
Probabilistic Numerical Linear
Algebra for Machine Learning

Dissertation
der Mathematisch-Naturwissenschaftlichen Fakultät

der Eberhard Karls Universität Tübingen
zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

vorgelegt von

Jonathan Wenger
aus Nürnberg

Tübingen
2023

Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard
Karls Universität Tübingen.

Tag der mündlichen Qualifikation: 25. Juli 2023

Dekan: Prof. Dr. Thilo Stehle
1. Berichterstatter: Prof. Dr. Philipp Hennig
2. Berichterstatter: Prof. Dr. Robert C. Williamson

Abstract
Machine learning models are becoming increasingly essential in domains where critical decisions
must be made under uncertainty, such as in public policy, medicine or robotics. For a model to
be useful for decision-making, it must convey a degree of certainty in its predictions. Bayesian
models are well-suited to such settings due to their principled uncertainty quantification, given a
set of assumptions about the problem and data-generating process. While in theory, inference
in a Bayesian model is fully specified, in practice, numerical approximations have a significant
impact on the resulting posterior. Therefore, model-based decisions are not just determined by
the data but also by the numerical method. This begs the question of how we can account for the
adverse impact of numerical approximations on inference.

Arguably, the most common numerical task in scientific computing is the solution of linear sys-
tems, which arise in probabilistic inference, graph theory, differential equations and optimization.
In machine learning, these systems are typically large-scale, subject to noise and arise from
generative processes. These unique characteristics call for specialized solvers. In this thesis, we
propose a class of probabilistic linear solvers, which infer the solution to a linear system and
can be interpreted as learning algorithms themselves. Importantly, they can leverage problem
structure and propagate their error to the prediction of the underlying probabilistic model. Next,
we apply such solvers to accelerate Gaussian process inference. While Gaussian processes are a
principled and flexible model class, for large datasets inference is computationally prohibitive
both in time and memory due to the required computations with the kernel matrix. We show that
by approximating the posterior with a probabilistic linear solver, we can invest an arbitrarily small
amount of computation and still obtain a provably coherent prediction that quantifies uncertainty
exactly. Finally, we demonstrate that Gaussian process hyperparameter optimization can similarly
be accelerated by leveraging structural prior knowledge in the model via preconditioning of
iterative methods. Combined with modern parallel hardware, this enables training Gaussian
process models on datasets with hundreds of thousands of data points.

In summary, we demonstrate that interpreting numerical methods in linear algebra as probabilistic
learning algorithms unlocks significant performance improvements for Gaussian process models.
Crucially, we show how to account for the impact of numerical approximations on model predic-
tions via uncertainty quantification. This enables an explicit trade-off between computational
resources and confidence in a prediction. The techniques developed in this thesis have advanced
the understanding of probabilistic linear solvers [1], they have shifted the goalposts of what can
be expected from Gaussian process approximations [2] and they have defined the way large-scale
Gaussian process hyperparameter optimization is performed in GPyTorch [3, 4], arguably the
most popular library for Gaussian processes in Python.

iii

Zusammenfassung

Maschinelle Lernmodelle werden immer wichtiger in Bereichen, in denen kritische Entschei-
dungen unter Unsicherheit getroffen werden müssen, wie z. B. in Politik, Medizin oder Robotik.
Damit ein Modell nützlich ist, muss es genau sein und die Unsicherheit in seine Vorhersagen quan-
tifizieren, sodass das Treffen einer Entscheidung gegen das Erheben weiterer Daten abgewogen
werden kann. Bayes’sche Modelle eignen sich aufgrund ihrer präzisen Unsicherheitsquan-
tifizierung besonders für derartige Situationen. Theoretisch ist die Inferenz in einem Bayes’schen
Modell zwar vollständig spezifiziert, in der Praxis allerdings haben numerische Approximationen
einen erheblichen Einfluss. Daher werden modellbasierte Entscheidungen nicht nur von den
Daten beeinflusst, sondern problematischerweise auch von numerischen Methoden. Dies wirft
die Frage auf, wie man den Einfluss numerischer Approximationen berücksichtigen kann.

Die wohl häufigste numerische Problemstellung im wissenschaftlichen Rechnen ist die Lösung
linearer Systeme, die in der Wahrscheinlichkeitsrechnung, der Graphentheorie, bei Differential-
gleichungen und in der Optimierung auftreten. Im maschinellen Lernen sind diese Systeme in der
Regel hochdimensional, verrauscht und entstehen durch generative Prozesse. Diese spezifischen
Eigenschaften erfordern spezialisierte Lösungsmethoden. Im Rahmen dieser Arbeit beschreiben
wir eine Klasse probabilistischer linearer Löser, die die Lösung eines linearen Systems schätzen
und selbst als Lernalgorithmen interpretiert werden können. Solche Löser nutzen die Problem-
struktur explizit und können ihren intrinsischen Approximationsfehler an ein übergeordnetes
probabilistisches Modell propagieren. Im Anschluss wenden wir solche Löser an um die Inferenz
mit Gaußschen Prozessen zu beschleunigen. Während Gaußprozesse eine gut fundierte und flexi-
ble Modellklasse sind, ist Inferenz für große Datensätze sowohl zeitlich als auch speichertechnisch
nicht realisierbar. Wir demonstrieren, dass durch die Approximation des Posteriors mit einem
probabilistischen linearen Löser ein beliebig geringer Rechenaufwand dennoch eine beweisbar
kohärente Vorhersage mit exakter Unsicherheitsquantifikation zulässt. Abschließend zeigen wir,
dass die Optimierung der Hyperparameter von Gaußprozessen in ähnlicher Weise beschleunigt
werden kann, indem Struktur im Modell durch Präkonditionierung von iterativen Methoden
automatisch genutzt wird. In Kombination mit moderner paralleler Hardware ermöglicht dies das
Training von Gaußprozessen auf Datensätzen mit Hunderttausenden von Datenpunkten.

Zusammenfassend kann die Inferenz und das Optimieren von Hyperparametern von Gaußschen
Prozessen signifikant beschleunigt werden, indem man numerische Methoden in der linearen
Algebra als probabilistische Lernalgorithmen interpretiert. Insbesondere zeigen wir, dass die
Auswirkungen numerischer Approximation auf Modellvorhersagen durch Unsicherheit quan-
tifiziert werden können. Dies ermöglicht eine explizite Abwägung zwischen Rechenressourcen
und Unsicherheit bei Vorhersagen. Die in dieser Arbeit entwickelten Methoden haben das

v

Zusammenfassung

Verständnis von probabilistischen linearen Löser erweitert [1], sie haben gezeigt, was von Ap-
proximationen von Gaußprozessen erwartet werden kann [2], und sie haben die Art und Weise
definiert, wie Hyperparameteroptimierung in GPyTorch [3, 4], der größten Softwarebibliothek
für Gaußprozesse in Python, durchgeführt wird.

vi

Acknowledgements
This thesis would not have been possible without the direct and indirect support of many people.

First and foremost, I would like to thank Philipp Hennig for his scientific guidance, personal and
professional mentoring and unwavering support. You’ve been an inspiration to me as a scientist
and I hope I can one day pass on what you have taught me.

I would also like to thank John Cunningham for his belief in me early on, the opportunity to
come to Columbia University and of course for giving Geoff, Taiga and me a place to sleep. I am
beyond excited for the scientific challenges to come.

I am thankful for the inspiring work with my collaborators, who have taught me more than any
book or paper ever will. Special thanks go out to Geoff Pleiss, Marvin Pförtner, Jacob Gardner
and the ProbNum development team.

I would also like to thank the entire Methods of Machine Learning group who’ve made the past
four years so enjoyable. In particular, for the comradery, which was invaluable when times were
tough. Special thanks to Felix and Agustinus for always being available for a run and the entire
MvL6 cycling community, as well as to Franziska Weiler who’s always been supportive in any
situation.

I would like to thank the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) for their support, especially Leila Masri and Sara Sorce who were always the first to
help and answer questions.

I am grateful to my parents, Lydia and Johann Wenger, for giving me early access to educational
resources and instilling curiosity in me about the world. You’ve always supported me in whatever
quest I have pursued. I am also thankful for the support of my sister Katharina. You’ve been
there for me from the very start and have always inspired me. I would also like to thank Bob
Kamen and Trudi Veldman for fostering a love for science in me and providing guidance and the
necessary freedom in a formative period of my life.

Finally, I would like to thank Hanna Dettki for all the deep conversations, shared moments and
your emotional support throughout. Thank you for bringing color to my life. I cannot wait for
what the future will hold.

Thank you!

Jonathan Wenger
Tübingen, April 28, 2023

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgements vii

Notation xi

1 Introduction 1
1.1 Learning to Predict from Data . 2
1.2 Bayesian Machine Learning . 8
1.3 Gaussian Processes . 11
1.4 Limited Resources and the Role of Computation 18
1.5 Thesis Contributions . 21

2 Probabilistic Linear Solvers for Machine Learning 25
2.1 Introduction . 25
2.2 Probabilistic Linear Solvers . 27
2.3 Prior Covariance Class . 32
2.4 Experiments . 35
2.5 Conclusion . 39

3 Posterior and Computational Uncertainty in Gaussian Processes 41
3.1 Introduction . 42
3.2 Computation-Aware Gaussian Process Inference 44
3.3 Theoretical Analysis . 49
3.4 Experiments . 53
3.5 Conclusion . 55

4 Preconditioning for Scalable GP Hyperparameter Optimization 57
4.1 Introduction . 58
4.2 Background . 59
4.3 Log-Determinant Estimation . 61
4.4 Efficient GP Hyperparameter Optimization 65
4.5 Experiments . 70
4.6 Conclusion . 72

ix

Contents

5 Conclusion 73
5.1 Summary . 73
5.2 Future Research . 74

A Appendix of Chapter 2 77
A.1 Probabilistic Linear Solvers . 77
A.2 Theoretical Properties . 80
A.3 Prior Covariance Class . 82

B Appendix of Chapter 3 89
B.1 Connections to Other GP Approximations . 89
B.2 Theoretical Results and Proofs . 96
B.3 Implementation of IterGP . 105
B.4 Additional Experimental Results . 108

C Appendix of Chapter 4 111
C.1 Background on Krylov Methods . 112
C.2 Stochastic Trace Estimation . 114
C.3 Log-Determinant Estimation . 117
C.4 GP Hyperparameter Optimization . 123
C.5 Preconditioning . 127
C.6 Technical Results . 134
C.7 Additional Experimental Results . 134

Bibliography 141

x

Notation

Basic Mathematical Objects

a A scalar
a A (column) vector
A A matrix
Ai,j The (i, j)th entry of the matrix A
Ai,: (or A:,j) The ith row (or jth column) of the matrix A
f A function

Topology

So Interior of a subset S of a topological space
S Closure of a subset S of a topological space
∂S Boundary of a subset S of a topological space

Linear Algebra

im(A) Image of a linear map (= column space or range)
ker(A) Kernel of a linear map (= null space)
rank(A) Rank of a linear map
tr(A) Trace of a (square) matrix
det(A) Determinant of a (square) matrix

Structured and special matrices.

I Identity matrix
diag(·) Diagonal matrix

xi

Notation

Analysis

N Natural numbers
Z Integers
R Real numbers
C Complex numbers
Rd Euclidean space of dimension d
RX Space of functions from X to R

Vector and matrix norms, metrics and inner products.

| · | (Elementwise) absolute value
∥ · ∥V Norm of a vector in a normed space V
∥x∥p p-Norm, where p ≥ 1
∥A∥F Frobenius norm
∥A∥∗ Nuclear norm
⟨ · , · ⟩H Inner product in a (pre-)Hilbert space H

Probability Theory

a A random scalar
a A random vector
A A random matrix
P(·) Probability of an event
P(· | ·) Conditional probability of an event
E(·) Expectation of a random variable
Cov(·, ·) Covariance between two random variables
Var(·) Variance of a random variable

Distributions and densities.

N (µ,Σ) Gaussian distribution
N (x;µ,Σ) Gaussian probability density function
GP(µ, k) Gaussian process

Statistical distances.

dKL(p ∥ q) Kullback-Leibler divergence

xii

Numerical Analysis

i Iteration index of an iterative algorithm
P A preconditioner of a matrix

Algorithms

O(·) Landau “Big O” notation
o(·) Landau “small O” notation

Machine Learning

X Input space
d Dimension of input space
F Output space of a model
Y Output / target space
d′ Dimension of output / target space
n Number of training data
X Training data inputs
y Training data targets
X⋄ Test data inputs
w Parameters of a model
θ Hyperparameters of a model
ℓ Loss function
ℓ̄ Regularized loss function

Acronyms & Abbreviations

(P)CG (Preconditioned) conjugate gradient method
CGGP Conjugate-gradient-based Gaussian processes
DTC Deterministic training conditional
ELBO Evidence lower bound
EVD Eigenvalue decomposition
GP Gaussian process
GPU Graphics processing unit
i.i.d. independent and identically distributed
KL Kullback-Leibler divergence
L-BFGS Limited memory BFGS, a type of quasi-Newton method
NLL Negative log-likelihood

xiii

Notation

ODE Ordinary differential equation
PDE Partial differential equation
PLS Probabilistic linear solver
QFF Quadrature Fourier features
RBF Radial basis function
RFF Random Fourier features
RKHS Reproducing kernel Hilbert space
RMSE Root mean square error
SLQ Stochastic Lanczos quadrature
s.p.d. symmetric positive definite
STE Stochastic trace estimate
SoD Subset of data
SoR Subset of regressors
SVD Singular value decomposition
SVGP Scalable variational Gaussian processes

xiv

Chapter

1

Introduction

1.1 Learning to Predict from Data . 2
1.1.1 Machine Learning . 2
1.1.2 A Mathematical Theory of Learning 4
1.1.3 Desired Properties of a Predictive Model 5

1.2 Bayesian Machine Learning . 8
1.2.1 Bayes’ Theorem . 8
1.2.2 Model Selection . 9
1.2.3 Connection to Empirical Risk Minimization 9

1.3 Gaussian Processes . 11
1.3.1 From Parameter Space to Function Space 11
1.3.2 Gaussian Process Inference . 12
1.3.3 Modeling with Kernels . 13
1.3.4 Hyperparameter Optimization . 15
1.3.5 Advantages . 16
1.3.6 Limitations . 17

1.4 Limited Resources and the Role of Computation 18
1.4.1 Inference in Theory and Practice . 18
1.4.2 Probabilistic Numerics: Computation as Machine Learning 19

1.5 Thesis Contributions . 21

On New Year’s Day in 1801, Italian astronomer Guiseppe Piazzi discovered what was then
thought to be an unknown planet between the orbits of Mars and Jupiter. Piazzi observed the
location of the celestial object, later named Ceres, multiple times over the coming weeks until
Ceres’s position had shifted too close to the sun’s glare to be observable. When Piazzi published
his observations, the news about a potential discovery of an unknown planet sparked instant
excitement in the astronomical community. The leading European astronomers of the time tried
repeatedly to confirm Piazzi’s findings by observing Ceres after its reemergence out of the sun’s

1

Chapter 1 Introduction

obfuscation. However, searching the sky for an object like Ceres was a momentous challenge
in 1801 without knowing precisely where to look and no accurate models for the movements
of celestial bodies were known. At least until the problem of determining Ceres’s orbit caught
the attention of a young mathematician by the name of Carl Friedrich Gauss. Only 24 years of
age at the time, Gauss accurately predicted the position of Ceres from only a handful of Piazzi’s
measurements, leading to its rediscovery by astronomers by the end of 1801. Gauss achieved
this magnificent feat by combining the assumption of an elliptical orbit with an elegant way to
incorporate approximate data, now known as the method of least squares, and lots of tedious
calculations by hand [5, 6]. The rediscovery of Ceres made Gauss almost instantaneously famous
throughout the scientific community in Europe, in part due to the popular appeal of astronomy
at the time [7]. The method of least squares as employed by Gauss1 is not only still in use in
astrophysics today but in all of science. In fact, a large part of this thesis can be viewed as a
modern treatment of the method of least squares in an age of large-scale data and computation.

1.1 Learning to Predict from Data
In his quest to predict the position of Ceres, Gauss combined assumptions about the movement
of celestial bodies with the approximate measurements of Ceres’s position by Piazzi. This
combination of prior knowledge with noise-corrupted measurements allowed him to make highly
accurate predictions. Such a strategy for making predictions is not only fundamental to scientific
discovery but a key part of our everyday life. All of us constantly rely on our prior experience in
combination with observations to predict the world around us. How long will it take to get from
A to B? What will the weather be like this afternoon? Which direction is a ball going to bounce
off the ground? One of the hallmarks of intelligent behavior is to take actions to observe the
environment, learn to predict based on observed patterns and make decisions accordingly [9, 10].
Replicating such behavior in machines is the overarching goal of the field of machine learning.

1.1.1 Machine Learning

Machine learning describes the concept of a machine improving its performance on a complex
task by leveraging data [11]. This is fundamentally different from the classic programming
paradigm, in which a computer is given an explicit set of instructions to complete a task. Instead,
a machine learning algorithm is programmed to learn from examples [12, 13].

Advantages of Learning Algorithms While humans can be formidable at prediction, as the
story of Gauss and Ceres illustrates, learning algorithms have some key advantages. We are
fundamentally limited in how much information we can absorb, process and share with others in
a given amount of time. To learn a new language we cannot read hundreds of thousands of pages
of translated text in a few days to pick up a language. And if we meet a native speaker, they can
try to explain the grammar of the language to us, but not share their language proficiency instantly.

1The discovery of the method of least squares is often credited to Adrien-Marie Legendre, who published before
Gauss, although Gauss likely had used the method years before [8].

2

1.1 Learning to Predict from Data

In contrast, one can train a machine learning model to translate text to reasonable accuracy in
a few hours and the trained model can be duplicated instantaneously. This is why we aim to
equip machines with the ability to learn from experience. Their ability to efficiently learn to make
predictions and automated decisions at scale from a large number of observations, while being
almost seamlessly replicable.

Applications Machine learning is used in a wide range of domains from commercial to medical
applications, robotics and engineering, as well as the natural sciences (see Figure 1.1). Arguably,
the most commercially successful application of machine learning is content discovery and
personalized advertisement. Some of the largest companies in the 21st century have built their
businesses on providing individualized content based on the predicted interests of their users, be
it search results [14], social media or advertisement [15]. Recently, generative models have made
rapid progress in their ability to produce photo-realistic images [16], natural language text [17]
and machine code [18]. They are trained on vast amounts of data typically scraped from the web
and generate content based on user-specified input prompts. In many engineering applications,
as well as in medicine, predicting the content of images can aid decision-making at scale. For
example, to rapidly diagnose faulty parts during quality control [19] or in a hospital to diagnose
potentially malignant tissue from imaging data [20]. In the last decade, machine learning has also
increasingly been applied in the physical sciences to accelerate scientific discovery [21]. Among
other domains, it has been used for climate modeling [22], astronomy [23, 24], fundamental
physics [25–27], neuroscience [28, 29] and protein folding [30]. The physical sciences are a
particularly promising domain for machine learning since many experiments nowadays produce
large amounts of unstructured data, e.g. in fundamental physics or genetics, and one can often rely
on strong inductive biases about physical phenomena from established mechanistic models.

Learning Paradigms Depending on what kind of data is available and whether a machine
learning model can interact with its environment different learning frameworks exist, loosely
inspired by how humans learn. The most common learning paradigm is supervised learning,
where the goal is to learn an unknown functional relationship from a set of example input-output
pairs. Classic examples of this task are predicting the CO2 content in the atmosphere over time
or classifying images based on what they depict. Sometimes the labels for the inputs are not
explicitly given but can be determined from the data itself without human annotation. This
paradigm is known as self-supervised learning and is often applied to data that has some inherent
time structure. For example, a language model can evaluate its performance by predicting the next
word in a sentence, given all the previous words. If we do not have labeled examples available
only an unstructured dataset, we can use unsupervised learning to discover clusters in the dataset
or detect anomalies when observing new data. Finally, if the learning agent can interact with its
environment by taking actions and obtaining observations, it is solving a reinforcement learning
problem to maximize its internal notion of reward. This is often used for robotics and gameplay. If
labeled data is expensive to obtain, one can employ active learning, meaning the model explicitly
queries for specific labeled examples to learn efficiently in a supervised manner. Finally, we
might want to transfer what we have learned on one dataset to another to learn more efficiently
on a new problem where we only have little data available. This is known as transfer learning.

3

Chapter 1 Introduction

(a) Content discovery

Krizhevsky, Sutskever, and

Hinton [31]

(b) Computer Vision

Vaswani et al. [32]

(c) Language modeling

Jaquier et al. [33]

(d) Robotics

Walls et al. [34]

(e) Structural biology

Churchland et al. [28]

(f) Neuroscience

Axen et al. [35]

(g) Climate modeling

Komiske et al. [26]

(h) Particle physics

Figure 1.1: Examples of machine learning applications.

1.1.2 A Mathematical Theory of Learning

In this thesis, we focus on the supervised learning setting, which we will now formalize. Assume
there exists an unknown functional relation between inputs x ∈ X and targets y ∈ Y. The problem
of learning this relationship from data is known as regression if Y ⊂ Rd′ and as classification if
Y = {1, . . . , C}.
In order to learn the relationship between inputs and targets, we define a model fw : X → F
that depends on parameters w ∈ W, where either F = Rd′ or F = RC . We want to identify
parameters w such that our model has good predictive performance as measured by a loss function
ℓ : Y× F→ R. In other words, we want to minimize the risk

Epdata(x,y)(ℓ(y, fw(x))) , (1.1)

defined as the expected loss of the model under the data distribution pdata(x, y), with respect to
the parameters w.

4

1.1 Learning to Predict from Data

Example 1.1 (Linear regression with square loss)
Linear regression assumes a model of the form fw(x) = ϕ(x)⊺w, where ϕ : Rd → Rp is a
feature map. The loss function is given by the square loss, defined as

ℓ(yj , fw(xj)) = (yj − fw(xj))
2.

Example 1.2 (Logistic regression with binary cross-entropy loss)
Binary classification via logistic regression defines a model of the form fw(x) = σ(ϕ(x)⊺w),
where σ : R → R is the logistic function. The loss function is given by the binary cross-
entropy, defined as

ℓ(yj , fw(xj)) = −yj log(fw(xj))− (1− yj) log(1− fw(xj)).

Unfortunately, in practice the true distribution of the data as defined by the underlying data-
generating process is unknown and we cannot minimize the risk (1.1) directly. However, in
the supervised setting we have access to a training dataset (X,y) of n input and output pairs
(xj , yj) ∈ X× Y assumed to be independent and identically distributed draws from the latent
data distribution pdata(x, y). These might come from a series of physical experiments or passive
observations. Therefore, instead, we aim to find parameters w which minimize the (regularized)
empirical risk ℓ̄ as a readily available proxy of the risk (1.1), i.e.

w∗ = argmin
w

ℓ̄(w) where ℓ̄(w) =

n∑
j=1

ℓ(yj , fw(xj)) +R(w). (1.2)

The sum over the training in- and output pairs encourages the model to predict well on the training
data as measured by the per-sample-loss ℓ(yj , fw(xj)). However, it is not enough for a model to
predict well on the training data. We often have other desired properties of a predictive model
which we want to explicitly encourage or discourage. For example, to avoid models which only
fit the training data, but do not perform well on unseen test data, we can introduce a regularizer
R(w) which penalizes “extreme” parameter values preventing the model from overfitting.

1.1.3 Desired Properties of a Predictive Model

For a predictive model to be useful in practice, it is not sufficient to achieve good performance
on the training data. Ideally, we would like to use a model which makes accurate predictions on
arbitrary new data, can quantify the certainty in its predictions, is resource-efficient and adheres
to ethical and societal constraints.

5

Chapter 1 Introduction

Overfitting Balanced Underfitting

Latent Function Data Model Prediction

Figure 1.2: Bias and variance trade-off. Overly flexible models overfit to the training data
resulting in larger variance across different training datasets from the same data distribution. In
contrast, inflexible models have strong inductive bias and do not adapt to the training data very
much. An ideal model balances inductive bias and model fit, such that it generalizes well.

Predictive Performance and Generalization First and foremost when using a machine learn-
ing model we are interested in how accurate its predictions are. In practice, we optimize
performance on the training dataset we have at our disposal. However, this is not necessarily
indicative of predictive performance on unseen data, known as generalization. Instead, there
is a trade-off between the data-adaptivity of a model and its ability to generalize, as Figure 1.2
illustrates. An overly flexible model can perfectly fit the training data without learning about
the true latent function. In contrast, a rigid model with strong inductive bias might introduce
unavoidable error but generalize better away from the training data. In practice finding the right
balance between bias and variance is an important criterion for generalization performance.

Uncertainty Quantification: Knowing When We Don’t Know Whenever we make a predic-
tion it is important to know how much trust we should place in that prediction. This is crucial if
we rely on that prediction to make a downstream decision. Therefore a model must accurately
quantify the uncertainty in its prediction (see Figure 1.3). For example, say we have a model
which predicts the number of infections during a pandemic. If there is large uncertainty in our
prediction, we should more strictly enforce contact restrictions to avoid a potential population-
wide outbreak. Uncertainty also serves as an important diagnostic for whether and how we can
improve predictions relative to the amount and quality of data we have and the resources we have
invested in our model. If we only become marginally more certain by collecting more data on a
certain scenario, such data is no longer useful to improve our predictions.

Data and Computational Efficiency In every practical setting, we are resource constrained.
We can only collect a certain amount of data and we only have a certain amount of computational
resources available. A desirable predictive model uses very little data, can handle low-quality data
gracefully and only requires few computational resources to train and make a prediction. Whether
this is possible often depends on the inductive bias of the model. Meaning, prior to seeing any
data, how much information about the relationship we are trying to learn is encoded in the model
as is illustrated in Figure 1.4. In practice, the inductive biases we choose are unfortunately often
more informed by computational considerations than by modeling choices reflecting properties
of the latent function.

6

1.1 Learning to Predict from Data

Underconfident Model Calibrated Model Overconfident Model

Latent Function Data Model Prediction Uncertainty

Figure 1.3: Uncertainty quantification. Models trained on the same dataset with identical predic-
tion, but qualitatively different uncertainty quantification. A model can be underconfident in its
predictions, in other words overly cautious, or overconfident, suggesting it is more accurate than
it is. An ideal model is calibrated and reflects uncertainty coming from all sources, the model
choice, the data and the amount of computation performed.

Data-inefficient Model Data-efficient Model

Latent Function Data Model Prediction Uncertainty

Figure 1.4: Data efficiency. Two models with different inductive biases applied to the same
regression problem. A flexible model can learn more complicated latent functions but in the case
of a simple latent function needs considerably more data. In contrast, a model that explicitly
encodes the fact that the latent function is linear can generalize well even when trained on just a
few data points.

Societal and Behavioral Aspects Machine learning models always exist in a societal context
and therefore their use and behavior must be subject to societal and ethical norms. As a problem-
atic example, take the case where a model might be able to improve its predictions according to a
given loss function at the cost of discriminating against a subpopulation [36]. Further, a model
might output discriminatory or dehumanizing content, which reflects social biases [37]. To guard
against unintended consequences, predictive models must be carefully evaluated in their behavior
and their application (e.g. [38, 39]). Additionally, how humans interact with a model is also an
important consideration. If a machine learning model is hard to use, its users distrust the model
output or experience it as unreliable, then it will not be adopted. In contrast, if a model is easy to
misuse, then its widespread adoption may result in uncontrollable harm.

7

Chapter 1 Introduction

1.2 Bayesian Machine Learning
In this thesis we take a probabilistic perspective on learning, meaning we describe our assumptions
about the problem and how the data was generated using probability theory. In contrast to
the empirical risk minimization framework, there is no single best model fw∗ but a range of
hypotheses fw that are more or less likely to model the latent function well. Using a probabilistic
approach we do not only obtain a point estimate fw(x⋄) as a prediction, but a distribution
over possible values representing the certainty of the model. This is a useful way to approach
questions of how can we effectively collect new data, how much information can we transfer to a
new problem, how much should we trust the predictions of our model and how useful are they
for a downstream task. Unfortunately, it can also result in challenging problems of having to
approximate the formally correct way to perform inference and make predictions. Resolving this
difficulty for regression will be one of the main themes of this work.

1.2.1 Bayes’ Theorem

From a probabilistic perspective the parameters w of a model fw are modeled as a random
variable with an associated prior distribution p(w), which captures our belief about which
parameters are likely to generalize well, before seeing any data. The prior thus describes the
set of possible hypotheses and their probability. We then define a likelihood p(y | w), which
describes how we assume the training data was generated given the parameters. As a function
of the parameters and for fixed data it measures the compatibility of the observed data with a
given hypothesis for the parameters. We then update our belief when observing data according to
Bayes’ theorem:

p(w | y)
posterior

=

likelihood

p(y | w)

prior

p(w)

p(y)

evidence

=
p(y | w)p(w)∫
p(y | w)p(w)dw

(1.3)

This results in a posterior distribution, which captures our updated belief about the parameters
after observing the data. For an illustration of Bayes’ theorem see Figure 1.5. The evidence
p(y) =

∫
p(y | w)p(w)dw formally serves as a normalization constant, but can be interpreted

as how likely the data was generated from the assumed model when marginalizing out the
parameters. This interpretation is particularly useful for (Bayesian) model selection.

Prediction Given a posterior over the model parameters, we can predict at a new test input x⋄
by averaging over all possible hypotheses for the parameters weighted according to the posterior
p(w | y). This results in the predictive distribution

p(y⋄ | y) =
∫
p(y⋄ | w)p(w | y)dw (1.4)

characterizing our belief about a new data point y⋄ given the training data y =
(
y1 . . . yn

)
.

8

1.2 Bayesian Machine Learning

w

Prior

y | w

Likelihood

w | y

Posterior

Figure 1.5: Bayes’ theorem. A Gaussian prior, reflecting the belief over the parameters of the
model, is conditioned on data, described by a Gaussian likelihood, leading to a Gaussian posterior
over the parameters. Conceptually, the prior defines our assumptions about the parameters, while
the likelihood models the data-generating process assuming the parameters were known. The
posterior then describes our updated belief about the parameters after observing data.

One can make different arguments why Bayes’ theorem is the “right” way to update a belief when
faced with new information, either following an axiomatic approach [40] or a decision-theoretic
one [41]. However, from a purely applied perspective being able to quantify uncertainty in a
prediction at all, strictly adds new functionality to a model. For example, whether to make a
decision based on the available information or whether to collect more data. Bayes’ theorem
serves as a recipe for how to quantify uncertainty given a set of assumptions.

1.2.2 Model Selection

So far we’ve treated the model f selected from a set of possible models M as given. However, if
we make the dependence on a given model class explicit in Bayes’ theorem, we can maximize
the evidence

p(y) = p(y | f) =
∫
p(y | w, f)p(w | f)dw (1.5)

over the set of models f ∈M in question to perform model selection using the training data. The
evidence (1.5) is also often referred to as the marginal likelihood since we can interpret it as a
likelihood function over the set of possible models where we marginalize out the parameters w.
A popular alternative to selecting a single model via evidence maximization is to use an ensemble
of models which averages the predictions of individual models weighed according to

p(f | y) ∝ p(y | f)p(f),

where p(f) describes our prior belief over the set of possible models.

1.2.3 Connection to Empirical Risk Minimization

So far it is not clear how the probabilistic viewpoint connects to the empirical risk minimization
framework outlined earlier in Section 1.2.3 and whether potentially a Bayesian machine learning
model trades off (empirical) risk for the ability to quantify uncertainty. As it turns out, the two
perspectives are intrinsically linked.

9

Chapter 1 Introduction

As above, assume a probabilistic model for i.i.d. data y =
(
y1 . . . yn

)
and parameters w

given by the joint distribution

p(y,w) =
n∏

j=1

p(yj | w)p(w).

If in the empirical risk minimization problem (1.2), we choose the loss function proportional to
the log-likelihood, such that

ℓ(yj , fw(xj)) ∝ − log p(yj | w) (1.6)

and the regularizer proportional to the log-prior such that R(w) ∝ − log p(w), then the solution
of the empirical risk minimization problem is the maximum a-posteriori (MAP) estimate for the
parameters of the model, since

w∗ = argmin
w

ℓ̄(w)

= argmin
w

n∑
j=1

ℓ(yj , fw(xj)) +R(w)

= argmin
w

−
n∑

j=1

log p(yj | w)− log p(w)

= argmax
w

log

 n∏
j=1

p(yj | w)p(w)


= argmax

w
log p(y,w)

= argmax
w

p(w | y).

This means that the mode of the posterior over the parameters is a solution to the empirical
risk minimization problem derived from the probabilistic model. From the point of view of
empirical risk minimization, if we can derive a probabilistic model from a given loss function
and regularizer, this readily lets us interpret the implicit assumptions made about how the data
was generated and which parameters we implicitly favor.

Example 1.3 (Bayesian linear regression)
Consider a linear regression model as in Example 1.1. If we assume a Gaussian prior
w ∼ N

(
0, λ2I

)
over the parameters and a Gaussian likelihood yj | w ∼ N

(
ϕ(xj)

⊺w, σ2
)
,

then we obtain an equivalent empirical risk minimization problem of the form:

w∗ = argmax
w

log p(w | y)

= argmin
w

−
n∑

j=1

logN
(
yj ;ϕ(xj)

⊺w, σ2
)
− logN

(
w;0, λ2I

)

10

1.3 Gaussian Processes

= argmin
w

1

2σ2

n∑
j=1

(yj − ϕ(xj)
⊺w)2 +

1

2λ2
∥w∥22

= argmin
w

n∑
j=1

(yj − ϕ(xj)
⊺w)2 +

σ2

λ2
∥w∥22

This shows that for Bayesian linear regression, a Gaussian likelihood and prior corresponds
to the square loss and L2 regularization.

One can extend the connection between empirical risk minimization and the MAP estimate from
the posterior mode to the entire posterior, by considering a generalized form of the empirical risk
minimization problem known as the variational formulation as given by Zellner [42]. Instead of
optimizing over parameters w, one optimizes over candidate distributions q(w), such that

q∗(w) = argmin
q(w)

Eq

 n∑
j=1

ℓ(yj , fw(xj))

+ dKL(q(w) ∥ p(w)). (1.7)

Restricting the family of distributions q to Dirac delta distributions recovers the standard formula-
tion of the empirical risk minimization problem (1.2) with the regularizer R(w) ∝ − log p(w).
Choosing the loss proportional to the log-likelihood as in (1.6), the minimizing distribution q∗(w)
in (1.7) is the posterior distribution as given by Bayes’ theorem [42, 43], since in that case

q∗(w) = argmin
q(w)

dKL(q(w) ∥ p(w | y))

and the KL divergence is minimized when its arguments are identical.

1.3 Gaussian Processes
So far we’ve assumed a regression model fw, which is explicitly parametrized through a finite
set of parameters w. We do not have to restrict ourselves to parametrized functions, instead, we
can directly learn in a specified function space using Gaussian processes. Intuitively, one can
interpret a Gaussian process as a distribution over the functions in the hypothesis space.

1.3.1 From Parameter Space to Function Space

Consider a Bayesian linear model fw : Rd → R, where

fw(x) = ϕ(x)⊺w

with a feature map ϕ : Rd → Rp and a Gaussian prior over the weights w ∼ N (0,S).
The component functions ϕj(·) of the feature map define basis functions, which form a linear

11

Chapter 1 Introduction

Prior 5 data points 15 data points

Latent Function Data GP Mean GP Uncertainty Sample Path(s)

Figure 1.6: Gaussian process conditioned on data. A Gaussian process prior can be intuitively
interpreted as defining a distribution over functions in a hypothesis class defined by the kernel.
The sample paths of a Gaussian process are representative of the latent function one is trying to
learn.2As a Gaussian process is conditioned on data, the posterior mean more closely resembles
the latent function, assuming it lies in the hypothesis space, and its uncertainty contracts.

combination with weights given by the parameters wj . From this perspective, the prior over the
weights directly induces a prior over the functions in the hypothesis space, since by the properties
of Gaussians, it holds for every x ∈ X that

fw(x) = ϕ(x)⊺w ∼ N (0,ϕ(x)⊺Sϕ(x)).

This model is a special case of a Gaussian process, known as a parametric Gaussian process,
since we explicitly parametrize the hypothesis space span(ϕj(·)) in which we search for the
latent function. However, we do not have to restrict ourselves to finite-dimensional function
spaces. Instead, we can specify a covariance function or kernel, allowing us to use “infinitely
many features” implicitly.

1.3.2 Gaussian Process Inference

A Gaussian process (GP)
f ∼ GP(µ, k)

is a stochastic process with mean function µ : Rd → R and covariance function or kernel
k : Rd × Rd → R such that any collection of function values

f = (f(x1), . . . , f(xn))
⊺ ∼ N (µ,K)

is jointly Gaussian with mean vector µj = µ(xj) and covariance matrix Kij = k(xi,xj). The
mean function µ(·) represents the best a priori guess of the latent function to be modeled, while
the kernel k(·, ·) specifies how correlated function values are at different input points xi and xj ,
as well as, how confident we are in our belief about the latent function at a given input point.

2Technically, the sample paths of a Gaussian process are elements of a larger space than the reproducing kernel
Hilbert space, in which the latent function is sought. See Kanagawa et al. [44] for a detailed discussion.

12

1.3 Gaussian Processes

GP Posterior Mean Data Kernel Function(s) × Representer Weight(s)

Figure 1.7: Posterior mean of a Gaussian process as a linear combination. The posterior mean of
a Gaussian process can be viewed as a sum over kernel functions k(·,xj) placed at the training
data points xj scaled by the representer weights (v∗)j .

Inference Assume we are given a training data set (X,y) and the observations y = f(X) + ε
are corrupted by i.i.d. Gaussian noise ε ∼ N

(
0, σ2I

)
such that

y | f ∼ N
(
f(X), σ2I

)
.

Then the posterior is again a Gaussian process GP(µ∗, k∗) with mean and covariance functions

µ∗(·) = µ(·) + k(·,X)K̂−1(y − µ)

k∗(·, ·) = k(·, ·)− k(·,X)K̂−1k(X, ·)

where K̂ = K + σ2I .

Representer Weights The posterior mean of a Gaussian process can be interpreted as a linear
combination of kernel functions placed at training data points xj weighted by the so-called
representer weights

v∗ = K̂−1(y − µ),

since µ∗(·) = µ(·) +∑n
j=1 k(·,xj)(v∗)j . This is illustrated in Figure 1.7.

1.3.3 Modeling with Kernels

Kernels provide a flexible and expressive language to encode properties of the latent function
and in turn inductive biases into a Gaussian process model. This is important since encoding
(approximately) known characteristics of the latent function allows us to learn more efficiently
and generalize better away from the training data. Encoding prior knowledge via a function space
prior can be simpler and more direct than placing a prior over the parameters of an explicitly
parametrized model. Especially, when the model is a non-linear function of the parameters, as is
the case for example in Bayesian deep learning.

13

Chapter 1 Introduction

Po
ly

no
m

ia
l

Kernel Function Kernel Matrix GP Prior Samples

Sw
itc

he
s

M
at

ér
n(

1 2
)

W
en

dl
an

d
R

B
F

Pe
ri

od
ic

Sy
m

m
et

ry

Figure 1.8: Modeling with kernels. Kernel functions k(·,0), kernel matrices k(X,X) and
corresponding samples drawn from a Gaussian process prior GP(0, k). Choosing a kernel allows
one to flexibly encode prior knowledge about the latent function into a Gaussian process model,
for example, known properties like smoothness or symmetry.

14

1.3 Gaussian Processes

Function Properties via Kernel Choice To demonstrate how choosing the kernel of a Gaussian
process defines properties of functions in the hypothesis class, we give examples of some common
properties, which can be encoded via a kernel below. These are also illustrated in Figure 1.8.

• Parametric: If the latent function is a linear combination of known feature functions
ϕj : Rd → R, we can define a kernel k(·, ·) = ⟨ϕ(·),ϕ(·)⟩. The “Switches” function [45]
is an example of this where the features are step functions with different step locations.

• Smoothness: Often the differentiability of the latent function is known, for example when
solving PDEs [46]. Kernels like the Matérn(ν) [47] or compactly supported Wendland-type
kernel [48] give control over the smoothness of the functions in the hypothesis space.

• Symmetry: Explicitly enforcing a known symmetry can often be a very useful inductive
bias to generalize away from the data and to obtain data-efficient models. For example, a
known reflectional symmetry can cut the number of training data required in half.

Kernel Algebra Kernels do not only explicitly model known properties of the latent function,
but they can also be easily combined into new kernels via algebraic rules. This is useful if the
latent function is known to be a composition of subprocesses, for example, a linear combination
of periodic functions at different scales. We give a basic list of algebraic rules here:

• Sum: The sum of two kernels k(x,x′) = k1(x,x
′) + k2(x,x

′) is a kernel.

• Product: The product of two kernels k(x,x′) = k1(x,x
′)k2(x,x′) is a kernel.

• Direct Sum: The direct sum of two kernels k(x,x′) = k1(x1,x
′
1)+ k2(x2,x

′
2) is a kernel.

• Tensor Product: The tensor product of two kernels k(x,x′) = k1(x1,x
′
1)k2(x2,x

′
2) is a

kernel.

For a more detailed overview see Section 4.2.4 of Rasmussen and Williams [47].

1.3.4 Hyperparameter Optimization

We can perform Bayesian model selection as in Section 1.2.2 for Gaussian processes by optimizing
the marginal likelihood with respect to the kernel hyperparameters. In other words, we choose
the hyperparameters θ as follows:

θ∗ = argmax
θ

L(θ)

= argmax
θ

log p(y | θ)

= argmin
θ

1

2

(
(y − µ)⊺K̂−1(y − µ)

quadratic loss

+ log det(K̂)

model complexity

+n log(2π)

)

The two model-dependent terms in the log marginal likelihood can be readily interpreted as
a quadratic loss term, penalizing if the model does not fit the training data well, as well as a
model complexity term, which increases in magnitude for kernels that define more flexible or

15

Chapter 1 Introduction

Lengthscale θ

−
L(
θ

)

Lengthscale θ

Q
ua

dr
at

ic
L

os
s

Lengthscale θ

C
om

pl
ex

ity

Overfitting Appropriate Fit Underfitting

Figure 1.9: Gaussian process hyperparameter optimization. Top: Negative log-marginal likeli-
hood −L(θ) of a Gaussian process with a Matérn(52) kernel as a function of the lengthscale, as
well as the quadratic loss and model complexity terms. Bottom: Gaussian process posteriors for
three different choices of lengthscale corresponding to a complex model overfitting the data (—),
the optimal model minimizing the loss function (—), and a simple model with large bias (—).

complex models. The latter is a regularization term and a form of Occam’s razor, promoting
simpler hypotheses for the latent function over more complex ones. For an illustration of this
decomposition see Figure 1.9. Choosing hyperparameters for Gaussian processes in this way is a
very basic form of representation learning, where the representation is implicitly defined by the
kernel and changes with the values of the hyperparameters.

1.3.5 Advantages

Gaussian processes have several advantages that make them attractive as a model class. In partic-
ular, they satisfy many of the desired properties of predictive models outlined in Section 1.1.3.

Expressive Modeling Gaussian processes can directly encode prior knowledge about the latent
function via the kernel framework and therefore provide a powerful modeling language to enforce
desirable inductive biases. This is particularly attractive for scientific machine learning, where we
have well-established mechanistic models for physical phenomena. In that case, often properties
of the latent function such as its smoothness or its symmetries are known to be true and therefore
must be satisfied by our model, for example when learning the solution to a PDE in a data-driven
manner. Finally, this modeling language is compositional via the rules of kernel algebra, so if the
latent function can be decomposed, this can directly be reflected in the model.

