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Abstract

The use of computer simulations as models of real-world phenomena plays an increasingly impor-
tant role in science and engineering. Such models allow us to build hypotheses about the processes
underlying a phenomenon and to test them, e.g., by simulating synthetic data from the model and
comparing it to observed data. A key challenge in this approach is to find those model configura-
tions that reproduce the observed data. Bayesian statistical inference provides a principled way to
address this challenge, allowing us to infer multiple suitable model configurations and quantify
uncertainty. However, classical Bayesian inference methods typically require access to the model’s
likelihood function and thus cannot be applied to many commonly used scientific simulators. With
the increase in available computational resources and the advent of neural network-based machine
learning methods, an alternative approach has recently emerged: simulation-based inference (SBI).
SBI enables Bayesian parameter inference but only requires access to simulations from the model.

Several SBI methods have been developed and applied to individual inference problems in
various fields, including computational neuroscience. Yet, many problems in these fields remain
beyond the reach of current SBI methods. In addition, while there are many new SBI methods,
there are no general guidelines for applying them to new inference problems, hindering their
adoption by practitioners.

In this thesis, I want to address these challenges by (a) advancing SBI methods for two partic-
ular problems in computational neuroscience and (b) improving the general applicability of SBI
methods through accessible guidelines and software tools. In my first project, I focus on the use
of SBI in cognitive neuroscience by developing an SBI method designed explicitly for computa-
tional models used in decision-making research. By building on recent advances in probabilistic
machine learning, this new method is substantially more efficient than previous methods, allowing
researchers to perform SBI on a broader range of decision-making models. In a second project,
I turn to computational connectomics and show how SBI can help to discover connectivity rules
underlying the complex connectivity patterns between neurons in the sensory cortex of the rat. As
a third contribution, I help establish a software package to facilitate access to current SBI methods,
and I present an overview of the workflow required to apply SBI to new inference problems as part
of this thesis.

Taken together, this thesis enriches the arsenal of SBI methods available for models of decision-
making, demonstrates the potential of SBI for applications in computational connectomics, and
bridges the gap between SBI method development and applicability, fostering scientific discovery
in computational neuroscience and beyond.
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Zusammenfassung
Der Einsatz von Computermodellen spielt in Wissenschaft und Technik eine immer größere Rolle.
Solche Modelle erlauben es, Hypothesen über die einem Forschungsgegenstand zugrundeliegenden
Prozesse aufzustellen und diese schrittweise zu verbessern, indem z.B. synthetische Daten aus dem
Modell simuliert und mit beobachteten Daten verglichen werden. Allerdings haben Modelle in der
Regel unbekannte Parameter. Eine zentrale Herausforderung besteht daher darin, Modellparameter
zu finden, die in der Lage sind, die beobachteten Daten zu reproduzieren. Die statistische Meth-
ode der Bayes’schen Inferenz bietet eine ideale Lösung für diese Herausforderung: Sie ermöglicht
es, viele verschiedene Modellparameter gleichzeitig zu testen, alle geeigneten zu identifizieren
und dabei statistische Unsicherheiten zu berücksichtigen. Klassische Methoden der Bayes’schen
Inferenz erfordern jedoch den Zugriff auf die sogenannte Likelihood-Funktion des Modells, was
für viele gängige wissenschaftliche Modelle nicht möglich ist, da es sich oft um komplexe Com-
putersimulationen handelt. Mit der Zunahme der Rechenressourcen und dem Aufkommen des
maschinellen Lernens wurde ein alternativer Ansatz entwickelt, um dieses Problem zu lösen: Sim-
ulationsbasierte Inferenz (SBI). SBI verwendet vom Modell simulierte Daten, um Algorithmen des
maschinellen Lernens zu trainieren und ermöglicht so Bayes’sche Parameter-Inferenz für komplexe
simulationsbasierte wissenschaftliche Modelle.

In den letzten Jahren wurden viele SBI-Methoden entwickelt und auf Inferenzprobleme sowohl
in den Neurowissenschaften als auch in vielen anderen Bereichen angewendet. Dennoch gibt es
noch offene Herausforderungen: Zum einen bleiben viele Modelle aufgrund ihrer Komplexität
außerhalb der Reichweite aktueller SBI-Methoden. Zum anderen mangelt es an zugänglichen
Softwaretools und Anleitungen, um SBI-Methoden auf neue Inferenzprobleme anzuwenden.

In meiner Dissertation möchte ich diese Probleme angehen, indem ich einerseits die SBI-
Methodik für konkrete Fragestellungen in den Neurowissenschaften verbessere und andererseits
die allgemeine Anwendbarkeit von SBI-Methoden durch zugängliche Leitlinien und Softwaretools
verbessere. In meinem ersten Projekt beschäftige ich mich mit der Anwendung von SBI in den
kognitiven Neurowissenschaften und entwickle eine neue SBI-Methode, die speziell für Modelle
der Entscheidungsfindung konzipiert ist. Da diese neue Methode auf den jüngsten Fortschritten im
Bereich des maschinellen Lernens basiert, ist sie um ein Vielfaches effizienter als frühere Methoden
und kann daher auf ein breiteres Spektrum von Modellen angewendet werden. In einem zweiten
Projekt wende ich mich der Konnektomie zu, einem Bereich der Neurowissenschaften, der versucht,
die Prinzipien hinter den komplexen Konnektivitätsmustern im Gehirn zu verstehen. Ich zeige, wie
SBI dabei helfen kann, Modelle über neue Konnektivitätsregeln im sensorischen Kortex der Ratte zu
testen und an die gemessenen Daten anzupassen. Als drittes Projekt präsentiere ich einen Leitfaden
für die Anwendung von SBI auf neue Inferenzprobleme, und ich bin einer der Hauptentwickler
eines neuen Softwarepakets, das den Zugang zu aktuellen SBI-Methoden erleichtert.

Zusammengenommen wird diese Arbeit den wissenschaftlichen Fortschritt in den Neurowis-
senschaften und darüber hinaus fördern, indem sie das Arsenal an SBI-Methoden bereichert, das
Potential von SBI für die Konnektomie aufzeigt und die Lücke zwischen Entwicklung und Anwend-
barkeit von SBI-Methoden im Allgemeinen überbrückt.
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Chapter 1

Introduction

Computer simulations play a crucial role in many areas of science and engineering and can have a
profound impact on our daily life. The perhaps most drastic and evident influence of simulations on
everyone’s daily life may be their role during the onset of the covid-19 pandemic in early 2020: By
the summer of 2020, we had all become accustomed to regularly checking the forecasts about new
infection numbers to prepare for the next interventions. Behind the scenes, it was computer simula-
tions of epidemiological models that enabled these forecasts and greatly influenced the decisions to
shut down the economic, cultural, and personal life around the world (Spooner et al. 2021; Lewis
2022). Similarly, in the case of the global climate catastrophe, large-scale computer simulations
are used to study the earth’s climate system and to simulate the effects of global warming, forming
the basis for political and individual actions (Peng et al. 2021; Glavovic et al. 2022). Another great
example is the discovery of the Higgs boson: In addition to conducting extensive experiments
of colliding particles at CERN1, researchers built detailed computer simulations of the physical
processes underlying particle collisions and used these simulations to confirm the existence of the
Higgs boson (Massimi et al. 2015). These are just three among many examples of how computer
simulations help tackle emerging global crises and facilitate scientific discovery. But what precisely
are computer simulations, and what makes them so useful?

In the scientific context, a computer simulation can be defined as a computer program that
simulates a real-world system (Winsberg 2022), e.g., a simulation of a pendulum. One run of
this program would simulate the movement of the pendulum and would produce simulated data
just like we would observe in an experiment, e.g., the period of the pendulum. Suppose we have
measured the period of a real pendulum and want to understand the underlying physical processes.
We could build a computer simulation of the pendulum that incorporates all our knowledge as
well as hypotheses about the underlying physical processes and aim to reproduce the measured
data in the simulation. If we succeed and the simulated data accurately matches the observed
data, then we have some evidence in favor of our hypotheses about the pendulum. Unarguably,
the simulation will never fully match the underlying real-world system. However, it can still be
helpful to improve our mechanistic understanding of the system, motivate new experiments and
make forecasts. By repeating this procedure, we can gradually improve the accuracy of the model
and eventually arrive at new scientific discoveries (Hartmann 1996; Boge 2020).

Using such simulation-based models for scientific discovery comes with a central methodological
challenge: The models usually have free parameters that represent our hypotheses or otherwise
unknown properties of the underlying process. Therefore, we need reliable methods for identifying

1European Organization for Nuclear Research
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and interpreting these parameters. The overarching goal of my thesis is to address this challenge
by improving the methods for identifying unknown parameters in simulation-based models.

A conceptually simple approach to finding suitable model parameters would be trying out
many different parameter combinations and selecting those for which the simulated data matches
the observed data most closely. However, simulation-based models can have many parameters of
interest, and trying out all possible combinations is often not feasible. Furthermore, it is usually
not enough to find one best-fitting parameter because there might be multiple parameter settings
that reproduce the observed data equally well or because we are uncertain about the exact value
of a parameter and rather want to specify a range of possible values.

Among the many techniques that have been developed for identifying model parameters, there
is one technique called Bayesian statistical inference2 that is particularly suited for these chal-
lenges: Instead of identifying one best-fitting parameter combination like in the example above,
the Bayesian approach identifies an entire probability distribution over parameters that charac-
terizes how likely each parameter is to reproduce the observed data. This probability distribution
allows us to efficiently identify all suitable model parameters and study the relations between these
alternative solutions, substantially improving the interpretability of the simulation-based approach.
Additionally, it quantifies the uncertainty about the parameters, e.g., uncertainty due to the ran-
domness of the underlying process or due to limited information in the observed data. Bayesian
inference is thus a conceptually powerful tool for identifying model parameters. Unfortunately, it
is based on a mathematical framework that has a specific technical requirement: It requires access
to the so-called likelihood function of the model. The likelihood function is an analytical expression
for the relationship between the observed data and the model parameters, and it is essential for
identifying the distribution over suitable model parameters (see General Background for details).
The problem is that most simulation-based models cannot be expressed in mathematical terms be-
cause they are defined as—potentially complex—computer simulations. Their likelihood function
is thus only implicitly defined by the computer simulation and often cannot be accessed efficiently.
As a consequence, standard Bayesian inference methods cannot be applied to most simulation-
based models. However, several alternative approaches have been proposed that allow performing
Bayesian inference by using only simulations from the model, i.e., without having to access the
likelihood. These methods are collectively referred to as simulation-based inference and are the
focus of this thesis.

In simulation-based inference (SBI, Cranmer et al. 2020) the idea is to generate many different
simulations from the model based on different candidate parameter combinations and to use this
large set of simulated data to approximate the desired probability distribution over suitable model
parameters. While the original idea for this simulation-based approach dates back to Diggle et al.
1984, it gained momentum only much later when advances in computing resources made it possible
to apply it to practically relevant simulation-based models (Beaumont et al. 2002; Sunnåker et al.
2013; Sisson et al. 2018)3. More recently, the advent of artificial neural networks and deep learning
(LeCun et al. 2015) led to a new wave of SBI methods. These so-called neural SBI methods leverage
the new abilities of artificial neural networks to approximate probability distributions (Germain
et al. 2015; Mohamed et al. 2017): instead of accessing the likelihood function of the model, one
simulates many different data sets from the model using different parameter combinations and
uses them to train an artificial neural network to perform Bayesian inference, i.e., let the neural
network predict the distribution over parameters likely to reproduce the observed data.

2After Thomas Bayes, an English statistician, philosopher, and pastor in the 18th century
3These classical SBI methods are often referred to as Approximate Bayesian Computation (ABC), see below for details.
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Over the past few years, a considerable arsenal of SBI methods has been developed and suc-
cessfully applied across many disciplines: from particle physics (Brehmer et al. 2020) to genetics
(Beaumont 2010), evolutionary biology (Csilléry et al. 2010) and neuroscience (Gonçalves et al.
2020; Groschner et al. 2022; Hashemi et al. 2022), to robotics (Muratore et al. 2022), epidemiol-
ogy (Witt et al. 2020; Arnst et al. 2022), economics (Dyer et al. 2022) and astrophysics (Dax et al.
2021; Mishra-Sharma et al. 2022). Nevertheless, SBI methods are facing several open challenges.
There are still many simulation-based modeling problems where current SBI methods struggle,
e.g., for complex models with many parameters. Thus, there is a need for new methods that push
the limits of current SBI methods (Cranmer et al. 2020). At the same time, there are research
questions in various fields that could be addressed with currently available SBI methods but have
not yet been addressed. One reason for this gap in applicability is that the new developments and
capabilities of SBI methods are relatively recent and have not yet been introduced in some research
areas. In addition, there is a need for established software tools, standard guidelines, or tutorials
on how to apply and evaluate SBI in practice to facilitate its application by practitioners.

In this thesis, I contribute three publications that address these challenges, focusing on applica-
tions in computational neuroscience. In the first publication, I address the need for new methods
by developing an SBI method designed explicitly for inference problems encountered in decision-
making research. When studying decision-making, one often uses experimental setups where
subjects perform simple decision-making tasks with many repetitions and records their reaction
times and choices. However, current SBI methods struggle with this particular experimental setup
and the type of models used. By combining recent advances in machine learning techniques, we
developed a new SBI method that is tailored to decision-making models and substantially more
flexible and efficient than previous methods. Using this new method, researchers will be able to
apply SBI to a broader range of computational models in decision-making research.

The second project demonstrates how SBI can help solve parameter inference problems in
connectomics. In connectomics, researchers study the connectivity of the neurons that form the
basis of our sensory and cognitive abilities. One particular goal in connectomics is to discover
general principles underlying the connectivity patterns of neural networks, e.g., by finding so-called
wiring rules. One way to test new wiring rules is by simulating them in a computational model and
aiming to reproduce measured connectivity data—an ideal scenario to perform Bayesian inference
using SBI. In our publication, we show how to apply SBI to inference problems in connectomics
using the example of identifying the parameters of wiring rules simulated in the sensory cortex
of the rat. Here, we put particular focus on demonstrating how to evaluate, analyze and interpret
SBI to facilitate its application by practitioners across the field. We thereby set the stage for using
SBI to infer wiring rules in the recently acquired dense reconstructions of human brain tissue
(Shapson-Coe et al. 2021).

The third publication refers to a collaborative project where we address the general applicability
of SBI methods. We develop a software package that gives access to the main machine-learning-
based SBI algorithms currently available and includes detailed documentation and guidelines to
facilitate the application of SBI by non-experts. As part of this thesis, I continue this endeavor by
presenting a general workflow for applying SBI to new inference problems.

The remainder of the thesis is organized as follows. In the General Background chapter, I give a
detailed introduction to using statistical inference for making scientific discoveries with simulation-
based models. The Simulation-based inference in practice chapter contains the workflow applying
SBI to new inference problems. In the Publications chapter, I give an overview and summaries of
the three publications. The Conclusion chapter provides concluding remarks.



Chapter 2

General Background

This chapter provides the general background of the work presented in this thesis. First, I present
the mathematical framework necessary for the use of simulation-based models in scientific discov-
ery. In the second part of the chapter, I give an overview of the main simulation-based inference
algorithms.

2.1 Scientific discovery with simulation-based models
The approach of using models to guide scientific discovery was outlined in chapter 1 as follows. We
start with conducting experiments or making observations about a phenomenon in the world. We
then use our knowledge and hypotheses derived from observations to build a model that mimics the
processes underlying the observation and can generate synthetic data. Finally, we seek to identify
the parameters of the model such that the synthetic data closely matches the observed data. If we
succeed in building a model capable of reproducing the observed data, we draw conclusions and
make predictions for future experiments. To perform these steps systematically and rigorously, we
formulate them in the language of mathematics and statistics.

Given that the world and our experimental techniques are inherently stochastic, we assume
that the observed data are stochastic as well, i.e., we describe it by a random variable X defined on
a measurable space X . We further assume that there is a latent unknown data-generating process,
πX , which describes the probability distribution of X and can be modeled mathematically as a
probability measure (Betancourt 2015)

πX : X → [0, 1]. (2.1)

We aim to build a model πm that approximates the unknown data-generating process πX .
However, the space P representing all data-generating processes that could potentially explain the
observed data is enormous. Thus, it is impossible to explore P entirely, and we usually have to
restrict our search to a set of candidate modelsM⊆ P . In formal terms, we aim to find a model
πm ∈M in a set of candidate modelsM

πm : X → [0, 1], (2.2)

that is as close as possible to πX ∈ P (see Fig. 2.1 for an illustration). As the set of candidate
modelsM is a subset of P , it may or may not contain the true data-generating process πX (Fig. 2.1
left versus right). In practice, the latter is most likely. Thus, one could argue that all models we

9
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P

Figure 2.1: When building models to approximate a date-generating process πX , we need to select a set of
candidate models from the vast space of possible processes P . While in theory, the selected set of candidate
models M may (left) or may not (right) contain the true πX , in practice, the second case is much more
likely. However, we hope to find a model that approximates πX well enough to draw instructive conclusions.
Figure adapted from Betancourt 2015.

build will be wrong (Box et al. 1986). However, some of them will still be useful. By carefully
choosing M and by performing statistical inference to find a model πm as close as possible to πX ,
we might be able to learn something about X and make predictions to motivate new experiments.

In the remainder of this section, I will first give a more concrete overview of the type of models
used in practice and then introduce statistical inference as the toolkit enabling scientific discoveries
with these models.

2.1.1 Simulation-based models

The candidate models πm ∈M used to study the data-generating process can take various forms,
from purely mathematical models for which one can use pen and paper to derive the model
parameters that best explain the observed data to complex computer simulations for which no
analytical expressions are available. However, they all have in common that one can simulate
data from them and can thus jointly be defined as simulation-based models. Defined as general as
possible, a simulation-based model is a computer program f capable of generating simulated data
x given a set of parameters θ:

x = f(θ). (2.3)

Above, we assumed that the observed data xo is a realization of a random variable X. Accordingly,
f(θ) is usually stochastic, e.g., repeatedly simulating data x using the same parameters θ would
result in different outcomes. If we further assume that the parameter θ is also a random variable,
the simulation-based model defines a conditional probability distribution p(x|θ) and simulating
data corresponds to sampling from the distribution:

x = f(θ) =⇒ x ∼ p(x|θ). (2.4)

In the following, I will consider the drift-diffusion model (DDM, Ratcliff 1978; Smith et al.
2004, Fig. 2.2) as a working example of a simulation-based model. The DDM is often used in
cognitive neuroscience to model data recorded in decision-making experiments. In a classical
decision-making experiment, subjects perform simple decision tasks based on sensory evidence,
e.g., deciding whether a cloud of dots shown on a screen contains more rightward or leftward
movements (Fig. 2.2a). The recorded data usually consists of the reaction times and choices of
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Figure 2.2: Studying perceptual decision-making using the drift-diffusion model. (a) A typical percep-
tual decision-making experiment: The subject fixates on a screen, observes a cloud of moving dots, and has
to indicate the perceived direction of motion of the dots through a saccade, resulting in a recorded choice
and reaction time (RT); adapted from Shadlen et al. 2013. (b) The recorded choices and reaction times can
be modeled using a drift-diffusion model (DDM). The DDM simulates the internal decision variable as a
stochastic process that integrates sensory evidence (drift) over time until one of two decision boundaries
is crossed. The resulting reaction time distributions (colored histograms at the top and bottom) have been
shown to match measured ones (Ratcliff 1978).

many repetitions of this task with varying difficulty. It is commonly assumed that we base our
decisions during such a task on a continuous stream of sensory evidence (e.g., the dot movement),
which we integrate over time until enough evidence has accumulated (e.g., the subject decides for
one direction). Additionally, it is assumed that the integration of evidence is influenced by internal
and external fluctuations (e.g., the subject’s visual attention or task difficulty). The DDM represents
these two assumptions mathematically using two terms: a drift term representing the strength of
evidence and a diffusion term representing the random fluctuations (Fig. 2.2b). The evolution of
the decision variable over time t can be characterized by a stochastic differential equation

dX = v dt+ dW, X(0) = w, (2.5)

where v is the drift, W is a Wiener noise process and w is the initial offset of the decision variable.
Using this differential equation, one can simulate reaction times and choices by recording the time
when the decision variable X crosses the upper or lower decision boundary given by ±a. In the
form presented here, the DDM has three parameters: the drift v, the boundary separation a, and
the initial offset w. Simulating choices c and reaction times r given the parameters θ = [v, a, w] via
equation 2.5 implicitly corresponds to sampling

[r, c] ∼ p(x|θ). (2.6)

As such, the DDM is a relatively coarse model of decision-making in the brain, e.g., it does not
explicitly model the underlying biological processes. Nevertheless, we can use it to analyze choices
and reaction times recorded in decision-making experiments1. With the broad definition of a
simulation-based model at hand, we now turn to the toolkit of statistical inference, which enables
us to infer model parameters given observed data.

1Indeed, it was shown that the DDM can explain the choice and response time behavior in many tasks and species,
which motivated further experiments and provided the ground for studying the neural mechanisms of decision making
(Roitman et al. 2002; Gold et al. 2007; Shadlen et al. 2013; Latimer et al. 2015).
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2.1.2 Statistical inference

Continuing with the DDM as the working example: Imagine we conduct a decision-making experi-
ment, e.g., let a subject perform a series of decisions based on sensory evidence and record their
reaction times and choices. We decide to model the decision-making process using the DDM. How
can we tune the parameters of the DDM such that it reproduces the observed data so that we can
draw conclusions about the underlying processes?

Two conceptually different statistical inference frameworks are available to solve this task:
frequentist inference and Bayesian inference. The two approaches differ in their definition of prob-
ability itself. In the frequentist inference framework, probabilities are defined only through the
frequency of a repeatable event (Casella et al. 2007), e.g., for events where uncertainty is due to
randomness, as in the decision-making task. In contrast, the Bayesian inference framework defines
probabilities more broadly as anything subject to uncertainty, be it uncertainty in the data due
to randomness (aleatoric uncertainty) or uncertainty in the parameters due to lack of knowledge
(epistemic uncertainty, Fishburn 1994).

To simplify the notation, from here on, we assume that the set of candidate modelsM is given
by a particular model pθ with parameters θ where each parameter combination corresponds to a
different candidate model. Data generated from the model is denoted as x and the observed data
as xo.

Frequentist inference

By definition of probability in the frequentist setting, we can treat only the data x as stochastic
because only the data-generating process is a repeatable event. Thus, the model parameters are
deterministic, and we must assume that there exists one specific set of parameters θ∗, which best
explains the observed data xo. How do we find this one model configuration?

A common approach to finding the best-fitting model parameters is maximum likelihood estima-
tion (MLE), based on the following idea. The model pθ(x) of the data-generating process defines,
for any given parameter setting θ, a probability distribution over x. Therefore, we can assign the
observed data xo a probability under this distribution: pθ(X = xo). However, θ is not known. Thus,
to find the best-fitting θ, we define the so-called likelihood function

L(θ;x) = pθ(X = xo), (2.7)

and maximize it with respect to θ such that we obtain a model configuration under which the
observed data xo is most likely. Importantly, the likelihood function L(θ;x) is a function over θ and
does not define a probability distribution over θ.

Performing MLE then amounts to maximizing the likelihood function with respect to parameters
to obtain the best-fitting parameter θ∗ given xo:

θ∗MLE = argmaxL(θ;xo) (2.8)
∂L
∂θ

!
= 0. (2.9)

The standard way to solve this optimization problem is to obtain the gradient of the likelihood
function (or the logarithm thereof) and use calculus or numerical optimization techniques to
find the maximum. For example, for the DDM, we would obtain the likelihood function given
the reaction times and choices observed in the experiment and obtain θ∗MLE by using numerical
optimization techniques to maximize it with respect to θ.



General Background 13

Statistical inference using the MLE approach is a widely adopted technique. Yet, it has sub-
stantial limitations. The major limitation of the frequentist inference approach is that it is hard to
quantify the uncertainty in the parameter estimate because one cannot assign the notion of prob-
ability to the parameters (Wagenmakers et al. 2008). However, uncertainty about the parameter
estimate is inherent to any inference problem. First, there might be uncertainty due to the intrinsic
randomness in the data-generating process. Second, there might be uncertainty due to the limited
amount of information available in the observed data. Furthermore, several parameter settings
in the model might reproduce the data equally well due to parameter degeneracies or parameter
interaction and compensation mechanisms in the model. The Bayesian inference framework offers
a more principled approach to these challenges.

Bayesian inference

Bayesian inference takes a probabilistic view of the data and the model parameters, i.e., in addition
to treating the data as a random variable X, it assumes that the model parameters are also random
variables. Following this assumption, the parametrized model pθ defines both a likelihood function
L(θ;x) and conditional probability distribution p(x|θ) often referred to as likelihood.

L(θ;x) = pθ(x|θ). (2.10)

When c = xo is fixed, equation 2.10 corresponds to the likelihood function, i.e., a function in θ.
However, if θ is fixed, equation 2.10 is a conditional probability distribution in x conditioned on θ.

According to the probabilistic view on the parameters, Bayesian inference allows us to in-
corporate prior knowledge about the parameters into the inference process by defining a prior
distribution p(θ). The goal of Bayesian inference is then to combine the likelihood p(x|θ) and the
prior p(θ) to infer the posterior distribution over the model parameters conditioned on the data
p(θ|x). The posterior relates to the likelihood and the prior according to Bayes’ rule (Bayes 1763):

p(θ|x) = p(x|θ)p(θ)
p(x)

. (2.11)

Here, p(x) refers to the so-called evidence, which defines the probability distribution of the data
implied by the assumed model, p(x) =

∫
p(x|θ)p(θ)dθ. The posterior distribution p(θ|x) resulting

from Bayesian inference is a probability distribution over the parameters. The fact that we obtain
a probability distribution rather than a point estimate θMLE as in the frequentist approach, makes
it possible to quantify uncertainty about the inferred parameters.

When applying Bayesian inference to infer the parameters of the DDM given the observed
reaction times and choices, we would first define a prior distribution over the three parameters
θ = [v, a, w]⊤ taking into account our knowledge about the model, e.g., that the boundary param-
eter must be positive a > 0 and that the offset cannot be larger than the boundary, w ∈ [0, a].
Subsequently, we would aim to obtain the posterior distribution p(θ|xo) following Bayes’ rule. We
could estimate the mode of this posterior to obtain the most likely parameter values for v, a, and
w. However, importantly, we could also obtain an estimate of the uncertainty in the parameters
by inspecting the posterior variances. For example, there would be epistemic uncertainty due to
a lack of information in the observed data, which would decrease as we increase the number of
observed reaction times and choices, and aleatoric uncertainty due to the randomness of the DDM
itself, which we cannot change.
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Solving Bayes’ rule Overall, the Bayesian inference framework provides an intuitive and concep-
tually powerful way of performing statistical inference while accounting for uncertainty. However,
its major drawback is that it can be challenging to solve Bayes’ rule to obtain the posterior. Whether
Bayes’ rule is solvable depends on the choice of the model and the prior. There are three scenarios:

1. The model is a member of the exponential family (Koopman 1936), and the prior is the
corresponding conjugate prior. Then the posterior is available analytically, e.g., when using
a Bernoulli distribution as a model and the corresponding conjugate Beta distribution prior,
the posterior will also follow a Beta distribution.

2. We use models for which we have access to the underlying likelihood function, e.g., it is
possible to evaluate L(θ;x) efficiently, as in the DDM example. In these cases, Bayes’ rule is
not solvable analytically (because the evidence p(x) is intractable). However, several reliable
methods exist for approximating the posterior with high accuracy. For example, Markov Chain
Monte Carlo sampling (MCMC, see below, Metropolis et al. 1953; Hastings 1970; Hogg et al.
2018) allows us to obtain posterior samples, and variational inference approaches can obtain
parametric approximations to the posterior (Blei et al. 2017).

3. All remaining cases, i.e., cases where we use entirely simulation-based models for which we
do not have access to the underlying likelihood function. In these cases, standard Bayesian
inference methods cannot be applied.

Various approaches have been developed to perform Bayesian inference for the third scenario
of entirely simulation-based models. These developments started as early as 1984 (Rubin 1984)
but were limited to relatively simple and low-dimensional models for a long time. Only over the
last two decades, driven by the advances in computing resources, new sampling algorithms, and
the advent of artificial neural networks, so-called simulation-based inference approaches enabled
the application of Bayesian inference to a much broader range of scientific simulators.

2.2 Simulation-based inference
While simulation-based models do not give access to their underlying likelihood function, they
do provide access to simulated data. The central idea of simulation-based inference (SBI) is to
use access to simulated data to circumvent the evaluation of the likelihood required for standard
Bayesian inference methods (Rubin 1984). Thus, the goal of SBI can be summarized as follows.
Given observed data xo, a simulation-based model f(θ) and prior p(θ), it aims to approximate the
posterior p(θ|xo) using only data x generated from the simulator with parameters sampled from
the prior.

