑄
= (1 − 𝑐)ℎ̄𝑃 − ((1 − 𝑐)ℎ̄𝑃 + 𝑐 ℎ̄𝑄)2.

(C.9)

Now we use (C.3) which implies 1 − 𝑐 = (1 − 𝑐)ℎ̄𝑃 + 𝑐 ℎ̄𝑄 and get

𝑐(1 − 𝑐)
(
𝜎2

𝑐 (ℎ) + (ℎ̄𝑃 − ℎ̄𝑄)2
)
= (1 − 𝑐)ℎ̄𝑃 − (1 − 𝑐)((1 − 𝑐)ℎ̄𝑃 + 𝑐 ℎ̄𝑄)
= (1 − 𝑐)(𝑐 ℎ̄𝑃 − 𝑐 ℎ̄𝑄).

(C.10)

Recall that SNR
2 = 𝜎𝑐(ℎ)−2(ℎ̄𝑃 − ℎ̄𝑄)2. We thus get using (C.8) and (C.10),

1

1 + SNR
2

=
𝜎𝑐(ℎ)2

𝜎𝑐(ℎ)2 + (ℎ̄𝑃 − ℎ̄𝑄)2
=

𝐿(ℎ)(ℎ̄𝑃 − ℎ̄𝑄)
(1 − 𝑐)𝑐(ℎ̄𝑃 − ℎ̄𝑄)

=
𝐿(ℎ)

𝑐(1 − 𝑐) .

(C.11)

This completes the proof.

C.1.2. Implications for testing with MMD with an
optimized kernel

As we discussed, using the mean discrepancy as a test statistic is closely

connected to tests based on the MMD [5]. We now briefly discuss the

implications of our findings in Subsection 4.3.1 for MMD-based tests

with optimized kernel functions [7, 8].

[7] showed that the asymptotic test power of an MMD-based two sample

test is determined by its kernel function 𝑘 via the criterion 𝐽(𝑃, 𝑄; 𝑘) =
MMD

2(𝑃, 𝑄; 𝑘)/𝜎(𝑃, 𝑄; 𝑘), where 𝜎(𝑃, 𝑄; 𝑘) is the standard deviation

of the MMD estimator, see Proposition 2 and Eq. (3) of [8]. Hence, they

use an empirical estimate of 𝐽 when optimizing the kernel function.

In Appendix B.1.5 we showed that 𝐽 is directly related to the SNR

Equation 4.5 of the MMD-witness function:

𝐽(𝑃, 𝑄; 𝑘) = 1√
2

SNR(ℎ𝑃,𝑄
𝑘
), (C.12)

where ℎ
𝑃,𝑄

𝑘
= 𝜇𝑃 − 𝜇𝑄 is the MMD-witness

1
of kernel 𝑘, and 𝜇𝑃 , 𝜇𝑄
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[7]: Sutherland et al. (2017), Generative
models and model criticism via optimized
maximum mean discrepancy

[8]: Liu et al. (2020), Learning Deep Kernels
for Non-Parametric Two-Sample Tests

denote the kernel mean embeddings. Hence, we can think of optimizing

the kernel for an MMD two-sample test as trying to optimize the kernel

such that its MMD-witness has maximal testing power in a witness two-

sample test. Given this insight, we argued in Chapter 3 that maximize

a witness is a more direct approach as opposed to optimizing a kernel

and then using MMD. When committing to MMD nevertheless, our

insights of Subsection 4.3.1 are directly applicable when optimizing the

asymptotic test power of MMD-based tests:

1. Instead of optimizing 𝐽 one can also optimize the kernel function by

minimizing the squared loss or cross-entropy loss of its associated

MMD-witness function (Proposition 4.3.2 and Remark 4.3.1). We

are not aware of any work that considered these choices before, see

also [7, Section 2.2] for an overview of previously used (heuristic)

approaches.

2. An asymptotically optimal kernel function is 𝑘∗(𝑥, 𝑥′) = ℎ∗(𝑥)ℎ∗(𝑥′),
with ℎ∗ given in Equation 4.7.

To see the second point, note that for 𝑘∗(𝑥, 𝑥′) = ℎ∗(𝑥)ℎ∗(𝑥′) the corre-

sponding MMD-witness is

ℎ
𝑃,𝑄

𝑘∗ (𝑥
′) = ℎ∗(𝑥′)

(
𝔼𝑋∼𝑃 [ℎ∗(𝑋)] − 𝔼𝑌∼𝑄 [ℎ∗(𝑌)]

)
∝ ℎ∗(𝑥′).

(C.13)

Since ℎ∗ is the optimal witness and the SNR is invariant to scaling, ℎ
𝑃,𝑄

𝑘∗

maximizes the right side of Equation C.12, and thus no kernel function

can lead to a larger 𝐽 criterion.

C.2. Further experiments and details

C.2.1. Type-I error control

In Subsection 4.3.2 we discussed two methods to obtain 𝑝-values. Based

on the asymptotic distribution or based on permutations of the witness

values. Since using permutations does not lead to a critical increase in

computational resources, we recommend this approach by default since

it controls Type-I error also at finite sample size. We empirically show

this by running two experiments with the Blob and Higgs dataset with

significance level 𝛼 = 5% and maximal training time 𝑡max = 1min. We

follow [8] and sample 𝕏 and 𝕐 from the same distributions. For each

sample size we estimate the Type-I error rate over 500 independent runs

and report the results in Figure C.1. Overall, on Blob we estimate a type-I

error of 4.8% ± 0.4% and Higgs of 4.3% ± 0.3%, demonstrating that our

test correctly controls Type-I error.

200 300 400 500 600 700 800 900
Samplesize

0.00

0.05

0.10

0.15

0.20

R
ej

ec
tio

n 
R

at
e

AutoML

2000 4000 6000 8000 10000
Samplesize

0.00

0.05

0.10

0.15

0.20

Figure C.1.: Type-I error rates with spec-

ified level 𝛼 = 0.05. Left: Blob Right:
Higgs.
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C.2.2. Further experiments

In Section 4.5, the default setting of our reported results was to use

AutoGluon with presets=’best_quality’ and training with the MSE.

We set the maximal runtime to 𝑡max = 5 minutes. We now report further

experiments with different settings and a more fine-grained analysis for

the shift detection datasets.

Blob dataset. We run different variants of the AutoML two-sample

test on the Blob dataset. We use different maximal training times 𝑡max

and besides our default approach ’AutoML’ that uses the MSE, we also

consider training a classifier with AutoGluon and using its probability of

class ’1’ as witness ’AutoML (class)’. We also consider the binary outputs

of the classifier as witness ’AutoML (bin)’.

We report the test power averaged over 500 trials in Table C.1. Consistently

with Remark 4.3.1 and our observations, using ’AutoML (class)’ performs

comparably to training with the MSE. However, thresholding the classifier

to binary values drastically decreases performance. We do not observe

any significant effect of allowing longer training times on this simple

dataset.

All experiments were run on servers with Intel Xeon Platinum 8360Y

processors, having 18 cores and 64 GB of memory each.