Tractable Inference Under the assumption of Gaussian observation noise, the posterior of a
Gaussian process can be computed in closed form. It reduces to basic, well-studied operations of
linear algebra, specifically the solution of a linear system. Even if observations are made via a
bounded linear operator, inference is still tractable [46, Thm. 1]. This stands in contrast to other

16

1.3 Gaussian Processes

models, such as neural networks, where inference requires solving a challenging optimization
problem.

Uncertainty Quantification Gaussian processes inherently provide not only a point estimate
but also structured uncertainty for a prediction. Therefore one can reason about how much a given
prediction should be relied upon or whether additional data needs to be collected. Importantly,
uncertainty can be used to inform decisions for downstream applications. For example, consider
a Gaussian process model for the temperature in a simulated electronic component. If the
temperature inside the component is likely to exceed a critical temperature threshold based on
the uncertainty of the model, we need to weigh redesigning the component before going into
production against the risk of its failure.

1.3.6 Limitations

While Gaussian processes have been widely used in scientific applications such as geospatial
statistics and astrophysics, their use in machine learning is less broad than one might expect from
their theoretical advantages as a model class. This is mainly due to the following reasons.

Representation Learning The success of deep learning in domains such as computer vision
and language modeling has shown the importance of representation learning for challenging
machine learning applications. It is difficult to achieve similar performance in computer vision to
a deep learning model using Gaussian processes. One of the main reasons is that when specifying
a prior for Gaussian processes, the representation of the data (up to kernel hyperparameters) is
fixed. This can be very beneficial if the corresponding inductive bias matches the latent function
to be learned. But for data in pixel space, it is difficult to define a kernel that captures the key
features of the data a priori. This is one of the reasons deep learning originally became popular
because it removed the need to design hand-crafted features. In a way, many priors induced by
the kernel are too restrictive to allow for good generalization. Recently, methods have emerged
which can tackle this challenge either by using convolutional kernels directly [49] or by learning
a hierarchical representation via a neural network and then defining a neural kernel [50].

Computational Cost Possibly the biggest challenge for the wider adoption of Gaussian pro-
cesses is their computational cost. Gaussian processes scale poorly with the number of training
data points both in time and memory. While inference is mathematically tractable and well-
understood, the required linear solves to compute the posterior have cubic time complexityO(n3)
in the number of data points n and storing the kernel matrix requiresO(n2) memory. This quickly
becomes prohibitive even on modern hardware as Figure 1.10 illustrates. For example, storing a
dense kernel matrix in memory for n = 100,000 training data points requires roughly 80GB of
RAM. For hyperparameter optimization, we not only have to perform a kernel matrix solve and
compute the log-determinant but do so repeatedly. Even if there is sufficient low-latency memory
available to store the kernel matrix, for just a few thousand data points naive hyperparameter
optimization can already take hours. For modern machine learning applications with datasets that
easily exceed n ≥ 100,000 training examples, this is not feasible.

17

Chapter 1 Introduction

100 101 102 103 104 105 106

Training Datapoints

1 ms

1 s
1 min

1 h
1 d

1 y
Ti

m
e

100 101 102 103 104 105 106

Training Datapoints

1 kB

1 MB

1 GB

1 TB

M
em

or
y

Figure 1.10: Computational cost of Gaussian processes. Gaussian process hyperparameter
optimization requires repeated solves with, and determinants of, the kernel matrix. This is often
implemented via a Cholesky decomposition of the (damped) kernel matrix, which scales cubically
in time and quadratically in memory with the size of the training dataset.

1.4 Limited Resources and the Role of Computation
The chasm between the model we would like to use and the computation we actually perform is
arguably one of the most ignored but influential parts of the learning framework. Computational
resources are always limited in practice which necessitates the use of approximations and in turn,
significantly impacts the accuracy and reliability of a model. Often the available resources even
dictate the model choice itself, rather than the assumptions about how the data was generated.

1.4.1 Inference in Theory and Practice

This is an all too familiar problem for any machine learning practitioner. Even if in theory the
mathematical problem to be solved for inference has an analytic solution, in practice this solution
cannot be found with limited computational resources. This introduces a host of implementation
choices, all of which impact the resulting predictions of the approximated model. For example,
consider a large-scale non-convex empirical risk minimization problem. Even though in theory a
unique solution exists, approximating it in practice requires choosing an optimizer, its learning rate
schedule, the batch size and how many steps to take. As another example take generic Bayesian
inference. Computing the posterior requires evaluating a high-dimensional integral. This is a
notoriously hard problem, which is why one typically resorts to a Monte-Carlo approximation.
However, the chosen sampling method, the burn-in period and the number of samples all impact
the predictions made with the underlying model in unexpected ways.

To illustrate this impact on reliability, consider Figure 1.11 depicting a toy Gaussian process
inference problem and three commonly used approximation methods. Each choice of approx-
imation method introduces its own biases into the prediction and strongly affects uncertainty
quantification. For example, both a Nyström approximation and SVGP are more certain about
their predictions in some regions of the input space where the model has seen no data compared
to other regions where it has.

18

1.4 Limited Resources and the Role of Computation

Mathematical Posterior CGGP

Nyström (SoR) SVGP

Latent Function Data Math. Posterior Posterior Mean Uncertainty

Figure 1.11: Impact of approximation on the reliability of a model. Mathematical, i.e. exact,
Gaussian process posterior and different approximations (CGGP, Nyström and SVGP) on a toy
dataset. While the shown approximations differ in their computational cost, they all introduce
different pathologies, in particular regarding uncertainty quantification. This illustrates the impact
limited computational resources have on the reliability of a model.

The unaccounted-for impact of numerical approximations creates a disconnect between theory
and practice and crucially affects the reliability of a model. Even in the ideal case, where
mathematical guarantees on the error of a numerical method are known, the prediction of the
model is still not informed by this approximation error. This raises the important question: How
do we ensure that, given finite computational resources, we still obtain reliable predictions from a
model? This problem is a key motivation for the field of probabilistic numerics.

1.4.2 Probabilistic Numerics: Computation as Machine Learning

Probabilistic numerics [51–54] interprets problems in numerical analysis as probabilistic inference
tasks. As a framework it is based on two core insights [54]. First, the true solution to a numerical
problem is fundamentally uncertain, either due to limited computational resources, or inherent
stochasticity. And, second, in analogy to machine learning agents that learn from data and
interact with their environment, numerical algorithms are learning agents that take actions,
collect observations of the numerical problem they are solving and make predictions.

As an example problem consider the solution of a linear system of the form

Ax∗ = b.

The quantity of interest when solving this numerical problem is the solution x∗ or when solving
multiple problems the inverse A−1. For any problem outside of a toy problem, given the matrix A
and the right-hand-side b, we are fundamentally uncertain about the solution x∗ before performing

19

Chapter 1 Introduction

Solution x∗ Estimate xi = E(x∗) Belief p(x∗)

Figure 1.12: Probabilistic belief about the solution of a linear system. Probabilistic numerical
methods quantify the uncertainty about the solution of a numerical problem via a probability
measure. The plot shows the estimated solution of a linear system with n = 20 projected
down to a random two-dimensional subspace. As the solver collects more matrix-vector product
observations, the belief contracts onto the true solution of the linear system.

any computation. Numerical methods for the solution of a linear system then perform operations
on A and b to improve their estimate of x∗. Even in exact arithmetic, prior to convergence the
true solution x∗ is only known approximately.

To reason about this uncertainty inherent in computation, probabilistic numerical methods use
the tools of probability theory to quantify their belief about the quantity of interest. Instead of
a point estimate for the true solution of a numerical problem, such as the solution of a linear
system, they return a probability measure. Quantifying the approximation error of a numerical
method in this way promises multiple benefits, such as a more structured description of error than
a worst-case bound, the seamless integration of stochastic computations and the propagation of
approximation error to a downstream task. For example when performing approximate inference
in a probabilistic machine learning model, if the approximation error of the numerical method is
quantified probabilistically, it can ideally be propagated to the posterior.

The operations a numerical method performs to approximate the solution of a numerical problem
are interpreted in probabilistic numerics as the actions of a learning agent, that updates its belief.
When solving a linear system, the actions are vectors si that are multiplied with the matrix A
or the current residual ri−1 = b − Axi−1 = A(x∗ − xi−1). The solver then observes the
result of this operation and updates its belief about the solution x∗ accordingly. Such a belief
update for the solution of a linear system is illustrated in Figure 1.12. Describing a numerical
method as a learning agent allows the design of policies, which define the sequence of actions
an algorithm takes, that automatically adapt to the problem at hand and the current belief about
the quantity of interest. For example, based on a decision-theoretic framework, which guides the
exploration-exploitation tradeoff of the algorithm. It also enables the design of problem-specific
stopping criteria that are based on the belief of the agent about its quantity of interest and the
goal it is trying to achieve. This way computation can be adaptively saved compared to the case
where the stopping criteria are chosen generically for a large problem class as is typically the
case for classic numerical algorithms.

20

1.5 Thesis Contributions

1.5 Thesis Contributions
This thesis makes significant contributions to the field of probabilistic numerical linear algebra
both in theory and in practice. In particular, it develops the theoretical understanding of prob-
abilistic linear solvers from first principles (Chapter 2); it shifts the goalposts of what can be
expected from Gaussian process approximations by showing that it is possible to account for the
impact of numerical approximation on prediction (Chapter 3); and it demonstrates that large-scale
Gaussian process hyperparameter optimization can be significantly accelerated by exploiting
structural prior knowledge via preconditioning (Chapter 4). From a practical perspective, this
thesis has led to the first comprehensive software package for probabilistic numerical methods,
PROBNUM [55], and it has defined the default large-scale training routine in GPYTORCH [3].

Chapter 2: Probabilistic Linear Solvers for Machine Learning Arguably, one of the most
fundamental numerical operations in machine learning and scientific computation at large is
the solution of linear systems. The linear systems that arise in machine learning pose specific
challenges due to their scale, characteristic structure and often stochastic nature. To meet these
challenges, in Chapter 2 we propose a unifying class of probabilistic linear solvers, which jointly
infer the matrix, its inverse and the solution from matrix-vector product observations. Such
solvers interpret the numerical task of solving a linear system as probabilistic inference. This
allows them to leverage problem structure and propagate their approximation error upstream
to a probabilistic model. This class of solvers emerges from a fundamental set of desiderata
that constrains the space of possible algorithms and recovers the method of conjugate gradients
as a special case. We demonstrate how to incorporate prior spectral information to calibrate
uncertainty and experimentally showcase the potential of such solvers for machine learning. Our
solver is implemented in a publicly available software package, called PROBNUM [55].

PROBNUM https://probnum.readthedocs.io

Disclaimer 1.1
Chapter 2 is based on the peer-reviewed conference publication

[1] J. Wenger and P. Hennig. “Probabilistic Linear Solvers for Machine Learning”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2020

with the following co-author contributions:

Ideas Analysis Code Experiments Writing

J. Wenger 50% 90% 100% 100% 90%
P. Hennig 50% 10% 0% 0% 10%

Chapter 3: Posterior and Computational Uncertainty in Gaussian Processes Gaussian
processes are a principled and flexible probabilistic model class. However, they scale prohibitively
with the size of the training data. In response, many approximation methods have been developed,

21

https://probnum.readthedocs.io

Chapter 1 Introduction

which inevitably introduce approximation error. This additional source of uncertainty, due
to limited computation, is entirely ignored when using the approximate posterior. Therefore
in practice, GP models are often as much about the approximation method as they are about
the data. In Chapter 3, we develop a new class of methods that consistently estimates the
combined uncertainty arising from both the finite number of data observed and the finite amount
of computation expended. The most common GP approximations map to an instance in this
class, such as methods based on the Cholesky factorization, conjugate gradients, and inducing
points. For any method in this class, we prove (i) convergence of its posterior mean in the
associated RKHS, (ii) decomposability of its combined posterior covariance into mathematical
and computational covariances, and (iii) that the combined variance is a tight worst-case bound
for the squared error between the method’s posterior mean and the latent function. Finally,
we empirically demonstrate the consequences of ignoring computational uncertainty and show
how implicitly modeling it improves generalization performance on benchmark datasets. Our
framework is implemented in a publicly available software package called IterGP [2].

ITERGP https://itergp.readthedocs.io

Disclaimer 1.2
Chapter 3 is based on the peer-reviewed conference publication

[2] J. Wenger et al. “Posterior and Computational Uncertainty in Gaussian Processes”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2022

with the following co-author contributions:

Ideas Analysis Code Experiments Writing

J. Wenger 50% 100% 80% 60% 70%
G. Pleiss 10% 0% 0% 40% 15%
M. Pförtner 0% 0% 20% 0% 0%
P. Hennig 20% 0% 0% 0% 0%
J. P. Cunningham 20% 0% 0% 0% 15%

Chapter 4: Preconditioning for Scalable GP Hyperparameter Optimization Gaussian pro-
cess hyperparameter optimization requires linear solves with, and log-determinants of, large
kernel matrices. Iterative numerical techniques are becoming popular to scale to larger datasets,
relying on the conjugate gradient method (CG) for the linear solves and stochastic trace estimation
for the log-determinant. In Chapter 4 we introduce new algorithmic and theoretical insights for
preconditioning these computations. While preconditioning is well understood in the context
of CG, we demonstrate that it can also accelerate convergence and reduce the variance of the
estimates for the log-determinant and its derivative. We prove general probabilistic error bounds
for the preconditioned computation of the log-determinant, log-marginal likelihood and its deriva-
tives. Additionally, we derive specific rates for a range of kernel-preconditioner combinations,
showing that up to exponential convergence can be achieved. Our theoretical results enable

22

https://itergp.readthedocs.io

1.5 Thesis Contributions

provably efficient optimization of kernel hyperparameters, which we validate empirically on
large-scale benchmark problems. There our approach accelerates training by up to an order
of magnitude. Our methodology is implemented in GPYTORCH [3] and defines its default
large-scale training routine for Gaussian process models.

GPYTORCH https://docs.gpytorch.ai

Disclaimer 1.3
Chapter 4 is based on the peer-reviewed conference publication

[4] J. Wenger et al. “Preconditioning for Scalable Gaussian Process Hyperparameter
Optimization”. In: International Conference on Machine Learning (ICML). 2022

with the following co-author contributions:

Ideas Analysis Code Experiments Writing

J. Wenger 50% 80% 20% 20% 65%
G. Pleiss 20% 10% 50% 30% 10%
J. P. Cunningham 5% 0% 0% 0% 5%
P. Hennig 5% 0% 0% 0% 5%
J. Gardner 20% 10% 30% 50% 15%

Summary This thesis presents techniques in probabilistic numerical linear algebra to accelerate
and scale Gaussian process models, while crucially accounting for the impact of approximation
error. This is made possible by interpreting numerical methods in linear algebra as probabilistic
learning algorithms and informing them about the structure of the underlying model. Our work
enables the use of Gaussian process models in large-scale settings without compromising their
ability to quantify uncertainty – a fundamental prerequisite for optimal decision-making. A
complete list of publications (co-)authored during the doctoral qualification period is given below.

Authors Title Venue Year

[56] Wenger, Kjellström, and
Triebel

Non-Parametric Calibration for Classifica-
tion AISTATS 2020

[1] Wenger and Hennig Probabilistic Linear Solvers for Machine
Learning NeurIPS 2020

[55] Wenger, Krämer, Pförtner et
al.

ProbNum: Probabilistic Numerics in
Python arXiv 2021

[4] Wenger, Pleiss, Hennig, Cun-
ningham, and Gardner

Preconditioning for Scalable Gaussian Pro-
cess Hyperparameter Optimization ICML 2022

[2] Wenger, Pleiss, Pförtner, Hen-
nig, and Cunningham

Posterior and Computational Uncertainty
in Gaussian Processes NeurIPS 2022

[46] Pförtner, Steinwart, Hennig,
and Wenger

Physics-Informed Gaussian Process Re-
gression Generalizes Linear PDE Solvers arXiv 2022

23

https://docs.gpytorch.ai

Chapter

2

Probabilistic Linear Solvers for
Machine Learning

2.1 Introduction . 25
2.2 Probabilistic Linear Solvers . 27

2.2.1 Bayesian Inference Framework . 28
2.2.2 Algorithm . 29
2.2.3 Theoretical Properties . 30
2.2.4 Related Work . 32

2.3 Prior Covariance Class . 32
2.4 Experiments . 35
2.5 Conclusion . 39

Linear systems are the bedrock of virtually all numerical computation. Machine learning poses
specific challenges for the solution of such systems due to their scale, characteristic structure,
stochasticity and the central role of uncertainty quantification in machine learning. Unifying
earlier work we propose a class of probabilistic linear solvers that jointly infer the matrix, its
inverse and the solution from matrix-vector product observations. This class emerges from a
fundamental set of desiderata that constrains the space of possible algorithms and recovers the
method of conjugate gradients under certain conditions. We demonstrate how to incorporate prior
spectral information in order to calibrate uncertainty and experimentally showcase the potential
of such solvers for machine learning.

2.1 Introduction
Arguably one of the most fundamental problems in machine learning, statistics and scientific
computation at large is the solution of linear systems of the form Ax∗ = b, where A ∈ Rn×n

sym

25

Chapter 2 Probabilistic Linear Solvers for Machine Learning

(a) Gram matrix X⊺X (b) Kernel matrix k(X,X) (c) Hessian matrix

Figure 2.1: Examples of structured matrices in machine learning.

is a symmetric positive definite matrix [57–59]. Such matrices usually arise in the context of
second-order or quadratic optimization problems and as Gram matrices. Some of the numerous
application areas in machine learning and related fields are least-squares regression [60], kernel
methods [61], Kalman filtering [62], Gaussian (process) inference [47], spectral graph theory
[63], (linear) differential equations [64] and (stochastic) second-order optimization [65].

Linear systems in machine learning are typically large-scale, have characteristic structure arising
from generative processes, and are subject to noise (see Figure 2.1). These distinctive features call
for linear solvers that can explicitly make use of such structural information. While classic solvers
are highly optimized for general problems, they lack key functionality for machine learning. In
particular, they do not consider generative prior information about the matrix.

An important example are kernel Gram matrices, which exhibit specific sparsity structure and
spectral properties, depending on the kernel choice and the generative process of the data.
Exploiting such prior information is a prime application for probabilistic linear solvers, which
aim to quantify computational uncertainty arising from limited computational resources. Another
key challenge, which we will not yet address here, is posed by noisy matrix evaluations arising
from data subsampling. Ultimately, linear algebra for machine learning should integrate all
sources of uncertainty in a computational pipeline – aleatoric, epistemic and computational – into
one coherent probabilistic framework.

Contribution This paper sets forth desiderata for probabilistic linear solvers which establish
first principles for such methods. From these, we derive an algorithm incorporating prior
information on the matrix A or its inverse A−1, which jointly estimates both via repeated
application of A. This results in posterior beliefs over the two operators and the solution which
quantify computational uncertainty. Our approach unifies and extends earlier formulations and
constitutes a new way of interpreting linear solvers. Further, we propose a prior covariance class
that recovers the method of conjugate gradients as its posterior mean and uses prior spectral
information for uncertainty calibration, one of the primary shortcomings of probabilistic linear
solvers. We conclude by presenting simplified examples of promising applications of such solvers
within machine learning.

26

2.2 Probabilistic Linear Solvers

Linear System

A x∗= b

H

Prior

E(A) x0= b

E(H)

Observations

1, 2, . . . , i

A s1 ... si = y1 ... yi

Posterior

E(A) xi= b

E(H)

Samples

A0 A1

A2 A3

H0 H1

H2 H3

Figure 2.2: Illustration of a probabilistic linear solver. Given a prior for A or H modelling the
linear operator A and its inverse A−1, posterior beliefs are inferred via observations yi = Asi.
This induces a distribution on the solution x∗, quantifying computational uncertainty arising from
finite computational resources. The plot shows i = 3 iterations of Algorithm 1 on a toy problem
of dimension n = 5.

2.2 Probabilistic Linear Solvers

Let Ax∗ = b be a linear system with A ∈ Rn×n
sym positive definite and b ∈ Rn. Probabilistic

linear solvers (PLS) [52, 66, 67] iteratively build a model for the linear operator A, its inverse
H = A−1 or the solution x∗, represented by random variables A,H or x. In the framework of
probabilistic numerics [51, 53] such solvers can be seen as Bayesian agents performing inference
via linear observations Y =

(
y1 · · · yi

)
∈ Rn×i resulting from actions S =

(
s1 · · · si

)
∈

Rn×i given by an internal policy π(s | A,H,x,A, b). For a matrix-variate prior p(A) or p(H)
encoding prior (generative) information, our solver computes posterior beliefs over the matrix, its
inverse and the solution of the linear system. An illustration of a probabilistic linear solver is
given in Figure 2.2.

Desiderata We begin by stipulating a fundamental set of desiderata for probabilistic linear
solvers. To our knowledge, such a list has not been collated before. Connecting previously disjoint
threads, the following presents a roadmap for the development of these methods. Probabilistic
linear solvers modeling A and A−1 must assume matrix-variate distributions which are expressive
enough to capture structure and generative prior information either for A or its inverse. The
distribution choice must also allow computationally efficient sampling and density evaluation.
It should encode symmetry and positive definiteness and must be closed under positive linear
combinations. Further, the two models for the system matrix or its inverse should be translatable
into and consistent with each other. Actions si of a PLS should be model-based and induce a
tractable distribution on linear observations yi = Asi. Since probabilistic linear solvers are
low-level procedures, their inference procedure must be computationally lightweight. Given
(noise-corrupted) observations this requires tractable posteriors over A, H and x, which are
calibrated in the sense that at convergence the true solution x∗ represents a draw from the posterior
p(x | Y ,S). Finally, such solvers need to allow preconditioning of the problem and ideally
should return beliefs over non-linear properties of the system matrix extending the functionality
of classic methods. These desiderata are summarized concisely in Table 2.1.

27

Chapter 2 Probabilistic Linear Solvers for Machine Learning

Table 2.1: Desired properties of probabilistic linear solvers. Symbols (, ∼,) indicate which
properties are encoded in Algorithm 1 and to what degree.

No. Property Formulation

(1) Distribution over matrices A ∼ D, pD(A)
(2) Symmetry A = A⊺ a.s.
(3) Positive definiteness ∀v ̸= 0 : v⊺Av > 0 a.s. ∼
(4) Positive linear combination in same distribution family ∀αj > 0 :

∑
j αjAj ∼ D

(5) Corresponding priors on the matrix and its inverse p(A)←→ p(H)

(6) Model-based policy si ∼ π(s | A, b,A,H,x)
(7) Matrix-vector product in tractable distribution family As ∼ D′

(8) Noisy observations p(Y | A,S) = N (Y ;AS,Λ)
(9) Tractable posterior p(A | Y ,S) or p(H | Y ,S)

(10) Calibrated uncertainty x∗ ∼ N (E(x) ,Cov(x)) ∼

(11) Preconditioning P−1Ax∗ = P−1b
(12) Distributions over non-linear derived quantities of A det(A), λ(A), A = L⊺L, . . .

2.2.1 Bayesian Inference Framework

Guided by these desiderata, we will now outline the inference framework for A,H and x
forming the base of the algorithm. The choice of matrix-variate prior distribution is limited
by the desideratum that conditioning on linear observations yi = Asi must be tractable. This
reduces the choice to stable distributions [68] and thus excludes candidates such as the Wishart,
which has measure zero outside the cone of symmetric positive semi-definite matrices. For
symmetric matrices, this essentially forces the use of the symmetric matrix-variate normal
distribution, introduced in this context by Hennig [66]. Given A0,W

A
0 ∈ Rn×n

sym , assume a prior
distribution

p(A) = N
(
A;A0,W

A
0 �� WA

0

)
,

where �� denotes the symmetric Kronecker product [69].1 The symmetric matrix-variate Gaussian
induces a Gaussian distribution on linear observations. While it has non-zero measure only for
symmetric matrices, its support is not the positive definite cone. However, positive definiteness
can still be enforced post-hoc (see Proposition 2.1). We assume noise-free linear observations of
the form yi = Asi, leading to a Dirac likelihood

p(Y | A,S) = lim
ε→0
N
(
Y ;AS, ε2I � I)

)
= δ(Y −AS).

The posterior distribution follows from the properties of Gaussians [60] and has been investigated
in detail in previous work [66, 67, 70]. It is given by p(A | S,Y) = N (A;Ai,Σi) with

Ai = A0 +∆A
0 U⊺ +U(∆A

0)⊺ −US⊺∆A
0 U⊺

Σi = WA
0 (In − SU⊺) �� WA

0 (In − SU⊺)

1See Wenger and Hennig [1, Sec. S2, S3] for details on Kronecker-type products and matrix-variate normal
distributions.

28

2.2 Probabilistic Linear Solvers

where ∆A
0 = Y −A0S and U = WA

0 S(S⊺WA
0 S)−1. We aim to construct a probabilistic

model for the inverse H = A−1 consistent with the model A as well. However, not even in the
scalar case does the inverse of a Gaussian have finite mean. We ask instead what Gaussian model
for H is as consistent as possible with our observational model for A. For a prior of the form
p(H) = N

(
H;H0,W

H
0 �� WH

0

)
and likelihood p(S | H,Y) = δ(S −HY), we analogously

to the A-model obtain a posterior distribution p(H | S,Y) = N
(
H;Hi,Σ

H
i

)
with

Hi = H0 +∆H
0 (UH)⊺ +UH(∆H

0)⊺ −UHY ⊺∆H
0 (UH)⊺

ΣH
i = WH

0 (In − Y (UH)⊺) �� WH
0 (In − Y (UH)⊺)

where ∆H
0 = S −H0Y and UH = WH

0 Y (Y ⊺WH
0 Y)−1. In Section 2.3 we will derive a

covariance class, which establishes the correspondence between the two Gaussian viewpoints for
the linear operator and its inverse and is consistent with our desiderata.

2.2.2 Algorithm

The above inference procedure leads to Algorithm 1. The degree to which the desiderata are
encoded in our formulation of a PLS can be found in Table 2.1. We will now go into more detail
about the policy, the choice of step size, stopping criteria and the implementation.

Algorithm 1: Probabilistic Linear Solver with Uncertainty Calibration

1 procedure PROBLINSOLVE(A(·), b,A,H) ▷ Prior for A or H.
2 x0 ← E(H) b ▷ Initial guess for the solution.
3 r0 ← b−Ax0 ▷ Initial residual.
4 while min(

√
tr(Cov(x)), ∥ri−1∥2) > max(δrtol∥b∥2, δatol) do ▷ Stopping criterion.

5 si ← E(H) ri−1 ▷ Compute action via policy.
6 yi ← Asi ▷ Observation.
7 αi ← s⊺

i ri−1

s⊺
i yi

▷ Step size.
8 xi ← xi−1 + αisi ▷ Update solution estimate.
9 ri ← ri−1 − αiyi ▷ Update residual.

10 A← INFER(A, si,yi) ▷ Compute posterior distributions.
11 H← INFER(H, si,yi) ▷ (see Section 2.2.1)
12 Φ,Ψ← CALIBRATE(S,Y) ▷ Calibrate uncertainty.

13 x← N (xi,Cov(Hb)) ▷ Compute induced belief over solution.
14 return (x,A,H)

Policy and Step Size In each iteration, our solver collects information about the linear operator
A via actions si determined by the policy π(s | A,H,x,A, b). The next action

si = E(H) ri−1 = E(H) (b−Axi−1)

is chosen based on the current belief about the inverse and the current residual ri−1 = b−Axi−1.
If E(H) = A−1, i.e. if the solver’s estimate for the inverse equals the true inverse, then

29

Chapter 2 Probabilistic Linear Solvers for Machine Learning

Algorithm 1 converges in a single step since

xi−1 + si = xi−1 + E(H) ri−1 = xi−1 +A−1b− xi−1 = A−1b = x∗.

The step size minimizing the quadratic q(xi−1 + αsi) = 1
2(xi−1 + αsi)

⊺A(xi−1 + αsi) −
b⊺(xi−1 + αsi) along the action si is given by

αi = argmin
α

q(xi−1 + αsi) =
s⊺i ri−1

s⊺iAsi
.

Stopping Criteria Classic linear solvers typically use stopping criteria based on the current
residual of the form ∥ri∥2 ≤ max(δrtol∥b∥2, δatol) for relative and absolute tolerances δrtol and
δatol. However, this residual may oscillate or even increase in all but the last step even if the
error ∥x∗ − xi∥2 is monotonically decreasing [71, 72]. From a probabilistic point of view, we
should stop if our posterior uncertainty is sufficiently small. Assuming the posterior covariance is
calibrated, it holds that

(Ex∗(∥x∗ − E(x)∥2))2 ≤ Ex∗
(
∥x∗ − E(x)∥22

)
= tr(Cov(x)).

Hence given calibration, we can bound the expected (relative) error between our estimate and
the true solution by terminating when

√
tr(Cov(x)) ≤ max(δrtol∥b∥2, δatol). A probabilistic

criterion is also necessary for an extension to the noisy setting, where classic convergence criteria
become stochastic. However, probabilistic linear solvers typically suffer from miscalibration [73],
an issue we will address in Section 2.3.

Implementation An implementation of Algorithm 1 is available as part of PROBNUM, an
open-source Python package implementing probabilistic numerical methods:

PROBNUM https://github.com/probabilistic-numerics/probnum

The mean and covariance up- and downdates in Section 2.2.1, when performed iteratively, are
of low rank. In order to maintain numerical stability these updates can instead be performed for
their respective Cholesky factors [74]. This also enables computationally efficient sampling or
evaluation of probability density functions downstream.

2.2.3 Theoretical Properties

This section details some theoretical properties of our method such as its convergence behavior
and computational complexity. In particular, we demonstrate that for a specific prior choice
Algorithm 1 recovers the method of conjugate gradients as its solution estimate. We begin by
establishing that our solver is a conjugate directions method and therefore converges in at most n
steps in exact arithmetic.

30

https://github.com/probabilistic-numerics/probnum

2.2 Probabilistic Linear Solvers

Theorem 2.1 (Conjugate Directions Method)
Given a prior p(H) = N

(
H;H0,W

H
0 �� WH

0

)
such that H0,W

H
0 ∈ Rn×n

sym are positive
definite, then the actions si of Algorithm 1 are A-conjugate, i.e. it holds that

s⊺jAsk = 0

for all 0 ≤ j ̸= k ≤ i.

Proof. See Appendix A.2.1 for a proof.

We can obtain a better convergence rate by placing stronger conditions on the prior covariance
class as outlined in Section 2.3. Given these assumptions, Algorithm 1 recovers the iterates of
the (preconditioned) method of conjugate gradients and thus inherits its favorable convergence
behavior (see e.g. Nocedal and Wright [65]).

Theorem 2.2 (Connection to the Conjugate Gradient Method)
Given a scalar prior mean A0 = H−1

0 = αI with α > 0, assume (2.3) and (2.4) hold, then
the iterates xi of Algorithm 1 are identical to the ones produced by the conjugate gradient
method.

Proof. See Appendix A.2.2.

A common phenomenon observed when implementing conjugate gradient methods is that due
to cancellation in the computation of the residuals, the search directions si lose A-conjugacy
[59, 75, 76]. In fact, they can become independent up to working precision for i large enough
[76]. One way to combat this is to perform complete reorthogonalization of the search directions
in each iteration as originally suggested by Lanczos [77]. Algorithm 1 does this implicitly via
its choice of policy which depends on all previous search directions as opposed to just si−1 for
(naive) CG.

Computational Complexity The solver has time complexity O(in2) for i iterations without
uncertainty calibration. Compared to CG, inferring the posteriors in Section 2.2.1 adds an
overhead of four outer products and four matrix-vector products per iteration, given (2.3) and
(2.4). Uncertainty calibration outlined in Section 2.3 adds between O(1) and O(i3) per iteration
depending on the sophistication of the scheme. Already for moderate n, this is dominated by the
iteration cost. In practice, means and covariances do not need to be formed in memory. Instead,
they can be evaluated in a matrix-free fashion, if S and Y are stored. This leads to linear space
complexity O(in).

31

Chapter 2 Probabilistic Linear Solvers for Machine Learning

2.2.4 Related Work

Numerical methods for the solution of linear systems have been studied in great detail since
the last century. Standard texts [57–59, 65] give an in-depth overview. The conjugate gradient
method recovered by our algorithm for a specific choice of prior was introduced by Hestenes
and Stiefel [71]. Recently, randomization has been exploited to develop improved algorithms for
large-scale problems arising from machine learning [78, 79]. The key difference to our approach
is that we do not rely on sampling to approximate large-scale matrices, but instead perform
probabilistic inference. Our approach is based on the framework of probabilistic numerics [51,
53] and is a natural continuation of previous work on probabilistic linear solvers. In historical
order, Hennig and Kiefel [70] provided a probabilistic interpretation of Quasi-Newton methods,
which was expanded upon in [66]. This work also relied on the symmetric matrix-variate Gaussian
as used in our paper. Bartels and Hennig [80] estimate numerical error in approximate least-
squares solutions by using a probabilistic model. More recently, Cockayne et al. [73] proposed a
Bayesian conjugate gradient method performing inference on the solution of the system. This
was connected to the matrix-based view by Bartels et al. [67].

2.3 Prior Covariance Class
Having outlined the proposed algorithm, this section derives a prior covariance class that satisfies
nearly all desiderata, connects the two modes of prior information and allows for calibration of
uncertainty by appropriately choosing the remaining degrees of freedom in the covariance. The
third desideratum posited that A and H should be almost surely positive definite. This does not
hold for the matrix-variate Gaussian. However, we can restrict the choice of admissable WA

0 to
act like A on span(S). This in turn induces a positive definite posterior mean.

Proposition 2.1 (Hereditary Positive Definiteness [70, 81])
Let A0 ∈ Rn×n

sym be positive definite. Assume the actions S are A-conjugate and WA
0 S =

Y , then Ai is symmetric positive definite.

Proof. This follows from Theorem 7.5 in Dennis and Moré [81] and is proved explicitly in
Hennig and Kiefel [70]. For a proof in our setting see Appendix A.3.1.

Prior information about the linear system usually concerns the matrix A itself and not its inverse,
but the inverse is needed to infer the solution x∗ of the linear problem. So a way to translate
between a Gaussian distribution on A and H is crucial. Previous works generally committed to
either one view or the other, potentially discarding available information. Below, we show that
the two correspond, if we allow ourselves to constrain the space of possible models.

Definition 2.1
Let Ai and Hi be the means of A and H at step i. We say a prior induces posterior

32

2.3 Prior Covariance Class

correspondence if
A−1

i = Hi (2.1)

for all steps i of the solver. If only

A−1
i Y = HiY , (2.2)

we say that weak posterior correspondence holds.

The following theorem establishes a sufficient condition for weak posterior correspondence. For
an asymmetric prior model, one can establish a stronger notion of posterior correspondence. A
proof is included in the appendix in Appendix A.3.2.

Theorem 2.3 (Weak Posterior Correspondence)
Let WH

0 ∈ Rn×n
sym be positive definite. Assume H0 = A−1

0 , and WA
0 ,A0,W

H
0 satisfy

WA
0 S = Y , (2.3)

S⊺(WA
0 A−1

0 −AWH
0) = 0. (2.4)

Then weak posterior correspondence holds for the symmetric Kronecker covariance.

Proof. The proof relies on applying the matrix inversion lemma to the rank 2 mean update for
Ai given in Section 2.2.1. See Appendix A.3.2 for a proof.

Given the above, let A0 be a symmetric positive definite prior mean and H0 = A−1
0 . Define the

orthogonal projections PA
S = AS(S⊺AS)−1S⊺A and PH0

Y = A−1
0 Y (Y ⊺A−1

0 Y)−1Y ⊺A−1
0

with respect to the inner products induced by A and A−1
0 , as well as PS⊥ = I − S(S⊺S)−1S⊺

and PY ⊥ = I−Y (Y ⊺Y)−1Y ⊺ projecting to the spaces span(S)⊥ and span(Y)⊥. We propose
the following prior covariance class given by the prior covariance factors

WA
0 = PA

S + PS⊥ΦPS⊥ and WH
0 = PH0

Y + PY ⊥ΨPY ⊥ , (2.5)

where Φ ∈ Rn×n and Ψ ∈ Rn×n are degrees of freedom. This choice of covariance class
satisfies Theorem 2.1, Proposition 2.1, Theorem 2.3 and for a scalar mean also Theorem 2.1.
Therefore, it produces symmetric realizations, has symmetric positive semi-definite means, it
links the matrix and the inverse view and at any given time only needs access to v 7→ Av not A
itself. It is also compatible with a preconditioner by simply transforming the problem.

This class can be interpreted as follows. The derived covariance factor WA
0 acts like A on the

space span(S) explored by the algorithm. On the remaining space, its uncertainty is additionally
determined by the degrees of freedom in Φ. Likewise, our best guess for A−1 is A−1

0 on the
space spanned by Y . On the orthogonal space span(Y)⊥ the uncertainty is also influenced by
Ψ. The prior depends on actions and observations collected during a run of Algorithm 1, hence

33

Chapter 2 Probabilistic Linear Solvers for Machine Learning

one might call this an empirical Bayesian approach. This begs the question of how the algorithm
is realizable for the proposed prior (2.5) given its dependence on future data. Notice that the
posterior mean in Section 2.2.1 only depends on WA

0 S = Y not on WA
0 alone. Using (2.5), at

iteration i we have WA
0 S1:i = Y1:i, i.e. the observations made up to this point. Similar reasoning

applies to the inverse. Now, the posterior covariances do depend on WA
0 , respectively WH

0

alone, but prior to convergence we only require tr(Cov(x)) for the stopping criterion. We show
in Appendix A.1.2 under the assumptions of Theorem 2.1 how to compute this at any iteration i
independent of future actions and observations. Therefore prior to the convergence of Algorithm 1
the covariance factors are never explicitly formed.

Uncertainty Calibration Generally, the actions of Algorithm 1 identify eigenpairs (λi,vi) in
descending order of λiv

⊺
i r0 which is a well-known behavior of CG [65]. In part, since this

dynamic of the underlying Krylov subspace method is not encoded in the prior, the solver in
its current form is typically miscalibrated (see also [73]). While this non-linear information is
challenging to include in the Gaussian framework, we can choose Φ and Ψ in (2.5) to empirically
calibrate uncertainty. This can be interpreted as a form of hyperparameter optimization similar to
the optimization of kernel parameters in GP regression.

We would like to encode prior knowledge about the way A and H act in the respective orthogonal
spaces span(S)⊥ and span(Y)⊥. For the Rayleigh quotient R(A,v) = (v⊺Av)(v⊺v)−1 it
holds that λmin(A) ≤ R(A,v) ≤ λmax(A). Hence for vectors v lying in the respective null
spaces of S and Y our uncertainty should be determined by the not yet explored eigenvalues
λi+1, . . . , λn of A and H . Without prior information about the eigenspaces, we choose Φ = ϕI
and Ψ = ψI . If a priori we know the respective spectra, a straightforward choice is

ϕ = ψ−1 =
1

n− i
n∑

j=i+1

λj(A).

In the absence of prior spectral information, we can make use of already collected quantities
during a run of Algorithm 1. We build a one-dimensional regression model p(logRj | Y ,S) for
the log-Rayleigh quotient logR(A, sj). Such a model can encode the well-studied behavior of
CG, whose Rayleigh coefficients rapidly decay at first, followed by a slower continuous decay
[65]. Figure 2.3 illustrates this approach using a GP regression model. At convergence, we use
the prediction of the Rayleigh quotient for the remaining n− i dimensions by choosing

ϕ = ψ−1 = exp

 1

n− i
n∑

j=i+1

E(logRj | A,S)

 ,

i.e. uncertainty about actions in span(S)⊥ is calibrated to be the average Rayleigh quotient
as an approximation to the spectrum. Depending on the application a simple or more complex
model may be useful. For large problems, where generally i≪ n, more sophisticated schemes
become computationally feasible. However, these do not necessarily need to be computationally
demanding due to the simple nature of this one-dimensional regression problem. For example,
approximate [82] or even exact GP regression [83] is possible in O(i) using a Kalman filter.

34

2.4 Experiments

0 20 40 60 80 100 120

Iteration

10−2

100

102

R
ay

le
ig

h
qu

ot
ie

nt [λmin(A), λmax(A)]

GP posterior log(R)

Uncertainty scale φ = ψ−1

Figure 2.3: Rayleigh regression. Uncertainty calibration via one-dimensional GP regression with
data {logR(A, sj)}ij=1 after i = 91 iterations of Algorithm 1 on an n = 1000 dimensional
Matérn(32) kernel matrix inversion problem. The degrees of freedom ϕ = ψ−1 > 0 are set based
on the average predicted Rayleigh quotient for the remaining n− i = 909 dimensions.

2.4 Experiments
This section demonstrates the functionality of Algorithm 1. We choose some – deliberately
simple – example problems from machine learning and scientific computation, where the solver
can be used to quantify uncertainty induced by finite computation, solve multiple consecutive
linear systems, and propagate information between problems.

Gaussian Process Regression Suppose we want to infer a latent function from data (X,y)
via GP regression [47], where X ∈ Rn×d and y ∈ Rn. Given a prior f ∼ GP(0, k) with kernel
k, the posterior mean and marginal variance at n⋄ new inputs X⋄ ∈ Rn⋄×d are given by

µ∗(X⋄) = k(X⋄,X)(K + σ2I)−1y

k(X⋄,X⋄) = k(X⋄,X⋄)− k(X⋄,X)(K + σ2I)−1k(X,X⋄),

where K = k(X,X) ∈ Rn×n is the Gram matrix of the kernel and k(X,X⋄) ∈ Rn×n⋄ . The
bulk of computation during prediction arises from solving the linear system (K + σ2I)z = b
for some right-hand side b ∈ Rn repeatedly. When using a probabilistic linear solver for this
task, we can quantify the uncertainty arising from finite computation as well as the belief of
the solver about the shape of the GP at a set of new inputs. Figure 2.4 illustrates this. We can
estimate the marginal variance of the GP without solving the linear system again by multiplying
k(X,X⋄) with the estimated inverse of K + σ2I . In large-scale applications, we can trade
off computational expense for increased uncertainty arising from the numerical approximation
and quantified by the probabilistic linear solver. By assessing the computational uncertainty
arising from not exploring the full space, we can judge the quality of the estimated GP mean and
marginal variance.