As simulation-based models are usually time-consuming to simulate, an important constraint
of SBI is to consume as little simulated data as possible. Thus, the various SBI approaches differ
mainly in how efficiently they use the simulated data to approximate the posterior. They can be
separated into two classes. Classical SBI approaches based on rejection sampling, also known as
Approximate Bayesian Computation (ABC, Sunnåker et al. 2013; Sisson et al. 2018), and more
recent SBI approaches based on artificial neural networks, here referred to as neural simulation-
based inference (Cranmer et al. 2020).
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Figure 2.3: Approximate Bayesian Computation is based on the principle of rejection sampling: To approx-
imate the posterior distribution, one aims to find those model parameters θi that correspond to simulated
data xi closely resembling the observed data xo. To that end, one samples candidates θi from a prior distribu-
tion and generates corresponding simulated data xi from the simulator (left). If xi is close to xo according to
a given distance function d and criterion ϵ, one accepts θi; otherwise, one rejects it (middle). The accepted
parameters θi correspond to samples from the approximate posterior (right).

2.2.1 Approximate Bayesian computation

Approximate Bayesian Computation (ABC) refers to SBI approaches that rely on rejection sampling.
The general principle of rejection sampling in ABC is to approximate the posterior by collecting
model parameters that result in simulated data x resembling the observed data xo. To that end,
one defines a distance function between the simulated and observed data, d(x, xo), simulates data
xi from the model given a parameter θi sampled from the prior and accepts or rejects θi using a
threshold parameter ϵ on the distance: d(xi, xo) < ϵ (Fig. 2.3).

The distribution of the accepted parameters is then given by

p(θ|d(x, xo) < ϵ), (2.12)

and will converge to the true posterior distribution in the limit of infinitely many simulated data
and as ϵ→ 0 (Tavaré et al. 1997). The idea of using this algorithm to perform Bayesian inference
in simulation-based models dates to Diggle et al. 1984, who used it to approximate the likelihood
function (not the posterior) of an intractable model. It took quite some time until this approach
gained momentum, i.e., when Tavaré et al. 1997 and Pritchard et al. 1999 proposed to use it
for posterior inference in population genetics. Beaumont et al. 2002 later introduced the term
Approximate Bayesian Computation (ABC). The algorithmic steps for ABC with rejection sampling
are summarized in Algorithm 1.

Classical rejection sampling-based ABC approaches generally suffer from the curse of dimen-
sionality: As the dimensionality of the parameter spaces or the data increases, the number of model
simulations required to obtain an accurate posterior estimate increases exponentially. Several
sequential variants to the ABC scheme have been proposed to improve the sampling efficiency,
inspired mainly by sequential sampling approaches from standard approximate Bayesian inference.
The general idea of these variants is to improve the sampling efficiency by repeating it over multiple
rounds and re-using the accepted parameters from the previous round as proposals for the current
round (Marjoram et al. 2003; Sisson et al. 2007; Del Moral et al. 2012; Toni et al. 2009). Collec-
tively, these sequential ABC approaches are often referred to as ABC-SMC (Toni 2010; Sisson et al.
2018). Another way to improve the accuracy of ABC approaches is to perform a posthoc regression
adjustment to the mismatch between the simulated and observed data (Beaumont et al. 2009).
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Algorithm 1: Approximate Bayesian computation via rejection sampling as in Beaumont
et al. 2002

input simulator x ∼ f(θ), prior p(θ), observed data xo
distance function d, rejection threshold ϵ, simulation budget N
for j = 1 : N do

Sample θi ∼ p(θ)
Simulate xi ∼ f(θi)
if d(xi, xo) < ϵ then

accept θi
else

reject θi
end

end
return Accepted samples {θi} ∼ p̂(θ|d(x, xo) < ϵ)

This approach was later extended to non-linear regression using artificial neural networks by Blum
et al. 2010, which can be seen as the root of modern neural network-based SBI approaches.

Although sequential sampling schemes and regression adjustment approaches improve the
sampling efficiency, ABC methods often do not scale to high-dimensional problems (Cranmer et al.
2020; Lueckmann et al. 2021) and always require the ad-hoc choice of distance functions, rejection
thresholds, and summary statistics. The advent of neural network-based SBI approaches enabled
overcoming these limitations.

2.2.2 Neural simulation-based inference

The idea of neural-network-based SBI approaches is to replace the ABC rejection-sampling scheme
with neural density estimation. In other words, instead of collecting approximate posterior samples
by comparing simulated and observed data, one uses the simulated data as training data for artificial
neural networks designed for estimating probability densities (Fig. 2.4). With the recent advances
in flexible neural-network-based density estimators, this paradigm has enabled the application of
SBI to substantially more challenging applications than before (Cranmer et al. 2020).

SBI based on neural density estimation was introduced by Papamakarios et al. 2016. However,
predecessors of this idea can be found in Wood 2010 and Blum et al. 2010: In their “synthetic
likelihood” approach, Wood 2010 proposed using data simulated from the model to estimate the
mean and covariance of a multivariate Gaussian distribution to obtain an approximation of the
unknown likelihood, i.e., to perform density estimation. In turn, it was possible to obtain posterior
samples via MCMC sampling using the tractable Gaussian likelihood. Independently, Blum et al.
2010 proposed using neural networks to perform a non-linear regression to adjust the mismatch
between simulated and observed data in the context of rejection sampling (see above). Crucially,
they trained the neural networks on all the simulated data and thereby learned a regression model
conditional on the data. Consequently, applying the regression model to unseen data was possible
without repeating the training. While Blum et al. 2010 used this property to perform regression
adjustment in the context of ABC, the idea was an essential ingredient for neural-network-based
SBI approaches.

Neural SBI approaches can be separated into three groups, targeting either the posterior distri-
bution directly (neural posterior estimation), the likelihood (neural likelihood estimation), or the
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prior simulated data density estimator posterior
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Figure 2.4: Neural simulation-based inference starts with generating simulated data xi from a simulator f(θ)
using parameters θi sampled from the prior. Rather than approximating the posterior with rejection sampling
as in classical ABC approaches, it trains an artificial neural network qϕ to learn a parametric approximation
of the posterior (or the likelihood, or the likelihood-ratio, see main text) by optimizing a corresponding loss
function L(ϕ).

likelihood-ratio (neural ratio estimation).

Neural posterior estimation (NPE)

NPE uses an artificial neural network to perform conditional density estimation to learn a para-
metric approximation of the posterior. The procedure starts by simulating data xi from the model
using parameters θi sampled from the prior distribution p(θ) to obtain a training data set of pairs
{(θi, xi)}Ni=1. Subsequently, the training data is used to train a neural network F (x) that takes the
data x as input and predicts the parameters ϕ of a density estimator qϕ. As a density estimator,
Papamakarios et al. 2016 chose a mixture density network (MDN, Bishop 1994) given by a mixture
of Gaussians. Thus, in their setting, ϕ contained the means, mixture weights, and covariances of
the mixture. The density estimator qϕ then served as a parametric approximation of the unknown
posterior distribution,

qϕ(θ|x) ≈ p(θ|x). (2.13)

The loss function for optimizing the parameters of the neural network F (x) is the negative log
probability of the parameters θi under the current estimate qϕ(θ|xi):

ϕ∗ = argmin
ϕ

− 1

N

N∑
i=1

log qϕ=F (xi)(θi|xi). (2.14)

This loss function implicitly minimizes the Kullback-Leibler divergence between the true posterior
and the approximation DKL(qϕ(θ|x), p(θ|x)), in the expectation of θ ∼ p(θ), x ∼ p(x|θ) (Paige
et al. 2016; Papamakarios et al. 2016; Le et al. 2017). In other words, if the density estimator qϕ
is flexible enough and when taking the limit of infinite training data, NPE will approximate the
posterior arbitrarily well. The algorithmic steps of NPE are summarized in Algorithm 2.

A noteworthy property of NPE is that, once the density estimator is trained, it can be applied
to any new x without retraining, i.e., the posterior of a newly observed data xo can be obtained
through a single pass through the underlying neural network. This property is commonly referred
to as amortization or amortized inference: the initially high cost of training the density estimator
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Algorithm 2: Single round neural posterior estimation as in Papamakarios et al. 2016
input simulator x ∼ f(θ), prior p(θ), observed data xo, neural density estimator qϕ=F (x)

for j = 1 : N do
Sample θi ∼ p(θ)
Simulate xi ∼ f(θi)

end
ϕ← argmin 1/N

∑N
i − log qϕ=F (xi)(θi|xi)

Set p̂(θ|xo) = qϕ=F (xo)(θ|xo)
return Samples from p̂(θ|xo) and density estimator qϕ=F (x)(θ|x)

with a large number of simulated data amortizes when performing inference for many different xo
(Gershman et al. 2014; Paige et al. 2016; Papamakarios et al. 2016).

Sequential neural posterior estimation While amortization is a valuable property in some
scenarios, there are other scenarios where it is not. For example, when we are interested in only
one specific observation xo, the initial cost of training the density estimator to be accurate across
an extensive range of different x might be too high. For this setting, Papamakarios et al. 2016
proposed a Sequential version of NPE (SNPE), which trains the density estimator qϕ over multiple
rounds. In the first round, it performs NPE with training data simulated with parameters sampled
from the prior. Then, in the following rounds, the parameters for simulating new training data
are not sampled from the prior but from a proposal distribution focusing on parameters likely to
have generated xo. A good candidate for the proposal distribution is the current estimate of the
posterior qϕ(θ|xo). Following this approach, one can focus the training of the density estimator on
those regions in the data and parameter spaces relevant for xo, which can substantially reduce the
number of required training simulations.

SNPE tends to be more simulation-efficient than NPE (Lueckmann et al. 2021). However, it
comes with an additional algorithmic cost. When we train the density estimators with training data
simulated from a proposal distribution p̃(θ) different from the prior p(θ), the resulting posterior
will differ from the desired posterior, e.g., it will be the so-called proposal posterior p̃(θ|x)—the
posterior with respect to the proposal prior:

p̃(θ|x) = p(θ|x) p̃(θ)p(x)
p(θ)p̃(x)

, (2.15)

where p̃(θ) =
∫
θ p̃(θ)p(x|θ). Therefore, Papamakarios et al. 2016 introduced an analytical posthoc

correction to obtain the desired posterior corresponding to the actual prior. However, the correc-
tion step worked only for specific proposal distributions, e.g., Gaussian or uniform proposals, and
it was numerically unstable in some cases. Over the past years, several variants of SNPE have
been proposed (Lueckmann et al. 2017; Greenberg et al. 2019; Deistler et al. 2022a) that succes-
sively improved its numerical stability and enabled the use of more flexible density estimator like
normalizing flows (Rezende et al. 2015; Papamakarios et al. 2021).

Neural likelihood estimation

Neural likelihood estimation (NLE) follows the same principle as NPE, except that it estimates
the intractable likelihood p(x|θ) defined by the simulator and not the posterior p(θ|x). As outlined
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above, the idea of learning such a synthetic likelihood was first introduced by Wood 2010, who used
model simulations to estimate a Gaussian likelihood. Papamakarios et al. 2019 moved this idea into
the realm of highly flexible and conditional density estimators based on neural networks. In NLE,
one uses a training data set comprised of pairs {(θi, xi)}Ni=1 to train a neural network F to learn the
parameters ϕ of a density estimator qϕ(x|θ) ≈ p(x|θ). The neural network F is conditional on the
parameters, i.e., it takes as an input θ and learns a density in x. Being a density estimator, qϕ(x|θ)
defines a tractable probability density that can be evaluated and sampled efficiently. Thus, qϕ gives
access to the intractable likelihood of the simulator and enables obtaining posterior samples by
combining the approximate likelihood and the prior and applying MCMC:

p(θ|xo) ∝ qϕ(θ|xo)p(θ). (2.16)

The loss function for optimizing qϕ is the negative log probability of qϕ given the current training
data point, L(ϕ) = − log qϕ=F (θi)(xi|θi), which implicitly minimizes DKL(qϕ(x|θ), p(x|θ)).

Like NPE, NLE can be extended to the sequential setting to focus the inference on a particular
xo (Papamakarios et al. 2019). Unlike NPE, the Sequential version of NLE (SNLE) does not require
a correction step for using proposal distributions during training. The reason is that the proposal
distribution affects only the learning of the likelihood and does not interfere with the inference
step in equation 2.16. Thus, it does not affect the posterior estimate. Papamakarios et al. 2019
proposed to sample the parameters for the next round from the current posterior estimate (as in
NPE). Lueckmann et al. 2019 extended the SNLE framework to more flexible proposals based on
local and global acquisition functions commonly used in the active learning literature.

Neural ratio estimation

A third class of neural-network-based SBI methods is based on the insight that one can recast
the approximation of a ratio of two densities as a classification task between samples from the
densities (Cranmer et al. 2016). Building on this, neural ratio estimation (NRE) uses neural network
classifiers to estimate density ratios to perform SBI (Izbicki et al. 2014; Cranmer et al. 2016;
Thomas et al. 2022; Durkan et al. 2020). For illustration, I here focus on a recent neural-network-
based approach by Hermans et al. 2020. They trained a neural network classifier to learn the
likelihood-to-evidence ratio to be then able to perform inference with MCMC. Their approach
builds on the fact that during MCMC sampling, the calculation of the acceptance probability of
a newly proposed parameter θnew through the posterior ratio can be expressed in terms of the
likelihood-to-evidence ratio r(x|θ) = p(x|θ)

p(x) :

p(θnew|x)
p(θold|x)

=
p(θnew)p(x|θnew)/p(x)
p(θold)p(x|θold)/p(x)

=
p(θnew)r(x|θnew)
p(θold)r(x|θold)

. (2.17)

Hermans et al. 2020 showed that training a classifier d(θ, x) to distinguish between dependent
parameter-data pairs (θ, x) ∼ p(x|θ)p(θ) and independent pairs (θ, x) ∼ p(x)p(θ) converges to an
optimal classifier that recovers the likelihood-to-evidence ratio:

d∗(θ, x) =
p(θ, x)

p(θ, x) + p(x)p(θ)
(2.18)

d∗(θ, x)

1− d∗(θ, x
=

p(θ, x)

p(x)p(θ)
=

p(x|θ)
p(x)

= r(x|θ). (2.19)
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Thus, it is possible to use simulated training data {(θi, xi)}Ni=1 for training a classifier d(θ, x) to
approximate r̂(x|θ) ≈ r(x|θ). Subsequently, one can evaluate the trained classifier on the observed
data to obtain r̂(xo|θ) and use it as a replacement for the likelihood-to-evidence ratio of the
intractable model. Like NLE, NRE can also be extended to a Sequential scheme (SNRE, Hermans
et al. 2020; Durkan et al. 2020) by repeating the training and MCMC sampling over multiple
rounds. As in SNLE, SNRE does not require a correction step.

Amortization in neural SBI methods Similar to NPE, the non-sequential versions NLE and NRE
perform conditional density (ratio) estimation: Once trained on simulations sampled from the
prior, applying them to a new data point corresponds to a single pass through the neural network.
However, unlike NPE, NLE and NRE additionally require MCMC sampling to obtain posterior
samples, which can be challenging and computationally costly in high-dimensional parameter
spaces. Thus, inference with NLE or NRE is not fully amortized, only the training of neural networks
is. Recently, Glöckler et al. 2022 showed how the MCMC sampling step in NLE and NRE can be
replaced by variational inference, substantially reducing the computational costs.

2.3 Summary
In this chapter, I outlined how we can use simulation-based models for scientific discovery and

emphasized the benefits of the Bayesian inference framework for identifying the model parameters
given observed data. I then gave an overview of SBI methods that enable approximate Bayesian in-
ference for simulation-based models where standard methods do not apply. Given the approximate
nature of these methods and their variety, the question remains how to choose the suitable method
in practice and evaluate it in scenarios where we do not have access to a reference solution. In the
next chapter, I aim to answer these questions.



Chapter 3

Simulation-based inference in practice

In the previous chapter, I presented three neural SBI approaches that have emerged over the past
years. Simulation-based inference is a vivid field of research in which improvements, variants, and
new applications of all three approaches appear regularly. These new SBI methods are usually
presented by evaluating them on a tractable toy example with access to reference posteriors,
followed by an application to an actual SBI problem of the authors’ choice. From a practitioner’s
view, this poses the problem of deciding which algorithm to use for which application and how to
tailor it to their specific needs.

There have been efforts to address this problem, e.g., by establishing a standardized set of
benchmark tasks with reference posteriors, providing a common ground for studying and compar-
ing available and new SBI algorithms systematically (Lueckmann et al. 2021). However, a general
guideline for the choices and evaluation steps involved in applying SBI to real-world problems,
e.g., a practitioner’s guide to SBI similar to Gelman et al. 2020’s guide developed for standard
approximate Bayesian inference methods, has yet to be established. In this chapter, I present a
first step towards such a guide by giving an overview of the choices in preparing, executing, and
analyzing neural SBI approaches in practice. I use the drift-diffusion model (DDM, Fig. 2.2) as a
running example.

The workflow for using SBI to statistically infer the parameters of a simulation-based model
given observed data can be divided into three steps (Fig. 3.1):

1. A-priori checks performed before running inference,

2. choosing a suitable SBI method and applying it, and

3. a-posteriori checks performed after inference.

3.1 A-priori checks
A-priori checks are performed to make sure that the model and the corresponding prior can capture
the observed data, e.g., that the model is not misspecified and the prior is chosen appropriately.

3.1.1 Model misspecification

As outlined in section 2.1, we generally assume that our model will only partially reproduce the
aspects of the underlying data-generating process, i.e., it will always be misspecified with respect
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Figure 3.1: The simulation-based inference workflow can be divided into three stages. 1) Before applying
SBI, we need to ensure the model is not misspecified, e.g., by performing prior predictive checks and refining
the prior or the model (left). 2) When choosing an SBI method, we need to take into account the properties
of the data, the model, and the inference problem (center). 3) After applying SBI, we need to validate the
posterior using predictive checks and calibration checks before we can analyze it (right).

to the true data-generating process. Nevertheless, we can still build valuable models by focusing
on specific features of the observed data we aim to reproduce. However, the model should at
least be able to reproduce these features of interest. Suppose this was not the case, and we would
still perform SBI. Then we would effectively train the SBI algorithm with training data different
from the observed data to which it is applied at inference time. The accuracy of the inference will
then depend on how well the SBI algorithm generalizes to out-of-distribution data. However, it is
known that especially large neural networks commonly used in neural SBI methods can be highly
inaccurate when applied to unseen data (Nalisnick et al. 2022). Indeed, it was shown for neural
SBI approaches (Cannon et al. 2022) and also for ABC approaches (Frazier et al. 2019) that in the
misspecified scenario, the approximate posterior samples can be highly inaccurate.

Recently, several approaches have been proposed that automatically detect and correct for
model misspecification in SBI (Frazier et al. 2019; Frazier et al. 2020; Schmitt et al. 2022; Ward
et al. 2022; Kelly et al. 2023). However, these methods are in their early development and often
involve additional algorithmic steps. A computationally cheap and easy-to-interpret alternative is
given by prior predictive checks.

3.1.2 Prior predictive checks

The reason for model misspecification can either lie in the model or the choice of the prior distribu-
tion. So-called prior predictive checks are a common way to check whether the prior is well-chosen.
A prior can be considered well-chosen if the data resulting from simulating data with parameters
sampled from the prior, i.e., the prior predictive distribution, is realistic with respect to the problem
at hand. If it is not, the prior should be adapted. The prior predictive distribution should also
contain the observed data. If it does not, this is a sign of model misspecification; however, this
misspecification can be due to the model itself.

To perform prior predictive checks, we define a prior distribution for each parameter in the
model we want to infer, taking into account the domain knowledge we have about the inference
problem. For example, in the DDM, we would define a prior for the three parameters v, a, and w,
choosing uniform priors in the ranges that result in realistic distributions of reaction times and
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Figure 3.2: Prior predictive check for the drift-diffusion model. Reaction times and choices simulated
from the DDM with parameters sampled from the prior (black), compared to the observed data (gold; up-
and down choices shown to the left and the right, respectively).

choices (Shadlen et al. 2013):

v ∼ U(−2, 2) (3.1)

a ∼ U(0.5, 2) (3.2)

w ∼ U(0.2, 0.8). (3.3)

Subsequently, we generate a large set of simulated data by running the DDM with parameters
sampled from the prior, (θ, x) ∼ pDDM (x|θ)p(θ), and compare the simulated {xi}Ni=1 with the
observed data xo. If the dimensionality of the data allows, the comparison could be visual, e.g.,
by plotting each component of the observed data on top of histograms of the simulated data.
Alternatively, one would need to define summary statistics to reduce the dimensionality, use a
distance function to compare high-dimensional data, or use automated approaches as proposed by
Schmitt et al. 2022; Ward et al. 2022.

In the DDM, there are only two data dimensions (reaction times and choices); thus, a visual
prior predictive check is possible. For example, let the observed data xo be given by 100 reaction
times and choices recorded from one subject in a two-alternative perceptual decision-making task
(see Fig. 2.2 and Ratcliff et al. 2008). To perform the prior predictive check, we would sample
100,000 parameters from the prior, simulate them in the DDM, and plot corresponding simulated
data on top of the observed data with the two possible choices encoded as the sign of the reaction
time (Fig. 3.2). If the distribution of simulated data covers the observed data well (Fig. 3.2), we
would consider the DDM well-specified for the observed reaction times and choices and continue
with SBI. Note that the distribution of simulated data does not have to resemble the observed data,
as we have not performed inference ye;t.

3.2 SBI hyperparameters
The next step in the SBI workflow is to select the SBI hyperparameters, e.g., the type of SBI method,
the neural network architecture, or the type of density estimator. The answer depends on multiple
factors, e.g., the dimensionality of the data and parameter spaces, the run time of the simulator, or
whether we have one or multiple observed data points (see Fig. 3.1, center).
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3.2.1 Choice of SBI method

The three different SBI approaches introduced in section 2.2 solve different learning problems: NPE
takes data x as input and estimates a density over parameters θ; NLE takes parameters θ as input
and estimates a density over the data x; NRE performs classification taking both θ and x as input.
Thus, the difficulty of the corresponding optimization problems depends on the dimensionality of
x and θ.

Dimensionality of data and parameters If the x is high-dimensional compared to the number
of parameters θ, then applying NPE can be a better choice than applying NLE because, for NLE,
one would have to learn a high-dimensional density in x. Concurrently, in scenarios where θ is
high-dimensional compared to x, performing density (ratio) estimation will likely be easier for NLE
or NRE. Yet, in these cases, one still would have to apply MCMC sampling in θ space to obtain
posterior samples, which can be challenging for high-dimensional θ. Thus, while the dimensionality
of x can guide the choice between NPE and NLE or NRE, high-dimensional parameter spaces can
be problematic for either. As a heuristic, current SBI methods require on the order of 10,000
training data points per parameter dimension, e.g., at least 100,000 simulations for a model with
ten parameters. However, these numbers strongly depend on the problem (see Gonçalves et al.
2020; Lueckmann et al. 2021; Deistler et al. 2022b; Ramesh et al. 2022, for examples).

Inference scenarios Another factor determining the choice of the SBI method is whether one
carries out inference once or repeatedly for multiple observations. Sequential SBI methods can be
substantially more simulation efficient by focusing the inference on a particular observation xo.
Thus, they are a good choice in scenarios with a limited simulation budget and a single observed
data point xo of interest. In contrast, in a scenario where one repeatedly performs inference for
different observations xo, fully amortized NPE or partially amortized methods like NLE or NRE are
more suitable. In scenarios with multiple observations that can be assumed to be identically and
independently distributed (iid), it can be beneficial to use NLE or NRE as they can leverage the
fact that iid trials and hierarchical inference settings often can be rewritten in terms of single-trials
likelihoods (Hermans et al. 2020; Fengler et al. 2021; Boelts et al. 2022, see Publications for
details).

3.2.2 Embedding networks

Neural SBI methods have the advantage over classical ABC methods in that they can augment
the neural density (ratio) estimators with additional neural network layers to automatically learn
low-dimensional embeddings from high-dimensional inputs. The embedding networks are trained
end-to-end with the neural density estimator and can be applied to x or θ depending on the input
to the density estimator. For example, NPE can learn embeddings for x, NLE can learn embeddings
for θ, and NRE can learn embeddings for both. The architecture of the embedding network should
be selected according to the input type. For example, recurrent neural networks (RNN) can serve as
embedding nets to encode high-dimensional time series (Lueckmann et al. 2017; Greenberg et al.
2019), convolutional neural networks (CNN) can serve as embeddings for spatially structured data
like images (Greenberg et al. 2019; Ramesh et al. 2022), and equivariant embedding nets (Zaheer
et al. 2017; Dax et al. 2022) can help to exploit equivariances in the data, e.g., for independent
and identically distributed data (Chan et al. 2018; Radev et al. 2022).
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3.2.3 Density estimators

Applying NPE or NLE requires choosing a neural density estimator. Driven by advances in proba-
bilistic machine learning, the repertoire of neural density estimators available for SBI has evolved
over the years. While Papamakarios et al. 2016 relied on mixture density networks (MDN, Bishop
1994) when introducing NPE, they later were able to use normalizing flows (Papamakarios et al.
2017) when introducing NLE (Papamakarios et al. 2019).

MDNs are neural networks designed to predict the parameters of a parametric family of prob-
ability distributions from data. For example, they predict the means, mixture coefficients, and
covariance matrices of a mixture of Gaussians (or a mixture of other tractable distributions) from
input data x to approximate the posterior over θ. While a mixture of Gaussians with enough mixture
components can, in principle, approximate any probability distribution, the number of components
used in MDNs is limited by the resulting number of neural network weights and units in the output
layers. Thus, they are capable of fitting multi-modal Gaussian-like distributions but tend to struggle
for more complex distributions (see e.g., Greenberg et al. 2019).

Normalizing flows provide substantially more flexibility than MDNs. They consist of a series of
invertible and differentiable transformations T that map from a tractable base distribution pu(u)
to a target distribution px(x) (Papamakarios et al. 2021):

x = T (u) where u ∼ pu(u) (3.4)

px(x) = pu(u) |detJT (u)|−1 where u = T−1(x), (3.5)

where JT (u) is the Jacobian matrix.
The transformations T are parametrized by invertible neural networks, which are designed

such that the corresponding Jacobians can be calculated efficiently. Consequently, using standard
neural network training procedures to optimize the transformations is possible, resulting in a highly
flexible density estimator. See Papamakarios et al. 2021 for an extensive review of normalizing
flows.

Normalizing flows are currently the default choice in many SBI applications. However, while
flows tend to have substantially more capacity than MDNs, they also tend to be slower during eval-
uation and sampling, resulting in slower neural network training and MCMC sampling. Therefore,
there are scenarios where MDNs are the better choice (see e.g., Beck et al. 2022). Other density
estimators used in SBI methods include Gaussian processes (Meeds et al. 2014; Wilkinson 2014)
or score-based diffusion models (Song et al. 2019; Geffner et al. 2022; Sharrock et al. 2022).

3.3 Training and inference
All neural SBI methods are based on training artificial neural networks and therefore require
choices about corresponding hyperparameters and convergence metrics. The likelihood-based SBI
methods (NLE and NRE) also rely on approximate methods like MCMC or variational inference (VI)
to obtain posterior samples, which come with additional hyperparameter choices and calibration
metrics.
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3.3.1 Neural network training

Although the different SBI approaches solve different learning problems, e.g., unsupervised con-
ditional density estimation for NPE and NLE versus supervised classification for NRE, the training
procedures for the underlying neural networks are very similar. The neural network weights are
optimized by iterative updating according to the gradient of the loss function, which is usually
calculated via backpropagation. Thus, training neural SBI algorithms involves the standard neural
network training hyperparameter choices, e.g., choosing a training batch size, learning rate, num-
ber of epochs, and stopping criteria, for which good heuristics and default choices are available in
open-source software packages like PyTorch (Paszke et al. 2019) or the SBI toolkit (Tejero-Cantero∗

et al. 2020) and in benchmarking studies, e.g., Lueckmann et al. 2021.

3.3.2 Inference

When using NPE, one can perform inference given the observed data directly after training as it
returns a parametric approximation to the posterior that can be sampled and evaluated with a
single pass through the underlying neural network. In contrast, NLE and NRE return an estimate of
the likelihood (ratio) and, therefore, additionally require sampling algorithms to obtain posterior
samples. The classical choice for sampling in SBI is Markov Chain Monte Carlo methods (MCMC,
Metropolis et al. 1953; Hastings 1970). More recently, variational inference (VI, Blei et al. 2017)
has been proposed as a sampling method for SBI as well (Wiqvist et al. 2021; Glöckler et al. 2022).

MCMC MCMC is a method to obtain samples from a distribution for which one does not have
the normalization constant, e.g., for obtaining posterior samples when we only have the likelihood
and the prior. The general idea of MCMC is to start with (randomly) initialized parameters, e.g.,
sampled from the prior, and to iteratively construct a chain of parameters that will eventually
converge to the target distribution. The next parameter θ

′
in the chain is obtained by perturbing the

current parameter θt using a specific perturbation kernel q(θ
′ |θt) (e.g., a Gaussian) and accepting

it according to an acceptance probability ρ calculated from the prior, likelihood (ratio), and the
kernel,

ρ = min

(
1,

p(θ
′
)

p(θt)

p(x|θ′
)

p(x|θt)
q(θ

′ |θt)
q(θt|θ′)

)
. (3.6)

The chain constructed using this equation will converge to the target distribution Metropolis et al.
1953.