𝑡max Test

Sample Size

180 360 540 720 900

1

AutoML 0.56±0.02 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (class) 0.54±0.02 0.95±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (bin) 0.39±0.02 0.84±0.02 0.99±0.00 1.00±0.00 1.00±0.00

5

AutoML 0.55±0.02 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (class) 0.54±0.02 0.96±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (bin) 0.37±0.02 0.83±0.02 0.98±0.01 1.00±0.00 1.00±0.00

10

AutoML 0.56±0.02 0.98±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (class) 0.53±0.02 0.97±0.01 1.00±0.00 1.00±0.00 1.00±0.00
AutoML (bin) 0.36±0.02 0.84±0.02 0.99±0.01 1.00±0.00 1.00±0.00

Table C.1.: Test power on Blob dataset.

Higgs dataset. We run the AutoML two-sample test (using MSE) for

different maximal training times 𝑡max = 1, 5, 10 minutes on the Higgs

dataset. We report our findings in Table C.2. Notice that the Blob dataset

is much simpler than Higgs, since we achieve unit test power with much

smaller sample size. For Higgs, we observe that the performance indeed

depends on the training time. We observe that for smaller sample size,

using less training time leads to increased test power. On the other hand,

for larger sample size using more time is better. Although generally

AutoGluon should mitigate overfitting, it seems that for small sample

sizes it overfits the validation set, within the training stage. We believe

that this happens because the signal in the Higgs dataset is extremely

small, and the heuristics AutoGluon is using are not designed for this.

For larger sample size, the general recommendation of ’allowing more

time leads to better results’ is recovered.

All experiments were run on the same servers as those used for the

experiments on the Blob dataset.



C. Appendix of Chapter 4 114

Table C.2.: Test power on Higgs dataset.

𝑡max Test

Sample Size

1000 2000 3000 4000 5000 6000 8000 10000

1 AutoML 0.13±0.02 0.2±0.02 0.33±0.02 0.48±0.02 0.59±0.02 0.72±0.02 0.84±0.02 0.94±0.01

5 AutoML 0.09±0.01 0.17±0.02 0.33±0.02 0.46±0.02 0.62±0.02 0.73±0.02 0.89±0.01 0.98±0.01

10 AutoML 0.09±0.01 0.17±0.02 0.25±0.02 0.40±0.02 0.63±0.02 0.80±0.02 0.93±0.01 0.99±0.00

Detecting distribution shift. All AutoML results reported in Table 4.1

were run with 𝑡max = 5 minutes, we show detailed performance depend-

ing on the shift type, shift strength, and percentage of affected examples

(shift frequency) in Table C.3. For completeness, in Table C.4 we also

show summary results for AutoML (raw), i.e., using MSE on the raw

features for 1 and 10 minute maximal runtime.

All experiments were run on servers with Intel Xeon Gold 6148 processors,

having 20 cores and 48 GB of memory each.

Table C.3.: Test power for the AutoML test with different methods all run with maximal training time of 𝑡max = 5 minutes.

(a) Test power depending on shift type.

Shift Test

Number of samples from test

10 20 50 100 200 500 1,000 10,000

s_gn

raw 5 0.20 0.27 0.33 0.40 0.43 0.50 0.63 0.80

pre 5 0.00 0.03 0.10 0.03 0.00 0.10 0.03 0.03

class 5 0.20 0.17 0.30 0.37 0.47 0.50 0.53 0.80

bin 5 0.00 0.17 0.27 0.40 0.40 0.33 0.40 0.73

m_gn

raw 5 0.27 0.23 0.33 0.43 0.43 0.53 0.63 0.83

pre 5 0.00 0.03 0.17 0.00 0.00 0.13 0.07 0.13

class 5 0.20 0.20 0.33 0.40 0.43 0.53 0.73 0.83

bin 5 0.00 0.17 0.30 0.40 0.43 0.37 0.53 0.83

l_gn

raw 5 0.23 0.33 0.53 0.67 0.70 0.77 1.00 1.00

pre 5 0.17 0.27 0.50 0.57 0.60 0.73 0.80 0.90

class 5 0.33 0.23 0.57 0.70 0.73 0.83 0.93 1.00

bin 5 0.03 0.17 0.43 0.67 0.70 0.67 0.80 1.00

s_img

raw 5 0.13 0.27 0.30 0.33 0.40 0.50 0.53 0.83

pre 5 0.20 0.30 0.60 0.57 0.67 0.83 0.83 1.00

class 5 0.23 0.10 0.30 0.37 0.43 0.50 0.50 0.87

bin 5 0.10 0.17 0.30 0.33 0.40 0.43 0.50 0.83

m_img

raw 5 0.03 0.00 0.03 0.00 0.10 0.20 0.30 0.57

pre 5 0.07 0.03 0.13 0.10 0.13 0.33 0.47 0.60

class 5 0.10 0.03 0.07 0.07 0.17 0.20 0.30 0.53

bin 5 0.00 0.00 0.07 0.10 0.10 0.03 0.20 0.50

l_img

raw 5 0.20 0.07 0.27 0.37 0.40 0.50 0.47 0.83

pre 5 0.10 0.03 0.07 0.23 0.27 0.57 0.63 0.70

class 5 0.07 0.07 0.33 0.33 0.47 0.43 0.47 0.83

bin 5 0.03 0.00 0.23 0.27 0.43 0.37 0.43 0.83

adv

raw 5 0.07 0.10 0.37 0.37 0.43 0.70 0.67 0.90

pre 5 0.27 0.33 0.53 0.67 0.60 0.83 0.80 0.87

class 5 0.10 0.07 0.33 0.33 0.40 0.67 0.70 0.90

bin 5 0.00 0.03 0.20 0.33 0.37 0.57 0.63 0.87

ko

raw 5 0.17 0.33 0.37 0.50 0.60 0.83 0.83 0.97

pre 5 0.27 0.47 0.57 0.77 0.67 0.87 0.87 0.97

class 5 0.20 0.23 0.37 0.53 0.60 0.80 0.80 0.97

bin 5 0.07 0.13 0.30 0.43 0.63 0.73 0.73 0.97

raw 5 0.00 0.03 0.23 0.53 0.53 0.67 0.67 1.00

m_img pre 5 0.17 0.43 0.50 0.73 0.80 1.00 1.00 1.00

+ko class 5 0.10 0.07 0.23 0.53 0.53 0.60 0.73 1.00

bin 5 0.00 0.03 0.13 0.43 0.43 0.60 0.67 1.00

raw 5 0.37 0.77 0.97 1.00 1.00 1.00 1.00 1.00

oz pre 5 0.60 0.93 1.00 1.00 1.00 1.00 1.00 1.00

+m_img class 5 0.33 0.77 0.97 1.00 1.00 1.00 1.00 1.00

bin 5 0.07 0.53 0.87 0.93 1.00 1.00 1.00 1.00

(b) Test power depending on shift intensity.

Test Intensity

Number of samples from test

10 20 50 100 200 500 1,000 10,000

r
a
w

5

Small 0.14 0.11 0.21 0.26 0.31 0.40 0.47 0.73

Medium 0.16 0.20 0.33 0.38 0.42 0.58 0.61 0.86

Large 0.19 0.37 0.53 0.68 0.71 0.82 0.88 0.99

p
r
e

5

Small 0.14 0.06 0.03 0.10 0.12 0.13 0.33 0.38

Medium 0.16 0.16 0.22 0.43 0.41 0.42 0.60 0.57

Large 0.19 0.30 0.53 0.64 0.77 0.77 0.90 0.92

c
l
a
s
s

5 Small 0.14 0.12 0.09 0.23 0.26 0.37 0.38 0.43

Medium 0.16 0.18 0.12 0.32 0.37 0.42 0.57 0.64

Large 0.19 0.24 0.33 0.53 0.69 0.72 0.81 0.87

b
i
n

5

Small 0.01 0.06 0.19 0.26 0.31 0.24 0.34 0.69

Medium 0.03 0.12 0.27 0.36 0.40 0.46 0.56 0.84

Large 0.04 0.22 0.43 0.62 0.69 0.75 0.80 0.99

(c) Test power depending on shift frequency.