Gram Matrix Inversion Consider a linear problem Kx∗ = b, where K is generated by a
Mercer kernel. For a ν-times continuously differentiable kernel the eigenvalues λn(K) decay
approximately as |λn| ∈ O(n−ν− 1

2) [84]. We can make use of this generative prior information by

35

Chapter 2 Probabilistic Linear Solvers for Machine Learning

Po
st

er
io

rM
ea

n i = 2 i = 6 i = 10

Data Posterior Mean Approx. Posterior Mean Comp. Uncertainty: Mean

−4 −2 0 2 4

Po
st

er
io

rV
ar

ia
nc

e

−4 −2 0 2 4 −4 −2 0 2 4

Posterior Variance Approx. Posterior Variance Comp. Uncertainty: Variance

Figure 2.4: Computational uncertainty in GP inference. Posterior mean and variance of a GP
computed using a probabilistic linear solver. Top: GP mean for a toy data set (n = 16) computed
with an increasing number of iterations i of Algorithm 1. The approximated posterior mean
(—) approaches the true mean with an increasing number of iterations i and the computational
uncertainty () contracts. Bottom: Exact () and estimated posterior variance (+) with
computational uncertainty (). The GP variance estimate is computed without any additional
solver iterations by using the approximate inverse obtained from the approximation of the mean.

specifying a parametrized prior mean µ(n) = log(θ′0n
−θ1) = θ0−θ1 log(n) for the log-Rayleigh

quotient model. Typically, such Gram matrices are ill-conditioned and therefore K̂ = K+σ2I is
used instead, implying λ(K̂)i ≥ σ2. In order to assess calibration we apply various differentiable
kernels to the airline delay dataset from January 2020 [85]. We compute the log-ratio statistic
w(x∗) = 1

2 log(tr(Cov(x)))− log(∥x∗ − E(x)∥2) for no calibration, calibration via Rayleigh
quotient GP regression using µ(n) as a prior mean, calibration by setting ϕ = σ2 and calibration
using the average spectrum ϕ = λi+1:n. The average w̄ for 105/n randomly sampled test
problems is shown in Table 2.2.2 Without any calibration, the solver is generally overconfident.
All tested calibration procedures reverse this, resulting in more cautious uncertainty estimates.
We observe that Rayleigh quotient regression overcorrects for larger problems. This is due to the
fact that its model correctly predicts K to be numerically singular from the dominant Rayleigh
quotients, however, it misses the information that the spectrum of K̂ is bounded from below
by σ2. If we know the (average) of the remaining spectrum, significantly better calibration can
be achieved, but often this information is not available. Nonetheless, since in this setting the
majority of eigenvalues satisfy λ(K̂)i ≈ σ2 by choosing ϕ = ψ−1 = σ2, we can get to the same
degree of calibration. Therefore, we can improve the solver’s uncertainty calibration at constant

2We decrease the number of samples with the dimension because forming dense kernel matrices in memory and
computing their eigenvalues becomes computationally prohibitive – not because of the cost of our solver.

36

2.4 Experiments

Table 2.2: Uncertainty calibration for kernel Gram matrices. Monte Carlo estimate w̄ ≈
Ex∗(w(x∗)) measuring calibration given 105/n sampled linear problems of the form K̂x∗ = b
for each kernel and calibration method. For w̄ ≈ 0 the solver is well calibrated, for w̄ ≫ 0
underconfident and for w̄ ≪ 0 overconfident.

Kernel n None Rayleigh regression Lower bound σ2 Average λi+1:n

Matérn(3/2) 102 −5.99 −0.24 0.32 0.09
Matérn(3/2) 103 −1.93 7.53 4.26 4.19
Matérn(3/2) 104 3.87 17.16 8.48 8.47
Matérn(5/2) 102 −7.84 −1.01 −0.76 −0.80
Matérn(5/2) 103 −4.63 1.43 −0.80 −0.81
Matérn(5/2) 104 −4.34 10.81 0.80 0.80
RBF 102 −7.53 −0.70 −0.84 −0.87
RBF 103 −4.94 6.60 0.77 0.77
RBF 104 0.14 21.32 2.92 2.92

cost O(1) per iteration. For more general problems involving Gram matrices without damping,
we may want to rely on Rayleigh regression instead.

Galerkin’s Method for PDEs In the spirit of applying machine learning approaches to problems
in the physical sciences [21], we use Algorithm 1 for the approximate solution of a PDE via
Galerkin’s method [64]. Consider the Dirichlet problem for the Poisson equation given by

{
−∆u(x) = f(x) x ∈ Ωo

u(x) = u∂Ω(x) x ∈ ∂Ω

where Ω is a connected open region with sufficiently regular boundary and u∂Ω : ∂Ω → R
defines the boundary conditions. One obtains an approximate solution by projecting the weak
formulation of the PDE to a finite-dimensional subspace. This results in the Galerkin equation
Au = f , i.e. a linear system where A is the Gram matrix of the associated bilinear form.
Figure 2.5 shows the induced uncertainty on the solution of the Dirichlet problem for f(x) = 15
and u∂Ω(x) = (x2

1 − 2x2)
2(1 + sin(2πx1)). The mesh and corresponding Gram matrix were

computed using FENICS [86]. We can exploit two properties of Algorithm 1 in this setting.
First, if we need to solve multiple related problems (Aj ,fj)j , by solving a single problem we
obtain an estimate of the solution to all other problems. We can successively use the posterior
over the inverse as a prior for the next problem. This approach is closely related to subspace
recycling in numerical linear algebra [87, 88]. Second, suppose we first compute a solution in a
low-dimensional subspace corresponding to a coarse discretization for computational efficiency.
We can then leverage the estimated solution to extrapolate to an (adaptively) refined discretization
based on the posterior uncertainty. In machine learning lingo these two approaches can be viewed
as forms of transfer learning.

37

Chapter 2 Probabilistic Linear Solvers for Machine Learning

(a) Ground truth u (b) Estimated solution E(u) and samples ui

Figure 2.5: Solving the Dirichlet problem with a probabilistic linear solver. Figures 2.5(a)
and 2.5(b) show the ground truth and mean of the solution computed with Algorithm 1 after
i = 23 iterations along with samples from the posterior. The posterior on the coarse mesh can be
used to assess uncertainty about the solution on a finer mesh.

−0.30

−0.23

−0.15

−0.08

0.00

0.08

0.15

0.23

0.30

0.37

(a) Signed error u− E(u)

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

0.80

1.00

(b) Whitened error Cov(u)−
1
2 (u−E(u))

Figure 2.6: Uncertainty calibration on the Dirichlet problem. The signed error computed on the
coarse mesh in Figure 2.6(a) shows that the approximation is better near the top boundary of
Ω. Given perfect uncertainty calibration, the whitened error in Figure 2.6(b) is a sample from
N (0, I). The apparent structure in the plot and smaller-than-expected deviations in the upper
part of Ω indicate the conservative confidence estimate of the solver.

38

2.5 Conclusion

2.5 Conclusion
In this work, we condensed a line of previous research on probabilistic linear algebra into a self-
contained algorithm for the solution of linear problems in machine learning. We proposed first
principles to constrain the space of possible generative models and derived a suitable covariance
class. In particular, our proposed framework incorporates prior knowledge on the system matrix
or its inverse and performs inference for both in a consistent fashion. Within our framework, we
identified parameter choices that recover the iterates of conjugate gradients in the mean, but add
calibrated uncertainty around them in a computationally lightweight manner. To our knowledge,
our solver, available as part of the PROBNUM package, is the first practical implementation of
this kind. In the final parts of this paper, we showcased applications like kernel matrix inversion,
where prior spectral information can be used for uncertainty calibration and outlined example
use cases for the propagation of computational uncertainty through chains of computations.
Naturally, there are also limitations remaining. While our theoretical framework can incorporate
noisy matrix-vector product evaluations into its inference procedure via a Gaussian likelihood,
practically tractable inference in the inverse model is more challenging. Our solver also opens up
new research directions. In particular, our outlined regression model on the Rayleigh quotient may
lead to a probabilistic model of the eigenspectrum. Finally, the matrix-based view of probabilistic
linear solvers could inform probabilistic approaches to matrix decompositions, analogous to the
way Lanczos methods are used in the classical setting.

39

https://github.com/probabilistic-numerics/probnum

Chapter

3

Posterior and Computational
Uncertainty in Gaussian Processes

3.1 Introduction . 42
3.2 Computation-Aware Gaussian Process Inference 44

3.2.1 Connection to Other GP Approximation Methods 47
3.2.2 The Cost of Computational Uncertainty 48
3.2.3 Related Work . 48

3.3 Theoretical Analysis . 49
3.3.1 Estimation of Representer Weights . 49
3.3.2 Convergence in RKHS Norm of the Posterior Mean 50
3.3.3 Combined and Computational Uncertainty as Worst Case Errors 51
3.3.4 Pointwise Convergence of the Posterior Mean 52

3.4 Experiments . 53
3.5 Conclusion . 55

Gaussian processes scale prohibitively with the size of the dataset. In response, many approx-
imation methods have been developed, which inevitably introduce approximation error. This
additional source of uncertainty, due to limited computation, is entirely ignored when using
the approximate posterior. Therefore in practice, Gaussian process models are often as much
about the approximation method as they are about the data. Here, we develop a new class
of methods that provides consistent estimation of the combined uncertainty arising from both
the finite number of data observed and the finite amount of computation expended. The most
common GP approximations map to an instance in this class, such as methods based on the
Cholesky factorization, conjugate gradients, and inducing points. For any method in this class,
we prove (i) convergence of its posterior mean in the associated RKHS, (ii) decomposability of
its combined posterior covariance into mathematical and computational covariances, and (iii) that
the combined variance is a tight worst-case bound for the squared error between the method’s

41

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

posterior mean and the latent function. Finally, we empirically demonstrate the consequences of
ignoring computational uncertainty and show how implicitly modeling it improves generalization
performance on benchmark datasets.

3.1 Introduction

Gaussian processes (GPs) are an expressive probabilistic model class, but their prohibitive
scaling necessitates approximation [47]. A range of approximations based on kernel [89–97] or
precision matrix [98–101] estimates, inducing point methods [102–109], and iterative solvers [3,
4, 110–114] have been proposed. These methods all use an affordable amount of computation
to obtain an approximation of the mathematical posterior, which exists theoretically but cannot
be accessed given limited computational resources. The approximate posterior is then used as a
direct replacement of the mathematical posterior in downstream applications. Doing so, however,
completely ignores the fact that we only expended a limited amount of compute. By analogy to
the typical GP operation, where limited data induces modeling error captured by mathematical
uncertainty, our work is motivated by the fact that limited computation induces approximation
error that must be captured by computational uncertainty.

Here, we introduce IterGP, a class of methods that return a combined uncertainty that is the sum
of mathematical and computational uncertainty. Figure 3.1 illustrates the difference between
ignoring computational uncertainty and explicitly modeling it. We perform GP regression using a
Matérn(32) kernel on a toy dataset and compare SVGP () [109] to its analog in our framework,
IterGP-PI (+), for a fixed set of inducing points. The computational shortcuts of inducing
point methods can lead to unavoidable biases in their posterior mean and covariance [115,
116]. As Figure 3.1 illustrates, SVGP may underestimate the marginal variance where inducing
points do not coincide with data points. In contrast, IterGP is guaranteed to overestimate the
mathematical uncertainty – with the difference precisely given by the computational uncertainty
(). Additionally, the computational uncertainty is a worst-case bound (—) on the error of the
approximate posterior mean.

To be clear, this overestimation is desirable: IterGP is not a typical approximation in the sense
that its combined posterior attempts to approximate the mathematical posterior. Rather, IterGP
recognizes that the mathematical posterior exists, but we do not have access to it, given computa-
tional constraints. Finite compute is as true a source of posterior uncertainty as finite data. Taking
this view seriously, the true goal of GPs in the limited compute regime should in fact be to track
combined uncertainty. This intuition motivates IterGP and is formally a feature of our results. We
show that, if you update your GP via computation, specifically matrix-vector multiplication, then
the combined uncertainty of the IterGP algorithm is precisely the correct object to capture your
belief (Theorem 3.2) – in the same way the mathematical posterior is the correct object given
finite data and unlimited computation.

Formally, IterGP is a probabilistic numerical method [51–54]. It treats the (unknown) representer
weights as a latent variable with a prior belief that, when marginalized out, corresponds to a

42

3.1 Introduction

SVGP

Approx. Posterior Mean
Approx. Posterior Uncertainty

IterGP-PI (ours)

Approx. Posterior Mean
Computational Uncertainty
Combined Uncertainty

M
ea

n
E

rr
.

V
ar

.E
rr

.

Data Mathematical Posterior

Figure 3.1: Modeling computational uncertainty improves GP approximation.

GP prior conditioned on no data. We then use a computational primitive (matrix-vector multi-
plication) that corresponds to tractable Bayesian updates on the representer weight distribution;
that is, conditioning on computations performed on the data. The resulting belief can then be
marginalized out to obtain a closed-form, tractable expression for the combined – mathematical
plus computational – uncertainty. This uncertainty quantification can be done exactly in quadratic
time and linear space complexity.

Our framework admits three key theoretical properties. First, common GP approximations such as
the partial Cholesky, the method of conjugate gradients and inducing point methods (e.g. SVGP)
map to a corresponding IterGP instance. Therefore, these approaches can either be directly
extended or modified to properly account for computational uncertainty. Second, the approximate
posterior mean of any method in our proposed class converges to the mathematical posterior
mean in RKHS norm in at most n steps, where the convergence rate is determined by the choice
of method (Theorem 3.1). Third, the combined uncertainty is a tight worst-case bound on the
relative error between the approximate posterior mean and the latent function (Theorem 3.2). To
the best of our knowledge, no existing GP approximation has this last property; an analogous
guarantee only holds for exact GPs [44, Sec. 3.4].

Contribution This work introduces IterGP, which defines a new class of GP approximations
that accounts for computational uncertainty arising from limited computation. Some IterGP
instances extend classic methods with improved uncertainty quantification (Table 3.1). For any
method in this class, we prove that the approximate posterior mean converges to the mathematical
posterior mean (Theorem 3.1) and that the combined uncertainty is a tight worst-case bound on
the relative distance to the latent function one is trying to learn (Theorem 3.2, Corollary 3.1). We
demonstrate empirically that modeling computational uncertainty can either save computation or
improve generalization on a set of regression benchmark datasets. In conclusion, we show that
it is possible to exactly quantify the inevitable error of GP approximations at quadratic cost by
propagating said error to the posterior in the form of computational uncertainty.

43

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

3.2 Computation-Aware Gaussian Process Inference
We aim to learn a latent function h : X→ R given a training dataset X =

(
x1, . . . ,xn

)
∈ Rn×d

of n inputs xj ∈ X ⊂ Rd and corresponding outputs y =
(
y1, . . . , yn

)⊺ ∈ Rn.

Gaussian Processes A stochastic process f ∼ GP(µ, k) with mean function µ : Rd → R
and kernel k : Rd × Rd → R is called a Gaussian process (GP) if any collection of function
values f = (f(x1), . . . , f(xn))

⊺ ∼ N (µ,K) is jointly Gaussian with µj = µ(xj) and Kij =
k(xi,xj). Assuming observation noise y | f ∼ N

(
f , σ2I

)
, the posterior distribution at test

inputs X⋄ is given by f⋄ ∼ N (µ∗(X⋄), k∗(X⋄,X⋄)) where the posterior mean and covariance
functions are given by

µ∗(·) = µ(·) + k(·,X)

v∗

K̂−1(y − µ),

k∗(·, ·) = k(·, ·)− k(·,X)K̂−1k(X, ·)
(3.1)

where K̂ := K + σ2I ∈ Rn×n. Computing the representer weights v∗ = K̂−1(y − µ) exactly
(as well as the posterior variance) is prohibitive given our limited computational budget.

Learning Representer Weights Consider the conditional distribution of the latent GP given
its representer weights:

p(f⋄ | v∗) = N (µ(X⋄) + k(X⋄,X)v∗, k∗(X⋄,X⋄)). (3.2)

When v∗ is known exactly, we recover (3.1). However, if we instead treat v∗ as a random variable
with the prior p(v∗) = N

(
v∗;0, K̂−1

)
, then the resulting marginal

∫
p(f⋄ | v∗)p(v∗) dv∗

recovers the GP prior N (µ(X⋄), k(X⋄,X⋄)) . Our goal is to update this prior by iteratively
applying the tractable computational primitive (i.e. matrix-vector multiplies). More specifically,
each iteration conditions the current belief distribution p(v∗) = N (v∗;vi−1,Σi−1) on a one-
dimensional projection of the current residual ri−1 = (y −µ)− K̂vi−1, where the projection is
defined by an arbitrary vector si:

αi := s⊺i ri−1 = s⊺i ((y − µ)− K̂vi−1) = s⊺i K̂(v∗ − vi−1). (3.3)

The choice of actions si, which intuitively weighs the approximation error of selected data
points, defines different instances of our IterGP framework. Computing (3.3) requires a single
matrix-vector multiplication. After computing αi, we can perform an exact Bayesian update
of p(v∗) via linear Gaussian identities. The updated belief about the representer weights p(v∗)
conditioned on the observations αi is given by N (v∗;vi,Σi), with

vi = vi−1 +Σi−1K̂si
=:di

(s⊺i K̂Σi−1K̂si
=:ηi

)−1 s⊺i K̂(v∗ − vi−1)

=αi

= Ci(y − µ) (3.4)

Σi = Σi−1 −Σi−1K̂si
=di

(s⊺i K̂Σi−1K̂si
=ηi

)−1 s⊺i K̂Σi−1

=d⊺
i

= K̂−1 −Ci. (3.5)

where Ci :=
∑i

j=1
1
ηj
djd

⊺
j = Si(S

⊺
i K̂Si)

−1S⊺
i is a rank-i matrix (see Proposition B.1 for

details). We can interpret Ci as an approximation to the precision matrix K̂−1. With each

44

3.2 Computation-Aware Gaussian Process Inference

computation, the uncertainty about the representer weights contracts as Ci → K̂−1 = Σ0 as
i → n. After n iterations, Cn = K̂−1, meaning we fully recovered the representer weights
with zero uncertainty. The consistent estimate for the representer weights is consequently
vi = Ci(y − µ) giving an interpretation of the form of the posterior mean for the representer
weights.

Combining Mathematical and Computational Uncertainty We now have a belief p(v∗) =
N (v∗;vi,Σi) about the representer weights reflecting the expended computation. To account
for this computational uncertainty, we treat the representer weights as a latent variable of the
mathematical posterior by reparameterizing p(f⋄ | y) = p(f⋄ | v∗) and then marginalizing.
The resulting marginal considers all possible representer weights which would have resulted in
the same computational observations and therefore implicitly adds the uncertainty coming from
the computation itself. Since the posterior mean of a GP is a linear function of the representer
weights, the marginal distribution is given by

p(f⋄) =
∫
p(f⋄ | v∗)p(v∗) dv∗ = N (f⋄;µi(X⋄), ki(X⋄,X⋄)),

where

µi(·) = µ(·) + k(·,X)vi = k(·,X)Ci(y − µ)

ki(·, ·) = k(·, ·)− k(·,X)K̂−1k(X, ·)
mathematical uncertainty

+ k(·,X)Σik(X, ·)
computational uncertainty

= k(·, ·)− k(·,X)Cik(X, ·)
combined uncertainty

since Σi = K̂−1−Ci.1 As we perform more computation, the computational uncertainty reduces
and we approach the mathematical uncertainty. While the individual terms are computationally
prohibitive, the combined uncertainty can be evaluated cheaply since the approximate precision
matrix Ci is of low rank. Figure 3.2 illustrates that computational uncertainty is large where there
are data and we have not targeted computation yet. Different methods from our proposed class
target computation in different parts of the input space. Where there is no data the prior is a good
approximation of the posterior and therefore computational uncertainty is low.

Algorithm 2 computes an estimate of the representer weights vi and the rank-i precision matrix
approximation Ci. A specific instance of IterGP is defined by a sequence of actions si. To gain an
intuition for how Algorithm 2 operates, it helps to interpret it as targeting a given computational
budget towards certain data points defined by si. Near data points xj that are not targeted, i.e.
(si)j = 0, computational uncertainty remains unchanged. In fact, data points (xj , yj) that are
never targeted up to iteration i are not needed to compute GP(µi, ki), meaning that Algorithm 2
is inherently online and we can observe data sequentially without having to restart the algorithm
(see Theorem B.5).

1While we derive the combined posterior from a probabilistic numerics perspective, we can alternatively interpret the
posterior GP(µi, ki) as conditioning the GP prior f on linearly transformed data S⊺

i y | f ∼ N
(
S⊺

i f , σ
2S⊺

i Si

)
.

45

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

Combined Uncertainty

IterGP-CG IterGP-Chol

=

Mathematical Uncertainty

+

Computational Uncertainty

IterGP-CG IterGP-Chol

IterGP-PI IterGP-PI

Figure 3.2: Decomposition of the combined uncertainty. The combined uncertainty () output
by IterGP decomposes into the mathematical uncertainty () and computational uncertainty ().
After i = 4 iterations of Algorithm 2 computational uncertainty is small in parts of the input
space where there either is no data () or computation was “targeted” (). Which data points are
targeted in each iteration and to what degree is defined by the magnitude of the action vector
elements (si)j . Different instances of IterGP either reduce computational uncertainty locally
(e.g. IterGP-Chol, IterGP-PI) or globally (e.g. IterGP-CG). After n iterations the mathematical
uncertainty is recovered.

Algorithm 2: A Class of Computation-Aware Iterative Methods for GP Approximation

Input: Prior mean function µ, prior covariance function / kernel k, training inputs X , targets y
Output: (Combined) GP posterior GP(µi, ki)

1 procedure ITERGP(µ, k,X,y)
2 (µ0, k0)← (µ, k) ▷ Initialize mean and covariance function with prior.
3 µ← µ(X) ▷ Prior predictive mean.
4 K̂ ← k(X,X) + σ2I ▷ Prior predictive kernel matrix.
5 while not STOPPINGCRITERION() do ▷ Stopping criterion.
6 si ← POLICY() ▷ Select action via policy (see Table 3.1 for examples).
7 ri−1 ← (y − µ)− K̂vi−1 ▷ Predictive residual.
8 αi ← s⊺i ri−1 ▷ Observation via information operator.
9 di ← Σi−1K̂si =(I −Ci−1K̂)si ▷ Search direction.

10 ηi ← s⊺i K̂Σi−1K̂si = s⊺i K̂di ▷ Normalization constant.
11 Ci ← Ci−1 +

1
ηi
did

⊺
i ▷ Precision matrix approximation Ci ≈ K̂−1.

12 Qi ← Qi−1 +
1
ηi
K̂did

⊺
i K̂ ▷ Kernel matrix approximation Qi ≈ K̂.

13 vi ← vi−1 +
αi

ηi
di ▷ Representer weights estimate.

14 Σi ← Σ0 −Ci ▷ Computational representer weights uncertainty.

15 p(v∗)← N (v∗;vi,Σi) ▷ Belief about representer weights.
16 µi(·)← µ(·) + k(·,X)vi ▷ Approximate posterior mean function.
17 ki(·, ·)← k(·, ·)− k(·,X)Cik(X, ·) ▷ Combined uncertainty.
18 return GP(µi, ki)

Greyed-out quantities are not needed to compute the combined posterior and are only included for exposition.

46

3.2 Computation-Aware Gaussian Process Inference

Table 3.1: Instances of Algorithm 2, which map to commonly used GP approximations.

Method Actions si Classic Analog Reference

IterGP-Chol ei (partial) Cholesky Theorem B.1
IterGP-PBR evi(K̂) (partial) EVD / SVD Theorem B.2
IterGP-CG sPCG

i or P̂−1ri (preconditioned) CG Theorem B.3 and Corollary B.1
IterGP-PI k(X, zi) ≈ Nyström (SoR, DTC), SVGP Section 3.2.1 and Theorem B.4

3.2.1 Connection to Other GP Approximation Methods

IterGP extends the most commonly used GP approximations to include computational uncer-
tainty, with at most quadratic cost (see Table 3.1 for a summary and Figure 3.2, Figure B.2 for
illustration).

Cholesky Decomposition The (partial) Cholesky decomposition iteratively chooses data
points or pivots xi based on a given ordering. The resulting Cholesky factor is lower trian-
gular and increases in rank each iteration, and a well-chosen ordering achieves fast convergence
(cf. [117, Thm. 2.3]). If one chooses standard unit vectors ei as actions corresponding to the
selected datapoint per iteration, then Algorithm 2 recovers the partial Cholesky factorization
exactly (Theorem B.1).

Conjugate Gradients CG [71] with preconditioning for GP inference has become increasingly
popular [3, 4, 111–114, 118, 119]. Algorithm 2 recovers preconditioned CG exactly if we
choose either preconditioned conjugate gradients or residuals as actions (see Theorem B.3
and Corollary B.1). In fact, Algorithm 2 can even construct its own diagonal-plus-low-rank
preconditioner by first running a few iterations with an arbitrary policy and then using the
byproducts of these iterations for the preconditioner. For example, if we run IterGP-Chol initially,
we can construct an incomplete Cholesky preconditioner for subsequent CG iterations.

Inducing Point Methods Inducing point methods, such as variants of the Nyström approxi-
mation [103], i.e. subset of regressors (SoR) [102, 120] and deterministic training conditional
(DTC) [105, 121], as well as SVGP [109] share a posterior mean, which by Theorem B.4 takes
the form

µSVGP(·) = q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)
−1KZX(y − µ) (3.6)

where Z ∈ Rn×i is a set of inducing points and q(·, ·) = k(·,Z)K−1
ZZk(Z, ·). These approxi-

mations also have very closely related posterior covariance functions [107, 122]. If we choose
actions si = k(X, zi), by Proposition B.1, Algorithm 2 returns a posterior mean given by

µi(·) = k(·,X)KXZ(KZX(k(X,X) + σ2I)KXZ

Gram matrix S⊺
i K̂Σ0K̂Si

)−1KZX(y − µ). (3.7)

Choosing such actions, given by kernel functions k(·, zi) centered at inducing points zi, reduces
computational uncertainty in regions close to inducing points (see IterGP-PI in Figure 3.2),

47

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

where closeness is determined by the kernel. Comparing SVGP’s and IterGP-PI’s posterior mean
provides a probabilistic numerical perspective on why even for small KL-divergence between
the approximating distribution of SVGP and the true posterior, the mean estimate can be far
from the true mean [116, Prop. 3.1]. As outlined in Section 3.2, (3.7) is a Bayesian update
on the initially unknown representer weights v∗ = K̂−1(y − µ). The Gram matrix in (3.7)
describes how surprising the computational observations KZX(y−µ) = S⊺

i (y−µ) = S⊺
i K̂v∗

of the representer weights should be, given the prior uncertainty Σ0 about them. SVGP uses a
similar form for the posterior mean (c.f. (3.6) and (3.7)), but the Gram matrix is “smaller” since
q(X,X) ⪯ k(X,X). This can be interpreted as inducing point methods being overconfident
in their update of the representer weight estimates to achieve linear time complexity. As the
inducing points approach the data points the two posterior mean functions µSVGP and µi become
closer and are equivalent if the inducing points equal the training data.

3.2.2 The Cost of Computational Uncertainty

For arbitrary actions Algorithm 2 has higher cost than linear time GP approximations such as
inducing point methods, due to its use of matrix-vector multiplication as the computational
primitive to condition on the data. IterGP in the form given in Algorithm 2 performs three
matrix-vector products per iteration resulting in a quadratic time complexity O(n2i) overall for
i iterations. In this sense, Algorithm 2 represents a middle ground between the mathematical
posterior—which incurs a cubic time complexity— and O(ni2) approximations—which can
only estimate their computational error through potentially loose theoretical bounds which may
[e.g. 108, 109, 123] or may not be computable in less than O(n3) [91, 117]. At any point during
a run of Algorithm 2, computing the predictive mean on n⋄ new data points has cost O(n⋄n),
while the marginal predictive (co-)variance can be evaluated in O(n⋄ni) since Ci is of rank i.
Additionally, using Matheron’s rule [124–126], sampling from the approximate posterior at n⋄
evaluation points also only requires O(n⋄ni) computation (assuming we can sample from the
prior—see Appendix B.3.3). The objects required to make predictions and draw samples are the
approximate representer weights vi and low-rank precision matrix approximation Ci which both
require O(ni) memory. Finally, the memory cost of Algorithm 2 is only linear in n since matrix
multiplication v 7→ K̂v with the kernel matrix can be performed in a matrix-free fashion, i.e.
without explicitly forming K̂ in memory [127].

3.2.3 Related Work

GP inference based on matrix-vector multiplies, particularly CG [71], has become popular recently
[3, 4, 92, 111–114, 118]. Advances in specialized hardware have boosted their scalability without
excessive memory footprint [113, 127]. Such iterative methods typically rely on preconditioning,
which has been shown to significantly improve their performance [3, 4, 112]. Our method
generalizes CG in this setting and thus retains the same benefits. At its core Algorithm 2 employs
a (Bayesian) probabilistic numerical method [51–54], more specifically a probabilistic linear
solver (PLS) [1, 66, 67, 73, 128, 129] applied to the linear system K̂v∗ = y. The fact that a

48

3.3 Theoretical Analysis

PLS using CG actions can recover CG in its posterior mean was observed previously [1, 66, 73].
Here, we extend this result to residual actions and preconditioning. Further, we also demonstrate
the connection to the Cholesky and singular value decompositions. For randomized actions,
the PLS as part of Algorithm 2 also recovers the randomized Kaczmarz method in its posterior
mean [130–133]. Employing a PLS for GP approximation by updating beliefs over the kernel
and precision matrix was suggested previously [1, 134]. Our work differs in that it updates a
belief over the representer weights, as opposed to the kernel function or matrix, considers more
general projections than just conjugate residuals, and, most importantly, provides a theoretically
motivated combined posterior which can be computed exactly.

3.3 Theoretical Analysis
The main goals of our theoretical analysis will be to prove convergence of IterGP’s posterior
mean in norm (Theorem 3.1) and pointwise (Corollary 3.1) and to provide rigorous justification
for the combined and computational uncertainty. Importantly, the combined uncertainty is a tight
worst-case bound on the relative distance to all potential latent functions consistent with our
(computational) observations (Theorem 3.2). We will also demonstrate a similar interpretation of
the computational uncertainty as a bound on the relative error to the mathematical posterior mean
(see (3.13) and (3.15)).

3.3.1 Estimation of Representer Weights

At the heart of Algorithm 2 is a probabilistic linear solver [1, 66, 67, 73] iteratively updating a
belief about the representer weights. It constructs an expanding subspace span(s1, . . . , si) =
span(d1, . . . ,di) spanned by the actions in which the inverse K̂−1 is perfectly identified. Each
step di expanding this explored subspace is K̂-orthogonal to the previous ones.

Proposition 3.1 (Conjugate Direction Method)
Let the actions si of Algorithm 2 be linearly independent. Then Algorithm 2 is a conjugate
direction method, i.e. it holds that d⊺

i K̂dj = 0 for all i ̸= j.

Proof. Without loss of generality assume i > j. Then the result follows directly from Lemma B.1.

Geometrically, Algorithm 2 iteratively projects the representer weights onto the expanding
subspace span(Si) with respect to ⟨ · , · ⟩K̂ . We can use this intuition to understand the
convergence of the representer weights estimate. The relative error ρ(i) at iteration i is given by
how small the “angle” between this subspace and the representer weights vector is.

49

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

Proposition 3.2 (Relative Error Bound for the Representer Weights)
For any choice of actions a relative error bound ρ(i), s.t. ∥v∗ − vi∥K̂ ≤ ρ(i)∥v∗∥K̂ is
given by

ρ(i) = (v̄⊺
∗ (I −CiK̂)

projection onto span(Si)
⊥K̂

v̄∗)
1
2 ≤ λmax(I −CiK̂) ≤ 1 (3.8)

where v̄∗ = v∗/∥v∗∥K̂ . If the actions {si}ni=1 are linearly independent, then ρ(i) ≤ δn=i.

Proof. See Appendix B.2.2.

Proposition 3.2 guarantees convergence in at most n iterations, if the actions are chosen to be
linearly independent, since CiK̂ is a K̂-orthogonal projection onto span(Si) (see Lemma B.1).
Therefore, if our finite computational budget is large enough, we eventually recover the mathemat-
ical posterior. This is reflected by the contraction of the posterior over the representer weights (see
Proposition B.2). The bound in Proposition 3.2 is tight without further assumptions on the actions
since there exists an adversarial sequence of actions such that the first (n− 1) are in span(v∗)⊥K̂ .
Then the inverse is perfectly identified in that subspace, but vi = Ciy = CiK̂v∗ = 0. In prac-
tice, one can derive tighter convergence bounds for specific sequences of actions. For example,
for randomized actions, the bound depends on their distribution [131, 132]. If residuals ri are
chosen as actions, we obtain

ρ(i) = 2

(√
κ− 1√
κ+ 1

)i

or ρ(i) =
(
λn−i − λ1
λn−i + λ1

)
(3.9)

since then Algorithm 2’s estimate of the representer weights equals that of CG (Corollary B.1).
Here κ is the condition number and λj the eigenvalues of either (i) the kernel matrix K̂ if si = ri,
or (ii) the preconditioned kernel matrix P̂− 1

2 K̂P̂− ⊺
2 if si = P̂−1ri.

3.3.2 Convergence in RKHS Norm of the Posterior Mean

Having established convergence of the representer weights estimate, we can use this result to
prove convergence in norm of IterGP’s posterior mean to the mathematical posterior at the same
rate.

Theorem 3.1 (Convergence in RKHS Norm of the Posterior Mean Approximation)
Let Hk be the RKHS associated with kernel k(·, ·), σ2 > 0 and let µ∗ − µ ∈ Hk be the
unique solution to the regularized empirical risk minimization problem

argmin
f∈Hk

1

n

(n∑
j=1

(f(xj)− yj + µ(xj))
2 + σ2∥f∥2Hk

)
(3.10)

which is equivalent to the mathematical posterior mean up to shift by the prior µ [e.g.

50

3.3 Theoretical Analysis

47, Sec. 6.2]. Then for i ∈ {0, . . . , n} the posterior mean µi(·) computed by Algorithm 2
satisfies

∥µ∗ − µi∥Hk
≤ ρ(i)c(σ2)∥µ∗ − µ0∥Hk

(3.11)

where µ0 = µ is the prior mean and the constant c(σ2) =
√
1 + σ2

λmin(K) → 1 as σ2 → 0.

Proof. See Appendix B.2.3.

Theorem 3.1 gives a bound on the RKHS-norm error between the posterior mean µi of IterGP and
the mathematical posterior mean µ∗. If for the given prior kernel a bound on the RKHS-norm error
∥h−µ∗∥Hk

between the latent function h and the mathematical posterior mean µ∗ is known, Theo-
rem 3.1 can be directly used to bound the RKHS-norm error between IterGP’s posterior mean and
the latent function h via the triangle inequality: ∥h− µi∥Hk

≤ ∥h− µ∗∥Hk

→0 as n→∞
+ ∥µ∗ − µi∥Hk

→0 as i→n

.

3.3.3 Combined and Computational Uncertainty as Worst Case Errors

While Theorem 3.1 shows convergence in norm for IterGP’s posterior mean, the convergence rate
ρ(i) may contain expressions that cannot be evaluated at runtime with the limited computation at
our disposal. For example, evaluating (3.9) for residual actions requires the computation of the
kernel matrix spectrum. However, the combined uncertainty of IterGP is a tight bound on the
pointwise relative error to all possible latent functions which would have resulted in the same
computations.

Theorem 3.2 (Combined and Computational Uncertainty as Worst Case Errors)
Let σ2 ≥ 0 and let ki(·, ·) = k∗(·, ·) + k

comp
i (·, ·) be the combined uncertainty computed by

Algorithm 2. Then, for any x ∈ X (assuming x /∈X if σ2 > 0) we have

sup
g∈Hkσ :∥g∥Hkσ

≤1

error of approximate posterior mean

g(x)− µg∗(x)
error of math. post. mean

+ µg∗(x)− µgi (x)
computational error

=
√
ki(x,x) + σ2, and (3.12)

sup
g∈Hkσ :∥g∥Hkσ

≤1
µg∗(x)− µgi (x)
computational error

=
√
k

comp
i (x,x) (3.13)

where µg∗(·) = k(·,X)K̂−1g(X) is the mathematical and µgi (·) = k(·,X)Cig(X)
IterGP’s posterior mean for the latent function g ∈ Hkσ . If σ2 = 0, then the above
also holds for x ∈X .

Proof. See Appendix B.2.4.

51

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

i = 1 i = 3 i = 5
V

ar
ia

nc
e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty
Combined Uncertainty

Figure 3.3: Computational and combined uncertainty of IterGP as worst-case bounds.2

Theorem 3.2 rigorously explains why the combined (mathematical + computational) uncertainty
ki is the correct object characterizing our belief about the latent function h, given that we are in
the limited compute regime. In the same way that the mathematical uncertainty is a tight bound
on the distance to all functions g which could have produced the data (see [44, Prop. 3.8]), the
combined uncertainty is a tight bound on all functions g which would have produced the same
computations.

3.3.4 Pointwise Convergence of the Posterior Mean

In particular, as Corollary 3.1 shows and Figure 3.3 illustrates, the computational uncertainty ()
is a pointwise bound on the relative distance to the mathematical posterior mean (3.15) and the
combined uncertainty (+) is a pointwise bound on the relative distance to the true latent
function (3.14).

Corollary 3.1 (Pointwise Convergence of the Posterior Mean)
Assume the conditions of Theorem 3.2 hold and assume the latent function h ∈ Hkσ . Let µ∗
be the corresponding mathematical posterior mean and µi the posterior mean computed by
Algorithm 2. Then it holds that

|h(x)− µi(x)|
∥h∥Hkσ

≤
√
ki(x,x) + σ2, and (3.14)

|µ∗(x)− µi(x)|
∥h∥Hkσ

≤
√
k

comp
i (x,x). (3.15)

Proof. This follows from Theorem 3.2 by recognizing that h/∥h∥Hkσ
has unit norm.

2The combined (co-)variance decomposes into mathematical and computational covariances, as opposed to the
combined standard deviation since

√
+ ̸=

√
+

√
. The bottom panel thus illustrates the variance

decomposition. However, to better illustrate Theorem 3.2, in the upper panel, we plot the combined standard
deviation

√
+ and computational standard deviation

√
within it, in line with standard GP plotting practice.

52

3.4 Experiments

It is worth noting that Theorem 3.2 and Corollary 3.1 do not hold for other GP approximations.
They explicitly rely on CiK̂ being the K̂-orthogonal projection onto the space spanned by the
actions (see Lemma B.1). Since orthogonal projections are unique if another GP approximation
is such a projection and therefore satisfies Theorem 3.2, it is in fact an instance of IterGP.

3.4 Experiments
To demonstrate the effects of quantifying computational uncertainty we perform GP regression on
synthetic and benchmark datasets for the two most common GP approximations in the large-scale
setting, SVGP [109] and CGGP [3], and their direct analogs from our class of methods. An
implementation of Algorithm 2, based on KeOps [127] and ProbNum [55], is available at:

ITERGP https://github.com/JonathanWenger/itergp

Experimental Setup We consider a synthetic dataset of iid uniformly sampled inputs xj ∈
[−1, 1]d with y(x) = sin(πx⊺1) + ε, where ε ∼ N

(
0, σ2

)
, as well as a range of UCI datasets

[135] with training set sizes n = 5, 287 to 57, 247, dimensions d = 9 to 26 and standardized
features. All experiments were run on an NVIDIA GeForce RTX 2080 Ti graphics card. We
perform GP regression using a zero mean prior and a Matérn(12) kernel (for other kernels see
Appendix B.4). All experiments were repeated 10 times with randomly sampled training and test
splits of proportions 0.9 and 0.1. We report average metrics with 95% confidence intervals.

IterGP reduces the necessary computations for CG-based GP inference. We compare
IterGP to the CG-based GP inference used in the GPyTorch library [3]. For all datasets, we select
hyperparameters using the training procedure of Wenger et al. [4]. As we show in Theorem B.3,
the posterior mean of IterGP with (conjugate) residual actions is exactly equivalent to performing
CG to compute the representer weights. Therefore, both methods produce the exact same posterior
mean estimate and thus achieve the same RMSE as a function of CG iterations (Figure 3.4,
bottom). The primary difference between the two methods is in the posterior variance. The
combined variance estimate of IterGP is essentially “free” in the sense that it reuses terms from
the posterior mean calculation. In contrast, computing the posterior variance with CG requires
n⋄ additional linear solves (K̂−1x⋄1, . . . , K̂−1x⋄n⋄). GPyTorch relies on the Lanczos Variance
Estimate technique [136] which essentially warm-starts each of these solves by reusing quantities
from the linear solve K̂−1k(X,x⋄1). While this approach produces reliable variance estimates
that converge to the true posterior variance, it requires additional computation: at least one
set of additional CG iterations to compute K̂−1k(X,x⋄1). In Figure 3.4(a) (top), we see that
IterGP and GPyTorch’s CGGP achieve nearly identical NLL, suggesting that both methods
produce variances that yield similar generalization. The key difference between the methods is
that 1) unlike CGGP, IterGP’s variances exactly capture both mathematical and computational
uncertainty, and 2) IterGP’s variances require no additional solves, resulting in half as much
computation as GPyTorch’s CGGP implementation (see Figure 3.4(b)).

53

https://github.com/JonathanWenger/itergp

Chapter 3 Posterior and Computational Uncertainty in Gaussian Processes

1.125

1.150

1.175

1.200

N
L

L

Synthetic
(n = 1,024, d = 5)

5

10

15

Parkinson’s
(n = 5,287, d = 21)

2

4

6

Bike Sharing
(n = 15,641, d = 16)

0

10

20

Protein
(n = 41,157, d = 9)

CGGP
IterGP-CG

101 102

Iteration

0.66

0.68

0.70

0.72

R
M

SE

101 102

Iteration

5

10

101 102

Iteration

0.5

1.0

1.5

2.0

101 102

Iteration

2

4 CGGP
IterGP-CG

(a) Generalization on synthetic and UCI benchmark datasets.

50 100

Iteration

0

50

100

150

200

250

300

350

400

#
M

at
ri

x-
ve

ct
or

pr
od

uc
ts

2×

Any Dataset

CGGP
IterGP-CG

(b) Comp. Cost

Figure 3.4: Generalization of CGGP and its closest IterGP analog. (a) GP regression using a
Matérn(12) kernel on UCI datasets. The plot shows the average generalization error in terms of
NLL and RMSE for an increasing number of solver iterations. The posterior mean of IterGP-CG
and CGGP is identical, which explains the identical RMSE. However, CGGP performs additional
computation for the posterior covariance as (b) illustrates, which is not needed since IterGP-CG
has identical NLL.

1.10

1.15

1.20

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

−0.50

−0.25

0.00

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.55

0.60

0.65

102 103

Ind. Points / Iteration

0.15

0.20

0.25 SVGP
IterGP-PI

Figure 3.5: Generalization of SVGP and its closest IterGP analog. GP regression using a
Matérn(12) kernel on UCI datasets. The plot shows the average generalization error in terms of
NLL and RMSE for an increasing number of identical inducing points. After a small number
of inducing points relative to the size of the training data, IterGP has a significantly lower
generalization error than SVGP.

54

3.5 Conclusion

Computational uncertainty improves generalization of inducing point methods. To un-
derstand the benefits of quantifying computational uncertainty, we compare the linear-time SVGP
method (which does not quantify computational uncertainty) with the closest (quadratic-time)
inducing point analog from our proposed IterGP framework (see Section 3.2.1). While the
IterGP method is inherently more expensive than SVGP, our goal is simply to demonstrate that
inducing points can yield far more accuracy if one has the budget to account for computational
uncertainty. To that end, we compare SVGP against IterGP using the same set of randomly
placed inducing points. We identify a set of kernel hyperparameters by optimizing the ELBO
of SVGP on the training data, using these for both SVGP and IterGP. As Figure 3.5 shows, we
find that across all datasets IterGP offers better RMSE and NLL than SVGP, despite the fact that
the hyperparameters are chosen to favor SVGP. This suggests that the extra computation needed
to quantify computational uncertainty can more “effectively” utilize a set of inducing points for
predictive models.

3.5 Conclusion
Scalable GP approximations inevitably introduce error, leading to a worse model for the latent
function in question. This work demonstrates that it is possible to account for both uncertainty
arising from limited data and uncertainty arising from limited computation exactly – which as
we show improves model performance. IterGP methods return this combined uncertainty which
crucially represents a dataset-specific, pointwise worst-case bound on the error to the true latent
function. At its core, IterGP performs repeated matrix-vector multiplication resulting in quadratic
complexity. Since modern computing architectures (i.e. GPUs) have been specifically designed
for this operation at scale, iterative approaches for GP approximation are becoming competitive
with theoretically cheaper approximations, like inducing point methods [3, 113]. Finally, in
addition to the general utility of IterGP, we expect this class of methods to be particularly useful
in applications where accurate uncertainty quantification is important or, due to its inherently
online nature, where data is acquired sequentially such as in active learning and Bayesian
optimization.