Several variants of the metropolis MCMC algorithm have emerged that substantially improve
its efficiency and accuracy. The most prominent ones are slice sampling (Radford M. Neal 2003)
and Hamiltonian Monte Carlo (HMC, Radford M Neal et al. 2011; Homan et al. 2014; Betancourt
2017). Thus, in SBI practice, it is common to use slice sampling, HMC, or a combination of the
two like the no-u-turn sampler (NUTS, Homan et al. 2014). Additionally, one has to select MCMC
hyperparameters and evaluate several performance metrics, e.g., whether to subsample the chain to
avoid autocorrelation, how many MCMC chains to run in parallel, how to initialize the chains, and
how to detect convergence—see Hogg et al. 2018 and Vehtari et al. 2021 for a general overview of
using MCMC in practice, and Lueckmann et al. 2021 for SBI-specific recipes.
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Variational inference Variational inference (VI) takes a different approach than MCMC. Instead
of generating posterior samples, it aims to learn a parametric approximation to the posterior. To that
end, one defines a parametric family of distributions and then tries to find the member in the family
closest to the unknown posterior distribution. The formal goal of VI is to minimize a divergence
measure between the posterior p(θ|x) and the parametric approximation qϕ(θ|x), e.g., the Kullback-
Leibler divergence (KL). Minimizing this divergence is intractable for most practical applications.
The crux of VI is to reformulate the intractable problem of minimizing the divergence into a
tractable optimization problem. In particular, it was shown that minimizing the KL is equivalent to
maximizing the so-called evidence lower bound (ELBO), which is solvable using standard numerical
optimization methods (Blei et al. 2017).

Recently, VI was proposed as an alternative sampling algorithm for NLE and NRE (Wiqvist et al.
2021; Glöckler et al. 2022). The approach by Glöckler et al. 2022 called SNVI (sequential neural
variational inference) combines the advantages and avoids the disadvantages of NPE and NLE /
NRE, respectively. Like NPE, it results in a parametric approximation to the posterior that can be
sampled and evaluated efficiently and does not require expensive MCMC sampling. At the same
time, like NLE and NRE, SNVI does not require corrections when performing sequential inference
with active learning schemes. Thus, while MCMC is the default choice in most likelihood-based SBI
applications, the recent VI approaches provide a promising alternative for high-dimensional SBI
problems.

3.3.3 DDM example

Given the properties of the different SBI approaches outlined above, which one would we
choose for the DDM? In the form presented here, the DDM has a three-dimensional parameter
space and two-dimensional data space and is fast to simulate. Therefore, it represents a relatively
simple SBI problem. However, one essential feature is its frequent use in experimental setups with
many iid observations and corresponding hierarchical inference scenarios (Shiffrin et al. 2008;
Wiecki et al. 2013). Thus, applying single-round NLE or NRE trained on single-trial simulations
would be beneficial. Subsequently, one could perform inference via MCMC (or VI) given obser-
vations with varying numbers of trials without having to retrain the underlying neural networks.
Alternatively, one could use NPE with permutation invariant embeddings networks. While this
would substantially speed up inference as no MCMC sampling would be required, it would likely
slow down the simulation and training phases, as NPE requires multiple simulated trials for each
training data point.
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3.4 A-posteriori checks
After obtaining an approximation to the posterior over model parameters—be it in the form of
posterior samples or as parametric approximation—there are several checks available for testing the
accuracy of the approximation, even if the underlying posterior is unknown. Below, I first present
posterior predictive checks, which provide an intuitive and direct evaluation of the predictive
performance of the posterior. I then outline more indirect checks probing the internal statistical
consistency of the SBI algorithm. Lastly, I show how the posterior can be analyzed after successful
evaluation to reveal parameter interactions in the model.

3.4.1 Posterior predictive checks

Posterior predictive checking is analogous to the prior predictive check (see section 3.1). It tests
how the posterior predictive distribution,

p(x̃|xo) =
∫
θ
p(x̃|θ)p(θ|xo)dθ, (3.7)

i.e., the distribution obtained by simulating data x̃ ∼ p(x|θi) with parameters sampled from the
inferred posterior, θi ∼ p(θ|xo), compares to the observed data xo. Several sophisticated approaches
have been developed for performing this test in the context of classical approximate inference, e.g.,
leave-one-out cross-validation or specific information criteria (Gelman et al. 2020). However, most
of these tests do not apply to the SBI setting as they require direct access to the model’s likelihood.
Thus, in SBI, a common approach is directly comparing the predicted and observed data. For
example, we sample 1,000 parameters θ from the posterior and run the simulator to obtain 1,000
predictions x̃. Subsequently, we plot the simulated data next to or on top of the observed data and
compare them visually. Ideally, the predicted data would cluster around the observed data with
a variance matching the noise expected in the simulator (see 3.4b). If this is not the case, e.g., if
parts of observed data lie clearly outside the distribution of predicted data, this is a sign of model
misspecification or a problem in the inference method.

3.4.2 Simulation-based calibration

Simulation-based calibration (SBC, Cook et al. 2006; Talts et al. 2020) provides a way to system-
atically evaluate the internal consistency of the inference procedure without requiring access to
the true posterior. In essence, it checks whether the uncertainties of the inferred posteriors are
well-calibrated, i.e., that they are neither too narrow (overconfident) nor too wide (underconfi-
dent). To perform SBC, we use a given SBI method to repeat the inference procedure N times with
pseudo-observed data generated from the simulator using parameters sampled from the prior:

θ∗ ∼ p(θ) (3.8)

x∗ ∼ p(x|θ∗). (3.9)

Following this procedure, we obtain N posteriors pi(θ|x∗), one for each pair in {(θ∗, x∗)}Ni=1. Sub-
sequently, we obtain a set of L posterior samples from each posterior and calculate the rank ri of
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Figure 3.3: Visual interpretation of simulation-based calibration. A systematic bias in an SBI method
may be due to a shift in the posterior mean (a), an over- or underestimated posterior variance (b), or a
mixture of both ((c), ground-truth posterior in gold, biased posteriors in shades of red). By performing
SBC, these different biases become visible in the shapes of the corresponding empirical CDFs of SBC ranks:
Symmetric offsets from the diagonal indicate a mean shift (d), S-shapes around the diagonal indicate over-
or underdispersion (e) or a mixture of both (f).

the underlying parameter θ∗i among the posterior samples:

{θ1, . . . θL} ∼ pi(θ|x∗) (3.10)

ri =
L∑

j=1

I[f(θj) < f(θ∗i )] ∈ [0, L], (3.11)

where I is the indicator function and f : Θ → R can be any one-dimensional random variable
(Talts et al. 2020). The ranking is well-defined only in the one-dimensional case. Thus, in practice,
one usually performs the ranking separately for each dimension of the posterior and sets f(θ) = θ.

The central insight in the SBC procedure is that if the posterior uncertainties are well-calibrated,
then the calculated ranks {r1, . . . , rN} follow a uniform distribution across integers [0, L] (Talts
et al. 2020). Equivalently, if the ranks deviate from a uniform distribution, then the posterior uncer-
tainties are not well-calibrated, indicating that the posteriors are systematically biased. Thus, the
uniformity check of SBC provides a necessary condition for the validity of the inference procedure.

Interpreting SBC results One way to test for the uniformity of the ranks is null-hypothesis
significance testing, e.g., using the Kolmogorov-Smirnov test of uniformity (Kolmogorov 1933;
Smirnov 1948). In practice, however, it is often more instructive to visualize the histograms or the
empirical cumulative density function (CDF) of the ranks and to check for uniformity by visual
comparison (see Fig. 3.3). Furthermore, visualizing the distributions of the ranks can give insights
into the type of bias present in the posterior, e.g., whether the posteriors are systematically too
broad or too narrow. For example, an accumulation of the ranks at smaller values indicates that
the posteriors are systematically biased towards larger parameter values. Conversely, a tendency
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towards larger values indicates a bias towards inferring too small parameter values. Fig. 3.3
illustrates this for a Gaussian toy example. Posteriors could be systematically biased towards
smaller or values (Fig. 3.3a), systematically over- or underestimate the variance (Fig. 3.3b), or
both (Fig. 3.3c). When visualizing the SBC ranks as empirical CDF lines, these three scenarios
correspond to characteristics shapes: A systematically shifted posterior corresponds to CDF lines
lying above or below the diagonal (Fig. 3.3d), over- or under-dispersed posteriors show S-shapes
around the diagonal (Fig. 3.3e), and a mixture of both biases shows corresponding mixtures of
both CDF effects (Fig. 3.3f).

SBC in practice In practice, performing SBC requires repeating the inference N times, where N
should be on the order of hundreds for SBC to give reliable results (Talts et al. 2020). For NPE, this
is computationally cheap because, in the fully amortized setting of NPE, one can obtain posteriors
for each x∗ instantly. Running SBC for NLE or NRE is computationally more demanding as it
requires rerunning MCMC or VI to obtain posterior samples for each x∗ (retraining the underlying
neural networks is not required). SBC is especially time-consuming for all sequential SBI variants
because they require rerunning training and simulating from round two onwards for each new x∗.

SBC can be gamed: when setting the posterior equal to the prior, all SBC checks would pass.
However, this can be detected when running complementary posterior predictive checks. Another
caveat of SBC is that, in its basic form, it applies only to the one-dimensional marginals of the
posterior, i.e., it has to be applied for each posterior dimension separately. Several alternative
approaches have been proposed to address some of SBC’s limitations. These include expected
posterior coverage tests (Dalmasso et al. 2020; Hermans et al. 2021; Miller et al. 2021; Deistler
et al. 2022a), conditional coverage tests (Masserano et al. 2022), or a reframed SBC version that
is conditional on a specific observation (Modrák et al. 2022).

Probability of θ∗ Another posterior evaluation metric that can be calculated without access to
the true posterior is the average negative log probability of the true parameters (NLTP) θ∗ under
the inferred posterior p(θ|x∗):

NLTP = Eθ∗∼p(θ)Ex∗∼p(x|θ∗)[q(θ|x∗)]. (3.12)

NLTP provides a metric for comparing the performance of different SBI approaches and has been
used in the SBI literature extensively (Papamakarios et al. 2016; Durkan et al. 2020; Greenberg
et al. 2019; Papamakarios et al. 2019; Hermans et al. 2020). Alternatively, it could be a criterion for
comparing different neural network architectures within one SBI approach. Importantly, it is only
a valid performance measure when calculated over many (θ∗, x∗) generated from the prior (Talts
et al. 2020; Lueckmann et al. 2021). In the limit of an infinite number of pairs (θ∗, x∗), it converges
to an expression with two terms: the Kullback-Leibler divergence between the approximate and
the true posterior averaged over all x∗ and the average entropy of the true posterior (Lueckmann
et al. 2021):

Ex∗∼p(x)DKL(p(θ|x∗)||q(θ|x∗)) + Ex∗∼p(x)H(p(θ|x∗)) (3.13)

Only the latter depends on the SBI algorithm and provides a measure for the accuracy of the
approximation.
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Figure 3.4: Posterior analysis for the drift-diffusion model. (a) Visualization of the three-dimensional
posterior over DDM parameters with one-dimensional marginals on the diagonal and two-dimensional
marginals on the off-diagonal, ground-truth parameters in shown gold. (b) Reaction times and choices
simulated from the ground-truth parameters (observed data, gold) and the posterior distribution (posterior
predictive, red). (c) Simulation-based calibration results for each parameter of the DDM, shown as empirical
cumulative density functions of the calculated ranks (see main text). The grey area represents random
fluctuations expected under the uniform distribution.

3.4.3 Posterior analysis

After choosing an SBI method, training the corresponding neural networks, obtaining posteriors
samples, and performing posterior checks to ensure the validity of the inference, we can turn to the
initial goal of the SBI endeavor: running Bayesian parameter inference and interpreting the results.
To that end, we apply the trained and validated SBI method to the observed data xo and obtain an
approximation to the posterior (or samples from it) over the model parameters conditioned on xo.

One essential benefit of the Bayesian inference framework is that the posterior identifies all pa-
rameter combinations likely to reproduce the data, as well as their co-relation. The plausible values
for each parameter are characterized by the corresponding one-dimensional marginal distribution,
where the variance represents the uncertainty concerning the parameter. This uncertainty could be
due to noise in the data-generating process or because several parameter values can explain the
data equally well due to compensation mechanisms or degeneracies in the model (Gutenkunst et al.
2007; Gonçalves et al. 2020). Additionally, the covariance structure of the full posterior distribution
characterizes the co-relations between each pair of parameters. Analyzing this structure can help
reveal degeneracies and compensation mechanisms between model parameters (Golowasch et al.
2002; Gonçalves et al. 2020; Deistler et al. 2022b).
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Visualization One way to visualize potential high-dimensional posteriors in two dimensions is
the so-called pair plot. The pair plot consists of a matrix of subpanels showing each parameter’s
one-dimensional marginal on the diagonal and the two-dimensional marginals for every possible
pair of parameters on the upper- or lower off-diagonal (see Fig. 3.4a). Thus, on the diagonal,
one can read off the inferred ranges of possible parameter values for each dimension, while the
two-dimensional densities on the off-diagonal already give us a glimpse of the covariance structure
of the posterior that may reveal parameter interactions in the model.

Correlations The pair plot can be inspected visually for potential interactions between the param-
eters by searching for elliptically shaped regions in the two-dimensional marginals. For example,
in the posterior of the DDM example presented in Fig. 3.4b, the shape of the two-dimensional
marginal between the drift parameter v and the offset parameter w (upper right panel) indicates a
negative correlation, while the other two pairs appear to show almost no correlations. The inter-
pretation of this shape would be that as we increase the drift, the posterior density remains high if
we simultaneously decrease the offset in the initial condition. In other words, one way to obtain
the same data (choices and reaction times) while increasing the drift (more evidence towards the
upper boundary) would be to induce an initial bias towards the lower boundary by decreasing w.
A common way to quantify the suspected correlations is to calculate the corresponding Pearson
correlation coefficients from posterior samples.

Conditional correlations In some situations, the inferred posteriors are relatively broad for
many model parameters, suggesting that the observed data only weakly constrain the parameters.
However, this can be misleading because the univariate and pairwise marginals represent averages
over all possible values of the remaining posterior dimensions. Consequently, if the posterior is
high-dimensional, parameter interactions and compensation mechanisms might not be visible in a
low-dimensional visualization and the corresponding correlation analysis. To still detect potential
dependencies between the parameters, one can instead calculate the conditional correlations in the
posterior (see Gonçalves et al. 2020; Deistler et al. 2022b; Boelts et al. 2023, for examples).

Sensitivity analysis The above steps enable us to identify regions of data-consistent parameters
and directions of interactions between the parameters. It is possible to investigate these regions
further. One approach proposed in Gonçalves et al. 2020 is identifying paths in the parameter
space along which parameters are data-consistent. For example, given two distinct parameter
combinations closely reproducing the observed data, one can use optimization techniques to find
a path of high posterior density that connects to two parameters in posterior space. Along this
path through the posterior space, all parameter combinations are data-consistent, whereas small
perturbations way from the path can lead to inconsistent data (see, e.g., Gonçalves et al. 2020,
Fig. 5).

Another way of analyzing these posterior subspaces is conducting a sensitivity analysis in pos-
terior space, as proposed in Deistler et al. 2022b. Here, the idea is to identify the directions in
the posterior space in which the parameters are most sensitive, in the sense that changing them
would make them data-inconsistent. For example, given an elliptical shape in the two-dimensional
marginal of v and w in the DDM example and the corresponding negative correlation coefficient
(Fig. 3.4a, upper right subpanel), we would expect that the parameters are less sensitive in the
elongated direction of the ellipse and more sensitive in the direction orthogonal to that. Formally,
these directions can be identified by constructing the outer product of the gradients of the posterior
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density with respect to the parameters

M = Eθ∼p(θ|x)[∇p(θ|x)∇p(θ|x)⊤], (3.14)

and obtaining the eigenvectors and eigenvalues of the resulting matrix M (Deistler et al. 2022b;
Constantine 2015). The eigenvectors identify the directions and the eigenvalues the degree of
sensitivity. This sensitivity concerns all aspects of the observed data because the posterior is condi-
tioned on xo. The sensitivity analysis can be further generalized to study the parameters’ sensitivity
to specific properties of the data, e.g., specific summary statistics of interest s(x) (see Constantine
2015; Deistler et al. 2022b, for details).

3.5 Summary
This chapter provided an overview of the workflow for using SBI in practice. We have seen

that the actual execution of the SBI algorithm is only one step among many other important
evaluation steps and choices to be performed before and after the inference: Before applying SBI,
prior predictive and model misspecification checks are required to ensure that SBI will give reliable
results. When selecting a specific SBI algorithm and a suitable neural network architecture, the
structure and dimensionality of the data and the parameters, as well as many other factors, must
be considered. After obtaining the approximation to the posterior, several checks are required, e.g.,
checks to ensure that the posterior variances are well-calibrated or that the posterior accurately
reproduces the observed data before, finally, the posterior can be analyzed and interpreted.

This workflow considers the currently available procedures for applying SBI to new inference
problems. With ongoing research on new SBI methods and validation techniques, the workflow
will need to be adapted to improve the applicability and reliability of SBI further.



Chapter 4

Publications

In this chapter, I present the publications forming the basis of this thesis. I start with a short
overview of all publications. In the remainder of the chapter, I provide a summary and a note on
my contributions for each publication. The full papers are attached in the appendix.

4.1 Overview
1. Flexible and efficient simulation-based inference for models of decision-making.

Jan Boelts, Jan-Matthis Lueckmann, Richard Gao, Jakob H. Macke (2022)
eLife (Boelts et al. 2022).

2. Simulation-based inference for efficient identification of generative models in computational
connectomics.
Jan Boelts, Philipp Harth, Richard Gao, Daniel Udvary, Felipe Yanez, Daniel Baum, Hans-
Christian Hege, Marcel Oberlaender, Jakob H. Macke (2023)
bioRxiv (Boelts et al. 2023).

3. sbi: A toolkit for simulation-based inference.
Álvaro Tejero-Cantero∗, Jan Boelts∗, Michael Deistler∗, Jan-Matthis Lueckmann∗, Conor
Durkan∗, Pedro J. Gonçalves, David S. Greenberg, and Jakob H. Macke (2020)1

Journal of Open Source Software (Tejero-Cantero∗ et al. 2020).

All three publications contribute to my overall aim of advancing methods and the applicability
of simulation-based inference (SBI). The first paper contributes a new SBI method that enables
efficient Bayesian parameter inference in computational models of decision-making. As parameter
inference is a central task in cognitive neuroscience, an extensive toolkit of parameter-tuning meth-
ods for models of decision-making already exists. However, current methods are often limited to
non-Bayesian approaches that optimize for single best-fitting parameters or Bayesian approaches
that work only for simplified analytically tractable models. While SBI would overcome these limita-
tions, current SBI methods often struggle with the data types and experimental setups commonly
encountered in decision research. Therefore, we develop an SBI method tailored to decision-making
models. By building on recent advances in neural-network-based density estimation (see General
Background), our method is several orders of magnitude more simulation-efficient than previous
approaches, enabling its application to a broader range of inference problems.

1∗equal contribution
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The second paper demonstrates how SBI can be applied to inference problems in computational
connectomics. In connectomics, large amounts of data about the physical and functional connectivity
of neurons are acquired to study the general principles underlying brain connectivity. In addition
to these experimental efforts, researchers build computational models to efficiently develop and
test hypotheses about the data. For example, one way to test whether a hypothesized wiring rule
can explain the measured data is to generate corresponding simulated connectivity data in a
computational model and compare it to measured data. As with most computational modeling
approaches, this poses the challenge of identifying the free parameters of the wiring rule such
that the simulated data matches the measured data. We show how to apply SBI to computational
models used in connectomics to address this challenge. With this, we set the stage for applying
SBI to challenging inference problems in connectomics to enable the efficient testing of hypotheses
derived from connectivity measurements.

The third contribution addresses the applicability of SBI. The recent advances in neural-network-
based density estimation fostered the development of many new neural SBI methods (see Neural
simulation-based inference for details). However, from a practitioner’s view, these methods are
often challenging to apply because of a lack of software tools and application guidelines. To address
this gap between method development and applicability, we develop an SBI software package that
provides access to the main neural SBI approaches in a well-documented and user-friendly way.
We thereby hope to facilitate the application of SBI for researchers and practitioners.

4.2 Flexible and efficient simulation-based inference for models of
decision-making

4.2.1 Summary

Motivation

In cognitive neuroscience, computational models are essential for analyzing experimental data and
testing hypotheses about the neural mechanisms underlying cognition. For example, a common ap-
proach for studying perceptual decision-making processes is to record behavioral and neural data of
subjects performing a simple decision-making task. This experimental data is often analyzed using
so-called drift-diffusion models (DDM, see General Background, Fig. 2.2) to relate experimentally
recorded behavioral data (reaction times and choices), and neural data (Ratcliff 1978; Bogacz et al.
2006; Gold et al. 2007). To identify the free parameters of the employed computational models
like the DDM, optimization methods that identify single best-fitting model parameters Tavares
et al. 2017; Shinn et al. 2020 as well as Bayesian statistical inference methods are commonly used
(Wiecki et al. 2013; Kangasrääsiö et al. 2019). While Bayesian inference methods tend to provide
a more principled approach to parameter inference in cognitive models (see General Background,
Shiffrin et al. 2008; Schad et al. 2021), they are usually limited to a specific type of models for
which the likelihood function is accessible, e.g., they only work for a subset of DDMs. SBI thus
provides a suitable alternative as it enables Bayesian inference using only simulations from the
model. However, the currently available SBI methods can be challenging to apply to the data and
experimental setups typically used in decision-making research, e.g., they struggle to deal with
the mixed data types of discrete choices and continuous reaction times. Our work addresses these
challenges by providing an SBI method tailored to decision-making models.
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Figure 4.1: Mixed Neural Likelihood Estimation (MNLE) for models of decision-making. Decision-
making models commonly deal with data of mixed types, e.g., continuous reaction times and discrete
choices (left). To enable SBI for this scenario, we propose training separate neural density estimators on
the discrete and the continuous data, respectively (middle). After training, the estimators can be combined
into one likelihood estimate to enable Bayesian inference using standard MCMC sampling (right). Figure
adapted from Boelts et al. 2022.

Methods

The data recorded in decision-making experiments usually consist of continuous reaction times
and discrete choices. Additionally, it is common to record many repetitions with the same settings
for each experimental condition, i.e., the data consists of a set of N independently and identically
distributed (iid) trials. We can use the DDM to analyze this data. The DDM simulates reaction
times and choices, x = [rt, c], using a stochastic differential equation based on a drift parameter v,
an initial offset w, and decision boundary parameter a:

dX = v dt+ dW, X(0) = w, (4.1)

(see Boelts et al. 2022 for details). Given experimentally observed data xo = {rti, ci}i=1:N , we can
use SBI to infer parameters θ = [a,w, a] that reproduce xo.

When selecting the type of SBI algorithm to apply, the properties of the above setup have to be
taken into account. For example, applying neural posterior estimation (NPE) to this type of data
can be challenging because NPE approximates the posterior directly from the data, e.g., the neural
network underlying NPE takes the iid data as input. Consequently, one would need to account for
the permutation invariant structure of a set of iid trials (Chan et al. 2018; Radev et al. 2022), which
can be challenging for large and varying numbers of observed trials. In contrast, neural likelihood
estimation (NLE) could be more suitable as it takes the parameters as input and performs density
estimation on the data to approximate the likelihood. Thus, one could adapt NLE to the iid-trial
setting of decision-making models by training it on single-trial data points to approximate single-
trial likelihoods. Subsequently, one could perform inference given observed data with large and
varying numbers of iid trials by leveraging the fact that iid-likelihoods factorize and combining the
single-trial likelihood estimates. However, to run NLE, we would need to perform density estimation
on the mixed (continuous and discrete) data of decision-making models, which is challenging for
current neural network-based density estimators as they are typically designed for continuous or
discrete data but not for both.

Our central contribution in this paper is to enable neural density estimation for mixed data
types, i.e., to perform Mixed Neural Likelihood Estimation (MNLE, Fig. 4.1). To do so, we leveraged
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the fact that the probability density over the mixed data factorizes:

p(x|θ) = p(rt, c|θ) (4.2)

= p(c|θ) · p(rt|c, θ). (4.3)

Consequently, it is possible to use separate density estimators: one for the discrete data to estimate
p(c|θ), and one for the continuous data p(rt|c, θ) (Fig. 4.1, middle left). To estimate the discrete
distribution p(c|θ), we trained a feed-forward neural network F (·) to predict the parameter ρ of a
categorical distribution qc from the parameters θ: qc(c|θ). To estimate the continuous distribution
p(rt|c, θ), we used a neural spline flow qrt parametrized by a neural network G(·) (Papamakarios
et al. 2021; Durkan et al. 2019) conditioned on both c and θ: qrt(rt|c, θ). We conditioned qrt on the
parameters and the choices to capture potential dependencies between choices and reaction times.
The training was performed separately for F and G but using the same training data simulated
from the DDM with parameters sampled from the prior. After training, we obtained the likelihood
estimator by combining the two density estimators:

p̂(x|θ) = qc(c|θ) · qrt(rt|c, θ). (4.4)

The likelihood estimator enabled us to obtain posterior samples given the observed data xo using
MCMC or variational inference (Fig. 4.1, middle right) as in any other NLE approach (see General
Background for details). Importantly, we trained the density estimators on single trials simulated
from the DDM. At inference time, this enabled us to combine single-trial likelihood estimates into
the multi-trial estimates needed for the observed data xo = {rti, ci}i=1:N and to repeat inference
for different xo or N without having to retrain F and G.

Results

We demonstrated the utility of MNLE by performing SBI on two variants of the DDM: one with
access to reference likelihoods and posterior samples to show that MNLE works accurately and one
without access to a reference solution to test MNLE in a more realistic setting. Additionally, we
compared MNLE against a recently proposed SBI method called likelihood approximation networks
(LAN, Fengler et al. 2021) that was designed for decision-making models too. We compared MNLE
and LANs regarding likelihood accuracy (mean squared error to the reference solution) and simu-
lation efficiency on the DDM with a reference solution. Both methods could accurately predict the
DDM likelihoods and obtain accurate posterior samples via MCMC. However, we found that MNLE
was six orders of magnitude more simulation efficient than LANs, i.e., where LANs required 1011

training simulations to achieve good likelihood accuracy, MNLE needed only 105 simulations. For
the second DDM variant (no reference solution available), we found that MNLE obtained posteriors
with well-calibrated variances and accurate predictive performance.

The substantial difference in simulation efficiency between MNLE and LAN is due to a crucial
difference in the way they perform density estimation: LANs are trained in a supervised fashion,
i.e., by performing regression from data and parameters of the DDM (features) onto the corre-
sponding value of the likelihood function (target). This approach works very well; however, it
requires likelihood targets for training, which have to be estimated from simulated data, e.g., using
kernel density estimation (KDE). Thus, to train LANs, Fengler et al. 2021 needed to perform KDE
with thousands of simulations for each of their millions of training data points. In contrast, MNLE
performs conditional density estimation: instead of predicting a likelihood target from parameters
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and data, the neural networks are trained to maximize the probability density of the data condi-
tional on the parameters and are supervised implicitly by the likelihood of the current estimate, i.e.,
without requiring additional simulated data for obtaining training targets. Consequently, MNLE
is more simulation efficient than LANs by at least the number of simulated data LANs need to
construct likelihood targets. In summary, by introducing conditional neural likelihood estimation
for mixed data, we enabled flexible and efficient SBI for decision-making models, facilitating more
efficient model design in decision-making research.

4.2.2 Contributions

Contributions are listed according to the CRediT system. This paper is co-authored by me,
Jan-Matthis Lueckmann, Richard Gao, and Jakob Macke. As the leading author of the paper, I
conceived and conducted the project with feedback from all co-authors. I wrote all code, ran
all the experiments, performed all analyses, and prepared the initial draft of the manuscript. I
conducted the formal analysis, preparation of figures, and editing of the manuscript with help from
all co-authors. Jakob Macke provided funding resources and the main supervision throughout the
project.

https://credit.niso.org
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4.3 Simulation-based inference for efficient identification of genera-
tive models in computational connectomics

b  automated model identification with SBI

multiple a priori hypotheses

θ ∼ p (θ )

wiring rule

single hypothesis about the connectome simulated data x

prior distribution

space of hypotheses

a  conventional generative modeling

compare by 
inspection:


x ?= xo
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x ≈ xoposterior distribution
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manual update

measured data xo

density estimation measured data xo

automated 
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Figure 4.2: Enhancing generative modeling in computational connectomics using simulation-based
inference. (a) Conventional generative modeling approaches in connectomics often test individual hypothe-
ses, e.g., wiring rules, by comparing simulated and measured data. (b) Here, we propose to replace this
approach with simulation-based Bayesian inference (SBI): Given a hypothesized wiring rule, we define a
prior distribution over the parameters of the rule representing multiple a-priori variants of the rule (left). We
then simulate connectivity data from many rule variants sampled from the prior and perform neural density
estimation to estimate the posterior distribution over rule parameters conditioned on the measured data.
The posterior characterizes all wiring rule parameters that reproduce the measured data. Figure adapted
from Boelts et al. 2023.