Test Percentage

Number of samples from test

10 20 50 100 200 500 1,000 10,000

r
a
w

5

10% 0.09 0.15 0.14 0.24 0.27 0.45 0.52 0.68

50% 0.15 0.17 0.45 0.52 0.58 0.66 0.72 0.94

100% 0.26 0.40 0.53 0.62 0.66 0.75 0.78 1.00

p
r
e

5

10% 0.15 0.17 0.31 0.28 0.19 0.41 0.45 0.53

50% 0.14 0.27 0.40 0.48 0.53 0.70 0.69 0.79

100% 0.26 0.42 0.54 0.64 0.70 0.81 0.81 0.84

c
l
a
s
s

5 10% 0.07 0.10 0.16 0.23 0.34 0.43 0.50 0.68

50% 0.16 0.13 0.44 0.54 0.58 0.68 0.71 0.94

100% 0.33 0.35 0.54 0.62 0.65 0.71 0.80 1.00

b
i
n

5

10% 0.02 0.08 0.12 0.22 0.23 0.26 0.32 0.66

50% 0.02 0.08 0.29 0.51 0.58 0.61 0.69 0.91

100% 0.05 0.26 0.52 0.56 0.66 0.66 0.76 1.00
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𝑡max
Test

Number of samples from test

10 20 50 100 200 500 1,000 10,000

5

AutoML (raw) 0.17 0.24 0.37 0.46 0.50 0.62 0.67 0.87

AutoML (pre) 0.18 0.29 0.42 0.47 0.47 0.64 0.65 0.72

AutoML (class) 0.19 0.19 0.38 0.46 0.52 0.61 0.67 0.87

AutoML (bin) 0.03 0.14 0.31 0.43 0.49 0.51 0.59 0.86

1 AutoML (raw) 0.19 0.21 0.37 0.46 0.49 0.60 0.66 0.81

10 AutoML (raw) 0.15 0.24 0.38 0.46 0.51 0.61 0.67 0.88

Table C.4.: Shift detection on MNIST and

CIFAR10 based on [18]. The performance

of the 5-minute runtime was reported in

Table 4.1. We additionally show the effect

of varying the maximal runtime 𝑡max.
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Appendix of Chapter 5 D.
D.1. Proof of Theorem 5.3.1

Proof. We make the proof in terms of the canonical feature map 𝜙, which

maps into the RKHS. The validity for any mapping 𝜑 : X→ H that

leads to the same kernel function is then trivial.

Let M(X,A) denote the set of finite non-negative measures on the

measurable space (X,A), i.e., 𝜉(X) < ∞ for all 𝜉 ∈ M(X,A). We can

extend the definition of the kernel mean embedding (5.1) to M(X,A) by

defining

𝜇𝜉 =

∫
X

𝑘(·, 𝑥)d𝜉(𝑥) =
∫
X

𝜙(𝑥)d𝜉(𝑥), (D.1)

for any 𝜉 ∈ M(X,A) that fulfills

∫
X
𝑘(𝑥, 𝑥)d𝜉(𝑥) < ∞. Let 𝜉1 and 𝜉2

be arbitrary measures in M(X,A). By assumption, 𝑘 is universal over

C0(X) and thus characteristic over M(X,A), i.e., 𝜇𝜉1
= 𝜇𝜉2

⇔ 𝜉1 = 𝜉2;

see Theorem 6 in [111].

Define 𝜈𝑃 as the mean embedding onto the unit sphere of the RKHS

𝜈𝑃 :=
1

N𝑃
𝜇𝑃 , (D.2)

with N𝑃 ∈ ℝ+ such that ∥𝜈𝑃 ∥H𝑘
= 1. Let 𝑃 and𝑄 be probability measures

for which the embedding onto the unit sphere (D.2) coincide, i.e., 𝜈𝑃 = 𝜈𝑄 .

We can relate this to the kernel mean embeddings as

𝜇𝑃 = N𝑃 𝜈𝑄 =
N𝑃

N𝑄
𝜇𝑄 = 𝜇𝜉 , (D.3)

where we defined the finite non-negative measure 𝜉 =
N𝑃
N𝑄
𝑄, using the

linearity of Equation D.1. With the injectivity of the embedding (D.1) this

implies 𝑃 = 𝜉 =
N𝑃
N𝑄
𝑄. By assumption, 𝑃 and 𝑄 are probability measures

and fulfill 𝑃(X) = 𝑄(X) = 1. This implies
N𝑃
N𝑄

= 1 and thus 𝑃 = 𝑄, which

proves the injectivity of 𝜈 for the set of probability distributions.

D.2. Coherent states and Gaussian kernel

In this section, we consider an explicit example, previously reported

in [104]. Let H be an infinite dimensional (complex) Hilbert space,

with orthonormal basis {|𝑛⟩}𝑛∈ℕ0
. This could for example be the space

corresponding to a single mode of the electro-magnetic field [186]. For

simplicity we consider X = ℝ and define the feature map 𝜑 : ℝ→ H

as

|𝜑(𝑥)⟩ = 𝑒−
1

2
𝑥2

∞∑
𝑛=0

𝑥𝑛√
𝑛!

|𝑛⟩ . (D.4)
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In quantum optics, the states |𝑛⟩ are called Fock states. States of the form

of Equation D.4 are called coherent states and are well studied [187]. In

the context of this paper, however, the nature of the basis and hence the

exact form of the Hilbert space are unimportant. The important part is

the orthonormality of the basis states, which implies

⟨𝜑(𝑥)|𝜑(𝑥′)⟩ = 𝑒−
1

2
(𝑥−𝑥′)2 =: 𝑘(𝑥, 𝑥′), (D.5)

for arbitrary 𝑥, 𝑥′ ∈ ℝ and defines the popular Gaussian kernel [4].

By composing the mapping (D.4) with the mapping 𝑥 ↦→ 𝑥
𝜎 , for some

𝜎 > 0, it is also possible to include a bandwidth parameter 𝜎. The

Gaussian kernel fulfills the requirements of Theorem 5.3.1 (see, [111,

theorem 17]). Therefore, it is possible to construct an injective embedding

of probability distributions over the real numbers in a superposition of

coherent states.

Coherent states are commonly considered the most classical states in

quantum optics, and are easy to simulate on a classical device. Working

with a quantum device becomes interesting when the states become non-
classical [186]. When using the coherent feature map (D.4), the embedding

of a sample (5.10) corresponds to the so-called cat-states [108, 126, 127].

Cat-states are considered nonclassical, as their Wigner function attains

negative values. From a quantum perspective, this already hints to the

difficulties encountered when working with such states on a classical

devices.