55

Chapter

4

Preconditioning for Scalable GP
Hyperparameter Optimization

4.1 Introduction . 58
4.2 Background . 59

4.2.1 Gaussian Processes . 59
4.2.2 Numerical Toolbox for Inference . 60

4.3 Log-Determinant Estimation . 61
4.3.1 Variance-reduced Stochastic Trace Estimation 62
4.3.2 Forward Pass . 63
4.3.3 Backward Pass . 64

4.4 Efficient GP Hyperparameter Optimization 65
4.4.1 Log-Marginal Likelihood . 66
4.4.2 Derivative of the Log-Marginal Likelihood 66
4.4.3 Preconditioner Choice . 67
4.4.4 Algorithms . 68
4.4.5 Related Work . 69

4.5 Experiments . 70
4.6 Conclusion . 72

Gaussian process hyperparameter optimization requires linear solves with, and log-determinants
of, large kernel matrices. Iterative numerical techniques are becoming popular to scale to larger
datasets, relying on the conjugate gradient method (CG) for the linear solves and stochastic
trace estimation for the log-determinant. This work introduces new algorithmic and theoretical
insights for preconditioning these computations. While preconditioning is well understood in the
context of CG, we demonstrate that it can also accelerate convergence and reduce the variance
of the estimates for the log-determinant and its derivative. We prove general probabilistic error

57

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

bounds for the preconditioned computation of the log-determinant, log-marginal likelihood
and its derivatives. Additionally, we derive specific rates for a range of kernel-preconditioner
combinations, showing that up to exponential convergence can be achieved. Our theoretical
results enable provably efficient optimization of kernel hyperparameters, which we validate
empirically on large-scale benchmark problems. There, our approach accelerates training by up
to an order of magnitude.

4.1 Introduction
Gaussian processes (GPs) are a theoretically well-founded and powerful probabilistic model
[47]. However, conditioning a GP on data is often computationally prohibitive for large datasets.
This problem is amplified when optimizing kernel hyperparameters. Gradient-based optimiza-
tion requires repeated evaluation of the log-marginal likelihood L and its derivatives. These
computations both have cubic complexity in the size n of the data set.

GP Inference via Matrix-Vector Multiplication Recently, Krylov methods [59], based on iter-
ative matrix-vector multiplication with the kernel matrix, have become popular for GP inference
[3, 111–113, 137–139]. Methods primarily relying on matrix-vector products are advantageous.
They can leverage structure in the kernel matrix [65], and importantly, they make effective use
of modern hardware and parallelization [3, 113, 127]. When optimizing GP hyperparameters
one needs to repeatedly solve linear systems with, and compute log-determinants of, the kernel
matrix. Both can be done using Krylov methods. The linear systems are solved via the conjugate
gradient method (CG) [71], which reduces the cost of kernel matrix solves fromO(n3) toO(n2i)
for i iterations. The log-determinant can be approximated via stochastic trace estimation (STE)
[140] combined with another Krylov method, the Lanczos algorithm [77] as suggested by Ubaru,
Chen, and Saad [138]. Its derivative may also be estimated via STE combined with CG [3].

Challenges with this Approach Despite the advantages of combining Krylov methods with
stochastic trace estimation, there are considerable challenges in practice. These essentially reduce
to bias and variance of the numerical approximations. First, the convergence of CG depends on the
conditioning of the kernel matrix, which can grow rapidly with n (e.g. for the RBF kernel). Many
iterations may be needed to achieve a desired error, and stopping the solver early can result in
biased solutions [119]. However, if a preconditioner – i.e. an approximation of the kernel matrix –
is available, convergence can be accelerated substantially [59]. Second, stochastic approximations
of the log-determinant and its derivative introduce variance into hyperparameter optimization.
While the estimates are unbiased (assuming sufficient Krylov iterations), variance can significantly
slow down optimization. Reducing variance either requires further approximation at the cost of
more bias [114], or a larger number of samples ℓ which only reduces error at a rate of O(ℓ− 1

2)
[141]. Now, while preconditioning is known to accelerate CG, it has not yet been explored for
stochastic trace estimation in this context.

Contributions We demonstrate that, with only a small algorithmic modification, precondition-
ing can be exploited for highly efficient log-determinant estimation, and in turn GP hyperparame-
ter optimization. We show that

58

4.2 Background

−L ∂L/∂o ∂L/∂l ∂L/∂σ
Preconditioner Quality

No Preconditioner 100 200 400

Figure 4.1: Preconditioning reduces not only bias but also variance in stochastic approximations
to the log-marginal likelihood L and its derivatives. GP hyperparameter optimization for large
datasets requires cheap estimates of the log-marginal likelihood and its gradient(s). Precon-
ditioning makes these estimates more precise and less noisy as is shown here for increasing
preconditioner quality on the “Elevators” dataset using a Matérn(32) kernel with the hyperparame-
ters: outputscale o, lengthscale l and observation noise σ2.

(a) preconditioning reduces variance – or equivalently accelerates convergence – of the
stochastic estimate of the log-determinant and its derivative (Theorem 4.1).

We leverage this result, illustrated in Figure 4.1, to prove

(b) stronger theoretical guarantees for the computation of the log-determinant (Theorems 4.2
and 4.3) and log-marginal likelihood (Theorem 4.4) than previously known [3, 138] and a
novel error bound for the derivative (Theorem 4.5).

To make these general results concrete, we derive

(c) specific rates for important combinations of kernels and preconditioners (Table 4.1),
making preconditioner choice for GP inference rigorous rather than heuristic.

Finally, using our approach, we empirically observe

(d) up to twelvefold speedup in training of GP regression models applied to large-scale bench-
mark problems with up to n ≈ 325,000 data points.

4.2 Background
We want to infer a latent relationship from an input space X ⊂ Rd to an output space Y ⊂ R,
given a dataset X ∈ Rn×d of n training inputs xj ∈ Rd and outputs y ∈ Rn.

4.2.1 Gaussian Processes

A stochastic process f ∼ GP(µ, k) with mean function µ and kernel k is called a Gaussian
process if f = (f(x1), . . . , f(xn))

⊺ ∼ N (µ,K) is jointly Gaussian with mean µj = µ(xj)

59

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

and covariance Kij = k(xi,xj). Assuming y | f ∼ N
(
f , σ2I

)
, the posterior distribution for

test inputs x⋄ is also Gaussian with

E(f⋄) = µ(x⋄) + k(x⋄,X)K̂−1(y − µ),

Cov(f⋄) = k(x⋄,x⋄)− k(x⋄,X)K̂−1k(X,x⋄),

where K̂ = K + σ2I . Without loss of generality, we assume µ = 0 from now on.

Hyperparameter Optimization The computational bottleneck when optimizing kernel hyper-
parameters θ is the repeated evaluation of the log-marginal likelihood

L(θ) = log p(y |X,θ)

= −1

2

(
y⊺K̂−1y + log det(K̂)︸ ︷︷ ︸

=tr(log(K̂))

+n log(2π)
) (4.1)

and its derivative with respect to the hyperparameters

∂
∂θL(θ) =

1

2
y⊺K̂−1 ∂K̂

∂θ K̂
−1y − 1

2
tr(K̂−1 ∂K̂

∂θ). (4.2)

Computing (4.1) and (4.2) via a Cholesky decomposition has complexity O(n3) which is pro-
hibitive for large n. In response, many methods for approximate GP inference were developed
[92, 93, 108, 109, 136]. In contrast to these approaches, we avoid approximating the underlying
Gaussian process model and instead leverage iterative numerical methods with controllable
accuracy to scale to the large-scale setting similar to Gardner et al. [3] and Wang et al. [113]. To
achieve this, we focus on efficient computation of the log-determinant in (4.1) and its derivative in
(4.2) (see Section 4.3). This allows us to theoretically (Section 4.4) and empirically (Section 4.5)
accelerate GP hyperparameter optimization.

4.2.2 Numerical Toolbox for Inference

We will use the following established numerical techniques.

Stochastic Trace Estimation (STE) The trace tr(A) of a matrix can be approximated by
drawing ℓ independent random vectors zj with E(zj) = 0 and Cov(

√
nzj) = I and computing

Hutchinson’s estimator [140]

τSTE
ℓ (A) =

n

ℓ

ℓ∑
j=1

z⊺
jAzj ≈ tr(A). (4.3)

Here, we additionally assume the random vectors are normalized zj = z̃j/∥z̃j∥2 and that√
n(z1, . . . ,zℓ)

⊺ ∈ Rℓn satisfies the convex concentration property (see Definition C.1). Normal-
ization is necessary for Lanczos quadrature [see 142, Chap. 7.2] and concentration enables us
to prove probabilistic error bounds. These assumptions are fulfilled by Rademacher-distributed
random vectors z̃j with entries {+1,−1} and we conjecture also for vectors z̃j ∼ N (0, I). Eval-
uating the log-marginal likelihood (4.1) requires computing tr(log(K̂)). To use Hutchinson’s
estimator, we need to efficiently compute ℓ quadratic terms {z⊺

j log(K̂)zj}ℓj=1.

60

4.3 Log-Determinant Estimation

Stochastic Lanczos Quadrature (SLQ) Given a matrix function f , one can approximate bi-
linear forms z⊺f(K̂)z using quadrature [142, Chap. 7]. The nodes and weights of the quadrature
rule can be computed efficiently via i iterations of the Lanczos algorithm [77] (or equivalently
via CG [3]). The combination with Hutchinson’s estimator

τSLQℓ,i (f(K̂)) ≈ τSTE
ℓ (f(K̂)) ≈ tr(f(K̂)), (4.4)

is called stochastic Lanczos quadrature [138].

To compute the linear solves v 7→ K̂−1v with the kernel matrix in (4.1) and (4.2), we use the
conjugate gradient method.

Conjugate Gradient Method (CG) CG [71] is an iterative method for solving linear systems
with symmetric positive definite matrices. It is particularly suited for large-scale systems since it
is matrix-free and relies primarily on matrix-vector multiplication with K̂.

Preconditioning It is well-known that CG can be accelerated via a symmetric positive definite
preconditioner P̂ ≈ K̂, by solving an equivalent linear system with matrix P̂− 1

2 K̂P̂− ⊺
2 ≈ I

[58]. CG’s convergence is then determined by the condition number

κ := κ(P̂− 1
2 K̂P̂− ⊺

2)≪ κ(K̂) = |λmax(K̂)|
|λmin(K̂)| . (4.5)

Suppose the approximation quality of a sequence of preconditioners {P̂ ℓ}ℓ indexed by ℓ1 is given
by

∥K̂ − P̂ ℓ∥F ≤ O(g(ℓ))∥K̂∥F . (4.6)

If g(ℓ)→ 0 quickly, a small amount of precomputation can significantly accelerate CG, since by
Lemma C.4

κ ≤ (1 +O(g(ℓ))∥K̂∥F)2. (4.7)

Preconditioners must be cheap to obtain and allow efficient linear solves v 7→ P̂−1v.2 As an
example, diagonal-plus-low-rank preconditioners P̂ ℓ = σ2I +LℓL

⊺
ℓ , with Lℓ ∈ Rn×ℓ, admit

linear solves in O(nℓ2) via the matrix inversion lemma.

4.3 Log-Determinant Estimation
Our goal is to compute log det(K̂) = tr(log(K̂)) and its derivative via matrix-vector multiplica-
tion. As described, we can use stochastic trace estimation to do so. Now assume we additionally
have access to a preconditioner P̂ ≈ K̂. As we will show, we can then not just accelerate the
convergence of CG, but also more efficiently compute the forward and backward pass for the
log-determinant.

1The use of ℓ for the number of random vectors and the preconditioner sequence is deliberate. Setting them to the
same value enables variance reduction as we prove in Theorem 4.1.

2While CG (and Lanczos) assume an s.p.d. matrix, both can be implemented using only P̂−1, not P̂− 1
2 K̂P̂−⊺

2 .

61

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

101 102 103

Preconditioner index `

10−5

10−3

R
el

at
iv

e
er

ro
r

Identity

101 102 103

Preconditioner index `

10−3

10−1

Matrix logarithm

101 102 103

Preconditioner index `

10−3

10−2

10−1

Matrix inverse

RBF Matérn(3
2

) Rational Quadratic g(`) = `−
1
2

Figure 4.2: Relative error of matrix functions. The plot shows the relative error in Frobenius norm
∥f(K̂) − f(Pℓ)∥F /∥f(K̂)∥F of the approximation of a matrix function f ∈ {id, log, (·)−1}
applied to K̂ using a preconditioner Pℓ. For analytic functions f the approximation via the
preconditioner f(P̂ℓ)→ f(K̂) converges at the asymptotic rate of the preconditioner P̂ ℓ → K̂.
Here, we use a partial Cholesky preconditioner on a synthetic dataset (n = 1,000).

By the properties of the matrix logarithm we can decompose the log-determinant into a deter-
ministic approximation based on the preconditioner and a residual trace computed via stochastic
trace estimation.3 It holds by Lemma C.3, that

log det(K̂) = log det(P̂ ℓ) + tr(log(K̂)− log(P̂ ℓ)︸ ︷︷ ︸
=∆log

) (4.8)

where tr(∆log) = tr
(
log
(
P̂

− 1
2

ℓ K̂P̂
− ⊺

2
ℓ

))
and we assume log det(P̂ ℓ) is efficient to compute.

(4.8) has two crucial benefits we can exploit. First and foremost, the faster P̂ ℓ → K̂, i.e.
g(ℓ) → 0, the less the stochastic approximation of tr(∆log) affects the estimate. Since its
contribution to the overall error decreases the better log det(P̂ ℓ) approximates log det(K̂ℓ),
significantly fewer random vectors are needed to achieve a desired error with high probability.
Second, we can now run Lanczos on the preconditioned matrix accelerating its convergence. As
we will show later, one can also exploit (4.8) for the backward pass.

4.3.1 Variance-reduced Stochastic Trace Estimation

This intuitive argument for the log-determinant also holds generally, assuming a similar decom-
position exists.

Theorem 4.1 (Variance-reduced Stochastic Trace Estimation)
Let K̂, P̂ ℓ ∈ Rn×n

spd ,∆f ∈ Rn×n and f : Rn×n
spd → R such that tr(f(K̂)) = tr(f(P̂ ℓ)) +

tr(∆f), and define the estimator τ∗ = tr(f(P̂ ℓ)) + τSTE
ℓ (∆f). Now, assume there exist

3Similar approaches have been suggested by Adams et al. [143] and Meyer et al. [144]. Our work is notably different
in that it a) uses preconditioning, b) also considers the backward pass and c) gives stronger theoretical guarantees.

62

4.3 Log-Determinant Estimation

c∆ > 0 and g : N→ (0,∞) such that

∥∆f∥F ≤ c∆g(ℓ)∥f(K̂)∥F . (4.9)

Then there exists cz > 0 dependent on the choice of random vectors, such that, if ℓ ≥
cz log(δ

−1), it holds with probability 1− δ ∈ [12 , 1) that

|τ∗ − tr(f(K̂))| ≤ εSTE∥f(K̂)∥F . (4.10)

where for C1 = c∆
√
cz the relative error is given by

εSTE(δ, ℓ) = C1

√
log(δ−1)ℓ−

1
2 g(ℓ). (4.11)

Proof. See Appendix C.2.

Notice that Theorem 4.1 assumes that the sequence {f(P̂ ℓ)}ℓ approximates f(K̂) sufficiently
fast with ℓ in (4.9). Intuitively, if P̂ ℓ → K̂ quickly, one might expect the same for f(P̂ ℓ) →
f(K̂) under certain conditions on f . Indeed, one obtains the same asymptotic rate g(ℓ) of
the preconditioner P̂ ℓ for the approximation of f(K̂) by f(P̂) (see Proposition C.1). This is
illustrated in Figure 4.2. Therefore, the error of the variance-reduced stochastic trace estimate is
determined by the quality g(ℓ) of the preconditioner.

Comparison of Theorem 4.1 and Existing Results Consider the case where f = id. If we
are not using a preconditioner, i.e. P̂ = 0 and thus c∆ = g(ℓ) = 1, we recover the well-
known convergence rate O(ℓ− 1

2) of Hutchinson’s estimator [141, 145]. If instead we choose a
randomized low-rank approximation as a preconditioner with g(ℓ) = ℓ−

1
2 , then Theorem 4.1

recovers the convergence rate εSTE ∈ O(ℓ−1) of HUTCH++ [144, 146, 147] as a special case.
However, as we will show, using preconditioning one can achieve polynomial – even exponential
– convergence rates for common kernels. Such a drastic improvement is possible since neither
variant of Hutchinson’s makes any assumptions about the kernel matrix, whereas preconditioners
are designed to leverage structure.

4.3.2 Forward Pass

We can now analyze the error of the preconditioned stochastic log-determinant estimate. Combin-
ing Theorem 4.1 with Lanczos quadrature error analysis, the following holds.

Theorem 4.2 (Error Bound for log det(K̂))
Let f = log, ∆log = log

(
P̂− 1

2 K̂P̂− ⊺
2

)
and assume the conditions of Theorem 4.1 hold.

63

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

Then, with probability 1− δ, it holds for τ log∗ = log(det(P̂)) + τSLQℓ,i (∆log), that

|τ log∗ − log det(K̂)| ≤ (εLanczos + εSTE)∥log(K̂)∥F ,

where the individual errors are bounded by

εLanczos(κ, i) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2i
(4.12)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.13)

and K1 =
5κ log(2(κ+1))

2∥log(K̂)∥F
√
2κ+1

.

Proof. See Appendix C.3.2.

Corollary 4.1
Assume the conditions of Theorem 4.2 hold. If the number of random vectors ℓ satisfies
(4.11) with εSTE = ε

2 and we run

i ≥
√
3
4

√
κ log

(
2K1ε

−1
)

(4.14)

iterations of Lanczos, then it holds that

P
(
|τ log∗ − log det(K̂)| ≤ ε∥log(K̂)∥F

)
≥ 1− δ.

Proof. See Appendix C.3.2.

We note two major improvements over the bound by Ubaru, Chen, and Saad [138, Corollary 4.5].
First, the number of Lanczos steps now depends on the condition number κ of the preconditioned
matrix, implying faster convergence. Second, depending on the preconditioner quality g(ℓ), we
need significantly fewer random vectors by Theorem 4.1.

4.3.3 Backward Pass

By differentiating through (4.8), we obtain a decomposition into a deterministic approximation
based on the preconditioner and a residual trace for the backward pass. For ∆inv∂ = K̂−1 ∂K̂

∂θ −
P̂−1 ∂P̂

∂θ , we have
∂
∂θ log det(K̂) = tr(P̂−1 ∂P̂

∂θ) + tr(∆inv∂), (4.15)

Therefore the stochastic trace estimator

τSCG
ℓ,i (∆inv∂) ≈ tr(∆inv∂) (4.16)

64

4.4 Efficient GP Hyperparameter Optimization

requires solves z⊺
jK

−1 ∂K̂
∂θ zj and z⊺

j P̂
−1 ∂P̂

∂θ zj . The former can be computed with i iterations of
preconditioned CG, while the latter is simply a solve with the preconditioner. The deterministic
term tr

(
P̂−1 ∂P̂

∂θ

)
is efficient to calculate for many types of preconditioners. For example, if P̂

is a diagonal-plus-low-rank preconditioner it can be computed in O(nℓ2) (see Appendix C.3.3).
Using Theorem 4.1, we obtain a probabilistic error bound for the derivative estimate.

Theorem 4.3 (Error Bound for tr
(
K̂−1 ∂K̂

∂θ

)
)

Let f(K̂) = K̂−1 ∂K̂
∂θ , ∆inv∂ = K̂−1 ∂K̂

∂θ − P̂−1 ∂P̂
∂θ and assume the conditions of Theo-

rem 4.1 hold. If we solve K̂−1 ∂K̂
∂θ zj with i iterations of preconditioned CG, initialized at 0

or better, then it holds with probability 1− δ for τ inv∂∗ = tr
(
P̂−1 ∂P̂

∂θ

)
+ τSCG

ℓ,i (∆inv∂), that∣∣τ inv∂∗ − tr
(
K̂−1 ∂K̂

∂θ

)∣∣ ≤ (εCG′ + εSTE)∥K−1 ∂K
∂θ ∥F ,

where the individual errors are bounded by

εCG′(κ, i) ≤ K2

(√
κ−1√
κ+1

)i
(4.17)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.18)

and K2 = 2
√
κ(K̂)n.

Proof. See Appendix C.3.3.

Corollary 4.2
Assume the conditions of Theorem 4.3 hold. If the number of random vectors ℓ satisfies
(4.11) with εSTE = ε

2 , and we run

i ≥ 1
2

√
κ log(2K2ε

−1) (4.19)

iterations of CG, then

P
(∣∣τ inv∂∗ − tr

(
K̂−1 ∂K̂

∂θ

)∣∣ ≤ ε∥K̂−1 ∂K̂
∂θ ∥F

)
≥ 1− δ.

Proof. See Appendix C.3.3.

4.4 Efficient GP Hyperparameter Optimization
Having established an efficient way to compute the forward and backward pass for the log-
determinant, we can use these results to accelerate GP hyperparameter optimization by fully

65

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

exploiting preconditioning not just for the linear solves, but also for the log-determinant and its
derivative.

4.4.1 Log-Marginal Likelihood

We obtain a bound on the log-marginal likelihood by combining Theorem 4.2 with standard CG
convergence analysis.

Theorem 4.4 (Error Bound for the log-Marginal Likelihood)
Assume the conditions of Theorem 4.2 hold and we solve K̂v∗ = y via preconditioned CG
initialized at v0 and terminated after i iterations. Then with probability 1− δ, the error in
the estimate η = −1

2(y
⊺vi + τ log∗ + n log(2π)) of the log-marginal likelihood L satisfies

|η − L| ≤ εCG + 1
2(εLanczos + εSTE)∥log(K̂)∥F ,

where the individual errors are bounded by

εCG(κ, i) ≤ K3

(√
κ−1√
κ+1

)i
(4.20)

εLanczos(κ, i) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2i
(4.21)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.22)

for K3 =
√
κ(K̂)∥y∥2∥v0 − v∗∥2.

Proof. See Appendix C.4.1.

4.4.2 Derivative of the Log-Marginal Likelihood

Similarly, we can leverage Theorem 4.3 for the derivative.

Theorem 4.5 (Error Bound for the Derivative)
Assume the conditions of Theorem 4.3 hold and we solve K̂v∗ = y via preconditioned
CG initialized at 0 or better and terminated after i iterations. Then with probability 1− δ,
the error in the estimate ϕ = 1

2(v
⊺
i
∂K̂
∂θ vi − τ inv∂∗) of the derivative of the log-marginal

likelihood ∂
∂θL satisfies

|ϕ− ∂
∂θL| ≤ εCG + 1

2(εCG′ + εSTE)∥K̂−1 ∂K̂
∂θ ∥F ,

66

4.4 Efficient GP Hyperparameter Optimization

where the individual errors are bounded by

εCG(κ, i) ≤ K4

(√
κ−1√
κ+1

)i
(4.23)

εCG′(κ, i) ≤ K2

(√
κ−1√
κ+1

)i
(4.24)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.25)

for K4 = 6κ(K̂)max(∥v∗∥2, ∥v∗∥32)∥∂K̂∂θ ∥2.

Proof. See Appendix C.4.2.

Table 4.1: Error rates for combinations of kernels and preconditioners. The rate g(ℓ) measures
how fast a sequence of preconditioners {P̂ ℓ}ℓ approaches the kernel matrix K̂ constructed from
data X ∈ Rn×d. Thus it determines both the convergence speed of Krylov methods and the
preconditioned stochastic trace estimator. Or, equivalently, the faster g(ℓ) → 0 the fewer CG
iterations i and random vectors ℓ are needed to approximate the log-marginal likelihood and its
gradient. See Appendix C.5 for the corresponding proofs.

Kernel d Preconditioner g(ℓ) Condition

any N none 1

any N truncated SVD ℓ−
1
2

any N random. SVD ℓ−
1
2 +O(ℓ 1

4 s−
1
4) w/ high prob. for s samples

any N random. Nyström ℓ−
1
2 +O(ℓ 1

4 s−
1
4) w/ high prob. for s samples

any N RFF ℓ−
1
2 w/ high prob.

RBF 1 partial Cholesky exp(−cℓ) for some c > 0

RBF N QFF exp(−bℓ 1
d) for some b > 0 if ℓ

1
d > 2γ−2

Matérn(ν) N partial Cholesky ℓ−(2ν
d +1) 2ν ∈ N, maximin ordering [117]

Matérn(ν) 1 QFF ℓ−(s(ν)+1) where s(ν) ∈ N
mod. Matérn(ν) N QFF ℓ−

s(ν)+1
d where s(ν) ∈ N

additive N any dg(ℓ) all summands have rate g(ℓ)
any N any kernel approx. g(ℓ) ∃ uniform convergence bound

4.4.3 Preconditioner Choice

Our theoretical convergence results fundamentally depend on how quickly the preconditioner
approximates the kernel matrix, either directly via g(ℓ) or indirectly via the condition number
improvement (4.7). This leaves the question of which preconditioners should be chosen in practice
and what rates g(ℓ) they attain. In Table 4.1, we give an extensive list of kernel-preconditioner
combinations with associated rates (see Appendix C.5 for proofs). This includes the commonly

67

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

used RBF and Matérn(ν) kernels for which the Cholesky [148] and QFF [149] preconditioners
result in exponential and polynomial convergence rates, respectively. For STE in this context, this
is a substantial improvement over the rate of Hutchinson’s estimator O(ℓ− 1

2) [141, 145, 150] and
HUTCH++ with O(ℓ−1) [144, 146, 147]. Depending on the problem this can mean a difference
of tens vs. thousands of random vectors. To the best of our knowledge, for the use of CG in
GP inference, only the one-dimensional RBF kernel and partial Cholesky preconditioner have
been previously analyzed theoretically [3]. In contrast, Table 4.1 gives convergence rates for
arbitrary d-dimensional kernels and multiple preconditioners. Our results also apply to any kernel
approximation with a uniform convergence bound (such as RFF [91]). All the while for many,
e.g. diagonal-plus-low-rank preconditioners, the amount of precomputation needed amortizes
with more data, i.e. the cost of preconditioning becomes negligible the larger the dataset.

4.4.4 Algorithms

The analysis above leads to Algorithms 3 and 4 computing L and ∂
∂θL for GP hyperparameter

optimization.4 Our algorithms are similar to those presented in prior work by Gardner et
al. [3], Cutajar et al. [112], and Ubaru, Chen, and Saad [138], yet crucially they leverage
preconditioning for faster CG convergence and variance reduction of the log-determinant estimate
and its derivative. In the following, CG(K̂,y, P̂ , i) denotes a CG solve of K̂v∗ = y with
preconditioner P̂ run for i iterations. Here, we equivalently use CG instead of Lanczos, as
suggested by Gardner et al. [3].

Algorithm 3: log-Marginal Likelihood

Input: Targets y, kernel matrix K̂, preconditioner P̂ , # of random vectors ℓ, CG iterations i
Output: Estimate of log-marginal likelihood L(θ)

1 procedure LOGMARGLIKELIHOOD(y, K̂, P̂ , ℓ, i)
2 vi ← CG(K̂,y, P̂ , i) ▷ Approximate representer weights.
3 τ logP̂ ← log det(P̂) ▷ Log-determinant of the preconditioner.
4 for j = 1, . . . , ℓ do ▷ Loop is embarrassingly parallel.
5 zj ← z̃j/∥z̃j∥2 for rand. vector z̃j ▷ Sample random vector and normalize.
6 T ← CG(K̂, zj , P̂ , i) ▷ Run Lanczos process (equivalent to CG).
7 [W ,λ]← EIGENDECOMP(T) ▷ Since T is tridiagonal, eigendecomp. costs O(i2).
8 ωk ← (e⊺1wk)

2 for k = 0, . . . , i ▷ Compute quadrature weights.
9 γj ←

∑i
k=0 ωk log(λk) ▷ Quadrature estimate of quadratic form z⊺

j ∆logzj

10 τ log∗ ← τ logP̂ + n
ℓ

∑ℓ
j=1 γj ▷ Variance-reduced log-determinant estimate.

11 return − 1
2 (y

⊺vi + τ log∗ + n log(2π)) ▷ Estimate of log-marginal likelihood L(θ).

4While presented sequentially for clarity, in practice one would pre-sample all random vectors and run a single call
of (parallelized) CG with multiple right-hand sides, as in Gardner et al. [3] since the loops are embarrassingly
parallel.

68

4.4 Efficient GP Hyperparameter Optimization

Algorithm 4: Derivative of the log-Marginal Likelihood

Input: Targets y, kernel matrix K̂, preconditioner P̂ , kernel matrix derivative ∂K̂
∂θ , preconditioner

derivative ∂P̂
∂θ , # of random vectors ℓ, CG iterations i

Output: Estimate of derivative of the log-marginal likelihood ∂
∂θL(θ)

1 procedure DERIVATIVE(y, K̂, ∂K̂∂θ , P̂ ,
∂P̂
∂θ , ℓ, i)

2 vi ← CG(K̂,y, P̂ , i) ▷ Approximate representer weights.
3 τ inv∂P̂ ← tr(P̂−1 ∂P̂

∂θ) ▷ Preconditioner estimate of tr(K̂−1 ∂K̂
∂θ).

4 for j = 1, . . . , ℓ do ▷ Loop is embarrassingly parallel.
5 zj ← z̃j/∥z̃j∥2 for rand. vector z̃j ▷ Sample random vector and normalize.
6 wj ← CG(K̂, ∂K̂∂θ zj , P̂ , i) ▷ CG estimate of K̂−1 ∂K̂

∂θ zj

7 w̃j ← P̂−1 ∂P̂
∂θ zj ▷ Preconditioner estimate of K̂−1 ∂K̂

∂θ zj
8 γj ← z⊺

j (wj−w̃j) ▷ Estimate of quadratic form z⊺
j ∆inv∂zj .

9 τ inv∂∗ ← τ inv∂P̂ + n
ℓ

∑ℓ
j=1 γj ▷ Variance-reduced estimate of tr(K̂−1 ∂K̂

∂θ).

10 return 1
2 (v

⊺
i
∂K̂
∂θ vi − τ inv∂∗) ▷ Estimate of derivative ∂

∂θL(θ).

Computational Complexity Algorithm 3 has complexity O(n2iℓ+ clog det) and Algorithm 4
has complexity O((n2i+ csolve)ℓ+ ctr inv∂), where c(·) denotes the cost of an operation with the
preconditioner.5 Assuming i, ℓ≪ n, this is asymptotically faster than Cholesky-based inference
with complexity O(n3). Due to the reduction to matrix-vector multiplication, if v 7→ K̂v is
more efficient than O(n2) (e.g. for structured or sparse matrices) the complexity reduces further.
Finally, the for-loops are embarrassingly parallel, giving additional speedup in practice.

4.4.5 Related Work

Krylov methods have been used for GP inference since the work of Gibbs [110]. While these
methods were primarily relegated to structured GPs that afford fast matrix-vector products [92,
118, 151], they have seen growing use as a general purpose method, especially when coupled
with specialized, parallel hardware [3, 111, 113, 114, 137]. Preconditioners can be used to
accelerate and stabilize the necessary linear solves with the kernel matrix [112, 152–155]. To
compute the log-determinant of the kernel matrix, some recent works propose variance-free (but
biased) estimates [e.g. 114], though many works compute this term by combining STE [140,
141, 145, 156] with SLQ [3, 138, 139, 142, 157]. Our work builds on ideas for variance-reduced
stochastic trace estimation [143, 144, 146, 147], but, by leveraging preconditioning, requires
significantly fewer random vectors than existing approaches. When applied to GP hyperparameter
optimization, we obtain stronger theoretical guarantees for the forward pass than previously
known [138] and novel guarantees for the backward pass. Finally, our results on preconditioners
for kernel matrices (Table 4.1) give a rigorous foundation to their use for GPs as proposed by
Cutajar et al. [112] and others.

5For diagonal-plus-low-rank preconditioners, such as the partial Cholesky, csolve, clog det, and ctr inv∂ are in O(nℓ2)
by the matrix inversion and determinant lemmas.

69

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

4.5 Experiments
We validate our theoretical findings empirically via GP hyperparameter optimization on synthetic
and benchmark datasets with and without preconditioning. We find that

(a) preconditioning reduces bias and variance in the forward and backward pass, resulting in
(b) better search directions and fewer likelihood and gradient evaluations for the line search.

This allows the use of rapidly converging optimizers, and accelerates training significantly.

Experimental Setup We consider a one-dimensional synthetic dataset of n = 1,000 iid stan-
dard normal samples, as well as a range of UCI datasets [135] with training set sizes ranging
from n = 12,449 to 326,155 (see Table 4.2). All experiments were performed on single NVIDIA
GPUs, a GeForce RTX 2080 and Titan RTX, respectively. We perform GP regression using an
RBF and Matérn(32) kernel with output scale o, lengthscales lj – one per input dimension – and
noise σ2. Hyperparameters were optimized with L-BFGS using an Armijo-Wolfe line search and
early stopping via a validation set. We use a partial Cholesky preconditioner throughout. An
implementation of our method is available as part of GPYTORCH [3] at:

GPYTORCH https://github.com/cornellius-gp/gpytorch

10−7
10−6
10−5
10−4

R
el

.E
rr

or

L

22 24 26

Samples `

10−11
10−9
10−7
10−5

V
ar

ia
nc

e

10−7

10−5

10−3

10−1

∂L/∂o

22 24 26

Samples `

10−11
10−9
10−7
10−5

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2)

22 24 26

Samples `

Figure 4.3: Bias and variance of the estimators for the log-marginal likelihood L and its deriva-
tives. The relative error and variance decrease faster with the number of random vectors ℓ when
using a preconditioner P̂ ℓ. The decrease rate O(ℓ− 1

2 g(ℓ)), determined by the preconditioner,
significantly improves upon the standard Hutchinson’s rate O(ℓ− 1

2).

Preconditioning reduces bias & variance in L and ∂
∂θL Figure 4.3 shows the relative error

of the marginal log-likelihood and its derivatives on synthetic data. Already for ℓ ≥ 16 random
samples bias and variance are reduced by several orders of magnitude. We observe an exponential
decrease and then a return to the standard Hutchinson’s rate of O(ℓ− 1

2). After ℓ = 16 iterations

70

https://github.com/cornellius-gp/gpytorch

4.5 Experiments

the algorithm computing the preconditioner has reached a specified tolerance and terminates,
invalidating the approximation quality assumption (4.6) for ℓ > 16. Similar observations hold for
the Matérn and RatQuad kernel (see Table C.1 and Figure C.1). As predicted by Theorem 4.1
and illustrated by Figure 4.3, the variance reduction is determined by the preconditioner. For
higher dimensions, the rate g(ℓ) slows (see Table 4.1), which in turn reduces the bias and variance
reduction via our method (see Table C.1). However, on real datasets, we still see strong variance
reduction via our method, possibly since real data often lies on a low-dimensional manifold.

0 5 10 15

Optimizer step

0

50

100

150

#
ev

al
s

of
L

Precond. Qual.
0
200
500

(a) Objective eval. during line search on “Protein”.

0 5 10 15

Optimizer step

20

40

60

80

#
ev

al
s

of
∂
L

Precond. Qual.
0
200
500

(b) Gradient eval. during line search on “Protein”.

0 5 10 15

Optimizer step

0.90

0.95

1.00

1.05

−
L Precond. Qual.

0
200
500

(c) Training loss for “Protein”.

Elevators Bike
Kin40k

Protein
KEGGdir

3DRoad

smaller n ← Dataset → larger n

1×

2×

4×

8×

16×

Sp
ee

du
p

Standard
Precond.

(d) Speedup on UCI datasets.

Figure 4.4: Preconditioning reduces noise and in turn accelerates hyperparameter optimization.
Variance reduction improves optimization via better search directions and fewer evaluations of
(a) the optimization objective L and (b) the gradient ∂

∂θj
L for the line search. (c) Training loss

decreases with preconditioner quality, as shown for the “Protein” dataset. (d) The reduction
in loss and gradient evaluations and of noise in the gradients results in an order of magnitude
speedup on UCI datasets.

Preconditioning accelerates hyperparameter optimization On datasets from the UCI repos-
itory, we find that preconditioning results in lower training loss−L(θ) (illustrated in Figure 4.4(c))
on almost all datasets and essentially identical generalization error (see Table 4.2). Reducing
stochasticity via preconditioning significantly lowers the number of L and ∂

∂θL evaluations for
the line search during optimization (see Figures 4.4(a) and 4.4(b)) and results in less noisy search
directions. In fact, the noise in the loss and gradients caused by stochastic trace estimation

71

Chapter 4 Preconditioning for Scalable GP Hyperparameter Optimization

previously necessitated the use of slower converging, but more noise-robust optimizers [113],
such as Adam [158]. As these experiments show, our variance-reduced estimators make the use
of L-BFGS possible, which significantly outperforms Adam (c.f. Table 4.2 and Table C.3). These
combined effects are due to preconditioning accelerate training up to twelvefold, as Figure 4.4(d)
shows. We observe that the speedup increases with the size of the dataset. This is partly explained
by the amortizing cost of computing and applying the preconditioner with increasing n.

Table 4.2: Hyperparameter optimization on UCI datasets. GP regression using a Matérn(32) kernel
and partial Cholesky preconditioner of size 500 with ℓ = 50 random samples. Hyperparameters
were optimized with L-BFGS for at most 20 steps using early stopping. All results, but “3DRoad”,
are averaged over 10 runs. Differences larger than one standard deviation are in bold font.

Dataset n d −Ltrain ↓ −Ltest ↓ RMSE ↓ Runtime
Basic Precon. Basic Precon. Basic Precon. Basic Precon.

Elevators 12 449 18 0.465 0.438 0.402 0.402 0.348 0.348 53.0s 39.2s
Bike 13 034 17 −0.998 −0.999 −0.993 −0.988 0.045 0.045 30.6s 37.1s
Kin40k 30 000 8 −0.334 −0.433 −0.314 −0.314 0.093 0.095 3.1m 44.6s
Protein 34 297 9 0.996 0.927 0.887 0.884 0.572 0.558 14.9m 42.5s
KEGGdir 36 620 20 −0.950 −1.004 −0.946 −0.949 0.086 0.086 24.2m 2.9m
3DRoad 326 155 3 0.773 0.128 1.436 1.169 0.298 0.127 22.8h 2.0h

4.6 Conclusion
When interpreting structural knowledge about the kernel matrix as a form of prior information for
a numerical method, one might reasonably hope that it can be leveraged to accelerate Gaussian
process hyperparameter optimization. Preconditioning is a way to encode and exploit such
structure. As we showed, it can be used to great effect – not only for the solution of linear systems
– but importantly also for stochastic approximation of the log-determinant and its derivative.
Our convergence results combined with the rates for kernel-preconditioner pairs in Table 4.1
rigorously explain why preconditioning has been observed empirically to be so effective for
large-scale GP inference [3, 112, 113]. Our work implies that software packages for Gaussian
processes, which make use of Krylov methods for inference, should not use a fixed preconditioner.
Instead, the preconditioner should be automatically chosen based on the specified model. While
we derive a range of such kernel and preconditioner combinations, better preconditioners likely
exist for certain kernels or types of data. Other scientific fields invest substantial research effort
into the design of preconditioners, e.g. for PDEs [159]. Our work strongly suggests that, similarly,
developing specialized preconditioners is a promising approach to accelerate and scale Gaussian
processes.

72

Chapter

5

Conclusion

5.1 Summary . 73
5.2 Future Research . 74

Modern decision-making systems rely on accurate machine learning models, which quantify their
inherent uncertainty. In practice, the performance and reliability of such models are not only
dictated by data but also by computational resources. It is therefore essential to develop efficient
numerical approximations and to account for their inherent impact on a model’s predictions.

5.1 Summary
This thesis presents new techniques in probabilistic numerical linear algebra that are tailored to the
numerical tasks that arise in probabilistic machine learning. When applied to Gaussian processes,
the proposed algorithms automatically exploit structure in the model to accelerate inference,
as well as hyperparameter optimization, and importantly can propagate their approximation
error back to the model. This enables exact uncertainty quantification that not only integrates
the uncertainty from observing limited data but also the uncertainty from performing only a
limited amount of computation. All proposed algorithms reduce to the fundamental primitive of
matrix-vector multiplication, which makes them both generally applicable and uniquely suited to
modern parallel hardware such as GPUs. As a result of this work, Gaussian processes can scale
to larger datasets without compromising their ability to quantify uncertainty – a fundamental
prerequisite for optimal decision-making.

Software The methods developed in this thesis are not only of theoretical interest but have also
directly influenced the open-source software landscape attesting to their practical relevance. Our
work on probabilistic linear solvers has led to the creation of the first comprehensive software
package for probabilistic numerical methods, a crucial step towards their wider adoption [55].
Moreover, our novel approach to accelerate Gaussian process hyperparameter optimization via

73

Chapter 5 Conclusion

preconditioning [4] now defines the default large-scale training procedure in GPyTorch, the most
widely used Python library for Gaussian processes [3].

5.2 Future Research
The methodological developments in probabilistic numerical linear algebra presented in this
thesis open up several promising research directions. In particular, whenever a Gaussian process
model is employed for an a priori known downstream task, the proposed approximation methods
can be explicitly tailored toward it. This potentially enables significant speedup by trading off
increased uncertainty for computational efficiency, with little impact on the downstream task.
Such approaches could be particularly beneficial in research areas such as Bayesian optimization,
active learning, Bayesian deep learning and the data-driven solution of differential equations.

Prior Knowledge and Policy Design The design of specialized preconditioners for commonly
used kernels is a direct avenue for future work. Once implemented in a software library, these
can programmatically be selected based on a user’s model specification and then directly serve
as prior knowledge for a probabilistic linear solver, accelerating its convergence. Similarly, the
policy of a probabilistic linear solver opens up a vast design space, that so far has been left
largely unexplored. Current solver policies are mostly inspired by classic linear solvers, which
are designed to solve generic linear systems. Instead, specialized policies which are informed
by a downstream task promise to enable significant computational speedup. For example, in
Gaussian process hyperparameter optimization, we not only need to solve a linear system but also
estimate a log-determinant, which is not reflected in a generic policy. Other examples include
Bayesian optimization and active learning, where the goal is not to globally learn the latent
function, but only in specific regions of the input space. Policies exploiting the trade-off between
enhanced precision in regions of interest and increased uncertainty elsewhere to achieve superior
computational efficiency represent an exciting line of future research.

Non-Gaussianity and Bayesian Deep Learning Current probabilistic linear solvers funda-
mentally rely on the fact that Gaussians are closed under conditioning on linear observations.
While many numerical methods trace back to the primitive of matrix-vector multiplication, there
are often non-linear transformations that invalidate the assumption of Gaussianity. This raises
the question of whether one can design similar algorithms quantifying computational uncertainty
under the assumption of non-Gaussian likelihoods, or even for generic Bayesian inference with a
potentially different computational primitive than matrix-vector multiplication. An application for
which an extension of IterGP to non-Gaussian likelihoods would directly be useful is Bayesian
deep learning. Performing a Laplace approximation to equip a neural network with uncertainty
quantification posthoc can equivalently be viewed as a Gaussian process model with a prior
defined via the neural tangent kernel [160]. Therefore efficient, computation-aware, inference
methods for Gaussian process classification directly translate into efficient numerical methods
for Bayesian deep learning. This is particularly useful since Gaussian process inference scales
with the size of the dataset, rather than with the dimension of the parameter space which is
considerably larger for overparametrized networks.