4.3.1 Summary

Motivation

In recent years, advances in experimental and computational techniques have made it possible
to obtain connectivity measurements and digital reconstructions of brain tissue in unprecedented
detail. Consequently, there is a need for efficient computational tools to analyze this wealth of
data and understand the underlying general connectivity principles. One computational approach
to develop and test hypotheses about connectivity principles is building computational models
that generate synthetic connectivity data according to a specific hypothesis. Subsequently, one can
compare the synthetic data to the measurements to evaluate and refine the hypothesis.
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For example, Udvary et al. 2022 built a digital model of a part of the rat sensory cortex, the
so-called barrel cortex. Their model is based on reconstructions of neuron morphologies of different
cell types and reconstructions of the barrel cortex geometry, cytoarchitecture, and cellular organiza-
tion. These structural features were combined into a 3D model to obtain a realistic estimate of the
structural composition of a large part of the barrel cortex. Consequently, they could use this model
to simulate the effect of hypothesized wiring rules in the barrel cortex, e.g., by applying a wiring
rule to the structural features of the model and comparing the resulting simulated connectivity
patterns to connectivity measurements. This approach worked well for one specific wiring rule they
constructed, a wiring rule that predicts connectivity using only morphological features of neurons:
The rule predicted connectivity patterns that were in line with several connectivity measurements
from the barrel cortex. However, several questions arise when we want to extend the rule to study
additional wiring mechanisms, e.g., by introducing parameters. How can we adapt the parameters
such that they can explain the measurements? Are there other rules that can explain the data
equally well?

Previous approaches to generative modeling in connectomics often addressed these questions by
optimizing for single best-fitting model configurations, e.g., by comparing simulated with empirical
data and iteratively refining the model (Fig. 4.2a). This approach can be challenging if models
have many parameters or if the data is high-dimensional, which is often the case given the recent
advances in data acquisition methods. However, if we could apply SBI to the type of models used in
connectomics, this would allow us to test many different parameter combinations simultaneously
and to identify all those that match the data without having to compare data points explicitly
(Fig. 4.2b). This project investigated whether and how existing SBI methods can help to constrain
generative models in connectomics with observed data.

Methods

To demonstrate how SBI can be applied in computational connectomics, we used the generative
model of the rat barrel cortex by Udvary et al. 2022 as an example. In particular, we extended the
wiring rule they introduced with parameters and then showed how SBI can infer the parameters
given connectivity data measured in the barrel cortex (see Boelts et al. 2023, Fig. 2).

The dense structural overlap (DSO) wiring rule The wiring rule proposed by Udvary et al.
2022 predicts the probability that two neurons i and j form a synapse in a small subvolume k of
the model from their so-called dense structural overlap (DSO). The DSO is defined as the product
of the relevant structural features of the pre-synaptic neuron i (pre) with the postsynaptic features
of neuron j (post), divided by the sum of the postsynaptic features of all neurons in the direct
neighborhood k:

DSOijk =
prei · postj
postAllk

. (4.5)

Udvary et al. 2022 simulated the effect of the DSO rule in the barrel cortex model by applying
it to every neuron-pair-subvolume combination and generating synapses stochastically according
to the predicted connection probabilities. However, this parameter-free DSO rule is limited to
this specific combination of features for predicting connectivity, e.g., it assumes that the pre- and
postsynaptic features contribute equally to the predicted connection probability. Different rule
variants would allow the pre- and postsynaptic features to contribute with different weights to the
synapse probability or have different contributions for different cell types in the barrel cortex.
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To test extensions of the DSO rule efficiently using SBI, we introduced three parameters, one
for each of the structural features:

DSOijk(θ) =
pre

θpre
i · postθpostj

postAll
θpostAll

k

. (4.6)

In this new definition, the DSO rule can be seen as a simulation-based model (see General Back-
ground): Applying the rule with different parameter combinations to the structural features of the
model corresponds to simulating different wiring rule configurations, such that each simulation
results in a different simulated connectome.

To perform SBI, we needed to define a prior distribution over the three parameters and select
measured data with which we want to constrain the parameters. We used a Gaussian prior distri-
bution p(θ) = N ([1, 1, 1]⊤, 0.5 I). As measured data xo, we selected connection probabilities that
have been measured in the rat barrel cortex (Bruno et al. 2006; Constantinople et al. 2013). These
measurements are available as estimated connection probabilities for seven neuron populations
projecting from the thalamus to the barrel cortex. However, the DSO wiring rule simulator gener-
ates an entire connectome of the rat barrel cortex. Therefore, to simulate these seven connection
probabilities in the wiring rule simulator, we first generated the entire connectome according to the
parametrized DSO rule and then estimated the connection probabilities by indexing and averaging
over the corresponding seven sets of connections in the connectome.

To run SBI, we generated 1,000,000 simulated connection probabilities and performed se-
quential neural posterior estimation (SNPE) with neural spline flows (Papamakarios et al. 2016;
Greenberg et al. 2019; Durkan et al. 2019) to obtain the desired approximation of the posterior
p(θ|xo).

Validating SBI To validate our approach, we followed the procedure outlined in Simulation-based
inference in practice: First, we performed prior predictive checks to check for misspecification of
the wiring rule simulator. Second, we derived a simplified version of the wiring rule simulator
for which it was possible to calculate a reference solution using MCMC sampling, enabling us to
validate the approximate SBI posterior. Third, we performed simulation-based calibration (SBC,
Talts et al. 2020) to evaluate the calibration of the posterior variances. Lastly, we performed
posterior predictive checks by simulating connection probabilities with parameters sampled from
the approximate SBI posterior and comparing them to xo.

Results

We found that SBI showed reliable inference performance on the wiring rule simulator: When
applied to the simplified wiring rule simulator variant, it accurately recovered the reference solution.
The SBC analysis with simulated data showed that posteriors inferred with SNPE on the full wiring
rule simulator have well-calibrated variances. Additionally, the posterior predictive checks were
accurate.

The posterior p(θ|xo) we obtained given the actual measurements xo identified many parameter
combinations able to reproduce xo, including the one corresponding to the parameter-free DSO
rule defined by Udvary et al. 2022 (θ = [1, 1, 1], see equation 4.6). This result illustrated how SBI
can identify many different data-compatible wiring rule parameters. Moreover, it enabled us to
demonstrate another benefit of SBI—the access to the full posterior distribution: We found that the
one-dimensional posterior marginals were similar to the prior marginals. However, the shape of
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the two-dimensional marginals, i.e., the covariance structure, was substantially different from the
uncorrelated prior distribution (see Boelts et al. 2023, Fig. 3a). Using access to the full posterior
distribution, we found substantial correlations between all parameters. The correlations indicated
that, despite the wide ranges of data-compatible parameters, the inferred parameters were highly
interdependent. Once one parameter was fixed, the other parameters were highly constrained. This
result further indicated that the DSO wiring with three parameters was overparametrized. Indeed,
we were able to show that a version with only two parameters inferred with SBI could explain the
measurements similarly well (see appendix of Boelts et al. 2023). Additionally, we showed how
to leverage the predictive properties and the access to the complete simulated connectome of the
rat barrel cortex provided by the wiring rule simulator to make experimentally testable predictions
constrained by xo.

Collectively, this paper demonstrated the potential of the SBI approach for computational con-
nectomics: SBI allows researchers to systematically and efficiently identify parameters of computa-
tional models given empirical connectivity data, which will facilitate the evaluation of hypotheses
in connectomics. Our approach sets the stage for using generative modeling to study connectivity
principles in dense reconstructions of brain tissue recently made publicly available. Compared
to the relatively sparse barrel cortex measurements used in our example, these dense reconstruc-
tions will allow us to constrain more complex models, opening up exciting possibilities to study
connectivity principles in the mouse (Turner et al. 2022) and human cortex (Shapson-Coe et al.
2021).

4.3.2 Contributions

This publication was a collaboration with the group of Marcel Oberlaender (caesar, Bonn) and
the group of Hans-Christian Hege and Daniel Baum (Zuse Institute Berlin). It was co-authored by
me, Philipp Harth, Richard Gao, Daniel Udvary, Felipe Yanez, Daniel Baum, Hans-Christian Hege,
Marcel Oberlaender, and Jakob Macke. The initial idea of applying SBI to inference problems
in computational connectomics was developed by Jakob Macke, Marcel Oberlaender, and Hans-
Christian Hege. I took the lead in realizing this idea and refined the conceptualization and formal
analysis of the project together with Jakob Macke. Specifically, I developed the software for the
inference procedure and validation and conducted the experiments with help from Philipp Harth
and Felipe Yanez. I developed the wiring rule simulator with Philipp Harth; Daniel Udvary provided
the rat barrel cortex model. I created the visualizations with help from Philipp Harth and wrote the
initial draft of the manuscript. For editing the manuscript, I received help from Richard Gao and
Jakob Macke and comments from all other authors. Jakob Macke provided the main supervision
throughout the project.
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4.4 sbi: A toolkit for simulation-based inference

Motivation

This publication refers to a software repository published in the Journal of Open Source Software
(JOSS, Tejero-Cantero∗ et al. 2020). The motivation for this software project was to provide a
central open-source resource for developing and applying neural-network-based SBI algorithms.
While it is common to provide access to research code when publishing new SBI algorithms, these
code bases are rarely designed in an easy-to-use way. Usually, they exist as standalone packages
based on different machine-learning frameworks. Our goal was to change this for SBI, i.e., to unite
the established neural-network-based SBI approaches in one package called sbi. We aimed to
design the package with a clear and modular structure and to provide detailed documentation and
tutorials such that the package would serve not only experienced SBI researchers but also scientists
from different domains.

Summary

The publication of the sbi package in 2020 was only the starting point of our efforts to facilitate
access to SBI. Since then, we have actively maintained the package, fixed issues, improved the API
and documentation, and released new versions regularly. In 2021, we organized a public online
workshop on “SBI for scientific discovery”, providing a general introduction to SBI, and on how to
apply it using the sbi package. In 2022, we held a one-week hackathon with external participants
from Germany and France, in which we fixed issues and implemented new features in sbi.

In its initial version, the package implemented the three main SBI approaches (S)NPE (Pa-
pamakarios et al. 2016; Lueckmann et al. 2017; Greenberg et al. 2019), (S)NLE (Papamakarios
et al. 2019), and (S)NRE (Hermans et al. 2020; Durkan et al. 2020). Since then, the package
has received over 790 issues and pull requests on GitHub and contributions from 35 developers.
We implemented additional features like posterior checks (Cook et al. 2006; Talts et al. 2020;
Miller et al. 2021; Deistler et al. 2022a), posterior analysis tools (Deistler et al. 2022b), and five
new SBI algorithms (Glöckler et al. 2022; Boelts et al. 2022; Deistler et al. 2022a; Miller et al.
2022; Delaunoy et al. 2022). Indicated by the increasing number of GitHub issues, pull requests
by external users and contributors, and the growing number of citations, the sbi package can be
seen as one of the primary resources for both SBI research and applications.

Contributions

The initial version of the package published in JOSS was a joint effort of all authors, with equal first-
author contributions by Álvaro Tejero-Cantero, me, Michael Deistler, Jan-Matthis Lueckmann, and
Conor Durkan. Conor Durkan contributed his research code of the publication Durkan et al. 2020
and the “nflows” package, which both provided the basis of the sbi package. Álvaro Tejero-Cantero,
Michael Deistler, Jan-Matthis Lueckmann, and I contributed equally to the initial implementation of
the package. Since then, I have shared the leading role in maintaining and developing the package
with Michael Deistler.

Most package features were developed collaboratively through GitHub pull requests (PR). I
contributed to many of these features and reviewed all PRs. There are several features that I
implemented myself, e.g., all approximate Bayesian computation (ABC)-related algorithms; the
extensive checks and automated processing steps applied to the prior distribution, the simulator,

https://mlcolab.org/resources/simulation-based-inference-for-scientific-discovery
https://github.com/mackelab/sbi
https://github.com/bayesiains/nflows
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and observed data passed by the user; multi-processing features for running simulations and MCMC
sampling; implementation of the Mixed Neural Likelihood Estimation (MNLE) algorithm.



Chapter 5

Conclusion

This thesis aims to advance the methods and applicability of simulation-based inference (SBI) in
computational neuroscience. I made three contributions to achieve this: I proposed a new SBI
method tailored to computational models used in decision-making research, demonstrated the
utility of SBI for inferring wiring rules in computational connectomics, and contributed to an SBI
software package to facilitate access for practitioners. To conclude, I want to touch on three themes
that recur throughout the thesis.

5.1 A simulation-based model is all you need: scientific discovery
with SBI
In a time of multiple global crises, simulation-based models provide an essential tool to foster
scientific discoveries and technological solutions, e.g., by enabling more accurate predictions of
climate scenarios (Peng et al. 2021; Glavovic et al. 2022). Given the increasing amount of data
we can acquire and the resulting complexity of the models we build, it is crucial to the success of
the modeling approach to advance the methods for identifying and interpreting model parameters
(Cranmer et al. 2020; Lavin et al. 2022). While Bayesian inference provides a robust framework
for scientific discovery, e.g., because it enables us to express uncertainties, it is often limited by the
fact that it requires access to the inner workings of the simulator. SBI overcomes this limitation by
requiring access only to simulations of the model. Thus, whereas previously, we often had to limit
our modeling efforts to certain classes of tractable models, we can now say that a simulation-based
model is all you need.

Throughout this thesis, we have seen the potential of SBI to facilitate scientific discovery. The
first publication showed that by adapting SBI methods to the experimental setups standard in
perceptual decision-making research, we can extend the application of Bayesian parameter infer-
ence beyond the commonly used canonical cognitive models, e.g., allowing researchers to replace
the classical drift-diffusion model with custom-tailored models of decision-making. In the second
publication, we have seen how the introduction of SBI to computational connectomics can open up
new avenues for efficient and flexible testing of hypotheses about brain connectivity. While these
are important contributions, there are, of course, many ways in which the utility of SBI could be
enhanced, for example, by further improving the capabilities of SBI methods or by tailoring and
applying current methods to specific problems of high practical relevance.

45
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5.2 All models are wrong: model misspecification in SBI
When building models, we often make simplifying assumptions and leave aside potentially impor-
tant aspects of the phenomenon of interest. As a consequence, all models are wrong by construction
(Box et al. 1986; Betancourt 2015), i.e., there will always be some misspecification between the
model and the actual data-generating process. Standard approximate Bayesian inference methods,
e.g., Markov Chain Monte Carlo methods, can explicitly test for and deal with model misspecifica-
tion because they benefit from access to the likelihood function of the model (Hogg et al. 2018;
Gelman et al. 2020). However, for SBI methods, model misspecification can be more problematic
because they rely on simulated data from the model. For example, when using artificial neural
networks to approximate the posterior distribution, these approximations will be accurate only for
the training data distribution. They can thus be highly inaccurate when probed with an xo different
from the training data (Quinonero-Candela et al. 2008; Szegedy et al. 2014).

In the section on Simulation-based inference in practice, I outlined currently available tech-
niques to detect and cope with model misspecification in SBI (see, e.g., Frazier et al. 2019; Cannon
et al. 2022). One of these techniques helped us refine the wiring rule simulator for the rat sensory
cortex used in the second publication. We applied prior predictive checks to detect that our simu-
lator could not reproduce the empirical data because it did not account for the observation noise
due to the small sample size used in the experiments. We could resolve this mismatch by correcting
the model, e.g., by incorporating the experimental subsampling process into the simulator (see
appendix Boelts et al. 2023 for details).

Addressing the problem of model misspecification will be essential for the success and broader
adoption of SBI methods. Over the past few years, the topic has received increasing attention.
However, the resulting new methods for detecting (Schmitt et al. 2022; Frazier et al. 2019) and
dealing with model misspecification (Frazier et al. 2020; Ward et al. 2022) in SBI have had only
limited success and require additional research. Recently, the framework of generalized Bayesian
inference has been proposed for dealing with model misspecification in SBI (Pacchiardi et al. 2022;
Jewson et al. 2018; Knoblauch et al. 2019; Matsubara et al. 2022), suggesting a promising direction
for future research.

5.3 Mind the gap: applicability of SBI methods
Simulation-based inference is an active field of research with many open challenges and new
methods being proposed regularly. While tackling open technical challenges and proposing new
methods is essential, it is also important to address the applicability of SBI methods, i.e., to close
the gap between method development and application. On the one hand, this can be achieved
by advocating the utility of SBI in domains where it has yet to be employed. For example, there
are specific subfields of the computational sciences in which SBI has become a well-known tech-
nique for constraining models with observed data, e.g., in computational biology (Beaumont 2010;
Csilléry et al. 2010), particle physics (Brehmer et al. 2020), astrophysics (Dax et al. 2021; Legin
et al. 2022), or computational neuroscience (Gonçalves et al. 2020). Yet, in other fields, it is barely
known. On the other hand, it is essential to establish generally accessible software tools and general
guidelines and heuristics that enable researchers with little SBI experience to benefit from new SBI
developments.

These challenges have—in parts—been addressed in this thesis: In the first publication, we im-
proved the applicability of SBI by making it substantially more efficient. In the second publication,



Conclusion 47

we demonstrated the use of SBI in computational connectomics, providing clear guidelines on vali-
dating and interpreting SBI results. Lastly, the software package presented in the third publication
established a central and well-accessible resource for applying SBI algorithms. Nevertheless, there
are open challenges to the applicability of SBI (see, e.g., Hermans et al. 2021). One important
next step will be to give an overview of these challenges and provide general guidelines for how to
address them, e.g., by providing a practitioners’ guide to SBI in the vein of Gelman et al. 2020.
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Abstract Inferring parameters of computational models that capture experimental data is a 
central task in cognitive neuroscience. Bayesian statistical inference methods usually require the 
ability to evaluate the likelihood of the model—however, for many models of interest in cognitive 
neuroscience, the associated likelihoods cannot be computed efficiently. Simulation-based infer-
ence (SBI) offers a solution to this problem by only requiring access to simulations produced by the 
model. Previously, Fengler et al. introduced likelihood approximation networks (LANs, Fengler et 
al., 2021) which make it possible to apply SBI to models of decision-making but require billions of 
simulations for training. Here, we provide a new SBI method that is substantially more simulation 
efficient. Our approach, mixed neural likelihood estimation (MNLE), trains neural density estimators 
on model simulations to emulate the simulator and is designed to capture both the continuous 
(e.g., reaction times) and discrete (choices) data of decision-making models. The likelihoods of the 
emulator can then be used to perform Bayesian parameter inference on experimental data using 
standard approximate inference methods like Markov Chain Monte Carlo sampling. We demonstrate 
MNLE on two variants of the drift-diffusion model and show that it is substantially more efficient 
than LANs: MNLE achieves similar likelihood accuracy with six orders of magnitude fewer training 
simulations and is significantly more accurate than LANs when both are trained with the same 
budget. Our approach enables researchers to perform SBI on custom-tailored models of decision-
making, leading to fast iteration of model design for scientific discovery.

Editor's evaluation
This paper provides a new approach, Mixed Neural Likelihood Estimator (MNLE) to build likeli-
hood emulators for simulation-based models where the likelihood is unavailable. The authors show 
that the MNLE approach is equally accurate but orders of magnitude more efficient than a recent 
proposal, likelihood approximation networks (LAN), on two variants of the drift-diffusion model (a 
widely used model in cognitive neuroscience). This work provides a practical approach for fitting 
more complex models of behavior and neural activity for which likelihoods are unavailable.

Introduction
Computational modeling is an essential part of the scientific process in cognitive neuroscience: 
Models are developed from prior knowledge and hypotheses, and compared to experimentally 
observed phenomena (Churchland and Sejnowski, 1988; McClelland, 2009). Computational models 
usually have free parameters which need to be tuned to find those models that capture experimental 
data. This is often approached by searching for single best-fitting parameters using grid search or 
optimization methods. While this point-wise approach has been used successfully (Lee et al., 2016; 
Patil et al., 2016) it can be scientifically more informative to perform Bayesian inference over the 
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model parameters: Bayesian inference takes into account prior knowledge, reveals all the parameters 
consistent with observed data, and thus can be used for quantifying uncertainty, hypothesis testing, 
and model selection (Lee, 2008; Shiffrin et al., 2008; Lee and Wagenmakers, 2014; Schad et al., 
2021). Yet, as the complexity of models used in cognitive neuroscience increases, Bayesian inference 
becomes challenging for two reasons. First, for many commonly used models, computational evalu-
ation of likelihoods is challenging because often no analytical form is available. Numerical approxi-
mations of the likelihood are typically computationally expensive, rendering standard approximate 
inference methods like Markov Chain Monte Carlo (MCMC) inapplicable. Second, models and exper-
imental paradigms in cognitive neuroscience often induce scenarios in which inference is repeated 
for varying numbers of experimental trials and changing hierarchical dependencies between model 
parameters (Lee, 2011). As such, fitting computational models with arbitrary hierarchical structures to 
experimental data often still requires idiosyncratic and complex inference algorithms.

Approximate Bayesian computation (ABC, Sisson, 2018) offers a solution to the first challenge by 
enabling Bayesian inference based on comparing simulated with experimental data, without the need 
to evaluate an explicit likelihood function. Accordingly, various ABC methods have been applied to 
and developed for models in cognitive neuroscience and related fields (Turner and Van Zandt, 2012; 
Turner and Van Zandt, 2018; Palestro et  al., 2009; Kangasrääsiö et  al., 2019). However, ABC 
methods are limited regarding the second challenge because they become inefficient as the number 
of model parameters increases (Lueckmann et  al., 2021) and require generating new simulations 
whenever the observed data or parameter dependencies change.

More recent approaches from the field simulation-based inference (SBI, Cranmer et  al., 2020) 
have the potential to overcome these limitations by using machine learning algorithms such as neural 
networks. Recently, Fengler et al., 2021 presented an SBI algorithm for a specific problem in cognitive 
neuroscience—inference for drift-diffusion models (DDMs). They introduced a new approach, called 
likelihood approximation networks (LANs), which uses neural networks to predict log-likelihoods from 
data and parameters. The predicted likelihoods can subsequently be used to generate posterior 
samples using MCMC methods. LANs are trained in a three-step procedure. First, a set of ‍N ‍ parame-
ters is generated and for each of the ‍N ‍ parameters the model is simulated ‍M ‍ times. Second, for each 
of the ‍N ‍ parameters, empirical likelihood targets are estimated from the ‍M ‍ model simulations using 
kernel density estimation (KDE) or empirical histograms. Third, a training dataset consisting of param-
eters, data points, and empirical likelihood targets is constructed by augmenting the initial set of ‍N ‍ 
parameters by a factor of 1000: for each parameter, 1000 data points and empirical likelihood targets 
are generated from the learned KDE. Finally, supervised learning is used to train a neural network to 
predict log-likelihoods, by minimizing a loss function (the Huber loss) between the network-predicted 
log-likelihoods and the (log of) the empirically estimated likelihoods. Overall, LANs require a large 
number of model simulations such that the histogram probability of each possible observed data 
and for each possible combination of input parameters, can be accurately estimated—‍N · M ‍ model 
simulations, for example, ‍1.5‍ (150 billion) for the examples used in Fengler et al., 2021. The extremely 
high number of model simulations will make it infeasible for most users to run this training them-
selves, so that there would need to be a repository from which users can download pretrained LANs. 
This restricts the application of LANs to a small set of canonical models like DDMs, and prohibits 
customization and iteration of models by users. In addition, the high simulation requirement limits this 
approach to models whose parameters and observations are sufficiently low dimensional for histo-
grams to be sampled densely.

To overcome these limitations, we propose an alternative approach called mixed neural likeli-
hood estimation (MNLE). MNLE builds on recent advances in probabilistic machine learning, and in 
particular on the framework of neural likelihood estimation (Papamakarios et al., 2019b; Lueckmann 
et al., 2019) but is designed to specifically capture the mixed data types arising in models of decision-
making, for example, discrete choices and continuous reaction times. Neural likelihood estimation has 
its origin in classical synthetic likelihood (SL) approaches (Wood, 2010; Price et al., 2018). Classical SL 
approaches assume the likelihood of the simulation-based model to be Gaussian (so that its moments 
can be estimated from model simulations) and then use MCMC methods for inference. This approach 
and various extensions of it have been widely used (Price et al., 2018; Ong et al., 2009; An et al., 
2019; Priddle et al., 2022)—but inherently they need multiple model simulations for each parameter 
in the MCMC chain to estimate the associated likelihood.
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Neural likelihood approaches instead perform conditional density estimation, that is, they train a 
neural network to predict the parameters of the approximate likelihood conditioned on the model 
parameters (e.g., Papamakarios et  al., 2019b; Lueckmann et  al., 2019). By using a conditional 
density estimator, it is possible to exploit continuity across different model parameters, rather than 
having to learn a separate density for each individual parameter as in classical SL. Recent advances in 
conditional density estimation (such as normalizing flows, Papamakarios et al., 2019a) further allow 
lifting the parametric assumptions of classical SL methods and learning flexible conditional density 
estimators which are able to model a wide range of densities, as well as highly nonlinear depen-
dencies on the conditioning variable. In addition, neural likelihood estimators yield estimates of the 
probability density which are guaranteed to be non-negative and normalized, and which can be both 
sampled and evaluated, acting as a probabilistic emulator of the simulator (Lueckmann et al., 2019).

Our approach, MNLE, uses neural likelihood estimation to learn an emulator of the simulator. The 
training phase is a simple two-step procedure: first, a training dataset of ‍N ‍ parameters ‍θ‍ is sampled 
from a proposal distribution and corresponding model simulations ‍x‍ are generated. Second, the ‍N ‍ 
parameter–data pairs ‍(θ, x)‍ are directly used to train a conditional neural likelihood estimator to esti-
mate ‍p(x|θ)‍. Like for LANs, the proposal distribution for the training data can be any distribution over 
‍θ‍, and should be chosen to cover all parameter values one expects to encounter in empirical data. 
Thus, the prior distribution used for Bayesian inference constitutes a useful choice, but in principle any 
distribution that contains the support of the prior can be used. To account for mixed data types, we 
learn the likelihood estimator as a mixed model composed of one neural density estimator for cate-
gorical data and one for continuous data, conditioned on the categorical data. This separation allows 
us to choose the appropriate neural density estimator for each data type, for example, a Bernoulli 
model for the categorical data and a normalizing flow (Papamakarios et al., 2019a) for the contin-
uous data. The resulting joint density estimator gives access to the likelihood, which enables inference 
via MCMC methods. See Figure 1 for an illustration of our approach, and Methods and materials for 
details.

Both LANs and MNLEs allow for flexible inference scenarios common in cognitive neuroscience, 
for example, varying number of trials with same underlying experimental conditions or hierarchical 
inference, and need to be trained only once. However, there is a key difference between the two 
approaches. LANs use feed-forward neural networks to perform regression from model parameters 
to empirical likelihood targets obtained from KDE. MNLE instead learns the likelihood directly by 
performing conditional density estimation on the simulated data without requiring likelihood targets. 
This makes MNLE by design more simulation efficient than LANs—we demonstrate empirically that 
it can learn likelihood estimators which are as good or better than those reported in the LAN paper, 

Figure 1. Training a neural density estimator on simulated data to perform parameter inference. Our goal is to perform Bayesian inference on models 
of decision-making for which likelihoods cannot be evaluated (here a drift-diffusion model for illustration, left). We train a neural density estimation 
network on synthetic data generated by the model, to provide access to (estimated) likelihoods. Our neural density estimators are designed to account 
for the mixed data types of decision-making models (e.g., discrete valued choices and continuous valued reaction times, middle). The estimated 
likelihoods can then be used for inference with standard Markov Chain Monte Carlo (MCMC) methods, that is, to obtain samples from the posterior over 
the parameters of the simulator given experimental data (right). Once trained, our method can be applied to flexible inference scenarios like varying 
number of trials or hierarchical inference without having to retrain the density estimator.
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but using a factor of 1,000,000 fewer simulations (Fengler et al., 2021). When using the same simu-
lation budget for both approaches, MNLE substantially outperforms LAN across several performance 
metrics. Moreover, MNLE results in a density estimator that is guaranteed to correspond to a valid 
probability distribution and can also act as an emulator that can generate synthetic data without 
running the simulator. The simulation efficiency of MNLEs allows users to explore and iterate on their 
own models without generating a massive training dataset, rather than restricting their investigations 
to canonical models for which pretrained networks have been provided by a central resource. To 
facilitate this process, we implemented our method as an extension to an open-source toolbox for SBI 
methods (Tejero-Cantero et al., 2020), and provide detailed documentation and tutorials.

Results
Evaluating the performance of MNLE on the DDM
We first demonstrate the efficiency and performance of MLNEs on a classical model of decision-
making, the DDM (Ratcliff and McKoon, 2008). The DDM is an influential phenomenological model 
of a two-alternative perceptual decision-making task. It simulates the evolution of an internal decision 
variable that integrates sensory evidence until one of two decision boundaries is reached and a choice 
is made (Figure 1, left). The decision variable is modeled with a stochastic differential equation which, 
in the ‘simple’ DDM version (as used in Fengler et al., 2021), has four parameters: the drift rate ‍v‍, 
boundary separation ‍a‍, the starting point ‍w‍ of the decision variable, and the non-decision time τ. 
Given these four parameters ‍θ = (v, a, w, τ )‍, a single simulation of the DDM returns data ‍x‍ containing 
a choice ‍c ∈ {0, 1}‍ and the corresponding reaction time in seconds ‍rt ∈ (τ ,∞)‍.