D.3. Estimation of N𝕏

In order to obtain N𝕏 without explicitly calculating Equation 5.11, we

can evaluate N𝕏 by estimating the inner product with a reference state

|𝜓ref⟩ = |𝜑(𝑥ref)⟩ for some reference value 𝑥ref ∈ X. To this end, we

analytically calculate

𝑐 :=
1

𝑛

𝑛∑
𝑖=1

⟨𝜓ref |𝜑(𝑥𝑖)⟩ =
1

𝑛

𝑛∑
𝑖=1

𝑘(𝑥ref , 𝑥𝑖), (D.6)

using 𝑂(𝑛) operations. Now given the preparation of |𝜈𝕏⟩ and of |𝜓ref⟩
we can experimentally evaluate the inner product ⟨𝜓ref |𝜈𝕏⟩ and from

this obtain the normalization N𝕏 = 𝑐⟨𝜓ref |𝜈𝕏⟩−1

. Obviously, in order to

make this well defined, we need to choose the reference function such

that ⟨𝜓ref |𝜈𝕏⟩ ≠ 0. This strategy relies on the two challenges phrased in

the main text, i.e., the preparation of |𝜈𝕏⟩ and the estimation of inner

products, but apart from this does not pose an extra difficulty by itself.

We emphasize again that due to Theorem 5.3.1 it should be possible to

come up with algorithms that directly work with the QME and hence

make the estimation of the normalization superfluous.
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E.1. Conditional moment discrepancy (CMMD)

The maximum moment restriction (MMR) also allows us to compare two

different models based on the conditional moment restriction (CMR). Let

M𝜃1
and M𝜃2

be two models parameterized by 𝜃1 , 𝜃2 ∈ Θ, respectively.

Then, we can define a CMR-based discrepancy measure between these

two models as follows.

Definition E.1.1 For 𝜃1 , 𝜃2 ∈ Θ, a conditional moment discrepancy
(CMMD) is defined as Δ(𝜃1 , 𝜃2) := ∥𝝁𝜃1

− 𝝁𝜃2
∥F𝑝 .

By Theorem 6.3.3, Δ(𝜃1 , 𝜃2) ≥ 0 and Δ(𝜃1 , 𝜃2) = 0 if and only if the two

models M𝜃1
and M𝜃2

are indistinguishable in terms of the CMR alone.

Moreover, if the global identifiability (A3) holds, Δ(𝜃0 , 𝜃) = 𝕄(𝜃) for all

𝜃 ∈ Θ. Since

Δ(𝜃1 , 𝜃2) = ∥𝔼[𝝃𝜃1
(𝑋, 𝑍) − 𝝃𝜃2

(𝑋, 𝑍)]∥F𝑞 =


𝔼[𝝃̄(𝑋, 𝑍)]



F𝑞

where 𝝃̄(𝑥, 𝑧) := 𝝃𝜃1
(𝑥, 𝑧) − 𝝃𝜃2

(𝑥, 𝑧) = (𝝍(𝑧;𝜃1) − 𝝍(𝑧;𝜃2))𝑘(𝑥, ·), the

CMMD can be viewed as the MMR defined on a differential residual
function 𝝍(𝑧;𝜃1) −𝝍(𝑧;𝜃2). As a result, Δ(𝜃1 , 𝜃2) also has a closed-form

expression similar to that in Theorem 6.3.4.

Corollary E.1.1 For 𝜃1 , 𝜃2 ∈ Θ, let

ℎ((𝑥, 𝑧), (𝑥′, 𝑧′)) := (𝝍(𝑧;𝜃1)−𝝍(𝑧;𝜃2))⊤(𝝍(𝑧′;𝜃1)−𝝍(𝑧′;𝜃2))𝑘(𝑥, 𝑥′)

and assume that 𝔼[ℎ((𝑋, 𝑍), (𝑋, 𝑍))] < ∞. Then, we have Δ2(𝜃1 , 𝜃2) =
𝔼[ℎ((𝑋, 𝑍), (𝑋′, 𝑍′))] where (𝑋′, 𝑍′) is independent copy of (𝑋, 𝑍) with
an identical distribution.

Proof. The result follows by applying the proof of Theorem 6.3.4 to the

feature map 𝝃̄(𝑥, 𝑧) := 𝝃𝜃1
(𝑥, 𝑧) − 𝝃𝜃2

(𝑥, 𝑧) = (𝝍(𝑧;𝜃1) −𝝍(𝑧;𝜃2))𝑘(𝑥, ·).

Furthermore, we can express the empirical CMMD as

Δ2

𝑛(𝜃1 , 𝜃2) :=
1

𝑛(𝑛 − 1)
∑

1≤𝑖≠𝑗≤𝑛
ℎ((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗))

where

ℎ((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗))
:= (𝝍(𝑧𝑖 ;𝜃1) −𝝍(𝑧𝑖 ;𝜃2))⊤(𝝍(𝑧 𝑗 ;𝜃1) −𝝍(𝑧 𝑗 ;𝜃2))𝑘(𝑥𝑖 , 𝑥 𝑗).

As we can see, the RKHS norm, inner product, and function evaluation

computed with respect to 𝝁𝜃 all have meaningful economic interpreta-

tions. Table E.1 summarizes these interpretations.
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Operation Interpretation

∥𝝁𝜃∥F𝑞 conditional moment violation

⟨ 𝑓 , 𝝁𝜃⟩F𝑞 violation w.r.t. the instrument 𝑓
𝝁𝜃(𝑥, 𝑧) structural instability at (𝑥, 𝑧)

∥𝝁𝜃1
− 𝝁𝜃2

∥F𝑞 discrepancy between M𝜃1
and M𝜃2

Table E.1.: Interpretations of different

operations on 𝝁𝜃 in F𝑞
.

[145]: Lewis et al. (2018), Adversarial Gen-
eralized Method of Moments
[144]: Bennett et al. (2019), Deep General-
ized Method of Moments for Instrumental
Variable Analysis

[150]: Hall (2005), Generalized Method of
Moments

[165]: Carrasco et al. (2000), Generaliza-
tion of GMM to a Continuum of Moment
Conditions

[144]: Bennett et al. (2019), Deep Gener-
alized Method of Moments for Instrumen-
tal Variable Analysis; [145]: Lewis et al.

(2018), Adversarial Generalized Method of
Moments; [147]: Singh et al. (2019), Ker-
nel Instrumental Variable Regression; [148]:

Muandet et al. (2020), Dual instrumen-
tal variable regression; [188]: Angrist et al.

(2008), Mostly Harmless Econometrics: An
Empiricist’s Companion

E.2. Parameter estimation

Besides hypothesis testing, another important application of the CMR is

parameter estimation. That is, given the CMR as in Equation 6.1, we aim

to find an estimate of 𝜃0 that satisfies Equation 6.1 from the observed

data (𝑥𝑖 , 𝑧𝑖)𝑛𝑖=1
. Based on the MMR, we define the estimator of 𝜃0 as the

parameter that minimizes Equation 6.10:

𝜃̂𝑛 := arg min

𝜃∈Θ
𝕄̂2

𝑛(𝜃) = arg min

𝜃∈Θ

1

𝑛(𝑛 − 1)
∑

1≤𝑖≠𝑗≤𝑛
ℎ𝜃((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗)).

(E.1)

We call 𝜃̂𝑛 a minimum maximum moment restriction (MMMR) estimate of 𝜃0.

Note that it is also possible to adopt 𝑉-statistic in Equation E.1 instead of

the𝑈-statistic. Previously, [145] and [144] proposed to estimate 𝜃0 based

on Equation 6.5 and F that is parameterized by deep neural networks.