74

5.2 Future Research

Differential Equations and Dynamical Systems Ordinary and partial differential equations
are important mechanistic models in the physical sciences that often describe dynamical systems.
Differential equations are typically solved via discretization which gives rise to (sequences
of) linear systems with characteristic structure. As demonstrated by Pförtner et al. [46] the
ideas presented in this work readily extend to the design of computation-aware solvers for
differential equations. In the PDE setting scaling considerations are particularly important since
an accurate simulation requires high-fidelity discretizations resulting in systems that easily reach
hundreds of thousands of dimensions. If a differential equation describes a dynamical system,
time discretization often results in sequences of linear systems with closely related system
matrices or right-hand sides. Finding a way to adaptively recycle computation between time
steps by appropriately updating a belief is an exciting direction for future research, that promises
significant computational savings as well as accurate error quantification. Such an approach could
be applied to discrete gradient flow approximations, to computation-aware sequence modeling or
to efficiently solve spatio-temporal partial differential equations.

75

Appendix

A

Appendix of Chapter 2

A.1 Probabilistic Linear Solvers . 77
A.1.1 Matrix-variate Prior Construction . 77
A.1.2 Stopping Criteria . 78
A.1.3 Low-rank Updates to Cholesky Factorizations 79

A.2 Theoretical Properties . 80
A.2.1 Conjugate Directions Method . 80
A.2.2 Relationship to the Conjugate Gradient Method 81

A.3 Prior Covariance Class . 82
A.3.1 Hereditary Positive-Definiteness . 82
A.3.2 Posterior Correspondence . 83

A.1 Probabilistic Linear Solvers
A.1.1 Matrix-variate Prior Construction

From a practical point of view, it is important to be able to construct a prior for A and H from an
initial guess x0 for the solution. This reduces down to finding A0 and H0 symmetric positive
definite, such that A0 = H−1

0 and x0 = H0b for the covariance class derived in Section 2.3. We
provide a computationally efficient construction of such a prior here.

Proposition A.1
Let x0 ∈ Rn and b ∈ Rn \ {0}. Assume x⊺

0b > 0, then for α < b⊺x0
b⊺b ,

H0 = αI +
1

(x0 − αb)⊺b
(x0 − αb)(x0 − αb)⊺

77

Appendix A Appendix of Chapter 2

is symmetric positive definite and H0b = x0. Further, it holds that

A0 = H−1
0 = α−1I − α−1

(x0 − αb)⊺x0
(x0 − αb)(x0 − αb)⊺.

If x⊺
0b < 0 or x⊺

0b = 0, then for x1 = −x0 or x1 = b⊺b
b⊺Abb respectively, it holds that

∥x1 − x∗∥2A < ∥x0 − x∗∥2A, i.e. x1 is a strictly better initialization than x0.

Proof. Let H0 as above. Then H0b = αb+ x0 − αb = x0. The second term of the sum in the
form of H0 is of rank 1. Its non-zero eigenvalue is given by

λ =
1

(x0 − αb)⊺b
(x0 − αb)⊺(x0 − αb) =

1

x⊺
0b− αb⊺b

∥x0 − αb∥22 ≥ 0

since by assumption x⊺
0b > 0 and α < b⊺x0

b⊺b . Now by Weyl’s theorem it holds that λmin(A) +
λmin(E) ≤ λmin(A+E) and therefore H0 is positive definite. By the matrix inversion lemma
we have for γ = α−1

(x0−αb)⊺b that

A0 = H−1
0 = α−1(I − γ

1 + γ∥x0 − αb∥22
(x0 − αb)(x0 − αb)⊺)

= α−1I − α−2

(x0 − αb)⊺b+ α−1∥x0 − αb∥22
(x0 − αb)(x0 − αb)⊺

= α−1I − α−1

(x0 − αb)⊺x0
(x0 − αb)(x0 − αb)⊺.

Finally, we obtain

∥x0 − x∗∥2A = (x0 −A−1b)⊺A(x0 −A−1b) = x⊺
0Ax0 + b⊺A−1b− 2b⊺x0.

Therefore if either x⊺
0b < 0 or x⊺

0b = 0, then x1 = −x0 or x1 =
b⊺b
b⊺Abb, respectively are closer

to x∗ in A norm by positive definiteness of A. This concludes the proof.

A.1.2 Stopping Criteria

In addition to the classic stopping criteria ∥b−Axi∥2 ≤ max(δrtol∥b∥2, δatol) it is natural from
a probabilistic viewpoint to use the induced posterior covariance of x. Let M ∈ Rn×n

sym be a
positive-definite matrix, then by linearity and the cyclic property of the trace it holds that

Ex∗
(
∥x∗ − E(x)∥2M

)
= Ex∗((x∗ − E(x))⊺M(x∗ − E(x)))
= tr(Ex∗((x∗ − E(x))⊺M(x∗ − E(x))))
= Ex∗(tr((x∗ − E(x))⊺M(x∗ − Ex())))

= Ex∗(M tr((x∗ − E(x))(x∗ − E(x))⊺))
= tr(M Ex∗((x∗ − E(x))(x∗ − E(x))⊺))

78

A.1 Probabilistic Linear Solvers

= tr(M(Cov(x∗ − E(x)) + (Ex∗(x∗)− E(x))(Ex∗(x∗)− E(x))⊺))
= tr(M Cov(x∗)) + ∥Ex∗(x∗)− E(x)∥2M .

Assuming calibration holds, i.e. x∗ ∼ N (E(x) ,Cov(x)), we can bound the (relative) error
by terminating when tr(M Cov(x)) ≤ max(δrtol∥b∥, δatol) either in l2-norm for M = I or in
A-norm for M = A.

We can efficiently evaluate the required tr(M Cov(x)) without ever forming Cov(x) in memory
from already computed quantities. At iteration i we have

Cov(x) = Cov(Hb) =
1

2
(WH

i (b⊺WH
i b) + (WH

i b)(WH
i b)⊺)

and therefore

tr(M Cov(x)) =
1

2

(
(b⊺WH

i b) tr(MWH
i) + (WH

i b)⊺M(WH
i b)

)
.

Given the update for the covariance of the inverse view, we obtain the following recursion for its
trace

tr(MWH
i) = tr(MWH

k−1)−
1

y⊺
i W

H
k−1yi

tr((WH
k−1yi)

⊺M(WH
k−1yi)).

Computing the trace in this iterative fashion adds at most three matrix-vector products and
three inner products for arbitrary M all other quantities are computed for the covariance update
anyhow. For our proposed covariance class (2.5) we obtain for M = I , Ψ = ψI and PY ⊥ =
I − Y (Y ⊺Y)−1Y ⊺ that

tr(WH
0) = tr(A−1

0 Y (Y ⊺A−1
0 Y)−1Y ⊺A−1

0 + PY ⊥ΨPY ⊥)

= tr((Y ⊺A−1
0 Y)−1Y ⊺A−1

0 A−1
0 Y) + ψ tr(PY ⊥PY ⊥)

= tr((Y ⊺A−1
0 Y)−1Y ⊺A−1

0 A−1
0 Y) + ψ tr(PY ⊥)

= tr((Y ⊺A−1
0 Y)−1Y ⊺A−1

0 A−1
0 Y) + ψ(n− i),

which for a scalar prior mean A0 = αI reduces to tr(WH
0) = α−1i+ ψ(n− i).

A.1.3 Low-rank Updates to Cholesky Factorizations

In order to maintain numerical stability when performing low-rank updates to symmetric positive
definite matrices, as is the case in Algorithm 1 for the mean and covariance estimates, it is
advantageous to use a representation based on the Cholesky decomposition. One can perform the
rank-2 update for the mean estimate and the rank-1 downdate for the covariance in Section 2.2.1
in each iteration of the algorithm for their respective Cholesky factors instead (see also Seeger
[74]). The rank-2 update can be seen as a combination of a rank-1 up- and downdate since

uv⊺ + vu⊺ =
1

2
((u+ v)(u+ v)⊺ − (u− v)(u− v)⊺).

Similar updates arise in Quasi-Newton methods for the approximate (inverse) Hessian [65].
Having Cholesky factors of the covariance available has the additional advantage that downstream
sampling or the evaluation of the probability density function is computationally cheap.

79

Appendix A Appendix of Chapter 2

A.2 Theoretical Properties
In this section, we provide detailed proofs for the theoretical results on convergence and the
connection of Algorithm 1 to the method of conjugate gradients. We restate each theorem here as
a reference to the reader. We begin by proving an intermediate result giving an interpretation to
the posterior mean of A and H at each step of the method.

Proposition A.2 (Subspace Equivalency)
Let Ai and Hi be the posterior means defined as in Section 2.2.1 and assume A0 and H0

are symmetric. Then for 1 ≤ i ≤ n it holds that

AiS = Y and HiY = S, (A.1)

i.e. Ai and Hi act like A and A−1 on the spaces spanned by the actions S, respectively
the observations Y .

Proof. Since A0 and H0 are symmetric so are the expressions ∆AS and ∆⊺
HY . We have that

AiS = (A0 +∆AU⊺
A +UA∆⊺

A −UAS⊺∆AU⊺
A)S

= A0S +∆AI +UA∆⊺
AS −UAS⊺∆AI

= A0S + Y −A0S

= Y .

In the case of the inverse model we obtain

HiY = (H0 +∆HU⊺
H +UH∆⊺

H −UHY ⊺∆HU⊺
H)Y

= H0Y +∆HI +UH∆⊺
HY −UHY ⊺∆HI

= H0Y + S −H0Y

= S.

A.2.1 Conjugate Directions Method

Theorem 2.1 (Conjugate Directions Method)
Given a prior p(H) = N

(
H;H0,W

H
0 �� WH

0

)
such that H0,W

H
0 ∈ Rn×n

sym are positive
definite, then the actions si of Algorithm 1 are A-conjugate, i.e. it holds that

s⊺jAsk = 0

for all 0 ≤ j ̸= k ≤ i.

80

A.2 Theoretical Properties

Proof. Since H0 is assumed to be symmetric, the form of the posterior mean in Section 2.2.1
implies that Hi is symmetric for all 1 ≤ i ≤ n. We will show conjugacy is by induction. To that
end, consider the base case i = 2. We have

s⊺2As1 = r⊺1H1As1

= (r⊺0 − α1y
⊺
1)H1As1

=

(
r⊺0H1 −

s⊺1r0
s⊺1y1

y⊺
1H1

)
y1

= r⊺0s1 − s⊺1r0 = 0

where we used (A.1) and the definition of αj in Algorithm 1. Now for the induction step, assume
that s⊺jAsk = 0 for all j ̸= k such that 1 ≤ j, k ≤ i. We obtain for 1 ≤ j ≤ i that

s⊺i+1Asj = r⊺i HiAsj

=

(
r0 −

i∑
ℓ=1

αℓyℓ

)⊺

Hiyj

= r⊺0sj −
i∑

ℓ=1

αℓy
⊺
ℓ sj

= r⊺0sj − αjy
⊺
j sj

= r⊺0sj − s⊺jrj−1

= r⊺0sj − s⊺j

(j−1∑
ℓ=1

r0 − αℓyℓ

)
= r⊺0sj − s⊺jr0 = 0

where we used the update equation of the residual rj in Algorithm 1, the definition of αj , the
induction hypothesis and (A.1). This proves the statement.

A.2.2 Relationship to the Conjugate Gradient Method

Theorem 2.2 (Connection to the Conjugate Gradient Method)
Given a scalar prior mean A0 = H−1

0 = αI with α > 0, assume (2.3) and (2.4) hold, then
the iterates xi of Algorithm 1 are identical to the ones produced by the conjugate gradient
method.

Proof. The proof outlined here is closely related to the proofs connecting Quasi-Newton meth-
ods to the conjugate gradient method [66, 161], but makes different assumptions on the prior
distribution.

We begin by recognizing that the choice of step length αi in Algorithm 1 is identical to the one
in the conjugate gradient method [65]. Hence, it suffices to show that si ∝ sCG

i . Theorem 2.1

81

Appendix A Appendix of Chapter 2

established that Algorithm 1 is a conjugate directions method. Now by assumption A0 = αI and
H0 = A−1

0 , therefore s1 = αIr0 ∝ r0 = sCG
1 . It suffices show that si lies in the Krylov space

Ki(A, r0) = {r0,Ar0, . . . ,A
i−1r0} for all 0 < i ≤ n. This completes the argument, since

Ki(A, r0) is an i-dimensional subspace of Rn and thus A-conjugacy uniquely determines the
search directions up to scaling, as A is positive definite.

To complete the proof we proceed as follows. The posterior mean of the inverse model Hi−1 at
step i− 1 maps an arbitrary vector v ∈ Rn to span(H0v,H0Y1:i−1,S1:i−1,W

H
0 Y1:i−1). This

follows directly from its form in given in Section 2.2.1. By assumption H0 = A−1
0 = α−1I ,

therefore using (2.3) and (2.4) we have span(WH
0 Y1:i−1) = span(Y1:i−1). This implies Hi−1

maps to span(v,S1:i−1,Y1:i−1) and thus si ∈ span(ri−1,S1:i−1,Y1:i−1). We will now show
that span(ri−1,S1:i−1,Y1:i−1) ⊂ Ki(A, r0) by induction, completing the argument.

We begin with the base case. Since H0 is assumed to be scalar, we have s1 ∝ r0 ∈ K0(A, r0)
and therefore y1 = As1 and r1 = r0 − α1y1 are in K1(A, r0). For the induction step assume
span(ri−1,S1:i−1,Y1:i−1) ⊂ Ki(A, r0). The definition of the policy of Algorithm 1 gives

si = −E(H) ri−1 ∝Hi−1ri−1 ∈ span(ri−1,S1:i−1,Y1:i−1) ⊂ Ki(A, r0),

where we used the induction hypothesis. This implies that yi = Asi ∈ Ki+1(A, r0) and ri =
ri−1−αiyi ∈ Ki+1(A, r0) by the definition of the Krylov space. Therefore, span(ri,S1:i,Y1:i) ⊂
Ki+1(A, r0). This completes the proof.

A.3 Prior Covariance Class
A.3.1 Hereditary Positive-Definiteness

Proposition 2.1 (Hereditary Positive Definiteness [70, 81])
Let A0 ∈ Rn×n

sym be positive definite. Assume the actions S are A-conjugate and WA
0 S =

Y , then Ai is symmetric positive definite.

Proof. This is shown in Hennig and Kiefel [70]. We give an identical proof in our notation as a
reference to the reader. By Theorem 7.5 in Dennis and Moré [81] it holds that if Ai is positive
definite and s⊺i+1W

A
i si+1 ̸= 0, then Ai+1 is positive definite if and only if det(Ai+1) > 0. By

the matrix determinant lemma and the recursive formulation of the posterior we have

det(Ai+1) = det(Ai)

(
1

(s⊺i+1W
A
i si+1)2

(
(y⊺

i+1A
−1
i WA

i si+1)
2 − (y⊺

i+1A
−1
i yi+1)

· (s⊺i+1W
A
i A−1

i WA
i si+1) + (s⊺i+1W

A
i A−1

i WA
i si+1)(y

⊺
i+1si+1)

))
Hence it suffices to show that

0 < (y⊺
i+1A

−1
i WA

i si+1)
2 − (y⊺

i+1A
−1
i yi+1)(s

⊺
i+1W

A
i A−1

i WA
i si+1)

82

A.3 Prior Covariance Class

+ (s⊺i+1W
A
i A−1

i WA
i si+1)(y

⊺
i+1si+1),

which simplifies to

y⊺
i+1A

−1
i yi+1 −

(y⊺
i+1A

−1
i WA

i si+1)
2

s⊺i+1W
A
i A−1

i WA
i si+1

< y⊺
i+1si+1

Now by WA
0 S = Y , we have WA

i si+1 = WA
0 si+1 = yi+1 and the above reduces to

0 < s⊺i+1Asi+1,

which is fulfilled by the assumption that A is positive definite. Thus Ai+1 is positive definite.
Symmetry follows immediately from the form of the posterior mean.

A.3.2 Posterior Correspondence

Definition 2.1
Let Ai and Hi be the means of A and H at step i. We say a prior induces posterior
correspondence if

A−1
i = Hi (2.1)

for all steps i of the solver. If only

A−1
i Y = HiY , (2.2)

we say that weak posterior correspondence holds.

Matrix-variate Normal Prior

We begin by establishing posterior correspondence in the case of general matrix-variate normal
priors. We first prove a general non-constructive condition and close with a sufficient condition
for correspondence which limits the possible choices of covariance factors to a specific class.

Lemma A.1 (General Correspondence)
Let 1 ≤ i ≤ n, WA

0 ,W
H
0 symmetric positive-definite and assume A−1

0 = H0, then (2.1)
holds if and only if

0 = (AS−A0S)
[
(S⊺WA

0 A−1
0 AS)−1S⊺WA

0 A−1
0 − (S⊺A⊺WH

0 AS)−1S⊺A⊺WH
0

]
.

Proof. By the matrix inversion lemma we have

0 = A−1
i −Hi

=
(
A0 + (Y −A0S)(S

⊺WA
0 S)−1S⊺WA

0

)−1

83

Appendix A Appendix of Chapter 2

−H0 − (S −H0Y)(Y ⊺WH
0 Y)−1Y ⊺WH

0

= A−1
0 −A−1

0 (Y −A0S)(S
⊺WA

0 S + S⊺WA
0 A−1

0 (Y −A0S))
−1S⊺WA

0 A−1
0

−A−1
0 −A−1

0 (A0S − Y)(Y ⊺WH
0 Y)−1Y ⊺WH

0

= −A−1
0 (Y −A0S)

[
(S⊺WA

0 A−1
0 Y)−1S⊺WA

0 A−1
0 − (Y ⊺WH

0 Y)−1Y ⊺WH
0

]
,

where we used the assumption H0 = A−1
0 . Left-multiplying with −A0 and using Y = AS

completes the proof.

Corollary A.1 (Correspondence at Convergence)
Let i = n, H0 = A−1

0 and assume S has full rank, i.e. the linear solver has performed n
linearly independent actions, then (2.1) holds for any symmetric positive-definite choice of
WA

0 and WH
0 .

Proof. By assumption, S⊺WA
0 A−1

0 and S⊺A⊺WH
0 are invertible. Then by Lemma A.1 the

correspondence condition (2.1) holds.

Theorem A.1 (Sufficient Condition for Correspondence)
Let 1 ≤ i ≤ n arbitrary and assume H0 = A−1

0 . Assume WA
0 ,A0,W

H
0 satisfy

0 = S⊺(WA
0 A−1

0 −A⊺WH
0) (A.2)

or equivalently let B⟨S⟩⊥ ∈ Rn×i be a basis of the orthogonal space ⟨S⟩⊥ spanned by the
actions. For Φ ∈ R(n−i)×n arbitrary, if

WH
0 = A−⊺(WA

0 A−1
0 −B⟨S⟩⊥Φ) (A.3)

and the commutation relations

[A0,A] = 0 (A.4)

[WA
0 ,A] = 0 (A.5)

[B⟨S⟩⊥Φ,A] = 0 (A.6)

are fulfilled, then WH
0 is symmetric and (2.1) holds.

Proof. By assumption WA
0 is symmetric positive-definite and (A.2) is equivalent to S⊺WA

0 A−1
0 =

S⊺A⊺WH
0 , which implies (A.1). Now, assumption (A.2) is equivalent to columns of the differ-

ence WA
0 A−1

0 −A⊺WH
0 lying in ⟨S⟩⊥, i.e. we can choose a basis B⟨S⟩⊥ and coefficient matrix

Φ such that
WA

0 A−1
0 −A⊺WH

0 = B⟨S⟩⊥Φ.

84

A.3 Prior Covariance Class

Rearranging the above gives (A.3). With the commutation relations and

[A,B] = 0 ⇐⇒ [A−1,B] = 0 ⇐⇒ [A,B−1] = 0 ⇐⇒ [A−1,B−1] = 0

it holds that

(WH
0)⊺ = WA

0 A−1
0 A−1 −B⟨S⟩⊥ΦA−1 = A−⊺WA

0 A−1
0 −A−⊺B⟨S⟩⊥Φ = WH

0

hence WH
0 is symmetric. Finally, by Lemma A.1 posterior mean correspondence (2.1) holds.

If we want to ensure correspondence for all iterations, (A.6) is trivially satisfied. The question
now becomes what form can A0 and WA

0 take in order to ensure symmetric WH
0 . This comes

down to finding matrices which commute with A.

Lemma A.2 (Commuting Matrices of a Symmetric Matrix)
Let r ∈ N, M ∈ Rn×n and A ∈ Rn×n symmetric. Assume M has the form

M = pr(A) =

r∑
i=0

ciA
i

for a set of coefficients ci ∈ R, then M and A commute. If A has n distinct eigenvalues,
M is diagonalizable and [M ,A] = 0, then

M = pn−1(A),

i.e. M is a polynomial in A of degree at most n− 1.

Proof. The first result follows immediately since

WA
0 A = pr(A)A =

r∑
i=0

ciA
i+1 = Apr(A) = AWA

0 .

Assume now that A has n distinct eigenvalues λ0, . . . , λn−1, M is diagonalizable and M and
A commute. Now, if and only if [A,M] = 0, then A and M are simultaneously diagonalizable
by Theorem 5.2 in Conrad [162], i.e. we can find a common basis in which both A and M are
represented by diagonal matrices. Hence, the set of matrices commuting with A forms an n-
dimensional subspace Un ⊂ Rn×n. Now, by the first part of this proof {I,A, . . . ,An−1} ⊂ Un.
It remains to be shown, that this set forms a basis of Un. By isomorphism of finite dimensional
vector spaces this is equivalent to proving that

{b0, b1, . . . , bn−1} :=


1

...
1

 ,

 λ0
...

λn−1

 , . . . ,

λ
n−1
0
...

λn−1
n−1




85

Appendix A Appendix of Chapter 2

forms a basis of Rn. It suffices to show that all bi are independent. Assume the contrary, then∑n−1
i=0 αibi = 0 for some α0, . . . , αn−1 ∈ R, such that not all αi = 0. This implies that the

polynomial
∑n−1

i=0 αix
i has n zeros λ0, . . . , λn−1. This contradicts the fundamental theorem of

algebra, concluding the proof.

The above suggests that tractable choices of A0 and WA
0 for the non-symmetric matrix-variate

prior, which imply symmetric WH
0 , are of polynomial form in A.

Example A.1 (Posterior Correspondence Covariance Class)
Tractable choices of the prior parameters in the A view, which satisfy posterior correspon-
dence and the commutation relations are for example

A0 = c0I and WA
0 =

n−1∑
j=1

cjA
j ,

where H0 = A−1
0 with cj ∈ R. Motivated by tr(A)

!
= tr(A0) an initial choice could be

c0 = n−1 tr(A).

In practice, we do not actually require WA
0 . We only ever need access to WA

0 S.

Symmetric Matrix-variate Normal Prior

We now turn to the symmetric model, which we assumed throughout Section 2.2. We prove
Theorem 2.3, the main result of this section demonstrating weak posterior correspondence for
the symmetric Kronecker covariance, by employing the matrix inversion lemma for the posterior
mean Ai.

Theorem 2.3 (Weak Posterior Correspondence)
Let WH

0 ∈ Rn×n
sym be positive definite. Assume H0 = A−1

0 , and WA
0 ,A0,W

H
0 satisfy

WA
0 S = Y , (2.3)

S⊺(WA
0 A−1

0 −AWH
0) = 0. (2.4)

Then weak posterior correspondence holds for the symmetric Kronecker covariance.

Proof. Without loss of generality S⊺AS = I , i.e. only the direction of the action matters in
Algorithm 1, not its magnitude. This can be seen from the forms of Ai and Hi in Section 2.2.1.
Any positive factor α > 0 of si cancels in the update expressions. We aim to show that
A−1

i Y = HiY . Expanding the right hand side we have using (A.1), that HiY = S. Then

86

A.3 Prior Covariance Class

by Lemma S3 and Lemma S6 of Wenger and Hennig [1] and S⊺AS = I , the left hand side
evaluates to

A−1
i Y = (A−1

0 − F)Y

= (A−1
0 −A−1

0 AS(I +Π)−1S⊺AA−1
0 + SS⊺)AS

= A−1
0 AS −A−1

0 AS + S

= S

= HiY .

This concludes the proof.

This theorem shows that for a certain choice of symmetric matrix-variate normal prior the
estimated inverse of the matrix Hi corresponds to the inverse of the estimated matrix A−1

i . It
also shows that both act like A−1 on the space spanned by Y , consistent with the interpretation
of them representing the best guess for the inverse A−1.

87

Appendix

B

Appendix of Chapter 3

B.1 Connections to Other GP Approximations . 89
B.1.1 Pivoted Cholesky Decomposition . 89
B.1.2 Singular / Eigenvalue Decomposition 91
B.1.3 Conjugate Gradient Method . 92
B.1.4 Inducing Point Methods . 95

B.2 Theoretical Results and Proofs . 96
B.2.1 Properties of Algorithm 1 . 96
B.2.2 Approximation of Representer Weights 102
B.2.3 Convergence Analysis of the Posterior Mean Approximation 102
B.2.4 Combined Uncertainty as Worst Case Error 104

B.3 Implementation of IterGP . 105
B.3.1 Policy Choice . 105
B.3.2 Stopping Criterion . 105
B.3.3 Efficient Sampling from the Combined Posterior 107

B.4 Additional Experimental Results . 108

B.1 Connections to Other GP Approximations
B.1.1 Pivoted Cholesky Decomposition

Theorem B.1 (Pivoted Cholesky Decomposition)
Let (ji)ni=1 be a set of indices defining the pivot elements of the pivoted Cholesky decom-
position and P ∈ Rn×n the corresponding permutation matrix. Assume the actions of

89

Appendix B Appendix of Chapter 3

Algorithm 2 are given by the standard unit vectors si = Pei = eji , i.e.

(si)j = (eji)j =

{
1 if j = ji

0 otherwise
. (B.1)

Then Algorithm 2 recovers the pivoted Cholesky decomposition, i.e. it holds for all i ∈
{0, . . . , n} that

P ⊺QiP = LiL
⊺
i , (B.2)

where Li ∈ Rn×i is the (partial) Cholesky factor of P ⊺K̂P as computed by Algorithm 5.

Proof. We proceed by induction. Assume (B.2) holds after i iterations of Algorithm 2. For
the base case i = 0, it holds by assumption that P ⊺Q0P = P ⊺K̂C0K̂P = 0. Now for the
induction step i→ i+ 1, we have

1

ηi+1
K̂did

⊺
i K̂ =

1

ηi+1
K̂ΣiK̂si+1s

⊺
i+1K̂ΣiK̂

=
1

ηi+1
K̂(Σ0 −Ci)K̂si+1s

⊺
i+1K̂(Σ0 −Ci)K̂

=
1

ηi+1
(K̂ −Qi)si+1s

⊺
i+1(K̂ −Qi)

IH
=

1

ηi+1
(K̂ − PLiL

⊺
iP

⊺)si+1s
⊺
i+1(K̂ − PLiL

⊺
iP

⊺)

=
(K̂ − PLiL

⊺
iP

⊺)Pei+1√
e⊺i+1P

⊺(K̂ − PLiL
⊺
iP

⊺)Pei+1

e⊺i+1P
⊺(K̂ − PLiL

⊺
iP

⊺)√
e⊺i+1P

⊺(K̂ − PLiL
⊺
iP

⊺)Pei+1

=
P (P ⊺K̂P −LiL

⊺
i)ei+1√

e⊺i+1(P
⊺K̂P −LiL

⊺
i)ei+1

e⊺i+1(P
⊺K̂P −LiL

⊺
i)P

⊺√
e⊺i+1(P

⊺K̂P −LiL
⊺
i)ei+1

= Pli+1l
⊺
i+1P

⊺.

where li+1 is given by Algorithm 5. Combining this with one more use of the induction hypothesis
we obtain

P ⊺Qi+1P = P ⊺QiP +
1

ηi+1
P ⊺K̂di+1d

⊺
i+1K̂P

= LiL
⊺
i + li+1l

⊺
i+1 =

(
Li li+1

)(L⊺
i

l⊺i+1

)
= Li+1L

⊺
i+1

This proves the claim.

90

B.1 Connections to Other GP Approximations

i = 1 ≈

i = 2 ≈

i = 3 ≈

P ⊺K̂P Li L⊺
i

Algorithm 5: (Pivoted) Cholesky Decomposition

Input: Kernel matrix K̂, permutation matrix P
Output: Triangular Li, s.t. LiL

⊺
i ≈ P ⊺K̂P

1 procedure CHOLESKY(K̂,P)
2 A← P ⊺K̂P

3 for i ∈ {1, . . . , n} do
4 li ← A:i/

√
Aii

5 A← A− lil
⊺
i= P ⊺K̂P −LiL

⊺
i

6 Li =
(
Li−1 li

)
7 return Li

Figure B.1: Cholesky decomposition. Every column added to the lower triangular Cholesky factor
L defines the ith “right angle ruler”-pattern in P ⊺K̂P . The bottom right matrix in gray given by
P ⊺K̂P −LiL

⊺
i = P ⊺K̂P −∑i

j=1 ljl
⊺
j changes every iteration.

B.1.2 Singular / Eigenvalue Decomposition

Theorem B.2 (Singular / Eigenvalue Decomposition)
Let the actions si = ui of Algorithm 2 be given by the eigenvectors ui of K̂ in arbitrary
order. Then for i ∈ {1, . . . , n} it holds that

Ci = UiΛ
−1
i U⊺

i = SVDi(K̂
−1)

Qi = UiΛiU
⊺
i = SVDi(K̂),

where U =
(
u1, . . . ,ui

)
∈ Rn×i and Λ = diag(λ1, . . . , λi) ∈ Ri×i is the diagonal matrix

of eigenvalues of K̂ with the order given by the order of the actions.

Proof. It holds by assumption and (B.21), that

Ci = Si(S
⊺
i K̂Si)

−1S⊺
i = Ui(U

⊺
i K̂Ui)

−1U⊺
i = UiΛ

−1
i U⊺

i ,

as well as

Qi = K̂CiK̂ = K̂UiΛ
−1
i U⊺

i K̂ = UiΛiΛ
−1
i ΛiU

⊺
i = UiΛiU

⊺
i

This proves the claim.

91

Appendix B Appendix of Chapter 3

B.1.3 Conjugate Gradient Method

Algorithm 6: Preconditioned Conjugate Gradient Method [71]

Input: Kernel matrix K̂, targets y, prior mean µ, preconditioner P̂
Output: Representer weights vi ≈ K̂−1(y − µ)

1 procedure CG(K̂,y − µ, P̂)
2 v0 ← 0

3 s0 ← 0

4 while ∥ri∥2 > max(δrtol∥y∥2, δatol) and i < imax do
5 ri−1 ← (y − µ)− K̂vi−1

6 si ← P̂−1ri−1 − (P̂−1ri−1)
⊺K̂si−1

s⊺i−1K̂si−1
si−1

7 vi ← vi−1 +
(P̂−1ri−1)

⊺ri−1

s⊺i K̂si
si

8 return vi

Theorem B.3 (Preconditioned Conjugate Gradient Method)
Let P̂ ∈ Rn×n be a symmetric positive definite preconditioner. Assume the actions of
Algorithm 2 are given by

sCG
1 = P̂−1r0

sCG
i = P̂−1ri−1 −

(P̂−1ri−1)
⊺K̂si−1

s⊺i−1K̂si−1
si−1

(B.3)

the preconditioned conjugate gradient method. Then Algorithm 2 recovers preconditioned
CG initialized at vCG

0 = 0, i.e. it holds for i ∈ {1, . . . , n} that

si = di = sCG
i (B.4)

vi = vCG
i (B.5)

ri−1 = rCG
i−1. (B.6)

Proof. By assumption si = sCG
i for all i. We prove the remaining claims by induction. For the

base case we have by assumption d0 = Σ0K̂s0 = s0 = sCG
0 and v0 = 0 = vCG

0 . Now for the
induction step i→ i+ 1 assume the hypotheses (B.4), (B.5) and (B.6) hold ∀j ≤ i. Using the
properties of CG it holds for j′ < i that

s⊺i K̂sj′ = 0 (B.7)

(P̂−1ri)
⊺sj′ = 0 (B.8)

(P̂−1ri)
⊺rj′ = 0 (B.9)

⟨s1, . . . , si⟩ = ⟨r0, P̂−1K̂r0, . . . , (P̂
−1K̂)i−1r0⟩ = ⟨P̂−1r0, . . . , P̂

−1ri−1⟩ (B.10)

92

B.1 Connections to Other GP Approximations

We now first show K̂-conjugacy of the actions in iteration i+ 1. We have for j ≤ i that

s⊺i+1K̂sj =
(
P̂−1ri −

(P̂−1ri)
⊺K̂si

s⊺i K̂si
si
)⊺
K̂sj

= (P̂−1ri)
⊺K̂sj −

(P̂−1ri)
⊺K̂si

s⊺i K̂si
s⊺i K̂sj

Now if j = i, clearly s⊺i+1K̂sj = s⊺i+1K̂si = 0. If j < i, we have using (B.10), that

P̂−1K̂sj ∈ ⟨P̂−1K̂r0, . . . , (P̂
−1K̂)jr0⟩ ⊂ ⟨P̂−1r0, . . . , P̂

−1rj⟩. (B.11)

Therefore we obtain for j < i, that

s⊺i+1K̂sj
(B.7)
= r⊺i P̂

−1K̂sj
(B.11)
= r⊺i

(j∑
ℓ=1

γℓP̂
−1rℓ

)
(B.9)
= 0. (B.12)

Thus in combination we have

∀j ∈ {1, . . . , i} : s⊺i+1K̂sj = 0. (B.13)

Now for the search direction we have

di+1 = ΣiK̂si+1 =

(
Σ0 −

i∑
j=1

djd
⊺
j

ηj

)
K̂si+1

= si+1 −
i∑

j=1

d⊺
jK̂si+1

ηj
dj

(B.4)
= si+1 −

i∑
j=1

s⊺jK̂si+1

ηj
dj

(B.13)
= si+1.

(B.14)

Further, we have for the solution estimate, that vi+1 = vi + di+1
αi+1

ηi+1
. It holds that

αi+1 = s⊺i+1ri =
(
P̂−1ri −

(P̂−1ri)
⊺K̂si

s⊺i K̂si
si
)⊺
ri

= (P̂−1ri)
⊺ri −

i∑
j=

cj(P̂
−1rj−1)

⊺ri
(B.9)
= (P̂−1ri)

⊺ri

as well as

ηi+1 = s⊺i+1K̂ΣiK̂si+1 = d⊺
i+1K̂si+1

(B.14)
= s⊺i+1K̂si+1

Combining the above and recalling Algorithm 6, we obtain

vi+1 = vi + di+1
αi+1

ηi+1
= vi + di+1

(P̂−1ri)
⊺ri

s⊺i+1K̂si+1
= vCG

i+1.

Finally, the residual is computed identically in Algorithm 2 as in Algorithm 6, giving

ri = (y − µ)− K̂vi = (y − µ)− K̂vCG
i = rCG

i .

This proves the claims.

93

Appendix B Appendix of Chapter 3

Corollary B.1 (Preconditioned Gradient Actions as CG Actions)
Choosing actions

si = P̂−1ri−1 (B.15)

in Theorem B.3 instead also reproduces the preconditioned conjugate gradient method, i.e.
it holds for i ∈ {1, . . . , n} that

di = sCG
i (B.16)

vi = vCG
i (B.17)

ri−1 = rCG
i−1. (B.18)

Proof. It suffices to show that di = sCG
i . The rest of the argument is then identical to the

proof of Theorem B.3. We prove the claim by induction. For the base case by assumption
s1 = P̂−1r0 = sCG

1 . Now for the induction step i→ i+ 1, assume that dj = sj for all j ≤ i,
then

di+1 = ΣiK̂P̂−1ri

= (I −CiK̂)P̂−1ri

= P̂−1ri −Di(D
⊺
i K̂Di)

−1D⊺
i K̂P̂−1ri By (B.21).

IH
= P̂−1ri − SCG

i ((SCG
i)⊺K̂SCG

i)−1(SCG
i)⊺K̂P̂−1ri

Now by the same argument as in (B.12) in the proof of Theorem B.3 we have for all j < i that
r⊺i P̂

−1K̂sCG
j = 0. Therefore

= P̂−1ri − sCG
i ((sCG

i)⊺K̂sCG
i)−1(sCG

i)⊺K̂P̂−1ri

= sCG
i+1 By (B.3).

This proves the claim.

Corollary B.2 (Deflated Conjugate Gradient Method)
Let the first 0 < ℓ < n actions (si)

ℓ
i=1 of Algorithm 2 be linearly independent and the

remaining ones be given by si = P̂−1ri, where P̂ ≈ K̂ is a preconditioner. Then
Algorithm 2 is equivalent to the preconditioned deflated CG algorithm [163, Alg. 3.6] with
deflation subspace span(Sℓ).

Proof. By the form of preconditioned deflated CG given in Algorithm 3.6 of Saad et al. [163]
and Corollary B.1, it suffices to show that the residual rℓ satisfies S⊺

ℓ rℓ = 0 and that for all i > ℓ,
it holds that

sdefCG
i = di = (I −Ci−1K̂)si.

94

B.1 Connections to Other GP Approximations

Now it holds by Lemma B.2 and (B.21), that

S⊺
ℓ rℓ = S⊺

ℓ (I − K̂Cℓ)(y − µ) = S⊺
ℓ (I − K̂Sℓ(S

⊺
ℓ K̂Sℓ)

−1S⊺
ℓ)

=0

(y − µ) = 0.

This proves the first claim. Now, by Saad et al. [163, Alg. 3.6], the search directions (sdefCG
i)ni=ℓ+1

of preconditioned deflated CG are given by

sdefCG
i = sCG

i − Sℓ(S
⊺
ℓ K̂Sℓ)

−1S⊺
ℓ K̂P̂−1ri

= (I −Cℓ+1:(i−1)K̂)si − Sℓ(S
⊺
ℓ K̂Sℓ)

−1S⊺
ℓ K̂P̂−1ri Corollary B.1

= (I −Cℓ+1:(i−1)K̂)si −CℓK̂si

= (I − (Cℓ+1:(i−1) −Cℓ)K̂)si

= (I −Ci−1K̂)si

= di

This proves the claim.

Remark B.1 (Preconditioning and Algorithm 2)
Iterative methods typically have convergence rates depending on the condition number
of the system matrix. One successful strategy in practice to accelerate convergence is to
use a preconditioner P̂ ≈ K̂ [65]. A preconditioner needs to be cheap to compute and
allow efficient matrix-vector multiplication v 7→ P̂−1v. Now, Algorithm 2 implicitly
constructs and applies a deflation-based preconditioner, which are defined via a deflation
subspace to be projected out [164]. In Algorithm 2 this is precisely the already explored
space span(Si) = span(Di) spanned by the actions. Therefore, if we run a mixed strategy,
meaning first choosing actions that define a certain subspace and then choose residual
actions, we recover the deflated conjugate gradient method [163] (see Corollary B.2 for
a proof). Alternatively, one can also use byproducts of the iteration of Algorithm 2 to
construct a diagonal-plus-low-rank preconditioner of the form P̂ = σ2I + UU⊺ ≈ K̂
where U = KDi diag(η1, . . . , ηi) ∈ Rn×i. Therefore, again if running a mixed strategy,
one can first construct a preconditioner and then accelerate the convergence of subsequent
CG iterations. In this sense one can double-dip in terms of preconditioning (conjugate)
gradient iterations by combining these two techniques at essentially no overhead.

B.1.4 Inducing Point Methods

Theorem B.4 (Approximate Posterior Mean of Nyström, SoR, DTC and SVGP)
Let Z ∈ Rn×m be a set of distinct inducing inputs such that rank(KXZ) = m ≤ n. Then
the posterior mean of the Nyström variants subset of regressors (SoR) and deterministic

95

Appendix B Appendix of Chapter 3

training conditional (DTC) is identical to the one of SVGP and given by

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)
−1KZX(y − µ)

= q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)
−1KZX(y − µ)

(B.19)

Proof. By eqns. (16b) and (20b) of Quiñonero-Candela and Rasmussen [107] the posterior mean
of SoR and DTC is identical and given by

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)
−1KZX(y − µ)

Now, by Theorem 5 of Wild, Kanagawa, and Sejdinovic [122] the posterior mean of SVGP for a
fixed set of inducing points is equivalent to the Nyström approximation, which takes the form
above. Recognizing that KZXKXZ ∈ Rm×m is invertible, it holds that

µ(·) = k(·,Z)(KZXKXZ + σ2KZZ)
−1KZX(y − µ)

= k(·,Z)K−1
ZZ(KZXKXZK

−1
ZZ + σ2I)−1KZX(y − µ)

= k(·,Z)K−1
ZZKZXKXZ((KZXKXZK

−1
ZZ + σ2I)KZXKXZ)

−1KZX(y − µ)

= k(·,Z)K−1
ZZKZXKXZ(KZX(KXZK

−1
ZZKZX + σ2I)KXZ)

−1KZX(y − µ)

= q(·,X)KXZ(KZX(q(X,X) + σ2I)KXZ)
−1KZX(y − µ)

This proves the claim.

B.2 Theoretical Results and Proofs
B.2.1 Properties of Algorithm 1

Lemma B.1 (Geometric Properties of Algorithm 2)
Let i ∈ {1, . . . , n}, and assume Σ0 is chosen such that Σ0K̂sj = sj for all j ≤ i (e.g.
Σ0 = K̂−1). Then it holds for the quantities computed by Algorithm 2 that

span(Si) = span(Di) (B.20)

Ci = Di(D
⊺
i K̂Di)

−1D⊺
i = Si(S

⊺
i K̂Si)

−1S⊺
i (B.21)

CiK̂ is the K̂-orthogonal projection onto span(Di) (B.22)

ΣiK̂ is the K̂-orthogonal projection onto span(Di)
⊥K̂ (B.23)

d⊺
i K̂dj = 0 for all j < i (B.24)

where Si =
(
s1 · · · si

)
∈ Rn×i and Di =

(
d1 · · ·di

)
∈ Rn×i.

Proof. We prove the claims by induction. We begin with the base case i = 1.

96

B.2 Theoretical Results and Proofs

By assumption it holds that S1 = s1 = Σ0K̂s1 = d1 = D1. Now by Algorithm 2, we have
C1 = 1

η1
d1d

⊺
1, which with the above proves (B.21). By the batched form (B.21) of Ci, the

statements (B.22) and (B.23) follow immediately. Finally, K̂-orthogonality for a single search
direction holds trivially.