MNLE learns accurate likelihoods with a fraction of the simulation 
budget
The simple version of the DDM is the ideal candidate for comparing the performance of different 
inference methods because the likelihood of an observation given the parameters, ‍L(x|θ)‍, can be 
calculated analytically (Navarro and Fuss, 2009, in contrast to more complicated versions of the 
DDM, e.g., Ratcliff and Rouder, 1998; Usher and McClelland, 2001; Reynolds and Rhodes, 2009). 
This enabled us to evaluate MNLE’s performance with respect to the analytical likelihoods and the 
corresponding inferred posteriors of the DDM, and to compare against that of LANs on a range 
of simulation budgets. For MNLE, we used a budget of 105 simulations (henceforth referred to as 
MNLE5), for LANs we used budgets of 105 and 108 simulations (LAN5 and LAN8, respectively, trained 
by us) and the pretrained version based on 1011 simulations (LAN11) provided by Fengler et al., 2021.

First, we evaluated the quality of likelihood approximations of MNLE5, and compared it to that 
of LAN{5,8,11}. Both MNLEs and LANs were in principle able to accurately approximate the likelihoods 
for both decisions and a wide range of reaction times (see Figure 2a for an example, and Details of 
the numerical comparison). However, LANs require a much larger simulation budget than MNLE to 
achieve accurate likelihood approximations, that is, LANs trained with 105 or 108 simulations show 
visible deviations, both in the linear and in log-domain (Figure 2a, lines for LAN5 and LAN8).

To quantify the quality of likelihood approximation, we calculated the Huber loss and the mean-
squared error (MSE) between the true and approximated likelihoods (Figure  2b, c), as well as 
between the log-likelihoods (Figure 2d, e). The metrics were calculated as averages over (log-)
likelihoods of a fixed observation given 1000 parameters sampled from the prior, repeated for 
100 observations simulated from the DDM. For metrics calculated on the untransformed likeli-
hoods (Figure 2b, c), we found that MNLE5 was more accurate than LAN{5,8,11} on all simulation 
budgets, showing smaller Huber loss than LAN{5,8,11} in 99, 81, and 66 out of 100 comparisons, and 
smaller MSE than LAN{5,8,11} on 98, 81, and 66 out of 100 comparisons, respectively. Similarly, for 
the MSE calculated on the log-likelihoods (Figure 2e), MNLE5 achieved smaller MSE than LAN{5,8,11} 
on 100, 100, and 75 out of 100 comparisons, respectively. For the Huber loss calculated on the 
log-likelihoods (Figure 2d), we found that MNLE5 was more accurate than LAN5 and LAN8, but 
slightly less accurate than LAN11, showing smaller Huber loss than LAN{5,8} in all 100 comparisons, 
and larger Huber loss than LAN11 in 62 out of 100 comparisons. All the above pairwise comparisons 
were significant under the binomial test (p < 0.01), but note that these are simulated data and 
therefore the p value can be arbitrarily inflated by increasing the number of comparisons. We also 
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note that the Huber loss on the log-likelihoods is the loss which is directly optimized by LANs, and 
thus this comparison should in theory favor LANs over alternative approaches. Furthermore, the 
MNLE5 results shown here represent averages over 10 random neural network initializations (five 
of which achieved smaller Huber loss than LAN11), whereas the LAN11 results are based on a single 
pretrained network. Finally, we also investigated MNLE’s property to act as an emulator of the 
simulator and found the synthetic reaction times and choices generated from the MNLE emulator 
to match corresponding data simulated from the DDM accurately (see Figure 2—figure supple-
ment 1 and Appendix 1).

When using the learned likelihood estimators for inference with MCMC methods, their evaluation 
speed can also be important because MCMC often requires thousands of likelihood evaluations. We 
found that evaluating MNLE for a batch of 100 trials and 10 model parameters (as used during MCMC) 
took 4.14± (mean over 100 repetitions ± standard error of the mean), compared to 1.02± for LANs, 
that is, MNLE incurred a larger computational foot-print at evaluation time. Note that these timings 
are based on an improved implementation of LANs compared to the one originally presented in 
Fengler et al., 2021, and evaluation times can depend on the implementation, compute infrastruc-
ture and parameter settings (see Details of the numerical comparison and Discussion). In summary, 
we found that MNLE trained with 105 simulations performed substantially better than LANs trained 
with 105 or 108 simulations, and similarly well or better than LANs trained with 1011 simulations, on all 
likelihood approximation accuracy metrics.

Figure 2. Mixed neural likelihood estimation (MNLE) estimates accurate likelihoods for the drift-diffusion model (DDM). The classical DDM simulates 
reaction times and choices of a two-alternative decision task and has an analytical likelihood which can be used for comparing the likelihood 
approximations of MNLE and likelihood approximation network (LAN). We compared MNLE trained with a budget of 105 simulations (green, MNLE5) to 
LAN trained with budgets of 105, 108, and 1011 simulations (shades of orange, LAN{5,8,11}, respectively). (a) Example likelihood for a fixed parameter ‍θ‍ over 
a range of reaction times (reaction times for down- and up-choices shown toward the left and right, respectively). Shown on a linear scale (top panel) 
and a logarithmic scale (bottom panel). (b) Huber loss between analytical and estimated likelihoods calculated for a fixed simulated data point over 1000 
test parameters sampled from the prior, averaged over 100 data points (lower is better). Bar plot error bars show standard error of the mean. (c) Same 
as in (b), but using mean-squared error (MSE) over likelihoods (lower is better). (d) Huber loss on the log-likelihoods (LAN’s training loss). (e) MSE on the 
log-likelihoods.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Comparison of simulated drift-diffusion model (DDM) data and synthetic data sampled from the mixed neural likelihood 
estimation (MNLE) emulator.
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MNLE enables accurate flexible posterior inference with MCMC
In the previous section, we showed that MNLE requires substantially fewer training simulations than 
LANs to approximate the likelihood accurately. To investigate whether these likelihood estimates were 
accurate enough to support accurate parameter inference, we evaluated the quality of the resulting 
posteriors, using a framework for benchmarking SBI algorithms (Lueckmann et al., 2021). We used 
the analytical likelihoods of the simple DDM to obtain reference posteriors for 100 different observa-
tions, via MCMC sampling. Each observation consisted of 100 independent and identically distributed 
(i.i.d.) trials simulated with parameters sampled from the prior (see Figure 3a for an example, details 
in Materials and methods). We then performed inference using MCMC based on the approximate 
likelihoods obtained with MNLE (105 budget, MNLE5) and the ones obtained with LAN for each of the 
three simulation budgets (LAN ‍{5,8,11}‍, respectively).

Overall, we found that the likelihood approximation performances presented above were reflected 
in the inference performances: MNLE5 performed substantially better than LAN5 and LAN8, and 
equally well or better than LAN11 (Figure  3b–d). In particular, MNLE5 approximated the posterior 

Figure 3. Mixed neural likelihood estimation (MNLE) infers accurate posteriors for the drift-diffusion model. Posteriors were obtained given 100-trial 
independent and identically distributed (i.i.d.) observations with Markov Chain Monte Carlo (MCMC) using analytical (i.e., reference) likelihoods, 
or those approximated using LAN{5,8,11} trained with simulation budgets 10{5,8,11}, respectively, and MNLE5 trained with a budget of 105 simulations. 
(a) Posteriors given an example observation generated from the prior and the simulator, shown as 95% contour lines in a corner plot, that is, one-
dimensional marginal (diagonal) and all pairwise two-dimensional marginals (upper triangle). (b) Difference in posterior sample mean of approximate 
(LAN{5,8,11}, MNLE5) and reference posteriors (normalized by reference posterior standard deviation, lower is better). (c) Same as in (b) but for posterior 
sample variance (normalized by reference posterior variance, lower is better). (d) Parameter estimation error measured as mean-squared error (MSE) 
between posterior sample mean and the true underlying parameters (smallest possible error is given by reference posterior performance shown in blue). 
(e) Classification 2-sample test (C2ST) score between approximate (LAN{5,8,11}, MNLE5) and reference posterior samples (0.5 is best). All bar plots show 
metrics calculated from 100 repetitions with different observations; error bars show standard error of the mean.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Drift-diffusion model (DDM) inference accuracy metrics for individual model parameters.

Figure supplement 2. Drift-diffusion model (DDM) example posteriors and parameter recovery for likelihood approximation networks (LANs) trained 
with smaller simulation budgets.

Figure supplement 3. Drift-diffusion model (DDM) inference accuracy metrics for different numbers of observed trials.
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mean more accurately than LAN{5,8,11} (Figure 3b), being more accurate than LAN{5,8,11} in 100, 90, and 
67 out of 100 comparisons, respectively. In terms of posterior variance, MNLE5 performed better than 
LAN{5,8} and on par with LAN11 (Figure 3c), being more accurate than LAN{5,8,11} in 100, 93 (p <<0.01, 
binomial test), and 58 (‍p = 0.13‍) out of 100 pairwise comparisons, respectively.

Additionally, we measured the parameter estimation accuracy as the MSE between the posterior 
mean and the ground-truth parameters underlying the observed data. We found that MNLE5 esti-
mation error was indistinguishable from that of the reference posterior, and that LAN performance 
was similar only for the substantially larger simulation budget of LAN11 (Figure 3c), with MNLE being 
closer to reference performance than LAN{5,8,11} in 100, 91, and 66 out of 100 comparisons, respec-
tively (all p < 0.01). Note that all three metrics were reported as averages over the four parameter 
dimensions of the DDM to keep the visualizations compact, and that this average did not affect the 
results qualitatively. We report metrics for each dimension in Figure 3—figure supplement 1, as well 
as additional inference accuracy results for smaller LAN simulation budgets (Figure 3—figure supple-
ment 2) and for different numbers of observed trials (Figure 3—figure supplement 3).

Finally, we used the classifier 2-sample test (C2ST, Lopez-Paz and Oquab, 2017; Lueckmann 
et al., 2021) to quantify the similarity between the estimated and reference posterior distributions. 
The C2ST is defined to be the error rate of a classification algorithm which aims to classify whether 
samples belong to the true or the estimated posterior. Thus, it ranges from 0.5 (no difference between 
the distributions, the classifier is at chance level) to 1.0 (the classifier can perfectly distinguish the two 

Figure 4. Parameter recovery and posterior uncertainty calibration for the drift-diffusion model (DDM). (a) Underlying ground-truth DDM parameters 
plotted against the sample mean of posterior samples inferred with the analytical likelihoods (reference, blue crosses), likelihood approximation network 
(LAN; orange circles), and mixed neural likelihood estimation (MNLE; green circles), for 100 different observations. Markers close to diagonal indicate 
good recovery of ground-truth parameters; circles on top of blue reference crosses indicate accurate posterior means. (b) Simulation-based calibration 
results showing empirical cumulative density functions (CDF) of the ground-truth parameters ranked under the inferred posteriors calculated from 100 
different observations. A well-calibrated posterior must have uniformly distributed ranks, as indicated by the area shaded gray. Shown for reference 
posteriors (blue), LAN posteriors obtained with increasing simulation budgets (shades of orange, LAN{5,8,11}), and MNLE posterior (green, MNLE5), and for 
each parameter separately (‍v‍, ‍a‍, ‍w‍, and τ).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Drift-diffusion model (DDM) parameter recovery for different numbers of observed trials.

Figure supplement 2. Drift-diffusion model (DDM) simulation-based calibration (SBC) results for different numbers of observed trials.
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distributions). We note that the C2ST is a highly sensitive measure of discrepancy between two multi-
variate distributions—for example if the two distributions differ in any dimension, the C2ST will be 
close to 1 even if all other dimensions match perfectly. We found that neither of the two approaches 
was able to achieve perfect approximations, but that MNLE5 achieved lower C2ST scores compared 
to LAN{5,8,11} on all simulation budgets (Figure 3e): mean C2ST score LAN{5,8,11}, 0.96, 0.78, 0.70 vs. 
MNLE5, 0.65, with MNLE5 showing a better score than LAN{5,8,11} on 100, 91, and 68 out of 100 pairwise 
comparisons, respectively (all p < 0.01). In summary, MNLE achieves more accurate recovery of poste-
rior means than LANs, similar or better recovery of posterior variances, and overall more accurate 
posteriors (as quantified by C2ST).

MNLE posteriors have uncertainties which are well calibrated
For practical applications of inference, it is often desirable to know how well an inference procedure 
can recover the ground-truth parameters, and whether the uncertainty estimates are well calibrated, 
(Cook et al., 2006), that is, that the uncertainty estimates of the posterior are balanced, and neither 
over-confident nor under-confident. For the DDM, we found that the posteriors inferred with MNLE 
and LANs (when using LAN11) recovered the ground-truth parameters accurately (in terms of posterior 
means, Figure 3d and Figure 4a)—in fact, parameter recovery was similarly accurate to using the 
‘true’ analytical likelihoods, indicating that much of the residual error is due to stochasticity of the 
observations, and not the inaccuracy of the likelihood approximations.

To assess posterior calibration, we used simulation-based calibration (SBC, Talts et al., 2018). The 
basic idea of SBC is the following: If one repeats the inference with simulations from many different 
prior samples, then, with a well-calibrated inference method, the combined samples from all the 
inferred posteriors should be distributed according to the prior. One way to test this is to calculate 
the rank of each ground-truth parameter (samples from the prior) under its corresponding posterior, 
and to check whether all the ranks follow a uniform distribution. SBC results indicated that MNLE 
posteriors were as well calibrated as the reference posteriors, that is, the empirical cumulative density 
functions of the ranks were close to that of a uniform distribution (Figure 4b)—thus, on this example, 
MNLE inferences would likely be of similar quality compared to using the analytical likelihoods. When 
trained with the large simulation budget of 1011 simulations, LANs, too appeared to recover most 
of the ground-truth parameters well. However, SBC detected a systematic underestimation of the 
parameter ‍a‍ and overestimation of the parameter τ, and this bias increased for the smaller simulation 
budgets of LAN5 and LAN8 (Figure 4b, see the deviation below and above the desired uniform distri-
bution of ranks, respectively).

The results so far (i.e., Figures 3 and 4) indicate that both LAN11 and MNLE5 lead to similar param-
eter recovery, but only MNLE5 leads to posteriors which were well calibrated for all parameters. These 
results were obtained using a scenario with 100 i.i.d. trials. When increasing the number of trials 
(e.g., to 1000 trials), posteriors become very concentrated around the ground-truth value. In that 
case, while the posteriors overall identified the ground-truth parameter value very well (Figure 4—
figure supplement 1c), even small deviations in the posteriors can have large effects on the posterior 
metrics (Figure 3—figure supplement 3). This effect was also detected by SBC, showing systematic 
biases for some parameters (Figure 4—figure supplement 2). For MNLE, we found that these biases 
were smaller, and furthermore that it was possible to mitigate this effect by inferring the posterior 
using ensembles, for example, by combining samples inferred with five MNLEs trained with identical 
settings but different random initialization (see Appendix 1 for details). These results show the utility 
of using SBC as a tool to test posterior coverage, especially when studying models for which reference 
posteriors are not available, as we demonstrate in the next section.

MNLE infers well-calibrated, predictive posteriors for a DDM with 
collapsing bounds
MNLE was designed to be applicable to models for which evaluation of the likelihood is not prac-
tical so that standard inference tools cannot be used. To demonstrate this, we applied MNLE to a 
variant of the DDM for which analytical likelihoods are not available (note, however, that numerical 
approximation of likelihoods for this model would be possible, see e.g., Shinn et al., 2020, Materials 
and methods for details). This DDM variant simulates a decision variable like the simple DDM used 
above, but with linearly collapsing instead of constant decision boundaries (see e.g., Hawkins et al., 
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2015; Palestro et al., 2018). The collapsing bounds are incorporated with an additional parameter γ 
indicating the slope of the decision boundary, such that ‍θ = (a, v, w, τ , γ)‍ (see Details of the numerical 
comparison).

We tested inference with MNLE on the DDM with linearly collapsing bound using observations 
comprised of 100 i.i.d. trials simulated with parameters sampled from the prior. Using the same MNLE 
training and MCMC settings as above, we found that posterior density concentrated around the 
underlying ground-truth parameters (see Figure 5a), suggesting that MNLE learned the underlying 
likelihood accurately. To assess inference quality systematically without needing reference posteriors, 
we performed posterior predictive checks by running simulations with the inferred posteriors samples 
and comparing them to observed (simulated) data, and checked posterior calibration properties using 
SBC. We found that the inferred posteriors have good predictive performance, that is, data simulated 
from the inferred posterior samples accurately matched the observed data (Figure 5b), and that their 
uncertainties are well calibrated as quantified by the SBC results (Figure 5c). Overall, this indicated 
that MNLE accurately inferred the posterior of this intractable variant of the DDM.

Discussion
Statistical inference for computational models in cognitive neuroscience can be challenging because 
models often do not have tractable likelihood functions. The recently proposed LAN method (Fengler 
et  al., 2021) performs SBI for a subset of such models (DDMs) by training neural networks with 
model simulations to approximate the intractable likelihood. However, LANs require large amounts of 

Figure 5. Mixed neural likelihood estimation (MNLE) infers accurate posteriors for the drift-diffusion model (DDM) with collapsing bounds. Posterior 
samples were obtained given 100-trial observations simulated from the DDM with linearly collapsing bounds, using MNLE and Markov Chain Monte 
Carlo (MCMC). (a) Approximate posteriors shown as 95% contour lines in a corner plot of one- (diagonal) and two-dimensional (upper triangle) 
marginals, for a representative 100-trial observation simulated from the DDM. (b) Reaction times and choices simulated from the ground-truth 
parameters (blue) compared to those simulated given parameters sampled from the prior (prior predictive distribution, purple) and from the MNLE 
posterior shown in (a) (posterior predictive distribution, green). (c) Simulation-based calibration results showing empirical cumulative density functions 
(CDF) of the ground-truth parameters ranked under the inferred posteriors, calculated from 100 different observations. A well-calibrated posterior must 
have uniformly distributed ranks, as indicated by the area shaded gray. Shown for each parameter separately (‍v‍, ‍a‍, ‍w‍, τ, and γ).
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training data, restricting its usage to canonical models. We proposed an alternative approached called 
MNLE, a synthetic neural likelihood method which is tailored to the data types encountered in many 
models of decision-making.

Our comparison on a tractable example problem used in Fengler et al., 2021 showed that MNLE 
performed on par with LANs using six orders of magnitude fewer model simulations for training. 
While Fengler et al., 2021 discuss that LANs were not optimized for simulation efficiency and that 
it might be possible to reduce the required model simulations, we emphasize that the difference in 
simulation efficiency is due to an inherent property of LANs. For each parameter in the training data, 
LANs require empirical likelihood targets that have to be estimated by building histograms or kernel 
density estimates from thousands of simulations. MNLE, instead, performs conditional density esti-
mation without the need of likelihood targets and can work with only one simulation per parameter. 
Because of these conceptual differences, we expect the substantial performance advantage of MNLE 
to be robust to the specifics of the implementation.

After the networks are trained, the time needed for each evaluation determines the speed of 
inference. In that respect, both LANs and MNLEs are conceptually similar in that they require a single 
forward-pass through a neural network for each evaluation, and we found MNLE and the original 
implementation of LANs to require comparable computation times. However, evaluation time will 
depend, for example, on the exact network architecture, software framework, and computing infra-
structure used. Code for a new PyTorch implementation of LANs has recently been released and 
improved upon the evaluation speed original implementation we compared to. While this new imple-
mentation made LAN significantly faster for a single forward-pass, we observed that the resulting time 
difference with the MCMC settings used here was only on the order of minutes, whereas the differ-
ence in simulation time for LAN11 vs. MNLE5 was on the order of days. The exact timings will always 
be implementation specific and whether or not these differences are important will depend on the 
application at hand. In a situation where iteration over model design is required (i.e., custom DDMs), 
an increase in training efficiency on the order of days would be advantageous.

There exist a number of approaches with corresponding software packages for estimating param-
eters of cognitive neuroscience models, and DDMs in particular. However, these approaches either 
only estimate single best-fitting parameters (Voss and Voss, 2007; Wagenmakers et al., 2007; Chan-
drasekaran and Hawkins, 2019; Heathcote et  al., 2019; Shinn et  al., 2020) or, if they perform 
fully Bayesian inference, can only produce Gaussian approximations to posteriors (Feltgen and 
Daunizeau, 2021), or are restricted to variants of the DDM for which the likelihood can be evaluated 
(Wiecki et al., 2013, HDDM [Hierarchical DDM] toolbox). A recent extension of the HDDM toolbox 
includes LANs, thereby combining HDDM’s flexibility with LAN’s ability to perform inference without 
access to the likelihood function (but this remains restricted to variants of the DDM for which LAN 
can be pretrained). In contrast, MNLE can be applied to any simulation-based model with intractable 
likelihoods and mixed data type outputs. Here, we focused on the direct comparison to LANs based 
on variants of the DDM. We note that these models have a rather low-dimensional observation struc-
ture (as common in many cognitive neuroscience models), and that our examples did not include 
additional parameter structure, for example, stimulus encoding parameters, which would increase 
the dimensionality of the learning problem. However, other variants of neural density estimation have 
been applied successfully to a variety of problems with higher dimensionality (see e.g., Gonçalves 
et al., 2020; Lueckmann et al., 2021; Glöckler et al., 2021; Dax et al., 2022). Therefore, we expect 
MNLE to be applicable to other simulation-based problems with higher-dimensional observation 
structure and parameter spaces, and to scale more favorably than LANs. Like for any neural network-
based approach, applying MNLE to different inference problems may require selecting different archi-
tecture and training hyperparameters settings, which may induce additional computational training 
costs. To help with this process, we adopted default settings which have been shown to work well on 
a large range of SBI benchmarking problems (Lueckmann et al., 2021), and we integrated MNLE into 
the established sbi python package that provides well-documented implementations for training- and 
inference performance of SBI algorithms.

Several extensions to classical SL approaches have addressed the problem of a bias in the likelihood 
approximation due to the strong parametric assumptions, that is, Gaussianity, the use of summary 
statistics, or finite-sample biases (Price et al., 2018; Ong et al., 2009; van Opheusden et al., 2020). 
MNLE builds on flexible neural likelihood estimators, for example, normalizing flows, and does not 
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require summary statistics for a low-dimensional simulator like the DDM, so would be less suscep-
tible to these first two biases. It could be subject to biases resulting from the estimation of the log-
likelihoods from a finite number of simulations. In our numerical experiments, and for the simulation 
budgets we used, we did not observe biased inference results. We speculate that the ability of neural 
density estimators to pool data across multiple parameter settings (rather than using only data from a 
specific parameter set, like in classical SL methods) mitigates finite-sample effects.

MNLE is an SBI method which uses neural density estimators to estimate likelihoods. Alterna-
tives to neural likelihood estimation include neural posterior estimation (NPE, Papamakarios and 
Murray, 2016; Lueckmann et  al., 2017; Greenberg et  al., 2019, which uses conditional density 
estimation to learn the posterior directly) and neural ratio estimation (NRE, Hermans et al., 2020; 
Durkan et al., 2020, which uses classification to approximate the likelihood-to-evidence ratio to then 
perform MCMC). These approaches could in principle be applied here as well, however, they are not 
as well suited for the flexible inference scenarios common in decision-making models as MNLE. NPE 
directly targets the posterior and therefore, by design, typically requires retraining if the structure of 
the problem changes (e.g., if the prior or the hierarchical structure of the model changes). There are 
variants of NPE that use embedding nets which can amortize over changing number of trials, avoiding 
retraining (Radev et al., 2022, von Krause et al., 2022). NRE learns the likelihood-to-evidence ratio 
using ratio estimation (and not density estimation) and would not provide an emulator of the simulator.

Regarding future research directions, MNLE has the potential to become more simulation efficient 
by using weight sharing between the discrete and the continuous neural density estimators (rather 
than to use separate neural networks, as we did here). Moreover, for high-dimensional inference 
problems in which slice sampling-based MCMC might struggle, MNLE could be used in conjunc-
tion with gradient-based MCMC methods like Hamiltonian Monte Carlo (HMC, Brooks et al., 2011; 
Hoffman and Gelman, 2014), or variational inference as recently proposed by Wiqvist et al., 2021 
and Glöckler et al., 2021. With MNLE’s full integration into the sbi package, both gradient-based 
MCMC methods from Pyro (Bingham et al., 2019), and variational inference for SBI (SNVI, Glöckler 
et al., 2021) are available as inference methods for MNLE (a comparison of HMC and SNVI to slice 
sampling MCMC on one example observation resulted in indistinguishable posterior samples). Finally, 
using its emulator property (see Appendix 1), MNLE could be applied in an active learning setting for 
highly expensive simulators in which new simulations are chosen adaptively according to a acquisition 
function in a Bayesian optimization framework (Gutmann and Corander, 2016; Lueckmann et al., 
2019; Järvenpää et al., 2019).

In summary, MNLE enables flexible and efficient inference of parameters of models in cognitive 
neuroscience with intractable likelihoods. The training efficiency and flexibility of the neural density 
estimators used overcome the limitations of LANs (Fengler et al., 2021). Critically, these features 
enable researchers to develop customized models of decision-making and not just apply existing 
models to new data. We implemented our approach as an extension to a public sbi python package 
with detailed documentation and examples to make it accessible for practitioners.

Materials and methods
Mixed neural likelihood estimation
MNLE extends the framework of neural likelihood estimation (Papamakarios et  al., 2019a; Luec-
kmann et al., 2019) to be applicable to simulation-based models with mixed data types. It learns 
a parametric model ‍qψ(x|θ)‍ of the intractable likelihood ‍p(x|θ)‍ defined implicitly by the simulation-
based model. The parameters ψ are learned with training data ‍{θn, xn}1:N ‍ comprised of model param-
eters ‍θn‍ and their corresponding data simulated from the model ‍xn|θn ∼ p(x|θn)‍. The parameters are 
sampled from a proposal distribution over parameters ‍θn ∼ p(θ)‍. The proposal distribution could be 
any distribution, but it determines the parameter regions for which the density estimator will be good 
in estimating likelihoods. Thus, the prior, or a distribution that contains the support of the prior (or 
even all priors which one expects to use in the future) constitutes a useful choice. After training, the 
emulator can be used to generate synthetic data ‍x|θ ∼ qψ(x|θ)‍ given parameters, and to evaluate the 
SL ‍qψ(x|θ)‍ given experimentally observed data. Finally, the SL can be used to obtain posterior samples 
via
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	﻿‍ p(θ|x) ∝ qψ(x|θ)p(θ),‍� (1)

through approximate inference with MCMC. Importantly, the training is amortized, that is, the 
emulator can be applied to new experimental data without retraining (running MCMC is still required).

We tailored MNLE to simulation-based models that return mixed data, for example, in form of reac-
tion times ‍rt‍ and (usually categorical) choices ‍c‍ as for the DDM. Conditional density estimation with 
normalizing flows has been proposed for continuous random variables (Papamakarios et al., 2019a), 
or discrete random variables (Tran et al., 2019), but not for mixed data. Our solution for estimating 
the likelihood of mixed data is to simply factorize the likelihood into continuous and discrete variables,

	﻿‍ p(rt, c|θ) = p(rt|θ, c) p(c|θ),‍� (2)

and use two separate neural likelihood estimators: A discrete one ‍qψc‍ to estimate ‍p(c|θ)‍ and a 
continuous one ‍qψrt‍ to estimate ‍p(rt|θ, c)‍. We defined ‍qψc‍ to be a Bernoulli model and use a neural 
network to learn the Bernoulli probability ρ given parameters ‍θ‍. For ‍qψrt‍ we used a conditional neural 
spline flow (NSF, Durkan et al., 2019) to learn the density of ‍rt‍ given a parameter ‍θ‍and choice ‍c‍. The 
two estimators are trained separately using the same training data (see Neural network architecture, 
training and hyperparameters for details). After training, the full neural likelihood can be constructed 
by multiplying the likelihood estimates ‍qψc‍ and ‍qψrt‍ back together:

	﻿‍ qψc,ψrt (rt, c|θ) = qψc (c|θ) qψrt (rt|c, θ).‍� (3)

Note that, as the second estimator ‍qψrt (r|c, θ)‍ is conditioned on the choice ‍c‍, our likelihood model 
can account for statistical dependencies between choices and reaction times. The neural likelihood 
can then be used to approximate the intractable likelihood defined by the simulator, for example, for 
inference with MCMC. Additionally, it can be used to sample synthetic data given model parameters, 
without running the simulator (see The emulator property of MNLE).

Relation to LAN
Neural likelihood estimation can be much more simulation efficient than previous approaches because 
it exploits continuity across the parameters by making the density estimation conditional. Fengler 
et al., 2021, too, aim to exploit continuity across the parameter space by training a neural network to 
predict the value of the likelihood function from parameters ‍θ‍ and data ‍x‍. However, the difference to 
neural likelihood estimation is that they do not use the neural network for density estimation directly, 
but instead do classical neural network-based regression on likelihood targets. Crucially, the likelihood 
targets first have to obtained for each parameter in the training dataset. To do so, one has to perform 
density estimation using KDE (as proposed by Turner et al., 2015) or empirical histograms for every 
parameter separately. Once trained, LANs do indeed exploit the continuity across the parameter 
space (they can predict log-likelihoods given unseen data and parameters), however, they do so at a 
very high simulation cost: For a training dataset of ‍N ‍ parameters, they perform ‍N ‍ times KDE based on 
‍M ‍ simulations each111 For models with categorical output, that is, all decision-making models, KDE 
is performed separately for each choice., resulting is an overall simulation budget of ‍N · M ‍ (‍N =‍ 1.5 
million and ‍M =‍ 100,000 for ‘pointwise’ LAN approach).