However, their algorithms require solving a minimax game, whereas our

approach for estimation is merely a minimization problem.

The following theorem shows that 𝜃̂𝑛 is a consistent estimate of 𝜃0. The

proof can be found in Appendix E.4.6.

Theorem E.2.1 (Consistency of 𝜃̂𝑛) Assume that the parameter space Θ is
compact. Then, we have 𝜃̂𝑛

𝑝
−→ 𝜃0.

Despite the consistency, we suspect that 𝜃̂𝑛 may not be asymptotically

efficient and there exist better estimators. Theorem 6.3.5 shows that 𝕄(𝜃)
depends on a continuum of moment conditions reweighted by the non-

uniform eigenvalues (𝜆 𝑗)𝑗 , which suggests that a reweighting matrix must

also be incorporated in order to achieve the optimality [150]. Constructing

an optimal choice of reweighting matrix in an infinite dimensional RKHS

is an interesting topic [165], and we leave it to future work.

E.2.1. Maximum moment restriction for instrumental
variable regression

To illustrate one of the advantages of the MMR for parameter estimation,

let us consider the nonparametric instrumental variable regression prob-

lem [144, 145, 147, 148, 188]. Let 𝑋 be a treatment (endogeneous) variable

taking values in X⊆ ℝ𝑑
and 𝑌 a real-valued outcome variable. Our goal

is to estimate a function 𝑔 : X→ ℝ from a structural equation model

(SEM) of the form

𝑌 = 𝑔(𝑋) + 𝜀, 𝑋 = ℎ(𝑍) + 𝑓 (𝜀) + 𝜈, (E.2)
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[147]: Singh et al. (2019), Kernel Instru-
mental Variable Regression
[148]: Muandet et al. (2020), Dual instru-
mental variable regression
[147]: Singh et al. (2019), Kernel Instru-
mental Variable Regression
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where we assume that 𝔼[𝜀] = 0 and 𝔼[𝜈] = 0. Unfortunately, as we

can see from Equation E.2, 𝜀 is correlated with the treatment 𝑋, i.e.,

𝔼[𝜀|𝑋] ≠ 0, and hence standard regression methods cannot be used

to estimate 𝑔. This setting often arises when there exist unobserved

confounders between the treatment 𝑋 and outcome 𝑌.

In instrumental variable regression, we assume access to an instrumental
variable 𝑍 which is associated with the treatments 𝑋, but not with the

outcome variable 𝑌, other than through its effect on the treatments.

Moreover, the instrument 𝑍 is assumed to be uncorrelated with 𝜀. This

implies the conditional moment restriction𝔼[𝜀 | 𝑍] = 𝔼[𝑌− 𝑔(𝑋) | 𝑍] = 0

for 𝑃𝑍-almost all 𝑧 [138, 144, 145]. Given an i.i.d. sample (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)𝑛𝑖=1

from 𝑃(𝑋,𝑌, 𝑍), the MMR allows us to reduce the problem of estimating

𝑔 to a regularized empirical risk minimization (ERM) problem

𝑔̂𝜆 := arg min

𝑔∈G𝑙
𝕄̂2

𝑛(𝑔) + 𝜆∥𝑔∥2G𝑙

= arg min

𝑔∈G𝑙

1

𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖 − 𝑔(𝑥𝑖))(𝑦 𝑗 − 𝑔(𝑥 𝑗))𝑘(𝑧𝑖 , 𝑧 𝑗) + 𝜆∥𝑔∥2G𝑙 ,(E.3)

where 𝜆 is a positive regularization parameter and G𝑙 is a reproducing

kernel Hilbert space (RKHS) of real-valued functions on X with the

reproducing kernel 𝑙 : X×X→ ℝ. Note that we adopt the 𝑉-statistic

instead of the𝑈-statistic in Appendix E.2.1. By the representer theorem,

the optimal solution to Appendix E.2.1 can be expressed as a linear

combination

𝑔̂𝜆(𝑥) =
𝑛∑
𝑖=1

𝛼𝑖 𝑙(𝑥, 𝑥𝑖) (E.4)

for some (𝛼1 , . . . , 𝛼𝑛) ∈ ℝ𝑛
. Let 𝐾 = [𝑘(𝑧𝑖 , 𝑧 𝑗)]𝑖 , 𝑗 and 𝐿 = [𝑙(𝑥𝑖 , 𝑥 𝑗)]𝑖 , 𝑗 be

the kernel matrices in ℝ𝑛×𝑛
of 𝒛 = [𝑧1 , . . . , 𝑧𝑛]⊤ and 𝒙 = [𝑥1 , . . . , 𝑥𝑛]⊤,

respectively, and 𝒚 := [𝑦1 , . . . , 𝑦𝑛]⊤. Substituting Equation E.4 back into

Appendix E.2.1 yields a generalized ridge regression (GRR) problem

𝜶𝜆 := arg min

𝜶∈ℝ𝑛

1

𝑛2

(𝒚 − 𝐿𝜶)⊤𝐾(𝒚 − 𝐿𝜶) + 𝜆𝜶⊤𝐿𝜶. (E.5)

That is, the optimal coefficients 𝜶𝜆 can be obtained by solving the first-

order stationary condition (𝐿𝐾𝐿 + 𝑛2𝜆𝐿)𝜶 = 𝐿𝐾𝒚 and if 𝐿 is positive

definite, the solution has a closed-form expression, i.e.,

𝑔̂𝜆(𝑥) =
𝑛∑
𝑖=1

𝛼𝜆,𝑖 𝑙(𝑥, 𝑥𝑖), 𝜶𝜆 = (𝐿𝐾𝐿 + 𝑛2𝜆𝐿)−1𝐿𝐾𝒚. (E.6)

Similar techniques have been considered in [147] and [148]. In [147], the

authors extended the two-stage least square (2SLS) by modeling the first-

stage regression with the conditional mean embedding of 𝑃(𝑋 |𝑍) [19]

which is then used in the second-stage kernel ridge regression. In [148],

the authors showed that the two-stage procedure can be reformulated as

a convex-concave saddle-point problem. When the solutions lie in the

RKHS, the closed-form solution similar to Equation E.6 and the one in

[147] can be obtained. By contrast, the MMR-based approach allows us to

reformulate the problem directly as a generalized ridge regression (GRR)

in which the values of hyperparameters, e.g., the regularization parameter

𝜆, can be chosen via the popular cross-validation procedures.
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[188]: Angrist et al. (2008), Mostly Harm-
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E.3. Experiments

In this section, we provide further description of our experiments as well

as additional experimental results.