Now for the induction step i → i + 1. Assume that (B.20), (B.21), (B.22), (B.23) and (B.24)
hold for iteration i. Then we have that

di+1 = ΣiK̂si+1 = si+1 −CiK̂si+1
(B.21)
= si+1 − Si(S

⊺
i K̂Si)

−1S⊺
i K̂si+1 ∈ span(Si+1)

By the induction hypothesis the above also implies span(Si+1) = span(Di+1). This proves
(B.20). Next, we have by the induction hypotheses (B.21) and (B.24) that

Ci+1 = Ci +
1

η
di+1d

⊺
i+1

= Di(D
⊺
i K̂Di)

−1D⊺
i +

1

ηi+1
di+1d

⊺
i+1

=

i+1∑
k=1

1

ηk
dkd

⊺
k

= Di+1(D
⊺
i+1K̂Di+1)

−1D⊺
i+1

This proves the first equality of (B.21). For the second, first recognize that an orthogonal
projection onto a linear subspace span(A) with respect to the B-inner product is given by PA =
A(A⊺BA)−1A⊺B. The projection onto its B-orthogonal subspace is given by PA⊥B = I−PA.
Therefore (B.22) and (B.23) follow directly from the above argument. Now since projection onto a
subspace is unique and independent of the choice of basis, we have by span(Di+1) = span(Si+1)
that

CiK̂ = PDi+1 = PSi+1 = Si(S
⊺
i K̂Si)

−1S⊺
i K̂

Now since K̂ is non-singular, the second equality of (B.21) follows. Finally, we will prove
K̂-orthogonality of the search directions. Let j < i+ 1, then it holds that

d⊺
i+1K̂dj = (ΣiK̂si+1

∈span(Si)
⊥K̂

)⊺K̂ dj

∈span(Si)

= 0

by (B.20) and (B.23). This completes the proof.

Corollary B.3
Let i ∈ {1, . . . , n}. It holds for CiK̂, the K̂-orthogonal projection onto Si, that

(CiK̂)2 = CiK̂ (B.25)

CiK̂Ci = Ci (B.26)

97

Appendix B Appendix of Chapter 3

Further for Hi = ΣiK̂ = I −CiK̂ the K̂-orthogonal projection onto S⊥K̂
i , we have

H2
i = Hi (B.27)

H⊺
i K̂Hi = H⊺

i K̂ = K̂Hi (B.28)

Proof. By Lemma B.1, it holds that Ci = Si(S
⊺
i K̂Si)

−1S⊺
i . Therefore

CiK̂Ci = Si(S
⊺
i K̂Si)

−1S⊺
i K̂Si(S

⊺
i K̂Si)

−1S⊺
i = Ci.

This proves (B.26) and (B.25). Define Hi = I −CiK̂, then

HiHi = (I −CiK̂)(I −CiK̂) = I − 2CiK̂ + (CiK̂)2 = I −CiK̂ = Hi

as well as

H⊺
i K̂Hi = (I −CiK̂)⊺K̂(I −CiK̂) = (K̂ − K̂CiK̂)(I −CiK̂)

= K̂ − 2K̂CiK̂ + K̂(CiK̂)2

= K̂ − K̂CiK̂ = H⊺
i K̂ = K̂Hi.

Lemma B.2
Let Σ0 = K̂−1, then it holds that

Ci(y − µ) = vi, (B.29)

Σi(y − µ) = v∗ − vi. (B.30)

Proof. We prove the statement by induction. By assumption C0(y − µ) = v0. Now assume
(B.29) holds. Then for i→ i+ 1, we have

Ci+1(y − µ) = (Ci +
1

ηi+1
di+1d

⊺
i+1)(y − µ)

IH
= vi +

d⊺
i+1(y − µ)

ηi+1
di+1

Now by the update to the representer weights in Algorithm 2 it suffices to show that αi+1 =
d⊺
i+1(y − µ). We have

d⊺
i+1(y − µ) = (ΣiK̂si+1)

⊺(y − µ) = s⊺i+1K̂Σi(y − µ)

= s⊺i+1K̂(K̂−1 −Ci)(y − µ)
IH
= s⊺i+1((y − µ)− K̂vi) = s⊺i+1ri = αi.

98

B.2 Theoretical Results and Proofs

Lemma B.3
Let Σ0 = K̂−1, C0 = 0 and consequently v0 = 0, then it holds for the residual at iteration
i ∈ {1, . . . , n} that

ri−1 = K̂(v∗ − vi−1) (B.31)

= K̂Σi−1K̂v∗ (B.32)

= (K̂ −Qi−1)v∗. (B.33)

Proof. It holds by definition, that

ri−1 = (y − µ)− K̂vi−1 = K̂v∗ − K̂vi−1 = K̂(v∗ − vi−1).

Further we have by (B.30), that

= K̂Σi−1(y − µ) = K̂Σi−1K̂v∗,

and finally, by the definition of the kernel matrix approximation in Algorithm 2, we obtain

= K̂(K̂−1 −Ci−1)K̂v∗ = (K̂ −Qi−1)v∗.

Proposition B.1 (Batch of Observations)
Let Σ0 such that Σ0K̂sj = sj for all j ∈ {1, . . . , i}. Then after i iterations the posterior
over the representer weights in (3.4) is equivalent to the one computed for a batch of
observations, i.e.

vi = Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i (y − µ)

Σi = Σ0 −Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i K̂Σ0

Proof. This can be seen as a direct consequence of recursively applying Bayes’ theorem

p(v∗ | {αi}mi=1, {si}mi=1) =
p(αm | sm,v∗)p(v∗ | {αi}m−1

i=1 , {si}m−1
i=1)∫

p(αm | sm,v∗)p(v∗ | {αi}m−1
i=1 , {si}m−1

i=1)dv∗
.

However, here we also give a geometric proof based on the projection property of the precision
matrix approximation Ci. By using (B.21) and the assumption on Σ0 we have that

Ci = Si(S
⊺
i K̂Si)

−1S⊺
i = Σ0K̂Si(S

⊺
i K̂Σ0K̂Si)

−1S⊺
i

= Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i K̂Σ0

This proves that

Σi = Σ0 −Ci = Σ0 −Σ0K̂Si(S
⊺
i K̂Σ0K̂Si)

−1S⊺
i K̂Σ0

Now by (B.29) it holds that Ci(y − µ) = vi. This proves the claim.

99

Appendix B Appendix of Chapter 3

Proposition B.2 (Posterior Contraction)
Let Si ∈ Rn×i be the actions chosen by Algorithm 2, then its posterior contracts as

tr(ΣiΣ
−1
0) = tr(ΣiK̂) = n− rank(Si).

Proof. Since Σ0 = K̂−1, we have by (B.21), that

tr(ΣiΣ
−1
0) = tr((Σ0 −Ci)K̂)

= tr(In − Si(S
⊺
i K̂Si)

†S⊺
i K̂)

= tr(In)− tr(S⊺
i K̂Si(S

⊺
i K̂Si)

†

∈Ri×i

)

= n− rank(Si)

Now, if the actions Si are chosen linearly independent, then rank(Si) = i.

Theorem B.5 (Online GP Approximation with Algorithm 1)
Let n, n′ ∈ N and consider training data sets X ∈ Rn×d,y ∈ Rn and X ′ ∈ Rn′×d,y′ ∈
Rn′

. Consider two sequences of actions (si)ni=1 ∈ Rn and (s̃i)
n+n′
i=1 ∈ Rn+n′

such that for
all i ∈ {1, . . . , n}, it holds that

s̃i =

(
si
0

)
(B.34)

Then the posterior returned by Algorithm 2 for the dataset (X,y) using actions si is
identical to the posterior returned by Algorithm 2 for the extended dataset using actions s̃i,
i.e. it holds for any i ∈ {1, . . . , n}, that

ITERGP(µ, k,X,y, (si)i) = (µi, ki) = (µ̃i, k̃i) = ITERGP
(
µ, k,

(
X
X ′

)
,

(
y
y′

)
, (s̃i)i

)
.

Proof. Define X̃ =

(
X
X ′

)
and ỹ =

(
y
y′

)
. We begin by showing that the search directions of

both methods satisfy

d′
i =

(
di

0

)
. (B.35)

We proceed by induction. For i = 0 it holds by definition of Algorithm 2 and (B.34) that

d̃0 = s̃0 =

(
s0
0

)
=

(
d0

0

)
. (B.36)

For the induction step i→ i+ 1, assume that (B.35) holds for j ∈ {1, . . . , i}. Then, we have

d̃i+1 = Σ̃i−1(k(X̃, X̃) + σ2In+n′)s̃i+1

100

B.2 Theoretical Results and Proofs

= (In+n′ − C̃i(k(X̃, X̃) + σ2In+n′))s̃i+1

= s̃i+1 −
i∑

j=1

1

η̃j
d̃j(d̃j)

⊺(k(X̃, X̃) + σ2In+n′)s̃i+1

IH
=

(
si+1

0

)
−

i∑
j=1

1

η̃j

(
dj

0

)(
d⊺
j 0

)(k(X,X) + In k(X,X ′)
k(X ′,X) k(X ′,X ′) + In′

)(
si+1

0

)

=

(
si+1 −

∑i
j=1

1
ηj
dj(dj)

⊺K̂si+1

0

)

=

(
di+1

0

)
where we used that η̃j = s̃⊺j (k(X̃, X̃) + σ2In+n′)d̃j = s⊺jK̂dj = ηj . This proves (B.35). Now
recognize that

α̃j = s̃⊺j r̃j = s̃⊺j (ỹ − µ̃− K̃C̃i(ỹ − µ̃)) = s̃⊺j (ỹ − µ̃− (K̃ + σ2I)

j∑
ℓ=1

1

η̃ℓ
d̃ℓd̃

⊺
ℓ (ỹ − µ̃))

= s⊺j (y − µ)−
j∑

ℓ=1

1

ηℓ
s⊺jK̂dℓd

⊺
ℓ (y − µ) = s⊺j (y − µ− K̂Cj(y − µ)) = s⊺jrj = αj

Therefore, we have that

µ̃i(·) = µ(·) + k(·, X̃)ṽi = µ(·) + k(·, X̃)

i∑
j=1

α̃j

η̃j
d̃j = µ(·) + k(·,X)vi = µi(·)

as well as

k̃i(·, ·) = k(·, ·)− k(·, X̃)C̃ik(X̃, ·) = k(·, ·)− k(·, X̃)
i∑

j=1

1

η̃j
d̃j(d̃j)

⊺k(X̃, ·)

= k(·, ·)− k(·,X)
i∑

j=1

1

ηj
djd

⊺
jk(X, ·) = k(·, ·)− k(·,X)Cik(X, ·) = ki(·, ·).

Remark B.2 (Streaming Gaussian Processes)
Theorem B.5 shows that any variant of IterGP can be used in the online setting where data
arrives sequentially while the algorithm is running. If we assume data points arrive one at a
time, choose unit vector actions (IterGP-Chol) and perform one iteration of Algorithm 2
after each data point, then Algorithm 2 simply computes the mathematical GP posterior.

101

Appendix B Appendix of Chapter 3

B.2.2 Approximation of Representer Weights

Proposition 3.2 (Relative Error Bound for the Representer Weights)
For any choice of actions a relative error bound ρ(i), s.t. ∥v∗ − vi∥K̂ ≤ ρ(i)∥v∗∥K̂ is
given by

ρ(i) = (v̄⊺
∗ (I −CiK̂)

projection onto span(Si)
⊥K̂

v̄∗)
1
2 ≤ λmax(I −CiK̂) ≤ 1 (3.8)

where v̄∗ = v∗/∥v∗∥K̂ . If the actions {si}ni=1 are linearly independent, then ρ(i) ≤ δn=i.

Proof. Define Hi = ΣiK̂ = I −CiK̂. We have by Lemma B.2, that

∥v∗ − vi∥2K̂ = ∥Hiv∗∥2K̂ = (Hiv∗)⊺K̂Hiv∗
(B.28)
= v∗⊺Hiv∗ = v̄⊺

∗Hiv̄∗∥v∗∥2K̂
This proves the first equality of Proposition 3.2. Further it holds that

∥Hiv∗∥K̂ = ∥K̂ 1
2Hiv∗∥2 = ∥(I − K̂

1
2CiK̂

1
2)K̂

1
2v∗∥2 ≤ ∥I − K̂

1
2CiK̂

1
2 ∥2∥v∗∥K̂

= λmax(I − K̂
1
2CiK̂

1
2)∥v∗∥K̂ .

Now by Weyl’s inequality and the fact that K̂
1
2CiK̂

1
2 is positive semi-definite, it holds that

λmax(Hi) = λmax(I − K̂
1
2CiK̂

1
2) ≤ λmax(I)− λmin(K̂

1
2CiK̂

1
2) ≤ 1.

Now, recall that similar matrices A and B = P−1AP have the same eigenvalues. Therefore

I − K̂
1
2CiK̂

1
2 = K̂

1
2 (I −CiK̂)K̂− 1

2

and I − CiK̂ have the same eigenvalues. Finally, since by (B.23) Hi is a projection onto
span(Si)

⊥K̂ , it has full rank at iteration n if the actions are linearly independent and therefore
λmax(Hn) = 1. This proves the claim.

B.2.3 Convergence Analysis of the Posterior Mean Approximation

Theorem 3.1 (Convergence in RKHS Norm of the Posterior Mean Approximation)
Let Hk be the RKHS associated with kernel k(·, ·), σ2 > 0 and let µ∗ − µ ∈ Hk be the
unique solution to the regularized empirical risk minimization problem

argmin
f∈Hk

1

n

(n∑
j=1

(f(xj)− yj + µ(xj))
2 + σ2∥f∥2Hk

)
(3.10)

which is equivalent to the mathematical posterior mean up to shift by the prior µ [e.g.
47, Sec. 6.2]. Then for i ∈ {0, . . . , n} the posterior mean µi(·) computed by Algorithm 2
satisfies

∥µ∗ − µi∥Hk
≤ ρ(i)c(σ2)∥µ∗ − µ0∥Hk

(3.11)

102

B.2 Theoretical Results and Proofs

where µ0 = µ is the prior mean and the constant c(σ2) =
√
1 + σ2

λmin(K) → 1 as σ2 → 0.

Proof. Let ρ(i) such that ∥v∗ − vi∥K̂ ≤ ρ(i)∥v∗ − v0∥K̂ , where v0 = 0. Then, we have for
i ∈ {0, . . . , n}, that

∥v∗ − vi∥2K ≤ ∥v∗ − vi∥2K̂
≤ ρ(i)2∥v∗ − v0∥2K̂
= ρ(i)2

(
∥v∗ − v0∥2K + σ2

1

λmin(K)
λmin(K)∥v∗ − v0∥22

≤∥v∗−v0∥2K

)
≤ ρ(i)2

(
1 +

σ2

λmin(K)

)
∥v∗ − v0∥2K

Now by assumption

µi(·) = µ(·) +
n∑

j=1

(vi)jk(·,xj) = µ(·) + k(·,X)Ciy.

By the reproducing property we obtain for ∆ = v∗ − vi that

∥v∗ − vi∥2K = ∆⊺K∆

=
n∑

ℓ=1

n∑
j=1

∆ℓ∆jk(xℓ,xj)

=
n∑

ℓ=1

n∑
j=1

∆ℓ∆j⟨k(·,xℓ), k(·,xj)⟩Hk
k is the reproducing kernel ofHk

= ⟨
n∑

ℓ=1

∆ℓk(·,xℓ),

n∑
j=1

∆jk(·,xj)⟩Hk

= ∥
n∑

ℓ=1

∆ℓk(·,xℓ)∥2Hk

= ∥
n∑

ℓ=1

(v∗)ℓk(·,xℓ)−
n∑

ℓ=1

(vi)ℓk(·,xℓ)∥2Hk

= ∥µ∗ − µi∥2Hk
See Theorem 3.4 in Kanagawa et al. [44]

Combining the above and setting c(σ2) = 1 + σ2

λmin(K) we obtain

∥µ∗ − µi∥Hk
= ∥v∗ − vi∥K ≤ ρ(i)c(σ2)∥v∗ − v0∥K = ρ(i)c(σ2)∥µ∗ − µ0∥Hk

.

103

Appendix B Appendix of Chapter 3

B.2.4 Combined Uncertainty as Worst Case Error

Theorem 3.2 (Combined and Computational Uncertainty as Worst Case Errors)
Let σ2 ≥ 0 and let ki(·, ·) = k∗(·, ·) + k

comp
i (·, ·) be the combined uncertainty computed by

Algorithm 2. Then, for any x ∈ X (assuming x /∈X if σ2 > 0) we have

sup
g∈Hkσ :∥g∥Hkσ

≤1

error of approximate posterior mean

g(x)− µg∗(x)
error of math. post. mean

+ µg∗(x)− µgi (x)
computational error

=
√
ki(x,x) + σ2, and (3.12)

sup
g∈Hkσ :∥g∥Hkσ

≤1
µg∗(x)− µgi (x)
computational error

=
√
k

comp
i (x,x) (3.13)

where µg∗(·) = k(·,X)K̂−1g(X) is the mathematical and µgi (·) = k(·,X)Cig(X)
IterGP’s posterior mean for the latent function g ∈ Hkσ . If σ2 = 0, then the above
also holds for x ∈X .

Proof. Let x0 = x, c0 = 1 and cj = −(Cik
σ(X,x))j for j = 1, . . . n, where kσ(·, ·) :=

k(·, ·) + σ2δ(·, ·). Then by Lemma 3.9 of Kanagawa et al. [44], it holds that(
sup

g∈Hkσ :∥g∥Hkσ
≤1
(g(x)− µgi (x))

)2

=

(
sup

g∈Hkσ :∥g∥Hkσ
≤1

n∑
j=0

cjg(xj)

)2

= ∥kσ(·,x0)−
n∑

j=1

k(x,xj)Cik
σ(·,xj)∥2Hkσ

= ∥kσ(·,x)− k(x,X)Cik
σ(X, ·)∥2Hkσ

= ⟨kσ(·,x), kσ(·,x)⟩Hkσ
− 2⟨kσ(·,x), k(x,X)Cik

σ(X, ·)⟩Hkσ

+ ⟨k(x,X)Cik
σ(X, ·), k(x,X)Cik

σ(X, ·)⟩Hkσ

Now by the reproducing property, it follows that

= kσ(x,x)− 2kσ(x,X)Cik
σ(X,x) + kσ(x,X)Cik

σ(X,X)Cik
σ(X,x)

If σ2 > 0 and x ̸= xj or if σ2 = 0, it holds that kσ(x,X) = k(x,X). Further by definition
kσ(X,X) = K̂ and finally by (B.26), it holds that CiK̂Ci = Ci. Therefore we have

= k(x,x) + σ2 − 2k(x,X)Cik(X,x) + k(x,X)CiK̂Cik(X,x)

= k(x,x)− k(x,X)Cik(X,x) + σ2

= ki(x,x) + σ2

We prove (3.13) by an analogous argument. Choose cj := ((K̂−1 −Ci)k
σ(X,x))j . We have(

sup
g∈Hkσ :∥g∥Hkσ

≤1
(µg∗(x)− µgi (x))

)2

=

(
sup

g∈Hkσ :∥g∥Hkσ
≤1

n∑
j=0

cjg(xj)

)2

104

B.3 Implementation of IterGP

= ∥
n∑

j=1

k(x,xj)(K̂
−1 −Ci)k

σ(·,xj)∥2Hkσ

= ∥k(x,X)(K̂−1 −Ci)k
σ(X, ·)∥2Hkσ

= kσ(x,X)K̂−1K̂K̂−1kσ(X,x)

− 2kσ(x,X)K̂−1K̂Cik
σ(X,x)

+ kσ(x,X)CiK̂Cik
σ(X,x)

Again, we use that kσ(x,X) = k(x,X) by assumption and (B.26). Therefore

= k(x,X)(K̂−1 −Ci)k(X,x)

= k
comp
i (x,x)

This concludes the proof.

B.3 Implementation of IterGP
B.3.1 Policy Choice

As illustrated in Figure 3.2, the choice of policy of Algorithm 2 determines where computation in
input space is targeted and therefore where the combined posterior contracts first. However, the
policy also determines whether the error in the posterior mean or (co-)variance are predominantly
reduced first, as Figure B.2 shows (cf. IterGP-Chol and IterGP-PBR). Therefore the policy
choice is application-dependent. If we are primarily interested in the predictive mean, we
might select residual actions (IterGP-CG). If downstream we are making use of the predictive
uncertainty, we might want to contract uncertainty globally as quickly as possible at the expense
of predictive accuracy (IterGP-PI). Such a choice is not unique to IterGP, but necessary whenever
we select a GP approximation. What IterGP adds is computation-aware, meaningful uncertainty
quantification in the sense of Corollary 3.1 no matter the choice of policy.

B.3.2 Stopping Criterion

In our implementation of Algorithm 2 we use the following two stopping criteria. Our compu-
tational budget can be directly controlled by specifying a maximum number of iterations, since
each iteration of IterGP needs the same number of matrix-vector multiplies. Alternatively, we
terminate if the absolute or relative norm of the residual are sufficiently small, i.e. if

∥ri∥2 < δabstol or ∥ri∥2 < δreltol∥y∥2. (B.37)

Of course other choices are possible. From a probabilistic numerics standpoint one may want to
terminate once the combined marginal uncertainty at the training data is sufficiently small relative
to the observation noise.

105

Appendix B Appendix of Chapter 3

i = 1

IterGP-Cholesky

i = 3 i = 5

V
ar

ia
nc

e

i = 1

IterGP-PBR

i = 3 i = 5

V
ar

ia
nc

e

i = 1

IterGP-CG

i = 3 i = 5

V
ar

ia
nc

e

i = 1

IterGP-PI

i = 3 i = 5

V
ar

ia
nc

e

Latent Function
Data

Mathematical Posterior Mean
Approximate Posterior Mean

Mathematical Uncertainty
Computational Uncertainty
Combined Uncertainty

Figure B.2: Illustration of IterGP analogs of commonly used GP approximations.

106

B.3 Implementation of IterGP

B.3.3 Efficient Sampling from the Combined Posterior

Sampling from an exact GP posterior has cubic cost O(n3⋄) in the number of evaluation points n⋄,
which is prohibitive for many useful downstream applications such as numerical integration over
the posterior using Monte-Carlo methods. Wilson et al. [125, 126] recently showed how to make
use of Matheron’s rule [124, 165, 166] to efficiently sample from a GP posterior by sampling
from the prior and then performing a pathwise update. We can directly make use of this strategy
since Algorithm 2 computes a low-rank approximation to the precision matrix. Assume we are
given a draw f ′prior ∈ Hθ

k from the prior1 such that y′ ∼ N
(
f ′prior(X), σ2I

)
constitutes a draw

from the prior predictive. Then

f ′(·) = f ′prior(·) + k(·,X)Ci(y − y′) (B.38)

is a draw from the combined posterior by Matheron’s rule, which we can evaluate in O(n⋄ni) for
n⋄ evaluation points, since Ci has rank i.

1In infinite-dimensional reproducing kernel Hilbert spaces samples f ∼ GP(µ, k) from a Gaussian process almost
surely do not lie in the RKHS Hk [Cor. 4.10, 44]. However, there exists f ′ ∈ Hθ

k in a larger RKHS Hθ
k ⊃ Hk

such that f ′(x) = f(x) with probability 1 [Thm. 4.12, 44].

107

Appendix B Appendix of Chapter 3

B.4 Additional Experimental Results

1.08

1.10

1.12

1.14

N
L

L

Synthetic
(n = 1,024, d = 5)

5

10

15

Parkinson’s
(n = 5,287, d = 21)

2

4

6

Bike Sharing
(n = 15,641, d = 16)

CGGP
IterGP-CG

101 102

Iteration

0.60

0.62

R
M

SE

101 102

Iteration

5

10

101 102

Iteration

0.5

1.0

1.5

2.0
CGGP
IterGP-CG

(a) RBF kernel

1.100

1.125

1.150

1.175

N
L

L

Synthetic
(n = 1,024, d = 5)

5

10

15

Parkinson’s
(n = 5,287, d = 21)

2

4

Bike Sharing
(n = 15,641, d = 16)

CGGP
IterGP-CG

101 102

Iteration

0.62

0.64

0.66

R
M

SE

101 102

Iteration

5

10

101 102

Iteration

0.5

1.0

1.5

CGGP
IterGP-CG

(b) Matérn(32) kernel

Figure B.3: Generalization of CGGP and its closest IterGP analog. GP regression using an
RBF and Matérn(32) kernel on UCI datasets. The plot shows the average generalization error in
terms of NLL and RMSE for an increasing number of solver iterations. The posterior mean of
IterGP-CG and CGGP is identical, which explains the identical RMSE.

108

B.4 Additional Experimental Results

1.0

1.1

1.2

N
L

L

Synthetic
(n = 1,024, d = 5)

2.5

3.0

Parkinson’s
(n = 5,287, d = 21)

0.75

1.00

1.25

Bike Sharing
(n = 15,641, d = 16)

0.90

0.95

1.00

Protein
(n = 41,157, d = 9)

−0.6

−0.5

−0.4

−0.3

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.6

0.7

R
M

SE

102 103

Ind. Points / Iteration

3

4

102 103

Ind. Points / Iteration

0.6

0.8

102 103

Ind. Points / Iteration

0.600

0.625

0.650

102 103

Ind. Points / Iteration

0.14

0.16

0.18 SVGP
IterGP-PI

(a) RBF kernel

1.1

1.2

N
L

L

Synthetic
(n = 1,024, d = 5)

2.0

2.5

3.0

3.5

Parkinson’s
(n = 5,287, d = 21)

1.0

1.5

Bike Sharing
(n = 15,641, d = 16)

0.9

1.0

Protein
(n = 41,157, d = 9)

0.0

2.5

5.0

7.5

KEGGundir
(n = 57,247, d = 26)

SVGP
IterGP-PI

102 103

Ind. Points / Iteration

0.65

0.70

0.75

R
M

SE

102 103

Ind. Points / Iteration

2

3

4

102 103

Ind. Points / Iteration

0.4

0.6

0.8

102 103

Ind. Points / Iteration

0.60

0.65

102 103

Ind. Points / Iteration

0.2

0.3 SVGP
IterGP-PI

(b) Matérn(32) kernel

Figure B.4: Generalization of SVGP and its closest IterGP analog. GP regression using an
RBF and Matérn(32) kernel on UCI datasets. The plot shows the average generalization error in
terms of NLL and RMSE for an increasing number of identical inducing points. After a small
number of inducing points relative to the size of the training data, IterGP has significantly lower
generalization error than SVGP. For the “KEGGundir” dataset after ≈ 128 iterations we observe
numerical instability in some runs when computing the combined posterior of IterGP using a
Matérn(32) kernel.

109

Appendix

C

Appendix of Chapter 4

C.1 Background on Krylov Methods . 112
C.1.1 Conjugate Gradient Method . 112
C.1.2 Lanczos Algorithm . 113
C.1.3 Stochastic Lanczos Quadrature . 113

C.2 Stochastic Trace Estimation . 114
C.3 Log-Determinant Estimation . 117

C.3.1 Approximation of a Matrix Function 117
C.3.2 Approximation of the Log-Determinant 118
C.3.3 Approximation of the Derivative of the Log-Determinant 120

C.4 GP Hyperparameter Optimization . 123
C.4.1 Approximation of the Log-Marginal Likelihood 123
C.4.2 Approximation of the Derivative of the Log-Marginal Likelihood . . . 125

C.5 Preconditioning . 127
C.5.1 Additive Kernels . 128
C.5.2 Kernels with a Uniformly Converging Approximation 128
C.5.3 Partial Cholesky Decomposition . 129
C.5.4 Quadrature Fourier Features (QFF) 130
C.5.5 Truncated Singular Value Decomposition 131
C.5.6 Randomized Singular Value Decomposition 132
C.5.7 Randomized Nyström Method . 133
C.5.8 Random Fourier Features (RFF) . 133

C.6 Technical Results . 134
C.7 Additional Experimental Results . 134

C.7.1 Synthetic Data . 134
C.7.2 UCI Datasets . 134

111

Appendix C Appendix of Chapter 4

C.1 Background on Krylov Methods
C.1.1 Conjugate Gradient Method

Theorem C.1 (Convergence Rate of Preconditioned CG [58])
Let A,P ∈ Rn×n be symmetric positive definite. The error of the conjugate gradient
method with preconditioner P after i ∈ N steps is given by

∥xk − x∥A ≤ 2

(√
κ− 1√
κ+ 1

)i

∥x0 − x∥A (C.1)

and in euclidean norm by

∥xk − x∥2 ≤ 2
√
κ(A)

(√
κ− 1√
κ+ 1

)i

∥x0 − x∥2 (C.2)

where κ = κ(P− 1
2AP− ⊺

2) is the condition number of the preconditioned system matrix.

Proof. Preconditioned CG is equivalent to running CG on the transformed problem

Ãx̃ = P− 1
2AP− ⊺

2 x̃ = P− 1
2b

with the substitution x̃ = P
⊺
2x. By Trefethen and Bau [58], the convergence rate of CG on the

problem is given by

∥x̃i − x̃∥Ã ≤ 2

(√
κ− 1√
κ+ 1

)i

∥x̃0 − x̃∥Ã
The first equation follows by recognizing that

∥x̃i − x̃∥2
Ã
= (x̃i − x̃)⊺P− 1

2AP− ⊺
2 (x̃i − x̃) = (xi − x)A(xi − x) = ∥xi − x∥2A.

Now it holds by the min-max principle, that√
λmin(Ã)∥xk − x∥2 ≤ ∥xi − x∥A ≤ 2

(√
κ− 1√
κ+ 1

)i

∥x0 − x∥A

≤ 2
√
λmax(A)

(√
κ− 1√
κ+ 1

)i

∥x0 − x∥2.

Corollary C.1
Let ε ∈ (0, 1], then preconditioned CG has relative error ∥xk − x∥A ≤ ε∥x0 − x∥A after

i ≥
√
κ

2
log(2ε−1) (C.3)

112

C.1 Background on Krylov Methods

iterations, where κ is the condition number of the preconditioned system matrix. In euclidean
norm ∥·∥2 relative error ε is achieved after

i ≥
√
κ

2
log(2

√
κ(A)ε−1) (C.4)

iterations.

Proof. It holds by Lemma C.7 and the assumption on the number of iterations m, that

2

(√
κ− 1√
κ+ 1

)m

≤ 2 exp(− 2√
κ
m) ≤ 2 exp(− log(

2

ε
)) = ε

Using Theorem C.1 proves the statement. The proof for the euclidean norm is analogous.

C.1.2 Lanczos Algorithm

The Lanczos algorithm [77] is a Krylov method, which for a symmetric matrix A ∈ Rn×n

iteratively builds an approximate tridiagonalization

A ≈ Q̃T̃ Q̃

where Q̃ ∈ Rn×i orthonormal and T̃ ∈ Ri×i tridiagonal. For an initial probe vector b ∈ Rn,
Gram-Schmidt orthogonalization is applied to the Krylov subspace basis. The orthogonalized
vectors form Q̃, while the Gram-Schmidt coefficients form T̃ . This low-rank approximation
becomes an exact tridiagonalization A = QTQ⊺ for i = n. The Lanczos process is often
used to compute (approximate) eigenvalues and eigenvectors, which is done by computing an
eigendecomposition of the tridiagonal matrix T̃ at cost O(i2). The tridiagonal matrix T̃ can also
be formed by running CG on the linear system Ax = b and by collecting the step lengths αj and
conjugacy corrections βj used in the solution and search direction updates [159, Section 6.7.3].

C.1.3 Stochastic Lanczos Quadrature

One can approximate tr(f(A)) for symmetric positive definite A via stochastic Lanczos quadra-
ture (SLQ) [138, 142] by combining Hutchinson’s estimator with quadrature and the Lanczos
algorithm. It holds that

tr(f(A)) ≈ τSTE
ℓ (f(A)) =

n

ℓ

ℓ∑
j=1

z⊺
j f(A)zj ≈

n

ℓ

ℓ∑
j=1

I
(j)
i = τSLQℓ,i (f(A))

The quadratic terms z⊺
j f(A)zj are approximated by quadrature I(j)i where the weights and

nodes of the quadrature rule are computed via i iterations of the Lanczos algorithm. For the
log-determinant the following bound for the error incurred by Lanczos quadrature holds.

113

Appendix C Appendix of Chapter 4

Corollary C.2 (Section 4.3 of Ubaru, Chen, and Saad [138])
Let A ∈ Rn×n be symmetric positive definite with condition number κ = κ(A). Then it
holds that ∣∣τSTE

ℓ (log(A))− τSLQℓ,i (log(A))
∣∣ ≤ K (√2κ+ 1− 1√

2κ+ 1 + 1

)2i

(C.5)

where K = 5κ log(2(κ+1))

2
√
2κ+1

.

C.2 Stochastic Trace Estimation
Definition C.1 (Convex Concentration Property [167])
Let x ∈ Rn be a random vector. We say x has the convex concentration property (c.c.p.
) with constant K ∈ R if for every 1-Lipschitz convex function ϕ : Rn → R, we have
E(|ϕ(x)|) <∞ and for every t > 0,

P(|ϕ(x)− E(ϕ(x))| ≥ t) ≤ 2 exp(− t2

K2
).

Examples of random vectors satisfying the convex concentration property are vectors

• with independent and almost surely bounded entries |xj | ≤ 1, where K = 2
√
2 [168];

• Gaussian random vectors x ∼ N (0,Σ), where K2 = 2∥Σ∥2 [169]; and

• uniformly distributed random vectors on the sphere
√
nSn−1, where K = 2 [169].

Remark C.1
Note, that since Rademacher random vectors have iid entries {+1,−1}, they satisfy ∥z̃j∥2 =√
n. In particular, it holds that

√
nzj = z̃j . Therefore the random vectors

√
nzj and

z′ =
√
n(z1, . . . ,zℓ)

⊺ ∈ Rℓn all have independent entries bounded by 1 and thus satisfy
the convex concentration property with K = 2

√
2.

Theorem C.2 (Hanson-Wright Inequality for Random Vectors with the Convex Concentra-
tion Property [170])
Let A ∈ Rn×n and x ∈ Rn a zero-mean random vector with the convex concentration
property with constant K. Then for all t > 0, it holds that

P(|x⊺Ax− E(x⊺Ax)| ≥ t) ≤ 2 exp(−cmin

(
t2

∥A∥2F
,

t

∥A∥2

)
) (C.6)

where c = c(K) > 0 is a constant only dependent on the distribution of the random vectors.

114

C.2 Stochastic Trace Estimation

Proof. By Theorem 2.5 of Adamczak [170] we have

P(|x⊺Ax− E(x⊺Ax)| > t) ≤ 2 exp(− 1

c′
min

(
t2

2K4∥A∥2F
,

t

K2∥A∥2

)
)

where c′ > 0 is a universal constant. Now it holds that

min

(
t2

2K4∥A∥2F
,

t

K2∥A∥2

)
≥ 1

K2max(2K2, 1)
min

(
t2

∥A∥2F
,

t

∥A∥2

)
Choosing c = 1

c′K2 max(2K2,1)
concludes the proof.

Lemma C.1
Let A ∈ Rn×n and ℓ ∈ N. Consider ℓ random vectors z̃j ∈ Rn with zero mean and unit
covariance, such that for zj = z̃j/∥z̃j∥2 the stacked random vector

√
n(z1, . . . ,zℓ)

⊺ ∈
Rℓn has the convex concentration property.a Then there exists cz > 0 such that if ℓ ≥
cz log(δ

−1), then Hutchinson’s trace estimator τSTE
ℓ satisfies

P
(
|τSTE
ℓ (A)− tr(A)| ≤

√
cz log(δ−1)ℓ−1∥A∥F

)
≥ 1− δ.

aSee Remark C.1 for an explanation of why this is satisfied for Rademacher random vectors.

Proof. The proof strategy used here is the same as in Meyer et al. [144, Lemma 2] with a different
assumption on the distribution of the random vectors. To begin, define

A′ =


A 0 . . . 0

0 A
. . .

...
...

. 0
0 . . . 0 A

 ∈ Rℓn×ℓn and z′ =
√
n


z1
z2
...
zℓ

 ∈ Rℓn.

By assumption the random vector z′ has the convex concentration property and therefore Theo-
rem C.2 holds. We obtain

P
(
|(z′)⊺A′z′ − E

(
(z′)⊺A′z′)| ≥ t) ≤ 2 exp(−c ·min

(
t2

∥A′∥2F
,

t

∥A′∥2

)
). (C.7)

Now, we have (z′)⊺A′z′ = n
∑ℓ

j=1 z
⊺
jAzj = ℓτSTE

ℓ (A) and

E
(
(z′)⊺A′z′) = n

ℓ∑
j=1

E
(
z⊺
jAzj

)
= nℓE

(
tr(z⊺

jAzj)
)
= nℓE

(
tr(Azjz

⊺
j)
)

= nℓ tr(AE
(
zjz

⊺
j

)
) = nℓ tr(ACov(zj)) = ℓ tr(ACov

(√
nzj
)
) = ℓ tr(A)

115

Appendix C Appendix of Chapter 4

Therefore by setting t =
√

log(2δ−1)
c ℓ∥A∥F , we obtain

P

(
ℓ|τSTE

ℓ (A)− tr(A)| ≥
√

log(2δ−1)

c
ℓ∥A∥F

)
≤ 2 exp(−c ·min

(
log(2δ−1)

c

ℓ∥A∥2F
∥A′∥2F

,

√
log(2δ−1)

c
ℓ
∥A∥F
∥A′∥2

)
)

Further, it holds that ∥A′∥2F = ℓ∥A∥2F and ∥A′∥2 = ∥A∥2, thus we have

= 2 exp(−min

(
log(2δ−1),

√
c log(2δ−1)ℓ

∥A∥F
∥A∥2

)
).

Now assume ℓ ≥ 1
c log(2δ

−1). Then since ∥A∥2 ≤ ∥A∥F , the minimum is given by

min

(
log(2δ−1),

√
c log(2δ−1)ℓ

∥A∥F
∥A∥2

)
= log(2δ−1).

Further setting cz = 2c−1, it holds that

ℓ ≥ cz log(δ−1) = 2 log(δ−1)c−1 ≥ log(2δ−1)c−1

since 0 < δ ≤ 1
2 . Combining the above we obtain

P
(
ℓ|τSTE

ℓ (A)− tr(A)| ≥
√
cz log(δ−1)ℓ∥A∥F

)
≤ 2 exp(− log(2δ−1)) = δ,

which is equivalent to

P
(
|τSTE
ℓ (A)− tr(A)| ≤

√
cz log(δ−1)ℓ−1∥A∥F

)
≥ 1− δ.

This proves the statement.

Theorem 4.1 (Variance-reduced Stochastic Trace Estimation)
Let K̂, P̂ ℓ ∈ Rn×n

spd ,∆f ∈ Rn×n and f : Rn×n
spd → R such that tr(f(K̂)) = tr(f(P̂ ℓ)) +

tr(∆f), and define the estimator τ∗ = tr(f(P̂ ℓ)) + τSTE
ℓ (∆f). Now, assume there exist

c∆ > 0 and g : N→ (0,∞) such that

∥∆f∥F ≤ c∆g(ℓ)∥f(K̂)∥F . (4.9)

Then there exists cz > 0 dependent on the choice of random vectors, such that, if ℓ ≥
cz log(δ

−1), it holds with probability 1− δ ∈ [12 , 1) that

|τ∗ − tr(f(K̂))| ≤ εSTE∥f(K̂)∥F . (4.10)

116

C.3 Log-Determinant Estimation

where for C1 = c∆
√
cz the relative error is given by

εSTE(δ, ℓ) = C1

√
log(δ−1)ℓ−

1
2 g(ℓ). (4.11)

Proof. By assumption |τ∗ − tr(f(K̂))| = |τSTE
ℓ (∆f)− tr(∆f)|. By Lemma C.1 it holds with

probability ≥ 1− δ, that

|τSTE
ℓ (∆f)− tr(∆f)| ≤

√
cz log(δ−1)ℓ−1∥∆f∥F

≤
√
cz log(δ−1)c∆f

ℓ−
1
2 g(ℓ)∥f(K̂)∥F Assumption (4.9).

= εSTE(δ, ℓ)∥f(K̂)∥F

This concludes the proof.

Corollary C.3
Let ε ∈ (0, 1] be a desired error. If the conditions of Theorem 4.1 hold and the number of
random vectors ℓ satisfies

ℓ
1
2 g(ℓ)−1 ≥ C1ε

−1
√
log(δ−1), (C.8)

then it holds that
P(|τ∗ − tr(A)| ≤ ε∥A∥F) ≥ 1− δ.

Proof. Follows from Theorem 4.1 given (C.8).

C.3 Log-Determinant Estimation
C.3.1 Approximation of a Matrix Function

Lemma C.2 (Lipschitz Continuity)
Let A,B ∈ Rn×n be symmetric. Assume f : Ω→ R is globally Lipschitz continuous with
Lipschitz constant L > 0 on the combined spectrum Ω = λ(A) ∪ λ(B) ⊂ R, then there
exists cp > 0 such that

∥f(A)− f(B)∥p ≤ cpL∥A−B∥p, (C.9)

where ∥·∥p denotes any matrix norm. In particular c2 = 1 and cF =
√
n.

Proof. Since A,B are symmetric, they are normal. By Kittaneh [171], it holds that

∥f(A)− f(B)∥2 ≤ L∥A−B∥2.

117

Appendix C Appendix of Chapter 4

The result now follows by equivalence of norms on finite-dimensional spaces. For the Frobenius
norm we have 1√

n
∥M∥F ≤ ∥M∥2 ≤ ∥M∥F , and therefore cF =

√
n.

Proposition C.1
Let K̂ ∈ Rn×n be symmetric positive definite and assume f is analytic in a domain contain-
ing the spectrum λ(K̂). Let {P̂ ℓ}ℓ be a sequence of preconditioners with approximation
quality (4.6). Then it holds that

∥f(K̂)− f(P̂ ℓ)∥F ≤ c(n, K̂, f)g(ℓ)∥f(K̂)∥F (C.10)

where c(n, K̂, f) = L∥K̂∥F
cf(λ)

, L > 0 is the Lipschitz constant of f and

cf(λ) = max{min
j
|f(λj(K̂))|, maxj |f(λj(K̂))|√

n
}.

Proof. It holds that

∥f(K̂)∥F =

√√√√ n∑
j=1

f(λj)2 ≥
{√

nminj f(λj)2 =
√
nminj |f(λj)|

∥f(K̂)∥2 = σmax(f(K̂)) =
√
λmax(f(K̂)2) = maxj |f(λj)|

and therefore ∥f(K̂)∥F ≥
√
ncf(λ). Since f is analytic and therefore Lipschitz, it holds that

∥f(K̂)− f(P̂ ℓ)∥F ≤ L
√
n∥K̂ − P̂ ℓ∥F Lemma C.2

≤ L√ng(ℓ)∥K̂∥F Preconditioner quality (4.6)

= L
√
ng(ℓ)

∥K̂∥F
∥f(K̂)∥F

∥f(K̂)∥F

≤ L√ng(ℓ) ∥K̂∥F√
ncf(λ)

∥f(K̂)∥F

≤ L∥K̂∥F
cf(λ)

g(ℓ)∥f(K̂)∥F .

This proves the claim.

C.3.2 Approximation of the Log-Determinant

Lemma C.3 (Decomposition of the log-determinant)
For K̂, P̂ ∈ Rn×n symmetric positive definite, it holds that

log det(K̂) = log det(P̂) + tr(log(K̂)− log(P̂)) (C.11)

118

C.3 Log-Determinant Estimation

= log det(P̂) + tr(log(P̂− 1
2 K̂P̂− ⊺

2)). (C.12)

Proof. For symmetric positive definite matrices A,B, the matrix logarithm satisfies the following

log det(A) = tr(log(A)),

tr(log(AB)) = tr(log(A)) + tr(log(B)),

log(A−1) = − log(A).

Using the above properties, we obtain

log det(K̂) = tr(log(P̂ P̂−1K̂))

= tr(log(P̂))− tr(log(P̂)) + tr(log(K̂))

= log det(P̂) + tr(log(K̂)− log(P̂))

Now since P̂−1K̂ and P̂− 1
2 K̂P̂− ⊺

2 are similar, they have the same determinant. Therefore we
have

tr(log(K̂)− log(P̂)) = tr(log(P̂−1K̂)) = log det(P̂− 1
2 K̂P̂− ⊺

2).

This completes the proof.