Details of the numerical comparison
The comparison between MNLE and LAN is based on the DDM. The DDM simulates a decision vari-
able ‍X ‍ as a stochastic differential equation with parameters ‍θ = (v, a, w, τ )‍:

	﻿‍ dXt+τ = vdt + dW, Xτ = w,‍� (4)

where ‍W ‍ a Wiener noise process. The priors over the parameters are defined to be uniform: 

‍v ∼ U (−2, 2)‍ is the drift, ‍a ∼ U (0.5, 2)‍ the boundary separation, ‍w ∼ U (0.3, 0.7)‍ the initial offset, and 

‍τ ∼ U (0.2, 1.8)‍ the nondecision time. A single simulation from the model returns a choice ‍c ∈ {0, 1}‍ and 
the corresponding reaction time in seconds ‍rt ∈ (τ ,∞)‍.

For this version of the DDM the likelihood of an observation ‍(c, rt)‍ given parameters ‍θ‍, ‍L(c, rt|θ)‍, 
can be calculated analytically (Navarro and Fuss, 2009). To simulate the DDM and calculate analyt-
ical likelihoods we used the approach and the implementation proposed by Drugowitsch, 2016. We 
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numerically confirmed that the simulations and the analytical likelihoods match those obtained from 
the research code provided by Fengler et al., 2021.

To run LANs, we downloaded the neural network weights of the pretrained models from the repos-
itory mentioned in Fengler et al., 2021. The budget of training simulations used for the LANs was 
‍1.5 × 1011‍ (1.5 million training data points, each obtained from KDE based on 105 simulations). We 
only considered the approach based on training a multilayer perceptron on single-trial likelihoods 
(‘pointwise approach’, Fengler et al., 2021). At a later stage of our study we performed additional 
experiments to evaluate the performance of LANs trained at smaller simulation budgets, for example, 
for 105 and 108 simulations. For this analysis, we used an updated implementation of LANs based 
on PyTorch that was provided by the authors. We used the training routines and default settings 
provided with that implementation. To train LANs at the smaller budgets we used the following splits 
of budgets into number of parameter settings drawn from the prior, and number of simulations per 
parameter setting used for fitting the KDE: for the 105 budget we used 102 and 103, respectively (we 
ran experiments splitting the other way around, but results were slightly better for this split); for the 
108 budget we used an equal split of 104 each (all code publicly available, see Code availability).

To run MNLE, we extended the implementation of neural likelihood estimation in the sbi toolbox 
(Tejero-Cantero et al., 2020). All comparisons were performed on a single AMD Ryzen Threadripper 
1920X 12-Core processor with 2.2 GHz and the code is publicly available (see Code availability).

For the DDM variant with linearly collapsing decision boundaries, the boundaries were parame-
trized by the initial boundary separation, ‍a‍, and one additional parameter, γ, indicating the slope with 
which the boundary approaches zero. This resulted in a five-dimensional parameter space for which 
we used the same prior as above, plus the an additional uniform prior for the slope ‍γ ∼ U (−1.0, 0)‍. To 
simulate this DDM variant, we again used the Julia package by Drugowitsch, 2016, but we note that 
for this variant no analytical likelihoods are available. While it would be possible to approximate the 
likelihoods numerically using the Fokker–Planck equations (see e.g., Shinn et al., 2020), this would 
usually involve a trade-off between computation time and accuracy as well as design of bespoke solu-
tions for individual models, and was not pursued here.

Flexible Bayesian inference with MCMC
Once the MNLE is trained, it can be used for MCMC to obtain posterior samples ‍θ ∼ p(θ|x)‍ given 
experimentally observed data ‍x‍. To sample from posteriors via MCMC, we transformed the parame-
ters to unconstrained space, used slice sampling (Neal, 2009), and initialized ten parallel chains using 
sequential importance sampling (Papamakarios et al., 2019a), all as implemented in the sbi toolbox. 
We ran MCMC with identical settings for MNLE and LAN.

Importantly, performing MNLE and then using MCMC to obtain posterior samples allows for flex-
ible inference scenarios because the form of ‍x‍ is not fixed. For example, when the model produces 
trial-based data that satisfy the i.i.d. assumption, for example, a set of reaction times and choices 

‍X = {rt, c}N
i=1‍ in a DDM, then MNLE allows to perform inference given varying numbers of trials, 

without retraining. This is achieved by training MNLE based on single-trial likelihoods once and then 
combining multiple trials into the joint likelihood only when running MCMC:

	﻿‍
p(θ|X) ∝

N∏

i=1
q(rti, ci|θ) p(θ).

‍�
(5)

Similarly, one can use the neural likelihood to perform hierarchical inference with MCMC, all without 
the need for retraining (see Hermans et al., 2020; Fengler et al., 2021, for examples).

Stimulus- and intertrial dependencies
Simulation-based models in cognitive neuroscience often depend not only on a set of parameters 
‍θ‍, but additionally on (a set of) stimulus variables ‍s‍ which are typically given as part of the experi-
mental conditions. MNLE can be readily adapted to this scenario by generating simulated data with 
multiple stimulus variables, and including them as additional inputs to the network during inference. 
Similarly, MNLE could be adapted to scenarios in which the i.i.d. assumption across trials as used 
above (see Flexible Bayesian inference with MCMC) does not hold. Again, this would be achieved by 
adapting the model simulator accordingly. For example, when inferring parameters ‍θ‍ of a DDM for 
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which the outcome of the current trial ‍i‍ additionally depends on current stimulus variables si as well 
as on previous stimuli sj and responses rj, then one would implement the DDM simulator as a function 

‍f(θ; si−T, . . . , si; ri−T, . . . , ri−1)‍ (where ‍T ‍ is a history parameter) and then learn the underlying likelihood 
by emulating ‍f ‍ with MNLE.

Neural network architecture, training, and hyperparameters
Architecture
For the architecture of the Bernoulli model we chose a feed-forward neural network that takes param-
eters ‍θ‍ as input and predicts the Bernoulli probability ρ of the corresponding choices. For the normal-
izing flow we used the NSF architecture (Durkan et al., 2019). NSFs use a standard normal base 
distribution and transform it using several modules of monotonic rational-quadratic splines whose 
parameters are learned by invertible neural networks. Using an unbounded base distribution for 
modeling data with bounded support, for example, reaction time data ‍rt ∈ (0,∞)‍, can be challenging. 
To account for this, we tested two approaches: We either transformed the reaction time data to 
logarithmic space to obtain an unbounded support (‍log rt ∈ (−∞,∞)‍), or we used a log-normal base 
distribution with rectified (instead of linear) tails for the splines (see Durkan et al., 2019, for details 
and Architecture and training hyperparameters for the architecture settings used).

Training
The neural network parameters ‍ψc‍ and ‍ψrt‍ were trained using the maximum likelihood loss and the 
Adam optimizer (Kingma and Ba, 2015). As proposal distribution for the training dataset we used 
the prior over DDM parameters. Given a training dataset of parameters, choices, and reaction times 

‍{θi, (ci, rti)}N
i=1‍ with ‍θi ∼ p(θ); (ci, rti) ∼ DDM(θi)‍, we minimized the negative log-probability of the 

model. In particular, using the same training data, we trained the Bernoulli choice model by minimizing

	﻿‍
− 1

N

N∑

i=1
log qψc (ci|θi),

‍�
(6)

and the NSF by minimizing

	﻿‍
− 1

N

N∑

i=1
log qψrt (rt|ci, θi).

‍�
(7)

Training was performed with code and training hyperparameter settings provided in the sbi toolbox 
(Tejero-Cantero et al., 2020).

Hyperparameters
MNLE requires a number of hyperparameter choices regarding the neural network architectures, for 
example, number of hidden layers, number of hidden units, number of stacked NSF transforms, kind 
of base distribution, among others (Durkan et al., 2019). With our implementation building on the sbi 
package we based our hyperparameter choices on the default settings provided there. This resulted 
in likelihood accuracy similar to LAN, but longer evaluation times due to the complexity of the under-
lying normalizing flow architecture.

To reduce evaluation time of MNLE, we further adapted the architecture to the example model 
(DDM). In particular, we ran a cross-validation of the hyperparameters relevant for evaluation time, that 
is, number of hidden layers, hidden units, NSF transforms, spline bins, and selected those that were 
optimal in terms of Huber loss and MSE between the approximate and the analytical likelihoods, as 
well as evaluation time. This resulted in an architecture with performance and evaluation time similar 
to LANs (more details in Appendix: Architecture and training hyperparameters). The cross-validation 
relied on access to the analytical likelihoods which is usually not given in practice, for example, for 
simulators with intractable likelihoods. However, we note that in cases without access to analytical 
likelihoods a similar cross-validation can be performed using quality measures other than the differ-
ence to the analytical likelihood, for example, by comparing the observed data with synthetic data 
and SLs provided by MNLE.
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Appendix 1
Code availability
We implemented MNLE as part of the open-source package for SBI, sbi, 
available at https://github.com/mackelab/sbi, (Boelts, 2022a copy archived at 
swh:1:rev:d72fc6d790285c7779afbbe9a5f6b640691d4560). Code for reproducing the results 
presented here, and tutorials on how to apply MNLE to other simulators using sbi can be 
found at https://github.com/mackelab/mnle-for-ddms, (Boelts, 2022b copy archived at 
swh:1:rev:5e6cf714c223ec5c414b76ac70f7dc88d4fbd321). The implementation of MNLE relies on 
packages developed by the Python (Van Rossum and Drake, 1995) and Julia (Bezanson et al., 
2017) communities, including ​Diff​eren​tial​Equa​tions.​jl (Rackauckas and Nie, 2017), ​DiffModels.​jl 
(Drugowitsch, 2016), NumPy (Harris et al., 2020), pandas (pandas development team, 2020), 
Pyro (Bingham et al., 2019), PyTorch (Paszke et al., 2019), sbi (Tejero-Cantero et al., 2020), sbibm 
(Lueckmann et al., 2021), and Scikit-learn (Pedregosa et al., 2011).

Architecture and training hyperparameters
For the Bernoulli neural network we used three hidden layers with 10 units each and sigmoid activation 
functions. For the neural spline flow architecture (Durkan et al., 2019), we transformed the reaction 
time data to the log-domain, used a standard normal base distribution, 2 spline transforms with 5 
bins each and conditioning networks with 3 hidden layers and 10 hidden units each, and rectified 
linear unit activation functions. The neural network training was performed using the sbi package 
with the following settings: learning rate 0.0005; training batch size 100; 10% of training data as 
validation data, stop training after 20 epochs without validation loss improvement.

The emulator property of MNLE
Being based on the neural likelihood estimation framework, MNLE naturally returns an emulator 
of the simulator that can be sampled to generate synthetic data without running the simulator. We 
found that the synthetic data generated by MNLE accurately matched the data we obtained by 
running the DDM simulator (Figure 2—figure supplement 1). This has several potential benefits: it 
can help with evaluating the performance of the density estimator, it enables almost instantaneous 
data generation (one forward-pass in the neural network) even if the simulator is computationally 
expensive, and it gives full access to the internals of the emulator, for example, to gradients w.r.t. to 
data or parameters.

There is variant of the LAN approach which allows for sampling synthetic data as well: In the 
‘Histogram-approach’ (Fengler et al., 2021) LANs are trained with a convolutional neural network 
(CNN) architecture using likelihood targets in form of two-dimensional empirical histograms. The 
output of the CNN is a probability distribution over a discretized version of the data space which 
can, in principle, be sampled to generate synthetic DDM choices and reaction times. However, the 
accuracy of this emulator property of CNN-LANs is limited by the number of bins used to approximate 
the continuous data space (e.g., 512 bins for the examples shown in Fengler et al., 2021).
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Abstract13

Recent advances in connectomics research enable the acquisition of increasing amounts of data14

about the connectivity patterns of neurons. How can we use this wealth of data to efficiently15

derive and test hypotheses about the principles underlying these patterns? A common approach16

is to simulate neural networks using a hypothesized wiring rule in a generative model and to17

compare the resulting synthetic data with empirical data. However, most wiring rules have at18

least some free parameters, and identifying parameters that reproduce empirical data can be19

challenging as it often requires manual parameter tuning. Here, we propose to use20

simulation-based Bayesian inference (SBI) to address this challenge. Rather than optimizing a21

single rule to fit the empirical data, SBI considers many parametrizations of a wiring rule and22

performs Bayesian inference to identify the parameters that are compatible with the data. It uses23

simulated data from multiple candidate wiring rules and relies on machine learning methods to24

estimate a probability distribution (the ‘posterior distribution over rule parameters conditioned25

on the data’) that characterizes all data-compatible rules. We demonstrate how to apply SBI in26

connectomics by inferring the parameters of wiring rules in an in silicomodel of the rat barrel27

cortex, given in vivo connectivity measurements. SBI identifies a wide range of wiring rule28

parameters that reproduce the measurements. We show how access to the posterior distribution29

over all data-compatible parameters allows us to analyze their relationship, revealing biologically30

plausible parameter interactions and enabling experimentally testable predictions. We further31

show how SBI can be applied to wiring rules at different spatial scales to quantitatively rule out32

invalid wiring hypotheses. Our approach is applicable to a wide range of generative models used33

in connectomics, providing a quantitative and efficient way to constrain model parameters with34

empirical connectivity data.35

36
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Author summary37

The brain is composed of an intricately connected network of cells—what are the factors that con-38

tribute to constructing these patterns of connectivity, and how? To answer these questions, amass-39

ing connectivity data alone is not enough. We must also be able to efficiently develop and test our40

ideas about the underlying connectivity principles. For example, we could simulate a hypothetical41

wiring rule like “neurons near each other are more likely to form connections” in a computational42

model and generate corresponding synthetic data. If the synthetic, simulated data resembles the43

real, measured data, then we have some confidence that our hypotheses might be correct. The44

challenge, however, lies in finding all the potential wiring rules, or equivalently, all the parameters45

of the computational model that can reproduce the observed data, as this process is often idiosyn-46

cratic and labor-intensive. To tackle this challenge, we introduce an approach that combines com-47

putational modeling in connectomics, deep learning, and Bayesian statistical inference in order to48

automatically infer a probability distribution over the model parameters likely to explain the data.49

We demonstrate our approach by inferring wiring rules in a detailed model of the rat barrel cortex50

and find that the inferred distribution identifies multiple data-compatible model parameters, re-51

veals biologically plausible parameter interactions, and allows us to make experimentally testable52

predictions.53

Introduction54

Connectomics investigates the structural and functional composition of neural networks to distill55

principles of the connectivity patterns underlying brain function (Chklovskii et al., 2004; Sporns56

et al., 2005). Over the last years, advances in imaging and tracing techniques enabled the acquisi-57

tion of increasingly detailed connectivity data (Osten and Margrie, 2013; Kornfeld and Denk, 2018;58

Macrina et al., 2021) and led to significant insights (Motta et al., 2019; Valdes-Aleman et al., 2021;59

Loomba et al., 2022). These advances in data acquisition necessitate new computational tools for60

analyzing the data and testing hypotheses derived from it (Jain et al., 2010; Sporns and Bassett,61

2018; Peyser et al., 2019). A recent computational approach for testing hypotheses in connectomics62

has been to use so-called generative models (Betzel and Bassett, 2017; Váša and Mišić, 2022; Luppi63

et al., 2022). The idea of generative modeling is to develop a computational model capable of gen-64

erating synthetic connectivity data according to a specific hypothesis, e.g., a wiring rule (Fig. 1a,65

left). Subsequently, one can validate and refine the wiring rule (or the underlying computational66

model) by comparing the simulated with measured connectivity data (Fig. 1a, right). Examples for67

this approach range from large-scale generative models of functional connectivity in the human68

cortex (Vértes et al., 2012; Betzel et al., 2016), system-level network models of the mouse visual69

cortex (Billeh et al., 2020), and generative models of cortical microcircuits (Reimann et al., 2015).70

As a specific example, we here consider a generative model for simulating hypothesized wiring71

rules in the rat barrel cortex (Udvary et al., 2022). The model is based on reconstructions of axon72

and dendrite morphologies from in vivo recordings (Narayanan et al., 2015) and reconstructions73

of the barrel cortex geometry, cytoarchitecture, and cellular organization (Meyer et al., 2010, 2013).74

These anatomical features were combined into a 3D model to obtain a quantitative and realistic75

estimate of the dense neuropil structure for a large volume of the rat barrel cortex (Egger et al.,76

2014; Udvary et al., 2022). Thus, by applying a hypothesized wiring rule to the structural features77

of the model, one can generate a corresponding synthetic barrel cortex connectome and compare78

it to empirical data to test the validity of the wiring rule. For example, Udvary et al. (2022) used79

the barrel cortex model to show that a wiring rule that only takes into account neuronmorphology80

predicts connectivity patterns that are consistent with those observed empirically in the barrel81

cortex.82

However, building generative models that accurately reproduce connectivity measurements83

can be challenging: Suppose a hypothesized wiring rule does not reproduce the data. In that case,84

a common approach would be manually refining the rule, e.g., by introducing parameters and85
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Figure 1. Enhancing generative modeling in connectomics with simulation-based inference. (a) Generative modeling is a commonapproach for testing hypotheses about the connectome: One implements a hypothesized wiring rule as a computational model that simulatesconnectivity data x (left) and then tests and manually refines the rule by comparing simulated with measured data xo (right). (b) Our goal is tomake this approach more efficient using simulation-based Bayesian inference (SBI): By equipping the generative model with parameters �, wedefine a space of multiple a-priori hypotheses (left) from which we can generate multiple simulated data x (middle). We then use the simulateddata to perform density estimation with artificial neural networks to estimate the posterior distribution over model parameters conditioned onthe measured data, i.e., p(�|xo). The inferred posterior distribution characterizes all wiring rule parameters compatible with the measured data,replacing the manual refinement of single wiring rules in the conventional approach (bottom).

repeating the simulate-and-compare-to-measurements loop (Fig. 1a), which can be laborious and86

inefficient. Additionally, identifying one specific wiring rule configuration for which simulated and87

empirical data match might not be enough: Given that the available empirical connectivity data88

is sparse compared to the structural and functional complexity of the connectome, it is likely that89

there are many data-compatible wiring rules and we would need to repeat the search to identify90

them all.91

To address these challenges, we propose a new approach that employs Bayesian inference to92

replace the manual comparison of individual wiring rules (Fig. 1a) with the automated inference of93

multiple wiring rules (Fig. 1b). We achieve this by taking two conceptual steps: First, we equip the94

generativemodel with parameters � and interpret different parameter combinations as variants of95

the underlying hypothesis, e.g., variants of the wiring rule. Second, we define a probability distribu-96

tion over themodel parameters such that each parameter configuration corresponds to a different97

candidate wiring rule, i.e., a prior distribution p(�) (Fig. 1b, left), and use Bayesian inference to infer98

all data-compatible parameters. Given measured connectivity data xo and a parametrized genera-99

tive model, we infer the conditional probability distribution over the model parameters given the100
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measured data, i.e., the posterior distribution p(�|xo). The posterior distribution characterizes all101

parameter configurations (wiring rules) likely to explain the measured data, in contrast to conven-102

tional approaches that often optimize for one best-fitting parameter. For example, by sampling103

different parameters from the inferred posterior we would obtain different wiring rule configura-104

tions all of which are likely to generate data similar to themeasured data (Fig. 1b, bottom). Addition-105

ally, the posterior distribution also allows us to quantify the correlations between the parameters,106

which can help to reveal parameter interactions and potential compensation mechanisms in the107

model.108

On a technical level, standard Bayesian inference methods usually require access to the like-109

lihood function of the model. However, generative models employed in computational connec-110

tomics are often defined as computer simulations forwhich the likelihoodmaynot be easily accessi-111

ble. Therefore, we propose using simulation-based inference (SBI, Cranmer et al., 2020; Gonçalves112

et al., 2020; Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). SBI113

enables Bayesian inference using only simulated data from the model, i.e., without requiring ac-114

cess to the likelihood. In particular, SBI performs conditional density estimation with artificial neu-115

ral networks: It uses data simulated from the model to train an artificial neural network that takes116

data as input and predicts an approximation to the posterior distribution. Once trained on simu-117

lated data, the neural network can be applied to themeasured data to obtain the desired posterior118

distribution p(�|xo) (Fig. 1b, right).119

We demonstrate our approach using the example of constraining wiring rules in the structural120

model of the rat barrel cortex introduced above. First, we show how to reformulate wiring rules121

as parametrized models to make them amenable to Bayesian inference. The resulting generative122

model consists of the parametrized wiring rule applied to the structural model to generate a sim-123

ulated connectome of the rat barrel cortex. Second, we show that SBI can identify all parameter124

configurations that agree with measured connectivity data. When testing our approach in a sce-125

nario with simulated data and a known reference solution, we find that SBI performs accurately. In126

the realistic setting withmeasured connectivity data, SBI identifies a large set of rule configurations127

that reproduce observed and predict unobserved features of the connectome. Importantly, ana-128

lyzing the inferred posterior reveals that this set of plausible rules is highly structured and reflects129

biologically interpretable interactions of the parameters. Finally, we illustrate the flexibility of the130

SBI approach by inferring two proximity-based wiring rules at different spatial scales to quantita-131

tively show that Peters’ rule cannot explain connectivity measurements in the barrel cortex.132

Our approach provides a new quantitative and efficient tool for constraining model parame-133

ters with connectivity measurements and is applicable to many generative models used in connec-134

tomics. For example, it sets the stage for building generative models based on dense reconstruc-135

tions of brain tissue (e.g.,MICrONS-Consortium et al., 2021; Shapson-Coe et al., 2021; Turner et al.,136

2022) and inferring underlying connectivity principles using SBI. We are making all software tools137

required for applying SBI available in an open-source software package (sbi, Tejero-Cantero∗ et al.,138

2020), facilitating its use by researchers across the field.139

Results140

Formulating wiring rules in the rat barrel cortex as simulation-based models141

To demonstrate the potential of simulation-based inference (SBI) for connectomics, we selected142

the problem of constraining wiring rules in the rat barrel cortex with empirical connectivity data.143

Applying SBI requires three ingredients: a simulation-based model with free parameters, a prior144

distribution over the parameters, and measured data (see Methods & Materials for details). Our145

analyses are based on a digital model of the dense neuropil structure of the rat barrel cortex (Eg-146

ger et al., 2014; Udvary et al., 2022), which we extended to obtain a simulation-based model. The147

model contains reconstructions of the number and distribution of somata, axon and dendrite mor-148

phologies, and subcellular features like pre-synaptic boutons and post-synaptic dendritic spines.149
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Figure 2. Formulating wiring rules in the rat barrel cortex as simulation-based models. (a) The structural model of the rat barrel cortexcontains digital reconstructions of position, morphology, and subcellular features of several neuron types in the barrel cortex and the ventralposterior medial nucleus (VPM) of the thalamus. (b) We formulate a wiring rule that predicts the probability of a synapse between two neuronsfrom their dense structural overlap (DSO), i.e., the product of the number of pre- and postsynaptic structural features, normalized by allpostsynaptic features in a given subvolume (postAll). (c) By applying the wiring rule to every neuron-pair subvolume combination of the model toconnection probabilities and then sampling corresponding synapse counts from a Poisson distribution (left), we can simulate a barrel cortexconnectome. To compare the simulated data to measurements, we calculate population connection probabilities between VPM and barrelcortex cell types as they have been measured experimentally (right). (d) To obtain a simulation-based model, we introduce parameters to therule and define a prior distribution over parameters (left) such that each parameter combination corresponds to a different rule. Simulatingdata with random parameters from the prior covers the entire range of probabilities (right, gray), including the measured data (black, Bruno andSakmann, 2006; Constantinople and Bruno, 2013).

These anatomical features were collected for several neuron types in the barrel cortex and pro-150

jecting neurons from the ventral posterior medial nucleus (VPM) of the thalamus and arranged151

in 3D model (Fig. 2a, see Methods & Materials for details). Thus, by applying a wiring rule that152

predicts the connectivity of each neuron pair in the model from the structural features, one can153

construct a simulated connectome of the entire barrel cortex (Egger et al., 2014). Udvary et al.154

(2022) proposed a parameter-free wiring rule acting solely on structural features of themodel, e.g.,155

the pre-synaptic boutons and postsynaptic dendritic spines. Here, we extended this wiring rule156

to a parameterized version that allows systematic analysis of how such structural features could157

interact and be predictive of connectivity.158

A wiring rule for the rat barrel cortex159

The parameter-free wiring rule introduced by Udvary et al. (2022) proposes that the probability of160

two neurons forming a synapse is proportional to a quantity called dense structural overlap (DSO).161

The DSO is defined as the product of the number of presynaptic boutons and postsynaptic contact162

sites (e.g., dendritic spines), normalized by the number of all postsynaptic targets in the neighbor-163

hood (denoted as prei, postj and postAllk for each neuron i, neuron j and subvolume k in the164

model, Fig. 2b):165
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DSOi,j,k =
prei ⋅ postj
postAllk

. (1)
To simulate a connectome corresponding to the DSO wiring rule, one applies the rule to every166

subvolume-neuron-pair combination of the structural model and then samples synapse counts167

from a Poisson distribution using the calculated synapse probabilities (Fig. 2c, left, see Methods &168

Materials for details). The resulting simulated connectome can then be used to calculate summary169

statistics in the format recorded in experiments, e.g., in vitro or in vivo paired recordings or dense170

reconstructions at electron microscopic levels (Fig. 2c, right).171

Udvary et al. (2022) showed that the DSO wiring rule can reproduce measured network charac-172

teristics at different scales. However, in its current form, the DSO rule assumes that the pre- and173

postsynaptic features have the same relative weight in determining the probability of a synapse174

and that these weights are the same across all barrel cortex cell types. Is this specific combination175

of pre- and postsynaptic features in the DSO rule is the only valid choice? A common approach to176

testing this question would be to iteratively modify the rule, e.g., by adding a scaling factor to the177

postsynaptic features or introducing different scaling factors for every cell type. However, this ap-178

proach can be inefficient because any changes to the rule would require rerunning the procedure179

of generating simulated data and manually comparing it to measured data.180

Defining a wiring rule simulator181

In order to test different variations of the DSO rule efficiently, we introduced three parameters to182

the DSO rule: �pre for scaling the presynaptic bouton counts, �post for scaling the postsynaptic target183

density, and �postAll for scaling the normalizing feature (Fig. 2d, left). The parametrized DSO rule for184

a presynaptic neuron i and postsynaptic neuron j positioned in a subvolume k is then given by185

DSOi,j,k(�) =
pre�prei ⋅ post�postj

postAll�postAllk

, (2)
(see Methods & Materials for details). The three parameters represent the relative weight with186

which each local subcellular feature contributes to forming connections.187

The next step towards applying SBI is selecting measured data xo to constrain the rule param-188

eters. We selected seven connection probabilities of neuronal populations mapping from the ven-189

tral posterior medial nucleus (VPM) of the thalamus to different layers and cell types in the barrel190

cortex, as proposed by Udvary et al. (2022): layer four (L4), layer four septum (L4SEP), layer four191

star-pyramidal cells (L4SP), and layer four spiny stellate cells (L4SS) (Bruno and Sakmann, 2006),192

layer five slender-tufted intratelencephalic cells (L5IT), layer five thick-tufted pyramidal tract cells193

(L5PT), and layer six (Constantinople and Bruno, 2013).194

Overall, one simulation of the wiring rule consisted of three steps: First, applying the rule with a195

given set of parameters to the structural features of every combination of neuron-pair-subvolume196

to obtain connection probabilities; second, sampling synapses from the Poisson distribution given197

the probabilities; and third, calculating the summary statistics matching the measured VPM-barrel198

cortex population connection probabilities (Fig. 2a-d; seeMethods &Materials for details). As prior199

over the parameters p(�), we selected a Gaussian distribution such that sampling random parame-200

ter values from the prior resulted in simulated population connection probabilities that covered a201

broad range of possible values, including the measured values (Fig. 2d, right). This set of sampled202

model parameter values and their corresponding simulated connection probabilities constituted203

the training dataset for running SBI.204

SBI performs accurately on simulated data205

Before applying SBI to infer the parameters of the DSO rule given measured data, we validated its206

accuracy. As a first step, we considered a variant of the DSO rule simulator for which it was possi-207

ble to obtain a ground-truth reference posterior distribution (see section Methods & Materials for208
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Figure 3. SBI posterior reveals parameter interactions and predicts unseen data. (a) The posterior over the three wiring rule parametersscaling the DSO features (see inset) inferred with SBI (blue) and the initial prior distribution over parameters (gray). The corner plot shows theone-dimensional marginal distribution of each parameter on the diagonal and the pairwise two-dimensional marginals on the off-diagonal(contour lines show the 34%, 68% and 95% credible regions). (b) Comparison of measured connection probabilities (black, Bruno and Sakmann,2006; Constantinople and Bruno, 2013) with those simulated with parameter values sampled from the inferred posterior (blue) versus from theprior (gray). (c) Each panel shows the predictions for one held-out measurement generated from a posterior that was trained and conditionedonly on the other six measurements, i.e., each panel refers to a different posterior.

details). Using this reference solution, we checked whether SBI infers the posterior accurately and209

how many training simulations it requires. We compared three SBI algorithms: Sequential Neural210