E.3.1. Simultaneous equation models

A simultaneous equation model (SEM) is a fundamental concept in

economics. In one of our experiments, we consider the following SEM:

𝑄 = 𝛼𝑑𝑃 + 𝛽𝑑𝑅 +𝑈, 𝛼𝑑 < 0, (Demand)

𝑄 = 𝛼𝑠𝑃 + 𝛽𝑠𝑊 +𝑉, 𝛼𝑠 > 0, (Supply)

(E.7)

where 𝑄 and 𝑃 denote quantity and price, respectively, 𝑅 and 𝑊 are

exogeneous variables, and𝑈 and𝑉 are the error terms. To obtain reduced-
form equations of (E.7), we must solve for the endogeneous variables 𝑃

and 𝑄. First, we solve for 𝑃 by equating the two equations in (E.7):

𝑃 =

[
𝛽𝑠

𝛼𝑑 − 𝛼𝑠

]
𝑊 −

[
𝛽𝑑

𝛼𝑑 − 𝛼𝑠

]
𝑅 + 𝑉 −𝑈

𝛼𝑑 − 𝛼𝑠
. (E.8)

Then, we can solve for 𝑄 by plugging in 𝑃 to the supply equation in

(E.7):

𝑄 =

[
𝛼𝑠𝛽𝑠

𝛼𝑑 − 𝛼𝑠
+ 𝛽𝑠

]
𝑊 −

[
𝛼𝑠𝛽𝑑

𝛼𝑑 − 𝛼𝑠

]
𝑅 + 𝛼𝑠

𝛼𝑑 − 𝛼𝑠
(𝑉 −𝑈) +𝑉. (E.9)

By comparing Equation E.8 and Equation E.9 to the data generating

process in our experiment, we obtain the following system of equations:

𝜆11 = − 𝛼𝑠𝛽𝑑
𝛼𝑑 − 𝛼𝑠

,

𝜆12 =
𝛼𝑠𝛽𝑠

𝛼𝑑 − 𝛼𝑠
+ 𝛽𝑠 ,

𝜆21 = − 𝛽𝑑
𝛼𝑑 − 𝛼𝑠

𝜆22 =
𝛽𝑠

𝛼𝑑 − 𝛼𝑠
.

(E.10)

Finally, setting (𝜆11 ,𝜆12 ,𝜆21 ,𝜆22) = (1,−1, 1, 1) and then solving the sys-

tem of equations (E.10) results in a non-trivial solution (𝛼𝑑 , 𝛽𝑑 , 𝛼𝑠 , 𝛽𝑠) =
(−1, 2, 1,−2). This solution coincides with the one obtained from the

two-stage least square (2SLS) procedure [188, Ch. 4].

E.3.2. Type-I errors

The KCM test with bootstrapping is based on the asymptotic distribution

of the test statistic under 𝐻0 (cf. Theorem 6.4.1). Hence, the test reliably

controls the Type-I error when the sample size is sufficiently large, i.e.,

we are in the asymptotic regime. For the considered examples, this is

the case already for moderate sample sizes. We report the Type-I error

at a significance level 𝛼 = 0.05 for 𝑛 ∈ {100, 200, 400, 600, 800, 1000} in

Figure E.1.
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Figure E.1.: The Type-I errors averaged over 300 trials of KCM, ICM, and smooth tests under the null hypothesis (𝛿 = 0) as we vary the

sample size 𝑛.
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E.4. Proofs

This section collects all the proofs of the results presented in Chapter 6.

E.4.1. Proof of Lemma 6.3.1

Proof. We have 𝑀𝜃0
𝑓 =

∑𝑞

𝑖=1
𝔼[𝜓𝑖(𝑍;𝜃0) 𝑓𝑖(𝑋)] and, for all 𝑖 = 1, . . . , 𝑞,

𝔼𝑋𝑍[𝜓𝑖(𝑍;𝜃0) 𝑓𝑖(𝑋)] = 𝔼𝑋[𝔼𝑍[𝜓𝑖(𝑍;𝜃0) 𝑓𝑖(𝑋)|𝑋]]
= 𝔼𝑋[𝔼𝑍[𝜓𝑖(𝑍;𝜃0)|𝑋] 𝑓𝑖(𝑋)]
= 0

by the law of iterated expectation. The last equality follows from the

definition of 𝜃0 and the continuity of 𝑓𝑖 , i.e., by Assumption (A4).

E.4.2. Proof of Theorem 6.3.2

Our result follows directly from [189, Lemma 2] and [190, Theorem 3.4]

which rely on the Bennett inequality for vector-valued random variables.

We reproduce the proof here for completeness.

Proof. First, recall that 𝝁𝜃 = 𝔼[𝝃𝜃(𝑋, 𝑍)] and 𝝁̂𝜃 = 1

𝑛

∑𝑛
𝑖=1

𝝃𝜃(𝑥𝑖 , 𝑧𝑖) for

the independent random variables {𝝃𝜃(𝑥𝑖 , 𝑧𝑖)}𝑛𝑖=1
. Then, for any 𝜀 > 0, it

follows from [189, Lemma 1] that

𝑃

{




 1

𝑛

𝑛∑
𝑖=1

𝝃𝜃(𝑥𝑖 , 𝑧𝑖) − 𝝁𝜃







F𝑞

≥ 𝜀

}
≤ 2 exp

{
− 𝑛𝜀

2𝐶𝜃
log

(
1 + 𝐶𝜃𝜀

𝜎2

𝜃

)}
.

Taking 𝑡 := 𝐶𝜃𝜀/𝜎2

𝜃 and applying the inequality log(1+ 𝑡) ≥ 𝑡/(1+ 𝑡) for

all 𝑡 > 0 yield

𝑃

{




 1

𝑛

𝑛∑
𝑖=1

𝝃𝜃(𝑥𝑖 , 𝑧𝑖) − 𝝁𝜃







F𝑞

≥ 𝜀

}
≤ 2 exp

{
− 𝑛𝜀

2𝐶𝜃

(
𝐶𝜃𝜀

𝐶𝜃𝜀 + 𝜎2

𝜃

)}
= 2 exp

{
− 𝑛𝜀2

2𝐶𝜃𝜀 + 2𝜎2

𝜃

}
.

The value of 𝜀 > 0 for which this probability equal to 𝛿 can be obtained

by solving the quadratic equation 𝑛𝜀2 = log(2/𝛿)(2𝐶𝜃𝜀 + 2𝜎2

𝜃). As a
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result, we have with confidence 1 − 𝛿 that




 1

𝑛

𝑛∑
𝑖=1

𝝃𝜃(𝑥𝑖 , 𝑧𝑖) − 𝝁𝜃







F𝑞

≤
2𝐶𝜃 log

2

𝛿

𝑛
+

√
2𝜎2

𝜃 log
2

𝛿

𝑛
, (E.11)

as required.

It remains to show that, for each 𝜃 ∈ Θ, there exists a constant 𝐶𝜃 < ∞
such that ∥𝝃𝜃(𝑋, 𝑍)∥F𝑞 < 𝐶𝜃 almost surely. Note that for any (𝑥, 𝑧) ∈
X×Z for which 𝑃𝑋𝑍(𝑥, 𝑧) > 0,

∥𝝃𝜃(𝑥, 𝑧)∥F𝑝 =

√
∥𝝃𝜃(𝑥, 𝑧)∥2F𝑝

=
√
𝝍(𝑧;𝜃)⊤𝝍(𝑧;𝜃)𝑘(𝑥, 𝑥)

≤ sup

𝑥,𝑧

√
𝝍(𝑧;𝜃)⊤𝝍(𝑧;𝜃)𝑘(𝑥, 𝑥) < ∞,

where the last inequality follows from Assumptions (A2) and (A4).