Theorem 4.2 (Error Bound for log det(K̂))
Let f = log, ∆log = log

(
P̂− 1

2 K̂P̂− ⊺
2

)
and assume the conditions of Theorem 4.1 hold.

Then, with probability 1− δ, it holds for τ log∗ = log(det(P̂)) + τSLQℓ,i (∆log), that

|τ log∗ − log det(K̂)| ≤ (εLanczos + εSTE)∥log(K̂)∥F ,

where the individual errors are bounded by

εLanczos(κ, i) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2i
(4.12)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.13)

and K1 =
5κ log(2(κ+1))

2∥log(K̂)∥F
√
2κ+1

.

Proof. Using the decomposition (4.8), we have

|τ log∗ − log det(K̂)| = |τSLQℓ,i (∆log)− tr(∆log)|
≤ |tr(∆log)− τSTE

ℓ (∆log)|+ |τSTE
ℓ (∆log)− τSLQℓ,i (∆log)|

= |tr(log(K̂))− (tr(log(P̂)) + τSTE
ℓ (∆log))|︸ ︷︷ ︸

eSTE

+ |τSTE
ℓ (∆log)− τSLQℓ,i (∆log)|︸ ︷︷ ︸

eLanczos

.

119

Appendix C Appendix of Chapter 4

Now the individual absolute errors are bounded as follows. By the error bound for stochastic
trace estimation in Theorem 4.1, we have

eSTE ≤ εSTE(δ, ℓ)∥log(K̂)∥F = C1

√
log(δ−1)ℓ−

1
2 g(ℓ)∥log(K̂)∥F

and by Corollary C.2, it follows that

eLanczos ≤ K
(√

2κ+ 1− 1√
2κ+ 1 + 1

)2i

= K1

(√
2κ+ 1− 1√
2κ+ 1 + 1

)2i

∥log(K̂)∥F .

Corollary 4.1
Assume the conditions of Theorem 4.2 hold. If the number of random vectors ℓ satisfies
(4.11) with εSTE = ε

2 and we run

i ≥
√
3
4

√
κ log

(
2K1ε

−1
)

(4.14)

iterations of Lanczos, then it holds that

P
(
|τ log∗ − log det(K̂)| ≤ ε∥log(K̂)∥F

)
≥ 1− δ.

Proof. By assumption Theorem 4.1 is satisfied and therefore εSTE = ε
2 with probability 1− δ.

Now for the error of Lanczos it holds by Theorem 4.2 in combination with Lemma C.7, that

εLanczos ≤ K1

(√
2κ+ 1− 1√
2κ+ 1 + 1

)2i

≤ K1 exp(−
4√

2κ+ 1
i) Lemma C.7

≤ K1 exp(−
√
3κ√

2κ+ 1
log(2K1ε

−1)) By assumption (4.14).

≤ K1 exp(− log(2K1ε
−1))

=
ε

2

The result now follows by Theorem 4.2.

C.3.3 Approximation of the Derivative of the Log-Determinant

Computation of tr(P̂−1 ∂P̂
∂θ) Algorithm 3 and Algorithm 4 primarily rely on matrix-vector

multiplication, except for computation of τ inv∂P̂ = tr(P̂−1 ∂P̂
∂θ). Efficient computation of this

term depends on the structure of P̂−1. If P̂ is the pivoted-Cholesky preconditioner, or any other

120

C.3 Log-Determinant Estimation

diagonal-plus-low-rank preconditioner σ2I +LℓL
⊺
ℓ , we can rewrite this term using the matrix

inversion lemma

tr(P̂−1∂P̂

∂θ
) = σ−2 tr(

∂P̂

∂θ
)− σ−2 tr(Lℓ

(
σ2I +L⊺

ℓLℓ

)−1
L⊺

ℓ

∂P̂

∂θ
)

= σ−2
n∑

j=1

∂P̂ jj

∂θ
− σ−2

((
Lℓ

(
σ2I +L⊺

ℓLℓ

)−1
)
◦
(
∂P̂

∂θ
Lℓ

))
1, (C.13)

where ◦ denotes elementwise multiplication. The second term requires ℓ matrix-vector multiplies
with ∂P̂

∂θ andO(nℓ2) additional work. The first term is simply the derivative of the kernel diagonal
which will take O(n) time. Similar efficient procedures exist for other types of preconditioners,
such as when P̂−1 has a banded structure.

Theorem 4.3 (Error Bound for tr
(
K̂−1 ∂K̂

∂θ

)
)

Let f(K̂) = K̂−1 ∂K̂
∂θ , ∆inv∂ = K̂−1 ∂K̂

∂θ − P̂−1 ∂P̂
∂θ and assume the conditions of Theo-

rem 4.1 hold. If we solve K̂−1 ∂K̂
∂θ zj with i iterations of preconditioned CG, initialized at 0

or better, then it holds with probability 1− δ for τ inv∂∗ = tr
(
P̂−1 ∂P̂

∂θ

)
+ τSCG

ℓ,i (∆inv∂), that∣∣τ inv∂∗ − tr
(
K̂−1 ∂K̂

∂θ

)∣∣ ≤ (εCG′ + εSTE)∥K−1 ∂K
∂θ ∥F ,

where the individual errors are bounded by

εCG′(κ, i) ≤ K2

(√
κ−1√
κ+1

)i
(4.17)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.18)

and K2 = 2
√
κ(K̂)n.

Proof. Using the decomposition (4.15), we have

|τ inv∂∗ − tr(K̂−1∂K̂

∂θ
)| = |τSCG

ℓ,i (∆inv∂)− tr(∆inv∂)|

≤ |tr(∆inv∂)− τSTE
ℓ (∆inv∂)|+ |τSTE

ℓ (∆inv∂)− τSCG
ℓ,i (∆inv∂)|

= |tr(K̂−1∂K̂

∂θ
)− (tr(P̂−1∂P̂

∂θ
) + τSTE

ℓ (∆inv∂))|︸ ︷︷ ︸
eSTE

+ |τSTE
ℓ (∆inv∂)− τSCG

ℓ,i (∆inv∂)|︸ ︷︷ ︸
eCG

.

Now the individual absolute errors are bounded as follows. By the error bound for stochastic
trace estimation in Theorem 4.1, we have

eSTE ≤ εSTE(δ, ℓ)∥K̂−1∂K̂

∂θ
∥F = C1

√
log(δ−1)ℓ−

1
2 g(ℓ)∥K̂−1∂K̂

∂θ
∥F .

121

Appendix C Appendix of Chapter 4

Now, let wj = K̂−1 ∂K̂
∂θ zj , w̃j = P̂−1 ∂P̂

∂θ zj and wi,j ≈ wj be the solution computed via
preconditioned CG with i iterations. Then we have by Theorem C.1, that

eCG = |n
ℓ

ℓ∑
j=1

z⊺
j (wi,j − w̃j − (wj − w̃j))|

≤ n

ℓ

ℓ∑
j=1

∥zj∥2︸ ︷︷ ︸
=1

∥wi,j −wj∥2

≤ n

ℓ

ℓ∑
j=1

2
√
κ(K̂)

(√
κ− 1√
κ+ 1

)i

∥w0,j −wj∥2 CG convergence by Theorem C.1.

≤ 2n
√
κ(K̂)

(√
κ− 1√
κ+ 1

)i

∥wj∥2 CG initialized at w0,j = 0 or better.

≤ K2

(√
κ− 1√
κ+ 1

)i

∥K̂−1∂K̂

∂θ
zj∥F

≤ K2

(√
κ− 1√
κ+ 1

)i

∥K̂−1∂K̂

∂θ
∥F

This completes the argument.

Corollary 4.2
Assume the conditions of Theorem 4.3 hold. If the number of random vectors ℓ satisfies
(4.11) with εSTE = ε

2 , and we run

i ≥ 1
2

√
κ log(2K2ε

−1) (4.19)

iterations of CG, then

P
(∣∣τ inv∂∗ − tr

(
K̂−1 ∂K̂

∂θ

)∣∣ ≤ ε∥K̂−1 ∂K̂
∂θ ∥F

)
≥ 1− δ.

Proof. By assumption Theorem 4.1 is satisfied and therefore εSTE = ε
2 with probability 1− δ.

Now for the error of CG, it holds by Theorem 4.3 in combination with Lemma C.7, that

εCG ≤ K2

(√
κ− 1√
κ+ 1

)i

≤ K2 exp(−
2i√
κ
) Lemma C.7

≤ K2 exp(− log(2K2ε
−1)) Assumption (4.19)

≤ ε

2
.

The result now follows by Theorem 4.3.

122

C.4 GP Hyperparameter Optimization

C.4 GP Hyperparameter Optimization
C.4.1 Approximation of the Log-Marginal Likelihood

Theorem 4.4 (Error Bound for the log-Marginal Likelihood)
Assume the conditions of Theorem 4.2 hold and we solve K̂v∗ = y via preconditioned CG
initialized at v0 and terminated after i iterations. Then with probability 1− δ, the error in
the estimate η = −1

2(y
⊺vi + τ log∗ + n log(2π)) of the log-marginal likelihood L satisfies

|η − L| ≤ εCG + 1
2(εLanczos + εSTE)∥log(K̂)∥F ,

where the individual errors are bounded by

εCG(κ, i) ≤ K3

(√
κ−1√
κ+1

)i
(4.20)

εLanczos(κ, i) ≤ K1

(√
2κ+1−1√
2κ+1+1

)2i
(4.21)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.22)

for K3 =
√
κ(K̂)∥y∥2∥v0 − v∗∥2.

Proof. It holds by assumption that

|η − L| = 1

2
|y⊺vi + τ log∗ − (y⊺K̂−1y + log det(K̂))|

≤ 1

2

(
|y⊺vi − y⊺v∗|︸ ︷︷ ︸

eCG

+ |τ log∗ − log det(K̂)|︸ ︷︷ ︸
eSLQ

)
.

For the error of CG when solving K̂v∗ = y, we have by Theorem C.1

eCG = |y⊺vi − y⊺v∗|
≤ ∥y∥2∥vi − v∗∥2

≤ ∥y∥22
√
κ(K̂)

(√
κ− 1√
κ+ 1

)i

∥v0 − v∗∥2 = 2εCG,

and for the absolute error in the log-determinant estimate via preconditioned stochastic Lanczos
quadrature, we obtain by Theorem 4.2, that

eSLQ ≤ (εLanczos + εSTE)∥log(K̂)∥F .

This proves the statement.

123

Appendix C Appendix of Chapter 4

Corollary C.4
Assume the conditions of Theorem 4.4 hold. If the number of random vectors ℓ satisfies
(4.11) with εSTE = ε, and we run i ≥ max(iCG, iLanczos) iterations of CG and Lanczos,
where

iCG ≥
1

2

√
κ log(2K3ε

−1), (C.14)

iLanczos ≥
√
3

4

√
κ log

(
K1ε

−1
)
, (C.15)

then it holds that
P(|η − L| ≤ ε(1 + ∥log(K̂)∥F)) ≥ 1− δ.

Proof. We begin with the error of CG, it holds by Theorem 4.4 in combination with Lemma C.7,
that

εCG ≤ K3

(√
κ− 1√
κ+ 1

)i

≤ K3 exp(−
2i√
κ
) Lemma C.7

≤ K3 exp(− log(2K3ε
−1)) Assumption (C.14)

=
ε

2
.

Now for the error of the estimate of the log-determinant. By assumption Theorem 4.1 is satisfied
and therefore εSTE = ε with probability 1− δ. For the error of Lanczos, it holds by Theorem 4.4,
that

εLanczos ≤ K1

(√
2κ+ 1− 1√
2κ+ 1 + 1

)2i

≤ K1 exp(−
4√

2κ+ 1
i) Lemma C.7

≤ K1 exp(−
√
3κ√

2κ+ 1
log(K1ε

−1)) Assumption (C.15).

≤ K1 exp(− log(K1ε
−1))

= ε

The result now follows by Theorem 4.4.

124

C.4 GP Hyperparameter Optimization

C.4.2 Approximation of the Derivative of the Log-Marginal Likelihood

Theorem 4.5 (Error Bound for the Derivative)
Assume the conditions of Theorem 4.3 hold and we solve K̂v∗ = y via preconditioned
CG initialized at 0 or better and terminated after i iterations. Then with probability 1− δ,
the error in the estimate ϕ = 1

2(v
⊺
i
∂K̂
∂θ vi − τ inv∂∗) of the derivative of the log-marginal

likelihood ∂
∂θL satisfies

|ϕ− ∂
∂θL| ≤ εCG + 1

2(εCG′ + εSTE)∥K̂−1 ∂K̂
∂θ ∥F ,

where the individual errors are bounded by

εCG(κ, i) ≤ K4

(√
κ−1√
κ+1

)i
(4.23)

εCG′(κ, i) ≤ K2

(√
κ−1√
κ+1

)i
(4.24)

εSTE(δ, ℓ) ≤ C1

√
log(δ−1)ℓ−

1
2 g(ℓ) (4.25)

for K4 = 6κ(K̂)max(∥v∗∥2, ∥v∗∥32)∥∂K̂∂θ ∥2.

Proof. It holds that

|ϕ− ∂

∂θ
L| = 1

2
|v⊺

i

∂K̂

∂θ
vi − τ inv∂∗ −

(
y⊺K̂−1∂K̂

∂θ
K̂−1y − tr(K̂−1∂K̂

∂θ
)

)
|

≤
(
|v⊺

i

∂K̂

∂θ
vi − v∗⊺

∂K̂

∂θ
v∗|︸ ︷︷ ︸

eCG

+ |τ inv∂∗ − tr(K̂−1∂K̂

∂θ
)|︸ ︷︷ ︸

eCGSTE

)

Now by Theorem 4.3, we have

eCGSTE ≤ (εCG′ + εSTE)∥K̂−1∂K̂

∂θ
∥F .

For the absolute error of the quadratic term, it holds that

eCG = |∥v∗∥2∂K̂
∂θ

− ∥vi − v∗ + v∗∥2∂K̂
∂θ

|

≤ |∥v∗∥2∂K̂
∂θ

− (∥vi − v∗∥ ∂K̂
∂θ

+ ∥v∗∥ ∂K̂
∂θ

)2|

= ∥vi − v∗∥ ∂K̂
∂θ

+ 2∥vi − v∗∥ ∂K̂
∂θ
∥v∗∥ ∂K̂

∂θ

≤ ∥∂K̂
∂θ
∥2(∥vi − v∗∥22 + 2∥vi − v∗∥2∥v∗∥2)

≤ ∥∂K̂
∂θ
∥2g(∥vi − v∗∥2)(1 + 2∥v∗∥2)

125

Appendix C Appendix of Chapter 4

for g(t) = max(t, t2). Now it holds by Theorem C.1 and monotoncity of g, that

≤ ∥∂K̂
∂θ
∥2g

(
2
√
κ(K̂)

(√
κ− 1√
κ+ 1

)i

∥v0 − v∗∥2
)
(1 + 2∥v∗∥2)

Since for a ≤ 1, it holds that g(at) ≤ ag(t) and for a > 1 : g(at) ≤ a2g(t), we have

≤ ∥∂K̂
∂θ
∥24κ(K̂)

(√
κ− 1√
κ+ 1

)i

g(∥v0 − v∗∥2)(1 + 2∥v∗∥2)

≤ ∥∂K̂
∂θ
∥24κ(K̂)

(√
κ− 1√
κ+ 1

)i

3max(∥v∗∥2, ∥v∗∥32)

= 2K4

(√
κ− 1√
κ+ 1

)i

where we used that CG was initialized at v0 = 0 or better.

Corollary C.5
Assume the conditions of Theorem 4.5 hold. If the number of random vectors ℓ satisfies
(4.11) with εSTE = ε, and we run i ≥ max(iCG, iCG′) iterations of CG, where

iCG ≥
1

2

√
κ log(2K4ε

−1), (C.16)

iCG′ ≥ 1

2

√
κ log(K2ε

−1), (C.17)

then it holds that

P
(
|ϕ− ∂

∂θL(θ)| ≤ ε(1 + ∥K−1 ∂K
∂θ ∥F)

)
≥ 1− δ.

Proof. We begin with the error of CG’s estimate of y⊺K̂−1 ∂K̂
∂θ K̂

−1y, it holds by Theorem 4.5
in combination with Lemma C.7, that

εCG ≤ K4

(√
κ− 1√
κ+ 1

)i

≤ K4 exp(−
2i√
κ
) Lemma C.7

≤ K4 exp(− log(2K4ε
−1)) Assumption (C.16)

=
ε

2
.

Now for the error of the stochastic trace estimator. By assumption Theorem 4.1 is satisfied and
therefore εSTE = ε with probability 1 − δ. For the error of CG used in the stochastic trace

126

C.5 Preconditioning

estimate, we obtain by Theorem 4.5

εCG′ ≤ K2

(√
κ− 1√
κ+ 1

)i

≤ K2 exp(−
2i√
κ
) Lemma C.7

≤ K2 exp(− log(K2ε
−1)) Assumption (C.17)

= ε.

The result now follows by Theorem 4.5.

C.5 Preconditioning
Lemma C.4 (Condition Number and Preconditioner Quality)
Let K̂, P̂ ℓ ∈ Rn×n symmetric positive-definite such that (4.6) holds and assume that there
exists c > 0 such that c ≥ max(λmin(P̂), λmin(K̂)) for all ℓ. Then it holds that

κ = κ(P̂
− 1

2
ℓ K̂P̂

− 1
2

ℓ) ≤ (1 +O(g(ℓ))∥K̂∥F)2 (C.18)

Proof. Part of the strategy for this proof is adapted from Gardner et al. [3]. First note, that the

matrices P̂−1K̂, K̂P̂−1 and P̂
− 1

2
ℓ K̂P̂

− 1
2

ℓ are similar, and thus have the same eigenvalues. Now,
we have:

κ(P̂
− 1

2
ℓ K̂P̂

− 1
2

ℓ) =
λmax(P̂

−1K̂)

λmin(K̂P̂−1)

= ∥P̂−1K̂∥2∥P̂ K̂−1∥2
= ∥P̂−1(K̂ − P̂ + P̂)∥2∥(P̂ − K̂ + K̂)K̂−1∥2
= ∥1 + P̂−1(K̂ − P̂)∥2∥1− K̂−1(K̂ − P̂)∥2

Applying Cauchy-Schwarz and the triangle inequality, we obtain:

≤ (1 + ∥P̂−1∥2∥K̂ − P̂ ∥2)(1 + ∥K̂−1∥2∥K̂ − P̂ ∥2)
≤ (1 + c∥K̂ − P̂ ∥F)2

≤ (1 +O(g(ℓ))∥K̂∥F)2

Note since typically P̂ = σ2I + P with λmin(P) ≈ 0 and λmin(K̂) ≤ σ2 + λmin(K), where
λmin(K) small for most kernels, usually c ≈ σ2.

127

Appendix C Appendix of Chapter 4

C.5.1 Additive Kernels
Lemma C.5 (Additive Kernels)
Let k(x,y) =

∑d
j=1 kj(x,y) be an additive kernel and {(P̂ ℓ)j}dj=1 a set of preconditioners

indexed by ℓ, such that for all j = 1, . . . , d, we have

∥K̂j − (P̂ ℓ)j∥F ≤ cjg(ℓ)∥K̂j∥F . (C.19)

Then it holds for P̂ ℓ =
∑d

j=1(P̂ ℓ)j and c = maxj cj that

∥K̂ − P̂ ℓ∥F ≤ cdg(ℓ)∥K̂∥F (C.20)

Proof. It holds by assumption, that

∥K̂ − P̂ ℓ∥F ≤
d∑

j=1

∥K̂j − (P̂ ℓ)j∥F Cauchy-Schwarz

≤
d∑

j=1

cjg(ℓ)∥K̂j∥F

≤ max
j
cjg(ℓ)

d∑
j=1

√√√√ n∑
j=1

λi(K̂j)2

≤ cg(ℓ)
d∑

j=1

√√√√ n∑
j=1

λi(K̂)2 A,B spd =⇒ λi(A) ≤ λi(A+B)

≤ cg(ℓ)d∥K̂∥F

C.5.2 Kernels with a Uniformly Converging Approximation

Lemma C.6 (Preconditioner Quality from Uniform Convergence)
Let Ω ⊂ Rd be the data domain and k(·, ·) a positive-definite kernel such that for all x ∈ Ω
it holds that k(x,x) ≤ o2. Let Pℓ(·, ·) be a kernel approximation, such that a uniform
convergence bound of the form

sup
x,y∈Ω

|k(x,y)− Pℓ(x,y)| ≤ g(ℓ)cunif(d,Ω, k) (C.21)

holds. Then it holds for the preconditioner P̂ ℓ = σ2I + Pℓ(X,X), that

∥K̂ − P̂ ℓ∥F ≤ g(ℓ)c(d,Ω, k, n)∥K̂∥F , (C.22)

128

C.5 Preconditioning

where c(d,Ω, k, n) =
√
n

o2
cunif(d,Ω, k).

Proof. It holds that

∥K̂ − P̂ ℓ∥F = ∥K − Pℓ∥F =

√√√√ n∑
i,j=1

(k(xi,xj)− Pℓ(xi,xj))2

≤

√√√√ n∑
i,j=1

(g(ℓ)cunif(d,Ω, k))2 uniform convergence bound (C.21)

= ng(ℓ)cunif(d,Ω, k)

= g(ℓ)
√
n

(n∑
i=1

k(xi,xi)
2

k(xi,xi)2

) 1
2

k bounded

≤ g(ℓ)
√
n

o2

(n∑
i=1

K2
ij

) 1
2

= g(ℓ)c(d,Ω, k, n)∥K∥F
≤ g(ℓ)c(d,Ω, k, n)∥K̂∥F

C.5.3 Partial Cholesky Decomposition

Proposition C.2 (Partial Cholesky Approximation Quality)
Let k(x,y) = k(∥x− y∥) be a stationary kernel with output scale o2 = k(0) > 0. Assume
the kernel matrix spectrum decays at least exponentially, i.e. λj(K) ≤ c exp(−bj) for
c > 0 and b > log(4). Then the Cholesky preconditioner P̂ ℓ = σ2I +LℓL

⊺
ℓ satisfies

∥K̂ − P̂ ℓ∥F ≤
c
√
n

o2
exp(−b′ℓ)∥K∥F (C.23)

where b′ = b− log(4) > 0.

Proof. Since k(·, ·) is a positive definite kernel, the choice o2 = k(0) is no restriction. Now, it
holds that

λj ≤ c exp(−bj) = c exp(−(b′ + log(4))j) = c exp(−b′j)4−j

⇐⇒ 4jλj ≤ c exp(−b′j).

129

Appendix C Appendix of Chapter 4

Therefore by Theorem 3.2 of Harbrecht, Peters, and Schneider [172], we have tr(K −LℓL
⊺
ℓ) ≤

cn exp(−b′ℓ). Now it holds since K −LℓL
⊺
ℓ positive definite, that

∥K̂ − P̂ ℓ∥F = ∥K −LℓL
⊺
ℓ∥F ≤ tr(K −LℓL

⊺
ℓ) ≤ cn exp(−b′ℓ),

and with Kjj = o2 that

n =
√
n

(n∑
j=1

K2
jj

o4

) 1
2

≤
√
n

o2

(n∑
i,j=1

K2
ij

) 1
2

=

√
n

o2
∥K∥F .

This concludes the argument.

C.5.4 Quadrature Fourier Features (QFF)

Proposition C.3 (QFF Approximation Quality)
Assume Ω = [0, 1]d, k a kernel with Fourier transform p(ω) = exp(−1

2

∑d
j=1 ω

2
j γ

2
j) such

that Assumption 1 of Mutnỳ and Krause [149] is satisfied and let P̂ ℓ = σ2I +Pℓ, where Pℓ

is the QFF approximated kernel matrix. Let ℓ
1
d > 2

γ2 , then for b = 1
2(log(4)− 1), it holds

that
∥K̂ − P̂ ℓ∥F ≤ c(d, n, k) exp(−bℓ

1
d)∥K̂∥F . (C.24)

Proof. By Theorem 1 of Mutnỳ and Krause [149], replacing ℓ = (2m̄)d it holds that

sup
x,y∈Ω

|k(x,y)− Pℓ(x,y)| ≤ d2d−1

√
π

2

(
e

2γ2ℓ
1
d

) 1
2
ℓ
1
d

≤ c(d)
(
e

4

) 1
2
ℓ
1
d

ℓ
1
d > 2γ−2

= c(d) exp(
1

2
ℓ
1
d − log(4)

1

2
ℓ
1
d)

= c(d) exp(−1

2
(log(4)− 1)ℓ

1
d)

= c(d) exp(−bℓ 1
d)

Now by Lemma C.6, we have

∥K̂ − P̂ ℓ∥F ≤ c(d, n) exp(−bℓ
1
d)∥K̂∥F , (C.25)

where c(d, n) =
√
nc(d) by Assumption 1 of Mutnỳ and Krause [149], which assumes k(x,y) ≤

1.

130

C.5 Preconditioning

Proposition C.4 (General QFF Approximation Quality)
Assume Ω = [0, 1]d, k a kernel with Fourier transform p(ω) such that Assumption 1 of
Mutnỳ and Krause [149] is satisfied and fδ(ϕ) = p(cot(ϕ)) cos(δ cot(ϕ))

sin(ϕ)2
is (s − 1)-times

absolutely continuous. Let P̂ ℓ = σ2I + Pℓ, where Pℓ is the QFF approximated kernel
matrix. Then it holds that

∥K̂ − P̂ ℓ∥F ≤ c(d,Ω, k, n)ℓ−
s+1
d ∥K̂∥F . (C.26)

Proof. By Theorem 4 of [149], replacing ℓ = (2m̄)d, it holds that

sup
x,y∈Ω

|k(x,y)− Pℓ(x,y)| ≤ d2d−1 (s+ 2)s+1

s!
max
δ∈Ω

TV(f
(s)
δ)2s+1ℓ−

s+1
d

= c(d,Ω, k)ℓ−
s+1
d

Now by Lemma C.6, we have

∥K̂ − P̂ ℓ∥F ≤ c(d,Ω, k, n)ℓ−
s+1
d ∥K̂∥F .

Remark C.2 (Modified Matérn Kernel)
Proposition C.4 is satisfied for example for the modified Matérn(ν) kernel, defined via its
spectral density

p(ω) =
d∏

j=1

1

(1 + γ2jω
2
j)

ν+ 1
2

. (C.27)

See the appendix of Mutnỳ and Krause [149] for a detailed definition and motivation.

C.5.5 Truncated Singular Value Decomposition

Proposition C.5 (Truncated SVD Approximation Quality)
Let K be a kernel matrix and Pℓ = VℓΛℓVℓ its truncated singular value decomposition
consisting of the eigenvectors of the largest ℓ eigenvalues. Then it holds for P̂ = σ2I + Pℓ,
that

∥K̂ − P̂ ℓ∥F ≤ c(n)ℓ−
1
2 ∥K̂∥F . (C.28)

where c(n) =
√
n.

131

Appendix C Appendix of Chapter 4

Proof. Since the optimal rank-ℓ approximation in Frobenius norm is given by the truncated SVD
[173], we have for λ1(K) ≥ · · · ≥ λn(K), that

∥K̂ − P̂ ℓ∥2F = ∥K − Pℓ∥2F =
n∑

j=ℓ+1

λj(K)2

Now since λℓ+1(K) ≤ 1
ℓ

∑ℓ
j=1 λj(K) ≤ 1

ℓ tr(K), we have

≤ λℓ+1(K)
n∑

j=ℓ+1

λj(K) ≤ 1

ℓ
tr(K)2

=
1

ℓ
∥λ∥21 ≤

n

ℓ
∥λ∥22 =

n

ℓ
∥K∥2F ≤

n

ℓ
∥K̂∥2F

where λ = (λ1(K), . . . , λn(K))⊺ ∈ Rn.

C.5.6 Randomized Singular Value Decomposition

Proposition C.6 (Randomized SVD Approximation Quality)
Let K be a kernel matrix and Pℓ = HℓH

⊺
ℓ K its randomized singular value decomposi-

tion constructed via the LINEARTIMESVD algorithm [174] with s ∈ N samples drawn
according to probabilities {pj}nj=1. Then for P̂ = σ2I +Pℓ, it holds with probability 1− δ,
that

∥K̂ − P̂ ℓ∥F ≤ c(n)(ℓ−
1
2 +O(ℓ 1

4 s−
1
4))∥K̂∥F , (C.29)

where c(n) =
√
n.

Proof. By Drineas, Kannan, and Mahoney [174, Theorem 4] it holds with probability 1− δ, that

∥K̂ − P̂ ℓ∥2F = ∥K − Pℓ∥2F
≤ ∥K −Kℓ∥2F + c(pj , δ)ℓ

1
2 s−

1
2 ∥K∥2F

By the same argument as in the proof of Proposition C.5 for the error of the optimal rank-ℓ
approximation ∥K −Kℓ∥2F , we obtain

≤ n

ℓ
∥K∥2F + c(pj , δ)ℓ

1
2 s−

1
2 ∥K∥2F

≤ n(ℓ−1 +O(ℓ 1
2 s−

1
2))∥K̂∥2F

This completes the proof.

132

C.5 Preconditioning

C.5.7 Randomized Nyström Method

Proposition C.7 (Randomized Nyström Approximation Quality)
Let K be a kernel matrix and Pℓ = CW+

ℓ C⊺ its randomized Nyström approximation
constructed via Algorithm 3 of Drineas and Mahoney [104] with s ∈ N columns drawn

according to probabilities pj =
K2

jj∑n
j=1 K

2
jj

. Then for P̂ = σ2I+Pℓ, it holds with probability

1− δ, that
∥K̂ − P̂ ℓ∥F ≤ c(n)(ℓ−

1
2 +O(ℓ 1

4 s−
1
4))∥K̂∥F , (C.30)

where c(n) =
√
n.

Proof. By Drineas and Mahoney [104, Theorem 3] it holds with probability 1− δ, that

∥K̂ − P̂ ℓ∥F = ∥K − Pℓ∥F ≤ ∥K −Kℓ∥F + c(δ)ℓ
1
4 s−

1
4

n∑
j=1

K2
jj

By the same argument as in the proof of Proposition C.5 for the error of the optimal rank-ℓ
approximation ∥K −Kℓ∥F , we obtain

≤ n 1
2 ℓ−

1
2 ∥K∥2F + c(δ)ℓ

1
4 s−

1
4

n∑
j=1

K2
jj

≤ n 1
2 ℓ−

1
2 ∥K∥2F + c(δ)ℓ

1
4 s−

1
4

√√√√ n∑
j=1

K2
jj∥K∥F

≤ n 1
2 (ℓ−

1
2 +O(ℓ 1

4 s−
1
4))∥K̂∥F

This completes the proof.

C.5.8 Random Fourier Features (RFF)

Proposition C.8 (RFF Approximation Quality)
Let k(x,y) = k(x− y) be a positive-definite kernel with compact data domain Ω ⊂ Rd.
Let Pℓ = ZℓZ

⊺
ℓ be the random Fourier feature approximation [91], where Zℓ ∈ Rn×ℓ.

Then for P̂ ℓ = σ2I + Pℓ it holds with probability 1− δ, that

∥K̂ − P̂ ℓ∥F ≤ c(d,Ω, k, δ, n)ℓ−
1
2 ∥K̂∥F . (C.31)

Proof. By Theorem 1 of Sriperumbudur and Szabó [175] with probability 1− δ, we obtain the
uniform convergence bound

sup
x,y∈Ω

|k(x,y)− Pℓ(x,y)| ≤ cunif(d,Ω, k, δ)ℓ
− 1

2 . (C.32)

Now, applying Lemma C.6 completes the proof.

133

Appendix C Appendix of Chapter 4

C.6 Technical Results
Lemma C.7
Let x ∈ R such that x > 1, then it holds that

x− 1

x+ 1
≤ exp(−2

x
). (C.33)

Proof. By Mitrinovic and Vasic [176, Section 3.6.18] it holds for y > 0, that

log(y + 1)

y
≥ 2

2 + y

Substituting y = x+1
x−1 − 1 we obtain

log(
x+ 1

x− 1
) ≥

2(x+1
x−1 − 1)

1 + x+1
x−1

=
2(x+ 1− x+ 1)

2x
=

2

x
⇐⇒ x+ 1

x− 1
≥ exp(

2

x
)

This proves the claim.

C.7 Additional Experimental Results
C.7.1 Synthetic Data

We report bias and variance of the stochastic estimators for the log-maginal likelihood and its
derivatives for the exponentiated quadratic, Matérn(32) and rational quadratic kernel on a synthetic
dataset of size n = 1,000 with varying dimensionality d ∈ {1, 2, 3} in Table C.1. Using ℓ = 128
random samples with a preconditioner of the same size and i = 25 Lanczos / CG iterations, bias
and variance are reduced by several orders of magnitude across different kernels. Note, that
the variance reduction tends to decline with dimensionality, even though this is not necessarily
universal across kernels. We show the bias and variance reduction for increasing number of
random samples, respectively preconditioner quality in Figure C.1.

C.7.2 UCI Datasets

For the experiments we conducted on UCI datasets, we report the full experimental results with
their deviation across 10 runs in Table C.2. Test errors with and without preconditioning did not
differ by more than two standard deviations. However, model evaluations of the optimizer were
significantly reduced when using a preconditioner of size 500, leading to substantial speedup.
Note, that the experiment on the “3DRoad” dataset was only carried out once due to the prohibitive
runtime without preconditioning.

134

C.7 Additional Experimental Results

Optimizer Choice We used the L-BFGS optimizer in our experiments due to its favorable
convergence properties. As an ablation experiment we compared to the Adam optimizer as
sometimes used for its robustness to noise, when using stochastic approximations of the log-
marginal likelihood [3, 113]. We find that with preconditioning optimization with L-BFGS
significantly outperformed optimization with Adam, both in terms of training and test error,
except for the “KEGGdir” dataset (cf. Table 4.2 and Table C.3). Additionally, L-BFGS converged
faster across all experiments. This shows that variance reduction via preconditioning makes
the use of second-order optimizers not only possible, but preferred for GP hyperparameter
optimization when using stochastic approximations.

10−6

10−4

R
el

.E
rr

or

L

22 24 26

Samples `

10−10

10−8

10−6

10−4

V
ar

ia
nc

e

10−6

10−4

10−2

100
∂L/∂o

22 24 26

Samples `

10−10

10−8

10−6

10−4

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2)

22 24 26

Samples `

(a) Matérn(3/2) (d = 1).

10−3

10−2

10−1

R
el

.E
rr

or

L

22 24 26

Samples `

10−5

10−4

10−3

10−2

V
ar

ia
nc

e

10−3

10−2

10−1

∂L/∂o

22 24 26

Samples `

10−5
10−4
10−3
10−2

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2)

22 24 26

Samples `

(b) Matérn(3/2) (d = 3).

135

Appendix C Appendix of Chapter 4

10−7
10−6
10−5
10−4

R
el

.E
rr

or

L

22 24 26

Samples `

10−11

10−9

10−7

10−5

V
ar

ia
nc

e

10−6

10−4

10−2

∂L/∂o

22 24 26

Samples `

10−11
10−9
10−7
10−5

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2)

22 24 26

Samples `

(c) RatQuad (d = 1).

10−4

10−3

10−2

10−1

R
el

.E
rr

or

L

22 24 26

Samples `

10−5
10−4
10−3
10−2

V
ar

ia
nc

e

10−3

10−1

∂L/∂o

22 24 26

Samples `

10−5

10−3

10−1

∂L/∂l

22 24 26

Samples `

∂L/∂σ

Stoch. trace estimate Precond. trace estimate Hutchinson’s rate O(`−
1
2)

22 24 26

Samples `

(d) RatQuad (d = 3).

Figure C.1: Bias and variance on synthetic datasets. Relative error and variance of the stochastic
estimators of the log-marginal likelihood and its derivative for increasing number of random
vectors and preconditioner quality. Experiments were performed for different kernels on a
synthetic dataset of size n = 1,000 with dimension d ∈ {1, 2, 3}. Plots show mean and 95%
confidence intervals for the relative error computed over 25 repetitions.

136

C.7 Additional Experimental Results

Ta
bl

e
C

.1
:B

ia
s

an
d

va
ri

an
ce

re
du

ct
io

n
fo

r
di

ffe
re

nt
ke

rn
el

s.
B

ia
s

an
d

va
ria

nc
e

of
th

e
st

oc
ha

st
ic

es
tim

at
or

s
fo

rt
he

lo
g

-m
ar

gi
na

ll
ik

el
ih

oo
d

an
d

its
de

riv
at

iv
e(

s)
co

m
pu

te
d

fo
rs

yn
th

et
ic

da
ta

(n
=

1,
00

0,
σ
2
=

10
−
2
)w

ith
25

re
pe

tit
io

ns
.

L
∂
L/
∂
o

∂
L/
∂
l

∂
L/
∂
σ

B
ia

s
V

ar
.

B
ia

s
V

ar
.

B
ia

s
V

ar
.

B
ia

s
V

ar
.

K
er

ne
l

d
Pr

ec
.

M
at

ér
n(
3
/2
)

1
0

2
×

10
−
1

3
×

1
0−

6
2
×

1
0−

1
7
×
1
0
−
8

7
×
1
0
−
1

5
×
1
0
−
7

5
×
1
0
−
1

3
×
1
0
−
6

12
8

5
×

10
−
6

6
×

1
0−

1
2

3
×

1
0−

6
2
×

1
0−

1
2

9
×

1
0−

6
2
×

1
0−

1
1

5
×
1
0
−
6

6
×
1
0
−
1
2

2
0

1
4
×

1
0−

3
1

2
×

1
0−

3
3

1
×

1
0−

2
3

2
×
1
0
−
2

12
8

8
×

10
−
4

3
×

10
−
7

3
×

1
0−

4
4
×

1
0−

8
9
×

1
0−

4
3
×

1
0−

7
5
×

1
0−

4
1
×

1
0−

7

3
0

1
1
×

1
0
−
3

6
×

1
0
−
1

3
×

1
0−

5
1

4
×

1
0−

5
2

1
×

1
0−

3

12
8

5
×

10
−
3

5
×

10
−
6

2
×

1
0
−
3

1
×

1
0
−
6

2
×

1
0−

2
8
×

1
0−

6
9
×

1
0−

3
2
×

1
0−

6

R
B

F
1

0
1
×

10
−
3

8
×

10
−
7

1
×

1
0
−
4

6
×

1
0
−
9

8
×

1
0−

4
4
×

1
0−

7
2
×

1
0−

3
1
×

1
0−

6

12
8

1
×

10
−
6

5
×

10
−
1
3

7
×

1
0
−
7

2
×

1
0
−
1
3

1
×

1
0−

5
6
×

1
0−

1
1

1
×

1
0−

6
4
×

1
0−

1
3

2
0

5
×

10
−
1

5
×

10
−
6

4
×

1
0
−
1

2
×

1
0
−
7

4
2
×

1
0−

5
1

4
×

1
0−

6

12
8

1
×

10
−
6

9
×

10
−
1
3

6
×

1
0
−
7

2
×

1
0
−
1
3

1
×

1
0−

5
1
×

1
0−

1
0

9
×

1
0−

7
6
×

1
0−

1
3

3
0

1
1
×

1
0
−
5

1
3
×

1
0
−
7

9
3
×

1
0−

5
3

5
×

1
0−

6

12
8

8
×

10
−
4

2
×

10
−
7

2
×

1
0
−
4

2
×

1
0
−
8

2
×

1
0−

3
3
×

1
0−

6
4
×

1
0−

4
6
×

1
0−

8

R
at

Q
ua

d
1

0
2
×

10
−
3

9
×

1
0
−
7

6
×

1
0
−
4

3
×

1
0
−
8

2
×

1
0−

3
7
×

1
0−

7
1
×

1
0−

3
1
×

1
0−

6

12
8

2
×

10
−
6

1
×

10
−
1
2

9
×

1
0
−
7

4
×

1
0
−
1
3

1
×

1
0−

5
6
×

1
0−

1
1

1
×

1
0−

6
9
×

1
0−

1
3

2
0

9
×

10
−
1

7
×

10
−
6

1
2
×

1
0
−
7

6
5
×

1
0−

6
2

3
×

1
0−

6

12
8

2
×

10
−
4

1
×

10
−
8

7
×

1
0
−
5

2
×

1
0
−
9

6
×

1
0−

4
1
×

1
0−

7
1
×

1
0−

4
4
×

1
0−

9

3
0

1
2
×

1
0
−
2

1
8
×

1
0
−
3

7
1
×

1
0−

1
3

7
×

1
0−

2

12
8

2
×

10
−
3

2
×

10
−
6

4
×

1
0
−
4

1
×

1
0
−
7

3
×

1
0−

3
4
×

1
0−

6
7
×

1
0−

4
3
×

1
0−

7

137

Appendix C Appendix of Chapter 4

Table
C

.2:H
yperparam

eter
optim

ization
on

U
C

Idatasets.G
P

regression
using

a
M

atérn(
32)

kerneland
pivoted

C
holesky

preconditioner
ofsize

500
w

ith
ℓ
=

5
0

random
sam

ples.H
yperparam

eters
w

ere
optim

ized
w

ith
L

-B
FG

S
foratm

ost20
steps

using
early

stopping
via

a
validation

set.A
llresults,but“3D

R
oad”,are

averaged
over10

runs.

M
odelevals.

R
untim

e
(s)

Speedup
−
L

train ↓
−
L

test ↓
R

M
SE

↓
m

ean
std

m
ean

std
m

ean
std

m
ean

std
m

ean
std

m
ean

std
D

ataset
n

d
Prec.Q

ual.
O

pt.Steps

E
levators

1
2
4
4
9

1
8

0
1
9

4
2
.2

7
.5

5
3
.0

7
.7

1
.0

0
.0

0
.4
6
5

0
.0
0
3

0
.4
0
2

0
.0
1
0

0
.3
4
8

0
.0
0
5

5
0
0

1
9

3
6
.4

1
.2

3
9
.2

0
.8

1
.4

0
.2

0
.4
3
8

0
.0
0
3

0
.4
0
2

0
.0
1
0

0
.3
4
8

0
.0
0
5

B
ike

1
3
0
3
4

1
7

0
1
9

3
2
.3

1
.3

3
0
.6

1
.1

1
.0

0
.0

−
0
.9
9
8

0
.0
1
1

−
0
.9
9
3

0
.0
1
4

0
.0
4
5

0
.0
0
4

5
0
0

1
9

3
1
.4

2
.1

3
7
.1

1
.5

0
.8

0
.0

−
0
.9
9
9

0
.0
1
9

−
0
.9
8
8

0
.0
1
8

0
.0
4
5

0
.0
0
3

K
in40k

3
0
0
0
0

8
0

8
1
9
.0

4
.4

1
8
6
.5

6
8
.0

1
.0

0
.0

−
0
.3
3
4

0
.0
0
2

−
0
.3
1
4

0
.0
0
2

0
.0
9
3

0
.0
0
1

5
0
0

6
1
5
.0

0
.4

4
4
.6

1
.3

2
.7

0
.1

−
0
.4
3
3

0
.0
0
6

−
0
.3
1
4

0
.0
0
4

0
.0
9
5

0
.0
0
1

Protein
3
4
2
9
7

9
0

1
5

1
2
4
.2

0
.4

8
9
2
.6

1
9
.1

1
.0

0
.0

0
.9
9
6

0
.0
0
3

0
.8
8
7

0
.0
0
8

0
.5
7
2

0
.0
0
7

5
0
0

7
1
7
.8

0
.6

4
2
.5

5
.0

4
.2

0
.4

0
.9
2
7

0
.0
0
4

0
.8
8
4

0
.0
0
5

0
.5
5
8

0
.0
0
8

K
E

G
G

dir
3
6
6
2
0

2
0

0
1
9

5
5
.8

1
1
.7

1
4
5
0
.3

2
5
3
.4

1
.0

0
.0

−
0
.9
5
0

0
.0
0
9

−
0
.9
4
6

0
.0
3
4

0
.0
8
6

0
.0
0
4

5
0
0

1
9

4
2
.9

0
.7

1
7
3
.7

2
.9

8
.4

1
.5

−
1
.0
0
4

0
.0
0
9

−
0
.9
4
9

0
.0
3
1

0
.0
8
6

0
.0
0
4

3D
R

oad
3
2
6
1
5
5

3
0

9
6
8
.0

8
2
2
0
0
.0

1
.0

0
.7
7
3

1
.4
3
6

0
.2
9
8

5
0
0

9
1
9
.0

7
3
0
6
.0

1
1
.3

0
.1
2
8

1
.1
6
9

0
.1
2
7

138

C.7 Additional Experimental Results

Table C.3: Hyperparameter optimization using Adam. GP regression using a Matérn(32) kernel
and pivoted Cholesky preconditioner of size 500 with ℓ = 50 random samples. Hyperparameters
were optimized with Adam for at most 20 steps using early stopping via a validation set.