Posterior Estimation (SNPE, Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg211

et al., 2019), which performs SBI sequentially over multiple rounds focusing inference on one par-212

ticular observation; its non-sequential variant NPE; and a classical rejection-sampling-based ap-213

proach called Sequential Monte Carlo (SMC, Sisson et al., 2007; Beaumont et al., 2009). We found214

that all three methods can accurately infer the reference posterior distribution (Suppl. Fig. S1a,b)215

but that they differ in terms of simulation efficiency: SNPE was slightly more efficient than NPE,216

and both were substantially more efficient than SMC (Suppl. Fig. S1b). As a second step, we per-217

formed two checks to validate SBI on the realistic version of the simulator for which no reference218

solution was available. First, we used simulated-based calibration (SBC, Talts et al., 2020) to check219

whether the variances of posterior distributions inferred with SBI were well-calibrated, i.e., neither220

too narrow (overconfident) nor too wide (conservative). We found that SNPE and NPE run with sim-221

ulated observed data inferred well-calibrated posteriors for all three parameters (Suppl. Fig. S1c).222

Second, we checked the predictive performance of SBI by generating simulated data using param-223

eter values sampled from the inferred posterior. We found that the predicted data resembles the224

(simulated) observed data (Suppl. Fig. S1d, see Methods & Materials for details).225

SBI identifies many possible wiring rules and reveals parameter interactions226

After evaluating SBI with simulated data, we applied it to infer the posterior over DSO rule param-227

eters given the seven measured VPM-barrel cortex connection probabilities (Bruno and Sakmann,228

2006; Constantinople and Bruno, 2013). Our analysis of the inferred posterior distribution revealed229

three key insights.230
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The posterior identifies many data-compatible wiring rule configurations.231

We found that the inferred posterior distribution was relatively broad, suggesting many param-232

eter combinations with a high probability of explaining the measured data (Fig. 3a): The one-233

dimensional posterior marginal distributions of the three parameters (Fig. 3a, blue in diagonal sub-234

plots) showedmaxima at parameter values of �pre = 1.57, �post = 1.51 and �postAll = 1.38, andmarginal235

variances of �̂2pre = 0.26, �̂2post = 0.35 and �̂2postAll = 0.07. These values indicated that � = [1.57, 1.51, 1.38]236

was the most likely weighting of the DSO rule features (see Fig. 3a, inset) but that there are also237

several other parameter combinations with a high posterior probability. For example, sampling238

parameter values from the posterior for �post would return values lying mostly in an interval as239

broad as [0.33, 2.69] (95% posterior credible interval). Despite this relatively broad range of plausi-240

ble parameters values, we still found that simulating these parameters with the DSO rule resulted241

in connection probabilities close to the measured data and substantially different from those sim-242

ulated with the prior (Fig. 3b, blue versus gray). How can so many parameter configurations from243

such broad ranges all result in similar data?244

Posterior analysis reveals biologically plausible parameter interactions.245

Having access to the full posterior distribution and its covariance structure allowed us to answer246

this question. Inspection of the two-dimensional marginals of each parameter pair indicated a247

correlation structure substantially different from the uncorrelated prior distribution (Fig. 3a, off-248

diagonal subplots). To quantify this, we estimated the Pearson correlation coefficients of 10, 000249

parameter values sampled from the posterior distribution. We found a negative correlation be-250

tween �pre and �post (Pearson correlation coefficient � = −0.23) and positive correlations between251

�postAll and �pre as well as �post (� = 0.35 and � = 0.81, respectively). These correlations are plausible252

given the design of the DSO rule (see equation 2). For example, the negative correlation between253

�pre and �post indicated that when increasing the value of �pre, we would have to decrease �post in254

order to obtain the same overall number of connections for a particular cell type. This suggests255

that a stronger influence of presynaptic boutons on the connection probability requires a weaker256

influence of postsynaptic target targets on the connection probability.257

The correlations further suggested that all three structural features are relevant in predicting258

the connection probabilities: Once one parameter is fixed, the values of the other parameters are259

strongly constrained. Having access to the full posterior distribution allowed us to quantify this260

by calculating the conditional correlations between the parameters. We obtained the conditional261

correlations by conditioning the posterior on one parameter dimension—i.e., holding it at a fixed262

value—and calculating the correlation between samples drawn from the resulting two-dimensional263

conditional posterior, once for each of the three parameters �pre, �post and �postAll (see Methods &264

Materials for details). The resulting correlation coefficients were substantially higher than without265

conditioning: −0.99 between �pre and �post and 0.99 between the other two parameter combinations266

(see Suppl. Fig. S3 for a visualization of the conditional posteriors). This result confirmed that while267

the overall range of data-compatible wiring rule parameters is relatively large (Fig. 3a), once one268

parameter is fixed, the other two are constrained to a very small range of values. Furthermore,269

the strong conditional posterior correlations indicated that the DSO rule with three parameters is270

overparametrized, i.e., a parametrization of theDSO rulewith only two parameters likely suffices to271

explain the measured data (see Supplementary material for details). Collectively, the inferred pos-272

terior suggested that the number of presynaptic boutons and the number of postsynaptic contact273

sites (and, by extension, axonal and dendritic path length) are sensitive and strongly interdepen-274

dent structural features for predicting synaptic connectivity.275

SBI posterior predicts unobserved connection probabilities.276

To demonstrate the utility of SBI-enabled generative models as a tool for hypothesis generation,277

we investigated how one can make predictions on unobserved data. Above, we used SBI to con-278

strain thewiring rule parameters with only the sevenmeasured connection probabilities. However,279
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in principle, the structural model provides access to the entire (simulated) connectome of one bar-280

rel cortex column. Thus, it allows us to make predictions about other features of the connectome281

that were not measured yet. To test this approach, we repeated the SBI training procedure seven282

times, holding out each connectivity measurement once from the training data set, i.e., we trained283

the posterior estimator on pairs of parameters and data, (�, x), where x has six entries instead284

of seven. After training, we obtained seven different posteriors, each conditioned on six of the285

seven measured connection probabilities. We then sampled parameter values from every poste-286

rior, simulated the corresponding barrel cortex connectomes, and calculated all seven connection287

probabilities.288

The predictions for held-out measurements clustered around the actual measurement values289

for most of the seven connection probabilities (Fig 3c) and closely resembled the predictive distri-290

butions of the posterior inferred given all measurements (Fig 3b). Quantitatively, we found that291

the predictions were within one standard deviation of the measurements (given the sample size292

used in the experiments, see Methods & Materials for details). A classifier trained to distinguish293

between the predictions of the posterior inferred from all measurements and predictions for held-294

out measurements achieved an accuracy of 0.68 for L4SS, 0.58 for L5PT, and < 0.55 accuracy for295

all other measurements (0.5 being the chance level). This cross-validation approach indicated that296

the structural model paired with the SBI-enabled wiring rule enables us to make experimentally297

testable predictions. For example, one could predict connection probabilities of cell types different298

from the seven measured here or other connectivity features of the rat barrel cortex available in299

the structural model (see below).300

Using SBI to rule out invalid wiring hypotheses301

Above, we demonstrated that SBI provides a quantitative way to identify valid wiring rule configu-302

rations from a large set of hypothesized wiring rules. SBI can also be used to rule out invalid hy-303

potheses, e.g., to show that an existing hypothesis does not agree with empirical data. One such304

debated hypothesis in connectomics is the so-called Peters’ rule (Peters and Feldman, 1976; Brait-305

enberg and Schüz, 1991). According to this hypothesis, neurons form connections whenever their306

axons and dendrites are in close proximity, i.e., Peters’ rule can be formulated as “axo-dendritic307

proximity predicts connectivity” (Udvary et al., 2022). However, several empirical and theoretical308

approaches found substantial evidence against Peters’ rule (e.g.,Mishchenko et al., 2010; Kasthuri309

et al., 2015; Rees et al., 2017; Udvary et al., 2022).310

Here, we show that SBI provides an alternative, quantitative way to discard this hypothesis for311

the rat barrel cortex. We formulated two wiring rules that implement the proximity hypothesis in312

the structural model of the barrel cortex at two spatial scales: one predicting connections on the313

neuron-to-neuron level (Fig. 4) and one predicting synapse counts at the subcellular level (Fig. 5).314

Bothwiring rules have one free parameter, i.e., they incorporatemany different proximity hypothe-315

ses, but there is one particular parameter value corresponding to Peters’ rule. We used SBI to infer316

the posterior distribution over the rule parameters given the seven measured VPM-barrel cortex317

connection probabilities. Subsequently, we compared inferred parameter values and their predic-318

tions with those corresponding to Peters’ rule.319

Neuron-level rule320

At the neuron-to-neuron level, we defined the proximity of two neurons as the number of subvol-321

umes v they share in the structural model and introduced a threshold parameter acting on the322

proximity: Neurons i and j form a connection ci,j if the number of subvolumes vij that contain323

presynaptic structures of neuron i and postsynaptic structures of neuron j, exceeds a threshold324

parameter �tℎres:325

ci,j(�tℎres) = 1 if vij > �tℎres else 0. (3)
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a b cFigure 4. Neuron-level wiring rule inferred with SBI differs from Peters’ rule. We used SBI to infer a proximity-based wiring rule at differentspatial resolutions of the rat barrel cortex model and compared its predictions to that of Peters’ rule. (a) Distributions of the shared subvolumes
v between neurons in the barrel cortex model for each spatial resolution (subvolume edge length, see legend in (b)). (b) SBI posteriors inferredover the connection threshold parameter of the wiring rule (�tℎres, number of shared subvolumes required to form a connection), shown foreach spatial resolution (colors), and for Peters’ rule assuming �tℎres = 1 (gray). (c) Connection probabilities simulated from the inferred posterior(orange) and Peters’ rule (gray) compared to the measured connection probabilities (black).

To compare the resulting pair-wise connections between neurons in the barrel cortexmodel to the326

measured connection probabilities, wemapped them to the corresponding population connection327

probabilities as described above (see section Methods & Materials for details).328

The structural feature used in this rule is the number of shared subvolumes between two neu-329

rons (in contrast to the subcellular features used in the DSO rule above). This feature directly de-330

pends on the spatial resolution of the structural model, i.e., the edge length of the subvolume used331

to construct themodel. Therefore, we calculated the structural features at five different spatial res-332

olutions: 50, 25, 10, 5, and 1 µm. We found that the overall number of shared subvolumes among333

neurons increased with edge length, reflecting the increase in subvolume size (Fig. 4a).334

When applying Peters’ rule to the barrel cortex model at the neuron level, a connection oc-335

curs whenever two neurons share at least one subvolume, i.e., the connection threshold would be336

�tℎres = 1. Does this assumption hold for the barrel cortex at the neuron-to-neuron level as well? To337

answer this question quantitatively, we used SBI to infer the threshold parameter �tℎres of the neu-338

ron level rule for each edge length. We observed that the inferred threshold parameters shifted339

to larger values with increasing edge length, e.g., the higher spatial resolution, the fewer common340

subvolumes were required to obtain a connection (Fig. 4b). This was in line with our observation341

that the overall number of shared subvolumes available in the structural model increased with in-342

creasing edge length (Fig. 4a). However, irrespective of the spatial resolution, all inferred threshold343

parameters were substantially larger than the �tℎres = 1 of Peters’ rule, reaching from �tℎres ≈ 3 (pos-344

terior mean) for the 1 µm-subvolume model (Fig. 4b, orange) to �tℎres ≈ 28 for the 50 µm-subvolume345

model (Fig. 4b, violet). Accordingly, the comparison of the predictive performance of the inferred346

rule and Peters’ rule showed that only the data simulated from the inferred rule centered around347

the measured data (Fig. 4c, orange and gray, respectively).348

Synapse-level rule349

We repeated this test of Peters’ rule at the subcellular level as well. Here, we defined a probabilistic350

rule: Whenever a presynaptic structure of neuron i and a postsynaptic structure of neuron j are351

present within the same subvolume k, they form a synapse with probability �prob:352

ci,j,k(�prob) ∼ Bernoulli(�prob) if axon of i and dendrite of j are present in k. (4)
This rule predicts synapses for every neuron-pair-subvolume combination using the structural353

model with subvolumes of 1 µm edge length. To compare the simulated synapse counts to the354

measured connection probabilities, we calculated simulated connection probabilities as described355

above. The posterior distribution over the connection probability parameter �prob inferred with SBI356
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Figure 5. Synapse-level wiring rule inferred with SBI differs from Peters’ rule. We compared an SBI-inferred parametrized wiring rulepredicting synapse counts on the subcellular level with a corresponding formulation of Peters’ rule. (a) SBI posterior for the wiring ruleparameter � (probability of forming a synapse if two neurons are close), compared to Peters’ rule assuming � = 1 (gray). (b) Number of synapsespredicted by the inferred posterior (blue) and Peters’ rule (gray) compared to the number of presynaptic boutons realistically available in thestructural model (dashed black), plotted over the entire cortical depth of the barrel cortex column. (c) Connection probabilities simulated fromthe inferred synapse level posterior (blue) and Peters’ rule (gray) compared to the measured connection probabilities (black).

centered around �prob ≈ 0.3 (Fig. 5a). This result suggests that in only thirty percent of the loca-357

tions where axon and dendrite are close to each other (shared 1 µm subvolume), the rule predicts358

a synapse, which is substantially lower than the value of �prob = 1 corresponding to Peters’ rule.359

Accordingly, simulating parameter values sampled from the posterior resulted in connection prob-360

abilities closer to the measured ones than those predicted by Peters’ rule (Fig. 5c, blue vs. gray).361

For another comparison of Peters’ rule with the inferred wiring rule at the synapse level, we362

leveraged the predictive properties of the structural model and the SBI posterior. In particular,363

the structural model provides access to estimates of the number of biologically available boutons364

across the cortical depth of the barrel cortex column (Udvary et al., 2022). The SBI posterior al-365

lowed us to simulate data according to the inferred wiring rule parameters. Thus, it was possible366

to compare the estimate of the number of empirically available boutons of each presynaptic VPM367

neuron with the number of simulated synapses from the inferred wiring rule and Peters’ rule. We368

found that the inferred rule predicted synapses close to or below the total number of available369

boutons (Fig. 5b), in contrast to Peters’ rule, which predicted more synapses than biologically plau-370

sible.371

Our results demonstrate how SBI can be applied to different wiring rules to quantitatively rule372

out a specific invalid hypothesis: One incorporates the hypothesis into a parametrized model and373

compares the SBI-inferred parameters to those corresponding to the hypothesis. In the case of Pe-374

ters’ rule, the inferred posteriors showed that axo-dendritic proximity alone cannot predict connec-375

tivity observed empirically in the rat barrel cortex—it consistently predicts too many connections376

(Fig. 4c,d). This finding is in line with previous results showing that the number of dendrites and377

axons close to each other exceeds the number of synapses by 1-2 orders of magnitude (Udvary378

et al., 2022). Thus, we can conclude that to explain connectivity in the rat barrel cortex, wiring rules379

cannot be based solely on axo-dendritic proximity. They also have to take into account subcellular380

features like pre- and post-synaptic structures along axons and dendrites.381

Discussion382

What principles are behind the complex connectivity patterns of neural networks that shape brain383

function? Connectomics aims to answer this question by acquiring detailed data about the struc-384

tural and functional composition of the brain. Over the last few years, the development of new385

computational approaches for analyzing the resulting large amounts of data and testing the de-386

rived hypotheses gained momentum (Triesch and Hilgetag, 2016; Peyser et al., 2019). One compu-387

tational approach is to leverage generative models for testing hypotheses about the connectome,388

e.g., to implement a hypothesized wiring rule in a computational model and ask whether model389
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simulations can reproduce themeasured connectivity patterns of a specific brain region (Váša and390

Mišić, 2022). However, identifying the free parameters in the wiring rule that reproduce measured391

connectivity data can be challenging.392

We introduced amethod that renders the generativemodeling approach to connectomicsmore393

efficient, enabling us to systematically infer all data-compatible parameters of a given compu-394

tational model. Instead of manually refining a specific generative model to match the data, we395

equipped it with parameters such that it represents several candidate hypotheses. We then used396

Bayesian parameter inference to infer the posterior distribution over model parameters condi-397

tioned on the measured data. The inferred distribution represents all candidate parameter con-398

figurations, i.e., hypotheses, capable of reproducing the measured data. By relying on simulation-399

based inference (SBI) methods that do not require access to the likelihood function of the model,400

we were able to apply our approach to the simulation-based generative models commonly used401

in computational connectomics.402

To demonstrate the utility of this approach, we employed it to constrain several wiring rules—403

at different spatial scales—with connectivity measurements from the rat barrel cortex. We first404

showed that the inferencemethod is accurate in a scenario with a ground-truth reference solution.405

Next, in the realistic setting with measured connectivity data, we retrieved many different wiring406

rule configurations that could explain the measured data equally well. Analyzing the geometrical407

structure of the inferred posterior distribution revealed strong correlations between wiring rule408

parameters that are in line with their biological interpretations. Importantly, we were able to accu-409

rately predict held-out connectivity measurements, demonstrating the method’s utility in making410

experimentally testable predictions. Finally, we used our approach to quantitatively show that a411

wiring rule based solely on axo-dendritic proximity cannot explain barrel cortex connectivity mea-412

surements. Overall, these results demonstrate the potential benefits of the Bayesian inference413

approach, i.e., having access to the full posterior distribution over model parameters rather than414

manually optimizing for individual parameters one hypothesis at a time and the flexibility of SBI in415

requiring only simulated data to perform inference.416

Related work417

The problem of identifying parameters of computational models that reproduce experimentally418

observed data has been addressed in computational connectomics before. For example, Vértes419

et al. (2012) built a model of functional connections between brain regions and used optimiza-420

tion methods to find single best-fitting parameters capturing the functional MRI data measured in421

humans. Klimm et al. (2014) and Betzel et al. (2016) used Monte Carlo sampling methods for op-422

timizing the parameters of synthetic networks of structural connectivity to match the topological423

properties of human connectomes recorded with MRI. In contrast to our approach, these studies424

do not perform Bayesian inference but rely on optimization techniques that identify single best-425

fitting solutions, potentially ignoring other parameters that fit the data equally well.426

While there have been Bayesian approaches to computational connectomics, they differed427

from the approach we proposed here. Jonas and Kording (2015) built a probabilistic model of428

cell type-dependent connectivity in the mouse retina and proposed a non-parametric Bayesian al-429

gorithm that automatically predicts cell types and microcircuitry from connectomics data. Klinger430

et al. (2021) performed Bayesian model comparison using a rejection-sampling approach (Toni431

et al., 2009) to compare a set of competing local circuit models in layer 4 of the mouse primary432

somatosensory cortex based on purely structural connectomics data. In contrast to our approach,433

they inferred the probabilities of several models whose parameters are fixed (i.e., model com-434

parison) and did not infer the parameter of individual models. Moreover, their approach relied on435

classical rejection-sampling techniques, which are less simulation-efficient compared to the neural-436

network-based SBI we employed andwill likely not scale to higher-dimensional inference problems437

(Figure S1b; for a detailed comparison, see Lueckmann et al., 2021). However, combining both ap-438

proaches, e.g., using more efficient neural-network-based model comparison techniques (Boelts439
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et al., 2019; Radev et al., 2021) followed by parameter inference with SBI, would be a promising440

direction for future research.441

Aside from the above examples, computationalmodels in connectomics are often implemented442

as complicated computer simulations that can generate simulated data but for which the underly-443

ing likelihood functions are not accessible, thus limiting our ability to perform Bayesian inference.444

To account for this limitation, we employed simulation-based inference (SBI, Cranmer et al., 2020)445

methods which only require simulations from the model to perform Bayesian inference. SBI has446

been applied previously in various fields, ranging from genomics (Bernstein et al., 2021), evolution-447

ary biology (Ratmann et al., 2007; Avecilla et al., 2022), computational and cognitive neuroscience448

(Gonçalves et al., 2020; Oesterle et al., 2020; Deistler et al., 2022b; Groschner et al., 2022; Sab-449

bagh et al., 2020; Hashemi et al., 2022), to robotics (Marlier et al., 2021), global health (de Witt450

et al., 2020) and astrophysics (Alsing et al., 2018; Dax et al., 2021). For the wiring rule exam-451

ples presented here, we used sequential neural posterior estimation (SNPE, Papamakarios and452

Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019), which performs neural-network-453

based conditional density estimation to estimate the posterior distribution from simulated data.454

Neural-network-based SBI approaches build on recent advances in probabilistic machine learning455

(Papamakarios and Murray, 2016; Le et al., 2017; Papamakarios et al., 2021) and exhibit several456

advantages compared to more classical rejection-sampling-based techniques, commonly termed457

Approximate Bayesian Computation (ABC, Sisson et al., 2018). For example, in contrast to ABC458

approaches, they do not require selecting a criterion for quantitatively comparing simulated with459

measured data. Furthermore, they can leverage the ability of neural networks to exploit continu-460

ities in the parameter space or automatically learn informative summary features from raw data.461

As a consequence, they are often more simulation-efficient (Suppl. Fig. S1b) and scale better to462

problems with more model parameters and high-dimensional data (Lueckmann et al., 2021).463

Applicability and limitations464

In this work, we applied SBI to the specific problem of inferring wiring rules that can generate ob-465

served connectivity data. A key advantage of SBI is that only data simulated from the model are466

required to infer the posterior distribution over model parameters. Thus, it is generally applicable467

to any computational model capable of simulating data from a set of parameters. To give spe-468

cific examples, one could make the algorithms for generating synthetic functional connectomes469

proposed by Vértes et al. (2012), Klimm et al. (2014), or Betzel et al. (2016) amenable to SBI by470

introducing parameters of interests and then use SBI to efficiently identify all data-compatible pa-471

rameter values.472

Posterior-targeting SBI approaches, like the NPE algorithm we used, have the additional ad-473

vantage that they can obtain the posterior distribution for new data points without retraining the474

underlying artificial neural networks, i.e., they perform amortized inference (see Papamakarios475

and Murray, 2016; Gonçalves et al., 2020, for details). Another advantage of SBI is that it can476

leverage the ability of neural networks to automatically learn informative summary features from477

observations (see Lueckmann et al., 2017; Chan et al., 2018; Greenberg et al., 2019; Gonçalves478

et al., 2020; Ramesh et al., 2022, for examples). While we did not exploit this feature for the low-479

dimensional measured data in the wiring rule examples presented here, we believe that it will480

be essential for future applications of SBI in computational connectomics, e.g., when dealing with481

high-dimensional dense reconstructions of electron-microscopy data (Shapson-Coe et al., 2021;482

MICrONS-Consortium et al., 2021; Turner et al., 2022).483

SBI’s dependency on simulated data and neural network training also entails several limitations:484

the inferred posterior distributions are only approximations of the unknown actual posterior distri-485

bution. Therefore, applying SBI requires careful evaluation of every problem at hand. In theory, SBI486

does recover the unknown posterior distribution when given enough training data (Papamakarios487

and Murray, 2016). In practice, however, the complexity and dimensionality of the posterior dis-488

tribution determine how many training simulations are required for an accurate approximation489

Boelts et al. 2023 | Simulation-based inference for computational connectomics bioR� iv | 13 of 30



of the posterior. Previous studies have successfully applied SBI in scenarios where the simulator490

has a runtime on the order of seconds and with up to thirty parameters (Gonçalves et al., 2020;491

Deistler et al., 2022b; Ramesh et al., 2022), but these numbers strongly depend on the problem492

and available computational resources.493

Another limitation of SBI is the problem of model misspecification. SBI generally assumes that494

the generative model is well-specified, i.e., that it can simulate data that is very similar to the mea-495

sured data. If this is not the case, then the inferred posterior can be substantially biased (Frazier496

et al., 2019; Cannon et al., 2022). We recommend performing prior predictive checks to detect497

model misspecification, i.e., generating a large set of simulated data with parameters sampled498

from the prior distribution and checking whether the measured data lies inside the distribution499

of simulated data, as demonstrated in the wiring rule example (Fig. 2d, see Supplementary mate-500

rial for details). Recent methodological work in SBI addresses this problem, e.g., by automatically501

detectingmodel misspecification (Schmitt et al., 2022) or by explicitly incorporating themodel mis-502

match into the generative model (Ward et al., 2022).503

More generally, applying SBI to new inference problems requires several choices by the prac-504

titioner, from prior predictive checks and model-checking to selecting suitable neural network ar-505

chitectures and validating the inferred posterior distribution. As a general guideline, we recom-506

mend following the steps we performed for the wiring rule example: First, we investigated the ac-507

curacy of SBI and estimated the required number of training simulations by testing it in a scenario508

with a known reference solution. Second, we ensured that the inferred posterior distribution has509

well-calibrated uncertainty estimates using simulation-based calibration (Talts et al., 2020). Third,510

we checked whether the parameter values identified by SBI accurately reproduced the measured511

data (see Methods & Materials for details). Additionally, we recommend guiding hyperparameter512

choices by resorting to well-tested heuristics and default settings available in open-source soft-513

ware packages developed and maintained by the community. We performed all our experiments,514

evaluation steps, and visualization using the sbi toolkit (Tejero-Cantero∗ et al., 2020).515

Conclusion516

We present SBI as a method for constraining the parameters of generative models in computa-517

tional connectomics with measured connectivity data. The key idea of our approach is to initially518

define a probability distribution over many possible model parameters and then use Bayesian pa-519

rameter inference to identify all those parameter values that reproduce the measured data. We520

thereby replace the iterative refinement of individual model configurations with the systematic521

inference of all data-compatible solutions. Our approach will be applicable to many generative522

modeling scenarios in computational connectomics, providing researchers with a quantitative tool523

to evaluate and explore hypotheses about the connectome.524

Methods & Materials525

Code availability526

Data and code for reproducing the results are available at https://github.com/mackelab/sbi-for-527

connectomics, including a tutorial on how to apply SBI in computational connectomics in general.528

For running SBI using SNPE, posterior visualization, and posterior validation, we used the sbi pack-529

age at https://github.com/mackelab/sbi (Tejero-Cantero∗ et al., 2020). The benchmarking of SNPE530

and SMC-ABCmethods, including the generation of reference posteriors, was performed using the531

sbibm package at https://github.com/sbi-benchmark (Lueckmann et al., 2021).532

Bayesian inference for computational connectomics533

We introduced Bayesian inference as a tool to identify model parameters of generative models534

in computational connectomics, given experimentally observed data. Bayesian inference takes a535

probabilistic view and defines themodel parameters and data as random variables. It aims to infer536
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the conditional probability distribution of themodel parameters conditioned on the observed data,537

i.e., the posterior distribution. Bayes’ rule defines the posterior distribution as538

p(�|xobs) =
p(xobs|�) p(�)

p(xobs)
, (5)

where p(xobs|�) is the likelihood of the data given model parameters, p(�) is the prior distribu-539

tion over model parameters and p(x) = ∫� p(x|�)p(�)d� is the so-called evidence. Thus, performing540

Bayesian inference requires three components:541

1. Experimentally observed data xobs.542

2. A likelihood p(xobs|�), which defines the relationship between model parameters and data.543

In our setting, the likelihood is implicitly defined by the computational model, i.e., by the544

simulator generating connectomics data x given model parameters �. The simulator needs545

to be stochastic, i.e., when repeatedly executed with a fixed parameter �, it should generate546

varying data. Technically, given a fixed parameter value �, the likelihood defines a probability547

distribution over x, and simulating data corresponds to sampling x ∼ p(x|�).548

3. A prior distribution p(�). The prior incorporates prior knowledge about the parameters �, e.g.,549

biologically plausible parameter ranges or known parameter correlations.550

The posterior distribution p(�|xobs) inferred through Bayes’ rule characterizes all model parameters551

likely to reproduce the observed data. For example, model parameters with a high probability un-552

der the posterior distribution will result in data close to the observed data. In contrast, parameters553

from low probability density regions will likely generate data different from the observed data.554

In most practical applications, it is hard to obtain an analytical solution to Bayes’ rule because555

the evidence p(x) = ∫ p(x|�)p(�)d� is challenging to calculate. There exists a large set of methods to556

perform approximate inference, e.g., Markov ChainMonte Carlo sampling (MCMC, Rosenbluth and557

Rosenbluth, 1955; Hogg and Foreman-Mackey, 2018). MCMC methods can be used to obtain sam-558

ples from the posterior distribution. However, they require evaluation of the likelihood function of559

the model, and computational models in connectomics are usually defined as scientific simulators560

for which no analytical form of the underlying likelihood is available or numerical approximations561

are computationally expensive.562

Simulation-based inference563

Simulation-based inference (SBI, Cranmer et al., 2020) allows us to perform Bayesian inference564

without numerical evaluation of the likelihood by requiring only access to simulations from the565

model. The idea of SBI is to generate a large set of pairs of model parameters and corresponding566

simulated data and use it as training data for artificial neural networks (ANN). The employed ANNs567

are designed to approximate complex probability distributions. Thus, they can be used to approxi-568

mate the likelihood to then obtain posterior samples via MCMC (Papamakarios et al., 2017; Lueck-569

mann et al., 2019; Hermans et al., 2020; Boelts et al., 2022) or the posterior distribution directly570

(Papamakarios and Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019). Once trained,571

the neural networks are applied to the experimentally observed data to obtain the approximate572

posterior. In our work, we used an SBI approach called sequential neural posterior estimation (SNPE,573

Papamakarios and Murray, 2016; Greenberg et al., 2019).574

Neural posterior estimation575

Neural posterior estimation (NPE) uses an artificial neural network F (x) to learn an approximation576

of the posterior from training data pairs {(�i, xi)}Ni=1, where � is sampled from a prior �i ∼ p(�), and577

x is simulated from the model xi ∼ simulator(�i). The density estimator F (x) is trained to construct578

a distribution that directly approximates the posterior. It is usually defined as a parametric family579

q� with parameters �, e.g., a mixture density network (MDN, Bishop, 1994), or a normalizing flow580

(Papamakarios et al., 2021). For example, suppose q is a mixture of Gaussians, then F would581
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take the data as input and predict the parameters �, � = F (x), where � contains the means, the582

covariance matrix, and the mixture weight of each mixture component. F (x) is trained to predict583

the parameters � from x by minimizing584

− 1
N

N∑
i=1
log q�=F (xi)(�i|xo).