E.4.3. Proof of Theorem 6.3.3

Proof. If M(𝑥;𝜃1) = M(𝑥;𝜃2) for 𝑃𝑋 -almost all 𝑥, then the equality

𝝁𝜃1
= 𝝁𝜃2

follows straightforwardly. Suppose that 𝝁𝜃1
= 𝝁𝜃2

and let

𝜹(𝑥) := M(𝑥;𝜃1) −M(𝑥;𝜃2). Then, we have

∥𝝁𝜃1
− 𝝁𝜃2

∥2F𝑞

=





∫ 𝝃𝜃1
(𝑥, 𝑧)d𝑃𝑋𝑍(𝑥, 𝑧) −

∫
𝝃𝜃2
(𝑥, 𝑧)d𝑃𝑋𝑍(𝑥, 𝑧)





2

F𝑞

=





∫ M(𝑥;𝜃1)𝑘(𝑥, ·)d𝑃𝑋(𝑥) −
∫

M(𝑥;𝜃2)𝑘(𝑥, ·)d𝑃𝑋(𝑥)




2

F𝑞

=





∫ (M(𝑥;𝜃1) −M(𝑥;𝜃2))𝑘(𝑥, ·)d𝑃𝑋(𝑥)




2

F𝑞

=

∬
𝜹(𝑥)⊤𝑘(𝑥, 𝑥′)𝜹(𝑥′)d𝑃𝑋(𝑥)d𝑃𝑋′(𝑥′) = 0, (E.12)

where 𝑋′ is an independent copy of 𝑋. It follows from Appendix E.4.3

and Assumption (A2) that the function 𝑔(𝑥) := 𝜹(𝑥)𝑝𝑋(𝑥) has zero

L2-norm, i.e., ∥𝑔∥2
2

= 0 where 𝑝𝑋 denotes the density of 𝑃𝑋 . As

a result, 𝜹(𝑥) = 0 a.e. 𝑃𝑋 implying that 𝑃𝑋(𝐵0) = 1 where 𝐵0 :=

{𝑥 ∈ X : M(𝑥;𝜃1) −M(𝑥;𝜃2) = 0}. Therefore, M(𝑥;𝜃1) = M(𝑥;𝜃2) for

𝑃𝑋 -almost all 𝑥. This completes the proof.
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E.4.4. Proof of Theorem 6.3.4

Proof. By the definition of 𝕄(𝜃) and the Bochner integrability of 𝝃𝜃,

𝕄2(𝜃) = ∥𝝁𝜃∥2F𝑞

= ⟨𝝁𝜃 , 𝝁𝜃⟩F𝑞

= ⟨𝔼[𝝃𝜃(𝑋, 𝑍)],𝔼[𝝃𝜃(𝑋, 𝑍)]⟩F𝑞

= 𝔼[⟨𝝃𝜃(𝑋, 𝑍),𝔼[𝝃𝜃(𝑋, 𝑍)]⟩F𝑞 ]
= 𝔼[⟨𝝃𝜃(𝑋, 𝑍), 𝝃𝜃(𝑋′, 𝑍′)⟩F𝑞 ]
= 𝔼[ℎ𝜃((𝑋, 𝑍), (𝑋′, 𝑍′))],

where (𝑋′, 𝑍′) is an independent copy of (𝑋, 𝑍)with an identical distri-

bution.

E.4.5. Proof of Theorem 6.3.5

Proof. By Mercer’s theorem [98, Theorem 4.49], we have 𝑘(𝑥, 𝑥′) =∑
𝑗 𝜆 𝑗𝑒 𝑗(𝑥)𝑒 𝑗(𝑥′)where the convergence is absolute and uniform. Recall

that 𝜻
𝑗

𝜃(𝑥, 𝑧) :=
(
𝜓1(𝑧;𝜃)𝑒 𝑗(𝑥), . . . ,𝜓𝑞(𝑧;𝜃)𝑒 𝑗(𝑥)

)
. Hence, we can express

the kernel ℎ𝜃 as

ℎ𝜃((𝑥, 𝑧), (𝑥′, 𝑧′)) = 𝝍(𝑧;𝜃)⊤𝝍(𝑧′;𝜃)𝑘(𝑥, 𝑥′)

= 𝝍(𝑧;𝜃)⊤𝝍(𝑧′;𝜃)
(∑

𝑗

𝜆 𝑗𝑒 𝑗(𝑥)𝑒 𝑗(𝑥′)
)

=
∑
𝑗

𝜆 𝑗𝝍(𝑧;𝜃)⊤𝝍(𝑧′;𝜃)𝑒 𝑗(𝑥)𝑒 𝑗(𝑥′)

=
∑
𝑗

𝜆 𝑗
[
𝝍(𝑧;𝜃)𝑒 𝑗(𝑥)

]⊤ [
𝝍(𝑧′;𝜃)𝑒 𝑗(𝑥′)

]
=

∑
𝑗

𝜆 𝑗𝜻
𝑗

𝜃(𝑥, 𝑧)
⊤𝜻

𝑗

𝜃(𝑥
′, 𝑧′).

Since 𝜆 𝑗 > 0, the function ℎ𝜃 is positive definite. Then, we can express

𝕄2(𝜃) as follows:

𝕄2(𝜃) = 𝔼[ℎ𝜃((𝑋, 𝑍), (𝑋′, 𝑍′))]

= 𝔼

[∑
𝑗

𝜆 𝑗𝜻
𝑗

𝜃(𝑋, 𝑍)
⊤𝜻

𝑗

𝜃(𝑋
′, 𝑍′)

]
=

∑
𝑗

𝜆 𝑗𝔼𝑋𝑍
[
𝜻
𝑗

𝜃(𝑋, 𝑍)
]⊤

𝔼𝑋′𝑍′
[
𝜻
𝑗

𝜃(𝑋
′, 𝑍′)

]
=

∑
𝑗

𝜆 𝑗



𝔼𝑋𝑍 [

𝜻
𝑗

𝜃(𝑋, 𝑍)
]


2

2

.

This completes the proof.

E.4.6. Proof of Theorem E.2.1

In order to show the consistency of 𝜃̂𝑛 := arg min𝜃∈Θ 𝕄̂2

𝑛(𝜃), we need

the uniform consistency of 𝕄̂2

𝑛(𝜃) and the continuity of 𝜃 ↦→ 𝕄2(𝜃). The



E. Appendix of Chapter 6 125

[191]: Newey et al. (1994), Large sample
estimation and hypothesis testing

[191]: Newey et al. (1994), Large sample
estimation and hypothesis testing

[32]: Serfling (1980), Approximation theo-
rems of mathematical statistics

following lemma gives these two results.

Lemma E.4.1 Assume that there exists an integrable and symmetric function
𝐹𝝍 such that ∥𝝍(𝑧, 𝜃)∥2 ≤ 𝐹𝝍(𝑧) for any 𝜃 ∈ Θ and 𝑧 ∈ Z. If Assumption

(A4) holds, sup𝜃∈Θ |𝕄2

𝑛(𝜃)−𝕄2(𝜃)|
𝑝
−→ 0 and 𝜃 ↦→ 𝕄2(𝜃) are continuous.

Proof. Recall that

𝕄2(𝜃) = 𝔼[ℎ𝜃((𝑋, 𝑍), (𝑋′, 𝑍′))],

𝕄̂2

𝑛(𝜃) =
1

𝑛(𝑛 − 1)
∑

1≤𝑖≠𝑗≤𝑛
ℎ𝜃((𝑥𝑖 , 𝑧𝑖), (𝑥 𝑗 , 𝑧 𝑗)),

where

ℎ𝜃((𝑥, 𝑧), (𝑥′, 𝑧′)) = ⟨𝝃𝜃(𝑥, 𝑧), 𝝃𝜃(𝑥′, 𝑧′)⟩F𝑞 = 𝝍(𝑧;𝜃)⊤𝝍(𝑧′;𝜃)𝑘(𝑥, 𝑥′).