Dataset n d Prec. Quality −Ltrain ↓ −Ltest ↓ RMSE ↓ Runtime (s)

Elevators 12 449 18 500 0.4803 0.4593 0.3684 109.0000
Bike 13 034 17 500 0.2265 0.3473 0.2300 64.0000

Kin40k 30 000 8 500 0.4392 −0.1200 0.0982 159.0000
Protein 34 297 9 500 0.9438 0.9319 0.5681 92.0000

KEGGdir 36 620 20 500 -1.0070 −1.0390 0.0810 239.0000

139

Bibliography
[1] J. Wenger and P. Hennig. “Probabilistic Linear Solvers for Machine Learning”. In:

Advances in Neural Information Processing Systems (NeurIPS). 2020 (cit. on pp. iii, vi,
21, 23, 28, 48, 49, 87).

[2] J. Wenger, G. Pleiss, M. Pförtner, P. Hennig, and J. P. Cunningham. “Posterior and
Computational Uncertainty in Gaussian Processes”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2022 (cit. on pp. iii, vi, 22, 23).

[3] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. “GPyTorch:
Blackbox matrix-matrix Gaussian process inference with GPU acceleration”. In: Ad-
vances in Neural Information Processing Systems (NeurIPS) (2018) (cit. on pp. iii, vi, 21,
23, 42, 47, 48, 53, 55, 58–61, 68–70, 72, 74, 127, 135).

[4] J. Wenger, G. Pleiss, P. Hennig, J. P. Cunningham, and J. R. Gardner. “Preconditioning for
Scalable Gaussian Process Hyperparameter Optimization”. In: International Conference
on Machine Learning (ICML). 2022 (cit. on pp. iii, vi, 23, 42, 47, 48, 53, 74).

[5] C. F. Gauss. Theoria motus corporum coelestium in sectionibus conicis solem ambientium.
Vol. 7. FA Perthes, 1877 (cit. on p. 2).

[6] D. Teets and K. Whitehead. “The discovery of Ceres: How Gauss became famous”. In:
Mathematics Magazine 72.2 (1999), pp. 83–93 (cit. on p. 2).

[7] W. K. Bühler. Gauss: A biographical study. Springer, 2012 (cit. on p. 2).

[8] S. M. Stigler. “Gauss and the Invention of Least Squares”. In: The Annals of Statistics
9.3 (1981), pp. 465–474. DOI: 10.1214/aos/1176345451 (cit. on p. 2).

[9] S. Legg and M. Hutter. “A collection of definitions of intelligence”. In: Frontiers in
Artificial Intelligence and Applications 17 (2007) (cit. on p. 2).

[10] S. Legg and M. Hutter. “Universal intelligence: A definition of machine intelligence”. In:
Minds and machines 17 (2007), pp. 391–444 (cit. on p. 2).

[11] T. M. Mitchell. Machine learning. Vol. 1. McGraw Hill New York, 1997 (cit. on p. 2).

[12] A. L. Samuel. “Some studies in machine learning using the game of checkers”. In: IBM
Journal of Research and Development 44 (1959), pp. 206–226. DOI: 10.1147/rd.441.
0206 (cit. on p. 2).

[13] A. L. Samuel. “Some Studies in Machine Learning Using the Game of Checkers.
II—Recent Progress”. In: IBM Journal of Research and Development 11.6 (1967),
pp. 601–617. DOI: 10.1147/rd.116.0601 (cit. on p. 2).

141

https://doi.org/10.1214/aos/1176345451
https://doi.org/10.1147/rd.441.0206
https://doi.org/10.1147/rd.441.0206
https://doi.org/10.1147/rd.116.0601

Bibliography

[14] P. Raghavan. How AI Is Powering a More Helpful Google. 2020. URL: https://blog.
google/products/search/search-on/ (cit. on p. 3).

[15] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia,
Y. Jia, A. Kalro, et al. “Applied machine learning at facebook: A datacenter infrastructure
perspective”. In: 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE. 2018, pp. 620–629 (cit. on p. 3).

[16] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. “High-resolution image
synthesis with latent diffusion models”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). 2022, pp. 10684–10695 (cit. on p. 3).

[17] OpenAI. GPT-4 Technical Report. 2023. DOI: 10.48550/arXiv.2303.08774. arXiv:
2303.08774 (cit. on p. 3).

[18] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry,
P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A.
Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S.
Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E.
Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating Large
Language Models Trained on Code. 2021. DOI: 10.48550/arXiv.2107.03374. arXiv:
2107.03374 (cit. on p. 3).

[19] D. Tabernik, S. Šela, J. Skvarč, and D. Skočaj. “Segmentation-based deep-learning
approach for surface-defect detection”. In: Journal of Intelligent Manufacturing 31.3
(2020), pp. 759–776. DOI: 10.1007/s10845-019-01476-x (cit. on p. 3).

[20] B. J. Erickson, P. Korfiatis, Z. Akkus, and T. L. Kline. “Machine learning for medical
imaging”. In: Radiographics 37.2 (2017), pp. 505–515 (cit. on p. 3).

[21] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and
L. Zdeborová. “Machine learning and the physical sciences”. In: Reviews of Modern
Physics 91.4 (2019) (cit. on pp. 3, 37).

[22] K. Kashinath, M. Mustafa, A. Albert, J.-L. Wu, C. Jiang, S. Esmaeilzadeh, K. Aziz-
zadenesheli, R. Wang, A. Chattopadhyay, A. Singh, A. Manepalli, D. Chirila, R. Yu, R.
Walters, B. White, H. Xiao, H. A. Tchelepi, P. Marcus, A. Anandkumar, P. Hassanzadeh,
and n. Prabhat. “Physics-informed machine learning: case studies for weather and climate
modelling”. In: vol. 379. 2194. 2021, p. 20200093. DOI: 10.1098/rsta.2020.0093
(cit. on p. 3).

[23] M.-F. Ho, S. Bird, and R. Garnett. “Damped Lyman-α absorbers from Sloan digital sky
survey DR16Q with Gaussian processes”. In: Monthly Notices of the Royal Astronomical
Society 507.1 (2021), pp. 704–719. DOI: 10.1093/mnras/stab2169 (cit. on p. 3).

[24] A. C. Miller, L. Anderson, B. Leistedt, J. P. Cunningham, D. W. Hogg, and D. M. Blei.
“Mapping interstellar dust with Gaussian processes”. In: The Annals of Applied Statistics
16.4 (2022), pp. 2672–2692 (cit. on p. 3).

142

https://blog.google/products/search/search-on/
https://blog.google/products/search/search-on/
https://doi.org/10.48550/arXiv.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1007/s10845-019-01476-x
https://doi.org/10.1098/rsta.2020.0093
https://doi.org/10.1093/mnras/stab2169

Bibliography

[25] G. Bertone, M. P. Deisenroth, J. S. Kim, S. Liem, R. R. de Austri, and M. Welling.
Accelerating the BSM interpretation of LHC data with machine learning. 2016. DOI:
10.48550/arXiv.1611.02704. arXiv: 1611.02704 (cit. on p. 3).

[26] P. T. Komiske, E. M. Metodiev, B. Nachman, and M. D. Schwartz. “Pileup Mitigation
with Machine Learning (PUMML)”. In: Journal of High Energy Physics 2017.12 (2017),
pp. 1–20 (cit. on pp. 3, 4).

[27] M. Frate, K. Cranmer, S. Kalia, A. Vandenberg-Rodes, and D. Whiteson. Modeling
Smooth Backgrounds and Generic Localized Signals with Gaussian Processes. 2017. DOI:
10.48550/arXiv.1709.05681. arXiv: 1709.05681 (cit. on p. 3).

[28] M. M. Churchland, J. P. Cunningham, M. T. Kaufman, J. D. Foster, P. Nuyujukian, S. I.
Ryu, and K. V. Shenoy. “Neural Population Dynamics during Reaching”. In: Nature
487.7405 (July 2012), pp. 51–56. ISSN: 1476-4687. DOI: 10.1038/nature11129 (cit. on
pp. 3, 4).

[29] J. P. Cunningham and B. M. Yu. “Dimensionality Reduction for Large-Scale Neural
Recordings”. In: Nature Neuroscience 17.11 (2014), pp. 1500–1509. ISSN: 1097-6256,
1546-1726. DOI: 10.1038/nn.3776 (cit. on p. 3).

[30] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvu-
nakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J.
Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen,
D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bo-
denstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis.
“Highly Accurate Protein Structure Prediction with AlphaFold”. In: Nature 596.7873
(2021), pp. 583–589. ISSN: 1476-4687. DOI: 10.1038/s41586-021-03819-2 (cit. on
p. 3).

[31] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep
Convolutional Neural Networks”. In: Advances in Neural Information Processing Systems
(NeurIPS). Vol. 25. 2012 (cit. on p. 4).

[32] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I.
Polosukhin. “Attention Is All You Need”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2017. DOI: 10.48550/arXiv.1706.03762 (cit. on p. 4).

[33] N. Jaquier, V. Borovitskiy, A. Smolensky, A. Terenin, T. Asfour, and L. Rozo. “Geometry-
Aware Bayesian Optimization in Robotics Using Riemannian Matérn Kernels”. In: Con-
ference on Robot Learning (CoRL). 2022 (cit. on p. 4).

[34] A. C. Walls, Y.-J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, and D. Veesler. “Struc-
ture, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein”. In: Cell 181.2
(2020), 281–292.e6. ISSN: 0092-8674, 1097-4172. DOI: 10.1016/j.cell.2020.02.
058 (cit. on p. 4).

[35] S. D. Axen, A. Gessner, C. Sommer, N. Weitzel, and Á. Tejero-Cantero. “Spatiotemporal
Modeling of European Paleoclimate Using Doubly Sparse Gaussian Processes”. In: Work-
shop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems
(NeurIPS). 2022. DOI: 10.48550/arXiv.2211.08160 (cit. on p. 4).

143

https://doi.org/10.48550/arXiv.1611.02704
https://arxiv.org/abs/1611.02704
https://doi.org/10.48550/arXiv.1709.05681
https://arxiv.org/abs/1709.05681
https://doi.org/10.1038/nature11129
https://doi.org/10.1038/nn.3776
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.1016/j.cell.2020.02.058
https://doi.org/10.48550/arXiv.2211.08160

Bibliography

[36] A. Rajkomar, M. Hardt, M. D. Howell, G. Corrado, and M. H. Chin. “Ensuring Fairness
in Machine Learning to Advance Health Equity”. In: Annals of Internal Medicine 169.12
(2018), pp. 866–872. DOI: 10.7326/M18-1990 (cit. on p. 7).

[37] B. Hutchinson, V. Prabhakaran, E. Denton, K. Webster, Y. Zhong, and S. Denuyl. Social
Biases in NLP Models as Barriers for Persons with Disabilities. 2020. DOI: 10.48550/
arXiv.2005.00813. arXiv: 2005.00813 (cit. on p. 7).

[38] J. Buolamwini and T. Gebru. “Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification”. In: Journal of Machine Learning Research (2018)
(cit. on p. 7).

[39] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell. “On the Dangers of
Stochastic Parrots: Can Language Models Be Too Big?” In: Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Transparency. FAccT ’21. Association for
Computing Machinery, 2021, pp. 610–623. DOI: 10.1145/3442188.3445922 (cit. on
p. 7).

[40] M. J. Dupré and F. J. Tipler. “New axioms for rigorous Bayesian probability”. In: Bayesian
Analysis 4.3 (2009), pp. 599–606. DOI: 10.1214/09-BA422 (cit. on p. 9).

[41] A. Wald. “Statistical Decision Functions”. In: The Annals of Mathematical Statistics 20.2
(1949), pp. 165–205. DOI: 10.1214/aoms/1177730030 (cit. on p. 9).

[42] A. Zellner. “Optimal Information Processing and Bayes’s Theorem”. In: The American
Statistician 42.4 (1988), pp. 278–280. DOI: 10.2307/2685143 (cit. on p. 11).

[43] M. E. Khan and H. Rue. The Bayesian Learning Rule. 2022. DOI: 10.48550/arXiv.
2107.04562 (cit. on p. 11).

[44] M. Kanagawa, P. Hennig, D. Sejdinovic, and B. K. Sriperumbudur. Gaussian processes
and kernel methods: A review on connections and equivalences. 2018. arXiv: 1807.02582
(cit. on pp. 12, 43, 52, 103, 104, 107).

[45] P. Hennig. Probabilistic machine learning. Lecture Course. University of Tübingen, 2020
(cit. on p. 15).

[46] M. Pförtner, I. Steinwart, P. Hennig, and J. Wenger. Physics-Informed Gaussian Process
Regression Generalizes Linear PDE Solvers. 2022. arXiv: 2212.12474 (cit. on pp. 15,
16, 23, 75).

[47] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT
Press, 2006 (cit. on pp. 15, 26, 35, 42, 50, 58, 102).

[48] H. Wendland. Scattered data approximation. Vol. 17. Cambridge University Press, 2004
(cit. on p. 15).

[49] M. van der Wilk, C. E. Rasmussen, and J. Hensman. “Convolutional Gaussian Processes”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2017. DOI: 10.
48550/arXiv.1709.01894 (cit. on p. 17).

[50] B. Adlam, J. Lee, S. Padhy, Z. Nado, and J. Snoek. Kernel Regression with Infinite-Width
Neural Networks on Millions of Examples. 2023. DOI: 10.48550/arXiv.2303.05420
(cit. on p. 17).

144

https://doi.org/10.7326/M18-1990
https://doi.org/10.48550/arXiv.2005.00813
https://doi.org/10.48550/arXiv.2005.00813
https://arxiv.org/abs/2005.00813
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1214/09-BA422
https://doi.org/10.1214/aoms/1177730030
https://doi.org/10.2307/2685143
https://doi.org/10.48550/arXiv.2107.04562
https://doi.org/10.48550/arXiv.2107.04562
https://arxiv.org/abs/1807.02582
https://arxiv.org/abs/2212.12474
https://doi.org/10.48550/arXiv.1709.01894
https://doi.org/10.48550/arXiv.1709.01894
https://doi.org/10.48550/arXiv.2303.05420

Bibliography

[51] P. Hennig, M. A. Osborne, and M. Girolami. “Probabilistic numerics and uncertainty
in computations”. In: Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 471.2179 (2015) (cit. on pp. 19, 27, 32, 42, 48).

[52] J. Cockayne, C. Oates, T. J. Sullivan, and M. Girolami. “Bayesian probabilistic numerical
methods”. In: SIAM Review 61.4 (2019), pp. 756–789 (cit. on pp. 19, 27, 42, 48).

[53] C. Oates and T. J. Sullivan. “A modern retrospective on probabilistic numerics”. In:
Statistics and Computing (2019) (cit. on pp. 19, 27, 32, 42, 48).

[54] P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic Numerics: Computation
as Machine Learning. Cambridge University Press, 2022. ISBN: 9781316681411. DOI:
10.1017/9781316681411 (cit. on pp. 19, 42, 48).

[55] J. Wenger, N. Krämer, M. Pförtner, J. Schmidt, N. Bosch, N. Effenberger, J. Zenn, T. K.
Alexandra Gessner, F.-X. Briol, M. Mahsereci, and P. Hennig. ProbNum: Probabilistic
Numerics in Python. 2021. arXiv: 2112.02100 (cit. on pp. 21, 23, 53, 73).

[56] J. Wenger, H. Kjellström, and R. Triebel. “Non-Parametric Calibration for Classification”.
In: International Conference on Artificial Intelligence and Statistics (AISTATS). 2020
(cit. on p. 23).

[57] Y. Saad. Numerical methods for large eigenvalue problems. Manchester University Press,
1992 (cit. on pp. 26, 32).

[58] L. N. Trefethen and D. Bau. Numerical Linear Algebra. Society for Industrial and Applied
Mathematics, 1997 (cit. on pp. 26, 32, 61, 112).

[59] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins University Press,
2013 (cit. on pp. 26, 31, 32, 58).

[60] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006 (cit. on pp. 26,
28).

[61] T. Hofmann, B. Schölkopf, and A. J. Smola. “Kernel methods in machine learning”. In:
The Annals of Statistics (2008), pp. 1171–1220 (cit. on p. 26).

[62] R. E. Kalman. “A new approach to linear filtering and prediction problems”. In: Journal
of Basic Engineering 82.1 (1960), pp. 35–45 (cit. on p. 26).

[63] F. R. K. Chung. Spectral graph theory. American Mathematical Society, 1997 (cit. on
p. 26).

[64] C. A. J. Fletcher. Computational Galerkin methods. Springer, 1984, pp. 72–85 (cit. on
pp. 26, 37).

[65] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006 (cit. on pp. 26, 31, 32,
34, 58, 79, 81, 95).

[66] P. Hennig. “Probabilistic Interpretation of Linear Solvers”. In: SIAM Journal on Opti-
mization 25.1 (2015), pp. 234–260 (cit. on pp. 27, 28, 32, 48, 49, 81).

[67] S. Bartels, J. Cockayne, I. C. Ipsen, and P. Hennig. “Probabilistic linear solvers: A
unifying view”. In: Statistics and Computing 29.6 (2019), pp. 1249–1263 (cit. on pp. 27,
28, 32, 48, 49).

145

https://doi.org/10.1017/9781316681411
https://arxiv.org/abs/2112.02100

Bibliography

[68] P. Lévy. Calcul des probabilités. J. Gabay, 1925 (cit. on p. 28).

[69] C. F. Van Loan. “The ubiquitous Kronecker product”. In: Journal of Computational and
Applied Mathematics 123.1-2 (2000), pp. 85–100 (cit. on p. 28).

[70] P. Hennig and M. Kiefel. “Quasi-Newton method: A new direction”. In: Journal of
Machine Learning Research 14 (2013), pp. 843–865 (cit. on pp. 28, 32, 82).

[71] M. R. Hestenes and E. Stiefel. “Methods of conjugate gradients for solving linear sys-
tems”. In: Journal of Research of the National Bureau of Standards 49 (1952) (cit. on
pp. 30, 32, 47, 48, 58, 61, 92).

[72] M. H. Gutknecht and Z. Strakos. “Accuracy of two three-term and three two-term recur-
rences for Krylov space solvers”. In: SIAM Journal on Matrix Analysis and Applications
22.1 (2000), pp. 213–229 (cit. on p. 30).

[73] J. Cockayne, C. Oates, I. C. Ipsen, and M. Girolami. “A Bayesian Conjugate Gradient
Method”. In: Bayesian Analysis 14.3 (2019), pp. 937–1012 (cit. on pp. 30, 32, 34, 48,
49).

[74] M. Seeger. Low Rank Updates for the Cholesky Decomposition. Tech. rep. University of
California at Berkeley, 2008 (cit. on pp. 30, 79).

[75] C. C. Paige. “Computational variants of the Lanczos method for the eigenproblem”. In:
IMA Journal of Applied Mathematics 10.3 (1972), pp. 373–381 (cit. on p. 31).

[76] H. D. Simon. “Analysis of the symmetric Lanczos algorithm with reorthogonalization
methods”. In: Linear Algebra and its Applications 61 (1984), pp. 101–131 (cit. on p. 31).

[77] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators. United States Government Press Office Los Angeles,
CA, 1950 (cit. on pp. 31, 58, 61, 113).

[78] P. Drineas and M. W. Mahoney. “RandNLA: randomized numerical linear algebra”. In:
Communications of the ACM 59.6 (2016), pp. 80–90 (cit. on p. 32).

[79] A. Gittens and M. W. Mahoney. “Revisiting the Nyström Method for Improved Large-
Scale Machine Learning”. In: Journal of Machine Learning Research 17.1 (2016),
pp. 3977–4041 (cit. on p. 32).

[80] S. Bartels and P. Hennig. “Probabilistic Approximate Least-Squares”. In: International
Conference on Artificial Intelligence and Statistics (AISTATS). 2016 (cit. on p. 32).

[81] J. E. Dennis Jr and J. J. Moré. “Quasi-Newton methods, motivation and theory”. In: SIAM
Review 19.1 (1977), pp. 46–89 (cit. on pp. 32, 82).

[82] T. Karvonen and S. Sarkkä. “Approximate state-space Gaussian processes via spectral
transformation”. In: IEEE International Workshop on Machine Learning for Signal
Processing (MLSP). 2016, pp. 1–6 (cit. on p. 34).

[83] A. Solin, J. Hensman, and R. E. Turner. “Infinite-Horizon Gaussian Processes”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2018 (cit. on p. 34).

146

Bibliography

[84] H. Weyl. “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differ-
entialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)”. In:
Mathematische Annalen 71.4 (1912), pp. 441–479 (cit. on p. 35).

[85] U. D. of Transportation. Airline On-Time Performance Data. https://www.transtats.
bts.gov/. Accessed: 2020-05-26. 2020 (cit. on p. 36).

[86] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J.
Ring, M. E. Rognes, and G. N. Wells. “The FEniCS project version 1.5”. In: Archive of
Numerical Software 3.100 (2015) (cit. on p. 37).

[87] M. L. Parks, E. De Sturler, G. Mackey, D. D. Johnson, and S. Maiti. “Recycling Krylov
subspaces for sequences of linear systems”. In: SIAM Journal on Scientific Computing
28.5 (2006), pp. 1651–1674 (cit. on p. 37).

[88] F. de Roos and P. Hennig. Krylov Subspace Recycling for Fast Iterative Least-Squares in
Machine Learning. 2017. arXiv: 1706.00241 (cit. on p. 37).

[89] H. Zhu, C. K. Williams, R. Rohwer, and M. Morciniec. “Gaussian regression and optimal
finite dimensional linear models”. In: Neural Networks and Machine Learning. 1997
(cit. on p. 42).

[90] G. F. Trecate, C. K. Williams, and M. Opper. “Finite-dimensional approximation of
Gaussian processes”. In: Advances in Neural Information Processing Systems (NeurIPS).
1999 (cit. on p. 42).

[91] A. Rahimi and B. Recht. “Random Features for Large-Scale Kernel Machines”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2007 (cit. on pp. 42, 48,
68, 133).

[92] A. Wilson and H. Nickisch. “Kernel Interpolation for Scalable Structured Gaussian
Processes (KISS-GP)”. In: International Conference on Machine Learning (ICML). 2015
(cit. on pp. 42, 48, 60, 69).

[93] A. G. Wilson, C. Dann, and H. Nickisch. Thoughts on Massively Scalable Gaussian
Processes. 2015. arXiv: 1511.01870 (cit. on pp. 42, 60).

[94] Z. Yang, A. Wilson, A. Smola, and L. Song. “A la carte–learning fast kernels”. In:
International Conference on Artificial Intelligence and Statistics (AISTATS). 2015 (cit. on
p. 42).

[95] P. Izmailov, A. Novikov, and D. Kropotov. “Scalable Gaussian processes with billions of
inducing inputs via tensor train decomposition”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2018 (cit. on p. 42).

[96] T. Evans and P. Nair. “Scalable Gaussian processes with grid-structured eigenfunctions
(GP-GRIEF)”. In: International Conference on Machine Learning (ICML). 2018 (cit. on
p. 42).

[97] A. Zandieh, N. Nouri, A. Velingker, M. Kapralov, and I. Razenshteyn. “Scaling up kernel
ridge regression via locality sensitive hashing”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2020 (cit. on p. 42).

147

https://www.transtats.bts.gov/
https://www.transtats.bts.gov/
https://arxiv.org/abs/1706.00241
https://arxiv.org/abs/1511.01870

Bibliography

[98] A. V. Vecchia. “Estimation and model identification for continuous spatial processes”. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 50.2 (1988),
pp. 297–312 (cit. on p. 42).

[99] A. Datta, S. Banerjee, A. O. Finley, and A. E. Gelfand. “Hierarchical nearest-neighbor
Gaussian process models for large geostatistical datasets”. In: Journal of the American
Statistical Association 111.514 (2016), pp. 800–812 (cit. on p. 42).

[100] M. Katzfuss and J. Guinness. “A General Framework for Vecchia Approximations of
Gaussian Processes”. In: Statistical Science 36.1 (2021), pp. 124–141 (cit. on p. 42).

[101] F. Schäfer, M. Katzfuss, and H. Owhadi. “Sparse Cholesky Factorization by Kullback-
Leibler Minimization”. In: SIAM Journal on Scientific Computing 43.3 (2021), A2019–
A2046 (cit. on p. 42).

[102] A. J. Smola and P. Bartlett. “Sparse greedy Gaussian process regression”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2000 (cit. on pp. 42, 47).

[103] C. Williams and M. Seeger. “Using the Nyström method to speed up kernel machines”.
In: Advances in Neural Information Processing Systems (NeurIPS). 2001 (cit. on pp. 42,
47).

[104] P. Drineas and M. W. Mahoney. “On the Nyström Method for Approximating a Gram
Matrix for Improved Kernel-Based Learning”. In: Journal of Machine Learning Research
6 (2005), pp. 2153–2175 (cit. on pp. 42, 133).

[105] M. W. Seeger, C. K. Williams, and N. Lawrence. “Fast Forward Selection to Speed
Up Sparse Gaussian Process Regression”. In: International Conference on Artificial
Intelligence and Statistics (AISTATS). 2003 (cit. on pp. 42, 47).

[106] E. Snelson and Z. Ghahramani. “Sparse Gaussian processes using pseudo-inputs”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2005 (cit. on p. 42).

[107] J. Quiñonero-Candela and C. E. Rasmussen. “A unifying view of sparse approximate
Gaussian process regression”. In: Journal of Machine Learning Research 6 (2005),
pp. 1939–1959 (cit. on pp. 42, 47, 96).

[108] M. Titsias. “Variational learning of inducing variables in sparse Gaussian processes”. In:
International Conference on Artificial Intelligence and Statistics (AISTATS). 2009 (cit. on
pp. 42, 48, 60).

[109] J. Hensman, N. Fusi, and N. D. Lawrence. “Gaussian processes for Big data”. In: Con-
ference on Uncertainty in Artificial Intelligence (UAI). 2013 (cit. on pp. 42, 47, 48, 53,
60).

[110] M. Gibbs. “Bayesian Gaussian processes for classification and regression”. In: University
of Cambridge, Cambridge (1997) (cit. on pp. 42, 69).

[111] I. Murray. “Gaussian processes and fast matrix-vector multiplies”. In: Numerical Mathe-
matics in Machine Learning Workshop (ICML). 2009 (cit. on pp. 42, 47, 48, 58, 69).

[112] K. Cutajar, M. Osborne, J. Cunningham, and M. Filippone. “Preconditioning kernel
matrices”. In: International Conference on Machine Learning (ICML). 2016 (cit. on
pp. 42, 47, 48, 58, 68, 69, 72).

148

Bibliography

[113] K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q. Weinberger, and A. G. Wilson.
“Exact Gaussian processes on a million data points”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2019 (cit. on pp. 42, 47, 48, 55, 58, 60, 69, 72, 135).

[114] A. Artemev, D. R. Burt, and M. van der Wilk. “Tighter Bounds on the Log Marginal
Likelihood of Gaussian Process Regression Using Conjugate Gradients”. In: International
Conference on Machine Learning (ICML). 2021 (cit. on pp. 42, 47, 48, 58, 69).

[115] M. Bauer, M. van der Wilk, and C. E. Rasmussen. “Understanding probabilistic sparse
Gaussian process approximations”. In: Advances in Neural Information Processing
Systems (NeurIPS) (2016) (cit. on p. 42).

[116] J. H. Huggins, T. Campbell, M. Kasprzak, and T. Broderick. “Scalable Gaussian process
inference with finite-data mean and variance guarantees”. In: International Conference
on Artificial Intelligence and Statistics (AISTATS). 2019 (cit. on pp. 42, 48).

[117] F. Schäfer, T. Sullivan, and H. Owhadi. “Compression, inversion, and approximate PCA of
dense kernel matrices at near-linear computational complexity”. In: Multiscale Modeling
and Simulation 19.2 (2021), pp. 688–730 (cit. on pp. 47, 48, 67).

[118] J. P. Cunningham, K. V. Shenoy, and M. Sahani. “Fast Gaussian process methods for
point process intensity estimation”. In: International Conference on Machine Learning
(ICML). 2008 (cit. on pp. 47, 48, 69).

[119] A. Potapczynski, L. Wu, D. Biderman, G. Pleiss, and J. P. Cunningham. “Bias-Free
Scalable Gaussian Processes via Randomized Truncations”. In: International Conference
on Machine Learning (ICML). 2021 (cit. on pp. 47, 58).

[120] B. W. Silverman. “Some aspects of the spline smoothing approach to non-parametric
regression curve fitting”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 47.1 (1985), pp. 1–21 (cit. on p. 47).

[121] L. Csató and M. Opper. “Sparse on-line Gaussian processes”. In: Neural Computation
14.3 (2002), pp. 641–668 (cit. on p. 47).

[122] V. Wild, M. Kanagawa, and D. Sejdinovic. Connections and Equivalences between the
Nyström Method and Sparse Variational Gaussian Processes. 2021. arXiv: 2106.01121
(cit. on pp. 47, 96).

[123] D. R. Burt, C. E. Rasmussen, and M. Van Der Wilk. “Rates of convergence for sparse vari-
ational Gaussian process regression”. In: International Conference on Machine Learning
(ICML). 2019 (cit. on p. 48).

[124] A. G. Journel and C. J. Huijbregts. Mining geostatistics. Academic Press London, 1976
(cit. on pp. 48, 107).

[125] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. Deisenroth. “Efficiently
sampling functions from Gaussian process posteriors”. In: International Conference on
Machine Learning (ICML). 2020 (cit. on pp. 48, 107).

[126] J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, and M. P. Deisenroth. “Pathwise
Conditioning of Gaussian Processes”. In: Journal of Machine Learning Research (2021)
(cit. on pp. 48, 107).

149

https://arxiv.org/abs/2106.01121

Bibliography

[127] B. Charlier, J. Feydy, J. A. Glaunès, F.-D. Collin, and G. Durif. “Kernel Operations on
the GPU, with Autodiff, without Memory Overflows”. In: Journal of Machine Learning
Research 22.74 (2021), pp. 1–6 (cit. on pp. 48, 53, 58).

[128] J. Cockayne, I. C. Ipsen, C. J. Oates, and T. W. Reid. “Probabilistic Iterative Methods for
Linear Systems”. In: Journal of Machine Learning Research (2021) (cit. on p. 48).

[129] T. W. Reid, I. C. F. Ipsen, J. Cockayne, and C. J. Oates. BayesCG As An Uncertainty
Aware Version of CG. 2022. arXiv: 2008.03225 (cit. on p. 48).

[130] S. Kaczmarz. “Angenäherte Auflösung von Systemen linearer Gleichungen”. In: Bulletin
International de l’Académie Polonaise des Sciences et des Lettres. Classe des Sciences
Mathématiques et Naturelles. Série A, Sciences Mathématiques (1937), pp. 355–357
(cit. on p. 49).

[131] T. Strohmer and R. Vershynin. “A randomized Kaczmarz algorithm with exponential
convergence”. In: Journal of Fourier Analysis and Applications 15.2 (2009), pp. 262–278
(cit. on pp. 49, 50).

[132] R. M. Gower and P. Richtárik. “Randomized iterative methods for linear systems”. In:
SIAM Journal on Matrix Analysis and Applications 36.4 (2015), pp. 1660–1690 (cit. on
pp. 49, 50).

[133] R. M. Gower. Sketch and project: Randomized iterative methods for linear systems and
inverting matrices. 2016. arXiv: 1612.06013 (cit. on p. 49).

[134] S. Bartels and P. Hennig. “Conjugate Gradients for Kernel Machines”. In: Journal of
Machine Learning Research 21.55 (2020), pp. 1–42 (cit. on p. 49).

[135] D. Dua and C. Graff. UCI Machine Learning Repository. 2017. URL: http://archive.
ics.uci.edu/ml (cit. on pp. 53, 70).

[136] G. Pleiss, J. Gardner, K. Weinberger, and A. G. Wilson. “Constant-time predictive
distributions for Gaussian processes”. In: International Conference on Machine Learning
(ICML). 2018 (cit. on pp. 53, 60).

[137] M. Anitescu, J. Chen, and L. Wang. “A matrix-free approach for solving the paramet-
ric Gaussian process maximum likelihood problem”. In: SIAM Journal on Scientific
Computing 34.1 (2012), A240–A262 (cit. on pp. 58, 69).

[138] S. Ubaru, J. Chen, and Y. Saad. “Fast estimation of tr(f(A)) via stochastic Lanczos
quadrature”. In: SIAM Journal on Matrix Analysis and Applications 38.4 (2017), pp. 1075–
1099 (cit. on pp. 58, 59, 61, 64, 68, 69, 113, 114).

[139] K. Dong, D. Eriksson, H. Nickisch, D. Bindel, and A. G. Wilson. “Scalable log de-
terminants for Gaussian process kernel learning”. In: Advances in Neural Information
Processing Systems (NeurIPS) (2017) (cit. on pp. 58, 69).

[140] M. F. Hutchinson. “A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines”. In: Communications in Statistics-Simulation and Computation 18.3
(1989), pp. 1059–1076 (cit. on pp. 58, 60, 69).

150

https://arxiv.org/abs/2008.03225
https://arxiv.org/abs/1612.06013
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography

[141] H. Avron and S. Toledo. “Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-definite matrix”. In: Journal of the ACM 58.2 (2011), pp. 1–34
(cit. on pp. 58, 63, 68, 69).

[142] G. H. Golub and G. Meurant. Matrices, moments and quadrature with applications.
Vol. 30. Princeton University Press, 2009 (cit. on pp. 60, 61, 69, 113).

[143] R. P. Adams, J. Pennington, M. J. Johnson, J. Smith, Y. Ovadia, B. Patton, and J.
Saunderson. Estimating the Spectral Density of Large Implicit Matrices. 2018. arXiv:
1802.03451 (cit. on pp. 62, 69).

[144] R. A. Meyer, C. Musco, C. Musco, and D. P. Woodruff. “Hutch++: Optimal Stochastic
Trace Estimation”. In: Symposium on Simplicity in Algorithms (SOSA). Society for
Industrial and Applied Mathematics. 2021, pp. 142–155 (cit. on pp. 62, 63, 68, 69, 115).

[145] F. Roosta-Khorasani and U. Ascher. “Improved bounds on sample size for implicit matrix
trace estimators”. In: Foundations of Computational Mathematics 15.5 (2015), pp. 1187–
1212 (cit. on pp. 63, 68, 69).

[146] D. Persson, A. Cortinovis, and D. Kressner. Improved variants of the Hutch++ algorithm
for trace estimation. 2021. arXiv: 2109.10659 (cit. on pp. 63, 68, 69).

[147] S. Jiang, H. Pham, D. P. Woodruff, Qiuyi, and Zhang. “Optimal Sketching for Trace
Estimation”. In: Advances in Neural Information Processing Systems (NeurIPS) (2021)
(cit. on pp. 63, 68, 69).

[148] D. S. Kershaw. “The incomplete Cholesky—conjugate gradient method for the iterative
solution of systems of linear equations”. In: Journal of Computational Physics 26.1
(1978), pp. 43–65 (cit. on p. 68).

[149] M. Mutnỳ and A. Krause. “Efficient high dimensional Bayesian optimization with addi-
tivity and quadrature Fourier features”. In: Advances in Neural Information Processing
Systems (NeurIPS). 2018 (cit. on pp. 68, 130, 131).

[150] M. Skorski. “Modern Analysis of Hutchinson’s Trace Estimator”. In: Annual Conference
on Information Sciences and Systems (CISS). IEEE. 2021, pp. 1–5 (cit. on p. 68).

[151] Y. Saatçi. “Scalable inference for structured Gaussian process models”. PhD thesis.
University of Cambridge, 2012 (cit. on p. 69).

[152] A. C. Faul, G. Goodsell, and M. J. D. Powell. “A Krylov subspace algorithm for multi-
quadric interpolation in many dimensions”. In: IMA Journal of Numerical Analysis 25.1
(2005), pp. 1–24 (cit. on p. 69).

[153] N. A. Gumerov and R. Duraiswami. “Fast radial basis function interpolation via pre-
conditioned Krylov iteration”. In: SIAM Journal on Scientific Computing 29.5 (2007),
pp. 1876–1899 (cit. on p. 69).

[154] M. L. Stein, J. Chen, and M. Anitescu. “Difference Filter Preconditioning for Large
Covariance Matrices”. In: SIAM Journal on Matrix Analysis and Applications 33.1
(2012), pp. 52–72 (cit. on p. 69).

151

https://arxiv.org/abs/1802.03451
https://arxiv.org/abs/2109.10659

Bibliography

[155] J. Chen. “On the Use of Discrete Laplace Operator for Preconditioning Kernel Matrices”.
In: SIAM Journal on Scientific Computing 35.2 (2013), A577–A602 (cit. on p. 69).

[156] C. Bekas, E. Kokiopoulou, and Y. Saad. “An estimator for the diagonal of a matrix”. In:
Applied Numerical Mathematics 57.11-12 (2007), pp. 1214–1229 (cit. on p. 69).

[157] A. Cortinovis and D. Kressner. “On randomized trace estimates for indefinite matrices
with an application to determinants”. In: Foundations of Computational Mathematics
(2021), pp. 1–29 (cit. on p. 69).

[158] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: International
Conference on Learning Representations (ICLR) (2015) (cit. on p. 72).

[159] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, 2003 (cit. on pp. 72, 113).

[160] A. Immer, M. Korzepa, and M. Bauer. “Improving predictions of Bayesian neural nets via
local linearization”. In: International Conference on Artificial Intelligence and Statistics
(AISTATS). 2021. URL: http://arxiv.org/abs/2008.08400 (cit. on p. 74).

[161] L. Nazareth. “A Relationship between the BFGS and Conjugate Gradient Algorithms
and its Implications for New Algorithms”. In: SIAM Journal on Numerical Analysis 16.5
(1979), pp. 794–800 (cit. on p. 81).

[162] K. T. Conrad. The minimal polynomial and some applications. Tech. rep. University of
Connecticut, 2008, p. 14 (cit. on p. 85).

[163] Y. Saad, M. Yeung, J. Erhel, and F. Guyomarc’h. “A deflated version of the conjugate
gradient algorithm”. In: SIAM Journal on Scientific Computing 21.5 (2000), pp. 1909–
1926 (cit. on pp. 94, 95).

[164] J. Frank and C. Vuik. “On the construction of deflation-based preconditioners”. In: SIAM
Journal on Scientific Computing 23.2 (2001), pp. 442–462 (cit. on p. 95).

[165] J.-P. Chiles and P. Delfiner. Geostatistics: modeling spatial uncertainty. Vol. 497. John
Wiley & Sons, 2009 (cit. on p. 107).

[166] A. Doucet. A note on efficient conditional simulation of Gaussian distributions. Tech. rep.
Departments of Computer Science and Statistics, University of British Columbia, 2010
(cit. on p. 107).

[167] M. Ledoux. The concentration of measure phenomenon. 89. American Mathematical
Society, 2001 (cit. on p. 114).

[168] P.-M. Samson. “Concentration of measure inequalities for Markov chains and Φ-mixing
processes”. In: The Annals of Probability 28.1 (2000), pp. 416–461 (cit. on p. 114).

[169] S. P. Kasiviswanathan and M. Rudelson. Restricted Isometry Property under High Corre-
lations. 2019. arXiv: 1904.05510 (cit. on p. 114).

[170] R. Adamczak. “A note on the Hanson-Wright inequality for random vectors with de-
pendencies”. In: Electronic Communications in Probability 20 (2015), pp. 1–13 (cit. on
pp. 114, 115).

152

http://arxiv.org/abs/2008.08400
https://arxiv.org/abs/1904.05510

Bibliography

[171] F. Kittaneh. “On Lipschitz functions of normal operators”. In: Proceedings of the Ameri-
can Mathematical Society 94.3 (1985), pp. 416–418 (cit. on p. 117).

[172] H. Harbrecht, M. Peters, and R. Schneider. “On the low-rank approximation by the
pivoted Cholesky decomposition”. In: Applied Numerical Mathematics 62.4 (2012),
pp. 428–440 (cit. on p. 130).

[173] C. Eckart and G. Young. “The approximation of one matrix by another of lower rank”. In:
Psychometrika 1.3 (1936), pp. 211–218 (cit. on p. 132).

[174] P. Drineas, R. Kannan, and M. W. Mahoney. “Fast Monte Carlo Algorithms for Matrices
II: Computing a Low-Rank Approximation to a Matrix”. In: SIAM Journal on Computing
36 (2006), pp. 158–183 (cit. on p. 132).

[175] B. K. Sriperumbudur and Z. Szabó. “Optimal rates for random Fourier features”. In:
Advances in Neural Information Processing Systems (NeurIPS). 2015 (cit. on p. 133).

[176] D. S. Mitrinovic and P. M. Vasic. Analytic inequalities. Vol. 1. Springer, 1970 (cit. on
p. 134).

153

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	Notation
	1 Introduction
	1.1 Learning to Predict from Data
	1.2 Bayesian Machine Learning
	1.3 Gaussian Processes
	1.4 Limited Resources and the Role of Computation
	1.5 Thesis Contributions

	2 Probabilistic Linear Solvers for Machine Learning
	2.1 Introduction
	2.2 Probabilistic Linear Solvers
	2.3 Prior Covariance Class
	2.4 Experiments
	2.5 Conclusion

	3 Posterior and Computational Uncertainty in Gaussian Processes
	3.1 Introduction
	3.2 Computation-Aware Gaussian Process Inference
	3.3 Theoretical Analysis
	3.4 Experiments
	3.5 Conclusion

	4 Preconditioning for Scalable GP Hyperparameter Optimization
	4.1 Introduction
	4.2 Background
	4.3 Log-Determinant Estimation
	4.4 Efficient GP Hyperparameter Optimization
	4.5 Experiments
	4.6 Conclusion

	5 Conclusion
	5.1 Summary
	5.2 Future Research

	A Appendix of Chapter 2
	A.1 Probabilistic Linear Solvers
	A.2 Theoretical Properties
	A.3 Prior Covariance Class

	B Appendix of Chapter 3
	B.1 Connections to Other GP Approximations
	B.2 Theoretical Results and Proofs
	B.3 Implementation of IterGP
	B.4 Additional Experimental Results

	C Appendix of Chapter 4
	C.1 Background on Krylov Methods
	C.2 Stochastic Trace Estimation
	C.3 Log-Determinant Estimation
	C.4 GP Hyperparameter Optimization
	C.5 Preconditioning
	C.6 Technical Results
	C.7 Additional Experimental Results

	Bibliography