This training loss implicitly minimizes the Kullback-Leibler divergence between the true poste-585

rior and the approximation q�(�|x). It will converge to zero, i.e., NPE will infer the true posterior, in586

the limit of infinite training data and given density estimator that is flexible enough (Papamakar-587

ios and Murray, 2016; Le et al., 2017). Algorithm 1 summarizes the algorithmic steps of NPE; see588

Greenberg et al. (2019) for details.589

Once NPE is trained on simulated data, it can be applied to the actual observed data xobs, e.g.,590

� = F (xobs), to obtain an approximation to the desired posterior:591

q�(�|xobs) ≈ p(�|xobs). (6)
Importantly, NPE applies to any newly observed data without retraining the density estimator, i.e.,592

the inference with NPE is amortized. There is also a sequential variant of NPE called SNPE, where593

the training is performed over several rounds to focus the density estimator on a specific obser-594

vation xobs. In each new round of SNPE, the new training data is not generated with parameters595

sampled from the prior but from the posterior estimate of the previous round. While the sequen-596

tial approach can be substantially more sampling-efficient compared to NPE, i.e., requiring fewer597

training simulations to obtain a good posterior approximation for a given xobs (Lueckmann et al.,598

2021), it comes with two caveats. First, it requires retraining for every new xobs. Second, using a pro-599

posal distribution different from theprior for simulating newdata requires a correction, resulting in600

additional algorithmic choices and challenges. Over the last few years, different approaches have601

been proposed to perform this correction (Papamakarios and Murray, 2016; Lueckmann et al.,602

2017; Greenberg et al., 2019; Deistler et al., 2022a). We used SNPE with the correction proposed603

by Greenberg et al. (2019).604

Algorithm 1: Single round Neural Posterior Estimation as in Papamakarios and Murray
(2016)
input simulator p(x|�), prior p(�), observed data xobsfor j = 1 ∶ N doSample �i ∼ p(�)Simulate xi ∼ p(x|�i)end
� ← argmin−1∕N

∑N
i log qF (xi ,�)(�i)Set p̂(�|xo) = qF (xobs ,�)(�)return Samples from p̂(�|xobs); density estimator qF (x,�)(�)

Posterior validation605

In theory and with unlimited training data, NPE will converge to the true (unknown) posterior dis-606

tribution. However, training data is limited in practice, and the underlying posteriors can be high-607

dimensional and complex. Thus, it is essential to validate the approximate posterior. There are608

two common techniques for validating SBI even in the absence of a reference posterior: predictive609

checks (Gelman et al., 2020) and calibration checks, e.g., simulation-based calibration (SBC, Cook610

et al., 2006; Talts et al., 2020).611
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Predictive checks612

Predictive checks can be applied to either the prior or the posterior. The prior predictive check is613

applied before the inference. It checks whether the model can produce data close to the experi-614

mentally observed data xobs, i.e., that the distribution obtained by sampling from the prior and sim-615

ulating the corresponding data contains xobs. If this is not the case, the model or the prior could be616

misspecified and should be refined before applying SBI. We performed the prior predictive check617

for the DSO rule simulator by sampling 100,000 parameters from the prior and ensuring that the618

resulting distribution of simulated connection probabilities covers the sevenmeasured values (see619

Prior predictive checks for details).620

The posterior predictive check tests the predictive performance of the posterior. It should be621

applied after the inference by simulating data using parameters sampled from the posterior:622

xp ∼ simulator(�p) where �p ∼ p(�|xobs).
The simulated data should cluster around the observed data with a variance on the order of the623

variance expected from the simulator. We performed this check for all inferred wiring rules by sim-624

ulating 1,000 data points using 1,000 parameters sampled from the corresponding SBI posterior.625

Simulation-based calibration626

The variance of the posterior distribution expresses the uncertainty in the parameters. Simulation-627

based calibration (SBC) provides a way to check whether these uncertainties are, on average, well-628

calibrated, i.e., that the posterior is (on average) neither too broad (under-confident) nor too nar-629

row (over-confident). The basic idea of SBC is the following. Suppose one uses an SBI method630

to obtain i = 1,… , N different posteriors p(�|xi) for different observations xi generated from dif-631

ferent parameters �i sampled from the prior. If one determines the rank of each parameter �i632

among samples from its corresponding posterior p(�|xi), then the posteriors obtained with this633

SBI method have well-calibrated uncertainties if the collection of allN ranks follows a uniform dis-634

tribution (Talts et al., 2020). To check whether the posterior obtained with SBI is well-calibrated,635

we repeated the inference with NPEN = 1000 times (no retraining required), using data generated636

from the simulator with parameters sampled from the prior. Subsequently, we performed a vi-637

sual check for uniformity of the corresponding SBC ranks by comparing their empirical cumulative638

density function against that of a uniform distribution.639

A generative structural model of the rat barrel cortex640

We demonstrated the utility of SBI for computational connectomics by constraining wiring rules in641

a structural model of the rat barrel cortex with connectivity measurements. To fulfill the prereq-642

uisites of Bayesian inference defined above, we set up a simulation-based model for simulating643

wiring rules in the barrel cortex model. The wiring rule simulator has three components:644

1. a structural model that provides features (Fig.2a),645

2. a parametrized wiring rule that is applied to the features to simulate a connectome (Fig.2b),646

3. calculation of summary statistics from the simulated connectome to match the available mea-647

surements (Fig.2c).648

The structural model649

The structural model is a digital reconstruction of the rat barrel cortex constructed from detailed650

measurements of cell types and their morphologies, locations, and sub-cellular features, includ-651

ing single boutons and dendrites, obtained from several animals (Meyer et al., 2010, 2013; Egger652

et al., 2012, 2014; Narayanan et al., 2015; Udvary et al., 2022). These measurements and their653

digital reconstructions were copied and arranged according to measured cell type distributions654

in all cortical layers to obtain a realistic estimate of the structural composition of a large part of655
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the entire barrel cortex. The model contains around 477,000 excitatory and 77,000 inhibitory neu-656

rons, resulting in more than 5.5 billion synaptic sites. Furthermore, it incorporates the projections657

from the ventral posterior medial nucleus (VPM) of the thalamus to all cortical layers. The model658

gives access to several cellular and subcellular structural features, including presynaptic boutons659

and postsynaptic target counts (spine densities). These features were collected for every neuron660

segment in every subvolume of the model. The model does not contain synaptic connections but661

only the structural features. Thus, it allows to simulate the effect of different wiring rules by apply-662

ing the rule to the structural features and comparing the resulting connectome to experimental663

measurements (Udvary et al., 2022).664

Dense structural overlap wiring rule665

We applied a wiring rule to the structural model to turn it into a simulation-based model that can666

generate simulated connectomes of the rat barrel cortex. As a wiring rule, we used the dense struc-667

tural overlap (DSO) rule introduced by (Egger et al., 2014; Udvary et al., 2022), which proposes that668

two neurons form a synapse depending on their locally available structural subcellular features669

summarized as DSO. The DSO is the product of the numbers of pre- and postsynaptic structures,670

pre and post, that a presynaptic neuron i and a postsynaptic neuron j contribute to a subvolume k671

relative to the total number of postsynaptic structures contributed by all neurons, postAll (Fig.2b):672

DSOi,j,k =
prei ⋅ postj
postAllk

. (7)
We assumed that the number of connections between any neuron pair (i,j) within a subvolume k673

is given by a Poisson distribution with the DSO as the rate parameter (Egger et al., 2014, Fig.2c):674

cijk ∼ Poisson(DSOi,j,k).

The DSO rule is stochastic, i.e., it samples different synapse counts every time it is applied to the675

structural model. However, the contribution of each structural feature to the DSO is fixed. To676

allow for more flexibility in the relative weighting of each feature, we generalized the DSO rule by677

introducing three scaling parameters for the three structural features, �pre, �post, and �postAll:678

DSOi,j,k(�) =
pre�prei ⋅ post�postj

postAll�postAllk

. (8)
We rewrote the parametrized rule as a Poisson generalized linear model (GLM, Nelder and Wedder-679

burn, 1972) by transforming the features to the logarithmic space, stacking them as column vectors680

in a feature matrixXijk = [log pre(i, k); log post(j, k); − log postAll(k)] and arranging the scaling param-681

eters in a vector �:682

DSOi,j,k(�) = exp
⎛⎜⎜⎝
log

⎛⎜⎜⎝
pre�prei ⋅ post�postj

postAll�postAllk

⎞
⎟⎟⎠

⎞
⎟⎟⎠

= exp
(
�pre log prei + �post log postj − �postAll log postAllk

)

= exp(�⊤Xijk)

cijk(�) ∼ Poisson(exp(�⊤Xijk)).

The generalized version of the DSO rule takes parameter combination � and generates simulated683

connectomes in the format of synapse counts. Each new parameter setting corresponds to a dif-684

ferent variant of the DSO rule that could have generated the measured data. Note that setting685

� = [1, 1, 1]⊤ would result in the expression introduced in equations 7 and 8.686
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Mapping from simulated connectomes to measured connectivity data687

The generalized DSO rule and the chosen prior distribution jointly define a space of simulated con-688

nectomes associated with the DSO rule. The last step for constructing a simulation-based model689

is to map the simulated connectomes to the type of data that can be measured empirically. The690

measurements available for the barrel cortex are connection probabilities estimated from pair-691

wise recordings between neurons in the ventral posterior medial nucleus (VPM) of the thalamus692

and different layers and cell types in the cortex: to layer 4 (L4), layer 4 septum (L4SEP), layer 4 star693

pyramidal cells (L4SP), and layer 4 spiny stellate cells (L4SS) (all measured by Bruno and Sakmann,694

2006), layer 5 slender-tufted intratelencephalic cells (L5IT), layer 5 thick-tufted pyramidal tract cells695

(L5PT), and layer 6 (all measured by Constantinople and Bruno, 2013).696

While the simulated connectome provided access to all neuron-pair-subvolume combinations697

in the structural model, the measurements were given only as estimated connection probabilities698

for different cell types. To calculate these connection probabilities from the simulated connectome,699

we identified the pairs from the presynaptic and postsynaptic neuron populations used in the ex-700

periments and calculated the connection probabilities from the corresponding simulated synapse701

counts. The number of probed neuron pairs was relatively small in the experiments, e.g., around702

50 (Bruno and Sakmann, 2006). We tried to mimic this experimental setting in the simulation by703

selecting a random sample of 50 pairs from the thousands of possible pairs available in the simu-704

lated connectome. We then checked how many of those neuron pairs connected with at least one705

synapse for each of the seven populations. Algorithm 2 summarizes the steps for calculating the706

summary statistics.707

Algorithm 2:Wiring rule simulator and summary statistics calculation
input structural model S, wiring rule R(�), parameter � ∼ p(�), measured connectivity data
xobs
Simulate:
generate synapse counts for each neuron-pair i, j in each subvolume k:
cijk ∼ simulator(S,R,�)
Summarize:
for each population mmeasured in xobs doFind index set of neuron pairs Πm belonging to population mSample 50 random neuron-pair indices � ∼ ΠmEstimate population connection probability as average over connected pairs:∑

(i,j)∈�
I(i→j)
|�|end

return simulated connectivity data x

Overall, this provided us with a setup to perform Bayesian inference as defined above, to con-708

strain the parameters of a hypothesized wiring rule in the rat barrel cortex:709

1. observed data xobs given by seven measured connection probabilities between VPM and bar-710

rel cortex711

2. a stochastic simulation-based model that generates simulated data x according to the hy-712

pothesized DSO rule, given parameters �713

3. a prior over model parameters �714

This setup readily extends to other observed data, other simulation-based models, or priors.715
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Experimental settings716

Simulation and SBI settings717

For performing SBI on the DSO rule parameters, we used a Gaussian prior over the three parame-718

ters:719

� ∼ (�0 = [1, 1, 1]⊤,Σ0 = 0.5 I). (9)
We chose the variance of the prior such that the distribution of simulated connection probabilities720

covered the range [0, 1] densely (see Supplementary material for details).721

For the inference on the distance-based wiring rules, we used a uniform prior over the shared722

subvolume threshold parameter �tℎres of neuron-level rule723

�tℎres ∼  (0, 100),

and a Beta distribution prior over the synapse probability parameter �prob of the synapse level rule724

�prob ∼ Beta(� = 2, � = 2).
The settings for generating training simulations for SBI were the same for all results: We drew725

1,000,000 parameter values from the prior and simulated the corresponding synapse counts or726

neuron-level connections, followed by the summary step (except for the simulator used for bench-727

marking, see below).728

To perform SBI, we used (S)NPE with Neural Spline Flows (NSF, Durkan et al., 2019) as den-729

sity estimator. The NSF hyperparameters were: five transforms, two residual blocks of 50 hidden730

units each, ReLU non-linearity, and ten spline bins, all as implemented in the public sbi toolbox731

(Tejero-Cantero∗ et al., 2020). The training was performed with a training batch size of 1, 000, a732

validation set proportion of 10%, and a convergence criterion of 20 epochs without improvement733

of validation loss. We used the different versions of NPE or SNPE as follows: For the benchmark of734

SBI against the MCMC reference posterior, we compared the non-sequential (NPE) and sequential735

version (SNPE). For evaluating SBI with simulated data, we used the NPE to leverage its ability to736

perform inference repeatedly for many different observations without retraining as needed for737

running simulation-based calibration. For the inference on the DSO rule, we used SNPE with ten738

rounds to focus the posterior on themeasured data. For the inference on the distance-based rules,739

we used NPE.740

Validating SBI on the wiring rule simulator741

We performed two validation steps to ensure that SBI performs reliably when inferring wiring rules742

in the structural model of the rat barrel cortex. First, we set up a simplified version of the DSO743

rule simulator for which it was possible to obtain a high-quality reference posterior. In particu-744

lar, we reduced the number of neuron-pair-subvolume combinations from 130 million available745

in the original structural model to only ten. Additionally, we omitted the summary step, such that746

running one simulation corresponded to applying the rule to the structural features of the ten747

neuron-pair-subvolume combinations and sampling synapse counts from the corresponding Pois-748

son distribution. As a consequence, the likelihood of this simplified simulator was accessible, i.e., it749

was given by the Poisson distribution, and it was possible to obtain accurate posterior samples us-750

ing standard approximate Bayesian inference MCMC sampling (Hogg and Foreman-Mackey, 2018).751

We implemented this reduced simulator in the SBI benchmarking framework sbibm (Lueck-752

mann et al., 2021) and obtained references posterior samples via slice sampling MCMC (Neal,753

2003) using ten parallel chains and sequential importance reweighting (Rosenbluth and Rosen-754

bluth, 1955; Lueckmann et al., 2021), all as implemented in sbibm. We compared three algorithms:755
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SNPE, which estimates the posterior in multiple rounds focusing on one specific observation; the756

single-round variant NPE, which works formany observations without retraining; and a classical se-757

quential rejection-sampling-based algorithm called SMC-ABC (Sisson et al., 2007; Beaumont et al.,758

2009). As a measure of posterior accuracy, we used the classifier-2-sample-test score (C2ST Lopez-759

Paz and Oquab, 2018), defined by the classification accuracy of an artificial-neural-network clas-760

sifier trained to distinguish the approximate and reference posterior samples. For running SNPE761

and NPE, we used the sbi toolbox (Tejero-Cantero∗ et al., 2020), and for SMC-ABC, we used the im-762

plementations provided in sbibm. Generating the training data for the SBI algorithm by simulation763

data from themodel can be a crucial computational factor. To investigate the simulation efficiency764

of different SBI algorithms for our inference problem, we performed a quantitative comparison of765

the number of training simulations and the resulting accuracy of the approximate posterior by re-766

peating inference with SMC-ABC, NPE, and SNPE for a simulation budget of 1,000; 10,000; 100,000767

and 1,000,000 simulations.768

As a second validation step, we applied SBI to the original version of the DSO rule for which769

no reference posterior was available. For this setting, we tested the validity of NPE applied to770

simulated observed data. First, we performed simulation-based calibration (SBC) to check the771

calibration of the posterior uncertainties inferred by NPE. To run SBC, we trained NPE once on772

1,000,000 simulations and then obtained 1,000 different posteriors p(�|xi) for different observa-773

tions xi, where xi was generated from different parameters tℎetai sampled from the prior. We774

then collected the individual ranks of the underlying parameter �i under their posterior and tested775

whether these ranks were uniformly distributed by visually inspecting their empirical cumulative776

density functions. Second, we checked whether the parameters identified by the NPE posterior777

distribution could reproduce the (simulated) observed data. To perform this check, we sampled778

1,000 parameters from the posterior inferred given a simulated example observation, simulated779

corresponding connection probabilities using the DSO rule simulator, and compared them to the780

observed data.781
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Supplementary Figure S1. Validating SBI over wiring rule parameters with simulated data. (a) Comparison of the posterior over wiringrule parameters inferred with SBI (using the SNPE algorithm, blue) and the reference solution (ground-truth parameters in black). (b) Inferenceaccuracy in terms of classifier-2-sample-test accuracy (C2ST) between reference solution and three SBI algorithms, plotted as a function oftraining simulations (0.5 is best, error bars show standard error over ten different observations). (c) Distributions of posterior ranks fromSimulation-based calibration, obtained for each parameter separately from NPE applied to the full version of the DSO rule simulator. Awell-calibrated posterior should have uniformly distributed ranks, as indicated by the area shaded gray. (d) Comparison of data simulated withsamples drawn from the NPE posterior (posterior predictive distribution, orange) and the underlying observed data (simulated, black).
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Supplementary Figure S2. Predictive distributions. Comparison of connection probabilities simulated from the prior (gray), the SBI posterior(colors), and the measured data (black). Shown for the dense structural overlap rule (DSO) (see Results) in (a) and for the proximity-based wiringrules on the neuron level and the synapse level in (b). The prior predictive distributions cover a wide range of values, whereas the posteriorpredictive distributions cluster around the measured connection probabilities taking into account the measurement noise.

Supplementary material1015

Prior predictive checks1016

An essential requirement for a generative model is that it can actually generate the measured1017

data, i.e., that the model is not misspecified. The prior predictive distribution shows all data that1018

can be generated by the model when sampling parameters from the prior. Thus, this distribution1019

provides a tool to check for misspecification. For the wiring rule simulator, the prior predictive is a1020

seven-dimensional distribution (Fig. S4b).1021

We found that with the chosen setting of the prior, simulator, and summary statistics (see Al-1022

gorithm 2), the prior predictive distribution covers a large range of plausible values, including the1023

experimental measurements (Fig. S4b). The two-dimensional marginals show strong positive cor-1024

relations between all seven connection probabilities and additional blocks of stronger correlations1025

within layer 4 (L4, L4SEP, L4SP, L4SS) and layer 5 (L5PT, L5IT), visible in the correlations matrix1026

(Fig. S4a). These correlations are plausible because all populations share the same source popula-1027

tions in the thalamus, and the blocks of stronger correlations correspond to connection probabili-1028

ties within the same target layer in the cortex. Furthermore, depending on the number of neuron1029

pairs used to calculate connection probabilities (seeMapping from simulated connectomes tomea-1030

sured connectivity data), the simulator accurately matches the empirical variance expected from1031

the measured data (Fig. S4c). These results indicated that a subsampling of 50 pairs was adequate1032

to model the experiments.1033

Alternative parametrizations of the dense structural overlap rule1034

The strong conditional correlations between the three parameters of the dense structural overlap
rule (DSO, see Posterior analysis reveals biologically plausible parameter interactions) indicated
that an alternative parametrization of the DSO rule, e.g., using only two parameters, could also be
able to explain the measured data. We tested this hypothesis by changing the DSO rule as follows.
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Supplementary Figure S3. Conditional posterior distributions. We obtained conditional posterior distributions for the DSO rule (see Results)by conditioning one of the three parameters to a value drawn from the posterior. The resulting two-dimensional posterior over �pre and �post (a),
�pre and �postAll (b) and �post and �postAll (c), showed strong correlations as visible on the off-diagonal two-dimension marginals.

The initial formulation of the rule is given by
DSOi,j,k(�) =

pre�prei ⋅ post�postj

postAll�postAllk

. (10)
The postAll structural feature in the denominator contains the post-synaptic target densities of all
post-synaptic structures in a given subvolume k of the structuralmodel, including the postj features.It acts as a normalizing factor for the rule, e.g., when the weight �post increases, a correspondingincrease in �postAll can maintain a similar overall DSO value. We changed the DSO rule by removing
the parameter �postAll, but including the scaled features post�postj into postAll, instead of only taking
post. By taking the scaled version, we maintained the normalizing property of the denominator of
the DSO rule: If �post was high, in the initial three-parameter formulation of the DSO rule, this could
be compensated by a corresponding increase in �postAll. While this was not possible anymore in the
two-param version, the compensation occurred implicitly by including the scaled postj features:

DSOi,j,k(�) =
pre�prei ⋅ post�postj

(post�postj + postAllk,¬j)
. (11)

We performed SBI using the same settings as before to obtain the posterior distribution over1035

the two parameters of the reduced DSO rule (Fig. S5a). The resulting posterior predictive distri-1036

bution showed similar accuracy to the one of the three-parameter DSO rule (compare Fig. S5b1037

versus Fig. 3b). This result indicates that the two-parameter DSO rule provides an alternative to1038

the three-parameter rule.1039
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Supplementary Figure S4. Prior predictive distribution for the DSO rule. (a) Estimated correlation matrix of the seven connectionprobabilities generated from the model (note the restricted range of the color map). (b) Marginal plot of the prior predictive distributionshowing data simulated from 10k samples from the prior; one-dimensional marginal as histograms on the diagonal and two-dimensionalmarginals as scatter plots on the upper triangular subplots; literature data in black. (c) Size of the random subset of neuron pairs used tocalculate the connection probabilities plotted against the resulting standard deviation (std) in the simulated connection probabilities. Calculatedfrom 1,000 simulations given the same parameters, averaged over the seven connection probabilities (blue); compared with the empiricalvariance expected from the sample sizes used in the experiments in the literature (black).
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Supplementary Figure S5. SBI results for the two-parameter DSO rule. (a) Posterior distribution (blue) over the two parameters of thereduced DSO rule, inferred with SBI given the seven measured connection probabilities and the corresponding prior distribution (gray). (b)Connection probabilities simulated with parameters sampled from the posterior (blue) and the prior (gray), compared to the measuredconnection probabilities (black, Bruno and Sakmann, 2006; Constantinople and Bruno, 2013). (c) Distribution of posterior ranks for every ruleparameter, calculated with simulation-based calibration (orange), compared to the desired uniform distribution (gray area on the diagonal).
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Summary

Scientists and engineers employ stochastic numerical simulators to model empirically observed
phenomena. In contrast to purely statistical models, simulators express scientific principles that
provide powerful inductive biases, improve generalization to new data or scenarios and allow for
fewer, more interpretable and domain-relevant parameters. Despite these advantages, tuning
a simulator’s parameters so that its outputs match data is challenging. Simulation-based
inference (SBI) seeks to identify parameter sets that a) are compatible with prior knowledge
and b) match empirical observations. Importantly, SBI does not seek to recover a single ‘best’
data-compatible parameter set, but rather to identify all high probability regions of parameter
space that explain observed data, and thereby to quantify parameter uncertainty. In Bayesian
terminology, SBI aims to retrieve the posterior distribution over the parameters of interest. In
contrast to conventional Bayesian inference, SBI is also applicable when one can run model
simulations, but no formula or algorithm exists for evaluating the probability of data given
parameters, i.e. the likelihood.
We present sbi, a PyTorch-based package that implements SBI algorithms based on neu-
ral networks. sbi facilitates inference on black-box simulators for practising scientists and
engineers by providing a unified interface to state-of-the-art algorithms together with docu-
mentation and tutorials.

Motivation

Bayesian inference is a principled approach for determining parameters consistent with em-
pirical observations: Given a prior over parameters, a stochastic simulator, and observations,
it returns a posterior distribution. In cases where the simulator likelihood can be evaluated,
many methods for approximate Bayesian inference exist (e.g., Metropolis, Rosenbluth, Rosen-
bluth, Teller, & Teller, 1953; Baydin et al., 2019; Graham & Storkey, 2017; Le, Baydin, &
Wood, 2017; Neal, 2003). For more general simulators, however, evaluating the likelihood of
data given parameters might be computationally intractable. Traditional algorithms for this
‘likelihood-free’ setting (Cranmer, Brehmer, & Louppe, 2020) are based on Monte-Carlo re-
jection (Pritchard, Seielstad, Perez-Lezaun, & Feldman, 1999; Sisson, Fan, & Tanaka, 2007),
an approach known as Approximate Bayesian Computation (ABC). More recently, algorithms
based on neural networks have been developed (Greenberg, Nonnenmacher, & Macke, 2019;
Hermans, Begy, & Louppe, 2020; Lueckmann et al., 2017; Papamakarios & Murray, 2016;
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Papamakarios, Sterratt, & Murray, 2019). These algorithms are not based on rejecting simu-
lations, but rather train deep neural conditional density estimators or classifiers on simulated
data. To aid in effective application of these algorithms to a wide range of problems, sbi
closely integrates with PyTorch and offers state-of-the-art neural network-based SBI algo-
rithms (Greenberg et al., 2019; Hermans et al., 2020; Papamakarios et al., 2019) with flexible
choice of network architectures and flow-based density estimators. With sbi, researchers can
easily implement new neural inference algorithms, benefiting from the infrastructure to man-
age simulators and a unified posterior representation. Users, in turn, can profit from a single
inference interface that allows them to either use their own custom neural network, or choose
from a growing library of preconfigured options provided with the package.

Related software and use in research

We are aware of several mature packages that implement SBI algorithms. elfi (Lintusaari
et al., 2018) is a package offering BOLFI, a Gaussian process-based algorithm (Gutmann &
Corander, 2016), and some classical ABC algorithms. The package carl (Louppe, Cranmer,
& Pavez, 2016) implements the algorithm described in Cranmer, Pavez, & Louppe (2015).
Two other SBI packages, currently under development, are hypothesis (Hermans, 2019) and
pydelfi (Alsing, 2019). pyabc (Klinger, Rickert, & Hasenauer, 2018) and ABCpy (Dutta,
Schoengens, Onnela, & Mira, 2017) are two packages offering a diversity of ABC algorithms.
sbi is closely integrated with PyTorch (Paszke et al., 2019) and uses nflows (Durkan,
Bekasov, Papamakarios, & Murray, 2019) for flow-based density estimators. sbi builds on
experience accumulated developing delfi (mackelab.org, 2017), which it succeeds. delfi
was based on theano (Al-Rfou et al., 2016) (development discontinued) and developed both
for SBI research (Greenberg et al., 2019; Lueckmann et al., 2017) and for scientific applications
(Gonçalves et al., 2019). The sbi codebase started as a fork of lfi (Durkan, 2020), developed
for Durkan et al. (2020).

Description

sbi currently implements three families of neural inference algorithms:

• Sequential Neural Posterior Estimation (SNPE) trains a deep neural density estimator
that directly estimates the posterior distribution of parameters given data. Afterwards,
it can sample parameter sets from the posterior, or evaluate the posterior density on
any parameter set. Currently, SNPE-C (Greenberg et al., 2019) is implemented in sbi.

• Sequential Neural Likelihood Estimation (SNLE) (Papamakarios et al., 2019) trains a
deep neural density estimator of the likelihood, which then allows to sample from the
posterior using e.g. MCMC.

• Sequential Neural Ratio Estimation (SNRE) (Durkan et al., 2020; Hermans et al., 2020)
trains a classifier to estimate density ratios, which in turn can be used to sample from
the posterior e.g. with MCMC.

The inference step returns a NeuralPosterior object that represents the uncertainty about
the parameters conditional on an observation, i.e. the posterior distribution. This object can
be sampled from —and if the chosen algorithm allows, evaluated— with the same API as a
standard PyTorch probability distribution.
An important challenge in making SBI algorithms usable by a broader community is to deal
with diverse, often pre-existing, complex simulators. sbi works with any simulator as long
as it can be wrapped in a Python callable. Furthermore, sbi ensures that custom simulators
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work well with neural networks, e.g. by performing automatic shape inference, standardizing
inputs or handling failed simulations. To maximize simulator performance, sbi leverages
vectorization where available and optionally parallelizes simulations using joblib (Varoquaux,
2008). Moreover, if dimensionality reduction of the simulator output is desired, sbi can use
a trainable summarizing network to extract relevant features from raw simulator output and
spare the user manual feature engineering.
In addition to the full-featured interface, sbi provides also a simple interface which consists
of a single function call with reasonable defaults. This allows new users to get familiarized
with simulation-based inference and quickly obtain results without having to define custom
networks or tune hyperparameters.
With sbi, we aim to support scientific discovery and computational engineering by making
Bayesian inference applicable to the widest class of models (simulators with no likelihood
available), and practical for complex problems. We have designed an open architecture and
adopted community-oriented development practices in order to invite other machine-learning
researchers to join us in this long-term vision.
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