Then, it follows that

|ℎ𝜃((𝑥, 𝑧), (𝑥′, 𝑧′))|
= |⟨𝝃𝜃(𝑥, 𝑧), 𝝃𝜃(𝑥′𝑧′)⟩F𝑞 |
≤∥𝝃𝜃(𝑥, 𝑧)∥F𝑞 · ∥𝝃𝜃(𝑥′, 𝑧′)∥F𝑞

=
√
𝝍(𝑧;𝜃)⊤𝝍(𝑧;𝜃)𝑘(𝑥, 𝑥)

√
𝝍(𝑧′;𝜃)⊤𝝍(𝑧′;𝜃)𝑘(𝑥′, 𝑥′)

=∥𝝍(𝑧;𝜃)∥2∥𝝍(𝑧′;𝜃)∥2
√
𝑘(𝑥, 𝑥)𝑘(𝑥′, 𝑥′)

≤𝐹𝝍(𝑧)𝐹𝝍(𝑧′)
√
𝑘(𝑥, 𝑥)𝑘(𝑥′, 𝑥′),

where 𝐹𝝍 is an integrable and symmetric function. By Assumption (A4),
(𝑥, 𝑥′) ↦→

√
𝑘(𝑥, 𝑥)𝑘(𝑥′, 𝑥′) is also an integrable function. Hence, ℎ𝜃 is

integrable. Since Θ is compact, it then follows from [191, Lemma 2.4] that

sup𝜃∈Θ |𝕄̂2

𝑛(𝜃) −𝕄2(𝜃)|
p

−→ 0 and 𝜃 ↦→ 𝕄2(𝜃) is continuous.

Now, we are in the position to present the proof of Theorem E.2.1.

Proof of Theorem E.2.1. By Assumption (A3) and Theorem 6.3.3, 𝕄2(𝜃) =
0 if and only if 𝜃 = 𝜃0. Thus 𝕄2(𝜃) is uniquely minimized at 𝜃0. Since

Θ is compact, 𝕄2(𝜃) is continuous and 𝕄̂2

𝑛(𝜃) converges uniformly in

probability to 𝕄2(𝜃) by Lemma E.4.1. Then, 𝜃̂𝑛
p

−→ 𝜃0 by [191, Theorem

2.1].

E.4.7. Proof of Theorem 6.4.1

Proof. First, we need to check that 𝜎2

ℎ
≠ 0 when 𝜃 ≠ 𝜃0 and 𝜎2

ℎ
= 0 when

𝜃 = 𝜃0. Then, the results follow directly from [32, Sec. 5.5.1 and Sec.

5.5.2].



E. Appendix of Chapter 6 126

Note that

𝔼𝑢′[ℎ𝜃(𝑢, 𝑢′)] = 𝔼𝑢′[⟨𝝃𝜃(𝑢), 𝝃𝜃(𝑢′)⟩F𝑞 ]
= ⟨𝝃𝜃(𝑢),𝔼𝑢′[𝝃𝜃(𝑢′)]⟩F𝑞

= ⟨𝝃𝜃(𝑢), 𝝁𝜃⟩F𝑞

= 𝑀𝜃𝝃𝜃(𝑢).

When 𝜃 = 𝜃0, it follows that 𝔼𝑢′[ℎ𝜃0
(𝑢, 𝑢′)] = 0 by Lemma 6.3.1, and

hence 𝜎2

ℎ
= 0.

Next, suppose that 𝜃 ≠ 𝜃0. Then, 𝔼𝑢′[ℎ𝜃(𝑢, 𝑢′)] = 𝑀𝜃𝝃𝜃(𝑢) =: 𝑐(𝑢).
Since 𝜎2

ℎ
= Var𝑢[𝑐(𝑢)] = 𝔼𝑢[(𝑐(𝑢) − 𝔼𝑢′[𝑐(𝑢′)])2], 𝜎2

ℎ
= 0 if and only

if 𝑐(𝑢) is a constant function. Note that we can write 𝑐(𝑢) = 𝑐(𝑥, 𝑧) =
𝔼𝑋′𝑍′[𝝍(𝑍′;𝜃)⊤𝝍(𝑧;𝜃)𝑘(𝑥, 𝑋′)]. Therefore, by Assumptions (A3) and

(A4), 𝑐(𝑢) cannot be a constant function, implying that 𝜎2

ℎ
> 0.

E.4.8. Proof of Theorem 6.5.1

Proof. Since the kernel 𝑘(𝑥, 𝑥′) = 𝜑(𝑥 − 𝑥′) is a shift-invariant kernel on

ℝ𝑑
, it follows from Theorem 6.2.1 that

𝜑(𝑥 − 𝑥′) = (2𝜋)−𝑑/2
∫
ℝ𝑑

𝑒−𝑖(𝑥−𝑥
′)⊤𝜔

dΛ(𝜔).

Therefore, we can express 𝕄2(𝜃) as

𝕄2(𝜃) = 𝔼[𝝍(𝑍;𝜃)⊤𝝍(𝑍′;𝜃)𝑘(𝑋, 𝑋′)]
= 𝔼[𝝍(𝑍;𝜃)⊤𝝍(𝑍′;𝜃)𝜑(𝑋 − 𝑋′)]

= (2𝜋)−𝑑/2𝔼
[
𝝍(𝑍;𝜃)⊤𝝍(𝑍′;𝜃)

(∫
ℝ𝑑

𝑒−𝑖(𝑋−𝑋
′)⊤𝜔

dΛ(𝜔)
)]

= (2𝜋)−𝑑/2𝔼
[
𝝍(𝑍;𝜃)⊤𝝍(𝑍′;𝜃)

(∫
ℝ𝑑

𝑒−𝑖𝜔
⊤𝑋 · 𝑒 𝑖𝜔⊤𝑋′ dΛ(𝜔)

)]
= (2𝜋)−𝑑/2𝔼

[∫
ℝ𝑑

𝝍(𝑍;𝜃)⊤𝝍(𝑍′;𝜃)𝑒−𝑖𝜔⊤𝑋 𝑒 𝑖𝜔⊤𝑋′ dΛ(𝜔)
]

= (2𝜋)−𝑑/2𝔼
[∫

ℝ𝑑

[
𝝍(𝑍;𝜃)𝑒−𝑖𝜔⊤𝑋

]⊤ [
𝝍(𝑍′;𝜃)𝑒 𝑖𝜔⊤𝑋′

]
dΛ(𝜔)

]
= (2𝜋)−𝑑/2

∫
ℝ𝑑

𝔼
[
𝝍(𝑍;𝜃)𝑒−𝑖𝜔⊤𝑋

]⊤
𝔼

[
𝝍(𝑍′;𝜃)𝑒 𝑖𝜔⊤𝑋′

]
dΛ(𝜔)

= (2𝜋)−𝑑/2
∫
ℝ𝑑



𝔼 [
𝝍(𝑍;𝜃) exp(𝑖𝜔⊤𝑋)

]

2

2

dΛ(𝜔).

This completes the proof.
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